Patent application title: ENRICHED PREPARATION OF HUMAN FETAL MULTIPOTENTIAL NEURAL STEM CELLS
Inventors:
Steven A. Goldman (Webster, NY, US)
Steven A. Goldman (Webster, NY, US)
Hideyuki Okano (Osaka, JP)
Assignees:
CORNELL UNIVERSITY
IPC8 Class: AC07H2104FI
USPC Class:
536 241
Class name: N-glycosides, polymers thereof, metal derivatives (e.g., nucleic acids, oligonucleotides, etc.) dna or rna fragments or modified forms thereof (e.g., genes, etc.) non-coding sequences which control transcription or translation processes (e.g., promoters, operators, enhancers, ribosome binding sites, etc.)
Publication date: 2009-06-11
Patent application number: 20090149642
Claims:
1. An isolated human musashi promoter.
2. An isolated human musashi promoter according to claim 1, wherein the musashi promoter has a nucleotide sequence of SEQ ID NO:1.
3. An isolated human nestin enhancer.
4. An isolated human nestin enhancer according to claim 3, wherein the nestin enhancer has a nucleotide sequence of SEQ ID NO:2.
Description:
[0001]This application is a division of U.S. patent application Ser. No.
09/747,810, filed Dec. 22, 2000, which claims the benefit of U.S.
Provisional Patent Application Ser. No. 60/173,003, filed Dec. 23, 1999,
each of which is hereby incorporated by reference.
FIELD OF THE INVENTION
[0003]The present invention relates generally to a method of separating cells of interest, in particular multipotential neural progenitor cells.
BACKGROUND OF THE INVENTION
[0004]Throughout this application various publications are referenced, many in parenthesis. Full citations for these publications are provided at the end of the Detailed Description. The disclosures of these publications in their entireties are hereby incorporated by reference in this application.
[0005]The damaged brain is largely incapable of functionally significant structural self-repair. This is due in part to the apparent failure of the mature brain to generate new neurons (Korr, 1980; Sturrock, 1982). However, the absence of neuronal production in the adult vertebrate forebrain appears to reflect not a lack of appropriate neuronal precursors, but rather their tonic inhibition and/or lack of post-mitotic trophic and migratory support. Converging lines of evidence now support the contention that neuronal and glial precursor cells are distributed widely throughout the ventricular subependymal of the adult vertebrate forebrain, persisting across a wide range of species groups (Goldman and Nottebohm, 1983; Reynolds and Weiss, 1992; Richards et al., 1992; Kirschenbaum et al., 1994; Kirschenbaum and Goldman, 1995a; reviewed in Goldman, 1995; Goldman, 1997; Goldman, 1998; Goldman and Luskin, 1998; and Gage et al., 1995). Most studies have found that the principal source of these precursors is the ventricular zone (Goldman and Nottebohm, 1983; Goldman, 1990; Goldman et al., 1992; Lois and Alvarez-Buylla, 1993; Morshead et al., 1994; Kirschenbaum et al., 1994; Kirschenbaum and Goldman, 1995), though competent neural precursors have been obtained from parenchymal sites as well (Richards et al., 1992; Palmer et al., 1995; Pincus et al., 1998). In general, adult progenitors respond to epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF) with proliferative expansion (Reynolds and Weiss, 1992; Kilpatrick and Bartlett, 1995; Kuhn et al., 1997), may be multipotential (Vescovi et al., 1993; Goldman et al., 1996), and persist throughout life (Goldman et al., 1996). In rodents and humans, their neuronal daughter cells can be supported by brain-derived neurotrophic factor (BDNF) (Kirschenbaum and Goldman, 1995a), and become fully functional in vitro (Kirschenbaum et al., 1994, Pincus et al., 1998a, and Pincus et al. 1998b), like their avian counterparts (Goldman and Nedergaard, 1992).
[0006]A major impediment to both the analysis of the biology of adult neural precursors, and to their use in engraftment and transplantation studies, has been their relative scarcity in adult brain tissue, and their consequent low yield when harvested by enzymatic dissociation and purification techniques. As a result, attempts at either manipulating single adult-derived precursors or enriching them for therapeutic replacement have been difficult. The few reported successes at harvesting these cells from dissociates of adult brain, whether using avian (Goldman et al., 1992; 1996c), murine (Reynolds and Weiss, 1992), or human (Kirschenbaum et al., 1994) tissue, have all reported <1% cell survival. Thus, several groups have taken the approach of raising lines derived from single isolated precursors, continuously exposed to mitogens in serum-free suspension culture (Reynolds and Weiss, 1992; Morshead et al., 1994; Palmer et al., 1995). As a result, however, many of the basic studies of differentiation and growth control in the neural precursor population have been based upon small numbers of founder cells, passaged greatly over prolonged periods of time, under constant mitogenic stimulation. The phenotypic potential, transformation state and karyotype of these cells are all uncertain; after repetitive passage, it is unclear whether such precursor lines remain biologically representative of their parental precursors, or instead become transformants with perturbed growth and lineage control.
[0007]In order to devise a more efficient means of isolating native, unpassaged and untransformed progenitor cells from brain tissue, a strategy by which brain cells could be freely dissociated from brain tissue, then transduced in vitro with plasmid DNA bearing a fluorescent reporter gene under the control of neural progenitor cell-type specific promoters was developed (Wang et al., 1998). This permitted isolation of the elusive neuronal progenitor cell of the CNS, using the Tα1 tubulin promoter, a regulatory sequence expressed only in neuronal progenitor cells and young neurons.
[0008]However, Tα1 tubulin-based separations are limited in that they yield committed neuronal progenitors, and not the more multipotential neural progenitors, such as neural stem cells, of the adult brain, which can give rise to neurons, oligodendrocytes, and astrocytes. The existence of these neural stem cells has been reported in a number of studies of rodents (reviewed in Weiss et al., 1996), and precursors competent to generate both neurons and oligodendrocytes have been demonstrated in adult humans (Kirschenbaum et al., 1994; reviewed in Goldman, 1997). In rodents, these cells have been clonally expanded using repetitive passage and mitogenic stimulation, as described above. Nonetheless, native adult neural stem cells have never been separated and purified as such, in rodents or humans.
[0009]A strong need therefore exists for a new strategy for identifying, separating, isolating, and purifying native multipotential neural progenitor cells from brain tissue.
SUMMARY OF THE INVENTION
[0010]To this end, the subject invention provides a method of separating multipotential neural progenitor cells from a mixed population of cell types, based upon cell-type selective expression of cell-specific promoters. This method includes selecting a promoter which functions selectively in the neural progenitor cells and introducing a nucleic acid molecule encoding a fluorescent protein under control of said promoter into all cell types of the mixed population of cell types. Only the neural progenitor cells, but not other cell types, within the mixed population are allowed to express the fluorescent protein. Cells of the mixed population of cell types that are fluorescent, which are restricted to the neural progenitor cells, are identified and the fluorescent cells are separated from the mixed population of cell types. As a result, the separated cells are restricted to the neural progenitor cells.
[0011]The present invention also relates to an isolated human musashi promoter.
[0012]Another aspect of the present invention is an enriched or purified preparation of isolated multipotential neural progenitor cells.
[0013]A promoter is chosen which specifically drives expression in multipotential neural progenitor cells but not in other cells of the nervous system. The fluorescent protein will therefore only be expressed and detectable in cells in which the promoter operates, i.e. those cells for which the promoter is specific.
[0014]The method involves the introduction of a nucleic acid encoding the fluorescent protein, under the control of the cell specific promoter, into a plurality of cells. Various methods of introduction known to those of ordinary skill in the art can be utilized, including (but not limited to) viral mediated transformation (e.g., adenovirus mediated transformation), electroporation, and liposomal mediated transformation.
[0015]After cell specific expression of the fluorescent protein, such as green fluorescent protein (GFP), the cells expressing the fluorescent protein are separated by an appropriate means. In particular, the cells can be separated by fluorescence activated cell sorting. The method of the subject invention thus provides for the enrichment and separation of the multipotential neural progenitor cells.
[0016]Contemporary approaches toward the use of neural precursor cells have focused upon preparing clonal lines derived from single progenitors. However, such propagated lines can become progressively less representative of their parental precursors with time and passage in vitro. To circumvent these difficulties, the method of the subject invention provides a strategy for the live cell identification, isolation and enrichment of native multipotential neural progenitor cells, by fluorescence-activated cell sorting of human ventricular zone cells transfected with fluorescent protein, driven by the multipotential neural progenitor cell-specific musashi promoter or nestin enhancer. Using this approach, multipotential neural progenitor cells can be identified and selectively harvested from a wide variety of samples, including embryonic and adult brain of avian, mammalian, and human origin. This approach allows for the enrichment of neural precursors from both adults and embryos, with a yield substantially higher than that achievable through standard techniques of selective dissection and differential centrifugation. The musashi protein is a RNA-binding protein expressed by neural progenitors, including cycling cells of both the ventricular and subventricular zones (Sakakibara et al., 1996). During development, it is expressed by neural and neuronal progenitor cells of the ventricular zone, such that musashi expression falls sharply to undetectable levels when a cell commits to neuronal phenotype, at which point expression of the related Hu proteins rise (Sakakibara et al., 1997). Nestin is an intermediate filament expressed by neural stem and progenitor cells; the second intronic enhancer of nestin directs its transcription to neural progenitor cells of the fetal neuroepithelium. As a result, the musashi promoter and the nestin enhancer were chosen for this study for their ability to target transgene expression to multipotential neural progenitor cells.
[0017]Extension of this approach to include fluorescent transgenes under the control of stage- and phenotype-specific promoters (both of which are intended to be covered by reference to "cell-specific" promoters herein) allows even more specific separations to be performed, for example, of multipotential neural progenitors over a range of developmental stages. This strategy permits sufficient enrichment for in vivo implantation of the defined and separated progenitor pools, as well as for in vitro analyses of phenotypic specification and growth control.
[0018]By providing a means of identifying multipotential neural progenitor cells while alive, even when present in small numbers in mixed populations, the use of fluorescent transgenes driven by cell type-selective promoters such as the musashi promoter and the nestin enhancer will allow the specification of phenotype to be studied and perturbed on the single cell level, an approach that had previously only been feasible on larger populations. Indeed, when used in conjunction with post-transfection fluorescence-activated cell sorting (FACS), this strategy may permit the enrichment of any cell type for which stage- or phenotype-specific promoters are available. For instance, similar GFP constructs based upon early neuronal promoters, such as Tα1 tubulin (Wang et al., 1998), might similarly permit the enrichment of neuronal and oligodendrocytic precursors as well as multipotential neural progenitors from adult brain tissue. As a result, spectrally distinct GFP variants with non-overlapping emission spectra (Heim and Tsien, 1996), each driven by a different cell-specific promoter, will allow concurrent identification of neuronal precursors, oligodendrocytic precursors, and multipotential neural progenitors in vitro. Multi-channel cell sorting based upon the concurrent use of several lasers with non-overlapping excitation lines, such as Ar--K and He--Ne, should then allow the separation and simultaneous isolation of several distinct precursor phenotypes from a given brain sample.
[0019]The method of the present invention provides a new strategy for the isolation and purification of multipotential neural progenitor cells, especially neural stem cells, from the adult brain. These cells may be used in both basic analyses of precursor and stem cell growth control, as well as in more applied studies of their transplantability and engraftment characteristics. Generally, by providing a means to identify and enrich neural precursor cells from adult brain, this strategy may allow a significant acceleration in the study of precursor and stem cell biology, as well as providing native unpassaged adult precursor cells in sufficient number for implantation studies. As such, this approach may spur the development of induced adult neurogenesis as a viable therapeutic modality for the structural repair of the damaged central nervous system, whether in the brain or spinal cord.
BRIEF DESCRIPTION OF THE DRAWINGS
[0020]The file of this patent contains at least one drawing executed in color. Copies of this patent with color drawings will be provided by the Office upon request and payment of the necessary fees.
[0021]These and other features and advantages of this invention will be evident from the following detailed description of preferred embodiments when read in conjunction with the accompanying drawings in which:
[0022]FIG. 1 shows a schematic outlining the strategy by which AdE/Nest:EGFP and AdP/Msi:hGFP-based fluorescence activated cell sorting (FACS) was used to extract neural stem cells from the fetal human forebrain. The isolated cells were characterized for their lineage potential in vitro. In addition, their phenotypic potential was also assessed upon in vivo xenograft into telencephalic vesicles of E117 and P2 rats.
[0023]FIGS. 2A-E show fetal human 21 week gestational age brain sections with neural progenitor cells labeled by anti-human nestin (red) and musashi-1 (green) antibodies. FIGS. 2D-E are a 40× magnification of the ventricular zone and the border of the subventricular zone and intermediate zones, respectively. In FIGS. 2D and E, the arrowheads show the frequent musashi+/nestin-cells, particularly at the adluminal surface of the ventricular zone, whereas the arrows show double-labeled cells, more common in the deeper layers of the ventricular zone and nascent subventricular zone. At this gestational timepoint, musashi-1 immunoreactivity was expressed by virtually all cells of the ventricular zone, while nestin was less ubiquitously expressed. In contrast, nestin expression was most predominant within the basal aspect of the ventricular zone, and throughout the subventricular zone. A preponderance of musashi+/nestin+ double labeled cells was noted at the interface of these two layers, with many apparent migrants. These double-labeled cells became increasing scarce with greater distances from the ventricular wall, as nestin+/musashi-cells began to predominate.
[0024]FIGS. 3A-F show AdP/Musashi.hGFP+ cells which are mitotically competent and phenotypically uncommitted. FIG. 3A shows that at 8 DIV, 96.1% of AdP/Msi:hGFP+ (green) cells are co-labeled with nestin antibody (red). FIG. 3B shows that none of the AdP/Msi:hGFP+ (green) cells express early neuronal marker of TUJ-1 protein (red). FIG. 3C shows that approximately 39% of AdP/Msi:hGFP+ (green) cells co-express GFAP (red) and 93.25% of cells are mitotically active, as indicated by incorporation of BrdU (blue). FIGS. 3D-F are the corresponding phase contrast views for FIGS. 3A-C, respectively.
[0025]FIGS. 4A-F show AdE/Nest.EGFP+ cells which are mitotically competent and phenotypically uncommitted. FIG. 4A shows that at 4 DIV, 98.95% of Ad.E/Nestin:EGFP+ (green) cells are co-labeled with nestin antibody (red). FIG. 4B shows that approximately 8.93% of Ad.E/Nestin:EGFP+ (green) cells are co-labeled with GFAP (blue) and 3.12% with TUJ-1 antibody (red). FIG. 4C shows that approximately 61.6% of Ad.E/Nestin:EGFP+ (green) cells incorporated BrdU (blue). FIGS. 4D-F are the corresponding phase contrast views for FIGS. 4A-C, respectively.
[0026]FIGS. 5A-D are graphs showing that AdP/Msi.hGFP+ and AdE/Nest.EGFP+ stem cells are enriched by FACS. FIGS. 5A-B show sort profiles of cell size (FSC) vs. GFP fluorescence intensity (FL1) of AdCMV.LacZ infected, non-fluorescent control cells and AdP/Msi.hGFP infected cells, respectively. Approximately 3.95% of the sorted population achieved an arbitrary threshold of fluorescence intensity for AdP/Msi.hGFP+ cells. FIGS. 5C-D show the sort profiles of AdCMV.lacZ infected, non-fluorescent control cells and AdE/Nestin.EGFP infected cells, respectively. Approximately 8.1% of the cells in this representative sample achieved the control-calibrated threshold of fluorescence intensity for AdE/Nestin.EGFP+.
[0027]FIGS. 6A-B show early post-sort characterization of AdP/Msi.hGFP+ and AdE/Nest.EGFP+ cells. Purified AdP/Msi.hGFP+ and AdE/Nest.EGFP+ cells each generated neurons and astrocytes when plated on fibronectin with medium containing 2% fetal bovine serum. FIG. 6A shows GFAP+ astrocytes (green) with TuJ1+ neurons (red) generated from AdP/Msi.hGFP+ cells, 5 days after FACS. By this time, AdP/Msi.hGFP+ sorted cells no longer express musashi-driven GFP. FIG. 5B shows the presence of GFAP+ (blue) and TuJ1+ (red) cells generated from AdE/Nest.EGFP+ cells after 5 days post sort. In contrast to the relatively rapid transcriptional inactivation of musashi promoter-driven GFP, these AdE/Nest.EGFP+ sorted cells still expressed GFP, and continued to do so for almost 2 weeks in vitro.
[0028]FIG. 7 is a schematic showing a strategy for propagation and genetic tagging of human neural stem cells.
[0029]FIGS. 8A-H show AdE/Nest.EGFP and AdP/Musashi.hGFP-sorted cells tagged with retroviral EGFP generated clonally-derived secondary spheres, that in turn give rise to neurons and glia.
[0030]FIGS. 9A-D are schematics showing AdE/nestin:EGFP and AdP/musashi vectors. In FIG. 9A, in the plasmid separation cassette, EGFP was placed 3' to the heat shock protein-68 basal promoter, and this was placed under the regulatory control of the nestin second intronic enhancer. In FIG. 9B, adenoviral E/nestin:EGFP was constructed to include E/nestin:hsp68:EGFP in a ΔE1 adenovirus. In FIG. 9C, in the plasmid separation cassette P/musashi:hGFP, hGFP was placed 3' under the regulatory control of the nestin second intronic enhancer. In FIG. 9D, adenoviral AdP/musashi:hGFP was constructed to include P/musashi:hGFP in a ΔE1 adenovirus.
[0031]FIGS. 10A-F show human AdE/Nest.EGFP+ and AdP/Musashi.hGFP+ cells engrafted into the fetal rat brain differentiate as neurons, astrocytes, and oligodendrocytes. FIGS. 10A-C show human AdE/Nest.EGFP+ transplanted cells that are identified by the anti-human antibody (ANA) (green). The arrowheads indicated double-labeled cells. In FIG. 10A, neurons are labeled with anti-Hu antibody (red), while the human AdE/Nest.EGFP-derived cells are labeled with ANA (green). Double-labeling (yellow) indicates AdE/Nest.EGFP-derived human neurons in the rat neocortical parenchyma. In FIG. 10B, oligodendrocytes are labeled with CNPase (red), permitting the identification of AdE/Nest.EGFP-derived human oligodendrocytes (yellow). In FIG. 10C, astrocytes are GFAP labeled (red). In FIGS. 10D-F, human AdP/Msi.hGFP+ transplanted cells are identified by the anti-human antibody or BrdU (green). The arrowheads indicate double-labeled cells. In FIG. 10D, neurons are labeled with anti-Hu antibody (red) and the human AdP/Msi.hGFP+ generated neurons are co-labeled with ANA (arrowheads). In FIG. 10E, oligodendrocytes are labeled with CNPase (red). In FIG. 10F, astrocytes are GFAP labeled (red).
[0032]FIG. 11 shows a nucleotide sequence of a human musashi promoter (SEQ ID NO:1).
[0033]FIG. 12 shows a nucleotide sequence of a human nestin enhancer (SEQ ID NO:2).
DETAILED DESCRIPTION OF THE INVENTION
[0034]A plasmid designated pMsi:hGFP has been deposited pursuant to, and in satisfaction of, the requirements of the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purposes of Patent Procedure, with the American Type Culture Collection (ATCC), 10801 University Boulevard, Manassas, Va. 20110-2209, under ATCC Accession No. PTA-2852 on Dec. 26, 2000.
[0035]A plasmid designated pNestin:hsp68:EGFP has been deposited pursuant to, and in satisfaction of, the requirements of the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purposes of Patent Procedure, with the American Type Culture Collection (ATCC), 10801 University Boulevard, Manassas, Va. 20110-2209, under ATCC Accession No. PTA-2853 on Dec. 26, 2000.
[0036]As used herein, the term "isolated" when used in conjunction with a nucleic acid molecule refers to: 1) a nucleic acid molecule which has been separated from an organism in a substantially purified form (i.e. substantially free of other substances originating from that organism), or 2) a nucleic acid molecule having the same nucleotide sequence but not necessarily separated from the organism (i.e. synthesized or recombinantly produced nucleic acid molecules).
[0037]The subject invention provides a method of separating multipotential neural progenitor cells from a mixed population of cell types, based upon cell type-selective expression of cell specific promoters. This method includes selecting a promoter which functions selectively in the neural progenitor cells, introducing a nucleic acid molecule encoding a fluorescent protein under control of said promoter into all cell types of the mixed population of cell types, allowing only the neural progenitor cells, but not other cell types, within the mixed population to express said fluorescent protein, identifying cells of the mixed population of cell types that are fluorescent, which are restricted to the neural progenitor cells, and separating the fluorescent cells from the mixed population of cell types, wherein the separated cells are restricted to the neural progenitor cells.
[0038]The cells of particular interest according to the subject invention are multipotential neural progenitor cells. "Specific", as used herein to describe a promoter, means that the promoter functions only in the chosen cell type. A chosen cell type can refer to different stages in the developmental cycle of a cell.
[0039]The mixed population of cell types may be derived from, for example, a ventricular zone, a hippocampus, a spinal cord, bone marrow, e.g., bone marrow stroma or mesenchyma, or embryonic stem cells. The mixed population of cell types may be in tissue, e.g., brain tissue or spinal cord tissue, or in cell culture
[0040]Illustrative promoters for multipotential neural progenitor cells include a musashi promoter and a nestin enhancer.
[0041]In accordance with one embodiment of the present invention, a human musashi promoter has a nucleotide sequence as shown in FIG. 11 (SEQ ID NO:1).
[0042]In accordance with another embodiment of the present invention, a human nestin enhancer has a nucleotide sequence as shown in FIG. 12 (SEQ ID NO:2).
[0043]Having determined the cell of interest and selected a promoter specific for the cell of interest, a nucleic acid molecule encoding a fluorescent protein, preferably a green fluorescent protein, under the control of the promoter is introduced into a plurality of cells to be sorted.
[0044]The isolated nucleic acid molecule encoding a green fluorescent protein can be deoxyribonucleic acid (DNA) or ribonucleic acid (RNA, including messenger RNA or mRNA), genomic or recombinant, biologically isolated or synthetic. The DNA molecule can be a cDNA molecule, which is a DNA copy of a messenger RNA (mRNA) encoding the GFP. In one embodiment, the GFP can be from Aequorea Victoria (U.S. Pat. No. 5,491,084). A plasmid encoding the GFP of Aequorea Victoria is available from the ATCC as Accession No. 75547. A mutated form of this GFP (a red-shifted mutant form) designated pRSGFP-C1 is commercially available from Clontech Laboratories, Inc. (Palo Alto, Calif.).
[0045]Mutated forms of GFP that emit more strongly than the native protein, as well as forms of GFP amenable to stable translation in higher vertebrates, are now available and can be used for the same purpose. The plasmid designated pTα1-GFPh (ATCC Accession No. 98299) includes a humanized form of GFP. Indeed, any nucleic acid molecule encoding a fluorescent form of GFP can be used in accordance with the subject invention. Furthermore, any nucleic acid molecule encoding an enzyme that can catalyze the conversion of a fluorgenic substrate to a fluorophone can be used in accordance with the subject invention. An example is the use of a cell-specific promoter to drive lacZ expression, with the detection and sorting of lacZ-expressing cells being by means of incubation with the fluorgenic substrates FDG (fluorescein-β-D-galactopyranoside) or CMFDG (chloromethyl-FDG).
[0046]Standard techniques are then used to place the nucleic acid molecule encoding GFP under the control of the chosen cell specific promoter. Generally, this involves the use of restriction enzymes and ligation (see below).
[0047]The resulting construct, which comprises the nucleic acid molecule encoding the GFP under the control of the selected promoter (itself a nucleic acid molecule) (with other suitable regulatory elements if desired), is then introduced into a plurality of cells which are to be sorted. Techniques for introducing the nucleic acid molecules of the construct into the plurality of cells may involve the use of expression vectors which comprise the nucleic acid molecules. These expression vectors (such as plasmids and viruses) can then be used to introduce the nucleic acid molecules into the plurality of cells.
[0048]Various methods are known in the art for introducing nucleic acid molecules into host cells. These include: 1) microinjection, in which DNA is injected directly into the nucleus of cells through fine glass needles; 2) dextran incubation, in which DNA is incubated with an inert carbohydrate polymer (dextran) to which a positively charged chemical group (DEAE, for diethylaminoethyl) has been coupled. The DNA sticks to the DEAE-dextran via its negatively charged phosphate groups. These large DNA-containing particles stick in turn to the surfaces of cells, which are thought to take them in by a process known as endocytosis. Some of the DNA evades destruction in the cytoplasm of the cell and escapes to the nucleus, where it can be transcribed into RNA like any other gene in the cell; 3) calcium phosphate coprecipitation, in which cells efficiently take in DNA in the form of a precipitate with calcium phosphate; 4) electroporation, in which cells are placed in a solution containing DNA and subjected to a brief electrical pulse that causes holes to open transiently in their membranes. DNA enters through the holes directly into the cytoplasm, bypassing the endocytotic vesicles through which they pass in the DEAE-dextran and calcium phosphate procedures (passage through these vesicles may sometimes destroy or damage DNA); 5) liposomal mediated transformation, in which DNA is incorporated into artificial lipid vesicles, liposomes, which fuse with the cell membrane, delivering their contents directly into the cytoplasm; 6) biolistic transformation, in which DNA is absorbed to the surface of gold particles and fired into cells under high pressure using a ballistic device; and 7) viral-mediated transformation, in which nucleic acid molecules are introduced into cells using viral vectors. Since viral growth depends on the ability to get the viral genome into cells, viruses have devised efficient methods for doing so. These viruses include retroviruses and lentivirus, adenovirus, herpesvirus, and adeno-associated virus.
[0049]As indicated, some of these methods of transforming a cell require the use of an intermediate plasmid vector. U.S. Pat. No. 4,237,224 to Cohen and Boyer describes the production of expression systems in the form of recombinant plasmids using restriction enzyme cleavage and ligation with DNA ligase. These recombinant plasmids are then introduced by means of transformation and replicated in unicellular cultures including procaryotic organisms and eucaryotic cells grown in tissue culture. The DNA sequences are cloned into the plasmid vector using standard cloning procedures known in the art, as described by Sambrook et al. (1989).
[0050]In accordance with one of the above-described methods, the nucleic acid molecule encoding the GFP is thus introduced into a plurality of cells. The promoter which controls expression of the GFP, however, only functions in the cell type of interest (i.e., multipotential neural progenitor cells). Therefore, the GFP is only expressed in the cell type of interest. Since GFP is a fluorescent protein, the cells of interest can therefore be identified from among the plurality of cells by the fluorescence of the GFP.
[0051]Any suitable means of detecting the fluorescent cells can be used. The cells may be identified using epifluorescence optics, and can be physically picked up and brought together by Laser Tweezers (Cell Robotics Inc., Albuquerque, N. Mex.). They can be separated in bulk through fluorescence activated cell sorting, a method that effectively separates the fluorescent cells from the non-fluorescent cells (e.g., Wang et al., 1998).
[0052]The method of the subject invention thus provides for the isolation and enrichment of multipotential neural progenitor cells from embryonic and adult brain of both fetal and adult, rodent and human derivation. Specifically, fluorescence-activated cell sorting of adult human ventricular zone, adult hippocampus, and fetal human ventricular epithelium cells transfected with green fluorescent protein driven by the musashi promoter or the nestin enhancer is provided. In particular, tissue samples from fetuses of 14-23 weeks gestational age were obtained. Histological sections across several gestational ages were immunostained for musashi and nestin protein. Dissociates of ventricular zone were transduced with either a ΔE1 adenovirus bearing hGFP under the control of the musashi promoter (AdP/Musashi), or with an adenovirus encoding EGFP placed 3' to the heat shock protein-68 basal promoter under the regulatory control of the nestin second intronic enhancer (AdE/Nestin). Adenoviral vectors were used instead of plasmids for both P/Musashi.hGFP and E/Nestin.EGFP in order to increase transfection efficiency. The phenotypic specificity of each selection construct, E/Nestin.EGFP and P/Musashi.hGFP, was verified in the adenoviruses as well as in the plasmids. Following GFP expression, the GFP+ cells were extracted by FACS. The resulting native prospectively-identified and directly-harvested, non-transformed multipotential neural progenitor cells are self-renewing, generate neurons, astrocytes, and oligodendrocytes, both in vitro and upon transplantation to recipient brains. Unlike other putative neural stem lines, these have been extracted directly from the human fetal ventricular epithelium, without the need for either initial epidermal growth factor-expansion or oncogenic immortalization; each of which can perturb the phenotypic stability and functional competence of neuronal and glial progeny so derived.
[0053]The cells separated by the method of the present invention may be used in both basic analyses of precursor and stem cell growth control, as well as in directly applied studies of their transplantability and engraftment characteristics. The cells similarly can be used in support of the structural repair of the damaged central nervous system, such as in the traumatized brain, or the contoured, traumatized, or transected spinal cord.
EXAMPLES
Example 1
Materials and Methods
Human Fetal Culture
[0054]Human fetal brain was taken at second trimester therapeutic abortion, typically performed for either placenta previa, premature rupture, sonographically-demonstrated isolated splanchnic or cardiac developmental abnormalities, or karyotypically-identified trisomies 18 or 21. These brains were collected into Ca/Mg-free Hanks' Balanced Salt Solution (HBSS), then dissected to separate first the telencephalon from the brainstem, and then the telencephalic ventricular epithelium from non-ventricular parenchyma. The telencephalic ventricular zone was then cut into small pieces in PIPES solution (120 mM NaCl, 5 mM KCl, 25 mM glucose, 20 mM PIPES), then digested with papain (11.4 units/ml papain, Worthington Biochemical Corporation) and DNase I (10 units/ml, Sigma, St. Louis, Mich.) in PIPES solution, with gentle shaking for 1 hour at 37° C. in 5% CO2. Following incubation, the tissue was collected by centrifuging at 200 g for 5 minutes in an IEC Centra-4B centrifuge, resuspended in DMEM/F12/N2 with DNase I (10 units/ml) and incubated for 15 minutes at 37° C./5% CO2. The samples were spun and the pellets resuspended in 2 ml of DMEM/F12/N2, then dissociated by sequentially triturating for 20, 10, and 5 times, through three serially-narrowed glass Pasteur pipettes. The dissociated cells were purified by passing through a 40 μm Cell Strainer (Becton Dickinson), rinsed with DMEM/F12/N2 containing 20% fetal bovine serum FBS, Cocalico), and resuspended at 4×106 cells/ml in DMEM/F12/N2 containing 5% FBS. The cells were plated at 0.5 ml/dish into 35 mm Falcon Primaria plates, precoated with murine laminin (2 μg/cm2, Gibco) and incubated at 37° C. in 5% CO2. After 1 day, an additional 0.5 ml of DMEM/F12/N2 with 2% platelet-depleted FBS (PD-FBS) was added to each plate. For some cultures, 30 μM bromodeoxyuridine (BrdU; Luskin et al., 1997) was added to the medium in order to label dividing cells.
Construction of E/Nestin:EGFP and AdE/Nestin:EGFP
[0055]To identify neural progenitor cells, a green fluorescent protein expression vector was constructed, with EGFP placed under the control of the nestin enhancer (Zimmerman et al., 1994; GeneBank Accession No. AF004334). The latter, a 637 bp-region between bases 1162 and 1798 of rat nestin gene, is evolutionarily conserved between human and rat, and is sufficient to target gene expression to CNS neuroepithelial progenitor cells (Lothian, 1997). The nestin enhancer was placed upstream of the minimum promoter of heat shock protein 68 (hsp68) (Rossant, 1991), yielding E/nestin:hsp68 (Lothian, 1997). This was in turn fused to EGFP polyA (Clontech, Palo Alto, Calif.), yielding E/nestin:EGFP, as previously described (Roy et al., 2000a). The neuroepithelial cell-specific expression of this transgene was confirmed by transgenic mouse studies.
Construction of P/Musashi:hGFP and AdP/Musashi:GFP
[0056]An adenoviral vector bearing the mouse musashi promoter to drive hGFP was constructed. The shuttle vector pAdCMV-H( )SgD (Courtesy of Dr.Neil Hackett/Gene Therapy Core Facility of Weill Medical College) was digested with Not I blunt and XhoI to remove the existing immediate-early cytomegalovirus (CMVie) promoter. The expression cassette CMVie-SD/SA-hGFP-polyA was then removed from pCMV-hGFP using BstXI/blunt and SalI. The resulting expression cassette was ligated to the shuttle vector. This was referred to as pAdCMV-hGFP, in which CMVie was flanked by XbaI. pAdCMV-hGFP was digested with XbaI, dephosphorylated, and ligated to the 4.5 Kb XbaI-XbaI fragment corresponding to the mouse musashi promoter. The orientation of the promoter was determined by SacII, which cuts both once at the 3' end of the promoter and within hGFP. Established methods were then used to construct a replication-defective recombinant adenovirus, via homologous recombination using the plasmid pJM17, which contains the E1A-deleted type 5 adenovirus. pAdMsi-hGFP was co-transfected with pJM17 into HEK293 cells, and viral plaques developed for 2 weeks. The virus was purified using double centrifugation in CsCl. The titer of the purified virus was between 1011-1012 pfu/ml.
Transfection
[0057]Two E/nestin-bearing plasmids, that included pE/nestin:EGFP and pE/nestin:lacZ, were used. A cationic liposome, Effectene (Qiagen, Germany), was used to transfect these plasmids into cultured adult VZ/SVZ cells, as follows. After the first day in vitro, 1 ml of DMEM/F12/N2 with 5% FBS was added to each culture. A total of 0.4 μg of plasmid DNA was diluted with 100 μl of Effectene DNA-condensation buffer, and mixed with 3.2 μl of Enhancer, following the manufacturer's instructions. The liposome:DNA complex was then incubated at room temperature for 5 minutes. 10 μl of Effectene was then added to the DNA/Enhancer solution, and the mixture incubated at 25° C. for 10 minutes. 0.6 ml of DMEM/F12/N2 with 5% FBS was added to this solution, which was then mixed and applied to the culture. After a 6 hour transfection, the cells were collected and spun. The resultant pellet was resuspended into DMEM/F12/N2 with 5% FBS, and plated onto a laminin-coated 35 mm Primaria plate. GFP was typically expressed by appropriate target cells within 2 days of transfection.
Flow Cytometry and Sorting
[0058]Flow cytometry and sorting of hGFP+ cells was performed on a FACS Vantage (Becton-Dickinson). Cells were washed twice with Ca++, Mg++-free HBSS, then dissociated by 0.05% trypsin-EDTA for 5 minutes at 37° C. The dissociation reaction was terminated by DMEM/F12/N2 containing 10% FBS. The cells (2×106/ml) were analyzed by light forward and right-angle (side) scatter, and for GFP fluorescence through a 510±20 nm bandpass filter, as they traversed the beam of a Coherent INNOVA Enterprise II Ion Laser (488 nm, 100 mW). Sorting was done using a purification-mode algorithm. The E/nestin:lacZ transfected cells were used as a control to set the background fluorescence; a false positive rate of 0.1-0.3% was accepted so as to ensure an adequate yield. For those samples transfected with E/nestin:EGFP, cells detected as being more fluorescent than background were sorted at 1000-3000 cells/second. Sorted GFP+ cells were plated on laminin-coated 24-well plates, in DMEM/F12/N2 with 5% FBS and BrdU. At 2 and 7 days post-FACS, the sorted cultures were fixed and immunostained for BrdU together with either TuJ1/βIII tubulin, Hu, MAP2, O4, or GFA.
Transuterine Fetal Xenograft
[0059]Transuterine injection for chimeric brain construction has been previously described (Brustle et al., 1998). Six pregnant females were anesthetized with ketamine and xylazine, and the peritoneum incised and the amnion exposed and displayed. The individual rat fetuses were trans-illuminated by a cool fiber-optic, and the cerebral ventricles outlined visually. A 30 g needle was then inserted through the amnion and calvarium directly into the ventricle, and 5×104 cells/μl were injected, as a 1 μl injection. After all embryos were injected, their amniotic sacs were replaced, and the peritoneum and skin closed as 2 layers with 2-0 and 3-0 silk, respectively. The females awoke to ad-lib food and water, and were allowed to deliver their litters normally, 4-5 days later. The pups were fed ad-lib by their mothers, and were sacrificed by pentobarbital overdose on either day 17 or day 35 after birth. They were perfusion-fixed by cold PBS followed by 4% paraformaldehyde, and their brains subsequently cut on a Hacker cryostat, as serial 12 μm sections in the coronal plane.
Immunostaining and Imaging
[0060]In Vitro
[0061]After 2, 7, or 14 DIV, the cultures were fixed for immunocytochemistry. They were first rinsed with HBSS, then fixed with 4% paraformaldehyde for 5 minutes at room temperature. The plates were stained for either βIII tubulin (MAb TuJ1, 1:500; courtesy of Dr. A. Frankfurter), Hu protein (Mab 16A11, 50 μg/ml; Dr. H. Furneaux), or nestin (MAb Rat-401, 1:500; Developmental Studies Hybridoma Bank); all are markers of neural (nestin) or neuronal (βIII tubulin and Hu protein) antigenic expression (Frederiksen, 1988; Menezes, 1994; Barami, 1995). Additional plates were stained for glial markers, with either anti-oligodendrocytic O4 IgM (1:100; Boehringer Mannheim) for oligodendrocytes, or anti-astrocytic glial fibrillary acidic protein (GFAP, clone GA-5, 1:100; Sigma, St. Louis, Mich.), using previously established protocols (Kirschenbaum, 1994). Additional plates were fixed after 14 DIV and stained for MAP-2 protein to detect more mature neurons (1:500, rabbit anti-MAP2; Dr. S. Halpain). Immunocytochemistry for BrdU was then performed as described (Wang, 1998).
[0062]In Vivo
[0063]Rat pups that had been injected with cells on either day E17 or P1 were sacrificed, perfusion fixed, and their brains removed on either the 14th or 21st day after birth. Fixation was accomplished using 4% paraformaldehyde in 0.1M phosphate buffer (PB; pH 7.4), with a 90 minute post-fix followed by immersion and sinking in 30% sucrose in PB. All brains were cut as 15 μm coronal sections. Some were then denatured in 2N HCl for an hour, and stained for BrdU, using rat anti-BrdU antibody at 1:200 (Harlan), followed serially by fluorescein-conjugated anti-rat IgG at 1:150 (Jackson Labs). Other sections were stained with an anti-human nucleoprotein antibody (Chemicon; 1:100; Vescovi et al., 1999). Other sections were instead subjected to in situ hybridization for human Alu DNA, using a digoxigenin-labeled Alu probe, which was then detected using biotinylated anti-digoxigenin IgG and fluorescein-conjugated avidin, as described.
[0064]The sections were then washed and stained for either neuronal or glial markers. Neuronal markers included βIII-tubulin, detected by monoclonal antibody TuJ1 (Menezes and Luskin, 1994; Roy et al., 2000) (a gift of Dr. A. Frankfurter); NeuN (Eriksson et al., 1998) (Chemicon); or Hu (Marusich et al., 1994; Barami et al., 1995), each as described. Glia were localized using antibodies directed against either oligodendrocytic CNP protein (Roy et al., 1999), or astrocytic GFAP. All anti-mouse secondary antibodies were pre-absorbed against rat IgG to avoid nonspecific staining.
[0065]Confocal Imaging
[0066]In sections double-stained for either BrdU or anti-human nucleoprotein together with either βIII-tubulin, NeuN, GFAP, or CNP, single BrdU+ cells that appeared to be co-labeled for both human- and cell-specific markers were further evaluated by confocal imaging. Using a Zeiss LSM510 confocal microscope, images were acquired in both red and green emission channels using an argon-krypton laser. The images were then viewed as stacked z-dimension images, both as series of single 0.9 μm optical sections, and as merged images thereof. The z-dimension reconstructions were all observed in profile, as every BrdU+ or ANA+ human cell double-labeled with a neuronal or glial marker was then observed orthogonally in both the vertical and horizontal planes. To be deemed double-labeled, cells were required to have central BrdU or ANA immunoreactivity surrounded by neuronal or glial immunoreactivity at all observation angles, in every optical section, and in each merged composite.
Retroviral Preparation and EGFP Tagging
[0067]The NIT retrovirus (courtesy of T. Palmer and F. Gage) was prepared as previously described (Sakurada et al., 1999). Briefly, HEK 293gag/pol cells were stably transduced to express NIT.EGFP retrovirus, a derivative of the LINX retrovirus (Hoshimaru et al., 1996). These cells were then transfected with pMD.G, encoding vesicular stomatitis virus coat protein (VSV-G), so as to allow high-efficiency amphotropic infection of human cells. Viral supernatants were harvested 2 days later and aliquots stored at 80° C. until the time of use. Sorted cells subjected to retroviral infection were exposed to viral supernatant for a total of 12 hours in the presence of polybrene (8 μg/ml), beginning the morning after FACS. Three increments of 250 μl of viral supernatant were successively added 4 hours apart to an initial sample of 10,000 sorted cells in 250 μl medium. After a total of 12 hours in viral supernatant, the cells in each well were washed in fresh media and respun and redistributed to fresh 24-well plates at 10,000 cells/300 μl/well. This protocol of repetitive viral exposure was used to maximize the yield of virally-transduced neural progenitors available to clonal analysis.
Propagation and Genetic Tagging of Human Neural Stem Cells
[0068]AdE/nestin:EGFP+ and AdP/msi:hGFP+ cells were each extracted as noted by FACS. At that point, the GFP+ cells were distributed into 24-well plates at 10,000/well, and raised in serum-free media supplemented with 20 ng/ml FGF2. The following day, the cells were infected with the NIT.EGFP retrovirus (see above), by which means the sorted cells were stably transduced to express EGFP. After 4 weeks, adenoviral-associated GFP expression fell to undetectable levels, in that sorted cultures not exposed to retroviral NIT.EGFP lost all nestin and musashi-driven GFP expression. Some sorted cultures were then re-sorted on the basis of GFP expression, resulting in the specific extraction of retroviral GFP-tagged neural stem cells. Other plates were supplemented with neomycin, which selected for the retrovirally-transduced lines by virtue of a selectable neo resistance gene in the retroviral construct. Each strategy yielded uniform cultures of GFP+ cells at 6 weeks in vitro. Spheres were noted in these cultures, often as early as 2 weeks in vitro, and at 6 weeks these sphere were transferred to new wells within 24-well plates, at 2-3 spheres/well. These spheres were in turn raised for another 2 weeks, then dissociated by mild trypsinization and passaged into new wells. These cells were maintained for another 2 weeks, by which point secondary spheres were observed to arise from many of the single cells derived from the initially-dissociated primary sphere. This procedure of mitotic sphere expansion in FGF2-containing suspension culture, followed by gentle dissociation of the spheres, passage of the dissociated cells, and replating with sphere regeneration and re-expansion, was repeated at monthly intervals thereafter. Aliquots of neural stem cells are removed at roughly biweeekly intervals, both for experimental transplantation, and for phenotypic analyses of their differentiated progeny. Stable GFP-tagged AdE/nestin and AdP/musashi-defined neural stem cells have been thereby continuously propagated for over 8 months; separate lines have been established from both forebrain and spinal cord, and from each at several different gestational ages spanning the second trimester.
Example 2
Musashi and Nestin Protein Expression Characterize Distinct but Overlapping Domains within the Fetal Human Ventricular Zone
[0069]Immunostaining for nestin and musashi proteins at several stages in mid-gestation revealed that these early neural proteins occupied distinct but overlapping domains within the fetal human telencephalic wall. At gestational ages spanning from 12-21 weeks of second trimester development, musashi protein was expressed ubiquitously within the densely packed ventricular neuroepithelium, with diminished expression within the nascent subventricular zone, and virtually none within the intermediate zone and cortical parenchyma (FIG. 2A-E). Nestin expression was similarly noted within the ventricular zone, and many double-labeled cells were noted therein. However, the density of nestin+ cells within the VZ was notably lower than that of musashi+ cells, and many musashi+ VZ cells did not express detectable nestin. In contrast, within the subventricular zone, many nestin+ cells were noted to not express musashi. Within the intermediate zone, a dense array of nestin+ radial guide cells was noted, which did not express musashi, but upon which both musashi and nestin+ migrants were frequently noted.
[0070]Using high-magnification confocal microscopy of double-immunostained 14 week rostrolateral telencephalic ventricular zone, it was noted that 72% of VZ cells expressing musashi protein co-expressed nestin protein. In contrast, at 21 weeks, 93% of the musashi expressing cells co-expressed nestin. Thus, the incidence of musashi+/nestin-cells within the rostrolateral telencephalic VZ decreased from 27% to 5% between the 14th and 21st weeks of gestational development. IR cells.
[0071]Thus, a substantial degree of overlap was observed among musashi and nestin-immunoreactive cells, in that a large proportion of VZ cells expressed both proteins. Interestingly though, the observations also indicate the existence of a musashi+/nestin-phenotype within the ventricular neuroepithelium. By virtue of its relative prevalence at the adluminal surface of the ventricular neuroepithelium, this musashi+/nestin-phenotype may constitute an ontogenetically earlier cell population than that defined by nestin (FIG. 2A-E).
Example 3
The Nestin Enhancer Targeted GFP Expression to Neural Progenitor Cells In Vitro
[0072]In order to label live neural progenitor cells in which nestin and musashi regulatory elements were transcriptionally active, cells derived from fetal VZ samples spanning 14-23 weeks of gestational age were infected with adenoviruses bearing EGFP under the regulatory control of either the nestin enhancer (E/nestin:EGFP) or musashi promoter (P/musashi:hGFP) (FIG. 9A-D). To this end, papain dissociates of the dissected ventricular walls were obtained from 25 fetuses; these included 9 of 14-19 weeks gestational age, and 16 of 20-23 weeks gestation. These dissociates were then prepared as suspension cultures in DMEM/F12/N2, supplemented with 20 ng/ml FGF2; some were also supplemented with 2% PD-FBS.
[0073]To both improve the efficiency with which the E/nestin:EGFP selection cassette could be introduced into these ventricular zone cells, and to increase the transgene copy number in transfectants, an adenovirus bearing E/nestin:EGFP was constructed. Using this AdE/nestin:EGFP virus, human fetal VZ suspension cultures were infected on their first day in vitro, over a range of 1-25 moi. Within 4 days of infection, nestin-driven GFP expression was noted in a relatively primitive population of flat cells. Among these E/nestin:EGFP+ cells, 98.9±1.2% expressed nestin protein. 61.6±7.6% incorporated BrdU, indicating their mitogenesis in vitro. Yet only 3.1±0.6% expressed βIII-tubulin-immunoreactivity, and 8.9±1.6% expressed astrocytic GFAP (FIG. 3A-F). Thus, the nestin enhancer directed GFP expression to a relatively undifferentiated population of mitotically-active cells in mixed dissociates of the fetal human VZ.
Example 4
The Musashi Promoter Targets GFP Expression to an Overlapping Population of Neural Progenitor Cells
[0074]Given musashi's robust and relatively selective expression by uncommitted progenitor cells in both the rodent (Sakakibara et al., 1997) and human VZ (Pincus et al., 1998), it was reasoned that a GFP transgene placed under musashi promoter control might, like nestin enhancer-driven GFP, specifically recognize neural progenitor cells. To that end, the 4.6 kb promoter for human musashi promoter was coupled to hGFP, thereby establishing the P/musashi:hGFP selection cassette. A type 5 ΔE1 adenovirus was then constructed bearing P/musashi:hGFP selection cassette, which was designated AdP/msi:hGFP. Using this vector, it was found that the transduction efficiency in cultures of human VZ cells rose substantially, relative to cultures transfected with P/musashi:GFP plasmid DNA (data not shown), with no evident effect on cell viability in the 10-25 pfu/cell range at which this virus was used. No βIII-tubulin+ neurons were noted among the AdP/musashi:GFP-sorted cells, whereas 96.1±2.0% expressed nestin protein (FIG. 4A-F). 93.3±3.4% of AdP/musashi:GFP+ cells incorporated BrdU, indicating their persistent division in vitro.
[0075]Thus, both the AdE/nestin:EGFP and AdP/musashi:hGFP viruses retained the phenotypic expression patterns of their incorporated promoter-driven GFPs; both were expressed by uncommitted progenitor cells, but not by more differentiated neurons. Together, these data suggest that adenoviruses bearing GFP under the regulatory control of the nestin enhancer and musashi promoter may be used to specifically and selectively identify neural progenitor cells, before neuronal commitment.
Example 5
FACS Based on Nestin and Musashi-Driven GFP Permits the Isolation and Selection of Human Neural Progenitor Cells
[0076]After infection of the fetal VZ/SVZ with AdE/nestin:EGFP and AdP/musashi:hGFP, the neural precursors and their daughters were isolated and extracted by FACS (FIG. 1). By high-stringency FACS criteria, intended for cell-type purification, (Wang, 1998), it was found that 10.6±2.6% of cells (mean±SE; n=3 sorts) prepared from 17-19 week gestational age ventricular zone expressed nestin-driven GFP. A small but statistically significant fall to 7.4±1.5% (n=11 sorts) was noted in the proportion of AdE/nestin:EGFP+ cells in dissociates derived from 20-23 week VZ (p<0.05 by 1-way ANOVA with post hoc Boneferroni t-test). Using the same sort acceptance criteria, only 0.05% of cells infected with non-fluorescent AdCMV:lacZ. were similarly recognized.
[0077]The frequency of AdP/musashi:hGFP-defined VZ cells was consistently lower than that of E/nestin-defined cells, at both 17-19 weeks (2.4±0.6%; n=6 sorts) and 20-23 weeks. (3.2±0.4%; n=11). Using forward and side-scatter endpoints, the AdE/nestin- and AdP/musashi-defined progenitors appeared to constitute largely overlapping pools (FIG. 5A-D).
[0078]Virtually all of the E/nestin:EGFP-sorted cells expressed nestin protein immediately after FACS; 83.7±7.7% (n=3 sorts) did so after 1 week in serum-free media. Cells expressing the early neuronal proteins Hu and TuJ1/βIII-tubulin were rarely detected in these cultures, even at a week after E/nestin:EGFP-based FACS. Interestingly though, only 36.3±8.2% (n=3) expressed nestin protein in 2% PD-FBS, suggesting the rapid differentiation of E/nestin:EGFP+ cells upon exposure to serum-associated maturation factors. Accordingly, a majority of the sorted progenitors raised in PD-FBS matured as βIII-tubulin+ neurons and GFAP+ glia within the week after FACS (FIG. 6A-B).
Example 6
E/Nestin:EGFP- and P/Musashi-Identified Cells Were Both Mitotically Competent and Multipotential
[0079]To establish the in vitro lineage potential of these cells, both population-based and single cell clonogenic strategies were employed, both independently and in parallel with concurrent retroviral lineage analysis. First, low density cultures of purified E/nestin:EGFP and P/musashi:hGFP-sorted cells were prepared to allow the emergence of neurospheres. This was followed by the dissociation of these spheres and the limiting dilution propagation of their progeny as secondary spheres, whose clonally-related constituents were then phenotyped after plating and immunolabeling. In addition, retroviral tagging of single E/nestin- and P/musashi-sorted cells in primary spheres, followed by the re-dissociation and dispersion of these tagged cells with clonal expansion as secondary spheres, allowed the antigenic phenotypes of clonally-related daughters to be established. This approach revealed that individual secondary and tertiary spheres, each clonally-derived from single, E/nestin- and P/musashi-sorted cells tagged with retroviral GFP, indeed gave rise to both neuronal and glial daughters (FIGS. 7 and 8A-H). Thus, both E/nestin:EGFP and P/musashi:hGFP-sorted cells continued to divide in vitro, and each phenotype gave rise individually to both neurons and glia.
Example 7
Both E/Nestin:GFP and P/Musashi:GFP-Sorted Progenitors Generated Neurospheres
[0080]Limiting dilution analysis of both AdP/Msi:hGFP and E/nestin:EGFP-sorted cells was also performed, with propagation of sorted GFP+ cells in suspension culture. These sorted cells were initially raised in a serum-free base medium of DMEM/F12/N2 with 10 ng/ml FGF2, according to established protocols for neurosphere suspension culture (Gritti, 1996, Vescovi, 1999). This was followed two weeks later by preparation of secondary spheres, raised under conditions appropriate for clonal expansion. Single aggregates were removed to single wells in a 24-well plate, then gently dissociated, and their E/nestin:EGFP+ progeny were then plated at low density (1000 cells/ml) into 24 well plates, at 300 μl/well. In addition, some cells were distributed at 10/ml into 35 mm plates containing base media supplemented with 1.4% methylcellulose. This more viscous preparation, in tandem with the very low plating density, permitted the clonal expansion of single cells while diminishing the possibility of aggregation among potentially non-clonally-derived neighbors. In each case, initial dispersion of single cells within the media was verified by high-power phase microscopy of each plate, and undissociated aggregates were removed by micropipette. The positions of expanding clusters were marked, and these were followed daily thereafter, to ensure the autologous expansion and co-derivation of single clusters.
[0081]In forebrain ventricular zone samples derived from 4 fetuses of 20-22 weeks gestation, an average of 13.4±1.0 spheres/well for AdP/msi:hGFP-sorted cells was observed, and 11.5±1.2 spheres/well for AdE/nestin:EGFP-sorted cells (FIG. 8A-H). The relative proportion of sphere-generating cells within each well was dependent upon both gestational age and plating density, in that both earlier ages and higher plating densities yielded disproportionately higher proportions of sphere-generating clones (data not shown). Thus, this approach may not be used as a basis for estimating the incidence of stem cells in either the E/nestin or P/musashi-sorted cell populations. Indeed, initial cell depositions at 1,000 sorted cells/well were maintained in order to titrate to roughly 10 clones/well, both for ease of handling and to ensure the clonal derivation of cells obtained from subsequent single-sphere dissociations. Given the predominance of nestin and musashi-expressing cells in the early ventricular neuroepithelium, their frequent multipotentiality and their high mitotic indices, the relative scarcity of sphere-generating cells within the P/musashi- and E/nestin-sorted pools argue that clonogenic stem cells may represent only a minority of the cycling, multipotential neural progenitor cells within the sorted samples.
Example 8
Retroviral Lineage Analysis Confirmed the Multipotentiality of Both E/Nestin:GFP and P/Musashi:GFP-Sorted Progenitor Cells
[0082]Retroviral lineage analysis confirmed that individual E/nestin- and P/musashi-sorted cells each gave rise to both neuronal and glial lineages. Both populations of sorted cells were infected immediately after FACS with a VSV-pseudotyped amphotropic vector encoding EGFP under the control of the constitutive RSV promoter. Over the weeks after FACS, E/nestin- and P/musashi-sorted cells typically lost GFP expression, as their progeny diversified and both nestin and musashi transcription diminished, and as the episomal transgenes were down-regulated or abandoned. In contrast, the retrovirally-tagged cells and their progeny maintained high level GFP expression; within a week after E/nestin:EGFP-based sorting, the retrovirally-tagged cells could be readily distinguished from the untagged remainder. By infecting E/nestin:GFP-sorted cells at a relatively low density of 10-20 infectants/well, it was possible to follow the clonal progeny of single cells over the weeks after FACS.
[0083]After expansion of the retrovirally-tagged clonal progeny, individual spheres were dissociated and their constituents removed to a laminin substrate, to which base media supplemented with 10% PD-FBS and 20 ng/ml BDNF was added. Under these differentiation-promoting conditions, the cells were allowed to adhere and mature for an additional 1-2 weeks. They were then fixed with 4% paraformaldehyde, and immunostained either for neuronal (TuJ1), astrocytic (GFAP), or oligodendrocytic (O4) antigens. Using this strategy, it was found that individual E/nestin- and P/musashi-sorted cells were each competent to give rise to both neurons and glia.
Example 9
Both E/Nestin:GFP and P/Musashi:GFP-Sorted Progenitors Could Generate All Neural Phenotypes Upon Xenograft to Fetal and Perinatal Rat Brain
[0084]To assess the responsiveness of E/nestin:EGFP-defined cells to differentiation cues in a parenchymal environment, fetal VZ cells were xenografted into E17 rat forebrain ventricles, using an adaptation of a previously reported technique (Brustle et al., 1998). Briefly, E17 pregnant female rats were anesthetized and laparotomized, and the uterus trans-illuminated to allow direct visualization through the placental sac of each fetuses' forebrain and ventricular lumen. An average of 1×105 E/nestin:EGFP-FACSed fetal human VZ cells were injected into the lateral ventricular lumen of each embryo, and the mother sutured and allowed to deliver 4-5 days later. Three weeks later, the pups were sacrificed, and their brains fixed and cut as 12 μm cryostat sections, that were then immunolabeled for anti-human nuclear antigen to identify the grafted human fetal cells, together with neuronal βIII-tubulin and either oligodendrocytic cyclic nucleotide phosphodiesterase (CNP), or astrocytic GFAP.
[0085]It was found that human-derived cells were abundant in the grafted pups, and readily identified as such. Indeed, when xenografted to the fetal rat forebrain, most of the human E/nestin:EGFP+ cells integrated as neurons, resulting in the formation of chimeric human-rat neocortices. Upon xenograft at E117--a period characterized by predominantly cortical neurogenesis by the ventricular neuroepithelium--most human cells were noted to have migrated to the cortical laminae, and to have differentiated as neurons rather than glia (FIG. 10A-F).
[0086]In contrast, when xenografted as intraventricular injections to P1 neonatal hosts, most human cells were noted to enter only the subcortex, wherein most differentiated as glia. Within the subcortical white matter, when assessed at 28 days of age, both human oligodendrocytes and astrocytes, as defined by GFAP, were noted to be abundantly represented (FIG. 10A-F), whereas human neurons were rarely noted, and then only in the rostral telencephalon, migratory stream, and olfactory bulb.
Example 10
Prospective Identification and Phenotype-Specific Purification of Multipotential Neural Progenitor Cells from the Fetal Human Forebrain
[0087]Human neural progenitor cells have previously been obtained and propagated from the first trimester telencephalic vesicles of aborted fetuses (Fricker, 1999). These cells may be both raised in neurosphere culture (Svendsen, 1997, Fricker, 1999, Vescovi, 1999), and immortalized (Flax 1998), permitting the in vitro expansion of neural precursor cell populations. Nonetheless, the relatively small number of cells in the small tissue samples of first trimester brain, coupled with the lack of specific selection of neural stem or progenitor cells, has limited the number of native progenitor cells that may be harvested through this approach. As a result, prolonged expansion under conditions of unremitting mitotic stimulation, often leading to karyotypic abnormalities and perturbed growth control, or frank immortalization with transforming oncogenes (Flax, 1998), have been required for expansion of these cells to numbers necessary for engraftment. As described above, a promoter-based GFP selection was used to achieve the specific selection, acquisition, and purification of multipotential progenitors in high-yield. These cells divide, apparently in a self-renewing fashion, and give rise to both neurons and glia under the culture conditions, fulfilling the basic criteria for neural stem cells. By combining promoter-based selection with a particularly abundant source of neural progenitor cells, that of the second trimester VZ, the need for extended expansion or immortalization was obviated.
[0088]Thus, the prospective identification and phenotype-specific purification of multipotential neural progenitor cells from the fetal human forebrain, using a promoter-driven GFP-based separation strategy is reported. By transfecting dissociates of the human VZ with plasmid vectors encoding hGFP, placed under the regulatory control of the nestin enhancer, a distinct progenitor cell type was selected. These cells were both mitotically competent and multipotential, though biased to neuronal development under the test conditions. By subjecting these cells to FACS, they were enriched in high yield and relative purity. Virtually all of the E/nestin:EGFP-sorted cells expressed either early neural or neuronal phenotypic markers at the time of their separation, and still incorporated BrdU in vitro. When xenografted to the fetal rat forebrain, most of the cells integrated as neurons in the resultant chimeric brains. In vitro, they retained multipotentiality under the culture conditions, with single cells generating neurons, astrocytes, and less frequently, oligodendrocytes. These cells could be propagated in serum-free media with FGF2, from which mitotic cells giving rise to neurons could be recovered after as long as 10 weeks in vitro. Thus, mitotic neural progenitor cells may be specifically identified, isolated, and enriched as such from the ventricular zone of the second trimester fetal human forebrain. These cells may be propagated as such after their virtual purification, and are competent to generate neurons in vivo as well as in vitro, as long as several months after the initial harvest of their parental founders.
[0089]Although preferred embodiments have been depicted and described in detail herein, it will be apparent to those skilled in the relevant art that various modifications, additions, substitutions and the like can be made without departing from the spirit of the invention and these are therefore considered to be within the cope of the invention as defined in the claims which follow.
