Patents - stay tuned to the technology

Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees

Patent application title: PROCESS FOR THE PRODUCTION OF A DICARBOXYLIC ACID

Inventors:  Rene Verwall (Nootdorp, NL)  Liang Wu (Delft, NL)  Liang Wu (Delft, NL)  Robbertus Antonius Damveld (Berkel En Rodenrijs, NL)  Robbertus Antonius Damveld (Berkel En Rodenrijs, NL)  Cornells Maria Jacobus Sagt (Utrecht, NL)
IPC8 Class: AC12P746FI
USPC Class: 435145
Class name: Containing a carboxyl group polycarboxylic acid dicarboxylic acid having four or less carbon atoms (e.g., fumaric, maleic, etc.)
Publication date: 2011-05-05
Patent application number: 20110104771



lates to a process for the production of a dicarboxylic acid wherein a eukaryotic cell is fermented in a suitable fermentation medium. The invention further relates to a eukaryotic cell comprising a nucleotide sequence encoding an enzyme which catalyses the conversion of isocitric acid to succinic acid, and a nucleotide sequence encoding an enzyme which catalyses the conversion of glyoxylic acid to malic acid.

Claims:

1. Process for the production of a dicarboxylic acid comprising fermenting a eukaryotic cell in a suitable fermentation medium, wherein the eukaryotic cell comprises an enzyme which catalyses the conversion of isocitric acid to succinic acid, and producing the dicarboxylic acid, wherein succinic acid is produced in the cytosol.

2. Process according to claim 1, wherein the enzyme is an isocitrate lyase.

3. Process according to claim 1 wherein the enzyme has at least 30% sequence identity with the amino acid sequence of SEQ ID NO: 1.

4. Process for the production of a dicarboxylic acid, optionally according to claim 1, wherein the eukaryotic cell comprises an enzyme which catalyses the conversion of glyoxylic acid to malic acid, wherein malic acid is produced in the cytosol.

5. Process according to claim 4, wherein the enzyme is a malate synthase.

6. Process according to claim 4, wherein the enzyme has at least 40% sequence identity with the amino acid sequence of SEQ ID NO: 5.

7. Process according to claim 1, wherein the eukaryotic cell is a yeast or a filamentous fungus, selected from the group consisting of the genus Saccharomyces, Aspergillus, Penicillium, Pichia, Kluyveromyces, Yarrowia, Candida, Hansenula, Trichosporon, Trichoderma, Rhizopus, or Zygosaccharomyces.

8. Process according to claim 1, wherein the dicarboxylic acid is recovered from the fermentation broth, and optionally purified.

9. Process according to claim 1 further comprising recovering the dicarboxylic acid is malic acid, fumaric acid or succinic acid from the fermentation medium.

10. Process according to claim 1 comprising further using the dicarboxylic acid produced for the preparation of a pharmaceutical, cosmetic, food, feed or chemical product.

11. A eukaryotic cell comprising a nucleotide sequence encoding a first enzyme which catalyses the conversion of isocitric acid to succinic acid, and a nucleotide sequence encoding a second enzyme which catalyses the conversion of glyoxylic acid to malic acid, wherein the first and the second enzyme are active in the cytosol.

12. A eukaryotic cell according to claim 11, wherein the first enzyme is an isocitrate lyase.

13. A eukaryotic cell according to claim 11, wherein the second enzyme is a malate synthase.

14. A eukaryotic cell according to claim 11, wherein the cell is a yeast.

15. A eukaryotic cell according to claim 11, which is a Saccharomyces cerevisiae comprising a nucleotide sequence of SEQ ID NO: 6 encoding an enzyme having isocitrate lyase activity and a nucleotide sequence of SEQ ID NO: 7 encoding an enzyme having malate synthase activity.

16. A eukaryotic cell transformed such that the cell is capable of producing a dicarboxylic acid by fermenting the cell in a suitable fermentation medium wherein the cell comprises an enzyme catalysing the conversion of isocitric acid to succinic acid, wherein succinic acid is produced in the cytosol and/or an enzyme that catalyses the conversion of glyoxylic acid to malic acid, wherein malic acid is produced in the cytosol.

Description:

[0001] The present invention relates to a process for the production of a dicarboxylic acid and a eukaryotic cell comprising an enzyme that catalyses the conversion of isocitric acid to succinic acid and an enzyme that catalyses the conversion of glyoxylic acid to malic acid.

[0002] The 4-carbon dicarboxylic acids, malic acid, fumaric acid and succinic acid, are potential precursors for numerous chemicals and have numerous applications in pharmaceutical, cosmetic, food, feed or chemical industry.

[0003] Until date, malic acid, fumaric acid and succinic acid are predominantly produced through (petro) chemical processes, which are considered harmful to the environment and costly.

[0004] The fermentative production of dicarboxylic acids such as malic acid, fumaric acid and succinic acid may be an attractive alternative process for the production of these dicarboxylic acids, wherein renewable feedstock as a carbon source may be used.

[0005] A number of different bacteria such as Escherichia coli, and the rumen bacteria Actinobacillus, Anaerobiospirillum, Bacteroides, Mannheimia, or Succinimonas, sp. are known to produce succinic acid. Metabolic engineering of these bacterial strains have improved the succinic acid yield and/or productivity, or reduced the by-product formation.

[0006] WO2007/061590 discloses a pyruvate decarboxylase negative yeast for the production of malic acid and/or succinic acid which is transformed with a pyruvate carboxylase enzyme or a phosphoenolpyruvate carboxylase, a malate dehydrogenase enzyme, and a malic acid transporter protein.

[0007] Despite the improvements that have been made in the fermentative production of dicarboxylic acids, there remains a need for an improved production process of dicarboxylic acids.

[0008] The aim of the present invention is an improved process for the production of a dicarboxylic acid.

[0009] The aim is achieved according to the invention by a process for the production of a dicarboxylic acid comprising fermenting a eukaryotic cell in a suitable fermentation medium, wherein the eukaryotic cell comprises an enzyme which catalyses the

[0010] conversion of isocitric acid to succinic acid, and producing the dicarboxylic acid wherein succinic acid is produced in the cytosol. As understood herein, the conversion of isocitric acid to succinic acid comprises the formation of glyoxylic acid. Preferably, the eukaryotic cell in the process of the invention comprises an enzyme that catalyses the conversion of isocitric acid to succinic acid and glyoxylic acid.

[0011] Surprisingly, an increased amount of dicarboxylic acid was produced in the process according to the present invention, compared to a process wherein a eukaryotic cell is fermented which does not comprise an enzyme which catalyses the conversion of isocitric acid to succinic acid, wherein succinic acid is produced in the cytosol.

[0012] A suitable dicarboxylic acid that may be produced in the process according to the present invention is a 4-carbon dicarboxylic acid selected from malic acid, fumaric acid, and succinic acid. Preferably, the dicarboxylic acid is fumaric acid or succinic acid, in particular succinic acid.

[0013] As used herein, the terms dicarboxylic acid, malic acid, fumaric acid, succinic acid, isocitric acid and glyoxylic acid also cover the compounds dicarboxylate, malate, fumarate, succinate, isocitrate and glyoxylate, i.e. the ionic form of the acids, and salts, esters, or ethers thereof and the terms may be used interchangeably. The acid form is the hydrogenated form of the ionic form, and is influenced by the pH.

[0014] The eukaryotic cell fermented in the process according to the present invention may be a wild-type or a recombinant eukaryotic cell. As used herein, a recombinant eukaryotic cell is defined as a cell which contains a nucleotide sequence and/or protein, or is transformed or genetically modified with a nucleotide sequence that does not naturally occur in the yeast, or it contains additional copy or copies of an endogenous nucleic acid sequence (or protein). Commonly, a eukaryotic cell of the invention is a recombinant eukaryotic cell.

[0015] The enzyme which catalyses the conversion of isocitrate to succinate, may be any suitable heterologous or homologous enzyme. Preferably, the enzyme is an isocitrate lyase (EC 4.1.3.1).

[0016] The term "homologous" as used herein, refers to a nucleic acid (DNA or RNA) or polypeptide that is endogenous to, or found in nature in a cell or organism, genome, DNA, or RNA sequence.

[0017] The term "heterologous" as used herein, refers to a nucleic acid or polypeptide that is exogenous to, or does not occur naturally as part of the organism, cell, genome DNA or RNA sequence in which it is present.

[0018] For the production of a dicarboxylic acid such as succinic acid or malic acid in the cytosol, cytosolic localisation of the enzyme that catalyses the production of a dicarboxylic acid may be needed. The enzyme may be naturally present in the cytosol or cytosolic localisation may be obtained by deletion of a targeting sequence, for example a peroxisomal (or mitochondrial) targeting signal from the enzyme, in order to obtain cytosolic activity of the enzyme. The presence of a targeting signal may be identified by known methods in the art, for instance as determined by the method disclosed by Schluter et al, Nucleic acid Research 2007, Vol 25, D815-D822. A peroxisomal targeting signal is a region in a peroxisomal protein that binds to a receptor, which receptor directs the protein to the peroxisome. Peroxisomal proteins are synthesised in the cytosol. Deletion of a peroxisimal targeting signal will prevent peroxisomal targeting.

[0019] Preferably, a gene expressed in a eukaryotic cell of the invention encoding an enzyme that catalyses the production of a dicarboxylic acid, eg. an enzyme that catalyses the conversion of isocitrate to succinate or glyoxylate to malate, is expressed in the presence of a fermentable sugar.

[0020] Expression of a gene in the presence of a fermentable sugar may occur naturally, or may be obtained by deletion of glucose repression of the enzyme, for instance by replacing a promoter sensitive to glucose repression with a non-glucose repression sensitive promoter. Such promoters are known to the skilled person in the art.

[0021] Glucose repression is the repression of certain sugar-metabolizing operons in favour of glucose utilization wherein glucose is the predominant carbon source in the environment of the cell.

[0022] Preferably, an enzyme that catalyses the production of a dicarboxylic acid, eg. an enzyme that catalyses the conversion of isocitrate to succinate in the cytosol, is an enzyme that is not degraded or suppressed in the presence of a fermentable sugar, i.e. an enzyme that is not subjected to catabolite inactivation.

[0023] A nucleotide sequence encoding an enzyme that catalyses the conversion of isocitrate to succinate, wherein the enzyme is active in the cytosol, may encode a homologous or heterologous enzyme. Preferably, the enzyme is a heterologous enzyme.

[0024] Preferably, a eukaryotic cell in the process of the invention comprises an enzyme catalysing the conversion of isocitrate to succinate (and glyoxylate), which has at least 30%, preferably at least 40, 50, 60, 70, 75, 80, 85, 90, 95, 96, 97, 98, 99 or 100% sequence identity with the amino acid of SEQ ID NO: 1. Preferably, the enzyme catalysing the conversion of isocitrate to succinate is active in the cytosol.

[0025] The process according to the present invention was found particularly advantageous when the eukaryotic cell was fermented in a fermentation medium comprising a fermentable sugar. Fermentable sugars may be glucose, fructose, sucrose, maltose, galactose, raffinose, arabinose, xylose, or xylulose.

[0026] During the course of the process for the production of a dicarboxylic acid of the invention, a carbon source is converted to a dicarboxylic acid in a eukaryotic cell and secreted by the cell into the medium.

[0027] In another aspect the present invention relates to a process for the production of a dicarboxylic acid according to the present invention, wherein a eukaryotic cell is fermented which comprises a nucleotide sequence encoding an enzyme, which catalyses the conversion of glyoxylic acid to malic acid, wherein malic acid is produced in the cytosol.

[0028] Preferably, the process for the production of a dicarboxylic acid according to the present invention is a process wherein a eukaryotic cell is fermented which comprises an enzyme which catalyses the conversion of isocitric acid to succinic acid (and glyoxylic acid) and a second enzyme which catalyses the conversion of glyoxylic acid to malic acid, wherein succinic acid and malic acid are produced in the cytosol.

[0029] Surprisingly, it was found in the process according to the present invention that when succinic acid and/or malic acid were/was produced in the cytosol an increased amount of a dicarboxylic acid, in particular succinic acid was produced by the eukaryotic cell.

[0030] Preferably, the enzyme that catalyses the conversion of glyoxylate to malate in the eukaryotic cell of the invention is a malate synthase (EC 2.3.3.9). Cytosolic activity of an enzyme catalysing the conversion of glyoxylate to malate may be obtained as described herein above, preferably, by deletion of a peroxisomal targeting signal. In the event the malate synthase is a Saccharomyces cerevisiae malate synthase, preferably the native malate synthase is altered by the deletion of the SKL carboxy-terminal sequence.

[0031] Preferably, the nucleotide sequence encoding an enzyme that catalyses the conversion of glyoxylate to malate in the cytosol has at least 40%, preferably at least 50, 60, 70, 75, 80, 85, 90, 95, 96, 97, 98, 99, or 100% sequence identity to SEQ ID NO: 5.

[0032] Sequence identity is herein defined as a relationship between two or more amino acid (polypeptide or protein) sequences or two or more nucleic acid (polynucleotide) sequences, as determined by comparing the sequences. Usually, sequence identities are compared over the whole length of the sequences compared. In the art, "identity" also means the degree of sequence relatedness between amino acid or nucleic acid sequences, as the case may be, as determined by the match between strings of such sequences.

[0033] Preferred methods to determine identity are designed to give the largest match between the sequences tested. Methods to determine identity are codified in publicly available computer programs. Preferred computer program methods to determine identity and similarity between two sequences include e.g. the BLASTP, BLASTN), publicly available from NCBI and other sources (BLAST Manual, Altschul, S., et al., NCBI NLM NIH Bethesda, Md. 20894). Preferred parameters for amino acid sequences comparison using BLASTP are gap open 11.0, gap extension 1, Blosum 62 matrix.

[0034] A nucleotide sequence encoding an enzyme expressed in the cell of the invention may also be defined by their capability to hybridise with the nucleotide sequences encoding an enzyme of SEQ ID NO.'s: 1 or 5, under moderate, or preferably under stringent hybridisation conditions. Stringent hybridisation conditions are herein defined as conditions that allow a nucleic acid sequence of at least about 25, preferably about 50 nucleotides, 75 or 100 and most preferably of about 200 or more nucleotides, to hybridise at a temperature of about 65° C. in a solution comprising about 1 M salt, preferably 6×SSC (sodium chloride, sodium citrate) or any other solution having a comparable ionic strength, and washing at 65° C. in a solution comprising about 0.1 M salt, or less, preferably 0.2×SSC or any other solution having a comparable ionic strength. Preferably, the hybridisation is performed overnight, i.e. at least for 10 hours and preferably washing is performed for at least one hour with at least two changes of the washing solution. These conditions will usually allow the specific hybridisation of sequences having about 90% or more sequence identity.

[0035] Moderate conditions are herein defined as conditions that allow a nucleic acid sequence of at least 50 nucleotides, preferably of about 200 or more nucleotides, to hybridise at a temperature of about 45° C. in a solution comprising about 1 M salt, preferably 6×SSC or any other solution having a comparable ionic strength, and washing at room temperature in a solution comprising about 1 M salt, preferably 6×SSC or any other solution having a comparable ionic strength. Preferably, the hybridisation is performed overnight, i.e. at least for 10 hours, and preferably washing is performed for at least one hour with at least two changes of the washing solution. These conditions will usually allow the specific hybridisation of sequences having up to 50% sequence identity. The person skilled in the art will be able to modify these hybridisation conditions in order to specifically identify sequences varying in identity between 50% and 90%.

[0036] To increase the likelihood that an enzyme is expressed in active form in a eukaryotic cell of the invention, the corresponding encoding nucleotide sequence may be adapted to optimise its codon usage to that of the chosen eukaryotic host cell. Several methods for codon optimisation are known in the art. A preferred method to optimise codon usage of the nucleotide sequences to the eukaryotic cell according to the present invention is codon pair optimization technology as disclosed in WO2008/000632.

[0037] A eukaryotic cell in the process for the production of a dicarboxylic acid may be any suitable yeast or filamentous fungus. Preferably, a eukaryotic cell in the process according to the present invention belongs to the genera selected from the group consisting of Saccharomyces, Aspergillus, Penicillium, Pichia, Kluyveromyces, Candida, Hansenula, Trichosporon, Trichoderma, Rhizopus, and Zygosaccharomyces. Preferably, the eukaryotic cell belongs to a species Saccharomyces cerevisiae, Saccharomyces uvarum, Saccharomyces bayanus, Aspergillus niger, Penicillium chrysogenum, P. symplissicum, Pichia stipidis, P. pastoris, Kluyveromyces marxianus, K. lactis, K. thermotolerans, Trichoderma reesii, Candida sonorensis, C. glabrata, Rhizopus oryzae and Zygosaccharomyces bailii. The eukaryotic cell according to the present invention preferably belongs to a Saccharomyces sp., preferably a Saccharomyces cerevisiae.

[0038] The process for the production of a dicarboxylic acid according to the present invention may be run under aerobic, anaerobic, micro-aerophilic or oxygen limited conditions or a combination of aerobic and anaerobic/micro-aerophilic conditions. It may be preferred to grow the eukaryotic cell under aerobic conditions to a certain cell density and subsequently produce a dicarboxylic acid under anaerobic conditions, or micro-aerophilic or oxygen limited conditions.

[0039] An anaerobic fermentation process is herein defined as a fermentation process run in the absence of oxygen or in which substantially no oxygen is consumed, preferably less than 5, 2.5 or 1 mmol/L/Jh.

[0040] An oxygen-limited fermentation process is a process in which the oxygen consumption is limited by the oxygen transfer from the gas to the liquid. The degree of oxygen limitation is determined by the amount and composition of the ingoing gasflow as well as the actual mixing/mass transfer properties of the fermentation equipment used. Preferably, in a process under oxygen-limited conditions, the rate of oxygen consumption is at least 5.5, more preferably at least 6 and even more preferably at least 7 mmol/Uh.

[0041] The process for the production of a dicarboxylic acid according to the present invention may be carried out at any suitable pH between 1 and 9. Preferably, the pH in the fermentation broth is between 2 and 7, preferably between 2.5 and 6, preferably between 3 and 5.5, preferably between 3.5 and 5. It was found advantageous to be able to carry out the process according to the present invention at low pH, since this prevents bacterial contamination and less alkaline salts are needed for titration to maintain the pH at a desired level in the process for the production of succinate.

[0042] A suitable temperature at which the process according to the present invention may be carried out is between 5 and 60° C., preferably between 10 and 50° C., more preferably between 15 and 35° C., more preferably between 18° C. and 30° C. The skilled person in the art knows the optimal temperatures for fermenting a specific eukaryotic cell.

[0043] The process for the production of a dicarboxylic acid according to the present invention may be carried out in any suitable volume, preferably on an industrial scale. Preferably the process of the invention is carried out in a volume of at least 10 ml, 100 ml, 1 l, 10 l, 100 l, preferably at least 1 m3 (cubic metre), 10 m3 (cubic metre) or 100 m3 (cubic metre), and usually below 1000 m3 (cubic metre).

[0044] The fermentation medium may comprise any suitable component which allows optimal growth of and production of a dicarboxylic acid by a eukaryotic cell in the process according to the present invention, which are know to the skilled person. Preferably the fermentation medium comprises a source of carbon dioxide, for instance in the form of calcium carbonate or by flowing gaseous carbon dioxide through the medium.

[0045] In a preferred embodiment the process for the production of a dicarboxylic acid according to the present invention comprises recovering the dicarboxylic acid produced from the fermentation medium. Recovery of a dicarboxylic acid, such as malic acid, fumaric acid or succinic acid, from the fermentation medium may be carried out by any suitable method known in the art, for instance by crystallisation, ammomium precipitation or ion exchange technology. Preferably, the process for the production of a dicarboxylic acid further comprises purifying the dicarboxylic acid.

[0046] In another preferred embodiment, the process of the present invention comprises using a (fermentatively) produced dicarboxylic acid for the preparation of a product comprising a dicarboxylic acid or a derivative thereof. A derivative may for instance be esters, ethers, aldehydes, or salts of a dicarboxylic acid. Suitable products may for instance be a pharmaceutical, cosmetic, food, feed, or chemical product. Succinic acid and fumaric acid may be converted into their corresponding polyester polymers, such as polybutylenesuccinate (PBS). Succinic acid may also be converted by hydrogenation to 1,4-butanediol.

[0047] In another aspect, the present invention relates to a eukaryotic cell comprising a nucleotide sequence encoding a first enzyme which catalyses the conversion of isocitric acid to succinic acid, and a nucleotide sequence encoding a second enzyme which catalyses the conversion of glyoxylic acid to malic acid, wherein the first enzyme and the second enzyme are active in the cytosol. Commonly, the first enzyme in the eukaryotic cell of the invention catalyses the conversion of isocitric acid to succinic acid and glyoxylic acid.

[0048] Surprisingly, it was found that the eukaryotic cell according to the present invention produces an increased amount of a dicarboxylic acid, as compared to a eukaryotic cell which does not comprise an enzyme which catalyses the conversion of isocitric acid to succinic acid, and an enzyme which catalyses the conversion of glyoxylic acid to malic acid wherein both enzymes are active in the cytosol. A eukaryotic cell of the invention may advantageously be used in a process of the invention. The eukaryotic cell according to the present invention may be a yeast or a filamentous fungus, preferably according to a genus and species as defined herein above.

[0049] Preferred embodiments of an enzyme which catalyses the conversion of isocitrate to succinate and of an enzyme which catalyses the conversion of glyoxylate to malate in the eukaryotic cell according to the present invention and other preferred embodiments are as defined herein above.

[0050] Preferably, the eukaryotic cell according to the present invention is a Saccharomyces cerevisiae, preferably a Saccharomyces cerevisiae comprising a nucleotide sequence of SEQ ID NO: 6 encoding an enzyme having isocitrate lyase activity and a nucleotide sequence of SEQ ID NO: 7 encoding an enzyme having malate synthase activity.

[0051] Usually, a nucleotide sequence encoding an enzyme is operably linked to a promoter that causes sufficient expression of the corresponding nucleotide sequence in the eukaryotic cell according to the present invention to confer to the cell the ability to produce a dicarboxylic acid.

[0052] As used herein, the term "operably linked" refers to a linkage of polynucleotide elements (or coding sequences or nucleic acid sequence) in a functional relationship. A nucleic acid sequence is "operably linked" when it is placed into a functional relationship with another nucleic acid sequence. For instance, a promoter or enhancer is operably linked to a coding sequence if it affects the transcription of the coding sequence.

[0053] The term "promoter" refers to a nucleic acid fragment that functions to control the transcription of one or more genes, located upstream with respect to the direction of transcription of the transcription initiation site of the gene, and is structurally identified by the presence of a binding site for DNA-dependent RNA polymerase, transcription initiation sites and any other DNA sequences known to one of skilled in the art. A "constitutive" promoter is a promoter that is active under most environmental and developmental conditions. An "inducible" promoter is a promoter that is active under environmental or developmental regulation.

[0054] The promoter that could be used to achieve expression of a nucleotide sequence coding an enzyme in a eukaryotic cell of the invention, may be not native to the nucleotide sequence coding for the enzyme to be expressed, i.e. a promoter that is heterologous to the nucleotide sequence (coding sequence) to which it is operably linked. Preferably, the promoter is homologous, i.e. endogenous to the host cell.

[0055] Suitable promoters in eukaryotic cells are known to the skilled man in the art. Suitable promoters may be, but are not limited to TDH, GPDA, GAL7, GAL10, or GAL1, CYC1, HIS3, ADH1, PGL, PH05, ADC1, TRP1, URA3, LEU2, ENO, TPI, AOX1, PDC, GPD1, PGK1, and TEF1.

[0056] Usually a nucleotide sequence encoding an enzyme comprises a terminator. Any terminator, which is functional in the cell, may be used in the present invention. Preferred terminators are obtained from natural genes of the host cell. Suitable terminator sequences are well known in the art. Preferably, such terminators are combined with mutations that prevent nonsense mediated mRNA decay in the host cell of the invention (see for example: Shirley et al., 2002, Genetics 161:1465-1482).

[0057] The nucleotide sequence encoding an enzyme that catalyses the conversion of isocitrate to succinate and/or glyoxylate to malate may be overexpressed in the eukaryotic cell according to the present invention. There are known methods in the art for overexpression of nucleotide sequences encoding enzymes. A nucleotide sequence encoding an enzyme may be overexpressed by increasing the copy number of the gene coding for the enzyme in the cell, e.g. by integrating additional copies of the gene in the cell's genome, by expressing the gene from a centromeric vector, from an episomal multicopy expression vector or by introducing an (episomal) expression vector that comprises multiple copies of one or more gene(s). Preferably, overexpression of a nucleotide sequence encoding an enzyme according to the invention is achieved with a (strong) constitutive promoter.

[0058] In the scope of the present invention, the nucleotide sequence encoding an enzyme may be ligated into a nucleic acid construct, for instance a plasmid, such as a low copy plasmid or a high copy plasmid. The eukaryotic cell according to the present invention may comprise a single, or multiple copies of the nucleotide sequence encoding an enzyme, for instance by multiple copies of a nucleotide construct.

[0059] A nucleic acid construct may be maintained episomally and thus comprises a sequence for autonomous replication, such as an autosomal replication sequence. If the eukaryotic cell is of fungal origin, a suitable episomal nucleic acid construct may e.g. be based on the yeast 2μ or pKD1 plasmids (Gleer et al., 1991, Biotechnology 9: 968-975), or the AMA plasmids (Fierro et al., 1995, Curr Genet. 29:482-489). Alternatively, each nucleic acid construct may be integrated in one or more copies into the genome of the eukaryotic cell. Integration into the cell's genome may occur at random by non-homologous recombination but preferably, the nucleic acid construct may be integrated into the cell's genome by homologous recombination as is well known in the art.

[0060] In a preferred embodiment, a eukaryotic cell according to the present invention further comprises a nucleotide sequence encoding a heterologous PEP carboxykinase (EC 4.1.1.49) catalysing the reaction from phosphoenolpyruvate to oxaloacetate. Preferably, a PEP carboxykinase that is derived from bacteria, more preferably the enzyme having PEP carboxykinase activity is derived from Escherichia coli, Mannheimia sp., Actinobacillus sp., or Anaerobiospirillum sp., more preferably Mannheimia succiniciproducens, Actinobacillus succinogenes, or Anaerobiospirillum succiniciproducens.

[0061] In another preferred embodiment a eukaryotic cell according to the present invention further comprises a nucleotide sequence encoding a malate dehydrogenase (MDH) which is active in the cytosol upon expression of the nucleotide sequence. A cytosolic MDH may be any suitable homologous or heterologous malate dehydrogenase. The MDH may be a S. cerevisiae MDH3 or S. cerevisiae MDH1. Preferably, the MDH lacks a peroxisomal or mitochondrial targeting signal in order to localize the enzyme in the cytosol. Alternatively, the MDH is S. cerevisiae MDH2 which has been modified such that it is not inactivated in the presence of glucose and is active in the cytosol. It is known that the transcription of MDH2 is repressed and Mdh2p is degraded upon addition of glucose to glucose-starved cells. Mdh2p deleted for the first 12 amino-terminal amino acids is less-susceptible for glucose-induced degradation (Minard and McAlister-Henn, J. Biol. Chem. 1992 Aug. 25; 267(24):17458-64).

[0062] A eukaryotic cell according to the present invention may also comprise a nucleotide sequence encoding an enzyme that catalyses the conversion of malic acid to fumaric acid, which may be a heterologous or homologous enzyme. Preferably, the enzyme is active in the cytosol. An enzyme that catalyses the conversion of malic acid to fumaric acid, for instance a fumarase, may be derived from any suitable origin, preferably from microbial origin, for instance a yeast such as Saccharomyces or a filamentous fungus, such Rhizopus oryzae. Preferably, the nucleotide sequence encoding an enzyme catalyzing the conversion from malic acid to fumaric acid is overexpressed by methods as described herein above.

[0063] In another preferred embodiment a eukaryotic cell of the invention expresses a nucleotide sequence encoding an enzyme that catalyses the formation of succinic acid, wherein the nucleotide sequence preferably encodes a NAD(H)-dependent fumarate reductase. Preferably, the NADH-dependent fumarate reductase is a heterologous enzyme, which may be derived from any suitable origin, for instance bacteria, fungi, protozoa or plants. Preferably, the cell according to the invention comprises a heterologous NAD(H)-dependent fumarate reductase, preferably derived from a Trypanosoma sp. for instance a Trypanosoma brucei.

[0064] In a preferred embodiment the nucleotide sequence encoding a NAD(H)-dependent fumarate reductase is expressed in the cytosol. Surprisingly, cytosolic activity of the enzyme resulted in an increased productivity of succinic acid by the eukaryotic cell.

[0065] It was surprisingly found that additional (over)expression of genes encoding PEP carboxykinase, malate dehydrogenase, NAD(H) fumarate reductase, and/or fumarase as described herein in the eukaryotic cell of the invention resulted in increased succinic acid production levels.

[0066] Preferably, a eukaryotic cell according to the present invention is a cell wherein at least one gene encoding alcohol dehydrogenase is not functional. An alcohol dehydrogenase gene that is not functional is used herein to describe a eukaryotic cell, which comprises a reduced alcohol dehydrogenase activity compared to a cell wherein all genes encoding an alcohol dehydrogenase are functional. A gene may become not functional by known methods in the art, for instance by mutation, disruption, or deletion, for instance by the method disclosed by Gueldener et. al. 2002, Nucleic Acids Research, Vol. 30, No. 6, e23. Preferably, the cell is a Saccharomyces cerevisiae, wherein one or more of the genes ADH1 and/or ADH2, encoding alcohol dehydrogenase are inactivated.

[0067] Preferably, the cell according to the present invention further comprises at least one gene encoding glycerol-3-phosphate dehydrogenase which is not functional. A glycerol-3-phosphate dehydrogenase gene that is not functional is used herein to describe a eukaryotic cell, which comprises a reduced glycerol-3-phosphate dehydrogenase activity, for instance by mutation, disruption, or deletion of the gene encoding glycerol-3-phosphate dehydrogenase, resulting in a decreased formation of glycerol as compared to a cell wherein the at least one gene encoding glycerol-3-phosphate dehydrogenase is functional. Preferably, the cell is a Saccharomyces cerevisiae, wherein one or more of the genes GPD1 and/or GPD2, encoding glycerol-3-phosphate dehydrogenase are inactivated.

[0068] The present invention also relates to a eukaryotic cell transformed such that the cell is capable of producing a dicarboxylic acid by fermenting the cell in a suitable fermentation medium wherein the cell comprises an enzyme catalysing the conversion of isocitric acid to succinic acid (and glyoxylic acid), wherein succinic acid is produced in the cytosol and/or an enzyme that catalyses the conversion of glyoxylic acid to malic acid, wherein malic acid is produced in the cytosol. Preferably, the eukaryotic cell is transformed with enzymes as described above.

[0069] Genetic Modifications

[0070] Standard genetic techniques, such as overexpression of enzymes in the host cells, genetic modification of host cells, or hybridisation techniques, are known methods in the art, such as described in Sambrook and Russel (2001) "Molecular Cloning: A Laboratory Manual (3rd edition), Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, or F. Ausubel et al, eds., "Current protocols in molecular biology", Green Publishing and Wiley Interscience, New York (1987). Methods for transformation, genetic modification etc of fungal host cells are known from e.g. EP-A-0 635 574, WO 98/46772, WO 99/60102 and WO 00/37671, WO90/14423, EP-A-0481008, EP-A-0635 574 and U.S. Pat. No. 6,265,186.

[0071] The following examples are for illustrative purposes only and are not to be construed as limiting the invention.

DESCRIPTION OF THE FIGURES

[0072] FIG. 1: Plasmid map of pGBS416ICL-1, encoding isocitrate lyase (ICL1) from K. lactis for expression in S. cerevisiae. CPO denotes codon pair optimized.

[0073] FIG. 2: Plasmid map of pGBS416ICL-2, encoding isocitrate lyase (ICL1) from K. lactis and malate synthase (MLS1) from S. cerevisiae for expression in S. cerevisiae. CPO denotes codon pair optimized.

[0074] FIG. 3: Plasmid map of pGBS414PEK-2, containing PEP carboxykinase from Mannheimia succiniciproducens (PCKm) and mitochondrial fumarate reductase m1 from Trypanosoma brucei (FRDm1) for expression in Saccharomyces cerevisiae. The synthetic gene constructs TDH1 promoter-PCKm-TDH1 terminator and TDH3 promoter-FRDm1-TDH3 terminator were cloned into expression vector pRS414. CPO denotes codon pair optimized.

[0075] FIG. 4: Plasmid map of pGBS415FUM-2, containing fumarase from Rhizopus oryzae (FUMR) and cytoplasmic malate dehydrogenase from Saccharomyces cerevisiae truncated for the first 12 amino acids (delta12N MDH2) for expression in Saccharomyces cerevisiae. The synthetic gene constructs TDH1 promoter-FUMR-TDH1 terminator and TDH3 promoter-delta12N MDH2-TDH3 terminator were cloned into expression vector pRS415. CPO denotes codon pair optimized.

EXAMPLES

Example 1A

Cloning of Isocitrate Lyase From K. lactis and Malate Synthase From Saccharomyces cerevisiae in Saccharomyces cerevisiae and Production of Dicarboxylic Acid

1A.1. Expression Constructs

[0076] Isocitrate lyase [E.C. 4.2.1.2], GenBank accession number 21724726, from Kluyveromyces lactis and malate synthase [E.C. 2.3.3.9], GenBank accession number 3964, from Saccharomyces cerevisiae were analysed for the presence of signal sequences using SignalP 3.0 (http://www.cbs.dtu.dk/services/SignalP/) Bendtsen, J. et al. (2004) Mol. Biol., 340:783-795 and TargetP 1.1 (http://www.cbs.dtu.dk/services/TargetP/) Emanuelsson, O. et al. (2007) Nature Protocols 2, 953-971. No targeting sequences were identified for isocitrate lyase from K. lactis, a putative 3 amino acid peroxisomal targeting sequence was identified at the C-terminus of malate synthase of S. cerevisiae.

[0077] SEQ ID NO: 1 was subjected to the codon-pair method as disclosed in WO2008/000632 for S. cerevisiae. The resulting sequence SEQ ID NO: 6 was put behind the constitutive TDH1 promoter sequence SEQ ID NO: 8 and before the TDH1 terminator sequence SEQ ID NO: 9, and convenient restriction sites were added. SEQ ID NO: 5, lacking the peroxisomal targeting signal was subjected to the codon-pair method as disclosed in WO2008/000632 for S. cerevisiae. The resulting sequence SEQ ID NO: 7 was put behind the constitutive TDH3 promoter sequence SEQ ID NO: 10 and before the TDH3 terminator sequence SEQ ID NO: 11, and convenient restriction sites were added. The resulting sequences were synthesised at Sloning (Puchheim, Germany). The expression construct pGBS416ICL-2 was created after a BamHI/NotI restriction of the S. cerevisiae expression vector pRS416 (Sirkoski R. S. and Hieter P, Genetics, 1989, 122(1):19-27) and subsequently ligating in this vector by a 3-point ligation a BamHI/Ascl restricted fragment consisting of the isocitrate lyase (origin K. lactis) synthetic gene construct and an Ascl/NotI restricted fragment consisting of the malate synthase (origin S. cerevisiae) synthetic gene construct (FIG. 1). The ligation mixture is used for transformation of E. coli DH10B (Invitrogen) resulting in the yeast expression construct pGBS416ICL-2 (FIG. 1).

[0078] The construct pGBS416ICL-2 is transformed into S. cerevisiae strains CEN.PK113-6B (MATA ura3-52 leu2-112 trp1-289), RWB066 (MATA ura3-52 leu2-112 trp1-289 adh1::lox adh2::Kanlox) and RWB064 (MATA ura3-52 leu2-112 trp1-289 adh1::lox adh2::lox gpd1::Kanlox). Transformation mixtures are plated on Yeast Nitrogen Base (YNB) w/o AA (Difco)+2% glucose supplemented with appropriate amino acids. Transformants are inoculated in Verduyn medium containing 4% glucose supplemented with appropriate amino acids (Verduyn et al., 1992, Yeast. July; 8(7):501-17) and CaCO3 and grown under aerobic, anaerobic and oxygen-limited conditions in shake flasks. The medium for anaerobic cultivation is supplemented with 0.01 g/l ergosterol and 0.42 g/l Tween 80 dissolved in ethanol (Andreasen and Stier, 1953, J. cell. Physiol, 41, 23-36; Andreasen and Stier, 1954, J. Cell. Physiol, 43: 271-281). All yeast cultures are grown at 30° C. in a shaking incubator at 250-280 rpm. At different incubation times, aliquots of the cultures are removed, centrifuged and the medium is analysed by HPLC for formation of oxalic acid, malic acid, fumaric acid and succinic acid as described below.

1A.2. HPLC Analysis

[0079] HPLC is performed for the determination of organic acids and sugars in different kinds of samples. The principle of the separation on a Phenomenex Rezex-RHM-Monosaccharide column is based on size exclusion, ion-exclusion and ion-exchange using reversed phase mechanisms. Detection takes place by differential refractive index and ultra violet detectors.

Example 1B

Cloning of Isocitrate Lyase From K. lactis and Malate Synthase From Saccharomyces cerevisiae in Saccharomyces cerevisiae and Production of Dicarboxylic Acid

1B.1. Expression Constructs

[0080] Potential targeting sequences of isocitrate lyase (ICL1 from K. lactis) or malate synthase (MLS1 from S. cerevisiae) were identified as disclosed in Example 1A.1. SEQ ID NO 1: was subjected to the codon-pair method as disclosed in WO2008/000632 for S. cerevisiae. The resulting sequence SEQ ID NO: 6 was put behind the constitutive TDH1 promoter sequence SEQ ID NO: 8 and before the TDH1 terminator sequence SEQ ID NO: 9, and convenient restriction sites were added. The resulting synthetic construct SEQ ID NO: 12 was synthesised at Sloning (Puchheim, Germany). SEQ ID NO: 5 was subjected to the codon-pair method as disclosed in WO2008/000632 for S. cerevisiae. The resulting sequence SEQ ID NO: 7 was put behind the constitutive TDH3 promoter sequence SEQ ID NO: 10 and before the TDH3 terminator sequence SEQ ID NO: 11, and convenient restriction sites were added. The resulting synthetic construct SEQ ID NO: 13 was synthesised at Sloning (Puchheim, Germany). The expression construct pGBS416ICL-1 was created after a BamHI/NotI restriction of the S. cerevisiae expression vector pRS416 (Sirkoski R. S. and Hieter P, Genetics, 1989, 122(1):19-27) and subsequently ligating in this vector a BamHI/NotI restriction fragment consisting of the isocitrate lyase (origin Kluveromyces lactis) synthetic gene construct (SEQ ID NO: 12). The ligation mixture was used for transformation of E. coli TOP10 (Invitrogen) resulting in the yeast expression construct pGBS416ICL-1 (FIG. 1). To create pGBS416ICL-2, pGBK416ICL-1 was restricted with Ascl and NotI. Subsequently, an Ascl/NotI restriction fragment consisting of MLS1 (origin S. cerevisiae) synthetic gene construct (SEQ ID NO: 13) was ligated into the restricted pGBS416ICL-1 vector, resulting in expression construct pGBS416ICL-2 (FIG. 2).

1B.2. Transformation

[0081] The constructs pGBS416ICL-1 and pGBS416ICL-2 were transformed into S. cerevisiae strain CEN.PK113-5D (MATA ura3-52), resulting in strains SUC-121 and SUC-122. As negative control, empty vector pRS416 was transformed into strain CEN.PK 113-5D, resulting in strain SUC-123. Transformation mixtures were plated on Yeast Nitrogen Base (YNB) w/o AA (Difco)+2% glucose.

1B.3. Growth Experiments

[0082] Transformants were inoculated in 20 ml pre-culture medium consisting of Verduyn medium (Verduyn et al., 1992, Yeast. July; 8(7):501-17) comprising 2% glucose (w/v) and grown under aerobic conditions in 100 ml shake flasks in a shaking incubator at 30° C. at 250 rpm. After 72 hours, the culture was centrifuged for 5 minutes at 4750 rpm. The supernatant was decanted and the pellet (cells) was resuspended in production medium. The production medium consisted of Verduyn medium with 10% glucose (w/v) and 1% CaCO3 (w/v). The cells were grown in 50 ml production medium in 100 ml shake flasks in a shaking incubator at 30° C. at 100 rpm. After 4 and 7 days incubation, a 1 ml sample was taken from the culture and succinic acid levels were measured by HPLC as described in section 1A.2. The results are shown in Table 1.

TABLE-US-00001 TABLE 1 Effect of introduction of isocitrate lyase from K. lactis and malate synthase from S. cerevisiae in S. cerevisiae on succinic acid production levels after 4 and 7 days of incubation in shake flask. Results are the average of 3 individual growth experiments. S. cerevisiae Over- Succinic Succinic strain comprising expressed acid (mg/l) acid (mg/l) plasmid: genes after 4 days after 7 days pGBS416ICL-1 ICL1 399 ± 6 460 ± 11 (SUC-121) pGBS416ICL-2 ICL1, MLS1 420 ± 24 477 ± 36 (SUC-122) pRS416 (empty) -- 332 ± 20 394 ± 22 (SUC-123)

[0083] The results in Table 1 show that introduction and overexpression of isocitrate lyase (ICL1) from K. lactis resulted in increased succinic acid production levels (1.20 fold after 4 days incubation and 1.17 fold after 7 days compared to the empty vector control strain). Furthermore, introduction and overexpression of isocitrate lyase (ICL1) from K. lactis and additional overexpression of malate synthase (MLS1) from S. cerevisiae resulted in increased succinic acid production levels (1.27 fold after 4 days incubation and 1.21 fold after 7 days compared to the empty vector control strain).

Example 1C

Expression Isocitrate Lyase From Kluyveromyces lactis and Malate Synthase From Saccharomyces cerevisiae in Addition to PEP Carboxykinase From Mannheimia succiniciproducens and Malate Dehydrogenase from Saccharomyces cerevisiae and Fumarase from Rhizopus oryzae and Fumarate Reductase From Trypanosoma brucei in Saccharomyces cerevisiae

1C.1. Gene Sequences

Phosphoenolpyruvate Carboxykinase:

[0084] Phosphoenolpyruvate carboxykinase [E.C. 4.1.1.49], GenBank accession number 52426348, from Mannheimia succiniciproducens was analysed for the presence of signal sequences as described in Schluter et al., (2007) NAR, 35, D815-D822. The sequence as shown in SEQ ID NO: 14 required no modifications. SEQ ID NO: 14 was subjected to the codon-pair method as disclosed in WO2008/000632 for S. cerevisiae. The stop codon TAA in the resulting sequence SEQ ID NO: 15 was modified to TAAG. SEQ ID NO: 15 containing stop codon TAAG was put behind the constitutive TDH1 promoter sequence SEQ ID NO: 8 and before the TDH1 terminator sequence SEQ ID NO: 9. Convenient restriction sites were added. The resulting synthetic construct (SEQ ID NO: 16) was synthesised at Stoning (Puchheim, Germany).

Malate Dehydrogenase

[0085] Cytoplasmic malate dehydrogenase (Mdh2p) [E.C. 1.1.1.37], GenBank accession number 171915, is regulated by carbon catabolite repression: transcription of MDH2 is repressed and Mdh2p is degraded upon addition of glucose to glucose-starved cells. Mdh2p deleted for the 12 amino-terminal amino acids is less-susceptible for glucose-induced degradation (Minard and McAlister-Henn, J Biol. Chem. 1992 Aug. 25; 267(24):17458-64). To avoid glucose-induced degradation of Mdh2, the nucleotides encoding the first 12 amino acids were removed, and a new methionine amino acid was introduced (SEQ ID NO: 17) for overexpression of Mdh2 in S. cerevisiae. SEQ ID NO: 17 was subjected to the codon-pair method as disclosed in WO2008/000632 for S. cerevisiae. The stop codon TAA in the resulting in SEQ ID NO: 18, was modified to TAAG. SEQ ID NO: 18 containing a modified stop codon TAAG, encoding delta12NMDH2, was put behind the constitutive TDH3 promoter sequence SEQ ID NO: 10 and before the TDH3 terminator sequence SEQ ID NO: 11, and convenient restriction sites were added. The resulting synthetic construct (SEQ ID NO: 19) was synthesised at Sloning (Puchheim, Germany).

Fumarase:

[0086] Fumarase [E.C. 4.2.1.2], GenBank accession number 469103, from Rhizopus oryzae (FumR) was analysed for the presence of signal sequences using SignalP 3.0 (http://www.cbs.dtu.dk/services/SignalP/) Bendtsen, J. et al. (2004) Mol. Biol., 340:783-795 and TargetP 1.1 (http://www.cbs.dtu.dk/services/TargetP/) Emanuelsson, O. et al. (2007) Nature Protocols 2, 953-971. A putative mitochondrial targeting sequence in the first 23 amino acid of the protein was identified. To avoid potential targeting to mitochondria in S. cerevisiae, the first 23 amino acids were removed from FumR and a methionine amino acid was reintroduced resulting in SEQ ID NO: 20. SEQ ID NO: 20 was subjected to the codon-pair method as disclosed in WO2008/000632 for S. cerevisiae resulting in SEQ ID NO: 21. The stop codon TAA in SEQ ID NO: 21 was modified to TAAG. SEQ ID NO: 21 containing TAAG as stop codon was synthesized behind the constitutive TDH1 promoter sequence SEQ ID NO: 8 and before the TDH1 terminator sequence SEQ ID NO: 9 and convenient restriction sites were added. The resulting synthetic construct SEQ ID NO: 22 was synthesised at Sloning (Puchheim, Germany).

Fumarate Reductase:

[0087] Mitochondrial fumarate reductase m1 (FRDm1) [E.C. 1.3.1.6], GenBank accession number 60460035, from Trypanosoma brucei was analysed for the presence of signal sequences using SignalP 3.0 (http://www.cbs.dtu.dk/services/SignalP/) Bendtsen, J. et al. (2004) Mol. Biol., 340:783-795 and TargetP 1.1 (http://www.cbs.dtu.dk/services/TargetP) Emanuelsson, O. et al. (2007) Nature Protocols 2, 953-971. A putative mitochondrial targeting sequence in the N-terminal half of the protein was identified, including a possible cleavage site between pos. 25 and 26 (D-S).

[0088] It was shown that FRDm1 recombinant protein lacking the 68 N-terminal residues, relocalized to the cytosol of the procyclic trypanosomes (Coustou et al., J Biol. Chem. 2005 Apr. 29; 280(17):16559-70). These results indicate that the predicted N-terminal signal motif of FRDm1 is required for targeting to the mitochondrion. To avoid potential targeting to mitochondria in S. cerevisiae, the first 68 amino acids were removed from the mitochondrial fumarate reductase amino acid sequence and a methionine amino acid was reintroduced resulting in SEQ ID NO: 23. SEQ ID NO: 23 codon optimized as disclosed in WO2008/000632 for expression in S. cerevisiae. The stop codon TGA in SEQ ID NO: 24 was modified to TAAG. The resulting sequence SEQ ID NO: 24 was put behind the constitutive TDH3 promoter sequence SEQ ID NO: 10 and before the TDH3 terminator sequence SEQ ID NO: 11, and convenient restriction sites were added. The resulting synthetic construct SEQ ID NO: 25 was synthesised at Sloning (Puchheim, Germany).

1C.2. Construction of Expression Constructs

[0089] The expression construct pGBS414PEK-2 (FIG. 3) was created after a BamHI/NotI restriction of the S. cerevisiae expression vector pRS414 (Sirkoski R. S. and Hieter P, Genetics, 1989, 122(1):19-27) and subsequently ligating in this vector a BamHI/NotI restriction fragment consisting of the phosphoenolpyruvate carboxykinase (origin Mannheimia succiniciproducens) synthetic gene construct (SEQ ID NO: 16). The ligation mix was used for transformation of E. coli TOP10 (Invitrogen) resulting in the yeast expression construct pGBS414PEK-1. Subsequently, pGBK414PEK-1 was restricted with Ascl and NotI. To create pGBS414PEK-2, an Ascl/NotI restriction fragment consisting of mitochondrial fumarate reductase from T. brucei (FRDm1) synthetic gene construct (SEQ ID NO: 25) was ligated into the restricted pGBS414PEK-1 vector. The ligation mix was used for transformation of E. coli TOP10 (Invitrogen) resulting in the yeast expression construct pGBS414PEK-2 (FIG. 3).

[0090] The expression construct pGBS415FUM-2 (FIG. 4) was created after a BamHI/NotI restriction of the S. cerevisiae expression vector pRS415 (Sirkoski R. S. and Hieter P, Genetics, 1989, 122(1):19-27) and subsequently ligating in this vector a BamHI/NotI restriction fragment consisting of the fumarase (origin Rhizopus oryzae) synthetic gene construct (SEQ ID NO: 22). The ligation mix was used for transformation of E. coli TOP10 (Invitrogen) resulting in the yeast expression construct pGBS415FUM-1. Subsequently, pGBK415FUM-1 was restricted with Ascl and NotI. To create pGBS415FUM-2, an Ascl/NotI restriction fragment consisting of cytoplasmic malate dehydrogenase from S. cerevisiae (delta12N MDH2) synthetic gene construct (SEQ ID NO: 19) was ligated into the restricted pGBS415FUM-1 vector. The ligation mix was used for transformation of E. coli TOP10 (Invitrogen) resulting in the yeast expression construct pGBS415FUM-2 (FIG. 4).

1C.3. S. cerevisiae Strains

[0091] Plasmids pGBS414PEK-2, pGBS415FUM-2 and pGBS416ICL-2 or pRS416 were transformed into S. cerevisiae strain CEN.PK113-6B (MATA ura3-52 leu2-112 trp1-289), resulting in the yeast strains depicted in Table 2. An empty vector control strain was created by transformation of pRS414, pRS415 and pRS416 empty vectors (Sirkoski R. S. and Hieter P, Genetics, 1989, 122(1):19-27). The expression vectors were transformed into yeast by electroporation. The transformation mixtures were plated on Yeast Nitrogen Base (YNB) w/o AA (Difco)+2% glucose.

TABLE-US-00002 TABLE 2 Yeast strains constructed for Example 1C. Name Background Plasmids Genes SUC-131 CEN.PK113-6B pGBS414PEK-2 PCKm, FRDm1 pGBS415FUM-2 FUMR, delta12N MDH2 pRS416ICL-2 ICL1, MLS1 SUC-132 CEN.PK113-6B pGBS414PEK-2 PCKm, FRDm1 pGBS415FUM-2 FUMR, delta12N MDH2 pRS416 (empty vector) SUC-101 CEN.PK113-6B pRS414 (empty vector) pRS415 (empty vector) pRS416 (empty vector)

1C.4. Growth Experiments and Succinic Acid Production

[0092] Transformants were grown and samples were taken as described in section 1B.3. Succinic acid levels were measured by HPLC as described in section 1A.2. The results are shown in Table 3.

TABLE-US-00003 TABLE 3 Effect of introduction of isocitrate lyase from Kluyveromyces lactis and malate synthase from Saccharomyces cerevisiae in addition to PEP carboxykinase from Mannheimia succiniciproducens and malate dehydrogenase from Saccharomyces cerevisiae and fumarase from Rhizopus oryzae and fumarate reductase from Trypanosoma brucei on succinic acid production in Saccharomyces cerevisiae. Data represent values as measured in supernatant of cells grown in shake flask cultures. The number of individual growth experiments is indicated. Succinic acid (g/l) Succinic acid (g/l) Strain: after 4 days after 7 days SUC-131 (ICL1, MLS1) 6.02 ± 0.27 (n = 3) 6.34 ± 0.16 (n = 3) SUC-132 (control) 5.76 ± 0.32 (n = 3) 5.90 ± 0.30 (n = 3) SUC-101 (empty vector 0.34 ± 0.01 (n = 6) 0.34 ± 0.02 (n = 6) control)

[0093] The results in Table 3 show that introduction and overexpression PEP carboxykinase from Mannheimia succiniciproducens and malate dehydrogenase from Saccharomyces cerevisiae and fumarase from Rhizopus oryzae and fumarate reductase from Trypanosoma brucei results in increased succinic acid production in Saccharomyces cerevisiae, as compared to a strain modified with an empty vector (SUC-101, approximately 17 fold increase compared to empty vector control after 4 and 7 days of growth). Expression of isocitrate lyase from K. lactis and malate synthase from S. cerevisiae in addition to PCKm, delta12N MDH2, FUMR and FRDm1 resulted in a further increase in succinic acid production levels (1.05 fold after 4 and 1.07 fold increase after 7 days of growth), thus showing a positive effect of the glyoxylate cycle on succinic acid production in S. cerevisiae.

