Patents - stay tuned to the technology

Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees


Feddeler, TX

James Feddeler, Austin, TX US

Patent application numberDescriptionPublished
20110012650MICROCONTROLLER UNIT AND METHOD THEREFOR - A microcontroller unit comprises a reset controller operably coupled to a plurality of logic elements of the microcontroller unit. Low voltage detection logic is operably coupled to the reset controller and arranged to provide a plurality of low voltage interrupt signals to a number of respective logic elements of the microcontroller unit via the reset controller. A method of operating a microcontroller unit is also described.01-20-2011

James R. Feddeler, Austin, TX US

Patent application numberDescriptionPublished
20100079317METHOD AND APPARATUS FOR TESTING DATA CONVERTER - A data converter for converting analog signals to digital signals, or for converting digital signals to analog signals is provided. In one embodiment, a production self-test is provided. In one embodiment, a high-speed lower-resolution method or mode for a data converter is provided. In one embodiment, a differential data converter with a more stable comparator common mode voltage is provided. In one embodiment, the input range of a digitally calibrated data converter is provided and maintained so that there is no loss in input range due to the calibration. In one embodiment, digital post-processing of an uncalibrated result using a previously stored calibration value is provided.04-01-2010
20100079318DATA CONVERSION CIRCUITRY AND METHOD THEREFOR - A data converter for converting analog signals to digital signals, or for converting digital signals to analog signals is provided. In one embodiment, a production self-test is provided. In one embodiment, a high-speed lower-resolution method or mode for a data converter is provided. In one embodiment, a differential data converter with a more stable comparator common mode voltage is provided. In one embodiment, the input range of a digitally calibrated data converter is provided and maintained so that there is no loss in input range due to the calibration. In one embodiment, digital post-processing of an uncalibrated result using a previously stored calibration value is provided.04-01-2010
20100079319DATA CONVERSION CIRCUITRY AND METHOD THEREFOR - A data converter for converting analog signals to digital signals, or for converting digital signals to analog signals is provided. In one embodiment, a production self-test is provided. In one embodiment, a high-speed lower-resolution method or mode for a data converter is provided. In one embodiment, a differential data converter with a more stable comparator common mode voltage is provided. In one embodiment, the input range of a digitally calibrated data converter is provided and maintained so that there is no loss in input range due to the calibration. In one embodiment, digital post-processing of an uncalibrated result using a previously stored calibration value is provided.04-01-2010
20100079325DATA CONVERSION CIRCUITRY AND METHOD THEREFOR - A data converter for converting analog signals to digital signals, or for converting digital signals to analog signals is provided. In one embodiment, a production self-test is provided. In one embodiment, a high-speed lower-resolution method or mode for a data converter is provided. In one embodiment, a differential data converter with a more stable comparator common mode voltage is provided. In one embodiment, the input range of a digitally calibrated data converter is provided and maintained so that there is no loss in input range due to the calibration. In one embodiment, digital post-processing of an uncalibrated result using a previously stored calibration value is provided.04-01-2010
20100079327DATA CONVERSION CIRCUITRY AND METHOD THEREFOR - A data converter for converting analog signals to digital signals, or for converting digital signals to analog signals is provided. In one embodiment, a production self-test is provided. In one embodiment, a high-speed lower-resolution method or mode for a data converter is provided. In one embodiment, a differential data converter with a more stable comparator common mode voltage is provided. In one embodiment, the input range of a digitally calibrated data converter is provided and maintained so that there is no loss in input range due to the calibration. In one embodiment, digital post-processing of an uncalibrated result using a previously stored calibration value is provided.04-01-2010
20100320997METHOD AND CIRCUIT FOR MEASURING QUIESCENT CURRENT - A measurement circuit and method for measuring a quiescent current of a circuit under test are provided. The measurement circuit comprises: a comparator having a first input terminal for receiving a reference voltage, a second input terminal coupled to the circuit under test, and an output terminal; a current source having a first terminal coupled to a first power supply voltage terminal, and a second terminal for providing a current to the circuit under test; a first switch having a first terminal coupled to the second terminal of the current source, a second terminal coupled to the circuit under test, and a control terminal coupled to the output terminal of the comparator; and a first counter having a first input terminal coupled to the output terminal of the comparator, a second input terminal for receiving a clock signal, and an output terminal for providing a first counter value associated with the quiescent current.12-23-2010
20120182067SWITCHED-CAPACITOR PROGRAMMABLE-GAIN AMPLIFIER - A programmable-gain amplifier has a first input node coupled to receive a first input signal and a control input coupled to receive a gain select signal. The programmable-gain amplifier includes a differential amplifier having a first input and a first output and a plurality of capacitors. A first terminal of each of the plurality of capacitors is coupled to the first input of the differential amplifier, and a second terminal of each of the plurality of capacitors is coupled to the first input node during a sampling phase of the programmable-gain amplifier and selectively coupled to the first output of the differential amplifier, based on the gain select signal, during a gain phase of the programmable-gain amplifier.07-19-2012
20120256774METHOD AND APPARATUS FOR SELF-TEST OF SUCCESSIVE APPROXIMATION REGISTER (SAR) A/D CONVERTER - A single-ended SAR ADC includes an additional capacitor, a self-test engine, and independent control of sample and hold conditions, which allows for quick and accurate testing of the ADC.10-11-2012
20130249723METHOD AND APPARATUS FOR SELF-TEST OF SUCCESSIVE APPROXIMATION REGISTER (SAR) A/D CONVERTER - A single-ended SAR ADC includes an additional capacitor, a self-test engine, and independent control of sample and hold conditions, which allows for quick and accurate testing of the ADC.09-26-2013
20140035560METHOD AND APPARATUS FOR LIMITING ACCESS TO AN INTEGRATED CIRCUIT (IC) - A method and apparatus for limiting access to an integrated circuit (IC) upon detection of abnormal conditions is provided. At least one of abnormal voltage detection, abnormal temperature detection, and abnormal clock detection are provided with low power consumption. Both abnormally low and abnormally high parameter values (e.g. abnormally low or high voltage, temperature, or clock frequency) may be detected. Abnormal clock detection may also detect a stopped clock signal, including a clock signal stopped at a low logic level or at a high logic level. Furthermore, abnormal clock detection may detect an abnormal duty cycle of a clock signal. A sampled bandgap reference may be used to provide accurate voltage and current references while consuming a minimal amount of power. Upon detection of an abnormal parameter value, one or more tamper indications may be provided to initiate tampering countermeasures, such as limiting access to the IC.02-06-2014

Patent applications by James R. Feddeler, Austin, TX US

Website © 2015 Advameg, Inc.