Patent application title: ANTI-SERUM ALBUMIN BINDING VARIANTS
Inventors:
Haren Arulanantham (Cambridge, GB)
Thil Batuwangala (Cambridge, GB)
Elena De Angelis (Cambridge, GB)
Carolyn Enever (Cambridge, GB)
Carolyn Enever (Cambridge, GB)
Haiqun Liu (Cambridge, GB)
Haiqun Liu (Cambridge, GB)
Oliver Schon (Cambridge, GB)
Oliver Schon (Cambridge, GB)
Assignees:
GlaxoSmithKline Intellectual Property Development Ltd.
IPC8 Class: AC07K1618FI
USPC Class:
536 2353
Class name: Dna or rna fragments or modified forms thereof (e.g., genes, etc.) encodes an animal polypeptide immunoglobulin
Publication date: 2016-02-25
Patent application number: 20160052998
Abstract:
The invention relates to improved variants of the anti-serum albumin
immunoglobulin single variable domains, as well as ligands and drug
conjugates comprising such variants, compositions, nucleic acids, vectors
and hosts.Claims:
1. A nucleic acid comprising a nucleotide sequence encoding an anti-serum
albumin (SA) immunoglobulin single variable domain variant of DOM7h-11-15
(SEQ ID NO: 1), wherein the variant comprises an amino acid substitution
in at least one position selected from the group consisting of: Leu49,
Ala50, and Phe51, wherein position Met32 is changed to Leu, Phe, or Ile,
position Leu49 is changed to Ile, Val, or Met, position Ala50 is changed
to Val, Leu, or Ile, and/or position Phe51 is changed to Leu, Val, Ile,
Ala, or Tyr.
2. The nucleic acid comprising a nucleotide sequence encoding an anti-serum albumin (SA) immunoglobulin single variable domain variant as claimed in claim 1, wherein position Met32 is changed to Leu, position Leu49 is changed to Ile, position Ala50 is changed to Val, and/or position Phe51 is changed to Leu.
Description:
[0001] The invention relates to improved variants of anti-serum albumin
immunoglobulin single variable domains, as well as ligands and drug
conjugates comprising such variants, compositions, nucleic acids, vectors
and hosts. The invention also relates to the identification of an epitope
in serum albumin that is bound by these anti-serum albumin immunoglobulin
single variable domains and the specific amino acid residues within those
anti-serum albumin immunoglobulin single variable domains that make
contact with serum albumin.
BACKGROUND OF THE INVENTION
[0002] WO04003019 and WO2008/096158 disclose anti-serum albumin (SA) binding moieties, such as anti-SA immunoglobulin single variable domains (dAbs), which have therapeutically-useful half-lives. These documents disclose monomer anti-SA dAbs as well as multi-specific ligands comprising such dAbs, e.g., ligands comprising an anti-SA dAb and a dAb that specifically binds a target antigen, such as TNFR1. Binding moieties are disclosed that specifically bind serum albumins from more than one species, e.g. human/mouse cross-reactive anti-SA dAbs.
[0003] WO05118642 and WO2006/059106 disclose the concept of conjugating or associating an anti-SA binding moiety, such as an anti-SA immunoglobulin single variable domain, to a drug, in order to increase the half-life of the drug. Protein, peptide and NCE (new chemical entity) drugs are disclosed and exemplified. WO2006/059106 discloses the use of this concept to increase the half-life of insulinotropic agents, e.g., incretin hormones such as glucagon-like peptide (GLP)-1.
[0004] Reference is also made to Holt et al, "Anti-Serum albumin domain antibodies for extending the half-lives of short lived drugs", Protein Engineering, Design & Selection, vol 21, no 5, pp 283-288, 2008.
[0005] WO2008/096158 discloses the molecules given the name DOM7h-11 and DOM7h-14, which are good anti-SA dAbs. PCT/EP2010/060112 describes VH AlbudAbs and affinity matured derivatives thereof. It would be desirable to provide improved dAbs that are variants of DOM7h-11 or DOM7h-14, or improved VH AlbudAbs®, and that specifically bind serum albumin, preferably albumins from human and non-human species, which would provide utility in animal models of disease as well as for human therapy and/or diagnosis. It would also be desirable to provide for the choice between relatively modest- and high-affinity anti-SA binding moieties (dAbs). Such moieties could be linked to drugs, the anti-SA binding moiety being chosen according to the contemplated end-application. This would allow the drug to be better tailored to treating and/or preventing chronic or acute indications, depending upon the choice of anti-SA binding moiety. It would also be desirable to provide anti-SA dAbs that are monomeric or substantially so in solution. This would especially be advantageous when the anti-SA dAb is linked to a binding moiety, e.g., a dAb, that specifically binds a cell-surface receptor, such as TNFR1, with the aim of antagonizing the receptor. The monomeric state of the anti-SA dAb is useful in reducing the chance of receptor cross-linking, since multimers are less likely to form which could bind and cross-link receptors (e.g., TNFR1) on the cell surface, thus increasing the likelihood of receptor agonism and detrimental receptor signaling.
[0006] SA is an abundant plasma protein and human serum albumin (HSA) is known to bind to a number of commonly-used drugs (e.g. warfarin, diazepam, ibuprofen) (as described, for example, by Ghuman et al. J. Mol. Biol. 2005, 353, 38052). It would be advantageous to provide an anti-SA binding moiety which does not interfere with the known HSA-drug interactions.
SUMMARY OF THE INVENTION
[0007] Improved anti-SA dAbs are described in PCT/EP2010/052008 and PCT/EP2010/052007. PCT/EP2010/060112 describes VH AlbudAbs and affinity matured derivatives thereof.
[0008] As described herein, binding interactions between anti-SA dAbs and SA have been identified using three different techniques. The present inventors have therefore identified specific interactions between improved anti-SA dAbs and domain II of HSA thus identifying the residues within HSA that are involved in binding by an anti-SA dAb and those residues of an anti-SA dAb that are involved in the binding interaction. The residues from the anti-SA dAbs which interact with SA are set out in Tables 22A and B. Significant interactions are identified in Table 22A while additional residues at the interface are identified in Table 22B. Any one of the residues identified in these tables may provide an interaction with SA. These residues may be modified in order to modify SA binding of the variants.
[0009] Accordingly, in a first aspect of the invention, there is provided an anti-serum albumin (SA) immunoglobulin single variable domain variant of DOM 7h-11 (SEQ ID NO: 125) or DOM 7h-14 (SEQ ID NO: 123), or a derivative having an amino acid sequence that is at least 96, 97, 98 or 99% identical to the amino acid sequence of DOM 7h-11 (SEQ ID NO: 125) or DOM7h-14 (SEQ ID NO:123), wherein the variant comprises an amino acid substitution in at least one of positions 28, 29, 30, 31, 32, 36, 46, 49, 50, 51, 53, 67, 68, 90, 91, 92, 93 or 94 of the amino acid sequence. Positions 28, 29, 30, 31, 32, 36, 46, 49, 50, 51, 53, 67, 68, 90, 91, 92, 93 or 94 of the amino acid sequence are those positions in the sequences set out in the cited SEQ ID NOs: and relative to those residues set out in the sequences given in these SEQ ID NOs. Suitably, the variant comprises at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 or 17 amino acid mutations. Significant interactions are set out in Table 22A. Accordingly, in one embodiment, the variant comprises an amino acid substitution in at least one of positions 30, 31, 32, 49, 50, 51, 53, 67, 91 or 94 of the amino acid sequence. Suitably, the variant comprises at least 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 amino acid mutations. Such a substitution may be to provide the amino acid that is found at these positions in the anti-SA immunoglobulin single variable domain DOM7h-11-3 (SEQ ID NO:2), DOM7h-11-15 (SEQ ID NO:1) or DOM7h14-10 (SEQ ID NO:83) or an equivalent conservative substitution. Suitably, such a substitution may serve to improve binding affinity to SA. In one embodiment, the variant is not a single variable domain selected from DOM7h-11-3, DOM7h-11-15 or DOM7h-14-10. In another embodiment, the variant is not a single variable domain as described in PCT/EP2010/052008 and PCT/EP2010/052007.
[0010] In another aspect, there is provided an anti-serum albumin (SA) immunoglobulin single variable domain variant of DOM 7r-31 (SEQ ID NO: 71) or DOM 7r-92 (SEQ ID NO: 75), or a derivative having an amino acid sequence that is at least 96, 97, 98 or 99% identical to the amino acid sequence of DOM 7r-31 (SEQ ID NO: 71) or DOM 7r-92 (SEQ ID NO: 75), wherein the variant comprises an amino acid substitution in at least one of positions 28, 29, 30, 31, 32, 36, 46, 49, 50, 51, 53, 67, 68, 90, 91, 92, 93 or 94 of the amino acid sequence. In one embodiment, the variant is not a single variable domain DOM7r-92-4. In another embodiment, the variant is not a single variant domain as described in PCT/EP2010/060112.
[0011] In another aspect, the invention provides an anti-serum albumin (SA) immunoglobulin single variable domain variant of DOM7h-11-3 (SEQ ID NO: 2) or DOM7h-11-15 (SEQ ID NO: 1), or a derivative having an amino acid sequence that is at least 96, 97, 98 or 99% identical to the amino acid sequence of DOM7h-11-3 (SEQ ID NO: 2) or DOM7h-11-15 (SEQ ID NO: 1), wherein the variant comprises an amino acid substitution in at least one of positions 28, 29, 30, 31, 32, 36, 46, 49, 50, 51, 53, 67, 68, 90, 91, 92, 93 or 94 of the amino acid sequence. Suitably, the variant comprises at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 or 17 amino acid mutations. In one embodiment of this aspect, the variant comprises an amino acid substitution in at least one of positions 30, 31, 32, 49, 50, 51, 53, 67, 91 or 94 of the amino acid sequence. Suitably, the variant comprises at least 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 amino acid mutations.
[0012] Amino acid substitution at any of the residues identified in Tables 22A or 22B may enable modification of the binding properties of an anti-SA dAb. Importantly, substitutions can be made to modify the affinity of binding to SA to achieve the desired affinity for a particular application.
[0013] Thus embodiments of any aspect of the invention provide anti-SA dAb variants having good anti-serum albumin affinities. The choice of variant can allow for tailoring of half-life according to the desired therapeutic and/or prophylactic setting. For example, in one embodiment, the affinity of the variant for serum albumin is relatively high, such that the variant would be useful for inclusion in products that find utility in treating and/or preventing chronic or persistent diseases, conditions, toxicity or other chronic indications, for example. In one embodiment, the affinity of the variant for serum albumin is relatively modest, such that the variant would be useful for inclusion in products that find utility in treating and/or preventing acute diseases, conditions, toxicity or other acute indications, for example. In one embodiment, the affinity of the variant for serum albumin is intermediate, such that the variant would be useful for inclusion in products that find utility in treating and/or preventing acute or chronic diseases, conditions, toxicity or other acute or chronic indications, for example.
[0014] It is conceivable that a molecule with an appropriately high affinity and specificity for serum albumin would stay in circulation long enough to have the desired therapeutic effect (Tomlinson, Nature Biotechnology 22, 521-522 (2004)). Here, a high affinity anti-SA variant would stay in serum circulation matching that of the species' serum albumin (WO2008096158). Once in circulation, any fused therapeutic agent to the AlbudAb® variant (an AlbudAb is an anti-serum albumin dAb or immunoglobulin single variable domain), be it NCE, peptide or protein, consequently would be able to act longer on its target and exhibit a longer lasting therapeutic effect. This would allow for targeting chronic or persistent diseases without the need of frequent dosing.
[0015] A variant with moderate affinity (but specificity to SA) would only stay in serum circulation for a short time (e.g., for a few hours or a few days) allowing for the specific targeting of therapeutic targets involved in acute diseases by the fused therapeutic agent.
[0016] This way it is possible to tailor the anti-SA-containing product to the therapeutic disease area by choosing an anti-SA variant with the appropriate albumin binding affinity and/or serum half-life.
[0017] In one embodiment, the invention provides an anti-serum albumin (SA) immunoglobulin single variable domain variant of DOM7h-11-15 (SEQ ID NO: 1), or a derivative having an amino acid sequence that is at least 96, 97, 98 or 99% identical to the amino acid sequence of DOM7h-11-15 (SEQ ID NO: 1), comprising an amino acid substitution in at least one of positions Gly30, Thr31, Met32, Leu49, Ala50, Phe51, Arg53, Ser67, Ala91 or His94 of the amino acid sequence.
[0018] In one embodiment, there is provided a variant in accordance with any aspect or embodiment of the invention wherein the substitution is a conservative amino acid substitution. Suitable conservative amino acid substitutions are known by those skilled in the art and are exemplified herein in the following text. Suitably, a conservative amino acid substitution will maintain similar contact interactions with SA. Such conservative amino acid substitution may allow similar binding affinities to the parental molecule to be maintained.
[0019] Accordingly, in one embodiment, the variant comprises at least one mutation compared to DOM 7h-11-15 selected from the following: Position Gly 30=Pro, Ala
[0020] Position Thr 31=Ser
[0021] Position Thr 32=Ser
[0022] Position Leu 49=Norleucine, Ile, Val, Met, Ala, Phe
[0023] Position Trp 50=Tyr, Phe
[0024] Position Asn 51=Gln
[0025] Position Arg 53=Lys, Gln, Asn
[0026] Position Ser 67=Thr, Ala, Cys
[0027] Position Ala 91=Val, Leu, Ile
[0028] Position His 94=Asn, Gln, Lys, Arg
[0029] In another embodiment, there is provided an anti-serum albumin (SA) immunoglobulin single variable domain variant of DOM 7h-11-3 (SEQ ID NO: 2), or a derivative having an amino acid sequence that is at least 96, 97, 98 or 99% identical to the amino acid sequence of DOM 7h-11-3 (SEQ ID NO: 2), wherein the variant comprises an amino acid substitution in at least one of positions Gly30, Thr31, Thr32, Leu49, Trp50, Asn51, Arg53, Ser67, Ala91 or His94 of the amino acid sequence.
[0030] Suitably, the variant comprises a conservative substitution such that the variant comprises at least one mutation compared to DOM7h-11-3 selected from the following:
[0031] Position Gly30=Pro, Ala
[0032] Position Thr31=Ser
[0033] Position Thr32=Ser
[0034] Position Leu49=Norleucine, Ile, Val, Met, Ala, Phe
[0035] Position Trp50=Tyr, Phe
[0036] Position Asn51=Gln
[0037] Position Arg53=Lys, Gln, Asn
[0038] Position Ser67=Thr, Ala, Cys
[0039] Position Ala91=Val, Leu, Ile
[0040] Position His94=Asn, Gln, Lys, Arg
[0041] In another embodiment of any aspect or embodiment of the invention, the substitution is not a conservative substitution. Introducing a non-conservative substitution/mutation at one of the residues known to be involved in binding to SA is one way in which affinity to SA may be decreased or otherwise altered.
[0042] In one embodiment of any aspect or embodiment of the invention SA is SA from an animal, e.g., a mammal, e.g., a non-human primate (such as a baboon, rhesus monkey or Cynomolgus monkey), mouse, human, rabbit, rat, dog, cat or pig. In one embodiment SA is human SA (HSA).
[0043] In another aspect, the invention provides an HSA binding moiety which binds to an epitope comprising at least part of the interface defined by amino acids 227, 228, 229, 230, 232, 233, 263, 307, 308, 309, 314, 317, 318, 321, 322, 325, 326, 329 and 333 of HSA (wherein sequence is given in SEQ ID NO:81). In one embodiment, the binding moiety binds to an epitope comprising at least part of the interface defined by amino acids 228, 230, 308, 309, 317, 318, 321, 322, 325, 326 and 329 of HSA. The residues of HSA which interact with the anti-HSA binding moieties exemplified by anti-SA dAbs herein are set out in Tables 22A and B. Significant interactions are identified in Table 22A while additional residues at the interface are identified in Table 22B. Any one of the residues identified in these tables may provide an interaction between HSA and the HSA binding moiety.
[0044] Suitably, the binding moiety may comprise amino acids identified in SEQ ID NOs: 1 or 2 at positions 28, 29, 30, 31, 32, 36, 46, 49, 50, 51, 53, 67, 68, 90, 91, 92, 93 or 94 of the amino acid sequence wherein these amino acids enable binding to SA. However, these amino acids may be part of a domain which is a derivative of a non-immunoglobulin protein scaffold. In one embodiment, the binding moiety is an antibody. Suitably, the binding moiety is an anti-SA immunoglobulin single variable domain antibody.
[0045] In one embodiment the variant or binding moiety in accordance with any aspect or embodiment of the invention comprises a binding site that specifically binds human SA with a dissociation constant (KD) of from about 0.1 to about 10000 nM, optionally from about 1 to about 6000 nM, as determined by surface plasmon resonance. In another embodiment, the variant or binding moiety in accordance with any aspect or embodiment of the invention comprises a binding site that specifically binds human SA with an off-rate constant (Kd) of from about 1.5×10-4 to about 0.1 sec-1, optionally from about 3×10-4 to about 0.1 sec-1 as determined by surface plasmon resonance. In another embodiment the variant or binding moiety in accordance with any aspect or embodiment of the invention comprises a binding site that specifically binds human SA with an on-rate constant (Ka) of from about 2×106 to about 1×104 M-1 sec-1, optionally from about 1×106 to about 2×104 M-1 sec-1 as determined by surface plasmon resonance. In a further embodiment, the variant or binding moiety in accordance with any aspect or embodiment of the invention comprises a binding site that specifically binds Cynomolgus monkey SA with a dissociation constant (KD) of from about 0.1 to about 10000 nM, optionally from about 1 to about 6000 nM, as determined by surface plasmon resonance. In yet a further embodiment, the variant or binding moiety in accordance with any aspect or embodiment of the invention comprises a binding site that specifically binds Cynomolgus monkey SA with an off-rate constant (Kd) of from about 1.5×10-4 to about 0.1 sec-1, optionally from about 3×10-4 to about 0.1 sec-1 as determined by surface plasmon resonance. Another embodiment provides a variant or binding moiety in accordance with any aspect or embodiment of the invention, wherein the variant comprises a binding site that specifically binds Cynomolgus monkey SA with an on-rate constant (Ka) of from about 2×106 to about 1×104 M-1 sec-1, optionally from about 1×106 to about 5×103M-1 sec-1 as determined by surface plasmon resonance.
[0046] An aspect of the invention provides a multispecific ligand comprising any anti-SA variant or SA-binding moiety as described above and a binding moiety that specifically binds a target antigen other than SA.
[0047] An aspect of the invention provides fusion proteins, conjugates or compositions comprising any variant or binding moiety in accordance with the invention. For example, the invention provides e.g., a fusion protein or fusion with a peptide or NCE (new chemical entity) drug, comprising a polypeptide, protein, peptide or NCE drug fused or conjugated (for an NCE) to any variant or binding moiety as described above. In one embodiment, the variant or binding moiety gives only a modest drop in affinity when fused or conjugated to a partner making them useful in fusion products. An aspect of the invention provides a composition comprising a variant, fusion protein or ligand of any preceding aspect and a pharmaceutically acceptable diluent, carrier, excipient or vehicle.
[0048] Another aspect of the invention provides a nucleic acid comprising a nucleotide sequence encoding a variant, binding moiety, multispecific ligand or fusion protein in accordance with any aspect or embodiment of the invention.
[0049] Another aspect provides a nucleic acid comprising the nucleotide sequence of a DOM7h-11, DOM7h-14, DOM7h-11-3 or DOM7h-11-15 variant in accordance with the invention or a nucleotide sequence that is at least 80% identical to said selected sequence. Further aspects provide a vector comprising a nucleic acid of the invention and an isolated host cell comprising such a vector.
[0050] An aspect of the invention provides a method of treating or preventing a disease or disorder in a patient, comprising administering at least one dose of a variant or binding moiety according to any aspect or embodiment of the invention to said patient. The invention further provides a variant or binding moiety in accordance with the present invention for use as a medicament.
[0051] In another aspect of the invention there is provided a method for affinity maturation of an anti-SA immunoglobulin single variable domain comprising taking an anti-SA immunoglobulin single variable domain and introducing a mutation at an amino acid at any one of positions 28, 29, 30, 31, 32, 36, 46, 49, 50, 51, 53, 67, 68, 90, 91, 92, 93 or 94 of the amino acid sequence of an anti-SA immunoglobulin single variable domain. In one embodiment the anti-SA immunoglobulin single variable domain is, or is derived from, the amino acid sequence of DOM7h-11 or DOM7h-14. Methods for obtaining anti-SA immunoglobulin single variable domain molecules are described, for example, in PCT/EP2010/052008 and PCT/EP2010/052007. In one embodiment, the maturation may be in silico. Suitable in silico methods are described, for example, in Barderas et al. (2008), PNAS, 105, 26, p. 9029-9034. Preferably, the method comprises introducing a mutation at any one of the amino acids at positions 30, 31, 32, 49, 50, 51, 53, 67, 91 or 94 or the amino acid sequence.
[0052] Another aspect provides a method of modifying the binding affinity of an anti-SA immunoglobulin single variable domain comprising mutating an amino acid at any one of positions 30, 31, 32, 49, 50, 51, 53, 67, 91 or 94 of the amino acid sequence of an anti-SA immunoglobulin single variable domain. Suitably the anti-SA immunoglobulin single variable domain is a DOM7h-11 or DOM7h-14 derivative. Mutations may be to introduce conservative or non-conservative amino acid substitutions as described above.
[0053] In these aspects, suitably the mutation at any one of these positions is chosen to modify the affinity of binding to SA of the matured sequences when compared to the parental anti-SA immunoglobulin single variable domain.
[0054] The present inventors have identified a specific region of Serum Albumin that can be bound by an anti-SA binding moiety. Advantageously, this region is one which can be bound by a binding moiety, serving to enhance the half life of the bound moiety whilst not blocking any of the known drug binding sites such that the binding interaction does not have an effect on the other drug-binding properties of Serum Albumin. The binding portion identified can be used to identify binding moieties that preferentially bind to this region.
[0055] Accordingly, in another aspect of the invention, there is provided a method of identifying SA binding moieties comprising taking a portion of HSA defined by amino acids 213-229, 231-238, 321-331, 334-342 or 348-357; or 213-219, 222-228, 231-238, 311-218, 321-324, 329-333 or 347-357; or 321-326 or 329-331 wherein reference to amino acid residues are references to those amino acids set out in SEQ ID NO: 81, and using said portions in a binding assay or screen. In another aspect there is provided a method for generating an anti-HSA binding agent comprising taking a portion of HSA defined by amino acids 213-229, 231-238, 321-331, 334-342 or 348-357; or 213-219, 222-228, 231-238, 311-218, 321-324, 329-333 or 347-357; or 321-326 or 329-331 wherein reference to amino acid residues are references to those amino acids set out in SEQ ID NO: 81, and using these portions in a screen or assay.
[0056] Suitably an anti-HSA binding moiety may be derived using a part of HSA comprising the binding epitope described herein. In one embodiment, the method comprises providing an HSA polypeptide comprising at least part of the binding interface defined by amino acids 228, 230, 308, 309, 317, 318, 321, 322, 325, 326 and 329 of HSA.
BRIEF DESCRIPTION OF THE DRAWINGS
[0057] FIG. 1: Amino-acid sequence alignment for DOM7h-11 variant dAbs. A "." at a particular position indicates the same amino as found in DOM7h-11 at that position. The CDRs are indicated by underlining and bold text (the first underlined sequence is CDR1, the second underlined sequence is CDR2 and the third underlined sequence is CDR3). FIG. 2: Kinetic parameters of DOM7h-11 variants. KD units=nM; Kd units=sec-1; Ka units=M-1 sec-1. The notation A e-B means A×10-B and C e D means C×10D. The overall kinetic ranges in various species, as supported by the examples below, are indicated. Optional ranges are also provided for use in particular therapeutic settings (acute or chronic indications, conditions or diseases and "intermediate" for use in both chronic and acute settings). High affinity dAbs and products comprising these are useful for chronic settings. Medium affinity dAbs and products comprising these are useful for intermediate settings. Low affinity dAbs and products comprising these are useful for acute settings. The affinity in this respect is the affinity for serum albumin. Various example anti-serum dAbs and fusion proteins are listed, and these support the ranges disclosed. Many of the examples have favourable kinetics in human and one or more non-human animals (e.g., in human and Cynomolgus monkey and/or mouse). Choice of dAb or product comprising this can be tailored, according to the invention, depending on the setting (e.g., chronic or acute) to be treated therapeutically.
[0058] FIG. 3: Sequence segments of HSA identified as possible DOM7h-11-3 epitopes from H/D exchange data
[0059] FIG. 4: Overall structure of HSA in complex with DOM7h11-15. HSA and DOM7h11-15 are depicted schematically in ribbon representation. Chains A and C are HSA; Chain B and D are DOM7h-11-15. FIG. 4A shows the asymmetric unit; FIG. 4B shows biologically relevant complex in 3 different orientations; FIG. 4C shows electron density map for DOM7h-11-15 calculated from phases from the final model contoured at 2.06.
[0060] FIG. 5: Grid showing contacting residues between HSA and DOM7h-11-15.
[0061] FIG. 6: Alignment of DOM7h-11 lineage AlbudAbs.
[0062] FIG. 7: Detail of interactions between HSA and DOM7h-11-15.
[0063] FIG. 8: Comparison of epitope data from orthogonal techniques. HSA is rendered in surface representation and dark patches depict epitope regions identified using each technique.
[0064] FIG. 9: Positions of lipid carrier pockets relative to DOM7h-11-15 binding site. The HSA backbone is drawn in tube representation; lipid molecules are dark spheres; electron density for DOM7h-11-15 is drawn in dark mesh. 1E7G.pdb was structurally aligned to the peptide backbone of the HSA/DOM7h-11-15 crystal structure to superimpose lipid moieties to carrier pockets (FA1-FA7: fatty acid binding sites).
[0065] FIG. 10: Nucleic and amino acid sequences.
DETAILED DESCRIPTION OF THE INVENTION
[0066] Within this specification the invention has been described, with reference to embodiments, in a way which enables a clear and concise specification to be written. It is intended and should be appreciated that embodiments may be variously combined or separated without parting from the invention.
[0067] Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art (e.g., in cell culture, molecular genetics, nucleic acid chemistry, hybridization techniques and biochemistry). Standard techniques are used for molecular, genetic and biochemical methods (see generally, Sambrook et al., Molecular Cloning: A Laboratory Manual, 2d ed. (1989) Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. and Ausubel et al., Short Protocols in Molecular Biology (1999) 4th Ed, John Wiley & Sons, Inc. which are incorporated herein by reference) and chemical methods.
[0068] A "patient" is any animal, e.g., a mammal, e.g., a non-human primate (such as a baboon, rhesus monkey or Cynomolgus monkey), mouse, human, rabbit, rat, dog, cat or pig. In one embodiment, the patient is a human.
[0069] As used herein an antibody refers to IgG, IgM, IgA, IgD or IgE or a fragment (such as a Fab, Fab', F(ab')2, Fv, disulphide linked Fv, scFv, closed conformation multispecific antibody, disulphide-linked scFv, diabody) whether derived from any species naturally producing an antibody, or created by recombinant DNA technology; whether isolated from serum, B-cells, hybridomas, transfectomas, yeast or bacteria.
[0070] As used herein, "antibody format" refers to any suitable polypeptide structure in which one or more antibody variable domains can be incorporated so as to confer binding specificity for antigen on the structure. A variety of suitable antibody formats are known in the art, such as, chimeric antibodies, humanized antibodies, human antibodies, single chain antibodies, bispecific antibodies, antibody heavy chains, antibody light chains, homodimers and heterodimers of antibody heavy chains and/or light chains, antigen-binding fragments of any of the foregoing (e.g., a Fv fragment (e.g., single chain Fv (scFv), a disulfide bonded Fv), a Fab fragment, a Fab' fragment, a F(ab')2 fragment), a single antibody variable domain (e.g., a dAb, VH, VHH, VL), and modified versions of any of the foregoing (e.g., modified by the covalent attachment of polyethylene glycol or other suitable polymer or a humanized VHH).
[0071] The phrase "immunoglobulin single variable domain" refers to an antibody variable domain (VH, VHH, VL) that specifically binds an antigen or epitope independently of different V regions or domains. An immunoglobulin single variable domain can be present in a format (e.g., homo- or hetero-multimer) with other variable regions or variable domains where the other regions or domains are not required for antigen binding by the single immunoglobulin variable domain (i.e., where the immunoglobulin single variable domain binds antigen independently of the additional variable domains). A "domain antibody" or "dAb" is the same as an "immunoglobulin single variable domain" as the term is used herein. A "single immunoglobulin variable domain" is the same as an "immunoglobulin single variable domain" as the term is used herein. A "single antibody variable domain" or an "antibody single variable domain" is the same as an "immunoglobulin single variable domain" as the term is used herein. An immunoglobulin single variable domain is in one embodiment a human antibody variable domain, but also includes single antibody variable domains from other species such as rodent (for example, as disclosed in WO 00/29004, the contents of which are incorporated herein by reference in their entirety), nurse shark and Camelid VHH dAbs. Camelid VHH are immunoglobulin single variable domain polypeptides that are derived from species including camel, llama, alpaca, dromedary, and guanaco, which produce heavy chain antibodies naturally devoid of light chains. The VHH may be humanized.
[0072] A "domain" is a folded protein structure which has tertiary structure independent of the rest of the protein. Generally, domains are responsible for discrete functional properties of proteins and, in many cases, may be added, removed or transferred to other proteins without loss of function of the remainder of the protein and/or of the domain. A "single antibody variable domain" is a folded polypeptide domain comprising sequences characteristic of antibody variable domains. It therefore includes complete antibody variable domains and modified variable domains, for example, in which one or more loops have been replaced by sequences which are not characteristic of antibody variable domains, or antibody variable domains which have been truncated or comprise N- or C-terminal extensions, as well as folded fragments of variable domains which retain at least the binding activity and specificity of the full-length domain.
[0073] In the instant application, the term "prevention" and "preventing" involves administration of the protective composition prior to the induction of the disease or condition. "Treatment" and "treating" involves administration of the protective composition after disease or condition symptoms become manifest. "Suppression" or "suppressing" refers to administration of the composition after an inductive event, but prior to the clinical appearance of the disease or condition.
[0074] As used herein, the term "dose" refers to the quantity of ligand administered to a subject all at one time (unit dose), or in two or more administrations over a defined time interval. For example, dose can refer to the quantity of ligand (e.g., ligand comprising an immunoglobulin single variable domain that binds target antigen) administered to a subject over the course of one day (24 hours) (daily dose), two days, one week, two weeks, three weeks or one or more months (e.g., by a single administration, or by two or more administrations). The interval between doses can be any desired amount of time. The term "pharmaceutically effective" when referring to a dose means sufficient amount of the ligand, domain or pharmaceutically active agent to provide the desired effect. The amount that is "effective" will vary from subject to subject, depending on the age and general condition of the individual, the particular drug or pharmaceutically active agent and the like. Thus, it is not always possible to specify an exact "effective" amount applicable for all patients. However, an appropriate "effective" dose in any individual case may be determined by one of ordinary skill in the art using routine experimentation.
[0075] Methods for pharmacokinetic analysis and determination of ligand (e.g., single variable domain, fusion protein or multi-specific ligand) half-life will be familiar to those skilled in the art. Details may be found in Kenneth, A et al: Chemical Stability of Pharmaceuticals: A Handbook for Pharmacists and in Peters et al, Pharmacokinetic analysis: A Practical Approach (1996). Reference is also made to "Pharmacokinetics", M Gibaldi & D Perron, published by Marcel Dekker, 2nd Rev. ex edition (1982), which describes pharmacokinetic parameters such as t alpha and t beta half lives and area under the curve (AUC). Optionally, all pharmacokinetic parameters and values quoted herein are to be read as being values in a human. Optionally, all pharmacokinetic parameters and values quoted herein are to be read as being values in a mouse or rat or Cynomolgus monkey.
[0076] Half lives (t1/2 alpha and t1/2 beta) and AUC can be determined from a curve of serum concentration of ligand against time. The WinNonlin analysis package, e.g. version 5.1 (available from Pharsight Corp., Mountain View, Calif. 94040, USA) can be used, for example, to model the curve. When two-compartment modeling is used, in a first phase (the alpha phase) the ligand is undergoing mainly distribution in the patient, with some elimination. A second phase (beta phase) is the phase when the ligand has been distributed and the serum concentration is decreasing as the ligand is cleared from the patient. The t alpha half life is the half life of the first phase and the t beta half life is the half life of the second phase. Thus, in one embodiment, in the context of the present invention, the variable domain, fusion protein or ligand has a t alpha half life in the range of (or of about) 15 minutes or more. In one embodiment, the lower end of the range is (or is about) 30 minutes, 45 minutes, 1 hour, 2 hours, 3 hours, 4 hours, 5 hours, 6 hours, 7 hours, 10 hours, 11 hours or 12 hours. In addition, or alternatively, the variable domain, fusion protein or ligand according to the invention will have a t alpha half life in the range of up to and including 12 hours (or about 12 hours). In one embodiment, the upper end of the range is (or is about) 11, 10, 9, 8, 7, 6 or 5 hours. An example of a suitable range is (or is about) 1 to 6 hours, 2 to 5 hours or 3 to 4 hours.
[0077] In one embodiment, the present invention provides the variable domain, fusion protein or ligand according to the invention has a t beta half life in the range of (or of about) 2.5 hours or more. In one embodiment, the lower end of the range is (or is about) 3 hours, 4 hours, 5 hours, 6 hours, 7 hours, 10 hours, 11 hours, or 12 hours. In addition, or alternatively, the t beta half life is (or is about) up to and including 21 or 25 days. In one embodiment, the upper end of the range is (or is about) 12 hours, 24 hours, 2 days, 3 days, 5 days, 10 days, 15 days, 19 days, 20 days, 21 days or 22 days. For example, the variable domain, fusion protein or ligand according to the invention will have a t beta half life in the range 12 to 60 hours (or about 12 to 60 hours). In a further embodiment, it will be in the range 12 to 48 hours (or about 12 to 48 hours). In a further embodiment still, it will be in the range 12 to 26 hours (or about 12 to 26 hours).
[0078] As an alternative to using two-compartment modeling, the skilled person will be familiar with the use of non-compartmental modeling, which can be used to determine terminal half-lives (in this respect, the term "terminal half-life" as used herein means a terminal half-life determined using non-compartmental modeling). The WinNonlin analysis package, e.g. version 5.1 (available from Pharsight Corp., Mountain View, Calif. 94040, USA) can be used, for example, to model the curve in this way. In this instance, in one embodiment the single variable domain, fusion protein or ligand has a terminal half life of at least (or at least about) 8 hours, 10 hours, 12 hours, 15 hours, 28 hours, 20 hours, 1 day, 2 days, 3 days, 7 days, 14 days, 15 days, 16 days, 17 days, 18 days, 19 days, 20 days, 21 days, 22 days, 23 days, 24 days or 25 days. In one embodiment, the upper end of this range is (or is about) 24 hours, 48 hours, 60 hours or 72 hours or 120 hours. For example, the terminal half-life is (or is about) from 8 hours to 60 hours, or 8 hours to 48 hours or 12 to 120 hours, e.g., in man.
[0079] In addition, or alternatively to the above criteria, the variable domain, fusion protein or ligand according to the invention has an AUC value (area under the curve) in the range of (or of about) 1 mgmin/ml or more. In one embodiment, the lower end of the range is (or is about) 5, 10, 15, 20, 30, 100, 200 or 300 mgmin/ml. In addition, or alternatively, the variable domain, fusion protein or ligand according to the invention has an AUC in the range of (or of about) up to 600 mgmin/ml. In one embodiment, the upper end of the range is (or is about) 500, 400, 300, 200, 150, 100, 75 or 50 mgmin/ml. Advantageously the variable domain, fusion protein or ligand will have an AUC in (or about in) the range selected from the group consisting of the following: 15 to 150 mgmin/ml, 15 to 100 mgmin/ml, 15 to 75 mgmin/ml, and 15 to 50 mgmin/ml.
[0080] "Surface Plasmon Resonance": Competition assays can be used to determine if a specific antigen or epitope, such as human serum albumin, competes with another antigen or epitope, such as cynomolgus serum albumin, for binding to a serum albumin binding ligand described herein, such as a specific dAb. Similarly competition assays can be used to determine if a first ligand, such as dAb, competes with a second ligand such as a dAb for binding to a target antigen or epitope. The term "competes" as used herein refers to substance, such as a molecule, compound, preferably a protein, which is able to interfere to any extent with the specific binding interaction between two or more molecules. The phrase "does not competitively inhibit" means that substance, such as a molecule, compound, preferably a protein, does not interfere to any measurable or significant extent with the specific binding interaction between two or more molecules. The specific binding interaction between two or more molecules preferably includes the specific binding interaction between a single variable domain and its cognate partner or target. The interfering or competing molecule can be another single variable domain or it can be a molecule that is structurally and/or functionally similar to a cognate partner or target.
[0081] The term "binding moiety" refers to a domain that specifically binds an antigen or epitope independently of a different epitope or antigen binding domain. A binding moiety may be a domain antibody (dAb) or may be a domain which is a derivative of a non-immunoglobulin protein scaffold, e.g., a scaffold selected from the group consisting of CTLA-4, lipocalin, SpA, an adnectin, affibody, an avimer, GroEI, transferrin, GroES and fibronectin, which binds to a ligand other than the natural ligand (in the case of the present invention, the moiety binds serum albumin). See WO2008/096158, which discloses examples of protein scaffolds and methods for selecting antigen or epitope-specific binding domains from repertoires (see Examples 17 to 25). These specific disclosures of WO2008/096158 are expressly incorporated herein by reference as though explicitly written herein and for use with the present invention, and it is contemplated that any part of such disclosure can be incorporated into one or more claims herein). In one aspect, the invention provides a binding moiety comprising the amino acids which interact with and/or enable binding to SA as described herein wherein the interacting amino acids are presented in the context of an alternative or non-immunoglobulin scaffold.
[0082] In one embodiment, the mutations at any of the positions identified in accordance with any aspect or embodiment of the invention are mutations to residues as exemplified in the Examples section herein. In another embodiment, mutations are to conservative amino acids substitutions of the exemplified residues.
[0083] Conservative amino acid substitutions are well know to the person skilled in the art and are exemplified by the following table:
TABLE-US-00001 Amino Acid Substitution Original Residues Exemplary Substitutions Preferred Substitutions Ala Val, Leu, Ile Val Arg Lys, Gln, Asn Lys Asn Gln Gln Asp Glu Glu Cys Ser, Ala Ser Gln Asn Asn Glu Asp Asp Gly Pro, Ala Ala His Asn, Gln, Lys, Arg Arg Ile Leu, Val, Met, Ala, Phe, Leu Norleucine Leu Norleucine, Ile, Val, Met, Ile Ala, Phe Lys Arg, 1,4 Diamino- Arg butyricAcid, Gln, Asn Met Leu, Phe, Ile Leu Phe Leu, Val, Ile, Ala, Tyr Leu Pro Ala Gly Ser Thr, Ala, Cys Thr Thr Ser Ser Trp Tyr, Phe Tyr Tyr Trp, Phe, Thr, Ser Phe Val Ile, Met, Leu, Phe, Ala, Leu Norleucine
[0084] Conservative amino acid substitutions may also relate to non-naturally occurring amino acid residues, such as peptidomimetics and other reversed or inverted forms of amino acid moieties which may be incorporated by chemical peptide synthesis.
[0085] In one embodiment, the variant comprises one or more of the following kinetic characteristics:--
[0086] (a) The variant comprises a binding site that specifically binds human SA with a dissociation constant (KD) from (or from about) 0.1 to (or to about) 10000 nM, optionally from (or from about) 1 to (or to about) 6000 nM, as determined by surface plasmon resonance;
[0087] (b) The variant comprises a binding site that specifically binds human SA with an off-rate constant (Kd) from (or from about) 1.5×10-4 to (or to about) 0.1 sec-1, optionally from (or from about) 3×10-4 to (or to about) 0.1 sec-1 as determined by surface plasmon resonance;
[0088] (c) The variant comprises a binding site that specifically binds human SA with an on-rate constant (Ka) from (or from about) 2×106 to (or to about) 1×104 M-1 sec-1, optionally from (or from about) 1×106 to (or to about) 2×104 M-1 sec-1 as determined by surface plasmon resonance;
[0089] (d) The variant comprises a binding site that specifically binds Cynomolgus monkey SA with a dissociation constant (KD) from (or from about) 0.1 to (or to about) 10000 nM, optionally from (or from about) 1 to (or to about) 6000 nM, as determined by surface plasmon resonance;
[0090] (e) The variant of any preceding claim, wherein the variant comprises a binding site that specifically binds Cynomolgus monkey SA with an off-rate constant (Kd) from (or from about) 1.5×10-4 to (or to about) 0.1 sec-1, optionally from (or from about) 3×10-4 to (or to about) 0.1 sec-1 as determined by surface plasmon resonance;
[0091] (f) The variant of any preceding claim, wherein the variant comprises a binding site that specifically binds Cynomolgus monkey SA with an on-rate constant (Ka) from (or from about) 2×106 to (or to about) 1×104 M-1 sec-1, optionally from (or from about) 1×106 to (or to about) 5×103 M-1 sec-1 as determined by surface plasmon resonance;
[0092] (g) The variant comprises a binding site that specifically binds rat SA with a dissociation constant (KD) from (or from about) 1 to (or to about) 10000 nM, optionally from (or from about) 20 to (or to about) 6000 nM, as determined by surface plasmon resonance;
[0093] (h) The variant comprises a binding site that specifically binds rat SA with an off-rate constant (Kd) from (or from about) 2×10-3 to (or to about) 0.15 sec-1, optionally from (or from about) 9×10-3 to (or to about) 0.14 sec-1 as determined by surface plasmon resonance;
[0094] (i) The variant comprises a binding site that specifically binds rat SA with an on-rate constant (Ka) from (or from about) 2×106 to (or to about) 1×104 M-1 sec-1, optionally from (or from about) 1×106 to (or to about) 3×104 M-1 sec-1 as determined by surface plasmon resonance;
[0095] (j) The variant comprises a binding site that specifically binds mouse SA with a dissociation constant (KD) from (or from about) 1 to (or to about) 10000 nM as determined by surface plasmon resonance;
[0096] (k) The variant comprises a binding site that specifically binds mouse SA with an off-rate constant (Kd) from (or from about) 2×10-3 to (or to about) 0.15 sec-1 as determined by surface plasmon resonance; and/or
[0097] (l) The variant comprises a binding site that specifically binds mouse SA with an on-rate constant (Ka) from (or from about) 2×106 to (or to about) 1×104 M-1 sec-1, optionally from (or from about) 2×106 to (or to about) 1.5×104 M-1 sec-1 as determined by surface plasmon resonance.
[0098] Optionally, the variant has
[0099] I: a KD according to (a) and (d), a Kd according to (b) and (e), and a Ka according to (c) and (f); or
[0100] II: a KD according to (a) and (g), a Kd according to (b) and (h), and a Ka according to (c) and (i); or
[0101] III: a KD according to (a) and (j), a Kd according to (b) and (k), and a Ka according to (c) and (I); or
[0102] IV: kinetics according to I and II; or
[0103] V: kinetics according to I and III; or
[0104] VI: kinetics according to I, II and III.
[0105] The invention also provides a ligand comprising a variant of any preceding aspect or embodiment of the invention. For example, the ligand can be a dual-specific ligand (see WO04003019 for examples of dual-specific ligands). In one aspect, the invention provides a multispecific ligand comprising an anti-SA variant of any preceding aspect or embodiment of the invention and a binding moiety that specifically binds a target antigen other than SA. The binding moiety can be any binding moiety that specifically binds a target, e.g., the moiety is an antibody, antibody fragment, scFv, Fab, dAb or a binding moiety comprising a non-immunoglobulin protein scaffold. Such moieties are disclosed in detail in WO2008/096158 (see examples 17 to 25, which disclosure is incorporated herein by reference). Examples of non-immunoglobulin scaffolds are CTLA-4, lipocallin, staphylococcal protein A (spA), Affibody®, Avimers®, adnectins, GroEL and fibronectin.
[0106] In one embodiment, a linker is provided between the anti-target binding moiety and the anti-SA single variant, the linker comprising the amino acid sequence AST, optionally ASTSGPS. Alternative linkers are described in WO2007085814 (incorporated herein by reference), WO2008/096158 (see the passage at page 135, line 12 to page 140, line 14, which disclosure and all sequences of linkers are expressly incorporated herein by reference as though explicitly written herein and for use with the present invention, and it is contemplated that any part of such disclosure can be incorporated into one or more claims herein) and WO2009/068649.
[0107] In one embodiment of the multispecific ligand, the target antigen may be, or be part of, polypeptides, proteins or nucleic acids, which may be naturally occurring or synthetic. In this respect, the ligand of the invention may bind the target antigen and act as an antagonist or agonist (e.g., EPO receptor agonist). One skilled in the art will appreciate that the choice is large and varied. They may be for instance, human or animal proteins, cytokines and growth factors, cytokine receptors, where cytokine receptors include receptors for cytokines, enzymes, co-factors for enzymes or DNA binding proteins.
[0108] As used herein, the term "antagonist of Tumor Necrosis Factor Receptor 1 (TNFR1)" or "anti-TNFR1 antagonist" or the like refers to an agent (e.g., a molecule, a compound) which binds TNFR1 and can inhibit a (i.e., one or more) function of TNFR1. For example, an antagonist of TNFR1 can inhibit the binding of TNF alpha to TNFR1 and/or inhibit signal transduction mediated through TNFR1. Accordingly, TNFR1-mediated processes and cellular responses (e.g., TNF alpha-induced cell death in a standard L929 cytotoxicity assay) can be inhibited with an antagonist of TNFR1.
[0109] In one embodiment, the multispecific ligand comprises an anti-SA dAb variant of the invention and an anti-TNFR1 binding moiety, e.g., an anti-TNFR1 dAb. Optionally, the ligand has only one anti-TNFR1 binding moiety (e.g., dAb) to reduce the chance of receptor cross-linking. Anti-TNFR1 dAbs are described, for example, in WO2006/038027, WO2007/049017, WO2008149148 and WO2010/081787 (the amino acid sequences of which and the nucleotide sequence of which, as disclosed in those PCT applications, are expressly incorporated herein by reference as though explicitly written herein and for use with the present invention, and it is contemplated that any part of such disclosures can be incorporated into one or more claims herein).
[0110] In one embodiment, the ligand of the invention is a fusion protein comprising a variant of the invention fused directly or indirectly to one or more polypeptides. For example, the fusion protein can be a "drug fusion" as disclosed in WO2005/118642 (the disclosure of which is incorporated herein by reference), comprising a variant of the invention and a polypeptide drug as defined in that PCT application.
[0111] As used herein, "drug" refers to any compound (e.g., small organic molecule, nucleic acid, polypeptide) that can be administered to an individual to produce a beneficial, therapeutic or diagnostic effect through binding to and/or altering the function of a biological target molecule in the individual. The target molecule can be an endogenous target molecule encoded by the individual's genome (e.g. an enzyme, receptor, growth factor, cytokine encoded by the individual's genome) or an exogenous target molecule encoded by the genome of a pathogen (e. g. an enzyme encoded by the genome of a virus, bacterium, fungus, nematode or other pathogen). Suitable drugs for use in fusion proteins and conjugates comprising an anti-SA dAb variant of the invention are disclosed in WO2005/118642 and WO2006/059106 (the entire disclosures of which are incorporated herein by reference, and including the entire list of specific drugs as though this list were expressly written herein, and it is contemplated that such incorporation provides disclosure of specific drugs for inclusion in claims herein). For example, the drug can be glucagon-like peptide 1 (GLP-1) or a variant, interferon alpha 2b or a variant or exendin-4 or a variant.