LIST OF REFERENCES CITED
[0090]The following is a list of references cited in this application. All of these citations are hereby incorporated by reference. [0091]Barami, K., et al., J Neurobiol 28:82-101 (1995). [0092]Brustle, O., et al., Nature Biotech 16:1040-1044 (1998). [0093]Eriksson et al., Nature Med 4:1313-1317 (1998). [0094]Flax, J., et al., Nature Biotech 16:1033-1039 (1998). [0095]Frederiksen, K., et al., J Neurosci 8: 1144-51 (1988). [0096]Fricker, R., et al., J Neurosci 19:5990-6005 (1999). [0097]Gage, F., et al., Ann Rev Neurosci 18:159-192 (1995a). [0098]Gage, F., et al., Proc Natl Acad Sci USA 92:11879-11883 (1995b). [0099]Goldman and Luskin, Trends in Neurosci. 21(3): 107-14 (1998). [0100]Goldman, J. Neurobiol. 36: 267-86 (1998). [0101]Goldman, et al., J. Neurobiol. 30(4): 505-20 (1996). [0102]Goldman, S., J. Neurosci 10:2931-2939 (1990). [0103]Goldman, S., The Neuroscientist 1:338-350 (1995). [0104]Goldman, S., In: Isolation, characterization and utilization of CNS stem cells. F. Gage, Y. Christen, eds., Foundation IPSEN Symposia. Springer-Verland, Berlin, p. 43-65 (1997). [0105]Goldman, S., and Nedergaard, M., Dev Brain Res 68:217-223 (1992). [0106]Goldman, S., and Nottebohm, F., Proc Natl Acad Sci USA 80:2390-2394 (1983). [0107]Gritti, A., et al., J Neurosci 16:1091-1100 (1996). [0108]Heim, R., and Tsien, R., Current biology 6:178-183 (1996). [0109]Hoshimaru, M., et al., Proc. Natl. Acad. Sci. 93:1518-1523 (1996). [0110]Kilpatrick, T., and Bartlett, P., J Neurosci 15:3563-3661 (1995). [0111]Kirschenbaum, B., et al., Cerebral Cortex 4:576-589 (1994). [0112]Kirschenbaum, B., and Goldman, S., Soc Neurosci Abstr 317.8 (1995b). [0113]Kirschenbaum, B., and Goldman, S., Proc Natl Acad Sci USA 92:210-214 (1995a). [0114]Korr, H., Adv Anat Embryol Cell Biol 61:1-72 (1980). [0115]Kuhn, et al., J. Neurosci. 17(15):5820-29 (1997). [0116]Lois, C., and Alvarez-Buylla, A., Proc Natl Acad Sci USA 90:2074-2077 (1993). [0117]Lothian C., et al., Eur J Neurosci 9:452-462 (1997). [0118]Luskin, et al., Molec. & Cell. Neurosci. 8:351-66 (1997). [0119]Marusich, M., et al., J Neurobiol 25:143-155 (1994). [0120]Menezes, et al., J. Neurosci. 14(9):5399-416 (1994). [0121]Morshead, C., et al., Neuron 13:1071-1082 (1994). [0122]Palmer, T., et al., Mol Cell Neurosci 6:474-486 (1995). [0123]Pincus, et al., Neurosurgery 42:858-68 (1998a). [0124]Pincus, et al., Ann Neurol. 43:576-85 (1998b). [0125]Reynolds, B., and Weiss, S., Science 255:1707-1710 (1992). [0126]Richards, L., et al., Proc Natl Acad Sci USA 89:8591-8595 (1992). [0127]Rossant, J., et al., Genes Dev 5:1333-44 (1991). [0128]Roy, N., et al., J Neurosci 19:9986-9995 (1999). [0129]Roy, N., et al., J Neurosci Research 59:321-331 (2000a). [0130]Roy, N., et al., Nature Medicine 6:271-277 (2000b). [0131]Sakakibara, S., et al., Developmental Biology 176:230-242 (1996). [0132]Sakakibara, S., et al., J Neurosci 17:8300-8312 (1997). [0133]Sakurada et al., Development 126:4017-4026 (1999). [0134]Sambrook et al., Molecular Cloning: A Laboratory Manual, 2d Edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1989). [0135]Sturrock, R., Adv Cell Neurobiol, vol. 3, Academic Press, New York, p. 1-33 (1982). [0136]Svendsen, C., et al., Exp Neurol 148:135-146 (1997). [0137]Vescovi, A., et al., Neuron 11:951-966 (1993). [0138]Vescovi, A., et al., Exp Neurol 156:71-83 (1999). [0139]Wang, et al., Ann. Neurol. 44:438 (1998). [0140]Wang, S., et al., Nature Biotechnology 16:196-201 (1998). [0141]Weiss, et al., Trends Neurosci. 19:387-393 (1996). [0142]Zimmerman, et al., Neuron 12:11-24 (1994).
Sequence CWU
1
2152216DNAHomo sapiens 1gatccgcccg cctcagcctc ccaaagtgct gggattacag
gcatgagtca cggctcccag 60tagtttattt tttgagacag agtctcactg tgttgcccag
gctggagagc agtggcagat 120cttggctcac tgcaacctcc gcctcccagg ttcaagcaat
tctcctgtct cagcatcccg 180agtagctggg attacaggca cccgccacca tgcccggcca
agttttgtat ttttagtaga 240gatgaggttt cactatgttg gccaggctgg tctcaaactc
ctgacctcag gtgatgcacc 300cacctcagcc tcccaaagtg ctgggattac aggcaggaac
caccgcacct ggcttctttt 360ctttttaatt aagctttatt ggccaggcat ggtggctcat
gcctgtaatc ctagcacttt 420gggaggccaa ggcaggagga ttgcttgagc ccgggaggtc
aagatcagcc tgggcaacat 480agtgagaccc acgtctctac aaaaaataca aaagttagcc
aggcatggtg gtgcacacct 540gtagtctcag ctactcggaa ggtggaggca ggaggatcac
aggagctcag gaggtcaatg 600ctgaataagc catgattgcg tcactgcact ccagcctgga
caacagagtg agaccctgtc 660tttttttttt tttttttttt ttgagacgga gtctcgctct
gttgccgagg cttgagtgca 720gtggcgcgat ctcggctcac tgcaagctcc gccttccggg
ttcacaccat tctcctgcct 780cagcctcccg agtagctggg actacaggcg cccgccacca
cgcctgacta attttgtttt 840tgtattttta gtagagatgg ggtttcaccg tgttagccag
gatggtctcc atctcctgac 900cttgggatcc gcccacctca gtctcccaaa gtactgggat
tacaggcgtg agccaccatg 960cccagccgag accctgtctt aataaacaaa caagcaaaca
aaaactttat tttttggagc 1020agttttaggt tcacagcaat attaagcaga aggtacagag
atttcctata tatctctctc 1080ctctccagac acaggcacag cttcccccat tatcaacgta
ccctacatga gtggtgtttt 1140gtttgtttgt ttgtttttga ggcagagttc tgctcctgtt
gcccaggctg gagtgcagtg 1200gcgtgatctc ggctcaccgc aacctccgac tcccgggttt
aagcgcttct cctgcctcag 1260cctcacaagt agctgggact acaggcacgt gccaccacac
tcagctaatt tttatatttt 1320ttcttttttt gttttttgag acagagtttc gctcttgtct
cccaggctag agtgcaacgg 1380tgcgatctca gctccctgaa acctctgcct cccaggttca
agcaattctc ctgcctcagc 1440ctcccgagta gctgggatta caggcacttg aacttctgac
ctcaggtgat ccacctgcct 1500cgacctccta aagtgctggg attatacgca tgagccaccg
cgcccagcct gtatttttag 1560tagagacaga gtttcaccat tttggccagg atggtctcta
tcttctgacc tcatgatccg 1620ccctccttgg cctctcagag tgttgggatt acaggcgtga
gccaccgcac ccagcttgta 1680tttttagtag agacggggtt tcaccatttt ggccaggatg
gtctctatct tctgatgtca 1740tgatgcgccc gcctcggcct ctcaaaatgt tgggattaca
ggcgtgagcc accgcgccca 1800gctatggctc actcttgatg ctgcacattc tgtgggtttg
gacagatgta taatgatatg 1860taccaactaa ctttttggag tctttccaaa gcattcaact
gcattcatag aaacatccgt 1920cttcttttcc gactcatatt ttatcagttt gtcctatata
attataagat ttaattacaa 1980gagtaactga tggccgggcg cagcggctca tgcctgtaat
cccagcgctt tgggaggccg 2040aggcaggcag attacttgaa gtcaggagtt cgagaccagc
ctggccaaca tggtgaaaca 2100ttgtctctac taaaaataca aaaattagcc aggcatggtg
gtatgtgccc gtaatcccag 2160ctactccgga ggctgaggca caagaatcgc ttgaagctgg
gaggtgaagg ttgcagtgag 2220ccgagattat gccactgtac tccacccttg gcaacggagt
gagactccgt ctcaaaaaaa 2280ggagtaactg atgggagaac caacccccct gactcttgat
aaccacatgg tcacatcttc 2340actcaacagg agttagtggc ttgtcacact agaaatgaac
ccaccagctg ctgtgggcct 2400cacattgttc tagattttat agcaggcaaa gcgagcattt
gttaagctag tgagccaatt 2460ccagggattt tttttttttt ttttttggta gagacggggt
cttgccaagt tgcccaggct 2520gcttctgaac tcttggcctc aagcaatcct cctaccttgg
cctctcaagt cgctgggatt 2580acaggaatga gccaccacgt ctggcctccc atgaattttt
aatccagtga gttggtttat 2640ccagaaagct ttccctatac aaccataaac aaaaagtata
acaaaaagtg atctcactgg 2700agtaattgaa gtgaccaggg ttgattctgt cctttttact
catttatatt ttccagcttt 2760ttgtaccttt aatgtagatg aaagttggga tgtgtgtgtg
tgtgtgtgtt ttgaagactt 2820aattaagact atagggtcat atatgcctag ggctgaatga
actatactag acttcaaatt 2880ccttgaatcg agcgtattgt aaaaggctgg acttgacata
acatgcctaa ttgggataat 2940gacagtggaa aaatcttggt attaggccat gtttctcaaa
gtgtgcccca ggactggcag 3000cagcaacatc gcctgggaac ttgctagaaa tgtaaattct
tgggagccgc cccagaactg 3060ctgcatcaga tactttggga tggggttcag aaatctgtgt
ttgaacaagc cctccaaagg 3120attctggtgt tccctcaaat taacagatgg ctcacctcac
aggtttacca ctcagaggct 3180gtgtgatctc agacaagtca ctgcacctct ctgaacctat
ttcttctctg ataagaataa 3240tagcagacct accttacaga atgattgtga aggttaaatt
aaataatatg tgtaggcaca 3300gtgcctgaca cacagaagac actcactaaa tgttaggaaa
gctaatatta tttttaggaa 3360ttcatgagtg gcagctctaa ttagggtgaa aaacatggga
gtagggtgtg gtagctcaca 3420cctgtaatcc cagcactttg ggagactgag gtgggagcat
cacttgagtc caggagttgg 3480agaccagtct ggggaatata gtgaaactcc tgtctccaca
aaaaatttta aattagctgc 3540atgtggtagt atgtgcctgt agttccagct actcaggagg
ctgagctggg aggatggctt 3600gagctcagga gattgaagcc gtagtgagcc gtgattgtgc
cactgtactc cagcttgggc 3660aactgagtga gactttgtct caaaggaaaa aaaaaaggaa
gaaagaaaaa catttgggag 3720aaaagaggaa aagatgttat ggagtttaaa atatttctgg
tggggaacag tggctcatgc 3780ctgtaatcac agcactctgg gaggcctgag gcaggaggat
tgcttgagtc caggagttca 3840agaccagcct gggcaacata gtaggacccc atctctataa
aaataaataa gtacctataa 3900tcccagtact ttgggaggct gaggtgggcg aatcacttga
ggtcaggagt tcaagtccag 3960cctggccaac attgtgaaac cccgtctcta ctaaaaatat
aaaaattacc cgggtgtggt 4020ggtgggcacc tgtaatccca gctactcggg aggctgagac
aggagaatca cttgaaccca 4080ggaggtggag tctgcagtga gcagagatcg caccactgca
ctccagcctg ggcaacagaa 4140tgagactcag tctctaaata aataaattac aaactatttc
tgactaggca ctttgacctt 4200attatgtacc ttcaccctcc gaataaacat gttaaagtag
aagcaggtat cattatattc 4260cctgcccatt tcacagatat ggagactgag ggttggtggg
gctgaatgat agctaagaag 4320tagcagagct gggacctaac catatccatg tgccccacct
cactctcagc ctcaaacaga 4380tgcaggcaga ttgcccactc accagagcct ccccccttcc
ccaaaccatc tgcccctctg 4440attgttttct tggggctcta gaagtcaggc ctttcagctc
atctttactg cacagggatt 4500tctccattgg ccggtttctg ctgcctgaga cccttgccca
gccccagcca acaccagcat 4560gattcacttt ctgttttttt gagatggagt ttccctctcg
ttgcccaggc tggagtgcag 4620tgacgtaatc tcggctcact gcaacctctg cctcccagat
tcaagcaatt ctcctacctc 4680agcctcccaa atagctggga ctacaggagt gcaccaccac
acctggctaa ttttggtact 4740tttagtagag acagggtttc gccatgttgt ccaggctggt
ctccaactcc tgacctcagg 4800tgatgcaccc tcctcggtct cccaaagtgc tgggattaca
ggtgtgagcc accgcgccca 4860gccatgattc acatttgaac ctgagaccag agctcataaa
tgcattaatt cattaatttc 4920tcaaacattc tacatgctat gggataggta cttggggtac
agagaggagc aaaatggaca 4980ttggccctac tgcaaagaac ctgaatattc acgtggagta
tttcccatca ctttctaggc 5040ctagccttga tttttgctga acccgggcca aggcagaggc
acaggtgcct ccacagagca 5100gaaccagaca aatattgtac actatagtca gtgcagggat
gggaacacaa cctggctctg 5160taagaggcca gaagaggccc ttgatcaatc tgcgggtgga
agggaatcca tgaagacttc 5220ctgcaggtgg tgacctctga ggctgattag gaggtgtttg
ccatagtgtt tcatcatttt 5280ctcattttat agatggcaaa atgagtccag agagaatgac
ttagcccatg tattcaatca 5340attgagcaaa catttcccta atatctacat tccccattat
tgagccctga gcctggggat 5400acagaggtga ataaggttaa caggcctgct agagggaatg
gtatagagag gcctcaagta 5460tccaggatac ctcaccaatc actgcccatt ggcctctgtt
tttttgtatg tattttattt 5520tattattatt attttgtaaa ttttgagaca tggtctcact
ccgttgtcca ggctggagtg 5580cagtggtgga aatataactc actgcagcct caattcccta
gcctcaagca atcctcccat 5640ctcagcctcc ccactagcaa ggactacagg catgtgccac
tgtgcccagt taattttttt 5700tttttttttg gtagagatag gatcttgcca tgttgcccag
gctggtcttg aactcctgag 5760atcaagagct cctcccacct cggcttccaa agtgctggga
ttacagacgt gagccaccac 5820acctggccta ttttatttta cctttttaaa agtcaggatt
ggccgggcac ggtggctcac 5880acctgtaatc ccagtactct gggaggccga ggcaggtgaa
tcacctgagg tcaggagatt 5940gagaccagcc tgcccaatat ggcaaaaccc catctctact
aaaaaataca aaaattagct 6000gggcatggtg gtgcacacct gtagtcccag ctactcagga
ggctgaggta ggagaattgc 6060ttgaacctgg gaggtggagg ttgtagtgag ctcagaccgt
gccactgtag tctagcctgg 6120gcaacagagc gagactcttt ctcaaaaata aatacataaa
taaaattaaa aatgataaaa 6180gtcatggtta ttgcagtata catacagtaa aattctccct
ttttagtaca tatgtggcaa 6240atgcatagtc ctgtaatcat catcacaatc aagacacaaa
gacacaggtc atcatttgaa 6300tctttttttt tttttttgag tcggaacctt gcccttttac
cgaggctgga gtgcagtggc 6360gtgatcttgg ctcactgcaa cctctgcttc ccaggttcaa
gcaattatcc tgcctcagcc 6420tccggagtag cagggaccac aggcacgcac caccacgctc
agctaatttt tgtattttta 6480gtggagacag ggtttcacca tgttggacag actggtcttg
aactcctgac ctcaggtgat 6540ccacccacct cagcctccca aagtgctggg attataggtg
taagccaccg cgcccggccc 6600atcatttgaa tcttatgttc atcccacttc ctgagtccaa
gccttcccct taattcactg 6660tgttatcttg ggcaactctt gccctctttg aacctcagtt
tcttcatctt taaaatggga 6720accataaaac cacccttaca ggattgctgt gaggatggtt
gcctggcaca cagtaagcgc 6780tcaattaaca ccagctttta ttcacactcc ttcccttttc
tagccctttc aaactccccc 6840tctccctctg gtctctctcc ttctgggtct gtctctccct
ctcacagaca cacacacaaa 6900cacactccct ctgggacaca cacacacact ctgggacaca
cacagggaca cacacacaca 6960cacactccct ctgggggaca gacacacaca cacacacaca
cacacatttt gaagcctctt 7020gtttcccaga gaggttttat ttataggctg tgcctcattg
tgaatgtgaa aaggagaaag 7080cccaggccct ccgtagacct ttcatgtgta aatcagcccg
ggcctggagc acggggtcac 7140caggaggagg atttcactct taattactcc tagagaaagc
gggcgggaag gaggcctctc 7200tgggagccca gggcctcgcc tggcgccggg cccctcgctc
cccaggctgg ggagcgctgg 7260ctctccaggg ccgggatcag gctagagctg gggccaacac
ttcctgggtc tggccttgat 7320ttctgctgaa cctgagccaa ggcagaggcg caggtgcctc
cagggagcag ggccccaagt 7380aggtttcttt gagggcaagt tgtttggaca cagaaagagg
gcacacagct tgacagggtt 7440ggagatagca agggtgatct gctgaagtgc caggcagggg
taattaaaca aaatttttaa 7500ggttttaaaa ttcatttctg atgtaaaaat cacacactct
attatagaaa aatgtttgaa 7560aagattccta tccaggccgt taacattgtt tatttcgagg
ggtaagtttg tttgtttatt 7620tatttttgag acggagtctc actctgtcat ccaggctgga
gtgcagtggg gcaatttcag 7680cttcctgcaa cctctgcctc ccgggttcaa gtgattctcg
tgtcctcagc ctcccgagta 7740ggtgggataa caggtgcgcg ccaccatgcc tggctaattt
ttgtattttt agtagagagg 7800gggtttcacc ctgttggcca ggctggtctc acctcaggtg
ttccgcccac ctcggcctcc 7860caagtgctgg gattacaggt gtgagctact gtgcctggcc
agcgggtaaa tttagaggta 7920aagaaaggga cattattaac atttttatac attttttatt
tttaaactta ttacaatgac 7980tatgtattgc tttttaatta aaaagcacaa cgttattttt
catagtatcc atggtactgt 8040tttctgatta cagaaaagaa attaatattt gatataagac
attgagaaaa taaagtataa 8100aaactatctg tggctccatg aaagaatatc attttttttc
ttccttgatt ctgcattaaa 8160ggaaatcaaa gaaaaacact tttaatattt aagtatatgg
ccatagatga tttatttctt 8220ggctaagtag ttcattttta ttttatgttc attttgcata
cttatactgc acaaacactt 8280tgggtacaac ttaacacact gaggttttct ttttttttct
tttattcttt ttatttattt 8340atttattttg agtcggggtg cagtggtgtg accttggctc
actgcctcct ctgcctcctg 8400ggttcaagcg attctcctgc ctcaacctcc tgagtagctg
ggattacaag cacgcgccac 8460cacacctggc taatttttgt atttttagta gagaccgggt
ttcaccatgt tggccacgct 8520ggtctcgaac tcctgacctg gtgatccacc cgccttagcc
