Patent application title: PLASMID ADDICTION SYSTEM TO DRIVE DESIRED GENE EXPRESSION
Inventors:
Matthew De La Pena Mattozzi (Boston, MA, US)
Daniel Kim (Carlisle, MA, US)
Sonya Clarkson (Beverley, MA, US)
Assignees:
Conagen Inc.
IPC8 Class: AC12N1570FI
USPC Class:
1 1
Class name:
Publication date: 2022-09-01
Patent application number: 20220275379
Abstract:
The present invention relates to a Plasmid Addiction System for the
stabilization of expression plasmids encoding proteins of interest. The
invention uses a succinate cycle optimization to ensure the expression of
plasmid(s) of interest. By ensuring that plasmids of interest contain
genes necessary in the succinate cycle, the system ensures that the
passage of the plasmid to daughters and therefore improves the efficiency
of production and expression of genes and/or products of interest.Claims:
1. A transformed bacterial host cell containing: i) an extrachromosomal
DNA sequence encoding at least one protein of interest, the expression of
which is regulated and operably associated with at least one
extrachromosomal element; and, ii) a DNA sequence encoding at least one
necessary succinate pathway gene that has been removed from said
bacterial host cell; iii) where such sequences are complementary to a DNA
sequence of interest contained in a plasmid; and, iv) where both DNA
sequences are positioned upstream or downstream of the ribosomal binding
site of the DNA sequence.
2. The bacterial cell of claim 1, wherein said DNA sequence is foreign to said cell.
3. The bacterial cell of claim 1, wherein said extrachromosomal DNA sequence encodes more than one polypeptide of interest.
4. The bacterial cell of claim 1, wherein said extrachromosomal DNA sequence encodes more than one essential succinate pathway gene each of which is essential to the central metabolism of said cell.
5. The bacterial cell of claim 1, wherein said foreign DNA sequence is under the control of a promoter.
6. The bacterial cell of claim 1, wherein said extrachromosomal element is a plasmid.
7. A plasmid of claim 6, wherein the origin of replication is derived from pBR322, pMB1, ColE1, pSC101 or p15A.
8. A method of maintaining two or more plasmids in a transformed microbial host cell comprising the bacterial cell of claim 1, wherein each plasmid utilized contains at least one of the needed succinate pathway genes and collectively at least one of the plasmids contains a gene of interest capable of expressing a protein product where said transformed bacterial cell is in the presence of conditions sufficient to permit said cell to grow.
9. A process for producing a recombinant protein of interest in a transformed bacterial host, comprising: a) introducing at least one recombinant plasmid into said bacterial host cell, wherein said recombinant plasmid comprises a cloned DNA sequence comprising all or part of a gene encoding an essential succinate pathway gene that is integral to the survival of the host cell and also encodes at least one gene of interest coding for a protein product; b) selecting surviving colonies of the transformed host containing the recombinant plasmid; and, c) using the surviving colonies for fermenting bacterial colonies to allow the expression of said protein product.
10. The protein product of claim 9, wherein the recombinant protein product additionally comprises an amino acid sequence that will optimize purification, isolation or tagging.
11. The bacterial cell of claim 9, wherein said essential gene is operably linked to a promoter which contains a DNA sequence of interest.
12. The bacterial cell of claim 11, wherein said promoter linked to said essential gene is inducible.
13. The bacterial cell of claim 12, wherein said inducible promoter is independent of any other inducible promoter controlling a foreign DNA sequence.
14. The bacterial cell of claim 1, wherein said DNA sequence ii) is inserted between the ribosomal binding site and the start codon of said DNA sequence i).
15. The bacterial cell of claim 1, wherein said DNA sequence i) and said DNA sequence ii) are transcriptionally coupled.
16. The bacterial cell of claim 15, wherein said cell is selected from a group comprising: a Escherichia coli cell; Corynebacterium spp., Vibrio spp.; Escherichia spp.; Enterobacter spp.; Citrobacter spp.; Erwinia spp.; Bacillus spp.; Pseudomonas spp.; Cyanobacteria spp.; Salmonella spp. and Klebsiella spp.
17. The host-vector system of claim 16, wherein said plasmid additionally contains a second gene of interest coding for a protein product.
18. The bacterial cell of claim 1, wherein said DNA sequence ii) is positioned upstream or downstream of the ribosomal binding site of the DNA sequence of i), upstream of a start codon of said marker gene and downstream of a promoter.
19. The bacterial cell of claim 18, wherein said marker gene is a marker gene that is essential to the central metabolism of said cell.
20. A double-stranded DNA plasmid which upon introduction into a microbial host cell renders the host cell capable of effecting the expression of a DNA encoding at least one desired foreign polypeptide and at least one gene integral in the cellular succinate pathway comprising the following: a) DNA which includes at least one promoter of interest; b) a first DNA sequence which encodes at least one polypeptide of interest; c) a second DNA sequence which encodes at least one gene integral to the functionality of the cellular succinate pathway where such gene has been removed or rendered non-functional in the microbial host cell; and, d) an initiation codon.
21. The double-stranded DNA plasmid of claim 20, further comprising a DNA sequence comprising an origin of replication from a bacterial plasmid capable of autonomous replication in the host cell and a DNA sequence which contains a gene associated with a protein product of interest which is expressed when the plasmid is present in the microbial host cell.
22. A recombinant host cell according to claim 21, wherein said first coding sequence encodes a polypeptide of interest.
23. A recombinant host cell according to claim 20, wherein expression of said at least one polypeptide of interest leads to the production of at least one protein of interest.
24. A recombinant host cell according to claim 16, wherein said enteric bacterium is a Bacillus cell.
25. A recombinant host cell according to claim 16, wherein said enteric bacterium is an Escherichia coli cell.
26. A recombinant host cell according to claim 16, wherein said enteric bacterium is a Corneybacterium cell.
27. The recombinant host cell according to claim 1, wherein the DNA sequence encoding at least one necessary succinate pathway gene that has been removed from the recombinant host cell is functionally removed via a deletion, a disruption or a mutation that reduces or eliminates the activity of one or more chromosomal genes encoding one or more succinate pathway genes.
28. The recombinant host cell according to claim 27, further comprising at least one plasmid containing at least one necessary gene of the succinate pathway operably linked to a promoter, said plasmid lacking an antibiotic resistance gene, wherein the plasmid is stably maintained in the isolated transformed microbial host cell when grown in the presence of diaminopimelic acid.
29. The recombinant host cell according to claim 28, wherein the growth conditions are aerobic or microaerobic.
30. The recombinant host cell according to claim 28, wherein the growth conditions are anaerobic.
31. The recombinant host cell according to claim 27, further comprising four plasmids each of which contains at least one different gene of the succinate pathway each of which is integral to the survival of the cell and each of which is operably linked to a promoter, each said plasmid lacking an antibiotic resistance gene, wherein the plasmids are stably maintained.
32. The recombinant host of claim 27, further comprising a cell with a quadruple sucABCD deletion, wherein each of the native succinate genes removed are contained in at least one of the plasmids
33. The recombinant host of claim 32, wherein the first plasmid encodes the DNA sequence of sucAD and the second plasmid encodes the DNA sequence of sucBC.
34. The recombinant host of claim 32, wherein the first plasmid encodes the DNA sequence of sucAC and the second plasmid encodes the polypeptide of interest and has the DNA sequence of sucBD.
35. (canceled)
36. The recombinant host cell of claim 33, further comprising each of the two said plasmids contain the DNA sequence encoding a protein of interest.
37. The recombinant host cell of claim 34, further comprising each of the two said plasmids contain the DNA sequence encoding a protein of interest.
Description:
CROSS-REFERENCE TO RELATED APPLICATIONS
[0001] This application claims priority to U.S. Provisional Patent Applications No. 62/697531, filed Jul. 13, 2018, entitled PLASMID ADDICTION SYSTEM TO DRIVE DESIRED GENE EXPRESSION; and No.:62/535596, filed Jul. 21, 2017, entitled PLASMID ADDICTION SYSTEM TO DRIVE DESIRED GENE EXPRESSION, the disclosures of both of which are hereby incorporated by reference in their entirety.
FIELD OF THE INVENTION
[0002] The field of the invention relates to methods and processes useful in maintaining extrachromosomal elements of interest in a microbial production strain using genes from the succinate pathway to ensure inclusion and expression of the elements in daughter cells. More specifically, it relates to the use of a plasmid addiction system that ensures that modified microbial cells will maintain plasmids carrying genes involved in producing desired expression products.
BACKGROUND OF THE INVENTION
[0003] The present invention is directed to a method of manipulating microbial cells in culture to maintain at least one extrachromosomal element of interest containing at least one gene of interest. Typically, this extrachromosomal element is a plasmid, though phages, prophages, phagemids, cosmids, bacterial artificial chromosomes (BACs) also contain extrachromosomal elements to contain transgenes of heterologous interest. Though naturally occurring in bacteria, not all wild type plasmids contain genetic information that is required to maintain the viability of the host cell in normal conditions. However, plasmids can contain genetic information that provides selective advantages to the host under specific environmental challenges such as antibiotic resistance or resistance to noxious compounds present in the environment. However, in those situations where adverse environmental conditions are not present, the presence of the plasmid is, in fact, a metabolic burden upon the cell (Nordstrom and Austin, 1989). In other words, the metabolic activity required to maintain plasmids exerts a small but real metabolic cost to the host cell relative to those cells not carrying the plasmid in question. This metabolic burden is why many daughter cells tend to `lose` the plasmid of interest over time if they can continue to exist or reproduce without it. This process of loss or limited replication of the extrachromosomal element(s) also leads to diminished efficiency in those experiments that require the presence of a plasmid genetic component to produce a product of interest and therefore cultures with significant amounts of daughter cells that do not have the plasmid(s) of interest provide a reduced efficiency for the experiment being conducted. This is particularly acute in those fermentation experiments that rely upon economies of scale and consistent production of a molecule of interest to make their cost targets. Daughter cells deficient in the desired plasmids or extrachromosomal elements represent a media and energy sink in overall production and contribute to the economic benefits of fermentation costs.
[0004] In the biotechnology industry, plasmids and similar extrachromosomal elements have become very important tools in the genetic engineering of microbes and in the expression of proteins of interest and commercial synthetic biology. Such elements can be manipulated and designed to force the host cell to carry them forward or perish. (Balbas 2001; Baba 2006). In this sense, the cells become irreversibly `addicted` to maintaining the extrachromosomal element in the cell despite the consequent metabolic burden (hence the term, Plasmid Addiction System or "PAS"). With such a system in hand the researcher can then focus on driving the host cell culture not just to maintain and express the PAS system genes, but to express all the genes contained on such an extrachromosomal element. According to the current invention, this can entail the expression of a number of genes and potential gene products of interest in microbial systems.
Plasmid Addiction Systems and Alternatives
[0005] Given the power of such techniques to drive the expression of proteins of interest, it is not surprising that a variety of approaches have been developed to ensure the stable maintenance of plasmids in cells (Nordstrom and Austin, 1989). This includes: (i) site-specific recombination systems functioning as plasmid maintenance systems for high-copy plasmid systems (Grindley et al., 2006); (ii) active partition systems (Funnell and Slavcev, 2004); and, as mentioned above, (iii) plasmid addiction systems (PAS), like the invention provided herein, that prevent the continuing survival/replication of cells not containing and expressing the genes of the plasmid of interest (Gerdes et al., 2005).
Site-Specific Recombination Control Systems
[0006] Site-specific recombination is a type of genetic recombination in which a DNA strand exchange takes place between segments possessing at least a certain degree of sequence homology. In this system, a site-specific recombinase(s) (SSRs) performs rearrangements of DNA segments by recognizing and binding to short DNA sequences (sites), at which they cleave the DNA backbone, exchange the two DNA helices involved and then rejoin the DNA strands. (Datsenko and Wanner, 2000). While in some site-specific recombination systems just a single recombinase enzyme and the corresponding recombination sites is enough to perform all these reactions, in other systems a number of accessory proteins and/or accessory sites are also needed--each addition adding to the complexity and thereby decreasing both the reliability and versatility of this system. (Baba et al., 2006). In addition, the constitutive expression of the required recombinases can also lead to undesired genotypic changes and the use of the system in terms of its initial development can be challenging in terms of the transfer of the recombinases genes to progeny.
Plasmid Instability
[0007] As mentioned above, microbes tend towards eliminating plasmids or limiting the reproduction of plasmids in cells due to the ongoing metabolic burden of both maintaining the plasmid itself and of expressing the gene(s) contained therein. (Rosano et al., 2014). Additionally, cells may not favor plasmid replication and expression when the plasmids in question may contain genes, that when expressed, produce toxic products in the cell or in its immediate environment of the cell. Of course, the interest to those utilizing such microbial systems is the maintenance of the engineered genetic changes and consequent expression of the inserted genes. In this sense, stable inheritance of the plasmid and host generally requires that: (1) the plasmid must replicate once each generation; (2) copy number deviations must be rapidly corrected before cell division; and, (3) upon cell division, the products of plasmid replication must be distributed to both daughter cells in a reliable and consistent manner. (Balbas et al., 1986).
[0008] In general, the stable maintenance of low-copy-number plasmids in bacteria is actively driven by partition mechanisms that are responsible for the positioning of plasmids inside the cell prior to replication. Various such partition systems are ubiquitous in the microbial world and are encoded by many bacterial chromosomes as well as plasmids. These systems, although different in sequence and mechanism, typically consist of two proteins and a DNA partition site or prokaryotic centromere on the plasmid in question. One protein binds to the centromere to form a partition complex, and the other protein uses the energy of nucleotide binding and hydrolysis to transport the plasmid as needed. For plasmids, this minimal cassette is sufficient to conduct appropriate segregation. In an optimal setting the strain selected to carry a plasmid of interest will have a partition system that provides or consistent and reliable plasmid reproduction. (Balbas et al., 1986; Rawlings 1999).
Engineered Plasmid Stabilization Systems
[0009] There are systems engineered to stably maintain the plasmids of interest. One particularly common system is the use of antibiotics as selection tools. In such systems, the antibiotic resistance gene in the plasmid of interest protects the cell carrying it, at the same time it effectively "forces" the cell to maintain it when the bacterial cell is grown in a media-enriched with the corresponding antibiotic. (Cranenburgh, R. M. et al., 2001). However, this method is subject to a number of difficulties and concerns. The antibiotic resistance approach is expensive, requiring the use of costly antibiotics and some may find it objectionable as a culture method in when used in industrial production methods could be a way that accelerates and/or spreads the development of bacterial antibiotic resistance that could affect human and/or animal populations negatively. Moreover, in large-scale production applications, the use of antibiotics may impose other limitations. With respect to commercial bioreactors, antibiotic resistance mechanisms can degrade the antibiotic itself and permit a substantial population of plasmid-less cells to persist in the culture. Such plasmid-less cells are unproductive and decrease the overall output of the bioreactor, thereby increasing cost and decreasing efficiency. (Balbas 2001; Baba 2006).
Segregational Plasmid Maintenance Functions
[0010] Stable lower copy number plasmids typically employ a partitioning function that actively distributes plasmid copies between daughter cells. Examples of partitioning mechanisms include: pSC101, F factor, P1 prophage, and IncFII drug resistance plasmids. Such functions act to physically segregate plasmids during replication. In terms of functionality many small plasmids rely on a high copy number, distributed throughout the cell, to ensure at least one copy is maintained by each daughter cell upon division. Many large, low-copy number plasmids, on the other hand, encode active segregation systems to avoid stochastic loss. A variety of partitioning systems exist, but most rely on three components: a centromeric DNA region, a cytomotive filament, and an adaptor protein linking the two. In type II segregation bacterial actin-like protein (ALP) filaments drive plasmid separation. (Balbas et al., 2001; Balbas 1986; Schumacher 2014).
Post-Segregational Killing (PSK) Functions
[0011] Naturally occurring PSK plasmid maintenance functions typically employ a two-component toxin-antitoxin system and generally operate as follows: The plasmid encodes both a toxin and an antitoxin. The antitoxins are less stable than the toxins, which tend to be quite stable. In a plasmid-less daughter cell, the toxins and anti-toxins are no longer being produced; however, the less stable antitoxins quickly degrade, thereby freeing the toxin to kill the cells in the surrounding area without the antitoxins being present. (Gerdes 1990).
[0012] The toxins are generally small proteins and the antitoxins are either small proteins or antisense RNAs which bind to the toxin-encoding mRNAs preventing their synthesis (EX: antisense systems such as hok-sok). In antisense maintenance systems, the antitoxins are antisense RNAs that inhibit translation of toxin-encoding mRNAs. Like the antitoxin peptides, the antisense RNAs are less stable than the toxin-encoding mRNA. Loss of the plasmid permits existing antitoxins to degrade, thereby permitting synthesis of the toxin which kills the host cell. A limitation of the hok-sok system is that a significant number of plasmid-less cells can arise when the hok-sok system is inactivated by mutations within the Hok open reading frame. (Gerdes 1990).
Balanced Lethal Systems
[0013] In a balanced-lethal system (a PSK function), a chromosomal gene encoding an essential structural protein or enzyme is deleted from the bacterial chromosome or is mutated such that the gene can no longer operate (Fu., 2000). The removed or damaged gene is then replaced by a plasmid comprising a fully operating gene. Loss of the plasmid results in an insufficiency of the essential protein and the death of the plasmid-less cell. Balanced-lethal systems based on catalytic enzyme production are subject to a number of deficiencies. In particular, since complementation of the chromosomal gene deletion requires only a single gene copy, it is inherently difficult to maintain more than a few copies of an expression plasmid. The plasmid less host strain must be grown on special media to chemically complement the existing metabolic deficiency. (Fu 2000).
Commercial Efforts & Need
[0014] Biotechnical production processes often operate with plasmid-based expression systems in well-established prokaryotic and eukaryotic hosts such as Escherichia coli or Saccharomyces cerevisiae, respectively. Genetically engineered organisms produce important chemicals, biopolymers, biofuels and high-value proteins like insulin. In those bioprocesses plasmids in recombinant hosts have an essential impact on productivity. (Kroll J., 2010). Plasmid-free cells lead to losses in the entire product recovery and decrease the profitability of the whole process (Table 1). Often, the use of antibiotics in industrial fermentations is not an available or desirable option to maintain plasmid stability. Especially in pharmaceutical or GMP-based fermentation processes, deployed antibiotics must be inactivated and removed. As stated above, they are also costly. Several plasmid addiction systems (PAS) have been described in the literature and referenced above. The current PAS provides a new method that is antibiotic free, remains absolutely necessary for cellular replication and homestasis and allows multiple gene carrying plasmids, or the like, to be maintained efficiently in culture.
[0015] Given the above, there remains a need in the art for a new PAS that is reliant on a balanced lethal system, not requiring antibiotics is useful to industry and can drive the production of high volumes of compounds of interest in a commercially efficient way.
SUMMARY OF THE INVENTION
[0016] The present invention encompasses improved methods of devising a plasmid addiction system that can enhance the production of proteins of interest and do so at commercial scale.
[0017] According to the current invention, a biosynthetic method is provided for the production of one or more proteins of interest in a microbial system.
[0018] Recombinant plasmids carrying the gene of interest are obtained by cultivation of bacteria. For selecting bacterial transformants, and in order to ensure the maintenance of the plasmids in the bacterial host cell, an antibiotic resistance gene is traditionally included in the plasmid backbone. Selection for plasmids is achieved by growing the cells in a medium containing the respective antibiotic, in which only plasmid bearing cells are able to grow, often with a marker gene included. A number of plasmid addiction systems (PAS) already exist, mainly as toxin-antitoxin systems that limit the plasmids to single copy or aimed for use in open environments like bioremediation contexts. However, there are few examples of nutrition-based plasmid addiction systems, or ones exhibiting long-term stability in an industrial setting. The current invention provides both.
[0019] According to the current invention a plasmid addiction system utilizing the succinate pathway as the conditional mutant where key chromosomal genes have been removed and placed in the plasmids to be expressed and maintained in daughter cells. Such a system could be used for the production of specific amylases, pathway genes, lipases, proteases, vitamins or antibiotics, and according to the current invention could be forced to maintain up to four different plasmids.
[0020] According to the preferred embodiments of the invention, the applicants provide a plasmid addiction system based on the synthetic lethal deletion of either the double mutant sucAD or the quadruple mutant sucABCD, wherein the native mutations are complemented on one or more plasmids. The plasmid(s) of interest allows for near wild-type growth without supplementation of DAP or any other intermediate and is retained for many generations in the absence of selective markers. It is useful in a laboratory context, as transformants can be grown LB plates without any additional supplementation; the parent strains cannot grow without supplementation with DAP. It is useful in an industrial context wherein neither antibiotics nor their requisite selection marker genes are wanted or desired. Given the inclusion of up to four required genes this means that four plasmids of different compositions can be retained in a fermentation of interest and at low cost. That is, a single plasmid can be maintained with a single gene of interest or up to four different plasmid types, each with one of the four required genes, carrying other genes of interest can be provided in the current system efficiently and with low cost.
BRIEF DESCRIPTION OF THE DRAWINGS
[0021] FIGS. 1A-1B. Show succinate and succinyl-CoA in context of central E. coli metabolism and cell wall biosynthesis (FIGS. 1A and 1B).
[0022] FIGS. 2A-2C. Show the multiple deletions sucAD (FIG. 2B) and sucABCD (FIG. 2C), which are synthetic lethal in the E. coli chromosome. The genomic context for the native E. coli strain of the invention--BW25113 and its succinyl-CoA operon is shown in FIG. 2A; FIG. 2B provides a schematic of the genomic context of E. coli BW25113 .DELTA.sucAD; and FIG. 2C provides a schematic of the genomic context of E. coli BW25113 .DELTA.sucABCD.
[0023] FIGS. 3A-3E. Show plasmid maps of pDvS and pDvQ plasmids, cloning vectors designed to express sucAB and sucABCD complements rather than antibiotic resistance markers. pDvK-sucAD (FIG. 3A); pDvK-sucABCD (FIG. 3B); pDvS-Kan-dropout (FIG. 3C); and pDvQ-Kan-dropout (FIG. 3D); pDvK-sucBC (FIG. 3E)
[0024] FIGS. 4A-4B. Show succinate pathway knockout mutants, such as BW25113 .DELTA.sucAD (FIG. 4A) and BW25113 .DELTA.sucABCD (FIG. 4B), cannot grow on rich fermentation media.
[0025] FIG. 5. Growth curves of relevant cells on nonselective media. Shows differences between complementation of double- or quadruple knockouts
[0026] FIGS. 6A-6B. Plasmid maps of succinate addiction vectors engineered to express GFP. dvp-a8-skb-sfgfp (FIG. 6A); and pDvQ-GFP (FIG. 6B).
[0027] FIG. 7. Shows the production levels of GFP according to the transformed cellular system of the invention.
DETAILED DESCRIPTION OF THE INVENTION
[0028] The following abbreviations have designated meanings in the specification:
Explanation of Terms:
[0029] Cellular system is any cells that provide for the expression of ectopic proteins. It included bacteria, yeast, plant cells and animal cells. It includes both prokaryotic and eukaryotic cells. It also includes the in vitro expression of proteins based on cellular components, such as ribosomes.
[0030] Growing the Cellular System. Growing includes providing an appropriate medium that would allow cells to multiply and divide given the changes to the succinate pathway. It also includes providing resources so that cells or cellular components can translate and make recombinant proteins. According to the current invention the cells grow on LB media. Such cells do not unless they are supplied with 120 .mu.M DAP.
[0031] Protein Expression. Protein production can occur after requisite gene expression. It consists of the stages after DNA has been transcribed to messenger RNA (mRNA). The mRNA is then translated into polypeptide chains, which are ultimately folded into proteins. DNA is present in the cells through transfection--a process of deliberately introducing nucleic acids into cells. The term is often used for non-viral methods in eukaryotic cells. It may also refer to other methods and cell types, although other terms are preferred: "transformation" is more often used to describe non-viral DNA transfer in bacteria, non-animal eukaryotic cells, including plant cells. In animal cells, transfection is the preferred term as transformation is also used to refer to progression to a cancerous state (carcinogenesis) in these cells. Transduction is often used to describe virus-mediated DNA transfer. Transformation, transduction, and viral infection are included under the definition of transfection for this application.
[0032] Acronyms:
[0033] TCA--Tricarboxylic Acid
[0034] DAP--Diaminopimelic Acid
[0035] PAS--Plasmid addiction system
[0036] TB--Terrific Broth
[0037] LB--Luria Broth
[0038] Y(E)PD--Yeast Extract Peptone Dextrose (medium)
[0039] sucA--E. coli gene encoding the E1 component of the 2-oxoglutarate dehydrogenase enzyme
[0040] sucB--E. coli gene encoding the E2 component of the 2-oxoglutarate dehydrogenase enzyme
[0041] sucC--E. coli gene encoding the .beta. subunit of the succinyl-CoA synthetase enzyme
[0042] sucD--E. coli gene encoding the .alpha. subunit of the succinyl-CoA synthetase enzyme
Alternative Marker Genes
[0043] If marker genes are required for one or more genes of the current invention examples include: genes encoding restriction nucleases (e.g. CviAII, a restriction endonuclease originating from Chlorella virus PBCV-1; Zhang et al., 1992), EcoRI (Tones et al., 2000), genes encoding toxins that interact with proteins, e.g. streptavidin or stv13 (a truncated, easy soluble streptavidin variant), as described by Szafransky et al., 1997; Kaplan et al., 1999; Sano et al., 1995, which act by deprivation of biotin, an essential protein in cell growth); genes encoding proteins that damage membranes (the E gene protein of .phi.X174 (Ronchel et al., 1998; Haidinger et al., 2002), gef (Jensen et al., 1993; Klemm et al., 1995), relF (Knudsen et al., 1995); genes that encode other bacterial toxins, e.g. the ccdb gene (Bernard and Couturier, 1992) that encodes a potent cell killing protein from the F-plasmid trapping the DNA gyrase or sacB from Bacillus subtilis (Gay et al., 1983); or genes that encode eukaryotic toxins that are toxic to the bacterial host (e.g. FUS; Crozat et al., 1993). When using toxic genes, it is essential that their expression can be modulated by an inducible promoter. This promoter must not be active without an inductor, but provide expression upon induction, sufficient to inhibit cell growth.
[0044] In certain embodiments, the marker gene is selected from genes encoding restriction nucleases, streptavidin or genes that have an indirect toxic effect, e.g. sacB, as described above.
[0045] A repressor is a protein that binds to an operator located within the promoter of an operon, thereby down-regulation transcription of the gene(s) located within said operon. Examples for repressors suitable in the present invention are the tetracycline repressor (tet) protein TetR, which regulates transcription of a family of tetracycline resistance determinants in Gram-negative bacteria and binds to tetracycline (Williams, et al., 1998; Beck, et al., 1982; Postle et al., 1984), the tryptophan repressor (trp), which binds to the operator of the trp operon, which contains the tryptophan biosynthesis gene (Yanofski et al., 1987).
[0046] Examples for inducible promoters are promoters, where transcription starts upon addition of a substance, thus being regulatable by the environment, e.g. the lac promoter, which is inducible by IPTG (Jacob and Monod, 1961), the arabinose-promoter (pBAD), inducible by arabinose (Guzman et al., 1995), copper-inducible promoters (Rouch and Brown, 1997), and cumate-inducible promoters (Choi et al 2010).
[0047] Alternately, constitutive promoters may be used, wherein transcription of the desired transgene is always driven on, regardless of the growth phase or environmental variables.
[0048] In an alternative embodiment, one could monitor the expression of a single gene of interest through the use of a marker gene as a reporter gene. Genes that could be used to provide this functionality include genes encoding GFP (Green Fluorescent Protein), hSOD (human superoxide dismutase), lacZ (beta-glucosidase), CAT (chloramphenicol acetyltransferase), nptII (neomycin phosphotransferase) or luciferase.
[0049] A reporter gene is useful in cultivation processes whenever information on the presence or absence of a plasmid in a host cell or on plasmid copy number is needed. Such information is particularly useful when fermentation processes are to be optimized with regard to control of plasmid copy number. A reporter gene may also serve as a surrogate of a toxic marker gene and may thus be used in experimental settings that aim at proving the functionality of constructs to be employed for the gene-regulating or silencing and to determine their effect on a toxic marker gene.
[0050] In certain embodiments of the invention, the marker gene may be an endogenous host gene, which may be any gene of interest that is intended to be regulated. In this case, the host cell is engineered such that the sequence encoding the sequence is operably associated with the relevant host gene.
[0051] While the disclosure is susceptible to various modifications and alternative forms, specific embodiments thereof are shown by way of example in the drawing and will herein be described in detail. It should be understood, however, that the drawings and detailed description presented herein are not intended to limit the disclosure to the particular embodiment disclosed, but on the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the present disclosure as defined by the appended claims.
[0052] Other features and advantages of this invention will become apparent in the following detailed description of preferred embodiments of this invention, taken with reference to the accompanying drawings.
[0053] The present invention relates to a system for an improved production method for proteins of interest in a microbial system that does not require markers, antibiotics and can produce proteins of interest at a high-level.
Bacterial Strains and Growth Conditions
[0054] BW25113 and the deletions for .DELTA.sucA::KanR and .DELTA.sucD::KanR were obtained from the E. coli Genetic Stock Center (CGSC). Cells were typically grown in Luria Broth (LB), but experiments were also performed in TB, YPD, YEPD, Nutrient Broth with corn steep liquor, and other rich media (Miller, 1972). Diaminopimelic acid (Sigma D1377) was used at 120 .mu.M to aid in screening as the .DELTA.sucAD double deletion is synthetic lethal (Mattozzi et al., 2013; Yu et al., 2006).
Construction of Strains with Chromosomal Mutations
[0055] P1vir transduction (Miller, 1972) was used to create kanamycin-resistant double knockout strains of E. coli BW25113 and screened with 120 .mu.M DAP on LB kanamycin plates. These were screened for deletions of .DELTA.sucA and .DELTA.sucD via colony PCR. This KanR donor strain was also used to create double knockouts of E. coli strains BL21, BL21(DE3), MG1655, MG1655(DE3) .DELTA.lacY, and W3110. Plasmid pCP20 was used to remove the kanamycin resistance markers using its FLP/FRT-based recombinase (Baba et al., 2006; Datsenko and Wanner, 2000). Since sucA and sucD are separated by only 6 kb, Kan sensitive cells exhibiting the quadruple deletion .DELTA.sucABCD were usually isolated after the pCP20 FLP recombinase step (Datsenko and Wanner, 2000).
Construction of Recombinant Plasmids
[0056] Codon-optimized sequences encoding sucA, sucB, sucC, and sucD were synthesized (Quintara Bioworks, Emeryville Calif.). CIDAR E. coli Modular cloning (Iverson et al., 2016), was used to generate versions of sucABCD natural operon and the sucAD synthetic operon. Both versions were based on the E. coli MG1655 native sequence, but with illegal BsaI and BpiI sites replaced in-frame so as not to affect protein sequences. Additional codon optimization was performed to minimize recombination effects. Operons sucABCD and sucAD were identical except that the sequence between the start codon of sucB and the stop codon of sucC were deleted. (Yu et al., 2005).
[0057] According to the current invention, plasmids were transformed into .DELTA.sucAD and .DELTA.sucABCD strains via electroporation and selected on LB plates without any additional supplementation; the parent strains cannot grow without supplementation with DAP. Clones were confirmed by sequence.
Cultivation of Plasmid-Addicted Strains
[0058] Plasmid-bearing E. coli strains were grown in LB without additional supplementation in 24-well plates and in a BioLector flower plates (Funke et al., 2009).
[0059] The present invention can be widely used in state-of-the-art fermentations, both for plasmid DNA production and for producing recombinant proteins.
[0060] Several approaches for fermentation of pDNA have been described that are useful for applying the present invention. The methods for plasmid DNA production differ with regard to the level of control imposed upon the cells and the numerous factors that influence fermentation.
[0061] To obtain higher quantities of plasmids, the cells can be cultivated in controlled fermenters in so-called "batch fermentations", in which all nutrients are provided at the beginning and in which no nutrients are added during cultivation. (Reinikainen, P., et al; 1988). Cultivations of this type may be carried out with culture media containing so called "complex components" as carbon and nitrogen sources, as described e.g. by O'Kennedy et al., 2003, and Lahijani et al., 1996, and in WO 96/40905, U.S. Pat. No. 5,487,986 and WO 02/064752. Alternatively, synthetic media may be used for pDNA production, e.g. defined culture media that are specifically designed for pDNA production (Wang et al., 2001; WO 02/064752).
[0062] The present invention may also be used in fed batch fermentations of E. coli, in which one or more nutrients are supplied to the culture by feeding, typically by using a feed-back control algorithm by feeding nutrients in order to control a process parameter at a defined set point. Feed-back control is hence directly related to cell activities throughout fermentation. Control parameters which may be used for feed-back control of fermentations include pH value, on line measured cell density or dissolved oxygen tension (DOT). A feed-back algorithm for controlling the dissolved oxygen tension at a defined set point by the feeding rate was described in WO 99/61633.
[0063] Alternatively, the invention may be applied in a process for producing plasmid DNA, in which E. coli cells are first grown in a pre-culture and subsequently fermented in a main culture, the main culture being a fed-batch process comprising a batch phase and a feeding phase. The culture media of the batch phase and the culture medium added during the feeding phase are chemically defined, and the culture medium of the feeding phase contains a growth-limiting substrate and is added at a feeding rate that follows a pre-defined exponential function, thereby controlling the specific growth rate at a pre-defined value.
[0064] When the marker gene is under the control of an inducible promoter, the inducer may be added to the batch at the beginning and/or pulse-wise (both in a batch and in fed-batch cultivations). During the feed phase, the inducer may be added pulse-wise or continuously.
[0065] At the end of the fermentation process, the cells are harvested and the plasmid DNA is isolated and purified according to processes known in the art, e.g. by methods based on anion exchange and gel permeation chromatography, as described in U.S. Pat. No. 5,981,735 or by using two chromatographic steps, i.e. an anion exchange chromatography as the first step and reversed phase chromatography as the second step, as described in U.S. Pat. No. 6,197,553. Another suitable method for manufacturing plasmid DNA is described in WO 03/051483, which uses two different chromatographic steps, combined with a monolithic support.
[0066] In addition to applying the invention for plasmid production, e.g. for production of plasmids for gene therapy applications, it is also useful for recombinant protein production. (Rawlings 1999).
[0067] With regard to recombinant protein production, in principle, any method may be used that has proven useful for expressing a gene of interest in E. coli, in particular from a ColE1 type plasmid (see, for review, e.g. Jonasson et al., 2002; Balbas, 2001). The protein may be obtained intracellularly (completely or partially soluble or as inclusion bodies) or by secretion (into the cell culture medium or the periplasmic space) from batch fermentations or, preferably, fed-batch cultivations, using complex, synthetic or semisynthetic media.
[0068] In plasmid DNA production, usually plasmid DNA for gene therapy applications, the gene of interest is not expressed in the bacterial host cell. In view of its application in mammals, preferably in humans, where it is to be ultimately expressed, the gene of interest is usually operably associated with a eukaryotic promoter. In contrast, for recombinant production of proteins in E. coli, the gene of interest is to be expressed in the host cell therefore under the control of a prokaryotic promoter.
[0069] For recombinant protein production, the two promoters, i.e. the promoter controlling the marker gene and the promoter controlling the gene of interest, may be different or the same, as long as no interference occurs that disturbs expression of either one.
[0070] Advantageously, since their activity is independent of each other concerning time-point and level of transcription, the promoters are differently regulated. Preferably, the promoter controlling the marker gene is active at the start of the fermentation process and produces moderate amounts of mRNA, while the promoter of the gene of interest is rather strong and activated at a chosen time-point during fermentation. If inducible promoters are used for both the gene of interest and the marker gene, they are usually chosen such that they are turned on by different inducers. Alternatively, the marker gene may be under an inducible promoter and the gene of interest under a constitutive promoter, or vice versa. This applies both for methods in which the marker gene construct is integrated in the bacterial host genome and in which the marker gene construct is contained in a plasmid or phage, as described above.
[0071] With regard to induction of the promoter in the various phases of fermentation, the principle described above for plasmid DNA production applies.
[0072] The invention has the great advantage that all replicated plasmids are devoid of antibiotic resistance genes and are therefore, in addition to gene therapy applications, suitable for all applications for which the absence of antibiotic resistance genes is required or desirable, e.g. for the generation of recombinant yeast strains that are intended for human and animal food production or for the generation of recombinant plants.
Expression and Maintenance During Fermentation
[0073] Maintenance of heterologous DNA presents a major challenge in industrial systems. A number of systems already exist, but there are drawbacks to each of them. Integrating genes into the genome can be slow, require extensive screening, and is limited to a single copy per cell. Larger DNA loops like cosmids and bacterial artificial chromosomes (BACs) can be difficult to isolate from chromosomal DNA or cell debris pellets, and again are limited by copy number. Phages can be difficult to keep contained to the cell types of interest. They could become lytic unexpectedly, causing drastic consequences on a factory-scale. Thus, the most common way to introduce and maintain heterologous DNA into E. coli and other bacterial cultures is via plasmid, wherein the gene(s) of interest are maintained on a small loop of DNA containing sequences comprising an origin of replication and, typically, an antibiotic resistance marker. This marker can be problematic: antibiotics in the media can be expensive and can contaminate final small-molecule products with similar chemical properties. As well, the genes encoding these markers pose a biosafety issue: the antibiotics used in fermentation are the same or similar to the ones used in clinical settings. Though laboratory containment is usually good, large-scale use of antibiotic resistance genes could encourage the spread of dangerous resistant bacteria like methicillin-resistant Staphylococcus aureus (MRSA).
[0074] The principle of the invention, i.e. the metabolic context of the succinyl-CoA synthetic lethal deletions is shown in FIG. 1.
[0075] In embodiments of the invention, the following components are useful:
Host Cells
[0076] Since their replication depends on the host machinery, many plasmids are plasmids with a narrow host range. Replication is often limited to E. coli and related bacteria such as Salmonella and Klebsiella (Kues and Stahl, 1989). However, according to the current invention a great variety of functional hosts are available including eukaryotic systems. Other suitable hosts include: cells of the genera Corynebacterium, Bacillus, Pseudomonas, Vibrio, Bulkholderia, and really any other bacterium that can stably maintain a heterologous plasmid and has a peptidoglycan cell wall.
[0077] Preferred genetic features of the host cell are mutations that improve plasmid stability and quality or recovery of intact recombinant protein. Examples of desirable genetic deletions are:
[0078] sucA--E. coli gene encoding the E1 component of the 2-oxoglutarate dehydrogenase enzyme
[0079] sucB--E. coli gene encoding the E2 component of the 2-oxoglutarate dehydrogenase enzyme
[0080] sucC--E. coli gene encoding the .beta. subunit of the succinyl-CoA synthetase enzyme
[0081] sucD--E. coli gene encoding the .alpha. subunit of the succinyl-CoA synthetase enzyme.
[0082] Each of the genes in this operon encodes part of a heterodimeric enzyme within the TCA cycle. Since sucAB and sucCD are synthetic lethal (Yu et al 2006), either sucAB OR sucCD pair may be deleted and still allow cell growth; albeit with reduced growth rates due to the inability of the cells to use oxygen as a terminal electron acceptor. This can eventually cause cell death, a reduced growth rate, low maximum cell density, and inefficient usage of carbon source. Deletion of at least three of the genes within the sucABCD cluster (or two from opposite conjugate pairs, e.g. .DELTA.sucAD) creates a cell that is auxotrophic for succinyl-CoA. Because succinyl-CoA itself is unstable and expensive to procure commercially, it was discovered that supplementation of DAP in the medium can allow the cells to grow. This is because the external DAP can be incorporated into the cell walls, negating the need for the succinyl-CoA cofactor (FIG. 1). The cells can still grow, but albeit with a growth defect due to their inability to fully utilize oxygen as a terminal electron acceptor.
Constructs for Engineering the Host Cells
[0083] The principle of a construct suitable for engineering the host cells is shown in FIG. 2: The host strains were generated via P1 transduction (above), and the plasmids were produced via Gibson assembly, cloning, Golden Gate and/or modular cloning.
Characteristics of Plasmids for the System
[0084] The plasmids are required to express the genes specifically deleted in the host strain. In this example, codon-optimized versions of E. coli sucAD and sucABCD are expressed on plasmids, complementing the deletions made to BW25113 .DELTA.sucAD and .DELTA.sucABCD respectively.
EXAMPLES
[0085] Two or four key genes expressing essential proteins for the tricarboxylic acid (TCA) cycle were deleted from the E. coli genome. Previously these genes have been shown to be synthetic lethal (Yu et al., 2006). These cells are thus auxotrophic for succinyl-CoA. The cells can make up the energetic needs of the TCA cycle simply through fermentative growth, but the lack of a complete TCA cycle causes inefficient growth, and accumulation of toxic fermentative byproducts ethanol and acetate because the cells are unable to effectively use oxygen as a terminal electron acceptor. This can eventually cause cell death, a reduced growth rate, low maximum cell density, and inefficient usage of carbon source. In addition to the TCA cycle, succinyl-CoA is also used as a cofactor in many metabolic pathways. Perhaps the most important is the lysine synthesis pathway, wherein succinyl-CoA is required as an essential cofactor for generating diaminopimelic acid (DAP). DAP is a key monomer in the murein or peptidoglycan cell wall and was thus required for growth.
[0086] Previously, we built a system taking advantage of this fact (Mattozzi et al., 2013), as a test of a carbon fixation system. However, the knockouts were only used as a proxy for cell metabolic processes from Chloroflexus aurantiacus, not the ability of the cells to retain the plasmid or drive the production of proteins of interest. Double mutant .DELTA.sucAD cells containing a plasmid expressing a succinyl-CoA:(S)-malyl-CoA transferase operon reduced but did not entirely remove the need for DAP in the system.
Bacterial Strains and Growth Conditions
[0087] BW25113 and the deletions for .DELTA.sucA::KanR and .DELTA.sucD::KanR were obtained from the E. coli Genetic Stock Center (CGSC) at Yale University. Cells were typically grown in Luria Broth (LB), but experiments were also performed in TB, YPD, YEPD, Nutrient Broth with corn steep liquor, and other rich media (Miller, 1972). Diaminopimelic acid (Sigma D1377) was used at 120 .mu.M to aid in screening as the .DELTA.sucA(B) .DELTA.suc(C)D double deletion is synthetic lethal (Mattozzi et al., 2013; Yu et al., 2006).
Construction of Strains with Chromosomal Mutations
[0088] P1vir transduction (Miller, 1972) was used to create kanamycin-resistant double knockout strains of E. coli BW25113 and screened with 120 .mu.M DAP on LB kanamycin plates. These were screened for deletions of .DELTA.sucA and .DELTA.sucD via colony PCR. This KanR donor strain was also used to create double knockouts of E. coli strains BL21, BL21(DE3), BL21*(DE3), MG1655, MG1655(DE3) .DELTA.lacY, C41, and W3110. Plasmid pCP20 was used to remove the kanamycin resistance markers using its FLP/FRT-based recombinase (Baba et al., 2006; Datsenko and Wanner, 2000). Since sucA and sucD are separated by only 6 kb, Kan sensitive cells exhibiting the quadruple deletion .DELTA.sucABCD were usually isolated after the pCP20 FLP recombinase step (Datsenko and Wanner, 2000).
Construction of Recombinant Plasmids
[0089] CIDAR E. coli Modular cloning (Iverson et al., 2016), a Golden Gate based technology, was used to generate versions of sucABCD natural operon and the sucAD synthetic operon. Both versions were based on the E. coli MG1655 native sequence, but with illegal BsaI and BpiI sites replaced in-frame so as not to affect protein sequences. Operons sucABCD and sucAD were identical except that the sequence between the start codon of sucB and the stop codon of sucC were deleted. Plasmids were transformed into sucAD and sucABCD strains via electroporation and selected on LB plates without any additional supplementation; the parent strains cannot grow without supplementation with DAP. Clones were confirmed by sequence.
[0090] Plasmids were transformed into .DELTA.sucAD and .DELTA.sucABCD strains via electroporation and selected on LB plates without any additional supplementation; the parent strains cannot grow without supplementation with DAP. Clones were confirmed by sequence.
[0091] In FIG. 1A, we see the general metabolic context of succinyl-CoA, diaminopimelic acid, and peptidoglycan on murein cell walls. Succinyl-CoA generated by the gene products of sucAB and sucCD is used to produce lysine and its immediate biochemical precursor, diaminopimelate (DAP), critically required for E. coli cell wall (peptidoglycan or murein) biosynthesis. FIG. 1B provides the detailed metabolic context of the succinyl-CoA cofactor in diaminopimelate and lysine metabolism (Excerpted from Michel and Schomberg 2012). In FIG. 2A, the genomic context for the native E. coli strain of the invention--BW25113 and its succinyl-CoA operon are provided. According to the current invention the DNA sequence for this is (SEQ ID NO: 1).
[0092] FIG. 2B provides a schematic of the genomic context of E. coli BW25113 .DELTA.sucAD. This is the result of a P1 transduction in the E. coli genome wherein .DELTA.sucA::kanR was used as a donor. Recipient strain was E. coli BW25113 .DELTA.sucD::kanS, generated by removing kanamycin resistance via pCP20-mediated FRT excision (thereby providing SEQ ID NO: 2). FIG. 2C provides a schematic of the genomic context of E. coli BW25113 .DELTA.sucABCD. The result is the removal of kanamycin resistance via pCP20-mediated FRT excision. Since sucA and sucD are within 6 kb, deletions of the entire sucABCD operon were isolated in the purification process (SEQ ID NO: 3).
[0093] In FIG. 3A, a map of plasmid pDvK-SucAD, according to the current invention is provided. It was used to test for plasmid retention in nonselective media, as hosted in .DELTA.sucAD cells. In this case, the plasmid retains kanamycin resistance markers for later testing. Although promoters, RBS, and terminators are specifically enumerated here, the experiments have shown effectively no difference in expression upon varying these (SEQ ID NO: 4). In FIG. 3B, we provide a map of plasmid pDvK-SucABCD, used to test for plasmid retention in nonselective media, as hosted in .DELTA.sucABCD cells. According to the current invention, the plasmid retains kanamycin resistance markers for later testing. Although promoters, RBS, and terminators are specifically enumerated here, the experiments have shown effectively no difference in expression upon varying these (SEQ ID NO: 5). In FIG. 3C, we see the plasmid map of pDvS-Kan of the invention, wherein the kanamycin resistance marker is easily removed by the gene of interest, and the genes sucAD can instead be used as a selection marker. Although promoters, RBS, and terminators are specifically enumerated here, the experiments have shown effectively no difference in expression upon varying these (SEQ ID NO: 6). In FIG. 3E, a map of plasmid pDvK-SucBC, according to the current invention is provided. It was used to test for plasmid retention in nonselective media, as hosted in .DELTA.sucABCD cells in combination with pDvK-SucAD. In this case, the plasmid retains kanamycin resistance markers for later testing. Although promoters, RBS, and terminators are specifically enumerated here, the experiments have shown effectively no difference in expression upon varying these sequences (SEQ ID NO: 10).
[0094] In FIG. 4A, applicants show the succinate pathway knockout mutant BW25113 .DELTA.sucAD cannot grow on rich fermentation media Luria Broth. However, supplanting the media with diaminopimelic acid (DAP) allows for an increase in growth rate, correlating to the concentration of DAP provided. According to the current invention, the plasmid map of pDvQ-Kan is provided in FIG. 3D, wherein the kanamycin resistance marker is easily removed by the gene of interest, and the genes sucABCD can instead be used as a selection marker. Although promoters, RBS, and terminators are specifically enumerated here, the experiments have shown effectively no difference in expression upon varying these (SEQ ID NO: 7). In FIG. 4B, applicants demonstrate that the succinate pathway knockout mutant BW25113 .DELTA.sucABCD cannot grow on rich fermentation media Luria Broth. However, supplanting the media with diaminopimelic acid (DAP) allows for an increase in growth rate, correlating to the concentration of DAP provided.
[0095] In FIG. 5, we provide the rescue of growth phenotypes with plasmid-borne sucA(BC)D in artificial operons. Deletions of sucAD and sucABCD from E. coli BW25113 do not grow at all on rich fermentation media Luria Broth. However, supplying the cells with plasmids pDvK-SucAD and pDvK-SucABCD, respectively, allows the cells to reach densities of close to that of wild-type BW25113. In FIG. 6A, the plasmid map of pDvS-GFP contains a sequence encoding the green fluorescent protein cloned into the pDvS vector, wherein the kanamycin resistance marker is easily removed by the gene of interest. (SEQ ID NO: 8) is provided. In FIG. 6B, a plasmid map of pDvQ-GFP containing a sequence encoding the green fluorescent protein cloned into the pDvQ vector (SEQ ID NO: 9) is provided. In FIG. 7, we see the production levels of green fluorescent protein (GFP), normalized by cell density according to the transformed cellular system of the invention. The cells containing the deletions and corresponding complements (open symbols, solid lines) exhibit more GFP per unit cell density than those with wild-type backgrounds (filled symbols, dotted lines), or those without plasmids (open symbols, dashed lines). In Table 1 we see that over time in the absence of kanamycin selection, the cells lacking the deletions lose kanamycin resistance (borne on the plasmids) within a few days, whereas the deletion mutants retain their resistance and their plasmids over the entire course of the study.
[0096] In addition, in Table 1, Applicants demonstrate that the Fraction of colony forming units (cfu) that retains a KanR plasmid over days. E. coli BW25113 was transformed with three Kan resistant plasmids (pDvK-sucAD, pDvK-sucABCD, and pDvK, rows A-D). E. coli BW25113 deletions in sucAD and sucABCD were also transformed with complement plasmids (pDvK-sucAD, pDvK-sucABCD, respectively, rows E-F). 50-mL cultures were grown in LB without kanamycin as selective pressure. Aliquots of cells were plated on kanamycin and non-selective plates and cfu calculated daily. The fraction of KanR cfu over total cfu is reported.
[0097] Over time in the absence of kanamycin selection, the cells lacking the deletions lose kanamycin resistance (borne on the plasmids) within a few days, whereas the deletion mutants retain their resistance and their plasmids over the entire course of the study.
TABLE-US-00001 TABLE 1 Table of growth characteristics for the retention of a single plasmid in the system. Fraction of cfu that retain kanamycin sensitivity (and thus maintain the plasmid expressing succinate pathway and kanamycin resistance genes) over time. Day Strain Plasmid 1 2 3 4 5 6 7 8 BW25113 0 0 0 0 0 0 0 0 BW25113 0 0 0 0 0 0 0 0 .DELTA.sucAD BW25113 0 0 0 0 0 0 0 0 .DELTA.sucABCD BW25113 pDvK-sucAD <1.0 1.35 .+-. 0.53 0.75 .+-. 0.17 0.48 .+-. 0.03 0.09 .+-. 0.03 0.08 .+-. 0.08 ~0 ~0 BW25113 pDvK-sucABCD <1.0 <1.0 0.04 .+-. 0.06 0.04 .+-. 0.00 0.16 .+-. 0.05 ~0 ~0 ~0 BW25113 pDvK <1.0 0.96 .+-. 0.12 0.63 .+-. 0.17 0.55 .+-. 0.19 0.44 .+-. 0.15 0.50 .+-. 0.37 0.08 .+-. 0.07 0.12 .+-. 0.15 BW25113 pDvK-sucAD 0.99 .+-. 0.23 1.93 .+-. 0.12 0.84 .+-. 0.17 1.05 .+-. 0.42 1.06 .+-. 0.04 1.30 .+-. 0.61 1.15 .+-. 0.30 1.11 .+-. 0.19 .DELTA.sucAD BW25113 pDvK-sucABCD 0.86 .+-. 0.02 0.99 .+-. 0.27 0.98 .+-. 0.17 1.26 .+-. 0.44 1.02 .+-. 0.02 0.94 .+-. 0.21 1.23 .+-. 0.24 1.19 .+-. 0.01 .DELTA.sucABCD
Maintenance of Multiple Plasmids in the System
[0098] A similar experiment was performed to test the maintenance of multiple plasmids in the system. Cells of BW25113 .DELTA.sucABCD should not be able to grow in LB without supplementation of DAP, unless at least two of the genes sucAB and sucCD are expressed on plasmids. Plasmids pDVK-sucAD and pDVK-sucBC, were constructed. Neither of these plasmids has a sufficient set of genes to allow growth of BW25113 .DELTA.sucABCD without DAP supplementation, but they will in combination. Without supplementation with DAP, the cells retained their kanamycin resistance, and thus their ability to maintain both plasmids (Tables 2, 3).
TABLE-US-00002 TABLE 2 Retention of Two-Plasmids. Fraction of cfu that retain kanamycin sensitivity (and thus maintain the plasmids expressing succinate pathway and kanamycin resistance genes) over time). Strain Plasmid(s) Day 1 BW25113 pDVK 0.49 .+-. 0.27 BW25113 .DELTA.sucABCD pDVK-sucBC and pDVP-sucAD 0.69 .+-. 0.37
[0099] Retention of both plasmids utilized according to the current invention is shown in patch plates, wherein colonies of each strain/plasmid combination were struck on LB agar plates of different media conditions. Only with a complimentary and/or complete set of genes sucAB sucCD can E. coli BW25113 .DELTA.sucABCD grow without DAP supplementation. Kanamycin resistance shows maintenance of the plasmids, here two, as KanR is linked to the succinate operon genes.
TABLE-US-00003 TABLE 3 Retention of Two-Plasmids. Patch growth of plasmids on different media. Cultures of each strain/plasmid were grown in LB + DAP overnight and diluted to OD.sub.600 = 1.0. Ten .mu.L of this dilution (and serial 50-fold dilutions) were plated onto the media conditions in each column. - = no growth. + = growth patch observed with OD.sub.600 = 1.0 cells. ++ = growth patch observed from 50-fold serial dilution (OD.sub.600 = 0.02). +++ = growth patch observed from 2500-fold serial dilution (OD.sub.600 = 0.0004). ++++ = growth patch observed from 125,000-fold serial dilution (OD.sub.600 = 0.000008). Strain Plasmid(s) LB LB + Kan LB + DAP LB + Kan.sub.50 + DAP BW25113 ++++ - ++++ - BW25113 .DELTA.sucABCD - - ++++ - BW25113 .DELTA.sucABCD pDVK-sucAD + - ++++ ++++ BW25113 .DELTA.sucABCD pDVK-sucBC - - ++++ ++++ BW25113 .DELTA.sucABCD pDVK-sucAD and pDVK- +++ +++ ++++ +++ sucBC
Cultivation of Plasmid-Addicted Strains
[0100] Plasmid-bearing E. coli strains were grown in LB without additional supplementation in 24-well plates and in a BioLector flower plates (Funke et al., 2009).
[0101] To achieve tight regulation of toxic gene expression, a tightly regulable promoter like the arabinose-inducible PBAD promoter (Guzman et al., 1995) is preferably used, in particular in the case that the marker protein is per se toxic to the cells.
[0102] Another way to control expression of the marker gene is by using constitutive promoters in combination with a gene that is non-toxic (e.g. a reporter gene) or only toxic under defined conditions, e.g. the Bacillus subtilis sacB gene, which is only toxic to E. coli when sucrose is present.
[0103] The promoter is chosen in coordination with the effect of the marker gene product and the required efficiency of down-regulation or silencing effect. For example, for a construct containing a non-toxic or less toxic marker gene, a stronger promoter is desirable.
Additional Embodiments
[0104] As is evident from the foregoing description, certain aspects of the present disclosure are not limited by the particular details of the examples illustrated herein, and it is therefore contemplated that other modifications and applications, or equivalents thereof, will occur to those skilled in the art. It is accordingly intended that the claims shall cover all such modifications and applications that do not depart from the spirit and scope of the present disclosure.
[0105] Moreover, unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which the disclosure belongs. Although any methods and materials equivalent to or those described herein can be used in the practice or testing of the present disclosure, the preferred methods and materials are described above.
[0106] Although the foregoing invention has been described in some detail by way of illustration and example for purposes of understanding, it will be apparent to those skilled in the art that certain changes and modifications may be practiced. Therefore, the description and examples should not be construed as limiting the scope of the invention, which is delineated by the appended claims.
[0107] Accordingly, it is to be understood that the embodiments of the invention herein providing for the production of specific molecules are merely illustrative of the application of the principles of the invention. It will be evident from the foregoing description that changes in the form, methods of use, and applications of the elements of the disclosed production methods and selected microbial strains may be resorted to without departing from the spirit of the invention, or the scope of the appended claims.
STATEMENT OF INDUSTRIAL APPLICABILITY/TECHNICAL FIELD
[0108] This disclosure has applicability in the commercial production of food ingredients, fragrances, medicines and pharmaceuticals. This disclosure relates generally to a method for enhanced and more precisely controlled biosynthetic production of desired end products via selected microbial strains.
LITERATURE CITED AND INCORPORATED BY REFERENCE
[0109] Baba, T., et al., Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection, MOL. SYST. BIOL. 2, 2006.
[0110] Balbas, P., et al; Understanding the Art of Producing Protein and Nonprotein Molecules in Escherichia coli; MOLECULAR BIOTECHNOLOGY (2001) vol. 19, (3) pp. 251-67.
[0111] Balbas, P. et al; Plasmid vector pBR322 and its special purpose derivatives--a review; GENE (1986) vol. 50 pp. 3-40.
[0112] Beck, C. F. et al; A Multifunctional Gene (tetR) Controls Tn10-encoded Tetracycline Resistance; JOURNAL OF BACTERIOLOGY (1982) vol. 150 No. 2 pp. 633-42.
[0113] Brantl, S., Antisense RNAs in plasmids: control of replication and maintenance, Academic Press, PLASMID 48 (2002) pp. 165-173.
[0114] Brosius, J., et al; Construction and Fine Mapping of Recombinant Plasmids Containing the rrnB Ribosomal RNA Operon of E. coli; PLASMID (1981) vol. 6 No. 1 pp. 112-18.
[0115] Chang, A. C. Y., et al., Construction and Characterization of Amplifiable Multicopy DNA Cloning Vehicles Derived for the P15A Cryptic Miniplasmid; J. BACTERIOLOGY (1978) vol. 134 No. 3 pp. 1141-56.
[0116] Choi Y. J., et al; Novel, Versatile, and Tightly Regulated Expression System for Escherichia coli Strains. APPLIED AND ENVIRONMENTAL MICROBIOLOGY (2010) vol 76, No. 15, pp. 5058-66.
[0117] Cranenburgh, R. M. et al., Escherichia coli strains that allow antibiotic free plasmid selection and maintenance by repressor titration, NUCLEIC ACIDS RESEARCH, 2001 vol. 29, No. 5, 1-6.
[0118] Datsenko, K. A., and Wanner, B. L., One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products, PROC. NATL. ACAD. SCI. U. S. A. 97, 6640-5. (2000)
[0119] Deboy, R. T., et al; Target Site Selection by Tn7: attTn7 Transcription and Target Activity; JOURNAL OF BACTERIOLOGY (2000) vol. 182 No. 11 pp. 3310-3313.
[0120] Del Solar, Gloria et al., Replication and Control of Circular Bacterial Plasmids, MICROBIOLOLOGY AND MOLECULAR BIOLOGY REVIEWS (1998) vol. 62, No. 2, pp. 434-64.
[0121] Eguchi, Yutaka., et al., Complexes Formed by Complementary RNA Stem-loops. Their Formation, Structure and Interaction with ColE1 Rom Protein, JOURNAL MOLECULAR BIOLOGY (1991) vol. 220 pp. 831-842.
[0122] Fu X., et al., Development of a Chromosome-Plasmid Balanced Lethal System of Lactobacillus Acidophilus with thyA Gene as Selective Marker, MICROBIOL. IMMUNOL., 44(7) p551-56 (2000).
[0123] Funke, M. et al., The baffled microtiter plate: Increased oxygen transfer and improved online monitoring in small scale fermentations, BIOTECHNOL. BIOENG. (2009) 103, 1118-28.
[0124] Furste, J. P., et al., Molecular Cloning of the Plasmid RP4 Primase Region in a Multi-Host-Range tacP Expression Vector, GENE (1986) vol. 48 pp. 119-131.
[0125] Gerdes K., et al., Mechanism of post-segregational killing by the hok/sok system of plasmid R1: sok antisense RNA regulates formation of a hok mRNA species correlated with killing of plasmid-free cells, MOL. MICROBIOL. (1990) 4(11): 1807-18.
[0126] Gerdes, S. Y., et al., Experimental Determination and System Level Analysis of Essential Genes in Escherichia coli MG1655, JOURNAL OF BACTERIOLOGY (2003) vol. 185 No. 19 pp. 5673-5684.
[0127] Haegg, P., et al., A Host/Plasmid System that is not Dependent on Antibiotics and Antibiotic Genes for Stable Plasmid Maintenance in Eschericia coli., JOURNAL OF BIO TECHNOLOGY (2004) vol. 111 pp. 17-30.
[0128] Helinski, D. R., et al; Replication Control and Other Stable Maintenance Mechanisms of Plasmids (1996) American Society for Microbiology Press, Washington, DC, pp. 2295-2324.
[0129] Hiszczynska-Sawicka, Elzbieta., et al., Effect of Integration Host Factor on RNA II Synthesis in Replication of Plasmid Containing orip15A, PLASMID (1998) vol. 40 pp. 150-157.
[0130] Herring, Christopher D., et al., Conditional Lethal Amber Mutations in Essential Escherichia coli Genes, JOURNAL OF BACTERIOLOGY (2004) vol. 186, No. 9 pp. 2673-2681.
[0131] Jensen, L. Bogo., et al., A Substrate-Dependent Biological Containment System for Pseudonomas Putida Based on the Escherichia coli gef Gene, APPLIED AND ENVIRONMENTAL MICROBIOLOGY (1993) vol. 59, No. 11 pp. 3713-3717.
[0132] Knudsen, Steen., et al., Development and Testing of Improved Suicide Functions for Biological Containment of Bacteria, APPLIED AND ENVIRONMENTAL MICROBIOLOGY (1995) vol. 61, No. 3 pp. 985-991.
[0133] Kroll, J., et al., Plasmid Addiction Systems: Perspectives and Applications in Biotechnology, MICROB. BIOTECHNOL., 3(6) pp 634-57 (2010).
[0134] Kues, U., et al., Replication of Plasmids in Gram-Negative Bacteria, MICROBIOLOGICAL REVIEWS (1989) vol. 53, No. 4 pp. 491-516.
[0135] Mairhofer, Jurgen et al.; A novel antibotic free plasmid selection system: Advances in safe and efficient DNA therapy, BIOTECHNOLOGY JOURNAL (2008) 3, pp. 83-89.
[0136] Mattozzi, M. D. et al., Expression of the sub pathways of the Chloroflexus aurantiacus 3-hydroxypropionate carbon fixation bicycle in E. coli: Toward horizontal transfer of autotrophic growth, METAB. ENG. 16, 130-139. (2013).
[0137] Merlin, S., et al., Assessment of Quantitative Models for Plasmid ColE1 Copy Number Control, J. MOL. BIOL. (1995) vol. 248 pp. 211-19.
[0138] Michel, Gerhard and Dietmar Schomberg; METABOLIC PATHWAYS. (2012) John Wiley and Sons, New York
[0139] O'Kennedy, R. D., et al., Effects of Fermentation Strategy on the Characteristics of Plasmid DNA Production, BIOTECHNOLOGY APPL. BIOCHEM. (2003) vol. 37 pp. 83-90.
[0140] O'Kennedy, R. D., et al., Effects of Growth Medium Selection on Plasmid DNA Production and Initial Processing Steps, JOURNAL OF BIOTECHNOLOGY (2000) vol. 76 pp. 175-183.
[0141] Postle, K., et al; Nucleotide Sequence of the Repressor Gene of the TN10 Tetracycline Resistance Determinant; NUCLEIC ACIDS RESEARCH (1984) vol. 12, No. 12 pp. 4849-4863.
[0142] Pfaffenzeller, I., Using ColE1-derived RNA I for suppression of a bacterially encoded gene: implication for a novel plasmid addiction system, BIOTECH. J. (2006), pp. 1-7.
[0143] Rawlings, D. E.; Protein Toxin-Antitoxin, Bacterial Plasmid Addiction Systems and their evolution with Special reference to the pas System of pTF-FC2; FEMS Microbiology Letters (1999) vol. 176 pp. 269-77.
[0144] Reinikainen, P., et al; Escherichia coli Plasmid Production in Fermenter; BIOTECHNOLOGY BIOENGINERING (1988) vol. 33 pp. 386-93.
[0145] Ronchel, M. Carmen., et al; Characterization of Cell Lysis in Pseudomonas putida induced Upon Expression of Heterologous Killing Genes, APPLIED AND ENVIRONMENTAL MICROBIOLOGY, (1998) vol. 64, No. 12 pp. 4904-11.
[0146] German L. Rosano and Eduardo A. Ceccarelli, Recombinant protein expression in Escherichia coli: advances and challenges, MICROBIOL. (2014); 5:172.
[0147] Schumacher M. A., Bacterial plasmid partition machinery: a minimalist approach to survival, CURR OPIN STRUCT BIOL., (2012) Feb;22(1):72-9
[0148] Tomizawa, Jun-Ichi., et al; Plasmid ColE1 Incompatibility Determined by Interaction of RNA I with Primer Transcript; PROC. NATL. ACAD. SCI. USA (1981) vol. 78, No. 10 pp. 6096-6100.
[0149] Tomizawa, Jun-Ichi, Control of ColE1 Plasmid replication: The Process of Binding of RNA I to the Primer Transcript, CELL (1984) vol. 38 pp. 861-870.
[0150] Tomizawa, Jun-Ichi; Control of ColE1 Plasmid Replication: Binding of RNA I to RNA II and Inhibition of Primer Formation, CELL (1986) vol. 47 pp. 89-97.
[0151] Torres, B., et al., As Gene Containment Strategy Based on a Restriction Modification System, ENVIRONMENTAL MICROBIOLOGY (2000) vol. 2, No. 5 pp. 555-63.
[0152] Vieira, J., et al; The pUC Plasmids, an M13mp7-Derived System for Insertion Mutagenesis and Sequencing with Synthetic Universal Primers; GENE (1982) vol. 19 pp. 259-68.
[0153] Williams, S. G., et al., Repressor Titration: A Novel System for Selection and Stable Maintenance of Recombinant Plasmids, NUCLEIC ACIDS RESEARCH (1998) vol. 26, No. 9 pp. 2120-24.
[0154] Yu., B. J., et al., sucAB and sucCD are mutually essential genes in Escherichia coli., FEMS MICROBIOL. LETT. (2005) 254, 245-50.
[0155] Yu, D., et al; An Efficient Recombination System for Chromosome Engineering in Escherichia coli; PNAS (2000) vol. 97, No. 11 pp. 5978-83.
TABLE-US-00004 Sequences of Interest: SEQ ID NO: 1 SE operon and genomic context sequence ccggtcaggcactgactgtgaatgagaaaggcgaagatgtggttgttccgggactgtttgccgttggtgaaatc- gct tgtgtatcggtacacggcgctaaccgtctgggcggcaactcgctgctggacctggtggtctttggtcgcgcggc- agg tctgcatctgcaagagtctatcgccgagcagggcgcactgcgcgatgccagcgagtctgatgttgaagcgtctc- tgg atcgcctgaaccgctggaacaataatcgtaacggtgaagatccggtggcgatccgtaaagcgctgcaagaatgt- atg cagcataacttctcggtcttccgtgaaggtgatgcgatggcgaaagggcttgagcagttgaaagtgatccgcga- gcg tctgaaaaatgcccgtctggatgacacttccagcgagttcaacacccagcgcgttgagtgcctggaactggata- acc tgatggaaacggcgtatgcaacggctgtttctgccaacttccgtaccgaaagccgtggcgcgcatagccgcttc- gac ttcccggatcgtgatgatgaaaactggctgtgccactccctgtatctgccagagtcggaatccatgacgcgccg- aag cgtcaacatggaaccgaaactgcgcccggcattcccgccgaagattcgtacttactaatgcggagacaggaaaa- tga gactcgagttttcaatttatcgctataacccggatgttgatgatgctccgcgtatgcaggattacaccctggaa- gcg gatgaaggtcgcgacatgatgctgctggatgcgcttatccagctaaaagagaaagatcccagcctgtcgttccg- ccg ctcctgccgtgaaggtgtgtgcggttccgacggtctgaacatgaacggcaagaatggtctggcctgtattaccc- cga tttcggcactcaaccagccgggcaagaagattgtgattcgcccgctgccaggtttaccggtgatccgcgatttg- gtg gtagacatgggacaattctatgcgcaatatgagaaaattaagccttacctgttgaataatggacaaaatccgcc- agc tcgcgagcatttacagatgccagagcagcgcgaaaaactcgacgggctgtatgaatgtattctctgcgcatgtt- gtt caacctcttgtccgtctttctggtggaatcccgataagtttatcggcccggcaggcttgttagcggcatatcgt- ttc ctgattgatagccgtgataccgagactgacagccgcctcgacggtttgagtgatgcattcagcgtattccgctg- tca cagcatcatgaactgcgtcagtgtatgtccgaaggggctgaacccgacgcgcgccatcggccatatcaagtcga- tgt tgttgcaacgtaatgcgtaaaccgtaggcctgataagacgcgcaagcgtcgcatcaggcaaccagtgccggatg- cgg cgtgaacgccttatccggcctacaagtcattacccgtaggcctgataagcgcagcgcatcaggcgtaacaaaga- aat gcaggaaatctttaaaaactgcccctgacactaagacagtttttaaaggttccttcgcgagccactacgtagac- aag agctcgcaagtgaaccccggcacgcacatcactgtgcgtggtagtatccacggcgaagtaagcataaaaaagat- gct taagggatcacgatgcagaacagcgctttgaaagcctggttggactcttcttacctctctggcgcaaaccagag- ctg gatagaacagctctatgaagacttcttaaccgatcctgactcggttgacgctaactggcgttcgacgttccagc- agt tacctggtacgggagtcaaaccggatcaattccactctcaaacgcgtgaatatttccgccgcctggcgaaagac- gct tcacgttactcttcaacgatctccgaccctgacaccaatgtgaagcaggttaaagtcctgcagctcattaacgc- ata ccgcttccgtggtcaccagcatgcgaatctcgatccgctgggactgtggcagcaagataaagtggccgatctgg- atc cgtctttccacgatctgaccgaagcagacttccaggagaccttcaacgtcggttcatttgccagcggcaaagaa- acc atgaaactcggcgagctgctggaagccctcaagcaaacctactgcggcccgattggtgccgagtatatgcacat- tac cagcaccgaagaaaaacgctggatccaacagcgtatcgagtctggtcgcgcgactttcaatagcgaagagaaaa- aac gcttcttaagcgaactgaccgccgctgaaggtcttgaacgttacctcggcgcaaaattccctggcgcaaaacgc- ttc tcgctggaaggcggtgacgcgttaatcccgatgcttaaagagatgatccgccacgctggcaacagcggcacccg- cga agtggttctcgggatggcgcaccgtggtcgtctgaacgtgctggtgaacgtgctgggtaaaaaaccgcaagact- tgt tcgacgagttcgccggtaaacataaagaacacctcggcacgggtgacgtgaaataccacatgggcttctcgtct- gac ttccagaccgatggcggcctggtgcacctggcgctggcgtttaacccgtctcaccttgagattgtaagcccggt- agt tatcggttctgttcgtgcccgtctggacagacttgatgagccgagcagcaacaaagtgctgccaatcaccatcc- acg gtgacgccgcagtgaccgggcagggcgtggttcaggaaaccctgaacatgtcgaaagcgcgtggttatgaagtt- ggc ggtacggtacgtatcgttatcaacaaccaggttggtttcaccacctctaatccgctggatgcccgttctacgcc- gta ctgtactgatatcggtaagatggttcaggccccgattttccacgttaacgcggacgatccggaagccgttgcct- ttg tgacccgtctggcgctcgatttccgtaacacctttaaacgtgatgtcttcatcgacctggtgtgctaccgccgt- cac ggccacaacgaagccgacgagccgagcgcaacccagccgctgatgtatcagaaaatcaaaaaacatccgacacc- gcg caaaatctacgctgacaagctggagcaggaaaaagtggcgacgctggaagatgccaccgagatggttaacctgt- acc gcgatgcgctggatgctggcgattgcgtagtggcagagtggcgtccgatgaacatgcactctttcacctggtcg- ccg tacctcaaccacgaatgggacgaagagtacccgaacaaagttgagatgaagcgcctgcaggagctggcgaaacg- cat cagcacggtgccggaagcagttgaaatgcagtctcgcgttgccaagatttatggcgatcgccaggcgatggctg- ccg gtgagaaactgttcgactggggcggtgcggaaaacctcgcttacgccacgctggttgatgaaggcattccggtt- cgc ctgtcgggtgaagactccggtcgcggtaccttcttccaccgccacgcggtgatccacaaccagtctaacggttc- cac ttacacgccgctgcaacatatccataacgggcagggcgcgttccgtgtctgggactccgtactgtctgaagaag- cag tgctggcgtttgaatatggttatgccaccgcagaaccacgcactctgaccatctgggaagcgcagttcggtgac- ttc gccaacggtgcgcaggtggttatcgaccagttcatctcctctggcgaacagaaatggggccggatgtgtggtct- ggt gatgttgctgccgcacggttacgaagggcaggggccggagcactcctccgcgcgtctggaacgttatctgcaac- ttt gtgctgagcaaaacatgcaggtttgcgtaccgtctaccccggcacaggtttaccacatgctgcgtcgtcaggcg- ctg cgcgggatgcgtcgtccgctggtcgtgatgtcgccgaaatccctgctgcgtcatccgctggcggtttccagcct- cga agaactggcgaacggcaccttcctgccagccatcggtgaaatcgacgagcttgatccgaagggcgtgaagcgcg- tag tgatgtgttctggtaaggtttattacgacctgctggaacagcgtcgtaagaacaatcaacacgatgtcgccatt- gtg cgtatcgagcaactctacccgttcccgcataaagcgatgcaggaagtgttgcagcagtttgctcacgtcaagga- ttt tgtctggtgccaggaagagccgctcaaccagggcgcatggtactgcagccagcatcatttccgtgaagtgattc- cgt ttggggcttctctgcgttatgcaggccgcccggcctccgcctctccggcggtagggtatatgtccgttcaccag- aaa cagcaacaagatctggttaatgacgcgctgaacgtcgaataaataaaggatacacaatgagtagcgtagatatt- ctg gtccctgacctgcctgaatccgtagccgatgccaccgtcgcaacctggcataaaaaacccggcgacgcagtcgt- acg tgatgaagtgctggtagaaatcgaaactgacaaagtggtactggaagtaccggcatcagcagacggcattctgg- atg cggttctggaagatgaaggtacaacggtaacgtctcgtcagatccttggtcgcctgcgtgaaggcaacagcgcc- ggt aaagaaaccagcgccaaatctgaagagaaagcgtccactccggcgcaacgccagcaggcgtctctggaagagca- aaa caacgatgcgttaagcccggcgatccgtcgcctgctggctgaacacaatctcgacgccagcgccattaaaggca- ccg gtgtgggtggtcgtctgactcgtgaagatgtggaaaaacatctggcgaaagccccggcgaaagagtctgctccg- gca gcggctgctccggcggcgcaaccggctctggctgcacgtagtgaaaaacgtgtcccgatgactcgcctgcgtaa- gcg tgtggcagagcgtctgctggaagcgaaaaactccaccgccatgctgaccacgttcaacgaagtcaacatgaagc- cga ttatggatctgcgtaagcagtacggtgaagcgtttgaaaaacgccacggcatccgtctgggctttatgtccttc- tac gtgaaagcggtggttgaagccctgaaacgttacccggaagtgaacgcttctatcgacggcgatgacgtggttta- cca caactatttcgacgtcagcatggcggtttctacgccgcgcggcctggtgacgccggttctgcgtgatgtcgata- ccc tcggcatggcagacatcgagaagaaaatcaaagagctggcagtcaaaggccgtgacggcaagctgaccgttgaa- gat ctgaccggtggtaacttcaccatcaccaacggtggtgtgttcggttccctgatgtctacgccgatcatcaaccc- gcc gcagagcgcaattctgggtatgcacgctatcaaagatcgtccgatggcggtgaatggtcaggttgagatcctgc- cga tgatgtacctggcgctgtcctacgatcaccgtctgatcgatggtcgcgaatccgtgggcttcctggtaacgatc- aaa gagttgctggaagatccgacgcgtctgctgctggacgtgtagtagtttaagtttcacctgcactgtagaccgga- taa ggcattatcgccttctccggcaattgaagcctgatgcgacgctgacgcgtcttatcaggcctacgggaccacca- atg taggtcggataaggcgcaagcgccgcatccgacaagcgatgcctgatgtgacgtttaacgtgtcttatcaggcc- tac gggtgaccgacaatgcccggaagcgatacgaaatattcGGTCTACGGTTTAAAAGATAACGATTACTGAAGGAT- GGA CAGAACACatgaacttacatgaatatcaggcaaaacaactttttgcccgctatggcttaccagcaccggtgggt- tat gcctgtactactccgcgcgaagcagaagaagccgcttcaaaaatcggtgccggtccgtgggtagtgaaatgtca- ggt tcacgctggtggccgcggtaaagcgggcggtgtgaaagttgtaaacagcaaagaagacatccgtgcttttgcag- aaa actggctgggcaagcgtctggtaacgtatcaaacagatgccaatggccaaccggttaaccagattctggttgaa- gca gcgaccgatatcgctaaagagctgtatctcggtgccgttgttgaccgtagttcccgtcgtgtggtctttatggc- ctc caccgaaggcggcgtggaaatcgaaaaagtggcggaagaaactccgcacctgatccataaagttgcgcttgatc- cgc tgactggcccgatgccgtatcagggacgcgagctggcgttcaaactgggtctggaaggtaaactggttcagcag- ttc accaaaatcttcatgggcctggcgaccattttcctggagcgcgacctggcgttgatcgaaatcaacccgctggt- cat caccaaacagggcgatctgatttgcctcgacggcaaactgggcgctgacggcaacgcactgttccgccagcctg- atc tgcgcgaaatgcgtgaccagtcgcaggaagatccgcgtgaagcacaggctgcacagtgggaactgaactacgtt- gcg ctggacggtaacatcggttgtatggttaacggcgcaggtctggcgatgggtacgatggacatcgttaaactgca- cgg cggcgaaccggctaacttccttgacgttggcggcggcgcaaccaaagaacgtgtaaccgaagcgttcaaaatca- tcc tctctgacgacaaagtgaaagccgttctggttaacatcttcggcggtatcgttcgttgcgacctgatcgctgac- ggt atcatcggcgcggtagcagaagtgggtgttaacgtaccggtcgtggtacgtctggaaggtaacaacgccgaact- cgg cgcgaagaaactggctgacagcggcctgaatattattgcagcaaaaggtctgacggatgcagctcagcaggttg- ttg ccgcagtggaggggaaataatgtccattttaatcgataaaaacaccaaggttatctgccagggctttaccggta- gcc aggggactttccactcagaacaggccattgcatacggcactaaaatggttggcggcgtaaccccaggtaaaggc- ggc accacccacctcggcctgccggtgttcaacaccgtgcgtgaagccgttgctgccactggcgctaccgcttctgt- tat ctacgtaccagcaccgttctgcaaagactccattctggaagccatcgacgcaggcatcaaactgattatcacca- tca ctgaaggcatcccgacgctggatatgctgaccgtgaaagtgaagctggatgaagcaggcgttcgtatgatcggc- ccg aactgcccaggcgttatcactccgggtgaatgcaaaatcggtatccagcctggtcacattcacaaaccgggtaa- agt gggtatcgtttcccgttccggtacactgacctatgaagcggttaaacagaccacggattacggtttcggtcagt- cga cctgtgtcggtatcggcggtgacccgatcccgggctctaactttatcgacattctcgaaatgttcgaaaaagat- ccg cagaccgaagcgatcgtgatgatcggtgagatcggcggtagcgctgaagaagaagcagctgcgtacatcaaaga- gca cgttaccaagccagttgtgggttacatcgctggtgtgactgcgccgaaaggcaaacgtatgggccacgcgggtg- cca tcattgccggtgggaaagggactgcggatgagaaattcgctgctctggaagccgcaggcgtgaaaaccgttcgc- agc ctggcggatatcggtgaagcactgaaaactgttctgaaataaatatctgtaataagaaatagccctcgccgctt- ccc tctacaggaatggcgaagggctgtcggtttcgacatggttggccatcgtatgatggccttttttgtgcttatcg- cga tgattttcgctgcgctatcagggtaaatttatagtcatcggtattaaaagcgttgcggctatattcaaacaccc- gac catcaactaaatatccacgcgatactttttcaagaatcggctttgtctggctgatattaagcagacggctcatc- tct tcggttggcatcagaggaatgatttcctgttcgctacgatcgataaccattttcttcacttcttcgataaagtg- ata tttcgaattttccatgacctgccaggtgagatccgggaacaacgcaagcggcatccaggtttcttccagcgcca- ttg gcttttgcttgcgatagcgcacgcgcttcacatgccacacacgatcctgcggggtgatttgtagctgttgctga- aga aaatcgtcagccggaatcacttcgaatatcagaacttcactgtgtgtatcgacgtgacggtccgacagtttttc- atc aaaactggttaactgaaaaatatcgtaattgacccgctcttctttgacgtaagtcccgctgccctgaatgcttt- cga ggatctgctgctcgactagctggcgcaaagcctgacgcaccgtaacccggctgacgccaaactctgtttgtagc- gct gattcagtgggtaacgcatcgccaggtttaagctcgccacgcgcaatttgttcacgaatgcgatcggcaatctg- ccg gtataagggcttgtgtcccatttttagtatctcattaatacgaatttaaccattatgcccgataaattcatcct- gta aataatacaaatacaatacaaataatttcaatcaagtgaaattgatcacataatggtattgttttatcg SEQ ID NO: 2. Sequence of the genomic context of E. coli BW25113 .DELTA.sucAD. ccggtcaggcactgactgtgaatgagaaaggcgaagatgtggttgttccgggactgtttgccgttggtgaaatc- gct tgtgtatcggtacacggcgctaaccgtctgggcggcaactcgctgctggacctggtggtctttggtcgcgcggc- agg tctgcatctgcaagagtctatcgccgagcagggcgcactgcgcgatgccagcgagtctgatgttgaagcgtctc- tgg atcgcctgaaccgctggaacaataatcgtaacggtgaagatccggtggcgatccgtaaagcgctgcaagaatgt- atg cagcataacttctcggtcttccgtgaaggtgatgcgatggcgaaagggcttgagcagttgaaagtgatccgcga-
gcg tctgaaaaatgcccgtctggatgacacttccagcgagttcaacacccagcgcgttgagtgcctggaactggata- acc tgatggaaacggcgtatgcaacggctgtttctgccaacttccgtaccgaaagccgtggcgcgcatagccgcttc- gac ttcccggatcgtgatgatgaaaactggctgtgccactccctgtatctgccagagtcggaatccatgacgcgccg- aag cgtcaacatggaaccgaaactgcgcccggcattcccgccgaagattcgtacttactaatgcggagacaggaaaa- tga gactcgagttttcaatttatcgctataacccggatgttgatgatgctccgcgtatgcaggattacaccctggaa- gcg gatgaaggtcgcgacatgatgctgctggatgcgcttatccagctaaaagagaaagatcccagcctgtcgttccg- ccg ctcctgccgtgaaggtgtgtgcggttccgacggtctgaacatgaacggcaagaatggtctggcctgtattaccc- cga tttcggcactcaaccagccgggcaagaagattgtgattcgcccgctgccaggtttaccggtgatccgcgatttg- gtg gtagacatgggacaattctatgcgcaatatgagaaaattaagccttacctgttgaataatggacaaaatccgcc- agc tcgcgagcatttacagatgccagagcagcgcgaaaaactcgacgggctgtatgaatgtattctctgcgcatgtt- gtt caacctcttgtccgtctttctggtggaatcccgataagtttatcggcccggcaggcttgttagcggcatatcgt- ttc ctgattgatagccgtgataccgagactgacagccgcctcgacggtttgagtgatgcattcagcgtattccgctg- tca cagcatcatgaactgcgtcagtgtatgtccgaaggggctgaacccgacgcgcgccatcggccatatcaagtcga- tgt tgttgcaacgtaatgcgtaaaccgtaggcctgataagacgcgcaagcgtcgcatcaggcaaccagtgccggatg- cgg cgtgaacgccttatccggcctacaagtcattacccgtaggcctgataagcgcagcgcatcaggcgtaacaaaga- aat gcaggaaatctttaaaaactgcccctgacactaagacagtttttaaaggttccttcgcgagccactacgtagac- aag agctcgcaagtgaaccccggcacgcacatcactgtgcgtggtagtatccacggcgaagtaagcataaaaaagat- gct taagggatcacgagtgtaggctggagctgcttcgaagttcctatactttctagagaataggaacttcggaatag- gaa cttcaagatccccttattagaagaactcgtcaagaaggcgatagaaggcgatgcgctgcgaatcgggagcggcg- ata ccgtaaagcacgaggaagcggtcagcccattcgccgccaagctcttcagcaatatcacgggtagccaacgctat- gtc ctgatagcggtccgccacacccagccggccacagtcgatgaatccagaaaagcggccattttccaccatgatat- tcg gcaagcaggcatcgccatgggtcacgacgagatcctcgccgtcgggcatgcgcgccttgagcctggcgaacagt- tcg gctggcgcgagcccctgatgctcttcgtccagatcatcctgatcgacaagaccggcttccatccgagtacgtgc- tcg ctcgatgcgatgtttcgcttggtggtcgaatgggcaggtagccggatcaagcgtatgcagccgccgcattgcat- cag ccatgatggatactttctcggcaggagcaaggtgagatgacaggagatcctgccccggcacttcgcccaatagc- agc cagtcccttcccgcttcagtgacaacgtcgagcacagctgcgcaaggaacgcccgtcgtggccagccacgatag- ccg cgctgcctcgtcctgcagttcattcagggcaccggacaggtcggtcttgacaaaaagaaccgggcgcccctgcg- ctg acagccggaacacggcggcatcagagcagccgattgtctgttgtgcccagtcatagccgaatagcctctccacc- caa gcggccggagaacctgcgtgcaatccatcttgttcaatcatgcgaaacgatcctcatcctgtctcttgatcaga- tct tgatcccctgcgccatcagatccttggcggcaagaaagccatccagtttactttgcagggcttcccaaccttac- cag agggcgccccagctggcaattccggttcgcttgctgtccataaaaccgcccagtctagctatcgccatgtaagc- cca ctgcaagctacctgctttctctttgcgcttgcgttttcccttgtccagatagcccagtagctgacattcatccg- ggg tcagcaccgtttctgcggactggctttctacgtgttccgcttcctttagcagcccttgcgccctgagtgcttgc- ggc agcgtgagcttcaaaagcgctctgaagttcctatactttctagagaataggaacttcgaactgcaggtcgacgg- atc cccggaattaattctcatgtttgacagaaaggatacacaatgagtagcgtagatattctggtccctgacctgcc- tga atccgtagccgatgccaccgtcgcaacctggcataaaaaacccggcgacgcagtcgtacgtgatgaagtgctgg- tag aaatcgaaactgacaaagtggtactggaagtaccggcatcagcagacggcattctggatgcggttctggaagat- gaa ggtacaacggtaacgtctcgtcagatccttggtcgcctgcgtgaaggcaacagcgccggtaaagaaaccagcgc- caa atctgaagagaaagcgtccactccggcgcaacgccagcaggcgtctctggaagagcaaaacaacgatgcgttaa- gcc cggcgatccgtcgcctgctggctgaacacaatctcgacgccagcgccattaaaggcaccggtgtgggtggtcgt- ctg actcgtgaagatgtggaaaaacatctggcgaaagccccggcgaaagagtctgctccggcagcggctgctccggc- ggc gcaaccggctctggctgcacgtagtgaaaaacgtgtcccgatgactcgcctgcgtaagcgtgtggcagagcgtc- tgc tggaagcgaaaaactccaccgccatgctgaccacgttcaacgaagtcaacatgaagccgattatggatctgcgt- aag cagtacggtgaagcgtttgaaaaacgccacggcatccgtctgggctttatgtccttctacgtgaaagcggtggt- tga agccctgaaacgttacccggaagtgaacgcttctatcgacggcgatgacgtggtttaccacaactatttcgacg- tca gcatggcggtttctacgccgcgcggcctggtgacgccggttctgcgtgatgtcgataccctcggcatggcagac- atc gagaagaaaatcaaagagctggcagtcaaaggccgtgacggcaagctgaccgttgaagatctgaccggtggtaa- ctt caccatcaccaacggtggtgtgttcggttccctgatgtctacgccgatcatcaacccgccgcagagcgcaattc- tgg gtatgcacgctatcaaagatcgtccgatggcggtgaatggtcaggttgagatcctgccgatgatgtacctggcg- ctg tcctacgatcaccgtctgatcgatggtcgcgaatccgtgggcttcctggtaacgatcaaagagttgctggaaga- tcc gacgcgtctgctgctggacgtgtagtagtttaagtttcacctgcactgtagaccggataaggcattatcgcctt- ctc cggcaattgaagcctgatgcgacgctgacgcgtcttatcaggcctacgggaccaccaatgtaggtcggataagg- cgc aagcgccgcatccgacaagcgatgcctgatgtgacgtttaacgtgtcttatcaggcctacgggtgaccgacaat- gcc cggaagcgatacgaaatattcggtctacggtttaaaagataacgattactgaaggatggacagaacacatgaac- tta catgaatatcaggcaaaacaactttttgcccgctatggcttaccagcaccggtgggttatgcctgtactactcc- gcg cgaagcagaagaagccgcttcaaaaatcggtgccggtccgtgggtagtgaaatgtcaggttcacgctggtggcc- gcg gtaaagcgggcggtgtgaaagttgtaaacagcaaagaagacatccgtgcttttgcagaaaactggctgggcaag- cgt ctggtaacgtatcaaacagatgccaatggccaaccggttaaccagattctggttgaagcagcgaccgatatcgc- taa agagctgtatctcggtgccgttgttgaccgtagttcccgtcgtgtggtctttatggcctccaccgaaggcggcg- tgg aaatcgaaaaagtggcggaagaaactccgcacctgatccataaagttgcgcttgatccgctgactggcccgatg- ccg tatcagggacgcgagctggcgttcaaactgggtctggaaggtaaactggttcagcagttcaccaaaatcttcat- ggg cctggcgaccattttcctggagcgcgacctggcgttgatcgaaatcaacccgctggtcatcaccaaacagggcg- atc tgatttgcctcgacggcaaactgggcgctgacggcaacgcactgttccgccagcctgatctgcgcgaaatgcgt- gac cagtcgcaggaagatccgcgtgaagcacaggctgcacagtgggaactgaactacgttgcgctggacggtaacat- cgg ttgtatggttaacggcgcaggtctggcgatgggtacgatggacatcgttaaactgcacggcggcgaaccggcta- act tccttgacgttggcggcggcgcaaccaaagaacgtgtaaccgaagcgttcaaaatcatcctctctgacgacaaa- gtg aaagccgttctggttaacatcttcggcggtatcgttcgttgcgacctgatcgctgacggtatcatcggcgcggt- agc agaagtgggtgttaacgtaccggtcgtggtacgtctggaaggtaacaacgccgaactcggcgcgaagaaactgg- ctg acagcggcctgaatattattgcagcaaaaggtctgacggatgcagctcagcaggttgttgccgcagtggagggg- aaa taatgATTCCGGGGATCCGTCGACCTGCAGTTCGAAGTTCCTATCTAGAAAGTATAGGAACTTCGAAGCAGCTC- CAG CCTACActgaaaactgttctgaaataaatatctgtaataagaaatagccctcgccgcttccctctacaggaatg- gcg aagggctgtcggtttcgacatggttggccatcgtatgatggccttttttgtgcttatcgcgatgattttcgctg- cgc tatcagggtaaatttatagtcatcggtattaaaagcgttgcggctatattcaaacacccgaccatcaactaaat- atc cacgcgatactttttcaagaatcggctttgtctggctgatattaagcagacggctcatctcttcggttggcatc- aga ggaatgatttcctgttcgctacgatcgataaccattttcttcacttcttcgataaagtgatatttcgaattttc- cat gacctgccaggtgagatccgggaacaacgcaagcggcatccaggtttcttccagcgccattggcttttgcttgc- gat agcgcacgcgcttcacatgccacacacgatcctgcggggtgatttgtagctgttgctgaagaaaatcgtcagcc- gga atcacttcgaatatcagaacttcactgtgtgtatcgacgtgacggtccgacagtttttcatcaaaactggttaa- ctg aaaaatatcgtaattgacccgctcttctttgacgtaagtcccgctgccctgaatgctttcgaggatctgctgct- cga ctagctggcgcaaagcctgacgcaccgtaacccggctgacgccaaactctgtttgtagcgctgattcagtgggt- aac gcatcgccaggtttaagctcgccacgcgcaatttgttcacgaatgcgatcggcaatctgccggtataagggctt- gtg tcccatttttagtatctcattaatacgaatttaaccattatgcccgataaattcatcctgtaaataatacaaat- aca atacaaataatttcaatcaagtgaaattgatcacataatggtattgttttatcg SEQ ID NO: 3. Sequence of the genomic context of E. coli BW25113 .DELTA.sucABCD ccggtcaggcactgactgtgaatgagaaaggcgaagatgtggttgttccgggactgtttgccgttggtgaaatc- gct tgtgtatcggtacacggcgctaaccgtctgggcggcaactcgctgctggacctggtggtctttggtcgcgcggc- agg tctgcatctgcaagagtctatcgccgagcagggcgcactgcgcgatgccagcgagtctgatgttgaagcgtctc- tgg atcgcctgaaccgctggaacaataatcgtaacggtgaagatccggtggcgatccgtaaagcgctgcaagaatgt- atg cagcataacttctcggtcttccgtgaaggtgatgcgatggcgaaagggcttgagcagttgaaagtgatccgcga- gcg tctgaaaaatgcccgtctggatgacacttccagcgagttcaacacccagcgcgttgagtgcctggaactggata- acc tgatggaaacggcgtatgcaacggctgtttctgccaacttccgtaccgaaagccgtggcgcgcatagccgcttc- gac ttcccggatcgtgatgatgaaaactggctgtgccactccctgtatctgccagagtcggaatccatgacgcgccg- aag cgtcaacatggaaccgaaactgcgcccggcattcccgccgaagattcgtacttactaatgcggagacaggaaaa- tga gactcgagttttcaatttatcgctataacccggatgttgatgatgctccgcgtatgcaggattacaccctggaa- gcg gatgaaggtcgcgacatgatgctgctggatgcgcttatccagctaaaagagaaagatcccagcctgtcgttccg- ccg ctcctgccgtgaaggtgtgtgcggttccgacggtctgaacatgaacggcaagaatggtctggcctgtattaccc- cga tttcggcactcaaccagccgggcaagaagattgtgattcgcccgctgccaggtttaccggtgatccgcgatttg- gtg gtagacatgggacaattctatgcgcaatatgagaaaattaagccttacctgttgaataatggacaaaatccgcc- agc tcgcgagcatttacagatgccagagcagcgcgaaaaactcgacgggctgtatgaatgtattctctgcgcatgtt- gtt caacctcttgtccgtctttctggtggaatcccgataagtttatcggcccggcaggcttgttagcggcatatcgt- ttc ctgattgatagccgtgataccgagactgacagccgcctcgacggtttgagtgatgcattcagcgtattccgctg- tca cagcatcatgaactgcgtcagtgtatgtccgaaggggctgaacccgacgcgcgccatcggccatatcaagtcga- tgt tgttgcaacgtaatgcgtaaaccgtaggcctgataagacgcgcaagcgtcgcatcaggcaaccagtgccggatg- cgg cgtgaacgccttatccggcctacaagtcattacccgtaggcctgataagcgcagcgcatcaggcgtaacaaaga- aat gcaggaaatctttaaaaactgcccctgacactaagacagtttttaaaggttccttcgcgagccactacgtagac- aag agctcgcaagtgaaccccggcacgcacatcactgtgcgtggtagtatccacggcgaagtaagcataaaaaagat- gAT TCCGGGGATCCGTCGACCTGCAGTTCGAAGTTCCTATCTAGAAAGTATAGGAACTTCGAAGCAGCTCCAGCCTA- CAc tgaaaactgttctgaaataaatatctgtaataagaaatagccctcgccgcttccctctacaggaatggcgaagg- gct gtcggtttcgacatggttggccatcgtatgatggccttttttgtgcttatcgcgatgattttcgctgcgctatc- agg gtaaatttatagtcatcggtattaaaagcgttgcggctatattcaaacacccgaccatcaactaaatatccacg- cga tactttttcaagaatcggctttgtctggctgatattaagcagacggctcatctcttcggttggcatcagaggaa- tga tttcctgttcgctacgatcgataaccattttcttcacttcttcgataaagtgatatttcgaattttccatgacc- tgc caggtgagatccgggaacaacgcaagcggcatccaggtttcttccagcgccattggcttttgcttgcgatagcg- cac gcgcttcacatgccacacacgatcctgcggggtgatttgtagctgttgctgaagaaaatcgtcagccggaatca- ctt cgaatatcagaacttcactgtgtgtatcgacgtgacggtccgacagtttttcatcaaaactggttaactgaaaa- ata tcgtaattgacccgctcttctttgacgtaagtcccgctgccctgaatgctttcgaggatctgctgctcgactag- ctg gcgcaaagcctgacgcaccgtaacccggctgacgccaaactctgtttgtagcgctgattcagtgggtaacgcat- cgc caggtttaagctcgccacgcgcaatttgttcacgaatgcgatcggcaatctgccggtataagggcttgtgtccc- att tttagtatctcattaatacgaatttaaccattatgcccgataaattcatcctgtaaataatacaaatacaatac- aaa taatttcaatcaagtgaaattgatcacataatggtattgttttatcg SEQ ID NO: 4. Sequence of Plasmid pDVK-SucAD, used for testing plasmid retention in nonselective media ccacccatctgggtttgccggtatttaataccgtgcgtgaggcggttgccgcaaccggtgccacggcttcagtt- atc tatgttcctgccccattttgtaaagattcaattctggaagctattgatgcgggcatcaaattgattattacgat- tac cgaaggtatccctacgctggatatgttgacggttaaagtgaaacttgatgaagcgggggtacgcatgattggtc- cga attgtccgggcgttattactccaggtgagtgcaaaattggtattcagccgggtcatattcacaaacctgggaaa-
gtc ggaattgtgtctcgttctggcactctgacgtatgaggcagttaaacagaccacagattatggctttgggcagag- tac ctgtgtcggcatcggaggcgatcctattccggggagtaattttatcgatattctggaaatgtttgagaaagatc- cgc agaccgaggcaatcgtcatgattggcgagattggcggttccgcggaagaagaagctgcagcctatatcaaagaa- cat gtcacaaaaccggtagtgggctatatcgcgggagtcacggccccaaaaggtaaacgtatgggccatgccggagc- gat catcgcgggcggcaaaggcactgcagatgaaaaatttgcagcccttgaggccgctggcgtaaaaacggtccgtt- ccc ttgctgatattggtgaagcactgaaaaccgtgttgaaataaAGGTccaggcatcaaataaaacgaaaggctcag- tcg aaagactgggcctttcgttttatctgttgtttgtcggtgaacgctctctactagagtcacactggctcaccttc- ggg tgggcctttctgcgtttatatgccatgtcttctactagtagcggccgctgcagtccggcaaaaaagggcaaggt- gtc accaccctgccctttttctttaaaaccgaaaagattacttcgcgttatgcaggcttcctcgctcactgactcgc- tgc gctcggtcgttcggctgcggcgagcggtatcagctcactcaaaggcggtaatacggttatccacagaatcaggg- gat aacgcaggaaagaacatgtgagcaaaaggccagcaaaaggccaggaaccgtaaaaaggccgcgttgctggcgtt- ttt ccacaggctccgcccccctgacgagcatcacaaaaatcgacgctcaagtcagaggtggcgaaacccgacaggac- tat aaagataccaggcgtttccccctggaagctccctcgtgcgctctcctgttccgaccctgccgcttaccggatac- ctg tccgcctttctcccttcgggaagcgtggcgctttctcatagctcacgctgtaggtatctcagttcggtgtaggt- cgt tcgctccaagctgggctgtgtgcacgaaccccccgttcagcccgaccgctgcgccttatccggtaactatcgtc- ttg agtccaacccggtaagacacgacttatcgccactggcagcagccactggtaacaggattagcagagcgaggtat- gta ggcggtgctacagagttcttgaagtggtggcctaactacggctacactagaagaacagtatttggtatctgcgc- tct gctgaagccagttaccttcggaaaaagagttggtagctcttgatccggcaaacaaaccaccgctggtagcggtg- gtt tttttgtttgcaagcagcagattacgcgcagaaaaaaaggatctcaagaagatcctttgatcttttctacgggg- tct gacgctcagtggaacgaaaactcacgttaagggattttggtcatgagattatcaaaaaggatcttcacctagat- cct tttaaattaaaaatgaagttttaaatcaatctaaagtatatatgagtaaacttggtctgacagctcgagtcccg- tca agtcagcgtaatgctctgccagtgttacaaccaattaaccaattctgattagaaaaactcatcgagcatcaaat- gaa actgcaatttattcatatcaggattatcaataccatatttttgaaaaagccgtttctgtaatgaaggagaaaac- tca ccgaggcagttccataggatggcaagatcctggtatcggtctgcgattccgactcgtccaacatcaatacaacc- tat taatttcccctcgtcaaaaataaggttatcaagtgagaaatcaccatgagtgacgactgaatccggtgagaatg- gca aaagcttatgcatttctttccagacttgttcaacaggccagccattacgctcgtcatcaaaatcactcgcatca- acc aaaccgttattcattcgtgattgcgcctgagcgagacgaaatacgcgatcgctgttaaaaggacaattacaaac- agg aatcgaatgcaaccggcgcaggaacactgccagcgcatcaacaatattttcacctgaatcaggatattcttcta- ata cctggaatgctgttttcccggggatcgcagtggtgagtaaccatgcatcatcaggagtacggataaaatgcttg- atg gtcggaagaggcataaattccgtcagccagtttagtctgaccatctcatctgtaacatcattggcaacgctacc- ttt gccatgtttcagaaacaactctggcgcatcgggcttcccatacaatcgatagattgtcgcacctgattgcccga- cat tatcgcgagcccatttatacccatataaatcagcatccatgttggaatttaatcgcggcctggagcaagacgtt- tcc cgttgaatatggctcataacaccccttgtattactgtttatgtaagcagacagttttattgttcatgatgatat- att tttatcttgtgcaatgtaacatcagagattttgagacacaacgtggctttgttgaataaatcgaacttttgctg- agt tgaaggatcagctcgagtgccacctgacgtctaagaaaccattattatcatgacattaacctataaaaataggc- gta tcacgaggcagaatttcagataaaaaaaatccttagctttcgctaaggatgatttctggaattcgcggccgctt- cta gagactagtggaagacatCGCTttgacagctagctcagtcctaggtactgtgctagcTACTttaaactccccga- gca atagtaatgcagaactcagcattgaaagcatggcttgatagctcctatttatcaggtgctaaccagagctggat- tga acagctgtatgaagattttctgacagatccggattcagtggatgcgaattggcgcagcacttttcagcagttgc- ctg gcaccggtgtaaaaccggatcagtttcattcccagacgcgggagtattttcgtcgtctggcgaaagatgcgagc- cgg tattcaagtacaatttctgatccggatacgaatgtaaaacaggtgaaagtgcttcagttaattaatgcgtatcg- ctt tagaggccatcagcatgcgaatctggatccgctgggcttatggcagcaggataaagtcgcggatctggatccaa- gtt ttcacgatttaacggaagctgattttcaggaaacctttaacgtcggctcattcgcaagtgggaaagaaacaatg- aaa ctgggcgaacttcttgaggcgctgaaacagacttattgtggccctattggtgcggaatatatgcatattacctc- aac tgaagagaaacgttggattcagcagagaatcgagagtggccgcgcgacttttaactccgaagaaaaaaaaagat- tcc tgtcagaactgacagccgcggaaggcttagagcggtatttgggtgccaaattcccaggagcaaaacggttcagc- ctg gagggcggtgatgcgctgatcccgatgctgaaagaaatgattcggcatgcgggaaatagcggaactcgggaagt- ggt gttaggaatggcacaccgcggccgtttgaatgtactggttaacgtattaggaaaaaaacctcaggatttatttg- atg agttcgcgggaaaacataaagaacatctgggcactggtgatgtcaaatatcacatgggcttctcaagtgatttt- cag acggatggaggtctggttcacctggcactggcatttaatccttctcatctggaaatcgtaagtccggtcgttat- tgg ttccgtgcgcgctcgcttagatcggttagatgaacctagctcaaacaaagttttaccaatcacgatccatgggg- atg cagctgttaccggacagggtgttgtgcaggagactttgaatatgtccaaagcgcgcgggtatgaggtgggtggt- acg gtgcgtattgttatcaataatcaggtgggttttacaaccagtaaccctctggatgctcgctctacgccgtattg- cac tgatattggtaaaatggtgcaggcaccaatttttcacgtcaatgccgatgatccggaagctgttgcctttgtta- cgc gcctggctctggattttcgtaacactttcaaacgtgatgtatttatcgatttagtatgctatcgtcgtcatggt- cat aatgaggctgatgaacctagcgctacccagccactgatgtatcagaaaattaaaaaacatcctacccctcgtaa- aat ttatgcggataaactggagcaggaaaaagtggctactcttgaagatgctactgaaatggtcaatctttatcggg- atg cattggatgcgggtgattgcgtggtcgcggaatggcgcccgatgaatatgcattcatttacttggtcaccgtat- tta aatcatgagtgggatgaggaatatccgaataaagtggagatgaaacgcctgcaggaattagcaaaacgtattag- cac agtacctgaagcggttgagatgcagtctagagttgccaaaatctatggagatcgccaggccatggcagcagggg- aaa aactttttgattgggggggagccgaaaacctggcatatgcgacgctggtagatgagggcattccggtgcgcctt- tct ggtgaagattctgggcgcggtactttttttcatcggcacgctgttattcataaccagtctaacggtagtactta- tac tccgctgcagcacatccacaatggtcagggtgcgttccgtgtatgggattccgtgctgagtgaagaagcggttc- ttg cgtttgagtatgggtatgcaactgccgagccacgcacgctgacgatctgggaagcccagtttggcgattttgca- aat ggtgcccaggtggtaatcgatcagtttattagctccggcgaacagaaatgggggcggatgtgtggtttagttat- gtt gttaccgcatggctatgaaggtcagggacctgagcacagctcagcgcgcctggaacgctatcttcagctgtgtg- cgg aacagaacatgcaggtatgcgttccttccacgccggctcaggtttatcatatgttaagacgtcaggccttgcgc- ggt atgcggcgcccgttggtcgtgatgtccccgaaaagtttactgcgccatccgttagcagttagcagcctggagga- act ggcaaacggtacgttcttgccagctatcggcgaaatcgatgaactggatcctaaaggggtgaaacgcgttgtta- tgt gttctggtaaagtgtattatgatcttttggaacagcgtcgcaaaaataatcagcacgatgtagctattgtgcgg- atc gagcagctgtatccgttcccgcacaaagcaatgcaggaagtgctgcagcagttcgcacatgtcaaagattttgt- ctg gtgtcaggaggaaccgcttaatcagggggcctggtattgtagtcagcaccatttccgggaggtgatcccgtttg- ggg cgtccttacggtatgctggtcgccctgcctccgcaagtccggccgtgggatatatgagcgttcaccagaaacag- cag caggatttggtgaatgatgctttgaatgtggaatgaatgtccatcctgatcgacaaaaacactaaagtaatttg- tca gggctttaccggttcccagggcacatttcactcagagcaggccatcgcttatgggaccaaaatggtgggtggtg- taa cgcctggtaaaggaggca SEQ ID NO: 5. Sequence of Plasmid pDVK-SucABCD, used for testing plasmid retention in nonselective media ccggcgaaagagtctgctccggcagcggctgctccggcggcgcaaccggctctggctgcacgtagtgaaaaacg- tgt cccgatgactcgcctgcgtaagcgtgtggcagagcgtctgctggaagcgaaaaactccaccgccatgctgacca- cgt tcaacgaagtcaacatgaagccgattatggatctgcgtaagcagtacggtgaagcgtttgaaaaacgccacggc- atc cgtctgggctttatgtccttctacgtgaaagcggtggttgaagccctgaaacgttacccggaagtgaacgcttc- tat cgacggcgatgacgtggtttaccacaactatttcgacgtcagcatggcggtttctacgccgcgcggcctggtga- cgc cggttctgcgtgatgtcgataccctcggcatggcagacatcgagaagaaaatcaaagagctggcagtcaaaggc- cgt gacggcaagctgaccgttgaagatctgaccggtggtaacttcaccatcaccaacggtggtgtgttcggttccct- gat gtctacgccgatcatcaacccgccgcagagcgcaattctgggtatgcacgctatcaaagatcgtccgatggcgg- tga atggtcaggttgagatcctgccgatgatgtacctggcgctgtcctacgatcaccgtctgatcgatggtcgcgaa- tcc gtgggcttcctggtaacgatcaaagagttgctggaagatccgacgcgtctgctgctggacgtgtagtagtttaa- gtt tcacctgcactgtagaccggataaggcattatcgccttctccggcaattgaagcctgatgcgacgctgacgcgt- ctt atcaggcctacgggaccaccaatgtaggtcggataaggcgcaagcgccgcatccgacaagcgatgcctgatgtg- acg tttaacgtgtcttatcaggcctacgggtgaccgacaatgcccggaagcgatacgaaatattcGGTCTACGGTTT- AAA AGATAACGATTACTGAAGGATGGACAGAACACatgaacttacatgaatatcaggcaaaacaactttttgcccgc- tat ggcttaccagcaccggtgggttatgcctgtactactccgcgcgaagcagaagaagccgcttcaaaaatcggtgc- cgg tccgtgggtagtgaaatgtcaggttcacgctggtggccgcggtaaagcgggcggtgtgaaagttgtaaacagca- aaG AGgacatccgtgcttttgcagaaaactggctgggcaagcgtctggtaacgtatcaaacagatgccaatggccaa- ccg gttaaccagattctggttgaagcagcgaccgatatcgctaaagagctgtatctcggtgccgttgttgaccgtag- ttc ccgtcgtgtggtctttatggcctccaccgaaggcggcgtggaaatcgaaaaagtggcggaagaaactccgcacc- tga tccataaagttgcgcttgatccgctgactggcccgatgccgtatcagggacgcgagctggcgttcaaactgggt- ctg gaaggtaaactggttcagcagttcaccaaaatcttcatgggcctggcgaccattttcctggagcgcgacctggc- gtt gatcgaaatcaacccgctggtcatcaccaaacagggcgatctgatttgcctcgacggcaaactgggcgctgacg- gca acgcactgttccgccagcctgatctgcgcgaaatgcgtgaccagtcgcaggaagatccgcgtgaagcacaggct- gca cagtgggaactgaactacgttgcgctggacggtaacatcggttgtatggttaacggcgcaggtctggcgatggg- tac gatggacatcgttaaactgcacggcggcgaaccggctaacttccttgacgttggcggcggcgcaaccaaagaac- gtg taaccgaagcgttcaaaatcatcctctctgacgacaaagtgaaagccgttctggttaacatcttcggcggtatc- gtt cgttgcgacctgatcgctgacggtatcatcggcgcggtagcagaagtgggtgttaacgtaccggtcgtggtacg- tct ggaaggtaacaacgccgaactcggcgcgaagaaactggctgacagcggcctgaatattattgcagcaaaaggtc- tga cggatgcagctcagcaggttgttgccgcagtggaggggaaataatgtccattttaatcgataaaaacaccaagg- tta tctgccagggctttaccggtagccaggggactttccactcagaacaggccattgcatacggcactaaaatggtt- ggc ggcgtaaccccaggtaaaggcggcaccacccacctcggcctgccggtgttcaacaccgtgcgtgaagccgttgc- tgc cactggcgctaccgcttctgttatctacgtaccagcaccgttctgcaaagactccattctggaagccatcgacg- cag gcatcaaactgattatcaccatcactgaaggcatcccgacgctggatatgctgaccgtgaaagtgaagctggat- gaa gcaggcgttcgtatgatcggcccgaactgcccaggcgttatcactccgggtgaatgcaaaatcggtatccagcc- tgg tcacattcacaaaccgggtaaagtgggtatcgtttcccgttccggtacactgacctatgaagcggttaaacaga- cca cggattacggtttcggtcagtcgacctgtgtcggtatcggcggtgacccgatcccgggctctaactttatcgac- att ctcgaaatgttcgaaaaagatccgcagaccgaagcgatcgtgatgatcggtgagatcggcggtagcgctgaaga- aga agcagctgcgtacatcaaagagcacgttaccaagccagttgtgggttacatcgctggtgtgactgcgccgaaag- gca aacgtatgggccacgcgggtgccatcattgccggtgggaaagggactgcggatgagaaattcgctgctctggaa- gcc gcaggcgtgaaaaccgttcgcagcctggcggatatcggtgaagcactgaaaactgttctgaaataaaggtccag- gca tcaaataaaacgaaaggctcagtcgaaagactgggcctttcgttttatctgttgtttgtcggtgaacgctctct- act agagtcacactggctcaccttcgggtgggcctttctgcgtttatatgccatgtcttctactagtagcggccgct- gca gtccggcaaaaaagggcaaggtgtcaccaccctgccctttttctttaaaaccgaaaagattacttcgcgttatg- cag gcttcctcgctcactgactcgctgcgctcggtcgttcggctgcggcgagcggtatcagctcactcaaaggcggt- aat acggttatccacagaatcaggggataacgcaggaaagaacatgtgagcaaaaggccagcaaaaggccaggaacc- gta aaaaggccgcgttgctggcgtttttccacaggctccgcccccctgacgagcatcacaaaaatcgacgctcaagt- cag aggtggcgaaacccgacaggactataaagataccaggcgtttccccctggaagctccctcgtgcgctctcctgt- tcc gaccctgccgcttaccggatacctgtccgcctttctcccttcgggaagcgtggcgctttctcatagctcacgct-
gta ggtatctcagttcggtgtaggtcgttcgctccaagctgggctgtgtgcacgaaccccccgttcagcccgaccgc- tgc gccttatccggtaactatcgtcttgagtccaacccggtaagacacgacttatcgccactggcagcagccactgg- taa caggattagcagagcgaggtatgtaggcggtgctacagagttcttgaagtggtggcctaactacggctacacta- gaa gaacagtatttggtatctgcgctctgctgaagccagttaccttcggaaaaagagttggtagctcttgatccggc- aaa caaaccaccgctggtagcggtggtttttttgtttgcaagcagcagattacgcgcagaaaaaaaggatctcaaga- aga tcctttgatcttttctacggggtctgacgctcagtggaacgaaaactcacgttaagggattttggtcatgagat- tat caaaaaggatcttcacctagatccttttaaattaaaaatgaagttttaaatcaatctaaagtatatatgagtaa- act tggtctgacagctcgagtcccgtcaagtcagcgtaatgctctgccagtgttacaaccaattaaccaattctgat- tag aaaaactcatcgagcatcaaatgaaactgcaatttattcatatcaggattatcaataccatatttttgaaaaag- ccg tttctgtaatgaaggagaaaactcaccgaggcagttccataggatggcaagatcctggtatcggtctgcgattc- cga ctcgtccaacatcaatacaacctattaatttcccctcgtcaaaaataaggttatcaagtgagaaatcaccatga- gtg acgactgaatccggtgagaatggcaaaagcttatgcatttctttccagacttgttcaacaggccagccattacg- ctc gtcatcaaaatcactcgcatcaaccaaaccgttattcattcgtgattgcgcctgagcgagacgaaatacgcgat- cgc tgttaaaaggacaattacaaacaggaatcgaatgcaaccggcgcaggaacactgccagcgcatcaacaatattt- tca cctgaatcaggatattcttctaatacctggaatgctgttttcccggggatcgcagtggtgagtaaccatgcatc- atc aggagtacggataaaatgcttgatggtcggaagaggcataaattccgtcagccagtttagtctgaccatctcat- ctg taacatcattggcaacgctacctttgccatgtttcagaaacaactctggcgcatcgggcttcccatacaatcga- tag attgtcgcacctgattgcccgacattatcgcgagcccatttatacccatataaatcagcatccatgttggaatt- taa tcgcggcctggagcaagacgtttcccgttgaatatggctcataacaccccttgtattactgtttatgtaagcag- aca gttttattgttcatgatgatatatttttatcttgtgcaatgtaacatcagagattttgagacacaacgtggctt- tgt tgaataaatcgaacttttgctgagttgaaggatcagctcgagtgccacctgacgtctaagaaaccattattatc- atg acattaacctataaaaataggcgtatcacgaggcagaatttcagataaaaaaaatccttagctttcgctaagga- tga tttctggaattcgcggccgcttctagagactagtggaagacatcgctaccgtaggcctgataagacgcgcaagc- gtc gcatcaggcaaccagtgccggatgcggcgtgaacgccttatccggcctacaagtcattacccgtaggcctgata- agc gcagcgcatcaggcgtaacaaagaaatgcaggaaatctttaaaaactgcccctgacactaagacagtttttaaa- ggt tccttcgcgagccactacgtagacaagagctcgcaagtgaaccccggcacgcacatcactgtgcgtggtagtat- cca cggcgaagtaagcataaaaaagatgcttaagggatcacgAATGcagaacagcgctttgaaagcctggttggact- ctt cttacctctctggcgcaaaccagagctggatagaacagctctatgaaGATttcttaaccgatcctgactcggtt- gac gctaactggcgttcgacgttccagcagttacctggtacgggagtcaaaccggatcaattccactctcaaacgcg- tga atatttccgccgcctggcgaaagacgcttcacgttactcttcaacgatctccgaccctgacaccaatgtgaagc- agg ttaaagtcctgcagctcattaacgcataccgcttccgtggtcaccagcatgcgaatctcgatccgctgggactg- tgg cagcaagataaagtggccgatctggatccgtctttccacgatctgaccgaagcagacttccaggagACTttcaa- cgt cggttcatttgccagcggcaaagaaaccatgaaactcggcgagctgctggaagccctcaagcaaacctactgcg- gcc cgattggtgccgagtatatgcacattaccagcaccgaagaaaaacgctggatccaacagcgtatcgagtctggt- cgc gcgactttcaatagcgaagagaaaaaacgcttcttaagcgaactgaccgccgctgaaggtcttgaacgttacct- cgg cgcaaaattccctggcgcaaaacgcttctcgctggaaggcggtgacgcgttaatcccgatgcttaaagagatga- tcc gccacgctggcaacagcggcacccgcgaagtggttctcgggatggcgcaccgtggtcgtctgaacgtgctggtg- aac gtgctgggtaaaaaaccgcaagacttgttcgacgagttcgccggtaaacataaagaacacctcggcacgggtga- cgt gaaataccacatgggcttctcgtctgacttccagaccgatggcggcctggtgcacctggcgctggcgtttaacc- cgt ctcaccttgagattgtaagcccggtagttatcggttctgttcgtgcccgtctggacagacttgatgagccgagc- agc aacaaagtgctgccaatcaccatccacggtgacgccgcagtgaccgggcagggcgtggttcaggaaaccctgaa- cat gtcgaaagcgcgtggttatgaagttggcggtacggtacgtatcgttatcaacaaccaggttggtttcaccacct- cta atccgctggatgcccgttctacgccgtactgtactgatatcggtaagatggttcaggccccgattttccacgtt- aac gcggacgatccggaagccgttgcctttgtgacccgtctggcgctcgatttccgtaacacctttaaacgtgatGT- Ttt catcgacctggtgtgctaccgccgtcacggccacaacgaagccgacgagccgagcgcaacccagccgctgatgt- atc agaaaatcaaaaaacatccgacaccgcgcaaaatctacgctgacaagctggagcaggaaaaagtggcgacgctg- gaa gatgccaccgagatggttaacctgtaccgcgatgcgctggatgctggcgattgcgtagtggcagagtggcgtcc- gat gaacatgcactctttcacctggtcgccgtacctcaaccacgaatgggacgaagagtacccgaacaaagttgaga- tga agcgcctgcaggagctggcgaaacgcatcagcacggtgccggaagcagttgaaatgcagtctcgcgttgccaag- att tatggcgatcgccaggcgatggctgccggtgagaaactgttcgactggggcggtgcggaaaacctcgcttacgc- cac gctggttgatgaaggcattccggttcgcctgtcgggtGAGgactccggtcgcggtaccttcttccaccgccacg- cgg tgatccacaaccagtctaacggttccacttacacgccgctgcaacatatccataacgggcagggcgcgttccgt- gtc tgggactccgtactgtctgaagaagcagtgctggcgtttgaatatggttatgccaccgcagaaccacgcactct- gac catctgggaagcgcagttcggtgacttcgccaacggtgcgcaggtggttatcgaccagttcatctcctctggcg- aac agaaatggggccggatgtgtggtctggtgatgttgctgccgcacggttacgaagggcaggggccggagcactcc- tcc gcgcgtctggaacgttatctgcaactttgtgctgagcaaaacatgcaggtttgcgtaccgtctaccccggcaca- ggt ttaccacatgctgcgtcgtcaggcgctgcgcgggatgcgtcgtccgctggtcgtgatgtcgccgaaatccctgc- tgc gtcatccgctggcggtttccagcctcgaagaactggcgaacggcaccttcctgccagccatcggtgaaatcgac- gag cttgatccgaagggcgtgaagcgcgtagtgatgtgttctggtaaggtttattacgacctgctggaacagcgtcg- taa gaacaatcaacacgatgtcgccattgtgcgtatcgagcaactctacccgttcccgcataaagcgatgcaggaag- tgt tgcagcagtttgctcacgtcaaggattttgtctggtgccaggaagagccgctcaaccagggcgcatggtactgc- agc cagcatcatttccgtgaagtgattccgtttggggcttctctgcgttatgcaggccgcccggcctccgcctctcc- ggc ggtagggtatatgtccgttcaccagaaacagcaacaagatctggttaatgacgcgctgaacgtcgaataaataa- agg atacacaatgagtagcgtagatattctggtccctgacctgcctgaatccgtagccgatgccaccgtcgcaacct- ggc ataaaaaacccggcgacgcagtcgtacgtgatgaagtgctggtagaaatcgaaactgacaaagtggtactggaa- gta ccggcatcagcagacggcattctggatgcggttctggaagatgaaggtacaacggtaacgtctcgtcagatcct- tgg tcgcctgcgtgaaggcaacagcgccggtaaagaaaccagcgccaaatctgaagagaaagcgtccactccggcgc- aac gccagcaggcgtctctggaagagcaaaacaacgatgcgttaagcccggcgatccgtcgcctgctggctgaacac- aat ctcgacgccagcgccattaaaggcaccggtgtgggtggtcgtctgactcgtgaagatgtggaaaaacatctggc- gaa agcc SEQ ID NO: 6. Sequence of the pDvS vector, designed for facile cloning with a modular cloning system. It contains the sucAD gene pair instead of an antibiotic resistance marker. cgcgttgctggcgtttttccacaggctccgcccccctgacgagcatcacaaaaatcgacgctcaagtcagaggt- ggc gaaacccgacaggactataaagataccaggcgtttccccctggaagctccctcgtgcgctctcctgttccgacc- ctg ccgcttaccggatacctgtccgcctttctcccttcgggaagcgtggcgctttctcatagctcacgctgtaggta- tct cagttcggtgtaggtcgttcgctccaagctgggctgtgtgcacgaaccccccgttcagcccgaccgctgcgcct- tat ccggtaactatcgtcttgagtccaacccggtaagacacgacttatcgccactggcagcagccactggtaacagg- att agcagagcgaggtatgtaggcggtgctacagagttcttgaagtggtggcctaactacggctacactagaagaac- agt atttggtatctgcgctctgctgaagccagttaccttcggaaaaagagttggtagctcttgatccggcaaacaaa- cca ccgctggtagcggtggtttttttgtttgcaagcagcagattacgcgcagaaaaaaaggatctcaagaagatcct- ttg atcttttctacggggtctgacgctcagtggaacgaaaactcacgttaagggattttggtcatgagattatcaaa- aag gatcttcacctagatccttttaaattaaaaatgaagttttaaatcaatctaaagtatatatgagtaaacttggt- ctg acagctcgagtttacggctagctcagtcctaggtatagtgctagcTACTtgttagaaaagagaagcacgtaatg- cag aactcagcattgaaagcatggcttgatagctcctatttatcaggtgctaaccagagctggattgaacagctgta- tga agattttctgacagatccggattcagtggatgcgaattggcgcagcacttttcagcagttgcctggcaccggtg- taa aaccggatcagtttcattcccagacgcgggagtattttcgtcgtctggcgaaagatgcgagccggtattcaagt- aca atttctgatccggatacgaatgtaaaacaggtgaaagtgcttcagttaattaatgcgtatcgctttagaggcca- tca gcatgcgaatctggatccgctgggcttatggcagcaggataaagtcgcggatctggatccaagttttcacgatt- taa cggaagctgattttcaggaaacctttaacgtcggctcattcgcaagtgggaaagaaacaatgaaactgggcgaa- ctt cttgaggcgctgaaacagacttattgtggccctattggtgcggaatatatgcatattacctcaactgaagagaa- acg ttggattcagcagagaatcgagagtggccgcgcgacttttaactccgaagaaaaaaaaagattcctgtcagaac- tga cagccgcggaaggcttagagcggtatttgggtgccaaattcccaggagcaaaacggttcagcctggagggcggt- gat gcgctgatcccgatgctgaaagaaatgattcggcatgcgggaaatagcggaactcgggaagtggtgttaggaat- ggc acaccgcggccgtttgaatgtactggttaacgtattaggaaaaaaacctcaggatttatttgatgagttcgcgg- gaa aacataaagaacatctgggcactggtgatgtcaaatatcacatgggcttctcaagtgattttcagacggatgga- ggt ctggttcacctggcactggcatttaatccttctcatctggaaatcgtaagtccggtcgttattggttccgtgcg- cgc tcgcttagatcggttagatgaacctagctcaaacaaagttttaccaatcacgatccatggggatgcagctgtta- ccg gacagggtgttgtgcaggagactttgaatatgtccaaagcgcgcgggtatgaggtgggtggtacggtgcgtatt- gtt atcaataatcaggtgggttttacaaccagtaaccctctggatgctcgctctacgccgtattgcactgatattgg- taa aatggtgcaggcaccaatttttcacgtcaatgccgatgatccggaagctgttgcctttgttacgcgcctggctc- tgg attttcgtaacactttcaaacgtgatgtatttatcgatttagtatgctatcgtcgtcatggtcataatgaggct- gat gaacctagcgctacccagccactgatgtatcagaaaattaaaaaacatcctacccctcgtaaaatttatgcgga- taa actggagcaggaaaaagtggctactcttgaagatgctactgaaatggtcaatctttatcgggatgcattggatg- cgg gtgattgcgtggtcgcggaatggcgcccgatgaatatgcattcatttacttggtcaccgtatttaaatcatgag- tgg gatgaggaatatccgaataaagtggagatgaaacgcctgcaggaattagcaaaacgtattagcacagtacctga- agc ggttgagatgcagtctagagttgccaaaatctatggagatcgccaggccatggcagcaggggaaaaactttttg- att gggggggagccgaaaacctggcatatgcgacgctggtagatgagggcattccggtgcgcctttctggtgaagat- tct gggcgcggtactttttttcatcggcacgctgttattcataaccagtctaacggtagtacttatactccgctgca- gca catccacaatggtcagggtgcgttccgtgtatgggattccgtgctgagtgaagaagcggttcttgcgtttgagt- atg ggtatgcaactgccgagccacgcacgctgacgatctgggaagcccagtttggcgattttgcaaatggtgcccag- gtg gtaatcgatcagtttattagctccggcgaacagaaatgggggcggatgtgtggtttagttatgttgttaccgca- tgg ctatgaaggtcagggacctgagcacagctcagcgcgcctggaacgctatcttcagctgtgtgcggaacagaaca- tgc aggtatgcgttccttccacgccggctcaggtttatcatatgttaagacgtcaggccttgcgcggtatgcggcgc- ccg ttggtcgtgatgtccccgaaaagtttactgcgccatccgttagcagttagcagcctggaggaactggcaaacgg- tac gttcttgccagctatcggcgaaatcgatgaactggatcctaaaggggtgaaacgcgttgttatgtgttctggta- aag tgtattatgatcttttggaacagcgtcgcaaaaataatcagcacgatgtagctattgtgcggatcgagcagctg- tat ccgttcccgcacaaagcaatgcaggaagtgctgcagcagttcgcacatgtcaaagattttgtctggtgtcagga- gga accgcttaatcagggggcctggtattgtagtcagcaccatttccgggaggtgatcccgtttggggcgtccttac- ggt atgctggtcgccctgcctccgcaagtccggccgtgggatatatgagcgttcaccagaaacagcagcaggatttg- gtg aatgatgctttgaatgtggaatgaatgtccatcctgatcgacaaaaacactaaagtaatttgtcagggctttac- cgg ttcccagggcacatttcactcagagcaggccatcgcttatgggaccaaaatggtgggtggtgtaacgcctggta- aag gaggcaccacccatctgggtttgccggtatttaataccgtgcgtgaggcggttgccgcaaccggtgccacggct- tca gttatctatgttcctgccccattttgtaaagattcaattctggaagctattgatgcgggcatcaaattgattat- tac gattaccgaaggtatccctacgctggatatgttgacggttaaagtgaaacttgatgaagcgggggtacgcatga- ttg gtccgaattgtccgggcgttattactccaggtgagtgcaaaattggtattcagccgggtcatattcacaaacct-
ggg aaagtcggaattgtgtctcgttctggcactctgacgtatgaggcagttaaacagaccacagattatggctttgg- gca gagtacctgtgtcggcatcggaggcgatcctattccggggagtaattttatcgatattctggaaatgtttgaga- aag atccgcagaccgaggcaatcgtcatgattggcgagattggcggttccgcggaagaagaagctgcagcctatatc- aaa gaacatgtcacaaaaccggtagtgggctatatcgcgggagtcacggccccaaaaggtaaacgtatgggccatgc- cgg agcgatcatcgcgggcggcaaaggcactgcagatgaaaaatttgcagcccttgaggccgctggcgtaaaaacgg- tcc gttcccttgctgatattggtgaagcactgaaaaccgtgttgaaataaAGGTccaggcatcaaataaaacgaaag- gct cagtcgaaagactgggcctttcgttttatctgttgtttgtcggtgaacgctctctactagagtcacactggctc- acc ttcgggtgggcctttctgcgtttatactcgagtgccacctgacgtctaagaaaccattattatcatgacattaa- cct ataaaaataggcgtatcacgaggcagaatttcagataaaaaaaatccttagctttcgctaaggatgatttctgg- aat tcgcggccgcttctagagactagtggaagacatcgctagagacctgcaccatatgcggtgtgaaataccgcaca- gat gcgtaaggagaaaataccgcatcaggcgccattcgccattcaggctgcgcaactgttgggaagggcgatcggtg- cgg gcctcttcgctattacgccagctggcgaaagggggatgtgctgcaaggcgattaagttgggtaacgccagggtt- ttc ccagtcacgacgttgtaaaacgacggccagtgaattcgagctcggtacccggggatcctctagagtcgacctgc- agg catgcaagcttggcgtaatcatggtcatagctgtttcctgtgtgaaattgttatccgctcacaattccacacaa- cat acgagccggaagcataaagtgtaaagcctggggtgcctaatgagtgagctaactcacattaattgcgttgcgct- cac tgcccgctttccagtcgggaaacctgtcgtgccagctgcattaatgaatcggccaacgcgcgggggtttataaa- atc ccgtcaagtcagcgtaatgctctgccagtgttacaaccaattaaccaattctgattagaaaaactcatcgagca- tca aatgaaactgcaatttattcatatcaggattatcaataccatatttttgaaaaagccgtttctgtaatgaagga- gaa aactcaccgaggcagttccataggatggcaagatcctggtatcggtctgcgattccgactcgtccaacatcaat- aca acctattaatttcccctcgtcaaaaataaggttatcaagtgagaaatcaccatgagtgacgactgaatccggtg- aga atggcaaaagcttatgcatttctttccagacttgttcaacaggccagccattacgctcgtcatcaaaatcactc- gca tcaaccaaaccgttattcattcgtgattgcgcctgagcgagacgaaatacgcgatcgctgttaaaaggacaatt- aca aacaggaatcgaatgcaaccggcgcaggaacactgccagcgcatcaacaatattttcacctgaatcaggatatt- ctt ctaatacctggaatgctgttttcccggggatcgcagtggtgagtaaccatgcatcatcaggagtacggataaaa- tgc ttgatggtcggaagaggcataaattccgtcagccagtttagtctgaccatctcatctgtaacatcattggcaac- gct acctttgccatgtttcagaaacaactctggcgcatcgggcttcccatacaatcgatagattgtcgcacctgatt- gcc cgacattatcgcgagcccatttatacccatataaatcagcatccatgttggaatttaatcgcggcctggagcaa- gac gtttcccgttgaatatggctcataacaccccttgtattactgtttatgtaagcagacagttttattgttcatga- tga tatatttttatcttgtgcaatgtaacatcagagattttgagacacaacgtggctttgttgaataaatcgaactt- ttg ctgagttgaaggatcagggtctcttgccatgtcttctactagtagcggccgctgcagtccggcaaaaaagggca- agg tgtcaccaccctgccctttttctttaaaaccgaaaagattacttcgcgttatgcaggcttcctcgctcactgac- tcg ctgcgctcggtcgttcggctgcggcgagcggtatcagctcactcaaaggcggtaatacggttatccacagaatc- agg ggataacgcaggaaagaacatgtgagcaaaaggccagcaaaaggccaggaaccgtaaaaaggc SEQ ID NO: 7. Sequence of the pDvQ vector, designed for facile cloning with a modular cloning system. It contains the entire sucABCD operon including native 5' UTR instead of an antibiotic resistance marker. cgcgttgctggcgtttttccacaggctccgcccccctgacgagcatcacaaaaatcgacgctcaagtcagaggt- ggc gaaacccgacaggactataaagataccaggcgtttccccctggaagctccctcgtgcgctctcctgttccgacc- ctg ccgcttaccggatacctgtccgcctttctcccttcgggaagcgtggcgctttctcatagctcacgctgtaggta- tct cagttcggtgtaggtcgttcgctccaagctgggctgtgtgcacgaaccccccgttcagcccgaccgctgcgcct- tat ccggtaactatcgtcttgagtccaacccggtaagacacgacttatcgccactggcagcagccactggtaacagg- att agcagagcgaggtatgtaggcggtgctacagagttcttgaagtggtggcctaactacggctacactagaagaac- agt atttggtatctgcgctctgctgaagccagttaccttcggaaaaagagttggtagctcttgatccggcaaacaaa- cca ccgctggtagcggtggtttttttgtttgcaagcagcagattacgcgcagaaaaaaaggatctcaagaagatcct- ttg atcttttctacggggtctgacgctcagtggaacgaaaactcacgttaagggattttggtcatgagattatcaaa- aag gatcttcacctagatccttttaaattaaaaatgaagttttaaatcaatctaaagtatatatgagtaaacttggt- ctg acagctcgaggtaggcctgataagacgcgcaagcgtcgcatcaggcaaccagtgccggatgcggcgtgaacgcc- tta tccggcctacaagtcattacccgtaggcctgataagcgcagcgcatcaggcgtaacaaagaaatgcaggaaatc- ttt aaaaactgcccctgacactaagacagtttttaaaggttccttcgcgagccactacgtagacaagagctcgcaag- tga accccggcacgcacatcactgtgcgtggtagtatccacggcgaagtaagcataaaaaagatgcttaagggatca- cgA ATGcagaacagcgctttgaaagcctggttggactcttcttacctctctggcgcaaaccagagctggatagaaca- gct ctatgaaGATttcttaaccgatcctgactcggttgacgctaactggcgttcgacgttccagcagttacctggta- cgg gagtcaaaccggatcaattccactctcaaacgcgtgaatatttccgccgcctggcgaaagacgcttcacgttac- tct tcaacgatctccgaccctgacaccaatgtgaagcaggttaaagtcctgcagctcattaacgcataccgcttccg- tgg tcaccagcatgcgaatctcgatccgctgggactgtggcagcaagataaagtggccgatctggatccgtctttcc- acg atctgaccgaagcagacttccaggagACTttcaacgtcggttcatttgccagcggcaaagaaaccatgaaactc- ggc gagctgctggaagccctcaagcaaacctactgcggcccgattggtgccgagtatatgcacattaccagcaccga- aga aaaacgctggatccaacagcgtatcgagtctggtcgcgcgactttcaatagcgaagagaaaaaacgcttcttaa- gcg aactgaccgccgctgaaggtcttgaacgttacctcggcgcaaaattccctggcgcaaaacgcttctcgctggaa- ggc ggtgacgcgttaatcccgatgcttaaagagatgatccgccacgctggcaacagcggcacccgcgaagtggttct- cgg gatggcgcaccgtggtcgtctgaacgtgctggtgaacgtgctgggtaaaaaaccgcaagacttgttcgacgagt- tcg ccggtaaacataaagaacacctcggcacgggtgacgtgaaataccacatgggcttctcgtctgacttccagacc- gat ggcggcctggtgcacctggcgctggcgtttaacccgtctcaccttgagattgtaagcccggtagttatcggttc- tgt tcgtgcccgtctggacagacttgatgagccgagcagcaacaaagtgctgccaatcaccatccacggtgacgccg- cag tgaccgggcagggcgtggttcaggaaaccctgaacatgtcgaaagcgcgtggttatgaagttggcggtacggta- cgt atcgttatcaacaaccaggttggtttcaccacctctaatccgctggatgcccgttctacgccgtactgtactga- tat cggtaagatggttcaggccccgattttccacgttaacgcggacgatccggaagccgttgcctttgtgacccgtc- tgg cgctcgatttccgtaacacctttaaacgtgatGTTttcatcgacctggtgtgctaccgccgtcacggccacaac- gaa gccgacgagccgagcgcaacccagccgctgatgtatcagaaaatcaaaaaacatccgacaccgcgcaaaatcta- cgc tgacaagctggagcaggaaaaagtggcgacgctggaagatgccaccgagatggttaacctgtaccgcgatgcgc- tgg atgctggcgattgcgtagtggcagagtggcgtccgatgaacatgcactctttcacctggtcgccgtacctcaac- cac gaatgggacgaagagtacccgaacaaagttgagatgaagcgcctgcaggagctggcgaaacgcatcagcacggt- gcc ggaagcagttgaaatgcagtctcgcgttgccaagatttatggcgatcgccaggcgatggctgccggtgagaaac- tgt tcgactggggcggtgcggaaaacctcgcttacgccacgctggttgatgaaggcattccggttcgcctgtcgggt- GAG gactccggtcgcggtaccttcttccaccgccacgcggtgatccacaaccagtctaacggttccacttacacgcc- gct gcaacatatccataacgggcagggcgcgttccgtgtctgggactccgtactgtctgaagaagcagtgctggcgt- ttg aatatggttatgccaccgcagaaccacgcactctgaccatctgggaagcgcagttcggtgacttcgccaacggt- gcg caggtggttatcgaccagttcatctcctctggcgaacagaaatggggccggatgtgtggtctggtgatgttgct- gcc gcacggttacgaagggcaggggccggagcactcctccgcgcgtctggaacgttatctgcaactttgtgctgagc- aaa acatgcaggtttgcgtaccgtctaccccggcacaggtttaccacatgctgcgtcgtcaggcgctgcgcgggatg- cgt cgtccgctggtcgtgatgtcgccgaaatccctgctgcgtcatccgctggcggtttccagcctcgaagaactggc- gaa cggcaccttcctgccagccatcggtgaaatcgacgagcttgatccgaagggcgtgaagcgcgtagtgatgtgtt- ctg gtaaggtttattacgacctgctggaacagcgtcgtaagaacaatcaacacgatgtcgccattgtgcgtatcgag- caa ctctacccgttcccgcataaagcgatgcaggaagtgttgcagcagtttgctcacgtcaaggattttgtctggtg- cca ggaagagccgctcaaccagggcgcatggtactgcagccagcatcatttccgtgaagtgattccgtttggggctt- ctc tgcgttatgcaggccgcccggcctccgcctctccggcggtagggtatatgtccgttcaccagaaacagcaacaa- gat ctggttaatgacgcgctgaacgtcgaataaataaaggatacacaatgagtagcgtagatattctggtccctgac- ctg cctgaatccgtagccgatgccaccgtcgcaacctggcataaaaaacccggcgacgcagtcgtacgtgatgaagt- gct ggtagaaatcgaaactgacaaagtggtactggaagtaccggcatcagcagacggcattctggatgcggttctgg- aag atgaaggtacaacggtaacgtctcgtcagatccttggtcgcctgcgtgaaggcaacagcgccggtaaagaaacc- agc gccaaatctgaagagaaagcgtccactccggcgcaacgccagcaggcgtctctggaagagcaaaacaacgatgc- gtt aagcccggcgatccgtcgcctgctggctgaacacaatctcgacgccagcgccattaaaggcaccggtgtgggtg- gtc gtctgactcgtgaagatgtggaaaaacatctggcgaaagccccggcgaaagagtctgctccggcagcggctgct- ccg gcggcgcaaccggctctggctgcacgtagtgaaaaacgtgtcccgatgactcgcctgcgtaagcgtgtggcaga- gcg tctgctggaagcgaaaaactccaccgccatgctgaccacgttcaacgaagtcaacatgaagccgattatggatc- tgc gtaagcagtacggtgaagcgtttgaaaaacgccacggcatccgtctgggctttatgtccttctacgtgaaagcg- gtg gttgaagccctgaaacgttacccggaagtgaacgcttctatcgacggcgatgacgtggtttaccacaactattt- cga cgtcagcatggcggtttctacgccgcgcggcctggtgacgccggttctgcgtgatgtcgataccctcggcatgg- cag acatcgagaagaaaatcaaagagctggcagtcaaaggccgtgacggcaagctgaccgttgaagatctgaccggt- ggt aacttcaccatcaccaacggtggtgtgttcggttccctgatgtctacgccgatcatcaacccgccgcagagcgc- aat tctgggtatgcacgctatcaaagatcgtccgatggcggtgaatggtcaggttgagatcctgccgatgatgtacc- tgg cgctgtcctacgatcaccgtctgatcgatggtcgcgaatccgtgggcttcctggtaacgatcaaagagttgctg- gaa gatccgacgcgtctgctgctggacgtgtagtagtttaagtttcacctgcactgtagaccggataaggcattatc- gcc ttctccggcaattgaagcctgatgcgacgctgacgcgtcttatcaggcctacgggaccaccaatgtaggtcgga- taa ggcgcaagcgccgcatccgacaagcgatgcctgatgtgacgtttaacgtgtcttatcaggcctacgggtgaccg- aca atgcccggaagcgatacgaaatattcGGTCTACGGTTTAAAAGATAACGATTACTGAAGGATGGACAGAACACa- tga acttacatgaatatcaggcaaaacaactttttgcccgctatggcttaccagcaccggtgggttatgcctgtact- act ccgcgcgaagcagaagaagccgcttcaaaaatcggtgccggtccgtgggtagtgaaatgtcaggttcacgctgg- tgg ccgcggtaaagcgggcggtgtgaaagttgtaaacagcaaaGAGgacatccgtgcttttgcagaaaactggctgg- gca agcgtctggtaacgtatcaaacagatgccaatggccaaccggttaaccagattctggttgaagcagcgaccgat- atc gctaaagagctgtatctcggtgccgttgttgaccgtagttcccgtcgtgtggtctttatggcctccaccgaagg- cgg cgtggaaatcgaaaaagtggcggaagaaactccgcacctgatccataaagttgcgcttgatccgctgactggcc- cga tgccgtatcagggacgcgagctggcgttcaaactgggtctggaaggtaaactggttcagcagttcaccaaaatc- ttc atgggcctggcgaccattttcctggagcgcgacctggcgttgatcgaaatcaacccgctggtcatcaccaaaca- ggg cgatctgatttgcctcgacggcaaactgggcgctgacggcaacgcactgttccgccagcctgatctgcgcgaaa- tgc gtgaccagtcgcaggaagatccgcgtgaagcacaggctgcacagtgggaactgaactacgttgcgctggacggt- aac atcggttgtatggttaacggcgcaggtctggcgatgggtacgatggacatcgttaaactgcacggcggcgaacc- ggc taacttccttgacgttggcggcggcgcaaccaaagaacgtgtaaccgaagcgttcaaaatcatcctctctgacg- aca aagtgaaagccgttctggttaacatcttcggcggtatcgttcgttgcgacctgatcgctgacggtatcatcggc- gcg gtagcagaagtgggtgttaacgtaccggtcgtggtacgtctggaaggtaacaacgccgaactcggcgcgaagaa- act ggctgacagcggcctgaatattattgcagcaaaaggtctgacggatgcagctcagcaggttgttgccgcagtgg- agg ggaaataatgtccattttaatcgataaaaacaccaaggttatctgccagggctttaccggtagccaggggactt- tcc actcagaacaggccattgcatacggcactaaaatggttggcggcgtaaccccaggtaaaggcggcaccacccac- ctc ggcctgccggtgttcaacaccgtgcgtgaagccgttgctgccactggcgctaccgcttctgttatctacgtacc- agc accgttctgcaaagactccattctggaagccatcgacgcaggcatcaaactgattatcaccatcactgaaggca- tcc cgacgctggatatgctgaccgtgaaagtgaagctggatgaagcaggcgttcgtatgatcggcccgaactgccca-
ggc gttatcactccgggtgaatgcaaaatcggtatccagcctggtcacattcacaaaccgggtaaagtgggtatcgt- ttc ccgttccggtacactgacctatgaagcggttaaacagaccacggattacggtttcggtcagtcgacctgtgtcg- gta tcggcggtgacccgatcccgggctctaactttatcgacattctcgaaatgttcgaaaaagatccgcagaccgaa- gcg atcgtgatgatcggtgagatcggcggtagcgctgaagaagaagcagctgcgtacatcaaagagcacgttaccaa- gcc agttgtgggttacatcgctggtgtgactgcgccgaaaggcaaacgtatgggccacgcgggtgccatcattgccg- gtg ggaaagggactgcggatgagaaattcgctgctctggaagccgcaggcgtgaaaaccgttcgcagcctggcggat- atc ggtgaagcactgaaaactgttctgaaataaaggtccaggcatcaaataaaacgaaaggctcagtcgaaagactg- ggc ctttcgttttatctgttgtttgtcggtgaacgctctctactagagtcacactggctcaccttcgggtgggcctt- tct gcgtttatactcgagtgccacctgacgtctaagaaaccattattatcatgacattaacctataaaaataggcgt- atc acgaggcagaatttcagataaaaaaaatccttagctttcgctaaggatgatttctggaattcgcggccgcttct- aga gactagtggaagacatcgctagagacctgcaccatatgcggtgtgaaataccgcacagatgcgtaaggagaaaa- tac cgcatcaggcgccattcgccattcaggctgcgcaactgttgggaagggcgatcggtgcgggcctcttcgctatt- acg ccagctggcgaaagggggatgtgctgcaaggcgattaagttgggtaacgccagggttttcccagtcacgacgtt- gta aaacgacggccagtgaattcgagctcggtacccggggatcctctagagtcgacctgcaggcatgcaagcttggc- gta atcatggtcatagctgtttcctgtgtgaaattgttatccgctcacaattccacacaacatacgagccggaagca- taa agtgtaaagcctggggtgcctaatgagtgagctaactcacattaattgcgttgcgctcactgcccgctttccag- tcg ggaaacctgtcgtgccagctgcattaatgaatcggccaacgcgcgggggtttataaaatcccgtcaagtcagcg- taa tgctctgccagtgttacaaccaattaaccaattctgattagaaaaactcatcgagcatcaaatgaaactgcaat- tta ttcatatcaggattatcaataccatatttttgaaaaagccgtttctgtaatgaaggagaaaactcaccgaggca- gtt ccataggatggcaagatcctggtatcggtctgcgattccgactcgtccaacatcaatacaacctattaatttcc- cct cgtcaaaaataaggttatcaagtgagaaatcaccatgagtgacgactgaatccggtgagaatggcaaaagctta- tgc atttctttccagacttgttcaacaggccagccattacgctcgtcatcaaaatcactcgcatcaaccaaaccgtt- att cattcgtgattgcgcctgagcgagacgaaatacgcgatcgctgttaaaaggacaattacaaacaggaatcgaat- gca accggcgcaggaacactgccagcgcatcaacaatattttcacctgaatcaggatattcttctaatacctggaat- gct gttttcccggggatcgcagtggtgagtaaccatgcatcatcaggagtacggataaaatgcttgatggtcggaag- agg cataaattccgtcagccagtttagtctgaccatctcatctgtaacatcattggcaacgctacctttgccatgtt- tca gaaacaactctggcgcatcgggcttcccatacaatcgatagattgtcgcacctgattgcccgacattatcgcga- gcc catttatacccatataaatcagcatccatgttggaatttaatcgcggcctggagcaagacgtttcccgttgaat- atg gctcataacaccccttgtattactgtttatgtaagcagacagttttattgttcatgatgatatatttttatctt- gtg caatgtaacatcagagattttgagacacaacgtggctttgttgaataaatcgaacttttgctgagttgaaggat- cag ggtctcttgccatgtcttctactagtagcggccgctgcagtccggcaaaaaagggcaaggtgtcaccaccctgc- cct ttttctttaaaaccgaaaagattacttcgcgttatgcaggcttcctcgctcactgactcgctgcgctcggtcgt- tcg gctgcggcgagcggtatcagctcactcaaaggcggtaatacggttatccacagaatcaggggataacgcaggaa- aga acatgtgagcaaaaggccagcaaaaggccaggaaccgtaaaaaggc SEQ ID NO: 8. Sequence of Plasmid pDvS-GFP containing a sequence encoding the green fluorescent protein cloned into the pDvS vector tactgcgccatccgttagcagttagcagcctggaggaactggcaaacggtacgttcttgccagctatcggcgaa- atc gatgaactggatcctaaaggggtgaaacgcgttgttatgtgttctggtaaagtgtattatgatcttttggaaca- gcg tcgcaaaaataatcagcacgatgtagctattgtgcggatcgagcagctgtatccgttcccgcacaaagcaatgc- agg aagtgctgcagcagttcgcacatgtcaaagattttgtctggtgtcaggaggaaccgcttaatcagggggcctgg- tat tgtagtcagcaccatttccgggaggtgatcccgtttggggcgtccttacggtatgctggtcgccctgcctccgc- aag tccggccgtgggatatatgagcgttcaccagaaacagcagcaggatttggtgaatgatgctttgaatgtggaat- gaa tgtccatcctgatcgacaaaaacactaaagtaatttgtcagggctttaccggttcccagggcacatttcactca- gag caggccatcgcttatgggaccaaaatggtgggtggtgtaacgcctggtaaaggaggcaccacccatctgggttt- gcc ggtatttaataccgtgcgtgaggcggttgccgcaaccggtgccacggcttcagttatctatgttcctgccccat- ttt gtaaagattcaattctggaagctattgatgcgggcatcaaattgattattacgattaccgaaggtatccctacg- ctg gatatgttgacggttaaagtgaaacttgatgaagcgggggtacgcatgattggtccgaattgtccgggcgttat- tac tccaggtgagtgcaaaattggtattcagccgggtcatattcacaaacctgggaaagtcggaattgtgtctcgtt- ctg gcactctgacgtatgaggcagttaaacagaccacagattatggctttgggcagagtacctgtgtcggcatcgga- ggc gatcctattccggggagtaattttatcgatattctggaaatgtttgagaaagatccgcagaccgaggcaatcgt- cat gattggcgagattggcggttccgcggaagaagaagctgcagcctatatcaaagaacatgtcacaaaaccggtag- tgg gctatatcgcgggagtcacggccccaaaaggtaaacgtatgggccatgccggagcgatcatcgcgggcggcaaa- ggc actgcagatgaaaaatttgcagcccttgaggccgctggcgtaaaaacggtccgttcccttgctgatattggtga- agc actgaaaaccgtgttgaaataaAGGTccaggcatcaaataaaacgaaaggctcagtcgaaagactgggcctttc- gtt ttatctgttgtttgtcggtgaacgctctctactagagtcacactggctcaccttcgggtgggcctttctgcgtt- tat atcccgtcaagtcagcgtaatgctctgccagtgttacaaccaattaaccaattctgattagaaaaactcatcga- gca tcaaatgaaactgcaatttattcatatcaggattatcaataccatatttttgaaaaagccgtttctgtaatgaa- gga gaaaactcaccgaggcagttccataggatggcaagatcctggtatcggtctgcgattccgactcgtccaacatc- aat acaacctattaatttcccctcgtcaaaaataaggttatcaagtgagaaatcaccatgagtgacgactgaatccg- gtg agaatggcaaaagcttatgcatttctttccagacttgttcaacaggccagccattacgctcgtcatcaaaatca- ctc gcatcaaccaaaccgttattcattcgtgattgcgcctgagcgagacgaaatacgcgatcgctgttaaaaggaca- att acaaacaggaatcgaatgcaaccggcgcaggaacactgccagcgcatcaacaatattttcacctgaatcaggat- att cttctaatacctggaatgctgttttcccggggatcgcagtggtgagtaaccatgcatcatcaggagtacggata- aaa tgcttgatggtcggaagaggcataaattccgtcagccagtttagtctgaccatctcatctgtaacatcattggc- aac gctacctttgccatgtttcagaaacaactctggcgcatcgggcttcccatacaatcgatagattgtcgcacctg- att gcccgacattatcgcgagcccatttatacccatataaatcagcatccatgttggaatttaatcgcggcctggag- caa gacgtttcccgttgaatatggctcataacaccccttgtattactgtttatgtaagcagacagttttattgttca- tga tgatatatttttatcttgtgcaatgtaacatcagagattttgagacacaacgtggctttgttgaataaatcgaa- ctt ttgctgagttgaaggatcagctcgagtgccacctgacgtctaagaaaccattattatcatgacattaacctata- aaa ataggcgtatcacgaggcagaatttcagataaaaaaaatccttagctttcgctaaggatgatttctggaattcg- cgg ccgcttctagagactagtggaagacatcgctggaaagtgaaacgtgatttcatgcgtcattttgaacattttgt- aaa tcttatttaataatgtgtgcggcaattcacatttaatttatgaatgttttcttaacatcgcggcaactcaagaa- acg gcaggttcggatcttagctactagagaaagaggagaaatactagatgcgtaaaggcgaagagctgttcactggt- gtc gtccctattctggtggaactggatggtgatgtcaacggtcataagttttccgtgcgtggcgagggtgaaggtga- cgc aactaatggtaaactgacgctgaagttcatctgtactactggtaaactgccggttccttggccgactctggtaa- cga cgctgacttatggtgttcagtgctttgctcgttatccggaccatatgaagcagcatgacttcttcaagtccgcc- atg ccggaaggctatgtgcaggaacgcacgatttcctttaaggatgacggcacgtacaaaacgcgtgcggaagtgaa- att tgaaggcgataccctggtaaaccgcattgagctgaaaggcattgactttaaagaggacggcaatatcctgggcc- ata agctggaatacaattttaacagccacaatgtttacatcaccgccgataaacaaaaaaatggcattaaagcgaat- ttt aaaattcgccacaacgtggaggatggcagcgtgcagctggctgatcactaccagcaaaacactccaatcggtga- tgg tcctgttctgctgccagacaatcactatctgagcacgcaaagcgttctgtctaaagatccgaacgagaaacgcg- atc atatggttctgctggagttcgtaaccgcagcgggcatcacgcatggtatggatgaactgtacaaatgaccaggc- atc aaataaaacgaaaggctcagtcgaaagactgggcctttcgttttatctgttgtttgtcggtgaacgctctctac- tag agtcacactggctcaccttcgggtgggcctttctgcgtttatacgtgccatgtcttctactagtagcggccgct- gca gtccggcaaaaaagggcaaggtgtcaccaccctgccctttttctttaaaaccgaaaagattacttcgcgttatg- cag gcttcctcgctcactgactcgctgcgctcggtcgttcggctgcggcgagcggtatcagctcactcaaaggcggt- aat acggttatccacagaatcaggggataacgcaggaaagaacatgtgagcaaaaggccagcaaaaggccaggaacc- gta aaaaggccgcgttgctggcgtttttccacaggctccgcccccctgacgagcatcacaaaaatcgacgctcaagt- cag aggtggcgaaacccgacaggactataaagataccaggcgtttccccctggaagctccctcgtgcgctctcctgt- tcc gaccctgccgcttaccggatacctgtccgcctttctcccttcgggaagcgtggcgctttctcatagctcacgct- gta ggtatctcagttcggtgtaggtcgttcgctccaagctgggctgtgtgcacgaaccccccgttcagcccgaccgc- tgc gccttatccggtaactatcgtcttgagtccaacccggtaagacacgacttatcgccactggcagcagccactgg- taa caggattagcagagcgaggtatgtaggcggtgctacagagttcttgaagtggtggcctaactacggctacacta- gaa gaacagtatttggtatctgcgctctgctgaagccagttaccttcggaaaaagagttggtagctcttgatccggc- aaa caaaccaccgctggtagcggtggtttttttgtttgcaagcagcagattacgcgcagaaaaaaaggatctcaaga- aga tcctttgatcttttctacggggtctgacgctcagtggaacgaaaactcacgttaagggattttggtcatgagat- tat caaaaaggatcttcacctagatccttttaaattaaaaatgaagttttaaatcaatctaaagtatatatgagtaa- act tggtctgacagctcgagtttacggctagctcagtcctaggtatagtgctagcTACTtgttagaaaagagaagca- cgt aatgcagaactcagcattgaaagcatggcttgatagctcctatttatcaggtgctaaccagagctggattgaac- agc tgtatgaagattttctgacagatccggattcagtggatgcgaattggcgcagcacttttcagcagttgcctggc- acc ggtgtaaaaccggatcagtttcattcccagacgcgggagtattttcgtcgtctggcgaaagatgcgagccggta- ttc aagtacaatttctgatccggatacgaatgtaaaacaggtgaaagtgcttcagttaattaatgcgtatcgcttta- gag gccatcagcatgcgaatctggatccgctgggcttatggcagcaggataaagtcgcggatctggatccaagtttt- cac gatttaacggaagctgattttcaggaaacctttaacgtcggctcattcgcaagtgggaaagaaacaatgaaact- ggg cgaacttcttgaggcgctgaaacagacttattgtggccctattggtgcggaatatatgcatattacctcaactg- aag agaaacgttggattcagcagagaatcgagagtggccgcgcgacttttaactccgaagaaaaaaaaagattcctg- tca gaactgacagccgcggaaggcttagagcggtatttgggtgccaaattcccaggagcaaaacggttcagcctgga- ggg cggtgatgcgctgatcccgatgctgaaagaaatgattcggcatgcgggaaatagcggaactcgggaagtggtgt- tag gaatggcacaccgcggccgtttgaatgtactggttaacgtattaggaaaaaaacctcaggatttatttgatgag- ttc gcgggaaaacataaagaacatctgggcactggtgatgtcaaatatcacatgggcttctcaagtgattttcagac- gga tggaggtctggttcacctggcactggcatttaatccttctcatctggaaatcgtaagtccggtcgttattggtt- ccg tgcgcgctcgcttagatcggttagatgaacctagctcaaacaaagttttaccaatcacgatccatggggatgca- gct gttaccggacagggtgttgtgcaggagactttgaatatgtccaaagcgcgcgggtatgaggtgggtggtacggt- gcg tattgttatcaataatcaggtgggttttacaaccagtaaccctctggatgctcgctctacgccgtattgcactg- ata ttggtaaaatggtgcaggcaccaatttttcacgtcaatgccgatgatccggaagctgttgcctttgttacgcgc- ctg gctctggattttcgtaacactttcaaacgtgatgtatttatcgatttagtatgctatcgtcgtcatggtcataa- tga ggctgatgaacctagcgctacccagccactgatgtatcagaaaattaaaaaacatcctacccctcgtaaaattt- atg cggataaactggagcaggaaaaagtggctactcttgaagatgctactgaaatggtcaatctttatcgggatgca- ttg gatgcgggtgattgcgtggtcgcggaatggcgcccgatgaatatgcattcatttacttggtcaccgtatttaaa- tca tgagtgggatgaggaatatccgaataaagtggagatgaaacgcctgcaggaattagcaaaacgtattagcacag- tac ctgaagcggttgagatgcagtctagagttgccaaaatctatggagatcgccaggccatggcagcaggggaaaaa- ctt tttgattgggggggagccgaaaacctggcatatgcgacgctggtagatgagggcattccggtgcgcctttctgg- tga agattctgggcgcggtactttttttcatcggcacgctgttattcataaccagtctaacggtagtacttatactc- cgc tgcagcacatccacaatggtcagggtgcgttccgtgtatgggattccgtgctgagtgaagaagcggttcttgcg- ttt gagtatgggtatgcaactgccgagccacgcacgctgacgatctgggaagcccagtttggcgattttgcaaatgg- tgc ccaggtggtaatcgatcagtttattagctccggcgaacagaaatgggggcggatgtgtggtttagttatgttgt-
tac cgcatggctatgaaggtcagggacctgagcacagctcagcgcgcctggaacgctatcttcagctgtgtgcggaa- cag aacatgcaggtatgcgttccttccacgccggctcaggtttatcatatgttaagacgtcaggccttgcgcggtat- gcg gcgcccgttggtcgtgatgtccccgaaaagtt SEQ ID NO: 9. Sequence of Plasmid pDvQ-GFP containing a sequence encoding the green fluorescent protein cloned into the pDvQ vector cgcgttgctggcgtttttccacaggctccgcccccctgacgagcatcacaaaaatcgacgctcaagtcagaggt- ggc gaaacccgacaggactataaagataccaggcgtttccccctggaagctccctcgtgcgctctcctgttccgacc- ctg ccgcttaccggatacctgtccgcctttctcccttcgggaagcgtggcgctttctcatagctcacgctgtaggta- tct cagttcggtgtaggtcgttcgctccaagctgggctgtgtgcacgaaccccccgttcagcccgaccgctgcgcct- tat ccggtaactatcgtcttgagtccaacccggtaagacacgacttatcgccactggcagcagccactggtaacagg- att agcagagcgaggtatgtaggcggtgctacagagttcttgaagtggtggcctaactacggctacactagaagaac- agt atttggtatctgcgctctgctgaagccagttaccttcggaaaaagagttggtagctcttgatccggcaaacaaa- cca ccgctggtagcggtggtttttttgtttgcaagcagcagattacgcgcagaaaaaaaggatctcaagaagatcct- ttg atcttttctacggggtctgacgctcagtggaacgaaaactcacgttaagggattttggtcatgagattatcaaa- aag gatcttcacctagatccttttaaattaaaaatgaagttttaaatcaatctaaagtatatatgagtaaacttggt- ctg acagctcgaggtaggcctgataagacgcgcaagcgtcgcatcaggcaaccagtgccggatgcggcgtgaacgcc- tta tccggcctacaagtcattacccgtaggcctgataagcgcagcgcatcaggcgtaacaaagaaatgcaggaaatc- ttt aaaaactgcccctgacactaagacagtttttaaaggttccttcgcgagccactacgtagacaagagctcgcaag- tga accccggcacgcacatcactgtgcgtggtagtatccacggcgaagtaagcataaaaaagatgcttaagggatca- cgA ATGcagaacagcgctttgaaagcctggttggactcttcttacctctctggcgcaaaccagagctggatagaaca- gct ctatgaaGATttcttaaccgatcctgactcggttgacgctaactggcgttcgacgttccagcagttacctggta- cgg gagtcaaaccggatcaattccactctcaaacgcgtgaatatttccgccgcctggcgaaagacgcttcacgttac- tct tcaacgatctccgaccctgacaccaatgtgaagcaggttaaagtcctgcagctcattaacgcataccgcttccg- tgg tcaccagcatgcgaatctcgatccgctgggactgtggcagcaagataaagtggccgatctggatccgtctttcc- acg atctgaccgaagcagacttccaggagACTttcaacgtcggttcatttgccagcggcaaagaaaccatgaaactc- ggc gagctgctggaagccctcaagcaaacctactgcggcccgattggtgccgagtatatgcacattaccagcaccga- aga aaaacgctggatccaacagcgtatcgagtctggtcgcgcgactttcaatagcgaagagaaaaaacgcttcttaa- gcg aactgaccgccgctgaaggtcttgaacgttacctcggcgcaaaattccctggcgcaaaacgcttctcgctggaa- ggc ggtgacgcgttaatcccgatgcttaaagagatgatccgccacgctggcaacagcggcacccgcgaagtggttct- cgg gatggcgcaccgtggtcgtctgaacgtgctggtgaacgtgctgggtaaaaaaccgcaagacttgttcgacgagt- tcg ccggtaaacataaagaacacctcggcacgggtgacgtgaaataccacatgggcttctcgtctgacttccagacc- gat ggcggcctggtgcacctggcgctggcgtttaacccgtctcaccttgagattgtaagcccggtagttatcggttc- tgt tcgtgcccgtctggacagacttgatgagccgagcagcaacaaagtgctgccaatcaccatccacggtgacgccg- cag tgaccgggcagggcgtggttcaggaaaccctgaacatgtcgaaagcgcgtggttatgaagttggcggtacggta- cgt atcgttatcaacaaccaggttggtttcaccacctctaatccgctggatgcccgttctacgccgtactgtactga- tat cggtaagatggttcaggccccgattttccacgttaacgcggacgatccggaagccgttgcctttgtgacccgtc- tgg cgctcgatttccgtaacacctttaaacgtgatGTTttcatcgacctggtgtgctaccgccgtcacggccacaac- gaa gccgacgagccgagcgcaacccagccgctgatgtatcagaaaatcaaaaaacatccgacaccgcgcaaaatcta- cgc tgacaagctggagcaggaaaaagtggcgacgctggaagatgccaccgagatggttaacctgtaccgcgatgcgc- tgg atgctggcgattgcgtagtggcagagtggcgtccgatgaacatgcactctttcacctggtcgccgtacctcaac- cac gaatgggacgaagagtacccgaacaaagttgagatgaagcgcctgcaggagctggcgaaacgcatcagcacggt- gcc ggaagcagttgaaatgcagtctcgcgttgccaagatttatggcgatcgccaggcgatggctgccggtgagaaac- tgt tcgactggggcggtgcggaaaacctcgcttacgccacgctggttgatgaaggcattccggttcgcctgtcgggt- GAG gactccggtcgcggtaccttcttccaccgccacgcggtgatccacaaccagtctaacggttccacttacacgcc- gct gcaacatatccataacgggcagggcgcgttccgtgtctgggactccgtactgtctgaagaagcagtgctggcgt- ttg aatatggttatgccaccgcagaaccacgcactctgaccatctgggaagcgcagttcggtgacttcgccaacggt- gcg caggtggttatcgaccagttcatctcctctggcgaacagaaatggggccggatgtgtggtctggtgatgttgct- gcc gcacggttacgaagggcaggggccggagcactcctccgcgcgtctggaacgttatctgcaactttgtgctgagc- aaa acatgcaggtttgcgtaccgtctaccccggcacaggtttaccacatgctgcgtcgtcaggcgctgcgcgggatg- cgt cgtccgctggtcgtgatgtcgccgaaatccctgctgcgtcatccgctggcggtttccagcctcgaagaactggc- gaa cggcaccttcctgccagccatcggtgaaatcgacgagcttgatccgaagggcgtgaagcgcgtagtgatgtgtt- ctg gtaaggtttattacgacctgctggaacagcgtcgtaagaacaatcaacacgatgtcgccattgtgcgtatcgag- caa ctctacccgttcccgcataaagcgatgcaggaagtgttgcagcagtttgctcacgtcaaggattttgtctggtg- cca ggaagagccgctcaaccagggcgcatggtactgcagccagcatcatttccgtgaagtgattccgtttggggctt- ctc tgcgttatgcaggccgcccggcctccgcctctccggcggtagggtatatgtccgttcaccagaaacagcaacaa- gat ctggttaatgacgcgctgaacgtcgaataaataaaggatacacaatgagtagcgtagatattctggtccctgac- ctg cctgaatccgtagccgatgccaccgtcgcaacctggcataaaaaacccggcgacgcagtcgtacgtgatgaagt- gct ggtagaaatcgaaactgacaaagtggtactggaagtaccggcatcagcagacggcattctggatgcggttctgg- aag atgaaggtacaacggtaacgtctcgtcagatccttggtcgcctgcgtgaaggcaacagcgccggtaaagaaacc- agc gccaaatctgaagagaaagcgtccactccggcgcaacgccagcaggcgtctctggaagagcaaaacaacgatgc- gtt aagcccggcgatccgtcgcctgctggctgaacacaatctcgacgccagcgccattaaaggcaccggtgtgggtg- gtc gtctgactcgtgaagatgtggaaaaacatctggcgaaagccccggcgaaagagtctgctccggcagcggctgct- ccg gcggcgcaaccggctctggctgcacgtagtgaaaaacgtgtcccgatgactcgcctgcgtaagcgtgtggcaga- gcg tctgctggaagcgaaaaactccaccgccatgctgaccacgttcaacgaagtcaacatgaagccgattatggatc- tgc gtaagcagtacggtgaagcgtttgaaaaacgccacggcatccgtctgggctttatgtccttctacgtgaaagcg- gtg gttgaagccctgaaacgttacccggaagtgaacgcttctatcgacggcgatgacgtggtttaccacaactattt- cga cgtcagcatggcggtttctacgccgcgcggcctggtgacgccggttctgcgtgatgtcgataccctcggcatgg- cag acatcgagaagaaaatcaaagagctggcagtcaaaggccgtgacggcaagctgaccgttgaagatctgaccggt- ggt aacttcaccatcaccaacggtggtgtgttcggttccctgatgtctacgccgatcatcaacccgccgcagagcgc- aat tctgggtatgcacgctatcaaagatcgtccgatggcggtgaatggtcaggttgagatcctgccgatgatgtacc- tgg cgctgtcctacgatcaccgtctgatcgatggtcgcgaatccgtgggcttcctggtaacgatcaaagagttgctg- gaa gatccgacgcgtctgctgctggacgtgtagtagtttaagtttcacctgcactgtagaccggataaggcattatc- gcc ttctccggcaattgaagcctgatgcgacgctgacgcgtcttatcaggcctacgggaccaccaatgtaggtcgga- taa ggcgcaagcgccgcatccgacaagcgatgcctgatgtgacgtttaacgtgtcttatcaggcctacgggtgaccg- aca atgcccggaagcgatacgaaatattcGGTCTACGGTTTAAAAGATAACGATTACTGAAGGATGGACAGAACACa- tga acttacatgaatatcaggcaaaacaactttttgcccgctatggcttaccagcaccggtgggttatgcctgtact- act ccgcgcgaagcagaagaagccgcttcaaaaatcggtgccggtccgtgggtagtgaaatgtcaggttcacgctgg- tgg ccgcggtaaagcgggcggtgtgaaagttgtaaacagcaaaGAGgacatccgtgcttttgcagaaaactggctgg- gca agcgtctggtaacgtatcaaacagatgccaatggccaaccggttaaccagattctggttgaagcagcgaccgat- atc gctaaagagctgtatctcggtgccgttgttgaccgtagttcccgtcgtgtggtctttatggcctccaccgaagg- cgg cgtggaaatcgaaaaagtggcggaagaaactccgcacctgatccataaagttgcgcttgatccgctgactggcc- cga tgccgtatcagggacgcgagctggcgttcaaactgggtctggaaggtaaactggttcagcagttcaccaaaatc- ttc atgggcctggcgaccattttcctggagcgcgacctggcgttgatcgaaatcaacccgctggtcatcaccaaaca- ggg cgatctgatttgcctcgacggcaaactgggcgctgacggcaacgcactgttccgccagcctgatctgcgcgaaa- tgc gtgaccagtcgcaggaagatccgcgtgaagcacaggctgcacagtgggaactgaactacgttgcgctggacggt- aac atcggttgtatggttaacggcgcaggtctggcgatgggtacgatggacatcgttaaactgcacggcggcgaacc- ggc taacttccttgacgttggcggcggcgcaaccaaagaacgtgtaaccgaagcgttcaaaatcatcctctctgacg- aca aagtgaaagccgttctggttaacatcttcggcggtatcgttcgttgcgacctgatcgctgacggtatcatcggc- gcg gtagcagaagtgggtgttaacgtaccggtcgtggtacgtctggaaggtaacaacgccgaactcggcgcgaagaa- act ggctgacagcggcctgaatattattgcagcaaaaggtctgacggatgcagctcagcaggttgttgccgcagtgg- agg ggaaataatgtccattttaatcgataaaaacaccaaggttatctgccagggctttaccggtagccaggggactt- tcc actcagaacaggccattgcatacggcactaaaatggttggcggcgtaaccccaggtaaaggcggcaccacccac- ctc ggcctgccggtgttcaacaccgtgcgtgaagccgttgctgccactggcgctaccgcttctgttatctacgtacc- agc accgttctgcaaagactccattctggaagccatcgacgcaggcatcaaactgattatcaccatcactgaaggca- tcc cgacgctggatatgctgaccgtgaaagtgaagctggatgaagcaggcgttcgtatgatcggcccgaactgccca- ggc gttatcactccgggtgaatgcaaaatcggtatccagcctggtcacattcacaaaccgggtaaagtgggtatcgt- ttc ccgttccggtacactgacctatgaagcggttaaacagaccacggattacggtttcggtcagtcgacctgtgtcg- gta tcggcggtgacccgatcccgggctctaactttatcgacattctcgaaatgttcgaaaaagatccgcagaccgaa- gcg atcgtgatgatcggtgagatcggcggtagcgctgaagaagaagcagctgcgtacatcaaagagcacgttaccaa- gcc agttgtgggttacatcgctggtgtgactgcgccgaaaggcaaacgtatgggccacgcgggtgccatcattgccg- gtg ggaaagggactgcggatgagaaattcgctgctctggaagccgcaggcgtgaaaaccgttcgcagcctggcggat- atc ggtgaagcactgaaaactgttctgaaataaaggtccaggcatcaaataaaacgaaaggctcagtcgaaagactg- ggc ctttcgttttatctgttgtttgtcggtgaacgctctctactagagtcacactggctcaccttcgggtgggcctt- tct gcgtttatatcccgtcaagtcagcgtaatgctctgccagtgttacaaccaattaaccaattctgattagaaaaa- ctc atcgagcatcaaatgaaactgcaatttattcatatcaggattatcaataccatatttttgaaaaagccgtttct- gta atgaaggagaaaactcaccgaggcagttccataggatggcaagatcctggtatcggtctgcgattccgactcgt- cca acatcaatacaacctattaatttcccctcgtcaaaaataaggttatcaagtgagaaatcaccatgagtgacgac- tga atccggtgagaatggcaaaagcttatgcatttctttccagacttgttcaacaggccagccattacgctcgtcat- caa aatcactcgcatcaaccaaaccgttattcattcgtgattgcgcctgagcgagacgaaatacgcgatcgctgtta- aaa ggacaattacaaacaggaatcgaatgcaaccggcgcaggaacactgccagcgcatcaacaatattttcacctga- atc aggatattcttctaatacctggaatgctgttttcccggggatcgcagtggtgagtaaccatgcatcatcaggag- tac ggataaaatgcttgatggtcggaagaggcataaattccgtcagccagtttagtctgaccatctcatctgtaaca- tca ttggcaacgctacctttgccatgtttcagaaacaactctggcgcatcgggcttcccatacaatcgatagattgt- cgc acctgattgcccgacattatcgcgagcccatttatacccatataaatcagcatccatgttggaatttaatcgcg- gcc tggagcaagacgtttcccgttgaatatggctcataacaccccttgtattactgtttatgtaagcagacagtttt- att gttcatgatgatatatttttatcttgtgcaatgtaacatcagagattttgagacacaacgtggctttgttgaat- aaa tcgaacttttgctgagttgaaggatcagctcgagtgccacctgacgtctaagaaaccattattatcatgacatt- aac ctataaaaataggcgtatcacgaggcagaatttcagataaaaaaaatccttagctttcgctaaggatgatttct- gga attcgcggccgcttctagagactagtggaagacatcgctggaaagtgaaacgtgatttcatgcgtcattttgaa- cat tttgtaaatcttatttaataatgtgtgcggcaattcacatttaatttatgaatgttttcttaacatcgcggcaa- ctc aagaaacggcaggttcggatcttagctactagagaaagaggagaaatactagatgcgtaaaggcgaagagctgt- tca ctggtgtcgtccctattctggtggaactggatggtgatgtcaacggtcataagttttccgtgcgtggcgagggt- gaa ggtgacgcaactaatggtaaactgacgctgaagttcatctgtactactggtaaactgccggttccttggccgac- tct ggtaacgacgctgacttatggtgttcagtgctttgctcgttatccggaccatatgaagcagcatgacttcttca- agt ccgccatgccggaaggctatgtgcaggaacgcacgatttcctttaaggatgacggcacgtacaaaacgcgtgcg- gaa gtgaaatttgaaggcgataccctggtaaaccgcattgagctgaaaggcattgactttaaagaggacggcaatat-
cct gggccataagctggaatacaattttaacagccacaatgtttacatcaccgccgataaacaaaaaaatggcatta- aag cgaattttaaaattcgccacaacgtggaggatggcagcgtgcagctggctgatcactaccagcaaaacactcca- atc ggtgatggtcctgttctgctgccagacaatcactatctgagcacgcaaagcgttctgtctaaagatccgaacga- gaa acgcgatcatatggttctgctggagttcgtaaccgcagcgggcatcacgcatggtatggatgaactgtacaaat- gac caggcatcaaataaaacgaaaggctcagtcgaaagactgggcctttcgttttatctgttgtttgtcggtgaacg- ctc tctactagagtcacactggctcaccttcgggtgggcctttctgcgtttatacgtgccatgtcttctactagtag- cgg ccgctgcagtccggcaaaaaagggcaaggtgtcaccaccctgccctttttctttaaaaccgaaaagattacttc- gcg ttatgcaggcttcctcgctcactgactcgctgcgctcggtcgttcggctgcggcgagcggtatcagctcactca- aag gcggtaatacggttatccacagaatcaggggataacgcaggaaagaacatgtgagcaaaaggccagcaaaaggc- cag gaaccgtaaaaaggc SEQ ID NO: 10. Sequence of Plasmid pDvK-SucBC, used for testing plasmid retention in nonselective media GGATGGACAGAACACATGAACTTACATGAATATCAGGCAAAACAACTTTTTGCCCGCTATGGCTTACCAGCACC- GGT GGGTTATGCCTGTACTACTCCGCGCGAAGCAGAAGAAGCCGCTTCAAAAATCGGTGCCGGTCCGTGGGTAGTGA- AAT GTCAGGTTCACGCTGGTGGCCGCGGTAAAGCGGGCGGTGTGAAAGTTGTAAACAGCAAAGAGGACATCCGTGCT- TTT GCAGAAAACTGGCTGGGCAAGCGTCTGGTAACGTATCAAACAGATGCCAATGGCCAACCGGTTAACCAGATTCT- GGT TGAAGCAGCGACCGATATCGCTAAAGAGCTGTATCTCGGTGCCGTTGTTGACCGTAGTTCCCGTCGTGTGGTCT- TTA TGGCCTCCACCGAAGGCGGCGTGGAAATCGAAAAAGTGGCGGAAGAAACTCCGCACCTGATCCATAAAGTTGCG- CTT GATCCGCTGACTGGCCCGATGCCGTATCAGGGACGCGAGCTGGCGTTCAAACTGGGTCTGGAAGGTAAACTGGT- TCA GCAGTTCACCAAAATCTTCATGGGCCTGGCGACCATTTTCCTGGAGCGCGACCTGGCGTTGATCGAAATCAACC- CGC TGGTCATCACCAAACAGGGCGATCTGATTTGCCTCGACGGCAAACTGGGCGCTGACGGCAACGCACTGTTCCGC- CAG CCTGATCTGCGCGAAATGCGTGACCAGTCGCAGGAAGATCCGCGTGAAGCACAGGCTGCACAGTGGGAACTGAA- CTA CGTTGCGCTGGACGGTAACATCGGTTGTATGGTTAACGGCGCAGGTCTGGCGATGGGTACGATGGACATCGTTA- AAC TGCACGGCGGCGAACCGGCTAACTTCCTTGACGTTGGCGGCGGCGCAACCAAAGAACGTGTAACCGAAGCGTTC- AAA ATCATCCTCTCTGACGACAAAGTGAAAGCCGTTCTGGTTAACATCTTCGGCGGTATCGTTCGTTGCGACCTGAT- CGC TGACGGTATCATCGGCGCGGTAGCAGAAGTGGGTGTTAACGTACCGGTCGTGGTACGTCTGGAAGGTAACAACG- CCG AACTCGGCGCGAAGAAACTGGCTGACAGCGGCCTGAATATTATTGCAGCAAAAGGTCTGACGGATGCAGCTCAG- CAG GTTGTTGCCGCAGTGGAGGGGAAATAAAGGTCCAGGCATCAAATAAAACGAAAGGCTCAGTCGAAAGACTGGGC- CTT TCGTTTTATCTGTTGTTTGTCGGTGAACGCTCTCTACTAGAGTCACACTGGCTCACCTTCGGGTGGGCCTTTCT- GCG TTTATAGCTTATGTCTTCTACTAGTAGCGGCCGCTGCAGTCCGGCAAAAAAGGGCAAGGTGTCACCACCCTGCC- CTT TTTCTTTAAAACCGAAAAGATTACTTCGCGTTATGCAGGCTTCCTCGCTCACTGACTCGCTGCGCTCGGTCGTT- CGG CTGCGGCGAGCGGTATCAGCTCACTCAAAGGCGGTAATACGGTTATCCACAGAATCAGGGGATAACGCAGGAAA- GAA CATGTGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCACAGGCTCC- GCC CCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAAGATACCAG- GCG TTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCT- CCC TTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGCTCCAAGC- TGG GCTGTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCG- GTA AGACACGACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTAC- AGA GTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAGAAGAACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAG- TTA CCTTCGGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTTTTTTGTTTGC- AAG CAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGACGCTCAGTG- GAA CGAAAACTCACGTTAAGGGATTTTGGTCATGAGATTATCAAAAAGGATCTTCACCTAGATCCTTTTAAATTAAA- AAT GAAGTTTTAAATCAATCTAAAGTATATATGAGTAAACTTGGTCTGACAGCTCGAGTCCCGTCAAGTCAGCGTAA- TGC TCTGCCAGTGTTACAACCAATTAACCAATTCTGATTAGAAAAACTCATCGAGCATCAAATGAAACTGCAATTTA- TTC ATATCAGGATTATCAATACCATATTTTTGAAAAAGCCGTTTCTGTAATGAAGGAGAAAACTCACCGAGGCAGTT- CCA TAGGATGGCAAGATCCTGGTATCGGTCTGCGATTCCGACTCGTCCAACATCAATACAACCTATTAATTTCCCCT- CGT CAAAAATAAGGTTATCAAGTGAGAAATCACCATGAGTGACGACTGAATCCGGTGAGAATGGCAAAAGCTTATGC- ATT TCTTTCCAGACTTGTTCAACAGGCCAGCCATTACGCTCGTCATCAAAATCACTCGCATCAACCAAACCGTTATT- CAT TCGTGATTGCGCCTGAGCGAGACGAAATACGCGATCGCTGTTAAAAGGACAATTACAAACAGGAATCGAATGCA- ACC GGCGCAGGAACACTGCCAGCGCATCAACAATATTTTCACCTGAATCAGGATATTCTTCTAATACCTGGAATGCT- GTT TTCCCGGGGATCGCAGTGGTGAGTAACCATGCATCATCAGGAGTACGGATAAAATGCTTGATGGTCGGAAGAGG- CAT AAATTCCGTCAGCCAGTTTAGTCTGACCATCTCATCTGTAACATCATTGGCAACGCTACCTTTGCCATGTTTCA- GAA ACAACTCTGGCGCATCGGGCTTCCCATACAATCGATAGATTGTCGCACCTGATTGCCCGACATTATCGCGAGCC- CAT TTATACCCATATAAATCAGCATCCATGTTGGAATTTAATCGCGGCCTGGAGCAAGACGTTTCCCGTTGAATATG- GCT CATAACACCCCTTGTATTACTGTTTATGTAAGCAGACAGTTTTATTGTTCATGATGATATATTTTTATCTTGTG- CAA TGTAACATCAGAGATTTTGAGACACAACGTGGCTTTGTTGAATAAATCGAACTTTTGCTGAGTTGAAGGATCAG- CTC GAGTGCCACCTGACGTCTAAGAAACCATTATTATCATGACATTAACCTATAAAAATAGGCGTATCACGAGGCAG- AAT TTCAGATAAAAAAAATCCTTAGCTTTCGCTAAGGATGATTTCTGGAATTCGCGGCCGCTTCTAGAGACTAGTGG- AAG ACATGGAGTTTACGGCTAGCTCAGTCCTAGGTATAGTGCTAGCTACTTGTTAGAAAAGAGAAGCACGTAATGAG- TAG CGTAGATATTCTGGTCCCTGACCTGCCTGAATCCGTAGCCGATGCCACCGTCGCAACCTGGCATAAAAAACCCG- GCG ACGCAGTCGTACGTGATGAAGTGCTGGTAGAAATCGAAACTGACAAAGTGGTACTGGAAGTACCGGCATCAGCA- GAC GGCATTCTGGATGCGGTTCTGGAAGATGAAGGTACAACGGTAACGTCTCGTCAGATCCTTGGTCGCCTGCGTGA- AGG CAACAGCGCCGGTAAAGAAACCAGCGCCAAATCTGAAGAGAAAGCGTCCACTCCGGCGCAACGCCAGCAGGCGT- CTC TGGAAGAGCAAAACAACGATGCGTTAAGCCCGGCGATCCGTCGCCTGCTGGCTGAACACAATCTCGACGCCAGC- GCC ATTAAAGGCACCGGTGTGGGTGGTCGTCTGACTCGTGAAGATGTGGAAAAACATCTGGCGAAAGCCCCGGCGAA- AGA GTCTGCTCCGGCAGCGGCTGCTCCGGCGGCGCAACCGGCTCTGGCTGCACGTAGTGAAAAACGTGTCCCGATGA- CTC GCCTGCGTAAGCGTGTGGCAGAGCGTCTGCTGGAAGCGAAAAACTCCACCGCCATGCTGACCACGTTCAACGAA- GTC AACATGAAGCCGATTATGGATCTGCGTAAGCAGTACGGTGAAGCGTTTGAAAAACGCCACGGCATCCGTCTGGG- CTT TATGTCCTTCTACGTGAAAGCGGTGGTTGAAGCCCTGAAACGTTACCCGGAAGTGAACGCTTCTATCGACGGCG- ATG ACGTGGTTTACCACAACTATTTCGACGTCAGCATGGCGGTTTCTACGCCGCGCGGCCTGGTGACGCCGGTTCTG- CGT GATGTCGATACCCTCGGCATGGCAGACATCGAGAAGAAAATCAAAGAGCTGGCAGTCAAAGGCCGTGACGGCAA- GCT GACCGTTGAAGATCTGACCGGTGGTAACTTCACCATCACCAACGGTGGTGTGTTCGGTTCCCTGATGTCTACGC- CGA TCATCAACCCGCCGCAGAGCGCAATTCTGGGTATGCACGCTATCAAAGATCGTCCGATGGCGGTGAATGGTCAG- GTT GAGATCCTGCCGATGATGTACCTGGCGCTGTCCTACGATCACCGTCTGATCGATGGTCGCGAATCCGTGGGCTT- CCT GGTAACGATCAAAGAGTTGCTGGAAGATCCGACGCGTCTGCTGCTGGACGTGTAGTAGTTTAAGTTTCACCTGC- ACT GTAGACCGGATAAGGCATTATCGCCTTCTCCGGCAATTGAAGCCTGATGCGACGCTGACGCGTCTTATCAGGCC- TAC GGGACCACCAATGTAGGTCGGATAAGGCGCAAGCGCCGCATCCGACAAGCGATGCCTGATGTGACGTTTAACGT- GTC TTATCAGGCCTACGGGTGACCGACAATGCCCGGAAGCGATACGAAATATTCGGTCTACGGTTTAAAAGATAACG- ATT ACTGAA
Sequence CWU
1
1
1019001DNAEscherichia coli 1ccggtcaggc actgactgtg aatgagaaag gcgaagatgt
ggttgttccg ggactgtttg 60ccgttggtga aatcgcttgt gtatcggtac acggcgctaa
ccgtctgggc ggcaactcgc 120tgctggacct ggtggtcttt ggtcgcgcgg caggtctgca
tctgcaagag tctatcgccg 180agcagggcgc actgcgcgat gccagcgagt ctgatgttga
agcgtctctg gatcgcctga 240accgctggaa caataatcgt aacggtgaag atccggtggc
gatccgtaaa gcgctgcaag 300aatgtatgca gcataacttc tcggtcttcc gtgaaggtga
tgcgatggcg aaagggcttg 360agcagttgaa agtgatccgc gagcgtctga aaaatgcccg
tctggatgac acttccagcg 420agttcaacac ccagcgcgtt gagtgcctgg aactggataa
cctgatggaa acggcgtatg 480caacggctgt ttctgccaac ttccgtaccg aaagccgtgg
cgcgcatagc cgcttcgact 540tcccggatcg tgatgatgaa aactggctgt gccactccct
gtatctgcca gagtcggaat 600ccatgacgcg ccgaagcgtc aacatggaac cgaaactgcg
cccggcattc ccgccgaaga 660ttcgtactta ctaatgcgga gacaggaaaa tgagactcga
gttttcaatt tatcgctata 720acccggatgt tgatgatgct ccgcgtatgc aggattacac
cctggaagcg gatgaaggtc 780gcgacatgat gctgctggat gcgcttatcc agctaaaaga
gaaagatccc agcctgtcgt 840tccgccgctc ctgccgtgaa ggtgtgtgcg gttccgacgg
tctgaacatg aacggcaaga 900atggtctggc ctgtattacc ccgatttcgg cactcaacca
gccgggcaag aagattgtga 960ttcgcccgct gccaggttta ccggtgatcc gcgatttggt
ggtagacatg ggacaattct 1020atgcgcaata tgagaaaatt aagccttacc tgttgaataa
tggacaaaat ccgccagctc 1080gcgagcattt acagatgcca gagcagcgcg aaaaactcga
cgggctgtat gaatgtattc 1140tctgcgcatg ttgttcaacc tcttgtccgt ctttctggtg
gaatcccgat aagtttatcg 1200gcccggcagg cttgttagcg gcatatcgtt tcctgattga
tagccgtgat accgagactg 1260acagccgcct cgacggtttg agtgatgcat tcagcgtatt
ccgctgtcac agcatcatga 1320actgcgtcag tgtatgtccg aaggggctga acccgacgcg
cgccatcggc catatcaagt 1380cgatgttgtt gcaacgtaat gcgtaaaccg taggcctgat
aagacgcgca agcgtcgcat 1440caggcaacca gtgccggatg cggcgtgaac gccttatccg
gcctacaagt cattacccgt 1500aggcctgata agcgcagcgc atcaggcgta acaaagaaat
gcaggaaatc tttaaaaact 1560gcccctgaca ctaagacagt ttttaaaggt tccttcgcga
gccactacgt agacaagagc 1620tcgcaagtga accccggcac gcacatcact gtgcgtggta
gtatccacgg cgaagtaagc 1680ataaaaaaga tgcttaaggg atcacgatgc agaacagcgc
tttgaaagcc tggttggact 1740cttcttacct ctctggcgca aaccagagct ggatagaaca
gctctatgaa gacttcttaa 1800ccgatcctga ctcggttgac gctaactggc gttcgacgtt
ccagcagtta cctggtacgg 1860gagtcaaacc ggatcaattc cactctcaaa cgcgtgaata
tttccgccgc ctggcgaaag 1920acgcttcacg ttactcttca acgatctccg accctgacac
caatgtgaag caggttaaag 1980tcctgcagct cattaacgca taccgcttcc gtggtcacca
gcatgcgaat ctcgatccgc 2040tgggactgtg gcagcaagat aaagtggccg atctggatcc
gtctttccac gatctgaccg 2100aagcagactt ccaggagacc ttcaacgtcg gttcatttgc
cagcggcaaa gaaaccatga 2160aactcggcga gctgctggaa gccctcaagc aaacctactg
cggcccgatt ggtgccgagt 2220atatgcacat taccagcacc gaagaaaaac gctggatcca
acagcgtatc gagtctggtc 2280gcgcgacttt caatagcgaa gagaaaaaac gcttcttaag
cgaactgacc gccgctgaag 2340gtcttgaacg ttacctcggc gcaaaattcc ctggcgcaaa
acgcttctcg ctggaaggcg 2400gtgacgcgtt aatcccgatg cttaaagaga tgatccgcca
cgctggcaac agcggcaccc 2460gcgaagtggt tctcgggatg gcgcaccgtg gtcgtctgaa
cgtgctggtg aacgtgctgg 2520gtaaaaaacc gcaagacttg ttcgacgagt tcgccggtaa
acataaagaa cacctcggca 2580cgggtgacgt gaaataccac atgggcttct cgtctgactt
ccagaccgat ggcggcctgg 2640tgcacctggc gctggcgttt aacccgtctc accttgagat
tgtaagcccg gtagttatcg 2700gttctgttcg tgcccgtctg gacagacttg atgagccgag
cagcaacaaa gtgctgccaa 2760tcaccatcca cggtgacgcc gcagtgaccg ggcagggcgt
ggttcaggaa accctgaaca 2820tgtcgaaagc gcgtggttat gaagttggcg gtacggtacg
tatcgttatc aacaaccagg 2880ttggtttcac cacctctaat ccgctggatg cccgttctac
gccgtactgt actgatatcg 2940gtaagatggt tcaggccccg attttccacg ttaacgcgga
cgatccggaa gccgttgcct 3000ttgtgacccg tctggcgctc gatttccgta acacctttaa
acgtgatgtc ttcatcgacc 3060tggtgtgcta ccgccgtcac ggccacaacg aagccgacga
gccgagcgca acccagccgc 3120tgatgtatca gaaaatcaaa aaacatccga caccgcgcaa
aatctacgct gacaagctgg 3180agcaggaaaa agtggcgacg ctggaagatg ccaccgagat
ggttaacctg taccgcgatg 3240cgctggatgc tggcgattgc gtagtggcag agtggcgtcc
gatgaacatg cactctttca 3300cctggtcgcc gtacctcaac cacgaatggg acgaagagta
cccgaacaaa gttgagatga 3360agcgcctgca ggagctggcg aaacgcatca gcacggtgcc
ggaagcagtt gaaatgcagt 3420ctcgcgttgc caagatttat ggcgatcgcc aggcgatggc
tgccggtgag aaactgttcg 3480actggggcgg tgcggaaaac ctcgcttacg ccacgctggt
tgatgaaggc attccggttc 3540gcctgtcggg tgaagactcc ggtcgcggta ccttcttcca
ccgccacgcg gtgatccaca 3600accagtctaa cggttccact tacacgccgc tgcaacatat
ccataacggg cagggcgcgt 3660tccgtgtctg ggactccgta ctgtctgaag aagcagtgct
ggcgtttgaa tatggttatg 3720ccaccgcaga accacgcact ctgaccatct gggaagcgca
gttcggtgac ttcgccaacg 3780gtgcgcaggt ggttatcgac cagttcatct cctctggcga
acagaaatgg ggccggatgt 3840gtggtctggt gatgttgctg ccgcacggtt acgaagggca
ggggccggag cactcctccg 3900cgcgtctgga acgttatctg caactttgtg ctgagcaaaa
catgcaggtt tgcgtaccgt 3960ctaccccggc acaggtttac cacatgctgc gtcgtcaggc
gctgcgcggg atgcgtcgtc 4020cgctggtcgt gatgtcgccg aaatccctgc tgcgtcatcc
gctggcggtt tccagcctcg 4080aagaactggc gaacggcacc ttcctgccag ccatcggtga
aatcgacgag cttgatccga 4140agggcgtgaa gcgcgtagtg atgtgttctg gtaaggttta
ttacgacctg ctggaacagc 4200gtcgtaagaa caatcaacac gatgtcgcca ttgtgcgtat
cgagcaactc tacccgttcc 4260cgcataaagc gatgcaggaa gtgttgcagc agtttgctca
cgtcaaggat tttgtctggt 4320gccaggaaga gccgctcaac cagggcgcat ggtactgcag
ccagcatcat ttccgtgaag 4380tgattccgtt tggggcttct ctgcgttatg caggccgccc
ggcctccgcc tctccggcgg 4440tagggtatat gtccgttcac cagaaacagc aacaagatct
ggttaatgac gcgctgaacg 4500tcgaataaat aaaggataca caatgagtag cgtagatatt
ctggtccctg acctgcctga 4560atccgtagcc gatgccaccg tcgcaacctg gcataaaaaa
cccggcgacg cagtcgtacg 4620tgatgaagtg ctggtagaaa tcgaaactga caaagtggta
ctggaagtac cggcatcagc 4680agacggcatt ctggatgcgg ttctggaaga tgaaggtaca
acggtaacgt ctcgtcagat 4740ccttggtcgc ctgcgtgaag gcaacagcgc cggtaaagaa
accagcgcca aatctgaaga 4800gaaagcgtcc actccggcgc aacgccagca ggcgtctctg
gaagagcaaa acaacgatgc 4860gttaagcccg gcgatccgtc gcctgctggc tgaacacaat
ctcgacgcca gcgccattaa 4920aggcaccggt gtgggtggtc gtctgactcg tgaagatgtg
gaaaaacatc tggcgaaagc 4980cccggcgaaa gagtctgctc cggcagcggc tgctccggcg
gcgcaaccgg ctctggctgc 5040acgtagtgaa aaacgtgtcc cgatgactcg cctgcgtaag
cgtgtggcag agcgtctgct 5100ggaagcgaaa aactccaccg ccatgctgac cacgttcaac
gaagtcaaca tgaagccgat 5160tatggatctg cgtaagcagt acggtgaagc gtttgaaaaa
cgccacggca tccgtctggg 5220ctttatgtcc ttctacgtga aagcggtggt tgaagccctg
aaacgttacc cggaagtgaa 5280cgcttctatc gacggcgatg acgtggttta ccacaactat
ttcgacgtca gcatggcggt 5340ttctacgccg cgcggcctgg tgacgccggt tctgcgtgat
gtcgataccc tcggcatggc 5400agacatcgag aagaaaatca aagagctggc agtcaaaggc
cgtgacggca agctgaccgt 5460tgaagatctg accggtggta acttcaccat caccaacggt
ggtgtgttcg gttccctgat 5520gtctacgccg atcatcaacc cgccgcagag cgcaattctg
ggtatgcacg ctatcaaaga 5580tcgtccgatg gcggtgaatg gtcaggttga gatcctgccg
atgatgtacc tggcgctgtc 5640ctacgatcac cgtctgatcg atggtcgcga atccgtgggc
ttcctggtaa cgatcaaaga 5700gttgctggaa gatccgacgc gtctgctgct ggacgtgtag
tagtttaagt ttcacctgca 5760ctgtagaccg gataaggcat tatcgccttc tccggcaatt
gaagcctgat gcgacgctga 5820cgcgtcttat caggcctacg ggaccaccaa tgtaggtcgg
ataaggcgca agcgccgcat 5880ccgacaagcg atgcctgatg tgacgtttaa cgtgtcttat
caggcctacg ggtgaccgac 5940aatgcccgga agcgatacga aatattcggt ctacggttta
aaagataacg attactgaag 6000gatggacaga acacatgaac ttacatgaat atcaggcaaa
acaacttttt gcccgctatg 6060gcttaccagc accggtgggt tatgcctgta ctactccgcg
cgaagcagaa gaagccgctt 6120caaaaatcgg tgccggtccg tgggtagtga aatgtcaggt
tcacgctggt ggccgcggta 6180aagcgggcgg tgtgaaagtt gtaaacagca aagaagacat
ccgtgctttt gcagaaaact 6240ggctgggcaa gcgtctggta acgtatcaaa cagatgccaa
tggccaaccg gttaaccaga 6300ttctggttga agcagcgacc gatatcgcta aagagctgta
tctcggtgcc gttgttgacc 6360gtagttcccg tcgtgtggtc tttatggcct ccaccgaagg
cggcgtggaa atcgaaaaag 6420tggcggaaga aactccgcac ctgatccata aagttgcgct
tgatccgctg actggcccga 6480tgccgtatca gggacgcgag ctggcgttca aactgggtct
ggaaggtaaa ctggttcagc 6540agttcaccaa aatcttcatg ggcctggcga ccattttcct
ggagcgcgac ctggcgttga 6600tcgaaatcaa cccgctggtc atcaccaaac agggcgatct
gatttgcctc gacggcaaac 6660tgggcgctga cggcaacgca ctgttccgcc agcctgatct
gcgcgaaatg cgtgaccagt 6720cgcaggaaga tccgcgtgaa gcacaggctg cacagtggga
actgaactac gttgcgctgg 6780acggtaacat cggttgtatg gttaacggcg caggtctggc
gatgggtacg atggacatcg 6840ttaaactgca cggcggcgaa ccggctaact tccttgacgt
tggcggcggc gcaaccaaag 6900aacgtgtaac cgaagcgttc aaaatcatcc tctctgacga
caaagtgaaa gccgttctgg 6960ttaacatctt cggcggtatc gttcgttgcg acctgatcgc
tgacggtatc atcggcgcgg 7020tagcagaagt gggtgttaac gtaccggtcg tggtacgtct
ggaaggtaac aacgccgaac 7080tcggcgcgaa gaaactggct gacagcggcc tgaatattat
tgcagcaaaa ggtctgacgg 7140atgcagctca gcaggttgtt gccgcagtgg aggggaaata
atgtccattt taatcgataa 7200aaacaccaag gttatctgcc agggctttac cggtagccag
gggactttcc actcagaaca 7260ggccattgca tacggcacta aaatggttgg cggcgtaacc
ccaggtaaag gcggcaccac 7320ccacctcggc ctgccggtgt tcaacaccgt gcgtgaagcc
gttgctgcca ctggcgctac 7380cgcttctgtt atctacgtac cagcaccgtt ctgcaaagac
tccattctgg aagccatcga 7440cgcaggcatc aaactgatta tcaccatcac tgaaggcatc
ccgacgctgg atatgctgac 7500cgtgaaagtg aagctggatg aagcaggcgt tcgtatgatc
ggcccgaact gcccaggcgt 7560tatcactccg ggtgaatgca aaatcggtat ccagcctggt
cacattcaca aaccgggtaa 7620agtgggtatc gtttcccgtt ccggtacact gacctatgaa
gcggttaaac agaccacgga 7680ttacggtttc ggtcagtcga cctgtgtcgg tatcggcggt
gacccgatcc cgggctctaa 7740ctttatcgac attctcgaaa tgttcgaaaa agatccgcag
accgaagcga tcgtgatgat 7800cggtgagatc ggcggtagcg ctgaagaaga agcagctgcg
tacatcaaag agcacgttac 7860caagccagtt gtgggttaca tcgctggtgt gactgcgccg
aaaggcaaac gtatgggcca 7920cgcgggtgcc atcattgccg gtgggaaagg gactgcggat
gagaaattcg ctgctctgga 7980agccgcaggc gtgaaaaccg ttcgcagcct ggcggatatc
ggtgaagcac tgaaaactgt 8040tctgaaataa atatctgtaa taagaaatag ccctcgccgc
ttccctctac aggaatggcg 8100aagggctgtc ggtttcgaca tggttggcca tcgtatgatg
gccttttttg tgcttatcgc 8160gatgattttc gctgcgctat cagggtaaat ttatagtcat
cggtattaaa agcgttgcgg 8220ctatattcaa acacccgacc atcaactaaa tatccacgcg
atactttttc aagaatcggc 8280tttgtctggc tgatattaag cagacggctc atctcttcgg
ttggcatcag aggaatgatt 8340tcctgttcgc tacgatcgat aaccattttc ttcacttctt
cgataaagtg atatttcgaa 8400ttttccatga cctgccaggt gagatccggg aacaacgcaa
gcggcatcca ggtttcttcc 8460agcgccattg gcttttgctt gcgatagcgc acgcgcttca
catgccacac acgatcctgc 8520ggggtgattt gtagctgttg ctgaagaaaa tcgtcagccg
gaatcacttc gaatatcaga 8580acttcactgt gtgtatcgac gtgacggtcc gacagttttt
catcaaaact ggttaactga 8640aaaatatcgt aattgacccg ctcttctttg acgtaagtcc
cgctgccctg aatgctttcg 8700aggatctgct gctcgactag ctggcgcaaa gcctgacgca
ccgtaacccg gctgacgcca 8760aactctgttt gtagcgctga ttcagtgggt aacgcatcgc
caggtttaag ctcgccacgc 8820gcaatttgtt cacgaatgcg atcggcaatc tgccggtata
agggcttgtg tcccattttt 8880agtatctcat taatacgaat ttaaccatta tgcccgataa
attcatcctg taaataatac 8940aaatacaata caaataattt caatcaagtg aaattgatca
cataatggta ttgttttatc 9000g
900126753DNAEscherichia coli 2ccggtcaggc actgactgtg
aatgagaaag gcgaagatgt ggttgttccg ggactgtttg 60ccgttggtga aatcgcttgt
gtatcggtac acggcgctaa ccgtctgggc ggcaactcgc 120tgctggacct ggtggtcttt
ggtcgcgcgg caggtctgca tctgcaagag tctatcgccg 180agcagggcgc actgcgcgat
gccagcgagt ctgatgttga agcgtctctg gatcgcctga 240accgctggaa caataatcgt
aacggtgaag atccggtggc gatccgtaaa gcgctgcaag 300aatgtatgca gcataacttc
tcggtcttcc gtgaaggtga tgcgatggcg aaagggcttg 360agcagttgaa agtgatccgc
gagcgtctga aaaatgcccg tctggatgac acttccagcg 420agttcaacac ccagcgcgtt
gagtgcctgg aactggataa cctgatggaa acggcgtatg 480caacggctgt ttctgccaac
ttccgtaccg aaagccgtgg cgcgcatagc cgcttcgact 540tcccggatcg tgatgatgaa
aactggctgt gccactccct gtatctgcca gagtcggaat 600ccatgacgcg ccgaagcgtc
aacatggaac cgaaactgcg cccggcattc ccgccgaaga 660ttcgtactta ctaatgcgga
gacaggaaaa tgagactcga gttttcaatt tatcgctata 720acccggatgt tgatgatgct
ccgcgtatgc aggattacac cctggaagcg gatgaaggtc 780gcgacatgat gctgctggat
gcgcttatcc agctaaaaga gaaagatccc agcctgtcgt 840tccgccgctc ctgccgtgaa
ggtgtgtgcg gttccgacgg tctgaacatg aacggcaaga 900atggtctggc ctgtattacc
ccgatttcgg cactcaacca gccgggcaag aagattgtga 960ttcgcccgct gccaggttta
ccggtgatcc gcgatttggt ggtagacatg ggacaattct 1020atgcgcaata tgagaaaatt
aagccttacc tgttgaataa tggacaaaat ccgccagctc 1080gcgagcattt acagatgcca
gagcagcgcg aaaaactcga cgggctgtat gaatgtattc 1140tctgcgcatg ttgttcaacc
tcttgtccgt ctttctggtg gaatcccgat aagtttatcg 1200gcccggcagg cttgttagcg
gcatatcgtt tcctgattga tagccgtgat accgagactg 1260acagccgcct cgacggtttg
agtgatgcat tcagcgtatt ccgctgtcac agcatcatga 1320actgcgtcag tgtatgtccg
aaggggctga acccgacgcg cgccatcggc catatcaagt 1380cgatgttgtt gcaacgtaat
gcgtaaaccg taggcctgat aagacgcgca agcgtcgcat 1440caggcaacca gtgccggatg
cggcgtgaac gccttatccg gcctacaagt cattacccgt 1500aggcctgata agcgcagcgc
atcaggcgta acaaagaaat gcaggaaatc tttaaaaact 1560gcccctgaca ctaagacagt
ttttaaaggt tccttcgcga gccactacgt agacaagagc 1620tcgcaagtga accccggcac
gcacatcact gtgcgtggta gtatccacgg cgaagtaagc 1680ataaaaaaga tgcttaaggg
atcacgagtg taggctggag ctgcttcgaa gttcctatac 1740tttctagaga ataggaactt
cggaatagga acttcaagat ccccttatta gaagaactcg 1800tcaagaaggc gatagaaggc
gatgcgctgc gaatcgggag cggcgatacc gtaaagcacg 1860aggaagcggt cagcccattc
gccgccaagc tcttcagcaa tatcacgggt agccaacgct 1920atgtcctgat agcggtccgc
cacacccagc cggccacagt cgatgaatcc agaaaagcgg 1980ccattttcca ccatgatatt
cggcaagcag gcatcgccat gggtcacgac gagatcctcg 2040ccgtcgggca tgcgcgcctt
gagcctggcg aacagttcgg ctggcgcgag cccctgatgc 2100tcttcgtcca gatcatcctg
atcgacaaga ccggcttcca tccgagtacg tgctcgctcg 2160atgcgatgtt tcgcttggtg
gtcgaatggg caggtagccg gatcaagcgt atgcagccgc 2220cgcattgcat cagccatgat
ggatactttc tcggcaggag caaggtgaga tgacaggaga 2280tcctgccccg gcacttcgcc
caatagcagc cagtcccttc ccgcttcagt gacaacgtcg 2340agcacagctg cgcaaggaac
gcccgtcgtg gccagccacg atagccgcgc tgcctcgtcc 2400tgcagttcat tcagggcacc
ggacaggtcg gtcttgacaa aaagaaccgg gcgcccctgc 2460gctgacagcc ggaacacggc
ggcatcagag cagccgattg tctgttgtgc ccagtcatag 2520ccgaatagcc tctccaccca
agcggccgga gaacctgcgt gcaatccatc ttgttcaatc 2580atgcgaaacg atcctcatcc
tgtctcttga tcagatcttg atcccctgcg ccatcagatc 2640cttggcggca agaaagccat
ccagtttact ttgcagggct tcccaacctt accagagggc 2700gccccagctg gcaattccgg
ttcgcttgct gtccataaaa ccgcccagtc tagctatcgc 2760catgtaagcc cactgcaagc
tacctgcttt ctctttgcgc ttgcgttttc ccttgtccag 2820atagcccagt agctgacatt
catccggggt cagcaccgtt tctgcggact ggctttctac 2880gtgttccgct tcctttagca
gcccttgcgc cctgagtgct tgcggcagcg tgagcttcaa 2940aagcgctctg aagttcctat
actttctaga gaataggaac ttcgaactgc aggtcgacgg 3000atccccggaa ttaattctca
tgtttgacag aaaggataca caatgagtag cgtagatatt 3060ctggtccctg acctgcctga
atccgtagcc gatgccaccg tcgcaacctg gcataaaaaa 3120cccggcgacg cagtcgtacg
tgatgaagtg ctggtagaaa tcgaaactga caaagtggta 3180ctggaagtac cggcatcagc
agacggcatt ctggatgcgg ttctggaaga tgaaggtaca 3240acggtaacgt ctcgtcagat
ccttggtcgc ctgcgtgaag gcaacagcgc cggtaaagaa 3300accagcgcca aatctgaaga
gaaagcgtcc actccggcgc aacgccagca ggcgtctctg 3360gaagagcaaa acaacgatgc
gttaagcccg gcgatccgtc gcctgctggc tgaacacaat 3420ctcgacgcca gcgccattaa
aggcaccggt gtgggtggtc gtctgactcg tgaagatgtg 3480gaaaaacatc tggcgaaagc
cccggcgaaa gagtctgctc cggcagcggc tgctccggcg 3540gcgcaaccgg ctctggctgc
acgtagtgaa aaacgtgtcc cgatgactcg cctgcgtaag 3600cgtgtggcag agcgtctgct
ggaagcgaaa aactccaccg ccatgctgac cacgttcaac 3660gaagtcaaca tgaagccgat
tatggatctg cgtaagcagt acggtgaagc gtttgaaaaa 3720cgccacggca tccgtctggg
ctttatgtcc ttctacgtga aagcggtggt tgaagccctg 3780aaacgttacc cggaagtgaa
cgcttctatc gacggcgatg acgtggttta ccacaactat 3840ttcgacgtca gcatggcggt
ttctacgccg cgcggcctgg tgacgccggt tctgcgtgat 3900gtcgataccc tcggcatggc
agacatcgag aagaaaatca aagagctggc agtcaaaggc 3960cgtgacggca agctgaccgt
tgaagatctg accggtggta acttcaccat caccaacggt 4020ggtgtgttcg gttccctgat
gtctacgccg atcatcaacc cgccgcagag cgcaattctg 4080ggtatgcacg ctatcaaaga
tcgtccgatg gcggtgaatg gtcaggttga gatcctgccg 4140atgatgtacc tggcgctgtc
ctacgatcac cgtctgatcg atggtcgcga atccgtgggc 4200ttcctggtaa cgatcaaaga
gttgctggaa gatccgacgc gtctgctgct ggacgtgtag 4260tagtttaagt ttcacctgca
ctgtagaccg gataaggcat tatcgccttc tccggcaatt 4320gaagcctgat gcgacgctga
cgcgtcttat caggcctacg ggaccaccaa tgtaggtcgg 4380ataaggcgca agcgccgcat
ccgacaagcg atgcctgatg tgacgtttaa cgtgtcttat 4440caggcctacg ggtgaccgac
aatgcccgga agcgatacga aatattcggt ctacggttta 4500aaagataacg attactgaag
gatggacaga acacatgaac ttacatgaat atcaggcaaa 4560acaacttttt gcccgctatg
gcttaccagc accggtgggt tatgcctgta ctactccgcg 4620cgaagcagaa gaagccgctt
caaaaatcgg tgccggtccg tgggtagtga aatgtcaggt 4680tcacgctggt ggccgcggta
aagcgggcgg tgtgaaagtt gtaaacagca aagaagacat 4740ccgtgctttt gcagaaaact
ggctgggcaa gcgtctggta acgtatcaaa cagatgccaa 4800tggccaaccg gttaaccaga
ttctggttga agcagcgacc gatatcgcta aagagctgta 4860tctcggtgcc gttgttgacc
gtagttcccg tcgtgtggtc tttatggcct ccaccgaagg 4920cggcgtggaa atcgaaaaag
tggcggaaga aactccgcac ctgatccata aagttgcgct 4980tgatccgctg actggcccga
tgccgtatca gggacgcgag ctggcgttca aactgggtct 5040ggaaggtaaa ctggttcagc
agttcaccaa aatcttcatg ggcctggcga ccattttcct 5100ggagcgcgac ctggcgttga
tcgaaatcaa cccgctggtc atcaccaaac agggcgatct 5160gatttgcctc gacggcaaac
tgggcgctga cggcaacgca ctgttccgcc agcctgatct 5220gcgcgaaatg cgtgaccagt
cgcaggaaga tccgcgtgaa gcacaggctg cacagtggga 5280actgaactac gttgcgctgg
acggtaacat cggttgtatg gttaacggcg caggtctggc 5340gatgggtacg atggacatcg
ttaaactgca cggcggcgaa ccggctaact tccttgacgt 5400tggcggcggc gcaaccaaag
aacgtgtaac cgaagcgttc aaaatcatcc tctctgacga 5460caaagtgaaa gccgttctgg
ttaacatctt cggcggtatc gttcgttgcg acctgatcgc 5520tgacggtatc atcggcgcgg
tagcagaagt gggtgttaac gtaccggtcg tggtacgtct 5580ggaaggtaac aacgccgaac
tcggcgcgaa gaaactggct gacagcggcc tgaatattat 5640tgcagcaaaa ggtctgacgg
atgcagctca gcaggttgtt gccgcagtgg aggggaaata 5700atgattccgg ggatccgtcg
acctgcagtt cgaagttcct atctagaaag tataggaact 5760tcgaagcagc tccagcctac
actgaaaact gttctgaaat aaatatctgt aataagaaat 5820agccctcgcc gcttccctct
acaggaatgg cgaagggctg tcggtttcga catggttggc 5880catcgtatga tggccttttt
tgtgcttatc gcgatgattt tcgctgcgct atcagggtaa 5940atttatagtc atcggtatta
aaagcgttgc ggctatattc aaacacccga ccatcaacta 6000aatatccacg cgatactttt
tcaagaatcg gctttgtctg gctgatatta agcagacggc 6060tcatctcttc ggttggcatc
agaggaatga tttcctgttc gctacgatcg ataaccattt 6120tcttcacttc ttcgataaag
tgatatttcg aattttccat gacctgccag gtgagatccg 6180ggaacaacgc aagcggcatc
caggtttctt ccagcgccat tggcttttgc ttgcgatagc 6240gcacgcgctt cacatgccac
acacgatcct gcggggtgat ttgtagctgt tgctgaagaa 6300aatcgtcagc cggaatcact
tcgaatatca gaacttcact gtgtgtatcg acgtgacggt 6360ccgacagttt ttcatcaaaa
ctggttaact gaaaaatatc gtaattgacc cgctcttctt 6420tgacgtaagt cccgctgccc
tgaatgcttt cgaggatctg ctgctcgact agctggcgca 6480aagcctgacg caccgtaacc
cggctgacgc caaactctgt ttgtagcgct gattcagtgg 6540gtaacgcatc gccaggttta
agctcgccac gcgcaatttg ttcacgaatg cgatcggcaa 6600tctgccggta taagggcttg
tgtcccattt ttagtatctc attaatacga atttaaccat 6660tatgcccgat aaattcatcc
tgtaaataat acaaatacaa tacaaataat ttcaatcaag 6720tgaaattgat cacataatgg
tattgtttta tcg 675332742DNAEscherichia
coli 3ccggtcaggc actgactgtg aatgagaaag gcgaagatgt ggttgttccg ggactgtttg
60ccgttggtga aatcgcttgt gtatcggtac acggcgctaa ccgtctgggc ggcaactcgc
120tgctggacct ggtggtcttt ggtcgcgcgg caggtctgca tctgcaagag tctatcgccg
180agcagggcgc actgcgcgat gccagcgagt ctgatgttga agcgtctctg gatcgcctga
240accgctggaa caataatcgt aacggtgaag atccggtggc gatccgtaaa gcgctgcaag
300aatgtatgca gcataacttc tcggtcttcc gtgaaggtga tgcgatggcg aaagggcttg
360agcagttgaa agtgatccgc gagcgtctga aaaatgcccg tctggatgac acttccagcg
420agttcaacac ccagcgcgtt gagtgcctgg aactggataa cctgatggaa acggcgtatg
480caacggctgt ttctgccaac ttccgtaccg aaagccgtgg cgcgcatagc cgcttcgact
540tcccggatcg tgatgatgaa aactggctgt gccactccct gtatctgcca gagtcggaat
600ccatgacgcg ccgaagcgtc aacatggaac cgaaactgcg cccggcattc ccgccgaaga
660ttcgtactta ctaatgcgga gacaggaaaa tgagactcga gttttcaatt tatcgctata
720acccggatgt tgatgatgct ccgcgtatgc aggattacac cctggaagcg gatgaaggtc
780gcgacatgat gctgctggat gcgcttatcc agctaaaaga gaaagatccc agcctgtcgt
840tccgccgctc ctgccgtgaa ggtgtgtgcg gttccgacgg tctgaacatg aacggcaaga
900atggtctggc ctgtattacc ccgatttcgg cactcaacca gccgggcaag aagattgtga
960ttcgcccgct gccaggttta ccggtgatcc gcgatttggt ggtagacatg ggacaattct
1020atgcgcaata tgagaaaatt aagccttacc tgttgaataa tggacaaaat ccgccagctc
1080gcgagcattt acagatgcca gagcagcgcg aaaaactcga cgggctgtat gaatgtattc
1140tctgcgcatg ttgttcaacc tcttgtccgt ctttctggtg gaatcccgat aagtttatcg
1200gcccggcagg cttgttagcg gcatatcgtt tcctgattga tagccgtgat accgagactg
1260acagccgcct cgacggtttg agtgatgcat tcagcgtatt ccgctgtcac agcatcatga
1320actgcgtcag tgtatgtccg aaggggctga acccgacgcg cgccatcggc catatcaagt
1380cgatgttgtt gcaacgtaat gcgtaaaccg taggcctgat aagacgcgca agcgtcgcat
1440caggcaacca gtgccggatg cggcgtgaac gccttatccg gcctacaagt cattacccgt
1500aggcctgata agcgcagcgc atcaggcgta acaaagaaat gcaggaaatc tttaaaaact
1560gcccctgaca ctaagacagt ttttaaaggt tccttcgcga gccactacgt agacaagagc
1620tcgcaagtga accccggcac gcacatcact gtgcgtggta gtatccacgg cgaagtaagc
1680ataaaaaaga tgattccggg gatccgtcga cctgcagttc gaagttccta tctagaaagt
1740ataggaactt cgaagcagct ccagcctaca ctgaaaactg ttctgaaata aatatctgta
1800ataagaaata gccctcgccg cttccctcta caggaatggc gaagggctgt cggtttcgac
1860atggttggcc atcgtatgat ggcctttttt gtgcttatcg cgatgatttt cgctgcgcta
1920tcagggtaaa tttatagtca tcggtattaa aagcgttgcg gctatattca aacacccgac
1980catcaactaa atatccacgc gatacttttt caagaatcgg ctttgtctgg ctgatattaa
2040gcagacggct catctcttcg gttggcatca gaggaatgat ttcctgttcg ctacgatcga
2100taaccatttt cttcacttct tcgataaagt gatatttcga attttccatg acctgccagg
2160tgagatccgg gaacaacgca agcggcatcc aggtttcttc cagcgccatt ggcttttgct
2220tgcgatagcg cacgcgcttc acatgccaca cacgatcctg cggggtgatt tgtagctgtt
2280gctgaagaaa atcgtcagcc ggaatcactt cgaatatcag aacttcactg tgtgtatcga
2340cgtgacggtc cgacagtttt tcatcaaaac tggttaactg aaaaatatcg taattgaccc
2400gctcttcttt gacgtaagtc ccgctgccct gaatgctttc gaggatctgc tgctcgacta
2460gctggcgcaa agcctgacgc accgtaaccc ggctgacgcc aaactctgtt tgtagcgctg
2520attcagtggg taacgcatcg ccaggtttaa gctcgccacg cgcaatttgt tcacgaatgc
2580gatcggcaat ctgccggtat aagggcttgt gtcccatttt tagtatctca ttaatacgaa
2640tttaaccatt atgcccgata aattcatcct gtaaataata caaatacaat acaaataatt
2700tcaatcaagt gaaattgatc acataatggt attgttttat cg
274246101DNAEscherichia coli 4ccacccatct gggtttgccg gtatttaata ccgtgcgtga
ggcggttgcc gcaaccggtg 60ccacggcttc agttatctat gttcctgccc cattttgtaa
agattcaatt ctggaagcta 120ttgatgcggg catcaaattg attattacga ttaccgaagg
tatccctacg ctggatatgt 180tgacggttaa agtgaaactt gatgaagcgg gggtacgcat
gattggtccg aattgtccgg 240gcgttattac tccaggtgag tgcaaaattg gtattcagcc
gggtcatatt cacaaacctg 300ggaaagtcgg aattgtgtct cgttctggca ctctgacgta
tgaggcagtt aaacagacca 360cagattatgg ctttgggcag agtacctgtg tcggcatcgg
aggcgatcct attccgggga 420gtaattttat cgatattctg gaaatgtttg agaaagatcc
gcagaccgag gcaatcgtca 480tgattggcga gattggcggt tccgcggaag aagaagctgc
agcctatatc aaagaacatg 540tcacaaaacc ggtagtgggc tatatcgcgg gagtcacggc
cccaaaaggt aaacgtatgg 600gccatgccgg agcgatcatc gcgggcggca aaggcactgc
agatgaaaaa tttgcagccc 660ttgaggccgc tggcgtaaaa acggtccgtt cccttgctga
tattggtgaa gcactgaaaa 720ccgtgttgaa ataaaggtcc aggcatcaaa taaaacgaaa
ggctcagtcg aaagactggg 780cctttcgttt tatctgttgt ttgtcggtga acgctctcta
ctagagtcac actggctcac 840cttcgggtgg gcctttctgc gtttatatgc catgtcttct
actagtagcg gccgctgcag 900tccggcaaaa aagggcaagg tgtcaccacc ctgccctttt
tctttaaaac cgaaaagatt 960acttcgcgtt atgcaggctt cctcgctcac tgactcgctg
cgctcggtcg ttcggctgcg 1020gcgagcggta tcagctcact caaaggcggt aatacggtta
tccacagaat caggggataa 1080cgcaggaaag aacatgtgag caaaaggcca gcaaaaggcc
aggaaccgta aaaaggccgc 1140gttgctggcg tttttccaca ggctccgccc ccctgacgag
catcacaaaa atcgacgctc 1200aagtcagagg tggcgaaacc cgacaggact ataaagatac
caggcgtttc cccctggaag 1260ctccctcgtg cgctctcctg ttccgaccct gccgcttacc
ggatacctgt ccgcctttct 1320cccttcggga agcgtggcgc tttctcatag ctcacgctgt
aggtatctca gttcggtgta 1380ggtcgttcgc tccaagctgg gctgtgtgca cgaacccccc
gttcagcccg accgctgcgc 1440cttatccggt aactatcgtc ttgagtccaa cccggtaaga
cacgacttat cgccactggc 1500agcagccact ggtaacagga ttagcagagc gaggtatgta
ggcggtgcta cagagttctt 1560gaagtggtgg cctaactacg gctacactag aagaacagta
tttggtatct gcgctctgct 1620gaagccagtt accttcggaa aaagagttgg tagctcttga
tccggcaaac aaaccaccgc 1680tggtagcggt ggtttttttg tttgcaagca gcagattacg
cgcagaaaaa aaggatctca 1740agaagatcct ttgatctttt ctacggggtc tgacgctcag
tggaacgaaa actcacgtta 1800agggattttg gtcatgagat tatcaaaaag gatcttcacc
tagatccttt taaattaaaa 1860atgaagtttt aaatcaatct aaagtatata tgagtaaact
tggtctgaca gctcgagtcc 1920cgtcaagtca gcgtaatgct ctgccagtgt tacaaccaat
taaccaattc tgattagaaa 1980aactcatcga gcatcaaatg aaactgcaat ttattcatat
caggattatc aataccatat 2040ttttgaaaaa gccgtttctg taatgaagga gaaaactcac
cgaggcagtt ccataggatg 2100gcaagatcct ggtatcggtc tgcgattccg actcgtccaa
catcaataca acctattaat 2160ttcccctcgt caaaaataag gttatcaagt gagaaatcac
catgagtgac gactgaatcc 2220ggtgagaatg gcaaaagctt atgcatttct ttccagactt
gttcaacagg ccagccatta 2280cgctcgtcat caaaatcact cgcatcaacc aaaccgttat
tcattcgtga ttgcgcctga 2340gcgagacgaa atacgcgatc gctgttaaaa ggacaattac
aaacaggaat cgaatgcaac 2400cggcgcagga acactgccag cgcatcaaca atattttcac
ctgaatcagg atattcttct 2460aatacctgga atgctgtttt cccggggatc gcagtggtga
gtaaccatgc atcatcagga 2520gtacggataa aatgcttgat ggtcggaaga ggcataaatt
ccgtcagcca gtttagtctg 2580accatctcat ctgtaacatc attggcaacg ctacctttgc
catgtttcag aaacaactct 2640ggcgcatcgg gcttcccata caatcgatag attgtcgcac
ctgattgccc gacattatcg 2700cgagcccatt tatacccata taaatcagca tccatgttgg
aatttaatcg cggcctggag 2760caagacgttt cccgttgaat atggctcata acaccccttg
tattactgtt tatgtaagca 2820gacagtttta ttgttcatga tgatatattt ttatcttgtg
caatgtaaca tcagagattt 2880tgagacacaa cgtggctttg ttgaataaat cgaacttttg
ctgagttgaa ggatcagctc 2940gagtgccacc tgacgtctaa gaaaccatta ttatcatgac
attaacctat aaaaataggc 3000gtatcacgag gcagaatttc agataaaaaa aatccttagc
tttcgctaag gatgatttct 3060ggaattcgcg gccgcttcta gagactagtg gaagacatcg
ctttgacagc tagctcagtc 3120ctaggtactg tgctagctac tttaaactcc ccgagcaata
gtaatgcaga actcagcatt 3180gaaagcatgg cttgatagct cctatttatc aggtgctaac
cagagctgga ttgaacagct 3240gtatgaagat tttctgacag atccggattc agtggatgcg
aattggcgca gcacttttca 3300gcagttgcct ggcaccggtg taaaaccgga tcagtttcat
tcccagacgc gggagtattt 3360tcgtcgtctg gcgaaagatg cgagccggta ttcaagtaca
atttctgatc cggatacgaa 3420tgtaaaacag gtgaaagtgc ttcagttaat taatgcgtat
cgctttagag gccatcagca 3480tgcgaatctg gatccgctgg gcttatggca gcaggataaa
gtcgcggatc tggatccaag 3540ttttcacgat ttaacggaag ctgattttca ggaaaccttt
aacgtcggct cattcgcaag 3600tgggaaagaa acaatgaaac tgggcgaact tcttgaggcg
ctgaaacaga cttattgtgg 3660ccctattggt gcggaatata tgcatattac ctcaactgaa
gagaaacgtt ggattcagca 3720gagaatcgag agtggccgcg cgacttttaa ctccgaagaa
aaaaaaagat tcctgtcaga 3780actgacagcc gcggaaggct tagagcggta tttgggtgcc
aaattcccag gagcaaaacg 3840gttcagcctg gagggcggtg atgcgctgat cccgatgctg
aaagaaatga ttcggcatgc 3900gggaaatagc ggaactcggg aagtggtgtt aggaatggca
caccgcggcc gtttgaatgt 3960actggttaac gtattaggaa aaaaacctca ggatttattt
gatgagttcg cgggaaaaca 4020taaagaacat ctgggcactg gtgatgtcaa atatcacatg
ggcttctcaa gtgattttca 4080gacggatgga ggtctggttc acctggcact ggcatttaat
ccttctcatc tggaaatcgt 4140aagtccggtc gttattggtt ccgtgcgcgc tcgcttagat
cggttagatg aacctagctc 4200aaacaaagtt ttaccaatca cgatccatgg ggatgcagct
gttaccggac agggtgttgt 4260gcaggagact ttgaatatgt ccaaagcgcg cgggtatgag
gtgggtggta cggtgcgtat 4320tgttatcaat aatcaggtgg gttttacaac cagtaaccct
ctggatgctc gctctacgcc 4380gtattgcact gatattggta aaatggtgca ggcaccaatt
tttcacgtca atgccgatga 4440tccggaagct gttgcctttg ttacgcgcct ggctctggat
tttcgtaaca ctttcaaacg 4500tgatgtattt atcgatttag tatgctatcg tcgtcatggt
cataatgagg ctgatgaacc 4560tagcgctacc cagccactga tgtatcagaa aattaaaaaa
catcctaccc ctcgtaaaat 4620ttatgcggat aaactggagc aggaaaaagt ggctactctt
gaagatgcta ctgaaatggt 4680caatctttat cgggatgcat tggatgcggg tgattgcgtg
gtcgcggaat ggcgcccgat 4740gaatatgcat tcatttactt ggtcaccgta tttaaatcat
gagtgggatg aggaatatcc 4800gaataaagtg gagatgaaac gcctgcagga attagcaaaa
cgtattagca cagtacctga 4860agcggttgag atgcagtcta gagttgccaa aatctatgga
gatcgccagg ccatggcagc 4920aggggaaaaa ctttttgatt gggggggagc cgaaaacctg
gcatatgcga cgctggtaga 4980tgagggcatt ccggtgcgcc tttctggtga agattctggg
cgcggtactt tttttcatcg 5040gcacgctgtt attcataacc agtctaacgg tagtacttat
actccgctgc agcacatcca 5100caatggtcag ggtgcgttcc gtgtatggga ttccgtgctg
agtgaagaag cggttcttgc 5160gtttgagtat gggtatgcaa ctgccgagcc acgcacgctg
acgatctggg aagcccagtt 5220tggcgatttt gcaaatggtg cccaggtggt aatcgatcag
tttattagct ccggcgaaca 5280gaaatggggg cggatgtgtg gtttagttat gttgttaccg
catggctatg aaggtcaggg 5340acctgagcac agctcagcgc gcctggaacg ctatcttcag
ctgtgtgcgg aacagaacat 5400gcaggtatgc gttccttcca cgccggctca ggtttatcat
atgttaagac gtcaggcctt 5460gcgcggtatg cggcgcccgt tggtcgtgat gtccccgaaa
agtttactgc gccatccgtt 5520agcagttagc agcctggagg aactggcaaa cggtacgttc
ttgccagcta tcggcgaaat 5580cgatgaactg gatcctaaag gggtgaaacg cgttgttatg
tgttctggta aagtgtatta 5640tgatcttttg gaacagcgtc gcaaaaataa tcagcacgat
gtagctattg tgcggatcga 5700gcagctgtat ccgttcccgc acaaagcaat gcaggaagtg
ctgcagcagt tcgcacatgt 5760caaagatttt gtctggtgtc aggaggaacc gcttaatcag
ggggcctggt attgtagtca 5820gcaccatttc cgggaggtga tcccgtttgg ggcgtcctta
cggtatgctg gtcgccctgc 5880ctccgcaagt ccggccgtgg gatatatgag cgttcaccag
aaacagcagc aggatttggt 5940gaatgatgct ttgaatgtgg aatgaatgtc catcctgatc
gacaaaaaca ctaaagtaat 6000ttgtcagggc tttaccggtt cccagggcac atttcactca
gagcaggcca tcgcttatgg 6060gaccaaaatg gtgggtggtg taacgcctgg taaaggaggc a
610159013DNAEscherichia coli 5ccggcgaaag agtctgctcc
ggcagcggct gctccggcgg cgcaaccggc tctggctgca 60cgtagtgaaa aacgtgtccc
gatgactcgc ctgcgtaagc gtgtggcaga gcgtctgctg 120gaagcgaaaa actccaccgc
catgctgacc acgttcaacg aagtcaacat gaagccgatt 180atggatctgc gtaagcagta
cggtgaagcg tttgaaaaac gccacggcat ccgtctgggc 240tttatgtcct tctacgtgaa
agcggtggtt gaagccctga aacgttaccc ggaagtgaac 300gcttctatcg acggcgatga
cgtggtttac cacaactatt tcgacgtcag catggcggtt 360tctacgccgc gcggcctggt
gacgccggtt ctgcgtgatg tcgataccct cggcatggca 420gacatcgaga agaaaatcaa
agagctggca gtcaaaggcc gtgacggcaa gctgaccgtt 480gaagatctga ccggtggtaa
cttcaccatc accaacggtg gtgtgttcgg ttccctgatg 540tctacgccga tcatcaaccc
gccgcagagc gcaattctgg gtatgcacgc tatcaaagat 600cgtccgatgg cggtgaatgg
tcaggttgag atcctgccga tgatgtacct ggcgctgtcc 660tacgatcacc gtctgatcga
tggtcgcgaa tccgtgggct tcctggtaac gatcaaagag 720ttgctggaag atccgacgcg
tctgctgctg gacgtgtagt agtttaagtt tcacctgcac 780tgtagaccgg ataaggcatt
atcgccttct ccggcaattg aagcctgatg cgacgctgac 840gcgtcttatc aggcctacgg
gaccaccaat gtaggtcgga taaggcgcaa gcgccgcatc 900cgacaagcga tgcctgatgt
gacgtttaac gtgtcttatc aggcctacgg gtgaccgaca 960atgcccggaa gcgatacgaa
atattcggtc tacggtttaa aagataacga ttactgaagg 1020atggacagaa cacatgaact
tacatgaata tcaggcaaaa caactttttg cccgctatgg 1080cttaccagca ccggtgggtt
atgcctgtac tactccgcgc gaagcagaag aagccgcttc 1140aaaaatcggt gccggtccgt
gggtagtgaa atgtcaggtt cacgctggtg gccgcggtaa 1200agcgggcggt gtgaaagttg
taaacagcaa agaggacatc cgtgcttttg cagaaaactg 1260gctgggcaag cgtctggtaa
cgtatcaaac agatgccaat ggccaaccgg ttaaccagat 1320tctggttgaa gcagcgaccg
atatcgctaa agagctgtat ctcggtgccg ttgttgaccg 1380tagttcccgt cgtgtggtct
ttatggcctc caccgaaggc ggcgtggaaa tcgaaaaagt 1440ggcggaagaa actccgcacc
tgatccataa agttgcgctt gatccgctga ctggcccgat 1500gccgtatcag ggacgcgagc
tggcgttcaa actgggtctg gaaggtaaac tggttcagca 1560gttcaccaaa atcttcatgg
gcctggcgac cattttcctg gagcgcgacc tggcgttgat 1620cgaaatcaac ccgctggtca
tcaccaaaca gggcgatctg atttgcctcg acggcaaact 1680gggcgctgac ggcaacgcac
tgttccgcca gcctgatctg cgcgaaatgc gtgaccagtc 1740gcaggaagat ccgcgtgaag
cacaggctgc acagtgggaa ctgaactacg ttgcgctgga 1800cggtaacatc ggttgtatgg
ttaacggcgc aggtctggcg atgggtacga tggacatcgt 1860taaactgcac ggcggcgaac
cggctaactt ccttgacgtt ggcggcggcg caaccaaaga 1920acgtgtaacc gaagcgttca
aaatcatcct ctctgacgac aaagtgaaag ccgttctggt 1980taacatcttc ggcggtatcg
ttcgttgcga cctgatcgct gacggtatca tcggcgcggt 2040agcagaagtg ggtgttaacg
taccggtcgt ggtacgtctg gaaggtaaca acgccgaact 2100cggcgcgaag aaactggctg
acagcggcct gaatattatt gcagcaaaag gtctgacgga 2160tgcagctcag caggttgttg
ccgcagtgga ggggaaataa tgtccatttt aatcgataaa 2220aacaccaagg ttatctgcca
gggctttacc ggtagccagg ggactttcca ctcagaacag 2280gccattgcat acggcactaa
aatggttggc ggcgtaaccc caggtaaagg cggcaccacc 2340cacctcggcc tgccggtgtt
caacaccgtg cgtgaagccg ttgctgccac tggcgctacc 2400gcttctgtta tctacgtacc
agcaccgttc tgcaaagact ccattctgga agccatcgac 2460gcaggcatca aactgattat
caccatcact gaaggcatcc cgacgctgga tatgctgacc 2520gtgaaagtga agctggatga
agcaggcgtt cgtatgatcg gcccgaactg cccaggcgtt 2580atcactccgg gtgaatgcaa
aatcggtatc cagcctggtc acattcacaa accgggtaaa 2640gtgggtatcg tttcccgttc
cggtacactg acctatgaag cggttaaaca gaccacggat 2700tacggtttcg gtcagtcgac
ctgtgtcggt atcggcggtg acccgatccc gggctctaac 2760tttatcgaca ttctcgaaat
gttcgaaaaa gatccgcaga ccgaagcgat cgtgatgatc 2820ggtgagatcg gcggtagcgc
tgaagaagaa gcagctgcgt acatcaaaga gcacgttacc 2880aagccagttg tgggttacat
cgctggtgtg actgcgccga aaggcaaacg tatgggccac 2940gcgggtgcca tcattgccgg
tgggaaaggg actgcggatg agaaattcgc tgctctggaa 3000gccgcaggcg tgaaaaccgt
tcgcagcctg gcggatatcg gtgaagcact gaaaactgtt 3060ctgaaataaa ggtccaggca
tcaaataaaa cgaaaggctc agtcgaaaga ctgggccttt 3120cgttttatct gttgtttgtc
ggtgaacgct ctctactaga gtcacactgg ctcaccttcg 3180ggtgggcctt tctgcgttta
tatgccatgt cttctactag tagcggccgc tgcagtccgg 3240caaaaaaggg caaggtgtca
ccaccctgcc ctttttcttt aaaaccgaaa agattacttc 3300gcgttatgca ggcttcctcg
ctcactgact cgctgcgctc ggtcgttcgg ctgcggcgag 3360cggtatcagc tcactcaaag
gcggtaatac ggttatccac agaatcaggg gataacgcag 3420gaaagaacat gtgagcaaaa
ggccagcaaa aggccaggaa ccgtaaaaag gccgcgttgc 3480tggcgttttt ccacaggctc
cgcccccctg acgagcatca caaaaatcga cgctcaagtc 3540agaggtggcg aaacccgaca
ggactataaa gataccaggc gtttccccct ggaagctccc 3600tcgtgcgctc tcctgttccg
accctgccgc ttaccggata cctgtccgcc tttctccctt 3660cgggaagcgt ggcgctttct
catagctcac gctgtaggta tctcagttcg gtgtaggtcg 3720ttcgctccaa gctgggctgt
gtgcacgaac cccccgttca gcccgaccgc tgcgccttat 3780ccggtaacta tcgtcttgag
tccaacccgg taagacacga cttatcgcca ctggcagcag 3840ccactggtaa caggattagc
agagcgaggt atgtaggcgg tgctacagag ttcttgaagt 3900ggtggcctaa ctacggctac
actagaagaa cagtatttgg tatctgcgct ctgctgaagc 3960cagttacctt cggaaaaaga
gttggtagct cttgatccgg caaacaaacc accgctggta 4020gcggtggttt ttttgtttgc
aagcagcaga ttacgcgcag aaaaaaagga tctcaagaag 4080atcctttgat cttttctacg
gggtctgacg ctcagtggaa cgaaaactca cgttaaggga 4140ttttggtcat gagattatca
aaaaggatct tcacctagat ccttttaaat taaaaatgaa 4200gttttaaatc aatctaaagt
atatatgagt aaacttggtc tgacagctcg agtcccgtca 4260agtcagcgta atgctctgcc
agtgttacaa ccaattaacc aattctgatt agaaaaactc 4320atcgagcatc aaatgaaact
gcaatttatt catatcagga ttatcaatac catatttttg 4380aaaaagccgt ttctgtaatg
aaggagaaaa ctcaccgagg cagttccata ggatggcaag 4440atcctggtat cggtctgcga
ttccgactcg tccaacatca atacaaccta ttaatttccc 4500ctcgtcaaaa ataaggttat
caagtgagaa atcaccatga gtgacgactg aatccggtga 4560gaatggcaaa agcttatgca
tttctttcca gacttgttca acaggccagc cattacgctc 4620gtcatcaaaa tcactcgcat
caaccaaacc gttattcatt cgtgattgcg cctgagcgag 4680acgaaatacg cgatcgctgt
taaaaggaca attacaaaca ggaatcgaat gcaaccggcg 4740caggaacact gccagcgcat
caacaatatt ttcacctgaa tcaggatatt cttctaatac 4800ctggaatgct gttttcccgg
ggatcgcagt ggtgagtaac catgcatcat caggagtacg 4860gataaaatgc ttgatggtcg
gaagaggcat aaattccgtc agccagttta gtctgaccat 4920ctcatctgta acatcattgg
caacgctacc tttgccatgt ttcagaaaca actctggcgc 4980atcgggcttc ccatacaatc
gatagattgt cgcacctgat tgcccgacat tatcgcgagc 5040ccatttatac ccatataaat
cagcatccat gttggaattt aatcgcggcc tggagcaaga 5100cgtttcccgt tgaatatggc
tcataacacc ccttgtatta ctgtttatgt aagcagacag 5160ttttattgtt catgatgata
tatttttatc ttgtgcaatg taacatcaga gattttgaga 5220cacaacgtgg ctttgttgaa
taaatcgaac ttttgctgag ttgaaggatc agctcgagtg 5280ccacctgacg tctaagaaac
cattattatc atgacattaa cctataaaaa taggcgtatc 5340acgaggcaga atttcagata
aaaaaaatcc ttagctttcg ctaaggatga tttctggaat 5400tcgcggccgc ttctagagac
tagtggaaga catcgctacc gtaggcctga taagacgcgc 5460aagcgtcgca tcaggcaacc
agtgccggat gcggcgtgaa cgccttatcc ggcctacaag 5520tcattacccg taggcctgat
aagcgcagcg catcaggcgt aacaaagaaa tgcaggaaat 5580ctttaaaaac tgcccctgac
actaagacag tttttaaagg ttccttcgcg agccactacg 5640tagacaagag ctcgcaagtg
aaccccggca cgcacatcac tgtgcgtggt agtatccacg 5700gcgaagtaag cataaaaaag
atgcttaagg gatcacgaat gcagaacagc gctttgaaag 5760cctggttgga ctcttcttac
ctctctggcg caaaccagag ctggatagaa cagctctatg 5820aagatttctt aaccgatcct
gactcggttg acgctaactg gcgttcgacg ttccagcagt 5880tacctggtac gggagtcaaa
ccggatcaat tccactctca aacgcgtgaa tatttccgcc 5940gcctggcgaa agacgcttca
cgttactctt caacgatctc cgaccctgac accaatgtga 6000agcaggttaa agtcctgcag
ctcattaacg cataccgctt ccgtggtcac cagcatgcga 6060atctcgatcc gctgggactg
tggcagcaag ataaagtggc cgatctggat ccgtctttcc 6120acgatctgac cgaagcagac
ttccaggaga ctttcaacgt cggttcattt gccagcggca 6180aagaaaccat gaaactcggc
gagctgctgg aagccctcaa gcaaacctac tgcggcccga 6240ttggtgccga gtatatgcac
attaccagca ccgaagaaaa acgctggatc caacagcgta 6300tcgagtctgg tcgcgcgact
ttcaatagcg aagagaaaaa acgcttctta agcgaactga 6360ccgccgctga aggtcttgaa
cgttacctcg gcgcaaaatt ccctggcgca aaacgcttct 6420cgctggaagg cggtgacgcg
ttaatcccga tgcttaaaga gatgatccgc cacgctggca 6480acagcggcac ccgcgaagtg
gttctcggga tggcgcaccg tggtcgtctg aacgtgctgg 6540tgaacgtgct gggtaaaaaa
ccgcaagact tgttcgacga gttcgccggt aaacataaag 6600aacacctcgg cacgggtgac
gtgaaatacc acatgggctt ctcgtctgac ttccagaccg 6660atggcggcct ggtgcacctg
gcgctggcgt ttaacccgtc tcaccttgag attgtaagcc 6720cggtagttat cggttctgtt
cgtgcccgtc tggacagact tgatgagccg agcagcaaca 6780aagtgctgcc aatcaccatc
cacggtgacg ccgcagtgac cgggcagggc gtggttcagg 6840aaaccctgaa catgtcgaaa
gcgcgtggtt atgaagttgg cggtacggta cgtatcgtta 6900tcaacaacca ggttggtttc
accacctcta atccgctgga tgcccgttct acgccgtact 6960gtactgatat cggtaagatg
gttcaggccc cgattttcca cgttaacgcg gacgatccgg 7020aagccgttgc ctttgtgacc
cgtctggcgc tcgatttccg taacaccttt aaacgtgatg 7080ttttcatcga cctggtgtgc
taccgccgtc acggccacaa cgaagccgac gagccgagcg 7140caacccagcc gctgatgtat
cagaaaatca aaaaacatcc gacaccgcgc aaaatctacg 7200ctgacaagct ggagcaggaa
aaagtggcga cgctggaaga tgccaccgag atggttaacc 7260tgtaccgcga tgcgctggat
gctggcgatt gcgtagtggc agagtggcgt ccgatgaaca 7320tgcactcttt cacctggtcg
ccgtacctca accacgaatg ggacgaagag tacccgaaca 7380aagttgagat gaagcgcctg
caggagctgg cgaaacgcat cagcacggtg ccggaagcag 7440ttgaaatgca gtctcgcgtt
gccaagattt atggcgatcg ccaggcgatg gctgccggtg 7500agaaactgtt cgactggggc
ggtgcggaaa acctcgctta cgccacgctg gttgatgaag 7560gcattccggt tcgcctgtcg
ggtgaggact ccggtcgcgg taccttcttc caccgccacg 7620cggtgatcca caaccagtct
aacggttcca cttacacgcc gctgcaacat atccataacg 7680ggcagggcgc gttccgtgtc
tgggactccg tactgtctga agaagcagtg ctggcgtttg 7740aatatggtta tgccaccgca
gaaccacgca ctctgaccat ctgggaagcg cagttcggtg 7800acttcgccaa cggtgcgcag
gtggttatcg accagttcat ctcctctggc gaacagaaat 7860ggggccggat gtgtggtctg
gtgatgttgc tgccgcacgg ttacgaaggg caggggccgg 7920agcactcctc cgcgcgtctg
gaacgttatc tgcaactttg tgctgagcaa aacatgcagg 7980tttgcgtacc gtctaccccg
gcacaggttt accacatgct gcgtcgtcag gcgctgcgcg 8040ggatgcgtcg tccgctggtc
gtgatgtcgc cgaaatccct gctgcgtcat ccgctggcgg 8100tttccagcct cgaagaactg
gcgaacggca ccttcctgcc agccatcggt gaaatcgacg 8160agcttgatcc gaagggcgtg
aagcgcgtag tgatgtgttc tggtaaggtt tattacgacc 8220tgctggaaca gcgtcgtaag
aacaatcaac acgatgtcgc cattgtgcgt atcgagcaac 8280tctacccgtt cccgcataaa
gcgatgcagg aagtgttgca gcagtttgct cacgtcaagg 8340attttgtctg gtgccaggaa
gagccgctca accagggcgc atggtactgc agccagcatc 8400atttccgtga agtgattccg
tttggggctt ctctgcgtta tgcaggccgc ccggcctccg 8460cctctccggc ggtagggtat
atgtccgttc accagaaaca gcaacaagat ctggttaatg 8520acgcgctgaa cgtcgaataa
ataaaggata cacaatgagt agcgtagata ttctggtccc 8580tgacctgcct gaatccgtag
ccgatgccac cgtcgcaacc tggcataaaa aacccggcga 8640cgcagtcgta cgtgatgaag
tgctggtaga aatcgaaact gacaaagtgg tactggaagt 8700accggcatca gcagacggca
ttctggatgc ggttctggaa gatgaaggta caacggtaac 8760gtctcgtcag atccttggtc
gcctgcgtga aggcaacagc gccggtaaag aaaccagcgc 8820caaatctgaa gagaaagcgt
ccactccggc gcaacgccag caggcgtctc tggaagagca 8880aaacaacgat gcgttaagcc
cggcgatccg tcgcctgctg gctgaacaca atctcgacgc 8940cagcgccatt aaaggcaccg
gtgtgggtgg tcgtctgact cgtgaagatg tggaaaaaca 9000tctggcgaaa gcc
901366608DNAEscherichia coli
6cgcgttgctg gcgtttttcc acaggctccg cccccctgac gagcatcaca aaaatcgacg
60ctcaagtcag aggtggcgaa acccgacagg actataaaga taccaggcgt ttccccctgg
120aagctccctc gtgcgctctc ctgttccgac cctgccgctt accggatacc tgtccgcctt
180tctcccttcg ggaagcgtgg cgctttctca tagctcacgc tgtaggtatc tcagttcggt
240gtaggtcgtt cgctccaagc tgggctgtgt gcacgaaccc cccgttcagc ccgaccgctg
300cgccttatcc ggtaactatc gtcttgagtc caacccggta agacacgact tatcgccact
360ggcagcagcc actggtaaca ggattagcag agcgaggtat gtaggcggtg ctacagagtt
420cttgaagtgg tggcctaact acggctacac tagaagaaca gtatttggta tctgcgctct
480gctgaagcca gttaccttcg gaaaaagagt tggtagctct tgatccggca aacaaaccac
540cgctggtagc ggtggttttt ttgtttgcaa gcagcagatt acgcgcagaa aaaaaggatc
600tcaagaagat cctttgatct tttctacggg gtctgacgct cagtggaacg aaaactcacg
660ttaagggatt ttggtcatga gattatcaaa aaggatcttc acctagatcc ttttaaatta
720aaaatgaagt tttaaatcaa tctaaagtat atatgagtaa acttggtctg acagctcgag
780tttacggcta gctcagtcct aggtatagtg ctagctactt gttagaaaag agaagcacgt
840aatgcagaac tcagcattga aagcatggct tgatagctcc tatttatcag gtgctaacca
900gagctggatt gaacagctgt atgaagattt tctgacagat ccggattcag tggatgcgaa
960ttggcgcagc acttttcagc agttgcctgg caccggtgta aaaccggatc agtttcattc
1020ccagacgcgg gagtattttc gtcgtctggc gaaagatgcg agccggtatt caagtacaat
1080ttctgatccg gatacgaatg taaaacaggt gaaagtgctt cagttaatta atgcgtatcg
1140ctttagaggc catcagcatg cgaatctgga tccgctgggc ttatggcagc aggataaagt
1200cgcggatctg gatccaagtt ttcacgattt aacggaagct gattttcagg aaacctttaa
1260cgtcggctca ttcgcaagtg ggaaagaaac aatgaaactg ggcgaacttc ttgaggcgct
1320gaaacagact tattgtggcc ctattggtgc ggaatatatg catattacct caactgaaga
1380gaaacgttgg attcagcaga gaatcgagag tggccgcgcg acttttaact ccgaagaaaa
1440aaaaagattc ctgtcagaac tgacagccgc ggaaggctta gagcggtatt tgggtgccaa
1500attcccagga gcaaaacggt tcagcctgga gggcggtgat gcgctgatcc cgatgctgaa
1560agaaatgatt cggcatgcgg gaaatagcgg aactcgggaa gtggtgttag gaatggcaca
1620ccgcggccgt ttgaatgtac tggttaacgt attaggaaaa aaacctcagg atttatttga
1680tgagttcgcg ggaaaacata aagaacatct gggcactggt gatgtcaaat atcacatggg
1740cttctcaagt gattttcaga cggatggagg tctggttcac ctggcactgg catttaatcc
1800ttctcatctg gaaatcgtaa gtccggtcgt tattggttcc gtgcgcgctc gcttagatcg
1860gttagatgaa cctagctcaa acaaagtttt accaatcacg atccatgggg atgcagctgt
1920taccggacag ggtgttgtgc aggagacttt gaatatgtcc aaagcgcgcg ggtatgaggt
1980gggtggtacg gtgcgtattg ttatcaataa tcaggtgggt tttacaacca gtaaccctct
2040ggatgctcgc tctacgccgt attgcactga tattggtaaa atggtgcagg caccaatttt
2100tcacgtcaat gccgatgatc cggaagctgt tgcctttgtt acgcgcctgg ctctggattt
2160tcgtaacact ttcaaacgtg atgtatttat cgatttagta tgctatcgtc gtcatggtca
2220taatgaggct gatgaaccta gcgctaccca gccactgatg tatcagaaaa ttaaaaaaca
2280tcctacccct cgtaaaattt atgcggataa actggagcag gaaaaagtgg ctactcttga
2340agatgctact gaaatggtca atctttatcg ggatgcattg gatgcgggtg attgcgtggt
2400cgcggaatgg cgcccgatga atatgcattc atttacttgg tcaccgtatt taaatcatga
2460gtgggatgag gaatatccga ataaagtgga gatgaaacgc ctgcaggaat tagcaaaacg
2520tattagcaca gtacctgaag cggttgagat gcagtctaga gttgccaaaa tctatggaga
2580tcgccaggcc atggcagcag gggaaaaact ttttgattgg gggggagccg aaaacctggc
2640atatgcgacg ctggtagatg agggcattcc ggtgcgcctt tctggtgaag attctgggcg
2700cggtactttt tttcatcggc acgctgttat tcataaccag tctaacggta gtacttatac
2760tccgctgcag cacatccaca atggtcaggg tgcgttccgt gtatgggatt ccgtgctgag
2820tgaagaagcg gttcttgcgt ttgagtatgg gtatgcaact gccgagccac gcacgctgac
2880gatctgggaa gcccagtttg gcgattttgc aaatggtgcc caggtggtaa tcgatcagtt
2940tattagctcc ggcgaacaga aatgggggcg gatgtgtggt ttagttatgt tgttaccgca
3000tggctatgaa ggtcagggac ctgagcacag ctcagcgcgc ctggaacgct atcttcagct
3060gtgtgcggaa cagaacatgc aggtatgcgt tccttccacg ccggctcagg tttatcatat
3120gttaagacgt caggccttgc gcggtatgcg gcgcccgttg gtcgtgatgt ccccgaaaag
3180tttactgcgc catccgttag cagttagcag cctggaggaa ctggcaaacg gtacgttctt
3240gccagctatc ggcgaaatcg atgaactgga tcctaaaggg gtgaaacgcg ttgttatgtg
3300ttctggtaaa gtgtattatg atcttttgga acagcgtcgc aaaaataatc agcacgatgt
3360agctattgtg cggatcgagc agctgtatcc gttcccgcac aaagcaatgc aggaagtgct
3420gcagcagttc gcacatgtca aagattttgt ctggtgtcag gaggaaccgc ttaatcaggg
3480ggcctggtat tgtagtcagc accatttccg ggaggtgatc ccgtttgggg cgtccttacg
3540gtatgctggt cgccctgcct ccgcaagtcc ggccgtggga tatatgagcg ttcaccagaa
3600acagcagcag gatttggtga atgatgcttt gaatgtggaa tgaatgtcca tcctgatcga
3660caaaaacact aaagtaattt gtcagggctt taccggttcc cagggcacat ttcactcaga
3720gcaggccatc gcttatggga ccaaaatggt gggtggtgta acgcctggta aaggaggcac
3780cacccatctg ggtttgccgg tatttaatac cgtgcgtgag gcggttgccg caaccggtgc
3840cacggcttca gttatctatg ttcctgcccc attttgtaaa gattcaattc tggaagctat
3900tgatgcgggc atcaaattga ttattacgat taccgaaggt atccctacgc tggatatgtt
3960gacggttaaa gtgaaacttg atgaagcggg ggtacgcatg attggtccga attgtccggg
4020cgttattact ccaggtgagt gcaaaattgg tattcagccg ggtcatattc acaaacctgg
4080gaaagtcgga attgtgtctc gttctggcac tctgacgtat gaggcagtta aacagaccac
4140agattatggc tttgggcaga gtacctgtgt cggcatcgga ggcgatccta ttccggggag
4200taattttatc gatattctgg aaatgtttga gaaagatccg cagaccgagg caatcgtcat
4260gattggcgag attggcggtt ccgcggaaga agaagctgca gcctatatca aagaacatgt
4320cacaaaaccg gtagtgggct atatcgcggg agtcacggcc ccaaaaggta aacgtatggg
4380ccatgccgga gcgatcatcg cgggcggcaa aggcactgca gatgaaaaat ttgcagccct
4440tgaggccgct ggcgtaaaaa cggtccgttc ccttgctgat attggtgaag cactgaaaac
4500cgtgttgaaa taaaggtcca ggcatcaaat aaaacgaaag gctcagtcga aagactgggc
4560ctttcgtttt atctgttgtt tgtcggtgaa cgctctctac tagagtcaca ctggctcacc
4620ttcgggtggg cctttctgcg tttatactcg agtgccacct gacgtctaag aaaccattat
4680tatcatgaca ttaacctata aaaataggcg tatcacgagg cagaatttca gataaaaaaa
4740atccttagct ttcgctaagg atgatttctg gaattcgcgg ccgcttctag agactagtgg
4800aagacatcgc tagagacctg caccatatgc ggtgtgaaat accgcacaga tgcgtaagga
4860gaaaataccg catcaggcgc cattcgccat tcaggctgcg caactgttgg gaagggcgat
4920cggtgcgggc ctcttcgcta ttacgccagc tggcgaaagg gggatgtgct gcaaggcgat
4980taagttgggt aacgccaggg ttttcccagt cacgacgttg taaaacgacg gccagtgaat
5040tcgagctcgg tacccgggga tcctctagag tcgacctgca ggcatgcaag cttggcgtaa
5100tcatggtcat agctgtttcc tgtgtgaaat tgttatccgc tcacaattcc acacaacata
5160cgagccggaa gcataaagtg taaagcctgg ggtgcctaat gagtgagcta actcacatta
5220attgcgttgc gctcactgcc cgctttccag tcgggaaacc tgtcgtgcca gctgcattaa
5280tgaatcggcc aacgcgcggg ggtttataaa atcccgtcaa gtcagcgtaa tgctctgcca
5340gtgttacaac caattaacca attctgatta gaaaaactca tcgagcatca aatgaaactg
5400caatttattc atatcaggat tatcaatacc atatttttga aaaagccgtt tctgtaatga
5460aggagaaaac tcaccgaggc agttccatag gatggcaaga tcctggtatc ggtctgcgat
5520tccgactcgt ccaacatcaa tacaacctat taatttcccc tcgtcaaaaa taaggttatc
5580aagtgagaaa tcaccatgag tgacgactga atccggtgag aatggcaaaa gcttatgcat
5640ttctttccag acttgttcaa caggccagcc attacgctcg tcatcaaaat cactcgcatc
5700aaccaaaccg ttattcattc gtgattgcgc ctgagcgaga cgaaatacgc gatcgctgtt
5760aaaaggacaa ttacaaacag gaatcgaatg caaccggcgc aggaacactg ccagcgcatc
5820aacaatattt tcacctgaat caggatattc ttctaatacc tggaatgctg ttttcccggg
5880gatcgcagtg gtgagtaacc atgcatcatc aggagtacgg ataaaatgct tgatggtcgg
5940aagaggcata aattccgtca gccagtttag tctgaccatc tcatctgtaa catcattggc
6000aacgctacct ttgccatgtt tcagaaacaa ctctggcgca tcgggcttcc catacaatcg
6060atagattgtc gcacctgatt gcccgacatt atcgcgagcc catttatacc catataaatc
6120agcatccatg ttggaattta atcgcggcct ggagcaagac gtttcccgtt gaatatggct
6180cataacaccc cttgtattac tgtttatgta agcagacagt tttattgttc atgatgatat
6240atttttatct tgtgcaatgt aacatcagag attttgagac acaacgtggc tttgttgaat
6300aaatcgaact tttgctgagt tgaaggatca gggtctcttg ccatgtcttc tactagtagc
6360ggccgctgca gtccggcaaa aaagggcaag gtgtcaccac cctgcccttt ttctttaaaa
6420ccgaaaagat tacttcgcgt tatgcaggct tcctcgctca ctgactcgct gcgctcggtc
6480gttcggctgc ggcgagcggt atcagctcac tcaaaggcgg taatacggtt atccacagaa
6540tcaggggata acgcaggaaa gaacatgtga gcaaaaggcc agcaaaaggc caggaaccgt
6600aaaaaggc
660879517DNAEscherichia coli 7cgcgttgctg gcgtttttcc acaggctccg cccccctgac
gagcatcaca aaaatcgacg 60ctcaagtcag aggtggcgaa acccgacagg actataaaga
taccaggcgt ttccccctgg 120aagctccctc gtgcgctctc ctgttccgac cctgccgctt
accggatacc tgtccgcctt 180tctcccttcg ggaagcgtgg cgctttctca tagctcacgc
tgtaggtatc tcagttcggt 240gtaggtcgtt cgctccaagc tgggctgtgt gcacgaaccc
cccgttcagc ccgaccgctg 300cgccttatcc ggtaactatc gtcttgagtc caacccggta
agacacgact tatcgccact 360ggcagcagcc actggtaaca ggattagcag agcgaggtat
gtaggcggtg ctacagagtt 420cttgaagtgg tggcctaact acggctacac tagaagaaca
gtatttggta tctgcgctct 480gctgaagcca gttaccttcg gaaaaagagt tggtagctct
tgatccggca aacaaaccac 540cgctggtagc ggtggttttt ttgtttgcaa gcagcagatt
acgcgcagaa aaaaaggatc 600tcaagaagat cctttgatct tttctacggg gtctgacgct
cagtggaacg aaaactcacg 660ttaagggatt ttggtcatga gattatcaaa aaggatcttc
acctagatcc ttttaaatta 720aaaatgaagt tttaaatcaa tctaaagtat atatgagtaa
acttggtctg acagctcgag 780gtaggcctga taagacgcgc aagcgtcgca tcaggcaacc
agtgccggat gcggcgtgaa 840cgccttatcc ggcctacaag tcattacccg taggcctgat
aagcgcagcg catcaggcgt 900aacaaagaaa tgcaggaaat ctttaaaaac tgcccctgac
actaagacag tttttaaagg 960ttccttcgcg agccactacg tagacaagag ctcgcaagtg
aaccccggca cgcacatcac 1020tgtgcgtggt agtatccacg gcgaagtaag cataaaaaag
atgcttaagg gatcacgaat 1080gcagaacagc gctttgaaag cctggttgga ctcttcttac
ctctctggcg caaaccagag 1140ctggatagaa cagctctatg aagatttctt aaccgatcct
gactcggttg acgctaactg 1200gcgttcgacg ttccagcagt tacctggtac gggagtcaaa
ccggatcaat tccactctca 1260aacgcgtgaa tatttccgcc gcctggcgaa agacgcttca
cgttactctt caacgatctc 1320cgaccctgac accaatgtga agcaggttaa agtcctgcag
ctcattaacg cataccgctt 1380ccgtggtcac cagcatgcga atctcgatcc gctgggactg
tggcagcaag ataaagtggc 1440cgatctggat ccgtctttcc acgatctgac cgaagcagac
ttccaggaga ctttcaacgt 1500cggttcattt gccagcggca aagaaaccat gaaactcggc
gagctgctgg aagccctcaa 1560gcaaacctac tgcggcccga ttggtgccga gtatatgcac
attaccagca ccgaagaaaa 1620acgctggatc caacagcgta tcgagtctgg tcgcgcgact
ttcaatagcg aagagaaaaa 1680acgcttctta agcgaactga ccgccgctga aggtcttgaa
cgttacctcg gcgcaaaatt 1740ccctggcgca aaacgcttct cgctggaagg cggtgacgcg
ttaatcccga tgcttaaaga 1800gatgatccgc cacgctggca acagcggcac ccgcgaagtg
gttctcggga tggcgcaccg 1860tggtcgtctg aacgtgctgg tgaacgtgct gggtaaaaaa
ccgcaagact tgttcgacga 1920gttcgccggt aaacataaag aacacctcgg cacgggtgac
gtgaaatacc acatgggctt 1980ctcgtctgac ttccagaccg atggcggcct ggtgcacctg
gcgctggcgt ttaacccgtc 2040tcaccttgag attgtaagcc cggtagttat cggttctgtt
cgtgcccgtc tggacagact 2100tgatgagccg agcagcaaca aagtgctgcc aatcaccatc
cacggtgacg ccgcagtgac 2160cgggcagggc gtggttcagg aaaccctgaa catgtcgaaa
gcgcgtggtt atgaagttgg 2220cggtacggta cgtatcgtta tcaacaacca ggttggtttc
accacctcta atccgctgga 2280tgcccgttct acgccgtact gtactgatat cggtaagatg
gttcaggccc cgattttcca 2340cgttaacgcg gacgatccgg aagccgttgc ctttgtgacc
cgtctggcgc tcgatttccg 2400taacaccttt aaacgtgatg ttttcatcga cctggtgtgc
taccgccgtc acggccacaa 2460cgaagccgac gagccgagcg caacccagcc gctgatgtat
cagaaaatca aaaaacatcc 2520gacaccgcgc aaaatctacg ctgacaagct ggagcaggaa
aaagtggcga cgctggaaga 2580tgccaccgag atggttaacc tgtaccgcga tgcgctggat
gctggcgatt gcgtagtggc 2640agagtggcgt ccgatgaaca tgcactcttt cacctggtcg
ccgtacctca accacgaatg 2700ggacgaagag tacccgaaca aagttgagat gaagcgcctg
caggagctgg cgaaacgcat 2760cagcacggtg ccggaagcag ttgaaatgca gtctcgcgtt
gccaagattt atggcgatcg 2820ccaggcgatg gctgccggtg agaaactgtt cgactggggc
ggtgcggaaa acctcgctta 2880cgccacgctg gttgatgaag gcattccggt tcgcctgtcg
ggtgaggact ccggtcgcgg 2940taccttcttc caccgccacg cggtgatcca caaccagtct
aacggttcca cttacacgcc 3000gctgcaacat atccataacg ggcagggcgc gttccgtgtc
tgggactccg tactgtctga 3060agaagcagtg ctggcgtttg aatatggtta tgccaccgca
gaaccacgca ctctgaccat 3120ctgggaagcg cagttcggtg acttcgccaa cggtgcgcag
gtggttatcg accagttcat 3180ctcctctggc gaacagaaat ggggccggat gtgtggtctg
gtgatgttgc tgccgcacgg 3240ttacgaaggg caggggccgg agcactcctc cgcgcgtctg
gaacgttatc tgcaactttg 3300tgctgagcaa aacatgcagg tttgcgtacc gtctaccccg
gcacaggttt accacatgct 3360gcgtcgtcag gcgctgcgcg ggatgcgtcg tccgctggtc
gtgatgtcgc cgaaatccct 3420gctgcgtcat ccgctggcgg tttccagcct cgaagaactg
gcgaacggca ccttcctgcc 3480agccatcggt gaaatcgacg agcttgatcc gaagggcgtg
aagcgcgtag tgatgtgttc 3540tggtaaggtt tattacgacc tgctggaaca gcgtcgtaag
aacaatcaac acgatgtcgc 3600cattgtgcgt atcgagcaac tctacccgtt cccgcataaa
gcgatgcagg aagtgttgca 3660gcagtttgct cacgtcaagg attttgtctg gtgccaggaa
gagccgctca accagggcgc 3720atggtactgc agccagcatc atttccgtga agtgattccg
tttggggctt ctctgcgtta 3780tgcaggccgc ccggcctccg cctctccggc ggtagggtat
atgtccgttc accagaaaca 3840gcaacaagat ctggttaatg acgcgctgaa cgtcgaataa
ataaaggata cacaatgagt 3900agcgtagata ttctggtccc tgacctgcct gaatccgtag
ccgatgccac cgtcgcaacc 3960tggcataaaa aacccggcga cgcagtcgta cgtgatgaag
tgctggtaga aatcgaaact 4020gacaaagtgg tactggaagt accggcatca gcagacggca
ttctggatgc ggttctggaa 4080gatgaaggta caacggtaac gtctcgtcag atccttggtc
gcctgcgtga aggcaacagc 4140gccggtaaag aaaccagcgc caaatctgaa gagaaagcgt
ccactccggc gcaacgccag 4200caggcgtctc tggaagagca aaacaacgat gcgttaagcc
cggcgatccg tcgcctgctg 4260gctgaacaca atctcgacgc cagcgccatt aaaggcaccg
gtgtgggtgg tcgtctgact 4320cgtgaagatg tggaaaaaca tctggcgaaa gccccggcga
aagagtctgc tccggcagcg 4380gctgctccgg cggcgcaacc ggctctggct gcacgtagtg
aaaaacgtgt cccgatgact 4440cgcctgcgta agcgtgtggc agagcgtctg ctggaagcga
aaaactccac cgccatgctg 4500accacgttca acgaagtcaa catgaagccg attatggatc
tgcgtaagca gtacggtgaa 4560gcgtttgaaa aacgccacgg catccgtctg ggctttatgt
ccttctacgt gaaagcggtg 4620gttgaagccc tgaaacgtta cccggaagtg aacgcttcta
tcgacggcga tgacgtggtt 4680taccacaact atttcgacgt cagcatggcg gtttctacgc
cgcgcggcct ggtgacgccg 4740gttctgcgtg atgtcgatac cctcggcatg gcagacatcg
agaagaaaat caaagagctg 4800gcagtcaaag gccgtgacgg caagctgacc gttgaagatc
tgaccggtgg taacttcacc 4860atcaccaacg gtggtgtgtt cggttccctg atgtctacgc
cgatcatcaa cccgccgcag 4920agcgcaattc tgggtatgca cgctatcaaa gatcgtccga
tggcggtgaa tggtcaggtt 4980gagatcctgc cgatgatgta cctggcgctg tcctacgatc
accgtctgat cgatggtcgc 5040gaatccgtgg gcttcctggt aacgatcaaa gagttgctgg
aagatccgac gcgtctgctg 5100ctggacgtgt agtagtttaa gtttcacctg cactgtagac
cggataaggc attatcgcct 5160tctccggcaa ttgaagcctg atgcgacgct gacgcgtctt
atcaggccta cgggaccacc 5220aatgtaggtc ggataaggcg caagcgccgc atccgacaag
cgatgcctga tgtgacgttt 5280aacgtgtctt atcaggccta cgggtgaccg acaatgcccg
gaagcgatac gaaatattcg 5340gtctacggtt taaaagataa cgattactga aggatggaca
gaacacatga acttacatga 5400atatcaggca aaacaacttt ttgcccgcta tggcttacca
gcaccggtgg gttatgcctg 5460tactactccg cgcgaagcag aagaagccgc ttcaaaaatc
ggtgccggtc cgtgggtagt 5520gaaatgtcag gttcacgctg gtggccgcgg taaagcgggc
ggtgtgaaag ttgtaaacag 5580caaagaggac atccgtgctt ttgcagaaaa ctggctgggc
aagcgtctgg taacgtatca 5640aacagatgcc aatggccaac cggttaacca gattctggtt
gaagcagcga ccgatatcgc 5700taaagagctg tatctcggtg ccgttgttga ccgtagttcc
cgtcgtgtgg tctttatggc 5760ctccaccgaa ggcggcgtgg aaatcgaaaa agtggcggaa
gaaactccgc acctgatcca 5820taaagttgcg cttgatccgc tgactggccc gatgccgtat
cagggacgcg agctggcgtt 5880caaactgggt ctggaaggta aactggttca gcagttcacc
aaaatcttca tgggcctggc 5940gaccattttc ctggagcgcg acctggcgtt gatcgaaatc
aacccgctgg tcatcaccaa 6000acagggcgat ctgatttgcc tcgacggcaa actgggcgct
gacggcaacg cactgttccg 6060ccagcctgat ctgcgcgaaa tgcgtgacca gtcgcaggaa
gatccgcgtg aagcacaggc 6120tgcacagtgg gaactgaact acgttgcgct ggacggtaac
atcggttgta tggttaacgg 6180cgcaggtctg gcgatgggta cgatggacat cgttaaactg
cacggcggcg aaccggctaa 6240cttccttgac gttggcggcg gcgcaaccaa agaacgtgta
accgaagcgt tcaaaatcat 6300cctctctgac gacaaagtga aagccgttct ggttaacatc
ttcggcggta tcgttcgttg 6360cgacctgatc gctgacggta tcatcggcgc ggtagcagaa
gtgggtgtta acgtaccggt 6420cgtggtacgt ctggaaggta acaacgccga actcggcgcg
aagaaactgg ctgacagcgg 6480cctgaatatt attgcagcaa aaggtctgac ggatgcagct
cagcaggttg ttgccgcagt 6540ggaggggaaa taatgtccat tttaatcgat aaaaacacca
aggttatctg ccagggcttt 6600accggtagcc aggggacttt ccactcagaa caggccattg
catacggcac taaaatggtt 6660ggcggcgtaa ccccaggtaa aggcggcacc acccacctcg
gcctgccggt gttcaacacc 6720gtgcgtgaag ccgttgctgc cactggcgct accgcttctg
ttatctacgt accagcaccg 6780ttctgcaaag actccattct ggaagccatc gacgcaggca
tcaaactgat tatcaccatc 6840actgaaggca tcccgacgct ggatatgctg accgtgaaag
tgaagctgga tgaagcaggc 6900gttcgtatga tcggcccgaa ctgcccaggc gttatcactc
cgggtgaatg caaaatcggt 6960atccagcctg gtcacattca caaaccgggt aaagtgggta
tcgtttcccg ttccggtaca 7020ctgacctatg aagcggttaa acagaccacg gattacggtt
tcggtcagtc gacctgtgtc 7080ggtatcggcg gtgacccgat cccgggctct aactttatcg
acattctcga aatgttcgaa 7140aaagatccgc agaccgaagc gatcgtgatg atcggtgaga
tcggcggtag cgctgaagaa 7200gaagcagctg cgtacatcaa agagcacgtt accaagccag
ttgtgggtta catcgctggt 7260gtgactgcgc cgaaaggcaa acgtatgggc cacgcgggtg
ccatcattgc cggtgggaaa 7320gggactgcgg atgagaaatt cgctgctctg gaagccgcag
gcgtgaaaac cgttcgcagc 7380ctggcggata tcggtgaagc actgaaaact gttctgaaat
aaaggtccag gcatcaaata 7440aaacgaaagg ctcagtcgaa agactgggcc tttcgtttta
tctgttgttt gtcggtgaac 7500gctctctact agagtcacac tggctcacct tcgggtgggc
ctttctgcgt ttatactcga 7560gtgccacctg acgtctaaga aaccattatt atcatgacat
taacctataa aaataggcgt 7620atcacgaggc agaatttcag ataaaaaaaa tccttagctt
tcgctaagga tgatttctgg 7680aattcgcggc cgcttctaga gactagtgga agacatcgct
agagacctgc accatatgcg 7740gtgtgaaata ccgcacagat gcgtaaggag aaaataccgc
atcaggcgcc attcgccatt 7800caggctgcgc aactgttggg aagggcgatc ggtgcgggcc
tcttcgctat tacgccagct 7860ggcgaaaggg ggatgtgctg caaggcgatt aagttgggta
acgccagggt tttcccagtc 7920acgacgttgt aaaacgacgg ccagtgaatt cgagctcggt
acccggggat cctctagagt 7980cgacctgcag gcatgcaagc ttggcgtaat catggtcata
gctgtttcct gtgtgaaatt 8040gttatccgct cacaattcca cacaacatac gagccggaag
cataaagtgt aaagcctggg 8100gtgcctaatg agtgagctaa ctcacattaa ttgcgttgcg
ctcactgccc gctttccagt 8160cgggaaacct gtcgtgccag ctgcattaat gaatcggcca
acgcgcgggg gtttataaaa 8220tcccgtcaag tcagcgtaat gctctgccag tgttacaacc
aattaaccaa ttctgattag 8280aaaaactcat cgagcatcaa atgaaactgc aatttattca
tatcaggatt atcaatacca 8340tatttttgaa aaagccgttt ctgtaatgaa ggagaaaact
caccgaggca gttccatagg 8400atggcaagat cctggtatcg gtctgcgatt ccgactcgtc
caacatcaat acaacctatt 8460aatttcccct cgtcaaaaat aaggttatca agtgagaaat
caccatgagt gacgactgaa 8520tccggtgaga atggcaaaag cttatgcatt tctttccaga
cttgttcaac aggccagcca 8580ttacgctcgt catcaaaatc actcgcatca accaaaccgt
tattcattcg tgattgcgcc 8640tgagcgagac gaaatacgcg atcgctgtta aaaggacaat
tacaaacagg aatcgaatgc 8700aaccggcgca ggaacactgc cagcgcatca acaatatttt
cacctgaatc aggatattct 8760tctaatacct ggaatgctgt tttcccgggg atcgcagtgg
tgagtaacca tgcatcatca 8820ggagtacgga taaaatgctt gatggtcgga agaggcataa
attccgtcag ccagtttagt 8880ctgaccatct catctgtaac atcattggca acgctacctt
tgccatgttt cagaaacaac 8940tctggcgcat cgggcttccc atacaatcga tagattgtcg
cacctgattg cccgacatta 9000tcgcgagccc atttataccc atataaatca gcatccatgt
tggaatttaa tcgcggcctg 9060gagcaagacg tttcccgttg aatatggctc ataacacccc
ttgtattact gtttatgtaa 9120gcagacagtt ttattgttca tgatgatata tttttatctt
gtgcaatgta acatcagaga 9180ttttgagaca caacgtggct ttgttgaata aatcgaactt
ttgctgagtt gaaggatcag 9240ggtctcttgc catgtcttct actagtagcg gccgctgcag
tccggcaaaa aagggcaagg 9300tgtcaccacc ctgccctttt tctttaaaac cgaaaagatt
acttcgcgtt atgcaggctt 9360cctcgctcac tgactcgctg cgctcggtcg ttcggctgcg
gcgagcggta tcagctcact 9420caaaggcggt aatacggtta tccacagaat caggggataa
cgcaggaaag aacatgtgag 9480caaaaggcca gcaaaaggcc aggaaccgta aaaaggc
951787116DNAEscherichia coli 8tactgcgcca tccgttagca
gttagcagcc tggaggaact ggcaaacggt acgttcttgc 60cagctatcgg cgaaatcgat
gaactggatc ctaaaggggt gaaacgcgtt gttatgtgtt 120ctggtaaagt gtattatgat
cttttggaac agcgtcgcaa aaataatcag cacgatgtag 180ctattgtgcg gatcgagcag
ctgtatccgt tcccgcacaa agcaatgcag gaagtgctgc 240agcagttcgc acatgtcaaa
gattttgtct ggtgtcagga ggaaccgctt aatcaggggg 300cctggtattg tagtcagcac
catttccggg aggtgatccc gtttggggcg tccttacggt 360atgctggtcg ccctgcctcc
gcaagtccgg ccgtgggata tatgagcgtt caccagaaac 420agcagcagga tttggtgaat
gatgctttga atgtggaatg aatgtccatc ctgatcgaca 480aaaacactaa agtaatttgt
cagggcttta ccggttccca gggcacattt cactcagagc 540aggccatcgc ttatgggacc
aaaatggtgg gtggtgtaac gcctggtaaa ggaggcacca 600cccatctggg tttgccggta
tttaataccg tgcgtgaggc ggttgccgca accggtgcca 660cggcttcagt tatctatgtt
cctgccccat tttgtaaaga ttcaattctg gaagctattg 720atgcgggcat caaattgatt
attacgatta ccgaaggtat ccctacgctg gatatgttga 780cggttaaagt gaaacttgat
gaagcggggg tacgcatgat tggtccgaat tgtccgggcg 840ttattactcc aggtgagtgc
aaaattggta ttcagccggg tcatattcac aaacctggga 900aagtcggaat tgtgtctcgt
tctggcactc tgacgtatga ggcagttaaa cagaccacag 960attatggctt tgggcagagt
acctgtgtcg gcatcggagg cgatcctatt ccggggagta 1020attttatcga tattctggaa
atgtttgaga aagatccgca gaccgaggca atcgtcatga 1080ttggcgagat tggcggttcc
gcggaagaag aagctgcagc ctatatcaaa gaacatgtca 1140caaaaccggt agtgggctat
atcgcgggag tcacggcccc aaaaggtaaa cgtatgggcc 1200atgccggagc gatcatcgcg
ggcggcaaag gcactgcaga tgaaaaattt gcagcccttg 1260aggccgctgg cgtaaaaacg
gtccgttccc ttgctgatat tggtgaagca ctgaaaaccg 1320tgttgaaata aaggtccagg
catcaaataa aacgaaaggc tcagtcgaaa gactgggcct 1380ttcgttttat ctgttgtttg
tcggtgaacg ctctctacta gagtcacact ggctcacctt 1440cgggtgggcc tttctgcgtt
tatatcccgt caagtcagcg taatgctctg ccagtgttac 1500aaccaattaa ccaattctga
ttagaaaaac tcatcgagca tcaaatgaaa ctgcaattta 1560ttcatatcag gattatcaat
accatatttt tgaaaaagcc gtttctgtaa tgaaggagaa 1620aactcaccga ggcagttcca
taggatggca agatcctggt atcggtctgc gattccgact 1680cgtccaacat caatacaacc
tattaatttc ccctcgtcaa aaataaggtt atcaagtgag 1740aaatcaccat gagtgacgac
tgaatccggt gagaatggca aaagcttatg catttctttc 1800cagacttgtt caacaggcca
gccattacgc tcgtcatcaa aatcactcgc atcaaccaaa 1860ccgttattca ttcgtgattg
cgcctgagcg agacgaaata cgcgatcgct gttaaaagga 1920caattacaaa caggaatcga
atgcaaccgg cgcaggaaca ctgccagcgc atcaacaata 1980ttttcacctg aatcaggata
ttcttctaat acctggaatg ctgttttccc ggggatcgca 2040gtggtgagta accatgcatc
atcaggagta cggataaaat gcttgatggt cggaagaggc 2100ataaattccg tcagccagtt
tagtctgacc atctcatctg taacatcatt ggcaacgcta 2160cctttgccat gtttcagaaa
caactctggc gcatcgggct tcccatacaa tcgatagatt 2220gtcgcacctg attgcccgac
attatcgcga gcccatttat acccatataa atcagcatcc 2280atgttggaat ttaatcgcgg
cctggagcaa gacgtttccc gttgaatatg gctcataaca 2340ccccttgtat tactgtttat
gtaagcagac agttttattg ttcatgatga tatattttta 2400tcttgtgcaa tgtaacatca
gagattttga gacacaacgt ggctttgttg aataaatcga 2460acttttgctg agttgaagga
tcagctcgag tgccacctga cgtctaagaa accattatta 2520tcatgacatt aacctataaa
aataggcgta tcacgaggca gaatttcaga taaaaaaaat 2580ccttagcttt cgctaaggat
gatttctgga attcgcggcc gcttctagag actagtggaa 2640gacatcgctg gaaagtgaaa
cgtgatttca tgcgtcattt tgaacatttt gtaaatctta 2700tttaataatg tgtgcggcaa
ttcacattta atttatgaat gttttcttaa catcgcggca 2760actcaagaaa cggcaggttc
ggatcttagc tactagagaa agaggagaaa tactagatgc 2820gtaaaggcga agagctgttc
actggtgtcg tccctattct ggtggaactg gatggtgatg 2880tcaacggtca taagttttcc
gtgcgtggcg agggtgaagg tgacgcaact aatggtaaac 2940tgacgctgaa gttcatctgt
actactggta aactgccggt tccttggccg actctggtaa 3000cgacgctgac ttatggtgtt
cagtgctttg ctcgttatcc ggaccatatg aagcagcatg 3060acttcttcaa gtccgccatg
ccggaaggct atgtgcagga acgcacgatt tcctttaagg 3120atgacggcac gtacaaaacg
cgtgcggaag tgaaatttga aggcgatacc ctggtaaacc 3180gcattgagct gaaaggcatt
gactttaaag aggacggcaa tatcctgggc cataagctgg 3240aatacaattt taacagccac
aatgtttaca tcaccgccga taaacaaaaa aatggcatta 3300aagcgaattt taaaattcgc
cacaacgtgg aggatggcag cgtgcagctg gctgatcact 3360accagcaaaa cactccaatc
ggtgatggtc ctgttctgct gccagacaat cactatctga 3420gcacgcaaag cgttctgtct
aaagatccga acgagaaacg cgatcatatg gttctgctgg 3480agttcgtaac cgcagcgggc
atcacgcatg gtatggatga actgtacaaa tgaccaggca 3540tcaaataaaa cgaaaggctc
agtcgaaaga ctgggccttt cgttttatct gttgtttgtc 3600ggtgaacgct ctctactaga
gtcacactgg ctcaccttcg ggtgggcctt tctgcgttta 3660tacgtgccat gtcttctact
agtagcggcc gctgcagtcc ggcaaaaaag ggcaaggtgt 3720caccaccctg ccctttttct
ttaaaaccga aaagattact tcgcgttatg caggcttcct 3780cgctcactga ctcgctgcgc
tcggtcgttc ggctgcggcg agcggtatca gctcactcaa 3840aggcggtaat acggttatcc
acagaatcag gggataacgc aggaaagaac atgtgagcaa 3900aaggccagca aaaggccagg
aaccgtaaaa aggccgcgtt gctggcgttt ttccacaggc 3960tccgcccccc tgacgagcat
cacaaaaatc gacgctcaag tcagaggtgg cgaaacccga 4020caggactata aagataccag
gcgtttcccc ctggaagctc cctcgtgcgc tctcctgttc 4080cgaccctgcc gcttaccgga
tacctgtccg cctttctccc ttcgggaagc gtggcgcttt 4140ctcatagctc acgctgtagg
tatctcagtt cggtgtaggt cgttcgctcc aagctgggct 4200gtgtgcacga accccccgtt
cagcccgacc gctgcgcctt atccggtaac tatcgtcttg 4260agtccaaccc ggtaagacac
gacttatcgc cactggcagc agccactggt aacaggatta 4320gcagagcgag gtatgtaggc
ggtgctacag agttcttgaa gtggtggcct aactacggct 4380acactagaag aacagtattt
ggtatctgcg ctctgctgaa gccagttacc ttcggaaaaa 4440gagttggtag ctcttgatcc
ggcaaacaaa ccaccgctgg tagcggtggt ttttttgttt 4500gcaagcagca gattacgcgc
agaaaaaaag gatctcaaga agatcctttg atcttttcta 4560cggggtctga cgctcagtgg
aacgaaaact cacgttaagg gattttggtc atgagattat 4620caaaaaggat cttcacctag
atccttttaa attaaaaatg aagttttaaa tcaatctaaa 4680gtatatatga gtaaacttgg
tctgacagct cgagtttacg gctagctcag tcctaggtat 4740agtgctagct acttgttaga
aaagagaagc acgtaatgca gaactcagca ttgaaagcat 4800ggcttgatag ctcctattta
tcaggtgcta accagagctg gattgaacag ctgtatgaag 4860attttctgac agatccggat
tcagtggatg cgaattggcg cagcactttt cagcagttgc 4920ctggcaccgg tgtaaaaccg
gatcagtttc attcccagac gcgggagtat tttcgtcgtc 4980tggcgaaaga tgcgagccgg
tattcaagta caatttctga tccggatacg aatgtaaaac 5040aggtgaaagt gcttcagtta
attaatgcgt atcgctttag aggccatcag catgcgaatc 5100tggatccgct gggcttatgg
cagcaggata aagtcgcgga tctggatcca agttttcacg 5160atttaacgga agctgatttt
caggaaacct ttaacgtcgg ctcattcgca agtgggaaag 5220aaacaatgaa actgggcgaa
cttcttgagg cgctgaaaca gacttattgt ggccctattg 5280gtgcggaata tatgcatatt
acctcaactg aagagaaacg ttggattcag cagagaatcg 5340agagtggccg cgcgactttt
aactccgaag aaaaaaaaag attcctgtca gaactgacag 5400ccgcggaagg cttagagcgg
tatttgggtg ccaaattccc aggagcaaaa cggttcagcc 5460tggagggcgg tgatgcgctg
atcccgatgc tgaaagaaat gattcggcat gcgggaaata 5520gcggaactcg ggaagtggtg
ttaggaatgg cacaccgcgg ccgtttgaat gtactggtta 5580acgtattagg aaaaaaacct
caggatttat ttgatgagtt cgcgggaaaa cataaagaac 5640atctgggcac tggtgatgtc
aaatatcaca tgggcttctc aagtgatttt cagacggatg 5700gaggtctggt tcacctggca
ctggcattta atccttctca tctggaaatc gtaagtccgg 5760tcgttattgg ttccgtgcgc
gctcgcttag atcggttaga tgaacctagc tcaaacaaag 5820ttttaccaat cacgatccat
ggggatgcag ctgttaccgg acagggtgtt gtgcaggaga 5880ctttgaatat gtccaaagcg
cgcgggtatg aggtgggtgg tacggtgcgt attgttatca 5940ataatcaggt gggttttaca
accagtaacc ctctggatgc tcgctctacg ccgtattgca 6000ctgatattgg taaaatggtg
caggcaccaa tttttcacgt caatgccgat gatccggaag 6060ctgttgcctt tgttacgcgc
ctggctctgg attttcgtaa cactttcaaa cgtgatgtat 6120ttatcgattt agtatgctat
cgtcgtcatg gtcataatga ggctgatgaa cctagcgcta 6180cccagccact gatgtatcag
aaaattaaaa aacatcctac ccctcgtaaa atttatgcgg 6240ataaactgga gcaggaaaaa
gtggctactc ttgaagatgc tactgaaatg gtcaatcttt 6300atcgggatgc attggatgcg
ggtgattgcg tggtcgcgga atggcgcccg atgaatatgc 6360attcatttac ttggtcaccg
tatttaaatc atgagtggga tgaggaatat ccgaataaag 6420tggagatgaa acgcctgcag
gaattagcaa aacgtattag cacagtacct gaagcggttg 6480agatgcagtc tagagttgcc
aaaatctatg gagatcgcca ggccatggca gcaggggaaa 6540aactttttga ttggggggga
gccgaaaacc tggcatatgc gacgctggta gatgagggca 6600ttccggtgcg cctttctggt
gaagattctg ggcgcggtac tttttttcat cggcacgctg 6660ttattcataa ccagtctaac
ggtagtactt atactccgct gcagcacatc cacaatggtc 6720agggtgcgtt ccgtgtatgg
gattccgtgc tgagtgaaga agcggttctt gcgtttgagt 6780atgggtatgc aactgccgag
ccacgcacgc tgacgatctg ggaagcccag tttggcgatt 6840ttgcaaatgg tgcccaggtg
gtaatcgatc agtttattag ctccggcgaa cagaaatggg 6900ggcggatgtg tggtttagtt
atgttgttac cgcatggcta tgaaggtcag ggacctgagc 6960acagctcagc gcgcctggaa
cgctatcttc agctgtgtgc ggaacagaac atgcaggtat 7020gcgttccttc cacgccggct
caggtttatc atatgttaag acgtcaggcc ttgcgcggta 7080tgcggcgccc gttggtcgtg
atgtccccga aaagtt 7116910025DNAEscherichia
coli 9cgcgttgctg gcgtttttcc acaggctccg cccccctgac gagcatcaca aaaatcgacg
60ctcaagtcag aggtggcgaa acccgacagg actataaaga taccaggcgt ttccccctgg
120aagctccctc gtgcgctctc ctgttccgac cctgccgctt accggatacc tgtccgcctt
180tctcccttcg ggaagcgtgg cgctttctca tagctcacgc tgtaggtatc tcagttcggt
240gtaggtcgtt cgctccaagc tgggctgtgt gcacgaaccc cccgttcagc ccgaccgctg
300cgccttatcc ggtaactatc gtcttgagtc caacccggta agacacgact tatcgccact
360ggcagcagcc actggtaaca ggattagcag agcgaggtat gtaggcggtg ctacagagtt
420cttgaagtgg tggcctaact acggctacac tagaagaaca gtatttggta tctgcgctct
480gctgaagcca gttaccttcg gaaaaagagt tggtagctct tgatccggca aacaaaccac
540cgctggtagc ggtggttttt ttgtttgcaa gcagcagatt acgcgcagaa aaaaaggatc
600tcaagaagat cctttgatct tttctacggg gtctgacgct cagtggaacg aaaactcacg
660ttaagggatt ttggtcatga gattatcaaa aaggatcttc acctagatcc ttttaaatta
720aaaatgaagt tttaaatcaa tctaaagtat atatgagtaa acttggtctg acagctcgag
780gtaggcctga taagacgcgc aagcgtcgca tcaggcaacc agtgccggat gcggcgtgaa
840cgccttatcc ggcctacaag tcattacccg taggcctgat aagcgcagcg catcaggcgt
900aacaaagaaa tgcaggaaat ctttaaaaac tgcccctgac actaagacag tttttaaagg
960ttccttcgcg agccactacg tagacaagag ctcgcaagtg aaccccggca cgcacatcac
1020tgtgcgtggt agtatccacg gcgaagtaag cataaaaaag atgcttaagg gatcacgaat
1080gcagaacagc gctttgaaag cctggttgga ctcttcttac ctctctggcg caaaccagag
1140ctggatagaa cagctctatg aagatttctt aaccgatcct gactcggttg acgctaactg
1200gcgttcgacg ttccagcagt tacctggtac gggagtcaaa ccggatcaat tccactctca
1260aacgcgtgaa tatttccgcc gcctggcgaa agacgcttca cgttactctt caacgatctc
1320cgaccctgac accaatgtga agcaggttaa agtcctgcag ctcattaacg cataccgctt
1380ccgtggtcac cagcatgcga atctcgatcc gctgggactg tggcagcaag ataaagtggc
1440cgatctggat ccgtctttcc acgatctgac cgaagcagac ttccaggaga ctttcaacgt
1500cggttcattt gccagcggca aagaaaccat gaaactcggc gagctgctgg aagccctcaa
1560gcaaacctac tgcggcccga ttggtgccga gtatatgcac attaccagca ccgaagaaaa
1620acgctggatc caacagcgta tcgagtctgg tcgcgcgact ttcaatagcg aagagaaaaa
1680acgcttctta agcgaactga ccgccgctga aggtcttgaa cgttacctcg gcgcaaaatt
1740ccctggcgca aaacgcttct cgctggaagg cggtgacgcg ttaatcccga tgcttaaaga
1800gatgatccgc cacgctggca acagcggcac ccgcgaagtg gttctcggga tggcgcaccg
1860tggtcgtctg aacgtgctgg tgaacgtgct gggtaaaaaa ccgcaagact tgttcgacga
1920gttcgccggt aaacataaag aacacctcgg cacgggtgac gtgaaatacc acatgggctt
1980ctcgtctgac ttccagaccg atggcggcct ggtgcacctg gcgctggcgt ttaacccgtc
2040tcaccttgag attgtaagcc cggtagttat cggttctgtt cgtgcccgtc tggacagact
2100tgatgagccg agcagcaaca aagtgctgcc aatcaccatc cacggtgacg ccgcagtgac
2160cgggcagggc gtggttcagg aaaccctgaa catgtcgaaa gcgcgtggtt atgaagttgg
2220cggtacggta cgtatcgtta tcaacaacca ggttggtttc accacctcta atccgctgga
2280tgcccgttct acgccgtact gtactgatat cggtaagatg gttcaggccc cgattttcca
2340cgttaacgcg gacgatccgg aagccgttgc ctttgtgacc cgtctggcgc tcgatttccg
2400taacaccttt aaacgtgatg ttttcatcga cctggtgtgc taccgccgtc acggccacaa
2460cgaagccgac gagccgagcg caacccagcc gctgatgtat cagaaaatca aaaaacatcc
2520gacaccgcgc aaaatctacg ctgacaagct ggagcaggaa aaagtggcga cgctggaaga
2580tgccaccgag atggttaacc tgtaccgcga tgcgctggat gctggcgatt gcgtagtggc
2640agagtggcgt ccgatgaaca tgcactcttt cacctggtcg ccgtacctca accacgaatg
2700ggacgaagag tacccgaaca aagttgagat gaagcgcctg caggagctgg cgaaacgcat
2760cagcacggtg ccggaagcag ttgaaatgca gtctcgcgtt gccaagattt atggcgatcg
2820ccaggcgatg gctgccggtg agaaactgtt cgactggggc ggtgcggaaa acctcgctta
2880cgccacgctg gttgatgaag gcattccggt tcgcctgtcg ggtgaggact ccggtcgcgg
2940taccttcttc caccgccacg cggtgatcca caaccagtct aacggttcca cttacacgcc
3000gctgcaacat atccataacg ggcagggcgc gttccgtgtc tgggactccg tactgtctga
3060agaagcagtg ctggcgtttg aatatggtta tgccaccgca gaaccacgca ctctgaccat
3120ctgggaagcg cagttcggtg acttcgccaa cggtgcgcag gtggttatcg accagttcat
3180ctcctctggc gaacagaaat ggggccggat gtgtggtctg gtgatgttgc tgccgcacgg
3240ttacgaaggg caggggccgg agcactcctc cgcgcgtctg gaacgttatc tgcaactttg
3300tgctgagcaa aacatgcagg tttgcgtacc gtctaccccg gcacaggttt accacatgct
3360gcgtcgtcag gcgctgcgcg ggatgcgtcg tccgctggtc gtgatgtcgc cgaaatccct
3420gctgcgtcat ccgctggcgg tttccagcct cgaagaactg gcgaacggca ccttcctgcc
3480agccatcggt gaaatcgacg agcttgatcc gaagggcgtg aagcgcgtag tgatgtgttc
3540tggtaaggtt tattacgacc tgctggaaca gcgtcgtaag aacaatcaac acgatgtcgc
3600cattgtgcgt atcgagcaac tctacccgtt cccgcataaa gcgatgcagg aagtgttgca
3660gcagtttgct cacgtcaagg attttgtctg gtgccaggaa gagccgctca accagggcgc
3720atggtactgc agccagcatc atttccgtga agtgattccg tttggggctt ctctgcgtta
3780tgcaggccgc ccggcctccg cctctccggc ggtagggtat atgtccgttc accagaaaca
3840gcaacaagat ctggttaatg acgcgctgaa cgtcgaataa ataaaggata cacaatgagt
3900agcgtagata ttctggtccc tgacctgcct gaatccgtag ccgatgccac cgtcgcaacc
3960tggcataaaa aacccggcga cgcagtcgta cgtgatgaag tgctggtaga aatcgaaact
4020gacaaagtgg tactggaagt accggcatca gcagacggca ttctggatgc ggttctggaa
4080gatgaaggta caacggtaac gtctcgtcag atccttggtc gcctgcgtga aggcaacagc
4140gccggtaaag aaaccagcgc caaatctgaa gagaaagcgt ccactccggc gcaacgccag
4200caggcgtctc tggaagagca aaacaacgat gcgttaagcc cggcgatccg tcgcctgctg
4260gctgaacaca atctcgacgc cagcgccatt aaaggcaccg gtgtgggtgg tcgtctgact
4320cgtgaagatg tggaaaaaca tctggcgaaa gccccggcga aagagtctgc tccggcagcg
4380gctgctccgg cggcgcaacc ggctctggct gcacgtagtg aaaaacgtgt cccgatgact
4440cgcctgcgta agcgtgtggc agagcgtctg ctggaagcga aaaactccac cgccatgctg
4500accacgttca acgaagtcaa catgaagccg attatggatc tgcgtaagca gtacggtgaa
4560gcgtttgaaa aacgccacgg catccgtctg ggctttatgt ccttctacgt gaaagcggtg
4620gttgaagccc tgaaacgtta cccggaagtg aacgcttcta tcgacggcga tgacgtggtt
4680taccacaact atttcgacgt cagcatggcg gtttctacgc cgcgcggcct ggtgacgccg
4740gttctgcgtg atgtcgatac cctcggcatg gcagacatcg agaagaaaat caaagagctg
4800gcagtcaaag gccgtgacgg caagctgacc gttgaagatc tgaccggtgg taacttcacc
4860atcaccaacg gtggtgtgtt cggttccctg atgtctacgc cgatcatcaa cccgccgcag
4920agcgcaattc tgggtatgca cgctatcaaa gatcgtccga tggcggtgaa tggtcaggtt
4980gagatcctgc cgatgatgta cctggcgctg tcctacgatc accgtctgat cgatggtcgc
5040gaatccgtgg gcttcctggt aacgatcaaa gagttgctgg aagatccgac gcgtctgctg
5100ctggacgtgt agtagtttaa gtttcacctg cactgtagac cggataaggc attatcgcct
5160tctccggcaa ttgaagcctg atgcgacgct gacgcgtctt atcaggccta cgggaccacc
5220aatgtaggtc ggataaggcg caagcgccgc atccgacaag cgatgcctga tgtgacgttt
5280aacgtgtctt atcaggccta cgggtgaccg acaatgcccg gaagcgatac gaaatattcg
5340gtctacggtt taaaagataa cgattactga aggatggaca gaacacatga acttacatga
5400atatcaggca aaacaacttt ttgcccgcta tggcttacca gcaccggtgg gttatgcctg
5460tactactccg cgcgaagcag aagaagccgc ttcaaaaatc ggtgccggtc cgtgggtagt
5520gaaatgtcag gttcacgctg gtggccgcgg taaagcgggc ggtgtgaaag ttgtaaacag
5580caaagaggac atccgtgctt ttgcagaaaa ctggctgggc aagcgtctgg taacgtatca
5640aacagatgcc aatggccaac cggttaacca gattctggtt gaagcagcga ccgatatcgc
5700taaagagctg tatctcggtg ccgttgttga ccgtagttcc cgtcgtgtgg tctttatggc
5760ctccaccgaa ggcggcgtgg aaatcgaaaa agtggcggaa gaaactccgc acctgatcca
5820taaagttgcg cttgatccgc tgactggccc gatgccgtat cagggacgcg agctggcgtt
5880caaactgggt ctggaaggta aactggttca gcagttcacc aaaatcttca tgggcctggc
5940gaccattttc ctggagcgcg acctggcgtt gatcgaaatc aacccgctgg tcatcaccaa
6000acagggcgat ctgatttgcc tcgacggcaa actgggcgct gacggcaacg cactgttccg
6060ccagcctgat ctgcgcgaaa tgcgtgacca gtcgcaggaa gatccgcgtg aagcacaggc
6120tgcacagtgg gaactgaact acgttgcgct ggacggtaac atcggttgta tggttaacgg
6180cgcaggtctg gcgatgggta cgatggacat cgttaaactg cacggcggcg aaccggctaa
6240cttccttgac gttggcggcg gcgcaaccaa agaacgtgta accgaagcgt tcaaaatcat
6300cctctctgac gacaaagtga aagccgttct ggttaacatc ttcggcggta tcgttcgttg
6360cgacctgatc gctgacggta tcatcggcgc ggtagcagaa gtgggtgtta acgtaccggt
6420cgtggtacgt ctggaaggta acaacgccga actcggcgcg aagaaactgg ctgacagcgg
6480cctgaatatt attgcagcaa aaggtctgac ggatgcagct cagcaggttg ttgccgcagt
6540ggaggggaaa taatgtccat tttaatcgat aaaaacacca aggttatctg ccagggcttt
6600accggtagcc aggggacttt ccactcagaa caggccattg catacggcac taaaatggtt
6660ggcggcgtaa ccccaggtaa aggcggcacc acccacctcg gcctgccggt gttcaacacc
6720gtgcgtgaag ccgttgctgc cactggcgct accgcttctg ttatctacgt accagcaccg
6780ttctgcaaag actccattct ggaagccatc gacgcaggca tcaaactgat tatcaccatc
6840actgaaggca tcccgacgct ggatatgctg accgtgaaag tgaagctgga tgaagcaggc
6900gttcgtatga tcggcccgaa ctgcccaggc gttatcactc cgggtgaatg caaaatcggt
6960atccagcctg gtcacattca caaaccgggt aaagtgggta tcgtttcccg ttccggtaca
7020ctgacctatg aagcggttaa acagaccacg gattacggtt tcggtcagtc gacctgtgtc
7080ggtatcggcg gtgacccgat cccgggctct aactttatcg acattctcga aatgttcgaa
7140aaagatccgc agaccgaagc gatcgtgatg atcggtgaga tcggcggtag cgctgaagaa
7200gaagcagctg cgtacatcaa agagcacgtt accaagccag ttgtgggtta catcgctggt
7260gtgactgcgc cgaaaggcaa acgtatgggc cacgcgggtg ccatcattgc cggtgggaaa
7320gggactgcgg atgagaaatt cgctgctctg gaagccgcag gcgtgaaaac cgttcgcagc
7380ctggcggata tcggtgaagc actgaaaact gttctgaaat aaaggtccag gcatcaaata
7440aaacgaaagg ctcagtcgaa agactgggcc tttcgtttta tctgttgttt gtcggtgaac
7500gctctctact agagtcacac tggctcacct tcgggtgggc ctttctgcgt ttatatcccg
7560tcaagtcagc gtaatgctct gccagtgtta caaccaatta accaattctg attagaaaaa
7620ctcatcgagc atcaaatgaa actgcaattt attcatatca ggattatcaa taccatattt
7680ttgaaaaagc cgtttctgta atgaaggaga aaactcaccg aggcagttcc ataggatggc
7740aagatcctgg tatcggtctg cgattccgac tcgtccaaca tcaatacaac ctattaattt
7800cccctcgtca aaaataaggt tatcaagtga gaaatcacca tgagtgacga ctgaatccgg
7860tgagaatggc aaaagcttat gcatttcttt ccagacttgt tcaacaggcc agccattacg
7920ctcgtcatca aaatcactcg catcaaccaa accgttattc attcgtgatt gcgcctgagc
7980gagacgaaat acgcgatcgc tgttaaaagg acaattacaa acaggaatcg aatgcaaccg
8040gcgcaggaac actgccagcg catcaacaat attttcacct gaatcaggat attcttctaa
8100tacctggaat gctgttttcc cggggatcgc agtggtgagt aaccatgcat catcaggagt
8160acggataaaa tgcttgatgg tcggaagagg cataaattcc gtcagccagt ttagtctgac
8220catctcatct gtaacatcat tggcaacgct acctttgcca tgtttcagaa acaactctgg
8280cgcatcgggc ttcccataca atcgatagat tgtcgcacct gattgcccga cattatcgcg
8340agcccattta tacccatata aatcagcatc catgttggaa tttaatcgcg gcctggagca
8400agacgtttcc cgttgaatat ggctcataac accccttgta ttactgttta tgtaagcaga
8460cagttttatt gttcatgatg atatattttt atcttgtgca atgtaacatc agagattttg
8520agacacaacg tggctttgtt gaataaatcg aacttttgct gagttgaagg atcagctcga
8580gtgccacctg acgtctaaga aaccattatt atcatgacat taacctataa aaataggcgt
8640atcacgaggc agaatttcag ataaaaaaaa tccttagctt tcgctaagga tgatttctgg
8700aattcgcggc cgcttctaga gactagtgga agacatcgct ggaaagtgaa acgtgatttc
8760atgcgtcatt ttgaacattt tgtaaatctt atttaataat gtgtgcggca attcacattt
8820aatttatgaa tgttttctta acatcgcggc aactcaagaa acggcaggtt cggatcttag
8880ctactagaga aagaggagaa atactagatg cgtaaaggcg aagagctgtt cactggtgtc
8940gtccctattc tggtggaact ggatggtgat gtcaacggtc ataagttttc cgtgcgtggc
9000gagggtgaag gtgacgcaac taatggtaaa ctgacgctga agttcatctg tactactggt
9060aaactgccgg ttccttggcc gactctggta acgacgctga cttatggtgt tcagtgcttt
9120gctcgttatc cggaccatat gaagcagcat gacttcttca agtccgccat gccggaaggc
9180tatgtgcagg aacgcacgat ttcctttaag gatgacggca cgtacaaaac gcgtgcggaa
9240gtgaaatttg aaggcgatac cctggtaaac cgcattgagc tgaaaggcat tgactttaaa
9300gaggacggca atatcctggg ccataagctg gaatacaatt ttaacagcca caatgtttac
9360atcaccgccg ataaacaaaa aaatggcatt aaagcgaatt ttaaaattcg ccacaacgtg
9420gaggatggca gcgtgcagct ggctgatcac taccagcaaa acactccaat cggtgatggt
9480cctgttctgc tgccagacaa tcactatctg agcacgcaaa gcgttctgtc taaagatccg
9540aacgagaaac gcgatcatat ggttctgctg gagttcgtaa ccgcagcggg catcacgcat
9600ggtatggatg aactgtacaa atgaccaggc atcaaataaa acgaaaggct cagtcgaaag
9660actgggcctt tcgttttatc tgttgtttgt cggtgaacgc tctctactag agtcacactg
9720gctcaccttc gggtgggcct ttctgcgttt atacgtgcca tgtcttctac tagtagcggc
9780cgctgcagtc cggcaaaaaa gggcaaggtg tcaccaccct gccctttttc tttaaaaccg
9840aaaagattac ttcgcgttat gcaggcttcc tcgctcactg actcgctgcg ctcggtcgtt
9900cggctgcggc gagcggtatc agctcactca aaggcggtaa tacggttatc cacagaatca
9960ggggataacg caggaaagaa catgtgagca aaaggccagc aaaaggccag gaaccgtaaa
10020aaggc
10025105088DNAEscherichia coli 10ggatggacag aacacatgaa cttacatgaa
tatcaggcaa aacaactttt tgcccgctat 60ggcttaccag caccggtggg ttatgcctgt
actactccgc gcgaagcaga agaagccgct 120tcaaaaatcg gtgccggtcc gtgggtagtg
aaatgtcagg ttcacgctgg tggccgcggt 180aaagcgggcg gtgtgaaagt tgtaaacagc
aaagaggaca tccgtgcttt tgcagaaaac 240tggctgggca agcgtctggt aacgtatcaa
acagatgcca atggccaacc ggttaaccag 300attctggttg aagcagcgac cgatatcgct
aaagagctgt atctcggtgc cgttgttgac 360cgtagttccc gtcgtgtggt ctttatggcc
tccaccgaag gcggcgtgga aatcgaaaaa 420gtggcggaag aaactccgca cctgatccat
aaagttgcgc ttgatccgct gactggcccg 480atgccgtatc agggacgcga gctggcgttc
aaactgggtc tggaaggtaa actggttcag 540cagttcacca aaatcttcat gggcctggcg
accattttcc tggagcgcga cctggcgttg 600atcgaaatca acccgctggt catcaccaaa
cagggcgatc tgatttgcct cgacggcaaa 660ctgggcgctg acggcaacgc actgttccgc
cagcctgatc tgcgcgaaat gcgtgaccag 720tcgcaggaag atccgcgtga agcacaggct
gcacagtggg aactgaacta cgttgcgctg 780gacggtaaca tcggttgtat ggttaacggc
gcaggtctgg cgatgggtac gatggacatc 840gttaaactgc acggcggcga accggctaac
ttccttgacg ttggcggcgg cgcaaccaaa 900gaacgtgtaa ccgaagcgtt caaaatcatc
ctctctgacg acaaagtgaa agccgttctg 960gttaacatct tcggcggtat cgttcgttgc
gacctgatcg ctgacggtat catcggcgcg 1020gtagcagaag tgggtgttaa cgtaccggtc
gtggtacgtc tggaaggtaa caacgccgaa 1080ctcggcgcga agaaactggc tgacagcggc
ctgaatatta ttgcagcaaa aggtctgacg 1140gatgcagctc agcaggttgt tgccgcagtg
gaggggaaat aaaggtccag gcatcaaata 1200aaacgaaagg ctcagtcgaa agactgggcc
tttcgtttta tctgttgttt gtcggtgaac 1260gctctctact agagtcacac tggctcacct
tcgggtgggc ctttctgcgt ttatagctta 1320tgtcttctac tagtagcggc cgctgcagtc
cggcaaaaaa gggcaaggtg tcaccaccct 1380gccctttttc tttaaaaccg aaaagattac
ttcgcgttat gcaggcttcc tcgctcactg 1440actcgctgcg ctcggtcgtt cggctgcggc
gagcggtatc agctcactca aaggcggtaa 1500tacggttatc cacagaatca ggggataacg
caggaaagaa catgtgagca aaaggccagc 1560aaaaggccag gaaccgtaaa aaggccgcgt
tgctggcgtt tttccacagg ctccgccccc 1620ctgacgagca tcacaaaaat cgacgctcaa
gtcagaggtg gcgaaacccg acaggactat 1680aaagatacca ggcgtttccc cctggaagct
ccctcgtgcg ctctcctgtt ccgaccctgc 1740cgcttaccgg atacctgtcc gcctttctcc
cttcgggaag cgtggcgctt tctcatagct 1800cacgctgtag gtatctcagt tcggtgtagg
tcgttcgctc caagctgggc tgtgtgcacg 1860aaccccccgt tcagcccgac cgctgcgcct
tatccggtaa ctatcgtctt gagtccaacc 1920cggtaagaca cgacttatcg ccactggcag
cagccactgg taacaggatt agcagagcga 1980ggtatgtagg cggtgctaca gagttcttga
agtggtggcc taactacggc tacactagaa 2040gaacagtatt tggtatctgc gctctgctga
agccagttac cttcggaaaa agagttggta 2100gctcttgatc cggcaaacaa accaccgctg
gtagcggtgg tttttttgtt tgcaagcagc 2160agattacgcg cagaaaaaaa ggatctcaag
aagatccttt gatcttttct acggggtctg 2220acgctcagtg gaacgaaaac tcacgttaag
ggattttggt catgagatta tcaaaaagga 2280tcttcaccta gatcctttta aattaaaaat
gaagttttaa atcaatctaa agtatatatg 2340agtaaacttg gtctgacagc tcgagtcccg
tcaagtcagc gtaatgctct gccagtgtta 2400caaccaatta accaattctg attagaaaaa
ctcatcgagc atcaaatgaa actgcaattt 2460attcatatca ggattatcaa taccatattt
ttgaaaaagc cgtttctgta atgaaggaga 2520aaactcaccg aggcagttcc ataggatggc
aagatcctgg tatcggtctg cgattccgac 2580tcgtccaaca tcaatacaac ctattaattt
cccctcgtca aaaataaggt tatcaagtga 2640gaaatcacca tgagtgacga ctgaatccgg
tgagaatggc aaaagcttat gcatttcttt 2700ccagacttgt tcaacaggcc agccattacg
ctcgtcatca aaatcactcg catcaaccaa 2760accgttattc attcgtgatt gcgcctgagc
gagacgaaat acgcgatcgc tgttaaaagg 2820acaattacaa acaggaatcg aatgcaaccg
gcgcaggaac actgccagcg catcaacaat 2880attttcacct gaatcaggat attcttctaa
tacctggaat gctgttttcc cggggatcgc 2940agtggtgagt aaccatgcat catcaggagt
acggataaaa tgcttgatgg tcggaagagg 3000cataaattcc gtcagccagt ttagtctgac
catctcatct gtaacatcat tggcaacgct 3060acctttgcca tgtttcagaa acaactctgg
cgcatcgggc ttcccataca atcgatagat 3120tgtcgcacct gattgcccga cattatcgcg
agcccattta tacccatata aatcagcatc 3180catgttggaa tttaatcgcg gcctggagca
agacgtttcc cgttgaatat ggctcataac 3240accccttgta ttactgttta tgtaagcaga
cagttttatt gttcatgatg atatattttt 3300atcttgtgca atgtaacatc agagattttg
agacacaacg tggctttgtt gaataaatcg 3360aacttttgct gagttgaagg atcagctcga
gtgccacctg acgtctaaga aaccattatt 3420atcatgacat taacctataa aaataggcgt
atcacgaggc agaatttcag ataaaaaaaa 3480tccttagctt tcgctaagga tgatttctgg
aattcgcggc cgcttctaga gactagtgga 3540agacatggag tttacggcta gctcagtcct
aggtatagtg ctagctactt gttagaaaag 3600agaagcacgt aatgagtagc gtagatattc
tggtccctga cctgcctgaa tccgtagccg 3660atgccaccgt cgcaacctgg cataaaaaac
ccggcgacgc agtcgtacgt gatgaagtgc 3720tggtagaaat cgaaactgac aaagtggtac
tggaagtacc ggcatcagca gacggcattc 3780tggatgcggt tctggaagat gaaggtacaa
cggtaacgtc tcgtcagatc cttggtcgcc 3840tgcgtgaagg caacagcgcc ggtaaagaaa
ccagcgccaa atctgaagag aaagcgtcca 3900ctccggcgca acgccagcag gcgtctctgg
aagagcaaaa caacgatgcg ttaagcccgg 3960cgatccgtcg cctgctggct gaacacaatc
tcgacgccag cgccattaaa ggcaccggtg 4020tgggtggtcg tctgactcgt gaagatgtgg
aaaaacatct ggcgaaagcc ccggcgaaag 4080agtctgctcc ggcagcggct gctccggcgg
cgcaaccggc tctggctgca cgtagtgaaa 4140aacgtgtccc gatgactcgc ctgcgtaagc
gtgtggcaga gcgtctgctg gaagcgaaaa 4200actccaccgc catgctgacc acgttcaacg
aagtcaacat gaagccgatt atggatctgc 4260gtaagcagta cggtgaagcg tttgaaaaac
gccacggcat ccgtctgggc tttatgtcct 4320tctacgtgaa agcggtggtt gaagccctga
aacgttaccc ggaagtgaac gcttctatcg 4380acggcgatga cgtggtttac cacaactatt
tcgacgtcag catggcggtt tctacgccgc 4440gcggcctggt gacgccggtt ctgcgtgatg
tcgataccct cggcatggca gacatcgaga 4500agaaaatcaa agagctggca gtcaaaggcc
gtgacggcaa gctgaccgtt gaagatctga 4560ccggtggtaa cttcaccatc accaacggtg
gtgtgttcgg ttccctgatg tctacgccga 4620tcatcaaccc gccgcagagc gcaattctgg
gtatgcacgc tatcaaagat cgtccgatgg 4680cggtgaatgg tcaggttgag atcctgccga
tgatgtacct ggcgctgtcc tacgatcacc 4740gtctgatcga tggtcgcgaa tccgtgggct
tcctggtaac gatcaaagag ttgctggaag 4800atccgacgcg tctgctgctg gacgtgtagt
agtttaagtt tcacctgcac tgtagaccgg 4860ataaggcatt atcgccttct ccggcaattg
aagcctgatg cgacgctgac gcgtcttatc 4920aggcctacgg gaccaccaat gtaggtcgga
taaggcgcaa gcgccgcatc cgacaagcga 4980tgcctgatgt gacgtttaac gtgtcttatc
aggcctacgg gtgaccgaca atgcccggaa 5040gcgatacgaa atattcggtc tacggtttaa
aagataacga ttactgaa 5088
User Contributions:
Comment about this patent or add new information about this topic: