Patent application title: NUCLEIC ACID MOLECULES ENCODING WRINKLED1-LIKE POLYPEPTIDES AND METHODS OF USE IN PLANTS
Inventors:
Garima Bhatt (Durham, NC, US)
Heiko A. Härtel (Berlin, DE)
Heiko A. Härtel (Berlin, DE)
Volker Mittendorf (Hillsborough, NC, US)
Volker Mittendorf (Hillsborough, NC, US)
Karin J. Shank (Raleigh, NC, US)
Assignees:
BASF Plant Science GmbH
IPC8 Class: AC12N1529FI
USPC Class:
800281
Class name: Multicellular living organisms and unmodified parts thereof and related processes method of introducing a polynucleotide molecule into or rearrangement of genetic material within a plant or plant part the polynucleotide alters fat, fatty oil, ester-type wax, or fatty acid production in the plant
Publication date: 2012-10-04
Patent application number: 20120255068
Abstract:
Isolated nucleic acids and proteins associated with lipid and sugar
metabolism regulation are provided. In particular, lipid metabolism
proteins (LMP) and encoding nucleic acids originating from Arabidopsis
thaliana, Brassica napus, Glycine max, Oryza sativa, and Triticum
aestivum are provided. The nucleic acids and proteins are used in methods
of producing transgenic plants and modulating levels of seed storage
compounds. Preferably, the seed storage compounds are lipids, fatty
acids, starches, or seed storage proteins. The nucleic acids and proteins
also are used in methods of modulating the seed size, seed number, seed
weight, root length, and leaf size of plants.Claims:
1. An isolated Lipid Metabolism Protein (LMP) nucleic acid comprising a
polynucleotide sequence selected from the group consisting of: a) a
polynucleotide sequence as defined in SEQ ID NO: 40, SEQ ID NO: 41, SEQ
ID NO: 43, SEQ ID NO: 44, SEQ ID NO: 46, or SEQ ID NO: 47; b) a
polynucleotide sequence encoding a polypeptide as defined in SEQ ID NO:
42, SEQ ID NO: 45, or SEQ ID NO: 48; c) a polynucleotide sequence having
at least 70% sequence identity with the full-length LMP nucleic acid of
a) or b) above; d) a polynucleotide sequence that is complementary to the
full-length LMP nucleic acid of a) or b) above; and e) a polynucleotide
sequence that hybridizes under stringent conditions to the full-length
LMP nucleic acid of a) or b) above; wherein the isolated LMP nucleic acid
encodes a polypeptide that functions as a modulator of a seed storage
compound in a plant.
2. The isolated LMP nucleic acid of claim 1, wherein the nucleic acid is located in an expression vector.
3. The expression vector of claim 2, wherein the LMP nucleic acid is operatively linked to a heterologous promoter selected from the group consisting of a seed-specific promoter, a root-specific promoter, and a non-tissue-specific promoter.
4. The expression vector of claim 2, wherein the LMP nucleic acid is operatively linked to the ptxA promoter.
5. A method of producing a transgenic plant having a modified level of a seed storage compound comprising, transforming a plant cell with an expression vector comprising a lipid metabolism protein (LMP) nucleic acid and generating from the plant cell the transgenic plant, wherein the nucleic acid encodes a polypeptide that functions as a modulator of a seed storage compound in the plant, and wherein the nucleic acid comprises the isolated nucleic acid of claim 1.
6. The method of claim 5, wherein the level of total oil content in a seed is modified.
7. The method of claim 5, wherein the level of a seed storage compound is increased in the transgenic plant as compared to an untransformed wild type variety of the plant.
8. The method of claim 5, wherein the LMP nucleic acid is operatively linked to a heterologous promoter selected from the group consisting of a seed-specific promoter, a root-specific promoter, and a non-tissue-specific promoter.
9. The method of claim 5, wherein the LMP nucleic acid is operatively linked to the ptxA promoter.
10. A method of modulating the level of a seed storage compound in a plant comprising, modifying the expression of a Lipid Metabolism Protein (LMP) nucleic acid in the plant, wherein the LMP nucleic acid comprises the isolated nucleic acid of claim 1.
11. The method of claim 10, wherein the level of total oil content in a seed is modified.
12. A method of modulating the number and/or size of one or more plant organs in a plant comprising, modifying the expression of a Lipid Metabolism Protein (LMP) nucleic acid in the plant, wherein the LMP nucleic acid comprises the isolated nucleic acid of claim 1.
13. The method of claim 12, wherein the seed size, seed number, and/or seed weight is modulated.
14. The method of claim 24, wherein the plant root length is increased.
15. The method of claim 24, wherein the number and/or size of leaves is increased.
16. A transgenic plant made by a method comprising, transforming a plant cell with an expression vector comprising a lipid metabolism protein (LMP) nucleic acid, and generating from the plant cell the transgenic plant, wherein the nucleic acid encodes a polypeptide that functions as a modulator of a seed storage compound in the plant, and wherein the LMP nucleic acid comprises the isolated nucleic acid of claim 1.
17. The transgenic plant of claim 16, wherein the level of total oil content in a seed is modified.
18. The transgenic plant of claim 16, wherein the plant is a dicotyledonous plant.
19. The transgenic plant of claim 16, wherein the plant is a monocotyledonous plant.
20. The transgenic plant of claim 16, wherein the level of the seed storage compound is increased in the transgenic plant as compared to an untransformed wild type variety of the plant.
Description:
RELATED APPLICATIONS
[0001] This application is a continuation of U.S. patent application Ser. No. 12/953,965, filed Nov. 24, 2010, which is a divisional of U.S. patent application Ser. No. 11/629,727, filed Jan. 15, 2007, which is a national stage application (under 35 U.S.C. §371) of PCT/US2005/021500 filed Jun. 16, 2005, which claims benefit to U.S. Provisional Application No. 60/580,334 filed Jun. 16, 2004 and to U.S. Provisional Application No. 60/600,466 filed Aug. 11, 2004. The entire contents of each of these applications are hereby incorporated by reference herein in their entirety.
SUBMISSION OF SEQUENCE LISTING
[0002] The Sequence Listing associated with this application is filed in electronic format via EFS-Web and hereby incorporated by reference into the specification in its entirety. The name of the text file containing the Sequence Listing is Sequence_Listing--17731--00038US. The size of the text file is 168 KB, and the text file was created on Jun. 13, 2012.
FIELD OF THE INVENTION
[0003] Described herein are inventions in the field of genetic engineering of plants, including isolated nucleic acid molecules encoding polypeptides that improve agronomic, horticultural, and quality traits. This invention relates generally to nucleic acid sequences encoding proteins that are related to the presence of seed storage compounds in plants. More specifically, the present invention relates to WRINKLED1-like (WRI1-like) nucleic acid sequences encoding sugar and lipid metabolism regulator proteins and the use of these sequences in transgenic plants. In particular, the invention is directed to methods for manipulating sugar-related compounds, for increasing oil levels, and for altering the fatty acid composition in plants and seeds. The invention further relates to methods of using these novel plant polypeptides to stimulate plant growth and/or to increase yield and/or composition of seed storage compounds.
BACKGROUND OF THE INVENTION
[0004] The study and genetic manipulation of plants has a long history that began even before the famed studies of Gregor Mendel. In perfecting this science, scientists have accomplished modification of particular traits in plants ranging from potato tubers having increased starch content to oilseed plants such as canola and sunflower having increased or altered fatty acid content. With the increased consumption and use of plant oils, the modification of seed oil content and seed oil levels has become increasingly widespread (e.g. Topfer et al., 1995, Science 268:681-686). Manipulation of biosynthetic pathways in transgenic plants provides a number of opportunities for molecular biologists and plant biochemists to affect plant metabolism giving rise to the production of specific higher-value products. The seed oil production or composition has been altered in numerous traditional oilseed plants such as soybean (U.S. Pat. No. 5,955,650), canola (U.S. Pat. No. 5,955,650), sunflower (U.S. Pat. No. 6,084,164), and rapeseed (Topfer et al., 1995, Science 268:681-686), and non-traditional oilseed plants such as tobacco (Cahoon et al., 1992, Proc. Natl. Acad. Sci. USA 89:11184-11188).
[0005] Plant seed oils comprise both neutral and polar lipids (See Table 1). The neutral lipids contain primarily triacylglycerol, which is the main storage lipid that accumulates in oil bodies in seeds. The polar lipids are mainly found in the various membranes of the seed cells, e.g. the endoplasmic reticulum, microsomal membranes and the cell membrane. The neutral and polar lipids contain several common fatty acids (See Table 2) and a range of less common fatty acids. Lipids indicated by an asterisk in Table 2 do not normally occur in plant seed oils, but their production in transgenic plant seed oil is of importance in plant biotechnology. The fatty acid composition of membrane lipids is highly regulated, and only a select number of fatty acids are found in membrane lipids. On the other hand, a large number of unusual fatty acids can be incorporated into the neutral storage lipids in seeds of many plant species (Van de Loo et al., 1993, Unusual Fatty Acids in Lipid Metabolism in Plants pp. 91-126, editor T S Moore Jr. CRC Press; Millar et al., 2000, Trends Plant Sci. 5:95-101).
TABLE-US-00001 TABLE 1 Plant Lipid Classes Neutral Lipids Triacylglycerol (TAG) Diacylglycerol (DAG) Monoacylglycerol (MAG) Polar Lipids Monogalactosyldiacylglycerol (MGDG) Digalactosyldiacylglycerol (DGDG) Phosphatidylglycerol (PG) Phosphatidylcholine (PC) Phosphatidylethanolamine (PE) Phosphatidylinositol (PI) Phosphatidylserine (PS) Sulfoquinovosyldiacylglycerol
TABLE-US-00002 TABLE 2 Common Plant Fatty Acids 16:0 Palmitic acid 16:1 Palmitoleic acid 16:3 Palmitolenic acid 18:0 Stearic acid 18:1 Oleic acid 18:2 Linoleic acid 18:3 Linolenic acid γ-18:3.sup. Gamma-linolenic acid* 20:0 Arachidic acid 20:1 Eicosenoic acid 22:6 Docosahexanoic acid (DHA) * 20:2 Eicosadienoic acid 20:4 Arachidonic acid (AA) * 20:5 Eicosapentaenoic acid (EPA) * 22:1 Erucic acid
[0006] Lipids are synthesized from fatty acids, and their synthesis may be divided into two parts: the prokaryotic pathway and the eukaryotic pathway (Browse et al., 1986, Biochemical J. 235:25-31; Ohlrogge & Browse, 1995, Plant Cell 7:957-970). The prokaryotic pathway is located in plastids that are the primary site of fatty acid biosynthesis. Fatty acid synthesis begins with the conversion of acetyl-CoA to malonyl-CoA by acetyl-CoA carboxylase (ACCase). Malonyl-CoA is converted to malonyl-acyl carrier protein (ACP) by the malonyl-CoA:ACP transacylase. The enzyme beta-keto-acyl-ACP-synthase III (KAS III) catalyzes a condensation reaction, in which the acyl group from acetyl-CoA is transferred to malonyl-ACP to form 3-ketobutyryl-ACP. In a subsequent series of condensation, reduction, and dehydration reactions, the nascent fatty acid chain on the ACP cofactor is elongated by the step-by-step addition (condensation) of two carbon atoms donated by malonyl-ACP until a 16- or 18-carbon saturated fatty acid chain is formed. The plastidial delta-9 acyl-ACP desaturase introduces the first unsaturated double bond into the fatty acid. Thioesterases cleave the fatty acids from the ACP cofactor, and free fatty acids are exported to the cytoplasm where they participate as fatty acyl-CoA esters in the eukaryotic pathway. In this pathway, the fatty acids are esterified by glycerol-3-phosphate acyltransferase and lysophosphatidic acid acyl-transferase to the sn-1 and sn-2 positions of glycerol-3-phosphate, respectively, to yield phosphatidic acid (PA). The PA is the precursor for other polar and neutral lipids, the latter being formed in the Kennedy pathway (Voelker, 1996, Genetic Engineering ed.: Setlow 18:111-113; Shanklin & Cahoon, 1998, Arum. Rev. Plant Physiol. Plant Mol. Biol. 49:611-641; Frentzen, 1998, Lipids 100:161-166; Millar et al., 2000, Trends Plant Sci. 5:95-101).
[0007] Storage lipids in seeds are synthesized from carbohydrate-derived precursors. Plants have a complete glycolytic pathway in the cytosol (Plaxton, 1996, Annu. Rev. Plant Physiol. Plant Mol. Biol. 47:185-214), and it has been shown that a complete pathway also exists in the plastids of rapeseeds (Kang & Rawsthorne, 1994, Plant J. 6:795-805). Sucrose is the primary source of carbon and energy, transported from the leaves into the developing seeds. During the storage phase of seeds, sucrose is converted in the cytosol to provide the metabolic precursors glucose-6-phosphate and pyruvate. These are transported into the plastids and converted into acetyl-CoA that serves as the primary precursor for the synthesis of fatty acids. Acetyl-CoA in the plastids is the central precursor for lipid biosynthesis. Acetyl-CoA can be fruited in the plastids by different reactions and the exact contribution of each reaction is still being debated (Ohlrogge & Browse, 1995, Plant Cell 7:957-970). It is accepted, however, that a large part of the acetyl-CoA is derived from glucose-6-phospate and pyruvate that are imported from the cytoplasm into the plastids. Sucrose is produced in the source organs (leaves, or anywhere that photosynthesis occurs) and is transported to the developing seeds that are also termed sink organs. In the developing seeds, sucrose is the precursor for all the storage compounds, i.e. starch, lipids, and partly the seed storage proteins. Therefore, it is clear that carbohydrate metabolism, in which sucrose plays a central role is very important to the accumulation of seed storage compounds.
[0008] Storage compounds such as triacylglycerols (seed oil) serve as carbon and energy reserves, which are used during germination and growth of the young seedling. Seed (vegetable) oil is also an essential component of the human diet and a valuable commodity providing feed stocks for the chemical industry. A mutant of Arabidopsis affected in seed storage compound metabolism is wrinkled1 (wri1) (Focks and Benning, 1998). The mutant is characterized by a 80% reduction in seed oil content. Additionally, expression of genes involved in sugar metabolism seems to be affected.
[0009] Although the lipid and fatty acid content and/or composition of seed oil can be modified by the traditional methods of plant breeding, the advent of recombinant DNA technology has allowed for easier manipulation of the seed oil content of a plant, and in some cases, has allowed for the alteration of seed oils in ways that could not be accomplished by breeding alone (See, e.g., Topfer et al., 1995, Science 268:681-686). For example, introduction of a Δ12-hydroxylase nucleic acid sequence into transgenic tobacco resulted in the introduction of a novel fatty acid, ricinoleic acid, into the tobacco seed oil (Van de Loo et al., 1995, Proc. Natl. Acad. Sci. USA 92:6743-6747). Tobacco plants have also been engineered to produce low levels of petroselinic acid by the introduction and expression of an acyl-ACP desaturase from coriander (Cahoon et al., 1992, Proc. Natl. Acad. Sci. USA 89:11184-11188).
[0010] The modification of seed oil content in plants has significant medical, nutritional, and economic ramifications. With regard to the medical ramifications, the long chain fatty acids (C18 and longer) found in many seed oils have been linked to reductions in hypercholesterolemia and other clinical disorders related to coronary heart disease (Brenner, 1976, Adv. Exp. Med. Biol. 83:85-101). Therefore, consumption of a plant having increased levels of these types of fatty acids may reduce the risk of heart disease. Enhanced levels of seed oil content also increase large-scale production of seed oils and thereby reduce the cost of these oils.
[0011] In order to increase or alter the levels of compounds such as seed oils in plants, nucleic acid sequences and proteins regulating lipid and fatty acid metabolism must be identified. As mentioned earlier, several desaturase nucleic acids such as the Δ6-desaturase nucleic acid, Δ12-desaturase nucleic acid, and acyl-ACP desaturase nucleic acids have been cloned and demonstrated to encode enzymes required for fatty acid synthesis in various plant species. Oleosin nucleic acid sequences from such different species as canola, soybean, carrot, pine, and Arabidopsis thaliana also have been cloned and determined to encode proteins associated with the phospholipid monolayer membrane of oil bodies in those plants.
[0012] It has also been determined that two phytohormones, gibberellic acid (GA) and absisic acid (ABA), are involved in overall regulatory processes in seed development (e.g. Ritchie & Gilroy, 1998, Plant Physiol. 116:765-776; Arenas-Huertero et al., 2000, Genes Dev. 14:2085-2096). Both the GA and ABA pathways are affected by okadaic acid, a protein phosphatase inhibitor (Kuo et al., 1996, Plant Cell. 8:259-269). The regulation of protein phosphorylation by kinases and phosphatases is accepted as a universal mechanism of cellular control (Cohen, 1992, Trends Biochem. Sci. 17:408-413). Likewise, the plant hormones ethylene (See, e.g., Zhou et al., 1998, Proc. Natl. Acad. Sci. USA 95:10294-10299; Beaudoin et al., 2000, Plant Cell 2000:1103-1115) and auxin (e.g. Colon-Carmona et al., 2000, Plant Physiol. 124:1728-1738) are involved in controlling plant development as well.
[0013] Although several compounds are known that generally affect plant and seed development, there is a clear need to specifically identify factors that are more specific for the developmental regulation of storage compound accumulation and to identify genes which have the capacity to confer altered or increased oil production to its host plant and to other plant species. This invention discloses nucleic acid sequences from Arabidopsis thaliana, Brassica napus, Glycine max, Oryza sativa, or Triticum aestivum. These nucleic acid sequences can be used to alter or increase the levels of seed storage compounds such as proteins, sugars, and oils in plants, including transgenic plants, such as canola, linseed, soybean, sunflower, maize, oat, rye, barley, wheat, rice, pepper, tagetes, cotton, oil palm, coconut palm, flax, castor, and peanut, which are oilseed plants containing high amounts of lipid compounds.
SUMMARY OF THE INVENTION
[0014] The present invention provides novel isolated nucleic acid and amino acid sequences associated with the metabolism of seed storage compounds in plants, in particular with sequences that are WRI1-like.
[0015] The present invention also provides isolated nucleic acids from Arabidopsis thaliana, Brassica napus, Glycine max, Oryza sativa, and Triticum aestivum encoding a Lipid Metabolism Protein (LMP), or a portion thereof. These sequences may be used to modify or increase lipids and fatty acids, cofactors and enzymes in microorganisms and plants.
[0016] Arabidopsis plants are known to produce considerable amounts of fatty acids like linoleic and linolenic acid (See, e.g., Table 2) and for their close similarity in many aspects (gene homology, etc.) to the oil crop plant Brassica. Therefore, nucleic acid molecules originating from a plant like Arabidopsis thaliana, Brassica napus, Glycine max, Oryza sativa, or Triticum aestivum, or related organisms are especially suited to modify the lipid and fatty acid metabolism in a host, especially in microorganisms and plants. Furthermore, nucleic acids from Arabidopsis thaliana, Brassica napus, Glycine max, Oryza sativa, or Triticum aestivum, or related organisms can be used to identify those DNA sequences and enzymes in other species, which are useful to modify the biosynthesis of precursor molecules of fatty acids in the respective organisms.
[0017] The present invention further provides an isolated nucleic acid comprising a fragment of at least 15 nucleotides of a nucleic acid from a plant (Arabidopsis thaliana, Brassica napus, Glycine max, Oryza sativa, or Triticum aestivum) encoding a Lipid Metabolism Protein (LMP), or a portion thereof.
[0018] Also provided by the present invention are polypeptides encoded by the nucleic acids, heterologous polypeptides comprising polypeptides encoded by the nucleic acids, and antibodies to those polypeptides.
[0019] Additionally, the present invention relates to and provides the use of LMP nucleic acids in the production of transgenic plants having a modified level or composition of a seed storage compound. With regard to an altered composition, the present invention can be used, for example, to increase the percentage of oleic acid relative to other plant oils. A method of producing a transgenic plant with a modified level or composition of a seed storage compound includes the steps of transforming a plant cell with an expression vector comprising an LMP nucleic acid, and generating a plant with a modified level or composition of the seed storage compound from the plant cell. In one embodiment, the plant is a high oil producing species as described in Kinney et al. (1994, Current Opin. in Biotech. 5:144-151), Topfer et al. (1995, Science 268:681-686), and Oil Crops of the World-Their Breeding and Utilization (1989, eds. Robbelen, Downey, and Ashri). In a preferred embodiment, the plant is a high oil producing species selected from the group consisting of canola, linseed, soybean, sunflower, maize, oat, rye, barley, wheat, rice, pepper, tagetes, cotton, oil palm, coconut palm, flax, castor, and peanut, for example.
[0020] According to the present invention, the compositions and methods described herein can be used to alter the composition of an LMP in a transgenic plant and to increase or decrease the level of an LMP in a transgenic plant comprising increasing or decreasing the expression of an LMP nucleic acid in the plant. Increased or decreased expression of the LMP nucleic acid can be achieved through transgenic overexpression, cosuppression, antisense inhibition, or in vivo mutagenesis of the LMP nucleic acid. The present invention can also be used to increase or decrease the level of a lipid in a seed oil, to increase or decrease the level of a fatty acid in a seed oil, or to increase or decrease the level of a starch in a seed or plant.
[0021] In one embodiment, the present invention includes and provides a method for increasing total oil content in a seed comprising: transforming a plant with a nucleic acid construct that comprises as operatively linked components, a promoter and nucleic acid sequences capable of modulating the level of a WRI1-like mRNA or WRI1-like protein, and growing the plant. Furthermore, the present invention includes and provides a method for increasing the level of oleic acid in a seed comprising: transforming a plant with a nucleic acid construct that comprises as operatively linked components, a promoter and a structural nucleic acid sequence capable of increasing the level of oleic acid, and growing the plant.
[0022] The present invention provides transgenic plants having modified levels of seed storage compounds, and in particular, modified levels of a lipid, a fatty acid, or a sugar. Also included herein is a seed produced by a transgenic plant transformed by an LMP DNA sequence, wherein the seed contains the LMP DNA sequence and wherein the plant is true breeding for a modified level of a seed storage compound. The present invention additionally includes a seed oil produced by the aforementioned seed. Further provided by the present invention are vectors comprising the nucleic acids, host cells containing the vectors, and descendent plant materials from a plant produced by transforming a plant cell with the nucleic acids and/or vectors and growing the plant.
[0023] According to the present invention, the compounds, compositions, and methods described herein can be used to increase or decrease the relative percentages of a lipid in a seed oil, to increase or decrease the level of a lipid in a seed oil, to increase or decrease the level of a fatty acid in a seed oil, to increase or decrease the level of a starch or other carbohydrate in a seed or plant, or to increase or decrease the level of proteins in a seed or plant. The manipulations described herein can also be used to improve seed germination and growth of the young seedlings and plants and to enhance plant yield of seed storage compounds.
[0024] The present invention further provides a method of producing a higher or lower than normal or typical level of storage compound in a transgenic plant expressing an LMP nucleic acid from Arabidopsis thaliana, Brassica napus, Glycine max, Oryza sativa, or Triticum aestivum in the transgenic plant, wherein the transgenic plant is Arabidopsis thaliana, Brassica napus, Glycine max, Oryza sativa, Zea mays, Triticum aestivum, Helianthus anuus, or Beta vulgaris, or a species different from Arabidopsis thaliana, Brassica napus, Glycine max, Oryza sativa, or Triticum aestivum. Also included herein are compositions and methods of the modification of the efficiency of production of a seed storage compound. As used herein, where the phrase Arabidopsis thaliana, Brassica napus, Glycine max, Oryza sativa, Zea mays, Triticum aestivum, Helianthus anuus, or Beta vulgaris is used, this also means Arabidopsis thaliana and/or Brassica napus and/or Glycine max and/or Oryza saliva and/or Triticum aestivum and/or Zea mays and/or Helianthus anuus and/or Beta vulgaris.
[0025] Accordingly, the present invention provides novel isolated LMP nucleic acids and isolated LMP amino acid sequences from Arabidopsis thaliana, Brassica napus, Glycine max, Oryza sativa, and Triticum aestivum, as well as active fragments, analogs, and orthologs thereof. Those active fragments, analogs, and orthologs can also be from different plant species, as one skilled in the art will appreciate that other plant species will also contain those or related nucleic acids.
[0026] The polynucleotides and polypeptides of the present invention, including agonists and/or fragments thereof, may have uses that include modulating plant growth, and potentially plant yield, preferably increasing plant growth under adverse conditions (drought, cold, light, UV). In addition, antagonists of the present invention may have uses that include modulating plant growth and/or yield, through preferably increasing plant growth and yield. In yet another embodiment, overexpression polypeptides of the present invention using a constitutive promoter may be useful for increasing plant yield under stress conditions (drought, light, cold, UV) by modulating light utilization efficiency. Moreover, polynucleotides and polypeptides of the present invention will improve seed germination and seed dormancy and, hence, will improve plant growth and/or yield of seed storage compounds.
[0027] The isolated nucleic acid molecules of the present invention may further comprise an operatively linked promoter or partial promoter region. In one embodiment, the promoter can be a constitutive promoter, an inducible promoter, or a tissue-specific promoter. The constitutive promoter can be, for example, the superpromoter (Ni et al., Plant J. 7:661-676, 1995; U.S. Pat. No. 5,955,646) or the PtxA promoter (PF 55368-2 US, Song et al., 2004, See Example 11). The tissue-specific promoter can be active in vegetative tissue or reproductive tissue. The tissue-specific promoter active in reproductive tissue can be a seed-specific promoter. The tissue-specific promoter active in vegetative tissue can be a root-specific, shoot-specific, meristem-specific, or leaf-specific promoter. The isolated nucleic acid molecule of the present invention can still further comprise a 5' non-translated sequence, 3' non-translated sequence, introns, or a combination thereof.
[0028] The present invention also provides methods for increasing the number and/or size of one or more plant organs by expressing in a plant an isolated nucleic acid encoding a Lipid Metabolism Protein (LMP), or a portion thereof, from Arabidopsis thaliana, Brassica napus, Glycine max, Oryza sativa, or Triticum aestivum. More specifically, seed size, seed number, and/or seed weight is manipulated. Root length also can be increased, alleviating the effects of water depletion from soil, improving plant anchorage/standability and thus reducing lodging, and covering a larger volume of soil and thereby improving nutrient uptake. All of these advantages of altered root architecture have the potential to increase crop yield. Additionally, the number and size of leaves might be increased by the nucleic acid sequences provided in this application, improving photosynthetic light utilization efficiency by increasing photosynthetic light capture capacity and photosynthetic efficiency.
[0029] These and other features and advantages of the present invention will become apparent after a review of the following detailed description of the disclosed embodiments and the appended claims.
BRIEF DESCRIPTION OF THE DRAWINGS
[0030] FIG. 1 is a schematic drawing of the binary vector T-DNA used to transform BnWRI01 and other WRI1-like genes into Arabidopsis thaliana or crop plants. The abbreviations are defined as follows: LB, left border; pAHAS, Arabidopsis AHAS promoter; 3'AHAS, AHAS termination signal; PtxA, PtxA-promoter; BnWRI01, cDNA of BnWRI01; 3'NOS, termination signal; and RB, Right Border.
[0031] FIG. 2 is a map of the ptxA promoter::ZmUbiquitin intron::BnWRI01 chimeric construct (PtxAZmUbi intron-BnWRI01). The plasmid comprises an expression construct containing a ptxA promoter (ptxA) operatively linked to maize Ubiquitin intron (ZmUbi intron), Brassica napus WRINKLED 1 (BnWRI01), and 3' untranslated region and termination derived from the nopaline synthase gene (NOS). SM cassette stands for a selectable marker cassette.
[0032] FIG. 3 is a graph showing total seed oil content in A. thaliana plants in T2 and T3 seed generation overexpressing WRI. Each circle represents the value obtained with one individual plant, and independent transgenic events are shown. Statistical analysis was by t-Test. The abbreviations are defined as follows: C24, Columbia24; Col-2, Columbia 2.
[0033] FIG. 4 is a graph showing oleic acid (C18:1) levels in A. thaliana plants in the T2 and T3 seed generation overexpressing WRI. Col2, wild type Columbia-2, GB007, empty vector control in Columbia 2 genetic background; C24, Columbia 24, WriRT, independent transgenic events of PtxA::WRI1 overexpressors. Each bar shows the average obtained with 20 plants each.
[0034] FIG. 5 is a graph showing linoleic and linolenic acid levels in homozygous A. thaliana plants in T2 and T3 seed generation overexpressing WRI. Each bar shows the average obtained with 20 plants. C18:2 content was reduced by 95%, and C18:3 content was reduced by 80% in homozygous A. thaliana plants in T3 seed generation overexpressing WRI. The abbreviations used are defined as follows: Col2, Arabidopsis ecotype Columbia-2; WRI1-8, 10, 11, independent transgenic events of PtxA:: WRI1.
[0035] FIG. 6 is a graph showing saturated fatty acid levels in homozygous A. thaliana overexpressing WRI. Homozygous T3 seeds show 30% reduction in saturates in WRI1 overexpressors. The abbreviations used are defined as follows: Col2, Arabidopsis ecotype Columbia-2; WRI1-8,10,11, independent transgenic events of PtxA WRI1.
[0036] FIG. 7 is a graph showing seed weight in the Arabidopsis writ mutant and independent transgenic lines of Arabidopsis PtxA:: WRI1 overexpressors in T2 seed generation. Values shown in the graph represent average values of seed weight obtained with seeds from a single plant. The abbreviations used are defined as follows: Col2, Arabidopsis ecotype Columbia-2; GB007, empty vector control.
[0037] FIG. 8 is a photograph showing the root length of Arabidopsis wild-type Columbia-2 in comparison with the wri1 mutant after 14 days of growth on agar plates. The abbreviations used are defined as follows: WT, wild type Columbia 2; wri1, wrinkled 1 mutant.
DETAILED DESCRIPTION OF THE INVENTION
[0038] The present invention may be understood more readily by reference to the following detailed description of the preferred embodiments of the invention and the Examples included therein.
[0039] Before the present compounds, compositions, and methods are disclosed and described, it is to be understood that this invention is not limited to specific nucleic acids, specific polypeptides, specific cell types, specific host cells, specific conditions, or specific methods, etc., as such may, of course, vary, and the numerous modifications and variations therein will be apparent to those skilled in the art. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting. As used in the specification and in the claims, "a" or "an" can mean one or more, depending upon the context in which it is used. Thus, for example, reference to "a cell" can mean that at least one cell can be utilized.
[0040] The present invention is based, in part, on the isolation and characterization of nucleic acid molecules encoding WRI1-like LMPs from plants including Arabidopsis thaliana, canola (Brassica napus), soybean (Glycine max), rice (Oryza sativa), and wheat (Triticum aestivum), and other related crop species like maize, barley, linseed, sugar beet, or sunflower.
[0041] In accordance with the purposes of this invention, as embodied and described herein, this invention, in one aspect, provides an isolated nucleic acid from a plant (Arabidopsis thaliana, Brassica napus, Glycine max, Oryza sativa, or Triticum aestivum) encoding a Lipid Metabolism Protein (LMP), or a portion thereof.
[0042] One aspect of the invention pertains to isolated nucleic acid molecules that encode LMP polypeptides or biologically active portions thereof, as well as nucleic acid fragments sufficient for use as hybridization probes or primers for the identification or amplification of an LMP-encoding nucleic acid (e.g., LMP DNA). As used herein, the term "nucleic acid molecule" is intended to include DNA molecules (e.g., cDNA or genomic DNA) and RNA molecules (e.g., mRNA) and analogs of the DNA or RNA generated using nucleotide analogs. This term also encompasses untranslated sequence located at both the 3' and 5' ends of the coding region of a gene: at least about 1000 nucleotides of sequence upstream from the 5' end of the coding region and at least about 200 nucleotides of sequence downstream from the 3' end of the coding region of the gene. The nucleic acid molecule can be single-stranded or double-stranded, but preferably is double-stranded DNA. An "isolated" nucleic acid molecule is one which is substantially separated from other nucleic acid molecules which are present in the natural source of the nucleic acid. Preferably, an "isolated" nucleic acid is substantially free of sequences that naturally flank the nucleic acid (i.e., sequences located at the 5' and 3' ends of the nucleic acid) in the genomic DNA of the organism, from which the nucleic acid is derived. For example, in various embodiments, the isolated LMP nucleic acid molecule can contain less than about 5 kb, 4 kb, 3 kb, 2 kb, 1 kb, 0.5 kb, or 0.1 kb of nucleotide sequences which naturally flank the nucleic acid molecule in genomic DNA of the cell from which the nucleic acid is derived (e.g., a Arabidopsis thaliana, Brassica napus, Glycine max, Oryza sativa, or Triticum aestivum cell). Moreover, an "isolated" nucleic acid molecule, such as a cDNA molecule, can be substantially free of other cellular material, or culture medium when produced by recombinant techniques, or chemical precursors or other chemicals when chemically synthesized.
[0043] A nucleic acid molecule of the present invention, e.g., a nucleic acid molecule having a nucleotide sequence as shown in the Appendix, or a portion thereof, can be isolated using standard molecular biology techniques and the sequence information provided herein. For example, an Arabidopsis thaliana, Brassica napus, Glycine max, Oryza sativa, or Triticum aestivum LMP cDNA can be isolated from an Arabidopsis thaliana, Brassica napus, Glycine max, Oryza sativa, or Triticum aestivum library using all or portion of one of the sequences as shown in the The Appendixs a hybridization probe and standard hybridization techniques (e.g., as described in Sambrook et al., 1989, Molecular Cloning: A Laboratory Manual. 2nd, ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.). Moreover, a nucleic acid molecule encompassing all or a portion of one of the sequences as shown in the Appendix can be isolated by the polymerase chain reaction using oligonucleotide primers designed based upon this sequence (e.g., a nucleic acid molecule encompassing all or a portion of one of the sequences as shown in the Appendix can be isolated by the polymerase chain reaction using oligonucleotide primers designed based upon this same sequence as shown in the Appendix). For example, mRNA can be isolated from plant cells (e.g., by the guanidinium-thiocyanate extraction procedure of Chirgwin et al., 1979, Biochemistry 18:5294-5299) and cDNA can be prepared using reverse transcriptase (e.g., Moloney MLV reverse transcriptase, available from Gibco/BRL, Bethesda, Md.; or AMV reverse transcriptase, available from Seikagaku America, Inc., St. Petersburg, Fla.). Synthetic oligonucleotide primers for polymerase chain reaction amplification can be designed based upon one of the nucleotide sequences shown in The Appendix. A nucleic acid of the invention can be amplified using cDNA or, alternatively, genomic DNA, as a template and appropriate oligonucleotide primers according to standard PCR amplification techniques. The nucleic acid so amplified can be cloned into an appropriate vector and characterized by DNA sequence analysis. Furthermore, oligonucleotides corresponding to an LMP nucleotide sequence can be prepared by standard synthetic techniques, e.g., using an automated DNA synthesizer.
[0044] In a preferred embodiment, an isolated nucleic acid of the invention comprises one of the nucleotide sequences shown in The Appendix. The sequences as shown in the Appendix correspond to the Arabidopsis thaliana, Brassica napus, Glycine max, Oryza sativa, or Triticum aestivum LMP cDNAs of the invention. These cDNAs comprise sequences encoding LMPs (i.e., the "coding region"), as well as 5' untranslated sequences and 3' untranslated sequences. Alternatively, the nucleic acid molecules can comprise only the coding region of any of the sequences in the Appendix or can contain whole genomic fragments isolated from genomic DNA.
[0045] For the purposes of this application, it will be understood that each of the sequences set forth in the Appendix has been assigned an identifying entry number (e.g., BnWRI01). Each of these sequences may generally comprise three parts: a 5' upstream region, a coding region, and a downstream region. A coding region of these sequences is indicated as "ORF position" (Table 3).
[0046] In another preferred embodiment, an isolated nucleic acid molecule of the invention comprises a nucleic acid molecule, which is a complement of one of the nucleotide sequences shown in the Appendix, or a portion thereof. A nucleic acid molecule which is complementary to one of the nucleotide sequences shown in the Appendix is one which is sufficiently complementary to one of the nucleotide sequences shown in the Appendix such that it can hybridize to one of the nucleotide sequences shown in the Appendix, thereby forming a stable duplex.
[0047] In still another preferred embodiment, an isolated nucleic acid molecule of the invention comprises a nucleotide sequence which is at least about 50-60%, preferably at least about 60-70%, more preferably at least about 70-80%, 80-90%, or 90-95%, and even more preferably at least about 95%, 96%, 97%, 98%, 99%, or more homologous to a nucleotide sequence shown in the Appendix, or a portion thereof. In an additional preferred embodiment, an isolated nucleic acid molecule of the invention comprises a nucleotide sequence which hybridizes, e.g., hybridizes under stringent conditions, to one of the nucleotide sequences shown in the Appendix, or a portion thereof. These hybridization conditions include washing with a solution having a salt concentration of about 0.02 molar at pH 7 at about 60° C.
[0048] Moreover, the nucleic acid molecule of the invention can comprise only a portion of the coding region of one of the sequences in the Appendix, for example a fragment, which can be used as a probe or primer or a fragment encoding a biologically active portion of an LMP. The nucleotide sequences determined from the cloning of the LMP genes from Arabidopsis thaliana, Brassica napus, Glycine max, Oryza sativa, or Triticum aestivum allows for the generation of probes and primers designed for use in identifying and/or cloning LMP homologs in other cell types and organisms, as well as LMP homologs from other plants or related species. Therefore this invention also provides compounds comprising the nucleic acids disclosed herein, or fragments thereof. These compounds include the nucleic acids attached to a moiety. These moieties include, but are not limited to, detection moieties, hybridization moieties, purification moieties, delivery moieties, reaction moieties, binding moieties, and the like. The probe/primer typically comprises substantially purified oligonucleotide. The oligonucleotide typically comprises a region of nucleotide sequence that hybridizes under stringent conditions to at least about 12, preferably about 25, more preferably about 40, 50, or 75 consecutive nucleotides of a sense strand of one of the sequences set forth in the Appendix, an anti-sense sequence of one of the sequences set forth in the Appendix, or naturally occurring mutants thereof. Primers based on a nucleotide sequence as shown in the Appendix can be used in PCR reactions to clone LMP homologs. Probes based on the LMP nucleotide sequences can be used to detect transcripts or genomic sequences encoding the same or homologous proteins. In preferred embodiments, the probe further comprises a label group attached thereto, e.g. the label group can be a radioisotope, a fluorescent compound, an enzyme, or an enzyme co-factor. Such probes can be used as a part of a genomic marker test kit for identifying cells which express an LMP, such as by measuring a level of an LMP-encoding nucleic acid in a sample of cells, e.g., detecting LMP mRNA levels or determining whether a genomic LMP gene has been mutated or deleted.
[0049] In one embodiment, the nucleic acid molecule of the invention encodes a protein or portion thereof which includes an amino acid sequence which is sufficiently homologous to an amino acid encoded by a sequence as shown in the Appendix such that the protein or portion thereof maintains the same or a similar function as the wild-type protein. As used herein, the language "sufficiently homologous" refers to proteins or portions thereof which have amino acid sequences which include a minimum number of identical or equivalent (e.g., an amino acid residue, which has a similar side chain as an amino acid residue in one of the ORFs of a sequence as shown in the Appendix) amino acid residues to an amino acid sequence such that the protein or portion thereof is able to participate in the metabolism of compounds necessary for the production of seed storage compounds in plants, construction of cellular membranes in microorganisms or plants, or in the transport of molecules across these membranes. Regulatory proteins, such as DNA binding proteins, transcription factors, kinases, phosphatases, or protein members of metabolic pathways such as the lipid, starch, and protein biosynthetic pathways, or membrane transport systems, may play a role in the biosynthesis of seed storage compounds. Examples of such activities are described herein (See putative annotations in Table 3). Examples of LMP-encoding nucleic acid sequences are set forth in the Appendix.
[0050] As altered or increased sugar and/or fatty acid production is a general trait wished to be inherited into a wide variety of plants like maize, wheat, rye, oat, triticale, rice, barley, soybean, peanut, cotton, canola, manihot, pepper, sunflower, sugar beet and tagetes, solanaceous plants like potato, tobacco, eggplant, and tomato, Vicia species, pea, alfalfa, bushy plants (coffee, cacao, tea), Salix species, trees (oil palm, coconut) and perennial grasses and forage crops, these crop plants are also preferred target plants for genetic engineering as one further embodiment of the present invention.
[0051] Portions of proteins encoded by the LMP nucleic acid molecules of the invention are preferably biologically active portions of one of the LMPs. As used herein, the term "biologically active portion of an LMP" is intended to include a portion, e.g., a domain/motif, of an LMP that participates in the metabolism of compounds necessary for the biosynthesis of seed storage lipids, or the construction of cellular membranes in microorganisms or plants, or in the transport of molecules across these membranes, or has an activity as set forth in Table 3. To determine whether an LMP or a biologically active portion thereof can participate in the metabolism of compounds necessary for the production of seed storage compounds and cellular membranes, an assay of enzymatic activity may be performed. Such assay methods are well known to those skilled in the art, and as described in Example 14.
[0052] Biologically active portions of an LMP include peptides comprising amino acid sequences derived from the amino acid sequence of an LMP (e.g., an amino acid sequence encoded by a nucleic acid as shown in the Appendix or the amino acid sequence of a protein homologous to an LMP, which include fewer amino acids than a full length LMP or the full length protein which is homologous to an LMP) and exhibit at least one activity of an LMP. Typically, biologically active portions (peptides, e.g., peptides which are, for example, 5, 10, 15, 20, 30, 35, 36, 37, 38, 39, 40, 50, 100, or more amino acids in length) comprise a domain or motif with at least one activity of an LMP. Moreover, other biologically active portions, in which other regions of the protein are deleted, can be prepared by recombinant techniques and evaluated for one or more of the activities described herein. Preferably, the biologically active portions of an LMP include one or more selected domains/motifs or portions thereof having biological activity.
[0053] Additional nucleic acid fragments encoding biologically active portions of an LMP can be prepared by isolating a portion of one of the sequences, expressing the encoded portion of the LMP or peptide (e.g., by recombinant expression in vitro) and assessing the activity of the encoded portion of the LMP or peptide.
[0054] The invention further encompasses nucleic acid molecules that differ from one of the nucleotide sequences shown in the Appendix (and portions thereof) due to degeneracy of the genetic code and thus encode the same LMP as that encoded by the nucleotide sequences shown in the Appendix. In a further embodiment, the nucleic acid molecule of the invention encodes a full length protein which is substantially homologous to an amino acid sequence of a polypeptide encoded by an open reading frame shown in the Appendix. In one embodiment, the full-length nucleic acid or protein or fragment of the nucleic acid or protein is from Arabidopsis thaliana, Brassica napus, Glycine max, Oryza sativa, or Triticum aestivum.
[0055] In addition to the Arabidopsis thaliana, Brassica napus, Glycine max, Oryza sativa, or Triticum aestivum LMP nucleotide sequences shown in the Appendix, it will be appreciated by those skilled in the art that DNA sequence polymorphisms that lead to changes in the amino acid sequences of LMPs may exist within a population (e.g., the Arabidopsis thaliana, Brassica napus, Glycine max, Oryza sativa, or Triticum aestivum population). Such genetic polymorphism in the LMP gene may exist among individuals within a population due to natural variation. As used herein, the terms "gene" and "recombinant gene" refer to nucleic acid molecules comprising an open reading frame encoding an LMP, preferably a Arabidopsis thaliana, Brassica napus, Glycine max, Oryza sativa, or Triticum aestivum LMP. Such natural variations can typically result in 1-40% variance in the nucleotide sequence of the LMP gene. Any and all such nucleotide variations and resulting amino acid polymorphisms in LMP that are the result of natural variation and that do not alter the functional activity of LMPs are intended to be within the scope of the invention.
[0056] Nucleic acid molecules corresponding to natural variants and non-Arabidopsis thaliana, non-Brassica napus, non-Glycine max, non-Oryza sativa, or non-Triticum aestivum orthologs of the Arabidopsis thaliana, Brassica napus, Glycine max, Oryza sativa, or Triticum aestivum LMP cDNA of the invention can be isolated based on their homology to Arabidopsis thaliana, Brassica napus, Glycine max, Oryza sativa, or Triticum aestivum LMP nucleic acid disclosed herein using the Arabidopsis thaliana, Brassica napus, Glycine max, Oryza sativa, or Triticum aestivum cDNA, or a portion thereof, as a hybridization probe according to standard hybridization techniques under stringent hybridization conditions. As used herein, the term "orthologs" refers to two nucleic acids from different species, but that have evolved from a common ancestral gene by speciation. Normally, orthologs encode proteins having the same or similar functions. Accordingly, in another embodiment, an isolated nucleic acid molecule of the invention is at least 15 nucleotides in length and hybridizes under stringent conditions to the nucleic acid molecule comprising a nucleotide sequence as shown in the Appendix. In other embodiments, the nucleic acid is at least 30, 50, 100, 250, or more nucleotides in length. As used herein, the term "hybridizes under stringent conditions" is intended to describe conditions for hybridization and washing under which nucleotide sequences at least 60% homologous to each other typically remain hybridized to each other. Preferably, the conditions are such that sequences at least about 65%, more preferably at least about 70%, and even more preferably at least about 75% or more homologous to each other typically remain hybridized to each other. Such stringent conditions are known to those skilled in the art and can be found in Current Protocols in Molecular Biology, John Wiley & Sons, N.Y., 1989: 6.3.1-6.3.6. A preferred, non-limiting example of stringent hybridization conditions are hybridization in 6× sodium chloride/sodium citrate (SSC) at about 45° C., followed by one or more washes in 0.2×SSC, 0.1% SDS at 50-65° C. Another preferred example of stringent hybridization conditions is hybridization in a 6×SSC solution at 65° C. Preferably, an isolated nucleic acid molecule of the invention that hybridizes under stringent conditions to a sequence as shown in the Appendix corresponds to a naturally occurring nucleic acid molecule. As used herein, a "naturally-occurring" nucleic acid molecule refers to an RNA or DNA molecule having a nucleotide sequence that occurs in nature (e.g., encodes a natural protein). In one embodiment, the nucleic acid encodes a natural Arabidopsis thaliana, Brassica napus, Glycine max, Oryza sativa, or Triticum aestivum LMP.
[0057] In addition to naturally-occurring variants of the LMP sequence that may exist in the population, the skilled artisan will further appreciate that changes can be introduced by mutation into a nucleotide sequence as shown in the Appendix, thereby leading to changes in the amino acid sequence of the encoded LMP, without altering the functional ability of the LMP. For example, nucleotide substitutions leading to amino acid substitutions at "non-essential" amino acid residues can be made in a sequence as shown in the Appendix. A "non-essential" amino acid residue is a residue that can be altered from the wild-type sequence of one of the LMPs (The Appendix) without altering the activity of said LMP, whereas an "essential" amino acid residue is required for LMP activity. Other amino acid residues, however, (e.g., those that are not conserved or only semi-conserved in the domain having LMP activity) may not be essential for activity and thus are likely to be amenable to alteration without altering LMP activity.
[0058] Accordingly, another aspect of the invention pertains to nucleic acid molecules encoding LMPs that contain changes in amino acid residues that are not essential for LMP activity. Such LMPs differ in amino acid sequence from a sequence yet retain at least one of the LMP activities described herein. In one embodiment, the isolated nucleic acid molecule comprises a nucleotide sequence encoding a protein, wherein the protein comprises an amino acid sequence at least about 50% homologous to an amino acid sequence encoded by a nucleic acid as shown in the the Appendix and is capable of participation in the metabolism of compounds necessary for the production of seed storage compounds in Arabidopsis thaliana, Brassica napus, Glycine max, Oryza sativa, or Triticum aestivum, or cellular membranes, or has one or more activities set forth in Table 3. Preferably, the protein encoded by the nucleic acid molecule is at least about 50-60% homologous to one of the sequences encoded by a nucleic acid as shown in the Appendix, more preferably at least about 60-70% homologous to one of the sequences encoded by a nucleic acid as shown in the Appendix, even more preferably at least about 70-80%, 80-90%, 90-95% homologous to one of the sequences encoded by a nucleic acid as shown in the Appendix, and most preferably at least about 96%, 97%, 98%, or 99% homologous to one of the sequences encoded by a nucleic acid as shown in the Appendix.
[0059] To determine the percent homology of two amino acid sequences (e.g., one of the sequences encoded by a nucleic acid as shown in the The Appendixnd a mutant form thereof) or of two nucleic acids, the sequences are aligned for optimal comparison purposes (e.g., gaps can be introduced in the sequence of one protein or nucleic acid for optimal alignment with the other protein or nucleic acid). The amino acid residues or nucleotides at corresponding amino acid positions or nucleotide positions are then compared. When a position in one sequence (e.g., one of the sequences encoded by a nucleic acid as shown in the Appendix) is occupied by the same amino acid residue or nucleotide as the corresponding position in the other sequence (e.g., a mutant form of the sequence selected from the polypeptide encoded by a nucleic acid as shown in the Appendix), then the molecules are homologous at that position (i.e., as used herein amino acid or nucleic acid "homology" is equivalent to amino acid or nucleic acid "identity"). The percent homology between the two sequences is a function of the number of identical positions shared by the sequences (i.e., % homology=numbers of identical positions/total numbers of positions×100).
[0060] An isolated nucleic acid molecule encoding an LMP homologous to a protein sequence encoded by a nucleic acid as shown in the Appendix can be created by introducing one or more nucleotide substitutions, additions, or deletions into a nucleotide sequence as shown in the Appendix such that one or more amino acid substitutions, additions, or deletions are introduced into the encoded protein. Mutations can be introduced into one of the sequences as shown in the Appendix by standard techniques, such as site-directed mutagenesis and PCR-mediated mutagenesis. Preferably, conservative amino acid substitutions are made at one or more predicted non-essential amino acid residues. A "conservative amino acid substitution" is one in which the amino acid residue is replaced with an amino acid residue having a similar side chain. Families of amino acid residues having similar side chains have been defined in the art. These families include amino acids with basic side chains (e.g., lysine, arginine, histidine), acidic side chains (e.g., aspartic acid, glutamic acid), uncharged polar side chains (e.g., glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine), nonpolar side chains (e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan), beta-branched side chains (e.g., threonine, valine, isoleucine), and aromatic side chains (e.g., tyrosine, phenylalanine, tryptophan, histidine). Thus, a predicted non-essential amino acid residue in an LMP is preferably replaced with another amino acid residue from the same side chain family. Alternatively, in another embodiment, mutations can be introduced randomly along all or part of an LMP coding sequence, such as by saturation mutagenesis, and the resultant mutants can be screened for an LMP activity described herein to identify mutants that retain LMP activity. Following mutagenesis of one of the sequences as shown in the Appendix, the encoded protein can be expressed recombinantly, and the activity of the protein can be determined using, for example, assays described herein (See Examples 14-15 and 17-18).
[0061] LMPs are preferably produced by recombinant DNA techniques. For example, a nucleic acid molecule encoding the protein is cloned into an expression vector (as described above), the expression vector is introduced into a host cell (as described herein) and the LMP is expressed in the host cell. The LMP can then be isolated from the cells by an appropriate purification scheme using standard protein purification techniques. Alternative to recombinant expression, an LMP or peptide thereof can be synthesized chemically using standard peptide synthesis techniques. Moreover, native LMP can be isolated from cells, for example using an anti-LMP antibody, which can be produced by standard techniques utilizing an LMP or fragment thereof of this invention.
[0062] The invention also provides LMP chimeric or fusion proteins. As used herein, an LMP "chimeric protein" or "fusion protein" comprises an LMP polypeptide operatively linked to a non-LMP polypeptide. An "LMP polypeptide" refers to a polypeptide having an amino acid sequence corresponding to an LMP, whereas a "non-LMP polypeptide" refers to a polypeptide having an amino acid sequence corresponding to a protein which is not substantially homologous to the LMP, e.g., a protein which is different from the LMP and which is derived from the same or a different organism. With respect to the fusion protein, the term "operatively linked" is intended to indicate that the LMP polypeptide and the non-LMP polypeptide are fused to each other so that both sequences fulfill the proposed function attributed to the sequence used. The non-LMP polypeptide can be fused to the N-terminus or C-terminus of the LMP polypeptide. For example, in one embodiment, the fusion protein is a GST-LMP (glutathione S-transferase) fusion protein in which the LMP sequences are fused to the C-terminus of the GST sequences. Such fusion proteins can facilitate the purification of recombinant LMPs. In another embodiment, the fusion protein is an LMP containing a heterologous signal sequence at its N-terminus. In certain host cells (e.g., mammalian host cells), expression and/or secretion of an LMP can be increased through use of a heterologous signal sequence.
[0063] Preferably, an LMP chimeric or fusion protein of the invention is produced by standard recombinant DNA techniques. For example, DNA fragments coding for the different polypeptide sequences are ligated together in-frame in accordance with conventional techniques, for example by employing blunt-ended or stagger-ended termini for ligation, restriction enzyme digestion to provide for appropriate termini, filling-in of cohesive ends as appropriate, alkaline phosphatase treatment to avoid undesirable joining, and enzymatic ligation. In another embodiment, the fusion gene can be synthesized by conventional techniques including automated DNA synthesizers. Alternatively, PCR amplification of gene fragments can be carried out using anchor primers that give rise to complementary overhangs between two consecutive gene fragments, which can subsequently be annealed and reamplified to generate a chimeric gene sequence (See, for example, Current Protocols in Molecular Biology, eds. Ausubel et al., John Wiley & Sons: 1992). Moreover, many expression vectors are commercially available that already encode a fusion moiety (e.g., a GST polypeptide). An LMP-encoding nucleic acid can be cloned into such an expression vector such that the fusion moiety is linked in-frame to the LMP.
[0064] In addition to the nucleic acid molecules encoding LMPs described above, another aspect of the invention pertains to isolated nucleic acid molecules that are antisense thereto. An "antisense" nucleic acid comprises a nucleotide sequence that is complementary to a "sense" nucleic acid encoding a protein, e.g., complementary to the coding strand of a double-stranded cDNA molecule or complementary to an mRNA sequence. Accordingly, an antisense nucleic acid can hydrogen bond to a sense nucleic acid. The antisense nucleic acid can be complementary to an entire LMP coding strand, or to only a portion thereof. In one embodiment, an antisense nucleic acid molecule is antisense to a "coding region" of the coding strand of a nucleotide sequence encoding an LMP. The term "coding region" refers to the region of the nucleotide sequence comprising codons that are translated into amino acid residues (e.g., the entire coding region of BnWRI01 comprises nucleotides 1 to 1245). In another embodiment, the antisense nucleic acid molecule is antisense to a "noncoding region" of the coding strand of a nucleotide sequence encoding LMP. The term "noncoding region" refers to 5' and 3' sequences that flank the coding region that are not translated into amino acids (i.e., also referred to as 5' and 3' untranslated regions).
[0065] Given the coding strand sequences encoding LMP disclosed herein (e.g., the sequences set forth in the Appendix), antisense nucleic acids of the invention can be designed according to the rules of Watson and Crick base pairing. The antisense nucleic acid molecule can be complementary to the entire coding region of LMP mRNA, but more preferably is an oligonucleotide that is antisense to only a portion of the coding or noncoding region of LMP mRNA. For example, the antisense oligonucleotide can be complementary to the region surrounding the translation start site of LMP mRNA. An antisense oligonucleotide can be, for example, about 5, 10, 15, 20, 25, 30, 35, 40, 45, or 50 nucleotides in length. An antisense or sense nucleic acid of the invention can be constructed using chemical synthesis and enzymatic ligation reactions using procedures known in the art. For example, an antisense nucleic acid (e.g., an antisense oligonucleotide) can be chemically synthesized using naturally occurring nucleotides or variously modified nucleotides designed to increase the biological stability of the molecules or to increase the physical stability of the duplex formed between the antisense and sense nucleic acids, e.g., phosphorothioate derivatives and acridine substituted nucleotides can be used. Examples of modified nucleotides which can be used to generate the antisense nucleic acid include 5-fluorouracil, 5-bromouracil, 5-chlorouracil, 5-iodouracil, hypoxanthine, xanthine, 4-acetylcytosine, 5-(carboxyhydroxylmethyl) uracil, 5-carboxymethylamino-methyl-2-thiouridine, 5-carboxymethylaminomethyluracil, dihydro-uracil, beta-D-galactosylqueosine, inosine, N-6-isopentenyladenine, 1-methyl-guanine, 1-methylinosine, 2,2-dimethylguanine, 2-methyladenine, 2-methylguanine, 3-methylcytosine, 5-methyl-cytosine, N-6-adenine, 7-methylguanine, 5-methyl-aminomethyluracil, 5-methoxyamino-methyl-2-thiouracil, beta-D-mannosylqueosine, 5'-methoxycarboxymethyl-uracil, 5-methoxyuracil, 2-methylthio-N-6-isopentenyladenine, uracil-5-oxyacetic acid (v), wybutoxosine, pseudouracil, queosine, 2-thiocytosine, 5-methyl-2-thiouracil, 2-thiouracil, 4-thiouracil, 5-methyluracil, uracil-5-oxyacetic acid methylester, uracil-5-oxyacetic acid (v), 5-methyl-2-thiouracil, 3-(3-amino-3-N-2-carboxypropyl) uracil, (acp3)w, and 2,6-diamino-purine. Alternatively, the antisense nucleic acid can be produced biologically using an expression vector into which a nucleic acid has been subcloned in an antisense orientation (i.e., RNA transcribed from the inserted nucleic acid will be of an antisense orientation to a target nucleic acid of interest, described further in the following subsection).
[0066] In another variation of the antisense technology, a double-strand interfering RNA construct can be used to cause a down-regulation of the LMP in RNA level and LMP activity in transgenic plants. This requires transforming the plants with a chimeric construct containing a portion of the LMP sequence in the sense orientation fused to the antisense sequence of the same portion of the LMP sequence. A DNA linker region of variable length can be used to separate the sense and antisense fragments of LMP sequences in the construct.
[0067] The antisense nucleic acid molecules of the invention are typically administered to a cell or generated in situ such that they hybridize with or bind to cellular mRNA and/or genomic DNA encoding an LMP to thereby inhibit expression of the protein, e.g., by inhibiting transcription and/or translation. The hybridization can be by conventional nucleotide complementarity to form a stable duplex, or, for example, in the case of an antisense nucleic acid molecule which binds to DNA duplexes, through specific interactions in the major groove of the double helix. The antisense molecule can be modified such that it specifically binds to a receptor or an antigen expressed on a selected cell surface, e.g., by linking the antisense nucleic acid molecule to a peptide or an antibody which binds to a cell surface receptor or antigen. The antisense nucleic acid molecule can also be delivered to cells using the vectors described herein. To achieve sufficient intracellular concentrations of the antisense molecules, vector constructs in which the antisense nucleic acid molecule is placed under the control of a strong prokaryotic, viral, or eukaryotic including plant promoters are preferred.
[0068] In yet another embodiment, the antisense nucleic acid molecule of the invention is an α-anomeric nucleic acid molecule. An α-anomeric nucleic acid molecule forms specific double-stranded hybrids with complementary RNA in which, contrary to the usual units, the strands run parallel to each other (Gaultier et al., 1987, Nucleic Acids Res. 15:6625-6641). The antisense nucleic acid molecule can also comprise a 2'-o-methyl-ribonucleotide (Inoue et al., 1987, Nucleic Acids Res. 15:6131-6148) or a chimeric RNA-DNA analogue (Inoue et al., 1987, FEBS Lett. 215:327-330).
[0069] In still another embodiment, an antisense nucleic acid of the invention is a ribozyme. Ribozymes are catalytic RNA molecules with ribonuclease activity, which are capable of cleaving a single-stranded nucleic acid, such as an mRNA, to which they have a complementary region. Thus, ribozymes (e.g., hammerhead ribozymes (described in Haselhoff & Gerlach, 1988, Nature 334:585-591)) can be used to catalytically cleave LMP in RNA transcripts to thereby inhibit translation of LMP mRNA. A ribozyme having specificity for an LMP-encoding nucleic acid can be designed based upon the nucleotide sequence of an LMP cDNA disclosed herein (e.g., Bn01 in the Appendix) or on the basis of a heterologous sequence to be isolated according to methods taught in this invention. For example, a derivative of a Tetrahymena L-19 IVS RNA can be constructed in which the nucleotide sequence of the active site is complementary to the nucleotide sequence to be cleaved in an LMP-encoding mRNA (See, e.g., Cech et al., U.S. Pat. No. 4,987,071 and Cech et al., U.S. Pat. No. 5,116,742). Alternatively, LMP mRNA can be used to select a catalytic RNA having a specific ribonuclease activity from a pool of RNA molecules (See, e.g., Bartel & Szostak, 1993, Science 261:1411-1418).
[0070] Alternatively, LMP gene expression can be inhibited by targeting nucleotide sequences complementary to the regulatory region of an LMP nucleotide sequence (e.g., an LMP promoter and/or enhancers) to form triple helical structures that prevent transcription of an LMP gene in target cells (See, e.g., Helene, 1991, Anticancer Drug Des. 6:569-84; Helene et al., 1992, Ann. N.Y. Acad. Sci. 660:27-36; and Maher, 1992, Bioassays 14:807-15).
[0071] Another aspect of the invention pertains to vectors, preferably expression vectors, containing a nucleic acid encoding an LMP (or a portion thereof). As used herein, the term "vector" refers to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked. One type of vector is a "plasmid," which refers to a circular double stranded DNA loop into which additional DNA segments can be ligated. Another type of vector is a viral vector, wherein additional DNA segments can be ligated into the viral genome. Certain vectors are capable of autonomous replication in a host cell into which they are introduced (e.g., bacterial vectors having a bacterial origin of replication and episomal mammalian vectors). Other vectors (e.g., non-episomal mammalian vectors) are integrated into the genome of a host cell upon introduction into the host cell, and thereby are replicated along with the host genome. Moreover, certain vectors are capable of directing the expression of genes to which they are operatively linked. Such vectors are referred to herein as "expression vectors." In general, expression vectors of utility in recombinant DNA techniques are often in the form of plasmids. In the present specification, "plasmid" and "vector" can be used interchangeably as the plasmid is the most commonly used form of vector. However, the invention is intended to include such other forms of expression vectors, such as viral vectors (e.g., replication defective retroviruses, adenoviruses and adeno-associated viruses), which serve equivalent functions.
[0072] The recombinant expression vectors of the invention comprise a nucleic acid of the invention in a form suitable for expression of the nucleic acid in a host cell, which means that the recombinant expression vectors include one or more regulatory sequences, selected on the basis of the host cells to be used for expression, which is operatively linked to the nucleic acid sequence to be expressed. With respect to a recombinant expression vector, "operatively linked" is intended to mean that the nucleotide sequence of interest is linked to the regulatory sequence(s) in a manner which allows for expression of the nucleotide sequence and both sequences are fused to each other so that each fulfills its proposed function (e.g., in an in vitro transcription/translation system or in a host cell when the vector is introduced into the host cell). The term "regulatory sequence" is intended to include promoters, enhancers, and other expression control elements (e.g., polyadenylation signals). Such regulatory sequences are described, for example, in Goeddel; Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, Calif. (1990), or see: Gruber and Crosby, in: Methods in Plant Molecular Biology and Biotechnolgy, CRC Press, Boca Raton, Fla., eds.: Glick & Thompson, Chapter 7, 89-108 including the references therein. Regulatory sequences include those that direct constitutive expression of a nucleotide sequence in many types of host cell and those that direct expression of the nucleotide sequence only in certain host cells or under certain conditions. It will be appreciated by those skilled in the art that the design of the expression vector can depend on such factors as the choice of the host cell to be transformed, the level of expression of protein desired, etc. The expression vectors of the invention can be introduced into host cells to thereby produce proteins or peptides, including fusion proteins or peptides, encoded by nucleic acids as described herein (e.g., LMPs, mutant forms of LMPs, fusion proteins, etc.).
[0073] The recombinant expression vectors of the invention can be designed for expression of LMPs in prokaryotic or eukaryotic cells. For example, LMP genes can be expressed in bacterial cells, insect cells (using baculovirus expression vectors), yeast, and other fungal cells (See Romans et al., 1992, Foreign gene expression in yeast: a review, Yeast 8:423-488; van den Hondel, C. A. M. J. J. et al. 1991, Heterologous gene expression in filamentous fungi, in: More Gene Manipulations in Fungi, Bennet & Lasure, eds., p. 396-428: Academic Press: an Diego; and van den Hondel & Punt 1991, Gene transfer systems and vector development for filamentous fungi, in: Applied Molecular Genetics of Fungi, Peberdy et al., eds., p. 1-28, Cambridge University Press: Cambridge), algae (Falciatore et al., 1999, Marine Biotechnology 1:239-251), ciliates of the types: Holotrichia, Peritrichia, Spirotrichia, Suctoria, Tetrahymena, Paramecium, Colpidium, Glaucoma, Platyophrya, Potomacus, Pseudocohnilembus, Euplotes, Engelmaniella, and Stylonychia, especially of the genus Stylonychia lemnae with vectors following a transformation method as described in WO 98/01572, and multicellular plant cells (See Schmidt & Willmitzer, 1988, Plant Cell Rep.: 583-586; Plant Molecular Biology and Biotechnology, C Press, Boca Raton, Fla., chapter 6/7, S.71-119 (1993); White et al., Techniques for Gene Transfer, in: Transgenic Plants, Vol. 1, Engineering and Utilization, eds.: Kung and Wu, Academic Press 1993, 128-43; Potrykus, 1991, Annu. Rev. Plant Physiol. Plant Mol. Biol. 42:205-225 (and references cited therein)), or mammalian cells. Suitable host cells are discussed further in Goeddel, Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, Calif. 1990). Alternatively, the recombinant expression vector can be transcribed and translated in vitro, for example using T7 promoter regulatory sequences and T7 polymerase.
[0074] Expression of proteins in prokaryotes is most often carried out with vectors containing constitutive or inducible promoters directing the expression of either fusion or non-fusion proteins. Fusion vectors add a number of amino acids to a protein encoded therein, usually to the amino terminus of the recombinant protein but also to the C-terminus or fused within suitable regions in the proteins. Such fusion vectors typically serve one or more of the following purposes: 1) to increase expression of recombinant protein; 2) to increase the solubility of the recombinant protein; and 3) to aid in the purification of the recombinant protein by acting as a ligand in affinity purification. Often, in fusion expression vectors, a proteolytic cleavage site is introduced at the junction of the fusion moiety and the recombinant protein to enable separation of the recombinant protein from the fusion moiety subsequent to purification of the fusion protein. Such enzymes, and their cognate recognition sequences, include Factor Xa, thrombin, and enterokinase.
[0075] Typical fusion expression vectors include pGEX (Pharmacia Biotech Inc; Smith & Johnson 1988, Gene 67:31-40), pMAL (New England Biolabs, Beverly, Mass.) and pRIT5 (Pharmacia, Piscataway, N.J.) which fuse glutathione S-transferase (GST), maltose E binding protein, or protein A, respectively, to the target recombinant protein. In one embodiment, the coding sequence of the LMP is cloned into a pGEX expression vector to create a vector encoding a fusion protein comprising, from the N-terminus to the C-terminus, GST-thrombin cleavage site-X protein. The fusion protein can be purified by affinity chromatography using glutathione-agarose resin. Recombinant LMP unfused to GST can be recovered by cleavage of the fusion protein with thrombin.
[0076] Examples of suitable inducible non-fusion E. coli expression vectors include pTrc (Amann et al., 1988, Gene 69:301-315) and pET 11d (Studier et al., 1990, Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, Calif. 60-89). Target gene expression from the pTrc vector relies on host RNA polymerase transcription from a hybrid trp-lac fusion promoter. Target gene expression from the pET 11d vector relies on transcription from a T7 gn10-lac fusion promoter mediated by a coexpressed viral RNA polymerase (T7 gn1). This viral polymerase is supplied by host strains BL21 (DE3) or HMS174 (DE3) from a resident prophage harboring a T7 gn1 gene under the transcriptional control of the lacUV 5 promoter.
[0077] One strategy to maximize recombinant protein expression is to express the protein in a host bacteria with an impaired capacity to proteolytically cleave the recombinant protein (Gottesman, 1990, Gene Expression Technology: Methods in Enzymology 185:119-128, Academic Press, San Diego, Calif.). Another strategy is to alter the nucleic acid sequence of the nucleic acid to be inserted into an expression vector so that the individual codons for each amino acid are those preferentially utilized in the bacterium chosen for expression (Wada et al., 1992, Nucleic Acids Res. 20:2111-2118). Such alteration of nucleic acid sequences of the invention can be carried out by standard DNA synthesis techniques.
[0078] In another embodiment, the LMP expression vector is a yeast expression vector. Examples of vectors for expression in yeast S. cerevisiae include pYepSec1 (Baldari et al., 1987, Embo J. 6:229-234), pMFa (Kurjan & Herskowitz, 1982, Cell 30:933-943), pJRY88 (Schultz et al., 1987, Gene 54:113-123), and pYES2 (Invitrogen Corporation, San Diego, Calif.). Vectors and methods for the construction of vectors appropriate for use in other fungi, such as the filamentous fungi, include those detailed in: van den Hondel & Punt, 1991, in: Applied Molecular Genetics of Fungi, Peberdy et al., eds., p. 1-28, Cambridge University Press: Cambridge.
[0079] Alternatively, the LMPs of the invention can be expressed in insect cells using baculovirus expression vectors. Baculovirus vectors available for expression of proteins in cultured insect cells (e.g., Sf 9 cells) include the pAc series (Smith et al., 1983, Mol. Cell. Biol. 3:2156-2165) and the pVL series (Lucklow & Summers, 1989, Virology 170:31-39).
[0080] In yet another embodiment, a nucleic acid of the invention is expressed in mammalian cells using a mammalian expression vector. Examples of mammalian expression vectors include pCDM8 (Seed, 1987, Nature 329:840) and pMT2PC (Kaufman et al., 1987, EMBO J. 6:187-195). When used in mammalian cells, the expression vector's control functions are often provided by viral regulatory elements. For example, commonly used promoters are derived from polyoma, Adenovirus 2, cytomegalovirus, and Simian Virus 40. For other suitable expression systems for both prokaryotic and eukaryotic cells see chapters 16 and 17 of Sambrook, Fritsh and Maniatis, Molecular Cloning: A Laboratory Manual. 2nd, ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989.
[0081] In another embodiment, the LMPs of the invention may be expressed in uni-cellular plant cells (such as algae, see Falciatore et al., 1999, Marine Biotechnology 1:239-251, and references therein) and plant cells from higher plants (e.g., the spermatophytes, such as crop plants). Examples of plant expression vectors include those detailed in: Becker et al., 1992, Plant Mol. Biol. 20:1195-1197; Bevan, 1984, Nucleic Acids Res. 12:8711-8721; and Vectors for Gene Transfer in Higher Plants; in: Transgenic Plants, Vol. 1, Engineering and Utilization, eds.: Kung and R. Wu, Academic Press, 1993, S. 15-38.
[0082] A plant expression cassette preferably contains regulatory sequences capable to drive gene expression in plant cells and which are operatively linked so that each sequence can fulfil its function such as termination of transcription, including polyadenylation signals. Preferred polyadenylation signals are those originating from Agrobacterium tumefaciens t-DNA such as the gene 3 known as octopine synthase of the Ti-plasmid pTiACH5 (Gielen et al., 1984, EMBO J. 3:835) or functional equivalents thereof but also all other terminators functionally active in plants are suitable.
[0083] As plant gene expression is very often not limited on transcriptional levels a plant expression cassette preferably contains other operatively linked sequences like translational enhancers such as the overdrive-sequence containing the 5'-untranslated leader sequence from tobacco mosaic virus enhancing the protein per RNA ratio (Gallie et al., 1987, Nucleic Acids Res. 15:8693-8711).
[0084] Plant gene expression has to be operatively linked to an appropriate promoter conferring gene expression in a timely, cell-, or tissue specific manner. Preferred are promoters driving constitutive expression (Benfey et al., 1989, EMBO J. 8:2195-2202) like those derived from plant viruses like the 35S CAMV (Franck et al., 1980, Cell 21:285-294), the 19S CaMV (See U.S. Pat. No. 5,352,605 and WO 84/02913), or plant promoters like those from Rubisco small subunit described in U.S. Pat. No. 4,962,028. Even more preferred are seed-specific promoters driving expression of LMP proteins during all or selected stages of seed development. Seed-specific plant promoters are known to those of ordinary skill in the art and are identified and characterized using seed-specific mRNA libraries and expression profiling techniques. Seed-specific promoters include the napin-gene promoter from rapeseed (U.S. Pat. No. 5,608,152), the USP-promoter from Vicia faba (Baeumlein et al., 1991, Mol. Gen. Genetics 225:459-67), the oleosin-promoter from Arabidopsis (WO 98/45461), the phaseolin-promoter from Phaseolus vulgaris (U.S. Pat. No. 5,504,200), the Bce4-promoter from Brassica (WO 91/13980) or the legumin B4 promoter (LeB4; Baeumlein et al., 1992, Plant J. 2:233-239) as well as promoters conferring seed specific expression in monocot plants like maize, barley, wheat, rye, rice etc. Suitable promoters to note are the 1pt2 or 1pt1-gene promoter from barley (WO 95/15389 and WO 95/23230) or those described in WO 99/16890 (promoters from the barley hordein-gene, the rice glutelin gene, the rice oryzin gene, the rice prolamin gene, the wheat gliadin gene, wheat glutelin gene, the maize zein gene, the oat glutelin gene, the Sorghum kasirin-gene, and the rye secalin gene).
[0085] Plant gene expression can also be facilitated via an inducible promoter (for a review see Gatz 1997, Annu. Rev. Plant Physiol. Plant Mol. Biol. 48:89-108). Chemically inducible promoters are especially suitable if gene expression is desired in a time specific manner. Examples for such promoters are a salicylic acid inducible promoter (WO 95/19443), a tetracycline inducible promoter (Gatz et al. 1992, Plant J. 2:397-404) and an ethanol inducible promoter (WO 93/21334).
[0086] Promoters responding to biotic or abiotic stress conditions are also suitable promoters such as the pathogen inducible PRP1-gene promoter (Ward et al., 1993, Plant. Mol. Biol. 22:361-366), the heat inducible hsp80-promoter from tomato (U.S. Pat. No. 5,187,267), cold inducible alpha-amylase promoter from potato (WO 96/12814) or the wound-inducible pinII-promoter (EP 375091).
[0087] Other preferred sequences for use in plant gene expression cassettes are targeting-sequences necessary to direct the gene-product in its appropriate cell compartment (For review, see Kermode, 1996, Crit. Rev. Plant Sci. 15:285-423 and references cited therein) such as the vacuole, the nucleus, all types of plastids like amyloplasts, chloroplasts, chromoplasts, the extracellular space, mitochondria, the endoplasmic reticulum, oil bodies, peroxisomes, and other compartments of plant cells. Also especially suited are promoters that confer plastid-specific gene expression, as plastids are the compartment where precursors and some end products of lipid biosynthesis are synthesized. Suitable promoters such as the viral RNA polymerase promoter are described in WO 95/16783 and WO 97/06250 and the clpP-promoter from Arabidopsis described in WO 99/46394.
[0088] The invention further provides a recombinant expression vector comprising a DNA molecule of the invention cloned into the expression vector in an antisense orientation. That is, the DNA molecule is operatively linked to a regulatory sequence in a manner that allows for expression (by transcription of the DNA molecule) of an RNA molecule that is antisense to LMP mRNA. Regulatory sequences operatively linked to a nucleic acid cloned in the antisense orientation can be chosen which direct the continuous expression of the antisense RNA molecule in a variety of cell types, for instance viral promoters and/or enhancers, or regulatory sequences can be chosen which direct constitutive, tissue specific or cell type specific expression of antisense RNA. The antisense expression vector can be in the form of a recombinant plasmid, phagemid, or attenuated virus in which antisense nucleic acids are produced under the control of a high efficiency regulatory region, the activity of which can be determined by the cell type into which the vector is introduced. For a discussion of the regulation of gene expression using antisense genes, see Weintraub et al. (1986, Antisense RNA as a molecular tool for genetic analysis, Reviews--Trends in Genetics, Vol. 1) and Mol et al. (1990, FEBS Lett. 268:427-430).
[0089] Another aspect of the invention pertains to host cells into which a recombinant expression vector of the invention has been introduced. The terms "host cell" and "recombinant host cell" are used interchangeably herein. It is to be understood that such terms refer not only to the particular subject cell but also to the progeny or potential progeny of such a cell. Because certain modifications may occur in succeeding generations due to either mutation or environmental influences, such progeny may not, in fact, be identical to the parent cell, but are still included within the scope of the term as used herein. A host cell can be any prokaryotic or eukaryotic cell. For example, an LMP can be expressed in bacterial cells, insect cells, fungal cells, mammalian cells (such as Chinese hamster ovary cells (CHO) or COS cells), algae, ciliates, or plant cells. Other suitable host cells are known to those skilled in the art.
[0090] Vector DNA can be introduced into prokaryotic or eukaryotic cells via conventional transformation or transfection techniques. As used herein, the terms "transformation," "transfection," "conjugation," and "transduction" are intended to refer to a variety of art-recognized techniques for introducing foreign nucleic acid (e.g., DNA) into a host cell, including calcium phosphate or calcium chloride co-precipitation, DEAE-dextran-mediated transfection, lipofection, natural competence, chemical-mediated transfer, or electroporation. Suitable methods for transforming or transfecting host cells including plant cells can be found in Sambrook et al. (1989, Molecular Cloning: A Laboratory Manual. 2nd, ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.) and other laboratory manuals such as Methods in Molecular Biology 1995, Vol. 44, Agrobacterium protocols, ed: Gartland and Davey, Humana Press, Totowa, N.J.
[0091] For stable transfection of mammalian and plant cells, it is known that, depending upon the expression vector and transfection technique used, only a small fraction of cells may integrate the foreign DNA into their genome. In order to identify and select these integrants, a gene that encodes a selectable marker (e.g., resistance to antibiotics) is generally introduced into the host cells along with the gene of interest. Preferred selectable markers include those that confer resistance to drugs, such as G418, hygromycin, kanamycin, and methotrexate, or in plants that confer resistance towards an herbicide such as glyphosate or glufosinate. A nucleic acid encoding a selectable marker can be introduced into a host cell on the same vector as that encoding an LMP or can be introduced on a separate vector. Cells stably transfected with the introduced nucleic acid can be identified by, for example, drug selection (e.g., cells that have incorporated the selectable marker gene will survive, while the other cells die).
[0092] To create a homologous recombinant microorganism, a vector is prepared which contains at least a portion of an LMP gene into which a deletion, addition, or substitution has been introduced to thereby alter, e.g., functionally disrupt, the LMP gene. Preferably, this LMP gene is an Arabidopsis thaliana, Brassica napus, Glycine max, Oryza sativa, or Triticum aestivum LMP gene, but it can be a homolog from a related plant or even from a mammalian, yeast, or insect source. In a preferred embodiment, the vector is designed such that, upon homologous recombination, the endogenous LMP gene is functionally disrupted (i.e., no longer encodes a functional protein; also referred to as a knock-out vector). Alternatively, the vector can be designed such that, upon homologous recombination, the endogenous LMP gene is mutated or otherwise altered but still encodes functional protein (e.g., the upstream regulatory region can be altered to thereby alter the expression of the endogenous LMP). To create a point mutation via homologous recombination, DNA-RNA hybrids can be used in a technique known as chimeraplasty (Cole-Strauss et al., 1999, Nucleic Acids Res. 27:1323-1330 and Kmiec, 1999, American Scientist 87:240-247). Homologous recombination procedures in Arabidopsis thaliana or other crops are also well known in the art and are contemplated for use herein.
[0093] In a homologous recombination vector, the altered portion of the LMP gene is flanked at its 5' and 3' ends by additional nucleic acid of the LMP gene to allow for homologous recombination to occur between the exogenous LMP gene carried by the vector and an endogenous LMP gene in a microorganism or plant. The additional flanking LMP nucleic acid is of sufficient length for successful homologous recombination with the endogenous gene. Typically, several hundreds of base pairs up to kilobases of flanking DNA (both at the 5' and 3' ends) are included in the vector (See e.g., Thomas & Capecchi, 1987, Cell 51:503, for a description of homologous recombination vectors). The vector is introduced into a microorganism or plant cell (e.g., via polyethyleneglycol mediated DNA). Cells in which the introduced LMP gene has homologously recombined with the endogenous LMP gene are selected using art-known techniques.
[0094] In another embodiment, recombinant microorganisms can be produced which contain selected systems, which allow for regulated expression of the introduced gene. For example, inclusion of an LMP gene on a vector placing it under control of the lac operon permits expression of the LMP gene only in the presence of IPTG. Such regulatory systems are well known in the art.
[0095] A host cell of the invention, such as a prokaryotic or eukaryotic host cell in culture can be used to produce (i.e., express) an LMP. Accordingly, the invention further provides methods for producing LMPs using the host cells of the invention. In one embodiment, the method comprises culturing a host cell of the invention (into which a recombinant expression vector encoding an LMP has been introduced, or which contains a wild-type or altered LMP gene in it's genome) in a suitable medium until LMP is produced. In another embodiment, the method further comprises isolating LMPs from the medium or the host cell.
[0096] Another aspect of the invention pertains to isolated LMPs, and biologically active portions thereof. An "isolated" or "purified" protein or biologically active portion thereof is substantially free of cellular material when produced by recombinant DNA techniques, or chemical precursors or other chemicals when chemically synthesized. The language "substantially free of cellular material" includes preparations of LMP in which the protein is separated from cellular components of the cells in which it is naturally or recombinantly produced. In one embodiment, the language "substantially free of cellular material" includes preparations of LMP having less than about 30% (by dry weight) of non-LMP (also referred to herein as a "contaminating protein"), more preferably less than about 20% of non-LMP, still more preferably less than about 10% of non-LMP, and most preferably less than about 5% non-LMP. When the LMP or biologically active portion thereof is recombinantly produced, it is also preferably substantially free of culture medium, i.e., culture medium represents less than about 20%, more preferably less than about 10%, and most preferably less than about 5% of the volume of the protein preparation. The language "substantially free of chemical precursors or other chemicals" includes preparations of LMP in which the protein is separated from chemical precursors or other chemicals that are involved in the synthesis of the protein. In one embodiment, the language "substantially free of chemical precursors or other chemicals" includes preparations of LMP having less than about 30% (by dry weight) of chemical precursors or non-LMP chemicals, more preferably less than about 20% chemical precursors or non-LMP chemicals, still more preferably less than about 10% chemical precursors or non-LMP chemicals, and most preferably less than about 5% chemical precursors or non-LMP chemicals. In preferred embodiments, isolated proteins or biologically active portions thereof lack contaminating proteins from the same organism from which the LMP is derived. Typically, such proteins are produced by recombinant expression of, for example, an Arabidopsis thaliana, Brassica napus, Glycine max, Oryza sativa, or Triticum aestivum LMP in other plants than Arabidopsis thaliana, Brassica napus, Glycine max, Oryza sativa, or Triticum aestivum or microorganisms, algae, or fungi.
[0097] An isolated LMP or a portion thereof of the invention can participate in the metabolism of compounds necessary for the production of seed storage compounds in Arabidopsis thaliana, Brassica napus, Glycine max, Oryza sativa, or Triticum aestivum or of cellular membranes, or has one or more of the activities set forth in Table 3. In preferred embodiments, the protein or portion thereof comprises an amino acid sequence which is sufficiently homologous to an amino acid sequence encoded by a nucleic acid as shown in the Appendix such that the protein or portion thereof maintains the ability to participate in the metabolism of compounds necessary for the construction of cellular membranes in Arabidopsis thaliana, Brassica napus, Glycine max, Oryza sativa, or Triticum aestivum, or in the transport of molecules across these membranes. The portion of the protein is preferably a biologically active portion as described herein. In another preferred embodiment, an LMP of the invention has an amino acid sequence encoded by a nucleic acid as shown in the Appendix. In yet another preferred embodiment, the LMP has an amino acid sequence which is encoded by a nucleotide sequence which hybridizes, e.g., hybridizes under stringent conditions, to a nucleotide sequence as shown in the Appendix. In still another preferred embodiment, the LMP has an amino acid sequence which is encoded by a nucleotide sequence that is at least about 50-60%, preferably at least about 60-70%, more preferably at least about 70-80%, 80-90%, 90-95%, and even more preferably at least about 96%, 97%, 98%, 99%, or more homologous to one of the amino acid sequences encoded by a nucleic acid as shown in the Appendix. The preferred LMPs of the present invention also preferably possess at least one of the LMP activities described herein. For example, a preferred LMP of the present invention includes an amino acid sequence encoded by a nucleotide sequence which hybridizes, e.g., hybridizes under stringent conditions, to a nucleotide sequence as shown in the Appendix, and which can participate in the metabolism of compounds necessary for the construction of cellular membranes in Arabidopsis thaliana, Brassica napus, Glycine max, Oryza sativa, or Triticum aestivum, or in the transport of molecules across these membranes, or which has one or more of the activities set forth in Table 3.
[0098] In other embodiments, the LMP is substantially homologous to an amino acid sequence encoded by a nucleic acid as shown in the Appendix and retains the functional activity of the protein of one of the sequences encoded by a nucleic acid as shown in the Appendix yet differs in amino acid sequence due to natural variation or mutagenesis, as described in detail above. Accordingly, in another embodiment, the LMP is a protein which comprises an amino acid sequence which is at least about 50-60%, preferably at least about 60-70%, and more preferably at least about 70-80, 80-90, 90-95%, and most preferably at least about 96%, 97%, 98%, 99%, or more homologous to an entire amino acid sequence and which has at least one of the LMP activities described herein. In another embodiment, the invention pertains to a full Arabidopsis thaliana, Brassica napus, Glycine max, Oryza sativa, or Triticum aestivum protein which is substantially homologous to an entire amino acid sequence encoded by a nucleic acid as shown in the Appendix.
[0099] Dominant negative mutations or trans-dominant suppression can be used to reduce the activity of an LMP in transgenics seeds in order to change the levels of seed storage compounds. To achieve this a mutation that abolishes the activity of the LMP is created and the inactive non-functional LMP gene is overexpressed in the transgenic plant. The inactive trans-dominant LMP protein competes with the active endogenous LMP protein for substrate or interactions with other proteins and dilutes out the activity of the active LMP. In this way the biological activity of the LMP is reduced without actually modifying the expression of the endogenous LMP gene. This strategy was used by Pontier et al to modulate the activity of plant transcription factors (Pontier et al., Plant J 2001 27(6): 529-38).
[0100] Homologs of the LMP can be generated by mutagenesis, e.g., discrete point mutation or truncation of the LMP. As used herein, the term "homolog" refers to a variant form of the LMP that acts as an agonist or antagonist of the activity of the LMP. An agonist of the LMP can retain substantially the same, or a subset, of the biological activities of the LMP. An antagonist of the LMP can inhibit one or more of the activities of the naturally occurring form of the LMP by, for example, competitively binding to a downstream or upstream member of the cell membrane component metabolic cascade which includes the LMP, or by binding to an LMP which mediates transport of compounds across such membranes, thereby preventing translocation from taking place.
[0101] In an alternative embodiment, homologs of the LMP can be identified by screening combinatorial libraries of mutants, e.g., truncation mutants, of the LMP for LMP agonist or antagonist activity. In one embodiment, a variegated library of LMP variants is generated by combinatorial mutagenesis at the nucleic acid level and is encoded by a variegated gene library. A variegated library of LMP variants can be produced by, for example, enzymatically ligating a mixture of synthetic oligonucleotides into gene sequences such that a degenerate set of potential LMP sequences is expressible as individual polypeptides, or alternatively, as a set of larger fusion proteins (e.g., for phage display) containing the set of LMP sequences therein. There are a variety of methods that can be used to produce libraries of potential LMP homologs from a degenerate oligonucleotide sequence. Chemical synthesis of a degenerate gene sequence can be performed in an automatic DNA synthesizer, and the synthetic gene then ligated into an appropriate expression vector. Use of a degenerate set of genes allows for the provision, in one mixture, of all of the sequences encoding the desired set of potential LMP sequences. Methods for synthesizing degenerate oligonucleotides are known in the art (See, e.g., Narang, 1983, Tetrahedron 39:3; Itakura et al., 1984, Annu. Rev. Biochem. 53:323; Itakura et al., 1984, Science 198:1056; Ike et al. 1983, Nucleic Acids Res. 11:477).
[0102] In addition, libraries of fragments of the LMP coding sequences can be used to generate a variegated population of LMP fragments for screening and subsequent selection of homologs of an LMP. In one embodiment, a library of coding sequence fragments can be generated by treating a double stranded PCR fragment of an LMP coding sequence with a nuclease under conditions wherein nicking occurs only about once per molecule, denaturing the double stranded DNA, renaturing the DNA to form double stranded DNA which can include sense/antisense pairs from different nicked products, removing single stranded portions from reformed duplexes by treatment with S1 nuclease, and ligating the resulting fragment library into an expression vector. By this method, an expression library can be derived which encodes N-terminal, C-terminal, and internal fragments of various sizes of the LMP.
[0103] Several techniques are known in the art for screening gene products of combinatorial libraries made by point mutations or truncation, and for screening cDNA libraries for gene products having a selected property. Such techniques are adaptable for rapid screening of the gene libraries generated by the combinatorial mutagenesis of LMP homologs. The most widely used techniques, which are amenable to high through-put analysis, for screening large gene libraries typically include cloning the gene library into replicable expression vectors, transforming appropriate cells with the resulting library of vectors, and expressing the combinatorial genes under conditions in which detection of a desired activity facilitates isolation of the vector encoding the gene whose product was detected. Recursive ensemble mutagenesis (REM), a technique that enhances the frequency of functional mutants in the libraries, can be used in combination with the screening assays to identify LMP homologs (Arkin & Yourvan, 1992, Proc. Natl. Acad. Sci. USA 89:7811-7815; Delgrave et al., 1993, Protein Engineering 6:327-331). In another embodiment, cell based assays can be exploited to analyze a variegated LMP library, using methods well known in the art.
[0104] The nucleic acid molecules, proteins, protein homologs, fusion proteins, primers, vectors, and host cells described herein can be used in one or more of the following methods: identification of Arabidopsis thaliana, Brassica napus, Glycine max, Oryza sativa, or Triticum aestivum and related organisms; mapping of genomes of organisms related to Arabidopsis thaliana, Brassica napus, Glycine max, Oryza sativa, or Triticum aestivum; identification and localization of Arabidopsis thaliana, Brassica napus, Glycine max, Oryza sativa, or Triticum aestivum sequences of interest; evolutionary studies; determination of LMP regions required for function; modulation of an LMP activity; modulation of the metabolism of one or more cell functions; modulation of the transmembrane transport of one or more compounds; modulation of seed storage compound accumulation; modulation of the number and/or size of a plant organ; modulation of seed size, number, or weight; modulation of root length; and modulation of leaf size.
[0105] The plant Arabidopsis thaliana represents one member of higher (or seed) plants. It is related to other plants such as Brassica napus, Glycine max, Oryza sativa, and Triticum aestivum which require light to drive photosynthesis and growth. Plants like Arabidopsis thaliana, Brassica napus, Glycine max, Oryza sativa, and Triticum aestivum share a high degree of homology on the DNA sequence and polypeptide level, allowing the use of heterologous screening of DNA molecules with probes evolving from other plants or organisms, thus enabling the derivation of a consensus sequence suitable for heterologous screening or functional annotation and prediction of gene functions in third species. The ability to identify such functions can therefore have significant relevance, e.g., prediction of substrate specificity of enzymes. Further, these nucleic acid molecules may serve as reference points for the mapping of Arabidopsis genomes, or of genomes of related organisms.
[0106] The LMP nucleic acid molecules of the invention have a variety of uses. First, the nucleic acid and protein molecules of the invention may serve as markers for specific regions of the genome. This has utility not only in the mapping of the genome, but also for functional studies of Arabidopsis thaliana, Brassica napus, Glycine max, Oryza sativa, or Triticum aestivum proteins. For example, to identify the region of the genome to which a particular Arabidopsis thaliana, Brassica napus, Glycine max, Oryza sativa, or Triticum aestivum DNA-binding protein binds, the Arabidopsis thaliana, Brassica napus, Glycine max, Oryza sativa, or Triticum aestivum genome could be digested, and the fragments incubated with the DNA-binding protein. Those which bind the protein may be additionally probed with the nucleic acid molecules of the invention, preferably with readily detectable labels; binding of such a nucleic acid molecule to the genome fragment enables the localization of the fragment to the genome map of Arabidopsis thaliana, Brassica napus, Glycine max, Oryza sativa, or Triticum aestivum, and, when performed multiple times with different enzymes, facilitates a rapid determination of the nucleic acid sequence to which the protein binds. Further, the nucleic acid molecules of the invention may be sufficiently homologous to the sequences of related species such that these nucleic acid molecules may serve as markers for the construction of a genomic map in related plants.
[0107] The LMP nucleic acid molecules of the invention are also useful for evolutionary and protein structural studies. The metabolic and transport processes in which the molecules of the invention participate are utilized by a wide variety of prokaryotic and eukaryotic cells; by comparing the sequences of the nucleic acid molecules of the present invention to those encoding similar enzymes from other organisms, the evolutionary relatedness of the organisms can be assessed. Similarly, such a comparison permits an assessment of which regions of the sequence are conserved and which are not, which may aid in determining those regions of the protein which are essential for the functioning of the enzyme. This type of determination is of value for protein engineering studies and may give an indication of what the protein can tolerate in terms of mutagenesis without losing function.
[0108] Manipulation of the LMP nucleic acid molecules of the invention may result in the production of LMPs having functional differences from the wild-type LMPs. These proteins may be improved in efficiency or activity, may be present in greater numbers in the cell than is usual, or may be decreased in efficiency or activity.
[0109] There are a number of mechanisms by which the alteration of an LMP of the invention may directly affect the accumulation and/or composition of seed storage compounds. In the case of plants expressing LMPs, increased transport can lead to altered accumulation of compounds and/or solute partitioning within the plant tissue and organs which ultimately could be used to affect the accumulation of one or more seed storage compounds during seed development. An example is provided by Mitsukawa et al. (1997, Proc. Natl. Acad. Sci. USA 94:7098-7102), where overexpression of an Arabidopsis high-affinity phosphate transporter gene in tobacco cultured cells enhanced cell growth under phosphate-limited conditions. Phosphate availability also affects significantly the production of sugars and metabolic intermediates (Hurry et al., 2000, Plant J. 24:383-396) and the lipid composition in leaves and roots (Hartel et al., 2000, Proc. Natl. Acad. Sci. USA 97:10649-10654). Likewise, the activity of the plant ACCase has been demonstrated to be regulated by phosphorylation (Savage & Ohlrogge, 1999, Plant J. 18:521-527), and alterations in the activity of the kinases and phosphatases (LMPs) that act on the ACCase could lead to increased or decreased levels of seed lipid accumulation. Moreover, the presence of lipid kinase activities in chloroplast envelope membranes suggests that signal transduction pathways and/or membrane protein regulation occur in envelopes (See, e.g., Muller et al., 2000, J. Biol. Chem. 275:19475-19481 and literature cited therein). The ABI1 and ABI2 genes encode two protein serine/threonine phosphatases 2C, which are regulators in abscisic acid signaling pathway, and thereby in early and late seed development (e.g. Merlot et al., 2001, Plant J. 25:295-303).
[0110] The present invention also provides antibodies that specifically bind to an LMP polypeptide, or a portion thereof, as encoded by a nucleic acid disclosed herein or as described herein. Antibodies can be made by many well-known methods (See, e.g. Harlow and Lane, "Antibodies; A Laboratory Manual" Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y., 1988). Briefly, purified antigen can be injected into an animal in an amount and in intervals sufficient to elicit an immune response. Antibodies can either be purified directly, or spleen cells can be obtained from the animal. The cells can then fused with an immortal cell line and screened for antibody secretion. The antibodies can be used to screen nucleic acid clone libraries for cells secreting the antigen. Those positive clones can then be sequenced (See, for example, Kelly et al. 1992, Bio/Technology 10:163-167; Bebbington et al., 1992, Bio/Technology 10:169-175).
[0111] The phrase "selectively binds" with the polypeptide refers to a binding reaction which is determinative of the presence of the protein in a heterogeneous population of proteins and other biologics. Thus, under designated immunoassay conditions, the specified antibodies bound to a particular protein do not bind in a significant amount to other proteins present in the sample. Selective binding to an antibody under such conditions may require an antibody that is selected for its specificity for a particular protein. A variety of immunoassay formats may be used to select antibodies that selectively bind with a particular protein. For example, solid-phase ELISA immuno-assays are routinely used to select antibodies selectively immunoreactive with a protein. See Harlow and Lane. "Antibodies, A Laboratory Manual" Cold Spring Harbor Publications, New York (1988), for a description of immunoassay formats and conditions that could be used to determine selective binding. In some instances, it is desirable to prepare monoclonal antibodies from various hosts. A description of techniques for preparing such monoclonal antibodies may be found in Stites et al., editors, "Basic and Clinical Immunology," (Lange Medical Publications, Los Altos, Calif., Fourth Edition) and references cited therein, and in Harlow and Lane ("Antibodies, A Laboratory Manual" Cold Spring Harbor Publications, New York, 1988).
[0112] Throughout this application, various publications are referenced. The disclosures of all of these publications and those references cited within those publications in their entireties are hereby incorporated by reference into this application in order to more fully describe the state of the art to which this invention pertains.
[0113] It also will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the scope or spirit of the invention. Other embodiments of the invention will be apparent to those skilled in the art from consideration of the specification and practice of the invention disclosed herein. It is intended that the specification and Examples be considered as exemplary only, with a true scope and spirit of the invention being indicated by the claims included herein.
EXAMPLES
Example 1
General Processes
a) General Cloning Processes:
[0114] Cloning processes such as, for example, restriction cleavages, agarose gel electrophoresis, purification of DNA fragments, transfer of nucleic acids to nitrocellulose and nylon membranes, linkage of DNA fragments, transformation of Escherichia coli and yeast cells, growth of bacteria and sequence analysis of recombinant DNA were carried out as described in Sambrook et al. (1989, Cold Spring Harbor Laboratory Press: ISBN 0-87969-309-6) or Kaiser, Michaelis and Mitchell (1994, "Methods in Yeast Genetics," Cold Spring Harbor Laboratory Press: ISBN 0-87969-451-3).
b) Chemicals:
[0115] The chemicals used were obtained, if not mentioned otherwise in the text, in p.a. quality from the companies Fluka (Neu-Ulm), Merck (Darmstadt), Roth (Karlsruhe), Serva (Heidelberg), and Sigma (Deisenhofen). Solutions were prepared using purified, pyrogen-free water, designated as H2O in the following text, from a Milli-Q water system water purification plant (Millipore, Eschborn). Restriction endonucleases, DNA-modifying enzymes and molecular biology kits were obtained from the companies AGS (Heidelberg), Amersham (Braunschweig), Biometra (Gottingen), Boehringer (Mannheim), Genomed (Bad Oeynnhausen), New England Biolabs (Schwalbach/Taunus), Novagen (Madison, Wis., USA), Perkin-Elmer (Weiterstadt), Pharmacia (Freiburg), Qiagen (Hilden) and Stratagene (Amsterdam, Netherlands). They were used, if not mentioned otherwise, according to the manufacturer's instructions.
c) Plant Material and Growth:
Arabidopsis Plants
[0116] For this study, root material, leaves, siliques and seeds of wild-type and mutant plants of Arabidopsis thaliana were used. The wri1 mutation was isolated from an ethyl methanesulfonate-mutagenized population of the Columbia ecotype as described (Benning et al. 1998, Plant Physiol. 118:91-101). Wild type and wri1 Arabidopsis seeds were preincubated for three days in the dark at 4° C. before placing them into an incubator (AR-75, Percival Scientific, Boone, Iowa) at a photon flux density of 60-80 μmol m-2 s-1 and a light period of 16 hours (22° C.), and a dark period of 8 hours (18° C.). All plants were started on half-strength MS medium (Murashige & Skoog, 1962, Physiol. Plant. 15, 473-497), pH 6.2, 2% sucrose and 1.2% agar. Seeds were sterilized for 20 minutes in 20% bleach 0.5% triton X100 and rinsed 6 times with excess sterile water. Plants were either grown as described above or on soil under standard conditions as described in Focks & Benning (1998, Plant Physiol. 118:91-101).
Brassica napus
[0117] Brassica napus varieties AC Excel and Cresor were used for this study to create cDNA libraries. Seed, seed pod, flower, leaf, stem and root tissues were collected from plants that were in some cases dark-, salt-, heat-and drought-treated. However, this study focused on the use of seed and seed pod tissues for cDNA libraries. Plants were tagged to harvest seeds collected 60-75 days after planting from two time points: 1-15 days and 15-25 days after anthesis. Plants have been grown in Metromix (Scotts, Marysville, Ohio) at 71° F. under a 14 hour photoperiod. Six seed and seed pod tissues of interest in this study were collected to create the following cDNA libraries: Immature seeds, mature seeds, immature seed pods, mature seed pods, night-harvested seed pods, and Cresor variety (high erucic acid) seeds. Tissue samples were collected within specified time points for each developing tissue and multiple samples within a time frame pooled together for eventual extraction of total RNA. Samples from immature seeds were taken between 1-25 days after anthesis (daa), mature seeds between 25-50 daa, immature seed pods between 1-15 daa, mature seed pods between 15-50 daa, night-harvested seed pods between 1-50 daa and Cresor seeds 5-25 daa
Glycine max
[0118] Glycine max cv. Resnick was used for this study to create cDNA libraries. Seed, seed pod, flower, leaf, stein and root tissues were collected from plants that were in some cases dark-, salt-, heat- and drought-treated. In some cases plants have been nematode infected as well. However, this study focused on the use of seed and seed pod tissues for cDNA libraries. Plants were tagged to harvest seeds at the set days after anthesis: 5-15, 15-25, 25-35, and 33-50.
Oryza sativa
[0119] Oryza sativa ssp. Japonica cv. Nippon-bane was used for this study to create cDNA libraries. Seed, seed pod, flower, leaf, stem, and root tissues were collected from plants that were in some cases dark-, salt-, heat- and drought-treated. This study focused on the use of seed embryo tissues for cDNA libraries. Embryo and endosperm were collected separately in case endosperm tissue might interfere with RNA extraction. Plants have been grown in the greenhouse on Wisconsin soil (has high organic matter) at 85° F. under a 14-hour photoperiod. Rice embryos were dissected out of the developing seeds.
Triticum aestivum
[0120] Triticum aestivum cv. Galeon was used for this study to create cDNA libraries. Seed, flower, fruits, leaf, stem, and root tissues were collected from plants that were in some cases dark-, salt-, heat- and drought-treated. Plants have been grown in the greenhouse in metromix under a 12-h photoperiod at 72° F. during the day period and 65° F. during the night period.
Example 2
Total DNA Isolation from Plants
[0121] The details for the isolation of total DNA relate to the working up of one gram fresh weight of plant material.
[0122] CTAB buffer: 2% (w/v) N-cethyl-N,N,N-trimethylammonium bromide (CTAB); 100 mM Tris HCl pH 8.0; 1.4 M NaCl; 20 mM EDTA. N-Laurylsarcosine buffer: 10% (w/v) N-laurylsarcosine; 100 mM Tris HCl pH 8.0; 20 mM EDTA.
[0123] The plant material was triturated under liquid nitrogen in a mortar to give a fine powder and transferred to 2 ml Eppendorf vessels. The frozen plant material was then covered with a layer of 1 ml of decomposition buffer (1 ml CTAB buffer, 100 μl of N-laurylsarcosine buffer, 20 μl of β-mercaptoethanol and 10 μl of proteinase K solution, 10 mg/ml) and incubated at 60° C. for one hour with continuous shaking. The homogenate obtained was distributed into two Eppendorf vessels (2 ml) and extracted twice by shaking with the same volume of chloroform/isoamyl alcohol (24:1). For phase separation, centrifugation was carried out at 8000 g at room temperature for 15 minutes in each case. The DNA was then precipitated at -70° C. for 30 minutes using ice-cold isopropanol. The precipitated DNA was sedimented at 4° C. and 10,000 g for 30 min and resuspended in 180 μl of TE buffer (Sambrook et al., 1989, Cold Spring Harbor Laboratory Press: ISBN 0-87969-309-6). For further purification, the DNA was treated with NaCl (1.2 M final concentration) and precipitated again at -70° C. for 30 minutes using twice the volume of absolute ethanol. After a washing step with 70% ethanol, the DNA was dried and subsequently taken up in 50 μl of H2O+RNAse (50 mg/ml final concentration). The DNA was dissolved overnight at 4° C. and the RNAse digestion was subsequently carried out at 37° C. for 1 hour. Storage of the DNA took place at 4° C.
Example 3
Isolation of Total RNA and Poly-(A)+ RNA from Plants
[0124] Arabidopsis thallium
[0125] For the investigation of transcripts, both total RNA and poly-(A)+ RNA were isolated. RNA was isolated from siliques of Arabidopsis plants according to the following procedure:
RNA Preparation from Arabidopsis Seeds--"Hot" Extraction:
1. Buffers, Enzymes, and Solutions
[0126] 2 M KCl [0127] Proteinase K [0128] Phenol (for RNA) [0129] Chloroform:Isoamylalcohol (Phenol:choloroform 1:1; pH adjusted for RNA) [0130] 4 M LiCl, DEPC-treated [0131] DEPC-treated water [0132] 3M NaOAc, pH 5, DEPC-treated [0133] Isopropanol [0134] 70% ethanol (made up with DEPC-treated water) [0135] Resuspension buffer: [0136] 0.5% SDS, 10 mM Tris pH 7.5, 1 mM EDTA made up with DEPC-treated water as this solution can not be DEPC-treated [0137] Extraction Buffer: [0138] 0.2 M Na Borate [0139] 30 mM EDTA [0140] 30 mM EGTA [0141] 1% SDS (250 μl of 10% SDS-solution for 2.5 ml buffer) [0142] 1% Deoxycholate (25 mg for 2.5 ml buffer) [0143] 2% PVPP (insoluble--50 mg for 2.5 ml buffer) [0144] 2% PVP 40K (50 mg for 2.5 ml buffer) [0145] 10 mM DTT [0146] 100 mM β-Mercaptoethanol (fresh, handle under fume hood--use 35 μl of 14.3 M solution for 5 ml buffer)
2. Extraction
[0147] The extraction buffer was heated to 80° C. Tissues were ground in liquid nitrogen-cooled mortar, and tissue powder was transferred to 1.5 ml tubes. Because tissue should be kept frozen until buffer is added, the sample was transferred with a pre-cooled spatula, and the tube was kept in liquid nitrogen at all times. Then 350 μl preheated extraction buffer was added (here, for 100 mg tissue, buffer volume was as much as 500 μl for bigger samples) to tube, vortexed, heated to 80° C. for approximately 1 minute, and then kept on ice. Samples were vortexed and then ground additionally with electric mortar.
3. Digestion
[0148] Proteinase K (0.15 mg/100 mg tissue) was added. Then the samples were vortexed and kept at 37° C. for one hour.
First Purification
[0149] First, 27 μl 2M KCl was added, and then the samples were chilled on ice for 10 minutes. The samples were then centrifuged at 12,000 rpm for 10 minutes at room temperature and then the supernatant was transferred to fresh, RNAase-free tubes One phenol extraction was performed, followed by a chloroform:isoamylalcohol extraction. One volume isopropanol was added to the supernatant, and the mixture was chilled on ice for 10 minutes. RNA was pelleted by centrifugation (7,000 rpm for 10 minutes at room temperature). The RNA pellets were dissolved in 1 ml 4 M LiCl by vortexing for 10 to 15 minutes, followed by pelleting the RNA by a 5 minute centrifugation.
Second Purification
[0150] The pellets were resuspended in 500 μl Resuspension buffer. Then, 500 μl phenol was added, and the samples were vortexed. Then, 250 μl chloroform:isoamylalcohol was added, the samples were vortexed and centrifuged for 5 minutes. The supernatant was transferred to a fresh tube, and chloform:isoamylalcohol extraction was repeated until the interface was clear. The supernatant was transferred to a fresh tube, and 1/10 volume 3 M NaOAc, pH 5 and 600 μl isopropanol were added. The samples were kept at -20° C. for 20 minutes or longer. RNA was pelleted by a 10 minute centrifugation. The pellets were washed once with 70% ethanol. All remaining alcohol was removed before resolving pellet with 15 to 20 μl DEPC-treated water. The quantity and quality was determined by measuring the absorbance of a 1:200 dilution at 260 and 280 nm 40 μg RNA/ml=1 OD260
[0151] RNA from wild-type and the wri1 mutant of Arabidopsis was isolated as described (Hosein, 2001, Plant Mol. Biol. Rep., 19:65a-65e; Ruuska et al., 2002, Plant Cell, 14:1191-1206). The mRNA was prepared from total RNA, using the Amersham Pharmacia Biotech mRNA purification kit, which utilizes oligo(dT)-cellulose columns.
[0152] Poly-(A)+ RNA was isolated using Dyna Beads® (Dynal, Oslo, Norway) following the manufacturer's instructions. After determination of the concentration of the RNA or of the poly(A)+ RNA, the RNA was precipitated by addition of 1/10 volumes of 3 M sodium acetate pH 4.6 and 2 volumes of ethanol and stored at -70° C.
Brassica napus, Glycine max, Oryza sativa and Triticum aestivum
[0153] Brassica napus and Glycine max seeds were separated from pods to create homogeneous materials for seed and seed pod cDNA libraries. Tissues were ground into fine powder under liquid N2 using a mortar and pestle and transferred to a 50 ml tube. Tissue samples were stored at -80° C. until extractions could be performed.
[0154] In the case of Oryza sativa, 5K-10K embryos and endosperin were isolated through dissection. Tissues were place in small tubes or petri dishes on ice during dissection. Containers were placed on dry ice, then stored at -80° C.
[0155] In the case of Triticum aestivum, seed germination samples of Galeon wheat seeds were planted at a depth of 2'' in metromix in a 20''×12'' flat. The soil was soaked liberally with water and then watered twice daily. Then, 3-4 days later when the coleopiles were approximately 1 cm, the seedlings were washed with water and blotted. To create flower cDNA libraries an equal number of heads are collected at 30%, 60%, and 100% head emergence from the sheath on each of two days. There were no anthers showing yet. In order to generate seed tissue cDNA libraries grains were either watery ripe or in milk stage depending on he position of grains in the head; for later seed developmental stages, only the seed heads were harvested. For the root libraries, only roots were harvested. Plants had one main stem and three strong tillers. Plants were grown in pots, the medium was washed off, and the roots were saved for this sample. Plants were untreated.
[0156] Total RNA was extracted from tissues using RNeasy Maxi kit (Qiagen) according to the manufacturer's protocol, and snRNA was processed from total RNA using the Oligotex mRNA Purification System kit (Qiagen), also according to the manufacturer's protocol. Then mRNA was sent to Hyseq Pharmaceuticals Incorporated (Sunnyville, Calif.) for further processing of the mRNA from each tissue type into cDNA libraries and for use in their proprietary processes in which similar inserts in plasmids are clustered based on hybridization patterns.
Example 4
cDNA Library Construction
[0157] For cDNA library construction, first strand synthesis was achieved using Murine Leukemia Virus reverse transcriptase (Roche, Mannheim, Germany) and oligo-d(T)-primers, second strand synthesis by incubation with DNA polymerase I, Klenow enzyme and RNAseH digestion at 12° C. (2 hours), 16° C. (1 hour) and 22° C. (1 hour). The reaction was stopped by incubation at 65° C. (10 minutes) and subsequently transferred to ice. Double stranded DNA molecules were blunted by T4-DNA-polymerase (Roche, Mannheim) at 37° C. (30 minutes). Nucleotides were removed by phenol/chloroform extraction and Sephadex G50 spin columns. EcoRI adapters (Pharmacia, Freiburg, Germany) were ligated to the cDNA ends by T4-DNA-ligase (Roche, 12° C., overnight) and phosphorylated by incubation with polynucleotide kinase (Roche, 37° C., 30 minutes). This mixture was subjected to separation on a low melting agarose gel. DNA molecules larger than 300 base pairs were eluted from the gel, phenol extracted, concentrated on Elutip-D-columns (Schleicher and Schuell, Dassel, Germany), and were ligated to vector arms and packed into lambda ZAPII phages or lambda ZAP-Express phages using the Gigapack Gold Kit (Stratagene, Amsterdam, Netherlands) using material and following the instructions of the manufacturer.
[0158] Brassica napus, Glycine max, Oryza sativa, and Triticum aestivum cDNA libraries were generated at Hyseq Pharmaceuticals Incorporated (Sunnyville, Calif.). No amplification steps were used in the library production to retain expression information. Hyseq's genomic approach involves grouping the genes into clusters and then sequencing representative members from each cluster. cDNA libraries were generated from oligo dT column purified mRNA. Colonies from transformation of the cDNA library into E. coli were randomly picked, and the cDNA inserts were amplified by PCR and spotted on nylon membranes. A set of 33-P radiolabeled oligonucleotides were hybridized to the clones and the resulting hybridization pattern determined to which cluster a particular clone belonged. cDNA clones and their DNA sequences were obtained for use in overexpression in transgenic plants and in other molecular biology processes described herein.
Example 5
Identification of LMP Genes of Interest that Are WRI1-like
[0159] wri1 Mutant of Arabidopsis thaliana
[0160] The wri1 Arabidopsis mutant was used to identify LMP-encoding genes. The wri1 mutant is characterized by an 80% reduction in seed storage lipids (Focks & Benning, 1998, Plant Physiol. 118:91-101). The WRI1 gene has been cloned and described (Benning & Cernac, 2002, WO 02/072775 A2).
Brassica napus, Glycine max, Oryza sativa and Triticum aestivum
[0161] This example illustrates how cDNA clones encoding WRI1-like polypeptides of Brassica napus, Glycine max, Oryza sativa, and Triticum aestivum were identified and isolated.
[0162] In order to identify WRI1-like genes, a similarity analysis using BLAST software (Basic Local Alignment Search Tool, Altschul et al., 1990, J. Mol. Biol. 215:403-410) was performed. The amino acid sequence of the Arabidopsis WRI1 polypeptide was used as a query to search and align DNA databases from Brassica napus, Glycine max, Oryza sativa, and Triticum aestivum that were translated in all six reading frames, using the TBLASTN algorithm. Such similarity analysis of proprietary databases resulted in the identification of numerous ESTs and cDNA contigs.
[0163] RNA expression profile data obtained from the Hyseq clustering process was used to determine organ-specificity. Clones showing a greater expression in seed libraries compared to the other tissue libraries were selected as LMP candidate genes. The Brassica napus, Glycine max, Oryza sativa, and Triticum aestivum clones were selected for overexpression in Arabidopsis based on their expression profile.
Example 6
Cloning of Full-Length cDNAs and Orthologs of Identified LMP Genes
[0164] Clones corresponding to full-length sequences and partial cDNAs from Arabidopsis thaliana, Brassica napus, Glycine max, Oryza sativa, and Triticum aestivum had been identified in the proprietary databases. The clones were sequenced using a ABI 377 slab gel sequencer and BigDye Terminator Ready Reaction kits (PE Biosystems, Foster City, Calif.). Sequence algingments were done to determine whether the clones were full-length or partial clones. In cases where the clones were determined to be partial cDNAs, the following procedure was used to isolate the full-length sequences. Full-length cDNAs were isolated by RACE PCR using the SMART RACE cDNA amplification kit from Clontech allowing both 5'- and 3' rapid amplification of cDNA ends (RACE). The RACE PCR primers were designed based on the clone sequences. The isolation of full-length cDNAs and the RACE PCR protocol used were based on the manufacturer's conditions. The RACE product fragments were extracted from agarose gels with a QIAquick Gel Extraction Kit (Qiagen) and ligated into the TOPO pCR 2.1 vector (Invitrogen) following the manufacturer's instructions. Recombinant vectors were transformed into TOP10 cells (Invitrogen) using standard conditions (Sambrook et al., 1989). Transformed cells were grown overnight at 37° C. on LB agar containing 50 μg/ml kanamycin and spread with 40 μl of a 40 mg/ml stock solution of X-gal in dimethylformamide for blue-white selection. Single white colonies were selected and used to inoculate 3 ml of liquid LB containing 50 μg/ml kanamycin and grown overnight at 37° C. Plasmid DNA was extracted using the QIAprep Spin Miniprep Kit (Qiagen) following the manufacturer's instructions. Subsequent analyses of clones and restriction mapping was performed according to standard molecular biology techniques (Sambrook et al., 1989).
[0165] Full-length cDNAs were isolated and cloned into binary vectors by using the following procedure: Gene specific primers were designed using the full-length sequences obtained from the clones or subsequent RACE amplification products. Full-length sequences and genes were amplified utilizing the clones or cDNA libraries as DNA template using touch-down PCR. In some cases, primers were designed to add an "AACA" Kozak-like sequence just upstream of the gene start codon, and two bases downstream were, in some cases, changed to GC to facilitate increased gene expression levels (Chandrashekhar et al., 1997, Plant Molecular Biology 35:993-1001). PCR reaction cycles were: 94° C., 5 minutes; 9 cycles of 94° C., 1 minutes, 65° C., 1 minute, 72° C., 4 minutes and in which the anneal temperature was lowered by 1° C. each cycle; 20 cycles of 94° C., 1 minute, 55° C., 1 minute, 72° C., 4 minutes; and the PCR cycle was ended with 72° C., 10 minutes. Amplified PCR products were gel purified from 1% agarose gels using GenElute-EtBr spin columns (Sigma) and after standard enzymatic digestion, were ligated into the plant binary vector pBPS-GB1 for transformation of Arabidopsis. The binary vector was amplified by overnight growth in E. coli DH5 in LB media and appropriate antibiotic, and plasmid was prepared for downstream steps using Qiagen MiniPrep DNA preparation kit. The insert was verified throughout the various cloning steps by determining its size through restriction digest and inserts were sequenced to ensure the expected gene was used in Arabidopsis transformation.
[0166] Gene sequences can be used to identify homologous or heterologous genes (orthologs, the same LMP gene from another plant) from cDNA or genomic libraries. This can be done by designing PCR primers to conserved sequences identified by multiple sequence alignments. Orthologs are often identified by designing degenerate primers to full-length or partial sequences of genes of interest.
[0167] Gene sequences can be used to identify homologs or orthologs from cDNA or genomic libraries. Homologous genes (e.g. full-length cDNA clones) can be isolated via nucleic acid hybridization using for example cDNA libraries: Depending on the abundance of the gene of interest, 100,000 up to 1,000,000 recombinant bacteriophages are plated and transferred to nylon membranes. After denaturation with alkali, DNA is immobilized on the membrane by, e.g., UV cross linking. Hybridization is carried out at high stringency conditions. Aqueous solution hybridization and washing is performed at an ionic strength of 1 M NaCl and a temperature of 68° C. Hybridization probes are generated by e.g. radioactive (32P) nick transcription labeling (High Prime, Roche, Mannheim, Germany). Signals are detected by autoradiography.
[0168] Partially homologous or heterologous genes that are related but not identical can be identified in a procedure analogous to the above-described procedure using low stringency hybridization and washing conditions. For aqueous hybridization, the ionic strength is normally kept at 1 M NaCl while the temperature is progressively lowered from 68 to 42° C.
[0169] Isolation of gene sequences with homology (or sequence identity/similarity) only in a distinct domain of (for example 10-20 amino acids) can be carried out by using synthetic radio labeled oligonucleotide probes. Radio labeled oligonucleotides are prepared by phosphorylation of the 5-prime end of two complementary oligonucleotides with T4 polynucleotide kinase. The complementary oligonucleotides are annealed and ligated to form concatemers. The double stranded concatemers are than radiolabeled by for example nick transcription. Hybridization is normally performed at low stringency conditions using high oligonucleotide concentrations.
Oligonucleotide Hybridization Solution:
6×SSC
[0170] 0.01 M sodium phosphate
1 mM EDTA (pH 8)
0.5% SDS
[0171] 100 μg/ml denaturated salmon sperm DNA 0.1% nonfat dried milk
[0172] During hybridization, temperature is lowered stepwise to 5-10° C. below the estimated oligonucleotide Tm or down to room temperature followed by washing steps and autoradiography. Washing is performed with low stringency such as 3 washing steps using 4×SSC. Further details are described by Sambrook et al. (1989, "Molecular Cloning: A Laboratory Manual", Cold Spring Harbor Laboratory Press) or Ausubel et al. (1994, "Current Protocols in Molecular Biology", John Wiley & Sons).
TABLE-US-00003 TABLE 3 Putative functions of the WRI1-like LMPs (full length nucleic acid sequences can be found in the Appendix using the sequence codes in Table 3) ORF Seq ID Sequence name Species Function position 1 AtWRI01 Arabidopsis thaliana WRINKLED 1 transcription factor 117-1406 involved in glycolysis/oil biosynthesis 4 BnWRI22743-1 Brassica napus Ap2 domain transcription factor 6-1340 WRINKLED 1 transcription factor 7 pcw4-1 Brassica napus involved in glycolysis/oil biosynthesis 3-1241 WRINKLED 1 transcription factor 10 pcw5a-1 Brassica napus involved in glycolysis/oil biosynthesis 3-1232 WRINKLED 1 transcription factor 13 pcw5b-1 Brassica napus involved in glycolysis/oil biosynthesis 3-1250 WRINKLED 1 transcription factor 16 BnWRI01 Brassica napus involved in glycolysis/oil biosynthesis 62-1306 19 BnWRI08 Brassica napus Ovule development protein 126-1235 22 psw2 Glycine max Ovule development protein 206-1753 25 psw6 Glycine max Aintegumenta-like protein 85-1668 28 GmWRI02 Glycine max Ovule development protein 142-1680 31 GmWRI03 Glycine max Aintegumenta-like protein 235-2385 34 GmWRI05 Glycine max Aintegumenta-like protein 1-1995 37 GmWRI08 Glycine max Aintegumenta-like protein 1-1989 40 OsWRI01 Oryza sativa Ap2/EREBP transcription factor 49-1386 43 OsWRI07 Oryza sativa Aintegumenta-like protein 478-1578 46 OsWRI03 Oryza sativa Ovule development protein aintegument; 71-1996 49 TaWRI01 Triticum aestivum Ovule development protein 603-1727 52 GmWRI01-1 Glycine max Ovule development protein 175-1764 55 GmWRI11 Glycine max Ovule development protein 120-2027
Example 7
Identification of Genes of Interest by Screening Expression Libraries with Antibodies
[0173] c-DNA clones can be used to produce recombinant protein for example in E. coli (e.g. Qiagen QIAexpress pQE system). Recombinant proteins are then normally affinity purified via Ni-NTA affinity chromatography (Qiagen). Recombinant proteins can be used to produce specific antibodies for example by using standard techniques for rabbit immunization. Antibodies are affinity purified using a Ni-NTA column saturated with the recombinant antigen as described by Gu et al. (1994, BioTechniques 17:257-262). The antibody can then be used to screen expression cDNA libraries to identify homologous or heterologous genes via an immunological screening (Sambrook et al. 1989, Molecular Cloning: A Laboratory Manual", Cold Spring Harbor Laboratory Press or Ausubel et al. 1994, "Current Protocols in Molecular Biology", John Wiley & Sons).
Example 8
Northern-Hybridization
[0174] For RNA hybridization, 20 μg of total RNA or 1 μg of poly-(A)+ RNA is separated by gel electrophoresis in 1.25% agarose gels using formaldehyde as described in Amasino (1986, Anal. Biochem. 152:304), transferred by capillary attraction using 10×SSC to positively charged nylon membranes (Hybond N+, Amersham, Braunschweig), immobilized by UV light and pre-hybridized for 3 hours at 68° C. using hybridization buffer (10% dextran sulfate w/v, 1 M NaCl, 1% SDS, 100 μg/ml of herring sperm DNA). The labeling of the DNA probe with the Highprime DNA labeling kit (Roche, Mannheim, Germany) is carried out during the pre-hybridization using alpha-32P dCTP (Amersham, Braunschweig, Germany). Hybridization is carried out after addition of the labeled DNA probe in the same buffer at 68° C. overnight. The washing steps are carried out twice for 15 minutes using 2×SSC and twice for 30 minutes using 1×SSC, 1% SDS at 68° C. The exposure of the sealed filters is carried out at -70° C. for a period of 1 day to 14 days.
Example 9
DNA Sequencing and Computational Functional Analysis
[0175] cDNA libraries can be used for DNA sequencing according to standard methods, in particular by the chain termination method using the ABI PRISM Big Dye Terminator Cycle Sequencing Ready Reaction Kit (Perkin-Elmer, Weiterstadt, Germany). Random sequencing can be carried out subsequent to preparative plasmid recovery from cDNA libraries via in vivo mass excision, retransformation, and subsequent plating of DH10B on agar plates (material and protocol details from Stratagene, Amsterdam, Netherlands). Plasmid DNA can be prepared from overnight grown E. coli cultures grown in Luria-Broth medium containing ampicillin (See Sambrook et al. (1989, Cold Spring Harbor Laboratory Press: ISBN 0-87969-309-6) on a Qiagene DNA preparation robot (Qiagen, Hilden) according to the manufacturer's protocols). Sequences can be processed and annotated using the software package EST-MAX commercially provided by Bio-Max (Munich, Germany). The program incorporates bioinformatics methods important for functional and structural characterization of protein sequences. For reference see pedant.mips.biochem.mpg.de website.
[0176] The most important algorithms incorporated in Genomax and Pedant Pro are: FASTA: Very sensitive protein sequence database searches with estimates of statistical significance (Pearson W. R., 1990, Rapid and sensitive sequence comparison with FASTP and FASTA. Methods Enzymol. 183:63-98); BLAST: Very sensitive protein sequence database searches with estimates of statistical significance (Altschul S. F. et al., Basic local alignment search tool. J. Mol. Biol. 215:403-410); PREDATOR: High-accuracy secondary structure prediction from single and multiple sequences (Frishman & Argos 1997, 75% accuracy in protein secondary structure prediction. Proteins 27:329-335); CLUSTALW: Multiple sequence alignment (Thompson, J. D. et al., 1994, CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice, Nucleic Acids Res. 22:4673-4680); TMAP: Transmembrane region prediction from multiply aligned sequences (Persson B. & Argos P. 1994, Prediction of transmembrane segments in proteins utilizing multiple sequence alignments, J. Mol. Biol. 237:182-192); ALOM2: Transmembrane region prediction from single sequences (Klein P., Kanehisa M., and DeLisi C. 1984, Prediction of protein function from sequence properties: A discriminant analysis of a database. Biochim. Biophys. Acta 787:221-226. Version 2 by Dr. K. Nakai); PROSEARCH: Detection of PROSITE protein sequence patterns (Kolakowski L. F. Jr. et al., 1992, ProSearch: fast searching of protein sequences with regular expression patterns related to protein structure and function. Biotechniques 13:919-921); BLIMPS: Similarity searches against a database of ungapped blocks (Wallace & Henikoff 1992, PATMAT: A searching and extraction program for sequence, pattern and block queries and databases, CABIOS 8:249-254. Written by Bill Alford); PFAM and BLOCKS searches of protein motifs and domains.
Example 10
Plasmids for Plant Transformation
[0177] For plant transformation binary vectors such as pBinAR can be used (Hagen & Willmitzer, 1990, Plant Sci. 66:221-230). Construction of the binary vectors can be performed by ligation of the cDNA in sense or antisense orientation into the T-DNA. 5-prime to the cDNA a plant promoter activates transcription of the cDNA. A polyadenylation sequence is located 3'-prime to the cDNA. Tissue-specific expression can be achieved by using a tissue specific promoter. For example, seed-specific expression can be achieved by cloning the napin or LeB4 or USP promoter 5-prime to the cDNA. Also, any other seed specific promoter element can be used. For constitutive expression within the whole plant the CaMV 35S promoter can be used. The expressed protein can be targeted to a cellular compartment using a signal peptide, for example for plastids, mitochondria or endoplasmic reticulum (Kermode, 1996, Crit. Rev. Plant Sci. 15:285-423). The signal peptide is cloned 5-prime in frame to the cDNA to achieve subcellular localization of the fusion protein.
[0178] Further examples for plant binary vectors are the pBPS-GB1, pSUN2-GW, or pBPS-GB047 vectors into which the LMP gene candidates are cloned. These binary vectors contain an antibiotic resistance gene driven under the control of the AtAct2-I promoter and a USP seed-specific promoter or the PtxA promoter (See Appendix for sequence) in front of the candidate gene with the NOSpA terminator or the OCS terminator. Partial or full-length LMP cDNA is cloned into the multiple cloning site of the plant binary vector in sense or antisense orientation behind the USP seed-specific or PtxA promoters. The recombinant vector containing the gene of interest is transformed into Top10 cells (Invitrogen) using standard conditions. Transformed cells are selected for on LB agar containing 50 μg/ml kanamycin grown overnight at 37° C. Plasmid DNA is extracted using the QIAprep Spin Miniprep Kit (Qiagen) following manufacturer's instructions. Analysis of subsequent clones and restriction mapping is performed according to standard molecular biology techniques (Sambrook et al., 1989, Molecular Cloning, A Laboratory Manual. 2nd Edition. Cold Spring Harbor Laboratory Press. Cold Spring Harbor, N.Y.).
Example 11
Agrobacterium Mediated Plant Transformation
[0179] Agrobacterium mediated plant transformation with the LMP nucleic acids described herein can be performed using standard transformation and regeneration techniques (Gelvin & Schilperoort, Plant Molecular Biology Manual, 2nd ed. Kluwer Academic Publ., Dordrecht 1995 in Sect., Ringbuc Zentrale Signatur: BT11-P; Glick, Bernard R. and Thompson, John E. Methods in Plant Molecular Biology and Biotechnology, S. 360, CRC Press, Boca Raton 1993). For example, Agrobacterium mediated transformation can be performed using the GV3 (pMP90) (Koncz & Schell, 1986, Mol. Gen. Genet. 204:383-396) or LBA4404 (Clontech) Agrobacterium tumefaciens strain.
[0180] Arabidopsis thaliana can be grown and transformed according to standard conditions (Bechtold, 1993, Acad. Sci. Paris. 316:1194-1199; Bent et al., 1994, Science 265:1856-1860). Additionally, rapeseed can be transformed with the LMP nucleic acids of the present invention via cotyledon or hypocotyl transformation (Moloney et al., 1989, Plant Cell Report 8:238-242; De Block et al. 1989, Plant Physiol. 91:694-701). Use of antibiotics for Agrobacterium and plant selection depends on the binary vector and the Agrobacterium strain used for transformation. Rapeseed selection is normally performed using a selectable plant marker. Additionally, Agrobacterium mediated gene transfer to flax can be performed using, for example, a technique described by Mlynarova et al. (1994, Plant Cell Report 13:282-285).
[0181] The Arabidopsis WRI1 or WRI1-like gene was cloned into a binary vector and expressed under the PtxA promoter (the promoter of the Pisum sativum PtxA gene, see Appendix), which is a promoter active in virtually all plant tissues. However, in seeds and flowers, there is no expression activity detectable by GUS staining and low expression activity detectable with the more sensitive method of RT-PCR (Song et al., 2004, PF 55368-2 US). Only in plant lines comprising multiple copies of a transgenic ptxA-promoter/GUS expression construct some expression could be detected in part of the flowers and the siliques (for more details see Song et al., 2004, PF 55368-2 US). Alternatively, the superpromoter, which is a constitutive promoter (Stanton B. Gelvin, U.S. Pat. Nos. 5,428,147 and 5,217,903) or seed-specific promoters like USP (unknown seed protein) from Vicia faba (Baeumlein et al., 1991, Mol. Gen. Genetics 225:459-67), or the legumin B4 promoter (LeB4; Baeumlein et al., 1992, Plant J. 2:233-239), as well as promoters conferring seed-specific expression in monocot plants like maize, barley, wheat, rye, and rice etc. were used. The Arabidopsis AHAS (AtAHAS) gene was used as a selectable marker in these constructs. FIG. 1 shows the scheme of a binary vector construct containing an Arabidopsis WRI1-like sequence from Brassica napus.
[0182] Transformation of soybean can be performed using for example a technique described in EP 0424 047, U.S. Pat. No. 5,322,783 (Pioneer Hi-Bred International) or in EP 0397 687, U.S. Pat. No. 5,376,543, or U.S. Pat. No. 5,169,770 (University Toledo), or by any of a number of other transformation procedures known in the art. Soybean seeds are surface sterilized with 70% ethanol for 4 minutes at room temperature with continuous shaking, followed by 20% (v/v) CLOROX supplemented with 0.05% (v/v) TWEEN for 20 minutes with continuous shaking. Then the seeds are rinsed 4 times with distilled water and placed on moistened sterile filter paper in a Petri dish at room temperature for 6 to 39 hours. The seed coats are peeled off, and cotyledons are detached from the embryo axis. The embryo axis is examined to make sure that the meristematic region is not damaged. The excised embryo axes are collected in a half-open sterile Petri dish and air-dried to a moisture content less than 20% (fresh weight) in a sealed Petri dish until further use.
[0183] The method of plant transformation is also applicable to Brassica napus and other crops. In particular, seeds of canola are surface sterilized with 70% ethanol for 4 minutes at room temperature with continuous shaking, followed by 20% (v/v) CLOROX supplemented with 0.05% (v/v) TWEEN for 20 minutes, at room temperature with continuous shaking. Then, the seeds are rinsed 4 times with distilled water and placed on moistened sterile filter paper in a Petri dish at room temperature for 18 hours. The seed coats are removed and the seeds are air dried overnight in a half-open sterile Petri dish. During this period, the seeds lose approximately 85% of their water content. The seeds are then stored at room temperature in a sealed Petri dish until further use.
[0184] Agrobacterium tumefaciens culture is prepared from a single colony in LB solid medium plus appropriate antibiotics (e.g. 100 mg/l streptomycin, 50 mg/l kanamycin) followed by growth of the single colony in liquid LB medium to an optical density at 600 nm of 0.8. Then, the bacteria culture is pelleted at 7000 rpm for 7 minutes at room temperature and resuspended in MS (Murashige & Skoog, 1962, Physiol. Plant. 15:473-497) medium supplemented with 100 mM acetosyringone. Bacteria cultures are incubated in this pre-induction medium for 2 hours at room temperature before use. The axis of soybean zygotic seed embryos at approximately 44% moisture content are imbibed for 2 hours at room temperature with the pre-induced Agrobacterium suspension culture. (The imbibition of dry embryos with a culture of Agrobacterium is also applicable to maize embryo axes). The embryos are removed from the imbibition culture and are transferred to Petri dishes containing solid MS medium supplemented with 2% sucrose and incubated for 2 days, in the dark at room temperature. Alternatively, the embryos are placed on top of moistened (liquid MS medium) sterile filter paper in a Petri dish and incubated under the same conditions described above. After this period, the embryos are transferred to either solid or liquid MS medium supplemented with 500 mg/l carbenicillin or 300 mg/l cefotaxime to kill the agrobacteria. The liquid medium is used to moisten the sterile filter paper. The embryos are incubated during 4 weeks at 25° C., under 440 μmol m-2s-1 and 12 hours photoperiod. Once the seedlings have produced roots, they are transferred to sterile metromix soil. The medium of the in vitro plants is washed off before transferring the plants to soil. The plants are kept under a plastic cover for 1 week to favor the acclimatization process. Then the plants are transferred to a growth room where they are incubated at 25° C., under 440 μmol m-2s-1 light intensity and 12 h photoperiod for about 80 days.
[0185] Samples of the primary transgenic plants (T0) are analyzed by PCR to confirm the presence of T-DNA. These results are confirmed by Southern hybridization wherein DNA is electrophoresed on a 1% agarose gel and transferred to a positively charged nylon membrane (Roche Diagnostics). The PCR DIG Probe Synthesis Kit (Roche Diagnostics) is used to prepare a digoxigenin-labeled probe by PCR as recommended by the manufacturer.
[0186] As an example for monocot transformation, the construction of ptxA promoter in combination with maize Ubiquitin intron and WRI1 or WRI1-like nucleic acid molecules is described. The PtxA-WRI1 ortholog gene construct in pUC is digested with PacI and XmaI. pBPSMM348 is digested with PacI and XmaI to isolate maize Ubiquitin intron (ZmUbi intron) followed by electrophoresis and the QIAEX II Gel Extraction Kit (cat #20021). The ZmUbi intron is ligated into the PtxA-WRIT or WRI1-like nucleic acid molecule in pUC to generate pUC based PtxA-ZmUbi intron-WRI1 or WRI1-like nucleic acid molecule construct followed by restriction enzyme digestion with AfeI and PmeI. PtxA-ZmUbi intron WRI1 or WRI1-like gene cassette is cut out of a Seaplaque low melting temperature agarose gel (SeaPlaque® GTG® Agarose catalog No. 50110) after electrophoresis. A monocotyledonous base vector containing a selectable marker cassette (Monocot base vector) is digested with PmeI. The WRI1 or WRI1-like nucleic acid molecule expression cassette containing ptxA promoter-ZmUbi intron is ligated into the Monocot base vector to generate PtxA-ZmUbi intron-BnWRI01 construct (FIG. 2). Subsequently, the PtxA-ZmUbi intron-WRI1 or WRI1-like nucleic acid molecule construct is transformed into a recombinant LBA4404 strain containing pSB1 (super vir plasmid) using electroporation following a general protocol in the art. Agrobacterium-mediated transformation in maize is performed using immature embryo following a protocol described in U.S. Pat. No. 5,591,616. An imidazolinoneherbicide selection is applied to obtain transgenic maize lines. In GUS expression experiments using the ptxA promoter::ZmUbi intron in maize strong expression was described in embryonic calli and roots (Song et al., 2004, PF 55368-2 US).
[0187] In general, a rice (or other monocot) WRI1 gene or WRI1-like gene under a plant promoter like PtxA could be transformed into corn, or another crop plant, to generate effects of monocot WRI1 genes in other monocots, or dicot WRI1 genes in other dicots, or monocot genes in dicots, or vice versa. The plasmids containing these WRI1 or WRI1-like coding sequences, 5' of a promoter and 3' of a terminator would be constructed in a manner similar to those described for construction of other plasmids herein.
Example 12
In Vivo Mutagenesis
[0188] In vivo mutagenesis of microorganisms can be performed by incorporation and passage of the plasmid (or other vector) DNA through E. coli or other microorganisms (e.g. Bacillus spp. or yeasts such as Saccharomyces cerevisiae) that are impaired in their capabilities to maintain the integrity of their genetic information. Typical mutator strains have mutations in the genes for the DNA repair system (e.g., mutHLS, mutD, mutT, etc.; for reference, see Rupp, 1996, DNA repair mechanisms, in: Escherichia coli and Salmonella, p. 2277-2294, ASM: Washington.) Such strains are well known to those skilled in the art. The use of such strains is illustrated, for example, in Greener and Callahan, 1994, Strategies 7:32-34. Transfer of mutated DNA molecules into plants is preferably done after selection and testing in microorganisms. Transgenic plants are generated according to various examples within the exemplification of this document.
Example 13
Assessment of the mRNA Expression and Activity of a Recombinant Gene Product in the Transformed Organism
[0189] The activity of a recombinant gene product in the transformed host organism can be measured on the transcriptional and/or on the translational level. A useful method to ascertain the level of transcription of the gene (an indicator of the amount of mRNA available for translation to the gene product) is to perform a Northern blot (for reference see, for example, Ausubel et al., 1988, Current Protocols in Molecular Biology, Wiley: New York), in which a primer designed to bind to the gene of interest is labeled with a detectable tag (usually radioactive or chemiluminescent), such that when the total RNA of a culture of the organism is extracted, run on gel, transferred to a stable matrix and incubated with this probe, the binding and quantity of binding of the probe indicates the presence and also the quantity of mRNA for this gene. This information at least partially demonstrates the degree of transcription of the transformed gene. Total cellular RNA can be prepared from plant cells, tissues, or organs by several methods, all well-known in the art, such as that described in Bormann et al. (1992, Mol. Microbiol. 6:317-326).
[0190] To assess the presence or relative quantity of protein translated from this mRNA, standard techniques, such as a Western blot, may be employed (see, for example, Ausubel et al., 1988, Current Protocols in Molecular Biology, Wiley: New York). In this process, total cellular proteins are extracted, separated by gel electrophoresis, transferred to a matrix such as nitrocellulose, and incubated with a probe, such as an antibody, which specifically binds to the desired protein. This probe is generally tagged with a chemiluminescent or colorimetric label, which may be readily detected. The presence and quantity of label observed indicates the presence and quantity of the desired mutant protein present in the cell.
[0191] The activity of LMPs that bind to DNA can be measured by several well-established methods, such as DNA band-shift assays (also called gel retardation assays). The effect of such LMP on the expression of other molecules can be measured using reporter gene assays (such as that described in Kolmar H. et al., 1995, EMBO J. 14:3895-3904 and references cited therein). Reporter gene test systems are well known and established for applications in both prokaryotic and eukaryotic cells, using enzymes such as beta-galactosidase, green fluorescent protein, and several others.
[0192] The determination of activity of lipid metabolism membrane-transport proteins can be performed according to techniques such as those described in Gennis R. B. (1989 Pores, Channels and Transporters, in Biomembranes, Molecular Structure and Function, Springer: Heidelberg, pp. 85-137, 199-234 and 270-322).
Example 14
In Vitro Analysis of the Function of Arabidopsis thaliana, Brassica napus, Glycine max, Oryza Sativa, or Triticum aestivum WRI1 and WRI1-Like Genes in Transgenic Plants
[0193] The determination of activities and kinetic parameters of enzymes is well established in the art. Experiments to determine the activity of any given altered enzyme must be tailored to the specific activity of the wild-type enzyme, which is well within the ability of one skilled in the art. Overviews about enzymes in general, as well as specific details concerning structure, kinetics, principles, methods, applications and examples for the determination of many enzyme activities may be found, for example, in the following references: Dixon & Webb, 1979, Enzymes. Longmans: London; Fersht, (1985) Enzyme Structure and Mechanism. Freeman: New York; Walsh (1979) Enzymatic Reaction Mechanisms. Freeman: San Francisco; Price, N.C., Stevens, L. (1982) Fundamentals of Enzymology. Oxford Univ. Press: Oxford; Boyer, P. D., ed. (1983) The Enzymes, 3rd ed. Academic Press: New York; Bisswanger, H., (1994) Enzymkinetik, 2nd ed. VCH: Weinheim (ISBN 3527300325); Bergmeyer, H. U., Bergmeyer, J., Graβl, M., eds. (1983-1986) Methods of Enzymatic Analysis, 3rd ed., vol. I-X11, Verlag Chemie: Weinheim; and Ullmann's Encyclopedia of Industrial Chemistry (1987) vol. A9, Enzymes. VCH: Weinheim, p. 352-363.
Example 15
Analysis of the Impact of Recombinant Proteins on the Production of a Desired Seed Storage Compound
[0194] Seeds from transformed Arabidopsis thaliana plants were analyzed by gas chromatography (GC) for total oil content and fatty acid profile. GC analysis reveals that Arabidopsis plants transformed with pBPS-GB047 containing Ptxa promoter driving the Arabidopsis WRI1 gene and the AHAS gene as selectable marker show an increase in total seed oil content by 10-15% compared with Columbia-2 in both segregating T2 and homozygous T3 seed generation (FIG. 3). The total seed protein level was virtually the same level as compared with a control plant (data not shown). Arabidopsis PtxA::WRI1 overexpressors (AtWRI01) showed an increased percentage of total seed oil content from about 35% in Columbia wild type and PtxA empty vector control to about 40% in T2 and T3 seeds of transgenic lines. FIG. 4 shows the effect of PtxA:: WRI1 on the content of oleic acid (18:1) in seeds. There is a highly significant increase in some of the transgenic lines, as compared to Columbia-2 (the genetic background), GB007 (the empty vector control), and Columbia-24 (a high oil control used in the experiment). The relative amount of oleic acid increased from about 18% in controls to 63-65% in some of the transgenic WRI1 overexpressors. The effect on the oleic acid increase appears to be very stable in T2 and T3 seed generations. We conclude from the correlation between the increase in total seed oil content and the increased percentage in oleic acid in the T2 and T3 seed generation as shown in FIGS. 3 and 4 that the trait is genetically inheritable.
[0195] The increase in the percentage oleic acid in seeds is accompanied with a significant reduction in the relative amount of linoleic and linolenic acid (FIG. 5). Linoleic acid in transgenic seeds was less than 5% of the wild type content and linolenic acid was 20% and less relative to the wild type content. In parallel, the relative amount of saturated fatty acids (sum of 16:0, 18:0, 20:0) decreased in transgenic seeds by at least 20% as compared to the wild type (FIG. 6).
[0196] The effect of other promoter/WRI1 gene combinations was tested. Transgenic plants expressing WRI1 under the control of the seed-specific promoter LeB4 did not show any detectable effect on the fatty acid composition in seeds. The results suggest that WRI1 overexpression with a promoter like PtxA allows the manipulation of total seed oil content and of the fatty acid composition particularly oleic acid, linoleic acid, and linolenic acid.
[0197] The effect of the genetic modification in plants on a desired seed storage compound (such as a sugar, lipid, or fatty acid) can be assessed by growing the modified plant under suitable conditions and analyzing the seeds or any other plant organ for increased production of the desired product (i.e., a lipid or a fatty acid). Such analysis techniques are well known to one skilled in the art, and include spectroscopy, thin layer chromatography, staining methods of various kinds, enzymatic and microbiological methods, and analytical chromatography such as high performance liquid chromatography (see, for example, Ullman, 1985, Encyclopedia of Industrial Chemistry, vol. A2, pp. 89-90 and 443-613, VCH: Weinheim; Fallon et al., 1987, Applications of HPLC hi Biochemistry in: Laboratory Techniques in Biochemistry and Molecular Biology, vol. 17; Rehm et al., 1993, Product recovery and purification, Biotechnology, vol. 3, Chapter III, pp. 469-714, VCH: Weinheim; Belter, P. A. et al., 1988 Bioseparations: downstream processing for biotechnology, John Wiley & Sons; Kennedy & Cabral, 1992, Recovery processes for biological materials, John Wiley and Sons; Shaeiwitz & Henry, 1988, Biochemical separations in: Ulmann's Encyclopedia of Industrial Chemistry, Separation and purification techniques in biotechnology, vol. B3, Chapter 11, pp. 1-27, VCH: Weinheim; and Dechow F. J. 1989).
[0198] Besides the above-mentioned methods, plant lipids are extracted from plant material as described by Cahoon et al. (1.999, Proc. Natl. Acad. Sci. USA 96, 22:12935-12940) and Browse et al. (1986, Anal. Biochemistry 442:141-145). Qualitative and quantitative lipid or fatty acid analysis is described in Christie, William W., Advances in Lipid Methodology. Ayr/Scotland: Oily Press.--(Oily Press Lipid Library; Christie, William W., Gas Chromatography and Lipids. A Practical Guide--Ayr, Scotland: Oily Press, 1989 Repr. 1992.--IX, 307 S.--(Oily Press Lipid Library; and "Progress in Lipid Research, Oxford: Pergamon Press, 1 (1952)--16 (1977) Progress in the Chemistry of Fats and Other Lipids CODEN.
[0199] Unequivocal proof of the presence of fatty acid products can be obtained by the analysis of transgenic plants following standard analytical procedures: GC, GC-MS, or TLC as described by Christie and references therein (1997 in: Advances on Lipid Methodology 4th ed.: Christie, Oily Press, Dundee, pp. 119-169; 1998). Detailed methods are described for leaves by Lemieux et al. (1990, Theor. Appl. Genet. 80:234-240) and for seeds by Focks & Benning (1998, Plant Physiol. 118:91-101).
[0200] Positional analysis of the fatty acid composition at the sn-1, sn-2 or sn-3 positions of the glycerol backbone is determined by lipase digestion (See, e.g., Siebertz & Heinz, 1977, Z. Naturforsch. 32c:193-205, and Christie 1987, Lipid Analysis 2nd Edition, Pergamon Press, Exeter, ISBN 0-08-023791-6).
[0201] Total seed oil levels can be measured by any appropriate method. Quantitation of seed oil contents is often performed with conventional methods, such as near infrared analysis (NIR) or nuclear magnetic resonance imaging (NMR). NIR spectroscopy has become a standard method for screening seed samples whenever the samples of interest have been amenable to this technique. Samples studied include canola, soybean, maize, wheat, rice, and others. NIR analysis of single seeds can be used (See, e.g., Velasco et al., `Estimation of seed weight, oil content and fatty acid composition in intact single seeds of rapeseed (Brassica napus L.) by near-infrared reflectance spectroscopy, `Euphytica, Vol. 106, 1999, pp. 79-85). NMR has also been used to analyze oil content in seeds (See, e.g., Robertson & Morrison, Journal of the American Oil Chemists Society, 1979, Vol. 56, 1979, pp. 961-964, which is herein incorporated by reference in its entirety).
[0202] A typical way to gather information regarding the influence of increased or decreased protein activities on lipid and sugar biosynthetic pathways is for example via analyzing the carbon fluxes by labeling studies with leaves or seeds using 14C-acetate or 14C-pyruvate (See, e.g., Focks & Benning, 1998, Plant Physiol. 118:91-101; Eccleston & Ohlrogge, 1998, Plant Cell 10:613-621). The distribution of 14C into lipids and aqueous soluble components can be determined by liquid scintillation counting after the respective separation (for example, on TLC plates) including standards like 14C-sucrose and 44C-malate (Eccleston & Ohlrogge, 1998, Plant Cell 10:613-621).
[0203] Material to be analyzed can be disintegrated via sonification, glass milling, liquid nitrogen, and grinding or via other applicable methods. The material has to be centrifuged after disintegration. The sediment is re-suspended in distilled water, heated for 10 minutes at 100° C., cooled on ice, and centrifuged again, followed by extraction in 0.5 M sulfuric acid in methanol containing 2% dimethoxypropane for 1 hour at 90° C. leading to hydrolyzed oil and lipid compounds, resulting in transmethylated lipids. These fatty acid methyl esters are extracted in petrolether and finally subjected to GC analysis using a capillary column (Chrompack, WCOT Fused Silica, CP-Wax-52 CB, 25 m, 0.32 mm) at a temperature gradient between 170° C. and 240° C. for 20 minutes, and then 5 minutes at 240° C. The identity of resulting fatty acid methylesters is defined by the use of standards available form commercial sources (i.e., Sigma). In case of fatty acids where standards are not available, molecule identity is shown via derivatization and subsequent GC-MS analysis. For example, the localization of triple bond fatty acids is shown via GC-MS after derivatization via 4,4-Dimethoxy-oxazolin-Derivaten (Christie, Oily Press, Dundee, 1998).
[0204] A common standard method for analyzing sugars, especially starch, is published by Stitt et al. (1989, Methods Enzymol. 174:518-552). For other methods, see also Hartel et al. (1998, Plant Physiol. Biochem. 36:407-417) and Focks & Benning (1998, Plant Physiol. 118:91-101).
[0205] For the extraction of soluble sugars and starch, 50 seeds are homogenized in 500 μl of 80% (v/v) ethanol in a 1.5-ml polypropylene test tube and incubated at 70° C. for 90 minutes. Following centrifugation at 16,000 g for 5 minutes, the supernatant is transferred to a new test tube. The pellet is extracted twice with 500 μl of 80% ethanol. The solvent of the combined supernatants is evaporated at room temperature under a vacuum. The residue is dissolved in 50 μl of water, representing the soluble carbohydrate fraction. The pellet left from the ethanol extraction, which contains the insoluble carbohydrates including starch, is homogenized in 200 μl of 0.2 N KOH, and the suspension is incubated at 95° C. for 1 hour to dissolve the starch. Following the addition of 35 μl of 1 N acetic acid and centrifugation for 5 minutes at 16,000 g, the supernatant is used for starch quantification.
[0206] To quantify soluble sugars, 10 μl of the sugar extract is added to 990 μl of reaction buffer containing 100 mM imidazole, pH 6.9, 5 mM MgCl2, 2 mM NADP, 1 mM ATP, and 2 units 2 ml-1 of Glucose-6-P-dehydrogenase. For enzymatic determination of glucose, fructose and sucrose, 4.5 units of hexokinase, 1 unit of phosphoglucoisomerase, and 2 μl of a saturated fructosidase solution are added in succession. The production of NADPH is photometrically monitored at a wavelength of 340 nm. Similarly, starch is assayed in 30 μl of the insoluble carbohydrate fraction with a kit from Boehringer Mannheim.
[0207] An example for analyzing the protein content in leaves and seeds can be found in Bradford (1976, Anal. Biochem. 72:248-254). For quantification of total seed protein, 15-20 seeds are homogenized in 250 μl of acetone in a 1.5-ml polypropylene test tube. Following centrifugation at 16,000 g, the supernatant is discarded, and the vacuum-dried pellet is resuspended in 250 μl of extraction buffer containing 50 mM Tris-HCl, pH 8.0, 250 mM NaCl, 1 mM EDTA, and 1% (w/v) SDS. Following incubation for 2 hours at 25° C., the homogenate is centrifuged at 16,000 g for 5 minutes, and 200 ml of the supernatant will be used for protein measurements. In the assay, γ-globulin is used for calibration. For protein measurements, Lowry DC protein assay (Bio-Rad) or Bradford-assay (Bio-Rad) is used.
[0208] Enzymatic assays of hexokinase and fructokinase are performed spectrophotometrically according to Renz et al. (1993, Planta 190:156-165), of phosphogluco-isomerase, ATP-dependent 6-phosphofructokinase, pyrophosphate-dependent 6-phospho-fructokinase, Fructose-1,6-bisphosphate aldolase, triose phosphate isomerase, glyceral-3-P dehydrogenase, phosphoglycerate kinase, phosphoglycerate mutase, enolase, and pyruvate kinase are performed according to Burrell et al. (1994, Planta 194:95-101) and of UDP-Glucose-pyrophosphorylase according to Zrenner et al. (1995, Plant J. 7:97-107).
[0209] Intermediates of the carbohydrate metabolism, like Glucose-1-phosphate, Glucose-6-phosphate, Fructose-6-phosphate, Phosphoenolpyruvate, Pyruvate, and ATP are measured as described in Hartel et al. (1998, Plant Physiol. Biochem. 36:407-417) and metabolites are measured as described in Jelitto et al. (1992, Planta 188:238-244).
[0210] In addition to the measurement of the final seed storage compound (i.e., lipid, starch or storage protein) it is also possible to analyze other components of the metabolic pathways utilized for the production of a desired seed storage compound, such as intermediates and side-products, to determine the overall efficiency of production of the compound (Fiehn et al., 2000, Nature Biotech. 18:1447-1161). For example, yeast expression vectors comprising the nucleic acids disclosed herein, or fragments thereof, can be constructed and transformed into Saccharomyces cerevisiae using standard protocols. The resulting transgenic cells can then be assayed for alterations in sugar, oil, lipid, or fatty acid contents. Similarly, plant expression vectors comprising the nucleic acids disclosed herein, or fragments thereof, can be constructed and transformed into an appropriate plant cell such as Arabidopsis, soybean, rapeseed, rice, maize, wheat, Medicago truncatula, etc., using standard protocols. The resulting transgenic cells and/or plants derived there from can then be assayed for alterations in sugar, oil, lipid, or fatty acid contents.
[0211] Additionally, the sequences disclosed herein, or fragments thereof, can be used to generate knockout mutations in the genomes of various organisms, such as bacteria, mammalian cells, yeast cells, and plant cells (Girke at al., 1998, Plant J. 15:39-48). The resultant knockout cells can then be evaluated for their composition and content in seed storage compounds, and the effect on the phenotype and/or genotype of the mutation. Other methods of gene inactivation include those described in U.S. Pat. No. 6,004,804 and Puttaraju et al. (1999, Nature Biotech. 17:246-252).
Example 16
Purification of the Desired Product from Transformed Organisms
[0212] An LMP can be recovered from plant material by various methods well known in the art. Organs of plants can be separated mechanically from other tissue or organs prior to isolation of the seed storage compound from the plant organ. Following homogenization of the tissue, cellular debris is removed by centrifugation and the supernatant fraction containing the soluble proteins is retained for further purification of the desired compound. If the product is secreted from cells grown in culture, then the cells are removed from the culture by low-speed centrifugation, and the supernate fraction is retained for further purification.
[0213] The supernatant fraction from either purification method is subjected to chromatography with a suitable resin, in which the desired molecule is either retained on a chromatography resin while many of the impurities in the sample are not, or where the impurities are retained by the resin, while the sample is not. Such chromatography steps may be repeated as necessary, using the same or different chromatography resins. One skilled in the art would be well-versed in the selection of appropriate chromatography resins and in their most efficacious application for a particular molecule to be purified. The purified product may be concentrated by filtration or ultrafiltration, and stored at a temperature at which the stability of the product is maximized.
[0214] There is a wide array of purification methods known to the art and the preceding method of purification is not meant to be limiting. Such purification techniques are described, for example, in Bailey & 011 is, 1986, Biochemical Engineering Fundamentals, McGraw-Hill: New York).
[0215] The identity and purity of the isolated compounds may be assessed by techniques standard in the art. These include high-performance liquid chromatography (HPLC), spectroscopic methods, staining methods, thin layer chromatography, analytical chromatography such as high performance liquid chromatography, NIRS, enzymatic assay, or microbiologically. Such analysis methods are reviewed in: Patek et al. (1994, Appl. Environ. Microbiol. 60:133-140), Malakhova et al. (1996, Biotekhnologiya 11:27-32), Schmidt et al. (1998, Bioprocess Engineer 19:67-70), Ulmann's Encyclopedia of Industrial Chemistry (1996, Vol. A27, VCH: Weinheim, p. 89-90, p. 521-540, p. 540-547, p. 559-566, 575-581 and p. 581-587), and Michal G. (1999, Biochemical Pathways: An Atlas of Biochemistry and Molecular Biology, John Wiley and Sons; Fallon, A. et al. 1987, Applications of HPLC in Biochemistry in: Laboratory Techniques in Biochemistry and Molecular Biology, vol. 17).
Example 17
Screening for Increased Seed Size
[0216] The conditional expression of WRI1 and of the crop WRI1-like genes resulted in an increased seed size of the transgenic plants when compared to the wild type variety of the plants. Transgenic Arabidopsis plants expressing WRI1 under the control of the PtxA promoter were produced as described in Example 11 and found to produce seeds larger than the wild-type plants' seeds. This size increase was typically observed by using a microscope. In addition, the seed weight was found to be increased in PtxA::WRI1 overexpressors. For example, wri1 mutant seeds showed a 20% reduction in seed weight as compared with the wild type (FIG. 7). In the segregating T2 seed generation of the independent transgenic lines pWriRT-7 and pWriRT-5, the weight of 100 seeds was increased by 30 and 40%, respectively (FIG. 7). In homozygous T3 seeds the seed weight was increased up to 60% as compared with the empty vector control (data not shown). Increased seed weight was reflected in an increased seed size of WRI1 or WRI1-like gene overexpressors. Increased seed size leads to greater yield in many economically important crop plants. Therefore, increased seed size is one goal of genetically engineering and selection using WRI1 or WRI1-like nucleic acid molecules as described in this application.
Example 18
Screening for Increased Root Length
In Vitro Root Analysis
[0217] For in vitro root analysis, square plates measuring 12 cm×12 cm were used. For each plate, 52 ml of MS media (0.5×MS salts, 0.5% sucrose, 0.5 g/L MES buffer, 1% Phytagar) without selection was used. Plates were allowed to dry in the sterile hood for one hour to reduce future condensation.
[0218] Seed aliquots were sterilized in glass vials with ethanol for 5 minutes, the ethanol was removed, and the seeds were allowed to dry in the sterile hood for one hour. Seeds were spotted in the plates using the Vacuseed Device (Lehle). After the seeds were spotted on the plates, the plates were wrapped with Ventwrap and placed vertically in racks in the dark at 4° C. for four days to stratify the seeds. The plates were transferred to a C5 Percival Growth Chamber and placed vertically. The growth chamber conditions were 23° C. day/21° C. night and 16 hour day/8 hour night.
[0219] For data collection a high resolution flat-bed scanner was used. Analysis of the roots was done using the WinRhizo software package. A comparison of the root length obtained with Arabidopsis wild type and the wri1 mutant indicated a 50% reduction in root length in wri1 mutants. This reduction in root length was found to be associated with a delayed germination and a reduced number of leaves at a defined time point of development as compared with the wild type (FIG. 8). Overexpressing WRI1 or WRI1-like genes in wild type background may improve seed germination, increase root length, and increase speed of leaf development and number of leaves. The latter may improve photosynthetic performance of plants resulting in increase yield of biomass and in increased amounts and/or size of seeds associated with increased amounts of seed storage compounds like oil, protein, and sugars.
Soil Root Analysis
[0220] For soil root analysis, seeds may be imbibed at 4° C. for 2 days in water and planted directly in soil with no selection. Deepots (Hummert D40) will be used with a saturated peat pellet (Jiffy 727) at the base and filled with water saturated Metromix. After planting, pots will be covered with plastic wrap to prevent drying. Plants may be grown using only water present at media preparation, as the water in the soil in these large pots is sufficient for 3 weeks of growth, and encourages rapid root growth. The plastic wrapping of the pots will be removed after 12 days and morphological data documented. At day 17, the aerial parts of the plant will be harvested, dried (65° C. for 2 days) and dry weight measured. To examine the roots, the peat pellet will be pushed towards the top of the pot to remove the soil and roots as a unit. The soil will then be separated from the roots in a tray and the maximum root length will be measured. Root length of all plants for all transgenic lines will be averaged and compared against the average of the wild type plants.
[0221] Those skilled in the art will recognize, or will be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments of the invention described herein. Such equivalents are intended to be encompassed by the claims to the invention disclosed and claimed herein.
