Class / Patent application number | Description | Number of patent applications / Date published |
062222000 |
Of expansion valve or variable restrictor
| 101 |
062218000 |
Valve or restrictor by liquid lever | 5 |
20090158763 | REFRIGERANT FLOATING EXPANSION APPARATUS - A refrigerant floating expansion apparatus including a main body, a standpipe, a float element and a separation element is provided. The main body includes a base plate and a pipe-shaped housing. The standpipe fixed on the base plate has a second pipe opening and a third pipe opening. The pipe wall of the standpipe has at least an opening near the second pipe opening. The float element surrounds the standpipe for controlling a fluid-passing area of the opening. The separation element surrounding the float element is disposed on the base plate and forms an inner path with the pipe-shaped housing. The separation element has several fluid passageways near the base plate. A high-pressure fluid entering the main body is guided to pass through the fluid passageways to move the float element for controlling the fluid-passing area of the opening. Then, the high-pressure fluid is transferred to a low-pressure fluid. | 06-25-2009 |
20100326108 | VAPOR COMPRESSION SYSTEM - An evaporator ( | 12-30-2010 |
20120180510 | HEAT PUMP APPARATUS - In a heat pump apparatus, switching between high efficiency operation, being efficient, and high capacity operation, having high capacity, is performed according to the state of the load. There are provided a main refrigerant circuit that uses an ejector, a first sub-refrigerant circuit that connects a portion between a heat exchanger and an ejector to a portion between a gas-liquid separator and a heat exchanger, and a second sub-refrigerant circuit that connects a portion between the heat exchanger and the ejector to an injection pipe of a compressor. When the load is about medium, refrigerant is circulated in the main refrigerant circuit to perform an efficient ejector aided operation utilizing the ejector. When the load is large, a high capacity injection operation is performed by flowing refrigerant to the second sub-refrigerant circuit. When the load is small, a simple bypass operation which prevents degradation of efficiency is performed by flowing refrigerant to the first sub-refrigerant circuit. | 07-19-2012 |
20120272674 | REFRIGERATOR AND METHOD FOR CONTROLLING THE SAME - The present invention relates to a refrigerator and a method for controlling a refrigerator, and more particularly to a refrigerator and a method for controlling a refrigerator in which unnecessary operation of a compressor is prevented for saving power consumption of the refrigerator. The refrigerator includes a compressor, a refrigerating chamber evaporator and a freezing chamber evaporator connected to the compressor, a refrigerant valve for guiding refrigerant to the refrigerating chamber evaporator or the freezing chamber evaporator, and a control unit for controlling the refrigerant valve such that the refrigerant valve blocks or introduces the refrigerant to cause an inside pressure of the freezing chamber evaporator to be elevated higher than an inside pressure of the refrigerating chamber evaporator during evaporation at the refrigerating chamber evaporator for the compressor to draw in the refrigerant remained in the freezing chamber evaporator which did not evaporate. | 11-01-2012 |
20140290293 | TEMPERATURE-CONTROLLED PORTABLE COOLING UNITS - In some embodiments, a portable cooling unit for use with a storage container includes: a desiccant unit including at least one exterior wall defining an interior desiccant region, wherein the interior desiccant region is sealed from gas transfer between the interior desiccant region and a region external to the cooling unit; an evaporative cooling unit including at least one exterior wall defining an interior evaporative region, wherein the interior evaporative region is sealed from gas transfer between the interior evaporative region and the region external to the cooling unit; a vapor conduit including a first and a second end, the vapor conduit attached to the desiccant unit at the first end, the vapor conduit attached to the evaporative cooling unit at the second end, the vapor conduit forming a passageway between the interior desiccant region and the interior evaporative region; and a vapor control unit attached to the vapor conduit. | 10-02-2014 |
062226000 |
Compressor or its drive controlled | 5 |
20090000321 | HOT GAS DEFROST METHOD AND APPARATUS - A method of and apparatus for defrosting an evaporator in a cooling system are provided. The cooling system includes a compressor, a condenser, an evaporator and a refrigerant that is circulated in sequence from the compressor to the condenser, to the evaporator and back to the compressor during routine operation of the cooling system. The method and apparatus comprise shutting off the flow of the refrigerant from the compressor to the evaporator through the condenser while continuing to operate the compressor so as to apply suction to the refrigerant in the evaporator and thereafter directing compressed refrigerant from the compressor to the evaporator while bypassing the condenser and continuing to shut off the flow of the refrigerant from the compressor to the evaporator through the condenser. | 01-01-2009 |
20110271698 | Method Of Controlling A Compressor In An Air-Conditioning System - A method of controlling an air-conditioning system for a motor vehicle is disclosed. The method includes provisions for controlling a compressor to achieve a desired evaporator temperature. The method includes a step of selecting a gain parameter and a reset parameter according to the ambient temperature for use in a set of proportional-integral calculations. | 11-10-2011 |
