Class / Patent application number | Description | Number of patent applications / Date published |
060280000 | Having auxiliary device mechanically driven by exhaust gas | 14 |
20080196391 | Apparatus And Method For Regenerating Exhaust Treatment Devices - A method and apparatus for regenerating exhaust treatment devices. Incomplete combustion products may be selectively provided in at least one cylinder of multi-cylinder internal combustion engine. This may then be followed by directing the products to an engine exhaust treatment device. The temperature of the engine exhaust treatment device may then be increased due to exposure to the products of incomplete combustion. The catalyst in the converter may then be regenerated due to the temperature increase. | 08-21-2008 |
20080209888 | Internal Combustion Engine with a System for Secondary Air Charging and Method for Operation of the Internal Combustion Engine - An internal combustion engine with a system for secondary air charging has a combustion unit, an intake air conduit connected to the combustion unit, and an exhaust gas conduit connected to the combustion unit. A throttle is arranged in the intake air conduit. A turbo-engine is connected to the intake air conduit by a supply conduit upstream of the throttle and by a discharge conduit downstream of the throttle. A compressor is provided wherein the turbo-engine is connected operatively to the compressor and wherein the compressor is connected by a connecting line to the exhaust gas conduit. A valve is arranged in the discharge conduit. A vacuum cell actuates the valve. An electro-pneumatic converter is operatively connected to the vacuum cell. The vacuum cell, when reaching a defined differential pressure, opens the valve suddenly so that a vacuum pulse is generated that acts on the turbo-engine. | 09-04-2008 |
20090151327 | TURBOCHARGER AND CYLINDER HEAD - A turbocharger includes, but is not limited to a connecting flange for connection to a cylinder head. The connecting flange has at least one connecting opening for receiving a fluid line for the supply and/or removal of fluids. Further disclosed does a cylinder head comprise a connecting flange for connection to a turbocharger. The connecting flange has at least one connecting opening for receiving a fluid line for supplying and/or removing fluids. Furthermore, an engine arrangement comprising a cylinder head and a turbocharger flange-mounted to the cylinder head is provided. With these turbocharger, cylinder head, and engine arrangement, it is possible to connect a turbocharger and a cylinder head to one another, simply, rapidly, and straightforwardly. | 06-18-2009 |
20090151328 | INTERNAL COMBUSTION ENGINE WITH DUAL PARTICULATE TRAPS AHEAD OF TURBOCHARGER - An internal combustion engine includes a turbocharger having a turbine, a first set of combustion cylinders, and a second set of combustion cylinders. A first particulate trap is in fluid communication between the first set of combustion cylinders and the turbine. A second particulate trap is in fluid communication between the second set of combustion cylinders and the turbine. | 06-18-2009 |
20090165441 | Combustion engine with feedback gear/rotary pump input - A combustion engine, which is highly efficient, noiseless and lightweight, includes a combustion chamber without pistons. The combusted and expanded air exiting the combustion chamber flows into a displacement pump, such as a gear pump or radial vane pump. The displacement pump drives the load, and, in addition, another smaller displacement pump, which pressurizes fresh air and introduces same, via a feedback loop, into the combustion chamber. Gas or other burnable fuels are introduced in the combustion chamber, so that a continuous fuel burning will occur, after being ignited. The ratio of bigger to the smaller pump is influenced by the percentage of expansion of the air in the combustion chamber. Additional features could be implemented for optimization of performance of the combustion chamber, such as: spring loaded adjustable baffles within the chamber to create desired compression, meandering walls and protrusions in the feedback loop, and heating the air in the smaller pump prior to entry into the feedback loop. | 07-02-2009 |
20090173060 | EXHAUST GAS CONTROL APPARATUS - An exhaust gas control apparatus is provided for an internal combustion engine having at least two cylinders, a turbine, and an exhaust manifold collecting a flow of exhaust gases formed in each cylinder towards the turbine. The exhaust manifold has an inlet port connected to each cylinder and an output port upon which the turbine is secured. The exhaust gas control apparatus includes at least one seal positioned between two adjacent inlet ports, each seal being articulated relative to the exhaust manifold and being capable of sealing one of the two adjacent inlet ports to reduce the internal volume of the exhaust manifold available for the flow of exhaust gas. The apparatus of the invention makes it possible to reduce the internal volume of the exhaust manifold according to the engine cycle. By doing so, most of the kinetic energy of the exhaust gases is channelled towards the turbine; this is in contrast with a traditional exhaust manifold whereby a part of the kinetic and thermal energy of the exhaust gases is dissipated within the internal volume of all the inlet ports of the exhaust manifold. | 07-09-2009 |
20100186379 | EXHAUST GAS PURIFICATION APPARATUS FOR AN INTERNAL COMBUSTION ENGINE - An object of the present invention is to improve preferable promotion of the modification of reducing agent in a precatalyst in the case where the reducing agent is added through a reducing agent addition valve in order to supply the reducing agent to an exhaust gas purification catalyst. According to the present invention, one end of an exhaust passage in which an exhaust gas purification catalyst is provided is connected to an exhaust manifold, and a precatalyst and a reducing agent addition valve are provided in the exhaust manifold. The precatalyst is configured in such a way that the exhaust gas flows through the gap between the outer circumferential surface thereof and the inner wall surface of the exhaust manifold. The precatalyst and the reducing agent addition valve are arranged in such a way that the most part of the reducing agent added through the reducing agent addition valve flows into the precatalyst. | 07-29-2010 |
20100186380 | METHOD FOR REMOVING SOOT PARTICLES FROM AN EXHAUST GAS, ASSOCIATED COLLECTING ELEMENT AND SYSTEM - A method for removing soot particles from an exhaust gas of an internal combustion engine, especially of a diesel engine, includes feeding the exhaust gas through a collecting element through which the exhaust gas can pass freely but which is provided with a plurality of deflections and/or zones of swirl and calming or stabilization. At least a proportion of the particles are held or swirled around in the collecting element until there is a sufficient probability of reaction with nitrogen dioxide and a majority of the collected particles have been removed. A collecting element has flow channels through which the exhaust gas can pass freely. However, the flow channels are configured in such a way as to form deflections or zones of swirl and calming or stabilization. A system having the collecting element is also provided. | 07-29-2010 |
20100223911 | EXHAUST GAS SYSTEM - An exhaust gas system includes a turbocharger housing and an exhaust manifold having manifold pipes and connected to the turbocharger housing. The turbocharger housing has a pipe collector extending in a direction of the exhaust manifold for connection of the manifold pipes. | 09-09-2010 |
20100300072 | COUPLING OF A TURBOCHARGER WITH AN OXIDATION CATALYST OF AN EXHAUST LINE OF AN INTERNAL COMBUSTION ENGINE - A single-piece and rigid coupling of a turbocharger with an oxidation mechanism of an exhaust line of an internal combustion engine, including a burnt gas inlet duct that extends along an inlet axis and a burnt gas outlet duct that extends along an outlet axis substantially orthogonal to the inlet axis. The inlet and outlet axes are located in two substantially parallel separate planes. | 12-02-2010 |
20100326054 | EXHAUST GAS PURIFICATION SYSTEM - An exhaust gas purification system includes a casing through which exhaust gas is allowed to flow, an oxidation catalyst provided in the casing, a particulate matter collector located downstream of the oxidation catalyst in the casing as viewed in the direction of exhaust gas flow and spaced apart from the oxidation catalyst to form a space therebetween, an SCR catalyst integrated with the particulate matter collector, and a urea water supply device for supplying urea water to the space between the oxidation catalyst and the particulate matter collector. The casing is for being mounted to an engine assembly. | 12-30-2010 |
20110239630 | CLOSELY COUPLED EXHAUST AFTERTREATMENT SYSTEM FOR AN INTERNAL COMBUSTION ENGINE HAVING TWIN TURBOCHARGERS - A closely-coupled exhaust aftertreatment system for an engine having twin turbochargers includes a first exhaust conduit comprising a first valve operable between first and second positions, the first promoting flow within the first conduit to an oxidation catalyst (OC), the second promoting flow within a second conduit; a third conduit is fluidly coupled to the OC outlet and includes a second valve operable between first and second positions, the first promoting flow within the third exhaust conduit to a particulate filter (PF), the second promoting flow through a fourth conduit to an inlet in the second conduit. A first turbocharger is coupled to the second exhaust conduit downstream of the inlet; an SCR catalyst is downstream of the first turbocharger to receive the flow therefrom and upstream of the PF to provide the flow thereto. A second turbocharger is coupled to the third exhaust conduit downstream of the second valve. | 10-06-2011 |
20120198822 | PARALLEL SEQUENTIAL TURBOCHARGER ARCHITECTURE USING ENGINE CYLINDER VARIABLE VALVE LIFT SYSTEM - A system includes: a cylinder head for a multi-cylinder internal combustion engine where the cylinder head includes, per cylinder, a first exhaust valve and a corresponding first exhaust port and a second exhaust valve and a corresponding second exhaust port and where, for simultaneous control of the first exhaust valve and the second exhaust valve of a cylinder, for that cylinder, the cylinder head delivers a quantity of exhaust via the first exhaust port and a different quantity of exhaust via the second exhaust port; a first exhaust turbine in fluid communication with the first exhaust ports of the cylinder head; and a second exhaust turbine in fluid communication with the second exhaust ports of the cylinder head. Various other devices, assemblies, controllers, etc., are also disclosed. | 08-09-2012 |
20160186701 | Exhaust Gas Recirculation System for Internal Combustion Engine - In accordance with the present invention, condensed water generated upstream of a compressor can be caused to flow into a groove | 06-30-2016 |