Patent application title: RECOMBINANT COLLAGEN AND ELASTIN MOLECULES AND USES THEREOF
Inventors:
Nikolay Ouzounov (San Ramon, CA, US)
Alexander Lorestani (Oakland, CA, US)
Monica Bhatia (San Ramon, CA, US)
IPC8 Class: AC07K1478FI
USPC Class:
1 1
Class name:
Publication date: 2022-09-08
Patent application number: 20220281954
Abstract:
This disclosure provides non-naturally occurring collagen and elastin
molecules. The non-naturally occurring collagens and elastins include
truncated collagens, truncated elastins, as well as fusion proteins
thereof. The non-naturally occurring collagen and elastin are useful in
foods, cosmetics and many other products and uses.Claims:
1.-25. (canceled)
26. A recombinant polypeptide produced in a microbial host cell, the recombinant polypeptide comprising an amino acid sequence of full-length human type 21 alpha 1 collagen having a truncation of from 50 amino acids to 800 amino acids, wherein the truncation comprises a truncation at the N-terminal end and the C-terminal end of the full-length human type 21 alpha 1 collagen, wherein the recombinant polypeptide comprises the amino acid sequence according to SEQ ID NO: 76, and wherein the recombinant polypeptide is monomeric and does not form a stable triple helix structure of natural collagen.
27. The recombinant polypeptide of claim 26, wherein the truncation further comprises an internal truncation of the full-length human type 21 alpha 1 collagen.
28. The recombinant polypeptide of claim 26, wherein the truncation comprises a truncation at the C-terminal end of the full-length human type 21 alpha collagen from 50 amino acids and 250 amino acids.
29. The recombinant polypeptide of claim 26, wherein the truncation comprises a truncation at the N-terminal end of the full-length human type 21 alpha 1 collagen of between 50 amino acids and 600 amino acids.
30. The recombinant polypeptide of claim 26, wherein the recombinant polypeptide consists of the amino acid sequence according to SEQ ID NO: 76.
31. The recombinant polypeptide of claim 26, further comprising one or more selected from the group consisting of: a secretion tag, a histidine tag, a fluorescent protein, a protease cleavage site, and a beta-lactamase protein.
32. The recombinant polypeptide of claim 31, wherein the secretion tag is DsbA.
33. A composition comprising from 0.005% w/w to 30% w/w of a recombinant polypeptide of claim 26.
34. The composition of claim 33, wherein the recombinant polypeptide comprises SEQ ID NO: 76.
35. The composition of claim 33, wherein the recombinant polypeptide consists of SEQ ID NO: 76.
36. The composition of claim 33, wherein the composition is formulated for topical application.
37. The composition of claim 36, wherein the composition comprises one or more of a topical carrier, a preservative, or both.
38. The composition of claim 37, wherein the topical carrier is selected from the group consisting of: a liposome, a biodegradable microcapsule, a lotion, a spray, an aerosol, a dusting powder, a biodegradable polymer, a mineral oil, a triglyceride oil, a silicone oil, glycerin, glycerin monostearate, an alcohol, an emulsifying agents, a liquid petroleum, a white petrolatum, propylene glycol, polyoxyethylene, polyoxypropylene, wax, sorbitan monostearate, polysorbate, cetyl ester wax, cetearyl alcohol, 2-octyldodecanol, benzyl alcohol, cyclomethicone, cyclopentasiloxane, water, and any combination thereof.
39. The composition of claim 37, wherein the preservative is selected from the group consisting of: tocopherol, diiodomethyl-p-tolylsulfone, 2-Bromo-2-nitropropane-1,3-diol, cis isomer 1-(3-chloroallyl)-3,5,7-triaza-1-azoniaadamantane chloride, glutaraldehyde, 4,4-dimethyl oxazolidine, 7-Ethylbicyclooxazolidine, methyl paraben, sorbic acid, Germaben II, rosemary extract, EDTA, and any combination thereof.
40. The composition of claim 36, wherein the composition is a cosmetic.
41. A method of treating the skin of a subject or providing a cosmetic benefit to the skin of the subject, the method comprising administering or applying to the skin of a subject a composition of claim 36, thereby treating the skin of the subject or providing the cosmetic benefit to the skin of the subject.
42. The method of claim 41, wherein the administering or the applying results in an increase in viability of keratinocytes, fibroblasts, or both, of the subject after exposure to UV radiation.
43. The method of claim 41, wherein the administering or the applying results in an increase in viability of keratinocytes, fibroblasts, or both, of the subject after exposure to urban dust.
44. The method of claim 41, wherein the administering or the applying results in a decrease in production of inflammatory cytokines.
45. A recombinant cell comprising at least one copy of a heterologous nucleic acid sequence encoding a recombinant polypeptide according to claim 26.
46. The recombinant cell of claim 45, wherein the recombinant cell is a bacterial cell.
47. The recombinant cell of claim 46, wherein the bacterial cell is Escherichia coli.
48. The recombinant cell of claim 45, wherein the heterologous nucleic acid sequence comprises SEQ ID NO: 75.
49. The recombinant cell of claim 45, wherein the heterologous nucleic acid sequence is codon-optimized for expression in a cell.
50. The recombinant cell of claim 45, wherein the recombinant cell is capable of secreting the recombinant polypeptide extracellularly.
51. A composition comprising the recombinant cell of claim 45, and a culture media comprising a recombinant polypeptide of claim 26.
52. A method for producing a recombinant polypeptide, the method comprising: a) incubating a recombinant cell of claim 45 in a culture media, wherein the recombinant cell secretes the recombinant polypeptide into the culture media; b) collecting the culture media comprising the recombinant polypeptide secreted thereto; and c) purifying the recombinant polypeptide from the culture media.
Description:
CROSS-REFERENCE
[0001] This application is a continuation application of U.S. patent application Ser. No. 16/839,035, filed Apr. 2, 2020, which is a continuation application of U.S. patent application Ser. No. 16/144,914, filed Sep. 27, 2018, now U.S. Pat. No. 11,180,541, issued Nov. 23, 2021, which claims priority from U.S. Provisional Patent Application No. 62/564,964, filed Sep. 28, 2017, and U.S. Provisional Patent Application No. 62/657,591, filed Apr. 13, 2018, the disclosures of which are incorporated by reference herein in their entirety.
SEQUENCE LISTING
[0002] The instant application contains a Sequence Listing which has been submitted electronically in ASCII format and is hereby incorporated by reference in its entirety. Said ASCII copy, created on Nov. 15, 2021, is named 57607_702_305.txt and is 323,825 bytes in size.
FIELD
[0003] The present disclosure relates to non-naturally occurring full-length and truncated collagen molecules and full-length and truncated elastin molecules and uses thereof.
BACKGROUND
[0004] Collagens and similar proteins are the most abundant proteins in the biosphere. Collagens and elastins are structural proteins found in the skin, connective tissue and bone of animals and other tissues. In humans, the amount of collagen present in the body is approximately one third of the total proteins and accounts for about three fourths of the dry weight of skin. Elastin is a highly elastic protein found in connective tissue and other types of tissue.
[0005] The structure of collagen is a triple helix in which three polypeptide strands together form a helical coil. The individual polypeptide strands are composed of repeating triplet amino acid sequences designated as GLY-X-Y. X and Y can be any amino acid and the third amino acid is glycine. The amino acids proline and hydroxyproline are found in high concentrations in collagen. The most common triplet is proline-hydroxyproline-glycine (Gly-Pro-Hyp) accounting for approximately 10.5% of the triplets in collagen.
[0006] Gelatin is a product obtained by partial hydrolysis of collagen. Typically, gelatin is produced by acid hydrolysis, alkaline hydrolysis, and enzymatic hydrolysis or by exposing collagen to heat in an aqueous solution (e.g., boiling the bones and skins of animal, boiling fish scales, etc.).
[0007] Gelatin is used in many products including cosmetics, foods, pharmaceuticals, medical devices, photographic films, adhesives, binders and many others. The physical and chemical properties of gelatin are tuned to the particular application. These physical/chemical properties include gel strength, melting point temperature, viscosity, color, turbidity, pH, isoelectric point and others.
[0008] Elastin is an elastic protein that is crucial for the proper functioning of arteries, lung, tendons, ligament, skin and other tissue. Elastin provides the tissues with the ability to stretch and return to its original shape. The protein tropoelastin is the building block of elastin. In contrast to collagen that include a family of genes, there is one tropoelastin gene in humans. When expressed, the single elastin gene is spliced to produce different forms of the tropoelastin protein. Many tropoelastin molecules associate together to form elastin.
[0009] L-form bacteria, or L-forms, are bacterial strains derived from parent species (N-forms) that are able to grow as cell wall-deficient (spheroplast type) or as cell wall-less (protoplast type) cells. See, Madoff S (Ed): The Bacterial L-Forms. New York: Marcel Dekker Inc., 1986; Mattmann LH (Ed): Cell Wall Deficient Forms. Boca Raton: CRC Press; 1993; and Gumpert J, Taubeneck U: Characteristic properties and biological significance of stable protoplast type L-forms. In Protoplasts, Lecture Proceedings of the 6th International Protoplast Symposium: Basel. Experientia 1983, 46(suppl):227-241.
[0010] Protoplast type L-forms have been cultivated in the cell wall-less state and represent genetically stable mutants showing extreme pleiotropic changes, including the inability to form cell walls, capsules, flagella, pili, spores and mesosomes, altered colony and cell morphology, qualitative and quantitative changes in the lipid and protein components of the cytoplasmic membrane, the absence of extracellular proteolytic activities, resistance against bacteriophages and the incapability to propagate outside laboratory conditions. See, Gumpert and Taubeneck (supra); and Hoischen et al., Lipid and fatty acid composition of cytoplasmic membranes from Streptomyces hygroscopic and its stable protoplast type L-form. J Bacteriol 1997, 179:3430-3436.
SUMMARY
[0011] In one aspect, a non-naturally occurring collagen produced by a host cell is provided. The non-naturally occurring collagen is jellyfish (Hydrozoan) collagen, human collagen, Chondrosia reniformis (kidney sponge) collagen, or Rhincodon typus (whale shark) collagen. In an embodiment, the non-naturally occurring collagen is a full-length or a truncated collagen. In one embodiment, the collagen is truncated by an internal truncation of between 50 amino acids and 500 amino acids. In another embodiment, the truncation is at the C-terminal end or the N-terminal end of the collagen polypeptide. The non-naturally occurring collagens are SEQ ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 74, SEQ ID NO: 76, SEQ ID NO: 78, SEQ ID NO: 80, SEQ ID NO: 82, SEQ ID NO: 84, SEQ ID NO: 86, SEQ ID NO: 91, SEQ ID NO: 92, SEQ ID NO: 94, SEQ ID NO: 96, SEQ ID NO: 102, SEQ ID NO: 104, SEQ ID NO: 106, SEQ ID NO: 108, SEQ ID NO:110, or SEQ ID NO: 112.
[0012] In another aspect, the non-naturally occurring collagen further comprises amino acid sequences including a secretion tag, a histidine tag, a green fluorescent protein tag, a protease cleavage site, a Beta-lactamase and/or GEK amino acid trimer repeats and/or GDK amino acid trimer repeats. When the non-naturally occurring collagen comprises one or more amino acid trimer repeats of the sequence glycine-glutamic acid-lysine (GEK) and/or glycine-aspartic acid-lysine (GDK), the number of GEK and/or GDK trimer repeats can range from 2 to 50 trimer repeats (SEQ ID NOS: 130-131, respectively). In one aspect, the secretion tag is DsbA, PelB, OmpA, TolB, MalE, 1pp, TorA, or HylA, or a hybrid secretion tag that comprises a portion of one secretion tag fused to a portion of a second secretion tag. An exemplary secretion tag is DsbA.
[0013] In one aspect, provided are compositions that comprise between 0.005% and 30% w/w non-naturally occurring collagen. The compositions can further comprise at least one additional ingredient comprising a topical carrier or a preservative.
[0014] Compositions comprising non-naturally occurring collagen are in one aspect topical compositions for applying to skin. The topical compositions are used for decreasing skin damage or promoting the repair of damaged skin.
[0015] One aspect provides methods for decreasing skin damage or promoting the repair of damaged skin. The method comprises applying the composition comprising elastin to the skin of a subject. The method increases the viability of the fibroblast cells or keratinocytes of the skin of the subject. In another aspect the application of the composition increases the synthesis of procollagen by the fibroblast cells of the subject's skin. In another aspect the topical application of the composition protects skin or keratinocytes against UV damage. In yet another embodiment, thymine-thymine (TT) dimer formation is decreased by the collagens or elastins disclosed herein.
[0016] Another aspect provided herein are methods of increasing the viability of skin cells. The method comprises applying collagen or elastin molecules to the skin or skin cell. The collagen or elastin as provided increases the viability of keratinocytes and/or fibroblasts is increased upon exposure to UV radiation, urban dust or other damaging stimuli.
[0017] In another aspect provided herein are methods for decreasing the production of inflammatory cytokines in a skin cell. In one embodiment the skin cell is a keratinocyte. The method comprises applying a collagen or elastin molecule to a skin cell. The production of inflammatory cytokines including TNF.alpha., IL-1.alpha., IL-1.beta., IL-3, IL-6, IL-7, IL-8, IL-10, IL-18, and IL-1RA.
[0018] In another aspect, provided are methods of protecting skin cells against the effect of exposure to urban dust. The method comprises the step of applying the collagen or elastin disclosed herein to the skin cell. The exposure of skin cell to collagen or elastin increases the viability of the skin cell. In an embodiment, the skin cell is a keratinocyte or a fibroblast.
[0019] In one aspect, a non-naturally occurring elastin produced by a host cell is provided. The non-naturally occurring elastin is jellyfish elastin, human elastin, Chondrosia reniformis (kidney sponge) elastin, or Rhincodon typus elastin. In an embodiment, the non-naturally occurring elastin is a full-length or truncated elastin. In one embodiment, the elastin is truncated by an internal truncation of between 50 amino acids and 500 amino acids. In another embodiment, the truncation is at the C-terminal end or the N-terminal end of the elastin polypeptide. The non-naturally occurring elastins are SEQ ID NO: 31, SEQ ID NO: 33, SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 39, SEQ ID NO: 41, SEQ ID NO: 43, SEQ ID NO: 45, SEQ ID NO: 47, SEQ ID NO: 49, SEQ ID NO: 51, SEQ ID NO: 53, SEQ ID NO: 55 SEQ ID NO: 57, SEQ ID NO: 59, SEQ ID NO: 61, SEQ ID NO: 63, SEQ ID NO: 65, SEQ ID NO: 67, SEQ ID NO: 69, SEQ ID NO: 71, SEQ ID NO: 98, or SEQ ID NO: 110.
[0020] In another aspect, the non-naturally occurring elastin further comprises amino acid sequences including a secretion tag, a histidine tag, a green fluorescent protein tag, a protease cleavage site, a Beta-lactamase and/or GEK amino acid trimer repeats and/or GDK amino acid trimer repeats. When the non-naturally occurring collagen comprises one or more amino acid trimer repeats of the sequence glycine-glutamic acid-lysine (GEK) and/or glycine-aspartic acid-lysine (GDK), the number of GEK and/or GDK trimer repeats can range from 2 to 50 trimer repeats (SEQ ID NOS: 130-131, respectively). In one aspect, the secretion tag is DsbA, PelB, OmpA, TolB, MalE, 1pp, TorA, or HylA, or a hybrid secretion tag that comprises a portion of one secretion tag fused to a portion of a second secretion tag. An exemplary secretion tag is DsbA.
[0021] In another embodiment, compositions that comprise between 0.005% and 30% w/w non-naturally occurring elastin are provided. The compositions can further comprise at least one additional ingredient comprising a topical carrier or a preservative.
[0022] Compositions comprising non-naturally occurring elastin are in one aspect topical compositions for applying to skin. The topical compositions are used for decreasing skin damage or promoting the repair of damaged skin.
[0023] One embodiment provides methods for decreasing skin damage or promoting the repair of damaged skin. The method comprises applying the composition comprising elastin to the skin of a subject. The method increases the viability of the fibroblast cells of the skin of the subject. In another aspect the application of the composition increases the synthesis of procollagen by the fibroblast cells of the subject's skin. In another aspect the topical application of the compositions protects skin or keratinocytes against UV damage. In yet another embodiment, thymine-thymine (TT) dimer formation is decreased by the collagens or elastins disclosed herein.
[0024] Another embodiment provides polynucleotides that encode a non-naturally occurring collagen or a non-naturally occurring elastin. The polynucleotides encode collagen or elastin from jellyfish, human, Chondrosia reniformis (kidney sponge), or Rhincodon typus. The encoded collagen or elastin may be full length or truncated. In one embodiment, the collagen or elastin is truncated by an internal truncation of between 50 amino acids and 500 amino acids.
[0025] In one embodiment polynucleotides that encode fusion proteins comprising a secretion tag, a histidine tag, a green fluorescent protein tag, a protease cleavage site, a Beta-lactamase along and/or GEK amino acid trimer repeat and/or GDK amino acid trimer repeats together with collagen or elastin are provided. The non-naturally occurring collagen or elastin may comprise one or more amino acid trimer repeats of the sequence glycine-glutamic acid-lysine (GEK) and/or glycine-aspartic acid-lysine (GDK), the number of GEK and/or GDK trimer repeats can range from 2 to 50 trimer repeats (SEQ ID NOS: 130-131, respectively). In one aspect, the secretion tag is DsbA, PelB, OmpA, TolB, MalE, 1pp, TorA, or HylA, or a hybrid secretion tag that comprises a portion of one secretion tag fused to a portion of a second secretion tag.
[0026] An exemplary embodiment secretion tag is DsbA.
[0027] The polynucleotides and vectors can be used to transform host cells and express the polynucleotides. Polynucleotides encoding a non-naturally occurring collagen, wherein the polynucleotide is SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19 SEQ ID NO: 73, SEQ ID NO: 75, SEQ ID NO: 77, SEQ ID NO: 79, SEQ ID NO: 81, SEQ ID NO: 83, SEQ ID NO: 85, SEQ ID NO: 90, SEQ ID NO: 93, SEQ ID NO: 95, SEQ ID NO: 97, SEQ ID NO: 103, SEQ ID NO: 105, SEQ ID NO: 107, SEQ ID NO: 109, SEQ ID NO:111, SEQ ID NO: 113, or SEQ ID NO:105 are provided. Polynucleotides encoding a non-naturally occurring elastin, wherein the polynucleotide is SEQ ID NO: 34, SEQ ID NO: 36, SEQ ID NO: 38, SEQ ID NO: 40, SEQ ID NO: 42, SEQ ID NO: 44, SEQ ID NO: 46, SEQ ID NO: 48, SEQ ID NO: 50, SEQ ID NO: 52, SEQ ID NO: 54, SEQ ID NO: 56, SEQ ID NO: 58, SEQ ID NO: 60, SEQ ID NO: 62, SEQ ID NO: 64, SEQ ID NO: 66, SEQ ID NO: 68, SEQ ID NO: 70, and SEQ ID NO: 72, SEQ ID NO: 99, or SEQ ID NO:101 provided.
[0028] Host cells that express the polynucleotides of the invention are disclosed. Host cells can be any host cell including bacterial cells, yeast cells, fungal cells, insect cells, mammalian cells, plant cells and any other cells used to express exogenous polynucleotides.
[0029] Bacterial host cells in which the cells have been modified to inhibit cell division and the periplasmic space is increased are provided. An exemplary host cell is E. coli.
[0030] One embodiment provides a method of producing a non-naturally occurring collagen or a non-naturally occurring elastin. The method comprises the steps of inoculating a culture medium with a recombinant host cell comprising polynucleotides that encode the collagen or elastin, cultivating the host cell, and isolating the non-naturally occurring collagen or the non-naturally occurring elastin from the host cell.
BRIEF DESCRIPTION OF THE DRAWINGS
[0031] FIG. 1 depicts the physiological state difference between switched and unswitched cells. A) Unswitched Escherichia coli cells. B) Same Escherichia coli population as figure A but has undergone the physiological switch. C) Phase contrast of switched Escherichia coli cell containing cytoplasmic RFP and periplasmic GFP. D) Fluorescent imaging of cell in figure C illustrates targeted protein localization.
[0032] FIG. 2 depicts enhanced protein production in switched cells. A-B) Target protein for T7 inducible protein production is periplasmic expressed GFP, produced in Escherichia coli BL21. The same population of cells was used and induced at OD 1.1. A) Protein ladder (lane 1), IPTG induced protein production (lane 2), IPTG induced protein production with physiological switch (lane 3). B) Two vials of the cell GFP induced cultures with IPTG only on left and IPTG+Switch on right. C) Expression of a 22 kDa collagen using switched cells showing protein ladder (lane 1), supernatant after protein production (lane 2), cell pellet (lane 3).
[0033] FIG. 3 depicts a time-lapse of Escherichia coli cell switching over time.
[0034] FIG. 4 illustrates other organisms undergoing the physiological switch. A) Agrobacterium tumefaciens normal physiology. B) Agrobacterium tumefaciens switched physiology. C) Pseudomonas aeruginosa PAO1 normal physiology. D) Pseudomonas aeruginosa PAO1 switched physiology. E) Brevundimonas diminuta normal physiology. F) Brevundimonas diminuta switched physiology. G) Agrobacterium tumefaciens normal physiology. H) Agrobacterium tumefaciens switched physiology.
[0035] FIG. 5 illustrates the reduction in TT dimer formation by treatment of human keratinocytes with truncated collagen.
DESCRIPTION
[0036] In the following description, certain specific details are set forth in order to provide a thorough understanding of various embodiments of the disclosure. However, one skilled in the art will understand that the disclosure may be practiced without these details.
[0037] As used herein the term "about" refers to .+-.10%.
[0038] The term "consisting of" means "including and limited to".
[0039] The term "consisting essentially of" means that the composition, method or structure may include additional ingredients, steps and/or parts, but only if the additional ingredients, steps and/or parts do not materially alter the basic and novel characteristics of the claimed composition, method or structure.
[0040] As used herein, the singular form "a", "an" and "the" include plural references unless the context clearly dictates otherwise. For example, the term "a compound" or "at least one compound" may include a plurality of compounds, including mixtures thereof.
[0041] Throughout this application, various embodiments of this disclosure may be presented in a range format. It should be understood that the description in range format is merely for convenience and brevity and should not be construed as an inflexible limitation on the scope of the disclosure. Accordingly, the description of a range should be considered to have specifically disclosed all the possible subranges as well as individual numerical values within that range. For example, description of a range such as from 1 to 6 should be considered to have specifically disclosed subranges such as from 1 to 3, from 1 to 4, from 1 to 5, from 2 to 4, from 2 to 6, from 3 to 6 etc., as well as individual numbers within that range, for example, 1, 2, 3, 4, 5, and 6. This applies regardless of the breadth of the range.
[0042] Whenever a numerical range is indicated herein, it is meant to include any cited numeral (fractional or integral) within the indicated range. The phrases "ranging/ranges between" a first indicate number and a second indicate number and "ranging/ranges from" a first indicate number "to" a second indicate number are used herein interchangeably and are meant to include the first and second indicated numbers and all the fractional and integral numerals there between.
[0043] As used herein the term "method" refers to manners, means, techniques and procedures for accomplishing a given task including, but not limited to, those manners, means, techniques and procedures either known to, or readily developed from known manners, means, techniques and procedures by practitioners of the chemical, pharmacological, biological, biochemical and medical arts.
[0044] The term "collagen" or "collagen-like" as used herein refers to a monomeric polypeptide that can associate with one or more collagen or collagen-like polypeptides to form a quaternary structure. Collagen can be treated with acid, base or heat to prepare gelatin. The quaternary structure of natural collagen is a triple helix typically composed of three polypeptides. Of the three polypeptides that form natural collagen, two are usually identical and are designated as the alpha chain. The third polypeptide is designated as the beta chain. Thus a typical natural collagen can be designated as AAB, wherein the collagen is composed of two alpha ("A") strands and one beta ("B") strand. The term "procollagen" as used herein refers to polypeptides produced by cells that can be processed to naturally occurring collagen.
[0045] The terms "elastin" as used herein refers to a polypeptide that is elastic and functions to stretch or contract and return to its original shape. Elastin is found naturally in connective tissue.
[0046] The term "expression vector" or "vector" as used herein refers to a nucleic acid assembly which is capable of directing the expression of the exogenous gene. The expression vector may include a promoter which is operably linked to the exogenous gene, restriction endonuclease sites, nucleic acids that encode one or more selection markers, and other nucleic acids useful in the practice of recombinant technologies.
[0047] The term "fibroblast" as used herein refers to a cell that synthesizes procollagen and other structural proteins. Fibroblasts are widely distributed in the body and found in skin, connective tissue and other tissues.
[0048] The term "fluorescent protein" is a protein that is commonly used in genetic engineering technologies used as a reporter of expression of an exogenous polynucleotide. The protein when exposed to ultraviolet or blue light fluoresces and emits a bright visible light. Proteins that emit green light is green fluorescent protein (GFP) and proteins that emit red light is red fluorescent protein (RFP).
[0049] The term "gelatin" as used herein refers to collagen that has been further processed by exposure to acid, base or heat. While not wishing to be bound by theory or mechanism, treatment of collagen with acid, base or heat is thought to denature the collagen polypeptides. Aqueous denatured collagen solutions form reversible gels used in foods, cosmetics, pharmaceuticals, industrial products, medical products, laboratory culture growth media, and many other applications.
[0050] The term "gene" as used herein refers to a polynucleotide that encodes a specific protein, and which may refer to the coding region alone or may include regulatory sequences preceding (5' non-coding sequences) and following (3' non-coding sequences) the coding sequence.
[0051] The term "histidine tag" is a 2-30 contiguous series of histidine residues on a recombinant polypeptide.
[0052] The term "host cell" is a cell that is engineered to express an introduced exogenous polynucleotide.
[0053] The term"keratinocyte" is a cell that produces keratins found in the epidermal layer of the skin.
[0054] The term "lactamase" as used herein refer to enzymes that hydrolyze antibiotics that contain a lactam (cyclic amide) moiety. "Beta-lactamase" or ".beta.-lactamase" are enzymes that hydrolyze antibiotics that contain a .beta.-lactam moiety.
[0055] The term "non-naturally occurring" as used herein refers to collagen or elastin that is not normally found in nature. The non-naturally occurring collagen or elastin are recombinantly prepared. The non-naturally occurring collagen or elastin is a recombinant collagen or recombinant elastin. The non-naturally occurring collagen is in one embodiment a truncated collagen. Other non-naturally occurring collagen polypeptides include chimeric collagens. A chimeric collagen is a polypeptide wherein one portion of a collagen polypeptide is contiguous with a portion of a second collagen polypeptide. For example, a collagen molecule comprising a portion of a jellyfish collagen contiguous with a portion of a human collagen is a chimeric collagen. In another embodiment, the non-naturally occurring collagen comprises a fusion polypeptide that includes additional amino acids such as a secretion tag, histidine tag, green fluorescent protein, protease cleavage site, GEK repeats, GDK repeats, and/or beta-lactamase. The non-naturally occurring elastin in one embodiment a truncated elastin. Other non-naturally occurring elastin polypeptides include chimeric elastins. A chimeric elastin is a polypeptide wherein one portion of an elastin polypeptide is contiguous with a portion of a second elastin polypeptide. For example, a collagen molecule comprising a portion of a jellyfish elastin contiguous with a portion of a human elastin is a chimeric elastin. In another embodiment, the non-naturally occurring elastin comprises a fusion polypeptide that includes additional amino acids such as a secretion tag, histidine tag, green fluorescent protein, protease cleavage site and/or beta-lactamase. The chimeric gelatin or the chimeric elastin can comprise additional amino acids such as a secretion tag, histidine tag, green fluorescent protein, protease cleavage site, GEK repeats, GDK repeats, and/or beta-lactamase.
[0056] The term "protease cleavage site" is an amino acid sequence that is cleaved by a specific protease.
[0057] The term "secretion tag" or "signal peptide" refers to an amino acid sequence that recruits the host cell's cellular machinery to transport an expressed protein to a particular location or cellular organelle of the host cell.
[0058] The term "truncated collagen" refers to a monomeric polypeptide that is smaller than a full-length collagen wherein one or more portions of the full-length collagen is not present. Collagen polypeptides are truncated at the C-terminal end, the N-terminal end, or truncated by removal of internal portion(s) of the full-length collagen polypeptide.
[0059] The term "truncated elastin" refers to a monomeric polypeptide that is smaller than a full-length elastin wherein one or more portions of the full-length elastin is not present. Elastin polypeptides are truncated at the C-terminal end, the N-terminal end, or truncated by removal of internal portion(s) of the full-length elastin polypeptide.
[0060] In co-owned application PCT/US17/24857, incorporated by reference, an expression system that uses modified bacterial cells (switched cells) in which cell division is inhibited and growth of the periplasmic space is greatly enhanced was disclosed. In this expression system, the expressed proteins are targeted to the periplasmic space. Recombinant protein production in these switched cells is dramatically increased compared with that in non-switched cells. Structurally, the cells comprise both inner and outer membranes but lack a functional peptidoglycan cell wall, while the cell shape is spherical and increases in volume over time. Notably, while the periplasmic space normally comprises only 10-20% of the total cell volume, the periplasmic compartment of the switched state described herein can comprise more than 20%, 30%, 40% or 50% and up to 60%, 70%, 80% or 90% of the total cell volume.
[0061] The modified bacterial cells of PCT/US17/24857 are derived from Gram-negative bacteria, e.g. selected from: gammaproteobacteria and alphaproteobacteria. In some embodiments, the bacterium is selected from: Escherichia coli, Vibrio natriegens, Pseudomonas fluorescens, Caulobacter crescentus, Agrobacterium tumefaciens, and Brevundimonas diminuta. In specific embodiments, the bacterium is Escherichia coli, e.g. strain BL21(DE3).
[0062] In another aspect, the host bacterial cells have an enlarged periplasmic space in a culture medium comprising a magnesium salt, wherein the concentration of magnesium ions in the medium is at least about 3, 4, 5 or 6 mM. In further embodiments, the concentration of magnesium ions in the medium is at least about 7, 8, 9 or 10 mM. In some embodiments, the concentration of magnesium ions in the medium is between about 5 mM and 25 mM, between about 6 mM and/or about 20, 15 or 10 mM. In some embodiments, the magnesium salt is selected from: magnesium sulfate and magnesium chloride.
[0063] In other embodiments, the culture medium further comprises an osmotic stabilizer, including, e.g. sugars (e.g., arabinose, glucose, sucrose, glycerol, sorbitol, mannitol, fructose, galactose, saccharose, maltotrioseerythritol, ribitol, pentaerythritol, arabitol, galactitol, xylitol, iditol, maltotriose, and the like), betaines (e.g., trimethylglycine), proline, sodium chloride, wherein the concentration of the osmotic stabilizer in the medium is at least about 4%, 5%, 6%, or 7% (w/v). In further embodiments, the concentration of osmotic stabilizer is at least about 8%, 9%, or 10% (w/v). In some embodiments, the concentration of the osmotic stabilizer in the medium is between about 5% to about 20% (w/v).
[0064] In some embodiments, the cell culture may further comprise ammonium chloride, ammonium sulfate, calcium chloride, amino acids, iron(II) sulfate, magnesium sulfate, peptone, potassium phosphate, sodium chloride, sodium phosphate, and yeast extract.
[0065] The host bacterial cell may be cultured continuously or discontinuously; in a batch process, a fed-batch process or a repeated fed-batch process.
[0066] In some embodiments, the antibiotic is selected from: .beta.-lactam antibiotics (e.g. penicillins, cephalosporins, carbapenems, and monobactams), phosphonic acid antibiotics, polypeptide antibiotics, and glycopeptide antibiotics. In particular embodiments, the antibiotic is selected from alafosfalin, amoxicillin, ampicillin, aztreonam, bacitracin, carbenicillin, cefamandole, cefotaxime, cefsulodin, cephalothin, fosmidomycin, methicillin, nafcillin, oxacillin, penicillin g, penicillin v, fosfomycin, primaxin, and vancomycin.
[0067] Without being bound by theory, the cell morphology that promotes recombinant protein production and inhibits cell division appears to be driven by the removal of the cell wall under the media conditions stated above. In some embodiments, the methods for removal/inhibition of cell wall synthesis can be through the use of antibiotics that inhibit peptidoglycan synthesis (such as ampicillin, carbenicillin, penicillins or fosfomycin), or other methods known in the art.
[0068] When having an appropriate periplasmic targeting signal sequence, recombinantly produced polypeptides can be secreted into the periplasmic space of bacterial cells. Joly, J. C. and Laird, M. W., in The Periplasm ed. Ehrmann, M., ASM Press, Washington D.C., (2007) 345-360. In the chemically oxidizing environment of the periplasm the formation of disulfide bonds and thereby the functionally correct folding of polypeptides is favored.
[0069] In general, the signal sequence may be a component of the expression vector, or it may be a part of the exogenous gene that is inserted into the vector. The signal sequence selected should be one that is recognized and processed (i.e., cleaved by a signal peptidase) by the host cell. For bacterial host cells that do not recognize and process the native signal sequence of the exogenous gene, the signal sequence is substituted by any commonly known bacterial signal sequence. In some embodiments, recombinantly produced polypeptides can be targeted to the periplasmic space using the DsbA signal sequence. Dinh and Bernhardt, J Bacteriol, September 2011, 4984-4987.
[0070] In one aspect, a non-naturally occurring collagen or elastin is produced by a host cell is provided. The non-naturally occurring collagen or elastin is jellyfish collagen or elastin, human collagen or elastin, or Chondrosia reniformis (kidney sponge) collagen or elastin, or Rhincodon typus collagen or elastin. The non-naturally occurring collagen or elastin is a truncated collagen. The truncation is an internal truncation, a truncation at the N-terminal portion of the collagen or elastin, or a truncation at the C-terminal portion of the collagen or elastin. The collagen or elastin is truncated by a truncation of between 50 amino acids and 1000 amino acids, between, 50 amino acids and 950 amino acids, between 50 amino acids and 900 amino acids, between 50 amino acids and 850 amino acids, between 50 amino acids and 800 amino acids, between 50 amino acids and 850 amino acids, between 50 amino acids and 800 amino acids, between 50 amino acids and 750 amino acids, between 50 amino acids and 700 amino acids, between 50 amino acids and 650 amino acids, between 50 amino acids and 600 amino acids, between 50 amino acids and 650 amino acids, between 50 amino acids and 500 amino acids, between 50 amino acids and 450 amino acids, between 50 amino acids and 400 amino acids, between 50 amino acids and 350 amino acids, between 50 amino acids and 300 amino acids, between 50 amino acids and 250 amino acids, between 50 amino acids and 200 amino acids, between 50 amino acids and 150 amino acids, or between 50 amino acids and 100 amino acids. In another embodiment, the collagen or elastin is truncated by 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 210, 220, 230, 240, 250, 260, 270, 280, 290, 300, 310, 320, 330, 340, 350, 360, 370, 380, 390, 400, 410, 420, 430, 440, 450, 460, 470, 480, 490, 500, 510, 520, 530, 540, 550, 560, 570, 580, 590, 600, 650, 700, 750, 800, 850, 900, 950, or 1000 amino acids. The non-naturally occurring collagen or elastin are encoded by a portion of a polynucleotide sequence or the entire polynucleotide sequence disclosed herein.
[0071] The non-naturally occurring collagen or elastin further comprises amino acid sequences including a secretion tag. The secretion tag directs the collagen or elastin to the periplasmic space of the host cell. In particular embodiments, the signal peptide is derived from DsbA, PelB, OmpA, TolB, MalE, 1pp, TorA, or HylA, or a hybrid secretion tag that comprises a portion of one secretion tag fused to a portion of a second secretion tag. In one aspect the secretion tag is attached to the non-naturally occurring collagen or elastin. In another aspect the secretion tag is cleaved from the non-naturally occurring collagen or elastin.
[0072] The non-naturally occurring collagen or the non-naturally occurring elastin o further comprises a histidine tag. The histidine tag or polyhistidine tag is a sequence of 2 to 20 histidine residues (SEQ ID NO: 117) that are attached to the collagen or elastin. The histidine tag comprises 2 to 20 histidine residues (SEQ ID NO: 117), 5 to 15 histidine residues (SEQ ID NO: 118), 5 to 18 histidine residues (SEQ ID NO: 119), 5 to 16 histidine residues (SEQ ID NO: 120), 5 to 15 histidine residues (SEQ ID NO: 118), 5 to 14 histidine residues (SEQ ID NO: 121), 5 to 13 histidine residues (SEQ ID NO: 122), 5 to 12 histidine residues (SEQ ID NO: 123), 5 to 11 (SEQ ID NO: 124), 5 to 10 histidine residues (SEQ ID NO: 125), 6 to 12 histidine residues (SEQ ID NO: 126), 6 to 11 histidine residues (SEQ ID NO: 127), or 7 to 10 histidine residues (SEQ ID NO: 128). The histidine tags are useful in purification of proteins by chromatographic methods utilizing nickel based chromatographic media. Exemplary fluorescent proteins include green fluorescent protein (GFP) or red fluorescent protein (RFP). Fluorescent proteins are well known in the art. In one embodiment the non-naturally occurring collagen or the on-naturally occurring elastin comprises a GFP and/or RFP. In one embodiment a superfolder GFP is fused to the on-naturally occurring collagen or elastin. The superfolder GFP is a GFP that folds properly even when fused to a poorly folded polypeptide. In one aspect the histidine tag is attached to the non-naturally occurring collagen or elastin. In another aspect the histidine tag is cleaved from the non-naturally occurring collagen or elastin.
[0073] The non-naturally occurring collagen or non-naturally occurring elastin further comprises a protease cleavage site. The protease cleavage site is useful to cleave the recombinantly produced collagen or elastin to remove portions of the polypeptide. The portions of the polypeptide that may be removed include the secretion tag, the histidine tag, the fluorescent protein tag and/or the Beta-lactamase. The proteases comprise endoproteases, exoproteases, serine proteases, cysteine proteases, threonine proteases, aspartic proteases, glutamic proteases, and metalloproteases. Exemplary protease cleavage sites include amino acids that are cleaved by Thrombin, TEV protease, Factor Xa, Enteropeptidase, and Rhinovirus 3C Protease. In one aspect the cleavage tag is attached to the non-naturally occurring collagen or elastin. In another aspect the cleavage tag is removed by an appropriate protease from the non-naturally occurring collagen or elastin.
[0074] The non-naturally occurring collagen or non-naturally occurring elastin further comprises an enzyme that is a Beta-lactamase. The beta-lactamase is useful as a selection marker. In one aspect the beta-lactamase is attached to the non-naturally occurring collagen or elastin. In another aspect the beta-lactamase is cleaved from the non-naturally occurring collagen or elastin.
[0075] The non-naturally occurring collagen or non-naturally occurring elastin further comprises GEK amino acid trimer repeats and/or GDK amino acid trimer repeats. The GEK and the GDK trimer repeats facilitate the gelling of the collagen and/or the gelatin. In one embodiment, the non-naturally occurring collagen or the non-naturally occurring elastin comprises 2-50 GEK and/or 2-50 GDK trimer repeats (SEQ ID NOS: 130-131, respectively), 2-40 GEK and/or 2-40 GDK trimer repeats (SEQ ID NOS: 132-133, respectively), 2-30 GEK and/or 2-30 GDK trimer repeats (SEQ ID NOS: 134-135, respectively), 2-20 GEK and/or 2-20 GDK trimer repeats (SEQ ID NOS: 136-137, respectively), 2-15 GEK and/or 2-15 GDK trimer repeats (SEQ ID NOS: 138-139, respectively). 2-10 GEK and/or 2-10 GDK trimer repeats (SEQ ID NOS: 140-141, respectively), 2-9 GEK and/or 2-9 GDK trimer repeats (SEQ ID NOS: 142-143, respectively), 2-8 GEK and/or 2-8 GDK trimer repeats (SEQ ID NOS: 144-145, respectively), 2-7 GEK and/or 2-7 GDK trimer repeats (SEQ ID NOS: 146-147, respectively), 2-6 GEK and/or 2-6 GDK trimer repeats (SEQ ID NOS: 148-149, respectively), 2-5 GEK and/or 2-5 GDK trimer repeats (SEQ ID NOS: 150-151, respectively), or 2-4 GEK and/or 2-4 GDK trimer repeats (SEQ ID NOS: 152-153, respectively). In one aspect the GEK trimer repeat or the GDK trimer repeat is attached to the non-naturally occurring collagen or elastin. In another aspect the GEK trimer repeat or the GDK trimer repeat is cleaved from the non-naturally occurring collagen or elastin.
[0076] Provided herein are compositions that comprise between 0.005% and 30% w/w non-naturally occurring collagen and/or non-naturally occurring elastin. The composition comprises between 0.005% and 20% w/w non-naturally occurring collagen and/or non-naturally occurring elastin, between 0.005% and 10% w/w non-naturally occurring collagen and/or non-naturally occurring elastin, between 0.005% and 5% w/w non-naturally occurring collagen and/or non-naturally occurring elastin, between 0.005% and 2% w/w non-naturally occurring collagen and/or non-naturally occurring elastin, between 0.005% and 1% w/w non-naturally occurring collagen and/or non-naturally occurring elastin, between 0.005% and 0.5% w/w non-naturally occurring collagen and/or non-naturally occurring elastin, and between 0.005% and 0.2% w/w non-naturally occurring collagen and/or non-naturally occurring elastin.
[0077] The compositions that comprise the between non-naturally occurring collagen and/or non-naturally occurring elastin are personal care products. In some embodiments the compositions are formulated for topical administration. The compositions can contain other cosmetic ingredients suitable for human use. The personal care products are useful for preventing or treating ultraviolet radiation damage to human skin or hair. The personal care products are applied to skin or hair. The compositions include, for example, masks, skin cleaners such as soap, cleansing creams, cleansing lotions, cleansing milks, cleansing pads, facial washes, hair shampoo, hair conditioner and body shampoos.
[0078] The compositions that comprise the non-naturally occurring collagen and/or non-naturally occurring elastin can further comprise at least one additional ingredient comprising a topical carrier or a preservative. The topical carrier comprises a topical carrier selected from the group consisting of liposome, biodegradable microcapsule, lotion, spray, aerosol, dusting powder, biodegradable polymer, mineral oil, triglyceride oil, silicone oil, glycerin, glycerin monostearate, alcohols, emulsifying agents, liquid petroleum, white petrolatum, propylene glycol, polyoxyethylene, polyoxypropylene, wax, sorbitan monostearate, polysorbate, cetyl ester wax, cetearyl alcohol, 2-octyldodecanol, benzyl alcohol, cyclomethicone, cyclopentasiloxane, and water. The preservative comprises a preservative selected from the group consisting of tocopherol, diiodomethyl-p-tolylsulfone, 2-Bromo-2-nitropropane-1,3-diol, cis isomer 1-(3-chloroallyl)-3,5,7-triaza-1-azoniaadamantane chloride, glutaraldehyde, 4,4-dimethyl oxazolidine, 7-Ethylbicyclooxazolidine, methyl paraben, sorbic acid, GERMABEN.RTM. II, rosemary extract, and EDTA.
[0079] Provided are methods of decreasing skin damage, promoting the repair of damaged skin, protecting skin against UV damage, protecting skin cells against the effects of exposure to urban dust. The method comprises the step of applying the composition comprising the non-naturally occurring collagen and/or non-naturally occurring elastin to the skin of a subject. Without being bound to a particular theory or mechanism, the collagen and/or the elastin in the composition decrease skin damage by protecting against UV damage, and/or promotes the repair of damaged skin by increasing the viability of cells and/or increasing procollagen synthesis when applied to skin, and/or promotes the viability of skin cells. The collagens and elastins in one aspect decrease the formation of thymine-thymine (TT) dimer formation.
[0080] One aspect provides polynucleotides that encode a non-naturally occurring collagen or a non-naturally occurring elastin. The polynucleotides encode collagen or elastin from jellyfish, human, Chondrosia reniformis (kidney sponge), or Rhincodon typus. The polynucleotides encode for collagen or elastin that is full length or truncated.
[0081] Another aspect provides polynucleotides that encode collagen or elastin fusion proteins. The elastin or collagen fusion proteins comprise a secretion tag, a histidine tag, a fluorescent protein tag, a protease cleavage site, a Beta-lactamase along and/or GEK amino acid trimer repeats and/or GDK amino acid trimer repeats together with collagen or elastin.
[0082] The polynucleotides are in one aspect vectors used to transform host cells and express the polynucleotides. The polynucleotides further comprise nucleic acids that encode enzymes that permit the host organism to grow in the presence of a selection agent. The selection agents include certain sugars including galactose containing sugars or antibiotics including ampicillin, hygromycin, G418 and others. Enzymes that are used to confer resistance to the selection agent include .beta.-galactosidase or a .beta.-lactamase.
[0083] In one aspect host cells that express the polynucleotides of the invention are provided. Host cells can be any host cell including gram negative bacterial cells, gram positive bacterial cells, yeast cells, insect cells, mammalian cells, plant cells or any other cells used to express exogenous polynucleotides. An exemplary gram-negative host cell is E. coli.
[0084] Bacterial host cells in which the cells have been modified to inhibit cell division and the periplasmic space is increased are taught. As discussed herein and taught in example 1, Beta-lactam antibiotics are useful as a switch to convert wild-type bacterial cells to a modified bacterial cell in which cell replication is inhibited and the periplasmic space is increased. Exemplary Beta-lactam antibiotics including penicillins, cephalosporins, carbapenems, and monobactams.
[0085] The switched form of bacteria (L-form) are cultivated in culture media that include certain salts and other nutrients. Salts and media compositions that support the physiological switch physiology that have been tested are M63 salt media, M9 salt media, PYE media, and Luria-Bertani (LB) media. Any necessary supplements besides carbon, nitrogen, and inorganic phosphate sources may also be included at appropriate concentrations introduced alone or as a mixture with another supplement or medium such as a complex nitrogen source. In certain embodiments, the medium further comprises one or more ingredients selected from: ammonium chloride, ammonium sulfate, calcium chloride, casamino acids, iron(II) sulfate, magnesium sulfate, peptone, potassium phosphate, sodium chloride, sodium phosphate, and yeast extract.
[0086] Beta-lactamases are enzymes that confer resistance to lactam antibiotics in prokaryotic cells. Typically when Beta-lactamases are expressed in bacterial host cells, the expressed Beta-lactamase protein also includes targeting sequences (secretion tag) that direct the Beta-lactamase protein to the periplasmic space. Beta-lactamases are not functional unless they are transported to the periplasmic space. Beta-lactamase targeted to the periplasmic without the use of an independent secretion tag that targets the enzyme to the periplasmic space are provided. By creating a fusion protein in which a periplasmic secretion tag added to the N-terminus of a protein such as GFP, collagen, or GFP/collagen chimeras, the functionality of the Beta-lactamase lacking a native secretion tag can be used to select for full translation and secretion of the N-terminal fusion proteins. Using this approach, we have used a DsbA-GFP-Collagen-Beta-lactamase fusion to select for truncation products in the target collagens that favor translation and secretion.
[0087] Another embodiment provides methods of producing a non-naturally occurring collagen or a non-naturally occurring elastin. The method comprises the steps of inoculating a culture medium with a recombinant host cell comprising polynucleotides that encode the collagen or elastin, cultivating the host cell, and isolating the non-naturally occurring collagen or the non-naturally occurring elastin from the host cell.
[0088] A process for fermentative preparation of a protein is provided. The process comprises the steps of:
[0089] a) culturing a recombinant Gram-negative bacterial cell in a medium comprising a magnesium salt, wherein the concentration of magnesium ions in the medium is at least about 6 mM, and wherein the bacterial cell comprises an exogenous gene encoding the protein;
[0090] b) adding an antibiotic to the medium, wherein the antibiotic inhibits peptidoglycan biogenesis in the bacterial cell; and
[0091] c) harvesting the protein from the medium.
[0092] The bacteria may be cultured continuously--as described, for example, in WO 05/021772--or discontinuously in a batch process (batch cultivation) or in a fed-batch or repeated fed-batch process for the purpose of producing the target protein. In some embodiments, protein production is conducted on a large-scale. Various large-scale fermentation procedures are available for production of recombinant proteins. Large-scale fermentations have at least 1,000 liters of capacity, preferably about 1,000 to 100,000 liters of capacity. These fermentors use agitator impellers to distribute oxygen and nutrients, especially glucose (the preferred carbon/energy source). Small-scale fermentation refers generally to fermentation in a fermentor that is no more than approximately 20 liters in volumetric capacity.
[0093] For accumulation of the target protein, the host cell is cultured under conditions sufficient for accumulation of the target protein. Such conditions include, e.g., temperature, nutrient, and cell-density conditions that permit protein expression and accumulation by the cell. Moreover, such conditions are those under which the cell can perform basic cellular functions of transcription, translation, and passage of proteins from one cellular compartment to another for the secreted proteins, as are known to those skilled in the art.
[0094] The bacterial cells are cultured at suitable temperatures. For E. coli growth, for example, the typical temperature ranges from about 20.degree. C. to about 39.degree. C. In one embodiment, the temperature is from about 20.degree. C. to about 37.degree. C. In another embodiment, the temperature is at about 30.degree. C. In one embodiment, the host cells, in the non-switched state or switched state are cultivated at one temperature and switched to a different temperature to induce protein production. The host cells are cultivated first at one temperature to propagate the cells, then to induce protein production the cell are cultivated at a lower temperature. The first temperature is 23.degree., 24.degree., 25.degree., 26.degree., 27.degree., 28.degree., 29.degree., 30.degree., 31.degree., 32.degree., 33.degree., 34.degree., 35.degree., 36.degree., or 37.degree. C. The second temperature is 20.degree., 21.degree., 22.degree., 23.degree., 24.degree., 25.degree., 26.degree., 27.degree., 28.degree., 29.degree., 30.degree., 31.degree., 32.degree., 33.degree., 34.degree., 35.degree. or 36.degree. C. The cultivation at the second temperature is conducted between 1 hour and 100 hours, between 5 hours and 90 hours, between 5 hours and 80 hours, between 5 hours and 80 hours, between 5 hours and 70 hours, between 10 hours and 70 hours, between 15 hours and 70 hours, between 15 hours and 65 hours, between 15 hours and 60 hours, between 20 hours and 60 hours, between 20 hours and 55 hours, between 20 hours and 50 hours, between 24 hours and 50 hours, between 24 hours and 48 hours, between 30 hours and 50 hours, between 30 hours and 45 hours, or between 30 hours and 40 hours.
[0095] The pH of the culture medium may be any pH from about 5-9, depending mainly on the host organism. For E. coli, the pH is from about 6.8 to about 7.4, or about 7.0.
[0096] For induction of gene expression, typically the cells are cultured until a certain optical density is achieved, e.g., an OD600 of about 1.1, at which point induction is initiated (e.g., by addition of an inducer, by depletion of a repressor, suppressor, or medium component, etc.) to induce expression of the exogenous gene encoding the target protein. In some embodiments, expression of the exogenous gene is inducible by an inducer selected from, e.g. isopropyl-.beta.-d-1-thiogalactopyranoside, lactose, arabinose, maltose, tetracycline, anhydrotetracycline, vavlycin, xylose, copper, zinc, and the like. The induction of gene expression can also be accomplished by decreasing the dissolved oxygen levels during fermentation. The dissolved oxygen levels of the fermentation during cell propagation is between 10% and 30%. To induce gene expression the dissolved oxygen level is reduced to below 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, or 0%. In host cells, in either the physiological state or the switched state, protein production can be induced by lowering the temperature of the fermentation as disclosed herein.
[0097] After product accumulation, the cells are vortexed and centrifuged in order to induce lysis and release of recombinant proteins. The majority of the proteins is found in the supernatant but any remaining membrane bound proteins can be released using detergents (such as TRITON.TM. X-100).
[0098] In a subsequent step, the target protein, as a soluble or insoluble product released from the cellular matrix, is recovered in a manner that minimizes co-recovery of cellular debris with the product. The recovery may be done by any means, but in one embodiment, can comprise histidine tag purification through a nickel column. See, e.g., Purification of Proteins Using Polyhistidine Affinity Tags, Methods Enzymology. 2000; 326: 245-254.
EXAMPLES
Example 1: Expression System
Materials and Methods:
Strains:
[0099] Tested Physiological Switch and Protein Production:
E. coli BL21(DE3)--From NEB, product #c2527 E. coli K12 NCM3722--From The Coli Genetic Stock Center, CGSC #12355
[0100] Tested Physiological Switch:
Gammaproteobacteria:
[0101] Vibrio natriegens--From ATCC, product #14048 Pseudomonas fluorescens--From ATCC, product #31948 Pseudomonas aeruginosa PAO1--From ATCC, product #BAA-47
[0102] Alphaproteobacteria:
Caulobacter crescentus--From ATCC, product #19089 Agrobacterium tumefaciens/Rhizobium radiobacter--From ATCC, product #33970 Brevundimonas diminuta--From ATCC, product #13184
[0103] Media Compositions:
[0104] 1 liter 5.times. m63 salts:
10 g (NH4)2SO4--From P212121, product #7783-20-2 68 g KH2PO4--From P212121, product #7778-77-0 2.5 mg FeSO4.7H2O--From Sigma Aldrich, product #F7002 Bring volume up to 1 liter with milliQ water Adjust to pH 7 with KOH (From P212121, product #1310-58-3) Autoclave mixture
[0105] 1 liter of 1M MgSO4:
246.5 g MgSO4 7H2O--From P212121, (Sigma Aldrich, product #10034-99-8) Bring volume up to 1 liter with milliQ water. Autoclave mixture.
[0106] 1 Liter of Switch Media 1:
133.4 mL 5.times.m63 salts
10 mL 1M MgSO4
[0107] 38.6 g Glucose--From P212121, product #50-99-7 66.6 g Sucrose--From P212121, product #57-50-1 8.33 g LB mix--From P212121, product #1b-miller Bring volume up to 1 liter with milliQ water. Filter sterilize mixture through a 0.22 .mu.M pore vacuum filter (Sigma Aldrich, product #CLS430517).
[0108] 1 Liter of Switch Media 2:
133.4 mL 5.times.m63 salts
10 mL 1M MgSO4
[0109] 38.6 g Glucose--From P212121, product #50-99-7 66.6 g Sucrose--From P212121, product #57-50-1 10 g Yeast Extract--From FisherSci.com, product #J60287A1 Bring volume up to 1 liter with milliQ water. Filter sterilize mixture through a 0.22 .mu.M pore vacuum filter (Sigma Aldrich, product #CLS430517).
[0110] For Bioreactor Growth:
5 liter of bioreactor media MGZ12: 1) Autoclave 1 L of Glucose at concentration of 500 g/L in DI water. (VWR, product #97061-170). 2) Autoclave 1 L of Sucrose at concentration of 500 g/L in DI water. (Geneseesci.com, product #62-112). 3) Autoclave in 3946 mL of DI water: 20 g (NH4)2HPO4. (VWR, product #97061-932). 66.5 g KH2PO4. (VWR, product #97062-348). 22.5 g H3C6H507. (VWR, product #BDH9228-2.5KG). 2.95 g MgSO4.7H2O. (VWR, product #97062-134). 10 mL Trace Metals (Teknova), 1000.times.. (Teknova, product #T1001). After autoclaving add 400 mL of (1) to (3), 65 mL of 10M NaOH (VWR, product #97064-480) to (3), and 666 mL of (2) to (3). A feed of 500 g/L of glucose can be used during fermentation run as needed. At induction add: 50 mL of 1M MgSO4.7H2O to a 5 L bioreactor 1 to 10 mM concentration of IPTG. (carbosynth.com, product #EI05931). Add Fosfomycin (50 .mu.g/mL or higher) and Carbenicillin (100 .mu.g/mL or higher).
Physiological Switch:
[0111] The physiological switch is optimally flipped at an OD 600 of 1 to 1.1 for E. coli for growth in shake flasks at volumes up to 1 L. For the other species tested, cultures were grown in switch media and subcultured once cultures reached maximal OD 600. In all cases the physiological switch is flipped through the addition of 100-200 ug/mL Carbenicillin (From P212121, product #4800-94-6) and 50-100 ug/mL Fosfomycin (From P212121, product #26016-99-9). The majority of the population is in the switched state within a few hours. To confirm that cells underwent a physiological switch, cells were imaged on a Nikon Ti-E with perfect focus system, Nikon CFI60 Plan Apo 100.times.NA 1.45 objective, Prior automated filter wheels and stage, LED-CFP/YFP/mCherry and LED-DA/FI/TX filter sets (Semrock), a Lumencor Sola II SE LED illumination system, and a Hamamatsu Flash 4.0 V2 CMOS camera.
Image Analysis of Physiological Switch:
[0112] Images were analyzed using ImageJ to measure dimensions. In the switched state, the spherical outline of the outer membrane is treated as a sphere to calculate total volume (V=(4/3).pi.r3). The cytoplasmic volume is calculated as an ellipsoid that exists within the sphere (V=(4/3).pi.*(longest radius)*(short radius)2). To calculate the periplasmic volume, the cytoplasmic volume is subtracted from the total volume of the cell.
Protein Expression and Quantification:
[0113] E. coli BL21(DE3) (NEB product #c2527) containing pET28a (emd Millipore product #69864) and its derivatives carrying GFP or collagen derivatives were grown in a shaking incubator at 37.degree. C. overnight in switch media containing 50 mg/mL kanamycin (p212121 product #2251180). Next day, subcultures are started with a 1:10 dilution of the overnight culture into fresh switch media containing 50 mg/mL kanamycin. The culture is then physiologically switched and protein production is induced simultaneously at an OD 600 of 1 to 1.1 (Read on a Molecular Devices SPECTRAMAX.RTM.M2 microplate reader). The physiologically switch and protein production are flipped through the addition of 100 ug/mL Carbenicillin, 50 ug/mL Fosfomycin, and 100 ug/mL IPTG (p212121 product #367-93-1). Protein expression is continued in the switched state from between 8 hours to overnight at room temperature (approximately 22.degree. C.) on an orbital shaker. In order to quantify total protein levels, QUICK START.TM. Bradford Protein Assay was used on mixed portion of culture and standard curves are quantitated on a Molecular Devices Spectramax M2 microplate reader. In order to quantitate the relative intensity of target protein production relative to the rest of the protein population the mixed portion of the cultures were run on MINI-PROTEAN.RTM.TGX.TM. Gels and stained with BIO-SAFE.TM. Coomassie Stain.
Induction of Protein Production:
[0114] Standard procedures have been followed to induce protein production in the physiological state. We have been using the strain BL21(DE3) containing the plasmid pET28a driving the IPTG/lactose inducible production of recombinant proteins and targeting them to the periplasmic space using the DsbA signal sequence. Using the GFP protein, targeted to the periplasmic space as described above, we have demonstrated the ability to gain and increase of 5-fold in protein production when compared to un-switched cell populations induced at the same optical density, for the same amount of time (figures). The induction was optimal at an OD600 of 1.1 and induction was continued for 10 hours at which point the protein produced was measured at about 200 mg/mL.
Example 2: Production of Full-Length Collagen
[0115] Full length jellyfish collagen was produced using the expression system discussed in Example 1 herein. The wild-type amino acid sequence of Podocoryna carnea (jellyfish or Hydrozoan) collagen is provided in SEQ ID NO: 1.
TABLE-US-00001 (SEQ ID NO: 1) GPQGVVGADGKDGTPGEKGEQGRTGAAGKQGSPGADGARGPLGSIGQQGA RGEPGDPGSPGLRGDTGLAGVKGVAGPSGRPGQPGANGLPGVNGRGGLRG KPGAKGIAGSDGEAGESGAPGQSGPTGPRGQRGPSGEDGNPGLQGLPGSD GEPGEEGQPGRSGQPGQQGPRGSPGEVGPRGSKGPSGDRGDRGERGVPGQ TGSAGNVGEDGEQGGKGVDGASGPSGALGARGPPGSRGDTGAVGPPGPTG RSGLPGNAGQKGPSGEPGSPGKAGSAGEQGPPGKDGSNGEPGSPGKEGER GLAGPPGPDGRRGETGSPGIAGALGKPGLEGPKGYPGLRGRDGTNGKRGE QGETGPDGVRGIPGNDGQSGKPGIDGIDGTNGQPGEAGYQGGRGTRGQLG ETGDVGQNGDRGAPGPDGSKGSAGRPGLR >/www.ncbi.nlm.nih.gov/protein/4379341?report= genbank&log$ = protalign&blast_rank = 1&RID = T1N9ZEUW014>
[0116] The non-codon optimized polynucleotide sequence encoding the full length jellyfish collagen is disclosed in SEQ ID NO: 2.
TABLE-US-00002 (SEQ ID NO: 2) ggaccacaaggtgttgtaggagctgatggcaaagatggaacaccgggaga gaaaggtgagcaaggacgaaccggagctgcaggaaaacagggaagccctg gagcagatggagcaagaggccctcttggatcaattggacaacaaggtgct cgtggagaacctggtgatccaggatctcccggcttaagaggagatactgg attggctggagtcaaaggagtagcaggaccatctggtcgacctggacaac ccggtgcaaatggattacctggtgtgaatggcagaggcggtttgagaggc aaacctggtgctaaaggaattgctggcagtgatggagaagcgggagaatc tggcgcacctggacagtccggacctaccggtccacgtggtcaacgaggac caagtggtgaggatggtaatcctggattacagggattgcctggttctgat ggagagcccggagaggaaggacaacctggaagatctggtcaaccaggaca gcaaggaccacgtggttcccctggagaggtaggaccaagaggatctaaag gtccatcaggagatcgtggtgacaggggagagagaggtgttcctggacaa acaggttcggctggaaatgtaggagaagatggagagcaaggaggcaaagg tgtcgatggagcgagtggaccaagtggagctcttggtgctcgtggtcccc caggaagtagaggtgacaccggggcagtgggacctcccggacctactggg cgatctggtttacctggaaacgcaggacaaaagggaccaagtggtgaacc aggtagtccaggaaaagcaggatcagctggtgaacagggtcctcctggta aagacggatcaaatggtgaacctggatctcctggcaaagagggtgaacgt ggtcttgctggtccaccaggtccagatggcagacgtggtgaaacgggatc tccaggtatcgctggtgctcttggtaaaccaggtttggaaggacctaaag gttatccaggattaagaggaagagatggaaccaatggcaaacgaggagaa caaggagaaactggtcctgatggagtcagaggtattcctggaaatgatgg acaatctggcaaaccaggtattgatggtattgacggaacaaatggtcaac caggtgaggctggataccaaggtggtagaggtacacgtggtcagttaggt gaaactggtgatgtcggacagaatggagatcgaggagctcctggtcctga tggatctaaaggttctgctggtagaccaggacttcgtgg <https://www.ncbi.nlm.nih.gov/nucleotide/ 3355656?report = genbank&log$ = nuclalign&blastrank = 1&RID = TSYP7CMV014>
[0117] Two different codon optimized polynucleotide sequences encoding the wild-type, full-length jellyfish collagen were synthesized. The two polynucleotide sequences were slightly different due to slightly different codon optimization methods. In addition to the non-truncated, full-length jellyfish collagen, the polynucleotides also encoded a secretion tag, a 9 amino acid his tag (SEQ ID NO: 129), a short linker, and a thrombin cleavage site. The DsbA secretion tag is encoded by nucleotides 1-71. The histidine tag comprising 9 histidine residues (SEQ ID NO: 129) is encoded by nucleotides 73-99 and encodes amino acids 25-33. The linker is encoded by nucleotides 100-111. The thrombin cleavage tag is encoded by nucleotides 112-135 and encodes amino acids 38-45. The truncated collagen is encoded by nucleotides 136-1422. The two polynucleotides are disclosed below in SEQ ID NO: 3 and 4.
TABLE-US-00003 (SEQ ID NO: 3) ATGAAAAAGATTTGGCTGGCGCTGGCTGGTTTAGTTTTAGCGTTTAGCGC ATCGGCGGCGCAGTATGAAGATCACCATCACCACCACCACCATCACCACT CTGGCTCGAGCCTGGTGCCGCGCGGCAGCCATATGGGTCCGCAGGGTGTT GTTGGTGCAGATGGTAAAGACGGTACCCCGGGTGAAAAAGGAGAACAGGG ACGTACAGGTGCAGCAGGTAAACAGGGCAGCCCGGGTGCCGATGGTGCCC GTGGCCCGCTGGGTAGCATTGGTCAGCAGGGTGCAAGAGGCGAACCGGGC GATCCGGGTAGTCCGGGCCTGCGTGGTGATACGGGTCTGGCCGGTGTTAA AGGCGTTGCAGGTCCTTCAGGTCGTCCAGGTCAACCGGGTGCAAATGGTC TGCCGGGTGTTAATGGTCGTGGCGGTCTGCGTGGCAAACCGGGAGCAAAA GGTATTGCAGGTAGCGATGGAGAAGCCGGTGAAAGCGGTGCCCCGGGTCA GAGTGGTCCGACCGGTCCGCGCGGTCAGCGTGGTCCGTCTGGTGAAGATG GCAATCCGGGTCTGCAGGGTCTGCCTGGTAGTGATGGCGAACCAGGTGAA GAAGGTCAGCCGGGTCGTTCAGGCCAGCCGGGCCAGCAGGGCCCGCGTGG TAGCCCGGGCGAAGTTGGCCCGCGGGGTAGTAAAGGTCCTAGTGGCGATC GCGGTGATCGTGGTGAACGCGGTGTTCCTGGTCAGACCGGTAGCGCAGGT AATGTTGGCGAAGATGGTGAACAGGGTGGCAAAGGTGTTGATGGTGCAAG CGGTCCGAGCGGTGCACTGGGTGCACGTGGTCCTCCGGGCAGCCGTGGTG ACACCGGTGCAGTTGGTCCGCCTGGCCCGACCGGCCGTAGTGGCTTACCG GGTAATGCAGGTCAGAAAGGTCCGTCAGGTGAACCTGGCAGCCCTGGTAA AGCAGGTAGTGCCGGTGAGCAGGGTCCGCCGGGCAAAGATGGTAGTAATG GTGAGCCGGGTAGCCCTGGCAAAGAAGGTGAACGTGGTCTGGCAGGACCG CCGGGTCCTGATGGTCGCCGCGGTGAAACGGGTTCACCGGGTATTGCCGG TGCCCTGGGTAAACCAGGTCTGGAAGGTCCGAAAGGTTATCCTGGTCTGC GCGGTCGTGATGGTACCAATGGCAAACGTGGCGAACAGGGCGAAACCGGT CCAGATGGTGTTCGTGGTATTCCGGGTAACGATGGTCAGAGCGGTAAACC GGGCATTGATGGTATTGATGGCACCAATGGTCAGCCTGGCGAAGCAGGTT ATCAGGGTGGTCGCGGTACCCGTGGTCAGCTGGGTGAAACAGGTGATGTT GGTCAGAATGGTGATCGCGGCGCACCGGGTCCGGATGGTAGCAAAGGTAG CGCCGGTCGTCCGGGTTTACGTtaa (SEQ ID NO: 4) ATGAAAAAGATTTGGCTGGCGCTGGCTGGTTTAGTTTTAGCGTTTAGCGC ATCGGCGGCGCAGTATGAAGATCACCATCACCACCACCACCATCACCACT CTGGCTCGAGCCTGGTGCCGCGCGGCAGCCATATGGGTCCGCAGGGTGTT GTTGGTGCAGATGGTAAAGACGGTACCCCGGGTGAAAAAGGtGAACAGGG tCGTACcGGTGCAGCAGGTAAACAGGGCAGCCCGGGTGCCGATGGTGCCC GTGGCCCGCTGGGTAGCATTGGTCAGCAGGGTGCAcgtGGCGAACCGGGC GATCCGGGTAGcCCGGGCCTGCGTGGTGATACGGGTCTGGCCGGTGTTAA AGGCGTTGCAGGTCCTTCtGGTCGTCCAGGTCAACCGGGTGCAAATGGTC TGCCGGGTGTTAATGGTCGTGGCGGTCTGCGTGGCAAACCGGGtGCAAAA GGTATTGCAGGTAGCGATGGcGAAGCCGGTGAAAGCGGTGCCCCGGGTCA GAGcGGTCCGACCGGTCCGCGCGGTCAGCGTGGTCCGTCTGGTGAAGATG GCAATCCGGGTCTGCAGGGTCTGCCTGGTagcGATGGCGAACCAGGTGAA GAAGGTCAGCCGGGTCGTTCtGGCCAGCCGGGCCAGCAGGGCCCGCGTGG TAGCCCGGGCGAAGTTGGCCCGCGcGGTtcTAAAGGTCCTAGcGGCGATC GCGGTGATCGTGGTGAACGCGGTGTTCCTGGTCAGACCGGTAGCGCAGGT AATGTTGGCGAAGATGGTGAACAGGGTGGCAAAGGTGTTGATGGTGCAAG CGGTCCGAGCGGTGCACTGGGTGCACGTGGTCCTCCGGGCAGCCGTGGTG ACACCGGTGCAGTTGGTCCGCCTGGCCCGACCGGCCGTAGcGGCctgCCG GGTAATGCAGGTCAGAAAGGTCCGTCtGGTGAACCTGGCAGCCCTGGTAA AGCAGGTAGcGCCGGTGAGCAGGGTCCGCCGGGCAAAGATGGTAGcAATG GTGAGCCGGGTAGCCCTGGCAAAGAAGGTGAACGTGGTCTGGCAGGtCCG CCGGGTCCTGATGGTCGCCGCGGTGAAACGGGTTCtCCGGGTATTGCCGG TGCCCTGGGTAAACCAGGTCTGGAAGGTCCGAAAGGTTATCCTGGTCTGC GCGGTCGTGATGGTACCAATGGCAAACGTGGCGAACAGGGCGAAACCGGT CCAGATGGTGTTCGTGGTATTCCGGGTAACGATGGTCAGAGCGGTAAACC GGGCATTGATGGTATTGATGGCACCAATGGTCAGCCTGGCGAAGCAGGTT ATCAGGGTGGTCGCGGTACCCGTGGTCAGCTGGGTGAAACcGGTGATGTT GGTCAGAATGGTGATCGCGGCGCACCGGGTCCGGATGGTAGCAAAGGTAG CGCCGGTCGTCCGGGTctgCGTtaa
[0118] The amino acid sequence encoded by the polynucleotides of SEQ ID NO: 3 and SEQ ID NO:4 is disclosed in SEQ ID NO:5 below. In SEQ ID NO: 5 the DsbA secretion tag is encoded by nucleotides 1-71 and encodes amino acids 1-24; the histidine tag comprising 9 histidine residues (SEQ ID NO: 129) is encoded by nucleotides 73-99 and encodes amino acids 25-33; the linker is encoded by nucleotides 100-111 and encodes amino acids 34-37; the thrombin cleavage tag is encoded by nucleotides 112-135 and encodes amino acids 38-45; the full-length collagen is encoded by nucleotides 136-1422 and encodes amino acids 46-474.
TABLE-US-00004 (SEQ ID NO: 5) MKKIWLALAGLVLAFSASAAQYEDHHHHHHHHHSGSSLVPRGSHMGPQGV VGADGKDGTPGEKGEQGRTGAAGKQGSPGADGARGPLGSIGQQGARGEPG DPGSPGLRGDTGLAGVKGVAGPSGRPGQPGANGLPGVNGRGGLRGKPGAK GIAGSDGEAGESGAPGQSGPTGPRGQRGPSGEDGNPGLQGLPGSDGEPGE EGQPGRSGQPGQQGPRGSPGEVGPRGSKGPSGDRGDRGERGVPGQTGSAG NVGEDGEQGGKGVDGASGPSGALGARGPPGSRGDTGAVGPPGPTGRSGLP GNAGQKGPSGEPGSPGKAGSAGEQGPPGKDGSNGEPGSPGKEGERGLAGP PGPDGRRGETGSPGIAGALGKPGLEGPKGYPGLRGRDGTNGKRGEQGETG PDGVRGIPGNDGQSGKPGIDGIDGTNGQPGEAGYQGGRGTRGQLGETGDV GQNGDRGAPGPDGSKGSAGRPGLR
[0119] A jellyfish collagen without the DsbA secretion tag, the histidine tag, linker and thrombin cleavage site is disclosed in SEQ ID NO: 89.
TABLE-US-00005 (SEQ ID NO: 89) GPQGVVGADGKDGTPGEKGEQGRTGAAGKQGSPGADGARGPLGSIGQQGA RGEPGDPGSPGLRGDTGLAGVKGVAGPSGRPGQPGANGLPGVNGRGGLRG KPGAKGIAGSDGEAGESGAPGQSGPTGPRGQRGPSGEDGNPGLQGLPGSD GEPGEEGQPGRSGQPGQQGPRGSPGEVGPRGSKGPSGDRGDRGERGVPGQ TGSAGNVGEDGEQGGKGVDGASGPSGALGARGPPGSRGDTGAVGPPGPTG RSGLPGNAGQKGPSGEPGSPGKAGSAGEQGPPGKDGSNGEPGSPGKEGER GLAGPPGPDGRRGETGSPGIAGALGKPGLEGPKGYPGLRGRDGTNGKRGE QGETGPDGVRGIPGNDGQSGKPGIDGIDGTNGQPGEAGYQGGRGTRGQLG ETGDVGQNGDRGAPGPDGSKGSAGRPGLR
[0120] The polynucleotides of SEQ ID NO: 3 and SEQ ID NO: 4 were synthesized by Gen9 DNA, now Ginkgo Bioworks internal synthesis. Overlaps between the pET28 vector and SEQ ID NO: 3 and SEQ ID NO: 4 were designed to be between 30 and 40 bp long and added using PCR with the enzyme PRIMESTAR.RTM.GXL polymerase (<http://www.clontech.com/US/Products/PCR/GC_Rich/PrimeSTAR_GXL_DNA_Po- lymerase?sitex=10020:22372:US>). The opened pET28a vector and insert DNA (SEQ ID NO: 3 or SEQ ID NO: 4) were then assembled together into the final plasmid using SGI GIBSON ASSEMBLY.RTM. (<https://us.vwr.com/store/product/17613857/gibson-assembly-hifi-1-ste- p-kit-synthetic-genomics-inc>). Sequence of plasmid was then verified through Sanger sequencing through Eurofins Genomics (<www.eurofinsgenomics.com>).
[0121] The transformed cells were cultivated in minimal media and frozen in 1.5 aliquots with glycerol at a ratio of 50:50 of cells to glycerol. One vial of this frozen culture was revived in 50 ml of minimal media overnight at 37.degree. C., 200 rpm. Cells were transferred into 300 ml of minimal media and grown for 6-9 hours to reach an OD600 of 5-10.
[0122] Minimal media used in this example and throughout this application is prepared as follows. The minimal media (Table 1) was autoclaved in several separate fractions, Salts mix (Ammonium Phosphate dibasic, Potassium phosphate monobasic, Citric acid anhydrous, Magnesium sulfate heptahydrate), the Sucrose at 500 g/L, the Glucose at 55%, the Trace Metals TM5 (table 2), and Sodium Hydroxide 10M. The minimal media was then mixed together at the above concentrations post-autoclaving in the hood.
TABLE-US-00006 TABLE 1 Minimal media recipe for shake flask cultures chemical Formula MW Conc (g/L) Ammonium Phosphate dibasic (NH.sub.4).sub.2HPO.sub.4 133 4 Potassium phosphate monobasic KH.sub.2PO.sub.4 137 13.3 Citric acid anhydrous H.sub.3C.sub.6H.sub.5O.sub.7 192.14 4.5 Magnesium sulfate heptahydrate MgSO.sub.4.cndot.7H.sub.2O 246 0.59 Trace Metals TM5 2 Glucose C.sub.6H.sub.12O.sub.6 500 40 Sodium Hydroxide 10M NaOH 400 5.2 Sucrose 500 g/L C.sub.12H.sub.22O.sub.11 500 66.6
TABLE-US-00007 TABLE 2 Trace Metals TM5 composition chemical Formula MW Conc (g/L) Ferrous Sulfate Heptahydrate FeSO.sub.4.cndot.7H.sub.20 278.02 27.8 Calcium Chloride CaC.sub.12.cndot.2H.sub.20 147 2.94 Manganese Chloride MnC.sub.12 125.84 1.26 Zinc Sulfate ZnSO.sub.4.cndot.H.sub.20 179.5 1.8 Nickel Chloride NiC.sub.12.cndot.6H.sub.20 237.69 0.48 Sodium Molybate Na.sub.2MoO.sub.4.cndot.2H.sub.20 241.95 0.48 Sodium Selenite Na.sub.2SeO.sub.3 172.94 0.35 Boric Acid H.sub.3BO.sub.3 61.83 0.12
[0123] The harvested cells were disrupted in a homogenizer at 14,000 psi pressure in 2 passes. Resulting slurry contained the collagen protein along with other proteins.
[0124] The collagen was purified by acid treatment of homogenized cell broth. The pH of the homogenized slurry was decreased to 3 using 6M Hydrochloric acid. Acidified cell slurry was incubated overnight at 4.degree. C. with mixing, followed by centrifugation. Supernatant of the acidified slurry was tested on a polyacrylamide gel and found to contain collagen in relatively high abundance compared to starting pellet. The collagen slurry thus obtained was high in salts. To obtain volume and salt reduction, concentration and diafiltration steps were performed using an EMD Millipore Tangential Flow Filtration system with ultrafiltration cassettes of 0.1 m.sup.2 each. Total area of filtration was 0.2 m.sup.2 using 2 cassettes in parallel. A volume reduction of 5.times. and a salt reduction of 19.times. was achieved in the TFF stage. Final collagen slurry was run on an SDS-PAGE gel to confirm presence of the collagen. This slurry was dried using a multi-tray lyophilizer over 3 days to obtain a white, fluffy collagen powder.
[0125] The purified collagen was analyzed on an SDS-PAGE gel and a thick and clear band was observed at the expected size of 42 kilodaltons. The purified collagen was also analyzed by mass spectrometry and it was confirmed that the 42 kilodalton protein was jellyfish collagen.
[0126] The fermentations were performed at various temperature ranging from 25.degree. to 28.degree. C. For some fermentations, the temperature of the fermentation was maintained at a constant temperature and immediately upon completion of fermentation (0D600 of 5-10) the collagen was purified. For other fermentations, the temperature of the fermentations was maintained for a desired period of time and when cell densities of OD600 of 5-10 were reached, the temperature was reduced to induce protein production. Typically, the temperature was reduced from 28.degree. C. to 25.degree. C. After the fermentation at 25.degree. C. was continued for 40-60 hours, the collagen was isolated.
Additional Full Length Jellyfish Collagens
[0127] A full length jellyfish collagen without a His tag, linker, and thrombin cleavage site is disclosed below. Two codon-optimized nucleotide sequence encoding this collagen are provided in SEQ ID NO: 6 and SEQ ID NO: 7. The differences in the nucleotide sequences are due to different codon-optimization strategies but encode the same protein. The amino acid sequence is disclosed in SEQ ID NO: 8. The DsbA secretion tag is encoded by nucleotides 1-72 and encodes amino acids 1-24. The collagen sequence is encoded by nucleotides 73-1359 and encodes amino acids 25-453.
TABLE-US-00008 (SEQ ID NO: 6) ATGAAAAAGATTTGGCTGGCGCTGGCTGGTTTAGTTTTAGCGTTTAGCGC ATCGGCGGCGCAGTATGAAGATGGTCCGCAGGGTGTTGTTGGTGCAGATG GTAAAGACGGTACCCCGGGTGAAAAAGGAGAACAGGGACGTACAGGTGCA GCAGGTAAACAGGGCAGCCCGGGTGCCGATGGTGCCCGTGGCCCGCTGGG TAGCATTGGTCAGCAGGGTGCAAGAGGCGAACCGGGCGATCCGGGTAGTC CGGGCCTGCGTGGTGATACGGGTCTGGCCGGTGTTAAAGGCGTTGCAGGT CCTTCAGGTCGTCCAGGTCAACCGGGTGCAAATGGTCTGCCGGGTGTTAA TGGTCGTGGCGGTCTGCGTGGCAAACCGGGAGCAAAAGGTATTGCAGGTA GCGATGGAGAAGCCGGTGAAAGCGGTGCCCCGGGTCAGAGTGGTCCGACC GGTCCGCGCGGTCAGCGTGGTCCGTCTGGTGAAGATGGCAATCCGGGTCT GCAGGGTCTGCCTGGTAGTGATGGCGAACCAGGTGAAGAAGGTCAGCCGG GTCGTTCAGGCCAGCCGGGCCAGCAGGGCCCGCGTGGTAGCCCGGGCGAA GTTGGCCCGCGGGGTAGTAAAGGTCCTAGTGGCGATCGCGGTGATCGTGG TGAACGCGGTGTTCCTGGTCAGACCGGTAGCGCAGGTAATGTTGGCGAAG ATGGTGAACAGGGTGGCAAAGGTGTTGATGGTGCAAGCGGTCCGAGCGGT GCACTGGGTGCACGTGGTCCTCCGGGCAGCCGTGGTGACACCGGTGCAGT TGGTCCGCCTGGCCCGACCGGCCGTAGTGGCTTACCGGGTAATGCAGGTC AGAAAGGTCCGTCAGGTGAACCTGGCAGCCCTGGTAAAGCAGGTAGTGCC GGTGAGCAGGGTCCGCCGGGCAAAGATGGTAGTAATGGTGAGCCGGGTAG CCCTGGCAAAGAAGGTGAACGTGGTCTGGCAGGACCGCCGGGTCCTGATG GTCGCCGCGGTGAAACGGGTTCACCGGGTATTGCCGGTGCCCTGGGTAAA CCAGGTCTGGAAGGTCCGAAAGGTTATCCTGGTCTGCGCGGTCGTGATGG TACCAATGGCAAACGTGGCGAACAGGGCGAAACCGGTCCAGATGGTGTTC GTGGTATTCCGGGTAACGATGGTCAGAGCGGTAAACCGGGCATTGATGGT ATTGATGGCACCAATGGTCAGCCTGGCGAAGCAGGTTATCAGGGTGGTCG CGGTACCCGTGGTCAGCTGGGTGAAACAGGTGATGTTGGTCAGAATGGTG ATCGCGGCGCACCGGGTCCGGATGGTAGCAAAGGTAGCGCCGGTCGTCCG GGTTTACGTtaa (SEQ ID NO: 7) ATGAAAAAGATTTGGCTGGCGCTGGCTGGTTTAGTTTTAGCGTTTAGCGC ATCGGCGGCGCAGTATGAAGATGGTCCGCAGGGTGTTGTTGGTGCAGATG GTAAAGACGGTACCCCGGGTGAAAAAGGtGAACAGGGtCGTACcGGTGCA GCAGGTAAACAGGGCAGCCCGGGTGCCGATGGTGCCCGTGGCCCGCTGGG TAGCATTGGTCAGCAGGGTGCAcgtGGCGAACCGGGCGATCCGGGTAGcC CGGGCCTGCGTGGTGATACGGGTCTGGCCGGTGTTAAAGGCGTTGCAGGT CCTTCtGGTCGTCCAGGTCAACCGGGTGCAAATGGTCTGCCGGGTGTTAA TGGTCGTGGCGGTCTGCGTGGCAAACCGGGtGCAAAAGGTATTGCAGGTA GCGATGGcGAAGCCGGTGAAAGCGGTGCCCCGGGTCAGAGcGGTCCGACC GGTCCGCGCGGTCAGCGTGGTCCGTCTGGTGAAGATGGCAATCCGGGTCT GCAGGGTCTGCCTGGTagcGATGGCGAACCAGGTGAAGAAGGTCAGCCGG GTCGTTCtGGCCAGCCGGGCCAGCAGGGCCCGCGTGGTAGCCCGGGCGAA GTTGGCCCGCGcGGTtcTAAAGGTCCTAGcGGCGATCGCGGTGATCGTGG TGAACGCGGTGTTCCTGGTCAGACCGGTAGCGCAGGTAATGTTGGCGAAG ATGGTGAACAGGGTGGCAAAGGTGTTGATGGTGCAAGCGGTCCGAGCGGT GCACTGGGTGCACGTGGTCCTCCGGGCAGCCGTGGTGACACCGGTGCAGT TGGTCCGCCTGGCCCGACCGGCCGTAGcGGCctgCCGGGTAATGCAGGTC AGAAAGGTCCGTCtGGTGAACCTGGCAGCCCTGGTAAAGCAGGTAGcGCC GGTGAGCAGGGTCCGCCGGGCAAAGATGGTAGcAATGGTGAGCCGGGTAG CCCTGGCAAAGAAGGTGAACGTGGTCTGGCAGGtCCGCCGGGTCCTGATG GTCGCCGCGGTGAAACGGGTTCtCCGGGTATTGCCGGTGCCCTGGGTAAA CCAGGTCTGGAAGGTCCGAAAGGTTATCCTGGTCTGCGCGGTCGTGATGG TACCAATGGCAAACGTGGCGAACAGGGCGAAACCGGTCCAGATGGTGTTC GTGGTATTCCGGGTAACGATGGTCAGAGCGGTAAACCGGGCATTGATGGT ATTGATGGCACCAATGGTCAGCCTGGCGAAGCAGGTTATCAGGGTGGTCG CGGTACCCGTGGTCAGCTGGGTGAAACcGGTGATGTTGGTCAGAATGGTG ATCGCGGCGCACCGGGTCCGGATGGTAGCAAAGGTAGCGCCGGTCGTCCG GGTctgCGTtaa (SEQ ID NO: 8) MKKIWLALAGLVLAFSASAAQYEDGPQGVVGADGKDGTPGEKGEQGRTGA AGKQGSPGADGARGPLGSIGQQGARGEPGDPGSPGLRGDTGLAGVKGVAG PSGRPGQPGANGLPGVNGRGGLRGKPGAKGIAGSDGEAGESGAPGQSGPT GPRGQRGPSGEDGNPGLQGLPGSDGEPGEEGQPGRSGQPGQQGPRGSPGE VGPRGSKGPSGDRGDRGERGVPGQTGSAGNVGEDGEQGGKGVDGASGPSG ALGARGPPGSRGDTGAVGPPGPTGRSGLPGNAGQKGPSGEPGSPGKAGSA GEQGPPGKDGSNGEPGSPGKEGERGLAGPPGPDGRRGETGSPGIAGALGK PGLEGPKGYPGLRGRDGTNGKRGEQGETGPDGVRGIPGNDGQSGKPGIDG IDGTNGQPGEAGYQGGRGTRGQLGETGDVGQNGDRGAPGPDGSKGSAGRP GLR
Example 3: Production of Truncated Collagen
[0128] A codon optimized DNA sequence, optimized for expression in E. coli, encoding a jellyfish collagen with a truncation of 240 internal amino acids was synthesized and expressed. The DNA sequence is shown below in SEQ ID NO: 9. In SEQ ID NO: 9, The DsbA secretion tag is encoded by nucleotides 1-72 and encodes amino acids 1-24 of SEQ ID NO: 10. The histidine tag comprising 9 histidine (SEQ ID NO: 129) residues is encoded by nucleotides 73-99 and encodes amino acids 25-33 of SEQ ID NO: 10. The linker is encoded by nucleotides 100-111 and encodes amino acids 34-37 of SEQ ID NO: 10. The thrombin cleavage site is encoded by nucleotides 112-135 and encodes amino acids 38-45 of SEQ ID NO: 10. The truncated collagen is encoded by nucleotides 136-822 and encodes amino acids 46-274 of SEQ ID NO:
TABLE-US-00009 (SEQ ID NO: 9) ATGAAAAAGATTTGGCTGGCGCTGGCTGGTTTAGTTTTAGCGTTTAGCGC ATCGGCGGCGCAGTATGAAGATCACCATCACCACCACCACCATCACCACT CTGGCTCGAGCCTGGTGCCGCGCGGCAGCCATATGGGTCCGCAGGGTGTT GTTGGTGCAGATGGTAAAGACGGTACCCCGGGTGAAAAAGGAGAACAGGG ACGTACAGGTGCAGCAGGTAAACAGGGCAGCCCGGGTGCCGATGGTGCCC GTGGCCCGCTGGGTAGCATTGGTCAGCAGGGTGCAAGAGGCGAACCGGGC GATCCGGGTAGTCCGGGCCTGCGTGGTGATACGGGTCTGGCCGGTGTTAA AGGCGTTGCAGGTCCTTCAGGTCGTCCAGGTCAACCGGGTGCAAATGGTC TGCCGGGTGTTAATGGTCGTGGCGGTCTGGAACGTGGTCTGGCAGGACCG CCGGGTCCTGATGGTCGCCGCGGTGAAACGGGTTCACCGGGTATTGCCGG TGCCCTGGGTAAACCAGGTCTGGAAGGTCCGAAAGGTTATCCTGGTCTGC GCGGTCGTGATGGTACCAATGGCAAACGTGGCGAACAGGGCGAAACCGGT CCAGATGGTGTTCGTGGTATTCCGGGTAACGATGGTCAGAGCGGTAAACC GGGCATTGATGGTATTGATGGCACCAATGGTCAGCCTGGCGAAGCAGGTT ATCAGGGTGGTCGCGGTACCCGTGGTCAGCTGGGTGAAACAGGTGATGTT GGTCAGAATGGTGATCGCGGCGCACCGGGTCCGGATGGTAGCAAAGGTAG CGCCGGTCGTCCGGGTTTACGTtaa
[0129] The truncated collagen is approximately 54% of the full length collagen and is disclosed below in SEQ ID NO:10.
TABLE-US-00010 (SEQ ID NO: 10) MKKIWLALAGLVLAFSASAAQYEDHHHHHHHHHSGSSLVPRGSHMGPQGV VGADGKDGTPGEKGEQGRTGAAGKQGSPGADGARGPLGSIGQQGARGEPG DPGSPGLRGDTGLAGVKGVAGPSGRPGQPGANGLPGVNGRGGLERGLAGP PGPDGRRGETGSPGIAGALGKPGLEGPKGYPGLRGRDGTNGKRGEQGETG PDGVRGIPGNDGQSGKPGIDGIDGTNGQPGEAGYQGGRGTRGQLGETGDV GQNGDRGAPGPDGSKGSAGRPGLR
[0130] The polynucleotide encoding the truncated jellyfish collagen without the DsbA secretion tag, the histidine tag, linker and thrombin cleavage site is disclosed in SEQ ID NO: 85
TABLE-US-00011 (SEQ ID NO: 85) GTCCGCAGGGTGTTGTTGGTGCAGATGGTAAAGACGGTACCCCGGGTGAA AAAGGAGAACAGGGACGTACAGGTGCAGCAGGTAAACAGGGCAGCCCGGG TGCCGATGGTGCCCGTGGCCCGCTGGGTAGCATTGGTCAGCAGGGTGCAA GAGGCGAACCGGGCGATCCGGGTAGTCCGGGCCTGCGTGGTGATACGGGT CTGGCCGGTGTTAAAGGCGTTGCAGGTCCTTCAGGTCGTCCAGGTCAACC GGGTGCAAATGGTCTGCCGGGTGTTAATGGTCGTGGCGGTCTGGAACGTG GTCTGGCAGGACCGCCGGGTCCTGATGGTCGCCGCGGTGAAACGGGTTCA CCGGGTATTGCCGGTGCCCTGGGTAAACCAGGTCTGGAAGGTCCGAAAGG TTATCCTGGTCTGCGCGGTCGTGATGGTACCAATGGCAAACGTGGCGAAC AGGGCGAAACCGGTCCAGATGGTGTTCGTGGTATTCCGGGTAACGATGGT CAGAGCGGTAAACCGGGCATTGATGGTATTGATGGCACCAATGGTCAGCC TGGCGAAGCAGGTTATCAGGGTGGTCGCGGTACCCGTGGTCAGCTGGGTG AAACAGGTGATGTTGGTCAGAATGGTGATCGCGGCGCACCGGGTCCGGAT GGTAGCAAAGGTAGCGCCGGTCGTCCGGGTTTACGTtaa
[0131] The truncated jellyfish collagen without the DsbA secretion tag, the histidine tag, linker and thrombin cleavage site is disclosed in SEQ ID NO: 86
TABLE-US-00012 (SEQ ID NO: 86) GPQGVVGADGKDGTPGEKGEQGRTGAAGKQGSPGADGARGPLGSIGQQGA RGEPGDPGSPGLRGDTGLAGVKGVAGPSGRPGQPGANGLPGVNGRGGLER GLAGPPGPDGRRGETGSPGIAGALGKPGLEGPKGYPGLRGRDGTNGKRGE QGETGPDGVRGIPGNDGQSGKPGIDGIDGTNGQPGEAGYQGGRGTRGQLG ETGDVGQNGDRGAPGPDGSKGSAGRPGLR
[0132] The polynucleotides of SEQ ID NO: 9 was codon optimized and synthesized by Gen9 DNA, now Ginkgo Bioworks internal synthesis. Overlaps between the pET28 vector and SEQ ID NO: 9 were designed to be between 30 and 40 bp long and added using PCR with the enzyme PRIMESTAR.RTM. GXL polymerase (<http://www.clontech.com/US/Products/PCR/GC_Rich/PrimeSTAR_GXL_DNA_Po- lymerase?sitex=10020:22372:US>). The opened pET28a vector and insert DNA (SEQ ID NO: 9) was then assembled together into the final plasmid using SGI GIBSON ASSEMBLY.RTM. (<https://us.vwr.com/store/product/17613857/gibson-assembly-hifi-1-ste- p-kit-synthetic-genomics-inc>). Sequence of plasmid was then verified through sanger sequencing through Eurofins Genomics (<www.eurofinsgenomics.com>).
[0133] The transformed cells were cultivated in minimal media and frozen in 1.5 aliquots with glycerol at a ratio of 50:50 of cells to glycerol. One vial of this frozen culture was revived in 50 ml of minimal media overnight at 37.degree. C., 200 rpm. Cells were transferred into 300 ml of minimal media and grown for 6-9 hours to reach an OD600 of 5-10.
[0134] A bioreactor was prepared with 2.7 L of minimal media+glucose and 300 ml of OD600 of 5-10 culture was added to bring the starting volume to 3 L. Cells were grown at 28.degree. C., pH7 with Dissolved Oxygen maintained at 20% saturation using a cascade containing agitation, air and oxygen. pH was controlled using 28% w/w Ammonium hydroxide solution. Fermentation was run in a fed-batch mode using a DO-stat based feeding algorithm once the initial bolus of 40 g/L was depleted around 13 hours. After 24-26 hours of initial growth, the OD600 reached above 100. At this point, 300 mL of 500 g/L sucrose was added and temperature was reduced to 25 C. High density culture was induced for protein production using 1 mM IPTG. Fermentation was continued for another 20-24 hours and cells were harvested using a bench top centrifuge at 9000 rcf, 15 C for 60 minutes. Cell pellet recovered from centrifugation was resuspended in a buffer containing 0.5M NaCl and 0.1M KH2PO4 at pH8 in a weight by weight ratio of 2.times. buffer to 1.times. cells.
[0135] The harvested cells were disrupted in a homogenizer at 14,000 psi pressure in 2 passes. Resulting slurry contained the collagen protein along with other proteins.
[0136] The fermentations were performed at various temperature ranging from 25.degree. to 28.degree. C. For some fermentations, the temperature of the fermentation was maintained at a constant temperature and immediately upon completion of fermentation (0D600 of 5-10) the collagen was purified. For other fermentations, the temperature of the fermentations was maintained for a desired period of time and when cell densities of OD600 of 5-10 were reached, the temperature was reduced to induce protein production. Typically, the temperature was reduced from 28.degree. C. to 25.degree. C. After the fermentation at 25.degree. C. was continued for 40-60 hours, the collagen was isolated.
[0137] The collagen was purified by acid treatment of homogenized cell broth. Additionally, acid treatment was also performed on non-homogenized whole cells recovered from the bioreactor after centrifugation and resuspension in the buffer described above. The pH of either the homogenized slurry of the resuspended whole cells was decreased to 3 using 6M Hydrochloric acid. Acidified cell slurry was incubated overnight at 4.degree. C. with mixing, followed by centrifugation. Supernatant of the acidified slurry was tested on a polyacrylamide gel and found to contain collagen in relatively high abundance compared to starting pellet. The collagen slurry thus obtained was high in salts. To obtain volume and salt reduction, concentration and diafiltration steps were performed using an EMD Millipore Tangential Flow Filtration system with ultrafiltration cassettes of 0.1 m.sup.2 each. Total area of filtration was 0.2 m.sup.2 using 2 cassettes in parallel. A volume reduction of 5.times. and a salt reduction of 19.times. was achieved in the TFF stage. Final collagen slurry was run on an SDS-PAGE gel to confirm presence of the collagen. This slurry was dried using a multi-tray lyophilizer over 3 days to obtain a white, fluffy collagen powder.
[0138] The purified truncated collagen obtained from homogenized cell broth or non-homogenized cells were analyzed on an SDS-PAGE gel and a thick and clear band was observed at the expected size of 27 kilodaltons. The purified collagen was also analyzed by mass spectrometry and it was confirmed that the 27 kilodalton protein was jellyfish collagen.
[0139] An alternative purification method of the full length and truncated collagens is provided below.
[0140] The fermentation broth was mixed with 0.3-0.5% w/v of Poly Ethyl Imine (PEI). After 15 minutes of incubation with PEI, the fermentation broth was centrifuged at 9000 rcf for 15 minutes to recover the supernatant, which contained the collagen protein. The pellet containing the cells was discarded and the PEI-treated collagen containing supernatant was mixed with Sodium Bentonite (0.2% final w/v) (WYOPURE.TM., Wyoming Bentonite) and centrifuged. The bentonite containing pellet was discarded and the supernatant was recovered.
[0141] The Bentonite treated supernatant was concentrated between 3-6 fold on a tangential flow filtration system (TFF) (EMD Millipore) using a 5 kDa cassette. The collagen was retained with almost no losses in the permeate stream. To remove salts, the retentate from the concentration step was diafiltered using the same TFF set-up. Final conductivity of the protein solution was <10 milliSiemens. The typical conductivity was between 400 microsiemens and 1.5 millisiemens. Highly concentrated collagen solutions had higher conductivities approaching 4 milliSiemens. A skilled artisan will understand that conductivities higher than 10 milliSiemens may be observed depending on the concentration of the collagen. Next, the desalted and concentrated protein was subjected to treatment with activated carbon using the W-L 9000 10.times.40 granulated resin (Carbon Activated Corporation). 5% w/v of the carbon resin was mixed with collagen containing protein feed and mixed at 45-50.degree. C. with mild agitation. The carbon-treated slurry was filtered using a Buchner funnel lined with an Ertel Filter Press Pad M-953 (Ertel Alsop) in presence or absence of a filtration aid such as Diatomaceous Earth (Sigma Aldrich). Post-filtration, the collagen solution was filtered through a 0.2 micron filter followed by one to several hours of treatment with Sodium Bentonite (0.2% w/v final) (WYOPURE.TM., Wyoming Bentonite) and centrifuged at 9000 rcf, 15-30 minutes to obtain a highly pure, clear and particulate free collagen solution. When removal of endotoxin proteins was desired, the protein was passed through a chromatographic filter like SARTOBIND.RTM. Q (Sartorius-Stedim) to specifically remove endotoxin proteins.
[0142] The purified collagen was analyzed on an SDS-PAGE gel and a thick and clear band was observed at 30 kilodaltons. The upshift in size is due to the structure of the collagen molecule and the high glycine/proline amino acid content. The purified collagen was also analyzed by mass spectrometry and it was confirmed that the 30 kilodalton protein was the truncated collagen.
[0143] The truncated collagens were further analyzed by HPLC using an Agilent 1100 series HPLC. The column was the 50 mm Agilent PLRP-S reverse phase column with an inner diameter of 4.6 mm, .mu.M particle size and 1000 Angstrom pore size.
[0144] The sample was prepared by diluting 1:1 in a 0.04% sodium azide solution in HPLC-grade water. After dilution, the resulting mixture was filtered through a 0.45 um filter to remove any large particles that can clog the HPLC column. For analysis, the samples are diluted appropriately with a 20 mM ammonium acetate buffer in HPLC-grade water at a pH of about 4.5. After mixing the sample, it was transferred to a 300 .mu.L microvial that was then placed in the autosampler. Using ChemStation, the software that operates the HPLC, the analysis parameters such as sample flowrate, column temperature, mobile phase flowrate, mobile phase composition, etc. can be altered. In one exemplary, but non-limiting analysis the parameters were: sample flow rate of 1 mL/min, column temperature of 80.degree. C., column pressure of 60-70 bar, mobile phase composition of 97.9% water/1.9% acetonitrile with 0.2% trifluoroacetic acid; UV wavelength for analysis of 214.4 nm, injection volume of 10 .mu.L, and sample run time of 10 minutes.
[0145] Under these conditions, the truncated jellyfish collation of SEQ ID NO: 91 has an elution time of about 5.4 minutes. ChemStation quantifies the peak area of the elution peak and calculates the protein concentration using a calibration curve that directly relates peak area to protein concentration. The calibration curve is generated using a known collagen solution that is serially diluted to contain collagen concentration ranges of 0.06 mg/mL to 1.00 mg/mL.
Truncated Collagen without His Tag-Linker-Thrombin Cleavage Site
[0146] A truncated jellyfish collagen without a His tag, linker, and thrombin cleavage site is disclosed below. The codon-optimized nucleotide sequence encoding this collagen is provided in SEQ ID NO: 11. The amino acid sequence is disclosed in SEQ ID NO: 12. The DsbA secretion tag is encoded by nucleotides 1-72 and encodes amino acids 1-24. The truncated collagen sequence is encoded by nucleotides 73-639 and encodes amino acids 25-213.
TABLE-US-00013 (SEQ ID NO: 11) ATGAAAAAGATTTGGCTGGCGCTGGCTGGTTTAGTTTTAGCGTTTAGCGC ATCGGCGGCGCAGTATGAAGATGGTCCGCAGGGTGTTGTTGGTGCAGATG GTAAAGACGGTACCCCGGGTAATGCAGGTCAGAAAGGTCCGTCAGGTGAA CCTGGCAGCCCTGGTAAAGCAGGTAGTGCCGGTGAGCAGGGTCCGCCGGG CAAAGATGGTAGTAATGGTGAGCCGGGTAGCCCTGGCAAAGAAGGTGAAC GTGGTCTGGCAGGACCGCCGGGTCCTGATGGTCGCCGCGGTGAAACGGGT TCACCGGGTATTGCCGGTGCCCTGGGTAAACCAGGTCTGGAAGGTCCGAA AGGTTATCCTGGTCTGCGCGGTCGTGATGGTACCAATGGCAAACGTGGCG AACAGGGCGAAACCGGTCCAGATGGTGTTCGTGGTATTCCGGGTAACGAT GGTCAGAGCGGTAAACCGGGCATTGATGGTATTGATGGCACCAATGGTCA GCCTGGCGAAGCAGGTTATCAGGGTGGTCGCGGTACCCGTGGTCAGCTGG GTGAAACAGGTGATGTTGGTCAGAATGGTGATCGCGGCGCACCGGGTCCG GATGGTAGCAAAGGTAGCGCCGGTCGTCCGGGTTTACGTtaa (SEQ ID NO: 12) MKKIWLALAGLVLAFSASAAQYEDGPQGVVGADGKDGTPGNAGQKGPSGE PGSPGKAGSAGEQGPPGKDGSNGEPGSPGKEGERGLAGPPGPDGRRGETG SPGIAGALGKPGLEGPKGYPGLRGRDGTNGKRGEQGETGPDGVRGIPGND GQSGKPGIDGIDGTNGQPGEAGYQGGRGTRGQLGETGDVGQNGDRGAPGP DGSKGSAGRPGLR
[0147] A polynucleotide encoding a truncated jellyfish collagen without a His tag, linker and thrombin cleavage site disclosed in SEQ ID NO: 90
TABLE-US-00014 (SEQ ID NO: 90) GGTCCGCAGGGTGTTGTTGGTGCAGATGGTAAAGACGGTACCCCGGGTAA TGCAGGTCAGAAAGGTCCGTCAGGTGAACCTGGCAGCCCTGGTAAAGCAG GTAGTGCCGGTGAGCAGGGTCCGCCGGGCAAAGATGGTAGTAATGGTGAG CCGGGTAGCCCTGGCAAAGAAGGTGAACGTGGTCTGGCAGGACCGCCGGG TCCTGATGGTCGCCGCGGTGAAACGGGTTCACCGGGTATTGCCGGTGCCC TGGGTAAACCAGGTCTGGAAGGTCCGAAAGGTTATCCTGGTCTGCGCGGT CGTGATGGTACCAATGGCAAACGTGGCGAACAGGGCGAAACCGGTCCAGA TGGTGTTCGTGGTATTCCGGGTAACGATGGTCAGAGCGGTAAACCGGGCA TTGATGGTATTGATGGCACCAATGGTCAGCCTGGCGAAGCAGGTTATCAG GGTGGTCGCGGTACCCGTGGTCAGCTGGGTGAAACAGGTGATGTTGGTCA GAATGGTGATCGCGGCGCACCGGGTCCGGATGGTAGCAAAGGTAGCGCCG GTCGTCCGGGTTTACGTtaa
[0148] A truncated jellyfish collagen without a His tag, linker and thrombin cleavage site disclosed in SEQ ID NO: 91
TABLE-US-00015 (SEQ ID NO: 91) GPQGVVGADGKDGTPGNAGQKGPSGEPGSPGKAGSAGEQGPPGKDGSNGE PGSPGKEGERGLAGPPGPDGRRGETGSPGIAGALGKPGLEGPKGYPGLRG RDGTNGKRGEQGETGPDGVRGIPGNDGQSGKPGIDGIDGTNGQPGEAGYQ GGRGTRGQLGETGDVGQNGDRGAPGPDGSKGSAGRPGLR
Truncated Collagen with GEK Repeats
[0149] A jellyfish collagen with GEK repeats is disclosed below. The codon-optimized nucleotide sequence encoding this collagen is provided in SEQ ID NO: 13. The amino acid sequence is disclosed in SEQ ID NO: 14. The DsbA secretion tag is encoded by nucleotides 1-72 and encodes amino acids 1-24. The GEK repeat is encoded by nucleotides 73-126 and encodes the GEK repeats of amino acids 25-42. The truncated collagen sequence is encoded by nucleotides 127-693 and encodes amino acids 43-231.
TABLE-US-00016 (SEQ ID NO: 13) ATGAAAAAGATTTGGCTGGCGCTGGCTGGTTTAGTTTTAGCGTTTAGCGC ATCGGCGGCGCAGTATGAAGATGGTGAAAAAGGTGAaAAGGGCGAGAAAG GTGAGAAAGGCGAAAAGGGTGAAAAAGGTCCGCAGGGTGTTGTTGGTGCA GATGGTAAAGACGGTACCCCGGGTAATGCAGGTCAGAAAGGTCCGTCAGG TGAACCTGGCAGCCCTGGTAAAGCAGGTAGTGCCGGTGAGCAGGGTCCGC CGGGCAAAGATGGTAGTAATGGTGAGCCGGGTAGCCCTGGCAAAGAAGGT GAACGTGGTCTGGCAGGACCGCCGGGTCCTGATGGTCGCCGCGGTGAAAC GGGTTCACCGGGTATTGCCGGTGCCCTGGGTAAACCAGGTCTGGAAGGTC CGAAAGGTTATCCTGGTCTGCGCGGTCGTGATGGTACCAATGGCAAACGT GGCGAACAGGGCGAAACCGGTCCAGATGGTGTTCGTGGTATTCCGGGTAA CGATGGTCAGAGCGGTAAACCGGGCATTGATGGTATTGATGGCACCAATG GTCAGCCTGGCGAAGCAGGTTATCAGGGTGGTCGCGGTACCCGTGGTCAG CTGGGTGAAACAGGTGATGTTGGTCAGAATGGTGATCGCGGCGCACCGGG TCCGGATGGTAGCAAAGGTAGCGCCGGTCGTCCGGGTTTACGTtaa (SEQ ID NO: 14) MKKIWLALAGLVLAFSASAAQYEDGEKGEKGEKGEKGEKGEKGPQGVVGA DGKDGTPGNAGQKGPSGEPGSPGKAGSAGEQGPPGKDGSNGEPGSPGKEG ERGLAGPPGPDGRRGETGSPGIAGALGKPGLEGPKGYPGLRGRDGTNGKR GEQGETGPDGVRGIPGNDGQSGKPGIDGIDGTNGQPGEAGYQGGRGTRGQ LGETGDVGQNGDRGAPGPDGSKGSAGRPGLR
[0150] The polynucleotides of SEQ ID NO: 13 was codon optimized and synthesized by Gen9 DNA, now Ginkgo Bioworks internal synthesis. Overlaps between the pET28 vector and SEQ ID NO: 13 was designed to be between 30 and 40 bp long and added using PCR with the enzyme PRIMESTAR.RTM. GXL polymerase (<http://www.clontech.com/US/Products/PCR/GC_Rich/PrimeSTAR_GXL_DNA_Po- lymerase?sitex=10020:22372:US>). The opened pET28a vector and insert DNA (SEQ ID NO: 13) was then assembled together into the final plasmid using SGI GIBSON ASSEMBLY.RTM. (<https://us.vwr.com/store/product/17613857/gibson-assembly-hifi-1-ste- p-kit-synthetic-genomics-inc>). Sequence of plasmid was then verified through Sanger sequencing through Eurofins Genomics (<www.eurofinsgenomics.com>).
[0151] The transformed cells were cultivated in minimal media and frozen in 1.5 aliquots with glycerol at a ratio of 50:50 of cells to glycerol. One vial of this frozen culture was revived in 50 ml of minimal media overnight at 37.degree. C., 200 rpm. Cells were transferred into 300 ml of minimal media and grown for 6-9 hours to reach an OD600 of 5-10.
[0152] A bioreactor was prepared with 2.7 L of minimal media+glucose and 300 ml of OD600 of 5-10 culture was added to bring the starting volume to 3 L. Cells were grown at 28.degree. C., pH7 with Dissolved Oxygen maintained at 20% saturation using a cascade containing agitation, air and oxygen. pH was controlled using 28% w/w Ammonium hydroxide solution. Fermentation was run in a fed-batch mode using a DO-stat based feeding algorithm once the initial bolus of 40 g/L was depleted around 13 hours. After 24-26 hours of initial growth, the OD600 reached above 100. At this point, 300 mL of 500 g/L sucrose was added and temperature was reduced to 25 C. High density culture was induced for protein production using 1 mM IPTG. Fermentation was continued for another 20-24 hours and cells were harvested using a bench top centrifuge at 9000 rcf, 15 C for 60 minutes. Cell pellet recovered from centrifugation was resuspended in a buffer containing 0.5M NaCl and 0.1M KH2PO4 at pH8 in a weight by weight ratio of 2.times. buffer to 1.times. cells.
[0153] The harvested cells were disrupted in a homogenizer at 14,000 psi pressure in 2 passes. Resulting slurry contained the collagen protein along with other proteins.
[0154] The collagen was purified by acid treatment whole cells recovered from bioreactor after centrifugation and resuspension in a buffer as described above The pH of either the homogenized slurry or the resuspended suspension was decreased to 3 using 6M Hydrochloric acid. Acidified cell slurry was incubated overnight at 4.degree. C. with mixing, followed by centrifugation. Supernatant of the acidified slurry was tested on a polyacrylamide gel and found to contain collagen in relatively high abundance compared to starting pellet. The collagen slurry thus obtained was high in salts. To obtain volume and salt reduction, concentration and diafiltration steps were performed using an EMD Millipore Tangential Flow Filtration system with ultrafiltration cassettes of 0.1 m.sup.2 each. Total area of filtration was 0.2 m.sup.2 using 2 cassettes in parallel. A volume reduction of 5.times. and a salt reduction of 19.times. was achieved in the TFF stage. Final collagen slurry was run on an SDS-PAGE gel to confirm presence of the collagen. This slurry was dried using a multi-tray lyophilizer over 3 days to obtain a white, fluffy collagen powder.
[0155] The purified collagen was analyzed on an SDS-PAGE gel and was observed to run at an apparent molecular weight of 35 kilodaltons. The 35 kilodalton band does not correspond to the expected size of 22 kilodaltons. The upshift between the expected size and the apparent size is thought to be due to the GEK repeats interacting with the gel matrix. The 35 kDa band was confirmed by mass spectrometry to be the correct collagen with the GEK repeats.
Truncated Collagen With GDK Repeats
[0156] A jellyfish collagen with GDK repeats is disclosed below. The codon-optimized nucleotide sequence encoding this collagen is provided in SEQ ID NO: 15. The amino acid sequence is disclosed in SEQ ID NO: 16. The DsbA secretion tag is encoded by nucleotides 1-72 and encodes amino acids 1-24. The GDK repeat is encoded by nucleotides 73-126 and encodes the GDK repeats of amino acids 25-42. The truncated collagen sequence is encoded by nucleotides 127-693 and encodes amino acids 43-231.
TABLE-US-00017 (SEQ ID NO: 15) ATGAAAAAGATTTGGCTGGCGCTGGCTGGTTTAGTTTTAGCGTTTAGCGC ATCGGCGGCGCAGTATGAAGATGGTGATAAAGGTGATAAGGGCGACAAAG GTGACAAAGGCGATAAGGGTGATAAAGGTCCGCAGGGTGTTGTTGGTGCA GATGGTAAAGACGGTACCCCGGGTAATGCAGGTCAGAAAGGTCCGTCAGG TGAACCTGGCAGCCCTGGTAAAGCAGGTAGTGCCGGTGAGCAGGGTCCGC CGGGCAAAGATGGTAGTAATGGTGAGCCGGGTAGCCCTGGCAAAGAAGGT GAACGTGGTCTGGCAGGACCGCCGGGTCCTGATGGTCGCCGCGGTGAAAC GGGTTCACCGGGTATTGCCGGTGCCCTGGGTAAACCAGGTCTGGAAGGTC CGAAAGGTTATCCTGGTCTGCGCGGTCGTGATGGTACCAATGGCAAACGT GGCGAACAGGGCGAAACCGGTCCAGATGGTGTTCGTGGTATTCCGGGTAA CGATGGTCAGAGCGGTAAACCGGGCATTGATGGTATTGATGGCACCAATG GTCAGCCTGGCGAAGCAGGTTATCAGGGTGGTCGCGGTACCCGTGGTCAG CTGGGTGAAACAGGTGATGTTGGTCAGAATGGTGATCGCGGCGCACCGGG TCCGGATGGTAGCAAAGGTAGCGCCGGTCGTCCGGGTTTACGTtaa (SEQ ID NO: 16) MKKIWLALAGLVLAFSASAAQYEDGDKGDKGDKGDKGDKGDKGPQGVVGA DGKDGTPGNAGQKGPSGEPGSPGKAGSAGEQGPPGKDGSNGEPGSPGKEG ERGLAGPPGPDGRRGETGSPGIAGALGKPGLEGPKGYPGLRGRDGTNGKR GEQGETGPDGVRGIPGNDGQSGKPGIDGIDGTNGQPGEAGYQGGRGTRGQ LGETGDVGQNGDRGAPGPDGSKGSAGRPGLR
[0157] The polynucleotides of SEQ ID NO: 15 was codon optimized and synthesized by Gen9 DNA, now Ginkgo Bioworks internal synthesis. Overlaps between the pET28 vector and SEQ ID NO: 15 was designed to be between 30 and 40 bp long and added using PCR with the enzyme PRIMESTAR.RTM. GXL polymerase (<http://www.clontech.com/US/Products/PCR/GC_Rich/PrimeSTAR_GXL_DNA_Po- lymerase?sitex=10020:22372:US>). The opened pET28a vector and insert DNA (SEQ ID NO: 15) was then assembled together into the final plasmid using SGI GIBSON ASSEMBLY.RTM. (<https://us.vwr.com/store/product/17613857/gibson-assembly-hifi-1-ste- p-kit-synthetic-genomics-inc>). Sequence of plasmid was then verified through sanger sequencing through Eurofins Genomics (<www.eurofinsgenomics.com>).
[0158] The transformed cells were cultivated in minimal media and frozen in 1.5 aliquots with glycerol at a ratio of 50:50 of cells to glycerol. One vial of this frozen culture was revived in 50 ml of minimal media overnight at 37.degree. C., 200 rpm. Cells were transferred into 300 ml of minimal media and grown for 6-9 hours to reach an OD600 of 5-10.
[0159] A bioreactor was prepared with 2.7 L of minimal media+glucose and 300 ml of OD600 of 5-10 culture was added to bring the starting volume to 3 L. Cells were grown at 28.degree. C., pH7 with Dissolved Oxygen maintained at 20% saturation using a cascade containing agitation, air and oxygen. pH was controlled using 28% w/w Ammonium hydroxide solution. Fermentation was run in a fed-batch mode using a DO-stat based feeding algorithm once the initial bolus of 40 g/L was depleted around 13 hours. After 24-26 hours of initial growth, the OD600 reached above 100. At this point, 300 mL of 500 g/L sucrose was added and temperature was reduced to 25 C. High density culture was induced for protein production using 1 mM IPTG. Fermentation was continued for another 20-24 hours and cells were harvested using a bench top centrifuge at 9000 rcf, 15 C for 60 minutes. Cell pellet recovered from centrifugation was resuspended in a buffer containing 0.5M NaCl and 0.1M KH2PO4 at pH8 in a weight by weight ratio of 2.times. buffer to 1.times. cells.
[0160] The harvested cells were disrupted in a homogenizer at 14,000 psi pressure in 2 passes. Resulting slurry contained the collagen protein along with other proteins.
[0161] The collagen was purified by acid treatment of whole cells recovered from bioreactor after centrifugation and resuspension in a buffer as described above. The pH of either the homogenized slurry was decreased to 3 using 6M Hydrochloric acid. Acidified cell slurry was incubated overnight at 4.degree. C. with mixing, followed by centrifugation. Supernatant of the acidified slurry was tested on a polyacrylamide gel and found to contain collagen in relatively high abundance compared to starting pellet. The collagen slurry thus obtained was high in salts. To obtain volume and salt reduction, concentration and diafiltration steps were performed using an EMD Millipore Tangential Flow Filtration system with ultrafiltration cassettes of 0.1 m.sup.2 each. Total area of filtration was 0.2 m.sup.2 using 2 cassettes in parallel. A volume reduction of 5.times. and a salt reduction of 19.times. was achieved in the TFF stage. Final collagen slurry was run on an SDS-PAGE gel to confirm presence of the collagen. This slurry was dried using a multi-tray lyophilizer over 3 days to obtain a white, fluffy collagen powder.
[0162] The purified collagen was analyzed on an SDS-PAGE gel and was observed to run at an apparent molecular weight of 35 kilodaltons. The 35 kilodalton band does not correspond to the expected size of 22 kilodaltons. The upshift between the expected size and the apparent size is thought to be due to the GDK repeats interacting with the gel matrix. The 35 kDa band was confirmed by mass spectrometry to be the correct collagen with the GDK repeats.
Truncated Collagen with DsbA Secretion Tag-His Tag-Linker-Thrombin Cleavage Site and GFP Beta-Lactamase Fusion (Version 1):
[0163] A jellyfish collagen with DsbA secretion tag-His tag-Linker-Thrombin cleavage site and GFP Beta-lactamase fusion is disclosed below. The codon-optimized nucleotide sequence encoding this collagen is provided in SEQ ID NO: 17. The amino acid sequence is disclosed in SEQ ID NO: 18. The DsbA secretion tag is encoded by nucleotides 1-72 and encodes amino acids 1-24. The His tag is encoded by nucleotides 73-99 and encodes a 9 histidine tag (SEQ ID NO: 129) of amino acids 25-33. The linker is encoded by nucleotides 100-111 and encodes amino acids 34-37. The thrombin cleavage side is encoded by nucleotides 112-135 and encodes amino acids 38-45. The green fluorescent protein (GFP) with linker is encoded by nucleotides 136-873 and encodes amino acids 46-291. The truncated collagen sequence is encoded by nucleotides 874-1440 and encodes amino acids 292-480. The Beta-lactamase with linker is encoded by nucleotides 1441-2232 and encodes amino acids 481-744. The Beta-lactamase was properly targeted to the periplasmic space even though the polypeptide did not have an independent secretion tag. The DsbA secretion tag directed the entire transcript (Truncated Collagen with DsbA secretion tag-His tag-Linker-Thrombin cleavage site and GFP Beta-lactamase fusion protein) to the periplasmic space and the Beta-lactamase functioned properly.
TABLE-US-00018 (SEQ ID NO: 17) ATGAAAAAGATTTGGCTGGCGCTGGCTGGTTTAGTTTTAGCGTTTAGCGC ATCGGCGGCGCAGTATGAAGATCACCATCACCACCACCACCATCACCACT CTGGCTCGAGCCTGGTGCCGCGCGGCAGCCATATGTCTGGCTCGAGCAGT AAAGGTGAAGAACTGTTCACCGGTGTTGTTCCGATCCTGGTTGAACTGGA TGGTGATGTTAACGGCCACAAATTCTCTGTTCGTGGTGAAGGTGAAGGTG ATGCAACCAACGGTAAACTGACCCTGAAATTCATCTGCACTACCGGTAAA CTGCCGGTTCCATGGCCGACTCTGGTGACTACCCTGACCTATGGTGTTCA GTGTTTTTCTCGTTACCCGGATCACATGAAGCAGCATGATTTCTTCAAAT CTGCAATGCCGGAAGGTTATGTACAGGAGCGCACCATTTCTTTCAAAGAC GATGGCACCTACAAAACCCGTGCAGAGGTTAAATTTGAAGGTGATACTCT GGTGAACCGTATTGAACTGAAAGGCATTGATTTCAAAGAGGACGGCAACA TCCTGGGCCACAAACTGGAATATAACTTCAACTCCCATAACGTTTACATC ACCGCAGACAAACAGAAGAACGGTATCAAAGCTAACTTCAAAATTCGCCA TAACGTTGAAGACGGTAGCGTACAGCTGGCGGACCACTACCAGCAGAACA CTCCGATCGGTGATGGTCCGGTTCTGCTGCCGGATAACCACTACCTGTCC ACCCAGTCTaaaCTGTCCAAAGACCCGAACGAAAAGCGCGACCACATGGT GCTGCTGGAGTTCGTTACTGCAGCAGGTATCACGCACGGCATGGATGAAC TCTACAAATCTGGCGCGCCGGGCGGTCCGCAGGGTGTTGTTGGTGCAGAT GGTAAAGACGGTACCCCGGGTAATGCAGGTCAGAAAGGTCCGTCAGGTGA ACCTGGCAGCCCTGGTAAAGCAGGTAGTGCCGGTGAGCAGGGTCCGCCGG GCAAAGATGGTAGTAATGGTGAGCCGGGTAGCCCTGGCAAAGAAGGTGAA CGTGGTCTGGCAGGACCGCCGGGTCCTGATGGTCGCCGCGGTGAAACGGG TTCACCGGGTATTGCCGGTGCCCTGGGTAAACCAGGTCTGGAAGGTCCGA AAGGTTATCCTGGTCTGCGCGGTCGTGATGGTACCAATGGCAAACGTGGC GAACAGGGCGAAACCGGTCCAGATGGTGTTCGTGGTATTCCGGGTAACGA TGGTCAGAGCGGTAAACCGGGCATTGATGGTATTGATGGCACCAATGGTC AGCCTGGCGAAGCAGGTTATCAGGGTGGTCGCGGTACCCGTGGTCAGCTG GGTGAAACAGGTGATGTTGGTCAGAATGGTGATCGCGGCGCACCGGGTCC GGATGGTAGCAAAGGTAGCGCCGGTCGTCCGGGTTTACGTcacccagaaa cgctggtgaaagtaaaagatgctgaagatcagttgggtgcacgagtgggt tacatcgaactggatctcaacagcggtaagatccttgagagttttcgccc cgaagaacgttttccaatgatgagcacttttaaagttctgctatgtggcg cggtattatcccgtattgacgccgggcaagagcaactcggtcgccgcata cactattctcagaatgacttggttgagtactcaccagtcacagaaaagca tcttacggatggcatgacagtaagagaattatgcagtgctgccataacca tgagtgataacactgcggccaacttacttctgacaacgatcggaggaccg aaggagctaaccgctatagcacaacatgggggatcatgtaactcgccttg atcgttgggaaccggagctgaatgaagccataccaaacgacgagcgtgac accacgatgcctgtagcaatggcaacaacgttgcgcaaactattaactgg cgaactacttactctagcttcccggcaacaattaatagactggatggagg cggataaagttgcaggaccacttctgcgctcggcccttccggctggctgg tttattgctgataaatctggagccggtgagcgtgggtctcgcggtatcat tgcagcactggggccagatggtaagccctcccgtatcgtagttatctaca cgacggggagtcaggcaactatggatgaacgaaatagacagatcgctgag ataggtgcctcactgattaagcattggtaa (SEQ ID NO: 18) MKKIWLALAGLVLAFSASAAQYEDHHHHHHHHHSGSSLVPRGSHMSGSSS KGEELFTGVVPILVELDGDVNGHKFSVRGEGEGDATNGKLTLKFICTTGK LPVPWPTLVTTLTYGVQCFSRYPDHMKQHDFFKSAMPEGYVQERTISFKD DGTYKTRAEVKFEGDTLVNRIELKGIDFKEDGNILGHKLEYNFNSHNVYI TADKQKNGIKANFKIRHNVEDGSVQLADHYQQNTPIGDGPVLLPDNHYLS TQSKLSKDPNEKRDHMVLLEFVTAAGITHGMDELYKSGAPGGPQGVVGAD GKDGTPGNAGQKGPSGEPGSPGKAGSAGEQGPPGKDGSNGEPGSPGKEGE RGLAGPPGPDGRRGETGSPGIAGALGKPGLEGPKGYPGLRGRDGTNGKRG EQGETGPDGVRGIPGNDGQSGKPGIDGIDGTNGQPGEAGYQGGRGTRGQL GETGDVGQNGDRGAPGPDGSKGSAGRPGLRHPETLVKVKDAEDQLGARVG YIELDLNSGKILESFRPEERFPMMSTFKVLLCGAVLSRIDAGQEQLGRRI HYSQNDLVEYSPVTEKHLTDGMTVRELCSAAITMSDNTAANLLLTTIGGP KELTAFLHNMGDHVTRLDRWEPELNEAIPNDERDTTMPVAMATTLRKLLT GELLTLASRQQLIDWMEADKVAGPL5LRSALPAGWFIADKSGAGERGSRG IIAALGPDGKPSRIVVIYTTGSQATMDERNRQIAEIGASLIKHW
[0164] The polynucleotides of SEQ ID NO: 17 was constructed by assembling several DNA fragments. The collagen containing sequence was codon optimized and synthesized by Gen9 DNA, now Ginkgo Bioworks internal synthesis. The GFP was also synthesized by Gen9. The Beta-lactamase was cloned out of the plasmid pKD46 (<http://cgsc2.biology.yale.edu/Strain.php?ID=68099>) using PCR with the enzyme PRIMESTAR.RTM. GXL polymerase (<http://www.clontech.com/US/Products/PCR/GC_Rich/PrimeSTAR_GXL_DNA_Po- lymerase?sitex=10020:22372:US>). Overlaps between the pET28 vector, GFP, Collagen, and Beta-lactamase was designed to be between 30 and 40 bp long and added using PCR with the enzyme PRIMESTAR.RTM. GXL polymerase. The opened pET28a vector and inserts were then assembled together into the final plasmid using SGI GIBSON ASSEMBLY.RTM. (<https://us.vwr.com/store/product/17613857/gibson-assembly-hifi-1-ste- p-kit-synthetic-genomics-inc>). Sequence of plasmid was then verified through Sanger sequencing through Eurofins Genomics (<www.eurofinsgenomics.com>).
[0165] The transformed cells were cultivated in minimal media and frozen in 1.5 aliquots with glycerol at a ratio of 50:50 of cells to glycerol. One vial of this frozen culture was revived in 50 ml of minimal media overnight at 37.degree. C., 200 rpm. Cells were transferred into 300 ml of minimal media and grown for 6-9 hours to reach an OD600 of 5-10.
[0166] A bioreactor was prepared with 2.7 L of minimal media+glucose and 300 ml of OD600 of 5-10 culture was added to bring the starting volume to 3 L. Cells were grown at 28.degree. C., pH7 with Dissolved Oxygen maintained at 20% saturation using a cascade containing agitation, air and oxygen. pH was controlled using 28% w/w Ammonium hydroxide solution. Fermentation was run in a fed-batch mode using a DO-stat based feeding algorithm once the initial bolus of 40 g/L was depleted around 13 hours. After 24-26 hours of initial growth, the OD600 reached above 100. At this point, 300 mL of 500 g/L sucrose was added and temperature was reduced to 25 C. High density culture was induced for protein production using 1 mM IPTG. Fermentation was continued for another 20-24 hours and cells were harvested using a bench top centrifuge at 9000 rcf, 15 C for 60 minutes. Cell pellet recovered from centrifugation was resuspended in a buffer containing 0.5M NaCl and 0.1M KH2PO4 at pH8 in a weight by weight ratio of 2.times. buffer to 1.times. cells.
[0167] The harvested cells were disrupted in a homogenizer at 14,000 psi pressure in 2 passes. Resulting slurry contained the collagen protein along with other proteins.
[0168] The collagen was purified by acid treatment of non-homogenized whole cells recovered from the bioreactor after centrifugation and resuspension in the buffer described above. The pH of the resuspended suspension--was decreased to 3 using 6M Hydrochloric acid. Acidified cell slurry was incubated overnight at 4.degree. C. with mixing, followed by centrifugation. The pH was then raised to 9 using 10N NaOH and the supernatant of the slurry was tested on a polyacrylamide gel and found to contain collagen in relatively high abundance compared to starting pellet. The collagen slurry thus obtained was high in salts. To obtain volume and salt reduction, concentration and diafiltration steps were performed using an EMD Millipore Tangential Flow Filtration system with ultrafiltration cassettes of 0.1 m2 each. Total area of filtration was 0.2 m2 using 2 cassettes in parallel. A volume reduction of 5.times. and a salt reduction of 19.times. was achieved in the TFF stage. Final collagen slurry was run on an SDS-PAGE gel to confirm presence of the collagen. This slurry was dried using a multi-tray lyophilizer over 3 days to obtain a white, fluffy collagen powder.
[0169] The purified collagen-GFP-Beta-lactamase fusion protein was analyzed on an SDS-PAGE gel and was observed to run at an apparent molecular weight of 90 kilodaltons. The expected size of the fusion protein is 85 kd. The 90 kDa band was confirmed by mass spectrometry to be the correct collagen fusion protein.
Truncated Collagen with DsbA Secretion Tag-His Tag-Linker-Thrombin Cleavage Site and GFP Beta-Lactamase Fusion (Version 2):
[0170] A jellyfish collagen with DsbA secretion tag-His tag-Linker-Thrombin cleavage site and GFP Beta-lactamase fusion is disclosed below. The codon-optimized nucleotide sequence encoding this collagen is provided in SEQ ID NO: 19. The amino acid sequence is disclosed in SEQ ID NO: 20. The DsbA secretion tag is encoded by nucleotides 1-72 and encodes amino acids 1-24. The His tag is encoded by nucleotides 73-99 and encodes a 9 histidine tag (SEQ ID NO: 129) of amino acids 25-33. The linker is encoded by nucleotides 100-111 and encodes amino acids 34-37. The thrombin cleavage side is encoded by nucleotides 112-135 and encodes amino acids 38-45. The green fluorescent protein (GFP) with linker is encoded by nucleotides 136-873 and encodes amino acids 46-291 The truncated collagen sequence is encoded by nucleotides 874-1440 and encodes amino acids 292-480. The Beta-lactamase with linker is encoded by nucleotides 1441-2232 and encodes amino acids 481-744.
TABLE-US-00019 (SEQ ID NO: 19) ATGAAAAAGATTTGGCTGGCGCTGGCTGGTTTAGTTTTAGCGTTTAGCGC ATCGGCGGCGCAGTATGAAGATCACCATCACCACCACCACCATCACCACT CTGGCTCGAGCCTGGTGCCGCGCGGCAGCCATATGTCTGGCTCGAGCAGT AAAGGTGAAGAACTGTTCACCGGTGTTGTTCCGATCCTGGTTGAACTGGA TGGTGATGTTAACGGCCACAAATTCTCTGTTCGTGGTGAAGGTGAAGGTG ATGCAACCAACGGTAAACTGACCCTGAAATTCATCTGCACTACCGGTAAA CTGCCGGTTCCATGGCCGACTCTGGTGACTACCCTGACCTATGGTGTTCA GTGTTTTTCTCGTTACCCGGATCACATGAAGCAGCATGATTTCTTCAAAT CTGCAATGCCGGAAGGTTATGTACAGGAGCGCACCATTTCTTTCAAAGAC GATGGCACCTACAAAACCCGTGCAGAGGTTAAATTTGAAGGTGATACTCT GGTGAACCGTATTGAACTGAAAGGCATTGATTTCAAAGAGGACGGCAACA TCCTGGGCCACAAACTGGAATATAACTTCAACTCCCATAACGTTTACATC ACCGCAGACAAACAGAAGAACGGTATCAAAGCTAACTTCAAAATTCGCCA TAACGTTGAAGACGGTAGCGTACAGCTGGCGGACCACTACCAGCAGAACA CTCCGATCGGTGATGGTCCGGTTCTGCTGCCGGATAACCACTACCTGTCC ACCCAGTCTaaaCTGTCCAAAGACCCGAACGAAAAGCGCGACCACATGGT GCTGCTGGAGTTCGTTACTGCAGCAGGTATCACGCACGGCATGGATGAAC TCTACAAATCTGGCGCGCCGGGCGGTCCGCAGGGTGTTGTTGGTGCAGAT GGTAAAGACGGTACCCCGGGTAATGCAGGTCAGAAAGGTCCGTCAGGTGA ACCTGGCAGCCCTGGTAAAGCAGGTAGTGCCGGTGAGCAGGGTCCGCCGG GCAAAGATGGTAGTAATGGTGAGCCGGGTAGCCCTGGCAAAGAAGGTGAA CGTGGTCTGGCAGGACCGCCGGGTCCTGATGGTCGCCGCGGTGAAACGGG TTCACCGGGTATTGCCGGTGCCCTGGGTAAACCAGGTCTGGAAGGTCCGA AAGGTTATCCTGGTCTGCGCGGTCGTGATGGTACCAATGGCAAACGTGGC GAACAGGGCGAAACCGGTCCAGATGGTGTTCGTGGTATTCCGGGTAACGA TGGTCAGAGCGGTAAACCGGGCATTGATGGTATTGATGGCACCAATGGTC AGCCTGGCGAAGCAGGTTATCAGGGTGGTCGCGGTACCCGTGGTCAGCTG GGTGAAACAGGTGATGTTGGTCAGAATGGTGATCGCGGCGCACCGGGTCC GGATGGTAGCAAAGGTAGCGCCGGTCGTCCGGGTTTACGTcacccagaaa cgctggtgaaagtaaaagatgctgaagatcagttgggtgcacgagtgggt tacatcgaactggatctcaacagcggtaagatccttgagagttttcgccc cgaagaacgttttccaatgatgagcacttttaaagttctgctatgtggcg cggtattatcccgtattgacgccgggcaagagcaactcggtcgccgcata cactattctcagaatgacttggttgagtactcaccagtcacagaaaagca tcttacggatggcatgacagtaagagaattatgcagtgctgccataacca tgagtgataacactgcggccaacttacttctgacaacgatcggaggaccg aaggagctaaccgctatagcacaacatgggggatcatgtaactcgccttg atcgttgggaaccggagctgaatgaagccataccaaacgacgagcgtgac accacgatgcctgtagcaatggcaacaacgttgcgcaaactattaactgg cgaactacttactctagcttcccggcaacaattaatagactggatggagg cggataaagttgcaggaccacttctgcgctcggcccttccggctggctgg tttattgctgataaatctggagccggtgagcgtgggtctcgcggtatcat tgcagcactggggccagatggtaagccctcccgtatcgtagttatctaca cgacggggagtcaggcaactatggatgaacgaaatagacagatcgctgag ataggtgcctcactgattaagcattggtaa (SEQ ID NO: 20) MKKIWLALAGLVLAFSASAAQYEDHHHHHHHHHSGSSLVPRGSHMSGSSS KGEELFTGVVPILVELDGDVNGHKFSVRGEGEGDATNGKLTLKFICTTGK LPVPWPTLVTTLTYGVQCFSRYPDHMKQHDFFKSAMPEGYVQERTISFKD DGTYKTRAEVKFEGDTLVNRIELKGIDFKEDGNILGHKLEYNFNSHNVYI TADKQKNGIKANFKIRHNVEDGSVQLADHYQQNTPIGDGPVLLPDNHYLS TQSKLSKDPNEKRDHMVLLEFVTAAGITHGMDELYKSGAPGGPQGVVGAD GKDGTPGNAGQKGPSGEPGSPGKAGSAGEQGPPGKDGSNGEPGSPGKEGE RGLAGPPGPDGRRGETGSPGIAGALGKPGLEGPKGYPGLRGRDGTNGKRG EQGETGPDGVRGIPGNDGQSGKPGIDGIDGTNGQPGEAGYQGGRGTRGQL GETGDVGQNGDRGAPGPDGSKGSAGRPGLRHPETLVKVKDAEDQLGARVG YIELDLNSGKILESFRPEERFPMMSTFKVLLCGAVLSRIDAGQEQLGRRI HYSQNDLVEYSPVTEKHLTDGMTVRELCSAAITMSDNTAANLLLTTIGGP KELTAFLHNMGDHVTRLDRWEPELNEAIPNDERDTTMPVAMATTLRKLLT GELLTLASRQQLIDWMEADKVAGPLLRSALPAGWFIADKSGAGERGSRGI IAALGPDGKPSRIVVIYTTGSQATMDERNRQIAEIGASLIKHW
Example 4: Production of Full-Length Elastin
[0171] Full length human elastin were expressed as described below. The wild-type, full length amino acid sequence of human elastin is provided below.
TABLE-US-00020 (SEQ ID NO: 21) MAGLTAAAPRPGVLLLLLSILHPSRPGGVPGAIPGGVPGGVFYPGAGLGA LGGGALGPGGKPLKPVPGGLAGAGLGAGLGAFPAVTFPGALVPGGVADAA AAYKAAKAGAGLGGVPGVGGLGVSAGAVVPQPGAGVKPGKVPGVGLPGVY PGGVLPGARFPGVGVLPGVPTGAGVKPKAPGVGGAFAGIPGVGPFGGPQP GVPLGYPIKAPKLPGGYGLPYTTG5KLPYGYGPGGVAGAAGKAGYPTGTG VGPQAAAAAAAKAAAKFGAGAAGVLPGVGGAGVPGVPGAIPGIGGIAGVG TPAAAAAAAAAAKAAKYGAAAGLVPGGPGFGPGVVGVPGAGVPGVGVPGA GIPVVPGAGIPGAAVPGVVSPEAAAKAAAKAAKYGARPGVGVGGIPTYGV GAGGFPGFGVGVGGIPGVAGVPGVGGVPGVGGVPGVGISPEAQAAAAAKA AKYGAAGAGVLGGLVPGPQAAVPGVPGTGGVPGVGTPAAAAAKAAAKAAQ oFGLVPGVGVAPGVGVAPGVGVAPGVGLAPGVGVAPGVGVAPGVGVAPGI GPGGVAAAAKSAAKVAAKAQLRAAAGLGAGIPGLGVGVGVPGLGVGAGVP GLGVGAGVPGFGAGADEGVRRSLSPELREGDPSSSQHLPSTPSSPRVPGA LAAAKAAKYGAAVPGVLGGLGALGGVGIPGGVVGAGPAAAAAAAKAAAKA AQFGLVGAAGLGGLGVGGLGVPGVGGLGGIPPAAAAKAAKYGAAGLGGVL GGAGQFPLGGVAARPGFGLSPIFPGGACLGKACGRKRK <http://www.untprot.org/untprot/P15502>
[0172] The non-codon optimized polynucleotide sequence encoding the full length elastin is disclosed below. In SEQ ID NO: 22, nucleotides 1-78 encode the DsbA secretion tag and nucleotides 79-2358 encode the full length human elastin.
TABLE-US-00021 (SEQ ID NO: 22) ATGGCGGGTCTGACGGCGGCGGCCCCGCGGCCCGGAGTCCTCCTGCTCCT GCTGTCCATCCTCCACCCCTCTCGGCCTGGAGGGGTCCCTGGGGCCATTC CTGGTGGAGTTCCTGGAGGAGTCTTTTATCCAGGGGCTGGTCTCGGAGCC CTTGGAGGAGGAGCGCTGGGGCCTGGAGGCAAACCTCTTAAGCCAGTTCC CGGAGGGCTTGCGGGTGCTGGCCTTGGGGCAGGGCTCGGCGCCTTCCCCG CAGTTACCTTTCCGGGGGCTCTGGTGCCTGGTGGAGTGGCTGACGCTGCT GCAGCCTATAAAGCTGCTAAGGCTGGCGCTGGGCTTGGTGGTGTCCCAGG AGTTGGTGGCTTAGGAGTGTCTGCAGGTGCGGTGGTTCCTCAGCCTGGAG CCGGAGTGAAGCCTGGGAAAGTGCCGGGTGTGGGGCTGCCAGGTGTATAC CCAGGTGGCGTGCTCCCAGGAGCTCGGTTCCCCGGTGTGGGGGTGCTCCC TGGAGTTCCCACTGGAGCAGGAGTTAAGCCCAAGGCTCCAGGTGTAGGTG GAGCTTTTGCTGGAATCCCAGGAGTTGGACCCTTTGGGGGACCGCAACCT GGAGTCCCACTGGGGTATCCCATCAAGGCCCCCAAGCTGCCTGGTGGCTA TGGACTGCCCTACACCACAGGGAAACTGCCCTATGGCTATGGGCCCGGAG GAGTGGCTGGTGCAGCGGGCAAGGCTGGTTACCCAACAGGGACAGGGGTT GGCCCCCAGGCAGCAGCAGCAGCGGCAGCTAAAGCAGCAGCAAAGTTCGG TGCTGGAGCAGCCGGAGTCCTCCCTGGTGTTGGAGGGGCTGGTGTTCCTG GCGTGCCTGGGGCAATTCCTGGAATTGGAGGCATCGCAGGCGTTGGGACT CCAGCTGCAGCTGCAGCTGCAGCAGCAGCCGCTAAGGCAGCCAAGTATGG AGCTGCTGCAGGCTTAGTGCCTGGTGGGCCAGGCTTTGGCCCGGGAGTAG TTGGTGTCCCAGGAGCTGGCGTTCCAGGTGTTGGTGTCCCAGGAGCTGGG ATTCCAGTTGTCCCAGGTGCTGGGATCCCAGGTGCTGCGGTTCCAGGGGT TGTGTCACCAGAAGCAGCTGCTAAGGCAGCTGCAAAGGCAGCCAAATACG GGGCCAGGCCCGGAGTCGGAGTTGGAGGCATTCCTACTTACGGGGTTGGA GCTGGGGGCTTTCCCGGCTTTGGTGTCGGAGTCGGAGGTATCCCTGGAGT CGCAGGTGTCCCTGGTGTCGGAGGTGTTCCCGGAGTCGGAGGTGTCCCGG GAGTTGGCATTTCCCCCGAAGCTCAGGCAGCAGCTGCCGCCAAGGCTGCC AAGTACGGTGCTGCAGGAGCAGGAGTGCTGGGTGGGCTAGTGCCAGGTCC CCAGGCGGCAGTCCCAGGTGTGCCGGGCACGGGAGGAGTGCCAGGAGTGG GGACCCCAGCAGCTGCAGCTGCTAAAGCAGCCGCCAAAGCCGCCCAGTTT GGGTTAGTTCCTGGTGTCGGCGTGGCTCCTGGAGTTGGCGTGGCTCCTGG TGTCGGTGTGGCTCCTGGAGTTGGCTTGGCTCCTGGAGTTGGCGTGGCTC CTGGAGTTGGTGTGGCTCCTGGCGTTGGCGTGGCTCCCGGCATTGGCCCT GGTGGAGTTGCAGCTGCAGCAAAATCCGCTGCCAAGGTGGCTGCCAAAGC CCAGCTCCGAGCTGCAGCTGGGCTTGGTGCTGGCATCCCTGGACTTGGAG TTGGTGTCGGCGTCCCTGGACTTGGAGTTGGTGCTGGTGTTCCTGGACTT GGAGTTGGTGCTGGTGTTCCTGGCTTCGGGGCAGGTGCAGATGAGGGAGT TAGGCGGAGCCTGTCCCCTGAGCTCAGGGAAGGAGATCCCTCCTCCTCTC AGCACCTCCCCAGCACCCCCTCATCACCCAGGGTACCTGGAGCCCTGGCT GCCGCTAAAGCAGCCAAATATGGAGCAGCAGTGCCTGGGGTCCTTGGAGG GCTCGGGGCTCTCGGTGGAGTAGGCATCCCAGGCGGTGTGGTGGGAGCCG GACCCGCCGCCGCCGCTGCCGCAGCCAAAGCTGCTGCCAAAGCCGCCCAG TTTGGCCTAGTGGGAGCCGCTGGGCTCGGAGGACTCGGAGTCGGAGGGCT TGGAGTTCCAGGTGTTGGGGGCCTTGGAGGTATACCTCCAGCTGCAGCCG CTAAAGCAGCTAAATACGGTGCTGCTGGCCTTGGAGGTGTCCTAGGGGGT GCCGGGCAGTTCCCACTTGGAGGAGTGGCAGCAAGACCTGGCTTCGGATT GTCTCCCATTTTCCCAGGTGGGGCCTGCCTGGGGAAAGCTTGTGGCCGGA AGAGAAAATGA
Codon Optimized Elastin with DsbA Secretion Tag-His Tag-Linker-Thrombin Cleavage Site
[0173] The codon optimized polynucleotide sequence encoding the full length human elastin with DsbA secretion tag-His tag-Linker-Thrombin cleavage site is disclosed below. In SEQ ID NO: 23: nucleotides 1-72 encode the DsbA secretion tag encoding amino acids 1-24 of SEQ ID NO: 24; nucleotides 73-99 encode the 9 His tag (SEQ ID NO: 129) encoding amino acids 25-33 of SEQ ID NO: 24; nucleotides 100-111 encode the linker encoding amino acids 34-37 of SEQ ID NO: 24; nucleotides 112-135 encode the thrombin cleavage tag encoding amino acids 38-45 of SEQ ID NO: 24; nucleotides 136-2415 encode the amino acids 46-805 of the full length human elastin of SEQ ID NO: 24.
TABLE-US-00022 (SEQ ID NO: 23) ATGAAAAAGATTTGGCTGGCGCTGGCTGGTTTAGTTTTAGCGTTTAGCGC ATCGGCGGCGCAGTATGAAGATCACCATCACCACCACCACCATCACCACT CTGGCTCGAGCCTGGTGCCGCGCGGCAGCCATATGGGTGGCGTACCAGGC GCAATTCCTGGGGGTGTCCCAGGCGGTGTTTTTTATCCGGGCGCCGGTCT TGGCGCACTGGGTGGCGGTGCACTGGGCCCGGGCGGCAAACCGCTGAAAC CGGTACCAGGTGGTTTAGCAGGCGCCGGCTTAGGCGCAGGTCTGGGAGCA TTTCCGGCAGTTACCTTTCCAGGGGCACTGGTTCCTGGAGGTGTGGCCGA TGCAGCCGCGGCATATAAAGCCGCTAAAGCCGGTGCGGGTTTAGGAGGCG TCCCAGGTGTCGGTGGCCTGGGTGTTAGCGCCGGTGCAGTTGTTCCGCAG CCGGGAGCAGGGGTTAAACCTGGTAAAGTGCCGGGAGTAGGTCTGCCAGG CGTTTATCCTGGTGGTGTTTTGCCGGGTGCCCGTTTTCCGGGCGTTGGTG TTCTTCCAGGCGTGCCGACCGGAGCCGGTGTTAAACCGAAAGCCCCCGGT GTTGGAGGTGCATTTGCAGGCATCCCGGGAGTTGGCCCGTTTGGTGGTCC GCAACCTGGGGTTCCGTTAGGTTATCCGATTAAAGCACCGAAACTGCCCG GCGGTTATGGTCTGCCGTACACAACCGGTAAACTGCCGTATGGTTATGGC CCGGGTGGAGTTGCGGGTGCAGCAGGTAAAGCGGGTTATCCTACCGGAAC CGGTGTAGGTCCGCAGGCCGCTGCTGCCGCCGCCGCAAAAGCAGCGGCTA AATTTGGCGCCGGAGCAGCGGGTGTTCTGCCTGGAGTTGGTGGTGCGGGC GTGCCAGGGGTACCTGGTGCAATTCCGGGTATTGGTGGTATTGCCGGTGT CGGCACCCCGGCCGCGGCAGCTGCGGCAGCGGCGGCTGCCAAAGCTGCTA AATACGGTGCCGCGGCGGGTCTGGTGCCAGGAGGTCCGGGTTTTGGTCCG GGAGTGGTTGGCGTGCCTGGCGCAGGCGTTCCTGGTGTGGGCGTTCCAGG TGCAGGGATTCCTGTTGTGCCTGGTGCCGGTATTCCCGGCGCGGCCGTTC CGGGGGTGGTTAGCCCGGAAGCCGCAGCGAAGGCTGCGGCAAAGGCAGCA AAGTATGGCGCACGCCCAGGAGTCGGCGTGGGTGGTATCCCGACCTATGG GGTGGGCGCAGGGGGTTTTCCTGGTTTCGGCGTAGGTGTAGGAGGTATAC CGGGCGTGGCCGGTGTACCAGGGGTTGGTGGCGTCCCTGGTGTTGGCGGT GTGCCAGGTGTTGGTATTTCACCGGAAGCACAGGCAGCAGCCGCAGCTAA GGCAGCGAAATATGGTGCCGCCGGCGCAGGAGTTTTAGGTGGGCTGGTTC CGGGCCCGCAGGCAGCTGTGCCGGGGGTTCCAGGCACCGGTGGTGTCCCT GGAGTCGGTACGCCGGCTGCAGCGGCAGCCAAAGCGGCTGCGAAAGCAGC ACAGTTTGGCTTAGTACCGGGTGTGGGAGTTGCCCCCGGCGTTGGCGTTG CTCCAGGGGTGGGTGTTGCTCCTGGCGTCGGTCTGGCTCCTGGAGTGGGC GTAGCACCCGGTGTGGGGGTGGCCCCGGGTGTTGGGGTTGCACCGGGTAT CGGTCCGGGCGGTGTCGCAGCAGCAGCTAAAAGCGCGGCGAAAGTTGCGG CCAAAGCCCAACTGCGCGCCGCCGCGGGCCTCGGTGCAGGTATTCCGGGG CTGGGTGTCGGAGTTGGAGTCCCGGGTTTGGGCGTGGGCGCGGGAGTTCC GGGACTGGGAGTGGGTGCCGGAGTTCCTGGCTTTGGTGCAGGCGCAGATG AAGGTGTTCGTCGTAGCCTGAGTCCGGAACTGCGTGAAGGTGATCCGAGT AGCAGCCAGCATCTGCCGAGCACCCCGAGCAGCCCGCGTGTTCCGGGTGC ATTAGCTGCAGCAAAAGCCGCCAAGTATGGTGCAGCCGTGCCGGGCGTCT TAGGTGGTCTGGGCGCCCTGGGTGGTGTAGGCATTCCGGGAGGTGTTGTG GGTGCAGGACCGGCCGCCGCAGCTGCGGCCGCCAAAGCAGCTGCAAAAGC GGCCCAGTTTGGTTTAGTGGGCGCCGCAGGTTTAGGCGGTTTAGGTGTGG GTGGACTGGGTGTACCTGGCGTAGGCGGTCTGGGTGGAATTCCGCCCGCA GCGGCCGCGAAAGCGGCAAAATATGGCGCGGCAGGCCTGGGCGGCGTGCT GGGTGGGGCAGGTCAGTTTCCGCTGGGCGGGGTTGCCGCACGTCCGGGAT TTGGTCTGAGCCCGATTTTCCCTGGCGGCGCATGTCTGGGTAAAGCATGT GGTCGTAAACGTAAAtaa (SEQ ID NO: 24) MKKIWLALAGLVLAFSASAAQYEDHHHHHHHHHSGSSLVPRGSHMGGVPG AIPGGVPGGVFYPGAGLGALGGGALGPGGKPLKPVPGGLAGAGLGAGLGA FPAVTFPGALVPGGVADAAAAYKAAKAGAGLGGVPGVGGLGVSAGAVVPQ PGAGVKPGKVPGVGLPGVYPGGVLPGARFPGVGVLPGVPTGAGVKPKAPG VGGAFAGIPGVGPFGGPQPGVPLGYPIKAPKLPGGYGLPYTTGKLPYGYG PGGVAGAAGKAGYPTGTGVGPQAAAAAAAKAAAKFGAGAAGVLPGVGGAG VPGVPGAIPGIGGIAGVGTPAAAAAAAAAAKAAKYGAAAGLVPGGPGFGP GVVGVPGAGVPGVGVPGAGIPVVPGAGIPGAAVPGVVSPEAAAKAAAKAA KYGARPGVGVGGIPTYGVGAGGFPGFGVGVGGIPGVAGVPGVGGVPGVGG VPGVGISPEAQAAAAAKAAKYGAAGAGVLGGLVPGPQAAVPGVPGTGGVP GVGTPAAAAAKAAAKAAQFGLVPGVGVAPGVGVAPGVGVAPGVGLAPGVG VAPGVGVAPGVGVAPGIGPGGVAAAAKSAAKVAAKAQLRAAAGLGAGIPG LGVGVGVPGLGVGAGVPGLGVGAGVPGFGAGADEGVRRSLSPELREGDPS SSQHLPSTPSSPRVPGALAAAKAAKYGAAVPGVLGGLGALGGVGIPGGVV GAGPAAAAAAAKAAAKAAQFGLVGAAGLGGLGVGGLGVPGVGGLGGIPPA AAAKAAKYGAAGLGGVLGGAGQFPLGGVAARPGFGLSPIFPGGACLGKAC GRKRK
[0174] The polynucleotide encoding the full length human elastin without the native sequence tag is disclosed in SEQ ID NO: 87.
TABLE-US-00023 (SEQ ID NO: 87) GGTGGCGTACCAGGCGCAATTCCTGGGGGTGTCCCAGGCGGTGTTTTTTA TCCGGGCGCCGGTCTTGGCGCACTGGGTGGCGGTGCACTGGGCCCGGGCG GCAAACCGCTGAAACCGGTACCAGGTGGTTTAGCAGGCGCCGGCTTAGGC GCAGGTCTGGGAGCATTTCCGGCAGTTACCTTTCCAGGGGCACTGGTTCC TGGAGGTGTGGCCGATGCAGCCGCGGCATATAAAGCCGCTAAAGCCGGTG CGGGTTTAGGAGGCGTCCCAGGTGTCGGTGGCCTGGGTGTTAGCGCCGGT GC5AGTTGTTCCGCAGCCGGGAGCAGGGGTTAAACCTGGTAAAGTGCCGG GAGTAGGTCTGCCAGGCGTTTATCCTGGTGGTGTTTTGCCGGGTGCCCGT TTTCCGGGCGTTGGTGTTCTTCCAGGCGTGCCGACCGGAGCCGGTGTTAA ACCGAAAGCCCCCGGTGTTGGAGGTGCATTTGCAGGCATCCCGGGAGTTG GCCCGTTTGGTGGTCCGCAACCTGGGGTTCCGTTAGGTTATCCGATTAAA GCACCGAAACTGCCCGGCGGTTATGGTCTGCCGTACACAACCGGTAAACT GCCGTATGGTTATGGCCCGGGTGGAGTTGCGGGTGCAGCAGGTAAAGCGG GTTATCCTACCGGAACCGGTGTAGGTCCGCAGGCCGCTGCTGCCGCCGCC GCAAAAGCAGCGGCTAAATTTGGCGCCGGAGCAGCGGGTGTTCTGCCTGG AGTTGGTGGTGCGGGCGTGCCAGGGGTACCTGGTGCAATTCCGGGTATTG GTGGTATTGCCGGTGTCGGCACCCCGGCCGCGGCAGCTGCGGCAGCGGCG GCTGCCAAAGCTGCTAAATACGGTGCCGCGGCGGGTCTGGTGCCAGGAGG TCCGGGTTTTGGTCCGGGAGTGGTTGGCGTGCCTGGCGCAGGCGTTCCTG GTGTGGGCGTTCCAGGTGCAGGGATTCCTGTTGTGCCTGGTGCCGGTATT CCCGGCGCGGCCGTTCCGGGGGTGGTTAGCCCGGAAGCCGCAGCGAAGGC TGCGGCAAAGGCAGCAAAGTATGGCGCACGCCCAGGAGTCGGCGTGGGTG GTATCCCGACCTATGGGGTGGGCGCAGGGGGTTTTCCTGGTTTCGGCGTA GGTGTAGGAGGTATACCGGGCGTGGCCGGTGTACCAGGGGTTGGTGGCGT CCCTGGTGTTGGCGGTGTGCCAGGTGTTGGTATTTCACCGGAAGCACAGG CAGCAGCCGCAGCTAAGGCAGCGAAATATGGTGCCGCCGGCGCAGGAGTT TTAGGTGGGCTGGTTCCGGGCCCGCAGGCAGCTGTGCCGGGGGTTCCAGG CACCGGTGGTGTCCCTGGAGTCGGTACGCCGGCTGCAGCGGCAGCCAAAG CGGCTGCGAAAGCAGCACAGTTTGGCTTAGTACCGGGTGTGGGAGTTGCC CCCGGCGTTGGCGTTGCTCCAGGGGTGGGTGTTGCTCCTGGCGTCGGTCT GGCTCCTGGAGTGGGCGTAGCACCCGGTGTGGGGGTGGCCCCGGGTGTTG GGGTTGCACCGGGTATCGGTCCGGGCGGTGTCGCAGCAGCAGCTAAAAGC GCGGCGAAAGTTGCGGCCAAAGCCCAACTGCGCGCCGCCGCGGGCCTCGG TGCAGGTATTCCGGGGCTGGGTGTCGGAGTTGGAGTCCCGGGTTTGGGCG TGGGCGCGGGAGTTCCGGGACTGGGAGTGGGTGCCGGAGTTCCTGGCTTT GGTGCAGGCGCAGATGAAGGTGTTCGTCGTAGCCTGAGTCCGGAACTGCG TGAAGGTGATCCGAGTAGCAGCCAGCATCTGCCGAGCACCCCGAGCAGCC CGCGTGTTCCGGGTGCATTAGCTGCAGCAAAAGCCGCCAAGTATGGTGCA GCCGTGCCGGGCGTCTTAGGTGGTCTGGGCGCCCTGGGTGGTGTAGGCAT TCCGGGAGGTGTTGTGGGTGCAGGACCGGCCGCCGCAGCTGCGGCCGCCA AAGCAGCTGCAAAAGCGGCCCAGTTTGGTTTAGTGGGCGCCGCAGGTTTA GGCGGTTTAGGTGTGGGTGGACTGGGTGTACCTGGCGTAGGCGGTCTGGG TGGAATTCCGCCCGCAGCGGCCGCGAAAGCGGCAAAATATGGCGCGGCAG GCCTGGGCGGCGTGCTGGGTGGGGCAGGTCAGTTTCCGCTGGGCGGGGTT GCCGCACGTCCGGGATTTGGTCTGAGCCCGATTTTCCCTGGCGGCGCATG TCTGGGTAAAGCATGTGGTCGTAAACGTAAAtaa
[0175] The full length human elastin sequence without the native sequence tag is disclosed in SEQ ID NO: 88.
TABLE-US-00024 (SEQ ID NO: 88) GGVPGAIPGGVPGGVFYPGAGLGALGGGALGPGGKPLKPVPGGLAGAGLG AGLGAFPAVTFPGALVPGGVADAAAAYKAAKAGAGLGGVPGVGGLGVSAG AVVPQPGAGVKPGKVPGVGLPGVYPGGVLPGARFPGVGVLPGVPTGAGVK PKAPGVGGAFAGIPGVGPFGGPQPGVPLGYPIKAPKLPGGYGLPYTTGKL PYGYGPGGVAGAAGKAGYPTGTGVGPQAAAAAAAKAAAKFGAGAAGVLPG VGGAGVPGVPGAIPGIGGIAGVGTPAAAAAAAAAAKAAKYGAAAGLVPGG PGFGPGVVGVPGAGVPGVGVPGAGIPVVPGAGIPGAAVPGVVSPEAAAKA AAKAAKYGARPGVGVGGIPTYGVGAGGFPGFGVGVGGIPGVAGVPGVGGV PGVGGVPGVGISPEAQAAAAAKAAKYGAAGAGVLGGLVPGPQAAVPGVPG TGGVPGVGTPAAAAAKAAAKAAQFGLVPGVGVAPGVGVAPGVGVAPGVGL APGVGVAPGVGVAPGVGVAPGIGPGGVAAAAKSAAKVAAKAQLRAAAGLG AGIPGLGVGVGVPGLGVGAGVPGLGVGAGVPGFGAGADEGVRRSLSPELR EGDPSSSQHLPSTPSSPRVPGALAAAKAAKYGAAVPGVLGGLGALGGVGI PGGVVGAGPAAAAAAAKAAAKAAQFGLVGAAGLGGLGVGGLGVPGVGGLG GIPPAAAAKAAKYGAAGLGGVLGGAGQFPLGGVAARPGFGLSPIFPGGAC LGKACGRKRK
Codon Optimized Elastin with DsbA Secretion Tag
[0176] The codon optimized polynucleotide sequence encoding the full length human elastin with a DsbA secretion tag is disclosed in SEQ ID NO: 25. In SEQ ID NO: 25: nucleotides 1-72 encode the DsbA secretion tag encoding amino acids 1-24 of SEQ ID NO: 26; nucleotides 73-2355 encode the amino acids 25-785 of the full length human elastin of SEQ ID NO: 26.
TABLE-US-00025 (SEQ ID NO: 25) ATGAAAAAGATTTGGCTGGCGCTGGCTGGTTTAGTTTTAGCGTTTAGCGC ATCGGCGGCGCAGTATGAAGATATGGGTGGCGTACCAGGCGCAATTCCTG GGGGTGTCCCAGGCGGTGTTTTTTATCCGGGCGCCGGTCTTGGCGCACTG GGTGGCGGTGCACTGGGCCCGGGCGGCAAACCGCTGAAACCGGTACCAGG TGGTTTAGCAGGCGCCGGCTTAGGCGCAGGTCTGGGAGCATTTCCGGCAG TTACCTTTCCAGGGGCACTGGTTCCTGGAGGTGTGGCCGATGCAGCCGCG GCATATAAAGCCGCTAAAGCCGGTGCGGGTTTAGGAGGCGTCCCAGGTGT CGGTGGCCTGGGTGTTAGCGCCGGTGCAGTTGTTCCGCAGCCGGGAGCAG GGGTTAAACCTGGTAAAGTGCCGGGAGTAGGTCTGCCAGGCGTTTATCCT GGTGGTGTTTTGCCGGGTGCCCGTTTTCCGGGCGTTGGTGTTCTTCCAGG CGTGCCGACCGGAGCCGGTGTTAAACCGAAAGCCCCCGGTGTTGGAGGTG CATTTGCAGGCATCCCGGGAGTTGGCCCGTTTGGTGGTCCGCAACCTGGG GTTCCGTTAGGTTATCCGATTAAAGCACCGAAACTGCCCGGCGGTTATGG TCTGCCGTACACAACCGGTAAACTGCCGTATGGTTATGGCCCGGGTGGAG TTGCGGGTGCAGCAGGTAAAGCGGGTTATCCTACCGGAACCGGTGTAGGT CCGCAGGCCGCTGCTGCCGCCGCCGCAAAAGCAGCGGCTAAATTTGGCGC CGGAGCAGCGGGTGTTCTGCCTGGAGTTGGTGGTGCGGGCGTGCCAGGGG TACCTGGTGCAATTCCGGGTATTGGTGGTATTGCCGGTGTCGGCACCCCG GCCGCGGCAGCTGCGGCAGCGGCGGCTGCCAAAGCTGCTAAATACGGTGC CGCGGCGGGTCTGGTGCCAGGAGGTCCGGGTTTTGGTCCGGGAGTGGTTG GCGTGCCTGGCGCAGGCGTTCCTGGTGTGGGCGTTCCAGGTGCAGGGATT CCTGTTGTGCCTGGTGCCGGTATTCCCGGCGCGGCCGTTCCGGGGGTGGT TAGCCCGGAAGCCGCAGCGAAGGCTGCGGCAAAGGCAGCAAAGTATGGCG CACGCCCAGGAGTCGGCGTGGGTGGTATCCCGACCTATGGGGTGGGCGCA GGGGGTTTTCCTGGTTTCGGCGTAGGTGTAGGAGGTATACCGGGCGTGGC CGGTGTACCAGGGGTTGGTGGCGTCCCTGGTGTTGGCGGTGTGCCAGGTG TTGGTATTTCACCGGAAGCACAGGCAGCAGCCGCAGCTAAGGCAGCGAAA TATGGTGCCGCCGGCGCAGGAGTTTTAGGTGGGCTGGTTCCGGGCCCGCA GGCAGCTGTGCCGGGGGTTCCAGGCACCGGTGGTGTCCCTGGAGTCGGTA CGCCGGCTGCAGCGGCAGCCAAAGCGGCTGCGAAAGCAGCACAGTTTGGC TTAG5TACCGGGTGTGGGAGTTGCCCCCGGCGTTGGCGTTGCTCCAGGGG TGGGTGTTGCTCCTGGCGTCGGTCTGGCTCCTGGAGTGGGCGTAGCACCC GGTGTGGGGGTGGCCCCGGGTGTTGGGGTTGCACCGGGTATCGGTCCGGG CGGTGTCGCAGCAGCAGCTAAAAGCGCGGCGAAAGTTGCGGCCAAAGCCC AACTGCGCGCCGCCGCGGGCCTCGGTGCAGGTATTCCGGGGCTGGGTGTC GGAGTTGGAGTCCCGGGTTTGGGCGTGGGCGCGGGAGTTCCGGGACTGGG AGTGGGTGCCGGAGTTCCTGGCTTTGGTGCAGGCGCAGATGAAGGTGTTC GTCGTAGCCTGAGTCCGGAACTGCGTGAAGGTGATCCGAGTAGCAGCCAG CATCTGCCGAGCACCCCGAGCAGCCCGCGTGTTCCGGGTGCATTAGCTGC AGCAAAAGCCGCCAAGTATGGTGCAGCCGTGCCGGGCGTCTTAGGTGGTC TGGGCGCCCTGGGTGGTGTAGGCATTCCGGGAGGTGTTGTGGGTGCAGGA CCGGCCGCCGCAGCTGCGGCCGCCAAAGCAGCTGCAAAAGCGGCCCAGTT TGGTTTAGTGGGCGCCGCAGGTTTAGGCGGTTTAGGTGTGGGTGGACTGG GTGTACCTGGCGTAGGCGGTCTGGGTGGAATTCCGCCCGCAGCGGCCGCG AAAGCGGCAAAATATGGCGCGGCAGGCCTGGGCGGCGTGCTGGGTGGGGC AGGTCAGTTTCCGCTGGGCGGGGTTGCCGCACGTCCGGGATTTGGTCTGA GCCCGATTTTCCCTGGCGGCGCATGTCTGGGTAAAGCATGTGGTCGTAAA CGTAAAtaa (SEQ ID NO: 26) MKKIWLALAGLVLAFSASAAQYEDMGGVPGAIPGGVPGGVFYPGAGLGAL GZSGGALGPGGKPLKPVPGGLAGAGLGAGLGAFPAVTFPGALVPGGVADA AAAYKAAKAGAGLGGVPGVGGLGVSAGAVVPQPGAGVKPGKVPGVGLPGV YPGGVLPGARFPGVGVLPGVPTGAGVKPKAPGVGGAFAGIPGVGPFGGPQ PGVPLGYPIKAPKLPGGYGLPYTTGKLPYGYGPGGVAGAAGKAGYPTGTG VGPQAAAAAAAKAAAKFGAGAAGVLPGVGGAGVPGVPGAIPGIGGIAGVG TPAAAAAAAAAAKAAKYGAAAGLVPGGPGFGPGVVGVPGAGVPGVGVPGA GIPVVPGAGIPGAAVPGVVSPEAAAKAAAKAAKYGARPGVGVGGIPTYGV GAGGFPGFGVGVGGIPGVAGVPGVGGVPGVGGVPGVGISPEAQAAAAAKA AKYGAAGAGVLGGLVPGPQAAVPGVPGTGGVPGVGTPAAAAAKAAAKAAQ FGLVPGVGVAPGVGVAPGVGVAPGVGLAPGVGVAPGVGVAPGVGVAPGIG PGGVAAAAKSAAKVAAKAQLRAAAGLGAGIPGLGVGVGVPGLGVGAGVPG LGVGAGVPGFGAGADEGVRRSLSPELREGDPSSSQHLPSTPSSPRVPGAL AAAKAAKYGAAVPGVLGGLGALGGVGIPGGVVGAGPAAAAAAAKAAAKAA QFGLVGAAGLGGLGVGGLGVPGVGGLGGIPPAAAAKAAKYGAAGLGGVLG GAGQFPLGGVAARPGFGLSPIFPGGACLGKACGRKRK
[0177] The polynucleotides of SEQ ID NO: 22 was codon optimized and synthesized by Gen9 DNA, now Ginkgo Bioworks internal synthesis. Overlaps between the pET28 vector and SEQ ID NO: 22 was designed to be between 30 and 40 bp long and added using PCR with the enzyme PRIMESTAR.RTM. GXL polymerase (<http://www.clontech.com/US/Products/PCR/GC_Rich/PrimeSTAR_GXL_DNA_Po- lymerase?sitex=10020:22372:US>). The opened pET28a vector and insert DNA (SEQ ID NO: 22) was then assembled together into the final plasmid using SGI GIBSON ASSEMBLY.RTM. (<https://us.vwr.com/store/product/17613857/gibson-assembly-hifi-1-ste- p-kit-synthetic-genomics-inc>). Sequence of plasmid was then verified through Sanger sequencing through Eurofins Genomics (<www.eurofinsgenomics.com>).
[0178] The transformed cells were cultivated in minimal media and frozen in 1.5 aliquots with glycerol at a ratio of 50:50 of cells to glycerol. One vial of this frozen culture was revived in 50 ml of minimal media overnight at 37.degree. C., 200 rpm. Cells were transferred into 300 ml of minimal media and grown for 6-9 hours to reach an OD600 of 5-10.
[0179] A bioreactor was prepared with 2.7 L of minimal media+glucose and 300 ml of OD600 of 5-10 culture was added to bring the starting volume to 3 L. Cells were grown at 28.degree. C., pH7 with Dissolved Oxygen maintained at 20% saturation using a cascade containing agitation, air and oxygen. pH was controlled using 28% w/w Ammonium hydroxide solution. Fermentation was run in a fed-batch mode using a DO-stat based feeding algorithm once the initial bolus of 40 g/L was depleted around 13 hours. After 24-26 hours of initial growth, the OD600 reached above 100. At this point, 300 mL of 500 g/L sucrose was added and temperature was reduced to 25 C. High density culture was induced for protein production using 1 mM IPTG. Fermentation was continued for another 20-24 hours and cells were harvested using a bench top centrifuge at 9000 rcf, 15 C for 60 minutes. Cell pellet recovered from centrifugation was resuspended in a buffer containing 0.5M NaCl and 0.1M KH2PO4 at pH8 in a weight by weight ratio of 2.times. buffer to 1.times. cells.
[0180] The fermentations were performed at various temperature ranging from 25.degree. to 28.degree. C. For some fermentations, the temperature of the fermentation was maintained at a constant temperature and immediately upon completion of fermentation (0D600 of 5-10) the elastin was purified. For other fermentations, the temperature of the fermentations is maintained for a desired period of time and when cell densities of OD600 of 5-10 are reached, the temperature is reduced to induce protein production. Typically, the temperature is reduced from 28.degree. C. to 25.degree. C. After the fermentation at 25.degree. C. is continued for 40-60 hours, the elastin is isolated.
[0181] The harvested cells were disrupted in a homogenizer at 14,000 psi pressure in 2 passes. Resulting slurry contained the collagen protein along with other proteins.
[0182] The supernatant from the homogenized cells was analyzed on an SDS-PAGE gel and a clear band was observed at around 70 kilodaltons corresponding to the expected size of 68 kilodaltons. The purified elastin is analyzed by mass spectrometry.
Full Length Elastin with DsbA Secretion Tag-His Tag-Linker-Thrombin Cleavage Site and GFP Beta-Lactamase Fusion
[0183] A human elastin with DsbA secretion tag-His tag-Linker-Thrombin cleavage site and GFP Beta-lactamase fusion is disclosed below. The codon-optimized nucleotide sequence encoding this elastin is provided in SEQ ID NO: 27. The amino acid sequence is disclosed in SEQ ID NO: 28. The DsbA secretion tag is encoded by nucleotides 1-72 and encodes amino acids 1-24. The His tag is encoded by nucleotides 73-99 and encodes a 9 histidine tag (SEQ ID NO: 129) of amino acids 25-33. The linker is encoded by nucleotides 100-111 and encodes amino acids 34-37. The thrombin cleavage side is encoded by nucleotides 112-135 and encodes amino acids 38-45. The green fluorescent protein (GFP) with linker is encoded by nucleotides 136-873 and encodes amino acids 46-291. The full-length elastin sequence is encoded by nucleotides 874-3153 and encodes amino acids 292-1051. The Beta-lactamase with linker is encoded by nucleotides 3154-3945 and encodes amino acids 1052-1315.
TABLE-US-00026 (SEQ ID NO: 27) ATGAAAAAGATTTGGCTGGCGCTGGCTGGTTTAGTTTTAGCGTTTAGCGC ATCGGCGGCGCAGTATGAAGATCACCATCACCACCACCACCATCACCACT CTGGCTCGAGCCTGGTGCCGCGCGGCAGCCATATGTCTGGCTCGAGCAGT AAAGGTGAAGAACTGTTCACCGGTGTTGTTCCGATCCTGGTTGAACTGGA TGGTGATGTTAACGGCCACAAATTCTCTGTTCGTGGTGAAGGTGAAGGTG ATGCAACCAACGGTAAACTGACCCTGAAATTCATCTGCACTACCGGTAAA CTGCCGGTTCCATGGCCGACTCTGGTGACTACCCTGACCTATGGTGTTCA GTGTTTTTCTCGTTACCCGGATCACATGAAGCAGCATGATTTCTTCAAAT CTGCAATGCCGGAAGGTTATGTACAGGAGCGCACCATTTCTTTCAAAGAC GATGGCACCTACAAAACCCGTGCAGAGGTTAAATTTGAAGGTGATACTCT GGTGAACCGTATTGAACTGAAAGGCATTGATTTCAAAGAGGACGGCAACA TCCTGGGCCACAAACTGGAATATAACTTCAACTCCCATAACGTTTACATC ACCGCAGACAAACAGAAGAACGGTATCAAAGCTAACTTCAAAATTCGCCA TAACGTTGAAGACGGTAGCGTACAGCTGGCGGACCACTACCAGCAGAACA CTCCGATCGGTGATGGTCCGGTTCTGCTGCCGGATAACCACTACCTGTCC ACCCAGTCTaaaCTGTCCAAAGACCCGAACGAAAAGCGCGACCACATGGT GCTGCTGGAGTTCGTTACTGCAGCAGGTATCACGCACGGCATGGATGAAC TCTACAAATCTGGCGCGCCGGGCGGTGGCGTACCAGGCGCAATTCCTGGG GGTGTCCCAGGCGGTGTTTTTTATCCGGGCGCCGGTCTTGGCGCACTGGG TGGCGGTGCACTGGGCCCGGGCGGCAAACCGCTGAAACCGGTACCAGGTG GTTTAGCAGGCGCCGGCTTAGGCGCAGGTCTGGGAGCATTTCCGGCAGTT ACCTTTCCAGGGGCACTGGTTCCTGGAGGTGTGGCCGATGCAGCCGCGGC ATATAAAGCCGCTAAAGCCGGTGCGGGTTTAGGAGGCGTCCCAGGTGTCG GTGGCCTGGGTGTTAGCGCCGGTGCAGTTGTTCCGCAGCCGGGAGCAGGG GTTAAACCTGGTAAAGTGCCGGGAGTAGGTCTGCCAGGCGTTTATCCTGG TGGTGTTTTGCCGGGTGCCCGTTTTCCGGGCGTTGGTGTTCTTCCAGGCG TGCCGACCGGAGCCGGTGTTAAACCGAAAGCCCCCGGTGTTGGAGGTGCA TTTGCAGGCATCCCGGGAGTTGGCCCGTTTGGTGGTCCGCAACCTGGGGT TCCGTTAGGTTATCCGATTAAAGCACCGAAACTGCCCGGCGGTTATGGTC TGCCGTACACAACCGGTAAACTGCCGTATGGTTATGGCCCGGGTGGAGTT GCGGGTGCAGCAGGTAAAGCGGGTTATCCTACCGGAACCGGTGTAGGTCC GCAGGCCGCTGCTGCCGCCGCCGCAAAAGCAGCGGCTAAATTTGGCGCCG GAGCAGCGGGTGTTCTGCCTGGAGTTGGTGGTGCGGGCGTGCCAGGGGTA CCTGGTGCAATTCCGGGTATTGGTGGTATTGCCGGTGTCGGCACCCCGGC CGCGGCAGCTGCGGCAGCGGCGGCTGCCAAAGCTGCTAAATACGGTGCCG CGGCGGGTCTGGTGCCAGGAGGTCCGGGTTTTGGTCCGGGAGTGGTTGGC GTGCCTGGCGCAGGCGTTCCTGGTGTGGGCGTTCCAGGTGCAGGGATTCC TGTTGTGCCTGGTGCCGGTATTCCCGGCGCGGCCGTTCCGGGGGTGGTTA GCCCGGAAGCCGCAGCGAAGGCTGCGGCAAAGGCAGCAAAGTATGGCGCA CGCCCAGGAGTCGGCGTGGGTGGTATCCCGACCTATGGGGTGGGCGCAGG GGGTTTTCCTGGTTTCGGCGTAGGTGTAGGAGGTATACCGGGCGTGGCCG GTGTACCAGGGGTTGGTGGCGTCCCTGGTGTTGGCGGTGTGCCAGGTGTT GGTATTTCACCGGAAGCACAGGCAGCAGCCGCAGCTAAGGCAGCGAAATA TGGTGCCGCCGGCGCAGGAGTTTTAGGTGGGCTGGTTCCGGGCCCGCAGG CAGCTGTGCCGGGGGTTCCAGGCACCGGTGGTGTCCCTGGAGTCGGTACG CCGGCTGCAGCGGCAGCCAAAGCGGCTGCGAAAGCAGCACAGTTTGGCTT AGTACCGGGTGTGGGAGTTGCCCCCGGCGTTGGCGTTGCTCCAGGGGTGG GTGTTGCTCCTGGCGTCGGTCTGGCTCCTGGAGTGGGCGTAGCACCCGGT GTGGGGGTGGCCCCGGGTGTTGGGGTTGCACCGGGTATCGGTCCGGGCGG TGTCGCAGCAGCAGCTAAAAGCGCGGCGAAAGTTGCGGCCAAAGCCCAAC TGCGCGCCGCCGCGGGCCTCGGTGCAGGTATTCCGGGGCTGGGTGTCGGA GTTGGAGTCCCGGGTTTGGGCGTGGGCGCGGGAGTTCCGGGACTGGGAGT GGGTGCCGGAGTTCCTGGCTTTGGTGCAGGCGCAGATGAAGGTGTTCGTC GTAGCCTGAGTCCGGAACTGCGTGAAGGTGATCCGAGTAGCAGCCAGCAT CTGCCGAGCACCCCGAGCAGCCCGCGTGTTCCGGGTGCATTAGCTGCAGC AAAAGCCGCCAAGTATGGTGCAGCCGTGCCGGGCGTCTTAGGTGGTCTGG GCGCCCTGGGTGGTGTAGGCATTCCGGGAGGTGTTGTGGGTGCAGGACCG GCCGCCGCAGCTGCGGCCGCCAAAGCAGCTGCAAAAGCGGCCCAGTTTGG TTTAGTGGGCGCCGCAGGTTTAGGCGGTTTAGGTGTGGGTGGACTGGGTG TACCTGGCGTAGGCGGTCTGGGTGGAATTCCGCCCGCAGCGGCCGCGAAA GCGGCAAAATATGGCGCGGCAGGCCTGGGCGGCGTGCTGGGTGGGGCAGG TCAGTTTCCGCTGGGCGGGGTTGCCGCACGTCCGGGATTTGGTCTGAGCC CGATTTTCCCTGGCGGCGCATGTCTGGGTAAAGCATGTGGTCGTAAACGT AAAcacccagaaacgctggtgaaagtaaaagatgctgaagatcagagggt gcacgagtgggttacatcgaactggatctcaacagcggtaagatccttga gagttttcgccccgaagaacgttttccaatgatgagcacttttaaagttc tgctatgtggcgcggtattatcccgtattgacgccgggcaagagcaactc ggtcgccgcatacactattctcagaatgacttggttgagtactcaccagt cacagaaaagcatcttacggatggcatgacagtaagagaattatgcagtg ctgccataaccatgagtgataacactgcggccaacttacttctgacaacg atcggaggaccgaaggagctaaccgcttttttgcacaacatgggggatca tgtaactcgccttgatcgttgggaaccggagctgaatgaagccataccaa acgacgagcgtgacaccacgatgcctgtagcaatggcaacaacgttgcgc aaactattaactggcgaactacttactctagcttcccggcaacaattaat agactggatggaggcggataaagttgcaggaccacttctgcgctcggccc ttccggctggctggtttattgctgataaatctggagccggtgagcgtggg tctcgcggtatcattgcagcactggggccagatggtaagccctcccgtat cgtagttatctacacgacggggagtcaggcaactatggatgaacgaaata gacagatcgctgagataggtgcctcactgattaagcattggtaa (SEQ ID NO: 28) MKKIWLALAGLVLAFSASAAQYEDHHHHHHHHHSGSSLVPRGSHMSGSSS KGEELFTGVVPILVELDGDVNGHKFSVRGEGEGDATNGKLTLKFICTTGK LPVPWPTLVTTLTYGVQCFSRYPDHMKQHDFFKSAMPEGYVQERTISFKD DGTYKTRAEVKFEGDTLVNRIELKGIDFKEDGNILGHKLEYNFNSHNVYI TADKQKNGIKANFKIRHNVEDGSVQLADHYQQNTPIGDGPVLLPDNHYLS TQSKLSKDPNEKRDHMVLLEFVTAAGITHGMDELYKSGAPGGGVPGAIPG GVPGGVFYPGAGLGALGGGALGPGGKPLKPVPGGLAGAGLGAGLGAFPAV TFPGALVPGGVADAAAAYKAAKAGAGLGGVPGVGGLGVSAGAVVPQPGAG VKPGKVPGVGLPGVYPGGVLPGARFPGVGVLPGVPTGAGVKPKAPGVGGA FAGIPGVGPFGGPQPGVPLGYPIKAPKLPGGYGLPYTTGKLPYGYGPGGV AGAAGKAGYPTGTGVGPQAAAAAAAKAAAKFGAGAAGVLPGVGGAGVPGV PGAIPGIGGIAGVGTPAAAAAAAAAAKAAKYGAAAGLVPGGPGFGPGVVG VPGAGVPGVGVPGAGIPVVPGAGIPGAAVPGVVSPEAAAKAAAKAAKYGA RPGVGVGGIPTYGVGAGGFPGFGVGVGGIPGVAGVPGVGGVPGVGGVPGV GISPEAQAAAAAKAAKYGAAGAGVLGGLVPGPQAAVPGVPGTGGVPGVGT PAAAAAKAAAKAAQFGLVPGVGVAPGVGVAPGVGVAPGVGLAPGVGVAPG VGVAPGVGVAPGIGPGGVAAAAKSAAKVAAKAQLRAAAGLGAGIPGLGVG VGVPGLGVGAGVPGLGVGAGVPGFGAGADEGVRRSLSPELREGDPSSSQH LPSTPSSPRVPGALAAAKAAKYGAAVPGVLGGLGALGGVGIPGGVVGAGP AAAAAAAKAAAKAAQFGLVGAAGLGGLGVGGLGVPGVGGLGGIPPAAAAK AAKYGAAGLGGVLGGAGQFPLGGVAARPGFGLSPIFPGGACLGKACGRKR KHPETLVKVKDAEDQLGARVGYIELDLNSGKILESFRPEERFPMMSTFKV LLCGAVLSRIDAGQEQLGRRIHYSQNDLVEYSPVTEKHLTDGMTVRELCS AAITMSDNTAANLLLTTIGGPKELTAFLHNMGDHVTRLDRWEPELNEAIP NDERDTTMPVAMATTLRKLLTGELLTLASRQQLIDWMEADKVAGPLLRSA LPAGWFIADKSGAGERGSRGIIAALGPDGKPSRIVVIYTTGSQATMDERN RQIAEIGASLIKHW
Example 5: Production of Truncated Elastin
[0184] Truncated human elastin is produced using the expression system as described in Example 4. The full length amino acid sequence lacking the native secretion tag is disclosed in SEQ ID NO: 29.
TABLE-US-00027 (SEQ ID NO: 29) GGVPGAIPGGVPGGVFYPGAGLGALGGGALGPGGKPLKPVPGGLAGAGLG AGLGAFPAVTFPGALVPGGVADAAAAYKAAKAGAGLGGVPGVGGLGVSAG AVVPQPGAGVKPGKVPGVGLPGVYPGGVLPGARFPGVGVLPGVPTGAGVK PKAPGVGGAFAGIPGVGPFGGPQPGVPLGYPIKAPKLPGGYGLPYTTGKL PYGYGPGGVAGAAGKAGYPTGTGVGPQAAAAAAAKAAAKFGAGAAGVLPG VGGAGVPGVPGAIPGIGGIAGVGTPAAAAAAAAAAKAAKYGAAAGLVPGG PGFGPGVVGVPGAGVPGVGVPGAGIPVVPGAGIPGAAVPGVVSPEAAAKA AAKAAKYGARPGVGVGGIPTYGVGAGGFPGFGVGVGGIPGVAGVPGVGGV PGVGGVPGVGISPEAQAAAAAKAAKYGAAGAGVLGGLVPGPQAAVPGVPG TGGVPGVGTPAAAAAKAAAKAAQFGLVPGVGVAPGVGVAPGVGVAPGVGL APGVGVAPGVGVAPGVGVAPGIGPGGVAAAAKSAAKVAAKAQLRAAAGLG AGIPGLGVGVGVPGLGVGAGVPGLGVGAGVPGFGAGADEGVRRSLSPELR EGDPSSSQHLPSTPSSPRVPGALAAAKAAKYGAAVPGVLGGLGALGGVGI PGGVVGAGPAAAAAAAKAAAKAAQFGLVGAAGLGGLGVGGLGVPGVGGLG GIPPAAAAKAAKYGAAGLGGVLGGAGQFPLGGVAARPGFGLSPIFPGGAC LGKACGRKRK
[0185] The codon optimized polynucleotide sequence encoding the full length human elastin lacking the native secretion tag is disclosed in SEQ ID NO: 30.
TABLE-US-00028 (SEQ ID NO: 30) GGTGGCGTACCAGGCGCAATTCCTGGGGGTGTCCCAGGCGGTGTTTTTTA TCCGGGCGCCGGTCTTGGCGCACTGGGTGGCGGTGCACTGGGCCCGGGCG GCAAACCGCTGAAACCGGTACCAGGTGGTTTAGCAGGCGCCGGCTTAGGC GCAGGTCTGGGAGCATTTCCGGCAGTTACCTTTCCAGGGGCACTGGTTCC TGGAGGTGTGGCCGATGCAGCCGCGGCATATAAAGCCGCTAAAGCCGGTG CGGGTTTAGGAGGCGTCCCAGGTGTCGGTGGCCTGGGTGTTAGCGCCGGT GCAGTTGTTCCGCAGCCGGGAGCAGGGGTTAAACCTGGTAAAGTGCCGGG AGTAGGTCTGCCAGGCGTTTATCCTGGTGGTGTTTTGCCGGGTGCCCGTT TTCCGGGCGTTGGTGTTCTTCCAGGCGTGCCGACCGGAGCCGGTGTTAAA CCGAAAGCCCCCGGTGTTGGAGGTGCATTTGCAGGCATCCCGGGAGTTGG CCCGTTTGGTGGTCCGCAACCTGGGGTTCCGTTAGGTTATCCGATTAAAG CACCGAAACTGCCCGGCGGTTATGGTCTGCCGTACACAACCGGTAAACTG CCGTATGGTTATGGCCCGGGTGGAGTTGCGGGTGCAGCAGGTAAAGCGGG TTATCCTACCGGAACCGGTGTAGGTCCGCAGGCCGCTGCTGCCGCCGCCG CAAAAGCAGCGGCTAAATTTGGCGCCGGAGCAGCGGGTGTTCTGCCTGGA GTTGGTGGTGCGGGCGTGCCAGGGGTACCTGGTGCAATTCCGGGTATTGG TGGTATTGCCGGTGTCGGCACCCCGGCCGCGGCAGCTGCGGCAGCGGCGG CTGCCAAAGCTGCTAAATACGGTGCCGCGGCGGGTCTGGTGCCAGGAGGT CCGGGTTTTGGTCCGGGAGTGGTTGGCGTGCCTGGCGCAGGCGTTCCTGG TGTGGGCGTTCCAGGTGCAGGGATTCCTGTTGTGCCTGGTGCCGGTATTC CCGGCGCGGCCGTTCCGGGGGTGGTTAGCCCGGAAGCCGCAGCGAAGGCT GCGGCAAAGGCAGCAAAGTATGGCGCACGCCCAGGAGTCGGCGTGGGTGG TATCCCGACCTATGGGGTGGGCGCAGGGGGTTTTCCTGGTTTCGGCGTAG GTGTAGGAGGTATACCGGGCGTGGCCGGTGTACCAGGGGTTGGTGGCGTC CCTGGTGTTGGCGGTGTGCCAGGTGTTGGTATTTCACCGGAAGCACAGGC AGCAGCCGCAGCTAAGGCAGCGAAATATGGTGCCGCCGGCGCAGGAGTTT TAGGTGGGCTGGTTCCGGGCCCGCAGGCAGCTGTGCCGGGGGTTCCAGGC ACCGGTGGTGTCCCTGGAGTCGGTACGCCGGCTGCAGCGGCAGCCAAAGC GGCTGCGAAAGCAGCACAGTTTGGCTTAGTACCGGGTGTGGGAGTTGCCC CCGGCGTTGGCGTTGCTCCAGGGGTGGGTGTTGCTCCTGGCGTCGGTCTG GCTCCTGGAGTGGGCGTAGCACCCGGTGTGGGGGTGGCCCCGGGTGTTGG GGTTGCACCGGGTATCGGTCCGGGCGGTGTCGCAGCAGCAGCTAAAAGCG CGGCGAAAGTTGCGGCCAAAGCCCAACTGCGCGCCGCCGCGGGCCTCGGT GCAGGTATTCCGGGGCTGGGTGTCGGAGTTGGAGTCCCGGGTTTGGGCGT GGGCGCGGGAGTTCCGGGACTGGGAGTGGGTGCCGGAGTTCCTGGCTTTG GTGCAGGCGCAGATGAAGGTGTTCGTCGTAGCCTGAGTCCGGAACTGCGT GAAGGTGATCCGAGTAGCAGCCAGCATCTGCCGAGCACCCCGAGCAGCCC GCGTGTTCCGGGTGCATTAGCTGCAGCAAAAGCCGCCAAGTATGGTGCAG CCGTGCCGGGCGTCTTAGGTGGTCTGGGCGCCCTGGGTGGTGTAGGCATT CCGGGAGGTGTTGTGGGTGCAGGACCGGCCGCCGCAGCTGCGGCCGCCAA AGCAGCTGCAAAAGCGGCCCAGTTTGGTTTAGTGGGCGCCGCAGGTTTAG GCGGTTTAGGTGTGGGTGGACTGGGTGTACCTGGCGTAGGCGGTCTGGGT GGAATTCCGCCCtaa
[0186] The amino acid sequence of a 60.7 kDa human elastin truncated at the C-terminal is disclosed in SEQ ID NO: 31. The 60.7 kDa truncated elastin has amino acids 706-761 deleted from the full length elastin.
TABLE-US-00029 (SEQ ID NO: 31) GGVPGAIPGGVPGGVFYPGAGLGALGGGALGPGGKPLKPVPGGLAGAGLG AGLGAFPAVTFPGALVPGGVADAAAAYKAAKAGAGLGGVPGVGGLGVSAG AVVPQPGAGVKPGKVPGVGLPGVYPGGVLPGARFPGVGVLPGVPTGAGVK PKAPGVGGAFAGIPGVGPFGGPQPGVPLGYPIKAPKLPGGYGLPYTTGKL PYGYGPGGVAGAAGKAGYPTGTGVGPQAAAAAAAKAAAKFGAGAAGVLPG VGGAGVPGVPGAIPGIGGIAGVGTPAAAAAAAAAAKAAKYGAAAGLVPGG PGFGPGVVGVPGAGVPGVGVPGAGIPVVPGAGIPGAAVPGVVSPEAAAKA AAKAAKYGARPGVGVGGIPTYGVGAGGFPGFGVGVGGIPGVAGVPGVGGV PGVGGVPGVGISPEAQAAAAAKAAKYGAAGAGVLGGLVPGPQAAVPGVPG TGGVPGVGTPAAAAAKAAAKAAQFGLVPGVGVAPGVGVAPGVGVAPGVGL APGVGVAPGVGVAPGVGVAPGIGPGGVAAAAKSAAKVAAKAQLRAAAGLG AGIPGLGVGVGVPGLGVGAGVPGLGVGAGVPGFGAGADEGVRRSLSPELR EGDPSSSQHLPSTPSSPRVPGALAAAKAAKYGAAVPGVLGGLGALGGVGI PGGVVGAGPAAAAAAAKAAAKAAQFGLVGAAGLGGLGVGGLGVPGVGGLG GIPP
[0187] The codon optimized polynucleotide sequence encoding the truncated 60.7 kDa human elastin is disclosed in SEQ ID NO: 32.
TABLE-US-00030 (SEQ ID NO: 32) GGTGGCGTACCAGGCGCAATTCCTGGGGGTGTCCCAGGCGGTGTTTTTTA TCCGGGCGCCGGTCTTGGCGCACTGGGTGGCGGTGCACTGGGCCCGGGCG GCAAACCGCTGAAACCGGTACCAGGTGGTTTAGCAGGCGCCGGCTTAGGC GCAGGTCTGGGAGCATTTCCGGCAGTTACCTTTCCAGGGGCACTGGTTCC TGGAGGTGTGGCCGATGCAGCCGCGGCATATAAAGCCGCTAAAGCCGGTG CGGGTTTAGGAGGCGTCCCAGGTGTCGGTGGCCTGGGTGTTAGCGCCGGT GCAGTTGTTCCGCAGCCGGGAGCAGGGGTTAAACCTGGTAAAGTGCCGGG AGTAGGTCTGCCAGGCGTTTATCCTGGTGGTGTTTTGCCGGGTGCCCGTT TTCCGGGCGTTGGTGTTCTTCCAGGCGTGCCGACCGGAGCCGGTGTTAAA CCGAAAGCCCCCGGTGTTGGAGGTGCATTTGCAGGCATCCCGGGAGTTGG CCCGTTTGGTGGTCCGCAACCTGGGGTTCCGTTAGGTTATCCGATTAAAG CACCGAAACTGCCCGGCGGTTATGGTCTGCCGTACACAACCGGTAAACTG CCGTATGGTTATGGCCCGGGTGGAGTTGCGGGTGCAGCAGGTAAAGCGGG TTATCCTACCGGAACCGGTGTAGGTCCGCAGGCCGCTGCTGCCGCCGCCG CAAAAGCAGCGGCTAAATTTGGCGCCGGAGCAGCGGGTGTTCTGCCTGGA GTTGGTGGTGCGGGCGTGCCAGGGGTACCTGGTGCAATTCCGGGTATTGG TGGTATTGCCGGTGTCGGCACCCCGGCCGCGGCAGCTGCGGCAGCGGCGG CTGCCAAAGCTGCTAAATACGGTGCCGCGGCGGGTCTGGTGCCAGGAGGT CCGGGTTTTGGTCCGGGAGTGGTTGGCGTGCCTGGCGCAGGCGTTCCTGG TGTGGGCGTTCCAGGTGCAGGGATTCCTGTTGTGCCTGGTGCCGGTATTC CCGGCGCGGCCGTTCCGGGGGTGGTTAGCCCGGAAGCCGCAGCGAAGGCT GCGGCAAAGGCAGCAAAGTATGGCGCACGCCCAGGAGTCGGCGTGGGTGG TATCCCGACCTATGGGGTGGGCGCAGGGGGTTTTCCTGGTTTCGGCGTAG GTGTAGGAGGTATACCGGGCGTGGCCGGTGTACCAGGGGTTGGTGGCGTC CCTGGTGTTGGCGGTGTGCCAGGTGTTGGTATTTCACCGGAAGCACAGGC AGCAGCCGCAGCTAAGGCAGCGAAATATGGTGCCGCCGGCGCAGGAGTTT TAGGTGGGCTGGTTCCGGGCCCGCAGGCAGCTGTGCCGGGGGTTCCAGGC ACCGGTGGTGTCCCTGGAGTCGGTACGCCGGCTGCAGCGGCAGCCAAAGC GGCTGCGAAAGCAGCACAGTTTGGCTTAGTACCGGGTGTGGGAGTTGCCC CCGGCGTTGGCGTTGCTCCAGGGGTGGGTGTTGCTCCTGGCGTCGGTCTG GCTCCTGGAGTGGGCGTAGCACCCGGTGTGGGGGTGGCCCCGGGTGTTGG GGTTGCACCGGGTATCGGTCCGGGCGGTGTCGCAGCAGCAGCTAAAAGCG CGGCGAAAGTTGCGGCCAAAGCCCAACTGCGCGCCGCCGCGGGCCTCGGT GCAGGTATTCCGGGGCTGGGTGTCGGAGTTGGAGTCCCGGGTTTGGGCGT GGGCGCGGGAGTTCCGGGACTGGGAGTGGGTGCCGGAGTTCCTGGCTTTG GTGCAGGCGCAGATGAAGGTGTTCGTCGTAGCCTGAGTCCGGAACTGCGT GAAGGTGATCCGAGTAGCAGCCAGCATCTGCCGAGCACCCCGAGCAGCCC GCGTGTTCCGGGTGCATTAGCTGCAGCAAAAGCCGCCAAGTATGGTGCAG CCGTGCCGGGCGTCTTAGGTGGTCTGGGCGCCCTGGGTGGTGTAGGCATT CCGGGAGGTGTTGTGGGTGCAGGACCGGCCGCCGCAGCTGCGGCCGCCAA AGCAGCTGCAAAAGCGGCCCAGTTTGGTTTAGTGGGCGCCGCAGGTTTAG GCGGTTTAGGTGTGGGTGGACTGGGTGTACCTGGCGTAGGCGGTCTGGGT GGAATTCCGCCCtaa
[0188] The amino acid sequence of a 58.8 kDa human elastin truncated at the N-terminal is disclosed in SEQ ID NO: 33. The 58.8 kDa truncated elastin has amino acids 2-85 deleted from the full length elastin.
TABLE-US-00031 (SEQ ID NO: 33) GLGGVPGVGGLGVSAGAVVPQPGAGVKPGKVPGVGLPGVYPGGVLPGARF PGVGVLPGVPTGAGVKPKAPGVGGAFAGIPGVGPFGGPQPGVPLGYPIKA PKLPGGYGLPYTTGKLPYGYGPGGVAGAAGKAGYPTGTGVGPQAAAAAAA KAAAKFGAGAAGVLPGVGGAGVPGVPGAIPGIGGIAGVGTPAAAAAAAAA AKAAKYGAAAGLVPGGPGFGPGVVGVPGAGVPGVGVPGAGIPVVPGAGIP GAAVPGVVSPEAAAKAAAKAAKYGARPGVGVGGIPTYGVGAGGFPGFGVG VGGIPGVAGVPGVGGVPGVGGVPGVGISPEAQAAAAAKAAKYGAAGAGVL GGLVPGPQAAVPGVPGTGGVPGVGTPAAAAAKAAAKAAQFGLVPGVGVAP GVGVAPGVGVAPGVGLAPGVGVAPGVGVAPGVGVAPGIGPGGVAAAAKSA AKVAAKAQLRAAAGLGAGIPGLGVGVGVPGLGVGAGVPGLGVGAGVPGFG AGADEGVRRSLSPELREGDPSSSQHLPSTPSSPRVPGALAAAKAAKYGAA VPGVLGGLGALGGVGIPGGVVGAGPAAAAAAAKAAAKAAQFGLVGAAGLG GLGVGGLGVPGVGGLGGIPPAAAAKAAKYGAAGLGGVLGGAGQFPLGGVA ARPGFGLSPIFPGGACLGKACGRKRK
[0189] The codon optimized polynucleotide sequence encoding the 58.8 kDa truncated human elastin is disclosed in SEQ ID NO: 34.
TABLE-US-00032 (SEQ ID NO: 34) GGTTTAGGAGGCGTCCCAGGTGTCGGTGGCCTGGGTGTTAGCGCCGGTGC AGTTGTTCCGCAGCCGGGAGCAGGGGTTAAACCTGGTAAAGTGCCGGGAG TAGGTCTGCCAGGCGTTTATCCTGGTGGTGTTTTGCCGGGTGCCCGTTTT CCGGGCGTTGGTGTTCTTCCAGGCGTGCCGACCGGAGCCGGTGTTAAACC GAAAGCCCCCGGTGTTGGAGGTGCATTTGCAGGCATCCCGGGAGTTGGCC CGTTTGGTGGTCCGCAACCTGGGGTTCCGTTAGGTTATCCGATTAAAGCA CCGAAACTGCCCGGCGGTTATGGTCTGCCGTACACAACCGGTAAACTGCC GTATGGTTATGGCCCGGGTGGAGTTGCGGGTGCAGCAGGTAAAGCGGGTT ATCCTACCGGAACCGGTGTAGGTCCGCAGGCCGCTGCTGCCGCCGCCGCA AAAGCAGCGGCTAAATTTGGCGCCGGAGCAGCGGGTGTTCTGCCTGGAGT TGGTGGTGCGGGCGTGCCAGGGGTACCTGGTGCAATTCCGGGTATTGGTG GTATTGCCGGTGTCGGCACCCCGGCCGCGGCAGCTGCGGCAGCGGCGGCT GCCAAAGCTGCTAAATACGGTGCCGCGGCGGGTCTGGTGCCAGGAGGTCC GGGTTTTGGTCCGGGAGTGGTTGGCGTGCCTGGCGCAGGCGTTCCTGGTG TGGGCGTTCCAGGTGCAGGGATTCCTGTTGTGCCTGGTGCCGGTATTCCC GGCGCGGCCGTTCCGGGGGTGGTTAGCCCGGAAGCCGCAGCGAAGGCTGC GGCAAAGGCAGCAAAGTATGGCGCACGCCCAGGAGTCGGCGTGGGTGGTA TCCCGACCTATGGGGTGGGCGCAGGGGGTTTTCCTGGTTTCGGCGTAGGT GTAGGAGGTATACCGGGCGTGGCCGGTGTACCAGGGGTTGGTGGCGTCCC TGGTGTTGGCGGTGTGCCAGGTGTTGGTATTTCACCGGAAGCACAGGCAG CAGCCGCAGCTAAGGCAGCGAAATATGGTGCCGCCGGCGCAGGAGTTTTA GGTGGGCTGGTTCCGGGCCCGCAGGCAGCTGTGCCGGGGGTTCCAGGCAC CGGTGGTGTCCCTGGAGTCGGTACGCCGGCTGCAGCGGCAGCCAAAGCGG CTGCGAAAGCAGCACAGTTTGGCTTAGTACCGGGTGTGGGAGTTGCCCCC GGCGTTGGCGTTGCTCCAGGGGTGGGTGTTGCTCCTGGCGTCGGTCTGGC TCCTGGAGTGGGCGTAGCACCCGGTGTGGGGGTGGCCCCGGGTGTTGGGG TTGCACCGGGTATCGGTCCGGGCGGTGTCGCAGCAGCAGCTAAAAGCGCG GCGAAAGTTGCGGCCAAAGCCCAACTGCGCGCCGCCGCGGGCCTCGGTGC AGGTATTCCGGGGCTGGGTGTCGGAGTTGGAGTCCCGGGTTTGGGCGTGG GCGCGGGAGTTCCGGGACTGGGAGTGGGTGCCGGAGTTCCTGGCTTTGGT GCAGGCGCAGATGAAGGTGTTCGTCGTAGCCTGAGTCCGGAACTGCGTGA AGGTGATCCGAGTAGCAGCCAGCATCTGCCGAGCACCCCGAGCAGCCCGC GTGTTCCGGGTGCATTAGCTGCAGCAAAAGCCGCCAAGTATGGTGCAGCC GTGCCGGGCGTCTTAGGTGGTCTGGGCGCCCTGGGTGGTGTAGGCATTCC GGGAGGTGTTGTGGGTGCAGGACCGGCCGCCGCAGCTGCGGCCGCCAAAG CAGCTGCAAAAGCGGCCCAGTTTGGTTTAGTGGGCGCCGCAGGTTTAGGC GGTTTAGGTGTGGGTGGACTGGGTGTACCTGGCGTAGGCGGTCTGGGTGG AATTCCGCCCGCAGCGGCCGCGAAAGCGGCAAAATATGGCGCGGCAGGCC TGGGCGGCGTGCTGGGTGGGGCAGGTCAGTTTCCGCTGGGCGGGGTTGCC GCACGTCCGGGATTTGGTCTGAGCCCGATTTTCCCTGGCGGCGCATGTCT GGGTAAAGCATGTGGTCGTAAACGTAAAtaa
[0190] The amino acid sequence of a 57 kDa human elastin truncated at the C-terminal is disclosed in SEQ ID NO: 35. The 57 kDa truncated elastin has amino acids 661-761 deleted from the full length elastin.
TABLE-US-00033 (SEQ ID NO: 35) GGVPGAIPGGVPGGVFYPGAGLGALGGGALGPGGKPLKPVPGGLAGAGLG AGLGAFPAVTFPGALVPGGVADAAAAYKAAKAGAGLGGVPGVGGLGVSAG AVVPQPGAGVKPGKVPGVGLPGVYPGGVLPGARFPGVGVLPGVPTGAGVK PKAPGVGGAFAGIPGVGPFGGPQPGVPLGYPIKAPKLPGGYGLPYTTGKL PYGYGPGGVAGAAGKAGYPTGTGVGPQAAAAAAAKAAAKFGAGAAGVLPG VGGAGVPGVPGAIPGIGGIAGVGTPAAAAAAAAAAKAAKYGAAAGLVPGG PGFGPGVVGVPGAGVPGVGVPGAGIPVVPGAGIPGAAVPGVVSPEAAAKA AAKAAKYGARPGVGVGGIPTYGVGAGGFPGFGVGVGGIPGVAGVPGVGGV PGVGGVPGVGISPEAQAAAAAKAAKYGAAGAGVLGGLVPGPQAAVPGVPG TGGVPGVGTPAAAAAKAAAKAAQFGLVPGVGVAPGVGVAPGVGVAPGVGL APGVGVAPGVGVAPGVGVAPGIGPGGVAAAAKSAAKVAAKAQLRAAAGLG AGIPGLGVGVGVPGLGVGAGVPGLGVGAGVPGFGAGADEGVRRSLSPELR EGDPSSSQHLPSTPSSPRVPGALAAAKAAKYGAAVPGVLGGLGALGGVGI PGGVVGAGP
[0191] The codon optimized polynucleotide sequence encoding the 57 kDa truncated human elastin is disclosed in SEQ ID NO: 36
TABLE-US-00034 (SEQ ID NO: 36) GGTGGCGTACCAGGCGCAATTCCTGGGGGTGTCCCAGGCGGTGTTTTTTA TCCGGGCGCCGGTCTTGGCGCACTGGGTGGCGGTGCACTGGGCCCGGGCG GCAAACCGCTGAAACCGGTACCAGGTGGTTTAGCAGGCGCCGGCTTAGGC GCAGGTCTGGGAGCATTTCCGGCAGTTACCTTTCCAGGGGCACTGGTTCC TGGAGGTGTGGCCGATGCAGCCGCGGCATATAAAGCCGCTAAAGCCGGTG CGGGTTTAGGAGGCGTCCCAGGTGTCGGTGGCCTGGGTGTTAGCGCCGGT GCAGTTGTTCCGCAGCCGGGAGCAGGGGTTAAACCTGGTAAAGTGCCGGG AGTAGGTCTGCCAGGCGTTTATCCTGGTGGTGTTTTGCCGGGTGCCCGTT TTCCGGGCGTTGGTGTTCTTCCAGGCGTGCCGACCGGAGCCGGTGTTAAA CCGAAAGCCCCCGGTGTTGGAGGTGCATTTGCAGGCATCCCGGGAGTTGG CCCGTTTGGTGGTCCGCAACCTGGGGTTCCGTTAGGTTATCCGATTAAAG CACCGAAACTGCCCGGCGGTTATGGTCTGCCGTACACAACCGGTAAACTG CCGTATGGTTATGGCCCGGGTGGAGTTGCGGGTGCAGCAGGTAAAGCGGG TTATCCTACCGGAACCGGTGTAGGTCCGCAGGCCGCTGCTGCCGCCGCCG CAAAAGCAGCGGCTAAATTTGGCGCCGGAGCAGCGGGTGTTCTGCCTGGA GTTGGTGGTGCGGGCGTGCCAGGGGTACCTGGTGCAATTCCGGGTATTGG TGGTATTGCCGGTGTCGGCACCCCGGCCGCGGCAGCTGCGGCAGCGGCGG CTGCCAAAGCTGCTAAATACGGTGCCGCGGCGGGTCTGGTGCCAGGAGGT CCGGGTTTTGGTCCGGGAGTGGTTGGCGTGCCTGGCGCAGGCGTTCCTGG TGTGGGCGTTCCAGGTGCAGGGATTCCTGTTGTGCCTGGTGCCGGTATTC CCGGCGCGGCCGTTCCGGGGGTGGTTAGCCCGGAAGCCGCAGCGAAGGCT GCGGCAAAGGCAGCAAAGTATGGCGCACGCCCAGGAGTCGGCGTGGGTGG TATCCCGACCTATGGGGTGGGCGCAGGGGGTTTTCCTGGTTTCGGCGTAG GTGTAGGAGGTATACCGGGCGTGGCCGGTGTACCAGGGGTTGGTGGCGTC CCTGGTGTTGGCGGTGTGCCAGGTGTTGGTATTTCACCGGAAGCACAGGC AGCAGCCGCAGCTAAGGCAGCGAAATATGGTGCCGCCGGCGCAGGAGTTT TAGGTGGGCTGGTTCCGGGCCCGCAGGCAGCTGTGCCGGGGGTTCCAGGC ACCGGTGGTGTCCCTGGAGTCGGTACGCCGGCTGCAGCGGCAGCCAAAGC GGCTGCGAAAGCAGCACAGTTTGGCTTAGTACCGGGTGTGGGAGTTGCCC CCGGCGTTGGCGTTGCTCCAGGGGTGGGTGTTGCTCCTGGCGTCGGTCTG GCTCCTGGAGTGGGCGTAGCACCCGGTGTGGGGGTGGCCCCGGGTGTTGG GGTTGCACCGGGTATCGGTCCGGGCGGTGTCGCAGCAGCAGCTAAAAGCG CGGCGAAAGTTGCGGCCAAAGCCCAACTGCGCGCCGCCGCGGGCCTCGGT GCAGGTATTCCGGGGCTGGGTGTCGGAGTTGGAGTCCCGGGTTTGGGCGT GGGCGCGGGAGTTCCGGGACTGGGAGTGGGTGCCGGAGTTCCTGGCTTTG GTGCAGGCGCAGATGAAGGTGTTCGTCGTAGCCTGAGTCCGGAACTGCGT GAAGGTGATCCGAGTAGCAGCCAGCATCTGCCGAGCACCCCGAGCAGCCC GCGTGTTCCGGGTGCATTAGCTGCAGCAAAAGCCGCCAAGTATGGTGCAG CCGTGCCGGGCGTCTTAGGTGGTCTGGGCGCCCTGGGTGGTGTAGGCATT CCGGGAGGTGTTGTGGGTGCAGGACCGtaa
[0192] The amino acid sequence of a 53.9 kDa human elastin truncated at the C-terminal is disclosed in SEQ ID NO: 37. The 53.9 kDa truncated elastin has amino acids 624-761 deleted from the full length elastin.
TABLE-US-00035 (SEQ ID NO: 37) GGVPGAIPGGVPGGVFYPGAGLGALGGGALGPGGKPLKPVPGGLAGAGLG AGLGAFPAVTFPGALVPGGVADAAAAYKAAKAGAGLGGVPGVGGLGVSAG AVVPQPGAGVKPGKVPGVGLPGVYPGGVLPGARFPGVGVLPGVPTGAGVK PKAPGVGGAFAGIPGVGPFGGPQPGVPLGYPIKAPKLPGGYGLPYTTGKL PYGYGPGGVAGAAGKAGYPTGTGVGPQAAAAAAAKAAAKFGAGAAGVLPG VGGAGVPGVPGAIPGIGGIAGVGTPAAAAAAAAAAKAAKYGAAAGLVPGG PGFGPGVVGVPGAGVPGVGVPGAGIPVVPGAGIPGAAVPGVVSPEAAAKA AAKAAKYGARPGVGVGGIPTYGVGAGGFPGFGVGVGGIPGVAGVPGVGGV PGVGGVPGVGISPEAQAAAAAKAAKYGAAGAGVLGGLVPGPQAAVPGVPG TGGVPGVGTPAAAAAKAAAKAAQFGLVPGVGVAPGVGVAPGVGVAPGVGL APGVGVAPGVGVAPGVGVAPGIGPGGVAAAAKSAAKVAAKAQLRAAAGLG AGIPGLGVGVGVPGLGVGAGVPGLGVGAGVPGFGAGADEGVRRSLSPELR EGDPSSSQHLPSTPSSPRVPGA
[0193] The codon optimized polynucleotide sequence encoding the 53.9 kDa truncated human elastin is disclosed in SEQ ID NO: 38
TABLE-US-00036 (SEQ ID NO: 38) GGTGGCGTACCAGGCGCAATTCCTGGGGGTGTCCCAGGCGGTGTTTTTTA TCCGGGCGCCGGTCTTGGCGCACTGGGTGGCGGTGCACTGGGCCCGGGCG GCAAACCGCTGAAACCGGTACCAGGTGGTTTAGCAGGCGCCGGCTTAGGC GCAGGTCTGGGAGCATTTCCGGCAGTTACCTTTCCAGGGGCACTGGTTCC TGGAGGTGTGGCCGATGCAGCCGCGGCATATAAAGCCGCTAAAGCCGGTG CGGGTTTAGGAGGCGTCCCAGGTGTCGGTGGCCTGGGTGTTAGCGCCGGT GCAGTTGTTCCGCAGCCGGGAGCAGGGGTTAAACCTGGTAAAGTGCCGGG AGTAGGTCTGCCAGGCGTTTATCCTGGTGGTGTTTTGCCGGGTGCCCGTT TTCCGGGCGTTGGTGTTCTTCCAGGCGTGCCGACCGGAGCCGGTGTTAAA CCGAAAGCCCCCGGTGTTGGAGGTGCATTTGCAGGCATCCCGGGAGTTGG CCCGTTTGGTGGTCCGCAACCTGGGGTTCCGTTAGGTTATCCGATTAAAG CACCGAAACTGCCCGGCGGTTATGGTCTGCCGTACACAACCGGTAAACTG CCGTATGGTTATGGCCCGGGTGGAGTTGCGGGTGCAGCAGGTAAAGCGGG TTATCCTACCGGAACCGGTGTAGGTCCGCAGGCCGCTGCTGCCGCCGCCG CAAAAGCAGCGGCTAAATTTGGCGCCGGAGCAGCGGGTGTTCTGCCTGGA GTTGGTGGTGCGGGCGTGCCAGGGGTACCTGGTGCAATTCCGGGTATTGG TGGTATTGCCGGTGTCGGCACCCCGGCCGCGGCAGCTGCGGCAGCGGCGG CTGCCAAAGCTGCTAAATACGGTGCCGCGGCGGGTCTGGTGCCAGGAGGT CCGGGTTTTGGTCCGGGAGTGGTTGGCGTGCCTGGCGCAGGCGTTCCTGG TGTGGGCGTTCCAGGTGCAGGGATTCCTGTTGTGCCTGGTGCCGGTATTC CCGGCGCGGCCGTTCCGGGGGTGGTTAGCCCGGAAGCCGCAGCGAAGGCT GCGGCAAAGGCAGCAAAGTATGGCGCACGCCCAGGAGTCGGCGTGGGTGG TATCCCGACCTATGGGGTGGGCGCAGGGGGTTTTCCTGGTTTCGGCGTAG GTGTAGGAGGTATACCGGGCGTGGCCGGTGTACCAGGGGTTGGTGGCGTC CCTGGTGTTGGCGGTGTGCCAGGTGTTGGTATTTCACCGGAAGCACAGGC AGCAGCCGCAGCTAAGGCAGCGAAATATGGTGCCGCCGGCGCAGGAGTTT TAGGTGGGCTGGTTCCGGGCCCGCAGGCAGCTGTGCCGGGGGTTCCAGGC ACCGGTGGTGTCCCTGGAGTCGGTACGCCGGCTGCAGCGGCAGCCAAAGC GGCTGCGAAAGCAGCACAGTTTGGCTTAGTACCGGGTGTGGGAGTTGCCC CCGGCGTTGGCGTTGCTCCAGGGGTGGGTGTTGCTCCTGGCGTCGGTCTG GCTCCTGGAGTGGGCGTAGCACCCGGTGTGGGGGTGGCCCCGGGTGTTGG GGTTGCACCGGGTATCGGTCCGGGCGGTGTCGCAGCAGCAGCTAAAAGCG CGGCGAAAGTTGCGGCCAAAGCCCAACTGCGCGCCGCCGCGGGCCTCGGT GCAGGTATTCCGGGGCTGGGTGTCGGAGTTGGAGTCCCGGGTTTGGGCGT GGGCGCGGGAGTTCCGGGACTGGGAGTGGGTGCCGGAGTTCCTGGCTTTG GTGCAGGCGCAGATGAAGGTGTTCGTCGTAGCCTGAGTCCGGAACTGCGT GAAGGTGATCCGAGTAGCAGCCAGCATCTGCCGAGCACCCCGAGCAGCCC GCGTGTTCCGGGTGCAtaa
[0194] The amino acid sequence of a 45.3 kDa human elastin truncated at the C-terminal is disclosed in SEQ ID NO: 39. The 45.3 kDa truncated elastin has amino acids 529-761 deleted from the full length elastin.
TABLE-US-00037 (SEQ ID NO: 39) GGVPGAIPGGVPGGVFYPGAGLGALGGGALGPGGKPLKPVPGGLAGAGLG AGLGAFPAVTFPGALVPGGVADAAAAYKAAKAGAGLGGVPGVGGLGVSAG AVVPQPGAGVKPGKVPGVGLPGVYPGGVLPGARFPGVGVLPGVPTGAGVK PKAPGVGGAFAGIPGVGPFGGPQPGVPLGYPIKAPKLPGGYGLPYTTGKL PYGYGPGGVAGAAGKAGYPTGTGVGPQAAAAAAAKAAAKFGAGAAGVLPG VGGAGVPGVPGAIPGIGGIAGVGTPAAAAAAAAAAKAAKYGAAAGLVPGG PGFGPGVVGVPGAGVPGVGVPGAGIPVVPGAGIPGAAVPGVVSPEAAAKA AAKAAKYGARPGVGVGGIPTYGVGAGGFPGFGVGVGGIPGVAGVPGVGGV PGVGGVPGVGISPEAQAAAAAKAAKYGAAGAGVLGGLVPGPQAAVPGVPG TGGVPGVGTPAAAAAKAAAKAAQFGLVPGVGVAPGVGVAPGVGVAPGVGL APGVGVAPGVGVAPGVGVAPGIGPGGV
[0195] The codon optimized polynucleotide sequence encoding the 45.3 kDa truncated human elastin is disclosed in SEQ ID NO: 40
TABLE-US-00038 (SEQ ID NO: 40) GGTGGCGTACCAGGCGCAATTCCTGGGGGTGTCCCAGGCGGTGTTTTTTA TCCGGGCGCCGGTCTTGGCGCACTGGGTGGCGGTGCACTGGGCCCGGGCG GCAAACCGCTGAAACCGGTACCAGGTGGTTTAGCAGGCGCCGGCTTAGGC GCAGGTCTGGGAGCATTTCCGGCAGTTACCTTTCCAGGGGCACTGGTTCC TGGAGGTGTGGCCGATGCAGCCGCGGCATATAAAGCCGCTAAAGCCGGTG CGGGTTTAGGAGGCGTCCCAGGTGTCGGTGGCCTGGGTGTTAGCGCCGGT GCAGTTGTTCCGCAGCCGGGAGCAGGGGTTAAACCTGGTAAAGTGCCGGG AGTAGGTCTGCCAGGCGTTTATCCTGGTGGTGTTTTGCCGGGTGCCCGTT TTCCGGGCGTTGGTGTTCTTCCAGGCGTGCCGACCGGAGCCGGTGTTAAA CCGAAAGCCCCCGGTGTTGGAGGTGCATTTGCAGGCATCCCGGGAGTTGG CCCGTTTGGTGGTCCGCAACCTGGGGTTCCGTTAGGTTATCCGATTAAAG CACCGAAACTGCCCGGCGGTTATGGTCTGCCGTACACAACCGGTAAACTG CCGTATGGTTATGGCCCGGGTGGAGTTGCGGGTGCAGCAGGTAAAGCGGG TTATCCTACCGGAACCGGTGTAGGTCCGCAGGCCGCTGCTGCCGCCGCCG CAAAAGCAGCGGCTAAATTTGGCGCCGGAGCAGCGGGTGTTCTGCCTGGA GTTGGTGGTGCGGGCGTGCCAGGGGTACCTGGTGCAATTCCGGGTATTGG TGGTATTGCCGGTGTCGGCACCCCGGCCGCGGCAGCTGCGGCAGCGGCGG CTGCCAAAGCTGCTAAATACGGTGCCGCGGCGGGTCTGGTGCCAGGAGGT CCGGGTTTTGGTCCGGGAGTGGTTGGCGTGCCTGGCGCAGGCGTTCCTGG TGTGGGCGTTCCAGGTGCAGGGATTCCTGTTGTGCCTGGTGCCGGTATTC CCGGCGCGGCCGTTCCGGGGGTGGTTAGCCCGGAAGCCGCAGCGAAGGCT GCGGCAAAGGCAGCAAAGTATGGCGCACGCCCAGGAGTCGGCGTGGGTGG TATCCCGACCTATGGGGTGGGCGCAGGGGGTTTTCCTGGTTTCGGCGTAG GTGTAGGAGGTATACCGGGCGTGGCCGGTGTACCAGGGGTTGGTGGCGTC CCTGGTGTTGGCGGTGTGCCAGGTGTTGGTATTTCACCGGAAGCACAGGC AGCAGCCGCAGCTAAGGCAGCGAAATATGGTGCCGCCGGCGCAGGAGTTT TAGGTGGGCTGGTTCCGGGCCCGCAGGCAGCTGTGCCGGGGGTTCCAGGC ACCGGTGGTGTCCCTGGAGTCGGTACGCCGGCTGCAGCGGCAGCCAAAGC GGCTGCGAAAGCAGCACAGTTTGGCTTAGTACCGGGTGTGGGAGTTGCCC CCGGCGTTGGCGTTGCTCCAGGGGTGGGTGTTGCTCCTGGCGTCGGTCTG GCTCCTGGAGTGGGCGTAGCACCCGGTGTGGGGGTGGCCCCGGGTGTTGG GGTTGCACCGGGTATCGGTCCGGGCGGTGTCtaa
[0196] The amino acid sequence of a 44.4 kDa human elastin truncated at the N-terminal is disclosed in SEQ ID NO: 41. The 44.4 kDa truncated elastin has amino acids 2-246 deleted from the full length elastin.
TABLE-US-00039 (SEQ ID NO: 41) GVLPGVGGAGVPGVPGAIPGIGGIAGVGTPAAAAAAAAAAKAAKYGAAAG LVPGGPGFGPGVVGVPGAGVPGVGVPGAGIPVVPGAGIPGAAVPGVVSPE AAAKAAAKAAKYGARPGVGVGGIPTYGVGAGGFPGFGVGVGGIPGVAGVP GVGGVPGVGGVPGVGISPEAQAAAAAKAAKYGAAGAGVLGGLVPGPQAAV PGVPGTGGVPGVGTPAAAAAKAAAKAAQFGLVPGVGVAPGVGVAPGVGVA PGVGLAPGVGVAPGVGVAPGVGVAPGIGPGGVAAAAKSAAKVAAKAQLRA AAGLGAGIPGLGVGVGVPGLGVGAGVPGLGVGAGVPGFGAGADEGVRRSL SPELREGDPSSSQHLPSTPSSPRVPGALAAAKAAKYGAAVPGVLGGLGAL GGVGIPGGVVGAGPAAAAAAAKAAAKAAQFGLVGAAGLGGLGVGGLGVPG VGGLGGIPPAAAAKAAKYGAAGLGGVLGGAGQFPLGGVAARPGFGLSPIF PGGACLGKACGRKRK
[0197] The codon optimized polynucleotide sequence encoding the 44.4 kDa truncated human elastin is disclosed in SEQ ID NO: 42
TABLE-US-00040 (SEQ ID NO: 42) GGTGTTCTGCCTGGAGTTGGTGGTGCGGGCGTGCCAGGGGTACCTGGTGC AATTCCGGGTATTGGTGGTATTGCCGGTGTCGGCACCCCGGCCGCGGCAG CTGCGGCAGCGGCGGCTGCCAAAGCTGCTAAATACGGTGCCGCGGCGGGT CTGGTGCCAGGAGGTCCGGGTTTTGGTCCGGGAGTGGTTGGCGTGCCTGG CGCAGGCGTTCCTGGTGTGGGCGTTCCAGGTGCAGGGATTCCTGTTGTGC CTGGTGCCGGTATTCCCGGCGCGGCCGTTCCGGGGGTGGTTAGCCCGGAA GCCGCAGCGAAGGCTGCGGCAAAGGCAGCAAAGTATGGCGCACGCCCAGG AGTCGGCGTGGGTGGTATCCCGACCTATGGGGTGGGCGCAGGGGGTTTTC CTGGTTTCGGCGTAGGTGTAGGAGGTATACCGGGCGTGGCCGGTGTACCA GGGGTTGGTGGCGTCCCTGGTGTTGGCGGTGTGCCAGGTGTTGGTATTTC ACCGGAAGCACAGGCAGCAGCCGCAGCTAAGGCAGCGAAATATGGTGCCG CCGGCGCAGGAGTTTTAGGTGGGCTGGTTCCGGGCCCGCAGGCAGCTGTG CCGGGGGTTCCAGGCACCGGTGGTGTCCCTGGAGTCGGTACGCCGGCTGC AGCGGCAGCCAAAGCGGCTGCGAAAGCAGCACAGTTTGGCTTAGTACCGG GTGTGGGAGTTGCCCCCGGCGTTGGCGTTGCTCCAGGGGTGGGTGTTGCT CCTGGCGTCGGTCTGGCTCCTGGAGTGGGCGTAGCACCCGGTGTGGGGGT GGCCCCGGGTGTTGGGGTTGCACCGGGTATCGGTCCGGGCGGTGTCGCAG CAGCAGCTAAAAGCGCGGCGAAAGTTGCGGCCAAAGCCCAACTGCGCGCC GCCGCGGGCCTCGGTGCAGGTATTCCGGGGCTGGGTGTCGGAGTTGGAGT CCCGGGTTTGGGCGTGGGCGCGGGAGTTCCGGGACTGGGAGTGGGTGCCG GAGTTCCTGGCTTTGGTGCAGGCGCAGATGAAGGTGTTCGTCGTAGCCTG AGTCCGGAACTGCGTGAAGGTGATCCGAGTAGCAGCCAGCATCTGCCGAG CACCCCGAGCAGCCCGCGTGTTCCGGGTGCATTAGCTGCAGCAAAAGCCG CCAAGTATGGTGCAGCCGTGCCGGGCGTCTTAGGTGGTCTGGGCGCCCTG GGTGGTGTAGGCATTCCGGGAGGTGTTGTGGGTGCAGGACCGGCCGCCGC AGCTGCGGCCGCCAAAGCAGCTGCAAAAGCGGCCCAGTTTGGTTTAGTGG GCGCCGCAGGTTTAGGCGGTTTAGGTGTGGGTGGACTGGGTGTACCTGGC GTAGGCGGTCTGGGTGGAATTCCGCCCGCAGCGGCCGCGAAAGCGGCAAA ATATGGCGCGGCAGGCCTGGGCGGCGTGCTGGGTGGGGCAGGTCAGTTTC CGCTGGGCGGGGTTGCCGCACGTCCGGGATTTGGTCTGAGCCCGATTTTC CCTGGCGGCGCATGTCTGGGTAAAGCATGTGGTCGTAAACGTAAAtaa
[0198] The amino acid sequence of a 40.4 kDa human elastin truncated at the N-terminal is disclosed in SEQ ID NO: 43. The 40.4 kDa truncated elastin has amino acids 2-295 deleted from the full length elastin.
TABLE-US-00041 (SEQ ID NO: 43) GLVPGGPGFGPGVVGVPGAGVPGVGVPGAGIPVVPGAGIPGAAVPGVVSP EAAAKAAAKAAKYGARPGVGVGGIPTYGVGAGGFPGFGVGVGGIPGVAGV PGVGGVPGVGGVPGVGISPEAQAAAAAKAAKYGAAGAGVLGGLVPGPQAA VPGVPGTGGVPGVGTPAAAAAKAAAKAAQFGLVPGVGVAPGVGVAPGVGV APGVGLAPGVGVAPGVGVAPGVGVAPGIGPGGVAAAAKSAAKVAAKAQLR AAAGLGAGIPGLGVGVGVPGLGVGAGVPGLGVGAGVPGFGAGADEGVRRS LSPELREGDPSSSQHLPSTPSSPRVPGALAAAKAAKYGAAVPGVLGGLGA LGGVGIPGGVVGAGPAAAAAAAKAAAKAAQFGLVGAAGLGGLGVGGLGVP GVGGLGGIPPAAAAKAAKYGAAGLGGVLGGAGQFPLGGVAARPGFGLSPI FPGGACLGKACGRKRK
[0199] The codon optimized polynucleotide sequence encoding the 40.4 kDa truncated human elastin is disclosed in SEQ ID NO: 44
TABLE-US-00042 (SEQ ID NO: 44) GGTCTGGTGCCAGGAGGTCCGGGTTTTGGTCCGGGAGTGGTTGGCGTGCC TGGCGCAGGCGTTCCTGGTGTGGGCGTTCCAGGTGCAGGGATTCCTGTTG TGCCTGGTGCCGGTATTCCCGGCGCGGCCGTTCCGGGGGTGGTTAGCCCG GAAGCCGCAGCGAAGGCTGCGGCAAAGGCAGCAAAGTATGGCGCACGCCC AGGAGTCGGCGTGGGTGGTATCCCGACCTATGGGGTGGGCGCAGGGGGTT TTCCTGGTTTCGGCGTAGGTGTAGGAGGTATACCGGGCGTGGCCGGTGTA CCAGGGGTTGGTGGCGTCCCTGGTGTTGGCGGTGTGCCAGGTGTTGGTAT TTCACCGGAAGCACAGGCAGCAGCCGCAGCTAAGGCAGCGAAATATGGTG CCGCCGGCGCAGGAGTTTTAGGTGGGCTGGTTCCGGGCCCGCAGGCAGCT GTGCCGGGGGTTCCAGGCACCGGTGGTGTCCCTGGAGTCGGTACGCCGGC TGCAGCGGCAGCCAAAGCGGCTGCGAAAGCAGCACAGTTTGGCTTAGTAC CGGGTGTGGGAGTTGCCCCCGGCGTTGGCGTTGCTCCAGGGGTGGGTGTT GCTCCTGGCGTCGGTCTGGCTCCTGGAGTGGGCGTAGCACCCGGTGTGGG GGTGGCCCCGGGTGTTGGGGTTGCACCGGGTATCGGTCCGGGCGGTGTCG CAGCAGCAGCTAAAAGCGCGGCGAAAGTTGCGGCCAAAGCCCAACTGCGC GCCGCCGCGGGCCTCGGTGCAGGTATTCCGGGGCTGGGTGTCGGAGTTGG AGTCCCGGGTTTGGGCGTGGGCGCGGGAGTTCCGGGACTGGGAGTGGGTG CCGGAGTTCCTGGCTTTGGTGCAGGCGCAGATGAAGGTGTTCGTCGTAGC CTGAGTCCGGAACTGCGTGAAGGTGATCCGAGTAGCAGCCAGCATCTGCC GAGCACCCCGAGCAGCCCGCGTGTTCCGGGTGCATTAGCTGCAGCAAAAG CCGCCAAGTATGGTGCAGCCGTGCCGGGCGTCTTAGGTGGTCTGGGCGCC CTGGGTGGTGTAGGCATTCCGGGAGGTGTTGTGGGTGCAGGACCGGCCGC CGCAGCTGCGGCCGCCAAAGCAGCTGCAAAAGCGGCCCAGTTTGGTTTAG TGGGCGCCGCAGGTTTAGGCGGTTTAGGTGTGGGTGGACTGGGTGTACCT GGCGTAGGCGGTCTGGGTGGAATTCCGCCCGCAGCGGCCGCGAAAGCGGC AAAATATGGCGCGGCAGGCCTGGGCGGCGTGCTGGGTGGGGCAGGTCAGT TTCCGCTGGGCGGGGTTGCCGCACGTCCGGGATTTGGTCTGAGCCCGATT TTCCCTGGCGGCGCATGTCTGGGTAAAGCATGTGGTCGTAAACGTAAAta a
[0200] The amino acid sequence of a 39.8 kDa human elastin truncated at the C-terminal is disclosed in SEQ ID NO: 45. The 39.8 kDa truncated elastin has amino acids 462-761 deleted from the full length elastin.
TABLE-US-00043 (SEQ ID NO: 45) GGVPGAIPGGVPGGVFYPGAGLGALGGGALGPGGKPLKPVPGGLAGAGLG AGLGAFPAVTFPGALVPGGVADAAAAYKAAKAGAGLGGVPGVGGLGVSAG AVVPQPGAGVKPGKVPGVGLPGVYPGGVLPGARFPGVGVLPGVPTGAGVK PKAPGVGGAFAGIPGVGPFGGPQPGVPLGYPIKAPKLPGGYGLPYTTGKL PYGYGPGGVAGAAGKAGYPTGTGVGPQAAAAAAAKAAAKFGAGAAGVLPG VGGAGVPGVPGAIPGIGGIAGVGTPAAAAAAAAAAKAAKYGAAAGLVPGG PGFGPGVVGVPGAGVPGVGVPGAGIPVVPGAGIPGAAVPGVVSPEAAAKA AAKAAKYGARPGVGVGGIPTYGVGAGGFPGFGVGVGGIPGVAGVPGVGGV PGVGGVPGVGISPEAQAAAAAKAAKYGAAGAGVLGGLVPGPQAAVPGVPG TGGVPGVGTP
[0201] The codon optimized polynucleotide sequence encoding the 39.8 kDa truncated human elastin is disclosed in SEQ ID NO: 46
TABLE-US-00044 (SEQ ID NO: 46) GGTGGCGTACCAGGCGCAATTCCTGGGGGTGTCCCAGGCGGTGTTTTTTAT CCGGGCGCCGGTCTTGGCGCACTGGGTGGCGGTGCACTGGGCCCGGGCGGC AAACCGCTGAAACCGGTACCAGGTGGTTTAGCAGGCGCCGGCTTAGGCGCA GGTCTGGGAGCATTTCCGGCAGTTACCTTTCCAGGGGCACTGGTTCCTGGA GGTGTGGCCGATGCAGCCGCGGCATATAAAGCCGCTAAAGCCGGTGCGGGT TTAGGAGGCGTCCCAGGTGTCGGTGGCCTGGGTGTTAGCGCCGGTGCAGTT GTTCCGCAGCCGGGAGCAGGGGTTAAACCTGGTAAAGTGCCGGGAGTAGGT CTGCCAGGCGTTTATCCTGGTGGTGTTTTGCCGGGTGCCCGTTTTCCGGGC GTTGGTGTTCTTCCAGGCGTGCCGACCGGAGCCGGTGTTAAACCGAAAGCC CCCGGTGTTGGAGGTGCATTTGCAGGCATCCCGGGAGTTGGCCCGTTTGGT GGTCCGCAACCTGGGGTTCCGTTAGGTTATCCGATTAAAGCACCGAAACTG CCCGGCGGTTATGGTCTGCCGTACACAACCGGTAAACTGCCGTATGGTTAT GGCCCGGGTGGAGTTGCGGGTGCAGCAGGTAAAGCGGGTTATCCTACCGGA ACCGGTGTAGGTCCGCAGGCCGCTGCTGCCGCCGCCGCAAAAGCAGCGGCT AAATTTGGCGCCGGAGCAGCGGGTGTTCTGCCTGGAGTTGGTGGTGCGGGC GTGCCAGGGGTACCTGGTGCAATTCCGGGTATTGGTGGTATTGCCGGTGTC GGCACCCCGGCCGCGGCAGCTGCGGCAGCGGCGGCTGCCAAAGCTGCTAAA TACGGTGCCGCGGCGGGTCTGGTGCCAGGAGGTCCGGGTTTTGGTCCGGGA GTGGTTGGCGTGCCTGGCGCAGGCGTTCCTGGTGTGGGCGTTCCAGGTGCA GGGATTCCTGTTGTGCCTGGTGCCGGTATTCCCGGCGCGGCCGTTCCGGGG GTGGTTAGCCCGGAAGCCGCAGCGAAGGCTGCGGCAAAGGCAGCAAAGTAT GGCGCACGCCCAGGAGTCGGCGTGGGTGGTATCCCGACCTATGGGGTGGGC GCAGGGGGTTTTCCTGGTTTCGGCGTAGGTGTAGGAGGTATACCGGGCGTG GCCGGTGTACCAGGGGTTGGTGGCGTCCCTGGTGTTGGCGGTGTGCCAGGT GTTGGTATTTCACCGGAAGCACAGGCAGCAGCCGCAGCTAAGGCAGCGAAA TATGGTGCCGCCGGCGCAGGAGTTTTAGGTGGGCTGGTTCCGGGCCCGCAG GCAGCTGTGCCGGGGGTTCCAGGCACCGGTGGTGTCCCTGGAGTCGGTACG CCGtaa
[0202] The amino acid sequence of a 36.1 kDa human elastin truncated at the C-terminal is disclosed in SEQ ID NO: 47. The 36.1 kDa truncated elastin has amino acids 418-761 deleted from the full length elastin.
TABLE-US-00045 (SEQ ID NO: 47) GGVPGAIPGGVPGGVFYPGAGLGALGGGALGPGGKPLKPVPGGLAGAGLG AGLGAFPAVTFPGALVPGGVADAAAAYKAAKAGAGLGGVPGVGGLGVSAG AVVPQPGAGVKPGKVPGVGLPGVYPGGVLPGARFPGVGVLPGVPTGAGVK PKAPGVGGAFAGIPGVGPFGGPQPGVPLGYPIKAPKLPGGYGLPYTTGKL PYGYGPGGVAGAAGKAGYPTGTGVGPQAAAAAAAKAAAKFGAGAAGVLPG VGGAGVPGVPGAIPGIGGIAGVGTPAAAAAAAAAAKAAKYGAAAGLVPGG PGFGPGVVGVPGAGVPGVGVPGAGIPVVPGAGIPGAAVPGVVSPEAAAKA AAKAAKYGARPGVGVGGIPTYGVGAGGFPGFGVGVGGIPGVAGVPGVGGV PGVGGVPGVGISPEAQ
[0203] The codon optimized polynucleotide sequence encoding the 36.1 kDa truncated human elastin is disclosed in SEQ ID NO: 48
TABLE-US-00046 (SEQ ID NO: 48) GGTGGCGTACCAGGCGCAATTCCTGGGGGTGTCCCAGGCGGTGTTTTTTA TCCGGGCGCCGGTCTTGGCGCACTGGGTGGCGGTGCACTGGGCCCGGGCG GCAAACCGCTGAAACCGGTACCAGGTGGTTTAGCAGGCGCCGGCTTAGGC GCAGGTCTGGGAGCATTTCCGGCAGTTACCTTTCCAGGGGCACTGGTTCC TGGAGGTGTGGCCGATGCAGCCGCGGCATATAAAGCCGCTAAAGCCGGTG CGGGTTTAGGAGGCGTCCCAGGTGTCGGTGGCCTGGGTGTTAGCGCCGGT GCAGTTGTTCCGCAGCCGGGAGCAGGGGTTAAACCTGGTAAAGTGCCGGG AGTAGGTCTGCCAGGCGTTTATCCTGGTGGTGTTTTGCCGGGTGCCCGTT TTCCGGGCGTTGGTGTTCTTCCAGGCGTGCCGACCGGAGCCGGTGTTAAA CCGAAAGCCCCCGGTGTTGGAGGTGCATTTGCAGGCATCCCGGGAGTTGG CCCGTTTGGTGGTCCGCAACCTGGGGTTCCGTTAGGTTATCCGATTAAAG CACCGAAACTGCCCGGCGGTTATGGTCTGCCGTACACAACCGGTAAACTG CCGTATGGTTATGGCCCGGGTGGAGTTGCGGGTGCAGCAGGTAAAGCGGG TTATCCTACCGGAACCGGTGTAGGTCCGCAGGCCGCTGCTGCCGCCGCCG CAAAAGCAGCGGCTAAATTTGGCGCCGGAGCAGCGGGTGTTCTGCCTGGA GTTGGTGGTGCGGGCGTGCCAGGGGTACCTGGTGCAATTCCGGGTATTGG TGGTATTGCCGGTGTCGGCACCCCGGCCGCGGCAGCTGCGGCAGCGGCGG CTGCCAAAGCTGCTAAATACGGTGCCGCGGCGGGTCTGGTGCCAGGAGGT CCGGGTTTTGGTCCGGGAGTGGTTGGCGTGCCTGGCGCAGGCGTTCCTGG TGTGGGCGTTCCAGGTGCAGGGATTCCTGTTGTGCCTGGTGCCGGTATTC CCGGCGCGGCCGTTCCGGGGGTGGTTAGCCCGGAAGCCGCAGCGAAGGCT GCGGCAAAGGCAGCAAAGTATGGCGCACGCCCAGGAGTCGGCGTGGGTGG TATCCCGACCTATGGGGTGGGCGCAGGGGGTTTTCCTGGTTTCGGCGTAG GTGTAGGAGGTATACCGGGCGTGGCCGGTGTACCAGGGGTTGGTGGCGTC CCTGGTGTTGGCGGTGTGCCAGGTGTTGGTATTTCACCGGAAGCACAGta a
[0204] The amino acid sequence of a 34.9 kDa human elastin truncated at the N-terminal is disclosed in SEQ ID NO: 49. The 34.9 kDa truncated elastin has amino acids 2-360 deleted from the full length elastin.
TABLE-US-00047 (SEQ ID NO: 49) RPGVGVGGIPTYGVGAGGFPGFGVGVGGIPGVAGVPGVGGVPGVGGV PGVGISPEAQAAAAAKAAKYGAAGAGVLGGLVPGPQAAVPGVPGTGG VPGVGTPAAAAAKAAAKAAQFGLVPGVGVAPGVGVAPGVGVAPGVGL APGVGVAPGVGVAPGVGVAPGIGPGGVAAAAKSAAKVAAKAQLRAAA GLGAGIPGLGVGVGVPGLGVGAGVPGLGVGAGVPGFGAGADEGVRRS LSPELREGDPSSSQHLPSTPSSPRVPGALAAAKAAKYGAAVPGVLGG LGALGGVGIPGGVVGAGPAAAAAAAKAAAKAAQFGLVGAAGLGGLGV GGLGVPGVGGLGGIPPAAAAKAAKYGAAGLGGVLGGAGQFPLGGVAA RPGFGLSPIFPGGACLGKACGRKRK
[0205] The codon optimized polynucleotide sequence encoding the 34.9 kDa truncated human elastin is disclosed in SEQ ID NO: 50
TABLE-US-00048 (SEQ ID NO: 50) CGCCCAGGAGTCGGCGTGGGTGGTATCCCGACCTATGGGGTGGGCGC AGGGGGTTTTCCTGGTTTCGGCGTAGGTGTAGGAGGTATACCGGGCG TGGCCGGTGTACCAGGGGTTGGTGGCGTCCCTGGTGTTGGCGGTGTG CCAGGTGTTGGTATTTCACCGGAAGCACAGGCAGCAGCCGCAGCTAA GGCAGCGAAATATGGTGCCGCCGGCGCAGGAGTTTTAGGTGGGCTGG TTCCGGGCCCGCAGGCAGCTGTGCCGGGGGTTCCAGGCACCGGTGGT GTCCCTGGAGTCGGTACGCCGGCTGCAGCGGCAGCCAAAGCGGCTGC GAAAGCAGCACAGTTTGGCTTAGTACCGGGTGTGGGAGTTGCCCCCG GCGTTGGCGTTGCTCCAGGGGTGGGTGTTGCTCCTGGCGTCGGTCTG GCTCCTGGAGTGGGCGTAGCACCCGGTGTGGGGGTGGCCCCGGGTGT TGGGGTTGCACCGGGTATCGGTCCGGGCGGTGTCGCAGCAGCAGCTA AAAGCGCGGCGAAAGTTGCGGCCAAAGCCCAACTGCGCGCCGCCGCG GGCCTCGGTGCAGGTATTCCGGGGCTGGGTGTCGGAGTTGGAGTCCC GGGTTTGGGCGTGGGCGCGGGAGTTCCGGGACTGGGAGTGGGTGCCG GAGTTCCTGGCTTTGGTGCAGGCGCAGATGAAGGTGTTCGTCGTAGC CTGAGTCCGGAACTGCGTGAAGGTGATCCGAGTAGCAGCCAGCATCT GCCGAGCACCCCGAGCAGCCCGCGTGTTCCGGGTGCATTAGCTGCAG CAAAAGCCGCCAAGTATGGTGCAGCCGTGCCGGGCGTCTTAGGTGGT CTGGGCGCCCTGGGTGGTGTAGGCATTCCGGGAGGTGTTGTGGGTGC AGGACCGGCCGCCGCAGCTGCGGCCGCCAAAGCAGCTGCAAAAGCGG CCCAGTTTGGTTTAGTGGGCGCCGCAGGTTTAGGCGGTTTAGGTGTG GGTGGACTGGGTGTACCTGGCGTAGGCGGTCTGGGTGGAATTCCGCC CGCAGCGGCCGCGAAAGCGGCAAAATATGGCGCGGCAGGCCTGGGCG GCGTGCTGGGTGGGGCAGGTCAGTTTCCGCTGGGCGGGGTTGCCGCA CGTCCGGGATTTGGTCTGAGCCCGATTTTCCCTGGCGGCGCATGTCT GGGTAAAGCATGTGGTCGTAAACGTAAAtaa
[0206] The amino acid sequence of a 32 kDa human elastin truncated at the C-terminal is disclosed in SEQ ID NO: 51. The 32 kDa truncated elastin has amino acids 373-761 deleted from the full length elastin.
TABLE-US-00049 (SEQ ID NO: 51) GGVPGAIPGGVPGGVFYPGAGLGALGGGALGPGGKPLKPVPGGLAGA GLGAGLGAFPAVTFPGALVPGGVADAAAAYKAAKAGAGLGGVPGVGG LGVSAGAVVPQPGAGVKPGKVPGVGLPGVYPGGVLPGARFPGVGVLP GVPTGAGVKPKAPGVGGAFAGIPGVGPFGGPQPGVPLGYPIKAPKLP GGYGLPYTTGKLPYGYGPGGVAGAAGKAGYPTGTGVGPQAAAAAAAK AAAKFGAGAAGVLPGVGGAGVPGVPGAIPGIGGIAGVGTPAAAAAAA AAAKAAKYGAAAGLVPGGPGFGPGVVGVPGAGVPGVGVPGAGIPVVP GAGIPGAAVPGVVSPEAAAKAAAKAAKYGARPGVGVGGIPTY
[0207] The codon optimized polynucleotide sequence encoding the 32 kDa truncated human elastin is disclosed in SEQ ID NO: 52
TABLE-US-00050 (SEQ ID NO: 52) GGTGGCGTACCAGGCGCAATTCCTGGGGGTGTCCCAGGCGGTGTTTT TTATCCGGGCGCCGGTCTTGGCGCACTGGGTGGCGGTGCACTGGGCC CGGGCGGCAAACCGCTGAAACCGGTACCAGGTGGTTTAGCAGGCGCC GGCTTAGGCGCAGGTCTGGGAGCATTTCCGGCAGTTACCTTTCCAGG GGCACTGGTTCCTGGAGGTGTGGCCGATGCAGCCGCGGCATATAAAG CCGCTAAAGCCGGTGCGGGTTTAGGAGGCGTCCCAGGTGTCGGTGGC CTGGGTGTTAGCGCCGGTGCAGTTGTTCCGCAGCCGGGAGCAGGGGT TAAACCTGGTAAAGTGCCGGGAGTAGGTCTGCCAGGCGTTTATCCTG GTGGTGTTTTGCCGGGTGCCCGTTTTCCGGGCGTTGGTGTTCTTCCA GGCGTGCCGACCGGAGCCGGTGTTAAACCGAAAGCCCCCGGTGTTGG AGGTGCATTTGCAGGCATCCCGGGAGTTGGCCCGTTTGGTGGTCCGC AACCTGGGGTTCCGTTAGGTTATCCGATTAAAGCACCGAAACTGCCC GGCGGTTATGGTCTGCCGTACACAACCGGTAAACTGCCGTATGGTTA TGGCCCGGGTGGAGTTGCGGGTGCAGCAGGTAAAGCGGGTTATCCTA CCGGAACCGGTGTAGGTCCGCAGGCCGCTGCTGCCGCCGCCGCAAAA GCAGCGGCTAAATTTGGCGCCGGAGCAGCGGGTGTTCTGCCTGGAGT TGGTGGTGCGGGCGTGCCAGGGGTACCTGGTGCAATTCCGGGTATTG GTGGTATTGCCGGTGTCGGCACCCCGGCCGCGGCAGCTGCGGCAGCG GCGGCTGCCAAAGCTGCTAAATACGGTGCCGCGGCGGGTCTGGTGCC AGGAGGTCCGGGTTTTGGTCCGGGAGTGGTTGGCGTGCCTGGCGCAG GCGTTCCTGGTGTGGGCGTTCCAGGTGCAGGGATTCCTGTTGTGCCT GGTGCCGGTATTCCCGGCGCGGCCGTTCCGGGGGTGGTTAGCCCGGA AGCCGCAGCGAAGGCTGCGGCAAAGGCAGCAAAGTATGGCGCACGCC CAGGAGTCGGCGTGGGTGGTATCCCGACCTATtaa
[0208] The amino acid sequence of a 29.9 kDa human elastin truncated at the C-terminal is disclosed in SEQ ID NO: 53. The 60.7 kDa truncated elastin has amino acids 347-761 deleted from the full length elastin.
TABLE-US-00051 (SEQ ID NO: 53) GGVPGAIPGGVPGGVFYPGAGLGALGGGALGPGGKPLKPVPGGLAGA GLGAGLGAFPAVTFPGALVPGGVADAAAAYKAAKAGAGLGGVPGVGG LGVSAGAVVPQPGAGVKPGKVPGVGLPGVYPGGVLPGARFPGVGVLP GVPTGAGVKPKAPGVGGAFAGIPGVGPFGGPQPGVPLGYPIKAPKLP GGYGLPYTTGKLPYGYGPGGVAGAAGKAGYPTGTGVGPQAAAAAAAK AAAKFGAGAAGVLPGVGGAGVPGVPGAIPGIGGIAGVGTPAAAAAAA AAAKAAKYGAAAGLVPGGPGFGPGVVGVPGAGVPGVGVPGAGIPVVP GAGIPGAAVPGVVSPE
[0209] The codon optimized polynucleotide sequence encoding the 29.9 kDa truncated human elastin is disclosed in SEQ ID NO: 54
TABLE-US-00052 (SEQ ID NO: 54) GGTGGCGTACCAGGCGCAATTCCTGGGGGTGTCCCAGGCGGTGTTTT TTATCCGGGCGCCGGTCTTGGCGCACTGGGTGGCGGTGCACTGGGCC CGGGCGGCAAACCGCTGAAACCGGTACCAGGTGGTTTAGCAGGCGCC GGCTTAGGCGCAGGTCTGGGAGCATTTCCGGCAGTTACCTTTCCAGG GGCACTGGTTCCTGGAGGTGTGGCCGATGCAGCCGCGGCATATAAAG CCGCTAAAGCCGGTGCGGGTTTAGGAGGCGTCCCAGGTGTCGGTGGC CTGGGTGTTAGCGCCGGTGCAGTTGTTCCGCAGCCGGGAGCAGGGGT TAAACCTGGTAAAGTGCCGGGAGTAGGTCTGCCAGGCGTTTATCCTG GTGGTGTTTTGCCGGGTGCCCGTTTTCCGGGCGTTGGTGTTCTTCCA GGCGTGCCGACCGGAGCCGGTGTTAAACCGAAAGCCCCCGGTGTTGG AGGTGCATTTGCAGGCATCCCGGGAGTTGGCCCGTTTGGTGGTCCGC AACCTGGGGTTCCGTTAGGTTATCCGATTAAAGCACCGAAACTGCCC GGCGGTTATGGTCTGCCGTACACAACCGGTAAACTGCCGTATGGTTA TGGCCCGGGTGGAGTTGCGGGTGCAGCAGGTAAAGCGGGTTATCCTA CCGGAACCGGTGTAGGTCCGCAGGCCGCTGCTGCCGCCGCCGCAAAA GCAGCGGCTAAATTTGGCGCCGGAGCAGCGGGTGTTCTGCCTGGAGT TGGTGGTGCGGGCGTGCCAGGGGTACCTGGTGCAATTCCGGGTATTG GTGGTATTGCCGGTGTCGGCACCCCGGCCGCGGCAGCTGCGGCAGCG GCGGCTGCCAAAGCTGCTAAATACGGTGCCGCGGCGGGTCTGGTGCC AGGAGGTCCGGGTTTTGGTCCGGGAGTGGTTGGCGTGCCTGGCGCAG GCGTTCCTGGTGTGGGCGTTCCAGGTGCAGGGATTCCTGTTGTGCCT GGTGCCGGTATTCCCGGCGCGGCCGTTCCGGGGGTGGTTAGCCCGGA Ataa
[0210] The amino acid sequence of a 29.4 kDa human elastin truncated at the N-terminal is disclosed in SEQ ID NO: 55. The 29.4 kDa truncated elastin has amino acids 2-425 deleted from the full length elastin.
TABLE-US-00053 (SEQ ID NO: 55) KYGAAGAGVLGGLVPGPQAAVPGVPGTGGVPGVGTPAAAAAKAAAKA AQFGLVPGVGVAPGVGVAPGVGVAPGVGLAPGVGVAPGVGVAPGVGV APGIGPGGVAAAAKSAAKVAAKAQLRAAAGLGAGIPGLGVGVGVPGL GVGAGVPGLGVGAGVPGFGAGADEGVRRSLSPELREGDPSSSQHLPS TPSSPRVPGALAAAKAAKYGAAVPGVLGGLGALGGVGIPGGVVGAGP AAAAAAAKAAAKAAQFGLVGAAGLGGLGVGGLGVPGVGGLGGIPPAA AAKAAKYGAAGLGGVLGGAGQFPLGGVAARPGFGLSPIFPGGACLGK ACGRKRK
[0211] The codon optimized polynucleotide sequence encoding the 29.4 kDa truncated human elastin is disclosed in SEQ ID NO: 56
TABLE-US-00054 (SEQ ID NO: 56) AAATATGGTGCCGCCGGCGCAGGAGTTTTAGGTGGGCTGGTTCCGGG CCCGCAGGCAGCTGTGCCGGGGGTTCCAGGCACCGGTGGTGTCCCTG GAGTCGGTACGCCGGCTGCAGCGGCAGCCAAAGCGGCTGCGAAAGCA GCACAGTTTGGCTTAGTACCGGGTGTGGGAGTTGCCCCCGGCGTTGG CGTTGCTCCAGGGGTGGGTGTTGCTCCTGGCGTCGGTCTGGCTCCTG GAGTGGGCGTAGCACCCGGTGTGGGGGTGGCCCCGGGTGTTGGGGTT GCACCGGGTATCGGTCCGGGCGGTGTCGCAGCAGCAGCTAAAAGCGC GGCGAAAGTTGCGGCCAAAGCCCAACTGCGCGCCGCCGCGGGCCTCG GTGCAGGTATTCCGGGGCTGGGTGTCGGAGTTGGAGTCCCGGGTTTG GGCGTGGGCGCGGGAGTTCCGGGACTGGGAGTGGGTGCCGGAGTTCC TGGCTTTGGTGCAGGCGCAGATGAAGGTGTTCGTCGTAGCCTGAGTC CGGAACTGCGTGAAGGTGATCCGAGTAGCAGCCAGCATCTGCCGAGC ACCCCGAGCAGCCCGCGTGTTCCGGGTGCATTAGCTGCAGCAAAAGC CGCCAAGTATGGTGCAGCCGTGCCGGGCGTCTTAGGTGGTCTGGGCG CCCTGGGTGGTGTAGGCATTCCGGGAGGTGTTGTGGGTGCAGGACCG GCCGCCGCAGCTGCGGCCGCCAAAGCAGCTGCAAAAGCGGCCCAGTT TGGTTTAGTGGGCGCCGCAGGTTTAGGCGGTTTAGGTGTGGGTGGAC TGGGTGTACCTGGCGTAGGCGGTCTGGGTGGAATTCCGCCCGCAGCG GCCGCGAAAGCGGCAAAATATGGCGCGGCAGGCCTGGGCGGCGTGCT GGGTGGGGCAGGTCAGTTTCCGCTGGGCGGGGTTGCCGCACGTCCGG GATTTGGTCTGAGCCCGATTTTCCCTGGCGGCGCATGTCTGGGTAAA GCATGTGGTCGTAAACGTAAAtaa
[0212] The amino acid sequence of a 25.3 kDa human elastin truncated at the N-terminal is disclosed in SEQ ID NO: 57. The 25.3 kDa truncated elastin has amino acids 2-473 deleted from the full length elastin.
TABLE-US-00055 (SEQ ID NO: 57) QFGLVPGVGVAPGVGVAPGVGVAPGVGLAPGVGVAPGVGVAPGVGVA PGIGPGGVAAAAKSAAKVAAKAQLRAAAGLGAGIPGLGVGVGVPGLG VGAGVPGLGVGAGVPGFGAGADEGVRRSLSPELREGDPSSSQHLPST PSSPRVPGALAAAKAAKYGAAVPGVLGGLGALGGVGIPGGVVGAGPA AAAAAAKAAAKAAQFGLVGAAGLGGLGVGGLGVPGVGGLGGIPPAAA AKAAKYGAAGLGGVLGGAGQFPLGGVAARPGFGLSPIFPGGACLGKA CGRKRK
[0213] The codon optimized polynucleotide sequence encoding the 25.3 kDa truncated human elastin is disclosed in SEQ ID NO: 58
TABLE-US-00056 (SEQ ID NO: 58) CAGTTTGGCTTAGTACCGGGTGTGGGAGTTGCCCCCGGCGTTGGCGT TGCTCCAGGGGTGGGTGTTGCTCCTGGCGTCGGTCTGGCTCCTGGAG TGGGCGTAGCACCCGGTGTGGGGGTGGCCCCGGGTGTTGGGGTTGCA CCGGGTATCGGTCCGGGCGGTGTCGCAGCAGCAGCTAAAAGCGCGGC GAAAGTTGCGGCCAAAGCCCAACTGCGCGCCGCCGCGGGCCTCGGTG CAGGTATTCCGGGGCTGGGTGTCGGAGTTGGAGTCCCGGGTTTGGGC GTGGGCGCGGGAGTTCCGGGACTGGGAGTGGGTGCCGGAGTTCCTGG CTTTGGTGCAGGCGCAGATGAAGGTGTTCGTCGTAGCCTGAGTCCGG AACTGCGTGAAGGTGATCCGAGTAGCAGCCAGCATCTGCCGAGCACC CCGAGCAGCCCGCGTGTTCCGGGTGCATTAGCTGCAGCAAAAGCCGC CAAGTATGGTGCAGCCGTGCCGGGCGTCTTAGGTGGTCTGGGCGCCC TGGGTGGTGTAGGCATTCCGGGAGGTGTTGTGGGTGCAGGACCGGCC GCCGCAGCTGCGGCCGCCAAAGCAGCTGCAAAAGCGGCCCAGTTTGG TTTAGTGGGCGCCGCAGGTTTAGGCGGTTTAGGTGTGGGTGGACTGG GTGTACCTGGCGTAGGCGGTCTGGGTGGAATTCCGCCCGCAGCGGCC GCGAAAGCGGCAAAATATGGCGCGGCAGGCCTGGGCGGCGTGCTGGG TGGGGCAGGTCAGTTTCCGCTGGGCGGGGTTGCCGCACGTCCGGGAT TTGGTCTGAGCCCGATTTTCCCTGGCGGCGCATGTCTGGGTAAAGCA TGTGGTCGTAAACGTAAAtaa
[0214] The amino acid sequence of a 24.1 kDa human elastin truncated at the C-terminal is disclosed in SEQ ID NO: 59. The 24.1 kDa truncated elastin has amino acids 277-761 deleted from the full length elastin.
TABLE-US-00057 (SEQ ID NO: 59) GGVPGAIPGGVPGGVFYPGAGLGALGGGALGPGGKPLKPVPGGLAGA GLGAGLGAFPAVTFPGALVPGGVADAAAAYKAAKAGAGLGGVPGVGG LGVSAGAVVPQPGAGVKPGKVPGVGLPGVYPGGVLPGARFPGVGVLP GVPTGAGVKPKAPGVGGAFAGIPGVGPFGGPQPGVPLGYPIKAPKLP GGYGLPYTTGKLPYGYGPGGVAGAAGKAGYPTGTGVGPQAAAAAAAK AAAKFGAGAAGVLPGVGGAGVPGVPGAIPGIGGIAGVGTP
[0215] The codon optimized polynucleotide sequence encoding the 24.1 kDa truncated human elastin is disclosed in SEQ ID NO: 60
TABLE-US-00058 (SEQ ID NO: 60) GGTGGCGTACCAGGCGCAATTCCTGGGGGTGTCCCAGGCGGTGTTTT TTATCCGGGCGCCGGTCTTGGCGCACTGGGTGGCGGTGCACTGGGCC CGGGCGGCAAACCGCTGAAACCGGTACCAGGTGGTTTAGCAGGCGCC GGCTTAGGCGCAGGTCTGGGAGCATTTCCGGCAGTTACCTTTCCAGG GGCACTGGTTCCTGGAGGTGTGGCCGATGCAGCCGCGGCATATAAAG CCGCTAAAGCCGGTGCGGGTTTAGGAGGCGTCCCAGGTGTCGGTGGC CTGGGTGTTAGCGCCGGTGCAGTTGTTCCGCAGCCGGGAGCAGGGGT TAAACCTGGTAAAGTGCCGGGAGTAGGTCTGCCAGGCGTTTATCCTG GTGGTGTTTTGCCGGGTGCCCGTTTTCCGGGCGTTGGTGTTCTTCCA GGCGTGCCGACCGGAGCCGGTGTTAAACCGAAAGCCCCCGGTGTTGG AGGTGCATTTGCAGGCATCCCGGGAGTTGGCCCGTTTGGTGGTCCGC AACCTGGGGTTCCGTTAGGTTATCCGATTAAAGCACCGAAACTGCCC GGCGGTTATGGTCTGCCGTACACAACCGGTAAACTGCCGTATGGTTA TGGCCCGGGTGGAGTTGCGGGTGCAGCAGGTAAAGCGGGTTATCCTA CCGGAACCGGTGTAGGTCCGCAGGCCGCTGCTGCCGCCGCCGCAAAA GCAGCGGCTAAATTTGGCGCCGGAGCAGCGGGTGTTCTGCCTGGAGT TGGTGGTGCGGGCGTGCCAGGGGTACCTGGTGCAATTCCGGGTATTG GTGGTATTGCCGGTGTCGGCACCCCGtaa
[0216] The amino acid sequence of a 20.3 kDa human elastin truncated at the C-terminal is disclosed in SEQ ID NO: 61. The 20.3 kDa truncated elastin has amino acids 229-761 deleted from the full length elastin.
TABLE-US-00059 (SEQ ID NO: 61) GGVPGAIPGGVPGGVFYPGAGLGALGGGALGPGGKPLKPVPGGLAGA GLGAGLGAFPAVTFPGALVPGGVADAAAAYKAAKAGAGLGGVPGVGG LGVSAGAVVPQPGAGVKPGKVPGVGLPGVYPGGVLPGARFPGVGVLP GVPTGAGVKPKAPGVGGAFAGIPGVGPFGGPQPGVPLGYPIKAPKLP GGYGLPYTTGKLPYGYGPGGVAGAAGKAGYPTGTGVGPQ
[0217] The codon optimized polynucleotide sequence encoding the 20.3 kDa truncated human elastin is disclosed in SEQ ID NO: 62
TABLE-US-00060 (SEQ ID NO: 62) GGTGGCGTACCAGGCGCAATTCCTGGGGGTGTCCCAGGCGGTGTTTT TTATCCGGGCGCCGGTCTTGGCGCACTGGGTGGCGGTGCACTGGGCC CGGGCGGCAAACCGCTGAAACCGGTACCAGGTGGTTTAGCAGGCGCC GGCTTAGGCGCAGGTCTGGGAGCATTTCCGGCAGTTACCTTTCCAGG GGCACTGGTTCCTGGAGGTGTGGCCGATGCAGCCGCGGCATATAAAG CCGCTAAAGCCGGTGCGGGTTTAGGAGGCGTCCCAGGTGTCGGTGGC CTGGGTGTTAGCGCCGGTGCAGTTGTTCCGCAGCCGGGAGCAGGGGT TAAACCTGGTAAAGTGCCGGGAGTAGGTCTGCCAGGCGTTTATCCTG GTGGTGTTTTGCCGGGTGCCCGTTTTCCGGGCGTTGGTGTTCTTCCA GGCGTGCCGACCGGAGCCGGTGTTAAACCGAAAGCCCCCGGTGTTGG AGGTGCATTTGCAGGCATCCCGGGAGTTGGCCCGTTTGGTGGTCCGC AACCTGGGGTTCCGTTAGGTTATCCGATTAAAGCACCGAAACTGCCC GGCGGTTATGGTCTGCCGTACACAACCGGTAAACTGCCGTATGGTTA TGGCCCGGGTGGAGTTGCGGGTGCAGCAGGTAAAGCGGGTTATCCTA CCGGAACCGGTGTAGGTCCGCAGtaa
[0218] The amino acid sequence of a19.6 kDa human elastin truncated at the N-terminal is disclosed in SEQ ID NO: 63. The 19.6 kDa truncated elastin has amino acids 2-542 deleted from the full length elastin.
TABLE-US-00061 (SEQ ID NO: 63) QLRAAAGLGAGIPGLGVGVGVPGLGVGAGVPGLGVGAGVPGFGAGAD EGVRRSLSPELREGDPSSSQHLPSTPSSPRVPGALAAAKAAKYGAAV PGVLGGLGALGGVGIPGGVVGAGPAAAAAAAKAAAKAAQFGLVGAAG LGGLGVGGLGVPGVGGLGGIPPAAAAKAAKYGAAGLGGVLGGAGQFP LGGVAARPGFGLSPIFPGGACLGKACGRKRK
[0219] The codon optimized polynucleotide sequence encoding the 19.6 kDa truncated human elastin is disclosed in SEQ ID NO: 64
TABLE-US-00062 (SEQ ID NO: 64) CAACTGCGCGCCGCCGCGGGCCTCGGTGCAGGTATTCCGGGGCTGGG TGTCGGAGTTGGAGTCCCGGGTTTGGGCGTGGGCGCGGGAGTTCCGG GACTGGGAGTGGGTGCCGGAGTTCCTGGCTTTGGTGCAGGCGCAGAT GAAGGTGTTCGTCGTAGCCTGAGTCCGGAACTGCGTGAAGGTGATCC GAGTAGCAGCCAGCATCTGCCGAGCACCCCGAGCAGCCCGCGTGTTC CGGGTGCATTAGCTGCAGCAAAAGCCGCCAAGTATGGTGCAGCCGTG CCGGGCGTCTTAGGTGGTCTGGGCGCCCTGGGTGGTGTAGGCATTCC GGGAGGTGTTGTGGGTGCAGGACCGGCCGCCGCAGCTGCGGCCGCCA AAGCAGCTGCAAAAGCGGCCCAGTTTGGTTTAGTGGGCGCCGCAGGT TTAGGCGGTTTAGGTGTGGGTGGACTGGGTGTACCTGGCGTAGGCGG TCTGGGTGGAATTCCGCCCGCAGCGGCCGCGAAAGCGGCAAAATATG GCGCGGCAGGCCTGGGCGGCGTGCTGGGTGGGGCAGGTCAGTTTCCG CTGGGCGGGGTTGCCGCACGTCCGGGATTTGGTCTGAGCCCGATTTT CCCTGGCGGCGCATGTCTGGGTAAAGCATGTGGTCGTAAACGTAAAt aa
[0220] The amino acid sequence of a 11 kDa human elastin truncated at the N-terminal is disclosed in SEQ ID NO: 65. The 11 kDa truncated elastin has amino acids 2-635 deleted from the full length elastin.
TABLE-US-00063 (SEQ ID NO: 65) VPGVLGGLGALGGVGIPGGVVGAGPAAAAAAAKAAAKAAQFGLVGAA GLGGLGVGGLGVPGVGGLGGIPPAAAAKAAKYGAAGLGGVLGGAGQF PLGGVAARPGFGLSPIFPGGACLGKACGRKRK
[0221] The codon optimized polynucleotide sequence encoding the 11 kDa truncated human elastin is disclosed in SEQ ID NO: 66
TABLE-US-00064 (SEQ ID NO: 66) GTGCCGGGCGTCTTAGGTGGTCTGGGCGCCCTGGGTGGTGTAGGCAT TCCGGGAGGTGTTGTGGGTGCAGGACCGGCCGCCGCAGCTGCGGCCG CCAAAGCAGCTGCAAAAGCGGCCCAGTTTGGTTTAGTGGGCGCCGCA GGTTTAGGCGGTTTAGGTGTGGGTGGACTGGGTGTACCTGGCGTAGG CGGTCTGGGTGGAATTCCGCCCGCAGCGGCCGCGAAAGCGGCAAAAT ATGGCGCGGCAGGCCTGGGCGGCGTGCTGGGTGGGGCAGGTCAGTTT CCGCTGGGCGGGGTTGCCGCACGTCCGGGATTTGGTCTGAGCCCGAT TTTCCCTGGCGGCGCATGTCTGGGTAAAGCATGTGGTCGTAAACGTA AAtaa
[0222] The amino acid sequence of a 7.9 kDa human elastin truncated at the N-terminal is disclosed in SEQ ID NO: 67. The 7.9 kDa truncated elastin has amino acids 2-674 deleted from the full length elastin.
TABLE-US-00065 (SEQ ID NO: 67) QFGLVGAAGLGGLGVGGLGVPGVGGLGGIPPAAAAKAAKYGAAGLGG VLGGAGQFPLGGVAARPGFGLSPIFPGGACLGKACGRKRK
[0223] The codon optimized polynucleotide sequence encoding the 7.9 kDa truncated human elastin is disclosed in SEQ ID NO: 68
TABLE-US-00066 (SEQ ID NO: 68) CAGTTTGGTTTAGTGGGCGCCGCAGGTTTAGGCGGTTTAGGTGTGGG TGGACTGGGTGTACCTGGCGTAGGCGGTCTGGGTGGAATTCCGCCCG CAGCGGCCGCGAAAGCGGCAAAATATGGCGCGGCAGGCCTGGGCGGC GTGCTGGGTGGGGCAGGTCAGTTTCCGCTGGGCGGGGTTGCCGCACG TCCGGGATTTGGTCTGAGCCCGATTTTCCCTGGCGGCGCATGTCTGG GTAAAGCATGTGGTCGTAAACGTAAAtaa
[0224] The amino acid sequence of a 6.3 kDa human elastin truncated at the C-terminal is disclosed in SEQ ID NO: 69. The 6.3 kDa truncated elastin has amino acids 74-761 deleted from the full length elastin.
TABLE-US-00067 (SEQ ID NO: 69) GGVPGAIPGGVPGGVFYPGAGLGALGGGALGPGGKPLKPVPGGLAGA GLGAGLGAFPAVTFPGALVPGGVAD
[0225] The codon optimized polynucleotide sequence encoding the 6.3 kDa truncated human elastin is disclosed in SEQ ID NO: 70:
TABLE-US-00068 (SEQ ID NO: 70) GGTGGCGTACCAGGCGCAATTCCTGGGGGTGTCCCAGGCGGTGTTTT TTATCCGGGCGCCGGTCTTGGCGCACTGGGTGGCGGTGCACTGGGCC CGGGCGGCAAACCGCTGAAACCGGTACCAGGTGGTTTAGCAGGCGCC GGCTTAGGCGCAGGTCTGGGAGCATTTCCGGCAGTTACCTTTCCAGG GGCACTGGTTCCTGGAGGTGTGGCCGATtaa
[0226] The amino acid sequence of a 4.3 kDa human elastin truncated at the N-terminal is disclosed in SEQ ID NO: 71. The 4.3 kDa truncated elastin has amino acids 2-717 deleted from the full length elastin.
TABLE-US-00069 (SEQ ID NO: 71) GLGGVLGGAGQFPLGGVAARPGFGLSPIFPGGACLGKACGRKRK
[0227] The codon optimized polynucleotide sequence encoding the 4.3 kDa truncated human elastin is disclosed in SEQ ID NO: 72
TABLE-US-00070 (SEQ ID NO: 72) GGCCTGGGCGGCGTGCTGGGTGGGGCAGGTCAGTTTCCGCTGGG CGGGGTTGCCGCACGTCCGGGATTTGGTCTGAGCCCGATTTTCC CTGGCGGCGCATGTCTGGGTAAAGCATGTGGTCGTAAACGTAAA taa
Truncated Human Elastin 1 with DsbA Secretion and FLAG Tag
[0228] The amino acid sequence of truncated human elastin 1 with DsbA secretion and FLAG tag is disclosed in SEQ ID NO: 98. The DsbA secretion tag is encoded by nucleotides 1-57 of SEQ ID NO: 99 and the amino acid sequences are amino acids 1-19 of SEQ ID NO: 98. The elastin nucleotide sequences are nucleotides 58-657 of SEQ ID NO: 99 and the amino acid sequences are amino acids 20-219 of SEQ ID NO: 98. The FLAG nucleotide sequences are nucleotides 658-684 of SEQ ID NO: 99 and the amino acid sequences are amino acids 220-228 of SEQ ID NO: 98.
TABLE-US-00071 (SEQ ID NO: 98) MKKIWLALAGLVLAFSASAGGVPGAIPGGVPGGVFYPGAGLGAL GGGALGPGGKPLKPVPGGLAGAGLGAGLGAFPAVTFPGALVPGG VADAAAAYKAAKAGAGLGGVPGVGGLGVSAGAVVPQPGAGVKPG KVPGVGLPGVYPGGVLPGARFPGVGVLPGVPTGAGVKPKAPGVG GAFAGIPGVGPFGGPQPGVPLGYPIKAPKLPGGYGLPYTTGKLG DYKDDDDK
[0229] The nucleic acid sequence of truncated human elastin 1 with DsbA secretion and FLAG tag is disclosed in SEQ ID NO: 99.
TABLE-US-00072 (SEQ ID NO: 99) ATGAAAAAGATTTGGCTGGCGCTGGCTGGTTTAGTTTTAGCGTTTAG CGCATCGGCGGGTGGCGTACCAGGCGCAATTCCTGGGGGTGTCCCAG GCGGTGTTTTTTATCCGGGCGCCGGTCTTGGCGCACTGGGTGGCGGT GCACTGGGCCCGGGCGGCAAACCGCTGAAACCGGTACCAGGTGGTTT AGCAGGCGCCGGCTTAGGCGCAGGTCTGGGAGCATTTCCGGCAGTTA CCTTTCCAGGGGCACTGGTTCCTGGAGGTGTGGCCGATGCAGCCGCG GCATATAAAGCCGCTAAAGCCGGTGCGGGTTTAGGAGGCGTCCCAGG TGTCGGTGGCCTGGGTGTTAGCGCCGGTGCAGTTGTTCCGCAGCCGG GAGCAGGGGTTAAACCTGGTAAAGTGCCGGGAGTAGGTCTGCCAGGC GTTTATCCTGGTGGTGTTTTGCCGGGTGCCCGTTTTCCGGGCGTTGG TGTTCTTCCAGGCGTGCCGACCGGAGCCGGTGTTAAACCGAAAGCCC CCGGTGTTGGAGGTGCATTTGCAGGCATCCCGGGAGTTGGCCCGTTT GGTGGTCCGCAACCTGGGGTTCCGTTAGGTTATCCGATTAAAGCACC GAAACTGCCCGGCGGTTATGGTCTGCCGTACACAACCGGTAAACTGG GTGACTACAAAGACGACGACGACAAAtaa
[0230] The polynucleotide of SEQ ID NO: 99 was subcloned into vector pET28a, expressed host E. coli cells and the truncated elastin was purified as described herein. The purified elastin produced a clear band on SDS-PAGE and an anti-FLAG western was observed at around 25 kilodaltons. There were no existing bands that appear at that location on the gel in the absence of expression of this protein.
Truncated Human Elastin 2 with DsbA Secretion and FLAG Tag
[0231] The amino acid sequence of truncated human elastin type 2 with DsbA secretion and FLAG tag is disclosed in SEQ ID NO: 100. The DsbA secretion tag is encoded by nucleotides 1-57 of SEQ ID NO: 101 and the amino acid sequences are amino acids 1-19 of SEQ ID NO: 100. The elastin nucleotide sequences are nucleotides 58-657 of SEQ ID NO: 101 and the amino acid sequences are amino acids 20-219 of SEQ ID NO: 100. The FLAG nucleotide sequences are nucleotides 658-684 of SEQ ID NO: 101 and the amino acid sequences are amino acids 220-228 of SEQ ID NO: 100.
TABLE-US-00073 (SEQ ID NO: 100) MKKIWLALAGLVLAFSASAPYGYGPGGVAGAAGKAGYPTGTGVGPQA AAAAAAKAAAKFGAGAAGVLPGVGGAGVPGVPGAIPGIGGIAGVGTP AAAAAAAAAAKAAKYGAAAGLVPGGPGFGPGVVGVPGAGVPGVGVPG AGIPVVPGAGIPGAAVPGVVSPEAAAKAAAKAAKYGARPGVGVGGIP TYGVGAGGFPGFGVGVGGIPGVAGVPGVGGVGDYKDDDDK
[0232] The nucleic acid sequence of truncated human elastin 2 with DsbA secretion and FLAG tag is disclosed in SEQ ID NO: 101.
TABLE-US-00074 (SEQ ID NO: 101) ATGAAAAAGATTTGGCTGGCGCTGGCTGGTTTAGTTTTAGCGTTTAG CGCATCGGCGCCGTATGGTTATGGCCCGGGTGGAGTTGCGGGTGCAG CAGGTAAAGCGGGTTATCCTACCGGAACCGGTGTAGGTCCGCAGGCC GCTGCTGCCGCCGCCGCAAAAGCAGCGGCTAAATTTGGCGCCGGAGC AGCGGGTGTTCTGCCTGGAGTTGGTGGTGCGGGCGTGCCAGGGGTAC CTGGTGCAATTCCGGGTATTGGTGGTATTGCCGGTGTCGGCACCCCG GCCGCGGCAGCTGCGGCAGCGGCGGCTGCCAAAGCTGCTAAATACGG TGCCGCGGCGGGTCTGGTGCCAGGAGGTCCGGGTTTTGGTCCGGGAG TGGTTGGCGTGCCTGGCGCAGGCGTTCCTGGTGTGGGCGTTCCAGGT GCAGGGATTCCTGTTGTGCCTGGTGCCGGTATTCCCGGCGCGGCCGT TCCGGGGGTGGTTAGCCCGGAAGCCGCAGCGAAGGCTGCGGCAAAGG CAGCAAAGTATGGCGCACGCCCAGGAGTCGGCGTGGGTGGTATCCCG ACCTATGGGGTGGGCGCAGGGGGTTTTCCTGGTTTCGGCGTAGGTGT AGGAGGTATACCGGGCGTGGCCGGTGTACCAGGGGTTGGTGGCGTCG GTGACTACAAAGACGACGACGACAAAtaa
[0233] The polynucleotide of SEQ ID NO: 101 was subcloned into vector pET28a, expressed host E. coli cells and the truncated elastin was purified as described herein. The purified elastin produced a clear band on SDS-PAGE and an anti-FLAG western was observed at around 25 kilodaltons. There were no existing bands that appear at that location on the gel in the absence of expression of this protein.
Example 6: Effect of Truncated Collagen on Fibroblast Cell Viability, Procollagen Synthesis, and Elastin Synthesis
[0234] A human fibroblast cell culture was used to assess the ability of the truncated jellyfish collagen molecule of Example 2 to determine its effect on procollagen, and elastin synthesis. The human fibroblast cell culture was also used to determine the increased viability of the human fibroblast cells after exposure to the truncated jellyfish collagen.
[0235] A stock solution of 2% w/w truncated collagen was prepared from the histidine tagged truncated collagen of example 3. Aliquots from the 2% stock truncated collagen solution were then used in the experiments described below.
Preparation of Fibroblasts
[0236] Fibroblasts were seeded into the individual wells of a 24-well plate in 0.5 ml of Fibroblast Growth Media (FGM) and incubated overnight at 37.+-.2.degree. C. and 5.+-.1% CO.sub.2. On the following day the media was removed via aspiration to eliminate any non-adherent cells and replaced with 0.5 ml of fresh FGM. The cells were grown until confluent, with a media change every 48 to 72 hours. Upon reaching confluency the cells were treated for 24 hours with DMEM supplemented with 1.5% FBS to wash out any effects from the growth factors included in the normal culture media. After the 24-hour wash out period the cells were treated with the truncated jellyfish collagen at specified concentrations dissolved in FGM with 1.5% FBS. Transforming Growth Factor Beta (TGF-.beta.) (20 ng/ml) was used as a positive control for collagen and elastin synthesis. Untreated cells (negative controls) just received DMEM with 1.5% FBS. The cells were incubated for 48 hours and at the end of the incubation period cell culture medium was collected and either stored frozen (-75.degree. C.) or assayed immediately. Materials were tested in triplicate.
MTT Assay
[0237] The MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, a tetrazole) assay is a colorimetric assay used to determine the metabolic activity of cells. Changes in cell number were assessed via an MTT assay. When cells are exposed to MTT, reduction of MTT by mitochondria in viable cells results in the formation of insoluble purple formazin crystals that are extracted from the cells with isopropanol and quantified spectrophotometrically. Non-living cells cannot reduce MTT and therefore cannot produce the purple formazin crystals. The intensity of the purple color is directly proportional to the number of living cells (metabolically active cells). The intensity of the purple color is directly proportional to the metabolic activity of the cells and is inversely proportional to the toxicity of the test material.
[0238] After the 2-day incubation discussed above, the cell culture medium was removed (see above) and the fibroblasts were washed twice with PBS to remove any remaining jellyfish glycogen molecules. After the final wash, 500 .mu.l of DMEM supplemented with 0.5 mg/ml MTT was added to each well and the cells were incubated for 1 hour at 37.+-.2.degree. C. and 5.+-.1% CO.sub.2. After the incubation, the DMEM/MTT solution was removed and the cells were washed again once with PBS and then 0.5 ml of isopropyl alcohol was added to the well to extract the purple formazin crystals. Two hundred microliters of the isopropyl extracts was transferred to a 96-well plate and the plate was read at 540 nm using isopropyl alcohol as a blank.
[0239] The mean MTT absorbance value for the negative control cells was calculated and used to represent 100% cell viability. The individual MTT absorbance values from the cells undergoing the various treatments were then divided by the mean value for the negative control cells and expressed as a percent to determine the change in cell viability caused by each treatment.
[0240] In Tables 1, 2 and 3 of this example, the experiments were performed by using the designated aliquots of the 2% stock truncated collagen solution in the assays. For example, in the samples that tested the "10% Collagen Solution," an aliquot of the 2% truncated collagens in an amount sufficient to provide 10% of the assay volume was used. For a total assay volume of 1.0 ml, 100 .mu.l of the 2% stock truncated collagen solution was used. In Tables 1, 2 and 3, "10% Collagen Solution" is 0.2% collagen, "5% Collagen Solution" is 0.1% collagen, "1% Collagen Solution" is 0.02% collagen, "0.5% Collagen Solution" is 0.01% collagen, "0.1% Collagen Solution" is 0.002% collagen, "0.05% Collagen Solution" is 0.001% collagen, "0.01% Collagen Solution" is 0.0002% collagen, "0.005% Collagen Solution" is 0.0001% collagen.
[0241] The results for the MTT assay are presented in Table 3. The values are presented as the mean percent viability.+-.the deviation from the mean.
TABLE-US-00075 TABLE 3 MTT Assay Untreated 100 .+-. 6.1 20 ng/ml TGF-B 110 .+-. 2.9 10% Collagen Solution 131 .+-. 7.8* 5% Collagen Solution 140 .+-. 8.3* 1% Collagen Solution 116 .+-. 0.9 0.5% Collagen Solution 105 .+-. 4.8 0.1% Collagen Solution 102 .+-. 1.1 0.05% Collagen Solution 106 .+-. 3.4 0.01% Collagen Solution 112 .+-. 1.9 0.005% Collagen Solution 103 .+-. 3.9 *Denotes values that are significantly different from the Untreated group (p < 0.05).
[0242] The histidine tagged truncated jellyfish collagen showed protective effect by increasing the cell viability of human fibroblast cells.
Procollagen Synthesis
[0243] Fibroblasts are the main source of the extracellular matrix peptides, including the structural proteins collagen and elastin. Procollagen is a large peptide synthesized by fibroblasts in the dermal layer of the skin and is the precursor for collagen. As the peptide is processed to form a mature collagen protein, the propeptide portion is cleaved off (type I C-peptide). Both the mature collagen protein and the type I C-peptide fragment are then released into the extracellular environment. As collagen is synthesized the type I C-peptide fragment accumulates into the tissue culture medium. Since there is a 1:1 stoichiometric ratio between the two parts of the procollagen peptide, assaying for type I C-peptide will reflect the amount of collagen synthesized. Type 1 C-peptide can be assayed via an ELISA based method.
[0244] A series of type I C-peptide standards was prepared ranging from 0 ng/ml to 640 ng/ml. Next, an ELISA microplate was prepared by removing any unneeded strips from the plate frame followed by the addition of 100 .mu.l of peroxidase-labeled anti procollagen type I-C peptide antibody to each well used in the assay. Twenty (20) .mu.l of either sample (collected tissue culture media) or standard was then added to appropriate wells and the microplate was covered and allowed to incubate for 3.+-.0.25 hours at 37.degree. C. After the incubation the wells were aspirated and washed three times with 400 .mu.l of wash buffer. After the last wash was removed 100 .mu.l of peroxidase substrate solution (hydrogen peroxide+tetramethylbenzidine as a chromagen) was added to each well and the plate was incubated for 15.+-.5 minutes at room temperature. After the incubation 100 .mu.l of stop solution (1 N sulfuric acid) was added to each well and the plate was read using a microplate reader at 450 nm.
[0245] To quantify the amount of each substance present, a standard curve was generated using known concentrations of each substance. A regression analysis was performed to establish the line that best fits these data points. Absorbance values for the test materials and untreated samples were used to estimate the amount of each substance present in each sample.
[0246] The results for the ELISA assays are presented in Table 4.
TABLE-US-00076 TABLE 4 Type I Collagen Assay. The values presented are mean concentration (ng/ml) .+-. the deviation from the mean. Treatment Type I C-Peptide (ng/ml) Untreated 1718 .+-. 94 20 ng/ml TGF-B 3028 .+-. 332* 10% Collagen Solution 1940 .+-. 100 5% Collagen Solution 2394 .+-. 125* 1% Collagen Solution 1773 .+-. 183 0.5% Collagen Solution 1127 .+-. 19* 0.1% Collagen Solution 1158 .+-. 10* 0.05% Collagen Solution 1416 .+-. 64 0.01% Collagen Solution 1835 .+-. 404 0.005% Collagen Solution 1551 .+-. 149 *Denotes values that are significantly different from the Untreated group (p < 0.05).
[0247] The truncated histidine tagged jellyfish collagen was observed to have a biphasic effect on collagen synthesis. At the 1%, 5% and the 10% levels, collagen synthesis increased. At the 5% concentration truncated jellyfish collagen significantly increased collagen synthesis with a p-value of less than 0.05.
Elastin Synthesis
[0248] Elastin is the main component of a network of elastic fibers that give tissues their ability to recoil after a transient stretch. This protein is released by fibroblasts (soluble elastin) into the extracellular space where it is then cross-linked to other elastin proteins to form an extensive network of fibers and sheets (insoluble elastin). Soluble elastin can be readily measured from cell culture medium via an ELISA based method.
[0249] Soluble .alpha.-elastin was dissolved in 0.1 M sodium carbonate (pH 9.0) at a concentration of 1.25 .mu.g/ml. 150 .mu.l of this solution was then applied to the wells of a 96-well maxisorp Nunc plate and the plate was incubated overnight at 4.degree. C. On the following day the wells were saturated with PBS containing 0.25% BSA and 0.05% TWEEN.RTM. 20. The plate was then incubated with this blocking solution for 1 hour at 37.degree. C. and then washed two times with PBS containing 0.05% TWEEN.RTM. 20.
[0250] A set of .alpha.-elastin standards was generated ranging from 0 to 100 ng/ml. 180 .mu.l of either standard or truncated jellyfish collagen was then transferred to a 650 .mu.l microcentrifuge tube. An anti-elastin antibody solution was prepared (the antibody was diluted 1:100 in PBS containing 0.25% BSA and 0.05% TWEEN.RTM. 20) and 20 .mu.l of the solution was added to the tube. The tubes were then incubated overnight at 4.+-.2.degree. C. On the following day, 150 .mu.l was transferred from each tube to the 96-well elastin ELISA plate, and the plate was incubated for 1 hour at room temperature. The plate was then washed 3 times with PBS containing 0.05% TWEEN.RTM. 20. After washing, 200 .mu.l of a solution containing a peroxidase linked secondary antibody diluted in PBS containing 0.25% BSA and 0.05% TWEEN.RTM. 20 was added, and the plate was incubated for 1 hour at room temperature. After washing the plate three times, 200 .mu.l of a substrate solution was added and the plate was incubated for 10 to 30 minutes in the dark at room temperature. After this final incubation the plate was read at 460 nm using a plate reader.
TABLE-US-00077 TABLE 5 The values are also presented as mean concentration (ng/ml) .+-. deviation from the mean. Treatment Elastin (ng/ml) Untreated 79 .+-. 19 20 ng/ml TGFB1 243 .+-. 35* 10% Collagen Solution 68 .+-. 18 5% Collagen Solution 99 .+-. 13 1% Collagen Solution 126 .+-. 21 0.5% Collagen Solution 145 .+-. 21* 0.1% Collagen Solution 76 .+-. 14 0.05% Collagen Solution 58 .+-. 6 0.01% Collagen Solution 53 .+-. 5 0.005% Collagen Solution 56 .+-. 24 *Denotes values that are significantly different from the Untreated group (p < 0.05).
[0251] Truncated his-tagged jellyfish collagen significantly increased elastin production when it was used at the 0.5% concentration as shown in Table 5.
Example 7: Effect of Truncated Collagen on Keratinocyte Proliferation and UVB Protection
[0252] A human keratinocyte cell culture model was used to assess the ability of the test materials to exert an effect on cell proliferation. In addition, the impact of the test materials on the cell viability after an exposure to UVB was also assessed.
[0253] A stock solution of 2% w/w truncated collagen was prepared from the truncated collagen of example 1. Aliquots from the 2% stock truncated collagen solution was then used in the experiments described below.
[0254] This study was conducted in two parts. In the first part cultured keratinocytes were incubated with the test materials for 48 hours, after which changes in the number of viable cells were assessed using an MTT assay. In the second part of the study cultured keratinocytes were irradiated with UVB and then treated with the test materials for 48 hours. At the end of the 48 hour period the number of viable cells was again assessed via an MTT assay.
[0255] Changes in cell number of viable cells can be determined using an MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, a tetrazole) assay. The MTT assay is a colorimetric analysis of the metabolic activity of the cell, which is a reflection of the number of viable cells. Reduction of MTT by mitochondria in viable cells results in the formation of insoluble purple formazin crystals that are extracted from the cells with isopropanol and quantified spectrophotometrically. The intensity of the purple color is directly proportional to the number of metabolically active cells.
Proliferation Assay
[0256] For the proliferation assay the keratinocytes were seeded into 96-welll plates using without growth factors and incubated for 24 hours at 37.+-.2.degree. C. and 5.+-.1% CO2. After this initial incubation the media was replaced with media supplemented with the test materials. Normal media (with growth factors) was used as a positive control. After the addition of the test materials the cells were cultured for 48 hours as described above. At the end of the incubation period changes in the number of viable cells was determined using an MTT assay.
UVB Protection Assay
[0257] For the UVB protection assay the keratinocytes were seeded into 96-welll plates using normal media and incubated for 24 hours at 37.+-.2.degree. C. and 5.+-.1% CO2. After this initial incubation the media was replaced with 100 .mu.l of phosphate buffered saline (PBS) and the cells were exposed to UVB (40 mJ/cm2). After the UVB exposure, the PBS was replaced with fresh media supplemented with the test materials (ascorbic acid at 100 .mu.g/ml served as the positive control) and the cells were cultured for 48 hours at 37.+-.2.degree. C. and 5.+-.1% CO2. At the end of the 48 hour incubation cell viability was determined using an MTT assay.
MTT Assay
[0258] After the 48-hour incubation the cell culture medium was removed and replaced with 200 .mu.l of culture media supplemented with 0.5 mg/ml MTT. The well plates were incubated for 1 hour at 37.+-.2.degree. C. and 5.+-.1% CO2. After the incubation, the MTT solution was removed and the cells were washed once with phosphate buffered saline and then 200 .mu.l of isopropyl alcohol was added to the well to extract the purple formazin crystals. The 96-well plate was read at 540 nm using isopropyl alcohol as a blank.
[0259] The mean absorbance value for the cells not treated with test materials (proliferation assay: Untreated Group) or not exposed to UVB (UVB protection assay: Non-UVB Exposed Group) was calculated and used to represent 100% cell viability. The individual absorbance values from the cells undergoing the various treatments were then divided by the mean absorbance value representing 100% cell viability and expressed as a percent to determine the change in cell viability caused by each treatment.
[0260] The results for the Proliferation assay using the his-tagged truncated jellyfish collagen are presented in Table 6. The results for the UVB Protection assay using the his-tagged truncated jellyfish collagen are presented in Table 7. The values for both assays are presented as mean viability.+-.standard deviation.
TABLE-US-00078 TABLE 6 Proliferation Assay Untreated 100 .+-. 3.4 Positive Control (Growth Factors) 139 .+-. 3.8* 10% Collagen Solution 103 .+-. 9.4 5% Collagen Solution 97 .+-. 7.3 1% Collagen Solution 94 .+-. 5.0 0.5% Collagen Solution 93 .+-. 7.0 0.1% Collagen Solution 95 .+-. 2.5 0.05% Collagen Solution 99 .+-. 6.0 0.01% Collagen Solution 96 .+-. 6.4 0.005% Collagen Solution 96 .+-. 2.8 *Denotes values which are significantly different from the Untreated Group (p < 0.05)
TABLE-US-00079 TABLE 7 UVB Protection Assay Non-UVB Exposed 100 .+-. 1.7* Untreated 77 .+-. 1.8 100 ug/ml Trolox 92 .+-. 2.0* 10% Collagen Solution 76 .+-. 8.6 5% Collagen Solution 92 .+-. 3.9* 1% Collagen Solution 91 .+-. 2.9* 0.5% Collagen Solution 100 .+-. 4.5* 0.1% Collagen Solution 86 .+-. 4.8 0.05% Collagen Solution 91 .+-. 1.6* 0.01% Collagen Solution 83 .+-. 7.5 0.005% Collagen Solution 82 .+-. 4.7 *Denotes values which are significantly different from the Untreated Group (p < 0.05)
[0261] For the proliferation assay the Untreated group was used to represent 100% cell viability. Values above 100% reflect an increase in the number of viable cells and hence are indicative of cell proliferation. In this study, the test material was not observed to promote cell proliferation.
[0262] In addition, the keratinocyte proliferation assay was performed using the truncated collagen of SEQ ID NO: 91. A 1% and 0.5% collagen solution of a 5% stock solution was prepared according to Example 8 and tested. The truncated collagen of SEQ ID NO: 91 had keratinocyte cell viability assay values of 102.+-.2.9 and 102.+-.2.0, respectively. The observed values were statistically significant (p<0.05).
[0263] In addition to its effects on cell proliferation, the test material was also screened to determine if it had an impact on cell recovery after UVB exposure. In this study, exposure to UVB was observed to result in a significant reduction in the number of viable cells 48 hours post exposure. However, treatment with the test material prevented this decrease in cell viability. The effect was evident within a concentration range between 0.05% and 5% of the test material, with an optimal effect at a concentration of 0.05%. Within this range of concentrations cell viability was significantly greater than the untreated group (with the lone exception of the 0.01% concentration), demonstrating that the material has UVB protective effect. Since this material was added after the UVB exposure it could be acting to reduce the damaging effects of the UVB irradiation, or it could be helping the damaged cells to recover at a faster rate. With respect to the latter, then truncated collagen is beneficial when applied topically to the skin and has a regenerative effect on skin cells damaged by UVB.
[0264] In addition, the UVB protection assay was performed using the truncated collagen of SEQ ID NO: 91. A 1% and 0.5% collagen solution of SEQ ID NO: 91 had keratinocyte cell viability assay values of 80.+-.4.6 and 78.+-.2.5, respectively. The observed values were statistically significant (p<0.05).
Example 8: Effect of Truncated Collagen on Thymine Dimer Formation
[0265] Upon exposure to ultraviolet radiation the thymine dimer (TT dimer) content in DNA present in cells increases. Increases in TT dimer formation are correlated with skin damage and certain types of cell proliferative diseases including skin cancer.
[0266] The polynucleotide of SEQ ID NO: 11 was expressed in the expression system of Example 1 and purified as described in this example. The encoded polypeptide includes the DsbA secretion tag. As the polypeptide is processed through the secretion pathway, the DsbA tag, amino acids 1-24 of SEQ ID NO: 12 is cleaved by the host cell. The truncated collagen without the DsbA secretion tag is provided in SEQ ID NO: 91.
[0267] The truncated collagen of SEQ ID NO: 91 was tested to determine if it could reduce TT dimer formation is human epidermal keratinocytes. For this study, the cells were exposed to UVB (25 mJ/cm2). Following the exposures cells were treated with the test materials or Trolox (100 ug/ml) and incubated overnight. On the following day cellular DNA was extracted and assayed for thymine dimer content using an ELISA based method.
[0268] Human keratinocytes were seeded into 12-well plates using normal media and incubated for 24 hours at 37.+-.2.degree. C. and 5.+-.1% CO2. After this initial incubation the media was replaced with 100 .mu.l of phosphate buffered saline (PBS) and the cells were exposed to UVB (25 mJ/cm2). After the UVB exposure, the PBS was replaced with fresh media supplemented with the test materials or Trolox (100 .mu.g/ml, this served as the positive control) and the cells were cultured overnight at 37.+-.2.degree. C. and 5.+-.1% CO2. At the end of the incubation cellular DNA was extracted.
[0269] After the overnight incubation the cell culture media was removed from the wells and replaced with 200 .mu.l of PBS and 20 .mu.l of Proteinase K. After swirling the plate to mix the PBS and Proteinase K, 200 .mu.l of buffer AL was added to each well. After again swirling the plate to mix the reagents, the plates were incubated for 10 minutes at 55.+-.2.degree. C. After cooling the plate to room temperature, the DNA was precipitated by the addition of 200 .mu.l of 100% ethanol. The precipitated DNA mixtures were then transferred to DNEASY.RTM. Spin Columns in 2 ml collection tubes and centrifuged at 8,000 RPM for 1 minute. The flow through and collection tubes were discarded, and 500 .mu.l of Wash Buffer One was added to the spin column and the column was placed into a new collection tube and centrifuged at 8,000 RPM for 1 minute. The flow through and collection tube were again discarded, and 500 .mu.l of Wash Buffer Two was added to the spin column and the column was placed into a new collection tube and centrifuged at 14,000 RPM for 3 minutes. The spin column was then placed into a new 1.5 ml centrifuge tube and 110 .mu.l of ultrapure water was added to the column. The column was incubated for 1 minute at room temperature and then centrifuged at 8,000 RPM for 1 minute.
[0270] Extracted DNA was quantified via a fluorometric assay. A 2 .mu.l aliquot of the DNA sample was mixed with 100 .mu.l TE buffer in a 96-well plate. A series of DNA standards was also transferred to wells in a 96-well plate (in duplicate). Finally, 100 .mu.l of dilute CYQUANT.RTM. Green dye was added to each well and the fluorescence intensity of each well was determined using an excitation wavelength of 480 nm and an emission wavelength of 520 nm.
[0271] Thymine Dimer Detection was determined using an OXISELECT.TM. UV-Induced DNA Damage ELISA Kit)
[0272] Aliquots of genomic DNA samples or standards were converted to single stranded DNA by incubating the samples at 95.degree. C. for 10 minutes and then chilled on ice. 100 .mu.l or each sample or standard was transferred to a DNA binding ELISA plate and incubated overnight at 4.degree. C. On the following day the wells were rinsed once with 100 .mu.l of PBS and then blocked with 150 .mu.l of Assay Diluent for one hour at room temperature. After removing the Assay Diluent, 100 .mu.l of anti-CPD antibody was added to each well and the plate was incubated for one hour at room temperature. After this incubation, the plate was washed three times with 250 .mu.l of wash buffer per well, and then 150 .mu.l of Blocking Reagent was added to the plate. The plate will be blocked again for one hour at room temperature, and then washed three times as described before. 100 .mu.l of Secondary Antibody was then added to each well and the plate was incubated for 1 hour at room temperature. After washing the plate again, 100 .mu.l of substrate was added to each well and the plate was incubated for 5-20 minutes to allow for color generation in the plate. The color generation reaction was stopped by the addition of 100 .mu.l of stop solution and the plate was read at 460 nm using a plate reader.
[0273] To quantify the amount of DNA present, a standard curve was generated using known concentrations of DNA and their respective fluorescence intensity (measured in RFUs or relative fluorescence units). A regression analysis was performed to establish the line that best fits these data points. The Relative Fluorescence Units (RFU) for each unknown sample was then used to estimate the amount of DNA.
[0274] A series of DNA standards with known amounts of thymine dimer content were used to generate a standard curve. This standard curve was used to determine the amount of DNA damage in the sample DNA. Means for each treatment group were calculated and compared using an ANOVA. In table 8 and FIG. 5, a standard 5% collagen solution (5 g truncated collagen in 95 ml deionized water was further diluted with phosphate buffered saline (PBS) to the indicated percent solution.
TABLE-US-00080 TABLE 8 Thymine Dimer Assay Treatment Thymine Dimer, ng/ml Non-UVB Exposed 0.1 .+-. 0.2* Untreated 10.7 .+-. 1.4* 100 .mu.g/ml Trolox 1.6 .+-. 0.3* 5% Truncated Collagen 3.5 .+-. 0.3* 1% Truncated Collagen 5.5 .+-. 1.0* 0.5% Truncated Collagen 8.9 .+-. 0.8 0.1% Truncated Collagen 9.2 .+-. 0.9 0.05% Truncated Collagen 9.2 .+-. 0.3 *Denotes values which are statistically significantly different from untreated with P < 0.05
[0275] Table 8 shows that the 5% and the 1% truncated collagen solution reduced TT dimer formation with statistical significance (p<0.05). The data is presented graphically in FIG. 5.
[0276] The experiment was repeated with a different lot of truncated collagen (SEQ ID NO: 91). The amount of TT dimer in ng/ml in non-UVB exposed cells was 1.3.+-.1.2, untreated cells was 18.1.+-.0.4, 100 .mu.g/ml Trolox treated cells was 7.9.+-.0.3, 5% collagen was 13.1.+-.0.2, and 1% collagen was 17.4.+-.0.7. The reduction in TT dimer formation for non-UVB exposed cells, Trolox treated cells, 5% collagen treated cells and 1% collagen treated cells was statistically significant compared to untreated cells (p<0.05).
Example 9: Human Collagens
Truncated Human Collagen Type 21 Alpha 1
[0277] A truncated human collagen type 21 alpha 1 without a His tag, linker, and thrombin cleavage site is disclosed below. The codon-optimized nucleotide sequence encoding this collagen and the amino acid sequence are disclosed below. In SEQ ID NOs: 73 and 74, the DsbA secretion tag is encoded by nucleotides 1-72 and encodes amino acids 1-24. In SEQ ID NOs: 73 and 74, the truncated collagen sequence is encoded by nucleotides 73-633 and encodes amino acids 25-211.
[0278] The codon-optimized nucleotide sequence encoding this collagen is provided in SEQ ID NO: 73.
TABLE-US-00081 (SEQ ID NO: 73) ATGAAAAAGATTTGGCTGGCGCTGGCTGGTTTAGTTTTAGCGTTTAG CGCATCGGCGGCGCAGTATGAAGATGCAGGTTTTCCGGGTCTGCCTG GTCCGGCAGGCGAACCGGGTCGTCATGGTAAAGATGGTCTGATGGGT AGTCCGGGTTTTAAAGGTGAAGCAGGTTCACCGGGTGCACCTGGTCA GGATGGCACCCGTGGTGAACCGGGTATTCCGGGATTTCCGGGTAATC GTGGCCTGATGGGTCAGAAAGGTGAAATTGGTCCGCCTGGTCAGCAG GGTAAAAAAGGCGCACCGGGTATGCCAGGACTGATGGGTTCAAATGG CAGTCCGGGTCAGCCAGGCACACCGGGTTCAAAAGGTAGCAAAGGCG AACCTGGTATTCAGGGTATGCCTGGTGCAAGCGGTCTGAAAGGCGAG CCAGGTGCCACCGGTTCTCCGGGTGAACCAGGTTATATGGGTCTGCC AGGTATCCAAGGCAAAAAAGGTGATAAAGGTAATCAGGGCGAAAAAG GCATTCAGGGCCAGAAAGGCGAAAATGGCCGTCAGGGTATTCCAGGC CAGCAGGGCATCCAGGGTCATCATGGTGCAAAAGGTGAACGTGGTGA AAAGGGCGAACCAGGTGTTCGTtaa
[0279] The amino acid sequence is disclosed in SEQ ID NO: 74.
TABLE-US-00082 (SEQ ID NO: 74) MKKIWLALAGLVLAFSASAAQYEDAGFPGLPGPAGEPGRHGKDGLMG SPGFKGEAGSPGAPGQDGTRGEPGIPGFPGNRGLMGQKGEIGPPGQQ GKKGAPGMPGLMGSNGSPGQPGTPGSKGSKGEPGIQGMPGASGLKGE PGATGSPGEPGYMGLPGIQGKKGDKGNQGEKGIQGQKGENGRQGIPG QQGIQGHHGAKGERGEKGEPGVR
[0280] The codon-optimized nucleotide sequence encoding the truncated human collagen type 21 alpha 1 without the DsbA secretion tag collagen is provided in SEQ ID NO: 75.
TABLE-US-00083 (SEQ ID NO: 75) TGCAGGTTTTCCGGGTCTGCCTGGTCCGGCAGGCGAACCGGGTCGTC ATGGTAAAGATGGTCTGATGGGTAGTCCGGGTTTTAAAGGTGAAGCA GGTTCACCGGGTGCACCTGGTCAGGATGGCACCCGTGGTGAACCGGG TATTCCGGGATTTCCGGGTAATCGTGGCCTGATGGGTCAGAAAGGTG AAATTGGTCCGCCTGGTCAGCAGGGTAAAAAAGGCGCACCGGGTATG CCAGGACTGATGGGTTCAAATGGCAGTCCGGGTCAGCCAGGCACACC GGGTTCAAAAGGTAGCAAAGGCGAACCTGGTATTCAGGGTATGCCTG GTGCAAGCGGTCTGAAAGGCGAGCCAGGTGCCACCGGTTCTCCGGGT GAACCAGGTTATATGGGTCTGCCAGGTATCCAAGGCAAAAAAGGTGA TAAAGGTAATCAGGGCGAAAAAGGCATTCAGGGCCAGAAAGGCGAAA ATGGCCGTCAGGGTATTCCAGGCCAGCAGGGCATCCAGGGTCATCAT GGTGCAAAAGGTGAACGTGGTGAAAAGGGCGAACCAGGTGTTCGTta a
[0281] The amino acid sequence of truncated human collagen type 21 alpha 1 without the DsbA secretion tag is disclosed in SEQ ID NO: 76.
TABLE-US-00084 (SEQ ID NO: 76) AGFPGLPGPAGEPGRHGKDGLMGSPGFKGEAGSPGAPGQDGTRGEPG IPGFPGNRGLMGQKGEIGPPGQQGKKGAPGMPGLMGSNGSPGQPGTP GSKGSKGEPGIQGMPGASGLKGEPGATGSPGEPGYMGLPGIQGKKGD KGNQGEKGIQGQKGENGRQGIPGQQGIQGHHGAKGERGEKGEPGVR
Truncated Human Collagen Type 1 Alpha 2 (1)
[0282] A truncated human collagen type 1 alpha 2 without a His tag, linker, and thrombin cleavage site is disclosed below. The codon-optimized nucleotide sequence and the amino acid sequences are disclosed below. In SEQ ID NOs: 78 and 79, The DsbA secretion tag is encoded by nucleotides 1-72 and encodes amino acids 1-24. The truncated collagen sequence is encoded by nucleotides 73-636 and encodes amino acids 25-212.
[0283] The codon-optimized nucleotide sequence encoding this collagen is provided in SEQ ID NO: 77.
TABLE-US-00085 (SEQ ID NO: 77) ATGAAAAAGATTTGGCTGGCGCTGGCTGGTTTAGTTTTAGCGTTTAG CGCATCGGCGGCGCAGTATGAAGATATGGGTCCGCCTGGTAGCCGTG GTGCAAGTGGTCCGGCAGGCGTTCGTGGTCCGAATGGTGATGCAGGT CGTCCGGGTGAACCGGGTCTGATGGGTCCTCGTGGTCTGCCTGGTTC ACCGGGTAATATTGGTCCTGCAGGTAAAGAAGGTCCGGTTGGTCTGC CAGGTATTGATGGCCGTCCGGGTCCGATTGGTCCAGCCGGTGCACGT GGTGAACCTGGCAATATTGGTTTTCCGGGTCCTAAAGGTCCGACCGG TGATCCGGGTAAAAATGGTGATAAAGGTCATGCAGGTCTGGCAGGCG CACGCGGTGCACCTGGTCCGGATGGTAATAATGGTGCACAGGGTCCA CCGGGTCCGCAGGGTGTTCAAGGTGGTAAAGGCGAACAGGGTCCTGC CGGTCCTCCGGGTTTTCAGGGACTGCCTGGTCCGAGCGGTCCTGCGG GTGAAGTTGGTAAACCTGGTGAACGCGGTCTGCATGGTGAATTTGGC CTGCCTGGGCCTGCAGGTCCGCGTGGCGAACGTGGTCCGCCAGGTGA AAGCGGTGCAGCAGGTCCGACAGGTtaa
[0284] The amino acid sequence is disclosed in SEQ ID NO: 78.
TABLE-US-00086 (SEQ ID NO: 78) MKKIWLALAGLVLAFSASAAQYEDMGPPGSRGASGPAGVRGPNGDAG RPGEPGLMGPRGLPGSPGNIGPAGKEGPVGLPGIDGRPGPIGPAGAR GEPGNIGFPGPKGPTGDPGKNGDKGHAGLAGARGAPGPDGNNGAQGP PGPQGVQGGKGEQGPAGPPGFQGLPGPSGPAGEVGKPGERGLHGEFG LPGPAGPRGERGPPGESGAAGPTG
[0285] The nucleic acid sequence of truncated human collagen type 1 alpha 2(1) without the DsbA secretion tag is disclosed in SEQ ID NO: 79.
TABLE-US-00087 (SEQ ID NO: 79) ATGGGTCCGCCTGGTAGCCGTGGTGCAAGTGGTCCGGCAGGCGTTCG TGGTCCGAATGGTGATGCAGGTCGTCCGGGTGAACCGGGTCTGATGG GTCCTCGTGGTCTGCCTGGTTCACCGGGTAATATTGGTCCTGCAGGT AAAGAAGGTCCGGTTGGTCTGCCAGGTATTGATGGCCGTCCGGGTCC GATTGGTCCAGCCGGTGCACGTGGTGAACCTGGCAATATTGGTTTTC CGGGTCCTAAAGGTCCGACCGGTGATCCGGGTAAAAATGGTGATAAA GGTCATGCAGGTCTGGCAGGCGCACGCGGTGCACCTGGTCCGGATGG TAATAATGGTGCACAGGGTCCACCGGGTCCGCAGGGTGTTCAAGGTG GTAAAGGCGAACAGGGTCCTGCCGGTCCTCCGGGTTTTCAGGGACTG CCTGGTCCGAGCGGTCCTGCGGGTGAAGTTGGTAAACCTGGTGAACG CGGTCTGCATGGTGAATTTGGCCTGCCTGGGCCTGCAGGTCCGCGTG GCGAACGTGGTCCGCCAGGTGAAAGCGGTGCAGCAGGTCCGACAGGT taa
[0286] The amino acid sequence of truncated human collagen type 1 alpha 2(1) without the DsbA secretion tag is disclosed in SEQ ID NO: 80.
TABLE-US-00088 (SEQ ID NO: 80) MGPPGSRGASGPAGVRGPNGDAGRPGEPGLMGPRGLPGSPGNIGPAG KEGPVGLPGIDGRPGPIGPAGARGEPGNIGFPGPKGPTGDPGKNGDK GHAGLAGARGAPGPDGNNGAQGPPGPQGVQGGKGEQGPAGPPGFQGL PGPSGPAGEVGKPGERGLHGEFGLPGPAGPRGERGPPGESGAAGPTG
Truncated Human Collagen Type 1 Alpha 2 (2)
[0287] A truncated human collagen type 1 alpha 2 without a His tag, linker, and thrombin cleavage site is disclosed below. The codon-optimized nucleotide sequence and the amino acid sequences are disclosed below. in SEQ ID NO: 82 and 83, the DsbA secretion tag is encoded by nucleotides 1-72 and encodes amino acids 1-24. The truncated collagen sequence is encoded by nucleotides 73-609 and encodes amino acids 25-203.
[0288] The codon-optimized nucleotide sequence encoding this collagen is provided in SEQ ID NO: 81.
TABLE-US-00089 (SEQ ID NO: 81) ATGAAAAAGATTTGGCTGGCGCTGGCTGGTTTAGTTTTAGCGTTTAG CGCATCGGCGGCGCAGTATGAAGATGGTTTTCAGGGTCCTGCCGGTG AACCGGGTGAACCTGGTCAGACAGGTCCGGCAGGCGCACGTGGTCCT GCAGGTCCTCCTGGTAAAGCCGGTGAAGATGGTCATCCGGGTAAACC GGGTCGTCCTGGTGAACGTGGTGTTGTTGGTCCGCAGGGTGCCCGTG GTTTTCCGGGTACTCCGGGTCTGCCAGGTTTTAAAGGTATTCGTGGT CATAATGGTCTGGATGGTCTGAAAGGTCAGCCTGGTGCACCGGGTGT TAAAGGTGAACCAGGTGCTCCGGGTGAAAATGGCACACCGGGTCAGA CCGGTGCGCGTGGTCTGCCTGGCGAACGCGGTCGTGTTGGTGCACCT GGTCCAGCCGGTGCACGCGGTAGTGATGGTAGCGTTGGTCCGGTTGG TCCAGCGGGTCCGATTGGTAGCGCAGGTCCACCGGGTTTTCCAGGCG CACCGGGTCCGAAAGGTGAAATTGGTGCAGTTGGTAATGCAGGCCCT GCCGGTCCAGCAGGACCGCGTGGTGAAGTTGGCCTGCCTGGTCTGta a
[0289] The amino acid sequence is disclosed in SEQ ID NO: 82.
TABLE-US-00090 (SEQ ID NO: 82) MKKIWLALAGLVLAFSASAAQYEDGFQGPAGEPGEPGQTGPAGARGP AGPPGKAGEDGHPGKPGRPGERGVVGPQGARGFPGTPGLPGFKGIRG HNGLDGLKGQPGAPGVKGEPGAPGENGTPGQTGARGLPGERGRVGAP GPAGARGSDGSVGPVGPAGPIGSAGPPGFPGAPGPKGEIGAVGNAGP AGPAGPRGEVGLPGL
[0290] The nucleic acid sequence of truncated human collagen type 1 alpha 2(2) without the DsbA secretion tag is disclosed in SEQ ID NO: 83.
TABLE-US-00091 (SEQ ID NO: 83) GGTTTTCAGGGTCCTGCCGGTGAACCGGGTGAACCTGGTCAGACAGG TCCGGCAGGCGCACGTGGTCCTGCAGGTCCTCCTGGTAAAGCCGGTG AAGATGGTCATCCGGGTAAACCGGGTCGTCCTGGTGAACGTGGTGTT GTTGGTCCGCAGGGTGCCCGTGGTTTTCCGGGTACTCCGGGTCTGCC AGGTTTTAAAGGTATTCGTGGTCATAATGGTCTGGATGGTCTGAAAG GTCAGCCTGGTGCACCGGGTGTTAAAGGTGAACCAGGTGCTCCGGGT GAAAATGGCACACCGGGTCAGACCGGTGCGCGTGGTCTGCCTGGCGA ACGCGGTCGTGTTGGTGCACCTGGTCCAGCCGGTGCACGCGGTAGTG ATGGTAGCGTTGGTCCGGTTGGTCCAGCGGGTCCGATTGGTAGCGCA GGTCCACCGGGTTTTCCAGGCGCACCGGGTCCGAAAGGTGAAATTGG TGCAGTTGGTAATGCAGGCCCTGCCGGTCCAGCAGGACCGCGTGGTG AAGTTGGCCTGCCTGGTCTGtaa
[0291] The amino acid sequence of truncated human collagen type 1 alpha 2(2) without the DsbA secretion tag is disclosed in SEQ ID NO: 84.
TABLE-US-00092 (SEQ ID NO: 84) GFQGPAGEPGEPGQTGPAGARGPAGPPGKAGEDGHPGKPGRPGERGV VGPQGARGFPGTPGLPGFKGIRGHNGLDGLKGQPGAPGVKGEPGAPG ENGTPGQTGARGLPGERGRVGAPGPAGARGSDGSVGPVGPAGPIGSA GPPGFPGAPGPKGEIGAVGNAGPAGPAGPRGEVGLPGL
[0292] The polynucleotides of SEQ ID NO: 73, 77 or 81 were subcloned in vector pET28a as described herein to prepare a transformation vector. Host cells were transformed with the vector the polynucleotides were expressed as described in Example 2.
[0293] After the fermentation was completed, the truncated human collagen was purified from the fermentation broth using the procedures disclosed in Example 3. The purified truncated human collagens were analyzed using SDS-PAGE and HPLC as disclosed in Example 3.
[0294] All three truncated human collagens ran at the expected molecular weights in the SDS-PAGE analysis. In analyzing the truncated human collagens using HPLC, a standard curve using the jellyfish collagen of Example 3 was utilized. The retention times of the human collagens were slightly different than the jellyfish collagen. The retention time of SEQ ID NO: 76 was 5.645 minutes, the retention time of SEQ ID NO: 80 was 5.631 minutes, and SEQ ID NO: 84 ran at two peaks and the retention times were 5.531 and 5.7 minutes.
Truncated Human Collagen Type 1 Alpha 2 Truncation 5 with DsbA Secretion and FLAG Tag
[0295] The amino acid sequence of truncated human collagen type 1 alpha 2 truncation 5 with DsbA secretion and FLAG tag is disclosed in SEQ ID NO: 92. The DsbA secretion tag is encoded by nucleotides 1-57 of SEQ ID NO: 93 and the amino acid sequences are amino acids 1-19 of SEQ ID NO: 92. The collagen nucleotide sequences are nucleotides 58-657 of SEQ ID NO: 93 and the amino acid sequences are amino acids 20-219 of SEQ ID NO: 92. The FLAG nucleotide sequences are nucleotides 658-684 of SEQ ID NO: 93 and the amino acid sequences are amino acids 220-228.
TABLE-US-00093 (SEQ ID NO: 92) MKKIWLALAGLVLAFSASAGDQGPVGRTGEVGAVGPPGFAGEKGPSG EAGTAGPPGTPGPQGLLGAPGILGLPGSRGERGLPGVAGAVGEPGPL GIAGPPGARGPPGAVGSPGVNGAPGEAGRDGNPGNDGPPGRDGQPGH KGERGYPGNIGPVGAAGAPGPHGPVGPAGKHGNRGETGPSGPVGPAG AVGPRGPSGPQGIRGDKGEPGEKGPRGLPGLGDYKDDDDK
[0296] The nucleic acid sequence of truncated human collagen type 1 alpha 2 truncation 5 with DsbA secretion and FLAG tag is disclosed in SEQ ID NO: 93.
TABLE-US-00094 (SEQ ID NO: 93) ATGAAAAAGATTTGGCTGGCGCTGGCTGGTTTAGTTTTAGCGTTTAG CGCATCGGCGGGTGATCAGGGTCCGGTTGGTCGTACCGGTGAAGTTG GTGCAGTCGGGCCGCCGGGTTTTGCGGGTGAAAAAGGCCCGTCAGGT GAAGCAGGCACCGCTGGCCCTCCTGGCACGCCTGGCCCACAGGGTTT ACTGGGCGCACCTGGAATTCTGGGACTGCCGGGCAGCCGTGGAGAAC GCGGTTTACCAGGTGTTGCCGGTGCCGTTGGTGAACCTGGTCCACTG GGCATTGCAGGGCCGCCTGGCGCACGGGGACCGCCTGGTGCTGTTGG TAGTCCGGGTGTGAATGGTGCTCCGGGTGAAGCCGGTCGTGACGGTA ATCCGGGAAATGACGGCCCGCCAGGCCGCGATGGTCAGCCGGGTCAT AAAGGTGAGCGTGGTTACCCAGGTAATATTGGTCCAGTCGGTGCCGC CGGTGCGCCGGGTCCTCATGGCCCTGTCGGTCCAGCCGGTAAACATG GTAATCGCGGTGAGACAGGTCCGTCAGGACCAGTGGGCCCTGCTGGC GCAGTCGGTCCGCGCGGGCCGAGTGGCCCTCAGGGTATTCGTGGCGA TAAAGGGGAACCGGGCGAAAAAGGGCCGCGGGGTCTGCCAGGCCTGG GTGACTACAAAGACGACGACGACAAAtaa
[0297] The polynucleotide of SEQ ID NO: 93 was subcloned into vector pET28a, expressed host E. coli cells and the truncated collagen was purified as described herein. The purified collagen produced a clear band on SDS-PAGE and an anti-FLAG western was observed at around 100 kilodaltons. There were no existing bands that appear at that location on the gel in the absence of expression of this protein.
Truncated Human Collagen Type 1 Alpha 2 Truncation 6 with DsbA Secretion and FLAG Tag
[0298] The amino acid sequence of truncated human collagen type 1 alpha 2 truncation 6 with DsbA secretion and FLAG tag is disclosed in SEQ ID NO: 94. The DsbA secretion tag is encoded by nucleotides 1-57 of SEQ ID NO: 95 and the amino acid sequences are amino acids 1-19 of SEQ ID NO: 94. The collagen nucleotide sequences are nucleotides 58-657 of SEQ ID NO: 95 and the amino acid sequences are amino acids 20-219 of SEQ ID NO: 94. The FLAG nucleotide sequences are nucleotides 658-684 of SEQ ID NO: 95 and the amino acid sequences are amino acids 220-228 of SEQ ID NO: 94.
TABLE-US-00095 (SEQ ID NO: 94) MKKIWLALAGLVLAFSASAKGHNGLQGLPGIAGHHGDQGAPGSVGPA GPRGPAGPSGPAGKDGRTGHPGTVGPAGIRGPQGHQGPAGPPGPPGP PGPPGVSGGGYDFGYDGDFYRADQPRSAPSLRPKDYEVDATLKSLNN QIETLLTPEGSRKNPARTCRDLRLSHPEWSSGYYWIDPNQGCTMDAI KVYCDFSTGETCIRAQPENIPAKNWYRSSKDGDYKDDDDK
[0299] The nucleic acid sequence of truncated human collagen type 1 alpha 2 truncation 6 with DsbA secretion and FLAG tag is disclosed in SEQ ID NO: 95.
TABLE-US-00096 (SEQ ID NO: 95) ATGAAAAAGATTTGGCTGGCGCTGGCTGGTTTAGTTTTAGCGTTTAG CGCATCGGCGAAAGGTCACAATGGACTGCAAGGCCTGCCAGGTATTG CAGGTCATCATGGTGATCAAGGTGCCCCGGGAAGCGTTGGTCCGGCG GGGCCGAGAGGCCCTGCGGGACCTTCAGGTCCGGCAGGCAAAGATGG TCGGACAGGCCATCCGGGCACCGTTGGCCCTGCAGGAATTCGTGGAC CGCAGGGTCATCAGGGACCTGCTGGTCCGCCAGGTCCCCCGGGCCCT CCGGGACCACCGGGTGTTAGTGGTGGTGGTTATGATTTTGGCTATGA TGGTGATTTTTATCGTGCAGATCAGCCGCGTAGCGCACCGAGCCTGC GTCCTAAAGATTATGAAGTTGATGCAACCCTGAAAAGCCTGAATAAT CAGATTGAAACACTGCTGACACCGGAAGGTAGCCGTAAAAATCCGGC CCGTACCTGTCGTGATCTGCGTCTGAGCCACCCGGAATGGAGCAGCG GTTATTATTGGATTGATCCGAATCAAGGTTGTACCATGGATGCAATT AAAGTTTATTGTGATTTTAGCACAGGTGAAACATGTATCCGTGCACA GCCGGAAAATATTCCGGCCAAAAATTGGTATCGTAGTAGCAAAGATG GTGACTACAAAGACGACGACGACAAAtaa
[0300] The polynucleotide of SEQ ID NO: 94 was subcloned into vector pET28a, expressed host E. coli cells and the truncated collagen was purified as described herein. The purified collagen produced a clear band on SDS-PAGE and an anti-FLAG western was observed at around 25 kilodaltons. There were no existing bands that appear at that location on the gel in the absence of expression of this protein.
Truncated Human Collagen Type 1 Alpha 2 Truncation 7 with DsbA Secretion and FLAG Tag
[0301] The amino acid sequence of truncated human collagen type 1 alpha 2 truncation 7 with DsbA secretion and FLAG tag is disclosed in SEQ ID NO: 96. The DsbA secretion tag is encoded by nucleotides 1-57 of SEQ ID NO: 97 and the amino acid sequences are amino acids 1-19 of SEQ ID NO: 96. The collagen nucleotide sequences are nucleotides 58-759 of SEQ ID NO: 96 and the amino acid sequences are amino acids 20-253 of SEQ ID NO: 96. The FLAG nucleotide sequences are nucleotides 760-786 of SEQ ID NO: 97 and the amino acid sequences are amino acids 254-262 of SEQ ID NO: 96.
TABLE-US-00097 (SEQ ID NO: 96) MKKIWLALAGLVLAFSASAYEVDATLKSLNNQIETLLTPEGSRKNPA RTCRDLRLSHPEWSSGYYWIDPNQGCTMDAIKVYCDFSTGETCIRAQ PENIPAKNWYRSSKDKKHVWLGETINAGSQFEYNVEGVTSKEMATQL AFMRLLANYASQNITYHCKNSIAYMDEETGNLKKAVILQGSNDVELV AEGNSRFTYTVLVDGCSKKTNEWGKTIIEYKTNKPSRLPFLDIAPLD IGGADQEFFVDIGPVCFKGDYKDDDDK
[0302] The nucleic acid sequence of truncated human collagen type 1 alpha 2 truncation 7 with DsbA secretion and FLAG tag is disclosed in SEQ ID NO: 97.
TABLE-US-00098 (SEQ ID NO: 97) TGAAAAAGATTTGGCTGGCGCTGGCTGGTTTAGTTTTAGCGTTTAGCGCAT CGGCGTATGAAGTTGATGCAACCCTGAAAAGCCTGAATAATCAGATTGAA ACACTGCTGACACCGGAAGGTAGCCGTAAAAATCCGGCCCGTACCTGTCG TGATCTGCGTCTGAGCCACCCGGAATGGAGCAGCGGTTATTATTGGATTG ATCCGAATCAAGGTTGTACCATGGATGCAATTAAAGTTTATTGTGATTTTA GCACAGGTGAAACATGTATCCGTGCACAGCCGGAAAATATTCCGGCCAAA AATTGGTATCGTAGTAGCAAAGATAAAAAACATGTGTGGCTGGGTGAAAC CATTAATGCAGGTAGCCAGTTTGAATACAATGTTGAAGGTGTTACCAGCA AAGAAATGGCAACACAGCTGGCATTTATGCGTCTGCTGGCAAATTATGCA AGCCAGAATATTACATATCATTGTAAAAATAGCATTGCATATATGGATGA AGAAACCGGTAATCTGAAAAAAGCAGTTATTCTGCAGGGTAGCAATGATG TTGAACTGGTTGCCGAAGGTAATAGCCGTTTTACATATACCGTTCTGGTTG ATGGTTGTAGCAAAAAAACCAATGAATGGGGTAAAACCATCATTGAATAT AAAACCAACAAACCGAGCCGTCTGCCGTTTCTGGATATCGCTCCGCTGGA TATTGGTGGTGCCGATCAGGAATTTTTTGTCGATATCGGTCCTGTGTGTTT TAAAGGTGACTACAAAGACGACGACGACAAAtaa
[0303] The polynucleotide of SEQ ID NO: 97 was subcloned into vector pET28a, expressed host E. coli cells and the truncated collagen was purified as described herein. The purified collagen produced a clear band on SDS-PAGE and an anti-FLAG western was observed at around 30 kilodaltons. There were no existing bands that appear at that location on the gel in the absence of expression of this protein.
Example 10: Protective Effect of Truncated Human Collagen on Fibroblasts
[0304] The effect of truncated human collagen on fibroblast cell viability, procollagen synthesis, and elastin Synthesis is determined according to the methods of Example 6.
[0305] The effect of truncated human collagen on Keratinocyte proliferation and UVB protection is determined according to the methods of Example 7.
[0306] The effect of truncated collagen on thymine dimer formation after exposure to UV radiation is determined according to the methods of Example 8.
[0307] It is understood that the examples and embodiments described herein are for illustrative purposes only and that various modifications or changes in light thereof will be suggested to persons skilled in the art and are to be included within the spirit and purview of this application and scope of the appended claims. All publications, patents, and patent applications cited herein are hereby incorporated by reference in their entirety for all purposes.
Example 11: Effect of Truncated Collagen on Inflammatory Cytokines
[0308] Keratinocytes and dermal fibroblasts play an important role in the immune response of the skin. In response to irritating chemicals or UV radiation (pro-inflammatory/pro-irriation stimuli), keratinocytes can release a vast array of cytokines. These cytokines are thought to help engage immune cells to the site of inflammation. Cytokines released by the keratinocytes include TNF.alpha., IL-1.alpha., IL-1.beta., IL-3, IL-6, IL-7, IL-8, IL-10, IL-18, and IL-1RA.
[0309] The testing model used for this study was the MatTek EPIDERM.RTM.. This skin model consists of normal human-derived epidermal keratinocytes that have been cultured to form a multilayered, highly differentiated model of the human epidermis. Ultrastructural analysis has revealed the presence of keratohyalin granules, tonofilament bundles, desmosomes, and a multi-layered stratum corneum containing intercellular lamellar lipid layers arranged in patterns characteristic of in vivo epidermis. Markers of mature epidermis specific differentiation such as pro-filaggrin, the K1/K10 cytokeratin pair, involucrin, and type I epidermal transglutaminase have been localized in this model. The MatTek EPIDERM.RTM. is also mitotically and metabolically active.
[0310] The MatTek EPIDERM.RTM. tissues were used to assess the ability of various test materials to inhibit the release the inflammatory mediator IL-1.alpha.. Test materials were compared to an over the counter topical hydrocortisone preparation (positive control) as well as to untreated tissues (negative control 1) and untreated, non-inflamed tissues (negative control 2). This test was also used to assess the viability of the tissues after exposure to the test materials.
[0311] IL-1.alpha., IL-6 and IL-8 are synthesized and stored in keratinocytes and have been identified as a mediators of skin irritation and inflammation. Release of these cytokines can be directly measured in tissue culture media via a colorimetric based enzyme linked immunosorbent assay (ELISA). Briefly, antibodies covalently linked to a solid support will bind IL-1.alpha., IL-6 or IL-8 present in spent culture media samples. A second antibody that is covalently attached to an acetylcholinesterase enzyme will in turn detect the specific bound cytokines. Upon addition of an appropriate color substrate the acetylcholinesterase enzyme will generate a colored end product that can be measured spectrophotometrically.
[0312] MatTek EPIDERM.RTM. Tissues were purchased from MatTek corporation and were stored at 4.degree. C. until used. Prior to use, the tissues to be used were removed from the agarose-shipping tray and placed into a 6-well plate containing 0.9 ml of hydrocortisone free assay medium (37.+-.2.degree. C.). The tissues were allowed to incubate overnight at 37.+-.2.degree. C. and 5.+-.1% CO2. After this initial incubation, the assay medium was replaced with 0.9 ml of fresh hydrocortisone free medium (37.+-.2.degree. C.). Three tissues were prepared for each test material.
[0313] An inflammatory response in the tissues was initiated via UV irradiation (UVB). A UV lamp was used to give a 300 mJ/cm.sup.2 dose of UVB radiation to the tissues. Immediately after the application of the inflammatory stimuli 50 .mu.l or mg of test material was applied directly onto the surface of the tissue. An over the counter hydrocortisone cream was used as a positive control. For a negative control tissues were exposed to the inflammatory stimuli but were not treated with any type of anti-inflammatory material. One additional set of tissues was left without exposure to the inflammatory stimuli to provide a baseline measurement for the cytokines. The tissues were incubated at 37.+-.2.degree. C. and 5.+-.1% CO2 for 24 hours after exposure to the inflammatory stimuli. After the 24-hour incubation the cell culture medium was collect and stored at -75.degree. C. until analyzed for cytokines.
[0314] The ELISA plates were prepared by diluting the appropriate capture antibody in PBS. Next, 100 .mu.l of the diluted capture antibody was added to the wells of a 96-well ELISA plate and the plate was incubated overnight at room temperature. On the following day the plate was washed three times with 300 .mu.l wash buffer (0.05% TWEEN.RTM. 20 in PBS) and then blocked by adding 300 .mu.l of blocking buffer (1% BSA in PBS) to each well. The plate was incubated with the blocking buffer for at least one hour. After the incubation the blocking buffer was removed and the plate was washed three times as described above.
[0315] A series of standards was prepared and 100 .mu.l of each of these standards was dispensed into two wells (duplicates) in the appropriate 96-well plate. Subsequently, 100 .mu.l of each sample was added to additional wells and the plate was incubated for two hours at room temperature. After the incubation the plate was washed three times as described above. Once the last wash was removed, 100 .mu.l of a biotin conjugated detection antibody was added. After incubating the plate for two hours at room temperature the plate was washed again as described above. 100 .mu.l of HRP-streptavidin was then added to each well and the plate was incubated for 20 minutes at room temperature. Once the last wash was removed, 100 .mu.l of substrate solution (hydrogen peroxide+tetramethylbenzidine as a chromagen) was added to each well. Once a sufficient level of color development had occurred, 50 .mu.l of stop solution (2N sulfuric acid) was added to each well and the plate was read at 460 nm.
[0316] After the 24 hour incubation, the tissues were rinsed twice with at least 100 .mu.l of phosphate buffered saline to remove the test material and then transferred to a 6-well plate containing 1.0 ml of assay medium supplemented with MTT (1 mg/ml) and allowed to incubate for 3.+-.0.25 hours at 37.+-.2.degree. C. and 5.+-.1% CO2. After the incubation, the tissues were rinsed at least twice with 100 .mu.l of phosphate buffered saline, blotted dry, and then placed into a 24-well plate containing 2 ml of isopropanol per well. The 24-well plate was covered and allowed to incubate at room temperature for at least 2 hours on a rocking platform to extract the reduced MTT from the tissues. After the extraction, a 200 .mu.l sample of the isopropanol/MTT mixture was transferred to a 96-well plate and the absorbance of the sample was read at 540 nm with a plate reader using 200 .mu.l of isopropanol as the blank. The MTT assay is described in Example 6 herein. The cell viability results of the MTT assay were similar to the results obtained in Example 6
[0317] The results of the IL-1a assay are shown in Table 9 below. A 2% stock solution of the jellyfish collagen of SEQ ID NO: 91 is Sample 4 and Sample 3 is a 2% stock solution of the truncated jellyfish collagen of SEQ ID NO: 10. In Table 9 below, the indicated percentage is the percent dilution of the stock solution used for the test. For example, the 1% Sample 4 treatment is a 1% solution of the 2% stock truncated collagen solution. The untreated cells produced 18.2 pg/ml of Il-1a. Upon treatment with truncated collagen, all samples showed decreases in Il-1a production. The 1% Sample 4 treatment reduced IL-1A production to 13.4 pg/ml, which is significant with a p value of less than 0.05. The decrease in IL-1a production indicates that the truncated collagen has anti-inflammatory effects.
TABLE-US-00099 TABLE 9 IL-1a Assay Treatment II-1a pg/ml Non-UVB Exposed 4.9 .+-. 2.1 Untreated 18.2 .+-. 1.4 1% Hydrocortisone 6.7 .+-. 0.6 5% Sample 4 18.1 .+-. 1.1 1% Sample 4 13.4 .+-. 0.9* 0.5% Sample 4 15.7 .+-. 0.7 0.1% Sample 4 13.9 .+-. 1.7* 5% Sample 3 15.8 .+-. 2.0 Denotes values that are significantly different from Untreated (p < 0.05)
Example 11: Urban Dust Protection by Truncated Collagen
[0318] A keratinocyte cell culture model was used to assess the ability of truncated collagens to exert a protective effect by promoting cell survival after exposure to urban dust.
[0319] Human epidermal keratinocytes were pretreated with the test materials and then exposed to urban dust. At the end of the treatment period changes in cell viability were then determined via an MTT assay.
[0320] Keratinocytes were seeded into the individual wells of a 96 well plate in 100 .mu.l of medium and incubated overnight at 37.+-.2.degree. C. and 5.+-.1% CO2. On the following day the media was removed via aspiration to eliminate any non-adherent cells and replaced with 100 .mu.l of fresh medium. The cells were grown until confluent, with a media change every 48 to 72 hours.
Pretreatment with Test Material followed by Urban Dust Treatment
[0321] Test materials were prepared at 2.times. their final desired concentrations in cell culture media. Urban dust (NIST 1649B from Sigma Chemicals) was also prepared at 2.times. solutions. For the pretreatment, 50 .mu.l of 2.times. test material was combined with 50 .mu.l of culture media and the cells were incubated for 24 hours. At the end of the pretreatment period the test material containing culture media was removed and replaced with 50 .mu.l of 2.times. urban dust and 50 .mu.l of media. Another set of cells was treated with media alone (non-dust exposed) and used as a reference control to represent 100% cell viability. The cells were then incubated for 24 hours and then subjected to an MTT assay to determine changes in cell viability.
[0322] At the end of the treatment period, the cell culture medium was removed and the cells were washed with PBS. After the wash, 100 .mu.l of cell culture media supplemented with 0.5 mg/ml MTT was added to each well and the cells were incubated for 30 minutes at 37+2.degree. C. and 5+1% CO2. After the incubation, the media/MTT solution was removed and the cells were washed again once with PBS and then 100 .mu.l of isopropyl alcohol was added to the wells to extract the purple formazin crystals. The 96-well plate was then read at 540 nm using isopropyl alcohol as a blank.
[0323] The mean MTT absorbance value for the non-dust exposed cells was calculated and used to represent 100% value for cell number. The individual MTT values from the cells undergoing the various treatments was then divided by the mean value for the non-dust exposed cells and expressed as a percent to determine the change in cell number caused by each treatment.
[0324] The MTT results for the pretreatment with the test material then dust treatments are presented in Table 10. Table 10 shows that as the cells were treated with increasing amounts of collagen, cell viability increased upon pretreatment with truncated collagen and subsequent exposure to urban dust. These results show that truncated collagen protects against the decline in cell viability associated with urban dust exposure.
TABLE-US-00100 TABLE 10 MTT Assay, Truncated Collagen Pretreatment Viability (% Non-Dust Viability (% Non-Dust Exposed) Exposed) Treatment 4 mg/ml Urban Dust 2 mg/ml Urban Dust Non-Dust 100 .+-. 4.4* 100 .+-. 1.8 Exposed Untreated 59 .+-. 3.8 70 .+-. 0.9 0.1% Collagen 61 .+-. 4.7 72 .+-. 3.5 0.5% Collagen 59 .+-. 2.2 73 .+-. 2.2 1% Collagen 58 .+-. 0.5 74 .+-. 2.6 5% Collagen 66 .+-. 1.0 83 .+-. 6.5* *Denotes values that are significantly different from untreated group (p < 0.05)
Example 12: Truncated Chondrosia reniformis (Kidney Sponge) Collagen
[0325] Truncated Chondrosia reniformis (Kidney Sponge) Fibrillar Collagen 1 with DsbA Secretion and FLAG Tag
[0326] The amino acid sequence of truncated Chondrosia reniformis fibrillar collagen 1 with DsbA secretion and FLAG tag is disclosed in SEQ ID NO: 102. The DsbA secretion tag is encoded by nucleotides 1-57 of SEQ ID NO: 103 and the amino acid sequences are amino acids 1-19 of SEQ ID NO: 102. The fibrillary collagen nucleotide sequences are nucleotides 58-792 of SEQ ID NO: 103 and the amino acid sequences are amino acids 20-264 of SEQ ID NO: 102. The FLAG nucleotide sequences are nucleotides 793-819 of SEQ ID NO: 103 and the amino acid sequences are amino acids 265-273 of SEQ ID NO: 102.
TABLE-US-00101 (SEQ ID NO: 102) MKKIWLALAGLVLAFSASAPVGRRGPKGSRGDPGDGGAAGPKGPEGVDGLI GEPGQPGPIGAEGSSGLEGFLGDKGSKGARGGPGNRGRPGQDGVPGQDGRA GEKGEGGETGDRGQQGLRGKVGDPGLVGDLGAQGPQGSQGLVGPPGIPGEP GSGGEPGDQGPRGPEGPQGSPGVRGGRGERGTPGAVGPKGPPGKNGADGPR GLPGASGPPGSPGNQGPEGSRGADGNNGFPGDDGENGLVGIPGEPGPKGAR GTRGELGKTGDYKDDDDK
[0327] The nucleic acid sequence of truncated Chondrosia reniformis fibrillar collagen 1 with DsbA secretion and FLAG tag is disclosed in SEQ ID NO: 103.
TABLE-US-00102 (SEQ ID NO: 103) ATGAAAAAGATTTGGCTGGCGCTGGCTGGTTTAGTTTTAGCGTTTAGCGCA TCGGCGCCGGTTGGTCGTCGTGGTCCGAAAGGTAGCCGTGGTGATCCTGG TGATGGTGGTGCAGCAGGTCCTAAAGGTCCGGAAGGTGTTGATGGTCTGA TTGGTGAACCGGGTCAGCCTGGTCCGATTGGCGCAGAAGGTAGCAGCGGT CTGGAAGGTTTTCTGGGTGATAAAGGTAGCAAAGGTGCACGTGGTGGTCC GGGTAATCGCGGTCGTCCTGGTCAGGATGGTGTTCCGGGTCAAGATGGTC GTGCCGGTGAAAAAGGTGAAGGTGGTGAAACCGGTGATCGCGGTCAGCA GGGTCTGCGTGGTAAAGTTGGTGATCCAGGTCTGGTGGGTGATCTGGGTG CACAGGGTCCGCAGGGTAGCCAAGGTCTGGTTGGTCCGCCTGGTATTCCG GGTGAACCTGGTAGCGGTGGCGAACCGGGTGATCAGGGTCCTCGCGGTCC AGAAGGTCCTCAGGGTTCACCGGGTGTTCGCGGTGGTCGTGGTGAACGTG GTACACCGGGTGCAGTTGGACCGAAAGGTCCGCCAGGTAAAAATGGTGCA GATGGTCCGCGTGGTCTGCCTGGTGCAAGCGGTCCTCCGGGTAGTCCTGGT AACCAGGGTCCTGAAGGTTCTCGTGGTGCCGATGGTAATAATGGTTTTCCA GGTGATGATGGTGAAAATGGCCTGGTTGGTATCCCTGGCGAACCAGGTCC AAAAGGCGCACGCGGTACACGCGGTGAACTGGGTAAAACCGGTGACTAC AAAGACGACGACGACAAAtaa
[0328] The polynucleotide of SEQ ID NO: 103 was subcloned into vector pET28a, expressed host E. coli cells and the truncated Chondrosia reniformis fibrillar collagen 1 was purified as described herein. The purified fibrillary collagen produced a clear band on SDS-PAGE and an anti-FLAG western was observed at around 40 kilodaltons. There were no existing bands that appear at that location on the gel in the absence of expression of this protein.
Truncated Chondrosia reniformis (Kidney Sponge) Fibrillar Collagen 2 with DsbA secretion and FLAG tag
[0329] The amino acid sequence of truncated Chondrosia reniformis fibrillar collagen 2 with DsbA secretion and FLAG tag is disclosed in SEQ ID NO: 104. The DsbA secretion tag is encoded by nucleotides 1-57 of SEQ ID NO: 105 and the amino acid sequences are amino acids 1-19 of SEQ ID NO: 104. The fibrillary collagen nucleotide sequences are nucleotides 58-1323 of SEQ ID NO: 105 and the amino acid sequences are amino acids 20-441 of SEQ ID NO: 104. The FLAG nucleotide sequences are nucleotides 1324-1350 of SEQ ID NO: 105 and the amino acid sequences are amino acids 442-450 of SEQ ID NO: 105.
TABLE-US-00103 (SEQ ID NO: 104) MKKIWLALAGLVLAFSASAGRGGPAGLQGAAGNPGDPGDRGQAGEIGLPGT EGQRGQGGSRGDDGIGGQSGTDGDPGNDGVAGIRGARGEPGATGPEGAAGQ KGDRGRFGEQGRPGNDGPPGRRGRVGNLGETGAEGDEGTRGYTGDRGPEGA IGISGVTGNPGPQGIKGPPGDTGHPGRQGPSGPQGPPGIPGTDGLTIHNLI KPPSQFFDATSSSDPLTDAVVESILKSFQYAELEIDLTKKPDGTMKYPAIS CDDLHKDYPQLPSGNYTLDPNGGCKNDAFETYCEFNNSVKMCLTPKIPTLL PMGTYKYYVNSEGYYSPNDFGLNLRFFEYYGSVTQLKFLQTKATRVTQTIR VLCKNYDPLHKQPVFIGMNDETVMDEPRMEENQCQYFNGLSAHVELELSSN DPSYLPIYEMRLYLGRKTNEELGIELGDLCFEYGDYKDDDDK
[0330] The nucleic acid sequence of truncated Chondrosia reniformis fibrillar collagen 2 with DsbA secretion and FLAG tag is disclosed in SEQ ID NO: 105.
TABLE-US-00104 (SEQ ID NO: 105) ATGAAAAAGATTTGGCTGGCGCTGGCTGGTTTAGTTTTAGCGTTTAGCGCA TCGGCGGGTCGTGGCGGTCCGGCAGGTCTGCAGGGTGCTGCAGGTAATCC TGGCGACCCTGGCGATCGTGGTCAGGCAGGCGAAATTGGTCTGCCAGGCA CCGAAGGTCAGCGTGGTCAAGGTGGTTCACGTGGTGATGACGGTATTGGT GGTCAGAGCGGCACCGATGGCGATCCGGGTAACGATGGTGTTGCAGGTAT TCGTGGTGCACGCGGAGAACCTGGTGCCACCGGACCTGAAGGTGCAGCCG GTCAGAAAGGTGATCGTGGCCGTTTTGGCGAACAGGGTCGTCCGGGAAAT GATGGTCCACCGGGTCGCCGTGGCCGTGTGGGCAATCTGGGTGAAACAGG TGCCGAAGGTGATGAAGGCACCCGTGGTTATACAGGTGACCGTGGACCGG AAGGCGCAATTGGTATTAGCGGTGTGACCGGTAATCCGGGTCCACAGGGC ATTAAAGGCCCTCCGGGTGATACGGGTCATCCGGGTCGTCAGGGACCGAG CGGTCCGCAAGGACCACCGGGTATTCCAGGTACAGATGGCCTGACCATTC ATAATCTGATTAAACCGCCTAGCCAGTTTTTTGATGCAACCAGCAGCAGC GATCCGCTGACCGATGCAGTTGTTGAAAGCATTCTGAAATCTTTTCAGTAT GCCGAGCTGGAAATTGACCTGACCAAAAAACCGGATGGCACCATGAAAT ATCCGGCAATTAGCTGTGATGATCTGCACAAAGATTATCCGCAGCTGCCG AGCGGTAATTATACCCTGGATCCGAATGGTGGTTGTAAAAATGATGCCTTT GAAACCTATTGCGAGTTCAACAATAGCGTGAAAATGTGTCTGACCCCGAA AATTCCGACACTGCTGCCGATGGGCACCTATAAATACTATGTTAATAGCG AGGGTTACTACAGCCCGAATGATTTTGGTCTGAATCTGCGCTTTTTTGAGT ATTATGGTAGCGTTACCCAGCTGAAATTTCTGCAGACCAAAGCAACCCGT GTTACCCAGACCATTCGTGTTCTGTGTAAAAACTATGATCCGCTGCATAAA CAGCCGGTTTTTATTGGTATGAATGACGAAACCGTTATGGATGAACCGCG TATGGAAGAAAATCAGTGCCAGTATTTTAACGGTCTGAGCGCACATGTTG AACTGGAACTGAGCAGCAATGATCCGAGCTATCTGCCGATTTATGAAATG CGTCTGTATCTGGGTCGTAAAACCAATGAAGAACTGGGCATTGAACTGGG CGATCTGTGTTTTGAATATGGTGACTACAAAGACGACGACGACAAAtaa
[0331] The polynucleotide of SEQ ID NO: 105 was subcloned into vector pET28a, expressed host E. coli cells and the truncated Chondrosia reniformis fibrillar collagen 2 was purified as described herein. The purified fibrillary collagen produced a clear band on SDS-PAGE and an anti-FLAG western was observed at around 55 kilodaltons. There were no existing bands that appear at that location on the gel in the absence of expression of this protein.
Truncated Chondrosia reniformis (Kidney Sponge) Non-Fibrillar Collagen 1 with DsbA Secretion and FLAG Tag
[0332] The amino acid sequence of truncated Chondrosia reniformis non-fibrillar collagen 1 with DsbA secretion and FLAG tag is disclosed in SEQ ID NO: 106. The DsbA secretion tag is encoded by nucleotides 1-57 of SEQ ID NO: 107 and the amino acid sequences are amino acids 1-19 of SEQ ID NO: 106. The non-fibrillar collagen nucleotide sequences are nucleotides 58-831 of SEQ ID NO: 107 and the amino acid sequences are amino acids 20-277 of SEQ ID NO: 106. The FLAG nucleotide sequences are nucleotides 832-858 of SEQ ID NO: 107 and the amino acid sequences are amino acids 278-286 of SEQ ID NO: 106.
TABLE-US-00105 (SEQ ID NO: 106) MKKIWLALAGLVLAFSASAEKTSSKVALMTVLVVITGALIIEGTSITRGST HVNRGLRKRQTSEDNCEAVKVGLPGRDGREGPPGPPGPAGRDGRDAVCSNQ TTGLGAKGDRGPPGTPGFPGEVGRPGPPGADGIPGPQGERGAVGPGGKPGP RGEVGTPGADGADGATGATGVQGPDGAKGEKGASGTAGLKGEKGDTCIPDS NSTLGMPGTPGAGGSKGQKGESGIVGPKGERGEIGTPGHPGFRGADGEPGH KGVPGRAGAQGDRGDPGDDGLTGDYKDDDDK
[0333] The nucleic acid sequence of truncated Chondrosia reniformis non-fibrillar collagen 1 with DsbA secretion and FLAG tag is disclosed in SEQ ID NO: 107.
TABLE-US-00106 (SEQ ID NO: 107) ATGAAAAAGATTTGGCTGGCGCTGGCTGGTTTAGTTTTAGCGTTTAGCGCA TCGGCGGAAAAAACCAGCAGCAAAGTTGCACTGATGACCGTTCTGGTTGT TATTACCGGTGCACTGATTATTGAAGGCACCAGCATTACCCGTGGTAGCA CCCATGTTAATCGTGGTCTGCGTAAACGTCAGACCAGCGAAGATAATTGT GAAGCAGTTAAAGTTGGTCTGCCAGGTCGTGATGGTCGTGAAGGTCCTCC GGGTCCGCCTGGTCCGGCTGGCAGAGATGGCCGTGATGCAGTTTGTAGCA ATCAGACCACCGGTCTGGGTGCAAAAGGTGATCGTGGTCCGCCAGGTACA CCGGGTTTTCCGGGTGAAGTTGGCCGTCCGGGTCCACCGGGTGCAGATGG TATTCCGGGTCCTCAGGGTGAACGTGGTGCAGTTGGTCCTGGTGGTAAAC CTGGTCCGCGTGGTGAAGTGGGCACCCCTGGTGCCGATGGCGCAGATGGT GCAACCGGTGCGACCGGTGTTCAGGGTCCTGATGGTGCCAAAGGCGAAAA AGGTGCAAGCGGCACCGCAGGTCTGAAAGGTGAGAAAGGCGATACCTGT ATTCCGGATAGCAATAGCACCCTGGGTATGCCTGGTACACCAGGTGCCGG TGGTAGCAAAGGCCAGAAAGGTGAAAGTGGTATTGTTGGTCCGAAAGGC GAACGCGGTGAAATTGGCACACCGGGTCATCCTGGTTTTCGTGGTGCGGA TGGTGAACCAGGTCATAAAGGTGTTCCGGGTCGTGCCGGTGCGCAGGGTG ATCGCGGTGATCCGGGTGATGATGGTCTGACCGGTGACTACAAAGACGAC GACGACAAAtaa
[0334] The polynucleotide of SEQ ID NO: 107 was subcloned into vector pET28a, expressed host E. coli cells and the truncated Chondrosia reniformis non-fibrillar collagen 1 was purified as described herein. The purified non-fibrillar collagen produced a clear band on SDS-PAGE and an anti-FLAG western was observed at around 30 kilodaltons. There were no existing bands that appear at that location on the gel in the absence of expression of this protein.
Truncated Chondrosia reniformis (Kidney Sponge) Non Fibrillar Collagen 2 with DsbA Secretion and FLAG Tag
[0335] The amino acid sequence of truncated Chondrosia reniformis non-fibrillar collagen 2 with DsbA secretion and FLAG tag is disclosed in SEQ ID NO: 108. The DsbA secretion tag is encoded by nucleotides 1-57 of SEQ ID NO: 109 and the amino acid sequences are amino acids 1-19 of SEQ ID NO: 108. The non-fibrillar collagen nucleotide sequences are nucleotides 58-1509 of SEQ ID NO: 109 and the amino acid sequences are amino acids 20-503 of SEQ ID NO: 108. The FLAG nucleotide sequences are nucleotides 1510-1536 of SEQ ID NO: 109 and the amino acid sequences are amino acids 504-512 of SEQ ID NO: 108.
TABLE-US-00107 (SEQ ID NO: 108) MKKIWLALAGLVLAFSASAGFPGAPGADGAPGQKGELGAVGPQGTPGLSGP SGPTGPPGPKGVRGAPGSSGAKGDAGNPGDDGPVGPQGVPGVDGSPGQKGE TGRVGPRGHDGINGTPGEDGATGFPGPDGAKGEKGTSGTAGLKGEKGDTCI PDSNSTLGMPGTPGAGWSKGQKGESGIVGPKGEKGEIGTPGPPGFRGADGE PGQRGEPGRAGAQGERGAPGNNGRDGFPGDPGADGAPGQKGELGAIGHPGF SGPSGPSGPTGPPGPKGVRGAQGRPGDRGSPGDVGPIGAPGPPGADGVPGL TGVQGRDGPKGESASSGAVYVRWGRTTCPSGADVVYSGRAAGAKYDHSGGT SDHHCLPNNPQYLSEDDTNALGAQLYGVEYEIRDRSSPYNSLDQSDMPCVV CNANGRSQLLMVPARYTCPTGWSREYYGYMMSEGKAKNREGRKTTICMDFS AEAVPGSGANTNPSPGIMMRANCNGLACPPYQSNTPLTCAVCTKGDYKDDD DK
[0336] The nucleic acid sequence of truncated Chondrosia reniformis non-fibrillar collagen 2 with DsbA secretion and FLAG tag is disclosed in SEQ ID NO: 109.
TABLE-US-00108 (SEQ ID NO: 109) ATGAAAAAGATTTGGCTGGCGCTGGCTGGTTTAGTTTTAGCGTTTAGCGCA TCGGCGGGTTTTCCTGGCGCTCCGGGTGCCGACGGTGCTCCGGGTCAAAA AGGTGAACTGGGTGCCGTGGGTCCGCAGGGCACTCCGGGTCTGAGTGGTC CTAGTGGTCCGACCGGTCCACCAGGTCCAAAAGGCGTGCGTGGTGCACCG GGTAGCAGCGGAGCCAAAGGTGATGCAGGTAACCCTGGTGATGACGGTCC GGTTGGTCCACAGGGCGTTCCAGGTGTTGATGGTAGCCCTGGCCAAAAGG GTGAAACCGGTCGTGTGGGTCCTCGTGGTCATGATGGTATTAATGGCACC CCAGGTGAAGATGGTGCGACAGGCTTTCCAGGTCCGGATGGCGCAAAGGG TGAGAAGGGCACCAGCGGTACAGCTGGCCTGAAGGGCGAAAAGGGCGAT ACATGCATCCCGGATTCAAATTCAACACTGGGCATGCCAGGTACGCCTGG CGCAGGTTGGAGTAAAGGACAAAAAGGCGAATCAGGCATTGTGGGACCT AAAGGCGAGAAGGGTGAGATTGGTACTCCGGGACCGCCAGGCTTTCGCGG TGCAGACGGCGAACCGGGTCAGCGTGGCGAACCTGGTCGTGCAGGCGCA CAAGGTGAACGCGGAGCCCCTGGTAATAATGGACGTGATGGCTTTCCTGG TGATCCAGGTGCAGATGGCGCACCTGGCCAGAAAGGCGAACTGGGAGCA ATTGGTCATCCGGGATTTAGCGGTCCGTCAGGTCCGAGCGGACCGACAGG TCCTCCTGGACCGAAAGGTGTACGTGGCGCACAGGGTCGTCCTGGCGATC GTGGCAGTCCAGGTGATGTGGGTCCGATTGGTGCACCTGGTCCTCCAGGT GCGGACGGCGTGCCTGGTTTAACAGGTGTGCAGGGTCGCGACGGTCCTAA AGGTGAATCAGCAAGCAGCGGTGCAGTTTATGTTCGTTGGGGTCGTACCA CCTGTCCTAGCGGAGCAGATGTTGTTTATAGCGGTCGCGCAGCCGGTGCA AAATATGATCATTCAGGTGGCACCTCAGATCATCATTGTCTGCCGAATAAT CCGCAGTATCTGAGCGAAGATGATACCAATGCACTGGGTGCACAGCTGTA TGGTGTGGAATATGAAATTCGTGATCGTAGCAGCCCGTATAATAGCCTGG ATCAGAGCGATATGCCGTGTGTTGTTTGTAATGCAAATGGTCGTAGCCAG CTGCTGATGGTTCCGGCACGTTATACATGCCCGACCGGTTGGAGCCGTGA ATATTATGGTTATATGATGAGCGAAGGCAAAGCCAAAAATCGCGAAGGTC GTAAAACCACCATTTGTATGGATTTTAGCGCAGAAGCAGTTCCTGGTAGC GGTGCAAATACCAATCCGAGTCCGGGTATTATGATGCGTGCAAATTGTAA TGGTCTGGCATGTCCGCCTTATCAGAGCAATACACCGCTGACCTGTGCCGT TTGTACCAAAGGTGACTACAAAGACGACGACGACAAAtaa
[0337] The polynucleotide of SEQ ID NO: 109 was subcloned into vector pET28a, expressed host E. coli cells and the truncated Chondrosia reniformis non-fibrillar collagen 2 was purified as described herein. The purified fibrillary collagen produced a clear band on SDS-PAGE and an anti-FLAG western was observed at around 60 kilodaltons. There were no existing bands that appear at that location on the gel in the absence of expression of this protein.
Example 13: Truncated Rhincodon typus (Whale Shark) Collagen
[0338] Truncated Rhincodon typus (Whale Shark) Collagen Type 1 Alpha 1 Truncation 1 with DsbA Secretion and FLAG Tag
[0339] The amino acid sequence of truncated Rhincodon typus collagen type 1 truncation 1 with DsbA secretion and FLAG tag is disclosed in SEQ ID NO: 110. The DsbA secretion tag is encoded by nucleotides 1-57 of SEQ ID NO: 111 and the amino acid sequences are amino acids 1-19 of SEQ ID NO: 110. The collagen nucleotide sequences are nucleotides 58-630 of SEQ ID NO: 111 and the amino acid sequences are amino acids 20-210 of SEQ ID NO: 110. The FLAG nucleotide sequences are nucleotides 631-657 of SEQ ID NO: 111 and the amino acid sequences are amino acids 211-219 of SEQ ID NO: 110.
TABLE-US-00109 (SEQ ID NO: 110) MKKIWLALAGLVLAFSASAGPAGAKGPSGDIGRPGESGSPGARGHSGQPGR TGIAGNQGLPGTAGEEGRTGPPGPAGLRGQAGMMGFPGPKGAAGLPGKPGD RGNVGLAGPRGAPGKDGEVGAQGPPGVAGPTGPRGETGLAGSVGFQGMPGP SGAAGEPGKPGNQGLRGDAGSPGMIGPRGERGLPGERGASGAQGLLGPRGT SGAPGLGDYKDDDDK
[0340] The nucleic acid sequence of truncated Rhincodon typus collagen type 1 truncation 1 with DsbA secretion and FLAG tag is disclosed in SEQ ID NO: 111.
TABLE-US-00110 (SEQ ID NO: 111) ATGAAAAAGATTTGGCTGGCGCTGGCTGGTTTAGTTTTAGCGTTTAGCGCA TCGGCGGGTCCGGCAGGCGCAAAAGGTCCGAGCGGTGATATTGGTCGTCC GGGTGAAAGCGGTAGTCCGGGTGCACGTGGTCATAGCGGTCAGCCTGGTC GTACCGGTATTGCAGGTAATCAGGGTCTGCCTGGTACAGCCGGTGAAGAA GGTCGCACCGGTCCGCCAGGTCCTGCAGGTCTGCGTGGTCAGGCAGGTAT GATGGGTTTTCCGGGTCCGAAAGGTGCAGCGGGTCTGCCAGGCAAACCGG GTGATCGTGGTAATGTTGGTCTGGCTGGTCCGCGTGGTGCACCGGGTAAA GATGGTGAAGTTGGTGCACAGGGTCCTCCGGGTGTTGCAGGTCCGACCGG TCCTCGTGGTGAAACCGGTCTGGCAGGTAGCGTTGGTTTTCAGGGTATGCC AGGTCCGTCAGGTGCAGCAGGCGAACCTGGTAAACCGGGTAACCAGGGC CTGCGTGGTGATGCCGGTTCACCGGGTATGATTGGTCCACGCGGTGAACG TGGCCTGCCTGGCGAACGTGGTGCAAGCGGTGCACAAGGTCTGCTGGGTC CACGTGGCACCTCAGGCGCACCAGGTCTGGGTGACTACAAAGACGACGAC GACAAAtaa
[0341] The polynucleotide of SEQ ID NO: 111 was subcloned into vector pET28a, expressed host E. coli cells and the truncated Rhincodon typus collagen type 1 truncation 1 was purified as described herein. The purified collagen produced a clear band on SDS-PAGE and an anti-FLAG western was observed at around 25 kilodaltons. There were no existing bands that appear at that location on the gel in the absence of expression of this protein.
Truncated Rhincodon typus (Whale Shark) Collagen Type 6 Alpha 1 Truncation 2 with DsbA Secretion and FLAG Tag
[0342] The amino acid sequence of truncated Rhincodon typus collagen type 6 truncation 2 with DsbA secretion and FLAG tag is disclosed in SEQ ID NO: 112. The DsbA secretion tag is encoded by nucleotides 1-57 of SEQ ID NO: 113 and the amino acid sequences are amino acids 1-19 of SEQ ID NO: 112. The collagen nucleotide sequences are nucleotides 58-684 of SEQ ID NO: 113 and the amino acid sequences are amino acids 20-228 of SEQ ID NO: 112. The FLAG nucleotide sequences are nucleotides 685-711 of SEQ ID NO: 113 and the amino acid sequences are amino acids 229-237 of SEQ ID NO: 112.
TABLE-US-00111 (SEQ ID NO: 112) MKKIWLALAGLVLAFSASAQGIPGSAGKEGGKGDPGPLGSPGKPGPDGLRG FAGARGLPGAAGPPGLKGAEGPMGAPGLTGSTGERGPNGPAGAIGLPGRPG GPGPPGPVGEKGDPGDKGLPGPAGDDGVQGAMGLPGPIGSQGPPGDYGDKG ELGKPGQKGSKGDKGESGPPGPIGIQGPIGHPGPIGSDGSPGLRGYLGMRG QKGDDGIRGLPGSAGPVGLQGLPGGDYKDDDDK
[0343] The nucleic acid sequence of truncated Rhincodon typus collagen type 6 truncation 2 with DsbA secretion and FLAG tag is disclosed in SEQ ID NO: 113.
TABLE-US-00112 (SEQ ID NO: 113) ATGAAAAAGATTTGGCTGGCGCTGGCTGGTTTAGTTTTAGCGTTTAGCGC ATCGGCGCAGGGTATTCCGGGTAGCGCAGGTAAAGAAGGTGGTAAAGGCG ATCCGGGTCCGCTGGGTTCACCGGGTAAACCGGGTCCTGATGGTCTGCGT GGTTTTGCCGGTGCACGTGGTCTGCCTGGTGCAGCAGGTCCGCCTGGTCT GAAAGGTGCCGAAGGTCCGATGGGTGCTCCGGGTCTGACCGGTAGCACCG GTGAACGCGGTCCGAATGGTCCGGCAGGCGCAATTGGTCTGCCAGGTCGT CCTGGTGGTCCGGGTCCTCCTGGTCCGGTTGGTGAAAAAGGTGATCCTGG TGATAAAGGCCTGCCTGGTCCTGCCGGTGATGATGGTGTTCAGGGTGCCA TGGGCTTACCGGGTCCGATTGGTAGCCAGGGTCCTCCGGGTGATTATGGC GATAAAGGTGAACTGGGTAAACCTGGCCAGAAAGGTAGCAAAGGTGACAA AGGCGAAAGCGGTCCGCCAGGTCCGATCGGCATTCAGGGTCCTATTGGTC ATCCAGGTCCAATTGGTTCAGATGGCTCACCGGGACTGCGTGGCTATCTG GGTATGCGTGGACAGAAAGGTGATGACGGTATTCGTGGCCTGCCAGGTAG TGCAGGTCCGGTGGGTCTGCAGGGACTGCCTGGTGGTGACTACAAAGACG ACGACGACAAAtaa
[0344] The polynucleotide of SEQ ID NO: 113 was subcloned into vector pET28a, expressed host E. coli cells and the truncated Rhincodon typus collagen type 6 truncation 2 was purified as described herein. The purified collagen produced a clear band on SDS-PAGE and an anti-FLAG western was observed at around 35 kilodaltons. There were no existing bands that appear at that location on the gel in the absence of expression of this protein.
Truncated Rhincodon typus (Whale Shark) Collagen Type 6 Alpha 1 Truncation 3 with DsbA Secretion and FLAG Tag
[0345] The amino acid sequence of truncated Rhincodon typus collagen type 6 alpha 1 truncation 3 with DsbA secretion and FLAG tag is disclosed in SEQ ID NO: 114. The DsbA secretion tag is encoded by nucleotides 1-57 of SEQ ID NO: 115 and the amino acid sequences are amino acids 1-19 of SEQ ID NO: 114. The collagen nucleotide sequences are nucleotides 58-735 of SEQ ID NO: 115 and the amino acid sequences are amino acids 20-245 of SEQ ID NO: 114. The FLAG nucleotide sequences are nucleotides 736-762 of SEQ ID NO: 115 and the amino acid sequences are amino acids 246-254 of SEQ ID NO: 114.
TABLE-US-00113 (SEQ ID NO: 114) MKKIWLALAGLVLAFSASAKGETGEAGDPGTPGEPGIAGPKGDVGDKGDA GPPGAAGPAGVKGPPGEDGAKGDVGPAGFPGDPGPTGEPGVPGMDGGVGE KGSLGDPGLTGPRGASGEPGPPGSPGKRGPPGPAGPEGREGLKGSKGSPG QEGPVGRTGPIGPQGSPGNVGPKGLRGIPGPTGEQGLLGPPGQAGPPGPM GPPGMPGLRGAQGLKGDKGHVGLIGLIGPPGEMGEKGDQGLPGIQGDYKD DDDK
[0346] The nucleic acid sequence of truncated Rhincodon typus collagen type 6 alpha 1 truncation 3 with DsbA secretion and FLAG tag is disclosed in SEQ ID NO: 115.
TABLE-US-00114 (SEQ ID NO: 115) ATGAAAAAGATTTGGCTGGCGCTGGCTGGTTTAGTTTTAGCGTTTAGCGC ATCGGCGAAAGGTGAAACCGGTGAAGCGGGTGATCCGGGTACACCGGGTG AACCTGGTATTGCAGGTCCGAAAGGTGATGTTGGTGATAAAGGTGACGCA GGTCCGCCTGGTGCAGCAGGTCCGGCAGGCGTTAAAGGTCCTCCGGGTGA AGATGGTGCAAAAGGCGACGTTGGTCCTGCAGGTTTTCCTGGCGATCCGG GTCCGACTGGTGAACCGGGTGTGCCAGGTATGGATGGTGGTGTGGGTGAA AAAGGTAGCCTGGGTGATCCTGGTCTGACCGGTCCGCGTGGCGCAAGTGG TGAACCAGGTCCACCGGGTAGTCCGGGTAAACGTGGTCCTCCTGGACCGG CTGGTCCGGAAGGTCGTGAAGGTCTGAAAGGTAGCAAAGGTTCACCGGGT CAAGAAGGTCCGGTTGGTCGTACCGGTCCGATTGGTCCGCAGGGCTCACC GGGTAATGTTGGTCCTAAAGGTCTGCGTGGTATTCCGGGTCCTACAGGCG AACAGGGTCTGCTGGGTCCGCCAGGCCAAGCAGGTCCTCCAGGTCCTATG GGTCCACCTGGTATGCCTGGCCTGCGTGGTGCCCAGGGCCTGAAAGGCGA TAAAGGCCATGTTGGTCTGATTGGCCTGATTGGTCCACCAGGTGAAATGG GAGAAAAAGGCGATCAGGGCCTGCCTGGTATTCAGGGTGACTACAAAGA CGACGACGACAAAtaa
[0347] The polynucleotide of SEQ ID NO: 115 was subcloned into vector pET28a, expressed host E. coli cells and the truncated Rhincodon typus collagen type 1 truncation 1 was purified as described herein. The purified collagen produced a clear band on SDS-PAGE and an anti-FLAG western was observed at around 25 kilodaltons. There were no existing bands that appear at that location on the gel in the absence of expression of this protein.
Sequence CWU
1
1
1531429PRTPodocoryna carnea 1Gly Pro Gln Gly Val Val Gly Ala Asp Gly Lys
Asp Gly Thr Pro Gly1 5 10
15Glu Lys Gly Glu Gln Gly Arg Thr Gly Ala Ala Gly Lys Gln Gly Ser
20 25 30Pro Gly Ala Asp Gly Ala Arg
Gly Pro Leu Gly Ser Ile Gly Gln Gln 35 40
45Gly Ala Arg Gly Glu Pro Gly Asp Pro Gly Ser Pro Gly Leu Arg
Gly 50 55 60Asp Thr Gly Leu Ala Gly
Val Lys Gly Val Ala Gly Pro Ser Gly Arg65 70
75 80Pro Gly Gln Pro Gly Ala Asn Gly Leu Pro Gly
Val Asn Gly Arg Gly 85 90
95Gly Leu Arg Gly Lys Pro Gly Ala Lys Gly Ile Ala Gly Ser Asp Gly
100 105 110Glu Ala Gly Glu Ser Gly
Ala Pro Gly Gln Ser Gly Pro Thr Gly Pro 115 120
125Arg Gly Gln Arg Gly Pro Ser Gly Glu Asp Gly Asn Pro Gly
Leu Gln 130 135 140Gly Leu Pro Gly Ser
Asp Gly Glu Pro Gly Glu Glu Gly Gln Pro Gly145 150
155 160Arg Ser Gly Gln Pro Gly Gln Gln Gly Pro
Arg Gly Ser Pro Gly Glu 165 170
175Val Gly Pro Arg Gly Ser Lys Gly Pro Ser Gly Asp Arg Gly Asp Arg
180 185 190Gly Glu Arg Gly Val
Pro Gly Gln Thr Gly Ser Ala Gly Asn Val Gly 195
200 205Glu Asp Gly Glu Gln Gly Gly Lys Gly Val Asp Gly
Ala Ser Gly Pro 210 215 220Ser Gly Ala
Leu Gly Ala Arg Gly Pro Pro Gly Ser Arg Gly Asp Thr225
230 235 240Gly Ala Val Gly Pro Pro Gly
Pro Thr Gly Arg Ser Gly Leu Pro Gly 245
250 255Asn Ala Gly Gln Lys Gly Pro Ser Gly Glu Pro Gly
Ser Pro Gly Lys 260 265 270Ala
Gly Ser Ala Gly Glu Gln Gly Pro Pro Gly Lys Asp Gly Ser Asn 275
280 285Gly Glu Pro Gly Ser Pro Gly Lys Glu
Gly Glu Arg Gly Leu Ala Gly 290 295
300Pro Pro Gly Pro Asp Gly Arg Arg Gly Glu Thr Gly Ser Pro Gly Ile305
310 315 320Ala Gly Ala Leu
Gly Lys Pro Gly Leu Glu Gly Pro Lys Gly Tyr Pro 325
330 335Gly Leu Arg Gly Arg Asp Gly Thr Asn Gly
Lys Arg Gly Glu Gln Gly 340 345
350Glu Thr Gly Pro Asp Gly Val Arg Gly Ile Pro Gly Asn Asp Gly Gln
355 360 365Ser Gly Lys Pro Gly Ile Asp
Gly Ile Asp Gly Thr Asn Gly Gln Pro 370 375
380Gly Glu Ala Gly Tyr Gln Gly Gly Arg Gly Thr Arg Gly Gln Leu
Gly385 390 395 400Glu Thr
Gly Asp Val Gly Gln Asn Gly Asp Arg Gly Ala Pro Gly Pro
405 410 415Asp Gly Ser Lys Gly Ser Ala
Gly Arg Pro Gly Leu Arg 420
42521289DNAPodocoryna carnea 2ggaccacaag gtgttgtagg agctgatggc aaagatggaa
caccgggaga gaaaggtgag 60caaggacgaa ccggagctgc aggaaaacag ggaagccctg
gagcagatgg agcaagaggc 120cctcttggat caattggaca acaaggtgct cgtggagaac
ctggtgatcc aggatctccc 180ggcttaagag gagatactgg attggctgga gtcaaaggag
tagcaggacc atctggtcga 240cctggacaac ccggtgcaaa tggattacct ggtgtgaatg
gcagaggcgg tttgagaggc 300aaacctggtg ctaaaggaat tgctggcagt gatggagaag
cgggagaatc tggcgcacct 360ggacagtccg gacctaccgg tccacgtggt caacgaggac
caagtggtga ggatggtaat 420cctggattac agggattgcc tggttctgat ggagagcccg
gagaggaagg acaacctgga 480agatctggtc aaccaggaca gcaaggacca cgtggttccc
ctggagaggt aggaccaaga 540ggatctaaag gtccatcagg agatcgtggt gacaggggag
agagaggtgt tcctggacaa 600acaggttcgg ctggaaatgt aggagaagat ggagagcaag
gaggcaaagg tgtcgatgga 660gcgagtggac caagtggagc tcttggtgct cgtggtcccc
caggaagtag aggtgacacc 720ggggcagtgg gacctcccgg acctactggg cgatctggtt
tacctggaaa cgcaggacaa 780aagggaccaa gtggtgaacc aggtagtcca ggaaaagcag
gatcagctgg tgaacagggt 840cctcctggta aagacggatc aaatggtgaa cctggatctc
ctggcaaaga gggtgaacgt 900ggtcttgctg gtccaccagg tccagatggc agacgtggtg
aaacgggatc tccaggtatc 960gctggtgctc ttggtaaacc aggtttggaa ggacctaaag
gttatccagg attaagagga 1020agagatggaa ccaatggcaa acgaggagaa caaggagaaa
ctggtcctga tggagtcaga 1080ggtattcctg gaaatgatgg acaatctggc aaaccaggta
ttgatggtat tgacggaaca 1140aatggtcaac caggtgaggc tggataccaa ggtggtagag
gtacacgtgg tcagttaggt 1200gaaactggtg atgtcggaca gaatggagat cgaggagctc
ctggtcctga tggatctaaa 1260ggttctgctg gtagaccagg acttcgtgg
128931425DNAArtificial
Sequencesource/note="Description of Artificial Sequence Synthetic
polynucleotide" 3atgaaaaaga tttggctggc gctggctggt ttagttttag cgtttagcgc
atcggcggcg 60cagtatgaag atcaccatca ccaccaccac catcaccact ctggctcgag
cctggtgccg 120cgcggcagcc atatgggtcc gcagggtgtt gttggtgcag atggtaaaga
cggtaccccg 180ggtgaaaaag gagaacaggg acgtacaggt gcagcaggta aacagggcag
cccgggtgcc 240gatggtgccc gtggcccgct gggtagcatt ggtcagcagg gtgcaagagg
cgaaccgggc 300gatccgggta gtccgggcct gcgtggtgat acgggtctgg ccggtgttaa
aggcgttgca 360ggtccttcag gtcgtccagg tcaaccgggt gcaaatggtc tgccgggtgt
taatggtcgt 420ggcggtctgc gtggcaaacc gggagcaaaa ggtattgcag gtagcgatgg
agaagccggt 480gaaagcggtg ccccgggtca gagtggtccg accggtccgc gcggtcagcg
tggtccgtct 540ggtgaagatg gcaatccggg tctgcagggt ctgcctggta gtgatggcga
accaggtgaa 600gaaggtcagc cgggtcgttc aggccagccg ggccagcagg gcccgcgtgg
tagcccgggc 660gaagttggcc cgcggggtag taaaggtcct agtggcgatc gcggtgatcg
tggtgaacgc 720ggtgttcctg gtcagaccgg tagcgcaggt aatgttggcg aagatggtga
acagggtggc 780aaaggtgttg atggtgcaag cggtccgagc ggtgcactgg gtgcacgtgg
tcctccgggc 840agccgtggtg acaccggtgc agttggtccg cctggcccga ccggccgtag
tggcttaccg 900ggtaatgcag gtcagaaagg tccgtcaggt gaacctggca gccctggtaa
agcaggtagt 960gccggtgagc agggtccgcc gggcaaagat ggtagtaatg gtgagccggg
tagccctggc 1020aaagaaggtg aacgtggtct ggcaggaccg ccgggtcctg atggtcgccg
cggtgaaacg 1080ggttcaccgg gtattgccgg tgccctgggt aaaccaggtc tggaaggtcc
gaaaggttat 1140cctggtctgc gcggtcgtga tggtaccaat ggcaaacgtg gcgaacaggg
cgaaaccggt 1200ccagatggtg ttcgtggtat tccgggtaac gatggtcaga gcggtaaacc
gggcattgat 1260ggtattgatg gcaccaatgg tcagcctggc gaagcaggtt atcagggtgg
tcgcggtacc 1320cgtggtcagc tgggtgaaac aggtgatgtt ggtcagaatg gtgatcgcgg
cgcaccgggt 1380ccggatggta gcaaaggtag cgccggtcgt ccgggtttac gttaa
142541425DNAArtificial Sequencesource/note="Description of
Artificial Sequence Synthetic polynucleotide" 4atgaaaaaga tttggctggc
gctggctggt ttagttttag cgtttagcgc atcggcggcg 60cagtatgaag atcaccatca
ccaccaccac catcaccact ctggctcgag cctggtgccg 120cgcggcagcc atatgggtcc
gcagggtgtt gttggtgcag atggtaaaga cggtaccccg 180ggtgaaaaag gtgaacaggg
tcgtaccggt gcagcaggta aacagggcag cccgggtgcc 240gatggtgccc gtggcccgct
gggtagcatt ggtcagcagg gtgcacgtgg cgaaccgggc 300gatccgggta gcccgggcct
gcgtggtgat acgggtctgg ccggtgttaa aggcgttgca 360ggtccttctg gtcgtccagg
tcaaccgggt gcaaatggtc tgccgggtgt taatggtcgt 420ggcggtctgc gtggcaaacc
gggtgcaaaa ggtattgcag gtagcgatgg cgaagccggt 480gaaagcggtg ccccgggtca
gagcggtccg accggtccgc gcggtcagcg tggtccgtct 540ggtgaagatg gcaatccggg
tctgcagggt ctgcctggta gcgatggcga accaggtgaa 600gaaggtcagc cgggtcgttc
tggccagccg ggccagcagg gcccgcgtgg tagcccgggc 660gaagttggcc cgcgcggttc
taaaggtcct agcggcgatc gcggtgatcg tggtgaacgc 720ggtgttcctg gtcagaccgg
tagcgcaggt aatgttggcg aagatggtga acagggtggc 780aaaggtgttg atggtgcaag
cggtccgagc ggtgcactgg gtgcacgtgg tcctccgggc 840agccgtggtg acaccggtgc
agttggtccg cctggcccga ccggccgtag cggcctgccg 900ggtaatgcag gtcagaaagg
tccgtctggt gaacctggca gccctggtaa agcaggtagc 960gccggtgagc agggtccgcc
gggcaaagat ggtagcaatg gtgagccggg tagccctggc 1020aaagaaggtg aacgtggtct
ggcaggtccg ccgggtcctg atggtcgccg cggtgaaacg 1080ggttctccgg gtattgccgg
tgccctgggt aaaccaggtc tggaaggtcc gaaaggttat 1140cctggtctgc gcggtcgtga
tggtaccaat ggcaaacgtg gcgaacaggg cgaaaccggt 1200ccagatggtg ttcgtggtat
tccgggtaac gatggtcaga gcggtaaacc gggcattgat 1260ggtattgatg gcaccaatgg
tcagcctggc gaagcaggtt atcagggtgg tcgcggtacc 1320cgtggtcagc tgggtgaaac
cggtgatgtt ggtcagaatg gtgatcgcgg cgcaccgggt 1380ccggatggta gcaaaggtag
cgccggtcgt ccgggtctgc gttaa 14255474PRTArtificial
Sequencesource/note="Description of Artificial Sequence Synthetic
polypeptide" 5Met Lys Lys Ile Trp Leu Ala Leu Ala Gly Leu Val Leu Ala Phe
Ser1 5 10 15Ala Ser Ala
Ala Gln Tyr Glu Asp His His His His His His His His 20
25 30His Ser Gly Ser Ser Leu Val Pro Arg Gly
Ser His Met Gly Pro Gln 35 40
45Gly Val Val Gly Ala Asp Gly Lys Asp Gly Thr Pro Gly Glu Lys Gly 50
55 60Glu Gln Gly Arg Thr Gly Ala Ala Gly
Lys Gln Gly Ser Pro Gly Ala65 70 75
80Asp Gly Ala Arg Gly Pro Leu Gly Ser Ile Gly Gln Gln Gly
Ala Arg 85 90 95Gly Glu
Pro Gly Asp Pro Gly Ser Pro Gly Leu Arg Gly Asp Thr Gly 100
105 110Leu Ala Gly Val Lys Gly Val Ala Gly
Pro Ser Gly Arg Pro Gly Gln 115 120
125Pro Gly Ala Asn Gly Leu Pro Gly Val Asn Gly Arg Gly Gly Leu Arg
130 135 140Gly Lys Pro Gly Ala Lys Gly
Ile Ala Gly Ser Asp Gly Glu Ala Gly145 150
155 160Glu Ser Gly Ala Pro Gly Gln Ser Gly Pro Thr Gly
Pro Arg Gly Gln 165 170
175Arg Gly Pro Ser Gly Glu Asp Gly Asn Pro Gly Leu Gln Gly Leu Pro
180 185 190Gly Ser Asp Gly Glu Pro
Gly Glu Glu Gly Gln Pro Gly Arg Ser Gly 195 200
205Gln Pro Gly Gln Gln Gly Pro Arg Gly Ser Pro Gly Glu Val
Gly Pro 210 215 220Arg Gly Ser Lys Gly
Pro Ser Gly Asp Arg Gly Asp Arg Gly Glu Arg225 230
235 240Gly Val Pro Gly Gln Thr Gly Ser Ala Gly
Asn Val Gly Glu Asp Gly 245 250
255Glu Gln Gly Gly Lys Gly Val Asp Gly Ala Ser Gly Pro Ser Gly Ala
260 265 270Leu Gly Ala Arg Gly
Pro Pro Gly Ser Arg Gly Asp Thr Gly Ala Val 275
280 285Gly Pro Pro Gly Pro Thr Gly Arg Ser Gly Leu Pro
Gly Asn Ala Gly 290 295 300Gln Lys Gly
Pro Ser Gly Glu Pro Gly Ser Pro Gly Lys Ala Gly Ser305
310 315 320Ala Gly Glu Gln Gly Pro Pro
Gly Lys Asp Gly Ser Asn Gly Glu Pro 325
330 335Gly Ser Pro Gly Lys Glu Gly Glu Arg Gly Leu Ala
Gly Pro Pro Gly 340 345 350Pro
Asp Gly Arg Arg Gly Glu Thr Gly Ser Pro Gly Ile Ala Gly Ala 355
360 365Leu Gly Lys Pro Gly Leu Glu Gly Pro
Lys Gly Tyr Pro Gly Leu Arg 370 375
380Gly Arg Asp Gly Thr Asn Gly Lys Arg Gly Glu Gln Gly Glu Thr Gly385
390 395 400Pro Asp Gly Val
Arg Gly Ile Pro Gly Asn Asp Gly Gln Ser Gly Lys 405
410 415Pro Gly Ile Asp Gly Ile Asp Gly Thr Asn
Gly Gln Pro Gly Glu Ala 420 425
430Gly Tyr Gln Gly Gly Arg Gly Thr Arg Gly Gln Leu Gly Glu Thr Gly
435 440 445Asp Val Gly Gln Asn Gly Asp
Arg Gly Ala Pro Gly Pro Asp Gly Ser 450 455
460Lys Gly Ser Ala Gly Arg Pro Gly Leu Arg465
47061362DNAArtificial Sequencesource/note="Description of Artificial
Sequence Synthetic polynucleotide" 6atgaaaaaga tttggctggc gctggctggt
ttagttttag cgtttagcgc atcggcggcg 60cagtatgaag atggtccgca gggtgttgtt
ggtgcagatg gtaaagacgg taccccgggt 120gaaaaaggag aacagggacg tacaggtgca
gcaggtaaac agggcagccc gggtgccgat 180ggtgcccgtg gcccgctggg tagcattggt
cagcagggtg caagaggcga accgggcgat 240ccgggtagtc cgggcctgcg tggtgatacg
ggtctggccg gtgttaaagg cgttgcaggt 300ccttcaggtc gtccaggtca accgggtgca
aatggtctgc cgggtgttaa tggtcgtggc 360ggtctgcgtg gcaaaccggg agcaaaaggt
attgcaggta gcgatggaga agccggtgaa 420agcggtgccc cgggtcagag tggtccgacc
ggtccgcgcg gtcagcgtgg tccgtctggt 480gaagatggca atccgggtct gcagggtctg
cctggtagtg atggcgaacc aggtgaagaa 540ggtcagccgg gtcgttcagg ccagccgggc
cagcagggcc cgcgtggtag cccgggcgaa 600gttggcccgc ggggtagtaa aggtcctagt
ggcgatcgcg gtgatcgtgg tgaacgcggt 660gttcctggtc agaccggtag cgcaggtaat
gttggcgaag atggtgaaca gggtggcaaa 720ggtgttgatg gtgcaagcgg tccgagcggt
gcactgggtg cacgtggtcc tccgggcagc 780cgtggtgaca ccggtgcagt tggtccgcct
ggcccgaccg gccgtagtgg cttaccgggt 840aatgcaggtc agaaaggtcc gtcaggtgaa
cctggcagcc ctggtaaagc aggtagtgcc 900ggtgagcagg gtccgccggg caaagatggt
agtaatggtg agccgggtag ccctggcaaa 960gaaggtgaac gtggtctggc aggaccgccg
ggtcctgatg gtcgccgcgg tgaaacgggt 1020tcaccgggta ttgccggtgc cctgggtaaa
ccaggtctgg aaggtccgaa aggttatcct 1080ggtctgcgcg gtcgtgatgg taccaatggc
aaacgtggcg aacagggcga aaccggtcca 1140gatggtgttc gtggtattcc gggtaacgat
ggtcagagcg gtaaaccggg cattgatggt 1200attgatggca ccaatggtca gcctggcgaa
gcaggttatc agggtggtcg cggtacccgt 1260ggtcagctgg gtgaaacagg tgatgttggt
cagaatggtg atcgcggcgc accgggtccg 1320gatggtagca aaggtagcgc cggtcgtccg
ggtttacgtt aa 136271362DNAArtificial
Sequencesource/note="Description of Artificial Sequence Synthetic
polynucleotide" 7atgaaaaaga tttggctggc gctggctggt ttagttttag cgtttagcgc
atcggcggcg 60cagtatgaag atggtccgca gggtgttgtt ggtgcagatg gtaaagacgg
taccccgggt 120gaaaaaggtg aacagggtcg taccggtgca gcaggtaaac agggcagccc
gggtgccgat 180ggtgcccgtg gcccgctggg tagcattggt cagcagggtg cacgtggcga
accgggcgat 240ccgggtagcc cgggcctgcg tggtgatacg ggtctggccg gtgttaaagg
cgttgcaggt 300ccttctggtc gtccaggtca accgggtgca aatggtctgc cgggtgttaa
tggtcgtggc 360ggtctgcgtg gcaaaccggg tgcaaaaggt attgcaggta gcgatggcga
agccggtgaa 420agcggtgccc cgggtcagag cggtccgacc ggtccgcgcg gtcagcgtgg
tccgtctggt 480gaagatggca atccgggtct gcagggtctg cctggtagcg atggcgaacc
aggtgaagaa 540ggtcagccgg gtcgttctgg ccagccgggc cagcagggcc cgcgtggtag
cccgggcgaa 600gttggcccgc gcggttctaa aggtcctagc ggcgatcgcg gtgatcgtgg
tgaacgcggt 660gttcctggtc agaccggtag cgcaggtaat gttggcgaag atggtgaaca
gggtggcaaa 720ggtgttgatg gtgcaagcgg tccgagcggt gcactgggtg cacgtggtcc
tccgggcagc 780cgtggtgaca ccggtgcagt tggtccgcct ggcccgaccg gccgtagcgg
cctgccgggt 840aatgcaggtc agaaaggtcc gtctggtgaa cctggcagcc ctggtaaagc
aggtagcgcc 900ggtgagcagg gtccgccggg caaagatggt agcaatggtg agccgggtag
ccctggcaaa 960gaaggtgaac gtggtctggc aggtccgccg ggtcctgatg gtcgccgcgg
tgaaacgggt 1020tctccgggta ttgccggtgc cctgggtaaa ccaggtctgg aaggtccgaa
aggttatcct 1080ggtctgcgcg gtcgtgatgg taccaatggc aaacgtggcg aacagggcga
aaccggtcca 1140gatggtgttc gtggtattcc gggtaacgat ggtcagagcg gtaaaccggg
cattgatggt 1200attgatggca ccaatggtca gcctggcgaa gcaggttatc agggtggtcg
cggtacccgt 1260ggtcagctgg gtgaaaccgg tgatgttggt cagaatggtg atcgcggcgc
accgggtccg 1320gatggtagca aaggtagcgc cggtcgtccg ggtctgcgtt aa
13628453PRTArtificial Sequencesource/note="Description of
Artificial Sequence Synthetic polypeptide" 8Met Lys Lys Ile Trp Leu
Ala Leu Ala Gly Leu Val Leu Ala Phe Ser1 5
10 15Ala Ser Ala Ala Gln Tyr Glu Asp Gly Pro Gln Gly
Val Val Gly Ala 20 25 30Asp
Gly Lys Asp Gly Thr Pro Gly Glu Lys Gly Glu Gln Gly Arg Thr 35
40 45Gly Ala Ala Gly Lys Gln Gly Ser Pro
Gly Ala Asp Gly Ala Arg Gly 50 55
60Pro Leu Gly Ser Ile Gly Gln Gln Gly Ala Arg Gly Glu Pro Gly Asp65
70 75 80Pro Gly Ser Pro Gly
Leu Arg Gly Asp Thr Gly Leu Ala Gly Val Lys 85
90 95Gly Val Ala Gly Pro Ser Gly Arg Pro Gly Gln
Pro Gly Ala Asn Gly 100 105
110Leu Pro Gly Val Asn Gly Arg Gly Gly Leu Arg Gly Lys Pro Gly Ala
115 120 125Lys Gly Ile Ala Gly Ser Asp
Gly Glu Ala Gly Glu Ser Gly Ala Pro 130 135
140Gly Gln Ser Gly Pro Thr Gly Pro Arg Gly Gln Arg Gly Pro Ser
Gly145 150 155 160Glu Asp
Gly Asn Pro Gly Leu Gln Gly Leu Pro Gly Ser Asp Gly Glu
165 170 175Pro Gly Glu Glu Gly Gln Pro
Gly Arg Ser Gly Gln Pro Gly Gln Gln 180 185
190Gly Pro Arg Gly Ser Pro Gly Glu Val Gly Pro Arg Gly Ser
Lys Gly 195 200 205Pro Ser Gly Asp
Arg Gly Asp Arg Gly Glu Arg Gly Val Pro Gly Gln 210
215 220Thr Gly Ser Ala Gly Asn Val Gly Glu Asp Gly Glu
Gln Gly Gly Lys225 230 235
240Gly Val Asp Gly Ala Ser Gly Pro Ser Gly Ala Leu Gly Ala Arg Gly
245 250 255Pro Pro Gly Ser Arg
Gly Asp Thr Gly Ala Val Gly Pro Pro Gly Pro 260
265 270Thr Gly Arg Ser Gly Leu Pro Gly Asn Ala Gly Gln
Lys Gly Pro Ser 275 280 285Gly Glu
Pro Gly Ser Pro Gly Lys Ala Gly Ser Ala Gly Glu Gln Gly 290
295 300Pro Pro Gly Lys Asp Gly Ser Asn Gly Glu Pro
Gly Ser Pro Gly Lys305 310 315
320Glu Gly Glu Arg Gly Leu Ala Gly Pro Pro Gly Pro Asp Gly Arg Arg
325 330 335Gly Glu Thr Gly
Ser Pro Gly Ile Ala Gly Ala Leu Gly Lys Pro Gly 340
345 350Leu Glu Gly Pro Lys Gly Tyr Pro Gly Leu Arg
Gly Arg Asp Gly Thr 355 360 365Asn
Gly Lys Arg Gly Glu Gln Gly Glu Thr Gly Pro Asp Gly Val Arg 370
375 380Gly Ile Pro Gly Asn Asp Gly Gln Ser Gly
Lys Pro Gly Ile Asp Gly385 390 395
400Ile Asp Gly Thr Asn Gly Gln Pro Gly Glu Ala Gly Tyr Gln Gly
Gly 405 410 415Arg Gly Thr
Arg Gly Gln Leu Gly Glu Thr Gly Asp Val Gly Gln Asn 420
425 430Gly Asp Arg Gly Ala Pro Gly Pro Asp Gly
Ser Lys Gly Ser Ala Gly 435 440
445Arg Pro Gly Leu Arg 4509825DNAArtificial
Sequencesource/note="Description of Artificial Sequence Synthetic
polynucleotide" 9atgaaaaaga tttggctggc gctggctggt ttagttttag cgtttagcgc
atcggcggcg 60cagtatgaag atcaccatca ccaccaccac catcaccact ctggctcgag
cctggtgccg 120cgcggcagcc atatgggtcc gcagggtgtt gttggtgcag atggtaaaga
cggtaccccg 180ggtgaaaaag gagaacaggg acgtacaggt gcagcaggta aacagggcag
cccgggtgcc 240gatggtgccc gtggcccgct gggtagcatt ggtcagcagg gtgcaagagg
cgaaccgggc 300gatccgggta gtccgggcct gcgtggtgat acgggtctgg ccggtgttaa
aggcgttgca 360ggtccttcag gtcgtccagg tcaaccgggt gcaaatggtc tgccgggtgt
taatggtcgt 420ggcggtctgg aacgtggtct ggcaggaccg ccgggtcctg atggtcgccg
cggtgaaacg 480ggttcaccgg gtattgccgg tgccctgggt aaaccaggtc tggaaggtcc
gaaaggttat 540cctggtctgc gcggtcgtga tggtaccaat ggcaaacgtg gcgaacaggg
cgaaaccggt 600ccagatggtg ttcgtggtat tccgggtaac gatggtcaga gcggtaaacc
gggcattgat 660ggtattgatg gcaccaatgg tcagcctggc gaagcaggtt atcagggtgg
tcgcggtacc 720cgtggtcagc tgggtgaaac aggtgatgtt ggtcagaatg gtgatcgcgg
cgcaccgggt 780ccggatggta gcaaaggtag cgccggtcgt ccgggtttac gttaa
82510274PRTArtificial Sequencesource/note="Description of
Artificial Sequence Synthetic polypeptide" 10Met Lys Lys Ile Trp Leu
Ala Leu Ala Gly Leu Val Leu Ala Phe Ser1 5
10 15Ala Ser Ala Ala Gln Tyr Glu Asp His His His His
His His His His 20 25 30His
Ser Gly Ser Ser Leu Val Pro Arg Gly Ser His Met Gly Pro Gln 35
40 45Gly Val Val Gly Ala Asp Gly Lys Asp
Gly Thr Pro Gly Glu Lys Gly 50 55
60Glu Gln Gly Arg Thr Gly Ala Ala Gly Lys Gln Gly Ser Pro Gly Ala65
70 75 80Asp Gly Ala Arg Gly
Pro Leu Gly Ser Ile Gly Gln Gln Gly Ala Arg 85
90 95Gly Glu Pro Gly Asp Pro Gly Ser Pro Gly Leu
Arg Gly Asp Thr Gly 100 105
110Leu Ala Gly Val Lys Gly Val Ala Gly Pro Ser Gly Arg Pro Gly Gln
115 120 125Pro Gly Ala Asn Gly Leu Pro
Gly Val Asn Gly Arg Gly Gly Leu Glu 130 135
140Arg Gly Leu Ala Gly Pro Pro Gly Pro Asp Gly Arg Arg Gly Glu
Thr145 150 155 160Gly Ser
Pro Gly Ile Ala Gly Ala Leu Gly Lys Pro Gly Leu Glu Gly
165 170 175Pro Lys Gly Tyr Pro Gly Leu
Arg Gly Arg Asp Gly Thr Asn Gly Lys 180 185
190Arg Gly Glu Gln Gly Glu Thr Gly Pro Asp Gly Val Arg Gly
Ile Pro 195 200 205Gly Asn Asp Gly
Gln Ser Gly Lys Pro Gly Ile Asp Gly Ile Asp Gly 210
215 220Thr Asn Gly Gln Pro Gly Glu Ala Gly Tyr Gln Gly
Gly Arg Gly Thr225 230 235
240Arg Gly Gln Leu Gly Glu Thr Gly Asp Val Gly Gln Asn Gly Asp Arg
245 250 255Gly Ala Pro Gly Pro
Asp Gly Ser Lys Gly Ser Ala Gly Arg Pro Gly 260
265 270Leu Arg11642DNAArtificial
Sequencesource/note="Description of Artificial Sequence Synthetic
polynucleotide" 11atgaaaaaga tttggctggc gctggctggt ttagttttag cgtttagcgc
atcggcggcg 60cagtatgaag atggtccgca gggtgttgtt ggtgcagatg gtaaagacgg
taccccgggt 120aatgcaggtc agaaaggtcc gtcaggtgaa cctggcagcc ctggtaaagc
aggtagtgcc 180ggtgagcagg gtccgccggg caaagatggt agtaatggtg agccgggtag
ccctggcaaa 240gaaggtgaac gtggtctggc aggaccgccg ggtcctgatg gtcgccgcgg
tgaaacgggt 300tcaccgggta ttgccggtgc cctgggtaaa ccaggtctgg aaggtccgaa
aggttatcct 360ggtctgcgcg gtcgtgatgg taccaatggc aaacgtggcg aacagggcga
aaccggtcca 420gatggtgttc gtggtattcc gggtaacgat ggtcagagcg gtaaaccggg
cattgatggt 480attgatggca ccaatggtca gcctggcgaa gcaggttatc agggtggtcg
cggtacccgt 540ggtcagctgg gtgaaacagg tgatgttggt cagaatggtg atcgcggcgc
accgggtccg 600gatggtagca aaggtagcgc cggtcgtccg ggtttacgtt aa
64212213PRTArtificial Sequencesource/note="Description of
Artificial Sequence Synthetic polypeptide" 12Met Lys Lys Ile Trp Leu
Ala Leu Ala Gly Leu Val Leu Ala Phe Ser1 5
10 15Ala Ser Ala Ala Gln Tyr Glu Asp Gly Pro Gln Gly
Val Val Gly Ala 20 25 30Asp
Gly Lys Asp Gly Thr Pro Gly Asn Ala Gly Gln Lys Gly Pro Ser 35
40 45Gly Glu Pro Gly Ser Pro Gly Lys Ala
Gly Ser Ala Gly Glu Gln Gly 50 55
60Pro Pro Gly Lys Asp Gly Ser Asn Gly Glu Pro Gly Ser Pro Gly Lys65
70 75 80Glu Gly Glu Arg Gly
Leu Ala Gly Pro Pro Gly Pro Asp Gly Arg Arg 85
90 95Gly Glu Thr Gly Ser Pro Gly Ile Ala Gly Ala
Leu Gly Lys Pro Gly 100 105
110Leu Glu Gly Pro Lys Gly Tyr Pro Gly Leu Arg Gly Arg Asp Gly Thr
115 120 125Asn Gly Lys Arg Gly Glu Gln
Gly Glu Thr Gly Pro Asp Gly Val Arg 130 135
140Gly Ile Pro Gly Asn Asp Gly Gln Ser Gly Lys Pro Gly Ile Asp
Gly145 150 155 160Ile Asp
Gly Thr Asn Gly Gln Pro Gly Glu Ala Gly Tyr Gln Gly Gly
165 170 175Arg Gly Thr Arg Gly Gln Leu
Gly Glu Thr Gly Asp Val Gly Gln Asn 180 185
190Gly Asp Arg Gly Ala Pro Gly Pro Asp Gly Ser Lys Gly Ser
Ala Gly 195 200 205Arg Pro Gly Leu
Arg 21013696DNAArtificial Sequencesource/note="Description of
Artificial Sequence Synthetic polynucleotide" 13atgaaaaaga
tttggctggc gctggctggt ttagttttag cgtttagcgc atcggcggcg 60cagtatgaag
atggtgaaaa aggtgaaaag ggcgagaaag gtgagaaagg cgaaaagggt 120gaaaaaggtc
cgcagggtgt tgttggtgca gatggtaaag acggtacccc gggtaatgca 180ggtcagaaag
gtccgtcagg tgaacctggc agccctggta aagcaggtag tgccggtgag 240cagggtccgc
cgggcaaaga tggtagtaat ggtgagccgg gtagccctgg caaagaaggt 300gaacgtggtc
tggcaggacc gccgggtcct gatggtcgcc gcggtgaaac gggttcaccg 360ggtattgccg
gtgccctggg taaaccaggt ctggaaggtc cgaaaggtta tcctggtctg 420cgcggtcgtg
atggtaccaa tggcaaacgt ggcgaacagg gcgaaaccgg tccagatggt 480gttcgtggta
ttccgggtaa cgatggtcag agcggtaaac cgggcattga tggtattgat 540ggcaccaatg
gtcagcctgg cgaagcaggt tatcagggtg gtcgcggtac ccgtggtcag 600ctgggtgaaa
caggtgatgt tggtcagaat ggtgatcgcg gcgcaccggg tccggatggt 660agcaaaggta
gcgccggtcg tccgggttta cgttaa
69614231PRTArtificial Sequencesource/note="Description of Artificial
Sequence Synthetic polypeptide" 14Met Lys Lys Ile Trp Leu Ala Leu
Ala Gly Leu Val Leu Ala Phe Ser1 5 10
15Ala Ser Ala Ala Gln Tyr Glu Asp Gly Glu Lys Gly Glu Lys
Gly Glu 20 25 30Lys Gly Glu
Lys Gly Glu Lys Gly Glu Lys Gly Pro Gln Gly Val Val 35
40 45Gly Ala Asp Gly Lys Asp Gly Thr Pro Gly Asn
Ala Gly Gln Lys Gly 50 55 60Pro Ser
Gly Glu Pro Gly Ser Pro Gly Lys Ala Gly Ser Ala Gly Glu65
70 75 80Gln Gly Pro Pro Gly Lys Asp
Gly Ser Asn Gly Glu Pro Gly Ser Pro 85 90
95Gly Lys Glu Gly Glu Arg Gly Leu Ala Gly Pro Pro Gly
Pro Asp Gly 100 105 110Arg Arg
Gly Glu Thr Gly Ser Pro Gly Ile Ala Gly Ala Leu Gly Lys 115
120 125Pro Gly Leu Glu Gly Pro Lys Gly Tyr Pro
Gly Leu Arg Gly Arg Asp 130 135 140Gly
Thr Asn Gly Lys Arg Gly Glu Gln Gly Glu Thr Gly Pro Asp Gly145
150 155 160Val Arg Gly Ile Pro Gly
Asn Asp Gly Gln Ser Gly Lys Pro Gly Ile 165
170 175Asp Gly Ile Asp Gly Thr Asn Gly Gln Pro Gly Glu
Ala Gly Tyr Gln 180 185 190Gly
Gly Arg Gly Thr Arg Gly Gln Leu Gly Glu Thr Gly Asp Val Gly 195
200 205Gln Asn Gly Asp Arg Gly Ala Pro Gly
Pro Asp Gly Ser Lys Gly Ser 210 215
220Ala Gly Arg Pro Gly Leu Arg225 23015696DNAArtificial
Sequencesource/note="Description of Artificial Sequence Synthetic
polynucleotide" 15atgaaaaaga tttggctggc gctggctggt ttagttttag cgtttagcgc
atcggcggcg 60cagtatgaag atggtgataa aggtgataag ggcgacaaag gtgacaaagg
cgataagggt 120gataaaggtc cgcagggtgt tgttggtgca gatggtaaag acggtacccc
gggtaatgca 180ggtcagaaag gtccgtcagg tgaacctggc agccctggta aagcaggtag
tgccggtgag 240cagggtccgc cgggcaaaga tggtagtaat ggtgagccgg gtagccctgg
caaagaaggt 300gaacgtggtc tggcaggacc gccgggtcct gatggtcgcc gcggtgaaac
gggttcaccg 360ggtattgccg gtgccctggg taaaccaggt ctggaaggtc cgaaaggtta
tcctggtctg 420cgcggtcgtg atggtaccaa tggcaaacgt ggcgaacagg gcgaaaccgg
tccagatggt 480gttcgtggta ttccgggtaa cgatggtcag agcggtaaac cgggcattga
tggtattgat 540ggcaccaatg gtcagcctgg cgaagcaggt tatcagggtg gtcgcggtac
ccgtggtcag 600ctgggtgaaa caggtgatgt tggtcagaat ggtgatcgcg gcgcaccggg
tccggatggt 660agcaaaggta gcgccggtcg tccgggttta cgttaa
69616231PRTArtificial Sequencesource/note="Description of
Artificial Sequence Synthetic polypeptide" 16Met Lys Lys Ile Trp Leu
Ala Leu Ala Gly Leu Val Leu Ala Phe Ser1 5
10 15Ala Ser Ala Ala Gln Tyr Glu Asp Gly Asp Lys Gly
Asp Lys Gly Asp 20 25 30Lys
Gly Asp Lys Gly Asp Lys Gly Asp Lys Gly Pro Gln Gly Val Val 35
40 45Gly Ala Asp Gly Lys Asp Gly Thr Pro
Gly Asn Ala Gly Gln Lys Gly 50 55
60Pro Ser Gly Glu Pro Gly Ser Pro Gly Lys Ala Gly Ser Ala Gly Glu65
70 75 80Gln Gly Pro Pro Gly
Lys Asp Gly Ser Asn Gly Glu Pro Gly Ser Pro 85
90 95Gly Lys Glu Gly Glu Arg Gly Leu Ala Gly Pro
Pro Gly Pro Asp Gly 100 105
110Arg Arg Gly Glu Thr Gly Ser Pro Gly Ile Ala Gly Ala Leu Gly Lys
115 120 125Pro Gly Leu Glu Gly Pro Lys
Gly Tyr Pro Gly Leu Arg Gly Arg Asp 130 135
140Gly Thr Asn Gly Lys Arg Gly Glu Gln Gly Glu Thr Gly Pro Asp
Gly145 150 155 160Val Arg
Gly Ile Pro Gly Asn Asp Gly Gln Ser Gly Lys Pro Gly Ile
165 170 175Asp Gly Ile Asp Gly Thr Asn
Gly Gln Pro Gly Glu Ala Gly Tyr Gln 180 185
190Gly Gly Arg Gly Thr Arg Gly Gln Leu Gly Glu Thr Gly Asp
Val Gly 195 200 205Gln Asn Gly Asp
Arg Gly Ala Pro Gly Pro Asp Gly Ser Lys Gly Ser 210
215 220Ala Gly Arg Pro Gly Leu Arg225
230172232DNAArtificial Sequencesource/note="Description of Artificial
Sequence Synthetic polynucleotide" 17atgaaaaaga tttggctggc
gctggctggt ttagttttag cgtttagcgc atcggcggcg 60cagtatgaag atcaccatca
ccaccaccac catcaccact ctggctcgag cctggtgccg 120cgcggcagcc atatgtctgg
ctcgagcagt aaaggtgaag aactgttcac cggtgttgtt 180ccgatcctgg ttgaactgga
tggtgatgtt aacggccaca aattctctgt tcgtggtgaa 240ggtgaaggtg atgcaaccaa
cggtaaactg accctgaaat tcatctgcac taccggtaaa 300ctgccggttc catggccgac
tctggtgact accctgacct atggtgttca gtgtttttct 360cgttacccgg atcacatgaa
gcagcatgat ttcttcaaat ctgcaatgcc ggaaggttat 420gtacaggagc gcaccatttc
tttcaaagac gatggcacct acaaaacccg tgcagaggtt 480aaatttgaag gtgatactct
ggtgaaccgt attgaactga aaggcattga tttcaaagag 540gacggcaaca tcctgggcca
caaactggaa tataacttca actcccataa cgtttacatc 600accgcagaca aacagaagaa
cggtatcaaa gctaacttca aaattcgcca taacgttgaa 660gacggtagcg tacagctggc
ggaccactac cagcagaaca ctccgatcgg tgatggtccg 720gttctgctgc cggataacca
ctacctgtcc acccagtcta aactgtccaa agacccgaac 780gaaaagcgcg accacatggt
gctgctggag ttcgttactg cagcaggtat cacgcacggc 840atggatgaac tctacaaatc
tggcgcgccg ggcggtccgc agggtgttgt tggtgcagat 900ggtaaagacg gtaccccggg
taatgcaggt cagaaaggtc cgtcaggtga acctggcagc 960cctggtaaag caggtagtgc
cggtgagcag ggtccgccgg gcaaagatgg tagtaatggt 1020gagccgggta gccctggcaa
agaaggtgaa cgtggtctgg caggaccgcc gggtcctgat 1080ggtcgccgcg gtgaaacggg
ttcaccgggt attgccggtg ccctgggtaa accaggtctg 1140gaaggtccga aaggttatcc
tggtctgcgc ggtcgtgatg gtaccaatgg caaacgtggc 1200gaacagggcg aaaccggtcc
agatggtgtt cgtggtattc cgggtaacga tggtcagagc 1260ggtaaaccgg gcattgatgg
tattgatggc accaatggtc agcctggcga agcaggttat 1320cagggtggtc gcggtacccg
tggtcagctg ggtgaaacag gtgatgttgg tcagaatggt 1380gatcgcggcg caccgggtcc
ggatggtagc aaaggtagcg ccggtcgtcc gggtttacgt 1440cacccagaaa cgctggtgaa
agtaaaagat gctgaagatc agttgggtgc acgagtgggt 1500tacatcgaac tggatctcaa
cagcggtaag atccttgaga gttttcgccc cgaagaacgt 1560tttccaatga tgagcacttt
taaagttctg ctatgtggcg cggtattatc ccgtattgac 1620gccgggcaag agcaactcgg
tcgccgcata cactattctc agaatgactt ggttgagtac 1680tcaccagtca cagaaaagca
tcttacggat ggcatgacag taagagaatt atgcagtgct 1740gccataacca tgagtgataa
cactgcggcc aacttacttc tgacaacgat cggaggaccg 1800aaggagctaa ccgctttttt
gcacaacatg ggggatcatg taactcgcct tgatcgttgg 1860gaaccggagc tgaatgaagc
cataccaaac gacgagcgtg acaccacgat gcctgtagca 1920atggcaacaa cgttgcgcaa
actattaact ggcgaactac ttactctagc ttcccggcaa 1980caattaatag actggatgga
ggcggataaa gttgcaggac cacttctgcg ctcggccctt 2040ccggctggct ggtttattgc
tgataaatct ggagccggtg agcgtgggtc tcgcggtatc 2100attgcagcac tggggccaga
tggtaagccc tcccgtatcg tagttatcta cacgacgggg 2160agtcaggcaa ctatggatga
acgaaataga cagatcgctg agataggtgc ctcactgatt 2220aagcattggt aa
223218743PRTArtificial
Sequencesource/note="Description of Artificial Sequence Synthetic
polypeptide" 18Met Lys Lys Ile Trp Leu Ala Leu Ala Gly Leu Val Leu Ala
Phe Ser1 5 10 15Ala Ser
Ala Ala Gln Tyr Glu Asp His His His His His His His His 20
25 30His Ser Gly Ser Ser Leu Val Pro Arg
Gly Ser His Met Ser Gly Ser 35 40
45Ser Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro Ile Leu Val 50
55 60Glu Leu Asp Gly Asp Val Asn Gly His
Lys Phe Ser Val Arg Gly Glu65 70 75
80Gly Glu Gly Asp Ala Thr Asn Gly Lys Leu Thr Leu Lys Phe
Ile Cys 85 90 95Thr Thr
Gly Lys Leu Pro Val Pro Trp Pro Thr Leu Val Thr Thr Leu 100
105 110Thr Tyr Gly Val Gln Cys Phe Ser Arg
Tyr Pro Asp His Met Lys Gln 115 120
125His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr Val Gln Glu Arg
130 135 140Thr Ile Ser Phe Lys Asp Asp
Gly Thr Tyr Lys Thr Arg Ala Glu Val145 150
155 160Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu
Leu Lys Gly Ile 165 170
175Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His Lys Leu Glu Tyr Asn
180 185 190Phe Asn Ser His Asn Val
Tyr Ile Thr Ala Asp Lys Gln Lys Asn Gly 195 200
205Ile Lys Ala Asn Phe Lys Ile Arg His Asn Val Glu Asp Gly
Ser Val 210 215 220Gln Leu Ala Asp His
Tyr Gln Gln Asn Thr Pro Ile Gly Asp Gly Pro225 230
235 240Val Leu Leu Pro Asp Asn His Tyr Leu Ser
Thr Gln Ser Lys Leu Ser 245 250
255Lys Asp Pro Asn Glu Lys Arg Asp His Met Val Leu Leu Glu Phe Val
260 265 270Thr Ala Ala Gly Ile
Thr His Gly Met Asp Glu Leu Tyr Lys Ser Gly 275
280 285Ala Pro Gly Gly Pro Gln Gly Val Val Gly Ala Asp
Gly Lys Asp Gly 290 295 300Thr Pro Gly
Asn Ala Gly Gln Lys Gly Pro Ser Gly Glu Pro Gly Ser305
310 315 320Pro Gly Lys Ala Gly Ser Ala
Gly Glu Gln Gly Pro Pro Gly Lys Asp 325
330 335Gly Ser Asn Gly Glu Pro Gly Ser Pro Gly Lys Glu
Gly Glu Arg Gly 340 345 350Leu
Ala Gly Pro Pro Gly Pro Asp Gly Arg Arg Gly Glu Thr Gly Ser 355
360 365Pro Gly Ile Ala Gly Ala Leu Gly Lys
Pro Gly Leu Glu Gly Pro Lys 370 375
380Gly Tyr Pro Gly Leu Arg Gly Arg Asp Gly Thr Asn Gly Lys Arg Gly385
390 395 400Glu Gln Gly Glu
Thr Gly Pro Asp Gly Val Arg Gly Ile Pro Gly Asn 405
410 415Asp Gly Gln Ser Gly Lys Pro Gly Ile Asp
Gly Ile Asp Gly Thr Asn 420 425
430Gly Gln Pro Gly Glu Ala Gly Tyr Gln Gly Gly Arg Gly Thr Arg Gly
435 440 445Gln Leu Gly Glu Thr Gly Asp
Val Gly Gln Asn Gly Asp Arg Gly Ala 450 455
460Pro Gly Pro Asp Gly Ser Lys Gly Ser Ala Gly Arg Pro Gly Leu
Arg465 470 475 480His Pro
Glu Thr Leu Val Lys Val Lys Asp Ala Glu Asp Gln Leu Gly
485 490 495Ala Arg Val Gly Tyr Ile Glu
Leu Asp Leu Asn Ser Gly Lys Ile Leu 500 505
510Glu Ser Phe Arg Pro Glu Glu Arg Phe Pro Met Met Ser Thr
Phe Lys 515 520 525Val Leu Leu Cys
Gly Ala Val Leu Ser Arg Ile Asp Ala Gly Gln Glu 530
535 540Gln Leu Gly Arg Arg Ile His Tyr Ser Gln Asn Asp
Leu Val Glu Tyr545 550 555
560Ser Pro Val Thr Glu Lys His Leu Thr Asp Gly Met Thr Val Arg Glu
565 570 575Leu Cys Ser Ala Ala
Ile Thr Met Ser Asp Asn Thr Ala Ala Asn Leu 580
585 590Leu Leu Thr Thr Ile Gly Gly Pro Lys Glu Leu Thr
Ala Phe Leu His 595 600 605Asn Met
Gly Asp His Val Thr Arg Leu Asp Arg Trp Glu Pro Glu Leu 610
615 620Asn Glu Ala Ile Pro Asn Asp Glu Arg Asp Thr
Thr Met Pro Val Ala625 630 635
640Met Ala Thr Thr Leu Arg Lys Leu Leu Thr Gly Glu Leu Leu Thr Leu
645 650 655Ala Ser Arg Gln
Gln Leu Ile Asp Trp Met Glu Ala Asp Lys Val Ala 660
665 670Gly Pro Leu Leu Arg Ser Ala Leu Pro Ala Gly
Trp Phe Ile Ala Asp 675 680 685Lys
Ser Gly Ala Gly Glu Arg Gly Ser Arg Gly Ile Ile Ala Ala Leu 690
695 700Gly Pro Asp Gly Lys Pro Ser Arg Ile Val
Val Ile Tyr Thr Thr Gly705 710 715
720Ser Gln Ala Thr Met Asp Glu Arg Asn Arg Gln Ile Ala Glu Ile
Gly 725 730 735Ala Ser Leu
Ile Lys His Trp 740192232DNAArtificial
Sequencesource/note="Description of Artificial Sequence Synthetic
polynucleotide" 19atgaaaaaga tttggctggc gctggctggt ttagttttag cgtttagcgc
atcggcggcg 60cagtatgaag atcaccatca ccaccaccac catcaccact ctggctcgag
cctggtgccg 120cgcggcagcc atatgtctgg ctcgagcagt aaaggtgaag aactgttcac
cggtgttgtt 180ccgatcctgg ttgaactgga tggtgatgtt aacggccaca aattctctgt
tcgtggtgaa 240ggtgaaggtg atgcaaccaa cggtaaactg accctgaaat tcatctgcac
taccggtaaa 300ctgccggttc catggccgac tctggtgact accctgacct atggtgttca
gtgtttttct 360cgttacccgg atcacatgaa gcagcatgat ttcttcaaat ctgcaatgcc
ggaaggttat 420gtacaggagc gcaccatttc tttcaaagac gatggcacct acaaaacccg
tgcagaggtt 480aaatttgaag gtgatactct ggtgaaccgt attgaactga aaggcattga
tttcaaagag 540gacggcaaca tcctgggcca caaactggaa tataacttca actcccataa
cgtttacatc 600accgcagaca aacagaagaa cggtatcaaa gctaacttca aaattcgcca
taacgttgaa 660gacggtagcg tacagctggc ggaccactac cagcagaaca ctccgatcgg
tgatggtccg 720gttctgctgc cggataacca ctacctgtcc acccagtcta aactgtccaa
agacccgaac 780gaaaagcgcg accacatggt gctgctggag ttcgttactg cagcaggtat
cacgcacggc 840atggatgaac tctacaaatc tggcgcgccg ggcggtccgc agggtgttgt
tggtgcagat 900ggtaaagacg gtaccccggg taatgcaggt cagaaaggtc cgtcaggtga
acctggcagc 960cctggtaaag caggtagtgc cggtgagcag ggtccgccgg gcaaagatgg
tagtaatggt 1020gagccgggta gccctggcaa agaaggtgaa cgtggtctgg caggaccgcc
gggtcctgat 1080ggtcgccgcg gtgaaacggg ttcaccgggt attgccggtg ccctgggtaa
accaggtctg 1140gaaggtccga aaggttatcc tggtctgcgc ggtcgtgatg gtaccaatgg
caaacgtggc 1200gaacagggcg aaaccggtcc agatggtgtt cgtggtattc cgggtaacga
tggtcagagc 1260ggtaaaccgg gcattgatgg tattgatggc accaatggtc agcctggcga
agcaggttat 1320cagggtggtc gcggtacccg tggtcagctg ggtgaaacag gtgatgttgg
tcagaatggt 1380gatcgcggcg caccgggtcc ggatggtagc aaaggtagcg ccggtcgtcc
gggtttacgt 1440cacccagaaa cgctggtgaa agtaaaagat gctgaagatc agttgggtgc
acgagtgggt 1500tacatcgaac tggatctcaa cagcggtaag atccttgaga gttttcgccc
cgaagaacgt 1560tttccaatga tgagcacttt taaagttctg ctatgtggcg cggtattatc
ccgtattgac 1620gccgggcaag agcaactcgg tcgccgcata cactattctc agaatgactt
ggttgagtac 1680tcaccagtca cagaaaagca tcttacggat ggcatgacag taagagaatt
atgcagtgct 1740gccataacca tgagtgataa cactgcggcc aacttacttc tgacaacgat
cggaggaccg 1800aaggagctaa ccgctttttt gcacaacatg ggggatcatg taactcgcct
tgatcgttgg 1860gaaccggagc tgaatgaagc cataccaaac gacgagcgtg acaccacgat
gcctgtagca 1920atggcaacaa cgttgcgcaa actattaact ggcgaactac ttactctagc
ttcccggcaa 1980caattaatag actggatgga ggcggataaa gttgcaggac cacttctgcg
ctcggccctt 2040ccggctggct ggtttattgc tgataaatct ggagccggtg agcgtgggtc
tcgcggtatc 2100attgcagcac tggggccaga tggtaagccc tcccgtatcg tagttatcta
cacgacgggg 2160agtcaggcaa ctatggatga acgaaataga cagatcgctg agataggtgc
ctcactgatt 2220aagcattggt aa
223220743PRTArtificial Sequencesource/note="Description of
Artificial Sequence Synthetic polypeptide" 20Met Lys Lys Ile Trp Leu
Ala Leu Ala Gly Leu Val Leu Ala Phe Ser1 5
10 15Ala Ser Ala Ala Gln Tyr Glu Asp His His His His
His His His His 20 25 30His
Ser Gly Ser Ser Leu Val Pro Arg Gly Ser His Met Ser Gly Ser 35
40 45Ser Ser Lys Gly Glu Glu Leu Phe Thr
Gly Val Val Pro Ile Leu Val 50 55
60Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe Ser Val Arg Gly Glu65
70 75 80Gly Glu Gly Asp Ala
Thr Asn Gly Lys Leu Thr Leu Lys Phe Ile Cys 85
90 95Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr
Leu Val Thr Thr Leu 100 105
110Thr Tyr Gly Val Gln Cys Phe Ser Arg Tyr Pro Asp His Met Lys Gln
115 120 125His Asp Phe Phe Lys Ser Ala
Met Pro Glu Gly Tyr Val Gln Glu Arg 130 135
140Thr Ile Ser Phe Lys Asp Asp Gly Thr Tyr Lys Thr Arg Ala Glu
Val145 150 155 160Lys Phe
Glu Gly Asp Thr Leu Val Asn Arg Ile Glu Leu Lys Gly Ile
165 170 175Asp Phe Lys Glu Asp Gly Asn
Ile Leu Gly His Lys Leu Glu Tyr Asn 180 185
190Phe Asn Ser His Asn Val Tyr Ile Thr Ala Asp Lys Gln Lys
Asn Gly 195 200 205Ile Lys Ala Asn
Phe Lys Ile Arg His Asn Val Glu Asp Gly Ser Val 210
215 220Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro Ile
Gly Asp Gly Pro225 230 235
240Val Leu Leu Pro Asp Asn His Tyr Leu Ser Thr Gln Ser Lys Leu Ser
245 250 255Lys Asp Pro Asn Glu
Lys Arg Asp His Met Val Leu Leu Glu Phe Val 260
265 270Thr Ala Ala Gly Ile Thr His Gly Met Asp Glu Leu
Tyr Lys Ser Gly 275 280 285Ala Pro
Gly Gly Pro Gln Gly Val Val Gly Ala Asp Gly Lys Asp Gly 290
295 300Thr Pro Gly Asn Ala Gly Gln Lys Gly Pro Ser
Gly Glu Pro Gly Ser305 310 315
320Pro Gly Lys Ala Gly Ser Ala Gly Glu Gln Gly Pro Pro Gly Lys Asp
325 330 335Gly Ser Asn Gly
Glu Pro Gly Ser Pro Gly Lys Glu Gly Glu Arg Gly 340
345 350Leu Ala Gly Pro Pro Gly Pro Asp Gly Arg Arg
Gly Glu Thr Gly Ser 355 360 365Pro
Gly Ile Ala Gly Ala Leu Gly Lys Pro Gly Leu Glu Gly Pro Lys 370
375 380Gly Tyr Pro Gly Leu Arg Gly Arg Asp Gly
Thr Asn Gly Lys Arg Gly385 390 395
400Glu Gln Gly Glu Thr Gly Pro Asp Gly Val Arg Gly Ile Pro Gly
Asn 405 410 415Asp Gly Gln
Ser Gly Lys Pro Gly Ile Asp Gly Ile Asp Gly Thr Asn 420
425 430Gly Gln Pro Gly Glu Ala Gly Tyr Gln Gly
Gly Arg Gly Thr Arg Gly 435 440
445Gln Leu Gly Glu Thr Gly Asp Val Gly Gln Asn Gly Asp Arg Gly Ala 450
455 460Pro Gly Pro Asp Gly Ser Lys Gly
Ser Ala Gly Arg Pro Gly Leu Arg465 470
475 480His Pro Glu Thr Leu Val Lys Val Lys Asp Ala Glu
Asp Gln Leu Gly 485 490
495Ala Arg Val Gly Tyr Ile Glu Leu Asp Leu Asn Ser Gly Lys Ile Leu
500 505 510Glu Ser Phe Arg Pro Glu
Glu Arg Phe Pro Met Met Ser Thr Phe Lys 515 520
525Val Leu Leu Cys Gly Ala Val Leu Ser Arg Ile Asp Ala Gly
Gln Glu 530 535 540Gln Leu Gly Arg Arg
Ile His Tyr Ser Gln Asn Asp Leu Val Glu Tyr545 550
555 560Ser Pro Val Thr Glu Lys His Leu Thr Asp
Gly Met Thr Val Arg Glu 565 570
575Leu Cys Ser Ala Ala Ile Thr Met Ser Asp Asn Thr Ala Ala Asn Leu
580 585 590Leu Leu Thr Thr Ile
Gly Gly Pro Lys Glu Leu Thr Ala Phe Leu His 595
600 605Asn Met Gly Asp His Val Thr Arg Leu Asp Arg Trp
Glu Pro Glu Leu 610 615 620Asn Glu Ala
Ile Pro Asn Asp Glu Arg Asp Thr Thr Met Pro Val Ala625
630 635 640Met Ala Thr Thr Leu Arg Lys
Leu Leu Thr Gly Glu Leu Leu Thr Leu 645
650 655Ala Ser Arg Gln Gln Leu Ile Asp Trp Met Glu Ala
Asp Lys Val Ala 660 665 670Gly
Pro Leu Leu Arg Ser Ala Leu Pro Ala Gly Trp Phe Ile Ala Asp 675
680 685Lys Ser Gly Ala Gly Glu Arg Gly Ser
Arg Gly Ile Ile Ala Ala Leu 690 695
700Gly Pro Asp Gly Lys Pro Ser Arg Ile Val Val Ile Tyr Thr Thr Gly705
710 715 720Ser Gln Ala Thr
Met Asp Glu Arg Asn Arg Gln Ile Ala Glu Ile Gly 725
730 735Ala Ser Leu Ile Lys His Trp
74021786PRTHomo sapiens 21Met Ala Gly Leu Thr Ala Ala Ala Pro Arg Pro Gly
Val Leu Leu Leu1 5 10
15Leu Leu Ser Ile Leu His Pro Ser Arg Pro Gly Gly Val Pro Gly Ala
20 25 30Ile Pro Gly Gly Val Pro Gly
Gly Val Phe Tyr Pro Gly Ala Gly Leu 35 40
45Gly Ala Leu Gly Gly Gly Ala Leu Gly Pro Gly Gly Lys Pro Leu
Lys 50 55 60Pro Val Pro Gly Gly Leu
Ala Gly Ala Gly Leu Gly Ala Gly Leu Gly65 70
75 80Ala Phe Pro Ala Val Thr Phe Pro Gly Ala Leu
Val Pro Gly Gly Val 85 90
95Ala Asp Ala Ala Ala Ala Tyr Lys Ala Ala Lys Ala Gly Ala Gly Leu
100 105 110Gly Gly Val Pro Gly Val
Gly Gly Leu Gly Val Ser Ala Gly Ala Val 115 120
125Val Pro Gln Pro Gly Ala Gly Val Lys Pro Gly Lys Val Pro
Gly Val 130 135 140Gly Leu Pro Gly Val
Tyr Pro Gly Gly Val Leu Pro Gly Ala Arg Phe145 150
155 160Pro Gly Val Gly Val Leu Pro Gly Val Pro
Thr Gly Ala Gly Val Lys 165 170
175Pro Lys Ala Pro Gly Val Gly Gly Ala Phe Ala Gly Ile Pro Gly Val
180 185 190Gly Pro Phe Gly Gly
Pro Gln Pro Gly Val Pro Leu Gly Tyr Pro Ile 195
200 205Lys Ala Pro Lys Leu Pro Gly Gly Tyr Gly Leu Pro
Tyr Thr Thr Gly 210 215 220Lys Leu Pro
Tyr Gly Tyr Gly Pro Gly Gly Val Ala Gly Ala Ala Gly225
230 235 240Lys Ala Gly Tyr Pro Thr Gly
Thr Gly Val Gly Pro Gln Ala Ala Ala 245
250 255Ala Ala Ala Ala Lys Ala Ala Ala Lys Phe Gly Ala
Gly Ala Ala Gly 260 265 270Val
Leu Pro Gly Val Gly Gly Ala Gly Val Pro Gly Val Pro Gly Ala 275
280 285Ile Pro Gly Ile Gly Gly Ile Ala Gly
Val Gly Thr Pro Ala Ala Ala 290 295
300Ala Ala Ala Ala Ala Ala Ala Lys Ala Ala Lys Tyr Gly Ala Ala Ala305
310 315 320Gly Leu Val Pro
Gly Gly Pro Gly Phe Gly Pro Gly Val Val Gly Val 325
330 335Pro Gly Ala Gly Val Pro Gly Val Gly Val
Pro Gly Ala Gly Ile Pro 340 345
350Val Val Pro Gly Ala Gly Ile Pro Gly Ala Ala Val Pro Gly Val Val
355 360 365Ser Pro Glu Ala Ala Ala Lys
Ala Ala Ala Lys Ala Ala Lys Tyr Gly 370 375
380Ala Arg Pro Gly Val Gly Val Gly Gly Ile Pro Thr Tyr Gly Val
Gly385 390 395 400Ala Gly
Gly Phe Pro Gly Phe Gly Val Gly Val Gly Gly Ile Pro Gly
405 410 415Val Ala Gly Val Pro Gly Val
Gly Gly Val Pro Gly Val Gly Gly Val 420 425
430Pro Gly Val Gly Ile Ser Pro Glu Ala Gln Ala Ala Ala Ala
Ala Lys 435 440 445Ala Ala Lys Tyr
Gly Ala Ala Gly Ala Gly Val Leu Gly Gly Leu Val 450
455 460Pro Gly Pro Gln Ala Ala Val Pro Gly Val Pro Gly
Thr Gly Gly Val465 470 475
480Pro Gly Val Gly Thr Pro Ala Ala Ala Ala Ala Lys Ala Ala Ala Lys
485 490 495Ala Ala Gln Phe Gly
Leu Val Pro Gly Val Gly Val Ala Pro Gly Val 500
505 510Gly Val Ala Pro Gly Val Gly Val Ala Pro Gly Val
Gly Leu Ala Pro 515 520 525Gly Val
Gly Val Ala Pro Gly Val Gly Val Ala Pro Gly Val Gly Val 530
535 540Ala Pro Gly Ile Gly Pro Gly Gly Val Ala Ala
Ala Ala Lys Ser Ala545 550 555
560Ala Lys Val Ala Ala Lys Ala Gln Leu Arg Ala Ala Ala Gly Leu Gly
565 570 575Ala Gly Ile Pro
Gly Leu Gly Val Gly Val Gly Val Pro Gly Leu Gly 580
585 590Val Gly Ala Gly Val Pro Gly Leu Gly Val Gly
Ala Gly Val Pro Gly 595 600 605Phe
Gly Ala Gly Ala Asp Glu Gly Val Arg Arg Ser Leu Ser Pro Glu 610
615 620Leu Arg Glu Gly Asp Pro Ser Ser Ser Gln
His Leu Pro Ser Thr Pro625 630 635
640Ser Ser Pro Arg Val Pro Gly Ala Leu Ala Ala Ala Lys Ala Ala
Lys 645 650 655Tyr Gly Ala
Ala Val Pro Gly Val Leu Gly Gly Leu Gly Ala Leu Gly 660
665 670Gly Val Gly Ile Pro Gly Gly Val Val Gly
Ala Gly Pro Ala Ala Ala 675 680
685Ala Ala Ala Ala Lys Ala Ala Ala Lys Ala Ala Gln Phe Gly Leu Val 690
695 700Gly Ala Ala Gly Leu Gly Gly Leu
Gly Val Gly Gly Leu Gly Val Pro705 710
715 720Gly Val Gly Gly Leu Gly Gly Ile Pro Pro Ala Ala
Ala Ala Lys Ala 725 730
735Ala Lys Tyr Gly Ala Ala Gly Leu Gly Gly Val Leu Gly Gly Ala Gly
740 745 750Gln Phe Pro Leu Gly Gly
Val Ala Ala Arg Pro Gly Phe Gly Leu Ser 755 760
765Pro Ile Phe Pro Gly Gly Ala Cys Leu Gly Lys Ala Cys Gly
Arg Lys 770 775 780Arg
Lys785222361DNAHomo sapiens 22atggcgggtc tgacggcggc ggccccgcgg cccggagtcc
tcctgctcct gctgtccatc 60ctccacccct ctcggcctgg aggggtccct ggggccattc
ctggtggagt tcctggagga 120gtcttttatc caggggctgg tctcggagcc cttggaggag
gagcgctggg gcctggaggc 180aaacctctta agccagttcc cggagggctt gcgggtgctg
gccttggggc agggctcggc 240gccttccccg cagttacctt tccgggggct ctggtgcctg
gtggagtggc tgacgctgct 300gcagcctata aagctgctaa ggctggcgct gggcttggtg
gtgtcccagg agttggtggc 360ttaggagtgt ctgcaggtgc ggtggttcct cagcctggag
ccggagtgaa gcctgggaaa 420gtgccgggtg tggggctgcc aggtgtatac ccaggtggcg
tgctcccagg agctcggttc 480cccggtgtgg gggtgctccc tggagttccc actggagcag
gagttaagcc caaggctcca 540ggtgtaggtg gagcttttgc tggaatccca ggagttggac
cctttggggg accgcaacct 600ggagtcccac tggggtatcc catcaaggcc cccaagctgc
ctggtggcta tggactgccc 660tacaccacag ggaaactgcc ctatggctat gggcccggag
gagtggctgg tgcagcgggc 720aaggctggtt acccaacagg gacaggggtt ggcccccagg
cagcagcagc agcggcagct 780aaagcagcag caaagttcgg tgctggagca gccggagtcc
tccctggtgt tggaggggct 840ggtgttcctg gcgtgcctgg ggcaattcct ggaattggag
gcatcgcagg cgttgggact 900ccagctgcag ctgcagctgc agcagcagcc gctaaggcag
ccaagtatgg agctgctgca 960ggcttagtgc ctggtgggcc aggctttggc ccgggagtag
ttggtgtccc aggagctggc 1020gttccaggtg ttggtgtccc aggagctggg attccagttg
tcccaggtgc tgggatccca 1080ggtgctgcgg ttccaggggt tgtgtcacca gaagcagctg
ctaaggcagc tgcaaaggca 1140gccaaatacg gggccaggcc cggagtcgga gttggaggca
ttcctactta cggggttgga 1200gctgggggct ttcccggctt tggtgtcgga gtcggaggta
tccctggagt cgcaggtgtc 1260cctggtgtcg gaggtgttcc cggagtcgga ggtgtcccgg
gagttggcat ttcccccgaa 1320gctcaggcag cagctgccgc caaggctgcc aagtacggtg
ctgcaggagc aggagtgctg 1380ggtgggctag tgccaggtcc ccaggcggca gtcccaggtg
tgccgggcac gggaggagtg 1440ccaggagtgg ggaccccagc agctgcagct gctaaagcag
ccgccaaagc cgcccagttt 1500gggttagttc ctggtgtcgg cgtggctcct ggagttggcg
tggctcctgg tgtcggtgtg 1560gctcctggag ttggcttggc tcctggagtt ggcgtggctc
ctggagttgg tgtggctcct 1620ggcgttggcg tggctcccgg cattggccct ggtggagttg
cagctgcagc aaaatccgct 1680gccaaggtgg ctgccaaagc ccagctccga gctgcagctg
ggcttggtgc tggcatccct 1740ggacttggag ttggtgtcgg cgtccctgga cttggagttg
gtgctggtgt tcctggactt 1800ggagttggtg ctggtgttcc tggcttcggg gcaggtgcag
atgagggagt taggcggagc 1860ctgtcccctg agctcaggga aggagatccc tcctcctctc
agcacctccc cagcaccccc 1920tcatcaccca gggtacctgg agccctggct gccgctaaag
cagccaaata tggagcagca 1980gtgcctgggg tccttggagg gctcggggct ctcggtggag
taggcatccc aggcggtgtg 2040gtgggagccg gacccgccgc cgccgctgcc gcagccaaag
ctgctgccaa agccgcccag 2100tttggcctag tgggagccgc tgggctcgga ggactcggag
tcggagggct tggagttcca 2160ggtgttgggg gccttggagg tatacctcca gctgcagccg
ctaaagcagc taaatacggt 2220gctgctggcc ttggaggtgt cctagggggt gccgggcagt
tcccacttgg aggagtggca 2280gcaagacctg gcttcggatt gtctcccatt ttcccaggtg
gggcctgcct ggggaaagct 2340tgtggccgga agagaaaatg a
2361232418DNAArtificial
Sequencesource/note="Description of Artificial Sequence Synthetic
polynucleotide" 23atgaaaaaga tttggctggc gctggctggt ttagttttag cgtttagcgc
atcggcggcg 60cagtatgaag atcaccatca ccaccaccac catcaccact ctggctcgag
cctggtgccg 120cgcggcagcc atatgggtgg cgtaccaggc gcaattcctg ggggtgtccc
aggcggtgtt 180ttttatccgg gcgccggtct tggcgcactg ggtggcggtg cactgggccc
gggcggcaaa 240ccgctgaaac cggtaccagg tggtttagca ggcgccggct taggcgcagg
tctgggagca 300tttccggcag ttacctttcc aggggcactg gttcctggag gtgtggccga
tgcagccgcg 360gcatataaag ccgctaaagc cggtgcgggt ttaggaggcg tcccaggtgt
cggtggcctg 420ggtgttagcg ccggtgcagt tgttccgcag ccgggagcag gggttaaacc
tggtaaagtg 480ccgggagtag gtctgccagg cgtttatcct ggtggtgttt tgccgggtgc
ccgttttccg 540ggcgttggtg ttcttccagg cgtgccgacc ggagccggtg ttaaaccgaa
agcccccggt 600gttggaggtg catttgcagg catcccggga gttggcccgt ttggtggtcc
gcaacctggg 660gttccgttag gttatccgat taaagcaccg aaactgcccg gcggttatgg
tctgccgtac 720acaaccggta aactgccgta tggttatggc ccgggtggag ttgcgggtgc
agcaggtaaa 780gcgggttatc ctaccggaac cggtgtaggt ccgcaggccg ctgctgccgc
cgccgcaaaa 840gcagcggcta aatttggcgc cggagcagcg ggtgttctgc ctggagttgg
tggtgcgggc 900gtgccagggg tacctggtgc aattccgggt attggtggta ttgccggtgt
cggcaccccg 960gccgcggcag ctgcggcagc ggcggctgcc aaagctgcta aatacggtgc
cgcggcgggt 1020ctggtgccag gaggtccggg ttttggtccg ggagtggttg gcgtgcctgg
cgcaggcgtt 1080cctggtgtgg gcgttccagg tgcagggatt cctgttgtgc ctggtgccgg
tattcccggc 1140gcggccgttc cgggggtggt tagcccggaa gccgcagcga aggctgcggc
aaaggcagca 1200aagtatggcg cacgcccagg agtcggcgtg ggtggtatcc cgacctatgg
ggtgggcgca 1260gggggttttc ctggtttcgg cgtaggtgta ggaggtatac cgggcgtggc
cggtgtacca 1320ggggttggtg gcgtccctgg tgttggcggt gtgccaggtg ttggtatttc
accggaagca 1380caggcagcag ccgcagctaa ggcagcgaaa tatggtgccg ccggcgcagg
agttttaggt 1440gggctggttc cgggcccgca ggcagctgtg ccgggggttc caggcaccgg
tggtgtccct 1500ggagtcggta cgccggctgc agcggcagcc aaagcggctg cgaaagcagc
acagtttggc 1560ttagtaccgg gtgtgggagt tgcccccggc gttggcgttg ctccaggggt
gggtgttgct 1620cctggcgtcg gtctggctcc tggagtgggc gtagcacccg gtgtgggggt
ggccccgggt 1680gttggggttg caccgggtat cggtccgggc ggtgtcgcag cagcagctaa
aagcgcggcg 1740aaagttgcgg ccaaagccca actgcgcgcc gccgcgggcc tcggtgcagg
tattccgggg 1800ctgggtgtcg gagttggagt cccgggtttg ggcgtgggcg cgggagttcc
gggactggga 1860gtgggtgccg gagttcctgg ctttggtgca ggcgcagatg aaggtgttcg
tcgtagcctg 1920agtccggaac tgcgtgaagg tgatccgagt agcagccagc atctgccgag
caccccgagc 1980agcccgcgtg ttccgggtgc attagctgca gcaaaagccg ccaagtatgg
tgcagccgtg 2040ccgggcgtct taggtggtct gggcgccctg ggtggtgtag gcattccggg
aggtgttgtg 2100ggtgcaggac cggccgccgc agctgcggcc gccaaagcag ctgcaaaagc
ggcccagttt 2160ggtttagtgg gcgccgcagg tttaggcggt ttaggtgtgg gtggactggg
tgtacctggc 2220gtaggcggtc tgggtggaat tccgcccgca gcggccgcga aagcggcaaa
atatggcgcg 2280gcaggcctgg gcggcgtgct gggtggggca ggtcagtttc cgctgggcgg
ggttgccgca 2340cgtccgggat ttggtctgag cccgattttc cctggcggcg catgtctggg
taaagcatgt 2400ggtcgtaaac gtaaataa
241824805PRTArtificial Sequencesource/note="Description of
Artificial Sequence Synthetic polypeptide" 24Met Lys Lys Ile Trp Leu
Ala Leu Ala Gly Leu Val Leu Ala Phe Ser1 5
10 15Ala Ser Ala Ala Gln Tyr Glu Asp His His His His
His His His His 20 25 30His
Ser Gly Ser Ser Leu Val Pro Arg Gly Ser His Met Gly Gly Val 35
40 45Pro Gly Ala Ile Pro Gly Gly Val Pro
Gly Gly Val Phe Tyr Pro Gly 50 55
60Ala Gly Leu Gly Ala Leu Gly Gly Gly Ala Leu Gly Pro Gly Gly Lys65
70 75 80Pro Leu Lys Pro Val
Pro Gly Gly Leu Ala Gly Ala Gly Leu Gly Ala 85
90 95Gly Leu Gly Ala Phe Pro Ala Val Thr Phe Pro
Gly Ala Leu Val Pro 100 105
110Gly Gly Val Ala Asp Ala Ala Ala Ala Tyr Lys Ala Ala Lys Ala Gly
115 120 125Ala Gly Leu Gly Gly Val Pro
Gly Val Gly Gly Leu Gly Val Ser Ala 130 135
140Gly Ala Val Val Pro Gln Pro Gly Ala Gly Val Lys Pro Gly Lys
Val145 150 155 160Pro Gly
Val Gly Leu Pro Gly Val Tyr Pro Gly Gly Val Leu Pro Gly
165 170 175Ala Arg Phe Pro Gly Val Gly
Val Leu Pro Gly Val Pro Thr Gly Ala 180 185
190Gly Val Lys Pro Lys Ala Pro Gly Val Gly Gly Ala Phe Ala
Gly Ile 195 200 205Pro Gly Val Gly
Pro Phe Gly Gly Pro Gln Pro Gly Val Pro Leu Gly 210
215 220Tyr Pro Ile Lys Ala Pro Lys Leu Pro Gly Gly Tyr
Gly Leu Pro Tyr225 230 235
240Thr Thr Gly Lys Leu Pro Tyr Gly Tyr Gly Pro Gly Gly Val Ala Gly
245 250 255Ala Ala Gly Lys Ala
Gly Tyr Pro Thr Gly Thr Gly Val Gly Pro Gln 260
265 270Ala Ala Ala Ala Ala Ala Ala Lys Ala Ala Ala Lys
Phe Gly Ala Gly 275 280 285Ala Ala
Gly Val Leu Pro Gly Val Gly Gly Ala Gly Val Pro Gly Val 290
295 300Pro Gly Ala Ile Pro Gly Ile Gly Gly Ile Ala
Gly Val Gly Thr Pro305 310 315
320Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Lys Ala Ala Lys Tyr Gly
325 330 335Ala Ala Ala Gly
Leu Val Pro Gly Gly Pro Gly Phe Gly Pro Gly Val 340
345 350Val Gly Val Pro Gly Ala Gly Val Pro Gly Val
Gly Val Pro Gly Ala 355 360 365Gly
Ile Pro Val Val Pro Gly Ala Gly Ile Pro Gly Ala Ala Val Pro 370
375 380Gly Val Val Ser Pro Glu Ala Ala Ala Lys
Ala Ala Ala Lys Ala Ala385 390 395
400Lys Tyr Gly Ala Arg Pro Gly Val Gly Val Gly Gly Ile Pro Thr
Tyr 405 410 415Gly Val Gly
Ala Gly Gly Phe Pro Gly Phe Gly Val Gly Val Gly Gly 420
425 430Ile Pro Gly Val Ala Gly Val Pro Gly Val
Gly Gly Val Pro Gly Val 435 440
445Gly Gly Val Pro Gly Val Gly Ile Ser Pro Glu Ala Gln Ala Ala Ala 450
455 460Ala Ala Lys Ala Ala Lys Tyr Gly
Ala Ala Gly Ala Gly Val Leu Gly465 470
475 480Gly Leu Val Pro Gly Pro Gln Ala Ala Val Pro Gly
Val Pro Gly Thr 485 490
495Gly Gly Val Pro Gly Val Gly Thr Pro Ala Ala Ala Ala Ala Lys Ala
500 505 510Ala Ala Lys Ala Ala Gln
Phe Gly Leu Val Pro Gly Val Gly Val Ala 515 520
525Pro Gly Val Gly Val Ala Pro Gly Val Gly Val Ala Pro Gly
Val Gly 530 535 540Leu Ala Pro Gly Val
Gly Val Ala Pro Gly Val Gly Val Ala Pro Gly545 550
555 560Val Gly Val Ala Pro Gly Ile Gly Pro Gly
Gly Val Ala Ala Ala Ala 565 570
575Lys Ser Ala Ala Lys Val Ala Ala Lys Ala Gln Leu Arg Ala Ala Ala
580 585 590Gly Leu Gly Ala Gly
Ile Pro Gly Leu Gly Val Gly Val Gly Val Pro 595
600 605Gly Leu Gly Val Gly Ala Gly Val Pro Gly Leu Gly
Val Gly Ala Gly 610 615 620Val Pro Gly
Phe Gly Ala Gly Ala Asp Glu Gly Val Arg Arg Ser Leu625
630 635 640Ser Pro Glu Leu Arg Glu Gly
Asp Pro Ser Ser Ser Gln His Leu Pro 645
650 655Ser Thr Pro Ser Ser Pro Arg Val Pro Gly Ala Leu
Ala Ala Ala Lys 660 665 670Ala
Ala Lys Tyr Gly Ala Ala Val Pro Gly Val Leu Gly Gly Leu Gly 675
680 685Ala Leu Gly Gly Val Gly Ile Pro Gly
Gly Val Val Gly Ala Gly Pro 690 695
700Ala Ala Ala Ala Ala Ala Ala Lys Ala Ala Ala Lys Ala Ala Gln Phe705
710 715 720Gly Leu Val Gly
Ala Ala Gly Leu Gly Gly Leu Gly Val Gly Gly Leu 725
730 735Gly Val Pro Gly Val Gly Gly Leu Gly Gly
Ile Pro Pro Ala Ala Ala 740 745
750Ala Lys Ala Ala Lys Tyr Gly Ala Ala Gly Leu Gly Gly Val Leu Gly
755 760 765Gly Ala Gly Gln Phe Pro Leu
Gly Gly Val Ala Ala Arg Pro Gly Phe 770 775
780Gly Leu Ser Pro Ile Phe Pro Gly Gly Ala Cys Leu Gly Lys Ala
Cys785 790 795 800Gly Arg
Lys Arg Lys 805252358DNAArtificial
Sequencesource/note="Description of Artificial Sequence Synthetic
polynucleotide" 25atgaaaaaga tttggctggc gctggctggt ttagttttag cgtttagcgc
atcggcggcg 60cagtatgaag atatgggtgg cgtaccaggc gcaattcctg ggggtgtccc
aggcggtgtt 120ttttatccgg gcgccggtct tggcgcactg ggtggcggtg cactgggccc
gggcggcaaa 180ccgctgaaac cggtaccagg tggtttagca ggcgccggct taggcgcagg
tctgggagca 240tttccggcag ttacctttcc aggggcactg gttcctggag gtgtggccga
tgcagccgcg 300gcatataaag ccgctaaagc cggtgcgggt ttaggaggcg tcccaggtgt
cggtggcctg 360ggtgttagcg ccggtgcagt tgttccgcag ccgggagcag gggttaaacc
tggtaaagtg 420ccgggagtag gtctgccagg cgtttatcct ggtggtgttt tgccgggtgc
ccgttttccg 480ggcgttggtg ttcttccagg cgtgccgacc ggagccggtg ttaaaccgaa
agcccccggt 540gttggaggtg catttgcagg catcccggga gttggcccgt ttggtggtcc
gcaacctggg 600gttccgttag gttatccgat taaagcaccg aaactgcccg gcggttatgg
tctgccgtac 660acaaccggta aactgccgta tggttatggc ccgggtggag ttgcgggtgc
agcaggtaaa 720gcgggttatc ctaccggaac cggtgtaggt ccgcaggccg ctgctgccgc
cgccgcaaaa 780gcagcggcta aatttggcgc cggagcagcg ggtgttctgc ctggagttgg
tggtgcgggc 840gtgccagggg tacctggtgc aattccgggt attggtggta ttgccggtgt
cggcaccccg 900gccgcggcag ctgcggcagc ggcggctgcc aaagctgcta aatacggtgc
cgcggcgggt 960ctggtgccag gaggtccggg ttttggtccg ggagtggttg gcgtgcctgg
cgcaggcgtt 1020cctggtgtgg gcgttccagg tgcagggatt cctgttgtgc ctggtgccgg
tattcccggc 1080gcggccgttc cgggggtggt tagcccggaa gccgcagcga aggctgcggc
aaaggcagca 1140aagtatggcg cacgcccagg agtcggcgtg ggtggtatcc cgacctatgg
ggtgggcgca 1200gggggttttc ctggtttcgg cgtaggtgta ggaggtatac cgggcgtggc
cggtgtacca 1260ggggttggtg gcgtccctgg tgttggcggt gtgccaggtg ttggtatttc
accggaagca 1320caggcagcag ccgcagctaa ggcagcgaaa tatggtgccg ccggcgcagg
agttttaggt 1380gggctggttc cgggcccgca ggcagctgtg ccgggggttc caggcaccgg
tggtgtccct 1440ggagtcggta cgccggctgc agcggcagcc aaagcggctg cgaaagcagc
acagtttggc 1500ttagtaccgg gtgtgggagt tgcccccggc gttggcgttg ctccaggggt
gggtgttgct 1560cctggcgtcg gtctggctcc tggagtgggc gtagcacccg gtgtgggggt
ggccccgggt 1620gttggggttg caccgggtat cggtccgggc ggtgtcgcag cagcagctaa
aagcgcggcg 1680aaagttgcgg ccaaagccca actgcgcgcc gccgcgggcc tcggtgcagg
tattccgggg 1740ctgggtgtcg gagttggagt cccgggtttg ggcgtgggcg cgggagttcc
gggactggga 1800gtgggtgccg gagttcctgg ctttggtgca ggcgcagatg aaggtgttcg
tcgtagcctg 1860agtccggaac tgcgtgaagg tgatccgagt agcagccagc atctgccgag
caccccgagc 1920agcccgcgtg ttccgggtgc attagctgca gcaaaagccg ccaagtatgg
tgcagccgtg 1980ccgggcgtct taggtggtct gggcgccctg ggtggtgtag gcattccggg
aggtgttgtg 2040ggtgcaggac cggccgccgc agctgcggcc gccaaagcag ctgcaaaagc
ggcccagttt 2100ggtttagtgg gcgccgcagg tttaggcggt ttaggtgtgg gtggactggg
tgtacctggc 2160gtaggcggtc tgggtggaat tccgcccgca gcggccgcga aagcggcaaa
atatggcgcg 2220gcaggcctgg gcggcgtgct gggtggggca ggtcagtttc cgctgggcgg
ggttgccgca 2280cgtccgggat ttggtctgag cccgattttc cctggcggcg catgtctggg
taaagcatgt 2340ggtcgtaaac gtaaataa
235826785PRTArtificial Sequencesource/note="Description of
Artificial Sequence Synthetic polypeptide" 26Met Lys Lys Ile Trp Leu
Ala Leu Ala Gly Leu Val Leu Ala Phe Ser1 5
10 15Ala Ser Ala Ala Gln Tyr Glu Asp Met Gly Gly Val
Pro Gly Ala Ile 20 25 30Pro
Gly Gly Val Pro Gly Gly Val Phe Tyr Pro Gly Ala Gly Leu Gly 35
40 45Ala Leu Gly Gly Gly Ala Leu Gly Pro
Gly Gly Lys Pro Leu Lys Pro 50 55
60Val Pro Gly Gly Leu Ala Gly Ala Gly Leu Gly Ala Gly Leu Gly Ala65
70 75 80Phe Pro Ala Val Thr
Phe Pro Gly Ala Leu Val Pro Gly Gly Val Ala 85
90 95Asp Ala Ala Ala Ala Tyr Lys Ala Ala Lys Ala
Gly Ala Gly Leu Gly 100 105
110Gly Val Pro Gly Val Gly Gly Leu Gly Val Ser Ala Gly Ala Val Val
115 120 125Pro Gln Pro Gly Ala Gly Val
Lys Pro Gly Lys Val Pro Gly Val Gly 130 135
140Leu Pro Gly Val Tyr Pro Gly Gly Val Leu Pro Gly Ala Arg Phe
Pro145 150 155 160Gly Val
Gly Val Leu Pro Gly Val Pro Thr Gly Ala Gly Val Lys Pro
165 170 175Lys Ala Pro Gly Val Gly Gly
Ala Phe Ala Gly Ile Pro Gly Val Gly 180 185
190Pro Phe Gly Gly Pro Gln Pro Gly Val Pro Leu Gly Tyr Pro
Ile Lys 195 200 205Ala Pro Lys Leu
Pro Gly Gly Tyr Gly Leu Pro Tyr Thr Thr Gly Lys 210
215 220Leu Pro Tyr Gly Tyr Gly Pro Gly Gly Val Ala Gly
Ala Ala Gly Lys225 230 235
240Ala Gly Tyr Pro Thr Gly Thr Gly Val Gly Pro Gln Ala Ala Ala Ala
245 250 255Ala Ala Ala Lys Ala
Ala Ala Lys Phe Gly Ala Gly Ala Ala Gly Val 260
265 270Leu Pro Gly Val Gly Gly Ala Gly Val Pro Gly Val
Pro Gly Ala Ile 275 280 285Pro Gly
Ile Gly Gly Ile Ala Gly Val Gly Thr Pro Ala Ala Ala Ala 290
295 300Ala Ala Ala Ala Ala Ala Lys Ala Ala Lys Tyr
Gly Ala Ala Ala Gly305 310 315
320Leu Val Pro Gly Gly Pro Gly Phe Gly Pro Gly Val Val Gly Val Pro
325 330 335Gly Ala Gly Val
Pro Gly Val Gly Val Pro Gly Ala Gly Ile Pro Val 340
345 350Val Pro Gly Ala Gly Ile Pro Gly Ala Ala Val
Pro Gly Val Val Ser 355 360 365Pro
Glu Ala Ala Ala Lys Ala Ala Ala Lys Ala Ala Lys Tyr Gly Ala 370
375 380Arg Pro Gly Val Gly Val Gly Gly Ile Pro
Thr Tyr Gly Val Gly Ala385 390 395
400Gly Gly Phe Pro Gly Phe Gly Val Gly Val Gly Gly Ile Pro Gly
Val 405 410 415Ala Gly Val
Pro Gly Val Gly Gly Val Pro Gly Val Gly Gly Val Pro 420
425 430Gly Val Gly Ile Ser Pro Glu Ala Gln Ala
Ala Ala Ala Ala Lys Ala 435 440
445Ala Lys Tyr Gly Ala Ala Gly Ala Gly Val Leu Gly Gly Leu Val Pro 450
455 460Gly Pro Gln Ala Ala Val Pro Gly
Val Pro Gly Thr Gly Gly Val Pro465 470
475 480Gly Val Gly Thr Pro Ala Ala Ala Ala Ala Lys Ala
Ala Ala Lys Ala 485 490
495Ala Gln Phe Gly Leu Val Pro Gly Val Gly Val Ala Pro Gly Val Gly
500 505 510Val Ala Pro Gly Val Gly
Val Ala Pro Gly Val Gly Leu Ala Pro Gly 515 520
525Val Gly Val Ala Pro Gly Val Gly Val Ala Pro Gly Val Gly
Val Ala 530 535 540Pro Gly Ile Gly Pro
Gly Gly Val Ala Ala Ala Ala Lys Ser Ala Ala545 550
555 560Lys Val Ala Ala Lys Ala Gln Leu Arg Ala
Ala Ala Gly Leu Gly Ala 565 570
575Gly Ile Pro Gly Leu Gly Val Gly Val Gly Val Pro Gly Leu Gly Val
580 585 590Gly Ala Gly Val Pro
Gly Leu Gly Val Gly Ala Gly Val Pro Gly Phe 595
600 605Gly Ala Gly Ala Asp Glu Gly Val Arg Arg Ser Leu
Ser Pro Glu Leu 610 615 620Arg Glu Gly
Asp Pro Ser Ser Ser Gln His Leu Pro Ser Thr Pro Ser625
630 635 640Ser Pro Arg Val Pro Gly Ala
Leu Ala Ala Ala Lys Ala Ala Lys Tyr 645
650 655Gly Ala Ala Val Pro Gly Val Leu Gly Gly Leu Gly
Ala Leu Gly Gly 660 665 670Val
Gly Ile Pro Gly Gly Val Val Gly Ala Gly Pro Ala Ala Ala Ala 675
680 685Ala Ala Ala Lys Ala Ala Ala Lys Ala
Ala Gln Phe Gly Leu Val Gly 690 695
700Ala Ala Gly Leu Gly Gly Leu Gly Val Gly Gly Leu Gly Val Pro Gly705
710 715 720Val Gly Gly Leu
Gly Gly Ile Pro Pro Ala Ala Ala Ala Lys Ala Ala 725
730 735Lys Tyr Gly Ala Ala Gly Leu Gly Gly Val
Leu Gly Gly Ala Gly Gln 740 745
750Phe Pro Leu Gly Gly Val Ala Ala Arg Pro Gly Phe Gly Leu Ser Pro
755 760 765Ile Phe Pro Gly Gly Ala Cys
Leu Gly Lys Ala Cys Gly Arg Lys Arg 770 775
780Lys785273945DNAArtificial Sequencesource/note="Description of
Artificial Sequence Synthetic polynucleotide" 27atgaaaaaga
tttggctggc gctggctggt ttagttttag cgtttagcgc atcggcggcg 60cagtatgaag
atcaccatca ccaccaccac catcaccact ctggctcgag cctggtgccg 120cgcggcagcc
atatgtctgg ctcgagcagt aaaggtgaag aactgttcac cggtgttgtt 180ccgatcctgg
ttgaactgga tggtgatgtt aacggccaca aattctctgt tcgtggtgaa 240ggtgaaggtg
atgcaaccaa cggtaaactg accctgaaat tcatctgcac taccggtaaa 300ctgccggttc
catggccgac tctggtgact accctgacct atggtgttca gtgtttttct 360cgttacccgg
atcacatgaa gcagcatgat ttcttcaaat ctgcaatgcc ggaaggttat 420gtacaggagc
gcaccatttc tttcaaagac gatggcacct acaaaacccg tgcagaggtt 480aaatttgaag
gtgatactct ggtgaaccgt attgaactga aaggcattga tttcaaagag 540gacggcaaca
tcctgggcca caaactggaa tataacttca actcccataa cgtttacatc 600accgcagaca
aacagaagaa cggtatcaaa gctaacttca aaattcgcca taacgttgaa 660gacggtagcg
tacagctggc ggaccactac cagcagaaca ctccgatcgg tgatggtccg 720gttctgctgc
cggataacca ctacctgtcc acccagtcta aactgtccaa agacccgaac 780gaaaagcgcg
accacatggt gctgctggag ttcgttactg cagcaggtat cacgcacggc 840atggatgaac
tctacaaatc tggcgcgccg ggcggtggcg taccaggcgc aattcctggg 900ggtgtcccag
gcggtgtttt ttatccgggc gccggtcttg gcgcactggg tggcggtgca 960ctgggcccgg
gcggcaaacc gctgaaaccg gtaccaggtg gtttagcagg cgccggctta 1020ggcgcaggtc
tgggagcatt tccggcagtt acctttccag gggcactggt tcctggaggt 1080gtggccgatg
cagccgcggc atataaagcc gctaaagccg gtgcgggttt aggaggcgtc 1140ccaggtgtcg
gtggcctggg tgttagcgcc ggtgcagttg ttccgcagcc gggagcaggg 1200gttaaacctg
gtaaagtgcc gggagtaggt ctgccaggcg tttatcctgg tggtgttttg 1260ccgggtgccc
gttttccggg cgttggtgtt cttccaggcg tgccgaccgg agccggtgtt 1320aaaccgaaag
cccccggtgt tggaggtgca tttgcaggca tcccgggagt tggcccgttt 1380ggtggtccgc
aacctggggt tccgttaggt tatccgatta aagcaccgaa actgcccggc 1440ggttatggtc
tgccgtacac aaccggtaaa ctgccgtatg gttatggccc gggtggagtt 1500gcgggtgcag
caggtaaagc gggttatcct accggaaccg gtgtaggtcc gcaggccgct 1560gctgccgccg
ccgcaaaagc agcggctaaa tttggcgccg gagcagcggg tgttctgcct 1620ggagttggtg
gtgcgggcgt gccaggggta cctggtgcaa ttccgggtat tggtggtatt 1680gccggtgtcg
gcaccccggc cgcggcagct gcggcagcgg cggctgccaa agctgctaaa 1740tacggtgccg
cggcgggtct ggtgccagga ggtccgggtt ttggtccggg agtggttggc 1800gtgcctggcg
caggcgttcc tggtgtgggc gttccaggtg cagggattcc tgttgtgcct 1860ggtgccggta
ttcccggcgc ggccgttccg ggggtggtta gcccggaagc cgcagcgaag 1920gctgcggcaa
aggcagcaaa gtatggcgca cgcccaggag tcggcgtggg tggtatcccg 1980acctatgggg
tgggcgcagg gggttttcct ggtttcggcg taggtgtagg aggtataccg 2040ggcgtggccg
gtgtaccagg ggttggtggc gtccctggtg ttggcggtgt gccaggtgtt 2100ggtatttcac
cggaagcaca ggcagcagcc gcagctaagg cagcgaaata tggtgccgcc 2160ggcgcaggag
ttttaggtgg gctggttccg ggcccgcagg cagctgtgcc gggggttcca 2220ggcaccggtg
gtgtccctgg agtcggtacg ccggctgcag cggcagccaa agcggctgcg 2280aaagcagcac
agtttggctt agtaccgggt gtgggagttg cccccggcgt tggcgttgct 2340ccaggggtgg
gtgttgctcc tggcgtcggt ctggctcctg gagtgggcgt agcacccggt 2400gtgggggtgg
ccccgggtgt tggggttgca ccgggtatcg gtccgggcgg tgtcgcagca 2460gcagctaaaa
gcgcggcgaa agttgcggcc aaagcccaac tgcgcgccgc cgcgggcctc 2520ggtgcaggta
ttccggggct gggtgtcgga gttggagtcc cgggtttggg cgtgggcgcg 2580ggagttccgg
gactgggagt gggtgccgga gttcctggct ttggtgcagg cgcagatgaa 2640ggtgttcgtc
gtagcctgag tccggaactg cgtgaaggtg atccgagtag cagccagcat 2700ctgccgagca
ccccgagcag cccgcgtgtt ccgggtgcat tagctgcagc aaaagccgcc 2760aagtatggtg
cagccgtgcc gggcgtctta ggtggtctgg gcgccctggg tggtgtaggc 2820attccgggag
gtgttgtggg tgcaggaccg gccgccgcag ctgcggccgc caaagcagct 2880gcaaaagcgg
cccagtttgg tttagtgggc gccgcaggtt taggcggttt aggtgtgggt 2940ggactgggtg
tacctggcgt aggcggtctg ggtggaattc cgcccgcagc ggccgcgaaa 3000gcggcaaaat
atggcgcggc aggcctgggc ggcgtgctgg gtggggcagg tcagtttccg 3060ctgggcgggg
ttgccgcacg tccgggattt ggtctgagcc cgattttccc tggcggcgca 3120tgtctgggta
aagcatgtgg tcgtaaacgt aaacacccag aaacgctggt gaaagtaaaa 3180gatgctgaag
atcagttggg tgcacgagtg ggttacatcg aactggatct caacagcggt 3240aagatccttg
agagttttcg ccccgaagaa cgttttccaa tgatgagcac ttttaaagtt 3300ctgctatgtg
gcgcggtatt atcccgtatt gacgccgggc aagagcaact cggtcgccgc 3360atacactatt
ctcagaatga cttggttgag tactcaccag tcacagaaaa gcatcttacg 3420gatggcatga
cagtaagaga attatgcagt gctgccataa ccatgagtga taacactgcg 3480gccaacttac
ttctgacaac gatcggagga ccgaaggagc taaccgcttt tttgcacaac 3540atgggggatc
atgtaactcg ccttgatcgt tgggaaccgg agctgaatga agccatacca 3600aacgacgagc
gtgacaccac gatgcctgta gcaatggcaa caacgttgcg caaactatta 3660actggcgaac
tacttactct agcttcccgg caacaattaa tagactggat ggaggcggat 3720aaagttgcag
gaccacttct gcgctcggcc cttccggctg gctggtttat tgctgataaa 3780tctggagccg
gtgagcgtgg gtctcgcggt atcattgcag cactggggcc agatggtaag 3840ccctcccgta
tcgtagttat ctacacgacg gggagtcagg caactatgga tgaacgaaat 3900agacagatcg
ctgagatagg tgcctcactg attaagcatt ggtaa
3945281314PRTArtificial Sequencesource/note="Description of Artificial
Sequence Synthetic polypeptide" 28Met Lys Lys Ile Trp Leu Ala Leu
Ala Gly Leu Val Leu Ala Phe Ser1 5 10
15Ala Ser Ala Ala Gln Tyr Glu Asp His His His His His His
His His 20 25 30His Ser Gly
Ser Ser Leu Val Pro Arg Gly Ser His Met Ser Gly Ser 35
40 45Ser Ser Lys Gly Glu Glu Leu Phe Thr Gly Val
Val Pro Ile Leu Val 50 55 60Glu Leu
Asp Gly Asp Val Asn Gly His Lys Phe Ser Val Arg Gly Glu65
70 75 80Gly Glu Gly Asp Ala Thr Asn
Gly Lys Leu Thr Leu Lys Phe Ile Cys 85 90
95Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu Val
Thr Thr Leu 100 105 110Thr Tyr
Gly Val Gln Cys Phe Ser Arg Tyr Pro Asp His Met Lys Gln 115
120 125His Asp Phe Phe Lys Ser Ala Met Pro Glu
Gly Tyr Val Gln Glu Arg 130 135 140Thr
Ile Ser Phe Lys Asp Asp Gly Thr Tyr Lys Thr Arg Ala Glu Val145
150 155 160Lys Phe Glu Gly Asp Thr
Leu Val Asn Arg Ile Glu Leu Lys Gly Ile 165
170 175Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His Lys
Leu Glu Tyr Asn 180 185 190Phe
Asn Ser His Asn Val Tyr Ile Thr Ala Asp Lys Gln Lys Asn Gly 195
200 205Ile Lys Ala Asn Phe Lys Ile Arg His
Asn Val Glu Asp Gly Ser Val 210 215
220Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro Ile Gly Asp Gly Pro225
230 235 240Val Leu Leu Pro
Asp Asn His Tyr Leu Ser Thr Gln Ser Lys Leu Ser 245
250 255Lys Asp Pro Asn Glu Lys Arg Asp His Met
Val Leu Leu Glu Phe Val 260 265
270Thr Ala Ala Gly Ile Thr His Gly Met Asp Glu Leu Tyr Lys Ser Gly
275 280 285Ala Pro Gly Gly Gly Val Pro
Gly Ala Ile Pro Gly Gly Val Pro Gly 290 295
300Gly Val Phe Tyr Pro Gly Ala Gly Leu Gly Ala Leu Gly Gly Gly
Ala305 310 315 320Leu Gly
Pro Gly Gly Lys Pro Leu Lys Pro Val Pro Gly Gly Leu Ala
325 330 335Gly Ala Gly Leu Gly Ala Gly
Leu Gly Ala Phe Pro Ala Val Thr Phe 340 345
350Pro Gly Ala Leu Val Pro Gly Gly Val Ala Asp Ala Ala Ala
Ala Tyr 355 360 365Lys Ala Ala Lys
Ala Gly Ala Gly Leu Gly Gly Val Pro Gly Val Gly 370
375 380Gly Leu Gly Val Ser Ala Gly Ala Val Val Pro Gln
Pro Gly Ala Gly385 390 395
400Val Lys Pro Gly Lys Val Pro Gly Val Gly Leu Pro Gly Val Tyr Pro
405 410 415Gly Gly Val Leu Pro
Gly Ala Arg Phe Pro Gly Val Gly Val Leu Pro 420
425 430Gly Val Pro Thr Gly Ala Gly Val Lys Pro Lys Ala
Pro Gly Val Gly 435 440 445Gly Ala
Phe Ala Gly Ile Pro Gly Val Gly Pro Phe Gly Gly Pro Gln 450
455 460Pro Gly Val Pro Leu Gly Tyr Pro Ile Lys Ala
Pro Lys Leu Pro Gly465 470 475
480Gly Tyr Gly Leu Pro Tyr Thr Thr Gly Lys Leu Pro Tyr Gly Tyr Gly
485 490 495Pro Gly Gly Val
Ala Gly Ala Ala Gly Lys Ala Gly Tyr Pro Thr Gly 500
505 510Thr Gly Val Gly Pro Gln Ala Ala Ala Ala Ala
Ala Ala Lys Ala Ala 515 520 525Ala
Lys Phe Gly Ala Gly Ala Ala Gly Val Leu Pro Gly Val Gly Gly 530
535 540Ala Gly Val Pro Gly Val Pro Gly Ala Ile
Pro Gly Ile Gly Gly Ile545 550 555
560Ala Gly Val Gly Thr Pro Ala Ala Ala Ala Ala Ala Ala Ala Ala
Ala 565 570 575Lys Ala Ala
Lys Tyr Gly Ala Ala Ala Gly Leu Val Pro Gly Gly Pro 580
585 590Gly Phe Gly Pro Gly Val Val Gly Val Pro
Gly Ala Gly Val Pro Gly 595 600
605Val Gly Val Pro Gly Ala Gly Ile Pro Val Val Pro Gly Ala Gly Ile 610
615 620Pro Gly Ala Ala Val Pro Gly Val
Val Ser Pro Glu Ala Ala Ala Lys625 630
635 640Ala Ala Ala Lys Ala Ala Lys Tyr Gly Ala Arg Pro
Gly Val Gly Val 645 650
655Gly Gly Ile Pro Thr Tyr Gly Val Gly Ala Gly Gly Phe Pro Gly Phe
660 665 670Gly Val Gly Val Gly Gly
Ile Pro Gly Val Ala Gly Val Pro Gly Val 675 680
685Gly Gly Val Pro Gly Val Gly Gly Val Pro Gly Val Gly Ile
Ser Pro 690 695 700Glu Ala Gln Ala Ala
Ala Ala Ala Lys Ala Ala Lys Tyr Gly Ala Ala705 710
715 720Gly Ala Gly Val Leu Gly Gly Leu Val Pro
Gly Pro Gln Ala Ala Val 725 730
735Pro Gly Val Pro Gly Thr Gly Gly Val Pro Gly Val Gly Thr Pro Ala
740 745 750Ala Ala Ala Ala Lys
Ala Ala Ala Lys Ala Ala Gln Phe Gly Leu Val 755
760 765Pro Gly Val Gly Val Ala Pro Gly Val Gly Val Ala
Pro Gly Val Gly 770 775 780Val Ala Pro
Gly Val Gly Leu Ala Pro Gly Val Gly Val Ala Pro Gly785
790 795 800Val Gly Val Ala Pro Gly Val
Gly Val Ala Pro Gly Ile Gly Pro Gly 805
810 815Gly Val Ala Ala Ala Ala Lys Ser Ala Ala Lys Val
Ala Ala Lys Ala 820 825 830Gln
Leu Arg Ala Ala Ala Gly Leu Gly Ala Gly Ile Pro Gly Leu Gly 835
840 845Val Gly Val Gly Val Pro Gly Leu Gly
Val Gly Ala Gly Val Pro Gly 850 855
860Leu Gly Val Gly Ala Gly Val Pro Gly Phe Gly Ala Gly Ala Asp Glu865
870 875 880Gly Val Arg Arg
Ser Leu Ser Pro Glu Leu Arg Glu Gly Asp Pro Ser 885
890 895Ser Ser Gln His Leu Pro Ser Thr Pro Ser
Ser Pro Arg Val Pro Gly 900 905
910Ala Leu Ala Ala Ala Lys Ala Ala Lys Tyr Gly Ala Ala Val Pro Gly
915 920 925Val Leu Gly Gly Leu Gly Ala
Leu Gly Gly Val Gly Ile Pro Gly Gly 930 935
940Val Val Gly Ala Gly Pro Ala Ala Ala Ala Ala Ala Ala Lys Ala
Ala945 950 955 960Ala Lys
Ala Ala Gln Phe Gly Leu Val Gly Ala Ala Gly Leu Gly Gly
965 970 975Leu Gly Val Gly Gly Leu Gly
Val Pro Gly Val Gly Gly Leu Gly Gly 980 985
990Ile Pro Pro Ala Ala Ala Ala Lys Ala Ala Lys Tyr Gly Ala
Ala Gly 995 1000 1005Leu Gly Gly
Val Leu Gly Gly Ala Gly Gln Phe Pro Leu Gly Gly 1010
1015 1020Val Ala Ala Arg Pro Gly Phe Gly Leu Ser Pro
Ile Phe Pro Gly 1025 1030 1035Gly Ala
Cys Leu Gly Lys Ala Cys Gly Arg Lys Arg Lys His Pro 1040
1045 1050Glu Thr Leu Val Lys Val Lys Asp Ala Glu
Asp Gln Leu Gly Ala 1055 1060 1065Arg
Val Gly Tyr Ile Glu Leu Asp Leu Asn Ser Gly Lys Ile Leu 1070
1075 1080Glu Ser Phe Arg Pro Glu Glu Arg Phe
Pro Met Met Ser Thr Phe 1085 1090
1095Lys Val Leu Leu Cys Gly Ala Val Leu Ser Arg Ile Asp Ala Gly
1100 1105 1110Gln Glu Gln Leu Gly Arg
Arg Ile His Tyr Ser Gln Asn Asp Leu 1115 1120
1125Val Glu Tyr Ser Pro Val Thr Glu Lys His Leu Thr Asp Gly
Met 1130 1135 1140Thr Val Arg Glu Leu
Cys Ser Ala Ala Ile Thr Met Ser Asp Asn 1145 1150
1155Thr Ala Ala Asn Leu Leu Leu Thr Thr Ile Gly Gly Pro
Lys Glu 1160 1165 1170Leu Thr Ala Phe
Leu His Asn Met Gly Asp His Val Thr Arg Leu 1175
1180 1185Asp Arg Trp Glu Pro Glu Leu Asn Glu Ala Ile
Pro Asn Asp Glu 1190 1195 1200Arg Asp
Thr Thr Met Pro Val Ala Met Ala Thr Thr Leu Arg Lys 1205
1210 1215Leu Leu Thr Gly Glu Leu Leu Thr Leu Ala
Ser Arg Gln Gln Leu 1220 1225 1230Ile
Asp Trp Met Glu Ala Asp Lys Val Ala Gly Pro Leu Leu Arg 1235
1240 1245Ser Ala Leu Pro Ala Gly Trp Phe Ile
Ala Asp Lys Ser Gly Ala 1250 1255
1260Gly Glu Arg Gly Ser Arg Gly Ile Ile Ala Ala Leu Gly Pro Asp
1265 1270 1275Gly Lys Pro Ser Arg Ile
Val Val Ile Tyr Thr Thr Gly Ser Gln 1280 1285
1290Ala Thr Met Asp Glu Arg Asn Arg Gln Ile Ala Glu Ile Gly
Ala 1295 1300 1305Ser Leu Ile Lys His
Trp 131029760PRTArtificial Sequencesource/note="Description of
Artificial Sequence Synthetic polypeptide" 29Gly Gly Val Pro Gly Ala
Ile Pro Gly Gly Val Pro Gly Gly Val Phe1 5
10 15Tyr Pro Gly Ala Gly Leu Gly Ala Leu Gly Gly Gly
Ala Leu Gly Pro 20 25 30Gly
Gly Lys Pro Leu Lys Pro Val Pro Gly Gly Leu Ala Gly Ala Gly 35
40 45Leu Gly Ala Gly Leu Gly Ala Phe Pro
Ala Val Thr Phe Pro Gly Ala 50 55
60Leu Val Pro Gly Gly Val Ala Asp Ala Ala Ala Ala Tyr Lys Ala Ala65
70 75 80Lys Ala Gly Ala Gly
Leu Gly Gly Val Pro Gly Val Gly Gly Leu Gly 85
90 95Val Ser Ala Gly Ala Val Val Pro Gln Pro Gly
Ala Gly Val Lys Pro 100 105
110Gly Lys Val Pro Gly Val Gly Leu Pro Gly Val Tyr Pro Gly Gly Val
115 120 125Leu Pro Gly Ala Arg Phe Pro
Gly Val Gly Val Leu Pro Gly Val Pro 130 135
140Thr Gly Ala Gly Val Lys Pro Lys Ala Pro Gly Val Gly Gly Ala
Phe145 150 155 160Ala Gly
Ile Pro Gly Val Gly Pro Phe Gly Gly Pro Gln Pro Gly Val
165 170 175Pro Leu Gly Tyr Pro Ile Lys
Ala Pro Lys Leu Pro Gly Gly Tyr Gly 180 185
190Leu Pro Tyr Thr Thr Gly Lys Leu Pro Tyr Gly Tyr Gly Pro
Gly Gly 195 200 205Val Ala Gly Ala
Ala Gly Lys Ala Gly Tyr Pro Thr Gly Thr Gly Val 210
215 220Gly Pro Gln Ala Ala Ala Ala Ala Ala Ala Lys Ala
Ala Ala Lys Phe225 230 235
240Gly Ala Gly Ala Ala Gly Val Leu Pro Gly Val Gly Gly Ala Gly Val
245 250 255Pro Gly Val Pro Gly
Ala Ile Pro Gly Ile Gly Gly Ile Ala Gly Val 260
265 270Gly Thr Pro Ala Ala Ala Ala Ala Ala Ala Ala Ala
Ala Lys Ala Ala 275 280 285Lys Tyr
Gly Ala Ala Ala Gly Leu Val Pro Gly Gly Pro Gly Phe Gly 290
295 300Pro Gly Val Val Gly Val Pro Gly Ala Gly Val
Pro Gly Val Gly Val305 310 315
320Pro Gly Ala Gly Ile Pro Val Val Pro Gly Ala Gly Ile Pro Gly Ala
325 330 335Ala Val Pro Gly
Val Val Ser Pro Glu Ala Ala Ala Lys Ala Ala Ala 340
345 350Lys Ala Ala Lys Tyr Gly Ala Arg Pro Gly Val
Gly Val Gly Gly Ile 355 360 365Pro
Thr Tyr Gly Val Gly Ala Gly Gly Phe Pro Gly Phe Gly Val Gly 370
375 380Val Gly Gly Ile Pro Gly Val Ala Gly Val
Pro Gly Val Gly Gly Val385 390 395
400Pro Gly Val Gly Gly Val Pro Gly Val Gly Ile Ser Pro Glu Ala
Gln 405 410 415Ala Ala Ala
Ala Ala Lys Ala Ala Lys Tyr Gly Ala Ala Gly Ala Gly 420
425 430Val Leu Gly Gly Leu Val Pro Gly Pro Gln
Ala Ala Val Pro Gly Val 435 440
445Pro Gly Thr Gly Gly Val Pro Gly Val Gly Thr Pro Ala Ala Ala Ala 450
455 460Ala Lys Ala Ala Ala Lys Ala Ala
Gln Phe Gly Leu Val Pro Gly Val465 470
475 480Gly Val Ala Pro Gly Val Gly Val Ala Pro Gly Val
Gly Val Ala Pro 485 490
495Gly Val Gly Leu Ala Pro Gly Val Gly Val Ala Pro Gly Val Gly Val
500 505 510Ala Pro Gly Val Gly Val
Ala Pro Gly Ile Gly Pro Gly Gly Val Ala 515 520
525Ala Ala Ala Lys Ser Ala Ala Lys Val Ala Ala Lys Ala Gln
Leu Arg 530 535 540Ala Ala Ala Gly Leu
Gly Ala Gly Ile Pro Gly Leu Gly Val Gly Val545 550
555 560Gly Val Pro Gly Leu Gly Val Gly Ala Gly
Val Pro Gly Leu Gly Val 565 570
575Gly Ala Gly Val Pro Gly Phe Gly Ala Gly Ala Asp Glu Gly Val Arg
580 585 590Arg Ser Leu Ser Pro
Glu Leu Arg Glu Gly Asp Pro Ser Ser Ser Gln 595
600 605His Leu Pro Ser Thr Pro Ser Ser Pro Arg Val Pro
Gly Ala Leu Ala 610 615 620Ala Ala Lys
Ala Ala Lys Tyr Gly Ala Ala Val Pro Gly Val Leu Gly625
630 635 640Gly Leu Gly Ala Leu Gly Gly
Val Gly Ile Pro Gly Gly Val Val Gly 645
650 655Ala Gly Pro Ala Ala Ala Ala Ala Ala Ala Lys Ala
Ala Ala Lys Ala 660 665 670Ala
Gln Phe Gly Leu Val Gly Ala Ala Gly Leu Gly Gly Leu Gly Val 675
680 685Gly Gly Leu Gly Val Pro Gly Val Gly
Gly Leu Gly Gly Ile Pro Pro 690 695
700Ala Ala Ala Ala Lys Ala Ala Lys Tyr Gly Ala Ala Gly Leu Gly Gly705
710 715 720Val Leu Gly Gly
Ala Gly Gln Phe Pro Leu Gly Gly Val Ala Ala Arg 725
730 735Pro Gly Phe Gly Leu Ser Pro Ile Phe Pro
Gly Gly Ala Cys Leu Gly 740 745
750Lys Ala Cys Gly Arg Lys Arg Lys 755
760302115DNAArtificial Sequencesource/note="Description of Artificial
Sequence Synthetic polynucleotide" 30ggtggcgtac caggcgcaat
tcctgggggt gtcccaggcg gtgtttttta tccgggcgcc 60ggtcttggcg cactgggtgg
cggtgcactg ggcccgggcg gcaaaccgct gaaaccggta 120ccaggtggtt tagcaggcgc
cggcttaggc gcaggtctgg gagcatttcc ggcagttacc 180tttccagggg cactggttcc
tggaggtgtg gccgatgcag ccgcggcata taaagccgct 240aaagccggtg cgggtttagg
aggcgtccca ggtgtcggtg gcctgggtgt tagcgccggt 300gcagttgttc cgcagccggg
agcaggggtt aaacctggta aagtgccggg agtaggtctg 360ccaggcgttt atcctggtgg
tgttttgccg ggtgcccgtt ttccgggcgt tggtgttctt 420ccaggcgtgc cgaccggagc
cggtgttaaa ccgaaagccc ccggtgttgg aggtgcattt 480gcaggcatcc cgggagttgg
cccgtttggt ggtccgcaac ctggggttcc gttaggttat 540ccgattaaag caccgaaact
gcccggcggt tatggtctgc cgtacacaac cggtaaactg 600ccgtatggtt atggcccggg
tggagttgcg ggtgcagcag gtaaagcggg ttatcctacc 660ggaaccggtg taggtccgca
ggccgctgct gccgccgccg caaaagcagc ggctaaattt 720ggcgccggag cagcgggtgt
tctgcctgga gttggtggtg cgggcgtgcc aggggtacct 780ggtgcaattc cgggtattgg
tggtattgcc ggtgtcggca ccccggccgc ggcagctgcg 840gcagcggcgg ctgccaaagc
tgctaaatac ggtgccgcgg cgggtctggt gccaggaggt 900ccgggttttg gtccgggagt
ggttggcgtg cctggcgcag gcgttcctgg tgtgggcgtt 960ccaggtgcag ggattcctgt
tgtgcctggt gccggtattc ccggcgcggc cgttccgggg 1020gtggttagcc cggaagccgc
agcgaaggct gcggcaaagg cagcaaagta tggcgcacgc 1080ccaggagtcg gcgtgggtgg
tatcccgacc tatggggtgg gcgcaggggg ttttcctggt 1140ttcggcgtag gtgtaggagg
tataccgggc gtggccggtg taccaggggt tggtggcgtc 1200cctggtgttg gcggtgtgcc
aggtgttggt atttcaccgg aagcacaggc agcagccgca 1260gctaaggcag cgaaatatgg
tgccgccggc gcaggagttt taggtgggct ggttccgggc 1320ccgcaggcag ctgtgccggg
ggttccaggc accggtggtg tccctggagt cggtacgccg 1380gctgcagcgg cagccaaagc
ggctgcgaaa gcagcacagt ttggcttagt accgggtgtg 1440ggagttgccc ccggcgttgg
cgttgctcca ggggtgggtg ttgctcctgg cgtcggtctg 1500gctcctggag tgggcgtagc
acccggtgtg ggggtggccc cgggtgttgg ggttgcaccg 1560ggtatcggtc cgggcggtgt
cgcagcagca gctaaaagcg cggcgaaagt tgcggccaaa 1620gcccaactgc gcgccgccgc
gggcctcggt gcaggtattc cggggctggg tgtcggagtt 1680ggagtcccgg gtttgggcgt
gggcgcggga gttccgggac tgggagtggg tgccggagtt 1740cctggctttg gtgcaggcgc
agatgaaggt gttcgtcgta gcctgagtcc ggaactgcgt 1800gaaggtgatc cgagtagcag
ccagcatctg ccgagcaccc cgagcagccc gcgtgttccg 1860ggtgcattag ctgcagcaaa
agccgccaag tatggtgcag ccgtgccggg cgtcttaggt 1920ggtctgggcg ccctgggtgg
tgtaggcatt ccgggaggtg ttgtgggtgc aggaccggcc 1980gccgcagctg cggccgccaa
agcagctgca aaagcggccc agtttggttt agtgggcgcc 2040gcaggtttag gcggtttagg
tgtgggtgga ctgggtgtac ctggcgtagg cggtctgggt 2100ggaattccgc cctaa
211531704PRTArtificial
Sequencesource/note="Description of Artificial Sequence Synthetic
polypeptide" 31Gly Gly Val Pro Gly Ala Ile Pro Gly Gly Val Pro Gly Gly
Val Phe1 5 10 15Tyr Pro
Gly Ala Gly Leu Gly Ala Leu Gly Gly Gly Ala Leu Gly Pro 20
25 30Gly Gly Lys Pro Leu Lys Pro Val Pro
Gly Gly Leu Ala Gly Ala Gly 35 40
45Leu Gly Ala Gly Leu Gly Ala Phe Pro Ala Val Thr Phe Pro Gly Ala 50
55 60Leu Val Pro Gly Gly Val Ala Asp Ala
Ala Ala Ala Tyr Lys Ala Ala65 70 75
80Lys Ala Gly Ala Gly Leu Gly Gly Val Pro Gly Val Gly Gly
Leu Gly 85 90 95Val Ser
Ala Gly Ala Val Val Pro Gln Pro Gly Ala Gly Val Lys Pro 100
105 110Gly Lys Val Pro Gly Val Gly Leu Pro
Gly Val Tyr Pro Gly Gly Val 115 120
125Leu Pro Gly Ala Arg Phe Pro Gly Val Gly Val Leu Pro Gly Val Pro
130 135 140Thr Gly Ala Gly Val Lys Pro
Lys Ala Pro Gly Val Gly Gly Ala Phe145 150
155 160Ala Gly Ile Pro Gly Val Gly Pro Phe Gly Gly Pro
Gln Pro Gly Val 165 170
175Pro Leu Gly Tyr Pro Ile Lys Ala Pro Lys Leu Pro Gly Gly Tyr Gly
180 185 190Leu Pro Tyr Thr Thr Gly
Lys Leu Pro Tyr Gly Tyr Gly Pro Gly Gly 195 200
205Val Ala Gly Ala Ala Gly Lys Ala Gly Tyr Pro Thr Gly Thr
Gly Val 210 215 220Gly Pro Gln Ala Ala
Ala Ala Ala Ala Ala Lys Ala Ala Ala Lys Phe225 230
235 240Gly Ala Gly Ala Ala Gly Val Leu Pro Gly
Val Gly Gly Ala Gly Val 245 250
255Pro Gly Val Pro Gly Ala Ile Pro Gly Ile Gly Gly Ile Ala Gly Val
260 265 270Gly Thr Pro Ala Ala
Ala Ala Ala Ala Ala Ala Ala Ala Lys Ala Ala 275
280 285Lys Tyr Gly Ala Ala Ala Gly Leu Val Pro Gly Gly
Pro Gly Phe Gly 290 295 300Pro Gly Val
Val Gly Val Pro Gly Ala Gly Val Pro Gly Val Gly Val305
310 315 320Pro Gly Ala Gly Ile Pro Val
Val Pro Gly Ala Gly Ile Pro Gly Ala 325
330 335Ala Val Pro Gly Val Val Ser Pro Glu Ala Ala Ala
Lys Ala Ala Ala 340 345 350Lys
Ala Ala Lys Tyr Gly Ala Arg Pro Gly Val Gly Val Gly Gly Ile 355
360 365Pro Thr Tyr Gly Val Gly Ala Gly Gly
Phe Pro Gly Phe Gly Val Gly 370 375
380Val Gly Gly Ile Pro Gly Val Ala Gly Val Pro Gly Val Gly Gly Val385
390 395 400Pro Gly Val Gly
Gly Val Pro Gly Val Gly Ile Ser Pro Glu Ala Gln 405
410 415Ala Ala Ala Ala Ala Lys Ala Ala Lys Tyr
Gly Ala Ala Gly Ala Gly 420 425
430Val Leu Gly Gly Leu Val Pro Gly Pro Gln Ala Ala Val Pro Gly Val
435 440 445Pro Gly Thr Gly Gly Val Pro
Gly Val Gly Thr Pro Ala Ala Ala Ala 450 455
460Ala Lys Ala Ala Ala Lys Ala Ala Gln Phe Gly Leu Val Pro Gly
Val465 470 475 480Gly Val
Ala Pro Gly Val Gly Val Ala Pro Gly Val Gly Val Ala Pro
485 490 495Gly Val Gly Leu Ala Pro Gly
Val Gly Val Ala Pro Gly Val Gly Val 500 505
510Ala Pro Gly Val Gly Val Ala Pro Gly Ile Gly Pro Gly Gly
Val Ala 515 520 525Ala Ala Ala Lys
Ser Ala Ala Lys Val Ala Ala Lys Ala Gln Leu Arg 530
535 540Ala Ala Ala Gly Leu Gly Ala Gly Ile Pro Gly Leu
Gly Val Gly Val545 550 555
560Gly Val Pro Gly Leu Gly Val Gly Ala Gly Val Pro Gly Leu Gly Val
565 570 575Gly Ala Gly Val Pro
Gly Phe Gly Ala Gly Ala Asp Glu Gly Val Arg 580
585 590Arg Ser Leu Ser Pro Glu Leu Arg Glu Gly Asp Pro
Ser Ser Ser Gln 595 600 605His Leu
Pro Ser Thr Pro Ser Ser Pro Arg Val Pro Gly Ala Leu Ala 610
615 620Ala Ala Lys Ala Ala Lys Tyr Gly Ala Ala Val
Pro Gly Val Leu Gly625 630 635
640Gly Leu Gly Ala Leu Gly Gly Val Gly Ile Pro Gly Gly Val Val Gly
645 650 655Ala Gly Pro Ala
Ala Ala Ala Ala Ala Ala Lys Ala Ala Ala Lys Ala 660
665 670Ala Gln Phe Gly Leu Val Gly Ala Ala Gly Leu
Gly Gly Leu Gly Val 675 680 685Gly
Gly Leu Gly Val Pro Gly Val Gly Gly Leu Gly Gly Ile Pro Pro 690
695 700322115DNAArtificial
Sequencesource/note="Description of Artificial Sequence Synthetic
polynucleotide" 32ggtggcgtac caggcgcaat tcctgggggt gtcccaggcg gtgtttttta
tccgggcgcc 60ggtcttggcg cactgggtgg cggtgcactg ggcccgggcg gcaaaccgct
gaaaccggta 120ccaggtggtt tagcaggcgc cggcttaggc gcaggtctgg gagcatttcc
ggcagttacc 180tttccagggg cactggttcc tggaggtgtg gccgatgcag ccgcggcata
taaagccgct 240aaagccggtg cgggtttagg aggcgtccca ggtgtcggtg gcctgggtgt
tagcgccggt 300gcagttgttc cgcagccggg agcaggggtt aaacctggta aagtgccggg
agtaggtctg 360ccaggcgttt atcctggtgg tgttttgccg ggtgcccgtt ttccgggcgt
tggtgttctt 420ccaggcgtgc cgaccggagc cggtgttaaa ccgaaagccc ccggtgttgg
aggtgcattt 480gcaggcatcc cgggagttgg cccgtttggt ggtccgcaac ctggggttcc
gttaggttat 540ccgattaaag caccgaaact gcccggcggt tatggtctgc cgtacacaac
cggtaaactg 600ccgtatggtt atggcccggg tggagttgcg ggtgcagcag gtaaagcggg
ttatcctacc 660ggaaccggtg taggtccgca ggccgctgct gccgccgccg caaaagcagc
ggctaaattt 720ggcgccggag cagcgggtgt tctgcctgga gttggtggtg cgggcgtgcc
aggggtacct 780ggtgcaattc cgggtattgg tggtattgcc ggtgtcggca ccccggccgc
ggcagctgcg 840gcagcggcgg ctgccaaagc tgctaaatac ggtgccgcgg cgggtctggt
gccaggaggt 900ccgggttttg gtccgggagt ggttggcgtg cctggcgcag gcgttcctgg
tgtgggcgtt 960ccaggtgcag ggattcctgt tgtgcctggt gccggtattc ccggcgcggc
cgttccgggg 1020gtggttagcc cggaagccgc agcgaaggct gcggcaaagg cagcaaagta
tggcgcacgc 1080ccaggagtcg gcgtgggtgg tatcccgacc tatggggtgg gcgcaggggg
ttttcctggt 1140ttcggcgtag gtgtaggagg tataccgggc gtggccggtg taccaggggt
tggtggcgtc 1200cctggtgttg gcggtgtgcc aggtgttggt atttcaccgg aagcacaggc
agcagccgca 1260gctaaggcag cgaaatatgg tgccgccggc gcaggagttt taggtgggct
ggttccgggc 1320ccgcaggcag ctgtgccggg ggttccaggc accggtggtg tccctggagt
cggtacgccg 1380gctgcagcgg cagccaaagc ggctgcgaaa gcagcacagt ttggcttagt
accgggtgtg 1440ggagttgccc ccggcgttgg cgttgctcca ggggtgggtg ttgctcctgg
cgtcggtctg 1500gctcctggag tgggcgtagc acccggtgtg ggggtggccc cgggtgttgg
ggttgcaccg 1560ggtatcggtc cgggcggtgt cgcagcagca gctaaaagcg cggcgaaagt
tgcggccaaa 1620gcccaactgc gcgccgccgc gggcctcggt gcaggtattc cggggctggg
tgtcggagtt 1680ggagtcccgg gtttgggcgt gggcgcggga gttccgggac tgggagtggg
tgccggagtt 1740cctggctttg gtgcaggcgc agatgaaggt gttcgtcgta gcctgagtcc
ggaactgcgt 1800gaaggtgatc cgagtagcag ccagcatctg ccgagcaccc cgagcagccc
gcgtgttccg 1860ggtgcattag ctgcagcaaa agccgccaag tatggtgcag ccgtgccggg
cgtcttaggt 1920ggtctgggcg ccctgggtgg tgtaggcatt ccgggaggtg ttgtgggtgc
aggaccggcc 1980gccgcagctg cggccgccaa agcagctgca aaagcggccc agtttggttt
agtgggcgcc 2040gcaggtttag gcggtttagg tgtgggtgga ctgggtgtac ctggcgtagg
cggtctgggt 2100ggaattccgc cctaa
211533676PRTArtificial Sequencesource/note="Description of
Artificial Sequence Synthetic polypeptide" 33Gly Leu Gly Gly Val Pro
Gly Val Gly Gly Leu Gly Val Ser Ala Gly1 5
10 15Ala Val Val Pro Gln Pro Gly Ala Gly Val Lys Pro
Gly Lys Val Pro 20 25 30Gly
Val Gly Leu Pro Gly Val Tyr Pro Gly Gly Val Leu Pro Gly Ala 35
40 45Arg Phe Pro Gly Val Gly Val Leu Pro
Gly Val Pro Thr Gly Ala Gly 50 55
60Val Lys Pro Lys Ala Pro Gly Val Gly Gly Ala Phe Ala Gly Ile Pro65
70 75 80Gly Val Gly Pro Phe
Gly Gly Pro Gln Pro Gly Val Pro Leu Gly Tyr 85
90 95Pro Ile Lys Ala Pro Lys Leu Pro Gly Gly Tyr
Gly Leu Pro Tyr Thr 100 105
110Thr Gly Lys Leu Pro Tyr Gly Tyr Gly Pro Gly Gly Val Ala Gly Ala
115 120 125Ala Gly Lys Ala Gly Tyr Pro
Thr Gly Thr Gly Val Gly Pro Gln Ala 130 135
140Ala Ala Ala Ala Ala Ala Lys Ala Ala Ala Lys Phe Gly Ala Gly
Ala145 150 155 160Ala Gly
Val Leu Pro Gly Val Gly Gly Ala Gly Val Pro Gly Val Pro
165 170 175Gly Ala Ile Pro Gly Ile Gly
Gly Ile Ala Gly Val Gly Thr Pro Ala 180 185
190Ala Ala Ala Ala Ala Ala Ala Ala Ala Lys Ala Ala Lys Tyr
Gly Ala 195 200 205Ala Ala Gly Leu
Val Pro Gly Gly Pro Gly Phe Gly Pro Gly Val Val 210
215 220Gly Val Pro Gly Ala Gly Val Pro Gly Val Gly Val
Pro Gly Ala Gly225 230 235
240Ile Pro Val Val Pro Gly Ala Gly Ile Pro Gly Ala Ala Val Pro Gly
245 250 255Val Val Ser Pro Glu
Ala Ala Ala Lys Ala Ala Ala Lys Ala Ala Lys 260
265 270Tyr Gly Ala Arg Pro Gly Val Gly Val Gly Gly Ile
Pro Thr Tyr Gly 275 280 285Val Gly
Ala Gly Gly Phe Pro Gly Phe Gly Val Gly Val Gly Gly Ile 290
295 300Pro Gly Val Ala Gly Val Pro Gly Val Gly Gly
Val Pro Gly Val Gly305 310 315
320Gly Val Pro Gly Val Gly Ile Ser Pro Glu Ala Gln Ala Ala Ala Ala
325 330 335Ala Lys Ala Ala
Lys Tyr Gly Ala Ala Gly Ala Gly Val Leu Gly Gly 340
345 350Leu Val Pro Gly Pro Gln Ala Ala Val Pro Gly
Val Pro Gly Thr Gly 355 360 365Gly
Val Pro Gly Val Gly Thr Pro Ala Ala Ala Ala Ala Lys Ala Ala 370
375 380Ala Lys Ala Ala Gln Phe Gly Leu Val Pro
Gly Val Gly Val Ala Pro385 390 395
400Gly Val Gly Val Ala Pro Gly Val Gly Val Ala Pro Gly Val Gly
Leu 405 410 415Ala Pro Gly
Val Gly Val Ala Pro Gly Val Gly Val Ala Pro Gly Val 420
425 430Gly Val Ala Pro Gly Ile Gly Pro Gly Gly
Val Ala Ala Ala Ala Lys 435 440
445Ser Ala Ala Lys Val Ala Ala Lys Ala Gln Leu Arg Ala Ala Ala Gly 450
455 460Leu Gly Ala Gly Ile Pro Gly Leu
Gly Val Gly Val Gly Val Pro Gly465 470
475 480Leu Gly Val Gly Ala Gly Val Pro Gly Leu Gly Val
Gly Ala Gly Val 485 490
495Pro Gly Phe Gly Ala Gly Ala Asp Glu Gly Val Arg Arg Ser Leu Ser
500 505 510Pro Glu Leu Arg Glu Gly
Asp Pro Ser Ser Ser Gln His Leu Pro Ser 515 520
525Thr Pro Ser Ser Pro Arg Val Pro Gly Ala Leu Ala Ala Ala
Lys Ala 530 535 540Ala Lys Tyr Gly Ala
Ala Val Pro Gly Val Leu Gly Gly Leu Gly Ala545 550
555 560Leu Gly Gly Val Gly Ile Pro Gly Gly Val
Val Gly Ala Gly Pro Ala 565 570
575Ala Ala Ala Ala Ala Ala Lys Ala Ala Ala Lys Ala Ala Gln Phe Gly
580 585 590Leu Val Gly Ala Ala
Gly Leu Gly Gly Leu Gly Val Gly Gly Leu Gly 595
600 605Val Pro Gly Val Gly Gly Leu Gly Gly Ile Pro Pro
Ala Ala Ala Ala 610 615 620Lys Ala Ala
Lys Tyr Gly Ala Ala Gly Leu Gly Gly Val Leu Gly Gly625
630 635 640Ala Gly Gln Phe Pro Leu Gly
Gly Val Ala Ala Arg Pro Gly Phe Gly 645
650 655Leu Ser Pro Ile Phe Pro Gly Gly Ala Cys Leu Gly
Lys Ala Cys Gly 660 665 670Arg
Lys Arg Lys 675342031DNAArtificial
Sequencesource/note="Description of Artificial Sequence Synthetic
polynucleotide" 34ggtttaggag gcgtcccagg tgtcggtggc ctgggtgtta gcgccggtgc
agttgttccg 60cagccgggag caggggttaa acctggtaaa gtgccgggag taggtctgcc
aggcgtttat 120cctggtggtg ttttgccggg tgcccgtttt ccgggcgttg gtgttcttcc
aggcgtgccg 180accggagccg gtgttaaacc gaaagccccc ggtgttggag gtgcatttgc
aggcatcccg 240ggagttggcc cgtttggtgg tccgcaacct ggggttccgt taggttatcc
gattaaagca 300ccgaaactgc ccggcggtta tggtctgccg tacacaaccg gtaaactgcc
gtatggttat 360ggcccgggtg gagttgcggg tgcagcaggt aaagcgggtt atcctaccgg
aaccggtgta 420ggtccgcagg ccgctgctgc cgccgccgca aaagcagcgg ctaaatttgg
cgccggagca 480gcgggtgttc tgcctggagt tggtggtgcg ggcgtgccag gggtacctgg
tgcaattccg 540ggtattggtg gtattgccgg tgtcggcacc ccggccgcgg cagctgcggc
agcggcggct 600gccaaagctg ctaaatacgg tgccgcggcg ggtctggtgc caggaggtcc
gggttttggt 660ccgggagtgg ttggcgtgcc tggcgcaggc gttcctggtg tgggcgttcc
aggtgcaggg 720attcctgttg tgcctggtgc cggtattccc ggcgcggccg ttccgggggt
ggttagcccg 780gaagccgcag cgaaggctgc ggcaaaggca gcaaagtatg gcgcacgccc
aggagtcggc 840gtgggtggta tcccgaccta tggggtgggc gcagggggtt ttcctggttt
cggcgtaggt 900gtaggaggta taccgggcgt ggccggtgta ccaggggttg gtggcgtccc
tggtgttggc 960ggtgtgccag gtgttggtat ttcaccggaa gcacaggcag cagccgcagc
taaggcagcg 1020aaatatggtg ccgccggcgc aggagtttta ggtgggctgg ttccgggccc
gcaggcagct 1080gtgccggggg ttccaggcac cggtggtgtc cctggagtcg gtacgccggc
tgcagcggca 1140gccaaagcgg ctgcgaaagc agcacagttt ggcttagtac cgggtgtggg
agttgccccc 1200ggcgttggcg ttgctccagg ggtgggtgtt gctcctggcg tcggtctggc
tcctggagtg 1260ggcgtagcac ccggtgtggg ggtggccccg ggtgttgggg ttgcaccggg
tatcggtccg 1320ggcggtgtcg cagcagcagc taaaagcgcg gcgaaagttg cggccaaagc
ccaactgcgc 1380gccgccgcgg gcctcggtgc aggtattccg gggctgggtg tcggagttgg
agtcccgggt 1440ttgggcgtgg gcgcgggagt tccgggactg ggagtgggtg ccggagttcc
tggctttggt 1500gcaggcgcag atgaaggtgt tcgtcgtagc ctgagtccgg aactgcgtga
aggtgatccg 1560agtagcagcc agcatctgcc gagcaccccg agcagcccgc gtgttccggg
tgcattagct 1620gcagcaaaag ccgccaagta tggtgcagcc gtgccgggcg tcttaggtgg
tctgggcgcc 1680ctgggtggtg taggcattcc gggaggtgtt gtgggtgcag gaccggccgc
cgcagctgcg 1740gccgccaaag cagctgcaaa agcggcccag tttggtttag tgggcgccgc
aggtttaggc 1800ggtttaggtg tgggtggact gggtgtacct ggcgtaggcg gtctgggtgg
aattccgccc 1860gcagcggccg cgaaagcggc aaaatatggc gcggcaggcc tgggcggcgt
gctgggtggg 1920gcaggtcagt ttccgctggg cggggttgcc gcacgtccgg gatttggtct
gagcccgatt 1980ttccctggcg gcgcatgtct gggtaaagca tgtggtcgta aacgtaaata a
203135659PRTArtificial Sequencesource/note="Description of
Artificial Sequence Synthetic polypeptide" 35Gly Gly Val Pro Gly Ala
Ile Pro Gly Gly Val Pro Gly Gly Val Phe1 5
10 15Tyr Pro Gly Ala Gly Leu Gly Ala Leu Gly Gly Gly
Ala Leu Gly Pro 20 25 30Gly
Gly Lys Pro Leu Lys Pro Val Pro Gly Gly Leu Ala Gly Ala Gly 35
40 45Leu Gly Ala Gly Leu Gly Ala Phe Pro
Ala Val Thr Phe Pro Gly Ala 50 55
60Leu Val Pro Gly Gly Val Ala Asp Ala Ala Ala Ala Tyr Lys Ala Ala65
70 75 80Lys Ala Gly Ala Gly
Leu Gly Gly Val Pro Gly Val Gly Gly Leu Gly 85
90 95Val Ser Ala Gly Ala Val Val Pro Gln Pro Gly
Ala Gly Val Lys Pro 100 105
110Gly Lys Val Pro Gly Val Gly Leu Pro Gly Val Tyr Pro Gly Gly Val
115 120 125Leu Pro Gly Ala Arg Phe Pro
Gly Val Gly Val Leu Pro Gly Val Pro 130 135
140Thr Gly Ala Gly Val Lys Pro Lys Ala Pro Gly Val Gly Gly Ala
Phe145 150 155 160Ala Gly
Ile Pro Gly Val Gly Pro Phe Gly Gly Pro Gln Pro Gly Val
165 170 175Pro Leu Gly Tyr Pro Ile Lys
Ala Pro Lys Leu Pro Gly Gly Tyr Gly 180 185
190Leu Pro Tyr Thr Thr Gly Lys Leu Pro Tyr Gly Tyr Gly Pro
Gly Gly 195 200 205Val Ala Gly Ala
Ala Gly Lys Ala Gly Tyr Pro Thr Gly Thr Gly Val 210
215 220Gly Pro Gln Ala Ala Ala Ala Ala Ala Ala Lys Ala
Ala Ala Lys Phe225 230 235
240Gly Ala Gly Ala Ala Gly Val Leu Pro Gly Val Gly Gly Ala Gly Val
245 250 255Pro Gly Val Pro Gly
Ala Ile Pro Gly Ile Gly Gly Ile Ala Gly Val 260
265 270Gly Thr Pro Ala Ala Ala Ala Ala Ala Ala Ala Ala
Ala Lys Ala Ala 275 280 285Lys Tyr
Gly Ala Ala Ala Gly Leu Val Pro Gly Gly Pro Gly Phe Gly 290
295 300Pro Gly Val Val Gly Val Pro Gly Ala Gly Val
Pro Gly Val Gly Val305 310 315
320Pro Gly Ala Gly Ile Pro Val Val Pro Gly Ala Gly Ile Pro Gly Ala
325 330 335Ala Val Pro Gly
Val Val Ser Pro Glu Ala Ala Ala Lys Ala Ala Ala 340
345 350Lys Ala Ala Lys Tyr Gly Ala Arg Pro Gly Val
Gly Val Gly Gly Ile 355 360 365Pro
Thr Tyr Gly Val Gly Ala Gly Gly Phe Pro Gly Phe Gly Val Gly 370
375 380Val Gly Gly Ile Pro Gly Val Ala Gly Val
Pro Gly Val Gly Gly Val385 390 395
400Pro Gly Val Gly Gly Val Pro Gly Val Gly Ile Ser Pro Glu Ala
Gln 405 410 415Ala Ala Ala
Ala Ala Lys Ala Ala Lys Tyr Gly Ala Ala Gly Ala Gly 420
425 430Val Leu Gly Gly Leu Val Pro Gly Pro Gln
Ala Ala Val Pro Gly Val 435 440
445Pro Gly Thr Gly Gly Val Pro Gly Val Gly Thr Pro Ala Ala Ala Ala 450
455 460Ala Lys Ala Ala Ala Lys Ala Ala
Gln Phe Gly Leu Val Pro Gly Val465 470
475 480Gly Val Ala Pro Gly Val Gly Val Ala Pro Gly Val
Gly Val Ala Pro 485 490
495Gly Val Gly Leu Ala Pro Gly Val Gly Val Ala Pro Gly Val Gly Val
500 505 510Ala Pro Gly Val Gly Val
Ala Pro Gly Ile Gly Pro Gly Gly Val Ala 515 520
525Ala Ala Ala Lys Ser Ala Ala Lys Val Ala Ala Lys Ala Gln
Leu Arg 530 535 540Ala Ala Ala Gly Leu
Gly Ala Gly Ile Pro Gly Leu Gly Val Gly Val545 550
555 560Gly Val Pro Gly Leu Gly Val Gly Ala Gly
Val Pro Gly Leu Gly Val 565 570
575Gly Ala Gly Val Pro Gly Phe Gly Ala Gly Ala Asp Glu Gly Val Arg
580 585 590Arg Ser Leu Ser Pro
Glu Leu Arg Glu Gly Asp Pro Ser Ser Ser Gln 595
600 605His Leu Pro Ser Thr Pro Ser Ser Pro Arg Val Pro
Gly Ala Leu Ala 610 615 620Ala Ala Lys
Ala Ala Lys Tyr Gly Ala Ala Val Pro Gly Val Leu Gly625
630 635 640Gly Leu Gly Ala Leu Gly Gly
Val Gly Ile Pro Gly Gly Val Val Gly 645
650 655Ala Gly Pro361980DNAArtificial
Sequencesource/note="Description of Artificial Sequence Synthetic
polynucleotide" 36ggtggcgtac caggcgcaat tcctgggggt gtcccaggcg gtgtttttta
tccgggcgcc 60ggtcttggcg cactgggtgg cggtgcactg ggcccgggcg gcaaaccgct
gaaaccggta 120ccaggtggtt tagcaggcgc cggcttaggc gcaggtctgg gagcatttcc
ggcagttacc 180tttccagggg cactggttcc tggaggtgtg gccgatgcag ccgcggcata
taaagccgct 240aaagccggtg cgggtttagg aggcgtccca ggtgtcggtg gcctgggtgt
tagcgccggt 300gcagttgttc cgcagccggg agcaggggtt aaacctggta aagtgccggg
agtaggtctg 360ccaggcgttt atcctggtgg tgttttgccg ggtgcccgtt ttccgggcgt
tggtgttctt 420ccaggcgtgc cgaccggagc cggtgttaaa ccgaaagccc ccggtgttgg
aggtgcattt 480gcaggcatcc cgggagttgg cccgtttggt ggtccgcaac ctggggttcc
gttaggttat 540ccgattaaag caccgaaact gcccggcggt tatggtctgc cgtacacaac
cggtaaactg 600ccgtatggtt atggcccggg tggagttgcg ggtgcagcag gtaaagcggg
ttatcctacc 660ggaaccggtg taggtccgca ggccgctgct gccgccgccg caaaagcagc
ggctaaattt 720ggcgccggag cagcgggtgt tctgcctgga gttggtggtg cgggcgtgcc
aggggtacct 780ggtgcaattc cgggtattgg tggtattgcc ggtgtcggca ccccggccgc
ggcagctgcg 840gcagcggcgg ctgccaaagc tgctaaatac ggtgccgcgg cgggtctggt
gccaggaggt 900ccgggttttg gtccgggagt ggttggcgtg cctggcgcag gcgttcctgg
tgtgggcgtt 960ccaggtgcag ggattcctgt tgtgcctggt gccggtattc ccggcgcggc
cgttccgggg 1020gtggttagcc cggaagccgc agcgaaggct gcggcaaagg cagcaaagta
tggcgcacgc 1080ccaggagtcg gcgtgggtgg tatcccgacc tatggggtgg gcgcaggggg
ttttcctggt 1140ttcggcgtag gtgtaggagg tataccgggc gtggccggtg taccaggggt
tggtggcgtc 1200cctggtgttg gcggtgtgcc aggtgttggt atttcaccgg aagcacaggc
agcagccgca 1260gctaaggcag cgaaatatgg tgccgccggc gcaggagttt taggtgggct
ggttccgggc 1320ccgcaggcag ctgtgccggg ggttccaggc accggtggtg tccctggagt
cggtacgccg 1380gctgcagcgg cagccaaagc ggctgcgaaa gcagcacagt ttggcttagt
accgggtgtg 1440ggagttgccc ccggcgttgg cgttgctcca ggggtgggtg ttgctcctgg
cgtcggtctg 1500gctcctggag tgggcgtagc acccggtgtg ggggtggccc cgggtgttgg
ggttgcaccg 1560ggtatcggtc cgggcggtgt cgcagcagca gctaaaagcg cggcgaaagt
tgcggccaaa 1620gcccaactgc gcgccgccgc gggcctcggt gcaggtattc cggggctggg
tgtcggagtt 1680ggagtcccgg gtttgggcgt gggcgcggga gttccgggac tgggagtggg
tgccggagtt 1740cctggctttg gtgcaggcgc agatgaaggt gttcgtcgta gcctgagtcc
ggaactgcgt 1800gaaggtgatc cgagtagcag ccagcatctg ccgagcaccc cgagcagccc
gcgtgttccg 1860ggtgcattag ctgcagcaaa agccgccaag tatggtgcag ccgtgccggg
cgtcttaggt 1920ggtctgggcg ccctgggtgg tgtaggcatt ccgggaggtg ttgtgggtgc
aggaccgtaa 198037622PRTArtificial Sequencesource/note="Description of
Artificial Sequence Synthetic polypeptide" 37Gly Gly Val Pro Gly Ala
Ile Pro Gly Gly Val Pro Gly Gly Val Phe1 5
10 15Tyr Pro Gly Ala Gly Leu Gly Ala Leu Gly Gly Gly
Ala Leu Gly Pro 20 25 30Gly
Gly Lys Pro Leu Lys Pro Val Pro Gly Gly Leu Ala Gly Ala Gly 35
40 45Leu Gly Ala Gly Leu Gly Ala Phe Pro
Ala Val Thr Phe Pro Gly Ala 50 55
60Leu Val Pro Gly Gly Val Ala Asp Ala Ala Ala Ala Tyr Lys Ala Ala65
70 75 80Lys Ala Gly Ala Gly
Leu Gly Gly Val Pro Gly Val Gly Gly Leu Gly 85
90 95Val Ser Ala Gly Ala Val Val Pro Gln Pro Gly
Ala Gly Val Lys Pro 100 105
110Gly Lys Val Pro Gly Val Gly Leu Pro Gly Val Tyr Pro Gly Gly Val
115 120 125Leu Pro Gly Ala Arg Phe Pro
Gly Val Gly Val Leu Pro Gly Val Pro 130 135
140Thr Gly Ala Gly Val Lys Pro Lys Ala Pro Gly Val Gly Gly Ala
Phe145 150 155 160Ala Gly
Ile Pro Gly Val Gly Pro Phe Gly Gly Pro Gln Pro Gly Val
165 170 175Pro Leu Gly Tyr Pro Ile Lys
Ala Pro Lys Leu Pro Gly Gly Tyr Gly 180 185
190Leu Pro Tyr Thr Thr Gly Lys Leu Pro Tyr Gly Tyr Gly Pro
Gly Gly 195 200 205Val Ala Gly Ala
Ala Gly Lys Ala Gly Tyr Pro Thr Gly Thr Gly Val 210
215 220Gly Pro Gln Ala Ala Ala Ala Ala Ala Ala Lys Ala
Ala Ala Lys Phe225 230 235
240Gly Ala Gly Ala Ala Gly Val Leu Pro Gly Val Gly Gly Ala Gly Val
245 250 255Pro Gly Val Pro Gly
Ala Ile Pro Gly Ile Gly Gly Ile Ala Gly Val 260
265 270Gly Thr Pro Ala Ala Ala Ala Ala Ala Ala Ala Ala
Ala Lys Ala Ala 275 280 285Lys Tyr
Gly Ala Ala Ala Gly Leu Val Pro Gly Gly Pro Gly Phe Gly 290
295 300Pro Gly Val Val Gly Val Pro Gly Ala Gly Val
Pro Gly Val Gly Val305 310 315
320Pro Gly Ala Gly Ile Pro Val Val Pro Gly Ala Gly Ile Pro Gly Ala
325 330 335Ala Val Pro Gly
Val Val Ser Pro Glu Ala Ala Ala Lys Ala Ala Ala 340
345 350Lys Ala Ala Lys Tyr Gly Ala Arg Pro Gly Val
Gly Val Gly Gly Ile 355 360 365Pro
Thr Tyr Gly Val Gly Ala Gly Gly Phe Pro Gly Phe Gly Val Gly 370
375 380Val Gly Gly Ile Pro Gly Val Ala Gly Val
Pro Gly Val Gly Gly Val385 390 395
400Pro Gly Val Gly Gly Val Pro Gly Val Gly Ile Ser Pro Glu Ala
Gln 405 410 415Ala Ala Ala
Ala Ala Lys Ala Ala Lys Tyr Gly Ala Ala Gly Ala Gly 420
425 430Val Leu Gly Gly Leu Val Pro Gly Pro Gln
Ala Ala Val Pro Gly Val 435 440
445Pro Gly Thr Gly Gly Val Pro Gly Val Gly Thr Pro Ala Ala Ala Ala 450
455 460Ala Lys Ala Ala Ala Lys Ala Ala
Gln Phe Gly Leu Val Pro Gly Val465 470
475 480Gly Val Ala Pro Gly Val Gly Val Ala Pro Gly Val
Gly Val Ala Pro 485 490
495Gly Val Gly Leu Ala Pro Gly Val Gly Val Ala Pro Gly Val Gly Val
500 505 510Ala Pro Gly Val Gly Val
Ala Pro Gly Ile Gly Pro Gly Gly Val Ala 515 520
525Ala Ala Ala Lys Ser Ala Ala Lys Val Ala Ala Lys Ala Gln
Leu Arg 530 535 540Ala Ala Ala Gly Leu
Gly Ala Gly Ile Pro Gly Leu Gly Val Gly Val545 550
555 560Gly Val Pro Gly Leu Gly Val Gly Ala Gly
Val Pro Gly Leu Gly Val 565 570
575Gly Ala Gly Val Pro Gly Phe Gly Ala Gly Ala Asp Glu Gly Val Arg
580 585 590Arg Ser Leu Ser Pro
Glu Leu Arg Glu Gly Asp Pro Ser Ser Ser Gln 595
600 605His Leu Pro Ser Thr Pro Ser Ser Pro Arg Val Pro
Gly Ala 610 615 620381869DNAArtificial
Sequencesource/note="Description of Artificial Sequence Synthetic
polynucleotide" 38ggtggcgtac caggcgcaat tcctgggggt gtcccaggcg gtgtttttta
tccgggcgcc 60ggtcttggcg cactgggtgg cggtgcactg ggcccgggcg gcaaaccgct
gaaaccggta 120ccaggtggtt tagcaggcgc cggcttaggc gcaggtctgg gagcatttcc
ggcagttacc 180tttccagggg cactggttcc tggaggtgtg gccgatgcag ccgcggcata
taaagccgct 240aaagccggtg cgggtttagg aggcgtccca ggtgtcggtg gcctgggtgt
tagcgccggt 300gcagttgttc cgcagccggg agcaggggtt aaacctggta aagtgccggg
agtaggtctg 360ccaggcgttt atcctggtgg tgttttgccg ggtgcccgtt ttccgggcgt
tggtgttctt 420ccaggcgtgc cgaccggagc cggtgttaaa ccgaaagccc ccggtgttgg
aggtgcattt 480gcaggcatcc cgggagttgg cccgtttggt ggtccgcaac ctggggttcc
gttaggttat 540ccgattaaag caccgaaact gcccggcggt tatggtctgc cgtacacaac
cggtaaactg 600ccgtatggtt atggcccggg tggagttgcg ggtgcagcag gtaaagcggg
ttatcctacc 660ggaaccggtg taggtccgca ggccgctgct gccgccgccg caaaagcagc
ggctaaattt 720ggcgccggag cagcgggtgt tctgcctgga gttggtggtg cgggcgtgcc
aggggtacct 780ggtgcaattc cgggtattgg tggtattgcc ggtgtcggca ccccggccgc
ggcagctgcg 840gcagcggcgg ctgccaaagc tgctaaatac ggtgccgcgg cgggtctggt
gccaggaggt 900ccgggttttg gtccgggagt ggttggcgtg cctggcgcag gcgttcctgg
tgtgggcgtt 960ccaggtgcag ggattcctgt tgtgcctggt gccggtattc ccggcgcggc
cgttccgggg 1020gtggttagcc cggaagccgc agcgaaggct gcggcaaagg cagcaaagta
tggcgcacgc 1080ccaggagtcg gcgtgggtgg tatcccgacc tatggggtgg gcgcaggggg
ttttcctggt 1140ttcggcgtag gtgtaggagg tataccgggc gtggccggtg taccaggggt
tggtggcgtc 1200cctggtgttg gcggtgtgcc aggtgttggt atttcaccgg aagcacaggc
agcagccgca 1260gctaaggcag cgaaatatgg tgccgccggc gcaggagttt taggtgggct
ggttccgggc 1320ccgcaggcag ctgtgccggg ggttccaggc accggtggtg tccctggagt
cggtacgccg 1380gctgcagcgg cagccaaagc ggctgcgaaa gcagcacagt ttggcttagt
accgggtgtg 1440ggagttgccc ccggcgttgg cgttgctcca ggggtgggtg ttgctcctgg
cgtcggtctg 1500gctcctggag tgggcgtagc acccggtgtg ggggtggccc cgggtgttgg
ggttgcaccg 1560ggtatcggtc cgggcggtgt cgcagcagca gctaaaagcg cggcgaaagt
tgcggccaaa 1620gcccaactgc gcgccgccgc gggcctcggt gcaggtattc cggggctggg
tgtcggagtt 1680ggagtcccgg gtttgggcgt gggcgcggga gttccgggac tgggagtggg
tgccggagtt 1740cctggctttg gtgcaggcgc agatgaaggt gttcgtcgta gcctgagtcc
ggaactgcgt 1800gaaggtgatc cgagtagcag ccagcatctg ccgagcaccc cgagcagccc
gcgtgttccg 1860ggtgcataa
186939527PRTArtificial Sequencesource/note="Description of
Artificial Sequence Synthetic polypeptide" 39Gly Gly Val Pro Gly Ala
Ile Pro Gly Gly Val Pro Gly Gly Val Phe1 5
10 15Tyr Pro Gly Ala Gly Leu Gly Ala Leu Gly Gly Gly
Ala Leu Gly Pro 20 25 30Gly
Gly Lys Pro Leu Lys Pro Val Pro Gly Gly Leu Ala Gly Ala Gly 35
40 45Leu Gly Ala Gly Leu Gly Ala Phe Pro
Ala Val Thr Phe Pro Gly Ala 50 55
60Leu Val Pro Gly Gly Val Ala Asp Ala Ala Ala Ala Tyr Lys Ala Ala65
70 75 80Lys Ala Gly Ala Gly
Leu Gly Gly Val Pro Gly Val Gly Gly Leu Gly 85
90 95Val Ser Ala Gly Ala Val Val Pro Gln Pro Gly
Ala Gly Val Lys Pro 100 105
110Gly Lys Val Pro Gly Val Gly Leu Pro Gly Val Tyr Pro Gly Gly Val
115 120 125Leu Pro Gly Ala Arg Phe Pro
Gly Val Gly Val Leu Pro Gly Val Pro 130 135
140Thr Gly Ala Gly Val Lys Pro Lys Ala Pro Gly Val Gly Gly Ala
Phe145 150 155 160Ala Gly
Ile Pro Gly Val Gly Pro Phe Gly Gly Pro Gln Pro Gly Val
165 170 175Pro Leu Gly Tyr Pro Ile Lys
Ala Pro Lys Leu Pro Gly Gly Tyr Gly 180 185
190Leu Pro Tyr Thr Thr Gly Lys Leu Pro Tyr Gly Tyr Gly Pro
Gly Gly 195 200 205Val Ala Gly Ala
Ala Gly Lys Ala Gly Tyr Pro Thr Gly Thr Gly Val 210
215 220Gly Pro Gln Ala Ala Ala Ala Ala Ala Ala Lys Ala
Ala Ala Lys Phe225 230 235
240Gly Ala Gly Ala Ala Gly Val Leu Pro Gly Val Gly Gly Ala Gly Val
245 250 255Pro Gly Val Pro Gly
Ala Ile Pro Gly Ile Gly Gly Ile Ala Gly Val 260
265 270Gly Thr Pro Ala Ala Ala Ala Ala Ala Ala Ala Ala
Ala Lys Ala Ala 275 280 285Lys Tyr
Gly Ala Ala Ala Gly Leu Val Pro Gly Gly Pro Gly Phe Gly 290
295 300Pro Gly Val Val Gly Val Pro Gly Ala Gly Val
Pro Gly Val Gly Val305 310 315
320Pro Gly Ala Gly Ile Pro Val Val Pro Gly Ala Gly Ile Pro Gly Ala
325 330 335Ala Val Pro Gly
Val Val Ser Pro Glu Ala Ala Ala Lys Ala Ala Ala 340
345 350Lys Ala Ala Lys Tyr Gly Ala Arg Pro Gly Val
Gly Val Gly Gly Ile 355 360 365Pro
Thr Tyr Gly Val Gly Ala Gly Gly Phe Pro Gly Phe Gly Val Gly 370
375 380Val Gly Gly Ile Pro Gly Val Ala Gly Val
Pro Gly Val Gly Gly Val385 390 395
400Pro Gly Val Gly Gly Val Pro Gly Val Gly Ile Ser Pro Glu Ala
Gln 405 410 415Ala Ala Ala
Ala Ala Lys Ala Ala Lys Tyr Gly Ala Ala Gly Ala Gly 420
425 430Val Leu Gly Gly Leu Val Pro Gly Pro Gln
Ala Ala Val Pro Gly Val 435 440
445Pro Gly Thr Gly Gly Val Pro Gly Val Gly Thr Pro Ala Ala Ala Ala 450
455 460Ala Lys Ala Ala Ala Lys Ala Ala
Gln Phe Gly Leu Val Pro Gly Val465 470
475 480Gly Val Ala Pro Gly Val Gly Val Ala Pro Gly Val
Gly Val Ala Pro 485 490
495Gly Val Gly Leu Ala Pro Gly Val Gly Val Ala Pro Gly Val Gly Val
500 505 510Ala Pro Gly Val Gly Val
Ala Pro Gly Ile Gly Pro Gly Gly Val 515 520
525401584DNAArtificial Sequencesource/note="Description of
Artificial Sequence Synthetic polynucleotide" 40ggtggcgtac
caggcgcaat tcctgggggt gtcccaggcg gtgtttttta tccgggcgcc 60ggtcttggcg
cactgggtgg cggtgcactg ggcccgggcg gcaaaccgct gaaaccggta 120ccaggtggtt
tagcaggcgc cggcttaggc gcaggtctgg gagcatttcc ggcagttacc 180tttccagggg
cactggttcc tggaggtgtg gccgatgcag ccgcggcata taaagccgct 240aaagccggtg
cgggtttagg aggcgtccca ggtgtcggtg gcctgggtgt tagcgccggt 300gcagttgttc
cgcagccggg agcaggggtt aaacctggta aagtgccggg agtaggtctg 360ccaggcgttt
atcctggtgg tgttttgccg ggtgcccgtt ttccgggcgt tggtgttctt 420ccaggcgtgc
cgaccggagc cggtgttaaa ccgaaagccc ccggtgttgg aggtgcattt 480gcaggcatcc
cgggagttgg cccgtttggt ggtccgcaac ctggggttcc gttaggttat 540ccgattaaag
caccgaaact gcccggcggt tatggtctgc cgtacacaac cggtaaactg 600ccgtatggtt
atggcccggg tggagttgcg ggtgcagcag gtaaagcggg ttatcctacc 660ggaaccggtg
taggtccgca ggccgctgct gccgccgccg caaaagcagc ggctaaattt 720ggcgccggag
cagcgggtgt tctgcctgga gttggtggtg cgggcgtgcc aggggtacct 780ggtgcaattc
cgggtattgg tggtattgcc ggtgtcggca ccccggccgc ggcagctgcg 840gcagcggcgg
ctgccaaagc tgctaaatac ggtgccgcgg cgggtctggt gccaggaggt 900ccgggttttg
gtccgggagt ggttggcgtg cctggcgcag gcgttcctgg tgtgggcgtt 960ccaggtgcag
ggattcctgt tgtgcctggt gccggtattc ccggcgcggc cgttccgggg 1020gtggttagcc
cggaagccgc agcgaaggct gcggcaaagg cagcaaagta tggcgcacgc 1080ccaggagtcg
gcgtgggtgg tatcccgacc tatggggtgg gcgcaggggg ttttcctggt 1140ttcggcgtag
gtgtaggagg tataccgggc gtggccggtg taccaggggt tggtggcgtc 1200cctggtgttg
gcggtgtgcc aggtgttggt atttcaccgg aagcacaggc agcagccgca 1260gctaaggcag
cgaaatatgg tgccgccggc gcaggagttt taggtgggct ggttccgggc 1320ccgcaggcag
ctgtgccggg ggttccaggc accggtggtg tccctggagt cggtacgccg 1380gctgcagcgg
cagccaaagc ggctgcgaaa gcagcacagt ttggcttagt accgggtgtg 1440ggagttgccc
ccggcgttgg cgttgctcca ggggtgggtg ttgctcctgg cgtcggtctg 1500gctcctggag
tgggcgtagc acccggtgtg ggggtggccc cgggtgttgg ggttgcaccg 1560ggtatcggtc
cgggcggtgt ctaa
158441515PRTArtificial Sequencesource/note="Description of Artificial
Sequence Synthetic polypeptide" 41Gly Val Leu Pro Gly Val Gly Gly
Ala Gly Val Pro Gly Val Pro Gly1 5 10
15Ala Ile Pro Gly Ile Gly Gly Ile Ala Gly Val Gly Thr Pro
Ala Ala 20 25 30Ala Ala Ala
Ala Ala Ala Ala Ala Lys Ala Ala Lys Tyr Gly Ala Ala 35
40 45Ala Gly Leu Val Pro Gly Gly Pro Gly Phe Gly
Pro Gly Val Val Gly 50 55 60Val Pro
Gly Ala Gly Val Pro Gly Val Gly Val Pro Gly Ala Gly Ile65
70 75 80Pro Val Val Pro Gly Ala Gly
Ile Pro Gly Ala Ala Val Pro Gly Val 85 90
95Val Ser Pro Glu Ala Ala Ala Lys Ala Ala Ala Lys Ala
Ala Lys Tyr 100 105 110Gly Ala
Arg Pro Gly Val Gly Val Gly Gly Ile Pro Thr Tyr Gly Val 115
120 125Gly Ala Gly Gly Phe Pro Gly Phe Gly Val
Gly Val Gly Gly Ile Pro 130 135 140Gly
Val Ala Gly Val Pro Gly Val Gly Gly Val Pro Gly Val Gly Gly145
150 155 160Val Pro Gly Val Gly Ile
Ser Pro Glu Ala Gln Ala Ala Ala Ala Ala 165
170 175Lys Ala Ala Lys Tyr Gly Ala Ala Gly Ala Gly Val
Leu Gly Gly Leu 180 185 190Val
Pro Gly Pro Gln Ala Ala Val Pro Gly Val Pro Gly Thr Gly Gly 195
200 205Val Pro Gly Val Gly Thr Pro Ala Ala
Ala Ala Ala Lys Ala Ala Ala 210 215
220Lys Ala Ala Gln Phe Gly Leu Val Pro Gly Val Gly Val Ala Pro Gly225
230 235 240Val Gly Val Ala
Pro Gly Val Gly Val Ala Pro Gly Val Gly Leu Ala 245
250 255Pro Gly Val Gly Val Ala Pro Gly Val Gly
Val Ala Pro Gly Val Gly 260 265
270Val Ala Pro Gly Ile Gly Pro Gly Gly Val Ala Ala Ala Ala Lys Ser
275 280 285Ala Ala Lys Val Ala Ala Lys
Ala Gln Leu Arg Ala Ala Ala Gly Leu 290 295
300Gly Ala Gly Ile Pro Gly Leu Gly Val Gly Val Gly Val Pro Gly
Leu305 310 315 320Gly Val
Gly Ala Gly Val Pro Gly Leu Gly Val Gly Ala Gly Val Pro
325 330 335Gly Phe Gly Ala Gly Ala Asp
Glu Gly Val Arg Arg Ser Leu Ser Pro 340 345
350Glu Leu Arg Glu Gly Asp Pro Ser Ser Ser Gln His Leu Pro
Ser Thr 355 360 365Pro Ser Ser Pro
Arg Val Pro Gly Ala Leu Ala Ala Ala Lys Ala Ala 370
375 380Lys Tyr Gly Ala Ala Val Pro Gly Val Leu Gly Gly
Leu Gly Ala Leu385 390 395
400Gly Gly Val Gly Ile Pro Gly Gly Val Val Gly Ala Gly Pro Ala Ala
405 410 415Ala Ala Ala Ala Ala
Lys Ala Ala Ala Lys Ala Ala Gln Phe Gly Leu 420
425 430Val Gly Ala Ala Gly Leu Gly Gly Leu Gly Val Gly
Gly Leu Gly Val 435 440 445Pro Gly
Val Gly Gly Leu Gly Gly Ile Pro Pro Ala Ala Ala Ala Lys 450
455 460Ala Ala Lys Tyr Gly Ala Ala Gly Leu Gly Gly
Val Leu Gly Gly Ala465 470 475
480Gly Gln Phe Pro Leu Gly Gly Val Ala Ala Arg Pro Gly Phe Gly Leu
485 490 495Ser Pro Ile Phe
Pro Gly Gly Ala Cys Leu Gly Lys Ala Cys Gly Arg 500
505 510Lys Arg Lys 515421548DNAArtificial
Sequencesource/note="Description of Artificial Sequence Synthetic
polynucleotide" 42ggtgttctgc ctggagttgg tggtgcgggc gtgccagggg tacctggtgc
aattccgggt 60attggtggta ttgccggtgt cggcaccccg gccgcggcag ctgcggcagc
ggcggctgcc 120aaagctgcta aatacggtgc cgcggcgggt ctggtgccag gaggtccggg
ttttggtccg 180ggagtggttg gcgtgcctgg cgcaggcgtt cctggtgtgg gcgttccagg
tgcagggatt 240cctgttgtgc ctggtgccgg tattcccggc gcggccgttc cgggggtggt
tagcccggaa 300gccgcagcga aggctgcggc aaaggcagca aagtatggcg cacgcccagg
agtcggcgtg 360ggtggtatcc cgacctatgg ggtgggcgca gggggttttc ctggtttcgg
cgtaggtgta 420ggaggtatac cgggcgtggc cggtgtacca ggggttggtg gcgtccctgg
tgttggcggt 480gtgccaggtg ttggtatttc accggaagca caggcagcag ccgcagctaa
ggcagcgaaa 540tatggtgccg ccggcgcagg agttttaggt gggctggttc cgggcccgca
ggcagctgtg 600ccgggggttc caggcaccgg tggtgtccct ggagtcggta cgccggctgc
agcggcagcc 660aaagcggctg cgaaagcagc acagtttggc ttagtaccgg gtgtgggagt
tgcccccggc 720gttggcgttg ctccaggggt gggtgttgct cctggcgtcg gtctggctcc
tggagtgggc 780gtagcacccg gtgtgggggt ggccccgggt gttggggttg caccgggtat
cggtccgggc 840ggtgtcgcag cagcagctaa aagcgcggcg aaagttgcgg ccaaagccca
actgcgcgcc 900gccgcgggcc tcggtgcagg tattccgggg ctgggtgtcg gagttggagt
cccgggtttg 960ggcgtgggcg cgggagttcc gggactggga gtgggtgccg gagttcctgg
ctttggtgca 1020ggcgcagatg aaggtgttcg tcgtagcctg agtccggaac tgcgtgaagg
tgatccgagt 1080agcagccagc atctgccgag caccccgagc agcccgcgtg ttccgggtgc
attagctgca 1140gcaaaagccg ccaagtatgg tgcagccgtg ccgggcgtct taggtggtct
gggcgccctg 1200ggtggtgtag gcattccggg aggtgttgtg ggtgcaggac cggccgccgc
agctgcggcc 1260gccaaagcag ctgcaaaagc ggcccagttt ggtttagtgg gcgccgcagg
tttaggcggt 1320ttaggtgtgg gtggactggg tgtacctggc gtaggcggtc tgggtggaat
tccgcccgca 1380gcggccgcga aagcggcaaa atatggcgcg gcaggcctgg gcggcgtgct
gggtggggca 1440ggtcagtttc cgctgggcgg ggttgccgca cgtccgggat ttggtctgag
cccgattttc 1500cctggcggcg catgtctggg taaagcatgt ggtcgtaaac gtaaataa
154843466PRTArtificial Sequencesource/note="Description of
Artificial Sequence Synthetic polypeptide" 43Gly Leu Val Pro Gly Gly
Pro Gly Phe Gly Pro Gly Val Val Gly Val1 5
10 15Pro Gly Ala Gly Val Pro Gly Val Gly Val Pro Gly
Ala Gly Ile Pro 20 25 30Val
Val Pro Gly Ala Gly Ile Pro Gly Ala Ala Val Pro Gly Val Val 35
40 45Ser Pro Glu Ala Ala Ala Lys Ala Ala
Ala Lys Ala Ala Lys Tyr Gly 50 55
60Ala Arg Pro Gly Val Gly Val Gly Gly Ile Pro Thr Tyr Gly Val Gly65
70 75 80Ala Gly Gly Phe Pro
Gly Phe Gly Val Gly Val Gly Gly Ile Pro Gly 85
90 95Val Ala Gly Val Pro Gly Val Gly Gly Val Pro
Gly Val Gly Gly Val 100 105
110Pro Gly Val Gly Ile Ser Pro Glu Ala Gln Ala Ala Ala Ala Ala Lys
115 120 125Ala Ala Lys Tyr Gly Ala Ala
Gly Ala Gly Val Leu Gly Gly Leu Val 130 135
140Pro Gly Pro Gln Ala Ala Val Pro Gly Val Pro Gly Thr Gly Gly
Val145 150 155 160Pro Gly
Val Gly Thr Pro Ala Ala Ala Ala Ala Lys Ala Ala Ala Lys
165 170 175Ala Ala Gln Phe Gly Leu Val
Pro Gly Val Gly Val Ala Pro Gly Val 180 185
190Gly Val Ala Pro Gly Val Gly Val Ala Pro Gly Val Gly Leu
Ala Pro 195 200 205Gly Val Gly Val
Ala Pro Gly Val Gly Val Ala Pro Gly Val Gly Val 210
215 220Ala Pro Gly Ile Gly Pro Gly Gly Val Ala Ala Ala
Ala Lys Ser Ala225 230 235
240Ala Lys Val Ala Ala Lys Ala Gln Leu Arg Ala Ala Ala Gly Leu Gly
245 250 255Ala Gly Ile Pro Gly
Leu Gly Val Gly Val Gly Val Pro Gly Leu Gly 260
265 270Val Gly Ala Gly Val Pro Gly Leu Gly Val Gly Ala
Gly Val Pro Gly 275 280 285Phe Gly
Ala Gly Ala Asp Glu Gly Val Arg Arg Ser Leu Ser Pro Glu 290
295 300Leu Arg Glu Gly Asp Pro Ser Ser Ser Gln His
Leu Pro Ser Thr Pro305 310 315
320Ser Ser Pro Arg Val Pro Gly Ala Leu Ala Ala Ala Lys Ala Ala Lys
325 330 335Tyr Gly Ala Ala
Val Pro Gly Val Leu Gly Gly Leu Gly Ala Leu Gly 340
345 350Gly Val Gly Ile Pro Gly Gly Val Val Gly Ala
Gly Pro Ala Ala Ala 355 360 365Ala
Ala Ala Ala Lys Ala Ala Ala Lys Ala Ala Gln Phe Gly Leu Val 370
375 380Gly Ala Ala Gly Leu Gly Gly Leu Gly Val
Gly Gly Leu Gly Val Pro385 390 395
400Gly Val Gly Gly Leu Gly Gly Ile Pro Pro Ala Ala Ala Ala Lys
Ala 405 410 415Ala Lys Tyr
Gly Ala Ala Gly Leu Gly Gly Val Leu Gly Gly Ala Gly 420
425 430Gln Phe Pro Leu Gly Gly Val Ala Ala Arg
Pro Gly Phe Gly Leu Ser 435 440
445Pro Ile Phe Pro Gly Gly Ala Cys Leu Gly Lys Ala Cys Gly Arg Lys 450
455 460Arg Lys465441401DNAArtificial
Sequencesource/note="Description of Artificial Sequence Synthetic
polynucleotide" 44ggtctggtgc caggaggtcc gggttttggt ccgggagtgg ttggcgtgcc
tggcgcaggc 60gttcctggtg tgggcgttcc aggtgcaggg attcctgttg tgcctggtgc
cggtattccc 120ggcgcggccg ttccgggggt ggttagcccg gaagccgcag cgaaggctgc
ggcaaaggca 180gcaaagtatg gcgcacgccc aggagtcggc gtgggtggta tcccgaccta
tggggtgggc 240gcagggggtt ttcctggttt cggcgtaggt gtaggaggta taccgggcgt
ggccggtgta 300ccaggggttg gtggcgtccc tggtgttggc ggtgtgccag gtgttggtat
ttcaccggaa 360gcacaggcag cagccgcagc taaggcagcg aaatatggtg ccgccggcgc
aggagtttta 420ggtgggctgg ttccgggccc gcaggcagct gtgccggggg ttccaggcac
cggtggtgtc 480cctggagtcg gtacgccggc tgcagcggca gccaaagcgg ctgcgaaagc
agcacagttt 540ggcttagtac cgggtgtggg agttgccccc ggcgttggcg ttgctccagg
ggtgggtgtt 600gctcctggcg tcggtctggc tcctggagtg ggcgtagcac ccggtgtggg
ggtggccccg 660ggtgttgggg ttgcaccggg tatcggtccg ggcggtgtcg cagcagcagc
taaaagcgcg 720gcgaaagttg cggccaaagc ccaactgcgc gccgccgcgg gcctcggtgc
aggtattccg 780gggctgggtg tcggagttgg agtcccgggt ttgggcgtgg gcgcgggagt
tccgggactg 840ggagtgggtg ccggagttcc tggctttggt gcaggcgcag atgaaggtgt
tcgtcgtagc 900ctgagtccgg aactgcgtga aggtgatccg agtagcagcc agcatctgcc
gagcaccccg 960agcagcccgc gtgttccggg tgcattagct gcagcaaaag ccgccaagta
tggtgcagcc 1020gtgccgggcg tcttaggtgg tctgggcgcc ctgggtggtg taggcattcc
gggaggtgtt 1080gtgggtgcag gaccggccgc cgcagctgcg gccgccaaag cagctgcaaa
agcggcccag 1140tttggtttag tgggcgccgc aggtttaggc ggtttaggtg tgggtggact
gggtgtacct 1200ggcgtaggcg gtctgggtgg aattccgccc gcagcggccg cgaaagcggc
aaaatatggc 1260gcggcaggcc tgggcggcgt gctgggtggg gcaggtcagt ttccgctggg
cggggttgcc 1320gcacgtccgg gatttggtct gagcccgatt ttccctggcg gcgcatgtct
gggtaaagca 1380tgtggtcgta aacgtaaata a
140145460PRTArtificial Sequencesource/note="Description of
Artificial Sequence Synthetic polypeptide" 45Gly Gly Val Pro Gly Ala
Ile Pro Gly Gly Val Pro Gly Gly Val Phe1 5
10 15Tyr Pro Gly Ala Gly Leu Gly Ala Leu Gly Gly Gly
Ala Leu Gly Pro 20 25 30Gly
Gly Lys Pro Leu Lys Pro Val Pro Gly Gly Leu Ala Gly Ala Gly 35
40 45Leu Gly Ala Gly Leu Gly Ala Phe Pro
Ala Val Thr Phe Pro Gly Ala 50 55
60Leu Val Pro Gly Gly Val Ala Asp Ala Ala Ala Ala Tyr Lys Ala Ala65
70 75 80Lys Ala Gly Ala Gly
Leu Gly Gly Val Pro Gly Val Gly Gly Leu Gly 85
90 95Val Ser Ala Gly Ala Val Val Pro Gln Pro Gly
Ala Gly Val Lys Pro 100 105
110Gly Lys Val Pro Gly Val Gly Leu Pro Gly Val Tyr Pro Gly Gly Val
115 120 125Leu Pro Gly Ala Arg Phe Pro
Gly Val Gly Val Leu Pro Gly Val Pro 130 135
140Thr Gly Ala Gly Val Lys Pro Lys Ala Pro Gly Val Gly Gly Ala
Phe145 150 155 160Ala Gly
Ile Pro Gly Val Gly Pro Phe Gly Gly Pro Gln Pro Gly Val
165 170 175Pro Leu Gly Tyr Pro Ile Lys
Ala Pro Lys Leu Pro Gly Gly Tyr Gly 180 185
190Leu Pro Tyr Thr Thr Gly Lys Leu Pro Tyr Gly Tyr Gly Pro
Gly Gly 195 200 205Val Ala Gly Ala
Ala Gly Lys Ala Gly Tyr Pro Thr Gly Thr Gly Val 210
215 220Gly Pro Gln Ala Ala Ala Ala Ala Ala Ala Lys Ala
Ala Ala Lys Phe225 230 235
240Gly Ala Gly Ala Ala Gly Val Leu Pro Gly Val Gly Gly Ala Gly Val
245 250 255Pro Gly Val Pro Gly
Ala Ile Pro Gly Ile Gly Gly Ile Ala Gly Val 260
265 270Gly Thr Pro Ala Ala Ala Ala Ala Ala Ala Ala Ala
Ala Lys Ala Ala 275 280 285Lys Tyr
Gly Ala Ala Ala Gly Leu Val Pro Gly Gly Pro Gly Phe Gly 290
295 300Pro Gly Val Val Gly Val Pro Gly Ala Gly Val
Pro Gly Val Gly Val305 310 315
320Pro Gly Ala Gly Ile Pro Val Val Pro Gly Ala Gly Ile Pro Gly Ala
325 330 335Ala Val Pro Gly
Val Val Ser Pro Glu Ala Ala Ala Lys Ala Ala Ala 340
345 350Lys Ala Ala Lys Tyr Gly Ala Arg Pro Gly Val
Gly Val Gly Gly Ile 355 360 365Pro
Thr Tyr Gly Val Gly Ala Gly Gly Phe Pro Gly Phe Gly Val Gly 370
375 380Val Gly Gly Ile Pro Gly Val Ala Gly Val
Pro Gly Val Gly Gly Val385 390 395
400Pro Gly Val Gly Gly Val Pro Gly Val Gly Ile Ser Pro Glu Ala
Gln 405 410 415Ala Ala Ala
Ala Ala Lys Ala Ala Lys Tyr Gly Ala Ala Gly Ala Gly 420
425 430Val Leu Gly Gly Leu Val Pro Gly Pro Gln
Ala Ala Val Pro Gly Val 435 440
445Pro Gly Thr Gly Gly Val Pro Gly Val Gly Thr Pro 450
455 460461383DNAArtificial
Sequencesource/note="Description of Artificial Sequence Synthetic
polynucleotide" 46ggtggcgtac caggcgcaat tcctgggggt gtcccaggcg gtgtttttta
tccgggcgcc 60ggtcttggcg cactgggtgg cggtgcactg ggcccgggcg gcaaaccgct
gaaaccggta 120ccaggtggtt tagcaggcgc cggcttaggc gcaggtctgg gagcatttcc
ggcagttacc 180tttccagggg cactggttcc tggaggtgtg gccgatgcag ccgcggcata
taaagccgct 240aaagccggtg cgggtttagg aggcgtccca ggtgtcggtg gcctgggtgt
tagcgccggt 300gcagttgttc cgcagccggg agcaggggtt aaacctggta aagtgccggg
agtaggtctg 360ccaggcgttt atcctggtgg tgttttgccg ggtgcccgtt ttccgggcgt
tggtgttctt 420ccaggcgtgc cgaccggagc cggtgttaaa ccgaaagccc ccggtgttgg
aggtgcattt 480gcaggcatcc cgggagttgg cccgtttggt ggtccgcaac ctggggttcc
gttaggttat 540ccgattaaag caccgaaact gcccggcggt tatggtctgc cgtacacaac
cggtaaactg 600ccgtatggtt atggcccggg tggagttgcg ggtgcagcag gtaaagcggg
ttatcctacc 660ggaaccggtg taggtccgca ggccgctgct gccgccgccg caaaagcagc
ggctaaattt 720ggcgccggag cagcgggtgt tctgcctgga gttggtggtg cgggcgtgcc
aggggtacct 780ggtgcaattc cgggtattgg tggtattgcc ggtgtcggca ccccggccgc
ggcagctgcg 840gcagcggcgg ctgccaaagc tgctaaatac ggtgccgcgg cgggtctggt
gccaggaggt 900ccgggttttg gtccgggagt ggttggcgtg cctggcgcag gcgttcctgg
tgtgggcgtt 960ccaggtgcag ggattcctgt tgtgcctggt gccggtattc ccggcgcggc
cgttccgggg 1020gtggttagcc cggaagccgc agcgaaggct gcggcaaagg cagcaaagta
tggcgcacgc 1080ccaggagtcg gcgtgggtgg tatcccgacc tatggggtgg gcgcaggggg
ttttcctggt 1140ttcggcgtag gtgtaggagg tataccgggc gtggccggtg taccaggggt
tggtggcgtc 1200cctggtgttg gcggtgtgcc aggtgttggt atttcaccgg aagcacaggc
agcagccgca 1260gctaaggcag cgaaatatgg tgccgccggc gcaggagttt taggtgggct
ggttccgggc 1320ccgcaggcag ctgtgccggg ggttccaggc accggtggtg tccctggagt
cggtacgccg 1380taa
138347416PRTArtificial Sequencesource/note="Description of
Artificial Sequence Synthetic polypeptide" 47Gly Gly Val Pro Gly Ala
Ile Pro Gly Gly Val Pro Gly Gly Val Phe1 5
10 15Tyr Pro Gly Ala Gly Leu Gly Ala Leu Gly Gly Gly
Ala Leu Gly Pro 20 25 30Gly
Gly Lys Pro Leu Lys Pro Val Pro Gly Gly Leu Ala Gly Ala Gly 35
40 45Leu Gly Ala Gly Leu Gly Ala Phe Pro
Ala Val Thr Phe Pro Gly Ala 50 55
60Leu Val Pro Gly Gly Val Ala Asp Ala Ala Ala Ala Tyr Lys Ala Ala65
70 75 80Lys Ala Gly Ala Gly
Leu Gly Gly Val Pro Gly Val Gly Gly Leu Gly 85
90 95Val Ser Ala Gly Ala Val Val Pro Gln Pro Gly
Ala Gly Val Lys Pro 100 105
110Gly Lys Val Pro Gly Val Gly Leu Pro Gly Val Tyr Pro Gly Gly Val
115 120 125Leu Pro Gly Ala Arg Phe Pro
Gly Val Gly Val Leu Pro Gly Val Pro 130 135
140Thr Gly Ala Gly Val Lys Pro Lys Ala Pro Gly Val Gly Gly Ala
Phe145 150 155 160Ala Gly
Ile Pro Gly Val Gly Pro Phe Gly Gly Pro Gln Pro Gly Val
165 170 175Pro Leu Gly Tyr Pro Ile Lys
Ala Pro Lys Leu Pro Gly Gly Tyr Gly 180 185
190Leu Pro Tyr Thr Thr Gly Lys Leu Pro Tyr Gly Tyr Gly Pro
Gly Gly 195 200 205Val Ala Gly Ala
Ala Gly Lys Ala Gly Tyr Pro Thr Gly Thr Gly Val 210
215 220Gly Pro Gln Ala Ala Ala Ala Ala Ala Ala Lys Ala
Ala Ala Lys Phe225 230 235
240Gly Ala Gly Ala Ala Gly Val Leu Pro Gly Val Gly Gly Ala Gly Val
245 250 255Pro Gly Val Pro Gly
Ala Ile Pro Gly Ile Gly Gly Ile Ala Gly Val 260
265 270Gly Thr Pro Ala Ala Ala Ala Ala Ala Ala Ala Ala
Ala Lys Ala Ala 275 280 285Lys Tyr
Gly Ala Ala Ala Gly Leu Val Pro Gly Gly Pro Gly Phe Gly 290
295 300Pro Gly Val Val Gly Val Pro Gly Ala Gly Val
Pro Gly Val Gly Val305 310 315
320Pro Gly Ala Gly Ile Pro Val Val Pro Gly Ala Gly Ile Pro Gly Ala
325 330 335Ala Val Pro Gly
Val Val Ser Pro Glu Ala Ala Ala Lys Ala Ala Ala 340
345 350Lys Ala Ala Lys Tyr Gly Ala Arg Pro Gly Val
Gly Val Gly Gly Ile 355 360 365Pro
Thr Tyr Gly Val Gly Ala Gly Gly Phe Pro Gly Phe Gly Val Gly 370
375 380Val Gly Gly Ile Pro Gly Val Ala Gly Val
Pro Gly Val Gly Gly Val385 390 395
400Pro Gly Val Gly Gly Val Pro Gly Val Gly Ile Ser Pro Glu Ala
Gln 405 410
415481251DNAArtificial Sequencesource/note="Description of Artificial
Sequence Synthetic polynucleotide" 48ggtggcgtac caggcgcaat
tcctgggggt gtcccaggcg gtgtttttta tccgggcgcc 60ggtcttggcg cactgggtgg
cggtgcactg ggcccgggcg gcaaaccgct gaaaccggta 120ccaggtggtt tagcaggcgc
cggcttaggc gcaggtctgg gagcatttcc ggcagttacc 180tttccagggg cactggttcc
tggaggtgtg gccgatgcag ccgcggcata taaagccgct 240aaagccggtg cgggtttagg
aggcgtccca ggtgtcggtg gcctgggtgt tagcgccggt 300gcagttgttc cgcagccggg
agcaggggtt aaacctggta aagtgccggg agtaggtctg 360ccaggcgttt atcctggtgg
tgttttgccg ggtgcccgtt ttccgggcgt tggtgttctt 420ccaggcgtgc cgaccggagc
cggtgttaaa ccgaaagccc ccggtgttgg aggtgcattt 480gcaggcatcc cgggagttgg
cccgtttggt ggtccgcaac ctggggttcc gttaggttat 540ccgattaaag caccgaaact
gcccggcggt tatggtctgc cgtacacaac cggtaaactg 600ccgtatggtt atggcccggg
tggagttgcg ggtgcagcag gtaaagcggg ttatcctacc 660ggaaccggtg taggtccgca
ggccgctgct gccgccgccg caaaagcagc ggctaaattt 720ggcgccggag cagcgggtgt
tctgcctgga gttggtggtg cgggcgtgcc aggggtacct 780ggtgcaattc cgggtattgg
tggtattgcc ggtgtcggca ccccggccgc ggcagctgcg 840gcagcggcgg ctgccaaagc
tgctaaatac ggtgccgcgg cgggtctggt gccaggaggt 900ccgggttttg gtccgggagt
ggttggcgtg cctggcgcag gcgttcctgg tgtgggcgtt 960ccaggtgcag ggattcctgt
tgtgcctggt gccggtattc ccggcgcggc cgttccgggg 1020gtggttagcc cggaagccgc
agcgaaggct gcggcaaagg cagcaaagta tggcgcacgc 1080ccaggagtcg gcgtgggtgg
tatcccgacc tatggggtgg gcgcaggggg ttttcctggt 1140ttcggcgtag gtgtaggagg
tataccgggc gtggccggtg taccaggggt tggtggcgtc 1200cctggtgttg gcggtgtgcc
aggtgttggt atttcaccgg aagcacagta a 125149401PRTArtificial
Sequencesource/note="Description of Artificial Sequence Synthetic
polypeptide" 49Arg Pro Gly Val Gly Val Gly Gly Ile Pro Thr Tyr Gly Val
Gly Ala1 5 10 15Gly Gly
Phe Pro Gly Phe Gly Val Gly Val Gly Gly Ile Pro Gly Val 20
25 30Ala Gly Val Pro Gly Val Gly Gly Val
Pro Gly Val Gly Gly Val Pro 35 40
45Gly Val Gly Ile Ser Pro Glu Ala Gln Ala Ala Ala Ala Ala Lys Ala 50
55 60Ala Lys Tyr Gly Ala Ala Gly Ala Gly
Val Leu Gly Gly Leu Val Pro65 70 75
80Gly Pro Gln Ala Ala Val Pro Gly Val Pro Gly Thr Gly Gly
Val Pro 85 90 95Gly Val
Gly Thr Pro Ala Ala Ala Ala Ala Lys Ala Ala Ala Lys Ala 100
105 110Ala Gln Phe Gly Leu Val Pro Gly Val
Gly Val Ala Pro Gly Val Gly 115 120
125Val Ala Pro Gly Val Gly Val Ala Pro Gly Val Gly Leu Ala Pro Gly
130 135 140Val Gly Val Ala Pro Gly Val
Gly Val Ala Pro Gly Val Gly Val Ala145 150
155 160Pro Gly Ile Gly Pro Gly Gly Val Ala Ala Ala Ala
Lys Ser Ala Ala 165 170
175Lys Val Ala Ala Lys Ala Gln Leu Arg Ala Ala Ala Gly Leu Gly Ala
180 185 190Gly Ile Pro Gly Leu Gly
Val Gly Val Gly Val Pro Gly Leu Gly Val 195 200
205Gly Ala Gly Val Pro Gly Leu Gly Val Gly Ala Gly Val Pro
Gly Phe 210 215 220Gly Ala Gly Ala Asp
Glu Gly Val Arg Arg Ser Leu Ser Pro Glu Leu225 230
235 240Arg Glu Gly Asp Pro Ser Ser Ser Gln His
Leu Pro Ser Thr Pro Ser 245 250
255Ser Pro Arg Val Pro Gly Ala Leu Ala Ala Ala Lys Ala Ala Lys Tyr
260 265 270Gly Ala Ala Val Pro
Gly Val Leu Gly Gly Leu Gly Ala Leu Gly Gly 275
280 285Val Gly Ile Pro Gly Gly Val Val Gly Ala Gly Pro
Ala Ala Ala Ala 290 295 300Ala Ala Ala
Lys Ala Ala Ala Lys Ala Ala Gln Phe Gly Leu Val Gly305
310 315 320Ala Ala Gly Leu Gly Gly Leu
Gly Val Gly Gly Leu Gly Val Pro Gly 325
330 335Val Gly Gly Leu Gly Gly Ile Pro Pro Ala Ala Ala
Ala Lys Ala Ala 340 345 350Lys
Tyr Gly Ala Ala Gly Leu Gly Gly Val Leu Gly Gly Ala Gly Gln 355
360 365Phe Pro Leu Gly Gly Val Ala Ala Arg
Pro Gly Phe Gly Leu Ser Pro 370 375
380Ile Phe Pro Gly Gly Ala Cys Leu Gly Lys Ala Cys Gly Arg Lys Arg385
390 395
400Lys501206DNAArtificial Sequencesource/note="Description of Artificial
Sequence Synthetic polynucleotide" 50cgcccaggag tcggcgtggg
tggtatcccg acctatgggg tgggcgcagg gggttttcct 60ggtttcggcg taggtgtagg
aggtataccg ggcgtggccg gtgtaccagg ggttggtggc 120gtccctggtg ttggcggtgt
gccaggtgtt ggtatttcac cggaagcaca ggcagcagcc 180gcagctaagg cagcgaaata
tggtgccgcc ggcgcaggag ttttaggtgg gctggttccg 240ggcccgcagg cagctgtgcc
gggggttcca ggcaccggtg gtgtccctgg agtcggtacg 300ccggctgcag cggcagccaa
agcggctgcg aaagcagcac agtttggctt agtaccgggt 360gtgggagttg cccccggcgt
tggcgttgct ccaggggtgg gtgttgctcc tggcgtcggt 420ctggctcctg gagtgggcgt
agcacccggt gtgggggtgg ccccgggtgt tggggttgca 480ccgggtatcg gtccgggcgg
tgtcgcagca gcagctaaaa gcgcggcgaa agttgcggcc 540aaagcccaac tgcgcgccgc
cgcgggcctc ggtgcaggta ttccggggct gggtgtcgga 600gttggagtcc cgggtttggg
cgtgggcgcg ggagttccgg gactgggagt gggtgccgga 660gttcctggct ttggtgcagg
cgcagatgaa ggtgttcgtc gtagcctgag tccggaactg 720cgtgaaggtg atccgagtag
cagccagcat ctgccgagca ccccgagcag cccgcgtgtt 780ccgggtgcat tagctgcagc
aaaagccgcc aagtatggtg cagccgtgcc gggcgtctta 840ggtggtctgg gcgccctggg
tggtgtaggc attccgggag gtgttgtggg tgcaggaccg 900gccgccgcag ctgcggccgc
caaagcagct gcaaaagcgg cccagtttgg tttagtgggc 960gccgcaggtt taggcggttt
aggtgtgggt ggactgggtg tacctggcgt aggcggtctg 1020ggtggaattc cgcccgcagc
ggccgcgaaa gcggcaaaat atggcgcggc aggcctgggc 1080ggcgtgctgg gtggggcagg
tcagtttccg ctgggcgggg ttgccgcacg tccgggattt 1140ggtctgagcc cgattttccc
tggcggcgca tgtctgggta aagcatgtgg tcgtaaacgt 1200aaataa
120651371PRTArtificial
Sequencesource/note="Description of Artificial Sequence Synthetic
polypeptide" 51Gly Gly Val Pro Gly Ala Ile Pro Gly Gly Val Pro Gly Gly
Val Phe1 5 10 15Tyr Pro
Gly Ala Gly Leu Gly Ala Leu Gly Gly Gly Ala Leu Gly Pro 20
25 30Gly Gly Lys Pro Leu Lys Pro Val Pro
Gly Gly Leu Ala Gly Ala Gly 35 40
45Leu Gly Ala Gly Leu Gly Ala Phe Pro Ala Val Thr Phe Pro Gly Ala 50
55 60Leu Val Pro Gly Gly Val Ala Asp Ala
Ala Ala Ala Tyr Lys Ala Ala65 70 75
80Lys Ala Gly Ala Gly Leu Gly Gly Val Pro Gly Val Gly Gly
Leu Gly 85 90 95Val Ser
Ala Gly Ala Val Val Pro Gln Pro Gly Ala Gly Val Lys Pro 100
105 110Gly Lys Val Pro Gly Val Gly Leu Pro
Gly Val Tyr Pro Gly Gly Val 115 120
125Leu Pro Gly Ala Arg Phe Pro Gly Val Gly Val Leu Pro Gly Val Pro
130 135 140Thr Gly Ala Gly Val Lys Pro
Lys Ala Pro Gly Val Gly Gly Ala Phe145 150
155 160Ala Gly Ile Pro Gly Val Gly Pro Phe Gly Gly Pro
Gln Pro Gly Val 165 170
175Pro Leu Gly Tyr Pro Ile Lys Ala Pro Lys Leu Pro Gly Gly Tyr Gly
180 185 190Leu Pro Tyr Thr Thr Gly
Lys Leu Pro Tyr Gly Tyr Gly Pro Gly Gly 195 200
205Val Ala Gly Ala Ala Gly Lys Ala Gly Tyr Pro Thr Gly Thr
Gly Val 210 215 220Gly Pro Gln Ala Ala
Ala Ala Ala Ala Ala Lys Ala Ala Ala Lys Phe225 230
235 240Gly Ala Gly Ala Ala Gly Val Leu Pro Gly
Val Gly Gly Ala Gly Val 245 250
255Pro Gly Val Pro Gly Ala Ile Pro Gly Ile Gly Gly Ile Ala Gly Val
260 265 270Gly Thr Pro Ala Ala
Ala Ala Ala Ala Ala Ala Ala Ala Lys Ala Ala 275
280 285Lys Tyr Gly Ala Ala Ala Gly Leu Val Pro Gly Gly
Pro Gly Phe Gly 290 295 300Pro Gly Val
Val Gly Val Pro Gly Ala Gly Val Pro Gly Val Gly Val305
310 315 320Pro Gly Ala Gly Ile Pro Val
Val Pro Gly Ala Gly Ile Pro Gly Ala 325
330 335Ala Val Pro Gly Val Val Ser Pro Glu Ala Ala Ala
Lys Ala Ala Ala 340 345 350Lys
Ala Ala Lys Tyr Gly Ala Arg Pro Gly Val Gly Val Gly Gly Ile 355
360 365Pro Thr Tyr 370521116DNAArtificial
Sequencesource/note="Description of Artificial Sequence Synthetic
polynucleotide" 52ggtggcgtac caggcgcaat tcctgggggt gtcccaggcg gtgtttttta
tccgggcgcc 60ggtcttggcg cactgggtgg cggtgcactg ggcccgggcg gcaaaccgct
gaaaccggta 120ccaggtggtt tagcaggcgc cggcttaggc gcaggtctgg gagcatttcc
ggcagttacc 180tttccagggg cactggttcc tggaggtgtg gccgatgcag ccgcggcata
taaagccgct 240aaagccggtg cgggtttagg aggcgtccca ggtgtcggtg gcctgggtgt
tagcgccggt 300gcagttgttc cgcagccggg agcaggggtt aaacctggta aagtgccggg
agtaggtctg 360ccaggcgttt atcctggtgg tgttttgccg ggtgcccgtt ttccgggcgt
tggtgttctt 420ccaggcgtgc cgaccggagc cggtgttaaa ccgaaagccc ccggtgttgg
aggtgcattt 480gcaggcatcc cgggagttgg cccgtttggt ggtccgcaac ctggggttcc
gttaggttat 540ccgattaaag caccgaaact gcccggcggt tatggtctgc cgtacacaac
cggtaaactg 600ccgtatggtt atggcccggg tggagttgcg ggtgcagcag gtaaagcggg
ttatcctacc 660ggaaccggtg taggtccgca ggccgctgct gccgccgccg caaaagcagc
ggctaaattt 720ggcgccggag cagcgggtgt tctgcctgga gttggtggtg cgggcgtgcc
aggggtacct 780ggtgcaattc cgggtattgg tggtattgcc ggtgtcggca ccccggccgc
ggcagctgcg 840gcagcggcgg ctgccaaagc tgctaaatac ggtgccgcgg cgggtctggt
gccaggaggt 900ccgggttttg gtccgggagt ggttggcgtg cctggcgcag gcgttcctgg
tgtgggcgtt 960ccaggtgcag ggattcctgt tgtgcctggt gccggtattc ccggcgcggc
cgttccgggg 1020gtggttagcc cggaagccgc agcgaaggct gcggcaaagg cagcaaagta
tggcgcacgc 1080ccaggagtcg gcgtgggtgg tatcccgacc tattaa
111653345PRTArtificial Sequencesource/note="Description of
Artificial Sequence Synthetic polypeptide" 53Gly Gly Val Pro Gly Ala
Ile Pro Gly Gly Val Pro Gly Gly Val Phe1 5
10 15Tyr Pro Gly Ala Gly Leu Gly Ala Leu Gly Gly Gly
Ala Leu Gly Pro 20 25 30Gly
Gly Lys Pro Leu Lys Pro Val Pro Gly Gly Leu Ala Gly Ala Gly 35
40 45Leu Gly Ala Gly Leu Gly Ala Phe Pro
Ala Val Thr Phe Pro Gly Ala 50 55
60Leu Val Pro Gly Gly Val Ala Asp Ala Ala Ala Ala Tyr Lys Ala Ala65
70 75 80Lys Ala Gly Ala Gly
Leu Gly Gly Val Pro Gly Val Gly Gly Leu Gly 85
90 95Val Ser Ala Gly Ala Val Val Pro Gln Pro Gly
Ala Gly Val Lys Pro 100 105
110Gly Lys Val Pro Gly Val Gly Leu Pro Gly Val Tyr Pro Gly Gly Val
115 120 125Leu Pro Gly Ala Arg Phe Pro
Gly Val Gly Val Leu Pro Gly Val Pro 130 135
140Thr Gly Ala Gly Val Lys Pro Lys Ala Pro Gly Val Gly Gly Ala
Phe145 150 155 160Ala Gly
Ile Pro Gly Val Gly Pro Phe Gly Gly Pro Gln Pro Gly Val
165 170 175Pro Leu Gly Tyr Pro Ile Lys
Ala Pro Lys Leu Pro Gly Gly Tyr Gly 180 185
190Leu Pro Tyr Thr Thr Gly Lys Leu Pro Tyr Gly Tyr Gly Pro
Gly Gly 195 200 205Val Ala Gly Ala
Ala Gly Lys Ala Gly Tyr Pro Thr Gly Thr Gly Val 210
215 220Gly Pro Gln Ala Ala Ala Ala Ala Ala Ala Lys Ala
Ala Ala Lys Phe225 230 235
240Gly Ala Gly Ala Ala Gly Val Leu Pro Gly Val Gly Gly Ala Gly Val
245 250 255Pro Gly Val Pro Gly
Ala Ile Pro Gly Ile Gly Gly Ile Ala Gly Val 260
265 270Gly Thr Pro Ala Ala Ala Ala Ala Ala Ala Ala Ala
Ala Lys Ala Ala 275 280 285Lys Tyr
Gly Ala Ala Ala Gly Leu Val Pro Gly Gly Pro Gly Phe Gly 290
295 300Pro Gly Val Val Gly Val Pro Gly Ala Gly Val
Pro Gly Val Gly Val305 310 315
320Pro Gly Ala Gly Ile Pro Val Val Pro Gly Ala Gly Ile Pro Gly Ala
325 330 335Ala Val Pro Gly
Val Val Ser Pro Glu 340 345541038DNAArtificial
Sequencesource/note="Description of Artificial Sequence Synthetic
polynucleotide" 54ggtggcgtac caggcgcaat tcctgggggt gtcccaggcg gtgtttttta
tccgggcgcc 60ggtcttggcg cactgggtgg cggtgcactg ggcccgggcg gcaaaccgct
gaaaccggta 120ccaggtggtt tagcaggcgc cggcttaggc gcaggtctgg gagcatttcc
ggcagttacc 180tttccagggg cactggttcc tggaggtgtg gccgatgcag ccgcggcata
taaagccgct 240aaagccggtg cgggtttagg aggcgtccca ggtgtcggtg gcctgggtgt
tagcgccggt 300gcagttgttc cgcagccggg agcaggggtt aaacctggta aagtgccggg
agtaggtctg 360ccaggcgttt atcctggtgg tgttttgccg ggtgcccgtt ttccgggcgt
tggtgttctt 420ccaggcgtgc cgaccggagc cggtgttaaa ccgaaagccc ccggtgttgg
aggtgcattt 480gcaggcatcc cgggagttgg cccgtttggt ggtccgcaac ctggggttcc
gttaggttat 540ccgattaaag caccgaaact gcccggcggt tatggtctgc cgtacacaac
cggtaaactg 600ccgtatggtt atggcccggg tggagttgcg ggtgcagcag gtaaagcggg
ttatcctacc 660ggaaccggtg taggtccgca ggccgctgct gccgccgccg caaaagcagc
ggctaaattt 720ggcgccggag cagcgggtgt tctgcctgga gttggtggtg cgggcgtgcc
aggggtacct 780ggtgcaattc cgggtattgg tggtattgcc ggtgtcggca ccccggccgc
ggcagctgcg 840gcagcggcgg ctgccaaagc tgctaaatac ggtgccgcgg cgggtctggt
gccaggaggt 900ccgggttttg gtccgggagt ggttggcgtg cctggcgcag gcgttcctgg
tgtgggcgtt 960ccaggtgcag ggattcctgt tgtgcctggt gccggtattc ccggcgcggc
cgttccgggg 1020gtggttagcc cggaataa
103855336PRTArtificial Sequencesource/note="Description of
Artificial Sequence Synthetic polypeptide" 55Lys Tyr Gly Ala Ala Gly
Ala Gly Val Leu Gly Gly Leu Val Pro Gly1 5
10 15Pro Gln Ala Ala Val Pro Gly Val Pro Gly Thr Gly
Gly Val Pro Gly 20 25 30Val
Gly Thr Pro Ala Ala Ala Ala Ala Lys Ala Ala Ala Lys Ala Ala 35
40 45Gln Phe Gly Leu Val Pro Gly Val Gly
Val Ala Pro Gly Val Gly Val 50 55
60Ala Pro Gly Val Gly Val Ala Pro Gly Val Gly Leu Ala Pro Gly Val65
70 75 80Gly Val Ala Pro Gly
Val Gly Val Ala Pro Gly Val Gly Val Ala Pro 85
90 95Gly Ile Gly Pro Gly Gly Val Ala Ala Ala Ala
Lys Ser Ala Ala Lys 100 105
110Val Ala Ala Lys Ala Gln Leu Arg Ala Ala Ala Gly Leu Gly Ala Gly
115 120 125Ile Pro Gly Leu Gly Val Gly
Val Gly Val Pro Gly Leu Gly Val Gly 130 135
140Ala Gly Val Pro Gly Leu Gly Val Gly Ala Gly Val Pro Gly Phe
Gly145 150 155 160Ala Gly
Ala Asp Glu Gly Val Arg Arg Ser Leu Ser Pro Glu Leu Arg
165 170 175Glu Gly Asp Pro Ser Ser Ser
Gln His Leu Pro Ser Thr Pro Ser Ser 180 185
190Pro Arg Val Pro Gly Ala Leu Ala Ala Ala Lys Ala Ala Lys
Tyr Gly 195 200 205Ala Ala Val Pro
Gly Val Leu Gly Gly Leu Gly Ala Leu Gly Gly Val 210
215 220Gly Ile Pro Gly Gly Val Val Gly Ala Gly Pro Ala
Ala Ala Ala Ala225 230 235
240Ala Ala Lys Ala Ala Ala Lys Ala Ala Gln Phe Gly Leu Val Gly Ala
245 250 255Ala Gly Leu Gly Gly
Leu Gly Val Gly Gly Leu Gly Val Pro Gly Val 260
265 270Gly Gly Leu Gly Gly Ile Pro Pro Ala Ala Ala Ala
Lys Ala Ala Lys 275 280 285Tyr Gly
Ala Ala Gly Leu Gly Gly Val Leu Gly Gly Ala Gly Gln Phe 290
295 300Pro Leu Gly Gly Val Ala Ala Arg Pro Gly Phe
Gly Leu Ser Pro Ile305 310 315
320Phe Pro Gly Gly Ala Cys Leu Gly Lys Ala Cys Gly Arg Lys Arg Lys
325 330
335561011DNAArtificial Sequencesource/note="Description of Artificial
Sequence Synthetic polynucleotide" 56aaatatggtg ccgccggcgc
aggagtttta ggtgggctgg ttccgggccc gcaggcagct 60gtgccggggg ttccaggcac
cggtggtgtc cctggagtcg gtacgccggc tgcagcggca 120gccaaagcgg ctgcgaaagc
agcacagttt ggcttagtac cgggtgtggg agttgccccc 180ggcgttggcg ttgctccagg
ggtgggtgtt gctcctggcg tcggtctggc tcctggagtg 240ggcgtagcac ccggtgtggg
ggtggccccg ggtgttgggg ttgcaccggg tatcggtccg 300ggcggtgtcg cagcagcagc
taaaagcgcg gcgaaagttg cggccaaagc ccaactgcgc 360gccgccgcgg gcctcggtgc
aggtattccg gggctgggtg tcggagttgg agtcccgggt 420ttgggcgtgg gcgcgggagt
tccgggactg ggagtgggtg ccggagttcc tggctttggt 480gcaggcgcag atgaaggtgt
tcgtcgtagc ctgagtccgg aactgcgtga aggtgatccg 540agtagcagcc agcatctgcc
gagcaccccg agcagcccgc gtgttccggg tgcattagct 600gcagcaaaag ccgccaagta
tggtgcagcc gtgccgggcg tcttaggtgg tctgggcgcc 660ctgggtggtg taggcattcc
gggaggtgtt gtgggtgcag gaccggccgc cgcagctgcg 720gccgccaaag cagctgcaaa
agcggcccag tttggtttag tgggcgccgc aggtttaggc 780ggtttaggtg tgggtggact
gggtgtacct ggcgtaggcg gtctgggtgg aattccgccc 840gcagcggccg cgaaagcggc
aaaatatggc gcggcaggcc tgggcggcgt gctgggtggg 900gcaggtcagt ttccgctggg
cggggttgcc gcacgtccgg gatttggtct gagcccgatt 960ttccctggcg gcgcatgtct
gggtaaagca tgtggtcgta aacgtaaata a 101157288PRTArtificial
Sequencesource/note="Description of Artificial Sequence Synthetic
polypeptide" 57Gln Phe Gly Leu Val Pro Gly Val Gly Val Ala Pro Gly Val
Gly Val1 5 10 15Ala Pro
Gly Val Gly Val Ala Pro Gly Val Gly Leu Ala Pro Gly Val 20
25 30Gly Val Ala Pro Gly Val Gly Val Ala
Pro Gly Val Gly Val Ala Pro 35 40
45Gly Ile Gly Pro Gly Gly Val Ala Ala Ala Ala Lys Ser Ala Ala Lys 50
55 60Val Ala Ala Lys Ala Gln Leu Arg Ala
Ala Ala Gly Leu Gly Ala Gly65 70 75
80Ile Pro Gly Leu Gly Val Gly Val Gly Val Pro Gly Leu Gly
Val Gly 85 90 95Ala Gly
Val Pro Gly Leu Gly Val Gly Ala Gly Val Pro Gly Phe Gly 100
105 110Ala Gly Ala Asp Glu Gly Val Arg Arg
Ser Leu Ser Pro Glu Leu Arg 115 120
125Glu Gly Asp Pro Ser Ser Ser Gln His Leu Pro Ser Thr Pro Ser Ser
130 135 140Pro Arg Val Pro Gly Ala Leu
Ala Ala Ala Lys Ala Ala Lys Tyr Gly145 150
155 160Ala Ala Val Pro Gly Val Leu Gly Gly Leu Gly Ala
Leu Gly Gly Val 165 170
175Gly Ile Pro Gly Gly Val Val Gly Ala Gly Pro Ala Ala Ala Ala Ala
180 185 190Ala Ala Lys Ala Ala Ala
Lys Ala Ala Gln Phe Gly Leu Val Gly Ala 195 200
205Ala Gly Leu Gly Gly Leu Gly Val Gly Gly Leu Gly Val Pro
Gly Val 210 215 220Gly Gly Leu Gly Gly
Ile Pro Pro Ala Ala Ala Ala Lys Ala Ala Lys225 230
235 240Tyr Gly Ala Ala Gly Leu Gly Gly Val Leu
Gly Gly Ala Gly Gln Phe 245 250
255Pro Leu Gly Gly Val Ala Ala Arg Pro Gly Phe Gly Leu Ser Pro Ile
260 265 270Phe Pro Gly Gly Ala
Cys Leu Gly Lys Ala Cys Gly Arg Lys Arg Lys 275
280 28558867DNAArtificial
Sequencesource/note="Description of Artificial Sequence Synthetic
polynucleotide" 58cagtttggct tagtaccggg tgtgggagtt gcccccggcg ttggcgttgc
tccaggggtg 60ggtgttgctc ctggcgtcgg tctggctcct ggagtgggcg tagcacccgg
tgtgggggtg 120gccccgggtg ttggggttgc accgggtatc ggtccgggcg gtgtcgcagc
agcagctaaa 180agcgcggcga aagttgcggc caaagcccaa ctgcgcgccg ccgcgggcct
cggtgcaggt 240attccggggc tgggtgtcgg agttggagtc ccgggtttgg gcgtgggcgc
gggagttccg 300ggactgggag tgggtgccgg agttcctggc tttggtgcag gcgcagatga
aggtgttcgt 360cgtagcctga gtccggaact gcgtgaaggt gatccgagta gcagccagca
tctgccgagc 420accccgagca gcccgcgtgt tccgggtgca ttagctgcag caaaagccgc
caagtatggt 480gcagccgtgc cgggcgtctt aggtggtctg ggcgccctgg gtggtgtagg
cattccggga 540ggtgttgtgg gtgcaggacc ggccgccgca gctgcggccg ccaaagcagc
tgcaaaagcg 600gcccagtttg gtttagtggg cgccgcaggt ttaggcggtt taggtgtggg
tggactgggt 660gtacctggcg taggcggtct gggtggaatt ccgcccgcag cggccgcgaa
agcggcaaaa 720tatggcgcgg caggcctggg cggcgtgctg ggtggggcag gtcagtttcc
gctgggcggg 780gttgccgcac gtccgggatt tggtctgagc ccgattttcc ctggcggcgc
atgtctgggt 840aaagcatgtg gtcgtaaacg taaataa
86759275PRTArtificial Sequencesource/note="Description of
Artificial Sequence Synthetic polypeptide" 59Gly Gly Val Pro Gly Ala
Ile Pro Gly Gly Val Pro Gly Gly Val Phe1 5
10 15Tyr Pro Gly Ala Gly Leu Gly Ala Leu Gly Gly Gly
Ala Leu Gly Pro 20 25 30Gly
Gly Lys Pro Leu Lys Pro Val Pro Gly Gly Leu Ala Gly Ala Gly 35
40 45Leu Gly Ala Gly Leu Gly Ala Phe Pro
Ala Val Thr Phe Pro Gly Ala 50 55
60Leu Val Pro Gly Gly Val Ala Asp Ala Ala Ala Ala Tyr Lys Ala Ala65
70 75 80Lys Ala Gly Ala Gly
Leu Gly Gly Val Pro Gly Val Gly Gly Leu Gly 85
90 95Val Ser Ala Gly Ala Val Val Pro Gln Pro Gly
Ala Gly Val Lys Pro 100 105
110Gly Lys Val Pro Gly Val Gly Leu Pro Gly Val Tyr Pro Gly Gly Val
115 120 125Leu Pro Gly Ala Arg Phe Pro
Gly Val Gly Val Leu Pro Gly Val Pro 130 135
140Thr Gly Ala Gly Val Lys Pro Lys Ala Pro Gly Val Gly Gly Ala
Phe145 150 155 160Ala Gly
Ile Pro Gly Val Gly Pro Phe Gly Gly Pro Gln Pro Gly Val
165 170 175Pro Leu Gly Tyr Pro Ile Lys
Ala Pro Lys Leu Pro Gly Gly Tyr Gly 180 185
190Leu Pro Tyr Thr Thr Gly Lys Leu Pro Tyr Gly Tyr Gly Pro
Gly Gly 195 200 205Val Ala Gly Ala
Ala Gly Lys Ala Gly Tyr Pro Thr Gly Thr Gly Val 210
215 220Gly Pro Gln Ala Ala Ala Ala Ala Ala Ala Lys Ala
Ala Ala Lys Phe225 230 235
240Gly Ala Gly Ala Ala Gly Val Leu Pro Gly Val Gly Gly Ala Gly Val
245 250 255Pro Gly Val Pro Gly
Ala Ile Pro Gly Ile Gly Gly Ile Ala Gly Val 260
265 270Gly Thr Pro 27560828DNAArtificial
Sequencesource/note="Description of Artificial Sequence Synthetic
polynucleotide" 60ggtggcgtac caggcgcaat tcctgggggt gtcccaggcg gtgtttttta
tccgggcgcc 60ggtcttggcg cactgggtgg cggtgcactg ggcccgggcg gcaaaccgct
gaaaccggta 120ccaggtggtt tagcaggcgc cggcttaggc gcaggtctgg gagcatttcc
ggcagttacc 180tttccagggg cactggttcc tggaggtgtg gccgatgcag ccgcggcata
taaagccgct 240aaagccggtg cgggtttagg aggcgtccca ggtgtcggtg gcctgggtgt
tagcgccggt 300gcagttgttc cgcagccggg agcaggggtt aaacctggta aagtgccggg
agtaggtctg 360ccaggcgttt atcctggtgg tgttttgccg ggtgcccgtt ttccgggcgt
tggtgttctt 420ccaggcgtgc cgaccggagc cggtgttaaa ccgaaagccc ccggtgttgg
aggtgcattt 480gcaggcatcc cgggagttgg cccgtttggt ggtccgcaac ctggggttcc
gttaggttat 540ccgattaaag caccgaaact gcccggcggt tatggtctgc cgtacacaac
cggtaaactg 600ccgtatggtt atggcccggg tggagttgcg ggtgcagcag gtaaagcggg
ttatcctacc 660ggaaccggtg taggtccgca ggccgctgct gccgccgccg caaaagcagc
ggctaaattt 720ggcgccggag cagcgggtgt tctgcctgga gttggtggtg cgggcgtgcc
aggggtacct 780ggtgcaattc cgggtattgg tggtattgcc ggtgtcggca ccccgtaa
82861227PRTArtificial Sequencesource/note="Description of
Artificial Sequence Synthetic polypeptide" 61Gly Gly Val Pro Gly Ala
Ile Pro Gly Gly Val Pro Gly Gly Val Phe1 5
10 15Tyr Pro Gly Ala Gly Leu Gly Ala Leu Gly Gly Gly
Ala Leu Gly Pro 20 25 30Gly
Gly Lys Pro Leu Lys Pro Val Pro Gly Gly Leu Ala Gly Ala Gly 35
40 45Leu Gly Ala Gly Leu Gly Ala Phe Pro
Ala Val Thr Phe Pro Gly Ala 50 55
60Leu Val Pro Gly Gly Val Ala Asp Ala Ala Ala Ala Tyr Lys Ala Ala65
70 75 80Lys Ala Gly Ala Gly
Leu Gly Gly Val Pro Gly Val Gly Gly Leu Gly 85
90 95Val Ser Ala Gly Ala Val Val Pro Gln Pro Gly
Ala Gly Val Lys Pro 100 105
110Gly Lys Val Pro Gly Val Gly Leu Pro Gly Val Tyr Pro Gly Gly Val
115 120 125Leu Pro Gly Ala Arg Phe Pro
Gly Val Gly Val Leu Pro Gly Val Pro 130 135
140Thr Gly Ala Gly Val Lys Pro Lys Ala Pro Gly Val Gly Gly Ala
Phe145 150 155 160Ala Gly
Ile Pro Gly Val Gly Pro Phe Gly Gly Pro Gln Pro Gly Val
165 170 175Pro Leu Gly Tyr Pro Ile Lys
Ala Pro Lys Leu Pro Gly Gly Tyr Gly 180 185
190Leu Pro Tyr Thr Thr Gly Lys Leu Pro Tyr Gly Tyr Gly Pro
Gly Gly 195 200 205Val Ala Gly Ala
Ala Gly Lys Ala Gly Tyr Pro Thr Gly Thr Gly Val 210
215 220Gly Pro Gln22562684DNAArtificial
Sequencesource/note="Description of Artificial Sequence Synthetic
polynucleotide" 62ggtggcgtac caggcgcaat tcctgggggt gtcccaggcg gtgtttttta
tccgggcgcc 60ggtcttggcg cactgggtgg cggtgcactg ggcccgggcg gcaaaccgct
gaaaccggta 120ccaggtggtt tagcaggcgc cggcttaggc gcaggtctgg gagcatttcc
ggcagttacc 180tttccagggg cactggttcc tggaggtgtg gccgatgcag ccgcggcata
taaagccgct 240aaagccggtg cgggtttagg aggcgtccca ggtgtcggtg gcctgggtgt
tagcgccggt 300gcagttgttc cgcagccggg agcaggggtt aaacctggta aagtgccggg
agtaggtctg 360ccaggcgttt atcctggtgg tgttttgccg ggtgcccgtt ttccgggcgt
tggtgttctt 420ccaggcgtgc cgaccggagc cggtgttaaa ccgaaagccc ccggtgttgg
aggtgcattt 480gcaggcatcc cgggagttgg cccgtttggt ggtccgcaac ctggggttcc
gttaggttat 540ccgattaaag caccgaaact gcccggcggt tatggtctgc cgtacacaac
cggtaaactg 600ccgtatggtt atggcccggg tggagttgcg ggtgcagcag gtaaagcggg
ttatcctacc 660ggaaccggtg taggtccgca gtaa
68463219PRTArtificial Sequencesource/note="Description of
Artificial Sequence Synthetic polypeptide" 63Gln Leu Arg Ala Ala Ala
Gly Leu Gly Ala Gly Ile Pro Gly Leu Gly1 5
10 15Val Gly Val Gly Val Pro Gly Leu Gly Val Gly Ala
Gly Val Pro Gly 20 25 30Leu
Gly Val Gly Ala Gly Val Pro Gly Phe Gly Ala Gly Ala Asp Glu 35
40 45Gly Val Arg Arg Ser Leu Ser Pro Glu
Leu Arg Glu Gly Asp Pro Ser 50 55
60Ser Ser Gln His Leu Pro Ser Thr Pro Ser Ser Pro Arg Val Pro Gly65
70 75 80Ala Leu Ala Ala Ala
Lys Ala Ala Lys Tyr Gly Ala Ala Val Pro Gly 85
90 95Val Leu Gly Gly Leu Gly Ala Leu Gly Gly Val
Gly Ile Pro Gly Gly 100 105
110Val Val Gly Ala Gly Pro Ala Ala Ala Ala Ala Ala Ala Lys Ala Ala
115 120 125Ala Lys Ala Ala Gln Phe Gly
Leu Val Gly Ala Ala Gly Leu Gly Gly 130 135
140Leu Gly Val Gly Gly Leu Gly Val Pro Gly Val Gly Gly Leu Gly
Gly145 150 155 160Ile Pro
Pro Ala Ala Ala Ala Lys Ala Ala Lys Tyr Gly Ala Ala Gly
165 170 175Leu Gly Gly Val Leu Gly Gly
Ala Gly Gln Phe Pro Leu Gly Gly Val 180 185
190Ala Ala Arg Pro Gly Phe Gly Leu Ser Pro Ile Phe Pro Gly
Gly Ala 195 200 205Cys Leu Gly Lys
Ala Cys Gly Arg Lys Arg Lys 210 21564660DNAArtificial
Sequencesource/note="Description of Artificial Sequence Synthetic
polynucleotide" 64caactgcgcg ccgccgcggg cctcggtgca ggtattccgg ggctgggtgt
cggagttgga 60gtcccgggtt tgggcgtggg cgcgggagtt ccgggactgg gagtgggtgc
cggagttcct 120ggctttggtg caggcgcaga tgaaggtgtt cgtcgtagcc tgagtccgga
actgcgtgaa 180ggtgatccga gtagcagcca gcatctgccg agcaccccga gcagcccgcg
tgttccgggt 240gcattagctg cagcaaaagc cgccaagtat ggtgcagccg tgccgggcgt
cttaggtggt 300ctgggcgccc tgggtggtgt aggcattccg ggaggtgttg tgggtgcagg
accggccgcc 360gcagctgcgg ccgccaaagc agctgcaaaa gcggcccagt ttggtttagt
gggcgccgca 420ggtttaggcg gtttaggtgt gggtggactg ggtgtacctg gcgtaggcgg
tctgggtgga 480attccgcccg cagcggccgc gaaagcggca aaatatggcg cggcaggcct
gggcggcgtg 540ctgggtgggg caggtcagtt tccgctgggc ggggttgccg cacgtccggg
atttggtctg 600agcccgattt tccctggcgg cgcatgtctg ggtaaagcat gtggtcgtaa
acgtaaataa 66065126PRTArtificial Sequencesource/note="Description of
Artificial Sequence Synthetic polypeptide" 65Val Pro Gly Val Leu Gly
Gly Leu Gly Ala Leu Gly Gly Val Gly Ile1 5
10 15Pro Gly Gly Val Val Gly Ala Gly Pro Ala Ala Ala
Ala Ala Ala Ala 20 25 30Lys
Ala Ala Ala Lys Ala Ala Gln Phe Gly Leu Val Gly Ala Ala Gly 35
40 45Leu Gly Gly Leu Gly Val Gly Gly Leu
Gly Val Pro Gly Val Gly Gly 50 55
60Leu Gly Gly Ile Pro Pro Ala Ala Ala Ala Lys Ala Ala Lys Tyr Gly65
70 75 80Ala Ala Gly Leu Gly
Gly Val Leu Gly Gly Ala Gly Gln Phe Pro Leu 85
90 95Gly Gly Val Ala Ala Arg Pro Gly Phe Gly Leu
Ser Pro Ile Phe Pro 100 105
110Gly Gly Ala Cys Leu Gly Lys Ala Cys Gly Arg Lys Arg Lys 115
120 12566381DNAArtificial
Sequencesource/note="Description of Artificial Sequence Synthetic
polynucleotide" 66gtgccgggcg tcttaggtgg tctgggcgcc ctgggtggtg taggcattcc
gggaggtgtt 60gtgggtgcag gaccggccgc cgcagctgcg gccgccaaag cagctgcaaa
agcggcccag 120tttggtttag tgggcgccgc aggtttaggc ggtttaggtg tgggtggact
gggtgtacct 180ggcgtaggcg gtctgggtgg aattccgccc gcagcggccg cgaaagcggc
aaaatatggc 240gcggcaggcc tgggcggcgt gctgggtggg gcaggtcagt ttccgctggg
cggggttgcc 300gcacgtccgg gatttggtct gagcccgatt ttccctggcg gcgcatgtct
gggtaaagca 360tgtggtcgta aacgtaaata a
3816787PRTArtificial Sequencesource/note="Description of
Artificial Sequence Synthetic polypeptide" 67Gln Phe Gly Leu Val Gly
Ala Ala Gly Leu Gly Gly Leu Gly Val Gly1 5
10 15Gly Leu Gly Val Pro Gly Val Gly Gly Leu Gly Gly
Ile Pro Pro Ala 20 25 30Ala
Ala Ala Lys Ala Ala Lys Tyr Gly Ala Ala Gly Leu Gly Gly Val 35
40 45Leu Gly Gly Ala Gly Gln Phe Pro Leu
Gly Gly Val Ala Ala Arg Pro 50 55
60Gly Phe Gly Leu Ser Pro Ile Phe Pro Gly Gly Ala Cys Leu Gly Lys65
70 75 80Ala Cys Gly Arg Lys
Arg Lys 8568264DNAArtificial
Sequencesource/note="Description of Artificial Sequence Synthetic
polynucleotide" 68cagtttggtt tagtgggcgc cgcaggttta ggcggtttag gtgtgggtgg
actgggtgta 60cctggcgtag gcggtctggg tggaattccg cccgcagcgg ccgcgaaagc
ggcaaaatat 120ggcgcggcag gcctgggcgg cgtgctgggt ggggcaggtc agtttccgct
gggcggggtt 180gccgcacgtc cgggatttgg tctgagcccg attttccctg gcggcgcatg
tctgggtaaa 240gcatgtggtc gtaaacgtaa ataa
2646972PRTArtificial Sequencesource/note="Description of
Artificial Sequence Synthetic polypeptide" 69Gly Gly Val Pro Gly Ala
Ile Pro Gly Gly Val Pro Gly Gly Val Phe1 5
10 15Tyr Pro Gly Ala Gly Leu Gly Ala Leu Gly Gly Gly
Ala Leu Gly Pro 20 25 30Gly
Gly Lys Pro Leu Lys Pro Val Pro Gly Gly Leu Ala Gly Ala Gly 35
40 45Leu Gly Ala Gly Leu Gly Ala Phe Pro
Ala Val Thr Phe Pro Gly Ala 50 55
60Leu Val Pro Gly Gly Val Ala Asp65 7070219DNAArtificial
Sequencesource/note="Description of Artificial Sequence Synthetic
polynucleotide" 70ggtggcgtac caggcgcaat tcctgggggt gtcccaggcg gtgtttttta
tccgggcgcc 60ggtcttggcg cactgggtgg cggtgcactg ggcccgggcg gcaaaccgct
gaaaccggta 120ccaggtggtt tagcaggcgc cggcttaggc gcaggtctgg gagcatttcc
ggcagttacc 180tttccagggg cactggttcc tggaggtgtg gccgattaa
2197144PRTArtificial Sequencesource/note="Description of
Artificial Sequence Synthetic polypeptide" 71Gly Leu Gly Gly Val Leu
Gly Gly Ala Gly Gln Phe Pro Leu Gly Gly1 5
10 15Val Ala Ala Arg Pro Gly Phe Gly Leu Ser Pro Ile
Phe Pro Gly Gly 20 25 30Ala
Cys Leu Gly Lys Ala Cys Gly Arg Lys Arg Lys 35
4072135DNAArtificial Sequencesource/note="Description of Artificial
Sequence Synthetic polynucleotide" 72ggcctgggcg gcgtgctggg
tggggcaggt cagtttccgc tgggcggggt tgccgcacgt 60ccgggatttg gtctgagccc
gattttccct ggcggcgcat gtctgggtaa agcatgtggt 120cgtaaacgta aataa
13573636DNAArtificial
Sequencesource/note="Description of Artificial Sequence Synthetic
polynucleotide" 73atgaaaaaga tttggctggc gctggctggt ttagttttag cgtttagcgc
atcggcggcg 60cagtatgaag atgcaggttt tccgggtctg cctggtccgg caggcgaacc
gggtcgtcat 120ggtaaagatg gtctgatggg tagtccgggt tttaaaggtg aagcaggttc
accgggtgca 180cctggtcagg atggcacccg tggtgaaccg ggtattccgg gatttccggg
taatcgtggc 240ctgatgggtc agaaaggtga aattggtccg cctggtcagc agggtaaaaa
aggcgcaccg 300ggtatgccag gactgatggg ttcaaatggc agtccgggtc agccaggcac
accgggttca 360aaaggtagca aaggcgaacc tggtattcag ggtatgcctg gtgcaagcgg
tctgaaaggc 420gagccaggtg ccaccggttc tccgggtgaa ccaggttata tgggtctgcc
aggtatccaa 480ggcaaaaaag gtgataaagg taatcagggc gaaaaaggca ttcagggcca
gaaaggcgaa 540aatggccgtc agggtattcc aggccagcag ggcatccagg gtcatcatgg
tgcaaaaggt 600gaacgtggtg aaaagggcga accaggtgtt cgttaa
63674211PRTArtificial Sequencesource/note="Description of
Artificial Sequence Synthetic polypeptide" 74Met Lys Lys Ile Trp Leu
Ala Leu Ala Gly Leu Val Leu Ala Phe Ser1 5
10 15Ala Ser Ala Ala Gln Tyr Glu Asp Ala Gly Phe Pro
Gly Leu Pro Gly 20 25 30Pro
Ala Gly Glu Pro Gly Arg His Gly Lys Asp Gly Leu Met Gly Ser 35
40 45Pro Gly Phe Lys Gly Glu Ala Gly Ser
Pro Gly Ala Pro Gly Gln Asp 50 55
60Gly Thr Arg Gly Glu Pro Gly Ile Pro Gly Phe Pro Gly Asn Arg Gly65
70 75 80Leu Met Gly Gln Lys
Gly Glu Ile Gly Pro Pro Gly Gln Gln Gly Lys 85
90 95Lys Gly Ala Pro Gly Met Pro Gly Leu Met Gly
Ser Asn Gly Ser Pro 100 105
110Gly Gln Pro Gly Thr Pro Gly Ser Lys Gly Ser Lys Gly Glu Pro Gly
115 120 125Ile Gln Gly Met Pro Gly Ala
Ser Gly Leu Lys Gly Glu Pro Gly Ala 130 135
140Thr Gly Ser Pro Gly Glu Pro Gly Tyr Met Gly Leu Pro Gly Ile
Gln145 150 155 160Gly Lys
Lys Gly Asp Lys Gly Asn Gln Gly Glu Lys Gly Ile Gln Gly
165 170 175Gln Lys Gly Glu Asn Gly Arg
Gln Gly Ile Pro Gly Gln Gln Gly Ile 180 185
190Gln Gly His His Gly Ala Lys Gly Glu Arg Gly Glu Lys Gly
Glu Pro 195 200 205Gly Val Arg
21075565DNAArtificial Sequencesource/note="Description of Artificial
Sequence Synthetic polynucleotide" 75tgcaggtttt ccgggtctgc
ctggtccggc aggcgaaccg ggtcgtcatg gtaaagatgg 60tctgatgggt agtccgggtt
ttaaaggtga agcaggttca ccgggtgcac ctggtcagga 120tggcacccgt ggtgaaccgg
gtattccggg atttccgggt aatcgtggcc tgatgggtca 180gaaaggtgaa attggtccgc
ctggtcagca gggtaaaaaa ggcgcaccgg gtatgccagg 240actgatgggt tcaaatggca
gtccgggtca gccaggcaca ccgggttcaa aaggtagcaa 300aggcgaacct ggtattcagg
gtatgcctgg tgcaagcggt ctgaaaggcg agccaggtgc 360caccggttct ccgggtgaac
caggttatat gggtctgcca ggtatccaag gcaaaaaagg 420tgataaaggt aatcagggcg
aaaaaggcat tcagggccag aaaggcgaaa atggccgtca 480gggtattcca ggccagcagg
gcatccaggg tcatcatggt gcaaaaggtg aacgtggtga 540aaagggcgaa ccaggtgttc
gttaa 56576187PRTArtificial
Sequencesource/note="Description of Artificial Sequence Synthetic
polypeptide" 76Ala Gly Phe Pro Gly Leu Pro Gly Pro Ala Gly Glu Pro Gly
Arg His1 5 10 15Gly Lys
Asp Gly Leu Met Gly Ser Pro Gly Phe Lys Gly Glu Ala Gly 20
25 30Ser Pro Gly Ala Pro Gly Gln Asp Gly
Thr Arg Gly Glu Pro Gly Ile 35 40
45Pro Gly Phe Pro Gly Asn Arg Gly Leu Met Gly Gln Lys Gly Glu Ile 50
55 60Gly Pro Pro Gly Gln Gln Gly Lys Lys
Gly Ala Pro Gly Met Pro Gly65 70 75
80Leu Met Gly Ser Asn Gly Ser Pro Gly Gln Pro Gly Thr Pro
Gly Ser 85 90 95Lys Gly
Ser Lys Gly Glu Pro Gly Ile Gln Gly Met Pro Gly Ala Ser 100
105 110Gly Leu Lys Gly Glu Pro Gly Ala Thr
Gly Ser Pro Gly Glu Pro Gly 115 120
125Tyr Met Gly Leu Pro Gly Ile Gln Gly Lys Lys Gly Asp Lys Gly Asn
130 135 140Gln Gly Glu Lys Gly Ile Gln
Gly Gln Lys Gly Glu Asn Gly Arg Gln145 150
155 160Gly Ile Pro Gly Gln Gln Gly Ile Gln Gly His His
Gly Ala Lys Gly 165 170
175Glu Arg Gly Glu Lys Gly Glu Pro Gly Val Arg 180
18577639DNAArtificial Sequencesource/note="Description of Artificial
Sequence Synthetic polynucleotide" 77atgaaaaaga tttggctggc
gctggctggt ttagttttag cgtttagcgc atcggcggcg 60cagtatgaag atatgggtcc
gcctggtagc cgtggtgcaa gtggtccggc aggcgttcgt 120ggtccgaatg gtgatgcagg
tcgtccgggt gaaccgggtc tgatgggtcc tcgtggtctg 180cctggttcac cgggtaatat
tggtcctgca ggtaaagaag gtccggttgg tctgccaggt 240attgatggcc gtccgggtcc
gattggtcca gccggtgcac gtggtgaacc tggcaatatt 300ggttttccgg gtcctaaagg
tccgaccggt gatccgggta aaaatggtga taaaggtcat 360gcaggtctgg caggcgcacg
cggtgcacct ggtccggatg gtaataatgg tgcacagggt 420ccaccgggtc cgcagggtgt
tcaaggtggt aaaggcgaac agggtcctgc cggtcctccg 480ggttttcagg gactgcctgg
tccgagcggt cctgcgggtg aagttggtaa acctggtgaa 540cgcggtctgc atggtgaatt
tggcctgcct gggcctgcag gtccgcgtgg cgaacgtggt 600ccgccaggtg aaagcggtgc
agcaggtccg acaggttaa 63978212PRTArtificial
Sequencesource/note="Description of Artificial Sequence Synthetic
polypeptide" 78Met Lys Lys Ile Trp Leu Ala Leu Ala Gly Leu Val Leu Ala
Phe Ser1 5 10 15Ala Ser
Ala Ala Gln Tyr Glu Asp Met Gly Pro Pro Gly Ser Arg Gly 20
25 30Ala Ser Gly Pro Ala Gly Val Arg Gly
Pro Asn Gly Asp Ala Gly Arg 35 40
45Pro Gly Glu Pro Gly Leu Met Gly Pro Arg Gly Leu Pro Gly Ser Pro 50
55 60Gly Asn Ile Gly Pro Ala Gly Lys Glu
Gly Pro Val Gly Leu Pro Gly65 70 75
80Ile Asp Gly Arg Pro Gly Pro Ile Gly Pro Ala Gly Ala Arg
Gly Glu 85 90 95Pro Gly
Asn Ile Gly Phe Pro Gly Pro Lys Gly Pro Thr Gly Asp Pro 100
105 110Gly Lys Asn Gly Asp Lys Gly His Ala
Gly Leu Ala Gly Ala Arg Gly 115 120
125Ala Pro Gly Pro Asp Gly Asn Asn Gly Ala Gln Gly Pro Pro Gly Pro
130 135 140Gln Gly Val Gln Gly Gly Lys
Gly Glu Gln Gly Pro Ala Gly Pro Pro145 150
155 160Gly Phe Gln Gly Leu Pro Gly Pro Ser Gly Pro Ala
Gly Glu Val Gly 165 170
175Lys Pro Gly Glu Arg Gly Leu His Gly Glu Phe Gly Leu Pro Gly Pro
180 185 190Ala Gly Pro Arg Gly Glu
Arg Gly Pro Pro Gly Glu Ser Gly Ala Ala 195 200
205Gly Pro Thr Gly 21079567DNAArtificial
Sequencesource/note="Description of Artificial Sequence Synthetic
polynucleotide" 79atgggtccgc ctggtagccg tggtgcaagt ggtccggcag gcgttcgtgg
tccgaatggt 60gatgcaggtc gtccgggtga accgggtctg atgggtcctc gtggtctgcc
tggttcaccg 120ggtaatattg gtcctgcagg taaagaaggt ccggttggtc tgccaggtat
tgatggccgt 180ccgggtccga ttggtccagc cggtgcacgt ggtgaacctg gcaatattgg
ttttccgggt 240cctaaaggtc cgaccggtga tccgggtaaa aatggtgata aaggtcatgc
aggtctggca 300ggcgcacgcg gtgcacctgg tccggatggt aataatggtg cacagggtcc
accgggtccg 360cagggtgttc aaggtggtaa aggcgaacag ggtcctgccg gtcctccggg
ttttcaggga 420ctgcctggtc cgagcggtcc tgcgggtgaa gttggtaaac ctggtgaacg
cggtctgcat 480ggtgaatttg gcctgcctgg gcctgcaggt ccgcgtggcg aacgtggtcc
gccaggtgaa 540agcggtgcag caggtccgac aggttaa
56780188PRTArtificial Sequencesource/note="Description of
Artificial Sequence Synthetic polypeptide" 80Met Gly Pro Pro Gly Ser
Arg Gly Ala Ser Gly Pro Ala Gly Val Arg1 5
10 15Gly Pro Asn Gly Asp Ala Gly Arg Pro Gly Glu Pro
Gly Leu Met Gly 20 25 30Pro
Arg Gly Leu Pro Gly Ser Pro Gly Asn Ile Gly Pro Ala Gly Lys 35
40 45Glu Gly Pro Val Gly Leu Pro Gly Ile
Asp Gly Arg Pro Gly Pro Ile 50 55
60Gly Pro Ala Gly Ala Arg Gly Glu Pro Gly Asn Ile Gly Phe Pro Gly65
70 75 80Pro Lys Gly Pro Thr
Gly Asp Pro Gly Lys Asn Gly Asp Lys Gly His 85
90 95Ala Gly Leu Ala Gly Ala Arg Gly Ala Pro Gly
Pro Asp Gly Asn Asn 100 105
110Gly Ala Gln Gly Pro Pro Gly Pro Gln Gly Val Gln Gly Gly Lys Gly
115 120 125Glu Gln Gly Pro Ala Gly Pro
Pro Gly Phe Gln Gly Leu Pro Gly Pro 130 135
140Ser Gly Pro Ala Gly Glu Val Gly Lys Pro Gly Glu Arg Gly Leu
His145 150 155 160Gly Glu
Phe Gly Leu Pro Gly Pro Ala Gly Pro Arg Gly Glu Arg Gly
165 170 175Pro Pro Gly Glu Ser Gly Ala
Ala Gly Pro Thr Gly 180 18581612DNAArtificial
Sequencesource/note="Description of Artificial Sequence Synthetic
polynucleotide" 81atgaaaaaga tttggctggc gctggctggt ttagttttag cgtttagcgc
atcggcggcg 60cagtatgaag atggttttca gggtcctgcc ggtgaaccgg gtgaacctgg
tcagacaggt 120ccggcaggcg cacgtggtcc tgcaggtcct cctggtaaag ccggtgaaga
tggtcatccg 180ggtaaaccgg gtcgtcctgg tgaacgtggt gttgttggtc cgcagggtgc
ccgtggtttt 240ccgggtactc cgggtctgcc aggttttaaa ggtattcgtg gtcataatgg
tctggatggt 300ctgaaaggtc agcctggtgc accgggtgtt aaaggtgaac caggtgctcc
gggtgaaaat 360ggcacaccgg gtcagaccgg tgcgcgtggt ctgcctggcg aacgcggtcg
tgttggtgca 420cctggtccag ccggtgcacg cggtagtgat ggtagcgttg gtccggttgg
tccagcgggt 480ccgattggta gcgcaggtcc accgggtttt ccaggcgcac cgggtccgaa
aggtgaaatt 540ggtgcagttg gtaatgcagg ccctgccggt ccagcaggac cgcgtggtga
agttggcctg 600cctggtctgt aa
61282203PRTArtificial Sequencesource/note="Description of
Artificial Sequence Synthetic polypeptide" 82Met Lys Lys Ile Trp Leu
Ala Leu Ala Gly Leu Val Leu Ala Phe Ser1 5
10 15Ala Ser Ala Ala Gln Tyr Glu Asp Gly Phe Gln Gly
Pro Ala Gly Glu 20 25 30Pro
Gly Glu Pro Gly Gln Thr Gly Pro Ala Gly Ala Arg Gly Pro Ala 35
40 45Gly Pro Pro Gly Lys Ala Gly Glu Asp
Gly His Pro Gly Lys Pro Gly 50 55
60Arg Pro Gly Glu Arg Gly Val Val Gly Pro Gln Gly Ala Arg Gly Phe65
70 75 80Pro Gly Thr Pro Gly
Leu Pro Gly Phe Lys Gly Ile Arg Gly His Asn 85
90 95Gly Leu Asp Gly Leu Lys Gly Gln Pro Gly Ala
Pro Gly Val Lys Gly 100 105
110Glu Pro Gly Ala Pro Gly Glu Asn Gly Thr Pro Gly Gln Thr Gly Ala
115 120 125Arg Gly Leu Pro Gly Glu Arg
Gly Arg Val Gly Ala Pro Gly Pro Ala 130 135
140Gly Ala Arg Gly Ser Asp Gly Ser Val Gly Pro Val Gly Pro Ala
Gly145 150 155 160Pro Ile
Gly Ser Ala Gly Pro Pro Gly Phe Pro Gly Ala Pro Gly Pro
165 170 175Lys Gly Glu Ile Gly Ala Val
Gly Asn Ala Gly Pro Ala Gly Pro Ala 180 185
190Gly Pro Arg Gly Glu Val Gly Leu Pro Gly Leu 195
20083540DNAArtificial Sequencesource/note="Description of
Artificial Sequence Synthetic polynucleotide" 83ggttttcagg
gtcctgccgg tgaaccgggt gaacctggtc agacaggtcc ggcaggcgca 60cgtggtcctg
caggtcctcc tggtaaagcc ggtgaagatg gtcatccggg taaaccgggt 120cgtcctggtg
aacgtggtgt tgttggtccg cagggtgccc gtggttttcc gggtactccg 180ggtctgccag
gttttaaagg tattcgtggt cataatggtc tggatggtct gaaaggtcag 240cctggtgcac
cgggtgttaa aggtgaacca ggtgctccgg gtgaaaatgg cacaccgggt 300cagaccggtg
cgcgtggtct gcctggcgaa cgcggtcgtg ttggtgcacc tggtccagcc 360ggtgcacgcg
gtagtgatgg tagcgttggt ccggttggtc cagcgggtcc gattggtagc 420gcaggtccac
cgggttttcc aggcgcaccg ggtccgaaag gtgaaattgg tgcagttggt 480aatgcaggcc
ctgccggtcc agcaggaccg cgtggtgaag ttggcctgcc tggtctgtaa
54084179PRTArtificial Sequencesource/note="Description of Artificial
Sequence Synthetic polypeptide" 84Gly Phe Gln Gly Pro Ala Gly Glu
Pro Gly Glu Pro Gly Gln Thr Gly1 5 10
15Pro Ala Gly Ala Arg Gly Pro Ala Gly Pro Pro Gly Lys Ala
Gly Glu 20 25 30Asp Gly His
Pro Gly Lys Pro Gly Arg Pro Gly Glu Arg Gly Val Val 35
40 45Gly Pro Gln Gly Ala Arg Gly Phe Pro Gly Thr
Pro Gly Leu Pro Gly 50 55 60Phe Lys
Gly Ile Arg Gly His Asn Gly Leu Asp Gly Leu Lys Gly Gln65
70 75 80Pro Gly Ala Pro Gly Val Lys
Gly Glu Pro Gly Ala Pro Gly Glu Asn 85 90
95Gly Thr Pro Gly Gln Thr Gly Ala Arg Gly Leu Pro Gly
Glu Arg Gly 100 105 110Arg Val
Gly Ala Pro Gly Pro Ala Gly Ala Arg Gly Ser Asp Gly Ser 115
120 125Val Gly Pro Val Gly Pro Ala Gly Pro Ile
Gly Ser Ala Gly Pro Pro 130 135 140Gly
Phe Pro Gly Ala Pro Gly Pro Lys Gly Glu Ile Gly Ala Val Gly145
150 155 160Asn Ala Gly Pro Ala Gly
Pro Ala Gly Pro Arg Gly Glu Val Gly Leu 165
170 175Pro Gly Leu85689DNAArtificial
Sequencesource/note="Description of Artificial Sequence Synthetic
polynucleotide" 85gtccgcaggg tgttgttggt gcagatggta aagacggtac cccgggtgaa
aaaggagaac 60agggacgtac aggtgcagca ggtaaacagg gcagcccggg tgccgatggt
gcccgtggcc 120cgctgggtag cattggtcag cagggtgcaa gaggcgaacc gggcgatccg
ggtagtccgg 180gcctgcgtgg tgatacgggt ctggccggtg ttaaaggcgt tgcaggtcct
tcaggtcgtc 240caggtcaacc gggtgcaaat ggtctgccgg gtgttaatgg tcgtggcggt
ctggaacgtg 300gtctggcagg accgccgggt cctgatggtc gccgcggtga aacgggttca
ccgggtattg 360ccggtgccct gggtaaacca ggtctggaag gtccgaaagg ttatcctggt
ctgcgcggtc 420gtgatggtac caatggcaaa cgtggcgaac agggcgaaac cggtccagat
ggtgttcgtg 480gtattccggg taacgatggt cagagcggta aaccgggcat tgatggtatt
gatggcacca 540atggtcagcc tggcgaagca ggttatcagg gtggtcgcgg tacccgtggt
cagctgggtg 600aaacaggtga tgttggtcag aatggtgatc gcggcgcacc gggtccggat
ggtagcaaag 660gtagcgccgg tcgtccgggt ttacgttaa
68986229PRTArtificial Sequencesource/note="Description of
Artificial Sequence Synthetic polypeptide" 86Gly Pro Gln Gly Val Val
Gly Ala Asp Gly Lys Asp Gly Thr Pro Gly1 5
10 15Glu Lys Gly Glu Gln Gly Arg Thr Gly Ala Ala Gly
Lys Gln Gly Ser 20 25 30Pro
Gly Ala Asp Gly Ala Arg Gly Pro Leu Gly Ser Ile Gly Gln Gln 35
40 45Gly Ala Arg Gly Glu Pro Gly Asp Pro
Gly Ser Pro Gly Leu Arg Gly 50 55
60Asp Thr Gly Leu Ala Gly Val Lys Gly Val Ala Gly Pro Ser Gly Arg65
70 75 80Pro Gly Gln Pro Gly
Ala Asn Gly Leu Pro Gly Val Asn Gly Arg Gly 85
90 95Gly Leu Glu Arg Gly Leu Ala Gly Pro Pro Gly
Pro Asp Gly Arg Arg 100 105
110Gly Glu Thr Gly Ser Pro Gly Ile Ala Gly Ala Leu Gly Lys Pro Gly
115 120 125Leu Glu Gly Pro Lys Gly Tyr
Pro Gly Leu Arg Gly Arg Asp Gly Thr 130 135
140Asn Gly Lys Arg Gly Glu Gln Gly Glu Thr Gly Pro Asp Gly Val
Arg145 150 155 160Gly Ile
Pro Gly Asn Asp Gly Gln Ser Gly Lys Pro Gly Ile Asp Gly
165 170 175Ile Asp Gly Thr Asn Gly Gln
Pro Gly Glu Ala Gly Tyr Gln Gly Gly 180 185
190Arg Gly Thr Arg Gly Gln Leu Gly Glu Thr Gly Asp Val Gly
Gln Asn 195 200 205Gly Asp Arg Gly
Ala Pro Gly Pro Asp Gly Ser Lys Gly Ser Ala Gly 210
215 220Arg Pro Gly Leu Arg225872283DNAArtificial
Sequencesource/note="Description of Artificial Sequence Synthetic
polynucleotide" 87ggtggcgtac caggcgcaat tcctgggggt gtcccaggcg gtgtttttta
tccgggcgcc 60ggtcttggcg cactgggtgg cggtgcactg ggcccgggcg gcaaaccgct
gaaaccggta 120ccaggtggtt tagcaggcgc cggcttaggc gcaggtctgg gagcatttcc
ggcagttacc 180tttccagggg cactggttcc tggaggtgtg gccgatgcag ccgcggcata
taaagccgct 240aaagccggtg cgggtttagg aggcgtccca ggtgtcggtg gcctgggtgt
tagcgccggt 300gcagttgttc cgcagccggg agcaggggtt aaacctggta aagtgccggg
agtaggtctg 360ccaggcgttt atcctggtgg tgttttgccg ggtgcccgtt ttccgggcgt
tggtgttctt 420ccaggcgtgc cgaccggagc cggtgttaaa ccgaaagccc ccggtgttgg
aggtgcattt 480gcaggcatcc cgggagttgg cccgtttggt ggtccgcaac ctggggttcc
gttaggttat 540ccgattaaag caccgaaact gcccggcggt tatggtctgc cgtacacaac
cggtaaactg 600ccgtatggtt atggcccggg tggagttgcg ggtgcagcag gtaaagcggg
ttatcctacc 660ggaaccggtg taggtccgca ggccgctgct gccgccgccg caaaagcagc
ggctaaattt 720ggcgccggag cagcgggtgt tctgcctgga gttggtggtg cgggcgtgcc
aggggtacct 780ggtgcaattc cgggtattgg tggtattgcc ggtgtcggca ccccggccgc
ggcagctgcg 840gcagcggcgg ctgccaaagc tgctaaatac ggtgccgcgg cgggtctggt
gccaggaggt 900ccgggttttg gtccgggagt ggttggcgtg cctggcgcag gcgttcctgg
tgtgggcgtt 960ccaggtgcag ggattcctgt tgtgcctggt gccggtattc ccggcgcggc
cgttccgggg 1020gtggttagcc cggaagccgc agcgaaggct gcggcaaagg cagcaaagta
tggcgcacgc 1080ccaggagtcg gcgtgggtgg tatcccgacc tatggggtgg gcgcaggggg
ttttcctggt 1140ttcggcgtag gtgtaggagg tataccgggc gtggccggtg taccaggggt
tggtggcgtc 1200cctggtgttg gcggtgtgcc aggtgttggt atttcaccgg aagcacaggc
agcagccgca 1260gctaaggcag cgaaatatgg tgccgccggc gcaggagttt taggtgggct
ggttccgggc 1320ccgcaggcag ctgtgccggg ggttccaggc accggtggtg tccctggagt
cggtacgccg 1380gctgcagcgg cagccaaagc ggctgcgaaa gcagcacagt ttggcttagt
accgggtgtg 1440ggagttgccc ccggcgttgg cgttgctcca ggggtgggtg ttgctcctgg
cgtcggtctg 1500gctcctggag tgggcgtagc acccggtgtg ggggtggccc cgggtgttgg
ggttgcaccg 1560ggtatcggtc cgggcggtgt cgcagcagca gctaaaagcg cggcgaaagt
tgcggccaaa 1620gcccaactgc gcgccgccgc gggcctcggt gcaggtattc cggggctggg
tgtcggagtt 1680ggagtcccgg gtttgggcgt gggcgcggga gttccgggac tgggagtggg
tgccggagtt 1740cctggctttg gtgcaggcgc agatgaaggt gttcgtcgta gcctgagtcc
ggaactgcgt 1800gaaggtgatc cgagtagcag ccagcatctg ccgagcaccc cgagcagccc
gcgtgttccg 1860ggtgcattag ctgcagcaaa agccgccaag tatggtgcag ccgtgccggg
cgtcttaggt 1920ggtctgggcg ccctgggtgg tgtaggcatt ccgggaggtg ttgtgggtgc
aggaccggcc 1980gccgcagctg cggccgccaa agcagctgca aaagcggccc agtttggttt
agtgggcgcc 2040gcaggtttag gcggtttagg tgtgggtgga ctgggtgtac ctggcgtagg
cggtctgggt 2100ggaattccgc ccgcagcggc cgcgaaagcg gcaaaatatg gcgcggcagg
cctgggcggc 2160gtgctgggtg gggcaggtca gtttccgctg ggcggggttg ccgcacgtcc
gggatttggt 2220ctgagcccga ttttccctgg cggcgcatgt ctgggtaaag catgtggtcg
taaacgtaaa 2280taa
228388760PRTArtificial Sequencesource/note="Description of
Artificial Sequence Synthetic polypeptide" 88Gly Gly Val Pro Gly Ala
Ile Pro Gly Gly Val Pro Gly Gly Val Phe1 5
10 15Tyr Pro Gly Ala Gly Leu Gly Ala Leu Gly Gly Gly
Ala Leu Gly Pro 20 25 30Gly
Gly Lys Pro Leu Lys Pro Val Pro Gly Gly Leu Ala Gly Ala Gly 35
40 45Leu Gly Ala Gly Leu Gly Ala Phe Pro
Ala Val Thr Phe Pro Gly Ala 50 55
60Leu Val Pro Gly Gly Val Ala Asp Ala Ala Ala Ala Tyr Lys Ala Ala65
70 75 80Lys Ala Gly Ala Gly
Leu Gly Gly Val Pro Gly Val Gly Gly Leu Gly 85
90 95Val Ser Ala Gly Ala Val Val Pro Gln Pro Gly
Ala Gly Val Lys Pro 100 105
110Gly Lys Val Pro Gly Val Gly Leu Pro Gly Val Tyr Pro Gly Gly Val
115 120 125Leu Pro Gly Ala Arg Phe Pro
Gly Val Gly Val Leu Pro Gly Val Pro 130 135
140Thr Gly Ala Gly Val Lys Pro Lys Ala Pro Gly Val Gly Gly Ala
Phe145 150 155 160Ala Gly
Ile Pro Gly Val Gly Pro Phe Gly Gly Pro Gln Pro Gly Val
165 170 175Pro Leu Gly Tyr Pro Ile Lys
Ala Pro Lys Leu Pro Gly Gly Tyr Gly 180 185
190Leu Pro Tyr Thr Thr Gly Lys Leu Pro Tyr Gly Tyr Gly Pro
Gly Gly 195 200 205Val Ala Gly Ala
Ala Gly Lys Ala Gly Tyr Pro Thr Gly Thr Gly Val 210
215 220Gly Pro Gln Ala Ala Ala Ala Ala Ala Ala Lys Ala
Ala Ala Lys Phe225 230 235
240Gly Ala Gly Ala Ala Gly Val Leu Pro Gly Val Gly Gly Ala Gly Val
245 250 255Pro Gly Val Pro Gly
Ala Ile Pro Gly Ile Gly Gly Ile Ala Gly Val 260
265 270Gly Thr Pro Ala Ala Ala Ala Ala Ala Ala Ala Ala
Ala Lys Ala Ala 275 280 285Lys Tyr
Gly Ala Ala Ala Gly Leu Val Pro Gly Gly Pro Gly Phe Gly 290
295 300Pro Gly Val Val Gly Val Pro Gly Ala Gly Val
Pro Gly Val Gly Val305 310 315
320Pro Gly Ala Gly Ile Pro Val Val Pro Gly Ala Gly Ile Pro Gly Ala
325 330 335Ala Val Pro Gly
Val Val Ser Pro Glu Ala Ala Ala Lys Ala Ala Ala 340
345 350Lys Ala Ala Lys Tyr Gly Ala Arg Pro Gly Val
Gly Val Gly Gly Ile 355 360 365Pro
Thr Tyr Gly Val Gly Ala Gly Gly Phe Pro Gly Phe Gly Val Gly 370
375 380Val Gly Gly Ile Pro Gly Val Ala Gly Val
Pro Gly Val Gly Gly Val385 390 395
400Pro Gly Val Gly Gly Val Pro Gly Val Gly Ile Ser Pro Glu Ala
Gln 405 410 415Ala Ala Ala
Ala Ala Lys Ala Ala Lys Tyr Gly Ala Ala Gly Ala Gly 420
425 430Val Leu Gly Gly Leu Val Pro Gly Pro Gln
Ala Ala Val Pro Gly Val 435 440
445Pro Gly Thr Gly Gly Val Pro Gly Val Gly Thr Pro Ala Ala Ala Ala 450
455 460Ala Lys Ala Ala Ala Lys Ala Ala
Gln Phe Gly Leu Val Pro Gly Val465 470
475 480Gly Val Ala Pro Gly Val Gly Val Ala Pro Gly Val
Gly Val Ala Pro 485 490
495Gly Val Gly Leu Ala Pro Gly Val Gly Val Ala Pro Gly Val Gly Val
500 505 510Ala Pro Gly Val Gly Val
Ala Pro Gly Ile Gly Pro Gly Gly Val Ala 515 520
525Ala Ala Ala Lys Ser Ala Ala Lys Val Ala Ala Lys Ala Gln
Leu Arg 530 535 540Ala Ala Ala Gly Leu
Gly Ala Gly Ile Pro Gly Leu Gly Val Gly Val545 550
555 560Gly Val Pro Gly Leu Gly Val Gly Ala Gly
Val Pro Gly Leu Gly Val 565 570
575Gly Ala Gly Val Pro Gly Phe Gly Ala Gly Ala Asp Glu Gly Val Arg
580 585 590Arg Ser Leu Ser Pro
Glu Leu Arg Glu Gly Asp Pro Ser Ser Ser Gln 595
600 605His Leu Pro Ser Thr Pro Ser Ser Pro Arg Val Pro
Gly Ala Leu Ala 610 615 620Ala Ala Lys
Ala Ala Lys Tyr Gly Ala Ala Val Pro Gly Val Leu Gly625
630 635 640Gly Leu Gly Ala Leu Gly Gly
Val Gly Ile Pro Gly Gly Val Val Gly 645
650 655Ala Gly Pro Ala Ala Ala Ala Ala Ala Ala Lys Ala
Ala Ala Lys Ala 660 665 670Ala
Gln Phe Gly Leu Val Gly Ala Ala Gly Leu Gly Gly Leu Gly Val 675
680 685Gly Gly Leu Gly Val Pro Gly Val Gly
Gly Leu Gly Gly Ile Pro Pro 690 695
700Ala Ala Ala Ala Lys Ala Ala Lys Tyr Gly Ala Ala Gly Leu Gly Gly705
710 715 720Val Leu Gly Gly
Ala Gly Gln Phe Pro Leu Gly Gly Val Ala Ala Arg 725
730 735Pro Gly Phe Gly Leu Ser Pro Ile Phe Pro
Gly Gly Ala Cys Leu Gly 740 745
750Lys Ala Cys Gly Arg Lys Arg Lys 755
76089429PRTPodocoryna carnea 89Gly Pro Gln Gly Val Val Gly Ala Asp Gly
Lys Asp Gly Thr Pro Gly1 5 10
15Glu Lys Gly Glu Gln Gly Arg Thr Gly Ala Ala Gly Lys Gln Gly Ser
20 25 30Pro Gly Ala Asp Gly Ala
Arg Gly Pro Leu Gly Ser Ile Gly Gln Gln 35 40
45Gly Ala Arg Gly Glu Pro Gly Asp Pro Gly Ser Pro Gly Leu
Arg Gly 50 55 60Asp Thr Gly Leu Ala
Gly Val Lys Gly Val Ala Gly Pro Ser Gly Arg65 70
75 80Pro Gly Gln Pro Gly Ala Asn Gly Leu Pro
Gly Val Asn Gly Arg Gly 85 90
95Gly Leu Arg Gly Lys Pro Gly Ala Lys Gly Ile Ala Gly Ser Asp Gly
100 105 110Glu Ala Gly Glu Ser
Gly Ala Pro Gly Gln Ser Gly Pro Thr Gly Pro 115
120 125Arg Gly Gln Arg Gly Pro Ser Gly Glu Asp Gly Asn
Pro Gly Leu Gln 130 135 140Gly Leu Pro
Gly Ser Asp Gly Glu Pro Gly Glu Glu Gly Gln Pro Gly145
150 155 160Arg Ser Gly Gln Pro Gly Gln
Gln Gly Pro Arg Gly Ser Pro Gly Glu 165
170 175Val Gly Pro Arg Gly Ser Lys Gly Pro Ser Gly Asp
Arg Gly Asp Arg 180 185 190Gly
Glu Arg Gly Val Pro Gly Gln Thr Gly Ser Ala Gly Asn Val Gly 195
200 205Glu Asp Gly Glu Gln Gly Gly Lys Gly
Val Asp Gly Ala Ser Gly Pro 210 215
220Ser Gly Ala Leu Gly Ala Arg Gly Pro Pro Gly Ser Arg Gly Asp Thr225
230 235 240Gly Ala Val Gly
Pro Pro Gly Pro Thr Gly Arg Ser Gly Leu Pro Gly 245
250 255Asn Ala Gly Gln Lys Gly Pro Ser Gly Glu
Pro Gly Ser Pro Gly Lys 260 265
270Ala Gly Ser Ala Gly Glu Gln Gly Pro Pro Gly Lys Asp Gly Ser Asn
275 280 285Gly Glu Pro Gly Ser Pro Gly
Lys Glu Gly Glu Arg Gly Leu Ala Gly 290 295
300Pro Pro Gly Pro Asp Gly Arg Arg Gly Glu Thr Gly Ser Pro Gly
Ile305 310 315 320Ala Gly
Ala Leu Gly Lys Pro Gly Leu Glu Gly Pro Lys Gly Tyr Pro
325 330 335Gly Leu Arg Gly Arg Asp Gly
Thr Asn Gly Lys Arg Gly Glu Gln Gly 340 345
350Glu Thr Gly Pro Asp Gly Val Arg Gly Ile Pro Gly Asn Asp
Gly Gln 355 360 365Ser Gly Lys Pro
Gly Ile Asp Gly Ile Asp Gly Thr Asn Gly Gln Pro 370
375 380Gly Glu Ala Gly Tyr Gln Gly Gly Arg Gly Thr Arg
Gly Gln Leu Gly385 390 395
400Glu Thr Gly Asp Val Gly Gln Asn Gly Asp Arg Gly Ala Pro Gly Pro
405 410 415Asp Gly Ser Lys Gly
Ser Ala Gly Arg Pro Gly Leu Arg 420
42590570DNAArtificial Sequencesource/note="Description of Artificial
Sequence Synthetic polynucleotide" 90ggtccgcagg gtgttgttgg
tgcagatggt aaagacggta ccccgggtaa tgcaggtcag 60aaaggtccgt caggtgaacc
tggcagccct ggtaaagcag gtagtgccgg tgagcagggt 120ccgccgggca aagatggtag
taatggtgag ccgggtagcc ctggcaaaga aggtgaacgt 180ggtctggcag gaccgccggg
tcctgatggt cgccgcggtg aaacgggttc accgggtatt 240gccggtgccc tgggtaaacc
aggtctggaa ggtccgaaag gttatcctgg tctgcgcggt 300cgtgatggta ccaatggcaa
acgtggcgaa cagggcgaaa ccggtccaga tggtgttcgt 360ggtattccgg gtaacgatgg
tcagagcggt aaaccgggca ttgatggtat tgatggcacc 420aatggtcagc ctggcgaagc
aggttatcag ggtggtcgcg gtacccgtgg tcagctgggt 480gaaacaggtg atgttggtca
gaatggtgat cgcggcgcac cgggtccgga tggtagcaaa 540ggtagcgccg gtcgtccggg
tttacgttaa 57091189PRTArtificial
Sequencesource/note="Description of Artificial Sequence Synthetic
polypeptide" 91Gly Pro Gln Gly Val Val Gly Ala Asp Gly Lys Asp Gly Thr
Pro Gly1 5 10 15Asn Ala
Gly Gln Lys Gly Pro Ser Gly Glu Pro Gly Ser Pro Gly Lys 20
25 30Ala Gly Ser Ala Gly Glu Gln Gly Pro
Pro Gly Lys Asp Gly Ser Asn 35 40
45Gly Glu Pro Gly Ser Pro Gly Lys Glu Gly Glu Arg Gly Leu Ala Gly 50
55 60Pro Pro Gly Pro Asp Gly Arg Arg Gly
Glu Thr Gly Ser Pro Gly Ile65 70 75
80Ala Gly Ala Leu Gly Lys Pro Gly Leu Glu Gly Pro Lys Gly
Tyr Pro 85 90 95Gly Leu
Arg Gly Arg Asp Gly Thr Asn Gly Lys Arg Gly Glu Gln Gly 100
105 110Glu Thr Gly Pro Asp Gly Val Arg Gly
Ile Pro Gly Asn Asp Gly Gln 115 120
125Ser Gly Lys Pro Gly Ile Asp Gly Ile Asp Gly Thr Asn Gly Gln Pro
130 135 140Gly Glu Ala Gly Tyr Gln Gly
Gly Arg Gly Thr Arg Gly Gln Leu Gly145 150
155 160Glu Thr Gly Asp Val Gly Gln Asn Gly Asp Arg Gly
Ala Pro Gly Pro 165 170
175Asp Gly Ser Lys Gly Ser Ala Gly Arg Pro Gly Leu Arg 180
18592228PRTArtificial Sequencesource/note="Description of
Artificial Sequence Synthetic polypeptide" 92Met Lys Lys Ile Trp Leu
Ala Leu Ala Gly Leu Val Leu Ala Phe Ser1 5
10 15Ala Ser Ala Gly Asp Gln Gly Pro Val Gly Arg Thr
Gly Glu Val Gly 20 25 30Ala
Val Gly Pro Pro Gly Phe Ala Gly Glu Lys Gly Pro Ser Gly Glu 35
40 45Ala Gly Thr Ala Gly Pro Pro Gly Thr
Pro Gly Pro Gln Gly Leu Leu 50 55
60Gly Ala Pro Gly Ile Leu Gly Leu Pro Gly Ser Arg Gly Glu Arg Gly65
70 75 80Leu Pro Gly Val Ala
Gly Ala Val Gly Glu Pro Gly Pro Leu Gly Ile 85
90 95Ala Gly Pro Pro Gly Ala Arg Gly Pro Pro Gly
Ala Val Gly Ser Pro 100 105
110Gly Val Asn Gly Ala Pro Gly Glu Ala Gly Arg Asp Gly Asn Pro Gly
115 120 125Asn Asp Gly Pro Pro Gly Arg
Asp Gly Gln Pro Gly His Lys Gly Glu 130 135
140Arg Gly Tyr Pro Gly Asn Ile Gly Pro Val Gly Ala Ala Gly Ala
Pro145 150 155 160Gly Pro
His Gly Pro Val Gly Pro Ala Gly Lys His Gly Asn Arg Gly
165 170 175Glu Thr Gly Pro Ser Gly Pro
Val Gly Pro Ala Gly Ala Val Gly Pro 180 185
190Arg Gly Pro Ser Gly Pro Gln Gly Ile Arg Gly Asp Lys Gly
Glu Pro 195 200 205Gly Glu Lys Gly
Pro Arg Gly Leu Pro Gly Leu Gly Asp Tyr Lys Asp 210
215 220Asp Asp Asp Lys22593687DNAArtificial
Sequencesource/note="Description of Artificial Sequence Synthetic
polynucleotide" 93atgaaaaaga tttggctggc gctggctggt ttagttttag cgtttagcgc
atcggcgggt 60gatcagggtc cggttggtcg taccggtgaa gttggtgcag tcgggccgcc
gggttttgcg 120ggtgaaaaag gcccgtcagg tgaagcaggc accgctggcc ctcctggcac
gcctggccca 180cagggtttac tgggcgcacc tggaattctg ggactgccgg gcagccgtgg
agaacgcggt 240ttaccaggtg ttgccggtgc cgttggtgaa cctggtccac tgggcattgc
agggccgcct 300ggcgcacggg gaccgcctgg tgctgttggt agtccgggtg tgaatggtgc
tccgggtgaa 360gccggtcgtg acggtaatcc gggaaatgac ggcccgccag gccgcgatgg
tcagccgggt 420cataaaggtg agcgtggtta cccaggtaat attggtccag tcggtgccgc
cggtgcgccg 480ggtcctcatg gccctgtcgg tccagccggt aaacatggta atcgcggtga
gacaggtccg 540tcaggaccag tgggccctgc tggcgcagtc ggtccgcgcg ggccgagtgg
ccctcagggt 600attcgtggcg ataaagggga accgggcgaa aaagggccgc ggggtctgcc
aggcctgggt 660gactacaaag acgacgacga caaataa
68794228PRTArtificial Sequencesource/note="Description of
Artificial Sequence Synthetic polypeptide" 94Met Lys Lys Ile Trp Leu
Ala Leu Ala Gly Leu Val Leu Ala Phe Ser1 5
10 15Ala Ser Ala Lys Gly His Asn Gly Leu Gln Gly Leu
Pro Gly Ile Ala 20 25 30Gly
His His Gly Asp Gln Gly Ala Pro Gly Ser Val Gly Pro Ala Gly 35
40 45Pro Arg Gly Pro Ala Gly Pro Ser Gly
Pro Ala Gly Lys Asp Gly Arg 50 55
60Thr Gly His Pro Gly Thr Val Gly Pro Ala Gly Ile Arg Gly Pro Gln65
70 75 80Gly His Gln Gly Pro
Ala Gly Pro Pro Gly Pro Pro Gly Pro Pro Gly 85
90 95Pro Pro Gly Val Ser Gly Gly Gly Tyr Asp Phe
Gly Tyr Asp Gly Asp 100 105
110Phe Tyr Arg Ala Asp Gln Pro Arg Ser Ala Pro Ser Leu Arg Pro Lys
115 120 125Asp Tyr Glu Val Asp Ala Thr
Leu Lys Ser Leu Asn Asn Gln Ile Glu 130 135
140Thr Leu Leu Thr Pro Glu Gly Ser Arg Lys Asn Pro Ala Arg Thr
Cys145 150 155 160Arg Asp
Leu Arg Leu Ser His Pro Glu Trp Ser Ser Gly Tyr Tyr Trp
165 170 175Ile Asp Pro Asn Gln Gly Cys
Thr Met Asp Ala Ile Lys Val Tyr Cys 180 185
190Asp Phe Ser Thr Gly Glu Thr Cys Ile Arg Ala Gln Pro Glu
Asn Ile 195 200 205Pro Ala Lys Asn
Trp Tyr Arg Ser Ser Lys Asp Gly Asp Tyr Lys Asp 210
215 220Asp Asp Asp Lys22595687DNAArtificial
Sequencesource/note="Description of Artificial Sequence Synthetic
polynucleotide" 95atgaaaaaga tttggctggc gctggctggt ttagttttag cgtttagcgc
atcggcgaaa 60ggtcacaatg gactgcaagg cctgccaggt attgcaggtc atcatggtga
tcaaggtgcc 120ccgggaagcg ttggtccggc ggggccgaga ggccctgcgg gaccttcagg
tccggcaggc 180aaagatggtc ggacaggcca tccgggcacc gttggccctg caggaattcg
tggaccgcag 240ggtcatcagg gacctgctgg tccgccaggt cccccgggcc ctccgggacc
accgggtgtt 300agtggtggtg gttatgattt tggctatgat ggtgattttt atcgtgcaga
tcagccgcgt 360agcgcaccga gcctgcgtcc taaagattat gaagttgatg caaccctgaa
aagcctgaat 420aatcagattg aaacactgct gacaccggaa ggtagccgta aaaatccggc
ccgtacctgt 480cgtgatctgc gtctgagcca cccggaatgg agcagcggtt attattggat
tgatccgaat 540caaggttgta ccatggatgc aattaaagtt tattgtgatt ttagcacagg
tgaaacatgt 600atccgtgcac agccggaaaa tattccggcc aaaaattggt atcgtagtag
caaagatggt 660gactacaaag acgacgacga caaataa
68796262PRTArtificial Sequencesource/note="Description of
Artificial Sequence Synthetic polypeptide" 96Met Lys Lys Ile Trp Leu
Ala Leu Ala Gly Leu Val Leu Ala Phe Ser1 5
10 15Ala Ser Ala Tyr Glu Val Asp Ala Thr Leu Lys Ser
Leu Asn Asn Gln 20 25 30Ile
Glu Thr Leu Leu Thr Pro Glu Gly Ser Arg Lys Asn Pro Ala Arg 35
40 45Thr Cys Arg Asp Leu Arg Leu Ser His
Pro Glu Trp Ser Ser Gly Tyr 50 55
60Tyr Trp Ile Asp Pro Asn Gln Gly Cys Thr Met Asp Ala Ile Lys Val65
70 75 80Tyr Cys Asp Phe Ser
Thr Gly Glu Thr Cys Ile Arg Ala Gln Pro Glu 85
90 95Asn Ile Pro Ala Lys Asn Trp Tyr Arg Ser Ser
Lys Asp Lys Lys His 100 105
110Val Trp Leu Gly Glu Thr Ile Asn Ala Gly Ser Gln Phe Glu Tyr Asn
115 120 125Val Glu Gly Val Thr Ser Lys
Glu Met Ala Thr Gln Leu Ala Phe Met 130 135
140Arg Leu Leu Ala Asn Tyr Ala Ser Gln Asn Ile Thr Tyr His Cys
Lys145 150 155 160Asn Ser
Ile Ala Tyr Met Asp Glu Glu Thr Gly Asn Leu Lys Lys Ala
165 170 175Val Ile Leu Gln Gly Ser Asn
Asp Val Glu Leu Val Ala Glu Gly Asn 180 185
190Ser Arg Phe Thr Tyr Thr Val Leu Val Asp Gly Cys Ser Lys
Lys Thr 195 200 205Asn Glu Trp Gly
Lys Thr Ile Ile Glu Tyr Lys Thr Asn Lys Pro Ser 210
215 220Arg Leu Pro Phe Leu Asp Ile Ala Pro Leu Asp Ile
Gly Gly Ala Asp225 230 235
240Gln Glu Phe Phe Val Asp Ile Gly Pro Val Cys Phe Lys Gly Asp Tyr
245 250 255Lys Asp Asp Asp Asp
Lys 26097788DNAArtificial Sequencesource/note="Description of
Artificial Sequence Synthetic polynucleotide" 97tgaaaaagat
ttggctggcg ctggctggtt tagttttagc gtttagcgca tcggcgtatg 60aagttgatgc
aaccctgaaa agcctgaata atcagattga aacactgctg acaccggaag 120gtagccgtaa
aaatccggcc cgtacctgtc gtgatctgcg tctgagccac ccggaatgga 180gcagcggtta
ttattggatt gatccgaatc aaggttgtac catggatgca attaaagttt 240attgtgattt
tagcacaggt gaaacatgta tccgtgcaca gccggaaaat attccggcca 300aaaattggta
tcgtagtagc aaagataaaa aacatgtgtg gctgggtgaa accattaatg 360caggtagcca
gtttgaatac aatgttgaag gtgttaccag caaagaaatg gcaacacagc 420tggcatttat
gcgtctgctg gcaaattatg caagccagaa tattacatat cattgtaaaa 480atagcattgc
atatatggat gaagaaaccg gtaatctgaa aaaagcagtt attctgcagg 540gtagcaatga
tgttgaactg gttgccgaag gtaatagccg ttttacatat accgttctgg 600ttgatggttg
tagcaaaaaa accaatgaat ggggtaaaac catcattgaa tataaaacca 660acaaaccgag
ccgtctgccg tttctggata tcgctccgct ggatattggt ggtgccgatc 720aggaattttt
tgtcgatatc ggtcctgtgt gttttaaagg tgactacaaa gacgacgacg 780acaaataa
78898228PRTArtificial Sequencesource/note="Description of Artificial
Sequence Synthetic polypeptide" 98Met Lys Lys Ile Trp Leu Ala Leu
Ala Gly Leu Val Leu Ala Phe Ser1 5 10
15Ala Ser Ala Gly Gly Val Pro Gly Ala Ile Pro Gly Gly Val
Pro Gly 20 25 30Gly Val Phe
Tyr Pro Gly Ala Gly Leu Gly Ala Leu Gly Gly Gly Ala 35
40 45Leu Gly Pro Gly Gly Lys Pro Leu Lys Pro Val
Pro Gly Gly Leu Ala 50 55 60Gly Ala
Gly Leu Gly Ala Gly Leu Gly Ala Phe Pro Ala Val Thr Phe65
70 75 80Pro Gly Ala Leu Val Pro Gly
Gly Val Ala Asp Ala Ala Ala Ala Tyr 85 90
95Lys Ala Ala Lys Ala Gly Ala Gly Leu Gly Gly Val Pro
Gly Val Gly 100 105 110Gly Leu
Gly Val Ser Ala Gly Ala Val Val Pro Gln Pro Gly Ala Gly 115
120 125Val Lys Pro Gly Lys Val Pro Gly Val Gly
Leu Pro Gly Val Tyr Pro 130 135 140Gly
Gly Val Leu Pro Gly Ala Arg Phe Pro Gly Val Gly Val Leu Pro145
150 155 160Gly Val Pro Thr Gly Ala
Gly Val Lys Pro Lys Ala Pro Gly Val Gly 165
170 175Gly Ala Phe Ala Gly Ile Pro Gly Val Gly Pro Phe
Gly Gly Pro Gln 180 185 190Pro
Gly Val Pro Leu Gly Tyr Pro Ile Lys Ala Pro Lys Leu Pro Gly 195
200 205Gly Tyr Gly Leu Pro Tyr Thr Thr Gly
Lys Leu Gly Asp Tyr Lys Asp 210 215
220Asp Asp Asp Lys22599687DNAArtificial Sequencesource/note="Description
of Artificial Sequence Synthetic polynucleotide" 99atgaaaaaga
tttggctggc gctggctggt ttagttttag cgtttagcgc atcggcgggt 60ggcgtaccag
gcgcaattcc tgggggtgtc ccaggcggtg ttttttatcc gggcgccggt 120cttggcgcac
tgggtggcgg tgcactgggc ccgggcggca aaccgctgaa accggtacca 180ggtggtttag
caggcgccgg cttaggcgca ggtctgggag catttccggc agttaccttt 240ccaggggcac
tggttcctgg aggtgtggcc gatgcagccg cggcatataa agccgctaaa 300gccggtgcgg
gtttaggagg cgtcccaggt gtcggtggcc tgggtgttag cgccggtgca 360gttgttccgc
agccgggagc aggggttaaa cctggtaaag tgccgggagt aggtctgcca 420ggcgtttatc
ctggtggtgt tttgccgggt gcccgttttc cgggcgttgg tgttcttcca 480ggcgtgccga
ccggagccgg tgttaaaccg aaagcccccg gtgttggagg tgcatttgca 540ggcatcccgg
gagttggccc gtttggtggt ccgcaacctg gggttccgtt aggttatccg 600attaaagcac
cgaaactgcc cggcggttat ggtctgccgt acacaaccgg taaactgggt 660gactacaaag
acgacgacga caaataa
687100228PRTArtificial Sequencesource/note="Description of Artificial
Sequence Synthetic polypeptide" 100Met Lys Lys Ile Trp Leu Ala Leu
Ala Gly Leu Val Leu Ala Phe Ser1 5 10
15Ala Ser Ala Pro Tyr Gly Tyr Gly Pro Gly Gly Val Ala Gly
Ala Ala 20 25 30Gly Lys Ala
Gly Tyr Pro Thr Gly Thr Gly Val Gly Pro Gln Ala Ala 35
40 45Ala Ala Ala Ala Ala Lys Ala Ala Ala Lys Phe
Gly Ala Gly Ala Ala 50 55 60Gly Val
Leu Pro Gly Val Gly Gly Ala Gly Val Pro Gly Val Pro Gly65
70 75 80Ala Ile Pro Gly Ile Gly Gly
Ile Ala Gly Val Gly Thr Pro Ala Ala 85 90
95Ala Ala Ala Ala Ala Ala Ala Ala Lys Ala Ala Lys Tyr
Gly Ala Ala 100 105 110Ala Gly
Leu Val Pro Gly Gly Pro Gly Phe Gly Pro Gly Val Val Gly 115
120 125Val Pro Gly Ala Gly Val Pro Gly Val Gly
Val Pro Gly Ala Gly Ile 130 135 140Pro
Val Val Pro Gly Ala Gly Ile Pro Gly Ala Ala Val Pro Gly Val145
150 155 160Val Ser Pro Glu Ala Ala
Ala Lys Ala Ala Ala Lys Ala Ala Lys Tyr 165
170 175Gly Ala Arg Pro Gly Val Gly Val Gly Gly Ile Pro
Thr Tyr Gly Val 180 185 190Gly
Ala Gly Gly Phe Pro Gly Phe Gly Val Gly Val Gly Gly Ile Pro 195
200 205Gly Val Ala Gly Val Pro Gly Val Gly
Gly Val Gly Asp Tyr Lys Asp 210 215
220Asp Asp Asp Lys225101687DNAArtificial Sequencesource/note="Description
of Artificial Sequence Synthetic polynucleotide" 101atgaaaaaga
tttggctggc gctggctggt ttagttttag cgtttagcgc atcggcgccg 60tatggttatg
gcccgggtgg agttgcgggt gcagcaggta aagcgggtta tcctaccgga 120accggtgtag
gtccgcaggc cgctgctgcc gccgccgcaa aagcagcggc taaatttggc 180gccggagcag
cgggtgttct gcctggagtt ggtggtgcgg gcgtgccagg ggtacctggt 240gcaattccgg
gtattggtgg tattgccggt gtcggcaccc cggccgcggc agctgcggca 300gcggcggctg
ccaaagctgc taaatacggt gccgcggcgg gtctggtgcc aggaggtccg 360ggttttggtc
cgggagtggt tggcgtgcct ggcgcaggcg ttcctggtgt gggcgttcca 420ggtgcaggga
ttcctgttgt gcctggtgcc ggtattcccg gcgcggccgt tccgggggtg 480gttagcccgg
aagccgcagc gaaggctgcg gcaaaggcag caaagtatgg cgcacgccca 540ggagtcggcg
tgggtggtat cccgacctat ggggtgggcg cagggggttt tcctggtttc 600ggcgtaggtg
taggaggtat accgggcgtg gccggtgtac caggggttgg tggcgtcggt 660gactacaaag
acgacgacga caaataa
687102273PRTArtificial Sequencesource/note="Description of Artificial
Sequence Synthetic polypeptide" 102Met Lys Lys Ile Trp Leu Ala Leu
Ala Gly Leu Val Leu Ala Phe Ser1 5 10
15Ala Ser Ala Pro Val Gly Arg Arg Gly Pro Lys Gly Ser Arg
Gly Asp 20 25 30Pro Gly Asp
Gly Gly Ala Ala Gly Pro Lys Gly Pro Glu Gly Val Asp 35
40 45Gly Leu Ile Gly Glu Pro Gly Gln Pro Gly Pro
Ile Gly Ala Glu Gly 50 55 60Ser Ser
Gly Leu Glu Gly Phe Leu Gly Asp Lys Gly Ser Lys Gly Ala65
70 75 80Arg Gly Gly Pro Gly Asn Arg
Gly Arg Pro Gly Gln Asp Gly Val Pro 85 90
95Gly Gln Asp Gly Arg Ala Gly Glu Lys Gly Glu Gly Gly
Glu Thr Gly 100 105 110Asp Arg
Gly Gln Gln Gly Leu Arg Gly Lys Val Gly Asp Pro Gly Leu 115
120 125Val Gly Asp Leu Gly Ala Gln Gly Pro Gln
Gly Ser Gln Gly Leu Val 130 135 140Gly
Pro Pro Gly Ile Pro Gly Glu Pro Gly Ser Gly Gly Glu Pro Gly145
150 155 160Asp Gln Gly Pro Arg Gly
Pro Glu Gly Pro Gln Gly Ser Pro Gly Val 165
170 175Arg Gly Gly Arg Gly Glu Arg Gly Thr Pro Gly Ala
Val Gly Pro Lys 180 185 190Gly
Pro Pro Gly Lys Asn Gly Ala Asp Gly Pro Arg Gly Leu Pro Gly 195
200 205Ala Ser Gly Pro Pro Gly Ser Pro Gly
Asn Gln Gly Pro Glu Gly Ser 210 215
220Arg Gly Ala Asp Gly Asn Asn Gly Phe Pro Gly Asp Asp Gly Glu Asn225
230 235 240Gly Leu Val Gly
Ile Pro Gly Glu Pro Gly Pro Lys Gly Ala Arg Gly 245
250 255Thr Arg Gly Glu Leu Gly Lys Thr Gly Asp
Tyr Lys Asp Asp Asp Asp 260 265
270Lys103822DNAArtificial Sequencesource/note="Description of Artificial
Sequence Synthetic polynucleotide" 103atgaaaaaga tttggctggc
gctggctggt ttagttttag cgtttagcgc atcggcgccg 60gttggtcgtc gtggtccgaa
aggtagccgt ggtgatcctg gtgatggtgg tgcagcaggt 120cctaaaggtc cggaaggtgt
tgatggtctg attggtgaac cgggtcagcc tggtccgatt 180ggcgcagaag gtagcagcgg
tctggaaggt tttctgggtg ataaaggtag caaaggtgca 240cgtggtggtc cgggtaatcg
cggtcgtcct ggtcaggatg gtgttccggg tcaagatggt 300cgtgccggtg aaaaaggtga
aggtggtgaa accggtgatc gcggtcagca gggtctgcgt 360ggtaaagttg gtgatccagg
tctggtgggt gatctgggtg cacagggtcc gcagggtagc 420caaggtctgg ttggtccgcc
tggtattccg ggtgaacctg gtagcggtgg cgaaccgggt 480gatcagggtc ctcgcggtcc
agaaggtcct cagggttcac cgggtgttcg cggtggtcgt 540ggtgaacgtg gtacaccggg
tgcagttgga ccgaaaggtc cgccaggtaa aaatggtgca 600gatggtccgc gtggtctgcc
tggtgcaagc ggtcctccgg gtagtcctgg taaccagggt 660cctgaaggtt ctcgtggtgc
cgatggtaat aatggttttc caggtgatga tggtgaaaat 720ggcctggttg gtatccctgg
cgaaccaggt ccaaaaggcg cacgcggtac acgcggtgaa 780ctgggtaaaa ccggtgacta
caaagacgac gacgacaaat aa 822104450PRTArtificial
Sequencesource/note="Description of Artificial Sequence Synthetic
polypeptide" 104Met Lys Lys Ile Trp Leu Ala Leu Ala Gly Leu Val Leu Ala
Phe Ser1 5 10 15Ala Ser
Ala Gly Arg Gly Gly Pro Ala Gly Leu Gln Gly Ala Ala Gly 20
25 30Asn Pro Gly Asp Pro Gly Asp Arg Gly
Gln Ala Gly Glu Ile Gly Leu 35 40
45Pro Gly Thr Glu Gly Gln Arg Gly Gln Gly Gly Ser Arg Gly Asp Asp 50
55 60Gly Ile Gly Gly Gln Ser Gly Thr Asp
Gly Asp Pro Gly Asn Asp Gly65 70 75
80Val Ala Gly Ile Arg Gly Ala Arg Gly Glu Pro Gly Ala Thr
Gly Pro 85 90 95Glu Gly
Ala Ala Gly Gln Lys Gly Asp Arg Gly Arg Phe Gly Glu Gln 100
105 110Gly Arg Pro Gly Asn Asp Gly Pro Pro
Gly Arg Arg Gly Arg Val Gly 115 120
125Asn Leu Gly Glu Thr Gly Ala Glu Gly Asp Glu Gly Thr Arg Gly Tyr
130 135 140Thr Gly Asp Arg Gly Pro Glu
Gly Ala Ile Gly Ile Ser Gly Val Thr145 150
155 160Gly Asn Pro Gly Pro Gln Gly Ile Lys Gly Pro Pro
Gly Asp Thr Gly 165 170
175His Pro Gly Arg Gln Gly Pro Ser Gly Pro Gln Gly Pro Pro Gly Ile
180 185 190Pro Gly Thr Asp Gly Leu
Thr Ile His Asn Leu Ile Lys Pro Pro Ser 195 200
205Gln Phe Phe Asp Ala Thr Ser Ser Ser Asp Pro Leu Thr Asp
Ala Val 210 215 220Val Glu Ser Ile Leu
Lys Ser Phe Gln Tyr Ala Glu Leu Glu Ile Asp225 230
235 240Leu Thr Lys Lys Pro Asp Gly Thr Met Lys
Tyr Pro Ala Ile Ser Cys 245 250
255Asp Asp Leu His Lys Asp Tyr Pro Gln Leu Pro Ser Gly Asn Tyr Thr
260 265 270Leu Asp Pro Asn Gly
Gly Cys Lys Asn Asp Ala Phe Glu Thr Tyr Cys 275
280 285Glu Phe Asn Asn Ser Val Lys Met Cys Leu Thr Pro
Lys Ile Pro Thr 290 295 300Leu Leu Pro
Met Gly Thr Tyr Lys Tyr Tyr Val Asn Ser Glu Gly Tyr305
310 315 320Tyr Ser Pro Asn Asp Phe Gly
Leu Asn Leu Arg Phe Phe Glu Tyr Tyr 325
330 335Gly Ser Val Thr Gln Leu Lys Phe Leu Gln Thr Lys
Ala Thr Arg Val 340 345 350Thr
Gln Thr Ile Arg Val Leu Cys Lys Asn Tyr Asp Pro Leu His Lys 355
360 365Gln Pro Val Phe Ile Gly Met Asn Asp
Glu Thr Val Met Asp Glu Pro 370 375
380Arg Met Glu Glu Asn Gln Cys Gln Tyr Phe Asn Gly Leu Ser Ala His385
390 395 400Val Glu Leu Glu
Leu Ser Ser Asn Asp Pro Ser Tyr Leu Pro Ile Tyr 405
410 415Glu Met Arg Leu Tyr Leu Gly Arg Lys Thr
Asn Glu Glu Leu Gly Ile 420 425
430Glu Leu Gly Asp Leu Cys Phe Glu Tyr Gly Asp Tyr Lys Asp Asp Asp
435 440 445Asp Lys
4501051353DNAArtificial Sequencesource/note="Description of Artificial
Sequence Synthetic polynucleotide" 105atgaaaaaga tttggctggc
gctggctggt ttagttttag cgtttagcgc atcggcgggt 60cgtggcggtc cggcaggtct
gcagggtgct gcaggtaatc ctggcgaccc tggcgatcgt 120ggtcaggcag gcgaaattgg
tctgccaggc accgaaggtc agcgtggtca aggtggttca 180cgtggtgatg acggtattgg
tggtcagagc ggcaccgatg gcgatccggg taacgatggt 240gttgcaggta ttcgtggtgc
acgcggagaa cctggtgcca ccggacctga aggtgcagcc 300ggtcagaaag gtgatcgtgg
ccgttttggc gaacagggtc gtccgggaaa tgatggtcca 360ccgggtcgcc gtggccgtgt
gggcaatctg ggtgaaacag gtgccgaagg tgatgaaggc 420acccgtggtt atacaggtga
ccgtggaccg gaaggcgcaa ttggtattag cggtgtgacc 480ggtaatccgg gtccacaggg
cattaaaggc cctccgggtg atacgggtca tccgggtcgt 540cagggaccga gcggtccgca
aggaccaccg ggtattccag gtacagatgg cctgaccatt 600cataatctga ttaaaccgcc
tagccagttt tttgatgcaa ccagcagcag cgatccgctg 660accgatgcag ttgttgaaag
cattctgaaa tcttttcagt atgccgagct ggaaattgac 720ctgaccaaaa aaccggatgg
caccatgaaa tatccggcaa ttagctgtga tgatctgcac 780aaagattatc cgcagctgcc
gagcggtaat tataccctgg atccgaatgg tggttgtaaa 840aatgatgcct ttgaaaccta
ttgcgagttc aacaatagcg tgaaaatgtg tctgaccccg 900aaaattccga cactgctgcc
gatgggcacc tataaatact atgttaatag cgagggttac 960tacagcccga atgattttgg
tctgaatctg cgcttttttg agtattatgg tagcgttacc 1020cagctgaaat ttctgcagac
caaagcaacc cgtgttaccc agaccattcg tgttctgtgt 1080aaaaactatg atccgctgca
taaacagccg gtttttattg gtatgaatga cgaaaccgtt 1140atggatgaac cgcgtatgga
agaaaatcag tgccagtatt ttaacggtct gagcgcacat 1200gttgaactgg aactgagcag
caatgatccg agctatctgc cgatttatga aatgcgtctg 1260tatctgggtc gtaaaaccaa
tgaagaactg ggcattgaac tgggcgatct gtgttttgaa 1320tatggtgact acaaagacga
cgacgacaaa taa 1353106286PRTArtificial
Sequencesource/note="Description of Artificial Sequence Synthetic
polypeptide" 106Met Lys Lys Ile Trp Leu Ala Leu Ala Gly Leu Val Leu Ala
Phe Ser1 5 10 15Ala Ser
Ala Glu Lys Thr Ser Ser Lys Val Ala Leu Met Thr Val Leu 20
25 30Val Val Ile Thr Gly Ala Leu Ile Ile
Glu Gly Thr Ser Ile Thr Arg 35 40
45Gly Ser Thr His Val Asn Arg Gly Leu Arg Lys Arg Gln Thr Ser Glu 50
55 60Asp Asn Cys Glu Ala Val Lys Val Gly
Leu Pro Gly Arg Asp Gly Arg65 70 75
80Glu Gly Pro Pro Gly Pro Pro Gly Pro Ala Gly Arg Asp Gly
Arg Asp 85 90 95Ala Val
Cys Ser Asn Gln Thr Thr Gly Leu Gly Ala Lys Gly Asp Arg 100
105 110Gly Pro Pro Gly Thr Pro Gly Phe Pro
Gly Glu Val Gly Arg Pro Gly 115 120
125Pro Pro Gly Ala Asp Gly Ile Pro Gly Pro Gln Gly Glu Arg Gly Ala
130 135 140Val Gly Pro Gly Gly Lys Pro
Gly Pro Arg Gly Glu Val Gly Thr Pro145 150
155 160Gly Ala Asp Gly Ala Asp Gly Ala Thr Gly Ala Thr
Gly Val Gln Gly 165 170
175Pro Asp Gly Ala Lys Gly Glu Lys Gly Ala Ser Gly Thr Ala Gly Leu
180 185 190Lys Gly Glu Lys Gly Asp
Thr Cys Ile Pro Asp Ser Asn Ser Thr Leu 195 200
205Gly Met Pro Gly Thr Pro Gly Ala Gly Gly Ser Lys Gly Gln
Lys Gly 210 215 220Glu Ser Gly Ile Val
Gly Pro Lys Gly Glu Arg Gly Glu Ile Gly Thr225 230
235 240Pro Gly His Pro Gly Phe Arg Gly Ala Asp
Gly Glu Pro Gly His Lys 245 250
255Gly Val Pro Gly Arg Ala Gly Ala Gln Gly Asp Arg Gly Asp Pro Gly
260 265 270Asp Asp Gly Leu Thr
Gly Asp Tyr Lys Asp Asp Asp Asp Lys 275 280
285107861DNAArtificial Sequencesource/note="Description of
Artificial Sequence Synthetic polynucleotide" 107atgaaaaaga
tttggctggc gctggctggt ttagttttag cgtttagcgc atcggcggaa 60aaaaccagca
gcaaagttgc actgatgacc gttctggttg ttattaccgg tgcactgatt 120attgaaggca
ccagcattac ccgtggtagc acccatgtta atcgtggtct gcgtaaacgt 180cagaccagcg
aagataattg tgaagcagtt aaagttggtc tgccaggtcg tgatggtcgt 240gaaggtcctc
cgggtccgcc tggtccggct ggcagagatg gccgtgatgc agtttgtagc 300aatcagacca
ccggtctggg tgcaaaaggt gatcgtggtc cgccaggtac accgggtttt 360ccgggtgaag
ttggccgtcc gggtccaccg ggtgcagatg gtattccggg tcctcagggt 420gaacgtggtg
cagttggtcc tggtggtaaa cctggtccgc gtggtgaagt gggcacccct 480ggtgccgatg
gcgcagatgg tgcaaccggt gcgaccggtg ttcagggtcc tgatggtgcc 540aaaggcgaaa
aaggtgcaag cggcaccgca ggtctgaaag gtgagaaagg cgatacctgt 600attccggata
gcaatagcac cctgggtatg cctggtacac caggtgccgg tggtagcaaa 660ggccagaaag
gtgaaagtgg tattgttggt ccgaaaggcg aacgcggtga aattggcaca 720ccgggtcatc
ctggttttcg tggtgcggat ggtgaaccag gtcataaagg tgttccgggt 780cgtgccggtg
cgcagggtga tcgcggtgat ccgggtgatg atggtctgac cggtgactac 840aaagacgacg
acgacaaata a
861108512PRTArtificial Sequencesource/note="Description of Artificial
Sequence Synthetic polypeptide" 108Met Lys Lys Ile Trp Leu Ala Leu
Ala Gly Leu Val Leu Ala Phe Ser1 5 10
15Ala Ser Ala Gly Phe Pro Gly Ala Pro Gly Ala Asp Gly Ala
Pro Gly 20 25 30Gln Lys Gly
Glu Leu Gly Ala Val Gly Pro Gln Gly Thr Pro Gly Leu 35
40 45Ser Gly Pro Ser Gly Pro Thr Gly Pro Pro Gly
Pro Lys Gly Val Arg 50 55 60Gly Ala
Pro Gly Ser Ser Gly Ala Lys Gly Asp Ala Gly Asn Pro Gly65
70 75 80Asp Asp Gly Pro Val Gly Pro
Gln Gly Val Pro Gly Val Asp Gly Ser 85 90
95Pro Gly Gln Lys Gly Glu Thr Gly Arg Val Gly Pro Arg
Gly His Asp 100 105 110Gly Ile
Asn Gly Thr Pro Gly Glu Asp Gly Ala Thr Gly Phe Pro Gly 115
120 125Pro Asp Gly Ala Lys Gly Glu Lys Gly Thr
Ser Gly Thr Ala Gly Leu 130 135 140Lys
Gly Glu Lys Gly Asp Thr Cys Ile Pro Asp Ser Asn Ser Thr Leu145
150 155 160Gly Met Pro Gly Thr Pro
Gly Ala Gly Trp Ser Lys Gly Gln Lys Gly 165
170 175Glu Ser Gly Ile Val Gly Pro Lys Gly Glu Lys Gly
Glu Ile Gly Thr 180 185 190Pro
Gly Pro Pro Gly Phe Arg Gly Ala Asp Gly Glu Pro Gly Gln Arg 195
200 205Gly Glu Pro Gly Arg Ala Gly Ala Gln
Gly Glu Arg Gly Ala Pro Gly 210 215
220Asn Asn Gly Arg Asp Gly Phe Pro Gly Asp Pro Gly Ala Asp Gly Ala225
230 235 240Pro Gly Gln Lys
Gly Glu Leu Gly Ala Ile Gly His Pro Gly Phe Ser 245
250 255Gly Pro Ser Gly Pro Ser Gly Pro Thr Gly
Pro Pro Gly Pro Lys Gly 260 265
270Val Arg Gly Ala Gln Gly Arg Pro Gly Asp Arg Gly Ser Pro Gly Asp
275 280 285Val Gly Pro Ile Gly Ala Pro
Gly Pro Pro Gly Ala Asp Gly Val Pro 290 295
300Gly Leu Thr Gly Val Gln Gly Arg Asp Gly Pro Lys Gly Glu Ser
Ala305 310 315 320Ser Ser
Gly Ala Val Tyr Val Arg Trp Gly Arg Thr Thr Cys Pro Ser
325 330 335Gly Ala Asp Val Val Tyr Ser
Gly Arg Ala Ala Gly Ala Lys Tyr Asp 340 345
350His Ser Gly Gly Thr Ser Asp His His Cys Leu Pro Asn Asn
Pro Gln 355 360 365Tyr Leu Ser Glu
Asp Asp Thr Asn Ala Leu Gly Ala Gln Leu Tyr Gly 370
375 380Val Glu Tyr Glu Ile Arg Asp Arg Ser Ser Pro Tyr
Asn Ser Leu Asp385 390 395
400Gln Ser Asp Met Pro Cys Val Val Cys Asn Ala Asn Gly Arg Ser Gln
405 410 415Leu Leu Met Val Pro
Ala Arg Tyr Thr Cys Pro Thr Gly Trp Ser Arg 420
425 430Glu Tyr Tyr Gly Tyr Met Met Ser Glu Gly Lys Ala
Lys Asn Arg Glu 435 440 445Gly Arg
Lys Thr Thr Ile Cys Met Asp Phe Ser Ala Glu Ala Val Pro 450
455 460Gly Ser Gly Ala Asn Thr Asn Pro Ser Pro Gly
Ile Met Met Arg Ala465 470 475
480Asn Cys Asn Gly Leu Ala Cys Pro Pro Tyr Gln Ser Asn Thr Pro Leu
485 490 495Thr Cys Ala Val
Cys Thr Lys Gly Asp Tyr Lys Asp Asp Asp Asp Lys 500
505 5101091539DNAArtificial
Sequencesource/note="Description of Artificial Sequence Synthetic
polynucleotide" 109atgaaaaaga tttggctggc gctggctggt ttagttttag cgtttagcgc
atcggcgggt 60tttcctggcg ctccgggtgc cgacggtgct ccgggtcaaa aaggtgaact
gggtgccgtg 120ggtccgcagg gcactccggg tctgagtggt cctagtggtc cgaccggtcc
accaggtcca 180aaaggcgtgc gtggtgcacc gggtagcagc ggagccaaag gtgatgcagg
taaccctggt 240gatgacggtc cggttggtcc acagggcgtt ccaggtgttg atggtagccc
tggccaaaag 300ggtgaaaccg gtcgtgtggg tcctcgtggt catgatggta ttaatggcac
cccaggtgaa 360gatggtgcga caggctttcc aggtccggat ggcgcaaagg gtgagaaggg
caccagcggt 420acagctggcc tgaagggcga aaagggcgat acatgcatcc cggattcaaa
ttcaacactg 480ggcatgccag gtacgcctgg cgcaggttgg agtaaaggac aaaaaggcga
atcaggcatt 540gtgggaccta aaggcgagaa gggtgagatt ggtactccgg gaccgccagg
ctttcgcggt 600gcagacggcg aaccgggtca gcgtggcgaa cctggtcgtg caggcgcaca
aggtgaacgc 660ggagcccctg gtaataatgg acgtgatggc tttcctggtg atccaggtgc
agatggcgca 720cctggccaga aaggcgaact gggagcaatt ggtcatccgg gatttagcgg
tccgtcaggt 780ccgagcggac cgacaggtcc tcctggaccg aaaggtgtac gtggcgcaca
gggtcgtcct 840ggcgatcgtg gcagtccagg tgatgtgggt ccgattggtg cacctggtcc
tccaggtgcg 900gacggcgtgc ctggtttaac aggtgtgcag ggtcgcgacg gtcctaaagg
tgaatcagca 960agcagcggtg cagtttatgt tcgttggggt cgtaccacct gtcctagcgg
agcagatgtt 1020gtttatagcg gtcgcgcagc cggtgcaaaa tatgatcatt caggtggcac
ctcagatcat 1080cattgtctgc cgaataatcc gcagtatctg agcgaagatg ataccaatgc
actgggtgca 1140cagctgtatg gtgtggaata tgaaattcgt gatcgtagca gcccgtataa
tagcctggat 1200cagagcgata tgccgtgtgt tgtttgtaat gcaaatggtc gtagccagct
gctgatggtt 1260ccggcacgtt atacatgccc gaccggttgg agccgtgaat attatggtta
tatgatgagc 1320gaaggcaaag ccaaaaatcg cgaaggtcgt aaaaccacca tttgtatgga
ttttagcgca 1380gaagcagttc ctggtagcgg tgcaaatacc aatccgagtc cgggtattat
gatgcgtgca 1440aattgtaatg gtctggcatg tccgccttat cagagcaata caccgctgac
ctgtgccgtt 1500tgtaccaaag gtgactacaa agacgacgac gacaaataa
1539110219PRTArtificial Sequencesource/note="Description of
Artificial Sequence Synthetic polypeptide" 110Met Lys Lys Ile Trp
Leu Ala Leu Ala Gly Leu Val Leu Ala Phe Ser1 5
10 15Ala Ser Ala Gly Pro Ala Gly Ala Lys Gly Pro
Ser Gly Asp Ile Gly 20 25
30Arg Pro Gly Glu Ser Gly Ser Pro Gly Ala Arg Gly His Ser Gly Gln
35 40 45Pro Gly Arg Thr Gly Ile Ala Gly
Asn Gln Gly Leu Pro Gly Thr Ala 50 55
60Gly Glu Glu Gly Arg Thr Gly Pro Pro Gly Pro Ala Gly Leu Arg Gly65
70 75 80Gln Ala Gly Met Met
Gly Phe Pro Gly Pro Lys Gly Ala Ala Gly Leu 85
90 95Pro Gly Lys Pro Gly Asp Arg Gly Asn Val Gly
Leu Ala Gly Pro Arg 100 105
110Gly Ala Pro Gly Lys Asp Gly Glu Val Gly Ala Gln Gly Pro Pro Gly
115 120 125Val Ala Gly Pro Thr Gly Pro
Arg Gly Glu Thr Gly Leu Ala Gly Ser 130 135
140Val Gly Phe Gln Gly Met Pro Gly Pro Ser Gly Ala Ala Gly Glu
Pro145 150 155 160Gly Lys
Pro Gly Asn Gln Gly Leu Arg Gly Asp Ala Gly Ser Pro Gly
165 170 175Met Ile Gly Pro Arg Gly Glu
Arg Gly Leu Pro Gly Glu Arg Gly Ala 180 185
190Ser Gly Ala Gln Gly Leu Leu Gly Pro Arg Gly Thr Ser Gly
Ala Pro 195 200 205Gly Leu Gly Asp
Tyr Lys Asp Asp Asp Asp Lys 210 215111660DNAArtificial
Sequencesource/note="Description of Artificial Sequence Synthetic
polynucleotide" 111atgaaaaaga tttggctggc gctggctggt ttagttttag cgtttagcgc
atcggcgggt 60ccggcaggcg caaaaggtcc gagcggtgat attggtcgtc cgggtgaaag
cggtagtccg 120ggtgcacgtg gtcatagcgg tcagcctggt cgtaccggta ttgcaggtaa
tcagggtctg 180cctggtacag ccggtgaaga aggtcgcacc ggtccgccag gtcctgcagg
tctgcgtggt 240caggcaggta tgatgggttt tccgggtccg aaaggtgcag cgggtctgcc
aggcaaaccg 300ggtgatcgtg gtaatgttgg tctggctggt ccgcgtggtg caccgggtaa
agatggtgaa 360gttggtgcac agggtcctcc gggtgttgca ggtccgaccg gtcctcgtgg
tgaaaccggt 420ctggcaggta gcgttggttt tcagggtatg ccaggtccgt caggtgcagc
aggcgaacct 480ggtaaaccgg gtaaccaggg cctgcgtggt gatgccggtt caccgggtat
gattggtcca 540cgcggtgaac gtggcctgcc tggcgaacgt ggtgcaagcg gtgcacaagg
tctgctgggt 600ccacgtggca cctcaggcgc accaggtctg ggtgactaca aagacgacga
cgacaaataa 660112237PRTArtificial Sequencesource/note="Description of
Artificial Sequence Synthetic polypeptide" 112Met Lys Lys Ile Trp
Leu Ala Leu Ala Gly Leu Val Leu Ala Phe Ser1 5
10 15Ala Ser Ala Gln Gly Ile Pro Gly Ser Ala Gly
Lys Glu Gly Gly Lys 20 25
30Gly Asp Pro Gly Pro Leu Gly Ser Pro Gly Lys Pro Gly Pro Asp Gly
35 40 45Leu Arg Gly Phe Ala Gly Ala Arg
Gly Leu Pro Gly Ala Ala Gly Pro 50 55
60Pro Gly Leu Lys Gly Ala Glu Gly Pro Met Gly Ala Pro Gly Leu Thr65
70 75 80Gly Ser Thr Gly Glu
Arg Gly Pro Asn Gly Pro Ala Gly Ala Ile Gly 85
90 95Leu Pro Gly Arg Pro Gly Gly Pro Gly Pro Pro
Gly Pro Val Gly Glu 100 105
110Lys Gly Asp Pro Gly Asp Lys Gly Leu Pro Gly Pro Ala Gly Asp Asp
115 120 125Gly Val Gln Gly Ala Met Gly
Leu Pro Gly Pro Ile Gly Ser Gln Gly 130 135
140Pro Pro Gly Asp Tyr Gly Asp Lys Gly Glu Leu Gly Lys Pro Gly
Gln145 150 155 160Lys Gly
Ser Lys Gly Asp Lys Gly Glu Ser Gly Pro Pro Gly Pro Ile
165 170 175Gly Ile Gln Gly Pro Ile Gly
His Pro Gly Pro Ile Gly Ser Asp Gly 180 185
190Ser Pro Gly Leu Arg Gly Tyr Leu Gly Met Arg Gly Gln Lys
Gly Asp 195 200 205Asp Gly Ile Arg
Gly Leu Pro Gly Ser Ala Gly Pro Val Gly Leu Gln 210
215 220Gly Leu Pro Gly Gly Asp Tyr Lys Asp Asp Asp Asp
Lys225 230 235113714DNAArtificial
Sequencesource/note="Description of Artificial Sequence Synthetic
polynucleotide" 113atgaaaaaga tttggctggc gctggctggt ttagttttag cgtttagcgc
atcggcgcag 60ggtattccgg gtagcgcagg taaagaaggt ggtaaaggcg atccgggtcc
gctgggttca 120ccgggtaaac cgggtcctga tggtctgcgt ggttttgccg gtgcacgtgg
tctgcctggt 180gcagcaggtc cgcctggtct gaaaggtgcc gaaggtccga tgggtgctcc
gggtctgacc 240ggtagcaccg gtgaacgcgg tccgaatggt ccggcaggcg caattggtct
gccaggtcgt 300cctggtggtc cgggtcctcc tggtccggtt ggtgaaaaag gtgatcctgg
tgataaaggc 360ctgcctggtc ctgccggtga tgatggtgtt cagggtgcca tgggcttacc
gggtccgatt 420ggtagccagg gtcctccggg tgattatggc gataaaggtg aactgggtaa
acctggccag 480aaaggtagca aaggtgacaa aggcgaaagc ggtccgccag gtccgatcgg
cattcagggt 540cctattggtc atccaggtcc aattggttca gatggctcac cgggactgcg
tggctatctg 600ggtatgcgtg gacagaaagg tgatgacggt attcgtggcc tgccaggtag
tgcaggtccg 660gtgggtctgc agggactgcc tggtggtgac tacaaagacg acgacgacaa
ataa 714114254PRTArtificial Sequencesource/note="Description of
Artificial Sequence Synthetic polypeptide" 114Met Lys Lys Ile Trp
Leu Ala Leu Ala Gly Leu Val Leu Ala Phe Ser1 5
10 15Ala Ser Ala Lys Gly Glu Thr Gly Glu Ala Gly
Asp Pro Gly Thr Pro 20 25
30Gly Glu Pro Gly Ile Ala Gly Pro Lys Gly Asp Val Gly Asp Lys Gly
35 40 45Asp Ala Gly Pro Pro Gly Ala Ala
Gly Pro Ala Gly Val Lys Gly Pro 50 55
60Pro Gly Glu Asp Gly Ala Lys Gly Asp Val Gly Pro Ala Gly Phe Pro65
70 75 80Gly Asp Pro Gly Pro
Thr Gly Glu Pro Gly Val Pro Gly Met Asp Gly 85
90 95Gly Val Gly Glu Lys Gly Ser Leu Gly Asp Pro
Gly Leu Thr Gly Pro 100 105
110Arg Gly Ala Ser Gly Glu Pro Gly Pro Pro Gly Ser Pro Gly Lys Arg
115 120 125Gly Pro Pro Gly Pro Ala Gly
Pro Glu Gly Arg Glu Gly Leu Lys Gly 130 135
140Ser Lys Gly Ser Pro Gly Gln Glu Gly Pro Val Gly Arg Thr Gly
Pro145 150 155 160Ile Gly
Pro Gln Gly Ser Pro Gly Asn Val Gly Pro Lys Gly Leu Arg
165 170 175Gly Ile Pro Gly Pro Thr Gly
Glu Gln Gly Leu Leu Gly Pro Pro Gly 180 185
190Gln Ala Gly Pro Pro Gly Pro Met Gly Pro Pro Gly Met Pro
Gly Leu 195 200 205Arg Gly Ala Gln
Gly Leu Lys Gly Asp Lys Gly His Val Gly Leu Ile 210
215 220Gly Leu Ile Gly Pro Pro Gly Glu Met Gly Glu Lys
Gly Asp Gln Gly225 230 235
240Leu Pro Gly Ile Gln Gly Asp Tyr Lys Asp Asp Asp Asp Lys
245 250115765DNAArtificial
Sequencesource/note="Description of Artificial Sequence Synthetic
polynucleotide" 115atgaaaaaga tttggctggc gctggctggt ttagttttag cgtttagcgc
atcggcgaaa 60ggtgaaaccg gtgaagcggg tgatccgggt acaccgggtg aacctggtat
tgcaggtccg 120aaaggtgatg ttggtgataa aggtgacgca ggtccgcctg gtgcagcagg
tccggcaggc 180gttaaaggtc ctccgggtga agatggtgca aaaggcgacg ttggtcctgc
aggttttcct 240ggcgatccgg gtccgactgg tgaaccgggt gtgccaggta tggatggtgg
tgtgggtgaa 300aaaggtagcc tgggtgatcc tggtctgacc ggtccgcgtg gcgcaagtgg
tgaaccaggt 360ccaccgggta gtccgggtaa acgtggtcct cctggaccgg ctggtccgga
aggtcgtgaa 420ggtctgaaag gtagcaaagg ttcaccgggt caagaaggtc cggttggtcg
taccggtccg 480attggtccgc agggctcacc gggtaatgtt ggtcctaaag gtctgcgtgg
tattccgggt 540cctacaggcg aacagggtct gctgggtccg ccaggccaag caggtcctcc
aggtcctatg 600ggtccacctg gtatgcctgg cctgcgtggt gcccagggcc tgaaaggcga
taaaggccat 660gttggtctga ttggcctgat tggtccacca ggtgaaatgg gagaaaaagg
cgatcagggc 720ctgcctggta ttcagggtga ctacaaagac gacgacgaca aataa
76511630PRTArtificial Sequencesource/note="Description of
Artificial Sequence Synthetic His tag"SITE(1)..(30)/note="This
sequence may encompass 2-30 residues" 116His His His His His His His
His His His His His His His His His1 5 10
15His His His His His His His His His His His His His
His 20 25
3011720PRTArtificial Sequencesource/note="Description of Artificial
Sequence Synthetic His tag"SITE(1)..(20)/note="This sequence may
encompass 2-20 residues" 117His His His His His His His His His His
His His His His His His1 5 10
15His His His His 2011815PRTArtificial
Sequencesource/note="Description of Artificial Sequence Synthetic
His tag"SITE(1)..(15)/note="This sequence may encompass 5-15
residues" 118His His His His His His His His His His His His His His His1
5 10
1511918PRTArtificial Sequencesource/note="Description of Artificial
Sequence Synthetic His tag"SITE(1)..(18)/note="This sequence may
encompass 5-18 residues" 119His His His His His His His His His His
His His His His His His1 5 10
15His His12016PRTArtificial Sequencesource/note="Description of
Artificial Sequence Synthetic His tag"SITE(1)..(16)/note="This
sequence may encompass 5-16 residues" 120His His His His His His His
His His His His His His His His His1 5 10
1512114PRTArtificial Sequencesource/note="Description of
Artificial Sequence Synthetic His tag"SITE(1)..(14)/note="This
sequence may encompass 5-14 residues" 121His His His His His His His
His His His His His His His1 5
1012213PRTArtificial Sequencesource/note="Description of Artificial
Sequence Synthetic His tag"SITE(1)..(13)/note="This sequence may
encompass 5-13 residues" 122His His His His His His His His His His
His His His1 5 1012312PRTArtificial
Sequencesource/note="Description of Artificial Sequence Synthetic
His tag"SITE(1)..(12)/note="This sequence may encompass 5-12
residues" 123His His His His His His His His His His His His1
5 1012411PRTArtificial
Sequencesource/note="Description of Artificial Sequence Synthetic
His tag"SITE(1)..(11)/note="This sequence may encompass 5-11
residues" 124His His His His His His His His His His His1 5
1012510PRTArtificial Sequencesource/note="Description
of Artificial Sequence Synthetic His tag"SITE(1)..(10)/note="This
sequence may encompass 5-10 residues" 125His His His His His His His
His His His1 5 1012612PRTArtificial
Sequencesource/note="Description of Artificial Sequence Synthetic
His tag"SITE(1)..(12)/note="This sequence may encompass 6-12
residues" 126His His His His His His His His His His His His1
5 1012711PRTArtificial
Sequencesource/note="Description of Artificial Sequence Synthetic
His tag"SITE(1)..(11)/note="This sequence may encompass 6-11
residues" 127His His His His His His His His His His His1 5
1012810PRTArtificial Sequencesource/note="Description
of Artificial Sequence Synthetic His tag"SITE(1)..(10)/note="This
sequence may encompass 7-10 residues" 128His His His His His His His
His His His1 5 101299PRTArtificial
Sequencesource/note="Description of Artificial Sequence Synthetic
9xHis tag" 129His His His His His His His His His1
5130150PRTArtificial Sequencesource/note="Description of Artificial
Sequence Synthetic polypeptide"SITE(1)..(150)/note="This sequence
may encompass 2-50 `Gly Glu Lys` repeating units" 130Gly Glu Lys Gly
Glu Lys Gly Glu Lys Gly Glu Lys Gly Glu Lys Gly1 5
10 15Glu Lys Gly Glu Lys Gly Glu Lys Gly Glu
Lys Gly Glu Lys Gly Glu 20 25
30Lys Gly Glu Lys Gly Glu Lys Gly Glu Lys Gly Glu Lys Gly Glu Lys
35 40 45Gly Glu Lys Gly Glu Lys Gly Glu
Lys Gly Glu Lys Gly Glu Lys Gly 50 55
60Glu Lys Gly Glu Lys Gly Glu Lys Gly Glu Lys Gly Glu Lys Gly Glu65
70 75 80Lys Gly Glu Lys Gly
Glu Lys Gly Glu Lys Gly Glu Lys Gly Glu Lys 85
90 95Gly Glu Lys Gly Glu Lys Gly Glu Lys Gly Glu
Lys Gly Glu Lys Gly 100 105
110Glu Lys Gly Glu Lys Gly Glu Lys Gly Glu Lys Gly Glu Lys Gly Glu
115 120 125Lys Gly Glu Lys Gly Glu Lys
Gly Glu Lys Gly Glu Lys Gly Glu Lys 130 135
140Gly Glu Lys Gly Glu Lys145 150131150PRTArtificial
Sequencesource/note="Description of Artificial Sequence Synthetic
polypeptide"SITE(1)..(150)/note="This sequence may encompass 2-50 `Gly
Asp Lys` repeating units" 131Gly Asp Lys Gly Asp Lys Gly Asp Lys Gly
Asp Lys Gly Asp Lys Gly1 5 10
15Asp Lys Gly Asp Lys Gly Asp Lys Gly Asp Lys Gly Asp Lys Gly Asp
20 25 30Lys Gly Asp Lys Gly Asp
Lys Gly Asp Lys Gly Asp Lys Gly Asp Lys 35 40
45Gly Asp Lys Gly Asp Lys Gly Asp Lys Gly Asp Lys Gly Asp
Lys Gly 50 55 60Asp Lys Gly Asp Lys
Gly Asp Lys Gly Asp Lys Gly Asp Lys Gly Asp65 70
75 80Lys Gly Asp Lys Gly Asp Lys Gly Asp Lys
Gly Asp Lys Gly Asp Lys 85 90
95Gly Asp Lys Gly Asp Lys Gly Asp Lys Gly Asp Lys Gly Asp Lys Gly
100 105 110Asp Lys Gly Asp Lys
Gly Asp Lys Gly Asp Lys Gly Asp Lys Gly Asp 115
120 125Lys Gly Asp Lys Gly Asp Lys Gly Asp Lys Gly Asp
Lys Gly Asp Lys 130 135 140Gly Asp Lys
Gly Asp Lys145 150132120PRTArtificial
Sequencesource/note="Description of Artificial Sequence Synthetic
polypeptide"SITE(1)..(120)/note="This sequence may encompass 2-40 `Gly
Glu Lys` repeating units" 132Gly Glu Lys Gly Glu Lys Gly Glu Lys Gly
Glu Lys Gly Glu Lys Gly1 5 10
15Glu Lys Gly Glu Lys Gly Glu Lys Gly Glu Lys Gly Glu Lys Gly Glu
20 25 30Lys Gly Glu Lys Gly Glu
Lys Gly Glu Lys Gly Glu Lys Gly Glu Lys 35 40
45Gly Glu Lys Gly Glu Lys Gly Glu Lys Gly Glu Lys Gly Glu
Lys Gly 50 55 60Glu Lys Gly Glu Lys
Gly Glu Lys Gly Glu Lys Gly Glu Lys Gly Glu65 70
75 80Lys Gly Glu Lys Gly Glu Lys Gly Glu Lys
Gly Glu Lys Gly Glu Lys 85 90
95Gly Glu Lys Gly Glu Lys Gly Glu Lys Gly Glu Lys Gly Glu Lys Gly
100 105 110Glu Lys Gly Glu Lys
Gly Glu Lys 115 120133120PRTArtificial
Sequencesource/note="Description of Artificial Sequence Synthetic
polypeptide"SITE(1)..(120)/note="This sequence may encompass 2-40 `Gly
Asp Lys` repeating units" 133Gly Asp Lys Gly Asp Lys Gly Asp Lys Gly
Asp Lys Gly Asp Lys Gly1 5 10
15Asp Lys Gly Asp Lys Gly Asp Lys Gly Asp Lys Gly Asp Lys Gly Asp
20 25 30Lys Gly Asp Lys Gly Asp
Lys Gly Asp Lys Gly Asp Lys Gly Asp Lys 35 40
45Gly Asp Lys Gly Asp Lys Gly Asp Lys Gly Asp Lys Gly Asp
Lys Gly 50 55 60Asp Lys Gly Asp Lys
Gly Asp Lys Gly Asp Lys Gly Asp Lys Gly Asp65 70
75 80Lys Gly Asp Lys Gly Asp Lys Gly Asp Lys
Gly Asp Lys Gly Asp Lys 85 90
95Gly Asp Lys Gly Asp Lys Gly Asp Lys Gly Asp Lys Gly Asp Lys Gly
100 105 110Asp Lys Gly Asp Lys
Gly Asp Lys 115 12013490PRTArtificial
Sequencesource/note="Description of Artificial Sequence Synthetic
polypeptide"SITE(1)..(90)/note="This sequence may encompass 2-30 `Gly
Glu Lys` repeating units" 134Gly Glu Lys Gly Glu Lys Gly Glu Lys Gly Glu
Lys Gly Glu Lys Gly1 5 10
15Glu Lys Gly Glu Lys Gly Glu Lys Gly Glu Lys Gly Glu Lys Gly Glu
20 25 30Lys Gly Glu Lys Gly Glu Lys
Gly Glu Lys Gly Glu Lys Gly Glu Lys 35 40
45Gly Glu Lys Gly Glu Lys Gly Glu Lys Gly Glu Lys Gly Glu Lys
Gly 50 55 60Glu Lys Gly Glu Lys Gly
Glu Lys Gly Glu Lys Gly Glu Lys Gly Glu65 70
75 80Lys Gly Glu Lys Gly Glu Lys Gly Glu Lys
85 9013590PRTArtificial
Sequencesource/note="Description of Artificial Sequence Synthetic
polypeptide"SITE(1)..(90)/note="This sequence may encompass 2-30 `Gly
Asp Lys` repeating units" 135Gly Asp Lys Gly Asp Lys Gly Asp Lys Gly Asp
Lys Gly Asp Lys Gly1 5 10
15Asp Lys Gly Asp Lys Gly Asp Lys Gly Asp Lys Gly Asp Lys Gly Asp
20 25 30Lys Gly Asp Lys Gly Asp Lys
Gly Asp Lys Gly Asp Lys Gly Asp Lys 35 40
45Gly Asp Lys Gly Asp Lys Gly Asp Lys Gly Asp Lys Gly Asp Lys
Gly 50 55 60Asp Lys Gly Asp Lys Gly
Asp Lys Gly Asp Lys Gly Asp Lys Gly Asp65 70
75 80Lys Gly Asp Lys Gly Asp Lys Gly Asp Lys
85 9013660PRTArtificial
Sequencesource/note="Description of Artificial Sequence Synthetic
polypeptide"SITE(1)..(60)/note="This sequence may encompass 2-20 `Gly
Glu Lys` repeating units" 136Gly Glu Lys Gly Glu Lys Gly Glu Lys Gly Glu
Lys Gly Glu Lys Gly1 5 10
15Glu Lys Gly Glu Lys Gly Glu Lys Gly Glu Lys Gly Glu Lys Gly Glu
20 25 30Lys Gly Glu Lys Gly Glu Lys
Gly Glu Lys Gly Glu Lys Gly Glu Lys 35 40
45Gly Glu Lys Gly Glu Lys Gly Glu Lys Gly Glu Lys 50
55 6013760PRTArtificial
Sequencesource/note="Description of Artificial Sequence Synthetic
polypeptide"SITE(1)..(60)/note="This sequence may encompass 2-20 `Gly
Asp Lys` repeating units" 137Gly Asp Lys Gly Asp Lys Gly Asp Lys Gly Asp
Lys Gly Asp Lys Gly1 5 10
15Asp Lys Gly Asp Lys Gly Asp Lys Gly Asp Lys Gly Asp Lys Gly Asp
20 25 30Lys Gly Asp Lys Gly Asp Lys
Gly Asp Lys Gly Asp Lys Gly Asp Lys 35 40
45Gly Asp Lys Gly Asp Lys Gly Asp Lys Gly Asp Lys 50
55 6013845PRTArtificial
Sequencesource/note="Description of Artificial Sequence Synthetic
polypeptide"SITE(1)..(45)/note="This sequence may encompass 2-15 `Gly
Glu Lys` repeating units" 138Gly Glu Lys Gly Glu Lys Gly Glu Lys Gly Glu
Lys Gly Glu Lys Gly1 5 10
15Glu Lys Gly Glu Lys Gly Glu Lys Gly Glu Lys Gly Glu Lys Gly Glu
20 25 30Lys Gly Glu Lys Gly Glu Lys
Gly Glu Lys Gly Glu Lys 35 40
4513945PRTArtificial Sequencesource/note="Description of Artificial
Sequence Synthetic polypeptide"SITE(1)..(45)/note="This sequence may
encompass 2-15 `Gly Asp Lys` repeating units" 139Gly Asp Lys Gly Asp
Lys Gly Asp Lys Gly Asp Lys Gly Asp Lys Gly1 5
10 15Asp Lys Gly Asp Lys Gly Asp Lys Gly Asp Lys
Gly Asp Lys Gly Asp 20 25
30Lys Gly Asp Lys Gly Asp Lys Gly Asp Lys Gly Asp Lys 35
40 4514030PRTArtificial
Sequencesource/note="Description of Artificial Sequence Synthetic
polypeptide"SITE(1)..(30)/note="This sequence may encompass 2-10 `Gly
Glu Lys` repeating units" 140Gly Glu Lys Gly Glu Lys Gly Glu Lys Gly Glu
Lys Gly Glu Lys Gly1 5 10
15Glu Lys Gly Glu Lys Gly Glu Lys Gly Glu Lys Gly Glu Lys 20
25 3014130PRTArtificial
Sequencesource/note="Description of Artificial Sequence Synthetic
polypeptide"SITE(1)..(30)/note="This sequence may encompass 2-10 `Gly
Asp Lys` repeating units" 141Gly Asp Lys Gly Asp Lys Gly Asp Lys Gly Asp
Lys Gly Asp Lys Gly1 5 10
15Asp Lys Gly Asp Lys Gly Asp Lys Gly Asp Lys Gly Asp Lys 20
25 3014227PRTArtificial
Sequencesource/note="Description of Artificial Sequence Synthetic
peptide"SITE(1)..(27)/note="This sequence may encompass 2-9 `Gly Glu
Lys` repeating units" 142Gly Glu Lys Gly Glu Lys Gly Glu Lys Gly Glu Lys
Gly Glu Lys Gly1 5 10
15Glu Lys Gly Glu Lys Gly Glu Lys Gly Glu Lys 20
2514327PRTArtificial Sequencesource/note="Description of Artificial
Sequence Synthetic peptide"SITE(1)..(27)/note="This sequence may
encompass 2-9 `Gly Asp Lys` repeating units" 143Gly Asp Lys Gly Asp
Lys Gly Asp Lys Gly Asp Lys Gly Asp Lys Gly1 5
10 15Asp Lys Gly Asp Lys Gly Asp Lys Gly Asp Lys
20 2514424PRTArtificial
Sequencesource/note="Description of Artificial Sequence Synthetic
peptide"SITE(1)..(24)/note="This sequence may encompass 2-8 `Gly Glu
Lys` repeating units" 144Gly Glu Lys Gly Glu Lys Gly Glu Lys Gly Glu Lys
Gly Glu Lys Gly1 5 10
15Glu Lys Gly Glu Lys Gly Glu Lys 2014524PRTArtificial
Sequencesource/note="Description of Artificial Sequence Synthetic
peptide"SITE(1)..(24)/note="This sequence may encompass 2-8 `Gly Asp
Lys` repeating units" 145Gly Asp Lys Gly Asp Lys Gly Asp Lys Gly Asp Lys
Gly Asp Lys Gly1 5 10
15Asp Lys Gly Asp Lys Gly Asp Lys 2014621PRTArtificial
Sequencesource/note="Description of Artificial Sequence Synthetic
peptide"SITE(1)..(21)/note="This sequence may encompass 2-7 `Gly Glu
Lys` repeating units" 146Gly Glu Lys Gly Glu Lys Gly Glu Lys Gly Glu Lys
Gly Glu Lys Gly1 5 10
15Glu Lys Gly Glu Lys 2014721PRTArtificial
Sequencesource/note="Description of Artificial Sequence Synthetic
peptide"SITE(1)..(21)/note="This sequence may encompass 2-7 `Gly Asp
Lys` repeating units" 147Gly Asp Lys Gly Asp Lys Gly Asp Lys Gly Asp Lys
Gly Asp Lys Gly1 5 10
15Asp Lys Gly Asp Lys 2014818PRTArtificial
Sequencesource/note="Description of Artificial Sequence Synthetic
peptide"SITE(1)..(18)/note="This sequence may encompass 2-6 `Gly Glu
Lys` repeating units" 148Gly Glu Lys Gly Glu Lys Gly Glu Lys Gly Glu Lys
Gly Glu Lys Gly1 5 10
15Glu Lys14918PRTArtificial Sequencesource/note="Description of
Artificial Sequence Synthetic peptide"SITE(1)..(18)/note="This
sequence may encompass 2-6 `Gly Asp Lys` repeating units" 149Gly Asp
Lys Gly Asp Lys Gly Asp Lys Gly Asp Lys Gly Asp Lys Gly1 5
10 15Asp Lys15015PRTArtificial
Sequencesource/note="Description of Artificial Sequence Synthetic
peptide"SITE(1)..(15)/note="This sequence may encompass 2-5 `Gly Glu
Lys` repeating units" 150Gly Glu Lys Gly Glu Lys Gly Glu Lys Gly Glu Lys
Gly Glu Lys1 5 10
1515115PRTArtificial Sequencesource/note="Description of Artificial
Sequence Synthetic peptide"SITE(1)..(15)/note="This sequence may
encompass 2-5 `Gly Asp Lys` repeating units" 151Gly Asp Lys Gly Asp
Lys Gly Asp Lys Gly Asp Lys Gly Asp Lys1 5
10 1515212PRTArtificial
Sequencesource/note="Description of Artificial Sequence Synthetic
peptide"SITE(1)..(12)/note="This sequence may encompass 2-4 `Gly Glu
Lys` repeating units" 152Gly Glu Lys Gly Glu Lys Gly Glu Lys Gly Glu Lys1
5 1015312PRTArtificial
Sequencesource/note="Description of Artificial Sequence Synthetic
peptide"SITE(1)..(12)/note="This sequence may encompass 2-4 `Gly Asp
Lys` repeating units" 153Gly Asp Lys Gly Asp Lys Gly Asp Lys Gly Asp Lys1
5 10
User Contributions:
Comment about this patent or add new information about this topic: