Patents - stay tuned to the technology

Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees

Patent application title: SUGAR AND LIPID METABOLISM REGULATORS IN PLANTS IV

Inventors:  Volker Mittendorf (Hillsborough, NC, US)  Volker Mittendorf (Hillsborough, NC, US)  Heiko A. Haertel (Berlin, DE)  Heiko A. Haertel (Berlin, DE)  Joerg Bauer (Limburgerhof, DE)  Oliver Oswald (Ludwigshafen, DE)
Assignees:  BASF Plant Science GmbH
IPC8 Class: AC12N1582FI
USPC Class: 800281
Class name: Multicellular living organisms and unmodified parts thereof and related processes method of introducing a polynucleotide molecule into or rearrangement of genetic material within a plant or plant part the polynucleotide alters fat, fatty oil, ester-type wax, or fatty acid production in the plant
Publication date: 2012-08-30
Patent application number: 20120222168



Abstract:

Isolated nucleic acids and proteins associated with lipid and sugar metabolism regulation are provided. In particular, lipid metabolism proteins (LMP) and encoding nucleic acids originating from Arabidopsis thaliana, Brassica napus, and Physcomitrella patens are provided. The nucleic acids and proteins are used in methods of producing transgenic plants and modulating levels of seed storage compounds. Preferably, the seed storage compounds are lipids, fatty acids, starches, or seed storage proteins.

Claims:

1. An isolated lipid metabolism protein (LMP) nucleic acid comprising a polynucleotide sequence encoding a polypeptide that functions as a modulator of a seed storage compound in a plant, wherein the polynucleotide sequence is selected from the group consisting of: a) a polynucleotide sequence as defined in SEQ ID NO: 79; b) a polynucleotide sequence encoding a polypeptide as defined in SEQ ID NO: 80; c) a polynucleotide sequence comprising at least 60 consecutive nucleotides of a) or b) above; d) a polynucleotide sequence encoding a polypeptide having at least 70% sequence identity with the polynucleotide sequence of a) or b) above; e) a polynucleotide sequence encoding a polypeptide having at least 70% identity to the amino acid sequence of SEQ ID NO: 80; f) a polynucleotide sequence complementary to the polynucleotide sequence of a) or b) above; and g) a polynucleotide sequence that hybridizes to the complement of the full-length nucleic acid of a) or b) above under stringent conditions of 6.times. sodium chloride/sodium citrate (SSC) at 65.degree. C. followed by one or more washes in 0.2.times.SSC at 50 to 65.degree. C.

2. The isolated nucleic acid of claim 1, wherein the nucleic acid comprises the polynucleotide sequence of SEQ ID NO: 79 or a polynucleotide sequence which encodes the polypeptide sequence of SEQ ID NO: 80.

3. The isolated nucleic acid of claim 1, wherein the polynucleotide sequence encodes a polypeptide having at least 90% sequence identity with the sequence of SEQ ID NO: 80.

4. The isolated nucleic acid of claim 1, wherein the polynucleotide sequence encodes a polypeptide having at least 95% sequence identity with the sequence of SEQ ID NO: 80.

5. An expression vector comprising the isolated nucleic acid of claim 1.

6. The expression vector of claim 5, wherein the nucleic acid is operatively linked to a heterologous promoter selected from the group consisting of a seed-specific promoter, a root-specific promoter, and a non-tissue-specific promoter.

7. A method of producing a transgenic plant having a modified level of a seed storage compound as compared to a corresponding wild type variety of the plant comprising, transforming a plant cell with an expression vector comprising a lipid metabolism protein (LMP) nucleic acid and generating from the plant cell the transgenic plant, wherein the nucleic acid encodes a polypeptide that functions as a modulator of a seed storage compound in the plant, and wherein the nucleic acid comprises the LMP nucleic acid of claim 1.

8. The method of claim 7, wherein the LMP nucleic acid comprises the polynucleotide sequence of SEQ ID NO: 79.

9. The method of claim 7, wherein the LMP nucleic acid comprises a polynucleotide sequence encoding the polypeptide of SEQ ID NO: 80.

10. The method of claim 7, wherein the level of a seed storage compound is increased in the transgenic plant as compared to a corresponding wild type plant.

11. The method of claim 7, wherein the LMP nucleic acid is operatively linked to a heterologous promoter selected from the group consisting of a seed-specific promoter, a root-specific promoter, and a non-tissue-specific promoter.

12. The method of claim 7, wherein the modified level of the seed storage compound is due to the overexpression or down-regulation of the LMP nucleic acid.

13. The method of claim 7, wherein the LMP nucleic acid comprises a polynucleotide having at least 90% sequence identity to the nucleic acid of SEQ ID NO: 79 or a polynucleotide sequence encoding a polypeptide having at least 90% identity to the amino acid sequence of SEQ ID NO: 80.

14. The method of claim 7, wherein the nucleic acid encodes a polypeptide that contains a lipid metabolism domain.

15. The method of claim 14, wherein the nucleic acid encodes a polypeptide comprising the sequence of SEQ ID NO: 80.

16. A transgenic plant made by the method of claim 7, wherein expression of the LMP nucleic acid in the plant results in a modified level of a seed storage compound in the plant as compared to a corresponding wild type variety of the plant.

17. A transgenic plant or part thereof comprising the isolated LMP nucleic acid of claim 1.

18. The transgenic plant of claim 17, wherein the plant is a dicotyledonous plant.

19. The transgenic plant of claim 17, wherein the plant is a monocotyledonous plant.

20. The transgenic plant of claim 17, wherein the plant is an oil producing species.

21. The transgenic plant of claim 17, wherein the plant is selected from the group consisting of rapeseed, canola, linseed, soybean, sunflower, maize, oat, rye, barley, wheat, sugarbeet, tagetes, cotton, oil palm, coconut palm, flax, castor, and peanut.

22. The transgenic plant of claim 17, wherein the level of the seed storage compound is increased in the transgenic plant as compared to a corresponding wild type variety of the plant.

23. The transgenic plant of claim 17, wherein the seed storage compound is selected from the group consisting of a lipid, a fatty acid, a starch, and a seed storage protein.

24. A seed produced by the transgenic plant of claim 17, wherein the plant expresses the LMP polypeptide and wherein the plant is true breeding for a modified level of the seed storage compound as compared to a corresponding wild type variety of the plant.

25. The transgenic plant or part thereof of claim 17, wherein the part thereof comprises a seed.

Description:

CROSS REFERENCE TO RELATED APPLICATIONS

[0001] This application is a divisional application of U.S. application Ser. No. 12/943,078 filed Nov. 10, 2010, which is a divisional application of U.S. application Ser. No. 10/523,503 filed Jul. 13, 2005, which is a national stage application (under 35 U.S.C. §371) of PCT/US2003/24364 filed Aug. 4, 2003, which claims benefit U.S. Provisional Patent Application Ser. No. 60/400,803 filed Aug. 2, 2002. The entire contents of each of these applications are hereby incorporated by reference herein.

SUBMISSION OF SEQUENCE LISTING

[0002] The Sequence Listing associated with this application is filed in electronic format via EFS-Web and hereby incorporated by reference into the specification in its entirety. The name of the text file containing the Sequence Listing is Sequence_List--13987--00179_US. The size of the text file is 207 KB, and the text file was created on Apr. 25, 2012.

BACKGROUND OF THE INVENTION

[0003] 1. Field of the Invention

[0004] This invention relates generally to nucleic acid sequences encoding proteins that are related to the presence of seed storage compounds in plants. More specifically, the present invention relates to nucleic acid sequences encoding sugar and lipid metabolism regulator proteins and the use of these sequences in transgenic plants. The invention further relates to methods of applying these novel plant polypeptides to the identification and stimulation of plant growth and/or to the increase of yield of seed storage compounds.

[0005] 2. Background Art

[0006] The study and genetic manipulation of plants has a long history that began even before the framed studies of Gregor Mendel. In perfecting this science, scientists have accomplished modification of particular traits in plants ranging from potato tubers having increased starch content to oilseed plants such as canola and sunflower having increased or altered fatty acid content. With the increased consumption and use of plant oils, the modification of seed oil content and seed oil levels has become increasingly widespread (e.g. Topfer et al., 1995, Science 268:681-686). Manipulation of biosynthetic pathways in transgenic plants provides a number of opportunities for molecular biologists and plant biochemists to affect plant metabolism giving rise to the production of specific higher-value products. The seed oil production or composition has been altered in numerous traditional oilseed plants such as soybean (U.S. Pat. No. 5,955,650), canola (U.S. Pat. No. 5,955,650), sunflower (U.S. Pat. No. 6,084,164), rapeseed (Topfer et al., 1995, Science 268:681-686), and non-traditional oil seed plants such as tobacco (Cahoon et al., 1992, Proc. Natl. Acad. Sci. USA 89:11184-11188).

[0007] Plant seed oils comprise both neutral and polar lipids (See Table 1). The neutral lipids contain primarily triacylglycerol, which is the main storage lipid that accumulates in oil bodies in seeds. The polar lipids are mainly found in the various membranes of the seed cells, e.g. the endoplasmic reticulum, microsomal membranes, and the cell membrane. The neutral and polar lipids contain several common fatty acids (See Table 2) and a range of less common fatty acids. The fatty acid composition of membrane lipids is highly regulated and only a select number of fatty acids are found in membrane lipids. On the other hand, a large number of unusual fatty acids can be incorporated into the neutral storage lipids in seeds of many plant species (Van de Loo F. J. et al., 1993, Unusual Fatty Acids in Lipid Metabolism in Plants pp. 91-126, editor T S Moore Jr. CRC Press; Millar et al., 2000, Trends Plant Sci. 5:95-101).

TABLE-US-00001 TABLE 1 Plant Lipid Classes Neutral Lipids Triacylglycerol (TAG) Diacylglycerol (DAG) Monoacylglycerol (MAG) Polar Lipids Monogalactosyldiacylglycerol (MGDG) Digalactosyldiacylglycerol (DGDG) Phosphatidylglycerol (PG) Phosphatidylcholine (PC) Phosphatidylethanolamine (PE) Phosphatidylinositol (PI) Phosphatidylserine (PS) Sulfoquinovosyldiacylglycerol

TABLE-US-00002 TABLE 2 Common Plant Fatty Acids 16:0 Palmitic acid 16:1 Palmitoleic acid 16:3 Palmitolenic acid 18:0 Stearic acid 18:1 Oleic acid 18:2 Linoleic acid 18:3 Linolenic acid γ-18:3 Gamma-linolenic acid* 20:0 Arachidic acid 20:1 Eicosenoic acid 22:6 Docosahexanoic acid (DHA)* 20:2 Eicosadienoic acid 20:4 Arachidonic acid (AA)* 20:5 Eicosapentaenoic acid (EPA)* 22:1 Erucic acid

[0008] In Table 2, the fatty acids denoted with an asterisk do not normally occur in plant seed oils, but their production in transgenic plant seed oil is of importance in plant biotechnology.

[0009] Lipids are synthesized from fatty acids, and their synthesis may be divided into two parts: the prokaryotic pathway and the eukaryotic pathway (Browse et al., 1986, Biochemical J. 235:25-31; Ohlrogge & Browse, 1995, Plant Cell 7:957-970). The prokaryotic pathway is located in plastids, the primary site of fatty acid biosynthesis. Fatty acid synthesis begins with the conversion of acetyl-CoA to malonyl-CoA by acetyl-CoA carboxylase (ACCase). Malonyl-CoA is converted to malonyl-acyl carrier protein (ACP) by the malonyl-CoA:ACP transacylase. The enzyme beta-keto-acyl-ACP-synthase III (KAS III) catalyzes a condensation reaction in which the acyl group from acetyl-CoA is transferred to malonyl-ACP to form 3-ketobutyryl-ACP. In a subsequent series of condensation, reduction and dehydration reactions the nascent fatty acid chain on the ACP cofactor is elongated by the step-by-step addition (condensation) of two carbon atoms donated by malonyl-ACP until a 16-carbon or 18-carbon saturated fatty acid chain is formed. The plastidial delta-9 acyl-ACP desaturase introduces the first unsaturated double bond into the fatty acid. Thioesterases cleave the fatty acids from the ACP cofactor, and free fatty acids are exported to the cytoplasm where they participate as fatty acyl-CoA esters in the eukaryotic pathway. In the eukaryotic pathway, the fatty acids are esterified by glycerol-3-phosphate acyltransferase and lysophosphatidic acid acyltransferase to the sn-1 and sn-2 positions of glycerol-3-phosphate, respectively, to yield phosphatidic acid (PA). The PA is the precursor for other polar and neutral lipids, the latter being formed in the Kennedy pathway (Voelker, 1996, Genetic Engineering ed.:Setlow 18:111-113; Shanklin & Cahoon, 1998, Annu. Rev. Plant Physiol. Plant Mol. Biol. 49:611-641; Frentzen, 1998, Lipids 100:161-166; Millar et al., 2000, Trends Plant Sci. 5:95-101).

[0010] Storage lipids in seeds are synthesized from carbohydrate-derived precursors. Plants have a complete glycolytic pathway in the cytosol (Plaxton, 1996, Annu. Rev. Plant Physiol. Plant Mol. Biol. 47:185-214), and it has been shown that a complete pathway also exists in the plastids of rapeseeds (Kang & Rawsthorne, 1994, Plant J. 6:795-805). Sucrose is the primary source of carbon and energy, transported from the leaves into the developing seeds. During the storage phase of seeds, sucrose is converted in the cytosol to provide the metabolic precursors glucose-6-phosphate and pyruvate. These are transported into the plastids and converted into acetyl-CoA that serves as the primary precursor for the synthesis of fatty acids. Acetyl-CoA in the plastids is the central precursor for lipid biosynthesis. Acetyl-CoA can be formed in the plastids by different reactions, and the exact contribution of each reaction is still being debated (Ohlrogge & Browse, 1995, Plant Cell 7:957-970). It is accepted, however, that a large part of the acetyl-CoA is derived from glucose-6-phospate and pyruvate that are imported from the cytoplasm into the plastids. Sucrose is produced in the source organs (leaves, or anywhere that photosynthesis occurs) and is transported to the developing seeds that are also termed sink organs. In the developing seeds, the sucrose is the precursor for all the storage compounds, i.e. starch, lipids and partly the seed storage proteins. Therefore, it is clear that carbohydrate metabolism in which sucrose plays a central role is very important to the accumulation of seed storage compounds.

[0011] Although lipid and fatty acid content of seed oil can be modified by the traditional methods of plant breeding, the advent of recombinant DNA technology has allowed for easier manipulation of the seed oil content of a plant, and in some cases, has allowed for the alteration of seed oils in ways that could not be accomplished by breeding alone (See, e.g., Topfer et al. 1995, Science 268:681-686). For example, introduction of a Δ12-hydroxylase nucleic acid sequence into transgenic tobacco resulted in the introduction of a novel fatty acid, ricinoleic acid, into the tobacco seed oil (Van de Loo et al., 1995, Proc. Natl. Acad. Sci. USA 92:6743-6747). Tobacco plants have also been engineered to produce low levels of petroselinic acid by the introduction and expression of an acyl-ACP desaturase from coriander (Cahoon et al., 1992, Proc. Natl. Acad. Sci. USA 89:11184-11188).

[0012] The modification of seed oil content in plants has significant medical, nutritional, and economic ramifications. With regard to the medical ramifications, the long chain fatty acids (C18 and longer) found in many seed oils have been linked to reductions in hypercholesterolemia and other clinical disorders related to coronary heart disease (Brenner, 1976, Adv. Exp. Med. Biol. 83:85-101). Therefore, consumption of a plant having increased levels of these types of fatty acids may reduce the risk of heart disease. Enhanced levels of seed oil content also increase large-scale production of seed oils and thereby reduce the cost of these oils.

[0013] In order to increase or alter the levels of compounds such as seed oils in plants, nucleic acid sequences and proteins regulating lipid and fatty acid metabolism must be identified. As mentioned earlier, several desaturase nucleic acids such as the Δ6-desaturase nucleic acid, Δ12-desaturase nucleic acid and acyl-ACP desaturase nucleic acid have been cloned and demonstrated to encode enzymes required for fatty acid synthesis in various plant species. Oleosin nucleic acid sequences from such different species as Brassica, soybean, carrot, pine, and Arabidopsis thaliana have also been cloned and determined to encode proteins associated with the phospholipid monolayer membrane of oil bodies in those plants.

[0014] It has also been determined that two phytohormones, gibberellic acid (GA) and absisic acid (ABA), are involved in overall regulatory processes in seed development (e.g. Ritchie & Gilroy, 1998, Plant Physiol. 116:765-776; Arenas-Huertero et al., 2000, Genes Dev. 14:2085-2096). Both the GA and ABA pathways are affected by okadaic acid, a protein phosphatase inhibitor (Kuo et al., 1996, Plant Cell. 8:259-269). The regulation of protein phosphorylation by kinases and phosphatases is accepted as a universal mechanism of cellular control (Cohen, 1992, Trends Biochem. Sci. 17:408-413). Likewise, the plant hormones ethylene (e.g. Zhou et al., 1998, Proc. Natl. Acad. Sci. USA 95:10294-10299; Beaudoin et al., 2000, Plant Cell 2000:1103-1115), and auxin (e.g. Colon-Caimona et al., 2000, Plant Physiol. 124:1728-1738) are involved in controlling plant development as well.

[0015] Although several compounds are known that generally affect plant and seed development, there is a clear need to specifically identify factors that are more specific for the developmental regulation of storage compound accumulation and to identify genes which have the capacity to confer altered or increased oil production to its host plant and to other plant species. This invention discloses a large number of nucleic acid sequences from Arabidopsis thaliana, Brassica napus, and the moss Physcomitrella patens. These nucleic acid sequences can be used to alter or increase the levels of seed storage compounds such as proteins, sugars and oils, in plants, including transgenic plants, such as rapeseed, canola, linseed, soybean, sunflower maize, oat, rye, barley, wheat, pepper, tagetes, cotton, oil palm, coconut palm, flax, castor and peanut, which are oilseed plants containing high amounts of lipid compounds.

SUMMARY OF THE INVENTION

[0016] The present invention provides novel isolated nucleic acid and amino acid sequences associated with the metabolism of seed storage compounds in plants.

[0017] The present invention also provides an isolated nucleic acid from Arabidopsis, Brassica, and Physcomitrella patens encoding a Lipid Metabolism Protein (LMP), or a portion thereof. These sequences may be used to modify or increase lipids and fatty acids, cofactors and enzymes in microorganisms and plants.

[0018] Arabidopsis plants are known to produce considerable amounts of fatty acids such as linoleic and linolenic acid (See, e.g., Table 2) and for their close similarity in many aspects (gene homology, etc.) to the oil crop plant Brassica. Therefore, nucleic acid molecules originating from a plant like Arabidopsis thaliana and Brassica napus are especially suited to modify the lipid and fatty acid metabolism in a host, especially in microorganisms and plants. Furthermore, nucleic acids from the plants Arabidopsis thaliana and Brassica napus can be used to identify those DNA sequences and enzymes in other species which are useful to modify the biosynthesis of precursor molecules of fatty acids in the respective organisms.

[0019] The present invention further provides an isolated nucleic acid comprising a fragment of at least 15 nucleotides of a nucleic acid from a plant (Arabidopsis thaliana, Brassica napus, or Physcomitrella patens) encoding a Lipid Metabolism Protein (LMP), or a portion thereof.

[0020] Also provided by the present invention are polypeptides encoded by the nucleic acids, heterologous polypeptides comprising polypeptides encoded by the nucleic acids, and antibodies to those polypeptides.

[0021] Additionally, the present invention relates to and provides the use of LMP nucleic acids in the production of transgenic plants having a modified level of a seed storage compound. A method of producing a transgenic plant with a modified level of a seed storage compound includes the steps of transforming a plant cell with an expression vector comprising a LMP nucleic acid, and generating a plant with a modified level of the seed storage compound from the plant cell. In a preferred embodiment, the plant is an oil producing species selected from the group consisting of rapeseed, canola, linseed, soybean, sunflower, maize, oat, rye, barley, wheat, pepper, tagetes, cotton, oil palm, coconut palm, flax, castor, and peanut, for example.

[0022] According to the present invention, the compositions and methods described herein can be used to increase or decrease the level of an LMP in a transgenic plant comprising increasing or decreasing the expression of the LMP nucleic acid in the plant. Increased or decreased expression of the LMP nucleic acid can be achieved through in vivo mutagenesis of the LMP nucleic acid. The present invention can also be used to increase or decrease the level of a lipid in a seed oil, to increase or decrease the level of a fatty acid in a seed oil, or to increase or decrease the level of a starch in a seed or plant.

[0023] Also included herein is a seed produced by a transgenic plant transformed by a LMP DNA sequence, wherein the seed contains the LMP DNA sequence and wherein the plant is true breeding for a modified level of a seed storage compound. The present invention additionally includes a seed oil produced by the aforementioned seed.

[0024] Further provided by the present invention are vectors comprising the nucleic acids, host cells containing the vectors, and descendent plant materials produced by transforming a plant cell with the nucleic acids and/or vectors.

[0025] According to the present invention, the compounds, compositions, and methods described herein can be used to increase or decrease the level of a lipid in a seed oil, or to increase or decrease the level of a fatty acid in a seed oil, or to increase or decrease the level of a starch or other carbohydrate in a seed or plant. A method of producing a higher or lower than normal or typical level of storage compound in a transgenic plant, comprises expressing a LMP nucleic acid from Arabidopsis thaliana, Brassica napus, and Physcomitrella patens in the transgenic plant, wherein the transgenic plant is Arabidopsis thaliana and Brassica napus, or a species different from Arabidopsis thaliana and Brassica napus. Also included herein are compositions and methods of the modification of the efficiency of production of a seed storage compound. As used herein, the phrase "Arabidopsis thaliana and Brassica napus" means Arabidopsis thaliana and/or Brassica napus.

[0026] Accordingly, the present invention provides novel isolated LMP nucleic acids and isolated LMP amino acid sequences from Arabidopsis thaliana, Brassica napus, and Physcomitrella patens, as well as active fragments, analogs and orthologs thereof.

[0027] The present invention also provides transgenic plants having modified levels of seed storage compounds, and in particular, modified levels of a lipid, a fatty acid, or a sugar.

[0028] The polynucleotides and polypeptides of the present invention, including agonists and/or fragments thereof, also have uses that include modulating plant growth, and potentially plant yield, preferably increasing plant growth under adverse conditions (drought, cold, light, UV). In addition, antagonists of the present invention may have uses that include modulating plant growth and/or yield, preferably through increasing plant growth and yield. In yet another embodiment, overexpression of the polypeptides of the present invention using a constitutive promoter (e.g., 35S or other promoters) may be useful for increasing plant yield under stress conditions (drought, light, cold, UV) by modulating light utilization efficiency.

[0029] The present invention also provides methods for producing such aforementioned transgenic plants. In another embodiment, the present invention provides seeds and seed oils from such aforementioned transgenic plants.

[0030] These and other embodiments, features, and advantages of the present invention will become apparent after a review of the following detailed description of the disclosed embodiments and the appended claims.

DETAILED DESCRIPTION OF THE INVENTION

[0031] The present invention may be understood more readily by reference to the following detailed description of the preferred embodiments of the invention and the Examples included therein.

[0032] Before the present compounds, compositions, and methods are disclosed and described, it is to be understood that this invention is not limited to specific nucleic acids, specific polypeptides, specific cell types, specific host cells, specific conditions, or specific methods, etc., as such may, of course, vary, and the numerous modifications and variations therein will be apparent to those skilled in the art. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting. As used in the specification and in the claims, "a" or "an" can mean one or more, depending upon the context in which it is used. Thus, for example, reference to "a cell" can mean that at least one cell can be utilized.

[0033] In accordance with the purpose(s) of this invention, as embodied and broadly described herein, this invention, in one aspect, provides an isolated nucleic acid from a plant (Arabidopsis thaliana, Brassica napus, and Physcomitrella patens) encoding a Lipid Metabolism Protein (LMP), or a portion thereof. As used herein, the phrase "Arabidopsis thaliana, Brassica napus, and Physcomitrella patens" means Arabidopsis thaliana and/or Brassica napus and/or Physcomitrella patens.

[0034] One aspect of the invention pertains to isolated nucleic acid molecules that encode LMP polypeptides or biologically active portions thereof, as well as nucleic acid fragments sufficient for use as hybridization probes or primers for the identification or amplification of an LMP-encoding nucleic acid (e.g., LMP DNA). As used herein, the terms "nucleic acid molecule" and "polynucleotide sequence" are used interchangeably and are intended to include DNA molecules (e.g., cDNA or genomic DNA) and RNA molecules (e.g., mRNA) and analogs of the DNA or RNA generated using nucleotide analogs. This term also encompasses untranslated sequence located at both the 3' and 5' ends of the coding region of a gene: at least about 1000 nucleotides of sequence upstream from the 5' end of the coding region and at least about 200 nucleotides of sequence downstream from the 3' end of the coding region of the gene. The nucleic acid molecule can be single-stranded or double-stranded, but preferably is double-stranded DNA. An "isolated" nucleic acid molecule is one which is substantially separated from other nucleic acid molecules which are present in the natural source of the nucleic acid. Preferably, an "isolated" nucleic acid is substantially free of sequences which naturally flank the nucleic acid (i.e., sequences located at the 5' and 3' ends of the nucleic acid) in the genomic DNA of the organism from which the nucleic acid is derived. For example, in various embodiments, the isolated LMP nucleic acid molecule can contain less than about 5 kb, 4 kb, 3 kb, 2 kb, 1 kb, 0.5 kb, or 0.1 kb of nucleotide sequences which naturally flank the nucleic acid molecule in genomic DNA of the cell from which the nucleic acid is derived (e.g., an Arabidopsis thaliana or Brassica napus cell). Moreover, an "isolated" nucleic acid molecule, such as a cDNA molecule, can be substantially free of other cellular material, or culture medium when produced by recombinant techniques, or chemical precursors, or other chemicals when chemically synthesized.

[0035] A nucleic acid molecule of the present invention, e.g., a nucleic acid molecule having a polynucleotide sequence of Appendix A (i.e. the polynucleotide sequence of SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7, SEQ ID NO:9, SEQ ID NO:11, SEQ ID NO:13, SEQ ID NO:15, SEQ ID NO:17, SEQ ID NO:19, SEQ ID NO:21, SEQ ID NO:23, SEQ ID NO:25, SEQ ID NO:27, SEQ ID NO:29, SEQ ID NO:31, SEQ ID NO:33, SEQ ID NO:35, SEQ ID NO:37, SEQ ID NO:39, SEQ ID NO:41, SEQ ID NO:43, SEQ ID NO:45, SEQ ID NO:47, SEQ ID NO:51, SEQ ID NO:53, SEQ ID NO:55, SEQ ID NO:57, SEQ ID NO:59, SEQ ID NO:61, SEQ ID NO:63, SEQ ID NO:65, SEQ ID NO:67, SEQ ID NO:69, SEQ ID NO:71, SEQ ID NO:73, SEQ ID NO:75, SEQ ID NO:77, SEQ ID NO:79, or SEQ ID NO:81, or a portion thereof, can be isolated using standard molecular biology techniques and the sequence information provided herein. For example, an Arabidopsis thaliana, Brassica napus, or Physcomitrella patens LMP cDNA can be isolated from an Arabidopsis thaliana, Brassica napus, or Physcomitrella patens library using all or portion of one of the polynucleotide sequences of Appendix A as a hybridization probe and standard hybridization techniques (e.g., as described in Sambrook et al., 1989, Molecular Cloning: A Laboratory Manual. 2nd, ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.). Moreover, a nucleic acid molecule encompassing all or a portion of one of the polynucleotide sequences of Appendix A can be isolated by the polymerase chain reaction using oligonucleotide primers designed based upon this sequence (e.g., a nucleic acid molecule encompassing all or a portion of one of the sequences of Appendix A can be isolated by the polymerase chain reaction using oligonucleotide primers designed based upon this same sequence of Appendix A). For example, mRNA can be isolated from plant cells (e.g., by the guanidinium-thiocyanate extraction procedure of Chirgwin et al., 1979, Biochemistry 18:5294-5299) and cDNA can be prepared using reverse transcriptase (e.g., Moloney MLV reverse transcriptase, available from Gibco/BRL, Bethesda, Md.; or AMV reverse transcriptase, available from Seikagaku America, Inc., St. Petersburg, Fla.). Synthetic oligonucleotide primers for polymerase chain reaction amplification can be designed based upon one of the polynucleotide sequences shown in Appendix A. A nucleic acid of the invention can be amplified using cDNA or, alternatively, genomic DNA, as a template and appropriate oligonucleotide primers according to standard PCR amplification techniques. The nucleic acid so amplified can be cloned into an appropriate vector and characterized by DNA sequence analysis. Furthermore, oligonucleotides corresponding to a LMP nucleotide sequence can be prepared by standard synthetic techniques, e.g., using an automated DNA synthesizer.

[0036] In a preferred embodiment, an isolated nucleic acid of the invention comprises one of the polynucleotide sequences shown in Appendix A (i.e. SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7, SEQ ID NO:9, SEQ ID NO:11, SEQ ID NO:13, SEQ ID NO:15, SEQ ID NO:17, SEQ ID NO:19, SEQ ID NO:21, SEQ ID NO:23, SEQ ID NO:25, SEQ ID NO:27, SEQ ID NO:29, SEQ ID NO:31, SEQ ID NO:33, SEQ ID NO:35, SEQ ID NO:37, SEQ ID NO:39, SEQ ID NO:41, SEQ ID NO:43, SEQ ID NO:45, SEQ ID NO:47, SEQ ID NO:51, SEQ ID NO:53, SEQ ID NO:55, SEQ ID NO:57, SEQ ID NO:59, SEQ ID NO:61, SEQ ID NO:63, SEQ ID NO:65, SEQ ID NO:67, SEQ ID NO:69, SEQ ID NO:71, SEQ ID NO:73, SEQ ID NO:75, SEQ ID NO:77, SEQ ID NO:79, or SEQ ID NO:81). These polynucleotides of Appendix A correspond to the Arabidopsis thaliana, Brassica napus, and Physcomitrella patens LMP cDNAs of the invention. These cDNAs comprise sequences encoding LMPs (i.e., the "coding region" or open reading frame (ORF)), as well as 5' untranslated sequences and 3' untranslated sequences. Alternatively, the nucleic acid molecules can comprise only the coding region of any of the polynucleotide sequences described herein or can contain whole genomic fragments isolated from genomic DNA.

[0037] For the purposes of this application, it will be understood that each of the polynucleotide sequences set forth in Appendix A has an identifying entry number (e.g., Pk123). Each of these sequences may generally comprise three parts: a 5' upstream region, a coding region, and a downstream region. The particular polynucleotide sequences shown in Appendix A represent the coding region or open reading frame, and the putative functions of the encoded polypeptides are indicated in Table 3.

TABLE-US-00003 TABLE 3 Putative LMP Functions Sequence SEQ ID code Function NO: Pk123 Gibberellin-regulated protein 1 GASA3 precursor Pk197 Tyrosine aminotransferase 3 Pk136 D-hydroxy-fatty acid dehydrogenase 5 Pk156 Serine protease 7 Pk159 Nonspecific lipid-transfer protein 9 Pk179 Signal transduction protein 11 Pk202 Lipid transfer - like protein 13 Pk206 bZIP transcription factor 15 Pk207 Acyl-CoA dehydrogenase 17 Pk209 Pyruvate kinase 19 Pk215 Phosphatidylglycerotransferase 21 Pk239 Digalactosyldiacylglycerol 23 synthase Pk240 Phosphatidate cytidyltransferase 25 Pk241 AT Psbs protein 27 Pk242 Omega-6 fatty acid desaturase, 29 endoplasmic reticulum (FAD2) Bn011 Gibberellin 3-beta hydroxylase 31 with +4 G Bn077 Zinc finger DNA binding protein 33 Jb001 Gibberellin 20-oxidase 35 Jb002 Seed maturation protein 37 Jb003 Beta-VPE Vacuolar Processing Enzym 39 Jb005 Very-long-chain fatty acid 41 condensing enzyme CUT1 Jb007 Glucokinase 43 Jb009 Glutathione S-transferase TSI-1 45 Jb013 ABA-regulated gene 47 Jb017 Cysteine proteinase 51 Jb024 Pectinesterase-like protein 53 Jb027 Signal transduction protein 55 OO-1 Aldose reductase-like protein 57 OO-2 Dormancy related protein 59 OO-3 HSP associated protein like 61 OO-4 Poly (ADP-ribose) polymerase 63 OO-5 Transitional endoplasmic 65 reticulum ATPase OO-6 Beta coat like protein 67 OO-8 Protein disulfide-isomerase 69 OO-9 Signal transduction protein/ 71 Apoptosis inhibitor OO-10 Annexin 73 OO-11 Putative oxidoreductase 75 OO-12 Long chain alc dehydrogenase/ 77 oxidoreductase pp82 Transcription factor 79 Pk225 Amino-cyclopropane-carboxylic 81 acid oxidase

TABLE-US-00004 TABLE 4 Grouping of LMPs based on Functional protein domains Functional SEQ SEQ Domain category ID: Code: Functional domain position DNA-binding 1 Pk123 Zinc finger 66-86 proteins 29-71 15 Pk206 bZIP transcription factor (PFAM) 144-197 Leucine zipper 179-209 27 Pk241 DNA-binding domain 207-221 Histone H5 signature 57-71 33 Bn077 Zinc finger (BRCT; PARP) 64-104 Ethylene responsive element binding protein 79-99 63 OO-4 Zinc finger 760-805 Leucine zipper 114-117 73 OO-10 Zinc finger 220-230 Yeast DNA-binding domain 207-217 79 pp82 Myb DNA-binding domain 19-119 Kinases 43 Jb007 Glucokinase 173-206 45 Jb009 Deoxynucleoside kinase 99-139 19 Pk209 Pyruvate kinase (PFAM) 1-326 61 OO-3 Galactokinase 285-296 Signal 67 OO-6 Wnt-1 domain 607-655 Transduction WSC domain 527-548 71 OO-9 BIR repeat (inhibitor of apoptosis) 47-85 Wnt-1 domain 43-91 41 Jb005 Wnt-1 domain 23-71 47 Jb013 Wnt-1 domain 23-91 55 Jb027 Emp24/gp25L intracellular vesicle trafficking 2-204 Wnt-1 domain 135-183 11 Pk179 Wnt-1 domain 279-327 PDZ domain (Wnt signalling) 205-299 3 Pk197 Wnt-1 domain 300-348 Proteases 7 Pk156 Serine protease 171-191 Prolyl aminopeptidase 128-139 37 Jb002 Peptidase family M23/M37 404-444 39 Jb003 Cysteine protease 52-76 Peptidase C13 (PFAM) 10-367 51 Jb017 Cysteine protease C1 163-178 Peptidase C1 (PFAM) 145-361 65 OO-5 Peptidase family M41 343-387 620-664 AAA ATPase molecular chaperone (PFAM) 243-427 Lipid 5 Pk136 D-Hydroxy-fatty acid dehydrogenase 94-143 metabolism 9 Pk159 Lipid Transfer Protein LTP (PFAM) 29-117 13 Pk202 Lipid Transfer Protein LTP (PFAM) 38-103 17 Pk207 Acyl-CoA dehydrogenase 2-44 Iron-containing alcohol dehydrogenase 97-112 21 Pk215 CDP-alcohol phosphatidyltransferase (PFAM) 172-309 23 Pk239 Glycosyl (galactosyl) transferase (PFAM) 572-674 25 Pk240 Phosphatidate cytidyltransferase 343-370 29 Pk242 Fatty acid desaturase (PFAM) 32-376 Oxido- 31 Bn011 Iron Ascorbate oxidoreductase (PFAM) 43-343 reductases 35 Jb001 Respiratory chain NADH dehydrogenase 95-123 Iron Ascorbate oxidoreductase (PFAM) 54-369 53 Jb024 Multicopper oxidase 216-247 123-145 Copper-oxidase (PFAM) 154-306 57 OO-1 Aldo/keto reductase family (PFAM) 18-294 59 OO-2 Alcohol dehydrogenase (PFAM) 38-228 69 OO-8 Thioredoxin (PFAM) 22-250 75 OO-11 Alcohol dehydrogenase (PFAM) 50-234 77 OO-12 Zinc alcohol dehydrogenase(PFAM) 20-329 81 Pk225 Iron Ascorbate oxidoreductase (PFAM) 3-297

[0038] In another preferred embodiment, an isolated nucleic acid molecule of the present invention encodes a polypeptide that is able to participate in the metabolism of seed storage compounds such as lipids, starch, and seed storage proteins, and that contains a DNA-binding (or transcription factor) domain, a protein kinase domain, a signal transduction domain, a protease domain, a lipid metabolism domain, or an oxidoreductase domain. Examples of isolated nucleic acids that encode LMPs containing such domains can be found in Table 4. Examples of nucleic acids encoding LMPs containing a DNA-binding domain include those shown in SEQ ID NO:1, SEQ ID NO:15, SEQ ID NO:27, SEQ ID NO:33, SEQ ID NO:63, SEQ ID NO:73, and SEQ ID NO:79. Examples of nucleic acids encoding LMPs containing a protein kinase domain include those shown in SEQ ID NO:19, SEQ ID NO:43, SEQ ID NO:45, and SEQ ID NO:61. Examples of nucleic acids encoding LMPs containing a signal transduction domain include those shown in SEQ ID NO:3, SEQ ID NO:11, SEQ ID NO:41, SEQ ID NO:47, SEQ ID NO:55, SEQ ID NO:67, and SEQ ID NO:71. Examples of nucleic acids encoding LMPs containing a protease domain include those shown in SEQ ID NO:7, SEQ ID SEQ ID NO:39, SEQ ID NO:51, and SEQ ID NO:65. Examples of nucleic acids encoding LMPs containing a lipid metabolism domain include those shown in SEQ ID NO:5, SEQ ID NO:9, SEQ ID NO:13, SEQ ID NO:17, SEQ ID NO:21, SEQ ID NO:23, SEQ ID NO:25, and SEQ ID NO:29. Examples of nucleic acids encoding LMPs containing a oxidoreductase domain include those shown in SEQ ID NO:31, SEQ ID NO:35, SEQ ID NO:53, SEQ ID NO:57, SEQ ID NO:59, SEQ ID NO:69, SEQ ID NO:75, SEQ ID NO:77, and SEQ ID NO:81.

[0039] In another preferred embodiment, an isolated nucleic acid molecule of the invention comprises a nucleic acid molecule, which is a complement of one of the polynucleotide sequences shown in Appendix A (i.e. SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7, SEQ ID NO:9, SEQ ID NO:11, SEQ ID NO:13, SEQ ID NO:15, SEQ ID NO:17, SEQ ID NO:19, SEQ ID NO:21, SEQ ID NO:23, SEQ ID NO:25, SEQ ID NO:27, SEQ ID NO:29, SEQ ID NO:31, SEQ ID NO:33, SEQ ID NO:35, SEQ ID NO:37, SEQ ID NO:39, SEQ ID NO:41, SEQ ID NO:43, SEQ ID NO:45, SEQ ID NO:47, SEQ ID NO:51, SEQ ID NO:53, SEQ ID NO:55, SEQ ID NO:57, SEQ ID NO:59, SEQ ID NO:61, SEQ ID NO:63, SEQ ID NO:65, SEQ ID NO:67, SEQ ID NO:69, SEQ ID NO:71, SEQ ID NO:73, SEQ ID NO:75, SEQ ID NO:77, SEQ ID NO:79, or SEQ ID NO:81), or a portion thereof. A nucleic acid molecule which is complementary to one of the polynucleotide sequences shown in Appendix A is one which is sufficiently complementary to one of the polynucleotide sequences shown in Appendix A such that it can hybridize to one of the nucleotide sequences shown in Appendix A, thereby forming a stable duplex.

[0040] In another preferred embodiment, an isolated nucleic acid of the invention comprises a polynucleotide sequence encoding a polypeptide selected from the group consisting of SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:10, SEQ ID NO:12, SEQ ID NO:13, SEQ ID NO:16, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:22, SEQ ID NO:24, SEQ ID NO:26, SEQ ID NO:28, SEQ ID NO:30, SEQ ID NO:32, SEQ ID NO:34, SEQ ID NO:36, SEQ ID NO:38, SEQ ID NO:40, SEQ ID NO:42, SEQ ID NO:44, SEQ ID NO:46, SEQ ID NO:48, SEQ ID NO:52, SEQ ID NO:54, SEQ ID NO:56, SEQ ID NO:58, SEQ ID NO:60, SEQ ID NO:62, SEQ ID NO:64, SEQ ID NO:66, SEQ ID NO:68, SEQ ID NO:70, SEQ ID NO:72, SEQ ID NO:74, SEQ ID NO:76, SEQ ID NO:78, SEQ ID NO:80, or SEQ ID NO:82.

[0041] In still another preferred embodiment, an isolated nucleic acid molecule of the invention comprises a polynucleotide sequence which is at least about 50-60%, preferably at least about 60-70%, more preferably at least about 70-80%, 80-90%, or 90-95%, and even more preferably at least about 95%, 96%, 97%, 98%, 99%, or more homologous to a polynucleotide sequence shown in Appendix A, or a portion thereof. In an additional preferred embodiment, an isolated nucleic acid molecule of the invention comprises a polynucleotide sequence which hybridizes, e.g., hybridizes under stringent conditions, to one of the polynucleotide sequences shown in Appendix A, or a portion thereof. These stringent conditions include washing with a solution having a salt concentration of about 0.02 M at pH 7 and about 60° C. In another embodiment, the stringent conditions comprise an initial hybridization in a 6× sodium chloride/sodium citrate (6×SSC) solution at 65° C.

[0042] Moreover, the nucleic acid molecule of the invention can comprise only a portion of the coding region of one of the sequences in Appendix A, for example a fragment which can be used as a probe or primer or a fragment encoding a biologically active portion of a LMP. The polynucleotide sequences determined from the cloning of the LMP genes from Arabidopsis thaliana, Brassica napus, and Physcomitrella patens allows for the generation of probes and primers designed for use in identifying and/or cloning LMP homologues in other cell types and organisms, as well as LMP homologues from other plants or related species. Therefore this invention also provides compounds comprising the nucleic acids disclosed herein, or fragments thereof. These compounds include the nucleic acids attached to a moiety. These moieties include, but are not limited to, detection moieties, hybridization moieties, purification moieties, delivery moieties, reaction moieties, binding moieties, and the like. The probe/primer typically comprises substantially purified oligonucleotide. The oligonucleotide typically comprises a region of nucleotide sequence that hybridizes under stringent conditions to at least about 12, preferably about 25, more preferably about 40, 50, or 75 consecutive nucleotides of a sense strand of one of the sequences set forth in Appendix A, an anti-sense sequence of one of the sequences set forth in Appendix A, or naturally occurring mutants thereof. Primers based on a polynucleotide sequence of Appendix A can be used in PCR reactions to clone LMP homologues. Probes based on the LMP nucleotide sequences can be used to detect transcripts or genomic sequences encoding the same or homologous proteins. In preferred embodiments, the probe further comprises a label group attached thereto, e.g. the label group can be a radioisotope, a fluorescent compound, an enzyme, or an enzyme co-factor. Such probes can be used as a part of a genomic marker test kit for identifying cells which express a LMP, such as by measuring a level of a LMP-encoding nucleic acid in a sample of cells, e.g., detecting LMP mRNA levels or determining whether a genomic LMP gene has been mutated or deleted.

[0043] In one embodiment, the nucleic acid molecule of the invention encodes a protein or portion thereof which includes an amino acid sequence which is sufficiently homologous to an amino acid encoded by a sequence of Appendix A such that the protein or portion thereof maintains the same or a similar function as the wild-type protein. As used herein, the language "sufficiently homologous" refers to proteins or portions thereof which have amino acid sequences which include a minimum number of identical or equivalent amino acid residues to an amino acid sequence such that the protein or portion thereof is able to participate in the metabolism of compounds necessary for the production of seed storage compounds in plants, construction of cellular membranes in microorganisms or plants, or in the transport of molecules across these membranes. As used herein, an "equivalent" amino acid residue is, for example, an amino acid residue which has a similar side chain as a particular amino acid residue that is encoded by a polynucleotide sequence of Appendix A. Regulatory proteins, such as DNA binding proteins, transcription factors, kinases, phosphatases, or protein members of metabolic pathways such as the lipid, starch and protein biosynthetic pathways, or membrane transport systems, may play a role in the biosynthesis of seed storage compounds. Examples of such activities are described herein (see putative annotations in Table 3). Examples of LMP-encoding nucleic acid sequences are set forth in Appendix A.

[0044] As altered or increased sugar and/or fatty acid production is a general trait wished to be inherited into a wide variety of plants like maize, wheat, rye, oat, triticale, rice, barley, soybean, peanut, cotton, rapeseed, canola, manihot, pepper, sunflower and tagetes, solanaceous plants like potato, tobacco, eggplant, and tomato, Vicia species, pea, alfalfa, bushy plants (coffee, cacao, tea), Salix species, trees (oil palm, coconut), perennial grasses, and forage crops, these crop plants are also preferred target plants for genetic engineering as one further embodiment of the present invention. As used herein, a "forage crop" includes, but is not limited to, Wheatgrass, Canarygrass, Bromegrass, Wildrye Grass, Bluegrass, Orchardgrass, Alfalfa, Salfoin, Birdsfoot Trefoil, Alsike Clover, Red Clover, and Sweet Clover.

[0045] Portions of proteins encoded by the LMP nucleic acid molecules of the invention are preferably biologically active portions of one of the LMPs. As used herein, the term "biologically active portion of a LMP" is intended to include a portion, e.g., a domain/motif, of a LMP that participates in the metabolism of compounds necessary for the biosynthesis of seed storage lipids, or the construction of cellular membranes in microorganisms or plants, or in the transport of molecules across these membranes, or has an activity as set forth in Table 3. To determine whether a LMP or a biologically active portion thereof can participate in the metabolism of compounds necessary for the production of seed storage compounds and cellular membranes, an assay of enzymatic activity may be performed. Such assay methods are well known to those skilled in the art, and as described in Example 14 of the Exemplification.

[0046] Biologically active portions of a LMP include peptides comprising amino acid sequences derived from the amino acid sequence of a LMP (e.g., an amino acid sequence encoded by a nucleic acid sequence of Appendix A (i.e. SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7, SEQ ID NO:9, SEQ ID NO:11, SEQ ID NO:13, SEQ ID NO:15, SEQ ID NO:17, SEQ ID NO:19, SEQ ID NO:21, SEQ ID NO:23, SEQ ID NO:25, SEQ ID NO:27, SEQ ID NO:29, SEQ ID NO:31, SEQ ID NO:33, SEQ ID NO:35, SEQ ID NO:37, SEQ ID NO:39, SEQ ID NO:41, SEQ ID NO:43, SEQ ID NO:45, SEQ ID NO:47, SEQ ID NO:51, SEQ ID NO:53, SEQ ID NO:55, SEQ ID NO:57, SEQ ID NO:59, SEQ ID NO:61, SEQ ID NO:63, SEQ ID NO:65, SEQ ID NO:67, SEQ ID NO:69, SEQ ID NO:71, SEQ ID NO:73, SEQ ID NO:75, SEQ ID NO:77, SEQ ID NO:79, or SEQ ID NO:81) or the amino acid sequence of a protein homologous to an LMP, which include fewer amino acids than a full length LMP or the full length protein which is homologous to an LMP) and exhibit at least one activity of an LMP. Typically, biologically active portions (peptides, e.g., peptides which are, for example, 5, 10, 15, 20, 30, 35, 36, 37, 38, 39, 40, 50, 100, or more amino acids in length) comprise a domain or motif with at least one activity of a LMP. Moreover, other biologically active portions, in which other regions of the protein are deleted, can be prepared by recombinant techniques and evaluated for one or more of the activities described herein. Preferably, the biologically active portions of a LMP include one or more selected domains/motifs or portions thereof having biological activity.

[0047] Additional nucleic acid fragments encoding biologically active portions of a LMP can be prepared by isolating a portion of one of the sequences, expressing the encoded portion of the LMP or peptide (e.g., by recombinant expression in vitro) and assessing the activity of the encoded portion of the LMP or peptide.

[0048] The invention further encompasses nucleic acid molecules that differ from one of the polynucleotide sequences shown in Appendix A (i.e. SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7, SEQ ID NO:9, SEQ ID NO:11, SEQ ID NO:13, SEQ ID NO:15, SEQ ID NO:17, SEQ ID NO:19, SEQ ID NO:21, SEQ ID NO:23, SEQ ID NO:25, SEQ ID NO:27, SEQ ID NO:29, SEQ ID NO:31, SEQ ID NO:33, SEQ ID NO:35, SEQ ID NO:37, SEQ ID NO:39, SEQ ID NO:41, SEQ ID NO:43, SEQ ID NO:45, SEQ ID NO:47, SEQ ID NO:51, SEQ ID NO:53, SEQ ID NO:55, SEQ ID NO:57, SEQ ID NO:59, SEQ ID NO:61, SEQ ID NO:63, SEQ ID NO:65, SEQ ID NO:67, SEQ ID NO:69, SEQ ID NO:71, SEQ ID NO:73, SEQ ID NO:75, SEQ ID NO:77, SEQ ID NO:79, or SEQ ID NO:81), and portions thereof) due to degeneracy of the genetic code and thus encode the same LMP as that encoded by the polynucleotide sequences shown in Appendix A. In a further embodiment, the nucleic acid molecule of the invention encodes a full length protein which is substantially homologous to an amino acid sequence shown in Appendix A. In one embodiment, the full-length nucleic acid or protein or fragment of the nucleic acid or protein is from Arabidopsis thaliana, Brassica napus, and Physcomitrella patens.

[0049] In addition to the Arabidopsis thaliana, Brassica napus, and Physcomitrella patens LMP polynucleotide sequences described herein, it will be appreciated by those skilled in the art that DNA sequence polymorphisms that lead to changes in the amino acid sequences of LMPs may exist within a population (e.g., the Arabidopsis thaliana, and Brassica napus, and Physcomitrella patens population). Such genetic polymorphism in the LMP gene may exist among individuals within a population due to natural variation. As used herein, the terms "gene" and "recombinant gene" refer to nucleic acid molecules comprising an open reading frame encoding a LMP, preferably an Arabidopsis thaliana, Brassica napus, or Physcomitrella patens LMP. Such natural variations can typically result in 1-40% variance in the nucleotide sequence of the LMP gene. Any and all such nucleotide variations and resulting amino acid polymorphisms in LMP that are the result of natural variation and that do not alter the functional activity of LMPs are intended to be within the scope of the invention.

[0050] Nucleic acid molecules corresponding to natural variants and non-Arabidopsis thaliana and Brassica napus orthologs of the Arabidopsis thaliana, Brassica napus, and Physcomitrella patens LMP cDNA of the invention can be isolated based on their homology to Arabidopsis thaliana, Brassica napus, and Physcomitrella patens LMP nucleic acid disclosed herein using the Arabidopsis thaliana, Brassica napus, and Physcomitrella patens cDNA, or a portion thereof, as a hybridization probe according to standard hybridization techniques under stringent hybridization conditions. As used herein, the term "orthologs" refers to two nucleic acids from different species, but that have evolved from a common ancestral gene by speciation. Normally, orthologs encode proteins having the same or similar functions. Accordingly, in another embodiment, an isolated nucleic acid molecule of the invention is at least 15 nucleotides in length and hybridizes under stringent conditions to the nucleic acid molecule comprising a polynucleotide sequence shown in Appendix A. In other embodiments, the nucleic acid is at least 30, 50, 100, 250, or more nucleotides in length. As used herein, the term "hybridizes under stringent conditions" is intended to describe conditions for hybridization and washing under which nucleotide sequences at least 60% homologous to each other typically remain hybridized to each other. Preferably, the conditions are such that sequences at least about 65%, more preferably at least about 70%, and even more preferably at least about 75%, or more homologous to each other typically remain hybridized to each other. Such stringent conditions are known to those skilled in the art and can be found in Current Protocols in Molecular Biology, John Wiley & Sons, N.Y. (1989), 6.3.1-6.3.6. A preferred, non-limiting example of stringent hybridization conditions are hybridization in 6× sodium chloride/sodium citrate (SSC) at about 45° C., followed by one or more washes in 0.2×SSC, 0.1% SDS at 50-65 C. In another embodiment, the stringent conditions comprise an initial hybridization in a 6× sodium chloride/sodium citrate (6×SSC) solution at 65° C. Preferably, an isolated nucleic acid molecule of the invention that hybridizes under stringent conditions to a polynucleotide sequence of Appendix A (i.e. SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7, SEQ ID NO:9, SEQ ID NO:11, SEQ ID NO:13, SEQ ID NO:15, SEQ ID NO:17, SEQ ID NO:19, SEQ ID NO:21, SEQ ID NO:23, SEQ ID NO:25, SEQ ID NO:27, SEQ ID NO:29, SEQ ID NO:31, SEQ ID NO:33, SEQ ID NO:35, SEQ ID NO:37, SEQ ID NO:39, SEQ ID NO:41, SEQ ID NO:43, SEQ ID NO:45, SEQ ID NO:47, SEQ ID NO:51, SEQ ID NO:53, SEQ ID NO:55, SEQ ID NO:57, SEQ ID NO:59, SEQ ID NO:61, SEQ ID NO:63, SEQ ID NO:65, SEQ ID NO:67, SEQ ID NO:69, SEQ ID NO:71, SEQ ID NO:73, SEQ ID NO:75, SEQ ID NO:77, SEQ ID NO:79, or SEQ ID NO:81) corresponds to a naturally occurring nucleic acid molecule. As used herein, a "naturally-occurring" nucleic acid molecule refers to an RNA or DNA molecule having a polynucleotide sequence that occurs in nature (e.g., encodes a natural protein). In one embodiment, the nucleic acid encodes a natural Arabidopsis thaliana, Brassica napus, or Physcomitrella patens LMP.

[0051] In addition to naturally-occurring variants of the LMP sequence that may exist in the population, the skilled artisan will further appreciate that changes can be introduced by mutation into a polynucleotide sequence of Appendix A, thereby leading to changes in the amino acid sequence of the encoded LMP, without altering the functional ability of the LMP. For example, nucleotide substitutions leading to amino acid substitutions at "non-essential" amino acid residues can be made in a polynucleotide sequence of Appendix A. A "non-essential" amino acid residue is a residue that can be altered from the wild-type sequence of one of the LMPs (Appendix A) without altering the activity of said LMP, whereas an "essential" amino acid residue is required for LMP activity. Other amino acid residues, however, (e.g., those that are not conserved or only semi-conserved in the domain having LMP activity) may not be essential for activity and thus are likely to be amenable to alteration without altering LMP activity.

[0052] Accordingly, another aspect of the invention pertains to nucleic acid molecules encoding LMPs that contain changes in amino acid residues that are not essential for LMP activity. Such LMPs differ in amino acid sequence from a sequence yet retain at least one of the LMP activities described herein. In one embodiment, the isolated nucleic acid molecule comprises a nucleotide sequence encoding a protein, wherein the protein comprises an amino acid sequence at least about 50% homologous to an amino acid sequence encoded by a nucleic acid of Appendix A and is capable of participation in the metabolism of compounds necessary for the production of seed storage compounds in Arabidopsis thaliana, Brassica napus, and Physcomitrella patens, or cellular membranes, or has one or more activities set forth in Table 3. Preferably, the protein encoded by the nucleic acid molecule is at least about 50-60% homologous to one of the sequences encoded by a nucleic acid of Appendix A (i.e. SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7, SEQ ID NO:9, SEQ ID NO:11, SEQ ID NO:13, SEQ ID NO:15, SEQ ID NO:17, SEQ ID NO:19, SEQ ID NO:21, SEQ ID NO:23, SEQ ID NO:25, SEQ ID NO:27, SEQ ID NO:29, SEQ ID NO:31, SEQ ID NO:33, SEQ ID NO:35, SEQ ID NO:37, SEQ ID NO:39, SEQ ID NO:41, SEQ ID NO:43, SEQ ID NO:45, SEQ ID NO:47, SEQ ID NO:51, SEQ ID NO:53, SEQ ID NO:55, SEQ ID NO:57, SEQ ID NO:59, SEQ ID NO:61, SEQ ID NO:63, SEQ ID NO:65, SEQ ID NO:67, SEQ ID NO:69, SEQ ID NO:71, SEQ ID NO:73, SEQ ID NO:75, SEQ ID NO:77, SEQ ID NO:79, or SEQ ID NO:81), more preferably at least about 60-70% homologous to one of the sequences encoded by a nucleic acid of Appendix A, even more preferably at least about 70-80%, 80-90%, or 90-95% homologous to one of the sequences encoded by a nucleic acid of Appendix A, and most preferably at least about 96%, 97%, 98%, or 99% homologous to one of the sequences encoded by a nucleic acid of Appendix A.

[0053] To determine the percent homology of two amino acid sequences (e.g., one of the sequences encoded by a nucleic acid of Appendix A and a mutant form thereof) or of two nucleic acids, the sequences are aligned for optimal comparison purposes (e.g., gaps can be introduced in the sequence of one protein or nucleic acid for optimal alignment with the other protein or nucleic acid). The amino acid residues or nucleotides at corresponding amino acid positions or nucleotide positions are then compared. When a position in one sequence (e.g., one of the sequences encoded by a nucleic acid of Appendix A) is occupied by the same amino acid residue or nucleotide as the corresponding position in the other sequence (e.g., a mutant form of the sequence encoded by a nucleic acid of Appendix A), then the molecules are homologous at that position (i.e., as used herein amino acid or nucleic acid "homology" is equivalent to amino acid or nucleic acid "identity"). The percent homology between the two sequences is a function of the number of identical positions shared by the sequences (i.e., % homology=numbers of identical positions/total numbers of positions×100).

[0054] An isolated nucleic acid molecule encoding a LMP homologous to a protein sequence encoded by a nucleic acid of Appendix A can be created by introducing one or more nucleotide substitutions, additions, or deletions into a polynucleotide sequence of Appendix A such that one or more amino acid substitutions, additions, or deletions are introduced into the encoded protein. Mutations can be introduced into one of the sequences of Appendix A by standard techniques, such as site-directed mutagenesis and PCR-mediated mutagenesis. Preferably, conservative amino acid substitutions are made at one or more predicted non-essential amino acid residues. A "conservative amino acid substitution" is one in which the amino acid residue is replaced with an amino acid residue having a similar side chain. Families of amino acid residues having similar side chains have been defined in the art. These families include amino acids with basic side chains (e.g., lysine, arginine, histidine), acidic side chains (e.g., aspartic acid, glutamic acid), uncharged polar side chains (e.g., glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine), nonpolar side chains (e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan), beta-branched side chains (e.g., threonine, valine, isoleucine), and aromatic side chains (e.g., tyrosine, phenylalanine, tryptophan, histidine). Thus, a predicted non-essential amino acid residue in a LMP is preferably replaced with another amino acid residue from the same side chain family. Alternatively, in another embodiment, mutations can be introduced randomly along all or part of a LMP coding sequence, such as by saturation mutagenesis, and the resultant mutants can be screened for a LMP activity described herein to identify mutants that retain LMP activity. Following mutagenesis of one of the sequences of Appendix A, the encoded protein can be expressed recombinantly and the activity of the protein can be determined using, for example, assays described herein (see Examples 13-14 of the Exemplification).

[0055] LMPs are preferably produced by recombinant DNA techniques. For example, a nucleic acid molecule encoding the protein is cloned into an expression vector (as described above), the expression vector is introduced into a host cell (as described herein), and the LMP is expressed in the host cell. The LMP can then be isolated from the cells by an appropriate purification scheme using standard protein purification techniques. Alternative to recombinant expression, a LMP or peptide thereof can be synthesized chemically using standard peptide synthesis techniques. Moreover, native LMP can be isolated from cells, for example using an anti-LMP antibody, which can be produced by standard techniques utilizing a LMP or fragment thereof of this invention.

[0056] The invention also provides LMP chimeric or fusion proteins. As used herein, a LMP "chimeric protein" or "fusion protein" comprises a LMP polypeptide operatively linked to a non-LMP polypeptide. An "LMP polypeptide" refers to a polypeptide having an amino acid sequence corresponding to a LMP, whereas a "non-LMP polypeptide" refers to a polypeptide having an amino acid sequence corresponding to a protein which is not substantially homologous to the LMP, e.g., a protein which is different from the LMP and which is derived from the same or a different organism. As used herein with respect to the fusion protein, the term "operatively linked" is intended to indicate that the LMP polypeptide and the non-LMP polypeptide are fused to each other so that both sequences fulfill the proposed function attributed to the sequence used. The non-LMP polypeptide can be fused to the N-terminus or C-terminus of the LMP polypeptide. For example, in one embodiment, the fusion protein is a GST-LMP (glutathione S-transferase) fusion protein in which the LMP sequences are fused to the C-terminus of the GST sequences. Such fusion proteins can facilitate the purification of recombinant LMPs. In another embodiment, the fusion protein is a LMP containing a heterologous signal sequence at its N-terminus. In certain host cells (e.g., mammalian host cells), expression and/or secretion of a LMP can be increased through use of a heterologous signal sequence.

[0057] Preferably, a LMP chimeric or fusion protein of the invention is produced by standard recombinant DNA techniques. For example, DNA fragments coding for the different polypeptide sequences are ligated together in-frame in accordance with conventional techniques, for example by employing blunt-ended or stagger-ended termini for ligation, restriction enzyme digestion to provide for appropriate termini, filling-in of cohesive ends as appropriate, alkaline phosphatase treatment to avoid undesirable joining, and enzymatic ligation. In another embodiment, the fusion gene can be synthesized by conventional techniques including automated DNA synthesizers. Alternatively, PCR amplification of gene fragments can be carried out using anchor primers which give rise to complementary overhangs between two consecutive gene fragments which can subsequently be annealed and reamplified to generate a chimeric gene sequence (See, for example, Current Protocols in Molecular Biology, eds. Ausubel et al., John Wiley & Sons: 1992). Moreover, many expression vectors are commercially available that already encode a fusion moiety (e.g., a GST polypeptide). An LMP-encoding nucleic acid can be cloned into such an expression vector such that the fusion moiety is linked in-frame to the LMP.

[0058] In addition to the nucleic acid molecules encoding LMPs described above, another aspect of the invention pertains to isolated nucleic acid molecules which are antisense thereto. An "antisense" nucleic acid comprises a nucleotide sequence which is complementary to a "sense" nucleic acid encoding a protein, e.g., complementary to the coding strand of a double-stranded cDNA molecule or complementary to an mRNA sequence. Accordingly, an antisense nucleic acid can hydrogen bond to a sense nucleic acid. The antisense nucleic acid can be complementary to an entire LMP coding strand, or to only a portion thereof. In one embodiment, an antisense nucleic acid molecule is antisense to a "coding region" of the coding strand of a nucleotide sequence encoding a LMP. The term "coding region" refers to the region of the nucleotide sequence comprising codons which are translated into amino acid residues (e.g., the entire coding region of Pk121 comprises nucleotides 1 to 786). In another embodiment, the antisense nucleic acid molecule is antisense to a "noncoding region" of the coding strand of a nucleotide sequence encoding LMP. The term "noncoding region" refers to 5' and 3' sequences which flank the coding region that are not translated into amino acids (i.e., also referred to as 5' and 3' untranslated regions).

[0059] Given the coding strand sequences encoding LMP disclosed herein (e.g., the polynucleotide sequences set forth in Appendix A), antisense nucleic acids of the invention can be designed according to the rules of Watson and Crick base pairing. The antisense nucleic acid molecule can be complementary to the entire coding region of LMP mRNA, but more preferably is an oligonucleotide which is antisense to only a portion of the coding or noncoding region of LMP mRNA. For example, the antisense oligonucleotide can be complementary to the region surrounding the translation start site of LMP mRNA. An antisense oligonucleotide can be, for example, about 5, 10, 15, 20, 25, 30, 35, 40, 45, or 50 nucleotides in length. An antisense or sense nucleic acid of the invention can be constructed using chemical synthesis and enzymatic ligation reactions using procedures known in the art. For example, an antisense nucleic acid (e.g., an antisense oligonucleotide) can be chemically synthesized using naturally occurring nucleotides or variously modified nucleotides designed to increase the biological stability of the molecules or to increase the physical stability of the duplex formed between the antisense and sense nucleic acids, e.g., phosphorothioate derivatives and acridine substituted nucleotides can be used. Examples of modified nucleotides which can be used to generate the antisense nucleic acid include 5-fluorouracil, 5-bromouracil, 5-chlorouracil, 5-iodouracil, hypoxanthine, xanthine, 4-acetylcytosine, 5-(carboxyhydroxylmethyl)uracil, 5-carboxymethylamino-methyl-2-thiouridine, 5-carboxymethylaminomethyluracil, dihydro-uracil, beta-D-galactosylqueosine, inosine, N-6-isopentenyladenine, 1-methylguanine, 1-methylinosine, 2,2-dimethylguanine, 2-methyladenine, 2-methylguanine, 3-methylcytosine, 5-methyl-cytosine, N-6-adenine, 7-methylguanine, 5-methylaminomethyluracil, 5-methoxyamino-methyl-2-thiouracil, beta-D-mannosylqueosine, 5'-methoxycarboxymethyl-uracil, 5-methoxyuracil, 2-methylthio-N-6-isopentenyladenine, uracil-5-oxyacetic acid (v), wybutoxosine, pseudouracil, queosine, 2-thiocytosine, 5-methyl-2-thiouracil, 2-thiouracil, 4-thiouracil, 5-methyluracil, uracil-5-oxyacetic acid methylester, uracil-5-oxyacetic acid (v), 5-methyl-2-thiouracil, 3-(3-amino-3-N-2-carboxypropyl)uracil, (acp3)w, and 2,6-diamino-purine. Alternatively, the antisense nucleic acid can be produced biologically using an expression vector into which a nucleic acid has been subcloned in an antisense orientation (i.e., RNA transcribed from the inserted nucleic acid will be of an antisense orientation to a target nucleic acid of interest, described further in the following subsection).

[0060] In another variation of the antisense technology, a double-strand interfering RNA construct can be used to cause a down-regulation of the LMP mRNA level and LMP activity in transgenic plants. This requires transforming the plants with a chimeric construct containing a portion of the LMP sequence in the sense orientation fused to the antisense sequence of the same portion of the LMP sequence. A DNA linker region of variable length can be used to separate the sense and antisense fragments of LMP sequences in the construct.

[0061] The antisense nucleic acid molecules of the invention are typically administered to a cell or generated in situ such that they hybridize with or bind to cellular mRNA and/or genomic DNA encoding a LMP to thereby inhibit expression of the protein, e.g., by inhibiting transcription and/or translation. The hybridization can be by conventional nucleotide complementarity to form a stable duplex, or, for example, in the case of an antisense nucleic acid molecule which binds to DNA duplexes, through specific interactions in the major groove of the double helix. The antisense molecule can be modified such that it specifically binds to a receptor or an antigen expressed on a selected cell surface, e.g., by linking the antisense nucleic acid molecule to a peptide or an antibody which binds to a cell surface receptor or antigen. The antisense nucleic acid molecule can also be delivered to cells using the vectors described herein. To achieve sufficient intracellular concentrations of the antisense molecules, vector constructs in which the antisense nucleic acid molecule is placed under the control of a strong prokaryotic, viral, or eukaryotic including plant promoters are preferred.

[0062] In yet another embodiment, the antisense nucleic acid molecule of the invention is an anomeric nucleic acid molecule. An anomeric nucleic acid molecule forms specific double-stranded hybrids with complementary RNA in which, contrary to the usual units, the strands run parallel to each other (Gaultier et al., 1987, Nucleic Acids Res. 15:6625-6641). The antisense nucleic acid molecule can also comprise a 2'-o-methyl-ribonucleotide (Inoue et al., 1987, Nucleic Acids Res. 15:6131-6148) or a chimeric RNA-DNA analogue (Inoue et al., 1987, FEBS Lett 215:327-330).

[0063] In still another embodiment, an antisense nucleic acid of the invention is a ribozyme. Ribozymes are catalytic RNA molecules with ribonuclease activity which are capable of cleaving a single-stranded nucleic acid, such as an mRNA, to which they have a complementary region. Thus, ribozymes (e.g., hammerhead ribozymes (described in Haselhoff & Gerlach, 1988, Nature 334:585-591)) can be used to catalytically cleave LMP mRNA transcripts to thereby inhibit translation of LMP mRNA. A ribozyme having specificity for an LMP-encoding nucleic acid can be designed based upon the nucleotide sequence of an LMP cDNA disclosed herein (e.g., Pk123 in Appendix A) or on the basis of a heterologous sequence to be isolated according to methods taught in this invention. For example, a derivative of a Tetrahymena L-19 IVS RNA can be constructed in which the nucleotide sequence of the active site is complementary to the nucleotide sequence to be cleaved in a LMP-encoding mRNA (See, e.g., U.S. Pat. Nos. 4,987,071 and 5,116,742 to Cech et al.). Alternatively, LMP mRNA can be used to select a catalytic RNA having a specific ribonuclease activity from a pool of RNA molecules (See, e.g., Bartel, D. & Szostak J. W. 1993, Science 261:1411-1418).

[0064] Alternatively, LMP gene expression can be inhibited by targeting nucleotide sequences complementary to the regulatory region of a LMP nucleotide sequence (e.g., a LMP promoter and/or enhancers) to form triple helical structures that prevent transcription of a LMP gene in target cells (See generally, Helene C., 1991, Anticancer Drug Des. 6:569-84; Helene C. et al., 1992, Ann. N.Y. Acad. Sci. 660:27-36; and Maher, L. J., 1992, Bioassays 14:807-15).

[0065] Another aspect of the invention pertains to vectors, preferably expression vectors, containing a nucleic acid encoding a LMP (or a portion thereof). As used herein, the term "vector" refers to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked. One type of vector is a "plasmid", which refers to a circular double stranded DNA loop into which additional DNA segments can be ligated. Another type of vector is a viral vector, wherein additional DNA segments can be ligated into the viral genome. Certain vectors are capable of autonomous replication in a host cell into which they are introduced (e.g., bacterial vectors having a bacterial origin of replication and episomal mammalian vectors). Other vectors (e.g., non-episomal mammalian vectors) are integrated into the genome of a host cell upon introduction into the host cell, and thereby are replicated along with the host genome. Moreover, certain vectors are capable of directing the expression of genes to which they are operatively linked. Such vectors are referred to herein as "expression vectors." In general, expression vectors of utility in recombinant DNA techniques are often in the form of plasmids. In the present specification, "plasmid" and "vector" can be used interchangeably as the plasmid is the most commonly used form of vector. However, the invention is intended to include such other forms of expression vectors, such as viral vectors (e.g., replication defective retroviruses, adenoviruses and adeno-associated viruses), which serve equivalent functions.

[0066] The recombinant expression vectors of the invention comprise a nucleic acid of the invention in a form suitable for expression of the nucleic acid in a host cell, which means that the recombinant expression vectors include one or more regulatory sequences, selected on the basis of the host cells to be used for expression, which is operatively linked to the nucleic acid sequence to be expressed. As used herein with respect to a recombinant expression vector, "operatively linked" is intended to mean that the nucleotide sequence of interest is linked to the regulatory sequence(s) in a manner which allows for expression of the nucleotide sequence and both sequences are fused to each other so that each fulfills its proposed function (e.g., in an in vitro transcription/translation system or in a host cell when the vector is introduced into the host cell). The term "regulatory sequence" is intended to include promoters, enhancers, and other expression control elements (e.g., polyadenylation signals). Such regulatory sequences are described, for example, in Goeddel; Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, Calif. (1990) and Gruber and Crosby, in: Methods in Plant Molecular Biology and Biotechnolgy, CRC Press, Boca Raton, Fla., eds.: Glick & Thompson, Chapter 7, 89-108 including the references therein. Regulatory sequences include those which direct constitutive expression of a nucleotide sequence in many types of host cell and those which direct expression of the nucleotide sequence only in certain host cells or under certain conditions. It will be appreciated by those skilled in the art that the design of the expression vector can depend on such factors as the choice of the host cell to be transformed, the level of expression of protein desired, etc. The expression vectors of the invention can be introduced into host cells to thereby produce proteins or peptides, including fusion proteins or peptides, encoded by nucleic acids as described herein (e.g., LMPs, mutant forms of LMPs, fusion proteins, etc.).

[0067] The recombinant expression vectors of the invention can be designed for expression of LMPs in prokaryotic or eukaryotic cells. For example, LMP genes can be expressed in bacterial cells, insect cells (using baculovirus expression vectors), yeast and other fungal cells (See Romanos M. A. et al., 1992, Foreign gene expression in yeast: a review, Yeast 8:423-488; van den Hondel, C. A. M. J. J. et al., 1991, Heterologous gene expression in filamentous fungi, in: More Gene Manipulations in Fungi, Bennet & Lasure, eds., p. 396-428: Academic Press: an Diego; and van den Hondel & Punt, 1991, Gene transfer systems and vector development for filamentous fungi, in: Applied Molecular Genetics of Fungi, Peberdy et al., eds., p. 1-28, Cambridge University Press: Cambridge), algae (Falciatore et al., 1999, Marine Biotechnology 1:239-251), ciliates of the types: Holotrichia, Peritrichia, Spirotrichia, Suctoria, Tetrahymena, Paramecium, Colpidium, Glaucoma, Platyophrya, Potomacus, Pseudocohnilembus, Euplotes, Engelmaniella, and Stylonychia, especially of the genus Stylonychia lemnae with vectors following a transformation method as described in WO 98/01572, and multicellular plant cells (See Schmidt & Willmitzer, 1988, High efficiency Agrobacterium tumefaciens-mediated transformation of Arabidopsis thaliana leaf and cotyledon plants, Plant Cell Rep.:583-586; Plant Molecular Biology and Biotechnology, C Press, Boca Raton, Fla., chapter 6/7, S.71-119 (1993); White, Jenes et al., Techniques for Gene Transfer, in: Transgenic Plants, Vol. 1, Engineering and Utilization, eds.: Kung and Wu, Academic Press 1993, 128-43; Potrykus, 1991, Annu Rev. Plant Physiol. Plant Mol. Biol. 42:205-225 (and references cited therein)), or mammalian cells. Suitable host cells are discussed further in Goeddel, Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, Calif. 1990). Alternatively, the recombinant expression vector can be transcribed and translated in vitro, for example using T7 promoter regulatory sequences and T7 polymerase.

[0068] Expression of proteins in prokaryotes is most often carried out with vectors containing constitutive or inducible promoters directing the expression of either fusion or non-fusion proteins. Fusion vectors add a number of amino acids to a protein encoded therein, usually to the amino terminus of the recombinant protein but also to the C-terminus or fused within suitable regions in the proteins. Such fusion vectors typically serve one or more of the following purposes: 1) to increase expression of recombinant protein; 2) to increase the solubility of the recombinant protein; and 3) to aid in the purification of the recombinant protein by acting as a ligand in affinity purification. Often, in fusion expression vectors, a proteolytic cleavage site is introduced at the junction of the fusion moiety and the recombinant protein to enable separation of the recombinant protein from the fusion moiety subsequent to purification of the fusion protein. Such enzymes, and their cognate recognition sequences, include Factor Xa, thrombin and enterokinase.

[0069] Typical fusion expression vectors include pGEX (Pharmacia Biotech Inc; Smith & Johnson, 1988, Gene 67:31-40), pMAL (New England Biolabs, Beverly, Mass.), and pRIT5 (Pharmacia, Piscataway, N.J.) which fuse glutathione S-transferase (GST), maltose E binding protein, or protein A, respectively, to the target recombinant protein. In one embodiment, the coding sequence of the LMP is cloned into a pGEX expression vector to create a vector encoding a fusion protein comprising, from the N-terminus to the C-terminus, GST-thrombin cleavage site-X protein. The fusion protein can be purified by affinity chromatography using glutathione-agarose resin. Recombinant LMP unfused to GST can be recovered by cleavage of the fusion protein with thrombin.

[0070] Examples of suitable inducible non-fusion E. coli expression vectors include pTrc (Amann et al., 1988, Gene 69:301-315) and pET 11d (Studier et al., 1990, Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, Calif. 60-89). Target gene expression from the pTrc vector relies on host RNA polymerase transcription from a hybrid trp-lac fusion promoter. Target gene expression from the pET 11d vector relies on transcription from a T7 gn10-lac fusion promoter mediated by a coexpressed viral RNA polymerase (T7 gn1). This viral polymerase is supplied by host strains BL21(DE3) or HMS174(DE3) from a resident prophage harboring a T7 gn1 gene under the transcriptional control of the lacUV 5 promoter.

[0071] One strategy to maximize recombinant protein expression is to express the protein in a host bacteria with an impaired capacity to proteolytically cleave the recombinant protein (Gottesman S., 1990, Gene Expression Technology: Methods in Enzymology 185:119-128, Academic Press, San Diego, Calif.). Another strategy is to alter the nucleic acid sequence of the nucleic acid to be inserted into an expression vector so that the individual codons for each amino acid are those preferentially utilized in the bacterium chosen for expression (Wada et al., 1992, Nucleic Acids Res. 20:2111-2118). Such alteration of nucleic acid sequences of the invention can be carried out by standard DNA synthesis techniques.

[0072] In another embodiment, the LMP expression vector is a yeast expression vector. Examples of vectors for expression in yeast S. cerevisiae include pYepSec1 (Baldari et al., 1987, Embo J. 6:229-234), pMFa (Kuijan & Herskowitz, 1982, Cell 30:933-943), pJRY88 (Schultz et al., 1987, Gene 54:113-123), and pYES2 (Invitrogen Corporation, San Diego, Calif.). Vectors and methods for the construction of vectors appropriate for use in other fungi, such as the filamentous fungi, include those detailed in: van den Hondel & Punt, 1991, "Gene transfer systems and vector development for filamentous fungi, in: Applied Molecular Genetics of Fungi, Peberdy et al., eds., p. 1-28, Cambridge University Press: Cambridge.

[0073] Alternatively, the LMPs of the invention can be expressed in insect cells using baculovirus expression vectors. Baculovirus vectors available for expression of proteins in cultured insect cells (e.g., Sf 9 cells) include the pAc series (Smith et al., 1983, Mol. Cell. Biol. 3:2156-2165) and the pVL series (Lucklow & Summers, 1989, Virology 170:31-39).

[0074] In yet another embodiment, a nucleic acid of the invention is expressed in mammalian cells using a mammalian expression vector. Examples of mammalian expression vectors include pCDM8 (Seed, 1987, Nature 329:840) and pMT2PC (Kaufman et al., 1987, EMBO J. 6:187-195). When used in mammalian cells, the expression vector's control functions are often provided by viral regulatory elements. For example, commonly used promoters are derived from polyoma, Adenovirus 2, cytomegalovirus, and Simian Virus 40. For other suitable expression systems for both prokaryotic and eukaryotic cells, see chapters 16 and 17 of Sambrook, Fritsh and Maniatis, Molecular Cloning: A Laboratory Manual. 2nd, ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989.

[0075] In another embodiment, the LMPs of the invention may be expressed in uni-cellular plant cells (such as algae, see Falciatore et al. (1999, Marine Biotechnology 1:239-251 and references therein) and plant cells from higher plants (e.g., the spermatophytes, such as crop plants). Examples of plant expression vectors include those detailed in: Becker, Kemper, Schell and Masterson (1992, "New plant binary vectors with selectable markers located proximal to the left border", Plant Mol. Biol. 20:1195-1197) and Bevan (1984, "Binary Agrobacterium vectors for plant transformation, Nucleic Acids Res. 12:8711-8721; Vectors for Gene Transfer in Higher Plants; in: Transgenic Plants, Vol. 1, Engineering and Utilization, eds.: Kung and R. Wu, Academic Press, 1993, S. 15-38).

[0076] A plant expression cassette preferably contains regulatory sequences capable to drive gene expression in plant cells and which are operatively linked so that each sequence can fulfil its function such as termination of transcription, including polyadenylation signals. Preferred polyadenylation signals are those originating from Agrobacterium tumefaciens t-DNA such as the gene 3 known as octopine synthase of the Ti-plasmid pTiACHS (Gielen et al. 1984, EMBO J. 3:835) or functional equivalents thereof but also all other terminators functionally active in plants are suitable.

[0077] As plant gene expression is very often not limited on transcriptional levels a plant expression cassette preferably contains other operatively linked sequences like translational enhancers such as the overdrive-sequence containing the 5'-untranslated leader sequence from tobacco mosaic virus enhancing the protein per RNA ratio (Gallic et al. 1987, Nucleic Acids Res. 15:8693-8711).

[0078] Plant gene expression has to be operatively linked to an appropriate promoter conferring gene expression in a timely, cell or tissue specific manner. Preferred are promoters driving constitutive expression (Benfey et al. 1989, EMBO J. 8:2195-2202) like those derived from plant viruses like the 35S CAMV (Franck et al. 1980, Cell 21:285-294), the 19S CaMV (see also U.S. Pat. No. 5,352,605 and WO 84/02913) or plant promoters like those from Rubisco small subunit described in U.S. Pat. No. 4,962,028. Even more preferred are seed-specific promoters driving expression of LMP proteins during all or selected stages of seed development. Seed-specific plant promoters are known to those of ordinary skill in the art and are identified and characterized using seed-specific mRNA libraries and expression profiling techniques. Seed-specific promoters include the napin-gene promoter from rapeseed (U.S. Pat. No. 5,608,152), the USP-promoter from Vicia faba (Baeumlein et al. 1991, Mol. Gen. Genetics 225:459-67), the oleosin-promoter from Arabidopsis (WO 98/45461), the phaseolin-promoter from Phaseolus vulgaris (U.S. Pat. No. 5,504,200), the Bce4-promoter from Brassica (WO9113980) or the legumin B4 promoter (LeB4; Baeumlein et al. 1992, Plant J. 2:233-239) as well as promoters conferring seed specific expression in monocot plants like maize, barley, wheat, rye, rice etc. Suitable promoters to note are the lpt2 or lpt1-gene promoter from barley (WO 95/15389 and WO 95/23230) or those described in WO 99/16890 (promoters from the barley hordein-gene, the rice glutelin gene, the rice oryzin gene, the rice prolamin gene, the wheat gliadin gene, wheat glutelin gene, the maize zein gene, the oat glutelin gene, the Sorghum kasirin-gene, and the rye secalin gene).

[0079] Plant gene expression can also be facilitated via an inducible promoter (for review see Gatz 1997, Annu. Rev. Plant Physiol. Plant Mol. Biol. 48:89-108). Chemically inducible promoters are especially suitable if gene expression is desired in a time specific manner. Examples for such promoters are a salicylic acid inducible promoter (WO 95/19443), a tetracycline inducible promoter (Gatz et al. 1992, Plant J. 2:397-404) and an ethanol inducible promoter (WO 93/21334).

[0080] Promoters responding to biotic or abiotic stress conditions are also suitable promoters such as the pathogen inducible PRP1-gene promoter (Ward et al., 1993, Plant. Mol. Biol. 22:361-366), the heat inducible hsp80-promoter from tomato (U.S. Pat. No. 5,187,267), cold inducible alpha-amylase promoter from potato (WO 96/12814) or the wound-inducible pinII-promoter (EP 375091).

[0081] Other preferred sequences for use in plant gene expression cassettes are targeting-sequences necessary to direct the gene-product in its appropriate cell compartment (for review see Kermode 1996, Crit. Rev. Plant Sci. 15:285-423 and references cited therein) such as the vacuole, the nucleus, all types of plastids like amyloplasts, chloroplasts, chromoplasts, the extracellular space, mitochondria, the endoplasmic reticulum, oil bodies, peroxisomes and other compartments of plant cells. Also especially suited are promoters that confer plastid-specific gene expression, as plastids are the compartment where precursors and some end products of lipid biosynthesis are synthesized. Suitable promoters such as the viral RNA-polymerase promoter are described in WO 95/16783 and WO 97/06250 and the clpP-promoter from Arabidopsis described in WO 99/46394.

[0082] The invention further provides a recombinant expression vector comprising a DNA molecule of the invention cloned into the expression vector in an antisense orientation. That is, the DNA molecule is operatively linked to a regulatory sequence in a manner which allows for expression (by transcription of the DNA molecule) of an RNA molecule which is antisense to LMP mRNA. Regulatory sequences operatively linked to a nucleic acid cloned in the antisense orientation can be chosen which direct the continuous expression of the antisense RNA molecule in a variety of cell types, for instance viral promoters and/or enhancers, or regulatory sequences can be chosen which direct constitutive, tissue specific or cell type specific expression of antisense RNA. The antisense expression vector can be in the form of a recombinant plasmid, phagemid or attenuated virus in which antisense nucleic acids are produced under the control of a high efficiency regulatory region, the activity of which can be determined by the cell type into which the vector is introduced. For a discussion of the regulation of gene expression using antisense genes see Weintraub et al. (1986, Antisense RNA as a molecular tool for genetic analysis, Reviews--Trends in Genetics, Vol. 1) and Mol et al. (1990, FEBS Lett. 268:427-430).

[0083] Another aspect of the invention pertains to host cells into which a recombinant expression vector of the invention has been introduced. The terms "host cell" and "recombinant host cell" are used interchangeably herein. It is to be understood that such terms refer not only to the particular subject cell but also to the progeny or potential progeny of such a cell. Because certain modifications may occur in succeeding generations due to either mutation or environmental influences, such progeny may not, in fact, be identical to the parent cell, but are still included within the scope of the term as used herein. A host cell can be any prokaryotic or eukaryotic cell. For example, a LMP can be expressed in bacterial cells, insect cells, fungal cells, mammalian cells (such as Chinese hamster ovary cells (CHO) or COS cells), algae, ciliates or plant cells. Other suitable host cells are known to those skilled in the art.

[0084] Vector DNA can be introduced into prokaryotic or eukaryotic cells via conventional transformation or transfection techniques. As used herein, the terms "transformation" and "transfection", "conjugation" and "transduction" are intended to refer to a variety of art-recognized techniques for introducing foreign nucleic acid (e.g., DNA) into a host cell, including calcium phosphate or calcium chloride co-precipitation, DEAE-dextran-mediated transfection, lipofection, natural competence, chemical-mediated transfer, or electroporation. Suitable methods for transforming or transfecting host cells including plant cells can be found in Sambrook et al. (1989, Molecular Cloning: A Laboratory Manual. 2nd, ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.) and other laboratory manuals such as Methods in Molecular Biology 1995, Vol. 44, Agrobacterium protocols, ed: Gartland and Davey, Humana Press, Totowa, N.J.

[0085] For stable transfection of mammalian and plant cells, it is known that, depending upon the expression vector and transfection technique used, only a small fraction of cells may integrate the foreign DNA into their genome. In order to identify and select these integrants, a gene that encodes a selectable marker (e.g., resistance to antibiotics) is generally introduced into the host cells along with the gene of interest. Preferred selectable markers include those which confer resistance to drugs, such as G418, hygromycin, kanamycin and methotrexate or in plants that confer resistance towards an herbicide such as glyphosate or glufosinate. A nucleic acid encoding a selectable marker can be introduced into a host cell on the same vector as that encoding a LMP or can be introduced on a separate vector. Cells stably transfected with the introduced nucleic acid can be identified by, for example, drug selection (e.g., cells that have incorporated the selectable marker gene will survive, while the other cells die).

[0086] To create a homologous recombinant microorganism, a vector is prepared which contains at least a portion of a LMP gene into which a deletion, addition or substitution has been introduced to thereby alter, e.g., functionally disrupt, the LMP gene. Preferably, this LMP gene is an Arabidopsis thaliana, Brassica napus, and Physcomitrella patens LMP gene, but it can be a homologue from a related plant or even from a mammalian, yeast, or insect source. In a preferred embodiment, the vector is designed such that, upon homologous recombination, the endogenous LMP gene is functionally disrupted (i.e., no longer encodes a functional protein; also referred to as a knock-out vector). Alternatively, the vector can be designed such that, upon homologous recombination, the endogenous LMP gene is mutated or otherwise altered but still encodes functional protein (e.g., the upstream regulatory region can be altered to thereby alter the expression of the endogenous LMP). To create a point mutation via homologous recombination, DNA-RNA hybrids can be used in a technique known as chimeraplasty (Cole-Strauss et al. 1999, Nucleic Acids Res. 27:1323-1330 and Kmiec 1999, American Scientist 87:240-247). Homologous recombination procedures in Arabidopsis thaliana are also well known in the art and are contemplated for use herein.

[0087] In a homologous recombination vector, the altered portion of the LMP gene is flanked at its 5' and 3' ends by additional nucleic acid of the LMP gene to allow for homologous recombination to occur between the exogenous LMP gene carried by the vector and an endogenous LMP gene in a microorganism or plant. The additional flanking LMP nucleic acid is of sufficient length for successful homologous recombination with the endogenous gene. Typically, several hundreds of base pairs up to kilobases of flanking DNA (both at the 5' and 3' ends) are included in the vector (see e.g., Thomas & Capecchi 1987, Cell 51:503, for a description of homologous recombination vectors). The vector is introduced into a microorganism or plant cell (e.g., via polyethyleneglycol mediated DNA). Cells in which the introduced LMP gene has homologously recombined with the endogenous LMP gene are selected using art-known techniques.

[0088] In another embodiment, recombinant microorganisms can be produced which contain selected systems which allow for regulated expression of the introduced gene. For example, inclusion of a LMP gene on a vector placing it under control of the lac operon permits expression of the LMP gene only in the presence of IPTG. Such regulatory systems are well known in the art.

[0089] A host cell of the invention, such as a prokaryotic or eukaryotic host cell in culture can be used to produce (i.e., express) a LMP. Accordingly, the invention further provides methods for producing LMPs using the host cells of the invention. In one embodiment, the method comprises culturing a host cell of the invention (into which a recombinant expression vector encoding a LMP has been introduced, or which contains a wild-type or altered LMP gene in it's genome) in a suitable medium until LMP is produced. In another embodiment, the method further comprises isolating LMPs from the medium or the host cell.

[0090] Another aspect of the invention pertains to isolated LMPs, and biologically active portions thereof. An "isolated" or "purified" protein or biologically active portion thereof is substantially free of cellular material when produced by recombinant DNA techniques, or chemical precursors or other chemicals when chemically synthesized. The language "substantially free of cellular material" includes preparations of LMP in which the protein is separated from cellular components of the cells in which it is naturally or recombinantly produced. In one embodiment, the language "substantially free of cellular material" includes preparations of LMP having less than about 30% (by dry weight) of non-LMP (also referred to herein as a "contaminating protein"), more preferably less than about 20% of non-LMP, still more preferably less than about 10% of non-LMP, and most preferably less than about 5% non-LMP. When the LMP or biologically active portion thereof is recombinantly produced, it is also preferably substantially free of culture medium, i.e., culture medium represents less than about 20%, more preferably less than about 10%, and most preferably less than about 5% of the volume of the protein preparation. The language "substantially free of chemical precursors or other chemicals" includes preparations of LMP in which the protein is separated from chemical precursors or other chemicals which are involved in the synthesis of the protein. In one embodiment, the language "substantially free of chemical precursors or other chemicals" includes preparations of LMP having less than about 30% (by dry weight) of chemical precursors or non-LMP chemicals, more preferably less than about 20% chemical precursors or non-LMP chemicals, still more preferably less than about 10% chemical precursors or non-LMP chemicals, and most preferably less than about 5% chemical precursors or non-LMP chemicals. In preferred embodiments, isolated proteins or biologically active portions thereof lack contaminating proteins from the same organism from which the LMP is derived. Typically, such proteins are produced by recombinant expression of, for example, an Arabidopsis thaliana and Brassica napus LMP in other plants than Arabidopsis thaliana and Brassica napus or microorganisms, algae or fungi.

[0091] An isolated LMP or a portion thereof of the invention can participate in the metabolism of compounds necessary for the production of seed storage compounds in Arabidopsis thaliana and Brassica napus, or of cellular membranes, or has one or more of the activities set forth in Table 3. In preferred embodiments, the protein or portion thereof comprises an amino acid sequence which is sufficiently homologous to an amino acid sequence encoded by a nucleic acid of Appendix A such that the protein or portion thereof maintains the ability to participate in the metabolism of compounds necessary for the construction of cellular membranes in Arabidopsis thaliana and Brassica napus, or in the transport of molecules across these membranes. The portion of the protein is preferably a biologically active portion as described herein. In another preferred embodiment, a LMP of the invention has an amino acid sequence encoded by a nucleic acid of Appendix A. In yet another preferred embodiment, the LMP has an amino acid sequence which is encoded by a nucleotide sequence which hybridizes, e.g., hybridizes under stringent conditions, to a nucleotide sequence of Appendix A. In still another preferred embodiment, the LMP has an amino acid sequence which is encoded by a nucleotide sequence that is at least about 50-60%, preferably at least about 60-70%, more preferably at least about 70-80%, 80-90%, 90-95%, and even more preferably at least about 96%, 97%, 98%, 99% or more homologous to one of the amino acid sequences encoded by a nucleic acid of Appendix A. The preferred LMPs of the present invention also preferably possess at least one of the LMP activities described herein. For example, a preferred LMP of the present invention includes an amino acid sequence encoded by a nucleotide sequence which hybridizes, e.g., hybridizes under stringent conditions, to a nucleotide sequence of Appendix A, and which can participate in the metabolism of compounds necessary for the construction of cellular membranes in Arabidopsis thaliana and Brassica napus, or in the transport of molecules across these membranes, or which has one or more of the activities set forth in Table 3.

[0092] In other embodiments, the LMP is substantially homologous to an amino acid sequence encoded by a nucleic acid of Appendix A and retains the functional activity of the protein of one of the sequences encoded by a nucleic acid of Appendix A yet differs in amino acid sequence due to natural variation or mutagenesis, as described in detail above. Accordingly, in another embodiment, the LMP is a protein which comprises an amino acid sequence which is at least about 50-60%, preferably at least about 60-70%, and more preferably at least about 70-80, 80-90, 90-95%, and most preferably at least about 96%, 97%, 98%, 99% or more homologous to an entire amino acid sequence and which has at least one of the LMP activities described herein. In another embodiment, the invention pertains to a full Arabidopsis thaliana and Brassica napus protein which is substantially homologous to an entire amino acid sequence encoded by a nucleic acid of Appendix A.

[0093] Dominant negative mutations or trans-dominant suppression can be used to reduce the activity of a LMP in transgenics seeds in order to change the levels of seed storage compounds. To achieve this a mutation that abolishes the activity of the LMP is created and the inactive non-functional LMP gene is overexpressed in the transgenic plant. The inactive trans-dominant LMP protein competes with the active endogenous LMP protein for substrate or interactions with other proteins and dilutes out the activity of the active LMP. In this way the biological activity of the LMP is reduced without actually modifying the expression of the endogenous LMP gene. This strategy was used by Pontier et al to modulate the activity of plant transcription factors (Pontier D, Miao Z H, Lam E, Plant J 2001 September; 27(6):529-38, Trans-dominant suppression of plant TGA factors reveals their negative and positive roles in plant defense responses).

[0094] Homologues of the LMP can be generated by mutagenesis, e.g., discrete point mutation or truncation of the LMP. As used herein, the term "homologue" refers to a variant form of the LMP which acts as an agonist or antagonist of the activity of the LMP. An agonist of the LMP can retain substantially the same, or a subset, of the biological activities of the LMP. An antagonist of the LMP can inhibit one or more of the activities of the naturally occurring form of the LMP, by, for example, competitively binding to a downstream or upstream member of the cell membrane component metabolic cascade which includes the LMP, or by binding to a LMP which mediates transport of compounds across such membranes, thereby preventing translocation from taking place.

[0095] In an alternative embodiment, homologues of the LMP can be identified by screening combinatorial libraries of mutants, e.g., truncation mutants, of the LMP for LMP agonist or antagonist activity. In one embodiment, a variegated library of LMP variants is generated by combinatorial mutagenesis at the nucleic acid level and is encoded by a variegated gene library. A variegated library of LMP variants can be produced by, for example, enzymatically ligating a mixture of synthetic oligonucleotides into gene sequences such that a degenerate set of potential LMP sequences is expressible as individual polypeptides, or alternatively, as a set of larger fusion proteins (e.g., for phage display) containing the set of LMP sequences therein. There are a variety of methods which can be used to produce libraries of potential LMP homologues from a degenerate oligonucleotide sequence. Chemical synthesis of a degenerate gene sequence can be performed in an automatic DNA synthesizer, and the synthetic gene then ligated into an appropriate expression vector. Use of a degenerate set of genes allows for the provision, in one mixture, of all of the sequences encoding the desired set of potential LMP sequences. Methods for synthesizing degenerate oligonucleotides are known in the art (see, e.g., Narang 1983, Tetrahedron 39:3; Itakura et al. 1984, Armu Rev. Biochem. 53:323; Itakura et al. 1984, Science 198:1056; Ike et al. 1983, Nucleic Acids Res. 11:477).

[0096] In addition, libraries of fragments of the LMP coding sequences can be used to generate a variegated population of LMP fragments for screening and subsequent selection of homologues of a LMP. In one embodiment, a library of coding sequence fragments can be generated by treating a double stranded PCR fragment of a LMP coding sequence with a nuclease under conditions wherein nicking occurs only about once per molecule, denaturing the double stranded DNA, renaturing the DNA to form double stranded DNA which can include sense/antisense pairs from different nicked products, removing single stranded portions from reformed duplexes by treatment with S1 nuclease, and ligating the resulting fragment library into an expression vector. By this method, an expression library can be derived which encodes N-terminal, C-terminal and internal fragments of various sizes of the LMP.

[0097] Several techniques are known in the art for screening gene products of combinatorial libraries made by point mutations or truncation, and for screening cDNA libraries for gene products having a selected property. Such techniques are adaptable for rapid screening of the gene libraries generated by the combinatorial mutagenesis of LMP homologues. The most widely used techniques, which are amenable to high through-put analysis, for screening large gene libraries typically include cloning the gene library into replicable expression vectors, transforming appropriate cells with the resulting library of vectors, and expressing the combinatorial genes under conditions in which detection of a desired activity facilitates isolation of the vector encoding the gene whose product was detected. Recursive ensemble mutagenesis (REM), a new technique which enhances the frequency of functional mutants in the libraries, can be used in combination with the screening assays to identify LMP homologues (Arkin & Yourvan 1992, Proc. Natl. Acad. Sci. USA 89:7811-7815; Delgrave et al. 1993, Protein Engineering 6:327-331).

[0098] In another embodiment, cell based assays can be exploited to analyze a variegated LMP library, using methods well known in the art.

[0099] The nucleic acid molecules, proteins, protein homologues, fusion proteins, primers, vectors, and host cells described herein can be used in one or more of the following methods: identification of Arabidopsis thaliana and Brassica napus and related organisms; mapping of genomes of organisms related to Arabidopsis thaliana and Brassica napus; identification and localization of Arabidopsis thaliana and Brassica napus sequences of interest; evolutionary studies; determination of LMP regions required for function; modulation of a LMP activity; modulation of the metabolism of one or more cell functions; modulation of the transmembrane transport of one or more compounds; and modulation of seed storage compound accumulation.

[0100] The plant Arabidopsis thaliana represents one member of higher (or seed) plants. It is related to other plants such as Brassica napus or soybean which require light to drive photosynthesis and growth. Plants like Arabidopsis thaliana and Brassica napus share a high degree of homology on the DNA sequence and polypeptide level, allowing the use of heterologous screening of DNA molecules with probes evolving from other plants or organisms, thus enabling the derivation of a consensus sequence suitable for heterologous screening or functional annotation and prediction of gene functions in third species. The ability to identify such functions can therefore have significant relevance, e.g., prediction of substrate specificity of enzymes. Further, these nucleic acid molecules may serve as reference points for the mapping of Arabidopsis genomes, or of genomes of related organisms.

[0101] The LMP nucleic acid molecules of the invention have a variety of uses. First, they may be used to identify an organism as being Arabidopsis thaliana, Brassica napus, and Physcomitrella patens or a close relative thereof. Also, they may be used to identify the presence of Arabidopsis thaliana, Brassica napus, and Physcomitrella patens or a relative thereof in a mixed population of microorganisms. The invention provides the nucleic acid sequences of a number of Arabidopsis thaliana and Brassica napus genes; by probing the extracted genomic DNA of a culture of a unique or mixed population of microorganisms under stringent conditions with a probe spanning a region of an Arabidopsis thaliana and Brassica napus gene which is unique to this organism, one can ascertain whether this organism is present.

[0102] Further, the nucleic acid and protein molecules of the invention may serve as markers for specific regions of the genome. This has utility not only in the mapping of the genome, but also for functional studies of Arabidopsis thaliana and Brassica napus proteins. For example, to identify the region of the genome to which a particular Arabidopsis thaliana and Brassica napus DNA-binding protein binds, the Arabidopsis thaliana and Brassica napus genome could be digested, and the fragments incubated with the DNA-binding protein. Those which bind the protein may be additionally probed with the nucleic acid molecules of the invention, preferably with readily detectable labels; binding of such a nucleic acid molecule to the genome fragment enables the localization of the fragment to the genome map of Arabidopsis thaliana and Brassica napus, and, when performed multiple times with different enzymes, facilitates a rapid determination of the nucleic acid sequence to which the protein binds. Further, the nucleic acid molecules of the invention may be sufficiently homologous to the sequences of related species such that these nucleic acid molecules may serve as markers for the construction of a genomic map in related plants.

[0103] The LMP nucleic acid molecules of the invention are also useful for evolutionary and protein structural studies. The metabolic and transport processes in which the molecules of the invention participate are utilized by a wide variety of prokaryotic and eukaryotic cells; by comparing the sequences of the nucleic acid molecules of the present invention to those encoding similar enzymes from other organisms, the evolutionary relatedness of the organisms can be assessed. Similarly, such a comparison permits an assessment of which regions of the sequence are conserved and which are not, which may aid in determining those regions of the protein which are essential for the functioning of the enzyme. This type of determination is of value for protein engineering studies and may give an indication of what the protein can tolerate in terms of mutagenesis without losing function.

[0104] Manipulation of the LMP nucleic acid molecules of the invention may result in the production of LMPs having functional differences from the wild-type LMPs. These proteins may be improved in efficiency or activity, may be present in greater numbers in the cell than is usual, or may be decreased in efficiency or activity.

[0105] There are a number of mechanisms by which the alteration of a LMP of the invention may directly affect the accumulation of seed storage compounds. In the case of plants expressing LMPs, increased transport can lead to altered accumulation of compounds and/or solute partitioning within the plant tissue and organs which ultimately could be used to affect the accumulation of one or more seed storage compounds during seed development. An example is provided by Mitsukawa et al. (1997, Proc. Natl. Acad. Sci. USA 94:7098-7102), where over expression of an Arabidopsis high-affinity phosphate transporter gene in tobacco cultured cells enhanced cell growth under phosphate-limited conditions. Phosphate availability also affects significantly the production of sugars and metabolic intermediates (Hurry et al. 2000, Plant J. 24:383-396) and the lipid composition in leaves and roots (Hartel et al. 2000, Proc. Natl. Acad. Sci. USA 97:10649-10654). Likewise, the activity of the plant ACCase has been demonstrated to be regulated by phosphorylation (Savage & Ohlrogge 1999, Plant J. 18:521-527) and alterations in the activity of the kinases and phosphatases (LMPs) that act on the ACCase could lead to increased or decreased levels of seed lipid accumulation. Moreover, the presence of lipid kinase activities in chloroplast envelope membranes suggests that signal transduction pathways and/or membrane protein regulation occur in envelopes (see, e.g., Muller et al. 2000, J. Biol. Chem. 275:19475-19481 and literature cited therein). The ABI1 and ABI2 genes encode two protein serine/threonine phosphatases 2C, which are regulators in abscisic acid signaling pathway, and thereby in early and late seed development (e.g. Merlot et al. 2001, Plant J. 25:295-303). For more examples see also the section `background of the invention`.

[0106] The present invention also provides antibodies which specifically binds to an LMP-polypeptide, or a portion thereof, as encoded by a nucleic acid disclosed herein or as described herein.

[0107] Antibodies can be made by many well-known methods (see, e.g. Harlow and Lane, "Antibodies; A Laboratory Manual" Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y., 1988). Briefly, purified antigen can be injected into an animal in an amount and in intervals sufficient to elicit an immune response. Antibodies can either be purified directly, or spleen cells can be obtained from the animal. The cells can then fused with an immortal cell line and screened for antibody secretion. The antibodies can be used to screen nucleic acid clone libraries for cells secreting the antigen. Those positive clones can then be sequenced (see, for example, Kelly et al. 1992, Bio/Technology 10:163-167; Bebbington et al. 1992, Bio/Technology 10:169-175).

[0108] The phrase "selectively binds" with the polypeptide refers to a binding reaction which is determinative of the presence of the protein in a heterogeneous population of proteins and other biologics. Thus, under designated immunoassay conditions, the specified antibodies bound to a particular protein do not bind in a significant amount to other proteins present in the sample. Selective binding to an antibody under such conditions may require an antibody that is selected for its specificity for a particular protein. A variety of immunoassay formats may be used to select antibodies that selectively bind with a particular protein. For example, solid-phase ELISA immunoassays are routinely used to select antibodies selectively immunoreactive with a protein. See Harlow and Lane "Antibodies, A Laboratory Manual" Cold Spring Harbor Publications, New York (1988), for a description of immunoassay formats and conditions that could be used to determine selective binding.

[0109] In some instances, it is desirable to prepare monoclonal antibodies from various hosts. A description of techniques for preparing such monoclonal antibodies may be found in Stites et al., editors, "Basic and Clinical Immunology," (Lange Medical Publications, Los Altos, Calif., Fourth Edition) and references cited therein, and in Harlow and Lane ("Antibodies, A Laboratory Manual" Cold Spring Harbor Publications, New York, 1988).

[0110] Throughout this application, various publications are referenced. The disclosures of all of these publications and those references cited within those publications in their entireties are hereby incorporated by reference into this application in order to more fully describe the state of the art to which this invention pertains.

[0111] It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the scope or spirit of the invention. Other embodiments of the invention will be apparent to those skilled in the art from consideration of the specification and practice of the invention disclosed herein. It is intended that the specification and Examples be considered as exemplary only, with a true scope and spirit of the invention being indicated by the claims included herein.

EXAMPLES

Example 1

General Processes

a) General Cloning Processes:

[0112] Cloning processes such as, for example, restriction cleavages, agarose gel electrophoresis, purification of DNA fragments, transfer of nucleic acids to nitrocellulose and nylon membranes, linkage of DNA fragments, transformation of Escherichia coli and yeast cells, growth of bacteria and sequence analysis of recombinant DNA were carried out as described in Sambrook et al. (1989, Cold Spring Harbor Laboratory Press: ISBN 0-87969-309-6) or Kaiser, Michaelis and Mitchell (1994, "Methods in Yeast Genetics," Cold Spring Harbor Laboratory Press: ISBN 0-87969-451-3).

b) Chemicals:

[0113] The chemicals used were obtained, if not mentioned otherwise in the text, in p.a. quality from the companies Fluka (Neu-Ulm), Merck (Darmstadt), Roth (Karlsruhe), Serva (Heidelberg), and Sigma (Deisenhofen). Solutions were prepared using purified, pyrogen-free water, designated as H2O in the following text, from a Milli-Q water system water purification plant (Millipore, Eschborn). Restriction endonucleases, DNA-modifying enzymes, and molecular biology kits were obtained from the companies AGS (Heidelberg), Amersham (Braunschweig), Biometra (Gottingen), Boehringer (Mannheim), Genomed (Bad Oeynnhausen), New England Biolabs (Schwalbach/Taunus), Novagen (Madison, Wis., USA), Perkin-Elmer (Weiterstadt), Pharmacia (Freiburg), Qiagen (Hilden), and Stratagene (Amsterdam, Netherlands). They were used, if not mentioned otherwise, according to the manufacturer's instructions.

c) Plant Material:

Arabidopsis pkl Mutant

[0114] For this study, in one series of experiments, root material of wild-type and pickle mutant Arabidopsis thaliana plants were used. The pkl mutation was isolated from an ethyl methanesulfonate-mutagenized population of the Columbia ecotype as described (Ogas et al., 1997, Science 277:91-94; Ogas et al., 1999, Proc. Natl. Acad. Sci. USA 96:13839-13844). In other series of experiments, siliques of individual ecotypes of Arabidopsis thaliana and of selected Arabidopsis phytohormone mutants were used. Seeds were obtained from the Arabidopsis stock center.

Brassica napus AC Excel and Cresor Varieties

[0115] Brassica napus varieties AC Excel and Cresor were used for this study to create cDNA libraries. Seed, seed pod, flower, leaf, stem, and root tissues were collected from plants that were in some cases dark-, salt-, heat-, and drought-treated. However, this study focused on the use of seed and seed pod tissues for cDNA libraries.

d) Plant Growth:

[0116] Arabidopsis thaliana

[0117] Plants were either grown on Murashige-Skoog medium as described in Ogas et al. (1997, Science 277:91-94; 1999, Proc. Natl. Acad. Sci. USA 96:13839-13844) or on soil under standard conditions as described in Focks & Benning (1998, Plant Physiol. 118:91-101).

Brassica napus

[0118] Plants (AC Excel, except where mentioned) were grown in Metromix (Scotts, Marysville, Ohio) at 22° C. under a 14/10 light/dark cycle. Six seed and seed pod tissues of interest in this study were collected to create the following cDNA libraries: Immature seeds, mature seeds, immature seed pods, mature seed pods, night-harvested seed pods, and Cresor variety (high erucic acid) seeds. Tissue samples were collected within specified time points for each developing tissue and multiple samples within a time frame pooled together for eventual extraction of total RNA. Samples from immature seeds were taken between 1-25 days after anthesis (daa), mature seeds between 25-50 daa, immature seed pods between 1-15 daa, mature seed pods between 15-50 daa, night-harvested seed pods between 1-50 daa and Cresor seeds 5-25 daa.

Example 2

Total DNA Isolation from Plants

[0119] The details for the isolation of total DNA relate to the working up of one gram fresh weight of plant material.

[0120] CTAB buffer: 2% (w/v) N-cethyl-N,N,N-trimethylammonium bromide (CTAB); 100 mM Tris HCl pH 8.0; 1.4 M NaCl; 20 mM EDTA. N-Laurylsarcosine buffer: 10% (w/v) N-laurylsarcosine; 100 mM Tris HCl pH 8.0; 20 mM EDTA.

[0121] The plant material was triturated under liquid nitrogen in a mortar to give a fine powder and transferred to 2 ml Eppendorf vessels. The frozen plant material was then covered with a layer of 1 ml of decomposition buffer (1 ml CTAB buffer, 100 μl of N-laurylsarcosine buffer, 20 μl of β-mercaptoethanol and 10 μl of proteinase K solution, 10 mg/ml) and incubated at 60° C. for one hour with continuous shaking. The homogenate obtained was distributed into two Eppendorf vessels (2 ml) and extracted twice by shaking with the same volume of chloroform/isoamyl alcohol (24:1). For phase separation, centrifugation was carried out at 8000 g and RT for 15 minutes in each case. The DNA was then precipitated at -70° C. for 30 minutes using ice-cold isopropanol. The precipitated DNA was sedimented at 4° C. and 10,000 g for 30 minutes and resuspended in 180 μl of TE buffer (Sambrook et al., 1989, Cold Spring Harbor Laboratory Press: ISBN 0-87969-309-6). For further purification, the DNA was treated with NaCl (1.2 M final concentration) and precipitated again at -70° C. for 30 minutes using twice the volume of absolute ethanol. After a washing step with 70% ethanol, the DNA was dried and subsequently taken up in 50 μl of H2O+RNAse (50 mg/ml final concentration). The DNA was dissolved overnight at 4° C. and the RNAse digestion was subsequently carried out at 37° C. for 1 hour. Storage of the DNA took place at 4° C.

Example 3

Isolation of Total RNA and Poly-(A)+ RNA from Plants

[0122] Arabidopsis thaliana

[0123] For the investigation of transcripts, both total RNA and poly-(A)+ RNA were isolated. RNA was isolated from siliques of Arabidopsis plants according to the following procedure:

[0124] RNA preparation from Arabidopsis seeds--"hot" extraction:

Buffers, Enzymes, and Solutions:

[0125] 2M KCl

[0126] Proteinase K

[0127] Phenol (for RNA)

[0128] Chloroform:Isoamylalcohol

[0129] (Phenol:choloroform 1:1; pH adjusted for RNA)

[0130] 4 M LiCl, DEPC-treated

[0131] DEPC-treated water

[0132] 3M NaOAc, pH 5, DEPC-treated

[0133] Isopropanol

[0134] 70% ethanol (made up with DEPC-treated water)

[0135] Resuspension buffer: 0.5% SDS, 10 mM Tris pH 7.5, 1 mM EDTA made up with DEPC-treated water as this solution can not be DEPC-treated

[0136] Extraction Buffer:

[0137] 0.2M Na Borate

[0138] 30 mM EDTA

[0139] 30 mM EGTA

[0140] 1% SDS (250 μl of 10% SDS-solution for 2.5 ml buffer) [0141] 1% Deoxycholate (25 mg for 2.5 ml buffer)

[0142] 2% PVPP (insoluble--50 mg for 2.5 ml buffer)

[0143] 2% PVP 40K (50 mg for 2.5 ml buffer)

[0144] 10 mM DTT

100 mM β-Mercaptoethanol (fresh, handle under fume hood--use 35 μl of 14.3M solution for 5 ml buffer)

Extraction

[0145] Extraction buffer was heated up to 80° C. Tissues were ground in liquid nitrogen-cooled mortar, and the tissue powder was transferred to a 1.5 ml tube. Tissues should be kept frozen until buffer is added; the sample should be transferred with a pre-cooled spatula; and the tube should be kept in liquid nitrogen at all times. Then 350 μl preheated extraction buffer was added (For 100 mg tissue, buffer volume can be as much as 500 μl for bigger samples) to tube; samples were vortexed; and the tube was heated to 80° C. for approximately 1 minute and then kept on ice. The samples were vortexed and ground additionally with electric mortar.

Digestion

[0146] Proteinase K (0.15 mg/100 mg tissue) was added, and the mixture was vortexed and then kept at 37° C. for one hour.

First Purification

[0147] For purification, 27 μl 2M KCl was added to the samples. The samples were chilled on ice for 10 minutes and then centrifuged at 12.000 rpm for 10 minutes at room temperature. The supernatant was transferred to a fresh, RNAase-free tube, and one phenol extraction was conducted, followed by a choloroform:isoamylalcohol extraction. One volume isopropanol to was added to the supernatant, and the mixture was chilled on ice for 10 minutes. RNA was pelleted by centrifugation (7000 rpm for 10 minutes at room temperature). Pellets were dissolved in 1 ml 4M LiCl solution by vortexing the mixture 10 to 15 minutes. RNA was pelleted by a 5 minute centrifugation.

Second Purification

[0148] The pellet was resuspended in 500 μl Resuspension buffer. Then 500 μl of phenol was added, and the mixture was vortexed. Then, 250 μl chloroform:isoamylalcohol was added; the mixture was vortexed and then centrifuged for 5 minutes. The supernatant was transferred to a fresh tube. The choloform:isoamylalcohol extraction was repeated until the interface was clear. The supernatant was transferred to a fresh tube and 1/10 volume 3M NaOAc, pH 5 and 600 μl isopropanol were added. The mixture was kept at -20 for 20 minutes or longer. The RNA was pelleted by 10 minutes of centrifugation, and then the pellet was washed once with 70% ethanol. All remaining alcohol was removed before dissolving the pellet in 15 to 20 μl DEPC-treated water. The quantity and quality of the RNA was determined by measuring the absorbance of a 1:200 dilution at 260 nm and 280 nm. (40 μg RNA/ml=1 OD260)

[0149] RNA from roots of wild-type Arabidopsis and the pickle mutant of Arabidopsis was isolated as described (Ogas et al., 1997, Science 277:91-94; Ogas et al., 1999, Proc. Natl. Acad. Sci. USA 96:13839-13844).

[0150] The mRNA was prepared from total RNA, using the Amersham Pharmacia Biotech mRNA purification kit, which utilizes oligo(dT)-cellulose columns.

[0151] Isolation of Poly-(A)+ RNA was isolated using Dyna BeadsR (Dynal, Oslo, Norway) following the instructions of the manufacturer's protocol. After determination of the concentration of the RNA or of the poly(A)+ RNA, the RNA was precipitated by addition of 1/10 volume of 3 M sodium acetate pH 4.6 and 2 volumes of ethanol and stored at -70° C.

Brassica napus

[0152] Seeds were separated from pods to create homogeneous materials for seed and seed pod cDNA libraries. Tissues were ground into fine powder under liquid nitrogen using a mortar and pestle and transferred to a 50 ml tube. Tissue samples were stored at -80° C. until extractions could be performed. Total RNA was extracted from tissues using RNeasy Maxi kit (Qiagen) according to manufacturer's protocol, and mRNA was processed from total RNA using Oligotex mRNA Purification System kit (Qiagen), also according to manufacturer's protocol. The mRNA was sent to Hyseq Pharmaceuticals Incorporated (Sunnyville, Calif.) for further processing of mRNA from each tissue type into cDNA libraries and for use in their proprietary processes in which similar inserts in plasmids are clustered based on hybridization patterns.

Example 4

cDNA Library Construction

[0153] For cDNA library construction, first strand synthesis was achieved using Murine Leukemia Virus reverse transcriptase (Roche, Mannheim, Germany) and oligo-d(T)-primers, second strand synthesis by incubation with DNA polymerase I, Klenow enzyme and RNAseH digestion at 12° C. (2 hours), 16° C. (1 hour) and 22° C. (1 hour). The reaction was stopped by incubation at 65° C. (10 minutes) and subsequently transferred to ice. Double stranded DNA molecules were blunted by T4-DNA-polymerase (Roche, Mannheim) at 37° C. (30 minutes). Nucleotides were removed by phenol/chloroform extraction and Sephadex G50 spin columns EcoRI adapters (Pharmacia, Freiburg, Germany) were ligated to the cDNA ends by T4-DNA-ligase (Roche, 12° C., overnight) and phosphorylated by incubation with polynucleotide kinase (Roche, 37° C., 30 minutes). This mixture was subjected to separation on a low melting agarose gel. DNA molecules larger than 300 base pairs were eluted from the gel, phenol extracted, concentrated on Elutip-D-columns (Schleicher and Schuell, Dassel, Germany) and were ligated to vector arms and packed into lambda ZAPII phages or lambda ZAP-Express phages using the Gigapack Gold Kit (Stratagene, Amsterdam, Netherlands) using material and following the instructions of the manufacturer.

[0154] Brassica cDNA libraries were generated at Hyseq Pharmaceuticals Incorporated (Sunnyville, Calif.) No amplification steps were used in the library production to retain expression information. Hyseq's genomic approach involves grouping the genes into clusters and then sequencing representative members from each cluster. The cDNA libraries were generated from oligo dT column purified mRNA. Colonies from transformation of the cDNA library into E. coli were randomly picked and the cDNA insert were amplified by PCR and spotted on nylon membranes. A set of 33-P radiolabeled oligonucleotides were hybridized to the clones, and the resulting hybridization pattern determined to which cluster a particular clone belonged. The cDNA clones and their DNA sequences were obtained for use in overexpression in transgenic plants and in other molecular biology processes described herein.

Example 5

Identification of LMP Genes of Interest

[0155] Arabidopsis thaliana pkl Mutant

[0156] The pickle Arabidopsis mutant was used to identify LMP-encoding genes. The pickle mutant accumulates seed storage compounds, such as seed storage lipids and seed storage proteins, in the root tips (Ogas et al., 1997, Science 277:91-94; Ogas et al., 1999, Proc. Natl. Acad. Sci. USA 96:13839-13844). The mRNA isolated from roots of wild-type and pickle plants was used to create a subtracted and normalized cDNA library (SSH library) containing cDNAs that are only present in the pickle roots, but not in the wild-type roots. Clones from the SSH library were spotted onto nylon membranes and hybridized with radio-labeled pickle or wild-type root mRNA to ascertain that the SSH clones were more abundant in pickle roots compared to wild-type roots. These SSH clones were randomly sequenced and the sequences were annotated (See Example 9). Based on the expression levels and on these initial functional annotations (See Table 3), clones from the SSH library were identified as potential LMP-encoding genes.

[0157] To identify additional potential gene targets from the Arabidopsis pickle mutant, the Megasort® and MPSS technologies of Lynx Therapeutics Inc. were used. MegaSort is a micro-bead technology that allows both the simultaneous collection of millions of clones on as many micro-beads (See Brenner et al., 1999, Proc. Natl. Acad. Sci. USA 97:1665-1670). Genes are identified based on their differential expression in wild-type and pickle Arabidopsis mutant roots. RNA and mRNA are isolated from wild-type and mutant roots using standard procedures. The MegaSort technology enables the identification of over- and under-expressed clones in two mRNA samples without prior knowledge of the genes and is thus useful to discover differentially expressed genes that can encode LMP proteins. The MPSS technology enables the quantitation of the abundance of mRNA transcripts in mRNA samples (Brenner et al., Nat. Biotechnol. 18:630-4) and was used to obtain expression profiles of wild-type and pickle root mRNAs.

[0158] Other LMP candidate genes were identified by randomly selecting various Arabidopsis phytohormone mutants (e.g. mutants obtained from EMS treatment) from the Arabidopsis stock center. These mutants and control wild-type plants were grown under standard conditions in growth chambers and screened for the accumulation of seed storage compounds. Mutants showing altered levels of seed storage compounds were considered as having a mutation in a LMP candidate gene and were investigated further.

Brassica napus

[0159] RNA expression profile data was obtained from the Hyseq clustering process. Clones showing 75% or greater expression in seed libraries compared to the other tissue libraries were selected as LMP candidate genes. The Brassica napus clones were selected for overexpression in Arabidopsis based on their expression profile.

Example 6

Cloning of Full-Length cDNAs and Orthologs of Identified LMP Genes

[0160] Arabidopsis thaliana

[0161] Full-length sequences of the Arabidopsis thaliana partial cDNAs (ESTs) that were identified in the SSH library and from MegaSort and MPSS EST sequencing were isolated by RACE PCR using the SMART RACE cDNA amplification kit from Clontech allowing both 5' and 3' rapid amplification of cDNA ends (RACE). The isolation of cDNAs and the RACE PCR protocol used were based on the manufacturer's conditions. The RACE product fragments were extracted from agarose gels with a QIAquick Gel Extraction Kit (Qiagen) and ligated into the TOPO pCR 2.1 vector (Invitrogen) following manufacturer's instructions. Recombinant vectors were transformed into TOP10 cells (Invitrogen) using standard conditions (Sambrook et al., 1989). Transformed cells were grown overnight at 37° C. on LB agar containing 50 μg/ml kanamycin and spread with 40 μl of a 40 mg/ml stock solution of X-gal in dimethylformamide for blue-white selection. Single white colonies were selected and used to inoculate 3 ml of liquid LB containing 50 μg/ml kanamycin and grown overnight at 37° C. Plasmid DNA was extracted using the QIAprep Spin Miniprep Kit (Qiagen) following manufacturer's instructions. Subsequent analyses of clones and restriction mapping was performed according to standard molecular biology techniques (Sambrook et al., 1989).

[0162] Gene sequences can be used to identify homologous or heterologous genes (orthologs, the same LMP gene from another plant) from cDNA or genomic libraries. This can be done by designing PCR primers to conserved sequences identified by multiple sequence alignments. Orthologs are often identified by designing degenerate primers to full-length or partial sequences of genes of interest. Homologous genes (e.g. full-length cDNA clones) can be isolated via nucleic acid hybridization using, for example, cDNA libraries: Depending on the abundance of the gene of interest, 100,000 up to 1,000,000 recombinant bacteriophages are plated and transferred to nylon membranes. After denaturation with alkali, DNA is immobilized on the membrane by e.g. UV cross linking. Hybridization is carried out at high stringency conditions. Aqueous solution hybridization and washing is performed at an ionic strength of 1 M NaCl and a temperature of 68° C. Hybridization probes are generated by, e.g., radioactive (32P) nick transcription labeling (High Prime, Roche, Mannheim, Germany). Signals are detected by autoradiography.

[0163] Partially homologous or heterologous genes that are related but not identical can be identified in a procedure analogous to the above-described procedure using low stringency hybridization and washing conditions. For aqueous hybridization, the ionic strength is normally kept at 1 M NaCl while the temperature is progressively lowered from 68 to 42° C.

[0164] Isolation of gene sequences with homology (or sequence identity/similarity) only in a distinct domain (for example 10-20 amino acids) can be carried out by using synthetic radiolabeled oligonucleotide probes. Radiolabeled oligonucleotides are prepared by phosphorylation of the 5-prime end of two complementary oligonucleotides with T4 polynucleotide kinase. The complementary oligonucleotides are annealed and ligated to form concatemers. The double stranded concatemers are than radiolabeled by, for example, nick transcription. Hybridization is normally performed at low stringency conditions using high oligonucleotide concentrations.

Oligonucleotide Hybridization Solution:

6×SSC

[0165] 0.01 M sodium phosphate

1 mM EDTA (pH 8)

0.5% SDS

[0166] 100 μg/ml denaturated salmon sperm DNA 0.1% nonfat dried milk

[0167] During hybridization, temperature is lowered stepwise to 5-10° C. below the estimated oligonucleotide Tm or down to room temperature followed by washing steps and autoradiography. Washing is performed with low stringency such as three washing steps using 4×SSC. Further details are described by Sambrook et al. (1989, "Molecular Cloning: A Laboratory Manual", Cold Spring Harbor Laboratory Press) or Ausubel et al. (1994, "Current Protocols in Molecular Biology", John Wiley & Sons).

Brassica napus

[0168] Clones of Brassica napus genes obtained from Hyseq were sequenced at using a ABI 377 slab gel sequencer and BigDye Terminator Ready Reaction kits (PE Biosystems, Foster City, Calif.). Gene specific primers were designed using these sequences, and genes were amplified from the plasmid supplied from Hyseq using touch-down PCR. In some cases, primers were designed to add an "AACA" Kozak-like sequence just upstream of the gene start codon and two bases downstream were, in some cases, changed to GC to facilitate increased gene expression levels (Chandrashekhar et al., 1997, Plant Molecular Biology 35:993-1001). PCR reaction cycles were: 94° C., 5 minutes; 9 cycles of 94° C., 1 minute, 65° C., 1 minute, 72° C., 4 minutes and in which the anneal temperature was lowered by 1° C. each cycle; 20 cycles of 94° C., 1 minute, 55° C., 1 minute, 72° C., 4 minutes; and the PCR cycle was ended with 72° C., 10 minutes. Amplified PCR products were gel purified from 1% agarose gels using GenElute-EtBr spin columns (Sigma), and after standard enzymatic digestion, were ligated into the plant binary vector pBPS-GB1 for transformation of Arabidopsis. The binary vector was amplified by overnight growth in E. coli DH5 in LB media and appropriate antibiotic, and plasmid was prepared for downstream steps using Qiagen MiniPrep DNA preparation kit. The insert was verified throughout the various cloning steps by determining its size through restriction digest and inserts were sequenced in parallel to plant transformations to ensure the expected gene was used in Arabidopsis transformation.

RT-PCR and Cloning of Arabidopsis thaliana, Brassica napus, and Physcomitrella patens LMP Genes

[0169] Full-length LMP cDNAs were isolated by RT-PCR from Arabidopsis thaliana, Brassica napus, or Physcomitrella patens RNA. The synthesis of the first strand cDNA was achieved using AMV Reverse Transcriptase (Roche, Mannheim, Germany). The resulting single-stranded cDNA was amplified via Polymerase Chain Reaction (PCR) utilizing two gene-specific primers. The conditions for the reaction were standard conditions with Expand High Fidelity PCR system (Roche). The parameters for the reaction were: five minutes at 94° C. followed by five cycles of 40 seconds at 94° C., 40 seconds at 50° C., and 1.5 minutes at 72° C. This was followed by thirty cycles of 40 seconds at 94° C., 40 seconds at 65° C., and 1.5 minutes at 72° C. The fragments generated under these RT-PCR conditions were analyzed by agarose gel electrophoresis to make sure that PCR products of the expected length had been obtained.

[0170] Full-length LMP cDNAs were isolated by using synthetic oligonucleotide primers (MWG-Biotech) designed based on the LMP gene specific DNA sequence that was determined by EST sequencing and by sequencing of RACE PCR products. The 5' PCR primers ("forward primer", F) for SEQ ID NO:83, SEQ ID NO:85, SEQ ID NO:87, SEQ ID NO:89, SEQ ID NO:91, SEQ ID NO:93, SEQ ID NO:95, SEQ ID NO:97, SEQ ID NO:99, SEQ ID NO:101, SEQ ID NO:103, SEQ ID NO:105, SEQ ID NO:107, SEQ ID NO:109, SEQ ID NO:111, SEQ ID NO:113, and SEQ ID NO:115 contained an AscI restriction site 5' upstream of the ATG start codon. The 5' PCR primers ("forward primer", F) for SEQ ID NO:117, SEQ ID NO:119, SEQ ID NO:121, SEQ ID NO:123, SEQ ID NO:125, SEQ ID NO:127, SEQ ID NO:129, SEQ ID NO:133, SEQ ID NO:135, SEQ ID NO:137, SEQ ID NO:139, SEQ ID NO:141, SEQ ID NO:143, SEQ ID NO:145, SEQ ID NO:147, SEQ ID NO:149, SEQ ID NO:151, SEQ ID NO:153, SEQ ID NO:155, SEQ ID NO:157, SEQ ID NO:159, SEQ ID NO:49, and SEQ ID NO:131, contained a NotI restriction site 5' upstream of the ATG start codon. The 3' PCR primers ("reverse primers", R) for SEQ ID NO:84, SEQ ID NO:86, SEQ ID NO:88, SEQ ID NO:90, SEQ ID NO:92, SEQ ID NO:94, SEQ ID NO:96, SEQ ID NO:98, SEQ ID NO:100, SEQ ID NO:102, SEQ ID NO:104, SEQ ID NO:106, SEQ ID NO:108, SEQ ID NO:110, SEQ ID NO:112, SEQ ID NO:114, and SEQ ID NO:116 contained a PacI restriction site 3' downstream of the stop codon. The 3' PCR primers ("reverse primers", R) for SEQ ID NO:118, SEQ ID NO:120, SEQ ID NO:122, SEQ ID NO:124, SEQ ID NO:126, SEQ ID NO:128, SEQ ID NO:130, SEQ ID NO:134, SEQ ID NO:136, SEQ ID NO:138, and SEQ ID NO:140, contained a NotI restriction site 3' downstream of the stop codon. The 3' PCR primers ("reverse primers", R) for SEQ ID NO:142, SEQ ID NO:144, SEQ ID NO:146, SEQ ID NO:148, SEQ ID NO:150, SEQ ID NO:152, SEQ ID NO:156, SEQ ID NO:158, SEQ ID NO:160, SEQ ID NO:50, and SEQ ID NO:132, contained a StuI restriction site 3' downstream of the stop codon. The 3' PCR primers ("reverse primers", R) for SEQ ID NO:154 contained an EcoRV restriction site 3' downstream of the stop codon.

[0171] The restriction sites were added so that the RT-PCR amplification products could be cloned into the restriction sites located in the multiple cloning site of the binary vector. The following "forward" (F) and "reverse" (R) primers were used to amplify the full-length Arabidopsis thaliana or Brassica napus cDNAs by RT-PCR using RNA from Arabidopsis thaliana or Brassica napus as original template:

TABLE-US-00005 For amplification of SEQ ID NO: 1 Pk123F (SEQ ID NO: 83) (5'-ATGGCGCGCCATGGCAATCTTCCGAAGTACACTAGT-3') Pk123R (SEQ ID NO: 84) (5'-GCTTAATTAATTAAGGGCACTTGAGACGGCCA-3') For amplification of SEQ ID NO: 3 Pk197F (SEQ ID NO: 85) (5'-ATGGCGCGCCAACAATGGAGAATGGAGCAACGACG-3') Pk197R (SEQ ID NO: 86) (5'-GCTTAATTAACTATATGGTTGGATATTGAGTCTTGGC-3') For amplification of SEQ ID NO: 5 Pk136F (SEQ ID NO: 87) (5'-ATGGCGCGCCATGGCTGAAAAAGTAAAGTCTGGTCA-3') Pk136R (SEQ ID NO: 88) (5'-GCTTAATTAATTATAGCTCCTCAGATCCCTCCGA-3') For amplification of SEQ ID NO: 7 Pk156F (SEQ ID NO: 89) (5'-ATGGCGCGCCATGGCTGGAGAAGAAATAGAGAGGG-3') Pk156R (SEQ ID NO: 90) (5'-GCTTAATTAATTAAACAGAGGCTTCTCTACTCTCACTT-3') For amplification of SEQ ID NO: 9 Pk159F (SEQ ID NO: 91) (5'-ATGGCGCGCCATGGCTGGAGTGATGAAGTTGGC-3') Pk159R (SEQ ID NO: 92) (5'-GCTTAATTAATCACCTCACGGTGTTGCAGTTG-3') For amplification of SEQ ID NO: 11 Pk179F (SEQ ID NO: 93) (5'-ATGGCGCGCCAAACAATGGGGCTTGCTGTGGTGG-3') Pk179R (SEQ ID NO: 94) (5'-GCTTAATTAATTACTGCAAGGCTTTCAATATATTTC-3') For amplification of SEQ ID NO: 13 Pk202F (SEQ ID NO: 95) (5'-ATGGCGCGCCAACAATGGCGTTCACGGCGCTTGT-3') Pk202R (SEQ ID NO: 96) (5'-GCTTAATTAATCAACAAGTAGGATAAGGAACACCACA-3') For amplification of SEQ ID NO: 15 Pk206F (SEQ ID NO: 97) (5'-ATGGCGCGCCAACAATGGCCCTTGATGAGCTTCTCAAG-3') Pk206R (SEQ ID NO: 98) (5'-GCTTAATTAATCAGAGAGAAGCAGAGTTTGTTCGC-3') For amplification of SEQ ID NO: 17 Pk207F (SEQ ID NO: 99) (5'-ATGGCGCGCCAACAATGGCGCAATCCCGATTATTAG-3') Pk207R (SEQ ID NO: 100) (5'-GCTTAATTAATTAAAACCACTCGCCTCTCATTTC-3') For amplification of SEQ ID NO: 19 Pk209F (SEQ ID NO: 101) (5'-ATGGCGCGCCATGTCCGTGGCTCGATTCGAT-3') Pk209R (SEQ ID NO: 102) (5'-GCTTAATTAACTAATCCTCTAGCTCGATGATTTTGAC-3') For amplification of SEQ ID NO: 21 Pk215F (SEQ ID NO: 103) (5'-ATGGCGCGCCAACAATGGCGATTTACAGATC TCTAAGAAAG-3') Pk215R (SEQ ID NO: 104) (5'-GCTTAATTAATTACCTTAGATAAGTGATCCATGTCTGG-3') For amplification of SEQ ID NO: 23 Pk239F (SEQ ID NO: 105) (5'-ATGGCGCGCCAACAATGGTAAAGGAAACT CTAATTCCTCCG-3') Pk239R (SEQ ID NO: 106) (5'-GCTTAATTAACTACCAGCCGAAGATTGGCTTGT-3') For amplification of SEQ ID NO: 25 Pk240F (SEQ ID NO: 107) (5'-ATGGCGCGCCATTTGGAGAGCAATGGCGACTT-3') Pk240R (SEQ ID NO: 108) (5'-GCTTAATTAATTACATCGAACGAAGAAGC ATCAA-3') For amplification of SEQ ID NO: 27 Pk241F (SEQ ID NO: 109) (5'-ATGGCGCGCCCATCCTCAGAAAGAATGGCTCAAA-3') Pk241R (SEQ ID NO: 110) (5'-GCTTAATTAATTAGCTTTCTTCACCATCATC GGTG-3') For amplification of SEQ ID NO: 29 Pk242F (SEQ ID NO: 111) (5'-ATGGCGCGCCAACAATGGGTGCAGGTGGAAGAATGCC-3') Pk242R (SEQ ID NO: 112) (5'-GCTTAATTAATCATAACTTATTGTTGTACCAGTA CACACC-3') For amplification of SEQ ID NO: 31 Bn011F (SEQ ID NO: 113) (5'-ATGGCGCGCCAACAATGGCTTCAATAAAT GAAGATGTGTCT-3') Bn011R (SEQ ID NO: 114) (5'-GACTTAATTAATCAATTGGTGGGATTAACGA CTCCA-3') For amplification of SEQ ID NO: 33 Bn077F (SEQ ID NO: 115) (5'-ATGGCGCGCCAACAATGGCTACA TTCTCTTGTAATTCTTATGA-3') Bn077R (SEQ ID NO: 116) (5'-GACTTAATTAATCAGAAGCGGCCATTAAAATT ACCCA-3') For amplification of SEQ ID NO: 35 Jb001F (SEQ ID NO: 117) (5'-ATAAGAATGCGGCCGCCATGGCAACGGAATGCATTGCA-3') Jb001R (SEQ ID NO: 118) (5'-ATAAGAATGCGGCCGCTTAGAAACTTCT TCTGTTCTT-3') For amplification of SEQ ID NO: 37 Jb002F (SEQ ID NO: 119) (5'-ATAAGAATGCGGCCGCCATGGCGTCAGAGC AAGCAAGG-3') Jb002R (SEQ ID NO: 120) (5'-ATAAGAATGCGGCCGCTCAACGTTGTCC ATGTTCCCG-3') For amplification of SEQ ID NO: 39 Jb003F (SEQ ID NO: 121) (5'-ATAAGAATGCGGCCGCCATGGCTAAGTC TTGCTATTTCA-3') Jb003R (SEQ ID NO: 122) (5'-ATAAGAATGCGGCCGCTCAGGCGCTATAG CCTAAGATT-3') For amplification of SEQ ID NO: 41 Jb005F (SEQ ID NO: 123) (5'-ATAAGAATGCGGCCGCCATGGACGGTGCCGG AGAATCACGA-3') Jb005R (SEQ ID NO: 124) (5'-ATAAGAATGCGGCCGCCTAATAACTTAA AGTTACCGGA-3') For amplification of SEQ ID NO: 43 Jb007F (SEQ ID NO: 125) (5'-ATAAGAATGCGGCCGCCATGTCGAGAGCTTTG TCAGTCG-3') Jb007R (SEQ ID NO: 126) (5'-ATAAGAATGCGGCCGCCATGTCGAGAGCTTT GTCAGTCG-3') For amplification of SEQ ID NO: 45 Jb009F (SEQ ID NO: 127) (5'-ATAAGAATGCGGCCGCCATGGCAAGCAGCGAC GTGAAGCT-3') Jb009R (SEQ ID NO: 128) (5'-ATAAGAATGCGGCCGCTCAACCAAGCCAAGAA GCACCC-3') For amplification of SEQ ID NO: 47 Jb013F (SEQ ID NO: 129)

(5'-ATAAGAATGCGGCCGCCATGGCGTCTCAACAAGA GAAGA-3') Jb013R (SEQ ID NO: 130) (5'-ATAAGAATGCGGCCGCTTAGGTCTTGGTCCTGA ATTTG-3') For amplification of SEQ ID NO: 51 Jb017F (SEQ ID NO: 133) (5'-ATAAGAATGCGGCCGCCATGGCTCCTTCAACAA AAGTTC-3') Jb017R (SEQ ID NO: 134) (5'-ATAAGAATGCGGCCGCTCAAACACTGCTGATAGTATTT-3') For amplification of SEQ ID NO: 53 Jb024F (SEQ ID NO: 135) (5'-ATAAGAATGCGGCCGCCATGCGGTGCTTTCC ACCTCCCT-3') Jb024R (SEQ ID NO: 136) (5'-ATAAGAATGCGGCCGCTTACTTTTGTAATGGTGAG AGC-3') For amplification of SEQ ID NO: 55 Jb027F (SEQ ID NO: 137) (5'-ATAAGAATGCGGCCGCCATGCTTCTAATTCTAG CGATTT-3') Jb027R (SEQ ID NO: 138) (5'-ATAAGAATGCGGCCGCTCAGATAACCTTCTTCTTCTCG-3') For amplification of SEQ ID NO: 57 OO-1F (SEQ ID NO: 139) (5'-ATTGCGGCCGCACAATGGCACATGCCACGTTTACG-3') OO-1R (SEQ ID NO: 140) (5'-ATTGCGGCCGCTTAGTCTTCATGGTCCCATAGATC-3') For amplification of SEQ ID NO: 59 OO-2F (SEQ ID NO: 141) (5'-GCGGCCGCCATGGCGTCTGAGAAACAAAAAC-3') OO-2R (SEQ ID NO: 142) (5'-AGGCCTTTACGCATTTACCACAGCTCC-3') For amplification of SEQ ID NO: 61 OO-3F (SEQ ID NO: 143) (5'-GCGGCCGCATGGATTCAACGAAGCTTAGTGAGC-3') OO-3R (SEQ ID NO: 144) (5'-AGGCCTTTACTGAGGTCCTGCAAATTTG-3') For amplification of SEQ ID NO: 63 OO-4F (SEQ ID NO: 145) (5'-GCGGCCGCCATGAAGGTTCACGAGACAAGA-3') OO-4R (SEQ ID NO: 146) (5'-AGGCCTCTACTCTGGTTCGACATCGAC-3') For amplification of SEQ ID NO: 65 OO-5F (SEQ ID NO: 147) (5'-GCGGCCGCCATGTCTACCCCAGCTGAATC-3') OO-5R (SEQ ID NO: 148) (5'-AGGCCTCTAATTGTAGAGATCATCATC-3') For amplification of SEQ ID NO: 67 OO-6F (SEQ ID NO: 149) (5'-GCGGCCGCCATGGACAAATCTAGTACCATG-3') OO-6R (SEQ ID NO: 150) (5'-AGGCCTTCAGCTACCACCCTTTTGTTTGAG-3') For amplification of SEQ ID NO: 69 OO-8F (SEQ ID NO: 151) (5'-GCGGCCGCCATGGCGAAATCTCAGATCTGG-3') OO-8R (SEQ ID NO: 152) (5'-AGGCCTTTAAGAAGAAGCAACGAACGTG-3') For amplification of SEQ ID NO: 71 OO-9F (SEQ ID NO: 153) (5'-GCGGCCGCCATGGCGTCGAGCGATGAGCG-3') OO-9R (SEQ ID NO: 154) (5'-GATATCTTACGGGAACGGAGCCAATTTC-3') For amplification of SEQ ID NO: 73 OO-10F (SEQ ID NO: 155) (5'-GCGGCCGCCATGGCGACTCTTAAGGTTTCTG-3') OO-10R (SEQ ID NO: 156) (5'-AGGCCTTTAAGCATCATCTTCACCGAG-3') For amplification of SEQ ID NO: 75 OO-11F (SEQ ID NO: 157) (5'-GCGGCCGCCATGGTGGATCTATTGAACTCG-3') OO-11R (SEQ ID NO: 158) (5'-AGGCCTTTACAACTCTTGGATATTAAAC-3') For amplification of SEQ ID NO: 77 OO-12F (SEQ ID NO: 159) (5'-GCGGCCGCCATGGCTGGAAAACTCATGCAC-3') OO-12R (SEQ ID NO: 160) (5'-AGGCCTTTATGGCTCGACAATGATCTTC-3') For amplification of SEQ ID NO: 79 pp82F (SEQ ID NO: 49) (5'-ATGGCGCGCCCGACATGAAGCGACGTTGAACG-3') pp82R (SEQ ID NO: 50) (5'-GCTTAATTAACTTTCCGCAGCCTTCAGGCCGC-3') For amplification of SEQ ID NO: 81 Pk225F (SEQ ID NO: 131) (5'-GGTTAATTAAGGCGCGCCCCCGGAAGCGATGCTGAG-3') Pk225R (SEQ ID NO: 132) (5'-ATCTCGAGGACGTCCCACAGCCACCGGATTC-3')

Example 7

Identification of Genes of Interest by Screening Expression Libraries with Antibodies

[0172] The cDNA clones can be used to produce recombinant protein, for example, in E. coli (e.g. Qiagen QIAexpress pQE system). Recombinant proteins are then normally affinity purified via Ni-NTA affinity chromatography (Qiagen). Recombinant proteins can be used to produce specific antibodies for example by using standard techniques for rabbit immunization. Antibodies are affinity purified using a Ni-NTA column saturated with the recombinant antigen as described by Gu et al. (1994, BioTechniques 17:257-262). The antibody can then be used to screen expression cDNA libraries to identify homologous or heterologous genes via an immunological screening (Sambrook et al., 1989, Molecular Cloning: A Laboratory Manual", Cold Spring Harbor Laboratory Press; or Ausubel et al. 1994, "Current Protocols in Molecular Biology", John Wiley & Sons).

Example 8

Northern-Hybridization

[0173] For RNA hybridization, 20 μg of total RNA or 1 μg of poly-(A)+ RNA was separated by gel electrophoresis in 1.25% strength agarose gels using formaldehyde as described in Amasino (1986, Anal. Biochem. 152:304), transferred by capillary attraction using 10×SSC to positively charged nylon membranes (Hybond N+, Amersham, Braunschweig), immobilized by UV light, and pre-hybridized for 3 hours at 68° C. using hybridization buffer (10% dextran sulfate w/v, 1 M NaCl, 1% SDS, 100 μg/ml of herring sperm DNA). The labeling of the DNA probe with the Highprime DNA labeling kit (Roche, Mannheim, Germany) was carried out during the pre-hybridization using alpha-32P dCTP (Amersham, Braunschweig, Germany). Hybridization was carried out after addition of the labeled DNA probe in the same buffer at 68° C. overnight. The washing steps were carried out twice for 15 minutes using 2×SSC and twice for 30 minutes using 1×SSC, 1% SDS at 68° C. The exposure of the sealed filters was carried out at -70° C. for a period of 1 day to 14 days.

Example 9

DNA Sequencing and Computational Functional Analysis

[0174] The SSH cDNA library as described in Examples 4 and 5 was used for DNA sequencing according to standard methods, in particular by the chain termination method using the ABI PRISM Big Dye Terminator Cycle Sequencing Ready Reaction Kit (Perkin-Elmer, Weiterstadt, Germany). Random sequencing was carried out subsequent to preparative plasmid recovery from cDNA libraries via in vivo mass excision, retransformation, and subsequent plating of DH10B on agar plates (material and protocol details from Stratagene, Amsterdam, Netherlands). Plasmid DNA was prepared from overnight grown E. coli cultures grown in Luria-Broth medium containing ampicillin (See Sambrook et al. (1989, Cold Spring Harbor Laboratory Press: ISBN 0-87969-309-6)) on a Qiagene DNA preparation robot (Qiagen, Hilden) according to the manufacturer's protocols. Sequencing primers with the following nucleotide sequences were used:

TABLE-US-00006 5'-CAGGAAACAGCTATGACC-3' SEQ ID NO: 161 5'-CTAAAGGGAACAAAAGCTG-3' SEQ ID NO: 162 5'-TGTAAAACGACGGCCAGT-3' SEQ ID NO: 163

[0175] Sequences were processed and annotated using the software package EST-MAX commercially provided by Bio-Max (Munich, Germany). The program incorporates practically all bioinformatics methods important for functional and structural characterization of protein sequences. For reference see http://pedant.mips.biochem.mpg.de.

[0176] The most important algorithms incorporated in EST-MAX are: FASTA: Very sensitive protein sequence database searches with estimates of statistical significance (Pearson W.R., 1990, Rapid and sensitive sequence comparison with FASTP and FASTA. Methods Enzymol. 183:63-98); BLAST: Very sensitive protein sequence database searches with estimates of statistical significance (Altschul S. F., Gish W., Miller W., Myers E. W. and Lipman D. J. Basic local alignment search tool. J. Mol. Biol. 215:403-410). PREDATOR: High-accuracy secondary structure prediction from single and multiple sequences. (Frishman & Argos 1997, 75% accuracy in protein secondary structure prediction. Proteins 27:329-335). CLUSTALW: Multiple sequence alignment (Thompson, J. D., Higgins, D. G. and Gibson, T. J. 1994, CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice, Nucleic Acids Res. 22:4673-4680). TMAP: Transmembrane region prediction from multiply aligned sequences (Persson B. & Argos P. 1994, Prediction of transmembrane segments in proteins utilizing multiple sequence alignments, J. Mol. Biol. 237:182-192). ALOM2:Transmembrane region prediction from single sequences (Klein P., Kanehisa M., and DeLisi C. 1984, Prediction of protein function from sequence properties: A discriminant analysis of a database. Biochim. Biophys. Acta 787:221-226. Version 2 by Dr. K. Nakai). PROSEARCH: Detection of PRO SITE protein sequence patterns. Kolakowski L. F. Jr., Leunissen J. A. M. and Smith J. E. 1992, ProSearch: fast searching of protein sequences with regular expression patterns related to protein structure and function. Biotechniques 13:919-921). BLIMPS: Similarity searches against a database of ungapped blocks (Wallace & Henikoff 1992, PATMAT: A searching and extraction program for sequence, pattern and block queries and databases, CABIOS 8:249-254. Written by Bill Alford).

Example 10

Plasmids for Plant Transformation

[0177] For plant transformation, various binary vectors such as a pBPS plant binary vector were used. Construction of the plant binary vectors was performed by ligation of the cDNA in sense or antisense orientation into the vector. In such vectors, a plant promoter was located 5-prime to the cDNA, where it activated transcription of the cDNA; and a polyadenylation sequence was located 3'-prime to the cDNA. Various plant promoters were used such as a constitutive promoter (Superpromoter), a seed-specific promoter, and a root-specific promoter. Tissue-specific expression was achieved by using a tissue-specific promoter. For example, in some instances, seed-specific expression was achieved by cloning the napin or LeB4 or USP promoter 5-prime to the cDNA. Also, any other seed specific promoter element can be used, and such promoters are well known to one of ordinary skill in the art. For constitutive expression within the whole plant, in some instances, the Superpromoter or the CaMV 35S promoter was used. The expressed protein also can be targeted to a cellular compartment using a signal peptide, for example for plastids, mitochondria, or endoplasmic reticulum (Kermode, 1996, Crit. Rev. Plant Sci. 15:285-423). The signal peptide is cloned 5-prime in frame to the cDNA to achieve subcellular localization of the fusion protein.

[0178] The plant binary vectors comprised a selectable marker gene driven under the control of one of various plant promoters, such as the AtAct2-1 promoter and the Nos-promoter; the LMP candidate cDNA under the control of a root-specific promoter, a seed-specific promoter, a non-tissue specific promoter, or a constitutive promoter; and a terminator. Partial or full-length LMP cDNA was cloned into the plant binary vector in sense or antisense orientation behind the desired promoter. The recombinant vector containing the gene of interest was transformed into Top10 cells (Invitrogen) using standard conditions. Transformed cells were selected for on LB agar containing the selective agent, and cells were grown overnight at 37° C. Plasmid DNA was extracted using the QIAprep Spin Miniprep Kit (Qiagen) following manufacturer's instructions. Analysis of subsequent clones and restriction mapping was performed according to standard molecular biology techniques (Sambrook et al., 1989, Molecular Cloning, A Laboratory Manual. 2nd Edition. Cold Spring Harbor Laboratory Press. Cold Spring Harbor, N.Y.).

Example 11

Agrobacterium Mediated Plant Transformation

[0179] Agrobacterium mediated plant transformation with the LMP nucleic acids described herein can be performed using standard transformation and regeneration techniques (Gelvin, Stanton B. & Schilperoort R. A, Plant Molecular Biology Manual, 2nd ed. Kluwer Academic Publ., Dordrecht 1995 in Sect., Ringbuc Zentrale Signatur: BT11-P; Glick, Bernard R. and Thompson, John E. Methods in Plant Molecular Biology and Biotechnology, S. 360, CRC Press, Boca Raton 1993). For example, Agrobacterium mediated transformation can be performed using the GV3 (pMP90) (Koncz & Schell, 1986, Mol. Gen. Genet. 204:383-396) or LBA4404 (Clontech) Agrobacterium tumefaciens strain.

[0180] Arabidopsis thaliana can be grown and transformed according to standard conditions (Bechtold, 1993, Acad. Sci. Paris. 316:1194-1199; Bent et al., 1994, Science 265:1856-1860). Additionally, rapeseed can be transformed with the LMR nucleic acids of the present invention via cotyledon or hypocotyl transformation (Moloney et al., 1989, Plant Cell Report 8:238-242; De Block et al., 1989, Plant Physiol. 91:694-701). Use of antibiotics for Agrobacterium and plant selection depends on the binary vector and the Agrobacterium strain used for transformation. Rapeseed selection is normally performed using kanamycin as selectable plant marker. Additionally, Agrobacterium mediated gene transfer to flax can be performed using, for example, a technique described by Mlynarova et al. (1994, Plant Cell Report 13:282-285).

[0181] Transformation of soybean can be performed using for example a technique described in EP 0424 047, U.S. Pat. No. 5,322,783 (Pioneer Hi-Bred International) or in EP 0397 687, U.S. Pat. No. 5,376,543 or U.S. Pat. No. 5,169,770 (University Toledo). Soybean seeds are surface sterilized with 70% ethanol for 4 minutes at room temperature with continuous shaking, followed by 20% (v/v) Clorox supplemented with 0.05% (v/v) Tween for 20 minutes with continuous shaking. Then the seeds are rinsed four times with distilled water and placed on moistened sterile filter paper in a Petri dish at room temperature for 6 to 39 hours. The seed coats are peeled off, and cotyledons are detached from the embryo axis. The embryo axis is examined to make sure that the meristematic region is not damaged. The excised embryo axes are collected in a half-open sterile Petri dish and air-dried to a moisture content less than 20% (fresh weight) in a sealed Petri dish until further use.

[0182] The method of plant transformation is also applicable to Brassica and other crops. In particular, seeds of canola are surface sterilized with 70% ethanol for 4 minutes at room temperature with continuous shaking, followed by 20% (v/v) Clorox supplemented with 0.05% (v/v) Tween for 20 minutes, at room temperature with continuous shaking. Then, the seeds are rinsed 4 times with distilled water and placed on moistened sterile filter paper in a Petri dish at room temperature for 18 hours. The seed coats are removed and the seeds are air dried overnight in a half-open sterile Petri dish. During this period, the seeds lose approximately 85% of their water content. The seeds are then stored at room temperature in a sealed Petri dish until further use.

[0183] Agrobacterium tumefaciens culture is prepared from a single colony in LB solid medium plus appropriate antibiotics (e.g. 100 mg/l streptomycin, 50 mg/l kanamycin) followed by growth of the single colony in liquid LB medium to an optical density at 600 nm of 0.8. Then, the bacteria culture is pelleted at 7000 rpm for 7 minutes at room temperature, and resuspended in MS (Murashige & Skoog, 1962, Physiol. Plant. 15:473-497) medium supplemented with 100 mM acetosyringone. Bacteria cultures are incubated in this pre-induction medium for 2 hours at room temperature before use. The axis of soybean zygotic seed embryos at approximately 44% moisture content are imbibed for 2 h at room temperature with the pre-induced Agrobacterium suspension culture. (The imbibition of dry embryos with a culture of Agrobacterium is also applicable to maize embryo axes).

[0184] The embryos are removed from the imbibition culture and are transferred to Petri dishes containing solid MS medium supplemented with 2% sucrose and incubated for 2 days, in the dark at room temperature. Alternatively, the embryos are placed on top of moistened (liquid MS medium) sterile filter paper in a Petri dish and incubated under the same conditions described above. After this period, the embryos are transferred to either solid or liquid MS medium supplemented with 500 mg/l carbenicillin or 300 mg/l cefotaxime to kill the agrobacteria. The liquid medium is used to moisten the sterile filter paper. The embryos are incubated during 4 weeks at 25° C., under 440 μmol m-2s-1 and 12 hours photoperiod. Once the seedlings have produced roots, they are transferred to sterile metromix soil. The medium of the in vitro plants is washed off before transferring the plants to soil. The plants are kept under a plastic cover for 1 week to favor the acclimatization process. Then the plants are transferred to a growth room where they are incubated at 25° C., under 440 μmol m-2s-1 light intensity and 12 h photoperiod for about 80 days.

[0185] Samples of the primary transgenic plants (T0) are analyzed by PCR to confirm the presence of T-DNA. These results are confirmed by Southern hybridization wherein DNA is electrophoresed on a 1% agarose gel and transferred to a positively charged nylon membrane (Roche Diagnostics). The PCR DIG Probe Synthesis Kit (Roche Diagnostics) is used to prepare a digoxigenin-labeled probe by PCR as recommended by the manufacturer.

Example 12

In Vivo Mutagenesis

[0186] In vivo mutagenesis of microorganisms can be performed by incorporation and passage of the plasmid (or other vector) DNA through E. coli or other microorganisms (e.g. Bacillus spp. or yeasts such as Saccharomyces cerevisiae) which are impaired in their capabilities to maintain the integrity of their genetic information. Typical mutator strains have mutations in the genes for the DNA repair system (e.g., mutHLS, mutD, mutT, etc.; for reference, see Rupp W. D. 1996, DNA repair mechanisms, in: Escherichia coli and Salmonella, p. 2277-2294, ASM: Washington.) Such strains are well known to those skilled in the art. The use of such strains is illustrated, for example, in Greener and Callahan, 1994, Strategies 7:32-34. Transfer of mutated DNA molecules into plants is preferably done after selection and testing in microorganisms. Transgenic plants are generated according to various examples within the exemplification of this document.

Example 13

Assessment of the mRNA Expression and Activity of a Recombinant Gene Product in the Transformed Organism

[0187] The activity of a recombinant gene product in the transformed host organism can be measured on the transcriptional level or/and on the translational level. A useful method to ascertain the level of transcription of the gene (an indicator of the amount of mRNA available for translation to the gene product) is to perform a Northern blot (for reference see, for example, Ausubel et al. 1988, Current Protocols in Molecular Biology, Wiley: New York), in which a primer designed to bind to the gene of interest is labeled with a detectable tag (usually radioactive or chemiluminescent), such that when the total RNA of a culture of the organism is extracted, run on gel, transferred to a stable matrix and incubated with this probe, the binding and quantity of binding of the probe indicates the presence and also the quantity of mRNA for this gene. This information at least partially demonstrates the degree of transcription of the transformed gene. Total cellular RNA can be prepared from plant cells, tissues or organs by several methods, all well-known in the art, such as that described in Bornane et al. (1992, Mol. Microbiol. 6:317-326).

[0188] To assess the presence or relative quantity of protein translated from this mRNA, standard techniques, such as a Western blot, may be employed (See, for example, Ausubel et al. 1988, Current Protocols in Molecular Biology, Wiley: New York). In this process, total cellular proteins are extracted, separated by gel electrophoresis, transferred to a matrix such as nitrocellulose, and incubated with a probe, such as an antibody, which specifically binds to the desired protein. This probe is generally tagged with a chemiluminescent or colorimetric label which may be readily detected. The presence and quantity of label observed indicates the presence and quantity of the desired mutant protein present in the cell.

[0189] The activity of LMPs that bind to DNA can be measured by several well-established methods, such as DNA band-shift assays (also called gel retardation assays). The effect of such LMP on the expression of other molecules can be measured using reporter gene assays (such as that described in Kolmar H. et al., 1995, EMBO J. 14:3895-3904 and references cited therein). Reporter gene test systems are well known and established for applications in both prokaryotic and eukaryotic cells, using enzymes such as beta-galactosidase, green fluorescent protein, and several others.

[0190] The determination of activity of lipid metabolism membrane-transport proteins can be performed according to techniques such as those described in Gennis R. B. (1989 Pores, Channels and Transporters, in Biomembranes, Molecular Structure and Function, Springer: Heidelberg, pp. 85-137, 199-234 and 270-322).

Example 14

In Vitro Analysis of the Function of Arabidopsis thaliana and Brassica napus Genes in Transgenic Plants

[0191] The determination of activities and kinetic parameters of enzymes is well established in the art. Experiments to determine the activity of any given altered enzyme must be tailored to the specific activity of the wild-type enzyme, which is well within the ability of one skilled in the art. Overviews about enzymes in general, as well as specific details concerning structure, kinetics, principles, methods, applications and examples for the determination of many enzyme activities may be found, for example, in the following references: Dixon, M. & Webb, E. C., 1979, Enzymes. Longmans: London; Fersht, 1985, Enzyme Structure and Mechanism. Freeman: New York; Walsh, 1979, Enzymatic Reaction Mechanisms. Freeman: San Francisco; Price, N.C., Stevens, L., 1982, Fundamentals of Enzymology. Oxford Univ. Press: Oxford; Boyer, P. D., ed. (1983) The Enzymes, 3rd ed. Academic Press: New York; Bisswanger, H., 1994, Enzymkinetik, 2nd ed. VCH: Weinheim (ISBN 3527300325); Bergmeyer, H. U., Bergmeyer, J., Grail, M., eds. (1983-1986) Methods of Enzymatic Analysis, 3rd ed., vol. Verlag Chemie: Weinheim; and Ullmann's Encyclopedia of Industrial Chemistry (1987) vol. A9, Enzymes. VCH: Weinheim, p. 352-363.

Example 15

Analysis of the Impact of Recombinant LMPs on the Production of a Desired Seed Storage Compound

Fatty Acid Production

[0192] The total fatty acid content of Arabidopsis seeds was determined by saponification of seeds in 0.5 M KOH in methanol at 80° C. for 2 hours followed by LC-MS analysis of the free fatty acids. Total fatty acid content of seeds of control and transgenic plants was measured with bulked seeds (usually 5 mg seed weight) of a single plant. Three different types of controls have been used: Col-2 (Columbia-2, the Arabidopsis ecotype in which SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7, SEQ ID NO:9, SEQ ID NO:11, SEQ ID NO:13, SEQ ID NO:15, SEQ ID NO:17, SEQ ID NO:19, SEQ ID NO:21, SEQ ID NO:23, SEQ ID NO:25, SEQ ID NO:27, SEQ ID NO:29, SEQ ID NO:31, SEQ ID NO:33, SEQ ID NO:79, or SEQ ID NO:81 has been transformed), Col-0 (Columbia-0, the Arabidopsis ecotype in which SEQ ID NO:35, SEQ ID NO:37, SEQ ID NO:39, SEQ ID NO:41, SEQ ID NO:43, SEQ ID NO:45, SEQ ID NO:47, SEQ ID NO:51, SEQ ID NO:53, SEQ ID NO:55, SEQ ID NO:57, SEQ ID NO:59, SEQ ID NO:61, SEQ ID NO:63, SEQ: ID NO:65, SEQ ID NO:67, SEQ ID NO:69, SEQ ID NO:71, SEQ ID NO:73, SEQ ID NO:75, or SEQ ID NO:77 has been transformed), C-24 (an Arabidopsis ecotype found to accumulate high amounts of total fatty acids in seeds), and the BPS empty (without an LMP gene of interest) binary vector construct. The controls indicated in the tables below have been grown side by side with the transgenic lines. Differences in the total values of the controls are explained either by differences in the growth conditions, which were found to be very sensitive to small variations in the plant cultivation, or by differences in the standards added to quantify the fatty acid content. Because of the seed bulking, all values obtained with T2 seeds, and in part also with T3 seeds, are the result of a mixture of homozygous (for the gene of interest) and heterozygous events, implying that these data underestimate the LMP gene effect.

TABLE-US-00007 TABLE 5 Determination of the T2 seed total fatty acid content of transgenic lines of pk123 (containing SEQ ID NO: 1). Genotype g total fatty acids/g seed weight C-24 wild-type control 0.318 ± 0.022 Col-2 wild-type control 0.300 ± 0.023 Pk123 transgenic seeds 0.319 ± 0.024 Shown are the means (±standard deviation). (Average mean values are shown ± standard deviation, number of individual measurements per plant line: 12-20; Col-2 is the Arabidopsis ecotype the LMP gene has been transformed in, C-24 is a high-oil Arabidopsis ecotype used as another control).

TABLE-US-00008 TABLE 6 Determination of the T2 seed total fatty acid content of transgenic lines of pk197 (containing SEQ ID NO: 3). Genotype g total fatty acids/g seed weight C-24 wild-type control 0.371 ± 0.010 Col-2 wild-type control 0.353 ± 0.017 Col-2 empty vector control 0.347 ± 0.024 Pk197 transgenic seeds 0.366 ± 0.014 Shown are the means (±standard deviation) of 6 individual plants per line.

TABLE-US-00009 TABLE 7 Determination of the T2 seed total fatty acid content of transgenic lines of pk136 (containing SEQ ID NO: 5). Genotype g total fatty acids/g seed weight C-24 wild-type control 0.351 ± 0.052 Col-2 wild-type control 0.344 ± 0.026 Col-2 empty vector control 0.346 ± 0.019 Pk136 transgenic seeds 0.374 ± 0.033 Shown are the means (±standard deviation) of 6 individual plants per line.

TABLE-US-00010 TABLE 8 Determination of the T2 seed total fatty acid content of transgenic lines of pk156 (containing SEQ ID NO: 7). Genotype g total fatty acids/g seed weight C-24 wild-type control 0.400 ± 0.001 Col-2 wild-type control 0.369 ± 0.043 Pk156 transgenic seeds 0.389 ± 0.007 Shown are the means (±standard deviation) of 6 individual plants per line each.

TABLE-US-00011 TABLE 9 Determination of the T2 seed total fatty acid content of transgenic lines of pk159 (containing SEQ ID NO: 9). Genotype g total fatty acids/g seed weight C-24 wild-type control 0.413 ± 0.019 Col-2 wild-type control 0.381 ± 0.019 Pk159 transgenic seeds 0.409 ± 0.008 Shown are the means (±standard deviation) of 6 individual plants per line.

TABLE-US-00012 TABLE 10 Determination of the T2 seed total fatty acid content of transgenic lines of pk179 (containing SEQ ID NO: 11). Shown are the means (±standard deviation) of 6 individual plants per line. Genotype g total fatty acids/g seed weight C-24 wild-type control 0.400 ± 0.033 Col-2 wild-type control 0.339 ± 0.033 Col-2 empty vector control 0.357 ± 0.021 Pk179 transgenic seeds 0.384 ± 0.020

TABLE-US-00013 TABLE 11 Determination of the T2 seed total fatty acid content of transgenic lines of pk202 (containing SEQ ID NO: 13). Shown are the means (±standard deviation) of 6 individual plants per line. Genotype g total fatty acids/g seed weight C-24 wild-type control 0.413 ± 0.019 Col-2 wild-type control 0.381 ± 0.019 Col-2 empty vector control 0.407 ± 0.020 Pk202 transgenic seeds 0.426 ± 0.033

TABLE-US-00014 TABLE 12 Determination of the T2 seed total fatty acid content of transgenic lines of pk206 (containing SEQ ID NO: 15). Shown are the means (±standard deviation) of 6 individual plants per line. Genotype g total fatty acids/g seed weight C-24 wild-type control 0.422 ± 0.013 Col-2 wild-type control 0.354 ± 0.026 Col-2 empty vector control 0.388 ± 0.023 Pk206 transgenic seeds 0.414 ± 0.031

TABLE-US-00015 TABLE 13 Determination of the T2 seed total fatty acid content of transgenic lines of pk207 (containing SEQ ID NO: 17). Shown are the means (±standard deviation) of 6 individual plants per line. Genotype g total fatty acids/g seed weight C-24 wild-type control 0.371 ± 0.010 Col-2 wild-type control 0.353 ± 0.017 Col-2 empty vector control 0.347 ± 0.024 Pk207 transgenic seeds 0.370 ± 0.009

TABLE-US-00016 TABLE 14 Determination of the T2 seed total fatty acid content of transgenic lines of pk209 (containing SEQ ID NO: 19). Shown are the means (±standard deviation) of 6 individual plants per line. Genotype g total fatty acids/g seed weight C-24 wild-type control 0.400 ± 0.001 Col-2 wild-type control 0.369 ± 0.043 Pk209 transgenic seeds 0.397 ± 0.007

TABLE-US-00017 TABLE 15 Determination of the T2 seed total fatty acid content of transgenic lines of pk215 (containing SEQ ID NO: 21). Shown are the means (±standard deviation) of 6 individual plants per line. Genotype g total fatty acids/g seed weight C-24 wild-type control 0.373 ± 0.045 Col-2 wild-type control 0.344 ± 0.026 Col-2 empty vector control 0.346 ± 0.019 Pk215 transgenic seeds 0.401 ± 0.014

TABLE-US-00018 TABLE 16 Determination of the T3 seed total fatty acid content of transgenic lines of pk239 (containing SEQ ID NO: 23). Shown are the means (±standard deviation) of 14-20 individual plants per line. Genotype g total fatty acids/g seed weight C-24 wild-type control 0.334 ± 0.030 Col-2 empty vector control 0.301 ± 0.027 Pk239-2 transgenic seeds 0.335 ± 0.028 Pk239-9 transgenic seeds 0.335 ± 0.018 Pk239-18 transgenic seeds 0.331 ± 0.026 Pk239-20 transgenic seeds 0.343 ± 0.022

TABLE-US-00019 TABLE 17 Determination of the T3 seed total fatty acid content of transgenic lines of pk240 (containing SEQ ID NO: 25). Shown are the means (±standard deviation) of 10-20 individual plants per line. Genotype g total fatty acids/g seed weight C-24 wild-type control 0.393 ± 0.037 Col-2 empty vector control 0.342 ± 0.024 Pk240-3 transgenic seeds 0.373 ± 0.033 Pk240-6 transgenic seeds 0.388 ± 0.015 Pk240-10 transgenic seeds 0.393 ± 0.025

TABLE-US-00020 TABLE 18 Determination of the T2 seed total fatty acid content of transgenic lines of pk241 (containing SEQ ID NO: 27). Shown are the means (±standard deviation) of 10 (controls) and 30 (pk241) individual plants per line, respectively. Genotype g total fatty acids/g seed weight Col-2 wild-type control 0.312 ± 0.033 Col-2 empty vector control 0.305 ± 0.025 Pk241 transgenic seeds 0.336 ± 0.032

TABLE-US-00021 TABLE 19 Determination of the T2 seed total fatty acid content of transgenic lines of Pk242 (containing SEQ ID NO: 29). Shown are the means (±standard deviation) of 6 individual plants per line. Genotype g total fatty acids/g seed weight Col-2 wild-type control 0.344 ± 0.016 Col-2 empty vector control 0.333 ± 0.040 Pk242 transgenic seeds 0.364 ± 0.008

TABLE-US-00022 TABLE 20 Determination of the T2 seed total fatty acid content of transgenic lines of Bn011 (containing SEQ ID NO: 31). Shown are the means (±standard deviation) of 14-20 individual plants per line. Genotype g total fatty acids/g seed weight C-24 wild-type control 0.334 ± 0.028 Col-2 wild-type control 0.286 ± 0.039 Col-2 empty vector control 0.291 ± 0.034 Bn011 transgenic seeds 0.308 ± 0.030

TABLE-US-00023 TABLE 21 Determination of the T2 seed total fatty acid content of transgenic lines of Bn077 (containing SEQ ID NO: 33). Shown are the means (±standard deviation) of 8-17 individual plants per line. Genotype g total fatty acids/g seed weight C-24 wild-type control 0.366 ± 0.056 Col-2 wild-type control 0.290 ± 0.047 Col-2 empty vector control 0.292 ± 0.038 Bn077 transgenic seeds 0.314 ± 0.032

TABLE-US-00024 TABLE 22 Determination of the T2 seed total fatty acid content of transgenic lines of Jb001 (containing SEQ ID NO: 35). Shown are the means (±standard deviation) of 3 individual control plants and 2 individual plants per line. Genotype g total fatty acids/g seed weight Col-0 empty vector control 0.241 ± 0.012 Jb001 transgenic seeds 0.274 ± 0.003

TABLE-US-00025 TABLE 23 Determination of the T2 seed total fatty acid content of transgenic lines of Jb002 (containing SEQ ID NO: 37). Shown are the means (±standard deviation) of 3 individual control plants and 5 individual plants per line. Genotype g total fatty acids/g seed weight Col-0 empty vector control 0.191 ± 0.044 Jb002 transgenic seeds 0.273 ± 0.020

TABLE-US-00026 TABLE 24 Determination of the T2 seed total fatty acid content of transgenic lines of Jb003 (containing SEQ ID NO: 39). Shown are the means (±standard deviation) of 3 individual control plants and 2 individual plants per line. Genotype g total fatty acids/g seed weight Col-0 empty vector control 0.267 ± 0.011 Jb003 transgenic seeds 0.297 ± 0.030

TABLE-US-00027 TABLE 25 Determination of the T2 seed total fatty acid content of transgenic lines of Jb005 (containing SEQ ID NO: 41). Genotype g total fatty acids/g seed weight Col-0 empty vector control 0.229 ± 0.021 Jb005 transgenic seeds 0.264 ± 0.010 Shown are the means (±standard deviation) of 3 individual control plants and 7 individual plants per line.

TABLE-US-00028 TABLE 26 Determination of the T2 seed total fatty acid content of transgenic lines of Jb007 (containing SEQ ID NO: 43). Genotype g total fatty acids/g seed weight Col-0 empty vector control 0.296 ± 0.017 Jb007 transgenic seeds 0.320 ± 0.002 Shown are the means (±standard deviation) of 3 individual control plants and 5 individual plants per line.

TABLE-US-00029 TABLE 27 Determination of the T2 seed total fatty acid content of transgenic lines of Jb009 (containing SEQ ID NO: 45). Genotype g total fatty acids/g seed weight Col-0 empty vector control 0.227 ± 0.016 Jb009 transgenic seeds 0.238 ± 0.004 Shown are the means (±standard deviation) of 3 individual control plants and 3 individual plants per line.

TABLE-US-00030 TABLE 28 Determination of the T2 seed total fatty acid content of transgenic lines of Jb013 (containing SEQ ID NO: 47). Genotype g total fatty acids/g seed weight Col-0 empty vector control 0.243 ± 0.011 Jb013 transgenic seeds 0.262 ± 0.007 Shown are the means (±standard deviation) of 3 individual control plants and 4 individual plants per line.

TABLE-US-00031 TABLE 29 Determination of the T2 seed total fatty acid content of transgenic lines of Jb017 (containing SEQ ID NO: 51). Genotype g total fatty acids/g seed weight Col-0 empty vector control 0.231 ± 0.020 Jb017 transgenic seeds 0.269 ± 0.022 Shown are the means (±standard deviation) of 3 individual control plants and 2 individual plants per line.

TABLE-US-00032 TABLE 30 Determination of the T2 seed total fatty acid content of transgenic lines of Jb027 (containing SEQ ID NO: 55). Genotype g total fatty acids/g seed weight Col-0 empty vector control 0.235 ± 0.052 Jb027 transgenic seeds 0.282 ± 0.014 Shown are the means (±standard deviation) of 3 individual control plants and 2 individual plants per line.

TABLE-US-00033 TABLE 31 Determination of the T2 seed total fatty acid content of transgenic lines of OO-1 (containing SEQ ID NO: 57). Genotype g total fatty acids/g seed weight Col-0 empty vector control 0.250 ± 0.009 OO-1 transgenic seeds 0.274 ± 0.007 Shown are the means (±standard deviation) of 3 individual control plants and 7 individual plants per line.

TABLE-US-00034 TABLE 32 Determination of the T2 seed total fatty acid content of transgenic lines of OO-4 (containing SEQ ID NO: 63). Genotype g total fatty acids/g seed weight Col-0 empty vector control 0.329 ± 0.041 OO-4 transgenic seeds 0.380 ± 0.015 Shown are the means (±standard deviation) of 2 individual control plants and 4 individual plants per line.

TABLE-US-00035 TABLE 33 Determination of the T2 seed total fatty acid content of transgenic lines of OO-8 (containing SEQ ID NO: 69). Genotype g total fatty acids/g seed weight Col-0 empty vector control 0.379 ± 0.009 OO-8 transgenic seeds 0.411 ± 0.008 Shown are the means (±standard deviation) of 4 individual control plants and 2 individual plants per line.

TABLE-US-00036 TABLE 34 Determination of the T2 seed total fatty acid content of transgenic lines of OO-9 (containing SEQ ID NO: 71). Genotype g total fatty acids/g seed weight Col-0 empty vector control 0.315 ± 0.020 OO-9 transgenic seeds 0.333 ± 0.006 Shown are the means (±standard deviation) of 3 individual control plants and 4 individual plants per line.

TABLE-US-00037 TABLE 35 Determination of the T2 seed total fatty acid content of transgenic lines of OO-11 (containing SEQ ID NO: 75). Genotype g total fatty acids/g seed weight Col-0 empty vector control 0.264 ± 0.003 OO-11 transgenic seeds 0.278 ± 0.003 Shown are the means (±standard deviation) of 3 individual control plants and 2 individual plants per line.

TABLE-US-00038 TABLE 36 Determination of the T2 seed total fatty acid content of transgenic lines of OO-12 (containing SEQ ID NO: 77). Genotype g total fatty acids/g seed weight Col-0 empty vector control 0.290 ± 0.010 OO-12 transgenic seeds 0.316 ± 0.008 Shown are the means (±standard deviation) of 3 individual control plants and 9 individual plants per line.

TABLE-US-00039 TABLE 37 Determination of the T4 seed total fatty acid content of transgenic lines of pp82 (containing SEQ ID NO: 79). Genotype g total fatty acids/g seed weight C-24 wild-type control 0.436 ± 0.050 Col-2 wild-type control 0.380 ± 0.020 Col-2 empty vector control 0.378 ± 0.030 pp82-15-16 transgenic seeds 0.432 ± 0.040 pp82-15-19 transgenic seeds 0.437 ± 0.040 pp82-16-10 transgenic seeds 0.430 ± 0.040 pp82-9-14 transgenic seeds 0.449 ± 0.040 Shown are the means (±standard deviation) of 17-20 individual plants per line.

TABLE-US-00040 TABLE 38 Determination of the T4 seed total fatty acid content of transgenic lines of pk225 (containing SEQ ID NO: 81). This particular gene has been down-regulated. Genotype g total fatty acids/g seed weight C-24 wild-type control 0.344 ± 0.048 Col-2 empty vector control 0.327 ± 0.031 Pk225-11-19 transgenic seeds 0.350 ± 0.041 Pk225-19-8 transgenic seeds 0.351 ± 0.021 Pk225-7-6 transgenic seeds 0.354 ± 0.037 Pk225-9-10 transgenic seeds 0.363 ± 0.042 Shown are the means (±standard deviation) of 17-20 individual plants per line.

TABLE-US-00041 TABLE 39 Determination of the T2 seed total fatty acid content of transgenic lines of OO-3 (containing SEQ ID NO: 61). Genotype g total fatty acids/g seed weight Col-0 empty vector control 0.365 ± 0.006 OO-3 transgenic seeds 0.388 ± 0.006 Shown are the means (±standard deviation) of 4 individual control plants and 6 individual plants per line.

Example 16

Analysis of the Impact of Recombinant Proteins on the Production of a Desired Seed Storage Compound

[0193] The effect of the genetic modification in plants on a desired seed storage compound (such as a sugar, lipid or fatty acid) can be assessed by growing the modified plant under suitable conditions and analyzing the seeds or any other plant organ for increased production of the desired product (i.e., a lipid or a fatty acid). Such analysis techniques are well known to one skilled in the art, and include spectroscopy, thin layer chromatography, staining methods of various kinds, enzymatic and microbiological methods, and analytical chromatography such as high performance liquid chromatography (See, for example, Ullman, 1985, Encyclopedia of Industrial Chemistry, vol. A2, pp. 89-90 and 443-613, VCH: Weinheim; Fallon, A. et al., 1987, Applications of HPLC in Biochemistry in: Laboratory Techniques in Biochemistry and Molecular Biology, vol. 17; Rehm et al., 1993, Product recovery and purification, Biotechnology, vol. 3, Chapter III, pp. 469-714, VCH: Weinheim; Belter, P. A. et al., 1988, Bioseparations: downstream processing for biotechnology, John Wiley & Sons; Kennedy J. F. & Cabral J. M. S., 1992, Recovery processes for biological materials, John Wiley and Sons; Shaeiwitz J. A. & Henry J. D., 1988, Biochemical separations in: Ulmann's Encyclopedia of Industrial Chemistry, Separation and purification techniques in biotechnology, vol. B3, Chapter 11, pp. 1-27, VCH: Weinheim; and Dechow F. J. 1989).

[0194] Besides the above-mentioned methods, plant lipids are extracted from plant material as described by Cahoon et al. (1999, Proc. Natl. Acad. Sci. USA 96, 22:12935-12940) and Browse et al. (1986, Anal. Biochemistry 442:141-145). Qualitative and quantitative lipid or fatty acid analysis is described in Christie, William W., Advances in Lipid Methodology. Ayr/Scotland: Oily Press.--(Oily Press Lipid Library; Christie, William W., Gas Chromatography and Lipids. A Practical Guide--Ayr, Scotland: Oily Press, 1989 Repr. 1992.--IX, 307 S.--(Oily Press Lipid Library; and "Progress in Lipid Research, Oxford: Pergamon Press, 1 (1952)-16 (1977) Progress in the Chemistry of Fats and Other Lipids CODEN.

[0195] Unequivocal proof of the presence of fatty acid products can be obtained by the analysis of transgenic plants following standard analytical procedures: GC, GC-MS or TLC as variously described by Christie and references therein (1997 in: Advances on Lipid Methodology 4th ed.: Christie, Oily Press, Dundee, pp. 119-169; 1998). Detailed methods are described for leaves by Lemieux et al. (1990, Theor. Appl. Genet. 80:234-240) and for seeds by Focks & Benning (1998, Plant Physiol. 118:91-101).

[0196] Positional analysis of the fatty acid composition at the C-1, C-2 or C-3 positions of the glycerol backbone is determined by lipase digestion (See, e.g., Siebertz & Heinz 1977, Z. Naturforsch. 32c:193-205, and Christie, 1987, Lipid Analysis 2nd Edition, Pergamon Press, Exeter, ISBN 0-08-023791-6).

[0197] A typical way to gather information regarding the influence of increased or decreased protein activities on lipid and sugar biosynthetic pathways is for example via analyzing the carbon fluxes by labeling studies with leaves or seeds using 14C-acetate or 14C-pyruvate (See, e.g. Focks & Benning, 1998, Plant Physiol. 118:91-101; Eccleston & Ohlrogge, 1998, Plant Cell 10:613-621). The distribution of carbon-14 into lipids and aqueous soluble components can be determined by liquid scintillation counting after the respective separation (for example on TLC plates) including standards like 14C-sucrose and 14C-malate (Eccleston & Ohlrogge, 1998, Plant Cell 10:613-621).

[0198] Material to be analyzed can be disintegrated via sonification, glass milling, liquid nitrogen and grinding, or via other applicable methods. The material has to be centrifuged after disintegration. The sediment is resuspended in distilled water, heated for 10 minutes at 100° C., cooled on ice and centrifuged again, followed by extraction in 0.5 M sulfuric acid in methanol containing 2% dimethoxypropane for 1 hour at 90° C., leading to hydrolyzed oil and lipid compounds resulting in transmethylated lipids. These fatty acid methyl esters are extracted in petrol ether and finally subjected to GC analysis using a capillary column (Chrompack, WCOT Fused Silica, CP-Wax-52 CB, 25 m, 0.32 mm) at a temperature gradient between 170° C. and 240° C. for 20 minutes and 5 minutes at 240° C. The identity of resulting fatty acid methylesters is defined by the use of standards available form commercial sources (e.g., Sigma).

[0199] In the case of fatty acids where standards are not available, molecule identity is shown via derivatization and subsequent GC-MS analysis. For example, the localization of triple bond fatty acids is shown via GC-MS after derivatization via 4,4-Dimethoxy-oxazolin-Derivaten (Christie, Oily Press, Dundee, 1998).

[0200] A common standard method for analyzing sugars, especially starch, is published by Stitt M., Lilley R. Mc. C., Gerhardt R. and Heldt M. W. (1989, "Determination of metabolite levels in specific cells and subcellular compartments of plant leaves," Methods Enzymol. 74:518-552; for other methods, see also Hartel et al., 1998, Plant Physiol. Biochem. 36:407-417 and Focks & Benning, 1998, Plant Physiol. 118:91-101).

[0201] For the extraction of soluble sugars and starch, 50 seeds are homogenized in 500 μl of 80% (v/v) ethanol in a 1.5-ml polypropylene test tube and incubated at 70° C. for 90 minutes. Following centrifugation at 16,000 g for 5 minutes, the supernatant is transferred to a new test tube. The pellet is extracted twice with 500 μl of 80% ethanol. The solvent of the combined supernatants is evaporated at room temperature under a vacuum. The residue is dissolved in 50 μl of water, representing the soluble carbohydrate fraction. The pellet left from the ethanol extraction, which contains the insoluble carbohydrates including starch, is homogenized in 200 μl of 0.2 N KOH, and the suspension is incubated at 95° C. for 1 hour to dissolve the starch. Following the addition of 35 μl of 1 N acetic acid and centrifugation for 5 minutes at 16,000 g, the supernatant is used for starch quantification.

[0202] To quantify soluble sugars, 10 μl of the sugar extract is added to 990 μl of reaction buffer containing 100 mM imidazole, pH 6.9, 5 mM MgCl2, 2 mM NADP, 1 mM ATP, and 2 units 2 ml-1 of Glucose-6-P-dehydrogenase. For enzymatic determination of glucose, fructose, and sucrose, 4.5 units of hexokinase, 1 unit of phosphoglucoisomerase, and 2 μl of a saturated fructosidase solution are added in succession. The production of NADPH is photometrically monitored at a wavelength of 340 nm. Similarly, starch is assayed in 30 μl of the insoluble carbohydrate fraction with a kit from Boehringer Mannheim.

[0203] An example for analyzing the protein content in leaves and seeds can be found by Bradford M. M. (1976, "A rapid and sensitive method for the quantification of microgram quantities of protein using the principle of protein dye binding," Anal. Biochem. 72:248-254). For quantification of total seed protein, 15-20 seeds are homogenized in 250 μl of acetone in a 1.5-ml polypropylene test tube. Following centrifugation at 16,000 g, the supernatant is discarded and the vacuum-dried pellet is resuspended in 250 μl of extraction buffer containing 50 mM Tris-HCl, pH 8.0, 250 mM NaCl, 1 mM EDTA, and 1% (w/v) SDS. Following incubation for 2 h at 25° C., the homogenate is centrifuged at 16,000 g for 5 min and 200 ml of the supernatant will be used for protein measurements. In the assay, γ-globulin is used for calibration. For protein measurements, Lowry DC protein assay (Bio-Rad) or Bradford-assay (Bio-Rad) are used.

[0204] Enzymatic assays of hexokinase and fructokinase are performed spectrophotometrically according to Renz et al. (1993, Planta 190:156-165); enzymatic assays of phosphogluco-isomerase, ATP-dependent 6-phosphofructokinase, pyrophosphate-dependent 6-phospho-fructokinase, Fructose-1,6-bisphosphate aldolase, triose phosphate isomerase, glyceral-3-P dehydrogenase, phosphoglycerate kinase, phosphoglycerate mutase, enolase and pyruvate kinase are performed according to Burrell et al. (1994, Planta 194:95-101); and enzymatic assays of UDP-Glucose-pyrophosphorylase according to Zrenner et al. (1995, Plant J. 7:97-107).

[0205] Intermediates of the carbohydrate metabolism, like Glucose-1-phosphate, Glucose-6-phosphate, Fructose-6-phosphate, Phosphoenolpyruvate, Pyruvate, and ATP are measured as described in Hartel et al. (1998, Plant Physiol. Biochem. 36:407-417), and metabolites are measured as described in Jelitto et al. (1992, Planta 188:238-244).

[0206] In addition to the measurement of the final seed storage compound (i.e., lipid, starch or storage protein), it is also possible to analyze other components of the metabolic pathways utilized for the production of a desired seed storage compound, such as intermediates and side-products, to determine the overall efficiency of production of the compound (Fiehn et al., 2000, Nature Biotech. 18:1447-1161).

[0207] For example, yeast expression vectors comprising the nucleic acids disclosed herein, or fragments thereof, can be constructed and transformed into Saccharomyces cerevisiae using standard protocols. The resulting transgenic cells can then be assayed for alterations in sugar, oil, lipid, or fatty acid contents.

[0208] Similarly, plant expression vectors comprising the nucleic acids disclosed herein, or fragments thereof, can be constructed and transformed into an appropriate plant cell such as Arabidopsis, soybean, rape, maize, wheat, Medicago truncatula, etc., using standard protocols. The resulting transgenic cells and/or plants derived therefrom can then be assayed for alterations in sugar, oil, lipid, or fatty acid contents.

[0209] Additionally, the sequences disclosed herein, or fragments thereof, can be used to generate knockout mutations in the genomes of various organisms, such as bacteria, mammalian cells, yeast cells, and plant cells (Girke at al., 1998, Plant J. 15:39-48). The resultant knockout cells can then be evaluated for their composition and content in seed storage compounds, and the effect on the phenotype and/or genotype of the mutation. For other methods of gene inactivation include U.S. Pat. No. 6,004,804 and Puttaraju et al., 1999, Nature Biotech. 17:246-252).

Example 17

Purification of the Desired Product from Transformed Organisms

[0210] An LMP can be recovered from plant material by various methods well known in the art. Organs of plants can be separated mechanically from other tissue or organs prior to isolation of the seed storage compound from the plant organ. Following homogenization of the tissue, cellular debris is removed by centrifugation and the supernatant fraction containing the soluble proteins is retained for further purification of the desired compound. If the product is secreted from cells grown in culture, then the cells are removed from the culture by low-speed centrifugation, and the supernate fraction is retained for further purification.

[0211] The supernatant fraction from either purification method is subjected to chromatography with a suitable resin, in which the desired molecule is either retained on a chromatography resin while many of the impurities in the sample are not, or where the impurities are retained by the resin while the sample is not. Such chromatography steps may be repeated as necessary, using the same or different chromatography resins. One skilled in the art would be well-versed in the selection of appropriate chromatography resins and in their most efficacious application for a particular molecule to be purified. The purified product may be concentrated by filtration or ultrafiltration, and stored at a temperature at which the stability of the product is maximized.

[0212] There are a wide array of purification methods known to the art and the preceding method of purification is not meant to be limiting. Such purification techniques are described, for example, in Bailey J. E. & Ollis D. F., 1986, Biochemical Engineering Fundamentals, McGraw-Hill: New York.

[0213] The identity and purity of the isolated compounds may be assessed by techniques standard in the art. These include high-performance liquid chromatography (HPLC), spectroscopic methods, staining methods, thin layer chromatography, analytical chromatography such as high performance liquid chromatography, NIRS, enzymatic assay, or microbiologically. Such analysis methods are reviewed in: Patek et al. (1994, Appl. Environ. Microbiol. 60:133-140), Malakhova et al. (1996, Biotekhnologiya 11:27-32), Schmidt et al. (1998, Bioprocess Engineer 19:67-70), Ulmann's Encyclopedia of Industrial Chemistry (1996, Vol. A27, VCH: Weinheim, p. 89-90, p. 521-540, p. 540-547, p. 559-566, 575-581 and p. 581-587) and Michal G. (1999, Biochemical Pathways: An Atlas of Biochemistry and Molecular Biology, John Wiley and Sons; Fallon, A. et al. 1987, Applications of HPLC in Biochemistry in: Laboratory Techniques in Biochemistry and Molecular Biology, vol. 17).

Example 18

Screening for Increased Stress Tolerance and Plant Growth

[0214] The transgenic plants are screened for their improved stress tolerance demonstrating that transgene expression confers stress tolerance. The transgenic plants are further screened for their growth rate demonstrating that transgene expression confers increased growth rates and/or increased seed yield.

[0215] Classification of the proteins was done by Blasting against the BLOCKS database (S. Henikoff & J. G. Henikoff, "Protein family classification based on searching a database of blocks", Genomics 19:97-107 (1994)).

[0216] Those skilled in the art will recognize, or will be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments of the invention described herein. Such equivalents are intended to be encompasses by the claims to the invention disclosed and claimed herein.

TABLE-US-00042 APPENDIX A SEQ ID NO: 1, Nucleotide sequence of the open reading frame of Pk123 ATGGCAATCTTCCGAAGTACACTAGTTTTACTGCTGATCCTCTTCTGCCTCACCAC TTTTGAGCTTCATGTTCATGCTGCTGAAGATTCACAAGTCGGTGAAGGCGTAGTG AAAATTGATTGCGGTGGGAGATGCAAAGGTAGATGCAGCAAATCGTCGAGGCCA AATCTGTGTTTGAGAGCATGCAACAGCTGTTGTTACCGCTGCAACTGTGTGCCAC CAGGCACCGCCGGGAACCACCACCTTTGTCCTTGCTACGCCTCCATTACCACTCG TGGTGGCCGTCTCAAGTGCCCTTAA SEQ ID NO: 2, Deduced amino acid sequence of the open reading frame of Pk123 MAIFRSTLVLLLILFCLTTFELHVHAAEDSQVGEGVVKIDCGGRCKGRCSKSSRPNLC LRACNSCCYRCNCVPPGTAGNHHLCPCYASITTRGGRLKCP SEQ ID NO: 3, Nucleotide sequence of the open reading frame of Pk197 ATGGAGAATGGAGCAACGACGACGAGCACAATTACCATCAAAGGG ATTCTGAGTTTGCTAATGGAAAGCATCACAACAGAGGAAGATGAAGGAGGAAAG AGAGTAATATCTCTGGGAATGGGAGACCCAACACTCTACTCGTGTTTTCGTACAA CACAAGTCTCTCTTCAAGCTGTTTCTGATTCTCTTCTCTCCAACAAGTTCCATGGT TACTCTCCTACCGTCGGTCTTCCCCAAGCTCGAAGGGCAATAGCAGAGTATCTAT CGCGTGATCTTCCATACAAACTTTCACAGGATGATGTGTTTATCACATCGGGTTG CACGCAAGCGATCGATGTAGCATTGTCGATGTTAGCTCGTCCCAGGGCTAATATA CTTCTTCCAAGGCCTGGTTTCCCAATCTATGAACTCTGTGCTAAGTTTAGACACCT TGAAGTTCGCTACGTCGATCTTCTTCCGGAAAATGGATGGGAGATCGATCTTGAT GCTGTCGAGGCTCTTGCAGACGAAAACACGGTTGCTTTGGTTGTTATAAACCCTG GTAATCCTTGCGGGAATGTCTATAGCTACCAGCATTTGATGAAGATTGCGGAATC GGCGAAAAAACTAGGGTTTCTTGTGATTGCTGATGAGGTTTACGGTCATCTTGCT TTTGGTAGCAAACCGTTTGTGCCAATGGGTGTGTTTGGATCTATTGTTCCTGTGCT TACTCTTGGCTCTTTATCAAAGAGATGGATAGTTCCAGGTTGGCGACTCGGGTGG TTTGTCACCACTGATCCTTCTGGTTCCTTTAAGGACCCTAAGATCATTGAGAGGTT TAAGAAATACTTTGATATTCTTGGTGGACCAGCTACATTTATTCAGGCTGCAGTT CCCACTATTTTGGAACAGACGGATGAGTCTTTCTTCAAGAAAACCTTGAACTCGT TGAAGAACTCTTCGGATATTTGTTGTGACTGGATCAAGGAGATTCCTTGCATTGA TTCCTCGCATCGACCAGAAGGATCCATGGCAATGATGGTTAAGCTGAATCTCTCA TTACTTGAAGATGTAAGTGACGATATCGACTTCTGTTTCAAGTTAGCTAGGGAAG AATCAGTCATCCTTCTTCCTGGGACCGCGGTGGGGCTGAAGAACTGGCTGAGGAT AACGTTTGCAGCAGATGCAACTTCGATTGAAGAAGCTTTTAAAAGGATCAAATGT TTCTATCTTAGACATGCCAAGACTCAATATCCAACCATATAG SEQ ID NO: 4, Deduced amino acid sequence of the open reading frame of Pk197 MENGATTTSTITIKGILSLLMESITTEEDEGGKRVISLGMGDPTLYSCFRTTQVSLQAV SDSLLSNKFHGYSPTVGLPQARRAIAEYLSRDLPYKLSQDDVFITSGCTQAIDVALSM LARPRANILLPRPGFPIYELCAKFRHLEVRYVDLLPENGWEIDLDAVEALADENTVAL VVINPGNPCGNVYSYQHLMKIAESAKKLGFLVIADEVYGHLAFGSKPFVPMGVFGSI VPVLTLGSLSKRWIVPGWRLGWFVTTDPSGSFKDPKIIERFKKYFDILGGPATFIQAA VPTILEQTDESFFKKTLNSLKNSSDICCDWIKEIPCIDSSHRPEGSMAMMVKLNLSLLE DVSDDIDFCFKLAREESVILLPGTAVGLKNWLRITFAADATSIEEAFKRIKCFYLRHAK TQYPTI SEQ ID NO: 5, Nucleotide sequence of the open reading frame of Pk136 ATGGCTGAAAAAGTAAAGTCTGGTCAAGTTTTTAACCTATTATGCATATTCTCGA TCTTTTTCTTCCTCTTTGTGTTATCAGTGAATGTTTCGGCTGATGTCGATTCTGAGA GAGCGGTGCCATCTGAAGATAAAACGACGACTGTTTGGCTAACTAAAATCAAAC GGTCCGGTAAAAATTATTGGGCTAAAGTTAGAGAGACTTTGGATCGTGGACAGT CCCACTTCTTTCCTCCGAACACATATTTTACCGGAAAGAATGATGCGCCGATGGG AGCCGGTGAAAATATGAAAGAGGCGGCGACGAGGAGCTTTGAGCATAGCAAAG CGACGGTGGAGGAAGCTGCTAGATCAGCGGCAGAAGTGGTGAGTGATACGGCGG AAGCTGTGAAAGAAAAGGTGAAGAGGAGCGTTTCCGGTGGAGTGACGCAGCCGT CGGAGGGATCTGAGGAGCTATAA SEQ ID NO: 6, Deduced amino acid sequence of the open reading frame of Pk136 MAEKVKSGQVFNLLCIFSIFFFLFVLSVNVSADVDSERAVPSEDKTTTVWLTKIKRSG KNYWAKVRETLDRGQSHFFPPNTYFTGKNDAPMGAGENMKEAATRSFEHSKATVE EAARSAAEVVSDTAEAVKEKVKRSVSGGVTQPSEGSEEL SEQ ID NO: 7, Nucleotide sequence of the open reading frame of Pk156 ATGGCTGGAGAAGAAATAGAGAGGGAGAAGAAATCTGCAGCATCTGCAAGAAC TCACACCAGAAACAACACTCAACAAAGTTCTTCTTCTGGTTATCTGAAAACGCTT CTCCTGGTAACGTTCGTCGGAGTTTTAGCATGGGTTTATCAAACAATCCAACCAC CACCCGCCAAAATCGTCGGCTCTCCCGGTGGACCCACCGTGACATCACCGAGGAT CAAACTGAGAGACGGAAGACATCTGGCTTACACAGAATTCGGAATCCCTAGAGA CGAAGCCAAGTTCAAGATCATAAACATCCACGGCTTCGATTCTTGTATGCGAGAC TCGCATTTCGCCAATTTCTTATCGCCGGCTCTTGTGGAGGAATTGAGGATATACA TTGTGTCTTTTGATCGTCCTGGTTATGGAGAGAGTGATCCTAACCTGAATGGGTC ACCAAGAAGCATAGCATTGGATATAGAAGAGCTTGCTGATGGGTTAGGACTAGG ACCTCAGTTCTATCTCTTTGGTTACTCCATGGGTGGTGAAATTACATGGGCATGCC TTAACTACATTCCTCACAGGTTAGCAGGAGCTGCCCTTGTAGCTCCAGCGATTAA CTATTGGTGGAGAAACTTACCGGGAGATTTAACAAGAGAAGCTTTCTCTCTTATG CATCCTGCAGATCAATGGTCACTTCGAGTAGCTCATTATGCTCCTTGGCTTACATA TTGGTGGAACACTCAGAAATGGTTCCCAATCTCCAATGTGATTGCCGGTAATCCC ATTATTTTCTCACGTCAGGACATGGAGATCTTGTCGAAGCTCGGATTCGTCAATC CAAATCGGGCATACATAAGACAACAAGGTGAATATGTAAGCTTACACCGAGATT TGAATGTCGCATTTTCAAGCTGGGAGTTTGATCCGTTAGACCTTCAAGATCCGTT CCCGAACAACAATGGCTCAGTTCACGTATGGAATGGCGATGAGGATAAGTTTGT GCCAGTAAAGCTTCAACGGTATGTCGCGTCAAAGCTGCCATGGATTCGTTACCAT GAAATATCTGGATCAGGACATTTTGTACCATTTGTGGAAGGTATGACTGATAAGA TCATCAAGTCACTTTTGGTTGGGGAAGAAGATGTAAGTGAGAGTAGAGAAGCCT CTGTTTAA SEQ ID NO: 8, Deduced amino acid sequence of the open reading frame of Pk156 MAGEEIEREKKSAASARTHTRNNTQQSSSSGYLKTLLLVTFVGVLAWVYQTIQPPPA KIVGSPGGPTVTSPRIKLRDGRHLAYTEFGIPRDEAKFKIINIHGFDSCMRDSHFANFLS PALVEELRIYIVSFDRPGYGESDPNLNGSPRSIALDIEELADGLGLGPQFYLFGYSMGG EITWACLNYIPHRLAGAALVAPAINYWWRNLPGDLTREAFSLMHPADQWSLRVAH YAPWLTYWWNTQKWFPISNVIAGNPIIFSRQDMEILSKLGFVNPNRAYIRQQGEYVS LHRDLNVAFSSWEFDPLDLQDPFPNNNGSVHVWNGDEDKFVPVKLQRYVASKLPWI RYHEISGSGHFVPFVEGMTDKIIKSLLVGEEDVSESREASV SEQ ID NO: 9, Nucleotide sequence of the open reading frame of Pk159 ATGGCTGGAGTGATGAAGTTGGCATGCATGGTCTTGGCTTGCATGATTGTGGCCG GTCCAATCACAGCGAACGCGCTTATGAGTTGTGGCACCGTCAACGGCAACCTGG CAGGGTGCATTGCCTACTTGACCCGAGGTGCTCCACTTACCCAAGGGTGCTGCAA CGGCGTTACTAACCTTAAAAACATGGCCAGTACAACCCCAGACCGTCAGCAAGC TTGCCGTTGCCTTCAATCTGCCGCTAAAGCCGTTGGTCCCGGTCTCAACACTGCCC GTGCAGCTGGACTTCCTAGCGCATGCAAAGTCAATATTCCTTACAAAATCAGCGC CAGCACCAACTGCAACACCGTGAGGTGA SEQ ID NO: 10, Deduced amino acid sequence of the open reading frame of Pk159 MAGVMKLACMVLACMIVAGPITANALMSCGTVNGNLAGCIAYLTRGAPLTQGCCN GVTNLKNMASTTPDRQQACRCLQSAAKAVGPGLNTARAAGLPSACKVNIPYKISAS TNCNTVR SEQ ID NO: 11, Nucleotide sequence of the open reading frame of Pk179 ATGGGGCTTGCTGTGGTGGACAAAAACACAGTTGCGATTTCTGCATCTGATGTTA TGTTGTCCTTTGCTGCTTTTCCAGTCGAGATTCCTGGAGAGGTAGTATTTCTTCAT CCCGTTCACAACTATGCTCTGATTGCGTATAATCCATCAGCAATGGATCCTGCCA GTGCTTCAGTCATTCGTGCAGCTGAGCTACTACCTGAACCTGCACTCCAACGTGG AGATTCAGTCTATCTTGTCGGATTGAGTAGGAACCTTCAAGCTACATCAAGAAAA TCTATTGTAACCAATCCATGTGCAGCGTTAAACATTGGTTCTGCTGATTCTCCCCG TTACAGAGCTACTAATATGGAAGTAATTGAGCTTGATACAGATTTTGGTAGCTCA TTTTCAGGGGCGCTGACTGATGAGCAGGGAAGAATTCGGGCTATTTGGGGAAGT TTTTCGACTCAGGTTAAATATAGTTCCACTTCTTCAGAAGACCACCAGTTTGTCAG AGGTATCCCAGTATATGCAATCAGCCAAGTCCTTGAAAAAATCATAACCGGTGG AAATGGACCAGCTCTTCTCATAAATGGTGTCAAAAGGCCAATGCCACTTGTTCGG ATTTTGGAAGTTGAATTGTATCCTACTTTGCTTTCAAAAGCCCGGAGTTTTGGTCT GAGTGATGAATGGATCCAAGTCCTAGTCAAGAAGGATCCTGTTAGACGTCAAGT TCTGCGTGTTAAAGGTTGCCTGGCAGGATCAAAAGCTGAAAACCTTCTTGAACAA GGCGATATGGTTCTGGCAGTCAATAAGATGCCAGTTACATGCTTCAATGACATAG AAGCTGCTTGCCAAACATTGGATAAGGGTAGTTACAGCGATGAAAATCTCAATCT AACAATCCTTAGACAGGGCCAAGAACTGGAGCTCGTAGTTGGAACTGATAAGAG AGATGGGAATGGAACGACAAGAGTGATAAATTGGTGCGGATGCGTTGTTCAGGA TCCTCATCCTGCGGTTCGTGCTCTTGGATTTCTTCCTGAGGAAGGTCATGGTGTCT ATGTCACAAGATGGTGTCACGGGAGTCCCGCTCACCGATATGGCCTCTACGCGCT TCAATGGATCGTGGAAGTTAATGGGAAGAAGACTCCTGACCTAAACGCATTCGC AGATGCTACCAAGGAGCTAGAACACGGGCAGTTTGTGCGTATTAGGACTGTTCAT CTAAACGGCAAGCCACGAGTATTGACCCTGAAACAAGATCTCCATTACTGGCCG ACTTGGGAATTGAGGTTCGACCCAGAGACTGCTCTTTGGCGGAGAAATATATTGA AAGCCTTGCAGTAA SEQ ID NO: 12, Deduced amino acid sequence of the open reading frame of Pk179

MGLAVVDKNTVAISASDVMLSFAAFPVEIPGEVVFLHPVHNYALIAYNPSAMDPASA SVIRAAELLPEPALQRGDSVYLVGLSRNLQATSRKSIVTNPCAALNIGSADSPRYRAT NMEVIELDTDFGSSFSGALTDEQGRIRAIWGSFSTQVKYSSTSSEDHQFVRGIPVYAIS QVLEKIITGGNGPALLINGVKRPMPLVRILEVELYPTLLSKARSFGLSDEWIQVLVKK DPVRRQVLRVKGCLAGSKAENLLEQGDMVLAVNKMPVTCFNDIEAACQTLDKGSY SDENLNLTILRQGQELELVVGTDKRDGNGTTRVINWCGCVVQDPHPAVRALGFLPE EGHGVYVTRWCHGSPAHRYGLYALQWIVEVNGKKTPDLNAFADATKELEHGQFVR IRTVHLNGKPRVLTLKQDLHYWPTWELRFDPETALWRRNILKALQ SEQ ID NO: 13, Nucleotide sequence of the open reading frame of Pk202 ATGGCGTTCACGGCGCTTGTGTTCATTGTGTTCGTGGTGGGTGTCATGGTTTCTCC AGTTTCAATCAGAGCAACTGAGGTCAAACTTTCTGGAGGAGAAGCTGATGTAAC GTGTGATGCAGTACAGCTTAGTTCATGCGCAACACCAATGCTCACAGGAGTACCA CCGTCTACAGAGTGTTGCGGGAAACTGAAGGAGCAACAGCCGTGTTTTTGTACAT ATATTAAAGATCCAAGATATAGTCAATATGTTGGTTCTGCAAATGCTAAGAAAAC GTTAGCAACTTGTGGTGTTCCTTATCCTACTTGTTGA SEQ ID NO: 14, Deduced amino acid sequence of the open reading frame of Pk202 MAFTALVFIVFVVGVMVSPVSIRATEVKLSGGEADVTCDAVQLSSCATPMLTGVPPS TECCGKLKEQQPCFCTYIKDPRYSQYVGSANAKKTLATCGVPYPTC SEQ ID NO: 15, Nucleotide sequence of the open reading frame of Pk206 ATGGCCCTTGATGAGCTTCTCAAGACTGTCTTGCCACCAGCTGAGGAAGGGCTTG TTCGTCAGGGAAGCTTGACGTTACCTCGAGATCTCAGTAAAAAGACAGTTGATGA GGTCTGGAGAGATATCCAACAGGACAAGAATGGAAACGGTACTAGTACTACTAC TACTCATAAGCAGCCTACACTCGGTGAAATAACACTTGAGGATTTGTTGTTGAGA GCTGGTGTAGTGACTGAGACAGTAGTCCCTCAAGAAAATGTTGTTAACATAGCTT CAAATGGGCAATGGGTTGAGTATCATCATCAGCCTCAACAACAACAAGGGTTTA TGACATATCCGGTTTGCGAGATGCAAGATATGGTGATGATGGGTGGATTATCGGA TACACCACAAGCGCCTGGGAGGAAAAGAGTAGCTGGAGAGATTGTGGAGAAGA CTGTTGAGAGGAGACAGAAGAGGATGATCAAGAACAGAGAATCTGCAGCACGTT CACGAGCTAGGAAACAGGCTTATACACATGAATTAGAGATCAAGGTTTCAAGGT TAGAAGAAGAAAACGAAAAACTTCGGAGGCTAAAGGAGGTGGAGAAGATCCTA CCAAGTGAACCACCACCAGATCCTAAGTGGAAGCTCCGGCGAACAAACTCTGCT TCTCTCTGA SEQ ID NO: 16, Deduced amino acid sequence of the open reading frame of Pk206 MALDELLKTVLPPAEEGLVRQGSLTLPRDLSKKTVDEVWRDIQQDKNGNGTSTTTT HKQPTLGEITLEDLLLRAGVVTETVVPQENVVNIASNGQWVEYHHQPQQQQGFMTY PVCEMQDMVMMGGLSDTPQAPGRKRVAGEIVEKTVERRQKRMIKNRESAARSRAR KQAYTHELEIKVSRLEEENEKLRRLKEVEKILPSEPPPDPKWKLRRTNSASL SEQ ID NO: 17, Nucleotide sequence of the open reading frame of Pk207 ATGGCGCAATCCCGATTATTAGCGTTTGCTTCAGCGGCGCGTTCACGTGTTCGAC CAATCGCTCAAAGGCGTTTAGCGTTTGGATCATCCACGTCTGGTCGCACAGCTGA TCCAGAGATCCATGCCGGTAACGATGGAGCCGATCCAGCTATCTATCCGAGAGA CCCTGAAGGTATGGATGATGTTGCAAACCCTAAAACGGCGGCGGAAGAAATCGT AGACGATACTCCCCGACCGAGTTTAGAAGAGCAACCGCTTGTACCGCCGAAATC TCCACGCGCCACTGCGCACAAGCTAGAGAGTACTCCCGTTGGTCACCCGTCAGAA CCTCATTTCCAACAGAAACGAAAAAACTCCACCGCTTCTCCGCCGTCGCTTGATT CCGTGAGCTGTGCTGGTTTAGACGGTTCACCATGGCCGAGAGACGAAGGAGAAG TGGAAGAGCAAAGGCGAAGAGAAGATGAAACAGAGAGTGACCAAGAGTTTTAC AAACACCACAAAGCTTCTCCGTTATCGGAGATTGAATTCGCCGATACTCGGAAAC CTATTACGCAAGCTACCGATGGAACTGCCTACCCAGCCGGGAAAGATGTGATCG GATGGTTACCGGAGCAGCTAGACACGGCGGAAGAATCTTTGATGAAAGCAACAA TGATATTCAAACGCAACGCAGAACGTGGCGATCCTGAAACGTTTCCTCATTCTAG AATCTTAAGAGAAATGAGAGGCGAGTGGTTTTAA SEQ ID NO: 18, Deduced amino acid sequence of the open reading frame of Pk207 MAQSRLLAFASAARSRVRPIAQRRLAFGSSTSGRTADPEIHAGNDGADPAIYPRDPEG MDDVANPKTAAEEIVDDTPRPSLEEQPLVPPKSPRATAHKLESTPVGHPSEPHFQQKR KNSTASPPSLDSVSCAGLDGSPWPRDEGEVEEQRRREDETESDQEFYKHHKASPLSEI EFADTRKPITQATDGTAYPAGKDVIGWLPEQLDTAEESLMKATMIFKRNAERGDPET FPHSRILREMRGEWF SEQ ID NO: 19, Nucleotide sequence of the open reading frame of Pk209 ATGTCCGTGGCTCGATTCGATTTCTCTTGGTGCGATGCTGATTATCA CCAGGAGACGCTGGAGAATCTGAAGATAGCTGTGAAGAGCACTAAGAAGCTTTG TGCTGTTATGCTAGACACTGTAGGACCTGAGTTGCAAGTTATTAACAAGACTGAG AAAGCTATTTCTCTTAAAGCTGATGGCCTTGTAACTTTGACTCCGAGTCAAGATC AAGAAGCCTCCTCTGAAGTCCTTCCCATTAATTTTGATGGGTTAGCGAAGGCGGT TAAGAAAGGAGACACTATCTTTGTTGGACAATACCTCTTCACTGGTAGTGAAACA ACTTCAGTTTGGCTTGAGGTTGAAGAAGTTAAAGGAGATGATGTCATTTGTATTT CAAGGAATGCTGCTACTCTGGGTGGTCCGTTATTCACATTGCACGTCTCTCAAGT TCACATTGATATGCCAACCCTAACTGAGAAGGATAAGGAGGTTATAAGTACATG GGGAGTTCAGAATAAGATCGACTTTCTCTCATTATCTTATTGTCGACATGCAGAA GATGTTCGCCAGGCCCGTGAGTTGCTTAACAGTTGTGGTGACCTCTCTCAAACAC AAATATTTGCGAAGATTGAGAATGAAGAGGGACTAACCCACTTTGACGAAATTC TACAAGAAGCAGATGGCATTATTCTTTCTCGTGGGAATTTGGGTATCGATCTACC TCCGGAAAAGGTGTTTTTGTTCCAAAAGGCTGCTCTTTACAAGTGTAACATGGCT GGAAAGCCTGCCGTTCTTACTCGTGTTGTAGACAGTATGACAGACAATCTGCGGC CAACTCGTGCAGAGGCAACTGATGTTGCTAATGCTGTTTTAGATGGAAGTGATGC AATTCTTCTTGGTGCTGAGACTCTTCGTGGATTGTACCCTGTTGAAACCATATCAA CTGTTGGTAGAATCTGTTGTGAGGCAGAGAAAGTTTTCAACCAAGATTTGTTCTT TAAGAAGACTGTCAAGTATGTTGGAGAACCAATGACTCACTTGGAATCTATTGCT TCTTCTGCTGTACGGGCAGCAATCAAGGTTAAGGCATCCGTAATTATATGCTTCA CCTCGTCTGGCAGAGCAGCAAGGTTGATTGCCAAATACCGTCCAACTATGCCCGT TCTCTCTGTTGTCATTCCCCGACTTACGACAAATCAGCTGAAGTGGAGCTTTAGC GGAGCCTTTGAGGCAAGGCAGTCACTTATTGTCAGAGGTCTTTTCCCCATGCTTG CTGATCCTCGTCACCCTGCGGAATCAACAAGTGCAACAAATGAGTCGGTTCTTAA AGTGGCTCTAGACCATGGGAAGCAAGCCGGAGTGATCAAGTCACATGACAGAGT TGTGGTCTGTCAGAAAGTGGGAGATGCGTCCGTGGTCAAAATCATCGAGCTAGA GGATTAG SEQ ID NO: 20, Deduced amino acid sequence of the open reading frame of Pk209 MSVARFDFSWCDADYHQETLENLKIAVKSTKKLCAVMLDTVGPELQVINKTEKAIS LKADGLVTLTPSQDQEASSEVLPINFDGLAKAVKKGDTIFVGQYLFTGSETTSVWLE VEEVKGDDVICISRNAATLGGPLFTLHVSQVHIDMPTLTEKDKEVISTWGVQNKIDFL SLSYCRHAEDVRQARELLNSCGDLSQTQIFAKIENEEGLTHFDEILQEADGIILSRGNL GIDLPPEKVFLFQKAALYKCNMAGKPAVLTRVVDSMTDNLRPTRAEATDVANAVL DGSDAILLGAETLRGLYPVETISTVGRICCEAEKVFNQDLFFKKTVKYVGEPMTHLES IASSAVRAAIKVKASVIICFTSSGRAARLIAKYRPTMPVLSVVIPRLTTNQLKWSFSGA FEARQSLIVRGLFPMLADPRHPAESTSATNESVLKVALDHGKQAGVIKSHDRVVVCQ KVGDASVVKIIELED SEQ ID NO: 21, Nucleotide sequence of the open reading frame of Pk215 ATGGCGATTTACAGATCTCTAAGAAAGCTAGTTGAAATCAATCACCGGAAAACA AGACCATTCCTCACCGCCGCTACAGCTTCCGGCGGAACCGTTTCTCTGACTCCAC CGCAGTTTTCGCCGTTGTTCCCACATTTCTCACACCGTTTATCTCCGCTTTCGAAA TGGTTCGTTCCTCTTAATGGACCTCTCTTCTTATCTTCTCCTCCTTGGAAACTTCTC CAGTCTGCGACACCTTTGCACTGGCGCGGAAACGGCTCTGTTTTGAAAAAAGTCG AAGCTCTGAATCTTAGATTGGATCGAATTAGAAGCAGAACTAGGTTTCCGAGAC AGTTAGGGTTACAGTCTGTGGTACCAAACATATTGACGGTGGATCGCAACGATTC CAAGGAAGAAGATGGTGGAAAATTAGTCAAGAGTTTTGTTAATGTGCCGAATAT GATATCAATGGCGAGATTAGTATCTGGTCCTGTGCTTTGGTGGATGATCTCGAAT GAGATGTATTCTTCTGCTTTCTTAGGGTTGGCTGTTTCTGGAGCTAGTGATTGGTT AGATGGTTACGTGGCTCGGAGGATGAAGATTAACTCTGTGGTTGGCTCGTACCTT GATCCTCTTGCAGACAAGGTTCTTATCGGGTGTGTAGCAGTAGCAATGGTGCAGA AGGATCTCTTACATCCTGGACTGGTTGGAATTGTGTTGTTACGGGATGTTGCACT CGTTGGTGGTGCAGTTTACCTAAGGGCACTAAACTTGGACTGGAGGTGGAAAAC TTGGAGTGACTTCTTCAATCTAGATGGTTCAAGTCCTCAGAAAGTAGAACCATTG TTTATAAGCAAGGTGAATACAGTTTTCCAGTTGACTCTAGTCGCTGGTGCAATAC TTCAACCAGAGTTTGGGAATCCAGACACCCAGACATGGATCACTTATCTAAGGTAA SEQ ID NO: 22, Deduced amino acid sequence of the open reading frame of Pk215 MAIYRSLRKLVEINHRKTRPFLTAATASGGTVSLTPPQFSPLFPHFSHRLSPLSKWFVP LNGPLFLSSPPWKLLQSATPLHWRGNGSVLKKVEALNLRLDRIRSRTRFPRQLGLQS VVPNILTVDRNDSKEEDGGKLVKSFVNVPNMISMARLVSGPVLWWMISNEMYSSAF LGLAVSGASDWLDGYVARRMKINSVVGSYLDPLADKVLIGCVAVAMVQKDLLHPG LVGIVLLRDVALVGGAVYLRALNLDWRWKTWSDFFNLDGSSPQKVEPLFISKVNTV FQLTLVAGAILQPEFGNPDTQTWITYLR SEQ ID NO: 23, Nucleotide sequence of the open reading frame of Pk239 ATGGTAAAGGAAACTCTAATTCCTCCGTCATCTACGTCAATGACGACCGGAACAT CTTCTTCTTCGTCTCTTTCAATGACGTTATCCTCAACAAACGCGTTATCGTTTTTGT CGAAAGGATGGAGAGAGGTATGGGATTCAGCAGATGCGGATTTGCAGCTGATGC GAGACAGAGCTAACTCTGTTAAGAATCTAGCATCAACGTTCGATAGAGAGATCG AGAATTTCCTCAATAACTCGGCGAGGTCTGCGTTTCCCGTTGGTTCACCATCGGC GTCGTCTTTCTCAAATGAAATTGGTATCATGAAGAAGCTTCAGCCGAAGATTTCG GAGTTTCGTAGGGTTTATTCGGCGCCGGAGATTAGTCGCAAGGTTATGGAGAGAT

GGGGACCTGCGAGAGCGAAGCTTGGAATGGATCTATCGGCGATTAAGAAGGCGA TTGTGTCTGAGATGGAATTGGATGAGCGTCAGGGAGTTTTGGAGATGAGTAGATT GAGGAGACGGCGTAATAGTGATAGGGTTAGGTTTACGGAGTTTTTCGCGGAGGC TGAGAGAGATGGAGAAGCTTATTTCGGTGATTGGGAACCGATTAGGTCTTTGAA GAGTAGATTTAAAGAGTTTGAGAAACGAAGCTCGTTAGAAATATTGAGTGGATT CAAGAACAGTGAATTTGTTGAGAAGCTCAAAACCAGCTTTAAATCAATTTACAA AGAAACTGATGAGGCTAAGGATGTCCCTCCGTTGGATGTACCTGAACTGTTGGCA TGTTTGGTTAGACAATCTGAACCTTTTCTTGATCAGATTGGTGTTAGAAAGGATA CATGTGACCGAATAGTAGAAAGCCTTTGCAAATGCAAGAGCCAACAACTTTGGC GTCTGCCATCTGCACAAGCATCCGATTTAATTGAAAATGATAACCATGGAGTTGA TTTGGATATGAGGATAGCCAGTGTTCTTCAAAGCACAGGACACCATTATGATGGT GGGTTTTGGACTGATTTTGTGAAGCCTGAGACACCGGAAAACAAAAGGCATGTG GCAATTGTTACAACAGCTAGTCTTCCTTGGATGACCGGAACAGCTGTAAATCCGC TATTCAGAGCGGCGTATTTGGCAAAAGCTGCAAAACAGAGTGTTACTCTCGTGGT TCCTTGGCTCTGCGAATCTGATCAAGAACTAGTGTATCCAAACAATCTCACCTTC AGCTCACCTGAAGAACAAGAGAGTTATATACGTAAATGGTTGGAGGAAAGGATT GGTTTCAAGGCTGATTTTAAAATCTCCTTTTACCCAGGAAAGTTTTCAAAAGAAA GGCGCAGCATATTTCCTGCTGGTGACACTTCTCAATTTATATCGTCAAAAGATGC TGACATTGCTATACTTGAAGAACCTGAACATCTCAACTGGTATTATCACGGCAAG CGTTGGACTGATAAATTCAACCATGTTGTTGGAATTGTCCACACAAACTACTTAG AGTACATCAAGAGGGAGAAGAATGGAGCTCTTCAAGCATTTTTTGTGAACCATGT AAACAATTGGGTCACACGAGCGTATTGTGACAAGGTTCTTCGCCTCTCTGCGGCA ACACAAGATTTACCAAAGTCTGTTGTATGCAATGTCCATGGTGTCAATCCCAAGT TCCTTATGATTGGGGAGAAAATTGCTGAAGAGAGATCCCGTGGTGAACAAGCTTT CTCAAAAGGTGCATACTTCTTAGGAAAAATGGTGTGGGCTAAAGGATACAGAGA ACTAATAGATCTGATGGCTAAACACAAAAGCGAACTTGGGAGCTTCAATCTAGA TGTATATGGGAACGGTGAAGATGCAGTCGAGGTCCAACGTGCAGCAAAGAAACA TGACTTGAATCTCAATTTCCTCAAAGGAAGGGACCACGCTGACGATGCTCTTCAC AAGTACAAAGTGTTCATAAACCCCAGCATCAGCGATGTTCTATGCACAGCAACC GCAGAAGCACTAGCCATGGGGAAGTTTGTGGTGTGTGCAGATCACCCTTCAAAC GAATTCTTTAGATCATTCCCGAACTGCTTAACTTACAAAACATCCGAAGACTTTG TGTCCAAAGTGCAAGAAGCAATGACGAAAGAGCCACTACCTCTCACTCCTGAAC AAATGTACAATCTCTCTTGGGAAGCAGCAACACAGAGGTTCATGGAGTATTCAG ATCTCGATAAGATCTTAAACAATGGAGAGGGAGGAAGGAAGATGCGAAAATCA AGATCGGTTCCGAGCTTTAACGAGGTGGTCGATGGAGGATTGGCATTCTCACACT ATGTTCTAACAGGGAACGATTTCTTGAGACTATGCACTGGAGCAACACCAAGAA CAAAAGACTATGATAATCAACATTGCAAGGATCTGAATCTCGTACCACCTCACGT TCACAAGCCAATCTTCGGCTGGTAG SEQ ID NO: 24, Deduced amino acid sequence of the open reading frame of Pk239 MVKETLIPPSSTSMTTGTSSSSSLSMTLSSTNALSFLSKGWREVWDSADADLQLMRD RANSVKNLASTFDREIENFLNNSARSAFPVGSPSASSFSNEIGIMKKLQPKISEFRRVYS APEISRKVMERWGPARAKLGMDLSAIKKAIVSEMELDERQGVLEMSRLRRRRNSDR VRFTEFFAEAERDGEAYFGDWEPIRSLKSRFKEFEKRSSLEILSGFKNSEFVEKLKTSF KSIYKETDEAKDVPPLDVPELLACLVRQSEPFLDQIGVRKDTCDRIVESLCKCKSQQL WRLPSAQASDLIENDNHGVDLDMRIASVLQSTGHHYDGGFWTDFVKPETPENKRHV AIVTTASLPWMTGTAVNPLFRAAYLAKAAKQSVTLVVPWLCESDQELVYPNNLTFS SPEEQESYIRKWLEERIGFKADFKISFYPGKFSKERRSIFPAGDTSQFISSKDADIAILEE PEHLNWYYHGKRWTDKFNHVVGIVHTNYLEYIKREKNGALQAFFVNHVNNWVTR AYCDKVLRLSAATQDLPKSVVCNVHGVNPKFLMIGEKIAEERSRGEQAFSKGAYFL GKMVWAKGYRELIDLMAKHKSELGSFNLDVYGNGEDAVEVQRAAKKHDLNLNFL KGRDHADDALHKYKVFINPSISDVLCTATAEALAMGKFVVCADHPSNEFFRSFPNCL TYKTSEDFVSKVQEAMTKEPLPLTPEQMYNLSWEAATQRFMEYSDLDKILNNGEGG RKMRKSRSVPSFNEVVDGGLAFSHYVLTGNDFLRLCTGATPRTKDYDNQHCKDLNL VPPHVHKPIFGW SEQ ID NO: 25, Nucleotide sequence of the open reading frame of Pk240 ATGGCGACTTTTGCTGAACTTGTTTTATCGACTTCTCGCTGTACATGCCCTTGCCG TTCATTCACTAGAAAACCCCTAATTCGTCCCCCTTTATCTGGTCTGCGTCTCCCCG GTGATACCAAACCATTGTTTCGTTCCGGACTTGGTCGGATTTCTGTTAGCCGGCGT TTCCTCACGGCCGTTGCTCGAGCTGAATCAGACCAGCTTGGTGATGATGACCACT CAAAGGGAATTGATAGAATCCATAACTTGCAGAATGTGGAAGATAAGCAGAAGA AAGCAAGCCAGCTTAAGAAAAGAGTGATCTTTGGTATTGGCATTGGTTTACCTGT TGGATGTGTTGTGTTAGCTGGAGGATGGGTTTTCACTGTAGCTTTAGCATCTTCTG TTTTTATCGGTTCCCGCGAATATTTCGAGCTTGTTAGAAGTAGAGGCATAGCTAA AGGAATGACTCCTCCTCCACGATATGTATCTCGAGTTTGCTCGGTTATATGTGCCC TTATGCCCATACTTACACTGTACTTTGGTAACATTGATATATTGGTGACATCTGCA GCATTTGTTGTTGCAATAGCATTGTTAGTACAAAGAGGATCCCCACGTTTTGCTC AGCTGAGTAGTACAATGTTTGGTCTGTTTTACTGTGGTTATCTCCCTTCTTTCTGG GTTAAGCTTCGCTGTGGTTTAGCTGCTCCTGCGCTTAACACTGGTATCGGAAGGA CATGGCCAATTCTTCTTGGTGGTCAAGCTCATTGGACAGTTGGACTTGTGGCAAC ATTGATTTCTTTCAGCGGTGTAATTGCGACAGACACATTTGCTTTTCTCGGTGGAA AGACTTTTGGTAGGACACCTCTTACTAGTATTAGTCCCAAGAAGACATGGGAAGG AACTATTGTAGGACTTGTTGGTTGTATAGCCATTACCATATTACTCTCTAAATATC TCAGTTGGCCACAATCTCTGTTCAGCTCAGTAGCTTTTGGGTTTCTTAACTTCTTT GGGTCAGTCTTTGGTGATCTTACTGAATCAATGATCAAGCGTGATGCTGGCGTCA AAGACTCTGGTTCACTTATCCCAGGACACGGTGGAATATTAGATAGAGTTGATAG TTACATTTTCACCGGCGCATTAGCTTATTCATTCATCAAAACATCCCTAAAACTTT ACGGAGTTTGA SEQ ID NO: 26, Deduced amino acid sequence of the open reading frame of Pk240 MATFAELVLSTSRCTCPCRSFTRKPLIRPPLSGLRLPGDTKPLFRSGLGRISVSRRFLTA VARAESDQLGDDDHSKGIDRIHNLQNVEDKQKKASQLKKRVIFGIGIGLPVGCVVLA GGWVFTVALASSVFIGSREYFELVRSRGIAKGMTPPPRYVSRVCSVICALMPILTLYF GNIDILVTSAAFVVAIALLVQRGSPRFAQLSSTMFGLFYCGYLPSFWVKLRCGLAAPA LNTGIGRTWPILLGGQAHWTVGLVATLISFSGVIATDTFAFLGGKTFGRTPLTSISPKK TWEGTIVGLVGCIAITILLSKYLSWPQSLFSSVAFGFLNFFGSVFGDLTESMIKRDAGV KDSGSLIPGHGGILDRVDSYIFTGALAYSFIKTSLKLYGV SEQ ID NO: 27, Nucleotide sequence of the open reading frame of Pk241 ATGGCTCAAACCATGCTGCTTACTTCAGGCGTCACCGCCGGCCATTTTTTGAGGA ACAAGAGCCCTTTGGCTCAGCCCAAAGTTCACCATCTCTTCCTCTCTGGAAACTC TCCGGTTGCACTACCATCTAGGAGACAATCATTCGTTCCTCTCGCTCTCTTCAAAC CCAAAACCAAAGCTGCTCCTAAAAAGGTTGAGAAGCCGAAGAGCAAGGTTGAGG ATGGCATCTTTGGAACGTCTGGTGGGATTGGTTTCACAAAGGCGAATGAGCTATT CGTTGGTCGTGTTGCTATGATCGGTTTCGCTGCATCGTTGCTTGGTGAGGCGTTGA CGGGAAAAGGGATATTAGCTCAGCTGAATCTGGAGACAGGGATACCGATTTACG AAGCAGAGCCATTGCTTCTCTTCTTCATCTTGTTCACTCTGTTGGGAGCCATTGGA GCTCTCGGAGACAGAGGAAAATTCGTCGACGATCCTCCCACCGGGCTCGAGAAA GCCGTCATTCCTCCCGGCAAAAACGTCCGATCTGCCCTCGGTCTCAAAGAACAAG GTCCATTGTTTGGGTTCACGAAGGCGAACGAGTTATTCGTAGGAAGATTGGCACA GTTGGGAATAGCATTTTCACTGATAGGAGAGATTATTACCGGGAAAGGAGCATT AGCTCAACTCAACATTGAGACCGGTATACCAATTCAAGATATCGAACCACTTGTC CTCTTAAACGTTGCTTTCTTCTTCTTCGCTGCCATTAATCCTGGTAATGGAAAATT CATCACCGATGATGGTGAAGAAAGCTAA SEQ ID NO: 28, Deduced amino acid sequence of the open reading frame of Pk241 MAQTMLLTSGVTAGHFLRNKSPLAQPKVHHLFLSGNSPVALPSRRQSFVPLALFKPK TKAAPKKVEKPKSKVEDGIFGTSGGIGFTKANELFVGRVAMIGFAASLLGEALTGKGI LAQLNLETGIPIYEAEPLLLFFILFTLLGAIGALGDRGKFVDDPPTGLEKAVIPPGKNVR SALGLKEQGPLFGFTKANELFVGRLAQLGIAFSLIGEIITGKGALAQLNIETGIPIQDIEP LVLLNVAFFFFAAINPGNGKFITDDGEES SEQ ID NO: 29, Nucleotide sequence of the open reading frame of Pk242 ATGGGTGCAGGTGGAAGAATGCCGGTTCCTACTTCTTCCAAGAAATCGGAAACC GACACCACAAAGCGTGTGCCGTGCGAGAAACCGCCTTTCTCGGTGGGAGATCTG AAGAAAGCAATCCCGCCGCATTGTTTCAAACGCTCAATCCCTCGCTCTTTCTCCT ACCTTATCAGTGACATCATTATAGCCTCATGCTTCTACTACGTCGCCACCAATTAC TTCTCTCTCCTCCCTCAGCCTCTCTCTTACTTGGCTTGGCCACTCTATTGGGCCTGT CAAGGCTGTGTCCTAACTGGTATCTGGGTCATAGCCCACGAATGCGGTCACCACG CATTCAGCGACTACCAATGGCTGGATGACACAGTTGGTCTTATCTTCCATTCCTTC CTCCTCGTCCCTTACTTCTCCTGGAAGTATAGTCATCGCCGTCACCATTCCAACAC TGGATCCCTCGAAAGAGATGAAGTATTTGTCCCAAAGCAGAAATCAGCAATCAA GTGGTACGGGAAATACCTCAACAACCCTCTTGGACGCATCATGATGTTAACCGTC CAGTTTGTCCTCGGGTGGCCCTTGTACTTAGCCTTTAACGTCTCTGGCAGACCGTA TGACGGGTTCGCTTGCCATTTCTTCCCCAACGCTCCCATCTACAATGACCGAGAA CGCCTCCAGATATACCTCTCTGATGCGGGTATTCTAGCCGTCTGTTTTGGTCTTTA CCGTTACGCTGCTGCACAAGGGATGGCCTCGATGATCTGCCTCTACGGAGTACCG CTTCTGATAGTGAATGCGTTCCTCGTCTTGATCACTTACTTGCAGCACACTCATCC CTCGTTGCCTCACTACGATTCATCAGAGTGGGACTGGCTCAGGGGAGCTTTGGCT ACCGTAGACAGAGACTACGGAATCTTGAACAAGGTGTTCCACAACATTACAGAC ACACACGTGGCTCATCACCTGTTCTCGACAATGCCGCCTTATAACGCAATGGAAG CTACAAAGGCGATAAAGCCAATTCTGGGAGACTATTACCAGTTCGATGGAACAC

CGTGGTATGTAGCGATGTATAGGGAGGCAAAGGAGTGTATCTATGTAGAACCGG ACAGGGAAGGTGACAAGAAAGGTGTGTACTGGTACAACAATAAGTTATGA SEQ ID NO: 30, Deduced amino acid sequence of the open reading frame of Pk242 MGAGGRMPVPTSSKKSETDTTKRVPCEKPPFSVGDLKKAIPPHCFKRSIPRSFSYLISD IIIASCFYYVATNYFSLLPQPLSYLAWPLYWACQGCVLTGIWVIAHECGHHAFSDYQ WLDDTVGLIFHSFLLVPYFSWKYSHRRHHSNTGSLERDEVFVPKQKSAIKWYGKYL NNPLGRIMMLTVQFVLGWPLYLAFNVSGRPYDGFACHFFPNAPIYNDRERLQIYLSD AGILAVCFGLYRYAAAQGMASMICLYGVPLLIVNAFLVLITYLQHTHPSLPHYDSSE WDWLRGALATVDRDYGILNKVFHNITDTHVAHHLFSTMPPYNAMEATKAIKPILGD YYQFDGTPWYVAMYREAKECIYVEPDREGDKKGVYWYNNKL SEQ ID NO: 31, Nucleotide sequence of the open reading frame of Bn011 ATGGCTTCAATAAATGAAGATGTGTCTATTGGAAACTTAGGCAGTCTCCAAACAC TCCCAGACTCATTCACCTGGAAACTCACCGCTGCTGACTCCATTCTCCCTCCCTCC TCCGCCGCTGTGAAAGAGTCCATTCCGGTCATCGACCTCTCCGATCCTGACGTCA CCAATTTGTTAGGAAATGCATGCAAAACGTGGGGAGCGTTTCAGATAGCCAACC ACGGGGTCTCTCAAAGTCTCCTCGACGACGTTGAATCTCTCTCCAAAACCTTTTTC GATATGCCGTCAGAGAGGAAACTCGAGGCTGCTTCCTCTAATAAAGGAGTTAGT GGGTACGGAGAACCTCGAATCTCTCTTTTCTTCGAGAAGAAAATGTGGTCTGAAG GGTTGACAATCGCCGACGGCTCCTACCGCAACCAGTTCCTTACTATTTGGCCCCG TGATTACACCAAATACTGCGGAATAATCGAAGAGTACAAGGGTGAAATGGAAAA ATTAGCAAGCAGACTTCTATCATGCATATTAGGATCACTTGGTGTCACCGTAGAC GACATCGAATGGGCTAAGAAGACCGAGAAATCTGAATCAAAAATGGGCCAAAG CGTCATACGACTAAACCATTACCCGGTTTGTCCTGAGCCAGAAAGAGCCATGGGT CTAGCCGCTCATACCGACTCATGTCTTCTAACCATTTTGCACCAGAGCAACATGG GAGGGCTACAAGTGTTCAAAGAAGAGTCCGGTTGGGTTACGGTAGAGCCCATTC CTGGTGTTCTTGTGGTCAACATCGGCGACCTCTTTCACATTCTATCGAATGGGAA GTTTCCTAGCGTGGTTCACCGAGCAAGGGTTAACCGAACCAAGTCAAGAATATC GATAGCGTATCTGTGGGGTGGTCCAGCCGGTGAAGTGGAGATAAGTCCAATATC AAAGATAGTTGGTCCGGTTGGACCGTGTCTATACCGGCCAGTTACTTGGAGTGAA TATCTCCGAATCAAATTTGAGGTTTTCGACAAGGCATTGGACGCAATTGGAGTCG TTAATCCCACCAATTGA SEQ ID NO: 32, Deduced amino acid sequence of the open reading frame of Bn011 MASINEDVSIGNLGSLQTLPDSFTWKLTAADSILPPSSAAVKESIPVIDLSDPDVTNLL GNACKTWGAFQIANHGVSQSLLDDVESLSKTFFDMPSERKLEAASSNKGVSGYGEP RISLFFEKKMWSEGLTIADGSYRNQFLTIWPRDYTKYCGIIEEYKGEMEKLASRLLSCI LGSLGVTVDDIEWAKKTEKSESKMGQSVIRLNHYPVCPEPERAMGLAAHTDSCLLTI LHQSNMGGLQVFKEESGWVTVEPIPGVLVVNIGDLFHILSNGKFPSVVHRARVNRTK SRISIAYLWGGPAGEVEISPISKIVGPVGPCLYRPVTWSEYLRIKFEVFDKALDAIGVV NPTN SEQ ID NO: 33, Nucleotide sequence of the open reading frame of Bn077 ATGGCTACATTCTCTTGTAATTCTTATGAACAAAATCACGCTCCTTTCGACCGTCA CGCTAATGATACTGATATTGATGATCCTGATCATGATCATCATGATGGTGTTCAG CAAGAGGAGAGTGGATGGACAACTTATCTTGAAGATTTCTCAAATCAATACAGA ACTCATCCTGAAGATAACGATCATCAAGATAAGAGTTCGTGTTCGATTCTGGACG CCTCTCCTTCTCTGGTCTCCGACGCCGCCACTGACGCATTTTCTGGCCGGAGTTTT CCAGTTAATTTTCCGGTGAAATTGAAGTTTGGGAAGGCAAGAACCAAAAAGATT TGTGAGGATGATTCTTTGGAGGATACGGCTAGCTCTCCGGTTAATAGCCCTAAGG TCAGTCAGATTGAACATATTCAGACGCCTCCTAGAAAACATGAGGACTATGTCTC TTCTAGTTTCGTTATGGGAAATATGAGTGGCATGGGGGATCATCAAATCCAAATC CAAGAAGGAGATGAACAAAAGTTGACGATGATGAGGAATCTCAGAGAAGGAAA CAACAGTAACAGTAATAATATGGACTTGAGGGCTAGAGGATTATGCGTCGTCCCT ATTTCCATGTTGGGTAATTTTAATGGCCGCTTCTGA SEQ ID NO: 34, Deduced amino acid sequence of the open reading frame of Bn077 MATFSCNSYEQNHAPFDRHANDTDIDDPDHDHHDGVQQEESGWTTYLEDFSNQYR THPEDNDHQDKSSCSILDASPSLVSDAATDAFSGRSFPVNFPVKLKFGKARTKKICED DSLEDTASSPVNSPKVSQIEHIQTPPRKHEDYVSSSFVMGNMSGMGDHQIQIQEGDEQ KLTMMRNLREGNNSNSNNMDLRARGLCVVPISMLGNFNGRF SEQ ID NO: 35, Nucleotide sequence of the open reading frame of Jb001 ATGGCAACGGAATGCATTGCAACGGTCCCTCAAATATTCAGTGAAAACAAAACC AAAGAGGATTCTTCGATCTTCGATGCAAAGCTCCTTAATCAGCACTCACACCACA TACCTCAACAGTTCGTATGGCCCGACCACGAGAAACCTTCTACGGATGTTCAACC TCTCCAAGTCCCACTCATAGACCTAGCCGGTTTCCTCTCCGGCGACTCGTGCTTGG CATCGGAGGCTACTAGACTCGTCTCAAAGGCTGCAACGAAACATGGCTTCTTCCT AATCACTAACCATGGTATCGATGAGAGCCTCTTGTCTCGTGCCTATCTGCATATG GACTCTTTCTTTAAGGCCCCGGCTTGTGAGAAGCAGAAGGCTCAGAGGAAGTGG GGTGAGAGCTCCGGTTACGCTAGTAGTTTCGTCGGGAGATTCTCCTCAAAGCTCC CGTGGAAGGAGACTCTGTCGTTTAAGTTCTCTCCCGAGGAGAAGATCCATTCCCA AACCGTTAAAGACTTTGTTTCTAAGAAAATGTGCGATGGATACGAAGATTTCGGG AAGGTTTATCAAGAATACGCGGAGGCCATGAACACTCTCTCACTAAAGATCATG GAGCTTCTTGGAATGAGTCTTGGGGTCGAGAGGAGATATTTTAAAGAGTTTTTCG AAGACAGCGATTCAATATTCCGGTTGAATTACTACCCGCAGTGCAAGCAACCGG AGCTTGCACTAGGGACAGGACCCCACTGCGACCCAACATCTCTAACCATACTTCA TCAAGACCAAGTTGGCGGTCTGCAAGTTTTCGTGGACAACAAATGGCAATCCATT CCTCCTAACCCTCACGCTTTCGTGGTGAACATAGGCGACACCTTCATGGCTCTAA CGAATGGAAGATACAAGAGTTGTTTGCATCGGGCGGTGGTGAACAGCGAGAGAG AAAGGAAGACGTTTGCATTCTTCCTATGTCCGAAAGGGGAAAAAGTGGTGAAGC CACCAGAAGAACTAGTAAACGGAGTGAAGTCTGGTGAAAGAAAGTATCCTGATT TTACGTGGTCTATGTTTCTCGAGTTCACACAGAAGCATTATAGGGCAGACATGAA CACTCTTGACGAGTTCTCAATTTGGCTTAAGAACAGAAGAAGTTTCTAA SEQ ID NO: 36, Deduced amino acid sequence of the open reading frame of Jb001 MATECIATVPQIFSENKTKEDSSIFDAKLLNQHSHHIPQQFVWPDHEKPSTDVQPLQV PLIDLAGFLSGDSCLASEATRLVSKAATKHGFFLITNHGIDESLLSRAYLHMDSFFKAP ACEKQKAQRKWGESSGYASSFVGRFSSKLPWKETLSFKFSPEEKIHSQTVKDFVSKK MCDGYEDFGKVYQEYAEAMNTLSLKIMELLGMSLGVERRYFKEFFEDSDSIFRLNY YPQCKQPELALGTGPHCDPTSLTILHQDQVGGLQVFVDNKWQSIPPNPHAFVVNIGD TFMALTNGRYKSCLHRAVVNSERERKTFAFFLCPKGEKVVKPPEELVNGVKSGERK YPDFTWSMFLEFTQKHYRADMNTLDEFSIWLKNRRSF SEQ ID NO: 37, Nucleotide sequence of the open reading frame of Jb002 ATGGCGTCAGAGCAAGCAAGGAGAGAAAACAAGGTGACGGAGAGAGAAGTTCA GGTGGAGAAAGACAGAGTCCCAAAGATGACGAGTCATTTCGAGTCCATGGCCGA AAAAGGCAAAGATTCCGACACACACAGGCATCAAACAGAAGGTGGTGGGACAC AGTTCGTGTCTCTCTCAGACAAGGGGAGTAACATGCCGGTTTCTGATGAAGGAGA GGGAGAGACGAAGATGAAGAGGACTCAGATGCCTCACTCCGTTGGAAAATTCGT TACTAGCAGCGATTCAGGAACAGGGAAGAAGAAGGATGAGAAAGAGGAGCATG AGAAGGCGTCGCTAGAGGATATTCATGGGTATAGAGCCAATGCTCAGCAGAAGT CAATGGATAGTATAAAAGCAGCAGAGGAAAGGTATAACAAGGCTAAGGAGAGT TTGAGCCATAGTGGACAAGAAGCTCGTGGAGGAAGAGGTGAAGAAATGGTGGG AAAAGGGCGGGACAGTGGTGTCCGTGTTTCTCACGTTGGGGCTGTTGGTGGCGGT GGTGGAGGTGAGGAAAAAGAGAGTGGTGTACATGGCTTTCATGGGGAGAAAGC ACGACATGCTGAGCTTTTGGCTGCCGGAGGTGAGGAGATGAGAGAACGTGAAGG TAAAGAATCAGCAGGTGGTGTTGGTGGTCGTAGCGTAAAAGATACGGTAGCCGA GAAAGGACAGCAAGCTAAGGAAAGTGTAGGAGAAGGTGCTCAGAAAGCGGGCA GTGCTACGAGTGAGAAAGCTCAGAGAGCTTCCGAGTATGCAACAGAGAAAGGAA AAGAAGCTGGAAATATGACAGCTGAACAGGCGGCGAGAGCAAAAGACTATGCT CTGCAGAAAGCTGTTGAAGCTAAAGAGACTGCGGCGGAGAAAGCTCAGAGAGCT TCCGAGTATATGAAGGAAACAGGAAGCACAGCGGCTGAACAGGCTGCGAGAGCT AAAGATTACACTCTTCAGAAAGCTGTGGAAGCTAAAGATGTTGCAGCTGAGAAA GCTCAGAGAGCTTCAGAATACATGACAGAGACAGGAAAACAAGCCGGAAATGTT GCAGCTCAGAAAGGGCAAGAGGCAGCTTCAATGACAGCAAAAGCTAAAGATTAT ACTGTTCAGAAAGCCGGTGAAGCAGCTGGGTACATAAAAGAAACGACAGTGGAA GGAGGAAAAGGAGCTGCACATTATGCAGGAGTGGCAGCTGAGAAAGCCGCTGC GGTTGGGTGGACAGCGGCACATTTCACCACGGAGAAAGTGGTGCAAGGGACGAA AGCGGTTGCAGGTACAGTGGAAGGTGCTGTGGGGTACGCAGGGCATAAGGCGGT GGAAGTAGGATCTAAGGCAGTGGACTTGACTAAGGAGAAAGCTGCAGTGGCTGC TGATACGGTGGTTGGGTATACGGCGAGGAAGAAAGAGGAAGCTCAACACAGAG ACCAAGAGATGCATCAGGGAGGTGAGGAAGAAAAGCAACCAGGGTTTGTCTCAG GAGCAAGGAGAGACTTTGGAGAAGAGTACGGGGAAGAAAGAGGGAGTGAGAAA GATGTCTACGGCTATGGAGCAAAAGGAATACCCGGAGAAGGGAGGGGAGATGTT GGGGAGGCAGAGTACGGAAGAGGGAGTGAGAAAGATGTCTTCGGATATGGACC AAAAGGCACGGTCGAAGAAGCAAGGAGAGACGTTGGAGAAGAATACGGAGGAG GAAGAGGCAGTGAGAGATATGTTGAAGAAGAAGGGGTTGGAGCGGGAGGGGTG CTTGGGGCAATCGGCGAGACTATAGCTGAGATTGCACAGACGACAAAGAACATA GTGATTGGTGATGCGCCTGTGAGGACACATGAGCATGGAACTACTGATCCTGACT ATATGAGACGGGAACATGGACAACGTTGA SEQ ID NO: 38, Amino acid sequence of the open reading frame of Jb002 MASEQARRENKVTEREVQVEKDRVPKMTSHFESMAEKGKDSDTHRHQTEGGGTQF VSLSDKGSNMPVSDEGEGETKMKRTQMPHSVGKFVTSSDSGTGKKKDEKEEHEKAS LEDIHGYRANAQQKSMDSIKAAEERYNKAKESLSHSGQEARGGRGEEMVGKGRDS

GVRVSHVGAVGGGGGGEEKESGVHGFHGEKARHAELLAAGGEEMREREGKESAG GVGGRSVKDTVAEKGQQAKESVGEGAQKAGSATSEKAQRASEYATEKGKEAGNM TAEQAARAKDYALQKAVEAKETAAEKAQRASEYMKETGSTAAEQAARAKDYTLQ KAVEAKDVAAEKAQRASEYMTETGKQAGNVAAQKGQEAASMTAKAKDYTVQKA GEAAGYIKETTVEGGKGAAHYAGVAAEKAAAVGWTAAHFTTEKVVQGTKAVAGT VEGAVGYAGHKAVEVGSKAVDLTKEKAAVAADTVVGYTARKKEEAQHRDQEMH QGGEEEKQPGFVSGARRDFGEEYGEERGSEKDVYGYGAKGIPGEGRGDVGEAEYGR GSEKDVFGYGPKGTVEEARRDVGEEYGGGRGSERYVEEEGVGAGGVLGAIGETIAEI AQTTKNIVIGDAPVRTHEHGTTDPDYMRREHGQR SEQ ID NO: 39, Nucleotide sequence of the open reading frame of Jb003 ATGGCTAAGTCTTGCTATTTCAGACCAGCTCTTCTTCTTCTGTTAGTTCTTTTGGTT CATGCCGAGTCACGCGGTCGGTTCGAGCCAAAGATTCTTATGCCGACAGAGGAA GCTAACCCGGCTGACCAAGACGGAGATGGTGTCGGTACAAGATGGGCGGTTCTC GTCGCTGGTTCTTCTGGATATGGAAACTACAGACACCAGGCTGACATGTGTCACG CATATCAAATACTAAGAAAAGGAGGTTTAAAGGAAGAGAACATAGTCGTTTTGA TGTATGATGATATCGCAAACCACCCACTTAATCCTCGTCCGGGTACTCTCATCAA CCATCCTGACGGTGACGATGTTTACGCCGGAGTCCCTAAGGACTATACTGGTAGT AGTGTTACGGCTGCAAACTTCTACGCTGTACTCCTAGGCGACCAGAAGGCTGTTA AAGGTGGAAGCGGTAAGGTCATCGCTAGCAAGCCCAACGATCACATTTTCGTAT ATTATGCGGATCATGGTGGTCCCGGAGTTCTTGGGATGCCAAATACGCCTCACAT ATATGCAGCTGATTTTATTGAAACGCTTAAGAAGAAGCATGCTTCCGGAACATAC AAAGAGATGGTTATATACGTAGAAGCGTGTGAAAGTGGGAGTATTTTCGAAGGG ATAATGCCAAAGGACTTGAACATTTACGTAACAACGGCTTCAAATGCACAAGAG AGTAGTTATGGAACATATTGTCCTGGCATGAATCCGTCACCCCCATCTGAATATA TCACTTGCTTAGGGGATTTATATAGTGTTGCTTGGATGGAAGATAGTGAGACTCA CAATTTAAAGAAAGAGACCATAAAGCAACAATACCACACGGTGAAGATGAGGA CATCAAACTACAATACCTACTCAGGTGGCTCTCATGTGATGGAATACGGTAACAA TAGTATTAAGTCGGAGAAGCTTTATCTTTACCAAGGGTTTGATCCAGCCACCGTT AATCTCCCACTAAACGAATTACCGGTCAAGTCAAAAATAGGAGTCGTTAACCAA CGCGATGCGGACCTTCTCTTCCTTTGGCATATGTATCGGACATCGGAAGATGGGT CAAGGAAGAAGGATGACACATTGAAGGAATTAACTGAGACAACAAGGCATAGG AAACATTTAGATGCAAGCGTCGAATTGATAGCCACAATTTTGTTTGGTCCGACGA TGAATGTTCTTAACTTGGTTAGAGAACCCGGTTTGCCTTTGGTTGACGATTGGGA ATGTCTTAAATCGATGGTACGTGTATTTGAAGAGCATTGTGGATCACTAACGCAA TATGGGATGAAACATATGCGAGCGTTTGCAAACGTTTGTAACAACGGTGTGTCCA AAGAGCTGATGGAGGAAGCTTCTACTGCGGCATGCGGTGGTTATAGTGAGGCTC GCTACACGGTGCATCCATCAATCTTAGGCTATAGCGCCTGA SEQ ID NO: 40, Deduced amino acid sequence of the open reading frame of Jb003 MAKSCYFRPALLLLLVLLVHAESRGRFEPKILMPTEEANPADQDGDGVGTRWAVLV AGSSGYGNYRHQADMCHAYQILRKGGLKEENIVVLMYDDIANHPLNPRPGTLINHP DGDDVYAGVPKDYTGSSVTAANFYAVLLGDQKAVKGGSGKVIASKPNDHIFVYYA DHGGPGVLGMPNTPHIYAADFIETLKKKHASGTYKEMVIYVEACESGSIFEGIMPKD LNIYVTTASNAQESSYGTYCPGMNPSPPSEYITCLGDLYSVAWMEDSETHNLKKETI KQQYHTVKMRTSNYNTYSGGSHVMEYGNNSIKSEKLYLYQGFDPATVNLPLNELPV KSKIGVVNQRDADLLFLWHMYRTSEDGSRKKDDTLKELTETTRHRKHLDASVELIA TILFGPTMNVLNLVREPGLPLVDDWECLKSMVRVFEEHCGSLTQYGMKHMRAFAN VCNNGVSKELMEEASTAACGGYSEARYTVHPSILGYSA SEQ ID NO: 41, Nucleotide sequence of the open reading frame of Jb005 ATGGACGGTGCCGGAGAATCACGACTCGGTGGTGATGGTGGTGGTGATGGTTCT GTTGGAGTTCAGATCCGACAAACACGGATGCTACCGGATTTTCTCCAGAGCGTGA ATCTCAAGTATGTGAAATTAGGTTACCATTACTTAATCTCAAATCTCTTGACTCTC TGTTTATTCCCTCTCGCCGTTGTTATCTCCGTCGAAGCCTCTCAGATGAACCCAGA TGATCTCAAACAGCTCTGGATCCATCTACAATACAATCTGGTTAGTATCATCATC TGTTCAGCGATTCTAGTCTTCGGGTTAACGGTTTATGTTATGACCCGACCTAGACC CGTTTACTTGGTTGATTTCTCTTGTTATCTCCCACCTGATCATCTCAAAGCTCCTTA CGCTCGGTTCATGGAACATTCTAGACTCACCGGAGATTTCGATGACTCTGCTCTC GAGTTTCAACGCAAGATCCTTGAGCGTTCTGGTTTAGGGGAAGACACTTATGTCC CTGAAGCTATGCATTATGTTCCACCGAGAATTTCAATGGCTGCTGCTAGAGAAGA AGCTGAACAAGTCATGTTTGGTGCTTTAGATAACCTTTTCGCTAACACTAATGTG AAACCAAAGGATATTGGAATCCTTGTTGTGAATTGTAGTCTCTTTAATCCAACTC CTTCGTTATCTGCAATGATTGTGAACAAGTATAAGCTTAGAGGTAACATTAGAAG CTACAATCTAGGCGGTATGGGTTGCAGCGCGGGAGTTATCGCTGTGGATCTTGCT AAAGACATGTTGTTGGTACATAGGAACACTTATGCGGTTGTTGTTTCTACTGAGA ACATTACTCAGAATTGGTATTTTGGTAACAAGAAATCGATGTTGATACCGAACTG CTTGTTTCGAGTTGGTGGCTCTGCGGTTTTGCTATCGAACAAGTCGAGGGACAAG AGACGGTCTAAGTACAGGCTTGTACATGTAGTCAGGACTCACCGTGGAGCAGAT GATAAAGCTTTCCGTTGTGTTTATCAAGAGCAGGATGATACAGGGAGAACCGGG GTTTCGTTGTCGAAAGATCTAATGGCGATTGCAGGGGAAACTCTCAAAACCAATA TCACTACATTGGGTCCTCTTGTTCTACCGATAAGTGAGCAGATTCTCTTCTTTATG ACTCTAGTTGTGAAGAAGCTCTTTAACGGTAAAGTGAAACCGTATATCCCGGATT TCAAACTTGCTTTCGAGCATTTCTGTATCCATGCTGGTGGAAGAGCTGTGATCGA TGAGTTAGAGAAGAATCTGCAGCTTTCACCAGTTCATGTCGAGGCTTCGAGGATG ACTCTTCATCGATTTGGTAACACATCTTCGAGCTCCATTTGGTATGAATTGGCTTA CATTGAAGCGAAGGGAAGGATGCGAAGAGGTAATCGTGTTTGGCAAATCGCGTT CGGAAGTGGATTTAAATGTAATAGCGCGATTTGGGAAGCATTAAGGCATGTGAA ACCTTCGAACAACAGTCCTTGGGAAGATTGTATTGACAAGTATCCGGTAACTTTA AGTTATTAG SEQ ID NO: 42, Deduced amino acid sequence of the open reading frame of Jb005 MDGAGESRLGGDGGGDGSVGVQIRQTRMLPDFLQSVNLKYVKLGYHYLISNLLTLC LFPLAVVISVEASQMNPDDLKQLWIHLQYNLVSIIICSAILVFGLTVYVMTRPRPVYL VDFSCYLPPDHLKAPYARFMEHSRLTGDFDDSALEFQRKILERSGLGEDTYVPEAMH YVPPRISMAAAREEAEQVMFGALDNLFANTNVKPKDIGILVVNCSLFNPTPSLSAMIV NKYKLRGNIRSYNLGGMGCSAGVIAVDLAKDMLLVHRNTYAVVVSTENITQNWYF GNKKSMLIPNCLFRVGGSAVLLSNKSRDKRRSKYRLVHVVRTHRGADDKAFRCVY QEQDDTGRTGVSLSKDLMAIAGETLKTNITTLGPLVLPISEQILFFMTLVVKKLFNGK VKPYIPDFKLAFEHFCIHAGGRAVIDELEKNLQLSPVHVEASRMTLHRFGNTSSSSIW YELAYIEAKGRMRRGNRVWQIAFGSGFKCNSAIWEALRHVKPSNNSPWEDCIDKYP VTLSY SEQ ID NO: 43, Nucleotide sequence of the open reading frame of Jb007 ATGTCGAGAGCTTTGTCAGTCGTTTGTGTCTTGCTCGCCATATCCTTCGTCTGTGC ACGTGCTCGTCAGGTGCCGGGAGAGTCTGATGAGGGAAAGACGACGGGACATGA CGATACAACAACAATGCCCATGCATGCAAAAGCAGCTGATCAGTTACCACCAAA GAGCGTCGGCGACAAAAAATGCATCGGAGGAGTTGCTGGAGTCGGTGGATTCGC CGGAGTTGGTGGTGTTGCCGGCGTGGGAGGTCTAGGGATGCCACTCATCGGTGGT CTTGGCGGGATCGGTAAGTATGGTGGCATAGGCGGTGCAGCTGGAATCGGTGGA TTTCATAGTATAGGCGGTGTTGGCGGTCTAGGCGGTGTCGGAGGAGGTGTTGGCG GTCTAGGCGGTGTTGGAGGGGGTGTTGGTGGTCTAGGTGGCGTTGGCGGTCTAGG TGGAGCTGGTTTAGGCGGTGTAGGTGGTGTTGGCGGTGGTATTGGTAAAGCCGGT GGTATTGGCGGTTTAGGTGGTCTAGGCGGAGCCGGAGGTGGTTTAGGTGGAGTT GGTGGTCTCGGTAAGGCTGGTGGTATTGGTGTTGGTGGTGGTATCGGTGGTGGAC ACGGCGTGGTCGGTGGTGTGATCGATCCACATCCTTAA SEQ ID NO: 44, Deduced amino acid sequence of the open reading frame of Jb007 MSRALSVVCVLLAISFVCARARQVPGESDEGKTTGHDDTTTMPMHAKAADQLPPKS VGDKKCIGGVAGVGGFAGVGGVAGVGGLGMPLIGGLGGIGKYGGIGGAAGIGGFHS IGGVGGLGGVGGGVGGLGGVGGGVGGLGGVGGLGGAGLGGVGGVGGGIGKAGGI GGLGGLGGAGGGLGGVGGLGKAGGIGVGGGIGGGHGVVGGVIDPHP SEQ ID NO: 45, Nucleotide sequence of the open reading frame of Jb009 ATGGCAAGCAGCGACGTGAAGCTGATCGGTGCATGGGCGAGTCCCTTTGTGATG AGGCCGAGGATTGCTCTAAACCTCAAGTCTGTCCCCTACGAGTTCCTCCAAGAGA CGTTTGGGTCTAAGAGCGAGTTGCTTCTTAAATCAAACCCGGTTCACAAGAAGAT CCCGGTTCTGCTTCATGCTGATAAACCGGTGAGTGAGTCCAACATCATCGTTGAG TATATCGATGACACTTGGAGCTCATCTGGACCGTCCATTCTCCCTTCCGATCCTTA CGATCGGGCCATGGCTCGGTTCTGGGCTGCTTACATCGACGAAAAGTGGTTTGTC GCTCTAAGAGGTTTCCTAAAAGCCGGAGGAGAAGAAGAGAAGAAAGCTGTGATA GCTCAACTAGAAGAAGGGAATGCGTTTCTGGAGAAGGCGTTCATTGATTGCAGC AAAGGAAAACCGTTCTTCAACGGTGACAACATCGGTTACCTCGACATTGCTCTCG GGTGCTTCTTGGCTTGGTTGAGAGTCACCGAGTTAGCAGTCAGCTATAAAATTCT TGATGAGGCCAAGACACCTTCTTTGTCCAAATGGGCTGAGAATTTCTGTAATGAT CCCGCTGTAAAACCTGTCATGCCCGAGACTGCAAAGCTTGCTGAATTCGCAAAGA AGATCTTTCCTAAGCCGCAGGCCTAA SEQ ID NO: 46, Deduced amino acid sequence of the open reading frame of Jb009 MASSDVKLIGAWASPFVMRPRIALNLKSVPYEFLQETFGSKSELLLKSNPVHKKIPVL LHADKPVSESNIIVEYIDDTWSSSGPSILPSDPYDRAMARFWAAYIDEKWFVALRGFL KAGGEEEKKAVIAQLEEGNAFLEKAFIDCSKGKPFFNGDNIGYLDIALGCFLAWLRV TELAVSYKILDEAKTPSLSKWAENFCNDPAVKPVMPETAKLAEFAKKIFPKPQA SEQ ID NO: 47, Nucleotide sequence of the open reading frame of Jb013 ATGGCGTCTCAACAAGAGAAGAAGCAGCTGGATGAGAGGGCAAAGAAGGGCGA GACCGTCGTGCCAGGTGGTACGGGAGGCAAAAGCTTCGAAGCTCAACAGCATCT

CGCTGAAGGGAGGAGCCGAGGAGGGCAAACTCGAAAGGAGCAGTTAGGAACTG AAGGATATCAGCAGATGGGACGCAAAGGTGGTCTTAGCACCGGAGACAAGCCTG GTGGGGAACACGCTGAGGAGGAAGGAGTCGAGATAGACGAATCCAAATTCAGG ACCAAGACCTAA SEQ ID NO: 48, Deduced amino acid sequence of the open reading frame of Jb013 MASQQEKKQLDERAKKGETVVPGGTGGKSFEAQQHLAEGRSRGGQTRKEQLGTEG YQQMGRKGGLSTGDKPGGEHAEEEGVEIDESKFRTKT SEQ ID NO: 51, Nucleotide sequence of the open reading frame of Jb017 ATGGCTCCTTCAACAAAAGTTCTCTCTTTACTTCTCTTATATGGCGTCGTGTCATT AGCCTCCGGTGATGAGTCCATCATCAACGACCATCTCCAACTTCCATCGGACGGC AAGTGGAGAACCGATGAAGAAGTGAGGTCCATCTACTTACAATGGTCCGCAGAA CACGGGAAAACTAACAACAACAACAACGGTATCATCAACGACCAAGACAAAAG ATTCAATATTTTCAAAGACAACTTAAGATTCATCGATCTACACAACGAAAACAAC AAGAACGCTACTTACAAGCTTGGTCTCACCAAATTTACCGATCTCACTAACGATG AGTACCGCAAGTTGTACCTCGGGGCAAGAACTGAGCCCGCCCGCCGCATCGCTA AGGCCAAGAATGTCAACCAGAAATACTCAGCCGCTGTAAACGGCAAGGAGGTTC CAGAGACGGTTGATTGGAGACAGAAAGGAGCCGTTAACCCCATCAAAGACCAAG GAACTTGCGGAAGTTGTTGGGCGTTTTCGACTACTGCAGCAGTAGAAGGTATAAA CAAGATCGTAACAGGAGAACTCATATCTCTATCAGAACAAGAACTTGTTGACTGC GACAAATCCTACAATCAAGGTTGCAACGGCGGTTTAATGGACTACGCTTTTCAAT TCATCATGAAAAATGGTGGCTTAAACACTGAGAAAGATTATCCTTACCGTGGATT CGGCGGAAAATGCAATTCTTTCTTGAAGAATTCTAGAGTTGTGAGTATTGATGGG TACGAAGATGTTCCTACTAAAGACGAGACTGCGTTGAAGAAAGCTATTTCATACC AACCGGTTAGTGTAGCTATTGAAGCCGGTGGAAGAATTTTTCAACATTACCAATC GGGTATTTTTACCGGAAGTTGTGGTACAAATCTTGATCACGCGGTAGTTGCTGTC GGGTACGGATCAGAGAACGGTGTTGACTACTGGATTGTAAGGAACTCTTGGGGT CCACGTTGGGGTGAGGAAGGTTACATTAGAATGGAGAGAAACTTGGCAGCCTCC AAATCCGGTAAGTGTGGGATTGCGGTTGAAGCCTCGTACCCGGTTAAGTACAGCC CAAACCCGGTTCGTGGAAATACTATCAGCAGTGTTTGA SEQ ID NO: 52, Amino acid sequence of the open reading frame of Jb017 MAPSTKVLSLLLLYGVVSLASGDESIINDHLQLPSDGKWRTDEEVRSIYLQWSAEHG KTNNNNNGIINDQDKRFNIFKDNLRFIDLHNENNKNATYKLGLTKFTDLTNDEYRKL YLGARTEPARRIAKAKNVNQKYSAAVNGKEVPETVDWRQKGAVNPIKDQGTCGSC WAFSTTAAVEGINKIVTGELISLSEQELVDCDKSYNQGCNGGLMDYAFQFIMKNGGL NTEKDYPYRGFGGKCNSFLKNSRVVSIDGYEDVPTKDETALKKAISYQPVSVAIEAG GRIFQHYQSGIFTGSCGTNLDHAVVAVGYGSENGVDYWIVRNSWGPRWGEEGYIRM ERNLAASKSGKCGIAVEASYPVKYSPNPVRGNTISSV SEQ ID NO: 53, Nucleotide sequence of the open reading frame of Jb024 ATGCGGTGCTTTCCACCTCCCTTATGGTGCACCTCCTTGGTCGTTTTCTTGTCGGT TACCGGAGCCCTAGCCGCCGATCCCTACGTCTTCTTCGATTGGACTGTCTCTTACC TCTCTGCTTCTCCTCTCGGCACTCGTCAACAGGTAATTGGGATAAATGGGCAATT TCCTGGTCCGATTCTAAACGTAACTACGAATTGGAATGTTGTTATGAATGTGAAG AATAATCTTGATGAGCCATTGCTTCTTACATGGAATGGAATCCAACATAGGAAAA ACTCATGGCAAGATGGTGTTTTGGGAACTAATTGTCCAATTCCTTCTGGTTGGAA TTGGACTTATGAGTTTCAAGTTAAAGATCAGATTGGTAGTTTCTTTTATTTTCCTT CTACAAATTTTCAAAGAGCTTCTGGTGGTTATGGAGGGATTATTGTCAATAATCG CGCTATCATTCCGGTTCCTTTCGCTCTTCCTGATGGTGATGTTACTCTCTTTATCAG TGATTGGTATACTAAGAGCCATAAGAAGCTGAGGAAGGATGTTGAGAGTAAGAA CGGCCTTCGACCTCCGGATGGTATTGTCATCAATGGATTTGGACCTTTTGCTTCTA ATGGTAGTCCTTTTGGGACCATAAACGTTGAACCAGGACGAACATATCGTTTTCG TGTTCACAATAGTGGCATTGCGACCAGCTTGAATTTCAGAATACAGAATCATAAC CTGCTTCTTGTTGAGACAGAAGGGTCATACACAATTCAGCAGAATTATACGAATA TGGATATACATGTGGGTCAATCTTTCTCATTTCTGGTCACTATGGATCAGTCTGGT AGTAATGACTACTACATTGTTGCCAGCCCAAGGTTTGCTACATCCATCAAAGCTA GTGGAGTCGCTGTCTTGCGCTACTCTAATTCCCAAGGACCCGCTTCAGGTCCACT CCCTGATCCTCCTATTGAGTTGGACACATTTTTCTCAATGAACCAAGCACGATCCT TAAGGTTGAATTTGTCATCTGGAGCTGCCCGTCCAAACCCGCAGGGATCTTTCAA ATATGGCCAGATTACAGTAACTGATGTGTATGTGATTGTCAACCGACCACCAGAG ATGATAGAGGGACGATTGCGTGCAACTCTTAATGGTATATCATACTTACCTCCTG CAACACCCCTAAAGCTTGCTCAGCAATACAACATCTCAGGGGTATACAAGTTGG ATTTCCCAAAAAGGCCAATGAATAGGCACCCCAGGGTTGATACCTCAGTCATAA ACGGCACGTTCAAGGGATTCGTGGAAATCATATTTCAAAATAGTGACACCACTGT TAAGAGCTACCACTTGGATGGTTATGCATTTTTTGTTGTTGGGATGGACTTTGGTC TGTGGACAGAAAATAGCAGAAGCACATACAACAAGGGTGATGCAGTTGCTCGAT CTACTACGCAGGTGTTTCCTGGTGCATGGACGGCCGTCTTGGTTTCTTTGGACAAT GCTGGCATGTGGAACCTTCGAATAGACAATCTAGCCTCATGGTATCTTGGCCAAG AACTATACTTGAGTGTGGTTAATCCAGAGATTGACATTGACTCATCTGAGAATTC CGTTCCTAAAAACTCTATATATTGTGGTCGGCTCTCACCATTACAAAAGTAA SEQ ID NO: 54, Deduced amino acid sequence of the open reading frame of Jb024 MRCFPPPLWCTSLVVFLSVTGALAADPYVFFDWTVSYLSASPLGTRQQVIGINGQFP GPILNVTTNWNVVMNVKNNLDEPLLLTWNGIQHRKNSWQDGVLGTNCPIPSGWNW TYEFQVKDQIGSFFYFPSTNFQRASGGYGGIIVNNRAIIPVPFALPDGDVTLFISDWYT KSHKKLRKDVESKNGLRPPDGIVINGFGPFASNGSPFGTINVEPGRTYRFRVHNSGIA TSLNFRIQNHNLLLVETEGSYTIQQNYTNMDIHVGQSFSFLVTMDQSGSNDYYIVASP RFATSIKASGVAVLRYSNSQGPASGPLPDPPIELDTFFSMNQARSLRLNLSSGAARPNP QGSFKYGQITVTDVYVIVNRPPEMIEGRLRATLNGISYLPPATPLKLAQQYNISGVYK LDFPKRPMNRHPRVDTSVINGTFKGFVEIIFQNSDTTVKSYHLDGYAFFVVGMDFGL WTENSRSTYNKGDAVARSTTQVFPGAWTAVLVSLDNAGMWNLRIDNLASWYLGQ ELYLSVVNPEIDIDSSENSVPKNSIYCGRLSPLQK SEQ ID NO: 55, Nucleotide sequence of the open reading frame of Jb027 ATGCTTCTAATTCTAGCGATTTGGTCACCAATTTCACACTCGCTTCACTTCGATCT ACACTCAGGTCGCACAAAGTGTATCGCCGAAGACATCAAAAGCAATTCAATGAC TGTTGGTAAATACAACATCGATAATCCTCACGAAGGTCAAGCTTTACCACAAACT CACAAAATTTCCGTCAAGGTGACGTCTAATTCCGGTAACAATTACCATCACGCGG AACAAGTAGATTCAGGACAATTCGCATTCTCGGCTGTTGAAGCAGGTGATTACAT GGCTTGTTTCACTGCTGTTGATCATAAGCCTGAGGTTTCGTTGAGTATTGACTTTG AGTGGAAGACTGGTGTTCAATCTAAAAGCTGGGCTAATGTTGCTAAGAAGAGTC AAGTCGAAGTTATGGAATTTGAAGTAAAGAGTCTTCTTGATACTGTTAACTCGAT TCATGAAGAGATGTATTATCTTAGAGATAGGGAAGAAGAGATGCAAGACTTGAA CCGGTCCACTAACACAAAAATGGCGTGGTTGAGTGTTCTCTCGTTTTTCGTCTGC ATAGGAGTTGCAGGGATGCAGTTTTTGCACTTGAAGACGTTTTTCGAGAAGAAGA AGGTTATCTGA SEQ ID NO: 56, Deduced amino acid sequence of the open reading frame of Jb027 MLLILAIWSPISHSLHFDLHSGRTKCIAEDIKSNSMTVGKYNIDNPHEGQALPQTHKIS VKVTSNSGNNYHHAEQVDSGQFAFSAVEAGDYMACFTAVDHKPEVSLSIDFEWKT GVQSKSWANVAKKSQVEVMEFEVKSLLDTVNSIHEEMYYLRDREEEMQDLNRSTN TKMAWLSVLSFFVCIGVAGMQFLHLKTFFEKKKVI SEQ ID NO: 57, Nucleotide sequence of the open reading frame of OO-1 ATGGCACATGCCACGTTTACGTCGGAAGGGCAGAATATGGAGTCGTTTCGACTCT TGAGTGGCCACAAAATCCCAGCCGTTGGACTCGGCACGTGGCGATCTGGGTCTCA AGCCGCCCACGCCGTTGTCACTGCAATCGTCGAGGGTGGCTATAGGCACATAGAT ACAGCTTGGGAGTATGGTGATCAGAGAGAGGTCGGTCAAGGAATAAAGAGGGC GATGCACGCTGGCCTTGAAAGGAGGGACCTCTTTGTGACCTCGAAGCTTTGGTGC ACTGAGTTATCTCCTGAGAGAGTGCGTCCTGCTCTGCAAAACACCCTTAAAGAGC TTCAATTAGAGTACCTTGATCTCTACTTGATTCACTGGCCTATCCGGCTAAGAGA AGGAGCCAGTAAGCCACCAAAGGCAGGGGACGTTCTTGACTTTGACATGGAAGG AGTTTGGAGAGAAATGGAGAATCTTTCCAAGGACAGTCTCGTCAGGAATATCGG TGTCTGTAACTTTACAGTCACTAAGCTCAATAAGCTGCTAGGATTTGCTGAACTG ATCCCTGCCGTTTGCCAGATGGAAATGCATCCTGGTTGGAGAAACGATAGGATAC TCGAATTCTGCAAGAAGAATGAGATCCATGTTACTGCCTATTCTCCATTGGGATC TCAAGAAGGCGGGAGAGATCTGATACACGATCAGACGGTGGATAGGATAGCGA AGAAGCTGAATAAGACACCGGGACAGATTCTAGTGAAATGGGGTTTGCAGAGAG GAACAAGTGTCATCCCTAAGTCATTGAATCCAGAGAGGATCAAAGAGAACATCA AAGTGTTTGATTGGGTGATCCCTGAACAAGACTTCCAAGCTCTCAACAGCATCAC TGACCAGAAACGAGTGATAGACGGTGAGGATCTTTTCGTCAACAAGACCGAAGG TCCATTCCGTAGTGTGGCTGATCTATGGGACCATGAAGACTAA SEQ ID NO: 58, Deduced amino acid sequence of the open reading frame of OO-1 MAHATFTSEGQNMESFRLLSGHKIPAVGLGTWRSGSQAAHAVVTAIVEGGYRHIDT AWEYGDQREVGQGIKRAMHAGLERRDLFVTSKLWCTELSPERVRPALQNTLKELQL EYLDLYLIHWPIRLREGASKPPKAGDVLDFDMEGVWREMENLSKDSLVRNIGVCNF TVTKLNKLLGFAELIPAVCQMEMHPGWRNDRILEFCKKNEIHVTAYSPLGSQEGGRD LIHDQTVDRIAKKLNKTPGQILVKWGLQRGTSVIPKSLNPERIKENIKVFDWVIPEQDF QALNSITDQKRVIDGEDLFVNKTEGPFRSVADLWDHED SEQ ID NO: 59, Nucleotide sequence of the open reading frame of OO-2 ATGGCGTCTGAGAAACAAAAACAACATGCACAACCTGGCAAAGAACATGTCATG GAATCAAGCCCACAATTCTCTAGCTCAGATTACCAACCTTCCAACAAGCTTCGTG GTAAGGTGGCGTTGATAACTGGTGGAGACTCTGGGATTGGTCGAGCCGTGGGAT ACTGTTTTGCATCCGAAGGAGCTACTGTGGCTTTCACTTACGTGAAGGGTCAAGA

AGAAAAAGATGCACAAGAGACCCTACAAATGTTGAAGGAGGTCAAAACCTCGG ACTCCAAGGAACCTATCGCCATTCCAACGGATTTAGGATTTGACGAAAACTGCAA AAGGGTCGTTGATGAGGTCGTTAATGCTTTTGGCCGCATCGATGTTTTGATCAAT AACGCAGCAGAGCAGTACGAGAGCAGCACAATCGAAGAGATTGATGAGCCTAG GCTTGAGCGAGTCTTCCGTACAAACATCTTTTCTTACTTCTTTCTCACAAGGCATG CGTTGAAGCATATGAAGGAAGGAAGCAGCATTATCAACACCACTTCGGTGAATG CCTACAAGGGAAACGCTTCACTTCTCGACTACACCGCTACAAAAGGAGCGATTGT GGCGTTTACTCGAGGACTTGCACTTCAGCTAGCTGAGAAAGGAATCCGTGTCAAT GGTGTGGCTCCTGGTCCAATATGGACACCCCTTATCCCAGCATCATTCAATGAGG AGAAGATTAAGAATTTTGGGTCTGAGGTTCCGATGAAAAGAGCGGGTCAGCCAA TTGAAGTGGCACCATCCTATGTTTTCTTGGCGTGTAACCACTGCTCTTCTTACTTC ACTGGTCAAGTTCTTCACCCTAATGGAGGAGCTGTGGTAAATGCGTAA SEQ ID NO: 60, Deduced amino acid sequence of the open reading frame of OO-2 MASEKQKQHAQPGKEHVMESSPQFSSSDYQPSNKLRGKVALITGGDSGIGRAVGYC FASEGATVAFTYVKGQEEKDAQETLQMLKEVKTSDSKEPIAIPTDLGFDENCKRVVD EVVNAFGRIDVLINNAAEQYESSTIEEIDEPRLERVFRTNIFSYFFLTRHALKHMKEGS SIINTTSVNAYKGNASLLDYTATKGAIVAFTRGLALQLAEKGIRVNGVAPGPIWTPLIP ASFNEEKIKNFGSEVPMKRAGQPIEVAPSYVFLACNHCSSYFTGQVLHPNGGAVVNA SEQ ID NO: 61, Nucleotide sequence of the open reading frame of OO-3 ATGGATTCAACGAAGCTTAGTGAGCTAAAGGTCTTCATCGATCAATGCAAGTCTG ACCCTTCCCTTCTCACTACTCCTTCACTCTCCTTCTTCCGTGACTATCTCGAGAGTC TTGGTGCTAAGATACCTACTGGTGTCCATGAAGAAGACAAAGACACTAAGCCGA GGAGTTTCGTAGTGGAAGAGAGTGATGATGATATGGATGAAACTGAAGAAGTAA AACCGAAAGTGGAGGAAGAAGAAGAAGAGGATGAGATTGTTGAATCTGATGTA GAGCTTGAAGGAGACACTGTTGAGCCTGATAATGATCCTCCTCAGAAGATGGGG GATTCATCAGTGGAGGTGACTGATGAGAATCGTGAAGCTGCTCAAGAAGCTAAG GGCAAAGCCATGGAGGCCCTTTCTGAAGGAAACTTTGATGAAGCAATTGAGCAT TTAACTCGGGCAATAACGTTGAACCCGACTTCAGCTATTATGTATGGAAACAGAG CTAGTGTCTACATTAAGTTGAAGAAGCCAAACGCTGCTATTCGAGATGCAAACGC AGCATTGGAGATTAACCCTGATTCTGCCAAGGGATACAAGTCACGAGGTATGGC TCGTGCCATGCTTGGAGAATGGGCAGAGGCTGCAAAAGACCTTCACCTTGCATCT ACGATAGACTATGATGAGGAAATTAGTGCTGTTCTCAAAAAGGTTGAACCTAAT GCACATAAGCTTGAGGAGCACCGTAGAAAGTATGACAGATTACGTAAGGAAAGA GAGGACAAAAAGGCTGAACGGGATAGATTACGTCGCCGTGCTGAAGCACAGGCT GCCTATGATAAAGCTAAGAAAGAAGAACAGTCATCATCTAGCAGACCATCAGGA GGCGGTTTCCCAGGAGGTATGCCCGGTGGTTTCCCAGGAGGTATGCCCGGTGGAT TCCCAGGAGGAATGGGAGGCATGCCCGGCGGATTCCCGGGAGGAATGGGTGGTA TGGGCGGTATGCCCGGTGGATTCCCAGGAGGAATGGGCGGTGGTATGCCTGCAG GAATGGGCGGTGGTATGCCCGGAATGGGCGGTGGTATGCCTGCTGGAATGGGTG GTGGCGGTATGCCAGGTGCAGGCGGTGGTATGCCTGGTGGTGGCGGTATGCCTG GTGGTATGGACTTCAGCAAAATATTGAATGATCCTGAGCTAATGACGGCATTTAG CGACCCTGAAGTCATGGCTGCTCTTCAAGATGTGATGAAGAACCCTGCGAATCTA GCGAAGCATCAGGCGAATCCGAAGGTGGCTCCCGTGATTGCAAAGATGATGGGC AAATTTGCAGGACCTCAGTAA SEQ ID NO: 62, Deduced amino acid sequence of the open reading frame of OO-3 MDSTKLSELKVFIDQCKSDPSLLTTPSLSFFRDYLESLGAKIPTGVHEEDKDTKPRSFV VEESDDDMDETEEVKPKVEEEEEEDEIVESDVELEGDTVEPDNDPPQKMGDSSVEVT DENREAAQEAKGKAMEALSEGNFDEAIEHLTRAITLNPTSAIMYGNRASVYIKLKKP NAAIRDANAALEINPDSAKGYKSRGMARAMLGEWAEAAKDLHLASTIDYDEEISAV LKKVEPNAHKLEEHRRKYDRLRKEREDKKAERDRLRRRAEAQAAYDKAKKEEQSS SSRPSGGGFPGGMPGGFPGGMPGGFPGGMGGMPGGFPGGMGGMGGMPGGFPGGM GGGMPAGMGGGMPGMGGGMPAGMGGGGMPGAGGGMPGGGGMPGGMDFSKILN DPELMTAFSDPEVMAALQDVMKNPANLAKHQANPKVAPVIAKMMGKFAGPQ SEQ ID NO: 63, Nucleotide sequence of the open reading frame of OO-4 ATGAAGGTTCACGAGACAAGATCTCACGCTCACATGTCTGGAGACGAACAAAAG AAGGGAAATTTGCGGAAGCACAAAGCAGAAGGGAAACTTCCAGAATCTGAACA GTCTCAGAAGAAGGCAAAGCCTGAAAACGATGACGGACGTTCTGTCAACGGCGC CGGAGATGCTGCTTCAGAGTACAATGAGTTCTGCAAAGCGGTTGAGGAGAATCT GTCCATTGATCAGATTAAAGAAGTTCTCGAAATCAACGGCCAAGATTGTTCTGCT CCAGAAGAGACCTTGCTAGCTCAATGTCAAGATTTGCTGTTCTATGGGGCATTAG CTAAATGTCCTTTATGCGGAGGAACTTTAATTTGCGACAATGAAAAGAGATTTGT ATGTGGAGGTGAGATAAGTGAGTGGTGCAGTTGCGTGTTTAGTACGAAAGATCC TCCTAGAAAGGAAGAGCCAGTTAAAATCCCTGATTCTGTCATGAACTCTGCTATA TCTGACTTGATCAAGAAACACCAGGACCCTAAAAGCCGACCTAAAAGAGAGTTA GGCTCTGCTGATAAACCCTTTGTGGGAATGATGATCTCTCTCATGGGACGTCTCA CGAGAACACATCAATATTGGAAGAAAAAGATCGAGAGAAACGGTGGGAAAGTC TCCAATACTGTTCAAGGCGTAACATGTTTGGTGGTTTCGCCAGCTGAAAGAGAAC GAGGTGGTACGTCAAAGATGGTGGAGGCAATGGAACAAGGTCTACCGGTTGTGA GCGAAGCATGGTTGATCGACAGCGTGGAGAAGCATGAAGCTCAGCCACTTGAAG CTTATGACGTGGTCAGTGATCTTTCAGTGGAAGGGAAAGGAATTCCATGGGATA AGCAAGATCCTAGTGAGGAGGCAATTGAATCCTTTTCTGCTGAGCTCAAAATGTA TGGGAAAAGAGGAGTGTACATGGACACAAAACTTCAGGAGAGAGGAGGAAAGA TCTTCGAGAAAGATGGACTCTTGTATAACTGTGCCTTCTCGATATGCGATTTGGG AAAAGGGCGTAATGAGTATTGTATTATGCAGCTAGTCACGGTACCCGATAGTAA CCTGAACATGTACTTCAAGAGAGGGAAAGTAGGAGATGACCCTAATGCCGAAGA GAGGCTCGAGGAATGGGAGGACGAAGAAGCTGCGATCAAAGAGTTTGCAAGGC TTTTTGAGGAGATAGCAGGGAATGAGTTTGAGCCATGGGAACGTGAGAAGAAGA TTCAAAAGAAGCCTCATAAGTTTTTCCCAATTGATATGGATGATGGAATCGAAGT AAGGAGTGGGGCTCTTGGTCTAAGGCAGCTTGGCATTGCTTCTGCTCATTGCAAG CTTGATTCGTTTGTTGCAAACTTCATTAAAGTTCTGTGTGGTCAAGAGATTTACAA TTACGCGTTGATGGAGCTTGGATTGGATCCGCCCGATCTACCTATGGGAATGCTA ACTGATATCCACTTGAAACGATGCGAAGAGGTATTACTCGAGTTTGTTGAGAAGG TCAAAACAACAAAAGAGACAGGTCAGAAAGCTGAAGCAATGTGGGCAGACTTC AGCTCACGATGGTTCTCTTTGATGCACAGCACTAGGCCGATGCGATTACACGATG TCAATGAACTTGCAGACCATGCGGCCTCTGCTTTTGAGACGGTGAGGGACATAAA CACAGCATCTCGTTTGATAGGGGACATGCGAGGAGACACACTCGATGATCCGTT GTCTGATAGGTACAAAAAACTTGGCTGCAAGATATCTGTGGTAGACAAAGAGTC TGAAGATTACAAGATGGTTGTGAAGTATCTCGAGACTACTTATGAGCCTGTGAAA GTCTCTGATGTTGAGTACGGTGTGTCAGTGCAGAATGTTTTTGCGGTTGAGTCAG ATGCAATTCCTTCATTAGATGATATCAAGAAGTTACCAAATAAGGTCCTTTTATG GTGTGGGTCTCGGAGCTCAAATCTATTGAGACATATCTACAAAGGGTTCTTACCT GCTGTATGCTCTCTTCCGGTTCCTGGTTATATGTTTGGGAGAGCGATAGTGTGTTC AGATGCAGCTGCAGAAGCAGCAAGGTATGGTTTTACGGCTGTGGATAGACCAGA AGGGTTTCTTGTATTAGCCGTAGCATCACTTGGTGAGGAAGTTACAGAATTTACA AGTCCACCAGAGGATACGAAGACGTTGGAAGATAAAAAGATTGGAGTGAAAGG ATTAGGGAGGAAGAAAACTGAAGAGTCGGAGCATTTCATGTGGAGAGATGACAT AAAAGTTCCTTGTGGACGGTTGGTTCCATCGGAACATAAGGACAGTCCACTTGAG TACAACGAGTACGCGGTTTATGATCCGAAACAGACAAGTATAAGGTTCTTGGTG GAAGTGAAGTACGAGGAGAAGGGAACTGAGATAGTCGATGTCGAACCAGAGTAG SEQ ID NO: 64, Deduced amino acid sequence of the open reading frame of OO-4 MKVHETRSHAHMSGDEQKKGNLRKHKAEGKLPESEQSQKKAKPENDDGRSVNGA GDAASEYNEFCKAVEENLSIDQIKEVLEINGQDCSAPEETLLAQCQDLLFYGALAKCP LCGGTLICDNEKRFVCGGEISEWCSCVFSTKDPPRKEEPVKIPDSVMNSAISDLIKKHQ DPKSRPKRELGSADKPFVGMMISLMGRLTRTHQYWKKKIERNGGKVSNTVQGVTCL VVSPAERERGGTSKMVEAMEQGLPVVSEAWLIDSVEKHEAQPLEAYDVVSDLSVEG KGIPWDKQDPSEEAIESFSAELKMYGKRGVYMDTKLQERGGKIFEKDGLLYNCAFSI CDLGKGRNEYCIMQLVTVPDSNLNMYFKRGKVGDDPNAEERLEEWEDEEAAIKEFA RLFEEIAGNEFEPWEREKKIQKKPHKFFPIDMDDGIEVRSGALGLRQLGIASAHCKLD SFVANFIKVLCGQEIYNYALMELGLDPPDLPMGMLTDIHLKRCEEVLLEFVEKVKTT KETGQKAEAMWADFSSRWFSLMHSTRPMRLHDVNELADHAASAFETVRDINTASR LIGDMRGDTLDDPLSDRYKKLGCKISVVDKESEDYKMVVKYLETTYEPVKVSDVEY GVSVQNVFAVESDAIPSLDDIKKLPNKVLLWCGSRSSNLLRHIYKGFLPAVCSLPVPG YMFGRAIVCSDAAAEAARYGFTAVDRPEGFLVLAVASLGEEVTEFTSPPEDTKTLED KKIGVKGLGRKKTEESEHFMWRDDIKVPCGRLVPSEHKDSPLEYNEYAVYDPKQTSI RFLVEVKYEEKGTEIVDVEPE SEQ ID NO: 65, Nucleotide sequence of the open reading frame of OO-5 ATGTCTACCCCAGCTGAATCTTCAGACTCGAAATCGAAGAAAGATTTCAGTACTG CTATTCTCGAGAGGAAGAAGTCTCCGAACCGTCTCGTCGTCGATGAGGCTATCAA CGATGATAACTCCGTCGTCTCTCTTCACCCTGCAACCATGGAGAAGCTTCAGCTC TTCCGTGGTGATACCATTCTCATCAAGGGTAAGAAGAGGAAGGACACTGTCTGC ATTGCTCTTGCTGATGAGACATGTGAGGAGCCAAAGATCAGAATGAATAAAGTA GTCAGATCTAACTTGAGGGTTAGACTGGGAGATGTTATATCTGTTCACCAATGCC CAGACGTCAAGTACGGAAAGCGTGTTCACATCCTGCCTGTTGATGATACTGTTGA AGGAGTGACTGGAAACCTATTTGATGCTTACCTGAAACCTTATTTCCTTGAGGCA TACCGTCCAGTGAGGAAGGGTGATCTCTTCCTAGTCAGAGGAGGAATGAGGAGT GTGGAGTTCAAAGTTATAGAGACAGATCCTGCTGAGTACTGCGTGGTTGCTCCAG ACACAGAGATTTTCTGTGAGGGTGAGCCTGTGAAGAGAGAGGATGAAGAAAGGC

TAGATGATGTAGGTTATGATGATGTTGGTGGTGTCAGGAAACAGATGGCTCAGAT TAGGGAACTTGTTGAACTTCCCTTGAGGCATCCACAGCTATTCAAGTCGATTGGT GTTAAGCCACCGAAGGGAATTCTTCTTTATGGACCACCTGGGTCTGGAAAGACTT TGATCGCTCGTGCTGTGGCTAATGAAACGGGTGCCTTTTTCTTCTGTATCAACGG ACCTGAGATCATGTCCAAATTGGCTGGTGAGAGTGAGAGCAACCTCAGGAAAGC ATTCGAGGAGGCTGAGAAAAATGCGCCTTCAATCATATTCATTGATGAGATCGAC TCTATTGCACCGAAAAGAGAGAAGACTAATGGAGAGGTTGAGAGGAGGATTGTC TCTCAGCTCCTTACGCTAATGGATGGACTGAAATCTCGTGCTCATGTTATCGTCAT GGGAGCAACCAATCGCCCCAACAGTATCGACCCAGCTTTGAGAAGGTTTGGAAG ATTTGACAGGGAGATCGATATTGGAGTTCCTGACGAAATTGGACGTCTTGAAGTT CTGAGGATCCATACAAAGAACATGAAGCTGGCTGAAGATGTGGATCTCGAAAGG ATCTCAAAGGACACACACGGTTACGTCGGTGCTGATCTTGCAGCTTTGTGCACAG AGGCCGCCCTGCAATGCATCAGGGAGAAGATGGATGTGATTGATCTGGAAGATG ACTCCATAGACGCTGAAATCCTCAATTCCATGGCAGTCACTAATGAACATTTCCA CACTGCTCTCGGGAACAGCAACCCATCTGCACTTCGTGAAACTGTTGTGGAGGTT CCCAACGTCTCTTGGAATGATATTGGAGGTCTTGAGAATGTCAAGAGAGAGCTCC AGGAGACTGTTCAATACCCAGTCGAGCACCCAGAGAAGTTTGAGAAATTCGGGA TGTCTCCATCAAAGGGAGTCCTTTTCTACGGTCCTCCTGGATGTGGGAAAACCCT TTTGGCCAAAGCTATTGCCAACGAGTGCCAAGCTAATTTCATCAGTGTCAAGGGT CCCGAGCTTCTGACAATGTGGTTTGGAGAGAGTGAAGCAAATGTTCGTGAAATCT TCGACAAGGCCCGTCAATCCGCTCCATGTGTTCTTTTCTTTGATGAGCTCGACTCC ATTGCAACTCAGAGAGGAGGTGGAAGTGGTGGCGATGGAGGTGGTGCTGCGGAC AGAGTCTTGAACCAGCTTTTGACTGAGATGGACGGAATGAATGCCAAGAAAACC GTCTTCATCATCGGAGCTACCAACAGACCTGACATTATCGATTCAGCTCTTCTCC GTCCTGGAAGGCTTGACCAGCTCATTTACATTCCACTACCAGATGAGGATTCCCG TCTCAATATCTTCAAGGCCGCCTTGAGGAAATCTCCTATTGCTAAAGATGTAGAC ATCGGTGCACTTGCTAAATACACTCAGGGTTTCAGTGGTGCTGATATCACTGAGA TTTGCCAGAGAGCTTGCAAGTACGCCATCAGAGAAAACATTGAGAAGGACATTG AAAAGGAGAAGAGGAGGAGCGAGAACCCAGAGGCAATGGAGGAAGATGGAGT GGATGAAGTATCAGAGATCAAAGCTGCACACTTTGAGGAGTCGATGAAGTATGC GCGTAGGAGTGTGAGTGATGCAGACATCAGGAAGTACCAAGCCTTTGCTCAGAC GTTGCAGCAGTCTAGAGGGTTCGGTTCTGAGTTCAGGTTCGAGAATTCTGCTGGT TCAGGTGCCACCACTGGAGTCGCAGATCCGTTTGCCACGTCTGCAGCCGCTGCTG GGGACGATGATGATCTCTACAATTAG SEQ ID NO: 66, Deduced amino acid sequence of the open reading frame of OO-5 MSTPAESSDSKSKKDFSTAILERKKSPNRLVVDEAINDDNSVVSLHPATMEKLQLFRG DTILIKGKKRKDTVCIALADETCEEPKIRMNKVVRSNLRVRLGDVISVHQCPDVKYG KRVHILPVDDTVEGVTGNLFDAYLKPYFLEAYRPVRKGDLFLVRGGMRSVEFKVIET DPAEYCVVAPDTEIFCEGEPVKREDEERLDDVGYDDVGGVRKQMAQIRELVELPLR HPQLFKSIGVKPPKGILLYGPPGSGKTLIARAVANETGAFFFCINGPEIMSKLAGESES NLRKAFEEAEKNAPSIIFIDEIDSIAPKREKTNGEVERRIVSQLLTLMDGLKSRAHVIV MGATNRPNSIDPALRRFGRFDREIDIGVPDEIGRLEVLRIHTKNMKLAEDVDLERISK DTHGYVGADLAALCTEAALQCIREKMDVIDLEDDSIDAEILNSMAVTNEHFHTALGN SNPSALRETVVEVPNVSWNDIGGLENVKRELQETVQYPVEHPEKFEKFGMSPSKGVL FYGPPGCGKTLLAKAIANECQANFISVKGPELLTMWFGESEANVREIFDKARQSAPC VLFFDELDSIATQRGGGSGGDGGGAADRVLNQLLTEMDGMNAKKTVFIIGATNRPDI IDSALLRPGRLDQLIYIPLPDEDSRLNIFKAALRKSPIAKDVDIGALAKYTQGFSGADIT EICQRACKYAIRENIEKDIEKEKRRSENPEAMEEDGVDEVSEIKAAHFEESMKYARRS VSDADIRKYQAFAQTLQQSRGFGSEFRFENSAGSGATTGVADPFATSAAAAGDDDD LYN SEQ ID NO: 67, Nucleotide sequence of the open reading frame of OO-6 ATGGACAAATCTAGTACCATGCTTGTTCACTATGACAAAGGGACTCCAGCAGTTG CTAATGAGATTAAAGAAGCTCTCGAAGGAAATGATGTTGAAGCTAAAGTTGATG CCATGAAGAAGGCAATTATGCTTTTGCTGAATGGTGAAACCATTCCTCAGCTTTT CATTACCATTATAAGATATGTGCTGCCTTCTGAAGACCACACCATCCAAAAGCTT CTGTTGCTGTACCTGGAGCTGATTGAAAAGACAGATTCGAAGGGGAAGGTGTTG CCTGAAATGATTTTGATATGCCAGAATCTTCGTAATAACCTTCAGCATCCGAATG AGTACATCCGTGGAGTGACACTGAGGTTTCTCTGTCGGATGAAGGAGACTGAAA TAGTGGAACCTTTGACTCCATCAGTGTTACAAAATCTGGAGCATCGCCATCCATT TGTTCGCAGGAATGCAATTCTGGCAATCATGTCGATATATAAACTTCCACATGGC GACCAACTCTTCGTGGATGCACCTGAAATGATCGAGAAAGTTCTATCAACAGAA CAAGATCCTTCTGCCAAGAGAAATGCATTTCTAATGCTCTTTACCTGTGCCGAAG AACGTGCAGTGAATTATCTTCTGAGCAATGTTGACAAGGTTTCAGACTGGAATGA ATCACTTCAGATGGTGGTGCTGGAGCTGATTCGAAGTGTGTGTAAGACTAAACCA GCGGAGAAGGGAAAATATATTAAAATTATTATTTCTCTGTTAAGTGCTACTTCTT CTGCAGTTATCTATGAATGTGCTGGGACACTTGTTTCTCTCTCATCTGCCCCTACT GCTATTCGAGCTGCTGCCAACACCTACTGCCAACTTCTTCTTTCTCAGAGTGACA ACAATGTGAAGCTTATCTTGCTCGATCGGTTGTATGAGCTTAAGACATTGCACAG AGATATCATGGTTGAGCTGATAATCGATGTGCTCAGAGCACTCTCAAGCCCAAAC CTTGATATCCGCAGGAAGACACTTGACATTGCCCTTGACTTGATTACCCATCATA ATATTAATGAAGTCGTTCAAATGTTGAAGAAAGAAGTTGTGAAGACACAGAGTG GAGAACTTGAGAAGAATGGAGAGTACAGGCAAATGCTTATTCAAGCCATCCATG CTTGTGCAGTTAAGTTCCCCGAAGTTGCAAGCACAGTGGTCCATCTTCTGATGGA TTTCCTGGGAGATAGCAACGTGGCTTCAGCTCTTGACGTGGTTGTTTTCGTTAGA GAGATAATAGAAACAAATCCCAAGTTGAGAGTTTCAATCATCACCAGGTTGTTG GACACGTTCTATCAGATCCGTGCAGGAAAGGTCTGCCCTTGTGCACTTTGGATCA TTGGTGAGTATTGCCTATCACTTTCAGAAGTTGAGAGTGGCATTTCAACTATTAC ACAATGCCTTGGCGAATTACCATTTTACTCTGTTTCTGAGGAGTCTGAGCCAACT GAGACATCAAAGAAGATTCAGCCTACCTCTTCTGCCATGGTGTCCTCTAGAAAGC CAGTTATTCTTGCTGATGGAACTTATGCTACACAAAGCGCAGCCTCTGAAACCAC ATTCTCCTCGCCTACAGTTGTTCAAGGATCACTGACTTCTGGAAATTTGAGGGCA CTCCTTCTAACTGGTGATTTTTTCCTCGGAGCTGTGGTTGCTTGCACGTTGACCAA ACTTGTTCTTAGGTTGGAAGAGGTTCAGTCTTCCAAAACTGAAGTAAACAAGACA GTATCACAGGCTTTGCTAATCATGGTTTCTATTTTGCAACTTGGGCAATCTCCTGT TTCTCCACACCCTATTGATAATGATTCGTATGAGCGGATTATGTTGTGCATAAAA TTGCTTTGCCATAGGAATGTTGAGATGAAAAAGATATGGTTGGAATCCTGCCGCC AGAGTTTTGTCAAGATGATTTCTGAAAAACAGCTTAGAGAGATGGAGGAACTGA AGGCAAAGACCCAAACAACTCATGCTCAACCGGATGATCTAATTGACTTCTTCCA TCTAAAGAGTCGGAAGGGAATGAGTCAACTTGAGTTGGAAGACCAGGTACAAGA TGACCTAAAGCGTGCAACTGGAGAATTCACCAAGGACGAGAACGATGCTAACAA ACTTAACCGCATTCTTCAACTCACAGGATTCAGTGACCCAGTCTATGCTGAAGCA TATGTAACGGTACACCATTATGATATTGCTCTTGAAGTTACAGTAATCAACCGAA CCAAGGAAACCCTTCAGAACTTGTGCTTGGAGTTAGCAACCATGGGTGATCTCAA ACTTGTTGAGCGTCCTCAGAACTATAGTCTGGCACCTGAAAGAAGCATGCAGATT AAAGCAAACATCAAGGTCTCGTCCACAGAGACAGGAGTCATATTCGGGAACATC GTCTATGAGACATCAAATGTAATGGAGCGCAATGTTGTGGTTCTTAACGACATAC ACATTGATATCATGGACTATATCTCCCCTGCTGTGTGCTCAGAGGTTGCTTTCAGA ACTATGTGGGCAGAGTTTGAATGGGAAAACAAGGTTGCTGTGAACACCACAATT CAAAACGAAAGAGAATTCCTCGACCACATTATCAAATCCACAAACATGAAATGT CTCACTGCTCCATCTGCAATAGCAGGTGAATGTGGATTCCTTGCAGCAAACTTAT ATGCAAAAAGTGTATTTGGTGAGGATGCTCTTGTGAATTTGAGTATTGAGAAGCA AACGGATGGAACATTGAGTGGTTACATAAGGATAAGGAGCAAGACGCAAGGGA TTGCTCTAAGTCTTGGAGACAAAATCACCCTCAAACAAAAGGGTGGTAGCTGA SEQ ID NO: 68, Deduced amino acid sequence of the open reading frame of OO-6 MDKSSTMLVHYDKGTPAVANEIKEALEGNDVEAKVDAMKKAIMLLLNGETIPQLFI TIIRYVLPSEDHTIQKLLLLYLELIEKTDSKGKVLPEMILICQNLRNNLQHPNEYIRGVT LRFLCRMKETEIVEPLTPSVLQNLEHRHPFVRRNAILAIMSIYKLPHGDQLFVDAPEMI EKVLSTEQDPSAKRNAFLMLFTCAEERAVNYLLSNVDKVSDWNESLQMVVLELIRS VCKTKPAEKGKYIKIIISLLSATSSAVIYECAGTLVSLSSAPTAIRAAANTYCQLLLSQS DNNVKLILLDRLYELKTLHRDIMVELIIDVLRALSSPNLDIRRKTLDIALDLITHHNINE VVQMLKKEVVKTQSGELEKNGEYRQMLIQAIHACAVKFPEVASTVVHLLMDFLGDS NVASALDVVVFVREIIETNPKLRVSIITRLLDTFYQIRAGKVCPCALWIIGEYCLSLSEV ESGISTITQCLGELPFYSVSEESEPTETSKKIQPTSSAMVSSRKPVILADGTYATQSAAS ETTFSSPTVVQGSLTSGNLRALLLTGDFFLGAVVACTLTKLVLRLEEVQSSKTEVNKT VSQALLIMVSILQLGQSPVSPHPIDNDSYERIMLCIKLLCHRNVEMKKIWLESCRQSFV KMISEKQLREMEELKAKTQTTHAQPDDLIDFFHLKSRKGMSQLELEDQVQDDLKRA TGEFTKDENDANKLNRILQLTGFSDPVYAEAYVTVHHYDIALEVTVINRTKETLQNL CLELATMGDLKLVERPQNYSLAPERSMQIKANIKVSSTETGVIFGNIVYETSNVMERN VVVLNDIHIDIMDYISPAVCSEVAFRTMWAEFEWENKVAVNTTIQNEREFLDHIIKST NMKCLTAPSAIAGECGFLAANLYAKSVFGEDALVNLSIEKQTDGTLSGYIRIRSKTQG IALSLGDKITLKQKGGS SEQ ID NO: 69, Nucleotide sequence of the open reading frame of OO-8 ATGGCGAAATCTCAGATCTGGTTTGGTTTTGCGTTACTCGCGTTGCTTCTGGTTTC AGCCGTAGCTGACGATGTGGTTGTTTTGACTGACGATAGCTTCGAAAAGGAAGTT GGTAAAGATAAAGGAGCTCTCGTCGAGTTTTACGCTCCCTGGTGTGGTCACTGCA AGAAACTTGCTCCAGAGTATGAAAAGCTAGGGGCAAGCTTCAAGAAGGCTAAGT CTGTGTTGATTGCAAAGGTTGATTGTGATGAGCAAAAGAGTGTCTGTACTAAATA

TGGTGTTAGTGGATACCCAACCATTCAGTGGTTTCCTAAAGGATCTCTTGAACCT CAAAAGTATGAGGGTCCACGCAATGCTGAAGCTTTGGCTGAATACGTGAACAAG GAAGGAGGCACCAACGTAAAATTAGCTGCAGTTCCACAAAACGTGGTTGTTTTG ACACCTGACAATTTCGATGAGATTGTTCTGGATCAAAACAAAGATGTCCTAGTCG AATTTTATGCACCATGGTGTGGCCACTGCAAATCACTCGCTCCCACATACGAAAA GGTAGCCACAGTGTTTAAACAGGAAGAAGGTGTAGTCATCGCCAATTTGGATGC TGATGCACACAAAGCCCTTGGCGAGAAATATGGAGTGAGTGGATTCCCAACATT GAAATTCTTCCCAAAGGACAACAAAGCTGGTCACGATTATGACGGTGGCAGGGA TTTAGATGACTTTGTAAGCTTCATCAACGAGAAATCTGGGACCAGCAGGGACAGT AAAGGGCAGCTTACTTCAAAGGCTGGTATAGTCGAAAGCTTAGATGCTTTGGTAA AAGAGTTAGTTGCAGCTAGTGAAGATGAGAAGAAGGCAGTGTTGTCTCGCATAG AAGAGGAAGCAAGTACCCTTAAGGGCTCCACCACGAGGTATGGAAAGCTTTACT TGAAACTCGCAAAGAGCTACATAGAAAAAGGTTCAGACTATGCTAGCAAAGAAA CGGAGAGGCTTGGACGGGTGCTTGGGAAGTCGATAAGTCCAGTGAAAGCTGATG AACTCACTCTCAAGAGAAATATCCTAACCACGTTCGTTGCTTCTTCTTAA SEQ ID NO: 70, Deduced amino acid sequence of the open reading frame of OO-8 MAKSQIWFGFALLALLLVSAVADDVVVLTDDSFEKEVGKDKGALVEFYAPWCGHC KKLAPEYEKLGASFKKAKSVLIAKVDCDEQKSVCTKYGVSGYPTIQWFPKGSLEPQK YEGPRNAEALAEYVNKEGGTNVKLAAVPQNVVVLTPDNFDEIVLDQNKDVLVEFY APWCGHCKSLAPTYEKVATVFKQEEGVVIANLDADAHKALGEKYGVSGFPTLKFFP KDNKAGHDYDGGRDLDDFVSFINEKSGTSRDSKGQLTSKAGIVESLDALVKELVAA SEDEKKAVLSRIEEEASTLKGSTTRYGKLYLKLAKSYIEKGSDYASKETERLGRVLGK SISPVKADELTLKRNILTTFVASS SEQ ID NO: 71, Nucleotide sequence of the open reading frame of OO-9 ATGGCGTCGAGCGATGAGCGTCCAGGAGCGTATCCGGCACGTGACGGATCAGAG AACTTACCTCCGGGAGATCCAAAGACGATGAAGACGGTGGTGATGGATAAAGGA GCGGCGATGATGCAATCGTTGAAACCGATCAAACAGATGAGTCTCCATTTGTGTT CTTTCGCTTGTTATGGTCACGATCCTAGCCGTCAGATTGAAGTCAACTTCTATGTT CATCGACTCAACCAAGACTTTCTTCAATGTGCTGTTTACGATTGCGACTCCTCTAA ACCCCATCTCATCGGGATCGAGTATATTGTGTCGGAGAGGTTATTTGAGAGTCTT GATCCGGAGGAGCAAAAGCTTTGGCACTCTCATGACTATGAGATCCAAACAGGC CTTCTAGTAACTCCAAGGGTCCCTGAGCTTGTAGCTAAGACAGAGCTTGAAAATA TTGCCAAAACTTATGGGAAGTTTTGGTGCACTTGGCAGACCGATCGCGGGGATAA ATTGCCACTTGGTGCACCATCACTTATGATGTCACCACAAGACGTGAATATGGGA AAGATCAAGCCAGGGCTATTGAAGAAACGTGACGATGAGTATGGAATCTCGACG GAATCTTTGAAGACGTCTCGAGTTGGAATTATGGGACCGGAGAAGAAAAATTCG ATGGCTGATTATTGGGTTCATCACGGAAAAGGATTAGCGGTTGACATAATCGAA ACTGAGATGCAGAAATTGGCTCCGTTCCCGTAA SEQ ID NO: 72, Deduced amino acid sequence of the open reading frame of OO-9 MASSDERPGAYPARDGSENLPPGDPKTMKTVVMDKGAAMMQSLKPIKQMSLHLCS FACYGHDPSRQIEVNFYVHRLNQDFLQCAVYDCDSSKPHLIGIEYIVSERLFESLDPEE QKLWHSHDYEIQTGLLVTPRVPELVAKTELENIAKTYGKFWCTWQTDRGDKLPLGA PSLMMSPQDVNMGKIKPGLLKKRDDEYGISTESLKTSRVGIMGPEKKNSMADYWVH HGKGLAVDIIETEMQKLAPFP SEQ ID NO: 73, Nucleotide sequence of the open reading frame of OO-10 ATGGCGACTCTTAAGGTTTCTGATTCTGTTCCTGCTCCTTCTGATGATGCTGAGCA ATTGAGAACCGCTTTTGAAGGATGGGGTACGAACGAGGACTTGATCATATCAAT CTTGGCTCACAGAAGTGCTGAACAGAGGAAAGTCATCAGGCAAGCATACCACGA AACCTACGGCGAAGACCTTCTCAAGACTCTTGACAAGGAGCTCTCTAACGATTTC GAGAGAGCTATCTTGTTGTGGACTCTTGAACCCGGTGAGCGTGATGCTTTATTGG CTAATGAAGCTACAAAAAGATGGACTTCAAGCAACCAAGTTCTTATGGAAGTTG CTTGCACAAGGACATCAACGCAGCTGCTTCACGCTAGGCAAGCTTACCATGCTCG CTACAAGAAGTCTCTTGAAGAGGACGTTGCTCACCACACTACCGGTGACTTCAGA AAGCTTTTGGTTTCTCTTGTTACCTCATACAGGTACGAAGGAGATGAAGTGAACA TGACATTGGCTAAGCAAGAAGCTAAGCTGGTCCATGAGAAAATCAAGGACAAGC ACTACAATGATGAGGATGTTATTAGAATCTTGTCCACAAGAAGCAAAGCTCAGA TCAATGCTACTTTTAACCGTTACCAAGATGATCATGGCGAGGAAATTCTCAAGAG TCTTGAGGAAGGAGATGATGATGACAAGTTCCTTGCACTTTTGAGGTCAACCATT CAGTGCTTGACAAGACCAGAGCTTTACTTTGTCGATGTTCTTCGTTCAGCAATCA ACAAAACTGGAACTGATGAAGGAGCACTCACTAGAATTGTGACCACAAGAGCTG AGATTGACTTGAAGGTCATTGGAGAGGAGTACCAGCGCAGGAACAGCATTCCTT TGGAGAAAGCTATTACCAAAGACACTCGTGGAGATTACGAGAAGATGCTCGTCG CACTTCTCGGTGAAGATGATGCTTAA SEQ ID NO: 74, Deduced amino acid sequence of the open reading frame of OO-10 MATLKVSDSVPAPSDDAEQLRTAFEGWGTNEDLIISILAHRSAEQRKVIRQAYHETY GEDLLKTLDKELSNDFERAILLWTLEPGERDALLANEATKRWTSSNQVLMEVACTR TSTQLLHARQAYHARYKKSLEEDVAHHTTGDFRKLLVSLVTSYRYEGDEVNMTLA KQEAKLVHEKIKDKHYNDEDVIRILSTRSKAQINATFNRYQDDHGEEILKSLEEGDD DDKFLALLRSTIQCLTRPELYFVDVLRSAINKTGTDEGALTRIVTTRAEIDLKVIGEEY QRRNSIPLEKAITKDTRGDYEKMLVALLGEDDA SEQ ID NO: 75, Nucleotide sequence of the open reading frame of OO-11 ATGGTGGATCTATTGAACTCGGTGATGAACCTGGTGGCGCCTCCAGCGACCATGG TGGTGATGGCCTTTGCATGGCCATTACTGTCTTTCATTAGCTTCTCCGAACGGGCT TACAACTCTTATTTCGCCACCGAAAATATGGAAGATAAAGTAGTTGTCATCACCG GAGCTTCATCGGCCATTGGAGAGCAAATAGCATATGAATATGCAAAAAGAGGAG CGAATTTGGTGTTGGTGGCGAGGAGAGAGCAGAGACTGAGAGTTGTGAGTAATA AGGCTAAACAGATTGGAGCCAACCATGTGATCATCATCGCTGCTGATGTCATCAA AGAAGATGACTGCCGCCGTTTTATCACCCAAGCCGTCAACTATTACGGCCGCGTG GATCATCTAGTGAATACAGCGAGTCTTGGACACACTTTTTACTTTGAGGAAGTGA GTGACACGACTGTGTTTCCACATTTGCTGGACATAAACTTCTGGGGGAATGTTTA TCCGACATACGTAGCGTTGCCATACCTTCACCAGACGAATGGCCGAATAGTCGTG AATGCATCGGTTGAAAACTGGTTGCCTCTACCACGGATGAGTCTTTATTCTGCTG CAAAAGCAGCATTAGTCAACTTCTATGAGACGCTGCGTTTCGAGCTAAATGGAG ACGTTGGTATAACTATCGCGACTCACGGGTGGATTGGCAGTGAGATGAGTGGAG GAAAGTTCATGCTAGAAGAAGGTGCTGAGATGCAATGGAAGGAAGAGAGAGAA GTACCTGCAAATGGTGGACCGCTAGAGGAATTTGCAAAGATGATTGTGGCAGGA GCTTGTAGGGGAGATGCATATGTGAAGTTTCCAAACTGGTACGATGTCTTTCTCC TCTATCGAGTCTTCACACCGAATGTACTGAGATGGACATTCAAGTTGTTACTGTC TACTGAGGGTACACGTAGAAGCTCCCTTGTTGGGGTCGGGTCAGGTATGCCTGTG GATGAATCCTCTTCACAAATGAAACTTATGCTTGAAGGAGGACCACCTCGAGTTC CTGCAAGCCCACCTAGGTATACCGCAAGCCCACCTCATTATACCGCAAGCCCACC ACGGTATCCTGCAAGCCCACCTCGGTATCCTGCGAGCCCACCTCGGTTTTCACAG TTTAATATCCAAGAGTTGTAA SEQ ID NO: 76, Deduced amino acid sequence of the open reading frame of OO-11 MVDLLNSVMNLVAPPATMVVMAFAWPLLSFISFSERAYNSYFATENMEDKVVVITG ASSAIGEQIAYEYAKRGANLVLVARREQRLRVVSNKAKQIGANHVIIIAADVIKEDDC RRFITQAVNYYGRVDHLVNTASLGHTFYFEEVSDTTVFPHLLDINFWGNVYPTYVAL PYLHQTNGRIVVNASVENWLPLPRMSLYSAAKAALVNFYETLRFELNGDVGITIATH GWIGSEMSGGKFMLEEGAEMQWKEEREVPANGGPLEEFAKMIVAGACRGDAYVKF PNWYDVFLLYRVFTPNVLRWTFKLLLSTEGTRRSSLVGVGSGMPVDESSSQMKLML EGGPPRVPASPPRYTASPPHYTASPPRYPASPPRYPASPPRFSQFNIQEL SEQ ID NO: 77, Nucleotide sequence of the open reading frame of OO-12 ATGGCTGGAAAACTCATGCACGCTCTTCAGTACAACTCTTACGGTGGTGGCGCCG CCGGATTAGAGCATGTTCAAGTTCCGGTTCCAACACCAAAGAGTAATGAGGTTTG CCTGAAATTAGAAGCTACTAGTCTAAACCCTGTTGATTGGAAAATTCAGAAAGG AATGATCCGCCCATTTCTGCCCCGCAAGTTCCCCTGCATTCCAGCTACTGATGTTG CTGGAGAGGTCGTTGAGGTTGGATCAGGAGTAAAAAATTTTAAGGCTGGTGACA AAGTTGTAGCGGTTCTTAGCCATCTAGGTGGAGGTGGACTTGCTGAGTTCGCTGT TGCAACCGAGAAGCTGACTGTCAAAAGACCTCAAGAAGTGGGAGCAGCTGAAGC AGCAGCTTTACCTGTGGCGGGTCTAACCGCTCTCCAAGCTCTTACTAATCCTGCG GGGTTGAAGCTGGATGGTACAGGCAAGAAGGCGAACATCCTGGTCACAGCAGCA TCTGGTGGGGTTGGTCACTATGCAGTCCAGCTGGCAAAACTTGCAAATGCTCACG TAACCGCTACATGTGGTGCCCGGAACATAGAGTTTGTCAAATCGTTGGGAGCGG ATGAGGTTCTCGACTACAAGACTCCCGAGGGAGCCGCCCTCAAGAGTCCGTCGG GTAAAAAATATGACGCTGTGGTCCATTGTGCAAACGGGATTCCATTTTCGGTATT CGAACCAAATTTGTCGGAAAACGGGAAGGTGATAGACATCACACCGGGGCCTAA TGCAATGTGGACTTATGCGGTTAAGAAAATAACCATGTCAAAGAAGCAGTTAGT GCCACTCTTGTTGATCCCAAAAGCTGAGAATTTGGAGTTTATGGTGAATCTAGTG AAAGAAGGGAAAGTGAAGACAGTGATTGACTCAAAGCATCCTTTGAGCAAAGCG GAGGATGCTTGGGCCAAAAGTATCGATGGTCATGCTACTGGGAAGATCATTGTC GAGCCATAA SEQ ID NO: 78, Deduced amino acid sequence of the open reading frame of OO-12 MAGKLMHALQYNSYGGGAAGLEHVQVPVPTPKSNEVCLKLEATSLNPVDWKIQKG MIRPFLPRKFPCIPATDVAGEVVEVGSGVKNFKAGDKVVAVLSHLGGGGLAEFAVA TEKLTVKRPQEVGAAEAAALPVAGLTALQALTNPAGLKLDGTGKKANILVTAASGG VGHYAVQLAKLANAHVTATCGARNIEFVKSLGADEVLDYKTPEGAALKSPSGKKY DAVVHCANGIPFSVFEPNLSENGKVIDITPGPNAMWTYAVKKITMSKKQLVPLLLIPK

AENLEFMVNLVKEGKVKTVIDSKHPLSKAEDAWAKSIDGHATGKIIVEP SEQ ID NO: 79, Nucleotide sequence of the open reading frame of pp82 ATGGAAATTCCCTTAGGTCGAGATGGCGAGGGTATGCAGTCAAAGCAGTGCCCG CGCGGCCACTGGCGTCCAGCGGAAGACGACAAGCTGCGAGAACTAGTGTCCCAG TTTGGACCTCAAAACTGGAATCTCATAGCAGAGAAACTTCAGGGTCGATCAGGG AAAAGCTGCAGGCTACGGTGGTTCAATCAGCTGGACCCTCGCATCAACCGGCAC CCATTCTCGGAAGAAGAGGAAGAGCGGCTGCTTATAGCACACAAGCGCTACGGC AACAAGTGGGCATTGATCGCGCGCCTCTTTCCGGGCCGCACAGACAACGCGGTG AAGAATCACTGGCACGTTGTGACGGCAAGACAGTCCCGTGAACGGACACGAACT TACGGCCGTATCAAAGGTCCGGTACATCGAAGAGGCAAGGGTAACCGTATCAAT ACCTCCGCACTTGGAAATTACCATCACGATTCGAAGGGAGCTCTCACAGCCTGGA TTGAGTCGAAGTATGCGACAGTCGAGCAGTCTGCGGAAGGGCTCGCTAGGTCTC CTTGTACCGGCAGAGGCTCTCCTCCTCTACCCACCGGTTTCAGTATACCGCAGAT TTCCGGCGGCGCCTTCCATCGACCGACAAACATGAGTACTAGTCCTCTTAGCGAT GTGACTATCGAGTCGCCAAAGTTTAGCAACTCCGAAAATGCGCAAATAATAACC GCGCCCGTCCTGCAAAAGCCAATGGGAGATCCCAGGTCAGTATGCTTGCCGAATT CGACTGTTTCCGACAAGCAGCAAGTGCTGCAGAGTAATTCCATCGACGGTCAGAT CTCCTCCGGGCTCCAGACAAGCGCAATAGTAGCGCATGATGAGAAATCGGGCGT CATTTCAATGAATCATCAAGCACCGGATATGTCCTGTGTTGGATTGAAGTCAAAT TTTCAGGGGAGTCTCCATCCTGGCGCTGTTAGATCTTCTTGGAATCAATCCCTTCC CCACTGTTTTGGCCACAGTAACAAGTTGGTGGAGGAGTGCAGGAGTTCTACAGG CGCATGCACTGAACGCTCTGAGATTCTGCAAGAACAGCATTCTAGCCTTCAGTTT AAATGCAGCACTGCGTACAATACTGGAAGATATCAACATGAAAACCTTTGTGGG CCAGCATTCTCGCAACAAGACACAGCGAACGAGGTTGCGAATTTTTCTACGTTGG CATTCTCCGGCCTAGTGAAGCATCGCCAAGAGAGGTTGTGCAAAGATAGTGGAT CTGCTCTCAAGCTGGGACTATCATGGGTTACATCCGATAGCACTCTTGACTTGAG TGTTGCCAAAATGTCAGCATCGCAGCCAGAGCAGTCTGCGCCGGTTGCATTCATT GATTTTCTAGGCGTGGGAGCGGCCTGA SEQ ID NO: 80, Deduced amino acid sequence of the open reading frame of pp82 MEIPLGRDGEGMQSKQCPRGHWRPAEDDKLRELVSQFGPQNWNLIAEKLQGRSGKS CRLRWFNQLDPRINRHPFSEEEEERLLIAHKRYGNKWALIARLFPGRTDNAVKNHW HVVTARQSRERTRTYGRIKGPVHRRGKGNRINTSALGNYHHDSKGALTAWIESKYA TVEQSAEGLARSPCTGRGSPPLPTGFSIPQISGGAFHRPTNMSTSPLSDVTIESPKFSNS ENAQIITAPVLQKPMGDPRSVCLPNSTVSDKQQVLQSNSIDGQISSGLQTSAIVAHDE KSGVISMNHQAPDMSCVGLKSNFQGSLHPGAVRSSWNQSLPHCFGHSNKLVEECRS STGACTERSEILQEQHSSLQFKCSTAYNTGRYQHENLCGPAFSQQDTANEVANFSTL AFSGLVKHRQERLCKDSGSALKLGLSWVTSDSTLDLSVAKMSASQPEQSAPVAFIDF LGVGAA SEQ ID NO: 81, Nucleotide sequence of the open reading frame of Pk225 ATGGAGATGAACATTAAGTTTCCAGTTATAGACTTGTCTAAGCTCAATGGTGAAG AGAGAGACCAAACCATGGCTTTGATCGACGATGCTTGTCAAAACTGGGGCTTCTT CGAGCTGGTGAACCATGGACTACCATATGATCTAATGGACAACATTGAGAGGAT GACAAAGGAACACTACAAGAAACATATGGAACAAAAGTTCAAAGAAATGCTTCG TTCCAAAGGTTTAGATACCCTCGAGACCGAAGTTGAAGATGTCGATTGGGAAAG CACTTTCTACCTCCATCATCTCCCTCAATCTAACCTATACGACATCCCTGATATGT CAAATGAATACCGATTGGCAATGAAGGATTTTGGGAAGAGGCTTGAGATTCTAG CTGAAGAGCTATTGGACTTGTTGTGTGAGAATCTAGGGTTGGAGAAAGGGTACTT GAAGAAGGTGTTTCATGGGACAACGGGTCCAACTTTTGCGACAAAGCTTAGCAA CTATCCACCATGTCCTAAACCAGAGATGATCAAAGGGCTTAGGGCTCACACAGA TGCAGGAGGCCTCATTTTGCTGTTTCAAGATGATAAGGTCAGTGGTCTCCAGCTT CTTAAAGATGGTGATTGGGTTGATGTTCCTCCTCTCAAGCATTCCATTGTCATCAA CCTTGGTGACCAACTTGAGGTGATAACAAACGGGAAGTACAAGAGTGTAATGCA CCGTGTGATGACCCAGAAAGAAGGAAACAGGATGTCTATCGCGTCGTTTTACAA CCCCGGAAGCGATGCTGAGATCTCTCCGGCAACATCTCTTGTGGATAAAGACTCA AAATACCCAAGCTTTGTGTTTGATGACTACATGAAACTCTATGCCGGACTCAAGT TTCAGGCCAAGGAGCCACGGTTCGAGGCGATGAAAAATGCTGAAGCAGCTGCGG ATTTGAATCCGGTGGCTGTGGTTGAGACATTCTAA SEQ ID NO: 82, Deduced amino acid sequence of the open reading frame of Pk225 MEMNIKFPVIDLSKLNGEERDQTMALIDDACQNWGFFELVNHGLPYDLMDNIERMT KEHYKKHMEQKFKEMLRSKGLDTLETEVEDVDWESTFYLHHLPQSNLYDIPDMSNE YRLAMKDFGKRLEILAEELLDLLCENLGLEKGYLKKVFHGTTGPTFATKLSNYPPCP KPEMIKGLRAHTDAGGLILLFQDDKVSGLQLLKDGDWVDVPPLKHSIVINLGDQLEV ITNGKYKSVMHRVMTQKEGNRMSIASFYNPGSDAEISPATSLVDKDSKYPSFVFDDY MKLYAGLKFQAKEPRFEAMKNAEAAADLNPVAVVETF

Sequence CWU 1

1631300DNAArabidopsis thaliana 1atggcaatct tccgaagtac actagtttta ctgctgatcc tcttctgcct caccactttt 60gagcttcatg ttcatgctgc tgaagattca caagtcggtg aaggcgtagt gaaaattgat 120tgcggtggga gatgcaaagg tagatgcagc aaatcgtcga ggccaaatct gtgtttgaga 180gcatgcaaca gctgttgtta ccgctgcaac tgtgtgccac caggcaccgc cgggaaccac 240cacctttgtc cttgctacgc ctccattacc actcgtggtg gccgtctcaa gtgcccttaa 300299PRTArabidopsis thaliana 2Met Ala Ile Phe Arg Ser Thr Leu Val Leu Leu Leu Ile Leu Phe Cys1 5 10 15Leu Thr Thr Phe Glu Leu His Val His Ala Ala Glu Asp Ser Gln Val 20 25 30Gly Glu Gly Val Val Lys Ile Asp Cys Gly Gly Arg Cys Lys Gly Arg 35 40 45Cys Ser Lys Ser Ser Arg Pro Asn Leu Cys Leu Arg Ala Cys Asn Ser 50 55 60Cys Cys Tyr Arg Cys Asn Cys Val Pro Pro Gly Thr Ala Gly Asn His65 70 75 80His Leu Cys Pro Cys Tyr Ala Ser Ile Thr Thr Arg Gly Gly Arg Leu 85 90 95Lys Cys Pro31245DNAArabidopsis thaliana 3atggagaatg gagcaacgac gacgagcaca attaccatca aagggattct gagtttgcta 60atggaaagca tcacaacaga ggaagatgaa ggaggaaaga gagtaatatc tctgggaatg 120ggagacccaa cactctactc gtgttttcgt acaacacaag tctctcttca agctgtttct 180gattctcttc tctccaacaa gttccatggt tactctccta ccgtcggtct tccccaagct 240cgaagggcaa tagcagagta tctatcgcgt gatcttccat acaaactttc acaggatgat 300gtgtttatca catcgggttg cacgcaagcg atcgatgtag cattgtcgat gttagctcgt 360cccagggcta atatacttct tccaaggcct ggtttcccaa tctatgaact ctgtgctaag 420tttagacacc ttgaagttcg ctacgtcgat cttcttccgg aaaatggatg ggagatcgat 480cttgatgctg tcgaggctct tgcagacgaa aacacggttg ctttggttgt tataaaccct 540ggtaatcctt gcgggaatgt ctatagctac cagcatttga tgaagattgc ggaatcggcg 600aaaaaactag ggtttcttgt gattgctgat gaggtttacg gtcatcttgc ttttggtagc 660aaaccgtttg tgccaatggg tgtgtttgga tctattgttc ctgtgcttac tcttggctct 720ttatcaaaga gatggatagt tccaggttgg cgactcgggt ggtttgtcac cactgatcct 780tctggttcct ttaaggaccc taagatcatt gagaggttta agaaatactt tgatattctt 840ggtggaccag ctacatttat tcaggctgca gttcccacta ttttggaaca gacggatgag 900tctttcttca agaaaacctt gaactcgttg aagaactctt cggatatttg ttgtgactgg 960atcaaggaga ttccttgcat tgattcctcg catcgaccag aaggatccat ggcaatgatg 1020gttaagctga atctctcatt acttgaagat gtaagtgacg atatcgactt ctgtttcaag 1080ttagctaggg aagaatcagt catccttctt cctgggaccg cggtggggct gaagaactgg 1140ctgaggataa cgtttgcagc agatgcaact tcgattgaag aagcttttaa aaggatcaaa 1200tgtttctatc ttagacatgc caagactcaa tatccaacca tatag 12454414PRTArabidopsis thaliana 4Met Glu Asn Gly Ala Thr Thr Thr Ser Thr Ile Thr Ile Lys Gly Ile1 5 10 15Leu Ser Leu Leu Met Glu Ser Ile Thr Thr Glu Glu Asp Glu Gly Gly 20 25 30Lys Arg Val Ile Ser Leu Gly Met Gly Asp Pro Thr Leu Tyr Ser Cys 35 40 45Phe Arg Thr Thr Gln Val Ser Leu Gln Ala Val Ser Asp Ser Leu Leu 50 55 60Ser Asn Lys Phe His Gly Tyr Ser Pro Thr Val Gly Leu Pro Gln Ala65 70 75 80Arg Arg Ala Ile Ala Glu Tyr Leu Ser Arg Asp Leu Pro Tyr Lys Leu 85 90 95Ser Gln Asp Asp Val Phe Ile Thr Ser Gly Cys Thr Gln Ala Ile Asp 100 105 110Val Ala Leu Ser Met Leu Ala Arg Pro Arg Ala Asn Ile Leu Leu Pro 115 120 125Arg Pro Gly Phe Pro Ile Tyr Glu Leu Cys Ala Lys Phe Arg His Leu 130 135 140Glu Val Arg Tyr Val Asp Leu Leu Pro Glu Asn Gly Trp Glu Ile Asp145 150 155 160Leu Asp Ala Val Glu Ala Leu Ala Asp Glu Asn Thr Val Ala Leu Val 165 170 175Val Ile Asn Pro Gly Asn Pro Cys Gly Asn Val Tyr Ser Tyr Gln His 180 185 190Leu Met Lys Ile Ala Glu Ser Ala Lys Lys Leu Gly Phe Leu Val Ile 195 200 205Ala Asp Glu Val Tyr Gly His Leu Ala Phe Gly Ser Lys Pro Phe Val 210 215 220Pro Met Gly Val Phe Gly Ser Ile Val Pro Val Leu Thr Leu Gly Ser225 230 235 240Leu Ser Lys Arg Trp Ile Val Pro Gly Trp Arg Leu Gly Trp Phe Val 245 250 255Thr Thr Asp Pro Ser Gly Ser Phe Lys Asp Pro Lys Ile Ile Glu Arg 260 265 270Phe Lys Lys Tyr Phe Asp Ile Leu Gly Gly Pro Ala Thr Phe Ile Gln 275 280 285Ala Ala Val Pro Thr Ile Leu Glu Gln Thr Asp Glu Ser Phe Phe Lys 290 295 300Lys Thr Leu Asn Ser Leu Lys Asn Ser Ser Asp Ile Cys Cys Asp Trp305 310 315 320Ile Lys Glu Ile Pro Cys Ile Asp Ser Ser His Arg Pro Glu Gly Ser 325 330 335Met Ala Met Met Val Lys Leu Asn Leu Ser Leu Leu Glu Asp Val Ser 340 345 350Asp Asp Ile Asp Phe Cys Phe Lys Leu Ala Arg Glu Glu Ser Val Ile 355 360 365Leu Leu Pro Gly Thr Ala Val Gly Leu Lys Asn Trp Leu Arg Ile Thr 370 375 380Phe Ala Ala Asp Ala Thr Ser Ile Glu Glu Ala Phe Lys Arg Ile Lys385 390 395 400Cys Phe Tyr Leu Arg His Ala Lys Thr Gln Tyr Pro Thr Ile 405 4105459DNAArabidopsis thaliana 5atggctgaaa aagtaaagtc tggtcaagtt tttaacctat tatgcatatt ctcgatcttt 60ttcttcctct ttgtgttatc agtgaatgtt tcggctgatg tcgattctga gagagcggtg 120ccatctgaag ataaaacgac gactgtttgg ctaactaaaa tcaaacggtc cggtaaaaat 180tattgggcta aagttagaga gactttggat cgtggacagt cccacttctt tcctccgaac 240acatatttta ccggaaagaa tgatgcgccg atgggagccg gtgaaaatat gaaagaggcg 300gcgacgagga gctttgagca tagcaaagcg acggtggagg aagctgctag atcagcggca 360gaagtggtga gtgatacggc ggaagctgtg aaagaaaagg tgaagaggag cgtttccggt 420ggagtgacgc agccgtcgga gggatctgag gagctataa 4596152PRTArabidopsis thaliana 6Met Ala Glu Lys Val Lys Ser Gly Gln Val Phe Asn Leu Leu Cys Ile1 5 10 15Phe Ser Ile Phe Phe Phe Leu Phe Val Leu Ser Val Asn Val Ser Ala 20 25 30Asp Val Asp Ser Glu Arg Ala Val Pro Ser Glu Asp Lys Thr Thr Thr 35 40 45Val Trp Leu Thr Lys Ile Lys Arg Ser Gly Lys Asn Tyr Trp Ala Lys 50 55 60Val Arg Glu Thr Leu Asp Arg Gly Gln Ser His Phe Phe Pro Pro Asn65 70 75 80Thr Tyr Phe Thr Gly Lys Asn Asp Ala Pro Met Gly Ala Gly Glu Asn 85 90 95Met Lys Glu Ala Ala Thr Arg Ser Phe Glu His Ser Lys Ala Thr Val 100 105 110Glu Glu Ala Ala Arg Ser Ala Ala Glu Val Val Ser Asp Thr Ala Glu 115 120 125Ala Val Lys Glu Lys Val Lys Arg Ser Val Ser Gly Gly Val Thr Gln 130 135 140Pro Ser Glu Gly Ser Glu Glu Leu145 15071158DNAArabidopsis thaliana 7atggctggag aagaaataga gagggagaag aaatctgcag catctgcaag aactcacacc 60agaaacaaca ctcaacaaag ttcttcttct ggttatctga aaacgcttct cctggtaacg 120ttcgtcggag ttttagcatg ggtttatcaa acaatccaac caccacccgc caaaatcgtc 180ggctctcccg gtggacccac cgtgacatca ccgaggatca aactgagaga cggaagacat 240ctggcttaca cagaattcgg aatccctaga gacgaagcca agttcaagat cataaacatc 300cacggcttcg attcttgtat gcgagactcg catttcgcca atttcttatc gccggctctt 360gtggaggaat tgaggatata cattgtgtct tttgatcgtc ctggttatgg agagagtgat 420cctaacctga atgggtcacc aagaagcata gcattggata tagaagagct tgctgatggg 480ttaggactag gacctcagtt ctatctcttt ggttactcca tgggtggtga aattacatgg 540gcatgcctta actacattcc tcacaggtta gcaggagctg cccttgtagc tccagcgatt 600aactattggt ggagaaactt accgggagat ttaacaagag aagctttctc tcttatgcat 660cctgcagatc aatggtcact tcgagtagct cattatgctc cttggcttac atattggtgg 720aacactcaga aatggttccc aatctccaat gtgattgccg gtaatcccat tattttctca 780cgtcaggaca tggagatctt gtcgaagctc ggattcgtca atccaaatcg ggcatacata 840agacaacaag gtgaatatgt aagcttacac cgagatttga atgtcgcatt ttcaagctgg 900gagtttgatc cgttagacct tcaagatccg ttcccgaaca acaatggctc agttcacgta 960tggaatggcg atgaggataa gtttgtgcca gtaaagcttc aacggtatgt cgcgtcaaag 1020ctgccatgga ttcgttacca tgaaatatct ggatcaggac attttgtacc atttgtggaa 1080ggtatgactg ataagatcat caagtcactt ttggttgggg aagaagatgt aagtgagagt 1140agagaagcct ctgtttaa 11588385PRTArabidopsis thaliana 8Met Ala Gly Glu Glu Ile Glu Arg Glu Lys Lys Ser Ala Ala Ser Ala1 5 10 15Arg Thr His Thr Arg Asn Asn Thr Gln Gln Ser Ser Ser Ser Gly Tyr 20 25 30Leu Lys Thr Leu Leu Leu Val Thr Phe Val Gly Val Leu Ala Trp Val 35 40 45Tyr Gln Thr Ile Gln Pro Pro Pro Ala Lys Ile Val Gly Ser Pro Gly 50 55 60Gly Pro Thr Val Thr Ser Pro Arg Ile Lys Leu Arg Asp Gly Arg His65 70 75 80Leu Ala Tyr Thr Glu Phe Gly Ile Pro Arg Asp Glu Ala Lys Phe Lys 85 90 95Ile Ile Asn Ile His Gly Phe Asp Ser Cys Met Arg Asp Ser His Phe 100 105 110Ala Asn Phe Leu Ser Pro Ala Leu Val Glu Glu Leu Arg Ile Tyr Ile 115 120 125Val Ser Phe Asp Arg Pro Gly Tyr Gly Glu Ser Asp Pro Asn Leu Asn 130 135 140Gly Ser Pro Arg Ser Ile Ala Leu Asp Ile Glu Glu Leu Ala Asp Gly145 150 155 160Leu Gly Leu Gly Pro Gln Phe Tyr Leu Phe Gly Tyr Ser Met Gly Gly 165 170 175Glu Ile Thr Trp Ala Cys Leu Asn Tyr Ile Pro His Arg Leu Ala Gly 180 185 190Ala Ala Leu Val Ala Pro Ala Ile Asn Tyr Trp Trp Arg Asn Leu Pro 195 200 205Gly Asp Leu Thr Arg Glu Ala Phe Ser Leu Met His Pro Ala Asp Gln 210 215 220Trp Ser Leu Arg Val Ala His Tyr Ala Pro Trp Leu Thr Tyr Trp Trp225 230 235 240Asn Thr Gln Lys Trp Phe Pro Ile Ser Asn Val Ile Ala Gly Asn Pro 245 250 255Ile Ile Phe Ser Arg Gln Asp Met Glu Ile Leu Ser Lys Leu Gly Phe 260 265 270Val Asn Pro Asn Arg Ala Tyr Ile Arg Gln Gln Gly Glu Tyr Val Ser 275 280 285Leu His Arg Asp Leu Asn Val Ala Phe Ser Ser Trp Glu Phe Asp Pro 290 295 300Leu Asp Leu Gln Asp Pro Phe Pro Asn Asn Asn Gly Ser Val His Val305 310 315 320Trp Asn Gly Asp Glu Asp Lys Phe Val Pro Val Lys Leu Gln Arg Tyr 325 330 335Val Ala Ser Lys Leu Pro Trp Ile Arg Tyr His Glu Ile Ser Gly Ser 340 345 350Gly His Phe Val Pro Phe Val Glu Gly Met Thr Asp Lys Ile Ile Lys 355 360 365Ser Leu Leu Val Gly Glu Glu Asp Val Ser Glu Ser Arg Glu Ala Ser 370 375 380Val3859357DNAArabidopsis thaliana 9atggctggag tgatgaagtt ggcatgcatg gtcttggctt gcatgattgt ggccggtcca 60atcacagcga acgcgcttat gagttgtggc accgtcaacg gcaacctggc agggtgcatt 120gcctacttga cccgaggtgc tccacttacc caagggtgct gcaacggcgt tactaacctt 180aaaaacatgg ccagtacaac cccagaccgt cagcaagctt gccgttgcct tcaatctgcc 240gctaaagccg ttggtcccgg tctcaacact gcccgtgcag ctggacttcc tagcgcatgc 300aaagtcaata ttccttacaa aatcagcgcc agcaccaact gcaacaccgt gaggtga 35710118PRTArabidopsis thaliana 10Met Ala Gly Val Met Lys Leu Ala Cys Met Val Leu Ala Cys Met Ile1 5 10 15Val Ala Gly Pro Ile Thr Ala Asn Ala Leu Met Ser Cys Gly Thr Val 20 25 30Asn Gly Asn Leu Ala Gly Cys Ile Ala Tyr Leu Thr Arg Gly Ala Pro 35 40 45Leu Thr Gln Gly Cys Cys Asn Gly Val Thr Asn Leu Lys Asn Met Ala 50 55 60Ser Thr Thr Pro Asp Arg Gln Gln Ala Cys Arg Cys Leu Gln Ser Ala65 70 75 80Ala Lys Ala Val Gly Pro Gly Leu Asn Thr Ala Arg Ala Ala Gly Leu 85 90 95Pro Ser Ala Cys Lys Val Asn Ile Pro Tyr Lys Ile Ser Ala Ser Thr 100 105 110Asn Cys Asn Thr Val Arg 115111332DNAArabidopsis thaliana 11atggggcttg ctgtggtgga caaaaacaca gttgcgattt ctgcatctga tgttatgttg 60tcctttgctg cttttccagt cgagattcct ggagaggtag tatttcttca tcccgttcac 120aactatgctc tgattgcgta taatccatca gcaatggatc ctgccagtgc ttcagtcatt 180cgtgcagctg agctactacc tgaacctgca ctccaacgtg gagattcagt ctatcttgtc 240ggattgagta ggaaccttca agctacatca agaaaatcta ttgtaaccaa tccatgtgca 300gcgttaaaca ttggttctgc tgattctccc cgttacagag ctactaatat ggaagtaatt 360gagcttgata cagattttgg tagctcattt tcaggggcgc tgactgatga gcagggaaga 420attcgggcta tttggggaag tttttcgact caggttaaat atagttccac ttcttcagaa 480gaccaccagt ttgtcagagg tatcccagta tatgcaatca gccaagtcct tgaaaaaatc 540ataaccggtg gaaatggacc agctcttctc ataaatggtg tcaaaaggcc aatgccactt 600gttcggattt tggaagttga attgtatcct actttgcttt caaaagcccg gagttttggt 660ctgagtgatg aatggatcca agtcctagtc aagaaggatc ctgttagacg tcaagttctg 720cgtgttaaag gttgcctggc aggatcaaaa gctgaaaacc ttcttgaaca aggcgatatg 780gttctggcag tcaataagat gccagttaca tgcttcaatg acatagaagc tgcttgccaa 840acattggata agggtagtta cagcgatgaa aatctcaatc taacaatcct tagacagggc 900caagaactgg agctcgtagt tggaactgat aagagagatg ggaatggaac gacaagagtg 960ataaattggt gcggatgcgt tgttcaggat cctcatcctg cggttcgtgc tcttggattt 1020cttcctgagg aaggtcatgg tgtctatgtc acaagatggt gtcacgggag tcccgctcac 1080cgatatggcc tctacgcgct tcaatggatc gtggaagtta atgggaagaa gactcctgac 1140ctaaacgcat tcgcagatgc taccaaggag ctagaacacg ggcagtttgt gcgtattagg 1200actgttcatc taaacggcaa gccacgagta ttgaccctga aacaagatct ccattactgg 1260ccgacttggg aattgaggtt cgacccagag actgctcttt ggcggagaaa tatattgaaa 1320gccttgcagt aa 133212443PRTArabidopsis thaliana 12Met Gly Leu Ala Val Val Asp Lys Asn Thr Val Ala Ile Ser Ala Ser1 5 10 15Asp Val Met Leu Ser Phe Ala Ala Phe Pro Val Glu Ile Pro Gly Glu 20 25 30Val Val Phe Leu His Pro Val His Asn Tyr Ala Leu Ile Ala Tyr Asn 35 40 45Pro Ser Ala Met Asp Pro Ala Ser Ala Ser Val Ile Arg Ala Ala Glu 50 55 60Leu Leu Pro Glu Pro Ala Leu Gln Arg Gly Asp Ser Val Tyr Leu Val65 70 75 80Gly Leu Ser Arg Asn Leu Gln Ala Thr Ser Arg Lys Ser Ile Val Thr 85 90 95Asn Pro Cys Ala Ala Leu Asn Ile Gly Ser Ala Asp Ser Pro Arg Tyr 100 105 110Arg Ala Thr Asn Met Glu Val Ile Glu Leu Asp Thr Asp Phe Gly Ser 115 120 125Ser Phe Ser Gly Ala Leu Thr Asp Glu Gln Gly Arg Ile Arg Ala Ile 130 135 140Trp Gly Ser Phe Ser Thr Gln Val Lys Tyr Ser Ser Thr Ser Ser Glu145 150 155 160Asp His Gln Phe Val Arg Gly Ile Pro Val Tyr Ala Ile Ser Gln Val 165 170 175Leu Glu Lys Ile Ile Thr Gly Gly Asn Gly Pro Ala Leu Leu Ile Asn 180 185 190Gly Val Lys Arg Pro Met Pro Leu Val Arg Ile Leu Glu Val Glu Leu 195 200 205Tyr Pro Thr Leu Leu Ser Lys Ala Arg Ser Phe Gly Leu Ser Asp Glu 210 215 220Trp Ile Gln Val Leu Val Lys Lys Asp Pro Val Arg Arg Gln Val Leu225 230 235 240Arg Val Lys Gly Cys Leu Ala Gly Ser Lys Ala Glu Asn Leu Leu Glu 245 250 255Gln Gly Asp Met Val Leu Ala Val Asn Lys Met Pro Val Thr Cys Phe 260 265 270Asn Asp Ile Glu Ala Ala Cys Gln Thr Leu Asp Lys Gly Ser Tyr Ser 275 280 285Asp Glu Asn Leu Asn Leu Thr Ile Leu Arg Gln Gly Gln Glu Leu Glu 290 295 300Leu Val Val Gly Thr Asp Lys Arg Asp Gly Asn Gly Thr Thr Arg Val305 310 315 320Ile Asn Trp Cys Gly Cys Val Val Gln Asp Pro His Pro Ala Val Arg 325 330 335Ala Leu Gly Phe Leu Pro Glu Glu Gly His Gly Val Tyr Val Thr Arg 340 345 350Trp Cys His Gly Ser Pro Ala His Arg Tyr Gly Leu Tyr Ala Leu Gln 355 360 365Trp Ile Val Glu Val Asn Gly Lys Lys Thr Pro Asp Leu Asn Ala Phe 370 375 380Ala Asp Ala Thr Lys Glu Leu Glu His Gly Gln Phe Val Arg Ile Arg385 390 395 400Thr Val His Leu Asn Gly Lys Pro Arg Val Leu Thr Leu Lys Gln Asp 405 410 415Leu His Tyr Trp Pro Thr Trp Glu Leu Arg Phe Asp Pro Glu Thr Ala 420 425 430Leu Trp Arg Arg Asn Ile Leu Lys Ala Leu Gln 435

44013312DNAArabidopsis thaliana 13atggcgttca cggcgcttgt gttcattgtg ttcgtggtgg gtgtcatggt ttctccagtt 60tcaatcagag caactgaggt caaactttct ggaggagaag ctgatgtaac gtgtgatgca 120gtacagctta gttcatgcgc aacaccaatg ctcacaggag taccaccgtc tacagagtgt 180tgcgggaaac tgaaggagca acagccgtgt ttttgtacat atattaaaga tccaagatat 240agtcaatatg ttggttctgc aaatgctaag aaaacgttag caacttgtgg tgttccttat 300cctacttgtt ga 31214103PRTArabidopsis thaliana 14Met Ala Phe Thr Ala Leu Val Phe Ile Val Phe Val Val Gly Val Met1 5 10 15Val Ser Pro Val Ser Ile Arg Ala Thr Glu Val Lys Leu Ser Gly Gly 20 25 30Glu Ala Asp Val Thr Cys Asp Ala Val Gln Leu Ser Ser Cys Ala Thr 35 40 45Pro Met Leu Thr Gly Val Pro Pro Ser Thr Glu Cys Cys Gly Lys Leu 50 55 60Lys Glu Gln Gln Pro Cys Phe Cys Thr Tyr Ile Lys Asp Pro Arg Tyr65 70 75 80Ser Gln Tyr Val Gly Ser Ala Asn Ala Lys Lys Thr Leu Ala Thr Cys 85 90 95Gly Val Pro Tyr Pro Thr Cys 10015660DNAArabidopsis thaliana 15atggcccttg atgagcttct caagactgtc ttgccaccag ctgaggaagg gcttgttcgt 60cagggaagct tgacgttacc tcgagatctc agtaaaaaga cagttgatga ggtctggaga 120gatatccaac aggacaagaa tggaaacggt actagtacta ctactactca taagcagcct 180acactcggtg aaataacact tgaggatttg ttgttgagag ctggtgtagt gactgagaca 240gtagtccctc aagaaaatgt tgttaacata gcttcaaatg ggcaatgggt tgagtatcat 300catcagcctc aacaacaaca agggtttatg acatatccgg tttgcgagat gcaagatatg 360gtgatgatgg gtggattatc ggatacacca caagcgcctg ggaggaaaag agtagctgga 420gagattgtgg agaagactgt tgagaggaga cagaagagga tgatcaagaa cagagaatct 480gcagcacgtt cacgagctag gaaacaggct tatacacatg aattagagat caaggtttca 540aggttagaag aagaaaacga aaaacttcgg aggctaaagg aggtggagaa gatcctacca 600agtgaaccac caccagatcc taagtggaag ctccggcgaa caaactctgc ttctctctga 66016219PRTArabidopsis thaliana 16Met Ala Leu Asp Glu Leu Leu Lys Thr Val Leu Pro Pro Ala Glu Glu1 5 10 15Gly Leu Val Arg Gln Gly Ser Leu Thr Leu Pro Arg Asp Leu Ser Lys 20 25 30Lys Thr Val Asp Glu Val Trp Arg Asp Ile Gln Gln Asp Lys Asn Gly 35 40 45Asn Gly Thr Ser Thr Thr Thr Thr His Lys Gln Pro Thr Leu Gly Glu 50 55 60Ile Thr Leu Glu Asp Leu Leu Leu Arg Ala Gly Val Val Thr Glu Thr65 70 75 80Val Val Pro Gln Glu Asn Val Val Asn Ile Ala Ser Asn Gly Gln Trp 85 90 95Val Glu Tyr His His Gln Pro Gln Gln Gln Gln Gly Phe Met Thr Tyr 100 105 110Pro Val Cys Glu Met Gln Asp Met Val Met Met Gly Gly Leu Ser Asp 115 120 125Thr Pro Gln Ala Pro Gly Arg Lys Arg Val Ala Gly Glu Ile Val Glu 130 135 140Lys Thr Val Glu Arg Arg Gln Lys Arg Met Ile Lys Asn Arg Glu Ser145 150 155 160Ala Ala Arg Ser Arg Ala Arg Lys Gln Ala Tyr Thr His Glu Leu Glu 165 170 175Ile Lys Val Ser Arg Leu Glu Glu Glu Asn Glu Lys Leu Arg Arg Leu 180 185 190Lys Glu Val Glu Lys Ile Leu Pro Ser Glu Pro Pro Pro Asp Pro Lys 195 200 205Trp Lys Leu Arg Arg Thr Asn Ser Ala Ser Leu 210 21517741DNAArabidopsis thaliana 17atggcgcaat cccgattatt agcgtttgct tcagcggcgc gttcacgtgt tcgaccaatc 60gctcaaaggc gtttagcgtt tggatcatcc acgtctggtc gcacagctga tccagagatc 120catgccggta acgatggagc cgatccagct atctatccga gagaccctga aggtatggat 180gatgttgcaa accctaaaac ggcggcggaa gaaatcgtag acgatactcc ccgaccgagt 240ttagaagagc aaccgcttgt accgccgaaa tctccacgcg ccactgcgca caagctagag 300agtactcccg ttggtcaccc gtcagaacct catttccaac agaaacgaaa aaactccacc 360gcttctccgc cgtcgcttga ttccgtgagc tgtgctggtt tagacggttc accatggccg 420agagacgaag gagaagtgga agagcaaagg cgaagagaag atgaaacaga gagtgaccaa 480gagttttaca aacaccacaa agcttctccg ttatcggaga ttgaattcgc cgatactcgg 540aaacctatta cgcaagctac cgatggaact gcctacccag ccgggaaaga tgtgatcgga 600tggttaccgg agcagctaga cacggcggaa gaatctttga tgaaagcaac aatgatattc 660aaacgcaacg cagaacgtgg cgatcctgaa acgtttcctc attctagaat cttaagagaa 720atgagaggcg agtggtttta a 74118246PRTArabidopsis thaliana 18Met Ala Gln Ser Arg Leu Leu Ala Phe Ala Ser Ala Ala Arg Ser Arg1 5 10 15Val Arg Pro Ile Ala Gln Arg Arg Leu Ala Phe Gly Ser Ser Thr Ser 20 25 30Gly Arg Thr Ala Asp Pro Glu Ile His Ala Gly Asn Asp Gly Ala Asp 35 40 45Pro Ala Ile Tyr Pro Arg Asp Pro Glu Gly Met Asp Asp Val Ala Asn 50 55 60Pro Lys Thr Ala Ala Glu Glu Ile Val Asp Asp Thr Pro Arg Pro Ser65 70 75 80Leu Glu Glu Gln Pro Leu Val Pro Pro Lys Ser Pro Arg Ala Thr Ala 85 90 95His Lys Leu Glu Ser Thr Pro Val Gly His Pro Ser Glu Pro His Phe 100 105 110Gln Gln Lys Arg Lys Asn Ser Thr Ala Ser Pro Pro Ser Leu Asp Ser 115 120 125Val Ser Cys Ala Gly Leu Asp Gly Ser Pro Trp Pro Arg Asp Glu Gly 130 135 140Glu Val Glu Glu Gln Arg Arg Arg Glu Asp Glu Thr Glu Ser Asp Gln145 150 155 160Glu Phe Tyr Lys His His Lys Ala Ser Pro Leu Ser Glu Ile Glu Phe 165 170 175Ala Asp Thr Arg Lys Pro Ile Thr Gln Ala Thr Asp Gly Thr Ala Tyr 180 185 190Pro Ala Gly Lys Asp Val Ile Gly Trp Leu Pro Glu Gln Leu Asp Thr 195 200 205Ala Glu Glu Ser Leu Met Lys Ala Thr Met Ile Phe Lys Arg Asn Ala 210 215 220Glu Arg Gly Asp Pro Glu Thr Phe Pro His Ser Arg Ile Leu Arg Glu225 230 235 240Met Arg Gly Glu Trp Phe 245191425DNAArabidopsis thaliana 19atgtccgtgg ctcgattcga tttctcttgg tgcgatgctg attatcacca ggagacgctg 60gagaatctga agatagctgt gaagagcact aagaagcttt gtgctgttat gctagacact 120gtaggacctg agttgcaagt tattaacaag actgagaaag ctatttctct taaagctgat 180ggccttgtaa ctttgactcc gagtcaagat caagaagcct cctctgaagt ccttcccatt 240aattttgatg ggttagcgaa ggcggttaag aaaggagaca ctatctttgt tggacaatac 300ctcttcactg gtagtgaaac aacttcagtt tggcttgagg ttgaagaagt taaaggagat 360gatgtcattt gtatttcaag gaatgctgct actctgggtg gtccgttatt cacattgcac 420gtctctcaag ttcacattga tatgccaacc ctaactgaga aggataagga ggttataagt 480acatggggag ttcagaataa gatcgacttt ctctcattat cttattgtcg acatgcagaa 540gatgttcgcc aggcccgtga gttgcttaac agttgtggtg acctctctca aacacaaata 600tttgcgaaga ttgagaatga agagggacta acccactttg acgaaattct acaagaagca 660gatggcatta ttctttctcg tgggaatttg ggtatcgatc tacctccgga aaaggtgttt 720ttgttccaaa aggctgctct ttacaagtgt aacatggctg gaaagcctgc cgttcttact 780cgtgttgtag acagtatgac agacaatctg cggccaactc gtgcagaggc aactgatgtt 840gctaatgctg ttttagatgg aagtgatgca attcttcttg gtgctgagac tcttcgtgga 900ttgtaccctg ttgaaaccat atcaactgtt ggtagaatct gttgtgaggc agagaaagtt 960ttcaaccaag atttgttctt taagaagact gtcaagtatg ttggagaacc aatgactcac 1020ttggaatcta ttgcttcttc tgctgtacgg gcagcaatca aggttaaggc atccgtaatt 1080atatgcttca cctcgtctgg cagagcagca aggttgattg ccaaataccg tccaactatg 1140cccgttctct ctgttgtcat tccccgactt acgacaaatc agctgaagtg gagctttagc 1200ggagcctttg aggcaaggca gtcacttatt gtcagaggtc ttttccccat gcttgctgat 1260cctcgtcacc ctgcggaatc aacaagtgca acaaatgagt cggttcttaa agtggctcta 1320gaccatggga agcaagccgg agtgatcaag tcacatgaca gagttgtggt ctgtcagaaa 1380gtgggagatg cgtccgtggt caaaatcatc gagctagagg attag 142520474PRTArabidopsis thaliana 20Met Ser Val Ala Arg Phe Asp Phe Ser Trp Cys Asp Ala Asp Tyr His1 5 10 15Gln Glu Thr Leu Glu Asn Leu Lys Ile Ala Val Lys Ser Thr Lys Lys 20 25 30Leu Cys Ala Val Met Leu Asp Thr Val Gly Pro Glu Leu Gln Val Ile 35 40 45Asn Lys Thr Glu Lys Ala Ile Ser Leu Lys Ala Asp Gly Leu Val Thr 50 55 60Leu Thr Pro Ser Gln Asp Gln Glu Ala Ser Ser Glu Val Leu Pro Ile65 70 75 80Asn Phe Asp Gly Leu Ala Lys Ala Val Lys Lys Gly Asp Thr Ile Phe 85 90 95Val Gly Gln Tyr Leu Phe Thr Gly Ser Glu Thr Thr Ser Val Trp Leu 100 105 110Glu Val Glu Glu Val Lys Gly Asp Asp Val Ile Cys Ile Ser Arg Asn 115 120 125Ala Ala Thr Leu Gly Gly Pro Leu Phe Thr Leu His Val Ser Gln Val 130 135 140His Ile Asp Met Pro Thr Leu Thr Glu Lys Asp Lys Glu Val Ile Ser145 150 155 160Thr Trp Gly Val Gln Asn Lys Ile Asp Phe Leu Ser Leu Ser Tyr Cys 165 170 175Arg His Ala Glu Asp Val Arg Gln Ala Arg Glu Leu Leu Asn Ser Cys 180 185 190Gly Asp Leu Ser Gln Thr Gln Ile Phe Ala Lys Ile Glu Asn Glu Glu 195 200 205Gly Leu Thr His Phe Asp Glu Ile Leu Gln Glu Ala Asp Gly Ile Ile 210 215 220Leu Ser Arg Gly Asn Leu Gly Ile Asp Leu Pro Pro Glu Lys Val Phe225 230 235 240Leu Phe Gln Lys Ala Ala Leu Tyr Lys Cys Asn Met Ala Gly Lys Pro 245 250 255Ala Val Leu Thr Arg Val Val Asp Ser Met Thr Asp Asn Leu Arg Pro 260 265 270Thr Arg Ala Glu Ala Thr Asp Val Ala Asn Ala Val Leu Asp Gly Ser 275 280 285Asp Ala Ile Leu Leu Gly Ala Glu Thr Leu Arg Gly Leu Tyr Pro Val 290 295 300Glu Thr Ile Ser Thr Val Gly Arg Ile Cys Cys Glu Ala Glu Lys Val305 310 315 320Phe Asn Gln Asp Leu Phe Phe Lys Lys Thr Val Lys Tyr Val Gly Glu 325 330 335Pro Met Thr His Leu Glu Ser Ile Ala Ser Ser Ala Val Arg Ala Ala 340 345 350Ile Lys Val Lys Ala Ser Val Ile Ile Cys Phe Thr Ser Ser Gly Arg 355 360 365Ala Ala Arg Leu Ile Ala Lys Tyr Arg Pro Thr Met Pro Val Leu Ser 370 375 380Val Val Ile Pro Arg Leu Thr Thr Asn Gln Leu Lys Trp Ser Phe Ser385 390 395 400Gly Ala Phe Glu Ala Arg Gln Ser Leu Ile Val Arg Gly Leu Phe Pro 405 410 415Met Leu Ala Asp Pro Arg His Pro Ala Glu Ser Thr Ser Ala Thr Asn 420 425 430Glu Ser Val Leu Lys Val Ala Leu Asp His Gly Lys Gln Ala Gly Val 435 440 445Ile Lys Ser His Asp Arg Val Val Val Cys Gln Lys Val Gly Asp Ala 450 455 460Ser Val Val Lys Ile Ile Glu Leu Glu Asp465 47021936DNAArabidopsis thaliana 21atggcgattt acagatctct aagaaagcta gttgaaatca atcaccggaa aacaagacca 60ttcctcaccg ccgctacagc ttccggcgga accgtttctc tgactccacc gcagttttcg 120ccgttgttcc cacatttctc acaccgttta tctccgcttt cgaaatggtt cgttcctctt 180aatggacctc tcttcttatc ttctcctcct tggaaacttc tccagtctgc gacacctttg 240cactggcgcg gaaacggctc tgttttgaaa aaagtcgaag ctctgaatct tagattggat 300cgaattagaa gcagaactag gtttccgaga cagttagggt tacagtctgt ggtaccaaac 360atattgacgg tggatcgcaa cgattccaag gaagaagatg gtggaaaatt agtcaagagt 420tttgttaatg tgccgaatat gatatcaatg gcgagattag tatctggtcc tgtgctttgg 480tggatgatct cgaatgagat gtattcttct gctttcttag ggttggctgt ttctggagct 540agtgattggt tagatggtta cgtggctcgg aggatgaaga ttaactctgt ggttggctcg 600taccttgatc ctcttgcaga caaggttctt atcgggtgtg tagcagtagc aatggtgcag 660aaggatctct tacatcctgg actggttgga attgtgttgt tacgggatgt tgcactcgtt 720ggtggtgcag tttacctaag ggcactaaac ttggactgga ggtggaaaac ttggagtgac 780ttcttcaatc tagatggttc aagtcctcag aaagtagaac cattgtttat aagcaaggtg 840aatacagttt tccagttgac tctagtcgct ggtgcaatac ttcaaccaga gtttgggaat 900ccagacaccc agacatggat cacttatcta aggtaa 93622311PRTArabidopsis thaliana 22Met Ala Ile Tyr Arg Ser Leu Arg Lys Leu Val Glu Ile Asn His Arg1 5 10 15Lys Thr Arg Pro Phe Leu Thr Ala Ala Thr Ala Ser Gly Gly Thr Val 20 25 30Ser Leu Thr Pro Pro Gln Phe Ser Pro Leu Phe Pro His Phe Ser His 35 40 45Arg Leu Ser Pro Leu Ser Lys Trp Phe Val Pro Leu Asn Gly Pro Leu 50 55 60Phe Leu Ser Ser Pro Pro Trp Lys Leu Leu Gln Ser Ala Thr Pro Leu65 70 75 80His Trp Arg Gly Asn Gly Ser Val Leu Lys Lys Val Glu Ala Leu Asn 85 90 95Leu Arg Leu Asp Arg Ile Arg Ser Arg Thr Arg Phe Pro Arg Gln Leu 100 105 110Gly Leu Gln Ser Val Val Pro Asn Ile Leu Thr Val Asp Arg Asn Asp 115 120 125Ser Lys Glu Glu Asp Gly Gly Lys Leu Val Lys Ser Phe Val Asn Val 130 135 140Pro Asn Met Ile Ser Met Ala Arg Leu Val Ser Gly Pro Val Leu Trp145 150 155 160Trp Met Ile Ser Asn Glu Met Tyr Ser Ser Ala Phe Leu Gly Leu Ala 165 170 175Val Ser Gly Ala Ser Asp Trp Leu Asp Gly Tyr Val Ala Arg Arg Met 180 185 190Lys Ile Asn Ser Val Val Gly Ser Tyr Leu Asp Pro Leu Ala Asp Lys 195 200 205Val Leu Ile Gly Cys Val Ala Val Ala Met Val Gln Lys Asp Leu Leu 210 215 220His Pro Gly Leu Val Gly Ile Val Leu Leu Arg Asp Val Ala Leu Val225 230 235 240Gly Gly Ala Val Tyr Leu Arg Ala Leu Asn Leu Asp Trp Arg Trp Lys 245 250 255Thr Trp Ser Asp Phe Phe Asn Leu Asp Gly Ser Ser Pro Gln Lys Val 260 265 270Glu Pro Leu Phe Ile Ser Lys Val Asn Thr Val Phe Gln Leu Thr Leu 275 280 285Val Ala Gly Ala Ile Leu Gln Pro Glu Phe Gly Asn Pro Asp Thr Gln 290 295 300Thr Trp Ile Thr Tyr Leu Arg305 310232427DNAArabidopsis thaliana 23atggtaaagg aaactctaat tcctccgtca tctacgtcaa tgacgaccgg aacatcttct 60tcttcgtctc tttcaatgac gttatcctca acaaacgcgt tatcgttttt gtcgaaagga 120tggagagagg tatgggattc agcagatgcg gatttgcagc tgatgcgaga cagagctaac 180tctgttaaga atctagcatc aacgttcgat agagagatcg agaatttcct caataactcg 240gcgaggtctg cgtttcccgt tggttcacca tcggcgtcgt ctttctcaaa tgaaattggt 300atcatgaaga agcttcagcc gaagatttcg gagtttcgta gggtttattc ggcgccggag 360attagtcgca aggttatgga gagatgggga cctgcgagag cgaagcttgg aatggatcta 420tcggcgatta agaaggcgat tgtgtctgag atggaattgg atgagcgtca gggagttttg 480gagatgagta gattgaggag acggcgtaat agtgataggg ttaggtttac ggagtttttc 540gcggaggctg agagagatgg agaagcttat ttcggtgatt gggaaccgat taggtctttg 600aagagtagat ttaaagagtt tgagaaacga agctcgttag aaatattgag tggattcaag 660aacagtgaat ttgttgagaa gctcaaaacc agctttaaat caatttacaa agaaactgat 720gaggctaagg atgtccctcc gttggatgta cctgaactgt tggcatgttt ggttagacaa 780tctgaacctt ttcttgatca gattggtgtt agaaaggata catgtgaccg aatagtagaa 840agcctttgca aatgcaagag ccaacaactt tggcgtctgc catctgcaca agcatccgat 900ttaattgaaa atgataacca tggagttgat ttggatatga ggatagccag tgttcttcaa 960agcacaggac accattatga tggtgggttt tggactgatt ttgtgaagcc tgagacaccg 1020gaaaacaaaa ggcatgtggc aattgttaca acagctagtc ttccttggat gaccggaaca 1080gctgtaaatc cgctattcag agcggcgtat ttggcaaaag ctgcaaaaca gagtgttact 1140ctcgtggttc cttggctctg cgaatctgat caagaactag tgtatccaaa caatctcacc 1200ttcagctcac ctgaagaaca agagagttat atacgtaaat ggttggagga aaggattggt 1260ttcaaggctg attttaaaat ctccttttac ccaggaaagt tttcaaaaga aaggcgcagc 1320atatttcctg ctggtgacac ttctcaattt atatcgtcaa aagatgctga cattgctata 1380cttgaagaac ctgaacatct caactggtat tatcacggca agcgttggac tgataaattc 1440aaccatgttg ttggaattgt ccacacaaac tacttagagt acatcaagag ggagaagaat 1500ggagctcttc aagcattttt tgtgaaccat gtaaacaatt gggtcacacg agcgtattgt 1560gacaaggttc ttcgcctctc tgcggcaaca caagatttac caaagtctgt tgtatgcaat 1620gtccatggtg tcaatcccaa gttccttatg attggggaga aaattgctga agagagatcc 1680cgtggtgaac aagctttctc aaaaggtgca tacttcttag gaaaaatggt gtgggctaaa 1740ggatacagag aactaataga tctgatggct aaacacaaaa gcgaacttgg gagcttcaat 1800ctagatgtat atgggaacgg tgaagatgca gtcgaggtcc aacgtgcagc aaagaaacat 1860gacttgaatc tcaatttcct caaaggaagg gaccacgctg acgatgctct tcacaagtac 1920aaagtgttca taaaccccag catcagcgat gttctatgca cagcaaccgc agaagcacta 1980gccatgggga agtttgtggt gtgtgcagat cacccttcaa acgaattctt tagatcattc 2040ccgaactgct taacttacaa aacatccgaa gactttgtgt ccaaagtgca agaagcaatg 2100acgaaagagc cactacctct cactcctgaa caaatgtaca atctctcttg ggaagcagca 2160acacagaggt tcatggagta ttcagatctc gataagatct taaacaatgg agagggagga 2220aggaagatgc gaaaatcaag atcggttccg agctttaacg aggtggtcga tggaggattg 2280gcattctcac actatgttct aacagggaac gatttcttga gactatgcac tggagcaaca 2340ccaagaacaa aagactatga taatcaacat

tgcaaggatc tgaatctcgt accacctcac 2400gttcacaagc caatcttcgg ctggtag 242724808PRTArabidopsis thaliana 24Met Val Lys Glu Thr Leu Ile Pro Pro Ser Ser Thr Ser Met Thr Thr1 5 10 15Gly Thr Ser Ser Ser Ser Ser Leu Ser Met Thr Leu Ser Ser Thr Asn 20 25 30Ala Leu Ser Phe Leu Ser Lys Gly Trp Arg Glu Val Trp Asp Ser Ala 35 40 45Asp Ala Asp Leu Gln Leu Met Arg Asp Arg Ala Asn Ser Val Lys Asn 50 55 60Leu Ala Ser Thr Phe Asp Arg Glu Ile Glu Asn Phe Leu Asn Asn Ser65 70 75 80Ala Arg Ser Ala Phe Pro Val Gly Ser Pro Ser Ala Ser Ser Phe Ser 85 90 95Asn Glu Ile Gly Ile Met Lys Lys Leu Gln Pro Lys Ile Ser Glu Phe 100 105 110Arg Arg Val Tyr Ser Ala Pro Glu Ile Ser Arg Lys Val Met Glu Arg 115 120 125Trp Gly Pro Ala Arg Ala Lys Leu Gly Met Asp Leu Ser Ala Ile Lys 130 135 140Lys Ala Ile Val Ser Glu Met Glu Leu Asp Glu Arg Gln Gly Val Leu145 150 155 160Glu Met Ser Arg Leu Arg Arg Arg Arg Asn Ser Asp Arg Val Arg Phe 165 170 175Thr Glu Phe Phe Ala Glu Ala Glu Arg Asp Gly Glu Ala Tyr Phe Gly 180 185 190Asp Trp Glu Pro Ile Arg Ser Leu Lys Ser Arg Phe Lys Glu Phe Glu 195 200 205Lys Arg Ser Ser Leu Glu Ile Leu Ser Gly Phe Lys Asn Ser Glu Phe 210 215 220Val Glu Lys Leu Lys Thr Ser Phe Lys Ser Ile Tyr Lys Glu Thr Asp225 230 235 240Glu Ala Lys Asp Val Pro Pro Leu Asp Val Pro Glu Leu Leu Ala Cys 245 250 255Leu Val Arg Gln Ser Glu Pro Phe Leu Asp Gln Ile Gly Val Arg Lys 260 265 270Asp Thr Cys Asp Arg Ile Val Glu Ser Leu Cys Lys Cys Lys Ser Gln 275 280 285Gln Leu Trp Arg Leu Pro Ser Ala Gln Ala Ser Asp Leu Ile Glu Asn 290 295 300Asp Asn His Gly Val Asp Leu Asp Met Arg Ile Ala Ser Val Leu Gln305 310 315 320Ser Thr Gly His His Tyr Asp Gly Gly Phe Trp Thr Asp Phe Val Lys 325 330 335Pro Glu Thr Pro Glu Asn Lys Arg His Val Ala Ile Val Thr Thr Ala 340 345 350Ser Leu Pro Trp Met Thr Gly Thr Ala Val Asn Pro Leu Phe Arg Ala 355 360 365Ala Tyr Leu Ala Lys Ala Ala Lys Gln Ser Val Thr Leu Val Val Pro 370 375 380Trp Leu Cys Glu Ser Asp Gln Glu Leu Val Tyr Pro Asn Asn Leu Thr385 390 395 400Phe Ser Ser Pro Glu Glu Gln Glu Ser Tyr Ile Arg Lys Trp Leu Glu 405 410 415Glu Arg Ile Gly Phe Lys Ala Asp Phe Lys Ile Ser Phe Tyr Pro Gly 420 425 430Lys Phe Ser Lys Glu Arg Arg Ser Ile Phe Pro Ala Gly Asp Thr Ser 435 440 445Gln Phe Ile Ser Ser Lys Asp Ala Asp Ile Ala Ile Leu Glu Glu Pro 450 455 460Glu His Leu Asn Trp Tyr Tyr His Gly Lys Arg Trp Thr Asp Lys Phe465 470 475 480Asn His Val Val Gly Ile Val His Thr Asn Tyr Leu Glu Tyr Ile Lys 485 490 495Arg Glu Lys Asn Gly Ala Leu Gln Ala Phe Phe Val Asn His Val Asn 500 505 510Asn Trp Val Thr Arg Ala Tyr Cys Asp Lys Val Leu Arg Leu Ser Ala 515 520 525Ala Thr Gln Asp Leu Pro Lys Ser Val Val Cys Asn Val His Gly Val 530 535 540Asn Pro Lys Phe Leu Met Ile Gly Glu Lys Ile Ala Glu Glu Arg Ser545 550 555 560Arg Gly Glu Gln Ala Phe Ser Lys Gly Ala Tyr Phe Leu Gly Lys Met 565 570 575Val Trp Ala Lys Gly Tyr Arg Glu Leu Ile Asp Leu Met Ala Lys His 580 585 590Lys Ser Glu Leu Gly Ser Phe Asn Leu Asp Val Tyr Gly Asn Gly Glu 595 600 605Asp Ala Val Glu Val Gln Arg Ala Ala Lys Lys His Asp Leu Asn Leu 610 615 620Asn Phe Leu Lys Gly Arg Asp His Ala Asp Asp Ala Leu His Lys Tyr625 630 635 640Lys Val Phe Ile Asn Pro Ser Ile Ser Asp Val Leu Cys Thr Ala Thr 645 650 655Ala Glu Ala Leu Ala Met Gly Lys Phe Val Val Cys Ala Asp His Pro 660 665 670Ser Asn Glu Phe Phe Arg Ser Phe Pro Asn Cys Leu Thr Tyr Lys Thr 675 680 685Ser Glu Asp Phe Val Ser Lys Val Gln Glu Ala Met Thr Lys Glu Pro 690 695 700Leu Pro Leu Thr Pro Glu Gln Met Tyr Asn Leu Ser Trp Glu Ala Ala705 710 715 720Thr Gln Arg Phe Met Glu Tyr Ser Asp Leu Asp Lys Ile Leu Asn Asn 725 730 735Gly Glu Gly Gly Arg Lys Met Arg Lys Ser Arg Ser Val Pro Ser Phe 740 745 750Asn Glu Val Val Asp Gly Gly Leu Ala Phe Ser His Tyr Val Leu Thr 755 760 765Gly Asn Asp Phe Leu Arg Leu Cys Thr Gly Ala Thr Pro Arg Thr Lys 770 775 780Asp Tyr Asp Asn Gln His Cys Lys Asp Leu Asn Leu Val Pro Pro His785 790 795 800Val His Lys Pro Ile Phe Gly Trp 805251176DNAArabidopsis thaliana 25atggcgactt ttgctgaact tgttttatcg acttctcgct gtacatgccc ttgccgttca 60ttcactagaa aacccctaat tcgtccccct ttatctggtc tgcgtctccc cggtgatacc 120aaaccattgt ttcgttccgg acttggtcgg atttctgtta gccggcgttt cctcacggcc 180gttgctcgag ctgaatcaga ccagcttggt gatgatgacc actcaaaggg aattgataga 240atccataact tgcagaatgt ggaagataag cagaagaaag caagccagct taagaaaaga 300gtgatctttg gtattggcat tggtttacct gttggatgtg ttgtgttagc tggaggatgg 360gttttcactg tagctttagc atcttctgtt tttatcggtt cccgcgaata tttcgagctt 420gttagaagta gaggcatagc taaaggaatg actcctcctc cacgatatgt atctcgagtt 480tgctcggtta tatgtgccct tatgcccata cttacactgt actttggtaa cattgatata 540ttggtgacat ctgcagcatt tgttgttgca atagcattgt tagtacaaag aggatcccca 600cgttttgctc agctgagtag tacaatgttt ggtctgtttt actgtggtta tctcccttct 660ttctgggtta agcttcgctg tggtttagct gctcctgcgc ttaacactgg tatcggaagg 720acatggccaa ttcttcttgg tggtcaagct cattggacag ttggacttgt ggcaacattg 780atttctttca gcggtgtaat tgcgacagac acatttgctt ttctcggtgg aaagactttt 840ggtaggacac ctcttactag tattagtccc aagaagacat gggaaggaac tattgtagga 900cttgttggtt gtatagccat taccatatta ctctctaaat atctcagttg gccacaatct 960ctgttcagct cagtagcttt tgggtttctt aacttctttg ggtcagtctt tggtgatctt 1020actgaatcaa tgatcaagcg tgatgctggc gtcaaagact ctggttcact tatcccagga 1080cacggtggaa tattagatag agttgatagt tacattttca ccggcgcatt agcttattca 1140ttcatcaaaa catccctaaa actttacgga gtttga 117626391PRTArabidopsis thaliana 26Met Ala Thr Phe Ala Glu Leu Val Leu Ser Thr Ser Arg Cys Thr Cys1 5 10 15Pro Cys Arg Ser Phe Thr Arg Lys Pro Leu Ile Arg Pro Pro Leu Ser 20 25 30Gly Leu Arg Leu Pro Gly Asp Thr Lys Pro Leu Phe Arg Ser Gly Leu 35 40 45Gly Arg Ile Ser Val Ser Arg Arg Phe Leu Thr Ala Val Ala Arg Ala 50 55 60Glu Ser Asp Gln Leu Gly Asp Asp Asp His Ser Lys Gly Ile Asp Arg65 70 75 80Ile His Asn Leu Gln Asn Val Glu Asp Lys Gln Lys Lys Ala Ser Gln 85 90 95Leu Lys Lys Arg Val Ile Phe Gly Ile Gly Ile Gly Leu Pro Val Gly 100 105 110Cys Val Val Leu Ala Gly Gly Trp Val Phe Thr Val Ala Leu Ala Ser 115 120 125Ser Val Phe Ile Gly Ser Arg Glu Tyr Phe Glu Leu Val Arg Ser Arg 130 135 140Gly Ile Ala Lys Gly Met Thr Pro Pro Pro Arg Tyr Val Ser Arg Val145 150 155 160Cys Ser Val Ile Cys Ala Leu Met Pro Ile Leu Thr Leu Tyr Phe Gly 165 170 175Asn Ile Asp Ile Leu Val Thr Ser Ala Ala Phe Val Val Ala Ile Ala 180 185 190Leu Leu Val Gln Arg Gly Ser Pro Arg Phe Ala Gln Leu Ser Ser Thr 195 200 205Met Phe Gly Leu Phe Tyr Cys Gly Tyr Leu Pro Ser Phe Trp Val Lys 210 215 220Leu Arg Cys Gly Leu Ala Ala Pro Ala Leu Asn Thr Gly Ile Gly Arg225 230 235 240Thr Trp Pro Ile Leu Leu Gly Gly Gln Ala His Trp Thr Val Gly Leu 245 250 255Val Ala Thr Leu Ile Ser Phe Ser Gly Val Ile Ala Thr Asp Thr Phe 260 265 270Ala Phe Leu Gly Gly Lys Thr Phe Gly Arg Thr Pro Leu Thr Ser Ile 275 280 285Ser Pro Lys Lys Thr Trp Glu Gly Thr Ile Val Gly Leu Val Gly Cys 290 295 300Ile Ala Ile Thr Ile Leu Leu Ser Lys Tyr Leu Ser Trp Pro Gln Ser305 310 315 320Leu Phe Ser Ser Val Ala Phe Gly Phe Leu Asn Phe Phe Gly Ser Val 325 330 335Phe Gly Asp Leu Thr Glu Ser Met Ile Lys Arg Asp Ala Gly Val Lys 340 345 350Asp Ser Gly Ser Leu Ile Pro Gly His Gly Gly Ile Leu Asp Arg Val 355 360 365Asp Ser Tyr Ile Phe Thr Gly Ala Leu Ala Tyr Ser Phe Ile Lys Thr 370 375 380Ser Leu Lys Leu Tyr Gly Val385 39027798DNAArabidopsis thaliana 27atggctcaaa ccatgctgct tacttcaggc gtcaccgccg gccatttttt gaggaacaag 60agccctttgg ctcagcccaa agttcaccat ctcttcctct ctggaaactc tccggttgca 120ctaccatcta ggagacaatc attcgttcct ctcgctctct tcaaacccaa aaccaaagct 180gctcctaaaa aggttgagaa gccgaagagc aaggttgagg atggcatctt tggaacgtct 240ggtgggattg gtttcacaaa ggcgaatgag ctattcgttg gtcgtgttgc tatgatcggt 300ttcgctgcat cgttgcttgg tgaggcgttg acgggaaaag ggatattagc tcagctgaat 360ctggagacag ggataccgat ttacgaagca gagccattgc ttctcttctt catcttgttc 420actctgttgg gagccattgg agctctcgga gacagaggaa aattcgtcga cgatcctccc 480accgggctcg agaaagccgt cattcctccc ggcaaaaacg tccgatctgc cctcggtctc 540aaagaacaag gtccattgtt tgggttcacg aaggcgaacg agttattcgt aggaagattg 600gcacagttgg gaatagcatt ttcactgata ggagagatta ttaccgggaa aggagcatta 660gctcaactca acattgagac cggtatacca attcaagata tcgaaccact tgtcctctta 720aacgttgctt tcttcttctt cgctgccatt aatcctggta atggaaaatt catcaccgat 780gatggtgaag aaagctaa 79828265PRTArabidopsis thaliana 28Met Ala Gln Thr Met Leu Leu Thr Ser Gly Val Thr Ala Gly His Phe1 5 10 15Leu Arg Asn Lys Ser Pro Leu Ala Gln Pro Lys Val His His Leu Phe 20 25 30Leu Ser Gly Asn Ser Pro Val Ala Leu Pro Ser Arg Arg Gln Ser Phe 35 40 45Val Pro Leu Ala Leu Phe Lys Pro Lys Thr Lys Ala Ala Pro Lys Lys 50 55 60Val Glu Lys Pro Lys Ser Lys Val Glu Asp Gly Ile Phe Gly Thr Ser65 70 75 80Gly Gly Ile Gly Phe Thr Lys Ala Asn Glu Leu Phe Val Gly Arg Val 85 90 95Ala Met Ile Gly Phe Ala Ala Ser Leu Leu Gly Glu Ala Leu Thr Gly 100 105 110Lys Gly Ile Leu Ala Gln Leu Asn Leu Glu Thr Gly Ile Pro Ile Tyr 115 120 125Glu Ala Glu Pro Leu Leu Leu Phe Phe Ile Leu Phe Thr Leu Leu Gly 130 135 140Ala Ile Gly Ala Leu Gly Asp Arg Gly Lys Phe Val Asp Asp Pro Pro145 150 155 160Thr Gly Leu Glu Lys Ala Val Ile Pro Pro Gly Lys Asn Val Arg Ser 165 170 175Ala Leu Gly Leu Lys Glu Gln Gly Pro Leu Phe Gly Phe Thr Lys Ala 180 185 190Asn Glu Leu Phe Val Gly Arg Leu Ala Gln Leu Gly Ile Ala Phe Ser 195 200 205Leu Ile Gly Glu Ile Ile Thr Gly Lys Gly Ala Leu Ala Gln Leu Asn 210 215 220Ile Glu Thr Gly Ile Pro Ile Gln Asp Ile Glu Pro Leu Val Leu Leu225 230 235 240Asn Val Ala Phe Phe Phe Phe Ala Ala Ile Asn Pro Gly Asn Gly Lys 245 250 255Phe Ile Thr Asp Asp Gly Glu Glu Ser 260 265291152DNAArabidopsis thaliana 29atgggtgcag gtggaagaat gccggttcct acttcttcca agaaatcgga aaccgacacc 60acaaagcgtg tgccgtgcga gaaaccgcct ttctcggtgg gagatctgaa gaaagcaatc 120ccgccgcatt gtttcaaacg ctcaatccct cgctctttct cctaccttat cagtgacatc 180attatagcct catgcttcta ctacgtcgcc accaattact tctctctcct ccctcagcct 240ctctcttact tggcttggcc actctattgg gcctgtcaag gctgtgtcct aactggtatc 300tgggtcatag cccacgaatg cggtcaccac gcattcagcg actaccaatg gctggatgac 360acagttggtc ttatcttcca ttccttcctc ctcgtccctt acttctcctg gaagtatagt 420catcgccgtc accattccaa cactggatcc ctcgaaagag atgaagtatt tgtcccaaag 480cagaaatcag caatcaagtg gtacgggaaa tacctcaaca accctcttgg acgcatcatg 540atgttaaccg tccagtttgt cctcgggtgg cccttgtact tagcctttaa cgtctctggc 600agaccgtatg acgggttcgc ttgccatttc ttccccaacg ctcccatcta caatgaccga 660gaacgcctcc agatatacct ctctgatgcg ggtattctag ccgtctgttt tggtctttac 720cgttacgctg ctgcacaagg gatggcctcg atgatctgcc tctacggagt accgcttctg 780atagtgaatg cgttcctcgt cttgatcact tacttgcagc acactcatcc ctcgttgcct 840cactacgatt catcagagtg ggactggctc aggggagctt tggctaccgt agacagagac 900tacggaatct tgaacaaggt gttccacaac attacagaca cacacgtggc tcatcacctg 960ttctcgacaa tgccgcctta taacgcaatg gaagctacaa aggcgataaa gccaattctg 1020ggagactatt accagttcga tggaacaccg tggtatgtag cgatgtatag ggaggcaaag 1080gagtgtatct atgtagaacc ggacagggaa ggtgacaaga aaggtgtgta ctggtacaac 1140aataagttat ga 115230383PRTArabidopsis thaliana 30Met Gly Ala Gly Gly Arg Met Pro Val Pro Thr Ser Ser Lys Lys Ser1 5 10 15Glu Thr Asp Thr Thr Lys Arg Val Pro Cys Glu Lys Pro Pro Phe Ser 20 25 30Val Gly Asp Leu Lys Lys Ala Ile Pro Pro His Cys Phe Lys Arg Ser 35 40 45Ile Pro Arg Ser Phe Ser Tyr Leu Ile Ser Asp Ile Ile Ile Ala Ser 50 55 60Cys Phe Tyr Tyr Val Ala Thr Asn Tyr Phe Ser Leu Leu Pro Gln Pro65 70 75 80Leu Ser Tyr Leu Ala Trp Pro Leu Tyr Trp Ala Cys Gln Gly Cys Val 85 90 95Leu Thr Gly Ile Trp Val Ile Ala His Glu Cys Gly His His Ala Phe 100 105 110Ser Asp Tyr Gln Trp Leu Asp Asp Thr Val Gly Leu Ile Phe His Ser 115 120 125Phe Leu Leu Val Pro Tyr Phe Ser Trp Lys Tyr Ser His Arg Arg His 130 135 140His Ser Asn Thr Gly Ser Leu Glu Arg Asp Glu Val Phe Val Pro Lys145 150 155 160Gln Lys Ser Ala Ile Lys Trp Tyr Gly Lys Tyr Leu Asn Asn Pro Leu 165 170 175Gly Arg Ile Met Met Leu Thr Val Gln Phe Val Leu Gly Trp Pro Leu 180 185 190Tyr Leu Ala Phe Asn Val Ser Gly Arg Pro Tyr Asp Gly Phe Ala Cys 195 200 205His Phe Phe Pro Asn Ala Pro Ile Tyr Asn Asp Arg Glu Arg Leu Gln 210 215 220Ile Tyr Leu Ser Asp Ala Gly Ile Leu Ala Val Cys Phe Gly Leu Tyr225 230 235 240Arg Tyr Ala Ala Ala Gln Gly Met Ala Ser Met Ile Cys Leu Tyr Gly 245 250 255Val Pro Leu Leu Ile Val Asn Ala Phe Leu Val Leu Ile Thr Tyr Leu 260 265 270Gln His Thr His Pro Ser Leu Pro His Tyr Asp Ser Ser Glu Trp Asp 275 280 285Trp Leu Arg Gly Ala Leu Ala Thr Val Asp Arg Asp Tyr Gly Ile Leu 290 295 300Asn Lys Val Phe His Asn Ile Thr Asp Thr His Val Ala His His Leu305 310 315 320Phe Ser Thr Met Pro Pro Tyr Asn Ala Met Glu Ala Thr Lys Ala Ile 325 330 335Lys Pro Ile Leu Gly Asp Tyr Tyr Gln Phe Asp Gly Thr Pro Trp Tyr 340 345 350Val Ala Met Tyr Arg Glu Ala Lys Glu Cys Ile Tyr Val Glu Pro Asp 355 360 365Arg Glu Gly Asp Lys Lys Gly Val Tyr Trp Tyr Asn Asn Lys Leu 370 375 380311056DNABrassica napus 31atggcttcaa taaatgaaga tgtgtctatt ggaaacttag gcagtctcca aacactccca 60gactcattca cctggaaact caccgctgct gactccattc tccctccctc ctccgccgct 120gtgaaagagt ccattccggt catcgacctc tccgatcctg acgtcaccaa tttgttagga 180aatgcatgca aaacgtgggg agcgtttcag atagccaacc acggggtctc tcaaagtctc 240ctcgacgacg ttgaatctct

ctccaaaacc tttttcgata tgccgtcaga gaggaaactc 300gaggctgctt cctctaataa aggagttagt gggtacggag aacctcgaat ctctcttttc 360ttcgagaaga aaatgtggtc tgaagggttg acaatcgccg acggctccta ccgcaaccag 420ttccttacta tttggccccg tgattacacc aaatactgcg gaataatcga agagtacaag 480ggtgaaatgg aaaaattagc aagcagactt ctatcatgca tattaggatc acttggtgtc 540accgtagacg acatcgaatg ggctaagaag accgagaaat ctgaatcaaa aatgggccaa 600agcgtcatac gactaaacca ttacccggtt tgtcctgagc cagaaagagc catgggtcta 660gccgctcata ccgactcatg tcttctaacc attttgcacc agagcaacat gggagggcta 720caagtgttca aagaagagtc cggttgggtt acggtagagc ccattcctgg tgttcttgtg 780gtcaacatcg gcgacctctt tcacattcta tcgaatggga agtttcctag cgtggttcac 840cgagcaaggg ttaaccgaac caagtcaaga atatcgatag cgtatctgtg gggtggtcca 900gccggtgaag tggagataag tccaatatca aagatagttg gtccggttgg accgtgtcta 960taccggccag ttacttggag tgaatatctc cgaatcaaat ttgaggtttt cgacaaggca 1020ttggacgcaa ttggagtcgt taatcccacc aattga 105632351PRTBrassica napus 32Met Ala Ser Ile Asn Glu Asp Val Ser Ile Gly Asn Leu Gly Ser Leu1 5 10 15Gln Thr Leu Pro Asp Ser Phe Thr Trp Lys Leu Thr Ala Ala Asp Ser 20 25 30Ile Leu Pro Pro Ser Ser Ala Ala Val Lys Glu Ser Ile Pro Val Ile 35 40 45Asp Leu Ser Asp Pro Asp Val Thr Asn Leu Leu Gly Asn Ala Cys Lys 50 55 60Thr Trp Gly Ala Phe Gln Ile Ala Asn His Gly Val Ser Gln Ser Leu65 70 75 80Leu Asp Asp Val Glu Ser Leu Ser Lys Thr Phe Phe Asp Met Pro Ser 85 90 95Glu Arg Lys Leu Glu Ala Ala Ser Ser Asn Lys Gly Val Ser Gly Tyr 100 105 110Gly Glu Pro Arg Ile Ser Leu Phe Phe Glu Lys Lys Met Trp Ser Glu 115 120 125Gly Leu Thr Ile Ala Asp Gly Ser Tyr Arg Asn Gln Phe Leu Thr Ile 130 135 140Trp Pro Arg Asp Tyr Thr Lys Tyr Cys Gly Ile Ile Glu Glu Tyr Lys145 150 155 160Gly Glu Met Glu Lys Leu Ala Ser Arg Leu Leu Ser Cys Ile Leu Gly 165 170 175Ser Leu Gly Val Thr Val Asp Asp Ile Glu Trp Ala Lys Lys Thr Glu 180 185 190Lys Ser Glu Ser Lys Met Gly Gln Ser Val Ile Arg Leu Asn His Tyr 195 200 205Pro Val Cys Pro Glu Pro Glu Arg Ala Met Gly Leu Ala Ala His Thr 210 215 220Asp Ser Cys Leu Leu Thr Ile Leu His Gln Ser Asn Met Gly Gly Leu225 230 235 240Gln Val Phe Lys Glu Glu Ser Gly Trp Val Thr Val Glu Pro Ile Pro 245 250 255Gly Val Leu Val Val Asn Ile Gly Asp Leu Phe His Ile Leu Ser Asn 260 265 270Gly Lys Phe Pro Ser Val Val His Arg Ala Arg Val Asn Arg Thr Lys 275 280 285Ser Arg Ile Ser Ile Ala Tyr Leu Trp Gly Gly Pro Ala Gly Glu Val 290 295 300Glu Ile Ser Pro Ile Ser Lys Ile Val Gly Pro Val Gly Pro Cys Leu305 310 315 320Tyr Arg Pro Val Thr Trp Ser Glu Tyr Leu Arg Ile Lys Phe Glu Val 325 330 335Phe Asp Lys Ala Leu Asp Ala Ile Gly Val Val Asn Pro Thr Asn 340 345 35033639DNABrassica napus 33atggctacat tctcttgtaa ttcttatgaa caaaatcacg ctcctttcga ccgtcacgct 60aatgatactg atattgatga tcctgatcat gatcatcatg atggtgttca gcaagaggag 120agtggatgga caacttatct tgaagatttc tcaaatcaat acagaactca tcctgaagat 180aacgatcatc aagataagag ttcgtgttcg attctggacg cctctccttc tctggtctcc 240gacgccgcca ctgacgcatt ttctggccgg agttttccag ttaattttcc ggtgaaattg 300aagtttggga aggcaagaac caaaaagatt tgtgaggatg attctttgga ggatacggct 360agctctccgg ttaatagccc taaggtcagt cagattgaac atattcagac gcctcctaga 420aaacatgagg actatgtctc ttctagtttc gttatgggaa atatgagtgg catgggggat 480catcaaatcc aaatccaaga aggagatgaa caaaagttga cgatgatgag gaatctcaga 540gaaggaaaca acagtaacag taataatatg gacttgaggg ctagaggatt atgcgtcgtc 600cctatttcca tgttgggtaa ttttaatggc cgcttctga 63934212PRTBrassica napus 34Met Ala Thr Phe Ser Cys Asn Ser Tyr Glu Gln Asn His Ala Pro Phe1 5 10 15Asp Arg His Ala Asn Asp Thr Asp Ile Asp Asp Pro Asp His Asp His 20 25 30His Asp Gly Val Gln Gln Glu Glu Ser Gly Trp Thr Thr Tyr Leu Glu 35 40 45Asp Phe Ser Asn Gln Tyr Arg Thr His Pro Glu Asp Asn Asp His Gln 50 55 60Asp Lys Ser Ser Cys Ser Ile Leu Asp Ala Ser Pro Ser Leu Val Ser65 70 75 80Asp Ala Ala Thr Asp Ala Phe Ser Gly Arg Ser Phe Pro Val Asn Phe 85 90 95Pro Val Lys Leu Lys Phe Gly Lys Ala Arg Thr Lys Lys Ile Cys Glu 100 105 110Asp Asp Ser Leu Glu Asp Thr Ala Ser Ser Pro Val Asn Ser Pro Lys 115 120 125Val Ser Gln Ile Glu His Ile Gln Thr Pro Pro Arg Lys His Glu Asp 130 135 140Tyr Val Ser Ser Ser Phe Val Met Gly Asn Met Ser Gly Met Gly Asp145 150 155 160His Gln Ile Gln Ile Gln Glu Gly Asp Glu Gln Lys Leu Thr Met Met 165 170 175Arg Asn Leu Arg Glu Gly Asn Asn Ser Asn Ser Asn Asn Met Asp Leu 180 185 190Arg Ala Arg Gly Leu Cys Val Val Pro Ile Ser Met Leu Gly Asn Phe 195 200 205Asn Gly Arg Phe 210351143DNAArabidopsis thaliana 35atggcaacgg aatgcattgc aacggtccct caaatattca gtgaaaacaa aaccaaagag 60gattcttcga tcttcgatgc aaagctcctt aatcagcact cacaccacat acctcaacag 120ttcgtatggc ccgaccacga gaaaccttct acggatgttc aacctctcca agtcccactc 180atagacctag ccggtttcct ctccggcgac tcgtgcttgg catcggaggc tactagactc 240gtctcaaagg ctgcaacgaa acatggcttc ttcctaatca ctaaccatgg tatcgatgag 300agcctcttgt ctcgtgccta tctgcatatg gactctttct ttaaggcccc ggcttgtgag 360aagcagaagg ctcagaggaa gtggggtgag agctccggtt acgctagtag tttcgtcggg 420agattctcct caaagctccc gtggaaggag actctgtcgt ttaagttctc tcccgaggag 480aagatccatt cccaaaccgt taaagacttt gtttctaaga aaatgtgcga tggatacgaa 540gatttcggga aggtttatca agaatacgcg gaggccatga acactctctc actaaagatc 600atggagcttc ttggaatgag tcttggggtc gagaggagat attttaaaga gtttttcgaa 660gacagcgatt caatattccg gttgaattac tacccgcagt gcaagcaacc ggagcttgca 720ctagggacag gaccccactg cgacccaaca tctctaacca tacttcatca agaccaagtt 780ggcggtctgc aagttttcgt ggacaacaaa tggcaatcca ttcctcctaa ccctcacgct 840ttcgtggtga acataggcga caccttcatg gctctaacga atggaagata caagagttgt 900ttgcatcggg cggtggtgaa cagcgagaga gaaaggaaga cgtttgcatt cttcctatgt 960ccgaaagggg aaaaagtggt gaagccacca gaagaactag taaacggagt gaagtctggt 1020gaaagaaagt atcctgattt tacgtggtct atgtttctcg agttcacaca gaagcattat 1080agggcagaca tgaacactct tgacgagttc tcaatttggc ttaagaacag aagaagtttc 1140taa 114336380PRTArabidopsis thaliana 36Met Ala Thr Glu Cys Ile Ala Thr Val Pro Gln Ile Phe Ser Glu Asn1 5 10 15Lys Thr Lys Glu Asp Ser Ser Ile Phe Asp Ala Lys Leu Leu Asn Gln 20 25 30His Ser His His Ile Pro Gln Gln Phe Val Trp Pro Asp His Glu Lys 35 40 45Pro Ser Thr Asp Val Gln Pro Leu Gln Val Pro Leu Ile Asp Leu Ala 50 55 60Gly Phe Leu Ser Gly Asp Ser Cys Leu Ala Ser Glu Ala Thr Arg Leu65 70 75 80Val Ser Lys Ala Ala Thr Lys His Gly Phe Phe Leu Ile Thr Asn His 85 90 95Gly Ile Asp Glu Ser Leu Leu Ser Arg Ala Tyr Leu His Met Asp Ser 100 105 110Phe Phe Lys Ala Pro Ala Cys Glu Lys Gln Lys Ala Gln Arg Lys Trp 115 120 125Gly Glu Ser Ser Gly Tyr Ala Ser Ser Phe Val Gly Arg Phe Ser Ser 130 135 140Lys Leu Pro Trp Lys Glu Thr Leu Ser Phe Lys Phe Ser Pro Glu Glu145 150 155 160Lys Ile His Ser Gln Thr Val Lys Asp Phe Val Ser Lys Lys Met Cys 165 170 175Asp Gly Tyr Glu Asp Phe Gly Lys Val Tyr Gln Glu Tyr Ala Glu Ala 180 185 190Met Asn Thr Leu Ser Leu Lys Ile Met Glu Leu Leu Gly Met Ser Leu 195 200 205Gly Val Glu Arg Arg Tyr Phe Lys Glu Phe Phe Glu Asp Ser Asp Ser 210 215 220Ile Phe Arg Leu Asn Tyr Tyr Pro Gln Cys Lys Gln Pro Glu Leu Ala225 230 235 240Leu Gly Thr Gly Pro His Cys Asp Pro Thr Ser Leu Thr Ile Leu His 245 250 255Gln Asp Gln Val Gly Gly Leu Gln Val Phe Val Asp Asn Lys Trp Gln 260 265 270Ser Ile Pro Pro Asn Pro His Ala Phe Val Val Asn Ile Gly Asp Thr 275 280 285Phe Met Ala Leu Thr Asn Gly Arg Tyr Lys Ser Cys Leu His Arg Ala 290 295 300Val Val Asn Ser Glu Arg Glu Arg Lys Thr Phe Ala Phe Phe Leu Cys305 310 315 320Pro Lys Gly Glu Lys Val Val Lys Pro Pro Glu Glu Leu Val Asn Gly 325 330 335Val Lys Ser Gly Glu Arg Lys Tyr Pro Asp Phe Thr Trp Ser Met Phe 340 345 350Leu Glu Phe Thr Gln Lys His Tyr Arg Ala Asp Met Asn Thr Leu Asp 355 360 365Glu Phe Ser Ile Trp Leu Lys Asn Arg Arg Ser Phe 370 375 380371908DNAArabidopsis thaliana 37atggcgtcag agcaagcaag gagagaaaac aaggtgacgg agagagaagt tcaggtggag 60aaagacagag tcccaaagat gacgagtcat ttcgagtcca tggccgaaaa aggcaaagat 120tccgacacac acaggcatca aacagaaggt ggtgggacac agttcgtgtc tctctcagac 180aaggggagta acatgccggt ttctgatgaa ggagagggag agacgaagat gaagaggact 240cagatgcctc actccgttgg aaaattcgtt actagcagcg attcaggaac agggaagaag 300aaggatgaga aagaggagca tgagaaggcg tcgctagagg atattcatgg gtatagagcc 360aatgctcagc agaagtcaat ggatagtata aaagcagcag aggaaaggta taacaaggct 420aaggagagtt tgagccatag tggacaagaa gctcgtggag gaagaggtga agaaatggtg 480ggaaaagggc gggacagtgg tgtccgtgtt tctcacgttg gggctgttgg tggcggtggt 540ggaggtgagg aaaaagagag tggtgtacat ggctttcatg gggagaaagc acgacatgct 600gagcttttgg ctgccggagg tgaggagatg agagaacgtg aaggtaaaga atcagcaggt 660ggtgttggtg gtcgtagcgt aaaagatacg gtagccgaga aaggacagca agctaaggaa 720agtgtaggag aaggtgctca gaaagcgggc agtgctacga gtgagaaagc tcagagagct 780tccgagtatg caacagagaa aggaaaagaa gctggaaata tgacagctga acaggcggcg 840agagcaaaag actatgctct gcagaaagct gttgaagcta aagagactgc ggcggagaaa 900gctcagagag cttccgagta tatgaaggaa acaggaagca cagcggctga acaggctgcg 960agagctaaag attacactct tcagaaagct gtggaagcta aagatgttgc agctgagaaa 1020gctcagagag cttcagaata catgacagag acaggaaaac aagccggaaa tgttgcagct 1080cagaaagggc aagaggcagc ttcaatgaca gcaaaagcta aagattatac tgttcagaaa 1140gccggtgaag cagctgggta cataaaagaa acgacagtgg aaggaggaaa aggagctgca 1200cattatgcag gagtggcagc tgagaaagcc gctgcggttg ggtggacagc ggcacatttc 1260accacggaga aagtggtgca agggacgaaa gcggttgcag gtacagtgga aggtgctgtg 1320gggtacgcag ggcataaggc ggtggaagta ggatctaagg cagtggactt gactaaggag 1380aaagctgcag tggctgctga tacggtggtt gggtatacgg cgaggaagaa agaggaagct 1440caacacagag accaagagat gcatcaggga ggtgaggaag aaaagcaacc agggtttgtc 1500tcaggagcaa ggagagactt tggagaagag tacggggaag aaagagggag tgagaaagat 1560gtctacggct atggagcaaa aggaataccc ggagaaggga ggggagatgt tggggaggca 1620gagtacggaa gagggagtga gaaagatgtc ttcggatatg gaccaaaagg cacggtcgaa 1680gaagcaagga gagacgttgg agaagaatac ggaggaggaa gaggcagtga gagatatgtt 1740gaagaagaag gggttggagc gggaggggtg cttggggcaa tcggcgagac tatagctgag 1800attgcacaga cgacaaagaa catagtgatt ggtgatgcgc ctgtgaggac acatgagcat 1860ggaactactg atcctgacta tatgagacgg gaacatggac aacgttga 190838635PRTArabidopsis thaliana 38Met Ala Ser Glu Gln Ala Arg Arg Glu Asn Lys Val Thr Glu Arg Glu1 5 10 15Val Gln Val Glu Lys Asp Arg Val Pro Lys Met Thr Ser His Phe Glu 20 25 30Ser Met Ala Glu Lys Gly Lys Asp Ser Asp Thr His Arg His Gln Thr 35 40 45Glu Gly Gly Gly Thr Gln Phe Val Ser Leu Ser Asp Lys Gly Ser Asn 50 55 60Met Pro Val Ser Asp Glu Gly Glu Gly Glu Thr Lys Met Lys Arg Thr65 70 75 80Gln Met Pro His Ser Val Gly Lys Phe Val Thr Ser Ser Asp Ser Gly 85 90 95Thr Gly Lys Lys Lys Asp Glu Lys Glu Glu His Glu Lys Ala Ser Leu 100 105 110Glu Asp Ile His Gly Tyr Arg Ala Asn Ala Gln Gln Lys Ser Met Asp 115 120 125Ser Ile Lys Ala Ala Glu Glu Arg Tyr Asn Lys Ala Lys Glu Ser Leu 130 135 140Ser His Ser Gly Gln Glu Ala Arg Gly Gly Arg Gly Glu Glu Met Val145 150 155 160Gly Lys Gly Arg Asp Ser Gly Val Arg Val Ser His Val Gly Ala Val 165 170 175Gly Gly Gly Gly Gly Gly Glu Glu Lys Glu Ser Gly Val His Gly Phe 180 185 190His Gly Glu Lys Ala Arg His Ala Glu Leu Leu Ala Ala Gly Gly Glu 195 200 205Glu Met Arg Glu Arg Glu Gly Lys Glu Ser Ala Gly Gly Val Gly Gly 210 215 220Arg Ser Val Lys Asp Thr Val Ala Glu Lys Gly Gln Gln Ala Lys Glu225 230 235 240Ser Val Gly Glu Gly Ala Gln Lys Ala Gly Ser Ala Thr Ser Glu Lys 245 250 255Ala Gln Arg Ala Ser Glu Tyr Ala Thr Glu Lys Gly Lys Glu Ala Gly 260 265 270Asn Met Thr Ala Glu Gln Ala Ala Arg Ala Lys Asp Tyr Ala Leu Gln 275 280 285Lys Ala Val Glu Ala Lys Glu Thr Ala Ala Glu Lys Ala Gln Arg Ala 290 295 300Ser Glu Tyr Met Lys Glu Thr Gly Ser Thr Ala Ala Glu Gln Ala Ala305 310 315 320Arg Ala Lys Asp Tyr Thr Leu Gln Lys Ala Val Glu Ala Lys Asp Val 325 330 335Ala Ala Glu Lys Ala Gln Arg Ala Ser Glu Tyr Met Thr Glu Thr Gly 340 345 350Lys Gln Ala Gly Asn Val Ala Ala Gln Lys Gly Gln Glu Ala Ala Ser 355 360 365Met Thr Ala Lys Ala Lys Asp Tyr Thr Val Gln Lys Ala Gly Glu Ala 370 375 380Ala Gly Tyr Ile Lys Glu Thr Thr Val Glu Gly Gly Lys Gly Ala Ala385 390 395 400His Tyr Ala Gly Val Ala Ala Glu Lys Ala Ala Ala Val Gly Trp Thr 405 410 415Ala Ala His Phe Thr Thr Glu Lys Val Val Gln Gly Thr Lys Ala Val 420 425 430Ala Gly Thr Val Glu Gly Ala Val Gly Tyr Ala Gly His Lys Ala Val 435 440 445Glu Val Gly Ser Lys Ala Val Asp Leu Thr Lys Glu Lys Ala Ala Val 450 455 460Ala Ala Asp Thr Val Val Gly Tyr Thr Ala Arg Lys Lys Glu Glu Ala465 470 475 480Gln His Arg Asp Gln Glu Met His Gln Gly Gly Glu Glu Glu Lys Gln 485 490 495Pro Gly Phe Val Ser Gly Ala Arg Arg Asp Phe Gly Glu Glu Tyr Gly 500 505 510Glu Glu Arg Gly Ser Glu Lys Asp Val Tyr Gly Tyr Gly Ala Lys Gly 515 520 525Ile Pro Gly Glu Gly Arg Gly Asp Val Gly Glu Ala Glu Tyr Gly Arg 530 535 540Gly Ser Glu Lys Asp Val Phe Gly Tyr Gly Pro Lys Gly Thr Val Glu545 550 555 560Glu Ala Arg Arg Asp Val Gly Glu Glu Tyr Gly Gly Gly Arg Gly Ser 565 570 575Glu Arg Tyr Val Glu Glu Glu Gly Val Gly Ala Gly Gly Val Leu Gly 580 585 590Ala Ile Gly Glu Thr Ile Ala Glu Ile Ala Gln Thr Thr Lys Asn Ile 595 600 605Val Ile Gly Asp Ala Pro Val Arg Thr His Glu His Gly Thr Thr Asp 610 615 620Pro Asp Tyr Met Arg Arg Glu His Gly Gln Arg625 630 635391461DNAArabidopsis thaliana 39atggctaagt cttgctattt cagaccagct cttcttcttc tgttagttct tttggttcat 60gccgagtcac gcggtcggtt cgagccaaag attcttatgc cgacagagga agctaacccg 120gctgaccaag acggagatgg tgtcggtaca agatgggcgg ttctcgtcgc tggttcttct 180ggatatggaa actacagaca ccaggctgac atgtgtcacg catatcaaat actaagaaaa 240ggaggtttaa aggaagagaa catagtcgtt ttgatgtatg atgatatcgc aaaccaccca 300cttaatcctc gtccgggtac tctcatcaac catcctgacg gtgacgatgt ttacgccgga 360gtccctaagg actatactgg tagtagtgtt acggctgcaa acttctacgc tgtactccta 420ggcgaccaga aggctgttaa aggtggaagc ggtaaggtca tcgctagcaa gcccaacgat 480cacattttcg tatattatgc ggatcatggt ggtcccggag ttcttgggat gccaaatacg 540cctcacatat atgcagctga ttttattgaa acgcttaaga agaagcatgc ttccggaaca 600tacaaagaga tggttatata cgtagaagcg tgtgaaagtg ggagtatttt

cgaagggata 660atgccaaagg acttgaacat ttacgtaaca acggcttcaa atgcacaaga gagtagttat 720ggaacatatt gtcctggcat gaatccgtca cccccatctg aatatatcac ttgcttaggg 780gatttatata gtgttgcttg gatggaagat agtgagactc acaatttaaa gaaagagacc 840ataaagcaac aataccacac ggtgaagatg aggacatcaa actacaatac ctactcaggt 900ggctctcatg tgatggaata cggtaacaat agtattaagt cggagaagct ttatctttac 960caagggtttg atccagccac cgttaatctc ccactaaacg aattaccggt caagtcaaaa 1020ataggagtcg ttaaccaacg cgatgcggac cttctcttcc tttggcatat gtatcggaca 1080tcggaagatg ggtcaaggaa gaaggatgac acattgaagg aattaactga gacaacaagg 1140cataggaaac atttagatgc aagcgtcgaa ttgatagcca caattttgtt tggtccgacg 1200atgaatgttc ttaacttggt tagagaaccc ggtttgcctt tggttgacga ttgggaatgt 1260cttaaatcga tggtacgtgt atttgaagag cattgtggat cactaacgca atatgggatg 1320aaacatatgc gagcgtttgc aaacgtttgt aacaacggtg tgtccaaaga gctgatggag 1380gaagcttcta ctgcggcatg cggtggttat agtgaggctc gctacacggt gcatccatca 1440atcttaggct atagcgcctg a 146140486PRTArabidopsis thaliana 40Met Ala Lys Ser Cys Tyr Phe Arg Pro Ala Leu Leu Leu Leu Leu Val1 5 10 15Leu Leu Val His Ala Glu Ser Arg Gly Arg Phe Glu Pro Lys Ile Leu 20 25 30Met Pro Thr Glu Glu Ala Asn Pro Ala Asp Gln Asp Gly Asp Gly Val 35 40 45Gly Thr Arg Trp Ala Val Leu Val Ala Gly Ser Ser Gly Tyr Gly Asn 50 55 60Tyr Arg His Gln Ala Asp Met Cys His Ala Tyr Gln Ile Leu Arg Lys65 70 75 80Gly Gly Leu Lys Glu Glu Asn Ile Val Val Leu Met Tyr Asp Asp Ile 85 90 95Ala Asn His Pro Leu Asn Pro Arg Pro Gly Thr Leu Ile Asn His Pro 100 105 110Asp Gly Asp Asp Val Tyr Ala Gly Val Pro Lys Asp Tyr Thr Gly Ser 115 120 125Ser Val Thr Ala Ala Asn Phe Tyr Ala Val Leu Leu Gly Asp Gln Lys 130 135 140Ala Val Lys Gly Gly Ser Gly Lys Val Ile Ala Ser Lys Pro Asn Asp145 150 155 160His Ile Phe Val Tyr Tyr Ala Asp His Gly Gly Pro Gly Val Leu Gly 165 170 175Met Pro Asn Thr Pro His Ile Tyr Ala Ala Asp Phe Ile Glu Thr Leu 180 185 190Lys Lys Lys His Ala Ser Gly Thr Tyr Lys Glu Met Val Ile Tyr Val 195 200 205Glu Ala Cys Glu Ser Gly Ser Ile Phe Glu Gly Ile Met Pro Lys Asp 210 215 220Leu Asn Ile Tyr Val Thr Thr Ala Ser Asn Ala Gln Glu Ser Ser Tyr225 230 235 240Gly Thr Tyr Cys Pro Gly Met Asn Pro Ser Pro Pro Ser Glu Tyr Ile 245 250 255Thr Cys Leu Gly Asp Leu Tyr Ser Val Ala Trp Met Glu Asp Ser Glu 260 265 270Thr His Asn Leu Lys Lys Glu Thr Ile Lys Gln Gln Tyr His Thr Val 275 280 285Lys Met Arg Thr Ser Asn Tyr Asn Thr Tyr Ser Gly Gly Ser His Val 290 295 300Met Glu Tyr Gly Asn Asn Ser Ile Lys Ser Glu Lys Leu Tyr Leu Tyr305 310 315 320Gln Gly Phe Asp Pro Ala Thr Val Asn Leu Pro Leu Asn Glu Leu Pro 325 330 335Val Lys Ser Lys Ile Gly Val Val Asn Gln Arg Asp Ala Asp Leu Leu 340 345 350Phe Leu Trp His Met Tyr Arg Thr Ser Glu Asp Gly Ser Arg Lys Lys 355 360 365Asp Asp Thr Leu Lys Glu Leu Thr Glu Thr Thr Arg His Arg Lys His 370 375 380Leu Asp Ala Ser Val Glu Leu Ile Ala Thr Ile Leu Phe Gly Pro Thr385 390 395 400Met Asn Val Leu Asn Leu Val Arg Glu Pro Gly Leu Pro Leu Val Asp 405 410 415Asp Trp Glu Cys Leu Lys Ser Met Val Arg Val Phe Glu Glu His Cys 420 425 430Gly Ser Leu Thr Gln Tyr Gly Met Lys His Met Arg Ala Phe Ala Asn 435 440 445Val Cys Asn Asn Gly Val Ser Lys Glu Leu Met Glu Glu Ala Ser Thr 450 455 460Ala Ala Cys Gly Gly Tyr Ser Glu Ala Arg Tyr Thr Val His Pro Ser465 470 475 480Ile Leu Gly Tyr Ser Ala 485411551DNAArabidopsis thaliana 41atggacggtg ccggagaatc acgactcggt ggtgatggtg gtggtgatgg ttctgttgga 60gttcagatcc gacaaacacg gatgctaccg gattttctcc agagcgtgaa tctcaagtat 120gtgaaattag gttaccatta cttaatctca aatctcttga ctctctgttt attccctctc 180gccgttgtta tctccgtcga agcctctcag atgaacccag atgatctcaa acagctctgg 240atccatctac aatacaatct ggttagtatc atcatctgtt cagcgattct agtcttcggg 300ttaacggttt atgttatgac ccgacctaga cccgtttact tggttgattt ctcttgttat 360ctcccacctg atcatctcaa agctccttac gctcggttca tggaacattc tagactcacc 420ggagatttcg atgactctgc tctcgagttt caacgcaaga tccttgagcg ttctggttta 480ggggaagaca cttatgtccc tgaagctatg cattatgttc caccgagaat ttcaatggct 540gctgctagag aagaagctga acaagtcatg tttggtgctt tagataacct tttcgctaac 600actaatgtga aaccaaagga tattggaatc cttgttgtga attgtagtct ctttaatcca 660actccttcgt tatctgcaat gattgtgaac aagtataagc ttagaggtaa cattagaagc 720tacaatctag gcggtatggg ttgcagcgcg ggagttatcg ctgtggatct tgctaaagac 780atgttgttgg tacataggaa cacttatgcg gttgttgttt ctactgagaa cattactcag 840aattggtatt ttggtaacaa gaaatcgatg ttgataccga actgcttgtt tcgagttggt 900ggctctgcgg ttttgctatc gaacaagtcg agggacaaga gacggtctaa gtacaggctt 960gtacatgtag tcaggactca ccgtggagca gatgataaag ctttccgttg tgtttatcaa 1020gagcaggatg atacagggag aaccggggtt tcgttgtcga aagatctaat ggcgattgca 1080ggggaaactc tcaaaaccaa tatcactaca ttgggtcctc ttgttctacc gataagtgag 1140cagattctct tctttatgac tctagttgtg aagaagctct ttaacggtaa agtgaaaccg 1200tatatcccgg atttcaaact tgctttcgag catttctgta tccatgctgg tggaagagct 1260gtgatcgatg agttagagaa gaatctgcag ctttcaccag ttcatgtcga ggcttcgagg 1320atgactcttc atcgatttgg taacacatct tcgagctcca tttggtatga attggcttac 1380attgaagcga agggaaggat gcgaagaggt aatcgtgttt ggcaaatcgc gttcggaagt 1440ggatttaaat gtaatagcgc gatttgggaa gcattaaggc atgtgaaacc ttcgaacaac 1500agtccttggg aagattgtat tgacaagtat ccggtaactt taagttatta g 155142516PRTArabidopsis thaliana 42Met Asp Gly Ala Gly Glu Ser Arg Leu Gly Gly Asp Gly Gly Gly Asp1 5 10 15Gly Ser Val Gly Val Gln Ile Arg Gln Thr Arg Met Leu Pro Asp Phe 20 25 30Leu Gln Ser Val Asn Leu Lys Tyr Val Lys Leu Gly Tyr His Tyr Leu 35 40 45Ile Ser Asn Leu Leu Thr Leu Cys Leu Phe Pro Leu Ala Val Val Ile 50 55 60Ser Val Glu Ala Ser Gln Met Asn Pro Asp Asp Leu Lys Gln Leu Trp65 70 75 80Ile His Leu Gln Tyr Asn Leu Val Ser Ile Ile Ile Cys Ser Ala Ile 85 90 95Leu Val Phe Gly Leu Thr Val Tyr Val Met Thr Arg Pro Arg Pro Val 100 105 110Tyr Leu Val Asp Phe Ser Cys Tyr Leu Pro Pro Asp His Leu Lys Ala 115 120 125Pro Tyr Ala Arg Phe Met Glu His Ser Arg Leu Thr Gly Asp Phe Asp 130 135 140Asp Ser Ala Leu Glu Phe Gln Arg Lys Ile Leu Glu Arg Ser Gly Leu145 150 155 160Gly Glu Asp Thr Tyr Val Pro Glu Ala Met His Tyr Val Pro Pro Arg 165 170 175Ile Ser Met Ala Ala Ala Arg Glu Glu Ala Glu Gln Val Met Phe Gly 180 185 190Ala Leu Asp Asn Leu Phe Ala Asn Thr Asn Val Lys Pro Lys Asp Ile 195 200 205Gly Ile Leu Val Val Asn Cys Ser Leu Phe Asn Pro Thr Pro Ser Leu 210 215 220Ser Ala Met Ile Val Asn Lys Tyr Lys Leu Arg Gly Asn Ile Arg Ser225 230 235 240Tyr Asn Leu Gly Gly Met Gly Cys Ser Ala Gly Val Ile Ala Val Asp 245 250 255Leu Ala Lys Asp Met Leu Leu Val His Arg Asn Thr Tyr Ala Val Val 260 265 270Val Ser Thr Glu Asn Ile Thr Gln Asn Trp Tyr Phe Gly Asn Lys Lys 275 280 285Ser Met Leu Ile Pro Asn Cys Leu Phe Arg Val Gly Gly Ser Ala Val 290 295 300Leu Leu Ser Asn Lys Ser Arg Asp Lys Arg Arg Ser Lys Tyr Arg Leu305 310 315 320Val His Val Val Arg Thr His Arg Gly Ala Asp Asp Lys Ala Phe Arg 325 330 335Cys Val Tyr Gln Glu Gln Asp Asp Thr Gly Arg Thr Gly Val Ser Leu 340 345 350Ser Lys Asp Leu Met Ala Ile Ala Gly Glu Thr Leu Lys Thr Asn Ile 355 360 365Thr Thr Leu Gly Pro Leu Val Leu Pro Ile Ser Glu Gln Ile Leu Phe 370 375 380Phe Met Thr Leu Val Val Lys Lys Leu Phe Asn Gly Lys Val Lys Pro385 390 395 400Tyr Ile Pro Asp Phe Lys Leu Ala Phe Glu His Phe Cys Ile His Ala 405 410 415Gly Gly Arg Ala Val Ile Asp Glu Leu Glu Lys Asn Leu Gln Leu Ser 420 425 430Pro Val His Val Glu Ala Ser Arg Met Thr Leu His Arg Phe Gly Asn 435 440 445Thr Ser Ser Ser Ser Ile Trp Tyr Glu Leu Ala Tyr Ile Glu Ala Lys 450 455 460Gly Arg Met Arg Arg Gly Asn Arg Val Trp Gln Ile Ala Phe Gly Ser465 470 475 480Gly Phe Lys Cys Asn Ser Ala Ile Trp Glu Ala Leu Arg His Val Lys 485 490 495Pro Ser Asn Asn Ser Pro Trp Glu Asp Cys Ile Asp Lys Tyr Pro Val 500 505 510Thr Leu Ser Tyr 51543639DNAArabidopsis thaliana 43atgtcgagag ctttgtcagt cgtttgtgtc ttgctcgcca tatccttcgt ctgtgcacgt 60gctcgtcagg tgccgggaga gtctgatgag ggaaagacga cgggacatga cgatacaaca 120acaatgccca tgcatgcaaa agcagctgat cagttaccac caaagagcgt cggcgacaaa 180aaatgcatcg gaggagttgc tggagtcggt ggattcgccg gagttggtgg tgttgccggc 240gtgggaggtc tagggatgcc actcatcggt ggtcttggcg ggatcggtaa gtatggtggc 300ataggcggtg cagctggaat cggtggattt catagtatag gcggtgttgg cggtctaggc 360ggtgtcggag gaggtgttgg cggtctaggc ggtgttggag ggggtgttgg tggtctaggt 420ggcgttggcg gtctaggtgg agctggttta ggcggtgtag gtggtgttgg cggtggtatt 480ggtaaagccg gtggtattgg cggtttaggt ggtctaggcg gagccggagg tggtttaggt 540ggagttggtg gtctcggtaa ggctggtggt attggtgttg gtggtggtat cggtggtgga 600cacggcgtgg tcggtggtgt gatcgatcca catccttaa 63944212PRTArabidopsis thaliana 44Met Ser Arg Ala Leu Ser Val Val Cys Val Leu Leu Ala Ile Ser Phe1 5 10 15Val Cys Ala Arg Ala Arg Gln Val Pro Gly Glu Ser Asp Glu Gly Lys 20 25 30Thr Thr Gly His Asp Asp Thr Thr Thr Met Pro Met His Ala Lys Ala 35 40 45Ala Asp Gln Leu Pro Pro Lys Ser Val Gly Asp Lys Lys Cys Ile Gly 50 55 60Gly Val Ala Gly Val Gly Gly Phe Ala Gly Val Gly Gly Val Ala Gly65 70 75 80Val Gly Gly Leu Gly Met Pro Leu Ile Gly Gly Leu Gly Gly Ile Gly 85 90 95Lys Tyr Gly Gly Ile Gly Gly Ala Ala Gly Ile Gly Gly Phe His Ser 100 105 110Ile Gly Gly Val Gly Gly Leu Gly Gly Val Gly Gly Gly Val Gly Gly 115 120 125Leu Gly Gly Val Gly Gly Gly Val Gly Gly Leu Gly Gly Val Gly Gly 130 135 140Leu Gly Gly Ala Gly Leu Gly Gly Val Gly Gly Val Gly Gly Gly Ile145 150 155 160Gly Lys Ala Gly Gly Ile Gly Gly Leu Gly Gly Leu Gly Gly Ala Gly 165 170 175Gly Gly Leu Gly Gly Val Gly Gly Leu Gly Lys Ala Gly Gly Ile Gly 180 185 190Val Gly Gly Gly Ile Gly Gly Gly His Gly Val Val Gly Gly Val Ile 195 200 205Asp Pro His Pro 21045684DNAArabidopsis thaliana 45atggcaagca gcgacgtgaa gctgatcggt gcatgggcga gtccctttgt gatgaggccg 60aggattgctc taaacctcaa gtctgtcccc tacgagttcc tccaagagac gtttgggtct 120aagagcgagt tgcttcttaa atcaaacccg gttcacaaga agatcccggt tctgcttcat 180gctgataaac cggtgagtga gtccaacatc atcgttgagt atatcgatga cacttggagc 240tcatctggac cgtccattct cccttccgat ccttacgatc gggccatggc tcggttctgg 300gctgcttaca tcgacgaaaa gtggtttgtc gctctaagag gtttcctaaa agccggagga 360gaagaagaga agaaagctgt gatagctcaa ctagaagaag ggaatgcgtt tctggagaag 420gcgttcattg attgcagcaa aggaaaaccg ttcttcaacg gtgacaacat cggttacctc 480gacattgctc tcgggtgctt cttggcttgg ttgagagtca ccgagttagc agtcagctat 540aaaattcttg atgaggccaa gacaccttct ttgtccaaat gggctgagaa tttctgtaat 600gatcccgctg taaaacctgt catgcccgag actgcaaagc ttgctgaatt cgcaaagaag 660atctttccta agccgcaggc ctaa 68446227PRTArabidopsis thaliana 46Met Ala Ser Ser Asp Val Lys Leu Ile Gly Ala Trp Ala Ser Pro Phe1 5 10 15Val Met Arg Pro Arg Ile Ala Leu Asn Leu Lys Ser Val Pro Tyr Glu 20 25 30Phe Leu Gln Glu Thr Phe Gly Ser Lys Ser Glu Leu Leu Leu Lys Ser 35 40 45Asn Pro Val His Lys Lys Ile Pro Val Leu Leu His Ala Asp Lys Pro 50 55 60Val Ser Glu Ser Asn Ile Ile Val Glu Tyr Ile Asp Asp Thr Trp Ser65 70 75 80Ser Ser Gly Pro Ser Ile Leu Pro Ser Asp Pro Tyr Asp Arg Ala Met 85 90 95Ala Arg Phe Trp Ala Ala Tyr Ile Asp Glu Lys Trp Phe Val Ala Leu 100 105 110Arg Gly Phe Leu Lys Ala Gly Gly Glu Glu Glu Lys Lys Ala Val Ile 115 120 125Ala Gln Leu Glu Glu Gly Asn Ala Phe Leu Glu Lys Ala Phe Ile Asp 130 135 140Cys Ser Lys Gly Lys Pro Phe Phe Asn Gly Asp Asn Ile Gly Tyr Leu145 150 155 160Asp Ile Ala Leu Gly Cys Phe Leu Ala Trp Leu Arg Val Thr Glu Leu 165 170 175Ala Val Ser Tyr Lys Ile Leu Asp Glu Ala Lys Thr Pro Ser Leu Ser 180 185 190Lys Trp Ala Glu Asn Phe Cys Asn Asp Pro Ala Val Lys Pro Val Met 195 200 205Pro Glu Thr Ala Lys Leu Ala Glu Phe Ala Lys Lys Ile Phe Pro Lys 210 215 220Pro Gln Ala22547279DNAArabidopsis thaliana 47atggcgtctc aacaagagaa gaagcagctg gatgagaggg caaagaaggg cgagaccgtc 60gtgccaggtg gtacgggagg caaaagcttc gaagctcaac agcatctcgc tgaagggagg 120agccgaggag ggcaaactcg aaaggagcag ttaggaactg aaggatatca gcagatggga 180cgcaaaggtg gtcttagcac cggagacaag cctggtgggg aacacgctga ggaggaagga 240gtcgagatag acgaatccaa attcaggacc aagacctaa 2794892PRTArabidopsis thaliana 48Met Ala Ser Gln Gln Glu Lys Lys Gln Leu Asp Glu Arg Ala Lys Lys1 5 10 15Gly Glu Thr Val Val Pro Gly Gly Thr Gly Gly Lys Ser Phe Glu Ala 20 25 30Gln Gln His Leu Ala Glu Gly Arg Ser Arg Gly Gly Gln Thr Arg Lys 35 40 45Glu Gln Leu Gly Thr Glu Gly Tyr Gln Gln Met Gly Arg Lys Gly Gly 50 55 60Leu Ser Thr Gly Asp Lys Pro Gly Gly Glu His Ala Glu Glu Glu Gly65 70 75 80Val Glu Ile Asp Glu Ser Lys Phe Arg Thr Lys Thr 85 904932DNAArtificial SequenceDescription of Artificial Sequence Primer 49atggcgcgcc cgacatgaag cgacgttgaa cg 325032DNAArtificial SequenceDescription of Artificial Sequence Primer 50gcttaattaa ctttccgcag ccttcaggcc gc 32511131DNAArabidopsis thaliana 51atggctcctt caacaaaagt tctctcttta cttctcttat atggcgtcgt gtcattagcc 60tccggtgatg agtccatcat caacgaccat ctccaacttc catcggacgg caagtggaga 120accgatgaag aagtgaggtc catctactta caatggtccg cagaacacgg gaaaactaac 180aacaacaaca acggtatcat caacgaccaa gacaaaagat tcaatatttt caaagacaac 240ttaagattca tcgatctaca caacgaaaac aacaagaacg ctacttacaa gcttggtctc 300accaaattta ccgatctcac taacgatgag taccgcaagt tgtacctcgg ggcaagaact 360gagcccgccc gccgcatcgc taaggccaag aatgtcaacc agaaatactc agccgctgta 420aacggcaagg aggttccaga gacggttgat tggagacaga aaggagccgt taaccccatc 480aaagaccaag gaacttgcgg aagttgttgg gcgttttcga ctactgcagc agtagaaggt 540ataaacaaga tcgtaacagg agaactcata tctctatcag aacaagaact tgttgactgc 600gacaaatcct acaatcaagg ttgcaacggc ggtttaatgg actacgcttt tcaattcatc 660atgaaaaatg gtggcttaaa cactgagaaa gattatcctt accgtggatt cggcggaaaa 720tgcaattctt tcttgaagaa ttctagagtt gtgagtattg atgggtacga agatgttcct 780actaaagacg agactgcgtt gaagaaagct atttcatacc aaccggttag tgtagctatt 840gaagccggtg gaagaatttt tcaacattac caatcgggta tttttaccgg aagttgtggt 900acaaatcttg atcacgcggt agttgctgtc gggtacggat cagagaacgg tgttgactac 960tggattgtaa ggaactcttg gggtccacgt tggggtgagg aaggttacat tagaatggag 1020agaaacttgg cagcctccaa atccggtaag tgtgggattg cggttgaagc ctcgtacccg 1080gttaagtaca gcccaaaccc ggttcgtgga

aatactatca gcagtgtttg a 113152376PRTArabidopsis thaliana 52Met Ala Pro Ser Thr Lys Val Leu Ser Leu Leu Leu Leu Tyr Gly Val1 5 10 15Val Ser Leu Ala Ser Gly Asp Glu Ser Ile Ile Asn Asp His Leu Gln 20 25 30Leu Pro Ser Asp Gly Lys Trp Arg Thr Asp Glu Glu Val Arg Ser Ile 35 40 45Tyr Leu Gln Trp Ser Ala Glu His Gly Lys Thr Asn Asn Asn Asn Asn 50 55 60Gly Ile Ile Asn Asp Gln Asp Lys Arg Phe Asn Ile Phe Lys Asp Asn65 70 75 80Leu Arg Phe Ile Asp Leu His Asn Glu Asn Asn Lys Asn Ala Thr Tyr 85 90 95Lys Leu Gly Leu Thr Lys Phe Thr Asp Leu Thr Asn Asp Glu Tyr Arg 100 105 110Lys Leu Tyr Leu Gly Ala Arg Thr Glu Pro Ala Arg Arg Ile Ala Lys 115 120 125Ala Lys Asn Val Asn Gln Lys Tyr Ser Ala Ala Val Asn Gly Lys Glu 130 135 140Val Pro Glu Thr Val Asp Trp Arg Gln Lys Gly Ala Val Asn Pro Ile145 150 155 160Lys Asp Gln Gly Thr Cys Gly Ser Cys Trp Ala Phe Ser Thr Thr Ala 165 170 175Ala Val Glu Gly Ile Asn Lys Ile Val Thr Gly Glu Leu Ile Ser Leu 180 185 190Ser Glu Gln Glu Leu Val Asp Cys Asp Lys Ser Tyr Asn Gln Gly Cys 195 200 205Asn Gly Gly Leu Met Asp Tyr Ala Phe Gln Phe Ile Met Lys Asn Gly 210 215 220Gly Leu Asn Thr Glu Lys Asp Tyr Pro Tyr Arg Gly Phe Gly Gly Lys225 230 235 240Cys Asn Ser Phe Leu Lys Asn Ser Arg Val Val Ser Ile Asp Gly Tyr 245 250 255Glu Asp Val Pro Thr Lys Asp Glu Thr Ala Leu Lys Lys Ala Ile Ser 260 265 270Tyr Gln Pro Val Ser Val Ala Ile Glu Ala Gly Gly Arg Ile Phe Gln 275 280 285His Tyr Gln Ser Gly Ile Phe Thr Gly Ser Cys Gly Thr Asn Leu Asp 290 295 300His Ala Val Val Ala Val Gly Tyr Gly Ser Glu Asn Gly Val Asp Tyr305 310 315 320Trp Ile Val Arg Asn Ser Trp Gly Pro Arg Trp Gly Glu Glu Gly Tyr 325 330 335Ile Arg Met Glu Arg Asn Leu Ala Ala Ser Lys Ser Gly Lys Cys Gly 340 345 350Ile Ala Val Glu Ala Ser Tyr Pro Val Lys Tyr Ser Pro Asn Pro Val 355 360 365Arg Gly Asn Thr Ile Ser Ser Val 370 375531653DNAArabidopsis thaliana 53atgcggtgct ttccacctcc cttatggtgc acctccttgg tcgttttctt gtcggttacc 60ggagccctag ccgccgatcc ctacgtcttc ttcgattgga ctgtctctta cctctctgct 120tctcctctcg gcactcgtca acaggtaatt gggataaatg ggcaatttcc tggtccgatt 180ctaaacgtaa ctacgaattg gaatgttgtt atgaatgtga agaataatct tgatgagcca 240ttgcttctta catggaatgg aatccaacat aggaaaaact catggcaaga tggtgttttg 300ggaactaatt gtccaattcc ttctggttgg aattggactt atgagtttca agttaaagat 360cagattggta gtttctttta ttttccttct acaaattttc aaagagcttc tggtggttat 420ggagggatta ttgtcaataa tcgcgctatc attccggttc ctttcgctct tcctgatggt 480gatgttactc tctttatcag tgattggtat actaagagcc ataagaagct gaggaaggat 540gttgagagta agaacggcct tcgacctccg gatggtattg tcatcaatgg atttggacct 600tttgcttcta atggtagtcc ttttgggacc ataaacgttg aaccaggacg aacatatcgt 660tttcgtgttc acaatagtgg cattgcgacc agcttgaatt tcagaataca gaatcataac 720ctgcttcttg ttgagacaga agggtcatac acaattcagc agaattatac gaatatggat 780atacatgtgg gtcaatcttt ctcatttctg gtcactatgg atcagtctgg tagtaatgac 840tactacattg ttgccagccc aaggtttgct acatccatca aagctagtgg agtcgctgtc 900ttgcgctact ctaattccca aggacccgct tcaggtccac tccctgatcc tcctattgag 960ttggacacat ttttctcaat gaaccaagca cgatccttaa ggttgaattt gtcatctgga 1020gctgcccgtc caaacccgca gggatctttc aaatatggcc agattacagt aactgatgtg 1080tatgtgattg tcaaccgacc accagagatg atagagggac gattgcgtgc aactcttaat 1140ggtatatcat acttacctcc tgcaacaccc ctaaagcttg ctcagcaata caacatctca 1200ggggtataca agttggattt cccaaaaagg ccaatgaata ggcaccccag ggttgatacc 1260tcagtcataa acggcacgtt caagggattc gtggaaatca tatttcaaaa tagtgacacc 1320actgttaaga gctaccactt ggatggttat gcattttttg ttgttgggat ggactttggt 1380ctgtggacag aaaatagcag aagcacatac aacaagggtg atgcagttgc tcgatctact 1440acgcaggtgt ttcctggtgc atggacggcc gtcttggttt ctttggacaa tgctggcatg 1500tggaaccttc gaatagacaa tctagcctca tggtatcttg gccaagaact atacttgagt 1560gtggttaatc cagagattga cattgactca tctgagaatt ccgttcctaa aaactctata 1620tattgtggtc ggctctcacc attacaaaag taa 165354550PRTArabidopsis thaliana 54Met Arg Cys Phe Pro Pro Pro Leu Trp Cys Thr Ser Leu Val Val Phe1 5 10 15Leu Ser Val Thr Gly Ala Leu Ala Ala Asp Pro Tyr Val Phe Phe Asp 20 25 30Trp Thr Val Ser Tyr Leu Ser Ala Ser Pro Leu Gly Thr Arg Gln Gln 35 40 45Val Ile Gly Ile Asn Gly Gln Phe Pro Gly Pro Ile Leu Asn Val Thr 50 55 60Thr Asn Trp Asn Val Val Met Asn Val Lys Asn Asn Leu Asp Glu Pro65 70 75 80Leu Leu Leu Thr Trp Asn Gly Ile Gln His Arg Lys Asn Ser Trp Gln 85 90 95Asp Gly Val Leu Gly Thr Asn Cys Pro Ile Pro Ser Gly Trp Asn Trp 100 105 110Thr Tyr Glu Phe Gln Val Lys Asp Gln Ile Gly Ser Phe Phe Tyr Phe 115 120 125Pro Ser Thr Asn Phe Gln Arg Ala Ser Gly Gly Tyr Gly Gly Ile Ile 130 135 140Val Asn Asn Arg Ala Ile Ile Pro Val Pro Phe Ala Leu Pro Asp Gly145 150 155 160Asp Val Thr Leu Phe Ile Ser Asp Trp Tyr Thr Lys Ser His Lys Lys 165 170 175Leu Arg Lys Asp Val Glu Ser Lys Asn Gly Leu Arg Pro Pro Asp Gly 180 185 190Ile Val Ile Asn Gly Phe Gly Pro Phe Ala Ser Asn Gly Ser Pro Phe 195 200 205Gly Thr Ile Asn Val Glu Pro Gly Arg Thr Tyr Arg Phe Arg Val His 210 215 220Asn Ser Gly Ile Ala Thr Ser Leu Asn Phe Arg Ile Gln Asn His Asn225 230 235 240Leu Leu Leu Val Glu Thr Glu Gly Ser Tyr Thr Ile Gln Gln Asn Tyr 245 250 255Thr Asn Met Asp Ile His Val Gly Gln Ser Phe Ser Phe Leu Val Thr 260 265 270Met Asp Gln Ser Gly Ser Asn Asp Tyr Tyr Ile Val Ala Ser Pro Arg 275 280 285Phe Ala Thr Ser Ile Lys Ala Ser Gly Val Ala Val Leu Arg Tyr Ser 290 295 300Asn Ser Gln Gly Pro Ala Ser Gly Pro Leu Pro Asp Pro Pro Ile Glu305 310 315 320Leu Asp Thr Phe Phe Ser Met Asn Gln Ala Arg Ser Leu Arg Leu Asn 325 330 335Leu Ser Ser Gly Ala Ala Arg Pro Asn Pro Gln Gly Ser Phe Lys Tyr 340 345 350Gly Gln Ile Thr Val Thr Asp Val Tyr Val Ile Val Asn Arg Pro Pro 355 360 365Glu Met Ile Glu Gly Arg Leu Arg Ala Thr Leu Asn Gly Ile Ser Tyr 370 375 380Leu Pro Pro Ala Thr Pro Leu Lys Leu Ala Gln Gln Tyr Asn Ile Ser385 390 395 400Gly Val Tyr Lys Leu Asp Phe Pro Lys Arg Pro Met Asn Arg His Pro 405 410 415Arg Val Asp Thr Ser Val Ile Asn Gly Thr Phe Lys Gly Phe Val Glu 420 425 430Ile Ile Phe Gln Asn Ser Asp Thr Thr Val Lys Ser Tyr His Leu Asp 435 440 445Gly Tyr Ala Phe Phe Val Val Gly Met Asp Phe Gly Leu Trp Thr Glu 450 455 460Asn Ser Arg Ser Thr Tyr Asn Lys Gly Asp Ala Val Ala Arg Ser Thr465 470 475 480Thr Gln Val Phe Pro Gly Ala Trp Thr Ala Val Leu Val Ser Leu Asp 485 490 495Asn Ala Gly Met Trp Asn Leu Arg Ile Asp Asn Leu Ala Ser Trp Tyr 500 505 510Leu Gly Gln Glu Leu Tyr Leu Ser Val Val Asn Pro Glu Ile Asp Ile 515 520 525Asp Ser Ser Glu Asn Ser Val Pro Lys Asn Ser Ile Tyr Cys Gly Arg 530 535 540Leu Ser Pro Leu Gln Lys545 55055615DNAArabidopsis thaliana 55atgcttctaa ttctagcgat ttggtcacca atttcacact cgcttcactt cgatctacac 60tcaggtcgca caaagtgtat cgccgaagac atcaaaagca attcaatgac tgttggtaaa 120tacaacatcg ataatcctca cgaaggtcaa gctttaccac aaactcacaa aatttccgtc 180aaggtgacgt ctaattccgg taacaattac catcacgcgg aacaagtaga ttcaggacaa 240ttcgcattct cggctgttga agcaggtgat tacatggctt gtttcactgc tgttgatcat 300aagcctgagg tttcgttgag tattgacttt gagtggaaga ctggtgttca atctaaaagc 360tgggctaatg ttgctaagaa gagtcaagtc gaagttatgg aatttgaagt aaagagtctt 420cttgatactg ttaactcgat tcatgaagag atgtattatc ttagagatag ggaagaagag 480atgcaagact tgaaccggtc cactaacaca aaaatggcgt ggttgagtgt tctctcgttt 540ttcgtctgca taggagttgc agggatgcag tttttgcact tgaagacgtt tttcgagaag 600aagaaggtta tctga 61556204PRTArabidopsis thaliana 56Met Leu Leu Ile Leu Ala Ile Trp Ser Pro Ile Ser His Ser Leu His1 5 10 15Phe Asp Leu His Ser Gly Arg Thr Lys Cys Ile Ala Glu Asp Ile Lys 20 25 30Ser Asn Ser Met Thr Val Gly Lys Tyr Asn Ile Asp Asn Pro His Glu 35 40 45Gly Gln Ala Leu Pro Gln Thr His Lys Ile Ser Val Lys Val Thr Ser 50 55 60Asn Ser Gly Asn Asn Tyr His His Ala Glu Gln Val Asp Ser Gly Gln65 70 75 80Phe Ala Phe Ser Ala Val Glu Ala Gly Asp Tyr Met Ala Cys Phe Thr 85 90 95Ala Val Asp His Lys Pro Glu Val Ser Leu Ser Ile Asp Phe Glu Trp 100 105 110Lys Thr Gly Val Gln Ser Lys Ser Trp Ala Asn Val Ala Lys Lys Ser 115 120 125Gln Val Glu Val Met Glu Phe Glu Val Lys Ser Leu Leu Asp Thr Val 130 135 140Asn Ser Ile His Glu Glu Met Tyr Tyr Leu Arg Asp Arg Glu Glu Glu145 150 155 160Met Gln Asp Leu Asn Arg Ser Thr Asn Thr Lys Met Ala Trp Leu Ser 165 170 175Val Leu Ser Phe Phe Val Cys Ile Gly Val Ala Gly Met Gln Phe Leu 180 185 190His Leu Lys Thr Phe Phe Glu Lys Lys Lys Val Ile 195 20057969DNAArabidopsis thaliana 57atggcacatg ccacgtttac gtcggaaggg cagaatatgg agtcgtttcg actcttgagt 60ggccacaaaa tcccagccgt tggactcggc acgtggcgat ctgggtctca agccgcccac 120gccgttgtca ctgcaatcgt cgagggtggc tataggcaca tagatacagc ttgggagtat 180ggtgatcaga gagaggtcgg tcaaggaata aagagggcga tgcacgctgg ccttgaaagg 240agggacctct ttgtgacctc gaagctttgg tgcactgagt tatctcctga gagagtgcgt 300cctgctctgc aaaacaccct taaagagctt caattagagt accttgatct ctacttgatt 360cactggccta tccggctaag agaaggagcc agtaagccac caaaggcagg ggacgttctt 420gactttgaca tggaaggagt ttggagagaa atggagaatc tttccaagga cagtctcgtc 480aggaatatcg gtgtctgtaa ctttacagtc actaagctca ataagctgct aggatttgct 540gaactgatcc ctgccgtttg ccagatggaa atgcatcctg gttggagaaa cgataggata 600ctcgaattct gcaagaagaa tgagatccat gttactgcct attctccatt gggatctcaa 660gaaggcggga gagatctgat acacgatcag acggtggata ggatagcgaa gaagctgaat 720aagacaccgg gacagattct agtgaaatgg ggtttgcaga gaggaacaag tgtcatccct 780aagtcattga atccagagag gatcaaagag aacatcaaag tgtttgattg ggtgatccct 840gaacaagact tccaagctct caacagcatc actgaccaga aacgagtgat agacggtgag 900gatcttttcg tcaacaagac cgaaggtcca ttccgtagtg tggctgatct atgggaccat 960gaagactaa 96958322PRTArabidopsis thaliana 58Met Ala His Ala Thr Phe Thr Ser Glu Gly Gln Asn Met Glu Ser Phe1 5 10 15Arg Leu Leu Ser Gly His Lys Ile Pro Ala Val Gly Leu Gly Thr Trp 20 25 30Arg Ser Gly Ser Gln Ala Ala His Ala Val Val Thr Ala Ile Val Glu 35 40 45Gly Gly Tyr Arg His Ile Asp Thr Ala Trp Glu Tyr Gly Asp Gln Arg 50 55 60Glu Val Gly Gln Gly Ile Lys Arg Ala Met His Ala Gly Leu Glu Arg65 70 75 80Arg Asp Leu Phe Val Thr Ser Lys Leu Trp Cys Thr Glu Leu Ser Pro 85 90 95Glu Arg Val Arg Pro Ala Leu Gln Asn Thr Leu Lys Glu Leu Gln Leu 100 105 110Glu Tyr Leu Asp Leu Tyr Leu Ile His Trp Pro Ile Arg Leu Arg Glu 115 120 125Gly Ala Ser Lys Pro Pro Lys Ala Gly Asp Val Leu Asp Phe Asp Met 130 135 140Glu Gly Val Trp Arg Glu Met Glu Asn Leu Ser Lys Asp Ser Leu Val145 150 155 160Arg Asn Ile Gly Val Cys Asn Phe Thr Val Thr Lys Leu Asn Lys Leu 165 170 175Leu Gly Phe Ala Glu Leu Ile Pro Ala Val Cys Gln Met Glu Met His 180 185 190Pro Gly Trp Arg Asn Asp Arg Ile Leu Glu Phe Cys Lys Lys Asn Glu 195 200 205Ile His Val Thr Ala Tyr Ser Pro Leu Gly Ser Gln Glu Gly Gly Arg 210 215 220Asp Leu Ile His Asp Gln Thr Val Asp Arg Ile Ala Lys Lys Leu Asn225 230 235 240Lys Thr Pro Gly Gln Ile Leu Val Lys Trp Gly Leu Gln Arg Gly Thr 245 250 255Ser Val Ile Pro Lys Ser Leu Asn Pro Glu Arg Ile Lys Glu Asn Ile 260 265 270Lys Val Phe Asp Trp Val Ile Pro Glu Gln Asp Phe Gln Ala Leu Asn 275 280 285Ser Ile Thr Asp Gln Lys Arg Val Ile Asp Gly Glu Asp Leu Phe Val 290 295 300Asn Lys Thr Glu Gly Pro Phe Arg Ser Val Ala Asp Leu Trp Asp His305 310 315 320Glu Asp59867DNAArabidopsis thaliana 59atggcgtctg agaaacaaaa acaacatgca caacctggca aagaacatgt catggaatca 60agcccacaat tctctagctc agattaccaa ccttccaaca agcttcgtgg taaggtggcg 120ttgataactg gtggagactc tgggattggt cgagccgtgg gatactgttt tgcatccgaa 180ggagctactg tggctttcac ttacgtgaag ggtcaagaag aaaaagatgc acaagagacc 240ctacaaatgt tgaaggaggt caaaacctcg gactccaagg aacctatcgc cattccaacg 300gatttaggat ttgacgaaaa ctgcaaaagg gtcgttgatg aggtcgttaa tgcttttggc 360cgcatcgatg ttttgatcaa taacgcagca gagcagtacg agagcagcac aatcgaagag 420attgatgagc ctaggcttga gcgagtcttc cgtacaaaca tcttttctta cttctttctc 480acaaggcatg cgttgaagca tatgaaggaa ggaagcagca ttatcaacac cacttcggtg 540aatgcctaca agggaaacgc ttcacttctc gactacaccg ctacaaaagg agcgattgtg 600gcgtttactc gaggacttgc acttcagcta gctgagaaag gaatccgtgt caatggtgtg 660gctcctggtc caatatggac accccttatc ccagcatcat tcaatgagga gaagattaag 720aattttgggt ctgaggttcc gatgaaaaga gcgggtcagc caattgaagt ggcaccatcc 780tatgttttct tggcgtgtaa ccactgctct tcttacttca ctggtcaagt tcttcaccct 840aatggaggag ctgtggtaaa tgcgtaa 86760288PRTArabidopsis thaliana 60Met Ala Ser Glu Lys Gln Lys Gln His Ala Gln Pro Gly Lys Glu His1 5 10 15Val Met Glu Ser Ser Pro Gln Phe Ser Ser Ser Asp Tyr Gln Pro Ser 20 25 30Asn Lys Leu Arg Gly Lys Val Ala Leu Ile Thr Gly Gly Asp Ser Gly 35 40 45Ile Gly Arg Ala Val Gly Tyr Cys Phe Ala Ser Glu Gly Ala Thr Val 50 55 60Ala Phe Thr Tyr Val Lys Gly Gln Glu Glu Lys Asp Ala Gln Glu Thr65 70 75 80Leu Gln Met Leu Lys Glu Val Lys Thr Ser Asp Ser Lys Glu Pro Ile 85 90 95Ala Ile Pro Thr Asp Leu Gly Phe Asp Glu Asn Cys Lys Arg Val Val 100 105 110Asp Glu Val Val Asn Ala Phe Gly Arg Ile Asp Val Leu Ile Asn Asn 115 120 125Ala Ala Glu Gln Tyr Glu Ser Ser Thr Ile Glu Glu Ile Asp Glu Pro 130 135 140Arg Leu Glu Arg Val Phe Arg Thr Asn Ile Phe Ser Tyr Phe Phe Leu145 150 155 160Thr Arg His Ala Leu Lys His Met Lys Glu Gly Ser Ser Ile Ile Asn 165 170 175Thr Thr Ser Val Asn Ala Tyr Lys Gly Asn Ala Ser Leu Leu Asp Tyr 180 185 190Thr Ala Thr Lys Gly Ala Ile Val Ala Phe Thr Arg Gly Leu Ala Leu 195 200 205Gln Leu Ala Glu Lys Gly Ile Arg Val Asn Gly Val Ala Pro Gly Pro 210 215 220Ile Trp Thr Pro Leu Ile Pro Ala Ser Phe Asn Glu Glu Lys Ile Lys225 230 235 240Asn Phe Gly Ser Glu Val Pro Met Lys Arg Ala Gly Gln Pro Ile Glu 245 250 255Val Ala Pro Ser Tyr Val Phe Leu Ala Cys Asn His Cys Ser Ser Tyr 260 265 270Phe Thr Gly Gln Val Leu His Pro Asn Gly Gly Ala Val Val Asn Ala

275 280 285611326DNAArabidopsis thaliana 61atggattcaa cgaagcttag tgagctaaag gtcttcatcg atcaatgcaa gtctgaccct 60tcccttctca ctactccttc actctccttc ttccgtgact atctcgagag tcttggtgct 120aagataccta ctggtgtcca tgaagaagac aaagacacta agccgaggag tttcgtagtg 180gaagagagtg atgatgatat ggatgaaact gaagaagtaa aaccgaaagt ggaggaagaa 240gaagaagagg atgagattgt tgaatctgat gtagagcttg aaggagacac tgttgagcct 300gataatgatc ctcctcagaa gatgggggat tcatcagtgg aggtgactga tgagaatcgt 360gaagctgctc aagaagctaa gggcaaagcc atggaggccc tttctgaagg aaactttgat 420gaagcaattg agcatttaac tcgggcaata acgttgaacc cgacttcagc tattatgtat 480ggaaacagag ctagtgtcta cattaagttg aagaagccaa acgctgctat tcgagatgca 540aacgcagcat tggagattaa ccctgattct gccaagggat acaagtcacg aggtatggct 600cgtgccatgc ttggagaatg ggcagaggct gcaaaagacc ttcaccttgc atctacgata 660gactatgatg aggaaattag tgctgttctc aaaaaggttg aacctaatgc acataagctt 720gaggagcacc gtagaaagta tgacagatta cgtaaggaaa gagaggacaa aaaggctgaa 780cgggatagat tacgtcgccg tgctgaagca caggctgcct atgataaagc taagaaagaa 840gaacagtcat catctagcag accatcagga ggcggtttcc caggaggtat gcccggtggt 900ttcccaggag gtatgcccgg tggattccca ggaggaatgg gaggcatgcc cggcggattc 960ccgggaggaa tgggtggtat gggcggtatg cccggtggat tcccaggagg aatgggcggt 1020ggtatgcctg caggaatggg cggtggtatg cccggaatgg gcggtggtat gcctgctgga 1080atgggtggtg gcggtatgcc aggtgcaggc ggtggtatgc ctggtggtgg cggtatgcct 1140ggtggtatgg acttcagcaa aatattgaat gatcctgagc taatgacggc atttagcgac 1200cctgaagtca tggctgctct tcaagatgtg atgaagaacc ctgcgaatct agcgaagcat 1260caggcgaatc cgaaggtggc tcccgtgatt gcaaagatga tgggcaaatt tgcaggacct 1320cagtaa 132662441PRTArabidopsis thaliana 62Met Asp Ser Thr Lys Leu Ser Glu Leu Lys Val Phe Ile Asp Gln Cys1 5 10 15Lys Ser Asp Pro Ser Leu Leu Thr Thr Pro Ser Leu Ser Phe Phe Arg 20 25 30Asp Tyr Leu Glu Ser Leu Gly Ala Lys Ile Pro Thr Gly Val His Glu 35 40 45Glu Asp Lys Asp Thr Lys Pro Arg Ser Phe Val Val Glu Glu Ser Asp 50 55 60Asp Asp Met Asp Glu Thr Glu Glu Val Lys Pro Lys Val Glu Glu Glu65 70 75 80Glu Glu Glu Asp Glu Ile Val Glu Ser Asp Val Glu Leu Glu Gly Asp 85 90 95Thr Val Glu Pro Asp Asn Asp Pro Pro Gln Lys Met Gly Asp Ser Ser 100 105 110Val Glu Val Thr Asp Glu Asn Arg Glu Ala Ala Gln Glu Ala Lys Gly 115 120 125Lys Ala Met Glu Ala Leu Ser Glu Gly Asn Phe Asp Glu Ala Ile Glu 130 135 140His Leu Thr Arg Ala Ile Thr Leu Asn Pro Thr Ser Ala Ile Met Tyr145 150 155 160Gly Asn Arg Ala Ser Val Tyr Ile Lys Leu Lys Lys Pro Asn Ala Ala 165 170 175Ile Arg Asp Ala Asn Ala Ala Leu Glu Ile Asn Pro Asp Ser Ala Lys 180 185 190Gly Tyr Lys Ser Arg Gly Met Ala Arg Ala Met Leu Gly Glu Trp Ala 195 200 205Glu Ala Ala Lys Asp Leu His Leu Ala Ser Thr Ile Asp Tyr Asp Glu 210 215 220Glu Ile Ser Ala Val Leu Lys Lys Val Glu Pro Asn Ala His Lys Leu225 230 235 240Glu Glu His Arg Arg Lys Tyr Asp Arg Leu Arg Lys Glu Arg Glu Asp 245 250 255Lys Lys Ala Glu Arg Asp Arg Leu Arg Arg Arg Ala Glu Ala Gln Ala 260 265 270Ala Tyr Asp Lys Ala Lys Lys Glu Glu Gln Ser Ser Ser Ser Arg Pro 275 280 285Ser Gly Gly Gly Phe Pro Gly Gly Met Pro Gly Gly Phe Pro Gly Gly 290 295 300Met Pro Gly Gly Phe Pro Gly Gly Met Gly Gly Met Pro Gly Gly Phe305 310 315 320Pro Gly Gly Met Gly Gly Met Gly Gly Met Pro Gly Gly Phe Pro Gly 325 330 335Gly Met Gly Gly Gly Met Pro Ala Gly Met Gly Gly Gly Met Pro Gly 340 345 350Met Gly Gly Gly Met Pro Ala Gly Met Gly Gly Gly Gly Met Pro Gly 355 360 365Ala Gly Gly Gly Met Pro Gly Gly Gly Gly Met Pro Gly Gly Met Asp 370 375 380Phe Ser Lys Ile Leu Asn Asp Pro Glu Leu Met Thr Ala Phe Ser Asp385 390 395 400Pro Glu Val Met Ala Ala Leu Gln Asp Val Met Lys Asn Pro Ala Asn 405 410 415Leu Ala Lys His Gln Ala Asn Pro Lys Val Ala Pro Val Ile Ala Lys 420 425 430Met Met Gly Lys Phe Ala Gly Pro Gln 435 440632448DNAArabidopsis thaliana 63atgaaggttc acgagacaag atctcacgct cacatgtctg gagacgaaca aaagaaggga 60aatttgcgga agcacaaagc agaagggaaa cttccagaat ctgaacagtc tcagaagaag 120gcaaagcctg aaaacgatga cggacgttct gtcaacggcg ccggagatgc tgcttcagag 180tacaatgagt tctgcaaagc ggttgaggag aatctgtcca ttgatcagat taaagaagtt 240ctcgaaatca acggccaaga ttgttctgct ccagaagaga ccttgctagc tcaatgtcaa 300gatttgctgt tctatggggc attagctaaa tgtcctttat gcggaggaac tttaatttgc 360gacaatgaaa agagatttgt atgtggaggt gagataagtg agtggtgcag ttgcgtgttt 420agtacgaaag atcctcctag aaaggaagag ccagttaaaa tccctgattc tgtcatgaac 480tctgctatat ctgacttgat caagaaacac caggacccta aaagccgacc taaaagagag 540ttaggctctg ctgataaacc ctttgtggga atgatgatct ctctcatggg acgtctcacg 600agaacacatc aatattggaa gaaaaagatc gagagaaacg gtgggaaagt ctccaatact 660gttcaaggcg taacatgttt ggtggtttcg ccagctgaaa gagaacgagg tggtacgtca 720aagatggtgg aggcaatgga acaaggtcta ccggttgtga gcgaagcatg gttgatcgac 780agcgtggaga agcatgaagc tcagccactt gaagcttatg acgtggtcag tgatctttca 840gtggaaggga aaggaattcc atgggataag caagatccta gtgaggaggc aattgaatcc 900ttttctgctg agctcaaaat gtatgggaaa agaggagtgt acatggacac aaaacttcag 960gagagaggag gaaagatctt cgagaaagat ggactcttgt ataactgtgc cttctcgata 1020tgcgatttgg gaaaagggcg taatgagtat tgtattatgc agctagtcac ggtacccgat 1080agtaacctga acatgtactt caagagaggg aaagtaggag atgaccctaa tgccgaagag 1140aggctcgagg aatgggagga cgaagaagct gcgatcaaag agtttgcaag gctttttgag 1200gagatagcag ggaatgagtt tgagccatgg gaacgtgaga agaagattca aaagaagcct 1260cataagtttt tcccaattga tatggatgat ggaatcgaag taaggagtgg ggctcttggt 1320ctaaggcagc ttggcattgc ttctgctcat tgcaagcttg attcgtttgt tgcaaacttc 1380attaaagttc tgtgtggtca agagatttac aattacgcgt tgatggagct tggattggat 1440ccgcccgatc tacctatggg aatgctaact gatatccact tgaaacgatg cgaagaggta 1500ttactcgagt ttgttgagaa ggtcaaaaca acaaaagaga caggtcagaa agctgaagca 1560atgtgggcag acttcagctc acgatggttc tctttgatgc acagcactag gccgatgcga 1620ttacacgatg tcaatgaact tgcagaccat gcggcctctg cttttgagac ggtgagggac 1680ataaacacag catctcgttt gataggggac atgcgaggag acacactcga tgatccgttg 1740tctgataggt acaaaaaact tggctgcaag atatctgtgg tagacaaaga gtctgaagat 1800tacaagatgg ttgtgaagta tctcgagact acttatgagc ctgtgaaagt ctctgatgtt 1860gagtacggtg tgtcagtgca gaatgttttt gcggttgagt cagatgcaat tccttcatta 1920gatgatatca agaagttacc aaataaggtc cttttatggt gtgggtctcg gagctcaaat 1980ctattgagac atatctacaa agggttctta cctgctgtat gctctcttcc ggttcctggt 2040tatatgtttg ggagagcgat agtgtgttca gatgcagctg cagaagcagc aaggtatggt 2100tttacggctg tggatagacc agaagggttt cttgtattag ccgtagcatc acttggtgag 2160gaagttacag aatttacaag tccaccagag gatacgaaga cgttggaaga taaaaagatt 2220ggagtgaaag gattagggag gaagaaaact gaagagtcgg agcatttcat gtggagagat 2280gacataaaag ttccttgtgg acggttggtt ccatcggaac ataaggacag tccacttgag 2340tacaacgagt acgcggttta tgatccgaaa cagacaagta taaggttctt ggtggaagtg 2400aagtacgagg agaagggaac tgagatagtc gatgtcgaac cagagtag 244864815PRTArabidopsis thaliana 64Met Lys Val His Glu Thr Arg Ser His Ala His Met Ser Gly Asp Glu1 5 10 15Gln Lys Lys Gly Asn Leu Arg Lys His Lys Ala Glu Gly Lys Leu Pro 20 25 30Glu Ser Glu Gln Ser Gln Lys Lys Ala Lys Pro Glu Asn Asp Asp Gly 35 40 45Arg Ser Val Asn Gly Ala Gly Asp Ala Ala Ser Glu Tyr Asn Glu Phe 50 55 60Cys Lys Ala Val Glu Glu Asn Leu Ser Ile Asp Gln Ile Lys Glu Val65 70 75 80Leu Glu Ile Asn Gly Gln Asp Cys Ser Ala Pro Glu Glu Thr Leu Leu 85 90 95Ala Gln Cys Gln Asp Leu Leu Phe Tyr Gly Ala Leu Ala Lys Cys Pro 100 105 110Leu Cys Gly Gly Thr Leu Ile Cys Asp Asn Glu Lys Arg Phe Val Cys 115 120 125Gly Gly Glu Ile Ser Glu Trp Cys Ser Cys Val Phe Ser Thr Lys Asp 130 135 140Pro Pro Arg Lys Glu Glu Pro Val Lys Ile Pro Asp Ser Val Met Asn145 150 155 160Ser Ala Ile Ser Asp Leu Ile Lys Lys His Gln Asp Pro Lys Ser Arg 165 170 175Pro Lys Arg Glu Leu Gly Ser Ala Asp Lys Pro Phe Val Gly Met Met 180 185 190Ile Ser Leu Met Gly Arg Leu Thr Arg Thr His Gln Tyr Trp Lys Lys 195 200 205Lys Ile Glu Arg Asn Gly Gly Lys Val Ser Asn Thr Val Gln Gly Val 210 215 220Thr Cys Leu Val Val Ser Pro Ala Glu Arg Glu Arg Gly Gly Thr Ser225 230 235 240Lys Met Val Glu Ala Met Glu Gln Gly Leu Pro Val Val Ser Glu Ala 245 250 255Trp Leu Ile Asp Ser Val Glu Lys His Glu Ala Gln Pro Leu Glu Ala 260 265 270Tyr Asp Val Val Ser Asp Leu Ser Val Glu Gly Lys Gly Ile Pro Trp 275 280 285Asp Lys Gln Asp Pro Ser Glu Glu Ala Ile Glu Ser Phe Ser Ala Glu 290 295 300Leu Lys Met Tyr Gly Lys Arg Gly Val Tyr Met Asp Thr Lys Leu Gln305 310 315 320Glu Arg Gly Gly Lys Ile Phe Glu Lys Asp Gly Leu Leu Tyr Asn Cys 325 330 335Ala Phe Ser Ile Cys Asp Leu Gly Lys Gly Arg Asn Glu Tyr Cys Ile 340 345 350Met Gln Leu Val Thr Val Pro Asp Ser Asn Leu Asn Met Tyr Phe Lys 355 360 365Arg Gly Lys Val Gly Asp Asp Pro Asn Ala Glu Glu Arg Leu Glu Glu 370 375 380Trp Glu Asp Glu Glu Ala Ala Ile Lys Glu Phe Ala Arg Leu Phe Glu385 390 395 400Glu Ile Ala Gly Asn Glu Phe Glu Pro Trp Glu Arg Glu Lys Lys Ile 405 410 415Gln Lys Lys Pro His Lys Phe Phe Pro Ile Asp Met Asp Asp Gly Ile 420 425 430Glu Val Arg Ser Gly Ala Leu Gly Leu Arg Gln Leu Gly Ile Ala Ser 435 440 445Ala His Cys Lys Leu Asp Ser Phe Val Ala Asn Phe Ile Lys Val Leu 450 455 460Cys Gly Gln Glu Ile Tyr Asn Tyr Ala Leu Met Glu Leu Gly Leu Asp465 470 475 480Pro Pro Asp Leu Pro Met Gly Met Leu Thr Asp Ile His Leu Lys Arg 485 490 495Cys Glu Glu Val Leu Leu Glu Phe Val Glu Lys Val Lys Thr Thr Lys 500 505 510Glu Thr Gly Gln Lys Ala Glu Ala Met Trp Ala Asp Phe Ser Ser Arg 515 520 525Trp Phe Ser Leu Met His Ser Thr Arg Pro Met Arg Leu His Asp Val 530 535 540Asn Glu Leu Ala Asp His Ala Ala Ser Ala Phe Glu Thr Val Arg Asp545 550 555 560Ile Asn Thr Ala Ser Arg Leu Ile Gly Asp Met Arg Gly Asp Thr Leu 565 570 575Asp Asp Pro Leu Ser Asp Arg Tyr Lys Lys Leu Gly Cys Lys Ile Ser 580 585 590Val Val Asp Lys Glu Ser Glu Asp Tyr Lys Met Val Val Lys Tyr Leu 595 600 605Glu Thr Thr Tyr Glu Pro Val Lys Val Ser Asp Val Glu Tyr Gly Val 610 615 620Ser Val Gln Asn Val Phe Ala Val Glu Ser Asp Ala Ile Pro Ser Leu625 630 635 640Asp Asp Ile Lys Lys Leu Pro Asn Lys Val Leu Leu Trp Cys Gly Ser 645 650 655Arg Ser Ser Asn Leu Leu Arg His Ile Tyr Lys Gly Phe Leu Pro Ala 660 665 670Val Cys Ser Leu Pro Val Pro Gly Tyr Met Phe Gly Arg Ala Ile Val 675 680 685Cys Ser Asp Ala Ala Ala Glu Ala Ala Arg Tyr Gly Phe Thr Ala Val 690 695 700Asp Arg Pro Glu Gly Phe Leu Val Leu Ala Val Ala Ser Leu Gly Glu705 710 715 720Glu Val Thr Glu Phe Thr Ser Pro Pro Glu Asp Thr Lys Thr Leu Glu 725 730 735Asp Lys Lys Ile Gly Val Lys Gly Leu Gly Arg Lys Lys Thr Glu Glu 740 745 750Ser Glu His Phe Met Trp Arg Asp Asp Ile Lys Val Pro Cys Gly Arg 755 760 765Leu Val Pro Ser Glu His Lys Asp Ser Pro Leu Glu Tyr Asn Glu Tyr 770 775 780Ala Val Tyr Asp Pro Lys Gln Thr Ser Ile Arg Phe Leu Val Glu Val785 790 795 800Lys Tyr Glu Glu Lys Gly Thr Glu Ile Val Asp Val Glu Pro Glu 805 810 815652430DNAArabidopsis thaliana 65atgtctaccc cagctgaatc ttcagactcg aaatcgaaga aagatttcag tactgctatt 60ctcgagagga agaagtctcc gaaccgtctc gtcgtcgatg aggctatcaa cgatgataac 120tccgtcgtct ctcttcaccc tgcaaccatg gagaagcttc agctcttccg tggtgatacc 180attctcatca agggtaagaa gaggaaggac actgtctgca ttgctcttgc tgatgagaca 240tgtgaggagc caaagatcag aatgaataaa gtagtcagat ctaacttgag ggttagactg 300ggagatgtta tatctgttca ccaatgccca gacgtcaagt acggaaagcg tgttcacatc 360ctgcctgttg atgatactgt tgaaggagtg actggaaacc tatttgatgc ttacctgaaa 420ccttatttcc ttgaggcata ccgtccagtg aggaagggtg atctcttcct agtcagagga 480ggaatgagga gtgtggagtt caaagttata gagacagatc ctgctgagta ctgcgtggtt 540gctccagaca cagagatttt ctgtgagggt gagcctgtga agagagagga tgaagaaagg 600ctagatgatg taggttatga tgatgttggt ggtgtcagga aacagatggc tcagattagg 660gaacttgttg aacttccctt gaggcatcca cagctattca agtcgattgg tgttaagcca 720ccgaagggaa ttcttcttta tggaccacct gggtctggaa agactttgat cgctcgtgct 780gtggctaatg aaacgggtgc ctttttcttc tgtatcaacg gacctgagat catgtccaaa 840ttggctggtg agagtgagag caacctcagg aaagcattcg aggaggctga gaaaaatgcg 900ccttcaatca tattcattga tgagatcgac tctattgcac cgaaaagaga gaagactaat 960ggagaggttg agaggaggat tgtctctcag ctccttacgc taatggatgg actgaaatct 1020cgtgctcatg ttatcgtcat gggagcaacc aatcgcccca acagtatcga cccagctttg 1080agaaggtttg gaagatttga cagggagatc gatattggag ttcctgacga aattggacgt 1140cttgaagttc tgaggatcca tacaaagaac atgaagctgg ctgaagatgt ggatctcgaa 1200aggatctcaa aggacacaca cggttacgtc ggtgctgatc ttgcagcttt gtgcacagag 1260gccgccctgc aatgcatcag ggagaagatg gatgtgattg atctggaaga tgactccata 1320gacgctgaaa tcctcaattc catggcagtc actaatgaac atttccacac tgctctcggg 1380aacagcaacc catctgcact tcgtgaaact gttgtggagg ttcccaacgt ctcttggaat 1440gatattggag gtcttgagaa tgtcaagaga gagctccagg agactgttca atacccagtc 1500gagcacccag agaagtttga gaaattcggg atgtctccat caaagggagt ccttttctac 1560ggtcctcctg gatgtgggaa aacccttttg gccaaagcta ttgccaacga gtgccaagct 1620aatttcatca gtgtcaaggg tcccgagctt ctgacaatgt ggtttggaga gagtgaagca 1680aatgttcgtg aaatcttcga caaggcccgt caatccgctc catgtgttct tttctttgat 1740gagctcgact ccattgcaac tcagagagga ggtggaagtg gtggcgatgg aggtggtgct 1800gcggacagag tcttgaacca gcttttgact gagatggacg gaatgaatgc caagaaaacc 1860gtcttcatca tcggagctac caacagacct gacattatcg attcagctct tctccgtcct 1920ggaaggcttg accagctcat ttacattcca ctaccagatg aggattcccg tctcaatatc 1980ttcaaggccg ccttgaggaa atctcctatt gctaaagatg tagacatcgg tgcacttgct 2040aaatacactc agggtttcag tggtgctgat atcactgaga tttgccagag agcttgcaag 2100tacgccatca gagaaaacat tgagaaggac attgaaaagg agaagaggag gagcgagaac 2160ccagaggcaa tggaggaaga tggagtggat gaagtatcag agatcaaagc tgcacacttt 2220gaggagtcga tgaagtatgc gcgtaggagt gtgagtgatg cagacatcag gaagtaccaa 2280gcctttgctc agacgttgca gcagtctaga gggttcggtt ctgagttcag gttcgagaat 2340tctgctggtt caggtgccac cactggagtc gcagatccgt ttgccacgtc tgcagccgct 2400gctggggacg atgatgatct ctacaattag 243066809PRTArabidopsis thaliana 66Met Ser Thr Pro Ala Glu Ser Ser Asp Ser Lys Ser Lys Lys Asp Phe1 5 10 15Ser Thr Ala Ile Leu Glu Arg Lys Lys Ser Pro Asn Arg Leu Val Val 20 25 30Asp Glu Ala Ile Asn Asp Asp Asn Ser Val Val Ser Leu His Pro Ala 35 40 45Thr Met Glu Lys Leu Gln Leu Phe Arg Gly Asp Thr Ile Leu Ile Lys 50 55 60Gly Lys Lys Arg Lys Asp Thr Val Cys Ile Ala Leu Ala Asp Glu Thr65 70 75 80Cys Glu Glu Pro Lys Ile Arg Met Asn Lys Val Val Arg Ser Asn Leu 85 90 95Arg Val Arg Leu Gly Asp Val Ile Ser Val His Gln Cys Pro Asp Val 100 105 110Lys Tyr Gly Lys Arg Val His Ile Leu Pro Val Asp Asp Thr Val Glu 115 120 125Gly Val Thr Gly Asn Leu Phe Asp Ala Tyr Leu Lys Pro Tyr Phe Leu 130 135 140Glu Ala Tyr Arg Pro Val Arg Lys Gly Asp Leu

Phe Leu Val Arg Gly145 150 155 160Gly Met Arg Ser Val Glu Phe Lys Val Ile Glu Thr Asp Pro Ala Glu 165 170 175Tyr Cys Val Val Ala Pro Asp Thr Glu Ile Phe Cys Glu Gly Glu Pro 180 185 190Val Lys Arg Glu Asp Glu Glu Arg Leu Asp Asp Val Gly Tyr Asp Asp 195 200 205Val Gly Gly Val Arg Lys Gln Met Ala Gln Ile Arg Glu Leu Val Glu 210 215 220Leu Pro Leu Arg His Pro Gln Leu Phe Lys Ser Ile Gly Val Lys Pro225 230 235 240Pro Lys Gly Ile Leu Leu Tyr Gly Pro Pro Gly Ser Gly Lys Thr Leu 245 250 255Ile Ala Arg Ala Val Ala Asn Glu Thr Gly Ala Phe Phe Phe Cys Ile 260 265 270Asn Gly Pro Glu Ile Met Ser Lys Leu Ala Gly Glu Ser Glu Ser Asn 275 280 285Leu Arg Lys Ala Phe Glu Glu Ala Glu Lys Asn Ala Pro Ser Ile Ile 290 295 300Phe Ile Asp Glu Ile Asp Ser Ile Ala Pro Lys Arg Glu Lys Thr Asn305 310 315 320Gly Glu Val Glu Arg Arg Ile Val Ser Gln Leu Leu Thr Leu Met Asp 325 330 335Gly Leu Lys Ser Arg Ala His Val Ile Val Met Gly Ala Thr Asn Arg 340 345 350Pro Asn Ser Ile Asp Pro Ala Leu Arg Arg Phe Gly Arg Phe Asp Arg 355 360 365Glu Ile Asp Ile Gly Val Pro Asp Glu Ile Gly Arg Leu Glu Val Leu 370 375 380Arg Ile His Thr Lys Asn Met Lys Leu Ala Glu Asp Val Asp Leu Glu385 390 395 400Arg Ile Ser Lys Asp Thr His Gly Tyr Val Gly Ala Asp Leu Ala Ala 405 410 415Leu Cys Thr Glu Ala Ala Leu Gln Cys Ile Arg Glu Lys Met Asp Val 420 425 430Ile Asp Leu Glu Asp Asp Ser Ile Asp Ala Glu Ile Leu Asn Ser Met 435 440 445Ala Val Thr Asn Glu His Phe His Thr Ala Leu Gly Asn Ser Asn Pro 450 455 460Ser Ala Leu Arg Glu Thr Val Val Glu Val Pro Asn Val Ser Trp Asn465 470 475 480Asp Ile Gly Gly Leu Glu Asn Val Lys Arg Glu Leu Gln Glu Thr Val 485 490 495Gln Tyr Pro Val Glu His Pro Glu Lys Phe Glu Lys Phe Gly Met Ser 500 505 510Pro Ser Lys Gly Val Leu Phe Tyr Gly Pro Pro Gly Cys Gly Lys Thr 515 520 525Leu Leu Ala Lys Ala Ile Ala Asn Glu Cys Gln Ala Asn Phe Ile Ser 530 535 540Val Lys Gly Pro Glu Leu Leu Thr Met Trp Phe Gly Glu Ser Glu Ala545 550 555 560Asn Val Arg Glu Ile Phe Asp Lys Ala Arg Gln Ser Ala Pro Cys Val 565 570 575Leu Phe Phe Asp Glu Leu Asp Ser Ile Ala Thr Gln Arg Gly Gly Gly 580 585 590Ser Gly Gly Asp Gly Gly Gly Ala Ala Asp Arg Val Leu Asn Gln Leu 595 600 605Leu Thr Glu Met Asp Gly Met Asn Ala Lys Lys Thr Val Phe Ile Ile 610 615 620Gly Ala Thr Asn Arg Pro Asp Ile Ile Asp Ser Ala Leu Leu Arg Pro625 630 635 640Gly Arg Leu Asp Gln Leu Ile Tyr Ile Pro Leu Pro Asp Glu Asp Ser 645 650 655Arg Leu Asn Ile Phe Lys Ala Ala Leu Arg Lys Ser Pro Ile Ala Lys 660 665 670Asp Val Asp Ile Gly Ala Leu Ala Lys Tyr Thr Gln Gly Phe Ser Gly 675 680 685Ala Asp Ile Thr Glu Ile Cys Gln Arg Ala Cys Lys Tyr Ala Ile Arg 690 695 700Glu Asn Ile Glu Lys Asp Ile Glu Lys Glu Lys Arg Arg Ser Glu Asn705 710 715 720Pro Glu Ala Met Glu Glu Asp Gly Val Asp Glu Val Ser Glu Ile Lys 725 730 735Ala Ala His Phe Glu Glu Ser Met Lys Tyr Ala Arg Arg Ser Val Ser 740 745 750Asp Ala Asp Ile Arg Lys Tyr Gln Ala Phe Ala Gln Thr Leu Gln Gln 755 760 765Ser Arg Gly Phe Gly Ser Glu Phe Arg Phe Glu Asn Ser Ala Gly Ser 770 775 780Gly Ala Thr Thr Gly Val Ala Asp Pro Phe Ala Thr Ser Ala Ala Ala785 790 795 800Ala Gly Asp Asp Asp Asp Leu Tyr Asn 805672847DNAArabidopsis thaliana 67atggacaaat ctagtaccat gcttgttcac tatgacaaag ggactccagc agttgctaat 60gagattaaag aagctctcga aggaaatgat gttgaagcta aagttgatgc catgaagaag 120gcaattatgc ttttgctgaa tggtgaaacc attcctcagc ttttcattac cattataaga 180tatgtgctgc cttctgaaga ccacaccatc caaaagcttc tgttgctgta cctggagctg 240attgaaaaga cagattcgaa ggggaaggtg ttgcctgaaa tgattttgat atgccagaat 300cttcgtaata accttcagca tccgaatgag tacatccgtg gagtgacact gaggtttctc 360tgtcggatga aggagactga aatagtggaa cctttgactc catcagtgtt acaaaatctg 420gagcatcgcc atccatttgt tcgcaggaat gcaattctgg caatcatgtc gatatataaa 480cttccacatg gcgaccaact cttcgtggat gcacctgaaa tgatcgagaa agttctatca 540acagaacaag atccttctgc caagagaaat gcatttctaa tgctctttac ctgtgccgaa 600gaacgtgcag tgaattatct tctgagcaat gttgacaagg tttcagactg gaatgaatca 660cttcagatgg tggtgctgga gctgattcga agtgtgtgta agactaaacc agcggagaag 720ggaaaatata ttaaaattat tatttctctg ttaagtgcta cttcttctgc agttatctat 780gaatgtgctg ggacacttgt ttctctctca tctgccccta ctgctattcg agctgctgcc 840aacacctact gccaacttct tctttctcag agtgacaaca atgtgaagct tatcttgctc 900gatcggttgt atgagcttaa gacattgcac agagatatca tggttgagct gataatcgat 960gtgctcagag cactctcaag cccaaacctt gatatccgca ggaagacact tgacattgcc 1020cttgacttga ttacccatca taatattaat gaagtcgttc aaatgttgaa gaaagaagtt 1080gtgaagacac agagtggaga acttgagaag aatggagagt acaggcaaat gcttattcaa 1140gccatccatg cttgtgcagt taagttcccc gaagttgcaa gcacagtggt ccatcttctg 1200atggatttcc tgggagatag caacgtggct tcagctcttg acgtggttgt tttcgttaga 1260gagataatag aaacaaatcc caagttgaga gtttcaatca tcaccaggtt gttggacacg 1320ttctatcaga tccgtgcagg aaaggtctgc ccttgtgcac tttggatcat tggtgagtat 1380tgcctatcac tttcagaagt tgagagtggc atttcaacta ttacacaatg ccttggcgaa 1440ttaccatttt actctgtttc tgaggagtct gagccaactg agacatcaaa gaagattcag 1500cctacctctt ctgccatggt gtcctctaga aagccagtta ttcttgctga tggaacttat 1560gctacacaaa gcgcagcctc tgaaaccaca ttctcctcgc ctacagttgt tcaaggatca 1620ctgacttctg gaaatttgag ggcactcctt ctaactggtg attttttcct cggagctgtg 1680gttgcttgca cgttgaccaa acttgttctt aggttggaag aggttcagtc ttccaaaact 1740gaagtaaaca agacagtatc acaggctttg ctaatcatgg tttctatttt gcaacttggg 1800caatctcctg tttctccaca ccctattgat aatgattcgt atgagcggat tatgttgtgc 1860ataaaattgc tttgccatag gaatgttgag atgaaaaaga tatggttgga atcctgccgc 1920cagagttttg tcaagatgat ttctgaaaaa cagcttagag agatggagga actgaaggca 1980aagacccaaa caactcatgc tcaaccggat gatctaattg acttcttcca tctaaagagt 2040cggaagggaa tgagtcaact tgagttggaa gaccaggtac aagatgacct aaagcgtgca 2100actggagaat tcaccaagga cgagaacgat gctaacaaac ttaaccgcat tcttcaactc 2160acaggattca gtgacccagt ctatgctgaa gcatatgtaa cggtacacca ttatgatatt 2220gctcttgaag ttacagtaat caaccgaacc aaggaaaccc ttcagaactt gtgcttggag 2280ttagcaacca tgggtgatct caaacttgtt gagcgtcctc agaactatag tctggcacct 2340gaaagaagca tgcagattaa agcaaacatc aaggtctcgt ccacagagac aggagtcata 2400ttcgggaaca tcgtctatga gacatcaaat gtaatggagc gcaatgttgt ggttcttaac 2460gacatacaca ttgatatcat ggactatatc tcccctgctg tgtgctcaga ggttgctttc 2520agaactatgt gggcagagtt tgaatgggaa aacaaggttg ctgtgaacac cacaattcaa 2580aacgaaagag aattcctcga ccacattatc aaatccacaa acatgaaatg tctcactgct 2640ccatctgcaa tagcaggtga atgtggattc cttgcagcaa acttatatgc aaaaagtgta 2700tttggtgagg atgctcttgt gaatttgagt attgagaagc aaacggatgg aacattgagt 2760ggttacataa ggataaggag caagacgcaa gggattgctc taagtcttgg agacaaaatc 2820accctcaaac aaaagggtgg tagctga 284768948PRTArabidopsis thaliana 68Met Asp Lys Ser Ser Thr Met Leu Val His Tyr Asp Lys Gly Thr Pro1 5 10 15Ala Val Ala Asn Glu Ile Lys Glu Ala Leu Glu Gly Asn Asp Val Glu 20 25 30Ala Lys Val Asp Ala Met Lys Lys Ala Ile Met Leu Leu Leu Asn Gly 35 40 45Glu Thr Ile Pro Gln Leu Phe Ile Thr Ile Ile Arg Tyr Val Leu Pro 50 55 60Ser Glu Asp His Thr Ile Gln Lys Leu Leu Leu Leu Tyr Leu Glu Leu65 70 75 80Ile Glu Lys Thr Asp Ser Lys Gly Lys Val Leu Pro Glu Met Ile Leu 85 90 95Ile Cys Gln Asn Leu Arg Asn Asn Leu Gln His Pro Asn Glu Tyr Ile 100 105 110Arg Gly Val Thr Leu Arg Phe Leu Cys Arg Met Lys Glu Thr Glu Ile 115 120 125Val Glu Pro Leu Thr Pro Ser Val Leu Gln Asn Leu Glu His Arg His 130 135 140Pro Phe Val Arg Arg Asn Ala Ile Leu Ala Ile Met Ser Ile Tyr Lys145 150 155 160Leu Pro His Gly Asp Gln Leu Phe Val Asp Ala Pro Glu Met Ile Glu 165 170 175Lys Val Leu Ser Thr Glu Gln Asp Pro Ser Ala Lys Arg Asn Ala Phe 180 185 190Leu Met Leu Phe Thr Cys Ala Glu Glu Arg Ala Val Asn Tyr Leu Leu 195 200 205Ser Asn Val Asp Lys Val Ser Asp Trp Asn Glu Ser Leu Gln Met Val 210 215 220Val Leu Glu Leu Ile Arg Ser Val Cys Lys Thr Lys Pro Ala Glu Lys225 230 235 240Gly Lys Tyr Ile Lys Ile Ile Ile Ser Leu Leu Ser Ala Thr Ser Ser 245 250 255Ala Val Ile Tyr Glu Cys Ala Gly Thr Leu Val Ser Leu Ser Ser Ala 260 265 270Pro Thr Ala Ile Arg Ala Ala Ala Asn Thr Tyr Cys Gln Leu Leu Leu 275 280 285Ser Gln Ser Asp Asn Asn Val Lys Leu Ile Leu Leu Asp Arg Leu Tyr 290 295 300Glu Leu Lys Thr Leu His Arg Asp Ile Met Val Glu Leu Ile Ile Asp305 310 315 320Val Leu Arg Ala Leu Ser Ser Pro Asn Leu Asp Ile Arg Arg Lys Thr 325 330 335Leu Asp Ile Ala Leu Asp Leu Ile Thr His His Asn Ile Asn Glu Val 340 345 350Val Gln Met Leu Lys Lys Glu Val Val Lys Thr Gln Ser Gly Glu Leu 355 360 365Glu Lys Asn Gly Glu Tyr Arg Gln Met Leu Ile Gln Ala Ile His Ala 370 375 380Cys Ala Val Lys Phe Pro Glu Val Ala Ser Thr Val Val His Leu Leu385 390 395 400Met Asp Phe Leu Gly Asp Ser Asn Val Ala Ser Ala Leu Asp Val Val 405 410 415Val Phe Val Arg Glu Ile Ile Glu Thr Asn Pro Lys Leu Arg Val Ser 420 425 430Ile Ile Thr Arg Leu Leu Asp Thr Phe Tyr Gln Ile Arg Ala Gly Lys 435 440 445Val Cys Pro Cys Ala Leu Trp Ile Ile Gly Glu Tyr Cys Leu Ser Leu 450 455 460Ser Glu Val Glu Ser Gly Ile Ser Thr Ile Thr Gln Cys Leu Gly Glu465 470 475 480Leu Pro Phe Tyr Ser Val Ser Glu Glu Ser Glu Pro Thr Glu Thr Ser 485 490 495Lys Lys Ile Gln Pro Thr Ser Ser Ala Met Val Ser Ser Arg Lys Pro 500 505 510Val Ile Leu Ala Asp Gly Thr Tyr Ala Thr Gln Ser Ala Ala Ser Glu 515 520 525Thr Thr Phe Ser Ser Pro Thr Val Val Gln Gly Ser Leu Thr Ser Gly 530 535 540Asn Leu Arg Ala Leu Leu Leu Thr Gly Asp Phe Phe Leu Gly Ala Val545 550 555 560Val Ala Cys Thr Leu Thr Lys Leu Val Leu Arg Leu Glu Glu Val Gln 565 570 575Ser Ser Lys Thr Glu Val Asn Lys Thr Val Ser Gln Ala Leu Leu Ile 580 585 590Met Val Ser Ile Leu Gln Leu Gly Gln Ser Pro Val Ser Pro His Pro 595 600 605Ile Asp Asn Asp Ser Tyr Glu Arg Ile Met Leu Cys Ile Lys Leu Leu 610 615 620Cys His Arg Asn Val Glu Met Lys Lys Ile Trp Leu Glu Ser Cys Arg625 630 635 640Gln Ser Phe Val Lys Met Ile Ser Glu Lys Gln Leu Arg Glu Met Glu 645 650 655Glu Leu Lys Ala Lys Thr Gln Thr Thr His Ala Gln Pro Asp Asp Leu 660 665 670Ile Asp Phe Phe His Leu Lys Ser Arg Lys Gly Met Ser Gln Leu Glu 675 680 685Leu Glu Asp Gln Val Gln Asp Asp Leu Lys Arg Ala Thr Gly Glu Phe 690 695 700Thr Lys Asp Glu Asn Asp Ala Asn Lys Leu Asn Arg Ile Leu Gln Leu705 710 715 720Thr Gly Phe Ser Asp Pro Val Tyr Ala Glu Ala Tyr Val Thr Val His 725 730 735His Tyr Asp Ile Ala Leu Glu Val Thr Val Ile Asn Arg Thr Lys Glu 740 745 750Thr Leu Gln Asn Leu Cys Leu Glu Leu Ala Thr Met Gly Asp Leu Lys 755 760 765Leu Val Glu Arg Pro Gln Asn Tyr Ser Leu Ala Pro Glu Arg Ser Met 770 775 780Gln Ile Lys Ala Asn Ile Lys Val Ser Ser Thr Glu Thr Gly Val Ile785 790 795 800Phe Gly Asn Ile Val Tyr Glu Thr Ser Asn Val Met Glu Arg Asn Val 805 810 815Val Val Leu Asn Asp Ile His Ile Asp Ile Met Asp Tyr Ile Ser Pro 820 825 830Ala Val Cys Ser Glu Val Ala Phe Arg Thr Met Trp Ala Glu Phe Glu 835 840 845Trp Glu Asn Lys Val Ala Val Asn Thr Thr Ile Gln Asn Glu Arg Glu 850 855 860Phe Leu Asp His Ile Ile Lys Ser Thr Asn Met Lys Cys Leu Thr Ala865 870 875 880Pro Ser Ala Ile Ala Gly Glu Cys Gly Phe Leu Ala Ala Asn Leu Tyr 885 890 895Ala Lys Ser Val Phe Gly Glu Asp Ala Leu Val Asn Leu Ser Ile Glu 900 905 910Lys Gln Thr Asp Gly Thr Leu Ser Gly Tyr Ile Arg Ile Arg Ser Lys 915 920 925Thr Gln Gly Ile Ala Leu Ser Leu Gly Asp Lys Ile Thr Leu Lys Gln 930 935 940Lys Gly Gly Ser945691086DNAArabidopsis thaliana 69atggcgaaat ctcagatctg gtttggtttt gcgttactcg cgttgcttct ggtttcagcc 60gtagctgacg atgtggttgt tttgactgac gatagcttcg aaaaggaagt tggtaaagat 120aaaggagctc tcgtcgagtt ttacgctccc tggtgtggtc actgcaagaa acttgctcca 180gagtatgaaa agctaggggc aagcttcaag aaggctaagt ctgtgttgat tgcaaaggtt 240gattgtgatg agcaaaagag tgtctgtact aaatatggtg ttagtggata cccaaccatt 300cagtggtttc ctaaaggatc tcttgaacct caaaagtatg agggtccacg caatgctgaa 360gctttggctg aatacgtgaa caaggaagga ggcaccaacg taaaattagc tgcagttcca 420caaaacgtgg ttgttttgac acctgacaat ttcgatgaga ttgttctgga tcaaaacaaa 480gatgtcctag tcgaatttta tgcaccatgg tgtggccact gcaaatcact cgctcccaca 540tacgaaaagg tagccacagt gtttaaacag gaagaaggtg tagtcatcgc caatttggat 600gctgatgcac acaaagccct tggcgagaaa tatggagtga gtggattccc aacattgaaa 660ttcttcccaa aggacaacaa agctggtcac gattatgacg gtggcaggga tttagatgac 720tttgtaagct tcatcaacga gaaatctggg accagcaggg acagtaaagg gcagcttact 780tcaaaggctg gtatagtcga aagcttagat gctttggtaa aagagttagt tgcagctagt 840gaagatgaga agaaggcagt gttgtctcgc atagaagagg aagcaagtac ccttaagggc 900tccaccacga ggtatggaaa gctttacttg aaactcgcaa agagctacat agaaaaaggt 960tcagactatg ctagcaaaga aacggagagg cttggacggg tgcttgggaa gtcgataagt 1020ccagtgaaag ctgatgaact cactctcaag agaaatatcc taaccacgtt cgttgcttct 1080tcttaa 108670361PRTArabidopsis thaliana 70Met Ala Lys Ser Gln Ile Trp Phe Gly Phe Ala Leu Leu Ala Leu Leu1 5 10 15Leu Val Ser Ala Val Ala Asp Asp Val Val Val Leu Thr Asp Asp Ser 20 25 30Phe Glu Lys Glu Val Gly Lys Asp Lys Gly Ala Leu Val Glu Phe Tyr 35 40 45Ala Pro Trp Cys Gly His Cys Lys Lys Leu Ala Pro Glu Tyr Glu Lys 50 55 60Leu Gly Ala Ser Phe Lys Lys Ala Lys Ser Val Leu Ile Ala Lys Val65 70 75 80Asp Cys Asp Glu Gln Lys Ser Val Cys Thr Lys Tyr Gly Val Ser Gly 85 90 95Tyr Pro Thr Ile Gln Trp Phe Pro Lys Gly Ser Leu Glu Pro Gln Lys 100 105 110Tyr Glu Gly Pro Arg Asn Ala Glu Ala Leu Ala Glu Tyr Val Asn Lys 115 120 125Glu Gly Gly Thr Asn Val Lys Leu Ala Ala Val Pro Gln Asn Val Val 130 135 140Val Leu Thr Pro Asp Asn Phe Asp Glu Ile Val Leu Asp Gln Asn Lys145 150 155 160Asp Val Leu Val Glu Phe Tyr Ala Pro Trp Cys Gly His Cys Lys Ser 165 170 175Leu Ala Pro Thr Tyr Glu Lys Val Ala Thr Val Phe Lys Gln Glu Glu 180

185 190Gly Val Val Ile Ala Asn Leu Asp Ala Asp Ala His Lys Ala Leu Gly 195 200 205Glu Lys Tyr Gly Val Ser Gly Phe Pro Thr Leu Lys Phe Phe Pro Lys 210 215 220Asp Asn Lys Ala Gly His Asp Tyr Asp Gly Gly Arg Asp Leu Asp Asp225 230 235 240Phe Val Ser Phe Ile Asn Glu Lys Ser Gly Thr Ser Arg Asp Ser Lys 245 250 255Gly Gln Leu Thr Ser Lys Ala Gly Ile Val Glu Ser Leu Asp Ala Leu 260 265 270Val Lys Glu Leu Val Ala Ala Ser Glu Asp Glu Lys Lys Ala Val Leu 275 280 285Ser Arg Ile Glu Glu Glu Ala Ser Thr Leu Lys Gly Ser Thr Thr Arg 290 295 300Tyr Gly Lys Leu Tyr Leu Lys Leu Ala Lys Ser Tyr Ile Glu Lys Gly305 310 315 320Ser Asp Tyr Ala Ser Lys Glu Thr Glu Arg Leu Gly Arg Val Leu Gly 325 330 335Lys Ser Ile Ser Pro Val Lys Ala Asp Glu Leu Thr Leu Lys Arg Asn 340 345 350Ile Leu Thr Thr Phe Val Ala Ser Ser 355 36071744DNAArabidopsis thaliana 71atggcgtcga gcgatgagcg tccaggagcg tatccggcac gtgacggatc agagaactta 60cctccgggag atccaaagac gatgaagacg gtggtgatgg ataaaggagc ggcgatgatg 120caatcgttga aaccgatcaa acagatgagt ctccatttgt gttctttcgc ttgttatggt 180cacgatccta gccgtcagat tgaagtcaac ttctatgttc atcgactcaa ccaagacttt 240cttcaatgtg ctgtttacga ttgcgactcc tctaaacccc atctcatcgg gatcgagtat 300attgtgtcgg agaggttatt tgagagtctt gatccggagg agcaaaagct ttggcactct 360catgactatg agatccaaac aggccttcta gtaactccaa gggtccctga gcttgtagct 420aagacagagc ttgaaaatat tgccaaaact tatgggaagt tttggtgcac ttggcagacc 480gatcgcgggg ataaattgcc acttggtgca ccatcactta tgatgtcacc acaagacgtg 540aatatgggaa agatcaagcc agggctattg aagaaacgtg acgatgagta tggaatctcg 600acggaatctt tgaagacgtc tcgagttgga attatgggac cggagaagaa aaattcgatg 660gctgattatt gggttcatca cggaaaagga ttagcggttg acataatcga aactgagatg 720cagaaattgg ctccgttccc gtaa 74472247PRTArabidopsis thaliana 72Met Ala Ser Ser Asp Glu Arg Pro Gly Ala Tyr Pro Ala Arg Asp Gly1 5 10 15Ser Glu Asn Leu Pro Pro Gly Asp Pro Lys Thr Met Lys Thr Val Val 20 25 30Met Asp Lys Gly Ala Ala Met Met Gln Ser Leu Lys Pro Ile Lys Gln 35 40 45Met Ser Leu His Leu Cys Ser Phe Ala Cys Tyr Gly His Asp Pro Ser 50 55 60Arg Gln Ile Glu Val Asn Phe Tyr Val His Arg Leu Asn Gln Asp Phe65 70 75 80Leu Gln Cys Ala Val Tyr Asp Cys Asp Ser Ser Lys Pro His Leu Ile 85 90 95Gly Ile Glu Tyr Ile Val Ser Glu Arg Leu Phe Glu Ser Leu Asp Pro 100 105 110Glu Glu Gln Lys Leu Trp His Ser His Asp Tyr Glu Ile Gln Thr Gly 115 120 125Leu Leu Val Thr Pro Arg Val Pro Glu Leu Val Ala Lys Thr Glu Leu 130 135 140Glu Asn Ile Ala Lys Thr Tyr Gly Lys Phe Trp Cys Thr Trp Gln Thr145 150 155 160Asp Arg Gly Asp Lys Leu Pro Leu Gly Ala Pro Ser Leu Met Met Ser 165 170 175Pro Gln Asp Val Asn Met Gly Lys Ile Lys Pro Gly Leu Leu Lys Lys 180 185 190Arg Asp Asp Glu Tyr Gly Ile Ser Thr Glu Ser Leu Lys Thr Ser Arg 195 200 205Val Gly Ile Met Gly Pro Glu Lys Lys Asn Ser Met Ala Asp Tyr Trp 210 215 220Val His His Gly Lys Gly Leu Ala Val Asp Ile Ile Glu Thr Glu Met225 230 235 240Gln Lys Leu Ala Pro Phe Pro 24573954DNAArabidopsis thaliana 73atggcgactc ttaaggtttc tgattctgtt cctgctcctt ctgatgatgc tgagcaattg 60agaaccgctt ttgaaggatg gggtacgaac gaggacttga tcatatcaat cttggctcac 120agaagtgctg aacagaggaa agtcatcagg caagcatacc acgaaaccta cggcgaagac 180cttctcaaga ctcttgacaa ggagctctct aacgatttcg agagagctat cttgttgtgg 240actcttgaac ccggtgagcg tgatgcttta ttggctaatg aagctacaaa aagatggact 300tcaagcaacc aagttcttat ggaagttgct tgcacaagga catcaacgca gctgcttcac 360gctaggcaag cttaccatgc tcgctacaag aagtctcttg aagaggacgt tgctcaccac 420actaccggtg acttcagaaa gcttttggtt tctcttgtta cctcatacag gtacgaagga 480gatgaagtga acatgacatt ggctaagcaa gaagctaagc tggtccatga gaaaatcaag 540gacaagcact acaatgatga ggatgttatt agaatcttgt ccacaagaag caaagctcag 600atcaatgcta cttttaaccg ttaccaagat gatcatggcg aggaaattct caagagtctt 660gaggaaggag atgatgatga caagttcctt gcacttttga ggtcaaccat tcagtgcttg 720acaagaccag agctttactt tgtcgatgtt cttcgttcag caatcaacaa aactggaact 780gatgaaggag cactcactag aattgtgacc acaagagctg agattgactt gaaggtcatt 840ggagaggagt accagcgcag gaacagcatt cctttggaga aagctattac caaagacact 900cgtggagatt acgagaagat gctcgtcgca cttctcggtg aagatgatgc ttaa 95474317PRTArabidopsis thaliana 74Met Ala Thr Leu Lys Val Ser Asp Ser Val Pro Ala Pro Ser Asp Asp1 5 10 15Ala Glu Gln Leu Arg Thr Ala Phe Glu Gly Trp Gly Thr Asn Glu Asp 20 25 30Leu Ile Ile Ser Ile Leu Ala His Arg Ser Ala Glu Gln Arg Lys Val 35 40 45Ile Arg Gln Ala Tyr His Glu Thr Tyr Gly Glu Asp Leu Leu Lys Thr 50 55 60Leu Asp Lys Glu Leu Ser Asn Asp Phe Glu Arg Ala Ile Leu Leu Trp65 70 75 80Thr Leu Glu Pro Gly Glu Arg Asp Ala Leu Leu Ala Asn Glu Ala Thr 85 90 95Lys Arg Trp Thr Ser Ser Asn Gln Val Leu Met Glu Val Ala Cys Thr 100 105 110Arg Thr Ser Thr Gln Leu Leu His Ala Arg Gln Ala Tyr His Ala Arg 115 120 125Tyr Lys Lys Ser Leu Glu Glu Asp Val Ala His His Thr Thr Gly Asp 130 135 140Phe Arg Lys Leu Leu Val Ser Leu Val Thr Ser Tyr Arg Tyr Glu Gly145 150 155 160Asp Glu Val Asn Met Thr Leu Ala Lys Gln Glu Ala Lys Leu Val His 165 170 175Glu Lys Ile Lys Asp Lys His Tyr Asn Asp Glu Asp Val Ile Arg Ile 180 185 190Leu Ser Thr Arg Ser Lys Ala Gln Ile Asn Ala Thr Phe Asn Arg Tyr 195 200 205Gln Asp Asp His Gly Glu Glu Ile Leu Lys Ser Leu Glu Glu Gly Asp 210 215 220Asp Asp Asp Lys Phe Leu Ala Leu Leu Arg Ser Thr Ile Gln Cys Leu225 230 235 240Thr Arg Pro Glu Leu Tyr Phe Val Asp Val Leu Arg Ser Ala Ile Asn 245 250 255Lys Thr Gly Thr Asp Glu Gly Ala Leu Thr Arg Ile Val Thr Thr Arg 260 265 270Ala Glu Ile Asp Leu Lys Val Ile Gly Glu Glu Tyr Gln Arg Arg Asn 275 280 285Ser Ile Pro Leu Glu Lys Ala Ile Thr Lys Asp Thr Arg Gly Asp Tyr 290 295 300Glu Lys Met Leu Val Ala Leu Leu Gly Glu Asp Asp Ala305 310 315751170DNAArabidopsis thaliana 75atggtggatc tattgaactc ggtgatgaac ctggtggcgc ctccagcgac catggtggtg 60atggcctttg catggccatt actgtctttc attagcttct ccgaacgggc ttacaactct 120tatttcgcca ccgaaaatat ggaagataaa gtagttgtca tcaccggagc ttcatcggcc 180attggagagc aaatagcata tgaatatgca aaaagaggag cgaatttggt gttggtggcg 240aggagagagc agagactgag agttgtgagt aataaggcta aacagattgg agccaaccat 300gtgatcatca tcgctgctga tgtcatcaaa gaagatgact gccgccgttt tatcacccaa 360gccgtcaact attacggccg cgtggatcat ctagtgaata cagcgagtct tggacacact 420ttttactttg aggaagtgag tgacacgact gtgtttccac atttgctgga cataaacttc 480tgggggaatg tttatccgac atacgtagcg ttgccatacc ttcaccagac gaatggccga 540atagtcgtga atgcatcggt tgaaaactgg ttgcctctac cacggatgag tctttattct 600gctgcaaaag cagcattagt caacttctat gagacgctgc gtttcgagct aaatggagac 660gttggtataa ctatcgcgac tcacgggtgg attggcagtg agatgagtgg aggaaagttc 720atgctagaag aaggtgctga gatgcaatgg aaggaagaga gagaagtacc tgcaaatggt 780ggaccgctag aggaatttgc aaagatgatt gtggcaggag cttgtagggg agatgcatat 840gtgaagtttc caaactggta cgatgtcttt ctcctctatc gagtcttcac accgaatgta 900ctgagatgga cattcaagtt gttactgtct actgagggta cacgtagaag ctcccttgtt 960ggggtcgggt caggtatgcc tgtggatgaa tcctcttcac aaatgaaact tatgcttgaa 1020ggaggaccac ctcgagttcc tgcaagccca cctaggtata ccgcaagccc acctcattat 1080accgcaagcc caccacggta tcctgcaagc ccacctcggt atcctgcgag cccacctcgg 1140ttttcacagt ttaatatcca agagttgtaa 117076389PRTArabidopsis thaliana 76Met Val Asp Leu Leu Asn Ser Val Met Asn Leu Val Ala Pro Pro Ala1 5 10 15Thr Met Val Val Met Ala Phe Ala Trp Pro Leu Leu Ser Phe Ile Ser 20 25 30Phe Ser Glu Arg Ala Tyr Asn Ser Tyr Phe Ala Thr Glu Asn Met Glu 35 40 45Asp Lys Val Val Val Ile Thr Gly Ala Ser Ser Ala Ile Gly Glu Gln 50 55 60Ile Ala Tyr Glu Tyr Ala Lys Arg Gly Ala Asn Leu Val Leu Val Ala65 70 75 80Arg Arg Glu Gln Arg Leu Arg Val Val Ser Asn Lys Ala Lys Gln Ile 85 90 95Gly Ala Asn His Val Ile Ile Ile Ala Ala Asp Val Ile Lys Glu Asp 100 105 110Asp Cys Arg Arg Phe Ile Thr Gln Ala Val Asn Tyr Tyr Gly Arg Val 115 120 125Asp His Leu Val Asn Thr Ala Ser Leu Gly His Thr Phe Tyr Phe Glu 130 135 140Glu Val Ser Asp Thr Thr Val Phe Pro His Leu Leu Asp Ile Asn Phe145 150 155 160Trp Gly Asn Val Tyr Pro Thr Tyr Val Ala Leu Pro Tyr Leu His Gln 165 170 175Thr Asn Gly Arg Ile Val Val Asn Ala Ser Val Glu Asn Trp Leu Pro 180 185 190Leu Pro Arg Met Ser Leu Tyr Ser Ala Ala Lys Ala Ala Leu Val Asn 195 200 205Phe Tyr Glu Thr Leu Arg Phe Glu Leu Asn Gly Asp Val Gly Ile Thr 210 215 220Ile Ala Thr His Gly Trp Ile Gly Ser Glu Met Ser Gly Gly Lys Phe225 230 235 240Met Leu Glu Glu Gly Ala Glu Met Gln Trp Lys Glu Glu Arg Glu Val 245 250 255Pro Ala Asn Gly Gly Pro Leu Glu Glu Phe Ala Lys Met Ile Val Ala 260 265 270Gly Ala Cys Arg Gly Asp Ala Tyr Val Lys Phe Pro Asn Trp Tyr Asp 275 280 285Val Phe Leu Leu Tyr Arg Val Phe Thr Pro Asn Val Leu Arg Trp Thr 290 295 300Phe Lys Leu Leu Leu Ser Thr Glu Gly Thr Arg Arg Ser Ser Leu Val305 310 315 320Gly Val Gly Ser Gly Met Pro Val Asp Glu Ser Ser Ser Gln Met Lys 325 330 335Leu Met Leu Glu Gly Gly Pro Pro Arg Val Pro Ala Ser Pro Pro Arg 340 345 350Tyr Thr Ala Ser Pro Pro His Tyr Thr Ala Ser Pro Pro Arg Tyr Pro 355 360 365Ala Ser Pro Pro Arg Tyr Pro Ala Ser Pro Pro Arg Phe Ser Gln Phe 370 375 380Asn Ile Gln Glu Leu38577990DNAArabidopsis thaliana 77atggctggaa aactcatgca cgctcttcag tacaactctt acggtggtgg cgccgccgga 60ttagagcatg ttcaagttcc ggttccaaca ccaaagagta atgaggtttg cctgaaatta 120gaagctacta gtctaaaccc tgttgattgg aaaattcaga aaggaatgat ccgcccattt 180ctgccccgca agttcccctg cattccagct actgatgttg ctggagaggt cgttgaggtt 240ggatcaggag taaaaaattt taaggctggt gacaaagttg tagcggttct tagccatcta 300ggtggaggtg gacttgctga gttcgctgtt gcaaccgaga agctgactgt caaaagacct 360caagaagtgg gagcagctga agcagcagct ttacctgtgg cgggtctaac cgctctccaa 420gctcttacta atcctgcggg gttgaagctg gatggtacag gcaagaaggc gaacatcctg 480gtcacagcag catctggtgg ggttggtcac tatgcagtcc agctggcaaa acttgcaaat 540gctcacgtaa ccgctacatg tggtgcccgg aacatagagt ttgtcaaatc gttgggagcg 600gatgaggttc tcgactacaa gactcccgag ggagccgccc tcaagagtcc gtcgggtaaa 660aaatatgacg ctgtggtcca ttgtgcaaac gggattccat tttcggtatt cgaaccaaat 720ttgtcggaaa acgggaaggt gatagacatc acaccggggc ctaatgcaat gtggacttat 780gcggttaaga aaataaccat gtcaaagaag cagttagtgc cactcttgtt gatcccaaaa 840gctgagaatt tggagtttat ggtgaatcta gtgaaagaag ggaaagtgaa gacagtgatt 900gactcaaagc atcctttgag caaagcggag gatgcttggg ccaaaagtat cgatggtcat 960gctactggga agatcattgt cgagccataa 99078329PRTArabidopsis thaliana 78Met Ala Gly Lys Leu Met His Ala Leu Gln Tyr Asn Ser Tyr Gly Gly1 5 10 15Gly Ala Ala Gly Leu Glu His Val Gln Val Pro Val Pro Thr Pro Lys 20 25 30Ser Asn Glu Val Cys Leu Lys Leu Glu Ala Thr Ser Leu Asn Pro Val 35 40 45Asp Trp Lys Ile Gln Lys Gly Met Ile Arg Pro Phe Leu Pro Arg Lys 50 55 60Phe Pro Cys Ile Pro Ala Thr Asp Val Ala Gly Glu Val Val Glu Val65 70 75 80Gly Ser Gly Val Lys Asn Phe Lys Ala Gly Asp Lys Val Val Ala Val 85 90 95Leu Ser His Leu Gly Gly Gly Gly Leu Ala Glu Phe Ala Val Ala Thr 100 105 110Glu Lys Leu Thr Val Lys Arg Pro Gln Glu Val Gly Ala Ala Glu Ala 115 120 125Ala Ala Leu Pro Val Ala Gly Leu Thr Ala Leu Gln Ala Leu Thr Asn 130 135 140Pro Ala Gly Leu Lys Leu Asp Gly Thr Gly Lys Lys Ala Asn Ile Leu145 150 155 160Val Thr Ala Ala Ser Gly Gly Val Gly His Tyr Ala Val Gln Leu Ala 165 170 175Lys Leu Ala Asn Ala His Val Thr Ala Thr Cys Gly Ala Arg Asn Ile 180 185 190Glu Phe Val Lys Ser Leu Gly Ala Asp Glu Val Leu Asp Tyr Lys Thr 195 200 205Pro Glu Gly Ala Ala Leu Lys Ser Pro Ser Gly Lys Lys Tyr Asp Ala 210 215 220Val Val His Cys Ala Asn Gly Ile Pro Phe Ser Val Phe Glu Pro Asn225 230 235 240Leu Ser Glu Asn Gly Lys Val Ile Asp Ile Thr Pro Gly Pro Asn Ala 245 250 255Met Trp Thr Tyr Ala Val Lys Lys Ile Thr Met Ser Lys Lys Gln Leu 260 265 270Val Pro Leu Leu Leu Ile Pro Lys Ala Glu Asn Leu Glu Phe Met Val 275 280 285Asn Leu Val Lys Glu Gly Lys Val Lys Thr Val Ile Asp Ser Lys His 290 295 300Pro Leu Ser Lys Ala Glu Asp Ala Trp Ala Lys Ser Ile Asp Gly His305 310 315 320Ala Thr Gly Lys Ile Ile Val Glu Pro 325791389DNAPhyscomitrella patens 79atggaaattc ccttaggtcg agatggcgag ggtatgcagt caaagcagtg cccgcgcggc 60cactggcgtc cagcggaaga cgacaagctg cgagaactag tgtcccagtt tggacctcaa 120aactggaatc tcatagcaga gaaacttcag ggtcgatcag ggaaaagctg caggctacgg 180tggttcaatc agctggaccc tcgcatcaac cggcacccat tctcggaaga agaggaagag 240cggctgctta tagcacacaa gcgctacggc aacaagtggg cattgatcgc gcgcctcttt 300ccgggccgca cagacaacgc ggtgaagaat cactggcacg ttgtgacggc aagacagtcc 360cgtgaacgga cacgaactta cggccgtatc aaaggtccgg tacatcgaag aggcaagggt 420aaccgtatca atacctccgc acttggaaat taccatcacg attcgaaggg agctctcaca 480gcctggattg agtcgaagta tgcgacagtc gagcagtctg cggaagggct cgctaggtct 540ccttgtaccg gcagaggctc tcctcctcta cccaccggtt tcagtatacc gcagatttcc 600ggcggcgcct tccatcgacc gacaaacatg agtactagtc ctcttagcga tgtgactatc 660gagtcgccaa agtttagcaa ctccgaaaat gcgcaaataa taaccgcgcc cgtcctgcaa 720aagccaatgg gagatcccag gtcagtatgc ttgccgaatt cgactgtttc cgacaagcag 780caagtgctgc agagtaattc catcgacggt cagatctcct ccgggctcca gacaagcgca 840atagtagcgc atgatgagaa atcgggcgtc atttcaatga atcatcaagc accggatatg 900tcctgtgttg gattgaagtc aaattttcag gggagtctcc atcctggcgc tgttagatct 960tcttggaatc aatcccttcc ccactgtttt ggccacagta acaagttggt ggaggagtgc 1020aggagttcta caggcgcatg cactgaacgc tctgagattc tgcaagaaca gcattctagc 1080cttcagttta aatgcagcac tgcgtacaat actggaagat atcaacatga aaacctttgt 1140gggccagcat tctcgcaaca agacacagcg aacgaggttg cgaatttttc tacgttggca 1200ttctccggcc tagtgaagca tcgccaagag aggttgtgca aagatagtgg atctgctctc 1260aagctgggac tatcatgggt tacatccgat agcactcttg acttgagtgt tgccaaaatg 1320tcagcatcgc agccagagca gtctgcgccg gttgcattca ttgattttct aggcgtggga 1380gcggcctga 138980462PRTPhyscomitrella patens 80Met Glu Ile Pro Leu Gly Arg Asp Gly Glu Gly Met Gln Ser Lys Gln1 5 10 15Cys Pro Arg Gly His Trp Arg Pro Ala Glu Asp Asp Lys Leu Arg Glu 20 25 30Leu Val Ser Gln Phe Gly Pro Gln Asn Trp Asn Leu Ile Ala Glu Lys 35 40 45Leu Gln Gly Arg Ser Gly Lys Ser Cys Arg Leu Arg Trp Phe Asn Gln 50 55 60Leu Asp Pro Arg Ile Asn Arg His Pro Phe Ser Glu Glu Glu Glu Glu65 70 75 80Arg Leu Leu Ile Ala His Lys Arg Tyr Gly Asn Lys Trp Ala Leu Ile 85

90 95Ala Arg Leu Phe Pro Gly Arg Thr Asp Asn Ala Val Lys Asn His Trp 100 105 110His Val Val Thr Ala Arg Gln Ser Arg Glu Arg Thr Arg Thr Tyr Gly 115 120 125Arg Ile Lys Gly Pro Val His Arg Arg Gly Lys Gly Asn Arg Ile Asn 130 135 140Thr Ser Ala Leu Gly Asn Tyr His His Asp Ser Lys Gly Ala Leu Thr145 150 155 160Ala Trp Ile Glu Ser Lys Tyr Ala Thr Val Glu Gln Ser Ala Glu Gly 165 170 175Leu Ala Arg Ser Pro Cys Thr Gly Arg Gly Ser Pro Pro Leu Pro Thr 180 185 190Gly Phe Ser Ile Pro Gln Ile Ser Gly Gly Ala Phe His Arg Pro Thr 195 200 205Asn Met Ser Thr Ser Pro Leu Ser Asp Val Thr Ile Glu Ser Pro Lys 210 215 220Phe Ser Asn Ser Glu Asn Ala Gln Ile Ile Thr Ala Pro Val Leu Gln225 230 235 240Lys Pro Met Gly Asp Pro Arg Ser Val Cys Leu Pro Asn Ser Thr Val 245 250 255Ser Asp Lys Gln Gln Val Leu Gln Ser Asn Ser Ile Asp Gly Gln Ile 260 265 270Ser Ser Gly Leu Gln Thr Ser Ala Ile Val Ala His Asp Glu Lys Ser 275 280 285Gly Val Ile Ser Met Asn His Gln Ala Pro Asp Met Ser Cys Val Gly 290 295 300Leu Lys Ser Asn Phe Gln Gly Ser Leu His Pro Gly Ala Val Arg Ser305 310 315 320Ser Trp Asn Gln Ser Leu Pro His Cys Phe Gly His Ser Asn Lys Leu 325 330 335Val Glu Glu Cys Arg Ser Ser Thr Gly Ala Cys Thr Glu Arg Ser Glu 340 345 350Ile Leu Gln Glu Gln His Ser Ser Leu Gln Phe Lys Cys Ser Thr Ala 355 360 365Tyr Asn Thr Gly Arg Tyr Gln His Glu Asn Leu Cys Gly Pro Ala Phe 370 375 380Ser Gln Gln Asp Thr Ala Asn Glu Val Ala Asn Phe Ser Thr Leu Ala385 390 395 400Phe Ser Gly Leu Val Lys His Arg Gln Glu Arg Leu Cys Lys Asp Ser 405 410 415Gly Ser Ala Leu Lys Leu Gly Leu Ser Trp Val Thr Ser Asp Ser Thr 420 425 430Leu Asp Leu Ser Val Ala Lys Met Ser Ala Ser Gln Pro Glu Gln Ser 435 440 445Ala Pro Val Ala Phe Ile Asp Phe Leu Gly Val Gly Ala Ala 450 455 46081963DNAArabidopsis thaliana 81atggagatga acattaagtt tccagttata gacttgtcta agctcaatgg tgaagagaga 60gaccaaacca tggctttgat cgacgatgct tgtcaaaact ggggcttctt cgagctggtg 120aaccatggac taccatatga tctaatggac aacattgaga ggatgacaaa ggaacactac 180aagaaacata tggaacaaaa gttcaaagaa atgcttcgtt ccaaaggttt agataccctc 240gagaccgaag ttgaagatgt cgattgggaa agcactttct acctccatca tctccctcaa 300tctaacctat acgacatccc tgatatgtca aatgaatacc gattggcaat gaaggatttt 360gggaagaggc ttgagattct agctgaagag ctattggact tgttgtgtga gaatctaggg 420ttggagaaag ggtacttgaa gaaggtgttt catgggacaa cgggtccaac ttttgcgaca 480aagcttagca actatccacc atgtcctaaa ccagagatga tcaaagggct tagggctcac 540acagatgcag gaggcctcat tttgctgttt caagatgata aggtcagtgg tctccagctt 600cttaaagatg gtgattgggt tgatgttcct cctctcaagc attccattgt catcaacctt 660ggtgaccaac ttgaggtgat aacaaacggg aagtacaaga gtgtaatgca ccgtgtgatg 720acccagaaag aaggaaacag gatgtctatc gcgtcgtttt acaaccccgg aagcgatgct 780gagatctctc cggcaacatc tcttgtggat aaagactcaa aatacccaag ctttgtgttt 840gatgactaca tgaaactcta tgccggactc aagtttcagg ccaaggagcc acggttcgag 900gcgatgaaaa atgctgaagc agctgcggat ttgaatccgg tggctgtggt tgagacattc 960taa 96382320PRTArabidopsis thaliana 82Met Glu Met Asn Ile Lys Phe Pro Val Ile Asp Leu Ser Lys Leu Asn1 5 10 15Gly Glu Glu Arg Asp Gln Thr Met Ala Leu Ile Asp Asp Ala Cys Gln 20 25 30Asn Trp Gly Phe Phe Glu Leu Val Asn His Gly Leu Pro Tyr Asp Leu 35 40 45Met Asp Asn Ile Glu Arg Met Thr Lys Glu His Tyr Lys Lys His Met 50 55 60Glu Gln Lys Phe Lys Glu Met Leu Arg Ser Lys Gly Leu Asp Thr Leu65 70 75 80Glu Thr Glu Val Glu Asp Val Asp Trp Glu Ser Thr Phe Tyr Leu His 85 90 95His Leu Pro Gln Ser Asn Leu Tyr Asp Ile Pro Asp Met Ser Asn Glu 100 105 110Tyr Arg Leu Ala Met Lys Asp Phe Gly Lys Arg Leu Glu Ile Leu Ala 115 120 125Glu Glu Leu Leu Asp Leu Leu Cys Glu Asn Leu Gly Leu Glu Lys Gly 130 135 140Tyr Leu Lys Lys Val Phe His Gly Thr Thr Gly Pro Thr Phe Ala Thr145 150 155 160Lys Leu Ser Asn Tyr Pro Pro Cys Pro Lys Pro Glu Met Ile Lys Gly 165 170 175Leu Arg Ala His Thr Asp Ala Gly Gly Leu Ile Leu Leu Phe Gln Asp 180 185 190Asp Lys Val Ser Gly Leu Gln Leu Leu Lys Asp Gly Asp Trp Val Asp 195 200 205Val Pro Pro Leu Lys His Ser Ile Val Ile Asn Leu Gly Asp Gln Leu 210 215 220Glu Val Ile Thr Asn Gly Lys Tyr Lys Ser Val Met His Arg Val Met225 230 235 240Thr Gln Lys Glu Gly Asn Arg Met Ser Ile Ala Ser Phe Tyr Asn Pro 245 250 255Gly Ser Asp Ala Glu Ile Ser Pro Ala Thr Ser Leu Val Asp Lys Asp 260 265 270Ser Lys Tyr Pro Ser Phe Val Phe Asp Asp Tyr Met Lys Leu Tyr Ala 275 280 285Gly Leu Lys Phe Gln Ala Lys Glu Pro Arg Phe Glu Ala Met Lys Asn 290 295 300Ala Glu Ala Ala Ala Asp Leu Asn Pro Val Ala Val Val Glu Thr Phe305 310 315 3208336DNAArtificial SequenceDescription of Artificial Sequence Primer 83atggcgcgcc atggcaatct tccgaagtac actagt 368432DNAArtificial SequenceDescription of Artificial Sequence Primer 84gcttaattaa ttaagggcac ttgagacggc ca 328535DNAArtificial SequenceDescription of Artificial Sequence Primer 85atggcgcgcc aacaatggag aatggagcaa cgacg 358637DNAArtificial SequenceDescription of Artificial Sequence Primer 86gcttaattaa ctatatggtt ggatattgag tcttggc 378736DNAArtificial SequenceDescription of Artificial Sequence Primer 87atggcgcgcc atggctgaaa aagtaaagtc tggtca 368834DNAArtificial SequenceDescription of Artificial Sequence Primer 88gcttaattaa ttatagctcc tcagatccct ccga 348935DNAArtificial SequenceDescription of Artificial Sequence Primer 89atggcgcgcc atggctggag aagaaataga gaggg 359038DNAArtificial SequenceDescription of Artificial Sequence Primer 90gcttaattaa ttaaacagag gcttctctac tctcactt 389133DNAArtificial SequenceDescription of Artificial Sequence Primer 91atggcgcgcc atggctggag tgatgaagtt ggc 339232DNAArtificial SequenceDescription of Artificial Sequence Primer 92gcttaattaa tcacctcacg gtgttgcagt tg 329334DNAArtificial SequenceDescription of Artificial Sequence Primer 93atggcgcgcc aaacaatggg gcttgctgtg gtgg 349436DNAArtificial SequenceDescription of Artificial Sequence Primer 94gcttaattaa ttactgcaag gctttcaata tatttc 369534DNAArtificial SequenceDescription of Artificial Sequence Primer 95atggcgcgcc aacaatggcg ttcacggcgc ttgt 349637DNAArtificial SequenceDescription of Artificial Sequence Primer 96gcttaattaa tcaacaagta ggataaggaa caccaca 379738DNAArtificial SequenceDescription of Artificial Sequence Primer 97atggcgcgcc aacaatggcc cttgatgagc ttctcaag 389835DNAArtificial SequenceDescription of Artificial Sequence Primer 98gcttaattaa tcagagagaa gcagagtttg ttcgc 359936DNAArtificial SequenceDescription of Artificial Sequence Primer 99atggcgcgcc aacaatggcg caatcccgat tattag 3610034DNAArtificial SequenceDescription of Artificial Sequence Primer 100gcttaattaa ttaaaaccac tcgcctctca tttc 3410131DNAArtificial SequenceDescription of Artificial Sequence Primer 101atggcgcgcc atgtccgtgg ctcgattcga t 3110237DNAArtificial SequenceDescription of Artificial Sequence Primer 102gcttaattaa ctaatcctct agctcgatga ttttgac 3710341DNAArtificial SequenceDescription of Artificial Sequence Primer 103atggcgcgcc aacaatggcg atttacagat ctctaagaaa g 4110438DNAArtificial SequenceDescription of Artificial Sequence Primer 104gcttaattaa ttaccttaga taagtgatcc atgtctgg 3810541DNAArtificial SequenceDescription of Artificial Sequence Primer 105atggcgcgcc aacaatggta aaggaaactc taattcctcc g 4110633DNAArtificial SequenceDescription of Artificial Sequence Primer 106gcttaattaa ctaccagccg aagattggct tgt 3310732DNAArtificial SequenceDescription of Artificial Sequence Primer 107atggcgcgcc atttggagag caatggcgac tt 3210834DNAArtificial SequenceDescription of Artificial Sequence Primer 108gcttaattaa ttacatcgaa cgaagaagca tcaa 3410934DNAArtificial SequenceDescription of Artificial Sequence Primer 109atggcgcgcc catcctcaga aagaatggct caaa 3411035DNAArtificial SequenceDescription of Artificial Sequence Primer 110gcttaattaa ttagctttct tcaccatcat cggtg 3511137DNAArtificial SequenceDescription of Artificial Sequence Primer 111atggcgcgcc aacaatgggt gcaggtggaa gaatgcc 3711240DNAArtificial SequenceDescription of Artificial Sequence Primer 112gcttaattaa tcataactta ttgttgtacc agtacacacc 4011341DNAArtificial SequenceDescription of Artificial Sequence Primer 113atggcgcgcc aacaatggct tcaataaatg aagatgtgtc t 4111436DNAArtificial SequenceDescription of Artificial Sequence Primer 114gacttaatta atcaattggt gggattaacg actcca 3611543DNAArtificial SequenceDescription of Artificial Sequence Primer 115atggcgcgcc aacaatggct acattctctt gtaattctta tga 4311637DNAArtificial SequenceDescription of Artificial Sequence Primer 116gacttaatta atcagaagcg gccattaaaa ttaccca 3711738DNAArtificial SequenceDescription of Artificial Sequence Primer 117ataagaatgc ggccgccatg gcaacggaat gcattgca 3811837DNAArtificial SequenceDescription of Artificial Sequence Primer 118ataagaatgc ggccgcttag aaacttcttc tgttctt 3711938DNAArtificial SequenceDescription of Artificial Sequence Primer 119ataagaatgc ggccgccatg gcgtcagagc aagcaagg 3812037DNAArtificial SequenceDescription of Artificial Sequence Primer 120ataagaatgc ggccgctcaa cgttgtccat gttcccg 3712139DNAArtificial SequenceDescription of Artificial Sequence Primer 121ataagaatgc ggccgccatg gctaagtctt gctatttca 3912238DNAArtificial SequenceDescription of Artificial Sequence Primer 122ataagaatgc ggccgctcag gcgctatagc ctaagatt 3812341DNAArtificial SequenceDescription of Artificial Sequence Primer 123ataagaatgc ggccgccatg gacggtgccg gagaatcacg a 4112438DNAArtificial SequenceDescription of Artificial Sequence Primer 124ataagaatgc ggccgcctaa taacttaaag ttaccgga 3812539DNAArtificial SequenceDescription of Artificial Sequence Primer 125ataagaatgc ggccgccatg tcgagagctt tgtcagtcg 3912639DNAArtificial SequenceDescription of Artificial Sequence Primer 126ataagaatgc ggccgccatg tcgagagctt tgtcagtcg 3912740DNAArtificial SequenceDescription of Artificial Sequence Primer 127ataagaatgc ggccgccatg gcaagcagcg acgtgaagct 4012838DNAArtificial SequenceDescription of Artificial Sequence Primer 128ataagaatgc ggccgctcaa ccaagccaag aagcaccc 3812939DNAArtificial SequenceDescription of Artificial Sequence Primer 129ataagaatgc ggccgccatg gcgtctcaac aagagaaga 3913038DNAArtificial SequenceDescription of Artificial Sequence Primer 130ataagaatgc ggccgcttag gtcttggtcc tgaatttg 3813136DNAArtificial SequenceDescription of Artificial Sequence Primer 131ggttaattaa ggcgcgcccc cggaagcgat gctgag 3613231DNAArtificial SequenceDescription of Artificial Sequence Primer 132atctcgagga cgtcccacag ccaccggatt c 3113339DNAArtificial SequenceDescription of Artificial Sequence Primer 133ataagaatgc ggccgccatg gctccttcaa caaaagttc 3913438DNAArtificial SequenceDescription of Artificial Sequence Primer 134ataagaatgc ggccgctcaa acactgctga tagtattt 3813539DNAArtificial SequenceDescription of Artificial Sequence Primer 135ataagaatgc ggccgccatg cggtgctttc cacctccct 3913638DNAArtificial SequenceDescription of Artificial Sequence Primer 136ataagaatgc ggccgcttac ttttgtaatg gtgagagc 3813739DNAArtificial SequenceDescription of Artificial Sequence Primer 137ataagaatgc ggccgccatg cttctaattc tagcgattt 3913838DNAArtificial SequenceDescription of Artificial Sequence Primer 138ataagaatgc ggccgctcag ataaccttct tcttctcg 3813935DNAArtificial SequenceDescription of Artificial Sequence Primer 139attgcggccg cacaatggca catgccacgt ttacg 3514035DNAArtificial SequenceDescription of Artificial Sequence Primer 140attgcggccg cttagtcttc atggtcccat agatc 3514131DNAArtificial SequenceDescription of Artificial Sequence Primer 141gcggccgcca tggcgtctga gaaacaaaaa c 3114227DNAArtificial SequenceDescription of Artificial Sequence Primer 142aggcctttac gcatttacca cagctcc 2714333DNAArtificial SequenceDescription of Artificial Sequence Primer 143gcggccgcat ggattcaacg aagcttagtg agc 3314428DNAArtificial SequenceDescription of Artificial Sequence Primer 144aggcctttac tgaggtcctg caaatttg 2814530DNAArtificial SequenceDescription of Artificial Sequence Primer 145gcggccgcca tgaaggttca cgagacaaga 3014627DNAArtificial SequenceDescription of Artificial Sequence Primer 146aggcctctac tctggttcga catcgac 2714729DNAArtificial SequenceDescription of Artificial Sequence Primer 147gcggccgcca tgtctacccc agctgaatc 2914827DNAArtificial SequenceDescription of Artificial Sequence Primer 148aggcctctaa ttgtagagat catcatc 2714930DNAArtificial SequenceDescription of Artificial Sequence Primer 149gcggccgcca tggacaaatc tagtaccatg 3015030DNAArtificial SequenceDescription of Artificial Sequence Primer 150aggccttcag ctaccaccct tttgtttgag 3015130DNAArtificial SequenceDescription of Artificial Sequence Primer 151gcggccgcca tggcgaaatc tcagatctgg 3015228DNAArtificial SequenceDescription of Artificial Sequence Primer 152aggcctttaa gaagaagcaa cgaacgtg 2815329DNAArtificial SequenceDescription of Artificial Sequence Primer 153gcggccgcca tggcgtcgag cgatgagcg 2915428DNAArtificial SequenceDescription of Artificial Sequence Primer 154gatatcttac gggaacggag ccaatttc 2815531DNAArtificial SequenceDescription of Artificial Sequence Primer 155gcggccgcca tggcgactct taaggtttct g 3115627DNAArtificial SequenceDescription of Artificial Sequence Primer 156aggcctttaa gcatcatctt caccgag 2715730DNAArtificial SequenceDescription of Artificial Sequence Primer 157gcggccgcca tggtggatct attgaactcg 3015828DNAArtificial SequenceDescription of Artificial Sequence Primer 158aggcctttac aactcttgga tattaaac 2815930DNAArtificial SequenceDescription of Artificial Sequence Primer 159gcggccgcca tggctggaaa actcatgcac 3016028DNAArtificial SequenceDescription of Artificial Sequence Primer 160aggcctttat ggctcgacaa tgatcttc 2816118DNAArtificial SequenceDescription of Artificial Sequence Primer 161caggaaacag ctatgacc 1816219DNAArtificial SequenceDescription of Artificial Sequence Primer 162ctaaagggaa caaaagctg 1916318DNAArtificial SequenceDescription of Artificial Sequence Primer 163tgtaaaacga cggccagt 18


Patent applications by Heiko A. Haertel, Berlin DE

Patent applications by Joerg Bauer, Limburgerhof DE

Patent applications by Oliver Oswald, Ludwigshafen DE

Patent applications by Volker Mittendorf, Hillsborough, NC US

Patent applications by BASF Plant Science GmbH

Patent applications in class The polynucleotide alters fat, fatty oil, ester-type wax, or fatty acid production in the plant

Patent applications in all subclasses The polynucleotide alters fat, fatty oil, ester-type wax, or fatty acid production in the plant


User Contributions:

Comment about this patent or add new information about this topic:

CAPTCHA
People who visited this patent also read:
Patent application numberTitle
20170013663Wireless Communication Methods
20170013662MECHANISM TO ENABLE REJECTION AND CANCELLATION OF REQUEST ACTIONS FROM WIRELESS PEER-TO-PEER DEVICES
20170013661DEVICE-TO-DEVICE COMMUNICATION MANAGEMENT USING MACROCELL COMMUNICATION RESOURCES
20170013660NEAR-FIELD COMMUNICATION METHOD AND TERMINAL
20170013659DEVICE AUTO PAIRING WITHOUT TOUCH AND TAP
Similar patent applications:
DateTitle
2012-10-04Sugar and lipid metabolism regulators in plants iii
2013-01-24Sugar and lipid metabolism regulators in plants ii
2009-08-27Combination of lipid metabolism proteins and uses thereof
2010-11-11Lipid metabolism protein and uses thereof iii (pyruvate-orthophosphate-dikinase)
2011-01-27Drought and heat tolerance in plants
New patent applications in this class:
DateTitle
2019-05-16Plants with increased oil accumulation in vegetative tissues, and methods of making same
2016-06-30Isolated polynucleotides and polypeptides for increasing plant yield and/or agricultural characteristics
2016-06-30Isolated polynucleotides and polypeptides, and methods of using same for increasing plant yield and/or agricultural characteristics
2016-06-16Gene expression or activity enhancing elements
2016-06-09Gene for increasing plant weight and method for using the same
New patent applications from these inventors:
DateTitle
2015-05-21Nucleic acid molecules encoding polypeptides involved in regulation of sugar and lipid metabolism and methods of use viii
2013-10-24Sugar and lipid metabolism regulators in plants iii
2013-04-25Arabidopsis genes encoding proteins involved in sugar and lipid metabolism and methods of use
Top Inventors for class "Multicellular living organisms and unmodified parts thereof and related processes"
RankInventor's name
1Gregory J. Holland
2William H. Eby
3Richard G. Stelpflug
4Laron L. Peters
5Justin T. Mason
Website © 2025 Advameg, Inc.