20080289347 | Control method for a variable displacement refrigerant compressor in a high-efficiency AC system - A high efficiency air conditioning system includes a pneumatically-controlled variable displacement compressor and a compressor clutch that is selectively cycled on and off to minimize series re-heating of conditioned air. Conditioned air is discharged after passing through an evaporator core, and a target value for the evaporator outlet air temperature is determined based on the desired air discharge temperature. The compressor clutch is cycled off when the evaporator outlet air temperature falls below the target value by at least a calibrated amount, and is thereafter cycled on again when the evaporator outlet air temperature rises above the target value. The target value is preferably biased to prevent compressor operation when the desired air discharge temperature exceeds outside air temperature by at least a calibrated amount and to prevent the relative humidity in the air-conditioned space from rising above a desired level. | 11-27-2008 |
20120216557 | VEHICLE AIR CONDITIONING CONTROL SYSTEM - To determine whether or not integral control is performed when a requested compressor output value is limited by an upper or lower limit, based on an evaporator temperature deviation, prevent divergence of an integral value, and make an evaporator temperature follow a target evaporator temperature during the integral control, an evaporator temperature deviation calculation means, integral control means for calculating an integral value based on an evaporator temperature deviation, and output value calculation means for calculating a requested compressor output value based on the integral value and limiting the requested compressor output value to calculate a compressor output value are provided. | 08-30-2012 |
20140083124 | REFRIGERATION APPARATUS - A refrigeration apparatus includes a high-temperature side circulation circuit, a low-temperature side circulation circuit, a cascade capacitor, and control means. The high-temperature side circulation circuit forms a refrigerant circuit in which a high-temperature side compressor, a high-temperature side condenser, a high-temperature side expansion device, and a high-temperature side evaporator are connected by a pipe. The refrigerant circuit allows a high-temperature side refrigerant to circulate therethrough. The high-temperature side refrigerant has a carbon-carbon double bond in its molecular structure. The high-temperature side compressor has a variable discharge capacity and is configured to discharge the high-temperature side refrigerant. The low-temperature side circulation circuit forms a refrigerant circuit in which a low-temperature side compressor, a low-temperature side condenser, a low-temperature side expansion device, and a low-temperature side evaporator are connected by a pipe. The refrigerant circuit allows a low-temperature side refrigerant to circulate therethrough. The low-temperature side refrigerant contains carbon dioxide. | 03-27-2014 |
062217000 |
Back flow or pressure regulator | 2 |
20080282716 | Air Conditioning Compressor Comprising a Differential Pressure Control Device - An air conditioning compressor for air conditioning systems in motor vehicles, wherein the air conditioning compressor at the high pressure output comprises a check valve and a pressure control device, for example a pressure control valve or a bursting disk. | 11-20-2008 |
20090095003 | Refrigeration cycle device - A refrigeration cycle device includes a first branch portion with branched first and second refrigerant passages, an ejector located in the first refrigerant passage, a first evaporator located in the first refrigerant passage to evaporate refrigerant flowing out of the ejector, a branch passage through which refrigerant upstream of a nozzle portion of the ejector flows into a refrigerant suction port of the ejector, a first throttle provided in the branch passage, a second evaporator located in the branch passage to evaporate the refrigerant flowing out of the first throttle, a second throttle provided in the second refrigerant passage, and a third evaporator located in the second refrigerant passage to evaporate the refrigerant flowing out of the second throttle. Furthermore, a pressure-loss generation portion is located to generate a pressure loss in the first refrigerant passage, thereby causing the refrigerant to easily flow into the second refrigerant passage. | 04-16-2009 |
Entries |
Document | Title | Date |
20080250801 | Pulse Width Modulation System with Pressure Regulating Valve - A pulse width modulation control is provided for a suction valve on a suction line, delivering refrigerant into a housing shell of a compressor. When the suction valve is closed, the pressure within the housing shell can become very low. Thus, a pressure regulator valve is included within the refrigerant system to selectively deliver a limited amount of refrigerant into the housing shell when the suction valve is closed. The delivery of this limited amount of refrigerant ensures that a specified pressure is maintained within the housing shell to achieve the most efficient operation while at the same time preventing problems associated with damage to electrical terminals, motor overheating and excessive discharge temperature. | 10-16-2008 |
20090095002 | SYSTEM AND METHOD FOR CALCULATING PARAMETERS FOR A REFRIGERATION SYSTEM WITH A VARIABLE SPEED COMPRESSOR - A system and method for calculating parameters for a refrigeration system having a variable speed compressor is provided. A compressor is connected to a condenser and an evaporator. An evaporator sensor outputs an evaporator signal corresponding to at least one of an evaporator pressure and an evaporator temperature. An inverter drive modulates electric power delivered to the compressor to modulate a speed of the compressor. The control module is connected to the inverter drive and receives the evaporator signal, monitors electrical power data and compressor speed data from said inverter drive, and calculates at least one of a condenser temperature and a condenser pressure based on the evaporator signal, the electrical power data, and the compressor speed data. | 04-16-2009 |
20100089083 | Refrigerated Transport System - A refrigerated transport system has a container, a generator system, and a refrigeration system. The refrigeration system is electrically coupled to the generator to receive electric power and thermally coupled to the container. The refrigeration system includes an electrically powered compressor. A condenser is downstream of the compressor along a refrigerant flowpath. An expansión device is downstream of the compressor along the refrigerant flowpath. An evaporator is downstream of the expansión device along the refrigerant flowpath. A controller is coupled to the expansión device to control operation of the expansión device. The controller is configured to opérate the expansión device to control an evaporator superheat. The evaporator superheat is to be relatively high for a set temperature of a first valué associated with non-frozen perishables. The evaporator superheat is to be relatively low for a second valué of the temperature associated with frozen goods and subject to maintenance of a minimum suction superheat. | 04-15-2010 |
20110185757 | REFRIGERATION SYSTEM WITH MULTI-FUNCTION HEAT EXCHANGER - A refrigeration system with a multi-function heat exchanger has a first heat exchanger with an internal partition defining a condenser, a subcooler and an evaporator. An expansion device is located external of the heat exchanger and receives condensed refrigerant from the subcooler and provides expanded refrigerant to the evaporator. A compressor circulates the refrigerant through the condenser, the subcooler, and the evaporator. A secondary coolant circulates through the subcooler, the evaporator and the loads. A control system receives refrigerant temperature and pressure signals, and provides a control signal to the expansion device to maintain a temperature of the refrigerant within a predetermined range. A second heat exchanger cools a condensing fluid circulating through the condenser to condense the refrigerant. | 08-04-2011 |
20130319026 | Air Conditioner For A Vehicle and Vehicle - An air conditioner reduces fuel consumption of a vehicle. The air conditioner includes a control device which controls an operation state of a compressor. The control device determines whether control of a temperature of an evaporator based on a traveling state of the vehicle is to be performed in an ordinary mode or in a cool storage mode. When the control device determines that the temperature control is to be performed in the ordinary mode, the control device controls the driving of the compressor using an ordinary mode target temperature map. When the control device determines that the temperature control is to be performed in the cool storage mode, the control device controls the driving of the compressor using a cool storage mode target temperature map. | 12-05-2013 |
20140360215 | AIR CONDITIONER FOR VEHICLE - When a refrigerant evaporation temperature of an interior evaporator cannot be set lower than a dew-point temperature of air flowing into the interior evaporator in a heating operation, a refrigerant circuit is switched to a normal heating operation mode in which a flow rate of the refrigerant flowing into the interior evaporator is set to zero by allowing the refrigerant to flow toward a bypass passage. In a case where the air cannot be dehumidified by the interior evaporator, an unnecessary heat exchange between the air and the refrigerant in the interior evaporator can be suppressed. Thus, the energy of the vehicle air conditioner can be effectively prevented from being wasted. | 12-11-2014 |
20150354874 | AIR CONDITIONER WITH SELECTIVE FILTERING FOR AIR PURIFICATION - A split air conditioner has a cabinet with a fan and evaporator for mounting within a structure. The cabinet includes one or more movable dampers or movable filters positioned in the flow path between the air inlet and the outlet for selectively filtering contaminants from the air to provide a greater or lesser degree of filtration of the air. The movable filters include sliding and/or pivot mounting structure which may accommodate stacking multiple filters with different filtering characteristics. The system may operate in a filtering only mode with no cooling, a cooling only mode with no filtering, or a combination of cooling and selective filtering. | 12-10-2015 |
20160061506 | MOTOR DRIVING APPARATUS AND REFRIGERATOR INCLUDING SAME - The present invention relates to a motor driving apparatus and a refrigerator including the same. A motor driving apparatus according to an embodiment of the present invention comprises: a signal delay unit for delaying an input speed order signal; an inverter control unit for outputting an inverter switching control signal, on the basis of the speed order signal delayed by the signal delay unit; and an inverter for converting an input operation direct current power into a predetermined alternating current power, on the basis of a switching operation according to the inverter switching control signal, and driving a motor using the converted alternating current power. Therefore, it is possible to prevent starting failure and reduce noise. | 03-03-2016 |
20160252288 | REFRIGERATOR | 09-01-2016 |