tcccaaagtg ctgctgggat 8580cacaggcgtg agccatggca tctggcctca cactgaggtt
tttttcttcc attcatcttt 8640tctcttcttg tgctttatat acagtcgtca ttcagtgtcc
ctgggggatt agttctggca 8700cctccctcag ataccaaaat ccacagatgt tcaagtccct
gatataaaat ggcatagtat 8760ttgcatatta tctatgcata ccctcctgta tactctaagt
catttctaga ttacttatga 8820tccctaatac aatgtcaatg cccggtaaat cattgttata
ctgtgttttt tagggaataa 8880tgataaggaa aaaagtctgt ctatgttcaa tacagatgca
gggttttttc ccaaatattt 8940tccatcaagg ttggtggagt ccagggatgt ggaatgaata
aatacagagg accacctata 9000tatatgtatg ttactggatg gcattatttt gaaatatgaa
atacacaagc ccttggggtc 9060cagcaattcc acatctaaaa ttctattcat gtgagtagga
gtaggtaaat agtagaaaca 9120aatttgttca ttttgaaggt gtttataaaa gcaaaggcta
gcaacaaact tgatggtcat 9180cagtaggaaa ttaagtaagt aaatcatcat gtaactttac
agtgaaatgt tttgtagtca 9240ttataagagt atatcggctg ggcgtggtgg ctcaggcctg
taatcccagc actttgggaa 9300gccgaggcgg gtggatcacg aggtcaggag ttcaggatca
gcctagccaa tatggtgaaa 9360ccctgcctct actaaaaata caaaaattag ccaggcgtgg
tggtgcgcac ctgtaatccc 9420agctactagg gaggctgagg caggagaatc actcgaaccc
gggaggcaga ggttgcagtg 9480agccaagatc gtgccactgc actccagcct gggcgacaga
gcaaggctcc atctcaaaaa 9540aaaaaaaaaa aaagaaagaa agaaaaagaa aaaaagagta
tatcaggcca ggtgcagcga 9600ctcacgcctg taatcccagc catttgggag gctgaggcgg
gtgtatcact tgaggccagg 9660agttggagac cagcctggcc aacatagtga aaccctgtct
ctactaaaaa tacaaaaatt 9720agccgggcat ggtggccctc acccataatc ccagttactc
gggaggctga ggcatgagaa 9780ttgcttgaat ctgggaggca gaggttgcag tgagccaaga
tcacgtcact gcattccagc 9840ctgggtgaca gtgagactcc gtctcaaaaa aaaaaaaaaa
agagtatatc atacatgcaa 9900agatatccaa aaatctgtac tatagtaaat aactaagcaa
gttccaaaat catttggatt 9960gtgtgattct atatctattt ttgttttgtt ttgtttgaga
cggtctcact ctgttgccca 10020gactagagtg caatggcgtg attatacctc actgcagcct
cgacctcttg ggctcaagtg 10080atcctcccat ctcagcctcc caagtagcct atatctattt
tttaaaatat aataatcata 10140tctaagtata taggcatgga acatttttgg aaggatatac
atgaaattgg taacagttac 10200atttagggaa ggagtctaag gggtaaagaa cttttacttt
ttcatcttat acctttgtgt 10260actgacgcat ttttttcttt taatgtgagc acatgttaca
tttgtaattt ttaaaaacta 10320gctaatagaa atgtggttta gggctggatg cagtggctca
tgcctgtaat ccctacacat 10380tgggaggctg aggtgggtgg atcacctaag gtcaggagtt
caggacaagc ctggccaaca 10440tggtgaaact ctatctctac taaaaataca aaaattagcc
gggggtggtg gcaggcgcct 10500gtcatcccag ctgcttggga ggctgaggca ggagaattgt
ttgaacccgg aaggcagagg 10560ttgcagtgag cagagatcat gccactgcat atcagcctgg
gtgacagagc aagactctgt 10620ctcaaaaaca aaacaaaaca aaagaaatgt ggttttgcta
tatataattc taatatatat 10680ttattaaaga aaatacaggc cgggcacgga ggctcacacc
tgtaatccaa catggtgaaa 10740ccctgtctct actaaaaata taaaaattag ctgggcatgg
tgaggcgcac ctgtagtccc 10800agctactcag gaggctgagg caggagaatc gcttgaactt
tggaggcgga ggttgcagtg 10860agcagagatc tcgccactgc actccagttt ggcaacagag
caagactcca tctcaaaaaa 10920aaaccaaaaa aacaaaaaat gtccattaaa taaacacagt
ttcttaaaga aatagtgttg 10980attaaataaa atataatccc ccatattatt caaggcaacc
atattaacat tttaatttat 11040ttccttctag ttttctctat atatatattt atacattttt
aatattttac aaattttttt 11100ttgagacaga gttttgccct gttgcccagg ctggagtgca
gtggtgcagt cttagctcac 11160tgcaacctct gcctcctggg ttcaagtgat tctcttacct
cagcctctgg agcagctggg 11220actacaggca cacgccacca tgcccaacta agttttgtgt
ttttagtaga gacggagttt 11280cactatattg ggtaggctgg tcttgaactc ctgatctcat
gatccaccca ccttggcctc 11340tcaaagtgct gggattacgg gcgtcagcca ccgcaccagg
accttttttt tttttttttt 11400ttttttttga gacaaagtct tgctctgtca cccaggctgg
agtgcagtgg catgatcttg 11460gctcaccaca acctcttcct cccgggttca agcaattctc
ttgcctcagc ctcccaagta 11520gctgggacta taggcacaca ccaccatgcc cagctaattt
ttatattttt agtagagaca 11580ggggtttcac catgttagcc aggatggtct cgatctcctg
acctcgtgat ccacccgcct 11640cggcctccca aagtgctggg attacaggca tgagacaccg
tgcccggcga caccctacaa 11700ttctttaaac tcccaacaac tcaaaggaac agatattatt
attactccca tttgcagatg 11760ggtaagtaga ggcacagaaa gatgagagga tttgcccaaa
gacttggctg gtatttggca 11820gaaccaggat tcaaacccaa caggcaagag cagagttgta
cacttgacct agctattctg 11880ctattctgcc taatgaggtt cttttttctt ttcttttctt
ttttttaaat ttttttttat 11940tttttgagac agagtctcac tctgttgccc aggctggaat
gcagtggtgc gatctcggct 12000cactgcaacc tccagctcct gagttcaagc aattctcctg
cctcagcctc ttgagtagct 12060gggattacag gtgtgcacca ccacacccgg ctaatttttg
tatttttagt agagatgggg 12120tttcaccatg ttggccaggc tggtctcaaa ctcctgacct
caagtgatct gcctgccttg 12180gcctcccaaa gtgctgggat taccaggcgt gagccaccgc
gcccggccct aatggggttc 12240tgacaaaatc caggaattca gtgcagggtg ggcggacctg
tgagtgtgtg agtgagggat 12300atgcgtactt gtggagccac agatatgcac atgtgtactc
acgtgttcac cgtgagtctg 12360acggcgtggg tgcatgcatg tgttaaccag tgctctgctg
acatcatggt gcccaagcac 12420gtagagatgt atgtgcccat ggattcccct gtccaggctc
ccacaggacc tatctccttg 12480gtttctccac cttccccttg gtacacagga ggcatgagtg
tccaggaggg gccagggttt 12540ggattccaaa gcccagctgc cacttcctta ttcccaccat
gtctcccaag agtagttagg 12600gtctggactc ttaaaacatc aagctgggtg ggaggcggtg
gctcacaccc ttaatcccag 12660cactttggga ggccgaggtg ggtggatcac ttaaggtcag
gagttcggga ccaacctggc 12720caacaaggca aaactccgtc tctactaaaa atacaaaaat
tagctgggca tggtggcaca 12780cgcctgtggt cccagctact tgggaggctg aggcaggaga
attgcttgaa ccccggaggc 12840ggaggttgca gtgagctgac atcatgccat tgcactctag
tatgggcaac agagccagat 12900tctgtctcaa acaaacaaaa aaacctcatc aagctggcca
ggcacaatgg cttacacttg 12960taatcccagc actttgagag gctgaggcag gaggatcact
taagcccaaa agtttgaggc 13020tgcagtgagc tatgatcaca ccactacact ctagccgggg
tgacagagca agaccttgtc 13080tctataaaaa ataacaaaat aaaacattag ctcttgcagg
gcgcggtggc tcacgcctgt 13140aatcccagca ctttgggagg ctgaggcagg cggatcacaa
ggtcaggatt tggagaccag 13200cattgccagc atggtgaaac cccgtctcta ctaaaattac
aaaaaattag ccgggcatgg 13260tggcacacct gtgatcccag ttactcagga ggctgaggca
ggagaattgc ttgaacccag 13320cagacagagg ttgcagtagg ccaagatcac gccattgcac
tccagtctgg gtgacagagc 13380gagattccat ctcaaaaaaa aaaaaaatca gctctttatg
aagtagagtt ggcatatggg 13440ccagggaagt cggagaacaa tgtggttttc cccaggaggc
agcacccaca gcttttagcc 13500ctatctggcc tccactgtgg gtggctgata tctactacca
cagtggaggc catatggtcc 13560tggttaagag taagctgtaa agtgaaactg ttgggttcaa
atcccagctt tgccacttag 13620ctgtgtgatt tcagcaactt actctcggat cctctacttc
catccctgtg aagtgggagt 13680attataatag caacaacttt gaagggtttg gtattttaaa
tttattttta ttttttattt 13740tatttatttt tttaatagag acagggtctc cctatgttgc
ctaggctggt ctcgagcccc 13800tgggctcaag tgatcctgcc acctcggcct cccaaagtat
tgggattaca ggtgtgagcc 13860acagtggctg gccccctgaa ggatttgtcg taaggctgaa
ataatgctga gctcaaactc 13920agtgttcaat aaatgttagt tttattacta ttttgaaccc
atactagaca agtaaagggc 13980agagaaatgt gcttttccag aagacagtgc ctttgtcata
cgggtaaatt atccaacctt 14040gtgaaacagg tattattttc ttttcttttt tttgagacag
agtttcactc ttgtcgccca 14100ggctggagtg caatggcatg atcttgcctc actgcaacct
acgcctccca ggttcaagcg 14160agtctcctgc ctcagcctcc caagtagctg ggattacagg
tgtgtgccac catgcccagt 14220taatttttgt atttttagta gagacggaga ttcaccatgt
tgtagacatg tttgtatgtt 14280tagtagagac ggagtttcac tggtctcgaa ctcctgacct
caggcaatcc acccacctca 14340gcctcccaaa gtgctgggat tacaggcata agccaccacg
cttggcccca ttttatttta 14400ttttttgttt tgttttaaag aaatagagat gggatctcgc
tatgttgccc aggctagtct 14460caaagtcctg ggctcaagtg atcctcctgc ctcagcctcc
caaagtgctg gaattacagg 14520tgtgcaccac tgcacccagt ctgtgcccat tttatggatg
aggagactga ggctcagcag 14580tatgcagtaa cttgtcccag gtcacagagc aagtaagtaa
caaaaccaga tttcacttgc 14640tggtctgcct ccaattccag ggctctttct gccacccaac
agctgccttg ttgtttggcc 14700tagaagcttc atcctgtaag ctctgatttg cgcagattat
ctgccaccta catgtctttc 14760tctcatgttg cctactcaca agagaatatg tagggatttg
caggtggtca gattttatgg 14820gaaaaaaaat agacatttcc acacagaaaa gaaactccag
ggagacagtt gagacagtta 14880ggcagggagt tcttggagga aaatgggagg ttcaaaaggc
aattaatgct actgtctgaa 14940actgtaaaca gatagttact ggctctgaca ccaccagcac
acagacaaaa ggcagacaga 15000aacagcgcac cacaaggaag ctgggcatag actacgccca
gggtggaaat taaatgtttt 15060cctgaaagca gaaaggaaaa ccatagttaa agccaatcca
tgactctaag tctatgactc 15120catgacagca taagtccagt gagtaaaggc ccttcatttg
cacctaggcg ttgttatgaa 15180tcttaaggcc ttactccaca ttctctcttg acctaagttt
gtaaaacaaa agtaataatt 15240agaagtgact cttcagcata tactgttatt ttaatcaaag
atagatatac acacacacta 15300tatatgtgtg tgtatatatg tatatagagg atctatagta
tatatcctct atatacatat 15360atattataaa tatatatgta tatatattta tctatatata
cgtatatgtg tatatatgta 15420tatatgtata tagagtatat atatttatac tctatataca
catatacata tatatacact 15480atatatatgt gtgtgtgtgt gtgtgtgtgt atatatatat
aacagacatg agccaccaca 15540cctggcccca ttttgtttta tttcttgttt tattttcaat
aaatagagat gggctctcac 15600tatgttgccc aagctggcct caaactcctg ggctcaagtg
atcctcctcc ctcagcctcc 15660caaagtgctg aaattacagg tgtgcaccac catatatata
tatggagaga gagaaagatg 15720tgtggctggg cacagtggct cacatctgta ctttgggagg
ccgaggtggg aggatcgctt 15780gaggtcaggt gttgaagatc agcctgggca acatagcgag
accctgtctc tacaaaacaa 15840aacaaaacaa atatacatat attgtttgtt ttgtttcgta
gatacggagt ctcactatgt 15900cactcaggct ggagtgcggt ggcgtgatct tggctcactg
caacctccac cttccgggtt 15960caagcgattc tcttgcctca gcctcctgag tagctgggac
tacaggctca cgccaccgca 16020cctagctaat ttttgtattt ttagtagagt cagggtttca
ccatattggc caggctggtc 16080tcgaactact gacctcatga tccacccatc tcagcctccc
aaagtgctgg gattacagac 16140gtgagccacc gcgtctggcc catatatagc acacgcctgt
aatcctataa tcccagcact 16200ccgggaggct gaggcaggta gatcacctga ggtcaggtgt
tcgagaccag cctgaccaat 16260atggtgaaac cccatctcta ctagaaatac aaaaattagc
tgggcgtgat gctgtgccct 16320gtagtctcag ctactcagga ggctggacgg gagaattgct
tgaacccagg agatggaggt 16380ttcagtgagc tgagatcggc cactgaactg tggcctgggc
aacagagcaa gactccgtct 16440caaaaaaaaa aaaaaaatat atatatatat atatatatgt
acatatatat agacagagag 16500agagagagag agcacacaca ttggcacatt gttggcaagt
ttcctcagca ttcctagttg 16560taaatgacag aaaactcact gatgcaaaca aagcaaagaa
tcataataat tattattatt 16620tactgattta caactggatc aaggagttca aagattccaa
ttcatgtcct tgccatgtct 16680tgactctgct ttcttctgtg gtttcaatct cagacagaca
cgctcctccc cagggtgaca 16740agaaggctct caggagctcc acccatgctt tttcctgttg
gttaaaaaac agtgcctctc 16800tccagcaaaa atctcaagtc tcccactgat tggctcccat
tgggtcatat gcctgttctt 16860caaccaatcc tgtggccagg ctggatccca gggccaaccc
tggaggcaca ggtgggcaga 16920gtaagttcca tccaagatac aggaactgat attgggagag
ggagagttcc ccagggaaaa 16980ctggggggct gtttccagaa gacacatgtt caccatctgg
tagttgctgc ctctctgtta 17040accaaattta atgagaagct gtcatcagga gtaattttct
tgtattttta ctagagctgg 17100ggcttcacca tgttgcccag gctggtctcc aactcctaag
ctgaggcaac tgcccacctc 17160ggcttcctaa agtgctggga ttacaggcat ggccaccacg
cctggccatg tttatttctt 17220atcttcatct cacttcatca atgggcaaat tgacagagag
gttaaggaat tggcccaagt 17280ttatacagag agtaaggagt ggagccaggg catcctttcc
aaattctgtg ctttagtttc 17340tccaggaact acagttagag ctgatctatc tctcagaatt
gccagctccg tgccaatgag 17400gaagccctga gccttctaaa ggaccacctt gcaaggttaa
ccaatgtggg atggcagata 17460tcatccacac actcatgagg gtttatcctg gagcagtgcc
tggacactga gaggtgtgac 17520aacaaggcaa gtctgatcca aggaccattg tggactcagg
agctgagatt cctcggtagc 17580cctgcttccc tacccacagg agtggaggag aaagagtgca
acgcacagag aagtgccaag 17640attgagcccc taacctgccg ctaaccagct gttatgtgtc
ttgaataaac tcctttaaga 17700tctctgtggc caggcacggt ggctcacgcc tgtaatccca
gcactttggg aggccaaagt 17760gggcggatca cctgaggtca ggagtttgag accagcctgg
ccaacatggc aaaacctcgt 17820ctctactaga aatacaaaaa ttagccaggt gtggtggtgc
ttgcctgtaa tcccagctac 17880ttgggaggct gaggcaagag aatcgcttga acccaggagg
tggaggttgc agtgagccaa 17940gattgcgcca ttgcactcca gcctgggcaa caagagcgaa
actccatctc aaaaaaacaa 18000acaagatctt tgtttctaca tccataaaat gggcataata
acaccttcct cagaggttag 18060cgaggattct attaaatact gcaggcaaaa taatacctgc
ttggctgggt gcggtggctc 18120atgcctgtaa tcccagcact tcgggaggct gaggcaggag
gatcgcttga gctcaggagt 18180tcaagatcaa cctgggcaac atagaaagac ctcatctcta
caaaaaatat gaaaaattag 18240ctgggtgtgg tggcgtgcac ctgtagtccc aggtactcag
gaggccgaga tgggaggatc 18300tcttgagcca gggaagtcaa ggctgcattg agccgagatc
acgccagccc gggcaacaga 18360gcaagatcct gtctgtaata gtaacaataa caataataat
tcttgcttgt cacccagctg 18420gtctccatga ggttagttgt ctcctttcca tattatcccc
cttctccatc ccccagactt 18480agcaagagca aggcaagcgg agaaaggaaa gcatctttta
tcttctccta gccggcctgg 18540tggggtctcc tcccctcctc ctctgcccag catctgtaat
agcaccaaat gagcacggaa 18600cctcgcatca tgttcctggg tttgactccc agctcagccg
tcctcttcct aggcttgtga 18660ccttggataa gtccctgtca cccctctcag ctgaagaaca
tgctccctca tcgagtctga 18720tgaaaacgcc ctccataaac gtgcctggca catggtttgt
ttattctctg gatctgaaac 18780ggtgaaagag gcagagctga gtaggtcggg ctgccttggg
catggctttg gtcagcagag 18840gggccggctt cacgccactt cccatctcct gaataattca
tgacgaacaa aatgactggg 18900ccagacctgg gccctccctc ctcctgtcgt gaaggcagaa
aagtttctaa ttacagatca 18960gccggccagg ctccccgggg cccctgggcg ctgcacacag
ggggcattta tgggaagaga 19020ccatggaggg gaggggttcg gtcccagctc ctttccagaa
gaaactcaac tccttttgaa 19080attgtaacct tggcctgcta aggcccagga agggactggg
gaaagaaact tagaagagga 19140agagaaaacc ctgccgaggg gtcagagaga agcgcccaga
aaaaaatgtc aggtcaaaga 19200aggggctctg gggacgtcct ggcaagagga atacacaagc
tgtcagggga ggagatttgc 19260tcgagtcccg tggaaagcat gacaaagccg ggcttcaaaa
ggaagctgtc cttcgaaaat 19320acattgagaa agaataagat ctagcgttct accatacagt
agggagacta gagttaataa 19380tttgtcatag agttcaaaat tgcttggctg ggagcggtgg
ctcacgcctg taatcccaac 19440actttgggag gccgaggcag gcagatcacc tgaggtcagg
agttcgagac cagcctgtcc 19500aacatggcga aagaacccgt ctctactaaa aaaatacaaa
aattagctgg atgttgtagc 19560gggtgcctgt aatcccagct acttgggagg ctgaggcagg
agaatcacat gaacctggga 19620ggcggaggtt gccgtaagcc gagatcacgc cactgcactc
tggcctgggc cacagaatga 19680gattccgtct caaaaaaaaa aaaaaaaaaa aaaaaatttg
ctggaggaga ggaacggaga 19740tgtttcccaa catgaagaag gggtgaatat ttgggttgat
ggatgtccca gttatcctga 19800tttgatcatc acacattgca tgtatgtatc aaaataccac
atgtgccccc aaaatatgta 19860ccattattat gtataacttt tttttttttt gagatggagt
atcgctctgt cgcccagtcc 19920tgagtgcagt ggcgccatct cagctcactg caagctccgc
cccccgggtt cacgccattc 19980tcctgcctca gcctccccag tagctgggac tacaggcgcc
cgccatcacg cccggctgat 20040gttttgtatt tttagtagag acggggtttc accatgttag
ccaggatggt ctcaatctcc 20100tgacctcgtg atccgcctgc cttggcctcc caaagtgctg
ggattgcagg catgagccac 20160cgcgcccggc ccatgtgtca cttttttaaa aaaggaagat
ttcttgactc caacaccaca 20220gcctctcagt tacactacaa tttactcatt catctgtaaa
atggggagat gcccaataat 20280gctaccttac agcattattg aggagttaca caagtaaata
aatgtcaagt gcttagaata 20340ctgcctcaca cataaactaa aaatatatat tagtagttgt
agagtttttt tttttatatt 20400atgctccctc catagagtgg tcagtaaagg gtgaaggtga
caagaagaga agatttgggg 20460agattgttag agagaacaat gattgtgagg tagtttagta
tagtgattaa gatgaggacc 20520ccatacataa taccgtaata ataataataa aagaggtcag
ctgcggtggc tcatgaccgt 20580aatcccagca ctttgggagg ctgaggtggg cagatcgctt
gagttcagga gttcaagacc 20640agcctgggca acatggtgaa accctgtctc tactaaaact
acaaaaatta gccaggcatg 20700gtggagggtg cctgtagtcc cagctacttg ggaaagtgag
gcatgagaat tgcttgaacc 20760caggaggtga aagtttcagt gagccaagat gggcaacaga
gcgtgactct gtccaaaaaa 20820aataaataaa taaaataaaa aagaggccag gtgtggtgtg
gtggctcacg cctataatcc 20880agcactttgg gaagctgagg ggagtggatt gcttgagttc
aggagttcaa gaccagcctg 20940ggcaacatag tgagaccctg tctctacaaa aagtacaaaa
attagctggg cgtggtggtg 21000ggtacatgta gtcccaacta cttgggaggc tgaggtggga
ggatcacttg agcctgggag 21060gtggaggctg cagtgagcca agatcgtgct gctgctctcc
agtctgggcg acacagtgag 21120accctgtttc aaaaaaattt aaaaagtaag gactccagca
ctagtttgcc tgggttcaaa 21180tcccagctct gcctcttact agttgtgtga tcttggacag
gtttgctgta ggtctccgag 21240ctcctattca ctgtctgtaa taaacggtag ccactgcagt
tagtggagag tggtgaacaa 21300aatgaccaag gtccctgtcc tcatggagct tacagtctag
caggaaggtt atactaatca 21360agagcgttta ttgcatgcca actgtgtgca ggtcctgtgc
acttggcaga cattctctta 21420acgaaatttc acagaatcca cccctgtctt acagatgaag
agggtgaaac tcaaagaggt 21480cacaagcaga gagaggattt agaactgaaa ggtcactcca
cagtatggat gaatcaccac 21540attagcatgg tgagcgaaaa aagccagatg caaacgagta
cacattgtat gatttcattt 21600atatgaaact ctagaaaatg caaactaact tatagtgaca
gaaagcagat caggggttgc 21660gtgggacagg gtgggcgggg cattcactgc aaagagcctg
aggaacctat ttgagaagat 21720ggaaatgttt tacatctgac attgatacta gttacatggg
tgtatgcatt tgtcaatgtt 21780catcgaactg gacacttaaa atgggtgtat tttcctgcat
gtaaattata cctcaatgaa 21840gctgatcttt tcaagggggt ggggaaggta taccagactc
cagagctctg caacccttcc 21900tatattattt gagtgtctga tttcaagctc atttgtgggc
agagactgta atagattcat 21960ctttaggtcc tcccctcact tcccagcctg agggcctagc
aaaattcttt tttttgtttt 22020ttttttttga gatggactct gactatgttg cccaggttgg
agtgtggcag cacaatgttg 22080gctcactgca acctctgcct cccgggttca agagattctc
ttgcctcagc ctcccaagta 22140gctgggatta caggcgactg ccaccacatc tggctaattt
ttgtattttt agtaaagacg 22200gggtttcacc atgttggcca ggctggtctt gaactcctga
cctcaggtga tctgcccgcc 22260ttggcctccc aaagtgttgg gatgacaggc gtgagccatc
gcgcccaacc aaaattctta 22320aacccaatag ttcagattag caaatatacc ctgggcacct
tctctgtgct gggtgctgcg 22380gtcacagacc aatcagtcta gtggggaaca cagacggaaa
aggccaaata gacacagtac 22440agtgggtaaa tgtgctgatg gagtaaacag ttcattactg
ggccacagca atgaatcctg 22500catagagtct ggaacttggg atgtgaagat ctcaaactgc
aattcatcac ctgcattcaa 22560atctccactc taccgcttgc tgtatgactt tgggtgacca
ttttagcatg ccaaacctca 22620gtttccacct ctggaaaatg gagatcatag tagctccaat
ctagaggggt gttatgagaa 22680ttaaaggaga cagcaataaa atgtttagca tggcaggcat
agtaagtact tcataattgt 22740tagtcatttt tatcatgaat gaagagcagg gaggtgggga
gaggcacacg gggtgtgtgt 22800atgtgtagtg gggtttcact acccaacctg aggtgagaga
ggactgagag gtgctttccc 22860agagaggtga tgcttggagg aggaattggc tagtttaagt
ggccatgggg gcaggaggga 22920gtgggaacag cttggaacaa acgctcaata aatatttgct
caataaataa aaaaacagag 22980actgtgcaaa acctgcctgt aaccaagggg acagagaggg
cccgccagag gagactgggg 23040ggtcctcagg aggcgggggc tgggtggctg gcccccacag
gcaggctcca gaccttccta 23100gcctggtccg accccaccct gtgccctgcc cagttcccct
gataggtttg gacagcccca 23160gacctgaggc ctggagccca cgggaggagg aacggtgggg
agggctggcg ggacgggggt 23220gctcacaggc cttctccctc taatgagaaa cggccaagtc
cccgcaaggc gcctcccgcg 23280cccccgttgt ccgagccaca aaggaccagg atcaatggaa
ggcgggagcg accgaggggc 23340ctcctctttg tgcggctgtc tcaggcctgt ttgcgccgcc
gtctccgcgc ccccattgat 23400caggcatgtg gaaagattcc gcctcccggg ctccctttgt
ggccgcgttg ccaggctgcg 23460cccggagtga ctgcaccgcg cagggtgtac ccgcctgcgg
tgggcaccgg gctgcgagac 23520ggggtgggat cccaggaggg cagggtggcc agatttagca
aataaaaata caggacttcc 23580agttaaatgt gaatttctga taaataacaa aagcagacaa
aaaacaaagt ataagtatgt 23640cccaaatatt gcatgggaca tacttacact caaaaagtat
tggttgatta tctgaaattt 23700caacttaact aggcgtcctg tattttgtct ggcacccttt
gaaggggaag ctgaatacat 23760ctgcattgcc tagcacttat attaccccca acttcagtgg
ttgaagtttt gtttgtttgc 23820ttgctttttg ttttttattt ttattttttg gccatatctg
cacaccccga actgctattt 23880agatagaatt tttctttaaa taaatttatt ttttaaaaat
cttaacctgg ccgagctccg 23940tggctcaagc ctgtaatccc agcactttgg gaggctgagg
gggggaggat cacttgaagc 24000caggagttca agatcagctt gagcaacaaa gtgagatccc
atctctacaa aacaaaacaa 24060aaaactccct taacctatta accgtgattt attgatgcat
agtgcaaata cattaacttg 24120aacaaatatg aaatgtacct gttgatgcat ttttgcctac
aagaacactc atgtgaccgc 24180acccacatca agatatagaa tattcccggc cagcagtggt
ggctgacgcc tgtaatctca 24240gcactttggg aggccgaggt gggcgaatca cttgaagtca
ggagttcgag accagcctgg 24300ccaacaaggt gaaatcccct ctctactaaa aatacaaaaa
ttagccaggg gtggtggtgc 24360acgcctgtaa ttccagctac tcaggaggct gaggcaggag
aattacttga acccgagaag 24420cggaggttgc agtgaaccga agtggtgcca ctgcactctg
gcctgggcga cagagcgaga 24480ctccatctca aaaaaaaaaa aaaaaagata tagaatattc
ccatcacccc agaaggttcc 24540ctggcgtccc tgagcagttg agcagtatcc acctccccat
tggcagccat agatttgctt 24600tagctattct tgaacttcgt atcagtggaa tcgtatagta
taatgtgtac actcaagtct 24660agcttctttc gctcagtatt atgtttgtga ggatgggcat
ggtggctcac gcctgtaatc 24720ccagcacttt gagaggccca ggtgggtgga tcagtatcac
ctgaggtcag gagttcgaga 24780ccagctggcc aacacagcga aaccccatct ctacaaaaat
gcaaaaatta gctgggcatg 24840gtggcaggtg actgtaatcc cagctacttg ggaggctgag
ataggagaat cacttgaatc 24900cgggaggcgg aggttgcagt gagccaaaat tgcaccactg
cactccagcc tgggctacag 24960agtgagattt catttcaaaa aaacaaaaaa caaaacaaac
aaacaaaaaa agtctgtgac 25020atttgtcccc attgtagatt gaccagttgt ttgttccctt
tcgctgctgg ctgagtattc 25080cattatatgg ctgttccacg gtttgttcct ctattttctt
gttgatgggt gtcttgattg 25140tttccagttt ttgctattat gaataaagcc gctatgacca
tacttgcact ggtcactgta 25200tgaacttaaa tatatttaac ctaagcaata ctatttgtga
actcacaggc ttaaaatgct 25260actttaattt tttttctcct gcacattaaa tatataacga
tgacacatgt ttctgggaac 25320atctttgtat tgaccaagct cactgtgaat ggtcacatat
caaactgcag aatagacgtt 25380aagagaacag actggcttgg ggtaggtctc gagcaagtgc
gtcagtccct ctgggcctcg 25440gtttcttcat ctgtgcaatg gggggtgata atgttaatta
tctcacagag tggttgaaaa 25500ggcaaaatgg gccgggcacg gtggctcaca cctgtaatcc
cagcactttt ggaggctgag 25560gtgggtggat catgaggtca ggagttcaag actagcctgg
ccaagatgac aaaaccctgt 25620ctctgctcaa accacaaaaa ttagccaggc acggtggcag
gcaccttaat cccagctact 25680tgggaggctg aggcaggaga attgcttgaa cccgggcagc
agaggttgca gtgagccgag 25740atggtgccac tgcactccag cctgggcaag aaagtgagac
tgtctcaaaa aagaaagaaa 25800ggaaagaagg aggaaggaag aaaggaagga aggcaggcag
gcaggcgggc aggcaaggca 25860aaatggggta acaccttata aaagggccag ccatggtggc
acacaggaga gttgcttgag 25920cccaggagtt caagatcagc ctgggcaaca tagtgagacc
ccgtctcaaa aaaaaaaaaa 25980aaaaggatac agcatagggc tgacacatag tgggtgctct
acacagggag ctattatcca 26040gtgctggatg ggcagtagca attgaactgg ctatgttaga
tgcctgttct cattctattc 26100tcatttcaac cctttgaggt agctactgtt attatcaacc
tattttacag attaggaaac 26160tgaggctctg agaggcagtc acttgcccaa aatggtatag
ttagtaagcg gcaaaggcac 26220cacctagtgt gttttccaga gcccaagggg gcaggaggga
ccaatgaggc tctcatgcct 26280ggagatgaga atgggttata caggaggagg agctgggtac
cttctccttc ctgcctctgc 26340atccccaatt agcgcccagc ttgaaggcaa gcaggtttct
ctttggaggg tgggaggagc 26400tggcctggac atttctagga gacgccaagc cttccagcca
acgggcaggt gggaggacag 26460gcagggcaag tctgacgggg taaggagggg aacagaggaa
gccggaagct ggaggaaaag 26520cctggcctcc tgtagccaca gccgctgggc agagcccggc
ctcgctacct gccatctgaa 26580gggcacggga actgctgatc tcaggcgatt agcataacaa
tccccgatcc ggcgtcctcg 26640ggtcccaaag ctgggtctgc acaatcccat ttcaagccag
ctctttcttt agctggttaa 26700ttagggaggg cacagactac ttaaagggcc ctgtacacac
ggccttggct gcagctggga 26760gcaggagagg gcccgacaat accttcagtc ctggcaggtg
tgggtgctgc catagtgctt 26820cacggcaggc cacggcgaaa aggctgctct caccggggat
ttcaccgggc ctcctgttgc 26880caccctccaa agccccatta gtgcacatct aggatagata
tggcctgttc acagctcatg 26940ccagggctcg gcacagaata ggtgctcaaa tataacttct
aaaataagta actgggccag 27000gcgcagtggc tcatgcctgt aatcctagca ctttgggagg
ccaaggcagg aggatcactt 27060gagtttcaga ccagcctggc caacatggca aaaccttgtc
tctactaaca atacaaaaat 27120gagctgggcg tggtggcaca cgcctgtaat cccagcaact
caggaggctg aggcatgaga 27180atcgcttgaa ctcgggaggt ggaggttgca gtgagccaag
attgccccac cgcattccat 27240cccgggcaac agagcaagac tctgtctcaa aacataaaaa
taaaataaaa taaattatcc 27300aggtgtggtg gtgcgtgcct gtggtcccag ctacttggga
ggttgaggtg ggaagatcgc 27360ttgagcctgg gaggctgagg cttcagtaag ctgcgatcct
gccaccgcat tccaccctgg 27420gtgacagagc aaaaacttgt cacgaaaata aataaaataa
gataactcac tgaagcatgg 27480agcccatagt ccagaactca ggactctacc tactcatata
atgagggccc aggctgaatg 27540ctaatggagg gtacaggggc agccccagcc ttgcaggtcc
ctcagggtcc taagcccttc 27600cttccccttc ccacagcctc cttgcactgg aagtccaaga
gggcacttgg atcagagtag 27660gcagaacata gtctttggga tgagatagag ggtagagctg
ggttcgaatc ctggctctgc 27720tgcttactag ctgtgtgatc cagaggaagt ctcttaacct
ctctgaggct gttttctctt 27780ctgtaaatgg ggatgatcaa aacctgcttc aaaagttgtt
tacaggtatt tcttaaaata 27840tcatatgaga gcgtctgcca cagagttggg gctcagggaa
tgggagtcct tcctcttctg 27900tagaaatacc cactgccttt ctacccgcgt ggctaatgtt
ccccaggtcc ccatcatgca 27960cccgctcagt gcttgttctc tctgccatcc tgtcaatgcc
cttgtgaggt aagttctgtg 28020ctttcttttt ttttttttga gatggagtct cactctgtcg
cccaggctgg agtgcagcgg 28080tgcgatctcg gctcactgca agctccacct cccgggttca
tgccattctc ctgcctcagc 28140ctcccaagta gctgggacta caggcacctg ccatcacaca
cagctaattt tttgtatttt 28200tttagtagag acagcatttc actgtgttag ccaggatggt
cttgatctcc tgacctcgtg 28260atccacccgc ctcggcttcc caaagtgctg ggattacggg
gtgagccacc gctccctgcc 28320agttctgtgc tttttaaaga aaaggggccc ggtggtgcag
tggctcatgc ctataatccc 28380agcacttttt tgtttgtttg tttgtttgtt tgtttgaggc
agagtcttgt tctgtcgccc 28440aggctggagt gcagtggcac aatctcggct cactgcaacc
tctgcctccc gggttcaagt 28500gattctccta tctcagcctc ccaagtagct gggattacag
gcacctgcca ccacgcccag 28560ctaatttttg taattttgta gagatggggt ttcgccacgt
tggccagact ggtcttgaac 28620tcctgacctc aggtcatctg cccacctcgg cctcccaaag
tgctgggatt acaggtgtga 28680gtcactgcgc ctggccaata atcctagcac tttggaagac
ctaggcagga ggatcacttg 28740aggccaggag tttgagatca gcctgagcaa tgtagcaaga
ccctgtttct tcaacaaaat 28800tatatattca aaatgttaag gctgagcgtg gtggcttgcg
gctctaatac caacactttg 28860ggaggctgag gtgggaggat ggcttaagcc caggagtgca
agatcagcct gggcaacatg 28920gtgagacatc atctctacaa acaaaatttt ttaaaataaa
aaataatgat ttttaggcca 28980gatttggtgg ctcatgactg taatcacaga actttgggag
ggcaaggcaa gctgatctct 29040tgaggtcagg agttcaagac cagcctggcc aacatggtga
aaccccatct ctactaaaaa 29100tattaaaaaa ttagagccag gcacagtggc tcacacctgt
aaccccagaa ctttgggagg 29160ccgaggcggg ccgatcacaa ggtcaggaga tcgagaccat
cctggtcaac atggtgaaac 29220cccgtctcta ctaaaaatac aaaaattagc tgggcgtggt
ggcacatgcc tgtaatccta 29280gctactcggg aggctgaggc aggagaatcg cttgaaccgg
gaagtcagaa gttgcagtga 29340gccaagatcg tgccactgca ctccagcctg gcgacagagc
gagactctgt ttaaaaaaaa 29400aaaaggccgg gcgcagtgac tcacacctgc ctgtaatccc
agcactttgg gaggctgagg 29460caggcagatc acctgaggta aggagttcga gaccagcctg
accaacatgg agaaacccca 29520tctctactaa acatacaaaa aaaaaaatta gccaagcgtg
gtggtgcatg cctgtaatcc 29580cagctgctca ggaggctgag gcaggagcat cactggaacc
caggaggcag aggttgccgt 29640gagccaagat cacaccattg ccctctagct ggggcaacaa
tagcgaaatg ccatctcaaa 29700aaaaaaaaaa ttagttaggt gtgatgacac acgcctgtaa
tcccagctag ttgggaggct 29760gaggcaggag aatctcttga acctgggaag cccactgcac
tcagagtgaa tgagactggg 29820ccacagagtg aatgagactc tgtctcaaaa taaataaata
aataaatata ataataattt 29880tttaaaaagg aaaatgaagt cagagacaaa gtgacttgcc
caaggccaca cggctagaaa 29940gtttcaaagg gaggcttgag ctcagctaac cctaagaaca
atggctctgg agccaggaaa 30000ggatgggcat tattgcagcc actgctccct ttccactcag
ccagccagat agtctcaggt 30060atcttttgat cttctgctgt gtgttaagca ttgtgctgag
ggcaggggat agagctgagc 30120acaatcgcca ttttccatca atgtctgtga gtgttaaggg
cttgaggaca gtaaaacagg 30180gtgataggct agaggcctgg gggtctagga agacttcttc
tgtataggtg atacttgaac 30240tgcaggattg ccatgggaag aggggggcag gtaagtggga
agcattccag gtaggcggga 30300gagcaggtgc aaaggtcctg aggtaggact tagtttgggg
tatctcagga actgaaaggc 30360agccagtgtg gctggagcac tgggagggag agtgagagtg
ggatgggcca ggctggagag 30420ggaggaaggg ccttaaggga catcctaaga actccttcct
tcccttcctc cctcttcctt 30480tccttcttct ctccctccct tccttccttc ccttcctcct
cctccttcct ttcttccctc 30540cctcccttcc tgccttcctt ctcttttttc ttcccttcct
tcctttcctt ctccttccct 30600cccatccttt ttttcttact tcctccctca atctctctct
ctcttcctac tttccttccc 30660tccttccttc cttctcttgt tccttcctcc cccctctcct
ttccttcctt ccctccttct 30720tccctcttcc ctccctttcc ttctctcctt cctctgtcct
tttttttttt tttttttttt 30780gagacagagt ctcagccagg catagtggct cacgcctgta
ctcccagtac ttggggaggc 30840cgaggcaagt ggatcacctg agatgaggtc aggagagttt
gagaccaacc tggccaacat 30900ggtgaaaccc tgtctctagt aaaaatacaa aaattagctg
ggtgtggtgg tgggtgcctg 30960taatcccacc tacttgggag actgaagcag gagaatcact
tgaacctggg aggcagcagt 31020tgcagtgagc caagatcatg ccactgcact ccagcctggg
cgacagagcg agactccgcc 31080tcaaaaaaaa aaaaaaaaaa aaaaaagaga cagagtcttg
ttctggcacc atctcagctc 31140actctaacct ctgcctcccg ggttcaagca attctcctgc
ctcagtctcc taagtagctg 31200ggattacaag cacctaccac cacatctggc taatttttgt
gtttttagta gagacggggt 31260ttcaccatgt tggccaggct ggtctcgaac tcctgacctc
aagtgatctg cccacctcag 31320cctcccaaag tgctgggatt acaggtgtga gccaccgcgc
caggctcctt ccttccttcc 31380ttctttcctt cctctttttc ttcctccctt ccctccctcc
gttcctccct tccttctttt 31440ctctctctcc ttcctttctt ccttcccccc ttcctcccct
ttttccctgc cttcctacct 31500tccttccttc tttctctcct tccttcctcc cctcctccct
ctcttccttc cttcctcctc 31560tccttccctc cctccctcct tcctctctcc cttccttcct
cctctccttc cctccctccc 31620tccttcctct ctcccttcct accttccttc cttccctccc
ctccttcctt cctcccctcc 31680ttcctctctt ccttccttcc ctccgtcctt ccttctttcc
ctccgtccat gcctactgtt 31740tctcaagcac tggcccaggg ggctgcaggc ctctgagtct
ctctgtgctt ctctccctct 31800tcccttctcc cttcctctcc cctccccctc ctcttctaac
agccgcccca cccccactgg 31860tccagctctt cccctcccct ctaccccatc ccctcccctc
cacgccaccc cctcccactg 31920acaatgggga ggaaccctgg gctcagctcc ccacagtatt
gtccctttaa ggaatcccta 31980aatccggaca cccctctcct cccccacctg agaaccaatt
agggttcccg aattcaagta 32040gaggcttttg tgtgtcacgt gtttgtggaa caaagccctc
tccggcagga ataaaagctt 32100ctattcagga gccagtttgc tctcattcta atcgtttcca
ctccagcctc gcctccttcc 32160cgggttccca gggccgccca gctcggcctc accttcccgc
ttcagcaccc tgtattagtg 32220ccctacccaa aagcaggtgg ccaccgaccc agggctctgc
ccaccttttc ttcccgaaag 32280atcacgtgat gccgactggc tccgagctgg gccctgggct
cagcgctgtg tgagcatcat 32340tgtacgggac tgtgaatagc ctcaatgcaa cggaggaaac
tgaggctcag agaggttagg 32400gcacttgcct gaggtcatac ggctggtaag acagggagtc
tacaccctcg ggcattattc 32460tatggtaccc ccagctggcc ctagcatagc acagggtgca
gaagaaggga gctgccattt 32520ttataaagcc catggggcca ggcacctgct ggatattaga
gactcctgac aatgccacgt 32580gaaggagcaa cgattgaggt caaagtcact gacaagtccg
aggcaggatg gcgttgggac 32640tcagaacttg gagggaaaca gtggggccct caggtctgaa
gatgaagaga cagggagtat 32700gggaagccca tattacgaag ccattaagaa aactgtattg
atatggaatg gtaattgaca 32760cattgccaag agaaaaaggc agtacattga atggaatatg
atctcatttg cataagagga 32820aaaggaaata tctacacaca aacatgtata cacatatcgc
acatttctat ctgtatggaa 32880taaatttggg gaaaaaacat cataaattgt agtatccttt
atttcctttg aagagtggaa 32940atagagcatg gagagaagtc acttagtacc attctgtgct
gtttgaaaaa agatattttc 33000ttactatgat catgtattta ttttatgata attatttttg
ttttattgaa gttaactatt 33060ttaaagcttg catttcagtt gcatttagta tatttacaac
gttttcatca ccctaaaggc 33120aaacttctaa catcatatcc agtaagcaat tacttctcct
tccttattcc ccccgcccct 33180ggcaatcact aacctgcttt ctgtctctac agatttacct
attttagata tttcatagaa 33240atggaattat agcatttcat agaaatggaa tcagtatgtg
acctttttca tctggctttt 33300ttcttttcct tctttttttt tttttttttt agatgagctc
tcactctgtc acccaggttg 33360gagtgcagtg gcgcgatctc agctcactgc aacctccacc
tcccgggctc aagcgatcct 33420cctgcctcag cctcccaagt agctgagacc acaggtgtcc
gccaccacac ccaactaatt 33480tttttgtatt tttgatagag atagggtttc tccatgttgt
ccaggctgat ctcaaactac 33540tggattcaag cgatctatct ggcttggcct cccaaagtgc
tgggattaag gccggcaaaa 33600tgcacccctg agctcagcct ggtttttttc atttaggatg
atgtccctca ggtttatcca 33660tgttgtagca tgtgtcctat ttcattcctt ttaacggcta
aatagtattc ccttgcatgg 33720gtatactaca tcttgtttac ccattcatca cttgatggac
atttgggttg tttcaatctt 33780ttggcagtcg tgaatggtgc tgctatgatc atgcatgttt
ttgtctgaat acctgttttt 33840aattattttg ggtatatgcc taggatctgg gtcatatgat
aattctgttt tactttttga 33900gataccatcg aacggttttc cacagtgcca caccatttta
cgctcacacc agcaacgtac 33960agaaagctcc aatttctcca cattcttgcc aacacttgtc
attttccatt tatttattta 34020ttcatagctg tggtagtagg tgtggaatga tatctcattg
tggctttgcc ttgcatttca 34080ctaatggctc aagatgaata tcttttcacg agcttattgg
ctatttatgt attttctttg 34140aagaaatatc tattcaagtc ctttgcctat ttgtacttat
ttattaattt attttttgag 34200aaagagtcgc actttattgc ccaggctgga gtatagtggc
ttgatcacag ctcactgtag 34260cctcgacctc cctgggctca agtcctcctg cctcagcctc
ccaagtagct gggactacag 34320gcacacgcca ccatgcctgg ctaatttttg tatttttttt
tttttttgta gagatagggt 34380ttcaccatgt tggccaggct gttctcaaac tcctgacctc
aagtgatccg cccacctcag 34440cctcccaaag tgctgagatt acaggtgtta caggtgtcag
ccactgcacc cagccctttt 34500cacttttttt tttttttttt ttgagacagt ctcgctctgt
tgcccagact ggagtgcagt 34560ggcacaatct tagctcacag caacctccac ttcccaggtt
ccagcgattc tcccacctca 34620gcctcccgag tagctgggac tacaggcgcc caccaccact
ctaagctaat tttttgtatt 34680tttaatagag atggggtttt accatgttgg ccaggctggt
ctcgaactcc tgacctcaag 34740tgattcgcct gccttggcgt cccaaaatgt tgggattata
ggcgtgagcc accacacctg 34800gcctcacttt cttgatagtg ccttttgatg cccaagtttt
tatttttatt tatctattca 34860tttatttatt ttgagacagg gtctcgctct gtcacccatg
ctggagtgca gtggcacaat 34920catagctcac tacagcctcg aactcctgag ttcaagccat
cctccagcct tagccttcca 34980agtacctagg actccaggct cgtgccacca cccagctaaa
ttttgttatt ttatgtagag 35040acgaggtctt actatgttgc ccaggctggt ctcaaactcc
tgagtttaag caaccctcct 35100gcttagcctc acaaaatgct gggattacag gcatgagcca
ctgcacccag ccaaaagttt 35160taaatttaaa tgaagtccaa tatatctatt gttttcttgt
gttgtttgtg catttggtga 35220cataactaag aattgccaaa tttaaggtca taaagattta
cccctgtgtt tcttttatcc 35280attttgagtt cattttgttt ttacatggtg ccaggtccaa
ctttattctt tcacatgtaa 35340atatcctata ataattgttt ttaatctttg tctttgctgt
cttaagaaat gatctccaaa 35400tttttgtgat gatacatccc taagaggaaa caatctttga
gctcatattt ctagcataca 35460tacatttata tatttacaaa atatatacat actctactgt
tataatatct atgttacaaa 35520catctatgca aaagaaattt taaaaagatg aaataggctg
ggcacagtgt ctcatgcctg 35580taatcccagt actttgggag gctgaggtgg gtggatcact
ggaggcgagg agttcaagcc 35640cagcctggcc aatacggtga agcccagtct ctcctaaaaa
tacaaaaatt aggccgggag 35700cagtggcacg cacctgcaat ccaagcactt tgggatgctg
aggcaggcga atcacctgag 35760gtcagggatt cgagaccagc ctggccaaca tggcaaaacc
ccatctctac taaaaataca 35820aaaattagct gggcatggtg gcgtgtgcct gtaatcccag
ctacttggga ggctggggca 35880ggagaatctc ttgaacccag gaggcagagg ttgcagtgag
ccgagattgc accactgccc 35940tccaacctgg gccacagagt gagactccat ctcaaaaaaa
aaaaaaaaaa aaaagctggg 36000cgtggtggca catgcatata atcccagata ctcagtaggc
tgaggcaaaa gaatcacttg 36060agcctgggaa aaagagattg cattgcagtg agctaagatt
gggccactgc actctagcct 36120aggcgacaaa gtgagattct gtctaaataa ataaataaaa
taagaaatta gccagatata 36180gtggcacgca cctgttgtcc tagctactca ggaggctaaa
gtgggaggaa ggcttgaacc 36240caggagttca aggcttcggt gagttatgat tacatcactg
ctgcactcca gcctgggcaa 36300cagaggcaca ccctgtctta aaaaaaaaaa aaaaaaaaaa
agagcgggga aaagagatga 36360aatagaaaaa aatactatag aaggcctgat cttttcttgg
tggatgattt tgagtgctcc 36420cagagacact cacccctctg gtgcttgctg gtgctgctga
tgacagagtg aggtcagccc 36480accctctaaa ggcacagctg ggacagctgc aggcaggcat
gggagtgggc tctccaggtt 36540gggtctgact tccctcttct gagtcacaaa atttcacatc
agaaggacgg gtgtttgaat 36600cctggttcca tctatttcct agttgtgtgt cactatatta
agctgtattt ggccgcgtgt 36660ggtggctcac acctataatt gcagcacttt gggaggctga
ggcaggtgga tcacctgagg 36720ttagtagttc gagaccagcc tggccaacat gatgaaatcc
cgtctgtact aaaaatacaa 36780aaattagcca gatgtgctag caggggccta caatcccaga
tacttgggag gctgagacag 36840gagaatcgct tgaacctgga aggtggaggt tgcagtgagc
caagatcaca ccactgcact 36900ccagcctagg caacaaagtg agacaccgtc tcaaaataaa
agccatatag ctatattaaa 36960aagcaaagtc ttaacagcct tttttttttt tttagacagg
gtattcttct ggtatccagg 37020ctggaatgca gtggcacgat catagctcac cgcacccttg
atctcccggg cccaagcgat 37080cctcccacct caggtttccg ggtagctggg cctacaggca
agtgccacca tgcctggcta 37140atttttaaat ttttgtagag acagagtctc cctttgttgc
tcaggctggt ctcgaactcc 37200tggccttaag caatcctccc acctcggcct tccagagtgt
tgggtttata ggtgtgagcc 37260ttacacttag cctttttttt tttttttttt tttgagacgg
agtttcactc ttgtccctca 37320ggctggagtg caatggtgca atctctgctc actgcaacct
ctgcctccca ggttcaagca 37380atcctcctgc ttcagcctcc tgaacagctg agattacaag
catccgcccc catgccaggc 37440taattttttt ttttcccatg acagaatctt gctctgtcgc
ccagaactgg agtacaatgg 37500ctcgatcttg gctcactgca acctccacct cccaggttca
agcaattctc ctgactcagc 37560ctcccgagta gctgggatta caggcgcatg ccacctcgcc
cggctaattt ttgtattttt 37620agtagagaca ggatttcacc atattggcca ggctggtctc
gaactcctga cctcgtgatc 37680tgcccgcctc agcctcccaa agtgttggga ttacaggcgt
gagccaccac gcccagctgg 37740ttattatttc ttaaggctta aaggggccaa tgtgtcttcc
ccacaattta cctatttgtt 37800cattcagcca agatgtaaag aatgcctgct atgtgccagc
cataatgggg aacaagaaga 37860aagcagtcct tattatttat ttatttattt atttatttat
ttatttattt atttattttt 37920agaggtgaga gtcttgttat gttgcctagg tgtttgtaac
ggtgcctggc taacagtcct 37980ttcttttgag aagcatatga cctcgggata cacagacatt
acaatataca cacacaaata 38040cacattgtct gtatttatgc agtggagcaa tcataactca
ctacagcctc taccttctgg 38100actcaaggga tcctcccact tcagcctccc aagtggctgg
gagccaccat actcaaggca 38160tgagccacca tactctgcta atcttttatt tttagtagag
gtggggttct cagtcttttg 38220cttaggctgc tctgtcttga actcctgacc tcaagtggtc
ctcctatctt gggctcctgt 38280ctagctagga ttacagggac atgcacacca ctctcagcta
attttatctc tgcatttctg 38340atgaatgagt tttttttttt tttttttttt tttttttttt
agatggtatt tcactctgtc 38400gcccaggctg gagtgcggtg gtgcaatctc agctcactgc
aacctctgcc tcccagtttc 38460aactgattct tgtggctcag cctcccgagc agctgagcag
ctgggattac aggcatgtgc 38520caccatgccc agtaattttg tatttctagt agagatgagg
ttagccaggc tggtctcgaa 38580ctcctgacct caggtgatcc gcccaccttg gcctcccgaa
gtgctgagat tgcaggcgtg 38640agccacctag cctggccaaa tgagtttttt aatttaattt
tttttctgcc cccgaaacca 38700ccctgaatga gttctattct gcatcagtta accaataatt
taatgttgac tcaacatcat 38760ggtggacact agaggcaata gttgggccgg tggtaaatac
acagttcagc caacacaagt 38820acccactggc tctcctttga ggagtgccca cttctctgtt
tctgcttttc cgacccagct 38880tagatgccag ccttcccttt cctctccaac ccactgtact
ccctccctcc cttgagcttc 38940caaagctctc ttaaggctct catactttgc tttgggatat
aatttgtccc tttactggag 39000cgtaaatgcc tcaagaactg tcagcaagcc ttattcaggt
gtggatacct ccagagtacc 39060tgacacggtg gaaaaggcac atttgattca ttcactgaga
agagaagagg caaagatgta 39120gccgctgagt actagctgtg tgaccttggg aaaaataatt
ctttctttgg atctctaagt 39180ttatccataa agcaagaggg gggcatcaga ggctctccaa
ggcagccttt ctcaaccttt 39240ttaaaattgg gacactcctg atgaatggca ttcccacgtg
actcatgctt ccatggtgtt 39300cagataagat agtctgaatt ctgcgtaacc ccagctcttc
ctctctccct ctggagagct 39360tgtccaaagg ccagggagca agagtgacgt tatttataga
cataaccttg actccacttc 39420tcctcatttg tttatttctt tttcttcttc atttatttat
ttaaggcaaa gaaagcattc 39480tcaagcttca gtagaggtag tggttaaaaa taccagacca
gaaaccagag acacttgcct 39540ttgaatcccc tctttgccat ttctgagtgt agtatccttg
ggtaagtttg ctgagcctca 39600gtttccccat ctacaacatg ggaggatcat catagaacta
actttagaag actgtagagg 39660ggattaaatg cgatcagaca ggaaagctct tagcaccatg
ctgtacatgg taagggctca 39720gtaaagttgt caatatctac tttgttgtta ttagttacat
gttacatgtg acacactaaa 39780aaattgggat atgatgctga gaccaaaaag taaactcttg
attagcttct gccaaatttg 39840atcttttgtg attttctcac ccagtcttgg ggacgctgag
ccgtggtgaa tttctctgct 39900ggtggaaata gattcacgga tgtagctcaa tcctttctta
ttttgtttta ttttattttt 39960gagatacagt ctcactctgt tgcccaggct ggagtgcagt
ggcgcgatct cggctcactg 40020caagctccgc ctcccgggtt cacgccattc tcctgcctca
gccttctgag tagctggaac 40080tacaagcgcc cgccaccatg ctaatttttt gtatttttag
tagagacggg gtttcactgt 40140gttagccagg atggtctcga tctcctgagc tagtgatcca
cctgccttgg cctcccaaag 40200tgctgggatt acaggtgtga gccaccgcac ccggccagat
gtagctcaat ccttctttac 40260ctttgttact ctatctccac tcgctcatcc tattcccctt
ttaatttttt ctgttttttt 40320ttttttgtaa agtatcactc tcactctcac ttcttttttt
cttttttgac agggtcttgt 40380tctgtcaccc aggctggaat gcagtggcac aatcatggtt
cactgtttcc tcaaactccc 40440gggctaaaga gatcctcctg ccttagcctc tcaagtagct
gggactacag gctcatacca 40500acatatctgg ctaattttct tatatttttg tagaggtggg
gttttgttat gttgcccagg 40560ctggtcttga actcctggcc tcaagtgatc ctcccacctt
ggcctcacaa agtgctggga 40620ttagaggtgt cagccactat gctcggcttg gatgaatttc
aaaaattgta ggttgaggcc 40680gggcacagtg actcatgcct gtaatcctag cactttagga
ggtggtggag ggcagatcac 40740ttgagcctag gagtttgaga ccagcctgga caacatggca
aaaccccatc tctatgaaaa 40800atacaaaaat tagccgggga tggtggtgca tgcctgtagt
cccagctact caggaggctg 40860aggcaggagg atcgcttgaa cttgcttgag gtcaaggctg
ctgtgagccg agatcatgcc 40920actgcactcc agcctgtgtg acaaagtgag accttgtttc
aaaacaacaa caacaacaac 40980aacaaactgt atgagcaaaa gaagccagat gcaaaaaaat
acatacaaaa attccattta 41040tatgaaatta tggaacaggc aaaactaatc tatgggaaga
caggtcatag tcgcatttat 41100ctttgggaag cagatattga cttggaagca ggagataact
ttctggagga aggaaagctt 41160caatatcagt gctgcccaat agaaataaaa tgccagctac
actcacgcct gtaatcccag 41220cactttggga ggccaaggca ggcggatcac gaggtcagga
gattgagacc atcctgacta 41280acactgtgaa accccatctc tactaaaaat gcaaaaaatt
ggccgggcgt ggtggcgggc 41340gcctgtggtc ccagctactt gggaggctga ggcaggagaa
tggcatgaac ccaggaggcg 41400gagcttgcag tgagacaaga tcgtgccact gcactccagc
ttgggcaaca gagcaagact 41460ccgtctcaaa aaaaaaaaaa aaagccagct acagctgtaa
accatatatg taatttaaaa 41520attttctagg aaccacatta aaaagacata aaggccgggc
gcggtggctc actcctgtaa 41580tcccagcact ttgggaggcc gaggcaagtg gatcacctga
ggtcaggagt tggagaccag 41640cctggccaac agggtgaaac catgtctcta ctaaaaatac
aaaaattagc tgggtgtggt 41700ggtgggtgct tgtaatcgca gctactcggg aggctgaggc
agaagaatca tttgaacgaa 41760ggaggtggag gttgcaatga gccaagattg cgccactgca
ctccagcctg ggtgaaagag 41820taagactcca tctcaaaaaa ataaaaataa ataaataaat
aaataaaaat aaaaagacat 41880aaaatgaaac aggtgaaatt tattttaata atatattcaa
aaattacgtt tcaacatgta 41940atcaatgtaa aattattatc actgtatttt acattcattt
tctgcattct ttgatatcca 42000atgtatattt tgcacttaca gcactggtta gtttgggcca
gctgcatctc aagtgctcag 42060tagccacacg tggtgagtgg tcacttttat ggatctgtat
cttaatctgg gttttagcta 42120tatataaaaa tttatatata aaacttggga ggcactccag
cctgggtgac agagcaagac 42180tttgtttcaa aaaaaaaaga aagaaagaaa ttcatttgta
ttgttatatg tatctgtcat 42240ttgtgtgttt tttttttttt tttttgagat ggagttttgt
tctgttgccc aggctggagt 42300gcagtggcac gatctcgatc ttggcttact ccaatctctg
cttcctggat tcaggcaatt 42360ctcctgcctc agcctcccca gtagctggga ccacaggctc
acaccaccac acctggctaa 42420tttttgtatt tttagtagag acagtctcac gatgttggcc
aggctggtct tgaactcctg 42480gcctcaagca atctgaccac ctcagcctcc caaagtgctg
ggattacaag cgtgagccac 42540caagcatggt ctttttttct ttttcttttt tttttttctt
tttttttgag atggaatctc 42600tgtcacccag gctggagtgc agttgcgtga tcttggagtg
atcttggcac actgcaacct 42660ccacctcccg ggttcaagtg attctcctgt ctcagcctcc
caagtagctg ggattacagg 42720cctgtgccac tacacccagc taatttttgt atttttagta
aagatggggt ttcaccatgt 42780tggcaaggct ggtcctgaac tcctggcctc aagtgatcca
cccgccttgg cctcccaaag 42840tgttgggcgc ccggcccttt tcattttaca tagtattcca
ttgtacgaat atatcatagt 42900ttatccattc tcctgttgat ggacgtttgg attacttcca
atttctgctt attatgaata 42960atgctgctat cagtgttctt gaacagtctt taaatagact
catttaaatt atttttactg 43020ttttctggtt gttaagataa atccatactc acagaaaaaa
ttcatactca tactaacaca 43080cacgcctccc caccacgtta aacagttttt actgttttct
ggttgttaag ataaatctat 43140actcacagaa aaaattcata ctcatactaa cacacacgcc
tccccaccac attaatggtt 43200tgatgcaaat ggcttatggt ttgatgtaaa ttcttttcct
ccacatatag aatcatgtat 43260tatcattatt aataaaattg tcactttgat ggttcctccc
ttggttgtct gactcctggg 43320ggtgctgcgt agctcttaat ccttgccctt cttgttgtaa
ggtctctaga agaccaaaac 43380tggaaaggat gtagtgatca tctagtccag agaaggcaac
gctatagcac accttctact 43440gttccatgac tacctgcacc aaggcagaca tcactaatca
atcacccgat ttctatcctt 43500gcccagccct agccactacc agtcattttg gaggtaattt
gagaggccaa gtagaaaaac 43560tgaaaccaat tttccatctc tggaataata tgccactttc
cattttgcac atgaataaac 43620tagcgctcag agaggggaag agcctgtttc aaggtcagag
gtggagcccc aggctcctaa 43680ctccctaata ctttttccac taagttcaca aactccaaaa
actatttccc tggtccctga 43740aaacctgggc tctagggagg gtgctttgtt ctccagatgg
ggctcagaga tgagaacctc 43800ccctctagcc agcccttcac ctttaggtct ggcctaagtg
taagagaagc ccctgcctgc 43860agcctggcac ccctttccca ccgtcagcac tgacagacct
gcggtttcac ttctccaggt 43920ccacagtttc agtttcccaa aataaacatt aaaaacaata
aaacataaag gaggcatcct 43980cttaacatct ttgtctttgg cccctgaatt gtagaatgat
tagttgagca gattaaatca 44040cagagttaat tacagcagag aggtgacttc agatgctgaa
accatagaac tctgaagcat 44100cccccctttc accgacacat caaaccagcc ctggctgtca
ttggaagcga cagtgagaaa 44160gtgagaaagt gggagagtca gcaggtctgg acagactgtg
ggtgttctca gctgggcaag 44220cagaatagtt tatttaattc cctccctgcc agggcagtgg
ggaaagtcgg ggggtgggga 44280atggagacag agtgtagcat aatgtttggg tcaggtagag
ctagattttt agactggcca 44340gctgcatgac cttgggcatg tcacttcaga tgtttgagtt
tcagcttcgt catctgtaag 44400gcaagcacat taatagaacc tactacattt aattattgca
gtgattcaaa tgacttggtt 44460aaaaagatgt gtatcagcca ggcgtggtgg tgcatgcatg
taatcccagc actctgggag 44520gctgaggcgg gaatatcgct tgagctcagg agttcaagac
cagcctaggc aaaaaagatg 44580tatgtaaaac tactgtgtct ccagattgtc acatctgtga
aagtaggaat cactgtctgt 44640ctcattcacc atctcatcct ccagccctag cacagtgatg
gtttctaggc aagcacaact 44700agtgaggccg ggcatggtga ctcatgcctg taatcccagc
acctggggag gctgaggcag 44760gcagatcact tgagctcagg aattcgagac cagcctgggc
aacatagcaa aactctgtct 44820ctataaaaaa tacaaaaact agctgagtgt ggtggcttga
gcctgtagtc gcagctattt 44880ggggggctga ggtgggagga tcctttgagc ccaggaggca
gaggttgcag tgagccgaga 44940tcatgccact gcattccagc ctgagtgaca gagtgagacc
ctgtctcaaa aacaaacaaa 45000caaacaaaca aaaaccaact attgagtact tagtgtaagg
tatggtcctg aggataaggg 45060gtggtggagg agaatgcaaa gaggtttaag ggactttccc
ttagagagct cccattccag 45120cataacagac attccagaac catctgtaat aataggtgca
ttgtgtgtgc attaaatagg 45180tagataacat aaaattatgt tcatgatgaa gtgcatgatg
ggaattctgg tatcagactt 45240gaattcaaat ctcagccccc tcacttacca cccgtcttat
ctttattagc aagttgacct 45300ctcaatgctt tcatttcctg atctgtaaaa tagcgacctg
cctcagagag ctgttgcaag 45360gattgaatga gtttcccaac gcaaagtgcc tgagacacaa
taattgctca gagtctgact 45420ctgttgccca ggcgggagtg cagtggcagg atctcggctc
gctgcagcct ctgcctcctg 45480ggttcaagtg attctcccac ctcagcctcc ccagtagctg
ggattacagg catgtgccac 45540cacgcctggt caatttttgt atttttcgta gagacggggt
tttgccatgt tggccaggct 45600ggtctcaaac tcctaacctc aagtgatctg tccacctcag
cctcccaaaa tgctaggatt 45660acaggcgtga gtcagcacac ccggcacccc catagtgctt
ttgatggact acctttactt 45720tcccatagtg ctttagagtg tctaaggtgc tttcaaatac
atgatctcac ttaagtcttg 45780cagcaactcc gaaagtaaat ggaagctcag aaggctaagt
ggtgtatccc tagaaccacc 45840cgaccagaaa cagtggtagt cccaagacca gcatatggat
ctttggactc tcagtcaagt 45900gctttcatta ctccagctca tagccttctg gttgagtcca
gaaatctgag agaaggaaaa 45960aaaaagagag aaaaattagg acaaaaaagt gagggactga
agacctatgt ccacacaaaa 46020acctgagctt taatcataat tgccagaact tgaaggcaac
caagatgtct ttcaggaggt 46080gaagggatgc ataaaccgtg gtacatctag agcacagact
attatgcagc actaaaaaca 46140gacaagctat caagctatgg aaagacatag acggggtcag
gcgaggtggc tcacacctgt 46200aatcccagca ctttgagagg ctgaggcagg tggatcactt
gaagctagga gttccagacc 46260agcctgggca acatggtgca accctgtctc tacaaaaaat
acaaaaatta gccaggggcg 46320gtggtgtgtg cctgtagtcc cagctattct gtagtcccag
ctgttgggga ggctgaggtg 46380ggaggattgc ttgagcctga gaggttgagg ctgcagtgag
cctgaacatg ccactgcact 46440ctagcctggg cgacagagtg aaaccttgtc tcaaacaaac
aaacaaacaa acgaaacaaa 46500cgagcaaaaa aacccaggaa acaaaaaaat aaaacccaca
cacaaaaaaa gccaccatag 46560aggaatctta actgtgtgtt actaagtgaa agaagccaat
ctgaaacagc tactactgta 46620tgattcaagc tatacgacgt tctttttttt ttgagacgaa
gtcttgctct gttgcccagg 46680ctggagcgca acggggcgat cttggctcac tgcaagctct
gcctcctggg ttcacgccat 46740tctcctgcct cagcctcccg agtagctgga actaaaagcg
cccgctacca tgcccagcta 46800attttttgta tttttagtag agacggggtt tcatcatgtt
agccaggatg ggctcgatct 46860cctgacctcg tgatccgcct gcctcggcct cccaaagtac
tgggattaca ggcgtgagcc 46920accgcgtccg gcctatatga cattcttgaa aagagaaaac
tatggagagt gaaagatcag 46980gggttgtcag gggttggggg aggggagaac aaataggtgg
agcacagaga atgtttagga 47040cagtgaaact actctgtatg acagtataat gggagataca
tgtccttata catttgccca 47100aacccataga atgtataaaa ccaagagtga actctaaact
atggactctg ggtgataaca 47160atgtgtcagt ataggttcac caattgtaac aaatgtacca
ctctggtggg ggatgttgac 47220agtgggaaag gttacacaca tgtggggtca ggcggtatgg
ggaaatctct gtactttctc 47280ctcaataaaa ataaagtcta ctttttaggc tgggcatagt
ggcttatatt tgtaatccca 47340gcactttggg aggccgtggt ggcagaggat tgcttgagtg
caggagcttg agaccagcct 47400gggcaacata gttagacccc gttctgcaaa acaaaacgaa
acaaaaatta gctgggcatg 47460gtggcgtgca tgtgtagtcc cagctatttg ggaggctgca
ttgggaagac tgcttgagcc 47520caggaggttg aggctacagt gaaccctcat cgtgccaccg
cgctccagcc tgggcaacag 47580agtgagaccc tgcctcaaaa aaagaaagaa aaaataaagt
atatatatat aggtatatat 47640atatattttt ttaagtgggg gaagtttgta aaatgggctg
attataaatg catggctctt 47700aatcagctta cagtaaattt ttccttgtct tgcatggaca
agaaatggga agttccaggt 47760aattcagggc tttgcttgga tattgcattt tcttttgttc
tttttttttc tgagacggag 47820tctcattctg tcacccaggc tggagtgcag tggtgcaatc
ttagctcact tcaacctccg 47880tctcctgagt tcaagcaatt ctcctgcctc agtctcccca
gtagctggga ttacaggcgt 47940gcgccaccac gccaggctaa tttttgtatt tttagtagag
accgggtttc accatgttgg 48000ccaggtggtc tcgaactcct gacctcgtga tctacccacc
tcggcctccc aaagtgctgg 48060gattacaggc gtgaatcact gcgcccggcc aatattgcat
tttcaaagaa tgagaacact 48120gtgaaatact ctgcacgcta aaaccacatg gactataatt
taatctttaa ttttgttgtt 48180gtcattctca aaggctcttc aatatatctt aaagctgtgt
ttctccaaga gtggccaagg 48240aaaaccctca gctctcagcc ttctcatctg atagaggtgt
ctgttcaaaa actgccattt 48300tctgagcccc catccacccc tagtccactt gacctacagt
tttagagtag tgaaagtcaa 48360aatatgaacg ttaattatca ttgtacttaa gagatgcaga
cattctgctt aaatgagagt 48420tctgtatcat agagtagact catttacctc atctccttca
agtctttgct aaaacgtctc 48480cctccccatg agaatgttgt tgatttaaaa ttgcatctca
ggccaggtgt ggtggctcac 48540gcctgtaatc ccaacacttt caagggcaga ggtgggcaga
tcacctgagg tcaggcgttc 48600aagaccagcc tggccaacac ggcgaaaccc catctctact
aaaaatacaa aaaattagtc 48660aggagtgatg gtggatgcct gtaaccccag ctactgggga
ggctgaggca ggagaatcac 48720ttgaatccaa gaggcagaga ttgcagtgag ccgagatcat
gccactgcac tgcagcctgg 48780gtgacagagc aagactccat ctcaaaaata tatatatata
taaaatttca tctcaccttc 48840ttcccaatag tacccaccct ccctatcacc cttccttctc
tgtggcacct acaacatcta 48900actgaacaca ccatttattt atctattgtt tattcattca
ttcactcatt cattcattga 48960ctcattcatt cattcattta cttgtatgac tctcatctct
agaatgcaag ctttacaaag 49020gcagctgctg ggactacaac acctaggaca gtgtctagta
catagaagat gttcggtaaa 49080tacctgtgcc aagttgcata atatcatttg cccactgtct
ttctcaagag gattttttaa 49140aaactataaa gcaaattctt cttttattct ttgagtgatg
ttctgtgtgt gtagtaccag 49200agaaaaagag ctggaaccac atcctctaat ctcttaattc
tgaagtctgg gcctgttgct 49260ctaaagatca tttttcctta ataccactga gatcctcaat
ttactatgag gatcatgagt 49320ttacaactgc attgtcctgt gagggctacc tctagaaggg
cttgtcgccc ctattgtgaa 49380caaagtggac tgaagctgct gcagctgaga tacacctgca
ctgaaagagg atttgtctaa 49440gtctaaccca tgttactgtg atacaaacaa gctactgacc
aaaagaggta gacgcttcct 49500cctcagattc tgaatgaata tgctaataca tggatcctat
ctcaagctac ttcttacaca 49560gcattggctg actctgaaca gatgccttta cccatttcct
tttttttttt taatccaaaa 49620tgtgtttatt gagatggttt cccactcatc ttgattcaga
gtgctttggg tgctgcttcc 49680tcctgaagga acatccttct gtagccttcc ttttcctcct
gtaggctggc agagaacagt 49740ggagcaggca acacacaaaa ctaccgtttg tgcatggcta
cagaccatgg tgattttata 49800gcatcctggg catgtcatat ccatgaagta ggaatcggga
ctctgcacca ggcgtttctt 49860cttctgtttc ctcttctctt ctggagaagg atgaaggaga
tccctgtcga gaggcatgtt 49920ctcgtgggta ggtcgccact gccggaaagg acccatttcc
tatccttcaa gctcatctgc 49980ccagcagcac cagcacacaa accaaagtcc aggaacactg
gaagatccct actccccgca 50040cctctccaat gacccttttt aagttcagac ctaagaagag
tcacctccct aataccgcag 50100aggctacctg ctcaccctca tctgtgtctc tgctacaaca
caaactggaa tgcttttgtg 50160tcggaatggt aagaaatgcc ttgtgtgggt ggccctccag
tccccagtcc aggggatgct 50220gagaaactgt ggggcagagt aggggacaca aacaggaaaa
agcaagtttg tttctagtgt 50280tatgctcaca gggtggcagg atatacctgc tgagcattcc
cagaaggtcc ccaaggaaac 50340cattactgta agtctctcac tttcttctct gcctgatggt
tggggtgggg agagggaagg 50400agggctatca agagggggat gggcaccctt ccagaggtca
gagttatgat gcccaggaat 50460aaaaggtgtt gaattcagga tggaatgtga aggtgaacag
caaagggctt gtcaacatgg 50520gttgtcactg gattacaccg gatggattaa ggtagggatg
ggggaaggag tagaaggtga 50580gttgggaggg aggggcttgt gtggcactga gacccccagc
agggatgggg agaaggggtg 50640ttggccacct aagcttcctg gtttgatcct tttttggctg
gtttcagctg gggaagtgaa 50700gggtcctaag gcttggatat ggagaggtgg gaatatggag
aggtggggat atggagaggc 50760ggggataagg agaggtgggg ataaggagag tggccccgca
gctcccctgg tgaaccagaa 50820tactttctca gggttgttcc caggctggag ggagggaatt
ttaggggtac gtaaggtgac 50880tccaaggagc cttgggtgca agtactgggg gatcccagag
acccagaaga tgggggtaga 50940aaggaaggtg tttgccttca cggggagtag cctcaaaata
agagggactg agggaagtca 51000ttccaaatgc agtgggtagg tagtttaggc tcttccaatg
ggatggggtg gagcttagac 51060ctctgcaaaa gaagggggtc attcggaggg gacggtgcac
agctgaggcg ttgggctcct 51120aaactggaaa caggaggctc taagaggcac tgccttttcc
tccagcctcg gtgtggtggg 51180ggtggtgagt gtctggaacc gggtttcccg aatcaggaca
ggagtctgaa tggatctcac 51240aaaaaccggc cagggaggga gagaaccagg ggagactcct
cacaccggga ggtgggggtg 51300gcggcaaact gagaacccgg gcttggggcg cgggattttc
tcaacagacc atagggtcca 51360ctaatgtgga cggcagggat ttggggaaac taagggggac
tctcactttg gacaccaagg 51420gctgaggacg gattggggaa gaggatacgg tttctactgg
ggtgctgatg gaggttcccc 51480actcgggacg cgaggcactg agtgggtccc ccaaactgga
tatgggatcc tgggaacgga 51540gcgagggctc taaattagag ccctggggtg ggggtggggg
gctgtaaatt aggttgggag 51600gaaactgggg gctctgaggg cggcttctcg ctccgactgg
ggaaatggag catgtgggga 51660ctggggagca ctagggctat ctcccgcccg acccgaggag
attggggttc tcttcaattc 51720tggacagcag ggacctgaga gggaagaccg ggggggttcc
cgatccggaa ccgagctacc 51780ttgaaggcac cgggaagcgc ttcattccgg gagggcgttc
ccgcggccgg gcccccgcgc 51840cggggtgggt ggggggtgcg gccgcgccct ggtcccggcc
cgcaccggga ttcgggggtc 51900tcgctcggcc ccggagaccc aggagccccg cgggaagggg
gtcccggcgc cgccgcctcc 51960gcgggcgccc gggctcgcgg gcgagcgcgg ggctttatgc
gcgcagggcg gcggggggag 52020gagccggcag gtcggccccc ggcgggccct cccctcggcc
gtccccgccc gcccgcccga 52080gcggggtcgg gggagggggc agcatggcct gtccgtccgg
cccccttcgc cgcgctcctc 52140atctgccccg cgccgagcgc cgccgccgcc gccgccgccg
ccgctccgct gcccgcgccg 52200cccgcggctc ccgatg
5221621850DNAHomo sapiens 2gatcctggaa ggtgggcagc
aactggcaca cctcaagatg tcccttagtc tggaggtggc 60tacatacagg tacacagtgc
tgactgtcct cggcttcttc tgcggcccag aaacttggct 120ttgtactttc tgtgactgtc
agctatcgct ttgtaaaact gtcctattta tgtgtatttg 180tgtatgtacc acatgtgtac
aggtgtccta agagcccaga ggaaggcaat gggttgtgtg 240cagctccaca ctggtgctgt
gaaccaaacc cctgttctca gcaaaaagca gcaagcattc 300ttaaccactg agccgtctgt
ccagccctcg gagtcactta aaacgtttta taacatttac 360ttatgtaatg tatttgtctg
ggatggaggc ttatgagtcc cagaggtgga acaggtctgg 420cttggcagct tggcccaccc
aggttcagga ccagaagaga cggtgatgct taaaaagaca 480gctcagtctt cagggaggag
accagacaga tgagttcttt ggaaggcagg caatctccag 540tgtctatgcc aacatcctgg
ggacacctgg gcagtctcag aagagaggcc ttgcaggttt 600gcctgatcat gctaacctgc
cacctcgcct gggcctcagg tgttttgggt aagagctggc 660ctcctagctt ttttgcttcc
tttcaagccc tcatgtcact ggtcctgccc cagttctctg 720cccttttctt ggctgcctca
ggacggctga gtggaacggc tctggtggta tgttcacagc 780ctctgtctgt gtctcttgtg
ggaaaaggcc ccagttggag tcccacggtt gagggctgag 840gatatcactc cagagtatgg
ggctaggaca ggatgccccc cttttccaga atccagcggt 900aaagaggaaa gacagagaca
ggtctaggag aggagctgga gggcccagag aaggacagcc 960agtgagtgtc taggaaagac
tgaatgcata aggcaggatg ccgcatgagg acagaggaaa 1020gggtactttg agaaccagat
gtgctcagag gccatgaatg gaaacagact agttccgaat 1080cccatgtgaa ctgatttccc
tcatctcctt caatcagctc cataggccac tgaggcaggg 1140ccatgaacgt taagacctct
gccctgaaga gtttgtgatc ctgagatgag ggctttagcc 1200ccagtcagtc ctctgagggg
aagggtccag gcagctctga ggaatgtaac cactggcgtt 1260tgaggtctga aaaggatttg
gagaagggga gctgaattca tttgcttttg tctgttacca 1320gctctggggg cagagagaga
gccatcccct gggaacagcc tgagaattcc cacttcccct 1380gaggagccct cccttcttag
gccctccaga tggtagtgtg gacaaaaggc aataattagc 1440atgagaatcg gcctccctcc
cagaggatga ggtcatcggc cttggccttg ggtggggagg 1500cggagactga tctgaggagt
ctgatataag tgttagcaat tcatttggcc ctgcctccga 1560ctgtgggaat ctgcatgtgg
ggtctccctg tgtctcaaat atgggttggc taagtatata 1620tctgtgggta tatgactgtg
tggcttttat atgacaatgg tcacaataga gattgatcct 1680gcagtggcag gacatgctac
ctcagctgga gctgacccta tctccccact ccccaccagg 1740actctgctgg aggctgagaa
ctctcggttg cagacacctg gacgaggttc ccaggcttct 1800cttggctttc tgggtaagag
gcggagccaa ctgctctcct tggaagatcc 1850
User Contributions:
Comment about this patent or add new information about this topic:
People who visited this patent also read: | |
Patent application number | Title |
---|---|
20200328671 | SWITCHING-MODE POWER SUPPLY CIRCUIT |
20200328670 | System and Method for Dynamic Over-Current Protection for Power Converters |
20200328669 | CONTROL CIRCUIT, CONTROL METHOD AND SWITCHING CONVERTER THEREOF |
20200328667 | GEARED SPHERICAL ELECTROMAGNETIC MACHINE WITH TWO-AXIS ROTATION |
20200328666 | METHOD OF FABRICATING COMPOSITE LENS HOLDER, VOICE COIL MOTOR, AND ELECTRONIC DEVICE USING COMPOSITE LENS HOLDER |