Sequence CWU 1

251542PRTKluyveromyces lactis 1Met Val Ser Val Lys Ala Ser Ala Ala Glu Lys Lys Glu Phe Leu Gln1 5 10 15Ser Gln Ile Asp Glu Ile Glu Lys Trp Trp Ser Glu Pro Arg Trp Lys 20 25 30Asp Thr Lys Arg Ile Tyr Ser Ala Tyr Glu Ile Ala Lys Arg Arg Gly 35 40 45Ser Val Lys Pro Asn Thr Phe Pro Ser Thr Val Met Ser Gln Lys Leu 50 55 60Phe Lys Ile Leu Gly Glu His Ala Lys Asn Gly Thr Val Ser Lys Thr65 70 75 80Phe Gly Ala Leu Asp Pro Val Gln Val Thr Gln Met Ser Lys Tyr Leu 85 90 95Asp Thr Ile Tyr Val Ser Gly Trp Gln Cys Ser Ser Thr Ala Ser Thr 100 105 110Ser Asn Glu Pro Gly Pro Asp Leu Ala Asp Tyr Pro Met Asp Thr Val 115 120 125Pro Asn Lys Val Glu His Leu Phe Lys Ala Gln Gln Phe His Asp Arg 130 135 140Lys Gln Trp Glu Arg Ile Cys Asp Gly Thr Ile Glu Glu Ser Glu Ile145 150 155 160Ile Asp Tyr Leu Thr Pro Ile Val Ala Asp Gly Asp Ala Gly His Gly 165 170 175Gly Leu Thr Ala Val Phe Lys Leu Thr Lys Met Phe Ile Glu Arg Gly 180 185 190Ala Ala Gly Ile His Ile Glu Asp Gln Thr Ser Thr Asn Lys Lys Cys 195 200 205Gly His Met Ala Gly Arg Cys Val Ile Pro Val Gln Glu His Ile Asn 210 215 220Arg Leu Ile Thr Cys Arg Met Ala Ala Asp Val Leu Gly Ser Asp Leu225 230 235 240Ile Leu Val Ala Arg Thr Asp Ser Glu Ala Ala Thr Leu Leu Ser Ser 245 250 255Thr Ala Asp Ser Arg Asp His Tyr Phe Ile Leu Gly Ala Ser Asn Pro 260 265 270Ala Val Lys Gly Lys Pro Leu Asn Asp Leu Leu Asn Lys Ala Ile Leu 275 280 285Asp Gly Ala Thr Ile Asp Asp Leu Gln Thr Ile Glu Lys Glu Trp Leu 290 295 300Ala Lys Ala Asp Val Lys Leu Phe His Glu Val Phe Ala Asp Ala Ala305 310 315 320Lys Ala Ala Gly Lys Asp Gln Ser Val Ile Asp Gln Phe Asn Ser Lys 325 330 335Val Asn Pro Leu Ser Glu Thr Ser Ile Tyr Glu Met Gln Ala Leu Ala 340 345 350Lys Glu Leu Leu Gly Thr Glu Leu Phe Phe Asp Trp Asp Leu Pro Arg 355 360 365Gly Arg Glu Gly Leu Tyr Arg Tyr Gln Gly Gly Thr Gln Cys Ser Val 370 375 380Met Arg Ala Arg Ala Phe Ala Pro Tyr Ala Asp Leu Cys Trp Met Glu385 390 395 400Ser Asn Tyr Pro Asp Tyr Glu Gln Ala Lys Glu Phe Ala Glu Gly Val 405 410 415Thr Ala Lys Phe Pro Gly Lys Trp Met Ala Tyr Asn Leu Ser Pro Ser 420 425 430Phe Asn Trp Thr Lys Ala Met Ser Val Asp Glu Gln Glu Thr Phe Ile 435 440 445Gln Arg Leu Gly Asp Leu Gly Tyr Ile Trp Gln Phe Ile Thr Leu Ala 450 455 460Gly Leu His Thr Ser Gly Leu Ala Ile Glu Gln Phe Ser Lys Asn Phe465 470 475 480Ala Lys Leu Gly Met Lys Ala Tyr Ala Gln Asp Ile Gln Lys Lys Glu 485 490 495Leu Asp Asn Gly Ile Asp Met Val Lys His Gln Lys Trp Ser Gly Ala 500 505 510Glu Tyr Ile Asp Gly Leu Leu Arg Leu Ala Gln Gly Gly Leu Ala Ala 515 520 525Thr Ala Ala Met Gly Gln Gly Val Thr Glu Asp Gln Phe Lys 530 535 54021629DNAKluyveromyces lactis 2atggtctccg ttaaggcttc tgctgctgaa aagaaggaat tcttacaaag tcaaattgac 60gaaattgaga aatggtggtc cgaacctcgt tggaaggaca ccaaacgtat ctactctgct 120tacgaaattg caaagagacg tggttcagta aaaccaaata ctttcccatc tactgtgatg 180tctcaaaaat tgttcaaaat cttgggggaa cacgctaaga acggcactgt ctccaagact 240ttcggtgctt tggaccctgt tcaagtgacc caaatgtcta agtacttgga taccatttac 300gtttcaggct ggcaatgttc ttccactgca tcaacttcta acgaaccggg tccagatttg 360gctgattacc caatggacac tgtaccaaac aaagtggagc atttgttcaa ggctcaacaa 420ttccatgaca gaaaacaatg ggaacgtatc tgtgatggta ccattgaaga atctgaaatc 480attgactatt tgactccaat cgttgctgat ggtgacgctg gtcatggtgg tttgactgct 540gtcttcaagt tgacaaaaat gttcatcgaa agaggagctg ccggtatcca cattgaagat 600caaacttcta caaacaaaaa gtgtggtcac atggctggta gatgtgttat cccagtacaa 660gaacatatta acagattgat cacttgtaga atggctgcag atgttttggg ttcagatttg 720atccttgttg ccagaactga ttctgaagcc gctactctat tatcctctac tgccgattca 780agggaccatt acttcatctt gggtgcttcc aatccagccg tcaagggtaa accattgaac 840gatttactga acaaagctat cttggacggt gccaccatcg atgacttaca aaccatcgaa 900aaagaatggt tggccaaggc cgacgttaag ctgttccacg aagtattcgc tgacgctgcc 960aaggctgcag gtaaggacca atccgtaatt gaccaattca acagcaaagt caacccatta 1020agtgaaacat caatctatga aatgcaagcc ttggccaagg aattgttggg taccgaattg 1080ttcttcgact gggacttgcc aagaggccgt gaaggtttgt accgttacca aggtggtact 1140cagtgttctg tgatgagagc tcgtgccttt gctccatacg ctgatctatg ttggatggaa 1200tctaactacc ctgattacga acaagctaag gaattcgctg aaggtgtcac agctaagttc 1260ccaggcaagt ggatggctta caacttgtca ccatctttca actggacaaa agctatgtct 1320gtcgacgaac aagagacatt cattcaaaga ttgggtgact tgggttacat ctggcaattt 1380atcactttag ctggtctaca tacaagtggt ttagccatcg aacaattctc caagaatttc 1440gccaagttag gaatgaaggc atatgctcaa gatatccaaa agaaggaatt ggataacggt 1500atcgacatgg taaagcacca gaaatggtct ggtgctgaat atatcgatgg tctattaaga 1560ttagcacaag gtggtctcgc tgccactgct gctatgggtc aaggtgtcac tgaggatcag 1620ttcaaataa 16293554PRTSaccharomyces cerevisiae 3Met Val Lys Val Ser Leu Asp Asn Val Lys Leu Leu Val Asp Val Asp1 5 10 15Lys Glu Pro Phe Phe Lys Pro Ser Ser Thr Thr Val Gly Asp Ile Leu 20 25 30Thr Lys Asp Ala Leu Glu Phe Ile Val Leu Leu His Arg Thr Phe Asn 35 40 45Asn Lys Arg Lys Gln Leu Leu Glu Asn Arg Gln Val Val Gln Lys Lys 50 55 60Leu Asp Ser Gly Ser Tyr His Leu Asp Phe Leu Pro Glu Thr Ala Asn65 70 75 80Ile Arg Asn Asp Pro Thr Trp Gln Gly Pro Ile Leu Ala Pro Gly Leu 85 90 95Ile Asn Arg Ser Thr Glu Ile Thr Gly Pro Pro Leu Arg Asn Met Leu 100 105 110Ile Asn Ala Leu Asn Ala Pro Val Asn Thr Tyr Met Thr Asp Phe Glu 115 120 125Asp Ser Ala Ser Pro Thr Trp Asn Asn Met Val Tyr Gly Gln Val Asn 130 135 140Leu Tyr Asp Ala Ile Arg Asn Gln Ile Asp Phe Asp Thr Pro Arg Lys145 150 155 160Ser Tyr Lys Leu Asn Gly Asn Val Ala Asn Leu Pro Thr Ile Ile Val 165 170 175Arg Pro Arg Gly Trp His Met Val Glu Lys His Leu Tyr Val Asp Asp 180 185 190Glu Pro Ile Ser Ala Ser Ile Phe Asp Phe Gly Leu Tyr Phe Tyr His 195 200 205Asn Ala Lys Glu Leu Ile Lys Leu Gly Lys Gly Pro Tyr Phe Tyr Leu 210 215 220Pro Lys Met Glu His His Leu Glu Ala Lys Leu Trp Asn Asp Val Phe225 230 235 240Cys Val Ala Gln Asp Tyr Ile Gly Ile Pro Arg Gly Thr Ile Arg Ala 245 250 255Thr Val Leu Ile Glu Thr Leu Pro Ala Ala Phe Gln Met Glu Glu Ile 260 265 270Ile Tyr Gln Leu Arg Gln His Ser Ser Gly Leu Asn Cys Gly Arg Trp 275 280 285Asp Tyr Ile Phe Ser Thr Ile Lys Arg Leu Arg Asn Asp Pro Asn His 290 295 300Ile Leu Pro Asn Arg Asn Gln Val Thr Met Thr Ser Pro Phe Met Asp305 310 315 320Ala Tyr Val Lys Arg Leu Ile Asn Thr Cys His Arg Arg Gly Val His 325 330 335Ala Met Gly Gly Met Ala Ala Gln Ile Pro Ile Lys Asp Asp Pro Ala 340 345 350Ala Asn Glu Lys Ala Met Thr Lys Val Arg Asn Asp Lys Ile Arg Glu 355 360 365Leu Thr Asn Gly His Asp Gly Ser Trp Val Ala His Pro Ala Leu Ala 370 375 380Pro Ile Cys Asn Glu Val Phe Ile Asn Met Gly Thr Pro Asn Gln Ile385 390 395 400Tyr Phe Ile Pro Glu Asn Val Val Thr Ala Ala Asn Leu Leu Glu Thr 405 410 415Lys Ile Pro Asn Gly Glu Ile Thr Thr Glu Gly Ile Val Gln Asn Leu 420 425 430Asp Ile Gly Leu Gln Tyr Met Glu Ala Trp Leu Arg Gly Ser Gly Cys 435 440 445Val Pro Ile Asn Asn Leu Met Glu Asp Ala Ala Thr Ala Glu Val Ser 450 455 460Arg Cys Gln Leu Tyr Gln Trp Val Lys His Gly Val Thr Leu Lys Asp465 470 475 480Thr Gly Glu Lys Val Thr Pro Glu Leu Thr Glu Lys Ile Leu Lys Glu 485 490 495Gln Val Glu Arg Leu Ser Lys Ala Ser Pro Leu Gly Asp Lys Asn Lys 500 505 510Phe Ala Leu Ala Ala Lys Tyr Phe Leu Pro Glu Ile Arg Gly Glu Lys 515 520 525Phe Ser Glu Phe Leu Thr Thr Leu Leu Tyr Asp Glu Ile Val Ser Thr 530 535 540Lys Ala Thr Pro Thr Asp Leu Ser Lys Leu545 55041665DNASaccharomyces cerevisiae 4atggttaagg tcagtttgga taacgtcaaa ttactggtgg atgttgataa ggagcctttc 60tttaaaccat ctagtactac agtgggagat attcttacca aggatgctct agagttcatt 120gttcttttac acagaacttt caacaacaag agaaaacaat tattggaaaa cagacaagtt 180gttcagaaga aattagactc gggctcctat catctggatt tcctgcctga aactgcaaat 240attagaaatg atcccacttg gcaaggtcca attttggcac cggggttaat taataggtca 300acggaaatca cagggcctcc attgagaaat atgctgatca acgctttgaa tgctcctgtg 360aacacctata tgactgattt tgaagattca gcttcaccta cttggaacaa catggtttac 420ggtcaagtta atctctacga cgcgatcaga aatcaaatcg attttgacac accaagaaaa 480tcgtacaaat tgaatggaaa tgtggccaac ttgcccacta ttatcgtgag accccgtggt 540tggcacatgg tggaaaagca cctttatgta gatgatgaac caatcagcgc ttccatcttt 600gattttggtt tatatttcta ccataatgcc aaagaattaa tcaaattggg caaaggtcct 660tacttctatt tgccaaagat ggagcaccac ttggaagcta aactatggaa cgacgtcttc 720tgtgtagctc aagattacat tgggatccca aggggtacaa tcagagctac tgtgttgatt 780gaaactttgc ctgctgcttt ccaaatggaa gagatcatct atcaattaag acaacattct 840agtgggttga attgcggacg ttgggactat attttctcta caatcaagag attaagaaat 900gatcctaatc acattttgcc caatagaaat caagtgacta tgacttcccc attcatggat 960gcatacgtga aaagattaat caatacctgt catcggaggg gtgttcatgc catgggtggt 1020atggctgcgc aaatccctat caaagacgac ccggcagcca atgaaaaggc catgactaaa 1080gtccgtaatg ataagattag agagctgaca aatggacatg atgggtcatg ggttgcacac 1140ccagcactgg cccctatttg taatgaagtt ttcattaata tgggaacacc aaaccaaatc 1200tatttcattc ctgaaaacgt tgtaacggct gctaatctgc tggaaaccaa aattccaaat 1260ggtgagatta ctaccgaggg aattgtacaa aacttggata tcgggttgca gtacatggaa 1320gcttggctca gaggctctgg atgtgtgccc atcaacaact tgatggaaga cgccgccact 1380gctgaagtgt ctcgttgtca attgtatcaa tgggtgaaac acggtgttac tctaaaggac 1440acgggagaaa aggtcacccc agaattaacc gaaaagattc taaaagaaca agtggaaaga 1500ctgtctaagg caagtccatt gggtgacaag aacaaattcg cgctggccgc taagtatttc 1560ttgccagaaa tcagaggcga gaaattcagt gaatttttga ctacattgtt gtacgacgaa 1620attgtgtcca ctaaggcgac gcccactgat ttgagcaaat tgtga 16655551PRTArtificial sequenceSEQ ID NO 5 Saccharomyces cerevisiae MLS 1 lacking 3 a.a. C terminal targeting signal 5Met Val Lys Val Ser Leu Asp Asn Val Lys Leu Leu Val Asp Val Asp1 5 10 15Lys Glu Pro Phe Phe Lys Pro Ser Ser Thr Thr Val Gly Asp Ile Leu 20 25 30Thr Lys Asp Ala Leu Glu Phe Ile Val Leu Leu His Arg Thr Phe Asn 35 40 45Asn Lys Arg Lys Gln Leu Leu Glu Asn Arg Gln Val Val Gln Lys Lys 50 55 60Leu Asp Ser Gly Ser Tyr His Leu Asp Phe Leu Pro Glu Thr Ala Asn65 70 75 80Ile Arg Asn Asp Pro Thr Trp Gln Gly Pro Ile Leu Ala Pro Gly Leu 85 90 95Ile Asn Arg Ser Thr Glu Ile Thr Gly Pro Pro Leu Arg Asn Met Leu 100 105 110Ile Asn Ala Leu Asn Ala Pro Val Asn Thr Tyr Met Thr Asp Phe Glu 115 120 125Asp Ser Ala Ser Pro Thr Trp Asn Asn Met Val Tyr Gly Gln Val Asn 130 135 140Leu Tyr Asp Ala Ile Arg Asn Gln Ile Asp Phe Asp Thr Pro Arg Lys145 150 155 160Ser Tyr Lys Leu Asn Gly Asn Val Ala Asn Leu Pro Thr Ile Ile Val 165 170 175Arg Pro Arg Gly Trp His Met Val Glu Lys His Leu Tyr Val Asp Asp 180 185 190Glu Pro Ile Ser Ala Ser Ile Phe Asp Phe Gly Leu Tyr Phe Tyr His 195 200 205Asn Ala Lys Glu Leu Ile Lys Leu Gly Lys Gly Pro Tyr Phe Tyr Leu 210 215 220Pro Lys Met Glu His His Leu Glu Ala Lys Leu Trp Asn Asp Val Phe225 230 235 240Cys Val Ala Gln Asp Tyr Ile Gly Ile Pro Arg Gly Thr Ile Arg Ala 245 250 255Thr Val Leu Ile Glu Thr Leu Pro Ala Ala Phe Gln Met Glu Glu Ile 260 265 270Ile Tyr Gln Leu Arg Gln His Ser Ser Gly Leu Asn Cys Gly Arg Trp 275 280 285Asp Tyr Ile Phe Ser Thr Ile Lys Arg Leu Arg Asn Asp Pro Asn His 290 295 300Ile Leu Pro Asn Arg Asn Gln Val Thr Met Thr Ser Pro Phe Met Asp305 310 315 320Ala Tyr Val Lys Arg Leu Ile Asn Thr Cys His Arg Arg Gly Val His 325 330 335Ala Met Gly Gly Met Ala Ala Gln Ile Pro Ile Lys Asp Asp Pro Ala 340 345 350Ala Asn Glu Lys Ala Met Thr Lys Val Arg Asn Asp Lys Ile Arg Glu 355 360 365Leu Thr Asn Gly His Asp Gly Ser Trp Val Ala His Pro Ala Leu Ala 370 375 380Pro Ile Cys Asn Glu Val Phe Ile Asn Met Gly Thr Pro Asn Gln Ile385 390 395 400Tyr Phe Ile Pro Glu Asn Val Val Thr Ala Ala Asn Leu Leu Glu Thr 405 410 415Lys Ile Pro Asn Gly Glu Ile Thr Thr Glu Gly Ile Val Gln Asn Leu 420 425 430Asp Ile Gly Leu Gln Tyr Met Glu Ala Trp Leu Arg Gly Ser Gly Cys 435 440 445Val Pro Ile Asn Asn Leu Met Glu Asp Ala Ala Thr Ala Glu Val Ser 450 455 460Arg Cys Gln Leu Tyr Gln Trp Val Lys His Gly Val Thr Leu Lys Asp465 470 475 480Thr Gly Glu Lys Val Thr Pro Glu Leu Thr Glu Lys Ile Leu Lys Glu 485 490 495Gln Val Glu Arg Leu Ser Lys Ala Ser Pro Leu Gly Asp Lys Asn Lys 500 505 510Phe Ala Leu Ala Ala Lys Tyr Phe Leu Pro Glu Ile Arg Gly Glu Lys 515 520 525Phe Ser Glu Phe Leu Thr Thr Leu Leu Tyr Asp Glu Ile Val Ser Thr 530 535 540Lys Ala Thr Pro Thr Asp Leu545 55061629DNAArtificial sequenceSEQ ID NO 6 Nucleotide sequence codon pair optimized for S. cerevisiae encoding for K. lactis isocitrate lyase (Icl1). (Stop codon TAA is TAAT in ordered construct) 6atggtttccg tcaaggcttc tgctgctgaa aagaaggaat tcttgcaatc tcaaatcgat 60gaaattgaaa aatggtggtc tgaaccaaga tggaaggaca ccaagagaat ctactctgct 120tacgaaattg ccaagcgtcg tggttctgtc aagccaaaca ctttcccatc taccgtcatg 180tctcaaaaat tgttcaagat cttaggtgaa cacgctaaga acggtactgt ttccaagact 240ttcggtgctt tggaccctgt tcaagtcact caaatgtcca agtacttgga caccatctac 300gtttccggtt ggcaatgttc ctctactgct tccacttcta acgaaccagg tccagatttg 360gctgactacc caatggacac cgttccaaac aaggttgaac atttgttcaa ggctcaacaa 420ttccacgaca gaaagcaatg ggaaagaatc tgtgatggta ccattgaaga atctgaaatc 480attgactact tgactccaat tgttgctgat ggtgatgctg gtcacggtgg tttgactgct 540gtcttcaagt tgaccaagat gttcatcgaa agaggtgctg ctggtattca cattgaagat 600caaacctcta ccaacaagaa atgtggtcac atggctggta gatgtgtcat tccagttcaa 660gaacacatca acagattaat cacctgtaga atggctgctg atgtcttggg ttctgacttg 720atcttagtcg ccagaactga ctctgaagct gctactttgt tgtcctccac tgctgactct 780cgtgaccatt atttcatctt aggtgcttcc aacccagctg tcaagggtaa gcctttgaat 840gacttgttga acaaggccat cttggatggt gctaccatcg atgacttgca aaccattgaa 900aaggaatggt tagccaaggc tgatgtcaaa ttattccacg aagttttcgc tgatgctgcc 960aaggctgctg gtaaggacca atctgtcatt gaccaattca actccaaggt taacccattg 1020tctgaaacct ccatctacga aatgcaagct ttggccaagg aattgttggg tactgaattg 1080ttcttcgact gggacttgcc aagaggtaga gaaggtctat acagatacca aggtggtact 1140caatgttctg ttatgagagc cagagccttt gctccatacg ctgatctatg ttggatggaa 1200tccaactacc cagactacga acaagccaag gaatttgctg aaggtgttac cgccaagttc 1260ccaggtaaat ggatggctta caacttgtct ccatctttca

actggaccaa ggccatgtct 1320gttgacgaac aagaaacttt catccaaaga ttaggtgact tgggttacat ctggcaattc 1380atcactttgg ctggtttgca cacctctggt ttggccattg aacaattctc caagaacttt 1440gccaaattgg gtatgaaggc ttacgctcaa gatatccaaa agaaggaatt ggacaacggt 1500attgacatgg ttaagcacca aaaatggtcc ggtgctgaat acatcgatgg tttgttgaga 1560ttggctcaag gtggtttggc tgctaccgct gccatgggtc aaggtgtcac tgaagatcaa 1620ttcaagtaa 162971656DNAArtificial sequenceNucleotide sequence codon pair optimized for S. cerevisiae encoding for S. cerevisiae malate synthase (Mls1), lacking 3 amino acid C-terminal targeting signal. (Stop codon TAA is TAAT in ordered construct) 7atggtcaagg tttctttgga caatgtcaaa ttgttagtcg atgttgacaa ggaacctttc 60ttcaagcctt cttccaccac cgttggtgac atcttgacca aggatgcttt ggaattcatt 120gtcttgttgc acagaacttt caacaacaag agaaagcaat tgttggaaaa cagacaagtt 180gttcaaaaga aattggactc tggttcttac catttggact tcttgccaga aactgctaac 240atcagaaacg acccaacctg gcaaggtcca attttggctc caggtttgat caacagatcc 300actgaaatca ctggtcctcc attgagaaac atgttgatca atgctttgaa tgctccagtt 360aacacctaca tgactgactt cgaagattct gcctctccaa cctggaacaa catggtttac 420ggtcaagtca acttatacga tgctatcaga aaccaaattg acttcgacac tccaagaaaa 480tcttacaaat tgaacggtaa cgttgccaac ttgccaacca ttattgtcag accaagaggt 540tggcacatgg ttgaaaagca tttatacgtt gacgacgaac caatttctgc ctccattttc 600gatttcggtc tatatttcta ccataacgct aaggaattga tcaagttggg taagggtcca 660tacttctact tgccaaagat ggaacaccac ttggaagcta agttgtggaa cgatgttttc 720tgtgttgctc aagactacat tggtattcca agaggtacca tcagagctac tgttttgatt 780gaaactttac cagctgcttt ccaaatggaa gaaatcatct accaattgag acaacactcc 840tctggtttga actgtggtag atgggactac atcttttcca ccatcaagag attgagaaac 900gacccaaacc acattttgcc aaacagaaac caagtcacca tgacttctcc attcatggac 960gcttacgtca agagattgat caacacctgt caccgtcgtg gtgtccacgc tatgggtggt 1020atggctgctc aaattccaat caaggatgac ccagctgcca acgaaaaggc catgaccaag 1080gtcagaaacg acaagatcag agaattaacc aacggtcacg atggttcctg ggttgctcac 1140ccagctttgg ctccaatctg taacgaagtc tttatcaaca tgggtactcc aaaccaaatc 1200tacttcattc cagaaaacgt tgtcactgct gctaacttgt tggaaaccaa gattccaaac 1260ggtgaaatca ccactgaagg tattgtccaa aacttggata tcggtttgca atacatggaa 1320gcttggttac gtggttctgg ttgtgttcca atcaacaact tgatggaaga tgccgctact 1380gctgaagttt cccgttgtca attgtaccaa tgggttaagc acggtgtcac tttgaaagac 1440accggtgaaa aggtcactcc agaattgact gaaaagatct taaaggaaca agttgaaaga 1500ttatccaaag cctctccatt aggtgacaag aacaagttcg ctctagccgc caaatacttc 1560ttgccagaaa tcagaggtga aaagttctct gaatttttga ccactttgtt gtacgatgaa 1620attgtctcca ccaaggctac tccaaccgat ttgtaa 165681000DNAArtificial sequenceSequence of the TDH1 promoter (Saccharomyces cerevisiae) 8cttccctttt acagtgcttc ggaaaagcac agcgttgtcc aagggaacaa tttttcttca 60agttaatgca taagaaatat ctttttttat gtttagctaa gtaaaagcag cttggagtaa 120aaaaaaaaat gagtaaattt ctcgatggat tagtttctca caggtaacat aacaaaaacc 180aagaaaagcc cgcttctgaa aactacagtt gacttgtatg ctaaagggcc agactaatgg 240gaggagaaaa agaaacgaat gtatatgctc atttacactc tatatcacca tatggaggat 300aagttgggct gagcttctga tccaatttat tctatccatt agttgctgat atgtcccacc 360agccaacact tgatagtatc tactcgccat tcacttccag cagcgccagt agggttgttg 420agcttagtaa aaatgtgcgc accacaagcc tacatgactc cacgtcacat gaaaccacac 480cgtggggcct tgttgcgcta ggaataggat atgcgacgaa gacgcttctg cttagtaacc 540acaccacatt ttcagggggt cgatctgctt gcttccttta ctgtcacgag cggcccataa 600tcgcgctttt tttttaaaag gcgcgagaca gcaaacagga agctcgggtt tcaaccttcg 660gagtggtcgc agatctggag actggatctt tacaatacag taaggcaagc caccatctgc 720ttcttaggtg catgcgacgg tatccacgtg cagaacaaca tagtctgaag aaggggggga 780ggagcatgtt cattctctgt agcagtaaga gcttggtgat aatgaccaaa actggagtct 840cgaaatcata taaatagaca atatattttc acacaatgag atttgtagta cagttctatt 900ctctctcttg cataaataag aaattcatca agaacttggt ttgatatttc accaacacac 960acaaaaaaca gtacttcact aaatttacac acaaaacaaa 10009500DNAArtificial sequenceSequence of the TDH1 terminator (Saccharomyces cerevisiae) 9ataaagcaat cttgatgagg ataatgattt ttttttgaat atacataaat actaccgttt 60ttctgctaga ttttgtgaag acgtaaataa gtacatatta ctttttaagc caagacaaga 120ttaagcatta actttaccct tttctcttct aagtttcaat actagttatc actgtttaaa 180agttatggcg agaacgtcgg cggttaaaat atattaccct gaacgtggtg aattgaagtt 240ctaggatggt ttaaagattt ttcctttttg ggaaataagt aaacaatata ttgctgcctt 300tgcaaaacgc acatacccac aatatgtgac tattggcaaa gaacgcatta tcctttgaag 360aggtggatac tgatactaag agagtctcta ttccggctcc acttttagtc cagagattac 420ttgtcttctt acgtatcaga acaagaaagc atttccaaag taattgcatt tgcccttgag 480cagtatatat atactaagaa 500101000DNAArtificial sequenceSequence of the TDH3 promoter (Saccharomyces cerevisiae) 10ctattttcga ggaccttgtc accttgagcc caagagagcc aagatttaaa ttttcctatg 60acttgatgca aattcccaaa gctaataaca tgcaagacac gtacggtcaa gaagacatat 120ttgacctctt aacaggttca gacgcgactg cctcatcagt aagacccgtt gaaaagaact 180tacctgaaaa aaacgaatat atactagcgt tgaatgttag cgtcaacaac aagaagttta 240atgacgcgga ggccaaggca aaaagattcc ttgattacgt aagggagtta gaatcatttt 300gaataaaaaa cacgcttttt cagttcgagt ttatcattat caatactgcc atttcaaaga 360atacgtaaat aattaatagt agtgattttc ctaactttat ttagtcaaaa aattagcctt 420ttaattctgc tgtaacccgt acatgcccaa aatagggggc gggttacaca gaatatataa 480catcgtaggt gtctgggtga acagtttatt cctggcatcc actaaatata atggagcccg 540ctttttaagc tggcatccag aaaaaaaaag aatcccagca ccaaaatatt gttttcttca 600ccaaccatca gttcataggt ccattctctt agcgcaacta cagagaacag gggcacaaac 660aggcaaaaaa cgggcacaac ctcaatggag tgatgcaacc tgcctggagt aaatgatgac 720acaaggcaat tgacccacgc atgtatctat ctcattttct tacaccttct attaccttct 780gctctctctg atttggaaaa agctgaaaaa aaaggttgaa accagttccc tgaaattatt 840cccctacttg actaataagt atataaagac ggtaggtatt gattgtaatt ctgtaaatct 900atttcttaaa cttcttaaat tctactttta tagttagtct tttttttagt tttaaaacac 960caagaactta gtttcgaata aacacacata aacaaacaaa 100011500DNAArtificial sequenceSequence of the TDH3 terminator (Saccharomyces cerevisiae) 11gtgaatttac tttaaatctt gcatttaaat aaattttctt tttatagctt tatgacttag 60tttcaattta tatactattt taatgacatt ttcgattcat tgattgaaag ctttgtgttt 120tttcttgatg cgctattgca ttgttcttgt ctttttcgcc acatgtaata tctgtagtag 180atacctgata cattgtggat gctgagtgaa attttagtta ataatggagg cgctcttaat 240aattttgggg atattggctt ttttttttaa agtttacaaa tgaatttttt ccgccaggat 300aacgattctg aagttactct tagcgttcct atcggtacag ccatcaaatc atgcctataa 360atcatgccta tatttgcgtg cagtcagtat catctacatg aaaaaaactc ccgcaatttc 420ttatagaata cgttgaaaat taaatgtacg cgccaagata agataacata tatctagatg 480cagtaatata cacagattcc 500123160DNAArtificial sequenceSynthetic construct TDH1p-ICL1-TDH1t for expression in S. cerevisiae 12ggatcccttc ccttttacag tgcttcggaa aagcacagcg ttgtccaagg gaacaatttt 60tcttcaagtt aatgcataag aaatatcttt ttttatgttt agctaagtaa aagcagcttg 120gagtaaaaaa aaaaatgagt aaatttctcg atggattagt ttctcacagg taacataaca 180aaaaccaaga aaagcccgct tctgaaaact acagttgact tgtatgctaa agggccagac 240taatgggagg agaaaaagaa acgaatgtat atgctcattt acactctata tcaccatatg 300gaggataagt tgggctgagc ttctgatcca atttattcta tccattagtt gctgatatgt 360cccaccagcc aacacttgat agtatctact cgccattcac ttccagcagc gccagtaggg 420ttgttgagct tagtaaaaat gtgcgcacca caagcctaca tgactccacg tcacatgaaa 480ccacaccgtg gggccttgtt gcgctaggaa taggatatgc gacgaagacg cttctgctta 540gtaaccacac cacattttca gggggtcgat ctgcttgctt cctttactgt cacgagcggc 600ccataatcgc gctttttttt taaaaggcgc gagacagcaa acaggaagct cgggtttcaa 660ccttcggagt ggtcgcagat ctggagactg gatctttaca atacagtaag gcaagccacc 720atctgcttct taggtgcatg cgacggtatc cacgtgcaga acaacatagt ctgaagaagg 780gggggaggag catgttcatt ctctgtagca gtaagagctt ggtgataatg accaaaactg 840gagtctcgaa atcatataaa tagacaatat attttcacac aatgagattt gtagtacagt 900tctattctct ctcttgcata aataagaaat tcatcaagaa cttggtttga tatttcacca 960acacacacaa aaaacagtac ttcactaaat ttacacacaa aacaaaatgg tttccgtcaa 1020ggcttctgct gctgaaaaga aggaattctt gcaatctcaa atcgatgaaa ttgaaaaatg 1080gtggtctgaa ccaagatgga aggacaccaa gagaatctac tctgcttacg aaattgccaa 1140gcgtcgtggt tctgtcaagc caaacacttt cccatctacc gtcatgtctc aaaaattgtt 1200caagatctta ggtgaacacg ctaagaacgg tactgtttcc aagactttcg gtgctttgga 1260ccctgttcaa gtcactcaaa tgtccaagta cttggacacc atctacgttt ccggttggca 1320atgttcctct actgcttcca cttctaacga accaggtcca gatttggctg actacccaat 1380ggacaccgtt ccaaacaagg ttgaacattt gttcaaggct caacaattcc acgacagaaa 1440gcaatgggaa agaatctgtg atggtaccat tgaagaatct gaaatcattg actacttgac 1500tccaattgtt gctgatggtg atgctggtca cggtggtttg actgctgtct tcaagttgac 1560caagatgttc atcgaaagag gtgctgctgg tattcacatt gaagatcaaa cctctaccaa 1620caagaaatgt ggtcacatgg ctggtagatg tgtcattcca gttcaagaac acatcaacag 1680attaatcacc tgtagaatgg ctgctgatgt cttgggttct gacttgatct tagtcgccag 1740aactgactct gaagctgcta ctttgttgtc ctccactgct gactctcgtg accattattt 1800catcttaggt gcttccaacc cagctgtcaa gggtaagcct ttgaatgact tgttgaacaa 1860ggccatcttg gatggtgcta ccatcgatga cttgcaaacc attgaaaagg aatggttagc 1920caaggctgat gtcaaattat tccacgaagt tttcgctgat gctgccaagg ctgctggtaa 1980ggaccaatct gtcattgacc aattcaactc caaggttaac ccattgtctg aaacctccat 2040ctacgaaatg caagctttgg ccaaggaatt gttgggtact gaattgttct tcgactggga 2100cttgccaaga ggtagagaag gtctatacag ataccaaggt ggtactcaat gttctgttat 2160gagagccaga gcctttgctc catacgctga tctatgttgg atggaatcca actacccaga 2220ctacgaacaa gccaaggaat ttgctgaagg tgttaccgcc aagttcccag gtaaatggat 2280ggcttacaac ttgtctccat ctttcaactg gaccaaggcc atgtctgttg acgaacaaga 2340aactttcatc caaagattag gtgacttggg ttacatctgg caattcatca ctttggctgg 2400tttgcacacc tctggtttgg ccattgaaca attctccaag aactttgcca aattgggtat 2460gaaggcttac gctcaagata tccaaaagaa ggaattggac aacggtattg acatggttaa 2520gcaccaaaaa tggtccggtg ctgaatacat cgatggtttg ttgagattgg ctcaaggtgg 2580tttggctgct accgctgcca tgggtcaagg tgtcactgaa gatcaattca agtaatgccc 2640gggcataaag caatcttgat gaggataatg attttttttt gaatatacat aaatactacc 2700gtttttctgc tagattttgt gaagacgtaa ataagtacat attacttttt aagccaagac 2760aagattaagc attaacttta cccttttctc ttctaagttt caatactagt tatcactgtt 2820taaaagttat ggcgagaacg tcggcggtta aaatatatta ccctgaacgt ggtgaattga 2880agttctagga tggtttaaag atttttcctt tttgggaaat aagtaaacaa tatattgctg 2940cctttgcaaa acgcacatac ccacaatatg tgactattgg caaagaacgc attatccttt 3000gaagaggtgg atactgatac taagagagtc tctattccgg ctccactttt agtccagaga 3060ttacttgtct tcttacgtat cagaacaaga aagcatttcc aaagtaattg catttgccct 3120tgagcagtat atatatacta agaaggcgcg ccgcggccgc 3160133195DNAArtificial sequenceSynthetic construct TDH3p-MLS1-TDH3t for expression in S. cerevisiae 13ggatccggcg cgccctattt tcgaggacct tgtcaccttg agcccaagag agccaagatt 60taaattttcc tatgacttga tgcaaattcc caaagctaat aacatgcaag acacgtacgg 120tcaagaagac atatttgacc tcttaacagg ttcagacgcg actgcctcat cagtaagacc 180cgttgaaaag aacttacctg aaaaaaacga atatatacta gcgttgaatg ttagcgtcaa 240caacaagaag tttaatgacg cggaggccaa ggcaaaaaga ttccttgatt acgtaaggga 300gttagaatca ttttgaataa aaaacacgct ttttcagttc gagtttatca ttatcaatac 360tgccatttca aagaatacgt aaataattaa tagtagtgat tttcctaact ttatttagtc 420aaaaaattag ccttttaatt ctgctgtaac ccgtacatgc ccaaaatagg gggcgggtta 480cacagaatat ataacatcgt aggtgtctgg gtgaacagtt tattcctggc atccactaaa 540tataatggag cccgcttttt aagctggcat ccagaaaaaa aaagaatccc agcaccaaaa 600tattgttttc ttcaccaacc atcagttcat aggtccattc tcttagcgca actacagaga 660acaggggcac aaacaggcaa aaaacgggca caacctcaat ggagtgatgc aacctgcctg 720gagtaaatga tgacacaagg caattgaccc acgcatgtat ctatctcatt ttcttacacc 780ttctattacc ttctgctctc tctgatttgg aaaaagctga aaaaaaaggt tgaaaccagt 840tccctgaaat tattccccta cttgactaat aagtatataa agacggtagg tattgattgt 900aattctgtaa atctatttct taaacttctt aaattctact tttatagtta gtcttttttt 960tagttttaaa acaccaagaa cttagtttcg aataaacaca cataaacaaa caaaatggtc 1020aaggtttctt tggacaatgt caaattgtta gtcgatgttg acaaggaacc tttcttcaag 1080ccttcttcca ccaccgttgg tgacatcttg accaaggatg ctttggaatt cattgtcttg 1140ttgcacagaa ctttcaacaa caagagaaag caattgttgg aaaacagaca agttgttcaa 1200aagaaattgg actctggttc ttaccatttg gacttcttgc cagaaactgc taacatcaga 1260aacgacccaa cctggcaagg tccaattttg gctccaggtt tgatcaacag atccactgaa 1320atcactggtc ctccattgag aaacatgttg atcaatgctt tgaatgctcc agttaacacc 1380tacatgactg acttcgaaga ttctgcctct ccaacctgga acaacatggt ttacggtcaa 1440gtcaacttat acgatgctat cagaaaccaa attgacttcg acactccaag aaaatcttac 1500aaattgaacg gtaacgttgc caacttgcca accattattg tcagaccaag aggttggcac 1560atggttgaaa agcatttata cgttgacgac gaaccaattt ctgcctccat tttcgatttc 1620ggtctatatt tctaccataa cgctaaggaa ttgatcaagt tgggtaaggg tccatacttc 1680tacttgccaa agatggaaca ccacttggaa gctaagttgt ggaacgatgt tttctgtgtt 1740gctcaagact acattggtat tccaagaggt accatcagag ctactgtttt gattgaaact 1800ttaccagctg ctttccaaat ggaagaaatc atctaccaat tgagacaaca ctcctctggt 1860ttgaactgtg gtagatggga ctacatcttt tccaccatca agagattgag aaacgaccca 1920aaccacattt tgccaaacag aaaccaagtc accatgactt ctccattcat ggacgcttac 1980gtcaagagat tgatcaacac ctgtcaccgt cgtggtgtcc acgctatggg tggtatggct 2040gctcaaattc caatcaagga tgacccagct gccaacgaaa aggccatgac caaggtcaga 2100aacgacaaga tcagagaatt aaccaacggt cacgatggtt cctgggttgc tcacccagct 2160ttggctccaa tctgtaacga agtctttatc aacatgggta ctccaaacca aatctacttc 2220attccagaaa acgttgtcac tgctgctaac ttgttggaaa ccaagattcc aaacggtgaa 2280atcaccactg aaggtattgt ccaaaacttg gatatcggtt tgcaatacat ggaagcttgg 2340ttacgtggtt ctggttgtgt tccaatcaac aacttgatgg aagatgccgc tactgctgaa 2400gtttcccgtt gtcaattgta ccaatgggtt aagcacggtg tcactttgaa agacaccggt 2460gaaaaggtca ctccagaatt gactgaaaag atcttaaagg aacaagttga aagattatcc 2520aaagcctctc cattaggtga caagaacaag ttcgctctag ccgccaaata cttcttgcca 2580gaaatcagag gtgaaaagtt ctctgaattt ttgaccactt tgttgtacga tgaaattgtc 2640tccaccaagg ctactccaac cgatttgtaa tgcccgggcg tgaatttact ttaaatcttg 2700catttaaata aattttcttt ttatagcttt atgacttagt ttcaatttat atactatttt 2760aatgacattt tcgattcatt gattgaaagc tttgtgtttt ttcttgatgc gctattgcat 2820tgttcttgtc tttttcgcca catgtaatat ctgtagtaga tacctgatac attgtggatg 2880ctgagtgaaa ttttagttaa taatggaggc gctcttaata attttgggga tattggcttt 2940tttttttaaa gtttacaaat gaattttttc cgccaggata acgattctga agttactctt 3000agcgttccta tcggtacagc catcaaatca tgcctataaa tcatgcctat atttgcgtgc 3060agtcagtatc atctacatga aaaaaactcc cgcaatttct tatagaatac gttgaaaatt 3120aaatgtacgc gccaagataa gataacatat atctagatgc agtaatatac acagattccg 3180gccggccgcg gccgc 319514538PRTMannheimia succiniciproducens 14Met Thr Asp Leu Asn Gln Leu Thr Gln Glu Leu Gly Ala Leu Gly Ile1 5 10 15His Asp Val Gln Glu Val Val Tyr Asn Pro Ser Tyr Glu Leu Leu Phe 20 25 30Ala Glu Glu Thr Lys Pro Gly Leu Glu Gly Tyr Glu Lys Gly Thr Val 35 40 45Thr Asn Gln Gly Ala Val Ala Val Asn Thr Gly Ile Phe Thr Gly Arg 50 55 60Ser Pro Lys Asp Lys Tyr Ile Val Leu Asp Asp Lys Thr Lys Asp Thr65 70 75 80Val Trp Trp Thr Ser Glu Lys Val Lys Asn Asp Asn Lys Pro Met Ser 85 90 95Gln Asp Thr Trp Asn Ser Leu Lys Gly Leu Val Ala Asp Gln Leu Ser 100 105 110Gly Lys Arg Leu Phe Val Val Asp Ala Phe Cys Gly Ala Asn Lys Asp 115 120 125Thr Arg Leu Ala Val Arg Val Val Thr Glu Val Ala Trp Gln Ala His 130 135 140Phe Val Thr Asn Met Phe Ile Arg Pro Ser Ala Glu Glu Leu Lys Gly145 150 155 160Phe Lys Pro Asp Phe Val Val Met Asn Gly Ala Lys Cys Thr Asn Pro 165 170 175Asn Trp Lys Glu Gln Gly Leu Asn Ser Glu Asn Phe Val Ala Phe Asn 180 185 190Ile Thr Glu Gly Val Gln Leu Ile Gly Gly Thr Trp Tyr Gly Gly Glu 195 200 205Met Lys Lys Gly Met Phe Ser Met Met Asn Tyr Phe Leu Pro Leu Arg 210 215 220Gly Ile Ala Ser Met His Cys Ser Ala Asn Val Gly Lys Asp Gly Asp225 230 235 240Thr Ala Ile Phe Phe Gly Leu Ser Gly Thr Gly Lys Thr Thr Leu Ser 245 250 255Thr Asp Pro Lys Arg Gln Leu Ile Gly Asp Asp Glu His Gly Trp Asp 260 265 270Asp Glu Gly Val Phe Asn Phe Glu Gly Gly Cys Tyr Ala Lys Thr Ile 275 280 285Asn Leu Ser Ala Glu Asn Glu Pro Asp Ile Tyr Gly Ala Ile Lys Arg 290 295 300Asp Ala Leu Leu Glu Asn Val Val Val Leu Asp Asn Gly Asp Val Asp305 310 315 320Tyr Ala Asp Gly Ser Lys Thr Glu Asn Thr Arg Val Ser Tyr Pro Ile 325 330 335Tyr His Ile Gln Asn Ile Val Lys Pro Val Ser Lys Ala Gly Pro Ala 340 345 350Thr Lys Val Ile Phe Leu Ser Ala Asp Ala Phe Gly Val Leu Pro Pro 355 360 365Val Ser Lys Leu Thr Pro Glu Gln Thr Lys Tyr Tyr Phe Leu Ser Gly 370 375 380Phe Thr Ala Lys Leu Ala Gly Thr Glu Arg Gly Ile Thr Glu Pro Thr385 390 395 400Pro Thr Phe Ser Ala Cys Phe Gly Ala Ala Phe Leu Ser Leu His Pro 405 410 415Thr Gln Tyr Ala Glu Val Leu Val Lys Arg Met Gln Glu Ser Gly Ala 420 425 430Glu Ala Tyr Leu Val Asn Thr Gly Trp Asn

Gly Thr Gly Lys Arg Ile 435 440 445Ser Ile Lys Asp Thr Arg Gly Ile Ile Asp Ala Ile Leu Asp Gly Ser 450 455 460Ile Asp Lys Ala Glu Met Gly Ser Leu Pro Ile Phe Asp Phe Ser Ile465 470 475 480Pro Lys Ala Leu Pro Gly Val Asn Pro Ala Ile Leu Asp Pro Arg Asp 485 490 495Thr Tyr Ala Asp Lys Ala Gln Trp Glu Glu Lys Ala Gln Asp Leu Ala 500 505 510Gly Arg Phe Val Lys Asn Phe Glu Lys Tyr Thr Gly Thr Ala Glu Gly 515 520 525Gln Ala Leu Val Ala Ala Gly Pro Lys Ala 530 535151617DNAArtificial sequencePEP carboxykinase M. succiniciproducens codon pair optimized for S. cerevisiae 15atgaccgatt tgaaccaatt gactcaagaa ttgggtgctt tgggtattca cgatgtccaa 60gaagttgtct acaacccatc ttacgaattg ttgtttgctg aagaaaccaa gccaggtttg 120gaaggttacg aaaagggtac tgttaccaac caaggtgctg ttgctgtcaa caccggtatc 180ttcaccggtc gttctccaaa ggacaaatac attgtcttgg atgacaagac caaggacact 240gtctggtgga cttctgaaaa ggtcaagaac gacaacaaac caatgtccca agacacttgg 300aactctttaa agggtttagt cgctgaccaa ttgtctggta agagattatt cgttgtcgat 360gctttctgtg gtgccaacaa ggacaccaga ttagctgtca gagttgtcac tgaagttgct 420tggcaagctc acttcgttac caacatgttc atcagaccat ctgctgaaga attgaaaggt 480ttcaagccag atttcgttgt catgaacggt gccaaatgta ccaacccaaa ctggaaggaa 540caaggtttga actctgaaaa ctttgttgct ttcaacatca ctgaaggtgt tcaattgatt 600ggtggtacct ggtacggtgg tgaaatgaag aagggtatgt tctccatgat gaactacttc 660ttgccattga gaggtattgc ttccatgcac tgttctgcca atgtcggtaa ggacggtgac 720actgccatct tcttcggtct atccggtacc ggtaagacca ctttgtccac tgacccaaag 780agacaattga ttggtgatga cgaacacggt tgggatgacg aaggtgtttt caactttgaa 840ggtggttgtt acgccaagac catcaactta tctgctgaaa atgaaccaga tatctacggt 900gccatcaagc gtgacgctct attggaaaac gttgttgttt tggacaatgg tgacgtcgat 960tatgctgacg gttccaagac tgaaaacacc agagtttctt acccaatcta ccatattcaa 1020aacattgtca agccagtttc caaggctggt ccagctacca aagttatctt cttgtctgct 1080gatgctttcg gtgttttgcc tcctgtttcc aagttgactc cagaacaaac caagtactac 1140ttcttgtctg gtttcaccgc caagttggct ggtactgaaa gaggtatcac tgaaccaact 1200ccaactttct ctgcttgttt cggtgctgcc tttttgtctt tgcacccaac tcaatacgct 1260gaagttttgg tcaagagaat gcaagaatct ggtgctgaag cttacttggt caacactggt 1320tggaacggta ccggtaagag aatctccatc aaagatacca gaggtatcat cgatgccatc 1380ttggatggtt ccattgacaa ggctgaaatg ggttctttgc caattttcga tttctccatt 1440ccaaaggctt tgccaggtgt caacccagcc atcttagacc caagagacac ctacgctgac 1500aaagctcaat gggaagaaaa ggctcaagac ttggctggta gattcgtcaa gaacttcgaa 1560aaatacactg gtactgctga aggtcaagct ttggttgctg ctggtccaaa ggcctaa 1617163148DNAArtificial sequenceSynthetic construct TDH1p-PCKm-TDH1t for expression in S. cerevisiae 16ggatcccttc ccttttacag tgcttcggaa aagcacagcg ttgtccaagg gaacaatttt 60tcttcaagtt aatgcataag aaatatcttt ttttatgttt agctaagtaa aagcagcttg 120gagtaaaaaa aaaaatgagt aaatttctcg atggattagt ttctcacagg taacataaca 180aaaaccaaga aaagcccgct tctgaaaact acagttgact tgtatgctaa agggccagac 240taatgggagg agaaaaagaa acgaatgtat atgctcattt acactctata tcaccatatg 300gaggataagt tgggctgagc ttctgatcca atttattcta tccattagtt gctgatatgt 360cccaccagcc aacacttgat agtatctact cgccattcac ttccagcagc gccagtaggg 420ttgttgagct tagtaaaaat gtgcgcacca caagcctaca tgactccacg tcacatgaaa 480ccacaccgtg gggccttgtt gcgctaggaa taggatatgc gacgaagacg cttctgctta 540gtaaccacac cacattttca gggggtcgat ctgcttgctt cctttactgt cacgagcggc 600ccataatcgc gctttttttt taaaaggcgc gagacagcaa acaggaagct cgggtttcaa 660ccttcggagt ggtcgcagat ctggagactg gatctttaca atacagtaag gcaagccacc 720atctgcttct taggtgcatg cgacggtatc cacgtgcaga acaacatagt ctgaagaagg 780gggggaggag catgttcatt ctctgtagca gtaagagctt ggtgataatg accaaaactg 840gagtctcgaa atcatataaa tagacaatat attttcacac aatgagattt gtagtacagt 900tctattctct ctcttgcata aataagaaat tcatcaagaa cttggtttga tatttcacca 960acacacacaa aaaacagtac ttcactaaat ttacacacaa aacaaaatga ctgatttgaa 1020caaattggtc aaggaattga atgatttggg tttgactgac gtcaaggaaa ttgtctacaa 1080cccatcttac gaacaattat tcgaagaaga aaccaagcca ggtttggaag gtttcgacaa 1140gggtactttg accactttag gtgctgttgc tgttgacacc ggtattttca ccggtcgttc 1200tccaaaggac aaatacattg tttgtgatga aaccaccaag gacaccgtct ggtggaactc 1260tgaagctgcc aagaacgata acaagccaat gactcaagaa acctggaaat ctttgagaga 1320attggttgcc aagcaattgt ctggtaagag attattcgtt gttgacgctt tctgtggtgc 1380ttctgaaaag cacagaattg gtgtcagaat ggtcactgaa gttgcttggc aagctcattt 1440cgtcaagaac atgttcatca gaccaactga cgaagaattg aagaacttca aggctgactt 1500caccgttttg aatggtgcca agtgtaccaa cccaaactgg aaggaacaag gtttgaactc 1560tgaaaacttt gttgctttca acatcactga aggtatccaa ttgattggtg gtacctggta 1620cggtggtgaa atgaagaagg gtatgttctc catgatgaac tatttcttgc cattgaaagg 1680tgttgcttcc atgcactgtt ctgccaatgt cggtaaggat ggtgacgttg ccatcttctt 1740cggtctatcc ggtactggta agaccactct atccactgac ccaaagagac aattgattgg 1800tgatgacgaa cacggttggg acgaatctgg tgtctttaac tttgaaggtg gttgttacgc 1860caagaccatc aacttatctc aagaaaacga accagatatc tacggtgcca tccgtcgtga 1920tgctttgttg gaaaacgttg ttgtcagagc tgacggttct gttgacttcg acgacggttc 1980caagactgaa aacaccagag tttcttaccc aatctaccac attgacaaca ttgtcagacc 2040tgtttccaag gctggtcacg ctaccaaggt tatcttcttg actgctgatg ctttcggtgt 2100cttgccacct gtttccaaat tgactccaga acaaaccgaa tactacttct tgtccggttt 2160cactgccaaa ttggctggta ctgaaagagg tgtcactgaa ccaactccaa ctttctctgc 2220ttgtttcggt gctgctttct tatctttgca cccaatccaa tacgctgatg tcttggttga 2280aagaatgaag gcttctggtg ctgaagctta cttggtcaac accggttgga acggtaccgg 2340taagagaatc tccatcaagg ataccagagg tatcattgat gctatcttgg acggttccat 2400tgaaaaggct gaaatgggtg aattgccaat cttcaacttg gccattccaa aggctttgcc 2460aggtgttgac ccagccatct tagatccaag agacacctac gctgacaagg ctcaatggca 2520agtcaaggct gaagatttgg ctaacagatt cgtcaagaac tttgtcaaat acactgctaa 2580cccagaagct gccaaattgg ttggtgctgg tccaaaggct taaggcccgg gcataaagca 2640atcttgatga ggataatgat ttttttttga atatacataa atactaccgt ttttctgcta 2700gattttgtga agacgtaaat aagtacatat tactttttaa gccaagacaa gattaagcat 2760taactttacc cttttctctt ctaagtttca atactagtta tcactgttta aaagttatgg 2820cgagaacgtc ggcggttaaa atatattacc ctgaacgtgg tgaattgaag ttctaggatg 2880gtttaaagat ttttcctttt tgggaaataa gtaaacaata tattgctgcc tttgcaaaac 2940gcacataccc acaatatgtg actattggca aagaacgcat tatcctttga agaggtggat 3000actgatacta agagagtctc tattccggct ccacttttag tccagagatt acttgtcttc 3060ttacgtatca gaacaagaaa gcatttccaa agtaattgca tttgcccttg agcagtatat 3120atatactaag aaggcgcgcc gcggccgc 314817365PRTArtificial sequenceMDH2 amino acid sequence from S. cerevisiae lacking first 12 a.a. + new methionine 17Met Leu Lys Ile Ala Ile Leu Gly Ala Ala Gly Gly Ile Gly Gln Ser1 5 10 15Leu Ser Leu Leu Leu Lys Ala Gln Leu Gln Tyr Gln Leu Lys Glu Ser 20 25 30Asn Arg Ser Val Thr His Ile His Leu Ala Leu Tyr Asp Val Asn Gln 35 40 45Glu Ala Ile Asn Gly Val Thr Ala Asp Leu Ser His Ile Asp Thr Pro 50 55 60Ile Ser Val Ser Ser His Ser Pro Ala Gly Gly Ile Glu Asn Cys Leu65 70 75 80His Asn Ala Ser Ile Val Val Ile Pro Ala Gly Val Pro Arg Lys Pro 85 90 95Gly Met Thr Arg Asp Asp Leu Phe Asn Val Asn Ala Gly Ile Ile Ser 100 105 110Gln Leu Gly Asp Ser Ile Ala Glu Cys Cys Asp Leu Ser Lys Val Phe 115 120 125Val Leu Val Ile Ser Asn Pro Val Asn Ser Leu Val Pro Val Met Val 130 135 140Ser Asn Ile Leu Lys Asn His Pro Gln Ser Arg Asn Ser Gly Ile Glu145 150 155 160Arg Arg Ile Met Gly Val Thr Lys Leu Asp Ile Val Arg Ala Ser Thr 165 170 175Phe Leu Arg Glu Ile Asn Ile Glu Ser Gly Leu Thr Pro Arg Val Asn 180 185 190Ser Met Pro Asp Val Pro Val Ile Gly Gly His Ser Gly Glu Thr Ile 195 200 205Ile Pro Leu Phe Ser Gln Ser Asn Phe Leu Ser Arg Leu Asn Glu Asp 210 215 220Gln Leu Lys Tyr Leu Ile His Arg Val Gln Tyr Gly Gly Asp Glu Val225 230 235 240Val Lys Ala Lys Asn Gly Lys Gly Ser Ala Thr Leu Ser Met Ala His 245 250 255Ala Gly Tyr Lys Cys Val Val Gln Phe Val Ser Leu Leu Leu Gly Asn 260 265 270Ile Glu Gln Ile His Gly Thr Tyr Tyr Val Pro Leu Lys Asp Ala Asn 275 280 285Asn Phe Pro Ile Ala Pro Gly Ala Asp Gln Leu Leu Pro Leu Val Asp 290 295 300Gly Ala Asp Tyr Phe Ala Ile Pro Leu Thr Ile Thr Thr Lys Gly Val305 310 315 320Ser Tyr Val Asp Tyr Asp Ile Val Asn Arg Met Asn Asp Met Glu Arg 325 330 335Asn Gln Met Leu Pro Ile Cys Val Ser Gln Leu Lys Lys Asn Ile Asp 340 345 350Lys Gly Leu Glu Phe Val Ala Ser Arg Ser Ala Ser Ser 355 360 365181098DNAArtificial sequencecpo MDH2 from S. cerevisiae lacking first 12 a.a. 18atgttgaaga ttgccatctt gggtgctgct ggtggtatcg gtcaatcttt gtctttgttg 60ttgaaggctc aattgcaata ccaattgaag gaatccaaca gatctgttac ccacattcat 120ttggctttgt acgatgtcaa ccaagaagct atcaacggtg tcactgctga cttgtctcac 180atcgataccc caatctctgt ttcctctcac tctccagctg gtggtattga aaactgtttg 240cacaacgctt ccattgttgt cattccagcc ggtgttccaa gaaagccagg tatgacccgt 300gacgatttgt tcaacgtcaa tgccggtatc atctctcaat taggtgattc cattgctgaa 360tgttgtgact tgtccaaggt tttcgtcttg gttatctcca acccagtcaa ctctttggtt 420cctgttatgg tttccaacat cttgaagaac cacccacaat ccagaaactc tggtattgaa 480agaagaatca tgggtgtcac caaattggac attgtcagag cttccacttt cttgagagaa 540atcaacattg aatctggttt gactccaaga gtcaactcca tgccagatgt tccagttatc 600ggtggtcact ctggtgaaac tatcatccca ttattctctc aatctaactt cttgtccaga 660ttgaatgaag atcaattgaa atacttgatt caccgtgtcc aatacggtgg tgacgaagtt 720gtcaaggcca agaacggtaa gggttctgct actctatcca tggctcatgc cggttacaag 780tgtgttgtcc aattcgtttc tctattatta ggtaacattg aacaaatcca cggtacctac 840tacgttccat tgaaagatgc taacaacttc ccaattgctc caggtgctga ccaattattg 900ccattagtcg acggtgctga ctactttgcc atcccattga ccatcactac caagggtgtt 960tcttacgttg actacgatat cgtcaacaga atgaacgaca tggaaagaaa ccaaatgttg 1020cctatctgtg tttctcaatt gaagaagaac attgacaagg gtttggaatt cgttgcttcc 1080agatctgctt ccagttaa 1098192637DNAArtificial sequenceSynthetic construct TDH3p-delta12N MDH2-TDH3t for expression in S. cerevisiae 19ggatccggcg cgccctattt tcgaggacct tgtcaccttg agcccaagag agccaagatt 60taaattttcc tatgacttga tgcaaattcc caaagctaat aacatgcaag acacgtacgg 120tcaagaagac atatttgacc tcttaacagg ttcagacgcg actgcctcat cagtaagacc 180cgttgaaaag aacttacctg aaaaaaacga atatatacta gcgttgaatg ttagcgtcaa 240caacaagaag tttaatgacg cggaggccaa ggcaaaaaga ttccttgatt acgtaaggga 300gttagaatca ttttgaataa aaaacacgct ttttcagttc gagtttatca ttatcaatac 360tgccatttca aagaatacgt aaataattaa tagtagtgat tttcctaact ttatttagtc 420aaaaaattag ccttttaatt ctgctgtaac ccgtacatgc ccaaaatagg gggcgggtta 480cacagaatat ataacatcgt aggtgtctgg gtgaacagtt tattcctggc atccactaaa 540tataatggag cccgcttttt aagctggcat ccagaaaaaa aaagaatccc agcaccaaaa 600tattgttttc ttcaccaacc atcagttcat aggtccattc tcttagcgca actacagaga 660acaggggcac aaacaggcaa aaaacgggca caacctcaat ggagtgatgc aacctgcctg 720gagtaaatga tgacacaagg caattgaccc acgcatgtat ctatctcatt ttcttacacc 780ttctattacc ttctgctctc tctgatttgg aaaaagctga aaaaaaaggt tgaaaccagt 840tccctgaaat tattccccta cttgactaat aagtatataa agacggtagg tattgattgt 900aattctgtaa atctatttct taaacttctt aaattctact tttatagtta gtcttttttt 960tagttttaaa acaccaagaa cttagtttcg aataaacaca cataaacaaa caaaatgttg 1020aagattgcca tcttgggtgc tgctggtggt atcggtcaat ctttgtcttt gttgttgaag 1080gctcaattgc aataccaatt gaaggaatcc aacagatctg ttacccacat tcatttggct 1140ttgtacgatg tcaaccaaga agctatcaac ggtgtcactg ctgacttgtc tcacatcgat 1200accccaatct ctgtttcctc tcactctcca gctggtggta ttgaaaactg tttgcacaac 1260gcttccattg ttgtcattcc agccggtgtt ccaagaaagc caggtatgac ccgtgacgat 1320ttgttcaacg tcaatgccgg tatcatctct caattaggtg attccattgc tgaatgttgt 1380gacttgtcca aggttttcgt cttggttatc tccaacccag tcaactcttt ggttcctgtt 1440atggtttcca acatcttgaa gaaccaccca caatccagaa actctggtat tgaaagaaga 1500atcatgggtg tcaccaaatt ggacattgtc agagcttcca ctttcttgag agaaatcaac 1560attgaatctg gtttgactcc aagagtcaac tccatgccag atgttccagt tatcggtggt 1620cactctggtg aaactatcat cccattattc tctcaatcta acttcttgtc cagattgaat 1680gaagatcaat tgaaatactt gattcaccgt gtccaatacg gtggtgacga agttgtcaag 1740gccaagaacg gtaagggttc tgctactcta tccatggctc atgccggtta caagtgtgtt 1800gtccaattcg tttctctatt attaggtaac attgaacaaa tccacggtac ctactacgtt 1860ccattgaaag atgctaacaa cttcccaatt gctccaggtg ctgaccaatt attgccatta 1920gtcgacggtg ctgactactt tgccatccca ttgaccatca ctaccaaggg tgtttcttac 1980gttgactacg atatcgtcaa cagaatgaac gacatggaaa gaaaccaaat gttgcctatc 2040tgtgtttctc aattgaagaa gaacattgac aagggtttgg aattcgttgc ttccagatct 2100gcttccagtt aaggcccggg cgtgaattta ctttaaatct tgcatttaaa taaattttct 2160ttttatagct ttatgactta gtttcaattt atatactatt ttaatgacat tttcgattca 2220ttgattgaaa gctttgtgtt ttttcttgat gcgctattgc attgttcttg tctttttcgc 2280cacatgtaat atctgtagta gatacctgat acattgtgga tgctgagtga aattttagtt 2340aataatggag gcgctcttaa taattttggg gatattggct ttttttttta aagtttacaa 2400atgaattttt tccgccagga taacgattct gaagttactc ttagcgttcc tatcggtaca 2460gccatcaaat catgcctata aatcatgcct atatttgcgt gcagtcagta tcatctacat 2520gaaaaaaact cccgcaattt cttatagaat acgttgaaaa ttaaatgtac gcgccaagat 2580aagataacat atatctagat gcagtaatat acacagattc cggccggccg cggccgc 263720472PRTArtificial sequenceAmino acid sequence of fumarase from R. oryzae lacking first 23 a.a. + new methionine 20Met Ser Ser Ala Ser Ala Ala Leu Gln Lys Phe Arg Ala Glu Arg Asp1 5 10 15Thr Phe Gly Asp Leu Gln Val Pro Ala Asp Arg Tyr Trp Gly Ala Gln 20 25 30Thr Gln Arg Ser Leu Gln Asn Phe Asp Ile Gly Gly Pro Thr Glu Arg 35 40 45Met Pro Glu Pro Leu Ile Arg Ala Phe Gly Val Leu Lys Lys Ala Ala 50 55 60Ala Thr Val Asn Met Thr Tyr Gly Leu Asp Pro Lys Val Gly Glu Ala65 70 75 80Ile Gln Lys Ala Ala Asp Glu Val Ile Asp Gly Ser Leu Ile Asp His 85 90 95Phe Pro Leu Val Val Trp Gln Thr Gly Ser Gly Thr Gln Thr Lys Met 100 105 110Asn Val Asn Glu Val Ile Ser Asn Arg Ala Ile Glu Leu Leu Gly Gly 115 120 125Glu Leu Gly Ser Lys Ala Pro Val His Pro Asn Asp His Val Asn Met 130 135 140Ser Gln Ser Ser Asn Asp Thr Phe Pro Thr Ala Met His Val Ala Ala145 150 155 160Val Val Glu Ile His Gly Arg Leu Ile Pro Ala Leu Thr Thr Leu Arg 165 170 175Asp Ala Leu Gln Ala Lys Ser Ala Glu Phe Glu His Ile Ile Lys Ile 180 185 190Gly Arg Thr His Leu Gln Asp Ala Thr Pro Leu Thr Leu Gly Gln Glu 195 200 205Phe Ser Gly Tyr Thr Gln Gln Leu Thr Tyr Gly Ile Ala Arg Val Gln 210 215 220Gly Thr Leu Glu Arg Leu Tyr Asn Leu Ala Gln Gly Gly Thr Ala Val225 230 235 240Gly Thr Gly Leu Asn Thr Arg Lys Gly Phe Asp Ala Lys Val Ala Glu 245 250 255Ala Ile Ala Ser Ile Thr Gly Leu Pro Phe Lys Thr Ala Pro Asn Lys 260 265 270Phe Glu Ala Leu Ala Ala His Asp Ala Leu Val Glu Ala His Gly Ala 275 280 285Leu Asn Thr Val Ala Cys Ser Leu Met Lys Ile Ala Asn Asp Ile Arg 290 295 300Tyr Leu Gly Ser Gly Pro Arg Cys Gly Leu Gly Glu Leu Ser Leu Pro305 310 315 320Glu Asn Glu Pro Gly Ser Ser Ile Met Pro Gly Lys Val Asn Pro Thr 325 330 335Gln Cys Glu Ala Met Thr Met Val Cys Ala Gln Val Met Gly Asn Asn 340 345 350Thr Ala Ile Ser Val Ala Gly Ser Asn Gly Gln Phe Glu Leu Asn Val 355 360 365Phe Lys Pro Val Met Ile Lys Asn Leu Ile Gln Ser Ile Arg Leu Ile 370 375 380Ser Asp Ala Ser Ile Ser Phe Thr Lys Asn Cys Val Val Gly Ile Glu385 390 395 400Ala Asn Glu Lys Lys Ile Ser Ser Ile Met Asn Glu Ser Leu Met Leu 405 410 415Val Thr Ala Leu Asn Pro His Ile Gly Tyr Asp Lys Ala Ala Lys Cys 420 425 430Ala Lys Lys Ala His Lys Glu Gly Thr Thr Leu Lys Glu Ala Ala Leu 435 440 445Ser Leu Gly Tyr Leu Thr Ser Glu Glu Phe Asp Gln Trp Val Arg Pro 450 455 460Glu Asp Met Ile Ser Ala Lys Asp465 470211419DNAArtificial sequenceNucleotide sequence of fumarase from R. oryzae encoding a protein lacking first 23 a.a. 21atgtcctctg cttctgctgc tttgcaaaaa ttcagagctg aaagagatac cttcggtgac 60ttgcaagttc cagctgaccg ttactggggt

gctcaaactc aaagatcttt gcaaaacttt 120gacattggtg gtccaactga aagaatgcca gaaccattaa tcagagcttt cggtgttttg 180aagaaggctg ctgccaccgt caacatgacc tacggtttgg acccaaaggt tggtgaagcc 240atccaaaagg ctgctgacga agttatcgat ggttctttga ttgaccattt cccattggtt 300gtctggcaaa ccggttctgg tactcaaacc aagatgaacg tcaatgaagt catctccaac 360agagccattg aattgttggg tggtgaatta ggttccaagg ctccagtcca cccaaacgat 420catgtcaaca tgtctcaatc ttccaacgac actttcccaa ctgccatgca cgttgctgcc 480gttgttgaaa ttcacggtag attgattcca gctttgacca ctttgagaga tgctttgcaa 540gccaaatctg ctgaattcga acacatcatc aagattggta gaacccactt gcaagatgct 600accccattga ctttaggtca agaattctcc ggttacactc aacaattgac ctacggtatt 660gctcgtgttc aaggtacttt ggaaagatta tacaacttgg ctcaaggtgg tactgctgtc 720ggtactggtt tgaacaccag aaagggtttc gatgccaagg ttgctgaagc cattgcttcc 780atcactggtt taccattcaa gaccgctcca aacaaattcg aagctttggc tgctcacgac 840gctttggttg aagctcacgg tgctttgaac accgttgctt gttctttgat gaagattgcc 900aacgatatcc gttacttggg ttctggtcca agatgtggtt taggtgaatt gtctctacca 960gaaaacgaac caggttcttc catcatgcca ggtaaggtca acccaactca atgtgaagct 1020atgaccatgg tttgtgctca agtcatgggt aacaacactg ccatctctgt tgctggttcc 1080aacggtcaat tcgaattgaa tgtctttaaa ccagtcatga tcaagaactt gatccaatcc 1140atcagattaa tctctgacgc ttccatctct ttcaccaaga actgtgttgt cggtattgaa 1200gctaacgaaa agaagatctc ctccatcatg aacgaatctt tgatgttggt cactgctttg 1260aaccctcaca ttggttacga caaggctgcc aagtgtgcca agaaggctca caaggaaggt 1320accactttga aagaagctgc tctatctttg ggttacttga cctctgaaga attcgaccaa 1380tgggttagac ctgaggacat gatttctgcc aaggattaa 1419222950DNAArtificial sequenceSynthetic construct TDH1p-FUMR-TDH1t for expression in S. cerevisiae 22ggatcccttc ccttttacag tgcttcggaa aagcacagcg ttgtccaagg gaacaatttt 60tcttcaagtt aatgcataag aaatatcttt ttttatgttt agctaagtaa aagcagcttg 120gagtaaaaaa aaaaatgagt aaatttctcg atggattagt ttctcacagg taacataaca 180aaaaccaaga aaagcccgct tctgaaaact acagttgact tgtatgctaa agggccagac 240taatgggagg agaaaaagaa acgaatgtat atgctcattt acactctata tcaccatatg 300gaggataagt tgggctgagc ttctgatcca atttattcta tccattagtt gctgatatgt 360cccaccagcc aacacttgat agtatctact cgccattcac ttccagcagc gccagtaggg 420ttgttgagct tagtaaaaat gtgcgcacca caagcctaca tgactccacg tcacatgaaa 480ccacaccgtg gggccttgtt gcgctaggaa taggatatgc gacgaagacg cttctgctta 540gtaaccacac cacattttca gggggtcgat ctgcttgctt cctttactgt cacgagcggc 600ccataatcgc gctttttttt taaaaggcgc gagacagcaa acaggaagct cgggtttcaa 660ccttcggagt ggtcgcagat ctggagactg gatctttaca atacagtaag gcaagccacc 720atctgcttct taggtgcatg cgacggtatc cacgtgcaga acaacatagt ctgaagaagg 780gggggaggag catgttcatt ctctgtagca gtaagagctt ggtgataatg accaaaactg 840gagtctcgaa atcatataaa tagacaatat attttcacac aatgagattt gtagtacagt 900tctattctct ctcttgcata aataagaaat tcatcaagaa cttggtttga tatttcacca 960acacacacaa aaaacagtac ttcactaaat ttacacacaa aacaaaatgt cctctgcttc 1020tgctgctttg caaaaattca gagctgaaag agataccttc ggtgacttgc aagttccagc 1080tgaccgttac tggggtgctc aaactcaaag atctttgcaa aactttgaca ttggtggtcc 1140aactgaaaga atgccagaac cattaatcag agctttcggt gttttgaaga aggctgctgc 1200caccgtcaac atgacctacg gtttggaccc aaaggttggt gaagccatcc aaaaggctgc 1260tgacgaagtt atcgatggtt ctttgattga ccatttccca ttggttgtct ggcaaaccgg 1320ttctggtact caaaccaaga tgaacgtcaa tgaagtcatc tccaacagag ccattgaatt 1380gttgggtggt gaattaggtt ccaaggctcc agtccaccca aacgatcatg tcaacatgtc 1440tcaatcttcc aacgacactt tcccaactgc catgcacgtt gctgccgttg ttgaaattca 1500cggtagattg attccagctt tgaccacttt gagagatgct ttgcaagcca aatctgctga 1560attcgaacac atcatcaaga ttggtagaac ccacttgcaa gatgctaccc cattgacttt 1620aggtcaagaa ttctccggtt acactcaaca attgacctac ggtattgctc gtgttcaagg 1680tactttggaa agattataca acttggctca aggtggtact gctgtcggta ctggtttgaa 1740caccagaaag ggtttcgatg ccaaggttgc tgaagccatt gcttccatca ctggtttacc 1800attcaagacc gctccaaaca aattcgaagc tttggctgct cacgacgctt tggttgaagc 1860tcacggtgct ttgaacaccg ttgcttgttc tttgatgaag attgccaacg atatccgtta 1920cttgggttct ggtccaagat gtggtttagg tgaattgtct ctaccagaaa acgaaccagg 1980ttcttccatc atgccaggta aggtcaaccc aactcaatgt gaagctatga ccatggtttg 2040tgctcaagtc atgggtaaca acactgccat ctctgttgct ggttccaacg gtcaattcga 2100attgaatgtc tttaaaccag tcatgatcaa gaacttgatc caatccatca gattaatctc 2160tgacgcttcc atctctttca ccaagaactg tgttgtcggt attgaagcta acgaaaagaa 2220gatctcctcc atcatgaacg aatctttgat gttggtcact gctttgaacc ctcacattgg 2280ttacgacaag gctgccaagt gtgccaagaa ggctcacaag gaaggtacca ctttgaaaga 2340agctgctcta tctttgggtt acttgacctc tgaagaattc gaccaatggg ttagacctga 2400ggacatgatt tctgccaagg attaaggccc gggcataaag caatcttgat gaggataatg 2460attttttttt gaatatacat aaatactacc gtttttctgc tagattttgt gaagacgtaa 2520ataagtacat attacttttt aagccaagac aagattaagc attaacttta cccttttctc 2580ttctaagttt caatactagt tatcactgtt taaaagttat ggcgagaacg tcggcggtta 2640aaatatatta ccctgaacgt ggtgaattga agttctagga tggtttaaag atttttcctt 2700tttgggaaat aagtaaacaa tatattgctg cctttgcaaa acgcacatac ccacaatatg 2760tgactattgg caaagaacgc attatccttt gaagaggtgg atactgatac taagagagtc 2820tctattccgg ctccactttt agtccagaga ttacttgtct tcttacgtat cagaacaaga 2880aagcatttcc aaagtaattg catttgccct tgagcagtat atatatacta agaaggcgcg 2940ccgcggccgc 2950231164PRTArtificial sequenceFRDm1 amino acid sequence from T. brucei lacking 68 a.a. N-terminal targeting sequence + new methionine 23Met Ala Asp Gly Ile Ser Ser Ala Ser Ile Val Val Thr Asp Pro Glu1 5 10 15Ala Ala Ala Lys Lys Arg Asp Arg Met Ala Arg Glu Leu Leu Ser Ser 20 25 30Asn Ser Gly Leu Cys Gln Glu Asp Glu Pro Thr Ile Ile Asn Leu Lys 35 40 45Gly Leu Glu His Thr Ile Pro Tyr Arg Leu Ala Val Val Leu Cys Asn 50 55 60Ser Arg Ser Thr Gly Glu Phe Glu Ala Lys Ala Ala Glu Ile Leu Arg65 70 75 80Lys Ala Phe His Met Val Asp Tyr Ser Leu Asn Cys Phe Asn Pro Glu 85 90 95Ser Glu Leu Ser Arg Val Asn Ser Leu Pro Val Gly Glu Lys His Gln 100 105 110Met Ser Glu Asp Leu Arg His Val Met Glu Cys Thr Ile Ser Val His 115 120 125His Ser Ser Gly Met Gly Phe Asp Pro Ala Ala Gly Pro Ile Ile Ser 130 135 140Arg Leu Arg Gly Ala Met Arg Asp His Asn Asp Met Ser Asp Ile Ser145 150 155 160Val Thr Glu Ala Glu Val Glu Leu Phe Ser Leu Ala Gln Ser Phe Asp 165 170 175Val Asp Leu Glu Glu Gly Thr Ile Ala Arg Lys His Ser Glu Ala Arg 180 185 190Leu Asp Leu Gly Gly Val Asn Lys Gly Tyr Thr Val Asp Tyr Val Val 195 200 205Asp His Leu Arg Ala Ala Gly Met Pro Asn Val Leu Phe Glu Trp Gly 210 215 220Gly Asp Ile Arg Ala Ser Gly Arg Asn Ile Lys Gly Asn Leu Trp Ala225 230 235 240Val Ala Ile Lys Arg Pro Pro Ser Val Glu Glu Val Ile Arg Arg Ala 245 250 255Lys Gly Lys Met Leu Lys Met Gly Glu Glu Glu Gln Glu Glu Lys Asp 260 265 270Asp Asp Ser Pro Ser Leu Leu His Val Val Glu Leu Asp Asp Glu Ala 275 280 285Leu Cys Thr Ser Gly Asp Tyr Glu Asn Val Leu Tyr His Pro Lys His 290 295 300Gly Val Ala Gly Ser Ile Phe Asp Trp Gln Arg Arg Gly Leu Leu Ser305 310 315 320Pro Glu Glu Gly Ala Leu Ala Gln Val Ser Val Lys Cys Tyr Ser Ala 325 330 335Met Tyr Ala Asp Ala Leu Ala Thr Val Cys Leu Val Lys Arg Asp Ala 340 345 350Val Arg Ile Arg Tyr Leu Leu Glu Gly Trp Arg Tyr Val Arg Ser Arg 355 360 365Val Thr Asn Tyr Phe Ala Tyr Thr Arg Gln Gly Glu Arg Leu Ala His 370 375 380Met His Glu Ile Ala Gln Glu Thr Arg Glu Leu Arg Glu Ile Arg Ile385 390 395 400Ala Gly Ser Leu Pro Ser Arg Ile Val Ile Val Gly Gly Gly Leu Ala 405 410 415Gly Leu Ser Ala Ala Ile Glu Ala Ala Ser Cys Gly Ala Gln Val Ile 420 425 430Leu Met Glu Lys Glu Gly Arg Ile Gly Gly Asn Ser Ala Lys Ala Thr 435 440 445Ser Gly Ile Asn Gly Trp Gly Thr Arg Thr Gln Ala Lys Ser Asp Ile 450 455 460Leu Asp Gly Gly Lys Tyr Phe Glu Arg Asp Thr Phe Leu Ser Gly Val465 470 475 480Gly Gly Thr Thr Asp Pro Ala Leu Val Lys Val Leu Ser Val Lys Ser 485 490 495Gly Asp Ala Ile Gly Trp Leu Thr Ser Leu Gly Val Pro Leu Ser Val 500 505 510Leu Ser Gln Leu Gly Gly His Ser Phe Lys Arg Thr His Arg Ala Pro 515 520 525Asp Lys Thr Asp Gly Thr Pro Leu Pro Ile Gly His Thr Ile Met Arg 530 535 540Thr Leu Glu Asp His Ile Arg Asn Asn Leu Ser Glu Arg Val Thr Ile545 550 555 560Met Thr His Val Ser Val Thr Glu Leu Leu His Glu Thr Asp Thr Thr 565 570 575Pro Asp Gly Ala Ser Glu Val Arg Val Thr Gly Val Arg Tyr Arg Asp 580 585 590Leu Ser Asp Val Asp Gly Gln Pro Ser Lys Leu Leu Ala Asp Ala Val 595 600 605Val Leu Ala Thr Gly Gly Phe Ser Asn Asp Arg Glu Glu Asn Ser Leu 610 615 620Leu Cys Lys Tyr Ala Pro His Leu Ala Ser Phe Pro Thr Thr Asn Gly625 630 635 640Pro Trp Ala Thr Gly Asp Gly Val Lys Leu Ala Thr Ser Val Gly Ala 645 650 655Lys Leu Val Asp Met Asp Lys Val Gln Leu His Pro Thr Gly Leu Ile 660 665 670Asp Pro Lys Asp Pro Ala Asn Thr Thr Lys Ile Leu Gly Pro Glu Ala 675 680 685Leu Arg Gly Ser Gly Gly Ile Leu Leu Asn Lys Gln Gly Lys Arg Phe 690 695 700Val Asn Glu Leu Asp Leu Arg Ser Val Val Ser Lys Ala Ile Asn Thr705 710 715 720Gln Gly Asn Glu Tyr Pro Gly Ser Gly Gly Cys Tyr Phe Ala Tyr Cys 725 730 735Val Leu Asn Glu Asp Ala Thr Asn Leu Phe Cys Gly Gly Ala Leu Gly 740 745 750Phe Tyr Gly Lys Lys Leu Gly Leu Phe Gln Arg Ala Glu Thr Val Glu 755 760 765Glu Leu Ala Lys Leu Ile Gly Cys Asp Glu Gly Glu Leu Arg Asp Thr 770 775 780Leu Glu Lys Tyr Glu Thr Cys Ser Lys Ala Lys Val Ala Cys Pro Val785 790 795 800Thr Gly Lys Val Val Phe Pro Cys Val Val Gly Thr Arg Gly Pro Tyr 805 810 815Asn Val Ala Phe Val Thr Pro Ser Ile His Tyr Thr Met Gly Gly Cys 820 825 830Leu Ile Ser Pro Ala Ala Glu Val Leu Gln Glu Tyr Lys Gly Leu Asn 835 840 845Ile Leu Glu Asn His Arg Pro Ile Arg Cys Leu Phe Gly Ala Gly Glu 850 855 860Val Thr Gly Gly Val His Gly Gly Asn Arg Leu Gly Gly Asn Ser Leu865 870 875 880Leu Glu Cys Val Val Phe Gly Lys Ile Ala Gly Asp Arg Ala Ala Thr 885 890 895Ile Leu Gln Lys Arg Glu Ile Ala Leu Ser Lys Thr Ser Trp Thr Ser 900 905 910Val Val Val Arg Glu Ser Arg Ser Gly Glu Gln Phe Gly Thr Gly Ser 915 920 925Arg Val Leu Arg Phe Asn Leu Pro Gly Ala Leu Gln Arg Thr Gly Leu 930 935 940Asn Leu Gly Glu Phe Val Ala Ile Arg Gly Glu Trp Asp Gly Gln Gln945 950 955 960Leu Val Gly Tyr Phe Ser Pro Ile Thr Leu Pro Glu Asp Leu Gly Thr 965 970 975Ile Ser Leu Leu Val Arg Ala Asp Lys Gly Thr Leu Lys Glu Trp Ile 980 985 990Cys Ala Leu Arg Pro Gly Asp Ser Val Glu Ile Lys Ala Cys Gly Gly 995 1000 1005Leu Arg Ile Asp Gln Asp Pro Val Lys Lys Cys Leu Leu Phe Arg 1010 1015 1020Asn Arg Pro Ile Thr Arg Phe Ala Leu Val Ala Ala Gly Thr Gly 1025 1030 1035Val Ala Pro Met Leu Gln Val Ile Arg Ala Ala Leu Lys Lys Pro 1040 1045 1050Tyr Val Asp Thr Leu Glu Ser Ile Arg Leu Ile Tyr Ala Ala Glu 1055 1060 1065Glu Tyr Asp Thr Leu Thr Tyr Arg Ser Ile Leu Gln Arg Phe Ala 1070 1075 1080Glu Glu Phe Pro Asp Lys Phe Val Cys Asn Phe Val Leu Asn Asn 1085 1090 1095Pro Pro Glu Gly Trp Thr Gly Gly Val Gly Phe Val Asn Lys Lys 1100 1105 1110Ser Leu Gln Lys Val Leu Gln Pro Pro Ser Ser Glu Pro Leu Ile 1115 1120 1125Val Val Cys Gly Pro Pro Val Met Gln Arg Asp Val Lys Asn Glu 1130 1135 1140Leu Leu Ser Met Gly Tyr Asp Lys Glu Leu Val His Thr Val Asp 1145 1150 1155Gly Glu Ser Gly Thr Leu 1160243498DNAArtificial sequenceFRDm1 nucleotide sequence from T. brucei encoding a protein lacking 68 a.a. N-terminal targeting sequence 24atgggtgctg atggtatttc ttctgcttcc attgttgtta ctgacccaga agctgctgcc 60aagaagcgtg acagaatggc cagagaattg ttgtcctcca actctggtct atgtcaagaa 120gatgaaccaa ccatcatcaa cttaaagggt ttggaacaca ccattccata cagattggcc 180gttgttttgt gtaactccag atccactggt gaattcgaag ccaaggctgc tgaaatcttg 240agaaaggctt tccacatggt tgactactct ttgaattgtt tcaacccaga atctgaattg 300tcccgtgtca actctttacc agtcggtgaa aagcaccaaa tgtccgaaga tctaagacat 360gtcatggaat gtaccatttc tgtccaccac tcctctggta tgggtttcga cccagctgct 420ggtccaatca tctccagatt gagaggtgcc atgagagatc acaacgacat gtccgatatc 480tccgtcactg aagctgaagt tgaattattc tctttggctc aatctttcga tgtcgacttg 540gaagaaggta ctattgccag aaagcactct gaagccagat tggatttggg tggtgtcaac 600aagggttaca ctgttgacta cgttgttgac catttgagag ctgctggtat gccaaacgtc 660ttgttcgaat ggggtggtga tatcagagct tctggtagaa acatcaaggg taacttgtgg 720gctgttgcca tcaagcgtcc accatctgtt gaagaagtta tccgtcgtgc caagggtaag 780atgttaaaga tgggtgaaga agaacaagaa gaaaaggacg atgactctcc atctttgttg 840cacgttgttg aattggatga cgaagctttg tgtacctctg gtgactacga aaacgtctta 900taccatccaa agcacggtgt tgctggttcc attttcgact ggcaacgtcg tggtttattg 960tctccagaag aaggtgcttt agctcaagtt tccgtcaaat gttactctgc catgtacgct 1020gatgctttgg ccactgtttg tttggtcaag agagatgctg tcagaatcag atacttgttg 1080gaaggttgga gatacgtcag atctcgtgtc accaactact tcgcttacac cagacaaggt 1140gaaagattgg ctcacatgca cgaaattgct caagaaacca gagaattaag agaaatcaga 1200attgctggtt ctttgccatc cagaattgtt atcgtcggtg gtggtttggc tggtctatcc 1260gctgccattg aagctgcttc ttgtggtgct caagtcattt tgatggaaaa ggaaggtaga 1320attggtggta actctgccaa ggctacctct ggtatcaacg gttggggtac cagaacccaa 1380gccaagtctg atatcttgga tggtggtaag tactttgaaa gagacacttt cttgtccggt 1440gtcggtggta ccactgaccc agctttggtc aaggtcttgt ccgtcaaatc tggtgacgct 1500atcggttggt taacttcttt gggtgtccca ttgtccgttt tgtctcaatt gggtggtcac 1560tctttcaaga gaactcacag agctccagac aagactgatg gtactccatt accaattggt 1620cacaccatca tgagaacttt ggaagatcat atcagaaaca acttgtctga aagagttacc 1680atcatgaccc acgtttctgt tactgaattg ttgcacgaaa ctgacaccac tccagatggt 1740gcttctgaag ttcgtgtcac cggtgtccgt tacagagact tgtctgatgt cgatggtcaa 1800ccttccaaac tattggctga cgctgttgtt ttggccactg gtggtttctc caacgacaga 1860gaagaaaact ctttgttgtg taaatacgct cctcatttgg cttctttccc aactaccaac 1920ggtccatggg ctactggtga cggtgtcaaa ttggccacct ccgttggtgc caagttggtt 1980gacatggaca aggttcaatt gcacccaact ggtttgattg acccaaagga cccagctaac 2040accactaaga tcttgggtcc agaagctttg agaggttctg gtggtatttt gttgaacaag 2100caaggtaaga gattcgtcaa cgaattggac ttgagatccg ttgtttccaa ggccattaac 2160actcaaggta acgaataccc aggttctggt ggttgttact ttgcttactg tgtcttaaac 2220gaagatgcta ccaacttatt ctgtggtggt gctttgggtt tctacggtaa gaaattaggt 2280ttgttccaaa gagctgaaac tgttgaagaa ttggccaaat tgattggttg tgacgaaggt 2340gaattgagag acactttgga aaaatacgaa acctgttcca aggccaaggt tgcttgtcca 2400gtcactggta aggttgtttt cccatgtgtt gtcggtacca gaggtccata caatgttgct 2460ttcgtcactc catccatcca ctacaccatg ggtggttgtt tgatctctcc agctgctgaa 2520gtcttgcaag aatacaaggg tttgaatatc ttggaaaacc acagaccaat cagatgtttg 2580ttcggtgctg gtgaagtcac tggtggtgtc cacggtggta acagattagg tggtaactct 2640ctattggaat gtgttgtctt tggtaagatt gctggtgaca gagctgccac tatcttgcaa 2700aagagagaaa ttgctttgtc caagacctcc tggacctctg ttgttgtcag agaatccaga 2760tctggtgaac aattcggtac cggttccaga gttttgagat tcaacttgcc aggtgcttta 2820caaagaaccg gtttgaactt gggtgaattc gttgccatca gaggtgaatg ggatggtcaa 2880caattagtcg gttacttctc tccaatcact ttgccagaag atttgggtac catctctttg 2940ttggtcagag ctgacaaggg tactttgaag gaatggatct gtgctttgcg tccaggtgac 3000tccgttgaaa tcaaggcttg tggtggtcta agaattgacc aagatccagt caagaaatgt 3060ttgttgttca gaaacagacc aattaccaga tttgctttgg ttgctgctgg taccggtgtt 3120gctccaatgt tgcaagttat cagagctgct ttgaagaagc catacgtcga cactttggaa 3180tccatcagat tgatctacgc tgctgaagaa tatgacactt taacctacag atctatcttg 3240caaagatttg ctgaagaatt cccagacaaa

ttcgtttgta acttcgtctt aaacaaccct 3300ccagaaggtt ggaccggtgg tgttggtttc gtcaacaaga aatctttgca aaaggttttg 3360caaccacctt cttctgaacc attgattgtt gtttgtggtc cacctgttat gcaaagagat 3420gtcaaaaatg aattgttgtc catgggttac gacaaggaat tggttcacac tgtcgatggt 3480gaatctggta ccttgtaa 3498255037DNAArtificial sequenceSynthetic construct TDH3p-FRDm1-TDH3t for expression in S. cerevisiae 25ggatccggcg cgccctattt tcgaggacct tgtcaccttg agcccaagag agccaagatt 60taaattttcc tatgacttga tgcaaattcc caaagctaat aacatgcaag acacgtacgg 120tcaagaagac atatttgacc tcttaacagg ttcagacgcg actgcctcat cagtaagacc 180cgttgaaaag aacttacctg aaaaaaacga atatatacta gcgttgaatg ttagcgtcaa 240caacaagaag tttaatgacg cggaggccaa ggcaaaaaga ttccttgatt acgtaaggga 300gttagaatca ttttgaataa aaaacacgct ttttcagttc gagtttatca ttatcaatac 360tgccatttca aagaatacgt aaataattaa tagtagtgat tttcctaact ttatttagtc 420aaaaaattag ccttttaatt ctgctgtaac ccgtacatgc ccaaaatagg gggcgggtta 480cacagaatat ataacatcgt aggtgtctgg gtgaacagtt tattcctggc atccactaaa 540tataatggag cccgcttttt aagctggcat ccagaaaaaa aaagaatccc agcaccaaaa 600tattgttttc ttcaccaacc atcagttcat aggtccattc tcttagcgca actacagaga 660acaggggcac aaacaggcaa aaaacgggca caacctcaat ggagtgatgc aacctgcctg 720gagtaaatga tgacacaagg caattgaccc acgcatgtat ctatctcatt ttcttacacc 780ttctattacc ttctgctctc tctgatttgg aaaaagctga aaaaaaaggt tgaaaccagt 840tccctgaaat tattccccta cttgactaat aagtatataa agacggtagg tattgattgt 900aattctgtaa atctatttct taaacttctt aaattctact tttatagtta gtcttttttt 960tagttttaaa acaccaagaa cttagtttcg aataaacaca cataaacaaa caaaatgggt 1020gctgatggta tttcttctgc ttccattgtt gttactgacc cagaagctgc tgccaagaag 1080cgtgacagaa tggccagaga attgttgtcc tccaactctg gtctatgtca agaagatgaa 1140ccaaccatca tcaacttaaa gggtttggaa cacaccattc catacagatt ggccgttgtt 1200ttgtgtaact ccagatccac tggtgaattc gaagccaagg ctgctgaaat cttgagaaag 1260gctttccaca tggttgacta ctctttgaat tgtttcaacc cagaatctga attgtcccgt 1320gtcaactctt taccagtcgg tgaaaagcac caaatgtccg aagatctaag acatgtcatg 1380gaatgtacca tttctgtcca ccactcctct ggtatgggtt tcgacccagc tgctggtcca 1440atcatctcca gattgagagg tgccatgaga gatcacaacg acatgtccga tatctccgtc 1500actgaagctg aagttgaatt attctctttg gctcaatctt tcgatgtcga cttggaagaa 1560ggtactattg ccagaaagca ctctgaagcc agattggatt tgggtggtgt caacaagggt 1620tacactgttg actacgttgt tgaccatttg agagctgctg gtatgccaaa cgtcttgttc 1680gaatggggtg gtgatatcag agcttctggt agaaacatca agggtaactt gtgggctgtt 1740gccatcaagc gtccaccatc tgttgaagaa gttatccgtc gtgccaaggg taagatgtta 1800aagatgggtg aagaagaaca agaagaaaag gacgatgact ctccatcttt gttgcacgtt 1860gttgaattgg atgacgaagc tttgtgtacc tctggtgact acgaaaacgt cttataccat 1920ccaaagcacg gtgttgctgg ttccattttc gactggcaac gtcgtggttt attgtctcca 1980gaagaaggtg ctttagctca agtttccgtc aaatgttact ctgccatgta cgctgatgct 2040ttggccactg tttgtttggt caagagagat gctgtcagaa tcagatactt gttggaaggt 2100tggagatacg tcagatctcg tgtcaccaac tacttcgctt acaccagaca aggtgaaaga 2160ttggctcaca tgcacgaaat tgctcaagaa accagagaat taagagaaat cagaattgct 2220ggttctttgc catccagaat tgttatcgtc ggtggtggtt tggctggtct atccgctgcc 2280attgaagctg cttcttgtgg tgctcaagtc attttgatgg aaaaggaagg tagaattggt 2340ggtaactctg ccaaggctac ctctggtatc aacggttggg gtaccagaac ccaagccaag 2400tctgatatct tggatggtgg taagtacttt gaaagagaca ctttcttgtc cggtgtcggt 2460ggtaccactg acccagcttt ggtcaaggtc ttgtccgtca aatctggtga cgctatcggt 2520tggttaactt ctttgggtgt cccattgtcc gttttgtctc aattgggtgg tcactctttc 2580aagagaactc acagagctcc agacaagact gatggtactc cattaccaat tggtcacacc 2640atcatgagaa ctttggaaga tcatatcaga aacaacttgt ctgaaagagt taccatcatg 2700acccacgttt ctgttactga attgttgcac gaaactgaca ccactccaga tggtgcttct 2760gaagttcgtg tcaccggtgt ccgttacaga gacttgtctg atgtcgatgg tcaaccttcc 2820aaactattgg ctgacgctgt tgttttggcc actggtggtt tctccaacga cagagaagaa 2880aactctttgt tgtgtaaata cgctcctcat ttggcttctt tcccaactac caacggtcca 2940tgggctactg gtgacggtgt caaattggcc acctccgttg gtgccaagtt ggttgacatg 3000gacaaggttc aattgcaccc aactggtttg attgacccaa aggacccagc taacaccact 3060aagatcttgg gtccagaagc tttgagaggt tctggtggta ttttgttgaa caagcaaggt 3120aagagattcg tcaacgaatt ggacttgaga tccgttgttt ccaaggccat taacactcaa 3180ggtaacgaat acccaggttc tggtggttgt tactttgctt actgtgtctt aaacgaagat 3240gctaccaact tattctgtgg tggtgctttg ggtttctacg gtaagaaatt aggtttgttc 3300caaagagctg aaactgttga agaattggcc aaattgattg gttgtgacga aggtgaattg 3360agagacactt tggaaaaata cgaaacctgt tccaaggcca aggttgcttg tccagtcact 3420ggtaaggttg ttttcccatg tgttgtcggt accagaggtc catacaatgt tgctttcgtc 3480actccatcca tccactacac catgggtggt tgtttgatct ctccagctgc tgaagtcttg 3540caagaataca agggtttgaa tatcttggaa aaccacagac caatcagatg tttgttcggt 3600gctggtgaag tcactggtgg tgtccacggt ggtaacagat taggtggtaa ctctctattg 3660gaatgtgttg tctttggtaa gattgctggt gacagagctg ccactatctt gcaaaagaga 3720gaaattgctt tgtccaagac ctcctggacc tctgttgttg tcagagaatc cagatctggt 3780gaacaattcg gtaccggttc cagagttttg agattcaact tgccaggtgc tttacaaaga 3840accggtttga acttgggtga attcgttgcc atcagaggtg aatgggatgg tcaacaatta 3900gtcggttact tctctccaat cactttgcca gaagatttgg gtaccatctc tttgttggtc 3960agagctgaca agggtacttt gaaggaatgg atctgtgctt tgcgtccagg tgactccgtt 4020gaaatcaagg cttgtggtgg tctaagaatt gaccaagatc cagtcaagaa atgtttgttg 4080ttcagaaaca gaccaattac cagatttgct ttggttgctg ctggtaccgg tgttgctcca 4140atgttgcaag ttatcagagc tgctttgaag aagccatacg tcgacacttt ggaatccatc 4200agattgatct acgctgctga agaatatgac actttaacct acagatctat cttgcaaaga 4260tttgctgaag aattcccaga caaattcgtt tgtaacttcg tcttaaacaa ccctccagaa 4320ggttggaccg gtggtgttgg tttcgtcaac aagaaatctt tgcaaaaggt tttgcaacca 4380ccttcttctg aaccattgat tgttgtttgt ggtccacctg ttatgcaaag agatgtcaaa 4440aatgaattgt tgtccatggg ttacgacaag gaattggttc acactgtcga tggtgaatct 4500ggtaccttgt aaggcccggg cgtgaattta ctttaaatct tgcatttaaa taaattttct 4560ttttatagct ttatgactta gtttcaattt atatactatt ttaatgacat tttcgattca 4620ttgattgaaa gctttgtgtt ttttcttgat gcgctattgc attgttcttg tctttttcgc 4680cacatgtaat atctgtagta gatacctgat acattgtgga tgctgagtga aattttagtt 4740aataatggag gcgctcttaa taattttggg gatattggct ttttttttta aagtttacaa 4800atgaattttt tccgccagga taacgattct gaagttactc ttagcgttcc tatcggtaca 4860gccatcaaat catgcctata aatcatgcct atatttgcgt gcagtcagta tcatctacat 4920gaaaaaaact cccgcaattt cttatagaat acgttgaaaa ttaaatgtac gcgccaagat 4980aagataacat atatctagat gcagtaatat acacagattc cggccggccg cggccgc 5037



Patent applications by Liang Wu, Delft NL

Patent applications by Robbertus Antonius Damveld, Berkel En Rodenrijs NL

Patent applications in class Dicarboxylic acid having four or less carbon atoms (e.g., fumaric, maleic, etc.)

Patent applications in all subclasses Dicarboxylic acid having four or less carbon atoms (e.g., fumaric, maleic, etc.)


User Contributions:

Comment about this patent or add new information about this topic:

CAPTCHA
Images included with this patent application:
PROCESS FOR THE PRODUCTION OF A DICARBOXYLIC ACID diagram and imagePROCESS FOR THE PRODUCTION OF A DICARBOXYLIC ACID diagram and image
PROCESS FOR THE PRODUCTION OF A DICARBOXYLIC ACID diagram and imagePROCESS FOR THE PRODUCTION OF A DICARBOXYLIC ACID diagram and image
PROCESS FOR THE PRODUCTION OF A DICARBOXYLIC ACID diagram and imagePROCESS FOR THE PRODUCTION OF A DICARBOXYLIC ACID diagram and image
PROCESS FOR THE PRODUCTION OF A DICARBOXYLIC ACID diagram and imagePROCESS FOR THE PRODUCTION OF A DICARBOXYLIC ACID diagram and image
PROCESS FOR THE PRODUCTION OF A DICARBOXYLIC ACID diagram and imagePROCESS FOR THE PRODUCTION OF A DICARBOXYLIC ACID diagram and image
PROCESS FOR THE PRODUCTION OF A DICARBOXYLIC ACID diagram and imagePROCESS FOR THE PRODUCTION OF A DICARBOXYLIC ACID diagram and image
PROCESS FOR THE PRODUCTION OF A DICARBOXYLIC ACID diagram and imagePROCESS FOR THE PRODUCTION OF A DICARBOXYLIC ACID diagram and image
PROCESS FOR THE PRODUCTION OF A DICARBOXYLIC ACID diagram and imagePROCESS FOR THE PRODUCTION OF A DICARBOXYLIC ACID diagram and image
PROCESS FOR THE PRODUCTION OF A DICARBOXYLIC ACID diagram and imagePROCESS FOR THE PRODUCTION OF A DICARBOXYLIC ACID diagram and image
PROCESS FOR THE PRODUCTION OF A DICARBOXYLIC ACID diagram and imagePROCESS FOR THE PRODUCTION OF A DICARBOXYLIC ACID diagram and image
PROCESS FOR THE PRODUCTION OF A DICARBOXYLIC ACID diagram and imagePROCESS FOR THE PRODUCTION OF A DICARBOXYLIC ACID diagram and image
PROCESS FOR THE PRODUCTION OF A DICARBOXYLIC ACID diagram and imagePROCESS FOR THE PRODUCTION OF A DICARBOXYLIC ACID diagram and image
PROCESS FOR THE PRODUCTION OF A DICARBOXYLIC ACID diagram and imagePROCESS FOR THE PRODUCTION OF A DICARBOXYLIC ACID diagram and image
PROCESS FOR THE PRODUCTION OF A DICARBOXYLIC ACID diagram and imagePROCESS FOR THE PRODUCTION OF A DICARBOXYLIC ACID diagram and image
PROCESS FOR THE PRODUCTION OF A DICARBOXYLIC ACID diagram and imagePROCESS FOR THE PRODUCTION OF A DICARBOXYLIC ACID diagram and image
PROCESS FOR THE PRODUCTION OF A DICARBOXYLIC ACID diagram and imagePROCESS FOR THE PRODUCTION OF A DICARBOXYLIC ACID diagram and image
PROCESS FOR THE PRODUCTION OF A DICARBOXYLIC ACID diagram and imagePROCESS FOR THE PRODUCTION OF A DICARBOXYLIC ACID diagram and image
PROCESS FOR THE PRODUCTION OF A DICARBOXYLIC ACID diagram and imagePROCESS FOR THE PRODUCTION OF A DICARBOXYLIC ACID diagram and image
PROCESS FOR THE PRODUCTION OF A DICARBOXYLIC ACID diagram and image
Similar patent applications:
DateTitle
2008-08-21Process for the heterotrophic production of microbial products with high concentrations of omega-3 highly unsaturated fatty acids
2008-10-235-substituted hydantoin racemase, dna encoding the same, recombinant dna, transformed cell, and process for production of optically active n-carbamylamino acid or optically active amino acid
2008-12-04Process for the production of an optically enriched tertiary alcohol
2008-11-20Shortened purification process for the production of capsular streptococcus pneumoniae polysaccharides
2008-12-18Biosynthetic production of 4-amino 4-deoxychorismate (adc) and [3r,4r]-4-amino-3-hydroxycyclohexa-1,5-diene-1-carboxylic acid (3,4-cha)
New patent applications in this class:
DateTitle
2016-12-29Treatment method of saccharide solution, production method of treated saccharide solution, treated saccharide solution, production method of organic compound and culture method of microorganism
2016-07-07Fermentation process
2016-06-23Recombinant host cells for the production of malonate
2016-06-09Method of producing succinic acid and other chemiclas using facilitated diffusion for sugar import
2016-05-26Escherichia coli containing mutated lpda gene and application thereof
New patent applications from these inventors:
DateTitle
2014-06-26Adipate (ester or thioester) synthesis
2014-02-13Dicarboxylic acid production in a filamentous fungus
2014-01-30Polypeptide having carbohydrate degrading activity and uses thereof
2014-01-30Succinic acid production in a eukaryotic cell
Top Inventors for class "Chemistry: molecular biology and microbiology"
RankInventor's name
1Marshall Medoff
2Anthony P. Burgard
3Mark J. Burk
4Robin E. Osterhout
5Rangarajan Sampath
Website © 2025 Advameg, Inc.