TABLE-US-00004 APPENDIX SEQ ID NO: 1 - Nucleic acid sequence of AtWRI01 AAACCACTCTGCTTCCTCTTCCTCTGAGAAATCAAATCACTCACACTCCAAAAAAAAATC TAAACTTTCTCAGAGTTTACGCCCTTGGTACCAAATCTAAACTTTCTCAGAGTTTAATGAA GAAGCGCTTAACCACTTCCACTTGTTCTTCTTCTCCATCTTCCTCTGTTTCTTCTTCTACTA CTACTTCCTCTCCTATTCAGTCGGAGGCTCCAAGGCCTAAACGAGCCAAAAGGGCTAAGA AATCTTCTCCTTCTGGTGATAAATCTCATAACCCGACAAGCCCTGCTTCTACCCGACGCA GCTCTATCTACAGAGGAGTCACTAGACATAGATGGACTGGGAGATTCGAGGCTCATCTTT GGGACAAAAGCTCTTGGAATTCGATTCAGAACAAGAAAGGCAAACAAGTTTATCTGGGA GCATATGACAGTGAAGAAGCAGCAGCACATACGTACGATCTGGCTGCTCTCAAGTACTG GGGACCCGACACCATCTTGAATTTTCCGGCAGAGACGTACACAAAGGAATTGGAAGAAA TGCAGAGAGTGACAAAGGAAGAATATTTGGCTTCTCTCCGCCGCCAGAGCAGTGGTTTCT CCAGAGGCGTCTCTAAATATCGCGGCGTCGCTAGGCATCACCACAACGGAAGATGGGAG GCTCGGATCGGAAGAGTGTTTGGGAACAAGTACTTGTACCTCGGCACCTATAATACGCA GGAGGAAGCTGCTGCAGCATATGACATGGCTGCGATTGAGTATCGAGGCGCAAACGCGG TTACTAATTTCGACATTAGTAATTACATTGACCGGTTAAAGAAGAAAGGTGTTTTCCCGT TCCCTGTGAACCAAGCTAACCATCAAGAGGGTATTCTTGTTGAAGCCAAACAAGAAGTT GAAACGAGAGAAGCGAAGGAAGAGCCTAGAGAAGAAGTGAAACAACAGTACGTGGAA GAACCACCGCAAGAAGAAGAAGAGAAGGAAGAAGAGAAAGCAGAGCAACAAGAAGCA GAGATTGTAGGATATTCAGAAGAAGCAGCAGTGGTCAATTGCTGCATAGACTCTTCAAC CATAATGGAAATGGATCGTTGTGGGGACAACAATGAGCTGGCTTGGAACTTCTGTATGAT GGATACAGGGTTTTCTCCGTTTTTGACTGATCAGAATCTCGCGAATGAGAATCCCATAGA GTATCCGGAGCTATTCAATGAGTTAGCATTTGAGGACAACATCGACTTCATGTTCGATGA TGGGAAGCACGAGTGCTTGAACTTGGAAAATCTGGATTGTTGCGTGGTGGGAAGAGAGA GCCCACCCTCTTCTTCTTCACCATTGTCTTGCTTATCTACTGACTCTGCTTCATCAACAAC AACAACAACAACCTCGGTTTCTTGTAACTATTTGGTCTGAGAGAGAGAGCTTTGCCTTCT AGTTTGAATTTCTATTTCTTCCGCTTCTTCTTCTTTTTTTTCTTTTGTTGGGTTCTGCTTAGG GTTTGTATTTCAGTTTCAGGGCTTGTTCGTTGGTTCTGAATAATCAATGTCTTTGCCCCTTT TCTAATGGGTACCTGAAGGGCGA SEQ ID NO: 2 - Nucleic acid sequence of the open reading frame of AtWRI01 ATGAAGAAGCGCTTAACCACTTCCACTTGTTCTTCTTCTCCATCTTCCTCTGTTTCTTCTTC TACTACTACTTCCTCTCCTATTCAGTCGGAGGCTCCAAGGCCTAAACGAGCCAAAAGGGC TAAGAAATCTTCTCCTTCTGGTGATAAATCTCATAACCCGACAAGCCCTGCTTCTACCCG ACGCAGCTCTATCTACAGAGGAGTCACTAGACATAGATGGACTGGGAGATTCGAGGCTC ATCTTTGGGACAAAAGCTCTTGGAATTCGATTCAGAACAAGAAAGGCAAACAAGTTTAT CTGGGAGCATATGACAGTGAAGAAGCAGCAGCACATACGTACGATCTGGCTGCTCTCAA GTACTGGGGACCCGACACCATCTTGAATTTTCCGGCAGAGACGTACACAAAGGAATTGG AAGAAATGCAGAGAGTGACAAAGGAAGAATATTTGGCTTCTCTCCGCCGCCAGAGCAGT GGTTTCTCCAGAGGCGTCTCTAAATATCGCGGCGTCGCTAGGCATCACCACAACGGAAG ATGGGAGGCTCGGATCGGAAGAGTGTTTGGGAACAAGTACTTGTACCTCGGCACCTATA ATACGCAGGAGGAAGCTGCTGCAGCATATGACATGGCTGCGATTGAGTATCGAGGCGCA AACGCGGTTACTAATTTCGACATTAGTAATTACATTGACCGGTTAAAGAAGAAAGGTGTT TTCCCGTTCCCTGTGAACCAAGCTAACCATCAAGAGGGTATTCTTGTTGAAGCCAAACAA GAAGTTGAAACGAGAGAAGCGAAGGAAGAGCCTAGAGAAGAAGTGAAACAACAGTACG TGGAAGAACCACCGCAAGAAGAAGAAGAGAAGGAAGAAGAGAAAGCAGAGCAACAAG AAGCAGAGATTGTAGGATATTCAGAAGAAGCAGCAGTGGTCAATTGCTGCATAGACTCT TCAACCATAATGGAAATGGATCGTTGTGGGGACAACAATGAGCTGGCTTGGAACTTCTGT ATGATGGATACAGGGTTTTCTCCGTTTTTGACTGATCAGAATCTCGCGAATGAGAATCCC ATAGAGTATCCGGAGCTATTCAATGAGTTAGCATTTGAGGACAACATCGACTTCATGTTC GATGATGGGAAGCACGAGTGCTTGAACTTGGAAAATCTGGATTGTTGCGTGGTGGGAAG AGAGAGCCCACCCTCTTCTTCTTCACCATTGTCTTGCTTATCTACTGACTCTGCTTCATCA ACAACAACAACAACAACCTCGGTTTCTTGTAACTATTTGGTCTGA SEQ ID NO: 3 - Amino acid sequence of the open reading frame of AtWRI01 MKKRLTTSTCSSSPSSSVSSSTTTSSPIQSEAPRPKRAKRAKKSSPSGDKSHNPTSPASTRRSSIY RGVTRHRWTGRFEAHLWDKSSWNSIQNKKGKQVYLGAYDSEEAAAHTYDLAALKYWGPD TILNFPAETYTKELEEMQRVTKEEYLASLRRQSSGFSRGVSKYRGVARHHHNGRWEARIGRV FGNKYLYLGTYNTQEEAAAAYDMAAIEYRGANAVTNFDISNYIDRLKKKGVFPFPVNQANH QEGILVEAKQEVETREAKEEPREEVKQQYVEEPPQEEEEKEEEKAEQQEAEIVGYSEEAAVV NCCIDSSTIMEMDRCGDNNELAWNFCMMDTGFSPFLTDQNLANENPIEYPELFNELAFEDNI DFMFDDGKHECLNLENLDCCVVGRESPPSSSSPLSCLSTDSASSTTTTTTSVSCNYLV SEQ ID NO: 4 - Nucleic acid sequence of Bn22743-1 CTTGCACACAGTGCGTCTTTGGTTTTCTCTTTCCTAGGGTTTGTGTTTTGGTTCTGATCATG GCGTCGATGTCGTCGCCGGATCAGGGGCCTAAGACAGAGGCGGGAGGAGGAGGAGAGA GCTCGGAGAATGTGTCGGCGAGTGATCAGATGTTGCTGTATAGAAGTTTTAAGAAGGCG AAGAAGGAGAGAGGATGCACAGCTAAGGAGCGTATCAGTAAAATGCCGCCCTGCACAG CTGGCAAAAGGAGTTCTATTTACCGTGGAGTCACCAGACATAGATGGACAGGTCGGTAC GAAGCTCACCTTTGGGACAAGAGTACTTGGAACCAAAACCAGAACAAGAAGGGCAAAC AAGTTTATCTAGGAGCATATGATGATGAAGAGGCTGCTGCTAGAGCCTACGACCTTGCTG CCTTGAAATACTGGGGACCTGGAACACTTATCAATTTTCCGGTGACTGATTACTCTAGGG ATTTAGAAGAAATGCAAAGTCTCTCAAGGGAAGAATACCTTGCAACTCTACGTAGAAAA AGCAGCGGTTTCTCAAGGGGAATAGCCAAATATCGTGGCCTTCAAAGCCGATGGGAAGC ATCAGCCAGTCGGATGCCTGGACCTGAATACTTCGGTAGCCTTCATTACGGTGATGAACG AGGAGCAGAAGGTGACTTTCTTGGCAGCTTTTGTCTGGAAAGAAAGATTGATCTAACGG GATACATAAAGTGGTGGGGAGTCAACAAACCCGGTCAACCAGAATCTTCATCAAAGGCA TCAGAGGATGCAAAGGTAGAAGATGCAGGTACTGAGCTTAAGACACTGGAACACGCTTC CCAGGCAACAGAGCCATACAAAGCACCAAACTTTGGCGTTCATCATGGCACTCAGAGGA AAGGAAAACAAATAACATCGCCGTCCTCCACCTCTTCTGCTTTAAGCATTTTGTCTGCGT CACCTGCTTACAAGAGTCTGGAGGAGAAAGTGATGAAGATCCAAGAAAGTAGCAGCACT AGAGAAAACGATGAGAATGCAAACCGTAACATCAATAGTATTGAGAAGAGTCACGGTA AGGAAATAGAGAAACCACCGGTCGTGAGTCATGGAGTTTCTCTAGGCAGTGGTGGTGGT GTTGCTCCTGCTGCTGCTGCTTTGTCTCTTCAGAAAAGCATGTACCCACTTGCCTCTCTCT TAACTGCTCCACTGCTCAGCAATTACAATACATTGGATCCCCTTGGAGAGCCTATTCTCT GGACACCGTTCCTTCACCCAGGATCTTCTCATACTTTAGAGGTGACAAAGACAGAGACAA GTTGTTCCACATACAGTTACCTCCCACAAGAGAAGTGAGCCGTTCCCCTTTAGACTGTTT GTGAAAATGATCTGAAGCAGGAATGTACAGGTTTTTGTCAGTGTTTTATGTGTATTTTCA GTGTGGAATATATATAGAATCATTATACTTAAATGTAAAACAGGCAAAATTTATGATTAT ACAGTAGTATAAAGGTTTGCTCTT SEQ ID NO: 5 - Nucleic acid sequence of the open reading frame of BnWRI22743-1 ATGGCGTCGATGTCGTCGCCGGATCAGGGGCCTAAGACAGAGGCGGGAGGAGGAGGAG AGAGCTCGGAGAATGTGTCGGCGAGTGATCAGATGTTGCTGTATAGAAGTTTTAAGAAG GCGAAGAAGGAGAGAGGATGCACAGCTAAGGAGCGTATCAGTAAAATGCCGCCCTGCA CAGCTGGCAAAAGGAGTTCTATTTACCGTGGAGTCACCAGACATAGATGGACAGGTCGG TACGAAGCTCACCTTTGGGACAAGAGTACTTGGAACCAAAACCAGAACAAGAAGGGCAA ACAAGTTTATCTAGGAGCATATGATGATGAAGAGGCTGCTGCTAGAGCCTACGACCTTGC TGCCTTGAAATACTGGGGACCTGGAACACTTATCAATTTTCCGGTGACTGATTACTCTAG GGATTTAGAAGAAATGCAAAGTCTCTCAAGGGAAGAATACCTTGCAACTCTACGTAGAA AAAGCAGCGGTTTCTCAAGGGGAATAGCCAAATATCGTGGCCTTCAAAGCCGATGGGAA GCATCAGCCAGTCGGATGCCTGGACCTGAATACTTCGGTAGCCTTCATTACGGTGATGAA CGAGGAGCAGAAGGTGACTTTCTTGGCAGCTTTTGTCTGGAAAGAAAGATTGATCTAAC GGGATACATAAAGTGGTGGGGAGTCAACAAACCCGGTCAACCAGAATCTTCATCAAAGG CATCAGAGGATGCAAAGGTAGAAGATGCAGGTACTGAGCTTAAGACACTGGAACACGCT TCCCAGGCAACAGAGCCATACAAAGCACCAAACTTTGGCGTTCATCATGGCACTCAGAG GAAAGGAAAACAAATAACATCGCCGTCCTCCACCTCTTCTGCTTTAAGCATTTTGTCTGC GTCACCTGCTTACAAGAGTCTGGAGGAGAAAGTGATGAAGATCCAAGAAAGTAGCAGCA CTAGAGAAAACGATGAGAATGCAAACCGTAACATCAATAGTATTGAGAAGAGTCACGGT AAGGAAATAGAGAAACCACCGGTCGTGAGTCATGGAGTTTCTCTAGGCAGTGGTGGTGG TGTTGCTCCTGCTGCTGCTGCTTTGTCTCTTCAGAAAAGCATGTACCCACTTGCCTCTCTC TTAACTGCTCCACTGCTCAGCAATTACAATACATTGGATCCCCTTGGAGAGCCTATTCTCT GGACACCGTTCCTTCACCCAGGATCTTCTCATACTTTAGAGGTGACAAAGACAGAGACAA GTTGTTCCACATACAGTTACCTCCCACAAGAGAAGTGA SEQ ID NO: 6 - Amino acid sequence of the open reading frame of Bn22743-1 MASMSSPDQGPKTEAGGGGESSENVSASDQMLLYRSFKKAKKERGCTAKERISKMPPCTAG KRSSIYRGVTRHRWTGRYEAHLWDKSTWNQNQNKKGKQVYLGAYDDEEAAARAYDLAAL KYWGPGTLINFPVTDYSRDLEEMQSLSREEYLATLRRKSSGFSRGIAKYRGLQSRWEASASR MPGPEYFGSLHYGDERGAEGDFLGSFCLERKIDLTGYIKWWGVNKPGQPESSSKASEDAKVE DAGTELKTLEHASQATEPYKAPNFGVHHGTQRKGKQITSPSSTSSALSILSASPAYKSLEEKV MKIQESSSTRENDENANRNINSIEKSHGKEIEKPPVVSHGVSLGSGGGVAPAAAALSLQKSMY PLASLLTAPLLSNYNTLDPLGEPILWTPFLHPGSSHTLEVTKTETSCSTYSYLPQEK SEQ ID NO: 7 - Nucleic acid sequence of pcw4-1 TAATGAAGAGACCCTTAACCACTTCTCCTTCTTCCTCCTCTTCTACTTCTTCTTCGGCCTGT ATACTTCCGACTCAATCAGAGACTCCAAGGCCCAAACGAGCCAAAAGGGCTAAGAAATC TTCTCTGCGTTCTGATGTTAAACCACAGAATCCCACCAGTCCTGCCTCCACCAGACGCAG CTCTATCTACAGAGGAGTCACTAGACATAGATGGACAGGGAGATACGAAGCTCATCTAT GGGACAAAAGCTCGTGGAATTCGATTCAGAACAAGAAAGGCAAACAAGTTTATCTGGGA GCATATGACAGCGAGGAAGCAGCAGCACATACGTACGATCTAGCTGCTCTCAAGTACTG GGGTCCCAACACCATCTTGAACTTTCCGGTTGAGACGTACACAAAGGAGCTGGAGGAGA TGCAGAGATGTACAAAGGAAGAGTATTTGGCTTCTCTCCGCCGCCAGAGCAGTGGTTTCT
CTAGAGGCGTCTCTAAATATCGCGGCGTCGCCAGGCATCACCATAACGGAAGATGGGAA GCTCGGATTGGAAGGGTGTTTGGAAACAAGTACTTGTACCTCGGCACCTATAATACGCAG GAGGAAGCTGCAGCTGCATATGACATGGCGGCTATAGAGTACAGAGGTGCAAACGCAGT GACCAACTTCGACATTAGTAACTACATCGACCGGTTAAAGAAAAAAGGTGTCTTCCCGTT CCCCGTGAGCCAAGCTAATCATCAAGAAGCTGTTCTTGCTGAAACCAAACAAGAAGTGG AAGCTAAAGAAGAGCCTACAGAAGAAGTGAAGCAGTGTGTCGAAAAAGAAGAAGCTAA AGAAGAGAAGACTGAGAAAAAACAACAACAAGAAGTGGAGGAGGCGGTGATCACTTGC TGCATTGATTCTTCAGAGAGCAATGAGCTGGCTTGGGACTTCTGTATGATGGATTCAGGG TTTGCTCCGTTTTTGACTGATTCAAATCTCTCGAGTGAGAATCCCATTGAGTATCCTGAGC TTTTCAATGAGATGGGTTTTGAGGATAACATTGACTTCATGTTCGAGGAAGGGAAGCAAG ACTGCTTGAGCTTGGAGAATCTTGATTGTTGCGATGGTGTTGTTGTGGTGGGAAGAGAGA GCCCAACTTCATTGTCGTCTTCTCCGTTGTCCTGCTTGTCTACTGACTCTGCTTCATCAAC AACAACAACAGCAACAACAGTAACCTCTGTTTCTTGTAACTATTCTGTCTGAGGGGGGAG AGCTTTGCATTTCTAGGTTGAATTTTCTATTTCTTTTGCTTCTTTTTTTTTTGTTGAGTTCTG CTAGGGTTTGTATTCTGTTTCAGGGCTTACTCATTGGTTCTGACAGTCAATGTTTAGCTCT CTTTTCCGCTCGTCTA SEQ ID NO: 8 - Nucleic acid sequence of the open reading frame of pcw4-1 ATGAAGAGACCCTTAACCACTTCTCCTTCTTCCTCCTCTTCTACTTCTTCTTCGGCCTGTAT ACTTCCGACTCAATCAGAGACTCCAAGGCCCAAACGAGCCAAAAGGGCTAAGAAATCTT CTCTGCGTTCTGATGTTAAACCACAGAATCCCACCAGTCCTGCCTCCACCAGACGCAGCT CTATCTACAGAGGAGTCACTAGACATAGATGGACAGGGAGATACGAAGCTCATCTATGG GACAAAAGCTCGTGGAATTCGATTCAGAACAAGAAAGGCAAACAAGTTTATCTGGGAGC ATATGACAGCGAGGAAGCAGCAGCACATACGTACGATCTAGCTGCTCTCAAGTACTGGG GTCCCAACACCATCTTGAACTTTCCGGTTGAGACGTACACAAAGGAGCTGGAGGAGATG CAGAGATGTACAAAGGAAGAGTATTTGGCTTCTCTCCGCCGCCAGAGCAGTGGTTTCTCT AGAGGCGTCTCTAAATATCGCGGCGTCGCCAGGCATCACCATAACGGAAGATGGGAAGC TCGGATTGGAAGGGTGTTTGGAAACAAGTACTTGTACCTCGGCACCTATAATACGCAGG AGGAAGCTGCAGCTGCATATGACATGGCGGCTATAGAGTACAGAGGTGCAAACGCAGTG ACCAACTTCGACATTAGTAACTACATCGACCGGTTAAAGAAAAAAGGTGTCTTCCCGTTC CCCGTGAGCCAAGCTAATCATCAAGAAGCTGTTCTTGCTGAAACCAAACAAGAAGTGGA AGCTAAAGAAGAGCCTACAGAAGAAGTGAAGCAGTGTGTCGAAAAAGAAGAAGCTAAA GAAGAGAAGACTGAGAAAAAACAACAACAAGAAGTGGAGGAGGCGGTGATCACTTGCT GCATTGATTCTTCAGAGAGCAATGAGCTGGCTTGGGACTTCTGTATGATGGATTCAGGGT TTGCTCCGTTTTTGACTGATTCAAATCTCTCGAGTGAGAATCCCATTGAGTATCCTGAGCT TTTCAATGAGATGGGTTTTGAGGATAACATTGACTTCATGTTCGAGGAAGGGAAGCAAG ACTGCTTGAGCTTGGAGAATCTTGATTGTTGCGATGGTGTTGTTGTGGTGGGAAGAGAGA GCCCAACTTCATTGTCGTCTTCTCCGTTGTCCTGCTTGTCTACTGACTCTGCTTCATCAAC AACAACAACAGCAACAACAGTAACCTCTGTTTCTTGTAACTATTCTGTCTGA SEQ ID NO: 9 - Amino acid sequence of the open reading frame of pcw4-1 MKRPLTTSPSSSSSTSSSACILPTQSETPRPKRAKRAKKSSLRSDVKPQNPTSPASTRRSSIYRG VTRHRWTGRYEAHLWDKSSWNSIQNKKGKQVYLGAYDSEEAAAHTYDLAALKYWGPNTI LNFPVETYTKELEEMQRCTKEEYLASLRRQSSGFSRGVSKYRGVARHHHNGRWEARIGRVF GNKYLYLGTYNTQEEAAAAYDMAAIEYRGANAVTNFDISNYIDRLKKKGVFPFPVSQANHQ EAVLAETKQEVEAKEEPTEEVKQCVEKEEAKEEKTEKKQQQEVEEAVITCCIDSSESNELAW DFCMMDSGFAPFLTDSNLSSENPIEYPELFNEMGFEDNIDFMFEEGKQDCLSLENLDCCDGVV VVGRESPTSLSSSPLSCLSTDSASSTTTTATTVTSVSCNYSV SEQ ID NO: 10 - Nucleic acid sequence of pcw5a-1 TAATGAAGAGACCCTTAACCACTTGTACATCTTCTTCTACATCATCTTCTACTTCTTCATC TTGTATCCTTCGGAACCAACCAGAGACTCCAAGGCCTAAACGAGCCAAAAGGGCTAAGA AATCATCGCCCCCTTGTGATGTAAAACCACAGAACCCGACCAGTCCTGCCTCTGCCAGAC GCAGCTCTATCTACAGAGGAGTCACCAGACATAGATGGACTGGGAGATTTGAGGCTCAT CTATGGGATAAAAGCTCTTGGAATTCGATTCAGAACAAGAAAGGCAAACAAGTTTATTT GGGAGCATATGACAGCGAGGAAGCAGCTGCACATACGTACGATCTAGCTGCTCTCAAGT ACTGGGGTCCCGACACCATCTTGAATTTTCCGGTTGAGACGTACAAAAAGGAGTTGGATG AAATGCAGAGAGGCACAAAAGAAGAGTATTTGGGTTCTCTCCGCCGCCAGAGCAGTGGT TTCTCCAGAGGCGTCTCTAAATATCGCGGCGTCGCCAGGCATCACCATAACGGAAGATG GGAGGCTCGGATTGGAAGAGTTTTCGGAAACAAGTACTTATACCTCGGCACCTATAATAC GCAGGAGGAAGCTGCAGAAGCATATGACATGGCTGCGATTGAATATAGAGGTGCAAACG CTGTTACCAATTTTGACATTAGTAATTACATCGACCGGCTAAAGAAAAAAGGCGTTTTCC CGTTCCGTGTGGACCAAGCTAACCATCAAGAGGCTGTTCTTGCTGAAGCCAAACAAGAA GCTAAGAAAGAAGTGAAAGAGCACGTGGAAGAAGAACATCAAGAAGAGAAAACAGAG CAGCATCAAGAAGTGGAGGCGGTCACTTGCGGCATAGATGCTTCAGGCATTATGGAGAT GGAACGTTCTTCAGACAGCAATGAGTTGGCTTGGAACTTCTGTATGATGGATTCAGGGTT TGCTCCGTTCTTGACAGATCAAAACCTCTCGAATGAGAATCCCATAGAGTATCCTGAGCT TTTCAACGAGATGATGGGTTTTGAGGATAACGACATAGACTTCATGTTTGAGGAAGCCAA GAACGAATGCTTGAGCTTGGAGAATCTGGATTGTTGTGATGTCGTTGTGGTGGGAAGAG AAAGCCCAGCTTCTTTATCGTCTTCTCCGTTGTCTTGCTTTTCTACTGACTCTGCTTCATCA ACAACAACAACAACAAACTCTGTTTCTTGTAACTATTCTGTCTGAGGGAGAGAGCTTTGC ATTATAGGGTTGAGTTTTCTATTTCTTTTGCTTCTTGATCTTGTCCTTGTTGAGTTCCGCTA GGGTTTTTGTTTTTCGTTTCAGGGCTTACTCGTTGGTTCTGAACAATCAATGTCTTCGCCT CA SEQ ID NO: 11 - Nucleic acid sequence of the open reading frame of pcw5a-1 ATGAAGAGACCCTTAACCACTTGTACATCTTCTTCTACATCATCTTCTACTTCTTCATCTT GTATCCTTCGGAACCAACCAGAGACTCCAAGGCCTAAACGAGCCAAAAGGGCTAAGAAA TCATCGCCCCCTTGTGATGTAAAACCACAGAACCCGACCAGTCCTGCCTCTGCCAGACGC AGCTCTATCTACAGAGGAGTCACCAGACATAGATGGACTGGGAGATTTGAGGCTCATCT ATGGGATAAAAGCTCTTGGAATTCGATTCAGAACAAGAAAGGCAAACAAGTTTATTTGG GAGCATATGACAGCGAGGAAGCAGCTGCACATACGTACGATCTAGCTGCTCTCAAGTAC TGGGGTCCCGACACCATCTTGAATTTTCCGGTTGAGACGTACAAAAAGGAGTTGGATGA AATGCAGAGAGGCACAAAAGAAGAGTATTTGGGTTCTCTCCGCCGCCAGAGCAGTGGTT TCTCCAGAGGCGTCTCTAAATATCGCGGCGTCGCCAGGCATCACCATAACGGAAGATGG GAGGCTCGGATTGGAAGAGTTTTCGGAAACAAGTACTTATACCTCGGCACCTATAATACG CAGGAGGAAGCTGCAGAAGCATATGACATGGCTGCGATTGAATATAGAGGTGCAAACGC TGTTACCAATTTTGACATTAGTAATTACATCGACCGGCTAAAGAAAAAAGGCGTTTTCCC GTTCCGTGTGGACCAAGCTAACCATCAAGAGGCTGTTCTTGCTGAAGCCAAACAAGAAG CTAAGAAAGAAGTGAAAGAGCACGTGGAAGAAGAACATCAAGAAGAGAAAACAGAGC AGCATCAAGAAGTGGAGGCGGTCACTTGCGGCATAGATGCTTCAGGCATTATGGAGATG GAACGTTCTTCAGACAGCAATGAGTTGGCTTGGAACTTCTGTATGATGGATTCAGGGTTT GCTCCGTTCTTGACAGATCAAAACCTCTCGAATGAGAATCCCATAGAGTATCCTGAGCTT TTCAACGAGATGATGGGTTTTGAGGATAACGACATAGACTTCATGTTTGAGGAAGCCAA GAACGAATGCTTGAGCTTGGAGAATCTGGATTGTTGTGATGTCGTTGTGGTGGGAAGAG AAAGCCCAGCTTCTTTATCGTCTTCTCCGTTGTCTTGCTTTTCTACTGACTCTGCTTCATCA ACAACAACAACAACAAACTCTGTTTCTTGTAACTATTCTGTCTGA SEQ ID NO: 12 - Amino acid sequence of the open reading frame of pcw5a-1 MKRPLTTCTSSSTSSSTSSSCILRNQPETPRPKRAKRAKKSSPPCDVKPQNPTSPASARRSSIYR GVTRHRWTGRFEAHLWDKSSWNSIQNKKGKQVYLGAYDSEEAAAHTYDLAALKYWGPDT ILNFPVETYKKELDEMQRGTKEEYLGSLRRQSSGFSRGVSKYRGVARHHHNGRWEARIGRV FGNKYLYLGTYNTQEEAAEAYDMAAIEYRGANAVTNFDISNYIDRLKKKGVFPFRVDQANH QEAVLAEAKQEAKKEVKEHVEEEHQEEKTEQHQEVEAVTCGIDASGIMEMERSSDSNELAW NFCMMDSGFAPFLTDQNLSNENPIEYPELFNEMMGFEDNDIDFMFEEAKNECLSLENLDCCD VVVVGRESPASLSSSPLSCFSTDSASSTTTTTNSVSCNYSV SEQ ID NO: 13 - Nucleic acid sequence of pcw5b-1 TAATGAAGAGACCCTTAACCACTTGTACATCTTCTTCTACATCATCCTCTACTTCTTCATC TTGTATCCTTCCGAACCAACCAGAGACTCCAAGGCCTAAACGAGCCAAAAGGGCTAAGA AATCATCTCCCCCTTGTGATGTAAAACCACAGAACCCGACCAGTCCTGCCTCTGCCAGAC GCAGCTCTATCTACAGAGGAGTCACCAGACATAGATGGACTGGGAGATTTGAGGCTCAT CTATGGGATAAAAGCTCTTGGAATTCGATTCAGAACAAGAAAGGCAAACAAGTTTATCT GGGAGCATATGACAGCGAGGAAGCAGCTGCACATACGTACGATCTAGCTGCTCTCAAGT ACTGGGGTCCCGACACCATCTTGAATTTTCCGGTTGAGACGTACACAAAGGAGTTGGATG AAATGCAGAGAGGCACAAAAGAAGAGTATTTGGCTTCTCTCCGCCGCCAGAGCAGTGGT TTCTCCAGAGGCGTCTCTAAATATCGCGGCGTCGCCAGGCATCACCATAACGGAAGATG GGAGGCTCGGATTGGAAGAGTTTTCGGAAACAAGTACTTATACCTCGGCACCTATAATAC GCAGGAGGAAGCTGCTGAAGCTTATGATATGGCTGCGATTGAATATAGAGGTGCAAACG CTGTTACCAATTTCGACATTAGTAATTACATCGACCGTTTAAAGAAAAAAGGCGTTTTCC CGTTCCGTGTGGAGCAAGCCACTCATCAAGAGGCTGTTCTTGCTGAAGCCAAACAAGAA GCCAAGGAAGAAGTGAAAGAGCACGTGGAAGAAGAACATCAAGAAGCGAGGGAAGAG ACAACAGAGCAGAAACAAGAAGTGGAGGCGGTCACTTGCGGCGTAGATGCTTCAGGCAT TATGGAGATGGAACGTTCTTCAGACAGCAATGAGTTGGCTTGGAACTTCTGTATGATGGA TTCAGGGTTTGCTCCGTTCTTGACAGATCAAAACCTCTCGAATGAGAATCCCATAGAGTA TCCTGAACTTTTCAACGAGATGATGGGTTTTGAGGATAACGACATAGACTTCATGTTCGA GGAAGCCAAGAACGAATGCTTGAGCTTGGAGAATCTGGATTGTTGTGATGTCGTTGTGGT GGGAAGAGAAAGCCCAACTTCTTTGTCGTCTTCTCCGTTGTCTTGCTTTTCTACTGACTCT GCTTCATCAACAACAATAACAACAACAACAACAACCTCTGTTTCTTGTAACTATTCTGTC TGAGGGAGAGAGCTTTGCATTATAGGGTTGAGTTTTCTATTTCTTTTGCTTCTTGATCTTG TCCTTGTTGAGTTCCGCTAGGGTTTTTGTTTTTCGTTTCAGGGCTTACTCGTTGGTTCTGAA CAATCAATGTCTTCGCCTC
SEQ ID NO: 14 - Nucleic acid sequence of the open reading frame of pcw5b-1 ATGAAGAGACCCTTAACCACTTGTACATCTTCTTCTACATCATCCTCTACTTCTTCATCTT GTATCCTTCCGAACCAACCAGAGACTCCAAGGCCTAAACGAGCCAAAAGGGCTAAGAAA TCATCTCCCCCTTGTGATGTAAAACCACAGAACCCGACCAGTCCTGCCTCTGCCAGACGC AGCTCTATCTACAGAGGAGTCACCAGACATAGATGGACTGGGAGATTTGAGGCTCATCT ATGGGATAAAAGCTCTTGGAATTCGATTCAGAACAAGAAAGGCAAACAAGTTTATCTGG GAGCATATGACAGCGAGGAAGCAGCTGCACATACGTACGATCTAGCTGCTCTCAAGTAC TGGGGTCCCGACACCATCTTGAATTTTCCGGTTGAGACGTACACAAAGGAGTTGGATGAA ATGCAGAGAGGCACAAAAGAAGAGTATTTGGCTTCTCTCCGCCGCCAGAGCAGTGGTTT CTCCAGAGGCGTCTCTAAATATCGCGGCGTCGCCAGGCATCACCATAACGGAAGATGGG AGGCTCGGATTGGAAGAGTTTTCGGAAACAAGTACTTATACCTCGGCACCTATAATACGC AGGAGGAAGCTGCTGAAGCTTATGATATGGCTGCGATTGAATATAGAGGTGCAAACGCT GTTACCAATTTCGACATTAGTAATTACATCGACCGTTTAAAGAAAAAAGGCGTTTTCCCG TTCCGTGTGGAGCAAGCCACTCATCAAGAGGCTGTTCTTGCTGAAGCCAAACAAGAAGC CAAGGAAGAAGTGAAAGAGCACGTGGAAGAAGAACATCAAGAAGCGAGGGAAGAGAC AACAGAGCAGAAACAAGAAGTGGAGGCGGTCACTTGCGGCGTAGATGCTTCAGGCATTA TGGAGATGGAACGTTCTTCAGACAGCAATGAGTTGGCTTGGAACTTCTGTATGATGGATT CAGGGTTTGCTCCGTTCTTGACAGATCAAAACCTCTCGAATGAGAATCCCATAGAGTATC CTGAACTTTTCAACGAGATGATGGGTTTTGAGGATAACGACATAGACTTCATGTTCGAGG AAGCCAAGAACGAATGCTTGAGCTTGGAGAATCTGGATTGTTGTGATGTCGTTGTGGTGG GAAGAGAAAGCCCAACTTCTTTGTCGTCTTCTCCGTTGTCTTGCTTTTCTACTGACTCTGC TTCATCAACAACAATAACAACAACAACAACAACCTCTGTTTCTTGTAACTATTCTGTCTGA SEQ ID NO: 15 - Amino acid sequence of the open reading frame of pcw5b-1 MKRPLTTCTSSSTSSSTSSSCILPNQPETPRPKRAKRAKKSSPPCDVKPQNPTSPASARRSSIYR GVTRHRWTGRFEAHLWDKSSWNSIQNKKGKQVYLGAYDSEEAAAHTYDLAALKYWGPDT ILNFPVETYTKELDEMQRGTKEEYLASLRRQSSGFSRGVSKYRGVARHHHNGRWEARIGRVF GNKYLYLGTYNTQEEAAEAYDMAAIEYRGANAVTNFDISNYIDRLKKKGVFPFRVEQATHQ EAVLAEAKQEAKEEVKEHVEEEHQEAREETTEQKQEVEAVTCGVDASGIMEMERSSDSNEL AWNFCMMDSGFAPFLTDQNLSNENPIEYPELFNEMMGFEDNDIDFMFEEAKNECLSLENLDC CDVVVVGRESPTSLSSSPLSCFSTDSASSTTITTTTTTSVSCNYSV SEQ ID NO: 16 - Nucleicacid sequence of BnWRI01 GATTTCGTATTCCCCCAAACACACAAAATCTCATTCTCTTTTTTTCTCATAGTTTTTTTTAA TGAAGAGACCCTTAACCACTTCTCCTTCTACCTCCTCTTCTACTTCTTCTTCGGCTTGTATA CTTCCGACTCAACCAGAGACTCCAAGGCCCAAACGAGCCAAAAGGGCTAAGAAATCTTC TATTCCTACTGATGTTAAACCACAGAATCCCACCAGTCCTGCCTCCACCAGACGCAGCTC TATCTACAGAGGAGTCACTAGACATAGATGGACAGGGAGATACGAGGCTCATCTATGGG ACAAAAGCTCGTGGAATTCGATTCAGAACAAGAAAGGCAAACAAGTTTATCTGGGAGCA TATGACAGCGAGGAAGCAGCAGCGCATACGTACGATCTAGCTGCTCTCAAGTACTGGGG TCCCGACACCATCTTGAACTTTCCGGCTGAGACGTACACAAAGGAGTTGGAGGAGATGC AGAGATGTACAAAGGAAGAGTATTTGGCTTCTCTCCGCCGCCAGAGCAGTGGTTTCTCTA GAGGCGTCTCTAAATATCGCGGCGTCGCCAGGCATCACCATAACGGAAGATGGGAAGCT AGGATTGGAAGGGTGTTTGGAAACAAGTACTTGTACCTCGGCACTTATAATACGCAGGA GGAAGCTGCAGCTGCATATGACATGGCGGCTATAGAGTACAGAGGCGCAAACGCAGTGA CCAACTTCGACATTAGTAACTACATCGACCGGTTAAAGAAAAAAGGTGTCTTCCCATTCC CTGTGAGCCAAGCCAATCATCAAGAAGCTGTTCTTGCTGAAGCCAAACAAGAAGTGGAA GCTAAAGAAGAGCCTACAGAAGAAGTGAAGCAGTGTGTCGAAAAAGAAGAACCGCAAG AAGCTAAAGAAGAGAAGACTGAGAAAAAACAACAACAACAAGAAGTGGAGGAGGCGG TGGTCACTTGCTGCATTGATTCTTCGGAGAGCAATGAGCTGGCTTGGGACTTCTGTATGA TGGATTCAGGGTTTGCTCCGTTTTTGACGGATTCAAATCTCTCGAGTGAGAATCCCATTG AGTATCCTGAGCTTTTCAATGAGATGGGGTTTGAGGATAACATTGACTTCATGTTCGAGG AAGGGAAGCAAGACTGCTTGAGCTTGGAGAATCTGGATTGTTGCGATGGTGTTGTTGTGG TGGGAAGAGAGAGCCCAACTTCATTGTCGTCTTCACCGTTGTCTTGCTTGTCTACTGACTC TGCTTCATCAACAACAACAACAACAATAACCTCTGTTTCTTGTAACTATTCTGTCTGAGG GGGGAGAGCTTTGCATTTCTAGGTTGAATTTTCTATTTCTTTTGCTTCTTTTTTTTTTGTTG AGTTCTGCTAGGGTTTGTATTCTGTTTCAGGGCTTACTCATTGGTTCTGACAGTCAATGTT TAGCTCTCTTTTCCGCTCGTCTA SEQ ID NO: 17 - Nucleicacid sequence of the open reading frame of BnWRI01 ATGAAGAGACCCTTAACCACTTCTCCTTCTACCTCCTCTTCTACTTCTTCTTCGGCTTGTAT ACTTCCGACTCAACCAGAGACTCCAAGGCCCAAACGAGCCAAAAGGGCTAAGAAATCTT CTATTCCTACTGATGTTAAACCACAGAATCCCACCAGTCCTGCCTCCACCAGACGCAGCT CTATCTACAGAGGAGTCACTAGACATAGATGGACAGGGAGATACGAGGCTCATCTATGG GACAAAAGCTCGTGGAATTCGATTCAGAACAAGAAAGGCAAACAAGTTTATCTGGGAGC ATATGACAGCGAGGAAGCAGCAGCGCATACGTACGATCTAGCTGCTCTCAAGTACTGGG GTCCCGACACCATCTTGAACTTTCCGGCTGAGACGTACACAAAGGAGTTGGAGGAGATG CAGAGATGTACAAAGGAAGAGTATTTGGCTTCTCTCCGCCGCCAGAGCAGTGGTTTCTCT AGAGGCGTCTCTAAATATCGCGGCGTCGCCAGGCATCACCATAACGGAAGATGGGAAGC TAGGATTGGAAGGGTGTTTGGAAACAAGTACTTGTACCTCGGCACTTATAATACGCAGG AGGAAGCTGCAGCTGCATATGACATGGCGGCTATAGAGTACAGAGGCGCAAACGCAGTG ACCAACTTCGACATTAGTAACTACATCGACCGGTTAAAGAAAAAAGGTGTCTTCCCATTC CCTGTGAGCCAAGCCAATCATCAAGAAGCTGTTCTTGCTGAAGCCAAACAAGAAGTGGA AGCTAAAGAAGAGCCTACAGAAGAAGTGAAGCAGTGTGTCGAAAAAGAAGAACCGCAA GAAGCTAAAGAAGAGAAGACTGAGAAAAAACAACAACAACAAGAAGTGGAGGAGGCG GTGGTCACTTGCTGCATTGATTCTTCGGAGAGCAATGAGCTGGCTTGGGACTTCTGTATG ATGGATTCAGGGTTTGCTCCGTTTTTGACGGATTCAAATCTCTCGAGTGAGAATCCCATT GAGTATCCTGAGCTTTTCAATGAGATGGGGTTTGAGGATAACATTGACTTCATGTTCGAG GAAGGGAAGCAAGACTGCTTGAGCTTGGAGAATCTGGATTGTTGCGATGGTGTTGTTGTG GTGGGAAGAGAGAGCCCAACTTCATTGTCGTCTTCACCGTTGTCTTGCTTGTCTACTGACT CTGCTTCATCAACAACAACAACAACAATAACCTCTGTTTCTTGTAACTATTCTGTCTGA SEQ ID NO: 18 - Amino acid sequence of the open reading frame of BnWRI01 MKRPLTTSPSTSSSTSSSACILPTQPETPRPKRAKRAKKSSIPTDVKPQNPTSPASTRRSSIYRGV TRHRWTGRYEAHLWDKSSWNSIQNKKGKQVYLGAYDSEEAAAHTYDLAALKYWGPDTIL NFPAETYTKELEEMQRCTKEEYLASLRRQSSGFSRGVSKYRGVARHHHNGRWEARIGRVFG NKYLYLGTYNTQEEAAAAYDMAAIEYRGANAVTNFDISNYIDRLKKKGVFPFPVSQANHQE AVLAEAKQEVEAKEEPTEEVKQCVEKEEPQEAKEEKTEKKQQQQEVEEAVVTCCIDSSESNE LAWDFCMMDSGFAPFLTDSNLSSENPIEYPELFNEMGFEDNIDFMFEEGKQDCLSLENLDCC DGVVVVGRESPTSLSSSPLSCLSTDSASSTTTTTITSVSCNYSV SEQ ID NO: 19 - Nucleic acid sequence of BnWRI08 AGAGTATTTGGGACACGTGGTGGAATCTTCCGGTGGTCCGGAGCTTGGTTTTCACGGTGG AGCTAACAACGGAGGAGCTTTGTCACTTGGTGTTAACGTTAACAACTCTAATCACAGGAC TAGTGATGATCATACTCAGATCACTGAGTATCATTACCGAGGAAATAACAATGGTGAAA GAACCAACAACGAGAAGACGGTTTCTGAGAAGGAGAAGCCTGTTGTGGCTGTGGAGACA TCAGATTGTTCTAACAAGAAGATCGCTGATACGTTTGGACAAAGGACTTCCATCTACAGA GGAGTTACAAGACATAGATGGACGGGAAGATATGAAGCTCATCTATGGGATAATAGCTG TAGGCGAGAAGGTCAAGCCAGGAAAGGACGTCAAGTATACTTGGGTGGATATGACAAA GAAGACAAGGCAGCTCGAGCTTATGATTATAGCAGCTCTTAAGTACTGGAATGCTACTGC TACCACCAATTTCCCTATTACAAACTACTCAAAAGAACTAGAGGAAATGAAGCACATGA CCAAACAAGAGTTCATTGCTTCCCTTAGGAGGAAGAGTAGCGGATTCTCTAGAGGAGCC TCAATATACAGAGGTGTGACAAGGCATCATCAACAAGGACGTTGGCAAGCAAGGATAGG CCGTGTAGCCGGGAACAAAGATCTTTACCTAGGAACATTTGCAACGGAAGAGGAAGCAG CCGAGGCATACGACATAGCAGCGATCAAATTCAGGGGAATAAACGCTGTAACAAACTTT GAGATGAACCGTTACGACGTTGAGGCCATCATGAAGAGTGCACTTCCCATTGGTGGTGC AGCAAAACGTCTTAAGCTCTCTTTAGAAGCTGCAGAGCAGAAACCAATCCTCGGTCATCA ACATCAACTCCACCACTTCCAGCAACAACAGCAGCAACAGATTCAGTCCTCTCCGAACCA CAGTAGCATTAACTTCGCTCAATCTCAGATGATTCCTGTGGGATCCCTTTTGAAGCTGCTG CTCTCTACCATCATCAACAGCAACAACAGCAGCAGCAGCAACAGAACTTCTTCCAGCATT TTCCGGCGAATGTTCGAGCTACTGACTCGACCGGTTCTAATAATAACTCCAACGTTCAAG GTTCAATGGGACTTATGGTGCCGAATCAGGCTGAGTTCTTCCTCTGGCCTAACCAGTCTT ACTAGAATCAATCATGTTATGTTTTTTGTTTTTTTTTTTTTGTTTTAGTTTTTAATGGTTTTT AAGGGATAACAACTTCTTTCTAATGTTCAACTTCTTGATTCTAGCTAACCCCATAAGCTG ACTANAAGGATATGAAAATCTCACTTGTNCCGNGTTACTCNGTTTCCATTTAATGAAATG NGTTTCTGTTTANGTA SEQ ID NO: 20 - Nucleic acid sequence of the open reading frame of BnWRI08 ATGATCATACTCAGATCACTGAGTATCATTACCGAGGAAATAACAATGGTGAAAGAACC AACAACGAGAAGACGGTTTCTGAGAAGGAGAAGCCTGTTGTGGCTGTGGAGACATCAGA TTGTTCTAACAAGAAGATCGCTGATACGTTTGGACAAAGGACTTCCATCTACAGAGGAGT TACAAGACATAGATGGACGGGAAGATATGAAGCTCATCTATGGGATAATAGCTGTAGGC GAGAAGGTCAAGCCAGGAAAGGACGTCAAGTATACTTGGGTGGATATGACAAAGAAGA CAAGGCAGCTCGAGCTTATGATTATAGCAGCTCTTAAGTACTGGAATGCTACTGCTACCA CCAATTTCCCTATTACAAACTACTCAAAAGAACTAGAGGAAATGAAGCACATGACCAAA CAAGAGTTCATTGCTTCCCTTAGGAGGAAGAGTAGCGGATTCTCTAGAGGAGCCTCAATA TACAGAGGTGTGACAAGGCATCATCAACAAGGACGTTGGCAAGCAAGGATAGGCCGTGT AGCCGGGAACAAAGATCTTTACCTAGGAACATTTGCAACGGAAGAGGAAGCAGCCGAG GCATACGACATAGCAGCGATCAAATTCAGGGGAATAAACGCTGTAACAAACTTTGAGAT GAACCGTTACGACGTTGAGGCCATCATGAAGAGTGCACTTCCCATTGGTGGTGCAGCAA AACGTCTTAAGCTCTCTTTAGAAGCTGCAGAGCAGAAACCAATCCTCGGTCATCAACATC AACTCCACCACTTCCAGCAACAACAGCAGCAACAGATTCAGTCCTCTCCGAACCACAGT AGCATTAACTTCGCTCAATCTCAGATGATTCCTGTGGGATCCCTTTTGAAGCTGCTGCTCT
CTACCATCATCAACAGCAACAACAGCAGCAGCAGCAACAGAACTTCTTCCAGCATTTTCC GGCGAATGTTCGAGCTACTGACTCGACCGGTTCTAATAATAACTCCAACGTTCAAGGTTC AATGGGACTTATGGTGCCGAATCAGGCTGAGTTCTTCCTCTGGCCTAACCAGTCTTACTA GAATCAATCATGTTATGTTTTTTGTTTTTTTTTTTTTGTTTTAG SEQ ID NO: 21 - Amino acid sequence of the open reading frame of BnWRI08 MIILRSLSIITEEITMVKEPTTRRRFLRRRSLLWLWRHQIVLTRRSLIRLDKGLPSTEELQDIDGR EDMKLIYGIIAVGEKVKPGKDVKYTWVDMTKKTRQLELMIIAALKYWNATATTNFPITNYS KELEEMKHMTKQEFIASLRRKSSGFSRGASIYRGVTRHHQQGRWQARIGRVAGNKDLYLGT FATEEEAAEAYDIAAIKFRGINAVTNFEMNRYDVEAIMKSALPIGGAAKRLKLSLEAAEQKPI LGHQHQLHHFQQQQQQQIQSSPNHSSINFAQSQMIPVGSLLKLLLSTIINSNNSSSSNRTSSSIF RRMFELLTRPVLIITPTFKVQWDLWCRIRLSSSSGLTSLTRINHVMFFVFFFLF SEQ ID NO: 22 - Nucleic acid sequence of psw2 AAGCAGTGGTAACAACGCAGAGTACGCGGGATTCAAGTACTTCTTCTTTGTAACCAAACT AAAACCTCTTGATTTATTGTTTCATTTAATCAAATAGTAGTAATAATATCACCACCGCACC GACATGGAGTAGAAGTAGCTCTTCATTCAAAGAGTAACGCCTCTCCAGAGACTAGTACTT CATTTTGCACCATTGATATCTCAAATGGCTCGTGCTTCGACTAACTGGCTATCGTTCTCTC TCTCCCCCATGGAAATGCTCCGAACCCCCGAACCTCAGTTCGTTCAATACGACGCCGCTT CCGACACTTCCTCGCATCACTACTACCTCGACAACTTGTACACCAACGGGTGGGGGAACG GGAGCCTCAAGTTTGAGCAGAATCTGAACCACAGCGACGTGAGTTTCGTTGAATCGTCGT CGCAGAGCGTCAGCCACGCGCCGCCGAAGCTGGAGGATTTTCTCGGCGACTCCTCCGCTG TTATGCGTTACTCCGACAGCCAGACGGAGACGCAGGACTCGTCGCTGACGCACATCTAC GACCACCACCACCACCACCACCACCACCACCACCACGGTTCTTCTGCGTACTTCGGCGGT GACCACCAGGATCTCAAGGCCATTACTGGATTCCAAGCTTTTTCGACTAACTCTGGCTCC GAGGTTGATGATTCTGCATCGATCGGAAAGGCGCAGGGCAGCGAGTTCGGGACTCACTC TATTGAGTCCTCCGTCAACGAGTTCGCCGCGTTCTCCGGTGGCACCAACACCGGTGGAAC CTTGTCGCTCGCCGTCGCGCAGAGCTCCGAGAAGGCCGTCGCTGCTGCGGCGGAGTCCG ATCGCTCGAAGAAGGTTGTGGATACCTTCGGCCAGCGGACTTCTATATACAGAGGTGTCA CTAGGCACCGATGGACAGGAAGATATGAAGCGCATCTATGGGACAATAGTTGCAGAAGG GAGGGTCAAGCTAGAAAAGGGCGTCAAGTTTATTTGGGTGGATATGATAAGGAAGAAAA GGCCGCTAGATCTTATGATTTGGCAGCTCTGAAGTACTGGGGTCCCACTGCTACCACCAA CTTCCCTGTTTCCAATTATTCAAAGGAAGTGGAGGAGATGAAACATGTAACAAAGCAGG AATTTATCGCATCATTGCGAAGGAAAAGTAGTGGTTTCTCCAGGGGAGCTTCCATATACA GAGGTGTTACAAGGCATCATCAACAGGGTAGGTGGCAAGCAAGAATTGGCCGTGTAGCT GGAAACAAAGATCTTTACTTGGGAACATTCGCAACCGAGGAGGAAGCAGCAGAGGCATA TGATATTGCAGCCATTAAGTTCAGAGGTGCAAACGCGGTAACCAACTTTGAGATGAATA GATATGATGTGGAAGCTATAATGAAGAGTTCTCTTCCAGTGGGTGGGGCAGCAAAGCGC TTGAAGCTTTCCCTTGAATCAGAGCAGAAAGCTCTTCCTGTGAGCAGCAGCAGCAGCAGC AATCAACAGCAGAATCCACAGTGTGGAAACGTGAGTGCCAGCATCAATTTCTCATCCATT CATCAGCCAATTGCTTCTATCCCTTGTGGAATTCCCTTTGATTCAACAACAGCATATTATC ATCACAACCTTTTCCAACATTTTCACCCTACCAACGCTGGCACAGCAGCGTCTGCTGTTA CTTCTGCCAATGCAAATGCACTAACTGCACTGCCACCAACAGCAGCAGCTGAGTTCTTTA TTTGGCCTCATCAGTCTTATTGAAAAAAGAAAAAGAAAAAAAAGAGGAGGTTTTTGAGT TGGCTAGTCTTGGTTACAGTAGGAAGCTGGATATGTAACTAACTGCTTAAGAAATGAGA AATATTTCGTGCATCATAATTTTGCACAAGAAAAAAAAAGA SEQ ID NO: 23 - Nucleic acid sequence of the open reading frame of psw2 ATGGCTCGTGCTTCGACTAACTGGCTATCGTTCTCTCTCTCCCCCATGGAAATGCTCCGAA CCCCCGAACCTCAGTTCGTTCAATACGACGCCGCTTCCGACACTTCCTCGCATCACTACT ACCTCGACAACTTGTACACCAACGGGTGGGGGAACGGGAGCCTCAAGTTTGAGCAGAAT CTGAACCACAGCGACGTGAGTTTCGTTGAATCGTCGTCGCAGAGCGTCAGCCACGCGCC GCCGAAGCTGGAGGATTTTCTCGGCGACTCCTCCGCTGTTATGCGTTACTCCGACAGCCA GACGGAGACGCAGGACTCGTCGCTGACGCACATCTACGACCACCACCACCACCACCACC ACCACCACCACCACGGTTCTTCTGCGTACTTCGGCGGTGACCACCAGGATCTCAAGGCCA TTACTGGATTCCAAGCTTTTTCGACTAACTCTGGCTCCGAGGTTGATGATTCTGCATCGAT CGGAAAGGCGCAGGGCAGCGAGTTCGGGACTCACTCTATTGAGTCCTCCGTCAACGAGT TCGCCGCGTTCTCCGGTGGCACCAACACCGGTGGAACCTTGTCGCTCGCCGTCGCGCAGA GCTCCGAGAAGGCCGTCGCTGCTGCGGCGGAGTCCGATCGCTCGAAGAAGGTTGTGGAT ACCTTCGGCCAGCGGACTTCTATATACAGAGGTGTCACTAGGCACCGATGGACAGGAAG ATATGAAGCGCATCTATGGGACAATAGTTGCAGAAGGGAGGGTCAAGCTAGAAAAGGG CGTCAAGTTTATTTGGGTGGATATGATAAGGAAGAAAAGGCCGCTAGATCTTATGATTTG GCAGCTCTGAAGTACTGGGGTCCCACTGCTACCACCAACTTCCCTGTTTCCAATTATTCA AAGGAAGTGGAGGAGATGAAACATGTAACAAAGCAGGAATTTATCGCATCATTGCGAAG GAAAAGTAGTGGTTTCTCCAGGGGAGCTTCCATATACAGAGGTGTTACAAGGCATCATC AACAGGGTAGGTGGCAAGCAAGAATTGGCCGTGTAGCTGGAAACAAAGATCTTTACTTG GGAACATTCGCAACCGAGGAGGAAGCAGCAGAGGCATATGATATTGCAGCCATTAAGTT CAGAGGTGCAAACGCGGTAACCAACTTTGAGATGAATAGATATGATGTGGAAGCTATAA TGAAGAGTTCTCTTCCAGTGGGTGGGGCAGCAAAGCGCTTGAAGCTTTCCCTTGAATCAG AGCAGAAAGCTCTTCCTGTGAGCAGCAGCAGCAGCAGCAATCAACAGCAGAATCCACAG TGTGGAAACGTGAGTGCCAGCATCAATTTCTCATCCATTCATCAGCCAATTGCTTCTATCC CTTGTGGAATTCCCTTTGATTCAACAACAGCATATTATCATCACAACCTTTTCCAACATTT TCACCCTACCAACGCTGGCACAGCAGCGTCTGCTGTTACTTCTGCCAATGCAAATGCACT AACTGCACTGCCACCAACAGCAGCAGCTGAGTTCTTTATTTGGCCTCATCAGTCTTATTGA SEQ ID NO: 24 - Amino acid sequence of the open reading frame of psw2 MARASTNWLSFSLSPMEMLRTPEPQFVQYDAASDTSSHHYYLDNLYTNGWGNGSLKFEQNL NHSDVSFVESSSQSVSHAPPKLEDFLGDSSAVMRYSDSQTETQDSSLTHIYDHHHHHHHHHH HGSSAYFGGDHQDLKAITGFQAFSTNSGSEVDDSASIGKAQGSEFGTHSIESSVNEFAAFSGG TNTGGTLSLAVAQSSEKAVAAAAESDRSKKVVDTFGQRTSIYRGVTRHRWTGRYEAHLWD NSCRREGQARKGRQVYLGGYDKEEKAARSYDLAALKYWGPTATTNFPVSNYSKEVEEMKH VTKQEFIASLRRKSSGFSRGASIYRGVTRHHQQGRWQARIGRVAGNKDLYLGTFATEEEAAE AYDIAAIKFRGANAVINFEMNRYDVEAIMKSSLPVGGAAKRLKLSLESEQKALPVSSSSSSN QQQNPQCGNVSASINFSSIHQPIASIPCGIPFDSTTAYYHHNLFQHFHPTNAGTAASAVTSANA NALTALPPTAAAEFFIWPHQSY SEQ ID NO: 25 - Nucleic acid sequence of psw6 GATAGATTGCAGTTTCCAAAGAACCCAACTCAACTTCAAAACCCCATAATAATCTCTCTT TGACATTCATAAAAAACACACACCATGGACTCTTGTTCATCACCGCCAAACAACAACTCC CTCGCTTTCTCTCTTTCCAATCACTTTCCCAACCCTTCCTCCTCTCCCCTCTCCCTTTTCCA CTCCTTCACCTATCCATCTCTCTCTCTCACAGGAAGCCACACGGCGGATGCACCTCCTGA GCCCATCGCCGGCGGAGGAGCGACCAACCTCTCCATATTCACCGGCGCCCCCAAGTTCG AGGACTTTCTGGGCGGTTCCTCCGCAACAGCCACCGCCACCACGTGTGCACCGCCACAGC TTCCGCAGTTCTCCACCGACAACAACAACCACCTGTACGATTCGGAGCTGAAGACAACA ATAGCCGCGTGCTTCCCTCGCGCCTTTGCCGCCGAACCAACCACCGAACCTCAGAAACCC TCTCCAAAGAAAACCGTCGACACCTTCGGCCAACGCACCTCCATCTACCGCGGCGTCACC CGACATAGATGGACGGGAAGATACGAAGCTCATCTATGGGACAATAGTTGTAGAAGAGA AGGCCAAAGCAGGAAAGGAAGACAAGTTTACCTGGGTGGTTATGACAAGGAAGATAAG GCAGCCAGGGCTTACGATCTCGCAGCTCTCAAGTACTGGGGTCCAACTACCACCACCAAC TTTCCCATTTCCAACTATGAGAAGGAACTGGAGGAGATGAAGAACATGACCAGGCAAGA GTTTGTTGCTTCTCTACGAAGGAAGAGCAGTGGTTTCTCTAGGGGGGCCTCTATATACAG AGGAGTGACGAGACACCACCAGCATGGCCGATGGCAGGCGAGAATAGGCAGAGTTGCC GGAAACAAAGACCTCTACCTTGGAACTTTCAGCACCCAAGAAGAAGCTGCTGAGGCCTA TGACATTGCTGCTATCAAATTCAGGGGATTAAATGCAGTCACAAACTTTGACATGAGTCG CTACGATGTAAAGAGCATTGCAAATAGCACTCTTCCAATTGGAGGTTTATCTGGCAAGAA CAAGAACTCCACAGATTCTGCATCTGAGAGCAAGAGCCACGAGGCAAGCCGATCCGACG AACGAGATCCATCAGCGGCTTCATCCGTGACCTTTGCATCACAGCAACAGCCTTCGAGCT CCACCTTAAGCTTTGCCATACCCATTAAGCAAGACCCTTCAGATTACTGGTCCATCCTGG GGTACCATAATTCTCCCCTTGACAACACTGGCATCAGGAACACTACTAGTGTTACTGCAA CTTCTTTTCCATCCTCCAACAATGGCACTACTAGTAGTTTGACACCCTTCCACATGGAATT CTCAAATGCCCCCACAAGTACCGGCAGTGATAACGATGCCGCGTTTTTCAGTGGAGGAG GCATCTTTGTTCAGCAACAAAGTGGTCATGGTAATGGTCATGGAAGTGGAAGCAGTGGTT CCTCCTCTTCTTCTTTAAGCTGTTCAATCCCATTCGCCACGCCCATCTTTTCTCTAAATAGC AATACTAGTTATGAGAACAGTGCTGGTTATGGAAACTGGATTGGACCTACCCTGCACACA TTCCAATCCCATGCAAAACCAAGTCTCTTTCAAACGCCAATATTTGGAATGGAATGAGCT CATGCACGAGGTGGGATGAGAATCTGTGCATATAATGATGAAAGGGGAAGGGCAATAGT GGTGATGGTGTTTTAGCATGCAAAAGAAGCAAGGACGAACTAGTACCTTTAGCTGATGC AGTATTTGAATGAGTTGGACTGACAGTCATAATTTCATGAGAAGCGTAGCTATACCTAGC AGCAGCTGACACTGTACTAACTCAAAGTTCCTTTGTTATGTTTTGGATGAATTTTCTTTTT TTTCTTTTTCGCCCCCTTTTTAGCTTTTTGTCCCTGTTAATATACTGACATCATTTCAAATG AGTATAATGGGAAGAAAAAAGAAAATCCTTTTGTAATCCCCTTTCATCTCATTTTTGTTA GTATTAAAAACTTGCTATATCTATGCGAAAGGCATTCAATGCCTATATATAGA SEQ ID NO: 26 - Nucleic acid sequence of the open reading frame of psw6 ATGGACTCTTGTTCATCACCGCCAAACAACAACTCCCTCGCTTTCTCTCTTTCCAATCACT TTCCCAACCCTTCCTCCTCTCCCCTCTCCCTTTTCCACTCCTTCACCTATCCATCTCTCTCT CTCACAGGAAGCCACACGGCGGATGCACCTCCTGAGCCCATCGCCGGCGGAGGAGCGAC CAACCTCTCCATATTCACCGGCGCCCCCAAGTTCGAGGACTTTCTGGGCGGTTCCTCCGC AACAGCCACCGCCACCACGTGTGCACCGCCACAGCTTCCGCAGTTCTCCACCGACAACA ACAACCACCTGTACGATTCGGAGCTGAAGACAACAATAGCCGCGTGCTTCCCTCGCGCCT TTGCCGCCGAACCAACCACCGAACCTCAGAAACCCTCTCCAAAGAAAACCGTCGACACC TTCGGCCAACGCACCTCCATCTACCGCGGCGTCACCCGACATAGATGGACGGGAAGATA
CGAAGCTCATCTATGGGACAATAGTTGTAGAAGAGAAGGCCAAAGCAGGAAAGGAAGA CAAGTTTACCTGGGTGGTTATGACAAGGAAGATAAGGCAGCCAGGGCTTACGATCTCGC AGCTCTCAAGTACTGGGGTCCAACTACCACCACCAACTTTCCCATTTCCAACTATGAGAA GGAACTGGAGGAGATGAAGAACATGACCAGGCAAGAGTTTGTTGCTTCTCTACGAAGGA AGAGCAGTGGTTTCTCTAGGGGGGCCTCTATATACAGAGGAGTGACGAGACACCACCAG CATGGCCGATGGCAGGCGAGAATAGGCAGAGTTGCCGGAAACAAAGACCTCTACCTTGG AACTTTCAGCACCCAAGAAGAAGCTGCTGAGGCCTATGACATTGCTGCTATCAAATTCAG GGGATTAAATGCAGTCACAAACTTTGACATGAGTCGCTACGATGTAAAGAGCATTGCAA ATAGCACTCTTCCAATTGGAGGTTTATCTGGCAAGAACAAGAACTCCACAGATTCTGCAT CTGAGAGCAAGAGCCACGAGGCAAGCCGATCCGACGAACGAGATCCATCAGCGGCTTCA TCCGTGACCTTTGCATCACAGCAACAGCCTTCGAGCTCCACCTTAAGCTTTGCCATACCC ATTAAGCAAGACCCTTCAGATTACTGGTCCATCCTGGGGTACCATAATTCTCCCCTTGAC AACACTGGCATCAGGAACACTACTAGTGTTACTGCAACTTCTTTTCCATCCTCCAACAAT GGCACTACTAGTAGTTTGACACCCTTCCACATGGAATTCTCAAATGCCCCCACAAGTACC GGCAGTGATAACGATGCCGCGTTTTTCAGTGGAGGAGGCATCTTTGTTCAGCAACAAAGT GGTCATGGTAATGGTCATGGAAGTGGAAGCAGTGGTTCCTCCTCTTCTTCTTTAAGCTGTT CAATCCCATTCGCCACGCCCATCTTTTCTCTAAATAGCAATACTAGTTATGAGAACAGTG CTGGTTATGGAAACTGGATTGGACCTACCCTGCACACATTCCAATCCCATGCAAAACCAA GTCTCTTTCAAACGCCAATATTTGGAATGGAATGA SEQ ID NO: 27 - Amino acid sequence of the open reading frame of psw6 MDSCSSPPNNNSLAFSLSNHFPNPSSSPLSLFHSFTYPSLSLTGSHTADAPPEPIAGGGATNLSIF TGAPKFEDFLGGSSATATATTCAPPQLPQFSTDNNNHLYDSELKTTIAACFPRAFAAEPTTEPQ KPSPKKTVDTFGQRTSIYRGVTRHRWTGRYEAHLWDNSCRREGQSRKGRQVYLGGYDKED KAARAYDLAALKYWGPTTTTNFPISNYEKELEEMKNMTRQEFVASLRRKSSGFSRGASIYRG VTRHHQHGRWQARIGRVAGNKDLYLGTFSTQEEAAEAYDIAAIKFRGLNAVTNFDMSRYDV KSIANSTLPIGGLSGKNKNSTDSASESKSHEASRSDERDPSAASSVTFASQQQPSSSTLSFAIPIK QDPSDYWSILGYHNSPLDNTGIRNTTSVTATSFPSSNNGTTSSLTPFHMEFSNAPTSTGSDNDA AFFSGGGIFVQQQSGHGNGHGSGSSGSSSSSLSCSIPFATPIFSLNSNTSYENSAGYGNWIGPTL HTFQSHAKPSLFQTPIFGME SEQ ID NO: 28 - Nucleic acid sequence of GmWRI02 CCTCTTGATTTATTGTTTCATTTAATCAAATAGTAGTAATAATATCACCACCGCGCCGACA TGGAGTAGAAGTAGCTCTTCATTCAAAGAGTAACGCCTCTCCAGAGACTAGTACTTCATT TTGCACCATTGATATCTCAAATGGCTCGTGCTTCGACTAACTGGCTATCGTTCTCTCTCTC CCCCATGGAAATGCTCCGAACCCCCGAACCTCAGTTCGTTCAATACGACGCCGCTTCCGA CACTTCCTCGCATCACTACTACCTCGACAACTTGTACACCAACGGGTGGGGGAACGGGA GCCTCAAGTTTGAGCAGAATCTGAACCACAGCGACGTGAGTTTCGTTGAATCGTCGTCGC AGAGCGTCAGCCACGCGCCGCCGAAGCTGGAGGATTTTCTCGGCGACTCCTCCGCTGTTA TGCGTTACTCCGACAGCCAGACGGAGACGCAGGACTCGTCGCTGACGCACATCTACGAC CACCACCACCACCACCACCACCACCACCACCACGGTTCTTCTGCGTACTTCGGCGGTGAC CACCAGGATCTCAAGGCCATTACTGGATTCCAAGCTTTTTCGACTAACTCTGGCTCCGAG GTTGATGATTCTGCATCGATCGGAAAGGCGCAGGGCAGCGAGTTCGGGACTCACTCTATT GAGTCCTCCGTCAACGAGTTCGCCGCGTTCTCCGGTGGCACCAACACCGGTGGAACCTTG TCGCTCGCCGTCGCGCAGAGCTCCGAGAAGGCCGTCGCTGCTGCGGCGGAGTCCGATCG CTCGAAGAAGGTTGTGGATACCTTCGGCCAGCGGACTTCTATATACAGAGGTGTCACTAG GCACCGATGGACAGGAAGATATGAAGCGCATCTATGGGACAATAGTTGCAGAAGGGAG GGTCAAGCCAGAAAAGGGCGTCAAGTTTATTTGGGTGGATATGATAAGGAAGAAAAGGC CGCGAGAGCTTATGATTTGGCAGCTCTAAAGTACTGGGGTCCCACTGCTACCACCAACTT CCCTGTTTCCAATTATTCGAAGGAAGTGGAGGAGATGAAACATGTAACAAAGCAAGAAT TTATTGCATCATTGCGGAGGAAAAGTAGTGGTTTCTCCAGGGGAGCTTCCATATACAGAG GTGTTACAAGGCATCATCAACAGGGTAGGTGGCAAGCAAGAATTGGCCGTGTAGCTGGA AACAAAGATTTATACTTGGGAACATTCGCAACCGAGGAGGAAGCAGCAGAGGCATATGA TATTGCAGCCATAAAGTTCAGAGGTGCAAACGCGGTAACCAACTTTGAGATGAATAGAT ATGATGTGGAAGCTATAATGAAGAGTTCTCTTCCAGTGGGTGGGGCAGCAAAACGCTTG AGGCTTTCCCTTGAATCAGAGCAGAAAGCTCCTCCTGTGAACAGCAGCAGTCAGCAGCA GAATCCACAGTGTGGTAACGTGAGTGGTAGCATCAATTTCTCAGCCATTCATCAGCCAAT TGCTTCAATCCCTTGTGGAATTCCGTTTGATTCAACAACAGCATATTATCCTCACAACCTT TTCCAACATTTTCACCCTACCAACGCTGGTGCAGCAGCGTCTGCTGTTACTTCTGCCAATG CAACCGCACTAACTGCACTGCCAGCATCAGCAGCAACTGAGTTCTTTATTTGGCCTCATC AGTCTTATTGA SEQ ID NO: 29 - Nucleic acid sequence of the open reading frame of GmWRI02 ATGGCTCGTGCTTCGACTAACTGGCTATCGTTCTCTCTCTCCCCCATGGAAATGCTCCGAA CCCCCGAACCTCAGTTCGTTCAATACGACGCCGCTTCCGACACTTCCTCGCATCACTACT ACCTCGACAACTTGTACACCAACGGGTGGGGGAACGGGAGCCTCAAGTTTGAGCAGAAT CTGAACCACAGCGACGTGAGTTTCGTTGAATCGTCGTCGCAGAGCGTCAGCCACGCGCC GCCGAAGCTGGAGGATTTTCTCGGCGACTCCTCCGCTGTTATGCGTTACTCCGACAGCCA GACGGAGACGCAGGACTCGTCGCTGACGCACATCTACGACCACCACCACCACCACCACC ACCACCACCACCACGGTTCTTCTGCGTACTTCGGCGGTGACCACCAGGATCTCAAGGCCA TTACTGGATTCCAAGCTTTTTCGACTAACTCTGGCTCCGAGGTTGATGATTCTGCATCGAT CGGAAAGGCGCAGGGCAGCGAGTTCGGGACTCACTCTATTGAGTCCTCCGTCAACGAGT TCGCCGCGTTCTCCGGTGGCACCAACACCGGTGGAACCTTGTCGCTCGCCGTCGCGCAGA GCTCCGAGAAGGCCGTCGCTGCTGCGGCGGAGTCCGATCGCTCGAAGAAGGTTGTGGAT ACCTTCGGCCAGCGGACTTCTATATACAGAGGTGTCACTAGGCACCGATGGACAGGAAG ATATGAAGCGCATCTATGGGACAATAGTTGCAGAAGGGAGGGTCAAGCCAGAAAAGGG CGTCAAGTTTATTTGGGTGGATATGATAAGGAAGAAAAGGCCGCGAGAGCTTATGATTT GGCAGCTCTAAAGTACTGGGGTCCCACTGCTACCACCAACTTCCCTGTTTCCAATTATTC GAAGGAAGTGGAGGAGATGAAACATGTAACAAAGCAAGAATTTATTGCATCATTGCGGA GGAAAAGTAGTGGTTTCTCCAGGGGAGCTTCCATATACAGAGGTGTTACAAGGCATCAT CAACAGGGTAGGTGGCAAGCAAGAATTGGCCGTGTAGCTGGAAACAAAGATTTATACTT GGGAACATTCGCAACCGAGGAGGAAGCAGCAGAGGCATATGATATTGCAGCCATAAAGT TCAGAGGTGCAAACGCGGTAACCAACTTTGAGATGAATAGATATGATGTGGAAGCTATA ATGAAGAGTTCTCTTCCAGTGGGTGGGGCAGCAAAACGCTTGAGGCTTTCCCTTGAATCA GAGCAGAAAGCTCCTCCTGTGAACAGCAGCAGTCAGCAGCAGAATCCACAGTGTGGTAA CGTGAGTGGTAGCATCAATTTCTCAGCCATTCATCAGCCAATTGCTTCAATCCCTTGTGG AATTCCGTTTGATTCAACAACAGCATATTATCCTCACAACCTTTTCCAACATTTTCACCCT ACCAACGCTGGTGCAGCAGCGTCTGCTGTTACTTCTGCCAATGCAACCGCACTAACTGCA CTGCCAGCATCAGCAGCAACTGAGTTCTTTATTTGGCCTCATCAGTCTTATTGA SEQ ID NO: 30 - Amino acid sequence of the open reading frame of GmWRI02 MARASTNWLSFSLSPMEMLRTPEPQFVQYDAASDTSSHHYYLDNLYTNGWGNGSLKFEQNL NHSDVSFVESSSQSVSHAPPKLEDFLGDSSAVMRYSDSQTETQDSSLTHIYDHHHHHHHHHH HGSSAYFGGDHQDLKAITGFQAFSTNSGSEVDDSASIGKAQGSEFGTHSIESSVNEFAAFSGG TNTGGTLSLAVAQSSEKAVAAAAESDRSKKVVDTFGQRTSIYRGVTRHRWTGRYEAHLWD NSCRREGQARKGRQVYLGGYDKEEKAARAYDLAALKYWGPTATTNFPVSNYSKEVEEMK HVTKQEFIASLRRKSSGFSRGASIYRGVTRHHQQGRWQARIGRVAGNKDLYLGTFATEEEAA EAYDIAAIKFRGANAVTNFEMNRYDVEAIMKSSLPVGGAAKRLRLSLESEQKAPPVNSSSQQ QNPQCGNVSGSINFSAIHQPIASIPCGIPFDSTTAYYPHNLFQHFHPTNAGAAASAVTSANATA LTALPASAATEFFIWPHQSY SEQ ID NO: 31 - Nucleic acid sequence of GmWRI03 CCTTGCTGTAGCTAAACAACAAAAACCAAGTCTTCATTGGTAACAAGAAGATTATTATTT TTATATGATTTGTTTATTTATCACCCAATGATTGACTTTGCCTAGCTGCAGCTGCTACGAG AGAAGATACTGCTGGTGGTGGTGCTAGCAATAGCAAGTTTAAAGTTCAAACCTTTTTCAA GTAATTTATAAGTTGAGAAAGAAAAGAAAAAACCAAGAAAAAAAGAAGCAAAGATGAA GTCCATGAATGATAGTAACACCGTTGATGATGGGAACAATCATAATAACTGGTTGGGATT CTCTCTCTCACCCCACATGAAAATGGATGTTGTTACTTCTTCTACTACCACTGGTCCTCAT CATCCCCACCAACACCATCATCATCATCACTACTATCATCACCCTCACGAGGCTTCTGCT GCAGCTTGCAACAACAACAACAACACTGTTCCCACTAACTTCTATATGTCACCCTCGCAC CTCAACACCTCTGGAATATGTTATGGTGTTGGAGAAAACAGTGCCTTTCACACTCCTTTG GCCATGATGCCTCTCAAGTCAGATGGGTCACTTTGCATTATGGAGGCTCTAACAAGATCA CAAACCCAAATGATGGTGCCAACTTCATCTCCAAAACTTGAGGACTTCCTAGGTGGTGCA ACTATGGGGGCTCAAGACTATGGAACCCATGAGAGAGAAGCAATGGCTCTAAGCCTAGA CAGTATCTACTACAGCAACCAGAATGCTGAACCTGAAACCAACAGGGACCATTCATCTTC TCTTGACCTTCTTTCTGACCATTTCAGGCACCAAACCCATCATCACCCATATTACTCAGGA CTTGGGATTTACCAAGTGGAGGAAGAAGAAACCAAGGAACAACCACACGTTGCAGTTTG CAGCTCCCAAATGCCTCAAGTGGTTGAAGGCAGCATTGCTTGCTTCAAAAACTGGGTGCC AACAAGGGAATACTCTTCTTCTTCCACTCAGCAGAATCTGGAGCAGCATCAAGTGAATAG TAGTAGCAGTGGTGGCCTTGGAGAGGATAATAATGTAGCTTATGGGAATGTTGGTGTTGG TAGTAGTGTTGGTTGTGGTGAGTTACAGTCTTTGAGTTTGTCTATGAGTCCTGGTTCTCAA TCAAGCTGTGTCACTGTTCCAACTCAGATCTCATCTTCTGGAACTGACTCAGTTGCTGTGG ATGCCAAAAAGAGAGGCTCTTCTAAGCTTGGACAGAAGCAACCTGTGCATAGGAAATCC ATCGACACATTTGGTCAAAGAACTTCTCAGTATAGAGGTGTCACAAGGCATAGATGGAC TGGTAGATATGAAGCACATTTGTGGGATAACAGTTGCAAGAAGGAAGGGCAAACAAGG AAAGGACGACAAGTGTATTTGGGTGGTTATGATATGGAAGAGAAAGCTGCAAGGGCTTA TGATCTTGCGGCTCTCAAGTATTGGGGACCTTCAACACACATAAACTTCCCGCTAGAAAA TTACCAAACTCAACTTGAAGAAATGAAGAATATGAGTAGGCAGGAATACGTGGCCCACT TGAGAAGAAAGAGTAGTGGGTTTTCAAGGGGTGCCTCAATGTACAGAGGAGTGACAAGG CACCACCAACATGGCAGGTGGCAAGCAAGGATAGGCAGAGTTGCAGGAAATAAGGACC TTTATCTTGGGACATTCAGCACTCAAGAGGAAGCAGCTGAAGCATATGATGTAGCTGCA ATCAAATTTCGTGGGGTGAATGCTGTCACCAACTTTGACATATCAAGATACGACGTTGAG
AGAATAATGGCCAGCAACACCCTTCTAGCTGGAGAGCTAGCTAGAAGAAACAAGAACAG TGAGCCAAGAACCGAGGCCATAGAGTACAATGTTGTGTCAAGCCAACAAGTCATAAGCA ACAGGGAAGAAGTTCACGAGACTGTGAACAACAACAACAATAATAATAGTGAAAATGG TTCATCATCAGATTGGAAGATGAGTTTGTATCATCATCAGCAACAGTCAAACAACTGTGA CCAGAAAACCATCAAGTGTGAAAATTATAATAGAGGTGGTGCTGCTTTCTCTGTGTCCCT ACAAGATCTCATTGGGATTGACTCAGTAGGATCTAGCCAAGGCATGATGGATGAGTCTA CTAAGATAGGGACTCATTTTTCAAACCCTTCCTCGCTGGTCACCAGTTTAAGCAGCTCAA GGGAAGGTAGCCCTGATAAAATGGGCCCCACTTTGCTCATTCCAAAGCCTCCAATGGGGT CAAAGATTGTTACTAGCCCTACTGTTGCCAATGGTGTCACTGTTGGCTCTTGGTTTCCCTC TCAAATGAGGCCAGTCTCAATGTCTCACTTGCCAGTTTTTGCTGCTTGGAGTGATGCCTAG SEQ ID NO: 32 - Nucleic acid sequence of the open reading frame of GmWRI03 ATGAAGTCCATGAATGATAGTAACACCGTTGATGATGGGAACAATCATAATAACTGGTT GGGATTCTCTCTCTCACCCCACATGAAAATGGATGTTGTTACTTCTTCTACTACCACTGGT CCTCATCATCCCCACCAACACCATCATCATCATCACTACTATCATCACCCTCACGAGGCTT CTGCTGCAGCTTGCAACAACAACAACAACACTGTTCCCACTAACTTCTATATGTCACCCT CGCACCTCAACACCTCTGGAATATGTTATGGTGTTGGAGAAAACAGTGCCTTTCACACTC CTTTGGCCATGATGCCTCTCAAGTCAGATGGGTCACTTTGCATTATGGAGGCTCTAACAA GATCACAAACCCAAATGATGGTGCCAACTTCATCTCCAAAACTTGAGGACTTCCTAGGTG GTGCAACTATGGGGGCTCAAGACTATGGAACCCATGAGAGAGAAGCAATGGCTCTAAGC CTAGACAGTATCTACTACAGCAACCAGAATGCTGAACCTGAAACCAACAGGGACCATTC ATCTTCTCTTGACCTTCTTTCTGACCATTTCAGGCACCAAACCCATCATCACCCATATTAC TCAGGACTTGGGATTTACCAAGTGGAGGAAGAAGAAACCAAGGAACAACCACACGTTGC AGTTTGCAGCTCCCAAATGCCTCAAGTGGTTGAAGGCAGCATTGCTTGCTTCAAAAACTG GGTGCCAACAAGGGAATACTCTTCTTCTTCCACTCAGCAGAATCTGGAGCAGCATCAAGT GAATAGTAGTAGCAGTGGTGGCCTTGGAGAGGATAATAATGTAGCTTATGGGAATGTTG GTGTTGGTAGTAGTGTTGGTTGTGGTGAGTTACAGTCTTTGAGTTTGTCTATGAGTCCTGG TTCTCAATCAAGCTGTGTCACTGTTCCAACTCAGATCTCATCTTCTGGAACTGACTCAGTT GCTGTGGATGCCAAAAAGAGAGGCTCTTCTAAGCTTGGACAGAAGCAACCTGTGCATAG GAAATCCATCGACACATTTGGTCAAAGAACTTCTCAGTATAGAGGTGTCACAAGGCATA GATGGACTGGTAGATATGAAGCACATTTGTGGGATAACAGTTGCAAGAAGGAAGGGCAA ACAAGGAAAGGACGACAAGTGTATTTGGGTGGTTATGATATGGAAGAGAAAGCTGCAAG GGCTTATGATCTTGCGGCTCTCAAGTATTGGGGACCTTCAACACACATAAACTTCCCGCT AGAAAATTACCAAACTCAACTTGAAGAAATGAAGAATATGAGTAGGCAGGAATACGTGG CCCACTTGAGAAGAAAGAGTAGTGGGTTTTCAAGGGGTGCCTCAATGTACAGAGGAGTG ACAAGGCACCACCAACATGGCAGGTGGCAAGCAAGGATAGGCAGAGTTGCAGGAAATA AGGACCTTTATCTTGGGACATTCAGCACTCAAGAGGAAGCAGCTGAAGCATATGATGTA GCTGCAATCAAATTTCGTGGGGTGAATGCTGTCACCAACTTTGACATATCAAGATACGAC GTTGAGAGAATAATGGCCAGCAACACCCTTCTAGCTGGAGAGCTAGCTAGAAGAAACAA GAACAGTGAGCCAAGAACCGAGGCCATAGAGTACAATGTTGTGTCAAGCCAACAAGTCA TAAGCAACAGGGAAGAAGTTCACGAGACTGTGAACAACAACAACAATAATAATAGTGA AAATGGTTCATCATCAGATTGGAAGATGAGTTTGTATCATCATCAGCAACAGTCAAACAA CTGTGACCAGAAAACCATCAAGTGTGAAAATTATAATAGAGGTGGTGCTGCTTTCTCTGT GTCCCTACAAGATCTCATTGGGATTGACTCAGTAGGATCTAGCCAAGGCATGATGGATGA GTCTACTAAGATAGGGACTCATTTTTCAAACCCTTCCTCGCTGGTCACCAGTTTAAGCAG CTCAAGGGAAGGTAGCCCTGATAAAATGGGCCCCACTTTGCTCATTCCAAAGCCTCCAAT GGGGTCAAAGATTGTTACTAGCCCTACTGTTGCCAATGGTGTCACTGTTGGCTCTTGGTTT CCCTCTCAAATGAGGCCAGTCTCAATGTCTCACTTGCCAGTTTTTGCTGCTTGGAGTGATG CCTAG SEQ ID NO: 33 - Amino acid sequence of the open reading frame of GmWRI03 MKSMNDSNTVDDGNNHNNWLGFSLSPHMKMDVVTSSTTTGPHHPHQHHHHHHYYHHPHE ASAAACNNNNTVPTNFYMSPSHLNTSGICYGVGENSAFHTPLAMMPLKSDGSLCIMEALTR SQTQMMVPTSSPKLEDFLGGATMGAQDYGTHEREAMALSLDSIYYSNQNAEPETNRDHSSS LDLLSDHFRHQTHHHPYYSGLGIYQVEEEETKEQPHVAVCSSQMPQVVEGSIACFKNWVPTR EYSSSSTQQNLEQHQVNSSSSGGLGEDNNVAYGNVGVGSSVGCGELQSLSLSMSPGSQSSCV TVPTQISSSGTDSVAVDAKKRGSSKLGQKQPVHRKSIDTFGQRTSQYRGVTRHRWTGRYEAH LWDNSCKKEGQTRKGRQVYLGGYDMEEKAARAYDLAALKYWGPSTHINFPLENYQTQLEE MKNMSRQEYVAHLRRKSSGFSRGASMYRGVTRHHQHGRWQARIGRVAGNKDLYLGTFST QEEAAEAYDVAAIKFRGVNAVTNFDISRYDVERIMASNTLLAGELARRNKNSEPRTEAIEYN VVSSQQVISNREEVHETVNNNNNNNSENGSSSDWKMSLYHHQQQSNNCDQKTIKCENYNR GGAAFSVSLQDLIGIDSVGSSQGMMDESTKIGTHFSNPSSLVTSLSSSREGSPDKMGPTLLIPKP PMGSKIVTSPTVANGVTVGSWFPSQMRPVSMSHLPVFAAWSDA SEQ ID NO: 34 - Nucleic acid sequence of GmWRI05 ATGAAGAGTATGGAAAATGATGACAATGCTGACCTTAATAATCAAAACAATTGGTTGGG TTTCTCACTCTCTCCTCAAATGCATAATATAGGAGTTTCTTCACACTCACAACCTTCCTCT GCTGCTGAAGTGGTTCCTACAAGCTTTTACCACCACACTGCTCCACTTAGTAGCTATGGTT TCTACTATGGACTTGAAGCTGAAAATGTTGGATTGTATTCAGCTTTGCCAATCATGCCCCT CAAATCTGATGGCTCTCTCTATGGATTGGAAACTTTAAGCAGGTCACAAGCACAAGCAAT GGCTACTACTTCAACACCAAAACTGGAGAACTTCTTAGGTGGGGAAGCCATGGGGACCC CTCATCACTACGAATGTAGTGCCACAGAAACAATGCCTCTGAGCTTAGACAGTGTTTTTT ACATCCAACCCTCACGCCGTGACCCAAATAATAACCAAACCTACCAAAACCATGTTCAA CACATTAGCACCAACCAACAACAACAACAGCAAGAGCTTCAAGCATATTACTCTACCTT GAGAAACCATGATATGATATTAGAAGGGTCAAAGCAAAGCCAAACTTCTGACAACAACA ATCTTCATGTTCAAAACATGGGTGGTGATGATGCCGTTCCTGTTCCTGGCCTCAAGAGTT GGGAAGTGAGGAACTTCCAAGCTAGCCATGCACATGAGTCAAAGATGATTGTTCCTCAT GTGGAGGAAAATGCTGGTGAATCAGGGTCCATTGGATCAATGGCTTATGGTGACTTGCA ATCGTTGAGCTTGTCCATGAGTCCTAGCTCTCAGTCTAGCAGTGTCACAAGTTCTCACCGT GCTTCACCTGCTGTCGTTGATTCTGTTGCCATGGATACTAAGAAAAGGGGGCCTGAAAAG GTTGACCAGAAGCAAATTGTTCATAGGAAGTCCATTGACACCTTTGGACAAAGAACCTCC CAGTATAGAGGAGTAACAAGGCATAGGTGGACTGGGAGATATGAAGCTCATCTTTGGGA CAACAGCTGCAAGAAAGAGGGGCAAAGCAGGAAAGGAAGACAAGTTTATCTAGGGGGT TATGATATGGAAGAAAAAGCTGCGAGAGCTTATGATCTAGCGGCACTCAAGTATTGGGG ACCCTCCACTCACATAAACTTTCCTTTGGAAAATTATCAAAATGAACTTGAGGAAATGAA GAACATGACTAGACAAGAGTATGTTGCTCATTTGAGAAGAAAAAGCAGCGGATTCTCAA GAGGGGCTTCCATGTACAGAGGAGTAACAAGACACCACCAACATGGAAGGTGGCAAGCT CGAATTGGTAGAGTGGCTGGAAACAAAGATCTATATCTTGGAACCTTTAGTACACAAGA GGAAGCAGCTGAAGCCTATGATATTGCTGCTATAAAATTCCGAGGAGCGAATGCTGTAA CCAACTTTGACATCACAAGATATGATGTGGAGAAAATCATGGCAAGCAGCAACCTCCTT AGCAGTGAGCTAGCTAGGCGCAACCGAGAGACGGACAATGAAACTCAGTGCATTGATCA AAATCACAATAAGCCTTCTGCATATGAGGACACTCAAGAAGCTATTCTAATGCACCAGA AGAGCTGTGAGAGCGAAAATGATCAGTGGAAGATGGTTCTCTACCAATCCTCTCAGCAA CTTGAGCAGAATCCACCAACAATTGAGAGTGACAGAACTAACCAGTCCTTCGCAGTGGC TTTGGACAACATGTTTCATCAGGAAGTAGAGGAATCAAGTAAGGCGAGGACGCATGTGT CAAATCCTTCTTCATTGGCCACAAGTTTGAGCAGCTCAAGAGAAGGTAGCCCTGATAGGA CAAGCTTGCCAATGCTCTCTGGAATGCCTTCAACTGCATCAAAACTATTGGCTACTAATC CAAATAACGTGAATTCTTGGGACCCTTCACCCCATTTGAGGCCAGCACTTACTTTGCCTC AAATGCCAGTTTTTGCAGCTTGGACAGATGCATAGTTCATAGCTCAATAGTCCTTTTAATT TTTTGTTCTCTCAAGTGAAATTTCAATCCTTTTTTATTGTCTTTTTTTGCATGCATGAACAA CACAAGAGGAAGGGGTTGTAGCTAGTCAAATGGAGGGTCTAAATATTATATCATCACAT CACTGTCAGCAAGTTTAATTTAAACTTTCAAATCATCCGACACGCAGCGGCCGCTCTAGA GGATCCAAGCTTACGTACGCGTGCATGCGACGTCATAGCTCTTCTATAGGCACC SEQ ID NO: 35 - Nucleic acid sequence of the open reading frame of GmWRI05 ATGAAGAGTATGGAAAATGATGACAATGCTGACCTTAATAATCAAAACAATTGGTTGGG TTTCTCACTCTCTCCTCAAATGCATAATATAGGAGTTTCTTCACACTCACAACCTTCCTCT GCTGCTGAAGTGGTTCCTACAAGCTTTTACCACCACACTGCTCCACTTAGTAGCTATGGTT TCTACTATGGACTTGAAGCTGAAAATGTTGGATTGTATTCAGCTTTGCCAATCATGCCCCT CAAATCTGATGGCTCTCTCTATGGATTGGAAACTTTAAGCAGGTCACAAGCACAAGCAAT GGCTACTACTTCAACACCAAAACTGGAGAACTTCTTAGGTGGGGAAGCCATGGGGACCC CTCATCACTACGAATGTAGTGCCACAGAAACAATGCCTCTGAGCTTAGACAGTGTTTTTT ACATCCAACCCTCACGCCGTGACCCAAATAATAACCAAACCTACCAAAACCATGTTCAA CACATTAGCACCAACCAACAACAACAACAGCAAGAGCTTCAAGCATATTACTCTACCTT GAGAAACCATGATATGATATTAGAAGGGTCAAAGCAAAGCCAAACTTCTGACAACAACA ATCTTCATGTTCAAAACATGGGTGGTGATGATGCCGTTCCTGTTCCTGGCCTCAAGAGTT GGGAAGTGAGGAACTTCCAAGCTAGCCATGCACATGAGTCAAAGATGATTGTTCCTCAT GTGGAGGAAAATGCTGGTGAATCAGGGTCCATTGGATCAATGGCTTATGGTGACTTGCA ATCGTTGAGCTTGTCCATGAGTCCTAGCTCTCAGTCTAGCAGTGTCACAAGTTCTCACCGT GCTTCACCTGCTGTCGTTGATTCTGTTGCCATGGATACTAAGAAAAGGGGGCCTGAAAAG GTTGACCAGAAGCAAATTGTTCATAGGAAGTCCATTGACACCTTTGGACAAAGAACCTCC CAGTATAGAGGAGTAACAAGGCATAGGTGGACTGGGAGATATGAAGCTCATCTTTGGGA CAACAGCTGCAAGAAAGAGGGGCAAAGCAGGAAAGGAAGACAAGTTTATCTAGGGGGT TATGATATGGAAGAAAAAGCTGCGAGAGCTTATGATCTAGCGGCACTCAAGTATTGGGG ACCCTCCACTCACATAAACTTTCCTTTGGAAAATTATCAAAATGAACTTGAGGAAATGAA GAACATGACTAGACAAGAGTATGTTGCTCATTTGAGAAGAAAAAGCAGCGGATTCTCAA GAGGGGCTTCCATGTACAGAGGAGTAACAAGACACCACCAACATGGAAGGTGGCAAGCT CGAATTGGTAGAGTGGCTGGAAACAAAGATCTATATCTTGGAACCTTTAGTACACAAGA GGAAGCAGCTGAAGCCTATGATATTGCTGCTATAAAATTCCGAGGAGCGAATGCTGTAA CCAACTTTGACATCACAAGATATGATGTGGAGAAAATCATGGCAAGCAGCAACCTCCTT
AGCAGTGAGCTAGCTAGGCGCAACCGAGAGACGGACAATGAAACTCAGTGCATTGATCA AAATCACAATAAGCCTTCTGCATATGAGGACACTCAAGAAGCTATTCTAATGCACCAGA AGAGCTGTGAGAGCGAAAATGATCAGTGGAAGATGGTTCTCTACCAATCCTCTCAGCAA CTTGAGCAGAATCCACCAACAATTGAGAGTGACAGAACTAACCAGTCCTTCGCAGTGGC TTTGGACAACATGTTTCATCAGGAAGTAGAGGAATCAAGTAAGGCGAGGACGCATGTGT CAAATCCTTCTTCATTGGCCACAAGTTTGAGCAGCTCAAGAGAAGGTAGCCCTGATAGGA CAAGCTTGCCAATGCTCTCTGGAATGCCTTCAACTGCATCAAAACTATTGGCTACTAATC CAAATAACGTGAATTCTTGGGACCCTTCACCCCATTTGAGGCCAGCACTTACTTTGCCTC AAATGCCAGTTTTTGCAGCTTGGACAGATGCATAG SEQ ID NO: 36 - Amino acid sequence of the open reading frame of GmWRI05 MKSMENDDNADLNNQNNWLGFSLSPQMHNIGVSSHSQPSSAAEVVPTSFYHHTAPLSSYGF YYGLEAENVGLYSALPIMPLKSDGSLYGLETLSRSQAQAMATTSTPKLENFLGGEAMGTPHH YECSATETMPLSLDSVFYIQPSRRDPNNNQTYQNHVQHISTNQQQQQQELQAYYSTLRNHD MILEGSKQSQTSDNNNLHVQNMGGDDAVPVPGLKSWEVRNFQASHAHESKMIVPHVEENA GESGSIGSMAYGDLQSLSLSMSPSSQSSSVTSSHRASPAVVDSVAMDTKKRGPEKVDQKQIV HRKSIDTFGQRTSQYRGVTRHRWTGRYEAHLWDNSCKKEGQSRKGRQVYLGGYDMEEKA ARAYDLAALKYWGPSTHINFPLENYQNELEEMKNMTRQEYVAHLRRKSSGFSRGASMYRG VTRHHQHGRWQARIGRVAGNKDLYLGTFSTQEEAAEAYDIAAIKFRGANAVTNFDITRYDV EKIMASSNLLSSELARRNRETDNETQCIDQNHNKPSAYEDTQEAILMHQKSCESENDQWKM VLYQSSQQLEQNPPTIESDRTNQSFAVALDNMFHQEVEESSKARTHVSNPSSLATSLSSSREGS PDRTSLPMLSGMPSTASKLLATNPNNVNSWDPSPHLRPALTLPQMPVFAAWTDA SEQ ID NO: 37 - Nucleic acid sequence of GmWRI08 ATGAAGCGCATAAATGAGAGTAACAACACCGATGATGGAAACAATCATAACTGGTTGGG GTTCTCTCTCTCACCCCACATGAAAATGGAGGCTACTTCAGCAGCCACTGTTCCGACAAC CTTCTACATGTCCCCTTCTCAATCTCACTTGTCCAACTTCGGAATGTGTTACGGTGTCGGA GAAAATGGTAACTTCCATTCTCCACTTACGGTTATGCCTCTCAAGTCTGATGGGTCACTTT GTATCTTGGAAGCTCTCAAAAGATCACAAACGCAAGTGATGGTGCCAACTTCGTCTCCGA AATTGGAGGACTTTCTAGGTGGTGCAACTATGGGAACTCACGAATATGGAAGCCACGAG AGAGGTTTGAGCCTAGACAGCATCTATTATAACTCCCAAAACGCAGAGGCTCAACCCAA CAGAGACCTTCTTTCACAACCCTTCAGGCAACAAGGTCATATGAGTGTCCAAACACACCC TTATTACTCAGGCCTTGCTTGCCATGGTTTATATCAAGCACCGTTGGAGGAAGAAACAAC AAAGGAAACGCACGTGTCGGATTGCAGCTCCCTAATGCCTCAAATGACAGAAGGCTTGA AAAACTGGGTGGCTCCAACAAGGGAGTTTTCAACTCACCAGCAGGTTTTGGAGCAGCAA ATGAATTGTGGCATGGGGAATGAGAGAAATGGTGTGTCTTTAGGATCTGTGGGGTGTGG AGAGTTACAGTCTCTAAGCTTATCTATGAGTCCTGGTTCTCAGTCTAGTTGTGTCACTGCT CCTTCTGGAACAGATTCTGTTGCTGTGGATGCAAAGAAGAGAGGGCATGCTAAACTTGGT CAGAAGCAGCCTGTGCATAGAAAATCTATCGACACATTTGGGCAAAGAACCTCGCAGTA TAGAGGTGTCACAAGGCATAGATGGACTGGTAGGTATGAAGCGCATTTGTGGGATAATA GTTGCAAGAAGGAAGGGCAAACTAGGAAAGGACGACAAGTGTATTTGGGGGGTTATGAT ATGGAGGAGAAAGCTGCAAGAGCCTATGATCTCGCGGCCCTTAAGTACTGGGGACCTTC AACGCATATAAACTTTTCGATAGAGAATTACCAAGTTCAACTTGAGGAAATGAAGAACA TGAGCAGACAGGAATACGTTGCACACTTGAGAAGAAAAAGCAGCGGGTTTTCTAGAGGT GCTTCAATATACAGAGGGGTCACAAGGCATCACCAACATGGAAGATGGCAAGCGAGGAT AGGCAGAGTTGCTGGGAACAAAGACCTTTACCTTGGGACGTTCAGCACCCAAGAGGAAG CAGCAGAAGCATACGATGTAGCGGCGATCAAATTTCGCGGCGCAAATGCAGTCACAAAC TTTGACATTTCAAGATACGATGTGGAGAGAATCATGGCCAGTAGCAATCTCCTCGCTGGG GAGCTTGCAAGGCGTAAGAAAGATAACGATCCTAGAAACAAGGACATAGACTACAACA AGAGTGTAGTAACAAGTGTGAACAATGAGGAAACGGTTCAAGTTCAAGCAGGAAACAA CAATAATGAAAACGACTCAGAGTGGAAGATGGTTTTATTTAACCACCCTTCACAGCAGC AACAGGCAAATGGCAATGGCAGTGACCAAAAAATAATGAACTGTGGAAATTACAGAAA CAGTGCATTTTCTATGGCCCTACAAGATCTTATTGGGATTGATTCGGTGGGTTCTGGGCA GCATAATATGCTGGACGAGTCTAGCAAAATTGGGACTCATTTTTCAAACACGTCATCGCT GGTGACAAGTTTAAGCAGCTCAAGAGAGGCTAGTCCTGAGAAAAGGGGTCCCTCGCTTC TGTTCCCAATGCCTCCAATGGAAACAAAGATTGTGAACCCCATTGGTACCAGTGTTACCT CTTGGCTACCCTCACCAACGGTTCAAATGAGGCCTTCTCCTGCTATCTCTTTGTCTCACTT GCCAGTTTTTGCTTCTTGGACTGATACTTAAATGGAGATAGGCACGGTCCATTTTTCATGT TATGTTATGTAACTAAAATTTACTTTTTTCCTTCATCTTTTATTTCTAATTTGATTTCCTAA GTTTAAAAGCTTTAAAAAAAAAAAAAAAACCGAACCA SEQ ID NO: 38 - Nucleic acid sequence of the open reading frame of GmWRI08 ATGAAGCGCATAAATGAGAGTAACAACACCGATGATGGAAACAATCATAACTGGTTGGG GTTCTCTCTCTCACCCCACATGAAAATGGAGGCTACTTCAGCAGCCACTGTTCCGACAAC CTTCTACATGTCCCCTTCTCAATCTCACTTGTCCAACTTCGGAATGTGTTACGGTGTCGGA GAAAATGGTAACTTCCATTCTCCACTTACGGTTATGCCTCTCAAGTCTGATGGGTCACTTT GTATCTTGGAAGCTCTCAAAAGATCACAAACGCAAGTGATGGTGCCAACTTCGTCTCCGA AATTGGAGGACTTTCTAGGTGGTGCAACTATGGGAACTCACGAATATGGAAGCCACGAG AGAGGTTTGAGCCTAGACAGCATCTATTATAACTCCCAAAACGCAGAGGCTCAACCCAA CAGAGACCTTCTTTCACAACCCTTCAGGCAACAAGGTCATATGAGTGTCCAAACACACCC TTATTACTCAGGCCTTGCTTGCCATGGTTTATATCAAGCACCGTTGGAGGAAGAAACAAC AAAGGAAACGCACGTGTCGGATTGCAGCTCCCTAATGCCTCAAATGACAGAAGGCTTGA AAAACTGGGTGGCTCCAACAAGGGAGTTTTCAACTCACCAGCAGGTTTTGGAGCAGCAA ATGAATTGTGGCATGGGGAATGAGAGAAATGGTGTGTCTTTAGGATCTGTGGGGTGTGG AGAGTTACAGTCTCTAAGCTTATCTATGAGTCCTGGTTCTCAGTCTAGTTGTGTCACTGCT CCTTCTGGAACAGATTCTGTTGCTGTGGATGCAAAGAAGAGAGGGCATGCTAAACTTGGT CAGAAGCAGCCTGTGCATAGAAAATCTATCGACACATTTGGGCAAAGAACCTCGCAGTA TAGAGGTGTCACAAGGCATAGATGGACTGGTAGGTATGAAGCGCATTTGTGGGATAATA GTTGCAAGAAGGAAGGGCAAACTAGGAAAGGACGACAAGTGTATTTGGGGGGTTATGAT ATGGAGGAGAAAGCTGCAAGAGCCTATGATCTCGCGGCCCTTAAGTACTGGGGACCTTC AACGCATATAAACTTTTCGATAGAGAATTACCAAGTTCAACTTGAGGAAATGAAGAACA TGAGCAGACAGGAATACGTTGCACACTTGAGAAGAAAAAGCAGCGGGTTTTCTAGAGGT GCTTCAATATACAGAGGGGTCACAAGGCATCACCAACATGGAAGATGGCAAGCGAGGAT AGGCAGAGTTGCTGGGAACAAAGACCTTTACCTTGGGACGTTCAGCACCCAAGAGGAAG CAGCAGAAGCATACGATGTAGCGGCGATCAAATTTCGCGGCGCAAATGCAGTCACAAAC TTTGACATTTCAAGATACGATGTGGAGAGAATCATGGCCAGTAGCAATCTCCTCGCTGGG GAGCTTGCAAGGCGTAAGAAAGATAACGATCCTAGAAACAAGGACATAGACTACAACA AGAGTGTAGTAACAAGTGTGAACAATGAGGAAACGGTTCAAGTTCAAGCAGGAAACAA CAATAATGAAAACGACTCAGAGTGGAAGATGGTTTTATTTAACCACCCTTCACAGCAGC AACAGGCAAATGGCAATGGCAGTGACCAAAAAATAATGAACTGTGGAAATTACAGAAA CAGTGCATTTTCTATGGCCCTACAAGATCTTATTGGGATTGATTCGGTGGGTTCTGGGCA GCATAATATGCTGGACGAGTCTAGCAAAATTGGGACTCATTTTTCAAACACGTCATCGCT GGTGACAAGTTTAAGCAGCTCAAGAGAGGCTAGTCCTGAGAAAAGGGGTCCCTCGCTTC TGTTCCCAATGCCTCCAATGGAAACAAAGATTGTGAACCCCATTGGTACCAGTGTTACCT CTTGGCTACCCTCACCAACGGTTCAAATGAGGCCTTCTCCTGCTATCTCTTTGTCTCACTT GCCAGTTTTTGCTTCTTGGACTGATACTTAA SEQ ID NO: 39 - Amino acid sequence of the open reading frame of GmWRI08 MKRINESNNTDDGNNHNWLGFSLSPHMKMEATSAATVPTTFYMSPSQSHLSNFGMCYGVG ENGNFHSPLTVMPLKSDGSLCILEALKRSQTQVMVPTSSPKLEDFLGGATMGTHEYGSHERG LSLDSIYYNSQNAEAQPNRDLLSQPFRQQGHMSVQTHPYYSGLACHGLYQAPLEEETTKETH VSDCSSLMPQMTEGLKNWVAPTREFSTHQQVLEQQMNCGMGNERNGVSLGSVGCGELQSL SLSMSPGSQSSCVTAPSGTDSVAVDAKKRGHAKLGQKQPVHRKSIDTFGQRTSQYRGVTRH RWTGRYEAHLWDNSCKKEGQTRKGRQVYLGGYDMEEKAARAYDLAALKYWGPSTHINFSI ENYQVQLEEMKNMSRQEYVAHLRRKSSGFSRGASIYRGVTRHHQHGRWQARIGRVAGNKD LYLGTFSTQEEAAEAYDVAAIKFRGANAVTNFDISRYDVERIMASSNLLAGELARRKKDNDP RNKDIDYNKSVVTSVNNEETVQVQAGNNNNENDSEWKMVLFNHPSQQQQANGNGSDQKI MNCGNYRNSAFSMALQDLIGIDSVGSGQHNMLDESSKIGTHFSNTSSLVTSLSSSREASPEKR GPSLLFPMPPMETKIVNPIGTSVTSWLPSPTVQMRPSPAISLSHLPVFASWTDT SEQ ID NO: 40 - Nucleic acid sequence of OsWRI01 GGCCTCTCCTCCTCCTCCTCACCTGCACCTGCACCAACGCGAGAGATCATGGCGAAGAGA TCGTCTCCTGATCCTGCATCATCTTCTCCATCTGCATCATCCTCGCCGTCGTCTCCTTCCTC CTCTTCCTCCGAGGATTCCTCTTCGCCCATGTCGATGCCCTGCAAGAGGAGGGCGAGGCC GAGGACGGAGAAGAGCACCGGCAAGGCCAAGAGGCCCAAGAAGGAGAGCAAGGAGGT GGCTGATCCTTCTTCCAATGGCGGCGGCGGCGGCAAGAGGAGTTCTATCTACAGGGGAG TCACCAGGCATCGGTGGACTGGCAGATTTGAGGCCCATCTGTGGGACAAGAATTGCTCC ACTTCACTTCAGAACAAGAAGAAAGGGAGGCAAGTCTATTTGGGGGCTTATGATAGTGA GGAAGCAGCTGCTCGTGCATATGACCTTGCAGCTCTTAAGTACTGGGGTCCTGAGACAGT GCTCAATTTCCCACTGGAGGAATATGAGAAGGAGAGGTCGGAGATGGAGGGCGTGTCGA GGGAGGAGTACCTGGCCTCCCTCCGCCGCCGGAGCAGCGGTTTCTCCAGGGGTGTCTCCA AGTACAGAGGCGTTGCCAGGCATCACCACAATGGGCGGTGGGAGGCACGGATAGGGCG GGTCCTGGGGAACAAGTACCTCTACCTGGGTACTTTCGATACTCAAGAGGAGGCAGCCA AGGCCTATGATCTTGCTGCAATTGAATACCGAGGTGCCAATGCGGTAACCAACTTCGACA TCAGCTGCTACCTGGACCAGCCACAGTTACTGGCACAGCTGCAACAGGAACCACAGTTA CTGGCACAACTGCAACAAGAGCTACAGGTGGTGCCAGCATTACATGAAGAGCCTCAAGA TGATGACCGAAGTGAGAATGCAGTCCAAGAGCTCAGTTCCAGTGAAGCAAATACATCAA GTGACAACAATGAGCCACTTGCAGCCGATGACAGCGCTGAATGCATGAATGAACCCCTT CCAATTGTTGATGGCATTGAAGAAAGCCTCTGGAGCCCTTGCTTGGATTATGAATTGGAT ACAATGCCTGGGGCTTACTTCAGCAACTCGATGAATTTCAGTGAATGGTTCAATGATGAG GCTTTCGAAGGCGGCATGGAGTACCTATTTGAAGGGTGCTCCAGTATAACTGAAGGCGG
CAACAGCATGGATAACTCAGGTGTGACAGAATACAATTTGTTTGAGGAATGCAATATGTT GGAGAAGGACATTTCAGATTTTTTAGACAAGGACATTTCAGATTTTTTAGATAAGGACAT TTCAATTTCAGATAGGGAGCGAATATCTCCTCAAGCAAACAATATCTCCTGCCCTCAAAA AATGATCAGTGTGTGCAACTGAATTCTCTCTGTGTGCGTGTTTCTGGGTGTTGAAAATCTT GAGATATACAGGGAAGTTTTCAGGTTTTTA SEQ ID NO: 41 - Nucleic acid sequence of the open reading frame of OsWRI01 ATGGCGAAGAGATCGTCTCCTGATCCTGCATCATCTTCTCCATCTGCATCATCCTCGCCGT CGTCTCCTTCCTCCTCTTCCTCCGAGGATTCCTCTTCGCCCATGTCGATGCCCTGCAAGAG GAGGGCGAGGCCGAGGACGGAGAAGAGCACCGGCAAGGCCAAGAGGCCCAAGAAGGA GAGCAAGGAGGTGGCTGATCCTTCTTCCAATGGCGGCGGCGGCGGCAAGAGGAGTTCTA TCTACAGGGGAGTCACCAGGCATCGGTGGACTGGCAGATTTGAGGCCCATCTGTGGGAC AAGAATTGCTCCACTTCACTTCAGAACAAGAAGAAAGGGAGGCAAGTCTATTTGGGGGC TTATGATAGTGAGGAAGCAGCTGCTCGTGCATATGACCTTGCAGCTCTTAAGTACTGGGG TCCTGAGACAGTGCTCAATTTCCCACTGGAGGAATATGAGAAGGAGAGGTCGGAGATGG AGGGCGTGTCGAGGGAGGAGTACCTGGCCTCCCTCCGCCGCCGGAGCAGCGGTTTCTCC AGGGGTGTCTCCAAGTACAGAGGCGTTGCCAGGCATCACCACAATGGGCGGTGGGAGGC ACGGATAGGGCGGGTCCTGGGGAACAAGTACCTCTACCTGGGTACTTTCGATACTCAAG AGGAGGCAGCCAAGGCCTATGATCTTGCTGCAATTGAATACCGAGGTGCCAATGCGGTA ACCAACTTCGACATCAGCTGCTACCTGGACCAGCCACAGTTACTGGCACAGCTGCAACA GGAACCACAGTTACTGGCACAACTGCAACAAGAGCTACAGGTGGTGCCAGCATTACATG AAGAGCCTCAAGATGATGACCGAAGTGAGAATGCAGTCCAAGAGCTCAGTTCCAGTGAA GCAAATACATCAAGTGACAACAATGAGCCACTTGCAGCCGATGACAGCGCTGAATGCAT GAATGAACCCCTTCCAATTGTTGATGGCATTGAAGAAAGCCTCTGGAGCCCTTGCTTGGA TTATGAATTGGATACAATGCCTGGGGCTTACTTCAGCAACTCGATGAATTTCAGTGAATG GTTCAATGATGAGGCTTTCGAAGGCGGCATGGAGTACCTATTTGAAGGGTGCTCCAGTAT AACTGAAGGCGGCAACAGCATGGATAACTCAGGTGTGACAGAATACAATTTGTTTGAGG AATGCAATATGTTGGAGAAGGACATTTCAGATTTTTTAGACAAGGACATTTCAGATTTTT TAGATAAGGACATTTCAATTTCAGATAGGGAGCGAATATCTCCTCAAGCAAACAATATCT CCTGCCCTCAAAAAATGATCAGTGTGTGCAACTGA SEQ ID NO: 42 - Amino acid sequence of the open reading frame of OsWRI01 MAKRSSPDPASSSPSASSSPSSPSSSSSEDSSSPMSMPCKRRARPRTEKSTGKAKRPKKESKEV ADPSSNGGGGGKRSSIYRGVTRHRWTGRFEAHLWDKNCSTSLQNKKKGRQVYLGAYDSEE AAARAYDLAALKYWGPETVLNFPLEEYEKERSEMEGVSREEYLASLRRRSSGFSRGVSKYR GVARHHHNGRWEARIGRVLGNKYLYLGTFDTQEEAAKAYDLAAIEYRGANAVTNFDISCYL DQPQLLAQLQQEPQLLAQLQQELQVVPALHEEPQDDDRSENAVQELSSSEANTSSDNNEPLA ADDSAECMNEPLPIVDGIEESLWSPCLDYELDTMPGAYFSNSMNFSEWFNDEAFEGGMEYLF EGCSSITEGGNSMDNSGVTEYNLFEECNMLEKDISDFLDKDISDFLDKDISISDRERISPQANNI SCPQKMISVCN SEQ ID NO: 43 - Nucleic acid sequence of OsWRI07 CGAGCTCGGATCCACTAGTAACGGCCGCCAGTGTGCTGGAATTCGCCCTTAAGCAGTGGT AACAACGCAGAGTACGCGGGGAGAAAATAATAATAAGAAGAACAGATTGTATAATCTG GGGTATTTTTCTCCCCAACTTTCCTCTCTCGGTTTCCCCGAGAAATTTCTTGTTGTTTCCCG CATCACTCCCCACTGAGCCGCCTCCTTGCTCGCCGCTCGCGTTCGTCGTCGTCTCGTCGTT TCCACAATCAATTTGACGTCGCCCCTATTTATGTCCTGCCTCGGTAGTTGATTCCTCCCCA TTTCTGTTGCCTCTCGCGGTTGTGGTAATCGACGCTGTAGGATTTTTTTCTTCTTCTTCTTT TGGGTCTTCGGAGGAGGCGTCCGGATCTTTCGTCCCCATCGATCCCTTCCGGCCACGGAC ATTTCGTGGGTAGAGCGATTGATTGGTGGCTTAGGGTTAATATTGGGCAGGAAATGGAG AGCTCTTTGAAAGAGGAGAAGGCTGCGGGCGAATCAGGGGATGATGAGAAGGCGGAGA GGAGCTCCCCTATCAATCTGAATTCGTTGCCAGCAACTGCGGCGTGTGCGGCGACCGCCC CGGATGAGGATGGCTTGCACTCTGCAGTGGAGTCAGGAGCTAAGGATTCGAACACCACG AAGGGAGTTGAGTCTCTTGGTACTGGTCACAAGAAGATCCCGAAACGTGAGGTAGTTGA TGAAGTTGATGTTCAGACCTGTGCCGAAGGAAAGAACGATTCAGTGGTCCCTTCAAGCA GCAAGAACCCTATCAATGATAAGAATGCAAAGGCAAATGTGGCAGAGAATGGACAGTCT GCTGATGGTATCCCTGAGGATCAGAGAGTTACTATTCTTAGTGTTGTCAAGAAGGATGAG CCTGCTGATGATGTTAGAGATTCAGTTAATCCTGTAACAGTCGTAGGTTATAGAGATGAG AAGGGTGGAACTAGTGGTACTGCTGGAACTACGGCTGTGCGACCTGCAGGCACCCGGTC ATCTAGTTTCCATGGTGTGACCAGGCATAGATGGAGTGGAAAATATGAAGCTCATCTGTG GGACAGTTCGTGCAGAATGGAAGGGCGGAGAAGAAAGGGAAGGCAAGTTTATTTAGGA AGTTATGATACCGAGGAAAAAGCTGCCAGGTCATATGATGTTGCAGCTCTTAAATACTGG GGCCAAAATACAAAGCTGAATTTCTCGGTTTCAGAATACGAAAGGGAACTGGAGGACAT AAGGGACATGTCTCGAGAGGAATGCGTAACATACCTAAGAAGAAGAAGTAGCTGCTTCT CAAGAGGGGCTTCTATTTATAGAGGAGTTACTAGAAGGCAGAAAGATGGGAGGTGGCAG GCACGCATAGGACTGGTTGCTGGAACAAGAGACATTTACCTGGGAACTTTCAAAACTGA GGAAGAAGCAGCGGAGGCTTACGACATTGCTGCTATTGAGATCCGTGGCAAAAATGCGG TGACCAACTTTGATCGAAGCAACTACATGGAGAAGGGTATGCACTGTATAGAAGGGGCA GGCTTGAAGCTGCTTGCGTCTAAGCCAGAATGAAAACTTGACTTGGTGGAGCCGCATCGC ATATTAGGGTTGTTTCAGTCATATTTGGAGCTTANTGGTACATACAGATACAACTGGTTG CAGCTTGTTAATATCTCTGCGTTATAATCTACAAATTACAGCTCAATTTTCGATTGACTAG CAAATTCGTCTCAGCAAGAAAGATTTTGAGCATGTATTATAGGTTGAGTAGGGTAGATCT GTACAACACCTGAGCAACTCAATATTTATGTTCTGCTCAATATAACCTATCATTCC SEQ ID NO: 44 - Nucleic acid sequence of the open reading frame of OsWRI07 ATGGAGAGCTCTTTGAAAGAGGAGAAGGCTGCGGGCGAATCAGGGGATGATGAGAAGG CGGAGAGGAGCTCCCCTATCAATCTGAATTCGTTGCCAGCAACTGCGGCGTGTGCGGCG ACCGCCCCGGATGAGGATGGCTTGCACTCTGCAGTGGAGTCAGGAGCTAAGGATTCGAA CACCACGAAGGGAGTTGAGTCTCTTGGTACTGGTCACAAGAAGATCCCGAAACGTGAGG TAGTTGATGAAGTTGATGTTCAGACCTGTGCCGAAGGAAAGAACGATTCAGTGGTCCCTT CAAGCAGCAAGAACCCTATCAATGATAAGAATGCAAAGGCAAATGTGGCAGAGAATGG ACAGTCTGCTGATGGTATCCCTGAGGATCAGAGAGTTACTATTCTTAGTGTTGTCAAGAA GGATGAGCCTGCTGATGATGTTAGAGATTCAGTTAATCCTGTAACAGTCGTAGGTTATAG AGATGAGAAGGGTGGAACTAGTGGTACTGCTGGAACTACGGCTGTGCGACCTGCAGGCA CCCGGTCATCTAGTTTCCATGGTGTGACCAGGCATAGATGGAGTGGAAAATATGAAGCTC ATCTGTGGGACAGTTCGTGCAGAATGGAAGGGCGGAGAAGAAAGGGAAGGCAAGTTTA TTTAGGAAGTTATGATACCGAGGAAAAAGCTGCCAGGTCATATGATGTTGCAGCTCTTAA ATACTGGGGCCAAAATACAAAGCTGAATTTCTCGGTTTCAGAATACGAAAGGGAACTGG AGGACATAAGGGACATGTCTCGAGAGGAATGCGTAACATACCTAAGAAGAAGAAGTAG CTGCTTCTCAAGAGGGGCTTCTATTTATAGAGGAGTTACTAGAAGGCAGAAAGATGGGA GGTGGCAGGCACGCATAGGACTGGTTGCTGGAACAAGAGACATTTACCTGGGAACTTTC AAAACTGAGGAAGAAGCAGCGGAGGCTTACGACATTGCTGCTATTGAGATCCGTGGCAA AAATGCGGTGACCAACTTTGATCGAAGCAACTACATGGAGAAGGGTATGCACTGTATAG AAGGGGCAGGCTTGAAGCTGCTTGCGTCTAAGCCAGAATGA SEQ ID NO: 45 - Amino acid sequence of the open reading frame of OsWRI07 MESSLKEEKAAGESGDDEKAERSSPINLNSLPATAACAATAPDEDGLHSAVESGAKDSNTTK GVESLGTGHKKIPKREVVDEVDVQTCAEGKNDSVVPSSSKNPINDKNAKANVAENGQSADG IPEDQRVTILSVVKKDEPADDVRDSVNPVTVVGYRDEKGGTSGTAGTTAVRPAGTRSSSFHG VTRHRWSGKYEAHLWDSSCRMEGRRRKGRQVYLGSYDTEEKAARSYDVAALKYWGQNTK LNFSVSEYERELEDIRDMSREECVTYLRRRSSCFSRGASIYRGVTRRQKDGRWQARIGLVAGT RDIYLGTFKTEEEAAEAYDIAAIEIRGKNAVTNFDRSNYMEKGMHCIEGAGLKLLASKPE SEQ ID NO: 46 - Nucleic acid sequence of OsWRI03 GGAGAGAGCAACGCAAGAACGGCACGAGAGGCTGGCAGCGAGCGAGCGTGTGCATGGT TGGTGCGAGCAAATGGCCAGCGGCGGCGGCAGCAGCAACTGGTTAGGCTTCTCGCTCTC CCCGCACATGCCGGCCATGGAGGTGCCGTCCTCCTCTGAGCCATCGACTGCTGCTCATCA TCATCATCATCATCATCCACCTGCTGCTGCTGCTGCTGCCGGAGCCATGTCGTCTCCTCCC GACAGCGCCACGACCTGCAACTTCCTCTTCTCCCCTCCTGCAGCACAGATGGTCGCTCCT TCACCTGGCTACTACTACGTCGGCGGCGCCTACGGAGACGGGACCAGCACCGCCGGCGT CTACTACTCGCACCTCCCTGTCATGCCTATCAAGTCCGATGGCTCCCTCTGCATCATGGAA GGCATGATGCCGTCGTCATCGCCAAAGCTCGAGGACTTCTTGGGGTGTGGCAATGGCAGT GGCCATGACCCGGCCACCTACTATAGCCAGGGCCAAGAAGCAGAGGATGCAAGCAGGG CGGCCTACCAGCACCACCAGCTAGTCCCCTACAACTACCAGCCATTGACGGAAGCAGAG ATGCTGCAAGAGGCCGCAGCGGCGCCAATGGAGGACGCAATGGCGGCGGCCAAGAACT TCCTCGTCACCAGCTACGGCGCCTGCTACGGCAACCAGGAGATGCCGCAGCCGCTCAGC CTCTCCATGAGCCCAGGGTCCCAGTCCAGCAGCTGCGTCAGTGCAGCTCCCCAGCAGCAT CAGCAGATGGCGGTGGTCGCTGCAGCTGCTGCTGCTGGTGATGGCCAGGGAAGCAACAG TAATGACGGTGGCGAGCAGCGTGTCGGGAAGAAGAGGGGCACCGGGAAAGGGGGCCAA AAGCAGCCTGTTCACCGGAAGTCCATTGACACGTTTGGGCAGAGGACATCGCAGTATAG GGGCGTCACCAGGCACAGGTGGACTGGAAGATATGAAGCCCACCTCTGGGATAACAGTT GCAAAAAGGATGGACAGACAAGGNAAGGGAAGGCAAGTATATCTAGGTGGTTAGACAC TGAAGATAAAGCTGCGAGGGCTTATGATCTGGCTGCGCTGAAATACTGGGGGCTATCTA CGCATATAAATTTCCCGTTAGAAAACTACCGAGATGAGATCGAGGAGATGGAAAGGATG ACAAGGCAAGAATATGTTGCGCACTTGAGAAGGAGAAGCAGCGGGTTCTCTCGCGGTGC TTCCATCTACCGGGGAGTAACAAGGCATCACCAGCATGGAAGATGGCAAGCTCGGATTG GCAGGGTTGCTGGCAACAAGGACTTGTATCTCGGCACTTTCAGCACTCAAGAAGAAGCA GCAGAGGCATACGACATTGCTGCCATCAAGTTCCGTGGCCTGAACGCGGTGACGAACTTT GACATCACAAGGTACGACGTGGACAAGATCATGGAGAGCAGCTCGCTGCTGCCTGGTGA GGCAGCGCGTAAGGTGAAGGCGATCGAGGCAGCGCCGGACCATGTGCCAATAGGCCGC GAGCTCGGTGCGACCGAGGAAGCGAGCGCTGCTACTGTCACGGGCACCGACTGGAGAAT GGTGCTCCATGGATCACAGCAGCAGCAAGCTGCAGCGTGCACCGAAGCAACGGCAGATC TTCAGAAGGGCTTCATGGGTGACGCGCACTCGGCTCTCCACGGCATTGTCGGGTTCGACG
TCGAGTCGGCGGCAGCTGACGAGATCGATGTCCCGGGAGGGAAGATCAGTGGCATCAAC TTCTCGAACTCGTCTTCGCTGGTGACTAGCCTGAGCAACTCGAGGGAGGGGAGCCCTGAG AGGCTTGGCCTCGCCATGCTCTACGCCAAGCATCATCCCACCGCCGTCAGCCTCGCCGCC ATGAACCCCTGGATGCCGATGCCGGCGCCGGCCGCAGCTCACGTGATGAGGCCGCCGAG TGCCATTGCTCATCTCCCTGTTTTTGCAGCCTGGACAGATGCTTAATTAGAGCCATGTTGC TGCTTGCTCGATCTTGCTTTTGATCGGCTCTTTTTGTAAACTAAAGCAAGATCAGCAGCAA TCAGGTGCTTATGGTACTTAAATTAGCTGGAAGCCTGGAGTAGCATACTTGGTTATGATG GTAAGCACTAGGCTGGTGGTGTAAGTGTTTAACCAGTAAACCCATAGGTAGGACATTCA AGCA SEQ ID NO: 47 - Nucleic acid sequence of the open reading frame of OsWRI03 ATGGCCAGCGGCGGCGGCAGCAGCAACTGGTTAGGCTTCTCGCTCTCCCCGCACATGCCG GCCATGGAGGTGCCGTCCTCCTCTGAGCCATCGACTGCTGCTCATCATCATCATCATCAT CATCCACCTGCTGCTGCTGCTGCTGCCGGAGCCATGTCGTCTCCTCCCGACAGCGCCACG ACCTGCAACTTCCTCTTCTCCCCTCCTGCAGCACAGATGGTCGCTCCTTCACCTGGCTACT ACTACGTCGGCGGCGCCTACGGAGACGGGACCAGCACCGCCGGCGTCTACTACTCGCAC CTCCCTGTCATGCCTATCAAGTCCGATGGCTCCCTCTGCATCATGGAAGGCATGATGCCG TCGTCATCGCCAAAGCTCGAGGACTTCTTGGGGTGTGGCAATGGCAGTGGCCATGACCCG GCCACCTACTATAGCCAGGGCCAAGAAGCAGAGGATGCAAGCAGGGCGGCCTACCAGC ACCACCAGCTAGTCCCCTACAACTACCAGCCATTGACGGAAGCAGAGATGCTGCAAGAG GCCGCAGCGGCGCCAATGGAGGACGCAATGGCGGCGGCCAAGAACTTCCTCGTCACCAG CTACGGCGCCTGCTACGGCAACCAGGAGATGCCGCAGCCGCTCAGCCTCTCCATGAGCC CAGGGTCCCAGTCCAGCAGCTGCGTCAGTGCAGCTCCCCAGCAGCATCAGCAGATGGCG GTGGTCGCTGCAGCTGCTGCTGCTGGTGATGGCCAGGGAAGCAACAGTAATGACGGTGG CGAGCAGCGTGTCGGGAAGAAGAGGGGCACCGGGAAAGGGGGCCAAAAGCAGCCTGTT CACCGGAAGTCCATTGACACGTTTGGGCAGAGGACATCGCAGTATAGGGGCGTCACCAG GCACAGGTGGACTGGAAGATATGAAGCCCACCTCTGGGATAACAGTTGCAAAAAGGATG GACAGACAAGGNAAGGGAAGGCAAGTATATCTAGGTGGTTAGACACTGAAGATAAAGC TGCGAGGGCTTATGATCTGGCTGCGCTGAAATACTGGGGGCTATCTACGCATATAAATTT CCCGTTAGAAAACTACCGAGATGAGATCGAGGAGATGGAAAGGATGACAAGGCAAGAA TATGTTGCGCACTTGAGAAGGAGAAGCAGCGGGTTCTCTCGCGGTGCTTCCATCTACCGG GGAGTAACAAGGCATCACCAGCATGGAAGATGGCAAGCTCGGATTGGCAGGGTTGCTGG CAACAAGGACTTGTATCTCGGCACTTTCAGCACTCAAGAAGAAGCAGCAGAGGCATACG ACATTGCTGCCATCAAGTTCCGTGGCCTGAACGCGGTGACGAACTTTGACATCACAAGGT ACGACGTGGACAAGATCATGGAGAGCAGCTCGCTGCTGCCTGGTGAGGCAGCGCGTAAG GTGAAGGCGATCGAGGCAGCGCCGGACCATGTGCCAATAGGCCGCGAGCTCGGTGCGAC CGAGGAAGCGAGCGCTGCTACTGTCACGGGCACCGACTGGAGAATGGTGCTCCATGGAT CACAGCAGCAGCAAGCTGCAGCGTGCACCGAAGCAACGGCAGATCTTCAGAAGGGCTTC ATGGGTGACGCGCACTCGGCTCTCCACGGCATTGTCGGGTTCGACGTCGAGTCGGCGGCA GCTGACGAGATCGATGTCCCGGGAGGGAAGATCAGTGGCATCAACTTCTCGAACTCGTC TTCGCTGGTGACTAGCCTGAGCAACTCGAGGGAGGGGAGCCCTGAGAGGCTTGGCCTCG CCATGCTCTACGCCAAGCATCATCCCACCGCCGTCAGCCTCGCCGCCATGAACCCCTGGA TGCCGATGCCGGCGCCGGCCGCAGCTCACGTGATGAGGCCGCCGAGTGCCATTGCTCATC TCCCTGTTTTTGCAGCCTGGACAGATGCTTAA SEQ ID NO: 48 - Amino acid sequence of the open reading frame of OsWRI03 MASGGGSSNWLGFSLSPHMPAMEVPSSSEPSTAAHHHHHHHPPAAAAAAGAMSSPPDSATT CNFLFSPPAAQMVAPSPGYYYVGGAYGDGTSTAGVYYSHLPVMPIKSDGSLCIMEGMMPSS SPKLEDFLGCGNGSGHDPATYYSQGQEAEDASRAAYQHHQLVPYNYQPLTEAEMLQEAAA APMEDAMAAAKNFLVTSYGACYGNQEMPQPLSLSMSPGSQSSSCVSAAPQQHQQMAVVAA AAAAGDGQGSNSNDGGEQRVGKKRGTGKGGQKQPVHRKSIDTFGQRTSQYRGVTRHRWT GRYEAHLWDNSCKKDGQTRXGKASISRWLDTEDKAARAYDLAALKYWGLSTHINFPLENY RDEIEEMERMTRQEYVAHLRRRSSGFSRGASIYRGVTRHHQHGRWQARIGRVAGNKDLYLG TFSTQEEAAEAYDIAAIKFRGLNAVTNFDITRYDVDKIMESSSLLPGEAARKVKAIEAAPDHV PIGRELGATEEASAATVTGTDWRMVLHGSQQQQAAACTEATADLQKGFMGDAHSALHGIV GFDVESAAADEIDVPGGKISGINFSNSSSLVTSLSNSREGSPERLGLAMLYAKHHPTAVSLAA MNPWMPMPAPAAAHVMRPPSAIAHLPVFAAWTDA SEQ ID NO: 49 - Nucleic acid sequence of TaWRI01 ATTTCGTATTAATAAAACGAGCACTATTTTATTTTTCTACTGTATTTTACTCCTGGTGTAG TGCTGCCAGAAACCGCTGCAGGTGGTAGCAGTAAAAGATCCAGCAAATATCCGATGGTT TCAGAGCGCCAGTGCGGCGGCGCCCTGTCAAGCGCGAGATAAAATCCGCCGGACCCCCG CGATTTCCCCCACTCCGCGTTTCCTCTCTCGATTTGTCCAAATCTTTTGTTCTCCTTCTCCA CCGGCGATTAGTTTGTTGTTTCCGGCATCACTCCGCACTAGGCCGCCCCTCGCCCGCGCT GGCCTCGTCGTTTCCTTCCCCAATTCCGCCGCCCCACCCCGCCCGATATTTATTTCCTGCC TCGGTATCCATTTCCGTTGATAGATTTTTCCAGCTTTCGCTGCCTCGCCGTTGCTGCTAAT ATCCGCGCTGGGATATTTCTTCTTTTGCTTTCTTGGCCGCGCGGCTCGGCCCGTCCCCCTG GAGGCCTCCGGATCTTTCGATCGCGGCGAGCAGGCGGCTCAAGATAGTTCGTGAATAGG AAGGCTGATAGGTAGGTTAGGGTTTTGGGAGTTGTTTTTGTCTCTGCTCCAGTACATAGA TGATGAAATCCGGGGAGGAAGTTAGTCAGGGTCAGCAAATGAACGGTTTTGTGGAGGAG AAAGCTGCTGGGGAATCTGGGGATGGTCGGAAGATCGAGAGGAGCCCTTCCATCAATCT GAATTCCTTGCCTGCAATTGCCCCTGCCACTACGGAGATTGGTGTCTTGCACTGTGCAGT GGAGTCAGAGGCCAACGATGCAAGCACTCAGAAGGGAGATGAGTCCAGTGGCACTGATC AGAAGAAGGTCCCGAAGAATGAGGAGGTTGATGAAGGTGAAGTTCAGGCCTGTGCAGAT GTGAAGAGCCACTCGGTTGACCCTTTGAATAGCGAGAACCATGCCGGGGAGAAGGATGC TTTGGTAACTGTGCCAGAAAATGAGGGTTGTGCGGATGGTGGCGATAATTATAAGGGAG TTCAAGTTCTCAGCATTGTCAAAAAGGACGAGTCTGAGGAAATTGTTGATTCTATTAATC CTGTGACGGTTGCGGAGTATAGAGAGGAGAAGGGCACCGCCGGTTCTACTTCTGCAATT ACTGCGGTGCGAGCACCTGGCTCCCGCTCATCTTGTTTCCATGGTGTGACCAGGCATAGG TGGAGTGGGAAATATGAAGCTCATTTGTGGGACAGTACTTGCAGAGTAGAAGGACGGAG AAGGAAAGGAAAGCAAGTTTATTTAGGAAGTTATGATACTGAGCAAAAAGCTGCCAGGG CATATGATGTTGCAGCTCTTAAATTCTTTGGACTAAATACAAAGCTGAACTTCTCAATTTC GGAATATGAGAAGGAACTGGCGGACATACAAGACATGTCTCCAGAGGAATGTGTGACAT ACTGGGAAGGGGGGAGTAGTTGCTTCTCAAGAGGGGCGTCTATTTACAGAGGAGTTACA AGGAGGCAGAAAGATGGTCGATGGCAGGCACGCATAGGACTGATTGCTGGAACTAGAG ACATTTACCTTGGAACTTTCAAAACTGAGGAAGAAGCCGCAGAAGCTTATGATATTGCTG CCATCGAGATACGCGGCAAAAATGCGGTGACCAACTTTGACAGAAGCAACTACATGGAC AGGGGCATGCATTGTATAGAAGGCGCAGGGTTGAAGCTGCTTGCAACCAAGCCAGAATA GTACCTGATTTGGCATCGTATATTGAACAGATTTGGTTGGCCGTATTTTGGAGCCTAGTG GTACATACAGATAGAAGAACTGGTCGCAGCCTGTCATTATCCGCTGCTGTATGATTCTTC AGATTATATATAGTTCTTTCAGATAGAATTTCAGTAATTTAGCATGCTTTGTGTCCAGACA AGATTTTGACCATGCATTACTGTTATAGTGTTTGTAGGCTAGAGTTGCAGTGGAAGATGT TGCTTCATTTCACATGTCTAAATCGGAGAATACGTTTTACTTCTAAGTTTTGATGCTTGGT TTAATGAAATATTCAAGTGTATGTTCCAAAAAAAAAAAAAAAAAAGCGGCCGC SEQ ID NO: 50 - Nucleic acid sequence of the open reading frame of TaWRI01 ATGATGAAATCCGGGGAGGAAGTTAGTCAGGGTCAGCAAATGAACGGTTTTGTGGAGGA GAAAGCTGCTGGGGAATCTGGGGATGGTCGGAAGATCGAGAGGAGCCCTTCCATCAATC TGAATTCCTTGCCTGCAATTGCCCCTGCCACTACGGAGATTGGTGTCTTGCACTGTGCAGT GGAGTCAGAGGCCAACGATGCAAGCACTCAGAAGGGAGATGAGTCCAGTGGCACTGATC AGAAGAAGGTCCCGAAGAATGAGGAGGTTGATGAAGGTGAAGTTCAGGCCTGTGCAGAT GTGAAGAGCCACTCGGTTGACCCTTTGAATAGCGAGAACCATGCCGGGGAGAAGGATGC TTTGGTAACTGTGCCAGAAAATGAGGGTTGTGCGGATGGTGGCGATAATTATAAGGGAG TTCAAGTTCTCAGCATTGTCAAAAAGGACGAGTCTGAGGAAATTGTTGATTCTATTAATC CTGTGACGGTTGCGGAGTATAGAGAGGAGAAGGGCACCGCCGGTTCTACTTCTGCAATT ACTGCGGTGCGAGCACCTGGCTCCCGCTCATCTTGTTTCCATGGTGTGACCAGGCATAGG TGGAGTGGGAAATATGAAGCTCATTTGTGGGACAGTACTTGCAGAGTAGAAGGACGGAG AAGGAAAGGAAAGCAAGTTTATTTAGGAAGTTATGATACTGAGCAAAAAGCTGCCAGGG CATATGATGTTGCAGCTCTTAAATTCTTTGGACTAAATACAAAGCTGAACTTCTCAATTTC GGAATATGAGAAGGAACTGGCGGACATACAAGACATGTCTCCAGAGGAATGTGTGACAT ACTTGAGAAGGAGGAGTAGTTGCTTCTCAAGAGGGGCGTCTATTTACAGAGGAGTTACA AGGAGGCAGAAAGATGGTCGATGGCAGGCACGCATAGGACTGATTGCTGGAACTAGAG ACATTTACCTTGGAACTTTCAAAACTGAGGAAGAAGCCGCAGAAGCTTATGATATTGCTG CCATCGAGATACGCGGCAAAAATGCGGTGACCAACTTTGACAGAAGCAACTACATGGAC AGGGGCATGCATTGTATAGAAGGCGCAGGGTTGAAGCTGCTTGCAACCAAGCCAGAATAG SEQ ID NO: 51 - Amino acid sequence of the open reading frame of TaWRI01 MMKSGEEVSQGQQMNGFVEEKAAGESGDGRKIERSPSINLNSLPAIAPATTEIGVLHCAVESE ANDASTQKGDESSGTDQKKVPKNEEVDEGEVQACADVKSHSVDPLNSENHAGEKDALVTV PENEGCADGGDNYKGVQVLSIVKKDESEEIVDSINPVTVAEYREEKGTAGSTSAITAVRAPGS RSSCFHGVTRHRWSGKYEAHLWDSTCRVEGRRRKGKQVYLGSYDTEQKAARAYDVAALK FFGLNTKLNFSISEYEKELADIQDMSPEECVTYLRRRSSCFSRGASIYRGVTRRQKDGRWQAR IGLIAGTRDIYLGTFKTEEEAAEAYDIAAIEIRGKNAVTNFDRSNYMDRGMHCIEGAGLKLLA TKPE SEQ ID NO: 52 - Nucleic acid sequence of GmWRI01-1 GCCCTTAAGCAGTGGTAACAACGCAGAGTACGCGGGGATTCATTTTCATTCAACCCTTCT CTCTCTCTCTCTCAGATAGATTCTATAAGATCGCAGTTTCCAAAGAAGCTAACTGAAGTT CAAACCCCCATAACCTCTCTTTCACGTTCCTCAACGACACATAAAACACACACCATGGAC TCTTCTTCTTCATCACCGCCAAACAGCACCAACAACAACTCCCTCGCTTTCTCTCTTTCCA ATCACTTTCCCAACCCTTCTTCCTCTCCCCTTTCTCTCTTCCACTCCTTCACCTATCCATCT CTCTCTCTCACAGGCAGCAACACGGTGGACGCACCGCCTGAGCCCACCGCTGGAGCAGG
ACCGACCAACCTCTCCATATTCACCGGCGGCCCCAAGTTCGAGGACTTTCTGGGCGGTTC CGCCGCAACAGCCACCACCGTCGCGTGTGCACCGCCACAGCTTCCGCAGTTCTCCACCGA CAACAACAACCACCTATACGATTCGGAGCTGAAGTCAACAATAGCCGCGTGCTTCCCTCG CGCCTTGGCCGCCGAACAAAGCACCGAACCGCAAAAACCATCCCCCAAGAAAACCGTCG ACACCTTCGGGCAACGCACCTCCATCTACCGCGGCGTGACCCGACATAGATGGACTGGG AGATACGAAGCTCATCTATGGGACAATAGTTGCAGAAGGGAAGGTCAAAGCAGGAAAG GAAGGCAAGTTTACTTGGGTGGTTATGACAAGGAGGATAAGGCAGCCAGAGCTTATGAT CTCGCAGCTCTCAAGTACTGGGGTCCAACTACCACCACTAACTTTCCTATTTCCAACTATG AGAAGGAACTGGAGGAGATGAAGAACATGACTAGGCAAGAGTTTGTTGCTTCTCTTCGT AGGAAGAGCAGTGGTTTCTCTAGAGGGGCCTCTATATACAGAGGAGTAACGAGACACCA CCAGCATGGCCGATGGCAGGCGAGAATAGGCAGAGTTGCCGGAAACAAAGACCTCTACC TTGGCACTTTCAGCACCCAAGAAGAAGCTGCTGAGGCCTATGACATTGCTGCTATCAAAT TCAGGGGATTAAATGCAGTAACAAACTTTGACATGAGTCGCTACGACGTGAAGAGCATT GCAAATAGTACTCTTCCTATTGGTGGTTTATCTGGCAAGAACAAGAACTCCACAGATTCT GCATCTGAGAGCAAAAGCCATGAGCCAAGCCAATCCGATGGAGATCCATCATCGGCTTC ATCGGTGACCTTTGCATCACAGCAACAACCTTCAAGCTCCAACTTAAGCTTTGCCATACC CATTAAGCAAGACCCTTCAGATTACTGGTCCATCTTGGGGTACCATAATACTCCCCTTGA CAACAGTGGCATCAGGAACACTACTAGTACTGTTACTACAACTACTTTTCCATCCTCCAA CAATGGCACTGCTAGTAGTTTGACACCCTTCAACATGGAGTTCTCAAGTGCCCCCTCAAG TACCGGCAGCGATAACAATGCCGCGTTTTTCAGTGGAGGAGGCATCTTTGTTCAGCAACA AACTAGTCATGGTCATGGAAATGCAAGCAGTGGTTCCTCCTCTTCTTCTTTAAGCTGTTCA ATCCCATTCGCCACGCCCATATTTTCTCTAAATAGCAATACTAGTTATGAGAGCAGTGCT GGTTATGGAAACTGGATTGGACCTACCCTGCACACATTCCAATCCCATGCAAAACCAAGT CTCTTTCAAACGCCAATATTTGGAATGGAATGAGCTCATGCACGAGCTGGGATGAGAATC TGTGCATATAATGATGAAAGGGGAAGAAGGACAATAGTGGTGATGGTGTTTTAGCATGC AAAGAAGCAAAGGACGGACTAGTCCCTTTAGCTGATGCAGTATTTGAATGAGTTGGACT GACAGTCATAATTTCATGAGAATCGTAGCTATACCTAGCAGCTGACACTGTACTAACTCA AACTTCCTTTGTTATGTTTTGAATGAATTTTCCTTTTTCTTTTTCGCCCCTTTATTAGCTTTT TGGTCCTGTTAATATACTGACATTATATCAAATGAGGATAATGGGAAGAAAAAAAAAAT CCTTTTGTT SEQ ID NO: 53 - Nucleic acid sequence of the open reading frame of GmWRI01-1 ATGGACTCTTCTTCTTCATCACCGCCAAACAGCACCAACAACAACTCCCTCGCTTTCTCTC TTTCCAATCACTTTCCCAACCCTTCTTCCTCTCCCCTTTCTCTCTTCCACTCCTTCACCTAT CCATCTCTCTCTCTCACAGGCAGCAACACGGTGGACGCACCGCCTGAGCCCACCGCTGGA GCAGGACCGACCAACCTCTCCATATTCACCGGCGGCCCCAAGTTCGAGGACTTTCTGGGC GGTTCCGCCGCAACAGCCACCACCGTCGCGTGTGCACCGCCACAGCTTCCGCAGTTCTCC ACCGACAACAACAACCACCTATACGATTCGGAGCTGAAGTCAACAATAGCCGCGTGCTT CCCTCGCGCCTTGGCCGCCGAACAAAGCACCGAACCGCAAAAACCATCCCCCAAGAAAA CCGTCGACACCTTCGGGCAACGCACCTCCATCTACCGCGGCGTGACCCGACATAGATGG ACTGGGAGATACGAAGCTCATCTATGGGACAATAGTTGCAGAAGGGAAGGTCAAAGCAG GAAAGGAAGGCAAGTTTACTTGGGTGGTTATGACAAGGAGGATAAGGCAGCCAGAGCTT ATGATCTCGCAGCTCTCAAGTACTGGGGTCCAACTACCACCACTAACTTTCCTATTTCCA ACTATGAGAAGGAACTGGAGGAGATGAAGAACATGACTAGGCAAGAGTTTGTTGCTTCT CTTCGTAGGAAGAGCAGTGGTTTCTCTAGAGGGGCCTCTATATACAGAGGAGTAACGAG ACACCACCAGCATGGCCGATGGCAGGCGAGAATAGGCAGAGTTGCCGGAAACAAAGAC CTCTACCTTGGCACTTTCAGCACCCAAGAAGAAGCTGCTGAGGCCTATGACATTGCTGCT ATCAAATTCAGGGGATTAAATGCAGTAACAAACTTTGACATGAGTCGCTACGACGTGAA GAGCATTGCAAATAGTACTCTTCCTATTGGTGGTTTATCTGGCAAGAACAAGAACTCCAC AGATTCTGCATCTGAGAGCAAAAGCCATGAGCCAAGCCAATCCGATGGAGATCCATCAT CGGCTTCATCGGTGACCTTTGCATCACAGCAACAACCTTCAAGCTCCAACTTAAGCTTTG CCATACCCATTAAGCAAGACCCTTCAGATTACTGGTCCATCTTGGGGTACCATAATACTC CCCTTGACAACAGTGGCATCAGGAACACTACTAGTACTGTTACTACAACTACTTTTCCAT CCTCCAACAATGGCACTGCTAGTAGTTTGACACCCTTCAACATGGAGTTCTCAAGTGCCC CCTCAAGTACCGGCAGCGATAACAATGCCGCGTTTTTCAGTGGAGGAGGCATCTTTGTTC AGCAACAAACTAGTCATGGTCATGGAAATGCAAGCAGTGGTTCCTCCTCTTCTTCTTTAA GCTGTTCAATCCCATTCGCCACGCCCATATTTTCTCTAAATAGCAATACTAGTTATGAGA GCAGTGCTGGTTATGGAAACTGGATTGGACCTACCCTGCACACATTCCAATCCCATGCAA AACCAAGTCTCTTTCAAACGCCAATATTTGGAATGGAATGA SEQ ID NO: 54 - Amino acid sequence of the open reading frame of GmWRI01-1 MDSSSSSPPNSTNNNSLAFSLSNHFPNPSSSPLSLFHSFTYPSLSLTGSNTVDAPPEPTAGAGPT NLSIFTGGPKFEDFLGGSAATATTVACAPPQLPQFSTDNNNHLYDSELKSTIAACFPRALAAE QSTEPQKPSPKKTVDTFGQRTSIYRGVTRHRWTGRYEAHLWDNSCRREGQSRKGRQVYLGG YDKEDKAARAYDLAALKYWGPTTTTNFPISNYEKELEEMKNMTRQEFVASLRRKSSGFSRG ASIYRGVTRHHQHGRWQARIGRVAGNKDLYLGTFSTQEEAAEAYDIAAIKFRGLNAVTNFD MSRYDVKSIANSTLPIGGLSGKNKNSTDSASESKSHEPSQSDGDPSSASSVTFASQQQPSSSNL SFAIPIKQDPSDYWSILGYHNTPLDNSGIRNTTSTVTTTTFPSSNNGTASSLTPFNMEFSSAPSST GSDNNAAFFSGGGIFVQQQTSHGHGNASSGSSSSSLSCSIPFATPIFSLNSNTSYESSAGYGNWI GPTLHTFQSHAKPSLFQTPIFGME SEQ ID NO: 55 - Nucleic acid sequence of GmWri11 GGGCTGTTTCCGTCGATGAGACCACAACTCGACTGTGTAACAGGGTAATCAAAATAGAT AAAATAAAAAATATACTTCCTTTGACCGGTGACCGTGCGAACCGGTTCGAAGTTGGAAC CATGAGAGAGATAATGTTTATATATTCCATCATCTGTTCCGTTTGGATCCTCTCACCTCTC TCTCTCTCTCTCTCTCTGGTGCCATGGAATCCGGTAGTGCCCGATGTTTATATTCTCTCTG GTTCTGAAATCATCGCCGAGGAAATAACAAATGCAGCCTCCAAACCTCGCGAAGCTTCCT TCACACACTTCCTTCTATTCCTTGTTCGTCGAACAAGCTCTTTAACATTCCATCACCACAA CTTCCTACCTACACCTTCCGATATTGCATCTTCAACTGTTTGGTTACATTTCACACGTAAT AATTATTGTTTCTTTCGATTGGATCGGTCGGAACCATCGCTCGAAGAGAATCTCCGGAGA CGTAGAAGCAATATCAGTTTACTGTATGTATTGGTTCGGATTAATAATAATAACGAAAAA ATAGAAAGAAAATCAGAGTTGAAAATAGCCAGAAGAAGATTAAGCGCGATGTTGGATCT TAATCTGAATGCCGAGTCGACTCAGAACAACGAGTCGCTGGTGCTGTTGGACAAGTTTCC CGAAGCTTCGTTGGGAACTTCGAATTCCTCCGTCGTGAATGCGGAGGGATCGAGCAACG AGGACTCGTGCTCCACACGCGCCGGCGACGTGTTCGCCTTCAGTTTCGGAATCCTTAAGG TGGAAGGCGCGAACGAAGTCGTCGCCACGGCGACGAAGGAGCTGTTTCCGGTGAGCTCG GAGAATTGGCAGGGGCAGAGTTCGACGTCGTCGTCTCAGGCGAGGAAGAATTTAATGGA TCTCCCGCTGGATCATCAAAACGGTGAGGTGAAGGTGGTTCAGGTTCAGCCACAGCCTCA GGTGAAGAAGAGTAGGAGAGGTCCAAGGTCTCGGAGCTCTCAGTACAGAGGAGTCACTT TCTACAGAAGGACCGGAAGATGGGAATCGCATATCTGGGATTGCGGGAAGCAAGTCTAT TTGGGTGGATTTGACACCGCTCATATTGCTGCTAGGGCCTATGATCGAACTGCTATTAAG TTCAGGGGACTTGATGCTGATATCAATTTTGATCTCGTTGATTATGAGGAGGATCTAAAA CAGATGAAGAATCTTTCAAGCAGGAGTTCGTGCACATACTTCGCCGCCACAGTACCGGTT CTCANGGGCAGTTCGAAATACCNGGGATACACTTCACAAGTGGCCTTGGGAACTCGATG GGNATTCCTGGCAGAAGCTATACAGGCACTTCAGTGCATAAANAAGNTGTCCTACTTNA CCATTNTTGNACGNAGAACNGAGCTTCATCCTGGANAGGTAGCAGGCGTTTCANGCAAG AGNAGGTNCCCTATTGAGCCAGAATNGGGAGGAGAGAACCGGAGTNTNAAGAAGNGGC NTCCGGCCTGGNCTCAATTGGGCNAGCAACCCNAGACATGTCCCAAAGAAAATAGGGNC NTTTTCAGTTCCAGTCCATCCNTTACAACATGCATCCGGGAAGAAGTTCAAGNATGGAGA CTAATGTTAATTCGGTTATTGGTGATCCTTCTTNGAAAAGGCTGGTTGTACGAAGAGCGT CCTTCTGTATATTCCACTTTCTTTCCCAATCTGGAAAGAGCAGAGAGAATGGGCATAGAT CCTTCAAAAGGAGTTCCAAACTGGGCGTGGCAGACAAATGGCCAGGTTAATGCCACCCC AGTACCACCGTTCTCTACTGCAGCATCATCAGGATTCTCAATTTCAGCTACTTTTCCATCA ACTGCCATCTTTCCAACAAAATCCATGAACCCAATTCCCCAGAGCTTCTGTTTCACTTCAC ACAGCACACCAGGTAGCAATGCACCTCAATTCTATTACGAGGTCAAGTCCTCGCAGGCA CCATCCCAGCCTCTATCTTGTAATACAAGTATAAATGGTAGCCCACCACACAAGTTCTGA AGTTCAATTCTCAAAACGACAGTTAAAACTTTTTTTTTTTTTTTTCCTGTTTGCATGATTTA GGGATCGGTACAATGTTGTTGCTCATGGTATGTTTGTATGTGATGAAAAGATTTTTTTCTT CAGAGAGAAAGTGAAAAGAAAAAATGCATGATGTGTTTTA SEQ ID NO: 56 - Nucleic acid sequence of the open reading frame of GmWRI11 ATGAGAGAGATAATGTTTATATATTCCATCATCTGTTCCGTTTGGATCCTCTCACCTCTCT CTCTCTCTCTCTCTCTGGTGCCATGGAATCCGGTAGTGCCCGATGTTTATATTCTCTCTGG TTCTGAAATCATCGCCGAGGAAATAACAAATGCAGCCTCCAAACCTCGCGAAGCTTCCTT CACACACTTCCTTCTATTCCTTGTTCGTCGAACAAGCTCTTTAACATTCCATCACCACAAC TTCCTACCTACACCTTCCGATATTGCATCTTCAACTGTTTGGTTACATTTCACACGTAATA ATTATTGTTTCTTTCGATTGGATCGGTCGGAACCATCGCTCGAAGAGAATCTCCGGAGAC GTAGAAGCAATATCAGTTTACTGTATGTATTGGTTCGGATTAATAATAATAACGAAAAAA TAGAAAGAAAATCAGAGTTGAAAATAGCCAGAAGAAGATTAAGCGCGATGTTGGATCTT AATCTGAATGCCGAGTCGACTCAGAACAACGAGTCGCTGGTGCTGTTGGACAAGTTTCCC GAAGCTTCGTTGGGAACTTCGAATTCCTCCGTCGTGAATGCGGAGGGATCGAGCAACGA GGACTCGTGCTCCACACGCGCCGGCGACGTGTTCGCCTTCAGTTTCGGAATCCTTAAGGT GGAAGGCGCGAACGAAGTCGTCGCCACGGCGACGAAGGAGCTGTTTCCGGTGAGCTCGG AGAATTGGCAGGGGCAGAGTTCGACGTCGTCGTCTCAGGCGAGGAAGAATTTAATGGAT CTCCCGCTGGATCATCAAAACGGTGAGGTGAAGGTGGTTCAGGTTCAGCCACAGCCTCA GGTGAAGAAGAGTAGGAGAGGTCCAAGGTCTCGGAGCTCTCAGTACAGAGGAGTCACTT TCTACAGAAGGACCGGAAGATGGGAATCGCATATCTGGGATTGCGGGAAGCAAGTCTAT TTGGGTGGATTTGACACCGCTCATATTGCTGCTAGGGCCTATGATCGAACTGCTATTAAG TTCAGGGGACTTGATGCTGATATCAATTTTGATCTCGTTGATTATGAGGAGGATCTAAAA CAGATGAAGAATCTTTCAAGCAGGAGTTCGTGCACATACTTCGCCGCCACAGTACCGGTT
CTCANGGGCAGTTCGAAATACCNGGGATACACTTCACAAGTGGCCTTGGGAACTCGATG GGNATTCCTGGCAGAAGCTATACAGGCACTTCAGTGCATAAANAAGNTGTCCTACTTNA CCATTNTTGNACGNAGAACNGAGCTTCATCCTGGANAGGTAGCAGGCGTTTCANGCAAG AGNAGGTNCCCTATTGAGCCAGAATNGGGAGGAGAGAACCGGAGTNTNAAGAAGNGGC NTCCGGCCTGGNCTCAATTGGGCNAGCAACCCNAGACATGTCCCAAAGAAAATAGGGNC NTTTTCAGTTCCAGTCCATCCNTTACAACATGCATCCGGGAAGAAGTTCAAGNATGGAGA CTAATGTTAATTCGGTTATTGGTGATCCTTCTTNGAAAAGGCTGGTTGTACGAAGAGCGT CCTTCTGTATATTCCACTTTCTTTCCCAATCTGGAAAGAGCAGAGAGAATGGGCATAGAT CCTTCAAAAGGAGTTCCAAACTGGGCGTGGCAGACAAATGGCCAGGTTAATGCCACCCC AGTACCACCGTTCTCTACTGCAGCATCATCAGGATTCTCAATTTCAGCTACTTTTCCATCA ACTGCCATCTTTCCAACAAAATCCATGAACCCAATTCCCCAGAGCTTCTGTTTCACTTCAC ACAGCACACCAGGTAGCAATGCACCTCAATTCTATTACGAGGTCAAGTCCTCGCAGGCA CCATCCCAGCCTCTATCTTGTAATACAAGTATAAATGGTAGCCCACCACACAAGTTCTGA SEQ ID NO: 57 - Amino acid sequence of the open reading frame of GmWRI11 MREIMFIYSIICSVWILSPLSLSLSLVPWNPVVPDVYILSGSEIIAEEITNAASKPREASFTHFLLF LVRRTSSLTFHHHNFLPTPSDIASSTVWLHFTRNNYCFFRLDRSEPSLEENLRRRRSNISLLYVL VRINNNNEKIERKSELKIARRRLSAMLDLNLNAESTQNNESLVLLDKYPEASLGTSNSSVVNA EGSSNEDSCSTRAGDVFAFSFGILKVEGANEVVATATKELFPVSSENWQGQSSTSSSQARKNL MDLPLDHQNGEVKVVQVQPQPQVKKSRRGPRSRSSQYRGVTFYRRTGRWESHIWDCGKQV YLGGFDTAHIAARAYDRTAIKFRGLDADINFDLVDYEEDLKQMKNLSSRSSCTYFAATVPVL XGSSKYXGYTSQVALGTRWXFLAEAIQALQCIXKXSYXTIXXRRTELHPGXVAGVSXKXRX PIEPEXGGENRSXKKXXPAWXQLGXQPXTCPKENRXXFSSSPSXTTCIREEVQXWRLMLIRLL VILLXKGWLYEERPSVYSTFFPNLERAERMGIDPSKGVPNWAWQTNGQVNATPVPPFSTAAS SGFSISATFPSTAIFPTKSMNPIPQSFCFTSHSTPGSNAPQFYYEVKSSQAPSQPLSCNTSINGSPP HKF SEQ ID NO: 58 - Nucleic acid sequence of PtxA promoter CGCAATTTTTTGTGAAGCTGAGGGAGGATTGGATTTTACACCTATTCAAAAGTCATTCAA AGTTTGTCCCTCCATTCAAGGATGAATGTAGATTTTTCAAGCATCAAACACAAGAATCAC TAGCATAACATGCTTTGAAACCCACACACTTAAATTAATGTTAGGAATATCAAATCCAAT ATAAAATCATAGTTGTCAATTACATACTCAATCAAGTCCCTTTCTTTTACCCAATAAACAT CAACATATTGCTTCTTCCATTAAGCATATAAACATCAAAGTCTAAAACTAGCAAAATGTT GTTTTTAGGATGACACATTTCATACATAGTTTAAAAGATACTTGATTCGATTACAAAAAG AAATTACCAATAGTTTAGCACAAAGTCTAAAGCATAATTAAAGCATCACATGTGCAGATT TATGAAAAAAAGATTAAGATTGCCCCTTTCATCACGGGTCGAATAATAGCACTACTTGTC ACTACATGTTAAAAAAATGTCCTCTAGTACATCAAACTTTTTCCATTGATTCCCCTTATCC ATGAAAAAAATAAACAAATTCTTAAGACACAAAAAAATGGCCCCACATCCTTTTTTCTGG CCTAGTTTGTTTGAATTCATTCTAACTCTTGAATATGTAACGAGGCCCACTAAAAATCAA TCAATGATTTAACATAAAAAATGAATAGTTTAATTCCAATTTGCTGCAACATGGTCCGTG AATATGACTCACGAGAAAGATATATCAAAATATCAAAATTTCATAGTTTTTTTCACCATA TAAACCTCATCACTCATTCTATTTTTTTAAGTGCAAAGCTTCATAGTTA
Sequence CWU
1
5811577DNAArabidopsis thaliana 1aaaccactct gcttcctctt cctctgagaa
atcaaatcac tcacactcca aaaaaaaatc 60taaactttct cagagtttac gcccttggta
ccaaatctaa actttctcag agtttaatga 120agaagcgctt aaccacttcc acttgttctt
cttctccatc ttcctctgtt tcttcttcta 180ctactacttc ctctcctatt cagtcggagg
ctccaaggcc taaacgagcc aaaagggcta 240agaaatcttc tccttctggt gataaatctc
ataacccgac aagccctgct tctacccgac 300gcagctctat ctacagagga gtcactagac
atagatggac tgggagattc gaggctcatc 360tttgggacaa aagctcttgg aattcgattc
agaacaagaa aggcaaacaa gtttatctgg 420gagcatatga cagtgaagaa gcagcagcac
atacgtacga tctggctgct ctcaagtact 480ggggacccga caccatcttg aattttccgg
cagagacgta cacaaaggaa ttggaagaaa 540tgcagagagt gacaaaggaa gaatatttgg
cttctctccg ccgccagagc agtggtttct 600ccagaggcgt ctctaaatat cgcggcgtcg
ctaggcatca ccacaacgga agatgggagg 660ctcggatcgg aagagtgttt gggaacaagt
acttgtacct cggcacctat aatacgcagg 720aggaagctgc tgcagcatat gacatggctg
cgattgagta tcgaggcgca aacgcggtta 780ctaatttcga cattagtaat tacattgacc
ggttaaagaa gaaaggtgtt ttcccgttcc 840ctgtgaacca agctaaccat caagagggta
ttcttgttga agccaaacaa gaagttgaaa 900cgagagaagc gaaggaagag cctagagaag
aagtgaaaca acagtacgtg gaagaaccac 960cgcaagaaga agaagagaag gaagaagaga
aagcagagca acaagaagca gagattgtag 1020gatattcaga agaagcagca gtggtcaatt
gctgcataga ctcttcaacc ataatggaaa 1080tggatcgttg tggggacaac aatgagctgg
cttggaactt ctgtatgatg gatacagggt 1140tttctccgtt tttgactgat cagaatctcg
cgaatgagaa tcccatagag tatccggagc 1200tattcaatga gttagcattt gaggacaaca
tcgacttcat gttcgatgat gggaagcacg 1260agtgcttgaa cttggaaaat ctggattgtt
gcgtggtggg aagagagagc ccaccctctt 1320cttcttcacc attgtcttgc ttatctactg
actctgcttc atcaacaaca acaacaacaa 1380cctcggtttc ttgtaactat ttggtctgag
agagagagct ttgccttcta gtttgaattt 1440ctatttcttc cgcttcttct tctttttttt
cttttgttgg gttctgctta gggtttgtat 1500ttcagtttca gggcttgttc gttggttctg
aataatcaat gtctttgccc cttttctaat 1560gggtacctga agggcga
157721293DNAArabidopsis thaliana
2atgaagaagc gcttaaccac ttccacttgt tcttcttctc catcttcctc tgtttcttct
60tctactacta cttcctctcc tattcagtcg gaggctccaa ggcctaaacg agccaaaagg
120gctaagaaat cttctccttc tggtgataaa tctcataacc cgacaagccc tgcttctacc
180cgacgcagct ctatctacag aggagtcact agacatagat ggactgggag attcgaggct
240catctttggg acaaaagctc ttggaattcg attcagaaca agaaaggcaa acaagtttat
300ctgggagcat atgacagtga agaagcagca gcacatacgt acgatctggc tgctctcaag
360tactggggac ccgacaccat cttgaatttt ccggcagaga cgtacacaaa ggaattggaa
420gaaatgcaga gagtgacaaa ggaagaatat ttggcttctc tccgccgcca gagcagtggt
480ttctccagag gcgtctctaa atatcgcggc gtcgctaggc atcaccacaa cggaagatgg
540gaggctcgga tcggaagagt gtttgggaac aagtacttgt acctcggcac ctataatacg
600caggaggaag ctgctgcagc atatgacatg gctgcgattg agtatcgagg cgcaaacgcg
660gttactaatt tcgacattag taattacatt gaccggttaa agaagaaagg tgttttcccg
720ttccctgtga accaagctaa ccatcaagag ggtattcttg ttgaagccaa acaagaagtt
780gaaacgagag aagcgaagga agagcctaga gaagaagtga aacaacagta cgtggaagaa
840ccaccgcaag aagaagaaga gaaggaagaa gagaaagcag agcaacaaga agcagagatt
900gtaggatatt cagaagaagc agcagtggtc aattgctgca tagactcttc aaccataatg
960gaaatggatc gttgtgggga caacaatgag ctggcttgga acttctgtat gatggataca
1020gggttttctc cgtttttgac tgatcagaat ctcgcgaatg agaatcccat agagtatccg
1080gagctattca atgagttagc atttgaggac aacatcgact tcatgttcga tgatgggaag
1140cacgagtgct tgaacttgga aaatctggat tgttgcgtgg tgggaagaga gagcccaccc
1200tcttcttctt caccattgtc ttgcttatct actgactctg cttcatcaac aacaacaaca
1260acaacctcgg tttcttgtaa ctatttggtc tga
12933430PRTArabidopsis thaliana 3Met Lys Lys Arg Leu Thr Thr Ser Thr Cys
Ser Ser Ser Pro Ser Ser1 5 10
15Ser Val Ser Ser Ser Thr Thr Thr Ser Ser Pro Ile Gln Ser Glu Ala
20 25 30Pro Arg Pro Lys Arg Ala
Lys Arg Ala Lys Lys Ser Ser Pro Ser Gly 35 40
45Asp Lys Ser His Asn Pro Thr Ser Pro Ala Ser Thr Arg Arg
Ser Ser 50 55 60Ile Tyr Arg Gly Val
Thr Arg His Arg Trp Thr Gly Arg Phe Glu Ala65 70
75 80His Leu Trp Asp Lys Ser Ser Trp Asn Ser
Ile Gln Asn Lys Lys Gly 85 90
95Lys Gln Val Tyr Leu Gly Ala Tyr Asp Ser Glu Glu Ala Ala Ala His
100 105 110Thr Tyr Asp Leu Ala
Ala Leu Lys Tyr Trp Gly Pro Asp Thr Ile Leu 115
120 125Asn Phe Pro Ala Glu Thr Tyr Thr Lys Glu Leu Glu
Glu Met Gln Arg 130 135 140Val Thr Lys
Glu Glu Tyr Leu Ala Ser Leu Arg Arg Gln Ser Ser Gly145
150 155 160Phe Ser Arg Gly Val Ser Lys
Tyr Arg Gly Val Ala Arg His His His 165
170 175Asn Gly Arg Trp Glu Ala Arg Ile Gly Arg Val Phe
Gly Asn Lys Tyr 180 185 190Leu
Tyr Leu Gly Thr Tyr Asn Thr Gln Glu Glu Ala Ala Ala Ala Tyr 195
200 205Asp Met Ala Ala Ile Glu Tyr Arg Gly
Ala Asn Ala Val Thr Asn Phe 210 215
220Asp Ile Ser Asn Tyr Ile Asp Arg Leu Lys Lys Lys Gly Val Phe Pro225
230 235 240Phe Pro Val Asn
Gln Ala Asn His Gln Glu Gly Ile Leu Val Glu Ala 245
250 255Lys Gln Glu Val Glu Thr Arg Glu Ala Lys
Glu Glu Pro Arg Glu Glu 260 265
270Val Lys Gln Gln Tyr Val Glu Glu Pro Pro Gln Glu Glu Glu Glu Lys
275 280 285Glu Glu Glu Lys Ala Glu Gln
Gln Glu Ala Glu Ile Val Gly Tyr Ser 290 295
300Glu Glu Ala Ala Val Val Asn Cys Cys Ile Asp Ser Ser Thr Ile
Met305 310 315 320Glu Met
Asp Arg Cys Gly Asp Asn Asn Glu Leu Ala Trp Asn Phe Cys
325 330 335Met Met Asp Thr Gly Phe Ser
Pro Phe Leu Thr Asp Gln Asn Leu Ala 340 345
350Asn Glu Asn Pro Ile Glu Tyr Pro Glu Leu Phe Asn Glu Leu
Ala Phe 355 360 365Glu Asp Asn Ile
Asp Phe Met Phe Asp Asp Gly Lys His Glu Cys Leu 370
375 380Asn Leu Glu Asn Leu Asp Cys Cys Val Val Gly Arg
Glu Ser Pro Pro385 390 395
400Ser Ser Ser Ser Pro Leu Ser Cys Leu Ser Thr Asp Ser Ala Ser Ser
405 410 415Thr Thr Thr Thr Thr
Thr Ser Val Ser Cys Asn Tyr Leu Val 420 425
43041509DNABrassica napus 4cttgcacaca gtgcgtcttt ggttttctct
ttcctagggt ttgtgttttg gttctgatca 60tggcgtcgat gtcgtcgccg gatcaggggc
ctaagacaga ggcgggagga ggaggagaga 120gctcggagaa tgtgtcggcg agtgatcaga
tgttgctgta tagaagtttt aagaaggcga 180agaaggagag aggatgcaca gctaaggagc
gtatcagtaa aatgccgccc tgcacagctg 240gcaaaaggag ttctatttac cgtggagtca
ccagacatag atggacaggt cggtacgaag 300ctcacctttg ggacaagagt acttggaacc
aaaaccagaa caagaagggc aaacaagttt 360atctaggagc atatgatgat gaagaggctg
ctgctagagc ctacgacctt gctgccttga 420aatactgggg acctggaaca cttatcaatt
ttccggtgac tgattactct agggatttag 480aagaaatgca aagtctctca agggaagaat
accttgcaac tctacgtaga aaaagcagcg 540gtttctcaag gggaatagcc aaatatcgtg
gccttcaaag ccgatgggaa gcatcagcca 600gtcggatgcc tggacctgaa tacttcggta
gccttcatta cggtgatgaa cgaggagcag 660aaggtgactt tcttggcagc ttttgtctgg
aaagaaagat tgatctaacg ggatacataa 720agtggtgggg agtcaacaaa cccggtcaac
cagaatcttc atcaaaggca tcagaggatg 780caaaggtaga agatgcaggt actgagctta
agacactgga acacgcttcc caggcaacag 840agccatacaa agcaccaaac tttggcgttc
atcatggcac tcagaggaaa ggaaaacaaa 900taacatcgcc gtcctccacc tcttctgctt
taagcatttt gtctgcgtca cctgcttaca 960agagtctgga ggagaaagtg atgaagatcc
aagaaagtag cagcactaga gaaaacgatg 1020agaatgcaaa ccgtaacatc aatagtattg
agaagagtca cggtaaggaa atagagaaac 1080caccggtcgt gagtcatgga gtttctctag
gcagtggtgg tggtgttgct cctgctgctg 1140ctgctttgtc tcttcagaaa agcatgtacc
cacttgcctc tctcttaact gctccactgc 1200tcagcaatta caatacattg gatccccttg
gagagcctat tctctggaca ccgttccttc 1260acccaggatc ttctcatact ttagaggtga
caaagacaga gacaagttgt tccacataca 1320gttacctccc acaagagaag tgagccgttc
ccctttagac tgtttgtgaa aatgatctga 1380agcaggaatg tacaggtttt tgtcagtgtt
ttatgtgtat tttcagtgtg gaatatatat 1440agaatcatta tacttaaatg taaaacaggc
aaaatttatg attatacagt agtataaagg 1500tttgctctt
150951284DNABrassica napus 5atggcgtcga
tgtcgtcgcc ggatcagggg cctaagacag aggcgggagg aggaggagag 60agctcggaga
atgtgtcggc gagtgatcag atgttgctgt atagaagttt taagaaggcg 120aagaaggaga
gaggatgcac agctaaggag cgtatcagta aaatgccgcc ctgcacagct 180ggcaaaagga
gttctattta ccgtggagtc accagacata gatggacagg tcggtacgaa 240gctcaccttt
gggacaagag tacttggaac caaaaccaga acaagaaggg caaacaagtt 300tatctaggag
catatgatga tgaagaggct gctgctagag cctacgacct tgctgccttg 360aaatactggg
gacctggaac acttatcaat tttccggtga ctgattactc tagggattta 420gaagaaatgc
aaagtctctc aagggaagaa taccttgcaa ctctacgtag aaaaagcagc 480ggtttctcaa
ggggaatagc caaatatcgt ggccttcaaa gccgatggga agcatcagcc 540agtcggatgc
ctggacctga atacttcggt agccttcatt acggtgatga acgaggagca 600gaaggtgact
ttcttggcag cttttgtctg gaaagaaaga ttgatctaac gggatacata 660aagtggtggg
gagtcaacaa acccggtcaa ccagaatctt catcaaaggc atcagaggat 720gcaaaggtag
aagatgcagg tactgagctt aagacactgg aacacgcttc ccaggcaaca 780gagccataca
aagcaccaaa ctttggcgtt catcatggca ctcagaggaa aggaaaacaa 840ataacatcgc
cgtcctccac ctcttctgct ttaagcattt tgtctgcgtc acctgcttac 900aagagtctgg
aggagaaagt gatgaagatc caagaaagta gcagcactag agaaaacgat 960gagaatgcaa
accgtaacat caatagtatt gagaagagtc acggtaagga aatagagaaa 1020ccaccggtcg
tgagtcatgg agtttctcta ggcagtggtg gtggtgttgc tcctgctgct 1080gctgctttgt
ctcttcagaa aagcatgtac ccacttgcct ctctcttaac tgctccactg 1140ctcagcaatt
acaatacatt ggatcccctt ggagagccta ttctctggac accgttcctt 1200cacccaggat
cttctcatac tttagaggtg acaaagacag agacaagttg ttccacatac 1260agttacctcc
cacaagagaa gtga
12846427PRTBrassica napus 6Met Ala Ser Met Ser Ser Pro Asp Gln Gly Pro
Lys Thr Glu Ala Gly1 5 10
15Gly Gly Gly Glu Ser Ser Glu Asn Val Ser Ala Ser Asp Gln Met Leu
20 25 30Leu Tyr Arg Ser Phe Lys Lys
Ala Lys Lys Glu Arg Gly Cys Thr Ala 35 40
45Lys Glu Arg Ile Ser Lys Met Pro Pro Cys Thr Ala Gly Lys Arg
Ser 50 55 60Ser Ile Tyr Arg Gly Val
Thr Arg His Arg Trp Thr Gly Arg Tyr Glu65 70
75 80Ala His Leu Trp Asp Lys Ser Thr Trp Asn Gln
Asn Gln Asn Lys Lys 85 90
95Gly Lys Gln Val Tyr Leu Gly Ala Tyr Asp Asp Glu Glu Ala Ala Ala
100 105 110Arg Ala Tyr Asp Leu Ala
Ala Leu Lys Tyr Trp Gly Pro Gly Thr Leu 115 120
125Ile Asn Phe Pro Val Thr Asp Tyr Ser Arg Asp Leu Glu Glu
Met Gln 130 135 140Ser Leu Ser Arg Glu
Glu Tyr Leu Ala Thr Leu Arg Arg Lys Ser Ser145 150
155 160Gly Phe Ser Arg Gly Ile Ala Lys Tyr Arg
Gly Leu Gln Ser Arg Trp 165 170
175Glu Ala Ser Ala Ser Arg Met Pro Gly Pro Glu Tyr Phe Gly Ser Leu
180 185 190His Tyr Gly Asp Glu
Arg Gly Ala Glu Gly Asp Phe Leu Gly Ser Phe 195
200 205Cys Leu Glu Arg Lys Ile Asp Leu Thr Gly Tyr Ile
Lys Trp Trp Gly 210 215 220Val Asn Lys
Pro Gly Gln Pro Glu Ser Ser Ser Lys Ala Ser Glu Asp225
230 235 240Ala Lys Val Glu Asp Ala Gly
Thr Glu Leu Lys Thr Leu Glu His Ala 245
250 255Ser Gln Ala Thr Glu Pro Tyr Lys Ala Pro Asn Phe
Gly Val His His 260 265 270Gly
Thr Gln Arg Lys Gly Lys Gln Ile Thr Ser Pro Ser Ser Thr Ser 275
280 285Ser Ala Leu Ser Ile Leu Ser Ala Ser
Pro Ala Tyr Lys Ser Leu Glu 290 295
300Glu Lys Val Met Lys Ile Gln Glu Ser Ser Ser Thr Arg Glu Asn Asp305
310 315 320Glu Asn Ala Asn
Arg Asn Ile Asn Ser Ile Glu Lys Ser His Gly Lys 325
330 335Glu Ile Glu Lys Pro Pro Val Val Ser His
Gly Val Ser Leu Gly Ser 340 345
350Gly Gly Gly Val Ala Pro Ala Ala Ala Ala Leu Ser Leu Gln Lys Ser
355 360 365Met Tyr Pro Leu Ala Ser Leu
Leu Thr Ala Pro Leu Leu Ser Asn Tyr 370 375
380Asn Thr Leu Asp Pro Leu Gly Glu Pro Ile Leu Trp Thr Pro Phe
Leu385 390 395 400His Pro
Gly Ser Ser His Thr Leu Glu Val Thr Lys Thr Glu Thr Ser
405 410 415Cys Ser Thr Tyr Ser Tyr Leu
Pro Gln Glu Lys 420 42571392DNABrassica napus
7taatgaagag acccttaacc acttctcctt cttcctcctc ttctacttct tcttcggcct
60gtatacttcc gactcaatca gagactccaa ggcccaaacg agccaaaagg gctaagaaat
120cttctctgcg ttctgatgtt aaaccacaga atcccaccag tcctgcctcc accagacgca
180gctctatcta cagaggagtc actagacata gatggacagg gagatacgaa gctcatctat
240gggacaaaag ctcgtggaat tcgattcaga acaagaaagg caaacaagtt tatctgggag
300catatgacag cgaggaagca gcagcacata cgtacgatct agctgctctc aagtactggg
360gtcccaacac catcttgaac tttccggttg agacgtacac aaaggagctg gaggagatgc
420agagatgtac aaaggaagag tatttggctt ctctccgccg ccagagcagt ggtttctcta
480gaggcgtctc taaatatcgc ggcgtcgcca ggcatcacca taacggaaga tgggaagctc
540ggattggaag ggtgtttgga aacaagtact tgtacctcgg cacctataat acgcaggagg
600aagctgcagc tgcatatgac atggcggcta tagagtacag aggtgcaaac gcagtgacca
660acttcgacat tagtaactac atcgaccggt taaagaaaaa aggtgtcttc ccgttccccg
720tgagccaagc taatcatcaa gaagctgttc ttgctgaaac caaacaagaa gtggaagcta
780aagaagagcc tacagaagaa gtgaagcagt gtgtcgaaaa agaagaagct aaagaagaga
840agactgagaa aaaacaacaa caagaagtgg aggaggcggt gatcacttgc tgcattgatt
900cttcagagag caatgagctg gcttgggact tctgtatgat ggattcaggg tttgctccgt
960ttttgactga ttcaaatctc tcgagtgaga atcccattga gtatcctgag cttttcaatg
1020agatgggttt tgaggataac attgacttca tgttcgagga agggaagcaa gactgcttga
1080gcttggagaa tcttgattgt tgcgatggtg ttgttgtggt gggaagagag agcccaactt
1140cattgtcgtc ttctccgttg tcctgcttgt ctactgactc tgcttcatca acaacaacaa
1200cagcaacaac agtaacctct gtttcttgta actattctgt ctgagggggg agagctttgc
1260atttctaggt tgaattttct atttcttttg cttctttttt ttttgttgag ttctgctagg
1320gtttgtattc tgtttcaggg cttactcatt ggttctgaca gtcaatgttt agctctcttt
1380tccgctcgtc ta
139281242DNABrassica napus 8atgaagagac ccttaaccac ttctccttct tcctcctctt
ctacttcttc ttcggcctgt 60atacttccga ctcaatcaga gactccaagg cccaaacgag
ccaaaagggc taagaaatct 120tctctgcgtt ctgatgttaa accacagaat cccaccagtc
ctgcctccac cagacgcagc 180tctatctaca gaggagtcac tagacataga tggacaggga
gatacgaagc tcatctatgg 240gacaaaagct cgtggaattc gattcagaac aagaaaggca
aacaagttta tctgggagca 300tatgacagcg aggaagcagc agcacatacg tacgatctag
ctgctctcaa gtactggggt 360cccaacacca tcttgaactt tccggttgag acgtacacaa
aggagctgga ggagatgcag 420agatgtacaa aggaagagta tttggcttct ctccgccgcc
agagcagtgg tttctctaga 480ggcgtctcta aatatcgcgg cgtcgccagg catcaccata
acggaagatg ggaagctcgg 540attggaaggg tgtttggaaa caagtacttg tacctcggca
cctataatac gcaggaggaa 600gctgcagctg catatgacat ggcggctata gagtacagag
gtgcaaacgc agtgaccaac 660ttcgacatta gtaactacat cgaccggtta aagaaaaaag
gtgtcttccc gttccccgtg 720agccaagcta atcatcaaga agctgttctt gctgaaacca
aacaagaagt ggaagctaaa 780gaagagccta cagaagaagt gaagcagtgt gtcgaaaaag
aagaagctaa agaagagaag 840actgagaaaa aacaacaaca agaagtggag gaggcggtga
tcacttgctg cattgattct 900tcagagagca atgagctggc ttgggacttc tgtatgatgg
attcagggtt tgctccgttt 960ttgactgatt caaatctctc gagtgagaat cccattgagt
atcctgagct tttcaatgag 1020atgggttttg aggataacat tgacttcatg ttcgaggaag
ggaagcaaga ctgcttgagc 1080ttggagaatc ttgattgttg cgatggtgtt gttgtggtgg
gaagagagag cccaacttca 1140ttgtcgtctt ctccgttgtc ctgcttgtct actgactctg
cttcatcaac aacaacaaca 1200gcaacaacag taacctctgt ttcttgtaac tattctgtct
ga 12429413PRTBrassica napus 9Met Lys Arg Pro Leu
Thr Thr Ser Pro Ser Ser Ser Ser Ser Thr Ser1 5
10 15Ser Ser Ala Cys Ile Leu Pro Thr Gln Ser Glu
Thr Pro Arg Pro Lys 20 25
30Arg Ala Lys Arg Ala Lys Lys Ser Ser Leu Arg Ser Asp Val Lys Pro
35 40 45Gln Asn Pro Thr Ser Pro Ala Ser
Thr Arg Arg Ser Ser Ile Tyr Arg 50 55
60Gly Val Thr Arg His Arg Trp Thr Gly Arg Tyr Glu Ala His Leu Trp65
70 75 80Asp Lys Ser Ser Trp
Asn Ser Ile Gln Asn Lys Lys Gly Lys Gln Val 85
90 95Tyr Leu Gly Ala Tyr Asp Ser Glu Glu Ala Ala
Ala His Thr Tyr Asp 100 105
110Leu Ala Ala Leu Lys Tyr Trp Gly Pro Asn Thr Ile Leu Asn Phe Pro
115 120 125Val Glu Thr Tyr Thr Lys Glu
Leu Glu Glu Met Gln Arg Cys Thr Lys 130 135
140Glu Glu Tyr Leu Ala Ser Leu Arg Arg Gln Ser Ser Gly Phe Ser
Arg145 150 155 160Gly Val
Ser Lys Tyr Arg Gly Val Ala Arg His His His Asn Gly Arg
165 170 175Trp Glu Ala Arg Ile Gly Arg
Val Phe Gly Asn Lys Tyr Leu Tyr Leu 180 185
190Gly Thr Tyr Asn Thr Gln Glu Glu Ala Ala Ala Ala Tyr Asp
Met Ala 195 200 205Ala Ile Glu Tyr
Arg Gly Ala Asn Ala Val Thr Asn Phe Asp Ile Ser 210
215 220Asn Tyr Ile Asp Arg Leu Lys Lys Lys Gly Val Phe
Pro Phe Pro Val225 230 235
240Ser Gln Ala Asn His Gln Glu Ala Val Leu Ala Glu Thr Lys Gln Glu
245 250 255Val Glu Ala Lys Glu
Glu Pro Thr Glu Glu Val Lys Gln Cys Val Glu 260
265 270Lys Glu Glu Ala Lys Glu Glu Lys Thr Glu Lys Lys
Gln Gln Gln Glu 275 280 285Val Glu
Glu Ala Val Ile Thr Cys Cys Ile Asp Ser Ser Glu Ser Asn 290
295 300Glu Leu Ala Trp Asp Phe Cys Met Met Asp Ser
Gly Phe Ala Pro Phe305 310 315
320Leu Thr Asp Ser Asn Leu Ser Ser Glu Asn Pro Ile Glu Tyr Pro Glu
325 330 335Leu Phe Asn Glu
Met Gly Phe Glu Asp Asn Ile Asp Phe Met Phe Glu 340
345 350Glu Gly Lys Gln Asp Cys Leu Ser Leu Glu Asn
Leu Asp Cys Cys Asp 355 360 365Gly
Val Val Val Val Gly Arg Glu Ser Pro Thr Ser Leu Ser Ser Ser 370
375 380Pro Leu Ser Cys Leu Ser Thr Asp Ser Ala
Ser Ser Thr Thr Thr Thr385 390 395
400Ala Thr Thr Val Thr Ser Val Ser Cys Asn Tyr Ser Val
405 410101375DNABrassica napus 10taatgaagag
acccttaacc acttgtacat cttcttctac atcatcttct acttcttcat 60cttgtatcct
tcggaaccaa ccagagactc caaggcctaa acgagccaaa agggctaaga 120aatcatcgcc
cccttgtgat gtaaaaccac agaacccgac cagtcctgcc tctgccagac 180gcagctctat
ctacagagga gtcaccagac atagatggac tgggagattt gaggctcatc 240tatgggataa
aagctcttgg aattcgattc agaacaagaa aggcaaacaa gtttatttgg 300gagcatatga
cagcgaggaa gcagctgcac atacgtacga tctagctgct ctcaagtact 360ggggtcccga
caccatcttg aattttccgg ttgagacgta caaaaaggag ttggatgaaa 420tgcagagagg
cacaaaagaa gagtatttgg gttctctccg ccgccagagc agtggtttct 480ccagaggcgt
ctctaaatat cgcggcgtcg ccaggcatca ccataacgga agatgggagg 540ctcggattgg
aagagttttc ggaaacaagt acttatacct cggcacctat aatacgcagg 600aggaagctgc
agaagcatat gacatggctg cgattgaata tagaggtgca aacgctgtta 660ccaattttga
cattagtaat tacatcgacc ggctaaagaa aaaaggcgtt ttcccgttcc 720gtgtggacca
agctaaccat caagaggctg ttcttgctga agccaaacaa gaagctaaga 780aagaagtgaa
agagcacgtg gaagaagaac atcaagaaga gaaaacagag cagcatcaag 840aagtggaggc
ggtcacttgc ggcatagatg cttcaggcat tatggagatg gaacgttctt 900cagacagcaa
tgagttggct tggaacttct gtatgatgga ttcagggttt gctccgttct 960tgacagatca
aaacctctcg aatgagaatc ccatagagta tcctgagctt ttcaacgaga 1020tgatgggttt
tgaggataac gacatagact tcatgtttga ggaagccaag aacgaatgct 1080tgagcttgga
gaatctggat tgttgtgatg tcgttgtggt gggaagagaa agcccagctt 1140ctttatcgtc
ttctccgttg tcttgctttt ctactgactc tgcttcatca acaacaacaa 1200caacaaactc
tgtttcttgt aactattctg tctgagggag agagctttgc attatagggt 1260tgagttttct
atttcttttg cttcttgatc ttgtccttgt tgagttccgc tagggttttt 1320gtttttcgtt
tcagggctta ctcgttggtt ctgaacaatc aatgtcttcg cctca
1375111233DNABrassica napus 11atgaagagac ccttaaccac ttgtacatct tcttctacat
catcttctac ttcttcatct 60tgtatccttc ggaaccaacc agagactcca aggcctaaac
gagccaaaag ggctaagaaa 120tcatcgcccc cttgtgatgt aaaaccacag aacccgacca
gtcctgcctc tgccagacgc 180agctctatct acagaggagt caccagacat agatggactg
ggagatttga ggctcatcta 240tgggataaaa gctcttggaa ttcgattcag aacaagaaag
gcaaacaagt ttatttggga 300gcatatgaca gcgaggaagc agctgcacat acgtacgatc
tagctgctct caagtactgg 360ggtcccgaca ccatcttgaa ttttccggtt gagacgtaca
aaaaggagtt ggatgaaatg 420cagagaggca caaaagaaga gtatttgggt tctctccgcc
gccagagcag tggtttctcc 480agaggcgtct ctaaatatcg cggcgtcgcc aggcatcacc
ataacggaag atgggaggct 540cggattggaa gagttttcgg aaacaagtac ttatacctcg
gcacctataa tacgcaggag 600gaagctgcag aagcatatga catggctgcg attgaatata
gaggtgcaaa cgctgttacc 660aattttgaca ttagtaatta catcgaccgg ctaaagaaaa
aaggcgtttt cccgttccgt 720gtggaccaag ctaaccatca agaggctgtt cttgctgaag
ccaaacaaga agctaagaaa 780gaagtgaaag agcacgtgga agaagaacat caagaagaga
aaacagagca gcatcaagaa 840gtggaggcgg tcacttgcgg catagatgct tcaggcatta
tggagatgga acgttcttca 900gacagcaatg agttggcttg gaacttctgt atgatggatt
cagggtttgc tccgttcttg 960acagatcaaa acctctcgaa tgagaatccc atagagtatc
ctgagctttt caacgagatg 1020atgggttttg aggataacga catagacttc atgtttgagg
aagccaagaa cgaatgcttg 1080agcttggaga atctggattg ttgtgatgtc gttgtggtgg
gaagagaaag cccagcttct 1140ttatcgtctt ctccgttgtc ttgcttttct actgactctg
cttcatcaac aacaacaaca 1200acaaactctg tttcttgtaa ctattctgtc tga
123312410PRTBrassica napus 12Met Lys Arg Pro Leu
Thr Thr Cys Thr Ser Ser Ser Thr Ser Ser Ser1 5
10 15Thr Ser Ser Ser Cys Ile Leu Arg Asn Gln Pro
Glu Thr Pro Arg Pro 20 25
30Lys Arg Ala Lys Arg Ala Lys Lys Ser Ser Pro Pro Cys Asp Val Lys
35 40 45Pro Gln Asn Pro Thr Ser Pro Ala
Ser Ala Arg Arg Ser Ser Ile Tyr 50 55
60Arg Gly Val Thr Arg His Arg Trp Thr Gly Arg Phe Glu Ala His Leu65
70 75 80Trp Asp Lys Ser Ser
Trp Asn Ser Ile Gln Asn Lys Lys Gly Lys Gln 85
90 95Val Tyr Leu Gly Ala Tyr Asp Ser Glu Glu Ala
Ala Ala His Thr Tyr 100 105
110Asp Leu Ala Ala Leu Lys Tyr Trp Gly Pro Asp Thr Ile Leu Asn Phe
115 120 125Pro Val Glu Thr Tyr Lys Lys
Glu Leu Asp Glu Met Gln Arg Gly Thr 130 135
140Lys Glu Glu Tyr Leu Gly Ser Leu Arg Arg Gln Ser Ser Gly Phe
Ser145 150 155 160Arg Gly
Val Ser Lys Tyr Arg Gly Val Ala Arg His His His Asn Gly
165 170 175Arg Trp Glu Ala Arg Ile Gly
Arg Val Phe Gly Asn Lys Tyr Leu Tyr 180 185
190Leu Gly Thr Tyr Asn Thr Gln Glu Glu Ala Ala Glu Ala Tyr
Asp Met 195 200 205Ala Ala Ile Glu
Tyr Arg Gly Ala Asn Ala Val Thr Asn Phe Asp Ile 210
215 220Ser Asn Tyr Ile Asp Arg Leu Lys Lys Lys Gly Val
Phe Pro Phe Arg225 230 235
240Val Asp Gln Ala Asn His Gln Glu Ala Val Leu Ala Glu Ala Lys Gln
245 250 255Glu Ala Lys Lys Glu
Val Lys Glu His Val Glu Glu Glu His Gln Glu 260
265 270Glu Lys Thr Glu Gln His Gln Glu Val Glu Ala Val
Thr Cys Gly Ile 275 280 285Asp Ala
Ser Gly Ile Met Glu Met Glu Arg Ser Ser Asp Ser Asn Glu 290
295 300Leu Ala Trp Asn Phe Cys Met Met Asp Ser Gly
Phe Ala Pro Phe Leu305 310 315
320Thr Asp Gln Asn Leu Ser Asn Glu Asn Pro Ile Glu Tyr Pro Glu Leu
325 330 335Phe Asn Glu Met
Met Gly Phe Glu Asp Asn Asp Ile Asp Phe Met Phe 340
345 350Glu Glu Ala Lys Asn Glu Cys Leu Ser Leu Glu
Asn Leu Asp Cys Cys 355 360 365Asp
Val Val Val Val Gly Arg Glu Ser Pro Ala Ser Leu Ser Ser Ser 370
375 380Pro Leu Ser Cys Phe Ser Thr Asp Ser Ala
Ser Ser Thr Thr Thr Thr385 390 395
400Thr Asn Ser Val Ser Cys Asn Tyr Ser Val 405
410131392DNABrassica napus 13taatgaagag acccttaacc
acttgtacat cttcttctac atcatcctct acttcttcat 60cttgtatcct tccgaaccaa
ccagagactc caaggcctaa acgagccaaa agggctaaga 120aatcatctcc cccttgtgat
gtaaaaccac agaacccgac cagtcctgcc tctgccagac 180gcagctctat ctacagagga
gtcaccagac atagatggac tgggagattt gaggctcatc 240tatgggataa aagctcttgg
aattcgattc agaacaagaa aggcaaacaa gtttatctgg 300gagcatatga cagcgaggaa
gcagctgcac atacgtacga tctagctgct ctcaagtact 360ggggtcccga caccatcttg
aattttccgg ttgagacgta cacaaaggag ttggatgaaa 420tgcagagagg cacaaaagaa
gagtatttgg cttctctccg ccgccagagc agtggtttct 480ccagaggcgt ctctaaatat
cgcggcgtcg ccaggcatca ccataacgga agatgggagg 540ctcggattgg aagagttttc
ggaaacaagt acttatacct cggcacctat aatacgcagg 600aggaagctgc tgaagcttat
gatatggctg cgattgaata tagaggtgca aacgctgtta 660ccaatttcga cattagtaat
tacatcgacc gtttaaagaa aaaaggcgtt ttcccgttcc 720gtgtggagca agccactcat
caagaggctg ttcttgctga agccaaacaa gaagccaagg 780aagaagtgaa agagcacgtg
gaagaagaac atcaagaagc gagggaagag acaacagagc 840agaaacaaga agtggaggcg
gtcacttgcg gcgtagatgc ttcaggcatt atggagatgg 900aacgttcttc agacagcaat
gagttggctt ggaacttctg tatgatggat tcagggtttg 960ctccgttctt gacagatcaa
aacctctcga atgagaatcc catagagtat cctgaacttt 1020tcaacgagat gatgggtttt
gaggataacg acatagactt catgttcgag gaagccaaga 1080acgaatgctt gagcttggag
aatctggatt gttgtgatgt cgttgtggtg ggaagagaaa 1140gcccaacttc tttgtcgtct
tctccgttgt cttgcttttc tactgactct gcttcatcaa 1200caacaataac aacaacaaca
acaacctctg tttcttgtaa ctattctgtc tgagggagag 1260agctttgcat tatagggttg
agttttctat ttcttttgct tcttgatctt gtccttgttg 1320agttccgcta gggtttttgt
ttttcgtttc agggcttact cgttggttct gaacaatcaa 1380tgtcttcgcc tc
1392141251DNABrassica napus
14atgaagagac ccttaaccac ttgtacatct tcttctacat catcctctac ttcttcatct
60tgtatccttc cgaaccaacc agagactcca aggcctaaac gagccaaaag ggctaagaaa
120tcatctcccc cttgtgatgt aaaaccacag aacccgacca gtcctgcctc tgccagacgc
180agctctatct acagaggagt caccagacat agatggactg ggagatttga ggctcatcta
240tgggataaaa gctcttggaa ttcgattcag aacaagaaag gcaaacaagt ttatctggga
300gcatatgaca gcgaggaagc agctgcacat acgtacgatc tagctgctct caagtactgg
360ggtcccgaca ccatcttgaa ttttccggtt gagacgtaca caaaggagtt ggatgaaatg
420cagagaggca caaaagaaga gtatttggct tctctccgcc gccagagcag tggtttctcc
480agaggcgtct ctaaatatcg cggcgtcgcc aggcatcacc ataacggaag atgggaggct
540cggattggaa gagttttcgg aaacaagtac ttatacctcg gcacctataa tacgcaggag
600gaagctgctg aagcttatga tatggctgcg attgaatata gaggtgcaaa cgctgttacc
660aatttcgaca ttagtaatta catcgaccgt ttaaagaaaa aaggcgtttt cccgttccgt
720gtggagcaag ccactcatca agaggctgtt cttgctgaag ccaaacaaga agccaaggaa
780gaagtgaaag agcacgtgga agaagaacat caagaagcga gggaagagac aacagagcag
840aaacaagaag tggaggcggt cacttgcggc gtagatgctt caggcattat ggagatggaa
900cgttcttcag acagcaatga gttggcttgg aacttctgta tgatggattc agggtttgct
960ccgttcttga cagatcaaaa cctctcgaat gagaatccca tagagtatcc tgaacttttc
1020aacgagatga tgggttttga ggataacgac atagacttca tgttcgagga agccaagaac
1080gaatgcttga gcttggagaa tctggattgt tgtgatgtcg ttgtggtggg aagagaaagc
1140ccaacttctt tgtcgtcttc tccgttgtct tgcttttcta ctgactctgc ttcatcaaca
1200acaataacaa caacaacaac aacctctgtt tcttgtaact attctgtctg a
125115416PRTBrassica napus 15Met Lys Arg Pro Leu Thr Thr Cys Thr Ser Ser
Ser Thr Ser Ser Ser1 5 10
15Thr Ser Ser Ser Cys Ile Leu Pro Asn Gln Pro Glu Thr Pro Arg Pro
20 25 30Lys Arg Ala Lys Arg Ala Lys
Lys Ser Ser Pro Pro Cys Asp Val Lys 35 40
45Pro Gln Asn Pro Thr Ser Pro Ala Ser Ala Arg Arg Ser Ser Ile
Tyr 50 55 60Arg Gly Val Thr Arg His
Arg Trp Thr Gly Arg Phe Glu Ala His Leu65 70
75 80Trp Asp Lys Ser Ser Trp Asn Ser Ile Gln Asn
Lys Lys Gly Lys Gln 85 90
95Val Tyr Leu Gly Ala Tyr Asp Ser Glu Glu Ala Ala Ala His Thr Tyr
100 105 110Asp Leu Ala Ala Leu Lys
Tyr Trp Gly Pro Asp Thr Ile Leu Asn Phe 115 120
125Pro Val Glu Thr Tyr Thr Lys Glu Leu Asp Glu Met Gln Arg
Gly Thr 130 135 140Lys Glu Glu Tyr Leu
Ala Ser Leu Arg Arg Gln Ser Ser Gly Phe Ser145 150
155 160Arg Gly Val Ser Lys Tyr Arg Gly Val Ala
Arg His His His Asn Gly 165 170
175Arg Trp Glu Ala Arg Ile Gly Arg Val Phe Gly Asn Lys Tyr Leu Tyr
180 185 190Leu Gly Thr Tyr Asn
Thr Gln Glu Glu Ala Ala Glu Ala Tyr Asp Met 195
200 205Ala Ala Ile Glu Tyr Arg Gly Ala Asn Ala Val Thr
Asn Phe Asp Ile 210 215 220Ser Asn Tyr
Ile Asp Arg Leu Lys Lys Lys Gly Val Phe Pro Phe Arg225
230 235 240Val Glu Gln Ala Thr His Gln
Glu Ala Val Leu Ala Glu Ala Lys Gln 245
250 255Glu Ala Lys Glu Glu Val Lys Glu His Val Glu Glu
Glu His Gln Glu 260 265 270Ala
Arg Glu Glu Thr Thr Glu Gln Lys Gln Glu Val Glu Ala Val Thr 275
280 285Cys Gly Val Asp Ala Ser Gly Ile Met
Glu Met Glu Arg Ser Ser Asp 290 295
300Ser Asn Glu Leu Ala Trp Asn Phe Cys Met Met Asp Ser Gly Phe Ala305
310 315 320Pro Phe Leu Thr
Asp Gln Asn Leu Ser Asn Glu Asn Pro Ile Glu Tyr 325
330 335Pro Glu Leu Phe Asn Glu Met Met Gly Phe
Glu Asp Asn Asp Ile Asp 340 345
350Phe Met Phe Glu Glu Ala Lys Asn Glu Cys Leu Ser Leu Glu Asn Leu
355 360 365Asp Cys Cys Asp Val Val Val
Val Gly Arg Glu Ser Pro Thr Ser Leu 370 375
380Ser Ser Ser Pro Leu Ser Cys Phe Ser Thr Asp Ser Ala Ser Ser
Thr385 390 395 400Thr Ile
Thr Thr Thr Thr Thr Thr Ser Val Ser Cys Asn Tyr Ser Val
405 410 415161457DNABrassica napus
16gatttcgtat tcccccaaac acacaaaatc tcattctctt tttttctcat agtttttttt
60aatgaagaga cccttaacca cttctccttc tacctcctct tctacttctt cttcggcttg
120tatacttccg actcaaccag agactccaag gcccaaacga gccaaaaggg ctaagaaatc
180ttctattcct actgatgtta aaccacagaa tcccaccagt cctgcctcca ccagacgcag
240ctctatctac agaggagtca ctagacatag atggacaggg agatacgagg ctcatctatg
300ggacaaaagc tcgtggaatt cgattcagaa caagaaaggc aaacaagttt atctgggagc
360atatgacagc gaggaagcag cagcgcatac gtacgatcta gctgctctca agtactgggg
420tcccgacacc atcttgaact ttccggctga gacgtacaca aaggagttgg aggagatgca
480gagatgtaca aaggaagagt atttggcttc tctccgccgc cagagcagtg gtttctctag
540aggcgtctct aaatatcgcg gcgtcgccag gcatcaccat aacggaagat gggaagctag
600gattggaagg gtgtttggaa acaagtactt gtacctcggc acttataata cgcaggagga
660agctgcagct gcatatgaca tggcggctat agagtacaga ggcgcaaacg cagtgaccaa
720cttcgacatt agtaactaca tcgaccggtt aaagaaaaaa ggtgtcttcc cattccctgt
780gagccaagcc aatcatcaag aagctgttct tgctgaagcc aaacaagaag tggaagctaa
840agaagagcct acagaagaag tgaagcagtg tgtcgaaaaa gaagaaccgc aagaagctaa
900agaagagaag actgagaaaa aacaacaaca acaagaagtg gaggaggcgg tggtcacttg
960ctgcattgat tcttcggaga gcaatgagct ggcttgggac ttctgtatga tggattcagg
1020gtttgctccg tttttgacgg attcaaatct ctcgagtgag aatcccattg agtatcctga
1080gcttttcaat gagatggggt ttgaggataa cattgacttc atgttcgagg aagggaagca
1140agactgcttg agcttggaga atctggattg ttgcgatggt gttgttgtgg tgggaagaga
1200gagcccaact tcattgtcgt cttcaccgtt gtcttgcttg tctactgact ctgcttcatc
1260aacaacaaca acaacaataa cctctgtttc ttgtaactat tctgtctgag gggggagagc
1320tttgcatttc taggttgaat tttctatttc ttttgcttct tttttttttg ttgagttctg
1380ctagggtttg tattctgttt cagggcttac tcattggttc tgacagtcaa tgtttagctc
1440tcttttccgc tcgtcta
1457171248DNABrassica napus 17atgaagagac ccttaaccac ttctccttct acctcctctt
ctacttcttc ttcggcttgt 60atacttccga ctcaaccaga gactccaagg cccaaacgag
ccaaaagggc taagaaatct 120tctattccta ctgatgttaa accacagaat cccaccagtc
ctgcctccac cagacgcagc 180tctatctaca gaggagtcac tagacataga tggacaggga
gatacgaggc tcatctatgg 240gacaaaagct cgtggaattc gattcagaac aagaaaggca
aacaagttta tctgggagca 300tatgacagcg aggaagcagc agcgcatacg tacgatctag
ctgctctcaa gtactggggt 360cccgacacca tcttgaactt tccggctgag acgtacacaa
aggagttgga ggagatgcag 420agatgtacaa aggaagagta tttggcttct ctccgccgcc
agagcagtgg tttctctaga 480ggcgtctcta aatatcgcgg cgtcgccagg catcaccata
acggaagatg ggaagctagg 540attggaaggg tgtttggaaa caagtacttg tacctcggca
cttataatac gcaggaggaa 600gctgcagctg catatgacat ggcggctata gagtacagag
gcgcaaacgc agtgaccaac 660ttcgacatta gtaactacat cgaccggtta aagaaaaaag
gtgtcttccc attccctgtg 720agccaagcca atcatcaaga agctgttctt gctgaagcca
aacaagaagt ggaagctaaa 780gaagagccta cagaagaagt gaagcagtgt gtcgaaaaag
aagaaccgca agaagctaaa 840gaagagaaga ctgagaaaaa acaacaacaa caagaagtgg
aggaggcggt ggtcacttgc 900tgcattgatt cttcggagag caatgagctg gcttgggact
tctgtatgat ggattcaggg 960tttgctccgt ttttgacgga ttcaaatctc tcgagtgaga
atcccattga gtatcctgag 1020cttttcaatg agatggggtt tgaggataac attgacttca
tgttcgagga agggaagcaa 1080gactgcttga gcttggagaa tctggattgt tgcgatggtg
ttgttgtggt gggaagagag 1140agcccaactt cattgtcgtc ttcaccgttg tcttgcttgt
ctactgactc tgcttcatca 1200acaacaacaa caacaataac ctctgtttct tgtaactatt
ctgtctga 124818415PRTBrassica napus 18Met Lys Arg Pro Leu
Thr Thr Ser Pro Ser Thr Ser Ser Ser Thr Ser1 5
10 15Ser Ser Ala Cys Ile Leu Pro Thr Gln Pro Glu
Thr Pro Arg Pro Lys 20 25
30Arg Ala Lys Arg Ala Lys Lys Ser Ser Ile Pro Thr Asp Val Lys Pro
35 40 45Gln Asn Pro Thr Ser Pro Ala Ser
Thr Arg Arg Ser Ser Ile Tyr Arg 50 55
60Gly Val Thr Arg His Arg Trp Thr Gly Arg Tyr Glu Ala His Leu Trp65
70 75 80Asp Lys Ser Ser Trp
Asn Ser Ile Gln Asn Lys Lys Gly Lys Gln Val 85
90 95Tyr Leu Gly Ala Tyr Asp Ser Glu Glu Ala Ala
Ala His Thr Tyr Asp 100 105
110Leu Ala Ala Leu Lys Tyr Trp Gly Pro Asp Thr Ile Leu Asn Phe Pro
115 120 125Ala Glu Thr Tyr Thr Lys Glu
Leu Glu Glu Met Gln Arg Cys Thr Lys 130 135
140Glu Glu Tyr Leu Ala Ser Leu Arg Arg Gln Ser Ser Gly Phe Ser
Arg145 150 155 160Gly Val
Ser Lys Tyr Arg Gly Val Ala Arg His His His Asn Gly Arg
165 170 175Trp Glu Ala Arg Ile Gly Arg
Val Phe Gly Asn Lys Tyr Leu Tyr Leu 180 185
190Gly Thr Tyr Asn Thr Gln Glu Glu Ala Ala Ala Ala Tyr Asp
Met Ala 195 200 205Ala Ile Glu Tyr
Arg Gly Ala Asn Ala Val Thr Asn Phe Asp Ile Ser 210
215 220Asn Tyr Ile Asp Arg Leu Lys Lys Lys Gly Val Phe
Pro Phe Pro Val225 230 235
240Ser Gln Ala Asn His Gln Glu Ala Val Leu Ala Glu Ala Lys Gln Glu
245 250 255Val Glu Ala Lys Glu
Glu Pro Thr Glu Glu Val Lys Gln Cys Val Glu 260
265 270Lys Glu Glu Pro Gln Glu Ala Lys Glu Glu Lys Thr
Glu Lys Lys Gln 275 280 285Gln Gln
Gln Glu Val Glu Glu Ala Val Val Thr Cys Cys Ile Asp Ser 290
295 300Ser Glu Ser Asn Glu Leu Ala Trp Asp Phe Cys
Met Met Asp Ser Gly305 310 315
320Phe Ala Pro Phe Leu Thr Asp Ser Asn Leu Ser Ser Glu Asn Pro Ile
325 330 335Glu Tyr Pro Glu
Leu Phe Asn Glu Met Gly Phe Glu Asp Asn Ile Asp 340
345 350Phe Met Phe Glu Glu Gly Lys Gln Asp Cys Leu
Ser Leu Glu Asn Leu 355 360 365Asp
Cys Cys Asp Gly Val Val Val Val Gly Arg Glu Ser Pro Thr Ser 370
375 380Leu Ser Ser Ser Pro Leu Ser Cys Leu Ser
Thr Asp Ser Ala Ser Ser385 390 395
400Thr Thr Thr Thr Thr Ile Thr Ser Val Ser Cys Asn Tyr Ser Val
405 410 415191389DNABrassica
napusmodified_base(1318)a, c, g, t, unknown or other 19agagtatttg
ggacacgtgg tggaatcttc cggtggtccg gagcttggtt ttcacggtgg 60agctaacaac
ggaggagctt tgtcacttgg tgttaacgtt aacaactcta atcacaggac 120tagtgatgat
catactcaga tcactgagta tcattaccga ggaaataaca atggtgaaag 180aaccaacaac
gagaagacgg tttctgagaa ggagaagcct gttgtggctg tggagacatc 240agattgttct
aacaagaaga tcgctgatac gtttggacaa aggacttcca tctacagagg 300agttacaaga
catagatgga cgggaagata tgaagctcat ctatgggata atagctgtag 360gcgagaaggt
caagccagga aaggacgtca agtatacttg ggtggatatg acaaagaaga 420caaggcagct
cgagcttatg attatagcag ctcttaagta ctggaatgct actgctacca 480ccaatttccc
tattacaaac tactcaaaag aactagagga aatgaagcac atgaccaaac 540aagagttcat
tgcttccctt aggaggaaga gtagcggatt ctctagagga gcctcaatat 600acagaggtgt
gacaaggcat catcaacaag gacgttggca agcaaggata ggccgtgtag 660ccgggaacaa
agatctttac ctaggaacat ttgcaacgga agaggaagca gccgaggcat 720acgacatagc
agcgatcaaa ttcaggggaa taaacgctgt aacaaacttt gagatgaacc 780gttacgacgt
tgaggccatc atgaagagtg cacttcccat tggtggtgca gcaaaacgtc 840ttaagctctc
tttagaagct gcagagcaga aaccaatcct cggtcatcaa catcaactcc 900accacttcca
gcaacaacag cagcaacaga ttcagtcctc tccgaaccac agtagcatta 960acttcgctca
atctcagatg attcctgtgg gatccctttt gaagctgctg ctctctacca 1020tcatcaacag
caacaacagc agcagcagca acagaacttc ttccagcatt ttccggcgaa 1080tgttcgagct
actgactcga ccggttctaa taataactcc aacgttcaag gttcaatggg 1140acttatggtg
ccgaatcagg ctgagttctt cctctggcct aaccagtctt actagaatca 1200atcatgttat
gttttttgtt tttttttttt tgttttagtt tttaatggtt tttaagggat 1260aacaacttct
ttctaatgtt caacttcttg attctagcta accccataag ctgactanaa 1320ggatatgaaa
atctcacttg tnccgngtta ctcngtttcc atttaatgaa atgngtttct 1380gtttangta
1389201113DNABrassica napus 20atgatcatac tcagatcact gagtatcatt accgaggaaa
taacaatggt gaaagaacca 60acaacgagaa gacggtttct gagaaggaga agcctgttgt
ggctgtggag acatcagatt 120gttctaacaa gaagatcgct gatacgtttg gacaaaggac
ttccatctac agaggagtta 180caagacatag atggacggga agatatgaag ctcatctatg
ggataatagc tgtaggcgag 240aaggtcaagc caggaaagga cgtcaagtat acttgggtgg
atatgacaaa gaagacaagg 300cagctcgagc ttatgattat agcagctctt aagtactgga
atgctactgc taccaccaat 360ttccctatta caaactactc aaaagaacta gaggaaatga
agcacatgac caaacaagag 420ttcattgctt cccttaggag gaagagtagc ggattctcta
gaggagcctc aatatacaga 480ggtgtgacaa ggcatcatca acaaggacgt tggcaagcaa
ggataggccg tgtagccggg 540aacaaagatc tttacctagg aacatttgca acggaagagg
aagcagccga ggcatacgac 600atagcagcga tcaaattcag gggaataaac gctgtaacaa
actttgagat gaaccgttac 660gacgttgagg ccatcatgaa gagtgcactt cccattggtg
gtgcagcaaa acgtcttaag 720ctctctttag aagctgcaga gcagaaacca atcctcggtc
atcaacatca actccaccac 780ttccagcaac aacagcagca acagattcag tcctctccga
accacagtag cattaacttc 840gctcaatctc agatgattcc tgtgggatcc cttttgaagc
tgctgctctc taccatcatc 900aacagcaaca acagcagcag cagcaacaga acttcttcca
gcattttccg gcgaatgttc 960gagctactga ctcgaccggt tctaataata actccaacgt
tcaaggttca atgggactta 1020tggtgccgaa tcaggctgag ttcttcctct ggcctaacca
gtcttactag aatcaatcat 1080gttatgtttt ttgttttttt ttttttgttt tag
111321370PRTBrassica napus 21Met Ile Ile Leu Arg
Ser Leu Ser Ile Ile Thr Glu Glu Ile Thr Met1 5
10 15Val Lys Glu Pro Thr Thr Arg Arg Arg Phe Leu
Arg Arg Arg Ser Leu 20 25
30Leu Trp Leu Trp Arg His Gln Ile Val Leu Thr Arg Arg Ser Leu Ile
35 40 45Arg Leu Asp Lys Gly Leu Pro Ser
Thr Glu Glu Leu Gln Asp Ile Asp 50 55
60Gly Arg Glu Asp Met Lys Leu Ile Tyr Gly Ile Ile Ala Val Gly Glu65
70 75 80Lys Val Lys Pro Gly
Lys Asp Val Lys Tyr Thr Trp Val Asp Met Thr 85
90 95Lys Lys Thr Arg Gln Leu Glu Leu Met Ile Ile
Ala Ala Leu Lys Tyr 100 105
110Trp Asn Ala Thr Ala Thr Thr Asn Phe Pro Ile Thr Asn Tyr Ser Lys
115 120 125Glu Leu Glu Glu Met Lys His
Met Thr Lys Gln Glu Phe Ile Ala Ser 130 135
140Leu Arg Arg Lys Ser Ser Gly Phe Ser Arg Gly Ala Ser Ile Tyr
Arg145 150 155 160Gly Val
Thr Arg His His Gln Gln Gly Arg Trp Gln Ala Arg Ile Gly
165 170 175Arg Val Ala Gly Asn Lys Asp
Leu Tyr Leu Gly Thr Phe Ala Thr Glu 180 185
190Glu Glu Ala Ala Glu Ala Tyr Asp Ile Ala Ala Ile Lys Phe
Arg Gly 195 200 205Ile Asn Ala Val
Thr Asn Phe Glu Met Asn Arg Tyr Asp Val Glu Ala 210
215 220Ile Met Lys Ser Ala Leu Pro Ile Gly Gly Ala Ala
Lys Arg Leu Lys225 230 235
240Leu Ser Leu Glu Ala Ala Glu Gln Lys Pro Ile Leu Gly His Gln His
245 250 255Gln Leu His His Phe
Gln Gln Gln Gln Gln Gln Gln Ile Gln Ser Ser 260
265 270Pro Asn His Ser Ser Ile Asn Phe Ala Gln Ser Gln
Met Ile Pro Val 275 280 285Gly Ser
Leu Leu Lys Leu Leu Leu Ser Thr Ile Ile Asn Ser Asn Asn 290
295 300Ser Ser Ser Ser Asn Arg Thr Ser Ser Ser Ile
Phe Arg Arg Met Phe305 310 315
320Glu Leu Leu Thr Arg Pro Val Leu Ile Ile Thr Pro Thr Phe Lys Val
325 330 335Gln Trp Asp Leu
Trp Cys Arg Ile Arg Leu Ser Ser Ser Ser Gly Leu 340
345 350Thr Ser Leu Thr Arg Ile Asn His Val Met Phe
Phe Val Phe Phe Phe 355 360 365Leu
Phe 370221892DNAGlycine max 22aagcagtggt aacaacgcag agtacgcggg
attcaagtac ttcttctttg taaccaaact 60aaaacctctt gatttattgt ttcatttaat
caaatagtag taataatatc accaccgcac 120cgacatggag tagaagtagc tcttcattca
aagagtaacg cctctccaga gactagtact 180tcattttgca ccattgatat ctcaaatggc
tcgtgcttcg actaactggc tatcgttctc 240tctctccccc atggaaatgc tccgaacccc
cgaacctcag ttcgttcaat acgacgccgc 300ttccgacact tcctcgcatc actactacct
cgacaacttg tacaccaacg ggtgggggaa 360cgggagcctc aagtttgagc agaatctgaa
ccacagcgac gtgagtttcg ttgaatcgtc 420gtcgcagagc gtcagccacg cgccgccgaa
gctggaggat tttctcggcg actcctccgc 480tgttatgcgt tactccgaca gccagacgga
gacgcaggac tcgtcgctga cgcacatcta 540cgaccaccac caccaccacc accaccacca
ccaccacggt tcttctgcgt acttcggcgg 600tgaccaccag gatctcaagg ccattactgg
attccaagct ttttcgacta actctggctc 660cgaggttgat gattctgcat cgatcggaaa
ggcgcagggc agcgagttcg ggactcactc 720tattgagtcc tccgtcaacg agttcgccgc
gttctccggt ggcaccaaca ccggtggaac 780cttgtcgctc gccgtcgcgc agagctccga
gaaggccgtc gctgctgcgg cggagtccga 840tcgctcgaag aaggttgtgg ataccttcgg
ccagcggact tctatataca gaggtgtcac 900taggcaccga tggacaggaa gatatgaagc
gcatctatgg gacaatagtt gcagaaggga 960gggtcaagct agaaaagggc gtcaagttta
tttgggtgga tatgataagg aagaaaaggc 1020cgctagatct tatgatttgg cagctctgaa
gtactggggt cccactgcta ccaccaactt 1080ccctgtttcc aattattcaa aggaagtgga
ggagatgaaa catgtaacaa agcaggaatt 1140tatcgcatca ttgcgaagga aaagtagtgg
tttctccagg ggagcttcca tatacagagg 1200tgttacaagg catcatcaac agggtaggtg
gcaagcaaga attggccgtg tagctggaaa 1260caaagatctt tacttgggaa cattcgcaac
cgaggaggaa gcagcagagg catatgatat 1320tgcagccatt aagttcagag gtgcaaacgc
ggtaaccaac tttgagatga atagatatga 1380tgtggaagct ataatgaaga gttctcttcc
agtgggtggg gcagcaaagc gcttgaagct 1440ttcccttgaa tcagagcaga aagctcttcc
tgtgagcagc agcagcagca gcaatcaaca 1500gcagaatcca cagtgtggaa acgtgagtgc
cagcatcaat ttctcatcca ttcatcagcc 1560aattgcttct atcccttgtg gaattccctt
tgattcaaca acagcatatt atcatcacaa 1620ccttttccaa cattttcacc ctaccaacgc
tggcacagca gcgtctgctg ttacttctgc 1680caatgcaaat gcactaactg cactgccacc
aacagcagca gctgagttct ttatttggcc 1740tcatcagtct tattgaaaaa agaaaaagaa
aaaaaagagg aggtttttga gttggctagt 1800cttggttaca gtaggaagct ggatatgtaa
ctaactgctt aagaaatgag aaatatttcg 1860tgcatcataa ttttgcacaa gaaaaaaaaa
ga 1892231551DNAGlycine max 23atggctcgtg
cttcgactaa ctggctatcg ttctctctct cccccatgga aatgctccga 60acccccgaac
ctcagttcgt tcaatacgac gccgcttccg acacttcctc gcatcactac 120tacctcgaca
acttgtacac caacgggtgg gggaacggga gcctcaagtt tgagcagaat 180ctgaaccaca
gcgacgtgag tttcgttgaa tcgtcgtcgc agagcgtcag ccacgcgccg 240ccgaagctgg
aggattttct cggcgactcc tccgctgtta tgcgttactc cgacagccag 300acggagacgc
aggactcgtc gctgacgcac atctacgacc accaccacca ccaccaccac 360caccaccacc
acggttcttc tgcgtacttc ggcggtgacc accaggatct caaggccatt 420actggattcc
aagctttttc gactaactct ggctccgagg ttgatgattc tgcatcgatc 480ggaaaggcgc
agggcagcga gttcgggact cactctattg agtcctccgt caacgagttc 540gccgcgttct
ccggtggcac caacaccggt ggaaccttgt cgctcgccgt cgcgcagagc 600tccgagaagg
ccgtcgctgc tgcggcggag tccgatcgct cgaagaaggt tgtggatacc 660ttcggccagc
ggacttctat atacagaggt gtcactaggc accgatggac aggaagatat 720gaagcgcatc
tatgggacaa tagttgcaga agggagggtc aagctagaaa agggcgtcaa 780gtttatttgg
gtggatatga taaggaagaa aaggccgcta gatcttatga tttggcagct 840ctgaagtact
ggggtcccac tgctaccacc aacttccctg tttccaatta ttcaaaggaa 900gtggaggaga
tgaaacatgt aacaaagcag gaatttatcg catcattgcg aaggaaaagt 960agtggtttct
ccaggggagc ttccatatac agaggtgtta caaggcatca tcaacagggt 1020aggtggcaag
caagaattgg ccgtgtagct ggaaacaaag atctttactt gggaacattc 1080gcaaccgagg
aggaagcagc agaggcatat gatattgcag ccattaagtt cagaggtgca 1140aacgcggtaa
ccaactttga gatgaataga tatgatgtgg aagctataat gaagagttct 1200cttccagtgg
gtggggcagc aaagcgcttg aagctttccc ttgaatcaga gcagaaagct 1260cttcctgtga
gcagcagcag cagcagcaat caacagcaga atccacagtg tggaaacgtg 1320agtgccagca
tcaatttctc atccattcat cagccaattg cttctatccc ttgtggaatt 1380ccctttgatt
caacaacagc atattatcat cacaaccttt tccaacattt tcaccctacc 1440aacgctggca
cagcagcgtc tgctgttact tctgccaatg caaatgcact aactgcactg 1500ccaccaacag
cagcagctga gttctttatt tggcctcatc agtcttattg a
155124516PRTGlycine max 24Met Ala Arg Ala Ser Thr Asn Trp Leu Ser Phe Ser
Leu Ser Pro Met1 5 10
15Glu Met Leu Arg Thr Pro Glu Pro Gln Phe Val Gln Tyr Asp Ala Ala
20 25 30Ser Asp Thr Ser Ser His His
Tyr Tyr Leu Asp Asn Leu Tyr Thr Asn 35 40
45Gly Trp Gly Asn Gly Ser Leu Lys Phe Glu Gln Asn Leu Asn His
Ser 50 55 60Asp Val Ser Phe Val Glu
Ser Ser Ser Gln Ser Val Ser His Ala Pro65 70
75 80Pro Lys Leu Glu Asp Phe Leu Gly Asp Ser Ser
Ala Val Met Arg Tyr 85 90
95Ser Asp Ser Gln Thr Glu Thr Gln Asp Ser Ser Leu Thr His Ile Tyr
100 105 110Asp His His His His His
His His His His His His Gly Ser Ser Ala 115 120
125Tyr Phe Gly Gly Asp His Gln Asp Leu Lys Ala Ile Thr Gly
Phe Gln 130 135 140Ala Phe Ser Thr Asn
Ser Gly Ser Glu Val Asp Asp Ser Ala Ser Ile145 150
155 160Gly Lys Ala Gln Gly Ser Glu Phe Gly Thr
His Ser Ile Glu Ser Ser 165 170
175Val Asn Glu Phe Ala Ala Phe Ser Gly Gly Thr Asn Thr Gly Gly Thr
180 185 190Leu Ser Leu Ala Val
Ala Gln Ser Ser Glu Lys Ala Val Ala Ala Ala 195
200 205Ala Glu Ser Asp Arg Ser Lys Lys Val Val Asp Thr
Phe Gly Gln Arg 210 215 220Thr Ser Ile
Tyr Arg Gly Val Thr Arg His Arg Trp Thr Gly Arg Tyr225
230 235 240Glu Ala His Leu Trp Asp Asn
Ser Cys Arg Arg Glu Gly Gln Ala Arg 245
250 255Lys Gly Arg Gln Val Tyr Leu Gly Gly Tyr Asp Lys
Glu Glu Lys Ala 260 265 270Ala
Arg Ser Tyr Asp Leu Ala Ala Leu Lys Tyr Trp Gly Pro Thr Ala 275
280 285Thr Thr Asn Phe Pro Val Ser Asn Tyr
Ser Lys Glu Val Glu Glu Met 290 295
300Lys His Val Thr Lys Gln Glu Phe Ile Ala Ser Leu Arg Arg Lys Ser305
310 315 320Ser Gly Phe Ser
Arg Gly Ala Ser Ile Tyr Arg Gly Val Thr Arg His 325
330 335His Gln Gln Gly Arg Trp Gln Ala Arg Ile
Gly Arg Val Ala Gly Asn 340 345
350Lys Asp Leu Tyr Leu Gly Thr Phe Ala Thr Glu Glu Glu Ala Ala Glu
355 360 365Ala Tyr Asp Ile Ala Ala Ile
Lys Phe Arg Gly Ala Asn Ala Val Thr 370 375
380Asn Phe Glu Met Asn Arg Tyr Asp Val Glu Ala Ile Met Lys Ser
Ser385 390 395 400Leu Pro
Val Gly Gly Ala Ala Lys Arg Leu Lys Leu Ser Leu Glu Ser
405 410 415Glu Gln Lys Ala Leu Pro Val
Ser Ser Ser Ser Ser Ser Asn Gln Gln 420 425
430Gln Asn Pro Gln Cys Gly Asn Val Ser Ala Ser Ile Asn Phe
Ser Ser 435 440 445Ile His Gln Pro
Ile Ala Ser Ile Pro Cys Gly Ile Pro Phe Asp Ser 450
455 460Thr Thr Ala Tyr Tyr His His Asn Leu Phe Gln His
Phe His Pro Thr465 470 475
480Asn Ala Gly Thr Ala Ala Ser Ala Val Thr Ser Ala Asn Ala Asn Ala
485 490 495Leu Thr Ala Leu Pro
Pro Thr Ala Ala Ala Glu Phe Phe Ile Trp Pro 500
505 510His Gln Ser Tyr 515252088DNAGlycine max
25gatagattgc agtttccaaa gaacccaact caacttcaaa accccataat aatctctctt
60tgacattcat aaaaaacaca caccatggac tcttgttcat caccgccaaa caacaactcc
120ctcgctttct ctctttccaa tcactttccc aacccttcct cctctcccct ctcccttttc
180cactccttca cctatccatc tctctctctc acaggaagcc acacggcgga tgcacctcct
240gagcccatcg ccggcggagg agcgaccaac ctctccatat tcaccggcgc ccccaagttc
300gaggactttc tgggcggttc ctccgcaaca gccaccgcca ccacgtgtgc accgccacag
360cttccgcagt tctccaccga caacaacaac cacctgtacg attcggagct gaagacaaca
420atagccgcgt gcttccctcg cgcctttgcc gccgaaccaa ccaccgaacc tcagaaaccc
480tctccaaaga aaaccgtcga caccttcggc caacgcacct ccatctaccg cggcgtcacc
540cgacatagat ggacgggaag atacgaagct catctatggg acaatagttg tagaagagaa
600ggccaaagca ggaaaggaag acaagtttac ctgggtggtt atgacaagga agataaggca
660gccagggctt acgatctcgc agctctcaag tactggggtc caactaccac caccaacttt
720cccatttcca actatgagaa ggaactggag gagatgaaga acatgaccag gcaagagttt
780gttgcttctc tacgaaggaa gagcagtggt ttctctaggg gggcctctat atacagagga
840gtgacgagac accaccagca tggccgatgg caggcgagaa taggcagagt tgccggaaac
900aaagacctct accttggaac tttcagcacc caagaagaag ctgctgaggc ctatgacatt
960gctgctatca aattcagggg attaaatgca gtcacaaact ttgacatgag tcgctacgat
1020gtaaagagca ttgcaaatag cactcttcca attggaggtt tatctggcaa gaacaagaac
1080tccacagatt ctgcatctga gagcaagagc cacgaggcaa gccgatccga cgaacgagat
1140ccatcagcgg cttcatccgt gacctttgca tcacagcaac agccttcgag ctccacctta
1200agctttgcca tacccattaa gcaagaccct tcagattact ggtccatcct ggggtaccat
1260aattctcccc ttgacaacac tggcatcagg aacactacta gtgttactgc aacttctttt
1320ccatcctcca acaatggcac tactagtagt ttgacaccct tccacatgga attctcaaat
1380gcccccacaa gtaccggcag tgataacgat gccgcgtttt tcagtggagg aggcatcttt
1440gttcagcaac aaagtggtca tggtaatggt catggaagtg gaagcagtgg ttcctcctct
1500tcttctttaa gctgttcaat cccattcgcc acgcccatct tttctctaaa tagcaatact
1560agttatgaga acagtgctgg ttatggaaac tggattggac ctaccctgca cacattccaa
1620tcccatgcaa aaccaagtct ctttcaaacg ccaatatttg gaatggaatg agctcatgca
1680cgaggtggga tgagaatctg tgcatataat gatgaaaggg gaagggcaat agtggtgatg
1740gtgttttagc atgcaaaaga agcaaggacg aactagtacc tttagctgat gcagtatttg
1800aatgagttgg actgacagtc ataatttcat gagaagcgta gctataccta gcagcagctg
1860acactgtact aactcaaagt tcctttgtta tgttttggat gaattttctt ttttttcttt
1920ttcgccccct ttttagcttt ttgtccctgt taatatactg acatcatttc aaatgagtat
1980aatgggaaga aaaaagaaaa tccttttgta atcccctttc atctcatttt tgttagtatt
2040aaaaacttgc tatatctatg cgaaaggcat tcaatgccta tatataga
2088261587DNAGlycine max 26atggactctt gttcatcacc gccaaacaac aactccctcg
ctttctctct ttccaatcac 60tttcccaacc cttcctcctc tcccctctcc cttttccact
ccttcaccta tccatctctc 120tctctcacag gaagccacac ggcggatgca cctcctgagc
ccatcgccgg cggaggagcg 180accaacctct ccatattcac cggcgccccc aagttcgagg
actttctggg cggttcctcc 240gcaacagcca ccgccaccac gtgtgcaccg ccacagcttc
cgcagttctc caccgacaac 300aacaaccacc tgtacgattc ggagctgaag acaacaatag
ccgcgtgctt ccctcgcgcc 360tttgccgccg aaccaaccac cgaacctcag aaaccctctc
caaagaaaac cgtcgacacc 420ttcggccaac gcacctccat ctaccgcggc gtcacccgac
atagatggac gggaagatac 480gaagctcatc tatgggacaa tagttgtaga agagaaggcc
aaagcaggaa aggaagacaa 540gtttacctgg gtggttatga caaggaagat aaggcagcca
gggcttacga tctcgcagct 600ctcaagtact ggggtccaac taccaccacc aactttccca
tttccaacta tgagaaggaa 660ctggaggaga tgaagaacat gaccaggcaa gagtttgttg
cttctctacg aaggaagagc 720agtggtttct ctaggggggc ctctatatac agaggagtga
cgagacacca ccagcatggc 780cgatggcagg cgagaatagg cagagttgcc ggaaacaaag
acctctacct tggaactttc 840agcacccaag aagaagctgc tgaggcctat gacattgctg
ctatcaaatt caggggatta 900aatgcagtca caaactttga catgagtcgc tacgatgtaa
agagcattgc aaatagcact 960cttccaattg gaggtttatc tggcaagaac aagaactcca
cagattctgc atctgagagc 1020aagagccacg aggcaagccg atccgacgaa cgagatccat
cagcggcttc atccgtgacc 1080tttgcatcac agcaacagcc ttcgagctcc accttaagct
ttgccatacc cattaagcaa 1140gacccttcag attactggtc catcctgggg taccataatt
ctccccttga caacactggc 1200atcaggaaca ctactagtgt tactgcaact tcttttccat
cctccaacaa tggcactact 1260agtagtttga cacccttcca catggaattc tcaaatgccc
ccacaagtac cggcagtgat 1320aacgatgccg cgtttttcag tggaggaggc atctttgttc
agcaacaaag tggtcatggt 1380aatggtcatg gaagtggaag cagtggttcc tcctcttctt
ctttaagctg ttcaatccca 1440ttcgccacgc ccatcttttc tctaaatagc aatactagtt
atgagaacag tgctggttat 1500ggaaactgga ttggacctac cctgcacaca ttccaatccc
atgcaaaacc aagtctcttt 1560caaacgccaa tatttggaat ggaatga
158727528PRTGlycine max 27Met Asp Ser Cys Ser Ser
Pro Pro Asn Asn Asn Ser Leu Ala Phe Ser1 5
10 15Leu Ser Asn His Phe Pro Asn Pro Ser Ser Ser Pro
Leu Ser Leu Phe 20 25 30His
Ser Phe Thr Tyr Pro Ser Leu Ser Leu Thr Gly Ser His Thr Ala 35
40 45Asp Ala Pro Pro Glu Pro Ile Ala Gly
Gly Gly Ala Thr Asn Leu Ser 50 55
60Ile Phe Thr Gly Ala Pro Lys Phe Glu Asp Phe Leu Gly Gly Ser Ser65
70 75 80Ala Thr Ala Thr Ala
Thr Thr Cys Ala Pro Pro Gln Leu Pro Gln Phe 85
90 95Ser Thr Asp Asn Asn Asn His Leu Tyr Asp Ser
Glu Leu Lys Thr Thr 100 105
110Ile Ala Ala Cys Phe Pro Arg Ala Phe Ala Ala Glu Pro Thr Thr Glu
115 120 125Pro Gln Lys Pro Ser Pro Lys
Lys Thr Val Asp Thr Phe Gly Gln Arg 130 135
140Thr Ser Ile Tyr Arg Gly Val Thr Arg His Arg Trp Thr Gly Arg
Tyr145 150 155 160Glu Ala
His Leu Trp Asp Asn Ser Cys Arg Arg Glu Gly Gln Ser Arg
165 170 175Lys Gly Arg Gln Val Tyr Leu
Gly Gly Tyr Asp Lys Glu Asp Lys Ala 180 185
190Ala Arg Ala Tyr Asp Leu Ala Ala Leu Lys Tyr Trp Gly Pro
Thr Thr 195 200 205Thr Thr Asn Phe
Pro Ile Ser Asn Tyr Glu Lys Glu Leu Glu Glu Met 210
215 220Lys Asn Met Thr Arg Gln Glu Phe Val Ala Ser Leu
Arg Arg Lys Ser225 230 235
240Ser Gly Phe Ser Arg Gly Ala Ser Ile Tyr Arg Gly Val Thr Arg His
245 250 255His Gln His Gly Arg
Trp Gln Ala Arg Ile Gly Arg Val Ala Gly Asn 260
265 270Lys Asp Leu Tyr Leu Gly Thr Phe Ser Thr Gln Glu
Glu Ala Ala Glu 275 280 285Ala Tyr
Asp Ile Ala Ala Ile Lys Phe Arg Gly Leu Asn Ala Val Thr 290
295 300Asn Phe Asp Met Ser Arg Tyr Asp Val Lys Ser
Ile Ala Asn Ser Thr305 310 315
320Leu Pro Ile Gly Gly Leu Ser Gly Lys Asn Lys Asn Ser Thr Asp Ser
325 330 335Ala Ser Glu Ser
Lys Ser His Glu Ala Ser Arg Ser Asp Glu Arg Asp 340
345 350Pro Ser Ala Ala Ser Ser Val Thr Phe Ala Ser
Gln Gln Gln Pro Ser 355 360 365Ser
Ser Thr Leu Ser Phe Ala Ile Pro Ile Lys Gln Asp Pro Ser Asp 370
375 380Tyr Trp Ser Ile Leu Gly Tyr His Asn Ser
Pro Leu Asp Asn Thr Gly385 390 395
400Ile Arg Asn Thr Thr Ser Val Thr Ala Thr Ser Phe Pro Ser Ser
Asn 405 410 415Asn Gly Thr
Thr Ser Ser Leu Thr Pro Phe His Met Glu Phe Ser Asn 420
425 430Ala Pro Thr Ser Thr Gly Ser Asp Asn Asp
Ala Ala Phe Phe Ser Gly 435 440
445Gly Gly Ile Phe Val Gln Gln Gln Ser Gly His Gly Asn Gly His Gly 450
455 460Ser Gly Ser Ser Gly Ser Ser Ser
Ser Ser Leu Ser Cys Ser Ile Pro465 470
475 480Phe Ala Thr Pro Ile Phe Ser Leu Asn Ser Asn Thr
Ser Tyr Glu Asn 485 490
495Ser Ala Gly Tyr Gly Asn Trp Ile Gly Pro Thr Leu His Thr Phe Gln
500 505 510Ser His Ala Lys Pro Ser
Leu Phe Gln Thr Pro Ile Phe Gly Met Glu 515 520
525281683DNAGlycine max 28cctcttgatt tattgtttca tttaatcaaa
tagtagtaat aatatcacca ccgcgccgac 60atggagtaga agtagctctt cattcaaaga
gtaacgcctc tccagagact agtacttcat 120tttgcaccat tgatatctca aatggctcgt
gcttcgacta actggctatc gttctctctc 180tcccccatgg aaatgctccg aacccccgaa
cctcagttcg ttcaatacga cgccgcttcc 240gacacttcct cgcatcacta ctacctcgac
aacttgtaca ccaacgggtg ggggaacggg 300agcctcaagt ttgagcagaa tctgaaccac
agcgacgtga gtttcgttga atcgtcgtcg 360cagagcgtca gccacgcgcc gccgaagctg
gaggattttc tcggcgactc ctccgctgtt 420atgcgttact ccgacagcca gacggagacg
caggactcgt cgctgacgca catctacgac 480caccaccacc accaccacca ccaccaccac
cacggttctt ctgcgtactt cggcggtgac 540caccaggatc tcaaggccat tactggattc
caagcttttt cgactaactc tggctccgag 600gttgatgatt ctgcatcgat cggaaaggcg
cagggcagcg agttcgggac tcactctatt 660gagtcctccg tcaacgagtt cgccgcgttc
tccggtggca ccaacaccgg tggaaccttg 720tcgctcgccg tcgcgcagag ctccgagaag
gccgtcgctg ctgcggcgga gtccgatcgc 780tcgaagaagg ttgtggatac cttcggccag
cggacttcta tatacagagg tgtcactagg 840caccgatgga caggaagata tgaagcgcat
ctatgggaca atagttgcag aagggagggt 900caagccagaa aagggcgtca agtttatttg
ggtggatatg ataaggaaga aaaggccgcg 960agagcttatg atttggcagc tctaaagtac
tggggtccca ctgctaccac caacttccct 1020gtttccaatt attcgaagga agtggaggag
atgaaacatg taacaaagca agaatttatt 1080gcatcattgc ggaggaaaag tagtggtttc
tccaggggag cttccatata cagaggtgtt 1140acaaggcatc atcaacaggg taggtggcaa
gcaagaattg gccgtgtagc tggaaacaaa 1200gatttatact tgggaacatt cgcaaccgag
gaggaagcag cagaggcata tgatattgca 1260gccataaagt tcagaggtgc aaacgcggta
accaactttg agatgaatag atatgatgtg 1320gaagctataa tgaagagttc tcttccagtg
ggtggggcag caaaacgctt gaggctttcc 1380cttgaatcag agcagaaagc tcctcctgtg
aacagcagca gtcagcagca gaatccacag 1440tgtggtaacg tgagtggtag catcaatttc
tcagccattc atcagccaat tgcttcaatc 1500ccttgtggaa ttccgtttga ttcaacaaca
gcatattatc ctcacaacct tttccaacat 1560tttcacccta ccaacgctgg tgcagcagcg
tctgctgtta cttctgccaa tgcaaccgca 1620ctaactgcac tgccagcatc agcagcaact
gagttcttta tttggcctca tcagtcttat 1680tga
1683291542DNAGlycine max 29atggctcgtg
cttcgactaa ctggctatcg ttctctctct cccccatgga aatgctccga 60acccccgaac
ctcagttcgt tcaatacgac gccgcttccg acacttcctc gcatcactac 120tacctcgaca
acttgtacac caacgggtgg gggaacggga gcctcaagtt tgagcagaat 180ctgaaccaca
gcgacgtgag tttcgttgaa tcgtcgtcgc agagcgtcag ccacgcgccg 240ccgaagctgg
aggattttct cggcgactcc tccgctgtta tgcgttactc cgacagccag 300acggagacgc
aggactcgtc gctgacgcac atctacgacc accaccacca ccaccaccac 360caccaccacc
acggttcttc tgcgtacttc ggcggtgacc accaggatct caaggccatt 420actggattcc
aagctttttc gactaactct ggctccgagg ttgatgattc tgcatcgatc 480ggaaaggcgc
agggcagcga gttcgggact cactctattg agtcctccgt caacgagttc 540gccgcgttct
ccggtggcac caacaccggt ggaaccttgt cgctcgccgt cgcgcagagc 600tccgagaagg
ccgtcgctgc tgcggcggag tccgatcgct cgaagaaggt tgtggatacc 660ttcggccagc
ggacttctat atacagaggt gtcactaggc accgatggac aggaagatat 720gaagcgcatc
tatgggacaa tagttgcaga agggagggtc aagccagaaa agggcgtcaa 780gtttatttgg
gtggatatga taaggaagaa aaggccgcga gagcttatga tttggcagct 840ctaaagtact
ggggtcccac tgctaccacc aacttccctg tttccaatta ttcgaaggaa 900gtggaggaga
tgaaacatgt aacaaagcaa gaatttattg catcattgcg gaggaaaagt 960agtggtttct
ccaggggagc ttccatatac agaggtgtta caaggcatca tcaacagggt 1020aggtggcaag
caagaattgg ccgtgtagct ggaaacaaag atttatactt gggaacattc 1080gcaaccgagg
aggaagcagc agaggcatat gatattgcag ccataaagtt cagaggtgca 1140aacgcggtaa
ccaactttga gatgaataga tatgatgtgg aagctataat gaagagttct 1200cttccagtgg
gtggggcagc aaaacgcttg aggctttccc ttgaatcaga gcagaaagct 1260cctcctgtga
acagcagcag tcagcagcag aatccacagt gtggtaacgt gagtggtagc 1320atcaatttct
cagccattca tcagccaatt gcttcaatcc cttgtggaat tccgtttgat 1380tcaacaacag
catattatcc tcacaacctt ttccaacatt ttcaccctac caacgctggt 1440gcagcagcgt
ctgctgttac ttctgccaat gcaaccgcac taactgcact gccagcatca 1500gcagcaactg
agttctttat ttggcctcat cagtcttatt ga
154230513PRTGlycine max 30Met Ala Arg Ala Ser Thr Asn Trp Leu Ser Phe Ser
Leu Ser Pro Met1 5 10
15Glu Met Leu Arg Thr Pro Glu Pro Gln Phe Val Gln Tyr Asp Ala Ala
20 25 30Ser Asp Thr Ser Ser His His
Tyr Tyr Leu Asp Asn Leu Tyr Thr Asn 35 40
45Gly Trp Gly Asn Gly Ser Leu Lys Phe Glu Gln Asn Leu Asn His
Ser 50 55 60Asp Val Ser Phe Val Glu
Ser Ser Ser Gln Ser Val Ser His Ala Pro65 70
75 80Pro Lys Leu Glu Asp Phe Leu Gly Asp Ser Ser
Ala Val Met Arg Tyr 85 90
95Ser Asp Ser Gln Thr Glu Thr Gln Asp Ser Ser Leu Thr His Ile Tyr
100 105 110Asp His His His His His
His His His His His His Gly Ser Ser Ala 115 120
125Tyr Phe Gly Gly Asp His Gln Asp Leu Lys Ala Ile Thr Gly
Phe Gln 130 135 140Ala Phe Ser Thr Asn
Ser Gly Ser Glu Val Asp Asp Ser Ala Ser Ile145 150
155 160Gly Lys Ala Gln Gly Ser Glu Phe Gly Thr
His Ser Ile Glu Ser Ser 165 170
175Val Asn Glu Phe Ala Ala Phe Ser Gly Gly Thr Asn Thr Gly Gly Thr
180 185 190Leu Ser Leu Ala Val
Ala Gln Ser Ser Glu Lys Ala Val Ala Ala Ala 195
200 205Ala Glu Ser Asp Arg Ser Lys Lys Val Val Asp Thr
Phe Gly Gln Arg 210 215 220Thr Ser Ile
Tyr Arg Gly Val Thr Arg His Arg Trp Thr Gly Arg Tyr225
230 235 240Glu Ala His Leu Trp Asp Asn
Ser Cys Arg Arg Glu Gly Gln Ala Arg 245
250 255Lys Gly Arg Gln Val Tyr Leu Gly Gly Tyr Asp Lys
Glu Glu Lys Ala 260 265 270Ala
Arg Ala Tyr Asp Leu Ala Ala Leu Lys Tyr Trp Gly Pro Thr Ala 275
280 285Thr Thr Asn Phe Pro Val Ser Asn Tyr
Ser Lys Glu Val Glu Glu Met 290 295
300Lys His Val Thr Lys Gln Glu Phe Ile Ala Ser Leu Arg Arg Lys Ser305
310 315 320Ser Gly Phe Ser
Arg Gly Ala Ser Ile Tyr Arg Gly Val Thr Arg His 325
330 335His Gln Gln Gly Arg Trp Gln Ala Arg Ile
Gly Arg Val Ala Gly Asn 340 345
350Lys Asp Leu Tyr Leu Gly Thr Phe Ala Thr Glu Glu Glu Ala Ala Glu
355 360 365Ala Tyr Asp Ile Ala Ala Ile
Lys Phe Arg Gly Ala Asn Ala Val Thr 370 375
380Asn Phe Glu Met Asn Arg Tyr Asp Val Glu Ala Ile Met Lys Ser
Ser385 390 395 400Leu Pro
Val Gly Gly Ala Ala Lys Arg Leu Arg Leu Ser Leu Glu Ser
405 410 415Glu Gln Lys Ala Pro Pro Val
Asn Ser Ser Ser Gln Gln Gln Asn Pro 420 425
430Gln Cys Gly Asn Val Ser Gly Ser Ile Asn Phe Ser Ala Ile
His Gln 435 440 445Pro Ile Ala Ser
Ile Pro Cys Gly Ile Pro Phe Asp Ser Thr Thr Ala 450
455 460Tyr Tyr Pro His Asn Leu Phe Gln His Phe His Pro
Thr Asn Ala Gly465 470 475
480Ala Ala Ala Ser Ala Val Thr Ser Ala Asn Ala Thr Ala Leu Thr Ala
485 490 495Leu Pro Ala Ser Ala
Ala Thr Glu Phe Phe Ile Trp Pro His Gln Ser 500
505 510Tyr 312388DNAGlycine max 31ccttgctgta gctaaacaac
aaaaaccaag tcttcattgg taacaagaag attattattt 60ttatatgatt tgtttattta
tcacccaatg attgactttg cctagctgca gctgctacga 120gagaagatac tgctggtggt
ggtgctagca atagcaagtt taaagttcaa acctttttca 180agtaatttat aagttgagaa
agaaaagaaa aaaccaagaa aaaaagaagc aaagatgaag 240tccatgaatg atagtaacac
cgttgatgat gggaacaatc ataataactg gttgggattc 300tctctctcac cccacatgaa
aatggatgtt gttacttctt ctactaccac tggtcctcat 360catccccacc aacaccatca
tcatcatcac tactatcatc accctcacga ggcttctgct 420gcagcttgca acaacaacaa
caacactgtt cccactaact tctatatgtc accctcgcac 480ctcaacacct ctggaatatg
ttatggtgtt ggagaaaaca gtgcctttca cactcctttg 540gccatgatgc ctctcaagtc
agatgggtca ctttgcatta tggaggctct aacaagatca 600caaacccaaa tgatggtgcc
aacttcatct ccaaaacttg aggacttcct aggtggtgca 660actatggggg ctcaagacta
tggaacccat gagagagaag caatggctct aagcctagac 720agtatctact acagcaacca
gaatgctgaa cctgaaacca acagggacca ttcatcttct 780cttgaccttc tttctgacca
tttcaggcac caaacccatc atcacccata ttactcagga 840cttgggattt accaagtgga
ggaagaagaa accaaggaac aaccacacgt tgcagtttgc 900agctcccaaa tgcctcaagt
ggttgaaggc agcattgctt gcttcaaaaa ctgggtgcca 960acaagggaat actcttcttc
ttccactcag cagaatctgg agcagcatca agtgaatagt 1020agtagcagtg gtggccttgg
agaggataat aatgtagctt atgggaatgt tggtgttggt 1080agtagtgttg gttgtggtga
gttacagtct ttgagtttgt ctatgagtcc tggttctcaa 1140tcaagctgtg tcactgttcc
aactcagatc tcatcttctg gaactgactc agttgctgtg 1200gatgccaaaa agagaggctc
ttctaagctt ggacagaagc aacctgtgca taggaaatcc 1260atcgacacat ttggtcaaag
aacttctcag tatagaggtg tcacaaggca tagatggact 1320ggtagatatg aagcacattt
gtgggataac agttgcaaga aggaagggca aacaaggaaa 1380ggacgacaag tgtatttggg
tggttatgat atggaagaga aagctgcaag ggcttatgat 1440cttgcggctc tcaagtattg
gggaccttca acacacataa acttcccgct agaaaattac 1500caaactcaac ttgaagaaat
gaagaatatg agtaggcagg aatacgtggc ccacttgaga 1560agaaagagta gtgggttttc
aaggggtgcc tcaatgtaca gaggagtgac aaggcaccac 1620caacatggca ggtggcaagc
aaggataggc agagttgcag gaaataagga cctttatctt 1680gggacattca gcactcaaga
ggaagcagct gaagcatatg atgtagctgc aatcaaattt 1740cgtggggtga atgctgtcac
caactttgac atatcaagat acgacgttga gagaataatg 1800gccagcaaca cccttctagc
tggagagcta gctagaagaa acaagaacag tgagccaaga 1860accgaggcca tagagtacaa
tgttgtgtca agccaacaag tcataagcaa cagggaagaa 1920gttcacgaga ctgtgaacaa
caacaacaat aataatagtg aaaatggttc atcatcagat 1980tggaagatga gtttgtatca
tcatcagcaa cagtcaaaca actgtgacca gaaaaccatc 2040aagtgtgaaa attataatag
aggtggtgct gctttctctg tgtccctaca agatctcatt 2100gggattgact cagtaggatc
tagccaaggc atgatggatg agtctactaa gatagggact 2160catttttcaa acccttcctc
gctggtcacc agtttaagca gctcaaggga aggtagccct 2220gataaaatgg gccccacttt
gctcattcca aagcctccaa tggggtcaaa gattgttact 2280agccctactg ttgccaatgg
tgtcactgtt ggctcttggt ttccctctca aatgaggcca 2340gtctcaatgt ctcacttgcc
agtttttgct gcttggagtg atgcctag 2388322154DNAGlycine max
32atgaagtcca tgaatgatag taacaccgtt gatgatggga acaatcataa taactggttg
60ggattctctc tctcacccca catgaaaatg gatgttgtta cttcttctac taccactggt
120cctcatcatc cccaccaaca ccatcatcat catcactact atcatcaccc tcacgaggct
180tctgctgcag cttgcaacaa caacaacaac actgttccca ctaacttcta tatgtcaccc
240tcgcacctca acacctctgg aatatgttat ggtgttggag aaaacagtgc ctttcacact
300cctttggcca tgatgcctct caagtcagat gggtcacttt gcattatgga ggctctaaca
360agatcacaaa cccaaatgat ggtgccaact tcatctccaa aacttgagga cttcctaggt
420ggtgcaacta tgggggctca agactatgga acccatgaga gagaagcaat ggctctaagc
480ctagacagta tctactacag caaccagaat gctgaacctg aaaccaacag ggaccattca
540tcttctcttg accttctttc tgaccatttc aggcaccaaa cccatcatca cccatattac
600tcaggacttg ggatttacca agtggaggaa gaagaaacca aggaacaacc acacgttgca
660gtttgcagct cccaaatgcc tcaagtggtt gaaggcagca ttgcttgctt caaaaactgg
720gtgccaacaa gggaatactc ttcttcttcc actcagcaga atctggagca gcatcaagtg
780aatagtagta gcagtggtgg ccttggagag gataataatg tagcttatgg gaatgttggt
840gttggtagta gtgttggttg tggtgagtta cagtctttga gtttgtctat gagtcctggt
900tctcaatcaa gctgtgtcac tgttccaact cagatctcat cttctggaac tgactcagtt
960gctgtggatg ccaaaaagag aggctcttct aagcttggac agaagcaacc tgtgcatagg
1020aaatccatcg acacatttgg tcaaagaact tctcagtata gaggtgtcac aaggcataga
1080tggactggta gatatgaagc acatttgtgg gataacagtt gcaagaagga agggcaaaca
1140aggaaaggac gacaagtgta tttgggtggt tatgatatgg aagagaaagc tgcaagggct
1200tatgatcttg cggctctcaa gtattgggga ccttcaacac acataaactt cccgctagaa
1260aattaccaaa ctcaacttga agaaatgaag aatatgagta ggcaggaata cgtggcccac
1320ttgagaagaa agagtagtgg gttttcaagg ggtgcctcaa tgtacagagg agtgacaagg
1380caccaccaac atggcaggtg gcaagcaagg ataggcagag ttgcaggaaa taaggacctt
1440tatcttggga cattcagcac tcaagaggaa gcagctgaag catatgatgt agctgcaatc
1500aaatttcgtg gggtgaatgc tgtcaccaac tttgacatat caagatacga cgttgagaga
1560ataatggcca gcaacaccct tctagctgga gagctagcta gaagaaacaa gaacagtgag
1620ccaagaaccg aggccataga gtacaatgtt gtgtcaagcc aacaagtcat aagcaacagg
1680gaagaagttc acgagactgt gaacaacaac aacaataata atagtgaaaa tggttcatca
1740tcagattgga agatgagttt gtatcatcat cagcaacagt caaacaactg tgaccagaaa
1800accatcaagt gtgaaaatta taatagaggt ggtgctgctt tctctgtgtc cctacaagat
1860ctcattggga ttgactcagt aggatctagc caaggcatga tggatgagtc tactaagata
1920gggactcatt tttcaaaccc ttcctcgctg gtcaccagtt taagcagctc aagggaaggt
1980agccctgata aaatgggccc cactttgctc attccaaagc ctccaatggg gtcaaagatt
2040gttactagcc ctactgttgc caatggtgtc actgttggct cttggtttcc ctctcaaatg
2100aggccagtct caatgtctca cttgccagtt tttgctgctt ggagtgatgc ctag
215433717PRTGlycine max 33Met Lys Ser Met Asn Asp Ser Asn Thr Val Asp Asp
Gly Asn Asn His1 5 10
15Asn Asn Trp Leu Gly Phe Ser Leu Ser Pro His Met Lys Met Asp Val
20 25 30Val Thr Ser Ser Thr Thr Thr
Gly Pro His His Pro His Gln His His 35 40
45His His His His Tyr Tyr His His Pro His Glu Ala Ser Ala Ala
Ala 50 55 60Cys Asn Asn Asn Asn Asn
Thr Val Pro Thr Asn Phe Tyr Met Ser Pro65 70
75 80Ser His Leu Asn Thr Ser Gly Ile Cys Tyr Gly
Val Gly Glu Asn Ser 85 90
95Ala Phe His Thr Pro Leu Ala Met Met Pro Leu Lys Ser Asp Gly Ser
100 105 110Leu Cys Ile Met Glu Ala
Leu Thr Arg Ser Gln Thr Gln Met Met Val 115 120
125Pro Thr Ser Ser Pro Lys Leu Glu Asp Phe Leu Gly Gly Ala
Thr Met 130 135 140Gly Ala Gln Asp Tyr
Gly Thr His Glu Arg Glu Ala Met Ala Leu Ser145 150
155 160Leu Asp Ser Ile Tyr Tyr Ser Asn Gln Asn
Ala Glu Pro Glu Thr Asn 165 170
175Arg Asp His Ser Ser Ser Leu Asp Leu Leu Ser Asp His Phe Arg His
180 185 190Gln Thr His His His
Pro Tyr Tyr Ser Gly Leu Gly Ile Tyr Gln Val 195
200 205Glu Glu Glu Glu Thr Lys Glu Gln Pro His Val Ala
Val Cys Ser Ser 210 215 220Gln Met Pro
Gln Val Val Glu Gly Ser Ile Ala Cys Phe Lys Asn Trp225
230 235 240Val Pro Thr Arg Glu Tyr Ser
Ser Ser Ser Thr Gln Gln Asn Leu Glu 245
250 255Gln His Gln Val Asn Ser Ser Ser Ser Gly Gly Leu
Gly Glu Asp Asn 260 265 270Asn
Val Ala Tyr Gly Asn Val Gly Val Gly Ser Ser Val Gly Cys Gly 275
280 285Glu Leu Gln Ser Leu Ser Leu Ser Met
Ser Pro Gly Ser Gln Ser Ser 290 295
300Cys Val Thr Val Pro Thr Gln Ile Ser Ser Ser Gly Thr Asp Ser Val305
310 315 320Ala Val Asp Ala
Lys Lys Arg Gly Ser Ser Lys Leu Gly Gln Lys Gln 325
330 335Pro Val His Arg Lys Ser Ile Asp Thr Phe
Gly Gln Arg Thr Ser Gln 340 345
350Tyr Arg Gly Val Thr Arg His Arg Trp Thr Gly Arg Tyr Glu Ala His
355 360 365Leu Trp Asp Asn Ser Cys Lys
Lys Glu Gly Gln Thr Arg Lys Gly Arg 370 375
380Gln Val Tyr Leu Gly Gly Tyr Asp Met Glu Glu Lys Ala Ala Arg
Ala385 390 395 400Tyr Asp
Leu Ala Ala Leu Lys Tyr Trp Gly Pro Ser Thr His Ile Asn
405 410 415Phe Pro Leu Glu Asn Tyr Gln
Thr Gln Leu Glu Glu Met Lys Asn Met 420 425
430Ser Arg Gln Glu Tyr Val Ala His Leu Arg Arg Lys Ser Ser
Gly Phe 435 440 445Ser Arg Gly Ala
Ser Met Tyr Arg Gly Val Thr Arg His His Gln His 450
455 460Gly Arg Trp Gln Ala Arg Ile Gly Arg Val Ala Gly
Asn Lys Asp Leu465 470 475
480Tyr Leu Gly Thr Phe Ser Thr Gln Glu Glu Ala Ala Glu Ala Tyr Asp
485 490 495Val Ala Ala Ile Lys
Phe Arg Gly Val Asn Ala Val Thr Asn Phe Asp 500
505 510Ile Ser Arg Tyr Asp Val Glu Arg Ile Met Ala Ser
Asn Thr Leu Leu 515 520 525Ala Gly
Glu Leu Ala Arg Arg Asn Lys Asn Ser Glu Pro Arg Thr Glu 530
535 540Ala Ile Glu Tyr Asn Val Val Ser Ser Gln Gln
Val Ile Ser Asn Arg545 550 555
560Glu Glu Val His Glu Thr Val Asn Asn Asn Asn Asn Asn Asn Ser Glu
565 570 575Asn Gly Ser Ser
Ser Asp Trp Lys Met Ser Leu Tyr His His Gln Gln 580
585 590Gln Ser Asn Asn Cys Asp Gln Lys Thr Ile Lys
Cys Glu Asn Tyr Asn 595 600 605Arg
Gly Gly Ala Ala Phe Ser Val Ser Leu Gln Asp Leu Ile Gly Ile 610
615 620Asp Ser Val Gly Ser Ser Gln Gly Met Met
Asp Glu Ser Thr Lys Ile625 630 635
640Gly Thr His Phe Ser Asn Pro Ser Ser Leu Val Thr Ser Leu Ser
Ser 645 650 655Ser Arg Glu
Gly Ser Pro Asp Lys Met Gly Pro Thr Leu Leu Ile Pro 660
665 670Lys Pro Pro Met Gly Ser Lys Ile Val Thr
Ser Pro Thr Val Ala Asn 675 680
685Gly Val Thr Val Gly Ser Trp Phe Pro Ser Gln Met Arg Pro Val Ser 690
695 700Met Ser His Leu Pro Val Phe Ala
Ala Trp Ser Asp Ala705 710
715342259DNAGlycine max 34atgaagagta tggaaaatga tgacaatgct gaccttaata
atcaaaacaa ttggttgggt 60ttctcactct ctcctcaaat gcataatata ggagtttctt
cacactcaca accttcctct 120gctgctgaag tggttcctac aagcttttac caccacactg
ctccacttag tagctatggt 180ttctactatg gacttgaagc tgaaaatgtt ggattgtatt
cagctttgcc aatcatgccc 240ctcaaatctg atggctctct ctatggattg gaaactttaa
gcaggtcaca agcacaagca 300atggctacta cttcaacacc aaaactggag aacttcttag
gtggggaagc catggggacc 360cctcatcact acgaatgtag tgccacagaa acaatgcctc
tgagcttaga cagtgttttt 420tacatccaac cctcacgccg tgacccaaat aataaccaaa
cctaccaaaa ccatgttcaa 480cacattagca ccaaccaaca acaacaacag caagagcttc
aagcatatta ctctaccttg 540agaaaccatg atatgatatt agaagggtca aagcaaagcc
aaacttctga caacaacaat 600cttcatgttc aaaacatggg tggtgatgat gccgttcctg
ttcctggcct caagagttgg 660gaagtgagga acttccaagc tagccatgca catgagtcaa
agatgattgt tcctcatgtg 720gaggaaaatg ctggtgaatc agggtccatt ggatcaatgg
cttatggtga cttgcaatcg 780ttgagcttgt ccatgagtcc tagctctcag tctagcagtg
tcacaagttc tcaccgtgct 840tcacctgctg tcgttgattc tgttgccatg gatactaaga
aaagggggcc tgaaaaggtt 900gaccagaagc aaattgttca taggaagtcc attgacacct
ttggacaaag aacctcccag 960tatagaggag taacaaggca taggtggact gggagatatg
aagctcatct ttgggacaac 1020agctgcaaga aagaggggca aagcaggaaa ggaagacaag
tttatctagg gggttatgat 1080atggaagaaa aagctgcgag agcttatgat ctagcggcac
tcaagtattg gggaccctcc 1140actcacataa actttccttt ggaaaattat caaaatgaac
ttgaggaaat gaagaacatg 1200actagacaag agtatgttgc tcatttgaga agaaaaagca
gcggattctc aagaggggct 1260tccatgtaca gaggagtaac aagacaccac caacatggaa
ggtggcaagc tcgaattggt 1320agagtggctg gaaacaaaga tctatatctt ggaaccttta
gtacacaaga ggaagcagct 1380gaagcctatg atattgctgc tataaaattc cgaggagcga
atgctgtaac caactttgac 1440atcacaagat atgatgtgga gaaaatcatg gcaagcagca
acctccttag cagtgagcta 1500gctaggcgca accgagagac ggacaatgaa actcagtgca
ttgatcaaaa tcacaataag 1560ccttctgcat atgaggacac tcaagaagct attctaatgc
accagaagag ctgtgagagc 1620gaaaatgatc agtggaagat ggttctctac caatcctctc
agcaacttga gcagaatcca 1680ccaacaattg agagtgacag aactaaccag tccttcgcag
tggctttgga caacatgttt 1740catcaggaag tagaggaatc aagtaaggcg aggacgcatg
tgtcaaatcc ttcttcattg 1800gccacaagtt tgagcagctc aagagaaggt agccctgata
ggacaagctt gccaatgctc 1860tctggaatgc cttcaactgc atcaaaacta ttggctacta
atccaaataa cgtgaattct 1920tgggaccctt caccccattt gaggccagca cttactttgc
ctcaaatgcc agtttttgca 1980gcttggacag atgcatagtt catagctcaa tagtcctttt
aattttttgt tctctcaagt 2040gaaatttcaa tcctttttta ttgtcttttt ttgcatgcat
gaacaacaca agaggaaggg 2100gttgtagcta gtcaaatgga gggtctaaat attatatcat
cacatcactg tcagcaagtt 2160taatttaaac tttcaaatca tccgacacgc agcggccgct
ctagaggatc caagcttacg 2220tacgcgtgca tgcgacgtca tagctcttct ataggcacc
2259351998DNAGlycine max 35atgaagagta tggaaaatga
tgacaatgct gaccttaata atcaaaacaa ttggttgggt 60ttctcactct ctcctcaaat
gcataatata ggagtttctt cacactcaca accttcctct 120gctgctgaag tggttcctac
aagcttttac caccacactg ctccacttag tagctatggt 180ttctactatg gacttgaagc
tgaaaatgtt ggattgtatt cagctttgcc aatcatgccc 240ctcaaatctg atggctctct
ctatggattg gaaactttaa gcaggtcaca agcacaagca 300atggctacta cttcaacacc
aaaactggag aacttcttag gtggggaagc catggggacc 360cctcatcact acgaatgtag
tgccacagaa acaatgcctc tgagcttaga cagtgttttt 420tacatccaac cctcacgccg
tgacccaaat aataaccaaa cctaccaaaa ccatgttcaa 480cacattagca ccaaccaaca
acaacaacag caagagcttc aagcatatta ctctaccttg 540agaaaccatg atatgatatt
agaagggtca aagcaaagcc aaacttctga caacaacaat 600cttcatgttc aaaacatggg
tggtgatgat gccgttcctg ttcctggcct caagagttgg 660gaagtgagga acttccaagc
tagccatgca catgagtcaa agatgattgt tcctcatgtg 720gaggaaaatg ctggtgaatc
agggtccatt ggatcaatgg cttatggtga cttgcaatcg 780ttgagcttgt ccatgagtcc
tagctctcag tctagcagtg tcacaagttc tcaccgtgct 840tcacctgctg tcgttgattc
tgttgccatg gatactaaga aaagggggcc tgaaaaggtt 900gaccagaagc aaattgttca
taggaagtcc attgacacct ttggacaaag aacctcccag 960tatagaggag taacaaggca
taggtggact gggagatatg aagctcatct ttgggacaac 1020agctgcaaga aagaggggca
aagcaggaaa ggaagacaag tttatctagg gggttatgat 1080atggaagaaa aagctgcgag
agcttatgat ctagcggcac tcaagtattg gggaccctcc 1140actcacataa actttccttt
ggaaaattat caaaatgaac ttgaggaaat gaagaacatg 1200actagacaag agtatgttgc
tcatttgaga agaaaaagca gcggattctc aagaggggct 1260tccatgtaca gaggagtaac
aagacaccac caacatggaa ggtggcaagc tcgaattggt 1320agagtggctg gaaacaaaga
tctatatctt ggaaccttta gtacacaaga ggaagcagct 1380gaagcctatg atattgctgc
tataaaattc cgaggagcga atgctgtaac caactttgac 1440atcacaagat atgatgtgga
gaaaatcatg gcaagcagca acctccttag cagtgagcta 1500gctaggcgca accgagagac
ggacaatgaa actcagtgca ttgatcaaaa tcacaataag 1560ccttctgcat atgaggacac
tcaagaagct attctaatgc accagaagag ctgtgagagc 1620gaaaatgatc agtggaagat
ggttctctac caatcctctc agcaacttga gcagaatcca 1680ccaacaattg agagtgacag
aactaaccag tccttcgcag tggctttgga caacatgttt 1740catcaggaag tagaggaatc
aagtaaggcg aggacgcatg tgtcaaatcc ttcttcattg 1800gccacaagtt tgagcagctc
aagagaaggt agccctgata ggacaagctt gccaatgctc 1860tctggaatgc cttcaactgc
atcaaaacta ttggctacta atccaaataa cgtgaattct 1920tgggaccctt caccccattt
gaggccagca cttactttgc ctcaaatgcc agtttttgca 1980gcttggacag atgcatag
199836665PRTGlycine max 36Met
Lys Ser Met Glu Asn Asp Asp Asn Ala Asp Leu Asn Asn Gln Asn1
5 10 15Asn Trp Leu Gly Phe Ser Leu
Ser Pro Gln Met His Asn Ile Gly Val 20 25
30Ser Ser His Ser Gln Pro Ser Ser Ala Ala Glu Val Val Pro
Thr Ser 35 40 45Phe Tyr His His
Thr Ala Pro Leu Ser Ser Tyr Gly Phe Tyr Tyr Gly 50 55
60Leu Glu Ala Glu Asn Val Gly Leu Tyr Ser Ala Leu Pro
Ile Met Pro65 70 75
80Leu Lys Ser Asp Gly Ser Leu Tyr Gly Leu Glu Thr Leu Ser Arg Ser
85 90 95Gln Ala Gln Ala Met Ala
Thr Thr Ser Thr Pro Lys Leu Glu Asn Phe 100
105 110Leu Gly Gly Glu Ala Met Gly Thr Pro His His Tyr
Glu Cys Ser Ala 115 120 125Thr Glu
Thr Met Pro Leu Ser Leu Asp Ser Val Phe Tyr Ile Gln Pro 130
135 140Ser Arg Arg Asp Pro Asn Asn Asn Gln Thr Tyr
Gln Asn His Val Gln145 150 155
160His Ile Ser Thr Asn Gln Gln Gln Gln Gln Gln Glu Leu Gln Ala Tyr
165 170 175Tyr Ser Thr Leu
Arg Asn His Asp Met Ile Leu Glu Gly Ser Lys Gln 180
185 190Ser Gln Thr Ser Asp Asn Asn Asn Leu His Val
Gln Asn Met Gly Gly 195 200 205Asp
Asp Ala Val Pro Val Pro Gly Leu Lys Ser Trp Glu Val Arg Asn 210
215 220Phe Gln Ala Ser His Ala His Glu Ser Lys
Met Ile Val Pro His Val225 230 235
240Glu Glu Asn Ala Gly Glu Ser Gly Ser Ile Gly Ser Met Ala Tyr
Gly 245 250 255Asp Leu Gln
Ser Leu Ser Leu Ser Met Ser Pro Ser Ser Gln Ser Ser 260
265 270Ser Val Thr Ser Ser His Arg Ala Ser Pro
Ala Val Val Asp Ser Val 275 280
285Ala Met Asp Thr Lys Lys Arg Gly Pro Glu Lys Val Asp Gln Lys Gln 290
295 300Ile Val His Arg Lys Ser Ile Asp
Thr Phe Gly Gln Arg Thr Ser Gln305 310
315 320Tyr Arg Gly Val Thr Arg His Arg Trp Thr Gly Arg
Tyr Glu Ala His 325 330
335Leu Trp Asp Asn Ser Cys Lys Lys Glu Gly Gln Ser Arg Lys Gly Arg
340 345 350Gln Val Tyr Leu Gly Gly
Tyr Asp Met Glu Glu Lys Ala Ala Arg Ala 355 360
365Tyr Asp Leu Ala Ala Leu Lys Tyr Trp Gly Pro Ser Thr His
Ile Asn 370 375 380Phe Pro Leu Glu Asn
Tyr Gln Asn Glu Leu Glu Glu Met Lys Asn Met385 390
395 400Thr Arg Gln Glu Tyr Val Ala His Leu Arg
Arg Lys Ser Ser Gly Phe 405 410
415Ser Arg Gly Ala Ser Met Tyr Arg Gly Val Thr Arg His His Gln His
420 425 430Gly Arg Trp Gln Ala
Arg Ile Gly Arg Val Ala Gly Asn Lys Asp Leu 435
440 445Tyr Leu Gly Thr Phe Ser Thr Gln Glu Glu Ala Ala
Glu Ala Tyr Asp 450 455 460Ile Ala Ala
Ile Lys Phe Arg Gly Ala Asn Ala Val Thr Asn Phe Asp465
470 475 480Ile Thr Arg Tyr Asp Val Glu
Lys Ile Met Ala Ser Ser Asn Leu Leu 485
490 495Ser Ser Glu Leu Ala Arg Arg Asn Arg Glu Thr Asp
Asn Glu Thr Gln 500 505 510Cys
Ile Asp Gln Asn His Asn Lys Pro Ser Ala Tyr Glu Asp Thr Gln 515
520 525Glu Ala Ile Leu Met His Gln Lys Ser
Cys Glu Ser Glu Asn Asp Gln 530 535
540Trp Lys Met Val Leu Tyr Gln Ser Ser Gln Gln Leu Glu Gln Asn Pro545
550 555 560Pro Thr Ile Glu
Ser Asp Arg Thr Asn Gln Ser Phe Ala Val Ala Leu 565
570 575Asp Asn Met Phe His Gln Glu Val Glu Glu
Ser Ser Lys Ala Arg Thr 580 585
590His Val Ser Asn Pro Ser Ser Leu Ala Thr Ser Leu Ser Ser Ser Arg
595 600 605Glu Gly Ser Pro Asp Arg Thr
Ser Leu Pro Met Leu Ser Gly Met Pro 610 615
620Ser Thr Ala Ser Lys Leu Leu Ala Thr Asn Pro Asn Asn Val Asn
Ser625 630 635 640Trp Asp
Pro Ser Pro His Leu Arg Pro Ala Leu Thr Leu Pro Gln Met
645 650 655Pro Val Phe Ala Ala Trp Thr
Asp Ala 660 665372125DNAGlycine max
37atgaagcgca taaatgagag taacaacacc gatgatggaa acaatcataa ctggttgggg
60ttctctctct caccccacat gaaaatggag gctacttcag cagccactgt tccgacaacc
120ttctacatgt ccccttctca atctcacttg tccaacttcg gaatgtgtta cggtgtcgga
180gaaaatggta acttccattc tccacttacg gttatgcctc tcaagtctga tgggtcactt
240tgtatcttgg aagctctcaa aagatcacaa acgcaagtga tggtgccaac ttcgtctccg
300aaattggagg actttctagg tggtgcaact atgggaactc acgaatatgg aagccacgag
360agaggtttga gcctagacag catctattat aactcccaaa acgcagaggc tcaacccaac
420agagaccttc tttcacaacc cttcaggcaa caaggtcata tgagtgtcca aacacaccct
480tattactcag gccttgcttg ccatggttta tatcaagcac cgttggagga agaaacaaca
540aaggaaacgc acgtgtcgga ttgcagctcc ctaatgcctc aaatgacaga aggcttgaaa
600aactgggtgg ctccaacaag ggagttttca actcaccagc aggttttgga gcagcaaatg
660aattgtggca tggggaatga gagaaatggt gtgtctttag gatctgtggg gtgtggagag
720ttacagtctc taagcttatc tatgagtcct ggttctcagt ctagttgtgt cactgctcct
780tctggaacag attctgttgc tgtggatgca aagaagagag ggcatgctaa acttggtcag
840aagcagcctg tgcatagaaa atctatcgac acatttgggc aaagaacctc gcagtataga
900ggtgtcacaa ggcatagatg gactggtagg tatgaagcgc atttgtggga taatagttgc
960aagaaggaag ggcaaactag gaaaggacga caagtgtatt tggggggtta tgatatggag
1020gagaaagctg caagagccta tgatctcgcg gcccttaagt actggggacc ttcaacgcat
1080ataaactttt cgatagagaa ttaccaagtt caacttgagg aaatgaagaa catgagcaga
1140caggaatacg ttgcacactt gagaagaaaa agcagcgggt tttctagagg tgcttcaata
1200tacagagggg tcacaaggca tcaccaacat ggaagatggc aagcgaggat aggcagagtt
1260gctgggaaca aagaccttta ccttgggacg ttcagcaccc aagaggaagc agcagaagca
1320tacgatgtag cggcgatcaa atttcgcggc gcaaatgcag tcacaaactt tgacatttca
1380agatacgatg tggagagaat catggccagt agcaatctcc tcgctgggga gcttgcaagg
1440cgtaagaaag ataacgatcc tagaaacaag gacatagact acaacaagag tgtagtaaca
1500agtgtgaaca atgaggaaac ggttcaagtt caagcaggaa acaacaataa tgaaaacgac
1560tcagagtgga agatggtttt atttaaccac ccttcacagc agcaacaggc aaatggcaat
1620ggcagtgacc aaaaaataat gaactgtgga aattacagaa acagtgcatt ttctatggcc
1680ctacaagatc ttattgggat tgattcggtg ggttctgggc agcataatat gctggacgag
1740tctagcaaaa ttgggactca tttttcaaac acgtcatcgc tggtgacaag tttaagcagc
1800tcaagagagg ctagtcctga gaaaaggggt ccctcgcttc tgttcccaat gcctccaatg
1860gaaacaaaga ttgtgaaccc cattggtacc agtgttacct cttggctacc ctcaccaacg
1920gttcaaatga ggccttctcc tgctatctct ttgtctcact tgccagtttt tgcttcttgg
1980actgatactt aaatggagat aggcacggtc catttttcat gttatgttat gtaactaaaa
2040tttacttttt tccttcatct tttatttcta atttgatttc ctaagtttaa aagctttaaa
2100taaaaaaaaa aaaaaaaccg aacca
2125381992DNAGlycine max 38atgaagcgca taaatgagag taacaacacc gatgatggaa
acaatcataa ctggttgggg 60ttctctctct caccccacat gaaaatggag gctacttcag
cagccactgt tccgacaacc 120ttctacatgt ccccttctca atctcacttg tccaacttcg
gaatgtgtta cggtgtcgga 180gaaaatggta acttccattc tccacttacg gttatgcctc
tcaagtctga tgggtcactt 240tgtatcttgg aagctctcaa aagatcacaa acgcaagtga
tggtgccaac ttcgtctccg 300aaattggagg actttctagg tggtgcaact atgggaactc
acgaatatgg aagccacgag 360agaggtttga gcctagacag catctattat aactcccaaa
acgcagaggc tcaacccaac 420agagaccttc tttcacaacc cttcaggcaa caaggtcata
tgagtgtcca aacacaccct 480tattactcag gccttgcttg ccatggttta tatcaagcac
cgttggagga agaaacaaca 540aaggaaacgc acgtgtcgga ttgcagctcc ctaatgcctc
aaatgacaga aggcttgaaa 600aactgggtgg ctccaacaag ggagttttca actcaccagc
aggttttgga gcagcaaatg 660aattgtggca tggggaatga gagaaatggt gtgtctttag
gatctgtggg gtgtggagag 720ttacagtctc taagcttatc tatgagtcct ggttctcagt
ctagttgtgt cactgctcct 780tctggaacag attctgttgc tgtggatgca aagaagagag
ggcatgctaa acttggtcag 840aagcagcctg tgcatagaaa atctatcgac acatttgggc
aaagaacctc gcagtataga 900ggtgtcacaa ggcatagatg gactggtagg tatgaagcgc
atttgtggga taatagttgc 960aagaaggaag ggcaaactag gaaaggacga caagtgtatt
tggggggtta tgatatggag 1020gagaaagctg caagagccta tgatctcgcg gcccttaagt
actggggacc ttcaacgcat 1080ataaactttt cgatagagaa ttaccaagtt caacttgagg
aaatgaagaa catgagcaga 1140caggaatacg ttgcacactt gagaagaaaa agcagcgggt
tttctagagg tgcttcaata 1200tacagagggg tcacaaggca tcaccaacat ggaagatggc
aagcgaggat aggcagagtt 1260gctgggaaca aagaccttta ccttgggacg ttcagcaccc
aagaggaagc agcagaagca 1320tacgatgtag cggcgatcaa atttcgcggc gcaaatgcag
tcacaaactt tgacatttca 1380agatacgatg tggagagaat catggccagt agcaatctcc
tcgctgggga gcttgcaagg 1440cgtaagaaag ataacgatcc tagaaacaag gacatagact
acaacaagag tgtagtaaca 1500agtgtgaaca atgaggaaac ggttcaagtt caagcaggaa
acaacaataa tgaaaacgac 1560tcagagtgga agatggtttt atttaaccac ccttcacagc
agcaacaggc aaatggcaat 1620ggcagtgacc aaaaaataat gaactgtgga aattacagaa
acagtgcatt ttctatggcc 1680ctacaagatc ttattgggat tgattcggtg ggttctgggc
agcataatat gctggacgag 1740tctagcaaaa ttgggactca tttttcaaac acgtcatcgc
tggtgacaag tttaagcagc 1800tcaagagagg ctagtcctga gaaaaggggt ccctcgcttc
tgttcccaat gcctccaatg 1860gaaacaaaga ttgtgaaccc cattggtacc agtgttacct
cttggctacc ctcaccaacg 1920gttcaaatga ggccttctcc tgctatctct ttgtctcact
tgccagtttt tgcttcttgg 1980actgatactt aa
199239663PRTGlycine max 39Met Lys Arg Ile Asn Glu
Ser Asn Asn Thr Asp Asp Gly Asn Asn His1 5
10 15Asn Trp Leu Gly Phe Ser Leu Ser Pro His Met Lys
Met Glu Ala Thr 20 25 30Ser
Ala Ala Thr Val Pro Thr Thr Phe Tyr Met Ser Pro Ser Gln Ser 35
40 45His Leu Ser Asn Phe Gly Met Cys Tyr
Gly Val Gly Glu Asn Gly Asn 50 55
60Phe His Ser Pro Leu Thr Val Met Pro Leu Lys Ser Asp Gly Ser Leu65
70 75 80Cys Ile Leu Glu Ala
Leu Lys Arg Ser Gln Thr Gln Val Met Val Pro 85
90 95Thr Ser Ser Pro Lys Leu Glu Asp Phe Leu Gly
Gly Ala Thr Met Gly 100 105
110Thr His Glu Tyr Gly Ser His Glu Arg Gly Leu Ser Leu Asp Ser Ile
115 120 125Tyr Tyr Asn Ser Gln Asn Ala
Glu Ala Gln Pro Asn Arg Asp Leu Leu 130 135
140Ser Gln Pro Phe Arg Gln Gln Gly His Met Ser Val Gln Thr His
Pro145 150 155 160Tyr Tyr
Ser Gly Leu Ala Cys His Gly Leu Tyr Gln Ala Pro Leu Glu
165 170 175Glu Glu Thr Thr Lys Glu Thr
His Val Ser Asp Cys Ser Ser Leu Met 180 185
190Pro Gln Met Thr Glu Gly Leu Lys Asn Trp Val Ala Pro Thr
Arg Glu 195 200 205Phe Ser Thr His
Gln Gln Val Leu Glu Gln Gln Met Asn Cys Gly Met 210
215 220Gly Asn Glu Arg Asn Gly Val Ser Leu Gly Ser Val
Gly Cys Gly Glu225 230 235
240Leu Gln Ser Leu Ser Leu Ser Met Ser Pro Gly Ser Gln Ser Ser Cys
245 250 255Val Thr Ala Pro Ser
Gly Thr Asp Ser Val Ala Val Asp Ala Lys Lys 260
265 270Arg Gly His Ala Lys Leu Gly Gln Lys Gln Pro Val
His Arg Lys Ser 275 280 285Ile Asp
Thr Phe Gly Gln Arg Thr Ser Gln Tyr Arg Gly Val Thr Arg 290
295 300His Arg Trp Thr Gly Arg Tyr Glu Ala His Leu
Trp Asp Asn Ser Cys305 310 315
320Lys Lys Glu Gly Gln Thr Arg Lys Gly Arg Gln Val Tyr Leu Gly Gly
325 330 335Tyr Asp Met Glu
Glu Lys Ala Ala Arg Ala Tyr Asp Leu Ala Ala Leu 340
345 350Lys Tyr Trp Gly Pro Ser Thr His Ile Asn Phe
Ser Ile Glu Asn Tyr 355 360 365Gln
Val Gln Leu Glu Glu Met Lys Asn Met Ser Arg Gln Glu Tyr Val 370
375 380Ala His Leu Arg Arg Lys Ser Ser Gly Phe
Ser Arg Gly Ala Ser Ile385 390 395
400Tyr Arg Gly Val Thr Arg His His Gln His Gly Arg Trp Gln Ala
Arg 405 410 415Ile Gly Arg
Val Ala Gly Asn Lys Asp Leu Tyr Leu Gly Thr Phe Ser 420
425 430Thr Gln Glu Glu Ala Ala Glu Ala Tyr Asp
Val Ala Ala Ile Lys Phe 435 440
445Arg Gly Ala Asn Ala Val Thr Asn Phe Asp Ile Ser Arg Tyr Asp Val 450
455 460Glu Arg Ile Met Ala Ser Ser Asn
Leu Leu Ala Gly Glu Leu Ala Arg465 470
475 480Arg Lys Lys Asp Asn Asp Pro Arg Asn Lys Asp Ile
Asp Tyr Asn Lys 485 490
495Ser Val Val Thr Ser Val Asn Asn Glu Glu Thr Val Gln Val Gln Ala
500 505 510Gly Asn Asn Asn Asn Glu
Asn Asp Ser Glu Trp Lys Met Val Leu Phe 515 520
525Asn His Pro Ser Gln Gln Gln Gln Ala Asn Gly Asn Gly Ser
Asp Gln 530 535 540Lys Ile Met Asn Cys
Gly Asn Tyr Arg Asn Ser Ala Phe Ser Met Ala545 550
555 560Leu Gln Asp Leu Ile Gly Ile Asp Ser Val
Gly Ser Gly Gln His Asn 565 570
575Met Leu Asp Glu Ser Ser Lys Ile Gly Thr His Phe Ser Asn Thr Ser
580 585 590Ser Leu Val Thr Ser
Leu Ser Ser Ser Arg Glu Ala Ser Pro Glu Lys 595
600 605Arg Gly Pro Ser Leu Leu Phe Pro Met Pro Pro Met
Glu Thr Lys Ile 610 615 620Val Asn Pro
Ile Gly Thr Ser Val Thr Ser Trp Leu Pro Ser Pro Thr625
630 635 640Val Gln Met Arg Pro Ser Pro
Ala Ile Ser Leu Ser His Leu Pro Val 645
650 655Phe Ala Ser Trp Thr Asp Thr
660401458DNAOryza sativa 40ggcctctcct cctcctcctc acctgcacct gcaccaacgc
gagagatcat ggcgaagaga 60tcgtctcctg atcctgcatc atcttctcca tctgcatcat
cctcgccgtc gtctccttcc 120tcctcttcct ccgaggattc ctcttcgccc atgtcgatgc
cctgcaagag gagggcgagg 180ccgaggacgg agaagagcac cggcaaggcc aagaggccca
agaaggagag caaggaggtg 240gctgatcctt cttccaatgg cggcggcggc ggcaagagga
gttctatcta caggggagtc 300accaggcatc ggtggactgg cagatttgag gcccatctgt
gggacaagaa ttgctccact 360tcacttcaga acaagaagaa agggaggcaa gtctatttgg
gggcttatga tagtgaggaa 420gcagctgctc gtgcatatga ccttgcagct cttaagtact
ggggtcctga gacagtgctc 480aatttcccac tggaggaata tgagaaggag aggtcggaga
tggagggcgt gtcgagggag 540gagtacctgg cctccctccg ccgccggagc agcggtttct
ccaggggtgt ctccaagtac 600agaggcgttg ccaggcatca ccacaatggg cggtgggagg
cacggatagg gcgggtcctg 660gggaacaagt acctctacct gggtactttc gatactcaag
aggaggcagc caaggcctat 720gatcttgctg caattgaata ccgaggtgcc aatgcggtaa
ccaacttcga catcagctgc 780tacctggacc agccacagtt actggcacag ctgcaacagg
aaccacagtt actggcacaa 840ctgcaacaag agctacaggt ggtgccagca ttacatgaag
agcctcaaga tgatgaccga 900agtgagaatg cagtccaaga gctcagttcc agtgaagcaa
atacatcaag tgacaacaat 960gagccacttg cagccgatga cagcgctgaa tgcatgaatg
aaccccttcc aattgttgat 1020ggcattgaag aaagcctctg gagcccttgc ttggattatg
aattggatac aatgcctggg 1080gcttacttca gcaactcgat gaatttcagt gaatggttca
atgatgaggc tttcgaaggc 1140ggcatggagt acctatttga agggtgctcc agtataactg
aaggcggcaa cagcatggat 1200aactcaggtg tgacagaata caatttgttt gaggaatgca
atatgttgga gaaggacatt 1260tcagattttt tagacaagga catttcagat tttttagata
aggacatttc aatttcagat 1320agggagcgaa tatctcctca agcaaacaat atctcctgcc
ctcaaaaaat gatcagtgtg 1380tgcaactgaa ttctctctgt gtgcgtgttt ctgggtgttg
aaaatcttga gatatacagg 1440gaagttttca ggttttta
1458411341DNAOryza sativa 41atggcgaaga gatcgtctcc
tgatcctgca tcatcttctc catctgcatc atcctcgccg 60tcgtctcctt cctcctcttc
ctccgaggat tcctcttcgc ccatgtcgat gccctgcaag 120aggagggcga ggccgaggac
ggagaagagc accggcaagg ccaagaggcc caagaaggag 180agcaaggagg tggctgatcc
ttcttccaat ggcggcggcg gcggcaagag gagttctatc 240tacaggggag tcaccaggca
tcggtggact ggcagatttg aggcccatct gtgggacaag 300aattgctcca cttcacttca
gaacaagaag aaagggaggc aagtctattt gggggcttat 360gatagtgagg aagcagctgc
tcgtgcatat gaccttgcag ctcttaagta ctggggtcct 420gagacagtgc tcaatttccc
actggaggaa tatgagaagg agaggtcgga gatggagggc 480gtgtcgaggg aggagtacct
ggcctccctc cgccgccgga gcagcggttt ctccaggggt 540gtctccaagt acagaggcgt
tgccaggcat caccacaatg ggcggtggga ggcacggata 600gggcgggtcc tggggaacaa
gtacctctac ctgggtactt tcgatactca agaggaggca 660gccaaggcct atgatcttgc
tgcaattgaa taccgaggtg ccaatgcggt aaccaacttc 720gacatcagct gctacctgga
ccagccacag ttactggcac agctgcaaca ggaaccacag 780ttactggcac aactgcaaca
agagctacag gtggtgccag cattacatga agagcctcaa 840gatgatgacc gaagtgagaa
tgcagtccaa gagctcagtt ccagtgaagc aaatacatca 900agtgacaaca atgagccact
tgcagccgat gacagcgctg aatgcatgaa tgaacccctt 960ccaattgttg atggcattga
agaaagcctc tggagccctt gcttggatta tgaattggat 1020acaatgcctg gggcttactt
cagcaactcg atgaatttca gtgaatggtt caatgatgag 1080gctttcgaag gcggcatgga
gtacctattt gaagggtgct ccagtataac tgaaggcggc 1140aacagcatgg ataactcagg
tgtgacagaa tacaatttgt ttgaggaatg caatatgttg 1200gagaaggaca tttcagattt
tttagacaag gacatttcag attttttaga taaggacatt 1260tcaatttcag atagggagcg
aatatctcct caagcaaaca atatctcctg ccctcaaaaa 1320atgatcagtg tgtgcaactg a
134142446PRTOryza sativa
42Met Ala Lys Arg Ser Ser Pro Asp Pro Ala Ser Ser Ser Pro Ser Ala1
5 10 15Ser Ser Ser Pro Ser Ser
Pro Ser Ser Ser Ser Ser Glu Asp Ser Ser 20 25
30Ser Pro Met Ser Met Pro Cys Lys Arg Arg Ala Arg Pro
Arg Thr Glu 35 40 45Lys Ser Thr
Gly Lys Ala Lys Arg Pro Lys Lys Glu Ser Lys Glu Val 50
55 60Ala Asp Pro Ser Ser Asn Gly Gly Gly Gly Gly Lys
Arg Ser Ser Ile65 70 75
80Tyr Arg Gly Val Thr Arg His Arg Trp Thr Gly Arg Phe Glu Ala His
85 90 95Leu Trp Asp Lys Asn Cys
Ser Thr Ser Leu Gln Asn Lys Lys Lys Gly 100
105 110Arg Gln Val Tyr Leu Gly Ala Tyr Asp Ser Glu Glu
Ala Ala Ala Arg 115 120 125Ala Tyr
Asp Leu Ala Ala Leu Lys Tyr Trp Gly Pro Glu Thr Val Leu 130
135 140Asn Phe Pro Leu Glu Glu Tyr Glu Lys Glu Arg
Ser Glu Met Glu Gly145 150 155
160Val Ser Arg Glu Glu Tyr Leu Ala Ser Leu Arg Arg Arg Ser Ser Gly
165 170 175Phe Ser Arg Gly
Val Ser Lys Tyr Arg Gly Val Ala Arg His His His 180
185 190Asn Gly Arg Trp Glu Ala Arg Ile Gly Arg Val
Leu Gly Asn Lys Tyr 195 200 205Leu
Tyr Leu Gly Thr Phe Asp Thr Gln Glu Glu Ala Ala Lys Ala Tyr 210
215 220Asp Leu Ala Ala Ile Glu Tyr Arg Gly Ala
Asn Ala Val Thr Asn Phe225 230 235
240Asp Ile Ser Cys Tyr Leu Asp Gln Pro Gln Leu Leu Ala Gln Leu
Gln 245 250 255Gln Glu Pro
Gln Leu Leu Ala Gln Leu Gln Gln Glu Leu Gln Val Val 260
265 270Pro Ala Leu His Glu Glu Pro Gln Asp Asp
Asp Arg Ser Glu Asn Ala 275 280
285Val Gln Glu Leu Ser Ser Ser Glu Ala Asn Thr Ser Ser Asp Asn Asn 290
295 300Glu Pro Leu Ala Ala Asp Asp Ser
Ala Glu Cys Met Asn Glu Pro Leu305 310
315 320Pro Ile Val Asp Gly Ile Glu Glu Ser Leu Trp Ser
Pro Cys Leu Asp 325 330
335Tyr Glu Leu Asp Thr Met Pro Gly Ala Tyr Phe Ser Asn Ser Met Asn
340 345 350Phe Ser Glu Trp Phe Asn
Asp Glu Ala Phe Glu Gly Gly Met Glu Tyr 355 360
365Leu Phe Glu Gly Cys Ser Ser Ile Thr Glu Gly Gly Asn Ser
Met Asp 370 375 380Asn Ser Gly Val Thr
Glu Tyr Asn Leu Phe Glu Glu Cys Asn Met Leu385 390
395 400Glu Lys Asp Ile Ser Asp Phe Leu Asp Lys
Asp Ile Ser Asp Phe Leu 405 410
415Asp Lys Asp Ile Ser Ile Ser Asp Arg Glu Arg Ile Ser Pro Gln Ala
420 425 430Asn Asn Ile Ser Cys
Pro Gln Lys Met Ile Ser Val Cys Asn 435 440
445431845DNAOryza sativamodified_base(1643)a, c, g, t, unknown
or other 43cgagctcgga tccactagta acggccgcca gtgtgctgga attcgccctt
aagcagtggt 60aacaacgcag agtacgcggg gagaaaataa taataagaag aacagattgt
ataatctggg 120gtatttttct ccccaacttt cctctctcgg tttccccgag aaatttcttg
ttgtttcccg 180catcactccc cactgagccg cctccttgct cgccgctcgc gttcgtcgtc
gtctcgtcgt 240ttccacaatc aatttgacgt cgcccctatt tatgtcctgc ctcggtagtt
gattcctccc 300catttctgtt gcctctcgcg gttgtggtaa tcgacgctgt aggatttttt
tcttcttctt 360cttttgggtc ttcggaggag gcgtccggat ctttcgtccc catcgatccc
ttccggccac 420ggacatttcg tgggtagagc gattgattgg tggcttaggg ttaatattgg
gcaggaaatg 480gagagctctt tgaaagagga gaaggctgcg ggcgaatcag gggatgatga
gaaggcggag 540aggagctccc ctatcaatct gaattcgttg ccagcaactg cggcgtgtgc
ggcgaccgcc 600ccggatgagg atggcttgca ctctgcagtg gagtcaggag ctaaggattc
gaacaccacg 660aagggagttg agtctcttgg tactggtcac aagaagatcc cgaaacgtga
ggtagttgat 720gaagttgatg ttcagacctg tgccgaagga aagaacgatt cagtggtccc
ttcaagcagc 780aagaacccta tcaatgataa gaatgcaaag gcaaatgtgg cagagaatgg
acagtctgct 840gatggtatcc ctgaggatca gagagttact attcttagtg ttgtcaagaa
ggatgagcct 900gctgatgatg ttagagattc agttaatcct gtaacagtcg taggttatag
agatgagaag 960ggtggaacta gtggtactgc tggaactacg gctgtgcgac ctgcaggcac
ccggtcatct 1020agtttccatg gtgtgaccag gcatagatgg agtggaaaat atgaagctca
tctgtgggac 1080agttcgtgca gaatggaagg gcggagaaga aagggaaggc aagtttattt
aggaagttat 1140gataccgagg aaaaagctgc caggtcatat gatgttgcag ctcttaaata
ctggggccaa 1200aatacaaagc tgaatttctc ggtttcagaa tacgaaaggg aactggagga
cataagggac 1260atgtctcgag aggaatgcgt aacataccta agaagaagaa gtagctgctt
ctcaagaggg 1320gcttctattt atagaggagt tactagaagg cagaaagatg ggaggtggca
ggcacgcata 1380ggactggttg ctggaacaag agacatttac ctgggaactt tcaaaactga
ggaagaagca 1440gcggaggctt acgacattgc tgctattgag atccgtggca aaaatgcggt
gaccaacttt 1500gatcgaagca actacatgga gaagggtatg cactgtatag aaggggcagg
cttgaagctg 1560cttgcgtcta agccagaatg aaaacttgac ttggtggagc cgcatcgcat
attagggttg 1620tttcagtcat atttggagct tantggtaca tacagataca actggttgca
gcttgttaat 1680atctctgcgt tataatctac aaattacagc tcaattttcg attgactagc
aaattcgtct 1740cagcaagaaa gattttgagc atgtattata ggttgagtag ggtagatctg
tacaacacct 1800gagcaactca atatttatgt tctgctcaat ataacctatc attcc
1845441104DNAOryza sativa 44atggagagct ctttgaaaga ggagaaggct
gcgggcgaat caggggatga tgagaaggcg 60gagaggagct cccctatcaa tctgaattcg
ttgccagcaa ctgcggcgtg tgcggcgacc 120gccccggatg aggatggctt gcactctgca
gtggagtcag gagctaagga ttcgaacacc 180acgaagggag ttgagtctct tggtactggt
cacaagaaga tcccgaaacg tgaggtagtt 240gatgaagttg atgttcagac ctgtgccgaa
ggaaagaacg attcagtggt cccttcaagc 300agcaagaacc ctatcaatga taagaatgca
aaggcaaatg tggcagagaa tggacagtct 360gctgatggta tccctgagga tcagagagtt
actattctta gtgttgtcaa gaaggatgag 420cctgctgatg atgttagaga ttcagttaat
cctgtaacag tcgtaggtta tagagatgag 480aagggtggaa ctagtggtac tgctggaact
acggctgtgc gacctgcagg cacccggtca 540tctagtttcc atggtgtgac caggcataga
tggagtggaa aatatgaagc tcatctgtgg 600gacagttcgt gcagaatgga agggcggaga
agaaagggaa ggcaagttta tttaggaagt 660tatgataccg aggaaaaagc tgccaggtca
tatgatgttg cagctcttaa atactggggc 720caaaatacaa agctgaattt ctcggtttca
gaatacgaaa gggaactgga ggacataagg 780gacatgtctc gagaggaatg cgtaacatac
ctaagaagaa gaagtagctg cttctcaaga 840ggggcttcta tttatagagg agttactaga
aggcagaaag atgggaggtg gcaggcacgc 900ataggactgg ttgctggaac aagagacatt
tacctgggaa ctttcaaaac tgaggaagaa 960gcagcggagg cttacgacat tgctgctatt
gagatccgtg gcaaaaatgc ggtgaccaac 1020tttgatcgaa gcaactacat ggagaagggt
atgcactgta tagaaggggc aggcttgaag 1080ctgcttgcgt ctaagccaga atga
110445367PRTOryza sativa 45Met Glu Ser
Ser Leu Lys Glu Glu Lys Ala Ala Gly Glu Ser Gly Asp1 5
10 15Asp Glu Lys Ala Glu Arg Ser Ser Pro
Ile Asn Leu Asn Ser Leu Pro 20 25
30Ala Thr Ala Ala Cys Ala Ala Thr Ala Pro Asp Glu Asp Gly Leu His
35 40 45Ser Ala Val Glu Ser Gly Ala
Lys Asp Ser Asn Thr Thr Lys Gly Val 50 55
60Glu Ser Leu Gly Thr Gly His Lys Lys Ile Pro Lys Arg Glu Val Val65
70 75 80Asp Glu Val Asp
Val Gln Thr Cys Ala Glu Gly Lys Asn Asp Ser Val 85
90 95Val Pro Ser Ser Ser Lys Asn Pro Ile Asn
Asp Lys Asn Ala Lys Ala 100 105
110Asn Val Ala Glu Asn Gly Gln Ser Ala Asp Gly Ile Pro Glu Asp Gln
115 120 125Arg Val Thr Ile Leu Ser Val
Val Lys Lys Asp Glu Pro Ala Asp Asp 130 135
140Val Arg Asp Ser Val Asn Pro Val Thr Val Val Gly Tyr Arg Asp
Glu145 150 155 160Lys Gly
Gly Thr Ser Gly Thr Ala Gly Thr Thr Ala Val Arg Pro Ala
165 170 175Gly Thr Arg Ser Ser Ser Phe
His Gly Val Thr Arg His Arg Trp Ser 180 185
190Gly Lys Tyr Glu Ala His Leu Trp Asp Ser Ser Cys Arg Met
Glu Gly 195 200 205Arg Arg Arg Lys
Gly Arg Gln Val Tyr Leu Gly Ser Tyr Asp Thr Glu 210
215 220Glu Lys Ala Ala Arg Ser Tyr Asp Val Ala Ala Leu
Lys Tyr Trp Gly225 230 235
240Gln Asn Thr Lys Leu Asn Phe Ser Val Ser Glu Tyr Glu Arg Glu Leu
245 250 255Glu Asp Ile Arg Asp
Met Ser Arg Glu Glu Cys Val Thr Tyr Leu Arg 260
265 270Arg Arg Ser Ser Cys Phe Ser Arg Gly Ala Ser Ile
Tyr Arg Gly Val 275 280 285Thr Arg
Arg Gln Lys Asp Gly Arg Trp Gln Ala Arg Ile Gly Leu Val 290
295 300Ala Gly Thr Arg Asp Ile Tyr Leu Gly Thr Phe
Lys Thr Glu Glu Glu305 310 315
320Ala Ala Glu Ala Tyr Asp Ile Ala Ala Ile Glu Ile Arg Gly Lys Asn
325 330 335Ala Val Thr Asn
Phe Asp Arg Ser Asn Tyr Met Glu Lys Gly Met His 340
345 350Cys Ile Glu Gly Ala Gly Leu Lys Leu Leu Ala
Ser Lys Pro Glu 355 360
365462198DNAOryza sativamodified_base(1031)a, c, g, t, unknown or other
46ggagagagca acgcaagaac ggcacgagag gctggcagcg agcgagcgtg tgcatggttg
60gtgcgagcaa atggccagcg gcggcggcag cagcaactgg ttaggcttct cgctctcccc
120gcacatgccg gccatggagg tgccgtcctc ctctgagcca tcgactgctg ctcatcatca
180tcatcatcat catccacctg ctgctgctgc tgctgccgga gccatgtcgt ctcctcccga
240cagcgccacg acctgcaact tcctcttctc ccctcctgca gcacagatgg tcgctccttc
300acctggctac tactacgtcg gcggcgccta cggagacggg accagcaccg ccggcgtcta
360ctactcgcac ctccctgtca tgcctatcaa gtccgatggc tccctctgca tcatggaagg
420catgatgccg tcgtcatcgc caaagctcga ggacttcttg gggtgtggca atggcagtgg
480ccatgacccg gccacctact atagccaggg ccaagaagca gaggatgcaa gcagggcggc
540ctaccagcac caccagctag tcccctacaa ctaccagcca ttgacggaag cagagatgct
600gcaagaggcc gcagcggcgc caatggagga cgcaatggcg gcggccaaga acttcctcgt
660caccagctac ggcgcctgct acggcaacca ggagatgccg cagccgctca gcctctccat
720gagcccaggg tcccagtcca gcagctgcgt cagtgcagct ccccagcagc atcagcagat
780ggcggtggtc gctgcagctg ctgctgctgg tgatggccag ggaagcaaca gtaatgacgg
840tggcgagcag cgtgtcggga agaagagggg caccgggaaa gggggccaaa agcagcctgt
900tcaccggaag tccattgaca cgtttgggca gaggacatcg cagtataggg gcgtcaccag
960gcacaggtgg actggaagat atgaagccca cctctgggat aacagttgca aaaaggatgg
1020acagacaagg naagggaagg caagtatatc taggtggtta gacactgaag ataaagctgc
1080gagggcttat gatctggctg cgctgaaata ctgggggcta tctacgcata taaatttccc
1140gttagaaaac taccgagatg agatcgagga gatggaaagg atgacaaggc aagaatatgt
1200tgcgcacttg agaaggagaa gcagcgggtt ctctcgcggt gcttccatct accggggagt
1260aacaaggcat caccagcatg gaagatggca agctcggatt ggcagggttg ctggcaacaa
1320ggacttgtat ctcggcactt tcagcactca agaagaagca gcagaggcat acgacattgc
1380tgccatcaag ttccgtggcc tgaacgcggt gacgaacttt gacatcacaa ggtacgacgt
1440ggacaagatc atggagagca gctcgctgct gcctggtgag gcagcgcgta aggtgaaggc
1500gatcgaggca gcgccggacc atgtgccaat aggccgcgag ctcggtgcga ccgaggaagc
1560gagcgctgct actgtcacgg gcaccgactg gagaatggtg ctccatggat cacagcagca
1620gcaagctgca gcgtgcaccg aagcaacggc agatcttcag aagggcttca tgggtgacgc
1680gcactcggct ctccacggca ttgtcgggtt cgacgtcgag tcggcggcag ctgacgagat
1740cgatgtcccg ggagggaaga tcagtggcat caacttctcg aactcgtctt cgctggtgac
1800tagcctgagc aactcgaggg aggggagccc tgagaggctt ggcctcgcca tgctctacgc
1860caagcatcat cccaccgccg tcagcctcgc cgccatgaac ccctggatgc cgatgccggc
1920gccggccgca gctcacgtga tgaggccgcc gagtgccatt gctcatctcc ctgtttttgc
1980agcctggaca gatgcttaat tagagccatg ttgctgcttg ctcgatcttg cttttgatcg
2040gctctttttg taaactaaag caagatcagc agcaatcagg tgcttatggt acttaaatta
2100gctggaagcc tggagtagca tacttggtta tgatggtaag cactaggctg gtggtgtaag
2160tgtttaacca gtaaacccat aggtaggaca ttcaagca
2198471929DNAOryza sativamodified_base(961)a, c, g, t, unknown or other
47atggccagcg gcggcggcag cagcaactgg ttaggcttct cgctctcccc gcacatgccg
60gccatggagg tgccgtcctc ctctgagcca tcgactgctg ctcatcatca tcatcatcat
120catccacctg ctgctgctgc tgctgccgga gccatgtcgt ctcctcccga cagcgccacg
180acctgcaact tcctcttctc ccctcctgca gcacagatgg tcgctccttc acctggctac
240tactacgtcg gcggcgccta cggagacggg accagcaccg ccggcgtcta ctactcgcac
300ctccctgtca tgcctatcaa gtccgatggc tccctctgca tcatggaagg catgatgccg
360tcgtcatcgc caaagctcga ggacttcttg gggtgtggca atggcagtgg ccatgacccg
420gccacctact atagccaggg ccaagaagca gaggatgcaa gcagggcggc ctaccagcac
480caccagctag tcccctacaa ctaccagcca ttgacggaag cagagatgct gcaagaggcc
540gcagcggcgc caatggagga cgcaatggcg gcggccaaga acttcctcgt caccagctac
600ggcgcctgct acggcaacca ggagatgccg cagccgctca gcctctccat gagcccaggg
660tcccagtcca gcagctgcgt cagtgcagct ccccagcagc atcagcagat ggcggtggtc
720gctgcagctg ctgctgctgg tgatggccag ggaagcaaca gtaatgacgg tggcgagcag
780cgtgtcggga agaagagggg caccgggaaa gggggccaaa agcagcctgt tcaccggaag
840tccattgaca cgtttgggca gaggacatcg cagtataggg gcgtcaccag gcacaggtgg
900actggaagat atgaagccca cctctgggat aacagttgca aaaaggatgg acagacaagg
960naagggaagg caagtatatc taggtggtta gacactgaag ataaagctgc gagggcttat
1020gatctggctg cgctgaaata ctgggggcta tctacgcata taaatttccc gttagaaaac
1080taccgagatg agatcgagga gatggaaagg atgacaaggc aagaatatgt tgcgcacttg
1140agaaggagaa gcagcgggtt ctctcgcggt gcttccatct accggggagt aacaaggcat
1200caccagcatg gaagatggca agctcggatt ggcagggttg ctggcaacaa ggacttgtat
1260ctcggcactt tcagcactca agaagaagca gcagaggcat acgacattgc tgccatcaag
1320ttccgtggcc tgaacgcggt gacgaacttt gacatcacaa ggtacgacgt ggacaagatc
1380atggagagca gctcgctgct gcctggtgag gcagcgcgta aggtgaaggc gatcgaggca
1440gcgccggacc atgtgccaat aggccgcgag ctcggtgcga ccgaggaagc gagcgctgct
1500actgtcacgg gcaccgactg gagaatggtg ctccatggat cacagcagca gcaagctgca
1560gcgtgcaccg aagcaacggc agatcttcag aagggcttca tgggtgacgc gcactcggct
1620ctccacggca ttgtcgggtt cgacgtcgag tcggcggcag ctgacgagat cgatgtcccg
1680ggagggaaga tcagtggcat caacttctcg aactcgtctt cgctggtgac tagcctgagc
1740aactcgaggg aggggagccc tgagaggctt ggcctcgcca tgctctacgc caagcatcat
1800cccaccgccg tcagcctcgc cgccatgaac ccctggatgc cgatgccggc gccggccgca
1860gctcacgtga tgaggccgcc gagtgccatt gctcatctcc ctgtttttgc agcctggaca
1920gatgcttaa
192948642PRTOryza sativamisc_feature(321)Xaa is any amino acid 48Met Ala
Ser Gly Gly Gly Ser Ser Asn Trp Leu Gly Phe Ser Leu Ser1 5
10 15Pro His Met Pro Ala Met Glu Val
Pro Ser Ser Ser Glu Pro Ser Thr 20 25
30Ala Ala His His His His His His His Pro Pro Ala Ala Ala Ala
Ala 35 40 45Ala Gly Ala Met Ser
Ser Pro Pro Asp Ser Ala Thr Thr Cys Asn Phe 50 55
60Leu Phe Ser Pro Pro Ala Ala Gln Met Val Ala Pro Ser Pro
Gly Tyr65 70 75 80Tyr
Tyr Val Gly Gly Ala Tyr Gly Asp Gly Thr Ser Thr Ala Gly Val
85 90 95Tyr Tyr Ser His Leu Pro Val
Met Pro Ile Lys Ser Asp Gly Ser Leu 100 105
110Cys Ile Met Glu Gly Met Met Pro Ser Ser Ser Pro Lys Leu
Glu Asp 115 120 125Phe Leu Gly Cys
Gly Asn Gly Ser Gly His Asp Pro Ala Thr Tyr Tyr 130
135 140Ser Gln Gly Gln Glu Ala Glu Asp Ala Ser Arg Ala
Ala Tyr Gln His145 150 155
160His Gln Leu Val Pro Tyr Asn Tyr Gln Pro Leu Thr Glu Ala Glu Met
165 170 175Leu Gln Glu Ala Ala
Ala Ala Pro Met Glu Asp Ala Met Ala Ala Ala 180
185 190Lys Asn Phe Leu Val Thr Ser Tyr Gly Ala Cys Tyr
Gly Asn Gln Glu 195 200 205Met Pro
Gln Pro Leu Ser Leu Ser Met Ser Pro Gly Ser Gln Ser Ser 210
215 220Ser Cys Val Ser Ala Ala Pro Gln Gln His Gln
Gln Met Ala Val Val225 230 235
240Ala Ala Ala Ala Ala Ala Gly Asp Gly Gln Gly Ser Asn Ser Asn Asp
245 250 255Gly Gly Glu Gln
Arg Val Gly Lys Lys Arg Gly Thr Gly Lys Gly Gly 260
265 270Gln Lys Gln Pro Val His Arg Lys Ser Ile Asp
Thr Phe Gly Gln Arg 275 280 285Thr
Ser Gln Tyr Arg Gly Val Thr Arg His Arg Trp Thr Gly Arg Tyr 290
295 300Glu Ala His Leu Trp Asp Asn Ser Cys Lys
Lys Asp Gly Gln Thr Arg305 310 315
320Xaa Gly Lys Ala Ser Ile Ser Arg Trp Leu Asp Thr Glu Asp Lys
Ala 325 330 335Ala Arg Ala
Tyr Asp Leu Ala Ala Leu Lys Tyr Trp Gly Leu Ser Thr 340
345 350His Ile Asn Phe Pro Leu Glu Asn Tyr Arg
Asp Glu Ile Glu Glu Met 355 360
365Glu Arg Met Thr Arg Gln Glu Tyr Val Ala His Leu Arg Arg Arg Ser 370
375 380Ser Gly Phe Ser Arg Gly Ala Ser
Ile Tyr Arg Gly Val Thr Arg His385 390
395 400His Gln His Gly Arg Trp Gln Ala Arg Ile Gly Arg
Val Ala Gly Asn 405 410
415Lys Asp Leu Tyr Leu Gly Thr Phe Ser Thr Gln Glu Glu Ala Ala Glu
420 425 430Ala Tyr Asp Ile Ala Ala
Ile Lys Phe Arg Gly Leu Asn Ala Val Thr 435 440
445Asn Phe Asp Ile Thr Arg Tyr Asp Val Asp Lys Ile Met Glu
Ser Ser 450 455 460Ser Leu Leu Pro Gly
Glu Ala Ala Arg Lys Val Lys Ala Ile Glu Ala465 470
475 480Ala Pro Asp His Val Pro Ile Gly Arg Glu
Leu Gly Ala Thr Glu Glu 485 490
495Ala Ser Ala Ala Thr Val Thr Gly Thr Asp Trp Arg Met Val Leu His
500 505 510Gly Ser Gln Gln Gln
Gln Ala Ala Ala Cys Thr Glu Ala Thr Ala Asp 515
520 525Leu Gln Lys Gly Phe Met Gly Asp Ala His Ser Ala
Leu His Gly Ile 530 535 540Val Gly Phe
Asp Val Glu Ser Ala Ala Ala Asp Glu Ile Asp Val Pro545
550 555 560Gly Gly Lys Ile Ser Gly Ile
Asn Phe Ser Asn Ser Ser Ser Leu Val 565
570 575Thr Ser Leu Ser Asn Ser Arg Glu Gly Ser Pro Glu
Arg Leu Gly Leu 580 585 590Ala
Met Leu Tyr Ala Lys His His Pro Thr Ala Val Ser Leu Ala Ala 595
600 605Met Asn Pro Trp Met Pro Met Pro Ala
Pro Ala Ala Ala His Val Met 610 615
620Arg Pro Pro Ser Ala Ile Ala His Leu Pro Val Phe Ala Ala Trp Thr625
630 635 640Asp
Ala492084DNATriticum aestivum 49atttcgtatt aataaaacga gcactatttt
atttttctac tgtattttac tcctggtgta 60gtgctgccag aaaccgctgc aggtggtagc
agtaaaagat ccagcaaata tccgatggtt 120tcagagcgcc agtgcggcgg cgccctgtca
agcgcgagat aaaatccgcc ggacccccgc 180gatttccccc actccgcgtt tcctctctcg
atttgtccaa atcttttgtt ctccttctcc 240accggcgatt agtttgttgt ttccggcatc
actccgcact aggccgcccc tcgcccgcgc 300tggcctcgtc gtttccttcc ccaattccgc
cgccccaccc cgcccgatat ttatttcctg 360cctcggtatc catttccgtt gatagatttt
tccagctttc gctgcctcgc cgttgctgct 420aatatccgcg ctgggatatt tcttcttttg
ctttcttggc cgcgcggctc ggcccgtccc 480cctggaggcc tccggatctt tcgatcgcgg
cgagcaggcg gctcaagata gttcgtgaat 540aggaaggctg ataggtaggt tagggttttg
ggagttgttt ttgtctctgc tccagtacat 600agatgatgaa atccggggag gaagttagtc
agggtcagca aatgaacggt tttgtggagg 660agaaagctgc tggggaatct ggggatggtc
ggaagatcga gaggagccct tccatcaatc 720tgaattcctt gcctgcaatt gcccctgcca
ctacggagat tggtgtcttg cactgtgcag 780tggagtcaga ggccaacgat gcaagcactc
agaagggaga tgagtccagt ggcactgatc 840agaagaaggt cccgaagaat gaggaggttg
atgaaggtga agttcaggcc tgtgcagatg 900tgaagagcca ctcggttgac cctttgaata
gcgagaacca tgccggggag aaggatgctt 960tggtaactgt gccagaaaat gagggttgtg
cggatggtgg cgataattat aagggagttc 1020aagttctcag cattgtcaaa aaggacgagt
ctgaggaaat tgttgattct attaatcctg 1080tgacggttgc ggagtataga gaggagaagg
gcaccgccgg ttctacttct gcaattactg 1140cggtgcgagc acctggctcc cgctcatctt
gtttccatgg tgtgaccagg cataggtgga 1200gtgggaaata tgaagctcat ttgtgggaca
gtacttgcag agtagaagga cggagaagga 1260aaggaaagca agtttattta ggaagttatg
atactgagca aaaagctgcc agggcatatg 1320atgttgcagc tcttaaattc tttggactaa
atacaaagct gaacttctca atttcggaat 1380atgagaagga actggcggac atacaagaca
tgtctccaga ggaatgtgtg acatactggg 1440aaggggggag tagttgcttc tcaagagggg
cgtctattta cagaggagtt acaaggaggc 1500agaaagatgg tcgatggcag gcacgcatag
gactgattgc tggaactaga gacatttacc 1560ttggaacttt caaaactgag gaagaagccg
cagaagctta tgatattgct gccatcgaga 1620tacgcggcaa aaatgcggtg accaactttg
acagaagcaa ctacatggac aggggcatgc 1680attgtataga aggcgcaggg ttgaagctgc
ttgcaaccaa gccagaatag tacctgattt 1740ggcatcgtat attgaacaga tttggttggc
cgtattttgg agcctagtgg tacatacaga 1800tagaagaact ggtcgcagcc tgtcattatc
cgctgctgta tgattcttca gattatatat 1860agttctttca gatagaattt cagtaattta
gcatgctttg tgtccagaca agattttgac 1920catgcattac tgttatagtg tttgtaggct
agagttgcag tggaagatgt tgcttcattt 1980cacatgtcta aatcggagaa tacgttttac
ttctaagttt tgatgcttgg tttaatgaaa 2040tattcaagtg tatgttccaa aaaaaaaaaa
aaaaaagcgg ccgc 2084501128DNATriticum aestivum
50atgatgaaat ccggggagga agttagtcag ggtcagcaaa tgaacggttt tgtggaggag
60aaagctgctg gggaatctgg ggatggtcgg aagatcgaga ggagcccttc catcaatctg
120aattccttgc ctgcaattgc ccctgccact acggagattg gtgtcttgca ctgtgcagtg
180gagtcagagg ccaacgatgc aagcactcag aagggagatg agtccagtgg cactgatcag
240aagaaggtcc cgaagaatga ggaggttgat gaaggtgaag ttcaggcctg tgcagatgtg
300aagagccact cggttgaccc tttgaatagc gagaaccatg ccggggagaa ggatgctttg
360gtaactgtgc cagaaaatga gggttgtgcg gatggtggcg ataattataa gggagttcaa
420gttctcagca ttgtcaaaaa ggacgagtct gaggaaattg ttgattctat taatcctgtg
480acggttgcgg agtatagaga ggagaagggc accgccggtt ctacttctgc aattactgcg
540gtgcgagcac ctggctcccg ctcatcttgt ttccatggtg tgaccaggca taggtggagt
600gggaaatatg aagctcattt gtgggacagt acttgcagag tagaaggacg gagaaggaaa
660ggaaagcaag tttatttagg aagttatgat actgagcaaa aagctgccag ggcatatgat
720gttgcagctc ttaaattctt tggactaaat acaaagctga acttctcaat ttcggaatat
780gagaaggaac tggcggacat acaagacatg tctccagagg aatgtgtgac atacttgaga
840aggaggagta gttgcttctc aagaggggcg tctatttaca gaggagttac aaggaggcag
900aaagatggtc gatggcaggc acgcatagga ctgattgctg gaactagaga catttacctt
960ggaactttca aaactgagga agaagccgca gaagcttatg atattgctgc catcgagata
1020cgcggcaaaa atgcggtgac caactttgac agaagcaact acatggacag gggcatgcat
1080tgtatagaag gcgcagggtt gaagctgctt gcaaccaagc cagaatag
112851375PRTTriticum aestivum 51Met Met Lys Ser Gly Glu Glu Val Ser Gln
Gly Gln Gln Met Asn Gly1 5 10
15Phe Val Glu Glu Lys Ala Ala Gly Glu Ser Gly Asp Gly Arg Lys Ile
20 25 30Glu Arg Ser Pro Ser Ile
Asn Leu Asn Ser Leu Pro Ala Ile Ala Pro 35 40
45Ala Thr Thr Glu Ile Gly Val Leu His Cys Ala Val Glu Ser
Glu Ala 50 55 60Asn Asp Ala Ser Thr
Gln Lys Gly Asp Glu Ser Ser Gly Thr Asp Gln65 70
75 80Lys Lys Val Pro Lys Asn Glu Glu Val Asp
Glu Gly Glu Val Gln Ala 85 90
95Cys Ala Asp Val Lys Ser His Ser Val Asp Pro Leu Asn Ser Glu Asn
100 105 110His Ala Gly Glu Lys
Asp Ala Leu Val Thr Val Pro Glu Asn Glu Gly 115
120 125Cys Ala Asp Gly Gly Asp Asn Tyr Lys Gly Val Gln
Val Leu Ser Ile 130 135 140Val Lys Lys
Asp Glu Ser Glu Glu Ile Val Asp Ser Ile Asn Pro Val145
150 155 160Thr Val Ala Glu Tyr Arg Glu
Glu Lys Gly Thr Ala Gly Ser Thr Ser 165
170 175Ala Ile Thr Ala Val Arg Ala Pro Gly Ser Arg Ser
Ser Cys Phe His 180 185 190Gly
Val Thr Arg His Arg Trp Ser Gly Lys Tyr Glu Ala His Leu Trp 195
200 205Asp Ser Thr Cys Arg Val Glu Gly Arg
Arg Arg Lys Gly Lys Gln Val 210 215
220Tyr Leu Gly Ser Tyr Asp Thr Glu Gln Lys Ala Ala Arg Ala Tyr Asp225
230 235 240Val Ala Ala Leu
Lys Phe Phe Gly Leu Asn Thr Lys Leu Asn Phe Ser 245
250 255Ile Ser Glu Tyr Glu Lys Glu Leu Ala Asp
Ile Gln Asp Met Ser Pro 260 265
270Glu Glu Cys Val Thr Tyr Leu Arg Arg Arg Ser Ser Cys Phe Ser Arg
275 280 285Gly Ala Ser Ile Tyr Arg Gly
Val Thr Arg Arg Gln Lys Asp Gly Arg 290 295
300Trp Gln Ala Arg Ile Gly Leu Ile Ala Gly Thr Arg Asp Ile Tyr
Leu305 310 315 320Gly Thr
Phe Lys Thr Glu Glu Glu Ala Ala Glu Ala Tyr Asp Ile Ala
325 330 335Ala Ile Glu Ile Arg Gly Lys
Asn Ala Val Thr Asn Phe Asp Arg Ser 340 345
350Asn Tyr Met Asp Arg Gly Met His Cys Ile Glu Gly Ala Gly
Leu Lys 355 360 365Leu Leu Ala Thr
Lys Pro Glu 370 375522103DNAGlycine max 52gcccttaagc
agtggtaaca acgcagagta cgcggggatt cattttcatt caacccttct 60ctctctctct
ctcagataga ttctataaga tcgcagtttc caaagaagct aactgaagtt 120caaaccccca
taacctctct ttcacgttcc tcaacgacac ataaaacaca caccatggac 180tcttcttctt
catcaccgcc aaacagcacc aacaacaact ccctcgcttt ctctctttcc 240aatcactttc
ccaacccttc ttcctctccc ctttctctct tccactcctt cacctatcca 300tctctctctc
tcacaggcag caacacggtg gacgcaccgc ctgagcccac cgctggagca 360ggaccgacca
acctctccat attcaccggc ggccccaagt tcgaggactt tctgggcggt 420tccgccgcaa
cagccaccac cgtcgcgtgt gcaccgccac agcttccgca gttctccacc 480gacaacaaca
accacctata cgattcggag ctgaagtcaa caatagccgc gtgcttccct 540cgcgccttgg
ccgccgaaca aagcaccgaa ccgcaaaaac catcccccaa gaaaaccgtc 600gacaccttcg
ggcaacgcac ctccatctac cgcggcgtga cccgacatag atggactggg 660agatacgaag
ctcatctatg ggacaatagt tgcagaaggg aaggtcaaag caggaaagga 720aggcaagttt
acttgggtgg ttatgacaag gaggataagg cagccagagc ttatgatctc 780gcagctctca
agtactgggg tccaactacc accactaact ttcctatttc caactatgag 840aaggaactgg
aggagatgaa gaacatgact aggcaagagt ttgttgcttc tcttcgtagg 900aagagcagtg
gtttctctag aggggcctct atatacagag gagtaacgag acaccaccag 960catggccgat
ggcaggcgag aataggcaga gttgccggaa acaaagacct ctaccttggc 1020actttcagca
cccaagaaga agctgctgag gcctatgaca ttgctgctat caaattcagg 1080ggattaaatg
cagtaacaaa ctttgacatg agtcgctacg acgtgaagag cattgcaaat 1140agtactcttc
ctattggtgg tttatctggc aagaacaaga actccacaga ttctgcatct 1200gagagcaaaa
gccatgagcc aagccaatcc gatggagatc catcatcggc ttcatcggtg 1260acctttgcat
cacagcaaca accttcaagc tccaacttaa gctttgccat acccattaag 1320caagaccctt
cagattactg gtccatcttg gggtaccata atactcccct tgacaacagt 1380ggcatcagga
acactactag tactgttact acaactactt ttccatcctc caacaatggc 1440actgctagta
gtttgacacc cttcaacatg gagttctcaa gtgccccctc aagtaccggc 1500agcgataaca
atgccgcgtt tttcagtgga ggaggcatct ttgttcagca acaaactagt 1560catggtcatg
gaaatgcaag cagtggttcc tcctcttctt ctttaagctg ttcaatccca 1620ttcgccacgc
ccatattttc tctaaatagc aatactagtt atgagagcag tgctggttat 1680ggaaactgga
ttggacctac cctgcacaca ttccaatccc atgcaaaacc aagtctcttt 1740caaacgccaa
tatttggaat ggaatgagct catgcacgag ctgggatgag aatctgtgca 1800tataatgatg
aaaggggaag aaggacaata gtggtgatgg tgttttagca tgcaaagaag 1860caaaggacgg
actagtccct ttagctgatg cagtatttga atgagttgga ctgacagtca 1920taatttcatg
agaatcgtag ctatacctag cagctgacac tgtactaact caaacttcct 1980ttgttatgtt
ttgaatgaat tttccttttt ctttttcgcc cctttattag ctttttggtc 2040ctgttaatat
actgacatta tatcaaatga ggataatggg aagaaaaaaa aaatcctttt 2100gtt
2103531593DNAGlycine max 53atggactctt cttcttcatc accgccaaac agcaccaaca
acaactccct cgctttctct 60ctttccaatc actttcccaa cccttcttcc tctccccttt
ctctcttcca ctccttcacc 120tatccatctc tctctctcac aggcagcaac acggtggacg
caccgcctga gcccaccgct 180ggagcaggac cgaccaacct ctccatattc accggcggcc
ccaagttcga ggactttctg 240ggcggttccg ccgcaacagc caccaccgtc gcgtgtgcac
cgccacagct tccgcagttc 300tccaccgaca acaacaacca cctatacgat tcggagctga
agtcaacaat agccgcgtgc 360ttccctcgcg ccttggccgc cgaacaaagc accgaaccgc
aaaaaccatc ccccaagaaa 420accgtcgaca ccttcgggca acgcacctcc atctaccgcg
gcgtgacccg acatagatgg 480actgggagat acgaagctca tctatgggac aatagttgca
gaagggaagg tcaaagcagg 540aaaggaaggc aagtttactt gggtggttat gacaaggagg
ataaggcagc cagagcttat 600gatctcgcag ctctcaagta ctggggtcca actaccacca
ctaactttcc tatttccaac 660tatgagaagg aactggagga gatgaagaac atgactaggc
aagagtttgt tgcttctctt 720cgtaggaaga gcagtggttt ctctagaggg gcctctatat
acagaggagt aacgagacac 780caccagcatg gccgatggca ggcgagaata ggcagagttg
ccggaaacaa agacctctac 840cttggcactt tcagcaccca agaagaagct gctgaggcct
atgacattgc tgctatcaaa 900ttcaggggat taaatgcagt aacaaacttt gacatgagtc
gctacgacgt gaagagcatt 960gcaaatagta ctcttcctat tggtggttta tctggcaaga
acaagaactc cacagattct 1020gcatctgaga gcaaaagcca tgagccaagc caatccgatg
gagatccatc atcggcttca 1080tcggtgacct ttgcatcaca gcaacaacct tcaagctcca
acttaagctt tgccataccc 1140attaagcaag acccttcaga ttactggtcc atcttggggt
accataatac tccccttgac 1200aacagtggca tcaggaacac tactagtact gttactacaa
ctacttttcc atcctccaac 1260aatggcactg ctagtagttt gacacccttc aacatggagt
tctcaagtgc cccctcaagt 1320accggcagcg ataacaatgc cgcgtttttc agtggaggag
gcatctttgt tcagcaacaa 1380actagtcatg gtcatggaaa tgcaagcagt ggttcctcct
cttcttcttt aagctgttca 1440atcccattcg ccacgcccat attttctcta aatagcaata
ctagttatga gagcagtgct 1500ggttatggaa actggattgg acctaccctg cacacattcc
aatcccatgc aaaaccaagt 1560ctctttcaaa cgccaatatt tggaatggaa tga
159354530PRTGlycine max 54Met Asp Ser Ser Ser Ser
Ser Pro Pro Asn Ser Thr Asn Asn Asn Ser1 5
10 15Leu Ala Phe Ser Leu Ser Asn His Phe Pro Asn Pro
Ser Ser Ser Pro 20 25 30Leu
Ser Leu Phe His Ser Phe Thr Tyr Pro Ser Leu Ser Leu Thr Gly 35
40 45Ser Asn Thr Val Asp Ala Pro Pro Glu
Pro Thr Ala Gly Ala Gly Pro 50 55
60Thr Asn Leu Ser Ile Phe Thr Gly Gly Pro Lys Phe Glu Asp Phe Leu65
70 75 80Gly Gly Ser Ala Ala
Thr Ala Thr Thr Val Ala Cys Ala Pro Pro Gln 85
90 95Leu Pro Gln Phe Ser Thr Asp Asn Asn Asn His
Leu Tyr Asp Ser Glu 100 105
110Leu Lys Ser Thr Ile Ala Ala Cys Phe Pro Arg Ala Leu Ala Ala Glu
115 120 125Gln Ser Thr Glu Pro Gln Lys
Pro Ser Pro Lys Lys Thr Val Asp Thr 130 135
140Phe Gly Gln Arg Thr Ser Ile Tyr Arg Gly Val Thr Arg His Arg
Trp145 150 155 160Thr Gly
Arg Tyr Glu Ala His Leu Trp Asp Asn Ser Cys Arg Arg Glu
165 170 175Gly Gln Ser Arg Lys Gly Arg
Gln Val Tyr Leu Gly Gly Tyr Asp Lys 180 185
190Glu Asp Lys Ala Ala Arg Ala Tyr Asp Leu Ala Ala Leu Lys
Tyr Trp 195 200 205Gly Pro Thr Thr
Thr Thr Asn Phe Pro Ile Ser Asn Tyr Glu Lys Glu 210
215 220Leu Glu Glu Met Lys Asn Met Thr Arg Gln Glu Phe
Val Ala Ser Leu225 230 235
240Arg Arg Lys Ser Ser Gly Phe Ser Arg Gly Ala Ser Ile Tyr Arg Gly
245 250 255Val Thr Arg His His
Gln His Gly Arg Trp Gln Ala Arg Ile Gly Arg 260
265 270Val Ala Gly Asn Lys Asp Leu Tyr Leu Gly Thr Phe
Ser Thr Gln Glu 275 280 285Glu Ala
Ala Glu Ala Tyr Asp Ile Ala Ala Ile Lys Phe Arg Gly Leu 290
295 300Asn Ala Val Thr Asn Phe Asp Met Ser Arg Tyr
Asp Val Lys Ser Ile305 310 315
320Ala Asn Ser Thr Leu Pro Ile Gly Gly Leu Ser Gly Lys Asn Lys Asn
325 330 335Ser Thr Asp Ser
Ala Ser Glu Ser Lys Ser His Glu Pro Ser Gln Ser 340
345 350Asp Gly Asp Pro Ser Ser Ala Ser Ser Val Thr
Phe Ala Ser Gln Gln 355 360 365Gln
Pro Ser Ser Ser Asn Leu Ser Phe Ala Ile Pro Ile Lys Gln Asp 370
375 380Pro Ser Asp Tyr Trp Ser Ile Leu Gly Tyr
His Asn Thr Pro Leu Asp385 390 395
400Asn Ser Gly Ile Arg Asn Thr Thr Ser Thr Val Thr Thr Thr Thr
Phe 405 410 415Pro Ser Ser
Asn Asn Gly Thr Ala Ser Ser Leu Thr Pro Phe Asn Met 420
425 430Glu Phe Ser Ser Ala Pro Ser Ser Thr Gly
Ser Asp Asn Asn Ala Ala 435 440
445Phe Phe Ser Gly Gly Gly Ile Phe Val Gln Gln Gln Thr Ser His Gly 450
455 460His Gly Asn Ala Ser Ser Gly Ser
Ser Ser Ser Ser Leu Ser Cys Ser465 470
475 480Ile Pro Phe Ala Thr Pro Ile Phe Ser Leu Asn Ser
Asn Thr Ser Tyr 485 490
495Glu Ser Ser Ala Gly Tyr Gly Asn Trp Ile Gly Pro Thr Leu His Thr
500 505 510Phe Gln Ser His Ala Lys
Pro Ser Leu Phe Gln Thr Pro Ile Phe Gly 515 520
525Met Glu 530552193DNAGlycine maxmodified_base(1261)a,
c, g, t, unknown or other 55gggctgtttc cgtcgatgag accacaactc gactgtgtaa
cagggtaatc aaaatagata 60aaataaaaaa tatacttcct ttgaccggtg accgtgcgaa
ccggttcgaa gttggaacca 120tgagagagat aatgtttata tattccatca tctgttccgt
ttggatcctc tcacctctct 180ctctctctct ctctctggtg ccatggaatc cggtagtgcc
cgatgtttat attctctctg 240gttctgaaat catcgccgag gaaataacaa atgcagcctc
caaacctcgc gaagcttcct 300tcacacactt ccttctattc cttgttcgtc gaacaagctc
tttaacattc catcaccaca 360acttcctacc tacaccttcc gatattgcat cttcaactgt
ttggttacat ttcacacgta 420ataattattg tttctttcga ttggatcggt cggaaccatc
gctcgaagag aatctccgga 480gacgtagaag caatatcagt ttactgtatg tattggttcg
gattaataat aataacgaaa 540aaatagaaag aaaatcagag ttgaaaatag ccagaagaag
attaagcgcg atgttggatc 600ttaatctgaa tgccgagtcg actcagaaca acgagtcgct
ggtgctgttg gacaagtttc 660ccgaagcttc gttgggaact tcgaattcct ccgtcgtgaa
tgcggaggga tcgagcaacg 720aggactcgtg ctccacacgc gccggcgacg tgttcgcctt
cagtttcgga atccttaagg 780tggaaggcgc gaacgaagtc gtcgccacgg cgacgaagga
gctgtttccg gtgagctcgg 840agaattggca ggggcagagt tcgacgtcgt cgtctcaggc
gaggaagaat ttaatggatc 900tcccgctgga tcatcaaaac ggtgaggtga aggtggttca
ggttcagcca cagcctcagg 960tgaagaagag taggagaggt ccaaggtctc ggagctctca
gtacagagga gtcactttct 1020acagaaggac cggaagatgg gaatcgcata tctgggattg
cgggaagcaa gtctatttgg 1080gtggatttga caccgctcat attgctgcta gggcctatga
tcgaactgct attaagttca 1140ggggacttga tgctgatatc aattttgatc tcgttgatta
tgaggaggat ctaaaacaga 1200tgaagaatct ttcaagcagg agttcgtgca catacttcgc
cgccacagta ccggttctca 1260ngggcagttc gaaataccng ggatacactt cacaagtggc
cttgggaact cgatgggnat 1320tcctggcaga agctatacag gcacttcagt gcataaanaa
gntgtcctac ttnaccattn 1380ttgnacgnag aacngagctt catcctggan aggtagcagg
cgtttcangc aagagnaggt 1440nccctattga gccagaatng ggaggagaga accggagtnt
naagaagngg cntccggcct 1500ggnctcaatt gggcnagcaa cccnagacat gtcccaaaga
aaatagggnc nttttcagtt 1560ccagtccatc cnttacaaca tgcatccggg aagaagttca
agnatggaga ctaatgttaa 1620ttcggttatt ggtgatcctt cttngaaaag gctggttgta
cgaagagcgt ccttctgtat 1680attccacttt ctttcccaat ctggaaagag cagagagaat
gggcatagat ccttcaaaag 1740gagttccaaa ctgggcgtgg cagacaaatg gccaggttaa
tgccacccca gtaccaccgt 1800tctctactgc agcatcatca ggattctcaa tttcagctac
ttttccatca actgccatct 1860ttccaacaaa atccatgaac ccaattcccc agagcttctg
tttcacttca cacagcacac 1920caggtagcaa tgcacctcaa ttctattacg aggtcaagtc
ctcgcaggca ccatcccagc 1980ctctatcttg taatacaagt ataaatggta gcccaccaca
caagttctga agttcaattc 2040tcaaaacgac agttaaaact tttttttttt tttttcctgt
ttgcatgatt tagggatcgg 2100tacaatgttg ttgctcatgg tatgtttgta tgtgatgaaa
agattttttt cttcagagag 2160aaagtgaaaa gaaaaaatgc atgatgtgtt tta
2193561911DNAGlycine maxmodified_base(1142)a, c, g,
t, unknown or other 56atgagagaga taatgtttat atattccatc atctgttccg
tttggatcct ctcacctctc 60tctctctctc tctctctggt gccatggaat ccggtagtgc
ccgatgttta tattctctct 120ggttctgaaa tcatcgccga ggaaataaca aatgcagcct
ccaaacctcg cgaagcttcc 180ttcacacact tccttctatt ccttgttcgt cgaacaagct
ctttaacatt ccatcaccac 240aacttcctac ctacaccttc cgatattgca tcttcaactg
tttggttaca tttcacacgt 300aataattatt gtttctttcg attggatcgg tcggaaccat
cgctcgaaga gaatctccgg 360agacgtagaa gcaatatcag tttactgtat gtattggttc
ggattaataa taataacgaa 420aaaatagaaa gaaaatcaga gttgaaaata gccagaagaa
gattaagcgc gatgttggat 480cttaatctga atgccgagtc gactcagaac aacgagtcgc
tggtgctgtt ggacaagttt 540cccgaagctt cgttgggaac ttcgaattcc tccgtcgtga
atgcggaggg atcgagcaac 600gaggactcgt gctccacacg cgccggcgac gtgttcgcct
tcagtttcgg aatccttaag 660gtggaaggcg cgaacgaagt cgtcgccacg gcgacgaagg
agctgtttcc ggtgagctcg 720gagaattggc aggggcagag ttcgacgtcg tcgtctcagg
cgaggaagaa tttaatggat 780ctcccgctgg atcatcaaaa cggtgaggtg aaggtggttc
aggttcagcc acagcctcag 840gtgaagaaga gtaggagagg tccaaggtct cggagctctc
agtacagagg agtcactttc 900tacagaagga ccggaagatg ggaatcgcat atctgggatt
gcgggaagca agtctatttg 960ggtggatttg acaccgctca tattgctgct agggcctatg
atcgaactgc tattaagttc 1020aggggacttg atgctgatat caattttgat ctcgttgatt
atgaggagga tctaaaacag 1080atgaagaatc tttcaagcag gagttcgtgc acatacttcg
ccgccacagt accggttctc 1140angggcagtt cgaaataccn gggatacact tcacaagtgg
ccttgggaac tcgatgggna 1200ttcctggcag aagctataca ggcacttcag tgcataaana
agntgtccta cttnaccatt 1260nttgnacgna gaacngagct tcatcctgga naggtagcag
gcgtttcang caagagnagg 1320tnccctattg agccagaatn gggaggagag aaccggagtn
tnaagaagng gcntccggcc 1380tggnctcaat tgggcnagca acccnagaca tgtcccaaag
aaaatagggn cnttttcagt 1440tccagtccat ccnttacaac atgcatccgg gaagaagttc
aagnatggag actaatgtta 1500attcggttat tggtgatcct tcttngaaaa ggctggttgt
acgaagagcg tccttctgta 1560tattccactt tctttcccaa tctggaaaga gcagagagaa
tgggcataga tccttcaaaa 1620ggagttccaa actgggcgtg gcagacaaat ggccaggtta
atgccacccc agtaccaccg 1680ttctctactg cagcatcatc aggattctca atttcagcta
cttttccatc aactgccatc 1740tttccaacaa aatccatgaa cccaattccc cagagcttct
gtttcacttc acacagcaca 1800ccaggtagca atgcacctca attctattac gaggtcaagt
cctcgcaggc accatcccag 1860cctctatctt gtaatacaag tataaatggt agcccaccac
acaagttctg a 191157636PRTGlycine maxmisc_feature(381)Xaa is
any amino acid 57Met Arg Glu Ile Met Phe Ile Tyr Ser Ile Ile Cys Ser Val
Trp Ile1 5 10 15Leu Ser
Pro Leu Ser Leu Ser Leu Ser Leu Val Pro Trp Asn Pro Val 20
25 30Val Pro Asp Val Tyr Ile Leu Ser Gly
Ser Glu Ile Ile Ala Glu Glu 35 40
45Ile Thr Asn Ala Ala Ser Lys Pro Arg Glu Ala Ser Phe Thr His Phe 50
55 60Leu Leu Phe Leu Val Arg Arg Thr Ser
Ser Leu Thr Phe His His His65 70 75
80Asn Phe Leu Pro Thr Pro Ser Asp Ile Ala Ser Ser Thr Val
Trp Leu 85 90 95His Phe
Thr Arg Asn Asn Tyr Cys Phe Phe Arg Leu Asp Arg Ser Glu 100
105 110Pro Ser Leu Glu Glu Asn Leu Arg Arg
Arg Arg Ser Asn Ile Ser Leu 115 120
125Leu Tyr Val Leu Val Arg Ile Asn Asn Asn Asn Glu Lys Ile Glu Arg
130 135 140Lys Ser Glu Leu Lys Ile Ala
Arg Arg Arg Leu Ser Ala Met Leu Asp145 150
155 160Leu Asn Leu Asn Ala Glu Ser Thr Gln Asn Asn Glu
Ser Leu Val Leu 165 170
175Leu Asp Lys Phe Pro Glu Ala Ser Leu Gly Thr Ser Asn Ser Ser Val
180 185 190Val Asn Ala Glu Gly Ser
Ser Asn Glu Asp Ser Cys Ser Thr Arg Ala 195 200
205Gly Asp Val Phe Ala Phe Ser Phe Gly Ile Leu Lys Val Glu
Gly Ala 210 215 220Asn Glu Val Val Ala
Thr Ala Thr Lys Glu Leu Phe Pro Val Ser Ser225 230
235 240Glu Asn Trp Gln Gly Gln Ser Ser Thr Ser
Ser Ser Gln Ala Arg Lys 245 250
255Asn Leu Met Asp Leu Pro Leu Asp His Gln Asn Gly Glu Val Lys Val
260 265 270Val Gln Val Gln Pro
Gln Pro Gln Val Lys Lys Ser Arg Arg Gly Pro 275
280 285Arg Ser Arg Ser Ser Gln Tyr Arg Gly Val Thr Phe
Tyr Arg Arg Thr 290 295 300Gly Arg Trp
Glu Ser His Ile Trp Asp Cys Gly Lys Gln Val Tyr Leu305
310 315 320Gly Gly Phe Asp Thr Ala His
Ile Ala Ala Arg Ala Tyr Asp Arg Thr 325
330 335Ala Ile Lys Phe Arg Gly Leu Asp Ala Asp Ile Asn
Phe Asp Leu Val 340 345 350Asp
Tyr Glu Glu Asp Leu Lys Gln Met Lys Asn Leu Ser Ser Arg Ser 355
360 365Ser Cys Thr Tyr Phe Ala Ala Thr Val
Pro Val Leu Xaa Gly Ser Ser 370 375
380Lys Tyr Xaa Gly Tyr Thr Ser Gln Val Ala Leu Gly Thr Arg Trp Xaa385
390 395 400Phe Leu Ala Glu
Ala Ile Gln Ala Leu Gln Cys Ile Xaa Lys Xaa Ser 405
410 415Tyr Xaa Thr Ile Xaa Xaa Arg Arg Thr Glu
Leu His Pro Gly Xaa Val 420 425
430Ala Gly Val Ser Xaa Lys Xaa Arg Xaa Pro Ile Glu Pro Glu Xaa Gly
435 440 445Gly Glu Asn Arg Ser Xaa Lys
Lys Xaa Xaa Pro Ala Trp Xaa Gln Leu 450 455
460Gly Xaa Gln Pro Xaa Thr Cys Pro Lys Glu Asn Arg Xaa Xaa Phe
Ser465 470 475 480Ser Ser
Pro Ser Xaa Thr Thr Cys Ile Arg Glu Glu Val Gln Xaa Trp
485 490 495Arg Leu Met Leu Ile Arg Leu
Leu Val Ile Leu Leu Xaa Lys Gly Trp 500 505
510Leu Tyr Glu Glu Arg Pro Ser Val Tyr Ser Thr Phe Phe Pro
Asn Leu 515 520 525Glu Arg Ala Glu
Arg Met Gly Ile Asp Pro Ser Lys Gly Val Pro Asn 530
535 540Trp Ala Trp Gln Thr Asn Gly Gln Val Asn Ala Thr
Pro Val Pro Pro545 550 555
560Phe Ser Thr Ala Ala Ser Ser Gly Phe Ser Ile Ser Ala Thr Phe Pro
565 570 575Ser Thr Ala Ile Phe
Pro Thr Lys Ser Met Asn Pro Ile Pro Gln Ser 580
585 590Phe Cys Phe Thr Ser His Ser Thr Pro Gly Ser Asn
Ala Pro Gln Phe 595 600 605Tyr Tyr
Glu Val Lys Ser Ser Gln Ala Pro Ser Gln Pro Leu Ser Cys 610
615 620Asn Thr Ser Ile Asn Gly Ser Pro Pro His Lys
Phe625 630 63558831DNAPisum sativum
58cgcaattttt tgtgaagctg agggaggatt ggattttaca cctattcaaa agtcattcaa
60agtttgtccc tccattcaag gatgaatgta gatttttcaa gcatcaaaca caagaatcac
120tagcataaca tgctttgaaa cccacacact taaattaatg ttaggaatat caaatccaat
180ataaaatcat agttgtcaat tacatactca atcaagtccc tttcttttac ccaataaaca
240tcaacatatt gcttcttcca ttaagcatat aaacatcaaa gtctaaaact agcaaaatgt
300tgtttttagg atgacacatt tcatacatag tttaaaagat acttgattcg attacaaaaa
360gaaattacca atagtttagc acaaagtcta aagcataatt aaagcatcac atgtgcagat
420ttatgaaaaa aagattaaga ttgccccttt catcacgggt cgaataatag cactacttgt
480cactacatgt taaaaaaatg tcctctagta catcaaactt tttccattga ttccccttat
540ccatgaaaaa aataaacaaa ttcttaagac acaaaaaaat ggccccacat ccttttttct
600ggcctagttt gtttgaattc attctaactc ttgaatatgt aacgaggccc actaaaaatc
660aatcaatgat ttaacataaa aaatgaatag tttaattcca atttgctgca acatggtccg
720tgaatatgac tcacgagaaa gatatatcaa aatatcaaaa tttcatagtt tttttcacca
780tataaacctc atcactcatt ctattttttt aagtgcaaag cttcatagtt a
831
User Contributions:
Comment about this patent or add new information about this topic: