Entries |
Document | Title | Date |
20080196497 | Inertial sensor - An inertial sensor includes a stopper having a first locking member extending from a flame onto a proof-mass, a first recess formed at the proof-mass, including a bottom surface, a second locking member extending from the proof-mass onto the edge of the flame, a second recess formed at the edge of the side member of the flame and a projection member projecting from the flame toward the proof-mass, wherein each of the first locking member and the projection member is disposed on the both sides of the second recess. | 08-21-2008 |
20080257041 | ELECTRON/HOLE TRANSPORT-BASED NEMS GYRO AND DEVICES USING THE SAME - A nanomechanical (NEMS) gyroscope includes an integrated circuit substrate, a pair of spaced apart contact pads disposed on the substrate, and a movable nanoscale element forming at least a portion of a first electrically conductive path electrically coupling the contact pads. The movable element experiences movement comprising rotation, changes in rotation, or oscillation upon the gyroscope experiencing angular velocity or angular acceleration. Movement of the gyro introduces geometrically induced phase changes which results in phase and/or frequency changes in ac current flowing through the movable element. An inertial measurement unit (IMU) can include an integrated circuit substrate having a three axis gyroscope formed on the substrate and a three axis accelerometer, which is preferably formed on the same substrate. | 10-23-2008 |
20090019932 | Mems Gyroscope with output oscillation about the normal to the plane - A gyroscope that lies generally in a plane, for detecting rotation rate about a gyro input axis. The gyroscope has a substrate, and a generally planar outer member flexibly coupled to the substrate such that it is capable of oscillatory motion about a drive axis that is orthogonal to the input axis. There is also a generally planar inner member coplanar with and flexibly coupled to the outer member such that it is capable of rotary oscillatory motion relative to the outer member about an output axis that is orthogonal to the plane of the members. There are one or more drives for directly or indirectly oscillating the outer member about the drive axis, and one or more sensors that detect oscillation of the inner member about the output axis. | 01-22-2009 |
20090084180 | OSCILLATION DRIVER CIRCUIT, OSCILLATION DRIVER DEVICE, PHYSICAL QUANTITY MEASUREMENT CIRCUIT, PHYSICAL QUANTITY MEASUREMENT DEVICE, AND ELECTRONIC INSTRUMENT - An oscillation driver circuit that drives a physical quantity transducer includes a one-input/two-output comparator. The one-input/two-output comparator includes a shared differential section that compares a voltage signal input from a drive current/voltage conversion amplifier circuit with a given voltage, a first output section that receives a signal output from the differential section, variably adjusts a voltage amplitude of the received signal, and outputs the resulting signal, and a second output section that receives the signal output from the differential section, and outputs a synchronous detection reference signal of which the voltage amplitude is fixed. | 04-02-2009 |
20090183567 | OPERATION DEVICE CONTROL APPARATUS, OPERATION DEVICE CONTROL METHOD, INFORMATION STORAGE MEDIUM, AND OPERATION DEVICE - To provide an operating device control device for obtaining information about a rotational angle of an operating device, while reducing the influence due to an individual difference and/or variation of a reference sensor signal in accordance with a sensor signal output from the gyro sensor mounted in the operating device. A control device of an operating device having a gyro sensor for detecting an angular velocity and outputting a sensor signal in accordance with the detected angular velocity, the control device obtains an output signal from signal output means for outputting an output signal in accordance with a difference between the sensor signal output from the gyro sensor and a predetermined reference signal, then estimates a reference sensor signal to be output by the gyro sensor when no angular velocity is detected, based on the output signal, and changes the predetermined reference signal according to the estimated reference sensor signal. | 07-23-2009 |
20100071465 | Control component for planar resonator - A control component of an apparatus in one example is configured to signal a plurality of electrodes arranged in at least first, second, third, and fourth radial electrode groups along first, second, third, and fourth axes at approximately 0, 45, 90, and 135 degrees, respectively, around the planar resonator. During a first time period, the control component is configured to signal: the first radial electrode group to induce a drive oscillation in the planar resonator, the third radial electrode group to sense the drive oscillation, the second radial electrode group to sense a Coriolis force induced oscillation, and the fourth radial electrode group to null the Coriolis force induced oscillation. During a second time period after the first time period, the control component is configured to signal: the second radial electrode group to induce the drive oscillation in the planar resonator, the fourth radial electrode group to sense the drive oscillation, the first radial electrode group to sense the Coriolis force induced oscillation, and the third radial electrode group to null the Coriolis force induced oscillation. | 03-25-2010 |
20100071466 | SYNCHRONOUS DETECTION CIRCUIT, SENSING CIRCUIT, PHYSICAL QUANTITY MEASURING DEVICE, GYRO SENSOR, AND ELECTRONIC APPARATUS - A synchronous detection circuit includes: an offset compensation circuit which generates an offset compensation voltage to compensate an offset voltage superposed on a direct current voltage signal; and a temperature compensation circuit which generates a temperature compensation voltage to compensate variation of a direct current reference voltage that depends on a temperature in a signal path of a sensing circuit. In the circuit, the synchronous detection circuit synchronously detects an alternating current signal, the offset compensation voltage and the temperature compensation voltage are respectively superposed on the alternating current signal which is input into the synchronous detection circuit, and the synchronous detection circuit synchronously detects the alternating current signal on which the offset compensation voltage and the temperature compensation voltage have been superposed. | 03-25-2010 |
20100077856 | START TIME OF GYRO ASSEMBLY - An inertial measurement unit (IMU) includes an assembly including a plurality of gyroscopes. Each gyroscope has an associated motor bias control loop gain setting. The IMU further includes an electronic device in signal communication with the gyroscopes. The device is configured to set the loop gain setting of a first gyroscope of the plurality to a first value to commence a startup time period of operation of the first gyroscope. The device is further configured to set the loop gain setting of the first gyroscope to a second value to commence a normal time period of operation of the first gyroscope. | 04-01-2010 |
20100077857 | Inertia sensing module - An inertia sensing module is connected to a portable electronic device. The inertia sensing module includes an accelerometer unit for generating at least one of acceleration sensing signals a | 04-01-2010 |
20110247414 | MAGNETIC SOLENOID FOR GENERATING A SUBSTANTIALLY UNIFORM MAGNETIC FIELD - One embodiment of the invention includes a magnetic solenoid. The magnetic solenoid includes an elongated sidewall that extends along and surrounds a central axis between spaced apart ends. The central axis can include a center point that is approximately equidistant from the spaced apart ends. The magnetic solenoid also includes a conductive coil that extends along and conforms to the elongated sidewall and comprises a plurality of consecutive loops centered on the central axis. The plurality of consecutive loops can have a consecutive loop-spacing that is non-uniform along the central axis and having a substantial maximum spacing value at approximately the center point. | 10-13-2011 |
20110271757 | WIRING SUBSTRATE, PIEZOELECTRIC OSCILLATOR, GYROSENSOR AND MANUFACTURING METHOD OF WIRING SUBSTRATE - A wiring substrate includes: a substrate having a first surface and a second surface; a first insulating layer stacked on the first surface; a pad electrode stacked on the first insulating layer; a through electrode connected to the pad electrode; and a second insulating layer disposed between the substrate and the through electrode and between the first insulating layer and the through electrode, wherein a diameter of the through electrode in a connection section between the pad electrode and the through electrode is smaller than a diameter of the through electrode on the second surface side, the first insulating layer, the second insulating layer and the through electrode overlap with each other in a peripheral area of the connection section, when seen from a plan view, and the thickness of the first insulating layer in the area is thinner than the thickness of the first insulating layer in other areas. | 11-10-2011 |
20110308314 | Electromechanic Microsensor - The invention relates to an electromechanic microsensor (MEMS) ( | 12-22-2011 |
20120006112 | METHOD AND PORTABLE TERMINAL FOR ESTIMATING STEP LENGTH OF PEDESTRIAN - A method and apparatus of a portable terminal estimate a step length of a pedestrian. An accelerometer detects acceleration caused by a movement of the portable terminal as a pedestrian carrying the portable terminal walks. A gyroscope detects angular velocity caused by the movement of the portable terminal as the pedestrian walks. A controller determines a magnitude of a swinging motion of the portable terminal by using at least one of the detected acceleration and angular velocity, determines that the portable terminal makes the swinging motion when the magnitude of the swinging motion is equal to or greater than a predetermined value, determines a carrying position of the portable terminal in the pedestrian's body by using at least one of the detected acceleration and angular velocity, and estimates a step length of the pedestrian according to the determined carrying position of the portable terminal. | 01-12-2012 |
20120011933 | YAW RATE SENSOR - A yaw rate sensor is described which includes a drive device, at least one Coriolis element, and a detection device having at least two detection elements which are coupled to one another with the aid of a coupling device, the drive device being connected to the Coriolis element for driving a vibration of the Coriolis element, and an additional coupling device which is connected to the detection device and to the Coriolis element for coupling a deflection in the plane of vibration of the Coriolis element to the detection device in a direction orthogonal to the vibration. | 01-19-2012 |
20120017676 | SENSOR DEVICE FOR DETECTING AT LEAST ONE ROTATION RATE OF A ROTATING MOTION - In order to be able to perform redundant measurements of rotation rates particularly economically, disclosed herein is a sensor device which includes a dual-axis, first rotation rate sensor element with which rotation rates of rotating motions of the sensor device about a first and a second rotation rate measurement axis can be detected, wherein the first and the second rotation rate measurement axes are oriented orthogonally in relation to one another. The sensor device is defined by the fact that the sensor device includes at least one other rotation rate sensor element with which a rotation rate of a rotating motion of the sensor device about a rotation rate measurement axis, which lies in a plane together with the first and the second rotation rate measurement axes, can be deselected. | 01-26-2012 |
20120024056 | MICRO GYROSCOPE FOR DETERMINING ROTATIONAL MOVEMENTS ABOUT THREE SPATIAL AXES WHICH ARE PERPENDICULAR TO ONE ANOTHER - A micro gyroscope for determining rotational movements about three spatial axes x, y and z, which are perpendicular to one another has a substrate ( | 02-02-2012 |
20120031183 | MICROMECHANICAL SYSTEM - A yaw-rate sensor for determining a Coriolis force includes a semiconductor substrate, a mass body mounted so it is movable over the semiconductor substrate, a drive unit for setting the mass body into an oscillating movement, and a detection unit for determining a deflection of the mass body which is caused by the Coriolis force. The detection unit includes a piezoresistive element, whose electrical resistance is a function of the deformation of the piezoresistive element. | 02-09-2012 |
20120198934 | BIAS MEASUREMENT FOR MEMS GYROSCOPES AND ACCELEROMETERS - A system and method for separating bias instability of MEMS inertial instruments such as gyroscopes or accelerometers from the instrument signal, in which the inertial measurement instrument has an input axis and an output signal, and the bias instability has a frequency. The instrument is rotated about a rotation axis that is orthogonal to the input axis, at a frequency that is greater than the bias instability frequency. The instrument output signal is detected, and demodulated with a phase-sensitive detection method referenced to the instrument rotation. | 08-09-2012 |
20120279299 | GYROMETER WITH REDUCED PARASITIC CAPACITANCES - Gyrometer comprising a substrate and an inertial mass suspended above the substrate, the inertial mass comprising an excitation part and a detection part, means of moving the excitation part in at least one direction contained in the plane of said inertial mass, and capacitive detection means detecting movement of said detection part outside the plane of said mass, said capacitive detection means comprising at least one suspended electrode, located above the detection part located facing the substrate so as to form a variable capacitor with said detection part, said electrode being held above said detection part by at least one pillar passing through the inertial mass. | 11-08-2012 |
20130019677 | MICROELECTROMECHANICAL STRUCTURE WITH ENHANCED REJECTION OF ACCELERATION NOISE - An integrated MEMS structure includes a driving assembly anchored to a substrate and actuated with a driving movement. A pair of sensing masses suspended above the substrate and coupled to the driving assembly via elastic elements is fixed in the driving movement and performs a movement along a first direction of detection, in response to an external stress. A coupling assembly couples the pair of sensing masses mechanically to couple the vibration modes. The coupling assembly is formed by a rigid element, which connects the sensing masses and has a point of constraint in an intermediate position between the sensing masses, and elastic coupling elements for coupling the rigid element to the sensing masses to present a first stiffness to a movement in phase-opposition and a second stiffness, greater than the first, to a movement in phase, of the sensing masses along the direction of detection. | 01-24-2013 |
20130036818 | INERTIAL SENSOR AND METHOD OF MANUFACTURING THE SAME - Disclosed herein are an inertial sensor and a method of manufacturing the same. The inertial sensor | 02-14-2013 |
20130068017 | APPARATUS AND METHOD FOR ANALYZING THE MOTION OF A BODY - An apparatus for analyzing movement of equipment includes an inertial measurement unit continuously measuring six rigid body degrees of freedom of the equipment and outputting data representative thereof, wherein the inertial measurement unit includes a planar substrate defining a single common plane (either rigid or flexible). The inertial measurement unit further includes at least one angular rate gyro and at least one accelerometer sufficient to measure the six rigid body degrees of freedom and each being mounted on the single common plane. The apparatus further includes a communication device transmitting the data. | 03-21-2013 |
20130091948 | ANGULAR VELOCITY DETECTION DEVICE AND ANGULAR VELOCITY SENSOR INCLUDING THE SAME - An angular velocity detection device includes an outer frame including fixed portions, outer beam portions connected to the fixed portions, a sensing part surrounded by the outer frame with first slit therebetween, and a joint connecting the outer frame and the sensing part. The sensing part includes an inner beam portion, a flexible portion, and a detector. The inner beam portion has a hollow region inside and is square-shaped when viewed from above. The flexible portion is formed in the hollow region of the inner beam portion, and is connected to the inner edge of the inner beam portion. The detector is disposed in the flexible portion. The first slit is formed to surround the sensing part excluding the joint. | 04-18-2013 |
20130180331 | READING CIRCUIT FOR A MULTI-AXIS MEMS GYROSCOPE HAVING DETECTION DIRECTIONS INCLINED WITH RESPECT TO THE REFERENCE AXES, AND CORRESPONDING MULTI-AXES MEMS GYROSCOPE - A multi-axis gyroscope includes a microelectromechanical structure configured to rotate with respective angular velocities about respective reference axes, and including detection elements, which are sensitive in respective detection directions and generate respective detection quantities as a function of projections of the angular velocities in the detection directions. The gyroscope including a reading circuit that generates electrical output signals, each correlated to a respective one of the angular velocities, as a function of the detection quantities. The reading circuit includes a combination stage that combines electrically with respect to one another electrical quantities correlated to detection quantities generated by detection elements sensitive to detection directions different from one another, so as to take into account a non-zero angle of inclination of the detection directions with respect to the reference axes. | 07-18-2013 |
20130233074 | Angular Rate Sensor with Improved Aging Properties - An angular velocity sensor is described with improved ageing and hysteresis properties. The sensor may be of a ring type driven by a driver circuit, the sensor further comprising primary and secondary portions having corresponding signal pickoffs. The gain of the primary pickoff signal and the capacitance of the primary portions of the sensor are controlled relative to the gain of the secondary pickoff and the capacitance of the secondary portions of the sensor. Control electronics is provided that enables matching of the relative signals from the respective channels. In this way, temperature hysteresis and ageing effects of materials used in forming the sensor are overcome. | 09-12-2013 |
20130263660 | SENSOR DEVICE, MANUFACTURING METHOD OF SENSOR DEVICE AND ELECTRONIC APPARATUS - A sensor device includes a first sensor element which detects an angular velocity around z axis and a second sensor element which detects an angular velocity around x axis, the relationship fd | 10-10-2013 |
20130283907 | DEVICE AND METHOD FOR DETERMINING POSITION USING ACCELEROMETERS - An exemplary device for determining a position of a component moved by operation of a motor includes a rotating member that rotates responsive to operation of the motor. At least one accelerometer is supported on the rotating member. The accelerometer provides at least one of an indication of a tangential force that is tangential to a direction of rotation of the rotating member and a radial force that is perpendicular to the tangential force. A controller determines the position of the component based upon the force indication from the accelerometer. | 10-31-2013 |
20130312516 | APPARATUS AND METHOD FOR DETECTING GYRO SENSOR SIGNAL - Disclosed herein are an apparatus and a method for detecting a gyro sensor signal. The apparatus includes: a preamplifier unit outputting sensing voltage and inverse phase sensing voltage; a sample and hold unit holding the sensing voltage and the inverse phase sensing voltage for a predetermined period at a predetermined point in time; an averaging unit removing offset; a current passing unit providing a current path of output voltage of the averaging unit; a comparing unit comparing a signal output from the averaging unit and reference voltage with each other to output a comparison signal; and a pulse counter unit generating and outputting a count signal that is in proportion to a width of the comparison signal. | 11-28-2013 |
20130327143 | SENSOR UNIT, ELECTRONIC DEVICE, AND MOVING BODY - A sensor unit includes sensors. Each of the sensors provides a measurement axis. A connector is electrically connected with the sensors. The position of the connector is fixed relative to the sensors. A memory unit stores calibration information which specifies the respective directions of the measurement axes with respect to a reference plane established for the connector. | 12-12-2013 |
20140020466 | INERTIA FORCE SENSOR - An inertial sensor includes oscillating-type angular velocity sensing element ( | 01-23-2014 |
20140116133 | Multi-Sensor Data Collection and/or Processing - The subject matter disclosed herein relates to the control and utilization of multiple sensors within a device. For an example, motion of a device may be detected in response to receipt of a signal from a first sensor disposed in the device, and a power state of a second sensor also disposed in the device may be changed in response to detected motion. | 05-01-2014 |
20140144229 | Signal Processing Device and Amplifier - A signal processing device includes: an amplifier, a bandwidth of which can be switched, and a controller which is configured to perform control to operate the amplifier in a wide bandwidth for a constant time after start of a signal input to the amplifier and then operate the amplifier in a narrow bandwidth thereafter. | 05-29-2014 |
20140174178 | GAIN CONTROL DEVICE OF GYRO SENSOR DRIVING SIGNAL AND GAIN CONTROL METHOD THEREOF - Disclosed herein is a gain control device of a gyro sensor driving signal, including: a gyro sensor generating a gyro signal; a driving signal supply unit applying a driving signal to the gyro sensor; and a gain control unit detecting positive and negative driving signals of the gyro sensor so as to be output as a pulse waveform and changing the pulse waveform to a resistance value corresponding to the pulse waveform to compensate for a gain of the driving signal, whereby it is possible to simply implement the circuit and reduce costs, by controlling the gain of the gyro sensor | 06-26-2014 |
20140196540 | TWO-AXIS VERTICAL MOUNT PACKAGE ASSEMBLY - Vertical mount package assemblies and methods for making the same are disclosed. A method for manufacturing a vertical mount package assembly includes providing a base substrate having electrical connections for affixing to external circuitry, and providing a package having a mounting region configured to receive a device therein. Flexible electrical leads are formed between the base substrate and the package. The flexible leads can include a plurality of aligned grooves to guide bending. After forming the flexible electrical leads, the package is rotated relative to the base substrate. The aligned grooves can constrain the relative positions of the substrates during rotation, and the beveled edges of the base substrate and package can maintain a desired angular relationship (e.g., perpendicular) between the base substrate and the package after rotation. | 07-17-2014 |
20140230546 | MICROELECTROMECHANICAL DEVICE WITH SIGNAL ROUTING THROUGH A PROTECTIVE CAP - A microelectromechanical device includes: a body accommodating a microelectromechanical structure; and a cap bonded to the body and electrically coupled to the microelectromechanical structure through conductive bonding regions. The cap including a selection module, which has first selection terminals coupled to the microelectromechanical structure, second selection terminals, and at least one control terminal, and which can be controlled through the control terminal to couple the second selection terminals to respective first selection terminals according, selectively, to one of a plurality of coupling configurations corresponding to respective operating conditions. | 08-21-2014 |
20140352430 | INERTIAL FORCE SENSOR - An inertial sensor includes oscillating-type angular velocity sensing element ( | 12-04-2014 |
20150128699 | IC FOR SENSOR, SENSOR DEVICE, AND ELECTRONIC APPARATUS - A IC for sensor includes a detector which detects an angular velocity signal based on a signal from a sensor element, an AD converter which converts an analog signal from the detector into a digital signal, and a DC component detector which detects a DC component from the digital signal output from the AD converter within a predetermined period of time. | 05-14-2015 |
20160033271 | DIRECTION DETECTOR - A direction detector that allows true north detection accuracy to be improved is provided. In a direction detector | 02-04-2016 |
20160097792 | THREE-AXIS MICROELECTROMECHANICAL SYSTEMS DEVICE WITH SINGLE PROOF MASS - A microelectromechanical systems (MEMS) device, such as a three-axis MEMS device can sense acceleration in three orthogonal axes. The MEMS device includes a single proof mass and suspension spring systems that movably couple the proof mass to a substrate. The suspension spring systems include translatory spring elements and torsion spring elements. The translatory spring elements enable translatory motion of the proof mass relative to the substrate in two orthogonal directions that are parallel to the plane of the MEMS device in order to sense forces in the two orthogonal directions. The torsion spring elements enable rotation of the proof mass about a rotational axis in order to sense force in a third direction that is orthogonal to the other two directions. The translatory spring elements have asymmetric stiffness configured to compensate for an asymmetric mass of the movable element used to sense in the third direction. | 04-07-2016 |
20160138920 | ANGULAR VELOCITY SENSOR - There is provided an angular velocity sensor including first and second mass bodies provided within a first frame, a first flexible connector system connecting the first and second mass bodies and the first frame and that includes at least one sensor to detect displacements of the first and second mass bodies, a second flexible connector system connecting the first frame to a second frame provided separate from the first frame and that includes a driver to drive movement of the first frame relative to the second frame, so angular velocities can be measured based on the first and second mass bodies being enabled to rotate in a first axis direction and translated in a second axis direction, and based on the first frame being flexibly connected to the second frame so that a rotation displacement of the first frame is made in a third axis direction. | 05-19-2016 |
20160145096 | MICROELECTROMECHANICAL DEVICE WITH SIGNAL ROUTING THROUGH A PROTECTIVE CAP - A microelectromechanical device includes: a body accommodating a microelectromechanical structure; and a cap bonded to the body and electrically coupled to the microelectromechanical structure through conductive bonding regions. The cap including a selection module, which has first selection terminals coupled to the microelectromechanical structure, second selection terminals, and at least one control terminal, and which can be controlled through the control terminal to couple the second selection terminals to respective first selection terminals according, selectively, to one of a plurality of coupling configurations corresponding to respective operating conditions. | 05-26-2016 |