Patents - stay tuned to the technology

Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


Ninan, CA

Ajit Ninan, San Jose, CA US

Patent application numberDescriptionPublished
20100007577N-MODULATION DISPLAYS AND RELATED METHODS - A display has a light source, a spatial light modulator and an intermediate spatial light modulator. The display may be a front projection display or a rear-projection display. The spatial light modulator is illuminated with light from a light source. The intermediate spatial light modulator is located in a light path between the light source and the spatial light modulator. The light source may comprise an array of controllable light-emitters. The display may provide a high dynamic range.01-14-2010
20110267385Universal Back Light Unit Control - Display backlight units are controlled with a signal. A message has an address header specifying one of an array of backlight units, and instructions for individually controlling each of the backlight units, particularized accordingly. The message is routed from a controller to a first controllable backlight unit of the display, which controllably responds to its corresponding particularized instructions. The message is sequentially routed in order from each backlight unit to the next in a chained ring configuration. Data from the backlight units is similarly routed back to the controller.11-03-2011
20120133673N-MODULATION DISPLAYS AND RELATED METHODS - A display has a light source, a spatial light modulator and an intermediate spatial light modulator. The display may be a front projection display or a rear-projection display. The spatial light modulator is illuminated with light from a light source. The intermediate spatial light modulator is located in a light path between the light source and the spatial light modulator. The light source may comprise an array of controllable light-emitters. The display may provide a high dynamic range.05-31-2012
20120154417TECHNIQUES FOR QUANTUM DOT ILLUMINATION - Techniques for extracting light from a light guide are described. In some embodiments, a light source comprises a light guide configured to trap first light through total internal reflection. The light source may further comprise a plurality of light extractors configured to extract at least a portion of the first light upon establishing optical contact with the light guide. The light source is configured to control individual light extractors in the plurality of light extractors to make optical contact with the light guide. Quantum dots may be used with the light source to regenerate light, within desired frequency band, from the at least a portion of the first light.06-21-2012
20120154422N-modulation for Wide Color Gamut and High Brightness - Techniques are provided to support a high dynamic range, high brightness, a wide color gamut, and high resolution in an imaging system. The imaging system may use a light source unit to sequentially emit light of different colors. Color-specific frames may be used to drive, directly or indirectly, multiple display panels that comprise at least one monochromatic display panel. Color bleeding and light bleeding may be prevented, or otherwise mitigated, in the imaging system by controlling the sequential emission of light by the light source unit and by controlling display portions of the display panels in the imaging system.06-21-2012
20120154464Techniques for Quantum Dots - Techniques for configuring light conversion materials such as quantum dots in a display system are described. A display system includes light source components that emit a first light. The display system further includes a light converter illuminated by the first light. The light converter converts the first light into second light comprising one or more color components to support a specific color gamut. The second light forms, based at least in part on image data for images to be rendered, an emission pattern that varies with space and time.06-21-2012
20120155060Quantum Dot Modulation For Displays - Modulated light sources are described. A modulated light source may have first light sources that are configured to emit first light, which has first color components that occupy a range that is beyond one or more prescribed ranges of light wavelengths. The modulated light source may also have a light converter that is configured to be illuminated by the first light. The light converter converts the first light into second light. The second light has one or more second color components that are within the one or more prescribed ranges of light wavelengths. Strengths of the one or more second color components in the second light are monitored and regulated to produce a particular point within a specific color gamut.06-21-2012
201201623663D Cameras for HDR - High dynamic range 3D images are generated with relatively narrow dynamic range image sensors. Input frames of different views may be set to different exposure settings. Pixels in the input frames may be normalized to a common range of luminance levels. Disparity between normalized pixels in the input frames may be computed and interpolated. The pixels in the different input frames may be shifted to, or stay in, a common reference frame. The pre-normalized luminance levels of the pixels may be used to create high dynamic range pixels that make up one, two or more output frames of different views. Further, a modulated synopter with electronic mirrors is combined with a stereoscopic camera to capture monoscopic HDR, alternating monoscopic HDR and stereoscopic LDR images, or stereoscopic HDR images.06-28-2012
20120200617Variable Flower Display Backlight System - Techniques for using variable flower assemblies to control light leakage between designated portions of light-emitting elements are provided. In some embodiments, a variable flower assembly (08-09-2012
20120224788Merging Multiple Exposed Images in Transform Domain - Techniques are provided to generate high or wide dynamic range image from two or more input images of different exposure settings by directly merging coefficients derived from the input images in a transform domain. Energy values may be determined from coefficients blocks derived from the input images. The energy values may be compared with thresholds to determine weight factors for the coefficient blocks. An output coefficient block in the transform domain, used in or used to generate the output image, may be determined as a weighted combination of the coefficient blocks in the transform domain derived from the input images. If input images are compressed in transform domain, an output image can be generated without performing decompression in transform domain.09-06-2012
20120237037N Surround - Techniques are provided to use near-field speakers to add depth information that may be missing, incomplete, or imperceptible in far-field sound waves from far-field speakers, and to remove the multi-channel cross talk and reflected sound waves that otherwise may be inherent in a listening space with the far-field speakers alone. In some possible embodiments, a calibration tone may be monitored at each of a listener's ears. The calibration tone may be emitted by two or more far-field speakers. One or more audio portions from two or more near-field speakers may be outputted based on results of monitoring the calibration tone.09-20-2012
201202426623D Display Systems - Techniques for stereoscopic 3D display systems with active shuttered glasses are provided which overcomes the real-world limitations of sample/load & hold displays, resulting in greater overall brightness, while reducing crosstalk between each eye perspective. In some embodiments, a first left-eye perspective frame and a first right-eye frame are determined from image data. A first composite frame of a first type is then created. This first composite frame of the first type comprises one or more left-eye pixel values from the first left-eye frame and one or more right-eye pixel values from the first right-eye frame. The first composite frame of the first type is outputted to the display area. This may also include use of scanning backlight synchronized to loading/hold of display in conjunction with the composite frame.09-27-2012
20120257079Multi-Field CCD Capture for HDR Imaging - Techniques are described to combine image data from multiple images with different exposures into a relatively high dynamic range image. A first image of a scene may be generated with a first operational mode of an image processing system. A second image of the scene may be generated with a second different operational mode of the image processing system. The first image may be of a first spatial resolution, while the second image may be of a second spatial resolution. For example, the first spatial resolution may be higher than the second spatial resolution. The first image and the second image may be combined into an output image of the scene. The output image may be of a higher dynamic range than either of the first image and the second image and may be of a spatial resolution higher than the second spatial resolution.10-11-2012
20120281009Encoding, Decoding, and Representing High Dynamic Range Images - Techniques are provided to encode and decode image data comprising a tone mapped (TM) image with HDR reconstruction data in the form of luminance ratios and color residual values. In an example embodiment, luminance ratio values and residual values in color channels of a color space are generated on an individual pixel basis based on a high dynamic range (HDR) image and a derivative tone-mapped (TM) image that comprises one or more color alterations that would not be recoverable from the TM image with a luminance ratio image. The TM image with HDR reconstruction data derived from the luminance ratio values and the color-channel residual values may be outputted in an image file to a downstream device, for example, for decoding, rendering, and/or storing. The image file may be decoded to generate a restored HDR image free of the color alterations.11-08-2012
20120314944HIGH DYNAMIC RANGE, BACKWARDS-COMPATIBLE, DIGITAL CINEMA - HDR images are coded and distributed. An initial HDR image is received. Processing the received HDR image creates a JPEG-2000 DCI-compliant coded baseline image and an HDR-enhancement image. The coded baseline image has one or more color components, each of which provide enhancement information that allows reconstruction of an instance of the initial HDR image using the baseline image and the HDR-enhancement images. A data packet is computed, which has a first and a second data set. The first data set relates to the baseline image color components, each of which has an application marker that relates to the HDR-enhancement images. The second data set relates to the HDR-enhancement image. The data packets are sent in a DCI-compliant bit stream.12-13-2012
20130064462Efficient Decoding and Post-Processing of High Dynamic Range Images - A decoder receives for decoding and post-processing for display an HDR (high dynamic range) image comprising a first coded image (e.g., a JPEG-HDR baseline image) and a second coded image (e.g., a JPEG-HDR ratio image). The first coded image is partially decoded and post-processed according to a post-processing command (e.g., scaling) to output a first decoded and post-processed image. The second coded image is also partially decoded and post-processed according to the post-processing command to output a second decoded and post-processed image. The first and the second decoded and post-processed images are combined to output a decoded HDR image according to the post-processing command.03-14-2013
20130071022Encoding, Decoding, and Representing High Dynamic Range Images - Techniques are provided to encode and decode image data comprising a tone mapped (TM) image with HDR reconstruction data in the form of luminance ratios and color residual values. In an example embodiment, luminance ratio values and residual values in color channels of a color space are generated on an individual pixel basis based on a high dynamic range (HDR) image and a derivative tone-mapped (TM) image that comprises one or more color alterations that would not be recoverable from the TM image with a luminance ratio image. The TM image with HDR reconstruction data derived from the luminance ratio values and the color-channel residual values may be outputted in an image file to a downstream device, for example, for decoding, rendering, and/or storing. The image file may be decoded to generate a restored HDR image free of the color alterations.03-21-2013
20130093804Back Light Unit for Stereoscopic Display - Techniques for 3D back light units are described. In some possible embodiments, in a first time interval during which one or more back light units of a display system are turned off, a complete set of left pixel values in a left frame is outputted to a display panel of the display system. In some possible embodiments, in a second time interval during which the complete set of left pixel values in the left frame has been outputted to the display panel of the display system, the one or more back light units are turned on to illuminate the display panel and the second time interval is subsequent to, and is not overlapped with, the first time interval.04-18-2013
20130100178DISPLAYING IMAGES ON LOCAL-DIMMING DISPLAYS - Displays, display components, image and video processing apparatus and related methods are described. A method for driving local-dimming displays comprises generating control values for driving pixels of a spatial light modulator from one image data component and generating control values for driving backlight elements from a second image data component. The first and second image data components may respectively comprise a tone map and a ratio image. Control values for the spatial light modulator and/or backlight may be obtained using cost effective hardware.04-25-2013
20130147778Ambient Black Level - Techniques for operating a display system in a wide range of ambient light conditions are provided. An intensity of ambient light on a display panel may be detected. The display panel may be illuminated by light sources in addition to the ambient light. An individual light source may be individually settable to an individual light output level. If it is determined that the luminance level of the ambient light is above a minimum ambient luminance threshold, an ambient black level may be calculated using the intensity of ambient light. Light output levels of one or more of the light sources may be elevated to first light output levels. Here, the one or more light sources may be designated to illuminate one or more dark portions of an image. The first light output levels may create a new black level equaling the determined ambient black level.06-13-2013
20130265343Quantum Dots for Display Panels - Techniques for rendering images directly with light conversion materials are described. In some embodiments, image data for one or more image frames is received. A light source may be controlled to emit first light to irradiate a light conversion material disposed with an image rendering surface. Second light that renders the one or more image frames may be emitted from the light conversion material. The second light emitted from the light conversion material may be excited by the first light. A display system under techniques herein may be free of a light valve layer on which light transmittance is modulated on a pixel-by-pixel basis.10-10-2013
20130286037Display Backlight Normalization - Techniques for displaying images of different dynamic ranges in a display system are provided. In some embodiments, images that have a number of dynamic ranges may be normalized to a configured dynamic range that corresponds to the full intensity reproduction capability of the device. The configured dynamic range may be wider, greater, or deeper than the relatively limited dynamic range.10-31-2013
20130294689Encoding, Decoding, and Representing High Dynamic Range Images - Techniques are provided to encode and decode image data comprising a tone mapped (TM) image with HDR reconstruction data in the form of luminance ratios and color residual values. In an example embodiment, luminance ratio values and residual values in color channels of a color space are generated on an individual pixel basis based on a high dynamic range (HDR) image and a derivative tone-mapped (TM) image that comprises one or more color alterations that would not be recoverable from the TM image with a luminance ratio image. The TM image with HDR reconstruction data derived from the luminance ratio values and the color-channel residual values may be outputted in an image file to a downstream device, for example, for decoding, rendering, and/or storing. The image file may be decoded to generate a restored HDR image free of the color alterations.11-07-2013
20140078716Quantum Dot/Remote Phosphor Display System Improvements - A display system comprises light sources configured to emit first light with a first spectral power distribution; light regeneration layers configured to be stimulated by the first light and to convert at least a portion of the first light and recycled light into second light, the second light comprising (a) primary spectral components that correspond to primary colors and (b) secondary spectral components that do not correspond to the primary colors; and notch filter layers configured to receive a portion of the second light and to filter out the secondary spectral components from the portion of the second light. The portion of the second light can be directed to a viewer of the display system and configured to render images viewable to the viewer.03-20-2014
20140126180Quantum Dot Modulation For Displays - Modulated light sources are described. A modulated light source may have first light sources that are configured to emit first light, which has first color components that occupy a range that is beyond one or more prescribed ranges of light wavelengths. The modulated light source may also have a light converter that is configured to be illuminated by the first light. The light converter converts the first light into second light. The second light has one or more second color components that are within the one or more prescribed ranges of light wavelengths. Strengths of the one or more second color components in the second light are monitored and regulated to produce a particular point within a specific color gamut.05-08-2014
20140293392TECHNIQUES FOR QUANTUM DOT ILLUMINATION - Techniques for extracting light from a light guide are described. In some embodiments, a light source comprises a light guide configured to trap first light through total internal reflection. The light source may further comprise a plurality of light extractors configured to extract at least a portion of the first light upon establishing optical contact with the light guide. The light source is configured to control individual light extractors in the plurality of light extractors to make optical contact with the light guide. Quantum dots may be used with the light source to regenerate light, within desired frequency band, from the at least a portion of the first light.10-02-2014
20140307011Systems and Methods for Display Systems Having Improved Power Profiles - Techniques are provided to provide various pulse width modulation (PWM) schemes to embodiments of dual modulator display systems that may comprise a backlight of individually addressable and controllable light emitters. The backlight provides illumination to a light modulator for further conditioning of the light to be presented to a viewer. The backlight may be striped and each stripe is assigned a PWM scheme that effectively increases the bit depth of the controller for each stripe. The display system may allow a better matching of PWM periods to LCD frame rates to reduce visual artifacts. In another embodiment, the display system may detect a small bright feature to be rendered in the image data and, with a pre-assignment of light emitters to different partitions, the backlight controller may drive a subset of the light emitters according to the partitions.10-16-2014
20140354709Variable Flower Display Backlight System - Techniques for using variable flower assemblies to control light leakage between designated portions of light-emitting elements are provided. In some embodiments, a variable flower assembly comprises a plurality of light-transmissive segments each may be electronically set to a different light-transparency level. The variable flower assembly substantially forms a tube around a light-emitting element mounted on a first plane. A first edge of each of the light-transmissive segments collectively surrounds the light-emitting element on a second plane substantially parallel to the first plane. A second opposing edge of each of the light-transmissive segments collectively forms an opening of the tube. In some embodiments, a reflective assembly which reflectance level is electronically controllable may surround the variable flower assembly.12-04-2014
20150023433High Dynamic Range, Backwards-Compatible, Digital Cinema - HDR images are coded and distributed. An initial HDR image is received. Processing the received HDR image creates a JPEG-2000 DCI-compliant coded baseline image and an HDR-enhancement image. The coded baseline image has one or more color components, each of which provide enhancement information that allows reconstruction of an instance of the initial HDR image using the baseline image and the HDR-enhancement images. A data packet is computed, which has a first and a second data set. The first data set relates to the baseline image color components, each of which has an application marker that relates to the HDR-enhancement images. The second data set relates to the HDR-enhancement image. The data packets are sent in a DCI-compliant bit stream.01-22-2015

Patent applications by Ajit Ninan, San Jose, CA US

Biju Ninan, Cupertino, CA US

Patent application numberDescriptionPublished
20100078312Sputtering Chamber Having ICP Coil and Targets on Top Wall - A vacuum chamber has multiple wafer positions, and the wafers are positioned by a rotating pallet. Above a wafer position in the chamber there may be a sputtering target, a flat inductively coupled plasma (ICP) coil for etching the wafer and/or promoting sputtering, and a TEOS vapor outlet for forming an oxide film on the wafer. As the pallet rotates, a wafer may first have deposited a thin layer of oxide on walls of a via hole at the TEOS position. A metal layer may then be sputtered in the via hole at the sputtering position, and any pinch-off material may be etched away at an etching position. A magnet behind each target scans back and forth behind the target. Vertical magnet walls substantially surround a sputtering target for confining the sputtered material to an angle that is more normal to the wafer than prior art trajectories to fill narrower vias.04-01-2010
20100080928Confining Magnets In Sputtering Chamber - A vacuum chamber has multiple wafer positions, and the wafers are positioned by a rotating pallet. Above a wafer position in the chamber there may be a sputtering target, a flat inductively coupled plasma (ICP) coil for etching the wafer and/or promoting sputtering, and a TEOS vapor outlet for forming an oxide film on the wafer. As the pallet rotates, a wafer may first have deposited a thin layer of oxide on walls of a via hole at the TEOS position. A metal layer may then be sputtered in the via hole at the sputtering position, and any pinch-off material may be etched away at an etching position. A magnet behind each target scans back and forth behind the target. Vertical magnet walls substantially surround a sputtering target for confining the sputtered material to an angle that is more normal to the wafer than prior art trajectories to fill narrower vias.04-01-2010
20120024694Triangular Scanning Magnet in Sputtering Tool Moving Over Larger Triangular Target - A sputtering chamber contains a plurality of substantially triangular targets supported by a top wall. The targets have narrow ends pointing toward a center of the top wall. Above each target is a relatively small substantially triangular magnet. Each magnet is connected to a single central actuator that scans all magnets back and forth through an arc across its associated target. Each magnet is also movably connected to an arm connected to the central scanning actuator. A linear actuator moves each magnet up and down the arm simultaneously with the angular scanning movement. The combination of the simultaneous angular movement and linear movement (perpendicular to the arc) of the magnet causes each magnet to move only over a substantially triangular area corresponding to an area of an associated target. In one embodiment, the linear speed of the magnets is varied to achieve uniform erosion of the target.02-02-2012

Jennifer Ninan, San Jose, CA US

Patent application numberDescriptionPublished
20080280109Apparatus for re-usable learning card - A learning card system comprised of a rigid backing, an ultra-peelable decal affixed using electrostatic adhesion. Said learning card system being sized to fit in a human hand.11-13-2008

Lal Ninan, Santa Rosa, CA US

Patent application numberDescriptionPublished
20090248144ENDOLUMINAL DEVICE WITH EXTRACELLULAR MATRIX MATERIAL AND METHODS - An endoluminal device comprises a stent and a tubular graft supported by the stent. The graft has a proximal and a distal opening and comprises a synthetic material and a bioremodelable material. The bioremodelable material is disposed on an exterior surface in at least one band adjacent at least one of the proximal and distal openings.10-01-2009
20090270978COATED EMBOLIZATION DEVICE - Described are embolization devices having unique bioactive coatings, as well as methods for their manufacture and use. An illustrative embolization device of the invention comprises an embolic body and a coating material comprising biotropic extracellular matrix material immobilized on a surface of the embolic body. The biotropic extracellular matrix material comprises a network of self-assembled collagen fibrils, and comprises at least one bioactive agent retained in the extracellular matrix material, wherein the bioactive agent is selected from the group consisting of a proteoglycan, a growth factor, a glycoprotein, and a glycosaminoglycan. In certain forms, such an extracellular matrix material comprises a remodelable, angiogenic extracellular matrix material, for example, a submucosa material such as but not limited to porcine small intestinal submucosa.10-29-2009
20100196480GRAFT MATERIALS CONTAINING BIOACTIVE EXTRACELLULAR MATRICES AND CELLS - Described are packaged, sterile medical graft products containing controlled levels of a growth factor such as Fibroblast Growth Factor-2 (FGF-2). Also described are methods of manufacturing medical graft products wherein processing, including sterilization, is controlled and monitored to provide medical graft products having modulated, known levels of a extracellular matrix factor, such as a growth factor, e.g. FGF-2. Preferred graft materials are extracellular matrix materials isolated from human or animal donors, particularly submucosa-containing extracellular matrix materials. Further described are ECM compositions that are or are useful for preparing gels, and related methods for preparation and use.08-05-2010
20110318419GRAFT MATERIALS CONTAINING BIOACTIVE SUBSTANCES, AND METHODS FOR THEIR MANUFACTURE - Described are packaged, sterile medical graft products containing controlled levels of a growth factor such as Fibroblast Growth Factor-2 (FGF-2). Also described are methods of manufacturing medical graft products wherein processing, including sterilization, is controlled and monitored to provide medical graft products having modulated, known levels of a extracellular matrix factor, such as a growth factor, e.g. FGF-2. Preferred graft materials are extracellular matrix materials isolated from human or animal donors, particularly submucosa-containing extracellular matrix materials. Further described are ECM compositions that are or are useful for preparing gels, and related methods for preparation and use.12-29-2011

Patent applications by Lal Ninan, Santa Rosa, CA US

Lukose Ninan, Irvine, CA US

Patent application numberDescriptionPublished
20090295502Filter for suppressing selected frequencies - According to one exemplary embodiment, a selectable notch filter includes a transmission line, a bias circuit, and a switch for selectably coupling the transmission line to ground. In one embodiment, the switch is a PIN diode. The selectable notch filter can selectably suppress a first frequency from being output when the transmission line is coupled to ground. Additionally, the selectable notch filter can selectably suppress a second frequency from being output when the transmission line is not coupled to ground. In one embodiment, the first frequency is approximately equal to a multiple of two of the second frequency. In one embodiment, the selectable notch filter can utilize more than one transmission line.12-03-2009
Website © 2015 Advameg, Inc.