Class / Patent application number | Description | Number of patent applications / Date published |
073504130 | Hollow circular-shaped inertial element | 36 |
20080264168 | RING RESONATOR GYROSCOPE WITH CYLINDRICAL RING SUSPENSION - A ring resonator gyro comprises a cylindrical ring suspension. The cylindrical ring suspension supports a cylindrical ring resonator. The cylindrical ring resonator is coupled with an outer perimeter of the ring suspension. | 10-30-2008 |
20090049910 | Method of determining a speed of rotation of an axially symmetrical vibrating sensor, and a corresponding inertial device - The method of determining the speed of rotation of an axially symmetrical vibrating sensor of order 2 comprises the steps of:
| 02-26-2009 |
20090064782 | SENSOR AND SENSING METHOD UTILIZING SYMMETRICAL DIFFERENTIAL READOUT - A sensor and sensing method capable of full-differential symmetry to minimize bias drift and improve stability of the sensor output. The sensor includes a sensing element, sense electrodes capacitively coupled to the sensing element to generate capacitive outputs that vary in response to the motion of the sensing element, and a differential readout device. The sense electrodes are electrically separable into at least two pairs of differential sense electrodes. The readout device performs a sampling sequence of at least two sampling cycles during which the readout device samples the capacitive outputs of the sense electrodes and produces at least two differential outputs based on the difference between the capacitive outputs within each pair of differential sense electrodes. The readout device then calculates an average of the differential outputs of the sampling sequence to produce an output of the differential readout device, and thereafter repeats the sampling sequence and calculation. | 03-12-2009 |
20090095077 | DISC RESONATOR GYROSCOPE WITH IMPROVED FREQUENCY COINCIDENCE AND METHOD OF MANUFACTURE - A disc resonator gyroscope (DRG) and method of manufacture. The DRG has a surrounding pattern of bond metal having a symmetry related to the symmetry of a resonator device wafer that enables more even dissipation of heat from a resonator device wafer of the DRG during an etching operation. The metal bond frame eliminates or substantially reduces the thermal asymmetry that the resonator device wafer normally experiences when a conventional, square bond frame is used, which in turn can cause geometric asymmetry in the widths of the beams that are etched into the resonator device wafer of the DRG. | 04-16-2009 |
20090095078 | Closed loop scale factor estimation - A closed loop scale factor estimator of an apparatus in one example is configured to compare a measured flex angle of a hemispherical resonator gyroscope (HRG) with a demodulation angle signal to estimate a force-to-rebalance (FTR) scale factor for the HRG, wherein the demodulation angle signal corresponds to an integral of a non-uniform rate signal applied to the HRG. | 04-16-2009 |
20090120185 | STEMLESS HEMISPHERICAL RESONATOR GYROSCOPE - A vibrational gyroscope includes a piezoelectric ring having a central opening, and a hemispherical resonator having a central opening and mounted over the opening of the central opening of the piezoelectric ring. A plurality of electrodes delivers a voltage to the piezoelectric ring. A plurality of electrodes provides signal readout that corresponds to angular velocity. The hemispherical resonator can be glued to the piezoelectric ring. The hemispherical resonator preferably vibrates in the third vibration mode. A plurality of capacitive electrodes can be located at nodes and at antinodes of the vibration of the hemispherical resonator, and provide a signal readout that corresponds to the angular velocity. The piezoelectric ring is segmented, non-segmented, or includes an outer segmented portion and an inner non-segmented portion. The inner non-segmented portion can be used to excite the resonator into a vibration mode, and the outer segmented portion provides a readout signal and is used to adjust the vibration of the resonator. The piezoelectric ring includes a conductive coating used to conduct excitation voltage to the piezoelectric ring. | 05-14-2009 |
20090133498 | MULTIAXIAL GYROSCOPE - The present invention relates to a multiaxial gyroscope, which comprises a vibration-sensing device, a plurality of elastic connecting parts, a first substrate, and a plurality of electrodes. The first ends of the elastic connecting parts are adapted on the periphery of the vibration-sensing device. The sidewall of the first substrate connects with the second ends of the elastic connecting parts. The plurality of electrodes is located on the periphery of the vibration-sensing device and is opposite to the plurality of elastic connecting parts. The vibration-sensing device comprises a ring and a plurality of vibration blocks. By means of the vibration blocks, the sensing area as well as the driving amplitude of the gyroscope can be increased effectively. Thereby, the intensity of the sensed signals of the gyroscope can be enhanced. | 05-28-2009 |
20090173157 | Capacitive bulk acoustic wave disk gyroscopes with self-calibration - The apparatus in one embodiment may have capacitive bulk acoustic wave disk gyro operated in a closed loop mode. A self-calibration system may be operatively coupled to the capacitive bulk acoustic wave disk gyroscope. Self-calibration of gyro bias of the gyro may be implemented by interchanging an anti-nodal axis with a nodal axis of the gyro. | 07-09-2009 |
20100024548 | Scale Factor Measurement For Mems Gyroscopes And Accelerometers - An inertial instrument such as an accelerometer or gyroscope having scale factor functionality, and that lies generally in a plane. The gyro detects rotation rate about a gyro input axis. The gyroscope has a substrate, a generally planar scale factor gimbal flexibly coupled to the substrate such that it is capable of oscillatory motion about the input axis, a generally planar support member coplanar with and flexibly coupled to the scale factor gimbal such that the support member is capable of oscillatory motion about a drive axis that is orthogonal to the input axis, and a generally planar gyro member coplanar with and flexibly coupled to the support member such that it is capable of rotary oscillatory motion relative to the support member about an output axis that is orthogonal to the plane of the members. There are one or more first drives for oscillating the support member about the drive axis, and one or more second drives for oscillating the scale factor gimbal about the input axis. One or more gyro output sensors that detect oscillation of the gyro member about an output axis that is orthogonal to both the input axis and the drive axis. | 02-04-2010 |
20100083758 | Resonator for a vibratory sensor of an angular parameter - A resonator for an angular parameter sensor, the resonator comprising a bell of electrically-insulating material provided with a central stem and an electrically-conductive layer, the conductive layer comprising branches extending from a central portion of the bell to a peripheral edge of the bell, the number of said branches being a prime number not less than seven. | 04-08-2010 |
20100107761 | VIBRATORY GYROSCOPIC DEVICE FOR DETERMINING ANGULAR VELOCITY - A vibratory gyroscopic device to determine the rotation rate of an object and method of manufacturing thereof, the device including a plurality of supporting springs arranged in pairs to exhibit bilateral symmetry via each pair (i.e., mirror-image symmetry) relative to each other such that the asymmetries in the characteristics of the ring (e.g., resonant frequency, response to angular velocity), caused by asymmetries in the structure of the ring, are reduced. | 05-06-2010 |
20100212424 | IMPROVEMENTS IN OR RELATING TO ANGULAR VELOCITY SENSORS - An angular velocity sensor or gyroscope has a ring and a primary drive transducer arranged to cause the ring to oscillate in a primary mode substantially at the resonant frequency of the primary mode of the ring. A primary control loop receives primary pick-off signals from the primary pick-off transducer and provides primary drive signals to the primary drive transducer so as to maintain resonant oscillation of the ring. The primary control loop includes a demodulator arranged to determine the amplitude of the fundamental frequency of the primary pick-off signals and a demodulator arranged to determine the amplitude of the second harmonic frequency of the primary pick-off signals and a drive signal generator arranged to produce the primary drive signals | 08-26-2010 |
20100218606 | IMPROVEMENTS IN OR RELATING TO A GYROSCOPE - A gyroscope structure | 09-02-2010 |
20110023600 | MICROMECHANICAL YAW-RATE SENSOR - A micromechanical yaw-rate sensor comprising a first yaw-rate sensor element, which outputs a first sensor signal, which contains information about a rotation around a first rotational axis, a second yaw-rate sensor element, which outputs a second sensor signal, which contains information about a rotation around a second rotational axis, which is perpendicular to the first rotational axis, a drive, which drives the first yaw-rate sensor element, and a coupling link, which mechanically couples the first yaw-rate sensor element and the second yaw-rate sensor element to one another, so that driving of the first yaw-rate sensor element also causes driving of the second yaw-rate sensor element. | 02-03-2011 |
20110023601 | VIBRATORY GYROSCOPE USING PIEZOELECTRIC FILM - A vibrating gyroscope according to this invention includes a ring-shaped vibrating body | 02-03-2011 |
20110023602 | Method for Estimating the Moment of Inertia of the Rotating Unit of a Washing Machine, and Washing Machine Implementing Said Method - A method for estimating the moment of inertia of a rotating unit of a washing or washing-and-drying machine comprising the steps of: establishing one or more linear parameters; rotating the drum of the rotating unit in such a way as to reach a set of speeds of a pre-set value; once each speed of a pre-set value is reached, detecting the value of the torque provided to the rotating unit; and finally estimating the moment of inertia of the rotating unit through a linear combination of the torques detected and by means of the linear parameters. | 02-03-2011 |
20110185813 | MICROMECHANICAL YAW RATE SENSOR HAVING TWO SENSITIVE AXES AND COUPLED DETECTION MODES - In a yaw rate sensor with a substrate having a main extent plane and with a first and second partial structure disposed parallel to the main extent plane, the first partial structure includes a first driving structure and the second partial structure includes a second driving structure, the first and second partial structure being excitable by a driving device, via the first and second driving structure, into oscillation parallel to a first axis parallel to the main extent plane, the first partial structure having a first Coriolis element and the second partial structure having a second Coriolis element, the yaw rate sensor being characterized in that the first and second Coriolis elements are displaceable by a Coriolis force parallel to a second axis, which is perpendicular to the first axis, and parallel to a third axis, which is perpendicular to the first and second axis, the second axis extending parallel to the main extent plane, and the first Coriolis element being connected to the second Coriolis element via a coupling element. | 08-04-2011 |
20110239763 | THREE-DIMENSIONAL WAFER-SCALE BATCH-MICROMACHINED SENSOR AND METHOD OF FABRICATION FOR THE SAME - A vibratory sensor is fabricated as a three-dimensional batch-micromachined shell adapted to vibrate and support elastic wave propagation and wave precession in the shell or membrane and at least one driving electrode and preferably a plurality of driving electrodes directly or indirectly coupled to the shell to excite and sustain the elastic waves in the shell. The pattern of elastic waves is determined by the configuration of the driving electrode(s). At least one sensing electrode and preferably a plurality of sensing electrodes are provided to detect the precession of the elastic wave pattern in the shell. The rotation of the shell induces precession of the elastic wave pattern in the shell which is usable to measure the rotation angle or rate of the vibratory sensor. | 10-06-2011 |
20110290021 | HEMITOROIDAL RESONATOR GYROSCOPE - One exemplary embodiment is directed to a vibratory structure gyroscope having a substrate having a top surface. The vibratory structure gyroscope can also include a resonator having a hemitoroidal shape, the resonator including a stem and an outer lip that surrounds the stem, the stem attached to the top surface of the substrate and the outer lip located apart from the top surface to allow the resonator to vibrate. | 12-01-2011 |
20120006115 | YAW RATE SENSOR - A yaw rate sensor includes a substrate having a substrate surface, a first movable element, which is disposed above the substrate surface and has a drive frame and a first detection mass, a first electrode, which is disposed at a distance underneath the first detection mass and connected to the substrate surface, and a second electrode which is disposed at a distance above the first detection mass and connected to the substrate surface. The drive frame is connected to the substrate via at least one drive spring, the detection mass is connected to the drive frame via at least one detection spring, and the first movable element is excitable to a drive oscillation parallel to the substrate surface, and the first detection mass is deflectable perpendicular to the substrate surface. | 01-12-2012 |
20120144917 | Distributed Mass Hemispherical Resonator Gyroscope - A micro-scale hemispherical resonator gyroscope includes a hemispherical resonator with a plurality of masses positioned around the periphery of the hemispherical resonator. At least some of the masses may be made of a heavy metal, such as tungsten, gold, platinum, or lead, and may be positioned at points of maximum deflection or velocity of the resonator. The hemispherical resonator may have a 2 mm diameter and a ring down time of at least 500 seconds. | 06-14-2012 |
20120204641 | RESONATOR WITH A PARTIAL METAL-PLATED LAYER - A hemispherical resonator ( | 08-16-2012 |
20130104653 | MEMS HEMISPHERICAL RESONATOR GYROSCOPE | 05-02-2013 |
20130167639 | Inertial Sensors Using Piezoelectric Transducers - An inertial sensor includes driving piezoelectric transducers for enabling an oscillation of a resonator, sensing piezoelectric transducers for enabling a detection of a movement of the inertial sensor, and piezoelectric compensating elements substantially equidistantly among the driving and the sensing piezoelectric transducers, wherein the compensating elements and the resonator form corresponding capacitors having capacitive gaps, and wherein, during the oscillation of the resonator, changes in electrostatic charges stored in the capacitors are measured with the compensating elements and are modified so as to modify the oscillation of the resonator. | 07-04-2013 |
20130192368 | Sensor - A silicon MEMS gyroscope is described having a ring or hoop-shaped resonator. The resonator is formed by a Deep Reactive Ion Fitch technique and is formed with slots extending around the circumference of the resonator on either side of the neutral axis of the resonator. The slots improve the Quality Factor Q of the gyroscope without affecting the resonant frequency of the resonator. | 08-01-2013 |
20130199293 | Sensors - An inertial sensor is described in which a resonant element is driven by control electronics into resonance. The control electronics includes an oscillator. A circuit is provided for matching the frequency of the oscillator with the frequency of the output of the resonant element such that the time to operation from start up of the sensor is minimized and the requirement of frequency matching a given sensor to the control electronics is removed. | 08-08-2013 |
20130199294 | RATE SENSOR WITH QUADRATURE REJECTION - An inertial sensor is described that has means for improving quadrature rejection The sensor is of a ring type, driven by a driver circuit, the sensor further comprising primary and secondary portions having corresponding signal pickoffs. The primary pickoff signal amplitude is controlled via an automatic gain control, the primary phase lock loop and VCO locks to the resonant frequency to provide the clocks for the synchronous detectors, the primary pickoff signals via the primary phase shift circuit is provided to the primary driver, the secondary pickoff signal being input into a detector circuit capable of detecting motion in the sensor. The secondary channel comprises a series of circuits that when operable in series significantly improve the quadrature rejection ability of the sensor. The circuits include a synchronous detector, passive and active filters and a decimator. | 08-08-2013 |
20130239682 | GYROSCOPE AND DEVICES WITH STRUCTURAL COMPONENTS COMPRISING HfO2-TiO2 MATERIAL - Disclosed are devices, materials, systems, and methods, including a device that includes one or more structural components, at least one of the one or more structural components comprising substantially HfO | 09-19-2013 |
20130319116 | XY-Axis Shell-Type Gyroscopes with Reduced Cross-Talk Sensitivity and/or Mode Matching - Cross-talk sensitivity in an xy-axis shell-type gyroscope can be rejected or reduced by operating the gyroscope with a single in-plane flexural or bulk resonance mode and sensing two out-of-plane degenerate or non-degenerate resonance modes resulting from rotations about two axes in the plane of the resonator. Mode matching in an xy-axis shell-type gyroscope can be achieved by configuring the resonator (e.g., size, shape, thickness) to match the in-plane and out-of-plane resonance frequencies for the drive and sense modes of interest. | 12-05-2013 |
20140230549 | SPRING SYSTEM FOR MEMS DEVICE - A spring system ( | 08-21-2014 |
20140360266 | NOVEL BELL-SHAPED VIBRATOR TYPE ANGULAR RATE GYRO - The present invention provides an angular rate gyro in which a bell-shaped vibrator having nonuniform thickness, axially symmetric and multi curved surface combined structural features is used as a sensitive element. The angular rate gyro is composed of the bell-shaped vibrator, a vibrator fixing shaft, a vibrator base, an airtight hood, a housing and a circuit system. The bell-shaped vibrator includes a bell shoulder having a hemispheric shell structure, a bell waist having a cylindrical shell structure and a bell lip having a hyperboloidal shell structure. The bell-shaped vibrator, the base and a central shaft are mechanically and fixedly connected together to be formed into an integral core having sensitive gyratory effect. A circuit system is used to control vibration forms of the bell-shaped vibrator, perform signal processing and solve the applied angular rate. | 12-11-2014 |
20150354959 | Axi-Symmetric Small-Footprint Gyroscope with Interchangeable Whole-Angle and Rate Operation - A toroidal ring gyroscope with a robust outer perimeter anchor and a distributed suspension system. The vibrational energy in the design is concentrated towards the innermost ring, and the device is anchored at the outer perimeter. The distributed support structure prevents vibrational motion propagating to the outer anchor, which helps trap the vibrational energy within the gyroscope and provides a Q-factor of >100,000 at a compact size of 1760 μm. Due to the parametric pumping effect, energy added to each mode is proportional to the existing amplitude of the respective mode. As a result, errors associated with finding the orientation of the standing wave and x-y drive gain drift are bypassed. The toroidal ring gyroscope can be fabricated using any standard silicon on insulator process. Due to the high Q-factor and robust support structure, the device can potentially be instrumented in high-g environments that require high angular rate sensitivity. | 12-10-2015 |
20160047653 | ENVIRONMENTALLY ROBUST MICRO-WINEGLASS GYROSCOPE - A method for fabricating an environmentally robust micro-wineglass gyroscope includes the steps of stacking and bonding of at least an inner glass layer and an outer glass layer to a substrate wafer; plastically deforming the inner glass layer into a mushroom-shaped structure and deforming the outer glass layer into a shield capable of extending over the inner glass layer, while leaving the inner and outer glass layers connectable at a central post location; removing the substrate layer and a portion of the inner glass layer so that a perimeter of the inner glass layer is free; and bonding the deformed inner and outer glass layers to a handle wafer. The resulting structure is an environmentally robust micro-wineglass gyroscope which has a double ended supported central post location for the mushroom-shaped structure of the inner glass layer. | 02-18-2016 |
20160123735 | Ring Gyroscope Structural Features - Novel structural features applicable to a variety of inertial sensors. A composite ring composed of concentric subrings is supported by a compliant support structure suspending the composite ring relative to a substrate. The compliant support structure may either be interior or exterior to the composite ring. The compliant support may be composed of multiple substantially concentric rings coupled to neighboring rings by transverse members regularly spaced at intervals that vary with radius relative to a central axis of symmetry. Subrings making up the composite ring may vary in width so as to provide larger displacement amplitudes at intermediate radii, for example. In other embodiments, electrodes are arranged to reduce sensitivity to vibration and temperature, and shock stops are provided to preclude shorting in response to shocks. | 05-05-2016 |
20160126890 | Time Domain Switched Ring/Disc Resonant Gyroscope - A system includes a circular oscillator suspended by a flexible support structure to a support frame, a drive mechanism configured to induce the circular oscillator into a two-dimensional drive oscillation, where the drive oscillation is modified responsive to a sense oscillation of the circular oscillator caused by an angular rotation of the support frame and the circular oscillator, and a plurality of digital proximity switches disposed around a perimeter of the circular oscillator. During the modified drive oscillation a plurality of the digital proximity switches are configured to switch between an open state and a closed state and generate a time and position output to allow for a determination of each of a plurality of variable oscillation parameters for each oscillation of the modified drive oscillation. | 05-05-2016 |
20190145771 | VIBRATING STRUCTURE GYROSCOPES | 05-16-2019 |