[0112] In one embodiment, the invention provides a drug conjugate as defined and disclosed in WO2005/118642 and WO2006/059106, wherein the conjugate comprises a variant of the invention. In one example, the drug is covalently linked to the variant (e.g., the variant and the drug are expressed as part of a single polypeptide). Alternatively, in an example, the drug is non-covalently bonded or associated with the variant. The drug can be covalently or noncovalently bonded to the variant directly or indirectly (e.g., through a suitable linker and/or noncovalent binding of complementary binding partners (e.g., biotin and avidin)). When complementary binding partners are employed, one of the binding partners can be covalently bonded to the drug directly or through a suitable linker moiety, and the complementary binding partner can be covalently bonded to the variant directly or through a suitable linker moiety. When the drug is a polypeptide or peptide, the drug composition can be a fusion protein, wherein the polypeptide or peptide, drug and the polypeptide binding moiety are discrete parts (moieties) of a continuous polypeptide chain. As described herein, the polypeptide binding moieties and polypeptide drug moieties can be directly bonded to each other through a peptide bond, or linked through a suitable amino acid, or peptide or polypeptide linker.
[0113] A ligand which contains one single variable domain (monomer) variant of the invention or more than one single variable domain (multimer, fusion protein, conjugate, and dual specific ligand as defined herein) which specifically binds to serum albumin, can further comprise one or more entities selected from, but preferably not limited to a label, a tag, an additional single variable domain, a dAb, an antibody, an antibody fragment, a marker and a drug. One or more of these entities can be located at either the COOH terminus or at the N terminus or at both the N terminus and the COOH terminus of the ligand comprising the single variable domain, (either immunoglobulin or non-immunoglobulin single variable domain). One or more of these entities can be located at either the COOH terminus, or the N terminus, or both the N terminus and the COOH terminus of the single variable domain which specifically binds serum albumin of the ligand which contains one single variable domain (monomer) or more than one single variable domains (multimer, fusion protein, conjugate, and dual specific ligand as defined herein). Non-limiting examples of tags which can be positioned at one or both of these termini include a HA, his or a myc tag. The entities, including one or more tags, labels and drugs, can be bound to the ligand which contains one single variable domain (monomer) or more than one single variable domain (multimer, fusion protein, conjugate, and dual specific ligand as defined herein), which binds serum albumin, either directly or through linkers as described above.
[0114] Also encompassed herein is an isolated nucleic acid encoding any of the variants, fusion proteins, conjugates or ligands described herein, e.g., a ligand which contains one single variable domain (monomer) variant of the invention or more than one single variable domain (e.g., multimer, fusion protein, conjugate, and dual specific ligand as defined herein) variant which specifically binds to serum albumin, or which specifically binds both human serum albumin and at least one non-human serum albumin, or functionally active fragments thereof. Also encompassed herein is a vector and/or an expression vector, a host cell comprising the vector, e.g., a plant or animal cell and/or cell line transformed with a vector, a method of expressing and/or producing one or more variants, fusion proteins or ligands which contains one single variable domain (monomer) variant or more than one single variable domain variants (e.g., multimer, fusion protein, conjugate, and dual specific ligand as defined herein) which specifically binds to serum albumin, or fragment(s) thereof encoded by said vectors, including in some instances culturing the host cell so that the one or more variants, fusion proteins or ligands or fragments thereof are expressed and optionally recovering the ligand which contains one single variable domain (monomer) or more than one single variable domain (e.g., multimer, fusion protein, conjugate, and dual specific ligand as defined herein) which specifically binds to serum albumin, from the host cell culture medium. Also encompassed are methods of contacting a ligand described herein with serum albumin, including serum albumin and/or non-human serum albumin(s), and/or one or more targets other than serum albumin, where the targets include biologically active molecules, and include animal proteins, cytokines as listed above, and include methods where the contacting is in vitro as well as administering any of the variants, fusion proteins or ligands described herein to an individual host animal or cell in vivo and/or ex vivo. Preferably, administering ligands described herein which comprises a single variable domain (immunoglobulin or non-immunoglobulin) directed to serum albumin and/or non-human serum albumin(s), and one or more domains directed to one or more targets other than serum albumin, will increase the half life, including the T beta and/or terminal half life, of the anti-target ligand. Nucleic acid molecules encoding the variants, fusion proteins or single domain containing ligands or fragments thereof, including functional fragments thereof, are contemplated herein. Vectors encoding the nucleic acid molecules, including but preferably not limited to expression vectors, are contemplated herein, as are host cells from a cell line or organism containing one or more of these expression vectors. Also contemplated are methods of producing any variant, fusion protein or ligand, including, but preferably not limited to any of the aforementioned nucleic acids, vectors and host cells.
[0115] An aspect of the invention provides a nucleic acid comprising a nucleotide sequence encoding a variant according to the invention or a multispecific ligand of the invention or fusion protein of the invention or a nucleotide sequence that is at least 70, 75, 80, 85, 90, 95, 96, 97, 98 or 99% identical to said selected sequence.
[0116] An aspect of the invention provides a vector comprising the nucleic acid of the invention. An aspect of the invention provides an isolated host cell comprising the vector.
[0117] Reference is made to WO2008/096158 for details of library vector systems, combining single variable domains, characterization of dual specific ligands, structure of dual specific ligands, scaffolds for use in constructing dual specific ligands, uses of anti-serum albumin dAbs and multispecific ligands and half-life-enhanced ligands, and compositions and formulations of comprising anti-serum albumin dAbs. These disclosures are incorporated herein by reference to provide guidance for use with the present invention, including for variants, ligands, fusion proteins, conjugates, nucleic acids, vectors, hosts and compositions of the present invention.
Sequences
TABLE-US-00002
[0118] TABLE 1 Amino Acid Sequences of DOM7h-11 Variant dAbs DOM7h-11-15 (SEQ ID NO: 1) DIQMTQSPSSLSASVGDRVTITCRASRPIGTMLSWYQQKPGKAPKLLIL AFSRLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCAQAGTHPTTF GQGTKVEIKR DOM7h-11-3 (SEQ ID NO: 2) DIQMTQSPSSLSASVGDRVTITCRASRPIGTTLSWYQQKPGKAPKLLIL WNSRLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCAQAGTHPTTF GQGTKVEIKR DOM7h-11-12 (SEQ ID NO: 157) DIQMTQSPSSLSASVGDRVTITCRASRPIGTMLSWYQQKPGKAPKLLIL FGSRLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCAQAGTHPTTF GQGTKVEIKR
TABLE-US-00003 TABLE 2 Nucleotide Sequences of DOM7h-11 Variant dAbs DOM7h-11-15 (SEQ ID NO: 3) GACATCCAGA TGACCCAGTC TCCATCCTCC CTGTCTGCAT CTGTAGGAGA CCGTGTCACC ATCACTTGCC GGGCAAGTCG TCCGATTGGG ACGATGTTAA GTTGGTACCA GCAGAAACCA GGGAAAGCCC CTAAGCTCCT GATCCTTGCT TTTTCCCGTT TGCAAAGTGG GGTCCCATCA CGTTTCAGTG GCAGTGGATC TGGGACAGAT TTCACTCTCA CCATCAGCAG TCTGCAACCT GAAGATTTTG CTACGTACTA CTGCGCGCAG GCTGGGACGC ATCCTACGAC GTTCGGCCAA GGGACCAAGG TGGAAATCAA ACGG DOM7h-11-3 (SEQ ID NO: 4) GACATCCAGA TGACCCAGTC TCCATCCTCC CTGTCTGCAT CTGTAGGAGA CCGTGTCACC ATCACTTGCC GGGCAAGTCG TCCGATTGGG ACGACGTTAA GTTGGTACCA GCAGAAACCA GGGAAAGCCC CTAAGCTCCT GATCCTTTGG AATTCCCGTT TGCAAAGTGG GGTCCCATCA CGTTTCAGTG GCAGTGGATC TGGGACAGAT TTCACTCTCA CCATCAGCAG TCTGCAACCT GAAGATTTTG CTACGTACTA CTGTGCGCAG GCTGGGACGC ATCCTACGAC GTTCGGCCAA GGGACCAAGG TGGAAATCAA ACGG DOM7h-11-12 (SEQ ID NO: 158) GACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCTGTAGGAG ACCGTGTCACCATCACTTGCCGGGCAAGTCGTCCGATTGGGACGATGTT AAGTTGGTACCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCTGATCTTG TTTGGTTCCCGGTTGCAAAGTGGGGTCCCATCACGTTTCAGTGGCAGTG GATCTGGGACAGATTTCACTCTCACCATCAGCAGTCTGCAACCTGAAGA TTTTGCTACGTACTACTGTGCGCAGGCTGGGACGCATCCTACGACGTTC GGCCAA GGGACCAAGGTGGAAATCAAACGG
TABLE-US-00004 TABLE 5 Anti-serum albumin dAb (DOM7h) fusions (used in Rat studies): - DOM7h-14/Exendin-4 fusion DMS number 7138 Amino acid sequence (SEQ ID NO: 5) HGEGTFTSDLSKQMEEEAVRLFIEWLKNGGPSSGAPPPSGGGGGSGGGGSGGGGSDIQ MTQSPSSLSASVGDRVTITCRASQWIGSQLSWYQQKPGKAPKLLIMWRSSLQSGVPSRF SGSGSGTDFTLTISSLQPEDFATYYCAQGAALPRTFGQGTKVEIKR Nucleotide sequence (SEQ ID NO: 6) CATGGTGAAGGAACATTTACCAGTGACTTGTCAAAACAGATGGAAGAGGAGGCAGTG CGGTTATTTATTGAGTGGCTTAAGAACGGAGGACCAAGTAGCGGGGCACCTCCGCCA TCGGGTGGTGGAGGCGGTTCAGGCGGAGGTGGCAGCGGCGGTGGCGGGTCGGACA TCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCTGTAGGAGACCGTGTCACCAT CACTTGCCGGGCAAGTCAGTGGATTGGGTCTCAGTTATCTTGGTACCAGCAGAAACCA GGGAAAGCCCCTAAGCTCCTGATCATGTGGCGTTCCTCGTTGCAAAGTGGGGTCCCA TCACGTTTCAGTGGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAGTCTGC AACCTGAAGATTTTGCTACGTACTACTGTGCTCAGGGTGCGGCGTTGCCTAGGACGTT CGGCCAAGGGACCAAGGTGGAAATCAAACGG DOM7h-14-10/Exendin-4 fusion DMS number 7139 Amino acid sequence (SEQ ID NO: 7) HGEGTFTSDLSKQMEEEAVRLFIEWLKNGGPSSGAPPPSGGGGGSGGGGSGGGGSDIQ MTQSPSSLSASVGDRVTITCRASQWIGSQLSWYQQKPGKAPKLLIMWRSSLQSGVPSRF SGSGSGTDFTLTISSLQPEDFATYYCAQGLRHPKTFGQGTKVEIKR Nucleotide sequence (SEQ ID NO: 8) CATGGTGAAGGAACATTTACCAGTGACTTGTCAAAACAGATGGAAGAGGAGGCAGTG CGGTTATTTATTGAGTGGCTTAAGAACGGAGGACCAAGTAGCGGGGCACCTCCGCCA TCGGGTGGTGGAGGCGGTTCAGGCGGAGGTGGCAGCGGCGGTGGCGGGTCGGACA TCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCTGTAGGAGACCGTGTCACCAT CACTTGCCGGGCAAGTCAGTGGATTGGGTCTCAGTTATCTTGGTACCAGCAGAAACCA GGGAAAGCCCCTAAGCTCCTGATCATGTGGCGTTCCTCGTTGCAAAGTGGGGTCCCA TCACGTTTCAGTGGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAGTCTGC AACCTGAAGATTTTGCTACGTACTACTGTGCTCAGGGTTTGAGGCATCCTAAGACGTT CGGCCAAGGGACCAAGGTGGAAATCAAACGG DOM7h-11/Exendin-4 fusion DMS number 7142 Amino acid sequence (SEQ ID NO: 9) HGEGTFTSDLSKQMEEEAVRLFIEWLKNGGPSSGAPPPSGGGGGSGGGGSGGGGSDIQ MTQSPSSLSASVGDRVTITCRASRPIGTTLSWYQQKPGKAPKLLIWFGSRLQSGVPSRFS GSGSGTDFTLTISSLQPEDFATYYCAQAGTHPTTFGQGTKVEIKR Nucleotide sequence (SEQ ID NO: 10) CATGGTGAAGGAACATTTACCAGTGACTTGTCAAAACAGATGGAAGAGGAGGCAGTG CGGTTATTTATTGAGTGGCTTAAGAACGGAGGACCAAGTAGCGGGGCACCTCCGCCA TCGGGTGGTGGAGGCGGTTCAGGCGGAGGTGGCAGCGGCGGTGGCGGGTCGGACA TCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCTGTAGGAGACCGTGTCACCAT CACTTGCCGGGCAAGTCGTCCGATTGGGACGACGTTAAGTTGGTACCAGCAGAAACC AGGGAAAGCCCCTAAGCTCCTGATCTGGTTTGGTTCCCGGTTGCAAAGTGGGGTCCC ATCACGTTTCAGTGGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAGTCTG CAACCTGAAGATTTTGCTACGTACTACTGTGCGCAGGCTGGGACGCATCCTACGACGT TCGGCCAAGGGACCAAGGTGGAAATCAAACGG DOM7h-11-15/Exendin-4 fusion DMS number 7143 Amino acid sequence (SEQ ID NO: 11) HGEGTFTSDLSKQMEEEAVRLFIEWLKNGGPSSGAPPPSGGGGGSGGGGSGGGGSDIQ MTQSPSSLSASVGDRVTITCRASRPIGTMLSWYQQKPGKAPKLLILAFSRLQSGVPSRFS GSGSGTDFTLTISSLQPEDFATYYCAQAGTHPTTFGQGTKVEIKR Nucleotide sequence (SEQ ID NO: 12) CATGGTGAAGGAACATTTACCAGTGACTTGTCAAAACAGATGGAAGAGGAGGCAGTG CGGTTATTTATTGAGTGGCTTAAGAACGGAGGACCAAGTAGCGGGGCACCTCCGCCA TCGGGTGGTGGAGGCGGTTCAGGCGGAGGTGGCAGCGGCGGTGGCGGGTCGGACA TCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCTGTAGGAGACCGTGTCACCAT CACTTGCCGGGCAAGTCGTCCGATTGGGACGATGTTAAGTTGGTACCAGCAGAAACC AGGGAAAGCCCCTAAGCTCCTGATCCTTGCTTTTTCCCGTTTGCAAAGTGGGGTCCCA TCACGTTTCAGTGGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAGTCTGC AACCTGAAGATTTTGCTACGTACTACTGCGCGCAGGCTGGGACGCATCCTACGACGTT CGGCCAAGGGACCAAGGTGGAAATCAAACGG DOM7h14-10/ G4SC-NCE fusion Amino acid sequence (SEQ ID NO: 13) encoding DOM7h14-10/G4SC DIQMTQSPSSLSASVGDRVTITCRASQWIGSQLSWYQQKPGKAPKLLIMWRSSLQSGVPS RFSGSGSGTDFTLTISSLQPEDFATYYCAQGLRHPKTFGQGTKVEIKRGGGGSC The C-terminal cysteine can be linked to a new chemical entity (pharmaceutical chemical compound, NCE), eg using maleimide linkage. Nucleotide sequence (SEQ ID NO: 14) encoding DOM7h14-10/G4SC GACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCTGTAGGAGACCGTGTCA CCATCACTTGCCGGGCAAGTCAGTGGATTGGGTCTCAGTTATCTTGGTACCAGCAGAA ACCAGGGAAAGCCCCTAAGCTCCTGATCATGTGGCGTTCCTCGTTGCAAAGTGGGGT CCCATCACGTTTCAGTGGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAGT CTGCAACCTGAAGATTTTGCTACGTACTACTGTGCTCAGGGTTTGAGGCATCCTAAGA CGTTCGGCCAAGGGACCAAGGTGGAAATCAAACGGGGTGGCGGAGGGGGTTCCTGT DOM7h14-10/TVAAPSC fusion Amino acid sequence (SEQ ID NO: 15) DIQMTQSPSSLSASVGDRVTITCRASQWIGSQLSWYQQKPGKAPKLLIMWRSSLQSGVPS RFSGSGSGTDFTLTISSLQPEDFATYYCAQGLRHPKTFGQGTKVEIKRTVAAPSC The C-terminal cysteine can be linked to a new chemical entity (pharmaceutical chemical compound, NCE), eg using maleimide linkage. Nucleotide sequence (SEQ ID NO: 16) GACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCTGTAGGAGACCGTGTCA CCATCACTTGCCGGGCAAGTCAGTGGATTGGGTCTCAGTTATCTTGGTACCAGCAGAA ACCAGGGAAAGCCCCTAAGCTCCTGATCATGTGGCGTTCCTCGTTGCAAAGTGGGGT CCCATCACGTTTCAGTGGCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCAGT CTGCAACCTGAAGATTTTGCTACGTACTACTGTGCTCAGGGTTTGAGGCATCCTAAGA CGTTCGGCCAAGGGACCAAGGTGGAAATCAAACGGACCGTCGCTGCTCCATCTTGT (used in mouse studies): - DOM7h-11/DOM1m-21-23 fusion DMS number 5515 Amino acid sequence (SEQ ID NO:17) EVQLLESGGGLVQPGGSLRLSCAASGFTFNRYSMGWLRQAPGKGLEWVSRIDSYGRGT YYEDPVKGRFSISRDNSKNTLYLQMNSLRAEDTAVYYCAKISQFGSNAFDYWGQGTQVT VSSASTSGPSDIQMTQSPSSLSASVGDRVTITCRASRPIGTTLSWYQQKPGKAPKLLIWFG SRLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCAQAGTHPTTFGQGTKVEIKR Amino acid plus myc tag sequence (SEQ ID NO: 18) EVQLLESGGGLVQPGGSLRLSCAASGFTFNRYSMGWLRQAPGKGLEWVSRIDSYGRGT YYEDPVKGRFSISRDNSKNTLYLQMNSLRAEDTAVYYCAKISQFGSNAFDYWGQGTQVT VSSASTSGPSDIQMTQSPSSLSASVGDRVTITCRASRPIGTTLSWYQQKPGKAPKLLIWFG SRLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCAQAGTHPTTFGQGTKVEIKRAAA EQKLISEEDLN Nucleotide sequence (SEQ ID NO: 19) GAGGTGCAGCTGTTGGAGTCTGGGGGAGGCTTGGTACAGCCTGGGGGGTCCCTGCG TCTCTCCTGTGCAGCCTCCGGATTCACCTTTAATAGGTATAGTATGGGGTGGCTCCGC CAGGCTCCAGGGAAGGGTCTAGAGTGGGTCTCACGGATTGATTCTTATGGTCGTGGT ACATACTACGAAGACCCCGTGAAGGGCCGGTTCAGCATCTCCCGCGACAATTCCAAG AACACGCTGTATCTGCAAATGAACAGCCTGCGTGCCGAGGACACCGCCGTATATTACT GTGCGAAAATTTCTCAGTTTGGGTCAAATGCGTTTGACTACTGGGGTCAGGGAACCCA GGTCACCGTCTCGAGCGCTAGCACCAGTGGTCCATCGGACATCCAGATGACCCAGTC TCCATCCTCCCTGTCTGCATCTGTAGGAGACCGTGTCACCATCACTTGCCGGGCAAGT CGTCCGATTGGGACGACGTTAAGTTGGTACCAGCAGAAACCAGGGAAAGCCCCTAAG CTCCTGATCTGGTTTGGTTCCCGGTTGCAAAGTGGGGTCCCATCACGTTTCAGTGGCA GTGGATCTGGGACAGATTTCACTCTCACCATCAGCAGTCTGCAACCTGAAGATTTTGC TACGTACTACTGTGCGCAGGCTGGGACGCATCCTACGACGTTCGGCCAAGGGACCAA GGTGGAAATCAAACGG Nucleotide plus myc tag sequence (SEQ ID NO: 20) GAGGTGCAGCTGTTGGAGTCTGGGGGAGGCTTGGTACAGCCTGGGGGGTCCCTGCG TCTCTCCTGTGCAGCCTCCGGATTCACCTTTAATAGGTATAGTATGGGGTGGCTCCGC CAGGCTCCAGGGAAGGGTCTAGAGTGGGTCTCACGGATTGATTCTTATGGTCGTGGT ACATACTACGAAGACCCCGTGAAGGGCCGGTTCAGCATCTCCCGCGACAATTCCAAG AACACGCTGTATCTGCAAATGAACAGCCTGCGTGCCGAGGACACCGCCGTATATTACT GTGCGAAAATTTCTCAGTTTGGGTCAAATGCGTTTGACTACTGGGGTCAGGGAACCCA GGTCACCGTCTCGAGCGCTAGCACCAGTGGTCCATCGGACATCCAGATGACCCAGTC TCCATCCTCCCTGTCTGCATCTGTAGGAGACCGTGTCACCATCACTTGCCGGGCAAGT CGTCCGATTGGGACGACGTTAAGTTGGTACCAGCAGAAACCAGGGAAAGCCCCTAAG CTCCTGATCTGGTTTGGTTCCCGGTTGCAAAGTGGGGTCCCATCACGTTTCAGTGGCA GTGGATCTGGGACAGATTTCACTCTCACCATCAGCAGTCTGCAACCTGAAGATTTTGC TACGTACTACTGTGCGCAGGCTGGGACGCATCCTACGACGTTCGGCCAAGGGACCAA GGTGGAAATCAAACGGGCGGCCGCAGAACAAAAACTCATCTCAGAAGAGGATCTGAA TTAA DOM7h-11-15/DOM1m-21-23 fusion DMS number 5517 Amino acid sequence (SEQ ID NO: 21) EVQLLESGGGLVQPGGSLRLSCAASGFTFNRYSMGWLRQAPGKGLEWVSRIDSYGRGT YYEDPVKGRFSISRDNSKNTLYLQMNSLRAEDTAVYYCAKISQFGSNAFDYWGQGTQVT VSSASTSGPSDIQMTQSPSSLSASVGDRVTITCRASRPIGTMLSWYQQKPGKAPKLLILAF SRLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCAQAGTHPTTFGQGTKVEIKR Amino acid plus nucleotide plus myc tag sequence(SEQ ID NO: 22) EVQLLESGGGLVQPGGSLRLSCAASGFTFNRYSMGWLRQAPGKGLEWVSRIDSYGRGT YYEDPVKGRFSISRDNSKNTLYLQMNSLRAEDTAVYYCAKISQFGSNAFDYWGQGTQVT VSSASTSGPSDIQMTQSPSSLSASVGDRVTITCRASRPIGTMLSWYQQKPGKAPKLLILAF SRLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCAQAGTHPTTFGQGTKVEIKRAAA EQKLISEEDLN Nucleotide sequence (SEQ ID NO: 23) GAGGTGCAGCTGTTGGAGTCTGGGGGAGGCTTGGTACAGCCTGGGGGGTCCCTGCG TCTCTCCTGTGCAGCCTCCGGATTCACCTTTAATAGGTATAGTATGGGGTGGCTCCGC CAGGCTCCAGGGAAGGGTCTAGAGTGGGTCTCACGGATTGATTCTTATGGTCGTGGT ACATACTACGAAGACCCCGTGAAGGGCCGGTTCAGCATCTCCCGCGACAATTCCAAG AACACGCTGTATCTGCAAATGAACAGCCTGCGTGCCGAGGACACCGCCGTATATTACT GTGCGAAAATTTCTCAGTTTGGGTCAAATGCGTTTGACTACTGGGGTCAGGGAACCCA GGTCACCGTCTCGAGCGCTAGCACCAGTGGTCCATCGGACATCCAGATGACCCAGTC TCCATCCTCCCTGTCTGCATCTGTAGGAGACCGTGTCACCATCACTTGCCGGGCAAGT CGTCCGATTGGGACGATGTTAAGTTGGTACCAGCAGAAACCAGGGAAAGCCCCTAAG CTCCTGATCCTTGCTTTTTCCCGTTTGCAAAGTGGGGTCCCATCACGTTTCAGTGGCA GTGGATCTGGGACAGATTTCACTCTCACCATCAGCAGTCTGCAACCTGAAGATTTTGC TACGTACTACTGCGCGCAGGCTGGGACGCATCCTACGACGTTCGGCCAAGGGACCAA GGTGGAAATCAAACGG Nucleotide plus myc tag sequence (SEQ ID NO: 24) GAGGTGCAGCTGTTGGAGTCTGGGGGAGGCTTGGTACAGCCTGGGGGGTCCCTGCG TCTCTCCTGTGCAGCCTCCGGATTCACCTTTAATAGGTATAGTATGGGGTGGCTCCGC CAGGCTCCAGGGAAGGGTCTAGAGTGGGTCTCACGGATTGATTCTTATGGTCGTGGT ACATACTACGAAGACCCCGTGAAGGGCCGGTTCAGCATCTCCCGCGACAATTCCAAG AACACGCTGTATCTGCAAATGAACAGCCTGCGTGCCGAGGACACCGCCGTATATTACT GTGCGAAAATTTCTCAGTTTGGGTCAAATGCGTTTGACTACTGGGGTCAGGGAACCCA GGTCACCGTCTCGAGCGCTAGCACCAGTGGTCCATCGGACATCCAGATGACCCAGTC TCCATCCTCCCTGTCTGCATCTGTAGGAGACCGTGTCACCATCACTTGCCGGGCAAGT CGTCCGATTGGGACGATGTTAAGTTGGTACCAGCAGAAACCAGGGAAAGCCCCTAAG CTCCTGATCCTTGCTTTTTCCCGTTTGCAAAGTGGGGTCCCATCACGTTTCAGTGGCA GTGGATCTGGGACAGATTTCACTCTCACCATCAGCAGTCTGCAACCTGAAGATTTTGC TACGTACTACTGCGCGCAGGCTGGGACGCATCCTACGACGTTCGGCCAAGGGACCAA GGTGGAAATCAAACGGGCGGCCGCAGAACAAAAACTCATCTCAGAAGAGGATCTGAA TTAA
Where a myc-tagged molecule is indicated in this table, this was the version used in PK studies in the examples. Where no myc-tagged sequences are given, the PK studies in the examples were not done with myc-tagged material, ie, the studies were done with the non-tagged constructs shown.
EXEMPLIFICATION
[0119] All numbering in the experimental section is according to Kabat (Kabat, E.A. National Institutes of Health (US) & Columbia University. Sequences of proteins of immunological interest, edn 5 (US Dept. Of Health and Human Services Public Health Service, National Institutes of Health, Bethesda, Md., 1991)).
[0120] Derivation of DOM7h-11, DOM7h-14 and DOM7r variants is described.
Example 1
Vk Affinity Maturation
Selections:
[0121] HSA (Human Serum Albumin) and RSA (Rat Serum Albumin) antigens were obtained from Sigma (essentially fatty acid free, ˜99% (agarose gel electrophoresis), lyophilized powder Cat. No. A3782 and A6414 respectively)
[0122] Biotinylated products of above two antigens were made by using EZ Link Sulfo-NHS-SS-Biotin (Pierce, Cat. No. 21331). Free biotin reagent was removed by passing the samples twice through PD10 desalting column followed by overnight dialysis against 1000× excess volume of PBS at 4° C. Resulting product was tested by mass spec and 1-2 biotins per molecule were observed.
Affinity Maturation Libraries:
[0123] Both error-prone and CDR libraries were created using DOM7h-11 and DOM7h-14 parental dAbs (see WO2008/096158 for the sequences of DOM7h-11 and DOM7h-14). The CDR libraries were generated in the pDOM4 vector and the error prone libraries were generated in the pDOM33 vector (to allow for selection with or without protease treatment). Vector pDOM4, is a derivative of the Fd phage vector in which the gene III signal peptide sequence is replaced with the yeast glycolipid anchored surface protein (GAS) signal peptide. It also contains a c-myc tag between the leader sequence and gene III, which puts the gene III back in frame. This leader sequence functions well both in phage display vectors but also in other prokaryotic expression vectors and can be universally used. pDOM33 is a modified version of the pDOM4 vector where the c-myc tag has been removed which renders the dAb-phage fusion resistant to the protease trypsin. This allows the use of trypsin within the phage selection to select for dAbs that are more protease stable (see WO2008149143).
[0124] For error-prone maturation libraries, plasmid DNA encoding the dAb to be matured was amplified by PCR, using the GENEMORPH® II RANDOM MUTAGENESIS KIT (random, unique mutagenesis kit, Stratagene). The product was digested with Sal I and Not I and used in a ligation reaction with cut phage vector pDOM33. For the CDR libraries, PCR reactions were performed using degenerate oligonucleotides containing NNK or NNS codons to diversify the required positions in the dAb to be affinity matured. Assembly PCR was then used to generate a full length diversified insert. The insert was digested with Sal I and Not I and used in a ligation reaction with pDOM4 for mutagenesis of multiple residues and pDOM5 for mutagenesis of single residues. The pDOM5 vector is a pUC119-based expression vector where protein expression is driven by the LacZ promoter. A GAS1 leader sequence (see WO 2005/093074) ensures secretion of isolated, soluble dAbs into the periplasm and culture supernatant of E. coli. dAbs are cloned SalI/NotI in this vector, which appends a myc tag at the C-terminus of the dAb. This protocol using SalI and Not I results in inclusion of an ST amino acid sequence at the N-terminus.
[0125] The ligation produced by either method was then used to transform E. coli strain TB1 by electroporation and the transformed cells plated on 2×TY agar containing 15 μg/ml tetracycline, yielding library sizes of >5×107 clones.
[0126] The error-prone libraries had the following average mutation rate and size: DOM7h-11 (2.5 mutations per dAb), size: 6.1×108, DOM7h-14 (2.9 mutations per dAb), size: 5.4×108.
[0127] Each CDR library has four amino acid diversity. Two libraries were generated for each of CDRs 1 and 3, and one library for CDR2. The positions diversified within each library are as follows (amino acids based on VK dummy DPK9 sequence):
TABLE-US-00005 Library size DOM7h-11 DOM7h-14 1--Q27, S28, S30, S31 (CDR1) 8.8 × 107 5.8 × 107 2--S30, S31, Y32, N34 (CDR1) 4.6 × 108 4.2 × 108 3--Y49, A50, A51, S53 (CDR2) 3.9 × 108 2.4 × 108 4--Q89, S91, Y92, S93 (CDR3) 1.8 × 108 2.5 × 108 5--Y92, Y93, T94, N96 (CDR3) 4.0 × 108 3.3 × 108
Example 2
Selection Strategies
[0128] Three phage selection strategies were adopted for Vκ AlbudAb® (anti-serum albumin dAb) affinity maturation:
[0129] 1) Selections Against HSA Only:
[0130] Three rounds of selection against HSA were carried out. The error prone libraries and each CDR library were selected as an individual pool in all rounds. The first round of selection was performed against HSA passively coated onto an immunotube at 1 mg/ml. Round 2 was performed against 100 nM HSA and round 3 against 10 nM (CDR selections) or 20 or 100 nM (Error prone selections) HSA, both as soluble selections followed by a fourth round of selection with the error prone libraries against 1.5 nM HSA as a soluble selection. The error prone libraries were eluted with 0.1M glycine pH 2.0 before neutralisation with 1M Tris pH 8.0 and the CDR libraries were eluted with 1 mg/ml trypsin before infection into log phase TG1 cells. The third round of each selection was subcloned into pDOM5 for screening. Soluble selections used biotinylated HSA.
[0131] 2) Trypsin Selections Against HSA:
[0132] In order to select dAbs with increased protease resistance compared to the parental clone and with potentially improved biophysical properties, trypsin was used in phage selections (see WO2008149143). Four rounds of selection were preformed against HSA. The first round of selection of error prone libraries was performed against passively coated HSA at 1 mg/ml without trypsin; the second round against passively coated HSA at 1 mg/ml with 20 μg/ml trypsin for 1 hour at 37° C.; the third round selection was performed by soluble selection using biotinylated HSA against 100 nM HSA with 20 μg/ml or 100 μg/ml trypsin for 1 hour at 37° C. The final round of selection was performed by soluble selection using biotinylated HSA against 100 nM HSA with 100 μg/ml trypsin overnight at 37° C.
[0133] 3) Cross-Over Selections Against HSA (Round 1) and RSA (Rounds 2-4):
[0134] The first round selection was carried out against 1 mg/ml passively coated HSA or 1 μM HSA (soluble selection), followed by a further three rounds of soluble selections against biotinylated RSA at concentrations of 1 μM for round 1, 100 nm for round 2 and 20 nM, 10 nM or 1 nM for round 3.
Screening Strategy and Affinity Determination:
[0135] In each case after selection a pool of phage DNA from the appropriate round of selection is prepared using a QIAfilter midiprep kit (Qiagen), the DNA is digested using the restriction enzymes Sal1 and Not1 and the enriched V genes are ligated into the corresponding sites in pDOM5 the soluble expression vector which expresses the dAb with a myc tag (see PCT/EP2008/067789). The ligated DNA is used to electro-transform E. coli HB 2151 cells which are then grown overnight on agar plates containing the antibiotic carbenicillin. The resulting colonies are individually assessed for antigen binding. In each case at least 96 clones were tested for binding to HSA, CSA (Cynomolgus monkey Serum Albumin), MSA (mouse serum albumin) and RSA by BIAcore® (surface plasmon resonance). MSA antigen was obtained from Sigma (essentially fatty acid free, ˜99% (agarose gel electrophoresis), lyophilized powder Cat. No. A3559) and CSA was purified from Cynomolgus serum albumin using prometic blue resin (Amersham). Soluble dAb fragments were produced in bacterial culture in ONEX culture media (Novagen) overnight at 37° C. in 96 well plates. The culture supernatant containing soluble dAb was centrifuged and analysed by BIAcore for binding to high density HSA, CSA, MSA and RSA CM5 chips. Clones were found to bind to all these species of serum albumin by off-rate screening. The clones were sequenced revealing unique dAb sequences.
[0136] DOM7h11-15 had 96.3% identity to parent (at the amino acid level). DOM7h-11-3 had 97.2% identity to parent (at the amino acid level).
[0137] DOM7h-14-10 had 96.3% identity to parent (at the amino acid level).
[0138] dAbs were expressed as bacterial supernatants in 2.5 L shake flasks in Onex media at 30° C. for 48 hrs at 250 rpm. dAbs were purified from the culture media by absorption to protein L agarose followed by elution with 10 mM glycine pH2.0. Binding to HSA, CSA, MSA and RSA by BIAcore was confirmed using purified protein at 3 concentrations 1 μM, 500 nM and 50 nM. To determine the binding affinity (KD) of the AlbudAbs to each serum albumin; purified dAbs were analysed by BIAcore over albumin concentration range from 5000 nM to 39 nM (5000 nM, 2500 nM, 1250 nM, 625 nM, 312 nM, 156 nM, 78 nM, 39 nM).
TABLE-US-00006 TABLE 6 Affinity (KD) AlbudAb to SA (nM) Kd Ka Rat DOM7h-14 60 2.095E-01 4.00E+06 DOM7h-14-10 4 9.640E-03 4.57E+06 DOM 7h-11 2100 1.00E-01 4.80E+04 DOM 7h-11-3 10000 (7.18e-1) (8.11e3) (88000) DOM 7h-11-15 20 2.10E-02 1.10E+06 Cyno DOM 7h-14 66 9.65E-02 1.50E+06 DOM 7h-14-10 9 1.15E-02 1.60E+06 DOM 7h-11 1000 6.82E-01 8.00E+05 DOM 7h-11-3 670 9.6E-02 2.90E+05 (200) (1.5e-1) (7.26e5) DOM 7h-11-15 3 5.57E-03 5.80E+06 Mouse DOM 7h-14 12 4.82E-02 4.10E+06 DOM 7h-14-10 30 3.41E-02 1.29E+06 DOM 7h-11 5000 9.00E-01 DOM 7h-11-3 ≧10000 (6.12e-1) (1.67e4) (36000) DOM 7h-11-15 10 9.40E-03 1.10E+06 Human DOM 7h-14 33 4.17E-02 1.43E+06 DOM 7h-14-10 12 1.39E-02 1.50E+06 DOM 7h-11 2800 6.41E-01 7.00E+05 DOM 7h-11-3 32 1.6E-02 6.50E+05 (130) (2.35e-2) (1.86e5) DOM 7h-11-15 1 1.84E-03 2.00E+06 *: values in brackets were derived from a second, independent SPR experiment.
[0139] All DOM7h-14 derived variants are cross-reactive to mouse, rat, human and cyno serum albumin. DOM7h-14-10 has improved affinity to rat, cyno and human serum albumin compared to parent.
[0140] DOM7h-11-3 has improved affinity to CSA and HSA. DOM7h-11-15 has improved affinity to RSA, MSA, CSA and HSA.
Example 3
Origins of Key DOM7h-11 Lineage Clones
[0141] DOM7h-11-3: From affinity maturation performed against HSA using the CDR2 library (Y49, A50, A51, S53), round 3 output 10 nM HSA
[0142] DOM7h-11-15: From cross-over selections performed against HSA as round 1 followed by additional 3 rounds of selections against RSA using the CDR2 library (Y49, A50, A51, S53) at round 3 selection with 1 nM of RSA.
TABLE-US-00007 TABLE 7 CDR sequences (according to Kabat; ref. as above) CDR AIbudAb CDR1 CDR2 CDR3 DPK9 Vk dummy SQSISSYLN YAASSLQS QQSYSTPNT (SEQ ID NO: 25) (SEQ ID NO: 26) (SEQ ID NO: 27) DOM7h-11 SRPIGTTLS WFGSRLQS AQAGTHPTT (SEQ ID NO: 28) (SEQ ID NO: 29) (SEQ ID NO: 30) DOM 7h-11-15 SRPIGTMLS LAFSRLQS AQAGTHPTT (SEQ ID NO: 31) (SEQ ID NO: 32) (SEQ ID NO: 33) DOM 7h-11-3 SRPIGTTLS LWFSRLQS AQAGTHPTT (SEQ ID NO: 34) (SEQ ID NO: 35) (SEQ ID NO: 36)
Example 4
Origins of Key DOM7h-14 Lineage Clones
[0143] DOM7h-14-10: From affinity maturation performed against HSA using CDR3 library (Y92, Y93, T94, N96), round 3 output.
TABLE-US-00008 TABLE 8 CDR sequences (according to Kabat; ref. as above) CDR AIbudAb CDR1 CDR2 CDR3 DOM 7h-14 SQWIGSQLS MWRSSLQS AQGAALPRT (SEQ ID NO: 37) (SEQ ID NO: 38) (SEQ ID NO: 39) DOM 7h-14-10 SQWIGSQLS MWRSSLQS AQGLRHPKT (SEQ ID NO: 40) (SEQ ID NO: 41) (SEQ ID NO: 42)
Example 5
Expression and Biophysical Characterisation
[0144] The routine bacterial expression level in 2.5 L shake flasks was determined following culture in Onex media at 30° C. for 48 hrs at 250 rpm. The biophysical characteristics were determined by SEC MALLS and DSC.
[0145] SEC MALLS (size exclusion chromatography with multi-angle-LASER-light-scattering) is a non-invasive technique for the characterizing of macromolecules in solution. Briefly, proteins (at concentration of 1 mg/mL in buffer Dulbecco's PBS at 0.5 ml/min are separated according to their hydrodynamic properties by size exclusion chromatography (column: TSK3000 from TOSOH Biosciences; S200 from Pharmacia). Following separation, the propensity of the protein to scatter light is measured using a multi-angle-LASER-light-scattering (MALLS) detector. The intensity of the scattered light while protein passes through the detector is measured as a function of angle. This measurement taken together with the protein concentration determined using the refractive index (RI) detector allows calculation of the molar mass using appropriate equations (integral part of the analysis software Astra v.5.3.4.12).
[0146] DSC (Differential Scanning calorimetry): briefly, the protein is heated at a constant rate of 180° C./hrs (at 1 mg/mL in PBS) and a detectable heat change associated with thermal denaturation measured. The transition midpoint (appTm) is determined, which is described as the temperature where 50% of the protein is in its native conformation and the other 50% is denatured. Here, DSC determined the apparent transition midpoint (appTm) as most of the proteins examined do not fully refold. The higher the Tm, the more stable the molecule. Unfolding curves were analysed by non-2-state equations. The software package used was Origin® v7.0383.
TABLE-US-00009 TABLE 9 Biophysical parameters AlbudAb SEC MALLS DSC Tm(° C.) DOM7h-14 M 60 DOM 7h-14-10 M 59 DOM 7h-11 M 66.9-72.2 DOM 7h-11-3 M (95%)* 66.6/70.5 DOM 7h-11-15 M (<5% D) 58.5-60.5 *in one other trial, monomer was primarily seen by SEC MALLS, although lower than 95%
[0147] We observed expression levels for all clones in Table 9 in the range from 15 to 119 mg/L in E. coli.
[0148] For DOM7h-14 and DOM7h-11 variants, favorable biophysical parameters (monomeric in solution as determined by SEC MALLs and appTm of >55° C. as determined by DSC) and expression levels were maintained during affinity maturation. Monomeric state is advantageous because it avoids dimerisation and the risk of products that may cross-link targets such as cell-surface receptors.
Example 6
Determination of Serum Half Life in Rat, Mouse and Cynomolgus Monkey
[0149] AlbudAbs DOM7h-14-10, DOM7h-11 and DOM7h-11-15 were cloned into the pDOM5 vector. For each AlbudAb®, 20-50 mg quantities were expressed in E. coli and purified from bacterial culture supernatant using protein L affinity resin and eluted with 100 mM glycine pH2. The proteins were concentrated to greater than 1 mg/ml, buffer exchanged into PBS and endotoxin depleted using Q spin columns (Vivascience). For Rat pharmacokinetic (PK) analysis, AlbudAbs were dosed as single i.v injections at 2.5 mg/kg using 3 rats per compound. Serum samples were taken at 0.16, 1, 4, 12, 24, 48, 72, 120, 168 hrs. Analysis of serum levels was by anti-myc ELISA as per the method described below.
[0150] For Mouse PK, DOM7h-11 and DOM7h-11-15 were dosed as single i.v injections at 2.5 mg/kg per dose group of 3 subjects and serum samples taken at 10 mins; 1 h; 8 h; 24 h; 48 h; 72 h; 96 h. Analysis of serum levels was by anti-myc ELISA as per the method described below.
[0151] For Cynomolgus monkey PK DOM7h-14-10 and DOM7h-11-15 were dosed as single i.v injections at 2.5 mg/kg into 3 female Cynomolgus monkeys per dose group and serum samples taken at 0.083, 0.25, 0.5, 1, 2, 4, 8, 24, 48, 96, 144, 192, 288, 336, 504 hrs. Analysis of serum levels was by anti-myc ELISA as per the method described below.
Anti-Myc ELISA Method
[0152] The AlbudAb concentration in serum was measured by anti-myc ELISA. Briefly, goat anti-myc polyclonal antibody (1:500; Abcam, catalogue number ab9132) was coated overnight onto Nunc 96-well Maxisorp plates and blocked with 5% BSA/PBS+1% Tween. Serum samples were added at a range of dilutions alongside a standard at known concentrations. Bound myc-tagged AlbudAb was then detected using a rabbit polyclonal anti-Vk (1:1000; in-house reagent, bleeds were pooled and protein A purified before use) followed by an anti-rabbit IgG HRP antibody (1:10,000; Sigma, catalogue number A2074). Plates were washed between each stage of the assay with 3×PBS+0.1% Tween20 followed by 3×PBS. TMB (SureBlue TMB 1-Component Microwell Peroxidase Substrate, KPL, catalogue number 52-00-00) was added after the last wash and was allowed to develop. This was stopped with 1M HCl and the signal was then measured using absorbance at 450 nm.
[0153] From the raw ELISA data, the concentration of unknown samples was established by interpolation against the standard curve taking into account dilution factors. The mean concentration result from each time point was determined from replicate values and entered into WinNonLin analysis package (e.g. version 5.1 (available from Pharsight Corp., Mountain View, Calif. 94040, USA). The data was fitted using a non-compartmental model, where PK parameters were estimated by the software to give terminal half-lives. Dosing information and time points were selected to reflect the terminal phase of each PK profile.
TABLE-US-00010 TABLE 10 Single AlbudAb ® PK PK parameters Albumin AUC CL t1/2 Vz Species AlbudAb KD (nM) h × μg/ml ml/h/kg h ml/kg Rat DOM7h-14* 60 DOM7h-14-10 4 2134.6 1.2 42.1 71.2 DOM 7h-11 2100 320.1 7.8 23.3 263.9 DOM 7h-11-15 20 843.4 3.0 30.3 130.7 mouse DOM 7h-11 5000 304.7 8.2 18.3 216.8 DOM 7h-11-15 10 499.2 5.0 33.7 243.4 Cyno DOM 7h-14* 66 217.5 DOM 7h-14-10 9 6174.6 0.4 200.8 117.8 DOM 7h-11* 3300 135.1 DOM 7h-11-15 3 4195 0.6 198.1 170.3 *Historical data
[0154] Pharmacokinetic parameters derived from rat, mouse and cynomolgus monkey studies were fitted using a non-compartmental model. Key: AUC: Area under the curve from dosing time extrapolated to infinity; CL: clearance; t1/2: is the time during which the blood concentration is halved; Vz: volume of distribution based on the terminal phase.
[0155] DOM7h-11-15 has an improved AUC and t1/2 in rat and mouse compared to parent. DOM7h-11-15 also has an improved AUC and t1/2 in cyno compared to parent. This improvement in AUC/t1/2 correlates with an improved in vitro KD to serum albumin.
Example 7
AlbudAb® IFN Fusions
Cloning and Expression
[0156] As well as single AlbudAbs, the affinity matured Vk Albudabs were linked to Interferon alpha 2b (IFNα2b) to determine whether a useful PK of the AlbudAb was maintained as a fusion protein.
TABLE-US-00011 Interferon alpha 2b amino acid sequence: (SEQ ID NO: 43) CDLPQTHSLGSRRTLMLLAQMRRISLFSCLKDRHDFGFPQEEFGNQFQKA ETIPVLHEMIQQIFNLFSTKDSSAAWDETLLDKFYTELYQQLNDLEACVI QGVGVTETPLMKEDSILAVRKYFQRITLYLKEKKYSPCAWEVVRAEIMRS FSLSTNLQESLRSKE Interferon alpha 2b nucleotide sequence: (SEQ ID NO: 44) TGTGATCTGCCTCAAACCCACAGCCTGGGTAGCAGGAGGACCTTGATGCT CCTGGCACAGATGAGGAGAATCTCTCTTTTCTCCTGCTTGAAGGACAGAC ATGACTTTGGATTTCCCCAGGAGGAGTTTGGCAACCAGTTCCAAAAGGCT GAAACCATCCCTGTCCTCCATGAGATGATCCAGCAGATCTTCAATCTCTT CAGCACAAAGGACTCATCTGCTGCTTGGGATGAGACCCTCCTAGACAAAT TCTACACTGAACTCTACCAGCAGCTGAATGACCTGGAAGCCTGTGTGATA CAGGGGGTGGGGGTGACAGAGACTCCCCTGATGAAGGAGGACTCCATTCT GGCTGTGAGGAAATACTTCCAAAGAATCACTCTCTATCTGAAAGAGAAGA AATACAGCCCTTGTGCCTGGGAGGTTGTCAGAGCAGAAATCATGAGATCT TTTTCTTTGTCAACAAACTTGCAAGAAAGTTTAAGAAGTAAGGAA
[0157] IFNa2b was linked to the AlbudAb via a TVAAPS linker region (see WO2007085814). The constructs were cloned by SOE-PCR (single overlap extension according to the method of Horton et al. Gene, 77, p 61 (1989)). PCR amplification of the AlbudAb and IFN sequences were carried out separately using primers with a ˜15 base pair overlap at the TVAAPS linker region. The primers used are as follows:--
TABLE-US-00012 IFNα2b SOE fragment 5' (SEQ ID NO: 45) GCCCGGATCCACCGGCTGTGATCTG IFNα2b SOE fragment 3' (SEQ ID NO: 46) GGAGGATGGAGACTGGGTCATCTGGATGTC Vk SOE fragment 5' (SEQ ID NO: 47) GACATCCAGATGACCCAGTCTCCATCCTCC Vk SOE fragment 3' to also introduce a myc tag (SEQ ID NO: 48) GCGCAAGCTTTTATTAATTCAGATCCTCTTC TGAGATGAGTTTTTGTTCTGCGGCCGCCCGT TTGATTTCCACCTTGGTCCC
[0158] The fragments were purified separately and subsequently assembled in a SOE (single overlap extension PCR extension) reaction using only the flanking primers.
TABLE-US-00013 IFNα2b SOE fragment 5' (SEQ ID NO: 49) GCCCGGATCCACCGGCTGTGATCTG Vk SOE fragment 3' to also introduce a myc tag (SEQ ID NO: 50) GCGCAAGCTTTTATTAATTCAGATCCTCTTC TGAGATGAGTTTTTGTTCTGCGGCCGCCCGT TTGATTTCCACCTTGGTCCC
[0159] The assembled PCR product was digested using the restriction enzymes BamHI and HindIII and the gene ligated into the corresponding sites in the pDOM50, a mammalian expression vector which is a pTT5 derivative with an N-terminal V-J2-C mouse IgG secretory leader sequence to facilitate expression into the cell media.
TABLE-US-00014 Leader sequence (amino acid): (SEQ ID NO: 51) METDTLLLWVLLLWVPGSTG Leader sequence (nucleotide): (SEQ ID NO: 52) ATGGAGACCGACACCCTGCTGCTGTGGGTGCTGCTGCTGTGGGTGCCCGG ATCCACCGGGC
[0160] Plasmid DNA was prepared using QIAfilter megaprep (Qiagen). 1 μg DNA/ml was transfected with 293-Fectin into HEK293E cells and grown in serum free media. The protein is expressed in culture for 5 days and purified from culture supernatant using protein L affinity resin and eluted with 100 mM glycine pH2. The proteins were concentrated to greater than 1 mg/ml, buffer exchanged into PBS and endotoxin depleted using Q spin columns (Vivascience).
TABLE-US-00015 TABLE 11 Interferon alpha 2b-AIbudAb sequences with and without myc-taq (as amino acid- and nucleotide sequence) The Interferon alpha 2b is N-terminal to the AIbudAb in the following fusions. aa + myc nt + myc aa no tag nt no tag DMS7321 CDLPQTHSLGSRRTL TGCGACTTGCCA CDLPQTHSLGS TGCGACTTGCCA (IFNα2b- MLLAQMRRISLFSCL CAGACACATAGT RRTLMLLAQM CAGACACATAGT DOM7h- KDRHDFGFPQEEFG TTGGGATCAAGA RRISLFSCLKD TTGGGATCAAGA 14) NQFQKAETIPVLHEMI AGAACATTGATG RHDFGFPQEE AGAACATTGATG QQIFNLFSTKDSSAA TTATTAGCACAAA FGNQFQKAETI TTATTAGCACAA WDETLLDKFYTELYQ TGCGTAGAATTT PVLHEMIQQIF ATGCGTAGAATT QLNDLEACVIQGVGV CTTTGTTCTCTTG NLFSTKDSSAA TCTTTGTTCTCTT TETPLMKEDSILAVRK TCTAAAGGACCG WDETLLDKFYT GTCTAAAGGACC YFQRITLYLKEKKYSP TCACGACTTCGG ELYQQLNDLEA GTCACGACTTCG CAWEVVRAEIMRSFS ATTCCCTCAGGA CVIQGVGVTET GATTCCCTCAGG LSTNLQESLRSKETV AGAGTTTGGAAA PLMKEDSILAV AAGAGTTTGGAA AAPSDIQMTQSPSSL CCAATTCCAAAA RKYFQRITLYLK ACCAATTCCAAA SASVGDRVTITCRAS AGCAGAAACTAT EKKYSPCAWE AAGCAGAAACTA QWIGSQLSWYQQKP TCCTGTCTTGCA VVRAEIMRSFS TTCCTGTCTTGC GKAPKLLIMWRSSLQ CGAAATGATCCA LSTNLQESLRS ACGAAATGATCC SGVPSRFSGSGSGT GCAAATATTCAAT KETVAAPSDIQ AGCAAATATTCA DFTLTISSLQPEDFAT TTGTTTTCTACAA MTQSPSSLSAS ATTTGTTTTCTAC YYCAQGAALPRTFGQ AGGACTCATCAG VGDRVTITCRA AAAGGACTCATC GTKVEIKR CCGCTTGGGATG SQWIGSQLSW AGCCGCTTGGGA AAAEQKLISEEDLN* AAACTCTGTTAG YQQKPGKAPK TGAAACTCTGTT (SEQ ID NO: 53) ATAAATTCTACAC LLIMWRSSLQS AGATAAATTCTA TGAACTATATCAA GVPSRFSGSG CACTGAACTATA CAACTGAACGAT SGTDFTLTISSL TCAACAACTGAA CTAGAGGCTTGC QPEDFATYYCA CGATCTAGAGGC GTTATTCAGGGT QGAALPRTFG TTGCGTTATTCA GTAGGAGTTACT QGTKVEIKR GGGTGTAGGAGT GAAACTCCCCTA (SEQ ID NO: 55) TACTGAAACTCC ATGAAAGAAGAT CCTAATGAAAGA TCAATTCTAGCC AGATTCAATTCTA GTTAGAAAATACT GCCGTTAGAAAA TTCAGCGTATCA TACTTTCAGCGT CATTGTATTTAAA ATCACATTGTATT GGAAAAGAAATA TAAAGGAAAAGA CTCCCCATGTGC AATACTCCCCAT ATGGGAGGTGGT GTGCATGGGAG TAGAGCAGAAAT GTGGTTAGAGCA TATGAGGTCCTT GAAATTATGAGG CTCTCTTTCTACG TCCTTCTCTCTTT AATTTGCAAGAAT CTACGAATTTGC CTTTGAGATCTAA AAGAATCTTTGA GGAAACCGTCGC GATCTAAGGAAA TGCTCCATCTGA CCGTCGCTGCTC CATCCAGATGAC CATCTGACATCC CCAGTCTCCATC AGATGACCCAGT CTCCCTGTCTGC CTCCATCCTCCC ATCTGTAGGAGA TGTCTGCATCTG CCGTGTCACCAT TAGGAGACCGTG CACTTGCCGGGC TCACCATCACTT AAGTCAGTGGAT GCCGGGCAAGT TGGGTCTCAGTT CAGTGGATTGGG ATCTTGGTACCA TCTCAGTTATCTT GCAGAAACCAGG GGTACCAGCAGA GAAAGCCCCTAA AACCAGGGAAAG GCTCCTGATCAT CCCCTAAGCTCC GTGGCGTTCCTC TGATCATGTGGC GTTGCAAAGTGG GTTCCTCGTTGC GGTCCCATCACG AAAGTGGGGTCC TTTCAGTGGCAG CATCACGTTTCA TGGATCTGGGAC GTGGCAGTGGAT AGATTTCACTCTC CTGGGACAGATT ACCATCAGCAGT TCACTCTCACCA CTGCAACCTGAA TCAGCAGTCTGC GATTTTGCTACG AACCTGAAGATT TACTACTGTGCT TTGCTACGTACT CAGGGTGCGGC ACTGTGCTCAGG GTTGCCTAGGAC GTGCGGCGTTG GTTCGGCCAAGG CCTAGGACGTTC GACCAAGGTGGA GGCCAAGGGAC AATCAAACGGGC CAAGGTGGAAAT GGCCGCAGAAC CAAACGG (SEQ AAAAACTCATCT ID NO: 56) CAGAAGAGGAT CTGAATTAA (SEQ ID NO: 54) DMS732 CDLPQTHSLGSRRTL TGCGACTTGCCA CDLPQTHSLGS TGCGACTTGCCA (IFNα2b- MLLAQMRRISLFSCL CAGACACATAGT RRTLMLLAQM CAGACACATAGT DOM7h- KDRHDFGFPQEEFG TTGGGATCAAGA RRISLFSCLKD TTGGGATCAAGA 14-10) NQFQKAETIPVLHEMI AGAACATTGATG RHDFGFPQEE AGAACATTGATG QQIFNLFSTKDSSAA TTATTAGCACAAA FGNQFQKAETI TTATTAGCACAA WDETLLDKFYTELYQ TGCGTAGAATTT PVLHEMIQQIF ATGCGTAGAATT QLNDLEACVIQGVGV CTTTGTTCTCTTG NLFSTKDSSAA TCTTTGTTCTCTT TETPLMKEDSILAVRK TCTAAAGGACCG WDETLLDKFYT GTCTAAAGGACC YFQRITLYLKEKKYSP TCACGACTTCGG ELYQQLNDLEA GTCACGACTTCG CAWEVVRAEIMRSFS ATTCCCTCAGGA CVIQGVGVTET GATTCCCTCAGG LSTNLQESLRSKETV AGAGTTTGGAAA PLMKEDSILAV AAGAGTTTGGAA AAPSDIQMTQSPSSL CCAATTCCAAAA RKYFQRITLYLK ACCAATTCCAAA SASVGDRVTITCRAS AGCAGAAACTAT EKKYSPCAWE AAGCAGAAACTA QWIGSQLSWYQQKP TCCTGTCTTGCA VVRAEIMRSFS TTCCTGTCTTGC GKAPKLLIMWRSSLQ CGAAATGATCCA LSTNLQESLRS ACGAAATGATCC SGVPSRFSGSGSGT GCAAATATTCAAT KETVAAPSDIQ AGCAAATATTCA DFTLTISSLQPEDFAT TTGTTTTCTACAA MTQSPSSLSAS ATTTGTTTTCTAC YYCAQGLRHPKTFG AGGACTCATCAG VGDRVTITCRA AAAGGACTCATC QGTKVEIKR CCGCTTGGGATG SQWIGSQLSW AGCCGCTTGGGA AAAEQKLISEEDLN* AAACTCTGTTAG YQQKPGKAPK TGAAACTCTGTT (SEQ ID NO: 57) ATAAATTCTACAC LLIMWRSSLQS AGATAAATTCTA TGAACTATATCAA GVPSRFSGSG CACTGAACTATA CAACTGAACGAT SGTDFTLTISSL TCAACAACTGAA CTAGAGGCTTGC QPEDFATYYCA CGATCTAGAGGC GTTATTCAGGGT QGLRHPKTFG TTGCGTTATTCA GTAGGAGTTACT QGTKVEIKR GGGTGTAGGAGT GAAACTCCCCTA (SEQ ID NO: 59) TACTGAAACTCC ATGAAAGAAGAT CCTAATGAAAGA TCAATTCTAGCC AGATTCAATTCTA GTTAGAAAATACT GCCGTTAGAAAA TTCAGCGTATCA TACTTTCAGCGT CATTGTATTTAAA ATCACATTGTATT GGAAAAGAAATA TAAAGGAAAAGA CTCCCCATGTGC AATACTCCCCAT ATGGGAGGTGGT GTGCATGGGAG TAGAGCAGAAAT GTGGTTAGAGCA TATGAGGTCCTT GAAATTATGAGG CTCTCTTTCTACG TCCTTCTCTCTTT AATTTGCAAGAAT CTACGAATTTGC CTTTGAGATCTAA AAGAATCTTTGA GGAAACCGTCGC GATCTAAGGAAA TGCTCCATCTGA CCGTCGCTGCTC CATCCAGATGAC CATCTGACATCC CCAGTCTCCATC AGATGACCCAGT CTCCCTGTCTGC CTCCATCCTCCC ATCTGTAGGAGA TGTCTGCATCTG CCGTGTCACCAT TAGGAGACCGTG CACTTGCCGGGC TCACCATCACTT AAGTCAGTGGAT GCCGGGCAAGT TGGGTCTCAGTT CAGTGGATTGGG ATCTTGGTACCA TCTCAGTTATCTT GCAGAAACCAGG GGTACCAGCAGA GAAAGCCCCTAA AACCAGGGAAAG GCTCCTGATCAT CCCCTAAGCTCC GTGGCGTTCCTC TGATCATGTGGC GTTGCAAAGTGG GTTCCTCGTTGC GGTCCCATCACG AAAGTGGGGTCC TTTCAGTGGCAG CATCACGTTTCA TGGATCTGGGAC GTGGCAGTGGAT AGATTTCACTCTC CTGGGACAGATT ACCATCAGCAGT TCACTCTCACCA CTGCAACCTGAA TCAGCAGTCTGC GATTTTGCTACG AACCTGAAGATT TACTACTGTGCT TTGCTACGTACT CAGGGTTTGAGG ACTGTGCTCAGG CATCCTAAGACG GTTTGAGGCATC TTCGGCCAAGGG CTAAGACGTTCG ACCAAGGTGGAA GCCAAGGGACC ATCAAACGGGCG AAGGTGGAAATC GCCGCAGAACA AAACGG (SEQ ID AAAACTCATCTC NO: 60) AGAAGAGGATCT GAATTAA (SEQ ID NO: 58) DMS7325 CDLPQTHSLGSRRTL TGCGACTTGCCA CDLPQTHSLGS TGCGACTTGCCA (IFNα2b- MLLAQMRRISLFSCL CAGACACATAGT RRTLMLLAQM CAGACACATAGT DOM7h- KDRHDFGFPQEEFG TTGGGATCAAGA RRISLFSCLKD TTGGGATCAAGA 11) NQFQKAETIPVLHEMI AGAACATTGATG RHDFGFPQEE AGAACATTGATG QQIFNLFSTKDSSAA TTATTAGCACAAA FGNQFQKAETI TTATTAGCACAA WDETLLDKFYTELYQ TGCGTAGAATTT PVLHEMIQQIF ATGCGTAGAATT QLNDLEACVIQGVGV CTTTGTTCTCTTG NLFSTKDSSAA TCTTTGTTCTCTT TETPLMKEDSILAVRK TCTAAAGGACCG WDETLLDKFYT GTCTAAAGGACC YFQRITLYLKEKKYSP TCACGACTTCGG ELYQQLNDLEA GTCACGACTTCG CAWEVVRAEIMRSFS ATTCCCTCAGGA CVIQGVGVTET GATTCCCTCAGG LSTNLQESLRSKETV AGAGTTTGGAAA PLMKEDSILAV AAGAGTTTGGAA AAPSDIQMTQSPSSL CCAATTCCAAAA RKYFQRITLYLK ACCAATTCCAAA SASVGDRVTITCRAS AGCAGAAACTAT EKKYSPCAWE AAGCAGAAACTA RPIGTTLSWYQQKPG TCCTGTCTTGCA VVRAEIMRSFS TTCCTGTCTTGC KAPKLLIWFGSRLQS CGAAATGATCCA LSTNLQESLRS ACGAAATGATCC GVPSRFSGSGSGTD GCAAATATTCAAT KETVAAPSDIQ AGCAAATATTCA FTLTISSLQPEDFATY TTGTTTTCTACAA MTQSPSSLSAS ATTTGTTTTCTAC YCAQAGTHPTTFGQ AGGACTCATCAG VGDRVTITCRA AAAGGACTCATC GTKVEIKR CCGCTTGGGATG SRPIGTTLSWY AGCCGCTTGGGA AAAEQKLISEEDLN* AAACTCTGTTAG QQKPGKAPKLL TGAAACTCTGTT (SEQ ID NO: 61) ATAAATTCTACAC IWFGSRLQSGV AGATAAATTCTA TGAACTATATCAA PSRFSGSGSG CACTGAACTATA CAACTGAACGAT TDFTLTISSLQP TCAACAACTGAA CTAGAGGCTTGC EDFATYYCAQA CGATCTAGAGGC GTTATTCAGGGT GTHPTTFGQG TTGCGTTATTCA GTAGGAGTTACT TKVEIKR (SEQ GGGTGTAGGAGT GAAACTCCCCTA ID NO: 63) TACTGAAACTCC ATGAAAGAAGAT CCTAATGAAAGA TCAATTCTAGCC AGATTCAATTCTA GTTAGAAAATACT GCCGTTAGAAAA TTCAGCGTATCA TACTTTCAGCGT CATTGTATTTAAA ATCACATTGTATT GGAAAAGAAATA TAAAGGAAAAGA CTCCCCATGTGC AATACTCCCCAT ATGGGAGGTGGT GTGCATGGGAG TAGAGCAGAAAT GTGGTTAGAGCA TATGAGGTCCTT GAAATTATGAGG CTCTCTTTCTACG TCCTTCTCTCTTT AATTTGCAAGAAT CTACGAATTTGC CTTTGAGATCTAA AAGAATCTTTGA GGAAACCGTCGC GATCTAAGGAAA TGCTCCATCTGA CCGTCGCTGCTC CATCCAGATGAC CATCTGACATCC CCAGTCTCCATC AGATGACCCAGT CTCCCTGTCTGC CTCCATCCTCCC ATCTGTAGGAGA TGTCTGCATCTG CCGTGTCACCAT TAGGAGACCGTG CACTTGCCGGGC TCACCATCACTT AAGTCGTCCGAT GCCGGGCAAGT TGGGACGACGTT CGTCCGATTGGG AAGTTGGTACCA ACGACGTTAAGT GCAGAAACCAGG TGGTACCAGCAG GAAAGCCCCTAA AAACCAGGGAAA GCTCCTGATCTG GCCCCTAAGCTC GTTTGGTTCCCG CTGATCTGGTTT GTTGCAAAGTGG GGTTCCCGGTTG GGTCCCATCACG CAAAGTGGGGTC TTTCAGTGGCAG CCATCACGTTTC TGGATCTGGGAC AGTGGCAGTGGA AGATTTCACTCTC TCTGGGACAGAT ACCATCAGCAGT TTCACTCTCACC CTGCAACCTGAA ATCAGCAGTCTG GATTTTGCTACG CAACCTGAAGAT TACTACTGTGCG TTTGCTACGTAC CAGGCTGGGAC TACTGTGCGCAG GCATCCTACGAC GCTGGGACGCAT GTTCGGCCAAGG CCTACGACGTTC GACCAAGGTGGA GGCCAAGGGAC AATCAAACGGGC CAAGGTGGAAAT GGCCGCAGAAC CAAACGG (SEQ AAAAACTCATCT ID NO: 64) CAGAAGAGGAT CTGAATTAA (SEQ ID NO: 62) DMS7327 CDLPQTHSLGSRRTL TGCGACTTGCCA CDLPQTHSLGS TGCGACTTGCCA (IFNα2b- MLLAQMRRISLFSCL CAGACACATAGT RRTLMLLAQM CAGACACATAGT DOM7h- KDRHDFGFPQEEFG TTGGGATCAAGA RRISLFSCLKD TTGGGATCAAGA 11-15) NQFQKAETIPVLHEMI AGAACATTGATG RHDFGFPQEE AGAACATTGATG QQIFNLFSTKDSSAA TTATTAGCACAAA FGNQFQKAETI TTATTAGCACAA WDETLLDKFYTELYQ TGCGTAGAATTT PVLHEMIQQIF ATGCGTAGAATT QLNDLEACVIQGVGV CTTTGTTCTCTTG NLFSTKDSSAA TCTTTGTTCTCTT TETPLMKEDSILAVRK TCTAAAGGACCG WDETLLDKFYT GTCTAAAGGACC YFQRITLYLKEKKYSP TCACGACTTCGG ELYQQLNDLEA GTCACGACTTCG CAWEVVRAEIMRSFS ATTCCCTCAGGA CVIQGVGVTET GATTCCCTCAGG LSTNLQESLRSKETV AGAGTTTGGAAA PLMKEDSILAV AAGAGTTTGGAA AAPSDIQMTQSPSSL CCAATTCCAAAA RKYFQRITLYLK ACCAATTCCAAA SASVGDRVTITCRAS AGCAGAAACTAT EKKYSPCAWE AAGCAGAAACTA RPIGTMLSWYQQKP TCCTGTCTTGCA VVRAEIMRSFS TTCCTGTCTTGC GKAPKLLILAFSRLQS CGAAATGATCCA LSTNLQESLRS ACGAAATGATCC GVPSRFSGSGSGTD GCAAATATTCAAT KETVAAPSDIQ AGCAAATATTCA FTLTISSLQPEDFATY TTGTTTTCTACAA MTQSPSSLSAS ATTTGTTTTCTAC
YCAQAGTHPTTFGQ AGGACTCATCAG VGDRVTITCRA AAAGGACTCATC GTKVEIKR CCGCTTGGGATG SRPIGTMLSWY AGCCGCTTGGGA AAAEQKLISEEDLN* AAACTCTGTTAG QQKPGKAPKLL TGAAACTCTGTT (SEQ ID NO: 65) ATAAATTCTACAC ILAFSRLQSGV AGATAAATTCTA TGAACTATATCAA PSRFSGSGSG CACTGAACTATA CAACTGAACGAT TDFTLTISSLQP TCAACAACTGAA CTAGAGGCTTGC EDFATYYCAQA CGATCTAGAGGC GTTATTCAGGGT GTHPTTFGQG TTGCGTTATTCA GTAGGAGTTACT TKVEIKR (SEQ GGGTGTAGGAGT GAAACTCCCCTA ID NO: 67) TACTGAAACTCC ATGAAAGAAGAT CCTAATGAAAGA TCAATTCTAGCC AGATTCAATTCTA GTTAGAAAATACT GCCGTTAGAAAA TTCAGCGTATCA TACTTTCAGCGT CATTGTATTTAAA ATCACATTGTATT GGAAAAGAAATA TAAAGGAAAAGA CTCCCCATGTGC AATACTCCCCAT ATGGGAGGTGGT GTGCATGGGAG TAGAGCAGAAAT GTGGTTAGAGCA TATGAGGTCCTT GAAATTATGAGG CTCTCTTTCTACG TCCTTCTCTCTTT AATTTGCAAGAAT CTACGAATTTGC CTTTGAGATCTAA AAGAATCTTTGA GGAAACCGTCGC GATCTAAGGAAA TGCTCCATCTGA CCGTCGCTGCTC CATCCAGATGAC CATCTGACATCC CCAGTCTCCATC AGATGACCCAGT CTCCCTGTCTGC CTCCATCCTCCC ATCTGTAGGAGA TGTCTGCATCTG CCGTGTCACCAT TAGGAGACCGTG CACTTGCCGGGC TCACCATCACTT AAGTCGTCCGAT GCCGGGCAAGT TGGGACGATGTT CGTCCGATTGGG AAGTTGGTACCA ACGATGTTAAGT GCAGAAACCAGG TGGTACCAGCAG GAAAGCCCCTAA AAACCAGGGAAA GCTCCTGATCCT GCCCCTAAGCTC TGCTTTTTCCCGT CTGATCCTTGCT TTGCAAAGTGGG TTTTCCCGTTTG GTCCCATCACGT CAAAGTGGGGTC TTCAGTGGCAGT CCATCACGTTTC GGATCTGGGACA AGTGGCAGTGGA GATTTCACTCTCA TCTGGGACAGAT CCATCAGCAGTC TTCACTCTCACC TGCAACCTGAAG ATCAGCAGTCTG ATTTTGCTACGTA CAACCTGAAGAT CTACTGCGCGCA TTTGCTACGTAC GGCTGGGACGC TACTGCGCGCAG ATCCTACGACGT GCTGGGACGCAT TCGGCCAAGGGA CCTACGACGTTC CCAAGGTGGAAA GGCCAAGGGAC TCAAACGGGCGG CAAGGTGGAAAT CCGCAGAACAA CAAACGG (SEQ AAACTCATCTCA ID NO: 68) GAAGAGGATCTG AATTAA (SEQ ID NO: 66)
[0161] The amino acid and nucleotide sequences highlighted in bold represents the cloning site and MYC tag. * represents the stop codon at the end of the gene.
Affinity Determination and Biophysical Characterisation:
[0162] To determine the binding affinity (KD) of the AlbudAb-IFNα2b fusion proteins to each serum albumin; purified fusion proteins were analysed by BIAcore over albumin (immobilised by primary-amine coupling onto CM5 chips; BIAcore) using fusion protein concentrations from 5000 nM to 39 nM (5000 nM, 2500 nM, 1250 nM, 625 nM, 312 nM, 156 nM, 78 nM, 39 nM) in HBS-EP BIAcore buffer.
TABLE-US-00016 TABLE 12 Affinity to SA Affinity to AlbudAb Fusion SA (nM) Kd Ka Rat DOM7h-14 IFNα2b 350 4.500E-02 1.28E+05 DOM7h-14-10 IFNα2b 16 4.970E-03 5.90E+05 DOM 7h-11 IFNα2b 6000 7.500E-01 nd DOM 7h-11-15 IFNα2b 200 1.660E-02 1.50E+05 Cyno DOM 7h-14 IFNα2b 60 1.32E-02 5.0E+05 DOM 7h-14-10 IFNα2b 19 7.05E-03 4.50E+05 DOM 7h-11 IFNα2b 3300 3.59E-01 1.20E+05 DOM 7h-11-15 IFNα2b 15 4.86E-03 3.60E+05 Mouse DOM 7h-14 IFNα2b 240 3.21E-02 1.50E+06 DOM 7h-14-10 IFNα2b 60 3.45E-02 6.86E+05 DOM 7h-11 IFNα2b 6000 1.55E-01 nd DOM 7h-11-15 IFNα2b 28 6.69E-03 2.80E+05 Human DOM 7h-14 IFNα2b 244 2.21E-02 9.89E+04 DOM 7h-14-10 IFNα2b 32 6.58E-03 3.48E+05 DOM 7h-11 IFNα2b 670 2.02E-01 7.00E+05 DOM 7h-11-15 IFNα2b 10 1.87E-03 3.50E+05
[0163] When IFNa2b is linked to the AlbudAb variants, in all cases the affinity of AlbudAb binding to serum albumin is reduced. DOM7h-14-10 and DOM7-11-15 retain improved binding affinity to serum albumin across species compared to parent.
TABLE-US-00017 TABLE 13 Biophysical Characterisation Biophysical Characterisation was carried out by SEC MALLS and DSC as described above for the single AlbudAbs. Biophysical parameters DMS SEC DSC AlbudAb Fusion number MALLS Tm(° C.) DOM 7h-14 IFNα2b DMS7321 M/D 58-65 DOM 7h-14-10 IFNα2b DMS7322 M/D 55-65 DOM 7h-11 IFNα2b DMS7325 M/D 65.8-66.2 DOM 7h-11-15 IFNα2b DMS7327 M/D 56.3-66.2
M/D Indicates a Monomer/Dimer Equilibrium as Detected by SEC MALLS
[0164] We observed expression for all clones in Table 13 in the range of 17.5 to 54 mg/L in HEK293.
[0165] For IFNα2b-DOM7h-14 and IFNα2b-DOM7h-11 variants, favorable biophysical parameters and expression levels were maintained during affinity maturation.
PK Determination for AlbudAb-IFNα2bfusions
[0166] AlbudAbs IFNα2b fusions DMS7321 (IFNα2b-DOM7h-14) DMS7322 (IFNα2b-DOM7h-14-10), DMS7325 (IFNα2b-DOM7h-11), DMS7327 (IFNα2b-DOM7h-11-15) were expressed with the myc tag at 20-50 mg quantities in HEK293 cells and purified from culture supernatant using protein L affinity resin and eluted with 100 mM glycine pH2. The proteins were concentrated to greater than 1 mg/ml, buffer exchanged into Dulbecco's PBS and endotoxin depleted using Q spin columns (Vivascience).
[0167] For Rat PK, IFN-AlbudAbs were dosed as single i.v injections at 2.0 mg/kg using 3 rats per compound. Serum samples were taken at 0.16, 1, 4, 8, 24, 48, 72, 120, 168 hrs. Analysis of serum levels was by EASY ELISA according to manufacturer's instructions (GE Healthcare, catalogue number RPN5960).
[0168] For Mouse PK, DMS7322 (IFN2b-DOM7h-14-10) DMS7325 (IFN2b-DOM7h-11), DMS7327 (IFN2b-DOM7h-11-15) all with myc tags were dosed as single i.v injections at 2.0 mg/kg per dose group of 3 subjects and serum samples taken at 10 mins; 1 h; 8 h; 24 h; 48 h; 72 h; 96 h. Analysis of serum levels was by EASY ELISA according to manufacturer's instructions (GE Healthcare, catalogue number RPN5960).
TABLE-US-00018 TABLE 14 PK parameters (mean results) AUC CL Albumin h × ml/ t1/2 Vz Species AlbudAb Fusion KD (nM) ug/ml h/kg h ml/kg Rat 7h-14 IFNα2b 350 832.1 2.4 27 94.5 7h-14-10 IFNα2b 16 1380.7 1.5 35.8 75.2 7h-11 IFNα2b 6000 327.9 6.5 11 101.9 7h-11-15 IFNα2b 200 1118.7 1.8 39.5 103.6 7h-11-12 IFNα2b 1700 747.1 2.8 25.8 104.7 mouse 7h-14 IFNα2b 240 761.2 2.6 30.4 115.3 7h-14-10 IFNα2b 60 750.5 2.7 30.9 118.6 7h-11 IFNα2b 6000 493.9 4.0 8.8 51.2 7h-11-15 IFNα2b 28 971.8 2.1 33.6 99.6
[0169] Pharmacokinetic parameters derived from rat and mouse studies were fitted using a non-compartmental model. Key: AUC: Area under the curve from dosing time extrapolated to infinity; CL: clearance; t1/2: is the time during which the blood concentration is halved; Vz: volume of distribution based on the terminal phase.
[0170] IFNα2b-AlbudAbs were tested in rat and mouse. For all IFNα2b-DOM7h-11 variant fusion proteins in both rat and mouse, t1/2 is improved compared to parent. The improvement in t1/2 correlates with the improved in vitro KD to serum albumin. For IFNα2b-DOM7h-14-10 variants, the improvement in in vitro KD to serum albumin also correlated to an improvement in t1/2 in rat.
[0171] All IFNα2b-AlbudAb fusion proteins exhibit a 5 to 10-fold decrease in the binding to RSA compared to the single AlbudAb. This effect is more pronounced (i.e. 10-fold) for the DOM7h-14 series than the DOM7h-11 series (only 5-fold decrease).
Example 8
Further AlbudAb Fusions with Proteins, Peptides and NCEs
[0172] Various AlbudAbs fused to other chemical entities namely domain antibodies (dAbs), peptides and NCEs were tested. The results are shown in table 15.
TABLE-US-00019 TABLE 15 PK parameters Albumin AUC CL t1/2 Vz Species AlbudAb Fusion KD (nM) h × ug/ml ml/h/kg h ml/kg Rat DOM7h-14 Exendin-4 2400 18 57.1 11 901.9 DOM7h-14- Exendin-4 19 43.6 23.1 22.1 740.3 10 DOM7h-11 Exendin-4 2400 6.1 168 7.1 1684.1 DOM7h-11- Exendin-4 273 36.3 27.6 19.3 765.7 15 In a DOM7h-11- Exendin-4 130 not tested not not not different 15 tested tested tested experiement DOM7h14- NCE- 62 10 GGGGSC DOM7h14- NCE- 35 10 TVAAPSC Human DOM7h-14 NCE 204 mouse DOM7h-11 DOM1m-21- 234 10.7 4.7 72.5 23 DOM7h-11- DOM1m-21- 1008 2.5 17.4 62.4 15 23
Key: DOM1m-21-23 is an anti-TNFR1 dAb, Exendin-4 is a peptide (a GLP-1 agonist) of 39 amino acids length. NCE, NCE-GGGGSC and NCE-TVAAPSC are described below.
[0173] Previously we have described the use of genetic fusions with an albumin-binding dAb (AlbudAb) to extend the PK half-life of anti-TNFR1 dAbs in vivo (see, e.g., WO04003019, WO2006038027, WO2008149148). Reference is made to the protocols in these PCT applications. In the table above, DOM1m-21-23 is an anti-mouse TNFR1 dAb.
[0174] To produce genetic fusions of exendin-4 or with DOM7h-14 (or other AlbudAb) which binds serum albumin, the exendin-4-linker-AlbudAb sequence was cloned into the pTT-5 vector (obtainable from CNRC, Canada). In each case the exendin-4 was at the 5' end of the construct and the dAb at the 3' end. The linker was a (G4S)3 linker. Endotoxin-free DNA was prepared in E. coli using alkaline lysis (using the endotoxin-free plasmid Giga kit, obtainable from Qiagen CA) and used to transfect HEK293E cells (obtainable from CNRC, Canada). Transfection was into 250 ml/flask of HEK293E cells at 1.75×106 cells/ml using 333 ul of 293fectin (Invitrogen) and 250 ug of DNA per flask and expression was at 30° C. for 5 days. The supernatant was harvested by centrifugation and purification was by affinity purification on protein L. Protein was batch bound to the resin, packed on a column and washed with 10 column volumes of PBS. Protein was eluted with 50 ml of 0.1M glycine pH2 and neutralized with Tris pH8. Protein of the expected size was identified on an SDS-PAGE gel.
NCE Albudab® Fusions:
[0175] A new chemical entity (NCE) AlbudAb fusion was tested. The NCE, a small molecule ADAMTS-4 inhibitor was synthesised with a PEG linker (PEG 4 linker (i.e. 4 PEG molecules before the maleimide) and a maleimide group for conjugation to the AlbudAb. Conjugation of the NCE to the AlbudAb is via an engineered cysteine residue at amino acid position R108C, or following a 5 amino acid (GGGGSC) or 6 amino acid (TVAAPSC) spacer engineered at the end of the AlbudAb. Briefly, the AlbudAb was reduced with TCEP (Pierce, Catalogue Number 77720), desalted using a PD10 column (GE healthcare) into 25 mM Bis-Tris, 5 mM EDTA, 10% (v/v) glycerol pH6.5. A 5 fold molar excess of maleimide activated NCE was added in DMSO not to exceed 10% (V/V) final concentration. The reaction was incubated over night at room temperature and dialysed extensively into 20 mM Tris pH7.4
PEG Linker:
##STR00001##
TABLE-US-00020
[0176] Sequences: DOM7h-14 R108C: (SEQ ID NO: 69) DIQMTQSPSSLSASVGDRVTITCRASQWIGSQLSWYQQKPGKAPKLLIMW RSSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCAQGLRHPKTFGQ GTKVEIKC Nucleotide: (SEQ ID NO: 70) GACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCTGTAGGAGA CCGTGTCACCATCACTTGCCGGGCAAGTCAGTGGATTGGGTCTCAGTTAT CTTGGTACCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCTGATCATGTGG CGTTCCTCGTTGCAAAGTGGGGTCCCATCACGTTTCAGTGGCAGTGGATC TGGGACAGATTTCACTCTCACCATCAGCAGTCTGCAACCTGAAGATTTTG CTACGTACTACTGTGCTCAGGGTTTGAGGCATCCTAAGACGTTCGGCCAA GGGACCAAGGTGGAAATCAAATGC
NCE-AlbudAbs DOM7h-14-10 GGGGSC and DOM7h14-10 TVAAPSC, exhibit a 5 to 10 fold decrease in in vitro affinity (KD) to RSA as determined by BIAcore when fused to the chemical entity.
[0177] dAb-Albudab fusion: the 2 DOM7h-11 AlbudAbs with the highest affinity to RSA experience a 2-fold decrease in affinity to RSA as on BIAcore when fused to a therapeutic domain antibody (DOM1 m-21-23) compared to the unfused AlbudAb. The DOM7h-11 clone shows a micromolar KD when fused (2.8 uM) as well as when unfused (˜5 uM).
[0178] Exendin 4-AlbudAb fusion: the effect of fusing the AlbudAbs to a peptide on the binding ability to RSA is about 10-fold, apart from DOM7h-14-10, which only shows a 4-fold decrease in binding. The effect, however, is more pronounced for the DOM7h-14 series (except DOM7h-14-10) than it appears to be for the DOM7h-11 series.
[0179] For all the above data, the T1/2 of the fusion increased with improved affinity to the species' SA.
[0180] We generally classify Albudab-therapeutics as being therapeutically amenable (for treatment and/or prophylaxis of diseases, conditions or indications) when the AlbudAb-drug fusions show an affinity range (KD) of from 0.1 nM to 10 mM for serum albumin binding.
[0181] We define the therapeutic ranges of AlbudAbs and AlbudAb fusions (Protein-AlbudAbs for example IFNa2b-DOM7h-14-10; Peptide-AlbudAbs for example Exendin-4-DOM7h-14-10; dAb-AlbudAbs for example DOM1m21-23-DOM7h11-15; NCE-AlbudAb for example ADAMTS-4-DOM7h-14-10) as follows: Affinity (KD) ranges that are useful for therapy of chronic or acute conditions, diseases or indications are shown. Also shown are affinity ranges marked as "intermediate". AlbudAbs and fusions in this range have utility for chronic or acute diseases, conditions or indications. In this way, the affinity of the AlbudAb or fusion for serum albumin can be tailored or chosen according to the disease, condition or indication to be addressed. As described above, the invention provides AlbudAbs with affinities that allow for each AlbudAb to be categorised as "high affinity", "medium affinity" or "low affinity", thus enabling the skilled person to select the appropriate AlbudAb of the invention according to the therapy at hand. See FIG. 2.
Example 9
[0182] PCT/EP2010/060112 describes VH AlbudAbs and affinity matured derivatives thereof. VH AlbudAb sequences are as follows:
TABLE-US-00021 DOM7r31 amino acid SEQ ID NO: 71 EVQLLESGGGLVQPGGSLRLSCTASGFTFRHYRMGWVRQAPGKGLEWVSW IRPDGTFTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKSY MGDRFDYWGQGTLVTVSS DOM7r31 nucleic acid SEQ ID NO: 72 GAGGTGCAGCTGTTGGAGTCTGGGGGAGGCTTGGTACAGCCTGGGGGGTC CCTGCGTCTCTCCTGTACAGCCTCCGGATTCACCTTTAGGCATTATCGTA TGGGTTGGGTCCGCCAGGCTCCAGGGAAGGGTCTAGAGTGGGTCTCATGG ATTCGTCCGGATGGTACGTTTACATACTACGCAGACTCCGTGAAGGGCCG GTTCACCATCTCCCGCGACAATTCCAAGAACACGCTGTATCTGCAAATGA ACAGCCTGCGTGCCGAGGACACCGCGGTATATTACTGTGCGAAATCTTAT ATGGGTGATAGGTTTGACTACTGGGGTCAGGGAACCCTGGTCACCGTCTC GAGCG DOM7r-31-14 amino acid SEQ ID NO: 73 EVQLLESGGGLVQPGGSLRLSCTASGFTFRHYRMGWVRQAPGKGLEWVSW IRPDGTFTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKSY MADRFDYWGQGTLVTVSS DOM7r-31-14 nucleic acid SEQ ID NO: 74 GAGGTGCAGCTGTTGGAGTCTGGGGGAGGCTTGGTACAGCCTGGGGGGTC CCTGCGTCTCTCCTGTACAGCCTCCGGATTCACCTTTAGGCATTATCGTA TGGGTTGGGTCCGCCAGGCTCCAGGGAAGGGTCTAGAGTGGGTCTCATGG ATTCGTCCGGATGGTACGTTTACATACTACGCAGACTCCGTGAAGGGCCG GTTCACCATCTCCCGCGACAATTCCAAGAACACGCTGTATCTGCAAATGA ACAGCCTGCGTGCCGAGGACACCGCGGTATATTACTGTGCGAAATCTTAT ATGGCTGATAGGTTTGACTACTGGGGTCAGGGAACCCTGGTCACCGTCTC GAGC DOM7h-92 amino acid SEQ ID NO: 75 EVQLLESGGGLVQPGGSLRLSCAASGFTFANATMSWVRQAPGKGLEWVSD IDQVGHATYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKYS WHPDLFDYWGQGTLVTVSS DOM7r-92 nucleic acid SEQ ID NO: 76 GAGGTGCAGCTGTTGGAGTCTGGGGGAGGCTTGGTACAGCCTGGGGGGTC CCTGCGTCTCTCCTGTGCAGCCTCCGGATTCACCTTTGGGAATTATAGGA TGACTTGGGTCCGCCAGGCTCCAGGGAAGGGTCTAGAGTGGGTCTCAACT ATTTCTCCTTTGGGTACGTATACATACTACGCAGACTCCGTGAAGGGCCG GTTCACCATCTCCCGCGACAATTCCAAGAACACGCTGTATCTGCAAATGA ACAGCCTGCGTGCCGAGGACACCGCGGTATATTACTGTGCGAAAGGGCGT TGGTCGATTTTTGACTACTGGGGTCAGGGAACCCTGGTCACCGTCTCGAG C DOM7r-92-4 amino acid SEQ ID NO: 77 EVQLLESGGGLVQPGGSLRLSCAASGFTFDTSSMLWVRQAPGKGLEWVSV IHQSGTPTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKFP STHGKFDYWGQGTLVTVSS DOM7r-92-4 nucleic acid SEQ ID NO: 78 GAGGTGCAGCTGTTGGAGTCTGGGGGAGGCTTGGTACAGCCTGGGGGGTC CCTGCGTCTCTCCTGTGCAGCCTCCGGATTCACCTTTGATACGAGTAGTA TGTTGTGGGTCCGCCAGGCTCCAGGGAAGGGTCTAGAGTGGGTCTCAGTT ATTCATCAGAGTGGTACGCCTACATACTACGCAGACTCCGTGAAGGGCCG GTTCACCATCTCCCGCGACAATTCCAAGAACACGCTGTATCTGCAAATGA ACAGCCTGCGTGCCGAGGACACCGCGGTATATTACTGTGCGAAATTTCCG TCTACTCATGGTAAGTTTGACTACTGGGGTCAGGGAACCCTGGTCACCGT CTCGAGC
Affinity Determination:
[0183] To determine the binding affinity (KD) of the VH AlbudAbs to each serum albumin; purified fusion proteins were analysed by BIAcore over albumin (immobilised by primary-amine coupling onto CM5 chips; BIAcore) using fusion protein concentrations from 5000 nM to 39 nM (5000 nM, 2500 nM, 1250 nM, 625 nM, 312 nM, 156 nM, 78 nM, 39 nM) in HBS-EP BIAcore buffer, as described above. MALLS data were obtained as described above.
[0184] Results are shown in the following tables:
TABLE-US-00022 TABLE 16A RSA HSA CSA MSA* KD (M) KD (M) KD (M) KD (M) DOM7r-92-4 2.6E-07 1.3E-07 9.8E-08 1.1E-07
TABLE-US-00023 TABLE 16B HSA CSA RSA MSA MALLS DOM7r-92 200 nM 170 nM 500 nM 2000 nM 13 + 22 kDa dimer FLAG OD
TABLE-US-00024 TABLE 16 C CSA MSA HSA RSA KD KD KD KD (nM) (nM) (nM) (nM) MALLS KD KD KD KD 7r-31 fast on/off fast fast fast on/off on/ on/off M off 7r31- 208, 360, 1330, 103, 90.2, 370 no binding 6, 12, 12 M 14 1950 14.2
Values above represent multiple, independent measurements.
Example 10
Summary of HSA Epitope Mapping with AlbudAbs
[0185] The epitopes of AlbudAb Vk molecules on HSA were determined using three orthogonal techniques: hydrogen deuterium exchange mass spectrometry, site directed mutagenesis and structure determination by x-ray crystallography.
1.0 EPITOPE MAPPING BY HYDROGEN DEUTERIUM (H/D) EXCHANGE
1.1 Protein Preparation
[0186] Domain 2 of HSA (defined as amino acid residues 188-384 of HSA; SEQ ID NO: 79 and 80 for amino acid and DNA sequences for HSA Domain 2 respectively; SEQ ID NO: 81 and 82 for amino acid and DNA sequence of full length HSA respectively) were expressed in Pichia using the pPICZα expression system (Invitrogen) and purified using Prometic Technologies Mimetic Blue® according to the manufacturer's instructions. DOM7h-11-3, DOM7h-14-10 and DOM7r-92-4 (SEQ ID NOs: 2, 45, 46 for amino acid and 4, 47, 48 for DNA sequences respectively). was expressed in E. coli strain HB2151 using an auto-induction expression system. In some instances, the cloning strategy resulted in additional N and C terminal residues (see SEQ ID NOs: 121 and 122, for example). The expressed AlbudAbs were purified from clarified supernatants by Protein-L (DOM7h-11-3 and DOM7h-14-10) or Protein-A (DOM7h-92-4) affinity chromatography using established protocols.
[0187] Expression and purification of final protein preparations of HSA Domain 2 and AlbudAbs were confirmed by SDS-PAGE analysis.
1.2 Experimental Method and General Principles
[0188] Methods and principles on using H/D exchange perturbation for epitope mapping are discussed in a review by Hamuro et al (2003), J. Biomol. Tech. 2003, 14, 171-182; and Coales et al (2009), Rapid Communications in Mass Spectrometry 2009 March; 23(5):639-47. For the epitope mapping of HSA, H/D exchange analysis of the antigen in the presence and absence of AlbudAb was carried out. The regions of HSA which exchange slower in the presence of each AlbudAb compared to speed of exchange when the AlbudAb is absent is considered to define the epitope on HSA. To identify the epitope one requires firstly the identification of proteolytic fragments of the antigen and secondly the determination of the perturbation of the H/D exchange reaction. Suitable methods are described, for example, in U.S. Pat. No. 6,291,189, U.S. Pat. No. 6,331,400 and U.S. Pat. No. 7,280,923.
[0189] After each H/D exchange reaction HSA was digested with pepsin. The digested mixture was separated by HPLC. Each HSA peptic fragment was then analyzed by mass spectrometry to determine the degree of deuterium incorporation upon the H/D exchange reaction. To obtain optimal coverage of the HSA sequence a maximum possible number of peptic fragments were followed. For the H/D exchange experiments in the presence of AlbudAb, the mixture of antigen and antibody was digested together. The peptic digest fragment mixture of the complex contained both AlbudAb and HSA fragments.
[0190] As an excess amount of an AlbudAb over HSA was used, a large amount of AlbudAb originated peptides may interfere with the mass detection of antigen originated peptides by ion competition. For this reason the least possible amount of excess antibody was used Stock solutions of 199 μM DOM7h-11-3, 199 μM DOM7h-14-10, 547 μM DOM7r-92-4 and 45 μM HSA were used in the H/D exchange experiments. 24 μl of HSA stock+36 μl of DOM7h-11-3; 49.5 μl of HSA stock+10.5 μl of DOM7r-92-4; 74 μl of HSA stock+20 μl of DOM7h-14-10 were used to make a complexation mixtures (final concentrations of HSA:DOM7h-11-3=17.9 μM:119.4 μM; HSA:DOM7h-14-10=35.0 μM:42.0 μM; HSA:DOM7r-92-4=37.1 μM:95.7 μM equivalent to 1:6.7, 1:1.2, 1:2.6 ratio respectively). For the control reactions either HSA or AlbudAb were replaced with PBS.
[0191] 10 μl of HSA+DOM7h-11-3 complexation mixture was added to 10 μl of PBS made with D2O; 5 or 8 μl of HSA:DOM7h-14-10 complexation mixture was added to 12 or 15 μl of PBS made with D2O; 5 μl of HSA+DOM7r-92-4 complexation mixture was added to 15 μl of PBS made with D2O. All deuteration reactions were incubated for 500 seconds at 0° C. After incubation all 20 μl of the complexation mixture was mixed with 30 μl of quenching solution (2M Urea, 1M TCEP pH3.0). 45 μl of the quenched reaction mixture was injected onto a proprietary proteolysis/HPLC system and fragments analysed by mass spectrometry
1.3 Perturbation Results
[0192] Fragments were identified, data deconvoluted and visualized using proprietary software (ExSAR). A summary of epitope hits based on H/D exchange perturbation data are highlighted in Table 17 below.
TABLE-US-00025 TABLE 17 Difference in deuteration levels in each segment of HSA compared with and without (A) DOM7h-11-3, (B) DOM7h-14-10 and (C) DOM7r-92-4 complexation (A) Incubation Time (Seconds) Peptide 30 100 300 1000 3000 10000 Average 189-198 ##STR00002## 9% ##STR00003## -7% ##STR00004## 7% ##STR00005## -1% ##STR00006## -2% ##STR00007## 6% ##STR00008## 2% 189-200 ##STR00009## 2% ##STR00010## 5% ##STR00011## 3% ##STR00012## 3% ##STR00013## -2% ##STR00014## 2% ##STR00015## 2% 203-210 ##STR00016## -2% ##STR00017## 2% ##STR00018## 0% ##STR00019## 0% ##STR00020## 5% ##STR00021## 0% ##STR00022## 1% 203-213 ##STR00023## 8% ##STR00024## 5% ##STR00025## 1% ##STR00026## 1% ##STR00027## -1% ##STR00028## 6% ##STR00029## 3% 213-219 ##STR00030## -9% ##STR00031## -25% ##STR00032## -32% ##STR00033## -35% ##STR00034## -39% ##STR00035## -32% ##STR00036## -29% 216-219 ##STR00037## -12% ##STR00038## -20% ##STR00039## -28% ##STR00040## -36% ##STR00041## -43% ##STR00042## -42% ##STR00043## -30% 220-228 ##STR00044## -35% ##STR00045## -31% ##STR00046## -31% ##STR00047## -18% ##STR00048## -19% ##STR00049## -8% ##STR00050## -24% 222-228 ##STR00051## -38% ##STR00052## -36% ##STR00053## -40% ##STR00054## -26% ##STR00055## -15% ##STR00056## -3% ##STR00057## -26% 231-238 ##STR00058## -17% ##STR00059## -41% ##STR00060## -51% ##STR00061## -54% ##STR00062## -58% ##STR00063## -33% ##STR00064## -42% 231-250 Not detected Not detected Not detected Not detected Not detected Not detected Not detected 237-250 ##STR00065## -4% ##STR00066## -8% ##STR00067## -5% ##STR00068## -3% ##STR00069## -1% ##STR00070## -1% ##STR00071## -4% 237-251 ##STR00072## 0% ##STR00073## -5% ##STR00074## -8% ##STR00075## -4% ##STR00076## -1% ##STR00077## 3% ##STR00078## -3% 237-252 ##STR00079## -1% ##STR00080## -5% ##STR00081## -4% ##STR00082## -4% ##STR00083## -1% ##STR00084## -2% ##STR00085## -3% 253-260 ##STR00086## 10% ##STR00087## -6% ##STR00088## 5% ##STR00089## -3% ##STR00090## -1% ##STR00091## -1% ##STR00092## 1% 266-284 Not detected Not detected Not detected Not detected Not detected Not detected Not detected 269-289 Not detected Not detected Not detected Not detected Not detected Not detected Not detected 269-292 Not detected Not detected Not detected Not detected Not detected Not detected Not detected 292-302 ##STR00093## -2% ##STR00094## -5% ##STR00095## -2% ##STR00096## -3% ##STR00097## 2% ##STR00098## -9% ##STR00099## -3% 292-305 ##STR00100## 5% ##STR00101## 5% ##STR00102## 1% ##STR00103## 3% ##STR00104## -1% ##STR00105## -5% ##STR00106## 1% 295-305 ##STR00107## -2% ##STR00108## -2% ##STR00109## 0% ##STR00110## 4% ##STR00111## -2% ##STR00112## 2% ##STR00113## 0% 301-305 ##STR00114## 2% ##STR00115## -1% ##STR00116## -11% ##STR00117## -1% ##STR00118## -1% ##STR00119## 6% ##STR00120## -1% 311-318 ##STR00121## -24% ##STR00122## -18% ##STR00123## -10% ##STR00124## -1% ##STR00125## 0% ##STR00126## 0% ##STR00127## -9% 311-326 ##STR00128## -24% ##STR00129## -24% ##STR00130## -27% ##STR00131## -19% ##STR00132## -13% ##STR00133## -7% ##STR00134## -19% 312-326 ##STR00135## -28% ##STR00136## -24% ##STR00137## -29% ##STR00138## -18% ##STR00139## -15% ##STR00140## -9% ##STR00141## -21% 321-326 ##STR00142## -20% ##STR00143## -20% ##STR00144## -29% ##STR00145## -25% ##STR00146## -23% ##STR00147## -17% ##STR00148## -22% 329-330 ##STR00149## -1% ##STR00150## -7% ##STR00151## -18% ##STR00152## -29% ##STR00153## -46% ##STR00154## -56% ##STR00155## -26% 329-331 ##STR00156## -4% ##STR00157## -8% ##STR00158## -9% ##STR00159## -26% ##STR00160## -39% ##STR00161## -48% ##STR00162## -22% 332-333 ##STR00163## 2% ##STR00164## 5% ##STR00165## -4% ##STR00166## -2% ##STR00167## -14% ##STR00168## -27% ##STR00169## -7% 334-342 ##STR00170## -8% ##STR00171## -20% ##STR00172## -15% ##STR00173## -22% ##STR00174## -31% ##STR00175## -31% ##STR00176## -21% 336-345 ##STR00177## 0% ##STR00178## -2% ##STR00179## -8% ##STR00180## -12% ##STR00181## -9% ##STR00182## -11% ##STR00183## -7% 344-346 ##STR00184## -2% ##STR00185## 4% ##STR00186## -1% ##STR00187## -9% ##STR00188## -5% ##STR00189## -8% ##STR00190## -4% 345-346 ##STR00191## 2% ##STR00192## 0% ##STR00193## 1% ##STR00194## -7% ##STR00195## -6% ##STR00196## -15% ##STR00197## -4% 347-349 Not detected Not detected Not detected Not detected Not detected Not detected Not detected 348-349 ##STR00198## -10% ##STR00199## -18% ##STR00200## -30% ##STR00201## -31% ##STR00202## -30% ##STR00203## -20% ##STR00204## -23% 348-357 ##STR00205## -24% ##STR00206## -33% ##STR00207## -41% ##STR00208## -39% ##STR00209## -37% ##STR00210## -28% ##STR00211## -34% 349-357 ##STR00212## -27% ##STR00213## -33% ##STR00214## -43% ##STR00215## -41% ##STR00216## -40% ##STR00217## -30% ##STR00218## -36% 373-384 ##STR00219## 2% ##STR00220## 1% ##STR00221## 0% ##STR00222## 3% ##STR00223## -2% ##STR00224## 6% ##STR00225## 2% 376-384 ##STR00226## 4% ##STR00227## 3% ##STR00228## 1% ##STR00229## -1% ##STR00230## 1% ##STR00231## 3% ##STR00232## 2% 380-384 ##STR00233## -5% ##STR00234## -2% ##STR00235## -4% ##STR00236## 8% ##STR00237## -3% ##STR00238## 5% ##STR00239## 0%
TABLE-US-00026 (B) Incubation Time (Seconds) Peptide 30 100 300 1000 3000 10000 Average 189-198 ##STR00240## -6% ##STR00241## 2% ##STR00242## 6% ##STR00243## 9% ##STR00244## -4% ##STR00245## 8% ##STR00246## 3% 189-200 ##STR00247## -4% ##STR00248## 3% ##STR00249## 4% ##STR00250## 6% ##STR00251## -6% ##STR00252## 4% ##STR00253## 1% 203-210 ##STR00254## -4% ##STR00255## 1% ##STR00256## 4% ##STR00257## 6% ##STR00258## -6% ##STR00259## 3% ##STR00260## 1% 203-213 ##STR00261## 1% ##STR00262## 3% ##STR00263## 5% ##STR00264## 5% ##STR00265## -6% ##STR00266## 4% ##STR00267## 2% 213-219 ##STR00268## -14% ##STR00269## -26% ##STR00270## -32% ##STR00271## -50% ##STR00272## -51% ##STR00273## -49% ##STR00274## -37% 216-219 ##STR00275## -17% ##STR00276## -28% ##STR00277## -36% ##STR00278## -55% ##STR00279## -60% ##STR00280## -65% ##STR00281## -44% 220-228 ##STR00282## -63% ##STR00283## -47% ##STR00284## -47% ##STR00285## -51% ##STR00286## -42% ##STR00287## -25% ##STR00288## -46% 222-228 ##STR00289## -62% ##STR00290## -55% ##STR00291## -52% ##STR00292## -55% ##STR00293## -40% ##STR00294## -26% ##STR00295## -48% 231-238 ##STR00296## -23% ##STR00297## -28% ##STR00298## -43% ##STR00299## -56% ##STR00300## -55% ##STR00301## -48% ##STR00302## -42% 231-250 ##STR00303## -4% ##STR00304## -15% ##STR00305## -15% ##STR00306## -23% ##STR00307## -26% ##STR00308## -22% ##STR00309## -18% 237-250 ##STR00310## -9% ##STR00311## -3% ##STR00312## -1% ##STR00313## -3% ##STR00314## -4% ##STR00315## 3% ##STR00316## -3% 237-251 ##STR00317## -3% ##STR00318## -1% ##STR00319## -2% ##STR00320## -1% ##STR00321## -6% ##STR00322## 2% ##STR00323## -2% 237-252 ##STR00324## -5% ##STR00325## -4% ##STR00326## -4% ##STR00327## 5% ##STR00328## -1% ##STR00329## 5% ##STR00330## -1% 253-260 ##STR00331## -5% ##STR00332## 1% ##STR00333## -1% ##STR00334## -7% ##STR00335## -5% ##STR00336## 7% ##STR00337## -2% 266-284 ##STR00338## -13% ##STR00339## -7% ##STR00340## 2% ##STR00341## 5% ##STR00342## -2% ##STR00343## 10% ##STR00344## -1% 269-289 ##STR00345## -9% ##STR00346## -4% ##STR00347## -8% ##STR00348## 0% ##STR00349## -7% ##STR00350## 4% ##STR00351## -4% 269-292 ##STR00352## 0% ##STR00353## 2% ##STR00354## -3% ##STR00355## 6% ##STR00356## -3% ##STR00357## 3% ##STR00358## 1% 292-302 ##STR00359## -9% ##STR00360## -4% ##STR00361## -3% ##STR00362## 12% ##STR00363## -5% ##STR00364## 6% ##STR00365## -1% 292-305 ##STR00366## -5% ##STR00367## 1% ##STR00368## -4% ##STR00369## 5% ##STR00370## -5% ##STR00371## 3% ##STR00372## -1% 295-305 ##STR00373## -7% ##STR00374## -1% ##STR00375## -1% ##STR00376## 13% ##STR00377## -8% ##STR00378## 7% ##STR00379## 1% 301-305 ##STR00380## 5% ##STR00381## -3% ##STR00382## 1% ##STR00383## 10% ##STR00384## -2% ##STR00385## -5% ##STR00386## 1% 311-318 ##STR00387## -27% ##STR00388## -23% ##STR00389## -17% ##STR00390## -5% ##STR00391## -7% ##STR00392## 7% ##STR00393## -12% 311-326 ##STR00394## -30% ##STR00395## -26% ##STR00396## -25% ##STR00397## -19% ##STR00398## -19% ##STR00399## -7% ##STR00400## -21% 312-326 ##STR00401## -27% ##STR00402## -22% ##STR00403## -22% ##STR00404## -18% ##STR00405## -20% ##STR00406## -9% ##STR00407## -20% 321-326 ##STR00408## -9% ##STR00409## -13% ##STR00410## -18% ##STR00411## -13% ##STR00412## -18% ##STR00413## -11% ##STR00414## -14% 329-330 ##STR00415## -5% ##STR00416## -15% ##STR00417## -13% ##STR00418## -35% ##STR00419## -43% ##STR00420## -67% ##STR00421## -30% 329-331 ##STR00422## -3% ##STR00423## -7% ##STR00424## -10% ##STR00425## -23% ##STR00426## -31% ##STR00427## -56% ##STR00428## -22% 332-333 ##STR00429## -2% ##STR00430## 0% ##STR00431## -2% ##STR00432## -14% ##STR00433## -18% ##STR00434## -55% ##STR00435## -15% 334-342 ##STR00436## -7% ##STR00437## -7% ##STR00438## -11% ##STR00439## -18% ##STR00440## -23% ##STR00441## -35% ##STR00442## -17% 336-345 ##STR00443## -5% ##STR00444## -7% ##STR00445## -5% ##STR00446## -9% ##STR00447## -15% ##STR00448## -13% ##STR00449## -9% 344-346 ##STR00450## 4% ##STR00451## 5% ##STR00452## -1% ##STR00453## -7% ##STR00454## -9% ##STR00455## -14% ##STR00456## -4% 345-346 ##STR00457## 3% ##STR00458## -2% ##STR00459## 2% ##STR00460## -2% ##STR00461## -8% ##STR00462## -29% ##STR00463## -6% 347-349 ##STR00464## -11% ##STR00465## -15% ##STR00466## -15% ##STR00467## -41% ##STR00468## -47% ##STR00469## -50% ##STR00470## -30% 348-349 ##STR00471## -7% ##STR00472## -18% ##STR00473## -20% ##STR00474## -40% ##STR00475## -43% ##STR00476## -35% ##STR00477## -27% 348-357 ##STR00478## -28% ##STR00479## -36% ##STR00480## -43% ##STR00481## -60% ##STR00482## -50% ##STR00483## -44% ##STR00484## -44% 349-357 ##STR00485## -31% ##STR00486## -33% ##STR00487## -41% ##STR00488## -62% ##STR00489## -57% ##STR00490## -54% ##STR00491## -46% 373-384 ##STR00492## -5% ##STR00493## -1% ##STR00494## -1% ##STR00495## 5% ##STR00496## -5% ##STR00497## 7% ##STR00498## 0% 376-384 ##STR00499## -1% ##STR00500## 1% ##STR00501## 4% ##STR00502## 9% ##STR00503## -4% ##STR00504## 4% ##STR00505## 2% 380-384 ##STR00506## -3% ##STR00507## -2% ##STR00508## -2% ##STR00509## 8% ##STR00510## -7% ##STR00511## 0% ##STR00512## -1%
TABLE-US-00027 (C) Incubation Time (Seconds) Peptide 30 100 300 1000 3000 10000 Average 189-198 Not detected Not detected Not detected Not detected Not detected Not detected Not detected 189-200 ##STR00513## 1% ##STR00514## -6% ##STR00515## -4% ##STR00516## 1% ##STR00517## -2% ##STR00518## -1% ##STR00519## -2% 203-210 ##STR00520## -20% ##STR00521## -21% ##STR00522## -12% ##STR00523## -16% ##STR00524## -16% ##STR00525## -14% ##STR00526## -17% 203-213 Not detected Not detected Not detected Not detected Not detected Not detected Not detected 213-219 ##STR00527## -5% ##STR00528## -9% ##STR00529## -15% ##STR00530## -21% ##STR00531## -28% ##STR00532## -32% ##STR00533## -18% 216-219 ##STR00534## -8% ##STR00535## -11% ##STR00536## -16% ##STR00537## -24% ##STR00538## -24% ##STR00539## -30% ##STR00540## -19% 220-228 Not detected Not detected Not detected Not detected Not detected Not detected Not detected 222-228 ##STR00541## -29% ##STR00542## -28% ##STR00543## -22% ##STR00544## -16% ##STR00545## -3% ##STR00546## -5% ##STR00547## -17% 231-238 ##STR00548## -1% ##STR00549## 2% ##STR00550## -6% ##STR00551## -8% ##STR00552## -11% ##STR00553## -13% ##STR00554## -6% 231-250 Not detected Not detected Not detected Not detected Not detected Not detected Not detected 237-250 ##STR00555## 2% ##STR00556## 4% ##STR00557## 3% ##STR00558## 0% ##STR00559## -1% ##STR00560## 1% ##STR00561## 2% 237-251 Not detected Not detected Not detected Not detected Not detected Not detected Not detected 237-252 ##STR00562## 0% ##STR00563## -4% ##STR00564## -2% ##STR00565## -4% ##STR00566## 1% ##STR00567## -2% ##STR00568## -2% 253-260 ##STR00569## 1% ##STR00570## -11% ##STR00571## 2% ##STR00572## -6% ##STR00573## -3% ##STR00574## 4% ##STR00575## -2% 266-284 Not detected Not detected Not detected Not detected Not detected Not detected Not detected 269-289 Not detected Not detected Not detected Not detected Not detected Not detected Not detected 269-292 Not detected Not detected Not detected Not detected Not detected Not detected Not detected 292-302 ##STR00576## 1% ##STR00577## -5% ##STR00578## -10% ##STR00579## -6% ##STR00580## 6% ##STR00581## 5% ##STR00582## -2% 292-305 ##STR00583## -4% ##STR00584## 0% ##STR00585## 2% ##STR00586## 15% ##STR00587## -4% ##STR00588## -4% ##STR00589## 1% 295-305 ##STR00590## 6% ##STR00591## -1% ##STR00592## -4% ##STR00593## -4% ##STR00594## -4% ##STR00595## 3% ##STR00596## -1% 301-305 ##STR00597## -8% ##STR00598## -4% ##STR00599## 8% ##STR00600## 8% ##STR00601## 4% ##STR00602## -12% ##STR00603## -1% 311-318 ##STR00604## -25% ##STR00605## -19% ##STR00606## -9% ##STR00607## -6% ##STR00608## -8% ##STR00609## -1% ##STR00610## -11% 311-326 ##STR00611## -26% ##STR00612## -28% ##STR00613## -23% ##STR00614## -21% ##STR00615## -9% ##STR00616## -6% ##STR00617## -19% 312-326 ##STR00618## -24% ##STR00619## -25% ##STR00620## -20% ##STR00621## -15% ##STR00622## -7% ##STR00623## -6% ##STR00624## -16% 321-326 ##STR00625## -14% ##STR00626## -22% ##STR00627## -27% ##STR00628## -30% ##STR00629## -16% ##STR00630## -15% ##STR00631## -21% 329-330 ##STR00632## -26% ##STR00633## -23% ##STR00634## -19% ##STR00635## -36% ##STR00636## -33% ##STR00637## -47% ##STR00638## -31% 329-331 ##STR00639## -7% ##STR00640## -7% ##STR00641## -8% ##STR00642## -10% ##STR00643## -18% ##STR00644## -44% ##STR00645## -16% 332-333 ##STR00646## -1% ##STR00647## 5% ##STR00648## -4% ##STR00649## 4% ##STR00650## -1% ##STR00651## -15% ##STR00652## -2% 334-342 ##STR00653## 14% ##STR00654## 9% ##STR00655## 2% ##STR00656## -5% ##STR00657## 4% ##STR00658## -6% ##STR00659## 3% 336-345 ##STR00660## 2% ##STR00661## 4% ##STR00662## -3% ##STR00663## 3% ##STR00664## -1% ##STR00665## 0% ##STR00666## 1% 344-346 Not detected Not detected Not detected Not detected Not detected Not detected Not detected 345-346 ##STR00667## 4% ##STR00668## 4% ##STR00669## 3% ##STR00670## 3% ##STR00671## 4% ##STR00672## -11% ##STR00673## 1% 347-349 Not detected Not detected Not detected Not detected Not detected Not detected Not detected 348-349 ##STR00674## 2% ##STR00675## -8% ##STR00676## -14% ##STR00677## 2% ##STR00678## -2% ##STR00679## -13% ##STR00680## -6% 348-357 Not detected Not detected Not detected Not detected Not detected Not detected Not detected 349-357 ##STR00681## -1% ##STR00682## -7% ##STR00683## -2% ##STR00684## -3% ##STR00685## -2% ##STR00686## -6% ##STR00687## -4% 373-384 ##STR00688## 6% ##STR00689## 0% ##STR00690## 4% ##STR00691## 6% ##STR00692## 3% ##STR00693## 5% ##STR00694## 4% 376-384 ##STR00695## 2% ##STR00696## 1% ##STR00697## -1% ##STR00698## 3% ##STR00699## 0% ##STR00700## -3% ##STR00701## 0% 380-384 Not detected Not detected Not detected Not detected Not detected Not detected Not detected
[0193] Based on data summarized in Table 17(A), (B) and (C) it was concluded that segments which showed significant perturbation (on average >20%) of deuteration could define the epitope. The sequence segments identified are highlighted in FIG. 3.
2.0 ALANINE SCANNING SITE DIRECTED MUTAGENESIS (SDM)
[0194] Target residues for SDM for Alanine scanning were selected based on 3 criteria: (1) H/D exchange perturbation data above, (2) surface accessibility of side chains based on a previously published crystal structure of HSA (1BKE.pdb (RCSB Protein DataBank)) and (3) charge or size of side chains.
2.1 Cloning and Expression of Alanine Mutants
[0195] The wild type template of HSA was PCR-cloned into a mammalian expression vector using standard molecular biology protocols. A 6-Histidine tag was fused to the C-terminus of the sequence (SEQ ID NOS: 25 and 34 for amino acid and DNA sequences respectively for the WT HSA-His6 construct) for nickel affinity purification. Primer pairs used for PCR amplification to make the WT expression construct were TB147 and TB148 (SEQ ID NOS: 85 and 86 respectively).
[0196] Mutants were made following standard molecular biology protocols using the WT HSA-His6 construct as a template for mutagenesis. The list of Alanine mutants and mutagenesis oligo pairs used to construct them are listed in Table 18 below.
TABLE-US-00028 TABLE 18 Primers pairs for making HSA mutants K225A TB153 GAGCCAGAGATTTCCCGCCGCTGAGTTT sense SEQ ID NO: GCAGAAG 87 TB154 CTTCTGCAAACTCAGCGGCGGGAAATCT anti- SEQ ID NO: CTGGCTC sense 88 E227A TB155 GAGATTTCCCAAAGCTGCCTTTGCAGAA sense SEQ ID NO: GTTTCCAAG 89 TB156 CTTGGAAACTTCTGCAAAGGCAGCTTTG anti- SEQ ID NO: GGAAATCTC sense 90 E230A TB157 CCAAAGCTGAGTTTGCAGCCGTTTCCAA sense SEQ ID NO: GTTAGTGAC 91 TB158 GTCACTAACTTGGAAACGGCTGCAAACT anti- SEQ ID NO: CAGCTTTGG sense 92 D314A TB159 GATTTTGTTGAAAGTAAGGCCGTTTGCA sense SEQ ID NO: AAAACTATG 93 TB160 CATAGTTTTTGCAAACGGCCTTACTTTCA anti- SEQ ID NO: ACAAAATC sense 94 K317A TB161 GAAAGTAAGGATGTTTGCGCCAACTATG sense SEQ ID NO: CTGAGGCAAAGG 95 TB162 CCTTTGCCTCAGCATAGTTGGCGCAAAC anti- SEQ ID NO: ATCCTT AC TTTC sense 96 V325A TB163 GCTGAGGCAAAGGATGCCTTCCTGGGC sense SEQ ID NO: ATGTTTTTG 97 TB164 CAAAAACATGCCCAGGAAGGCATCCTTT anti- SEQ ID NO: GCCTCAGC sense 98 M329A TB165 GGATGTCTTCCTGGGCGCCTTTTTGTAT sense SEQ ID NO: GAATATG 99 TB166 CATATTCATACAAAAAGGCGCCCAGGAA anti- SEQ ID NO: GACATCC sense 100 K351A TB167 GCTGCTGCTGAGACTTGCCGCCACATAT sense SEQ ID NO: GAAACCACTCTAG 101 TB168 CTAGAGTGGTTTCATATGTGGCGGCAAG anti- SEQ ID NO: TCTCAGCAGCAGC sense 102
[0197] Sequence verified clones were selected from plasmid DNA minipreps made using Millipore Montage kits following the manufacturers protocols. Amino acid and DNA sequences of constructs are summarized in Table 19 below.
TABLE-US-00029 TABLE 19 List of HSA mutants made HSA-His6 Amino Acid DNA WT SEQ ID 103 SEQ ID 112 K225A SEQ ID 104 SEQ ID 113 E227A SEQ ID 105 SEQ ID 114 E230A SEQ ID 106 SEQ ID 115 D314A SEQ ID 107 SEQ ID 116 K317A SEQ ID 108 SEQ ID 117 V325A SEQ ID 109 SEQ ID 118 M329A SEQ ID 110 SEQ ID 119 K351A SEQ ID 111 SEQ ID 120
[0198] His6-tagged WT HSA and mutants were expressed in mammalian HEK293-6E cells using transient transfection techniques. Mutants and WT HSA were purified from clarified expression supernatants using nickel affinity chromatography according to established protocols. SDS-PAGE analysis of the purified mutants showed >95% purity.
2.2 BIAcore Analysis of Alanine Mutants
2.2.1 Experimental Method for BIAcore
[0199] Briefly, WT HSA and mutants were immobilised onto CM5 Biacore chips on a Biacore 3000 (GE Healthcare). This was performed by first activating all four flow cells with EDC/NHS and then injecting WT HSA or mutants in acetate buffer pH 4.5. Any free sites on the chip were then blocked with an injection of ethanolamine across all four flow cells. Levels of immobilization are for each sample are summarized in Table 20 below.
TABLE-US-00030 TABLE 20 BIAcore CM5 chip preparation. Chip1 Fc2 E227A HSA 312 RUs Fc4 WT HSA 293 RUs Chip2 Fc2 D314A HSA 369 RU Fc3 K225A HSA 143 RU Fc4 E230A HSA 339 RU Chip3 Fc2 M324A HSA 167 RU Fc3 V325A HSA 147 RU Fc4 WT HSA 304 RU Chip4 Fc2 K317A HSA 305 RU Fc3 K351A HSA 165 RU Fc4 WT HSA 223 RU
2.2.2 BIAcore Data
[0200] Flow rate using HBS-EP buffer was 40 uL/min and the purified dAb proteins were injected for 1 minute at concentrations 5000 nM followed by 7 further injections at a sequential 1:2 dilution in mobile phase.
[0201] Analysis and determination of equilibrium binding constants (KD) was performed using standard procedures.
TABLE-US-00031 TABLE 21 A DOM7h- DOM7h- 14-10myc 11-15myc DOM7h-11-3myc x-fold x-fold x-fold decrease decrease decrease HSA in in in mutant nM binding nM binding nM binding K225A 2.34E- 0.31 1.17E- 0.53 2.41E-08 0.90375 09 09 E227A 3.33E- 4.44 7.91E- 3.58 1.46E-07 5.475 08 09 E230A 1.50E- 2.00 2.45E- 11.09 8.00E-07 30 08 08 D314A 5.35E- 0.71 4.45E- 2.01 1.78E-08 0.6675 09 09 M329A 5.65E- 0.75 5.72 E- 2.59 6.52E-07 24.45 09 09 WT 7.5E- 2.21E- 2.66667E- 09 09 08
TABLE-US-00032 TABLE 21 B DOM7r31-14myc DOM7r92-4myc x-fold x-fold decrease HSA decrease in mutant nM in binding nM binding K225A 3.49E-08 0.71 2.49E-08 0.44 E227A 1.28E-07 2.62 no 88.81 binding E230A 4.06E-06 83.03 3.97E-07 7.05 D314A 3.45E-08 0.71 5.20E-08 0.92 M329A 2.75E-08 0.56 4.93E-07 8.76 WT 4.89E-08 5.63E-08
2.2.3 BIAcore Analysis and Conclusions
[0202] DOM7h-14-10: No significant decrease in binding was observed upon mutagenesis of any of the above residues in isolation.
[0203] DOM7h-11-15: Some significant decrease in binding of DOM7h-11-15 to E230A is observed (11-fold decrease in binding over WT). This suggests that residue 230 on HSA plays a significant contribution in the specific binding to human serum albumin.
[0204] DOM7h-11-3: A significant decrease in binding was observed for two residues (E230 and M324) upon mutagenesis to alanine. This suggests that these two residues play an important contribution to the Antibody/Antigen interaction.
[0205] DOM7r92-4: A significant decrease in binding for E230A was observed.
[0206] DOM7r31-14: A significant decrease in binding for E227A was observed.
3 CRYSTAL STRUCTURE OF THE DOM7H-11-15/HSA COMPLEX
3.1 Protein Preparation
[0207] Fatty acid free HSA from a commercial source was purified by size exclusion chromatography to >95% purity as judged by SDS-PAGE.
[0208] DOM7h-11-15 (SEQ ID NO: 1 and SEQ ID NO: 2 for amino acid and DNA sequences respectively) was expressed in E. coli strain BL21 DE3 using an auto-induction expression system. DOM7h-11-15 was purified from clarified supernatants by Protein-L affinity chromatography using established protocols. It was further purified by ion exchange chromatography using a Hi-Trap SP column using established protocols.
[0209] HSA was mixed with DOM7h-11-15 and the complex purified by size exclusion chromatography. Protein was concentrated in 20 mM Tris-Cl pH 8.0 prior to crystallization screening.
3.2 Crystallization
[0210] The HSA/DOM7h-11-15 complex was put into a crystallization screen with approximately 1200 conditions using the sitting drop method.
[0211] 3.3 X-ray Diffraction Data Collection and Processing
[0212] HSA/DOM7h-11-15 crystals were flash frozen in liquid nitrogen after cryoprotection. The crystal was maintained at 100K during data collection. X-ray diffraction data were collected at the SWISS LIGHT SOURCE (SLS, Villigen, Switzerland).
[0213] Data were processed using XDS and XSCALE (Kabsch) reviewed, for example, in Acta Crystallogr D Biol Crystallogr. 2010 Feb. 1; 66(Pt 2): 125-132). The crystals belonged to the space group P212121 with two complexes HSA/DOM7h-11-15 in the asymmetric unit.
[0214] Data collection statistics are summarised in Table 22 below.
TABLE-US-00033 TABLE 22 Data Collection and Processing Statistics for HSA/DOM7h-11-15 complex Crystal Complex HSA-DOM7h11-15 X-ray source PXI/X06SA (SLS 1) Wavlength [Å] 1.0000 Detector PILATUS 6M Temperature [K] 100 Space group P 21 22 23 Cell: a; b; c [Å] 102,15; 110.00; 141.34 α:β:γ [°] 90.0; 90,0; 90.0 Resolution [Å] 2 2.50 (2.91-2.66) Unique reflections 2 55,052 (10,796) Multiplicity 2 5.3 (5.5) Completeness [%] 2 98.7 (100.0) Rsym[%] 2, 3 10.0 (43.9) Rmeas [%] 2,4 11.1 (48.3) mean(I)/sigma 2,5 12.17 (4.63) 1 SWISS LIGHT SOURCE (SLS, Villigen, Switzerland) 2 Numbers in brackets correspond to the resolution bin with Rsym = 43.9%. 3 R sym = h i n h I ^ h - I h , i h i n h I h , i with I ^ h = 1 n h i n h I h , i ##EQU00001## where Ih,i is the intensity value of the ith measurement of h R meas 4 = h n h n h - 1 i n h I ^ h - I h , i h i n h I h , i with I ^ h = 1 n h i n h I h , i ##EQU00002## where Ih,i is the intensity value of the ith measurement of h 5 Calculated from independent reflections
3.4 Structure Determination and Model Refinement
[0215] Structure determination and model refinement was carried out to generate a representation of HSA in complex with DOM 7h-11-15.
[0216] The structure of the complex was determined by molecular replacement. DOM7h11-15 bound to HSA showed clear electron density in the initial maps from phases determined from the HSA molecules only and allowed unambiguous placement of the antibody domain using a difference maps. Subsequent model building and refinement was performed according to standard protocols with the software packages in CCP4 and COOT (see Collaborative Computational Project, Number 4. 1994.
"The CCP4 Suite: Programs for Protein Crystallography". Acta Cryst. D50, 760-763; and "Coot: model-building tools for molecular graphics" Emsley P, Cowtan K Acta Crystallographica Section D-Biological Crystallography 60: 2126-2132 Part 12 Sp. Iss. 1 Dec. 2004, for example). Refinement statistics are summarized in Table 23
[0217] The Ramachandran Plot of the final model shows 91.5% of all residues in the most favoured region, 8.1% in the additionally allowed region, 0.4% of the residues in the generously allowed, and no residues in the disallowed regions (Modelling statistics are summarized in Table 23).
TABLE-US-00034 TABLE 23 Refinement and Modelling Statistics for the HSA/DOM7h-11-15 Structure Complex HSA-DOM7h11-15 Resolution [Å] 86.71-2.50 Number of reflections (working/test) 54,062/989 Rcryst [%] 23.8 Rfree2 [%] 28.5 Total number of atoms: Protein 10,881 Water 103 Ligand -- Sulphate 60 1,2-Ethanediol 16 Deviation from ideal geometry: 3 Bond lengths [Å] 0.008 Bond angles [°] 1.06 Bonded B's 4 [Å2] 1.7 Ramachandran Plot: 5 Most flavoured regions 92.0 Additional allowed regions 7.7 Generously allowed regions 0.3 Disallowed regions 0.0 1 Vaules as defined in REFMAC5, without sigma cut-off 2 Test-set contains 1.8% of measured reflections 3 Root mean square deviations from geometric target values 4 Calculated with programme MOLEMAN 5 Calculated with programme PROCHECK
3.5 Structure Analysis
3.5.1 Overall Structure
[0218] The structure of HSA in complex with DOM7h11-15 is represented in FIG. 4. FIG. 4A shows the asymmetric unit containing 2 copies each of HSA and DOM7h-11-15. The biologically relevant unit which consists of one molecule each of HSA and DOM7h-11-15 is shown in two orientations in FIG. 4B.
3.5.2 The Epitope and Paratope
[0219] Residues on the HSA-Albudab binding interface are displayed in a format by residue number in FIG. 5 (this figure lists all residue to residue contacts within 4.5 A between chains A (HSA) and chain B (DOM7h-11-15)). All significant interaction pairs are marked as solid diamonds. Types of interactions for those considered to significant are listed in Table 22.
TABLE-US-00035 TABLE 22A List of interactions between HSA and DOM7h-11-15 HSA DOM7h-11-15 Residue Residue Residue Residue Chain Number Type Chain Number Type Interaction A 228 (PHE) B 49 (LEU) hydrophobic A 228 (PHE) B 91 (ALA) hydrophobic A 230 (GLU) B 94 (HIS) 1 H-bond SC-SC A 308 (ASP) B 53 (ARG) 3 H-bonds all SC- SC A 309 (PHE) B 51 (PHE) hydrophobic A 317 (LYS) B 67 (SER) 1 H-bond SC-MC A 318 (ASN) B 31 (THR) 2 H-bond MC- SC, SC-SC A 321 (GLU) B 30 (GLY) 1 H-bond MC-SC A 322 (ALA) B 32 (MET) hydrophobic A 325 (VAL) B 32 (MET) hydrophobic A 325 (VAL) B 91 (ALA) hydrophobic A 326 (PHE) B 32 (MET) hydrophobic A 326 (PHE) B 51 (PHE) hydrophobic A 329 (MET) B 32 (MET) hydrophobic A 329 (MET) B 49 (LEU) hydrophobic A 329 (MET) B 50 (ALA) hydrophobic A 329 (MET) B 51 (PHE) hydrophobic A 329 (MET) B 91 (ALA) hydrophobic
[0220] All but two DOM7h-11-15 residues binding HSA are from CDR1, 2 and 3. Residues forming the paratope are showing in the alignment in FIG. 6 below where DOM7h-11-3, DOM7h11-15 are aligned against Vk dummy (VKDUM-1). Table 22B below lists additional residues on the AlbudAb-HSA interface within 4.5 A.
TABLE-US-00036 TABLE 22B Table of additional residues on interface HSA DOM7h-11-15 Residue Residue Residue Residue Chain number number Chain number number A 227 (GLU) B 36 (TYR) A 227 (GLU) B 46 (LEU) A 228 (PHE) B 92 (GLY) A 229 (ALA) B 36 (TYR) A 229 (ALA) B 92 (GLY) A 229 (ALA) B 93 (THR) A 229 (ALA) B 94 (HIS) A 232 (SER) B 92 (GLY) A 233 (LYS) B 94 (HIS) A 263 (TYR) B 94 (HIS) A 307 (ALA) B 53 (ARG) A 308 (ASP) B 51 (PHE) A 314 (ASP) B 31 (THR) A 317 (LYS) B 30 (GLY) A 317 (LYS) B 68 (GLY) A 318 (ASN) B 29 (ILE) A 318 (ASN) B 30 (GLY) A 318 (ASN) B 32 (MET) A 318 (ASN) B 51 (PHE) A 321 (GLU) B 28 (PRO) A 321 (GLU) B 29 (ILE) A 321 (GLU) B 68 (GLY) A 322 (ALA) B 29 (ILE) A 325 (VAL) B 90 (GLN) A 332 (TYR) B 49 (LEU) A 333 (GLU) B 49 (LEU)
Significant interactions listed in Table 22 are detailed further in FIG. 7 and panels within. In these figures, interacting residues are drawn in stick representation with any hydrogen bonds drawn as dashed lines. Corresponding electron density for those interacting side chains are also show depicted in mesh (contoured at 1.56).
4.0 CONCLUSIONS
[0221] Three orthogonal techniques have been used to determine the epitope of the DOM7h-11 lineage on HSA. The results from all techniques provide information about the region of HSA which forms the epitope. Whilst H/D exchange perturbation data give a range of possible residues, Alanine scanning data and the crystal structure provide more detailed information on a single residue level. FIG. 8 below summarizes level of detail and specificity the data from each technique has provided.
[0222] Based on the crystal structure, it is also possible to state that the bind of DOM7h-11-15 to HSA does not block or obstruct any lipid carrier pockets on HSA. This is particularly relevant for therapeutic applications since these binding pockets are utilized by a number of therapeutic compounds for systemic transport. Therefore any potential biopharmaceutical formatted with DOM7h-11-15 would not be expected to interfere with HSA-drug interactions and transport. Drug/lipid carrier pocket positions relative to the DOM7h-11-15 epitope are detailed in FIG. 9. Based on the similar epitope observed with DOM7h-14-10 and DOM7r-92-4 H/D exchange perturbation data, these AlbudAbs® would also not be expected to interfere with HSA-drug interactions and transport.
TABLE-US-00037 TABLE OF SEQUENCES SEQ ID NO: IDENTIFIER Amino acid Nucleic acid DOM7h-11-15 1 3 DOM7h-11-3 2 4 DOM7h-14/Exendin-4 fusion 5 6 DOM7h-14-10/Exendin-4 fusion 7 8 DOM7h-11/Exendin-4 fusion 9 10 DOM7h-11-15/Exendin-4 fusion 11 12 DOM7h14-10/G4SC-NCE fusion 13 14 DOM7h14-10/TVAAPSC fusion 15 16 DOM7h-11/DOM1m-21-23 fusion 17 19 DOM7h-11/DOM1m-21-23 fusion + myc tag 18 20 DOM7h-11-15/DOM1m-21-23 fusion 21 23 DOM7h-11-15/DOM1m-21-23 fusion + myc tag 22 24 DPK9 Vk dummy CDRs 1-3 25-27 -- DOM7h-11 CDRs 1-3 28-30 -- DOM 7h-11-15 CDRs 1-3 31-33 -- DOM 7h-11-3 CDRs 1-3 34-36 -- DOM 7h-14 CDRs 1-3 37-39 -- DOM 7h-14-10 CDRs 1-3 40-42 -- Interferon alpha 2b 43 44 IFNα2b SOE fragment 5' -- 45 IFNα2b SOE fragment 3' -- 46 Vk SOE fragment 5' -- 47 Vk SOE fragment 3' to also introduce a myc tag -- 48 IFNα2b SOE fragment 5' -- 49 Vk SOE fragment 3' to also introduce a myc tag -- 50 Leader sequence 51 52 DMS7321 53 54 (IFNα2b-DOM7h-14) + myc DMS7321 (IFNα2b-DOM7h-14) no tag 55 56 DMS732 (IFNα2b-DOM7h-14-10) + myc 57 58 DMS732 (IFNα2b-DOM7h-14-10) no tag 59 60 DMS 7325 (IFNα2b-DOM7h-11) + myc 61 62 DMS 7325 (IFNα2b-DOM7h-11) no tag 63 64 DMS 7327 (IFNα2b-DOM7h-11-15) + myc 65 66 DMS 7327 (IFNα2b-DOM7h-11-15) no tag 67 68 DOM7h-14 R108C 69 70 DOM7r31 71 72 DOM7r-31-14 73 74 DOM7h-94 75 76 DOM7r-92-4 77 78 DOMAIN 2 OF HSA 79 80 FULL LENGTH HSA 81 82 DOM 7H-14-10 83 84 PRIMER TB147 -- 85 PRIMER TB148 -- 86 TB153 -- 87 TB154 -- 88 TB155 -- 89 TB156 -- 90 TB157 -- 91 TB158 -- 92 TB159 -- 93 TB160 -- 94 TB161 -- 95 TB162 -- 96 TB163 -- 97 TB164 -- 98 TB165 -- 99 TB166 -- 100 TB167 -- 101 TB168 -- 102 HSA-His6 WT 103 112 HSA-His6 K225A 104 113 HSA-His6 E227A 105 114 HSA-His6 E230A 106 115 HSA-His6 D314A 107 116 HSA-His6 K317A 108 117 HSA-His6 V325A 109 118 HSA-His6 M329A 110 119 HSA-His6 K351A 111 120 DOM 7h-11-13 121 122 DOM7H-14 123 124 DOM7H-11 125 126
Example 11
Sequences of DOM7h-14-10 Variants
[0223] In another embodiment of the invention, listed below are the amino acid and nucleotide sequences for some variants of the anti-serum albumin immunoglobulin single variable domain DOM7h-14.
TABLE-US-00038 DOM7h-14-56. (SEQ ID NO: 127) DIQMTQSPSSLSASVGDRVTITCRASQWIGSQLSWYQQKPGKAPMLLIMW SSSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCAQGLRHPKTFGQ GTKVEIKW DOM7h-14-65. (SEQ ID NO: 128) DIQMTQSPSSLSASVGDRVTITCRASQWIGSQLSWYQQKPGKAPKLLIMW RSALQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCAQGLRHPKTFGQ GTKVEIKW DOM7h-14-74. (SEQ ID NO: 129) DIQMTQSPSSLSASVGDRVTITCRASQWIGSQLSWYQQKPGKAPKLLIMW RSSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCAQGLRHPKTYGK GTKVENKW DOM7h-14-76. (SEQ ID NO: 130) DIQMTQSPSSLSASVGDRVTITCRASQWIGSQLSWYQQKPGKAPKLLIMW RSSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCAQGLKHPKTYGQ GTKVEIKW DOM7h-14-82. (SEQ ID NO: 131) DIQMTQSPSSLSASVGDRVTITCRASQWIGSQLSWYQQKPGKAPKLLIMW RSSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCAQGMRHPKTFGQ GTKVEIKW DOM7h-14-100. (SEQ ID NO: 132) DIQMTQSPSSLSASVGDRVTITCRASQWIGSQLSWYQQKPGKAPKLLIMW RSSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCAQGLRHPKTYGQ GTKVENKW DOM7h-14-101. (SEQ ID NO: 133) DIQMTQSPSSLSASVGDRVTITCRASQWIGSQLSWYQQKPGKAPKLLIMW RSALQNGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCAQGLRHPKTFGQ GTKVEIKW DOM7h-14-109. (SEQ ID NO: 134) DIQMTQSPSSLFASVGDRVTITCRASQWIGSQLSWYQQKPGKAPKLLIMW RSSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCAQGLRKPKTFGQ GTKVKIKW DOM7h-14-115. (SEQ ID NO: 135) DIQMTQSPSSLSASVGDRVTITCRASQWIGSQLSWYQQKPGKAPKLLIMW RSALQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCAQGLRHPKTYGQ GTKVEIKW DOM7h-14-116. (SEQ ID NO: 136) DIQMTQSPSSLSASVGDRVTITCRASQWIGSQLSWYQQKPGKAPKLLIMW RSALQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCAQGLRYPKTFGQ GTKVEIKW DOM7h-14-119. (SEQ ID NO: 137) DIQMTQSPSSLSASVGDRVTITCRASQWIGSQLSWYQQKPGKAPKLLIMW RSSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCAQGLRHPKTYGQ GTKVEIKR DOM7h-14-120. (SEQ ID NO: 138) DIQMTQSPSSLSASVGDRVTITCRASQWIGSQLSWYQQKPGKAPKLLIMW RSSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCAQGLRHPKTYGQ GTKVENKR DOM7h-14-121. (SEQ ID NO: 139) DIQMTQSPSSLSASVGDRVTITCRASQWIGSQLSWYQQKPGKAPKLLIMW RSALQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCAQGLRHPKTFGQ GTKVEIKR DOM7h-14-122. (SEQ ID NO: 140) DIQMTQSPSSLSASVGDRVTITCRASQWIGSQLSWYQQKPGKAPKLLIMW RSSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCAQGLRHPKTYGK GTKVEIKR DOM7h-14-123. (SEQ ID NO: 141) DIQMTQSPSSLSASVGDRVTITCRASQWIGSQLSWYQQKPGKAPKLLIMW RSSLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCAQGLRHPKTYGK GTKVENKR DOM7h-14-56. (SEQ ID NO: 142) GACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCTGTAGGAGA CCGTGTCACCATCACTTGCCGGGCAAGTCAGTGGATTGGGTCTCAGTTAT CTTGGTACCAGCAGAAACCAGGGAAAGCCCCTATGCTCCTGATCATGTGG AGTTCCTCGTTGCAAAGTGGGGTCCCATCACGTTTCAGTGGCAGTGGATC TGGGACAGATTTCACTCTCACCATCAGCAGTCTGCAACCTGAAGATTTTG CTACGTACTACTGTGCTCAGGGTTTGAGGCATCCTAAGACGTTCGGCCAA GGGACCAAGGTGGAAATCAAATGG DOM7h-14-65. (SEQ ID NO: 143) GACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCTGTAGGAGA CCGTGTCACCATCACTTGCCGGGCAAGTCAGTGGATTGGGTCTCAGTTAT CTTGGTACCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCTGATCATGTGG CGTTCCGCGTTGCAAAGTGGGGTCCCATCACGTTTCAGTGGCAGTGGATC TGGGACAGATTTCACTCTCACCATCAGCAGTCTGCAACCTGAAGATTTTG CTACGTACTACTGTGCTCAGGGTTTGAGGCATCCTAAGACGTTCGGCCAA GGGACCAAGGTGGAAATCAAATGG DOM7h-14-74. (SEQ ID NO: 144) GACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCTGTAGGAGA CCGTGTCACCATCACTTGCCGGGCAAGTCAGTGGATTGGGTCTCAGTTAT CTTGGTACCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCTGATCATGTGG CGTTCCTCGTTGCAAAGTGGGGTCCCATCACGTTTCAGTGGCAGTGGATC TGGGACAGATTTCACTCTCACCATCAGCAGTCTGCAACCTGAAGATTTTG CTACGTACTACTGTGCTCAGGGTTTGAGGCATCCTAAGACGTACGGCAAA GGGACCAAGGTGGAAAACAAATGG DOM7h-14-76. (SEQ ID NO: 145) GACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCTGTAGGAGA CCGTGTCACCATCACTTGCCGGGCAAGTCAGTGGATTGGGTCTCAGTTAT CTTGGTACCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCTGATCATGTGG CGTTCCTCGTTGCAAAGTGGGGTCCCATCACGTTTCAGTGGCAGTGGATC TGGGACAGATTTCACTCTCACCATCAGCAGTCTGCAACCTGAAGATTTTG CTACGTACTACTGTGCTCAGGGTTTGAAGCATCCTAAGACGTACGGCCAA GGGACCAAGGTGGAAATCAAATGG DOM7h-14-82. (SEQ ID NO: 146) GACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCTGTAGGAGA CCGTGTCACCATCACTTGCCGGGCAAGTCAGTGGATTGGGTCTCAGTTAT CTTGGTACCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCTGATCATGTGG CGTTCCTCGTTGCAAAGTGGGGTCCCATCACGTTTCAGTGGCAGTGGATC TGGGACAGATTTCACTCTCACCATCAGCAGTCTGCAACCTGAAGATTTTG CTACGTACTACTGTGCTCAGGGTATGAGGCATCCTAAGACGTTCGGCCAA GGGACCAAGGTGGAAATCAAATGG DOM7h-14-100. (SEQ ID NO: 147) GACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCTGTAGGAGA CCGTGTCACCATCACTTGCCGGGCAAGTCAGTGGATTGGGTCTCAGTTAT CTTGGTACCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCTGATCATGTGG CGTTCCTCGTTGCAAAGTGGGGTCCCATCACGTTTCAGTGGCAGTGGATC TGGGACAGATTTCACTCTCACCATCAGCAGTCTGCAACCTGAAGATTTTG CTACGTACTACTGTGCTCAGGGTTTGCGGCATCCTAAGACGTACGGCCAA GGGACCAAGGTGGAAAACAAATGG DOM7h-14-101. (SEQ ID NO: 148) GACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCTGTAGGAGA CCGTGTCACCATCACTTGCCGGGCAAGTCAGTGGATTGGGTCTCAGTTAT CTTGGTACCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCTGATCATGTGG CGTTCCGCGTTACAAAATGGGGTCCCATCACGTTTCAGTGGCAGTGGATC TGGGACAGATTTCACTCTCACCATCAGCAGTCTGCAACCTGAAGATTTTG CTACGTACTACTGTGCTCAGGGTTTGAGGCATCCTAAGACGTTCGGCCAA GGGACCAAGGTGGAAATCAAATGG DOM7h-14-109. (SEQ ID NO: 149) GACATCCAGATGACCCAGTCTCCATCCTCCCTGTTTGCATCTGTAGGAGA CCGTGTCACCATCACTTGCCGGGCAAGTCAGTGGATTGGGTCTCAGTTAT CTTGGTACCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCTGATCATGTGG CGTTCCTCGTTGCAAAGTGGGGTCCCATCACGTTTCAGTGGCAGTGGATC TGGGACAGATTTCACTCTCACCATCAGCAGTCTGCAACCTGAAGATTTTG CTACGTACTACTGTGCTCAGGGTTTGAGGAAACCTAAGACTTTCGGCCAA GGGACCAAGGTGAAAATCAAATGG DOM7h-14-115. (SEQ ID NO: 150)
GACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCTGTAGGAGA CCGTGTCACCATCACTTGCCGGGCAAGTCAGTGGATTGGGTCTCAGTTAT CTTGGTACCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCTGATCATGTGG CGTTCCGCGTTGCAAAGTGGGGTCCCATCACGTTTCAGTGGCAGTGGATC TGGGACAGATTTCACTCTCACCATCAGCAGTCTGCAACCTGAAGATTTTG CTACGTACTACTGTGCTCAGGGTTTGAGGCATCCTAAAACGTACGGCCAA GGGACCAAGGTGGAAATCAAATGG DOM7h-14-116. (SEQ ID NO: 151) GACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCTGTAGGAGA CCGTGTCACCATCACTTGCCGGGCAAGTCAGTGGATTGGGTCTCAGTTAT CTTGGTACCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCTGATCATGTGG CGTTCCGCGTTGCAAAGTGGGGTCCCATCACGTTTCAGTGGCAGTGGATC TGGGACAGATTTCACTCTCACCATCAGCAGTCTGCAACCTGAAGATTTTG CTACGTACTACTGTGCTCAGGGTTTGAGGTATCCTAAGACGTTCGGCCAA GGGACCAAGGTGGAAATCAAATGG DOM7h-14-119. (SEQ ID NO: 152) GACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCTGTAGGAGA CCGTGTCACCATCACTTGCCGGGCAAGTCAGTGGATTGGGTCTCAGTTAT CTTGGTACCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCTGATCATGTGG CGTTCCTCGTTGCAAAGTGGGGTCCCATCACGTTTCAGTGGCAGTGGATC TGGGACAGATTTCACTCTCACCATCAGCAGTCTGCAACCTGAAGATTTTG CTACGTACTACTGTGCTCAGGGTTTGCGGCATCCTAAGACGTACGGCCAA GGGACCAAGGTGGAAATCAAACGG DOM7h-14-120. (SEQ ID NO: 153) GACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCTGTAGGAGA CCGTGTCACCATCACTTGCCGGGCAAGTCAGTGGATTGGGTCTCAGTTAT CTTGGTACCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCTGATCATGTGG CGTTCCTCGTTGCAAAGTGGGGTCCCATCACGTTTCAGTGGCAGTGGATC TGGGACAGATTTCACTCTCACCATCAGCAGTCTGCAACCTGAAGATTTTG CTACGTACTACTGTGCTCAGGGTTTGCGGCATCCTAAGACGTACGGCCAA GGGACCAAGGTGGAAAACAAACGG DOM7h-14-121. (SEQ ID NO: 154) GACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCTGTAGGAGA CCGTGTCACCATCACTTGCCGGGCAAGTCAGTGGATTGGGTCTCAGTTAT CTTGGTACCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCTGATCATGTGG CGTTCCGCGTTGCAAAGTGGGGTCCCATCACGTTTCAGTGGCAGTGGATC TGGGACAGATTTCACTCTCACCATCAGCAGTCTGCAACCTGAAGATTTTG CTACGTACTACTGTGCTCAGGGTTTGAGGCATCCTAAGACGTTCGGCCAA GGGACCAAGGTGGAAATCAAACGG DOM7h-14-122. (SEQ ID NO: 155) GACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCTGTAGGAGA CCGTGTCACCATCACTTGCCGGGCAAGTCAGTGGATTGGGTCTCAGTTAT CTTGGTACCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCTGATCATGTGG CGTTCCTCGTTGCAAAGTGGGGTCCCATCACGTTTCAGTGGCAGTGGATC TGGGACAGATTTCACTCTCACCATCAGCAGTCTGCAACCTGAAGATTTTG CTACGTACTACTGTGCTCAGGGTTTGAGGCATCCTAAGACGTACGGCAAA GGGACCAAGGTGGAAATCAAACGG DOM7h-14-123. (SEQ ID NO: 156) GACATCCAGATGACCCAGTCTCCATCCTCCCTGTCTGCATCTGTAGGAGA CCGTGTCACCATCACTTGCCGGGCAAGTCAGTGGATTGGGTCTCAGTTAT CTTGGTACCAGCAGAAACCAGGGAAAGCCCCTAAGCTCCTGATCATGTGG CGTTCCTCGTTGCAAAGTGGGGTCCCATCACGTTTCAGTGGCAGTGGATC TGGGACAGATTTCACTCTCACCATCAGCAGTCTGCAACCTGAAGATTTTG CTACGTACTACTGTGCTCAGGGTTTGAGGCATCCTAAGACGTACGGCAAA GGGACCAAGGTGGAAAACAAACGG
Sequence CWU
1
1
1581108PRTArtificial SequenceAmino acid sequence identified using
molecular biology techniques. 1Asp Ile Gln Met Thr Gln Ser Pro Ser
Ser Leu Ser Ala Ser Val Gly1 5 10
15 Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Arg Pro Ile Gly
Thr Met 20 25 30
Leu Ser Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile 35
40 45 Leu Ala Phe Ser Arg
Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly 50 55
60 Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr
Ile Ser Ser Leu Gln Pro65 70 75
80 Glu Asp Phe Ala Thr Tyr Tyr Cys Ala Gln Ala Gly Thr His Pro
Thr 85 90 95 Thr
Phe Gly Gln Gly Thr Lys Val Glu Ile Lys Arg 100
105 2108PRTArtificial SequenceAmino acid sequence identified
using molecular biology techniques. 2Asp Ile Gln Met Thr Gln Ser Pro
Ser Ser Leu Ser Ala Ser Val Gly1 5 10
15 Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Arg Pro Ile
Gly Thr Thr 20 25 30
Leu Ser Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile
35 40 45 Leu Trp Asn Ser
Arg Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly 50 55
60 Ser Gly Ser Gly Thr Asp Phe Thr Leu
Thr Ile Ser Ser Leu Gln Pro65 70 75
80 Glu Asp Phe Ala Thr Tyr Tyr Cys Ala Gln Ala Gly Thr His
Pro Thr 85 90 95
Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys Arg 100
105 3324DNAArtificial SequenceNucleic acid sequence
identified using molecular biology techniques. 3gacatccaga
tgacccagtc tccatcctcc ctgtctgcat ctgtaggaga ccgtgtcacc 60atcacttgcc
gggcaagtcg tccgattggg acgatgttaa gttggtacca gcagaaacca 120gggaaagccc
ctaagctcct gatccttgct ttttcccgtt tgcaaagtgg ggtcccatca 180cgtttcagtg
gcagtggatc tgggacagat ttcactctca ccatcagcag tctgcaacct 240gaagattttg
ctacgtacta ctgcgcgcag gctgggacgc atcctacgac gttcggccaa 300gggaccaagg
tggaaatcaa acgg
3244324DNAArtificial SequenceNucleic acid sequence identified using
molecular biology techniques. 4gacatccaga tgacccagtc tccatcctcc
ctgtctgcat ctgtaggaga ccgtgtcacc 60atcacttgcc gggcaagtcg tccgattggg
acgacgttaa gttggtacca gcagaaacca 120gggaaagccc ctaagctcct gatcctttgg
aattcccgtt tgcaaagtgg ggtcccatca 180cgtttcagtg gcagtggatc tgggacagat
ttcactctca ccatcagcag tctgcaacct 240gaagattttg ctacgtacta ctgtgcgcag
gctgggacgc atcctacgac gttcggccaa 300gggaccaagg tggaaatcaa acgg
3245163PRTmus musculus 5His Gly Glu Gly
Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Glu Glu1 5
10 15 Glu Ala Val Arg Leu Phe Ile Glu Trp
Leu Lys Asn Gly Gly Pro Ser 20 25
30 Ser Gly Ala Pro Pro Pro Ser Gly Gly Gly Gly Gly Ser Gly
Gly Gly 35 40 45
Gly Ser Gly Gly Gly Gly Ser Asp Ile Gln Met Thr Gln Ser Pro Ser 50
55 60 Ser Leu Ser Ala Ser
Val Gly Asp Arg Val Thr Ile Thr Cys Arg Ala65 70
75 80 Ser Gln Trp Ile Gly Ser Gln Leu Ser Trp
Tyr Gln Gln Lys Pro Gly 85 90
95 Lys Ala Pro Lys Leu Leu Ile Met Trp Arg Ser Ser Leu Gln Ser
Gly 100 105 110 Val
Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu 115
120 125 Thr Ile Ser Ser Leu Gln
Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Ala 130 135
140 Gln Gly Ala Ala Leu Pro Arg Thr Phe Gly Gln
Gly Thr Lys Val Glu145 150 155
160 Ile Lys Arg6489DNAArtificial SequenceNucleic acid sequence
identified using molecular biology techniques. 6catggtgaag
gaacatttac cagtgacttg tcaaaacaga tggaagagga ggcagtgcgg 60ttatttattg
agtggcttaa gaacggagga ccaagtagcg gggcacctcc gccatcgggt 120ggtggaggcg
gttcaggcgg aggtggcagc ggcggtggcg ggtcggacat ccagatgacc 180cagtctccat
cctccctgtc tgcatctgta ggagaccgtg tcaccatcac ttgccgggca 240agtcagtgga
ttgggtctca gttatcttgg taccagcaga aaccagggaa agcccctaag 300ctcctgatca
tgtggcgttc ctcgttgcaa agtggggtcc catcacgttt cagtggcagt 360ggatctggga
cagatttcac tctcaccatc agcagtctgc aacctgaaga ttttgctacg 420tactactgtg
ctcagggtgc ggcgttgcct aggacgttcg gccaagggac caaggtggaa 480atcaaacgg
4897163PRTArtificial SequenceAmino acid sequence identified using
molecular biology techniques. 7His Gly Glu Gly Thr Phe Thr Ser Asp
Leu Ser Lys Gln Met Glu Glu1 5 10
15 Glu Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Gly
Pro Ser 20 25 30
Ser Gly Ala Pro Pro Pro Ser Gly Gly Gly Gly Gly Ser Gly Gly Gly 35
40 45 Gly Ser Gly Gly Gly
Gly Ser Asp Ile Gln Met Thr Gln Ser Pro Ser 50 55
60 Ser Leu Ser Ala Ser Val Gly Asp Arg Val
Thr Ile Thr Cys Arg Ala65 70 75
80 Ser Gln Trp Ile Gly Ser Gln Leu Ser Trp Tyr Gln Gln Lys Pro
Gly 85 90 95 Lys
Ala Pro Lys Leu Leu Ile Met Trp Arg Ser Ser Leu Gln Ser Gly
100 105 110 Val Pro Ser Arg Phe
Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu 115
120 125 Thr Ile Ser Ser Leu Gln Pro Glu Asp
Phe Ala Thr Tyr Tyr Cys Ala 130 135
140 Gln Gly Leu Arg His Pro Lys Thr Phe Gly Gln Gly Thr
Lys Val Glu145 150 155
160 Ile Lys Arg8489DNAArtificial SequenceNucleic acid sequence identified
using molecular biology techniques. 8catggtgaag gaacatttac
cagtgacttg tcaaaacaga tggaagagga ggcagtgcgg 60ttatttattg agtggcttaa
gaacggagga ccaagtagcg gggcacctcc gccatcgggt 120ggtggaggcg gttcaggcgg
aggtggcagc ggcggtggcg ggtcggacat ccagatgacc 180cagtctccat cctccctgtc
tgcatctgta ggagaccgtg tcaccatcac ttgccgggca 240agtcagtgga ttgggtctca
gttatcttgg taccagcaga aaccagggaa agcccctaag 300ctcctgatca tgtggcgttc
ctcgttgcaa agtggggtcc catcacgttt cagtggcagt 360ggatctggga cagatttcac
tctcaccatc agcagtctgc aacctgaaga ttttgctacg 420tactactgtg ctcagggttt
gaggcatcct aagacgttcg gccaagggac caaggtggaa 480atcaaacgg
4899163PRTArtificial
SequenceAmino acid sequence identified using molecular biology
techniques. 9His Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Glu
Glu1 5 10 15 Glu
Ala Val Arg Leu Phe Ile Glu Trp Leu Lys Asn Gly Gly Pro Ser 20
25 30 Ser Gly Ala Pro Pro Pro
Ser Gly Gly Gly Gly Gly Ser Gly Gly Gly 35 40
45 Gly Ser Gly Gly Gly Gly Ser Asp Ile Gln Met
Thr Gln Ser Pro Ser 50 55 60
Ser Leu Ser Ala Ser Val Gly Asp Arg Val Thr Ile Thr Cys Arg
Ala65 70 75 80 Ser
Arg Pro Ile Gly Thr Thr Leu Ser Trp Tyr Gln Gln Lys Pro Gly
85 90 95 Lys Ala Pro Lys Leu Leu
Ile Trp Phe Gly Ser Arg Leu Gln Ser Gly 100
105 110 Val Pro Ser Arg Phe Ser Gly Ser Gly Ser
Gly Thr Asp Phe Thr Leu 115 120
125 Thr Ile Ser Ser Leu Gln Pro Glu Asp Phe Ala Thr Tyr Tyr
Cys Ala 130 135 140
Gln Ala Gly Thr His Pro Thr Thr Phe Gly Gln Gly Thr Lys Val Glu145
150 155 160 Ile Lys
Arg10489DNAArtificial SequenceNucleic acid sequence identified using
molecular biology techniques. 10catggtgaag gaacatttac cagtgacttg
tcaaaacaga tggaagagga ggcagtgcgg 60ttatttattg agtggcttaa gaacggagga
ccaagtagcg gggcacctcc gccatcgggt 120ggtggaggcg gttcaggcgg aggtggcagc
ggcggtggcg ggtcggacat ccagatgacc 180cagtctccat cctccctgtc tgcatctgta
ggagaccgtg tcaccatcac ttgccgggca 240agtcgtccga ttgggacgac gttaagttgg
taccagcaga aaccagggaa agcccctaag 300ctcctgatct ggtttggttc ccggttgcaa
agtggggtcc catcacgttt cagtggcagt 360ggatctggga cagatttcac tctcaccatc
agcagtctgc aacctgaaga ttttgctacg 420tactactgtg cgcaggctgg gacgcatcct
acgacgttcg gccaagggac caaggtggaa 480atcaaacgg
48911163PRTArtificial SequenceAmino
acid sequence identified using molecular biology techniques. 11His
Gly Glu Gly Thr Phe Thr Ser Asp Leu Ser Lys Gln Met Glu Glu1
5 10 15 Glu Ala Val Arg Leu Phe
Ile Glu Trp Leu Lys Asn Gly Gly Pro Ser 20 25
30 Ser Gly Ala Pro Pro Pro Ser Gly Gly Gly Gly
Gly Ser Gly Gly Gly 35 40 45
Gly Ser Gly Gly Gly Gly Ser Asp Ile Gln Met Thr Gln Ser Pro Ser
50 55 60 Ser Leu Ser
Ala Ser Val Gly Asp Arg Val Thr Ile Thr Cys Arg Ala65 70
75 80 Ser Arg Pro Ile Gly Thr Met Leu
Ser Trp Tyr Gln Gln Lys Pro Gly 85 90
95 Lys Ala Pro Lys Leu Leu Ile Leu Ala Phe Ser Arg Leu
Gln Ser Gly 100 105 110
Val Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu
115 120 125 Thr Ile Ser Ser
Leu Gln Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Ala 130
135 140 Gln Ala Gly Thr His Pro Thr Thr
Phe Gly Gln Gly Thr Lys Val Glu145 150
155 160 Ile Lys Arg12489DNAArtificial SequenceNucleic
acid sequence identified using molecular biology techniques.
12catggtgaag gaacatttac cagtgacttg tcaaaacaga tggaagagga ggcagtgcgg
60ttatttattg agtggcttaa gaacggagga ccaagtagcg gggcacctcc gccatcgggt
120ggtggaggcg gttcaggcgg aggtggcagc ggcggtggcg ggtcggacat ccagatgacc
180cagtctccat cctccctgtc tgcatctgta ggagaccgtg tcaccatcac ttgccgggca
240agtcgtccga ttgggacgat gttaagttgg taccagcaga aaccagggaa agcccctaag
300ctcctgatcc ttgctttttc ccgtttgcaa agtggggtcc catcacgttt cagtggcagt
360ggatctggga cagatttcac tctcaccatc agcagtctgc aacctgaaga ttttgctacg
420tactactgcg cgcaggctgg gacgcatcct acgacgttcg gccaagggac caaggtggaa
480atcaaacgg
48913114PRTArtificial SequenceAmino acid sequence identified using
molecular biology techniques. 13Asp Ile Gln Met Thr Gln Ser Pro Ser
Ser Leu Ser Ala Ser Val Gly1 5 10
15 Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Trp Ile Gly
Ser Gln 20 25 30
Leu Ser Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile 35
40 45 Met Trp Arg Ser Ser
Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly 50 55
60 Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr
Ile Ser Ser Leu Gln Pro65 70 75
80 Glu Asp Phe Ala Thr Tyr Tyr Cys Ala Gln Gly Leu Arg His Pro
Lys 85 90 95 Thr
Phe Gly Gln Gly Thr Lys Val Glu Ile Lys Arg Gly Gly Gly Gly
100 105 110 Ser
Cys14345DNAArtificial SequenceNucleic acid sequence identified using
molecular biology techniques. 14gacatccaga tgacccagtc tccatcctcc
ctgtctgcat ctgtaggaga ccgtgtcacc 60atcacttgcc gggcaagtca gtggattggg
tctcagttat cttggtacca gcagaaacca 120gggaaagccc ctaagctcct gatcatgtgg
cgttcctcgt tgcaaagtgg ggtcccatca 180cgtttcagtg gcagtggatc tgggacagat
ttcactctca ccatcagcag tctgcaacct 240gaagattttg ctacgtacta ctgtgctcag
ggtttgaggc atcctaagac gttcggccaa 300gggaccaagg tggaaatcaa acggggtggc
ggagggggtt cctgt 34515115PRTArtificial SequenceAmino
acid sequence identified using molecular biology techniques. 15Asp
Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly1
5 10 15 Asp Arg Val Thr Ile Thr
Cys Arg Ala Ser Gln Trp Ile Gly Ser Gln 20 25
30 Leu Ser Trp Tyr Gln Gln Lys Pro Gly Lys Ala
Pro Lys Leu Leu Ile 35 40 45
Met Trp Arg Ser Ser Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly
50 55 60 Ser Gly Ser
Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro65 70
75 80 Glu Asp Phe Ala Thr Tyr Tyr Cys
Ala Gln Gly Leu Arg His Pro Lys 85 90
95 Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys Arg Thr
Val Ala Ala 100 105 110
Pro Ser Cys 115 16345DNAArtificial SequenceNucleic acid sequence
identified using molecular biology techniques. 16gacatccaga
tgacccagtc tccatcctcc ctgtctgcat ctgtaggaga ccgtgtcacc 60atcacttgcc
gggcaagtca gtggattggg tctcagttat cttggtacca gcagaaacca 120gggaaagccc
ctaagctcct gatcatgtgg cgttcctcgt tgcaaagtgg ggtcccatca 180cgtttcagtg
gcagtggatc tgggacagat ttcactctca ccatcagcag tctgcaacct 240gaagattttg
ctacgtacta ctgtgctcag ggtttgaggc atcctaagac gttcggccaa 300gggaccaagg
tggaaatcaa acggaccgtc gctgctccat cttgt 34517235PRTmus
musculus 17Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly
Gly1 5 10 15 Ser
Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Asn Arg Tyr 20
25 30 Ser Met Gly Trp Leu Arg
Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40
45 Ser Arg Ile Asp Ser Tyr Gly Arg Gly Thr Tyr
Tyr Glu Asp Pro Val 50 55 60
Lys Gly Arg Phe Ser Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu
Tyr65 70 75 80 Leu
Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95 Ala Lys Ile Ser Gln Phe
Gly Ser Asn Ala Phe Asp Tyr Trp Gly Gln 100
105 110 Gly Thr Gln Val Thr Val Ser Ser Ala Ser
Thr Ser Gly Pro Ser Asp 115 120
125 Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val
Gly Asp 130 135 140
Arg Val Thr Ile Thr Cys Arg Ala Ser Arg Pro Ile Gly Thr Thr Leu145
150 155 160 Ser Trp Tyr Gln Gln
Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile Trp 165
170 175 Phe Gly Ser Arg Leu Gln Ser Gly Val Pro
Ser Arg Phe Ser Gly Ser 180 185
190 Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro
Glu 195 200 205 Asp
Phe Ala Thr Tyr Tyr Cys Ala Gln Ala Gly Thr His Pro Thr Thr 210
215 220 Phe Gly Gln Gly Thr Lys
Val Glu Ile Lys Arg225 230 235
18249PRTArtificial SequenceAmino acid plus myc tag 18Glu Val Gln Leu Leu
Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly1 5
10 15 Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly
Phe Thr Phe Asn Arg Tyr 20 25
30 Ser Met Gly Trp Leu Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp
Val 35 40 45 Ser
Arg Ile Asp Ser Tyr Gly Arg Gly Thr Tyr Tyr Glu Asp Pro Val 50
55 60 Lys Gly Arg Phe Ser Ile
Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr65 70
75 80 Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr
Ala Val Tyr Tyr Cys 85 90
95 Ala Lys Ile Ser Gln Phe Gly Ser Asn Ala Phe Asp Tyr Trp Gly Gln
100 105 110 Gly Thr Gln
Val Thr Val Ser Ser Ala Ser Thr Ser Gly Pro Ser Asp 115
120 125 Ile Gln Met Thr Gln Ser Pro Ser
Ser Leu Ser Ala Ser Val Gly Asp 130 135
140 Arg Val Thr Ile Thr Cys Arg Ala Ser Arg Pro Ile Gly
Thr Thr Leu145 150 155
160 Ser Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile Trp
165 170 175 Phe Gly Ser Arg
Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly Ser 180
185 190 Gly Ser Gly Thr Asp Phe Thr Leu Thr
Ile Ser Ser Leu Gln Pro Glu 195 200
205 Asp Phe Ala Thr Tyr Tyr Cys Ala Gln Ala Gly Thr His Pro
Thr Thr 210 215 220
Phe Gly Gln Gly Thr Lys Val Glu Ile Lys Arg Ala Ala Ala Glu Gln225
230 235 240 Lys Leu Ile Ser Glu
Glu Asp Leu Asn 245 19705DNAArtificial
SequenceNucleic acid sequence identified using molecular biology
techniques. 19gaggtgcagc tgttggagtc tgggggaggc ttggtacagc ctggggggtc
cctgcgtctc 60tcctgtgcag cctccggatt cacctttaat aggtatagta tggggtggct
ccgccaggct 120ccagggaagg gtctagagtg ggtctcacgg attgattctt atggtcgtgg
tacatactac 180gaagaccccg tgaagggccg gttcagcatc tcccgcgaca attccaagaa
cacgctgtat 240ctgcaaatga acagcctgcg tgccgaggac accgccgtat attactgtgc
gaaaatttct 300cagtttgggt caaatgcgtt tgactactgg ggtcagggaa cccaggtcac
cgtctcgagc 360gctagcacca gtggtccatc ggacatccag atgacccagt ctccatcctc
cctgtctgca 420tctgtaggag accgtgtcac catcacttgc cgggcaagtc gtccgattgg
gacgacgtta 480agttggtacc agcagaaacc agggaaagcc cctaagctcc tgatctggtt
tggttcccgg 540ttgcaaagtg gggtcccatc acgtttcagt ggcagtggat ctgggacaga
tttcactctc 600accatcagca gtctgcaacc tgaagatttt gctacgtact actgtgcgca
ggctgggacg 660catcctacga cgttcggcca agggaccaag gtggaaatca aacgg
70520750DNAArtificial SequenceNucleic acid sequence
identified using molecular biology techniques. 20gaggtgcagc
tgttggagtc tgggggaggc ttggtacagc ctggggggtc cctgcgtctc 60tcctgtgcag
cctccggatt cacctttaat aggtatagta tggggtggct ccgccaggct 120ccagggaagg
gtctagagtg ggtctcacgg attgattctt atggtcgtgg tacatactac 180gaagaccccg
tgaagggccg gttcagcatc tcccgcgaca attccaagaa cacgctgtat 240ctgcaaatga
acagcctgcg tgccgaggac accgccgtat attactgtgc gaaaatttct 300cagtttgggt
caaatgcgtt tgactactgg ggtcagggaa cccaggtcac cgtctcgagc 360gctagcacca
gtggtccatc ggacatccag atgacccagt ctccatcctc cctgtctgca 420tctgtaggag
accgtgtcac catcacttgc cgggcaagtc gtccgattgg gacgacgtta 480agttggtacc
agcagaaacc agggaaagcc cctaagctcc tgatctggtt tggttcccgg 540ttgcaaagtg
gggtcccatc acgtttcagt ggcagtggat ctgggacaga tttcactctc 600accatcagca
gtctgcaacc tgaagatttt gctacgtact actgtgcgca ggctgggacg 660catcctacga
cgttcggcca agggaccaag gtggaaatca aacgggcggc cgcagaacaa 720aaactcatct
cagaagagga tctgaattaa
75021235PRTArtificial SequenceAmino acid sequence identified using
molecular biology techniques. 21Glu Val Gln Leu Leu Glu Ser Gly Gly
Gly Leu Val Gln Pro Gly Gly1 5 10
15 Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Asn
Arg Tyr 20 25 30
Ser Met Gly Trp Leu Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35
40 45 Ser Arg Ile Asp Ser
Tyr Gly Arg Gly Thr Tyr Tyr Glu Asp Pro Val 50 55
60 Lys Gly Arg Phe Ser Ile Ser Arg Asp Asn
Ser Lys Asn Thr Leu Tyr65 70 75
80 Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr
Cys 85 90 95 Ala
Lys Ile Ser Gln Phe Gly Ser Asn Ala Phe Asp Tyr Trp Gly Gln
100 105 110 Gly Thr Gln Val Thr
Val Ser Ser Ala Ser Thr Ser Gly Pro Ser Asp 115
120 125 Ile Gln Met Thr Gln Ser Pro Ser Ser
Leu Ser Ala Ser Val Gly Asp 130 135
140 Arg Val Thr Ile Thr Cys Arg Ala Ser Arg Pro Ile Gly
Thr Met Leu145 150 155
160 Ser Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile Leu
165 170 175 Ala Phe Ser Arg
Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly Ser 180
185 190 Gly Ser Gly Thr Asp Phe Thr Leu Thr
Ile Ser Ser Leu Gln Pro Glu 195 200
205 Asp Phe Ala Thr Tyr Tyr Cys Ala Gln Ala Gly Thr His Pro
Thr Thr 210 215 220
Phe Gly Gln Gly Thr Lys Val Glu Ile Lys Arg225 230
235 22249PRTArtificial SequenceAmino acid plus nucleotide plus
myc tag 22Glu Val Gln Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly
Gly1 5 10 15 Ser
Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Asn Arg Tyr 20
25 30 Ser Met Gly Trp Leu Arg
Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40
45 Ser Arg Ile Asp Ser Tyr Gly Arg Gly Thr Tyr
Tyr Glu Asp Pro Val 50 55 60
Lys Gly Arg Phe Ser Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu
Tyr65 70 75 80 Leu
Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys
85 90 95 Ala Lys Ile Ser Gln Phe
Gly Ser Asn Ala Phe Asp Tyr Trp Gly Gln 100
105 110 Gly Thr Gln Val Thr Val Ser Ser Ala Ser
Thr Ser Gly Pro Ser Asp 115 120
125 Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val
Gly Asp 130 135 140
Arg Val Thr Ile Thr Cys Arg Ala Ser Arg Pro Ile Gly Thr Met Leu145
150 155 160 Ser Trp Tyr Gln Gln
Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile Leu 165
170 175 Ala Phe Ser Arg Leu Gln Ser Gly Val Pro
Ser Arg Phe Ser Gly Ser 180 185
190 Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro
Glu 195 200 205 Asp
Phe Ala Thr Tyr Tyr Cys Ala Gln Ala Gly Thr His Pro Thr Thr 210
215 220 Phe Gly Gln Gly Thr Lys
Val Glu Ile Lys Arg Ala Ala Ala Glu Gln225 230
235 240 Lys Leu Ile Ser Glu Glu Asp Leu Asn
245 23705DNAArtificial SequenceNucleic acid
sequence identified using molecular biology techniques. 23gaggtgcagc
tgttggagtc tgggggaggc ttggtacagc ctggggggtc cctgcgtctc 60tcctgtgcag
cctccggatt cacctttaat aggtatagta tggggtggct ccgccaggct 120ccagggaagg
gtctagagtg ggtctcacgg attgattctt atggtcgtgg tacatactac 180gaagaccccg
tgaagggccg gttcagcatc tcccgcgaca attccaagaa cacgctgtat 240ctgcaaatga
acagcctgcg tgccgaggac accgccgtat attactgtgc gaaaatttct 300cagtttgggt
caaatgcgtt tgactactgg ggtcagggaa cccaggtcac cgtctcgagc 360gctagcacca
gtggtccatc ggacatccag atgacccagt ctccatcctc cctgtctgca 420tctgtaggag
accgtgtcac catcacttgc cgggcaagtc gtccgattgg gacgatgtta 480agttggtacc
agcagaaacc agggaaagcc cctaagctcc tgatccttgc tttttcccgt 540ttgcaaagtg
gggtcccatc acgtttcagt ggcagtggat ctgggacaga tttcactctc 600accatcagca
gtctgcaacc tgaagatttt gctacgtact actgcgcgca ggctgggacg 660catcctacga
cgttcggcca agggaccaag gtggaaatca aacgg
70524750DNAArtificial SequenceNucleic acid sequence identified using
molecular biology techniques. 24gaggtgcagc tgttggagtc tgggggaggc
ttggtacagc ctggggggtc cctgcgtctc 60tcctgtgcag cctccggatt cacctttaat
aggtatagta tggggtggct ccgccaggct 120ccagggaagg gtctagagtg ggtctcacgg
attgattctt atggtcgtgg tacatactac 180gaagaccccg tgaagggccg gttcagcatc
tcccgcgaca attccaagaa cacgctgtat 240ctgcaaatga acagcctgcg tgccgaggac
accgccgtat attactgtgc gaaaatttct 300cagtttgggt caaatgcgtt tgactactgg
ggtcagggaa cccaggtcac cgtctcgagc 360gctagcacca gtggtccatc ggacatccag
atgacccagt ctccatcctc cctgtctgca 420tctgtaggag accgtgtcac catcacttgc
cgggcaagtc gtccgattgg gacgatgtta 480agttggtacc agcagaaacc agggaaagcc
cctaagctcc tgatccttgc tttttcccgt 540ttgcaaagtg gggtcccatc acgtttcagt
ggcagtggat ctgggacaga tttcactctc 600accatcagca gtctgcaacc tgaagatttt
gctacgtact actgcgcgca ggctgggacg 660catcctacga cgttcggcca agggaccaag
gtggaaatca aacgggcggc cgcagaacaa 720aaactcatct cagaagagga tctgaattaa
750259PRTArtificial SequenceCDR 1 amino
acid sequence identified using molecular biology techniques. 25Ser
Gln Ser Ile Ser Ser Tyr Leu Asn1 5
268PRTArtificial SequenceCDR 2 amino acid sequence identified using
molecular biology techniques. 26Tyr Ala Ala Ser Ser Leu Gln Ser1
5 279PRTArtificial SequenceCDR 3 amino acid sequence
identified using molecular biology techniques. 27Gln Gln Ser Tyr Ser
Thr Pro Asn Thr1 5 289PRTArtificial
SequenceCDR 1 amino acid sequence identified using molecular biology
techniques. 28Ser Arg Pro Ile Gly Thr Thr Leu Ser1 5
298PRTArtificial SequenceCDR 2 amino acid sequence identified
using molecular biology techniques. 29Trp Phe Gly Ser Arg Leu Gln
Ser1 5 309PRTArtificial SequenceCDR 3 amino
acid sequence identified using molecular biology techniques. 30Ala
Gln Ala Gly Thr His Pro Thr Thr1 5
319PRTArtificial SequenceCDR 1 amino acid sequence identified using
molecular biology techniques. 31Ser Arg Pro Ile Gly Thr Met Leu Ser1
5 328PRTArtificial SequenceCDR 2 amino acid
sequence identified using molecular biology techniques. 32Leu Ala
Phe Ser Arg Leu Gln Ser1 5 339PRTArtificial
SequenceCDR 3 amino acid sequence identified using molecular biology
techniques. 33Ala Gln Ala Gly Thr His Pro Thr Thr1 5
349PRTArtificial SequenceCDR 1 amino acid sequence identified
using molecular biology techniques. 34Ser Arg Pro Ile Gly Thr Thr
Leu Ser1 5 358PRTArtificial SequenceCDR 2
amino acid sequence identified using molecular biology techniques.
35Leu Trp Phe Ser Arg Leu Gln Ser1 5
369PRTArtificial SequenceCDR 3 amino acid sequence identified using
molecular biology techniques. 36Ala Gln Ala Gly Thr His Pro Thr Thr1
5 379PRTArtificial SequenceCDR 1 amino acid
sequence identified using molecular biology techniques. 37Ser Gln
Trp Ile Gly Ser Gln Leu Ser1 5
388PRTArtificial SequenceCDR 2 amino acid sequence identified using
molecular biology techniques. 38Met Trp Arg Ser Ser Leu Gln Ser1
5 399PRTArtificial SequenceCDR 3 amino acid sequence
identified using molecular biology techniques. 39Ala Gln Gly Ala Ala
Leu Pro Arg Thr1 5 409PRTArtificial
SequenceCDR 1 amino acid sequence identified using molecular biology
techniques. 40Ser Gln Trp Ile Gly Ser Gln Leu Ser1 5
418PRTArtificial SequenceCDR 2 amino acid sequence identified
using molecular biology techniques. 41Met Trp Arg Ser Ser Leu Gln
Ser1 5 429PRTArtificial SequenceCDR 3 amino
acid sequence identified using molecular biology techniques. 42Ala
Gln Gly Leu Arg His Pro Lys Thr1 5
43165PRTArtificial SequenceInterferon alpha 2b amino acid sequence
identified using molecular biology techniques. 43Cys Asp Leu Pro Gln Thr
His Ser Leu Gly Ser Arg Arg Thr Leu Met1 5
10 15 Leu Leu Ala Gln Met Arg Arg Ile Ser Leu Phe
Ser Cys Leu Lys Asp 20 25 30
Arg His Asp Phe Gly Phe Pro Gln Glu Glu Phe Gly Asn Gln Phe Gln
35 40 45 Lys Ala Glu
Thr Ile Pro Val Leu His Glu Met Ile Gln Gln Ile Phe 50
55 60 Asn Leu Phe Ser Thr Lys Asp Ser
Ser Ala Ala Trp Asp Glu Thr Leu65 70 75
80 Leu Asp Lys Phe Tyr Thr Glu Leu Tyr Gln Gln Leu Asn
Asp Leu Glu 85 90 95
Ala Cys Val Ile Gln Gly Val Gly Val Thr Glu Thr Pro Leu Met Lys
100 105 110 Glu Asp Ser Ile Leu
Ala Val Arg Lys Tyr Phe Gln Arg Ile Thr Leu 115
120 125 Tyr Leu Lys Glu Lys Lys Tyr Ser Pro
Cys Ala Trp Glu Val Val Arg 130 135
140 Ala Glu Ile Met Arg Ser Phe Ser Leu Ser Thr Asn Leu
Gln Glu Ser145 150 155
160 Leu Arg Ser Lys Glu 165 44495DNAArtificial
SequenceInterferon alpha 2b nucleic acid sequence identified using
molecular biology techniques. 44tgtgatctgc ctcaaaccca cagcctgggt
agcaggagga ccttgatgct cctggcacag 60atgaggagaa tctctctttt ctcctgcttg
aaggacagac atgactttgg atttccccag 120gaggagtttg gcaaccagtt ccaaaaggct
gaaaccatcc ctgtcctcca tgagatgatc 180cagcagatct tcaatctctt cagcacaaag
gactcatctg ctgcttggga tgagaccctc 240ctagacaaat tctacactga actctaccag
cagctgaatg acctggaagc ctgtgtgata 300cagggggtgg gggtgacaga gactcccctg
atgaaggagg actccattct ggctgtgagg 360aaatacttcc aaagaatcac tctctatctg
aaagagaaga aatacagccc ttgtgcctgg 420gaggttgtca gagcagaaat catgagatct
ttttctttgt caacaaactt gcaagaaagt 480ttaagaagta aggaa
4954525DNAArtificial SequenceNucleic
acid sequence identified using molecular biology techniques.
45gcccggatcc accggctgtg atctg
254630DNAArtificial SequenceNucleic acid sequence identified using
molecular biology techniques. 46ggaggatgga gactgggtca tctggatgtc
304730DNAArtificial SequenceNucleic acid
sequence identified using molecular biology techniques. 47gacatccaga
tgacccagtc tccatcctcc
304882DNAArtificial SequenceNucleic acid sequence identified using
molecular biology techniques. 48gcgcaagctt ttattaattc agatcctctt
ctgagatgag tttttgttct gcggccgccc 60gtttgatttc caccttggtc cc
824925DNAArtificial SequenceNucleic
acid sequence identified using molecular biology techniques.
49gcccggatcc accggctgtg atctg
255082DNAArtificial SequenceNucleic acid sequence identified using
molecular biology techniques. 50gcgcaagctt ttattaattc agatcctctt
ctgagatgag tttttgttct gcggccgccc 60gtttgatttc caccttggtc cc
825120PRTArtificial SequenceAmino acid
sequence identified using molecular biology techniques. 51Met Glu
Thr Asp Thr Leu Leu Leu Trp Val Leu Leu Leu Trp Val Pro1 5
10 15 Gly Ser Thr Gly
20 5261DNAArtificial SequenceNucleic acid sequence identified using
molecular biology techniques. 52atggagaccg acaccctgct gctgtgggtg
ctgctgctgt gggtgcccgg atccaccggg 60c
6153293PRTArtificial SequenceAmino
acid sequence identified using molecular biology techniques. 53Cys
Asp Leu Pro Gln Thr His Ser Leu Gly Ser Arg Arg Thr Leu Met1
5 10 15 Leu Leu Ala Gln Met Arg
Arg Ile Ser Leu Phe Ser Cys Leu Lys Asp 20 25
30 Arg His Asp Phe Gly Phe Pro Gln Glu Glu Phe
Gly Asn Gln Phe Gln 35 40 45
Lys Ala Glu Thr Ile Pro Val Leu His Glu Met Ile Gln Gln Ile Phe
50 55 60 Asn Leu Phe
Ser Thr Lys Asp Ser Ser Ala Ala Trp Asp Glu Thr Leu65 70
75 80 Leu Asp Lys Phe Tyr Thr Glu Leu
Tyr Gln Gln Leu Asn Asp Leu Glu 85 90
95 Ala Cys Val Ile Gln Gly Val Gly Val Thr Glu Thr Pro
Leu Met Lys 100 105 110
Glu Asp Ser Ile Leu Ala Val Arg Lys Tyr Phe Gln Arg Ile Thr Leu
115 120 125 Tyr Leu Lys Glu
Lys Lys Tyr Ser Pro Cys Ala Trp Glu Val Val Arg 130
135 140 Ala Glu Ile Met Arg Ser Phe Ser
Leu Ser Thr Asn Leu Gln Glu Ser145 150
155 160 Leu Arg Ser Lys Glu Thr Val Ala Ala Pro Ser Asp
Ile Gln Met Thr 165 170
175 Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly Asp Arg Val Thr Ile
180 185 190 Thr Cys Arg
Ala Ser Gln Trp Ile Gly Ser Gln Leu Ser Trp Tyr Gln 195
200 205 Gln Lys Pro Gly Lys Ala Pro Lys
Leu Leu Ile Met Trp Arg Ser Ser 210 215
220 Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly Ser Gly
Ser Gly Thr225 230 235
240 Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro Glu Asp Phe Ala Thr
245 250 255 Tyr Tyr Cys Ala
Gln Gly Ala Ala Leu Pro Arg Thr Phe Gly Gln Gly 260
265 270 Thr Lys Val Glu Ile Lys Arg Ala Ala
Ala Glu Gln Lys Leu Ile Ser 275 280
285 Glu Glu Asp Leu Asn 290
54882DNAArtificial SequenceNucleic acid sequence identified using
molecular biology techniques. 54tgcgacttgc cacagacaca tagtttggga
tcaagaagaa cattgatgtt attagcacaa 60atgcgtagaa tttctttgtt ctcttgtcta
aaggaccgtc acgacttcgg attccctcag 120gaagagtttg gaaaccaatt ccaaaaagca
gaaactattc ctgtcttgca cgaaatgatc 180cagcaaatat tcaatttgtt ttctacaaag
gactcatcag ccgcttggga tgaaactctg 240ttagataaat tctacactga actatatcaa
caactgaacg atctagaggc ttgcgttatt 300cagggtgtag gagttactga aactccccta
atgaaagaag attcaattct agccgttaga 360aaatactttc agcgtatcac attgtattta
aaggaaaaga aatactcccc atgtgcatgg 420gaggtggtta gagcagaaat tatgaggtcc
ttctctcttt ctacgaattt gcaagaatct 480ttgagatcta aggaaaccgt cgctgctcca
tctgacatcc agatgaccca gtctccatcc 540tccctgtctg catctgtagg agaccgtgtc
accatcactt gccgggcaag tcagtggatt 600gggtctcagt tatcttggta ccagcagaaa
ccagggaaag cccctaagct cctgatcatg 660tggcgttcct cgttgcaaag tggggtccca
tcacgtttca gtggcagtgg atctgggaca 720gatttcactc tcaccatcag cagtctgcaa
cctgaagatt ttgctacgta ctactgtgct 780cagggtgcgg cgttgcctag gacgttcggc
caagggacca aggtggaaat caaacgggcg 840gccgcagaac aaaaactcat ctcagaagag
gatctgaatt aa 88255279PRTArtificial SequenceAmino
acid sequence identified using molecular biology techniques. 55Cys
Asp Leu Pro Gln Thr His Ser Leu Gly Ser Arg Arg Thr Leu Met1
5 10 15 Leu Leu Ala Gln Met Arg
Arg Ile Ser Leu Phe Ser Cys Leu Lys Asp 20 25
30 Arg His Asp Phe Gly Phe Pro Gln Glu Glu Phe
Gly Asn Gln Phe Gln 35 40 45
Lys Ala Glu Thr Ile Pro Val Leu His Glu Met Ile Gln Gln Ile Phe
50 55 60 Asn Leu Phe
Ser Thr Lys Asp Ser Ser Ala Ala Trp Asp Glu Thr Leu65 70
75 80 Leu Asp Lys Phe Tyr Thr Glu Leu
Tyr Gln Gln Leu Asn Asp Leu Glu 85 90
95 Ala Cys Val Ile Gln Gly Val Gly Val Thr Glu Thr Pro
Leu Met Lys 100 105 110
Glu Asp Ser Ile Leu Ala Val Arg Lys Tyr Phe Gln Arg Ile Thr Leu
115 120 125 Tyr Leu Lys Glu
Lys Lys Tyr Ser Pro Cys Ala Trp Glu Val Val Arg 130
135 140 Ala Glu Ile Met Arg Ser Phe Ser
Leu Ser Thr Asn Leu Gln Glu Ser145 150
155 160 Leu Arg Ser Lys Glu Thr Val Ala Ala Pro Ser Asp
Ile Gln Met Thr 165 170
175 Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly Asp Arg Val Thr Ile
180 185 190 Thr Cys Arg
Ala Ser Gln Trp Ile Gly Ser Gln Leu Ser Trp Tyr Gln 195
200 205 Gln Lys Pro Gly Lys Ala Pro Lys
Leu Leu Ile Met Trp Arg Ser Ser 210 215
220 Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly Ser Gly
Ser Gly Thr225 230 235
240 Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro Glu Asp Phe Ala Thr
245 250 255 Tyr Tyr Cys Ala
Gln Gly Ala Ala Leu Pro Arg Thr Phe Gly Gln Gly 260
265 270 Thr Lys Val Glu Ile Lys Arg
275 56837DNAArtificial SequenceNucleic acid sequence
identified using molecular biology techniques. 56tgcgacttgc
cacagacaca tagtttggga tcaagaagaa cattgatgtt attagcacaa 60atgcgtagaa
tttctttgtt ctcttgtcta aaggaccgtc acgacttcgg attccctcag 120gaagagtttg
gaaaccaatt ccaaaaagca gaaactattc ctgtcttgca cgaaatgatc 180cagcaaatat
tcaatttgtt ttctacaaag gactcatcag ccgcttggga tgaaactctg 240ttagataaat
tctacactga actatatcaa caactgaacg atctagaggc ttgcgttatt 300cagggtgtag
gagttactga aactccccta atgaaagaag attcaattct agccgttaga 360aaatactttc
agcgtatcac attgtattta aaggaaaaga aatactcccc atgtgcatgg 420gaggtggtta
gagcagaaat tatgaggtcc ttctctcttt ctacgaattt gcaagaatct 480ttgagatcta
aggaaaccgt cgctgctcca tctgacatcc agatgaccca gtctccatcc 540tccctgtctg
catctgtagg agaccgtgtc accatcactt gccgggcaag tcagtggatt 600gggtctcagt
tatcttggta ccagcagaaa ccagggaaag cccctaagct cctgatcatg 660tggcgttcct
cgttgcaaag tggggtccca tcacgtttca gtggcagtgg atctgggaca 720gatttcactc
tcaccatcag cagtctgcaa cctgaagatt ttgctacgta ctactgtgct 780cagggtgcgg
cgttgcctag gacgttcggc caagggacca aggtggaaat caaacgg
83757293PRTArtificial SequenceAmino acid sequence identified using
molecular biology techniques. 57Cys Asp Leu Pro Gln Thr His Ser Leu
Gly Ser Arg Arg Thr Leu Met1 5 10
15 Leu Leu Ala Gln Met Arg Arg Ile Ser Leu Phe Ser Cys Leu
Lys Asp 20 25 30
Arg His Asp Phe Gly Phe Pro Gln Glu Glu Phe Gly Asn Gln Phe Gln 35
40 45 Lys Ala Glu Thr Ile
Pro Val Leu His Glu Met Ile Gln Gln Ile Phe 50 55
60 Asn Leu Phe Ser Thr Lys Asp Ser Ser Ala
Ala Trp Asp Glu Thr Leu65 70 75
80 Leu Asp Lys Phe Tyr Thr Glu Leu Tyr Gln Gln Leu Asn Asp Leu
Glu 85 90 95 Ala
Cys Val Ile Gln Gly Val Gly Val Thr Glu Thr Pro Leu Met Lys
100 105 110 Glu Asp Ser Ile Leu
Ala Val Arg Lys Tyr Phe Gln Arg Ile Thr Leu 115
120 125 Tyr Leu Lys Glu Lys Lys Tyr Ser Pro
Cys Ala Trp Glu Val Val Arg 130 135
140 Ala Glu Ile Met Arg Ser Phe Ser Leu Ser Thr Asn Leu
Gln Glu Ser145 150 155
160 Leu Arg Ser Lys Glu Thr Val Ala Ala Pro Ser Asp Ile Gln Met Thr
165 170 175 Gln Ser Pro Ser
Ser Leu Ser Ala Ser Val Gly Asp Arg Val Thr Ile 180
185 190 Thr Cys Arg Ala Ser Gln Trp Ile Gly
Ser Gln Leu Ser Trp Tyr Gln 195 200
205 Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile Met Trp Arg
Ser Ser 210 215 220
Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr225
230 235 240 Asp Phe Thr Leu Thr
Ile Ser Ser Leu Gln Pro Glu Asp Phe Ala Thr 245
250 255 Tyr Tyr Cys Ala Gln Gly Leu Arg His Pro
Lys Thr Phe Gly Gln Gly 260 265
270 Thr Lys Val Glu Ile Lys Arg Ala Ala Ala Glu Gln Lys Leu Ile
Ser 275 280 285 Glu
Glu Asp Leu Asn 290 58882DNAArtificial SequenceNucleic
acid sequence identified using molecular biology techniques.
58tgcgacttgc cacagacaca tagtttggga tcaagaagaa cattgatgtt attagcacaa
60atgcgtagaa tttctttgtt ctcttgtcta aaggaccgtc acgacttcgg attccctcag
120gaagagtttg gaaaccaatt ccaaaaagca gaaactattc ctgtcttgca cgaaatgatc
180cagcaaatat tcaatttgtt ttctacaaag gactcatcag ccgcttggga tgaaactctg
240ttagataaat tctacactga actatatcaa caactgaacg atctagaggc ttgcgttatt
300cagggtgtag gagttactga aactccccta atgaaagaag attcaattct agccgttaga
360aaatactttc agcgtatcac attgtattta aaggaaaaga aatactcccc atgtgcatgg
420gaggtggtta gagcagaaat tatgaggtcc ttctctcttt ctacgaattt gcaagaatct
480ttgagatcta aggaaaccgt cgctgctcca tctgacatcc agatgaccca gtctccatcc
540tccctgtctg catctgtagg agaccgtgtc accatcactt gccgggcaag tcagtggatt
600gggtctcagt tatcttggta ccagcagaaa ccagggaaag cccctaagct cctgatcatg
660tggcgttcct cgttgcaaag tggggtccca tcacgtttca gtggcagtgg atctgggaca
720gatttcactc tcaccatcag cagtctgcaa cctgaagatt ttgctacgta ctactgtgct
780cagggtttga ggcatcctaa gacgttcggc caagggacca aggtggaaat caaacgggcg
840gccgcagaac aaaaactcat ctcagaagag gatctgaatt aa
88259279PRTArtificial SequenceAmino acid sequence identified using
molecular biology techniques. 59Cys Asp Leu Pro Gln Thr His Ser Leu
Gly Ser Arg Arg Thr Leu Met1 5 10
15 Leu Leu Ala Gln Met Arg Arg Ile Ser Leu Phe Ser Cys Leu
Lys Asp 20 25 30
Arg His Asp Phe Gly Phe Pro Gln Glu Glu Phe Gly Asn Gln Phe Gln 35
40 45 Lys Ala Glu Thr Ile
Pro Val Leu His Glu Met Ile Gln Gln Ile Phe 50 55
60 Asn Leu Phe Ser Thr Lys Asp Ser Ser Ala
Ala Trp Asp Glu Thr Leu65 70 75
80 Leu Asp Lys Phe Tyr Thr Glu Leu Tyr Gln Gln Leu Asn Asp Leu
Glu 85 90 95 Ala
Cys Val Ile Gln Gly Val Gly Val Thr Glu Thr Pro Leu Met Lys
100 105 110 Glu Asp Ser Ile Leu
Ala Val Arg Lys Tyr Phe Gln Arg Ile Thr Leu 115
120 125 Tyr Leu Lys Glu Lys Lys Tyr Ser Pro
Cys Ala Trp Glu Val Val Arg 130 135
140 Ala Glu Ile Met Arg Ser Phe Ser Leu Ser Thr Asn Leu
Gln Glu Ser145 150 155
160 Leu Arg Ser Lys Glu Thr Val Ala Ala Pro Ser Asp Ile Gln Met Thr
165 170 175 Gln Ser Pro Ser
Ser Leu Ser Ala Ser Val Gly Asp Arg Val Thr Ile 180
185 190 Thr Cys Arg Ala Ser Gln Trp Ile Gly
Ser Gln Leu Ser Trp Tyr Gln 195 200
205 Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile Met Trp Arg
Ser Ser 210 215 220
Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr225
230 235 240 Asp Phe Thr Leu Thr
Ile Ser Ser Leu Gln Pro Glu Asp Phe Ala Thr 245
250 255 Tyr Tyr Cys Ala Gln Gly Leu Arg His Pro
Lys Thr Phe Gly Gln Gly 260 265
270 Thr Lys Val Glu Ile Lys Arg 275
60837DNAArtificial SequenceNucleic acid sequence identified using
molecular biology techniques. 60tgcgacttgc cacagacaca tagtttggga
tcaagaagaa cattgatgtt attagcacaa 60atgcgtagaa tttctttgtt ctcttgtcta
aaggaccgtc acgacttcgg attccctcag 120gaagagtttg gaaaccaatt ccaaaaagca
gaaactattc ctgtcttgca cgaaatgatc 180cagcaaatat tcaatttgtt ttctacaaag
gactcatcag ccgcttggga tgaaactctg 240ttagataaat tctacactga actatatcaa
caactgaacg atctagaggc ttgcgttatt 300cagggtgtag gagttactga aactccccta
atgaaagaag attcaattct agccgttaga 360aaatactttc agcgtatcac attgtattta
aaggaaaaga aatactcccc atgtgcatgg 420gaggtggtta gagcagaaat tatgaggtcc
ttctctcttt ctacgaattt gcaagaatct 480ttgagatcta aggaaaccgt cgctgctcca
tctgacatcc agatgaccca gtctccatcc 540tccctgtctg catctgtagg agaccgtgtc
accatcactt gccgggcaag tcagtggatt 600gggtctcagt tatcttggta ccagcagaaa
ccagggaaag cccctaagct cctgatcatg 660tggcgttcct cgttgcaaag tggggtccca
tcacgtttca gtggcagtgg atctgggaca 720gatttcactc tcaccatcag cagtctgcaa
cctgaagatt ttgctacgta ctactgtgct 780cagggtttga ggcatcctaa gacgttcggc
caagggacca aggtggaaat caaacgg 83761293PRTArtificial SequenceAmino
acid sequence identified using molecular biology techniques. 61Cys
Asp Leu Pro Gln Thr His Ser Leu Gly Ser Arg Arg Thr Leu Met1
5 10 15 Leu Leu Ala Gln Met Arg
Arg Ile Ser Leu Phe Ser Cys Leu Lys Asp 20 25
30 Arg His Asp Phe Gly Phe Pro Gln Glu Glu Phe
Gly Asn Gln Phe Gln 35 40 45
Lys Ala Glu Thr Ile Pro Val Leu His Glu Met Ile Gln Gln Ile Phe
50 55 60 Asn Leu Phe
Ser Thr Lys Asp Ser Ser Ala Ala Trp Asp Glu Thr Leu65 70
75 80 Leu Asp Lys Phe Tyr Thr Glu Leu
Tyr Gln Gln Leu Asn Asp Leu Glu 85 90
95 Ala Cys Val Ile Gln Gly Val Gly Val Thr Glu Thr Pro
Leu Met Lys 100 105 110
Glu Asp Ser Ile Leu Ala Val Arg Lys Tyr Phe Gln Arg Ile Thr Leu
115 120 125 Tyr Leu Lys Glu
Lys Lys Tyr Ser Pro Cys Ala Trp Glu Val Val Arg 130
135 140 Ala Glu Ile Met Arg Ser Phe Ser
Leu Ser Thr Asn Leu Gln Glu Ser145 150
155 160 Leu Arg Ser Lys Glu Thr Val Ala Ala Pro Ser Asp
Ile Gln Met Thr 165 170
175 Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly Asp Arg Val Thr Ile
180 185 190 Thr Cys Arg
Ala Ser Arg Pro Ile Gly Thr Thr Leu Ser Trp Tyr Gln 195
200 205 Gln Lys Pro Gly Lys Ala Pro Lys
Leu Leu Ile Trp Phe Gly Ser Arg 210 215
220 Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly Ser Gly
Ser Gly Thr225 230 235
240 Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro Glu Asp Phe Ala Thr
245 250 255 Tyr Tyr Cys Ala
Gln Ala Gly Thr His Pro Thr Thr Phe Gly Gln Gly 260
265 270 Thr Lys Val Glu Ile Lys Arg Ala Ala
Ala Glu Gln Lys Leu Ile Ser 275 280
285 Glu Glu Asp Leu Asn 290
62882DNAArtificial SequenceNucleic acid sequence identified using
molecular biology techniques. 62tgcgacttgc cacagacaca tagtttggga
tcaagaagaa cattgatgtt attagcacaa 60atgcgtagaa tttctttgtt ctcttgtcta
aaggaccgtc acgacttcgg attccctcag 120gaagagtttg gaaaccaatt ccaaaaagca
gaaactattc ctgtcttgca cgaaatgatc 180cagcaaatat tcaatttgtt ttctacaaag
gactcatcag ccgcttggga tgaaactctg 240ttagataaat tctacactga actatatcaa
caactgaacg atctagaggc ttgcgttatt 300cagggtgtag gagttactga aactccccta
atgaaagaag attcaattct agccgttaga 360aaatactttc agcgtatcac attgtattta
aaggaaaaga aatactcccc atgtgcatgg 420gaggtggtta gagcagaaat tatgaggtcc
ttctctcttt ctacgaattt gcaagaatct 480ttgagatcta aggaaaccgt cgctgctcca
tctgacatcc agatgaccca gtctccatcc 540tccctgtctg catctgtagg agaccgtgtc
accatcactt gccgggcaag tcgtccgatt 600gggacgacgt taagttggta ccagcagaaa
ccagggaaag cccctaagct cctgatctgg 660tttggttccc ggttgcaaag tggggtccca
tcacgtttca gtggcagtgg atctgggaca 720gatttcactc tcaccatcag cagtctgcaa
cctgaagatt ttgctacgta ctactgtgcg 780caggctggga cgcatcctac gacgttcggc
caagggacca aggtggaaat caaacgggcg 840gccgcagaac aaaaactcat ctcagaagag
gatctgaatt aa 88263279PRTArtificial SequenceAmino
acid sequence identified using molecular biology techniques. 63Cys
Asp Leu Pro Gln Thr His Ser Leu Gly Ser Arg Arg Thr Leu Met1
5 10 15 Leu Leu Ala Gln Met Arg
Arg Ile Ser Leu Phe Ser Cys Leu Lys Asp 20 25
30 Arg His Asp Phe Gly Phe Pro Gln Glu Glu Phe
Gly Asn Gln Phe Gln 35 40 45
Lys Ala Glu Thr Ile Pro Val Leu His Glu Met Ile Gln Gln Ile Phe
50 55 60 Asn Leu Phe
Ser Thr Lys Asp Ser Ser Ala Ala Trp Asp Glu Thr Leu65 70
75 80 Leu Asp Lys Phe Tyr Thr Glu Leu
Tyr Gln Gln Leu Asn Asp Leu Glu 85 90
95 Ala Cys Val Ile Gln Gly Val Gly Val Thr Glu Thr Pro
Leu Met Lys 100 105 110
Glu Asp Ser Ile Leu Ala Val Arg Lys Tyr Phe Gln Arg Ile Thr Leu
115 120 125 Tyr Leu Lys Glu
Lys Lys Tyr Ser Pro Cys Ala Trp Glu Val Val Arg 130
135 140 Ala Glu Ile Met Arg Ser Phe Ser
Leu Ser Thr Asn Leu Gln Glu Ser145 150
155 160 Leu Arg Ser Lys Glu Thr Val Ala Ala Pro Ser Asp
Ile Gln Met Thr 165 170
175 Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly Asp Arg Val Thr Ile
180 185 190 Thr Cys Arg
Ala Ser Arg Pro Ile Gly Thr Thr Leu Ser Trp Tyr Gln 195
200 205 Gln Lys Pro Gly Lys Ala Pro Lys
Leu Leu Ile Trp Phe Gly Ser Arg 210 215
220 Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly Ser Gly
Ser Gly Thr225 230 235
240 Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro Glu Asp Phe Ala Thr
245 250 255 Tyr Tyr Cys Ala
Gln Ala Gly Thr His Pro Thr Thr Phe Gly Gln Gly 260
265 270 Thr Lys Val Glu Ile Lys Arg
275 64837DNAArtificial SequenceNucleic acid sequence
identified using molecular biology techniques. 64tgcgacttgc
cacagacaca tagtttggga tcaagaagaa cattgatgtt attagcacaa 60atgcgtagaa
tttctttgtt ctcttgtcta aaggaccgtc acgacttcgg attccctcag 120gaagagtttg
gaaaccaatt ccaaaaagca gaaactattc ctgtcttgca cgaaatgatc 180cagcaaatat
tcaatttgtt ttctacaaag gactcatcag ccgcttggga tgaaactctg 240ttagataaat
tctacactga actatatcaa caactgaacg atctagaggc ttgcgttatt 300cagggtgtag
gagttactga aactccccta atgaaagaag attcaattct agccgttaga 360aaatactttc
agcgtatcac attgtattta aaggaaaaga aatactcccc atgtgcatgg 420gaggtggtta
gagcagaaat tatgaggtcc ttctctcttt ctacgaattt gcaagaatct 480ttgagatcta
aggaaaccgt cgctgctcca tctgacatcc agatgaccca gtctccatcc 540tccctgtctg
catctgtagg agaccgtgtc accatcactt gccgggcaag tcgtccgatt 600gggacgacgt
taagttggta ccagcagaaa ccagggaaag cccctaagct cctgatctgg 660tttggttccc
ggttgcaaag tggggtccca tcacgtttca gtggcagtgg atctgggaca 720gatttcactc
tcaccatcag cagtctgcaa cctgaagatt ttgctacgta ctactgtgcg 780caggctggga
cgcatcctac gacgttcggc caagggacca aggtggaaat caaacgg
83765293PRTArtificial SequenceAmino acid sequence identified using
molecular biology techniques. 65Cys Asp Leu Pro Gln Thr His Ser Leu
Gly Ser Arg Arg Thr Leu Met1 5 10
15 Leu Leu Ala Gln Met Arg Arg Ile Ser Leu Phe Ser Cys Leu
Lys Asp 20 25 30
Arg His Asp Phe Gly Phe Pro Gln Glu Glu Phe Gly Asn Gln Phe Gln 35
40 45 Lys Ala Glu Thr Ile
Pro Val Leu His Glu Met Ile Gln Gln Ile Phe 50 55
60 Asn Leu Phe Ser Thr Lys Asp Ser Ser Ala
Ala Trp Asp Glu Thr Leu65 70 75
80 Leu Asp Lys Phe Tyr Thr Glu Leu Tyr Gln Gln Leu Asn Asp Leu
Glu 85 90 95 Ala
Cys Val Ile Gln Gly Val Gly Val Thr Glu Thr Pro Leu Met Lys
100 105 110 Glu Asp Ser Ile Leu
Ala Val Arg Lys Tyr Phe Gln Arg Ile Thr Leu 115
120 125 Tyr Leu Lys Glu Lys Lys Tyr Ser Pro
Cys Ala Trp Glu Val Val Arg 130 135
140 Ala Glu Ile Met Arg Ser Phe Ser Leu Ser Thr Asn Leu
Gln Glu Ser145 150 155
160 Leu Arg Ser Lys Glu Thr Val Ala Ala Pro Ser Asp Ile Gln Met Thr
165 170 175 Gln Ser Pro Ser
Ser Leu Ser Ala Ser Val Gly Asp Arg Val Thr Ile 180
185 190 Thr Cys Arg Ala Ser Arg Pro Ile Gly
Thr Met Leu Ser Trp Tyr Gln 195 200
205 Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile Leu Ala Phe
Ser Arg 210 215 220
Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr225
230 235 240 Asp Phe Thr Leu Thr
Ile Ser Ser Leu Gln Pro Glu Asp Phe Ala Thr 245
250 255 Tyr Tyr Cys Ala Gln Ala Gly Thr His Pro
Thr Thr Phe Gly Gln Gly 260 265
270 Thr Lys Val Glu Ile Lys Arg Ala Ala Ala Glu Gln Lys Leu Ile
Ser 275 280 285 Glu
Glu Asp Leu Asn 290 66882DNAArtificial SequenceNucleic
acid sequence identified using molecular biology techniques.
66tgcgacttgc cacagacaca tagtttggga tcaagaagaa cattgatgtt attagcacaa
60atgcgtagaa tttctttgtt ctcttgtcta aaggaccgtc acgacttcgg attccctcag
120gaagagtttg gaaaccaatt ccaaaaagca gaaactattc ctgtcttgca cgaaatgatc
180cagcaaatat tcaatttgtt ttctacaaag gactcatcag ccgcttggga tgaaactctg
240ttagataaat tctacactga actatatcaa caactgaacg atctagaggc ttgcgttatt
300cagggtgtag gagttactga aactccccta atgaaagaag attcaattct agccgttaga
360aaatactttc agcgtatcac attgtattta aaggaaaaga aatactcccc atgtgcatgg
420gaggtggtta gagcagaaat tatgaggtcc ttctctcttt ctacgaattt gcaagaatct
480ttgagatcta aggaaaccgt cgctgctcca tctgacatcc agatgaccca gtctccatcc
540tccctgtctg catctgtagg agaccgtgtc accatcactt gccgggcaag tcgtccgatt
600gggacgatgt taagttggta ccagcagaaa ccagggaaag cccctaagct cctgatcctt
660gctttttccc gtttgcaaag tggggtccca tcacgtttca gtggcagtgg atctgggaca
720gatttcactc tcaccatcag cagtctgcaa cctgaagatt ttgctacgta ctactgcgcg
780caggctggga cgcatcctac gacgttcggc caagggacca aggtggaaat caaacgggcg
840gccgcagaac aaaaactcat ctcagaagag gatctgaatt aa
88267279PRTArtificial SequenceAmino acid sequence identified using
molecular biology techniques. 67Cys Asp Leu Pro Gln Thr His Ser Leu
Gly Ser Arg Arg Thr Leu Met1 5 10
15 Leu Leu Ala Gln Met Arg Arg Ile Ser Leu Phe Ser Cys Leu
Lys Asp 20 25 30
Arg His Asp Phe Gly Phe Pro Gln Glu Glu Phe Gly Asn Gln Phe Gln 35
40 45 Lys Ala Glu Thr Ile
Pro Val Leu His Glu Met Ile Gln Gln Ile Phe 50 55
60 Asn Leu Phe Ser Thr Lys Asp Ser Ser Ala
Ala Trp Asp Glu Thr Leu65 70 75
80 Leu Asp Lys Phe Tyr Thr Glu Leu Tyr Gln Gln Leu Asn Asp Leu
Glu 85 90 95 Ala
Cys Val Ile Gln Gly Val Gly Val Thr Glu Thr Pro Leu Met Lys
100 105 110 Glu Asp Ser Ile Leu
Ala Val Arg Lys Tyr Phe Gln Arg Ile Thr Leu 115
120 125 Tyr Leu Lys Glu Lys Lys Tyr Ser Pro
Cys Ala Trp Glu Val Val Arg 130 135
140 Ala Glu Ile Met Arg Ser Phe Ser Leu Ser Thr Asn Leu
Gln Glu Ser145 150 155
160 Leu Arg Ser Lys Glu Thr Val Ala Ala Pro Ser Asp Ile Gln Met Thr
165 170 175 Gln Ser Pro Ser
Ser Leu Ser Ala Ser Val Gly Asp Arg Val Thr Ile 180
185 190 Thr Cys Arg Ala Ser Arg Pro Ile Gly
Thr Met Leu Ser Trp Tyr Gln 195 200
205 Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile Leu Ala Phe
Ser Arg 210 215 220
Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr225
230 235 240 Asp Phe Thr Leu Thr
Ile Ser Ser Leu Gln Pro Glu Asp Phe Ala Thr 245
250 255 Tyr Tyr Cys Ala Gln Ala Gly Thr His Pro
Thr Thr Phe Gly Gln Gly 260 265
270 Thr Lys Val Glu Ile Lys Arg 275
68837DNAArtificial SequenceNucleic acid sequence identified using
molecular biology techniques. 68tgcgacttgc cacagacaca tagtttggga
tcaagaagaa cattgatgtt attagcacaa 60atgcgtagaa tttctttgtt ctcttgtcta
aaggaccgtc acgacttcgg attccctcag 120gaagagtttg gaaaccaatt ccaaaaagca
gaaactattc ctgtcttgca cgaaatgatc 180cagcaaatat tcaatttgtt ttctacaaag
gactcatcag ccgcttggga tgaaactctg 240ttagataaat tctacactga actatatcaa
caactgaacg atctagaggc ttgcgttatt 300cagggtgtag gagttactga aactccccta
atgaaagaag attcaattct agccgttaga 360aaatactttc agcgtatcac attgtattta
aaggaaaaga aatactcccc atgtgcatgg 420gaggtggtta gagcagaaat tatgaggtcc
ttctctcttt ctacgaattt gcaagaatct 480ttgagatcta aggaaaccgt cgctgctcca
tctgacatcc agatgaccca gtctccatcc 540tccctgtctg catctgtagg agaccgtgtc
accatcactt gccgggcaag tcgtccgatt 600gggacgatgt taagttggta ccagcagaaa
ccagggaaag cccctaagct cctgatcctt 660gctttttccc gtttgcaaag tggggtccca
tcacgtttca gtggcagtgg atctgggaca 720gatttcactc tcaccatcag cagtctgcaa
cctgaagatt ttgctacgta ctactgcgcg 780caggctggga cgcatcctac gacgttcggc
caagggacca aggtggaaat caaacgg 83769108PRTArtificial SequenceAmino
acid sequence identified using molecular biology techniques. 69Asp
Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly1
5 10 15 Asp Arg Val Thr Ile Thr
Cys Arg Ala Ser Gln Trp Ile Gly Ser Gln 20 25
30 Leu Ser Trp Tyr Gln Gln Lys Pro Gly Lys Ala
Pro Lys Leu Leu Ile 35 40 45
Met Trp Arg Ser Ser Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly
50 55 60 Ser Gly Ser
Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro65 70
75 80 Glu Asp Phe Ala Thr Tyr Tyr Cys
Ala Gln Gly Leu Arg His Pro Lys 85 90
95 Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys Cys
100 105 70324DNAArtificial
SequenceNucleic acid sequence identified using molecular biology
techniques. 70gacatccaga tgacccagtc tccatcctcc ctgtctgcat ctgtaggaga
ccgtgtcacc 60atcacttgcc gggcaagtca gtggattggg tctcagttat cttggtacca
gcagaaacca 120gggaaagccc ctaagctcct gatcatgtgg cgttcctcgt tgcaaagtgg
ggtcccatca 180cgtttcagtg gcagtggatc tgggacagat ttcactctca ccatcagcag
tctgcaacct 240gaagattttg ctacgtacta ctgtgctcag ggtttgaggc atcctaagac
gttcggccaa 300gggaccaagg tggaaatcaa atgc
32471118PRTArtificial SequenceAmino acid sequence identified
using molecular biology techniques. 71Glu Val Gln Leu Leu Glu Ser
Gly Gly Gly Leu Val Gln Pro Gly Gly1 5 10
15 Ser Leu Arg Leu Ser Cys Thr Ala Ser Gly Phe Thr
Phe Arg His Tyr 20 25 30
Arg Met Gly Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val
35 40 45 Ser Trp Ile Arg
Pro Asp Gly Thr Phe Thr Tyr Tyr Ala Asp Ser Val 50 55
60 Lys Gly Arg Phe Thr Ile Ser Arg Asp
Asn Ser Lys Asn Thr Leu Tyr65 70 75
80 Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr
Tyr Cys 85 90 95
Ala Lys Ser Tyr Met Gly Asp Arg Phe Asp Tyr Trp Gly Gln Gly Thr
100 105 110 Leu Val Thr Val Ser
Ser 115 72355DNAArtificial SequenceNucleic acid
sequence identified using molecular biology techniques. 72gaggtgcagc
tgttggagtc tgggggaggc ttggtacagc ctggggggtc cctgcgtctc 60tcctgtacag
cctccggatt cacctttagg cattatcgta tgggttgggt ccgccaggct 120ccagggaagg
gtctagagtg ggtctcatgg attcgtccgg atggtacgtt tacatactac 180gcagactccg
tgaagggccg gttcaccatc tcccgcgaca attccaagaa cacgctgtat 240ctgcaaatga
acagcctgcg tgccgaggac accgcggtat attactgtgc gaaatcttat 300atgggtgata
ggtttgacta ctggggtcag ggaaccctgg tcaccgtctc gagcg
35573118PRTArtificial SequenceAmino acid sequence identified using
molecular biology techniques. 73Glu Val Gln Leu Leu Glu Ser Gly Gly
Gly Leu Val Gln Pro Gly Gly1 5 10
15 Ser Leu Arg Leu Ser Cys Thr Ala Ser Gly Phe Thr Phe Arg
His Tyr 20 25 30
Arg Met Gly Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35
40 45 Ser Trp Ile Arg Pro
Asp Gly Thr Phe Thr Tyr Tyr Ala Asp Ser Val 50 55
60 Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn
Ser Lys Asn Thr Leu Tyr65 70 75
80 Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr
Cys 85 90 95 Ala
Lys Ser Tyr Met Ala Asp Arg Phe Asp Tyr Trp Gly Gln Gly Thr
100 105 110 Leu Val Thr Val Ser
Ser 115 74354DNAArtificial SequenceNucleic acid
sequence identified using molecular biology techniques. 74gaggtgcagc
tgttggagtc tgggggaggc ttggtacagc ctggggggtc cctgcgtctc 60tcctgtacag
cctccggatt cacctttagg cattatcgta tgggttgggt ccgccaggct 120ccagggaagg
gtctagagtg ggtctcatgg attcgtccgg atggtacgtt tacatactac 180gcagactccg
tgaagggccg gttcaccatc tcccgcgaca attccaagaa cacgctgtat 240ctgcaaatga
acagcctgcg tgccgaggac accgcggtat attactgtgc gaaatcttat 300atggctgata
ggtttgacta ctggggtcag ggaaccctgg tcaccgtctc gagc
35475119PRTArtificial SequenceAmino acid sequence identified using
molecular biology techniques. 75Glu Val Gln Leu Leu Glu Ser Gly Gly
Gly Leu Val Gln Pro Gly Gly1 5 10
15 Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ala
Asn Ala 20 25 30
Thr Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35
40 45 Ser Asp Ile Asp Gln
Val Gly His Ala Thr Tyr Tyr Ala Asp Ser Val 50 55
60 Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn
Ser Lys Asn Thr Leu Tyr65 70 75
80 Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr
Cys 85 90 95 Ala
Lys Tyr Ser Trp His Pro Asp Leu Phe Asp Tyr Trp Gly Gln Gly
100 105 110 Thr Leu Val Thr Val
Ser Ser 115 76351DNAArtificial SequenceNucleic
acid sequence identified using molecular biology techniques.
76gaggtgcagc tgttggagtc tgggggaggc ttggtacagc ctggggggtc cctgcgtctc
60tcctgtgcag cctccggatt cacctttggg aattatagga tgacttgggt ccgccaggct
120ccagggaagg gtctagagtg ggtctcaact atttctcctt tgggtacgta tacatactac
180gcagactccg tgaagggccg gttcaccatc tcccgcgaca attccaagaa cacgctgtat
240ctgcaaatga acagcctgcg tgccgaggac accgcggtat attactgtgc gaaagggcgt
300tggtcgattt ttgactactg gggtcaggga accctggtca ccgtctcgag c
35177119PRTArtificial SequenceAmino acid sequence identified using
molecular biology techniques. 77Glu Val Gln Leu Leu Glu Ser Gly Gly
Gly Leu Val Gln Pro Gly Gly1 5 10
15 Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Asp
Thr Ser 20 25 30
Ser Met Leu Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35
40 45 Ser Val Ile His Gln
Ser Gly Thr Pro Thr Tyr Tyr Ala Asp Ser Val 50 55
60 Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn
Ser Lys Asn Thr Leu Tyr65 70 75
80 Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr
Cys 85 90 95 Ala
Lys Phe Pro Ser Thr His Gly Lys Phe Asp Tyr Trp Gly Gln Gly
100 105 110 Thr Leu Val Thr Val
Ser Ser 115 78357DNAArtificial SequenceNucleic
acid sequence identified using molecular biology techniques.
78gaggtgcagc tgttggagtc tgggggaggc ttggtacagc ctggggggtc cctgcgtctc
60tcctgtgcag cctccggatt cacctttgat acgagtagta tgttgtgggt ccgccaggct
120ccagggaagg gtctagagtg ggtctcagtt attcatcaga gtggtacgcc tacatactac
180gcagactccg tgaagggccg gttcaccatc tcccgcgaca attccaagaa cacgctgtat
240ctgcaaatga acagcctgcg tgccgaggac accgcggtat attactgtgc gaaatttccg
300tctactcatg gtaagtttga ctactggggt cagggaaccc tggtcaccgt ctcgagc
35779197PRTArtificial SequenceAmino acid sequence identified using
molecular biology techniques. 79Glu Gly Lys Val Ser Ser Ala Lys Gln
Arg Leu Lys Cys Ala Ser Leu1 5 10
15 Gln Lys Phe Gly Glu Arg Ala Phe Lys Ala Trp Ala Val Ala
Arg Leu 20 25 30
Ser Gln Arg Phe Pro Lys Ala Glu Phe Ala Glu Val Ser Lys Leu Val 35
40 45 Thr Asp Leu Thr Lys
Val His Thr Glu Cys Cys His Gly Asp Leu Leu 50 55
60 Glu Cys Ala Asp Asp Arg Ala Asp Leu Ala
Lys Tyr Ile Cys Glu Asn65 70 75
80 Gln Asp Ser Ile Ser Ser Lys Leu Lys Glu Cys Cys Glu Lys Pro
Leu 85 90 95 Leu
Glu Lys Ser His Cys Ile Ala Glu Val Glu Asn Asp Glu Met Pro
100 105 110 Ala Asp Leu Pro Ser
Leu Ala Ala Asp Phe Val Glu Ser Lys Asp Val 115
120 125 Cys Lys Asn Tyr Ala Glu Ala Lys Asp
Val Phe Leu Gly Met Phe Leu 130 135
140 Tyr Glu Tyr Ala Arg Arg His Pro Asp Tyr Ser Val Val
Leu Leu Leu145 150 155
160 Arg Leu Ala Lys Thr Tyr Glu Thr Thr Leu Glu Lys Cys Cys Ala Ala
165 170 175 Ala Asp Pro His
Glu Cys Tyr Ala Lys Val Phe Asp Glu Phe Lys Pro 180
185 190 Leu Val Glu Glu Pro 195
80591DNAArtificial SequenceNucleic acid sequence identified using
molecular biology techniques. 80gaagggaagg tttcgtctgc caaacagaga
ctcaagtgtg ccagtctcca aaaatttgga 60gaaagagctt tcaaagcatg ggcagtagct
cgcctgagcc agagatttcc caaagctgag 120tttgcagaag tttccaagtt agtgacagat
cttaccaaag tccacacgga atgctgccat 180ggagatctgc ttgaatgtgc tgatgacagg
gcggaccttg ccaagtatat ctgtgaaaat 240caagattcga tctccagtaa actgaaggaa
tgctgtgaaa aacctctgtt ggaaaaatcc 300cactgcattg ccgaagtgga aaatgatgag
atgcctgctg acttgccttc attagctgct 360gattttgttg aaagtaagga tgtttgcaaa
aactatgctg aggcaaagga tgtcttcctg 420ggcatgtttt tgtatgaata tgcaagaagg
catcctgatt actctgtcgt gctgctgctg 480agacttgcca agacatatga aaccactcta
gagaagtgct gtgccgctgc agatcctcat 540gaatgctatg ccaaagtgtt cgatgaattt
aaacctcttg tggaagagcc t 59181585PRTArtificial SequenceAmino
acid sequence identified using molecular biology techniques. 81Asp
Ala His Lys Ser Glu Val Ala His Arg Phe Lys Asp Leu Gly Glu1
5 10 15 Glu Asn Phe Lys Ala Leu
Val Leu Ile Ala Phe Ala Gln Tyr Leu Gln 20 25
30 Gln Cys Pro Phe Glu Asp His Val Lys Leu Val
Asn Glu Val Thr Glu 35 40 45
Phe Ala Lys Thr Cys Val Ala Asp Glu Ser Ala Glu Asn Cys Asp Lys
50 55 60 Ser Leu His
Thr Leu Phe Gly Asp Lys Leu Cys Thr Val Ala Thr Leu65 70
75 80 Arg Glu Thr Tyr Gly Glu Met Ala
Asp Cys Cys Ala Lys Gln Glu Pro 85 90
95 Glu Arg Asn Glu Cys Phe Leu Gln His Lys Asp Asp Asn
Pro Asn Leu 100 105 110
Pro Arg Leu Val Arg Pro Glu Val Asp Val Met Cys Thr Ala Phe His
115 120 125 Asp Asn Glu Glu
Thr Phe Leu Lys Lys Tyr Leu Tyr Glu Ile Ala Arg 130
135 140 Arg His Pro Tyr Phe Tyr Ala Pro
Glu Leu Leu Phe Phe Ala Lys Arg145 150
155 160 Tyr Lys Ala Ala Phe Thr Glu Cys Cys Gln Ala Ala
Asp Lys Ala Ala 165 170
175 Cys Leu Leu Pro Lys Leu Asp Glu Leu Arg Asp Glu Gly Lys Val Ser
180 185 190 Ser Ala Lys
Gln Arg Leu Lys Cys Ala Ser Leu Gln Lys Phe Gly Glu 195
200 205 Arg Ala Phe Lys Ala Trp Ala Val
Ala Arg Leu Ser Gln Arg Phe Pro 210 215
220 Lys Ala Glu Phe Ala Glu Val Ser Lys Leu Val Thr Asp
Leu Thr Lys225 230 235
240 Val His Thr Glu Cys Cys His Gly Asp Leu Leu Glu Cys Ala Asp Asp
245 250 255 Arg Ala Asp Leu
Ala Lys Tyr Ile Cys Glu Asn Gln Asp Ser Ile Ser 260
265 270 Ser Lys Leu Lys Glu Cys Cys Glu Lys
Pro Leu Leu Glu Lys Ser His 275 280
285 Cys Ile Ala Glu Val Glu Asn Asp Glu Met Pro Ala Asp Leu
Pro Ser 290 295 300
Leu Ala Ala Asp Phe Val Glu Ser Lys Asp Val Cys Lys Asn Tyr Ala305
310 315 320 Glu Ala Lys Asp Val
Phe Leu Gly Met Phe Leu Tyr Glu Tyr Ala Arg 325
330 335 Arg His Pro Asp Tyr Ser Val Val Leu Leu
Leu Arg Leu Ala Lys Thr 340 345
350 Tyr Glu Thr Thr Leu Glu Lys Cys Cys Ala Ala Ala Asp Pro His
Glu 355 360 365 Cys
Tyr Ala Lys Val Phe Asp Glu Phe Lys Pro Leu Val Glu Glu Pro 370
375 380 Gln Asn Leu Ile Lys Gln
Asn Cys Glu Leu Phe Glu Gln Leu Gly Glu385 390
395 400 Tyr Lys Phe Gln Asn Ala Leu Leu Val Arg Tyr
Thr Lys Lys Val Pro 405 410
415 Gln Val Ser Thr Pro Thr Leu Val Glu Val Ser Arg Asn Leu Gly Lys
420 425 430 Val Gly Ser
Lys Cys Cys Lys His Pro Glu Ala Lys Arg Met Pro Cys 435
440 445 Ala Glu Asp Tyr Leu Ser Val Val
Leu Asn Gln Leu Cys Val Leu His 450 455
460 Glu Lys Thr Pro Val Ser Asp Arg Val Thr Lys Cys Cys
Thr Glu Ser465 470 475
480 Leu Val Asn Arg Arg Pro Cys Phe Ser Ala Leu Glu Val Asp Glu Thr
485 490 495 Tyr Val Pro Lys
Glu Phe Asn Ala Glu Thr Phe Thr Phe His Ala Asp 500
505 510 Ile Cys Thr Leu Ser Glu Lys Glu Arg
Gln Ile Lys Lys Gln Thr Ala 515 520
525 Leu Val Glu Leu Val Lys His Lys Pro Lys Ala Thr Lys Glu
Gln Leu 530 535 540
Lys Ala Val Met Asp Asp Phe Ala Ala Phe Val Glu Lys Cys Cys Lys545
550 555 560 Ala Asp Asp Lys Glu
Thr Cys Phe Ala Glu Glu Gly Lys Lys Leu Val 565
570 575 Ala Ala Ser Gln Ala Ala Leu Gly Leu
580 585 821755DNAArtificial SequenceNucleic acid
sequence identified using molecular biology techniques. 82gatgcacaca
agagtgaggt tgctcatcgg tttaaagatt tgggagaaga aaatttcaaa 60gccttggtgt
tgattgcctt tgctcagtat cttcagcagt gtccatttga agatcatgta 120aaattagtga
atgaagtaac tgaatttgca aaaacatgtg ttgctgatga gtcagctgaa 180aattgtgaca
aatcacttca tacccttttt ggagacaaat tatgcacagt tgcaactctt 240cgtgaaacct
atggtgaaat ggctgactgc tgtgcaaaac aagaacctga gagaaatgaa 300tgcttcttgc
aacacaaaga tgacaaccca aacctccccc gattggtgag accagaggtt 360gatgtgatgt
gcactgcttt tcatgacaat gaagagacat ttttgaaaaa atacttatat 420gaaattgcca
gaagacatcc ttacttttat gccccggaac tccttttctt tgctaaaagg 480tataaagctg
cttttacaga atgttgccaa gctgctgata aagctgcctg cctgttgcca 540aagctcgatg
aacttcggga tgaagggaag gtttcgtctg ccaaacagag actcaagtgt 600gccagtctcc
aaaaatttgg agaaagagct ttcaaagcat gggcagtagc tcgcctgagc 660cagagatttc
ccaaagctga gtttgcagaa gtttccaagt tagtgacaga tcttaccaaa 720gtccacacgg
aatgctgcca tggagatctg cttgaatgtg ctgatgacag ggcggacctt 780gccaagtata
tctgtgaaaa tcaagattcg atctccagta aactgaagga atgctgtgaa 840aaacctctgt
tggaaaaatc ccactgcatt gccgaagtgg aaaatgatga gatgcctgct 900gacttgcctt
cattagctgc tgattttgtt gaaagtaagg atgtttgcaa aaactatgct 960gaggcaaagg
atgtcttcct gggcatgttt ttgtatgaat atgcaagaag gcatcctgat 1020tactctgtcg
tgctgctgct gagacttgcc aagacatatg aaaccactct agagaagtgc 1080tgtgccgctg
cagatcctca tgaatgctat gccaaagtgt tcgatgaatt taaacctctt 1140gtggaagagc
ctcagaattt aatcaaacaa aattgtgagc tttttgagca gcttggagag 1200tacaaattcc
agaatgcgct attagttcgt tacaccaaga aagtacccca agtgtcaact 1260ccaactcttg
tagaggtctc aagaaaccta ggaaaagtgg gcagcaaatg ttgtaaacat 1320cctgaagcaa
aaagaatgcc ctgtgcagaa gactatctat ccgtggtcct gaaccagtta 1380tgtgtgttgc
atgagaaaac gccagtaagt gacagagtca ccaaatgctg cacagaatcc 1440ttggtgaaca
ggcgaccatg cttttcagct ctggaagtcg atgaaacata cgttcccaaa 1500gagtttaatg
ctgaaacatt caccttccat gcagatatat gcacactttc tgagaaggag 1560agacaaatca
agaaacaaac tgcacttgtt gagcttgtga aacacaagcc caaggcaaca 1620aaagagcaac
tgaaagctgt tatggatgat ttcgcagctt ttgtagagaa gtgctgcaag 1680gctgacgata
aggagacctg ctttgccgag gagggtaaaa aacttgttgc tgcaagtcaa 1740gctgccttag
gctta
175583108PRTArtificial SequenceAmino acid sequence identified using
molecular biology techniques. 83Asp Ile Gln Met Thr Gln Ser Pro Ser
Ser Leu Ser Ala Ser Val Gly1 5 10
15 Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Trp Ile Gly
Ser Gln 20 25 30
Leu Ser Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile 35
40 45 Met Trp Arg Ser Ser
Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly 50 55
60 Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr
Ile Ser Ser Leu Gln Pro65 70 75
80 Glu Asp Phe Ala Thr Tyr Tyr Cys Ala Gln Gly Leu Arg His Pro
Lys 85 90 95 Thr
Phe Gly Gln Gly Thr Lys Val Glu Ile Lys Arg 100
105 84330DNAArtificial SequenceNucleic acid sequence
identified using molecular biology techniques. 84tcgacggaca
tccagatgac ccagtctcca tcctccctgt ctgcatctgt aggagaccgt 60gtcaccatca
cttgccgggc aagtcagtgg attgggtctc agttatcttg gtaccagcag 120aaaccaggga
aagcccctaa gctcctgatc atgtggcgtt cctcgttgca aagtggggtc 180ccatcacgtt
tcagtggcag tggatctggg acagatttca ctctcaccat cagcagtctg 240caacctgaag
attttgctac gtactactgt gctcagggtt tgaggcatcc taagacgttc 300ggccaaggga
ccaaggtgga aatcaaacgg
3308556DNAArtificial SequenceNucleic acid sequence identified using
molecular biology techniques. 85taacaagaat aatgggatcc accggcgatg
cacacaagag tgaggttgct catcgg 568688DNAArtificial SequenceNucleic
acid sequence identified using molecular biology techniques.
86gcgcgcgcgc gcttcaagct ttcattaatg gtgatggtga tgatgtaagc ctaaggcagc
60ttgacttgca gcaacaagtt ttttaccc
888735DNAArtificial SequenceNucleic acid sequence identified using
molecular biology techniques. 87gagccagaga tttcccgccg ctgagtttgc agaag
358835DNAArtificial SequenceNucleic acid
sequence identified using molecular biology techniques. 88cttctgcaaa
ctcagcggcg ggaaatctct ggctc
358937DNAArtificial SequenceNucleic acid sequence identified using
molecular biology techniques. 89gagatttccc aaagctgcct ttgcagaagt ttccaag
379037DNAArtificial SequenceNucleic acid
sequence identified using molecular biology techniques. 90cttggaaact
tctgcaaagg cagctttggg aaatctc
379137DNAArtificial SequenceNucleic acid sequence identified using
molecular biology techniques. 91ccaaagctga gtttgcagcc gtttccaagt tagtgac
379237DNAArtificial SequenceNucleic acid
sequence identified using molecular biology techniques. 92gtcactaact
tggaaacggc tgcaaactca gctttgg
379337DNAArtificial SequenceNucleic acid sequence identified using
molecular biology techniques. 93gattttgttg aaagtaaggc cgtttgcaaa aactatg
379437DNAArtificial SequenceNucleic acid
sequence identified using molecular biology techniques. 94catagttttt
gcaaacggcc ttactttcaa caaaatc
379540DNAArtificial SequenceNucleic acid sequence identified using
molecular biology techniques. 95gaaagtaagg atgtttgcgc caactatgct
gaggcaaagg 409640DNAArtificial SequenceNucleic
acid sequence identified using molecular biology techniques.
96cctttgcctc agcatagttg gcgcaaacat ccttactttc
409736DNAArtificial SequenceNucleic acid sequence identified using
molecular biology techniques. 97gctgaggcaa aggatgcctt cctgggcatg tttttg
369836DNAArtificial SequenceNucleic acid
sequence identified using molecular biology techniques. 98caaaaacatg
cccaggaagg catcctttgc ctcagc
369935DNAArtificial SequenceNucleic acid sequence identified using
molecular biology techniques. 99ggatgtcttc ctgggcgcct ttttgtatga atatg
3510035DNAArtificial SequenceNucleic acid
sequence identified using molecular biology techniques.
100catattcata caaaaaggcg cccaggaaga catcc
3510141DNAArtificial SequenceNucleic acid sequence identified using
molecular biology techniques. 101gctgctgctg agacttgccg ccacatatga
aaccactcta g 4110241DNAArtificial SequenceNucleic
acid sequence identified using molecular biology techniques.
102ctagagtggt ttcatatgtg gcggcaagtc tcagcagcag c
41103591PRTArtificial SequenceAmino acid sequence identified using
molecular biology techniques. 103Asp Ala His Lys Ser Glu Val Ala His
Arg Phe Lys Asp Leu Gly Glu1 5 10
15 Glu Asn Phe Lys Ala Leu Val Leu Ile Ala Phe Ala Gln Tyr
Leu Gln 20 25 30
Gln Cys Pro Phe Glu Asp His Val Lys Leu Val Asn Glu Val Thr Glu 35
40 45 Phe Ala Lys Thr Cys
Val Ala Asp Glu Ser Ala Glu Asn Cys Asp Lys 50 55
60 Ser Leu His Thr Leu Phe Gly Asp Lys Leu
Cys Thr Val Ala Thr Leu65 70 75
80 Arg Glu Thr Tyr Gly Glu Met Ala Asp Cys Cys Ala Lys Gln Glu
Pro 85 90 95 Glu
Arg Asn Glu Cys Phe Leu Gln His Lys Asp Asp Asn Pro Asn Leu
100 105 110 Pro Arg Leu Val Arg
Pro Glu Val Asp Val Met Cys Thr Ala Phe His 115
120 125 Asp Asn Glu Glu Thr Phe Leu Lys Lys
Tyr Leu Tyr Glu Ile Ala Arg 130 135
140 Arg His Pro Tyr Phe Tyr Ala Pro Glu Leu Leu Phe Phe
Ala Lys Arg145 150 155
160 Tyr Lys Ala Ala Phe Thr Glu Cys Cys Gln Ala Ala Asp Lys Ala Ala
165 170 175 Cys Leu Leu Pro
Lys Leu Asp Glu Leu Arg Asp Glu Gly Lys Val Ser 180
185 190 Ser Ala Lys Gln Arg Leu Lys Cys Ala
Ser Leu Gln Lys Phe Gly Glu 195 200
205 Arg Ala Phe Lys Ala Trp Ala Val Ala Arg Leu Ser Gln Arg
Phe Pro 210 215 220
Lys Ala Glu Phe Ala Glu Val Ser Lys Leu Val Thr Asp Leu Thr Lys225
230 235 240 Val His Thr Glu Cys
Cys His Gly Asp Leu Leu Glu Cys Ala Asp Asp 245
250 255 Arg Ala Asp Leu Ala Lys Tyr Ile Cys Glu
Asn Gln Asp Ser Ile Ser 260 265
270 Ser Lys Leu Lys Glu Cys Cys Glu Lys Pro Leu Leu Glu Lys Ser
His 275 280 285 Cys
Ile Ala Glu Val Glu Asn Asp Glu Met Pro Ala Asp Leu Pro Ser 290
295 300 Leu Ala Ala Asp Phe Val
Glu Ser Lys Asp Val Cys Lys Asn Tyr Ala305 310
315 320 Glu Ala Lys Asp Val Phe Leu Gly Met Phe Leu
Tyr Glu Tyr Ala Arg 325 330
335 Arg His Pro Asp Tyr Ser Val Val Leu Leu Leu Arg Leu Ala Lys Thr
340 345 350 Tyr Glu Thr
Thr Leu Glu Lys Cys Cys Ala Ala Ala Asp Pro His Glu 355
360 365 Cys Tyr Ala Lys Val Phe Asp Glu
Phe Lys Pro Leu Val Glu Glu Pro 370 375
380 Gln Asn Leu Ile Lys Gln Asn Cys Glu Leu Phe Glu Gln
Leu Gly Glu385 390 395
400 Tyr Lys Phe Gln Asn Ala Leu Leu Val Arg Tyr Thr Lys Lys Val Pro
405 410 415 Gln Val Ser Thr
Pro Thr Leu Val Glu Val Ser Arg Asn Leu Gly Lys 420
425 430 Val Gly Ser Lys Cys Cys Lys His Pro
Glu Ala Lys Arg Met Pro Cys 435 440
445 Ala Glu Asp Tyr Leu Ser Val Val Leu Asn Gln Leu Cys Val
Leu His 450 455 460
Glu Lys Thr Pro Val Ser Asp Arg Val Thr Lys Cys Cys Thr Glu Ser465
470 475 480 Leu Val Asn Arg Arg
Pro Cys Phe Ser Ala Leu Glu Val Asp Glu Thr 485
490 495 Tyr Val Pro Lys Glu Phe Asn Ala Glu Thr
Phe Thr Phe His Ala Asp 500 505
510 Ile Cys Thr Leu Ser Glu Lys Glu Arg Gln Ile Lys Lys Gln Thr
Ala 515 520 525 Leu
Val Glu Leu Val Lys His Lys Pro Lys Ala Thr Lys Glu Gln Leu 530
535 540 Lys Ala Val Met Asp Asp
Phe Ala Ala Phe Val Glu Lys Cys Cys Lys545 550
555 560 Ala Asp Asp Lys Glu Thr Cys Phe Ala Glu Glu
Gly Lys Lys Leu Val 565 570
575 Ala Ala Ser Gln Ala Ala Leu Gly Leu His His His His His His
580 585 590 104591PRTArtificial
SequenceAmino acid sequence identified using molecular biology
techniques. 104Asp Ala His Lys Ser Glu Val Ala His Arg Phe Lys Asp Leu
Gly Glu1 5 10 15
Glu Asn Phe Lys Ala Leu Val Leu Ile Ala Phe Ala Gln Tyr Leu Gln
20 25 30 Gln Cys Pro Phe Glu
Asp His Val Lys Leu Val Asn Glu Val Thr Glu 35 40
45 Phe Ala Lys Thr Cys Val Ala Asp Glu Ser
Ala Glu Asn Cys Asp Lys 50 55 60
Ser Leu His Thr Leu Phe Gly Asp Lys Leu Cys Thr Val Ala Thr
Leu65 70 75 80 Arg
Glu Thr Tyr Gly Glu Met Ala Asp Cys Cys Ala Lys Gln Glu Pro
85 90 95 Glu Arg Asn Glu Cys Phe
Leu Gln His Lys Asp Asp Asn Pro Asn Leu 100
105 110 Pro Arg Leu Val Arg Pro Glu Val Asp Val
Met Cys Thr Ala Phe His 115 120
125 Asp Asn Glu Glu Thr Phe Leu Lys Lys Tyr Leu Tyr Glu Ile
Ala Arg 130 135 140
Arg His Pro Tyr Phe Tyr Ala Pro Glu Leu Leu Phe Phe Ala Lys Arg145
150 155 160 Tyr Lys Ala Ala Phe
Thr Glu Cys Cys Gln Ala Ala Asp Lys Ala Ala 165
170 175 Cys Leu Leu Pro Lys Leu Asp Glu Leu Arg
Asp Glu Gly Lys Val Ser 180 185
190 Ser Ala Lys Gln Arg Leu Lys Cys Ala Ser Leu Gln Lys Phe Gly
Glu 195 200 205 Arg
Ala Phe Lys Ala Trp Ala Val Ala Arg Leu Ser Gln Arg Phe Pro 210
215 220 Ala Ala Glu Phe Ala Glu
Val Ser Lys Leu Val Thr Asp Leu Thr Lys225 230
235 240 Val His Thr Glu Cys Cys His Gly Asp Leu Leu
Glu Cys Ala Asp Asp 245 250
255 Arg Ala Asp Leu Ala Lys Tyr Ile Cys Glu Asn Gln Asp Ser Ile Ser
260 265 270 Ser Lys Leu
Lys Glu Cys Cys Glu Lys Pro Leu Leu Glu Lys Ser His 275
280 285 Cys Ile Ala Glu Val Glu Asn Asp
Glu Met Pro Ala Asp Leu Pro Ser 290 295
300 Leu Ala Ala Asp Phe Val Glu Ser Lys Asp Val Cys Lys
Asn Tyr Ala305 310 315
320 Glu Ala Lys Asp Val Phe Leu Gly Met Phe Leu Tyr Glu Tyr Ala Arg
325 330 335 Arg His Pro Asp
Tyr Ser Val Val Leu Leu Leu Arg Leu Ala Lys Thr 340
345 350 Tyr Glu Thr Thr Leu Glu Lys Cys Cys
Ala Ala Ala Asp Pro His Glu 355 360
365 Cys Tyr Ala Lys Val Phe Asp Glu Phe Lys Pro Leu Val Glu
Glu Pro 370 375 380
Gln Asn Leu Ile Lys Gln Asn Cys Glu Leu Phe Glu Gln Leu Gly Glu385
390 395 400 Tyr Lys Phe Gln Asn
Ala Leu Leu Val Arg Tyr Thr Lys Lys Val Pro 405
410 415 Gln Val Ser Thr Pro Thr Leu Val Glu Val
Ser Arg Asn Leu Gly Lys 420 425
430 Val Gly Ser Lys Cys Cys Lys His Pro Glu Ala Lys Arg Met Pro
Cys 435 440 445 Ala
Glu Asp Tyr Leu Ser Val Val Leu Asn Gln Leu Cys Val Leu His 450
455 460 Glu Lys Thr Pro Val Ser
Asp Arg Val Thr Lys Cys Cys Thr Glu Ser465 470
475 480 Leu Val Asn Arg Arg Pro Cys Phe Ser Ala Leu
Glu Val Asp Glu Thr 485 490
495 Tyr Val Pro Lys Glu Phe Asn Ala Glu Thr Phe Thr Phe His Ala Asp
500 505 510 Ile Cys Thr
Leu Ser Glu Lys Glu Arg Gln Ile Lys Lys Gln Thr Ala 515
520 525 Leu Val Glu Leu Val Lys His Lys
Pro Lys Ala Thr Lys Glu Gln Leu 530 535
540 Lys Ala Val Met Asp Asp Phe Ala Ala Phe Val Glu Lys
Cys Cys Lys545 550 555
560 Ala Asp Asp Lys Glu Thr Cys Phe Ala Glu Glu Gly Lys Lys Leu Val
565 570 575 Ala Ala Ser Gln
Ala Ala Leu Gly Leu His His His His His His 580
585 590 105591PRTArtificial SequenceAmino acid
sequence identified using molecular biology techniques. 105Asp Ala
His Lys Ser Glu Val Ala His Arg Phe Lys Asp Leu Gly Glu1 5
10 15 Glu Asn Phe Lys Ala Leu Val
Leu Ile Ala Phe Ala Gln Tyr Leu Gln 20 25
30 Gln Cys Pro Phe Glu Asp His Val Lys Leu Val Asn
Glu Val Thr Glu 35 40 45
Phe Ala Lys Thr Cys Val Ala Asp Glu Ser Ala Glu Asn Cys Asp Lys
50 55 60 Ser Leu His
Thr Leu Phe Gly Asp Lys Leu Cys Thr Val Ala Thr Leu65 70
75 80 Arg Glu Thr Tyr Gly Glu Met Ala
Asp Cys Cys Ala Lys Gln Glu Pro 85 90
95 Glu Arg Asn Glu Cys Phe Leu Gln His Lys Asp Asp Asn
Pro Asn Leu 100 105 110
Pro Arg Leu Val Arg Pro Glu Val Asp Val Met Cys Thr Ala Phe His
115 120 125 Asp Asn Glu Glu
Thr Phe Leu Lys Lys Tyr Leu Tyr Glu Ile Ala Arg 130
135 140 Arg His Pro Tyr Phe Tyr Ala Pro
Glu Leu Leu Phe Phe Ala Lys Arg145 150
155 160 Tyr Lys Ala Ala Phe Thr Glu Cys Cys Gln Ala Ala
Asp Lys Ala Ala 165 170
175 Cys Leu Leu Pro Lys Leu Asp Glu Leu Arg Asp Glu Gly Lys Val Ser
180 185 190 Ser Ala Lys
Gln Arg Leu Lys Cys Ala Ser Leu Gln Lys Phe Gly Glu 195
200 205 Arg Ala Phe Lys Ala Trp Ala Val
Ala Arg Leu Ser Gln Arg Phe Pro 210 215
220 Lys Ala Ala Phe Ala Glu Val Ser Lys Leu Val Thr Asp
Leu Thr Lys225 230 235
240 Val His Thr Glu Cys Cys His Gly Asp Leu Leu Glu Cys Ala Asp Asp
245 250 255 Arg Ala Asp Leu
Ala Lys Tyr Ile Cys Glu Asn Gln Asp Ser Ile Ser 260
265 270 Ser Lys Leu Lys Glu Cys Cys Glu Lys
Pro Leu Leu Glu Lys Ser His 275 280
285 Cys Ile Ala Glu Val Glu Asn Asp Glu Met Pro Ala Asp Leu
Pro Ser 290 295 300
Leu Ala Ala Asp Phe Val Glu Ser Lys Asp Val Cys Lys Asn Tyr Ala305
310 315 320 Glu Ala Lys Asp Val
Phe Leu Gly Met Phe Leu Tyr Glu Tyr Ala Arg 325
330 335 Arg His Pro Asp Tyr Ser Val Val Leu Leu
Leu Arg Leu Ala Lys Thr 340 345
350 Tyr Glu Thr Thr Leu Glu Lys Cys Cys Ala Ala Ala Asp Pro His
Glu 355 360 365 Cys
Tyr Ala Lys Val Phe Asp Glu Phe Lys Pro Leu Val Glu Glu Pro 370
375 380 Gln Asn Leu Ile Lys Gln
Asn Cys Glu Leu Phe Glu Gln Leu Gly Glu385 390
395 400 Tyr Lys Phe Gln Asn Ala Leu Leu Val Arg Tyr
Thr Lys Lys Val Pro 405 410
415 Gln Val Ser Thr Pro Thr Leu Val Glu Val Ser Arg Asn Leu Gly Lys
420 425 430 Val Gly Ser
Lys Cys Cys Lys His Pro Glu Ala Lys Arg Met Pro Cys 435
440 445 Ala Glu Asp Tyr Leu Ser Val Val
Leu Asn Gln Leu Cys Val Leu His 450 455
460 Glu Lys Thr Pro Val Ser Asp Arg Val Thr Lys Cys Cys
Thr Glu Ser465 470 475
480 Leu Val Asn Arg Arg Pro Cys Phe Ser Ala Leu Glu Val Asp Glu Thr
485 490 495 Tyr Val Pro Lys
Glu Phe Asn Ala Glu Thr Phe Thr Phe His Ala Asp 500
505 510 Ile Cys Thr Leu Ser Glu Lys Glu Arg
Gln Ile Lys Lys Gln Thr Ala 515 520
525 Leu Val Glu Leu Val Lys His Lys Pro Lys Ala Thr Lys Glu
Gln Leu 530 535 540
Lys Ala Val Met Asp Asp Phe Ala Ala Phe Val Glu Lys Cys Cys Lys545
550 555 560 Ala Asp Asp Lys Glu
Thr Cys Phe Ala Glu Glu Gly Lys Lys Leu Val 565
570 575 Ala Ala Ser Gln Ala Ala Leu Gly Leu His
His His His His His 580 585
590 106591PRTArtificial SequenceAmino acid sequence identified using
molecular biology techniques. 106Asp Ala His Lys Ser Glu Val Ala His
Arg Phe Lys Asp Leu Gly Glu1 5 10
15 Glu Asn Phe Lys Ala Leu Val Leu Ile Ala Phe Ala Gln Tyr
Leu Gln 20 25 30
Gln Cys Pro Phe Glu Asp His Val Lys Leu Val Asn Glu Val Thr Glu 35
40 45 Phe Ala Lys Thr Cys
Val Ala Asp Glu Ser Ala Glu Asn Cys Asp Lys 50 55
60 Ser Leu His Thr Leu Phe Gly Asp Lys Leu
Cys Thr Val Ala Thr Leu65 70 75
80 Arg Glu Thr Tyr Gly Glu Met Ala Asp Cys Cys Ala Lys Gln Glu
Pro 85 90 95 Glu
Arg Asn Glu Cys Phe Leu Gln His Lys Asp Asp Asn Pro Asn Leu
100 105 110 Pro Arg Leu Val Arg
Pro Glu Val Asp Val Met Cys Thr Ala Phe His 115
120 125 Asp Asn Glu Glu Thr Phe Leu Lys Lys
Tyr Leu Tyr Glu Ile Ala Arg 130 135
140 Arg His Pro Tyr Phe Tyr Ala Pro Glu Leu Leu Phe Phe
Ala Lys Arg145 150 155
160 Tyr Lys Ala Ala Phe Thr Glu Cys Cys Gln Ala Ala Asp Lys Ala Ala
165 170 175 Cys Leu Leu Pro
Lys Leu Asp Glu Leu Arg Asp Glu Gly Lys Val Ser 180
185 190 Ser Ala Lys Gln Arg Leu Lys Cys Ala
Ser Leu Gln Lys Phe Gly Glu 195 200
205 Arg Ala Phe Lys Ala Trp Ala Val Ala Arg Leu Ser Gln Arg
Phe Pro 210 215 220
Lys Ala Glu Phe Ala Ala Val Ser Lys Leu Val Thr Asp Leu Thr Lys225
230 235 240 Val His Thr Glu Cys
Cys His Gly Asp Leu Leu Glu Cys Ala Asp Asp 245
250 255 Arg Ala Asp Leu Ala Lys Tyr Ile Cys Glu
Asn Gln Asp Ser Ile Ser 260 265
270 Ser Lys Leu Lys Glu Cys Cys Glu Lys Pro Leu Leu Glu Lys Ser
His 275 280 285 Cys
Ile Ala Glu Val Glu Asn Asp Glu Met Pro Ala Asp Leu Pro Ser 290
295 300 Leu Ala Ala Asp Phe Val
Glu Ser Lys Asp Val Cys Lys Asn Tyr Ala305 310
315 320 Glu Ala Lys Asp Val Phe Leu Gly Met Phe Leu
Tyr Glu Tyr Ala Arg 325 330
335 Arg His Pro Asp Tyr Ser Val Val Leu Leu Leu Arg Leu Ala Lys Thr
340 345 350 Tyr Glu Thr
Thr Leu Glu Lys Cys Cys Ala Ala Ala Asp Pro His Glu 355
360 365 Cys Tyr Ala Lys Val Phe Asp Glu
Phe Lys Pro Leu Val Glu Glu Pro 370 375
380 Gln Asn Leu Ile Lys Gln Asn Cys Glu Leu Phe Glu Gln
Leu Gly Glu385 390 395
400 Tyr Lys Phe Gln Asn Ala Leu Leu Val Arg Tyr Thr Lys Lys Val Pro
405 410 415 Gln Val Ser Thr
Pro Thr Leu Val Glu Val Ser Arg Asn Leu Gly Lys 420
425 430 Val Gly Ser Lys Cys Cys Lys His Pro
Glu Ala Lys Arg Met Pro Cys 435 440
445 Ala Glu Asp Tyr Leu Ser Val Val Leu Asn Gln Leu Cys Val
Leu His 450 455 460
Glu Lys Thr Pro Val Ser Asp Arg Val Thr Lys Cys Cys Thr Glu Ser465
470 475 480 Leu Val Asn Arg Arg
Pro Cys Phe Ser Ala Leu Glu Val Asp Glu Thr 485
490 495 Tyr Val Pro Lys Glu Phe Asn Ala Glu Thr
Phe Thr Phe His Ala Asp 500 505
510 Ile Cys Thr Leu Ser Glu Lys Glu Arg Gln Ile Lys Lys Gln Thr
Ala 515 520 525 Leu
Val Glu Leu Val Lys His Lys Pro Lys Ala Thr Lys Glu Gln Leu 530
535 540 Lys Ala Val Met Asp Asp
Phe Ala Ala Phe Val Glu Lys Cys Cys Lys545 550
555 560 Ala Asp Asp Lys Glu Thr Cys Phe Ala Glu Glu
Gly Lys Lys Leu Val 565 570
575 Ala Ala Ser Gln Ala Ala Leu Gly Leu His His His His His His
580 585 590 107591PRTArtificial
SequenceAmino acid sequence identified using molecular biology
techniques. 107Asp Ala His Lys Ser Glu Val Ala His Arg Phe Lys Asp Leu
Gly Glu1 5 10 15
Glu Asn Phe Lys Ala Leu Val Leu Ile Ala Phe Ala Gln Tyr Leu Gln
20 25 30 Gln Cys Pro Phe Glu
Asp His Val Lys Leu Val Asn Glu Val Thr Glu 35 40
45 Phe Ala Lys Thr Cys Val Ala Asp Glu Ser
Ala Glu Asn Cys Asp Lys 50 55 60
Ser Leu His Thr Leu Phe Gly Asp Lys Leu Cys Thr Val Ala Thr
Leu65 70 75 80 Arg
Glu Thr Tyr Gly Glu Met Ala Asp Cys Cys Ala Lys Gln Glu Pro
85 90 95 Glu Arg Asn Glu Cys Phe
Leu Gln His Lys Asp Asp Asn Pro Asn Leu 100
105 110 Pro Arg Leu Val Arg Pro Glu Val Asp Val
Met Cys Thr Ala Phe His 115 120
125 Asp Asn Glu Glu Thr Phe Leu Lys Lys Tyr Leu Tyr Glu Ile
Ala Arg 130 135 140
Arg His Pro Tyr Phe Tyr Ala Pro Glu Leu Leu Phe Phe Ala Lys Arg145
150 155 160 Tyr Lys Ala Ala Phe
Thr Glu Cys Cys Gln Ala Ala Asp Lys Ala Ala 165
170 175 Cys Leu Leu Pro Lys Leu Asp Glu Leu Arg
Asp Glu Gly Lys Val Ser 180 185
190 Ser Ala Lys Gln Arg Leu Lys Cys Ala Ser Leu Gln Lys Phe Gly
Glu 195 200 205 Arg
Ala Phe Lys Ala Trp Ala Val Ala Arg Leu Ser Gln Arg Phe Pro 210
215 220 Lys Ala Glu Phe Ala Glu
Val Ser Lys Leu Val Thr Asp Leu Thr Lys225 230
235 240 Val His Thr Glu Cys Cys His Gly Asp Leu Leu
Glu Cys Ala Asp Asp 245 250
255 Arg Ala Asp Leu Ala Lys Tyr Ile Cys Glu Asn Gln Asp Ser Ile Ser
260 265 270 Ser Lys Leu
Lys Glu Cys Cys Glu Lys Pro Leu Leu Glu Lys Ser His 275
280 285 Cys Ile Ala Glu Val Glu Asn Asp
Glu Met Pro Ala Asp Leu Pro Ser 290 295
300 Leu Ala Ala Asp Phe Val Glu Ser Lys Ala Val Cys Lys
Asn Tyr Ala305 310 315
320 Glu Ala Lys Asp Val Phe Leu Gly Met Phe Leu Tyr Glu Tyr Ala Arg
325 330 335 Arg His Pro Asp
Tyr Ser Val Val Leu Leu Leu Arg Leu Ala Lys Thr 340
345 350 Tyr Glu Thr Thr Leu Glu Lys Cys Cys
Ala Ala Ala Asp Pro His Glu 355 360
365 Cys Tyr Ala Lys Val Phe Asp Glu Phe Lys Pro Leu Val Glu
Glu Pro 370 375 380
Gln Asn Leu Ile Lys Gln Asn Cys Glu Leu Phe Glu Gln Leu Gly Glu385
390 395 400 Tyr Lys Phe Gln Asn
Ala Leu Leu Val Arg Tyr Thr Lys Lys Val Pro 405
410 415 Gln Val Ser Thr Pro Thr Leu Val Glu Val
Ser Arg Asn Leu Gly Lys 420 425
430 Val Gly Ser Lys Cys Cys Lys His Pro Glu Ala Lys Arg Met Pro
Cys 435 440 445 Ala
Glu Asp Tyr Leu Ser Val Val Leu Asn Gln Leu Cys Val Leu His 450
455 460 Glu Lys Thr Pro Val Ser
Asp Arg Val Thr Lys Cys Cys Thr Glu Ser465 470
475 480 Leu Val Asn Arg Arg Pro Cys Phe Ser Ala Leu
Glu Val Asp Glu Thr 485 490
495 Tyr Val Pro Lys Glu Phe Asn Ala Glu Thr Phe Thr Phe His Ala Asp
500 505 510 Ile Cys Thr
Leu Ser Glu Lys Glu Arg Gln Ile Lys Lys Gln Thr Ala 515
520 525 Leu Val Glu Leu Val Lys His Lys
Pro Lys Ala Thr Lys Glu Gln Leu 530 535
540 Lys Ala Val Met Asp Asp Phe Ala Ala Phe Val Glu Lys
Cys Cys Lys545 550 555
560 Ala Asp Asp Lys Glu Thr Cys Phe Ala Glu Glu Gly Lys Lys Leu Val
565 570 575 Ala Ala Ser Gln
Ala Ala Leu Gly Leu His His His His His His 580
585 590 108591PRTArtificial SequenceAmino acid
sequence identified using molecular biology techniques. 108Asp Ala
His Lys Ser Glu Val Ala His Arg Phe Lys Asp Leu Gly Glu1 5
10 15 Glu Asn Phe Lys Ala Leu Val
Leu Ile Ala Phe Ala Gln Tyr Leu Gln 20 25
30 Gln Cys Pro Phe Glu Asp His Val Lys Leu Val Asn
Glu Val Thr Glu 35 40 45
Phe Ala Lys Thr Cys Val Ala Asp Glu Ser Ala Glu Asn Cys Asp Lys
50 55 60 Ser Leu His
Thr Leu Phe Gly Asp Lys Leu Cys Thr Val Ala Thr Leu65 70
75 80 Arg Glu Thr Tyr Gly Glu Met Ala
Asp Cys Cys Ala Lys Gln Glu Pro 85 90
95 Glu Arg Asn Glu Cys Phe Leu Gln His Lys Asp Asp Asn
Pro Asn Leu 100 105 110
Pro Arg Leu Val Arg Pro Glu Val Asp Val Met Cys Thr Ala Phe His
115 120 125 Asp Asn Glu Glu
Thr Phe Leu Lys Lys Tyr Leu Tyr Glu Ile Ala Arg 130
135 140 Arg His Pro Tyr Phe Tyr Ala Pro
Glu Leu Leu Phe Phe Ala Lys Arg145 150
155 160 Tyr Lys Ala Ala Phe Thr Glu Cys Cys Gln Ala Ala
Asp Lys Ala Ala 165 170
175 Cys Leu Leu Pro Lys Leu Asp Glu Leu Arg Asp Glu Gly Lys Val Ser
180 185 190 Ser Ala Lys
Gln Arg Leu Lys Cys Ala Ser Leu Gln Lys Phe Gly Glu 195
200 205 Arg Ala Phe Lys Ala Trp Ala Val
Ala Arg Leu Ser Gln Arg Phe Pro 210 215
220 Lys Ala Glu Phe Ala Glu Val Ser Lys Leu Val Thr Asp
Leu Thr Lys225 230 235
240 Val His Thr Glu Cys Cys His Gly Asp Leu Leu Glu Cys Ala Asp Asp
245 250 255 Arg Ala Asp Leu
Ala Lys Tyr Ile Cys Glu Asn Gln Asp Ser Ile Ser 260
265 270 Ser Lys Leu Lys Glu Cys Cys Glu Lys
Pro Leu Leu Glu Lys Ser His 275 280
285 Cys Ile Ala Glu Val Glu Asn Asp Glu Met Pro Ala Asp Leu
Pro Ser 290 295 300
Leu Ala Ala Asp Phe Val Glu Ser Lys Asp Val Cys Ala Asn Tyr Ala305
310 315 320 Glu Ala Lys Asp Val
Phe Leu Gly Met Phe Leu Tyr Glu Tyr Ala Arg 325
330 335 Arg His Pro Asp Tyr Ser Val Val Leu Leu
Leu Arg Leu Ala Lys Thr 340 345
350 Tyr Glu Thr Thr Leu Glu Lys Cys Cys Ala Ala Ala Asp Pro His
Glu 355 360 365 Cys
Tyr Ala Lys Val Phe Asp Glu Phe Lys Pro Leu Val Glu Glu Pro 370
375 380 Gln Asn Leu Ile Lys Gln
Asn Cys Glu Leu Phe Glu Gln Leu Gly Glu385 390
395 400 Tyr Lys Phe Gln Asn Ala Leu Leu Val Arg Tyr
Thr Lys Lys Val Pro 405 410
415 Gln Val Ser Thr Pro Thr Leu Val Glu Val Ser Arg Asn Leu Gly Lys
420 425 430 Val Gly Ser
Lys Cys Cys Lys His Pro Glu Ala Lys Arg Met Pro Cys 435
440 445 Ala Glu Asp Tyr Leu Ser Val Val
Leu Asn Gln Leu Cys Val Leu His 450 455
460 Glu Lys Thr Pro Val Ser Asp Arg Val Thr Lys Cys Cys
Thr Glu Ser465 470 475
480 Leu Val Asn Arg Arg Pro Cys Phe Ser Ala Leu Glu Val Asp Glu Thr
485 490 495 Tyr Val Pro Lys
Glu Phe Asn Ala Glu Thr Phe Thr Phe His Ala Asp 500
505 510 Ile Cys Thr Leu Ser Glu Lys Glu Arg
Gln Ile Lys Lys Gln Thr Ala 515 520
525 Leu Val Glu Leu Val Lys His Lys Pro Lys Ala Thr Lys Glu
Gln Leu 530 535 540
Lys Ala Val Met Asp Asp Phe Ala Ala Phe Val Glu Lys Cys Cys Lys545
550 555 560 Ala Asp Asp Lys Glu
Thr Cys Phe Ala Glu Glu Gly Lys Lys Leu Val 565
570 575 Ala Ala Ser Gln Ala Ala Leu Gly Leu His
His His His His His 580 585
590 109591PRTArtificial SequenceAmino acid sequence identified using
molecular biology techniques. 109Asp Ala His Lys Ser Glu Val Ala His
Arg Phe Lys Asp Leu Gly Glu1 5 10
15 Glu Asn Phe Lys Ala Leu Val Leu Ile Ala Phe Ala Gln Tyr
Leu Gln 20 25 30
Gln Cys Pro Phe Glu Asp His Val Lys Leu Val Asn Glu Val Thr Glu 35
40 45 Phe Ala Lys Thr Cys
Val Ala Asp Glu Ser Ala Glu Asn Cys Asp Lys 50 55
60 Ser Leu His Thr Leu Phe Gly Asp Lys Leu
Cys Thr Val Ala Thr Leu65 70 75
80 Arg Glu Thr Tyr Gly Glu Met Ala Asp Cys Cys Ala Lys Gln Glu
Pro 85 90 95 Glu
Arg Asn Glu Cys Phe Leu Gln His Lys Asp Asp Asn Pro Asn Leu
100 105 110 Pro Arg Leu Val Arg
Pro Glu Val Asp Val Met Cys Thr Ala Phe His 115
120 125 Asp Asn Glu Glu Thr Phe Leu Lys Lys
Tyr Leu Tyr Glu Ile Ala Arg 130 135
140 Arg His Pro Tyr Phe Tyr Ala Pro Glu Leu Leu Phe Phe
Ala Lys Arg145 150 155
160 Tyr Lys Ala Ala Phe Thr Glu Cys Cys Gln Ala Ala Asp Lys Ala Ala
165 170 175 Cys Leu Leu Pro
Lys Leu Asp Glu Leu Arg Asp Glu Gly Lys Val Ser 180
185 190 Ser Ala Lys Gln Arg Leu Lys Cys Ala
Ser Leu Gln Lys Phe Gly Glu 195 200
205 Arg Ala Phe Lys Ala Trp Ala Val Ala Arg Leu Ser Gln Arg
Phe Pro 210 215 220
Lys Ala Glu Phe Ala Glu Val Ser Lys Leu Val Thr Asp Leu Thr Lys225
230 235 240 Val His Thr Glu Cys
Cys His Gly Asp Leu Leu Glu Cys Ala Asp Asp 245
250 255 Arg Ala Asp Leu Ala Lys Tyr Ile Cys Glu
Asn Gln Asp Ser Ile Ser 260 265
270 Ser Lys Leu Lys Glu Cys Cys Glu Lys Pro Leu Leu Glu Lys Ser
His 275 280 285 Cys
Ile Ala Glu Val Glu Asn Asp Glu Met Pro Ala Asp Leu Pro Ser 290
295 300 Leu Ala Ala Asp Phe Val
Glu Ser Lys Asp Val Cys Lys Asn Tyr Ala305 310
315 320 Glu Ala Lys Asp Ala Phe Leu Gly Met Phe Leu
Tyr Glu Tyr Ala Arg 325 330
335 Arg His Pro Asp Tyr Ser Val Val Leu Leu Leu Arg Leu Ala Lys Thr
340 345 350 Tyr Glu Thr
Thr Leu Glu Lys Cys Cys Ala Ala Ala Asp Pro His Glu 355
360 365 Cys Tyr Ala Lys Val Phe Asp Glu
Phe Lys Pro Leu Val Glu Glu Pro 370 375
380 Gln Asn Leu Ile Lys Gln Asn Cys Glu Leu Phe Glu Gln
Leu Gly Glu385 390 395
400 Tyr Lys Phe Gln Asn Ala Leu Leu Val Arg Tyr Thr Lys Lys Val Pro
405 410 415 Gln Val Ser Thr
Pro Thr Leu Val Glu Val Ser Arg Asn Leu Gly Lys 420
425 430 Val Gly Ser Lys Cys Cys Lys His Pro
Glu Ala Lys Arg Met Pro Cys 435 440
445 Ala Glu Asp Tyr Leu Ser Val Val Leu Asn Gln Leu Cys Val
Leu His 450 455 460
Glu Lys Thr Pro Val Ser Asp Arg Val Thr Lys Cys Cys Thr Glu Ser465
470 475 480 Leu Val Asn Arg Arg
Pro Cys Phe Ser Ala Leu Glu Val Asp Glu Thr 485
490 495 Tyr Val Pro Lys Glu Phe Asn Ala Glu Thr
Phe Thr Phe His Ala Asp 500 505
510 Ile Cys Thr Leu Ser Glu Lys Glu Arg Gln Ile Lys Lys Gln Thr
Ala 515 520 525 Leu
Val Glu Leu Val Lys His Lys Pro Lys Ala Thr Lys Glu Gln Leu 530
535 540 Lys Ala Val Met Asp Asp
Phe Ala Ala Phe Val Glu Lys Cys Cys Lys545 550
555 560 Ala Asp Asp Lys Glu Thr Cys Phe Ala Glu Glu
Gly Lys Lys Leu Val 565 570
575 Ala Ala Ser Gln Ala Ala Leu Gly Leu His His His His His His
580 585 590 110591PRTArtificial
SequenceAmino acid sequence identified using molecular biology
techniques. 110Asp Ala His Lys Ser Glu Val Ala His Arg Phe Lys Asp Leu
Gly Glu1 5 10 15
Glu Asn Phe Lys Ala Leu Val Leu Ile Ala Phe Ala Gln Tyr Leu Gln
20 25 30 Gln Cys Pro Phe Glu
Asp His Val Lys Leu Val Asn Glu Val Thr Glu 35 40
45 Phe Ala Lys Thr Cys Val Ala Asp Glu Ser
Ala Glu Asn Cys Asp Lys 50 55 60
Ser Leu His Thr Leu Phe Gly Asp Lys Leu Cys Thr Val Ala Thr
Leu65 70 75 80 Arg
Glu Thr Tyr Gly Glu Met Ala Asp Cys Cys Ala Lys Gln Glu Pro
85 90 95 Glu Arg Asn Glu Cys Phe
Leu Gln His Lys Asp Asp Asn Pro Asn Leu 100
105 110 Pro Arg Leu Val Arg Pro Glu Val Asp Val
Met Cys Thr Ala Phe His 115 120
125 Asp Asn Glu Glu Thr Phe Leu Lys Lys Tyr Leu Tyr Glu Ile
Ala Arg 130 135 140
Arg His Pro Tyr Phe Tyr Ala Pro Glu Leu Leu Phe Phe Ala Lys Arg145
150 155 160 Tyr Lys Ala Ala Phe
Thr Glu Cys Cys Gln Ala Ala Asp Lys Ala Ala 165
170 175 Cys Leu Leu Pro Lys Leu Asp Glu Leu Arg
Asp Glu Gly Lys Val Ser 180 185
190 Ser Ala Lys Gln Arg Leu Lys Cys Ala Ser Leu Gln Lys Phe Gly
Glu 195 200 205 Arg
Ala Phe Lys Ala Trp Ala Val Ala Arg Leu Ser Gln Arg Phe Pro 210
215 220 Lys Ala Glu Phe Ala Glu
Val Ser Lys Leu Val Thr Asp Leu Thr Lys225 230
235 240 Val His Thr Glu Cys Cys His Gly Asp Leu Leu
Glu Cys Ala Asp Asp 245 250
255 Arg Ala Asp Leu Ala Lys Tyr Ile Cys Glu Asn Gln Asp Ser Ile Ser
260 265 270 Ser Lys Leu
Lys Glu Cys Cys Glu Lys Pro Leu Leu Glu Lys Ser His 275
280 285 Cys Ile Ala Glu Val Glu Asn Asp
Glu Met Pro Ala Asp Leu Pro Ser 290 295
300 Leu Ala Ala Asp Phe Val Glu Ser Lys Asp Val Cys Lys
Asn Tyr Ala305 310 315
320 Glu Ala Lys Asp Val Phe Leu Gly Ala Phe Leu Tyr Glu Tyr Ala Arg
325 330 335 Arg His Pro Asp
Tyr Ser Val Val Leu Leu Leu Arg Leu Ala Lys Thr 340
345 350 Tyr Glu Thr Thr Leu Glu Lys Cys Cys
Ala Ala Ala Asp Pro His Glu 355 360
365 Cys Tyr Ala Lys Val Phe Asp Glu Phe Lys Pro Leu Val Glu
Glu Pro 370 375 380
Gln Asn Leu Ile Lys Gln Asn Cys Glu Leu Phe Glu Gln Leu Gly Glu385
390 395 400 Tyr Lys Phe Gln Asn
Ala Leu Leu Val Arg Tyr Thr Lys Lys Val Pro 405
410 415 Gln Val Ser Thr Pro Thr Leu Val Glu Val
Ser Arg Asn Leu Gly Lys 420 425
430 Val Gly Ser Lys Cys Cys Lys His Pro Glu Ala Lys Arg Met Pro
Cys 435 440 445 Ala
Glu Asp Tyr Leu Ser Val Val Leu Asn Gln Leu Cys Val Leu His 450
455 460 Glu Lys Thr Pro Val Ser
Asp Arg Val Thr Lys Cys Cys Thr Glu Ser465 470
475 480 Leu Val Asn Arg Arg Pro Cys Phe Ser Ala Leu
Glu Val Asp Glu Thr 485 490
495 Tyr Val Pro Lys Glu Phe Asn Ala Glu Thr Phe Thr Phe His Ala Asp
500 505 510 Ile Cys Thr
Leu Ser Glu Lys Glu Arg Gln Ile Lys Lys Gln Thr Ala 515
520 525 Leu Val Glu Leu Val Lys His Lys
Pro Lys Ala Thr Lys Glu Gln Leu 530 535
540 Lys Ala Val Met Asp Asp Phe Ala Ala Phe Val Glu Lys
Cys Cys Lys545 550 555
560 Ala Asp Asp Lys Glu Thr Cys Phe Ala Glu Glu Gly Lys Lys Leu Val
565 570 575 Ala Ala Ser Gln
Ala Ala Leu Gly Leu His His His His His His 580
585 590 111591PRTArtificial SequenceAmino acid
sequence identified using molecular biology techniques. 111Asp Ala
His Lys Ser Glu Val Ala His Arg Phe Lys Asp Leu Gly Glu1 5
10 15 Glu Asn Phe Lys Ala Leu Val
Leu Ile Ala Phe Ala Gln Tyr Leu Gln 20 25
30 Gln Cys Pro Phe Glu Asp His Val Lys Leu Val Asn
Glu Val Thr Glu 35 40 45
Phe Ala Lys Thr Cys Val Ala Asp Glu Ser Ala Glu Asn Cys Asp Lys
50 55 60 Ser Leu His
Thr Leu Phe Gly Asp Lys Leu Cys Thr Val Ala Thr Leu65 70
75 80 Arg Glu Thr Tyr Gly Glu Met Ala
Asp Cys Cys Ala Lys Gln Glu Pro 85 90
95 Glu Arg Asn Glu Cys Phe Leu Gln His Lys Asp Asp Asn
Pro Asn Leu 100 105 110
Pro Arg Leu Val Arg Pro Glu Val Asp Val Met Cys Thr Ala Phe His
115 120 125 Asp Asn Glu Glu
Thr Phe Leu Lys Lys Tyr Leu Tyr Glu Ile Ala Arg 130
135 140 Arg His Pro Tyr Phe Tyr Ala Pro
Glu Leu Leu Phe Phe Ala Lys Arg145 150
155 160 Tyr Lys Ala Ala Phe Thr Glu Cys Cys Gln Ala Ala
Asp Lys Ala Ala 165 170
175 Cys Leu Leu Pro Lys Leu Asp Glu Leu Arg Asp Glu Gly Lys Val Ser
180 185 190 Ser Ala Lys
Gln Arg Leu Lys Cys Ala Ser Leu Gln Lys Phe Gly Glu 195
200 205 Arg Ala Phe Lys Ala Trp Ala Val
Ala Arg Leu Ser Gln Arg Phe Pro 210 215
220 Lys Ala Glu Phe Ala Glu Val Ser Lys Leu Val Thr Asp
Leu Thr Lys225 230 235
240 Val His Thr Glu Cys Cys His Gly Asp Leu Leu Glu Cys Ala Asp Asp
245 250 255 Arg Ala Asp Leu
Ala Lys Tyr Ile Cys Glu Asn Gln Asp Ser Ile Ser 260
265 270 Ser Lys Leu Lys Glu Cys Cys Glu Lys
Pro Leu Leu Glu Lys Ser His 275 280
285 Cys Ile Ala Glu Val Glu Asn Asp Glu Met Pro Ala Asp Leu
Pro Ser 290 295 300
Leu Ala Ala Asp Phe Val Glu Ser Lys Asp Val Cys Lys Asn Tyr Ala305
310 315 320 Glu Ala Lys Asp Val
Phe Leu Gly Met Phe Leu Tyr Glu Tyr Ala Arg 325
330 335 Arg His Pro Asp Tyr Ser Val Val Leu Leu
Leu Arg Leu Ala Ala Thr 340 345
350 Tyr Glu Thr Thr Leu Glu Lys Cys Cys Ala Ala Ala Asp Pro His
Glu 355 360 365 Cys
Tyr Ala Lys Val Phe Asp Glu Phe Lys Pro Leu Val Glu Glu Pro 370
375 380 Gln Asn Leu Ile Lys Gln
Asn Cys Glu Leu Phe Glu Gln Leu Gly Glu385 390
395 400 Tyr Lys Phe Gln Asn Ala Leu Leu Val Arg Tyr
Thr Lys Lys Val Pro 405 410
415 Gln Val Ser Thr Pro Thr Leu Val Glu Val Ser Arg Asn Leu Gly Lys
420 425 430 Val Gly Ser
Lys Cys Cys Lys His Pro Glu Ala Lys Arg Met Pro Cys 435
440 445 Ala Glu Asp Tyr Leu Ser Val Val
Leu Asn Gln Leu Cys Val Leu His 450 455
460 Glu Lys Thr Pro Val Ser Asp Arg Val Thr Lys Cys Cys
Thr Glu Ser465 470 475
480 Leu Val Asn Arg Arg Pro Cys Phe Ser Ala Leu Glu Val Asp Glu Thr
485 490 495 Tyr Val Pro Lys
Glu Phe Asn Ala Glu Thr Phe Thr Phe His Ala Asp 500
505 510 Ile Cys Thr Leu Ser Glu Lys Glu Arg
Gln Ile Lys Lys Gln Thr Ala 515 520
525 Leu Val Glu Leu Val Lys His Lys Pro Lys Ala Thr Lys Glu
Gln Leu 530 535 540
Lys Ala Val Met Asp Asp Phe Ala Ala Phe Val Glu Lys Cys Cys Lys545
550 555 560 Ala Asp Asp Lys Glu
Thr Cys Phe Ala Glu Glu Gly Lys Lys Leu Val 565
570 575 Ala Ala Ser Gln Ala Ala Leu Gly Leu His
His His His His His 580 585
590 1121774DNAArtificial SequenceNucleic acid sequence identified
using molecular biology techniques. 112gatgcacaca agagtgaggt
tgctcatcgg tttaaagatt tgggagaaga aaatttcaaa 60gccttggtgt tgattgcctt
tgctcagtat cttcagcagt gtccatttga agatcatgta 120aaattagtga atgaagtaac
tgaatttgca aaaacatgtg ttgctgatga gtcagctgaa 180aattgtgaca aatcacttca
tacccttttt ggagacaaat tatgcacagt tgcaactctt 240cgtgaaacct atggtgaaat
ggctgactgc tgtgcaaaac aagaacctga gagaaatgaa 300tgcttcttgc aacacaaaga
tgacaaccca aacctccccc gattggtgag accagaggtt 360gatgtgatgt gcactgcttt
tcatgacaat gaagagacat ttttgaaaaa atacttatat 420gaaattgcca gaagacatcc
ttacttttat gccccggaac tccttttctt tgctaaaagg 480tataaagctg cttttacaga
atgttgccaa gctgctgata aagctgcctg cctgttgcca 540aagctcgatg aacttcggga
tgaagggaag gtttcgtctg ccaaacagag actcaagtgt 600gccagtctcc aaaaatttgg
agaaagagct ttcaaagcat gggcagtagc tcgcctgagc 660cagagatttc ccaaagctga
gtttgcagaa gtttccaagt tagtgacaga tcttaccaaa 720gtccacacgg aatgctgcca
tggagatctg cttgaatgtg ctgatgacag ggcggacctt 780gccaagtata tctgtgaaaa
tcaagattcg atctccagta aactgaagga atgctgtgaa 840aaacctctgt tggaaaaatc
ccactgcatt gccgaagtgg aaaatgatga gatgcctgct 900gacttgcctt cattagctgc
tgattttgtt gaaagtaagg atgtttgcaa aaactatgct 960gaggcaaagg atgtcttcct
gggcatgttt ttgtatgaat atgcaagaag gcatcctgat 1020tactctgtcg tgctgctgct
gagacttgcc aagacatatg aaaccactct agagaagtgc 1080tgtgccgctg cagatcctca
tgaatgctat gccaaagtgt tcgatgaatt taaacctctt 1140gtggaagagc ctcagaattt
aatcaaacaa aattgtgagc tttttgagca gcttggagag 1200tacaaattcc agaatgcgct
attagttcgt tacaccaaga aagtacccca agtgtcaact 1260ccaactcttg tagaggtctc
aagaaaccta ggaaaagtgg gcagcaaatg ttgtaaacat 1320cctgaagcaa aaagaatgcc
ctgtgcagaa gactatctat ccgtggtcct gaaccagtta 1380tgtgtgttgc atgagaaaac
gccagtaagt gacagagtca ccaaatgctg cacagaatcc 1440ttggtgaaca ggcgaccatg
cttttcagct ctggaagtcg atgaaacata cgttcccaaa 1500gagtttaatg ctgaaacatt
caccttccat gcagatatat gcacactttc tgagaaggag 1560agacaaatca agaaacaaac
tgcacttgtt gagcttgtga aacacaagcc caaggcaaca 1620aaagagcaac tgaaagctgt
tatggatgat ttcgcagctt ttgtagagaa gtgctgcaag 1680gctgacgata aggagacctg
ctttgccgag gagggtaaaa aacttgttgc tgcaagtcaa 1740gctgccttag gcttacatca
tcaccatcac catt 17741131774DNAArtificial
SequenceNucleic acid sequence identified using molecular biology
techniques. 113gatgcacaca agagtgaggt tgctcatcgg tttaaagatt tgggagaaga
aaatttcaaa 60gccttggtgt tgattgcctt tgctcagtat cttcagcagt gtccatttga
agatcatgta 120aaattagtga atgaagtaac tgaatttgca aaaacatgtg ttgctgatga
gtcagctgaa 180aattgtgaca aatcacttca tacccttttt ggagacaaat tatgcacagt
tgcaactctt 240cgtgaaacct atggtgaaat ggctgactgc tgtgcaaaac aagaacctga
gagaaatgaa 300tgcttcttgc aacacaaaga tgacaaccca aacctccccc gattggtgag
accagaggtt 360gatgtgatgt gcactgcttt tcatgacaat gaagagacat ttttgaaaaa
atacttatat 420gaaattgcca gaagacatcc ttacttttat gccccggaac tccttttctt
tgctaaaagg 480tataaagctg cttttacaga atgttgccaa gctgctgata aagctgcctg
cctgttgcca 540aagctcgatg aacttcggga tgaagggaag gtttcgtctg ccaaacagag
actcaagtgt 600gccagtctcc aaaaatttgg agaaagagct ttcaaagcat gggcagtagc
tcgcctgagc 660cagagatttc ccgccgctga gtttgcagaa gtttccaagt tagtgacaga
tcttaccaaa 720gtccacacgg aatgctgcca tggagatctg cttgaatgtg ctgatgacag
ggcggacctt 780gccaagtata tctgtgaaaa tcaagattcg atctccagta aactgaagga
atgctgtgaa 840aaacctctgt tggaaaaatc ccactgcatt gccgaagtgg aaaatgatga
gatgcctgct 900gacttgcctt cattagctgc tgattttgtt gaaagtaagg atgtttgcaa
aaactatgct 960gaggcaaagg atgtcttcct gggcatgttt ttgtatgaat atgcaagaag
gcatcctgat 1020tactctgtcg tgctgctgct gagacttgcc aagacatatg aaaccactct
agagaagtgc 1080tgtgccgctg cagatcctca tgaatgctat gccaaagtgt tcgatgaatt
taaacctctt 1140gtggaagagc ctcagaattt aatcaaacaa aattgtgagc tttttgagca
gcttggagag 1200tacaaattcc agaatgcgct attagttcgt tacaccaaga aagtacccca
agtgtcaact 1260ccaactcttg tagaggtctc aagaaaccta ggaaaagtgg gcagcaaatg
ttgtaaacat 1320cctgaagcaa aaagaatgcc ctgtgcagaa gactatctat ccgtggtcct
gaaccagtta 1380tgtgtgttgc atgagaaaac gccagtaagt gacagagtca ccaaatgctg
cacagaatcc 1440ttggtgaaca ggcgaccatg cttttcagct ctggaagtcg atgaaacata
cgttcccaaa 1500gagtttaatg ctgaaacatt caccttccat gcagatatat gcacactttc
tgagaaggag 1560agacaaatca agaaacaaac tgcacttgtt gagcttgtga aacacaagcc
caaggcaaca 1620aaagagcaac tgaaagctgt tatggatgat ttcgcagctt ttgtagagaa
gtgctgcaag 1680gctgacgata aggagacctg ctttgccgag gagggtaaaa aacttgttgc
tgcaagtcaa 1740gctgccttag gcttacatca tcaccatcac catt
17741141774DNAArtificial SequenceNucleic acid sequence
identified using molecular biology techniques. 114gatgcacaca
agagtgaggt tgctcatcgg tttaaagatt tgggagaaga aaatttcaaa 60gccttggtgt
tgattgcctt tgctcagtat cttcagcagt gtccatttga agatcatgta 120aaattagtga
atgaagtaac tgaatttgca aaaacatgtg ttgctgatga gtcagctgaa 180aattgtgaca
aatcacttca tacccttttt ggagacaaat tatgcacagt tgcaactctt 240cgtgaaacct
atggtgaaat ggctgactgc tgtgcaaaac aagaacctga gagaaatgaa 300tgcttcttgc
aacacaaaga tgacaaccca aacctccccc gattggtgag accagaggtt 360gatgtgatgt
gcactgcttt tcatgacaat gaagagacat ttttgaaaaa atacttatat 420gaaattgcca
gaagacatcc ttacttttat gccccggaac tccttttctt tgctaaaagg 480tataaagctg
cttttacaga atgttgccaa gctgctgata aagctgcctg cctgttgcca 540aagctcgatg
aacttcggga tgaagggaag gtttcgtctg ccaaacagag actcaagtgt 600gccagtctcc
aaaaatttgg agaaagagct ttcaaagcat gggcagtagc tcgcctgagc 660cagagatttc
ccaaagctgc ctttgcagaa gtttccaagt tagtgacaga tcttaccaaa 720gtccacacgg
aatgctgcca tggagatctg cttgaatgtg ctgatgacag ggcggacctt 780gccaagtata
tctgtgaaaa tcaagattcg atctccagta aactgaagga atgctgtgaa 840aaacctctgt
tggaaaaatc ccactgcatt gccgaagtgg aaaatgatga gatgcctgct 900gacttgcctt
cattagctgc tgattttgtt gaaagtaagg atgtttgcaa aaactatgct 960gaggcaaagg
atgtcttcct gggcatgttt ttgtatgaat atgcaagaag gcatcctgat 1020tactctgtcg
tgctgctgct gagacttgcc aagacatatg aaaccactct agagaagtgc 1080tgtgccgctg
cagatcctca tgaatgctat gccaaagtgt tcgatgaatt taaacctctt 1140gtggaagagc
ctcagaattt aatcaaacaa aattgtgagc tttttgagca gcttggagag 1200tacaaattcc
agaatgcgct attagttcgt tacaccaaga aagtacccca agtgtcaact 1260ccaactcttg
tagaggtctc aagaaaccta ggaaaagtgg gcagcaaatg ttgtaaacat 1320cctgaagcaa
aaagaatgcc ctgtgcagaa gactatctat ccgtggtcct gaaccagtta 1380tgtgtgttgc
atgagaaaac gccagtaagt gacagagtca ccaaatgctg cacagaatcc 1440ttggtgaaca
ggcgaccatg cttttcagct ctggaagtcg atgaaacata cgttcccaaa 1500gagtttaatg
ctgaaacatt caccttccat gcagatatat gcacactttc tgagaaggag 1560agacaaatca
agaaacaaac tgcacttgtt gagcttgtga aacacaagcc caaggcaaca 1620aaagagcaac
tgaaagctgt tatggatgat ttcgcagctt ttgtagagaa gtgctgcaag 1680gctgacgata
aggagacctg ctttgccgag gagggtaaaa aacttgttgc tgcaagtcaa 1740gctgccttag
gcttacatca tcaccatcac catt
17741151774DNAArtificial SequenceNucleic acid sequence identified using
molecular biology techniques. 115gatgcacaca agagtgaggt tgctcatcgg
tttaaagatt tgggagaaga aaatttcaaa 60gccttggtgt tgattgcctt tgctcagtat
cttcagcagt gtccatttga agatcatgta 120aaattagtga atgaagtaac tgaatttgca
aaaacatgtg ttgctgatga gtcagctgaa 180aattgtgaca aatcacttca tacccttttt
ggagacaaat tatgcacagt tgcaactctt 240cgtgaaacct atggtgaaat ggctgactgc
tgtgcaaaac aagaacctga gagaaatgaa 300tgcttcttgc aacacaaaga tgacaaccca
aacctccccc gattggtgag accagaggtt 360gatgtgatgt gcactgcttt tcatgacaat
gaagagacat ttttgaaaaa atacttatat 420gaaattgcca gaagacatcc ttacttttat
gccccggaac tccttttctt tgctaaaagg 480tataaagctg cttttacaga atgttgccaa
gctgctgata aagctgcctg cctgttgcca 540aagctcgatg aacttcggga tgaagggaag
gtttcgtctg ccaaacagag actcaagtgt 600gccagtctcc aaaaatttgg agaaagagct
ttcaaagcat gggcagtagc tcgcctgagc 660cagagatttc ccaaagctga gtttgcagcc
gtttccaagt tagtgacaga tcttaccaaa 720gtccacacgg aatgctgcca tggagatctg
cttgaatgtg ctgatgacag ggcggacctt 780gccaagtata tctgtgaaaa tcaagattcg
atctccagta aactgaagga atgctgtgaa 840aaacctctgt tggaaaaatc ccactgcatt
gccgaagtgg aaaatgatga gatgcctgct 900gacttgcctt cattagctgc tgattttgtt
gaaagtaagg atgtttgcaa aaactatgct 960gaggcaaagg atgtcttcct gggcatgttt
ttgtatgaat atgcaagaag gcatcctgat 1020tactctgtcg tgctgctgct gagacttgcc
aagacatatg aaaccactct agagaagtgc 1080tgtgccgctg cagatcctca tgaatgctat
gccaaagtgt tcgatgaatt taaacctctt 1140gtggaagagc ctcagaattt aatcaaacaa
aattgtgagc tttttgagca gcttggagag 1200tacaaattcc agaatgcgct attagttcgt
tacaccaaga aagtacccca agtgtcaact 1260ccaactcttg tagaggtctc aagaaaccta
ggaaaagtgg gcagcaaatg ttgtaaacat 1320cctgaagcaa aaagaatgcc ctgtgcagaa
gactatctat ccgtggtcct gaaccagtta 1380tgtgtgttgc atgagaaaac gccagtaagt
gacagagtca ccaaatgctg cacagaatcc 1440ttggtgaaca ggcgaccatg cttttcagct
ctggaagtcg atgaaacata cgttcccaaa 1500gagtttaatg ctgaaacatt caccttccat
gcagatatat gcacactttc tgagaaggag 1560agacaaatca agaaacaaac tgcacttgtt
gagcttgtga aacacaagcc caaggcaaca 1620aaagagcaac tgaaagctgt tatggatgat
ttcgcagctt ttgtagagaa gtgctgcaag 1680gctgacgata aggagacctg ctttgccgag
gagggtaaaa aacttgttgc tgcaagtcaa 1740gctgccttag gcttacatca tcaccatcac
catt 17741161774DNAArtificial
SequenceNucleic acid sequence identified using molecular biology
techniques. 116gatgcacaca agagtgaggt tgctcatcgg tttaaagatt tgggagaaga
aaatttcaaa 60gccttggtgt tgattgcctt tgctcagtat cttcagcagt gtccatttga
agatcatgta 120aaattagtga atgaagtaac tgaatttgca aaaacatgtg ttgctgatga
gtcagctgaa 180aattgtgaca aatcacttca tacccttttt ggagacaaat tatgcacagt
tgcaactctt 240cgtgaaacct atggtgaaat ggctgactgc tgtgcaaaac aagaacctga
gagaaatgaa 300tgcttcttgc aacacaaaga tgacaaccca aacctccccc gattggtgag
accagaggtt 360gatgtgatgt gcactgcttt tcatgacaat gaagagacat ttttgaaaaa
atacttatat 420gaaattgcca gaagacatcc ttacttttat gccccggaac tccttttctt
tgctaaaagg 480tataaagctg cttttacaga atgttgccaa gctgctgata aagctgcctg
cctgttgcca 540aagctcgatg aacttcggga tgaagggaag gtttcgtctg ccaaacagag
actcaagtgt 600gccagtctcc aaaaatttgg agaaagagct ttcaaagcat gggcagtagc
tcgcctgagc 660cagagatttc ccaaagctga gtttgcagaa gtttccaagt tagtgacaga
tcttaccaaa 720gtccacacgg aatgctgcca tggagatctg cttgaatgtg ctgatgacag
ggcggacctt 780gccaagtata tctgtgaaaa tcaagattcg atctccagta aactgaagga
atgctgtgaa 840aaacctctgt tggaaaaatc ccactgcatt gccgaagtgg aaaatgatga
gatgcctgct 900gacttgcctt cattagctgc tgattttgtt gaaagtaagg ccgtttgcaa
aaactatgct 960gaggcaaagg atgtcttcct gggcatgttt ttgtatgaat atgcaagaag
gcatcctgat 1020tactctgtcg tgctgctgct gagacttgcc aagacatatg aaaccactct
agagaagtgc 1080tgtgccgctg cagatcctca tgaatgctat gccaaagtgt tcgatgaatt
taaacctctt 1140gtggaagagc ctcagaattt aatcaaacaa aattgtgagc tttttgagca
gcttggagag 1200tacaaattcc agaatgcgct attagttcgt tacaccaaga aagtacccca
agtgtcaact 1260ccaactcttg tagaggtctc aagaaaccta ggaaaagtgg gcagcaaatg
ttgtaaacat 1320cctgaagcaa aaagaatgcc ctgtgcagaa gactatctat ccgtggtcct
gaaccagtta 1380tgtgtgttgc atgagaaaac gccagtaagt gacagagtca ccaaatgctg
cacagaatcc 1440ttggtgaaca ggcgaccatg cttttcagct ctggaagtcg atgaaacata
cgttcccaaa 1500gagtttaatg ctgaaacatt caccttccat gcagatatat gcacactttc
tgagaaggag 1560agacaaatca agaaacaaac tgcacttgtt gagcttgtga aacacaagcc
caaggcaaca 1620aaagagcaac tgaaagctgt tatggatgat ttcgcagctt ttgtagagaa
gtgctgcaag 1680gctgacgata aggagacctg ctttgccgag gagggtaaaa aacttgttgc
tgcaagtcaa 1740gctgccttag gcttacatca tcaccatcac catt
17741171774DNAArtificial SequenceNucleic acid sequence
identified using molecular biology techniques. 117gatgcacaca
agagtgaggt tgctcatcgg tttaaagatt tgggagaaga aaatttcaaa 60gccttggtgt
tgattgcctt tgctcagtat cttcagcagt gtccatttga agatcatgta 120aaattagtga
atgaagtaac tgaatttgca aaaacatgtg ttgctgatga gtcagctgaa 180aattgtgaca
aatcacttca tacccttttt ggagacaaat tatgcacagt tgcaactctt 240cgtgaaacct
atggtgaaat ggctgactgc tgtgcaaaac aagaacctga gagaaatgaa 300tgcttcttgc
aacacaaaga tgacaaccca aacctccccc gattggtgag accagaggtt 360gatgtgatgt
gcactgcttt tcatgacaat gaagagacat ttttgaaaaa atacttatat 420gaaattgcca
gaagacatcc ttacttttat gccccggaac tccttttctt tgctaaaagg 480tataaagctg
cttttacaga atgttgccaa gctgctgata aagctgcctg cctgttgcca 540aagctcgatg
aacttcggga tgaagggaag gtttcgtctg ccaaacagag actcaagtgt 600gccagtctcc
aaaaatttgg agaaagagct ttcaaagcat gggcagtagc tcgcctgagc 660cagagatttc
ccaaagctga gtttgcagaa gtttccaagt tagtgacaga tcttaccaaa 720gtccacacgg
aatgctgcca tggagatctg cttgaatgtg ctgatgacag ggcggacctt 780gccaagtata
tctgtgaaaa tcaagattcg atctccagta aactgaagga atgctgtgaa 840aaacctctgt
tggaaaaatc ccactgcatt gccgaagtgg aaaatgatga gatgcctgct 900gacttgcctt
cattagctgc tgattttgtt gaaagtaagg atgtttgcgc caactatgct 960gaggcaaagg
atgtcttcct gggcatgttt ttgtatgaat atgcaagaag gcatcctgat 1020tactctgtcg
tgctgctgct gagacttgcc aagacatatg aaaccactct agagaagtgc 1080tgtgccgctg
cagatcctca tgaatgctat gccaaagtgt tcgatgaatt taaacctctt 1140gtggaagagc
ctcagaattt aatcaaacaa aattgtgagc tttttgagca gcttggagag 1200tacaaattcc
agaatgcgct attagttcgt tacaccaaga aagtacccca agtgtcaact 1260ccaactcttg
tagaggtctc aagaaaccta ggaaaagtgg gcagcaaatg ttgtaaacat 1320cctgaagcaa
aaagaatgcc ctgtgcagaa gactatctat ccgtggtcct gaaccagtta 1380tgtgtgttgc
atgagaaaac gccagtaagt gacagagtca ccaaatgctg cacagaatcc 1440ttggtgaaca
ggcgaccatg cttttcagct ctggaagtcg atgaaacata cgttcccaaa 1500gagtttaatg
ctgaaacatt caccttccat gcagatatat gcacactttc tgagaaggag 1560agacaaatca
agaaacaaac tgcacttgtt gagcttgtga aacacaagcc caaggcaaca 1620aaagagcaac
tgaaagctgt tatggatgat ttcgcagctt ttgtagagaa gtgctgcaag 1680gctgacgata
aggagacctg ctttgccgag gagggtaaaa aacttgttgc tgcaagtcaa 1740gctgccttag
gcttacatca tcaccatcac catt
17741181774DNAArtificial SequenceNucleic acid sequence identified using
molecular biology techniques. 118gatgcacaca agagtgaggt tgctcatcgg
tttaaagatt tgggagaaga aaatttcaaa 60gccttggtgt tgattgcctt tgctcagtat
cttcagcagt gtccatttga agatcatgta 120aaattagtga atgaagtaac tgaatttgca
aaaacatgtg ttgctgatga gtcagctgaa 180aattgtgaca aatcacttca tacccttttt
ggagacaaat tatgcacagt tgcaactctt 240cgtgaaacct atggtgaaat ggctgactgc
tgtgcaaaac aagaacctga gagaaatgaa 300tgcttcttgc aacacaaaga tgacaaccca
aacctccccc gattggtgag accagaggtt 360gatgtgatgt gcactgcttt tcatgacaat
gaagagacat ttttgaaaaa atacttatat 420gaaattgcca gaagacatcc ttacttttat
gccccggaac tccttttctt tgctaaaagg 480tataaagctg cttttacaga atgttgccaa
gctgctgata aagctgcctg cctgttgcca 540aagctcgatg aacttcggga tgaagggaag
gtttcgtctg ccaaacagag actcaagtgt 600gccagtctcc aaaaatttgg agaaagagct
ttcaaagcat gggcagtagc tcgcctgagc 660cagagatttc ccaaagctga gtttgcagaa
gtttccaagt tagtgacaga tcttaccaaa 720gtccacacgg aatgctgcca tggagatctg
cttgaatgtg ctgatgacag ggcggacctt 780gccaagtata tctgtgaaaa tcaagattcg
atctccagta aactgaagga atgctgtgaa 840aaacctctgt tggaaaaatc ccactgcatt
gccgaagtgg aaaatgatga gatgcctgct 900gacttgcctt cattagctgc tgattttgtt
gaaagtaagg atgtttgcaa aaactatgct 960gaggcaaagg atgccttcct gggcatgttt
ttgtatgaat atgcaagaag gcatcctgat 1020tactctgtcg tgctgctgct gagacttgcc
aagacatatg aaaccactct agagaagtgc 1080tgtgccgctg cagatcctca tgaatgctat
gccaaagtgt tcgatgaatt taaacctctt 1140gtggaagagc ctcagaattt aatcaaacaa
aattgtgagc tttttgagca gcttggagag 1200tacaaattcc agaatgcgct attagttcgt
tacaccaaga aagtacccca agtgtcaact 1260ccaactcttg tagaggtctc aagaaaccta
ggaaaagtgg gcagcaaatg ttgtaaacat 1320cctgaagcaa aaagaatgcc ctgtgcagaa
gactatctat ccgtggtcct gaaccagtta 1380tgtgtgttgc atgagaaaac gccagtaagt
gacagagtca ccaaatgctg cacagaatcc 1440ttggtgaaca ggcgaccatg cttttcagct
ctggaagtcg atgaaacata cgttcccaaa 1500gagtttaatg ctgaaacatt caccttccat
gcagatatat gcacactttc tgagaaggag 1560agacaaatca agaaacaaac tgcacttgtt
gagcttgtga aacacaagcc caaggcaaca 1620aaagagcaac tgaaagctgt tatggatgat
ttcgcagctt ttgtagagaa gtgctgcaag 1680gctgacgata aggagacctg ctttgccgag
gagggtaaaa aacttgttgc tgcaagtcaa 1740gctgccttag gcttacatca tcaccatcac
catt 17741191774DNAArtificial
SequenceNucleic acid sequence identified using molecular biology
techniques. 119gatgcacaca agagtgaggt tgctcatcgg tttaaagatt tgggagaaga
aaatttcaaa 60gccttggtgt tgattgcctt tgctcagtat cttcagcagt gtccatttga
agatcatgta 120aaattagtga atgaagtaac tgaatttgca aaaacatgtg ttgctgatga
gtcagctgaa 180aattgtgaca aatcacttca tacccttttt ggagacaaat tatgcacagt
tgcaactctt 240cgtgaaacct atggtgaaat ggctgactgc tgtgcaaaac aagaacctga
gagaaatgaa 300tgcttcttgc aacacaaaga tgacaaccca aacctccccc gattggtgag
accagaggtt 360gatgtgatgt gcactgcttt tcatgacaat gaagagacat ttttgaaaaa
atacttatat 420gaaattgcca gaagacatcc ttacttttat gccccggaac tccttttctt
tgctaaaagg 480tataaagctg cttttacaga atgttgccaa gctgctgata aagctgcctg
cctgttgcca 540aagctcgatg aacttcggga tgaagggaag gtttcgtctg ccaaacagag
actcaagtgt 600gccagtctcc aaaaatttgg agaaagagct ttcaaagcat gggcagtagc
tcgcctgagc 660cagagatttc ccaaagctga gtttgcagaa gtttccaagt tagtgacaga
tcttaccaaa 720gtccacacgg aatgctgcca tggagatctg cttgaatgtg ctgatgacag
ggcggacctt 780gccaagtata tctgtgaaaa tcaagattcg atctccagta aactgaagga
atgctgtgaa 840aaacctctgt tggaaaaatc ccactgcatt gccgaagtgg aaaatgatga
gatgcctgct 900gacttgcctt cattagctgc tgattttgtt gaaagtaagg atgtttgcaa
aaactatgct 960gaggcaaagg atgtcttcct gggcgccttt ttgtatgaat atgcaagaag
gcatcctgat 1020tactctgtcg tgctgctgct gagacttgcc aagacatatg aaaccactct
agagaagtgc 1080tgtgccgctg cagatcctca tgaatgctat gccaaagtgt tcgatgaatt
taaacctctt 1140gtggaagagc ctcagaattt aatcaaacaa aattgtgagc tttttgagca
gcttggagag 1200tacaaattcc agaatgcgct attagttcgt tacaccaaga aagtacccca
agtgtcaact 1260ccaactcttg tagaggtctc aagaaaccta ggaaaagtgg gcagcaaatg
ttgtaaacat 1320cctgaagcaa aaagaatgcc ctgtgcagaa gactatctat ccgtggtcct
gaaccagtta 1380tgtgtgttgc atgagaaaac gccagtaagt gacagagtca ccaaatgctg
cacagaatcc 1440ttggtgaaca ggcgaccatg cttttcagct ctggaagtcg atgaaacata
cgttcccaaa 1500gagtttaatg ctgaaacatt caccttccat gcagatatat gcacactttc
tgagaaggag 1560agacaaatca agaaacaaac tgcacttgtt gagcttgtga aacacaagcc
caaggcaaca 1620aaagagcaac tgaaagctgt tatggatgat ttcgcagctt ttgtagagaa
gtgctgcaag 1680gctgacgata aggagacctg ctttgccgag gagggtaaaa aacttgttgc
tgcaagtcaa 1740gctgccttag gcttacatca tcaccatcac catt
17741201774DNAArtificial SequenceNucleic acid sequence
identified using molecular biology techniques. 120gatgcacaca
agagtgaggt tgctcatcgg tttaaagatt tgggagaaga aaatttcaaa 60gccttggtgt
tgattgcctt tgctcagtat cttcagcagt gtccatttga agatcatgta 120aaattagtga
atgaagtaac tgaatttgca aaaacatgtg ttgctgatga gtcagctgaa 180aattgtgaca
aatcacttca tacccttttt ggagacaaat tatgcacagt tgcaactctt 240cgtgaaacct
atggtgaaat ggctgactgc tgtgcaaaac aagaacctga gagaaatgaa 300tgcttcttgc
aacacaaaga tgacaaccca aacctccccc gattggtgag accagaggtt 360gatgtgatgt
gcactgcttt tcatgacaat gaagagacat ttttgaaaaa atacttatat 420gaaattgcca
gaagacatcc ttacttttat gccccggaac tccttttctt tgctaaaagg 480tataaagctg
cttttacaga atgttgccaa gctgctgata aagctgcctg cctgttgcca 540aagctcgatg
aacttcggga tgaagggaag gtttcgtctg ccaaacagag actcaagtgt 600gccagtctcc
aaaaatttgg agaaagagct ttcaaagcat gggcagtagc tcgcctgagc 660cagagatttc
ccaaagctga gtttgcagaa gtttccaagt tagtgacaga tcttaccaaa 720gtccacacgg
aatgctgcca tggagatctg cttgaatgtg ctgatgacag ggcggacctt 780gccaagtata
tctgtgaaaa tcaagattcg atctccagta aactgaagga atgctgtgaa 840aaacctctgt
tggaaaaatc ccactgcatt gccgaagtgg aaaatgatga gatgcctgct 900gacttgcctt
cattagctgc tgattttgtt gaaagtaagg atgtttgcaa aaactatgct 960gaggcaaagg
atgtcttcct gggcatgttt ttgtatgaat atgcaagaag gcatcctgat 1020tactctgtcg
tgctgctgct gagacttgcc gccacatatg aaaccactct agagaagtgc 1080tgtgccgctg
cagatcctca tgaatgctat gccaaagtgt tcgatgaatt taaacctctt 1140gtggaagagc
ctcagaattt aatcaaacaa aattgtgagc tttttgagca gcttggagag 1200tacaaattcc
agaatgcgct attagttcgt tacaccaaga aagtacccca agtgtcaact 1260ccaactcttg
tagaggtctc aagaaaccta ggaaaagtgg gcagcaaatg ttgtaaacat 1320cctgaagcaa
aaagaatgcc ctgtgcagaa gactatctat ccgtggtcct gaaccagtta 1380tgtgtgttgc
atgagaaaac gccagtaagt gacagagtca ccaaatgctg cacagaatcc 1440ttggtgaaca
ggcgaccatg cttttcagct ctggaagtcg atgaaacata cgttcccaaa 1500gagtttaatg
ctgaaacatt caccttccat gcagatatat gcacactttc tgagaaggag 1560agacaaatca
agaaacaaac tgcacttgtt gagcttgtga aacacaagcc caaggcaaca 1620aaagagcaac
tgaaagctgt tatggatgat ttcgcagctt ttgtagagaa gtgctgcaag 1680gctgacgata
aggagacctg ctttgccgag gagggtaaaa aacttgttgc tgcaagtcaa 1740gctgccttag
gcttacatca tcaccatcac catt
1774121113PRTArtificial SequenceAmino acid sequence identified using
molecular biology techniques. 121Ser Thr Asp Ile Gln Met Thr Gln Ser
Pro Ser Ser Leu Ser Ala Ser1 5 10
15 Val Gly Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Arg Pro
Ile Gly 20 25 30
Thr Thr Leu Ser Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu 35
40 45 Leu Ile Leu Trp Asn
Ser Arg Leu Gln Ser Gly Val Pro Ser Arg Phe 50 55
60 Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr
Leu Thr Ile Ser Ser Leu65 70 75
80 Gln Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Ala Gln Ala Gly Thr
His 85 90 95 Pro
Thr Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys Arg Ala Ala
100 105 110
Ala122339DNAArtificial SequenceNucleic acid sequence identified using
molecular biology techniques. 122tcgacggaca tccagatgac ccagtctcca
tcctccctgt ctgcatctgt aggagaccgt 60gtcaccatca cttgccgggc aagtcgtccg
attgggacga cgttaagttg gtaccagcag 120aaaccaggga aagcccctaa gctcctgatc
ctttggaatt cccgtttgca aagtggggtc 180ccatcacgtt tcagtggcag tggatctggg
acagatttca ctctcaccat cagcagtctg 240caacctgaag attttgctac gtactactgt
gcgcaggctg ggacgcatcc tacgacgttc 300ggccaaggga ccaaggtgga aatcaaacgg
gcggccgca 339123108PRTArtificial SequenceAmino
acid sequence identified using molecular biology techniques. 123Asp
Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly1
5 10 15 Asp Arg Val Thr Ile Thr
Cys Arg Ala Ser Gln Trp Ile Gly Ser Gln 20 25
30 Leu Ser Trp Tyr Gln Gln Lys Pro Gly Lys Ala
Pro Lys Leu Leu Ile 35 40 45
Met Trp Arg Ser Ser Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly
50 55 60 Ser Gly Ser
Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro65 70
75 80 Glu Asp Phe Ala Thr Tyr Tyr Cys
Ala Gln Gly Ala Ala Leu Pro Arg 85 90
95 Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys Arg
100 105 124324DNAArtificial
SequenceNucleic acid sequence identified using molecular biology
techniques. 124gacatccaga tgacccagtc tccatcctcc ctgtctgcat ctgtaggaga
ccgtgtcacc 60atcacttgcc gggcaagtca gtggattggg tctcagttat cttggtacca
gcagaaacca 120gggaaagccc ctaagctcct gatcatgtgg cgttcctcgt tgcaaagtgg
ggtcccatca 180cgtttcagtg gcagtggatc tgggacagat ttcactctca ccatcagcag
tctgcaacct 240gaagattttg ctacgtacta ctgtgctcag ggtgcggcgt tgcctaggac
gttcggccaa 300gggaccaagg tggaaatcaa acgg
324125108PRTArtificial SequenceAmino acid sequence identified
using molecular biology techniques. 125Asp Ile Gln Met Thr Gln Ser
Pro Ser Ser Leu Ser Ala Ser Val Gly1 5 10
15 Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Arg Pro
Ile Gly Thr Thr 20 25 30
Leu Ser Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile
35 40 45 Trp Phe Gly Ser
Arg Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly 50 55
60 Ser Gly Ser Gly Thr Asp Phe Thr Leu
Thr Ile Ser Ser Leu Gln Pro65 70 75
80 Glu Asp Phe Ala Thr Tyr Tyr Cys Ala Gln Ala Gly Thr His
Pro Thr 85 90 95
Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys Arg 100
105 126324DNAArtificial SequenceNucleic acid sequence
identified using molecular biology techniques. 126gacatccaga
tgacccagtc tccatcctcc ctgtctgcat ctgtaggaga ccgtgtcacc 60atcacttgcc
gggcaagtcg tccgattggg acgacgttaa gttggtacca gcagaaacca 120gggaaagccc
ctaagctcct gatctggttt ggttcccggt tgcaaagtgg ggtcccatca 180cgtttcagtg
gcagtggatc tgggacagat ttcactctca ccatcagcag tctgcaacct 240gaagattttg
ctacgtacta ctgtgcgcag gctgggacgc atcctacgac gttcggccaa 300gggaccaagg
tggaaatcaa acgg
324127108PRTArtificial SequenceAmino acid sequence identified using
molecular biology techniques. 127Asp Ile Gln Met Thr Gln Ser Pro Ser
Ser Leu Ser Ala Ser Val Gly1 5 10
15 Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Trp Ile Gly
Ser Gln 20 25 30
Leu Ser Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Met Leu Leu Ile 35
40 45 Met Trp Ser Ser Ser
Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly 50 55
60 Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr
Ile Ser Ser Leu Gln Pro65 70 75
80 Glu Asp Phe Ala Thr Tyr Tyr Cys Ala Gln Gly Leu Arg His Pro
Lys 85 90 95 Thr
Phe Gly Gln Gly Thr Lys Val Glu Ile Lys Trp 100
105 128108PRTArtificial SequenceAmino acid sequence
identified using molecular biology techniques. 128Asp Ile Gln Met
Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly1 5
10 15 Asp Arg Val Thr Ile Thr Cys Arg Ala
Ser Gln Trp Ile Gly Ser Gln 20 25
30 Leu Ser Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu
Leu Ile 35 40 45
Met Trp Arg Ser Ala Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly 50
55 60 Ser Gly Ser Gly Thr
Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro65 70
75 80 Glu Asp Phe Ala Thr Tyr Tyr Cys Ala Gln
Gly Leu Arg His Pro Lys 85 90
95 Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys Trp
100 105 129108PRTArtificial SequenceAmino
acid sequence identified using molecular biology techniques. 129Asp
Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly1
5 10 15 Asp Arg Val Thr Ile Thr
Cys Arg Ala Ser Gln Trp Ile Gly Ser Gln 20 25
30 Leu Ser Trp Tyr Gln Gln Lys Pro Gly Lys Ala
Pro Lys Leu Leu Ile 35 40 45
Met Trp Arg Ser Ser Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly
50 55 60 Ser Gly Ser
Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro65 70
75 80 Glu Asp Phe Ala Thr Tyr Tyr Cys
Ala Gln Gly Leu Arg His Pro Lys 85 90
95 Thr Tyr Gly Lys Gly Thr Lys Val Glu Asn Lys Trp
100 105 130108PRTArtificial
SequenceAmino acid sequence identified using molecular biology
techniques. 130Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser
Val Gly1 5 10 15
Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Trp Ile Gly Ser Gln
20 25 30 Leu Ser Trp Tyr Gln
Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile 35 40
45 Met Trp Arg Ser Ser Leu Gln Ser Gly Val
Pro Ser Arg Phe Ser Gly 50 55 60
Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln
Pro65 70 75 80 Glu
Asp Phe Ala Thr Tyr Tyr Cys Ala Gln Gly Leu Lys His Pro Lys
85 90 95 Thr Tyr Gly Gln Gly Thr
Lys Val Glu Ile Lys Trp 100 105
131108PRTArtificial SequenceAmino acid sequence identified using
molecular biology techniques. 131Asp Ile Gln Met Thr Gln Ser Pro Ser
Ser Leu Ser Ala Ser Val Gly1 5 10
15 Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Trp Ile Gly
Ser Gln 20 25 30
Leu Ser Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile 35
40 45 Met Trp Arg Ser Ser
Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly 50 55
60 Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr
Ile Ser Ser Leu Gln Pro65 70 75
80 Glu Asp Phe Ala Thr Tyr Tyr Cys Ala Gln Gly Met Arg His Pro
Lys 85 90 95 Thr
Phe Gly Gln Gly Thr Lys Val Glu Ile Lys Trp 100
105 132108PRTArtificial SequenceAmino acid sequence
identified using molecular biology techniques. 132Asp Ile Gln Met
Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly1 5
10 15 Asp Arg Val Thr Ile Thr Cys Arg Ala
Ser Gln Trp Ile Gly Ser Gln 20 25
30 Leu Ser Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu
Leu Ile 35 40 45
Met Trp Arg Ser Ser Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly 50
55 60 Ser Gly Ser Gly Thr
Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro65 70
75 80 Glu Asp Phe Ala Thr Tyr Tyr Cys Ala Gln
Gly Leu Arg His Pro Lys 85 90
95 Thr Tyr Gly Gln Gly Thr Lys Val Glu Asn Lys Trp
100 105 133108PRTArtificial SequenceAmino
acid sequence identified using molecular biology techniques. 133Asp
Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly1
5 10 15 Asp Arg Val Thr Ile Thr
Cys Arg Ala Ser Gln Trp Ile Gly Ser Gln 20 25
30 Leu Ser Trp Tyr Gln Gln Lys Pro Gly Lys Ala
Pro Lys Leu Leu Ile 35 40 45
Met Trp Arg Ser Ala Leu Gln Asn Gly Val Pro Ser Arg Phe Ser Gly
50 55 60 Ser Gly Ser
Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro65 70
75 80 Glu Asp Phe Ala Thr Tyr Tyr Cys
Ala Gln Gly Leu Arg His Pro Lys 85 90
95 Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys Trp
100 105 134107PRTArtificial
SequenceAmino acid sequence identified using molecular biology
techniques. 134Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Phe Ala Ser Val
Gly Asp1 5 10 15
Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Trp Ile Gly Ser Gln Leu
20 25 30 Ser Trp Tyr Gln Gln
Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile Met 35 40
45 Trp Arg Ser Ser Leu Gln Ser Gly Val Pro
Ser Arg Phe Ser Gly Ser 50 55 60
Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro
Glu65 70 75 80 Asp
Phe Ala Thr Tyr Tyr Cys Ala Gln Gly Leu Arg Lys Pro Lys Thr
85 90 95 Phe Gly Gln Gly Thr Lys
Val Lys Ile Lys Trp 100 105
135108PRTArtificial SequenceAmino acid sequence identified using
molecular biology techniques. 135Asp Ile Gln Met Thr Gln Ser Pro Ser
Ser Leu Ser Ala Ser Val Gly1 5 10
15 Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Trp Ile Gly
Ser Gln 20 25 30
Leu Ser Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile 35
40 45 Met Trp Arg Ser Ala
Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly 50 55
60 Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr
Ile Ser Ser Leu Gln Pro65 70 75
80 Glu Asp Phe Ala Thr Tyr Tyr Cys Ala Gln Gly Leu Arg His Pro
Lys 85 90 95 Thr
Tyr Gly Gln Gly Thr Lys Val Glu Ile Lys Trp 100
105 136108PRTArtificial SequenceAmino acid sequence
identified using molecular biology techniques. 136Asp Ile Gln Met
Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly1 5
10 15 Asp Arg Val Thr Ile Thr Cys Arg Ala
Ser Gln Trp Ile Gly Ser Gln 20 25
30 Leu Ser Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu
Leu Ile 35 40 45
Met Trp Arg Ser Ala Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly 50
55 60 Ser Gly Ser Gly Thr
Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro65 70
75 80 Glu Asp Phe Ala Thr Tyr Tyr Cys Ala Gln
Gly Leu Arg Tyr Pro Lys 85 90
95 Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys Trp
100 105 137108PRTArtificial SequenceAmino
acid sequence identified using molecular biology techniques. 137Asp
Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly1
5 10 15 Asp Arg Val Thr Ile Thr
Cys Arg Ala Ser Gln Trp Ile Gly Ser Gln 20 25
30 Leu Ser Trp Tyr Gln Gln Lys Pro Gly Lys Ala
Pro Lys Leu Leu Ile 35 40 45
Met Trp Arg Ser Ser Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly
50 55 60 Ser Gly Ser
Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro65 70
75 80 Glu Asp Phe Ala Thr Tyr Tyr Cys
Ala Gln Gly Leu Arg His Pro Lys 85 90
95 Thr Tyr Gly Gln Gly Thr Lys Val Glu Ile Lys Arg
100 105 138108PRTArtificial
SequenceAmino acid sequence identified using molecular biology
techniques. 138Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser
Val Gly1 5 10 15
Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Trp Ile Gly Ser Gln
20 25 30 Leu Ser Trp Tyr Gln
Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile 35 40
45 Met Trp Arg Ser Ser Leu Gln Ser Gly Val
Pro Ser Arg Phe Ser Gly 50 55 60
Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln
Pro65 70 75 80 Glu
Asp Phe Ala Thr Tyr Tyr Cys Ala Gln Gly Leu Arg His Pro Lys
85 90 95 Thr Tyr Gly Gln Gly Thr
Lys Val Glu Asn Lys Arg 100 105
139108PRTArtificial SequenceAmino acid sequence identified using
molecular biology techniques. 139Asp Ile Gln Met Thr Gln Ser Pro Ser
Ser Leu Ser Ala Ser Val Gly1 5 10
15 Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Trp Ile Gly
Ser Gln 20 25 30
Leu Ser Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile 35
40 45 Met Trp Arg Ser Ala
Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly 50 55
60 Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr
Ile Ser Ser Leu Gln Pro65 70 75
80 Glu Asp Phe Ala Thr Tyr Tyr Cys Ala Gln Gly Leu Arg His Pro
Lys 85 90 95 Thr
Phe Gly Gln Gly Thr Lys Val Glu Ile Lys Arg 100
105 140108PRTArtificial SequenceAmino acid sequence
identified using molecular biology techniques. 140Asp Ile Gln Met
Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly1 5
10 15 Asp Arg Val Thr Ile Thr Cys Arg Ala
Ser Gln Trp Ile Gly Ser Gln 20 25
30 Leu Ser Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu
Leu Ile 35 40 45
Met Trp Arg Ser Ser Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly 50
55 60 Ser Gly Ser Gly Thr
Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro65 70
75 80 Glu Asp Phe Ala Thr Tyr Tyr Cys Ala Gln
Gly Leu Arg His Pro Lys 85 90
95 Thr Tyr Gly Lys Gly Thr Lys Val Glu Ile Lys Arg
100 105 141108PRTArtificial SequenceAmino
acid sequence identified using molecular biology techniques. 141Asp
Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly1
5 10 15 Asp Arg Val Thr Ile Thr
Cys Arg Ala Ser Gln Trp Ile Gly Ser Gln 20 25
30 Leu Ser Trp Tyr Gln Gln Lys Pro Gly Lys Ala
Pro Lys Leu Leu Ile 35 40 45
Met Trp Arg Ser Ser Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly
50 55 60 Ser Gly Ser
Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro65 70
75 80 Glu Asp Phe Ala Thr Tyr Tyr Cys
Ala Gln Gly Leu Arg His Pro Lys 85 90
95 Thr Tyr Gly Lys Gly Thr Lys Val Glu Asn Lys Arg
100 105 142324DNAArtificial
SequenceNucleic acid sequence identified using molecular biology
techniques. 142gacatccaga tgacccagtc tccatcctcc ctgtctgcat ctgtaggaga
ccgtgtcacc 60atcacttgcc gggcaagtca gtggattggg tctcagttat cttggtacca
gcagaaacca 120gggaaagccc ctatgctcct gatcatgtgg agttcctcgt tgcaaagtgg
ggtcccatca 180cgtttcagtg gcagtggatc tgggacagat ttcactctca ccatcagcag
tctgcaacct 240gaagattttg ctacgtacta ctgtgctcag ggtttgaggc atcctaagac
gttcggccaa 300gggaccaagg tggaaatcaa atgg
324143324DNAArtificial SequenceNucleic acid sequence
identified using molecular biology techniques. 143gacatccaga
tgacccagtc tccatcctcc ctgtctgcat ctgtaggaga ccgtgtcacc 60atcacttgcc
gggcaagtca gtggattggg tctcagttat cttggtacca gcagaaacca 120gggaaagccc
ctaagctcct gatcatgtgg cgttccgcgt tgcaaagtgg ggtcccatca 180cgtttcagtg
gcagtggatc tgggacagat ttcactctca ccatcagcag tctgcaacct 240gaagattttg
ctacgtacta ctgtgctcag ggtttgaggc atcctaagac gttcggccaa 300gggaccaagg
tggaaatcaa atgg
324144324DNAArtificial SequenceNucleic acid sequence identified using
molecular biology techniques. 144gacatccaga tgacccagtc tccatcctcc
ctgtctgcat ctgtaggaga ccgtgtcacc 60atcacttgcc gggcaagtca gtggattggg
tctcagttat cttggtacca gcagaaacca 120gggaaagccc ctaagctcct gatcatgtgg
cgttcctcgt tgcaaagtgg ggtcccatca 180cgtttcagtg gcagtggatc tgggacagat
ttcactctca ccatcagcag tctgcaacct 240gaagattttg ctacgtacta ctgtgctcag
ggtttgaggc atcctaagac gtacggcaaa 300gggaccaagg tggaaaacaa atgg
324145324DNAArtificial SequenceNucleic
acid sequence identified using molecular biology techniques.
145gacatccaga tgacccagtc tccatcctcc ctgtctgcat ctgtaggaga ccgtgtcacc
60atcacttgcc gggcaagtca gtggattggg tctcagttat cttggtacca gcagaaacca
120gggaaagccc ctaagctcct gatcatgtgg cgttcctcgt tgcaaagtgg ggtcccatca
180cgtttcagtg gcagtggatc tgggacagat ttcactctca ccatcagcag tctgcaacct
240gaagattttg ctacgtacta ctgtgctcag ggtttgaagc atcctaagac gtacggccaa
300gggaccaagg tggaaatcaa atgg
324146324DNAArtificial SequenceNucleic acid sequence identified using
molecular biology techniques. 146gacatccaga tgacccagtc tccatcctcc
ctgtctgcat ctgtaggaga ccgtgtcacc 60atcacttgcc gggcaagtca gtggattggg
tctcagttat cttggtacca gcagaaacca 120gggaaagccc ctaagctcct gatcatgtgg
cgttcctcgt tgcaaagtgg ggtcccatca 180cgtttcagtg gcagtggatc tgggacagat
ttcactctca ccatcagcag tctgcaacct 240gaagattttg ctacgtacta ctgtgctcag
ggtatgaggc atcctaagac gttcggccaa 300gggaccaagg tggaaatcaa atgg
324147324DNAArtificial SequenceNucleic
acid sequence identified using molecular biology techniques.
147gacatccaga tgacccagtc tccatcctcc ctgtctgcat ctgtaggaga ccgtgtcacc
60atcacttgcc gggcaagtca gtggattggg tctcagttat cttggtacca gcagaaacca
120gggaaagccc ctaagctcct gatcatgtgg cgttcctcgt tgcaaagtgg ggtcccatca
180cgtttcagtg gcagtggatc tgggacagat ttcactctca ccatcagcag tctgcaacct
240gaagattttg ctacgtacta ctgtgctcag ggtttgcggc atcctaagac gtacggccaa
300gggaccaagg tggaaaacaa atgg
324148324DNAArtificial SequenceNucleic acid sequence identified using
molecular biology techniques. 148gacatccaga tgacccagtc tccatcctcc
ctgtctgcat ctgtaggaga ccgtgtcacc 60atcacttgcc gggcaagtca gtggattggg
tctcagttat cttggtacca gcagaaacca 120gggaaagccc ctaagctcct gatcatgtgg
cgttccgcgt tacaaaatgg ggtcccatca 180cgtttcagtg gcagtggatc tgggacagat
ttcactctca ccatcagcag tctgcaacct 240gaagattttg ctacgtacta ctgtgctcag
ggtttgaggc atcctaagac gttcggccaa 300gggaccaagg tggaaatcaa atgg
324149324DNAArtificial SequenceNucleic
acid sequence identified using molecular biology techniques.
149gacatccaga tgacccagtc tccatcctcc ctgtttgcat ctgtaggaga ccgtgtcacc
60atcacttgcc gggcaagtca gtggattggg tctcagttat cttggtacca gcagaaacca
120gggaaagccc ctaagctcct gatcatgtgg cgttcctcgt tgcaaagtgg ggtcccatca
180cgtttcagtg gcagtggatc tgggacagat ttcactctca ccatcagcag tctgcaacct
240gaagattttg ctacgtacta ctgtgctcag ggtttgagga aacctaagac tttcggccaa
300gggaccaagg tgaaaatcaa atgg
324150324DNAArtificial SequenceNucleic acid sequence identified using
molecular biology techniques. 150gacatccaga tgacccagtc tccatcctcc
ctgtctgcat ctgtaggaga ccgtgtcacc 60atcacttgcc gggcaagtca gtggattggg
tctcagttat cttggtacca gcagaaacca 120gggaaagccc ctaagctcct gatcatgtgg
cgttccgcgt tgcaaagtgg ggtcccatca 180cgtttcagtg gcagtggatc tgggacagat
ttcactctca ccatcagcag tctgcaacct 240gaagattttg ctacgtacta ctgtgctcag
ggtttgaggc atcctaaaac gtacggccaa 300gggaccaagg tggaaatcaa atgg
324151324DNAArtificial SequenceNucleic
acid sequence identified using molecular biology techniques.
151gacatccaga tgacccagtc tccatcctcc ctgtctgcat ctgtaggaga ccgtgtcacc
60atcacttgcc gggcaagtca gtggattggg tctcagttat cttggtacca gcagaaacca
120gggaaagccc ctaagctcct gatcatgtgg cgttccgcgt tgcaaagtgg ggtcccatca
180cgtttcagtg gcagtggatc tgggacagat ttcactctca ccatcagcag tctgcaacct
240gaagattttg ctacgtacta ctgtgctcag ggtttgaggt atcctaagac gttcggccaa
300gggaccaagg tggaaatcaa atgg
324152324DNAArtificial SequenceNucleic acid sequence identified using
molecular biology techniques. 152gacatccaga tgacccagtc tccatcctcc
ctgtctgcat ctgtaggaga ccgtgtcacc 60atcacttgcc gggcaagtca gtggattggg
tctcagttat cttggtacca gcagaaacca 120gggaaagccc ctaagctcct gatcatgtgg
cgttcctcgt tgcaaagtgg ggtcccatca 180cgtttcagtg gcagtggatc tgggacagat
ttcactctca ccatcagcag tctgcaacct 240gaagattttg ctacgtacta ctgtgctcag
ggtttgcggc atcctaagac gtacggccaa 300gggaccaagg tggaaatcaa acgg
324153324DNAArtificial SequenceNucleic
acid sequence identified using molecular biology techniques.
153gacatccaga tgacccagtc tccatcctcc ctgtctgcat ctgtaggaga ccgtgtcacc
60atcacttgcc gggcaagtca gtggattggg tctcagttat cttggtacca gcagaaacca
120gggaaagccc ctaagctcct gatcatgtgg cgttcctcgt tgcaaagtgg ggtcccatca
180cgtttcagtg gcagtggatc tgggacagat ttcactctca ccatcagcag tctgcaacct
240gaagattttg ctacgtacta ctgtgctcag ggtttgcggc atcctaagac gtacggccaa
300gggaccaagg tggaaaacaa acgg
324154324DNAArtificial SequenceNucleic acid sequence identified using
molecular biology techniques. 154gacatccaga tgacccagtc tccatcctcc
ctgtctgcat ctgtaggaga ccgtgtcacc 60atcacttgcc gggcaagtca gtggattggg
tctcagttat cttggtacca gcagaaacca 120gggaaagccc ctaagctcct gatcatgtgg
cgttccgcgt tgcaaagtgg ggtcccatca 180cgtttcagtg gcagtggatc tgggacagat
ttcactctca ccatcagcag tctgcaacct 240gaagattttg ctacgtacta ctgtgctcag
ggtttgaggc atcctaagac gttcggccaa 300gggaccaagg tggaaatcaa acgg
324155324DNAArtificial SequenceNucleic
acid sequence identified using molecular biology techniques.
155gacatccaga tgacccagtc tccatcctcc ctgtctgcat ctgtaggaga ccgtgtcacc
60atcacttgcc gggcaagtca gtggattggg tctcagttat cttggtacca gcagaaacca
120gggaaagccc ctaagctcct gatcatgtgg cgttcctcgt tgcaaagtgg ggtcccatca
180cgtttcagtg gcagtggatc tgggacagat ttcactctca ccatcagcag tctgcaacct
240gaagattttg ctacgtacta ctgtgctcag ggtttgaggc atcctaagac gtacggcaaa
300gggaccaagg tggaaatcaa acgg
324156324DNAArtificial SequenceNucleic acid sequence identified using
molecular biology techniques. 156gacatccaga tgacccagtc tccatcctcc
ctgtctgcat ctgtaggaga ccgtgtcacc 60atcacttgcc gggcaagtca gtggattggg
tctcagttat cttggtacca gcagaaacca 120gggaaagccc ctaagctcct gatcatgtgg
cgttcctcgt tgcaaagtgg ggtcccatca 180cgtttcagtg gcagtggatc tgggacagat
ttcactctca ccatcagcag tctgcaacct 240gaagattttg ctacgtacta ctgtgctcag
ggtttgaggc atcctaagac gtacggcaaa 300gggaccaagg tggaaaacaa acgg
324157108PRTArtificial SequenceAmino
acid sequence identified using molecular biology techniques. 157Asp
Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly1
5 10 15 Asp Arg Val Thr Ile Thr
Cys Arg Ala Ser Arg Pro Ile Gly Thr Met 20 25
30 Leu Ser Trp Tyr Gln Gln Lys Pro Gly Lys Ala
Pro Lys Leu Leu Ile 35 40 45
Leu Phe Gly Ser Arg Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly
50 55 60 Ser Gly Ser
Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro65 70
75 80 Glu Asp Phe Ala Thr Tyr Tyr Cys
Ala Gln Ala Gly Thr His Pro Thr 85 90
95 Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys Arg
100 105 158324DNAArtificial
SequenceNucleic acid sequence identified using molecular biology
techniques. 158gacatccaga tgacccagtc tccatcctcc ctgtctgcat ctgtaggaga
ccgtgtcacc 60atcacttgcc gggcaagtcg tccgattggg acgatgttaa gttggtacca
gcagaaacca 120gggaaagccc ctaagctcct gatcttgttt ggttcccggt tgcaaagtgg
ggtcccatca 180cgtttcagtg gcagtggatc tgggacagat ttcactctca ccatcagcag
tctgcaacct 240gaagattttg ctacgtacta ctgtgcgcag gctgggacgc atcctacgac
gttcggccaa 300gggaccaagg tggaaatcaa acgg
324
User Contributions:
Comment about this patent or add new information about this topic:
People who visited this patent also read: | |
Patent application number | Title |
---|---|
20210377046 | METHOD, SYSTEM, TRANSMITTER, AND RECEIVER FOR AUTHENTICATING A TRANSMITTER |
20210377045 | METHOD, APPARATUS, AND COMPUTER-READABLE MEDIUM FOR AUTHENTICATION AND AUTHORIZATION OF NETWORKED DATA TRANSACTIONS |
20210377044 | EPHEMERAL CRYPTOGRAPHY KEYS FOR AUTHENTICATING COMPUTING SERVICES |
20210377043 | SYSTEMS AND METHODS FOR USE IN PROVISIONING CREDENTIALS |
20210377042 | ELECTRONICALLY VERIFYING A PROCESS FLOW |