Patent application title: COMPOSITIONS AND METHODS FOR THE TREATMENT OF WOUNDS, DISORDERS, AND DISEASES OF THE SKIN
Inventors:
Suma Krishnan (San Francisco, CA, US)
Pooja Agarwal (Mars, PA, US)
Assignees:
Krystal Biotech, Inc.
IPC8 Class: AA61K35763FI
USPC Class:
1 1
Class name:
Publication date: 2022-09-01
Patent application number: 20220273737
Abstract:
The present disclosure relates, in part, to pharmaceutical compositions
comprising one or more polynucleotides suitable for enhancing,
increasing, augmenting, and/or supplementing the levels of Collagen
alpha-1 (VII) chain polypeptide and/or Lysyl hydroxylase 3 polypeptide
and/or Keratin type I cytoskeletal 17 polypeptide in a subject. The
present disclosure also relates, in part, to pharmaceutical compositions
and methods of use for providing prophylactic, palliative, or therapeutic
relief of a wound, disorder, or disease of the skin in a subject,
including a subject having, or at risk of developing, one or more
symptoms of epidermolysis bullosa.Claims:
1-30. (canceled)
31. A pharmaceutical composition, comprising: a) a replication-defective herpes simplex virus (HSV) comprising a recombinant herpes simplex virus genome, wherein the recombinant herpes simplex virus genome comprises one or more polynucleotides encoding a transgene; and b) a pharmaceutically acceptable carrier, wherein the recombinant herpes simplex virus genome comprises an inactivating mutation in one or both copies of the ICP4 herpes simplex virus gene and an inactivating mutation in the ICP22 herpes simplex virus gene.
32. The pharmaceutical composition of claim 31, wherein the pharmaceutical composition comprises an ointment, paste, cream, suspension, emulsion, fatty ointment, gel, powder, lotion, solution, spray, patch, microneedle array, or inhalant.
33. The pharmaceutical composition of claim 31, wherein the inactivating mutation in one or both copies of the ICP4 herpes simplex virus gene is a deletion of at least a portion of the coding sequence of the ICP4 herpes simplex virus gene.
34. The pharmaceutical composition of claim 31, wherein the inactivating mutation in the ICP22 herpes simplex virus gene is a deletion of at least a portion of the coding sequence of the ICP22 herpes simplex virus gene.
35. The pharmaceutical composition of claim 31, wherein the recombinant herpes simplex virus genome further comprises an inactivating mutation in a herpes simplex virus gene selected from the group consisting of ICP0, ICP27, ICP47, tk, UL41, and UL55.
36. The pharmaceutical composition of claim 31, wherein the replication-defective HSV has reduced cytotoxicity as compared to a wild-type herpes simplex virus.
37. The pharmaceutical composition of claim 31, wherein the pharmaceutical composition is suitable for delivery to a subject.
38. The pharmaceutical composition of claim 37, wherein the replication-defective HSV is suitable for delivering to and expressing the one or more polynucleotides encoding the transgene in one or more target cells of the subject.
39. The pharmaceutical composition of claim 38, wherein the subject is a human.
40. The pharmaceutical composition of claim 31, wherein the one or more polynucleotides encoding the transgene is in one or both of the ICP4 viral gene loci.
41. The pharmaceutical composition of claim 31, wherein the recombinant herpes simplex virus genome is a recombinant HSV-1 genome.
42. A method of delivering a transgene to a subject, the method comprising administering to the subject a pharmaceutical composition comprising: a) a replication-defective herpes simplex virus (HSV) comprising a recombinant herpes simplex virus genome, wherein the recombinant herpes simplex virus genome comprises one or more polynucleotides encoding a transgene; and b) a pharmaceutically acceptable carrier, wherein the recombinant herpes simplex virus genome comprises an inactivating mutation in one or both copies of the ICP4 herpes simplex virus gene and an inactivating mutation in the ICP22 herpes simplex virus gene.
43. The method of claim 42, wherein the pharmaceutical composition comprises an ointment, paste, cream, suspension, emulsion, fatty ointment, gel, powder, lotion, solution, spray, patch, microneedle array, or inhalant.
44. The method of claim 42, wherein the inactivating mutation in one or both copies of the ICP4 herpes simplex virus gene is a deletion of at least a portion of the coding sequence of the ICP4 herpes simplex virus gene.
45. The method of claim 42, wherein the inactivating mutation in the ICP22 herpes simplex virus gene is a deletion of at least a portion of the coding sequence of the ICP22 herpes simplex virus gene.
46. The method of claim 42, wherein the pharmaceutical composition is administered by via inhalation, transdermal administration, subcutaneous injection, intradermal injection, intravenous injection, intra-arterial injection, intramuscular injection, intracardiac injection, intraosseous injection, intraperitoneal injection, transmucosal administration, vaginal administration, intravitreal administration, intra-articular administration, peri-articular administration, local administration, epicutaneous administration, topical administration, or a combination thereof.
47. The method of claim 42, wherein the replication-defective HSV has reduced cytotoxicity as compared to a wild-type herpes simplex virus.
48. The method of claim 42, wherein the subject is a human.
Description:
CROSS REFERENCE TO RELATED APPLICATIONS
[0001] The present application is a continuation of U.S. patent application Ser. No. 16/598,982, filed Oct. 10, 2019, which is U.S. Pat. No. 11,185,564 and a continuation of U.S. patent application Ser. No. 16/177,153, filed Oct. 31, 2018, now issued as U.S. Pat. No. 10,441,614, which is a continuation of U.S. patent application Ser. No. 15/851,488, filed Dec. 21, 2017, now issued as U.S. Pat. No. 10,155,016, which is a continuation of U.S. patent application Ser. No. 15/393,151, filed Dec. 28, 2016, now issued as U.S. Pat. No. 9,877,990, which claims the benefit of U.S. Provisional Patent Application Ser. No. 62/320,316, filed Apr. 8, 2016, each of which are incorporated herein by reference in its entirety.
SUBMISSION OF SEQUENCE LISTING ON ASCII TEXT FILE
[0002] The content of the following submission on ASCII text file is incorporated herein by reference in its entirety: a computer readable form (CRF) of the Sequence Listing (file name: 761342000104SEQLIST.TXT, date recorded: Nov. 17, 2021, size: 393 KB).
FIELD OF THE INVENTION
[0003] The present disclosure relates, in part, to pharmaceutical compositions and methods of use for providing prophylactic, palliative, or therapeutic relief of a wound, disorder, or disease of the skin in a subject, including a subject having, or at risk of developing, one or more symptoms of epidermolysis bullosa.
BACKGROUND
[0004] A number of serious disease-related skin conditions are associated with one or more genetic disorders in patients suffering from these diseases. One such disease, epidermolysis bullosa (EB), is a group of genetic disorders that cause the skin and mucous membranes of an affected individual to blister and erode in response to minor injury or friction, such as scraping, rubbing, or scratching. Dystrophic epidermolysis bullosa (DEB) is one of the major forms of EB. The signs and symptoms of this condition vary widely among affected individuals, ranging from mild (blistering may only affect the hands, feet, knees, and elbows) to severe (widespread blistering and scarring, possibly leading to vision loss, disfigurement, and other serious, and sometimes fatal, medical conditions).
[0005] Dystrophic epidermolysis bullosa is classified into three major types. Autosomal dominant dystrophic epidermolysis bullosa (referred to as dominant dystrophic epidermolysis bullosa or DDEB) is typically the mildest form, with blistering often restricted to the hands, feet knees and elbows. The other two types of dystrophic epidermolysis bullosa, Hallopeau-Siemens type recessive dystrophic epidermolysis bullosa, and non-Hallopeau-Siemens type recessive epidermolysis bullosa (collectively referred to as recessive dystrophic epidermolysis bullosa or RDEB) are more severe. RDEB is most often characterized by extensive blistering and scarring of the skin and mucosal membranes. Blisters are routinely present over the whole body, including on mucous membranes (such as the lining of the mouth and digestive tract), and healing of these blisters results in extensive scarring. Damage to the mouth and esophagus can make it difficult to chew and swallow food, leading to chronic malnutrition and slow growth. Complications from extensive scarring can include fusion of the fingers and toes, joint deformities, and eye inflammation leading to vision loss. Additionally, patients suffering from RDEB have a high risk of developing squamous cell carcinoma, which can be unusually aggressive in this patient population, often becoming life-threatening. Although the three types of dystrophic epidermolysis bullosa differ in severity, they have many shared features, and are caused by the same genetic mutations.
[0006] Dystrophic epidermolysis bullosa is caused by mutations to the Col7a1 gene, which encodes the Collagen alpha-1 (VII) chain protein (Collagen 7). More than 240 distinct mutations to this gene have been identified in DEB patients. Additionally, a significant decrease in expression of the PLOD3 gene, which encodes the collagen modifying Lysyl hydroxylase 3 enzyme (LH3), has also been observed in dystrophic epidermolysis patients. Collagen alpha-1 (VII) chain protein functions to strengthen and stabilize the skin, while Lysyl hydroxylase 3 plays a critical role in the synthesis and secretion of functional Collagen alpha-1 (VII) chain protein. Briefly, Col7a1 transcripts are translated, and the resulting peptides are post-translationally modified by hydroxylating their proline residues (by prolyl hydroxylases) and their lysine residues (by lysyl hydroxylases, such as LH3). Hydroxylysine residues can then be glycosylated, and subsequently, three glycosylated peptides form a triple helix known as pro-collagen, and are secreted from the cell. The secreted pro-collagen can then associate in to higher-order structures, forming anchoring fibrils. The anchoring fibrils are then available to help organize, stabilize, and aid in adherence of the epithelial basement membrane. The epithelial basement membrane is responsible for anchoring the epithelium to the underlying loose connective tissue, and is essential for dermal-epidermal stability (dermoepidermal junction integrity). Mutations in the Col7a1 gene, and diminished levels of PLOD3 expression, impair the ability of Collagen alpha-1 (VII) chain protein to properly connect the epidermis to the dermis in dystrophic epidermolysis bullosa patients, leading to fragile skin.
[0007] Treatment options for epidermolysis bullosa patients are limited, and current care focuses on managing the symptoms of the disease, including providing medication to control pain and itching, administering oral antibiotics to stave off infections resulting from open wounds on the skin and mucosa, and surgical strategies to address scarring and deformities. Investigational methods for treating the underlying causes of epidermolysis bullosa include administering purified Collagen 7, fibroblasts containing Collagen 7, or viral vectors encoding Collagen 7, by intradermal injection. Because many DEB patients have multiple wounds spanning large areas of trauma-prone sites (such as the sacrum, hips, feet, lower back, and hands), any treatment involving intradermal injection would be extremely invasive, as these large wound areas would all need to be injected, likely repeatedly, although injection time intervals are unclear.
[0008] Thus there exists a clear need for less invasive/minimally invasive/non-invasive treatment options for epidermolysis bullosa patients that can address the deficiencies in the Collagen alpha-1 (VII) chain protein, as well as deficiencies in the Lysyl hydroxylase 3 protein, observed in this patient population.
[0009] All references cited herein, including patent applications, patent publications, non-patent literature, and UniProtKB/Swiss-Prot Accession numbers are herein incorporated by reference in their entirety, as if each individual reference were specifically and individually indicated to be incorporated by reference.
BRIEF SUMMARY
[0010] In order to meet these needs, the present disclosure relates, in part, to pharmaceutical compositions and methods of use for providing prophylactic, palliative, or therapeutic relief of a wound, disorder, or disease of the skin in a subject, especially in a subject having, or at risk of developing, one or more symptoms of epidermolysis bullosa. In particular, the present disclosure relates, in part, to a method of treating an individual by administering (e.g., topically or transdermally administering) a pharmaceutical composition comprising one or more polynucleotides encoding a Collagen alpha-1 (VII) chain polypeptide, a Lysyl hydroxylase 3 polypeptide, a Keratin type I cytoskeletal 17 polypeptide and/or a chimeric polypeptide thereof.
[0011] Accordingly, certain aspects of the present disclosure relate to a pharmaceutical composition comprising a virus comprising a vector, wherein the vector comprises one or more transgenes encoding a Collagen alpha-1 (VII) chain polypeptide, a Lysyl hydroxylase 3 polypeptide, or a chimeric polypeptide thereof, and a pharmaceutically acceptable carrier. In some embodiments, the virus is an adenovirus, adeno-associated virus, retrovirus, lentivirus, sendai virus, herpes simplex virus, vaccinia virus, or any hybrid virus thereof. In some embodiments, the virus is replication-defective. In some embodiments, the virus is a herpes simplex virus (HSV). In some embodiments, the herpes simplex virus is a herpes simplex type 1 virus, a herpes simplex type 2 virus, or any derivatives thereof. In some embodiments, the herpes simplex virus comprises a modified envelope. In some embodiments, the modified envelope alters the herpes simplex virus tissue tropism relative to a wild-type herpes simplex virus. In some embodiments, the modified envelope comprises a mutant herpes simplex virus glycoprotein. In some embodiments, the vector is an HSV-1 amplicon or an HSV-1 hybrid amplicon. In some embodiments, the HSV-1 hybrid amplicon is an HSV/AAV hybrid amplicon, an HSV/EBV hybrid amplicon, and HSV/EBV/RV hybrid amplicon, or an HSV/Sleeping Beauty hybrid amplicon. In some embodiments, the vector is a recombinant herpes simplex virus genome. In some embodiments, the recombinant herpes simplex virus genome is a recombinant HSV-1 genome, a recombinant HSV-2 genome, or any derivatives thereof. In some embodiments, the recombinant herpes simplex virus genome comprises an inactivating mutation in an immediate early herpes simplex virus gene. In some embodiments, the herpes simplex virus gene is ICP0, ICP4, ICP22, ICP27, ICP47, tk, UL41, or UL55. In some embodiments, the recombinant herpes simplex virus genome comprises an inactivating mutation in the ICP4, ICP27, and UL55 genes. In some embodiments, the recombinant herpes simplex virus genome comprises an inactivating mutation in the ICP4, ICP22, ICP27, ICP47, and UL55 genes. In some embodiments, the inactivating mutation in the ICP4, ICP27, and UL55 genes is a deletion of the coding sequence of the ICP4, ICP27, and UL55 genes. In some embodiments, the inactivating mutation in the ICP22 and ICP47 genes is a deletion in the promoter region of the ICP22 and ICP47 genes. In some embodiments, the recombinant herpes simplex virus genome comprises an inactivating mutation in the ICP4 and ICP22 genes. In some embodiment, the recombinant herpes simplex virus genome comprises an inactivating mutation in the ICP0 and ICP4 genes. In some embodiments, the recombinant herpes simplex virus genome comprises an inactivating mutation in the ICP0, ICP4, and ICP22 genes. In some embodiments, the recombinant herpes simplex virus genome comprises an inactivating mutation in the ICP0, ICP4, ICP22, and ICP27 genes. In some embodiments, the recombinant herpes simplex virus genome comprises an inactivating mutation in the ICP0, ICP4, ICP22, ICP27, and UL55 genes. In some embodiments, the inactivating mutation is a deletion of the coding sequence of the genes. In some embodiments, the recombinant herpes simplex virus genome further comprises an inactivating mutation in the ICP47 gene, an inactivating mutation in the UL41 gene, or an inactivation mutation in the ICP47 and UL41 genes. In some embodiments, the recombinant herpes simplex virus genome comprises the one or more transgenes within one or more viral gene loci. In some embodiments, the recombinant herpes simplex virus genome comprises the one or more transgenes within one or more of the ICP4 viral gene loci. In some embodiments, the recombinant herpes simplex virus genome comprises the one or more transgenes within the UL41 viral gene locus. In some embodiments, the vector is capable of replicating within a target cell when delivered into said target cell. In some embodiments, the pharmaceutically acceptable carrier is suitable for topical or transdermal administration. In some embodiments, the one or more transgenes comprises an miRNA binding site. In some embodiments, the one or more transgenes are operably linked to one or more heterologous promoters. In some embodiments, the one or more heterologous promoters are one or more of the human cytomegalovirus (HCMV) immediate early promoter, the elongation factor-1 (EF1) promoter, and/or any combinations thereof. In some embodiment, the vector comprises a transgene encoding a Collagen alpha-1 (VII) chain polypeptide. In some embodiments, the vector comprises two transgenes, wherein each transgene encodes a Collagen alpha-1 (VII) chain polypeptide. In some embodiments, the Collagen alpha-1 (VII) chain polypeptide has at least 80% sequence identity to the sequence of SEQ ID NO: 2. In some embodiments, the collagen alpha-1 (VII) chain polypeptide is a fragment, wherein the fragment has at least 100 consecutive amino acids of SEQ ID NO: 2. In some embodiments, the Collagen alpha-1 (VII) chain polypeptide enhances, increases, augments, and/or supplements anchoring fibril formation of a subject when the polypeptide is expressed in one or more target cells of the subject. In some embodiments, the Collagen alpha-1 (VII) chain polypeptide enhances, increases, augments, and/or supplements epithelial basement membrane organization and/or epithelial basement adherence of a subject when the polypeptide is expressed in one or more target cells of the subject. In some embodiments, the Lysyl hydroxylase 3 polypeptide has at least 80% sequence identity to the sequence of SEQ ID NO: 4. In some embodiments, the Lysyl hydroxylase 3 polypeptide is a fragment, wherein the fragment has at least 100 consecutive amino acids of SEQ ID NO: 4. In some embodiments, the Lysyl hydroxylase 3 polypeptide enhances, increases, augments, and/or supplements the formation of hydroxylysine residues on one or more collagen polypeptides of a subject when the Lysyl hydroxylase 3 polypeptide is expressed in one or more target cells of the subject. In some embodiments, the Lysyl hydroxylase 3 polypeptide enhances, increases, augments, and/or supplements anchoring fibril formation, epithelial basement membrane organization, and/or epithelial basement adherence of a subject when the polypeptide is expressed in one or more target cells of the subject. In some embodiments, the vector comprises at least a first transgene and a second transgene. In some embodiments, the first transgene encodes a Collagen alpha-1 (VII) chain polypeptide and the second transgene encodes a Lysyl hydroxylase 3 polypeptide. In some embodiments, the vector comprises a transgene that is polycistronic. In some embodiments, the polycistronic transgene encodes a Collagen alpha-1 (VII) chain polypeptide on a first open reading frame (ORF) and a Lysyl hydroxylase 3 polypeptide on a second open reading frame (ORF). In some embodiments, the first and second ORFs are separated by an internal ribosomal entry site (IRES). In some embodiments, the Collagen alpha-1 (VII) chain polypeptide and the Lysyl hydroxylase 3 polypeptide are at about an equimolar ratio when the polypeptides are expressed in one or more target cells of a subject. In some embodiments, the Collagen alpha-1 (VII) chain polypeptide and the Lysyl hydroxylase 3 polypeptide enhance, increase, augment, and/or supplement anchoring fibril formation, epithelial basement membrane organization, and/or epithelial basement adherence of a subject when the polypeptides are expressed in one or more target cells of the subject. In some embodiments, the chimeric polypeptide comprises a linker polypeptide between the Collagen alpha-1 (VII) chain polypeptide and the Lysyl hydroxylase 3 polypeptide. In some embodiments, the linker polypeptide is a T2A, P2A, E2A, or F2A linker polypeptide. In some embodiments, the linker polypeptide has at least 80% sequence identity to the sequence of SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10 or SEQ ID NO: 12. In some embodiments, the chimeric polypeptide has at least 80% sequence identity to the sequence of SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26 or SEQ ID NO: 28. In some embodiments, the chimeric polypeptide enhances, increases, augments, and/or supplements anchoring fibril formation, epithelial basement membrane organization, and/or epithelial basement adherence of a subject when the polypeptide is expressed in one or more target cells of the subject.
[0012] Other aspects of the present disclosure relate to a method of providing prophylactic, palliative, or therapeutic relief of a wound, disorder, or disease of the skin in a subject, the method comprising topically or transdermally administering a pharmaceutical composition capable of enhancing, increasing, augmenting, and/or supplementing the levels of a Collagen alpha-1 (VII) chain polypeptide and/or a Lysyl hydroxylase 3 polypeptide in one or more cells of the subject. In some embodiments, the pharmaceutical composition comprises a virus comprising a vector, wherein the vector comprises one or more transgenes encoding a Collagen alpha-1 (VII) chain polypeptide, a Lysyl hydroxylase 3 polypeptide, or a chimeric polypeptide thereof, and a pharmaceutically acceptable carrier. In some embodiments, the virus is an adenovirus, adeno-associated virus, retrovirus, lentivirus, sendai virus, herpes simplex virus, vaccinia virus, or any hybrid virus thereof. In some embodiments, the virus is replication-defective. In some embodiments, the virus is a herpes simplex virus (HSV). In some embodiments, the herpes simplex virus is a herpes simplex type 1 virus, a herpes simplex type 2 virus, or any derivatives thereof. In some embodiments, the herpes simplex virus comprises a modified envelope. In some embodiments, the modified envelope alters the herpes simplex virus tissue tropism relative to a wild-type herpes simplex virus. In some embodiments, the modified envelope comprises a mutant herpes simplex virus glycoprotein. In some embodiments, the vector is an HSV-1 amplicon or an HSV-1 hybrid amplicon. In some embodiments, the HSV-1 hybrid amplicon is an HSV/AAV hybrid amplicon, an HSV/EBV hybrid amplicon, and HSV/EBV/RV hybrid amplicon, or an HSV/Sleeping Beauty hybrid amplicon. In some embodiments, the vector is a recombinant herpes simplex virus genome. In some embodiments, the recombinant herpes simplex virus genome is a recombinant HSV-1 genome, a recombinant HSV-2 genome, or any derivatives thereof. In some embodiments, the recombinant herpes simplex virus genome comprises an inactivating mutation in an immediate early herpes simplex virus gene. In some embodiments, the herpes simplex virus gene is ICP0, ICP4, ICP22, ICP27, ICP47, tk, UL41, or UL55. In some embodiments, the recombinant herpes simplex virus genome comprises an inactivating mutation in the ICP4, ICP27, and UL55 genes. In some embodiments, the recombinant herpes simplex virus genome comprises an inactivating mutation in the ICP4, ICP22, ICP27, ICP47, and UL55 genes. In some embodiments, the inactivating mutation in the ICP4, ICP27, and UL55 genes is a deletion of the coding sequence of the ICP4, ICP27, and UL55 genes. In some embodiments, the inactivating mutation in the ICP22 and ICP47 genes is a deletion in the promoter region of the ICP22 and ICP47 genes. In some embodiments, the recombinant herpes simplex virus genome comprises an inactivating mutation in the ICP4 and ICP22 genes. In some embodiment, the recombinant herpes simplex virus genome comprises an inactivating mutation in the ICP0 and ICP4 genes. In some embodiments, the recombinant herpes simplex virus genome comprises an inactivating mutation in the ICP0, ICP4, and ICP22 genes. In some embodiments, the recombinant herpes simplex virus genome comprises an inactivating mutation in the ICP0, ICP4, ICP22, and ICP27 genes. In some embodiments, the recombinant herpes simplex virus genome comprises an inactivating mutation in the ICP0, ICP4, ICP22, ICP27, and UL55 genes. In some embodiments, the inactivating mutation is a deletion of the coding sequence of the genes. In some embodiments, the recombinant herpes simplex virus genome further comprises an inactivating mutation in the ICP47 gene, an inactivating mutation in the UL41 gene, or an inactivation mutation in the ICP47 and UL41 genes. In some embodiments, the recombinant herpes simplex virus genome comprises the one or more transgenes within one or more viral gene loci. In some embodiments, the recombinant herpes simplex virus genome comprises the one or more transgenes within one or more of the ICP4 viral gene loci. In some embodiments, the recombinant herpes simplex virus genome comprises the one or more transgenes within the UL41 viral gene locus. In some embodiments, the vector is capable of replicating within a target cell when delivered into said target cell. In some embodiments, the pharmaceutically acceptable carrier is suitable for topical or transdermal administration. In some embodiments, the one or more transgenes comprises an miRNA binding site. In some embodiments, the one or more transgenes are operably linked to one or more heterologous promoters. In some embodiments, the one or more heterologous promoters are one or more of the human cytomegalovirus (HCMV) immediate early promoter, the elongation factor-1 (EF1) promoter, and/or any combinations thereof. In some embodiments, the vector comprises a transgene encoding a Collagen alpha-1 (VII) chain polypeptide. In some embodiments, the vector comprises two transgenes, wherein each transgene encodes a Collagen alpha-1 (VII) chain polypeptide. In some embodiments, the Collagen alpha-1 (VII) chain polypeptide has at least 80% sequence identity to the sequence of SEQ ID NO: 2. In some embodiments, the collagen alpha-1 (VII) chain polypeptide is a fragment, wherein the fragment has at least 100 consecutive amino acids of SEQ ID NO: 2. In some embodiments, the Collagen alpha-1 (VII) chain polypeptide enhances, increases, augments, and/or supplements anchoring fibril formation of a subject when the polypeptide is expressed in one or more target cells of the subject. In some embodiments, the Collagen alpha-1 (VII) chain polypeptide enhances, increases, augments, and/or supplements epithelial basement membrane organization and/or epithelial basement adherence of a subject when the polypeptide is expressed in one or more target cells of the subject. In some embodiments, the Lysyl hydroxylase 3 polypeptide has at least 80% sequence identity to the sequence of SEQ ID NO: 4. In some embodiments, the Lysyl hydroxylase 3 polypeptide is a fragment, wherein the fragment has at least 100 consecutive amino acids of SEQ ID NO: 4. In some embodiments, the Lysyl hydroxylase 3 polypeptide enhances, increases, augments, and/or supplements the formation of hydroxylysine residues on one or more collagen polypeptides of a subject when the Lysyl hydroxylase 3 polypeptide is expressed in one or more target cells of the subject. In some embodiments, the Lysyl hydroxylase 3 polypeptide enhances, increases, augments, and/or supplements anchoring fibril formation, epithelial basement membrane organization, and/or epithelial basement adherence of a subject when the polypeptide is expressed in one or more target cells of the subject. In some embodiments, the vector comprises at least a first transgene and a second transgene. In some embodiments, the first transgene encodes a Collagen alpha-1 (VII) chain polypeptide and the second transgene encodes a Lysyl hydroxylase 3 polypeptide. In some embodiments, the vector comprises a transgene that is polycistronic. In some embodiments, the polycistronic transgene encodes a Collagen alpha-1 (VII) chain polypeptide on a first open reading frame (ORF) and a Lysyl hydroxylase 3 polypeptide on a second open reading frame (ORF). In some embodiments, the first and second ORFs are separated by an internal ribosomal entry site (IRES). In some embodiments, the Collagen alpha-1 (VII) chain polypeptide and the Lysyl hydroxylase 3 polypeptide are at about an equimolar ratio when the polypeptides are expressed in one or more target cells of a subject. In some embodiments, the Collagen alpha-1 (VII) chain polypeptide and the Lysyl hydroxylase 3 polypeptide enhance, increase, augment, and/or supplement anchoring fibril formation, epithelial basement membrane organization, and/or epithelial basement adherence of a subject when the polypeptides are expressed in one or more target cells of the subject. In some embodiments, the chimeric polypeptide comprises a linker polypeptide between the Collagen alpha-1 (VII) chain polypeptide and the Lysyl hydroxylase 3 polypeptide. In some embodiments, the linker polypeptide is a T2A, P2A, E2A, or F2A linker polypeptide. In some embodiments, the linker polypeptide has at least 80% sequence identity to the sequence of SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10 or SEQ ID NO: 12. In some embodiments, the chimeric polypeptide has at least 80% sequence identity to the sequence of SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26 or SEQ ID NO: 28. In some embodiments, the chimeric polypeptide enhances, increases, augments, and/or supplements anchoring fibril formation, epithelial basement membrane organization, and/or epithelial basement adherence of a subject when the polypeptide is expressed in one or more target cells of the subject. In some embodiments, the pharmaceutical composition is administered one, two three, four, five or more times per day. In some embodiments, the pharmaceutical composition is administered to one or more affected and/or unaffected areas of the subject. In some embodiments, the disease or disorder of the skin is one or more of epidermolysis bullosa, skin cancer, psoriasis, lichen planus, lupus, rosacea, eczema, cutaneous candidiasis, cellulitis, impetigo, decubitus ulcers, erysipelas, ichthyosis vulgaris, dermatomyositis, acrodermatitis, stasis dermatitis, nethertons syndrome, epidermolysis bullosa simplex (LAMB3 gene), autosomal recessive congenital ichthyosis, xeroderma pigmentosa, and pemphigoid.
[0013] Other aspects of the present disclosure relate to an isolated chimeric polypeptide, wherein the isolated chimeric polypeptide comprises a Collagen alpha-1 (VII) chain polypeptide, a Lysyl hydroxylase 3 polypeptide, and a linker polypeptide, wherein the Collagen alpha-1 (VII) chain polypeptide and the Lysyl hydroxylase 3 polypeptide are separated by the linker polypeptide, to polynucleotides encoding the same, to vectors comprising the polynucleotides, and to host cells comprising the vectors. In some embodiments, the vector is an HSV-1 amplicon or an HSV-1 hybrid amplicon. In some embodiments, the HSV-1 hybrid amplicon is an HSV/AAV hybrid amplicon, an HSV/EBV hybrid amplicon, and HSV/EBV/RV hybrid amplicon, or an HSV/Sleeping Beauty hybrid amplicon. In some embodiments, the vector is a recombinant herpes simplex virus genome. In some embodiments, the recombinant herpes simplex virus genome is a recombinant HSV-1 genome, a recombinant HSV-2 genome, or any derivatives thereof. In some embodiments, the recombinant herpes simplex virus genome comprises an inactivating mutation in an immediate early herpes simplex virus gene. In some embodiments, the herpes simplex virus gene is ICP0, ICP4, ICP22, ICP27, ICP47, tk, UL41, or UL55. In some embodiments, the recombinant herpes simplex virus genome comprises an inactivating mutation in the ICP4, ICP27, and UL55 genes. In some embodiments, the recombinant herpes simplex virus genome comprises an inactivating mutation in the ICP4, ICP22, ICP27, ICP47, and UL55 genes. In some embodiments, the inactivating mutation in the ICP4, ICP27, and UL55 genes is a deletion of the coding sequence of the ICP4, ICP27, and UL55 genes. In some embodiments, the inactivating mutation in the ICP22 and ICP47 genes is a deletion in the promoter region of the ICP22 and ICP47 genes. In some embodiments, the recombinant herpes simplex virus genome comprises an inactivating mutation in the ICP4 and ICP22 genes. In some embodiment, the recombinant herpes simplex virus genome comprises an inactivating mutation in the ICP0 and ICP4 genes. In some embodiments, the recombinant herpes simplex virus genome comprises an inactivating mutation in the ICP0, ICP4, and ICP22 genes. In some embodiments, the recombinant herpes simplex virus genome comprises an inactivating mutation in the ICP0, ICP4, ICP22, and ICP27 genes. In some embodiments, the recombinant herpes simplex virus genome comprises an inactivating mutation in the ICP0, ICP4, ICP22, ICP27, and UL55 genes. In some embodiments, the inactivating mutation is a deletion of the coding sequence of the genes. In some embodiments, the recombinant herpes simplex virus genome further comprises an inactivating mutation in the ICP47 gene, an inactivating mutation in the UL41 gene, or an inactivation mutation in the ICP47 and UL41 genes. In some embodiments, the recombinant herpes simplex virus genome comprises the polynucleotide within one or more viral gene loci. In some embodiments, the recombinant herpes simplex virus genome comprises the polynucleotide within one or more of the ICP4 viral gene loci. In some embodiments, the recombinant herpes simplex virus genome comprises the polynucleotide within the UL41 viral gene locus.
[0014] Other aspects of the present disclosure relate to a vector comprising one or more polynucleotides encoding a Collagen alpha-1 (VII) chain polypeptide, a Lysyl hydroxylase 3 polypeptide, a Keratin type I cytoskeletal 17 polypeptide, or any combinations thereof, wherein the vector is a recombinant herpes simplex virus genome, and to host cells comprising the vector. In some embodiments, the recombinant herpes simplex virus genome is a recombinant HSV-1 genome, a recombinant HSV-2 genome, or any derivatives thereof. In some embodiments, the recombinant herpes simplex virus genome comprises an inactivating mutation in an immediate early herpes simplex virus gene. In some embodiments, the herpes simplex virus gene is ICP0, ICP4, ICP22, ICP27, ICP47, tk, UL41, or UL55. In some embodiments, the recombinant herpes simplex virus genome comprises an inactivating mutation in the ICP4, ICP27, and UL55 genes. In some embodiments, the recombinant herpes simplex virus genome comprises an inactivating mutation in the ICP4, ICP22, ICP27, ICP47, and UL55 genes. In some embodiments, the inactivating mutation in the ICP4, ICP27, and UL55 genes is a deletion of the coding sequence of the ICP4, ICP27, and UL55 genes. In some embodiments, the inactivating mutation in the ICP22 and ICP47 genes is a deletion in the promoter region of the ICP22 and ICP47 genes. In some embodiments, the recombinant herpes simplex virus genome comprises an inactivating mutation in the ICP4 and ICP22 genes. In some embodiment, the recombinant herpes simplex virus genome comprises an inactivating mutation in the ICP0 and ICP4 genes. In some embodiments, the recombinant herpes simplex virus genome comprises an inactivating mutation in the ICP0, ICP4, and ICP22 genes. In some embodiments, the recombinant herpes simplex virus genome comprises an inactivating mutation in the ICP0, ICP4, ICP22, and ICP27 genes. In some embodiments, the recombinant herpes simplex virus genome comprises an inactivating mutation in the ICP0, ICP4, ICP22, ICP27, and UL55 genes. In some embodiments, the inactivating mutation is a deletion of the coding sequence of the genes. In some embodiments, the recombinant herpes simplex virus genome further comprises an inactivating mutation in the ICP47 gene, an inactivating mutation in the UL41 gene, or an inactivation mutation in the ICP47 and UL41 genes. In some embodiments, the recombinant herpes simplex virus genome comprises the one or more polynucleotides within one or more viral gene loci. In some embodiments, the recombinant herpes simplex virus genome comprises the one or more polynucleotides within one or more of the ICP4 viral gene loci. In some embodiments, the recombinant herpes simplex virus genome comprises the one or more polynucleotides within the UL41 viral gene locus. In some embodiments, the vector comprises one polynucleotide encoding a Collagen alpha-1 (VII) chain polypeptide. In some embodiments, the vector comprises two polynucleotides encoding a Collagen alpha-1 (VII) chain polypeptide.
[0015] Other aspects of the present disclosure relate to methods of collecting a herpes simplex virus, wherein a vector of interest is packaged within said herpes simplex virus. In some embodiments the method comprises the steps of contacting a host cell with a vector encoding a helper virus, contacting said host cell with a HSV-1 amplicon or HSV-1 hybrid amplicon comprising one or more polynucleotides described herein, and collecting the Herpes simplex virus generated by said host cell. In some embodiments, the method comprises the steps of contacting a complementing host cell with a recombinant herpes simplex virus genome vector comprising one or more polynucleotides described herein, and collecting the herpes simplex virus generated by said complementing host cell. In some embodiments, the collected herpes simplex virus is a herpes simplex type 1 virus, a herpes simplex type 2 virus, or any derivatives thereof.
[0016] Other aspects of the present disclosure relate to a kit comprising a pharmaceutical composition described herein and instructions for administering the pharmaceutical composition.
[0017] Other aspects of the present disclosure relate to relate to a pharmaceutical composition comprising a virus comprising a vector, wherein the vector comprises one or more transgenes encoding a Collagen alpha-1 (VII) chain polypeptide, a Lysyl hydroxylase 3 polypeptide, a Keratin type I cytoskeletal 17 polypeptide, or a chimeric polypeptide thereof, and a pharmaceutically acceptable carrier. In some embodiments, the virus is an adenovirus, adeno-associated virus, retrovirus, lentivirus, sendai virus, herpes simplex virus, vaccinia virus, or any hybrid virus thereof. In some embodiments, the virus is replication-defective. In some embodiments, the virus is a herpes simplex virus (HSV). In some embodiments, the herpes simplex virus is a herpes simplex type 1 virus, a herpes simplex type 2 virus, or any derivatives thereof. In some embodiments, the vector is an HSV-1 amplicon or an HSV-1 hybrid amplicon. In some embodiments, the HSV-1 hybrid amplicon is an HSV/AAV hybrid amplicon, an HSV/EBV hybrid amplicon, and HSV/EBV/RV hybrid amplicon, or an HSV/Sleeping Beauty hybrid amplicon. In some embodiments, the vector is a recombinant herpes simplex virus genome. In some embodiments, the recombinant herpes simplex virus genome is a recombinant HSV-1 genome, a recombinant HSV-2 genome, or any derivatives thereof. In some embodiments, the recombinant herpes simplex virus genome comprises an inactivating mutation in an immediate early herpes simplex virus gene. In some embodiments, the herpes simplex virus gene is ICP0, ICP4, ICP22, ICP27, ICP47, tk, UL41, or UL55. In some embodiments, the recombinant herpes simplex virus genome comprises an inactivating mutation in the ICP4, ICP27, and UL55 genes. In some embodiments, the recombinant herpes simplex virus genome comprises an inactivating mutation in the ICP4, ICP22, ICP27, ICP47, and UL55 genes. In some embodiments, the inactivating mutation in the ICP4, ICP27, and UL55 genes is a deletion of the coding sequence of the ICP4, ICP27, and UL55 genes. In some embodiments, the inactivating mutation in the ICP22 and ICP47 genes is a deletion in the promoter region of the ICP22 and ICP47 genes. In some embodiments, the recombinant herpes simplex virus genome comprises an inactivating mutation in the ICP4 and ICP22 genes. In some embodiment, the recombinant herpes simplex virus genome comprises an inactivating mutation in the ICP0 and ICP4 genes. In some embodiments, the recombinant herpes simplex virus genome comprises an inactivating mutation in the ICP0, ICP4, and ICP22 genes. In some embodiments, the recombinant herpes simplex virus genome comprises an inactivating mutation in the ICP0, ICP4, ICP22, and ICP27 genes. In some embodiments, the recombinant herpes simplex virus genome comprises an inactivating mutation in the ICP0, ICP4, ICP22, ICP27, and UL55 genes. In some embodiments, the inactivating mutation is a deletion of the coding sequence of the genes. In some embodiments, the recombinant herpes simplex virus genome further comprises an inactivating mutation in the ICP47 gene, an inactivating mutation in the UL41 gene, or an inactivation mutation in the ICP47 and UL41 genes. In some embodiments, the recombinant herpes simplex virus genome comprises the one or more transgenes within one or more viral gene loci. In some embodiments, the recombinant herpes simplex virus genome comprises the one or more transgenes within one or more of the ICP4 viral gene loci. In some embodiments, the recombinant herpes simplex virus genome comprises the one or more transgenes within the UL41 viral gene locus. In some embodiments, the vector is capable of replicating within a target cell when delivered into said target cell. In some embodiments, the pharmaceutically acceptable carrier is suitable for topical or transdermal administration. In some embodiments, the pharmaceutically acceptable carrier is suitable for subcutaneous or intradermal administration. In some embodiments, the one or more transgenes comprises an miRNA binding site. In some embodiment, the vector comprises a transgene encoding a Collagen alpha-1 (VII) chain polypeptide. In some embodiment, the vector comprises a transgene encoding a Lysyl hydroxylase 3 polypeptide. In some embodiment, the vector comprises a transgene encoding a Keratin type I cytoskeletal 17 polypeptide. In some embodiments, the vector comprises two transgenes, wherein each transgene encodes a Collagen alpha-1 (VII) chain polypeptide. In some embodiments, the Collagen alpha-1 (VII) chain polypeptide has at least 80% sequence identity to the sequence of SEQ ID NO: 2. In some embodiments, the collagen alpha-1 (VII) chain polypeptide is a fragment, wherein the fragment has at least 100 consecutive amino acids of SEQ ID NO: 2. In some embodiments, the Collagen alpha-1 (VII) chain polypeptide enhances, increases, augments, and/or supplements anchoring fibril formation of a subject when the polypeptide is expressed in one or more target cells of the subject. In some embodiments, the Collagen alpha-1 (VII) chain polypeptide enhances, increases, augments, and/or supplements epithelial basement membrane organization and/or epithelial basement adherence of a subject when the polypeptide is expressed in one or more target cells of the subject. In some embodiments, the Lysyl hydroxylase 3 polypeptide has at least 80% sequence identity to the sequence of SEQ ID NO: 4. In some embodiments, the Lysyl hydroxylase 3 polypeptide is a fragment, wherein the fragment has at least 100 consecutive amino acids of SEQ ID NO: 4. In some embodiments, the Lysyl hydroxylase 3 polypeptide enhances, increases, augments, and/or supplements the formation of hydroxylysine residues on one or more collagen polypeptides of a subject when the Lysyl hydroxylase 3 polypeptide is expressed in one or more target cells of the subject. In some embodiments, the Lysyl hydroxylase 3 polypeptide enhances, increases, augments, and/or supplements anchoring fibril formation, epithelial basement membrane organization, and/or epithelial basement adherence of a subject when the polypeptide is expressed in one or more target cells of the subject. In some embodiments, the Keratin type I cytoskeletal 17 polypeptide has at least 80% sequence identity to the sequence of SEQ ID NO: 30. In some embodiments, the Keratin type I cytoskeletal 17 polypeptide is a fragment, wherein the fragment has at least 100 consecutive amino acids of SEQ ID NO: 30. In some embodiments, the Keratin type I cytoskeletal 17 polypeptide enhances, increases, augments, and/or supplements wound healing in a subject. In some embodiments, the vector comprises at least a first transgene and a second transgene. In some embodiments, the first transgene and the second transgene each encode a Collagen alpha-1 (VII) chain polypeptide. In some embodiments, the first transgene encodes a Collagen alpha-1 (VII) chain polypeptide and the second transgene encodes a Lysyl hydroxylase 3 polypeptide. In some embodiments, the first transgene encodes a Collagen alpha-1 (VII) chain polypeptide and the second transgene encodes a Keratin type I cytoskeletal 17 polypeptide. In some embodiments, the first transgene encodes a Lysyl hydroxylase 3 polypeptide and the second transgene encodes a Keratin type I cytoskeletal 17 polypeptide. In some embodiments, the vector comprises at least a first transgene, a second transgene, and a third transgene. In some embodiments, the first transgene encodes a Collagen alpha-1 (VII) chain polypeptide, the second transgene encodes a Lysyl hydroxylase 3 polypeptide, and the third transgene encodes a Keratin type I cytoskeletal 17 polypeptide.
[0018] Other aspects of the present disclosure relate to a method of providing prophylactic, palliative, or therapeutic relief of a wound, disorder, or disease of the skin in a subject, the method comprising administering to the subject a pharmaceutical composition comprising a vector, wherein the vector is a recombinant herpes simplex virus genome, and wherein the pharmaceutical composition is capable of enhancing, increasing, augmenting, and/or supplementing the levels of a Collagen alpha-1 (VII) chain polypeptide and/or a Lysyl hydroxylase 3 polypeptide and/or a Keratin type I cytoskeletal 17 polypeptide in one or more cells of the subject. In some embodiments, the pharmaceutical composition comprises a virus comprising the vector, wherein the vector comprises one or more transgenes encoding a Collagen alpha-1 (VII) chain polypeptide, a Lysyl hydroxylase 3 polypeptide, a Keratin type I cytoskeletal 17 polypeptide, or a chimeric polypeptide thereof, and a pharmaceutically acceptable carrier. In some embodiments, the virus is an adenovirus, adeno-associated virus, retrovirus, lentivirus, sendai virus, herpes simplex virus, vaccinia virus, or any hybrid virus thereof. In some embodiments, the virus is replication-defective. In some embodiments, the virus is a herpes simplex virus (HSV). In some embodiments, the herpes simplex virus is a herpes simplex type 1 virus, a herpes simplex type 2 virus, or any derivatives thereof. In some embodiments, the recombinant herpes simplex virus genome is a recombinant HSV-1 genome, a recombinant HSV-2 genome, or any derivatives thereof. In some embodiments, the recombinant herpes simplex virus genome comprises an inactivating mutation in an immediate early herpes simplex virus gene. In some embodiments, the herpes simplex virus gene is ICP0, ICP4, ICP22, ICP27, ICP47, tk, UL41, or UL55. In some embodiments, the recombinant herpes simplex virus genome comprises an inactivating mutation in the ICP4, ICP27, and UL55 genes. In some embodiments, the recombinant herpes simplex virus genome comprises an inactivating mutation in the ICP4, ICP22, ICP27, ICP47, and UL55 genes. In some embodiments, the inactivating mutation in the ICP4, ICP27, and UL55 genes is a deletion of the coding sequence of the ICP4, ICP27, and UL55 genes. In some embodiments, the inactivating mutation in the ICP22 and ICP47 genes is a deletion in the promoter region of the ICP22 and ICP47 genes. In some embodiments, the recombinant herpes simplex virus genome comprises an inactivating mutation in the ICP4 and ICP22 genes. In some embodiment, the recombinant herpes simplex virus genome comprises an inactivating mutation in the ICP0 and ICP4 genes. In some embodiments, the recombinant herpes simplex virus genome comprises an inactivating mutation in the ICPO, ICP4, and ICP22 genes. In some embodiments, the recombinant herpes simplex virus genome comprises an inactivating mutation in the ICP0, ICP4, ICP22, and ICP27 genes. In some embodiments, the recombinant herpes simplex virus genome comprises an inactivating mutation in the ICP0, ICP4, ICP22, ICP27, and UL55 genes. In some embodiments, the inactivating mutation is a deletion of the coding sequence of the genes. In some embodiments, the recombinant herpes simplex virus genome further comprises an inactivating mutation in the ICP47 gene, an inactivating mutation in the UL41 gene, or an inactivation mutation in the ICP47 and UL41 genes. In some embodiments, the recombinant herpes simplex virus genome comprises the one or more transgenes within one or more viral gene loci. In some embodiments, the recombinant herpes simplex virus genome comprises the one or more transgenes within one or more of the ICP4 viral gene loci. In some embodiments, the recombinant herpes simplex virus genome comprises the one or more transgenes within the UL41 viral gene locus. In some embodiments, the vector is capable of replicating within a target cell when delivered into said target cell. In some embodiments, the pharmaceutically acceptable carrier is suitable for topical or transdermal administration. In some embodiments, the pharmaceutically acceptable carrier is suitable for subcutaneous or intradermal administration. In some embodiments, the one or more transgenes comprises an miRNA binding site. In some embodiments, the vector comprises a transgene encoding a Collagen alpha-1 (VII) chain polypeptide. In some embodiments, the vector comprises a transgene encoding a Lysyl hydroxylase 3 polypeptide. In some embodiments, the vector comprises a transgene encoding a Keratin type I cytoskeletal 17 polypeptide. In some embodiments, the Collagen alpha-1 (VII) chain polypeptide has at least 80% sequence identity to the sequence of SEQ ID NO: 2. In some embodiments, the collagen alpha-1 (VII) chain polypeptide is a fragment, wherein the fragment has at least 100 consecutive amino acids of SEQ ID NO: 2. In some embodiments, the Collagen alpha-1 (VII) chain polypeptide enhances, increases, augments, and/or supplements anchoring fibril formation of a subject when the polypeptide is expressed in one or more target cells of the subject. In some embodiments, the Collagen alpha-1 (VII) chain polypeptide enhances, increases, augments, and/or supplements epithelial basement membrane organization and/or epithelial basement adherence of a subject when the polypeptide is expressed in one or more target cells of the subject. In some embodiments, the Lysyl hydroxylase 3 polypeptide has at least 80% sequence identity to the sequence of SEQ ID NO: 4. In some embodiments, the Lysyl hydroxylase 3 polypeptide is a fragment, wherein the fragment has at least 100 consecutive amino acids of SEQ ID NO: 4. In some embodiments, the Lysyl hydroxylase 3 polypeptide enhances, increases, augments, and/or supplements the formation of hydroxylysine residues on one or more collagen polypeptides of a subject when the Lysyl hydroxylase 3 polypeptide is expressed in one or more target cells of the subject. In some embodiments, the Lysyl hydroxylase 3 polypeptide enhances, increases, augments, and/or supplements anchoring fibril formation, epithelial basement membrane organization, and/or epithelial basement adherence of a subject when the polypeptide is expressed in one or more target cells of the subject. In some embodiments, the Keratin type I cytoskeletal 17 polypeptide has at least 80% sequence identity to the sequence of SEQ ID NO: 30. In some embodiments, the Keratin type I cytoskeletal 17 polypeptide is a fragment, wherein the fragment has at least 100 consecutive amino acids of SEQ ID NO: 30. In some embodiments, the Keratin type I cytoskeletal 17 polypeptide enhances, increases, augments, and/or supplements wound healing in a subject. In some embodiments, the vector comprises at least a first transgene and a second transgene. In some embodiments, the first transgene and the second transgene each encode a Collagen alpha-1 (VII) chain polypeptide. In some embodiments, the first transgene encodes a Collagen alpha-1 (VII) chain polypeptide and the second transgene encodes a Lysyl hydroxylase 3 polypeptide. In some embodiments, the first transgene encodes a Collagen alpha-1 (VII) chain polypeptide and the second transgene encodes a Keratin type I cytoskeletal 17 polypeptide. In some embodiments, the first transgene encodes a Lysyl hydroxylase 3 polypeptide and the second transgene encodes a Keratin type I cytoskeletal 17 polypeptide. In some embodiments, the vector comprises at least a first transgene, a second transgene, and a third transgene. In some embodiments, the first transgene encodes a Collagen alpha-1 (VII) chain polypeptide, the second transgene encodes a Lysyl hydroxylase 3 polypeptide, and the third transgene encodes a Keratin type I cytoskeletal 17 polypeptide. In some embodiments, the pharmaceutical composition is administered topically or transdermally to the subject. In some embodiments, the pharmaceutical composition is administered subcutaneously or intradermally to the subject. In some embodiments, the pharmaceutical composition is administered one, two three, four, five or more times per day. In some embodiments, the pharmaceutical composition is administered to one or more affected and/or unaffected areas of the subject. In some embodiments, the disease or disorder of the skin is one or more of epidermolysis bullosa, skin cancer, psoriasis, lichen planus, lupus, rosacea, eczema, cutaneous candidiasis, cellulitis, impetigo, decubitus ulcers, erysipelas, ichthyosis vulgaris, dermatomyositis, acrodermatitis, stasis dermatitis, nethertons syndrome, epidermolysis bullosa simplex (LAMB3 gene), autosomal recessive congenital ichthyosis, xeroderma pigmentosa, and pemphigoid.
BRIEF DESCRIPTION OF THE DRAWINGS
[0019] The patent or application file contains at least one drawing executed in color. Copies of this patent or patent application publication with color drawings will be provided by the Office upon request and payment of the necessary fee.
[0020] FIGS. 1A-F show schematics of wild-type and modified herpes simplex virus genomes. FIG. 1A shows a wild-type herpes simplex virus genome. FIG. 1B shows a modified herpes simplex virus genome comprising a transgene encoding a Collagen alpha-1 (VII) chain polypeptide. FIG. 1C shows a modified herpes simplex virus genome comprising two transgenes, one encoding a Collagen alpha-1 (VII) chain polypeptide and the other encoding a Lysyl hydroxylase 3 polypeptide, with the transgenes encoded on the same strand of DNA. FIG. 1D shows a modified herpes simplex virus genome comprising two transgenes, one encoding a Collagen alpha-1 (VII) chain polypeptide and the other encoding a Lysyl hydroxylase 3 polypeptide, with the transgenes encoded on opposite strands of DNA in an antisense orientation. FIG. 1E shows a modified herpes simplex virus genome comprising a transgene that is polycistronic, encoding a Collagen alpha-1 (VII) chain polypeptide and a Lysyl hydroxylase 3 polypeptide separated by an internal ribosomal entry site (IRES). FIG. 1F shows a modified herpes simplex virus genome comprising a transgene encoding a chimeric polypeptide comprising a Collagen alpha-1 (VII) chain polypeptide, a linker polypeptide, and a Lysyl hydroxylase 3 polypeptide.
[0021] FIGS. 2A-G show additional schematics of wild-type and modified herpes simplex virus genomes. FIG. 2A shows a wild-type herpes simplex virus genome. FIG. 2B shows a modified herpes simplex virus genome comprising deletions of the coding sequences of ICP4 (both copies), ICP27, and UL55 and deletions of the promoter sequences of ICP22 and ICP47, with two transgenes encoding Collagen alpha-1 (VII) chain polypeptides integrated at the ICP4 loci. FIG. 2C shows a modified herpes simplex virus genome comprising deletions of the coding sequences of ICP4 (both copies) and ICP22, with two transgenes encoding Collagen alpha-1 (VII) chain polypeptides integrated at the ICP4 loci. FIG. 2D shows a modified herpes simplex virus genome comprising deletions of the coding sequences of ICP0 and ICP4 (both copies), with two transgenes encoding Collagen alpha-1 (VII) chain polypeptides integrated at the ICP4 loci. FIG. 2E shows a modified herpes simplex virus genome comprising deletions of the coding sequences of ICP0, ICP4 (both copies), and ICP22, with two transgenes encoding Collagen alpha-1 (VII) chain polypeptides integrated at the ICP4 loci. FIG. 2F shows a modified herpes simplex virus genome comprising deletions of the coding sequences of ICP0, ICP4 (both copies), ICP22, and ICP27, with two transgenes encoding Collagen alpha-1 (VII) chain polypeptides integrated at the ICP4 loci. FIG. 2G shows a modified herpes simplex virus genome comprising deletions of the coding sequences of ICP0, ICP4 (both copies), ICP22, ICP27, and UL55, with two transgenes encoding Collagen alpha-1 (VII) chain polypeptides integrated at the ICP4 loci.
[0022] FIG. 3 shows a schematic of "KB103", a replication-defective herpes simplex type-1 virus (HSV-1) carrying a human collagen 7 (COL7A1) expression cassette.
[0023] FIGS. 4A-4B show dose-dependent increases in COLT transcript levels from KB103-infeted RDEB human dermal keratinocytes (FIG. 4A) and RDEB human dermal fibroblasts (FIG. 4B). Transcripts were quantified relative to .beta.-actin levels and normalized to expression in uninfected cells.
[0024] FIGS. 5A-5B show human Col7 protein expression detected in KB103-infected cells. FIG. 5A shows human Col7 protein expression in uninfected normal and RDEB fibroblasts, as well as fibroblasts infected with KB103 at the indicated multiplicity of infection (MOI). FIG. 5B shows human Col7 protein expression in uninfected normal and RDEB keratinocytes, as well as keratinocytes infected with KB103 at the indicated multiplicity of infection (MOI). Human GAPDH protein expression is shown as a loading control.
[0025] FIG. 6 shows human COL7A1 protein expression in uninfected (control) or KB103 infected (C7, MOI 3) RDEB human dermal fibroblasts (EB HDF), normal human dermal keratinocytes (Normal HDK), and RDEB human dermal keratinocytes (RDEB HDK), as assessed by immunofluorescence.
[0026] FIG. 7 shows human Col7 and LH3 protein expression in uninfected normal and RDEB human dermal keratinocytes, as well as keratinocytes infected with KB103 at the indicated MOI. Human GAPDH protein expression is shown as a loading control.
[0027] FIG. 8 shows human TSP-1 protein expression in uninfected normal and RDEB human dermal fibroblasts, as well as fibroblasts infected with KB103 at the indicated MOI. Human GAPDH protein expression is shown as a loading control.
[0028] FIGS. 9A-9B show cellular adhesion of uninfected (control) RDEB human dermal keratinocytes, and keratinocytes infected with KB103 at the indicated MOIs, to wells treated with increasing concentration of rat tail Collagen 1 (FIG. 9A) and human Fibronectin (FIG. 9B)
[0029] FIG. 10 shows Col7 deposition at the basement membrane zone (BMZ) in KB103 infected skin-equivalent organotypic cultures by immunofluorescence.
[0030] FIG. 11 shows the quantification of viral genome copy number and human Col7 transcript levels in tissue isolated from KB103-infected mice.
[0031] FIG. 12 shows human Col7 protein expression in dermal tissue from KB103-infected mice by immunofluorescence, including the initiation of human Col7 deposition at the basement membrane zone (BMZ).
DETAILED DESCRIPTION
[0032] The present disclosure relates, in part, to pharmaceutical compositions comprising one or more polynucleotides encoding a Collagen alpha-1 (VII) chain polypeptide, a Lysyl hydroxylase 3 polypeptide, a Keratin type I cytoskeletal 17 polypeptide, and/or a chimeric polypeptide thereof. In some embodiments, the pharmaceutical composition comprises a vector, wherein the vector comprises one or more transgenes encoding a Collagen alpha-1 (VII) chain polypeptide, a Lysyl hydroxylase 3 polypeptide, a Keratin type I cytoskeletal 17 polypeptide, and/or a chimeric polypeptide thereof. In some embodiments, the vector comprises one or more transgenes suitable for enhancing, increasing, augmenting, and/or supplementing the levels of Collagen alpha-1 (VII) chain polypeptide and/or Lysyl hydroxylase 3 polypeptide and/or Keratin type I cytoskeletal 17 polypeptide in one or more cells of a subject. The present disclosure also relates, in part, to methods of providing prophylactic, palliative, or therapeutic relief of a wound, disorder, or disease of the skin (e.g. dystrophic epidermolysis bullosa) in a subject by administering (e.g., topically or transdermally administering) a pharmaceutical composition described herein.
[0033] The following description sets forth exemplary methods, parameters, and the like. It should be recognized, however, that such description is not intended as a limitation on the scope of the present disclosure but is instead provided as a description of exemplary embodiments.
General techniques
[0034] The techniques and procedures described or referenced herein are generally well understood and commonly employed using conventional methodology by those skilled in the art, such as, for example, the widely utilized methodologies described in Sambrook et al., Molecular Cloning: A Laboratory Manual 3d edition (2001) Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.; Current Protocols in Molecular Biology (F. M. Ausubel, et al. eds., (2003)); the series Methods in Enzymology (Academic Press, Inc.): PCR 2: A Practical Approach (M. J. MacPherson, B. D. Hames and G. R. Taylor eds. (1995)), Harlow and Lane, eds. (1988); Oligonucleotide Synthesis (M. J. Gait, ed., 1984); Methods in Molecular Biology, Humana Press; Cell Biology: A Laboratory Notebook (J. E. Cellis, ed., 1998) Academic Press; Animal Cell Culture (R. I. Freshney), ed., 1987); Introduction to Cell and Tissue Culture (J. P. Mather and P. E. Roberts, 1998) Plenum Press; Cell and Tissue Culture: Laboratory Procedures (A. Doyle, J. B. Griffiths, and D. G. Newell, eds., 1993-8) J. Wiley and Sons; Gene Transfer Vectors for Mammalian Cells (J. M. Miller and M. P. Calos, eds., 1987); PCR: The Polymerase Chain Reaction, (Mullis et al., eds., 1994); Short Protocols in Molecular Biology (Wiley and Sons, 1999).
Definitions
[0035] Before describing the invention in detail, it is to be understood that this invention is not limited to particular compositions or biological systems, which can, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting.
[0036] As used herein, the singular forms "a", "an" and "the" include plural referents unless the content clearly dictates otherwise. Thus, for example, reference to "a molecule" optionally includes a combination of two or more such molecules, and the like.
[0037] As used herein, the term "about" refers to the usual error range for the respective value readily known to the skilled person in this technical field. Reference to "about" a value or parameter herein includes (and describes) embodiments that are directed to that value or parameter per se.
[0038] As used herein, the terms "polynucleotide", "nucleic acid sequence", "nucleic acid", and variations thereof shall be generic to polydeoxyribonucleotides (containing 2-deoxy-D-ribose), to polyribonucleotides (containing D-ribose), to any other type of polynucleotide that is an N-glycoside of a purine or pyrimidine base, and to other polymers containing non-nucleotidic backbones, provided that the polymers contain nucleobases in a configuration that allows for base pairing and base stacking, as found in DNA and RNA. Thus, these terms include known types of nucleic acid sequence modifications, for example, substitution of one or more of the naturally occurring nucleotides with an analog, and inter-nucleotide modifications.
[0039] As used herein, a nucleic acid is "operatively linked" or "operably linked" when it is placed into a functional relationship with another nucleic acid sequence. For example, a promoter or enhancer is operably linked to a coding sequence if it affects the transcription of the sequence; or a ribosome binding site is operably linked to a coding sequence if it is positioned so as to facilitate translation. Generally, "operably linked" means that the DNA sequences being linked are contiguous.
[0040] As used herein, the term "vector" refers to discrete elements that are used to introduce heterologous nucleic acids into cells for either expression or replication thereof. An expression vector includes vectors capable of expressing nucleic acids that are operatively linked with regulatory sequences, such as promoter regions, that are capable of effecting expression of such nucleic acids. Thus, an expression vector may refer to a DNA or RNA construct, such as a plasmid, a phage, recombinant virus or other vector that, upon introduction into an appropriate host cell, results in expression of the nucleic acids. Appropriate expression vectors are well known to those of skill in the art and include those that are replicable in eukaryotic cells and those that remain episomal or those which integrate into the host cell genome.
[0041] As used herein, an "open reading frame" or "ORF" refers to a continuous stretch of nucleic acids, either DNA or RNA, that encode a protein or polypeptide. Typically, the nucleic acids comprise a translation start signal or initiation codon, such as ATG or AUG, and a termination codon.
[0042] As used herein, an "internal ribosome entry site" or "IRES" refers to a nucleotide sequence that allows for translation initiation in the middle, e.g. after the first start codon, of an mRNA sequence.
[0043] As used herein, an "untranslated region" or "UTR" refers to unstranslated nucleic acids at the 5' and/or 3' ends of an open reading frame. The inclusion of one or more UTRs in a polynucleotide may affect post-transcriptional regulation, mRNA stability, and/or translation of the polynucleotide.
[0044] As used herein, the term "transgene" refers to a polynucleotide that is capable of being transcribed into RNA and translated and/or expressed under appropriate conditions, after being introduced into a cell. In some aspects, it confers a desired property to a cell into which it was introduced, or otherwise leads to a desired therapeutic or diagnostic outcome.
[0045] As used herein, the terms "polypeptide," "protein," and "peptide" are used interchangeably and may refer to a polymer of two or more amino acids.
[0046] As used herein, a "subject", "host", or an "individual" refers to any animal classified as a mammal, including humans, domestic and farm animals, and zoo, sports, or pet animals, such as dogs, horses, cats, cows, as well as animals used in research, such as mice and rats, etc. In some embodiments, the mammal is human.
[0047] As used herein, "topical administration" or "topically administering" refers to the delivery of a composition to a subject by contacting, directly or otherwise, a formulation comprising the composition to all or a portion of the skin of a subject. The term encompasses several routes of administration including, but not limited to, topical and transdermal. Topical administration is used as a means to deliver a composition to the epidermis or dermis of a subject, or to specific strata thereof.
[0048] As used herein, an "effective amount" is at least the minimum amount required to effect a measurable improvement or prevention of one or more symptoms of a particular disorder. An effective amount is also one in which any toxic or detrimental effects of the treatment are outweighed by the therapeutically beneficial effects. For prophylactic use, beneficial or desired results include results such as eliminating or reducing the risk, lessening the severity, or delaying the onset of the disease, its complications and intermediate pathological phenotypes presenting during development of the disease. For therapeutic use, beneficial or desired results include clinical results such as decreasing one or more symptoms resulting from the disease, increasing the quality of life of those suffering from the disease, delaying the progression of the disease, and/or prolonging survival. An effective amount can be administered in one or more administrations.
Pharmaceutical Compositions
[0049] Polynucleotides
[0050] In one aspect, provided herein is a pharmaceutical composition comprising one or more polynucleotides encoding a Collagen alpha-1 (VII) chain (Co17) polypeptide, a Lysyl hydroxylase 3 (LH3) polypeptide, a Keratin type I cytoskeletal 17 (KRT17) polypeptide, and/or a chimeric polypeptide thereof. In some embodiments, the pharmaceutical composition comprises one or more polynucleotides encoding a Collagen alpha-1 (VII) chain polypeptide. In some embodiments, the pharmaceutical composition comprises one or more polynucleotides encoding a Lysyl hydroxylase 3 polypeptide. In some embodiments, the pharmaceutical composition comprises one or more polynucleotides encoding a Keratin type I cytoskeletal 17 polypeptide. In some embodiments, the pharmaceutical composition comprises one or more polynucleotides encoding a chimeric polypeptide. In some embodiments, the pharmaceutical composition comprises one or more polynucleotides encoding a Collagen alpha-1 (VII) chain polypeptide and a Lysyl hydroxylase 3 polypeptide. In some embodiments, the pharmaceutical composition comprises one or more polynucleotides encoding a Collagen alpha-1 (VII) chain polypeptide and a Keratin type I cytoskeletal 17 polypeptide. In some embodiments, the pharmaceutical composition comprises one or more polynucleotides encoding a Lysyl hydroxylase 3 polypeptide and a Keratin type I cytoskeletal 17 polypeptide. In some embodiments, the pharmaceutical composition comprises one or more polynucleotides encoding a Collagen alpha-1 (VII) chain polypeptide, a Lysyl hydroxylase 3 polypeptide, and a Keratin type I cytoskeletal 17 polypeptide.
[0051] In some embodiments, the pharmaceutical composition comprises a vector, wherein the vector encodes one or more transgenes comprising a polynucleotide described herein. In some embodiments, the pharmaceutical composition comprises a vector, wherein the vector comprises one or more transgenes encoding a Collagen alpha-1 (VII) chain polypeptide, a Lysyl hydroxylase 3 polypeptide, a Keratin type I cytoskeletal 17 polypeptide, and/or a chimeric polypeptide thereof. In some embodiments, the vector comprises one or more transgenes encoding a Collagen alpha-1 (VII) chain polypeptide. In some embodiments, the vector comprises one or more transgenes encoding a Lysyl hydroxylase 3 polypeptide. In some embodiments, the vector comprises one or more transgenes encoding a Keratin type I cytoskeletal 17 polypeptide. In some embodiments, the vector comprises one or more transgenes encoding a chimeric polypeptide. In some embodiments, the vector comprises one or more transgenes encoding a Collagen alpha-1 (VII) chain polypeptide and one or more transgenes encoding a Lysyl hydroxylase 3 polypeptide. In some embodiments, the vector comprises one or more transgenes encoding a Collagen alpha-1 (VII) chain polypeptide and one or more transgenes encoding a Keratin type I cytoskeletal 17 polypeptide. In some embodiments, the vector comprises one or more transgenes encoding a Lysyl hydroxylase 3 polypeptide and one or more transgenes encoding a Keratin type I cytoskeletal 17 polypeptide. In some embodiments, the vector comprises one or more transgenes encoding a Collagen alpha-1 (VII) chain polypeptide, one or more transgenes encoding a Lysyl hydroxylase 3 polypeptide, and one or more transgenes encoding a Keratin type I cytoskeletal 17 polypeptide.
[0052] In some embodiments, the pharmaceutical composition comprises a synthetic RNA, wherein the synthetic RNA encodes one or more transgenes comprising a polynucleotide described herein. In some embodiments, the pharmaceutical composition comprises a synthetic RNA, wherein the synthetic RNA comprises one or more transgenes encoding a Collagen alpha-1 (VII) chain polypeptide, a Lysyl hydroxylase 3 polypeptide, a Keratin type I cytoskeletal 17 polypeptide, and/or a chimeric polypeptide thereof. In some embodiments, the synthetic RNA comprises one or more transgenes encoding a Collagen alpha-1 (VII) chain polypeptide. In some embodiments, the synthetic RNA comprises one or more transgenes encoding a Lysyl hydroxylase 3 polypeptide. In some embodiments, the synthetic RNA comprises one or more transgenes encoding a Keratin type I cytoskeletal 17 polypeptide. In some embodiments, the synthetic RNA comprises one or more transgenes encoding a chimeric polypeptide. In some embodiments, the synthetic RNA comprises one or more transgenes encoding a Collagen alpha-1 (VII) chain polypeptide and one or more transgenes encoding a Lysyl hydroxylase 3 polypeptide. In some embodiments, the synthetic RNA comprises one or more transgenes encoding a Collagen alpha-1 (VII) chain polypeptide and one or more transgenes encoding a Keratin type I cytoskeletal 17 polypeptide. In some embodiments, the synthetic RNA comprises one or more transgenes encoding a Lysyl hydroxylase 3 polypeptide and one or more transgenes encoding a Keratin type I cytoskeletal 17 polypeptide. In some embodiments, the synthetic RNA comprises one or more transgenes encoding a Collagen alpha-1 (VII) chain polypeptide, one or more transgenes encoding a Lysyl hydroxylase 3 polypeptide, and one or more transgenes encoding a Keratin type I cytoskeletal 17 polypeptide.
[0053] Collagen Alpha-1 (VII) Chain
[0054] In some aspects, a polynucleotide of the present disclosure encodes a Collagen alpha-1 (VII) chain polypeptide. An example of a polynucleotide that encodes a Collagen alpha-1 (VII) chain polypeptide is SEQ ID NO: 1. Polynucleotides of the present disclosure also include polynucleotides having at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% identity to the sequence of SEQ ID NO: 1.
[0055] In some embodiments, a polynucleotide encoding a Collagen alpha-1 (VII) chain polypeptide is a polynucleotide that encodes an N-terminal truncation, a C-terminal truncation, or a fragment of a Collagen alpha-1 (VII) chain polypeptide. Polynucleotides encoding an N-terminal truncation, a C-terminal truncation, or a fragment of a Collagen alpha-1 (VII) chain polypeptide include polynucleotides that have at least 25, at least 50, at least 75, at least 100, at least 125, at least 150, at least 175, at least 200, at least 250, at least 300, or at least 350, at least 500, at least 1000, at least 2500, at least 5000, at least 7500, but fewer than 8835, consecutive nucleotides of SEQ ID NO: 1.
[0056] In some embodiments, a polynucleotide encoding a Collagen alpha-1 (VII) chain polypeptide is a polynucleotide that encodes a polypeptide having an amino acid sequence of SEQ ID NO: 2. In some embodiments, a polynucleotide encoding a Collagen alpha-1 (VII) chain polypeptide is a polynucleotide that encodes a polypeptide having an amino acid sequence having at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% identity to the sequence of SEQ ID NO: 2. In some embodiments, the present disclosure relates to polynucleotides that encode polypeptides that are homologs of the H. sapiens Collagen alpha-1 (VII) chain polypeptide. Methods of identifying polypeptides that are homologs of a polypeptide of interest are well known to one of skill in the art.
[0057] In some embodiments, a polynucleotide encoding a Collagen alpha-1 (VII) chain polypeptide is a polynucleotide that encodes N-terminal truncations, C-terminal truncations, or fragments of the amino acid sequence of SEQ ID NO: 2. N-terminal truncations, C-terminal truncations, or fragments may comprise at least 10, at least 12, at least 14, at least 16, at least 18, at least 20, at least 30, at least 40, at least 50, at least 75, at least 100, at least 250, at least 500, at least 750, at least 1000, at least 1500, at least 2000, or at least 2500, but fewer than 2944, consecutive amino acids of SEQ ID NO: 2.
[0058] In some embodiments, the polynucleotide encoding a Collagen alpha-1 (VII) chain polypeptide expresses the Collagen alpha-1 (VII) chain polypeptide when the polynucleotide is delivered into one or more target cells of a subject. In some embodiments, expression of the Collagen alpha-1 (VII) chain polypeptide enhances, increases, augments, and/or supplements the levels of a Collagen alpha-1 chain polypeptide in one or more target cells. In some embodiments, expression of the Collagen alpha-1 (VII) chain polypeptide enhances, increases, augments, and/or supplements the function of a Collagen alpha-1 chain polypeptide in one or more target cells. In some embodiments, expression of the Collagen alpha-1 (VII) chain polypeptide enhances, increases, augments, and/or supplements the activity of a Collagen alpha-1 chain polypeptide in one or more target cells. In some embodiments, expression of the Collagen alpha-1 (VII) chain polypeptide enhances, increases, augments, and/or supplements anchoring fibril formation of the subject. In some embodiments, expression of the Collagen alpha-1 (VII) chain polypeptide enhances, increases, augments, and/or supplements epithelial basement membrane organization and/or epithelial basement adherence of the subject. In some embodiments, expression of the Collagen alpha-1 (VII) chain polypeptide enhances, increases, augments, and/or supplements dermoepidermal junction integrity of the subject.
[0059] Lysyl hydroxylase 3
[0060] In some aspects, a polynucleotide of the present disclosure encodes a Lysyl hydroxylase 3 polypeptide. An example of a polynucleotide that encodes a Lysyl hydroxylase 3 polypeptide is SEQ ID NO: 3. Polynucleotides of the present disclosure also include polynucleotides having at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% identity to the sequence of SEQ ID NO: 3.
[0061] In some embodiments, a polynucleotide encoding a Lysyl hydroxylase 3 polypeptide is a polynucleotide that encodes an N-terminal truncation, a C-terminal truncation, or a fragment of a Lysyl hydroxylase 3 polypeptide. Polynucleotides encoding an N-terminal truncation, a C-terminal truncation, or a fragment of a Lysyl hydroxylase 3 polypeptide include polynucleotides that have at least 25, at least 50, at least 75, at least 100, at least 125, at least 150, at least 175, at least 200, at least 250, at least 300, at least 350, at least 500, at least 750, at least 1000, at least 1500, or at least 2000, but fewer than 2217, consecutive nucleotides of SEQ ID NO: 3.
[0062] In some embodiments, a polynucleotide encoding a Lysyl hydroxylase 3 polypeptide is a polynucleotide that encodes a polypeptide having an amino acid sequence of SEQ ID NO: 4. In some embodiments, a polynucleotide encoding a Lysyl hydroxylase 3 polypeptide is a polynucleotide that encodes a polypeptide having an amino acid sequence having at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% identity to the sequence of SEQ ID NO: 4. In some embodiments, the present disclosure relates to polynucleotides encoding polypeptides that are homologs of the H. sapiens Lysyl hydroxylase 3 polypeptide. Methods of identifying polypeptides that are homologs of a polypeptide of interest are well known to one of skill in the art.
[0063] In some embodiments, a polynucleotide encoding a Lysyl hydroxylase 3 polypeptide is a polynucleotide that encodes N-terminal truncations, C-terminal truncations, or fragments of the amino acid sequence of SEQ ID NO: 4. N-terminal truncations, C-terminal truncations, or fragments may comprise at least 10, at least 12, at least 14, at least 16, at least 18, at least 20, at least 30, at least 40, at least 50, at least 75, at least 100, at least 200, at least 300, at least 400, at least 500, at least 600, or at least 700, but fewer than 738, consecutive amino acids of SEQ ID NO: 4.
[0064] In some embodiments, the polynucleotide encoding a Lysyl hydroxylase 3 polypeptide expresses the Lysyl hydroxylase 3 polypeptide when the polynucleotide is delivered into one or more target cells of a subject. In some embodiments, expression of the Lysyl hydroxylase 3 polypeptide enhances, increases, augments, and/or supplements the levels of a Lysyl hydroxylase 3 polypeptide in one or more target cells. In some embodiments, expression of the Lysyl hydroxylase 3 polypeptide enhances, increases, augments, and/or supplements the function of a Lysyl hydroxylase 3 polypeptide in one or more target cells. In some embodiments, expression of the Lysyl hydroxylase 3 polypeptide enhances, increases, augments, and/or supplements the activity of a Lysyl hydroxylase 3 polypeptide in one or more target cells. In some embodiments, expression of the Lysyl hydroxylase 3 polypeptide enhances, increases, augments, and/or supplements the formation of hydroxylysine residues on one or more collagen polypeptides of the subject. In some embodiments, expression of the Lysyl hydroxylase 3 polypeptide enhances, increases, augments, and/or supplements anchoring fibril formation of the subject. In some embodiments, expression of the Lysyl hydroxylase 3 polypeptide enhances, increases, augments, and/or supplements epithelial basement membrane organization and/or epithelial basement adherence of the subject. In some embodiments, expression of the Lysyl hydroxylase 3 polypeptide enhances, increases, augments, and/or supplements dermoepidermal junction integrity of the subject.
[0065] In some embodiments, the polynucleotide encoding a Collagen alpha-1 (VII) chain polypeptide and the polynucleotide encoding a Lysyl hydroxylase 3 polypeptide are delivered to the same cell of a subject. In some embodiments, the polynucleotide encoding a Collagen alpha-1 chain (VII) polypeptide and the polynucleotide encoding a Lysyl hydroxylase 3 polypeptide express the Collagen alpha-1 (VII) chain polypeptide and the Lysyl hydroxylase 3 polypeptide when the polynucleotides are delivered into the same cell of a subject. In some embodiments, the polynucleotide encoding a Collagen alpha-1 (VII) chain polypeptide and the polynucleotide encoding a Lysyl hydroxylase 3 polypeptide express the Collagen alpha-1 (VII) chain polypeptide and Lysyl hydroxylase 3 polypeptide at equimolar ratios.
[0066] Keratin type I cytoskeletal 17
[0067] In some aspects, a polynucleotide of the present disclosure encodes a Keratin type I cytoskeletal 17 polypeptide. An example of a polynucleotide that encodes a Keratin type I cytoskeletal 17 polypeptide is SEQ ID NO: 29. Polynucleotides of the present disclosure also include polynucleotides having at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% identity to the sequence of SEQ ID NO: 29.
[0068] In some embodiments, a polynucleotide encoding a Keratin type I cytoskeletal 17 polypeptide is a polynucleotide that encodes an N-terminal truncation, a C-terminal truncation, or a fragment of a Keratin type I cytoskeletal 17 polypeptide. Polynucleotides encoding an N-terminal truncation, a C-terminal truncation, or a fragment of a Collagen alpha-1 (VII) chain polypeptide include polynucleotides that have at least 25, at least 50, at least 75, at least 100, at least 125, at least 150, at least 175, at least 200, at least 250, at least 300, or at least 350, at least 500, at least 1000, at least 1250, but fewer than 1299, consecutive nucleotides of SEQ ID NO: 29.
[0069] In some embodiments, a polynucleotide encoding a Keratin type I cytoskeletal 17 polypeptide is a polynucleotide that encodes a polypeptide having an amino acid sequence of SEQ ID NO: 30. In some embodiments, a polynucleotide encoding a Keratin type I cytoskeletal 17 polypeptide is a polynucleotide that encodes a polypeptide having an amino acid sequence having at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% identity to the sequence of SEQ ID NO: 30. In some embodiments, the present disclosure relates to polynucleotides that encode polypeptides that are homologs of the H. sapiens Keratin type I cytoskeletal 17 polypeptide. Methods of identifying polypeptides that are homologs of a polypeptide of interest are well known to one of skill in the art.
[0070] In some embodiments, a polynucleotide encoding a Keratin type I cytoskeletal 17 polypeptide is a polynucleotide that encodes N-terminal truncations, C-terminal truncations, or fragments of the amino acid sequence of SEQ ID NO: 30. N-terminal truncations, C-terminal truncations, or fragments may comprise at least 10, at least 12, at least 14, at least 16, at least 18, at least 20, at least 30, at least 40, at least 50, at least 75, at least 100, at least 150, at least 200, at least 250, at least 300, at least 350, at least 400, at least 425, but fewer than 432, consecutive amino acids of SEQ ID NO: 30.
[0071] In some embodiments, the polynucleotide encoding a Keratin type I cytoskeletal 17 polypeptide expresses the Keratin type I cytoskeletal 17 polypeptide when the polynucleotide is delivered into one or more target cells of a subject. In some embodiments, expression of the Keratin type I cytoskeletal 17 polypeptide enhances, increases, augments, and/or supplements the levels of a Keratin type I cytoskeletal 17 polypeptide in one or more target cells. In some embodiments, expression of the Keratin type I cytoskeletal 17 polypeptide enhances, increases, augments, and/or supplements the function of a Keratin type I cytoskeletal 17 polypeptide in one or more target cells. In some embodiments, expression of the Keratin type I cytoskeletal 17 polypeptide enhances, increases, augments, and/or supplements the activity of a Keratin type I cytoskeletal 17 polypeptide in one or more target cells. In some embodiments, expression of the Keratin type I cytoskeletal 17 polypeptide enhances, increases, augments, and/or supplements wound healing in the subject.
[0072] Chimeric Polypeptide Comprising Linker
[0073] In some embodiments, a polynucleotide of the present disclosure encodes a chimeric polypeptide comprising a Collagen alpha-1 (VII) chain polypeptide and a Lysyl hydroxylase 3 polypeptide. In some embodiments, the polynucleotide encoding a chimeric polypeptide further comprises a polynucleotide encoding a linker polypeptide. In some embodiments, the polynucleotide encoding a linker polypeptide is a polynucleotide encoding a cleavable linker polypeptide. Examples of polynucleotides encoding cleavable linker polypeptides may include, but are not limited to, polynucleotides encoding a T2A, P2A, E2A, or F2A linker polypeptide. In some embodiments, the polynucleotide encoding a linker polypeptide is a polynucleotide encoding a T2A linker polypeptide. In some embodiments, the polynucleotide encoding a linker polypeptide is a polynucleotide encoding a P2A linker polypeptide. In some embodiments, the polynucleotide encoding a linker polypeptide is a polynucleotide encoding an E2A linker polypeptide. In some embodiments, the polynucleotide encoding a linker polypeptide is a polynucleotide encoding an F2A linker polypeptide.
[0074] In some aspects, a polynucleotide of the present disclosure encodes a linker polypeptide. Examples of polynucleotides that encode linker polypeptides are SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, and SEQ ID NO: 11. Polynucleotides of the present disclosure also include polynucleotides having at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% identity to the sequence of SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, or SEQ ID NO: 11.
[0075] In some embodiments, a polynucleotide encoding a linker polypeptide is a polynucleotide that encodes an N-terminal truncation, a C-terminal truncation, or a fragment of a linker polypeptide. Polynucleotides encoding an N-terminal truncation, a C-terminal truncation, or a fragment of a linker polypeptide include polynucleotides that have at least 5, at least 10, at least 15, at least 20, at least 25, at least 30, at least 35, at least 40, at least 45, at least 50, at least 55, or at least 60, but fewer than 66, consecutive nucleotides of SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, or SEQ ID NO: 11.
[0076] In some embodiments, a polynucleotide encoding a linker polypeptide is a polynucleotide that encodes a polypeptide having an amino acid sequence of SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10 or SEQ ID NO: 12. In some embodiments, a polynucleotide encoding a linker polypeptide is a polynucleotide that encodes a polypeptide having an amino acid sequence having at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% identity to the sequence of SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, or SEQ ID NO: 12.
[0077] In some embodiments, a polynucleotide encoding a linker polypeptide is a polynucleotide that encodes N-terminal truncations, C-terminal truncations, or fragments of the amino acid sequence of SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, or SEQ ID NO: 12. N-terminal truncations, C-terminal truncations, or fragments may comprise at least 4, at least 6, at least 8, at least 10, at least 12, at least 14, at least 16, at least 18, or at least 20, but fewer than 22, consecutive amino acids of SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, or SEQ ID NO: 12.
[0078] In some embodiments, the polynucleotide encoding a linker polypeptide further comprises a polynucleotide encoding one or more furin cleavage sites. In some embodiments, the polynucleotide encoding one or more furin cleavage sites encode an amino acid sequence that is the same or substantially similar to the sequence of the canonical furin cleavage site (Arg-X-(Arg/Lys)-Arg). In some embodiments, the one or more furin cleavage sites are encoded upstream of the linker polypeptide. In some embodiments, the one or more furin cleavage sites are encoded downstream of the linker polypeptide. In some embodiments, the one or more furin cleavage sites are encoded upstream of a T2A linker polypeptide. In some embodiments, the one or more furin cleavage sites are encoded downstream of a T2A linker polypeptide. In some embodiments, the one or more furin cleavage sites are encoded upstream of a P2A linker polypeptide. In some embodiments, the one or more furin cleavage sites are encoded downstream of a P2A linker polypeptide. In some embodiments, the one or more furin cleavage sites are encoded upstream of an E2A linker polypeptide. In some embodiments, the one or more furin cleavage sites are encoded downstream of an E2A linker polypeptide. In some embodiments, the one or more furin cleavage sites are encoded upstream of an F2A linker polypeptide. In some embodiments, the one or more furin cleavage sites are encoded downstream of an F2A linker polypeptide.
[0079] In some embodiments, the polynucleotide encoding a chimeric polypeptide encodes a chimeric polypeptide comprising a Collagen alpha-1 (VII) chain polypeptide, a linker polypeptide, and a Lysyl hydroxylase 3 polypeptide. In some embodiments, the polynucleotide encoding a chimeric polypeptide comprises, from 5' to 3', a polynucleotide encoding a Collagen alpha-1 (VII) chain polypeptide, a polynucleotide encoding a linker polypeptide, and a polynucleotide encoding a Lysyl hydroxylase 3 polypeptide. In some embodiments, the polynucleotide encoding a chimeric polypeptide comprises, from 5' to 3', a polynucleotide encoding a Lysyl hydroxylase 3 polypeptide, a polynucleotide encoding a linker polypeptide, and a polynucleotide encoding a Collagen alpha-1 (VII) chain polypeptide.
[0080] Examples of polynucleotides encoding chimeric polypeptides comprising a Collagen alpha-1 (VII) chain polypeptide, a linker polypeptide, and a Lysyl hydroxylase 3 polypeptide are SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, and SEQ ID NO: 27. Polynucleotides of the present disclosure also include polynucleotides having at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% identity to the sequence of SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, or SEQ ID NO: 27.
[0081] In some embodiments, a polynucleotide encoding a chimeric polypeptide is a polynucleotide that encodes an N-terminal truncation, a C-terminal truncation, or a fragment of a chimeric polypeptide. Polynucleotides encoding an N-terminal truncation, a C-terminal truncation, or a fragment of a chimeric polypeptide include polynucleotides that have at least 25, at least 50, at least 75, at least 100, at least 125, at least 150, at least 175, at least 200, at least 250, at least 300, at least 350, at least 400, at least 450, at least 500, at least 550, at least 600, at least 650, at least 700, at least 750, at least 800, at least 850, at least 900, at least 950, at least 1000, at least 2000, at least 3000, at least 4000, at least 5000, at least 6000, at least 7000, at least 8000, at least 9000, or at least 10000, but fewer than 11121, consecutive nucleotides of SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, or SEQ ID NO: 27.
[0082] In some embodiments, a polynucleotide encoding a chimeric polypeptide comprising a Collagen alpha-1 (VII) chain polypeptide, a linker polypeptide, and a Lysyl hydroxylase 3 polypeptide is a polynucleotide that encodes a polypeptide having an amino acid sequence of SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26 or SEQ ID NO: 28. In some embodiments, a polynucleotide encoding a chimeric polypeptide comprising a Collagen alpha-1 (VII) chain polypeptide, a linker polypeptide, and a Lysyl hydroxylase 3 polypeptide is a polynucleotide that encodes a polypeptide having an amino acid sequence having at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% identity to the sequence of SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26 or SEQ ID NO: 28.
[0083] In some embodiments, a polynucleotide encoding a chimeric polypeptide comprising a Collagen alpha-1 (VII) chain polypeptide, a linker polypeptide, and a Lysyl hydroxylase 3 polypeptide is a polynucleotide that encodes N-terminal truncations, C-terminal truncations, or fragments of the amino acid sequence of SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26 or SEQ ID NO: 28. N-terminal truncations, C-terminal truncations, or fragments may comprise at least 25, at least 50, at least 75, at least 100, at least 125, at least 150, at least 175, at least 200, at least 250, at least 300, at least 350, at least 400, at least 450, at least 500, at least 550, at least 600, at least 650, at least 700, at least 750, at least 800, at least 850, at least 900, at least 950, at least 1000, at least 1250, at least 1500, at least 1750, at least 2000, at least 2250, at least 2500, at least 2750, at least 3000, at least 3250, or at least 3500, but fewer than 3706, consecutive amino acids of SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26 or SEQ ID NO: 28.
[0084] In some embodiments, the polynucleotide encoding a chimeric polypeptide expresses the chimeric polypeptide when the polynucleotide is delivered into one or more target cells of a subject. In some embodiments, the chimeric polypeptide is cleaved after being expressed in one or more target cells. In some embodiments, the chimeric polypeptide is cleaved within the linker polypeptide when expressed in one or more target cells. In some embodiments, the chimeric polypeptide is cleaved into two polypeptides, one comprising the Collagen alpha-1 (VII) chain polypeptide and the other comprising the Lysyl hydroxylase 3 polypeptide. In some embodiments, expression of the chimeric polypeptide enhances, increases, augments, and/or supplements the levels of a Collagen alpha-1 chain polypeptide and/or a Lysyl hydroxylase 3 polypeptide in one or more target cells. In some embodiments, expression of the chimeric polypeptide enhances, increases, augments, and/or supplements the function of a Collagen alpha-1 chain polypeptide and/or a Lysyl hydroxylase 3 polypeptide in one or more target cells. In some embodiments, expression of the chimeric polypeptide enhances, increases, augments, and/or supplements the activity of a Collagen alpha-1 chain polypeptide and/or a Lysyl hydroxylase 3 polypeptide in one or more target cells. In some embodiments, expression of the chimeric polypeptide enhances, increases, augments, and/or supplements the formation of hydroxylysine residues on one or more collagen polypeptides of the subject. In some embodiments, expression of the chimeric polypeptide enhances, increases, augments, and/or supplements anchoring fibril formation of the subject. In some embodiments, expression of the chimeric polypeptide enhances, increases, augments, and/or supplements epithelial basement membrane organization and/or epithelial basement adherence of the subject. In some embodiments, expression of the chimeric polypeptide enhances, increases, augments, and/or supplements dermoepidermal junction integrity of the subject.
[0085] Polynucleotides of the present disclosure may be codon-optimized. In some embodiments, polynucleotides of the present disclosure are codon-optimized for human cells. In some embodiments, polynucleotides of the present disclosure are codon-optimized for mouse cells. In some embodiments, polynucleotides of the present disclosure are codon-optimized for rat cells. In some embodiments, polynucleotides of the present disclosure are codon-optimized for hamster cells. In some embodiments, polynucleotides of the present disclosure are codon-optimized for canine cells. In some embodiments, polynucleotides of the present disclosure are codon-optimized for yeast cells. In some embodiments, polynucleotides of the present disclosure are codon-optimized for bacterial cells. Polynucleotides of the present disclosure may be DNA polynucleotides, RNA polynucleotides, or a combination of one or more DNA polynucleotides and one or more RNA polynucleotides.
[0086] Vectors
[0087] In some aspects, the present disclosure relates to vectors, preferably expression vectors, containing one or more polynucleotides described herein. In some embodiments, the vectors are DNA vectors. Generally, vectors suitable to maintain, propagate, or express polynucleotides to produce one or more polypeptides in a subject may be used. Examples of suitable vectors include, but are not limited to, plasmids, cosmids, episomes, transposons, and viral vectors (e.g., adenoviral, vaccinia viral, Sindbis-viral, measles, herpes viral, lentiviral, retroviral, adeno-associated viral vectors, etc.). In some embodiments, the vector is capable of autonomous replication in a host cell. In some embodiments, the vector is incapable of autonomous replication in a host cell. In some embodiments, the vector is capable of integrating into a host DNA. Methods for making vectors containing one or more polynucleotides of interest are well known to one of skill in the art.
[0088] In some embodiments, the vector is a herpes simplex virus vector. In some embodiments, the herpes simplex virus vector is a herpes virus amplicon vector. Herpes virus amplicon vectors, including structural features and methods of making the vectors, are generally known in the art (de Silva S. and Bowers W. "Herpes Virus Amplicon Vectors". Viruses 2009, 1, 594-629). In some embodiments, the vector is an HSV-1 amplicon. In some embodiments, the vector is an HSV-1 hybrid amplicon. Examples of HSV-1 hybrid amplicons may include, but are not limited to, HSV/AAV hybrid amplicons, HSV/EBV hybrid amplicons, HSV/EBV/RV hybrid amplicons, and HSV/Sleeping Beauty hybrid amplicons. In some embodiments, the vector is an HSV/AAV hybrid amplicon. In some embodiments, the vector is an HSV/EBV hybrid amplicon. In some embodiments, the vector is an HSV/EBV/RV hybrid amplicon. In some embodiments, the vector is an HSV/Sleeping Beauty hybrid amplicons.
[0089] In some embodiments, the herpes simplex virus vector is a recombinant herpes simplex virus genome. In some embodiments, the recombinant herpes simplex virus genome has been engineered to decrease or eliminate expression of one or more toxic herpes simplex virus genes. Methods of engineering recombinant herpes simplex virus genomes are generally described in WO2015/009952. In some embodiments, the recombinant herpes simplex virus genome comprises an inactivating mutation. Examples of inactivating mutations may include, but are not limited to, deletions, insertions, point mutations, and rearrangements. In some embodiments, the recombinant herpes simplex virus genome comprises an inactivating mutation in at least one, at least two, at least three, at least four, at least five, at least six, at least seven, or all eight of the ICP0, ICP4, ICP22, ICP27, ICP47, tk, UL41 and UL55 herpes simplex virus genes. In some embodiments, the recombinant herpes simplex virus genome comprises an inactivating mutation in the ICP0 gene. In some embodiments, the recombinant herpes simplex virus genome comprises an inactivating mutation in the ICP4 (one or both copies) gene. In some embodiments, the recombinant herpes simplex virus genome comprises an inactivating mutation in the ICP22 gene. In some embodiments, the recombinant herpes simplex virus genome comprises an inactivating mutation in the ICP27 gene. In some embodiments, the recombinant herpes simplex virus genome comprises an inactivating mutation in the ICP47 gene. In some embodiments, the recombinant herpes simplex virus genome comprises an inactivating mutation in the UL41 gene. In some embodiments, the recombinant herpes simplex virus genome comprises an inactivating mutation in the UL55 gene. In some embodiments, the recombinant herpes simplex virus genome is a recombinant HSV-1 genome, a recombinant HSV-2 genome, or any derivatives thereof. In some embodiments, the recombinant herpes simplex virus genome is a recombinant HSV-1 genome. In some embodiments, the recombinant herpes simplex virus genome is a recombinant HSV-2 genome.
[0090] In some embodiments, the recombinant herpes simplex virus genome comprises an inactivating mutation in the ICP4 (one or both copies), ICP27, and UL55 genes. In some embodiments, the recombinant herpes simplex virus genome comprises an inactivating mutation in the ICP4 (one or both copies), ICP22, ICP27, ICP47, and UL55 genes. In some embodiments, the inactivating mutation in the ICP4 (one or both copies), ICP27, and/or UL55 genes is a deletion of the coding sequence of the ICP4 (one or both copies), ICP27, and/or UL55 genes. In some embodiments, the inactivating mutation in the ICP22 and ICP47 genes is a deletion in the promoter region of the ICP22 and ICP47 genes (e.g., the ICP22 and ICP47 coding sequences are intact but are not transcriptionally active). In some embodiments, the recombinant herpes simplex virus genome comprises a deletion in the coding sequence of the ICP4 (one or both copies), ICP27, and UL55 genes and a deletion in the promoter region of the ICP22 and ICP47 genes. In some embodiments, the recombinant herpes simplex virus genome further comprises an inactivating mutation in the UL41 gene. In some embodiments, the recombinant herpes simplex virus genome is a recombinant HSV-1 genome, a recombinant HSV-2 genome, or any derivatives thereof. In some embodiments, the recombinant herpes simplex virus genome is a recombinant HSV-1 genome. In some embodiments, the recombinant herpes simplex virus genome is a recombinant HSV-2 genome.
[0091] In some embodiments, the recombinant herpes simplex virus genome comprises an inactivating mutation in the ICP4 (one or both copies) and ICP22 genes. In some embodiments, the recombinant herpes simplex virus genome comprises an inactivating mutation in the ICPO and ICP4 (one or both copies) genes. In some embodiments, the recombinant herpes simplex virus genome comprises an inactivating mutation in the ICP0, ICP4 (one or both copies), and ICP22 genes. In some embodiments, the recombinant herpes simplex virus genome comprises an inactivating mutation in the ICP0, ICP4 (one or both copies), ICP22, and ICP27 genes. In some embodiments, the recombinant herpes simplex virus genome comprises an inactivating mutation in the ICP0, ICP4 (one or both copies), ICP22, ICP27 and UL55 genes. In some embodiments, the inactivating mutation in the ICP0, ICP4 (one or both copies), ICP22, ICP27 and/or UL55 genes comprises a deletion of the coding sequence of the ICP0, ICP4 (one or both copies), ICP22, ICP27 and/or UL55 genes. In some embodiments, the recombinant herpes simplex virus genome comprises a deletion in the coding sequence of the ICP0, ICP4 (one or both copies), ICP22, ICP27, and UL55 genes. In some embodiments, the recombinant herpes simplex virus genome further comprises an inactivating mutation in the ICP47 gene. In some embodiments, the recombinant herpes simplex virus genome further comprises an inactivating mutation in the UL41 gene. In some embodiments, the recombinant herpes simplex virus genome further comprises an inactivating mutation in the ICP47 gene and the UL41 gene. In some embodiments, the recombinant herpes simplex virus genome is a recombinant HSV-1 genome, a recombinant HSV-2 genome, or any derivatives thereof. In some embodiments, the recombinant herpes simplex virus genome is a recombinant HSV-1 genome. In some embodiments, the recombinant herpes simplex virus genome is a recombinant HSV-2 genome.
[0092] In some embodiments, the recombinant herpes simplex virus genome comprises an inactivating mutation in the ICP4 (one or both copies), ICP22, and ICP27 genes. In some embodiments, the recombinant herpes simplex virus genome comprises an inactivating mutation in the ICP4 (one or both copies), ICP22, ICP27, ICP47, and UL55 genes. In some embodiments, the recombinant herpes simplex virus genome comprises an inactivating mutation in the ICPO, ICP4 (one or both copies), ICP22, and ICP27 genes. In some embodiments, the recombinant herpes simplex virus genome is a recombinant HSV-1 genome, a recombinant HSV-2 genome, or any derivatives thereof. In some embodiments, the recombinant herpes simplex virus genome is a recombinant HSV-1 genome. In some embodiments, the recombinant herpes simplex virus genome is a recombinant HSV-2 genome.
[0093] In some embodiments, a recombinant herpes simplex virus genome comprises one or more polynucleotides of the present disclosure within one, two, three, four, five, six, seven or more viral gene loci. Examples of suitable viral loci may include, without limitation, the ICP0, ICP4, ICP22, ICP27, ICP47, tk, UL41 and UL55 herpes simplex viral gene loci. In some embodiments, a recombinant herpes simplex virus genome comprises one or more polynucleotide of the present disclosure within one or more of the viral ICP4 gene loci (e.g., a recombinant virus carrying a polynucleotide encoding Col7 in one or both of the ICP4 loci, a recombinant virus carrying a polynucleotide encoding LH3 in one or both of the ICP4 loci, a recombinant virus carrying a polynucleotide encoding KRT17 in one or both of the ICP4 loci, a recombinant virus carrying a polynucleotide encoding Col7 in one of the ICP4 loci and a polynucleotide encoding KRT17 in the other ICP4 loci, a recombinant virus carrying a polynucleotide encoding Col7 in one of the ICP4 loci and a polynucleotide encoding LH3 in the other ICP4 loci, a recombinant virus carrying a polynucleotide encoding LH3 in one of the ICP4 loci and a polynucleotide encoding KRT17 in the other ICP4 loci, etc.). In some embodiments, a recombinant herpes simplex virus genome comprises one or more polynucleotide of the present disclosure within the viral UL41 gene locus. In some embodiments, a recombinant herpes simplex virus genome comprises one or more polynucleotide of the present disclosure within the viral ICP47 gene locus. In some embodiments, a recombinant herpes simplex virus genome comprises one or more polynucleotides of the present disclosure within one or more of the viral ICP4 gene loci, and one or more polynucleotide of the present disclosure within the viral UL41 gene locus (e.g., a recombinant virus carrying a polynucleotide encoding Col7 in one or both of the ICP4 loci and a polynucleotide encoding LH3 in the UL41 locus, a recombinant virus carrying a polynucleotide encoding Col7 in one or both of the ICP4 loci and a polynucleotide encoding Col7 in the UL41 locus, a recombinant virus carrying a polynucleotide encoding Col7 in one or both of the ICP4 loci and a polynucleotide encoding KRT17 in the UL41 locus, a recombinant virus carrying a polynucleotide encoding LH3 in one or both of the ICP4 loci and a polynucleotide encoding LH3 in the UL41 locus, a recombinant virus carrying a polynucleotide encoding LH3 in one or both of the ICP4 loci and a polynucleotide encoding Col7 in the UL41 locus, a recombinant virus carrying a polynucleotide encoding LH3 in one or both of the ICP4 loci and a polynucleotide encoding KRT17 in the UL41 locus, a recombinant virus carrying a polynucleotide encoding KRT17 in one or both of the ICP4 loci and a polynucleotide encoding LH3 in the UL41 locus, a recombinant virus carrying a polynucleotide encoding KRT17 in one or both of the ICP4 loci and a polynucleotide encoding Col7 in the UL41 locus, a recombinant virus carrying a polynucleotide encoding KRT17 in one or both of the ICP4 loci and a polynucleotide encoding KRT17 in the UL41 locus, etc.).
[0094] A vector may include a polynucleotide of the present disclosure in a form suitable for expression of the polynucleotide in a host cell. Expression vectors may include one or more regulatory sequences operatively linked to the polynucleotide to be expressed. The term "regulatory sequence" includes promoters, enhancers and other expression control elements (e.g., polyadenylation signals). Examples of suitable enhancers may include, but are not limited to, enhancer sequences from mammalian genes (such as globin, elastase, albumin, .alpha.-fetoprotein, insulin and the like), and enhancer sequences from a eukaryotic cell virus (such as SV40 enhancer on the late side of the replication origin (bp 100-270), the cytomegalovirus early promoter enhancer, the polyoma enhancer on the late side of the replication origin, adenovirus enhancers, and the like). Examples of promoters suitable for transcription in mammalian host cells may include, but are not limited to, promoters obtained from the genomes of viruses (such as polyoma virus, fowlpox virus, adenovirus (such as Adenovirus 2), bovine papilloma virus, avian sarcoma virus, cytomegalovirus, a retrovirus, hepatitis-B virus, Simian Virus 40 (SV40), and the like), or from heterologous mammalian promoters (such as the actin promoter, an immunoglobulin promoter, from heat-shock promoters, and the like), provided such promoters are compatible with the host cells. In some embodiments, polynucleotides of the present disclosure are operably linked to one or more heterologous promoters. In some embodiments, the one or more heterologous promoters are one or more of the human cytomegalovirus (HCMV) immediate early promoter, the elongation factor-1 (EF1) promoter, and/or any combinations thereof. In some embodiments, the one or more heterologous promoters are one or more of constitutive promoters, tissue-specific promoters, temporal promoters, spatial promoters, inducible promoters and repressible promoters. Regulatory sequences may include those which direct constitutive expression of a nucleotide sequence, as well as tissue-specific regulatory and/or inducible sequences. The design of the expression vector can depend on such factors as the host cell to be contacted with a polynucleotide of the present disclosure, the level of expression of protein desired, and the like. The expression vectors of the present disclosure can be introduced into host cells to thereby produce proteins or polypeptides (e.g., Collagen alpha-1 (VII) chain polypeptides, Lysyl hydroxylase 3 polypeptides, Keratin type I cytoskeletal 17 polypeptides, chimeric polypeptides, and the like) encoded by polynucleotides as described herein.
[0095] In some embodiments, a vector of the present disclosure comprises one or more transgenes comprising one or more polynucleotide described herein. The one or more transgenes may be inserted in any orientation in the vector. If the vector comprises two or more transgenes (e.g., two or more, three or more, etc.), the transgenes may be inserted in the same orientation or opposite orientations to one another. Without wishing to be bound be theory, incorporating two transgenes into a vector in an antisense orientation may help to avoid read-through and ensure proper expression of each transgene. In some embodiments, the vector comprises one or more transgenes encoding a polypeptide selected from the group consisting of a Collagen alpha-1 (VII) chain polypeptide, a Lysyl hydroxylase 3 polypeptide, a Keratin type I cytoskeletal 17 polypeptide, and/or chimeric polypeptides thereof. In some embodiments, the vector comprises a single transgene encoding a Collagen alpa-1 (VII) chain polypeptide. In some embodiments, the vector comprises two transgenes each encoding a Collagen alpa-1 (VII) chain polypeptide. In some embodiments, the vector comprises three transgenes each encoding a Collagen alpa-1 (VII) chain polypeptide. In some embodiments, the vector comprises a single transgene encoding a Lysyl hydroxylase 3 polypeptide. In some embodiments, the vector comprises two transgenes each encoding a Lysyl hydroxylase 3 polypeptide. In some embodiments, the vector comprises three transgenes each encoding a Lysyl hydroxylase 3 polypeptide. In some embodiments, the vector comprises a single transgene encoding a Keratin type I cytoskeletal 17 polypeptide. In some embodiments, the vector comprises two transgenes each encoding a Keratin type I cytoskeletal 17 polypeptide. In some embodiments, the vector comprises three transgenes each encoding a Keratin type I cytoskeletal 17 polypeptide. In some embodiments, the vector comprises a single transgene encoding a chimeric polypeptide comprising a Collagen alpha-1 (VII) chain polypeptide, a Lysyl hydroxylase 3 polypeptide, and/or a Keratin type I cytoskeletal 17 polypeptide.
[0096] In some embodiments, the vector comprises at least two transgenes (e.g. two, three, four, five, six, seven or more transgenes). In some embodiments, the at least first transgene encodes a Collagen alpha-1 (VII) chain polypeptide and the at least second transgene encodes a Lysyl hydroxylase 3 polypeptide. In some embodiments, the at least first transgene encodes a Lysyl hydroxylase 3 polypeptide and the at least second transgene encodes a Collagen alpha-1 (VII) chain polypeptide. In some embodiments, the at least first transgene encodes a Collagen alpha-1 (VII) chain polypeptide and the at least second transgene encodes a Keratin type I cytoskeletal 17 polypeptide. In some embodiments, the at least first transgene encodes a Keratin type I cytoskeletal 17 polypeptide and the at least second transgene encodes a Collagen alpha-1 (VII) chain polypeptide. In some embodiments, the at least first transgene encodes a Lysyl hydroxylase 3 polypeptide and the at least second transgene encodes a Keratin type I cytoskeletal 17 polypeptide. In some embodiments, the at least first transgene encodes a Keratin type I cytoskeletal 17 polypeptide and the at least second transgene encodes a Lysyl hydroxylase 3 polypeptide. In some embodiments, the at least first transgene encodes a Collagen alpha-1 (VII) chain polypeptide and the at least second transgene encodes a chimeric polypeptide comprising a Collagen alpha-1 (VII) chain polypeptide, a Lysyl hydroxylase 3 polypeptide, and/or a Keratin type I cytoskeletal 17 polypeptide. In some embodiments, the at least first transgene encodes a Lysyl hydroxylase 3 polypeptide and the at least second transgene encodes a chimeric polypeptide comprising a Collagen alpha-1 (VII) chain polypeptide, a Lysyl hydroxylase 3 polypeptide, and/or a Keratin type I cytoskeletal 17 polypeptide. In some embodiments, the at least first transgene encodes a Keratin type I cytoskeletal 17 polypeptide and the at least second transgene encodes a chimeric polypeptide comprising a Collagen alpha-1 (VII) chain polypeptide, a Lysyl hydroxylase 3 polypeptide, and/or a Keratin type I cytoskeletal 17 polypeptide.
[0097] In some embodiments, the vector comprises at least three transgenes (e.g. three, four, five, six, seven or more transgenes). In some embodiments, the at least first transgene encodes a Collagen alpha-1 (VII) chain polypeptide, the at least second transgene encodes a Lysyl hydroxylase 3 polypeptide, and the at least third transgene encodes a Keratin type I cytoskeletal 17 polypeptide.
[0098] In some embodiments, the vector comprises a transgene that is polycistronic. In some embodiments, the polycistronic transgene encodes a Collagen alpha-1 (VII) chain polypeptide on a first open reading frame (ORF) and a Lysyl hydroxylase 3 polypeptide on a second open reading frame (ORF). In some embodiments, the polycistronic transgene encodes a Lysyl hydroxylase 3 polypeptide on a first open reading frame (ORF) and a Collagen alpha-1 (VII) chain polypeptide on a second open reading frame (ORF). In some embodiments, the polycistronic transgene encodes a Collagen alpha-1 (VII) chain polypeptide on a first open reading frame (ORF) and a keratin type I cytoskeletal 17 polypeptide on a second open reading frame (ORF). In some embodiments, the polycistronic transgene encodes a Keratin type I cytoskeletal polypeptide on a first open reading frame (ORF) and a Collagen alpha-1 (VII) chain polypeptide on a second open reading frame (ORF). In some embodiments, the polycistronic transgene encodes a Lysyl hydroxylase 3 polypeptide on a first open reading frame (ORF) and a keratin type I cytoskeletal 17 polypeptide on a second open reading frame (ORF). In some embodiments, the polycistronic transgene encodes a Keratin type I cytoskeletal polypeptide on a first open reading frame (ORF) and a Lysyl hydroxylase 3 polypeptide on a second open reading frame (ORF).
[0099] In some embodiments, the polycistronic transgene encodes a Collagen alpha-1 (VII) chain polypeptide on a first open reading frame (ORF) and a chimeric polypeptide comprising a Collagen alpha-1 (VII) chain polypeptide, a Lysyl hydroxylase 3 polypeptide, and/or a Keratin type I cytoskeletal 17 polypeptide on a second open reading frame (ORF). In some embodiments, the polycistronic transgene encodes a Lysyl hydroxylase 3 polypeptide on a first open reading frame (ORF) and a chimeric polypeptide comprising a Collagen alpha-1 (VII) chain polypeptide, a Lysyl hydroxylase 3 polypeptide, and/or a Keratin type I cytoskeletal 17 polypeptide on a second open reading frame (ORF). In some embodiments, the polycistronic transgene encodes a Keratin type I cytoskeletal 17 polypeptide on a first open reading frame (ORF) and a chimeric polypeptide comprising a Collagen alpha-1 (VII) chain polypeptide, a Lysyl hydroxylase 3 polypeptide, and/or a Keratin type I cytoskeletal 17 polypeptide on a second open reading frame (ORF). In some embodiments, the first and second ORFs are separated by an internal ribosomal entry site (IRES).
[0100] In some embodiments, the polycistronic transgene encodes a Collagen alpha-1 (VII) chain polypeptide on a first open reading frame (ORF), a Keratin type I cytoskeletal 17 polypeptide on a second open reading frame (ORF), and a Lysyl hydroxylase 3 polypeptide on a third open reading frame (ORF). In some embodiments, the polycistronic transgene encodes a Collagen alpha-1 (VII) chain polypeptide on a first open reading frame (ORF), a Lysyl hydroxylase 3 polypeptide on a second open reading frame (ORF), and a Keratin type I cytoskeletal 17 polypeptide on a third open reading frame (ORF). In some embodiments, the polycistronic transgene encodes a Lysyl hydroxylase 3 polypeptide on a first open reading frame (ORF), a Collagen alpha-1 (VII) chain polypeptide on a second open reading frame (ORF), and a Keratin type I cytoskeletal 17 polypeptide on a third open reading frame (ORF). In some embodiments, the polycistronic transgene encodes a Lysyl hydroxylase 3 polypeptide on a first open reading frame (ORF), a Keratin type I cytoskeletal 17 polypeptide on a second open reading frame (ORF), and a Collagen alpha-1 (VII) chain polypeptide on a third open reading frame (ORF). In some embodiments, the polycistronic transgene encodes a Keratin type I cytoskeletal 17 polypeptide on a first open reading frame (ORF), a Lysyl hydroxylase 3 polypeptide on a second open reading frame (ORF), and a Collagen alpha-1 (VII) chain polypeptide on a third open reading frame (ORF). In some embodiments, the polycistronic transgene encodes a Keratin type I cytoskeletal 17 polypeptide on a first open reading frame (ORF), a Collagen alpha-1 (VII) chain polypeptide on a second open reading frame (ORF), and a Lysyl hydroxylase 3 polypeptide on a third open reading frame (ORF). In some embodiments, the first, second, and third ORFs are separated by an internal ribosomal entry site (IRES).
[0101] Examples of suitable IRES' s may include, but are not limited to, a virally-derived IRES (e.g. an IRES derived from a poliovirus, rhinovirus, encephalomyocarditis virus, foot-and-mouth disease virus, hepatitis C virus, classic swine fever virus, rous sarcoma virus, human immunodeficiency virus, cricket paralysis virus, Kaposi's sarcoma-associated herpesvirus, etc.) and a cellular mRNA-derived IRES (e.g. an IRES derived from growth factor mRNAs, such as fibroblast growth factor 2, platelet-derived growth factor B, and vascular endothelial growth factor, an IRES derived from transcription factor mRNAs, such as antennapedia, ultrapithoraxm, and NF-.kappa.B repressing factor, an IRES derived from oncogene mRNAs, such as c-myc, pim-1, and protein kinase p58.sup.PITSLRE etc.).
[0102] Vectors of the present disclosure may further encode additional coding and non-coding sequences. Examples of additional coding and non-coding sequences may include, but are not limited to, sequences encoding additional polypeptide tags, introns, 5' and 3' UTRs, and the like. Examples of suitable polypeptide tags may include, but are not limited, to any combination of purification tags, such as his-tags, flag-tags, maltose binding protein and glutathione-S-transferase tags, detection tags, such as tags that may be detected photometrically (e.g., red fluorescent protein, etc.) and tags that have a detectable enzymatic activity (e.g., alkaline phosphatase, etc.), tags containing secretory sequences, leader sequences, and/or stabilizing sequences, protease cleavage sites (e.g., furin cleavage sites, TEV cleavage sites, Thrombin cleavage sites), and the like. In some embodiments, the 5' and/or 3'UTRs increase the stability, localization, and/or translational efficiency of the polynucleotides. In some embodiments, the 5' and/or 3'UTRs are modified to increase the stability, localization, and/or translational efficiency of the one or more polynucleotides. In some embodiments, the 5' and/or 3'UTRs improve the level and/or duration of protein expression. In some embodiments, the 5' and/or 3'UTRs include elements (e.g., one or more miRNA binding sites, etc.) that may block or reduce off-target transgene expression (e.g., inhibiting expression in specific cell types (e.g., neuronal cells), at specific times in the cell cycle, at specific developmental stages, etc.). In some embodiments, the 5' and/or 3'UTRs include elements (e.g., one or more miRNA binding sites, etc.) that may enhance transgene expression in specific cell types.
[0103] Synthetic RNA polynucleotides
[0104] In some aspects, the present disclosure relates to synthetic RNAs, in particular synthetic mRNAs, containing one or more polynucleotides described herein. In some embodiments, the synthetic mRNA polynucleotides comprise a 5'-cap structure. Examples of 5'-cap structures may include, but are not limited to, cap-0, cap-1, cap-2, and cap-3 structures, and derivatives thereof In some embodiments, the synthetic mRNA polynucleotides comprise a 3'-poly(A) tail. In some embodiments, the synthetic mRNA polynucleotides comprise one or more 5' and/or 3' UTRs flanking the one or more coding sequences contained within the synthetic mRNA polynucleotides. In some embodiments, the 5' and/or 3' UTRs increase the stability, localization, and/or translational efficiency of the synthetic mRNA polynucleotides. In some embodiments, the 5' and/or 3' UTRs are modified to increase the stability, localization, and/or translational efficiency of the synthetic mRNA polynucleotides. In some embodiments, the 5' and/or 3' UTRs improve the level and/or duration of protein expression. In some embodiments, the 5' and/or 3' UTRs are modified to improve the level and/or duration of protein expression. In some embodiments, the 5' and/or 3'UTRs include elements (e.g., miRNA binding sites, etc.) that may limit off-target expression (e.g., inhibiting expression in specific cell types (e.g., neuronal cells), at specific times in the cell cycle, at specific developmental stages, etc.). In some embodiments, the 5' UTRs comprise a Kozak sequence. In some embodiments, the Kozak sequence is the same or substantially similar to the Kozak consensus sequence. Methods for making synthetic mRNA polynucleotides containing one or more polynucleotides of interest are well known to one of skill in the art.
[0105] In some aspects, the synthetic mRNA polynucleotides of the present disclosure comprise one or more modified ribonucleotides. Examples of modified ribonucleotides may include, but are not limited to, 2-thiouridine, 5-azauridine, pseudouridine, 4-thiouridine, 5-methyluridine, 5-aminouridine, 5-hydroxyuridine, 5-methyl-5-azauridine, 5-amino-5-azauridine, 5-hydroxy-5-azauridine, 5-methylpseudouridine, 5-aminopseudouridine, 5-hydroxypseudouridine, 4-thio-5-azauridine, 4-thiopseudouridine, 4-thio-5-methyluridine, 4-thio-5-aminouridine, 4-thio-5-hydroxyuridine, 4-thio-5-methyl-5-azauridine, 4-thio-5-amino-5-azauridine, 4-thio-5-hydroxy-5-azauridine, 4-thio-5-methylpseudouridine, 4-thio-5-aminopseudouridine, 4-thio-5-hydroxypseudouridine, 2-thiocytidine, 5-azacytidine, pseudoisocytidine, N4-methylcytidine, N4-aminocytidine, N4-hydroxycytidine, 5-methylcytidine, 5-aminocytidine, 5-hydroxycytidine, 5-methyl-5-azacytidine, 5-amino-5-azacytidine, 5-hydroxy-5-azacytidine, 5-methylpseudoisocytidine, 5-aminopseudoisocytidine, 5-hydroxypseudoisocytidine, N4-methyl-5-azacytidine, N4-methylpseudoisocytidine, 2-thio-5-azacytidine, 2-thiopseudoisocytidine, 2-thio-N4-methylcytidine, 2-thio-N4-aminocytidine, 2-thio-N4-hydroxycytidine, 2-thio-5-methylcytidine, 2-thio-5-aminocytidine, 2-thio-5-hydroxycytidine, 2-thio-5-methyl-5-azacytidine, 2-thio-5-amino-5-azacytidine, 2-thio-5-hydroxy-5-azacytidine, 2-thio-5-methylpseudoisocytidine, 2-thio-5-aminopseudoisocytidine, 2-thio-5-hydroxypseudoisocytidine, 2-thio-N4-methyl-5-azacytidine, 2-thio-N4-methylpseudoisocytidine, N4-methyl-5-methylcytidine, N4-methyl-5-aminocytidine, N4-methyl-5-hydroxycytidine, N4-methyl-5-methyl-5-azacytidine, N4-methyl-5-amino-5-azacytidine, N4-methyl-5-hydroxy-5-azacytidine, N4-methyl-5-methylpseudoisocytidine, N4-methyl-5-aminopseudoisocytidine, N4-methyl-5-hydroxypseudoisocytidine, N4-amino-5-azacytidine, N4-aminopseudoisocytidine, N4-amino-5-methylcytidine, N4-amino-5-aminocytidine, N4-amino-5-hydroxycytidine, N4-amino-5-methyl-5-azacytidine, N4-amino-5-amino-5-azacytidine, N4-amino-5-hydroxy-5-azacytidine, N4-amino-5-methylpseudoisocytidine, N4-amino-5-aminopseudoisocytidine, N4-amino-5-hydroxypseudoisocytidine, N4-hydroxy-5-azacytidine, N4-hydroxypseudoisocytidine, N4-hydroxy-5-methylcytidine, N4-hydroxy-5-aminocytidine, N4-hydroxy-5-hydroxycytidine, N4-hydroxy-5-methyl-5-azacytidine, N4-hydroxy-5-amino-5-azacytidine, N4-hydroxy-5-hydroxy-5-azacytidine, N4-hydroxy-5-methylpseudoisocytidine, N4-hydroxy-5-aminopseudoisocytidine, N4-hydroxy-5-hydroxypseudoisocytidine, 2-thio-N4-methyl-5-methylcytidine, 2-thio-N4-methyl-5-aminocytidine, 2-thio-N4-methyl-5-hydroxycytidine, 2-thio-N4-methyl-5-methyl-5-azacytidine, 2-thio-N4-methyl-5-amino-5-2-thio-N4-methyl-5-hydroxy-5-azacytidine, 2-thio-N4-methyl-5-methylpseudoisocytidine, 2-thio- N4-methyl-5-aminopseudoisocytidine, 2-thio-N4-methyl-5-hydroxypseudoisocytidine, 2-thio-N4-amino-5-azacytidine, 2-thio-N4-aminopseudoisocytidine, 2-thio-N4-amino-5-methylcytidine, 2-thio-N4-amino-5-aminocytidine, 2-thio-N4-amino-5-hydroxycytidine, 2-thio-N4-amino-5-methyl-5-azacytidine, 2-thio-N4-amino-5-amino-5-azacytidine, 2-thio-N4-amino-5-hydroxy-5-azacytidine, 2-thio-N4-amino-5-methylpseudoisocytidine, 2-thio-N4-amino-5-aminopseudoisocytidine, 2-thio-N4-amino-5-hydroxypseudoisocytidine, 2-thio-N4-hydroxy-5-azacytidine, 2-thio-N4-hydroxypseudoisocytidine, 2-thio-N4-hydroxy-5-methylcytidine, N4-hydroxy-5-aminocytidine, 2-thio-N4-hydroxy-5-hydroxycytidine, 2-thio-N4-hydroxy-5-methyl-5-azacytidine, 2-thio-N4-hydroxy-5-amino-5-azacytidine, 2-thio-N4-hydroxy-5-hydroxy-5-azacytidine, 2-thio-N4-hydroxy-5-methylpseudoisocytidine, 2-thio-N4-hydroxy-5-aminopseudoisocytidine, 2-thio-N4-hydroxy-5-hydroxypseudoisocytidine, N6-methyladenosine, N6-aminoadenosine, N6-hydroxyadenosine, 7-deazaadenosine, 8-azaadenosine, N6-methyl-7-deazaadenosine, N6-methyl-8-azaadenosine, 7-deaza-8-azaadenosine, N6-methyl-7-deaza-8-azaadenosine, N6-amino-7-deazaadenosine, N6-amino-8-azaadenosine, N6-amino-7-deaza-8-azaadenosine, N6-hydroxyadenosine, N6-hydroxy-7-deazaadenosine,N6-hydroxy-8-azaadenosine, N6-hydroxy-7-deaza-8-azaadenosine, 6-thioguanosine, 7-deazaguanosine, 8-azaguanosine, 6-thio-7-deazaguanosine, 6-thio-8-azaguanosine, 7-deaza-8-azaguanosine, and 6-thio-7-deaza-8-azaguanosine.
[0106] In some embodiments, a polynucleotide encoding a Collagen alpha-1 (VII) chain polypeptide and a polynucleotide encoding a Lysyl hydroxylase 3 polypeptide are contained within two separate synthetic mRNA polynucleotides. In some embodiments, a polynucleotide encoding a Collagen alpha-1 (VII) chain polypeptide and a polynucleotide encoding a Keratin type I cytoskeletal 17 polypeptide are contained within two separate synthetic mRNA polynucleotides. In some embodiments, a polynucleotide encoding a Lysyl hydroxylase 3 polypeptide and a polynucleotide encoding a Keratin type I cytoskeletal 17 polypeptide are contained within two separate synthetic mRNA polynucleotides. In some embodiments, a polynucleotide encoding a Collagen alpha-1 (VII) chain polypeptide, a polynucleotide encoding a Lysyl hydroxylase 3 polypeptide, and a polynucleotide encoding a Keratin type I cytoskeletal 17 polypeptide are contained within three separate synthetic mRNA polynucleotides.
[0107] In some embodiments, a polynucleotide encoding a Collagen alpha-1 (VII) chain polypeptide, a polynucleotide encoding a Lysyl hydroxylase 3 polypeptide, and/or a polynucleotide encoding a Keratin type I cytoskeletal 17 polypeptide is a single contiguous polynucleotide contained within a single synthetic mRNA polynucleotide. In some embodiments, the single contiguous polynucleotide encodes a Collagen alpha-1 (VII) chain polypeptide on a first open reading frame (ORF) and a Lysyl hydroxylase 3 polypeptide on a second open reading frame (ORF) in a single synthetic mRNA. In some embodiments, the single contiguous polynucleotide encodes a Lysyl hydroxylase 3 polypeptide on a first open reading frame (ORF) and a Collagen alpha-1 (VII) chain polypeptide on a second open reading frame (ORF) in a single synthetic mRNA. In some embodiments, the single contiguous polynucleotide encodes a Collagen alpha-1 (VII) chain polypeptide on a first open reading frame (ORF) and a keratin type I cytoskeletal 17 polypeptide on a second open reading frame (ORF) in a single synthetic mRNA. In some embodiments, the single contiguous polynucleotide encodes a Keratin type I cytoskeletal polypeptide on a first open reading frame (ORF) and a Collagen alpha-1 (VII) chain polypeptide on a second open reading frame (ORF) in a single synthetic mRNA. In some embodiments, the single contiguous polynucleotide encodes a Lysyl hydroxylase 3 polypeptide on a first open reading frame (ORF) and a keratin type I cytoskeletal 17 polypeptide on a second open reading frame (ORF) in a single synthetic mRNA. In some embodiments, the single contiguous polynucleotide encodes a Keratin type I cytoskeletal polypeptide on a first open reading frame (ORF) and a Lysyl hydroxylase 3 polypeptide on a second open reading frame (ORF) in a single synthetic mRNA. In some embodiments, the single contiguous polynucleotide encodes a Collagen alpha-1 (VII) chain polypeptide on a first open reading frame (ORF) and a chimeric polypeptide comprising a Collagen alpha-1 (VII) chain polypeptide, a Lysyl hydroxylase 3 polypeptide, and/or a Keratin type I cytoskeletal 17 polypeptide on a second open reading frame (ORF) in a single synthetic mRNA. In some embodiments, the single contiguous polynucleotide encodes a Lysyl hydroxylase 3 polypeptide on a first open reading frame (ORF) and a chimeric polypeptide comprising a Collagen alpha-1 (VII) chain polypeptide, a Lysyl hydroxylase 3 polypeptide, and/or a Keratin type I cytoskeletal 17 polypeptide on a second open reading frame (ORF) in a single synthetic mRNA. In some embodiments, the single contiguous polynucleotide encodes a Keratin type I cytoskeletal 17 polypeptide on a first open reading frame (ORF) and a chimeric polypeptide comprising a Collagen alpha-1 (VII) chain polypeptide, a Lysyl hydroxylase 3 polypeptide, and/or a Keratin type I cytoskeletal 17 polypeptide on a second open reading frame (ORF) in a single synthetic mRNA. In some embodiments, the two ORFs are separated by an IRES.
[0108] In some embodiments, the single contiguous polynucleotide encodes a Collagen alpha-1 (VII) chain polypeptide on a first open reading frame (ORF), a Keratin type I cytoskeletal 17 polypeptide on a second open reading frame (ORF), and a Lysyl hydroxylase 3 polypeptide on a third open reading frame (ORF) in a single synthetic mRNA. In some embodiments, the single contiguous polynucleotide encodes a Collagen alpha-1 (VII) chain polypeptide on a first open reading frame (ORF), a Lysyl hydroxylase 3 polypeptide on a second open reading frame (ORF), and a Keratin type I cytoskeletal 17 polypeptide on a third open reading frame (ORF) in a single synthetic mRNA. In some embodiments, the single contiguous polynucleotide encodes a Lysyl hydroxylase 3 polypeptide on a first open reading frame (ORF), a Collagen alpha-1 (VII) chain polypeptide on a second open reading frame (ORF), and a Keratin type I cytoskeletal 17 polypeptide on a third open reading frame (ORF) in a single synthetic mRNA. In some embodiments, the single contiguous polynucleotide encodes a Lysyl hydroxylase 3 polypeptide on a first open reading frame (ORF), a Keratin type I cytoskeletal 17 polypeptide on a second open reading frame (ORF), and a Collagen alpha-1 (VII) chain polypeptide on a third open reading frame (ORF) in a single synthetic mRNA. In some embodiments, the single contiguous polynucleotide encodes a Keratin type I cytoskeletal 17 polypeptide on a first open reading frame (ORF), a Lysyl hydroxylase 3 polypeptide on a second open reading frame (ORF), and a Collagen alpha-1 (VII) chain polypeptide on a third open reading frame (ORF) in a single synthetic mRNA. In some embodiments, the single contiguous polynucleotide encodes a Keratin type I cytoskeletal 17 polypeptide on a first open reading frame (ORF), a Collagen alpha-1 (VII) chain polypeptide on a second open reading frame (ORF), and a Lysyl hydroxylase 3 polypeptide on a third open reading frame (ORF) in a single synthetic mRNA. In some embodiments, the first, second, and third ORFs are separated by an internal ribosomal entry site (IRES).
[0109] Examples of suitable IRES's may include, but are not limited to, a virally-derived IRES (e.g. an IRES derived from a poliovirus, rhinovirus, encephalomyocarditis virus, foot-and-mouth disease virus, hepatitis C virus, classic swine fever virus, rous sarcoma virus, human immunodeficiency virus, cricket paralysis virus, Kaposi's sarcoma-associated herpesvirus, etc.) and a cellular mRNA-derived IRES (e.g. an IRES derived from growth factor mRNAs, such as fibroblast growth factor 2, platelet-derived growth factor B, and vascular endothelial growth factor, an IRES derived from transcription factor mRNAs, such as antennapedia, ultrapithoraxm, and NF-.kappa.B repressing factor, an IRES derived from oncogene mRNAs, such as c-myc, pim-1, and protein kinase p58.sup.PITSLRE etc.).
[0110] In some embodiments, a polynucleotide encoding any of the chimeric polypeptides comprising a Collagen alpha-1 (VII) chain polypeptide, a Lysyl hydroxylase 3 polypeptide, and/or a Keratin type I cytoskeletal 17 polypeptide described herein is encoded on a single ORF within a synthetic mRNA polynucleotide.
[0111] Synthetic mRNA polynucleotides of the present disclosure may further encode additional coding sequences. Examples of additional coding sequences may include, but are not limited to, sequences encoding additional polypeptide tags. Examples of suitable polypeptide tags may include, but are not limited to, any combination of purification tags, such as his-tags, flag-tags, maltose binding protein and glutathione-S-transferase tags, detection tags, such as tags that may be detected photometrically (e.g., red fluorescent protein, etc.) and tags that have a detectable enzymatic activity (e.g., alkaline phosphatase, etc.), tags containing secretory sequences, leader sequences, and/or stabilizing sequences, protease cleavage sites (such as furin cleavage sites), and the like.
[0112] Delivery Vehicle
[0113] Certain aspects of the present disclosure relate to a pharmaceutical composition comprising a delivery vehicle comprising one or more polynucleotides described herein. In some embodiments, the delivery vehicle is suitable for delivering one or more polynucleotides into one or more target cells.
[0114] In some embodiments, the delivery vehicle is a virus. Examples of viral delivery vehicles may include, but are not limited to, adenovirus, adeno-associated virus, retrovirus, lentivirus, sendai virus, herpes simplex virus, vaccinia virus, or any hybrid virus thereof. In some embodiments, the virus is replication-defective. In some embodiments, the virus is replication-competent. In some embodiments, the virus has been modified to alter its tissue tropism relative to the tissue tropism of an unmodified, wild-type virus. Methods for producing a virus comprising one or more polynucleotides are well known to one of skill in the art.
[0115] In some embodiments, the viral delivery vehicle is a herpes simplex virus. Herpes simplex virus delivery vehicles may be produced by a process disclosed, for example, in WO2015/009952. In some embodiments, the herpes simplex virus comprises a modified envelope. In some embodiments, the modified envelope comprises one or more (e.g., one, two, three, four or more) mutant herpes simplex virus glycoproteins. Examples of herpes simplex virus glycoproteins may include, but are not limited to, the glycoproteins gB, gD, gH, and gL. In some embodiments, the modified envelope alters the herpes simplex virus tissue tropism relative to a wild-type herpes simplex virus. In some embodiments, the herpes simplex virus is a herpes simplex type 1 virus, a herpes simplex type 2 virus, of any derivatives thereof. In some embodiments, the virus is a herpes simplex type 1 virus. In some embodiments, the virus is a herpes simplex type 2 virus.
[0116] In some embodiments, the delivery vehicle is a non-viral delivery vehicle. In some embodiments, the non-viral delivery vehicle is a chemical-based delivery vehicle (a chemical-based delivery reagent). Examples of chemical-based delivery vehicles may include, but are not limited to, calcium phosphate, dendrimers, liposomes (cationic liposomes, non-cationic liposome, and mixtures), exosomes, charged lipids, and cationic polymers (such as DEAE-dextran, polyethylenimine, and the like). In some embodiments, the non-viral delivery vehicle is a non-chemical delivery vehicle. Examples of non-chemical delivery vehicles may include, but are not limited to, electroporation, nucleofection, sonoporation, optical transfection, and particle-based vehicles (such as a gene gun, magnet-assisted transfection, impalefection, particle bombardment, and the like). In some embodiments, the non-viral delivery vehicle is a dendrimer, liposome, exosome, charged lipid or cationic polymer. In some embodiments, the non-viral delivery vehicle is a dendrimer. In some embodiments, the non-viral delivery vehicle is a liposome. In some embodiments, the non-viral delivery vehicle is an exosome. In some embodiments, the non-viral delivery vehicle is a charged lipid. In some embodiments, the non-viral delivery vehicle is a cationic polymer. Methods for producing one or more polynucleotides of interest in a complex with a non-viral delivery vehicle are well known to one of skill in the art.
[0117] Pharmaceutically Acceptable Carrier
[0118] Certain aspects of the present disclosure relates to a pharmaceutical composition comprising a pharmaceutically acceptable carrier. In some embodiments, the pharmaceutically acceptable carrier is a carrier sufficient for topical and/or transdermal administration/application. In some embodiments, the pharmaceutically acceptable carrier is a carrier sufficient for subcutaneous and/or intradermal administration/application. In some embodiments, the pharmaceutically acceptable carrier is minimally invasive or non-invasive. Pharmaceutically acceptable carriers are generally nontoxic to recipients at the dosages and concentrations employed, and may include, but are not limited to: buffers such as phosphate, citrate, and other organic acids; antioxidants including ascorbic acid and methionine; preservatives (such as octadecyldimethylbenzyl ammonium chloride; hexamethonium chloride; benzalkonium chloride; benzethonium chloride; phenol, butyl or benzyl alcohol; alkyl parabens such as methyl or propyl paraben; catechol; resorcinol; cyclohexanol; 3-pentanol; and m-cresol); low molecular weight (less than about 10 residues) polypeptides; proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone; amino acids such as glycine, glutamine, asparagine, histidine, arginine, or lysine; monosaccharides, disaccharides, and other carbohydrates including glucose, mannose, or dextrins; chelating agents such as EDTA; sugars such as sucrose, mannitol, trehalose or sorbitol; polyols such as glycerol (e.g., formulations including 10% glycerol); salt-forming counter-ions such as sodium; metal complexes (e.g. Zn-protein complexes); and/or non-ionic surfactants such as polyethylene glycol (PEG). A thorough discussion of pharmaceutically acceptable carriers is available in REMINGTON'S PHARMACEUTICAL SCIENCES (Mack Pub. Co., N.J. 1991).
[0119] In some embodiments, the pharmaceutically acceptable carrier is suitable for topical or transdermal applications/administrations. Examples of carriers suitable for use in a topical or transdermal application/administration may include, but are not limited to, ointments, pastes, creams, suspensions, emulsions, fatty ointments, gels, powders, lotions, solutions, sprays, patches, microneedle arrays, and inhalants. In some embodiments, the pharmaceutically acceptable carrier comprises one or more of an ointment, paste, cream, suspension, emulsion, fatty ointment, gel, powder, lotion, solution, spray, and an inhalant. In some embodiments, the pharmaceutically acceptable carrier comprises an ointment. In some embodiments, the pharmaceutically acceptable carrier comprises a paste. In some embodiments, the pharmaceutically acceptable carrier comprises a cream. In some embodiments, the pharmaceutically acceptable carrier comprises a suspension. In some embodiments, the pharmaceutically acceptable carrier comprises an emulsion. In some embodiments, the pharmaceutically acceptable carrier comprises a gel. In some embodiments, the pharmaceutically acceptable carrier comprises a powder. In some embodiments, the pharmaceutically acceptable carrier comprises a lotion. In some embodiments, the pharmaceutically acceptable carrier comprises a solution. In some embodiments, the pharmaceutically acceptable carrier comprises a spray. In some embodiments, the pharmaceutically acceptable carrier comprises an inhalant. In some embodiments, the pharmaceutical carrier comprises a patch (e.g. a patch that adheres to the skin). In some embodiments, the pharmaceutically acceptable carrier comprises a microneedle array. Methods for making and using microneedle arrays suitable for pharmaceutical composition delivery are generally known in the art (Kim Y. et al. "Microneedles for drug and vaccine delivery". Advanced Drug Delivery Reviews 2012, 64 (14): 1547-68).
[0120] In some embodiments, the pharmaceutically acceptable carrier comprises a combination of two, three, four, five or more different pharmaceutically acceptable carriers suitable for topical or transdermal applications/administrations.
[0121] In some embodiments, the pharmaceutically acceptable carrier further comprises one or more additional components. Examples of additional components may include, but are not limited to, binding agents (e.g., pregelatinised maize starch, polyvinylpyrrolidone or hydroxypropyl methylcellulose, etc.); fillers (e.g., lactose and other sugars, microcrystalline cellulose, pectin, gelatin, calcium sulfate, ethyl cellulose, polyacrylates or calcium hydrogen phosphate, etc.); lubricants (e.g., magnesium stearate, talc, silica, colloidal silicon dioxide, stearic acid, metallic stearates, hydrogenated vegetable oils, corn starch, polyethylene glycols, sodium benzoate, sodium acetate, etc.); disintegrants (e.g., starch, sodium starch glycolate, etc.); wetting agents (e.g., sodium lauryl sulphate, etc.); salt solutions; alcohols; polyethylene glycols; gelatin; lactose; amylase; magnesium stearate; talc; silicic acid; viscous paraffin; hydroxymethylcellulose; polyvinylpyrrolidone; sweetenings; flavorings; perfuming agents; colorants; moisturizers; sunscreens; antibacterial agents; agents able to stabilize polynucleotides or prevent their degradation, and the like.
[0122] Pharmaceutical compositions and formulations as described herein may be prepared by mixing the delivery vehicle comprising one or more polynucleotides described herein with one or more pharmaceutically acceptable carriers. The formulations to be used for in vivo administration are generally sterile. Sterility may be readily accomplished, e.g., by filtration through sterile filtration membranes.
Methods of Treatment
[0123] The present disclosure relates, in part, to pharmaceutical compositions and methods of use for providing prophylactic, palliative, or therapeutic relief of a wound, disorder, or disease of the skin in a subject. Examples of diseases or disorders of the skin may include, but are not limited to, epidermolysis bullosa, skin cancer, psoriasis, lichen planus, lupus, rosacea, eczema, cutaneous candidiasis, cellulitis, impetigo, decubitus ulcers, erysipelas, ichthyosis vulgaris, dermatomyositis, acrodermatitis, stasis dermatitis, nethertons syndrome, epidermolysis bullosa simplex (LAMB3 gene), autosomal recessive congenital ichthyosis, xeroderma pigmentosa, and pemphigoid. In some embodiments, the disease or disorder of the skin is epidermolysis bullosa. In some embodiments, a subject has, or at risk of developing, one or more symptoms of epidermolysis bullosa.
[0124] The polynucleotides and pharmaceutical compositions described herein are useful for providing prophylactic, palliative, or therapeutic relief of a wound, disorder, or disease of the skin in a subject, including the treatment of one or more symptoms of epidermolysis bullosa (e.g., recessive dystrophic epidermolysis bullosa, dominant dystrophic epidermolysis bullosa, etc.). Pharmaceutical compositions of the present disclosure may be administered by any suitable method known in the art, including, without limitation, by oral administration, sublinguall administration, buccal administration, topical administration, rectal administration, via inhalation, transdermal administration, subcutaneous injection, intradermal injection, intravenous (IV) injection, intra-arterial injection, intramuscular injection, intracardiac injection, intraosseous injection, intraperitoneal injection, transmucosal administration, vaginal administration, intravitreal administration, intra-articular administration, peri-articular administration, local administration, epicutaneous administration, or any combinations thereof. The pharmaceutical compositions may be delivered to an individual via a variety of routes, including, but not limited to, subcutaneous, intradermal, topical, transdermal, and transmucosal administrations. The present disclosure thus also encompasses methods of delivering any of the polynucleotides or pharmaceutical compositions described herein to an individual (such as an individual having, or at risk of developing, epidermolysis bullosa).
[0125] In some embodiments, there is provided prophylactic, palliative, or therapeutic relief of a wound, disorder, or disease of the skin in a subject comprising administering an effective amount of a pharmaceutical composition capable of enhancing, increasing, augmenting, and/or supplementing the levels of a Collagen alpha-1 chain polypeptide and/or a Lysyl hydroxylase 3 polypeptide and/or Keratin type I cytoskeletal 17 polypeptide in one or more cells of the subject. In some embodiments, the pharmaceutical composition is administered intradermally and/or subcutaneously. In some embodiments, the pharmaceutical composition is administered topically and/or trandermally. In some embodiments, there is provided prophylactic, palliative, or therapeutic relief of a wound, disorder, or disease of the skin in a subject comprising topically administering an effective amount of a pharmaceutical composition capable of enhancing, increasing, augmenting, and/or supplementing the levels of a Collagen alpha-1 chain polypeptide and/or a Lysyl hydroxylase 3 polypeptide and/or a Keratin type I cytoskeletal 17 polypeptide in one or more cells of the subject. The pharmaceutical composition may be any pharmaceutical composition described herein. In some embodiments, the individual is suffering from epidermolysis bullosa. In some embodiments, the individual is suffering from dystrophic epidermolysis bullosa. In some embodiments, the individual is suffering from dominant dystrophic epidermolysis bullosa. In some embodiments, the individual is suffering from recessive dystrophic epidermolysis bullosa. In some embodiments, the pharmaceutical composition is administered one, two, three, four, five or more times per day. In some embodiments, the pharmaceutical composition is administered to one or more affected areas of an individual. In some embodiments, the pharmaceutical composition is administered to one or more unaffected areas of the individual.
[0126] In some embodiments, a pharmaceutical composition described herein may be used to treat or alleviate one or more symptoms of epidermolysis bullosa. Symptoms of epidermolysis bullosa (e.g., recessive dystrophic epidermolysis bullosa, dominant dystrophic epidermolysis bullosa, etc.) may include, but are not limited to blisters on the skin (especially blisters on the hands, feet, knees, and elbows), blisters on the mucosa, scarring of the skin, scarring of the mucosa, skin erosion, deformity of fingernails and/or toenails, loss of fingernails and/or toenails, internal blistering (including on the vocal chords, esophagus, and upper airway), thickening of the skin (especially thickening of the skin on the palms and the soles of the feet), blistering of the scalp, scarring of the scalp, hair loss (scarring alopecia), thin-appearing skin, atrophic scarring, milia, dental conditions (such as tooth decay and poorly formed enamel), joint deformities, fusion of the fingers and toes, and dysphagia.
[0127] In some embodiments, there is provided a method of therapeutically treating an individual suffering from epidermolysis bullosa comprising administering an effective amount of a pharmaceutical composition capable of enhancing, increasing, augmenting, and/or supplementing the levels of a Collagen alpha-1 chain polypeptide and/or a Lysyl hydroxylase 3 polypeptide and/or a Keratin type I cytoskeletal 17 polypeptide in one or more cells of the individual. In some embodiments, the pharmaceutical composition is administered intradermally and/or subcutaneously. In some embodiments, the pharmaceutical composition is administered topically and/or trandermally. In some embodiments, there is provided a method of therapeutically treating an individual suffering from epidermolysis bullosa comprising topically administering an effective amount of a pharmaceutical composition capable of enhancing, increasing, augmenting, and/or supplementing the levels of a Collagen alpha-1 chain polypeptide and/or a Lysyl hydroxylase 3 polypeptide and/or Keratin type I cytoskeletal 17 polypeptide in one or more cells of the individual. The pharmaceutical composition may be any pharmaceutical composition described herein. In some embodiments, the individual is suffering from dystrophic epidermolysis bullosa. In some embodiments, the individual is suffering from dominant dystrophic epidermolysis bullosa. In some embodiments, the individual is suffering from recessive dystrophic epidermolysis bullosa. In some embodiments, the pharmaceutical composition is administered one, two, three, four, five or more times per day. In some embodiments, the pharmaceutical composition is administered to one or more affected areas of an individual. In some embodiments, the pharmaceutical composition is administered to one or more unaffected areas of the individual.
[0128] In some embodiments, there is provided a method of prophylactically treating an individual suffering from epidermolysis bullosa comprising administering an effective amount of a pharmaceutical composition capable of enhancing, increasing, augmenting, and/or supplementing the levels of a Collagen alpha-1 chain polypeptide and/or a Lysyl hydroxylase 3 polypeptide and/or Keratin type I cytoskeletal 17 polypeptide in one or more cells of the individual. In some embodiments, the pharmaceutical composition is administered intradermally and/or subcutaneously. In some embodiments, the pharmaceutical composition is administered topically and/or trandermally. In some embodiments, there is provided a method of prophylactically treating an individual suffering from epidermolysis bullosa comprising topically administering an effective amount of a pharmaceutical composition capable of enhancing, increasing, augmenting, and/or supplementing the levels of a Collagen alpha-1 chain polypeptide and/or a Lysyl hydroxylase 3 polypeptide and/or Keratin type I cytoskeletal 17 polypeptide in one or more cells of the individual. The pharmaceutical composition may be any pharmaceutical composition described herein. In some embodiments, the individual is suffering from dystrophic epidermolysis bullosa. In some embodiments, the individual is suffering from dominant dystrophic epidermolysis bullosa. In some embodiments, the individual is suffering from recessive dystrophic epidermolysis bullosa. In some embodiments, the pharmaceutical composition is administered one, two, three, four, five or more times per day. In some embodiments, the pharmaceutical composition is administered to one or more affected areas of an individual. In some embodiments, the pharmaceutical composition is administered to one or more unaffected areas of the individual.
[0129] In some embodiments, there is provided a method of prophylactically treating an individual at risk of developing epidermolysis bullosa comprising administering an effective amount of a pharmaceutical composition capable of enhancing, increasing, augmenting, and/or supplementing the levels of a Collagen alpha-1 chain polypeptide and/or a Lysyl hydroxylase 3 polypeptide and/or Keratin type I cytoskeletal 17 polypeptide in one or more cells of the individual. In some embodiments, the pharmaceutical composition is administered intradermally and/or subcutaneously. In some embodiments, the pharmaceutical composition is administered topically and/or trandermally. In some embodiments, there is provided a method of prophylactically treating an individual at risk of developing epidermolysis bullosa comprising topically administering an effective amount of a pharmaceutical composition capable of enhancing, increasing, augmenting, and/or supplementing the levels of a Collagen alpha-1 chain polypeptide and/or a Lysyl hydroxylase 3 polypeptide and/or Keratin type I cytoskeletal 17 polypeptide in one or more cells of the individual. The pharmaceutical composition may be any pharmaceutical composition described herein. In some embodiments, the individual is at risk of developing dystrophic epidermolysis bullosa. In some embodiments, the individual is at risk of developing dominant dystrophic epidermolysis bullosa. In some embodiments, the individual is at risk of developing recessive dystrophic epidermolysis bullosa. In some embodiments, the pharmaceutical composition is administered one, two, three, four, five or more times per day. In some embodiments, the pharmaceutical composition is administered to one or more affected areas of an individual. In some embodiments, the pharmaceutical composition is administered to one or more unaffected areas of the individual.
[0130] In some embodiments, administering to an individual an effective amount of any of the pharmaceutical compositions described herein enhances, increases, augments, and/or supplements the levels of a Collagen alpha-1 chain polypeptide and/or a Lysyl hydroxylase 3 polypeptide and/or Keratin type I cytoskeletal 17 polypeptide in one or more cells of the individual. In some embodiments, administering to an individual an effective amount of any of the pharmaceutical compositions described herein enhances, increases, augments, and/or supplements the function of a Collagen alpha-1 chain polypeptide and/or a Lysyl hydroxylase 3 polypeptide and/or a Keratin type I cytoskeletal 17 polypeptide in one or more cells of the individual. In some embodiments, administering to an individual an effective amount of any of the pharmaceutical compositions described herein enhances, increases, augments, and/or supplements the activity of a Collagen alpha-1 chain polypeptide and/or a Lysyl hydroxylase 3 polypeptide and/or Keratin type I cytoskeletal 17 polypeptide in one or more cells of the individual.
[0131] In some embodiments, administering to an individual an effective amount of any of the pharmaceutical compositions described herein enhances, increases, augments, and/or supplements anchoring fibril formation of the individual. In some embodiments, administering to an individual an effective amount of any of the pharmaceutical compositions described herein enhances, increases, augments, and/or supplements epithelial basement membrane organization of the individual. In some embodiments, administering to an individual an effective amount of any of the pharmaceutical compositions described herein enhances, increases, augments, and/or supplements epithelial basement adherence of the individual. In some embodiments, administering to an individual an effective amount of any of the pharmaceutical compositions described herein enhances, increases, augments, and/or supplements dermoepidermal junction integrity of the individual. In some embodiments, administering to an individual an effective amount of any of the pharmaceutical compositions described herein enhances, increases, augments, and/or supplements wound healing in the individual. Without wishing to be bound by theory, it is believed that increasing, augmenting, and/or supplementing the levels of a Collagen alpha-1 (VII) chain polypeptide in one or more cells of an individual, by administering one or more of the pharmaceutical compositions described herein, will allow for increased production and secretion of functional Collagen alpha-1 (VII) chain protein in the individual. Without wishing to be bound by theory, it is believed that increasing, augmenting, and/or supplementing the levels of a Lysyl hydroxylase 3 polypeptide in one or more cells of an individual, by administering one or more of the pharmaceutical compositions described herein, will increase the post-translation modification of Collagen alpha-1 (VII) chain polypeptides, enhancing production and/or secretion of functional Collagen alpha-1 (VII) chain protein in the individual. Without wishing to be bound by theory, it is further believed that increasing, augmenting, and/or supplementing the levels of a Collagen alpha-1 (VII) chain polypeptide and a Lysyl hydroxylase 3 polypeptide in the same cell of an individual, by administering one or more of the pharmaceutical compositions described herein (be it by contacting a cell with two separate polynucleotides expressing the polypeptides, by contacting a cell with a single contiguous polynucleotide separately expressing the two polypeptides, or by contacting a cell with a single contiguous polynucleotide expressing a chimeric polypeptide), will have an additive effect on enhancing the production and secretion of functional Collagen alpha-1 (VII) chain protein. Without wishing to be bound by theory, it is believed that increased production and secretion of functional Collagen alpha-1 (VII) chain protein will allow for improved anchoring fibril formation, helping organize, stabilize, and aid in the adherence of the epithelial basement membrane in the individual. Without wishing to be bound by theory, it is believed that ultimately, this will lead to increased dermal-epidermal stability for those suffering from epidermolysis bullosa, treating existing wounds, and preventing or delaying reformation of wounds in the treated areas.
[0132] Isolated Polynucleotides and Polypeptides
[0133] Certain aspects of the present disclosure relate to isolated polynucleotides comprising a polynucleotide encoding a Collagen alpha-1 (VII) chain polypeptide. Other aspects of the present disclosure relate to isolated polynucleotides comprising a polynucleotide encoding a Lysyl hydroxylase 3 polypeptide. Other aspects of the present disclosure relate to isolated polynucleotides comprising a polynucleotide encoding a Keratin type I cytoskeletal 17 polypeptide.
[0134] Other aspects of the present disclosure relate to isolated polynucleotides comprising a polynucleotide encoding a Collagen alpha-1 (VII) chain polypeptide and a polynucleotide encoding a Lysyl hydroxylase 3 polypeptide separated by a polynucleotide encoding a linker polypeptide. In some embodiments, the isolated polynucleotide encodes a chimeric polypeptide comprising a Collagen alpha-1 (VII) chain polypeptide, a linker polypeptide, and a Lysyl hydroxylase 3 polypeptide.
[0135] In some embodiments, the polynucleotide encoding a linker polypeptide further comprises a polynucleotide encoding one or more furin cleavage sites. In some embodiments, the one or more furin cleavage sites are encoded upstream of the linker polypeptide. In some embodiments, the one or more furin cleavage sites are encoded downstream of the linker polypeptide. In some embodiments, the one or more furin cleavage sites are encoded upstream of a T2A linker polypeptide. In some embodiments, the one or more furin cleavage sites are encoded downstream of a T2A linker polypeptide. In some embodiments, the one or more furin cleavage sites are encoded upstream of a P2A linker polypeptide. In some embodiments, the one or more furin cleavage sites are encoded downstream of a P2A linker polypeptide. In some embodiments, the one or more furin cleavage sites are encoded upstream of an E2A linker polypeptide. In some embodiments, the one or more furin cleavage sites are encoded downstream of an E2A linker polypeptide. In some embodiments, the one or more furin cleavage sites are encoded upstream of an F2A linker polypeptide. In some embodiments, the one or more furin cleavage sites are encoded downstream of an F2A linker polypeptide.
[0136] An example of a polynucleotide encoding a Collagen alpha-1 (VII) chain polypeptide is SEQ ID NO: 1. Polynucleotides encoding a Collagen alpha-1 (VII) chain polypeptide also include polynucleotides having at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% identity to the sequence of SEQ ID NO: 1.
[0137] An example of a polynucleotide encoding a Lysyl hydroxylase 3 polypeptide is SEQ ID NO: 3. Polynucleotides encoding a Lysyl hydroxylase 3 polypeptide also include polynucleotides having at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% identity to the sequence of SEQ ID NO: 3.
[0138] An example of a polynucleotide encoding a Keratin type I cytoskeletal 17 polypeptide is SEQ ID NO: 29. Polynucleotides encoding a Keratin type I cytoskeletal 17 polypeptide also include polynucleotides having at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% identity to the sequence of SEQ ID NO: 29.
[0139] Examples of polynucleotides encoding linker polypeptides are SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, and SEQ ID NO: 11. Polynucleotides encoding linker polypeptides also include polynucleotides having at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% identity to the sequence of SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, or SEQ ID NO: 11.
[0140] Examples of polynucleotides that encode chimeric polypeptides comprising a Collagen alpha-1 (VII) chain polypeptide, a linker polypeptide, and a Lysyl hydroxylase 3 polypeptide are SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, and SEQ ID NO: 27. Polynucleotides that encode chimeric polypeptides also include polynucleotides having at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% identity to the sequence of SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 21, SEQ ID NO: 23, SEQ ID NO: 25, or SEQ ID NO: 27.
[0141] Further aspects of the present disclosure relate to one or more (e.g., one or more, two or more, three or more, etc.) isolated polynucleotides described herein contained within a vector. In some embodiments, the vector is an adenoviral vector, an adeno-associated viral vector, a retroviral vector, a lentiviral vector, a herpes simplex viral vector, a vaccinia viral vector, or any hybrid viral vector thereof. In some embodiments, the vector is a herpes simplex viral vector. In some embodiments, the vector comprises one or more (e.g., one or more, two or more, three or more, four or more, five or more, etc.) transgenes.
[0142] In some embodiments, the herpes simplex virus vector is a herpes virus amplicon vector. In some embodiments, the vector is an HSV-1 amplicon. In some embodiments, the vector is an HSV-1 hybrid amplicon. Examples of HSV-1 hybrid amplicons may include, but are not limited to, HSV/AAV hybrid amplicons, HSV/EBV hybrid amplicons, HSV/EBV/RV hybrid amplicons, and HSV/Sleeping Beauty hybrid amplicons. In some embodiments, the vector is an HSV/AAV hybrid amplicon. In some embodiments, the vector is an HSV/EBV hybrid amplicon. In some embodiments, the vector is an HSV/EBV/RV hybrid amplicon. In some embodiments, the vector is an HSV/Sleeping Beauty hybrid amplicons. Further aspects of the present disclosure relate to a method of producing a viral delivery vehicle containing one or more polynucleotides described herein. In some embodiments, the method comprises contacting a host cell with one or more viral vectors containing one or more isolated polynucleotides described herein, and collecting the viral delivery vehicle generated by the host cell. Methods of culturing cells and contacting cells with one or more viral vectors of interest (e.g. by transduction or transfection) are well known to one of skill in the art.
[0143] In some embodiments, the herpes simplex virus vector is a recombinant herpes simplex virus genome. In some embodiments, the recombinant herpes simplex virus genome has been engineered to decrease or eliminate expression of one or more toxic herpes simplex virus genes. In some embodiments, the recombinant herpes simplex virus genome comprises an inactivating mutation. Examples of inactivating mutations may include, but are not limited to, deletions (e.g., deletion of the coding sequence of a gene or deletion of one or more of the gene's transcriptional regulatory elements), insertions, point mutations, and rearrangements. In some embodiments, the recombinant herpes simplex virus genome comprises an inactivating mutation in one or more immediate early genes. In some embodiments, the recombinant herpes simplex virus genome comprises an inactivating mutation in at least one, at least two, at least three, at least four, at least five, at least six, at least seven, or all eight of the ICP0, ICP4, ICP22, ICP27, ICP47, tk, UL41 and UL55 herpes simplex virus genes. In some embodiments, the recombinant herpes simplex virus genome comprises an inactivating mutation is in the ICP0 gene. In some embodiments, the recombinant herpes simplex virus genome comprises an inactivating mutation is in the ICP4 gene. In some embodiments, the recombinant herpes simplex virus genome comprises an inactivating mutation is in the ICP22 gene. In some embodiments, the recombinant herpes simplex virus genome comprises an inactivating mutation is in the ICP27 gene. In some embodiments, the recombinant herpes simplex virus genome comprises an inactivating mutation is in the ICP4, ICP22, and ICP27 genes. In some embodiments, the recombinant herpes simplex virus genome comprises an inactivating mutation in the ICP4, ICP27, and UL55 genes. In some embodiments, the recombinant herpes simplex virus genome comprises an inactivating mutation in the ICP4, ICP22, ICP27, ICP47, and UL55 genes. In some embodiments, the recombinant herpes simplex virus genome comprises an inactivating mutation is in the ICP0, ICP4, ICP22, and ICP27 genes. In some embodiments, the recombinant herpes simplex virus genome is a recombinant HSV-1 genome, a recombinant HSV-2 genome, or any derivatives thereof. In some embodiments, the recombinant herpes simplex virus genome is a recombinant HSV-1 genome. In some embodiments, the recombinant herpes simplex virus genome is a recombinant HSV-2 genome.
[0144] In some embodiments, an isolated recombinant herpes simplex virus genome comprises one or more (e.g., one or more, two or more, three or more, four or more, five or more, etc.) polynucleotides (e.g., transgenes) of the present disclosure within one, two, three, four, five, six, seven or more viral gene loci. Examples of suitable viral loci may include, without limitation, the ICP0, ICP4, ICP22, ICP27, ICP47, tk, UL41 and UL55 herpes simplex viral gene loci. In some embodiments, an isolated recombinant herpes simplex virus genome comprises one or more polynucleotide of the present disclosure within one or more of the viral ICP4 gene loci (e.g., a recombinant virus carrying a polynucleotide encoding Coll in one or both of the ICP4 loci, a recombinant virus carrying a polynucleotide encoding LH3 in one or both of the ICP4 loci, a recombinant virus carrying a polynucleotide encoding KRT17 in one or both of the ICP4 loci, a recombinant virus carrying a polynucleotide encoding Col7 in one of the ICP4 loci and a polynucleotide encoding KRT17 in the other ICP4 loci, a recombinant virus carrying a polynucleotide encoding Col7 in one of the ICP4 loci and a polynucleotide encoding LH3 in the other ICP4 loci, a recombinant virus carrying a polynucleotide encoding LH3 in one of the ICP4 loci and a polynucleotide encoding KRT17 in the other ICP4 loci, etc.). In some embodiments, an isolated recombinant herpes simplex virus genome comprises one or more polynucleotide of the present disclosure within the viral UL41 gene locus. In some embodiments, an isolated recombinant herpes simplex virus genome comprises one or more polynucleotide of the present disclosure within the viral ICP47 gene locus. In some embodiments, an isolated recombinant herpes simplex virus genome comprises one or more polynucleotides of the present disclosure within one or more of the viral ICP4 gene loci, and one or more polynucleotide of the present disclosure within the viral UL41 gene locus (e.g., a recombinant virus carrying a polynucleotide encoding Col7 in one or both of the ICP4 loci and a polynucleotide encoding LH3 in the UL41 locus, a recombinant virus carrying a polynucleotide encoding Col7 in one or both of the ICP4 loci and a polynucleotide encoding Col7 in the UL41 locus, a recombinant virus carrying a polynucleotide encoding Col7 in one or both of the ICP4 loci and a polynucleotide encoding KRT17 in the UL41 locus, a recombinant virus carrying a polynucleotide encoding LH3 in one or both of the ICP4 loci and a polynucleotide encoding LH3 in the UL41 locus, a recombinant virus carrying a polynucleotide encoding LH3 in one or both of the ICP4 loci and a polynucleotide encoding Col7 in the UL41 locus, a recombinant virus carrying a polynucleotide encoding LH3 in one or both of the ICP4 loci and a polynucleotide encoding KRT17 in the UL41 locus, a recombinant virus carrying a polynucleotide encoding KRT17 in one or both of the ICP4 loci and a polynucleotide encoding LH3 in the UL41 locus, a recombinant virus carrying a polynucleotide encoding KRT17 in one or both of the ICP4 loci and a polynucleotide encoding Col7 in the UL41 locus, a recombinant virus carrying a polynucleotide encoding KRT17 in one or both of the ICP4 loci and a polynucleotide encoding KRT17 in the UL41 locus, etc.).
[0145] In some aspects, the isolated polynucleotides described herein are contained within a synthetic mRNA. In some embodiments, the synthetic mRNA comprises one or more modified ribonucleotides.
[0146] Certain aspects of the present disclosure relate to isolated polypeptides comprising a Collagen alpha-1 (VII) chain polypeptide. Other aspects of the present disclosure relate to isolated polypeptides comprising a Lysyl hydroxylase 3 polypeptide. Other aspects of the present disclosure relate to isolated polypeptides comprising a Keratin type I cytoskeletal 17 polypeptide.
[0147] Other aspects of the present disclosure relate to isolated chimeric polypeptides comprising a Collagen alpha-1 (VII) chain polypeptide and a Lysyl hydroxylase 3 polypeptide separated by a linker polypeptide.
[0148] In some embodiments, the linker polypeptide further comprises one or more furin cleavage sites. In some embodiments, the amino acid sequence of the furin cleavage site is the same or substantially similar to the sequence of the canonical furin cleavage site (Arg-X-(Arg/Lys)-Arg). In some embodiments, the one or more furin cleavage sites are at the N-terminus of the linker polypeptide. In some embodiments, the one or more furin cleavage sites are at the C-terminus of the linker polypeptide. In some embodiments, the linker polypeptide comprises, from N-terminus to C-terminus, one or more furin cleavage sites and a T2A linker polypeptide. In some embodiments, the linker polypeptide comprises, from N-terminus to C-terminus, a T2A linker polypeptide and one or more furin cleavage sites. In some embodiments, the linker polypeptide comprises, from N-terminus to C-terminus, one or more furin cleavage sites and a P2A linker polypeptide. In some embodiments, the linker polypeptide comprises, from N-terminus to C-terminus, a P2A linker polypeptide and one or more furin cleavage sites. In some embodiments, the linker polypeptide comprises, from N-terminus to C-terminus, one or more furin cleavage sites and an E2A linker polypeptide. In some embodiments, the linker polypeptide comprises, from N-terminus to C-terminus, an E2A linker polypeptide and one or more furin cleavage sites. In some embodiments, the linker polypeptide comprises, from N-terminus to C-terminus, one or more furin cleavage sites and an F2A linker polypeptide. In some embodiments, the linker polypeptide comprises, from N-terminus to C-terminus, an F2A linker polypeptide and one or more furin cleavage sites.
[0149] In some aspects, the isolated polypeptide comprising a Collagen alpha-1 (VII) chain polypeptide comprises the amino acid sequence of SEQ ID NO: 2. Isolated polypeptides may also comprise a Collagen alpha-1 (VII) chain polypeptide containing an amino acid sequence having at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% identity to the sequence of SEQ ID NO: 2.
[0150] In some aspects, the isolated polypeptide comprising a Lysyl hydroxylase 3 polypeptide comprises the amino acid sequence of SEQ ID NO: 4. Isolated polypeptides may also comprise a Lysyl hydroxylase 3 polypeptide containing an amino acid sequence having at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% identity to the sequence of SEQ ID NO: 4.
[0151] In some aspects, the isolated polypeptide comprising a Keratin type I cytoskeletal 17 polypeptide comprises the amino acid sequence of SEQ ID NO: 30. Isolated polypeptides may also comprise a Keratin type I cytoskeletal 17 polypeptide containing an amino acid sequence having at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% identity to the sequence of SEQ ID NO: 30.
[0152] In some aspects, the chimeric polypeptide comprises a Collagen alpha-1 (VII) chain polypeptide containing the amino acid sequence of SEQ ID NO: 2. Chimeric polypeptides may also comprise a Collagen alpha-1 (VII) chain polypeptide containing an amino acid sequence having at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% identity to the sequence of SEQ ID NO: 2.
[0153] In some aspects, the chimeric polypeptide comprises a Lysyl hydroxylase 3 polypeptide containing the amino acid sequence of SEQ ID NO: 4. Chimeric polypeptides may also comprise a Lysyl hydroxylase 3 polypeptide containing an amino acid sequence having at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% identity to the sequence of SEQ ID NO: 4.
[0154] In some aspects, the chimeric polypeptide comprises a linker polypeptide containing the amino acid sequence of SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10 or SEQ ID NO: 12. Chimeric polypeptides may also comprise a linker polypeptide containing an amino acid sequence having at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% identity to the sequence of SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10 or SEQ ID NO: 12.
[0155] In some aspects, the chimeric polypeptide is the amino acid sequence of SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26 or SEQ ID NO: 28. Chimeric polypeptides may also be an amino acid sequence having at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% identity to the sequence of SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26 or SEQ ID NO: 28.
Host Cells
[0156] Certain aspects of the present disclosure relate to one or more host cells comprising a vector comprising a polynucleotide described herein. In some embodiments, the vector is any of the isolated recombinant herpes simplex virus vectors described herein. In some embodiments, the host cells are bacterial cells (e.g., E. coli cells, etc.). In some embodiments, the host cells are fungal cells (e.g., S. cerevisiae cells, etc.). In some embodiments, the host cells are insect cells (e.g., S2 cells, etc.). In some embodiments, the host cells are mammalian cells. In some embodiments, the host cells are cells from a cell line. Examples of suitable host cells or cell lines may include, but are not limited to, 293, HeLa, SH-Sy5y, Hep G2, CACO-2, A549, L929, 3T3, K562, CHO-K1, MDCK, HUVEC, Vero, N20, COS-7, PSN1, VCaP, CHO cells, and the like. In some embodiments, the vector is an adenoviral vector, an adeno-associated viral vector, a retroviral vector, a lentiviral vector, a herpes simplex viral vector, a vaccinia viral vector, or any hybrid viral vectors thereof. In some embodiments, the vector is a herpes simplex viral vector. In some embodiments, the vector is an HSV-1 amplicon or HSV-1 hybrid amplicon. In some embodiments, the host cells comprise a helper virus. In some embodiments, the host cells comprising a helper virus are contacted with a vector described herein. In some embodiments, contacting a host cell comprising a helper virus with an HSV-1 amplicon or HSV-1 hybrid amplicon described herein results in the production of a virus comprising one or more vectors described herein. In some embodiments, the virus is collected from the supernatant of the contacted host cell. Methods of generating virus by contacting host cells comprising a helper virus with an HSV-1 amplicon or HSV-1/hybrid amplicon are known in the art. In some embodiments, the host cell is a complementing host cell. In some embodiments, the complementing host cell expresses one or more genes that are inactivated in any of the viral vectors described herein. In some embodiments, the complementing host cell is contacted with a recombinant herpes simplex virus genome described herein. In some embodiments, contacting a complementing host cell with a recombinant herpes simplex virus genome described herein results in the production of a virus comprising one or more vectors described herein. In some embodiments, the virus is collected from the supernatant of the contacted host cell. Methods of generating virus by contacting complementing host cells with a recombinant herpes simplex virus are generally described in WO2015/009952.
[0157] Articles of Manufacture or Kits
[0158] Certain aspects of the present disclosure relate to an article of manufacture or a kit comprising a pharmaceutical composition described herein. In some embodiments, the article of manufacture or kit comprises a package insert comprising instructions for administering the pharmaceutical composition to provide prophylactic, palliative, or therapeutic relief of a wound, disorder, or disease of the skin in a subject.
[0159] In some embodiments, the delivery vehicle comprising one or more polynucleotides described herein and pharmaceutically acceptable carrier are in the same container or separate containers. Suitable containers include, for example, bottles, vials, bags and syringes. The container may be formed from a variety of materials such as glass, plastic (such as polyvinyl chloride or polyolefin), or metal alloy (such as stainless steel or hastelloy). In some embodiments, the container comprises a label on, or associated with the container, wherein the label indicates directions for use. The article of manufacture or kit may further include other materials desirable from a commercial and user standpoint, including other buffers, diluents, filters, and the like.
ENUMERATED EMBODIMENTS
[0160] Embodiment 1: A pharmaceutical composition comprising:
[0161] a) a virus comprising a vector, wherein the vector comprises one or more transgenes encoding a polypeptide selected from the group consisting of a Collagen alpha-1 (VII) chain polypeptide, a Lysyl hydroxylase 3 polypeptide, and a chimeric polypeptide thereof; and
[0162] b) a pharmaceutically acceptable carrier.
[0163] Embodiment 2: The pharmaceutical composition of embodiment 1, wherein the virus is an adenovirus, adeno-associated virus, retrovirus, lentivirus, sendai virus, herpes simplex virus, vaccinia virus, or any hybrid virus thereof.
[0164] Embodiment 3: The pharmaceutical composition of embodiment 1, wherein the virus is a herpes simplex virus (HSV).
[0165] Embodiment 4: The pharmaceutical composition of any of embodiments 1 to 3, wherein the virus is replication-defective.
[0166] Embodiment 5: The pharmaceutical composition of embodiment 3, wherein the herpes simplex virus is a herpes simplex type 1 virus, a herpes simplex type 2 virus, or any derivatives thereof.
[0167] Embodiment 6: The pharmaceutical composition of embodiment 3, wherein the herpes simplex virus comprises a modified envelope.
[0168] Embodiment 7: The pharmaceutical composition of embodiment 6, wherein the modified envelope alters the herpes simplex virus tissue tropism relative to a wild-type herpes simplex virus.
[0169] Embodiment 8: The pharmaceutical composition of embodiment 6, wherein the modified envelope comprises a mutant herpes simplex virus glycoprotein.
[0170] Embodiment 9: The pharmaceutical composition of embodiment 1, wherein the vector is an HSV-1 amplicon or an HSV-1 hybrid amplicon.
[0171] Embodiment 10: The pharmaceutical composition of embodiment 9, wherein the HSV-1 hybrid amplicon is an HSV/AAV hybrid amplicon, an HSV/EBV hybrid amplicon, and HSV/EBV/RV hybrid amplicon, or an HSV/Sleeping Beauty hybrid amplicon.
[0172] Embodiment 11: The pharmaceutical composition of embodiment 1, wherein the vector is a recombinant herpes simplex virus genome.
[0173] Embodiment 12: The pharmaceutical composition of embodiment 11, wherein the recombinant herpes simplex virus genome is a recombinant HSV-1 genome, a recombinant HSV-2 genome, or any derivatives thereof.
[0174] Embodiment 13: The pharmaceutical composition of embodiment 11 or 12, wherein the recombinant herpes simplex virus genome comprises an inactivating mutation in an immediate early herpes simplex virus gene.
[0175] Embodiment 14: The pharmaceutical composition of embodiment 13, wherein the herpes simplex virus gene is selected from the group consisting of ICP0, ICP4, ICP22, ICP27, ICP47, tk, UL41, and UL55.
[0176] Embodiment 15: The pharmaceutical composition of any of embodiments 11 to 14, wherein the recombinant herpes simplex virus genome comprises an inactivating mutation in the ICP4 and ICP22 genes.
[0177] Embodiment 16: The pharmaceutical composition of any of embodiments 11 to 14, wherein the recombinant herpes simplex virus genome comprises an inactivating mutation in the ICP0 and ICP4 genes.
[0178] Embodiment 17: The pharmaceutical composition of embodiment 15 or embodiment 16, wherein the recombinant herpes simplex virus genome comprises an inactivating mutation in the ICP0, ICP4, and ICP22 genes.
[0179] Embodiment 18: The pharmaceutical composition of any of embodiments 15 to 17, wherein the recombinant herpes simplex virus genome comprises an inactivating mutation in the ICP0, ICP4, ICP22, and ICP27 genes.
[0180] Embodiment 19: The pharmaceutical composition of any of embodiments 15 to 18, wherein the recombinant herpes simplex virus genome comprises an inactivating mutation in the ICP0, ICP4, ICP22, ICP27, and UL55 genes.
[0181] Embodiment 20: The pharmaceutical composition of any of embodiments 15 to 18, wherein the inactivating mutation is a deletion of the coding sequence of the genes.
[0182] Embodiment 21: The pharmaceutical composition of any of embodiments 15 to 20, further comprising an inactivating mutation in the ICP4? gene.
[0183] Embodiment 22: The pharmaceutical composition of any of embodiments 11 to 21, further comprising an inactivating mutation in the UL41 gene.
[0184] Embodiment 23: The pharmaceutical composition of any of embodiments 11 to 22, wherein the recombinant herpes simplex virus genome comprises the one or more transgenes within one or more viral gene loci.
[0185] Embodiment 24: The pharmaceutical composition of any of embodiments 11 to 23, wherein the recombinant herpes simplex virus genome comprises the one or more transgenes within one or more of the ICP4 viral gene loci.
[0186] Embodiment 25: The pharmaceutical composition of any of embodiments 11 to 24, wherein the recombinant herpes simplex virus genome comprises the one or more transgenes within the UL41 viral gene locus.
[0187] Embodiment 26: The pharmaceutical composition of embodiment 1, wherein the vector is capable of replicating within a target cell when delivered into said target cell.
[0188] Embodiment 27: The pharmaceutical composition of embodiment 1, wherein the pharmaceutically acceptable carrier is suitable for topical or transdermal administration.
[0189] Embodiment 28: The pharmaceutical composition of embodiment 1, wherein the one or more transgenes comprises an miRNA binding site.
[0190] Embodiment 29: The pharmaceutical composition of embodiment 1, wherein the one or more transgenes are operably linked to one or more heterologous promoters.
[0191] Embodiment 30: The pharmaceutical composition of embodiment 29, wherein the one or more heterologous promoters are selected from the group consisting of the human cytomegalovirus (HCMV) immediate early promoter, the elongation factor-1 (EF1) promoter, and any combinations thereof.
[0192] Embodiment 31: The pharmaceutical composition of embodiment 1, wherein the vector comprises a transgene encoding a Collagen alpha-1 (VII) chain polypeptide.
[0193] Embodiment 32: The pharmaceutical composition of embodiment 1, wherein the vector comprises two transgenes, wherein each transgene encodes a Collagen alpha-1 (VII) chain polypeptide.
[0194] Embodiment 33: The pharmaceutical composition of embodiment 1, wherein the Collagen alpha-1 (VII) chain polypeptide has at least 80% sequence identity to the sequence of SEQ ID NO: 2.
[0195] Embodiment 34: The pharmaceutical composition of embodiment 1, wherein the collagen alpha-1 (VII) chain polypeptide is a fragment, wherein the fragment has at least 100 consecutive amino acids of SEQ ID NO: 2.
[0196] Embodiment 35: The pharmaceutical composition of embodiment 1, wherein the Collagen alpha-1 (VII) chain polypeptide enhances, increases, augments, and/or supplements anchoring fibril formation of a subject when the polypeptide is expressed in one or more target cells of the subject.
[0197] Embodiment 36: The pharmaceutical composition of embodiment 1, wherein the Collagen alpha-1 (VII) chain polypeptide enhances, increases, augments, and/or supplements epithelial basement membrane organization and/or epithelial basement adherence of a subject when the polypeptide is expressed in one or more target cells of the subject.
[0198] Embodiment 37: The pharmaceutical composition of embodiment 1, wherein the Lysyl hydroxylase 3 polypeptide has at least 80% sequence identity to the sequence of SEQ ID NO: 4.
[0199] Embodiment 38: The pharmaceutical composition of embodiment 1, wherein the Lysyl hydroxylase 3 polypeptide is a fragment, wherein the fragment has at least 100 consecutive amino acids of SEQ ID NO: 4.
[0200] Embodiment 39: The pharmaceutical composition of embodiment 1, wherein the Lysyl hydroxylase 3 polypeptide enhances, increases, augments, and/or supplements the formation of hydroxylysine residues on one or more collagen polypeptides of a subject when the Lysyl hydroxylase 3 polypeptide is expressed in one or more target cells of the subject.
[0201] Embodiment 40: The pharmaceutical composition of embodiment 1, wherein the Lysyl hydroxylase 3 polypeptide enhances, increases, augments, and/or supplements anchoring fibril formation, epithelial basement membrane organization, and/or epithelial basement adherence of a subject when the polypeptide is expressed in one or more target cells of the subject.
[0202] Embodiment 41: The pharmaceutical composition of embodiment 1, wherein the vector comprises at least a first transgene and a second transgene.
[0203] Embodiment 42: The pharmaceutical composition of embodiment 41, wherein the first transgene encodes a Collagen alpha-1 (VII) chain polypeptide and the second transgene encodes a Lysyl hydroxylase 3 polypeptide.
[0204] Embodiment 43: The pharmaceutical composition of embodiment 1, wherein the vector comprises a transgene that is polycistronic.
[0205] Embodiment 44: The pharmaceutical composition of embodiment 43, wherein the polycistronic transgene encodes a Collagen alpha-1 (VII) chain polypeptide on a first open reading frame (ORF) and a Lysyl hydroxylase 3 polypeptide on a second open reading frame (ORF).
[0206] Embodiment 45: The pharmaceutical composition of embodiment 44, wherein the first and second ORFs are separated by an internal ribosomal entry site (IRES).
[0207] Embodiment 46: The pharmaceutical composition of any of embodiments 42 to 45, wherein the Collagen alpha-1 (VII) chain polypeptide and the Lysyl hydroxylase 3 polypeptide are at about an equimolar ratio when the polypeptides are expressed in one or more target cells of a subject.
[0208] Embodiment 47: The pharmaceutical composition of any of embodiments 42 to 45, wherein the Collagen alpha-1 (VII) chain polypeptide and the Lysyl hydroxylase 3 polypeptide enhance, increase, augment, and/or supplement anchoring fibril formation, epithelial basement membrane organization, and/or epithelial basement adherence of a subject when the polypeptides are expressed in one or more target cells of the subject.
[0209] Embodiment 48: The pharmaceutical composition of embodiment 1, wherein the chimeric polypeptide comprises a linker polypeptide between the Collagen alpha-1 (VII) chain polypeptide and the Lysyl hydroxylase 3 polypeptide.
[0210] Embodiment 49: The pharmaceutical composition of embodiment 48, wherein the linker polypeptide is a T2A, P2A, E2A, or F2A linker polypeptide.
[0211] Embodiment 50: The pharmaceutical composition of embodiment 48 or 49, wherein the linker polypeptide has at least 80% sequence identity to the sequence of SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10 or SEQ ID NO: 12.
[0212] Embodiment 51: The pharmaceutical composition of any of embodiments 48 to 50, wherein the chimeric polypeptide has at least 80% sequence identity to the sequence of SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26 or SEQ ID NO: 28.
[0213] Embodiment 52: The pharmaceutical composition of any of embodiments 48 to 51, wherein the chimeric polypeptide enhances, increases, augments, and/or supplements anchoring fibril formation, epithelial basement membrane organization, and/or epithelial basement adherence of a subject when the polypeptide is expressed in one or more target cells of the subject.
[0214] Embodiment 53: A method of providing prophylactic, palliative, or therapeutic relief of a wound, disorder, or disease of the skin in a subject, the method comprising topically or transdermally administering a pharmaceutical composition capable of enhancing, increasing, augmenting, and/or supplementing the levels of a Collagen alpha-1 (VII) chain polypeptide and/or a Lysyl hydroxylase 3 polypeptide in one or more cells of the subject.
[0215] Embodiment 54: The method of embodiment 53, wherein the pharmaceutical composition comprises:
[0216] a) a virus comprising a vector, wherein the vector comprises one or more transgenes encoding a polypeptide selected from the group consisting of a Collagen alpha-1 (VII) chain polypeptide, a Lysyl hydroxylase 3 polypeptide, and a chimeric polypeptide thereof; and
[0217] b) a pharmaceutically acceptable carrier.
[0218] Embodiment 55: The method of embodiment 54, wherein the virus is an adenovirus, adeno-associated virus, retrovirus, lentivirus, sendai virus, herpes simplex virus, vaccinia virus, or any hybrid virus thereof.
[0219] Embodiment 56: The method of embodiment 54, wherein the virus is a herpes simplex virus (HSV).
[0220] Embodiment 57: The method of any of embodiments 54 to 56, wherein the virus is replication-defective.
[0221] Embodiment 58: The method of embodiment 56, wherein the herpes simplex virus is a herpes simplex type 1 virus, a herpes simplex type 2 virus, or any derivatives thereof.
[0222] Embodiment 59: The method of embodiment 56, wherein the herpes simplex virus comprises a modified envelope.
[0223] Embodiment 60: The method of embodiment 59, wherein the modified envelope alters the herpes simplex virus tissue tropism relative to a wild-type herpes simplex virus.
[0224] Embodiment 61: The method of embodiment 59, wherein the modified envelope comprises a mutant herpes simplex virus glycoprotein.
[0225] Embodiment 62: The method of embodiment 54, wherein the vector is an HSV-1 amplicon or an HSV-1 hybrid amplicon.
[0226] Embodiment 63: The method of embodiment 62, wherein the HSV-1 hybrid amplicon is an HSV/AAV hybrid amplicon, an HSV/EBV hybrid amplicon, and HSV/EBV/RV hybrid amplicon, or an HSV/Sleeping Beauty hybrid amplicon.
[0227] Embodiment 64: The method of embodiment 54, wherein the vector is a recombinant herpes simplex virus genome.
[0228] Embodiment 65: The method of embodiment 64, wherein the recombinant herpes simplex virus genome is a recombinant HSV-1 genome, a recombinant HSV-2 genome, or any derivatives thereof.
[0229] Embodiment 66: The method of embodiment 64 or 65, wherein the recombinant herpes simplex virus genome comprises an inactivating mutation in an immediate early herpes simplex virus gene.
[0230] Embodiment 67: The method of embodiment 66, wherein the herpes simplex virus gene is selected from the group consisting of ICP0, ICP4, ICP22, ICP27, ICP47, tk, UL41, and UL55.
[0231] Embodiment 68: The method of any of embodiments 64 to 67, wherein the recombinant herpes simplex virus genome comprises an inactivating mutation in the ICP4 and ICP22 genes.
[0232] Embodiment 69: The method of any of embodiments 64 to 67, wherein the recombinant herpes simplex virus genome comprises an inactivating mutation in the ICP0 and ICP4 genes.
[0233] Embodiment 70: The method of embodiment 68 or 69, wherein the recombinant herpes simplex virus genome comprises an inactivating mutation in the ICP0, ICP4, and ICP22 genes.
[0234] Embodiment 71: The method of any of embodiments 68 to 70, wherein the recombinant herpes simplex virus genome comprises an inactivating mutation in the ICP0, ICP4, ICP22, and ICP27 genes.
[0235] Embodiment 72: The method of any of embodiments 68 to 71, wherein the recombinant herpes simplex virus genome comprises an inactivating mutation in the ICP0, ICP4, ICP22, ICP27, and UL55 genes.
[0236] Embodiment 73: The method of any of embodiments 68 to 72, wherein the inactivating mutation is a deletion of the coding sequence of the genes.
[0237] Embodiment 74: The method of any of embodiments 68 to 73, further comprising an inactivating mutation in the ICP47 gene.
[0238] Embodiment 75: The method of any of embodiments 64 to 74, further comprising an inactivating mutation in the UL41 gene.
[0239] Embodiment 76: The method of any of embodiments 64 to 75, wherein the recombinant herpes simplex virus genome comprises the one or more transgenes within one or more viral gene loci.
[0240] Embodiment 77: The method of any of embodiments 64 to 76, wherein the recombinant herpes simplex virus genome comprises the one or more transgenes within one or more of the ICP4 viral gene loci.
[0241] Embodiment 78: The method of any of embodiments 64 to 77, wherein the recombinant herpes simplex virus genome comprises the one or more transgenes within the UL41 viral gene locus.
[0242] Embodiment 79: The method of embodiment 54, wherein the vector is capable of replicating within a target cell when delivered into said target cell.
[0243] Embodiment 80: The method of embodiment 54, wherein the pharmaceutically acceptable carrier is suitable for topical or transdermal administration.
[0244] Embodiment 81: The method of embodiment 54, wherein the one or more transgenes comprises an miRNA binding site.
[0245] Embodiment 82: The method of embodiment 54, wherein the one or more transgenes are operably linked to one or more heterologous promoters.
[0246] Embodiment 83: The method of embodiment 82, wherein the one or more heterologous promoters are selected from the group consisting of the human cytomegalovirus (HCMV) immediate early promoter, the elongation factor-1 (EF1) promoter, and any combinations thereof.
[0247] Embodiment 84: The method of embodiment 54, wherein the vector comprises a transgene encoding a Collagen alpha-1 (VII) chain polypeptide.
[0248] Embodiment 85: The method of embodiment 54, wherein the vector comprises two transgenes, wherein each transgene encodes a Collagen alpha-1 (VII) chain polypeptide.
[0249] Embodiment 86: The method of embodiment 54, wherein the Collagen alpha-1 (VII) chain polypeptide has at least 80% sequence identity to the sequence of SEQ ID NO: 2.
[0250] Embodiment 87: The method of embodiment 54, wherein the Collagen alpha-1 (VII) chain polypeptide is a fragment, wherein the fragment has at least 100 consecutive amino acids of SEQ ID NO: 2.
[0251] Embodiment 88: The method of embodiment 54, wherein the Collagen alpha-1 (VII) chain polypeptide enhances, increases, augments, and/or supplements anchoring fibril formation of a subject when the polypeptide is expressed in one or more target cells of the subject.
[0252] Embodiment 89: The method of embodiment 54, wherein the Collagen alpha-1 (VII) chain polypeptide enhances, increases, augments, and/or supplements epithelial basement membrane organization and/or epithelial basement adherence of a subject when the polypeptide is expressed in one or more target cells of the subject.
[0253] Embodiment 90: The method of embodiment 54, wherein the Lysyl hydroxylase 3 polypeptide has at least 80% sequence identity to the sequence of SEQ ID NO: 4.
[0254] Embodiment 91: The method of embodiment 54, wherein the Lysyl hydroxylase 3 polypeptide is a fragment, wherein the fragment has at least 100 consecutive amino acids of SEQ ID NO: 4.
[0255] Embodiment 92: The method of embodiment 54, wherein the Lysyl hydroxylase 3 polypeptide enhances, increases, augments, and/or supplements the formation of hydroxylysine residues on one or more collagen polypeptides of a subject when the Lysyl hydroxylase 3 polypeptide is expressed in one or more target cells of the subject.
[0256] Embodiment 93: The method of embodiment 54, wherein the Lysyl hydroxylase 3 polypeptide enhances, increases, augments, and/or supplements anchoring fibril formation, epithelial basement membrane organization, and/or epithelial basement adherence of a subject when the polypeptide is expressed in one or more target cells of the subject.
[0257] Embodiment 94: The method of embodiment 54, wherein the vector comprises at least a first transgene and a second transgene.
[0258] Embodiment 95: The method of embodiment 94, wherein the first transgene encodes a Collagen alpha-1 (VII) chain polypeptide and the second transgene encodes a Lysyl hydroxylase 3 polypeptide.
[0259] Embodiment 96: The method of embodiment 54, wherein the vector comprises a transgene that is polycistronic.
[0260] Embodiment 97: The method of embodiment 96, wherein the polycistronic transgene encodes a Collagen alpha-1 (VII) chain polypeptide on a first open reading frame (ORF) and a Lysyl hydroxylase 3 polypeptide on a second open reading frame (ORF).
[0261] Embodiment 98: The method of embodiment 97, wherein the first and second ORFs are separated by an internal ribosomal entry site (IRES).
[0262] Embodiment 99: The method of any of embodiments 95 to 98, wherein the Collagen alpha-1 (VII) chain polypeptide and the Lysyl hydroxylase 3 polypeptide are at about an equimolar ratio when the polypeptides are expressed in one or more target cells of a subject.
[0263] Embodiment 100: The method of any of embodiments 95 to 98, wherein the Collagen alpha-1 (VII) chain polypeptide and the Lysyl hydroxylase 3 polypeptide enhance, increase, augment, and/or supplement anchoring fibril formation, epithelial basement membrane organization, and/or epithelial basement adherence of a subject when the polypeptides are expressed in one or more target cells of the subject.
[0264] Embodiment 101: The method of embodiment 54, wherein the chimeric polypeptide comprises a linker polypeptide between the Collagen alpha-1 (VII) chain polypeptide and the Lysyl hydroxylase 3 polypeptide.
[0265] Embodiment 102: The method of embodiment 101, wherein the linker polypeptide is a T2A, P2A, E2A, or F2A linker polypeptide.
[0266] Embodiment 103: The method of embodiment 101 or 102, wherein the linker polypeptide has at least 80% sequence identity to the sequence of SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10 or SEQ ID NO: 12.
[0267] Embodiment 104: The method of any of embodiments 101 to 103, wherein the chimeric polypeptide has at least 80% sequence identity to the sequence of SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26 or SEQ ID NO: 28.
[0268] Embodiment 105: The method of any of embodiments 101 to 104, wherein the chimeric polypeptide enhances, increases, augments, and/or supplements anchoring fibril formation, epithelial basement membrane organization, and/or epithelial basement adherence of a subject when the polypeptide is expressed in one or more target cells of the subject.
[0269] Embodiment 106: The method of embodiment 53, wherein the pharmaceutical composition is administered one, two three, four, five or more times per day.
[0270] Embodiment 107: The method of embodiment 53, wherein the pharmaceutical composition is administered to one or more affected and/or unaffected areas of the subject.
[0271] Embodiment 108: The method of embodiment 53, wherein the disease or disorder of the skin is one or more of epidermolysis bullosa, skin cancer, psoriasis, lichen planus, lupus, rosacea, eczema, cutaneous candidiasis, cellulitis, impetigo, decubitus ulcers, erysipelas, ichthyosis vulgaris, dermatomyositis, acrodermatitis, stasis dermatitis, nethertons syndrome, epidermolysis bullosa simplex (LAMB3 gene), autosomal recessive congenital ichthyosis, xeroderma pigmentosa, and pemphigoid.
[0272] Embodiment 109: An isolated chimeric polypeptide, wherein the isolated chimeric polypeptide comprises;
[0273] a) a Collagen alpha-1 (VII) chain polypeptide;
[0274] b) a Lysyl hydroxylase 3 polypeptide; and
[0275] c) a linker polypeptide;
[0276] wherein the Collagen alpha-1 (VII) chain polypeptide and the Lysyl hydroxylase 3 polypeptide are separated by the linker polypeptide.
[0277] Embodiment 110: The isolated chimeric polypeptide of embodiment 109, wherein the Collagen alpha-1 (VII) chain polypeptide has at least 80% sequence identity to the sequence of SEQ ID NO: 2.
[0278] Embodiment 111: The isolated chimeric polypeptide of embodiment 109, wherein the Lysyl hydroxylase 3 polypeptide has at least 80% sequence identity to the sequence of SEQ ID NO: 4.
[0279] Embodiment 112: The isolated chimeric polypeptide of embodiment 109, wherein the linker polypeptide has at least 80% sequence identity to the sequence of SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10 or SEQ ID NO: 12.
[0280] Embodiment 113: The isolated chimeric polypeptide of any of embodiments 109 to 112, wherein the isolated chimeric polypeptide has at least 80% sequence identity to the sequence of SEQ ID NO: 14, SEQ ID NO: 16, SEQ ID NO: 18, SEQ ID NO: 20, SEQ ID NO: 22, SEQ ID NO: 24, SEQ ID NO: 26 or SEQ ID NO: 28.
[0281] Embodiment 114: A polynucleotide encoding the chimeric polypeptide of any of embodiments 109 to 113.
[0282] Embodiment 115: A vector comprising the polynucleotide of embodiment 114.
[0283] Embodiment 116: The vector of embodiment 115, wherein the vector is an HSV-1 amplicon or an HSV-1 hybrid amplicon.
[0284] Embodiment 117: The vector of embodiment 116 wherein the HSV-1 hybrid amplicon is an HSV/AAV hybrid amplicon, an HSV/EBV hybrid amplicon, and HSV/EBV/RV hybrid amplicon, or an HSV/Sleeping Beauty hybrid amplicon.
[0285] Embodiment 118: The vector of embodiment 115, wherein the vector is a recombinant herpes simplex virus genome.
[0286] Embodiment 119: The vector of embodiment 118, wherein the recombinant herpes simplex virus genome is a recombinant HSV-1 genome, a recombinant HSV-2 genome, or any derivatives thereof.
[0287] Embodiment 120: The vector of embodiment 118 or 119, wherein the recombinant herpes simplex virus genome comprises an inactivating mutation in an immediate early herpes simplex virus gene.
[0288] Embodiment 121: The vector of embodiment 120, wherein the herpes simplex virus gene is selected from the group consisting of ICP0, ICP4, ICP22, ICP27, ICP47, tk, UL41, and UL55.
[0289] Embodiment 122: The vector of any of embodiments 118 to 121, wherein the recombinant herpes simplex virus genome comprises an inactivating mutation in the ICP4 and ICP22 genes.
[0290] Embodiment 123: The vector of any of embodiments 118 to 121, wherein the recombinant herpes simplex virus genome comprises an inactivating mutation in the ICP0 and ICP4 genes.
[0291] Embodiment 124: The vector of embodiment 122 or 123, wherein the recombinant herpes simplex virus genome comprises an inactivating mutation in the ICP0, ICP4, and ICP22 genes.
[0292] Embodiment 125: The vector of any of embodiments 122 to 124, wherein the recombinant herpes simplex virus genome comprises an inactivating mutation in the ICP0, ICP4, ICP22, and ICP27 genes.
[0293] Embodiment 126: The vector of any of embodiments 122 to 125, wherein the recombinant herpes simplex virus genome comprises an inactivating mutation in the ICP0, ICP4, ICP22, ICP27, and UL55 genes.
[0294] Embodiment 127: The vector of any of embodiments 122 to 126, wherein the inactivating mutation is a deletion of the coding sequence of the genes.
[0295] Embodiment 128: The vector of any of embodiments 122 to 127, further comprising an inactivating mutation in the ICP47 gene.
[0296] Embodiment 129: The vector of any of embodiments 118 to 128, further comprising an inactivating mutation in the UL41 gene.
[0297] Embodiment 130: The vector of any of embodiments 118 to 129, wherein the recombinant herpes simplex virus genome comprises the polynucleotide within one or more viral gene loci.
[0298] Embodiment 131: The vector of any of embodiments 118 to130, wherein the recombinant herpes simplex virus genome comprises the polynucleotide within one or more of the ICP4 viral gene loci.
[0299] Embodiment 132: The vector of any of embodiments 118 to131, wherein the recombinant herpes simplex virus genome comprises the polynucleotide within the UL41 viral gene locus.
[0300] Embodiment 133: A vector comprising one or more polynucleotides encoding a Collagen alpha-1 (VII) chain polypeptide, a Lysyl hydroxylase 3 polypeptide, a Keratin type I cytoskeletal 17 polypeptide, or any combinations thereof, wherein the vector is a recombinant herpes simplex virus genome.
[0301] Embodiment 134: The vector of embodiment 133, wherein the recombinant herpes simplex virus genome is a recombinant HSV-1 genome, a recombinant HSV-2 genome, or any derivatives thereof.
[0302] Embodiment 135: The vector of embodiment 133 or 134, wherein the recombinant herpes simplex virus genome comprises an inactivating mutation in an immediate early herpes simplex virus gene.
[0303] Embodiment 136: The vector of embodiment 135, wherein the herpes simplex virus gene is selected from the group consisting of ICP0, ICP4, ICP22, ICP27, ICP47, tk, UL41, and UL55.
[0304] Embodiment 137: The vector of any of embodiments 133 to 136, wherein the recombinant herpes simplex virus genome comprises an inactivating mutation in the ICP4 and ICP22 genes.
[0305] Embodiment 138: The vector of any of embodiments 133 to 136, wherein the recombinant herpes simplex virus genome comprises an inactivating mutation in the ICP0 and ICP4 genes.
[0306] Embodiment 139: The vector of embodiment 137 or 138, wherein the recombinant herpes simplex virus genome comprises an inactivating mutation in the ICP0, ICP4, and ICP22 genes.
[0307] Embodiment 140: The vector of any of embodiments 137 to 139, wherein the recombinant herpes simplex virus genome comprises an inactivating mutation in the ICP0, ICP4, ICP22, and ICP27 genes.
[0308] Embodiment 141: The vector of any of embodiments 137 to 140, wherein the recombinant herpes simplex virus genome comprises an inactivating mutation in the ICP0, ICP4, ICP22, ICP27, and UL55 genes.
[0309] Embodiment 142: The vector of any of embodiments 137 to 141, wherein the inactivating mutation is a deletion of the coding sequence of the genes.
[0310] Embodiment 143: The vector of any of embodiments 137 to 142, further comprising an inactivating mutation in the ICP4? gene.
[0311] Embodiment 144: The vector of any of embodiments 133 to 143, further comprising an inactivating mutation in the UL41 gene.
[0312] Embodiment 145: The vector of any of embodiments 133 to 144, wherein the recombinant herpes simplex virus genome comprises the one or more polynucleotides within one or more viral gene loci.
[0313] Embodiment 146: The vector of any of embodiments 133 to145, wherein the recombinant herpes simplex virus genome comprises the one or more polynucleotides within one or more of the ICP4 viral gene loci.
[0314] Embodiment 147: The vector of any of embodiments 133 to146, wherein the recombinant herpes simplex virus genome comprises the one or more polynucleotides within the UL41 viral gene locus.
[0315] Embodiment 148: The vector of any of embodiments 133 to147, wherein the vector comprises one polynucleotide encoding a Collagen alpha-1 (VII) chain polypeptide.
[0316] Embodiment 149: The vector of any of embodiments 133 to147, wherein the vector comprises two polynucleotides encoding a Collagen alpha-1 (VII) chain polypeptide.
[0317] Embodiment 150: A host cell comprising the vector of any of embodiments 115 to 149.
[0318] Embodiment 151: A method of collecting a herpes simplex virus, wherein a vector of interest is packaged within said herpes simplex virus, the method comprising;
[0319] a) contacting a host cell with a vector encoding a helper virus; b) contacting said host cell with a vector of any of embodiments 115 to 117; and c) collecting the Herpes simplex virus generated by said host cell.
[0320] Embodiment 152: A method of collecting a herpes simplex virus, wherein a vector of interest is packaged within said herpes simplex virus, the method comprising;
[0321] a) contacting a complementing host cell with a vector of any of embodiments 118 to 149; and
[0322] b) collecting the herpes simplex virus generated by said complementing host cell.
[0323] Embodiment 153: The method of embodiment 151 or 152, wherein the herpes simplex virus is a herpes simplex type 1 virus, a herpes simplex type 2 virus, or any derivatives thereof.
[0324] Embodiment 154: A kit comprising:
[0325] a) the pharmaceutical composition of any of embodiments 1 to 52; and b) instructions for administering the pharmaceutical composition.
[0326] Embodiment 155: A pharmaceutical composition comprising:
[0327] a) a virus comprising a vector, wherein the vector comprises one or more transgenes encoding a polypeptide selected from the group consisting of a Collagen alpha-1 (VII) chain polypeptide, a Lysyl hydroxylase 3 polypeptide, a Keratin type I cytoskeletal 17 polypeptide, and a chimeric polypeptide thereof; and
[0328] b) a pharmaceutically acceptable carrier.
[0329] Embodiment 156: The pharmaceutical composition of embodiment 155, wherein the virus is an adenovirus, adeno-associated virus, retrovirus, lentivirus, sendai virus, herpes simplex virus, vaccinia virus, or any hybrid virus thereof.
[0330] Embodiment 157: The pharmaceutical composition of embodiment 155, wherein the virus is a herpes simplex virus (HSV).
[0331] Embodiment 158: The pharmaceutical composition of any of embodiments 155 to 157, wherein the virus is replication-defective.
[0332] Embodiment 159: The pharmaceutical composition of any of embodiments 155 to 158, wherein the herpes simplex virus is a herpes simplex type 1 virus, a herpes simplex type 2 virus, or any derivatives thereof.
[0333] Embodiment 160: The pharmaceutical composition of any of embodiments 155 to 159, wherein the vector is an HSV-1 amplicon or an HSV-1 hybrid amplicon.
[0334] Embodiment 161: The pharmaceutical composition of embodiment 160, wherein the HSV-1 hybrid amplicon is an HSV/AAV hybrid amplicon, an HSV/EBV hybrid amplicon, and HSV/EBV/RV hybrid amplicon, or an HSV/Sleeping Beauty hybrid amplicon.
[0335] Embodiment 162: The pharmaceutical composition of any of embodiments 155 to 159, wherein the vector is a recombinant herpes simplex virus genome.
[0336] Embodiment 163: The pharmaceutical composition of embodiment 162, wherein the recombinant herpes simplex virus genome is a recombinant HSV-1 genome, a recombinant HSV-2 genome, or any derivatives thereof.
[0337] Embodiment 164: The pharmaceutical composition of embodiment 162 or 163, wherein the recombinant herpes simplex virus genome comprises an inactivating mutation in an immediate early herpes simplex virus gene.
[0338] Embodiment 165: The pharmaceutical composition of embodiment 164, wherein the herpes simplex virus gene is selected from the group consisting of ICP0, ICP4, ICP22, ICP27, ICP47, tk, UL41, and UL55.
[0339] Embodiment 166: The pharmaceutical composition of any of embodiments 162 to 165, wherein the recombinant herpes simplex virus genome comprises an inactivating mutation in the ICP4 and ICP22 genes.
[0340] Embodiment 167: The pharmaceutical composition of any of embodiments 162 to 165, wherein the recombinant herpes simplex virus genome comprises an inactivating mutation in the ICP0 and ICP4 genes.
[0341] Embodiment 168: The pharmaceutical composition of embodiment 166 or 167, wherein the recombinant herpes simplex virus genome comprises an inactivating mutation in the ICP0, ICP4, and ICP22 genes.
[0342] Embodiment 169: The pharmaceutical composition of any of embodiments 166 to 168, wherein the recombinant herpes simplex virus genome comprises an inactivating mutation in the ICP0, ICP4, ICP22, and ICP27 genes.
[0343] Embodiment 170: The pharmaceutical composition of any of embodiments 166 to 169, wherein the recombinant herpes simplex virus genome comprises an inactivating mutation in the ICP0, ICP4, ICP22, ICP27, and UL55 genes.
[0344] Embodiment 171: The pharmaceutical composition of any of embodiments 166 to 170, wherein the inactivating mutation is a deletion of the coding sequence of the genes.
[0345] Embodiment 172: The pharmaceutical composition of any of embodiments 166 to 171, further comprising an inactivating mutation in the ICP47 gene.
[0346] Embodiment 173: The pharmaceutical composition of any of embodiments 162 to 172, further comprising an inactivating mutation in the UL41 gene.
[0347] Embodiment 174: The pharmaceutical composition of any of embodiments 162 to 173, wherein the recombinant herpes simplex virus genome comprises the one or more transgenes within one or more viral gene loci.
[0348] Embodiment 175: The pharmaceutical composition of any of embodiments 162 to 174, wherein the recombinant herpes simplex virus genome comprises the one or more transgenes within one or more of the ICP4 viral gene loci.
[0349] Embodiment 176: The pharmaceutical composition of any of embodiments 162 to 175, wherein the recombinant herpes simplex virus genome comprises the one or more transgenes within the UL41 viral gene locus.
[0350] Embodiment 177: The pharmaceutical composition of embodiment 155, wherein the vector is capable of replicating within a target cell when delivered into said target cell.
[0351] Embodiment 178: The pharmaceutical composition of embodiment 155, wherein the pharmaceutically acceptable carrier is suitable for topical or transdermal administration.
[0352] Embodiment 179: The pharmaceutical composition of embodiment 155, wherein the pharmaceutically acceptable carrier is suitable for subcutaneous or intradermal administration.
[0353] Embodiment 180: The pharmaceutical composition of embodiment 155, wherein the one or more transgenes comprises an miRNA binding site.
[0354] Embodiment 181: The pharmaceutical composition of any of embodiments 155 to 180, wherein the vector comprises a transgene encoding a Collagen alpha-1 (VII) chain polypeptide.
[0355] Embodiment 182: The pharmaceutical composition of any of embodiments 155 to 180, wherein the vector comprises a transgene encoding a Lysyl hydroxylase 3 polypeptide.
[0356] Embodiment 183: The pharmaceutical composition of any of embodiments 155 to 180, wherein the vector comprises a transgene encoding a Keratin type I cytoskeletal 17 polypeptide.
[0357] Embodiment 184: The pharmaceutical composition of any of embodiments 155 to 180, wherein the Collagen alpha-1 (VII) chain polypeptide has at least 80% sequence identity to the sequence of SEQ ID NO: 2.
[0358] Embodiment 185: The pharmaceutical composition of any of embodiments 155 to 180, wherein the Collagen alpha-1 (VII) chain polypeptide is a fragment, wherein the fragment has at least 100 consecutive amino acids of SEQ ID NO: 2.
[0359] Embodiment 186: The pharmaceutical composition of any of embodiments 155 to 180, wherein the Collagen alpha-1 (VII) chain polypeptide enhances, increases, augments, and/or supplements anchoring fibril formation of a subject when the polypeptide is expressed in one or more target cells of the subject.
[0360] Embodiment 187: The pharmaceutical composition of any of embodiments 155 to 180, wherein the Collagen alpha-1 (VII) chain polypeptide enhances, increases, augments, and/or supplements epithelial basement membrane organization and/or epithelial basement adherence of a subject when the polypeptide is expressed in one or more target cells of the subject.
[0361] Embodiment 188: The pharmaceutical composition of any of embodiments 155 to 180, wherein the Lysyl hydroxylase 3 polypeptide has at least 80% sequence identity to the sequence of SEQ ID NO: 4.
[0362] Embodiment 189: The pharmaceutical composition of any of embodiments 155 to 180, wherein the Lysyl hydroxylase 3 polypeptide is a fragment, wherein the fragment has at least 100 consecutive amino acids of SEQ ID NO: 4.
[0363] Embodiment 190: The pharmaceutical composition of any of embodiments 155 to 180, wherein the Lysyl hydroxylase 3 polypeptide enhances, increases, augments, and/or supplements the formation of hydroxylysine residues on one or more collagen polypeptides of a subject when the Lysyl hydroxylase 3 polypeptide is expressed in one or more target cells of the subject.
[0364] Embodiment 191: The pharmaceutical composition of any of embodiments 155 to 180, wherein the Lysyl hydroxylase 3 polypeptide enhances, increases, augments, and/or supplements anchoring fibril formation, epithelial basement membrane organization, and/or epithelial basement adherence of a subject when the polypeptide is expressed in one or more target cells of the subject.
[0365] Embodiment 192: The pharmaceutical composition of any of embodiments 155 to 180, wherein the Keratin type I cytoskeletal 17 polypeptide has at least 80% sequence identity to the sequence of SEQ ID NO: 30.
[0366] Embodiment 193: The pharmaceutical composition of any of embodiments 155 to 180, wherein the Keratin type I cytoskeletal 17 polypeptide is a fragment, wherein the fragment has at least 100 consecutive amino acids of SEQ ID NO: 30.
[0367] Embodiment 194: The pharmaceutical composition of any of embodiments 155 to 180, wherein the Keratin type I cytoskeletal 17 polypeptide enhances, increases, augments, and/or supplements wound healing in a subject.
[0368] Embodiment 195: The pharmaceutical composition of any of embodiments 155 to 194, wherein the vector comprises at least a first transgene and a second transgene.
[0369] Embodiment 196: The pharmaceutical composition of embodiment 195, wherein the first transgene and the second transgene each encode a Collagen alpha-1 (VII) chain polypeptide.
[0370] Embodiment 197: The pharmaceutical composition of embodiment 195, wherein the first transgene encodes a Collagen alpha-1 (VII) chain polypeptide and the second transgene encodes a Lysyl hydroxylase 3 polypeptide.
[0371] Embodiment 198: The pharmaceutical composition of embodiment 195, wherein the first transgene encodes a Collagen alpha-1 (VII) chain polypeptide and the second transgene encodes a Keratin type I cytoskeletal 17 polypeptide.
[0372] Embodiment 199: The pharmaceutical composition of embodiment 195, wherein the first transgene encodes a Lysyl hydroxylase 3 polypeptide and the second transgene encodes a Keratin type I cytoskeletal 17 polypeptide.
[0373] Embodiment 200: The pharmaceutical composition of embodiment 155, wherein the vector comprises at least a first transgene, a second transgene, and a third transgene.
[0374] Embodiment 201: The pharmaceutical composition of embodiment 200, wherein the first transgene encodes a Collagen alpha-1 (VII) chain polypeptide, the second transgene encodes a Lysyl hydroxylase 3 polypeptide, and the third transgene encodes a Keratin type I cytoskeletal 17 polypeptide.
[0375] Embodiment 202: A method of providing prophylactic, palliative, or therapeutic relief of a wound, disorder, or disease of the skin in a subject, the method comprising administering to the subject a pharmaceutical composition comprising a vector, wherein the vector is a recombinant herpes simplex virus genome, and wherein the pharmaceutical composition is capable of enhancing, increasing, augmenting, and/or supplementing the levels of a Collagen alpha-1 (VII) chain polypeptide and/or a Lysyl hydroxylase 3 polypeptide and/or a Keratin type I cytoskeletal 17 polypeptide in one or more cells of the subject.
[0376] Embodiment 203: The method of embodiment 202, wherein the pharmaceutical composition comprises:
[0377] a) a virus comprising the vector, wherein the vector comprises one or more transgenes encoding a polypeptide selected from the group consisting of a Collagen alpha-1 (VII) chain polypeptide, a Lysyl hydroxylase 3 polypeptide, a Keratin type I cytoskeletal 17 polypeptide, and a chimeric polypeptide thereof; and
[0378] b) a pharmaceutically acceptable carrier.
[0379] Embodiment 204: The method of embodiment 203, wherein the virus is an adenovirus, adeno-associated virus, retrovirus, lentivirus, sendai virus, herpes simplex virus, vaccinia virus, or any hybrid virus thereof.
[0380] Embodiment 205: The method of embodiment 203, wherein the virus is a herpes simplex virus (HSV).
[0381] Embodiment 206: The method of any of embodiments 203 to 205, wherein the virus is replication-defective.
[0382] Embodiment 207: The method of any of embodiment 203 to 206, wherein the herpes simplex virus is a herpes simplex type 1 virus, a herpes simplex type 2 virus, or any derivatives thereof.
[0383] Embodiment 208: The method of any of embodiments 202 to 207, wherein the recombinant herpes simplex virus genome is a recombinant HSV-1 genome, a recombinant HSV-2 genome, or any derivatives thereof.
[0384] Embodiment 209: The method of embodiment 202 to 208, wherein the recombinant herpes simplex virus genome comprises an inactivating mutation in an immediate early herpes simplex virus gene.
[0385] Embodiment 210: The method of embodiment 209, wherein the herpes simplex virus gene is selected from the group consisting of ICP0, ICP4, ICP22, ICP27, ICP47, tk, UL41, and UL55.
[0386] Embodiment 211: The method of any of embodiments 202 to 210, wherein the recombinant herpes simplex virus genome comprises an inactivating mutation in the ICP4 and ICP22 genes.
[0387] Embodiment 212: The method of any of embodiments 202 to 210, wherein the recombinant herpes simplex virus genome comprises an inactivating mutation in the ICP0 and ICP4 genes.
[0388] Embodiment 213: The method of embodiment 211 or 212, wherein the recombinant herpes simplex virus genome comprises an inactivating mutation in the ICP0, ICP4, and ICP22 genes.
[0389] Embodiment 214: The method of any of embodiments 211 to 213, wherein the recombinant herpes simplex virus genome comprises an inactivating mutation in the ICP0, ICP4, ICP22, and ICP27 genes.
[0390] Embodiment 215: The method of any of embodiments 211 to 214, wherein the recombinant herpes simplex virus genome comprises an inactivating mutation in the ICP0, ICP4, ICP22, ICP27, and UL55 genes.
[0391] Embodiment 216: The method of any of embodiments 211 to 215, wherein the inactivating mutation is a deletion of the coding sequence of the genes.
[0392] Embodiment 217: The method of any of embodiments 211 to 216, further comprising an inactivating mutation in the ICP4? gene.
[0393] Embodiment 218: The method of any of embodiments 202 to 217, further comprising an inactivating mutation in the UL41 gene.
[0394] Embodiment 219: The method of any of embodiments 202 to 218, wherein the recombinant herpes simplex virus genome comprises the one or more transgenes within one or more viral gene loci.
[0395] Embodiment 220: The method of any of embodiments 202 to 219, wherein the recombinant herpes simplex virus genome comprises the one or more transgenes within one or more of the ICP4 viral gene loci.
[0396] Embodiment 221: The method of any of embodiments 202 to 220, wherein the recombinant herpes simplex virus genome comprises the one or more transgenes within the UL41 viral gene locus.
[0397] Embodiment 222: The method of embodiment 202, wherein the vector is capable of replicating within a target cell when delivered into said target cell.
[0398] Embodiment 223: The method of embodiment 203, wherein the pharmaceutically acceptable carrier is suitable for topical or transdermal administration.
[0399] Embodiment 224: The method of embodiment 203, wherein the pharmaceutically acceptable carrier is suitable for subcutaneous or intradermal administration.
[0400] Embodiment 225: The method of embodiment 203, wherein the one or more transgenes comprises an miRNA binding site.
[0401] Embodiment 226: The method of any of embodiments 202 to 225, wherein the vector comprises a transgene encoding a Collagen alpha-1 (VII) chain polypeptide.
[0402] Embodiment 227: The method of any of embodiments 202 to 225, wherein the vector comprises a transgene encoding a Lysyl hydroxylase 3 polypeptide.
[0403] Embodiment 228: The method of any of embodiments 202 to 225, wherein the vector comprises a transgene encoding a Keratin type I cytoskeletal 17 polypeptide.
[0404] Embodiment 229: The method of any of embodiments 202 to 225, wherein the Collagen alpha-1 (VII) chain polypeptide has at least 80% sequence identity to the sequence of SEQ ID NO: 2.
[0405] Embodiment 230: The method of any of embodiments 202 to 225, wherein the Collagen alpha-1 (VII) chain polypeptide is a fragment, wherein the fragment has at least 100 consecutive amino acids of SEQ ID NO: 2.
[0406] Embodiment 231: The method of any of embodiments 202 to 225, wherein the Collagen alpha-1 (VII) chain polypeptide enhances, increases, augments, and/or supplements anchoring fibril formation of a subject when the polypeptide is expressed in one or more target cells of the subject.
[0407] Embodiment 232: The method of any of embodiments 202 to 225, wherein the Collagen alpha-1 (VII) chain polypeptide enhances, increases, augments, and/or supplements epithelial basement membrane organization and/or epithelial basement adherence of a subject when the polypeptide is expressed in one or more target cells of the subject.
[0408] Embodiment 233: The method of any of embodiments 202 to 225, wherein the Lysyl hydroxylase 3 polypeptide has at least 80% sequence identity to the sequence of SEQ ID NO: 4.
[0409] Embodiment 234: The method of any of embodiments 202 to 225, wherein the Lysyl hydroxylase 3 polypeptide is a fragment, wherein the fragment has at least 100 consecutive amino acids of SEQ ID NO: 4.
[0410] Embodiment 235: The method of any of embodiments 202 to 225, wherein the Lysyl hydroxylase 3 polypeptide enhances, increases, augments, and/or supplements the formation of hydroxylysine residues on one or more collagen polypeptides of a subject when the Lysyl hydroxylase 3 polypeptide is expressed in one or more target cells of the subject.
[0411] Embodiment 236: The method of any of embodiments 202 to 225, wherein the Lysyl hydroxylase 3 polypeptide enhances, increases, augments, and/or supplements anchoring fibril formation, epithelial basement membrane organization, and/or epithelial basement adherence of a subject when the polypeptide is expressed in one or more target cells of the subject.
[0412] Embodiment 237: The method of any of embodiments 202 to 225, wherein the Keratin type I cytoskeletal 17 polypeptide has at least 80% sequence identity to the sequence of SEQ ID NO: 30.
[0413] Embodiment 238: The method of any of embodiments 202 to 225, wherein the Keratin type I cytoskeletal 17 polypeptide is a fragment, wherein the fragment has at least 100 consecutive amino acids of SEQ ID NO: 30.
[0414] Embodiment 239: The method of any of embodiments 202 to 225, wherein the Keratin type I cytoskeletal 17 polypeptide enhances, increases, augments, and/or supplements wound healing in a subject.
[0415] Embodiment 240: The method of any of embodiments 202 to 239, wherein the vector comprises at least a first transgene and a second transgene.
[0416] Embodiment 241: The method of embodiment 240, wherein the first transgene and the second transgene each encode a Collagen alpha-1 (VII) chain polypeptide.
[0417] Embodiment 242: The method of embodiment 240, wherein the first transgene encodes a Collagen alpha-1 (VII) chain polypeptide and the second transgene encodes a Lysyl hydroxylase 3 polypeptide.
[0418] Embodiment 243: The method of embodiment 240, wherein the first transgene encodes a Collagen alpha-1 (VII) chain polypeptide and the second transgene encodes a Keratin type I cytoskeletal 17 polypeptide.
[0419] Embodiment 244: The method of embodiment 240, wherein the first transgene encodes a Lysyl hydroxylase 3 polypeptide and the second transgene encodes a Keratin type I cytoskeletal 17 polypeptide.
[0420] Embodiment 245: The method of any of embodiments 202 to 239, wherein the vector comprises at least a first transgene, a second transgene, and a third transgene.
[0421] Embodiment 246: The method of embodiment 245, wherein the first transgene encodes a Collagen alpha-1 (VII) chain polypeptide, the second transgene encodes a Lysyl hydroxylase 3 polypeptide, and the third transgene encodes a Keratin type I cytoskeletal 17 polypeptide.
[0422] Embodiment 247: The method of any of embodiments 202 to 246, wherein the pharmaceutical composition is administered topically or transdermally to the subject.
[0423] Embodiment 248: The method of any of embodiments 202 to 246, wherein the pharmaceutical composition is administered subcutaneously or intradermally to the subject.
[0424] Embodiment 249: The method of any of embodiments 202 to 248, wherein the pharmaceutical composition is administered one, two three, four, five or more times per day.
[0425] Embodiment 250: The method of any of embodiments 202 to 249, wherein the pharmaceutical composition is administered to one or more affected and/or unaffected areas of the subject.
[0426] Embodiment 251: The method of any of embodiments 202 to 250, wherein the disease or disorder of the skin is one or more of epidermolysis bullosa, skin cancer, psoriasis, lichen planus, lupus, rosacea, eczema, cutaneous candidiasis, cellulitis, impetigo, decubitus ulcers, erysipelas, ichthyosis vulgaris, dermatomyositis, acrodermatitis, stasis dermatitis, nethertons syndrome, epidermolysis bullosa simplex (LAMB3 gene), autosomal recessive congenital ichthyosis, xeroderma pigmentosa, and pemphigoid.
[0427] The specification is considered to be sufficient to enable one skilled in the art to practice the invention. Various modifications of the invention in addition to those shown and described herein will become apparent to those skilled in the art from the foregoing description and fall within the scope of the appended claims.
EXAMPLES
[0428] The present disclosure will be more fully understood by reference to the following example. It should not, however, be construed as limiting the scope of the present disclosure. It is understood that the examples and embodiments described herein are for illustrative purposes only and that various modifications or changes in light thereof will be suggested to persons skilled in the art and are to be included within the spirit and purview of this application and scope of the appended claims.
Example 1
Generating Modified Herpes Simplex Virus Vectors, and Producing/Isolating Virus Containing the Vectors
[0429] To make modified herpes simplex virus genome vectors capable of expressing one or more transgenes in a target mammalian cell, a herpes simplex virus genome (FIG. 1A) is modified to inactivate the immediate early genes ICP0, ICP4, and ICP27, while the immediate early gene ICP22 is modified to include a heterologous, inducible promoter. This decreases the toxicity of the genome in mammalian cells. Next, a cassette is inserted into the modified herpes virus genome by restriction cloning. The cassette contains a heterologous promoter capable of expressing a transgene in a target mammalian cell. The promoter is operably linked to the nucleic acid sequence encoding a Collagen alpha-1 (VII) chain polypeptide, as well as downstream regulatory elements (FIG. 1B) ensuring proper production of the mRNA. Alternatively, the cassette includes two transgenes, each of which has its own heterologous promoter operably linked to the nucleic acid encoding either a Collagen alpha-1 (VII) chain polypeptide or a Lysyl hydroxylase 3 polypeptide. The transgenes are encoded either on the same strand of DNA (FIG. 1C), or on opposite strands of DNA in an antisense orientation (FIG. 1D). Linking each transgene with its own promoter and regulatory elements allows for independent expression of each coding sequence on separate mRNA transcripts. Expressing the transgenes from distinct promoters allows for the ability to operably link the coding sequences to different promoter types, which can drive expression of the transgenes at different levels, at different times in the cell cycle, in different cell types, or under the control of different inducers or repressors.
[0430] A modified herpes virus genome is also constructed that includes a cassette expressing a single mRNA encoding a Collagen alpha-1 (VII) chain polypeptide and a Lysyl hydroxylase 3 polypeptide separated by an internal ribosomal entry site (FIG. 1E). This allows for approximately equimolar production of each polypeptide when expressed in a target cell. Finally, a modified herpes virus genome is constructed that includes a cassette expressing a chimeric polypeptide. This chimeric polypeptide includes, from N-terminus to C-terminus, a Collagen alpha-1 (VII) chain polypeptide, a cleavable peptide linker, and a Lysyl hydroxylase 3 polypeptide (FIG. IF).
[0431] Additional modified herpes virus genomes are constructed that include two cassettes, each expressing Collagen alpha-1 (VII) chain polypeptides, where each cassette is inserted into a copy of the ICP4 gene locus (FIGS. 2B-2G) of the wild-type herpes simplex virus genome (FIG. 2A). These additional recombinant herpes virus genomes are constructed with various combinations of herpes virus gene deletions/modifications.
[0432] A recombinant herpes virus genome is constructed which contains deletions of the coding sequences of both copies of the ICP4 gene, as well as deletions of the coding sequences of the ICP27 and UL55 genes. These recombinant viruses are further modified to contain inactivating mutations in the promoter regions of the ICP22 and ICP47 genes such that the ICP22 and ICP47genes are not expressed with normal kinetics (FIG. 2B).
[0433] Further recombinant herpes simplex viruses are constructed which incorporate expression cassettes for Collagen alpha-1 (VII) chain polypeptides into both loci of the herpes ICP4 genes. These recombinant viruses include: viruses containing deletions of the coding sequences of the ICP22 gene and both copies of the ICP4 gene (FIG. 2C); deletions of the coding sequences of the ICP0 gene and both copies of the ICP4 gene (FIG. 2D); deletions of the coding sequences of the ICP0 and ICP22 genes, and both copies of the ICP4 gene (FIG. 2E); deletions of the coding sequences of the ICP0, ICP22, and ICP27 genes, and both copies of the ICP4 gene (FIG. 2F); and deletions of the coding sequences of the ICP0, ICP22, ICP27, andUL55 genes, and both copies of the ICP4 gene (FIG. 2G). Additional vectors are constructed based upon the vectors shown in FIGS. 2C-2G which further comprise one or more transgenes encoding one or more additional effectors (e.g., LH3, KRT17) in the ICP0 and/or UL41 loci.
[0434] These modified herpes simplex virus genome vectors are transfected into engineered Vero cells that are modified to express herpes virus genes. These engineered Vero cells secrete replication-defective herpes simplex virus with the modified genomes packaged within into the supernatant. The supernatant is then collected, concentrated, and sterile filtered through a 5.mu.m filter.
Example 2
Rescuing Col7 Expression with Replication Defective HSV-1
[0435] The following example describes the construction of a replication defective herpes simplex type-1 virus modified to express the human COL7A1 gene, and use of such a viral vector to rescue several defects observed in cells isolated from RDEB patients.
[0436] Methods
Cells and Cell Culture
[0437] Normal and RDEB human dermal fibroblasts and keratinocytes were isolated as described previously (NG, Y. Z. et al. (2012) Cancer Res. 72: 3522-3534; Rheinwald, J. G. and Green, H. (1975) Cell 6: 331-42). Cells were cultured according to standard techniques. Construction of KB103
[0438] The KB103 vector was generated from D3GFP, a replication-defective HSV-1 vector backbone harboring GFP in place of the viral ICP4. The sequence of the GFP in D3GFP was replaced with the coding sequence of human COL7A1 using a transfer plasmid by cloning COL7A1 into the EcoRI site of the ICP4 recombination plasmid pSASB3. A mixed transfection/infection of the COL7A1 containing transfer plasmid and D3GFP vector was performed on VeroD cells. Resulting plaques which did not express GFP were isolated and tested by western blot for Col7 protein expression.
Virus Purification
[0439] KB103 virus was purified according to standard techniques (See Diefenbach, R. and Fraefel, C. Herpes Simplex Virus. New York: Humana Press, 2014).
Viral Infections
[0440] Cells were seeded in duplicates or triplicates in six-well plates at approximately 50% confluency one day prior to viral infection. An additional well was seeded in parallel for cell counting and MOI determination. 24 hours after cell seeding, cells from one well were trypsinized and counted to calculate the MOI, and viral stocks were thawed and diluted in cell culture medium to achieve the desired MOI. Culture medium was aspirated from each well to be infected, and 500 .mu.L of KB103-containing medium (or control medium) was added to each well. Plates were incubated at 37.degree. C. with 5-7.5% CO.sub.2 for 1.5-2 hours with intermittent rocking every 15-20 minutes, then 1.5-2 mL of complete cell culture medium was added to each well, and the plates were incubated for 24-72 hours at 37.degree. C. After incubation, the cells and supernatants were harvested and processed for analysis.
mRNA Quantification
[0441] Col7 transcripts were amplified from RNA isolated from primary RDEB keratinocytes after infection using a SYBR PCR assay (Sybr Select Master Mix, Life Technologies) according to the manufacturer's protocol. Col7 transcript levels were normalized to (3-actin transcript levels.
Western Blot Analysis
[0442] Cell lysates were generated from cells 48 hours post-infection, and western blots were carried out according to standard techniques using the following antibodies: rabbit anti-human Col7 polyclonal antibody (Sigma, Cat. # HPA042420), mouse anti-human GAPDH antibody (Santa Cruz Biotechnology, Cat. # sc-365062), rabbit anti-LH3 antibody (Protein Tech, Cat. # 11027-1-AP), and mouse anti-TSP1 antibody (Santa Cruz Biotechnology, Cat. # sc-59887).
Immunofluorescence
[0443] Cells were plated on cover slips prior to infection, fixed 48 hours post-infection, and stained with a primary rabbit anti-human Col7 polyclonal antibody (Sigma, Cat. # HPA042420), washed, and further stained with a fluorescently labelled anti-rabbit secondary antibody (Invitrogen, Cat. 3 A11012). Cell nuclei were stained with DAPI using standard techniques.
Cellular Adhesion
[0444] 96-well plates were coated with10, 20, or 50 .mu.g/mL rat tail Collagen 1 (Marathon Laboratory Supply) or human fibronectin (Sigma-Aldrich) in 100 .mu.L reaction volume at 4.degree. C. overnight, then washed with PBS, and blocked with PBS+0.1% BSA for 1 hour at 37.degree. C. Mock (control) infected or KB103 infected RDEB keratinocytes (2.4*10.sup.4 cells in 100 .mu.L of DMEM/HamF12+0.1% BSA) were added to the plates and incubated at 37.degree. C. for 40-90 minutes. Wells were washed three times with PBS to remove any unbound cells, and adherent cells were fixed with PFE for 20 minutes. The fixed cells were then treated with 70% ethanol, stained with crystal violet, resolved in 100% ethanol, and were quantified by measuring absorbance at 630 nm.
Skin Equivalent (SE) Organotypic Cultures
[0445] A skin equivalent organotypic culture composed of RDEB fibroblasts and keratinocytes was used to evaluate the expression of Col7 at the basement membrane zone (BMZ). Briefly, RDEB fibroblasts (2*10.sup.5 cells per well) were embedded in fibrin gel matrix in six-well plates and incubated in DMEM+10% serum containing ascorbic acid and aprotinin for 24 hours at 37.degree. C. and 5% CO.sub.2. RDEB keratinocytes (1*10.sup.6 cells per well) were then seeded on the matrix, grown to confluence in DMEM/F-12 keratinocyte medium containing 50 mg/mL of ascorbic acid, and raised at the air-liquid interface. Two days post raising, KB103 virus was added to the cultures (at an MOI of 3) and incubated for 1.5 hours. Following incubation, cultures were washed and incubated for 5-14 days to favor stratification and differentiation into an epithelium. Skin equivalents (SEs) were manually detached from the plates and embedded in optimal cutting temperature compound, frozen in liquid nitrogen, and cut into 6 mm sections for immunofluorescence staining with a monoclonal anti-Col7 antibody.
[0446] Results
KB103 Pharmacology in Normal and RDEB Cells
[0447] A number of ex vivo approaches have been undertaken to deliver the human COL7A1 gene to primary cells isolated from RDEB patients in an attempt to correct Col7 deficiencies (Ortiz-Urda, S. et al. (2003) J Clin. Invest. 111(2) 251-5; Woodley, D.T. et al. (2003) J. Invest. Dematol. 121(5) 1021-8). Although successful in achieving durable correction of key disease features, an ex vivo gene delivery strategy for treating epidermolysis bullosa has a number of key disadvantages, including high cost, poor graft takes, surgical debridement, complex bandaging and wound care, and the high potential for post-surgical infection. An attractive alternate route for gene therapy is the use of viral or non-viral vectors to deliver gene products. However, non-viral vectors using plasmid DNA suffer from very low gene transfer efficiency when injected or topically administered, while the most widely used viral vectors in human gene therapy trials (retroviral vectors) do not infect non-dividing cells. This is problematic for gene delivery to the skin, as manipulation of the tissue (such as wounding) to create an adequate population of dividing cells would be required for retroviral gene therapy. Large-capacity adenoviral vectors can deliver genome-sized transcription units and survive in transduced cells for long periods of time, but the toxicity and immunogenicity of adenoviral particles, as well as the requirements for helper virus during vector production, remain as significant hurdles for their use in human gene therapy strategies. While replication-defective HSV vectors have been employed as delivery vehicles in a number of pre-clinical studies, no pre-clinical evidence supporting the use of HSV-based viral vectors for epidermolysis bullosa or other dermatological applications has been reported.
[0448] To this end, a replication defective herpes simplex type-1 virus (HSV-1) encoding the human COL7A1 gene was developed as a novel vector useful for gene therapy treatment of DEB patients. An HSV-1 virus was modified to harbor complete deletions of the viral ICP4, ICP27, and UL55 genes, with the ICP4 deletion resulting in the removal of the upstream promoter sequences driving the transcription of the immediate early viral genes ICP22 and ICP47. The virus was further modified to include a human cytomegalovirus (HCMV) immediate early promoter-driven human COL7A1 expression cassette encoded within both copies of the deleted ICP4 loci, resulting in a replication-defective HSV-1 vector, termed KB103, suitable for delivering human COL7A1 to target cells (FIG. 3).
[0449] To test the ability of KB103 to deliver and express Col7 in human cells, and to rescue Col7 deficiencies in RDEB patients, patient-derived human dermal fibroblasts and keratinocytes were isolated from healthy individuals, as well as individuals suffering from RDEB, and these primary cells were infected with KB103 at various MOIs. 24-72 hours post infection, COL7A1 gene expression was measured by real-time PCR in transduced cells, while Col7 protein expression was analyzed in parallel by both western blot and immunofluorescence analysis.
[0450] Dose-dependent increases in COL7A1 gene expression were observed in RDEB keratinocytes (FIG. 4A) and fibroblasts (FIG. 4B) infected with KB103. KB103 infection increased COL7A1 gene expression by approximately 7.5 fold, 12.5 fold, and 25 fold in RDEB keratinocytes infected at an MOI of 0.3, 1, and 3, respectively (FIG. 4A). Surprisingly, even more drastic changes in COL7A1 gene expression was observed in infected RDEB fibroblasts. While infections at an MOI of 0.1 and 0.3 showed moderate increases in COL7A1 gene expression, an approximate 30 fold increase in COL7A1 gene expression was measured for RDEB fibroblasts infected at an MOI of 1, while a 60 fold increase was observed in this cell type infected at an MOI of 3. This data showed that COL7A1 gene expression was massively upregulated in RDEB primary cells after infection with KB103.
[0451] Consequently, robust Col7 protein expression was also observed in cells infected with KB103. Col7 protein expression was detected in both normal and RDEB keratinocytes (FIG. 5A) and fibroblasts (FIG. 5B) 48 hours after infection with KB103 at an MOI of 0.3, 1, and 3, with an apparent dose-dependent increase in Col7 protein expression observed at higher viral titers. Expression of Col7 was observed in both the supernatants and cell lysates from infected cells. Surprisingly, RDEB fibroblasts infected at an MOI of 0.3 showed higher levels of Col7 than was observed in uninfected normal fibroblasts (FIG. 5B), suggesting complete rescue of Col7 expression in RDEB fibroblasts using KB103, even at low viral titers. No obvious effects on cell morphology using high viral doses (MOI of 3) were observed. Additionally, no negative impacts on fibroblast or keratinocyte cell proliferation using high doses of KB103 were indicated in these experiments, as determined by GAPDH expression.
[0452] In agreement with the above experiments, a robust and dose-dependent increase in Col7 protein expression was confirmed in normal and RDEB cells infected with KB103, as demonstrated by immunofluorescent detection of Col7 protein expression (FIG. 6). As expected, no Col7 protein was detected in uninfected RDEB human dermal fibroblasts or keratinocytes; limited Col7 protein was detected in uninfected normal keratinocytes and fibroblasts. However, infection with KB103 was capable of rescuing Col7 protein expression in RDEB fibroblasts and keratinocytes at or above the levels observed in uninfected normal cells. Furthermore, infection efficiency of KB103 (at an MOI of 3) was calculated to be >95% based on an assessment of three or more independent panels for each infected replicate, showing that KB103 efficiently delivered and expressed the COL7A1 expression cassette. Taken together, this data suggested that KB103 was capable of delivering and expressing COL7A1 in normal and RDEB primary cells, and that KB103 was well tolerated by both human dermal fibroblasts and keratinocytes. Functional assessment of KB103 in RDEB cells
[0453] The functionality of the human Col7 protein expressed from KB103 was next investigated in human dermal fibroblasts and keratinocytes. First, the effect of Col7 expression on the levels of lysyl hydroxylase 3 was tested in KB103-infected cells. LH3 is required for the deposition and organization of extracellular matrix, and it has been reported that LH3 levels are reduced in RDEB skin (Watt, S. A. et al. (2015) PLoS One 10(9): p. e0137639). Little to no LH3 was observed in uninfected RDEB keratinocytes relative to normal keratinocytes (FIG. 7, lanes 1 vs. 5), in agreement with previous studies. However, unexpectedly, a dose-dependent increase in LH3 levels, concomitant with increased Col7 protein expression, was observed in RDEB keratinocytes infected with KB103 (FIG. 7), suggesting that KB103 was capable of rescuing not only Col7 protein expression, but also LH3 expression in RDEB cells.
[0454] Next, the effect of Col7 expression on TSP-1 levels was tested. TSP-1 is a negative regulator of angiogenesis, and has been reported to be increased in RDEB fibroblasts (Ng, Y. Z. et al. (2012) Cancer Res. 72(14): p. 3522-34). In agreement with previous studies, higher levels of TSP-1 were observed in uninfected RDEB vs. normal human dermal fibroblasts (FIG. 8, lanes 1 and 4). Surprisingly, TSP-1 protein expression was robustly inhibited upon infection of either normal or RDEB fibroblasts infected with KB103 (FIG. 8). This data suggested that KB103 may not only increase Col7 and LH3 levels in infected cells, but may also promote angiogenesis by inhibiting the negative regulator TSP-1.
[0455] Finally, the ability of KB103 to increase cellular adherence of RDEB keratinocytes to either Collagen 1 or Fibronectin was tested. A dose-dependent increase in cellular adherence to both Collagen 1 and Fibronectin was observed in RDEB keratinocytes infected with KB103 at various MOIs (FIGS. 9A and 9B). Infection of RDEB keratinocytes at all MOIs tested showed higher adhesion to wells treated with all concentrations of both substrates relative to uninfected (control) cells. Taken together, this data indicated that the human Col7 protein expressed from KB103 was functional in the transduced cells. Functionality of this protein was indicated by its ability to increase LH3 protein levels, decrease TSP-1 protein levels, and improve cellular adherence to both Collagen 1 and Fibronectin relative to mock-infected samples. KB103 pharmacology and toxicity in RDEB organotypic cultures
[0456] A skin equivalent (SE) organotypic culture composed of RDEB fibroblasts and keratinocytes was used to evaluate the expression of Col7 protein expressed from KB103 at the Basement Membrane Zone (BMZ). RDEB fibroblasts and keratinocytes were mock infected or infected with KB103 at an MOI of 3, and incubated for 5 days to favor stratification and differentiation into epithelium. The resulting skin equivalents (SEs) were isolated, sectioned, and stained for immunofluorescence to detect Col7 protein expression. Col7 expression was detected in these organotypic cultures from cells infected with KB103, and the initiation of Col7 protein deposition at the BMZ was observed relative to mock-infected controls (FIG. 10). This data suggested that not only could KB103 deliver COL7A1 and express Col7 protein efficiently, but the Col7 protein began to organize in organotypic cultures similar to the pattern of organization expected for Col7 protein in vivo.
[0457] Taken as whole, these experiments revealed, for the first time, that a replication-defective HSV-1 vector may be employed as a vehicle for delivering a COL7Alexpression cassette into primary cells isolated from epidermolysis bullosa patients. Moreover, these data revealed that Col7 protein could be expressed at high levels from this expression cassette in two different human cell types from healthy individuals, as well as individuals suffering from a dermatological disorder. Finally, the Col7 protein was shown to be functional, as it was capable of increasing expression of LH3, decreasing expression ofTSP-1, increasing cellular adherence to Collagen 1 and Fibronectin, and could organize in organotypic cultures in a pattern similar to the organization of Col7 in vivo. Without wishing to be bound by theory, the data presented herein suggests that KB103 and other HSV-1 vectors may be useful as novel in vivo treatment strategies for epidermolysis bullosa and/or other dermatological applications.
Example 3
In Vivo Col7 Expression using Replication Defective HSV-1
[0458] The following example describes the use of a replication defective herpes simplex type-1 virus (modified to contain a human COL7A1 transgene) as a delivery vehicle for expression of human Col7 protein in vivo.
Methods
Construction and Purification of KB103
[0459] The KB103 virus was constructed and purified as described in Example 2 above. Viral infections
[0460] KB103 virus was delivered to wild-type Balb/c or skhl-elite mice by intradermal injection as follows: each animal was injected once at 2-4 sites within the flank region of the animal with lx10.sup.8 plaque forming units (PFU) of virus /site in a volume of 50 .mu.L. Animals were sacrificed 48 hours post KB103 administration, and the inject sites were harvested and processed for either real time qPCR or immunofluorescence analysis.
[0461] For qPCR analysis, skin tissue was dissected down to the fascia using a 6 mm punch biopsy tool. The biopsy was bisected into two pieces, and each piece was snap frozen using liquid nitrogen. Total RNA and DNA were isolated from one half of the biopsy using the Qiagen AllPrep DNA/RNA kit.
[0462] For immunofluorescence analysis, a circular area approximately one cm in diameter was excised from skin at the injection site, cut in half, and mounted in OCT so that the central portion of the circular area was facing upward. The prepared samples were freeze plunged into liquid nitrogen cooled isopentane, and stored at -80.degree. C. mRNA quantification
[0463] Col7 transcripts were amplified from RNA isolated from mouse dermal tissue after KB103 injection using a 2-step protocol: 1) cDNA synthesis was carried out using the superscript III First Strand Synthesis kit (Thermofisher, Cat. # 18-080-051), and 2) qPCR amplification was performed using the Quantitect Probe PCR kit (Qiagen, Cat. # 204345) according to the manufacturer's protocol. 10Ong of cDNA was used in each reaction. Col7 transcript levels were normalized to GAPDH transcript levels.
Genome Copy Quantification
[0464] The copy number of KB103 viral genomes in the KB103 injected mice was quantified by qPCR amplification using the Quantitect Probe PCR kit (Qiagen Cat. # 204345). 10Ong of mouse genomic DNA was used in each reaction, and mouse genomic GAPDH was used as a control.
Immunofluorescence
[0465] Tissue sections from mice injected with KB103 were fixed, and subsequently stained with a primary rabbit anti-human Col7 polyclonal antibody (Sigma, Cat. # HPA042420), washed, and further stained with a fluorescently labelled anti-rabbit secondary antibody (Invitrogen, Cat. 3 A11012). Cell nuclei were stained with DAPI using standard techniques.
Results
[0466] To test the ability of KB103 to successfully deliver and express human Col7 protein in vivo, mice were intradermally administered the KB103 virus. Viral genome copy number in infected mouse tissue was assessed, and delivery of high levels (>1,000,000 viral genome copies/10Ong mouse DNA) of the KB103 viral genome was observed in the mice (FIG. 11). Next, the ability of the ability of the virus to express human Col7 in vivo was examined. Quantification of human Col7 transcripts in KB103-infected mice were measured and assessed compared to expression of a control mouse housekeeping gene. High levels of human Col7 transcript were observed in the infected mouse tissue (FIG. 11), suggesting that the delivered viral genomes were capable of successfully expressing their human gene cargo. Finally, the ability of KB103 to express Col7 protein was tested in the infected mice. Mouse dermal tissue was excised from mice after infection, and Col7 protein expression was assessed by immunohistochemical staining of the mouse tissue. High levels of human Col7 protein were detected after tissue staining (FIG. 12). Surprisingly, not only was human Col7 protein expressed from the KB103 virus in mouse dermis, but the initiation of deposition of human Col7 at the Basement Membrane Zone in KB103-infected mice was observed (FIG. 12). Without wishing to be bound by theory, this data suggests that: 1) the KB103 virus can successfully infect relevant tissue in vivo, delivering high genome copy numbers to these tissues tissue, 2) delivery of the KB103 virus to relevant tissue results in significant expression of the encoded human genes on this virus, and 3) KB103 not only successfully expresses human Col7 protein in vivo, but this protein is capable of beginning to organize (e.g. at the Basement Membrane Zone) in a way suggesting its ability to rescue endogenous Col7 defects in affected individuals.
Sequence CWU
1
1
3018835DNAHomo sapiens 1atgacgctgc ggcttctggt ggccgcgctc tgcgccggga
tcctggcaga ggcgccccga 60gtgcgagccc agcacaggga gagagtgacc tgcacgcgcc
tttacgccgc tgacattgtg 120ttcttactgg atggctcctc atccattggc cgcagcaatt
tccgcgaggt ccgcagcttt 180ctcgaagggc tggtgctgcc tttctctgga gcagccagtg
cacagggtgt gcgctttgcc 240acagtgcagt acagcgatga cccacggaca gagttcggcc
tggatgcact tggctctggg 300ggtgatgtga tccgcgccat ccgtgagctt agctacaagg
ggggcaacac tcgcacaggg 360gctgcaattc tccatgtggc tgaccatgtc ttcctgcccc
agctggcccg acctggtgtc 420cccaaggtct gcatcctgat cacagacggg aagtcccagg
acctggtgga cacagctgcc 480caaaggctga aggggcaggg ggtcaagcta tttgctgtgg
ggatcaagaa tgctgaccct 540gaggagctga agcgagttgc ctcacagccc accagtgact
tcttcttctt cgtcaatgac 600ttcagcatct tgaggacact actgcccctc gtttcccgga
gagtgtgcac gactgctggt 660ggcgtgcctg tgacccgacc tccggatgac tcgacctctg
ctccacgaga cctggtgctg 720tctgagccaa gcagccaatc cttgagagta cagtggacag
cggccagtgg ccctgtgact 780ggctacaagg tccagtacac tcctctgacg gggctgggac
agccactgcc gagtgagcgg 840caggaggtga acgtcccagc tggtgagacc agtgtgcggc
tgcggggtct ccggccactg 900accgagtacc aagtgactgt gattgccctc tacgccaaca
gcatcgggga ggctgtgagc 960gggacagctc ggaccactgc cctagaaggg ccggaactga
ccatccagaa taccacagcc 1020cacagcctcc tggtggcctg gcggagtgtg ccaggtgcca
ctggctaccg tgtgacatgg 1080cgggtcctca gtggtgggcc cacacagcag caggagctgg
gccctgggca gggttcagtg 1140ttgctgcgtg acttggagcc tggcacggac tatgaggtga
ccgtgagcac cctatttggc 1200cgcagtgtgg ggcccgccac ttccctgatg gctcgcactg
acgcttctgt tgagcagacc 1260ctgcgcccgg tcatcctggg ccccacatcc atcctccttt
cctggaactt ggtgcctgag 1320gcccgtggct accggttgga atggcggcgt gagactggct
tggagccacc gcagaaggtg 1380gtactgccct ctgatgtgac ccgctaccag ttggatgggc
tgcagccggg cactgagtac 1440cgcctcacac tctacactct gctggagggc cacgaggtgg
ccacccctgc aaccgtggtt 1500cccactggac cagagctgcc tgtgagccct gtaacagacc
tgcaagccac cgagctgccc 1560gggcagcggg tgcgagtgtc ctggagccca gtccctggtg
ccacccagta ccgcatcatt 1620gtgcgcagca cccagggggt tgagcggacc ctggtgcttc
ctgggagtca gacagcattc 1680gacttggatg acgttcaggc tgggcttagc tacactgtgc
gggtgtctgc tcgagtgggt 1740ccccgtgagg gcagtgccag tgtcctcact gtccgccggg
agccggaaac tccacttgct 1800gttccagggc tgcgggttgt ggtgtcagat gcaacgcgag
tgagggtggc ctggggaccc 1860gtccctggag ccagtggatt tcggattagc tggagcacag
gcagtggtcc ggagtccagc 1920cagacactgc ccccagactc tactgccaca gacatcacag
ggctgcagcc tggaaccacc 1980taccaggtgg ctgtgtcggt actgcgaggc agagaggagg
gccctgctgc agtcatcgtg 2040gctcgaacgg acccactggg cccagtgagg acggtccatg
tgactcaggc cagcagctca 2100tctgtcacca ttacctggac cagggttcct ggcgccacag
gatacagggt ttcctggcac 2160tcagcccacg gcccagagaa atcccagttg gtttctgggg
aggccacggt ggctgagctg 2220gatggactgg agccagatac tgagtatacg gtgcatgtga
gggcccatgt ggctggcgtg 2280gatgggcccc ctgcctctgt ggttgtgagg actgcccctg
agcctgtggg tcgtgtgtcg 2340aggctgcaga tcctcaatgc ttccagcgac gttctacgga
tcacctgggt aggggtcact 2400ggagccacag cttacagact ggcctggggc cggagtgaag
gcggccccat gaggcaccag 2460atactcccag gaaacacaga ctctgcagag atccggggtc
tcgaaggtgg agtcagctac 2520tcagtgcgag tgactgcact tgtcggggac cgcgagggca
cacctgtctc cattgttgtc 2580actacgccgc ctgaggctcc gccagccctg gggacgcttc
acgtggtgca gcgcggggag 2640cactcgctga ggctgcgctg ggagccggtg cccagagcgc
agggcttcct tctgcactgg 2700caacctgagg gtggccagga acagtcccgg gtcctggggc
ccgagctcag cagctatcac 2760ctggacgggc tggagccagc gacacagtac cgcgtgaggc
tgagtgtcct agggccagct 2820ggagaagggc cctctgcaga ggtgactgcg cgcactgagt
cacctcgtgt tccaagcatt 2880gaactacgtg tggtggacac ctcgatcgac tcggtgactt
tggcctggac tccagtgtcc 2940agggcatcca gctacatcct atcctggcgg ccactcagag
gccctggcca ggaagtgcct 3000gggtccccgc agacacttcc agggatctca agctcccagc
gggtgacagg gctagagcct 3060ggcgtctctt acatcttctc cctgacgcct gtcctggatg
gtgtgcgggg tcctgaggca 3120tctgtcacac agacgccagt gtgcccccgt ggcctggcgg
atgtggtgtt cctaccacat 3180gccactcaag acaatgctca ccgtgcggag gctacgagga
gggtcctgga gcgtctggtg 3240ttggcacttg ggcctcttgg gccacaggca gttcaggttg
gcctgctgtc ttacagtcat 3300cggccctccc cactgttccc actgaatggc tcccatgacc
ttggcattat cttgcaaagg 3360atccgtgaca tgccctacat ggacccaagt gggaacaacc
tgggcacagc cgtggtcaca 3420gctcacagat acatgttggc accagatgct cctgggcgcc
gccagcacgt accaggggtg 3480atggttctgc tagtggatga acccttgaga ggtgacatat
tcagccccat ccgtgaggcc 3540caggcttctg ggcttaatgt ggtgatgttg ggaatggctg
gagcggaccc agagcagctg 3600cgtcgcttgg cgccgggtat ggactctgtc cagaccttct
tcgccgtgga tgatgggcca 3660agcctggacc aggcagtcag tggtctggcc acagccctgt
gtcaggcatc cttcactact 3720cagccccggc cagagccctg cccagtgtat tgtccaaagg
gccagaaggg ggaacctgga 3780gagatgggcc tgagaggaca agttgggcct cctggcgacc
ctggcctccc gggcaggacc 3840ggtgctcccg gcccccaggg gccccctgga agtgccactg
ccaagggcga gaggggcttc 3900cctggagcag atgggcgtcc aggcagccct ggccgcgccg
ggaatcctgg gacccctgga 3960gcccctggcc taaagggctc tccagggttg cctggccctc
gtggggaccc gggagagcga 4020ggacctcgag gcccaaaggg ggagccgggg gctcccggac
aagtcatcgg aggtgaagga 4080cctgggcttc ctgggcggaa aggggaccct ggaccatcgg
gcccccctgg acctcgtgga 4140ccactggggg acccaggacc ccgtggcccc ccagggcttc
ctggaacagc catgaagggt 4200gacaaaggcg atcgtgggga gcggggtccc cctggaccag
gtgaaggtgg cattgctcct 4260ggggagcctg ggctgccggg tcttcccgga agccctggac
cccaaggccc cgttggcccc 4320cctggaaaga aaggagaaaa aggtgactct gaggatggag
ctccaggcct cccaggacaa 4380cctgggtctc cgggtgagca gggcccacgg ggacctcctg
gagctattgg ccccaaaggt 4440gaccggggct ttccagggcc cctgggtgag gctggagaga
agggcgaacg tggaccccca 4500ggcccagcgg gatcccgggg gctgccaggg gttgctggac
gtcctggagc caagggtcct 4560gaagggccac caggacccac tggccgccaa ggagagaagg
gggagcctgg tcgccctggg 4620gaccctgcag tggtgggacc tgctgttgct ggacccaaag
gagaaaaggg agatgtgggg 4680cccgctgggc ccagaggagc taccggagtc caaggggaac
ggggcccacc cggcttggtt 4740cttcctggag accctggccc caagggagac cctggagacc
ggggtcccat tggccttact 4800ggcagagcag gacccccagg tgactcaggg cctcctggag
agaagggaga ccctgggcgg 4860cctggccccc caggacctgt tggcccccga ggacgagatg
gtgaagttgg agagaaaggt 4920gacgagggtc ctccgggtga cccgggtttg cctggaaaag
caggcgagcg tggccttcgg 4980ggggcacctg gagttcgggg gcctgtgggt gaaaagggag
accagggaga tcctggagag 5040gatggacgaa atggcagccc tggatcatct ggacccaagg
gtgaccgtgg ggagccgggt 5100cccccaggac ccccgggacg gctggtagac acaggacctg
gagccagaga gaagggagag 5160cctggggacc gcggacaaga gggtcctcga gggcccaagg
gtgatcctgg cctccctgga 5220gcccctgggg aaaggggcat tgaagggttt cggggacccc
caggcccaca gggggaccca 5280ggtgtccgag gcccagcagg agaaaagggt gaccggggtc
cccctgggct ggatggccgg 5340agcggactgg atgggaaacc aggagccgct gggccctctg
ggccgaatgg tgctgcaggc 5400aaagctgggg acccagggag agacgggctt ccaggcctcc
gtggagaaca gggcctccct 5460ggcccctctg gtccccctgg attaccggga aagccaggcg
aggatggcaa acctggcctg 5520aatggaaaaa acggagaacc tggggaccct ggagaagacg
ggaggaaggg agagaaagga 5580gattcaggcg cctctgggag agaaggtcgt gatggcccca
agggtgagcg tggagctcct 5640ggtatccttg gaccccaggg gcctccaggc ctcccagggc
cagtgggccc tcctggccag 5700ggttttcctg gtgtcccagg aggcacgggc cccaagggtg
accgtgggga gactggatcc 5760aaaggggagc agggcctccc tggagagcgt ggcctgcgag
gagagcctgg aagtgtgccg 5820aatgtggatc ggttgctgga aactgctggc atcaaggcat
ctgccctgcg ggagatcgtg 5880gagacctggg atgagagctc tggtagcttc ctgcctgtgc
ccgaacggcg tcgaggcccc 5940aagggggact caggcgaaca gggcccccca ggcaaggagg
gccccatcgg ctttcctgga 6000gaacgcgggc tgaagggcga ccgtggagac cctggccctc
aggggccacc tggtctggcc 6060cttggggaga ggggcccccc cgggccttcc ggccttgccg
gggagcctgg aaagcctggt 6120attcccgggc tcccaggcag ggctgggggt gtgggagagg
caggaaggcc aggagagagg 6180ggagaacggg gagagaaagg agaacgtgga gaacagggca
gagatggccc tcctggactc 6240cctggaaccc ctgggccccc cggaccccct ggccccaagg
tgtctgtgga tgagccaggt 6300cctggactct ctggagaaca gggaccccct ggactcaagg
gtgctaaggg ggagccgggc 6360agcaatggtg accaaggtcc caaaggagac aggggtgtgc
caggcatcaa aggagaccgg 6420ggagagcctg gaccgagggg tcaggacggc aacccgggtc
taccaggaga gcgtggtatg 6480gctgggcctg aagggaagcc gggtctgcag ggtccaagag
gcccccctgg cccagtgggt 6540ggtcatggag accctggacc acctggtgcc ccgggtcttg
ctggccctgc aggaccccaa 6600ggaccttctg gcctgaaggg ggagcctgga gagacaggac
ctccaggacg gggcctgact 6660ggacctactg gagctgtggg acttcctgga ccccccggcc
cttcaggcct tgtgggtcca 6720caggggtctc caggtttgcc tggacaagtg ggggagacag
ggaagccggg agccccaggt 6780cgagatggtg ccagtggaaa agatggagac agagggagcc
ctggtgtgcc agggtcacca 6840ggtctgcctg gccctgtcgg acctaaagga gaacctggcc
ccacgggggc ccctggacag 6900gctgtggtcg ggctccctgg agcaaaggga gagaagggag
cccctggagg ccttgctgga 6960gacctggtgg gtgagccggg agccaaaggt gaccgaggac
tgccagggcc gcgaggcgag 7020aagggtgaag ctggccgtgc aggggagccc ggagaccctg
gggaagatgg tcagaaaggg 7080gctccaggac ccaaaggttt caagggtgac ccaggagtcg
gggtcccggg ctcccctggg 7140cctcctggcc ctccaggtgt gaagggagat ctgggcctcc
ctggcctgcc cggtgctcct 7200ggtgttgttg ggttcccggg tcagacaggc cctcgaggag
agatgggtca gccaggccct 7260agtggagagc ggggtctggc aggcccccca gggagagaag
gaatcccagg acccctgggg 7320ccacctggac caccggggtc agtgggacca cctggggcct
ctggactcaa aggagacaag 7380ggagaccctg gagtagggct gcctgggccc cgaggcgagc
gtggggagcc aggcatccgg 7440ggtgaagatg gccgccccgg ccaggaggga ccccgaggac
tcacggggcc ccctggcagc 7500aggggagagc gtggggagaa gggtgatgtt gggagtgcag
gactaaaggg tgacaaggga 7560gactcagctg tgatcctggg gcctccaggc ccacggggtg
ccaaggggga catgggtgaa 7620cgagggcctc ggggcttgga tggtgacaaa ggacctcggg
gagacaatgg ggaccctggt 7680gacaagggca gcaagggaga gcctggtgac aagggctcag
ccgggttgcc aggactgcgt 7740ggactcctgg gaccccaggg tcaacctggt gcagcaggga
tccctggtga cccgggatcc 7800ccaggaaagg atggagtgcc tggtatccga ggagaaaaag
gagatgttgg cttcatgggt 7860ccccggggcc tcaagggtga acggggagtg aagggagcct
gtggccttga tggagagaag 7920ggagacaagg gagaagctgg tcccccaggc cgccccgggc
tggcaggaca caaaggagag 7980atgggggagc ctggtgtgcc gggccagtcg ggggcccctg
gcaaggaggg cctgatcggt 8040cccaagggtg accgaggctt tgacgggcag ccaggcccca
agggtgacca gggcgagaaa 8100ggggagcggg gaaccccagg aattgggggc ttcccaggcc
ccagtggaaa tgatggctct 8160gctggtcccc cagggccacc tggcagtgtt ggtcccagag
gccccgaagg acttcagggc 8220cagaagggtg agcgaggtcc ccccggagag agagtggtgg
gggctcctgg ggtccctgga 8280gctcctggcg agagagggga gcaggggcgg ccagggcctg
ccggtcctcg aggcgagaag 8340ggagaagctg cactgacgga ggatgacatc cggggctttg
tgcgccaaga gatgagtcag 8400cactgtgcct gccagggcca gttcatcgca tctggatcac
gacccctccc tagttatgct 8460gcagacactg ccggctccca gctccatgct gtgcctgtgc
tccgcgtctc tcatgcagag 8520gaggaagagc gggtaccccc tgaggatgat gagtactctg
aatactccga gtattctgtg 8580gaggagtacc aggaccctga agctccttgg gatagtgatg
acccctgttc cctgccactg 8640gatgagggct cctgcactgc ctacaccctg cgctggtacc
atcgggctgt gacaggcagc 8700acagaggcct gtcacccttt tgtctatggt ggctgtggag
ggaatgccaa ccgttttggg 8760acccgtgagg cctgcgagcg ccgctgccca ccccgggtgg
tccagagcca ggggacaggt 8820actgcccagg actga
883522944PRTHomo sapiens 2Met Thr Leu Arg Leu Leu
Val Ala Ala Leu Cys Ala Gly Ile Leu Ala1 5
10 15Glu Ala Pro Arg Val Arg Ala Gln His Arg Glu Arg
Val Thr Cys Thr 20 25 30Arg
Leu Tyr Ala Ala Asp Ile Val Phe Leu Leu Asp Gly Ser Ser Ser 35
40 45Ile Gly Arg Ser Asn Phe Arg Glu Val
Arg Ser Phe Leu Glu Gly Leu 50 55
60Val Leu Pro Phe Ser Gly Ala Ala Ser Ala Gln Gly Val Arg Phe Ala65
70 75 80Thr Val Gln Tyr Ser
Asp Asp Pro Arg Thr Glu Phe Gly Leu Asp Ala 85
90 95Leu Gly Ser Gly Gly Asp Val Ile Arg Ala Ile
Arg Glu Leu Ser Tyr 100 105
110Lys Gly Gly Asn Thr Arg Thr Gly Ala Ala Ile Leu His Val Ala Asp
115 120 125His Val Phe Leu Pro Gln Leu
Ala Arg Pro Gly Val Pro Lys Val Cys 130 135
140Ile Leu Ile Thr Asp Gly Lys Ser Gln Asp Leu Val Asp Thr Ala
Ala145 150 155 160Gln Arg
Leu Lys Gly Gln Gly Val Lys Leu Phe Ala Val Gly Ile Lys
165 170 175Asn Ala Asp Pro Glu Glu Leu
Lys Arg Val Ala Ser Gln Pro Thr Ser 180 185
190Asp Phe Phe Phe Phe Val Asn Asp Phe Ser Ile Leu Arg Thr
Leu Leu 195 200 205Pro Leu Val Ser
Arg Arg Val Cys Thr Thr Ala Gly Gly Val Pro Val 210
215 220Thr Arg Pro Pro Asp Asp Ser Thr Ser Ala Pro Arg
Asp Leu Val Leu225 230 235
240Ser Glu Pro Ser Ser Gln Ser Leu Arg Val Gln Trp Thr Ala Ala Ser
245 250 255Gly Pro Val Thr Gly
Tyr Lys Val Gln Tyr Thr Pro Leu Thr Gly Leu 260
265 270Gly Gln Pro Leu Pro Ser Glu Arg Gln Glu Val Asn
Val Pro Ala Gly 275 280 285Glu Thr
Ser Val Arg Leu Arg Gly Leu Arg Pro Leu Thr Glu Tyr Gln 290
295 300Val Thr Val Ile Ala Leu Tyr Ala Asn Ser Ile
Gly Glu Ala Val Ser305 310 315
320Gly Thr Ala Arg Thr Thr Ala Leu Glu Gly Pro Glu Leu Thr Ile Gln
325 330 335Asn Thr Thr Ala
His Ser Leu Leu Val Ala Trp Arg Ser Val Pro Gly 340
345 350Ala Thr Gly Tyr Arg Val Thr Trp Arg Val Leu
Ser Gly Gly Pro Thr 355 360 365Gln
Gln Gln Glu Leu Gly Pro Gly Gln Gly Ser Val Leu Leu Arg Asp 370
375 380Leu Glu Pro Gly Thr Asp Tyr Glu Val Thr
Val Ser Thr Leu Phe Gly385 390 395
400Arg Ser Val Gly Pro Ala Thr Ser Leu Met Ala Arg Thr Asp Ala
Ser 405 410 415Val Glu Gln
Thr Leu Arg Pro Val Ile Leu Gly Pro Thr Ser Ile Leu 420
425 430Leu Ser Trp Asn Leu Val Pro Glu Ala Arg
Gly Tyr Arg Leu Glu Trp 435 440
445Arg Arg Glu Thr Gly Leu Glu Pro Pro Gln Lys Val Val Leu Pro Ser 450
455 460Asp Val Thr Arg Tyr Gln Leu Asp
Gly Leu Gln Pro Gly Thr Glu Tyr465 470
475 480Arg Leu Thr Leu Tyr Thr Leu Leu Glu Gly His Glu
Val Ala Thr Pro 485 490
495Ala Thr Val Val Pro Thr Gly Pro Glu Leu Pro Val Ser Pro Val Thr
500 505 510Asp Leu Gln Ala Thr Glu
Leu Pro Gly Gln Arg Val Arg Val Ser Trp 515 520
525Ser Pro Val Pro Gly Ala Thr Gln Tyr Arg Ile Ile Val Arg
Ser Thr 530 535 540Gln Gly Val Glu Arg
Thr Leu Val Leu Pro Gly Ser Gln Thr Ala Phe545 550
555 560Asp Leu Asp Asp Val Gln Ala Gly Leu Ser
Tyr Thr Val Arg Val Ser 565 570
575Ala Arg Val Gly Pro Arg Glu Gly Ser Ala Ser Val Leu Thr Val Arg
580 585 590Arg Glu Pro Glu Thr
Pro Leu Ala Val Pro Gly Leu Arg Val Val Val 595
600 605Ser Asp Ala Thr Arg Val Arg Val Ala Trp Gly Pro
Val Pro Gly Ala 610 615 620Ser Gly Phe
Arg Ile Ser Trp Ser Thr Gly Ser Gly Pro Glu Ser Ser625
630 635 640Gln Thr Leu Pro Pro Asp Ser
Thr Ala Thr Asp Ile Thr Gly Leu Gln 645
650 655Pro Gly Thr Thr Tyr Gln Val Ala Val Ser Val Leu
Arg Gly Arg Glu 660 665 670Glu
Gly Pro Ala Ala Val Ile Val Ala Arg Thr Asp Pro Leu Gly Pro 675
680 685Val Arg Thr Val His Val Thr Gln Ala
Ser Ser Ser Ser Val Thr Ile 690 695
700Thr Trp Thr Arg Val Pro Gly Ala Thr Gly Tyr Arg Val Ser Trp His705
710 715 720Ser Ala His Gly
Pro Glu Lys Ser Gln Leu Val Ser Gly Glu Ala Thr 725
730 735Val Ala Glu Leu Asp Gly Leu Glu Pro Asp
Thr Glu Tyr Thr Val His 740 745
750Val Arg Ala His Val Ala Gly Val Asp Gly Pro Pro Ala Ser Val Val
755 760 765Val Arg Thr Ala Pro Glu Pro
Val Gly Arg Val Ser Arg Leu Gln Ile 770 775
780Leu Asn Ala Ser Ser Asp Val Leu Arg Ile Thr Trp Val Gly Val
Thr785 790 795 800Gly Ala
Thr Ala Tyr Arg Leu Ala Trp Gly Arg Ser Glu Gly Gly Pro
805 810 815Met Arg His Gln Ile Leu Pro
Gly Asn Thr Asp Ser Ala Glu Ile Arg 820 825
830Gly Leu Glu Gly Gly Val Ser Tyr Ser Val Arg Val Thr Ala
Leu Val 835 840 845Gly Asp Arg Glu
Gly Thr Pro Val Ser Ile Val Val Thr Thr Pro Pro 850
855 860Glu Ala Pro Pro Ala Leu Gly Thr Leu His Val Val
Gln Arg Gly Glu865 870 875
880His Ser Leu Arg Leu Arg Trp Glu Pro Val Pro Arg Ala Gln Gly Phe
885 890 895Leu Leu His Trp Gln
Pro Glu Gly Gly Gln Glu Gln Ser Arg Val Leu 900
905 910Gly Pro Glu Leu Ser Ser Tyr His Leu Asp Gly Leu
Glu Pro Ala Thr 915 920 925Gln Tyr
Arg Val Arg Leu Ser Val Leu Gly Pro Ala Gly Glu Gly Pro 930
935 940Ser Ala Glu Val Thr Ala Arg Thr Glu Ser Pro
Arg Val Pro Ser Ile945 950 955
960Glu Leu Arg Val Val Asp Thr Ser Ile Asp Ser Val Thr Leu Ala Trp
965 970 975Thr Pro Val Ser
Arg Ala Ser Ser Tyr Ile Leu Ser Trp Arg Pro Leu 980
985 990Arg Gly Pro Gly Gln Glu Val Pro Gly Ser Pro
Gln Thr Leu Pro Gly 995 1000
1005Ile Ser Ser Ser Gln Arg Val Thr Gly Leu Glu Pro Gly Val Ser Tyr
1010 1015 1020Ile Phe Ser Leu Thr Pro Val
Leu Asp Gly Val Arg Gly Pro Glu Ala1025 1030
1035 1040Ser Val Thr Gln Thr Pro Val Cys Pro Arg Gly Leu
Ala Asp Val Val 1045 1050
1055Phe Leu Pro His Ala Thr Gln Asp Asn Ala His Arg Ala Glu Ala Thr
1060 1065 1070Arg Arg Val Leu Glu Arg
Leu Val Leu Ala Leu Gly Pro Leu Gly Pro 1075 1080
1085Gln Ala Val Gln Val Gly Leu Leu Ser Tyr Ser His Arg Pro
Ser Pro 1090 1095 1100Leu Phe Pro Leu
Asn Gly Ser His Asp Leu Gly Ile Ile Leu Gln Arg1105 1110
1115 1120Ile Arg Asp Met Pro Tyr Met Asp Pro
Ser Gly Asn Asn Leu Gly Thr 1125 1130
1135Ala Val Val Thr Ala His Arg Tyr Met Leu Ala Pro Asp Ala Pro
Gly 1140 1145 1150Arg Arg Gln
His Val Pro Gly Val Met Val Leu Leu Val Asp Glu Pro 1155
1160 1165Leu Arg Gly Asp Ile Phe Ser Pro Ile Arg Glu
Ala Gln Ala Ser Gly 1170 1175 1180Leu
Asn Val Val Met Leu Gly Met Ala Gly Ala Asp Pro Glu Gln Leu1185
1190 1195 1200Arg Arg Leu Ala Pro Gly
Met Asp Ser Val Gln Thr Phe Phe Ala Val 1205
1210 1215Asp Asp Gly Pro Ser Leu Asp Gln Ala Val Ser Gly
Leu Ala Thr Ala 1220 1225
1230Leu Cys Gln Ala Ser Phe Thr Thr Gln Pro Arg Pro Glu Pro Cys Pro
1235 1240 1245Val Tyr Cys Pro Lys Gly Gln
Lys Gly Glu Pro Gly Glu Met Gly Leu 1250 1255
1260Arg Gly Gln Val Gly Pro Pro Gly Asp Pro Gly Leu Pro Gly Arg
Thr1265 1270 1275 1280Gly Ala
Pro Gly Pro Gln Gly Pro Pro Gly Ser Ala Thr Ala Lys Gly
1285 1290 1295Glu Arg Gly Phe Pro Gly Ala
Asp Gly Arg Pro Gly Ser Pro Gly Arg 1300 1305
1310Ala Gly Asn Pro Gly Thr Pro Gly Ala Pro Gly Leu Lys Gly
Ser Pro 1315 1320 1325Gly Leu Pro
Gly Pro Arg Gly Asp Pro Gly Glu Arg Gly Pro Arg Gly 1330
1335 1340Pro Lys Gly Glu Pro Gly Ala Pro Gly Gln Val Ile
Gly Gly Glu Gly1345 1350 1355
1360Pro Gly Leu Pro Gly Arg Lys Gly Asp Pro Gly Pro Ser Gly Pro Pro
1365 1370 1375Gly Pro Arg Gly Pro
Leu Gly Asp Pro Gly Pro Arg Gly Pro Pro Gly 1380
1385 1390Leu Pro Gly Thr Ala Met Lys Gly Asp Lys Gly Asp
Arg Gly Glu Arg 1395 1400 1405Gly
Pro Pro Gly Pro Gly Glu Gly Gly Ile Ala Pro Gly Glu Pro Gly 1410
1415 1420Leu Pro Gly Leu Pro Gly Ser Pro Gly Pro
Gln Gly Pro Val Gly Pro1425 1430 1435
1440Pro Gly Lys Lys Gly Glu Lys Gly Asp Ser Glu Asp Gly Ala Pro
Gly 1445 1450 1455Leu Pro
Gly Gln Pro Gly Ser Pro Gly Glu Gln Gly Pro Arg Gly Pro 1460
1465 1470Pro Gly Ala Ile Gly Pro Lys Gly Asp
Arg Gly Phe Pro Gly Pro Leu 1475 1480
1485Gly Glu Ala Gly Glu Lys Gly Glu Arg Gly Pro Pro Gly Pro Ala Gly
1490 1495 1500Ser Arg Gly Leu Pro Gly Val
Ala Gly Arg Pro Gly Ala Lys Gly Pro1505 1510
1515 1520Glu Gly Pro Pro Gly Pro Thr Gly Arg Gln Gly Glu
Lys Gly Glu Pro 1525 1530
1535Gly Arg Pro Gly Asp Pro Ala Val Val Gly Pro Ala Val Ala Gly Pro
1540 1545 1550Lys Gly Glu Lys Gly Asp
Val Gly Pro Ala Gly Pro Arg Gly Ala Thr 1555 1560
1565Gly Val Gln Gly Glu Arg Gly Pro Pro Gly Leu Val Leu Pro
Gly Asp 1570 1575 1580Pro Gly Pro Lys
Gly Asp Pro Gly Asp Arg Gly Pro Ile Gly Leu Thr1585 1590
1595 1600Gly Arg Ala Gly Pro Pro Gly Asp Ser
Gly Pro Pro Gly Glu Lys Gly 1605 1610
1615Asp Pro Gly Arg Pro Gly Pro Pro Gly Pro Val Gly Pro Arg Gly
Arg 1620 1625 1630Asp Gly Glu
Val Gly Glu Lys Gly Asp Glu Gly Pro Pro Gly Asp Pro 1635
1640 1645Gly Leu Pro Gly Lys Ala Gly Glu Arg Gly Leu
Arg Gly Ala Pro Gly 1650 1655 1660Val
Arg Gly Pro Val Gly Glu Lys Gly Asp Gln Gly Asp Pro Gly Glu1665
1670 1675 1680Asp Gly Arg Asn Gly Ser
Pro Gly Ser Ser Gly Pro Lys Gly Asp Arg 1685
1690 1695Gly Glu Pro Gly Pro Pro Gly Pro Pro Gly Arg Leu
Val Asp Thr Gly 1700 1705
1710Pro Gly Ala Arg Glu Lys Gly Glu Pro Gly Asp Arg Gly Gln Glu Gly
1715 1720 1725Pro Arg Gly Pro Lys Gly Asp
Pro Gly Leu Pro Gly Ala Pro Gly Glu 1730 1735
1740Arg Gly Ile Glu Gly Phe Arg Gly Pro Pro Gly Pro Gln Gly Asp
Pro1745 1750 1755 1760Gly Val
Arg Gly Pro Ala Gly Glu Lys Gly Asp Arg Gly Pro Pro Gly
1765 1770 1775Leu Asp Gly Arg Ser Gly Leu
Asp Gly Lys Pro Gly Ala Ala Gly Pro 1780 1785
1790Ser Gly Pro Asn Gly Ala Ala Gly Lys Ala Gly Asp Pro Gly
Arg Asp 1795 1800 1805Gly Leu Pro
Gly Leu Arg Gly Glu Gln Gly Leu Pro Gly Pro Ser Gly 1810
1815 1820Pro Pro Gly Leu Pro Gly Lys Pro Gly Glu Asp Gly
Lys Pro Gly Leu1825 1830 1835
1840Asn Gly Lys Asn Gly Glu Pro Gly Asp Pro Gly Glu Asp Gly Arg Lys
1845 1850 1855Gly Glu Lys Gly Asp
Ser Gly Ala Ser Gly Arg Glu Gly Arg Asp Gly 1860
1865 1870Pro Lys Gly Glu Arg Gly Ala Pro Gly Ile Leu Gly
Pro Gln Gly Pro 1875 1880 1885Pro
Gly Leu Pro Gly Pro Val Gly Pro Pro Gly Gln Gly Phe Pro Gly 1890
1895 1900Val Pro Gly Gly Thr Gly Pro Lys Gly Asp
Arg Gly Glu Thr Gly Ser1905 1910 1915
1920Lys Gly Glu Gln Gly Leu Pro Gly Glu Arg Gly Leu Arg Gly Glu
Pro 1925 1930 1935Gly Ser
Val Pro Asn Val Asp Arg Leu Leu Glu Thr Ala Gly Ile Lys 1940
1945 1950Ala Ser Ala Leu Arg Glu Ile Val Glu
Thr Trp Asp Glu Ser Ser Gly 1955 1960
1965Ser Phe Leu Pro Val Pro Glu Arg Arg Arg Gly Pro Lys Gly Asp Ser
1970 1975 1980Gly Glu Gln Gly Pro Pro Gly
Lys Glu Gly Pro Ile Gly Phe Pro Gly1985 1990
1995 2000Glu Arg Gly Leu Lys Gly Asp Arg Gly Asp Pro Gly
Pro Gln Gly Pro 2005 2010
2015Pro Gly Leu Ala Leu Gly Glu Arg Gly Pro Pro Gly Pro Ser Gly Leu
2020 2025 2030Ala Gly Glu Pro Gly Lys
Pro Gly Ile Pro Gly Leu Pro Gly Arg Ala 2035 2040
2045Gly Gly Val Gly Glu Ala Gly Arg Pro Gly Glu Arg Gly Glu
Arg Gly 2050 2055 2060Glu Lys Gly Glu
Arg Gly Glu Gln Gly Arg Asp Gly Pro Pro Gly Leu2065 2070
2075 2080Pro Gly Thr Pro Gly Pro Pro Gly Pro
Pro Gly Pro Lys Val Ser Val 2085 2090
2095Asp Glu Pro Gly Pro Gly Leu Ser Gly Glu Gln Gly Pro Pro Gly
Leu 2100 2105 2110Lys Gly Ala
Lys Gly Glu Pro Gly Ser Asn Gly Asp Gln Gly Pro Lys 2115
2120 2125Gly Asp Arg Gly Val Pro Gly Ile Lys Gly Asp
Arg Gly Glu Pro Gly 2130 2135 2140Pro
Arg Gly Gln Asp Gly Asn Pro Gly Leu Pro Gly Glu Arg Gly Met2145
2150 2155 2160Ala Gly Pro Glu Gly Lys
Pro Gly Leu Gln Gly Pro Arg Gly Pro Pro 2165
2170 2175Gly Pro Val Gly Gly His Gly Asp Pro Gly Pro Pro
Gly Ala Pro Gly 2180 2185
2190Leu Ala Gly Pro Ala Gly Pro Gln Gly Pro Ser Gly Leu Lys Gly Glu
2195 2200 2205Pro Gly Glu Thr Gly Pro Pro
Gly Arg Gly Leu Thr Gly Pro Thr Gly 2210 2215
2220Ala Val Gly Leu Pro Gly Pro Pro Gly Pro Ser Gly Leu Val Gly
Pro2225 2230 2235 2240Gln Gly
Ser Pro Gly Leu Pro Gly Gln Val Gly Glu Thr Gly Lys Pro
2245 2250 2255Gly Ala Pro Gly Arg Asp Gly
Ala Ser Gly Lys Asp Gly Asp Arg Gly 2260 2265
2270Ser Pro Gly Val Pro Gly Ser Pro Gly Leu Pro Gly Pro Val
Gly Pro 2275 2280 2285Lys Gly Glu
Pro Gly Pro Thr Gly Ala Pro Gly Gln Ala Val Val Gly 2290
2295 2300Leu Pro Gly Ala Lys Gly Glu Lys Gly Ala Pro Gly
Gly Leu Ala Gly2305 2310 2315
2320Asp Leu Val Gly Glu Pro Gly Ala Lys Gly Asp Arg Gly Leu Pro Gly
2325 2330 2335Pro Arg Gly Glu Lys
Gly Glu Ala Gly Arg Ala Gly Glu Pro Gly Asp 2340
2345 2350Pro Gly Glu Asp Gly Gln Lys Gly Ala Pro Gly Pro
Lys Gly Phe Lys 2355 2360 2365Gly
Asp Pro Gly Val Gly Val Pro Gly Ser Pro Gly Pro Pro Gly Pro 2370
2375 2380Pro Gly Val Lys Gly Asp Leu Gly Leu Pro
Gly Leu Pro Gly Ala Pro2385 2390 2395
2400Gly Val Val Gly Phe Pro Gly Gln Thr Gly Pro Arg Gly Glu Met
Gly 2405 2410 2415Gln Pro
Gly Pro Ser Gly Glu Arg Gly Leu Ala Gly Pro Pro Gly Arg 2420
2425 2430Glu Gly Ile Pro Gly Pro Leu Gly Pro
Pro Gly Pro Pro Gly Ser Val 2435 2440
2445Gly Pro Pro Gly Ala Ser Gly Leu Lys Gly Asp Lys Gly Asp Pro Gly
2450 2455 2460Val Gly Leu Pro Gly Pro Arg
Gly Glu Arg Gly Glu Pro Gly Ile Arg2465 2470
2475 2480Gly Glu Asp Gly Arg Pro Gly Gln Glu Gly Pro Arg
Gly Leu Thr Gly 2485 2490
2495Pro Pro Gly Ser Arg Gly Glu Arg Gly Glu Lys Gly Asp Val Gly Ser
2500 2505 2510Ala Gly Leu Lys Gly Asp
Lys Gly Asp Ser Ala Val Ile Leu Gly Pro 2515 2520
2525Pro Gly Pro Arg Gly Ala Lys Gly Asp Met Gly Glu Arg Gly
Pro Arg 2530 2535 2540Gly Leu Asp Gly
Asp Lys Gly Pro Arg Gly Asp Asn Gly Asp Pro Gly2545 2550
2555 2560Asp Lys Gly Ser Lys Gly Glu Pro Gly
Asp Lys Gly Ser Ala Gly Leu 2565 2570
2575Pro Gly Leu Arg Gly Leu Leu Gly Pro Gln Gly Gln Pro Gly Ala
Ala 2580 2585 2590Gly Ile Pro
Gly Asp Pro Gly Ser Pro Gly Lys Asp Gly Val Pro Gly 2595
2600 2605Ile Arg Gly Glu Lys Gly Asp Val Gly Phe Met
Gly Pro Arg Gly Leu 2610 2615 2620Lys
Gly Glu Arg Gly Val Lys Gly Ala Cys Gly Leu Asp Gly Glu Lys2625
2630 2635 2640Gly Asp Lys Gly Glu Ala
Gly Pro Pro Gly Arg Pro Gly Leu Ala Gly 2645
2650 2655His Lys Gly Glu Met Gly Glu Pro Gly Val Pro Gly
Gln Ser Gly Ala 2660 2665
2670Pro Gly Lys Glu Gly Leu Ile Gly Pro Lys Gly Asp Arg Gly Phe Asp
2675 2680 2685Gly Gln Pro Gly Pro Lys Gly
Asp Gln Gly Glu Lys Gly Glu Arg Gly 2690 2695
2700Thr Pro Gly Ile Gly Gly Phe Pro Gly Pro Ser Gly Asn Asp Gly
Ser2705 2710 2715 2720Ala Gly
Pro Pro Gly Pro Pro Gly Ser Val Gly Pro Arg Gly Pro Glu
2725 2730 2735Gly Leu Gln Gly Gln Lys Gly
Glu Arg Gly Pro Pro Gly Glu Arg Val 2740 2745
2750Val Gly Ala Pro Gly Val Pro Gly Ala Pro Gly Glu Arg Gly
Glu Gln 2755 2760 2765Gly Arg Pro
Gly Pro Ala Gly Pro Arg Gly Glu Lys Gly Glu Ala Ala 2770
2775 2780Leu Thr Glu Asp Asp Ile Arg Gly Phe Val Arg Gln
Glu Met Ser Gln2785 2790 2795
2800His Cys Ala Cys Gln Gly Gln Phe Ile Ala Ser Gly Ser Arg Pro Leu
2805 2810 2815Pro Ser Tyr Ala Ala
Asp Thr Ala Gly Ser Gln Leu His Ala Val Pro 2820
2825 2830Val Leu Arg Val Ser His Ala Glu Glu Glu Glu Arg
Val Pro Pro Glu 2835 2840 2845Asp
Asp Glu Tyr Ser Glu Tyr Ser Glu Tyr Ser Val Glu Glu Tyr Gln 2850
2855 2860Asp Pro Glu Ala Pro Trp Asp Ser Asp Asp
Pro Cys Ser Leu Pro Leu2865 2870 2875
2880Asp Glu Gly Ser Cys Thr Ala Tyr Thr Leu Arg Trp Tyr His Arg
Ala 2885 2890 2895Val Thr
Gly Ser Thr Glu Ala Cys His Pro Phe Val Tyr Gly Gly Cys 2900
2905 2910Gly Gly Asn Ala Asn Arg Phe Gly Thr
Arg Glu Ala Cys Glu Arg Arg 2915 2920
2925Cys Pro Pro Arg Val Val Gln Ser Gln Gly Thr Gly Thr Ala Gln Asp
2930 2935 294032217DNAHomo sapiens
3atgacctcct cggggcctgg accccggttc ctgctgctgc tgccgctgct gctgccccct
60gcggcctcag cctccgaccg gccccggggc cgagacccgg tcaacccaga gaagctgctg
120gtgatcactg tggccacagc tgaaaccgag gggtacctgc gtttcctgcg ctctgcggag
180ttcttcaact acactgtgcg gaccctgggc ctgggagagg agtggcgagg gggtgatgtg
240gctcgaacag ttggtggagg acagaaggtc cggtggttaa agaaggaaat ggagaaatac
300gctgaccggg aggatatgat catcatgttt gtggatagct acgacgtgat tctggccggc
360agccccacag agctgctgaa gaagttcgtc cagagtggca gccgcctgct cttctctgca
420gagagcttct gctggcccga gtgggggctg gcggagcagt accctgaggt gggcacgggg
480aagcgcttcc tcaattctgg tggattcatc ggttttgcca ccaccatcca ccaaatcgtg
540cgccagtgga agtacaagga tgatgacgac gaccagctgt tctacacacg gctctacctg
600gacccaggac tgagggagaa actcagcctt aatctggatc ataagtctcg gatctttcag
660aacctcaacg gggctttaga tgaagtggtt ttaaagtttg atcggaaccg tgtgcgtatc
720cggaacgtgg cctacgacac gctccccatt gtggtccatg gaaacggtcc cactaagctg
780cagctcaact acctgggaaa ctacgtcccc aatggctgga ctcctgaggg aggctgtggc
840ttctgcaacc aggaccggag gacactcccg ggggggcagc ctcccccccg ggtgtttctg
900gccgtgtttg tggaacagcc tactccgttt ctgccccgct tcctgcagcg gctgctactc
960ctggactatc cccccgacag ggtcaccctt ttcctgcaca acaacgaggt cttccatgaa
1020ccccacatcg ctgactcctg gccgcagctc caggaccact tctcagctgt gaagctcgtg
1080gggccggagg aggctctgag cccaggcgag gccagggaca tggccatgga cctgtgtcgg
1140caggaccccg agtgtgagtt ctacttcagc ctggacgccg acgctgtcct caccaacctg
1200cagaccctgc gtatcctcat tgaggagaac aggaaggtga tcgcccccat gctgtcccgc
1260cacggcaagc tgtggtccaa cttctggggc gccctgagcc ccgatgagta ctacgcccgc
1320tccgaggact acgtggagct ggtgcagcgg aagcgagtgg gtgtgtggaa tgtaccatac
1380atctcccagg cctatgtgat ccggggtgat accctgcgga tggagctgcc ccagagggat
1440gtgttctcgg gcagtgacac agacccggac atggccttct gtaagagctt tcgagacaag
1500ggcatcttcc tccatctgag caatcagcat gaatttggcc ggctcctggc cacttccaga
1560tacgacacgg agcacctgca ccccgacctc tggcagatct tcgacaaccc cgtcgactgg
1620aaggagcagt acatccacga gaactacagc cgggccctgg aaggggaagg aatcgtggag
1680cagccatgcc cggacgtgta ctggttccca ctgctgtcag aacaaatgtg tgatgagctg
1740gtggcagaga tggagcacta cggccagtgg tcaggcggcc ggcatgagga ttcaaggctg
1800gctggaggct acgagaatgt gcccaccgtg gacatccaca tgaagcaggt ggggtacgag
1860gaccagtggc tgcagctgct gcggacgtat gtgggcccca tgaccgagag cctgtttccc
1920ggttaccaca ccaaggcgcg ggcggtgatg aactttgtgg ttcgctaccg gccagacgag
1980cagccgtctc tgcggccaca ccacgactca tccaccttca ccctcaacgt tgccctcaac
2040cacaagggcc tggactatga gggaggtggc tgccgcttcc tgcgctacga ctgtgtgatc
2100tcctccccga ggaagggctg ggcactcctg caccccggcc gcctcaccca ctaccacgag
2160gggctgccaa cgacctgggg cacacgctac atcatggtgt cctttgtcga cccctga
22174738PRTHomo sapiens 4Met Thr Ser Ser Gly Pro Gly Pro Arg Phe Leu Leu
Leu Leu Pro Leu1 5 10
15Leu Leu Pro Pro Ala Ala Ser Ala Ser Asp Arg Pro Arg Gly Arg Asp
20 25 30Pro Val Asn Pro Glu Lys Leu
Leu Val Ile Thr Val Ala Thr Ala Glu 35 40
45Thr Glu Gly Tyr Leu Arg Phe Leu Arg Ser Ala Glu Phe Phe Asn
Tyr 50 55 60Thr Val Arg Thr Leu Gly
Leu Gly Glu Glu Trp Arg Gly Gly Asp Val65 70
75 80Ala Arg Thr Val Gly Gly Gly Gln Lys Val Arg
Trp Leu Lys Lys Glu 85 90
95Met Glu Lys Tyr Ala Asp Arg Glu Asp Met Ile Ile Met Phe Val Asp
100 105 110Ser Tyr Asp Val Ile Leu
Ala Gly Ser Pro Thr Glu Leu Leu Lys Lys 115 120
125Phe Val Gln Ser Gly Ser Arg Leu Leu Phe Ser Ala Glu Ser
Phe Cys 130 135 140Trp Pro Glu Trp Gly
Leu Ala Glu Gln Tyr Pro Glu Val Gly Thr Gly145 150
155 160Lys Arg Phe Leu Asn Ser Gly Gly Phe Ile
Gly Phe Ala Thr Thr Ile 165 170
175His Gln Ile Val Arg Gln Trp Lys Tyr Lys Asp Asp Asp Asp Asp Gln
180 185 190Leu Phe Tyr Thr Arg
Leu Tyr Leu Asp Pro Gly Leu Arg Glu Lys Leu 195
200 205Ser Leu Asn Leu Asp His Lys Ser Arg Ile Phe Gln
Asn Leu Asn Gly 210 215 220Ala Leu Asp
Glu Val Val Leu Lys Phe Asp Arg Asn Arg Val Arg Ile225
230 235 240Arg Asn Val Ala Tyr Asp Thr
Leu Pro Ile Val Val His Gly Asn Gly 245
250 255Pro Thr Lys Leu Gln Leu Asn Tyr Leu Gly Asn Tyr
Val Pro Asn Gly 260 265 270Trp
Thr Pro Glu Gly Gly Cys Gly Phe Cys Asn Gln Asp Arg Arg Thr 275
280 285Leu Pro Gly Gly Gln Pro Pro Pro Arg
Val Phe Leu Ala Val Phe Val 290 295
300Glu Gln Pro Thr Pro Phe Leu Pro Arg Phe Leu Gln Arg Leu Leu Leu305
310 315 320Leu Asp Tyr Pro
Pro Asp Arg Val Thr Leu Phe Leu His Asn Asn Glu 325
330 335Val Phe His Glu Pro His Ile Ala Asp Ser
Trp Pro Gln Leu Gln Asp 340 345
350His Phe Ser Ala Val Lys Leu Val Gly Pro Glu Glu Ala Leu Ser Pro
355 360 365Gly Glu Ala Arg Asp Met Ala
Met Asp Leu Cys Arg Gln Asp Pro Glu 370 375
380Cys Glu Phe Tyr Phe Ser Leu Asp Ala Asp Ala Val Leu Thr Asn
Leu385 390 395 400Gln Thr
Leu Arg Ile Leu Ile Glu Glu Asn Arg Lys Val Ile Ala Pro
405 410 415Met Leu Ser Arg His Gly Lys
Leu Trp Ser Asn Phe Trp Gly Ala Leu 420 425
430Ser Pro Asp Glu Tyr Tyr Ala Arg Ser Glu Asp Tyr Val Glu
Leu Val 435 440 445Gln Arg Lys Arg
Val Gly Val Trp Asn Val Pro Tyr Ile Ser Gln Ala 450
455 460Tyr Val Ile Arg Gly Asp Thr Leu Arg Met Glu Leu
Pro Gln Arg Asp465 470 475
480Val Phe Ser Gly Ser Asp Thr Asp Pro Asp Met Ala Phe Cys Lys Ser
485 490 495Phe Arg Asp Lys Gly
Ile Phe Leu His Leu Ser Asn Gln His Glu Phe 500
505 510Gly Arg Leu Leu Ala Thr Ser Arg Tyr Asp Thr Glu
His Leu His Pro 515 520 525Asp Leu
Trp Gln Ile Phe Asp Asn Pro Val Asp Trp Lys Glu Gln Tyr 530
535 540Ile His Glu Asn Tyr Ser Arg Ala Leu Glu Gly
Glu Gly Ile Val Glu545 550 555
560Gln Pro Cys Pro Asp Val Tyr Trp Phe Pro Leu Leu Ser Glu Gln Met
565 570 575Cys Asp Glu Leu
Val Ala Glu Met Glu His Tyr Gly Gln Trp Ser Gly 580
585 590Gly Arg His Glu Asp Ser Arg Leu Ala Gly Gly
Tyr Glu Asn Val Pro 595 600 605Thr
Val Asp Ile His Met Lys Gln Val Gly Tyr Glu Asp Gln Trp Leu 610
615 620Gln Leu Leu Arg Thr Tyr Val Gly Pro Met
Thr Glu Ser Leu Phe Pro625 630 635
640Gly Tyr His Thr Lys Ala Arg Ala Val Met Asn Phe Val Val Arg
Tyr 645 650 655Arg Pro Asp
Glu Gln Pro Ser Leu Arg Pro His His Asp Ser Ser Thr 660
665 670Phe Thr Leu Asn Val Ala Leu Asn His Lys
Gly Leu Asp Tyr Glu Gly 675 680
685Gly Gly Cys Arg Phe Leu Arg Tyr Asp Cys Val Ile Ser Ser Pro Arg 690
695 700Lys Gly Trp Ala Leu Leu His Pro
Gly Arg Leu Thr His Tyr His Glu705 710
715 720Gly Leu Pro Thr Thr Trp Gly Thr Arg Tyr Ile Met
Val Ser Phe Val 725 730
735Asp Pro575DNAArtificial SequenceSynthetic Construct 5agggccaaga
ggggcagcgg cgagggcagg ggcagcctgc tgacctgcgg cgacgtggag 60gagaaccccg
gcccc
75625PRTArtificial SequenceSynthetic Construct 6Arg Ala Lys Arg Gly Ser
Gly Glu Gly Arg Gly Ser Leu Leu Thr Cys1 5
10 15Gly Asp Val Glu Glu Asn Pro Gly Pro 20
25766DNAArtificial SequenceSynthetic Construct
7ggaagcggag ctactaactt cagcctgctg aagcaggctg gagacgtgga ggagaaccct
60ggacct
66822PRTArtificial SequenceSynthetic Construct 8Gly Ser Gly Ala Thr Asn
Phe Ser Leu Leu Lys Gln Ala Gly Asp Val1 5
10 15Glu Glu Asn Pro Gly Pro
20969DNAArtificial SequenceSynthetic Construct 9ggaagcggac agtgtactaa
ttatgctctc ttgaaattgg ctggagatgt tgagagcaac 60cctggacct
691023PRTArtificial
SequenceSynthetic Construct 10Gly Ser Gly Gln Cys Thr Asn Tyr Ala Leu Leu
Lys Leu Ala Gly Asp1 5 10
15Val Glu Ser Asn Pro Gly Pro 201175DNAArtificial
SequenceSynthetic Construct 11ggaagcggag tgaaacagac tttgaatttt gaccttctca
agttggcggg agacgtggag 60tccaaccctg gacct
751225PRTArtificial SequenceSynthetic Construct
12Gly Ser Gly Val Lys Gln Thr Leu Asn Phe Asp Leu Leu Lys Leu Ala1
5 10 15Gly Asp Val Glu Ser Asn
Pro Gly Pro 20 251311121DNAArtificial
SequenceSynthetic Construct 13atgacgctgc ggcttctggt ggccgcgctc tgcgccggga
tcctggcaga ggcgccccga 60gtgcgagccc agcacaggga gagagtgacc tgcacgcgcc
tttacgccgc tgacattgtg 120ttcttactgg atggctcctc atccattggc cgcagcaatt
tccgcgaggt ccgcagcttt 180ctcgaagggc tggtgctgcc tttctctgga gcagccagtg
cacagggtgt gcgctttgcc 240acagtgcagt acagcgatga cccacggaca gagttcggcc
tggatgcact tggctctggg 300ggtgatgtga tccgcgccat ccgtgagctt agctacaagg
ggggcaacac tcgcacaggg 360gctgcaattc tccatgtggc tgaccatgtc ttcctgcccc
agctggcccg acctggtgtc 420cccaaggtct gcatcctgat cacagacggg aagtcccagg
acctggtgga cacagctgcc 480caaaggctga aggggcaggg ggtcaagcta tttgctgtgg
ggatcaagaa tgctgaccct 540gaggagctga agcgagttgc ctcacagccc accagtgact
tcttcttctt cgtcaatgac 600ttcagcatct tgaggacact actgcccctc gtttcccgga
gagtgtgcac gactgctggt 660ggcgtgcctg tgacccgacc tccggatgac tcgacctctg
ctccacgaga cctggtgctg 720tctgagccaa gcagccaatc cttgagagta cagtggacag
cggccagtgg ccctgtgact 780ggctacaagg tccagtacac tcctctgacg gggctgggac
agccactgcc gagtgagcgg 840caggaggtga acgtcccagc tggtgagacc agtgtgcggc
tgcggggtct ccggccactg 900accgagtacc aagtgactgt gattgccctc tacgccaaca
gcatcgggga ggctgtgagc 960gggacagctc ggaccactgc cctagaaggg ccggaactga
ccatccagaa taccacagcc 1020cacagcctcc tggtggcctg gcggagtgtg ccaggtgcca
ctggctaccg tgtgacatgg 1080cgggtcctca gtggtgggcc cacacagcag caggagctgg
gccctgggca gggttcagtg 1140ttgctgcgtg acttggagcc tggcacggac tatgaggtga
ccgtgagcac cctatttggc 1200cgcagtgtgg ggcccgccac ttccctgatg gctcgcactg
acgcttctgt tgagcagacc 1260ctgcgcccgg tcatcctggg ccccacatcc atcctccttt
cctggaactt ggtgcctgag 1320gcccgtggct accggttgga atggcggcgt gagactggct
tggagccacc gcagaaggtg 1380gtactgccct ctgatgtgac ccgctaccag ttggatgggc
tgcagccggg cactgagtac 1440cgcctcacac tctacactct gctggagggc cacgaggtgg
ccacccctgc aaccgtggtt 1500cccactggac cagagctgcc tgtgagccct gtaacagacc
tgcaagccac cgagctgccc 1560gggcagcggg tgcgagtgtc ctggagccca gtccctggtg
ccacccagta ccgcatcatt 1620gtgcgcagca cccagggggt tgagcggacc ctggtgcttc
ctgggagtca gacagcattc 1680gacttggatg acgttcaggc tgggcttagc tacactgtgc
gggtgtctgc tcgagtgggt 1740ccccgtgagg gcagtgccag tgtcctcact gtccgccggg
agccggaaac tccacttgct 1800gttccagggc tgcgggttgt ggtgtcagat gcaacgcgag
tgagggtggc ctggggaccc 1860gtccctggag ccagtggatt tcggattagc tggagcacag
gcagtggtcc ggagtccagc 1920cagacactgc ccccagactc tactgccaca gacatcacag
ggctgcagcc tggaaccacc 1980taccaggtgg ctgtgtcggt actgcgaggc agagaggagg
gccctgctgc agtcatcgtg 2040gctcgaacgg acccactggg cccagtgagg acggtccatg
tgactcaggc cagcagctca 2100tctgtcacca ttacctggac cagggttcct ggcgccacag
gatacagggt ttcctggcac 2160tcagcccacg gcccagagaa atcccagttg gtttctgggg
aggccacggt ggctgagctg 2220gatggactgg agccagatac tgagtatacg gtgcatgtga
gggcccatgt ggctggcgtg 2280gatgggcccc ctgcctctgt ggttgtgagg actgcccctg
agcctgtggg tcgtgtgtcg 2340aggctgcaga tcctcaatgc ttccagcgac gttctacgga
tcacctgggt aggggtcact 2400ggagccacag cttacagact ggcctggggc cggagtgaag
gcggccccat gaggcaccag 2460atactcccag gaaacacaga ctctgcagag atccggggtc
tcgaaggtgg agtcagctac 2520tcagtgcgag tgactgcact tgtcggggac cgcgagggca
cacctgtctc cattgttgtc 2580actacgccgc ctgaggctcc gccagccctg gggacgcttc
acgtggtgca gcgcggggag 2640cactcgctga ggctgcgctg ggagccggtg cccagagcgc
agggcttcct tctgcactgg 2700caacctgagg gtggccagga acagtcccgg gtcctggggc
ccgagctcag cagctatcac 2760ctggacgggc tggagccagc gacacagtac cgcgtgaggc
tgagtgtcct agggccagct 2820ggagaagggc cctctgcaga ggtgactgcg cgcactgagt
cacctcgtgt tccaagcatt 2880gaactacgtg tggtggacac ctcgatcgac tcggtgactt
tggcctggac tccagtgtcc 2940agggcatcca gctacatcct atcctggcgg ccactcagag
gccctggcca ggaagtgcct 3000gggtccccgc agacacttcc agggatctca agctcccagc
gggtgacagg gctagagcct 3060ggcgtctctt acatcttctc cctgacgcct gtcctggatg
gtgtgcgggg tcctgaggca 3120tctgtcacac agacgccagt gtgcccccgt ggcctggcgg
atgtggtgtt cctaccacat 3180gccactcaag acaatgctca ccgtgcggag gctacgagga
gggtcctgga gcgtctggtg 3240ttggcacttg ggcctcttgg gccacaggca gttcaggttg
gcctgctgtc ttacagtcat 3300cggccctccc cactgttccc actgaatggc tcccatgacc
ttggcattat cttgcaaagg 3360atccgtgaca tgccctacat ggacccaagt gggaacaacc
tgggcacagc cgtggtcaca 3420gctcacagat acatgttggc accagatgct cctgggcgcc
gccagcacgt accaggggtg 3480atggttctgc tagtggatga acccttgaga ggtgacatat
tcagccccat ccgtgaggcc 3540caggcttctg ggcttaatgt ggtgatgttg ggaatggctg
gagcggaccc agagcagctg 3600cgtcgcttgg cgccgggtat ggactctgtc cagaccttct
tcgccgtgga tgatgggcca 3660agcctggacc aggcagtcag tggtctggcc acagccctgt
gtcaggcatc cttcactact 3720cagccccggc cagagccctg cccagtgtat tgtccaaagg
gccagaaggg ggaacctgga 3780gagatgggcc tgagaggaca agttgggcct cctggcgacc
ctggcctccc gggcaggacc 3840ggtgctcccg gcccccaggg gccccctgga agtgccactg
ccaagggcga gaggggcttc 3900cctggagcag atgggcgtcc aggcagccct ggccgcgccg
ggaatcctgg gacccctgga 3960gcccctggcc taaagggctc tccagggttg cctggccctc
gtggggaccc gggagagcga 4020ggacctcgag gcccaaaggg ggagccgggg gctcccggac
aagtcatcgg aggtgaagga 4080cctgggcttc ctgggcggaa aggggaccct ggaccatcgg
gcccccctgg acctcgtgga 4140ccactggggg acccaggacc ccgtggcccc ccagggcttc
ctggaacagc catgaagggt 4200gacaaaggcg atcgtgggga gcggggtccc cctggaccag
gtgaaggtgg cattgctcct 4260ggggagcctg ggctgccggg tcttcccgga agccctggac
cccaaggccc cgttggcccc 4320cctggaaaga aaggagaaaa aggtgactct gaggatggag
ctccaggcct cccaggacaa 4380cctgggtctc cgggtgagca gggcccacgg ggacctcctg
gagctattgg ccccaaaggt 4440gaccggggct ttccagggcc cctgggtgag gctggagaga
agggcgaacg tggaccccca 4500ggcccagcgg gatcccgggg gctgccaggg gttgctggac
gtcctggagc caagggtcct 4560gaagggccac caggacccac tggccgccaa ggagagaagg
gggagcctgg tcgccctggg 4620gaccctgcag tggtgggacc tgctgttgct ggacccaaag
gagaaaaggg agatgtgggg 4680cccgctgggc ccagaggagc taccggagtc caaggggaac
ggggcccacc cggcttggtt 4740cttcctggag accctggccc caagggagac cctggagacc
ggggtcccat tggccttact 4800ggcagagcag gacccccagg tgactcaggg cctcctggag
agaagggaga ccctgggcgg 4860cctggccccc caggacctgt tggcccccga ggacgagatg
gtgaagttgg agagaaaggt 4920gacgagggtc ctccgggtga cccgggtttg cctggaaaag
caggcgagcg tggccttcgg 4980ggggcacctg gagttcgggg gcctgtgggt gaaaagggag
accagggaga tcctggagag 5040gatggacgaa atggcagccc tggatcatct ggacccaagg
gtgaccgtgg ggagccgggt 5100cccccaggac ccccgggacg gctggtagac acaggacctg
gagccagaga gaagggagag 5160cctggggacc gcggacaaga gggtcctcga gggcccaagg
gtgatcctgg cctccctgga 5220gcccctgggg aaaggggcat tgaagggttt cggggacccc
caggcccaca gggggaccca 5280ggtgtccgag gcccagcagg agaaaagggt gaccggggtc
cccctgggct ggatggccgg 5340agcggactgg atgggaaacc aggagccgct gggccctctg
ggccgaatgg tgctgcaggc 5400aaagctgggg acccagggag agacgggctt ccaggcctcc
gtggagaaca gggcctccct 5460ggcccctctg gtccccctgg attaccggga aagccaggcg
aggatggcaa acctggcctg 5520aatggaaaaa acggagaacc tggggaccct ggagaagacg
ggaggaaggg agagaaagga 5580gattcaggcg cctctgggag agaaggtcgt gatggcccca
agggtgagcg tggagctcct 5640ggtatccttg gaccccaggg gcctccaggc ctcccagggc
cagtgggccc tcctggccag 5700ggttttcctg gtgtcccagg aggcacgggc cccaagggtg
accgtgggga gactggatcc 5760aaaggggagc agggcctccc tggagagcgt ggcctgcgag
gagagcctgg aagtgtgccg 5820aatgtggatc ggttgctgga aactgctggc atcaaggcat
ctgccctgcg ggagatcgtg 5880gagacctggg atgagagctc tggtagcttc ctgcctgtgc
ccgaacggcg tcgaggcccc 5940aagggggact caggcgaaca gggcccccca ggcaaggagg
gccccatcgg ctttcctgga 6000gaacgcgggc tgaagggcga ccgtggagac cctggccctc
aggggccacc tggtctggcc 6060cttggggaga ggggcccccc cgggccttcc ggccttgccg
gggagcctgg aaagcctggt 6120attcccgggc tcccaggcag ggctgggggt gtgggagagg
caggaaggcc aggagagagg 6180ggagaacggg gagagaaagg agaacgtgga gaacagggca
gagatggccc tcctggactc 6240cctggaaccc ctgggccccc cggaccccct ggccccaagg
tgtctgtgga tgagccaggt 6300cctggactct ctggagaaca gggaccccct ggactcaagg
gtgctaaggg ggagccgggc 6360agcaatggtg accaaggtcc caaaggagac aggggtgtgc
caggcatcaa aggagaccgg 6420ggagagcctg gaccgagggg tcaggacggc aacccgggtc
taccaggaga gcgtggtatg 6480gctgggcctg aagggaagcc gggtctgcag ggtccaagag
gcccccctgg cccagtgggt 6540ggtcatggag accctggacc acctggtgcc ccgggtcttg
ctggccctgc aggaccccaa 6600ggaccttctg gcctgaaggg ggagcctgga gagacaggac
ctccaggacg gggcctgact 6660ggacctactg gagctgtggg acttcctgga ccccccggcc
cttcaggcct tgtgggtcca 6720caggggtctc caggtttgcc tggacaagtg ggggagacag
ggaagccggg agccccaggt 6780cgagatggtg ccagtggaaa agatggagac agagggagcc
ctggtgtgcc agggtcacca 6840ggtctgcctg gccctgtcgg acctaaagga gaacctggcc
ccacgggggc ccctggacag 6900gctgtggtcg ggctccctgg agcaaaggga gagaagggag
cccctggagg ccttgctgga 6960gacctggtgg gtgagccggg agccaaaggt gaccgaggac
tgccagggcc gcgaggcgag 7020aagggtgaag ctggccgtgc aggggagccc ggagaccctg
gggaagatgg tcagaaaggg 7080gctccaggac ccaaaggttt caagggtgac ccaggagtcg
gggtcccggg ctcccctggg 7140cctcctggcc ctccaggtgt gaagggagat ctgggcctcc
ctggcctgcc cggtgctcct 7200ggtgttgttg ggttcccggg tcagacaggc cctcgaggag
agatgggtca gccaggccct 7260agtggagagc ggggtctggc aggcccccca gggagagaag
gaatcccagg acccctgggg 7320ccacctggac caccggggtc agtgggacca cctggggcct
ctggactcaa aggagacaag 7380ggagaccctg gagtagggct gcctgggccc cgaggcgagc
gtggggagcc aggcatccgg 7440ggtgaagatg gccgccccgg ccaggaggga ccccgaggac
tcacggggcc ccctggcagc 7500aggggagagc gtggggagaa gggtgatgtt gggagtgcag
gactaaaggg tgacaaggga 7560gactcagctg tgatcctggg gcctccaggc ccacggggtg
ccaaggggga catgggtgaa 7620cgagggcctc ggggcttgga tggtgacaaa ggacctcggg
gagacaatgg ggaccctggt 7680gacaagggca gcaagggaga gcctggtgac aagggctcag
ccgggttgcc aggactgcgt 7740ggactcctgg gaccccaggg tcaacctggt gcagcaggga
tccctggtga cccgggatcc 7800ccaggaaagg atggagtgcc tggtatccga ggagaaaaag
gagatgttgg cttcatgggt 7860ccccggggcc tcaagggtga acggggagtg aagggagcct
gtggccttga tggagagaag 7920ggagacaagg gagaagctgg tcccccaggc cgccccgggc
tggcaggaca caaaggagag 7980atgggggagc ctggtgtgcc gggccagtcg ggggcccctg
gcaaggaggg cctgatcggt 8040cccaagggtg accgaggctt tgacgggcag ccaggcccca
agggtgacca gggcgagaaa 8100ggggagcggg gaaccccagg aattgggggc ttcccaggcc
ccagtggaaa tgatggctct 8160gctggtcccc cagggccacc tggcagtgtt ggtcccagag
gccccgaagg acttcagggc 8220cagaagggtg agcgaggtcc ccccggagag agagtggtgg
gggctcctgg ggtccctgga 8280gctcctggcg agagagggga gcaggggcgg ccagggcctg
ccggtcctcg aggcgagaag 8340ggagaagctg cactgacgga ggatgacatc cggggctttg
tgcgccaaga gatgagtcag 8400cactgtgcct gccagggcca gttcatcgca tctggatcac
gacccctccc tagttatgct 8460gcagacactg ccggctccca gctccatgct gtgcctgtgc
tccgcgtctc tcatgcagag 8520gaggaagagc gggtaccccc tgaggatgat gagtactctg
aatactccga gtattctgtg 8580gaggagtacc aggaccctga agctccttgg gatagtgatg
acccctgttc cctgccactg 8640gatgagggct cctgcactgc ctacaccctg cgctggtacc
atcgggctgt gacaggcagc 8700acagaggcct gtcacccttt tgtctatggt ggctgtggag
ggaatgccaa ccgttttggg 8760acccgtgagg cctgcgagcg ccgctgccca ccccgggtgg
tccagagcca ggggacaggt 8820actgcccagg acagggccaa gaggggcagc ggcgagggca
ggggcagcct gctgacctgc 8880ggcgacgtgg aggagaaccc cggccccacc tcctcggggc
ctggaccccg gttcctgctg 8940ctgctgccgc tgctgctgcc ccctgcggcc tcagcctccg
accggccccg gggccgagac 9000ccggtcaacc cagagaagct gctggtgatc actgtggcca
cagctgaaac cgaggggtac 9060ctgcgtttcc tgcgctctgc ggagttcttc aactacactg
tgcggaccct gggcctggga 9120gaggagtggc gagggggtga tgtggctcga acagttggtg
gaggacagaa ggtccggtgg 9180ttaaagaagg aaatggagaa atacgctgac cgggaggata
tgatcatcat gtttgtggat 9240agctacgacg tgattctggc cggcagcccc acagagctgc
tgaagaagtt cgtccagagt 9300ggcagccgcc tgctcttctc tgcagagagc ttctgctggc
ccgagtgggg gctggcggag 9360cagtaccctg aggtgggcac ggggaagcgc ttcctcaatt
ctggtggatt catcggtttt 9420gccaccacca tccaccaaat cgtgcgccag tggaagtaca
aggatgatga cgacgaccag 9480ctgttctaca cacggctcta cctggaccca ggactgaggg
agaaactcag ccttaatctg 9540gatcataagt ctcggatctt tcagaacctc aacggggctt
tagatgaagt ggttttaaag 9600tttgatcgga accgtgtgcg tatccggaac gtggcctacg
acacgctccc cattgtggtc 9660catggaaacg gtcccactaa gctgcagctc aactacctgg
gaaactacgt ccccaatggc 9720tggactcctg agggaggctg tggcttctgc aaccaggacc
ggaggacact cccggggggg 9780cagcctcccc cccgggtgtt tctggccgtg tttgtggaac
agcctactcc gtttctgccc 9840cgcttcctgc agcggctgct actcctggac tatccccccg
acagggtcac ccttttcctg 9900cacaacaacg aggtcttcca tgaaccccac atcgctgact
cctggccgca gctccaggac 9960cacttctcag ctgtgaagct cgtggggccg gaggaggctc
tgagcccagg cgaggccagg 10020gacatggcca tggacctgtg tcggcaggac cccgagtgtg
agttctactt cagcctggac 10080gccgacgctg tcctcaccaa cctgcagacc ctgcgtatcc
tcattgagga gaacaggaag 10140gtgatcgccc ccatgctgtc ccgccacggc aagctgtggt
ccaacttctg gggcgccctg 10200agccccgatg agtactacgc ccgctccgag gactacgtgg
agctggtgca gcggaagcga 10260gtgggtgtgt ggaatgtacc atacatctcc caggcctatg
tgatccgggg tgataccctg 10320cggatggagc tgccccagag ggatgtgttc tcgggcagtg
acacagaccc ggacatggcc 10380ttctgtaaga gctttcgaga caagggcatc ttcctccatc
tgagcaatca gcatgaattt 10440ggccggctcc tggccacttc cagatacgac acggagcacc
tgcaccccga cctctggcag 10500atcttcgaca accccgtcga ctggaaggag cagtacatcc
acgagaacta cagccgggcc 10560ctggaagggg aaggaatcgt ggagcagcca tgcccggacg
tgtactggtt cccactgctg 10620tcagaacaaa tgtgtgatga gctggtggca gagatggagc
actacggcca gtggtcaggc 10680ggccggcatg aggattcaag gctggctgga ggctacgaga
atgtgcccac cgtggacatc 10740cacatgaagc aggtggggta cgaggaccag tggctgcagc
tgctgcggac gtatgtgggc 10800cccatgaccg agagcctgtt tcccggttac cacaccaagg
cgcgggcggt gatgaacttt 10860gtggttcgct accggccaga cgagcagccg tctctgcggc
cacaccacga ctcatccacc 10920ttcaccctca acgttgccct caaccacaag ggcctggact
atgagggagg tggctgccgc 10980ttcctgcgct acgactgtgt gatctcctcc ccgaggaagg
gctgggcact cctgcacccc 11040ggccgcctca cccactacca cgaggggctg ccaacgacct
ggggcacacg ctacatcatg 11100gtgtcctttg tcgacccctg a
11121143706PRTArtificial SequenceSynthetic Construct
14Met Thr Leu Arg Leu Leu Val Ala Ala Leu Cys Ala Gly Ile Leu Ala1
5 10 15Glu Ala Pro Arg Val Arg
Ala Gln His Arg Glu Arg Val Thr Cys Thr 20 25
30Arg Leu Tyr Ala Ala Asp Ile Val Phe Leu Leu Asp Gly
Ser Ser Ser 35 40 45Ile Gly Arg
Ser Asn Phe Arg Glu Val Arg Ser Phe Leu Glu Gly Leu 50
55 60Val Leu Pro Phe Ser Gly Ala Ala Ser Ala Gln Gly
Val Arg Phe Ala65 70 75
80Thr Val Gln Tyr Ser Asp Asp Pro Arg Thr Glu Phe Gly Leu Asp Ala
85 90 95Leu Gly Ser Gly Gly Asp
Val Ile Arg Ala Ile Arg Glu Leu Ser Tyr 100
105 110Lys Gly Gly Asn Thr Arg Thr Gly Ala Ala Ile Leu
His Val Ala Asp 115 120 125His Val
Phe Leu Pro Gln Leu Ala Arg Pro Gly Val Pro Lys Val Cys 130
135 140Ile Leu Ile Thr Asp Gly Lys Ser Gln Asp Leu
Val Asp Thr Ala Ala145 150 155
160Gln Arg Leu Lys Gly Gln Gly Val Lys Leu Phe Ala Val Gly Ile Lys
165 170 175Asn Ala Asp Pro
Glu Glu Leu Lys Arg Val Ala Ser Gln Pro Thr Ser 180
185 190Asp Phe Phe Phe Phe Val Asn Asp Phe Ser Ile
Leu Arg Thr Leu Leu 195 200 205Pro
Leu Val Ser Arg Arg Val Cys Thr Thr Ala Gly Gly Val Pro Val 210
215 220Thr Arg Pro Pro Asp Asp Ser Thr Ser Ala
Pro Arg Asp Leu Val Leu225 230 235
240Ser Glu Pro Ser Ser Gln Ser Leu Arg Val Gln Trp Thr Ala Ala
Ser 245 250 255Gly Pro Val
Thr Gly Tyr Lys Val Gln Tyr Thr Pro Leu Thr Gly Leu 260
265 270Gly Gln Pro Leu Pro Ser Glu Arg Gln Glu
Val Asn Val Pro Ala Gly 275 280
285Glu Thr Ser Val Arg Leu Arg Gly Leu Arg Pro Leu Thr Glu Tyr Gln 290
295 300Val Thr Val Ile Ala Leu Tyr Ala
Asn Ser Ile Gly Glu Ala Val Ser305 310
315 320Gly Thr Ala Arg Thr Thr Ala Leu Glu Gly Pro Glu
Leu Thr Ile Gln 325 330
335Asn Thr Thr Ala His Ser Leu Leu Val Ala Trp Arg Ser Val Pro Gly
340 345 350Ala Thr Gly Tyr Arg Val
Thr Trp Arg Val Leu Ser Gly Gly Pro Thr 355 360
365Gln Gln Gln Glu Leu Gly Pro Gly Gln Gly Ser Val Leu Leu
Arg Asp 370 375 380Leu Glu Pro Gly Thr
Asp Tyr Glu Val Thr Val Ser Thr Leu Phe Gly385 390
395 400Arg Ser Val Gly Pro Ala Thr Ser Leu Met
Ala Arg Thr Asp Ala Ser 405 410
415Val Glu Gln Thr Leu Arg Pro Val Ile Leu Gly Pro Thr Ser Ile Leu
420 425 430Leu Ser Trp Asn Leu
Val Pro Glu Ala Arg Gly Tyr Arg Leu Glu Trp 435
440 445Arg Arg Glu Thr Gly Leu Glu Pro Pro Gln Lys Val
Val Leu Pro Ser 450 455 460Asp Val Thr
Arg Tyr Gln Leu Asp Gly Leu Gln Pro Gly Thr Glu Tyr465
470 475 480Arg Leu Thr Leu Tyr Thr Leu
Leu Glu Gly His Glu Val Ala Thr Pro 485
490 495Ala Thr Val Val Pro Thr Gly Pro Glu Leu Pro Val
Ser Pro Val Thr 500 505 510Asp
Leu Gln Ala Thr Glu Leu Pro Gly Gln Arg Val Arg Val Ser Trp 515
520 525Ser Pro Val Pro Gly Ala Thr Gln Tyr
Arg Ile Ile Val Arg Ser Thr 530 535
540Gln Gly Val Glu Arg Thr Leu Val Leu Pro Gly Ser Gln Thr Ala Phe545
550 555 560Asp Leu Asp Asp
Val Gln Ala Gly Leu Ser Tyr Thr Val Arg Val Ser 565
570 575Ala Arg Val Gly Pro Arg Glu Gly Ser Ala
Ser Val Leu Thr Val Arg 580 585
590Arg Glu Pro Glu Thr Pro Leu Ala Val Pro Gly Leu Arg Val Val Val
595 600 605Ser Asp Ala Thr Arg Val Arg
Val Ala Trp Gly Pro Val Pro Gly Ala 610 615
620Ser Gly Phe Arg Ile Ser Trp Ser Thr Gly Ser Gly Pro Glu Ser
Ser625 630 635 640Gln Thr
Leu Pro Pro Asp Ser Thr Ala Thr Asp Ile Thr Gly Leu Gln
645 650 655Pro Gly Thr Thr Tyr Gln Val
Ala Val Ser Val Leu Arg Gly Arg Glu 660 665
670Glu Gly Pro Ala Ala Val Ile Val Ala Arg Thr Asp Pro Leu
Gly Pro 675 680 685Val Arg Thr Val
His Val Thr Gln Ala Ser Ser Ser Ser Val Thr Ile 690
695 700Thr Trp Thr Arg Val Pro Gly Ala Thr Gly Tyr Arg
Val Ser Trp His705 710 715
720Ser Ala His Gly Pro Glu Lys Ser Gln Leu Val Ser Gly Glu Ala Thr
725 730 735Val Ala Glu Leu Asp
Gly Leu Glu Pro Asp Thr Glu Tyr Thr Val His 740
745 750Val Arg Ala His Val Ala Gly Val Asp Gly Pro Pro
Ala Ser Val Val 755 760 765Val Arg
Thr Ala Pro Glu Pro Val Gly Arg Val Ser Arg Leu Gln Ile 770
775 780Leu Asn Ala Ser Ser Asp Val Leu Arg Ile Thr
Trp Val Gly Val Thr785 790 795
800Gly Ala Thr Ala Tyr Arg Leu Ala Trp Gly Arg Ser Glu Gly Gly Pro
805 810 815Met Arg His Gln
Ile Leu Pro Gly Asn Thr Asp Ser Ala Glu Ile Arg 820
825 830Gly Leu Glu Gly Gly Val Ser Tyr Ser Val Arg
Val Thr Ala Leu Val 835 840 845Gly
Asp Arg Glu Gly Thr Pro Val Ser Ile Val Val Thr Thr Pro Pro 850
855 860Glu Ala Pro Pro Ala Leu Gly Thr Leu His
Val Val Gln Arg Gly Glu865 870 875
880His Ser Leu Arg Leu Arg Trp Glu Pro Val Pro Arg Ala Gln Gly
Phe 885 890 895Leu Leu His
Trp Gln Pro Glu Gly Gly Gln Glu Gln Ser Arg Val Leu 900
905 910Gly Pro Glu Leu Ser Ser Tyr His Leu Asp
Gly Leu Glu Pro Ala Thr 915 920
925Gln Tyr Arg Val Arg Leu Ser Val Leu Gly Pro Ala Gly Glu Gly Pro 930
935 940Ser Ala Glu Val Thr Ala Arg Thr
Glu Ser Pro Arg Val Pro Ser Ile945 950
955 960Glu Leu Arg Val Val Asp Thr Ser Ile Asp Ser Val
Thr Leu Ala Trp 965 970
975Thr Pro Val Ser Arg Ala Ser Ser Tyr Ile Leu Ser Trp Arg Pro Leu
980 985 990Arg Gly Pro Gly Gln Glu
Val Pro Gly Ser Pro Gln Thr Leu Pro Gly 995 1000
1005Ile Ser Ser Ser Gln Arg Val Thr Gly Leu Glu Pro Gly Val
Ser Tyr 1010 1015 1020Ile Phe Ser Leu
Thr Pro Val Leu Asp Gly Val Arg Gly Pro Glu Ala1025 1030
1035 1040Ser Val Thr Gln Thr Pro Val Cys Pro
Arg Gly Leu Ala Asp Val Val 1045 1050
1055Phe Leu Pro His Ala Thr Gln Asp Asn Ala His Arg Ala Glu Ala
Thr 1060 1065 1070Arg Arg Val
Leu Glu Arg Leu Val Leu Ala Leu Gly Pro Leu Gly Pro 1075
1080 1085Gln Ala Val Gln Val Gly Leu Leu Ser Tyr Ser
His Arg Pro Ser Pro 1090 1095 1100Leu
Phe Pro Leu Asn Gly Ser His Asp Leu Gly Ile Ile Leu Gln Arg1105
1110 1115 1120Ile Arg Asp Met Pro Tyr
Met Asp Pro Ser Gly Asn Asn Leu Gly Thr 1125
1130 1135Ala Val Val Thr Ala His Arg Tyr Met Leu Ala Pro
Asp Ala Pro Gly 1140 1145
1150Arg Arg Gln His Val Pro Gly Val Met Val Leu Leu Val Asp Glu Pro
1155 1160 1165Leu Arg Gly Asp Ile Phe Ser
Pro Ile Arg Glu Ala Gln Ala Ser Gly 1170 1175
1180Leu Asn Val Val Met Leu Gly Met Ala Gly Ala Asp Pro Glu Gln
Leu1185 1190 1195 1200Arg Arg
Leu Ala Pro Gly Met Asp Ser Val Gln Thr Phe Phe Ala Val
1205 1210 1215Asp Asp Gly Pro Ser Leu Asp
Gln Ala Val Ser Gly Leu Ala Thr Ala 1220 1225
1230Leu Cys Gln Ala Ser Phe Thr Thr Gln Pro Arg Pro Glu Pro
Cys Pro 1235 1240 1245Val Tyr Cys
Pro Lys Gly Gln Lys Gly Glu Pro Gly Glu Met Gly Leu 1250
1255 1260Arg Gly Gln Val Gly Pro Pro Gly Asp Pro Gly Leu
Pro Gly Arg Thr1265 1270 1275
1280Gly Ala Pro Gly Pro Gln Gly Pro Pro Gly Ser Ala Thr Ala Lys Gly
1285 1290 1295Glu Arg Gly Phe Pro
Gly Ala Asp Gly Arg Pro Gly Ser Pro Gly Arg 1300
1305 1310Ala Gly Asn Pro Gly Thr Pro Gly Ala Pro Gly Leu
Lys Gly Ser Pro 1315 1320 1325Gly
Leu Pro Gly Pro Arg Gly Asp Pro Gly Glu Arg Gly Pro Arg Gly 1330
1335 1340Pro Lys Gly Glu Pro Gly Ala Pro Gly Gln
Val Ile Gly Gly Glu Gly1345 1350 1355
1360Pro Gly Leu Pro Gly Arg Lys Gly Asp Pro Gly Pro Ser Gly Pro
Pro 1365 1370 1375Gly Pro
Arg Gly Pro Leu Gly Asp Pro Gly Pro Arg Gly Pro Pro Gly 1380
1385 1390Leu Pro Gly Thr Ala Met Lys Gly Asp
Lys Gly Asp Arg Gly Glu Arg 1395 1400
1405Gly Pro Pro Gly Pro Gly Glu Gly Gly Ile Ala Pro Gly Glu Pro Gly
1410 1415 1420Leu Pro Gly Leu Pro Gly Ser
Pro Gly Pro Gln Gly Pro Val Gly Pro1425 1430
1435 1440Pro Gly Lys Lys Gly Glu Lys Gly Asp Ser Glu Asp
Gly Ala Pro Gly 1445 1450
1455Leu Pro Gly Gln Pro Gly Ser Pro Gly Glu Gln Gly Pro Arg Gly Pro
1460 1465 1470Pro Gly Ala Ile Gly Pro
Lys Gly Asp Arg Gly Phe Pro Gly Pro Leu 1475 1480
1485Gly Glu Ala Gly Glu Lys Gly Glu Arg Gly Pro Pro Gly Pro
Ala Gly 1490 1495 1500Ser Arg Gly Leu
Pro Gly Val Ala Gly Arg Pro Gly Ala Lys Gly Pro1505 1510
1515 1520Glu Gly Pro Pro Gly Pro Thr Gly Arg
Gln Gly Glu Lys Gly Glu Pro 1525 1530
1535Gly Arg Pro Gly Asp Pro Ala Val Val Gly Pro Ala Val Ala Gly
Pro 1540 1545 1550Lys Gly Glu
Lys Gly Asp Val Gly Pro Ala Gly Pro Arg Gly Ala Thr 1555
1560 1565Gly Val Gln Gly Glu Arg Gly Pro Pro Gly Leu
Val Leu Pro Gly Asp 1570 1575 1580Pro
Gly Pro Lys Gly Asp Pro Gly Asp Arg Gly Pro Ile Gly Leu Thr1585
1590 1595 1600Gly Arg Ala Gly Pro Pro
Gly Asp Ser Gly Pro Pro Gly Glu Lys Gly 1605
1610 1615Asp Pro Gly Arg Pro Gly Pro Pro Gly Pro Val Gly
Pro Arg Gly Arg 1620 1625
1630Asp Gly Glu Val Gly Glu Lys Gly Asp Glu Gly Pro Pro Gly Asp Pro
1635 1640 1645Gly Leu Pro Gly Lys Ala Gly
Glu Arg Gly Leu Arg Gly Ala Pro Gly 1650 1655
1660Val Arg Gly Pro Val Gly Glu Lys Gly Asp Gln Gly Asp Pro Gly
Glu1665 1670 1675 1680Asp Gly
Arg Asn Gly Ser Pro Gly Ser Ser Gly Pro Lys Gly Asp Arg
1685 1690 1695Gly Glu Pro Gly Pro Pro Gly
Pro Pro Gly Arg Leu Val Asp Thr Gly 1700 1705
1710Pro Gly Ala Arg Glu Lys Gly Glu Pro Gly Asp Arg Gly Gln
Glu Gly 1715 1720 1725Pro Arg Gly
Pro Lys Gly Asp Pro Gly Leu Pro Gly Ala Pro Gly Glu 1730
1735 1740Arg Gly Ile Glu Gly Phe Arg Gly Pro Pro Gly Pro
Gln Gly Asp Pro1745 1750 1755
1760Gly Val Arg Gly Pro Ala Gly Glu Lys Gly Asp Arg Gly Pro Pro Gly
1765 1770 1775Leu Asp Gly Arg Ser
Gly Leu Asp Gly Lys Pro Gly Ala Ala Gly Pro 1780
1785 1790Ser Gly Pro Asn Gly Ala Ala Gly Lys Ala Gly Asp
Pro Gly Arg Asp 1795 1800 1805Gly
Leu Pro Gly Leu Arg Gly Glu Gln Gly Leu Pro Gly Pro Ser Gly 1810
1815 1820Pro Pro Gly Leu Pro Gly Lys Pro Gly Glu
Asp Gly Lys Pro Gly Leu1825 1830 1835
1840Asn Gly Lys Asn Gly Glu Pro Gly Asp Pro Gly Glu Asp Gly Arg
Lys 1845 1850 1855Gly Glu
Lys Gly Asp Ser Gly Ala Ser Gly Arg Glu Gly Arg Asp Gly 1860
1865 1870Pro Lys Gly Glu Arg Gly Ala Pro Gly
Ile Leu Gly Pro Gln Gly Pro 1875 1880
1885Pro Gly Leu Pro Gly Pro Val Gly Pro Pro Gly Gln Gly Phe Pro Gly
1890 1895 1900Val Pro Gly Gly Thr Gly Pro
Lys Gly Asp Arg Gly Glu Thr Gly Ser1905 1910
1915 1920Lys Gly Glu Gln Gly Leu Pro Gly Glu Arg Gly Leu
Arg Gly Glu Pro 1925 1930
1935Gly Ser Val Pro Asn Val Asp Arg Leu Leu Glu Thr Ala Gly Ile Lys
1940 1945 1950Ala Ser Ala Leu Arg Glu
Ile Val Glu Thr Trp Asp Glu Ser Ser Gly 1955 1960
1965Ser Phe Leu Pro Val Pro Glu Arg Arg Arg Gly Pro Lys Gly
Asp Ser 1970 1975 1980Gly Glu Gln Gly
Pro Pro Gly Lys Glu Gly Pro Ile Gly Phe Pro Gly1985 1990
1995 2000Glu Arg Gly Leu Lys Gly Asp Arg Gly
Asp Pro Gly Pro Gln Gly Pro 2005 2010
2015Pro Gly Leu Ala Leu Gly Glu Arg Gly Pro Pro Gly Pro Ser Gly
Leu 2020 2025 2030Ala Gly Glu
Pro Gly Lys Pro Gly Ile Pro Gly Leu Pro Gly Arg Ala 2035
2040 2045Gly Gly Val Gly Glu Ala Gly Arg Pro Gly Glu
Arg Gly Glu Arg Gly 2050 2055 2060Glu
Lys Gly Glu Arg Gly Glu Gln Gly Arg Asp Gly Pro Pro Gly Leu2065
2070 2075 2080Pro Gly Thr Pro Gly Pro
Pro Gly Pro Pro Gly Pro Lys Val Ser Val 2085
2090 2095Asp Glu Pro Gly Pro Gly Leu Ser Gly Glu Gln Gly
Pro Pro Gly Leu 2100 2105
2110Lys Gly Ala Lys Gly Glu Pro Gly Ser Asn Gly Asp Gln Gly Pro Lys
2115 2120 2125Gly Asp Arg Gly Val Pro Gly
Ile Lys Gly Asp Arg Gly Glu Pro Gly 2130 2135
2140Pro Arg Gly Gln Asp Gly Asn Pro Gly Leu Pro Gly Glu Arg Gly
Met2145 2150 2155 2160Ala Gly
Pro Glu Gly Lys Pro Gly Leu Gln Gly Pro Arg Gly Pro Pro
2165 2170 2175Gly Pro Val Gly Gly His Gly
Asp Pro Gly Pro Pro Gly Ala Pro Gly 2180 2185
2190Leu Ala Gly Pro Ala Gly Pro Gln Gly Pro Ser Gly Leu Lys
Gly Glu 2195 2200 2205Pro Gly Glu
Thr Gly Pro Pro Gly Arg Gly Leu Thr Gly Pro Thr Gly 2210
2215 2220Ala Val Gly Leu Pro Gly Pro Pro Gly Pro Ser Gly
Leu Val Gly Pro2225 2230 2235
2240Gln Gly Ser Pro Gly Leu Pro Gly Gln Val Gly Glu Thr Gly Lys Pro
2245 2250 2255Gly Ala Pro Gly Arg
Asp Gly Ala Ser Gly Lys Asp Gly Asp Arg Gly 2260
2265 2270Ser Pro Gly Val Pro Gly Ser Pro Gly Leu Pro Gly
Pro Val Gly Pro 2275 2280 2285Lys
Gly Glu Pro Gly Pro Thr Gly Ala Pro Gly Gln Ala Val Val Gly 2290
2295 2300Leu Pro Gly Ala Lys Gly Glu Lys Gly Ala
Pro Gly Gly Leu Ala Gly2305 2310 2315
2320Asp Leu Val Gly Glu Pro Gly Ala Lys Gly Asp Arg Gly Leu Pro
Gly 2325 2330 2335Pro Arg
Gly Glu Lys Gly Glu Ala Gly Arg Ala Gly Glu Pro Gly Asp 2340
2345 2350Pro Gly Glu Asp Gly Gln Lys Gly Ala
Pro Gly Pro Lys Gly Phe Lys 2355 2360
2365Gly Asp Pro Gly Val Gly Val Pro Gly Ser Pro Gly Pro Pro Gly Pro
2370 2375 2380Pro Gly Val Lys Gly Asp Leu
Gly Leu Pro Gly Leu Pro Gly Ala Pro2385 2390
2395 2400Gly Val Val Gly Phe Pro Gly Gln Thr Gly Pro Arg
Gly Glu Met Gly 2405 2410
2415Gln Pro Gly Pro Ser Gly Glu Arg Gly Leu Ala Gly Pro Pro Gly Arg
2420 2425 2430Glu Gly Ile Pro Gly Pro
Leu Gly Pro Pro Gly Pro Pro Gly Ser Val 2435 2440
2445Gly Pro Pro Gly Ala Ser Gly Leu Lys Gly Asp Lys Gly Asp
Pro Gly 2450 2455 2460Val Gly Leu Pro
Gly Pro Arg Gly Glu Arg Gly Glu Pro Gly Ile Arg2465 2470
2475 2480Gly Glu Asp Gly Arg Pro Gly Gln Glu
Gly Pro Arg Gly Leu Thr Gly 2485 2490
2495Pro Pro Gly Ser Arg Gly Glu Arg Gly Glu Lys Gly Asp Val Gly
Ser 2500 2505 2510Ala Gly Leu
Lys Gly Asp Lys Gly Asp Ser Ala Val Ile Leu Gly Pro 2515
2520 2525Pro Gly Pro Arg Gly Ala Lys Gly Asp Met Gly
Glu Arg Gly Pro Arg 2530 2535 2540Gly
Leu Asp Gly Asp Lys Gly Pro Arg Gly Asp Asn Gly Asp Pro Gly2545
2550 2555 2560Asp Lys Gly Ser Lys Gly
Glu Pro Gly Asp Lys Gly Ser Ala Gly Leu 2565
2570 2575Pro Gly Leu Arg Gly Leu Leu Gly Pro Gln Gly Gln
Pro Gly Ala Ala 2580 2585
2590Gly Ile Pro Gly Asp Pro Gly Ser Pro Gly Lys Asp Gly Val Pro Gly
2595 2600 2605Ile Arg Gly Glu Lys Gly Asp
Val Gly Phe Met Gly Pro Arg Gly Leu 2610 2615
2620Lys Gly Glu Arg Gly Val Lys Gly Ala Cys Gly Leu Asp Gly Glu
Lys2625 2630 2635 2640Gly Asp
Lys Gly Glu Ala Gly Pro Pro Gly Arg Pro Gly Leu Ala Gly
2645 2650 2655His Lys Gly Glu Met Gly Glu
Pro Gly Val Pro Gly Gln Ser Gly Ala 2660 2665
2670Pro Gly Lys Glu Gly Leu Ile Gly Pro Lys Gly Asp Arg Gly
Phe Asp 2675 2680 2685Gly Gln Pro
Gly Pro Lys Gly Asp Gln Gly Glu Lys Gly Glu Arg Gly 2690
2695 2700Thr Pro Gly Ile Gly Gly Phe Pro Gly Pro Ser Gly
Asn Asp Gly Ser2705 2710 2715
2720Ala Gly Pro Pro Gly Pro Pro Gly Ser Val Gly Pro Arg Gly Pro Glu
2725 2730 2735Gly Leu Gln Gly Gln
Lys Gly Glu Arg Gly Pro Pro Gly Glu Arg Val 2740
2745 2750Val Gly Ala Pro Gly Val Pro Gly Ala Pro Gly Glu
Arg Gly Glu Gln 2755 2760 2765Gly
Arg Pro Gly Pro Ala Gly Pro Arg Gly Glu Lys Gly Glu Ala Ala 2770
2775 2780Leu Thr Glu Asp Asp Ile Arg Gly Phe Val
Arg Gln Glu Met Ser Gln2785 2790 2795
2800His Cys Ala Cys Gln Gly Gln Phe Ile Ala Ser Gly Ser Arg Pro
Leu 2805 2810 2815Pro Ser
Tyr Ala Ala Asp Thr Ala Gly Ser Gln Leu His Ala Val Pro 2820
2825 2830Val Leu Arg Val Ser His Ala Glu Glu
Glu Glu Arg Val Pro Pro Glu 2835 2840
2845Asp Asp Glu Tyr Ser Glu Tyr Ser Glu Tyr Ser Val Glu Glu Tyr Gln
2850 2855 2860Asp Pro Glu Ala Pro Trp Asp
Ser Asp Asp Pro Cys Ser Leu Pro Leu2865 2870
2875 2880Asp Glu Gly Ser Cys Thr Ala Tyr Thr Leu Arg Trp
Tyr His Arg Ala 2885 2890
2895Val Thr Gly Ser Thr Glu Ala Cys His Pro Phe Val Tyr Gly Gly Cys
2900 2905 2910Gly Gly Asn Ala Asn Arg
Phe Gly Thr Arg Glu Ala Cys Glu Arg Arg 2915 2920
2925Cys Pro Pro Arg Val Val Gln Ser Gln Gly Thr Gly Thr Ala
Gln Asp 2930 2935 2940Arg Ala Lys Arg
Gly Ser Gly Glu Gly Arg Gly Ser Leu Leu Thr Cys2945 2950
2955 2960Gly Asp Val Glu Glu Asn Pro Gly Pro
Thr Ser Ser Gly Pro Gly Pro 2965 2970
2975Arg Phe Leu Leu Leu Leu Pro Leu Leu Leu Pro Pro Ala Ala Ser
Ala 2980 2985 2990Ser Asp Arg
Pro Arg Gly Arg Asp Pro Val Asn Pro Glu Lys Leu Leu 2995
3000 3005Val Ile Thr Val Ala Thr Ala Glu Thr Glu Gly
Tyr Leu Arg Phe Leu 3010 3015 3020Arg
Ser Ala Glu Phe Phe Asn Tyr Thr Val Arg Thr Leu Gly Leu Gly3025
3030 3035 3040Glu Glu Trp Arg Gly Gly
Asp Val Ala Arg Thr Val Gly Gly Gly Gln 3045
3050 3055Lys Val Arg Trp Leu Lys Lys Glu Met Glu Lys Tyr
Ala Asp Arg Glu 3060 3065
3070Asp Met Ile Ile Met Phe Val Asp Ser Tyr Asp Val Ile Leu Ala Gly
3075 3080 3085Ser Pro Thr Glu Leu Leu Lys
Lys Phe Val Gln Ser Gly Ser Arg Leu 3090 3095
3100Leu Phe Ser Ala Glu Ser Phe Cys Trp Pro Glu Trp Gly Leu Ala
Glu3105 3110 3115 3120Gln Tyr
Pro Glu Val Gly Thr Gly Lys Arg Phe Leu Asn Ser Gly Gly
3125 3130 3135Phe Ile Gly Phe Ala Thr Thr
Ile His Gln Ile Val Arg Gln Trp Lys 3140 3145
3150Tyr Lys Asp Asp Asp Asp Asp Gln Leu Phe Tyr Thr Arg Leu
Tyr Leu 3155 3160 3165Asp Pro Gly
Leu Arg Glu Lys Leu Ser Leu Asn Leu Asp His Lys Ser 3170
3175 3180Arg Ile Phe Gln Asn Leu Asn Gly Ala Leu Asp Glu
Val Val Leu Lys3185 3190 3195
3200Phe Asp Arg Asn Arg Val Arg Ile Arg Asn Val Ala Tyr Asp Thr Leu
3205 3210 3215Pro Ile Val Val His
Gly Asn Gly Pro Thr Lys Leu Gln Leu Asn Tyr 3220
3225 3230Leu Gly Asn Tyr Val Pro Asn Gly Trp Thr Pro Glu
Gly Gly Cys Gly 3235 3240 3245Phe
Cys Asn Gln Asp Arg Arg Thr Leu Pro Gly Gly Gln Pro Pro Pro 3250
3255 3260Arg Val Phe Leu Ala Val Phe Val Glu Gln
Pro Thr Pro Phe Leu Pro3265 3270 3275
3280Arg Phe Leu Gln Arg Leu Leu Leu Leu Asp Tyr Pro Pro Asp Arg
Val 3285 3290 3295Thr Leu
Phe Leu His Asn Asn Glu Val Phe His Glu Pro His Ile Ala 3300
3305 3310Asp Ser Trp Pro Gln Leu Gln Asp His
Phe Ser Ala Val Lys Leu Val 3315 3320
3325Gly Pro Glu Glu Ala Leu Ser Pro Gly Glu Ala Arg Asp Met Ala Met
3330 3335 3340Asp Leu Cys Arg Gln Asp Pro
Glu Cys Glu Phe Tyr Phe Ser Leu Asp3345 3350
3355 3360Ala Asp Ala Val Leu Thr Asn Leu Gln Thr Leu Arg
Ile Leu Ile Glu 3365 3370
3375Glu Asn Arg Lys Val Ile Ala Pro Met Leu Ser Arg His Gly Lys Leu
3380 3385 3390Trp Ser Asn Phe Trp Gly
Ala Leu Ser Pro Asp Glu Tyr Tyr Ala Arg 3395 3400
3405Ser Glu Asp Tyr Val Glu Leu Val Gln Arg Lys Arg Val Gly
Val Trp 3410 3415 3420Asn Val Pro Tyr
Ile Ser Gln Ala Tyr Val Ile Arg Gly Asp Thr Leu3425 3430
3435 3440Arg Met Glu Leu Pro Gln Arg Asp Val
Phe Ser Gly Ser Asp Thr Asp 3445 3450
3455Pro Asp Met Ala Phe Cys Lys Ser Phe Arg Asp Lys Gly Ile Phe
Leu 3460 3465 3470His Leu Ser
Asn Gln His Glu Phe Gly Arg Leu Leu Ala Thr Ser Arg 3475
3480 3485Tyr Asp Thr Glu His Leu His Pro Asp Leu Trp
Gln Ile Phe Asp Asn 3490 3495 3500Pro
Val Asp Trp Lys Glu Gln Tyr Ile His Glu Asn Tyr Ser Arg Ala3505
3510 3515 3520Leu Glu Gly Glu Gly Ile
Val Glu Gln Pro Cys Pro Asp Val Tyr Trp 3525
3530 3535Phe Pro Leu Leu Ser Glu Gln Met Cys Asp Glu Leu
Val Ala Glu Met 3540 3545
3550Glu His Tyr Gly Gln Trp Ser Gly Gly Arg His Glu Asp Ser Arg Leu
3555 3560 3565Ala Gly Gly Tyr Glu Asn Val
Pro Thr Val Asp Ile His Met Lys Gln 3570 3575
3580Val Gly Tyr Glu Asp Gln Trp Leu Gln Leu Leu Arg Thr Tyr Val
Gly3585 3590 3595 3600Pro Met
Thr Glu Ser Leu Phe Pro Gly Tyr His Thr Lys Ala Arg Ala
3605 3610 3615Val Met Asn Phe Val Val Arg
Tyr Arg Pro Asp Glu Gln Pro Ser Leu 3620 3625
3630Arg Pro His His Asp Ser Ser Thr Phe Thr Leu Asn Val Ala
Leu Asn 3635 3640 3645His Lys Gly
Leu Asp Tyr Glu Gly Gly Gly Cys Arg Phe Leu Arg Tyr 3650
3655 3660Asp Cys Val Ile Ser Ser Pro Arg Lys Gly Trp Ala
Leu Leu His Pro3665 3670 3675
3680Gly Arg Leu Thr His Tyr His Glu Gly Leu Pro Thr Thr Trp Gly Thr
3685 3690 3695Arg Tyr Ile Met Val
Ser Phe Val Asp Pro 3700
37051511121DNAArtificial SequenceSynthetic Construct 15atgacctcct
cggggcctgg accccggttc ctgctgctgc tgccgctgct gctgccccct 60gcggcctcag
cctccgaccg gccccggggc cgagacccgg tcaacccaga gaagctgctg 120gtgatcactg
tggccacagc tgaaaccgag gggtacctgc gtttcctgcg ctctgcggag 180ttcttcaact
acactgtgcg gaccctgggc ctgggagagg agtggcgagg gggtgatgtg 240gctcgaacag
ttggtggagg acagaaggtc cggtggttaa agaaggaaat ggagaaatac 300gctgaccggg
aggatatgat catcatgttt gtggatagct acgacgtgat tctggccggc 360agccccacag
agctgctgaa gaagttcgtc cagagtggca gccgcctgct cttctctgca 420gagagcttct
gctggcccga gtgggggctg gcggagcagt accctgaggt gggcacgggg 480aagcgcttcc
tcaattctgg tggattcatc ggttttgcca ccaccatcca ccaaatcgtg 540cgccagtgga
agtacaagga tgatgacgac gaccagctgt tctacacacg gctctacctg 600gacccaggac
tgagggagaa actcagcctt aatctggatc ataagtctcg gatctttcag 660aacctcaacg
gggctttaga tgaagtggtt ttaaagtttg atcggaaccg tgtgcgtatc 720cggaacgtgg
cctacgacac gctccccatt gtggtccatg gaaacggtcc cactaagctg 780cagctcaact
acctgggaaa ctacgtcccc aatggctgga ctcctgaggg aggctgtggc 840ttctgcaacc
aggaccggag gacactcccg ggggggcagc ctcccccccg ggtgtttctg 900gccgtgtttg
tggaacagcc tactccgttt ctgccccgct tcctgcagcg gctgctactc 960ctggactatc
cccccgacag ggtcaccctt ttcctgcaca acaacgaggt cttccatgaa 1020ccccacatcg
ctgactcctg gccgcagctc caggaccact tctcagctgt gaagctcgtg 1080gggccggagg
aggctctgag cccaggcgag gccagggaca tggccatgga cctgtgtcgg 1140caggaccccg
agtgtgagtt ctacttcagc ctggacgccg acgctgtcct caccaacctg 1200cagaccctgc
gtatcctcat tgaggagaac aggaaggtga tcgcccccat gctgtcccgc 1260cacggcaagc
tgtggtccaa cttctggggc gccctgagcc ccgatgagta ctacgcccgc 1320tccgaggact
acgtggagct ggtgcagcgg aagcgagtgg gtgtgtggaa tgtaccatac 1380atctcccagg
cctatgtgat ccggggtgat accctgcgga tggagctgcc ccagagggat 1440gtgttctcgg
gcagtgacac agacccggac atggccttct gtaagagctt tcgagacaag 1500ggcatcttcc
tccatctgag caatcagcat gaatttggcc ggctcctggc cacttccaga 1560tacgacacgg
agcacctgca ccccgacctc tggcagatct tcgacaaccc cgtcgactgg 1620aaggagcagt
acatccacga gaactacagc cgggccctgg aaggggaagg aatcgtggag 1680cagccatgcc
cggacgtgta ctggttccca ctgctgtcag aacaaatgtg tgatgagctg 1740gtggcagaga
tggagcacta cggccagtgg tcaggcggcc ggcatgagga ttcaaggctg 1800gctggaggct
acgagaatgt gcccaccgtg gacatccaca tgaagcaggt ggggtacgag 1860gaccagtggc
tgcagctgct gcggacgtat gtgggcccca tgaccgagag cctgtttccc 1920ggttaccaca
ccaaggcgcg ggcggtgatg aactttgtgg ttcgctaccg gccagacgag 1980cagccgtctc
tgcggccaca ccacgactca tccaccttca ccctcaacgt tgccctcaac 2040cacaagggcc
tggactatga gggaggtggc tgccgcttcc tgcgctacga ctgtgtgatc 2100tcctccccga
ggaagggctg ggcactcctg caccccggcc gcctcaccca ctaccacgag 2160gggctgccaa
cgacctgggg cacacgctac atcatggtgt cctttgtcga ccccagggcc 2220aagaggggca
gcggcgaggg caggggcagc ctgctgacct gcggcgacgt ggaggagaac 2280cccggcccca
cgctgcggct tctggtggcc gcgctctgcg ccgggatcct ggcagaggcg 2340ccccgagtgc
gagcccagca cagggagaga gtgacctgca cgcgccttta cgccgctgac 2400attgtgttct
tactggatgg ctcctcatcc attggccgca gcaatttccg cgaggtccgc 2460agctttctcg
aagggctggt gctgcctttc tctggagcag ccagtgcaca gggtgtgcgc 2520tttgccacag
tgcagtacag cgatgaccca cggacagagt tcggcctgga tgcacttggc 2580tctgggggtg
atgtgatccg cgccatccgt gagcttagct acaagggggg caacactcgc 2640acaggggctg
caattctcca tgtggctgac catgtcttcc tgccccagct ggcccgacct 2700ggtgtcccca
aggtctgcat cctgatcaca gacgggaagt cccaggacct ggtggacaca 2760gctgcccaaa
ggctgaaggg gcagggggtc aagctatttg ctgtggggat caagaatgct 2820gaccctgagg
agctgaagcg agttgcctca cagcccacca gtgacttctt cttcttcgtc 2880aatgacttca
gcatcttgag gacactactg cccctcgttt cccggagagt gtgcacgact 2940gctggtggcg
tgcctgtgac ccgacctccg gatgactcga cctctgctcc acgagacctg 3000gtgctgtctg
agccaagcag ccaatccttg agagtacagt ggacagcggc cagtggccct 3060gtgactggct
acaaggtcca gtacactcct ctgacggggc tgggacagcc actgccgagt 3120gagcggcagg
aggtgaacgt cccagctggt gagaccagtg tgcggctgcg gggtctccgg 3180ccactgaccg
agtaccaagt gactgtgatt gccctctacg ccaacagcat cggggaggct 3240gtgagcggga
cagctcggac cactgcccta gaagggccgg aactgaccat ccagaatacc 3300acagcccaca
gcctcctggt ggcctggcgg agtgtgccag gtgccactgg ctaccgtgtg 3360acatggcggg
tcctcagtgg tgggcccaca cagcagcagg agctgggccc tgggcagggt 3420tcagtgttgc
tgcgtgactt ggagcctggc acggactatg aggtgaccgt gagcacccta 3480tttggccgca
gtgtggggcc cgccacttcc ctgatggctc gcactgacgc ttctgttgag 3540cagaccctgc
gcccggtcat cctgggcccc acatccatcc tcctttcctg gaacttggtg 3600cctgaggccc
gtggctaccg gttggaatgg cggcgtgaga ctggcttgga gccaccgcag 3660aaggtggtac
tgccctctga tgtgacccgc taccagttgg atgggctgca gccgggcact 3720gagtaccgcc
tcacactcta cactctgctg gagggccacg aggtggccac ccctgcaacc 3780gtggttccca
ctggaccaga gctgcctgtg agccctgtaa cagacctgca agccaccgag 3840ctgcccgggc
agcgggtgcg agtgtcctgg agcccagtcc ctggtgccac ccagtaccgc 3900atcattgtgc
gcagcaccca gggggttgag cggaccctgg tgcttcctgg gagtcagaca 3960gcattcgact
tggatgacgt tcaggctggg cttagctaca ctgtgcgggt gtctgctcga 4020gtgggtcccc
gtgagggcag tgccagtgtc ctcactgtcc gccgggagcc ggaaactcca 4080cttgctgttc
cagggctgcg ggttgtggtg tcagatgcaa cgcgagtgag ggtggcctgg 4140ggacccgtcc
ctggagccag tggatttcgg attagctgga gcacaggcag tggtccggag 4200tccagccaga
cactgccccc agactctact gccacagaca tcacagggct gcagcctgga 4260accacctacc
aggtggctgt gtcggtactg cgaggcagag aggagggccc tgctgcagtc 4320atcgtggctc
gaacggaccc actgggccca gtgaggacgg tccatgtgac tcaggccagc 4380agctcatctg
tcaccattac ctggaccagg gttcctggcg ccacaggata cagggtttcc 4440tggcactcag
cccacggccc agagaaatcc cagttggttt ctggggaggc cacggtggct 4500gagctggatg
gactggagcc agatactgag tatacggtgc atgtgagggc ccatgtggct 4560ggcgtggatg
ggccccctgc ctctgtggtt gtgaggactg cccctgagcc tgtgggtcgt 4620gtgtcgaggc
tgcagatcct caatgcttcc agcgacgttc tacggatcac ctgggtaggg 4680gtcactggag
ccacagctta cagactggcc tggggccgga gtgaaggcgg ccccatgagg 4740caccagatac
tcccaggaaa cacagactct gcagagatcc ggggtctcga aggtggagtc 4800agctactcag
tgcgagtgac tgcacttgtc ggggaccgcg agggcacacc tgtctccatt 4860gttgtcacta
cgccgcctga ggctccgcca gccctgggga cgcttcacgt ggtgcagcgc 4920ggggagcact
cgctgaggct gcgctgggag ccggtgccca gagcgcaggg cttccttctg 4980cactggcaac
ctgagggtgg ccaggaacag tcccgggtcc tggggcccga gctcagcagc 5040tatcacctgg
acgggctgga gccagcgaca cagtaccgcg tgaggctgag tgtcctaggg 5100ccagctggag
aagggccctc tgcagaggtg actgcgcgca ctgagtcacc tcgtgttcca 5160agcattgaac
tacgtgtggt ggacacctcg atcgactcgg tgactttggc ctggactcca 5220gtgtccaggg
catccagcta catcctatcc tggcggccac tcagaggccc tggccaggaa 5280gtgcctgggt
ccccgcagac acttccaggg atctcaagct cccagcgggt gacagggcta 5340gagcctggcg
tctcttacat cttctccctg acgcctgtcc tggatggtgt gcggggtcct 5400gaggcatctg
tcacacagac gccagtgtgc ccccgtggcc tggcggatgt ggtgttccta 5460ccacatgcca
ctcaagacaa tgctcaccgt gcggaggcta cgaggagggt cctggagcgt 5520ctggtgttgg
cacttgggcc tcttgggcca caggcagttc aggttggcct gctgtcttac 5580agtcatcggc
cctccccact gttcccactg aatggctccc atgaccttgg cattatcttg 5640caaaggatcc
gtgacatgcc ctacatggac ccaagtggga acaacctggg cacagccgtg 5700gtcacagctc
acagatacat gttggcacca gatgctcctg ggcgccgcca gcacgtacca 5760ggggtgatgg
ttctgctagt ggatgaaccc ttgagaggtg acatattcag ccccatccgt 5820gaggcccagg
cttctgggct taatgtggtg atgttgggaa tggctggagc ggacccagag 5880cagctgcgtc
gcttggcgcc gggtatggac tctgtccaga ccttcttcgc cgtggatgat 5940gggccaagcc
tggaccaggc agtcagtggt ctggccacag ccctgtgtca ggcatccttc 6000actactcagc
cccggccaga gccctgccca gtgtattgtc caaagggcca gaagggggaa 6060cctggagaga
tgggcctgag aggacaagtt gggcctcctg gcgaccctgg cctcccgggc 6120aggaccggtg
ctcccggccc ccaggggccc cctggaagtg ccactgccaa gggcgagagg 6180ggcttccctg
gagcagatgg gcgtccaggc agccctggcc gcgccgggaa tcctgggacc 6240cctggagccc
ctggcctaaa gggctctcca gggttgcctg gccctcgtgg ggacccggga 6300gagcgaggac
ctcgaggccc aaagggggag ccgggggctc ccggacaagt catcggaggt 6360gaaggacctg
ggcttcctgg gcggaaaggg gaccctggac catcgggccc ccctggacct 6420cgtggaccac
tgggggaccc aggaccccgt ggccccccag ggcttcctgg aacagccatg 6480aagggtgaca
aaggcgatcg tggggagcgg ggtccccctg gaccaggtga aggtggcatt 6540gctcctgggg
agcctgggct gccgggtctt cccggaagcc ctggacccca aggccccgtt 6600ggcccccctg
gaaagaaagg agaaaaaggt gactctgagg atggagctcc aggcctccca 6660ggacaacctg
ggtctccggg tgagcagggc ccacggggac ctcctggagc tattggcccc 6720aaaggtgacc
ggggctttcc agggcccctg ggtgaggctg gagagaaggg cgaacgtgga 6780cccccaggcc
cagcgggatc ccgggggctg ccaggggttg ctggacgtcc tggagccaag 6840ggtcctgaag
ggccaccagg acccactggc cgccaaggag agaaggggga gcctggtcgc 6900cctggggacc
ctgcagtggt gggacctgct gttgctggac ccaaaggaga aaagggagat 6960gtggggcccg
ctgggcccag aggagctacc ggagtccaag gggaacgggg cccacccggc 7020ttggttcttc
ctggagaccc tggccccaag ggagaccctg gagaccgggg tcccattggc 7080cttactggca
gagcaggacc cccaggtgac tcagggcctc ctggagagaa gggagaccct 7140gggcggcctg
gccccccagg acctgttggc ccccgaggac gagatggtga agttggagag 7200aaaggtgacg
agggtcctcc gggtgacccg ggtttgcctg gaaaagcagg cgagcgtggc 7260cttcgggggg
cacctggagt tcgggggcct gtgggtgaaa agggagacca gggagatcct 7320ggagaggatg
gacgaaatgg cagccctgga tcatctggac ccaagggtga ccgtggggag 7380ccgggtcccc
caggaccccc gggacggctg gtagacacag gacctggagc cagagagaag 7440ggagagcctg
gggaccgcgg acaagagggt cctcgagggc ccaagggtga tcctggcctc 7500cctggagccc
ctggggaaag gggcattgaa gggtttcggg gacccccagg cccacagggg 7560gacccaggtg
tccgaggccc agcaggagaa aagggtgacc ggggtccccc tgggctggat 7620ggccggagcg
gactggatgg gaaaccagga gccgctgggc cctctgggcc gaatggtgct 7680gcaggcaaag
ctggggaccc agggagagac gggcttccag gcctccgtgg agaacagggc 7740ctccctggcc
cctctggtcc ccctggatta ccgggaaagc caggcgagga tggcaaacct 7800ggcctgaatg
gaaaaaacgg agaacctggg gaccctggag aagacgggag gaagggagag 7860aaaggagatt
caggcgcctc tgggagagaa ggtcgtgatg gccccaaggg tgagcgtgga 7920gctcctggta
tccttggacc ccaggggcct ccaggcctcc cagggccagt gggccctcct 7980ggccagggtt
ttcctggtgt cccaggaggc acgggcccca agggtgaccg tggggagact 8040ggatccaaag
gggagcaggg cctccctgga gagcgtggcc tgcgaggaga gcctggaagt 8100gtgccgaatg
tggatcggtt gctggaaact gctggcatca aggcatctgc cctgcgggag 8160atcgtggaga
cctgggatga gagctctggt agcttcctgc ctgtgcccga acggcgtcga 8220ggccccaagg
gggactcagg cgaacagggc cccccaggca aggagggccc catcggcttt 8280cctggagaac
gcgggctgaa gggcgaccgt ggagaccctg gccctcaggg gccacctggt 8340ctggcccttg
gggagagggg cccccccggg ccttccggcc ttgccgggga gcctggaaag 8400cctggtattc
ccgggctccc aggcagggct gggggtgtgg gagaggcagg aaggccagga 8460gagaggggag
aacggggaga gaaaggagaa cgtggagaac agggcagaga tggccctcct 8520ggactccctg
gaacccctgg gccccccgga ccccctggcc ccaaggtgtc tgtggatgag 8580ccaggtcctg
gactctctgg agaacaggga ccccctggac tcaagggtgc taagggggag 8640ccgggcagca
atggtgacca aggtcccaaa ggagacaggg gtgtgccagg catcaaagga 8700gaccggggag
agcctggacc gaggggtcag gacggcaacc cgggtctacc aggagagcgt 8760ggtatggctg
ggcctgaagg gaagccgggt ctgcagggtc caagaggccc ccctggccca 8820gtgggtggtc
atggagaccc tggaccacct ggtgccccgg gtcttgctgg ccctgcagga 8880ccccaaggac
cttctggcct gaagggggag cctggagaga caggacctcc aggacggggc 8940ctgactggac
ctactggagc tgtgggactt cctggacccc ccggcccttc aggccttgtg 9000ggtccacagg
ggtctccagg tttgcctgga caagtggggg agacagggaa gccgggagcc 9060ccaggtcgag
atggtgccag tggaaaagat ggagacagag ggagccctgg tgtgccaggg 9120tcaccaggtc
tgcctggccc tgtcggacct aaaggagaac ctggccccac gggggcccct 9180ggacaggctg
tggtcgggct ccctggagca aagggagaga agggagcccc tggaggcctt 9240gctggagacc
tggtgggtga gccgggagcc aaaggtgacc gaggactgcc agggccgcga 9300ggcgagaagg
gtgaagctgg ccgtgcaggg gagcccggag accctgggga agatggtcag 9360aaaggggctc
caggacccaa aggtttcaag ggtgacccag gagtcggggt cccgggctcc 9420cctgggcctc
ctggccctcc aggtgtgaag ggagatctgg gcctccctgg cctgcccggt 9480gctcctggtg
ttgttgggtt cccgggtcag acaggccctc gaggagagat gggtcagcca 9540ggccctagtg
gagagcgggg tctggcaggc cccccaggga gagaaggaat cccaggaccc 9600ctggggccac
ctggaccacc ggggtcagtg ggaccacctg gggcctctgg actcaaagga 9660gacaagggag
accctggagt agggctgcct gggccccgag gcgagcgtgg ggagccaggc 9720atccggggtg
aagatggccg ccccggccag gagggacccc gaggactcac ggggccccct 9780ggcagcaggg
gagagcgtgg ggagaagggt gatgttggga gtgcaggact aaagggtgac 9840aagggagact
cagctgtgat cctggggcct ccaggcccac ggggtgccaa gggggacatg 9900ggtgaacgag
ggcctcgggg cttggatggt gacaaaggac ctcggggaga caatggggac 9960cctggtgaca
agggcagcaa gggagagcct ggtgacaagg gctcagccgg gttgccagga 10020ctgcgtggac
tcctgggacc ccagggtcaa cctggtgcag cagggatccc tggtgacccg 10080ggatccccag
gaaaggatgg agtgcctggt atccgaggag aaaaaggaga tgttggcttc 10140atgggtcccc
ggggcctcaa gggtgaacgg ggagtgaagg gagcctgtgg ccttgatgga 10200gagaagggag
acaagggaga agctggtccc ccaggccgcc ccgggctggc aggacacaaa 10260ggagagatgg
gggagcctgg tgtgccgggc cagtcggggg cccctggcaa ggagggcctg 10320atcggtccca
agggtgaccg aggctttgac gggcagccag gccccaaggg tgaccagggc 10380gagaaagggg
agcggggaac cccaggaatt gggggcttcc caggccccag tggaaatgat 10440ggctctgctg
gtcccccagg gccacctggc agtgttggtc ccagaggccc cgaaggactt 10500cagggccaga
agggtgagcg aggtcccccc ggagagagag tggtgggggc tcctggggtc 10560cctggagctc
ctggcgagag aggggagcag gggcggccag ggcctgccgg tcctcgaggc 10620gagaagggag
aagctgcact gacggaggat gacatccggg gctttgtgcg ccaagagatg 10680agtcagcact
gtgcctgcca gggccagttc atcgcatctg gatcacgacc cctccctagt 10740tatgctgcag
acactgccgg ctcccagctc catgctgtgc ctgtgctccg cgtctctcat 10800gcagaggagg
aagagcgggt accccctgag gatgatgagt actctgaata ctccgagtat 10860tctgtggagg
agtaccagga ccctgaagct ccttgggata gtgatgaccc ctgttccctg 10920ccactggatg
agggctcctg cactgcctac accctgcgct ggtaccatcg ggctgtgaca 10980ggcagcacag
aggcctgtca cccttttgtc tatggtggct gtggagggaa tgccaaccgt 11040tttgggaccc
gtgaggcctg cgagcgccgc tgcccacccc gggtggtcca gagccagggg 11100acaggtactg
cccaggactg a
11121163706PRTArtificial SequenceSynthetic Construct 16Met Thr Ser Ser
Gly Pro Gly Pro Arg Phe Leu Leu Leu Leu Pro Leu1 5
10 15Leu Leu Pro Pro Ala Ala Ser Ala Ser Asp
Arg Pro Arg Gly Arg Asp 20 25
30Pro Val Asn Pro Glu Lys Leu Leu Val Ile Thr Val Ala Thr Ala Glu
35 40 45Thr Glu Gly Tyr Leu Arg Phe Leu
Arg Ser Ala Glu Phe Phe Asn Tyr 50 55
60Thr Val Arg Thr Leu Gly Leu Gly Glu Glu Trp Arg Gly Gly Asp Val65
70 75 80Ala Arg Thr Val Gly
Gly Gly Gln Lys Val Arg Trp Leu Lys Lys Glu 85
90 95Met Glu Lys Tyr Ala Asp Arg Glu Asp Met Ile
Ile Met Phe Val Asp 100 105
110Ser Tyr Asp Val Ile Leu Ala Gly Ser Pro Thr Glu Leu Leu Lys Lys
115 120 125Phe Val Gln Ser Gly Ser Arg
Leu Leu Phe Ser Ala Glu Ser Phe Cys 130 135
140Trp Pro Glu Trp Gly Leu Ala Glu Gln Tyr Pro Glu Val Gly Thr
Gly145 150 155 160Lys Arg
Phe Leu Asn Ser Gly Gly Phe Ile Gly Phe Ala Thr Thr Ile
165 170 175His Gln Ile Val Arg Gln Trp
Lys Tyr Lys Asp Asp Asp Asp Asp Gln 180 185
190Leu Phe Tyr Thr Arg Leu Tyr Leu Asp Pro Gly Leu Arg Glu
Lys Leu 195 200 205Ser Leu Asn Leu
Asp His Lys Ser Arg Ile Phe Gln Asn Leu Asn Gly 210
215 220Ala Leu Asp Glu Val Val Leu Lys Phe Asp Arg Asn
Arg Val Arg Ile225 230 235
240Arg Asn Val Ala Tyr Asp Thr Leu Pro Ile Val Val His Gly Asn Gly
245 250 255Pro Thr Lys Leu Gln
Leu Asn Tyr Leu Gly Asn Tyr Val Pro Asn Gly 260
265 270Trp Thr Pro Glu Gly Gly Cys Gly Phe Cys Asn Gln
Asp Arg Arg Thr 275 280 285Leu Pro
Gly Gly Gln Pro Pro Pro Arg Val Phe Leu Ala Val Phe Val 290
295 300Glu Gln Pro Thr Pro Phe Leu Pro Arg Phe Leu
Gln Arg Leu Leu Leu305 310 315
320Leu Asp Tyr Pro Pro Asp Arg Val Thr Leu Phe Leu His Asn Asn Glu
325 330 335Val Phe His Glu
Pro His Ile Ala Asp Ser Trp Pro Gln Leu Gln Asp 340
345 350His Phe Ser Ala Val Lys Leu Val Gly Pro Glu
Glu Ala Leu Ser Pro 355 360 365Gly
Glu Ala Arg Asp Met Ala Met Asp Leu Cys Arg Gln Asp Pro Glu 370
375 380Cys Glu Phe Tyr Phe Ser Leu Asp Ala Asp
Ala Val Leu Thr Asn Leu385 390 395
400Gln Thr Leu Arg Ile Leu Ile Glu Glu Asn Arg Lys Val Ile Ala
Pro 405 410 415Met Leu Ser
Arg His Gly Lys Leu Trp Ser Asn Phe Trp Gly Ala Leu 420
425 430Ser Pro Asp Glu Tyr Tyr Ala Arg Ser Glu
Asp Tyr Val Glu Leu Val 435 440
445Gln Arg Lys Arg Val Gly Val Trp Asn Val Pro Tyr Ile Ser Gln Ala 450
455 460Tyr Val Ile Arg Gly Asp Thr Leu
Arg Met Glu Leu Pro Gln Arg Asp465 470
475 480Val Phe Ser Gly Ser Asp Thr Asp Pro Asp Met Ala
Phe Cys Lys Ser 485 490
495Phe Arg Asp Lys Gly Ile Phe Leu His Leu Ser Asn Gln His Glu Phe
500 505 510Gly Arg Leu Leu Ala Thr
Ser Arg Tyr Asp Thr Glu His Leu His Pro 515 520
525Asp Leu Trp Gln Ile Phe Asp Asn Pro Val Asp Trp Lys Glu
Gln Tyr 530 535 540Ile His Glu Asn Tyr
Ser Arg Ala Leu Glu Gly Glu Gly Ile Val Glu545 550
555 560Gln Pro Cys Pro Asp Val Tyr Trp Phe Pro
Leu Leu Ser Glu Gln Met 565 570
575Cys Asp Glu Leu Val Ala Glu Met Glu His Tyr Gly Gln Trp Ser Gly
580 585 590Gly Arg His Glu Asp
Ser Arg Leu Ala Gly Gly Tyr Glu Asn Val Pro 595
600 605Thr Val Asp Ile His Met Lys Gln Val Gly Tyr Glu
Asp Gln Trp Leu 610 615 620Gln Leu Leu
Arg Thr Tyr Val Gly Pro Met Thr Glu Ser Leu Phe Pro625
630 635 640Gly Tyr His Thr Lys Ala Arg
Ala Val Met Asn Phe Val Val Arg Tyr 645
650 655Arg Pro Asp Glu Gln Pro Ser Leu Arg Pro His His
Asp Ser Ser Thr 660 665 670Phe
Thr Leu Asn Val Ala Leu Asn His Lys Gly Leu Asp Tyr Glu Gly 675
680 685Gly Gly Cys Arg Phe Leu Arg Tyr Asp
Cys Val Ile Ser Ser Pro Arg 690 695
700Lys Gly Trp Ala Leu Leu His Pro Gly Arg Leu Thr His Tyr His Glu705
710 715 720Gly Leu Pro Thr
Thr Trp Gly Thr Arg Tyr Ile Met Val Ser Phe Val 725
730 735Asp Pro Arg Ala Lys Arg Gly Ser Gly Glu
Gly Arg Gly Ser Leu Leu 740 745
750Thr Cys Gly Asp Val Glu Glu Asn Pro Gly Pro Thr Leu Arg Leu Leu
755 760 765Val Ala Ala Leu Cys Ala Gly
Ile Leu Ala Glu Ala Pro Arg Val Arg 770 775
780Ala Gln His Arg Glu Arg Val Thr Cys Thr Arg Leu Tyr Ala Ala
Asp785 790 795 800Ile Val
Phe Leu Leu Asp Gly Ser Ser Ser Ile Gly Arg Ser Asn Phe
805 810 815Arg Glu Val Arg Ser Phe Leu
Glu Gly Leu Val Leu Pro Phe Ser Gly 820 825
830Ala Ala Ser Ala Gln Gly Val Arg Phe Ala Thr Val Gln Tyr
Ser Asp 835 840 845Asp Pro Arg Thr
Glu Phe Gly Leu Asp Ala Leu Gly Ser Gly Gly Asp 850
855 860Val Ile Arg Ala Ile Arg Glu Leu Ser Tyr Lys Gly
Gly Asn Thr Arg865 870 875
880Thr Gly Ala Ala Ile Leu His Val Ala Asp His Val Phe Leu Pro Gln
885 890 895Leu Ala Arg Pro Gly
Val Pro Lys Val Cys Ile Leu Ile Thr Asp Gly 900
905 910Lys Ser Gln Asp Leu Val Asp Thr Ala Ala Gln Arg
Leu Lys Gly Gln 915 920 925Gly Val
Lys Leu Phe Ala Val Gly Ile Lys Asn Ala Asp Pro Glu Glu 930
935 940Leu Lys Arg Val Ala Ser Gln Pro Thr Ser Asp
Phe Phe Phe Phe Val945 950 955
960Asn Asp Phe Ser Ile Leu Arg Thr Leu Leu Pro Leu Val Ser Arg Arg
965 970 975Val Cys Thr Thr
Ala Gly Gly Val Pro Val Thr Arg Pro Pro Asp Asp 980
985 990Ser Thr Ser Ala Pro Arg Asp Leu Val Leu Ser
Glu Pro Ser Ser Gln 995 1000
1005Ser Leu Arg Val Gln Trp Thr Ala Ala Ser Gly Pro Val Thr Gly Tyr
1010 1015 1020Lys Val Gln Tyr Thr Pro Leu
Thr Gly Leu Gly Gln Pro Leu Pro Ser1025 1030
1035 1040Glu Arg Gln Glu Val Asn Val Pro Ala Gly Glu Thr
Ser Val Arg Leu 1045 1050
1055Arg Gly Leu Arg Pro Leu Thr Glu Tyr Gln Val Thr Val Ile Ala Leu
1060 1065 1070Tyr Ala Asn Ser Ile Gly
Glu Ala Val Ser Gly Thr Ala Arg Thr Thr 1075 1080
1085Ala Leu Glu Gly Pro Glu Leu Thr Ile Gln Asn Thr Thr Ala
His Ser 1090 1095 1100Leu Leu Val Ala
Trp Arg Ser Val Pro Gly Ala Thr Gly Tyr Arg Val1105 1110
1115 1120Thr Trp Arg Val Leu Ser Gly Gly Pro
Thr Gln Gln Gln Glu Leu Gly 1125 1130
1135Pro Gly Gln Gly Ser Val Leu Leu Arg Asp Leu Glu Pro Gly Thr
Asp 1140 1145 1150Tyr Glu Val
Thr Val Ser Thr Leu Phe Gly Arg Ser Val Gly Pro Ala 1155
1160 1165Thr Ser Leu Met Ala Arg Thr Asp Ala Ser Val
Glu Gln Thr Leu Arg 1170 1175 1180Pro
Val Ile Leu Gly Pro Thr Ser Ile Leu Leu Ser Trp Asn Leu Val1185
1190 1195 1200Pro Glu Ala Arg Gly Tyr
Arg Leu Glu Trp Arg Arg Glu Thr Gly Leu 1205
1210 1215Glu Pro Pro Gln Lys Val Val Leu Pro Ser Asp Val
Thr Arg Tyr Gln 1220 1225
1230Leu Asp Gly Leu Gln Pro Gly Thr Glu Tyr Arg Leu Thr Leu Tyr Thr
1235 1240 1245Leu Leu Glu Gly His Glu Val
Ala Thr Pro Ala Thr Val Val Pro Thr 1250 1255
1260Gly Pro Glu Leu Pro Val Ser Pro Val Thr Asp Leu Gln Ala Thr
Glu1265 1270 1275 1280Leu Pro
Gly Gln Arg Val Arg Val Ser Trp Ser Pro Val Pro Gly Ala
1285 1290 1295Thr Gln Tyr Arg Ile Ile Val
Arg Ser Thr Gln Gly Val Glu Arg Thr 1300 1305
1310Leu Val Leu Pro Gly Ser Gln Thr Ala Phe Asp Leu Asp Asp
Val Gln 1315 1320 1325Ala Gly Leu
Ser Tyr Thr Val Arg Val Ser Ala Arg Val Gly Pro Arg 1330
1335 1340Glu Gly Ser Ala Ser Val Leu Thr Val Arg Arg Glu
Pro Glu Thr Pro1345 1350 1355
1360Leu Ala Val Pro Gly Leu Arg Val Val Val Ser Asp Ala Thr Arg Val
1365 1370 1375Arg Val Ala Trp Gly
Pro Val Pro Gly Ala Ser Gly Phe Arg Ile Ser 1380
1385 1390Trp Ser Thr Gly Ser Gly Pro Glu Ser Ser Gln Thr
Leu Pro Pro Asp 1395 1400 1405Ser
Thr Ala Thr Asp Ile Thr Gly Leu Gln Pro Gly Thr Thr Tyr Gln 1410
1415 1420Val Ala Val Ser Val Leu Arg Gly Arg Glu
Glu Gly Pro Ala Ala Val1425 1430 1435
1440Ile Val Ala Arg Thr Asp Pro Leu Gly Pro Val Arg Thr Val His
Val 1445 1450 1455Thr Gln
Ala Ser Ser Ser Ser Val Thr Ile Thr Trp Thr Arg Val Pro 1460
1465 1470Gly Ala Thr Gly Tyr Arg Val Ser Trp
His Ser Ala His Gly Pro Glu 1475 1480
1485Lys Ser Gln Leu Val Ser Gly Glu Ala Thr Val Ala Glu Leu Asp Gly
1490 1495 1500Leu Glu Pro Asp Thr Glu Tyr
Thr Val His Val Arg Ala His Val Ala1505 1510
1515 1520Gly Val Asp Gly Pro Pro Ala Ser Val Val Val Arg
Thr Ala Pro Glu 1525 1530
1535Pro Val Gly Arg Val Ser Arg Leu Gln Ile Leu Asn Ala Ser Ser Asp
1540 1545 1550Val Leu Arg Ile Thr Trp
Val Gly Val Thr Gly Ala Thr Ala Tyr Arg 1555 1560
1565Leu Ala Trp Gly Arg Ser Glu Gly Gly Pro Met Arg His Gln
Ile Leu 1570 1575 1580Pro Gly Asn Thr
Asp Ser Ala Glu Ile Arg Gly Leu Glu Gly Gly Val1585 1590
1595 1600Ser Tyr Ser Val Arg Val Thr Ala Leu
Val Gly Asp Arg Glu Gly Thr 1605 1610
1615Pro Val Ser Ile Val Val Thr Thr Pro Pro Glu Ala Pro Pro Ala
Leu 1620 1625 1630Gly Thr Leu
His Val Val Gln Arg Gly Glu His Ser Leu Arg Leu Arg 1635
1640 1645Trp Glu Pro Val Pro Arg Ala Gln Gly Phe Leu
Leu His Trp Gln Pro 1650 1655 1660Glu
Gly Gly Gln Glu Gln Ser Arg Val Leu Gly Pro Glu Leu Ser Ser1665
1670 1675 1680Tyr His Leu Asp Gly Leu
Glu Pro Ala Thr Gln Tyr Arg Val Arg Leu 1685
1690 1695Ser Val Leu Gly Pro Ala Gly Glu Gly Pro Ser Ala
Glu Val Thr Ala 1700 1705
1710Arg Thr Glu Ser Pro Arg Val Pro Ser Ile Glu Leu Arg Val Val Asp
1715 1720 1725Thr Ser Ile Asp Ser Val Thr
Leu Ala Trp Thr Pro Val Ser Arg Ala 1730 1735
1740Ser Ser Tyr Ile Leu Ser Trp Arg Pro Leu Arg Gly Pro Gly Gln
Glu1745 1750 1755 1760Val Pro
Gly Ser Pro Gln Thr Leu Pro Gly Ile Ser Ser Ser Gln Arg
1765 1770 1775Val Thr Gly Leu Glu Pro Gly
Val Ser Tyr Ile Phe Ser Leu Thr Pro 1780 1785
1790Val Leu Asp Gly Val Arg Gly Pro Glu Ala Ser Val Thr Gln
Thr Pro 1795 1800 1805Val Cys Pro
Arg Gly Leu Ala Asp Val Val Phe Leu Pro His Ala Thr 1810
1815 1820Gln Asp Asn Ala His Arg Ala Glu Ala Thr Arg Arg
Val Leu Glu Arg1825 1830 1835
1840Leu Val Leu Ala Leu Gly Pro Leu Gly Pro Gln Ala Val Gln Val Gly
1845 1850 1855Leu Leu Ser Tyr Ser
His Arg Pro Ser Pro Leu Phe Pro Leu Asn Gly 1860
1865 1870Ser His Asp Leu Gly Ile Ile Leu Gln Arg Ile Arg
Asp Met Pro Tyr 1875 1880 1885Met
Asp Pro Ser Gly Asn Asn Leu Gly Thr Ala Val Val Thr Ala His 1890
1895 1900Arg Tyr Met Leu Ala Pro Asp Ala Pro Gly
Arg Arg Gln His Val Pro1905 1910 1915
1920Gly Val Met Val Leu Leu Val Asp Glu Pro Leu Arg Gly Asp Ile
Phe 1925 1930 1935Ser Pro
Ile Arg Glu Ala Gln Ala Ser Gly Leu Asn Val Val Met Leu 1940
1945 1950Gly Met Ala Gly Ala Asp Pro Glu Gln
Leu Arg Arg Leu Ala Pro Gly 1955 1960
1965Met Asp Ser Val Gln Thr Phe Phe Ala Val Asp Asp Gly Pro Ser Leu
1970 1975 1980Asp Gln Ala Val Ser Gly Leu
Ala Thr Ala Leu Cys Gln Ala Ser Phe1985 1990
1995 2000Thr Thr Gln Pro Arg Pro Glu Pro Cys Pro Val Tyr
Cys Pro Lys Gly 2005 2010
2015Gln Lys Gly Glu Pro Gly Glu Met Gly Leu Arg Gly Gln Val Gly Pro
2020 2025 2030Pro Gly Asp Pro Gly Leu
Pro Gly Arg Thr Gly Ala Pro Gly Pro Gln 2035 2040
2045Gly Pro Pro Gly Ser Ala Thr Ala Lys Gly Glu Arg Gly Phe
Pro Gly 2050 2055 2060Ala Asp Gly Arg
Pro Gly Ser Pro Gly Arg Ala Gly Asn Pro Gly Thr2065 2070
2075 2080Pro Gly Ala Pro Gly Leu Lys Gly Ser
Pro Gly Leu Pro Gly Pro Arg 2085 2090
2095Gly Asp Pro Gly Glu Arg Gly Pro Arg Gly Pro Lys Gly Glu Pro
Gly 2100 2105 2110Ala Pro Gly
Gln Val Ile Gly Gly Glu Gly Pro Gly Leu Pro Gly Arg 2115
2120 2125Lys Gly Asp Pro Gly Pro Ser Gly Pro Pro Gly
Pro Arg Gly Pro Leu 2130 2135 2140Gly
Asp Pro Gly Pro Arg Gly Pro Pro Gly Leu Pro Gly Thr Ala Met2145
2150 2155 2160Lys Gly Asp Lys Gly Asp
Arg Gly Glu Arg Gly Pro Pro Gly Pro Gly 2165
2170 2175Glu Gly Gly Ile Ala Pro Gly Glu Pro Gly Leu Pro
Gly Leu Pro Gly 2180 2185
2190Ser Pro Gly Pro Gln Gly Pro Val Gly Pro Pro Gly Lys Lys Gly Glu
2195 2200 2205Lys Gly Asp Ser Glu Asp Gly
Ala Pro Gly Leu Pro Gly Gln Pro Gly 2210 2215
2220Ser Pro Gly Glu Gln Gly Pro Arg Gly Pro Pro Gly Ala Ile Gly
Pro2225 2230 2235 2240Lys Gly
Asp Arg Gly Phe Pro Gly Pro Leu Gly Glu Ala Gly Glu Lys
2245 2250 2255Gly Glu Arg Gly Pro Pro Gly
Pro Ala Gly Ser Arg Gly Leu Pro Gly 2260 2265
2270Val Ala Gly Arg Pro Gly Ala Lys Gly Pro Glu Gly Pro Pro
Gly Pro 2275 2280 2285Thr Gly Arg
Gln Gly Glu Lys Gly Glu Pro Gly Arg Pro Gly Asp Pro 2290
2295 2300Ala Val Val Gly Pro Ala Val Ala Gly Pro Lys Gly
Glu Lys Gly Asp2305 2310 2315
2320Val Gly Pro Ala Gly Pro Arg Gly Ala Thr Gly Val Gln Gly Glu Arg
2325 2330 2335Gly Pro Pro Gly Leu
Val Leu Pro Gly Asp Pro Gly Pro Lys Gly Asp 2340
2345 2350Pro Gly Asp Arg Gly Pro Ile Gly Leu Thr Gly Arg
Ala Gly Pro Pro 2355 2360 2365Gly
Asp Ser Gly Pro Pro Gly Glu Lys Gly Asp Pro Gly Arg Pro Gly 2370
2375 2380Pro Pro Gly Pro Val Gly Pro Arg Gly Arg
Asp Gly Glu Val Gly Glu2385 2390 2395
2400Lys Gly Asp Glu Gly Pro Pro Gly Asp Pro Gly Leu Pro Gly Lys
Ala 2405 2410 2415Gly Glu
Arg Gly Leu Arg Gly Ala Pro Gly Val Arg Gly Pro Val Gly 2420
2425 2430Glu Lys Gly Asp Gln Gly Asp Pro Gly
Glu Asp Gly Arg Asn Gly Ser 2435 2440
2445Pro Gly Ser Ser Gly Pro Lys Gly Asp Arg Gly Glu Pro Gly Pro Pro
2450 2455 2460Gly Pro Pro Gly Arg Leu Val
Asp Thr Gly Pro Gly Ala Arg Glu Lys2465 2470
2475 2480Gly Glu Pro Gly Asp Arg Gly Gln Glu Gly Pro Arg
Gly Pro Lys Gly 2485 2490
2495Asp Pro Gly Leu Pro Gly Ala Pro Gly Glu Arg Gly Ile Glu Gly Phe
2500 2505 2510Arg Gly Pro Pro Gly Pro
Gln Gly Asp Pro Gly Val Arg Gly Pro Ala 2515 2520
2525Gly Glu Lys Gly Asp Arg Gly Pro Pro Gly Leu Asp Gly Arg
Ser Gly 2530 2535 2540Leu Asp Gly Lys
Pro Gly Ala Ala Gly Pro Ser Gly Pro Asn Gly Ala2545 2550
2555 2560Ala Gly Lys Ala Gly Asp Pro Gly Arg
Asp Gly Leu Pro Gly Leu Arg 2565 2570
2575Gly Glu Gln Gly Leu Pro Gly Pro Ser Gly Pro Pro Gly Leu Pro
Gly 2580 2585 2590Lys Pro Gly
Glu Asp Gly Lys Pro Gly Leu Asn Gly Lys Asn Gly Glu 2595
2600 2605Pro Gly Asp Pro Gly Glu Asp Gly Arg Lys Gly
Glu Lys Gly Asp Ser 2610 2615 2620Gly
Ala Ser Gly Arg Glu Gly Arg Asp Gly Pro Lys Gly Glu Arg Gly2625
2630 2635 2640Ala Pro Gly Ile Leu Gly
Pro Gln Gly Pro Pro Gly Leu Pro Gly Pro 2645
2650 2655Val Gly Pro Pro Gly Gln Gly Phe Pro Gly Val Pro
Gly Gly Thr Gly 2660 2665
2670Pro Lys Gly Asp Arg Gly Glu Thr Gly Ser Lys Gly Glu Gln Gly Leu
2675 2680 2685Pro Gly Glu Arg Gly Leu Arg
Gly Glu Pro Gly Ser Val Pro Asn Val 2690 2695
2700Asp Arg Leu Leu Glu Thr Ala Gly Ile Lys Ala Ser Ala Leu Arg
Glu2705 2710 2715 2720Ile Val
Glu Thr Trp Asp Glu Ser Ser Gly Ser Phe Leu Pro Val Pro
2725 2730 2735Glu Arg Arg Arg Gly Pro Lys
Gly Asp Ser Gly Glu Gln Gly Pro Pro 2740 2745
2750Gly Lys Glu Gly Pro Ile Gly Phe Pro Gly Glu Arg Gly Leu
Lys Gly 2755 2760 2765Asp Arg Gly
Asp Pro Gly Pro Gln Gly Pro Pro Gly Leu Ala Leu Gly 2770
2775 2780Glu Arg Gly Pro Pro Gly Pro Ser Gly Leu Ala Gly
Glu Pro Gly Lys2785 2790 2795
2800Pro Gly Ile Pro Gly Leu Pro Gly Arg Ala Gly Gly Val Gly Glu Ala
2805 2810 2815Gly Arg Pro Gly Glu
Arg Gly Glu Arg Gly Glu Lys Gly Glu Arg Gly 2820
2825 2830Glu Gln Gly Arg Asp Gly Pro Pro Gly Leu Pro Gly
Thr Pro Gly Pro 2835 2840 2845Pro
Gly Pro Pro Gly Pro Lys Val Ser Val Asp Glu Pro Gly Pro Gly 2850
2855 2860Leu Ser Gly Glu Gln Gly Pro Pro Gly Leu
Lys Gly Ala Lys Gly Glu2865 2870 2875
2880Pro Gly Ser Asn Gly Asp Gln Gly Pro Lys Gly Asp Arg Gly Val
Pro 2885 2890 2895Gly Ile
Lys Gly Asp Arg Gly Glu Pro Gly Pro Arg Gly Gln Asp Gly 2900
2905 2910Asn Pro Gly Leu Pro Gly Glu Arg Gly
Met Ala Gly Pro Glu Gly Lys 2915 2920
2925Pro Gly Leu Gln Gly Pro Arg Gly Pro Pro Gly Pro Val Gly Gly His
2930 2935 2940Gly Asp Pro Gly Pro Pro Gly
Ala Pro Gly Leu Ala Gly Pro Ala Gly2945 2950
2955 2960Pro Gln Gly Pro Ser Gly Leu Lys Gly Glu Pro Gly
Glu Thr Gly Pro 2965 2970
2975Pro Gly Arg Gly Leu Thr Gly Pro Thr Gly Ala Val Gly Leu Pro Gly
2980 2985 2990Pro Pro Gly Pro Ser Gly
Leu Val Gly Pro Gln Gly Ser Pro Gly Leu 2995 3000
3005Pro Gly Gln Val Gly Glu Thr Gly Lys Pro Gly Ala Pro Gly
Arg Asp 3010 3015 3020Gly Ala Ser Gly
Lys Asp Gly Asp Arg Gly Ser Pro Gly Val Pro Gly3025 3030
3035 3040Ser Pro Gly Leu Pro Gly Pro Val Gly
Pro Lys Gly Glu Pro Gly Pro 3045 3050
3055Thr Gly Ala Pro Gly Gln Ala Val Val Gly Leu Pro Gly Ala Lys
Gly 3060 3065 3070Glu Lys Gly
Ala Pro Gly Gly Leu Ala Gly Asp Leu Val Gly Glu Pro 3075
3080 3085Gly Ala Lys Gly Asp Arg Gly Leu Pro Gly Pro
Arg Gly Glu Lys Gly 3090 3095 3100Glu
Ala Gly Arg Ala Gly Glu Pro Gly Asp Pro Gly Glu Asp Gly Gln3105
3110 3115 3120Lys Gly Ala Pro Gly Pro
Lys Gly Phe Lys Gly Asp Pro Gly Val Gly 3125
3130 3135Val Pro Gly Ser Pro Gly Pro Pro Gly Pro Pro Gly
Val Lys Gly Asp 3140 3145
3150Leu Gly Leu Pro Gly Leu Pro Gly Ala Pro Gly Val Val Gly Phe Pro
3155 3160 3165Gly Gln Thr Gly Pro Arg Gly
Glu Met Gly Gln Pro Gly Pro Ser Gly 3170 3175
3180Glu Arg Gly Leu Ala Gly Pro Pro Gly Arg Glu Gly Ile Pro Gly
Pro3185 3190 3195 3200Leu Gly
Pro Pro Gly Pro Pro Gly Ser Val Gly Pro Pro Gly Ala Ser
3205 3210 3215Gly Leu Lys Gly Asp Lys Gly
Asp Pro Gly Val Gly Leu Pro Gly Pro 3220 3225
3230Arg Gly Glu Arg Gly Glu Pro Gly Ile Arg Gly Glu Asp Gly
Arg Pro 3235 3240 3245Gly Gln Glu
Gly Pro Arg Gly Leu Thr Gly Pro Pro Gly Ser Arg Gly 3250
3255 3260Glu Arg Gly Glu Lys Gly Asp Val Gly Ser Ala Gly
Leu Lys Gly Asp3265 3270 3275
3280Lys Gly Asp Ser Ala Val Ile Leu Gly Pro Pro Gly Pro Arg Gly Ala
3285 3290 3295Lys Gly Asp Met Gly
Glu Arg Gly Pro Arg Gly Leu Asp Gly Asp Lys 3300
3305 3310Gly Pro Arg Gly Asp Asn Gly Asp Pro Gly Asp Lys
Gly Ser Lys Gly 3315 3320 3325Glu
Pro Gly Asp Lys Gly Ser Ala Gly Leu Pro Gly Leu Arg Gly Leu 3330
3335 3340Leu Gly Pro Gln Gly Gln Pro Gly Ala Ala
Gly Ile Pro Gly Asp Pro3345 3350 3355
3360Gly Ser Pro Gly Lys Asp Gly Val Pro Gly Ile Arg Gly Glu Lys
Gly 3365 3370 3375Asp Val
Gly Phe Met Gly Pro Arg Gly Leu Lys Gly Glu Arg Gly Val 3380
3385 3390Lys Gly Ala Cys Gly Leu Asp Gly Glu
Lys Gly Asp Lys Gly Glu Ala 3395 3400
3405Gly Pro Pro Gly Arg Pro Gly Leu Ala Gly His Lys Gly Glu Met Gly
3410 3415 3420Glu Pro Gly Val Pro Gly Gln
Ser Gly Ala Pro Gly Lys Glu Gly Leu3425 3430
3435 3440Ile Gly Pro Lys Gly Asp Arg Gly Phe Asp Gly Gln
Pro Gly Pro Lys 3445 3450
3455Gly Asp Gln Gly Glu Lys Gly Glu Arg Gly Thr Pro Gly Ile Gly Gly
3460 3465 3470Phe Pro Gly Pro Ser Gly
Asn Asp Gly Ser Ala Gly Pro Pro Gly Pro 3475 3480
3485Pro Gly Ser Val Gly Pro Arg Gly Pro Glu Gly Leu Gln Gly
Gln Lys 3490 3495 3500Gly Glu Arg Gly
Pro Pro Gly Glu Arg Val Val Gly Ala Pro Gly Val3505 3510
3515 3520Pro Gly Ala Pro Gly Glu Arg Gly Glu
Gln Gly Arg Pro Gly Pro Ala 3525 3530
3535Gly Pro Arg Gly Glu Lys Gly Glu Ala Ala Leu Thr Glu Asp Asp
Ile 3540 3545 3550Arg Gly Phe
Val Arg Gln Glu Met Ser Gln His Cys Ala Cys Gln Gly 3555
3560 3565Gln Phe Ile Ala Ser Gly Ser Arg Pro Leu Pro
Ser Tyr Ala Ala Asp 3570 3575 3580Thr
Ala Gly Ser Gln Leu His Ala Val Pro Val Leu Arg Val Ser His3585
3590 3595 3600Ala Glu Glu Glu Glu Arg
Val Pro Pro Glu Asp Asp Glu Tyr Ser Glu 3605
3610 3615Tyr Ser Glu Tyr Ser Val Glu Glu Tyr Gln Asp Pro
Glu Ala Pro Trp 3620 3625
3630Asp Ser Asp Asp Pro Cys Ser Leu Pro Leu Asp Glu Gly Ser Cys Thr
3635 3640 3645Ala Tyr Thr Leu Arg Trp Tyr
His Arg Ala Val Thr Gly Ser Thr Glu 3650 3655
3660Ala Cys His Pro Phe Val Tyr Gly Gly Cys Gly Gly Asn Ala Asn
Arg3665 3670 3675 3680Phe Gly
Thr Arg Glu Ala Cys Glu Arg Arg Cys Pro Pro Arg Val Val
3685 3690 3695Gln Ser Gln Gly Thr Gly Thr
Ala Gln Asp 3700 37051711112DNAArtificial
SequenceSynthetic Construct 17atgacgctgc ggcttctggt ggccgcgctc tgcgccggga
tcctggcaga ggcgccccga 60gtgcgagccc agcacaggga gagagtgacc tgcacgcgcc
tttacgccgc tgacattgtg 120ttcttactgg atggctcctc atccattggc cgcagcaatt
tccgcgaggt ccgcagcttt 180ctcgaagggc tggtgctgcc tttctctgga gcagccagtg
cacagggtgt gcgctttgcc 240acagtgcagt acagcgatga cccacggaca gagttcggcc
tggatgcact tggctctggg 300ggtgatgtga tccgcgccat ccgtgagctt agctacaagg
ggggcaacac tcgcacaggg 360gctgcaattc tccatgtggc tgaccatgtc ttcctgcccc
agctggcccg acctggtgtc 420cccaaggtct gcatcctgat cacagacggg aagtcccagg
acctggtgga cacagctgcc 480caaaggctga aggggcaggg ggtcaagcta tttgctgtgg
ggatcaagaa tgctgaccct 540gaggagctga agcgagttgc ctcacagccc accagtgact
tcttcttctt cgtcaatgac 600ttcagcatct tgaggacact actgcccctc gtttcccgga
gagtgtgcac gactgctggt 660ggcgtgcctg tgacccgacc tccggatgac tcgacctctg
ctccacgaga cctggtgctg 720tctgagccaa gcagccaatc cttgagagta cagtggacag
cggccagtgg ccctgtgact 780ggctacaagg tccagtacac tcctctgacg gggctgggac
agccactgcc gagtgagcgg 840caggaggtga acgtcccagc tggtgagacc agtgtgcggc
tgcggggtct ccggccactg 900accgagtacc aagtgactgt gattgccctc tacgccaaca
gcatcgggga ggctgtgagc 960gggacagctc ggaccactgc cctagaaggg ccggaactga
ccatccagaa taccacagcc 1020cacagcctcc tggtggcctg gcggagtgtg ccaggtgcca
ctggctaccg tgtgacatgg 1080cgggtcctca gtggtgggcc cacacagcag caggagctgg
gccctgggca gggttcagtg 1140ttgctgcgtg acttggagcc tggcacggac tatgaggtga
ccgtgagcac cctatttggc 1200cgcagtgtgg ggcccgccac ttccctgatg gctcgcactg
acgcttctgt tgagcagacc 1260ctgcgcccgg tcatcctggg ccccacatcc atcctccttt
cctggaactt ggtgcctgag 1320gcccgtggct accggttgga atggcggcgt gagactggct
tggagccacc gcagaaggtg 1380gtactgccct ctgatgtgac ccgctaccag ttggatgggc
tgcagccggg cactgagtac 1440cgcctcacac tctacactct gctggagggc cacgaggtgg
ccacccctgc aaccgtggtt 1500cccactggac cagagctgcc tgtgagccct gtaacagacc
tgcaagccac cgagctgccc 1560gggcagcggg tgcgagtgtc ctggagccca gtccctggtg
ccacccagta ccgcatcatt 1620gtgcgcagca cccagggggt tgagcggacc ctggtgcttc
ctgggagtca gacagcattc 1680gacttggatg acgttcaggc tgggcttagc tacactgtgc
gggtgtctgc tcgagtgggt 1740ccccgtgagg gcagtgccag tgtcctcact gtccgccggg
agccggaaac tccacttgct 1800gttccagggc tgcgggttgt ggtgtcagat gcaacgcgag
tgagggtggc ctggggaccc 1860gtccctggag ccagtggatt tcggattagc tggagcacag
gcagtggtcc ggagtccagc 1920cagacactgc ccccagactc tactgccaca gacatcacag
ggctgcagcc tggaaccacc 1980taccaggtgg ctgtgtcggt actgcgaggc agagaggagg
gccctgctgc agtcatcgtg 2040gctcgaacgg acccactggg cccagtgagg acggtccatg
tgactcaggc cagcagctca 2100tctgtcacca ttacctggac cagggttcct ggcgccacag
gatacagggt ttcctggcac 2160tcagcccacg gcccagagaa atcccagttg gtttctgggg
aggccacggt ggctgagctg 2220gatggactgg agccagatac tgagtatacg gtgcatgtga
gggcccatgt ggctggcgtg 2280gatgggcccc ctgcctctgt ggttgtgagg actgcccctg
agcctgtggg tcgtgtgtcg 2340aggctgcaga tcctcaatgc ttccagcgac gttctacgga
tcacctgggt aggggtcact 2400ggagccacag cttacagact ggcctggggc cggagtgaag
gcggccccat gaggcaccag 2460atactcccag gaaacacaga ctctgcagag atccggggtc
tcgaaggtgg agtcagctac 2520tcagtgcgag tgactgcact tgtcggggac cgcgagggca
cacctgtctc cattgttgtc 2580actacgccgc ctgaggctcc gccagccctg gggacgcttc
acgtggtgca gcgcggggag 2640cactcgctga ggctgcgctg ggagccggtg cccagagcgc
agggcttcct tctgcactgg 2700caacctgagg gtggccagga acagtcccgg gtcctggggc
ccgagctcag cagctatcac 2760ctggacgggc tggagccagc gacacagtac cgcgtgaggc
tgagtgtcct agggccagct 2820ggagaagggc cctctgcaga ggtgactgcg cgcactgagt
cacctcgtgt tccaagcatt 2880gaactacgtg tggtggacac ctcgatcgac tcggtgactt
tggcctggac tccagtgtcc 2940agggcatcca gctacatcct atcctggcgg ccactcagag
gccctggcca ggaagtgcct 3000gggtccccgc agacacttcc agggatctca agctcccagc
gggtgacagg gctagagcct 3060ggcgtctctt acatcttctc cctgacgcct gtcctggatg
gtgtgcgggg tcctgaggca 3120tctgtcacac agacgccagt gtgcccccgt ggcctggcgg
atgtggtgtt cctaccacat 3180gccactcaag acaatgctca ccgtgcggag gctacgagga
gggtcctgga gcgtctggtg 3240ttggcacttg ggcctcttgg gccacaggca gttcaggttg
gcctgctgtc ttacagtcat 3300cggccctccc cactgttccc actgaatggc tcccatgacc
ttggcattat cttgcaaagg 3360atccgtgaca tgccctacat ggacccaagt gggaacaacc
tgggcacagc cgtggtcaca 3420gctcacagat acatgttggc accagatgct cctgggcgcc
gccagcacgt accaggggtg 3480atggttctgc tagtggatga acccttgaga ggtgacatat
tcagccccat ccgtgaggcc 3540caggcttctg ggcttaatgt ggtgatgttg ggaatggctg
gagcggaccc agagcagctg 3600cgtcgcttgg cgccgggtat ggactctgtc cagaccttct
tcgccgtgga tgatgggcca 3660agcctggacc aggcagtcag tggtctggcc acagccctgt
gtcaggcatc cttcactact 3720cagccccggc cagagccctg cccagtgtat tgtccaaagg
gccagaaggg ggaacctgga 3780gagatgggcc tgagaggaca agttgggcct cctggcgacc
ctggcctccc gggcaggacc 3840ggtgctcccg gcccccaggg gccccctgga agtgccactg
ccaagggcga gaggggcttc 3900cctggagcag atgggcgtcc aggcagccct ggccgcgccg
ggaatcctgg gacccctgga 3960gcccctggcc taaagggctc tccagggttg cctggccctc
gtggggaccc gggagagcga 4020ggacctcgag gcccaaaggg ggagccgggg gctcccggac
aagtcatcgg aggtgaagga 4080cctgggcttc ctgggcggaa aggggaccct ggaccatcgg
gcccccctgg acctcgtgga 4140ccactggggg acccaggacc ccgtggcccc ccagggcttc
ctggaacagc catgaagggt 4200gacaaaggcg atcgtgggga gcggggtccc cctggaccag
gtgaaggtgg cattgctcct 4260ggggagcctg ggctgccggg tcttcccgga agccctggac
cccaaggccc cgttggcccc 4320cctggaaaga aaggagaaaa aggtgactct gaggatggag
ctccaggcct cccaggacaa 4380cctgggtctc cgggtgagca gggcccacgg ggacctcctg
gagctattgg ccccaaaggt 4440gaccggggct ttccagggcc cctgggtgag gctggagaga
agggcgaacg tggaccccca 4500ggcccagcgg gatcccgggg gctgccaggg gttgctggac
gtcctggagc caagggtcct 4560gaagggccac caggacccac tggccgccaa ggagagaagg
gggagcctgg tcgccctggg 4620gaccctgcag tggtgggacc tgctgttgct ggacccaaag
gagaaaaggg agatgtgggg 4680cccgctgggc ccagaggagc taccggagtc caaggggaac
ggggcccacc cggcttggtt 4740cttcctggag accctggccc caagggagac cctggagacc
ggggtcccat tggccttact 4800ggcagagcag gacccccagg tgactcaggg cctcctggag
agaagggaga ccctgggcgg 4860cctggccccc caggacctgt tggcccccga ggacgagatg
gtgaagttgg agagaaaggt 4920gacgagggtc ctccgggtga cccgggtttg cctggaaaag
caggcgagcg tggccttcgg 4980ggggcacctg gagttcgggg gcctgtgggt gaaaagggag
accagggaga tcctggagag 5040gatggacgaa atggcagccc tggatcatct ggacccaagg
gtgaccgtgg ggagccgggt 5100cccccaggac ccccgggacg gctggtagac acaggacctg
gagccagaga gaagggagag 5160cctggggacc gcggacaaga gggtcctcga gggcccaagg
gtgatcctgg cctccctgga 5220gcccctgggg aaaggggcat tgaagggttt cggggacccc
caggcccaca gggggaccca 5280ggtgtccgag gcccagcagg agaaaagggt gaccggggtc
cccctgggct ggatggccgg 5340agcggactgg atgggaaacc aggagccgct gggccctctg
ggccgaatgg tgctgcaggc 5400aaagctgggg acccagggag agacgggctt ccaggcctcc
gtggagaaca gggcctccct 5460ggcccctctg gtccccctgg attaccggga aagccaggcg
aggatggcaa acctggcctg 5520aatggaaaaa acggagaacc tggggaccct ggagaagacg
ggaggaaggg agagaaagga 5580gattcaggcg cctctgggag agaaggtcgt gatggcccca
agggtgagcg tggagctcct 5640ggtatccttg gaccccaggg gcctccaggc ctcccagggc
cagtgggccc tcctggccag 5700ggttttcctg gtgtcccagg aggcacgggc cccaagggtg
accgtgggga gactggatcc 5760aaaggggagc agggcctccc tggagagcgt ggcctgcgag
gagagcctgg aagtgtgccg 5820aatgtggatc ggttgctgga aactgctggc atcaaggcat
ctgccctgcg ggagatcgtg 5880gagacctggg atgagagctc tggtagcttc ctgcctgtgc
ccgaacggcg tcgaggcccc 5940aagggggact caggcgaaca gggcccccca ggcaaggagg
gccccatcgg ctttcctgga 6000gaacgcgggc tgaagggcga ccgtggagac cctggccctc
aggggccacc tggtctggcc 6060cttggggaga ggggcccccc cgggccttcc ggccttgccg
gggagcctgg aaagcctggt 6120attcccgggc tcccaggcag ggctgggggt gtgggagagg
caggaaggcc aggagagagg 6180ggagaacggg gagagaaagg agaacgtgga gaacagggca
gagatggccc tcctggactc 6240cctggaaccc ctgggccccc cggaccccct ggccccaagg
tgtctgtgga tgagccaggt 6300cctggactct ctggagaaca gggaccccct ggactcaagg
gtgctaaggg ggagccgggc 6360agcaatggtg accaaggtcc caaaggagac aggggtgtgc
caggcatcaa aggagaccgg 6420ggagagcctg gaccgagggg tcaggacggc aacccgggtc
taccaggaga gcgtggtatg 6480gctgggcctg aagggaagcc gggtctgcag ggtccaagag
gcccccctgg cccagtgggt 6540ggtcatggag accctggacc acctggtgcc ccgggtcttg
ctggccctgc aggaccccaa 6600ggaccttctg gcctgaaggg ggagcctgga gagacaggac
ctccaggacg gggcctgact 6660ggacctactg gagctgtggg acttcctgga ccccccggcc
cttcaggcct tgtgggtcca 6720caggggtctc caggtttgcc tggacaagtg ggggagacag
ggaagccggg agccccaggt 6780cgagatggtg ccagtggaaa agatggagac agagggagcc
ctggtgtgcc agggtcacca 6840ggtctgcctg gccctgtcgg acctaaagga gaacctggcc
ccacgggggc ccctggacag 6900gctgtggtcg ggctccctgg agcaaaggga gagaagggag
cccctggagg ccttgctgga 6960gacctggtgg gtgagccggg agccaaaggt gaccgaggac
tgccagggcc gcgaggcgag 7020aagggtgaag ctggccgtgc aggggagccc ggagaccctg
gggaagatgg tcagaaaggg 7080gctccaggac ccaaaggttt caagggtgac ccaggagtcg
gggtcccggg ctcccctggg 7140cctcctggcc ctccaggtgt gaagggagat ctgggcctcc
ctggcctgcc cggtgctcct 7200ggtgttgttg ggttcccggg tcagacaggc cctcgaggag
agatgggtca gccaggccct 7260agtggagagc ggggtctggc aggcccccca gggagagaag
gaatcccagg acccctgggg 7320ccacctggac caccggggtc agtgggacca cctggggcct
ctggactcaa aggagacaag 7380ggagaccctg gagtagggct gcctgggccc cgaggcgagc
gtggggagcc aggcatccgg 7440ggtgaagatg gccgccccgg ccaggaggga ccccgaggac
tcacggggcc ccctggcagc 7500aggggagagc gtggggagaa gggtgatgtt gggagtgcag
gactaaaggg tgacaaggga 7560gactcagctg tgatcctggg gcctccaggc ccacggggtg
ccaaggggga catgggtgaa 7620cgagggcctc ggggcttgga tggtgacaaa ggacctcggg
gagacaatgg ggaccctggt 7680gacaagggca gcaagggaga gcctggtgac aagggctcag
ccgggttgcc aggactgcgt 7740ggactcctgg gaccccaggg tcaacctggt gcagcaggga
tccctggtga cccgggatcc 7800ccaggaaagg atggagtgcc tggtatccga ggagaaaaag
gagatgttgg cttcatgggt 7860ccccggggcc tcaagggtga acggggagtg aagggagcct
gtggccttga tggagagaag 7920ggagacaagg gagaagctgg tcccccaggc cgccccgggc
tggcaggaca caaaggagag 7980atgggggagc ctggtgtgcc gggccagtcg ggggcccctg
gcaaggaggg cctgatcggt 8040cccaagggtg accgaggctt tgacgggcag ccaggcccca
agggtgacca gggcgagaaa 8100ggggagcggg gaaccccagg aattgggggc ttcccaggcc
ccagtggaaa tgatggctct 8160gctggtcccc cagggccacc tggcagtgtt ggtcccagag
gccccgaagg acttcagggc 8220cagaagggtg agcgaggtcc ccccggagag agagtggtgg
gggctcctgg ggtccctgga 8280gctcctggcg agagagggga gcaggggcgg ccagggcctg
ccggtcctcg aggcgagaag 8340ggagaagctg cactgacgga ggatgacatc cggggctttg
tgcgccaaga gatgagtcag 8400cactgtgcct gccagggcca gttcatcgca tctggatcac
gacccctccc tagttatgct 8460gcagacactg ccggctccca gctccatgct gtgcctgtgc
tccgcgtctc tcatgcagag 8520gaggaagagc gggtaccccc tgaggatgat gagtactctg
aatactccga gtattctgtg 8580gaggagtacc aggaccctga agctccttgg gatagtgatg
acccctgttc cctgccactg 8640gatgagggct cctgcactgc ctacaccctg cgctggtacc
atcgggctgt gacaggcagc 8700acagaggcct gtcacccttt tgtctatggt ggctgtggag
ggaatgccaa ccgttttggg 8760acccgtgagg cctgcgagcg ccgctgccca ccccgggtgg
tccagagcca ggggacaggt 8820actgcccagg acggaagcgg agctactaac ttcagcctgc
tgaagcaggc tggagacgtg 8880gaggagaacc ctggacctac ctcctcgggg cctggacccc
ggttcctgct gctgctgccg 8940ctgctgctgc cccctgcggc ctcagcctcc gaccggcccc
ggggccgaga cccggtcaac 9000ccagagaagc tgctggtgat cactgtggcc acagctgaaa
ccgaggggta cctgcgtttc 9060ctgcgctctg cggagttctt caactacact gtgcggaccc
tgggcctggg agaggagtgg 9120cgagggggtg atgtggctcg aacagttggt ggaggacaga
aggtccggtg gttaaagaag 9180gaaatggaga aatacgctga ccgggaggat atgatcatca
tgtttgtgga tagctacgac 9240gtgattctgg ccggcagccc cacagagctg ctgaagaagt
tcgtccagag tggcagccgc 9300ctgctcttct ctgcagagag cttctgctgg cccgagtggg
ggctggcgga gcagtaccct 9360gaggtgggca cggggaagcg cttcctcaat tctggtggat
tcatcggttt tgccaccacc 9420atccaccaaa tcgtgcgcca gtggaagtac aaggatgatg
acgacgacca gctgttctac 9480acacggctct acctggaccc aggactgagg gagaaactca
gccttaatct ggatcataag 9540tctcggatct ttcagaacct caacggggct ttagatgaag
tggttttaaa gtttgatcgg 9600aaccgtgtgc gtatccggaa cgtggcctac gacacgctcc
ccattgtggt ccatggaaac 9660ggtcccacta agctgcagct caactacctg ggaaactacg
tccccaatgg ctggactcct 9720gagggaggct gtggcttctg caaccaggac cggaggacac
tcccgggggg gcagcctccc 9780ccccgggtgt ttctggccgt gtttgtggaa cagcctactc
cgtttctgcc ccgcttcctg 9840cagcggctgc tactcctgga ctatcccccc gacagggtca
cccttttcct gcacaacaac 9900gaggtcttcc atgaacccca catcgctgac tcctggccgc
agctccagga ccacttctca 9960gctgtgaagc tcgtggggcc ggaggaggct ctgagcccag
gcgaggccag ggacatggcc 10020atggacctgt gtcggcagga ccccgagtgt gagttctact
tcagcctgga cgccgacgct 10080gtcctcacca acctgcagac cctgcgtatc ctcattgagg
agaacaggaa ggtgatcgcc 10140cccatgctgt cccgccacgg caagctgtgg tccaacttct
ggggcgccct gagccccgat 10200gagtactacg cccgctccga ggactacgtg gagctggtgc
agcggaagcg agtgggtgtg 10260tggaatgtac catacatctc ccaggcctat gtgatccggg
gtgataccct gcggatggag 10320ctgccccaga gggatgtgtt ctcgggcagt gacacagacc
cggacatggc cttctgtaag 10380agctttcgag acaagggcat cttcctccat ctgagcaatc
agcatgaatt tggccggctc 10440ctggccactt ccagatacga cacggagcac ctgcaccccg
acctctggca gatcttcgac 10500aaccccgtcg actggaagga gcagtacatc cacgagaact
acagccgggc cctggaaggg 10560gaaggaatcg tggagcagcc atgcccggac gtgtactggt
tcccactgct gtcagaacaa 10620atgtgtgatg agctggtggc agagatggag cactacggcc
agtggtcagg cggccggcat 10680gaggattcaa ggctggctgg aggctacgag aatgtgccca
ccgtggacat ccacatgaag 10740caggtggggt acgaggacca gtggctgcag ctgctgcgga
cgtatgtggg ccccatgacc 10800gagagcctgt ttcccggtta ccacaccaag gcgcgggcgg
tgatgaactt tgtggttcgc 10860taccggccag acgagcagcc gtctctgcgg ccacaccacg
actcatccac cttcaccctc 10920aacgttgccc tcaaccacaa gggcctggac tatgagggag
gtggctgccg cttcctgcgc 10980tacgactgtg tgatctcctc cccgaggaag ggctgggcac
tcctgcaccc cggccgcctc 11040acccactacc acgaggggct gccaacgacc tggggcacac
gctacatcat ggtgtccttt 11100gtcgacccct ga
11112183703PRTArtificial SequenceSynthetic Construct
18Met Thr Leu Arg Leu Leu Val Ala Ala Leu Cys Ala Gly Ile Leu Ala1
5 10 15Glu Ala Pro Arg Val Arg
Ala Gln His Arg Glu Arg Val Thr Cys Thr 20 25
30Arg Leu Tyr Ala Ala Asp Ile Val Phe Leu Leu Asp Gly
Ser Ser Ser 35 40 45Ile Gly Arg
Ser Asn Phe Arg Glu Val Arg Ser Phe Leu Glu Gly Leu 50
55 60Val Leu Pro Phe Ser Gly Ala Ala Ser Ala Gln Gly
Val Arg Phe Ala65 70 75
80Thr Val Gln Tyr Ser Asp Asp Pro Arg Thr Glu Phe Gly Leu Asp Ala
85 90 95Leu Gly Ser Gly Gly Asp
Val Ile Arg Ala Ile Arg Glu Leu Ser Tyr 100
105 110Lys Gly Gly Asn Thr Arg Thr Gly Ala Ala Ile Leu
His Val Ala Asp 115 120 125His Val
Phe Leu Pro Gln Leu Ala Arg Pro Gly Val Pro Lys Val Cys 130
135 140Ile Leu Ile Thr Asp Gly Lys Ser Gln Asp Leu
Val Asp Thr Ala Ala145 150 155
160Gln Arg Leu Lys Gly Gln Gly Val Lys Leu Phe Ala Val Gly Ile Lys
165 170 175Asn Ala Asp Pro
Glu Glu Leu Lys Arg Val Ala Ser Gln Pro Thr Ser 180
185 190Asp Phe Phe Phe Phe Val Asn Asp Phe Ser Ile
Leu Arg Thr Leu Leu 195 200 205Pro
Leu Val Ser Arg Arg Val Cys Thr Thr Ala Gly Gly Val Pro Val 210
215 220Thr Arg Pro Pro Asp Asp Ser Thr Ser Ala
Pro Arg Asp Leu Val Leu225 230 235
240Ser Glu Pro Ser Ser Gln Ser Leu Arg Val Gln Trp Thr Ala Ala
Ser 245 250 255Gly Pro Val
Thr Gly Tyr Lys Val Gln Tyr Thr Pro Leu Thr Gly Leu 260
265 270Gly Gln Pro Leu Pro Ser Glu Arg Gln Glu
Val Asn Val Pro Ala Gly 275 280
285Glu Thr Ser Val Arg Leu Arg Gly Leu Arg Pro Leu Thr Glu Tyr Gln 290
295 300Val Thr Val Ile Ala Leu Tyr Ala
Asn Ser Ile Gly Glu Ala Val Ser305 310
315 320Gly Thr Ala Arg Thr Thr Ala Leu Glu Gly Pro Glu
Leu Thr Ile Gln 325 330
335Asn Thr Thr Ala His Ser Leu Leu Val Ala Trp Arg Ser Val Pro Gly
340 345 350Ala Thr Gly Tyr Arg Val
Thr Trp Arg Val Leu Ser Gly Gly Pro Thr 355 360
365Gln Gln Gln Glu Leu Gly Pro Gly Gln Gly Ser Val Leu Leu
Arg Asp 370 375 380Leu Glu Pro Gly Thr
Asp Tyr Glu Val Thr Val Ser Thr Leu Phe Gly385 390
395 400Arg Ser Val Gly Pro Ala Thr Ser Leu Met
Ala Arg Thr Asp Ala Ser 405 410
415Val Glu Gln Thr Leu Arg Pro Val Ile Leu Gly Pro Thr Ser Ile Leu
420 425 430Leu Ser Trp Asn Leu
Val Pro Glu Ala Arg Gly Tyr Arg Leu Glu Trp 435
440 445Arg Arg Glu Thr Gly Leu Glu Pro Pro Gln Lys Val
Val Leu Pro Ser 450 455 460Asp Val Thr
Arg Tyr Gln Leu Asp Gly Leu Gln Pro Gly Thr Glu Tyr465
470 475 480Arg Leu Thr Leu Tyr Thr Leu
Leu Glu Gly His Glu Val Ala Thr Pro 485
490 495Ala Thr Val Val Pro Thr Gly Pro Glu Leu Pro Val
Ser Pro Val Thr 500 505 510Asp
Leu Gln Ala Thr Glu Leu Pro Gly Gln Arg Val Arg Val Ser Trp 515
520 525Ser Pro Val Pro Gly Ala Thr Gln Tyr
Arg Ile Ile Val Arg Ser Thr 530 535
540Gln Gly Val Glu Arg Thr Leu Val Leu Pro Gly Ser Gln Thr Ala Phe545
550 555 560Asp Leu Asp Asp
Val Gln Ala Gly Leu Ser Tyr Thr Val Arg Val Ser 565
570 575Ala Arg Val Gly Pro Arg Glu Gly Ser Ala
Ser Val Leu Thr Val Arg 580 585
590Arg Glu Pro Glu Thr Pro Leu Ala Val Pro Gly Leu Arg Val Val Val
595 600 605Ser Asp Ala Thr Arg Val Arg
Val Ala Trp Gly Pro Val Pro Gly Ala 610 615
620Ser Gly Phe Arg Ile Ser Trp Ser Thr Gly Ser Gly Pro Glu Ser
Ser625 630 635 640Gln Thr
Leu Pro Pro Asp Ser Thr Ala Thr Asp Ile Thr Gly Leu Gln
645 650 655Pro Gly Thr Thr Tyr Gln Val
Ala Val Ser Val Leu Arg Gly Arg Glu 660 665
670Glu Gly Pro Ala Ala Val Ile Val Ala Arg Thr Asp Pro Leu
Gly Pro 675 680 685Val Arg Thr Val
His Val Thr Gln Ala Ser Ser Ser Ser Val Thr Ile 690
695 700Thr Trp Thr Arg Val Pro Gly Ala Thr Gly Tyr Arg
Val Ser Trp His705 710 715
720Ser Ala His Gly Pro Glu Lys Ser Gln Leu Val Ser Gly Glu Ala Thr
725 730 735Val Ala Glu Leu Asp
Gly Leu Glu Pro Asp Thr Glu Tyr Thr Val His 740
745 750Val Arg Ala His Val Ala Gly Val Asp Gly Pro Pro
Ala Ser Val Val 755 760 765Val Arg
Thr Ala Pro Glu Pro Val Gly Arg Val Ser Arg Leu Gln Ile 770
775 780Leu Asn Ala Ser Ser Asp Val Leu Arg Ile Thr
Trp Val Gly Val Thr785 790 795
800Gly Ala Thr Ala Tyr Arg Leu Ala Trp Gly Arg Ser Glu Gly Gly Pro
805 810 815Met Arg His Gln
Ile Leu Pro Gly Asn Thr Asp Ser Ala Glu Ile Arg 820
825 830Gly Leu Glu Gly Gly Val Ser Tyr Ser Val Arg
Val Thr Ala Leu Val 835 840 845Gly
Asp Arg Glu Gly Thr Pro Val Ser Ile Val Val Thr Thr Pro Pro 850
855 860Glu Ala Pro Pro Ala Leu Gly Thr Leu His
Val Val Gln Arg Gly Glu865 870 875
880His Ser Leu Arg Leu Arg Trp Glu Pro Val Pro Arg Ala Gln Gly
Phe 885 890 895Leu Leu His
Trp Gln Pro Glu Gly Gly Gln Glu Gln Ser Arg Val Leu 900
905 910Gly Pro Glu Leu Ser Ser Tyr His Leu Asp
Gly Leu Glu Pro Ala Thr 915 920
925Gln Tyr Arg Val Arg Leu Ser Val Leu Gly Pro Ala Gly Glu Gly Pro 930
935 940Ser Ala Glu Val Thr Ala Arg Thr
Glu Ser Pro Arg Val Pro Ser Ile945 950
955 960Glu Leu Arg Val Val Asp Thr Ser Ile Asp Ser Val
Thr Leu Ala Trp 965 970
975Thr Pro Val Ser Arg Ala Ser Ser Tyr Ile Leu Ser Trp Arg Pro Leu
980 985 990Arg Gly Pro Gly Gln Glu
Val Pro Gly Ser Pro Gln Thr Leu Pro Gly 995 1000
1005Ile Ser Ser Ser Gln Arg Val Thr Gly Leu Glu Pro Gly Val
Ser Tyr 1010 1015 1020Ile Phe Ser Leu
Thr Pro Val Leu Asp Gly Val Arg Gly Pro Glu Ala1025 1030
1035 1040Ser Val Thr Gln Thr Pro Val Cys Pro
Arg Gly Leu Ala Asp Val Val 1045 1050
1055Phe Leu Pro His Ala Thr Gln Asp Asn Ala His Arg Ala Glu Ala
Thr 1060 1065 1070Arg Arg Val
Leu Glu Arg Leu Val Leu Ala Leu Gly Pro Leu Gly Pro 1075
1080 1085Gln Ala Val Gln Val Gly Leu Leu Ser Tyr Ser
His Arg Pro Ser Pro 1090 1095 1100Leu
Phe Pro Leu Asn Gly Ser His Asp Leu Gly Ile Ile Leu Gln Arg1105
1110 1115 1120Ile Arg Asp Met Pro Tyr
Met Asp Pro Ser Gly Asn Asn Leu Gly Thr 1125
1130 1135Ala Val Val Thr Ala His Arg Tyr Met Leu Ala Pro
Asp Ala Pro Gly 1140 1145
1150Arg Arg Gln His Val Pro Gly Val Met Val Leu Leu Val Asp Glu Pro
1155 1160 1165Leu Arg Gly Asp Ile Phe Ser
Pro Ile Arg Glu Ala Gln Ala Ser Gly 1170 1175
1180Leu Asn Val Val Met Leu Gly Met Ala Gly Ala Asp Pro Glu Gln
Leu1185 1190 1195 1200Arg Arg
Leu Ala Pro Gly Met Asp Ser Val Gln Thr Phe Phe Ala Val
1205 1210 1215Asp Asp Gly Pro Ser Leu Asp
Gln Ala Val Ser Gly Leu Ala Thr Ala 1220 1225
1230Leu Cys Gln Ala Ser Phe Thr Thr Gln Pro Arg Pro Glu Pro
Cys Pro 1235 1240 1245Val Tyr Cys
Pro Lys Gly Gln Lys Gly Glu Pro Gly Glu Met Gly Leu 1250
1255 1260Arg Gly Gln Val Gly Pro Pro Gly Asp Pro Gly Leu
Pro Gly Arg Thr1265 1270 1275
1280Gly Ala Pro Gly Pro Gln Gly Pro Pro Gly Ser Ala Thr Ala Lys Gly
1285 1290 1295Glu Arg Gly Phe Pro
Gly Ala Asp Gly Arg Pro Gly Ser Pro Gly Arg 1300
1305 1310Ala Gly Asn Pro Gly Thr Pro Gly Ala Pro Gly Leu
Lys Gly Ser Pro 1315 1320 1325Gly
Leu Pro Gly Pro Arg Gly Asp Pro Gly Glu Arg Gly Pro Arg Gly 1330
1335 1340Pro Lys Gly Glu Pro Gly Ala Pro Gly Gln
Val Ile Gly Gly Glu Gly1345 1350 1355
1360Pro Gly Leu Pro Gly Arg Lys Gly Asp Pro Gly Pro Ser Gly Pro
Pro 1365 1370 1375Gly Pro
Arg Gly Pro Leu Gly Asp Pro Gly Pro Arg Gly Pro Pro Gly 1380
1385 1390Leu Pro Gly Thr Ala Met Lys Gly Asp
Lys Gly Asp Arg Gly Glu Arg 1395 1400
1405Gly Pro Pro Gly Pro Gly Glu Gly Gly Ile Ala Pro Gly Glu Pro Gly
1410 1415 1420Leu Pro Gly Leu Pro Gly Ser
Pro Gly Pro Gln Gly Pro Val Gly Pro1425 1430
1435 1440Pro Gly Lys Lys Gly Glu Lys Gly Asp Ser Glu Asp
Gly Ala Pro Gly 1445 1450
1455Leu Pro Gly Gln Pro Gly Ser Pro Gly Glu Gln Gly Pro Arg Gly Pro
1460 1465 1470Pro Gly Ala Ile Gly Pro
Lys Gly Asp Arg Gly Phe Pro Gly Pro Leu 1475 1480
1485Gly Glu Ala Gly Glu Lys Gly Glu Arg Gly Pro Pro Gly Pro
Ala Gly 1490 1495 1500Ser Arg Gly Leu
Pro Gly Val Ala Gly Arg Pro Gly Ala Lys Gly Pro1505 1510
1515 1520Glu Gly Pro Pro Gly Pro Thr Gly Arg
Gln Gly Glu Lys Gly Glu Pro 1525 1530
1535Gly Arg Pro Gly Asp Pro Ala Val Val Gly Pro Ala Val Ala Gly
Pro 1540 1545 1550Lys Gly Glu
Lys Gly Asp Val Gly Pro Ala Gly Pro Arg Gly Ala Thr 1555
1560 1565Gly Val Gln Gly Glu Arg Gly Pro Pro Gly Leu
Val Leu Pro Gly Asp 1570 1575 1580Pro
Gly Pro Lys Gly Asp Pro Gly Asp Arg Gly Pro Ile Gly Leu Thr1585
1590 1595 1600Gly Arg Ala Gly Pro Pro
Gly Asp Ser Gly Pro Pro Gly Glu Lys Gly 1605
1610 1615Asp Pro Gly Arg Pro Gly Pro Pro Gly Pro Val Gly
Pro Arg Gly Arg 1620 1625
1630Asp Gly Glu Val Gly Glu Lys Gly Asp Glu Gly Pro Pro Gly Asp Pro
1635 1640 1645Gly Leu Pro Gly Lys Ala Gly
Glu Arg Gly Leu Arg Gly Ala Pro Gly 1650 1655
1660Val Arg Gly Pro Val Gly Glu Lys Gly Asp Gln Gly Asp Pro Gly
Glu1665 1670 1675 1680Asp Gly
Arg Asn Gly Ser Pro Gly Ser Ser Gly Pro Lys Gly Asp Arg
1685 1690 1695Gly Glu Pro Gly Pro Pro Gly
Pro Pro Gly Arg Leu Val Asp Thr Gly 1700 1705
1710Pro Gly Ala Arg Glu Lys Gly Glu Pro Gly Asp Arg Gly Gln
Glu Gly 1715 1720 1725Pro Arg Gly
Pro Lys Gly Asp Pro Gly Leu Pro Gly Ala Pro Gly Glu 1730
1735 1740Arg Gly Ile Glu Gly Phe Arg Gly Pro Pro Gly Pro
Gln Gly Asp Pro1745 1750 1755
1760Gly Val Arg Gly Pro Ala Gly Glu Lys Gly Asp Arg Gly Pro Pro Gly
1765 1770 1775Leu Asp Gly Arg Ser
Gly Leu Asp Gly Lys Pro Gly Ala Ala Gly Pro 1780
1785 1790Ser Gly Pro Asn Gly Ala Ala Gly Lys Ala Gly Asp
Pro Gly Arg Asp 1795 1800 1805Gly
Leu Pro Gly Leu Arg Gly Glu Gln Gly Leu Pro Gly Pro Ser Gly 1810
1815 1820Pro Pro Gly Leu Pro Gly Lys Pro Gly Glu
Asp Gly Lys Pro Gly Leu1825 1830 1835
1840Asn Gly Lys Asn Gly Glu Pro Gly Asp Pro Gly Glu Asp Gly Arg
Lys 1845 1850 1855Gly Glu
Lys Gly Asp Ser Gly Ala Ser Gly Arg Glu Gly Arg Asp Gly 1860
1865 1870Pro Lys Gly Glu Arg Gly Ala Pro Gly
Ile Leu Gly Pro Gln Gly Pro 1875 1880
1885Pro Gly Leu Pro Gly Pro Val Gly Pro Pro Gly Gln Gly Phe Pro Gly
1890 1895 1900Val Pro Gly Gly Thr Gly Pro
Lys Gly Asp Arg Gly Glu Thr Gly Ser1905 1910
1915 1920Lys Gly Glu Gln Gly Leu Pro Gly Glu Arg Gly Leu
Arg Gly Glu Pro 1925 1930
1935Gly Ser Val Pro Asn Val Asp Arg Leu Leu Glu Thr Ala Gly Ile Lys
1940 1945 1950Ala Ser Ala Leu Arg Glu
Ile Val Glu Thr Trp Asp Glu Ser Ser Gly 1955 1960
1965Ser Phe Leu Pro Val Pro Glu Arg Arg Arg Gly Pro Lys Gly
Asp Ser 1970 1975 1980Gly Glu Gln Gly
Pro Pro Gly Lys Glu Gly Pro Ile Gly Phe Pro Gly1985 1990
1995 2000Glu Arg Gly Leu Lys Gly Asp Arg Gly
Asp Pro Gly Pro Gln Gly Pro 2005 2010
2015Pro Gly Leu Ala Leu Gly Glu Arg Gly Pro Pro Gly Pro Ser Gly
Leu 2020 2025 2030Ala Gly Glu
Pro Gly Lys Pro Gly Ile Pro Gly Leu Pro Gly Arg Ala 2035
2040 2045Gly Gly Val Gly Glu Ala Gly Arg Pro Gly Glu
Arg Gly Glu Arg Gly 2050 2055 2060Glu
Lys Gly Glu Arg Gly Glu Gln Gly Arg Asp Gly Pro Pro Gly Leu2065
2070 2075 2080Pro Gly Thr Pro Gly Pro
Pro Gly Pro Pro Gly Pro Lys Val Ser Val 2085
2090 2095Asp Glu Pro Gly Pro Gly Leu Ser Gly Glu Gln Gly
Pro Pro Gly Leu 2100 2105
2110Lys Gly Ala Lys Gly Glu Pro Gly Ser Asn Gly Asp Gln Gly Pro Lys
2115 2120 2125Gly Asp Arg Gly Val Pro Gly
Ile Lys Gly Asp Arg Gly Glu Pro Gly 2130 2135
2140Pro Arg Gly Gln Asp Gly Asn Pro Gly Leu Pro Gly Glu Arg Gly
Met2145 2150 2155 2160Ala Gly
Pro Glu Gly Lys Pro Gly Leu Gln Gly Pro Arg Gly Pro Pro
2165 2170 2175Gly Pro Val Gly Gly His Gly
Asp Pro Gly Pro Pro Gly Ala Pro Gly 2180 2185
2190Leu Ala Gly Pro Ala Gly Pro Gln Gly Pro Ser Gly Leu Lys
Gly Glu 2195 2200 2205Pro Gly Glu
Thr Gly Pro Pro Gly Arg Gly Leu Thr Gly Pro Thr Gly 2210
2215 2220Ala Val Gly Leu Pro Gly Pro Pro Gly Pro Ser Gly
Leu Val Gly Pro2225 2230 2235
2240Gln Gly Ser Pro Gly Leu Pro Gly Gln Val Gly Glu Thr Gly Lys Pro
2245 2250 2255Gly Ala Pro Gly Arg
Asp Gly Ala Ser Gly Lys Asp Gly Asp Arg Gly 2260
2265 2270Ser Pro Gly Val Pro Gly Ser Pro Gly Leu Pro Gly
Pro Val Gly Pro 2275 2280 2285Lys
Gly Glu Pro Gly Pro Thr Gly Ala Pro Gly Gln Ala Val Val Gly 2290
2295 2300Leu Pro Gly Ala Lys Gly Glu Lys Gly Ala
Pro Gly Gly Leu Ala Gly2305 2310 2315
2320Asp Leu Val Gly Glu Pro Gly Ala Lys Gly Asp Arg Gly Leu Pro
Gly 2325 2330 2335Pro Arg
Gly Glu Lys Gly Glu Ala Gly Arg Ala Gly Glu Pro Gly Asp 2340
2345 2350Pro Gly Glu Asp Gly Gln Lys Gly Ala
Pro Gly Pro Lys Gly Phe Lys 2355 2360
2365Gly Asp Pro Gly Val Gly Val Pro Gly Ser Pro Gly Pro Pro Gly Pro
2370 2375 2380Pro Gly Val Lys Gly Asp Leu
Gly Leu Pro Gly Leu Pro Gly Ala Pro2385 2390
2395 2400Gly Val Val Gly Phe Pro Gly Gln Thr Gly Pro Arg
Gly Glu Met Gly 2405 2410
2415Gln Pro Gly Pro Ser Gly Glu Arg Gly Leu Ala Gly Pro Pro Gly Arg
2420 2425 2430Glu Gly Ile Pro Gly Pro
Leu Gly Pro Pro Gly Pro Pro Gly Ser Val 2435 2440
2445Gly Pro Pro Gly Ala Ser Gly Leu Lys Gly Asp Lys Gly Asp
Pro Gly 2450 2455 2460Val Gly Leu Pro
Gly Pro Arg Gly Glu Arg Gly Glu Pro Gly Ile Arg2465 2470
2475 2480Gly Glu Asp Gly Arg Pro Gly Gln Glu
Gly Pro Arg Gly Leu Thr Gly 2485 2490
2495Pro Pro Gly Ser Arg Gly Glu Arg Gly Glu Lys Gly Asp Val Gly
Ser 2500 2505 2510Ala Gly Leu
Lys Gly Asp Lys Gly Asp Ser Ala Val Ile Leu Gly Pro 2515
2520 2525Pro Gly Pro Arg Gly Ala Lys Gly Asp Met Gly
Glu Arg Gly Pro Arg 2530 2535 2540Gly
Leu Asp Gly Asp Lys Gly Pro Arg Gly Asp Asn Gly Asp Pro Gly2545
2550 2555 2560Asp Lys Gly Ser Lys Gly
Glu Pro Gly Asp Lys Gly Ser Ala Gly Leu 2565
2570 2575Pro Gly Leu Arg Gly Leu Leu Gly Pro Gln Gly Gln
Pro Gly Ala Ala 2580 2585
2590Gly Ile Pro Gly Asp Pro Gly Ser Pro Gly Lys Asp Gly Val Pro Gly
2595 2600 2605Ile Arg Gly Glu Lys Gly Asp
Val Gly Phe Met Gly Pro Arg Gly Leu 2610 2615
2620Lys Gly Glu Arg Gly Val Lys Gly Ala Cys Gly Leu Asp Gly Glu
Lys2625 2630 2635 2640Gly Asp
Lys Gly Glu Ala Gly Pro Pro Gly Arg Pro Gly Leu Ala Gly
2645 2650 2655His Lys Gly Glu Met Gly Glu
Pro Gly Val Pro Gly Gln Ser Gly Ala 2660 2665
2670Pro Gly Lys Glu Gly Leu Ile Gly Pro Lys Gly Asp Arg Gly
Phe Asp 2675 2680 2685Gly Gln Pro
Gly Pro Lys Gly Asp Gln Gly Glu Lys Gly Glu Arg Gly 2690
2695 2700Thr Pro Gly Ile Gly Gly Phe Pro Gly Pro Ser Gly
Asn Asp Gly Ser2705 2710 2715
2720Ala Gly Pro Pro Gly Pro Pro Gly Ser Val Gly Pro Arg Gly Pro Glu
2725 2730 2735Gly Leu Gln Gly Gln
Lys Gly Glu Arg Gly Pro Pro Gly Glu Arg Val 2740
2745 2750Val Gly Ala Pro Gly Val Pro Gly Ala Pro Gly Glu
Arg Gly Glu Gln 2755 2760 2765Gly
Arg Pro Gly Pro Ala Gly Pro Arg Gly Glu Lys Gly Glu Ala Ala 2770
2775 2780Leu Thr Glu Asp Asp Ile Arg Gly Phe Val
Arg Gln Glu Met Ser Gln2785 2790 2795
2800His Cys Ala Cys Gln Gly Gln Phe Ile Ala Ser Gly Ser Arg Pro
Leu 2805 2810 2815Pro Ser
Tyr Ala Ala Asp Thr Ala Gly Ser Gln Leu His Ala Val Pro 2820
2825 2830Val Leu Arg Val Ser His Ala Glu Glu
Glu Glu Arg Val Pro Pro Glu 2835 2840
2845Asp Asp Glu Tyr Ser Glu Tyr Ser Glu Tyr Ser Val Glu Glu Tyr Gln
2850 2855 2860Asp Pro Glu Ala Pro Trp Asp
Ser Asp Asp Pro Cys Ser Leu Pro Leu2865 2870
2875 2880Asp Glu Gly Ser Cys Thr Ala Tyr Thr Leu Arg Trp
Tyr His Arg Ala 2885 2890
2895Val Thr Gly Ser Thr Glu Ala Cys His Pro Phe Val Tyr Gly Gly Cys
2900 2905 2910Gly Gly Asn Ala Asn Arg
Phe Gly Thr Arg Glu Ala Cys Glu Arg Arg 2915 2920
2925Cys Pro Pro Arg Val Val Gln Ser Gln Gly Thr Gly Thr Ala
Gln Asp 2930 2935 2940Gly Ser Gly Ala
Thr Asn Phe Ser Leu Leu Lys Gln Ala Gly Asp Val2945 2950
2955 2960Glu Glu Asn Pro Gly Pro Thr Ser Ser
Gly Pro Gly Pro Arg Phe Leu 2965 2970
2975Leu Leu Leu Pro Leu Leu Leu Pro Pro Ala Ala Ser Ala Ser Asp
Arg 2980 2985 2990Pro Arg Gly
Arg Asp Pro Val Asn Pro Glu Lys Leu Leu Val Ile Thr 2995
3000 3005Val Ala Thr Ala Glu Thr Glu Gly Tyr Leu Arg
Phe Leu Arg Ser Ala 3010 3015 3020Glu
Phe Phe Asn Tyr Thr Val Arg Thr Leu Gly Leu Gly Glu Glu Trp3025
3030 3035 3040Arg Gly Gly Asp Val Ala
Arg Thr Val Gly Gly Gly Gln Lys Val Arg 3045
3050 3055Trp Leu Lys Lys Glu Met Glu Lys Tyr Ala Asp Arg
Glu Asp Met Ile 3060 3065
3070Ile Met Phe Val Asp Ser Tyr Asp Val Ile Leu Ala Gly Ser Pro Thr
3075 3080 3085Glu Leu Leu Lys Lys Phe Val
Gln Ser Gly Ser Arg Leu Leu Phe Ser 3090 3095
3100Ala Glu Ser Phe Cys Trp Pro Glu Trp Gly Leu Ala Glu Gln Tyr
Pro3105 3110 3115 3120Glu Val
Gly Thr Gly Lys Arg Phe Leu Asn Ser Gly Gly Phe Ile Gly
3125 3130 3135Phe Ala Thr Thr Ile His Gln
Ile Val Arg Gln Trp Lys Tyr Lys Asp 3140 3145
3150Asp Asp Asp Asp Gln Leu Phe Tyr Thr Arg Leu Tyr Leu Asp
Pro Gly 3155 3160 3165Leu Arg Glu
Lys Leu Ser Leu Asn Leu Asp His Lys Ser Arg Ile Phe 3170
3175 3180Gln Asn Leu Asn Gly Ala Leu Asp Glu Val Val Leu
Lys Phe Asp Arg3185 3190 3195
3200Asn Arg Val Arg Ile Arg Asn Val Ala Tyr Asp Thr Leu Pro Ile Val
3205 3210 3215Val His Gly Asn Gly
Pro Thr Lys Leu Gln Leu Asn Tyr Leu Gly Asn 3220
3225 3230Tyr Val Pro Asn Gly Trp Thr Pro Glu Gly Gly Cys
Gly Phe Cys Asn 3235 3240 3245Gln
Asp Arg Arg Thr Leu Pro Gly Gly Gln Pro Pro Pro Arg Val Phe 3250
3255 3260Leu Ala Val Phe Val Glu Gln Pro Thr Pro
Phe Leu Pro Arg Phe Leu3265 3270 3275
3280Gln Arg Leu Leu Leu Leu Asp Tyr Pro Pro Asp Arg Val Thr Leu
Phe 3285 3290 3295Leu His
Asn Asn Glu Val Phe His Glu Pro His Ile Ala Asp Ser Trp 3300
3305 3310Pro Gln Leu Gln Asp His Phe Ser Ala
Val Lys Leu Val Gly Pro Glu 3315 3320
3325Glu Ala Leu Ser Pro Gly Glu Ala Arg Asp Met Ala Met Asp Leu Cys
3330 3335 3340Arg Gln Asp Pro Glu Cys Glu
Phe Tyr Phe Ser Leu Asp Ala Asp Ala3345 3350
3355 3360Val Leu Thr Asn Leu Gln Thr Leu Arg Ile Leu Ile
Glu Glu Asn Arg 3365 3370
3375Lys Val Ile Ala Pro Met Leu Ser Arg His Gly Lys Leu Trp Ser Asn
3380 3385 3390Phe Trp Gly Ala Leu Ser
Pro Asp Glu Tyr Tyr Ala Arg Ser Glu Asp 3395 3400
3405Tyr Val Glu Leu Val Gln Arg Lys Arg Val Gly Val Trp Asn
Val Pro 3410 3415 3420Tyr Ile Ser Gln
Ala Tyr Val Ile Arg Gly Asp Thr Leu Arg Met Glu3425 3430
3435 3440Leu Pro Gln Arg Asp Val Phe Ser Gly
Ser Asp Thr Asp Pro Asp Met 3445 3450
3455Ala Phe Cys Lys Ser Phe Arg Asp Lys Gly Ile Phe Leu His Leu
Ser 3460 3465 3470Asn Gln His
Glu Phe Gly Arg Leu Leu Ala Thr Ser Arg Tyr Asp Thr 3475
3480 3485Glu His Leu His Pro Asp Leu Trp Gln Ile Phe
Asp Asn Pro Val Asp 3490 3495 3500Trp
Lys Glu Gln Tyr Ile His Glu Asn Tyr Ser Arg Ala Leu Glu Gly3505
3510 3515 3520Glu Gly Ile Val Glu Gln
Pro Cys Pro Asp Val Tyr Trp Phe Pro Leu 3525
3530 3535Leu Ser Glu Gln Met Cys Asp Glu Leu Val Ala Glu
Met Glu His Tyr 3540 3545
3550Gly Gln Trp Ser Gly Gly Arg His Glu Asp Ser Arg Leu Ala Gly Gly
3555 3560 3565Tyr Glu Asn Val Pro Thr Val
Asp Ile His Met Lys Gln Val Gly Tyr 3570 3575
3580Glu Asp Gln Trp Leu Gln Leu Leu Arg Thr Tyr Val Gly Pro Met
Thr3585 3590 3595 3600Glu Ser
Leu Phe Pro Gly Tyr His Thr Lys Ala Arg Ala Val Met Asn
3605 3610 3615Phe Val Val Arg Tyr Arg Pro
Asp Glu Gln Pro Ser Leu Arg Pro His 3620 3625
3630His Asp Ser Ser Thr Phe Thr Leu Asn Val Ala Leu Asn His
Lys Gly 3635 3640 3645Leu Asp Tyr
Glu Gly Gly Gly Cys Arg Phe Leu Arg Tyr Asp Cys Val 3650
3655 3660Ile Ser Ser Pro Arg Lys Gly Trp Ala Leu Leu His
Pro Gly Arg Leu3665 3670 3675
3680Thr His Tyr His Glu Gly Leu Pro Thr Thr Trp Gly Thr Arg Tyr Ile
3685 3690 3695Met Val Ser Phe Val
Asp Pro 37001911112DNAArtificial SequenceSynthetic Construct
19atgacctcct cggggcctgg accccggttc ctgctgctgc tgccgctgct gctgccccct
60gcggcctcag cctccgaccg gccccggggc cgagacccgg tcaacccaga gaagctgctg
120gtgatcactg tggccacagc tgaaaccgag gggtacctgc gtttcctgcg ctctgcggag
180ttcttcaact acactgtgcg gaccctgggc ctgggagagg agtggcgagg gggtgatgtg
240gctcgaacag ttggtggagg acagaaggtc cggtggttaa agaaggaaat ggagaaatac
300gctgaccggg aggatatgat catcatgttt gtggatagct acgacgtgat tctggccggc
360agccccacag agctgctgaa gaagttcgtc cagagtggca gccgcctgct cttctctgca
420gagagcttct gctggcccga gtgggggctg gcggagcagt accctgaggt gggcacgggg
480aagcgcttcc tcaattctgg tggattcatc ggttttgcca ccaccatcca ccaaatcgtg
540cgccagtgga agtacaagga tgatgacgac gaccagctgt tctacacacg gctctacctg
600gacccaggac tgagggagaa actcagcctt aatctggatc ataagtctcg gatctttcag
660aacctcaacg gggctttaga tgaagtggtt ttaaagtttg atcggaaccg tgtgcgtatc
720cggaacgtgg cctacgacac gctccccatt gtggtccatg gaaacggtcc cactaagctg
780cagctcaact acctgggaaa ctacgtcccc aatggctgga ctcctgaggg aggctgtggc
840ttctgcaacc aggaccggag gacactcccg ggggggcagc ctcccccccg ggtgtttctg
900gccgtgtttg tggaacagcc tactccgttt ctgccccgct tcctgcagcg gctgctactc
960ctggactatc cccccgacag ggtcaccctt ttcctgcaca acaacgaggt cttccatgaa
1020ccccacatcg ctgactcctg gccgcagctc caggaccact tctcagctgt gaagctcgtg
1080gggccggagg aggctctgag cccaggcgag gccagggaca tggccatgga cctgtgtcgg
1140caggaccccg agtgtgagtt ctacttcagc ctggacgccg acgctgtcct caccaacctg
1200cagaccctgc gtatcctcat tgaggagaac aggaaggtga tcgcccccat gctgtcccgc
1260cacggcaagc tgtggtccaa cttctggggc gccctgagcc ccgatgagta ctacgcccgc
1320tccgaggact acgtggagct ggtgcagcgg aagcgagtgg gtgtgtggaa tgtaccatac
1380atctcccagg cctatgtgat ccggggtgat accctgcgga tggagctgcc ccagagggat
1440gtgttctcgg gcagtgacac agacccggac atggccttct gtaagagctt tcgagacaag
1500ggcatcttcc tccatctgag caatcagcat gaatttggcc ggctcctggc cacttccaga
1560tacgacacgg agcacctgca ccccgacctc tggcagatct tcgacaaccc cgtcgactgg
1620aaggagcagt acatccacga gaactacagc cgggccctgg aaggggaagg aatcgtggag
1680cagccatgcc cggacgtgta ctggttccca ctgctgtcag aacaaatgtg tgatgagctg
1740gtggcagaga tggagcacta cggccagtgg tcaggcggcc ggcatgagga ttcaaggctg
1800gctggaggct acgagaatgt gcccaccgtg gacatccaca tgaagcaggt ggggtacgag
1860gaccagtggc tgcagctgct gcggacgtat gtgggcccca tgaccgagag cctgtttccc
1920ggttaccaca ccaaggcgcg ggcggtgatg aactttgtgg ttcgctaccg gccagacgag
1980cagccgtctc tgcggccaca ccacgactca tccaccttca ccctcaacgt tgccctcaac
2040cacaagggcc tggactatga gggaggtggc tgccgcttcc tgcgctacga ctgtgtgatc
2100tcctccccga ggaagggctg ggcactcctg caccccggcc gcctcaccca ctaccacgag
2160gggctgccaa cgacctgggg cacacgctac atcatggtgt cctttgtcga ccccggaagc
2220ggagctacta acttcagcct gctgaagcag gctggagacg tggaggagaa ccctggacct
2280acgctgcggc ttctggtggc cgcgctctgc gccgggatcc tggcagaggc gccccgagtg
2340cgagcccagc acagggagag agtgacctgc acgcgccttt acgccgctga cattgtgttc
2400ttactggatg gctcctcatc cattggccgc agcaatttcc gcgaggtccg cagctttctc
2460gaagggctgg tgctgccttt ctctggagca gccagtgcac agggtgtgcg ctttgccaca
2520gtgcagtaca gcgatgaccc acggacagag ttcggcctgg atgcacttgg ctctgggggt
2580gatgtgatcc gcgccatccg tgagcttagc tacaaggggg gcaacactcg cacaggggct
2640gcaattctcc atgtggctga ccatgtcttc ctgccccagc tggcccgacc tggtgtcccc
2700aaggtctgca tcctgatcac agacgggaag tcccaggacc tggtggacac agctgcccaa
2760aggctgaagg ggcagggggt caagctattt gctgtgggga tcaagaatgc tgaccctgag
2820gagctgaagc gagttgcctc acagcccacc agtgacttct tcttcttcgt caatgacttc
2880agcatcttga ggacactact gcccctcgtt tcccggagag tgtgcacgac tgctggtggc
2940gtgcctgtga cccgacctcc ggatgactcg acctctgctc cacgagacct ggtgctgtct
3000gagccaagca gccaatcctt gagagtacag tggacagcgg ccagtggccc tgtgactggc
3060tacaaggtcc agtacactcc tctgacgggg ctgggacagc cactgccgag tgagcggcag
3120gaggtgaacg tcccagctgg tgagaccagt gtgcggctgc ggggtctccg gccactgacc
3180gagtaccaag tgactgtgat tgccctctac gccaacagca tcggggaggc tgtgagcggg
3240acagctcgga ccactgccct agaagggccg gaactgacca tccagaatac cacagcccac
3300agcctcctgg tggcctggcg gagtgtgcca ggtgccactg gctaccgtgt gacatggcgg
3360gtcctcagtg gtgggcccac acagcagcag gagctgggcc ctgggcaggg ttcagtgttg
3420ctgcgtgact tggagcctgg cacggactat gaggtgaccg tgagcaccct atttggccgc
3480agtgtggggc ccgccacttc cctgatggct cgcactgacg cttctgttga gcagaccctg
3540cgcccggtca tcctgggccc cacatccatc ctcctttcct ggaacttggt gcctgaggcc
3600cgtggctacc ggttggaatg gcggcgtgag actggcttgg agccaccgca gaaggtggta
3660ctgccctctg atgtgacccg ctaccagttg gatgggctgc agccgggcac tgagtaccgc
3720ctcacactct acactctgct ggagggccac gaggtggcca cccctgcaac cgtggttccc
3780actggaccag agctgcctgt gagccctgta acagacctgc aagccaccga gctgcccggg
3840cagcgggtgc gagtgtcctg gagcccagtc cctggtgcca cccagtaccg catcattgtg
3900cgcagcaccc agggggttga gcggaccctg gtgcttcctg ggagtcagac agcattcgac
3960ttggatgacg ttcaggctgg gcttagctac actgtgcggg tgtctgctcg agtgggtccc
4020cgtgagggca gtgccagtgt cctcactgtc cgccgggagc cggaaactcc acttgctgtt
4080ccagggctgc gggttgtggt gtcagatgca acgcgagtga gggtggcctg gggacccgtc
4140cctggagcca gtggatttcg gattagctgg agcacaggca gtggtccgga gtccagccag
4200acactgcccc cagactctac tgccacagac atcacagggc tgcagcctgg aaccacctac
4260caggtggctg tgtcggtact gcgaggcaga gaggagggcc ctgctgcagt catcgtggct
4320cgaacggacc cactgggccc agtgaggacg gtccatgtga ctcaggccag cagctcatct
4380gtcaccatta cctggaccag ggttcctggc gccacaggat acagggtttc ctggcactca
4440gcccacggcc cagagaaatc ccagttggtt tctggggagg ccacggtggc tgagctggat
4500ggactggagc cagatactga gtatacggtg catgtgaggg cccatgtggc tggcgtggat
4560gggccccctg cctctgtggt tgtgaggact gcccctgagc ctgtgggtcg tgtgtcgagg
4620ctgcagatcc tcaatgcttc cagcgacgtt ctacggatca cctgggtagg ggtcactgga
4680gccacagctt acagactggc ctggggccgg agtgaaggcg gccccatgag gcaccagata
4740ctcccaggaa acacagactc tgcagagatc cggggtctcg aaggtggagt cagctactca
4800gtgcgagtga ctgcacttgt cggggaccgc gagggcacac ctgtctccat tgttgtcact
4860acgccgcctg aggctccgcc agccctgggg acgcttcacg tggtgcagcg cggggagcac
4920tcgctgaggc tgcgctggga gccggtgccc agagcgcagg gcttccttct gcactggcaa
4980cctgagggtg gccaggaaca gtcccgggtc ctggggcccg agctcagcag ctatcacctg
5040gacgggctgg agccagcgac acagtaccgc gtgaggctga gtgtcctagg gccagctgga
5100gaagggccct ctgcagaggt gactgcgcgc actgagtcac ctcgtgttcc aagcattgaa
5160ctacgtgtgg tggacacctc gatcgactcg gtgactttgg cctggactcc agtgtccagg
5220gcatccagct acatcctatc ctggcggcca ctcagaggcc ctggccagga agtgcctggg
5280tccccgcaga cacttccagg gatctcaagc tcccagcggg tgacagggct agagcctggc
5340gtctcttaca tcttctccct gacgcctgtc ctggatggtg tgcggggtcc tgaggcatct
5400gtcacacaga cgccagtgtg cccccgtggc ctggcggatg tggtgttcct accacatgcc
5460actcaagaca atgctcaccg tgcggaggct acgaggaggg tcctggagcg tctggtgttg
5520gcacttgggc ctcttgggcc acaggcagtt caggttggcc tgctgtctta cagtcatcgg
5580ccctccccac tgttcccact gaatggctcc catgaccttg gcattatctt gcaaaggatc
5640cgtgacatgc cctacatgga cccaagtggg aacaacctgg gcacagccgt ggtcacagct
5700cacagataca tgttggcacc agatgctcct gggcgccgcc agcacgtacc aggggtgatg
5760gttctgctag tggatgaacc cttgagaggt gacatattca gccccatccg tgaggcccag
5820gcttctgggc ttaatgtggt gatgttggga atggctggag cggacccaga gcagctgcgt
5880cgcttggcgc cgggtatgga ctctgtccag accttcttcg ccgtggatga tgggccaagc
5940ctggaccagg cagtcagtgg tctggccaca gccctgtgtc aggcatcctt cactactcag
6000ccccggccag agccctgccc agtgtattgt ccaaagggcc agaaggggga acctggagag
6060atgggcctga gaggacaagt tgggcctcct ggcgaccctg gcctcccggg caggaccggt
6120gctcccggcc cccaggggcc ccctggaagt gccactgcca agggcgagag gggcttccct
6180ggagcagatg ggcgtccagg cagccctggc cgcgccggga atcctgggac ccctggagcc
6240cctggcctaa agggctctcc agggttgcct ggccctcgtg gggacccggg agagcgagga
6300cctcgaggcc caaaggggga gccgggggct cccggacaag tcatcggagg tgaaggacct
6360gggcttcctg ggcggaaagg ggaccctgga ccatcgggcc cccctggacc tcgtggacca
6420ctgggggacc caggaccccg tggcccccca gggcttcctg gaacagccat gaagggtgac
6480aaaggcgatc gtggggagcg gggtccccct ggaccaggtg aaggtggcat tgctcctggg
6540gagcctgggc tgccgggtct tcccggaagc cctggacccc aaggccccgt tggcccccct
6600ggaaagaaag gagaaaaagg tgactctgag gatggagctc caggcctccc aggacaacct
6660gggtctccgg gtgagcaggg cccacgggga cctcctggag ctattggccc caaaggtgac
6720cggggctttc cagggcccct gggtgaggct ggagagaagg gcgaacgtgg acccccaggc
6780ccagcgggat cccgggggct gccaggggtt gctggacgtc ctggagccaa gggtcctgaa
6840gggccaccag gacccactgg ccgccaagga gagaaggggg agcctggtcg ccctggggac
6900cctgcagtgg tgggacctgc tgttgctgga cccaaaggag aaaagggaga tgtggggccc
6960gctgggccca gaggagctac cggagtccaa ggggaacggg gcccacccgg cttggttctt
7020cctggagacc ctggccccaa gggagaccct ggagaccggg gtcccattgg ccttactggc
7080agagcaggac ccccaggtga ctcagggcct cctggagaga agggagaccc tgggcggcct
7140ggccccccag gacctgttgg cccccgagga cgagatggtg aagttggaga gaaaggtgac
7200gagggtcctc cgggtgaccc gggtttgcct ggaaaagcag gcgagcgtgg ccttcggggg
7260gcacctggag ttcgggggcc tgtgggtgaa aagggagacc agggagatcc tggagaggat
7320ggacgaaatg gcagccctgg atcatctgga cccaagggtg accgtgggga gccgggtccc
7380ccaggacccc cgggacggct ggtagacaca ggacctggag ccagagagaa gggagagcct
7440ggggaccgcg gacaagaggg tcctcgaggg cccaagggtg atcctggcct ccctggagcc
7500cctggggaaa ggggcattga agggtttcgg ggacccccag gcccacaggg ggacccaggt
7560gtccgaggcc cagcaggaga aaagggtgac cggggtcccc ctgggctgga tggccggagc
7620ggactggatg ggaaaccagg agccgctggg ccctctgggc cgaatggtgc tgcaggcaaa
7680gctggggacc cagggagaga cgggcttcca ggcctccgtg gagaacaggg cctccctggc
7740ccctctggtc cccctggatt accgggaaag ccaggcgagg atggcaaacc tggcctgaat
7800ggaaaaaacg gagaacctgg ggaccctgga gaagacggga ggaagggaga gaaaggagat
7860tcaggcgcct ctgggagaga aggtcgtgat ggccccaagg gtgagcgtgg agctcctggt
7920atccttggac cccaggggcc tccaggcctc ccagggccag tgggccctcc tggccagggt
7980tttcctggtg tcccaggagg cacgggcccc aagggtgacc gtggggagac tggatccaaa
8040ggggagcagg gcctccctgg agagcgtggc ctgcgaggag agcctggaag tgtgccgaat
8100gtggatcggt tgctggaaac tgctggcatc aaggcatctg ccctgcggga gatcgtggag
8160acctgggatg agagctctgg tagcttcctg cctgtgcccg aacggcgtcg aggccccaag
8220ggggactcag gcgaacaggg ccccccaggc aaggagggcc ccatcggctt tcctggagaa
8280cgcgggctga agggcgaccg tggagaccct ggccctcagg ggccacctgg tctggccctt
8340ggggagaggg gcccccccgg gccttccggc cttgccgggg agcctggaaa gcctggtatt
8400cccgggctcc caggcagggc tgggggtgtg ggagaggcag gaaggccagg agagagggga
8460gaacggggag agaaaggaga acgtggagaa cagggcagag atggccctcc tggactccct
8520ggaacccctg ggccccccgg accccctggc cccaaggtgt ctgtggatga gccaggtcct
8580ggactctctg gagaacaggg accccctgga ctcaagggtg ctaaggggga gccgggcagc
8640aatggtgacc aaggtcccaa aggagacagg ggtgtgccag gcatcaaagg agaccgggga
8700gagcctggac cgaggggtca ggacggcaac ccgggtctac caggagagcg tggtatggct
8760gggcctgaag ggaagccggg tctgcagggt ccaagaggcc cccctggccc agtgggtggt
8820catggagacc ctggaccacc tggtgccccg ggtcttgctg gccctgcagg accccaagga
8880ccttctggcc tgaaggggga gcctggagag acaggacctc caggacgggg cctgactgga
8940cctactggag ctgtgggact tcctggaccc cccggccctt caggccttgt gggtccacag
9000gggtctccag gtttgcctgg acaagtgggg gagacaggga agccgggagc cccaggtcga
9060gatggtgcca gtggaaaaga tggagacaga gggagccctg gtgtgccagg gtcaccaggt
9120ctgcctggcc ctgtcggacc taaaggagaa cctggcccca cgggggcccc tggacaggct
9180gtggtcgggc tccctggagc aaagggagag aagggagccc ctggaggcct tgctggagac
9240ctggtgggtg agccgggagc caaaggtgac cgaggactgc cagggccgcg aggcgagaag
9300ggtgaagctg gccgtgcagg ggagcccgga gaccctgggg aagatggtca gaaaggggct
9360ccaggaccca aaggtttcaa gggtgaccca ggagtcgggg tcccgggctc ccctgggcct
9420cctggccctc caggtgtgaa gggagatctg ggcctccctg gcctgcccgg tgctcctggt
9480gttgttgggt tcccgggtca gacaggccct cgaggagaga tgggtcagcc aggccctagt
9540ggagagcggg gtctggcagg ccccccaggg agagaaggaa tcccaggacc cctggggcca
9600cctggaccac cggggtcagt gggaccacct ggggcctctg gactcaaagg agacaaggga
9660gaccctggag tagggctgcc tgggccccga ggcgagcgtg gggagccagg catccggggt
9720gaagatggcc gccccggcca ggagggaccc cgaggactca cggggccccc tggcagcagg
9780ggagagcgtg gggagaaggg tgatgttggg agtgcaggac taaagggtga caagggagac
9840tcagctgtga tcctggggcc tccaggccca cggggtgcca agggggacat gggtgaacga
9900gggcctcggg gcttggatgg tgacaaagga cctcggggag acaatgggga ccctggtgac
9960aagggcagca agggagagcc tggtgacaag ggctcagccg ggttgccagg actgcgtgga
10020ctcctgggac cccagggtca acctggtgca gcagggatcc ctggtgaccc gggatcccca
10080ggaaaggatg gagtgcctgg tatccgagga gaaaaaggag atgttggctt catgggtccc
10140cggggcctca agggtgaacg gggagtgaag ggagcctgtg gccttgatgg agagaaggga
10200gacaagggag aagctggtcc cccaggccgc cccgggctgg caggacacaa aggagagatg
10260ggggagcctg gtgtgccggg ccagtcgggg gcccctggca aggagggcct gatcggtccc
10320aagggtgacc gaggctttga cgggcagcca ggccccaagg gtgaccaggg cgagaaaggg
10380gagcggggaa ccccaggaat tgggggcttc ccaggcccca gtggaaatga tggctctgct
10440ggtcccccag ggccacctgg cagtgttggt cccagaggcc ccgaaggact tcagggccag
10500aagggtgagc gaggtccccc cggagagaga gtggtggggg ctcctggggt ccctggagct
10560cctggcgaga gaggggagca ggggcggcca gggcctgccg gtcctcgagg cgagaaggga
10620gaagctgcac tgacggagga tgacatccgg ggctttgtgc gccaagagat gagtcagcac
10680tgtgcctgcc agggccagtt catcgcatct ggatcacgac ccctccctag ttatgctgca
10740gacactgccg gctcccagct ccatgctgtg cctgtgctcc gcgtctctca tgcagaggag
10800gaagagcggg taccccctga ggatgatgag tactctgaat actccgagta ttctgtggag
10860gagtaccagg accctgaagc tccttgggat agtgatgacc cctgttccct gccactggat
10920gagggctcct gcactgccta caccctgcgc tggtaccatc gggctgtgac aggcagcaca
10980gaggcctgtc acccttttgt ctatggtggc tgtggaggga atgccaaccg ttttgggacc
11040cgtgaggcct gcgagcgccg ctgcccaccc cgggtggtcc agagccaggg gacaggtact
11100gcccaggact ga
11112203703PRTArtificial SequenceSynthetic Construct 20Met Thr Ser Ser
Gly Pro Gly Pro Arg Phe Leu Leu Leu Leu Pro Leu1 5
10 15Leu Leu Pro Pro Ala Ala Ser Ala Ser Asp
Arg Pro Arg Gly Arg Asp 20 25
30Pro Val Asn Pro Glu Lys Leu Leu Val Ile Thr Val Ala Thr Ala Glu
35 40 45Thr Glu Gly Tyr Leu Arg Phe Leu
Arg Ser Ala Glu Phe Phe Asn Tyr 50 55
60Thr Val Arg Thr Leu Gly Leu Gly Glu Glu Trp Arg Gly Gly Asp Val65
70 75 80Ala Arg Thr Val Gly
Gly Gly Gln Lys Val Arg Trp Leu Lys Lys Glu 85
90 95Met Glu Lys Tyr Ala Asp Arg Glu Asp Met Ile
Ile Met Phe Val Asp 100 105
110Ser Tyr Asp Val Ile Leu Ala Gly Ser Pro Thr Glu Leu Leu Lys Lys
115 120 125Phe Val Gln Ser Gly Ser Arg
Leu Leu Phe Ser Ala Glu Ser Phe Cys 130 135
140Trp Pro Glu Trp Gly Leu Ala Glu Gln Tyr Pro Glu Val Gly Thr
Gly145 150 155 160Lys Arg
Phe Leu Asn Ser Gly Gly Phe Ile Gly Phe Ala Thr Thr Ile
165 170 175His Gln Ile Val Arg Gln Trp
Lys Tyr Lys Asp Asp Asp Asp Asp Gln 180 185
190Leu Phe Tyr Thr Arg Leu Tyr Leu Asp Pro Gly Leu Arg Glu
Lys Leu 195 200 205Ser Leu Asn Leu
Asp His Lys Ser Arg Ile Phe Gln Asn Leu Asn Gly 210
215 220Ala Leu Asp Glu Val Val Leu Lys Phe Asp Arg Asn
Arg Val Arg Ile225 230 235
240Arg Asn Val Ala Tyr Asp Thr Leu Pro Ile Val Val His Gly Asn Gly
245 250 255Pro Thr Lys Leu Gln
Leu Asn Tyr Leu Gly Asn Tyr Val Pro Asn Gly 260
265 270Trp Thr Pro Glu Gly Gly Cys Gly Phe Cys Asn Gln
Asp Arg Arg Thr 275 280 285Leu Pro
Gly Gly Gln Pro Pro Pro Arg Val Phe Leu Ala Val Phe Val 290
295 300Glu Gln Pro Thr Pro Phe Leu Pro Arg Phe Leu
Gln Arg Leu Leu Leu305 310 315
320Leu Asp Tyr Pro Pro Asp Arg Val Thr Leu Phe Leu His Asn Asn Glu
325 330 335Val Phe His Glu
Pro His Ile Ala Asp Ser Trp Pro Gln Leu Gln Asp 340
345 350His Phe Ser Ala Val Lys Leu Val Gly Pro Glu
Glu Ala Leu Ser Pro 355 360 365Gly
Glu Ala Arg Asp Met Ala Met Asp Leu Cys Arg Gln Asp Pro Glu 370
375 380Cys Glu Phe Tyr Phe Ser Leu Asp Ala Asp
Ala Val Leu Thr Asn Leu385 390 395
400Gln Thr Leu Arg Ile Leu Ile Glu Glu Asn Arg Lys Val Ile Ala
Pro 405 410 415Met Leu Ser
Arg His Gly Lys Leu Trp Ser Asn Phe Trp Gly Ala Leu 420
425 430Ser Pro Asp Glu Tyr Tyr Ala Arg Ser Glu
Asp Tyr Val Glu Leu Val 435 440
445Gln Arg Lys Arg Val Gly Val Trp Asn Val Pro Tyr Ile Ser Gln Ala 450
455 460Tyr Val Ile Arg Gly Asp Thr Leu
Arg Met Glu Leu Pro Gln Arg Asp465 470
475 480Val Phe Ser Gly Ser Asp Thr Asp Pro Asp Met Ala
Phe Cys Lys Ser 485 490
495Phe Arg Asp Lys Gly Ile Phe Leu His Leu Ser Asn Gln His Glu Phe
500 505 510Gly Arg Leu Leu Ala Thr
Ser Arg Tyr Asp Thr Glu His Leu His Pro 515 520
525Asp Leu Trp Gln Ile Phe Asp Asn Pro Val Asp Trp Lys Glu
Gln Tyr 530 535 540Ile His Glu Asn Tyr
Ser Arg Ala Leu Glu Gly Glu Gly Ile Val Glu545 550
555 560Gln Pro Cys Pro Asp Val Tyr Trp Phe Pro
Leu Leu Ser Glu Gln Met 565 570
575Cys Asp Glu Leu Val Ala Glu Met Glu His Tyr Gly Gln Trp Ser Gly
580 585 590Gly Arg His Glu Asp
Ser Arg Leu Ala Gly Gly Tyr Glu Asn Val Pro 595
600 605Thr Val Asp Ile His Met Lys Gln Val Gly Tyr Glu
Asp Gln Trp Leu 610 615 620Gln Leu Leu
Arg Thr Tyr Val Gly Pro Met Thr Glu Ser Leu Phe Pro625
630 635 640Gly Tyr His Thr Lys Ala Arg
Ala Val Met Asn Phe Val Val Arg Tyr 645
650 655Arg Pro Asp Glu Gln Pro Ser Leu Arg Pro His His
Asp Ser Ser Thr 660 665 670Phe
Thr Leu Asn Val Ala Leu Asn His Lys Gly Leu Asp Tyr Glu Gly 675
680 685Gly Gly Cys Arg Phe Leu Arg Tyr Asp
Cys Val Ile Ser Ser Pro Arg 690 695
700Lys Gly Trp Ala Leu Leu His Pro Gly Arg Leu Thr His Tyr His Glu705
710 715 720Gly Leu Pro Thr
Thr Trp Gly Thr Arg Tyr Ile Met Val Ser Phe Val 725
730 735Asp Pro Gly Ser Gly Ala Thr Asn Phe Ser
Leu Leu Lys Gln Ala Gly 740 745
750Asp Val Glu Glu Asn Pro Gly Pro Thr Leu Arg Leu Leu Val Ala Ala
755 760 765Leu Cys Ala Gly Ile Leu Ala
Glu Ala Pro Arg Val Arg Ala Gln His 770 775
780Arg Glu Arg Val Thr Cys Thr Arg Leu Tyr Ala Ala Asp Ile Val
Phe785 790 795 800Leu Leu
Asp Gly Ser Ser Ser Ile Gly Arg Ser Asn Phe Arg Glu Val
805 810 815Arg Ser Phe Leu Glu Gly Leu
Val Leu Pro Phe Ser Gly Ala Ala Ser 820 825
830Ala Gln Gly Val Arg Phe Ala Thr Val Gln Tyr Ser Asp Asp
Pro Arg 835 840 845Thr Glu Phe Gly
Leu Asp Ala Leu Gly Ser Gly Gly Asp Val Ile Arg 850
855 860Ala Ile Arg Glu Leu Ser Tyr Lys Gly Gly Asn Thr
Arg Thr Gly Ala865 870 875
880Ala Ile Leu His Val Ala Asp His Val Phe Leu Pro Gln Leu Ala Arg
885 890 895Pro Gly Val Pro Lys
Val Cys Ile Leu Ile Thr Asp Gly Lys Ser Gln 900
905 910Asp Leu Val Asp Thr Ala Ala Gln Arg Leu Lys Gly
Gln Gly Val Lys 915 920 925Leu Phe
Ala Val Gly Ile Lys Asn Ala Asp Pro Glu Glu Leu Lys Arg 930
935 940Val Ala Ser Gln Pro Thr Ser Asp Phe Phe Phe
Phe Val Asn Asp Phe945 950 955
960Ser Ile Leu Arg Thr Leu Leu Pro Leu Val Ser Arg Arg Val Cys Thr
965 970 975Thr Ala Gly Gly
Val Pro Val Thr Arg Pro Pro Asp Asp Ser Thr Ser 980
985 990Ala Pro Arg Asp Leu Val Leu Ser Glu Pro Ser
Ser Gln Ser Leu Arg 995 1000
1005Val Gln Trp Thr Ala Ala Ser Gly Pro Val Thr Gly Tyr Lys Val Gln
1010 1015 1020Tyr Thr Pro Leu Thr Gly Leu
Gly Gln Pro Leu Pro Ser Glu Arg Gln1025 1030
1035 1040Glu Val Asn Val Pro Ala Gly Glu Thr Ser Val Arg
Leu Arg Gly Leu 1045 1050
1055Arg Pro Leu Thr Glu Tyr Gln Val Thr Val Ile Ala Leu Tyr Ala Asn
1060 1065 1070Ser Ile Gly Glu Ala Val
Ser Gly Thr Ala Arg Thr Thr Ala Leu Glu 1075 1080
1085Gly Pro Glu Leu Thr Ile Gln Asn Thr Thr Ala His Ser Leu
Leu Val 1090 1095 1100Ala Trp Arg Ser
Val Pro Gly Ala Thr Gly Tyr Arg Val Thr Trp Arg1105 1110
1115 1120Val Leu Ser Gly Gly Pro Thr Gln Gln
Gln Glu Leu Gly Pro Gly Gln 1125 1130
1135Gly Ser Val Leu Leu Arg Asp Leu Glu Pro Gly Thr Asp Tyr Glu
Val 1140 1145 1150Thr Val Ser
Thr Leu Phe Gly Arg Ser Val Gly Pro Ala Thr Ser Leu 1155
1160 1165Met Ala Arg Thr Asp Ala Ser Val Glu Gln Thr
Leu Arg Pro Val Ile 1170 1175 1180Leu
Gly Pro Thr Ser Ile Leu Leu Ser Trp Asn Leu Val Pro Glu Ala1185
1190 1195 1200Arg Gly Tyr Arg Leu Glu
Trp Arg Arg Glu Thr Gly Leu Glu Pro Pro 1205
1210 1215Gln Lys Val Val Leu Pro Ser Asp Val Thr Arg Tyr
Gln Leu Asp Gly 1220 1225
1230Leu Gln Pro Gly Thr Glu Tyr Arg Leu Thr Leu Tyr Thr Leu Leu Glu
1235 1240 1245Gly His Glu Val Ala Thr Pro
Ala Thr Val Val Pro Thr Gly Pro Glu 1250 1255
1260Leu Pro Val Ser Pro Val Thr Asp Leu Gln Ala Thr Glu Leu Pro
Gly1265 1270 1275 1280Gln Arg
Val Arg Val Ser Trp Ser Pro Val Pro Gly Ala Thr Gln Tyr
1285 1290 1295Arg Ile Ile Val Arg Ser Thr
Gln Gly Val Glu Arg Thr Leu Val Leu 1300 1305
1310Pro Gly Ser Gln Thr Ala Phe Asp Leu Asp Asp Val Gln Ala
Gly Leu 1315 1320 1325Ser Tyr Thr
Val Arg Val Ser Ala Arg Val Gly Pro Arg Glu Gly Ser 1330
1335 1340Ala Ser Val Leu Thr Val Arg Arg Glu Pro Glu Thr
Pro Leu Ala Val1345 1350 1355
1360Pro Gly Leu Arg Val Val Val Ser Asp Ala Thr Arg Val Arg Val Ala
1365 1370 1375Trp Gly Pro Val Pro
Gly Ala Ser Gly Phe Arg Ile Ser Trp Ser Thr 1380
1385 1390Gly Ser Gly Pro Glu Ser Ser Gln Thr Leu Pro Pro
Asp Ser Thr Ala 1395 1400 1405Thr
Asp Ile Thr Gly Leu Gln Pro Gly Thr Thr Tyr Gln Val Ala Val 1410
1415 1420Ser Val Leu Arg Gly Arg Glu Glu Gly Pro
Ala Ala Val Ile Val Ala1425 1430 1435
1440Arg Thr Asp Pro Leu Gly Pro Val Arg Thr Val His Val Thr Gln
Ala 1445 1450 1455Ser Ser
Ser Ser Val Thr Ile Thr Trp Thr Arg Val Pro Gly Ala Thr 1460
1465 1470Gly Tyr Arg Val Ser Trp His Ser Ala
His Gly Pro Glu Lys Ser Gln 1475 1480
1485Leu Val Ser Gly Glu Ala Thr Val Ala Glu Leu Asp Gly Leu Glu Pro
1490 1495 1500Asp Thr Glu Tyr Thr Val His
Val Arg Ala His Val Ala Gly Val Asp1505 1510
1515 1520Gly Pro Pro Ala Ser Val Val Val Arg Thr Ala Pro
Glu Pro Val Gly 1525 1530
1535Arg Val Ser Arg Leu Gln Ile Leu Asn Ala Ser Ser Asp Val Leu Arg
1540 1545 1550Ile Thr Trp Val Gly Val
Thr Gly Ala Thr Ala Tyr Arg Leu Ala Trp 1555 1560
1565Gly Arg Ser Glu Gly Gly Pro Met Arg His Gln Ile Leu Pro
Gly Asn 1570 1575 1580Thr Asp Ser Ala
Glu Ile Arg Gly Leu Glu Gly Gly Val Ser Tyr Ser1585 1590
1595 1600Val Arg Val Thr Ala Leu Val Gly Asp
Arg Glu Gly Thr Pro Val Ser 1605 1610
1615Ile Val Val Thr Thr Pro Pro Glu Ala Pro Pro Ala Leu Gly Thr
Leu 1620 1625 1630His Val Val
Gln Arg Gly Glu His Ser Leu Arg Leu Arg Trp Glu Pro 1635
1640 1645Val Pro Arg Ala Gln Gly Phe Leu Leu His Trp
Gln Pro Glu Gly Gly 1650 1655 1660Gln
Glu Gln Ser Arg Val Leu Gly Pro Glu Leu Ser Ser Tyr His Leu1665
1670 1675 1680Asp Gly Leu Glu Pro Ala
Thr Gln Tyr Arg Val Arg Leu Ser Val Leu 1685
1690 1695Gly Pro Ala Gly Glu Gly Pro Ser Ala Glu Val Thr
Ala Arg Thr Glu 1700 1705
1710Ser Pro Arg Val Pro Ser Ile Glu Leu Arg Val Val Asp Thr Ser Ile
1715 1720 1725Asp Ser Val Thr Leu Ala Trp
Thr Pro Val Ser Arg Ala Ser Ser Tyr 1730 1735
1740Ile Leu Ser Trp Arg Pro Leu Arg Gly Pro Gly Gln Glu Val Pro
Gly1745 1750 1755 1760Ser Pro
Gln Thr Leu Pro Gly Ile Ser Ser Ser Gln Arg Val Thr Gly
1765 1770 1775Leu Glu Pro Gly Val Ser Tyr
Ile Phe Ser Leu Thr Pro Val Leu Asp 1780 1785
1790Gly Val Arg Gly Pro Glu Ala Ser Val Thr Gln Thr Pro Val
Cys Pro 1795 1800 1805Arg Gly Leu
Ala Asp Val Val Phe Leu Pro His Ala Thr Gln Asp Asn 1810
1815 1820Ala His Arg Ala Glu Ala Thr Arg Arg Val Leu Glu
Arg Leu Val Leu1825 1830 1835
1840Ala Leu Gly Pro Leu Gly Pro Gln Ala Val Gln Val Gly Leu Leu Ser
1845 1850 1855Tyr Ser His Arg Pro
Ser Pro Leu Phe Pro Leu Asn Gly Ser His Asp 1860
1865 1870Leu Gly Ile Ile Leu Gln Arg Ile Arg Asp Met Pro
Tyr Met Asp Pro 1875 1880 1885Ser
Gly Asn Asn Leu Gly Thr Ala Val Val Thr Ala His Arg Tyr Met 1890
1895 1900Leu Ala Pro Asp Ala Pro Gly Arg Arg Gln
His Val Pro Gly Val Met1905 1910 1915
1920Val Leu Leu Val Asp Glu Pro Leu Arg Gly Asp Ile Phe Ser Pro
Ile 1925 1930 1935Arg Glu
Ala Gln Ala Ser Gly Leu Asn Val Val Met Leu Gly Met Ala 1940
1945 1950Gly Ala Asp Pro Glu Gln Leu Arg Arg
Leu Ala Pro Gly Met Asp Ser 1955 1960
1965Val Gln Thr Phe Phe Ala Val Asp Asp Gly Pro Ser Leu Asp Gln Ala
1970 1975 1980Val Ser Gly Leu Ala Thr Ala
Leu Cys Gln Ala Ser Phe Thr Thr Gln1985 1990
1995 2000Pro Arg Pro Glu Pro Cys Pro Val Tyr Cys Pro Lys
Gly Gln Lys Gly 2005 2010
2015Glu Pro Gly Glu Met Gly Leu Arg Gly Gln Val Gly Pro Pro Gly Asp
2020 2025 2030Pro Gly Leu Pro Gly Arg
Thr Gly Ala Pro Gly Pro Gln Gly Pro Pro 2035 2040
2045Gly Ser Ala Thr Ala Lys Gly Glu Arg Gly Phe Pro Gly Ala
Asp Gly 2050 2055 2060Arg Pro Gly Ser
Pro Gly Arg Ala Gly Asn Pro Gly Thr Pro Gly Ala2065 2070
2075 2080Pro Gly Leu Lys Gly Ser Pro Gly Leu
Pro Gly Pro Arg Gly Asp Pro 2085 2090
2095Gly Glu Arg Gly Pro Arg Gly Pro Lys Gly Glu Pro Gly Ala Pro
Gly 2100 2105 2110Gln Val Ile
Gly Gly Glu Gly Pro Gly Leu Pro Gly Arg Lys Gly Asp 2115
2120 2125Pro Gly Pro Ser Gly Pro Pro Gly Pro Arg Gly
Pro Leu Gly Asp Pro 2130 2135 2140Gly
Pro Arg Gly Pro Pro Gly Leu Pro Gly Thr Ala Met Lys Gly Asp2145
2150 2155 2160Lys Gly Asp Arg Gly Glu
Arg Gly Pro Pro Gly Pro Gly Glu Gly Gly 2165
2170 2175Ile Ala Pro Gly Glu Pro Gly Leu Pro Gly Leu Pro
Gly Ser Pro Gly 2180 2185
2190Pro Gln Gly Pro Val Gly Pro Pro Gly Lys Lys Gly Glu Lys Gly Asp
2195 2200 2205Ser Glu Asp Gly Ala Pro Gly
Leu Pro Gly Gln Pro Gly Ser Pro Gly 2210 2215
2220Glu Gln Gly Pro Arg Gly Pro Pro Gly Ala Ile Gly Pro Lys Gly
Asp2225 2230 2235 2240Arg Gly
Phe Pro Gly Pro Leu Gly Glu Ala Gly Glu Lys Gly Glu Arg
2245 2250 2255Gly Pro Pro Gly Pro Ala Gly
Ser Arg Gly Leu Pro Gly Val Ala Gly 2260 2265
2270Arg Pro Gly Ala Lys Gly Pro Glu Gly Pro Pro Gly Pro Thr
Gly Arg 2275 2280 2285Gln Gly Glu
Lys Gly Glu Pro Gly Arg Pro Gly Asp Pro Ala Val Val 2290
2295 2300Gly Pro Ala Val Ala Gly Pro Lys Gly Glu Lys Gly
Asp Val Gly Pro2305 2310 2315
2320Ala Gly Pro Arg Gly Ala Thr Gly Val Gln Gly Glu Arg Gly Pro Pro
2325 2330 2335Gly Leu Val Leu Pro
Gly Asp Pro Gly Pro Lys Gly Asp Pro Gly Asp 2340
2345 2350Arg Gly Pro Ile Gly Leu Thr Gly Arg Ala Gly Pro
Pro Gly Asp Ser 2355 2360 2365Gly
Pro Pro Gly Glu Lys Gly Asp Pro Gly Arg Pro Gly Pro Pro Gly 2370
2375 2380Pro Val Gly Pro Arg Gly Arg Asp Gly Glu
Val Gly Glu Lys Gly Asp2385 2390 2395
2400Glu Gly Pro Pro Gly Asp Pro Gly Leu Pro Gly Lys Ala Gly Glu
Arg 2405 2410 2415Gly Leu
Arg Gly Ala Pro Gly Val Arg Gly Pro Val Gly Glu Lys Gly 2420
2425 2430Asp Gln Gly Asp Pro Gly Glu Asp Gly
Arg Asn Gly Ser Pro Gly Ser 2435 2440
2445Ser Gly Pro Lys Gly Asp Arg Gly Glu Pro Gly Pro Pro Gly Pro Pro
2450 2455 2460Gly Arg Leu Val Asp Thr Gly
Pro Gly Ala Arg Glu Lys Gly Glu Pro2465 2470
2475 2480Gly Asp Arg Gly Gln Glu Gly Pro Arg Gly Pro Lys
Gly Asp Pro Gly 2485 2490
2495Leu Pro Gly Ala Pro Gly Glu Arg Gly Ile Glu Gly Phe Arg Gly Pro
2500 2505 2510Pro Gly Pro Gln Gly Asp
Pro Gly Val Arg Gly Pro Ala Gly Glu Lys 2515 2520
2525Gly Asp Arg Gly Pro Pro Gly Leu Asp Gly Arg Ser Gly Leu
Asp Gly 2530 2535 2540Lys Pro Gly Ala
Ala Gly Pro Ser Gly Pro Asn Gly Ala Ala Gly Lys2545 2550
2555 2560Ala Gly Asp Pro Gly Arg Asp Gly Leu
Pro Gly Leu Arg Gly Glu Gln 2565 2570
2575Gly Leu Pro Gly Pro Ser Gly Pro Pro Gly Leu Pro Gly Lys Pro
Gly 2580 2585 2590Glu Asp Gly
Lys Pro Gly Leu Asn Gly Lys Asn Gly Glu Pro Gly Asp 2595
2600 2605Pro Gly Glu Asp Gly Arg Lys Gly Glu Lys Gly
Asp Ser Gly Ala Ser 2610 2615 2620Gly
Arg Glu Gly Arg Asp Gly Pro Lys Gly Glu Arg Gly Ala Pro Gly2625
2630 2635 2640Ile Leu Gly Pro Gln Gly
Pro Pro Gly Leu Pro Gly Pro Val Gly Pro 2645
2650 2655Pro Gly Gln Gly Phe Pro Gly Val Pro Gly Gly Thr
Gly Pro Lys Gly 2660 2665
2670Asp Arg Gly Glu Thr Gly Ser Lys Gly Glu Gln Gly Leu Pro Gly Glu
2675 2680 2685Arg Gly Leu Arg Gly Glu Pro
Gly Ser Val Pro Asn Val Asp Arg Leu 2690 2695
2700Leu Glu Thr Ala Gly Ile Lys Ala Ser Ala Leu Arg Glu Ile Val
Glu2705 2710 2715 2720Thr Trp
Asp Glu Ser Ser Gly Ser Phe Leu Pro Val Pro Glu Arg Arg
2725 2730 2735Arg Gly Pro Lys Gly Asp Ser
Gly Glu Gln Gly Pro Pro Gly Lys Glu 2740 2745
2750Gly Pro Ile Gly Phe Pro Gly Glu Arg Gly Leu Lys Gly Asp
Arg Gly 2755 2760 2765Asp Pro Gly
Pro Gln Gly Pro Pro Gly Leu Ala Leu Gly Glu Arg Gly 2770
2775 2780Pro Pro Gly Pro Ser Gly Leu Ala Gly Glu Pro Gly
Lys Pro Gly Ile2785 2790 2795
2800Pro Gly Leu Pro Gly Arg Ala Gly Gly Val Gly Glu Ala Gly Arg Pro
2805 2810 2815Gly Glu Arg Gly Glu
Arg Gly Glu Lys Gly Glu Arg Gly Glu Gln Gly 2820
2825 2830Arg Asp Gly Pro Pro Gly Leu Pro Gly Thr Pro Gly
Pro Pro Gly Pro 2835 2840 2845Pro
Gly Pro Lys Val Ser Val Asp Glu Pro Gly Pro Gly Leu Ser Gly 2850
2855 2860Glu Gln Gly Pro Pro Gly Leu Lys Gly Ala
Lys Gly Glu Pro Gly Ser2865 2870 2875
2880Asn Gly Asp Gln Gly Pro Lys Gly Asp Arg Gly Val Pro Gly Ile
Lys 2885 2890 2895Gly Asp
Arg Gly Glu Pro Gly Pro Arg Gly Gln Asp Gly Asn Pro Gly 2900
2905 2910Leu Pro Gly Glu Arg Gly Met Ala Gly
Pro Glu Gly Lys Pro Gly Leu 2915 2920
2925Gln Gly Pro Arg Gly Pro Pro Gly Pro Val Gly Gly His Gly Asp Pro
2930 2935 2940Gly Pro Pro Gly Ala Pro Gly
Leu Ala Gly Pro Ala Gly Pro Gln Gly2945 2950
2955 2960Pro Ser Gly Leu Lys Gly Glu Pro Gly Glu Thr Gly
Pro Pro Gly Arg 2965 2970
2975Gly Leu Thr Gly Pro Thr Gly Ala Val Gly Leu Pro Gly Pro Pro Gly
2980 2985 2990Pro Ser Gly Leu Val Gly
Pro Gln Gly Ser Pro Gly Leu Pro Gly Gln 2995 3000
3005Val Gly Glu Thr Gly Lys Pro Gly Ala Pro Gly Arg Asp Gly
Ala Ser 3010 3015 3020Gly Lys Asp Gly
Asp Arg Gly Ser Pro Gly Val Pro Gly Ser Pro Gly3025 3030
3035 3040Leu Pro Gly Pro Val Gly Pro Lys Gly
Glu Pro Gly Pro Thr Gly Ala 3045 3050
3055Pro Gly Gln Ala Val Val Gly Leu Pro Gly Ala Lys Gly Glu Lys
Gly 3060 3065 3070Ala Pro Gly
Gly Leu Ala Gly Asp Leu Val Gly Glu Pro Gly Ala Lys 3075
3080 3085Gly Asp Arg Gly Leu Pro Gly Pro Arg Gly Glu
Lys Gly Glu Ala Gly 3090 3095 3100Arg
Ala Gly Glu Pro Gly Asp Pro Gly Glu Asp Gly Gln Lys Gly Ala3105
3110 3115 3120Pro Gly Pro Lys Gly Phe
Lys Gly Asp Pro Gly Val Gly Val Pro Gly 3125
3130 3135Ser Pro Gly Pro Pro Gly Pro Pro Gly Val Lys Gly
Asp Leu Gly Leu 3140 3145
3150Pro Gly Leu Pro Gly Ala Pro Gly Val Val Gly Phe Pro Gly Gln Thr
3155 3160 3165Gly Pro Arg Gly Glu Met Gly
Gln Pro Gly Pro Ser Gly Glu Arg Gly 3170 3175
3180Leu Ala Gly Pro Pro Gly Arg Glu Gly Ile Pro Gly Pro Leu Gly
Pro3185 3190 3195 3200Pro Gly
Pro Pro Gly Ser Val Gly Pro Pro Gly Ala Ser Gly Leu Lys
3205 3210 3215Gly Asp Lys Gly Asp Pro Gly
Val Gly Leu Pro Gly Pro Arg Gly Glu 3220 3225
3230Arg Gly Glu Pro Gly Ile Arg Gly Glu Asp Gly Arg Pro Gly
Gln Glu 3235 3240 3245Gly Pro Arg
Gly Leu Thr Gly Pro Pro Gly Ser Arg Gly Glu Arg Gly 3250
3255 3260Glu Lys Gly Asp Val Gly Ser Ala Gly Leu Lys Gly
Asp Lys Gly Asp3265 3270 3275
3280Ser Ala Val Ile Leu Gly Pro Pro Gly Pro Arg Gly Ala Lys Gly Asp
3285 3290 3295Met Gly Glu Arg Gly
Pro Arg Gly Leu Asp Gly Asp Lys Gly Pro Arg 3300
3305 3310Gly Asp Asn Gly Asp Pro Gly Asp Lys Gly Ser Lys
Gly Glu Pro Gly 3315 3320 3325Asp
Lys Gly Ser Ala Gly Leu Pro Gly Leu Arg Gly Leu Leu Gly Pro 3330
3335 3340Gln Gly Gln Pro Gly Ala Ala Gly Ile Pro
Gly Asp Pro Gly Ser Pro3345 3350 3355
3360Gly Lys Asp Gly Val Pro Gly Ile Arg Gly Glu Lys Gly Asp Val
Gly 3365 3370 3375Phe Met
Gly Pro Arg Gly Leu Lys Gly Glu Arg Gly Val Lys Gly Ala 3380
3385 3390Cys Gly Leu Asp Gly Glu Lys Gly Asp
Lys Gly Glu Ala Gly Pro Pro 3395 3400
3405Gly Arg Pro Gly Leu Ala Gly His Lys Gly Glu Met Gly Glu Pro Gly
3410 3415 3420Val Pro Gly Gln Ser Gly Ala
Pro Gly Lys Glu Gly Leu Ile Gly Pro3425 3430
3435 3440Lys Gly Asp Arg Gly Phe Asp Gly Gln Pro Gly Pro
Lys Gly Asp Gln 3445 3450
3455Gly Glu Lys Gly Glu Arg Gly Thr Pro Gly Ile Gly Gly Phe Pro Gly
3460 3465 3470Pro Ser Gly Asn Asp Gly
Ser Ala Gly Pro Pro Gly Pro Pro Gly Ser 3475 3480
3485Val Gly Pro Arg Gly Pro Glu Gly Leu Gln Gly Gln Lys Gly
Glu Arg 3490 3495 3500Gly Pro Pro Gly
Glu Arg Val Val Gly Ala Pro Gly Val Pro Gly Ala3505 3510
3515 3520Pro Gly Glu Arg Gly Glu Gln Gly Arg
Pro Gly Pro Ala Gly Pro Arg 3525 3530
3535Gly Glu Lys Gly Glu Ala Ala Leu Thr Glu Asp Asp Ile Arg Gly
Phe 3540 3545 3550Val Arg Gln
Glu Met Ser Gln His Cys Ala Cys Gln Gly Gln Phe Ile 3555
3560 3565Ala Ser Gly Ser Arg Pro Leu Pro Ser Tyr Ala
Ala Asp Thr Ala Gly 3570 3575 3580Ser
Gln Leu His Ala Val Pro Val Leu Arg Val Ser His Ala Glu Glu3585
3590 3595 3600Glu Glu Arg Val Pro Pro
Glu Asp Asp Glu Tyr Ser Glu Tyr Ser Glu 3605
3610 3615Tyr Ser Val Glu Glu Tyr Gln Asp Pro Glu Ala Pro
Trp Asp Ser Asp 3620 3625
3630Asp Pro Cys Ser Leu Pro Leu Asp Glu Gly Ser Cys Thr Ala Tyr Thr
3635 3640 3645Leu Arg Trp Tyr His Arg Ala
Val Thr Gly Ser Thr Glu Ala Cys His 3650 3655
3660Pro Phe Val Tyr Gly Gly Cys Gly Gly Asn Ala Asn Arg Phe Gly
Thr3665 3670 3675 3680Arg Glu
Ala Cys Glu Arg Arg Cys Pro Pro Arg Val Val Gln Ser Gln
3685 3690 3695Gly Thr Gly Thr Ala Gln Asp
37002111115DNAArtificial SequenceSynthetic Construct
21atgacgctgc ggcttctggt ggccgcgctc tgcgccggga tcctggcaga ggcgccccga
60gtgcgagccc agcacaggga gagagtgacc tgcacgcgcc tttacgccgc tgacattgtg
120ttcttactgg atggctcctc atccattggc cgcagcaatt tccgcgaggt ccgcagcttt
180ctcgaagggc tggtgctgcc tttctctgga gcagccagtg cacagggtgt gcgctttgcc
240acagtgcagt acagcgatga cccacggaca gagttcggcc tggatgcact tggctctggg
300ggtgatgtga tccgcgccat ccgtgagctt agctacaagg ggggcaacac tcgcacaggg
360gctgcaattc tccatgtggc tgaccatgtc ttcctgcccc agctggcccg acctggtgtc
420cccaaggtct gcatcctgat cacagacggg aagtcccagg acctggtgga cacagctgcc
480caaaggctga aggggcaggg ggtcaagcta tttgctgtgg ggatcaagaa tgctgaccct
540gaggagctga agcgagttgc ctcacagccc accagtgact tcttcttctt cgtcaatgac
600ttcagcatct tgaggacact actgcccctc gtttcccgga gagtgtgcac gactgctggt
660ggcgtgcctg tgacccgacc tccggatgac tcgacctctg ctccacgaga cctggtgctg
720tctgagccaa gcagccaatc cttgagagta cagtggacag cggccagtgg ccctgtgact
780ggctacaagg tccagtacac tcctctgacg gggctgggac agccactgcc gagtgagcgg
840caggaggtga acgtcccagc tggtgagacc agtgtgcggc tgcggggtct ccggccactg
900accgagtacc aagtgactgt gattgccctc tacgccaaca gcatcgggga ggctgtgagc
960gggacagctc ggaccactgc cctagaaggg ccggaactga ccatccagaa taccacagcc
1020cacagcctcc tggtggcctg gcggagtgtg ccaggtgcca ctggctaccg tgtgacatgg
1080cgggtcctca gtggtgggcc cacacagcag caggagctgg gccctgggca gggttcagtg
1140ttgctgcgtg acttggagcc tggcacggac tatgaggtga ccgtgagcac cctatttggc
1200cgcagtgtgg ggcccgccac ttccctgatg gctcgcactg acgcttctgt tgagcagacc
1260ctgcgcccgg tcatcctggg ccccacatcc atcctccttt cctggaactt ggtgcctgag
1320gcccgtggct accggttgga atggcggcgt gagactggct tggagccacc gcagaaggtg
1380gtactgccct ctgatgtgac ccgctaccag ttggatgggc tgcagccggg cactgagtac
1440cgcctcacac tctacactct gctggagggc cacgaggtgg ccacccctgc aaccgtggtt
1500cccactggac cagagctgcc tgtgagccct gtaacagacc tgcaagccac cgagctgccc
1560gggcagcggg tgcgagtgtc ctggagccca gtccctggtg ccacccagta ccgcatcatt
1620gtgcgcagca cccagggggt tgagcggacc ctggtgcttc ctgggagtca gacagcattc
1680gacttggatg acgttcaggc tgggcttagc tacactgtgc gggtgtctgc tcgagtgggt
1740ccccgtgagg gcagtgccag tgtcctcact gtccgccggg agccggaaac tccacttgct
1800gttccagggc tgcgggttgt ggtgtcagat gcaacgcgag tgagggtggc ctggggaccc
1860gtccctggag ccagtggatt tcggattagc tggagcacag gcagtggtcc ggagtccagc
1920cagacactgc ccccagactc tactgccaca gacatcacag ggctgcagcc tggaaccacc
1980taccaggtgg ctgtgtcggt actgcgaggc agagaggagg gccctgctgc agtcatcgtg
2040gctcgaacgg acccactggg cccagtgagg acggtccatg tgactcaggc cagcagctca
2100tctgtcacca ttacctggac cagggttcct ggcgccacag gatacagggt ttcctggcac
2160tcagcccacg gcccagagaa atcccagttg gtttctgggg aggccacggt ggctgagctg
2220gatggactgg agccagatac tgagtatacg gtgcatgtga gggcccatgt ggctggcgtg
2280gatgggcccc ctgcctctgt ggttgtgagg actgcccctg agcctgtggg tcgtgtgtcg
2340aggctgcaga tcctcaatgc ttccagcgac gttctacgga tcacctgggt aggggtcact
2400ggagccacag cttacagact ggcctggggc cggagtgaag gcggccccat gaggcaccag
2460atactcccag gaaacacaga ctctgcagag atccggggtc tcgaaggtgg agtcagctac
2520tcagtgcgag tgactgcact tgtcggggac cgcgagggca cacctgtctc cattgttgtc
2580actacgccgc ctgaggctcc gccagccctg gggacgcttc acgtggtgca gcgcggggag
2640cactcgctga ggctgcgctg ggagccggtg cccagagcgc agggcttcct tctgcactgg
2700caacctgagg gtggccagga acagtcccgg gtcctggggc ccgagctcag cagctatcac
2760ctggacgggc tggagccagc gacacagtac cgcgtgaggc tgagtgtcct agggccagct
2820ggagaagggc cctctgcaga ggtgactgcg cgcactgagt cacctcgtgt tccaagcatt
2880gaactacgtg tggtggacac ctcgatcgac tcggtgactt tggcctggac tccagtgtcc
2940agggcatcca gctacatcct atcctggcgg ccactcagag gccctggcca ggaagtgcct
3000gggtccccgc agacacttcc agggatctca agctcccagc gggtgacagg gctagagcct
3060ggcgtctctt acatcttctc cctgacgcct gtcctggatg gtgtgcgggg tcctgaggca
3120tctgtcacac agacgccagt gtgcccccgt ggcctggcgg atgtggtgtt cctaccacat
3180gccactcaag acaatgctca ccgtgcggag gctacgagga gggtcctgga gcgtctggtg
3240ttggcacttg ggcctcttgg gccacaggca gttcaggttg gcctgctgtc ttacagtcat
3300cggccctccc cactgttccc actgaatggc tcccatgacc ttggcattat cttgcaaagg
3360atccgtgaca tgccctacat ggacccaagt gggaacaacc tgggcacagc cgtggtcaca
3420gctcacagat acatgttggc accagatgct cctgggcgcc gccagcacgt accaggggtg
3480atggttctgc tagtggatga acccttgaga ggtgacatat tcagccccat ccgtgaggcc
3540caggcttctg ggcttaatgt ggtgatgttg ggaatggctg gagcggaccc agagcagctg
3600cgtcgcttgg cgccgggtat ggactctgtc cagaccttct tcgccgtgga tgatgggcca
3660agcctggacc aggcagtcag tggtctggcc acagccctgt gtcaggcatc cttcactact
3720cagccccggc cagagccctg cccagtgtat tgtccaaagg gccagaaggg ggaacctgga
3780gagatgggcc tgagaggaca agttgggcct cctggcgacc ctggcctccc gggcaggacc
3840ggtgctcccg gcccccaggg gccccctgga agtgccactg ccaagggcga gaggggcttc
3900cctggagcag atgggcgtcc aggcagccct ggccgcgccg ggaatcctgg gacccctgga
3960gcccctggcc taaagggctc tccagggttg cctggccctc gtggggaccc gggagagcga
4020ggacctcgag gcccaaaggg ggagccgggg gctcccggac aagtcatcgg aggtgaagga
4080cctgggcttc ctgggcggaa aggggaccct ggaccatcgg gcccccctgg acctcgtgga
4140ccactggggg acccaggacc ccgtggcccc ccagggcttc ctggaacagc catgaagggt
4200gacaaaggcg atcgtgggga gcggggtccc cctggaccag gtgaaggtgg cattgctcct
4260ggggagcctg ggctgccggg tcttcccgga agccctggac cccaaggccc cgttggcccc
4320cctggaaaga aaggagaaaa aggtgactct gaggatggag ctccaggcct cccaggacaa
4380cctgggtctc cgggtgagca gggcccacgg ggacctcctg gagctattgg ccccaaaggt
4440gaccggggct ttccagggcc cctgggtgag gctggagaga agggcgaacg tggaccccca
4500ggcccagcgg gatcccgggg gctgccaggg gttgctggac gtcctggagc caagggtcct
4560gaagggccac caggacccac tggccgccaa ggagagaagg gggagcctgg tcgccctggg
4620gaccctgcag tggtgggacc tgctgttgct ggacccaaag gagaaaaggg agatgtgggg
4680cccgctgggc ccagaggagc taccggagtc caaggggaac ggggcccacc cggcttggtt
4740cttcctggag accctggccc caagggagac cctggagacc ggggtcccat tggccttact
4800ggcagagcag gacccccagg tgactcaggg cctcctggag agaagggaga ccctgggcgg
4860cctggccccc caggacctgt tggcccccga ggacgagatg gtgaagttgg agagaaaggt
4920gacgagggtc ctccgggtga cccgggtttg cctggaaaag caggcgagcg tggccttcgg
4980ggggcacctg gagttcgggg gcctgtgggt gaaaagggag accagggaga tcctggagag
5040gatggacgaa atggcagccc tggatcatct ggacccaagg gtgaccgtgg ggagccgggt
5100cccccaggac ccccgggacg gctggtagac acaggacctg gagccagaga gaagggagag
5160cctggggacc gcggacaaga gggtcctcga gggcccaagg gtgatcctgg cctccctgga
5220gcccctgggg aaaggggcat tgaagggttt cggggacccc caggcccaca gggggaccca
5280ggtgtccgag gcccagcagg agaaaagggt gaccggggtc cccctgggct ggatggccgg
5340agcggactgg atgggaaacc aggagccgct gggccctctg ggccgaatgg tgctgcaggc
5400aaagctgggg acccagggag agacgggctt ccaggcctcc gtggagaaca gggcctccct
5460ggcccctctg gtccccctgg attaccggga aagccaggcg aggatggcaa acctggcctg
5520aatggaaaaa acggagaacc tggggaccct ggagaagacg ggaggaaggg agagaaagga
5580gattcaggcg cctctgggag agaaggtcgt gatggcccca agggtgagcg tggagctcct
5640ggtatccttg gaccccaggg gcctccaggc ctcccagggc cagtgggccc tcctggccag
5700ggttttcctg gtgtcccagg aggcacgggc cccaagggtg accgtgggga gactggatcc
5760aaaggggagc agggcctccc tggagagcgt ggcctgcgag gagagcctgg aagtgtgccg
5820aatgtggatc ggttgctgga aactgctggc atcaaggcat ctgccctgcg ggagatcgtg
5880gagacctggg atgagagctc tggtagcttc ctgcctgtgc ccgaacggcg tcgaggcccc
5940aagggggact caggcgaaca gggcccccca ggcaaggagg gccccatcgg ctttcctgga
6000gaacgcgggc tgaagggcga ccgtggagac cctggccctc aggggccacc tggtctggcc
6060cttggggaga ggggcccccc cgggccttcc ggccttgccg gggagcctgg aaagcctggt
6120attcccgggc tcccaggcag ggctgggggt gtgggagagg caggaaggcc aggagagagg
6180ggagaacggg gagagaaagg agaacgtgga gaacagggca gagatggccc tcctggactc
6240cctggaaccc ctgggccccc cggaccccct ggccccaagg tgtctgtgga tgagccaggt
6300cctggactct ctggagaaca gggaccccct ggactcaagg gtgctaaggg ggagccgggc
6360agcaatggtg accaaggtcc caaaggagac aggggtgtgc caggcatcaa aggagaccgg
6420ggagagcctg gaccgagggg tcaggacggc aacccgggtc taccaggaga gcgtggtatg
6480gctgggcctg aagggaagcc gggtctgcag ggtccaagag gcccccctgg cccagtgggt
6540ggtcatggag accctggacc acctggtgcc ccgggtcttg ctggccctgc aggaccccaa
6600ggaccttctg gcctgaaggg ggagcctgga gagacaggac ctccaggacg gggcctgact
6660ggacctactg gagctgtggg acttcctgga ccccccggcc cttcaggcct tgtgggtcca
6720caggggtctc caggtttgcc tggacaagtg ggggagacag ggaagccggg agccccaggt
6780cgagatggtg ccagtggaaa agatggagac agagggagcc ctggtgtgcc agggtcacca
6840ggtctgcctg gccctgtcgg acctaaagga gaacctggcc ccacgggggc ccctggacag
6900gctgtggtcg ggctccctgg agcaaaggga gagaagggag cccctggagg ccttgctgga
6960gacctggtgg gtgagccggg agccaaaggt gaccgaggac tgccagggcc gcgaggcgag
7020aagggtgaag ctggccgtgc aggggagccc ggagaccctg gggaagatgg tcagaaaggg
7080gctccaggac ccaaaggttt caagggtgac ccaggagtcg gggtcccggg ctcccctggg
7140cctcctggcc ctccaggtgt gaagggagat ctgggcctcc ctggcctgcc cggtgctcct
7200ggtgttgttg ggttcccggg tcagacaggc cctcgaggag agatgggtca gccaggccct
7260agtggagagc ggggtctggc aggcccccca gggagagaag gaatcccagg acccctgggg
7320ccacctggac caccggggtc agtgggacca cctggggcct ctggactcaa aggagacaag
7380ggagaccctg gagtagggct gcctgggccc cgaggcgagc gtggggagcc aggcatccgg
7440ggtgaagatg gccgccccgg ccaggaggga ccccgaggac tcacggggcc ccctggcagc
7500aggggagagc gtggggagaa gggtgatgtt gggagtgcag gactaaaggg tgacaaggga
7560gactcagctg tgatcctggg gcctccaggc ccacggggtg ccaaggggga catgggtgaa
7620cgagggcctc ggggcttgga tggtgacaaa ggacctcggg gagacaatgg ggaccctggt
7680gacaagggca gcaagggaga gcctggtgac aagggctcag ccgggttgcc aggactgcgt
7740ggactcctgg gaccccaggg tcaacctggt gcagcaggga tccctggtga cccgggatcc
7800ccaggaaagg atggagtgcc tggtatccga ggagaaaaag gagatgttgg cttcatgggt
7860ccccggggcc tcaagggtga acggggagtg aagggagcct gtggccttga tggagagaag
7920ggagacaagg gagaagctgg tcccccaggc cgccccgggc tggcaggaca caaaggagag
7980atgggggagc ctggtgtgcc gggccagtcg ggggcccctg gcaaggaggg cctgatcggt
8040cccaagggtg accgaggctt tgacgggcag ccaggcccca agggtgacca gggcgagaaa
8100ggggagcggg gaaccccagg aattgggggc ttcccaggcc ccagtggaaa tgatggctct
8160gctggtcccc cagggccacc tggcagtgtt ggtcccagag gccccgaagg acttcagggc
8220cagaagggtg agcgaggtcc ccccggagag agagtggtgg gggctcctgg ggtccctgga
8280gctcctggcg agagagggga gcaggggcgg ccagggcctg ccggtcctcg aggcgagaag
8340ggagaagctg cactgacgga ggatgacatc cggggctttg tgcgccaaga gatgagtcag
8400cactgtgcct gccagggcca gttcatcgca tctggatcac gacccctccc tagttatgct
8460gcagacactg ccggctccca gctccatgct gtgcctgtgc tccgcgtctc tcatgcagag
8520gaggaagagc gggtaccccc tgaggatgat gagtactctg aatactccga gtattctgtg
8580gaggagtacc aggaccctga agctccttgg gatagtgatg acccctgttc cctgccactg
8640gatgagggct cctgcactgc ctacaccctg cgctggtacc atcgggctgt gacaggcagc
8700acagaggcct gtcacccttt tgtctatggt ggctgtggag ggaatgccaa ccgttttggg
8760acccgtgagg cctgcgagcg ccgctgccca ccccgggtgg tccagagcca ggggacaggt
8820actgcccagg acggaagcgg acagtgtact aattatgctc tcttgaaatt ggctggagat
8880gttgagagca accctggacc tacctcctcg gggcctggac cccggttcct gctgctgctg
8940ccgctgctgc tgccccctgc ggcctcagcc tccgaccggc cccggggccg agacccggtc
9000aacccagaga agctgctggt gatcactgtg gccacagctg aaaccgaggg gtacctgcgt
9060ttcctgcgct ctgcggagtt cttcaactac actgtgcgga ccctgggcct gggagaggag
9120tggcgagggg gtgatgtggc tcgaacagtt ggtggaggac agaaggtccg gtggttaaag
9180aaggaaatgg agaaatacgc tgaccgggag gatatgatca tcatgtttgt ggatagctac
9240gacgtgattc tggccggcag ccccacagag ctgctgaaga agttcgtcca gagtggcagc
9300cgcctgctct tctctgcaga gagcttctgc tggcccgagt gggggctggc ggagcagtac
9360cctgaggtgg gcacggggaa gcgcttcctc aattctggtg gattcatcgg ttttgccacc
9420accatccacc aaatcgtgcg ccagtggaag tacaaggatg atgacgacga ccagctgttc
9480tacacacggc tctacctgga cccaggactg agggagaaac tcagccttaa tctggatcat
9540aagtctcgga tctttcagaa cctcaacggg gctttagatg aagtggtttt aaagtttgat
9600cggaaccgtg tgcgtatccg gaacgtggcc tacgacacgc tccccattgt ggtccatgga
9660aacggtccca ctaagctgca gctcaactac ctgggaaact acgtccccaa tggctggact
9720cctgagggag gctgtggctt ctgcaaccag gaccggagga cactcccggg ggggcagcct
9780cccccccggg tgtttctggc cgtgtttgtg gaacagccta ctccgtttct gccccgcttc
9840ctgcagcggc tgctactcct ggactatccc cccgacaggg tcaccctttt cctgcacaac
9900aacgaggtct tccatgaacc ccacatcgct gactcctggc cgcagctcca ggaccacttc
9960tcagctgtga agctcgtggg gccggaggag gctctgagcc caggcgaggc cagggacatg
10020gccatggacc tgtgtcggca ggaccccgag tgtgagttct acttcagcct ggacgccgac
10080gctgtcctca ccaacctgca gaccctgcgt atcctcattg aggagaacag gaaggtgatc
10140gcccccatgc tgtcccgcca cggcaagctg tggtccaact tctggggcgc cctgagcccc
10200gatgagtact acgcccgctc cgaggactac gtggagctgg tgcagcggaa gcgagtgggt
10260gtgtggaatg taccatacat ctcccaggcc tatgtgatcc ggggtgatac cctgcggatg
10320gagctgcccc agagggatgt gttctcgggc agtgacacag acccggacat ggccttctgt
10380aagagctttc gagacaaggg catcttcctc catctgagca atcagcatga atttggccgg
10440ctcctggcca cttccagata cgacacggag cacctgcacc ccgacctctg gcagatcttc
10500gacaaccccg tcgactggaa ggagcagtac atccacgaga actacagccg ggccctggaa
10560ggggaaggaa tcgtggagca gccatgcccg gacgtgtact ggttcccact gctgtcagaa
10620caaatgtgtg atgagctggt ggcagagatg gagcactacg gccagtggtc aggcggccgg
10680catgaggatt caaggctggc tggaggctac gagaatgtgc ccaccgtgga catccacatg
10740aagcaggtgg ggtacgagga ccagtggctg cagctgctgc ggacgtatgt gggccccatg
10800accgagagcc tgtttcccgg ttaccacacc aaggcgcggg cggtgatgaa ctttgtggtt
10860cgctaccggc cagacgagca gccgtctctg cggccacacc acgactcatc caccttcacc
10920ctcaacgttg ccctcaacca caagggcctg gactatgagg gaggtggctg ccgcttcctg
10980cgctacgact gtgtgatctc ctccccgagg aagggctggg cactcctgca ccccggccgc
11040ctcacccact accacgaggg gctgccaacg acctggggca cacgctacat catggtgtcc
11100tttgtcgacc cctga
11115223704PRTArtificial SequenceSynthetic Construct 22Met Thr Leu Arg
Leu Leu Val Ala Ala Leu Cys Ala Gly Ile Leu Ala1 5
10 15Glu Ala Pro Arg Val Arg Ala Gln His Arg
Glu Arg Val Thr Cys Thr 20 25
30Arg Leu Tyr Ala Ala Asp Ile Val Phe Leu Leu Asp Gly Ser Ser Ser
35 40 45Ile Gly Arg Ser Asn Phe Arg Glu
Val Arg Ser Phe Leu Glu Gly Leu 50 55
60Val Leu Pro Phe Ser Gly Ala Ala Ser Ala Gln Gly Val Arg Phe Ala65
70 75 80Thr Val Gln Tyr Ser
Asp Asp Pro Arg Thr Glu Phe Gly Leu Asp Ala 85
90 95Leu Gly Ser Gly Gly Asp Val Ile Arg Ala Ile
Arg Glu Leu Ser Tyr 100 105
110Lys Gly Gly Asn Thr Arg Thr Gly Ala Ala Ile Leu His Val Ala Asp
115 120 125His Val Phe Leu Pro Gln Leu
Ala Arg Pro Gly Val Pro Lys Val Cys 130 135
140Ile Leu Ile Thr Asp Gly Lys Ser Gln Asp Leu Val Asp Thr Ala
Ala145 150 155 160Gln Arg
Leu Lys Gly Gln Gly Val Lys Leu Phe Ala Val Gly Ile Lys
165 170 175Asn Ala Asp Pro Glu Glu Leu
Lys Arg Val Ala Ser Gln Pro Thr Ser 180 185
190Asp Phe Phe Phe Phe Val Asn Asp Phe Ser Ile Leu Arg Thr
Leu Leu 195 200 205Pro Leu Val Ser
Arg Arg Val Cys Thr Thr Ala Gly Gly Val Pro Val 210
215 220Thr Arg Pro Pro Asp Asp Ser Thr Ser Ala Pro Arg
Asp Leu Val Leu225 230 235
240Ser Glu Pro Ser Ser Gln Ser Leu Arg Val Gln Trp Thr Ala Ala Ser
245 250 255Gly Pro Val Thr Gly
Tyr Lys Val Gln Tyr Thr Pro Leu Thr Gly Leu 260
265 270Gly Gln Pro Leu Pro Ser Glu Arg Gln Glu Val Asn
Val Pro Ala Gly 275 280 285Glu Thr
Ser Val Arg Leu Arg Gly Leu Arg Pro Leu Thr Glu Tyr Gln 290
295 300Val Thr Val Ile Ala Leu Tyr Ala Asn Ser Ile
Gly Glu Ala Val Ser305 310 315
320Gly Thr Ala Arg Thr Thr Ala Leu Glu Gly Pro Glu Leu Thr Ile Gln
325 330 335Asn Thr Thr Ala
His Ser Leu Leu Val Ala Trp Arg Ser Val Pro Gly 340
345 350Ala Thr Gly Tyr Arg Val Thr Trp Arg Val Leu
Ser Gly Gly Pro Thr 355 360 365Gln
Gln Gln Glu Leu Gly Pro Gly Gln Gly Ser Val Leu Leu Arg Asp 370
375 380Leu Glu Pro Gly Thr Asp Tyr Glu Val Thr
Val Ser Thr Leu Phe Gly385 390 395
400Arg Ser Val Gly Pro Ala Thr Ser Leu Met Ala Arg Thr Asp Ala
Ser 405 410 415Val Glu Gln
Thr Leu Arg Pro Val Ile Leu Gly Pro Thr Ser Ile Leu 420
425 430Leu Ser Trp Asn Leu Val Pro Glu Ala Arg
Gly Tyr Arg Leu Glu Trp 435 440
445Arg Arg Glu Thr Gly Leu Glu Pro Pro Gln Lys Val Val Leu Pro Ser 450
455 460Asp Val Thr Arg Tyr Gln Leu Asp
Gly Leu Gln Pro Gly Thr Glu Tyr465 470
475 480Arg Leu Thr Leu Tyr Thr Leu Leu Glu Gly His Glu
Val Ala Thr Pro 485 490
495Ala Thr Val Val Pro Thr Gly Pro Glu Leu Pro Val Ser Pro Val Thr
500 505 510Asp Leu Gln Ala Thr Glu
Leu Pro Gly Gln Arg Val Arg Val Ser Trp 515 520
525Ser Pro Val Pro Gly Ala Thr Gln Tyr Arg Ile Ile Val Arg
Ser Thr 530 535 540Gln Gly Val Glu Arg
Thr Leu Val Leu Pro Gly Ser Gln Thr Ala Phe545 550
555 560Asp Leu Asp Asp Val Gln Ala Gly Leu Ser
Tyr Thr Val Arg Val Ser 565 570
575Ala Arg Val Gly Pro Arg Glu Gly Ser Ala Ser Val Leu Thr Val Arg
580 585 590Arg Glu Pro Glu Thr
Pro Leu Ala Val Pro Gly Leu Arg Val Val Val 595
600 605Ser Asp Ala Thr Arg Val Arg Val Ala Trp Gly Pro
Val Pro Gly Ala 610 615 620Ser Gly Phe
Arg Ile Ser Trp Ser Thr Gly Ser Gly Pro Glu Ser Ser625
630 635 640Gln Thr Leu Pro Pro Asp Ser
Thr Ala Thr Asp Ile Thr Gly Leu Gln 645
650 655Pro Gly Thr Thr Tyr Gln Val Ala Val Ser Val Leu
Arg Gly Arg Glu 660 665 670Glu
Gly Pro Ala Ala Val Ile Val Ala Arg Thr Asp Pro Leu Gly Pro 675
680 685Val Arg Thr Val His Val Thr Gln Ala
Ser Ser Ser Ser Val Thr Ile 690 695
700Thr Trp Thr Arg Val Pro Gly Ala Thr Gly Tyr Arg Val Ser Trp His705
710 715 720Ser Ala His Gly
Pro Glu Lys Ser Gln Leu Val Ser Gly Glu Ala Thr 725
730 735Val Ala Glu Leu Asp Gly Leu Glu Pro Asp
Thr Glu Tyr Thr Val His 740 745
750Val Arg Ala His Val Ala Gly Val Asp Gly Pro Pro Ala Ser Val Val
755 760 765Val Arg Thr Ala Pro Glu Pro
Val Gly Arg Val Ser Arg Leu Gln Ile 770 775
780Leu Asn Ala Ser Ser Asp Val Leu Arg Ile Thr Trp Val Gly Val
Thr785 790 795 800Gly Ala
Thr Ala Tyr Arg Leu Ala Trp Gly Arg Ser Glu Gly Gly Pro
805 810 815Met Arg His Gln Ile Leu Pro
Gly Asn Thr Asp Ser Ala Glu Ile Arg 820 825
830Gly Leu Glu Gly Gly Val Ser Tyr Ser Val Arg Val Thr Ala
Leu Val 835 840 845Gly Asp Arg Glu
Gly Thr Pro Val Ser Ile Val Val Thr Thr Pro Pro 850
855 860Glu Ala Pro Pro Ala Leu Gly Thr Leu His Val Val
Gln Arg Gly Glu865 870 875
880His Ser Leu Arg Leu Arg Trp Glu Pro Val Pro Arg Ala Gln Gly Phe
885 890 895Leu Leu His Trp Gln
Pro Glu Gly Gly Gln Glu Gln Ser Arg Val Leu 900
905 910Gly Pro Glu Leu Ser Ser Tyr His Leu Asp Gly Leu
Glu Pro Ala Thr 915 920 925Gln Tyr
Arg Val Arg Leu Ser Val Leu Gly Pro Ala Gly Glu Gly Pro 930
935 940Ser Ala Glu Val Thr Ala Arg Thr Glu Ser Pro
Arg Val Pro Ser Ile945 950 955
960Glu Leu Arg Val Val Asp Thr Ser Ile Asp Ser Val Thr Leu Ala Trp
965 970 975Thr Pro Val Ser
Arg Ala Ser Ser Tyr Ile Leu Ser Trp Arg Pro Leu 980
985 990Arg Gly Pro Gly Gln Glu Val Pro Gly Ser Pro
Gln Thr Leu Pro Gly 995 1000
1005Ile Ser Ser Ser Gln Arg Val Thr Gly Leu Glu Pro Gly Val Ser Tyr
1010 1015 1020Ile Phe Ser Leu Thr Pro Val
Leu Asp Gly Val Arg Gly Pro Glu Ala1025 1030
1035 1040Ser Val Thr Gln Thr Pro Val Cys Pro Arg Gly Leu
Ala Asp Val Val 1045 1050
1055Phe Leu Pro His Ala Thr Gln Asp Asn Ala His Arg Ala Glu Ala Thr
1060 1065 1070Arg Arg Val Leu Glu Arg
Leu Val Leu Ala Leu Gly Pro Leu Gly Pro 1075 1080
1085Gln Ala Val Gln Val Gly Leu Leu Ser Tyr Ser His Arg Pro
Ser Pro 1090 1095 1100Leu Phe Pro Leu
Asn Gly Ser His Asp Leu Gly Ile Ile Leu Gln Arg1105 1110
1115 1120Ile Arg Asp Met Pro Tyr Met Asp Pro
Ser Gly Asn Asn Leu Gly Thr 1125 1130
1135Ala Val Val Thr Ala His Arg Tyr Met Leu Ala Pro Asp Ala Pro
Gly 1140 1145 1150Arg Arg Gln
His Val Pro Gly Val Met Val Leu Leu Val Asp Glu Pro 1155
1160 1165Leu Arg Gly Asp Ile Phe Ser Pro Ile Arg Glu
Ala Gln Ala Ser Gly 1170 1175 1180Leu
Asn Val Val Met Leu Gly Met Ala Gly Ala Asp Pro Glu Gln Leu1185
1190 1195 1200Arg Arg Leu Ala Pro Gly
Met Asp Ser Val Gln Thr Phe Phe Ala Val 1205
1210 1215Asp Asp Gly Pro Ser Leu Asp Gln Ala Val Ser Gly
Leu Ala Thr Ala 1220 1225
1230Leu Cys Gln Ala Ser Phe Thr Thr Gln Pro Arg Pro Glu Pro Cys Pro
1235 1240 1245Val Tyr Cys Pro Lys Gly Gln
Lys Gly Glu Pro Gly Glu Met Gly Leu 1250 1255
1260Arg Gly Gln Val Gly Pro Pro Gly Asp Pro Gly Leu Pro Gly Arg
Thr1265 1270 1275 1280Gly Ala
Pro Gly Pro Gln Gly Pro Pro Gly Ser Ala Thr Ala Lys Gly
1285 1290 1295Glu Arg Gly Phe Pro Gly Ala
Asp Gly Arg Pro Gly Ser Pro Gly Arg 1300 1305
1310Ala Gly Asn Pro Gly Thr Pro Gly Ala Pro Gly Leu Lys Gly
Ser Pro 1315 1320 1325Gly Leu Pro
Gly Pro Arg Gly Asp Pro Gly Glu Arg Gly Pro Arg Gly 1330
1335 1340Pro Lys Gly Glu Pro Gly Ala Pro Gly Gln Val Ile
Gly Gly Glu Gly1345 1350 1355
1360Pro Gly Leu Pro Gly Arg Lys Gly Asp Pro Gly Pro Ser Gly Pro Pro
1365 1370 1375Gly Pro Arg Gly Pro
Leu Gly Asp Pro Gly Pro Arg Gly Pro Pro Gly 1380
1385 1390Leu Pro Gly Thr Ala Met Lys Gly Asp Lys Gly Asp
Arg Gly Glu Arg 1395 1400 1405Gly
Pro Pro Gly Pro Gly Glu Gly Gly Ile Ala Pro Gly Glu Pro Gly 1410
1415 1420Leu Pro Gly Leu Pro Gly Ser Pro Gly Pro
Gln Gly Pro Val Gly Pro1425 1430 1435
1440Pro Gly Lys Lys Gly Glu Lys Gly Asp Ser Glu Asp Gly Ala Pro
Gly 1445 1450 1455Leu Pro
Gly Gln Pro Gly Ser Pro Gly Glu Gln Gly Pro Arg Gly Pro 1460
1465 1470Pro Gly Ala Ile Gly Pro Lys Gly Asp
Arg Gly Phe Pro Gly Pro Leu 1475 1480
1485Gly Glu Ala Gly Glu Lys Gly Glu Arg Gly Pro Pro Gly Pro Ala Gly
1490 1495 1500Ser Arg Gly Leu Pro Gly Val
Ala Gly Arg Pro Gly Ala Lys Gly Pro1505 1510
1515 1520Glu Gly Pro Pro Gly Pro Thr Gly Arg Gln Gly Glu
Lys Gly Glu Pro 1525 1530
1535Gly Arg Pro Gly Asp Pro Ala Val Val Gly Pro Ala Val Ala Gly Pro
1540 1545 1550Lys Gly Glu Lys Gly Asp
Val Gly Pro Ala Gly Pro Arg Gly Ala Thr 1555 1560
1565Gly Val Gln Gly Glu Arg Gly Pro Pro Gly Leu Val Leu Pro
Gly Asp 1570 1575 1580Pro Gly Pro Lys
Gly Asp Pro Gly Asp Arg Gly Pro Ile Gly Leu Thr1585 1590
1595 1600Gly Arg Ala Gly Pro Pro Gly Asp Ser
Gly Pro Pro Gly Glu Lys Gly 1605 1610
1615Asp Pro Gly Arg Pro Gly Pro Pro Gly Pro Val Gly Pro Arg Gly
Arg 1620 1625 1630Asp Gly Glu
Val Gly Glu Lys Gly Asp Glu Gly Pro Pro Gly Asp Pro 1635
1640 1645Gly Leu Pro Gly Lys Ala Gly Glu Arg Gly Leu
Arg Gly Ala Pro Gly 1650 1655 1660Val
Arg Gly Pro Val Gly Glu Lys Gly Asp Gln Gly Asp Pro Gly Glu1665
1670 1675 1680Asp Gly Arg Asn Gly Ser
Pro Gly Ser Ser Gly Pro Lys Gly Asp Arg 1685
1690 1695Gly Glu Pro Gly Pro Pro Gly Pro Pro Gly Arg Leu
Val Asp Thr Gly 1700 1705
1710Pro Gly Ala Arg Glu Lys Gly Glu Pro Gly Asp Arg Gly Gln Glu Gly
1715 1720 1725Pro Arg Gly Pro Lys Gly Asp
Pro Gly Leu Pro Gly Ala Pro Gly Glu 1730 1735
1740Arg Gly Ile Glu Gly Phe Arg Gly Pro Pro Gly Pro Gln Gly Asp
Pro1745 1750 1755 1760Gly Val
Arg Gly Pro Ala Gly Glu Lys Gly Asp Arg Gly Pro Pro Gly
1765 1770 1775Leu Asp Gly Arg Ser Gly Leu
Asp Gly Lys Pro Gly Ala Ala Gly Pro 1780 1785
1790Ser Gly Pro Asn Gly Ala Ala Gly Lys Ala Gly Asp Pro Gly
Arg Asp 1795 1800 1805Gly Leu Pro
Gly Leu Arg Gly Glu Gln Gly Leu Pro Gly Pro Ser Gly 1810
1815 1820Pro Pro Gly Leu Pro Gly Lys Pro Gly Glu Asp Gly
Lys Pro Gly Leu1825 1830 1835
1840Asn Gly Lys Asn Gly Glu Pro Gly Asp Pro Gly Glu Asp Gly Arg Lys
1845 1850 1855Gly Glu Lys Gly Asp
Ser Gly Ala Ser Gly Arg Glu Gly Arg Asp Gly 1860
1865 1870Pro Lys Gly Glu Arg Gly Ala Pro Gly Ile Leu Gly
Pro Gln Gly Pro 1875 1880 1885Pro
Gly Leu Pro Gly Pro Val Gly Pro Pro Gly Gln Gly Phe Pro Gly 1890
1895 1900Val Pro Gly Gly Thr Gly Pro Lys Gly Asp
Arg Gly Glu Thr Gly Ser1905 1910 1915
1920Lys Gly Glu Gln Gly Leu Pro Gly Glu Arg Gly Leu Arg Gly Glu
Pro 1925 1930 1935Gly Ser
Val Pro Asn Val Asp Arg Leu Leu Glu Thr Ala Gly Ile Lys 1940
1945 1950Ala Ser Ala Leu Arg Glu Ile Val Glu
Thr Trp Asp Glu Ser Ser Gly 1955 1960
1965Ser Phe Leu Pro Val Pro Glu Arg Arg Arg Gly Pro Lys Gly Asp Ser
1970 1975 1980Gly Glu Gln Gly Pro Pro Gly
Lys Glu Gly Pro Ile Gly Phe Pro Gly1985 1990
1995 2000Glu Arg Gly Leu Lys Gly Asp Arg Gly Asp Pro Gly
Pro Gln Gly Pro 2005 2010
2015Pro Gly Leu Ala Leu Gly Glu Arg Gly Pro Pro Gly Pro Ser Gly Leu
2020 2025 2030Ala Gly Glu Pro Gly Lys
Pro Gly Ile Pro Gly Leu Pro Gly Arg Ala 2035 2040
2045Gly Gly Val Gly Glu Ala Gly Arg Pro Gly Glu Arg Gly Glu
Arg Gly 2050 2055 2060Glu Lys Gly Glu
Arg Gly Glu Gln Gly Arg Asp Gly Pro Pro Gly Leu2065 2070
2075 2080Pro Gly Thr Pro Gly Pro Pro Gly Pro
Pro Gly Pro Lys Val Ser Val 2085 2090
2095Asp Glu Pro Gly Pro Gly Leu Ser Gly Glu Gln Gly Pro Pro Gly
Leu 2100 2105 2110Lys Gly Ala
Lys Gly Glu Pro Gly Ser Asn Gly Asp Gln Gly Pro Lys 2115
2120 2125Gly Asp Arg Gly Val Pro Gly Ile Lys Gly Asp
Arg Gly Glu Pro Gly 2130 2135 2140Pro
Arg Gly Gln Asp Gly Asn Pro Gly Leu Pro Gly Glu Arg Gly Met2145
2150 2155 2160Ala Gly Pro Glu Gly Lys
Pro Gly Leu Gln Gly Pro Arg Gly Pro Pro 2165
2170 2175Gly Pro Val Gly Gly His Gly Asp Pro Gly Pro Pro
Gly Ala Pro Gly 2180 2185
2190Leu Ala Gly Pro Ala Gly Pro Gln Gly Pro Ser Gly Leu Lys Gly Glu
2195 2200 2205Pro Gly Glu Thr Gly Pro Pro
Gly Arg Gly Leu Thr Gly Pro Thr Gly 2210 2215
2220Ala Val Gly Leu Pro Gly Pro Pro Gly Pro Ser Gly Leu Val Gly
Pro2225 2230 2235 2240Gln Gly
Ser Pro Gly Leu Pro Gly Gln Val Gly Glu Thr Gly Lys Pro
2245 2250 2255Gly Ala Pro Gly Arg Asp Gly
Ala Ser Gly Lys Asp Gly Asp Arg Gly 2260 2265
2270Ser Pro Gly Val Pro Gly Ser Pro Gly Leu Pro Gly Pro Val
Gly Pro 2275 2280 2285Lys Gly Glu
Pro Gly Pro Thr Gly Ala Pro Gly Gln Ala Val Val Gly 2290
2295 2300Leu Pro Gly Ala Lys Gly Glu Lys Gly Ala Pro Gly
Gly Leu Ala Gly2305 2310 2315
2320Asp Leu Val Gly Glu Pro Gly Ala Lys Gly Asp Arg Gly Leu Pro Gly
2325 2330 2335Pro Arg Gly Glu Lys
Gly Glu Ala Gly Arg Ala Gly Glu Pro Gly Asp 2340
2345 2350Pro Gly Glu Asp Gly Gln Lys Gly Ala Pro Gly Pro
Lys Gly Phe Lys 2355 2360 2365Gly
Asp Pro Gly Val Gly Val Pro Gly Ser Pro Gly Pro Pro Gly Pro 2370
2375 2380Pro Gly Val Lys Gly Asp Leu Gly Leu Pro
Gly Leu Pro Gly Ala Pro2385 2390 2395
2400Gly Val Val Gly Phe Pro Gly Gln Thr Gly Pro Arg Gly Glu Met
Gly 2405 2410 2415Gln Pro
Gly Pro Ser Gly Glu Arg Gly Leu Ala Gly Pro Pro Gly Arg 2420
2425 2430Glu Gly Ile Pro Gly Pro Leu Gly Pro
Pro Gly Pro Pro Gly Ser Val 2435 2440
2445Gly Pro Pro Gly Ala Ser Gly Leu Lys Gly Asp Lys Gly Asp Pro Gly
2450 2455 2460Val Gly Leu Pro Gly Pro Arg
Gly Glu Arg Gly Glu Pro Gly Ile Arg2465 2470
2475 2480Gly Glu Asp Gly Arg Pro Gly Gln Glu Gly Pro Arg
Gly Leu Thr Gly 2485 2490
2495Pro Pro Gly Ser Arg Gly Glu Arg Gly Glu Lys Gly Asp Val Gly Ser
2500 2505 2510Ala Gly Leu Lys Gly Asp
Lys Gly Asp Ser Ala Val Ile Leu Gly Pro 2515 2520
2525Pro Gly Pro Arg Gly Ala Lys Gly Asp Met Gly Glu Arg Gly
Pro Arg 2530 2535 2540Gly Leu Asp Gly
Asp Lys Gly Pro Arg Gly Asp Asn Gly Asp Pro Gly2545 2550
2555 2560Asp Lys Gly Ser Lys Gly Glu Pro Gly
Asp Lys Gly Ser Ala Gly Leu 2565 2570
2575Pro Gly Leu Arg Gly Leu Leu Gly Pro Gln Gly Gln Pro Gly Ala
Ala 2580 2585 2590Gly Ile Pro
Gly Asp Pro Gly Ser Pro Gly Lys Asp Gly Val Pro Gly 2595
2600 2605Ile Arg Gly Glu Lys Gly Asp Val Gly Phe Met
Gly Pro Arg Gly Leu 2610 2615 2620Lys
Gly Glu Arg Gly Val Lys Gly Ala Cys Gly Leu Asp Gly Glu Lys2625
2630 2635 2640Gly Asp Lys Gly Glu Ala
Gly Pro Pro Gly Arg Pro Gly Leu Ala Gly 2645
2650 2655His Lys Gly Glu Met Gly Glu Pro Gly Val Pro Gly
Gln Ser Gly Ala 2660 2665
2670Pro Gly Lys Glu Gly Leu Ile Gly Pro Lys Gly Asp Arg Gly Phe Asp
2675 2680 2685Gly Gln Pro Gly Pro Lys Gly
Asp Gln Gly Glu Lys Gly Glu Arg Gly 2690 2695
2700Thr Pro Gly Ile Gly Gly Phe Pro Gly Pro Ser Gly Asn Asp Gly
Ser2705 2710 2715 2720Ala Gly
Pro Pro Gly Pro Pro Gly Ser Val Gly Pro Arg Gly Pro Glu
2725 2730 2735Gly Leu Gln Gly Gln Lys Gly
Glu Arg Gly Pro Pro Gly Glu Arg Val 2740 2745
2750Val Gly Ala Pro Gly Val Pro Gly Ala Pro Gly Glu Arg Gly
Glu Gln 2755 2760 2765Gly Arg Pro
Gly Pro Ala Gly Pro Arg Gly Glu Lys Gly Glu Ala Ala 2770
2775 2780Leu Thr Glu Asp Asp Ile Arg Gly Phe Val Arg Gln
Glu Met Ser Gln2785 2790 2795
2800His Cys Ala Cys Gln Gly Gln Phe Ile Ala Ser Gly Ser Arg Pro Leu
2805 2810 2815Pro Ser Tyr Ala Ala
Asp Thr Ala Gly Ser Gln Leu His Ala Val Pro 2820
2825 2830Val Leu Arg Val Ser His Ala Glu Glu Glu Glu Arg
Val Pro Pro Glu 2835 2840 2845Asp
Asp Glu Tyr Ser Glu Tyr Ser Glu Tyr Ser Val Glu Glu Tyr Gln 2850
2855 2860Asp Pro Glu Ala Pro Trp Asp Ser Asp Asp
Pro Cys Ser Leu Pro Leu2865 2870 2875
2880Asp Glu Gly Ser Cys Thr Ala Tyr Thr Leu Arg Trp Tyr His Arg
Ala 2885 2890 2895Val Thr
Gly Ser Thr Glu Ala Cys His Pro Phe Val Tyr Gly Gly Cys 2900
2905 2910Gly Gly Asn Ala Asn Arg Phe Gly Thr
Arg Glu Ala Cys Glu Arg Arg 2915 2920
2925Cys Pro Pro Arg Val Val Gln Ser Gln Gly Thr Gly Thr Ala Gln Asp
2930 2935 2940Gly Ser Gly Gln Cys Thr Asn
Tyr Ala Leu Leu Lys Leu Ala Gly Asp2945 2950
2955 2960Val Glu Ser Asn Pro Gly Pro Thr Ser Ser Gly Pro
Gly Pro Arg Phe 2965 2970
2975Leu Leu Leu Leu Pro Leu Leu Leu Pro Pro Ala Ala Ser Ala Ser Asp
2980 2985 2990Arg Pro Arg Gly Arg Asp
Pro Val Asn Pro Glu Lys Leu Leu Val Ile 2995 3000
3005Thr Val Ala Thr Ala Glu Thr Glu Gly Tyr Leu Arg Phe Leu
Arg Ser 3010 3015 3020Ala Glu Phe Phe
Asn Tyr Thr Val Arg Thr Leu Gly Leu Gly Glu Glu3025 3030
3035 3040Trp Arg Gly Gly Asp Val Ala Arg Thr
Val Gly Gly Gly Gln Lys Val 3045 3050
3055Arg Trp Leu Lys Lys Glu Met Glu Lys Tyr Ala Asp Arg Glu Asp
Met 3060 3065 3070Ile Ile Met
Phe Val Asp Ser Tyr Asp Val Ile Leu Ala Gly Ser Pro 3075
3080 3085Thr Glu Leu Leu Lys Lys Phe Val Gln Ser Gly
Ser Arg Leu Leu Phe 3090 3095 3100Ser
Ala Glu Ser Phe Cys Trp Pro Glu Trp Gly Leu Ala Glu Gln Tyr3105
3110 3115 3120Pro Glu Val Gly Thr Gly
Lys Arg Phe Leu Asn Ser Gly Gly Phe Ile 3125
3130 3135Gly Phe Ala Thr Thr Ile His Gln Ile Val Arg Gln
Trp Lys Tyr Lys 3140 3145
3150Asp Asp Asp Asp Asp Gln Leu Phe Tyr Thr Arg Leu Tyr Leu Asp Pro
3155 3160 3165Gly Leu Arg Glu Lys Leu Ser
Leu Asn Leu Asp His Lys Ser Arg Ile 3170 3175
3180Phe Gln Asn Leu Asn Gly Ala Leu Asp Glu Val Val Leu Lys Phe
Asp3185 3190 3195 3200Arg Asn
Arg Val Arg Ile Arg Asn Val Ala Tyr Asp Thr Leu Pro Ile
3205 3210 3215Val Val His Gly Asn Gly Pro
Thr Lys Leu Gln Leu Asn Tyr Leu Gly 3220 3225
3230Asn Tyr Val Pro Asn Gly Trp Thr Pro Glu Gly Gly Cys Gly
Phe Cys 3235 3240 3245Asn Gln Asp
Arg Arg Thr Leu Pro Gly Gly Gln Pro Pro Pro Arg Val 3250
3255 3260Phe Leu Ala Val Phe Val Glu Gln Pro Thr Pro Phe
Leu Pro Arg Phe3265 3270 3275
3280Leu Gln Arg Leu Leu Leu Leu Asp Tyr Pro Pro Asp Arg Val Thr Leu
3285 3290 3295Phe Leu His Asn Asn
Glu Val Phe His Glu Pro His Ile Ala Asp Ser 3300
3305 3310Trp Pro Gln Leu Gln Asp His Phe Ser Ala Val Lys
Leu Val Gly Pro 3315 3320 3325Glu
Glu Ala Leu Ser Pro Gly Glu Ala Arg Asp Met Ala Met Asp Leu 3330
3335 3340Cys Arg Gln Asp Pro Glu Cys Glu Phe Tyr
Phe Ser Leu Asp Ala Asp3345 3350 3355
3360Ala Val Leu Thr Asn Leu Gln Thr Leu Arg Ile Leu Ile Glu Glu
Asn 3365 3370 3375Arg Lys
Val Ile Ala Pro Met Leu Ser Arg His Gly Lys Leu Trp Ser 3380
3385 3390Asn Phe Trp Gly Ala Leu Ser Pro Asp
Glu Tyr Tyr Ala Arg Ser Glu 3395 3400
3405Asp Tyr Val Glu Leu Val Gln Arg Lys Arg Val Gly Val Trp Asn Val
3410 3415 3420Pro Tyr Ile Ser Gln Ala Tyr
Val Ile Arg Gly Asp Thr Leu Arg Met3425 3430
3435 3440Glu Leu Pro Gln Arg Asp Val Phe Ser Gly Ser Asp
Thr Asp Pro Asp 3445 3450
3455Met Ala Phe Cys Lys Ser Phe Arg Asp Lys Gly Ile Phe Leu His Leu
3460 3465 3470Ser Asn Gln His Glu Phe
Gly Arg Leu Leu Ala Thr Ser Arg Tyr Asp 3475 3480
3485Thr Glu His Leu His Pro Asp Leu Trp Gln Ile Phe Asp Asn
Pro Val 3490 3495 3500Asp Trp Lys Glu
Gln Tyr Ile His Glu Asn Tyr Ser Arg Ala Leu Glu3505 3510
3515 3520Gly Glu Gly Ile Val Glu Gln Pro Cys
Pro Asp Val Tyr Trp Phe Pro 3525 3530
3535Leu Leu Ser Glu Gln Met Cys Asp Glu Leu Val Ala Glu Met Glu
His 3540 3545 3550Tyr Gly Gln
Trp Ser Gly Gly Arg His Glu Asp Ser Arg Leu Ala Gly 3555
3560 3565Gly Tyr Glu Asn Val Pro Thr Val Asp Ile His
Met Lys Gln Val Gly 3570 3575 3580Tyr
Glu Asp Gln Trp Leu Gln Leu Leu Arg Thr Tyr Val Gly Pro Met3585
3590 3595 3600Thr Glu Ser Leu Phe Pro
Gly Tyr His Thr Lys Ala Arg Ala Val Met 3605
3610 3615Asn Phe Val Val Arg Tyr Arg Pro Asp Glu Gln Pro
Ser Leu Arg Pro 3620 3625
3630His His Asp Ser Ser Thr Phe Thr Leu Asn Val Ala Leu Asn His Lys
3635 3640 3645Gly Leu Asp Tyr Glu Gly Gly
Gly Cys Arg Phe Leu Arg Tyr Asp Cys 3650 3655
3660Val Ile Ser Ser Pro Arg Lys Gly Trp Ala Leu Leu His Pro Gly
Arg3665 3670 3675 3680Leu Thr
His Tyr His Glu Gly Leu Pro Thr Thr Trp Gly Thr Arg Tyr
3685 3690 3695Ile Met Val Ser Phe Val Asp
Pro 37002311115DNAArtificial SequenceSynthetic Construct
23atgacctcct cggggcctgg accccggttc ctgctgctgc tgccgctgct gctgccccct
60gcggcctcag cctccgaccg gccccggggc cgagacccgg tcaacccaga gaagctgctg
120gtgatcactg tggccacagc tgaaaccgag gggtacctgc gtttcctgcg ctctgcggag
180ttcttcaact acactgtgcg gaccctgggc ctgggagagg agtggcgagg gggtgatgtg
240gctcgaacag ttggtggagg acagaaggtc cggtggttaa agaaggaaat ggagaaatac
300gctgaccggg aggatatgat catcatgttt gtggatagct acgacgtgat tctggccggc
360agccccacag agctgctgaa gaagttcgtc cagagtggca gccgcctgct cttctctgca
420gagagcttct gctggcccga gtgggggctg gcggagcagt accctgaggt gggcacgggg
480aagcgcttcc tcaattctgg tggattcatc ggttttgcca ccaccatcca ccaaatcgtg
540cgccagtgga agtacaagga tgatgacgac gaccagctgt tctacacacg gctctacctg
600gacccaggac tgagggagaa actcagcctt aatctggatc ataagtctcg gatctttcag
660aacctcaacg gggctttaga tgaagtggtt ttaaagtttg atcggaaccg tgtgcgtatc
720cggaacgtgg cctacgacac gctccccatt gtggtccatg gaaacggtcc cactaagctg
780cagctcaact acctgggaaa ctacgtcccc aatggctgga ctcctgaggg aggctgtggc
840ttctgcaacc aggaccggag gacactcccg ggggggcagc ctcccccccg ggtgtttctg
900gccgtgtttg tggaacagcc tactccgttt ctgccccgct tcctgcagcg gctgctactc
960ctggactatc cccccgacag ggtcaccctt ttcctgcaca acaacgaggt cttccatgaa
1020ccccacatcg ctgactcctg gccgcagctc caggaccact tctcagctgt gaagctcgtg
1080gggccggagg aggctctgag cccaggcgag gccagggaca tggccatgga cctgtgtcgg
1140caggaccccg agtgtgagtt ctacttcagc ctggacgccg acgctgtcct caccaacctg
1200cagaccctgc gtatcctcat tgaggagaac aggaaggtga tcgcccccat gctgtcccgc
1260cacggcaagc tgtggtccaa cttctggggc gccctgagcc ccgatgagta ctacgcccgc
1320tccgaggact acgtggagct ggtgcagcgg aagcgagtgg gtgtgtggaa tgtaccatac
1380atctcccagg cctatgtgat ccggggtgat accctgcgga tggagctgcc ccagagggat
1440gtgttctcgg gcagtgacac agacccggac atggccttct gtaagagctt tcgagacaag
1500ggcatcttcc tccatctgag caatcagcat gaatttggcc ggctcctggc cacttccaga
1560tacgacacgg agcacctgca ccccgacctc tggcagatct tcgacaaccc cgtcgactgg
1620aaggagcagt acatccacga gaactacagc cgggccctgg aaggggaagg aatcgtggag
1680cagccatgcc cggacgtgta ctggttccca ctgctgtcag aacaaatgtg tgatgagctg
1740gtggcagaga tggagcacta cggccagtgg tcaggcggcc ggcatgagga ttcaaggctg
1800gctggaggct acgagaatgt gcccaccgtg gacatccaca tgaagcaggt ggggtacgag
1860gaccagtggc tgcagctgct gcggacgtat gtgggcccca tgaccgagag cctgtttccc
1920ggttaccaca ccaaggcgcg ggcggtgatg aactttgtgg ttcgctaccg gccagacgag
1980cagccgtctc tgcggccaca ccacgactca tccaccttca ccctcaacgt tgccctcaac
2040cacaagggcc tggactatga gggaggtggc tgccgcttcc tgcgctacga ctgtgtgatc
2100tcctccccga ggaagggctg ggcactcctg caccccggcc gcctcaccca ctaccacgag
2160gggctgccaa cgacctgggg cacacgctac atcatggtgt cctttgtcga ccccggaagc
2220ggacagtgta ctaattatgc tctcttgaaa ttggctggag atgttgagag caaccctgga
2280cctacgctgc ggcttctggt ggccgcgctc tgcgccggga tcctggcaga ggcgccccga
2340gtgcgagccc agcacaggga gagagtgacc tgcacgcgcc tttacgccgc tgacattgtg
2400ttcttactgg atggctcctc atccattggc cgcagcaatt tccgcgaggt ccgcagcttt
2460ctcgaagggc tggtgctgcc tttctctgga gcagccagtg cacagggtgt gcgctttgcc
2520acagtgcagt acagcgatga cccacggaca gagttcggcc tggatgcact tggctctggg
2580ggtgatgtga tccgcgccat ccgtgagctt agctacaagg ggggcaacac tcgcacaggg
2640gctgcaattc tccatgtggc tgaccatgtc ttcctgcccc agctggcccg acctggtgtc
2700cccaaggtct gcatcctgat cacagacggg aagtcccagg acctggtgga cacagctgcc
2760caaaggctga aggggcaggg ggtcaagcta tttgctgtgg ggatcaagaa tgctgaccct
2820gaggagctga agcgagttgc ctcacagccc accagtgact tcttcttctt cgtcaatgac
2880ttcagcatct tgaggacact actgcccctc gtttcccgga gagtgtgcac gactgctggt
2940ggcgtgcctg tgacccgacc tccggatgac tcgacctctg ctccacgaga cctggtgctg
3000tctgagccaa gcagccaatc cttgagagta cagtggacag cggccagtgg ccctgtgact
3060ggctacaagg tccagtacac tcctctgacg gggctgggac agccactgcc gagtgagcgg
3120caggaggtga acgtcccagc tggtgagacc agtgtgcggc tgcggggtct ccggccactg
3180accgagtacc aagtgactgt gattgccctc tacgccaaca gcatcgggga ggctgtgagc
3240gggacagctc ggaccactgc cctagaaggg ccggaactga ccatccagaa taccacagcc
3300cacagcctcc tggtggcctg gcggagtgtg ccaggtgcca ctggctaccg tgtgacatgg
3360cgggtcctca gtggtgggcc cacacagcag caggagctgg gccctgggca gggttcagtg
3420ttgctgcgtg acttggagcc tggcacggac tatgaggtga ccgtgagcac cctatttggc
3480cgcagtgtgg ggcccgccac ttccctgatg gctcgcactg acgcttctgt tgagcagacc
3540ctgcgcccgg tcatcctggg ccccacatcc atcctccttt cctggaactt ggtgcctgag
3600gcccgtggct accggttgga atggcggcgt gagactggct tggagccacc gcagaaggtg
3660gtactgccct ctgatgtgac ccgctaccag ttggatgggc tgcagccggg cactgagtac
3720cgcctcacac tctacactct gctggagggc cacgaggtgg ccacccctgc aaccgtggtt
3780cccactggac cagagctgcc tgtgagccct gtaacagacc tgcaagccac cgagctgccc
3840gggcagcggg tgcgagtgtc ctggagccca gtccctggtg ccacccagta ccgcatcatt
3900gtgcgcagca cccagggggt tgagcggacc ctggtgcttc ctgggagtca gacagcattc
3960gacttggatg acgttcaggc tgggcttagc tacactgtgc gggtgtctgc tcgagtgggt
4020ccccgtgagg gcagtgccag tgtcctcact gtccgccggg agccggaaac tccacttgct
4080gttccagggc tgcgggttgt ggtgtcagat gcaacgcgag tgagggtggc ctggggaccc
4140gtccctggag ccagtggatt tcggattagc tggagcacag gcagtggtcc ggagtccagc
4200cagacactgc ccccagactc tactgccaca gacatcacag ggctgcagcc tggaaccacc
4260taccaggtgg ctgtgtcggt actgcgaggc agagaggagg gccctgctgc agtcatcgtg
4320gctcgaacgg acccactggg cccagtgagg acggtccatg tgactcaggc cagcagctca
4380tctgtcacca ttacctggac cagggttcct ggcgccacag gatacagggt ttcctggcac
4440tcagcccacg gcccagagaa atcccagttg gtttctgggg aggccacggt ggctgagctg
4500gatggactgg agccagatac tgagtatacg gtgcatgtga gggcccatgt ggctggcgtg
4560gatgggcccc ctgcctctgt ggttgtgagg actgcccctg agcctgtggg tcgtgtgtcg
4620aggctgcaga tcctcaatgc ttccagcgac gttctacgga tcacctgggt aggggtcact
4680ggagccacag cttacagact ggcctggggc cggagtgaag gcggccccat gaggcaccag
4740atactcccag gaaacacaga ctctgcagag atccggggtc tcgaaggtgg agtcagctac
4800tcagtgcgag tgactgcact tgtcggggac cgcgagggca cacctgtctc cattgttgtc
4860actacgccgc ctgaggctcc gccagccctg gggacgcttc acgtggtgca gcgcggggag
4920cactcgctga ggctgcgctg ggagccggtg cccagagcgc agggcttcct tctgcactgg
4980caacctgagg gtggccagga acagtcccgg gtcctggggc ccgagctcag cagctatcac
5040ctggacgggc tggagccagc gacacagtac cgcgtgaggc tgagtgtcct agggccagct
5100ggagaagggc cctctgcaga ggtgactgcg cgcactgagt cacctcgtgt tccaagcatt
5160gaactacgtg tggtggacac ctcgatcgac tcggtgactt tggcctggac tccagtgtcc
5220agggcatcca gctacatcct atcctggcgg ccactcagag gccctggcca ggaagtgcct
5280gggtccccgc agacacttcc agggatctca agctcccagc gggtgacagg gctagagcct
5340ggcgtctctt acatcttctc cctgacgcct gtcctggatg gtgtgcgggg tcctgaggca
5400tctgtcacac agacgccagt gtgcccccgt ggcctggcgg atgtggtgtt cctaccacat
5460gccactcaag acaatgctca ccgtgcggag gctacgagga gggtcctgga gcgtctggtg
5520ttggcacttg ggcctcttgg gccacaggca gttcaggttg gcctgctgtc ttacagtcat
5580cggccctccc cactgttccc actgaatggc tcccatgacc ttggcattat cttgcaaagg
5640atccgtgaca tgccctacat ggacccaagt gggaacaacc tgggcacagc cgtggtcaca
5700gctcacagat acatgttggc accagatgct cctgggcgcc gccagcacgt accaggggtg
5760atggttctgc tagtggatga acccttgaga ggtgacatat tcagccccat ccgtgaggcc
5820caggcttctg ggcttaatgt ggtgatgttg ggaatggctg gagcggaccc agagcagctg
5880cgtcgcttgg cgccgggtat ggactctgtc cagaccttct tcgccgtgga tgatgggcca
5940agcctggacc aggcagtcag tggtctggcc acagccctgt gtcaggcatc cttcactact
6000cagccccggc cagagccctg cccagtgtat tgtccaaagg gccagaaggg ggaacctgga
6060gagatgggcc tgagaggaca agttgggcct cctggcgacc ctggcctccc gggcaggacc
6120ggtgctcccg gcccccaggg gccccctgga agtgccactg ccaagggcga gaggggcttc
6180cctggagcag atgggcgtcc aggcagccct ggccgcgccg ggaatcctgg gacccctgga
6240gcccctggcc taaagggctc tccagggttg cctggccctc gtggggaccc gggagagcga
6300ggacctcgag gcccaaaggg ggagccgggg gctcccggac aagtcatcgg aggtgaagga
6360cctgggcttc ctgggcggaa aggggaccct ggaccatcgg gcccccctgg acctcgtgga
6420ccactggggg acccaggacc ccgtggcccc ccagggcttc ctggaacagc catgaagggt
6480gacaaaggcg atcgtgggga gcggggtccc cctggaccag gtgaaggtgg cattgctcct
6540ggggagcctg ggctgccggg tcttcccgga agccctggac cccaaggccc cgttggcccc
6600cctggaaaga aaggagaaaa aggtgactct gaggatggag ctccaggcct cccaggacaa
6660cctgggtctc cgggtgagca gggcccacgg ggacctcctg gagctattgg ccccaaaggt
6720gaccggggct ttccagggcc cctgggtgag gctggagaga agggcgaacg tggaccccca
6780ggcccagcgg gatcccgggg gctgccaggg gttgctggac gtcctggagc caagggtcct
6840gaagggccac caggacccac tggccgccaa ggagagaagg gggagcctgg tcgccctggg
6900gaccctgcag tggtgggacc tgctgttgct ggacccaaag gagaaaaggg agatgtgggg
6960cccgctgggc ccagaggagc taccggagtc caaggggaac ggggcccacc cggcttggtt
7020cttcctggag accctggccc caagggagac cctggagacc ggggtcccat tggccttact
7080ggcagagcag gacccccagg tgactcaggg cctcctggag agaagggaga ccctgggcgg
7140cctggccccc caggacctgt tggcccccga ggacgagatg gtgaagttgg agagaaaggt
7200gacgagggtc ctccgggtga cccgggtttg cctggaaaag caggcgagcg tggccttcgg
7260ggggcacctg gagttcgggg gcctgtgggt gaaaagggag accagggaga tcctggagag
7320gatggacgaa atggcagccc tggatcatct ggacccaagg gtgaccgtgg ggagccgggt
7380cccccaggac ccccgggacg gctggtagac acaggacctg gagccagaga gaagggagag
7440cctggggacc gcggacaaga gggtcctcga gggcccaagg gtgatcctgg cctccctgga
7500gcccctgggg aaaggggcat tgaagggttt cggggacccc caggcccaca gggggaccca
7560ggtgtccgag gcccagcagg agaaaagggt gaccggggtc cccctgggct ggatggccgg
7620agcggactgg atgggaaacc aggagccgct gggccctctg ggccgaatgg tgctgcaggc
7680aaagctgggg acccagggag agacgggctt ccaggcctcc gtggagaaca gggcctccct
7740ggcccctctg gtccccctgg attaccggga aagccaggcg aggatggcaa acctggcctg
7800aatggaaaaa acggagaacc tggggaccct ggagaagacg ggaggaaggg agagaaagga
7860gattcaggcg cctctgggag agaaggtcgt gatggcccca agggtgagcg tggagctcct
7920ggtatccttg gaccccaggg gcctccaggc ctcccagggc cagtgggccc tcctggccag
7980ggttttcctg gtgtcccagg aggcacgggc cccaagggtg accgtgggga gactggatcc
8040aaaggggagc agggcctccc tggagagcgt ggcctgcgag gagagcctgg aagtgtgccg
8100aatgtggatc ggttgctgga aactgctggc atcaaggcat ctgccctgcg ggagatcgtg
8160gagacctggg atgagagctc tggtagcttc ctgcctgtgc ccgaacggcg tcgaggcccc
8220aagggggact caggcgaaca gggcccccca ggcaaggagg gccccatcgg ctttcctgga
8280gaacgcgggc tgaagggcga ccgtggagac cctggccctc aggggccacc tggtctggcc
8340cttggggaga ggggcccccc cgggccttcc ggccttgccg gggagcctgg aaagcctggt
8400attcccgggc tcccaggcag ggctgggggt gtgggagagg caggaaggcc aggagagagg
8460ggagaacggg gagagaaagg agaacgtgga gaacagggca gagatggccc tcctggactc
8520cctggaaccc ctgggccccc cggaccccct ggccccaagg tgtctgtgga tgagccaggt
8580cctggactct ctggagaaca gggaccccct ggactcaagg gtgctaaggg ggagccgggc
8640agcaatggtg accaaggtcc caaaggagac aggggtgtgc caggcatcaa aggagaccgg
8700ggagagcctg gaccgagggg tcaggacggc aacccgggtc taccaggaga gcgtggtatg
8760gctgggcctg aagggaagcc gggtctgcag ggtccaagag gcccccctgg cccagtgggt
8820ggtcatggag accctggacc acctggtgcc ccgggtcttg ctggccctgc aggaccccaa
8880ggaccttctg gcctgaaggg ggagcctgga gagacaggac ctccaggacg gggcctgact
8940ggacctactg gagctgtggg acttcctgga ccccccggcc cttcaggcct tgtgggtcca
9000caggggtctc caggtttgcc tggacaagtg ggggagacag ggaagccggg agccccaggt
9060cgagatggtg ccagtggaaa agatggagac agagggagcc ctggtgtgcc agggtcacca
9120ggtctgcctg gccctgtcgg acctaaagga gaacctggcc ccacgggggc ccctggacag
9180gctgtggtcg ggctccctgg agcaaaggga gagaagggag cccctggagg ccttgctgga
9240gacctggtgg gtgagccggg agccaaaggt gaccgaggac tgccagggcc gcgaggcgag
9300aagggtgaag ctggccgtgc aggggagccc ggagaccctg gggaagatgg tcagaaaggg
9360gctccaggac ccaaaggttt caagggtgac ccaggagtcg gggtcccggg ctcccctggg
9420cctcctggcc ctccaggtgt gaagggagat ctgggcctcc ctggcctgcc cggtgctcct
9480ggtgttgttg ggttcccggg tcagacaggc cctcgaggag agatgggtca gccaggccct
9540agtggagagc ggggtctggc aggcccccca gggagagaag gaatcccagg acccctgggg
9600ccacctggac caccggggtc agtgggacca cctggggcct ctggactcaa aggagacaag
9660ggagaccctg gagtagggct gcctgggccc cgaggcgagc gtggggagcc aggcatccgg
9720ggtgaagatg gccgccccgg ccaggaggga ccccgaggac tcacggggcc ccctggcagc
9780aggggagagc gtggggagaa gggtgatgtt gggagtgcag gactaaaggg tgacaaggga
9840gactcagctg tgatcctggg gcctccaggc ccacggggtg ccaaggggga catgggtgaa
9900cgagggcctc ggggcttgga tggtgacaaa ggacctcggg gagacaatgg ggaccctggt
9960gacaagggca gcaagggaga gcctggtgac aagggctcag ccgggttgcc aggactgcgt
10020ggactcctgg gaccccaggg tcaacctggt gcagcaggga tccctggtga cccgggatcc
10080ccaggaaagg atggagtgcc tggtatccga ggagaaaaag gagatgttgg cttcatgggt
10140ccccggggcc tcaagggtga acggggagtg aagggagcct gtggccttga tggagagaag
10200ggagacaagg gagaagctgg tcccccaggc cgccccgggc tggcaggaca caaaggagag
10260atgggggagc ctggtgtgcc gggccagtcg ggggcccctg gcaaggaggg cctgatcggt
10320cccaagggtg accgaggctt tgacgggcag ccaggcccca agggtgacca gggcgagaaa
10380ggggagcggg gaaccccagg aattgggggc ttcccaggcc ccagtggaaa tgatggctct
10440gctggtcccc cagggccacc tggcagtgtt ggtcccagag gccccgaagg acttcagggc
10500cagaagggtg agcgaggtcc ccccggagag agagtggtgg gggctcctgg ggtccctgga
10560gctcctggcg agagagggga gcaggggcgg ccagggcctg ccggtcctcg aggcgagaag
10620ggagaagctg cactgacgga ggatgacatc cggggctttg tgcgccaaga gatgagtcag
10680cactgtgcct gccagggcca gttcatcgca tctggatcac gacccctccc tagttatgct
10740gcagacactg ccggctccca gctccatgct gtgcctgtgc tccgcgtctc tcatgcagag
10800gaggaagagc gggtaccccc tgaggatgat gagtactctg aatactccga gtattctgtg
10860gaggagtacc aggaccctga agctccttgg gatagtgatg acccctgttc cctgccactg
10920gatgagggct cctgcactgc ctacaccctg cgctggtacc atcgggctgt gacaggcagc
10980acagaggcct gtcacccttt tgtctatggt ggctgtggag ggaatgccaa ccgttttggg
11040acccgtgagg cctgcgagcg ccgctgccca ccccgggtgg tccagagcca ggggacaggt
11100actgcccagg actga
11115243704PRTArtificial SequenceSynthetic Construct 24Met Thr Ser Ser
Gly Pro Gly Pro Arg Phe Leu Leu Leu Leu Pro Leu1 5
10 15Leu Leu Pro Pro Ala Ala Ser Ala Ser Asp
Arg Pro Arg Gly Arg Asp 20 25
30Pro Val Asn Pro Glu Lys Leu Leu Val Ile Thr Val Ala Thr Ala Glu
35 40 45Thr Glu Gly Tyr Leu Arg Phe Leu
Arg Ser Ala Glu Phe Phe Asn Tyr 50 55
60Thr Val Arg Thr Leu Gly Leu Gly Glu Glu Trp Arg Gly Gly Asp Val65
70 75 80Ala Arg Thr Val Gly
Gly Gly Gln Lys Val Arg Trp Leu Lys Lys Glu 85
90 95Met Glu Lys Tyr Ala Asp Arg Glu Asp Met Ile
Ile Met Phe Val Asp 100 105
110Ser Tyr Asp Val Ile Leu Ala Gly Ser Pro Thr Glu Leu Leu Lys Lys
115 120 125Phe Val Gln Ser Gly Ser Arg
Leu Leu Phe Ser Ala Glu Ser Phe Cys 130 135
140Trp Pro Glu Trp Gly Leu Ala Glu Gln Tyr Pro Glu Val Gly Thr
Gly145 150 155 160Lys Arg
Phe Leu Asn Ser Gly Gly Phe Ile Gly Phe Ala Thr Thr Ile
165 170 175His Gln Ile Val Arg Gln Trp
Lys Tyr Lys Asp Asp Asp Asp Asp Gln 180 185
190Leu Phe Tyr Thr Arg Leu Tyr Leu Asp Pro Gly Leu Arg Glu
Lys Leu 195 200 205Ser Leu Asn Leu
Asp His Lys Ser Arg Ile Phe Gln Asn Leu Asn Gly 210
215 220Ala Leu Asp Glu Val Val Leu Lys Phe Asp Arg Asn
Arg Val Arg Ile225 230 235
240Arg Asn Val Ala Tyr Asp Thr Leu Pro Ile Val Val His Gly Asn Gly
245 250 255Pro Thr Lys Leu Gln
Leu Asn Tyr Leu Gly Asn Tyr Val Pro Asn Gly 260
265 270Trp Thr Pro Glu Gly Gly Cys Gly Phe Cys Asn Gln
Asp Arg Arg Thr 275 280 285Leu Pro
Gly Gly Gln Pro Pro Pro Arg Val Phe Leu Ala Val Phe Val 290
295 300Glu Gln Pro Thr Pro Phe Leu Pro Arg Phe Leu
Gln Arg Leu Leu Leu305 310 315
320Leu Asp Tyr Pro Pro Asp Arg Val Thr Leu Phe Leu His Asn Asn Glu
325 330 335Val Phe His Glu
Pro His Ile Ala Asp Ser Trp Pro Gln Leu Gln Asp 340
345 350His Phe Ser Ala Val Lys Leu Val Gly Pro Glu
Glu Ala Leu Ser Pro 355 360 365Gly
Glu Ala Arg Asp Met Ala Met Asp Leu Cys Arg Gln Asp Pro Glu 370
375 380Cys Glu Phe Tyr Phe Ser Leu Asp Ala Asp
Ala Val Leu Thr Asn Leu385 390 395
400Gln Thr Leu Arg Ile Leu Ile Glu Glu Asn Arg Lys Val Ile Ala
Pro 405 410 415Met Leu Ser
Arg His Gly Lys Leu Trp Ser Asn Phe Trp Gly Ala Leu 420
425 430Ser Pro Asp Glu Tyr Tyr Ala Arg Ser Glu
Asp Tyr Val Glu Leu Val 435 440
445Gln Arg Lys Arg Val Gly Val Trp Asn Val Pro Tyr Ile Ser Gln Ala 450
455 460Tyr Val Ile Arg Gly Asp Thr Leu
Arg Met Glu Leu Pro Gln Arg Asp465 470
475 480Val Phe Ser Gly Ser Asp Thr Asp Pro Asp Met Ala
Phe Cys Lys Ser 485 490
495Phe Arg Asp Lys Gly Ile Phe Leu His Leu Ser Asn Gln His Glu Phe
500 505 510Gly Arg Leu Leu Ala Thr
Ser Arg Tyr Asp Thr Glu His Leu His Pro 515 520
525Asp Leu Trp Gln Ile Phe Asp Asn Pro Val Asp Trp Lys Glu
Gln Tyr 530 535 540Ile His Glu Asn Tyr
Ser Arg Ala Leu Glu Gly Glu Gly Ile Val Glu545 550
555 560Gln Pro Cys Pro Asp Val Tyr Trp Phe Pro
Leu Leu Ser Glu Gln Met 565 570
575Cys Asp Glu Leu Val Ala Glu Met Glu His Tyr Gly Gln Trp Ser Gly
580 585 590Gly Arg His Glu Asp
Ser Arg Leu Ala Gly Gly Tyr Glu Asn Val Pro 595
600 605Thr Val Asp Ile His Met Lys Gln Val Gly Tyr Glu
Asp Gln Trp Leu 610 615 620Gln Leu Leu
Arg Thr Tyr Val Gly Pro Met Thr Glu Ser Leu Phe Pro625
630 635 640Gly Tyr His Thr Lys Ala Arg
Ala Val Met Asn Phe Val Val Arg Tyr 645
650 655Arg Pro Asp Glu Gln Pro Ser Leu Arg Pro His His
Asp Ser Ser Thr 660 665 670Phe
Thr Leu Asn Val Ala Leu Asn His Lys Gly Leu Asp Tyr Glu Gly 675
680 685Gly Gly Cys Arg Phe Leu Arg Tyr Asp
Cys Val Ile Ser Ser Pro Arg 690 695
700Lys Gly Trp Ala Leu Leu His Pro Gly Arg Leu Thr His Tyr His Glu705
710 715 720Gly Leu Pro Thr
Thr Trp Gly Thr Arg Tyr Ile Met Val Ser Phe Val 725
730 735Asp Pro Gly Ser Gly Gln Cys Thr Asn Tyr
Ala Leu Leu Lys Leu Ala 740 745
750Gly Asp Val Glu Ser Asn Pro Gly Pro Thr Leu Arg Leu Leu Val Ala
755 760 765Ala Leu Cys Ala Gly Ile Leu
Ala Glu Ala Pro Arg Val Arg Ala Gln 770 775
780His Arg Glu Arg Val Thr Cys Thr Arg Leu Tyr Ala Ala Asp Ile
Val785 790 795 800Phe Leu
Leu Asp Gly Ser Ser Ser Ile Gly Arg Ser Asn Phe Arg Glu
805 810 815Val Arg Ser Phe Leu Glu Gly
Leu Val Leu Pro Phe Ser Gly Ala Ala 820 825
830Ser Ala Gln Gly Val Arg Phe Ala Thr Val Gln Tyr Ser Asp
Asp Pro 835 840 845Arg Thr Glu Phe
Gly Leu Asp Ala Leu Gly Ser Gly Gly Asp Val Ile 850
855 860Arg Ala Ile Arg Glu Leu Ser Tyr Lys Gly Gly Asn
Thr Arg Thr Gly865 870 875
880Ala Ala Ile Leu His Val Ala Asp His Val Phe Leu Pro Gln Leu Ala
885 890 895Arg Pro Gly Val Pro
Lys Val Cys Ile Leu Ile Thr Asp Gly Lys Ser 900
905 910Gln Asp Leu Val Asp Thr Ala Ala Gln Arg Leu Lys
Gly Gln Gly Val 915 920 925Lys Leu
Phe Ala Val Gly Ile Lys Asn Ala Asp Pro Glu Glu Leu Lys 930
935 940Arg Val Ala Ser Gln Pro Thr Ser Asp Phe Phe
Phe Phe Val Asn Asp945 950 955
960Phe Ser Ile Leu Arg Thr Leu Leu Pro Leu Val Ser Arg Arg Val Cys
965 970 975Thr Thr Ala Gly
Gly Val Pro Val Thr Arg Pro Pro Asp Asp Ser Thr 980
985 990Ser Ala Pro Arg Asp Leu Val Leu Ser Glu Pro
Ser Ser Gln Ser Leu 995 1000
1005Arg Val Gln Trp Thr Ala Ala Ser Gly Pro Val Thr Gly Tyr Lys Val
1010 1015 1020Gln Tyr Thr Pro Leu Thr Gly
Leu Gly Gln Pro Leu Pro Ser Glu Arg1025 1030
1035 1040Gln Glu Val Asn Val Pro Ala Gly Glu Thr Ser Val
Arg Leu Arg Gly 1045 1050
1055Leu Arg Pro Leu Thr Glu Tyr Gln Val Thr Val Ile Ala Leu Tyr Ala
1060 1065 1070Asn Ser Ile Gly Glu Ala
Val Ser Gly Thr Ala Arg Thr Thr Ala Leu 1075 1080
1085Glu Gly Pro Glu Leu Thr Ile Gln Asn Thr Thr Ala His Ser
Leu Leu 1090 1095 1100Val Ala Trp Arg
Ser Val Pro Gly Ala Thr Gly Tyr Arg Val Thr Trp1105 1110
1115 1120Arg Val Leu Ser Gly Gly Pro Thr Gln
Gln Gln Glu Leu Gly Pro Gly 1125 1130
1135Gln Gly Ser Val Leu Leu Arg Asp Leu Glu Pro Gly Thr Asp Tyr
Glu 1140 1145 1150Val Thr Val
Ser Thr Leu Phe Gly Arg Ser Val Gly Pro Ala Thr Ser 1155
1160 1165Leu Met Ala Arg Thr Asp Ala Ser Val Glu Gln
Thr Leu Arg Pro Val 1170 1175 1180Ile
Leu Gly Pro Thr Ser Ile Leu Leu Ser Trp Asn Leu Val Pro Glu1185
1190 1195 1200Ala Arg Gly Tyr Arg Leu
Glu Trp Arg Arg Glu Thr Gly Leu Glu Pro 1205
1210 1215Pro Gln Lys Val Val Leu Pro Ser Asp Val Thr Arg
Tyr Gln Leu Asp 1220 1225
1230Gly Leu Gln Pro Gly Thr Glu Tyr Arg Leu Thr Leu Tyr Thr Leu Leu
1235 1240 1245Glu Gly His Glu Val Ala Thr
Pro Ala Thr Val Val Pro Thr Gly Pro 1250 1255
1260Glu Leu Pro Val Ser Pro Val Thr Asp Leu Gln Ala Thr Glu Leu
Pro1265 1270 1275 1280Gly Gln
Arg Val Arg Val Ser Trp Ser Pro Val Pro Gly Ala Thr Gln
1285 1290 1295Tyr Arg Ile Ile Val Arg Ser
Thr Gln Gly Val Glu Arg Thr Leu Val 1300 1305
1310Leu Pro Gly Ser Gln Thr Ala Phe Asp Leu Asp Asp Val Gln
Ala Gly 1315 1320 1325Leu Ser Tyr
Thr Val Arg Val Ser Ala Arg Val Gly Pro Arg Glu Gly 1330
1335 1340Ser Ala Ser Val Leu Thr Val Arg Arg Glu Pro Glu
Thr Pro Leu Ala1345 1350 1355
1360Val Pro Gly Leu Arg Val Val Val Ser Asp Ala Thr Arg Val Arg Val
1365 1370 1375Ala Trp Gly Pro Val
Pro Gly Ala Ser Gly Phe Arg Ile Ser Trp Ser 1380
1385 1390Thr Gly Ser Gly Pro Glu Ser Ser Gln Thr Leu Pro
Pro Asp Ser Thr 1395 1400 1405Ala
Thr Asp Ile Thr Gly Leu Gln Pro Gly Thr Thr Tyr Gln Val Ala 1410
1415 1420Val Ser Val Leu Arg Gly Arg Glu Glu Gly
Pro Ala Ala Val Ile Val1425 1430 1435
1440Ala Arg Thr Asp Pro Leu Gly Pro Val Arg Thr Val His Val Thr
Gln 1445 1450 1455Ala Ser
Ser Ser Ser Val Thr Ile Thr Trp Thr Arg Val Pro Gly Ala 1460
1465 1470Thr Gly Tyr Arg Val Ser Trp His Ser
Ala His Gly Pro Glu Lys Ser 1475 1480
1485Gln Leu Val Ser Gly Glu Ala Thr Val Ala Glu Leu Asp Gly Leu Glu
1490 1495 1500Pro Asp Thr Glu Tyr Thr Val
His Val Arg Ala His Val Ala Gly Val1505 1510
1515 1520Asp Gly Pro Pro Ala Ser Val Val Val Arg Thr Ala
Pro Glu Pro Val 1525 1530
1535Gly Arg Val Ser Arg Leu Gln Ile Leu Asn Ala Ser Ser Asp Val Leu
1540 1545 1550Arg Ile Thr Trp Val Gly
Val Thr Gly Ala Thr Ala Tyr Arg Leu Ala 1555 1560
1565Trp Gly Arg Ser Glu Gly Gly Pro Met Arg His Gln Ile Leu
Pro Gly 1570 1575 1580Asn Thr Asp Ser
Ala Glu Ile Arg Gly Leu Glu Gly Gly Val Ser Tyr1585 1590
1595 1600Ser Val Arg Val Thr Ala Leu Val Gly
Asp Arg Glu Gly Thr Pro Val 1605 1610
1615Ser Ile Val Val Thr Thr Pro Pro Glu Ala Pro Pro Ala Leu Gly
Thr 1620 1625 1630Leu His Val
Val Gln Arg Gly Glu His Ser Leu Arg Leu Arg Trp Glu 1635
1640 1645Pro Val Pro Arg Ala Gln Gly Phe Leu Leu His
Trp Gln Pro Glu Gly 1650 1655 1660Gly
Gln Glu Gln Ser Arg Val Leu Gly Pro Glu Leu Ser Ser Tyr His1665
1670 1675 1680Leu Asp Gly Leu Glu Pro
Ala Thr Gln Tyr Arg Val Arg Leu Ser Val 1685
1690 1695Leu Gly Pro Ala Gly Glu Gly Pro Ser Ala Glu Val
Thr Ala Arg Thr 1700 1705
1710Glu Ser Pro Arg Val Pro Ser Ile Glu Leu Arg Val Val Asp Thr Ser
1715 1720 1725Ile Asp Ser Val Thr Leu Ala
Trp Thr Pro Val Ser Arg Ala Ser Ser 1730 1735
1740Tyr Ile Leu Ser Trp Arg Pro Leu Arg Gly Pro Gly Gln Glu Val
Pro1745 1750 1755 1760Gly Ser
Pro Gln Thr Leu Pro Gly Ile Ser Ser Ser Gln Arg Val Thr
1765 1770 1775Gly Leu Glu Pro Gly Val Ser
Tyr Ile Phe Ser Leu Thr Pro Val Leu 1780 1785
1790Asp Gly Val Arg Gly Pro Glu Ala Ser Val Thr Gln Thr Pro
Val Cys 1795 1800 1805Pro Arg Gly
Leu Ala Asp Val Val Phe Leu Pro His Ala Thr Gln Asp 1810
1815 1820Asn Ala His Arg Ala Glu Ala Thr Arg Arg Val Leu
Glu Arg Leu Val1825 1830 1835
1840Leu Ala Leu Gly Pro Leu Gly Pro Gln Ala Val Gln Val Gly Leu Leu
1845 1850 1855Ser Tyr Ser His Arg
Pro Ser Pro Leu Phe Pro Leu Asn Gly Ser His 1860
1865 1870Asp Leu Gly Ile Ile Leu Gln Arg Ile Arg Asp Met
Pro Tyr Met Asp 1875 1880 1885Pro
Ser Gly Asn Asn Leu Gly Thr Ala Val Val Thr Ala His Arg Tyr 1890
1895 1900Met Leu Ala Pro Asp Ala Pro Gly Arg Arg
Gln His Val Pro Gly Val1905 1910 1915
1920Met Val Leu Leu Val Asp Glu Pro Leu Arg Gly Asp Ile Phe Ser
Pro 1925 1930 1935Ile Arg
Glu Ala Gln Ala Ser Gly Leu Asn Val Val Met Leu Gly Met 1940
1945 1950Ala Gly Ala Asp Pro Glu Gln Leu Arg
Arg Leu Ala Pro Gly Met Asp 1955 1960
1965Ser Val Gln Thr Phe Phe Ala Val Asp Asp Gly Pro Ser Leu Asp Gln
1970 1975 1980Ala Val Ser Gly Leu Ala Thr
Ala Leu Cys Gln Ala Ser Phe Thr Thr1985 1990
1995 2000Gln Pro Arg Pro Glu Pro Cys Pro Val Tyr Cys Pro
Lys Gly Gln Lys 2005 2010
2015Gly Glu Pro Gly Glu Met Gly Leu Arg Gly Gln Val Gly Pro Pro Gly
2020 2025 2030Asp Pro Gly Leu Pro Gly
Arg Thr Gly Ala Pro Gly Pro Gln Gly Pro 2035 2040
2045Pro Gly Ser Ala Thr Ala Lys Gly Glu Arg Gly Phe Pro Gly
Ala Asp 2050 2055 2060Gly Arg Pro Gly
Ser Pro Gly Arg Ala Gly Asn Pro Gly Thr Pro Gly2065 2070
2075 2080Ala Pro Gly Leu Lys Gly Ser Pro Gly
Leu Pro Gly Pro Arg Gly Asp 2085 2090
2095Pro Gly Glu Arg Gly Pro Arg Gly Pro Lys Gly Glu Pro Gly Ala
Pro 2100 2105 2110Gly Gln Val
Ile Gly Gly Glu Gly Pro Gly Leu Pro Gly Arg Lys Gly 2115
2120 2125Asp Pro Gly Pro Ser Gly Pro Pro Gly Pro Arg
Gly Pro Leu Gly Asp 2130 2135 2140Pro
Gly Pro Arg Gly Pro Pro Gly Leu Pro Gly Thr Ala Met Lys Gly2145
2150 2155 2160Asp Lys Gly Asp Arg Gly
Glu Arg Gly Pro Pro Gly Pro Gly Glu Gly 2165
2170 2175Gly Ile Ala Pro Gly Glu Pro Gly Leu Pro Gly Leu
Pro Gly Ser Pro 2180 2185
2190Gly Pro Gln Gly Pro Val Gly Pro Pro Gly Lys Lys Gly Glu Lys Gly
2195 2200 2205Asp Ser Glu Asp Gly Ala Pro
Gly Leu Pro Gly Gln Pro Gly Ser Pro 2210 2215
2220Gly Glu Gln Gly Pro Arg Gly Pro Pro Gly Ala Ile Gly Pro Lys
Gly2225 2230 2235 2240Asp Arg
Gly Phe Pro Gly Pro Leu Gly Glu Ala Gly Glu Lys Gly Glu
2245 2250 2255Arg Gly Pro Pro Gly Pro Ala
Gly Ser Arg Gly Leu Pro Gly Val Ala 2260 2265
2270Gly Arg Pro Gly Ala Lys Gly Pro Glu Gly Pro Pro Gly Pro
Thr Gly 2275 2280 2285Arg Gln Gly
Glu Lys Gly Glu Pro Gly Arg Pro Gly Asp Pro Ala Val 2290
2295 2300Val Gly Pro Ala Val Ala Gly Pro Lys Gly Glu Lys
Gly Asp Val Gly2305 2310 2315
2320Pro Ala Gly Pro Arg Gly Ala Thr Gly Val Gln Gly Glu Arg Gly Pro
2325 2330 2335Pro Gly Leu Val Leu
Pro Gly Asp Pro Gly Pro Lys Gly Asp Pro Gly 2340
2345 2350Asp Arg Gly Pro Ile Gly Leu Thr Gly Arg Ala Gly
Pro Pro Gly Asp 2355 2360 2365Ser
Gly Pro Pro Gly Glu Lys Gly Asp Pro Gly Arg Pro Gly Pro Pro 2370
2375 2380Gly Pro Val Gly Pro Arg Gly Arg Asp Gly
Glu Val Gly Glu Lys Gly2385 2390 2395
2400Asp Glu Gly Pro Pro Gly Asp Pro Gly Leu Pro Gly Lys Ala Gly
Glu 2405 2410 2415Arg Gly
Leu Arg Gly Ala Pro Gly Val Arg Gly Pro Val Gly Glu Lys 2420
2425 2430Gly Asp Gln Gly Asp Pro Gly Glu Asp
Gly Arg Asn Gly Ser Pro Gly 2435 2440
2445Ser Ser Gly Pro Lys Gly Asp Arg Gly Glu Pro Gly Pro Pro Gly Pro
2450 2455 2460Pro Gly Arg Leu Val Asp Thr
Gly Pro Gly Ala Arg Glu Lys Gly Glu2465 2470
2475 2480Pro Gly Asp Arg Gly Gln Glu Gly Pro Arg Gly Pro
Lys Gly Asp Pro 2485 2490
2495Gly Leu Pro Gly Ala Pro Gly Glu Arg Gly Ile Glu Gly Phe Arg Gly
2500 2505 2510Pro Pro Gly Pro Gln Gly
Asp Pro Gly Val Arg Gly Pro Ala Gly Glu 2515 2520
2525Lys Gly Asp Arg Gly Pro Pro Gly Leu Asp Gly Arg Ser Gly
Leu Asp 2530 2535 2540Gly Lys Pro Gly
Ala Ala Gly Pro Ser Gly Pro Asn Gly Ala Ala Gly2545 2550
2555 2560Lys Ala Gly Asp Pro Gly Arg Asp Gly
Leu Pro Gly Leu Arg Gly Glu 2565 2570
2575Gln Gly Leu Pro Gly Pro Ser Gly Pro Pro Gly Leu Pro Gly Lys
Pro 2580 2585 2590Gly Glu Asp
Gly Lys Pro Gly Leu Asn Gly Lys Asn Gly Glu Pro Gly 2595
2600 2605Asp Pro Gly Glu Asp Gly Arg Lys Gly Glu Lys
Gly Asp Ser Gly Ala 2610 2615 2620Ser
Gly Arg Glu Gly Arg Asp Gly Pro Lys Gly Glu Arg Gly Ala Pro2625
2630 2635 2640Gly Ile Leu Gly Pro Gln
Gly Pro Pro Gly Leu Pro Gly Pro Val Gly 2645
2650 2655Pro Pro Gly Gln Gly Phe Pro Gly Val Pro Gly Gly
Thr Gly Pro Lys 2660 2665
2670Gly Asp Arg Gly Glu Thr Gly Ser Lys Gly Glu Gln Gly Leu Pro Gly
2675 2680 2685Glu Arg Gly Leu Arg Gly Glu
Pro Gly Ser Val Pro Asn Val Asp Arg 2690 2695
2700Leu Leu Glu Thr Ala Gly Ile Lys Ala Ser Ala Leu Arg Glu Ile
Val2705 2710 2715 2720Glu Thr
Trp Asp Glu Ser Ser Gly Ser Phe Leu Pro Val Pro Glu Arg
2725 2730 2735Arg Arg Gly Pro Lys Gly Asp
Ser Gly Glu Gln Gly Pro Pro Gly Lys 2740 2745
2750Glu Gly Pro Ile Gly Phe Pro Gly Glu Arg Gly Leu Lys Gly
Asp Arg 2755 2760 2765Gly Asp Pro
Gly Pro Gln Gly Pro Pro Gly Leu Ala Leu Gly Glu Arg 2770
2775 2780Gly Pro Pro Gly Pro Ser Gly Leu Ala Gly Glu Pro
Gly Lys Pro Gly2785 2790 2795
2800Ile Pro Gly Leu Pro Gly Arg Ala Gly Gly Val Gly Glu Ala Gly Arg
2805 2810 2815Pro Gly Glu Arg Gly
Glu Arg Gly Glu Lys Gly Glu Arg Gly Glu Gln 2820
2825 2830Gly Arg Asp Gly Pro Pro Gly Leu Pro Gly Thr Pro
Gly Pro Pro Gly 2835 2840 2845Pro
Pro Gly Pro Lys Val Ser Val Asp Glu Pro Gly Pro Gly Leu Ser 2850
2855 2860Gly Glu Gln Gly Pro Pro Gly Leu Lys Gly
Ala Lys Gly Glu Pro Gly2865 2870 2875
2880Ser Asn Gly Asp Gln Gly Pro Lys Gly Asp Arg Gly Val Pro Gly
Ile 2885 2890 2895Lys Gly
Asp Arg Gly Glu Pro Gly Pro Arg Gly Gln Asp Gly Asn Pro 2900
2905 2910Gly Leu Pro Gly Glu Arg Gly Met Ala
Gly Pro Glu Gly Lys Pro Gly 2915 2920
2925Leu Gln Gly Pro Arg Gly Pro Pro Gly Pro Val Gly Gly His Gly Asp
2930 2935 2940Pro Gly Pro Pro Gly Ala Pro
Gly Leu Ala Gly Pro Ala Gly Pro Gln2945 2950
2955 2960Gly Pro Ser Gly Leu Lys Gly Glu Pro Gly Glu Thr
Gly Pro Pro Gly 2965 2970
2975Arg Gly Leu Thr Gly Pro Thr Gly Ala Val Gly Leu Pro Gly Pro Pro
2980 2985 2990Gly Pro Ser Gly Leu Val
Gly Pro Gln Gly Ser Pro Gly Leu Pro Gly 2995 3000
3005Gln Val Gly Glu Thr Gly Lys Pro Gly Ala Pro Gly Arg Asp
Gly Ala 3010 3015 3020Ser Gly Lys Asp
Gly Asp Arg Gly Ser Pro Gly Val Pro Gly Ser Pro3025 3030
3035 3040Gly Leu Pro Gly Pro Val Gly Pro Lys
Gly Glu Pro Gly Pro Thr Gly 3045 3050
3055Ala Pro Gly Gln Ala Val Val Gly Leu Pro Gly Ala Lys Gly Glu
Lys 3060 3065 3070Gly Ala Pro
Gly Gly Leu Ala Gly Asp Leu Val Gly Glu Pro Gly Ala 3075
3080 3085Lys Gly Asp Arg Gly Leu Pro Gly Pro Arg Gly
Glu Lys Gly Glu Ala 3090 3095 3100Gly
Arg Ala Gly Glu Pro Gly Asp Pro Gly Glu Asp Gly Gln Lys Gly3105
3110 3115 3120Ala Pro Gly Pro Lys Gly
Phe Lys Gly Asp Pro Gly Val Gly Val Pro 3125
3130 3135Gly Ser Pro Gly Pro Pro Gly Pro Pro Gly Val Lys
Gly Asp Leu Gly 3140 3145
3150Leu Pro Gly Leu Pro Gly Ala Pro Gly Val Val Gly Phe Pro Gly Gln
3155 3160 3165Thr Gly Pro Arg Gly Glu Met
Gly Gln Pro Gly Pro Ser Gly Glu Arg 3170 3175
3180Gly Leu Ala Gly Pro Pro Gly Arg Glu Gly Ile Pro Gly Pro Leu
Gly3185 3190 3195 3200Pro Pro
Gly Pro Pro Gly Ser Val Gly Pro Pro Gly Ala Ser Gly Leu
3205 3210 3215Lys Gly Asp Lys Gly Asp Pro
Gly Val Gly Leu Pro Gly Pro Arg Gly 3220 3225
3230Glu Arg Gly Glu Pro Gly Ile Arg Gly Glu Asp Gly Arg Pro
Gly Gln 3235 3240 3245Glu Gly Pro
Arg Gly Leu Thr Gly Pro Pro Gly Ser Arg Gly Glu Arg 3250
3255 3260Gly Glu Lys Gly Asp Val Gly Ser Ala Gly Leu Lys
Gly Asp Lys Gly3265 3270 3275
3280Asp Ser Ala Val Ile Leu Gly Pro Pro Gly Pro Arg Gly Ala Lys Gly
3285 3290 3295Asp Met Gly Glu Arg
Gly Pro Arg Gly Leu Asp Gly Asp Lys Gly Pro 3300
3305 3310Arg Gly Asp Asn Gly Asp Pro Gly Asp Lys Gly Ser
Lys Gly Glu Pro 3315 3320 3325Gly
Asp Lys Gly Ser Ala Gly Leu Pro Gly Leu Arg Gly Leu Leu Gly 3330
3335 3340Pro Gln Gly Gln Pro Gly Ala Ala Gly Ile
Pro Gly Asp Pro Gly Ser3345 3350 3355
3360Pro Gly Lys Asp Gly Val Pro Gly Ile Arg Gly Glu Lys Gly Asp
Val 3365 3370 3375Gly Phe
Met Gly Pro Arg Gly Leu Lys Gly Glu Arg Gly Val Lys Gly 3380
3385 3390Ala Cys Gly Leu Asp Gly Glu Lys Gly
Asp Lys Gly Glu Ala Gly Pro 3395 3400
3405Pro Gly Arg Pro Gly Leu Ala Gly His Lys Gly Glu Met Gly Glu Pro
3410 3415 3420Gly Val Pro Gly Gln Ser Gly
Ala Pro Gly Lys Glu Gly Leu Ile Gly3425 3430
3435 3440Pro Lys Gly Asp Arg Gly Phe Asp Gly Gln Pro Gly
Pro Lys Gly Asp 3445 3450
3455Gln Gly Glu Lys Gly Glu Arg Gly Thr Pro Gly Ile Gly Gly Phe Pro
3460 3465 3470Gly Pro Ser Gly Asn Asp
Gly Ser Ala Gly Pro Pro Gly Pro Pro Gly 3475 3480
3485Ser Val Gly Pro Arg Gly Pro Glu Gly Leu Gln Gly Gln Lys
Gly Glu 3490 3495 3500Arg Gly Pro Pro
Gly Glu Arg Val Val Gly Ala Pro Gly Val Pro Gly3505 3510
3515 3520Ala Pro Gly Glu Arg Gly Glu Gln Gly
Arg Pro Gly Pro Ala Gly Pro 3525 3530
3535Arg Gly Glu Lys Gly Glu Ala Ala Leu Thr Glu Asp Asp Ile Arg
Gly 3540 3545 3550Phe Val Arg
Gln Glu Met Ser Gln His Cys Ala Cys Gln Gly Gln Phe 3555
3560 3565Ile Ala Ser Gly Ser Arg Pro Leu Pro Ser Tyr
Ala Ala Asp Thr Ala 3570 3575 3580Gly
Ser Gln Leu His Ala Val Pro Val Leu Arg Val Ser His Ala Glu3585
3590 3595 3600Glu Glu Glu Arg Val Pro
Pro Glu Asp Asp Glu Tyr Ser Glu Tyr Ser 3605
3610 3615Glu Tyr Ser Val Glu Glu Tyr Gln Asp Pro Glu Ala
Pro Trp Asp Ser 3620 3625
3630Asp Asp Pro Cys Ser Leu Pro Leu Asp Glu Gly Ser Cys Thr Ala Tyr
3635 3640 3645Thr Leu Arg Trp Tyr His Arg
Ala Val Thr Gly Ser Thr Glu Ala Cys 3650 3655
3660His Pro Phe Val Tyr Gly Gly Cys Gly Gly Asn Ala Asn Arg Phe
Gly3665 3670 3675 3680Thr Arg
Glu Ala Cys Glu Arg Arg Cys Pro Pro Arg Val Val Gln Ser
3685 3690 3695Gln Gly Thr Gly Thr Ala Gln
Asp 37002511121DNAArtificial SequenceSynthetic Construct
25atgacgctgc ggcttctggt ggccgcgctc tgcgccggga tcctggcaga ggcgccccga
60gtgcgagccc agcacaggga gagagtgacc tgcacgcgcc tttacgccgc tgacattgtg
120ttcttactgg atggctcctc atccattggc cgcagcaatt tccgcgaggt ccgcagcttt
180ctcgaagggc tggtgctgcc tttctctgga gcagccagtg cacagggtgt gcgctttgcc
240acagtgcagt acagcgatga cccacggaca gagttcggcc tggatgcact tggctctggg
300ggtgatgtga tccgcgccat ccgtgagctt agctacaagg ggggcaacac tcgcacaggg
360gctgcaattc tccatgtggc tgaccatgtc ttcctgcccc agctggcccg acctggtgtc
420cccaaggtct gcatcctgat cacagacggg aagtcccagg acctggtgga cacagctgcc
480caaaggctga aggggcaggg ggtcaagcta tttgctgtgg ggatcaagaa tgctgaccct
540gaggagctga agcgagttgc ctcacagccc accagtgact tcttcttctt cgtcaatgac
600ttcagcatct tgaggacact actgcccctc gtttcccgga gagtgtgcac gactgctggt
660ggcgtgcctg tgacccgacc tccggatgac tcgacctctg ctccacgaga cctggtgctg
720tctgagccaa gcagccaatc cttgagagta cagtggacag cggccagtgg ccctgtgact
780ggctacaagg tccagtacac tcctctgacg gggctgggac agccactgcc gagtgagcgg
840caggaggtga acgtcccagc tggtgagacc agtgtgcggc tgcggggtct ccggccactg
900accgagtacc aagtgactgt gattgccctc tacgccaaca gcatcgggga ggctgtgagc
960gggacagctc ggaccactgc cctagaaggg ccggaactga ccatccagaa taccacagcc
1020cacagcctcc tggtggcctg gcggagtgtg ccaggtgcca ctggctaccg tgtgacatgg
1080cgggtcctca gtggtgggcc cacacagcag caggagctgg gccctgggca gggttcagtg
1140ttgctgcgtg acttggagcc tggcacggac tatgaggtga ccgtgagcac cctatttggc
1200cgcagtgtgg ggcccgccac ttccctgatg gctcgcactg acgcttctgt tgagcagacc
1260ctgcgcccgg tcatcctggg ccccacatcc atcctccttt cctggaactt ggtgcctgag
1320gcccgtggct accggttgga atggcggcgt gagactggct tggagccacc gcagaaggtg
1380gtactgccct ctgatgtgac ccgctaccag ttggatgggc tgcagccggg cactgagtac
1440cgcctcacac tctacactct gctggagggc cacgaggtgg ccacccctgc aaccgtggtt
1500cccactggac cagagctgcc tgtgagccct gtaacagacc tgcaagccac cgagctgccc
1560gggcagcggg tgcgagtgtc ctggagccca gtccctggtg ccacccagta ccgcatcatt
1620gtgcgcagca cccagggggt tgagcggacc ctggtgcttc ctgggagtca gacagcattc
1680gacttggatg acgttcaggc tgggcttagc tacactgtgc gggtgtctgc tcgagtgggt
1740ccccgtgagg gcagtgccag tgtcctcact gtccgccggg agccggaaac tccacttgct
1800gttccagggc tgcgggttgt ggtgtcagat gcaacgcgag tgagggtggc ctggggaccc
1860gtccctggag ccagtggatt tcggattagc tggagcacag gcagtggtcc ggagtccagc
1920cagacactgc ccccagactc tactgccaca gacatcacag ggctgcagcc tggaaccacc
1980taccaggtgg ctgtgtcggt actgcgaggc agagaggagg gccctgctgc agtcatcgtg
2040gctcgaacgg acccactggg cccagtgagg acggtccatg tgactcaggc cagcagctca
2100tctgtcacca ttacctggac cagggttcct ggcgccacag gatacagggt ttcctggcac
2160tcagcccacg gcccagagaa atcccagttg gtttctgggg aggccacggt ggctgagctg
2220gatggactgg agccagatac tgagtatacg gtgcatgtga gggcccatgt ggctggcgtg
2280gatgggcccc ctgcctctgt ggttgtgagg actgcccctg agcctgtggg tcgtgtgtcg
2340aggctgcaga tcctcaatgc ttccagcgac gttctacgga tcacctgggt aggggtcact
2400ggagccacag cttacagact ggcctggggc cggagtgaag gcggccccat gaggcaccag
2460atactcccag gaaacacaga ctctgcagag atccggggtc tcgaaggtgg agtcagctac
2520tcagtgcgag tgactgcact tgtcggggac cgcgagggca cacctgtctc cattgttgtc
2580actacgccgc ctgaggctcc gccagccctg gggacgcttc acgtggtgca gcgcggggag
2640cactcgctga ggctgcgctg ggagccggtg cccagagcgc agggcttcct tctgcactgg
2700caacctgagg gtggccagga acagtcccgg gtcctggggc ccgagctcag cagctatcac
2760ctggacgggc tggagccagc gacacagtac cgcgtgaggc tgagtgtcct agggccagct
2820ggagaagggc cctctgcaga ggtgactgcg cgcactgagt cacctcgtgt tccaagcatt
2880gaactacgtg tggtggacac ctcgatcgac tcggtgactt tggcctggac tccagtgtcc
2940agggcatcca gctacatcct atcctggcgg ccactcagag gccctggcca ggaagtgcct
3000gggtccccgc agacacttcc agggatctca agctcccagc gggtgacagg gctagagcct
3060ggcgtctctt acatcttctc cctgacgcct gtcctggatg gtgtgcgggg tcctgaggca
3120tctgtcacac agacgccagt gtgcccccgt ggcctggcgg atgtggtgtt cctaccacat
3180gccactcaag acaatgctca ccgtgcggag gctacgagga gggtcctgga gcgtctggtg
3240ttggcacttg ggcctcttgg gccacaggca gttcaggttg gcctgctgtc ttacagtcat
3300cggccctccc cactgttccc actgaatggc tcccatgacc ttggcattat cttgcaaagg
3360atccgtgaca tgccctacat ggacccaagt gggaacaacc tgggcacagc cgtggtcaca
3420gctcacagat acatgttggc accagatgct cctgggcgcc gccagcacgt accaggggtg
3480atggttctgc tagtggatga acccttgaga ggtgacatat tcagccccat ccgtgaggcc
3540caggcttctg ggcttaatgt ggtgatgttg ggaatggctg gagcggaccc agagcagctg
3600cgtcgcttgg cgccgggtat ggactctgtc cagaccttct tcgccgtgga tgatgggcca
3660agcctggacc aggcagtcag tggtctggcc acagccctgt gtcaggcatc cttcactact
3720cagccccggc cagagccctg cccagtgtat tgtccaaagg gccagaaggg ggaacctgga
3780gagatgggcc tgagaggaca agttgggcct cctggcgacc ctggcctccc gggcaggacc
3840ggtgctcccg gcccccaggg gccccctgga agtgccactg ccaagggcga gaggggcttc
3900cctggagcag atgggcgtcc aggcagccct ggccgcgccg ggaatcctgg gacccctgga
3960gcccctggcc taaagggctc tccagggttg cctggccctc gtggggaccc gggagagcga
4020ggacctcgag gcccaaaggg ggagccgggg gctcccggac aagtcatcgg aggtgaagga
4080cctgggcttc ctgggcggaa aggggaccct ggaccatcgg gcccccctgg acctcgtgga
4140ccactggggg acccaggacc ccgtggcccc ccagggcttc ctggaacagc catgaagggt
4200gacaaaggcg atcgtgggga gcggggtccc cctggaccag gtgaaggtgg cattgctcct
4260ggggagcctg ggctgccggg tcttcccgga agccctggac cccaaggccc cgttggcccc
4320cctggaaaga aaggagaaaa aggtgactct gaggatggag ctccaggcct cccaggacaa
4380cctgggtctc cgggtgagca gggcccacgg ggacctcctg gagctattgg ccccaaaggt
4440gaccggggct ttccagggcc cctgggtgag gctggagaga agggcgaacg tggaccccca
4500ggcccagcgg gatcccgggg gctgccaggg gttgctggac gtcctggagc caagggtcct
4560gaagggccac caggacccac tggccgccaa ggagagaagg gggagcctgg tcgccctggg
4620gaccctgcag tggtgggacc tgctgttgct ggacccaaag gagaaaaggg agatgtgggg
4680cccgctgggc ccagaggagc taccggagtc caaggggaac ggggcccacc cggcttggtt
4740cttcctggag accctggccc caagggagac cctggagacc ggggtcccat tggccttact
4800ggcagagcag gacccccagg tgactcaggg cctcctggag agaagggaga ccctgggcgg
4860cctggccccc caggacctgt tggcccccga ggacgagatg gtgaagttgg agagaaaggt
4920gacgagggtc ctccgggtga cccgggtttg cctggaaaag caggcgagcg tggccttcgg
4980ggggcacctg gagttcgggg gcctgtgggt gaaaagggag accagggaga tcctggagag
5040gatggacgaa atggcagccc tggatcatct ggacccaagg gtgaccgtgg ggagccgggt
5100cccccaggac ccccgggacg gctggtagac acaggacctg gagccagaga gaagggagag
5160cctggggacc gcggacaaga gggtcctcga gggcccaagg gtgatcctgg cctccctgga
5220gcccctgggg aaaggggcat tgaagggttt cggggacccc caggcccaca gggggaccca
5280ggtgtccgag gcccagcagg agaaaagggt gaccggggtc cccctgggct ggatggccgg
5340agcggactgg atgggaaacc aggagccgct gggccctctg ggccgaatgg tgctgcaggc
5400aaagctgggg acccagggag agacgggctt ccaggcctcc gtggagaaca gggcctccct
5460ggcccctctg gtccccctgg attaccggga aagccaggcg aggatggcaa acctggcctg
5520aatggaaaaa acggagaacc tggggaccct ggagaagacg ggaggaaggg agagaaagga
5580gattcaggcg cctctgggag agaaggtcgt gatggcccca agggtgagcg tggagctcct
5640ggtatccttg gaccccaggg gcctccaggc ctcccagggc cagtgggccc tcctggccag
5700ggttttcctg gtgtcccagg aggcacgggc cccaagggtg accgtgggga gactggatcc
5760aaaggggagc agggcctccc tggagagcgt ggcctgcgag gagagcctgg aagtgtgccg
5820aatgtggatc ggttgctgga aactgctggc atcaaggcat ctgccctgcg ggagatcgtg
5880gagacctggg atgagagctc tggtagcttc ctgcctgtgc ccgaacggcg tcgaggcccc
5940aagggggact caggcgaaca gggcccccca ggcaaggagg gccccatcgg ctttcctgga
6000gaacgcgggc tgaagggcga ccgtggagac cctggccctc aggggccacc tggtctggcc
6060cttggggaga ggggcccccc cgggccttcc ggccttgccg gggagcctgg aaagcctggt
6120attcccgggc tcccaggcag ggctgggggt gtgggagagg caggaaggcc aggagagagg
6180ggagaacggg gagagaaagg agaacgtgga gaacagggca gagatggccc tcctggactc
6240cctggaaccc ctgggccccc cggaccccct ggccccaagg tgtctgtgga tgagccaggt
6300cctggactct ctggagaaca gggaccccct ggactcaagg gtgctaaggg ggagccgggc
6360agcaatggtg accaaggtcc caaaggagac aggggtgtgc caggcatcaa aggagaccgg
6420ggagagcctg gaccgagggg tcaggacggc aacccgggtc taccaggaga gcgtggtatg
6480gctgggcctg aagggaagcc gggtctgcag ggtccaagag gcccccctgg cccagtgggt
6540ggtcatggag accctggacc acctggtgcc ccgggtcttg ctggccctgc aggaccccaa
6600ggaccttctg gcctgaaggg ggagcctgga gagacaggac ctccaggacg gggcctgact
6660ggacctactg gagctgtggg acttcctgga ccccccggcc cttcaggcct tgtgggtcca
6720caggggtctc caggtttgcc tggacaagtg ggggagacag ggaagccggg agccccaggt
6780cgagatggtg ccagtggaaa agatggagac agagggagcc ctggtgtgcc agggtcacca
6840ggtctgcctg gccctgtcgg acctaaagga gaacctggcc ccacgggggc ccctggacag
6900gctgtggtcg ggctccctgg agcaaaggga gagaagggag cccctggagg ccttgctgga
6960gacctggtgg gtgagccggg agccaaaggt gaccgaggac tgccagggcc gcgaggcgag
7020aagggtgaag ctggccgtgc aggggagccc ggagaccctg gggaagatgg tcagaaaggg
7080gctccaggac ccaaaggttt caagggtgac ccaggagtcg gggtcccggg ctcccctggg
7140cctcctggcc ctccaggtgt gaagggagat ctgggcctcc ctggcctgcc cggtgctcct
7200ggtgttgttg ggttcccggg tcagacaggc cctcgaggag agatgggtca gccaggccct
7260agtggagagc ggggtctggc aggcccccca gggagagaag gaatcccagg acccctgggg
7320ccacctggac caccggggtc agtgggacca cctggggcct ctggactcaa aggagacaag
7380ggagaccctg gagtagggct gcctgggccc cgaggcgagc gtggggagcc aggcatccgg
7440ggtgaagatg gccgccccgg ccaggaggga ccccgaggac tcacggggcc ccctggcagc
7500aggggagagc gtggggagaa gggtgatgtt gggagtgcag gactaaaggg tgacaaggga
7560gactcagctg tgatcctggg gcctccaggc ccacggggtg ccaaggggga catgggtgaa
7620cgagggcctc ggggcttgga tggtgacaaa ggacctcggg gagacaatgg ggaccctggt
7680gacaagggca gcaagggaga gcctggtgac aagggctcag ccgggttgcc aggactgcgt
7740ggactcctgg gaccccaggg tcaacctggt gcagcaggga tccctggtga cccgggatcc
7800ccaggaaagg atggagtgcc tggtatccga ggagaaaaag gagatgttgg cttcatgggt
7860ccccggggcc tcaagggtga acggggagtg aagggagcct gtggccttga tggagagaag
7920ggagacaagg gagaagctgg tcccccaggc cgccccgggc tggcaggaca caaaggagag
7980atgggggagc ctggtgtgcc gggccagtcg ggggcccctg gcaaggaggg cctgatcggt
8040cccaagggtg accgaggctt tgacgggcag ccaggcccca agggtgacca gggcgagaaa
8100ggggagcggg gaaccccagg aattgggggc ttcccaggcc ccagtggaaa tgatggctct
8160gctggtcccc cagggccacc tggcagtgtt ggtcccagag gccccgaagg acttcagggc
8220cagaagggtg agcgaggtcc ccccggagag agagtggtgg gggctcctgg ggtccctgga
8280gctcctggcg agagagggga gcaggggcgg ccagggcctg ccggtcctcg aggcgagaag
8340ggagaagctg cactgacgga ggatgacatc cggggctttg tgcgccaaga gatgagtcag
8400cactgtgcct gccagggcca gttcatcgca tctggatcac gacccctccc tagttatgct
8460gcagacactg ccggctccca gctccatgct gtgcctgtgc tccgcgtctc tcatgcagag
8520gaggaagagc gggtaccccc tgaggatgat gagtactctg aatactccga gtattctgtg
8580gaggagtacc aggaccctga agctccttgg gatagtgatg acccctgttc cctgccactg
8640gatgagggct cctgcactgc ctacaccctg cgctggtacc atcgggctgt gacaggcagc
8700acagaggcct gtcacccttt tgtctatggt ggctgtggag ggaatgccaa ccgttttggg
8760acccgtgagg cctgcgagcg ccgctgccca ccccgggtgg tccagagcca ggggacaggt
8820actgcccagg acggaagcgg agtgaaacag actttgaatt ttgaccttct caagttggcg
8880ggagacgtgg agtccaaccc tggacctacc tcctcggggc ctggaccccg gttcctgctg
8940ctgctgccgc tgctgctgcc ccctgcggcc tcagcctccg accggccccg gggccgagac
9000ccggtcaacc cagagaagct gctggtgatc actgtggcca cagctgaaac cgaggggtac
9060ctgcgtttcc tgcgctctgc ggagttcttc aactacactg tgcggaccct gggcctggga
9120gaggagtggc gagggggtga tgtggctcga acagttggtg gaggacagaa ggtccggtgg
9180ttaaagaagg aaatggagaa atacgctgac cgggaggata tgatcatcat gtttgtggat
9240agctacgacg tgattctggc cggcagcccc acagagctgc tgaagaagtt cgtccagagt
9300ggcagccgcc tgctcttctc tgcagagagc ttctgctggc ccgagtgggg gctggcggag
9360cagtaccctg aggtgggcac ggggaagcgc ttcctcaatt ctggtggatt catcggtttt
9420gccaccacca tccaccaaat cgtgcgccag tggaagtaca aggatgatga cgacgaccag
9480ctgttctaca cacggctcta cctggaccca ggactgaggg agaaactcag ccttaatctg
9540gatcataagt ctcggatctt tcagaacctc aacggggctt tagatgaagt ggttttaaag
9600tttgatcgga accgtgtgcg tatccggaac gtggcctacg acacgctccc cattgtggtc
9660catggaaacg gtcccactaa gctgcagctc aactacctgg gaaactacgt ccccaatggc
9720tggactcctg agggaggctg tggcttctgc aaccaggacc ggaggacact cccggggggg
9780cagcctcccc cccgggtgtt tctggccgtg tttgtggaac agcctactcc gtttctgccc
9840cgcttcctgc agcggctgct actcctggac tatccccccg acagggtcac ccttttcctg
9900cacaacaacg aggtcttcca tgaaccccac atcgctgact cctggccgca gctccaggac
9960cacttctcag ctgtgaagct cgtggggccg gaggaggctc tgagcccagg cgaggccagg
10020gacatggcca tggacctgtg tcggcaggac cccgagtgtg agttctactt cagcctggac
10080gccgacgctg tcctcaccaa cctgcagacc ctgcgtatcc tcattgagga gaacaggaag
10140gtgatcgccc ccatgctgtc ccgccacggc aagctgtggt ccaacttctg gggcgccctg
10200agccccgatg agtactacgc ccgctccgag gactacgtgg agctggtgca gcggaagcga
10260gtgggtgtgt ggaatgtacc atacatctcc caggcctatg tgatccgggg tgataccctg
10320cggatggagc tgccccagag ggatgtgttc tcgggcagtg acacagaccc ggacatggcc
10380ttctgtaaga gctttcgaga caagggcatc ttcctccatc tgagcaatca gcatgaattt
10440ggccggctcc tggccacttc cagatacgac acggagcacc tgcaccccga cctctggcag
10500atcttcgaca accccgtcga ctggaaggag cagtacatcc acgagaacta cagccgggcc
10560ctggaagggg aaggaatcgt ggagcagcca tgcccggacg tgtactggtt cccactgctg
10620tcagaacaaa tgtgtgatga gctggtggca gagatggagc actacggcca gtggtcaggc
10680ggccggcatg aggattcaag gctggctgga ggctacgaga atgtgcccac cgtggacatc
10740cacatgaagc aggtggggta cgaggaccag tggctgcagc tgctgcggac gtatgtgggc
10800cccatgaccg agagcctgtt tcccggttac cacaccaagg cgcgggcggt gatgaacttt
10860gtggttcgct accggccaga cgagcagccg tctctgcggc cacaccacga ctcatccacc
10920ttcaccctca acgttgccct caaccacaag ggcctggact atgagggagg tggctgccgc
10980ttcctgcgct acgactgtgt gatctcctcc ccgaggaagg gctgggcact cctgcacccc
11040ggccgcctca cccactacca cgaggggctg ccaacgacct ggggcacacg ctacatcatg
11100gtgtcctttg tcgacccctg a
11121263706PRTArtificial SequenceSynthetic Construct 26Met Thr Leu Arg
Leu Leu Val Ala Ala Leu Cys Ala Gly Ile Leu Ala1 5
10 15Glu Ala Pro Arg Val Arg Ala Gln His Arg
Glu Arg Val Thr Cys Thr 20 25
30Arg Leu Tyr Ala Ala Asp Ile Val Phe Leu Leu Asp Gly Ser Ser Ser
35 40 45Ile Gly Arg Ser Asn Phe Arg Glu
Val Arg Ser Phe Leu Glu Gly Leu 50 55
60Val Leu Pro Phe Ser Gly Ala Ala Ser Ala Gln Gly Val Arg Phe Ala65
70 75 80Thr Val Gln Tyr Ser
Asp Asp Pro Arg Thr Glu Phe Gly Leu Asp Ala 85
90 95Leu Gly Ser Gly Gly Asp Val Ile Arg Ala Ile
Arg Glu Leu Ser Tyr 100 105
110Lys Gly Gly Asn Thr Arg Thr Gly Ala Ala Ile Leu His Val Ala Asp
115 120 125His Val Phe Leu Pro Gln Leu
Ala Arg Pro Gly Val Pro Lys Val Cys 130 135
140Ile Leu Ile Thr Asp Gly Lys Ser Gln Asp Leu Val Asp Thr Ala
Ala145 150 155 160Gln Arg
Leu Lys Gly Gln Gly Val Lys Leu Phe Ala Val Gly Ile Lys
165 170 175Asn Ala Asp Pro Glu Glu Leu
Lys Arg Val Ala Ser Gln Pro Thr Ser 180 185
190Asp Phe Phe Phe Phe Val Asn Asp Phe Ser Ile Leu Arg Thr
Leu Leu 195 200 205Pro Leu Val Ser
Arg Arg Val Cys Thr Thr Ala Gly Gly Val Pro Val 210
215 220Thr Arg Pro Pro Asp Asp Ser Thr Ser Ala Pro Arg
Asp Leu Val Leu225 230 235
240Ser Glu Pro Ser Ser Gln Ser Leu Arg Val Gln Trp Thr Ala Ala Ser
245 250 255Gly Pro Val Thr Gly
Tyr Lys Val Gln Tyr Thr Pro Leu Thr Gly Leu 260
265 270Gly Gln Pro Leu Pro Ser Glu Arg Gln Glu Val Asn
Val Pro Ala Gly 275 280 285Glu Thr
Ser Val Arg Leu Arg Gly Leu Arg Pro Leu Thr Glu Tyr Gln 290
295 300Val Thr Val Ile Ala Leu Tyr Ala Asn Ser Ile
Gly Glu Ala Val Ser305 310 315
320Gly Thr Ala Arg Thr Thr Ala Leu Glu Gly Pro Glu Leu Thr Ile Gln
325 330 335Asn Thr Thr Ala
His Ser Leu Leu Val Ala Trp Arg Ser Val Pro Gly 340
345 350Ala Thr Gly Tyr Arg Val Thr Trp Arg Val Leu
Ser Gly Gly Pro Thr 355 360 365Gln
Gln Gln Glu Leu Gly Pro Gly Gln Gly Ser Val Leu Leu Arg Asp 370
375 380Leu Glu Pro Gly Thr Asp Tyr Glu Val Thr
Val Ser Thr Leu Phe Gly385 390 395
400Arg Ser Val Gly Pro Ala Thr Ser Leu Met Ala Arg Thr Asp Ala
Ser 405 410 415Val Glu Gln
Thr Leu Arg Pro Val Ile Leu Gly Pro Thr Ser Ile Leu 420
425 430Leu Ser Trp Asn Leu Val Pro Glu Ala Arg
Gly Tyr Arg Leu Glu Trp 435 440
445Arg Arg Glu Thr Gly Leu Glu Pro Pro Gln Lys Val Val Leu Pro Ser 450
455 460Asp Val Thr Arg Tyr Gln Leu Asp
Gly Leu Gln Pro Gly Thr Glu Tyr465 470
475 480Arg Leu Thr Leu Tyr Thr Leu Leu Glu Gly His Glu
Val Ala Thr Pro 485 490
495Ala Thr Val Val Pro Thr Gly Pro Glu Leu Pro Val Ser Pro Val Thr
500 505 510Asp Leu Gln Ala Thr Glu
Leu Pro Gly Gln Arg Val Arg Val Ser Trp 515 520
525Ser Pro Val Pro Gly Ala Thr Gln Tyr Arg Ile Ile Val Arg
Ser Thr 530 535 540Gln Gly Val Glu Arg
Thr Leu Val Leu Pro Gly Ser Gln Thr Ala Phe545 550
555 560Asp Leu Asp Asp Val Gln Ala Gly Leu Ser
Tyr Thr Val Arg Val Ser 565 570
575Ala Arg Val Gly Pro Arg Glu Gly Ser Ala Ser Val Leu Thr Val Arg
580 585 590Arg Glu Pro Glu Thr
Pro Leu Ala Val Pro Gly Leu Arg Val Val Val 595
600 605Ser Asp Ala Thr Arg Val Arg Val Ala Trp Gly Pro
Val Pro Gly Ala 610 615 620Ser Gly Phe
Arg Ile Ser Trp Ser Thr Gly Ser Gly Pro Glu Ser Ser625
630 635 640Gln Thr Leu Pro Pro Asp Ser
Thr Ala Thr Asp Ile Thr Gly Leu Gln 645
650 655Pro Gly Thr Thr Tyr Gln Val Ala Val Ser Val Leu
Arg Gly Arg Glu 660 665 670Glu
Gly Pro Ala Ala Val Ile Val Ala Arg Thr Asp Pro Leu Gly Pro 675
680 685Val Arg Thr Val His Val Thr Gln Ala
Ser Ser Ser Ser Val Thr Ile 690 695
700Thr Trp Thr Arg Val Pro Gly Ala Thr Gly Tyr Arg Val Ser Trp His705
710 715 720Ser Ala His Gly
Pro Glu Lys Ser Gln Leu Val Ser Gly Glu Ala Thr 725
730 735Val Ala Glu Leu Asp Gly Leu Glu Pro Asp
Thr Glu Tyr Thr Val His 740 745
750Val Arg Ala His Val Ala Gly Val Asp Gly Pro Pro Ala Ser Val Val
755 760 765Val Arg Thr Ala Pro Glu Pro
Val Gly Arg Val Ser Arg Leu Gln Ile 770 775
780Leu Asn Ala Ser Ser Asp Val Leu Arg Ile Thr Trp Val Gly Val
Thr785 790 795 800Gly Ala
Thr Ala Tyr Arg Leu Ala Trp Gly Arg Ser Glu Gly Gly Pro
805 810 815Met Arg His Gln Ile Leu Pro
Gly Asn Thr Asp Ser Ala Glu Ile Arg 820 825
830Gly Leu Glu Gly Gly Val Ser Tyr Ser Val Arg Val Thr Ala
Leu Val 835 840 845Gly Asp Arg Glu
Gly Thr Pro Val Ser Ile Val Val Thr Thr Pro Pro 850
855 860Glu Ala Pro Pro Ala Leu Gly Thr Leu His Val Val
Gln Arg Gly Glu865 870 875
880His Ser Leu Arg Leu Arg Trp Glu Pro Val Pro Arg Ala Gln Gly Phe
885 890 895Leu Leu His Trp Gln
Pro Glu Gly Gly Gln Glu Gln Ser Arg Val Leu 900
905 910Gly Pro Glu Leu Ser Ser Tyr His Leu Asp Gly Leu
Glu Pro Ala Thr 915 920 925Gln Tyr
Arg Val Arg Leu Ser Val Leu Gly Pro Ala Gly Glu Gly Pro 930
935 940Ser Ala Glu Val Thr Ala Arg Thr Glu Ser Pro
Arg Val Pro Ser Ile945 950 955
960Glu Leu Arg Val Val Asp Thr Ser Ile Asp Ser Val Thr Leu Ala Trp
965 970 975Thr Pro Val Ser
Arg Ala Ser Ser Tyr Ile Leu Ser Trp Arg Pro Leu 980
985 990Arg Gly Pro Gly Gln Glu Val Pro Gly Ser Pro
Gln Thr Leu Pro Gly 995 1000
1005Ile Ser Ser Ser Gln Arg Val Thr Gly Leu Glu Pro Gly Val Ser Tyr
1010 1015 1020Ile Phe Ser Leu Thr Pro Val
Leu Asp Gly Val Arg Gly Pro Glu Ala1025 1030
1035 1040Ser Val Thr Gln Thr Pro Val Cys Pro Arg Gly Leu
Ala Asp Val Val 1045 1050
1055Phe Leu Pro His Ala Thr Gln Asp Asn Ala His Arg Ala Glu Ala Thr
1060 1065 1070Arg Arg Val Leu Glu Arg
Leu Val Leu Ala Leu Gly Pro Leu Gly Pro 1075 1080
1085Gln Ala Val Gln Val Gly Leu Leu Ser Tyr Ser His Arg Pro
Ser Pro 1090 1095 1100Leu Phe Pro Leu
Asn Gly Ser His Asp Leu Gly Ile Ile Leu Gln Arg1105 1110
1115 1120Ile Arg Asp Met Pro Tyr Met Asp Pro
Ser Gly Asn Asn Leu Gly Thr 1125 1130
1135Ala Val Val Thr Ala His Arg Tyr Met Leu Ala Pro Asp Ala Pro
Gly 1140 1145 1150Arg Arg Gln
His Val Pro Gly Val Met Val Leu Leu Val Asp Glu Pro 1155
1160 1165Leu Arg Gly Asp Ile Phe Ser Pro Ile Arg Glu
Ala Gln Ala Ser Gly 1170 1175 1180Leu
Asn Val Val Met Leu Gly Met Ala Gly Ala Asp Pro Glu Gln Leu1185
1190 1195 1200Arg Arg Leu Ala Pro Gly
Met Asp Ser Val Gln Thr Phe Phe Ala Val 1205
1210 1215Asp Asp Gly Pro Ser Leu Asp Gln Ala Val Ser Gly
Leu Ala Thr Ala 1220 1225
1230Leu Cys Gln Ala Ser Phe Thr Thr Gln Pro Arg Pro Glu Pro Cys Pro
1235 1240 1245Val Tyr Cys Pro Lys Gly Gln
Lys Gly Glu Pro Gly Glu Met Gly Leu 1250 1255
1260Arg Gly Gln Val Gly Pro Pro Gly Asp Pro Gly Leu Pro Gly Arg
Thr1265 1270 1275 1280Gly Ala
Pro Gly Pro Gln Gly Pro Pro Gly Ser Ala Thr Ala Lys Gly
1285 1290 1295Glu Arg Gly Phe Pro Gly Ala
Asp Gly Arg Pro Gly Ser Pro Gly Arg 1300 1305
1310Ala Gly Asn Pro Gly Thr Pro Gly Ala Pro Gly Leu Lys Gly
Ser Pro 1315 1320 1325Gly Leu Pro
Gly Pro Arg Gly Asp Pro Gly Glu Arg Gly Pro Arg Gly 1330
1335 1340Pro Lys Gly Glu Pro Gly Ala Pro Gly Gln Val Ile
Gly Gly Glu Gly1345 1350 1355
1360Pro Gly Leu Pro Gly Arg Lys Gly Asp Pro Gly Pro Ser Gly Pro Pro
1365 1370 1375Gly Pro Arg Gly Pro
Leu Gly Asp Pro Gly Pro Arg Gly Pro Pro Gly 1380
1385 1390Leu Pro Gly Thr Ala Met Lys Gly Asp Lys Gly Asp
Arg Gly Glu Arg 1395 1400 1405Gly
Pro Pro Gly Pro Gly Glu Gly Gly Ile Ala Pro Gly Glu Pro Gly 1410
1415 1420Leu Pro Gly Leu Pro Gly Ser Pro Gly Pro
Gln Gly Pro Val Gly Pro1425 1430 1435
1440Pro Gly Lys Lys Gly Glu Lys Gly Asp Ser Glu Asp Gly Ala Pro
Gly 1445 1450 1455Leu Pro
Gly Gln Pro Gly Ser Pro Gly Glu Gln Gly Pro Arg Gly Pro 1460
1465 1470Pro Gly Ala Ile Gly Pro Lys Gly Asp
Arg Gly Phe Pro Gly Pro Leu 1475 1480
1485Gly Glu Ala Gly Glu Lys Gly Glu Arg Gly Pro Pro Gly Pro Ala Gly
1490 1495 1500Ser Arg Gly Leu Pro Gly Val
Ala Gly Arg Pro Gly Ala Lys Gly Pro1505 1510
1515 1520Glu Gly Pro Pro Gly Pro Thr Gly Arg Gln Gly Glu
Lys Gly Glu Pro 1525 1530
1535Gly Arg Pro Gly Asp Pro Ala Val Val Gly Pro Ala Val Ala Gly Pro
1540 1545 1550Lys Gly Glu Lys Gly Asp
Val Gly Pro Ala Gly Pro Arg Gly Ala Thr 1555 1560
1565Gly Val Gln Gly Glu Arg Gly Pro Pro Gly Leu Val Leu Pro
Gly Asp 1570 1575 1580Pro Gly Pro Lys
Gly Asp Pro Gly Asp Arg Gly Pro Ile Gly Leu Thr1585 1590
1595 1600Gly Arg Ala Gly Pro Pro Gly Asp Ser
Gly Pro Pro Gly Glu Lys Gly 1605 1610
1615Asp Pro Gly Arg Pro Gly Pro Pro Gly Pro Val Gly Pro Arg Gly
Arg 1620 1625 1630Asp Gly Glu
Val Gly Glu Lys Gly Asp Glu Gly Pro Pro Gly Asp Pro 1635
1640 1645Gly Leu Pro Gly Lys Ala Gly Glu Arg Gly Leu
Arg Gly Ala Pro Gly 1650 1655 1660Val
Arg Gly Pro Val Gly Glu Lys Gly Asp Gln Gly Asp Pro Gly Glu1665
1670 1675 1680Asp Gly Arg Asn Gly Ser
Pro Gly Ser Ser Gly Pro Lys Gly Asp Arg 1685
1690 1695Gly Glu Pro Gly Pro Pro Gly Pro Pro Gly Arg Leu
Val Asp Thr Gly 1700 1705
1710Pro Gly Ala Arg Glu Lys Gly Glu Pro Gly Asp Arg Gly Gln Glu Gly
1715 1720 1725Pro Arg Gly Pro Lys Gly Asp
Pro Gly Leu Pro Gly Ala Pro Gly Glu 1730 1735
1740Arg Gly Ile Glu Gly Phe Arg Gly Pro Pro Gly Pro Gln Gly Asp
Pro1745 1750 1755 1760Gly Val
Arg Gly Pro Ala Gly Glu Lys Gly Asp Arg Gly Pro Pro Gly
1765 1770 1775Leu Asp Gly Arg Ser Gly Leu
Asp Gly Lys Pro Gly Ala Ala Gly Pro 1780 1785
1790Ser Gly Pro Asn Gly Ala Ala Gly Lys Ala Gly Asp Pro Gly
Arg Asp 1795 1800 1805Gly Leu Pro
Gly Leu Arg Gly Glu Gln Gly Leu Pro Gly Pro Ser Gly 1810
1815 1820Pro Pro Gly Leu Pro Gly Lys Pro Gly Glu Asp Gly
Lys Pro Gly Leu1825 1830 1835
1840Asn Gly Lys Asn Gly Glu Pro Gly Asp Pro Gly Glu Asp Gly Arg Lys
1845 1850 1855Gly Glu Lys Gly Asp
Ser Gly Ala Ser Gly Arg Glu Gly Arg Asp Gly 1860
1865 1870Pro Lys Gly Glu Arg Gly Ala Pro Gly Ile Leu Gly
Pro Gln Gly Pro 1875 1880 1885Pro
Gly Leu Pro Gly Pro Val Gly Pro Pro Gly Gln Gly Phe Pro Gly 1890
1895 1900Val Pro Gly Gly Thr Gly Pro Lys Gly Asp
Arg Gly Glu Thr Gly Ser1905 1910 1915
1920Lys Gly Glu Gln Gly Leu Pro Gly Glu Arg Gly Leu Arg Gly Glu
Pro 1925 1930 1935Gly Ser
Val Pro Asn Val Asp Arg Leu Leu Glu Thr Ala Gly Ile Lys 1940
1945 1950Ala Ser Ala Leu Arg Glu Ile Val Glu
Thr Trp Asp Glu Ser Ser Gly 1955 1960
1965Ser Phe Leu Pro Val Pro Glu Arg Arg Arg Gly Pro Lys Gly Asp Ser
1970 1975 1980Gly Glu Gln Gly Pro Pro Gly
Lys Glu Gly Pro Ile Gly Phe Pro Gly1985 1990
1995 2000Glu Arg Gly Leu Lys Gly Asp Arg Gly Asp Pro Gly
Pro Gln Gly Pro 2005 2010
2015Pro Gly Leu Ala Leu Gly Glu Arg Gly Pro Pro Gly Pro Ser Gly Leu
2020 2025 2030Ala Gly Glu Pro Gly Lys
Pro Gly Ile Pro Gly Leu Pro Gly Arg Ala 2035 2040
2045Gly Gly Val Gly Glu Ala Gly Arg Pro Gly Glu Arg Gly Glu
Arg Gly 2050 2055 2060Glu Lys Gly Glu
Arg Gly Glu Gln Gly Arg Asp Gly Pro Pro Gly Leu2065 2070
2075 2080Pro Gly Thr Pro Gly Pro Pro Gly Pro
Pro Gly Pro Lys Val Ser Val 2085 2090
2095Asp Glu Pro Gly Pro Gly Leu Ser Gly Glu Gln Gly Pro Pro Gly
Leu 2100 2105 2110Lys Gly Ala
Lys Gly Glu Pro Gly Ser Asn Gly Asp Gln Gly Pro Lys 2115
2120 2125Gly Asp Arg Gly Val Pro Gly Ile Lys Gly Asp
Arg Gly Glu Pro Gly 2130 2135 2140Pro
Arg Gly Gln Asp Gly Asn Pro Gly Leu Pro Gly Glu Arg Gly Met2145
2150 2155 2160Ala Gly Pro Glu Gly Lys
Pro Gly Leu Gln Gly Pro Arg Gly Pro Pro 2165
2170 2175Gly Pro Val Gly Gly His Gly Asp Pro Gly Pro Pro
Gly Ala Pro Gly 2180 2185
2190Leu Ala Gly Pro Ala Gly Pro Gln Gly Pro Ser Gly Leu Lys Gly Glu
2195 2200 2205Pro Gly Glu Thr Gly Pro Pro
Gly Arg Gly Leu Thr Gly Pro Thr Gly 2210 2215
2220Ala Val Gly Leu Pro Gly Pro Pro Gly Pro Ser Gly Leu Val Gly
Pro2225 2230 2235 2240Gln Gly
Ser Pro Gly Leu Pro Gly Gln Val Gly Glu Thr Gly Lys Pro
2245 2250 2255Gly Ala Pro Gly Arg Asp Gly
Ala Ser Gly Lys Asp Gly Asp Arg Gly 2260 2265
2270Ser Pro Gly Val Pro Gly Ser Pro Gly Leu Pro Gly Pro Val
Gly Pro 2275 2280 2285Lys Gly Glu
Pro Gly Pro Thr Gly Ala Pro Gly Gln Ala Val Val Gly 2290
2295 2300Leu Pro Gly Ala Lys Gly Glu Lys Gly Ala Pro Gly
Gly Leu Ala Gly2305 2310 2315
2320Asp Leu Val Gly Glu Pro Gly Ala Lys Gly Asp Arg Gly Leu Pro Gly
2325 2330 2335Pro Arg Gly Glu Lys
Gly Glu Ala Gly Arg Ala Gly Glu Pro Gly Asp 2340
2345 2350Pro Gly Glu Asp Gly Gln Lys Gly Ala Pro Gly Pro
Lys Gly Phe Lys 2355 2360 2365Gly
Asp Pro Gly Val Gly Val Pro Gly Ser Pro Gly Pro Pro Gly Pro 2370
2375 2380Pro Gly Val Lys Gly Asp Leu Gly Leu Pro
Gly Leu Pro Gly Ala Pro2385 2390 2395
2400Gly Val Val Gly Phe Pro Gly Gln Thr Gly Pro Arg Gly Glu Met
Gly 2405 2410 2415Gln Pro
Gly Pro Ser Gly Glu Arg Gly Leu Ala Gly Pro Pro Gly Arg 2420
2425 2430Glu Gly Ile Pro Gly Pro Leu Gly Pro
Pro Gly Pro Pro Gly Ser Val 2435 2440
2445Gly Pro Pro Gly Ala Ser Gly Leu Lys Gly Asp Lys Gly Asp Pro Gly
2450 2455 2460Val Gly Leu Pro Gly Pro Arg
Gly Glu Arg Gly Glu Pro Gly Ile Arg2465 2470
2475 2480Gly Glu Asp Gly Arg Pro Gly Gln Glu Gly Pro Arg
Gly Leu Thr Gly 2485 2490
2495Pro Pro Gly Ser Arg Gly Glu Arg Gly Glu Lys Gly Asp Val Gly Ser
2500 2505 2510Ala Gly Leu Lys Gly Asp
Lys Gly Asp Ser Ala Val Ile Leu Gly Pro 2515 2520
2525Pro Gly Pro Arg Gly Ala Lys Gly Asp Met Gly Glu Arg Gly
Pro Arg 2530 2535 2540Gly Leu Asp Gly
Asp Lys Gly Pro Arg Gly Asp Asn Gly Asp Pro Gly2545 2550
2555 2560Asp Lys Gly Ser Lys Gly Glu Pro Gly
Asp Lys Gly Ser Ala Gly Leu 2565 2570
2575Pro Gly Leu Arg Gly Leu Leu Gly Pro Gln Gly Gln Pro Gly Ala
Ala 2580 2585 2590Gly Ile Pro
Gly Asp Pro Gly Ser Pro Gly Lys Asp Gly Val Pro Gly 2595
2600 2605Ile Arg Gly Glu Lys Gly Asp Val Gly Phe Met
Gly Pro Arg Gly Leu 2610 2615 2620Lys
Gly Glu Arg Gly Val Lys Gly Ala Cys Gly Leu Asp Gly Glu Lys2625
2630 2635 2640Gly Asp Lys Gly Glu Ala
Gly Pro Pro Gly Arg Pro Gly Leu Ala Gly 2645
2650 2655His Lys Gly Glu Met Gly Glu Pro Gly Val Pro Gly
Gln Ser Gly Ala 2660 2665
2670Pro Gly Lys Glu Gly Leu Ile Gly Pro Lys Gly Asp Arg Gly Phe Asp
2675 2680 2685Gly Gln Pro Gly Pro Lys Gly
Asp Gln Gly Glu Lys Gly Glu Arg Gly 2690 2695
2700Thr Pro Gly Ile Gly Gly Phe Pro Gly Pro Ser Gly Asn Asp Gly
Ser2705 2710 2715 2720Ala Gly
Pro Pro Gly Pro Pro Gly Ser Val Gly Pro Arg Gly Pro Glu
2725 2730 2735Gly Leu Gln Gly Gln Lys Gly
Glu Arg Gly Pro Pro Gly Glu Arg Val 2740 2745
2750Val Gly Ala Pro Gly Val Pro Gly Ala Pro Gly Glu Arg Gly
Glu Gln 2755 2760 2765Gly Arg Pro
Gly Pro Ala Gly Pro Arg Gly Glu Lys Gly Glu Ala Ala 2770
2775 2780Leu Thr Glu Asp Asp Ile Arg Gly Phe Val Arg Gln
Glu Met Ser Gln2785 2790 2795
2800His Cys Ala Cys Gln Gly Gln Phe Ile Ala Ser Gly Ser Arg Pro Leu
2805 2810 2815Pro Ser Tyr Ala Ala
Asp Thr Ala Gly Ser Gln Leu His Ala Val Pro 2820
2825 2830Val Leu Arg Val Ser His Ala Glu Glu Glu Glu Arg
Val Pro Pro Glu 2835 2840 2845Asp
Asp Glu Tyr Ser Glu Tyr Ser Glu Tyr Ser Val Glu Glu Tyr Gln 2850
2855 2860Asp Pro Glu Ala Pro Trp Asp Ser Asp Asp
Pro Cys Ser Leu Pro Leu2865 2870 2875
2880Asp Glu Gly Ser Cys Thr Ala Tyr Thr Leu Arg Trp Tyr His Arg
Ala 2885 2890 2895Val Thr
Gly Ser Thr Glu Ala Cys His Pro Phe Val Tyr Gly Gly Cys 2900
2905 2910Gly Gly Asn Ala Asn Arg Phe Gly Thr
Arg Glu Ala Cys Glu Arg Arg 2915 2920
2925Cys Pro Pro Arg Val Val Gln Ser Gln Gly Thr Gly Thr Ala Gln Asp
2930 2935 2940Gly Ser Gly Val Lys Gln Thr
Leu Asn Phe Asp Leu Leu Lys Leu Ala2945 2950
2955 2960Gly Asp Val Glu Ser Asn Pro Gly Pro Thr Ser Ser
Gly Pro Gly Pro 2965 2970
2975Arg Phe Leu Leu Leu Leu Pro Leu Leu Leu Pro Pro Ala Ala Ser Ala
2980 2985 2990Ser Asp Arg Pro Arg Gly
Arg Asp Pro Val Asn Pro Glu Lys Leu Leu 2995 3000
3005Val Ile Thr Val Ala Thr Ala Glu Thr Glu Gly Tyr Leu Arg
Phe Leu 3010 3015 3020Arg Ser Ala Glu
Phe Phe Asn Tyr Thr Val Arg Thr Leu Gly Leu Gly3025 3030
3035 3040Glu Glu Trp Arg Gly Gly Asp Val Ala
Arg Thr Val Gly Gly Gly Gln 3045 3050
3055Lys Val Arg Trp Leu Lys Lys Glu Met Glu Lys Tyr Ala Asp Arg
Glu 3060 3065 3070Asp Met Ile
Ile Met Phe Val Asp Ser Tyr Asp Val Ile Leu Ala Gly 3075
3080 3085Ser Pro Thr Glu Leu Leu Lys Lys Phe Val Gln
Ser Gly Ser Arg Leu 3090 3095 3100Leu
Phe Ser Ala Glu Ser Phe Cys Trp Pro Glu Trp Gly Leu Ala Glu3105
3110 3115 3120Gln Tyr Pro Glu Val Gly
Thr Gly Lys Arg Phe Leu Asn Ser Gly Gly 3125
3130 3135Phe Ile Gly Phe Ala Thr Thr Ile His Gln Ile Val
Arg Gln Trp Lys 3140 3145
3150Tyr Lys Asp Asp Asp Asp Asp Gln Leu Phe Tyr Thr Arg Leu Tyr Leu
3155 3160 3165Asp Pro Gly Leu Arg Glu Lys
Leu Ser Leu Asn Leu Asp His Lys Ser 3170 3175
3180Arg Ile Phe Gln Asn Leu Asn Gly Ala Leu Asp Glu Val Val Leu
Lys3185 3190 3195 3200Phe Asp
Arg Asn Arg Val Arg Ile Arg Asn Val Ala Tyr Asp Thr Leu
3205 3210 3215Pro Ile Val Val His Gly Asn
Gly Pro Thr Lys Leu Gln Leu Asn Tyr 3220 3225
3230Leu Gly Asn Tyr Val Pro Asn Gly Trp Thr Pro Glu Gly Gly
Cys Gly 3235 3240 3245Phe Cys Asn
Gln Asp Arg Arg Thr Leu Pro Gly Gly Gln Pro Pro Pro 3250
3255 3260Arg Val Phe Leu Ala Val Phe Val Glu Gln Pro Thr
Pro Phe Leu Pro3265 3270 3275
3280Arg Phe Leu Gln Arg Leu Leu Leu Leu Asp Tyr Pro Pro Asp Arg Val
3285 3290 3295Thr Leu Phe Leu His
Asn Asn Glu Val Phe His Glu Pro His Ile Ala 3300
3305 3310Asp Ser Trp Pro Gln Leu Gln Asp His Phe Ser Ala
Val Lys Leu Val 3315 3320 3325Gly
Pro Glu Glu Ala Leu Ser Pro Gly Glu Ala Arg Asp Met Ala Met 3330
3335 3340Asp Leu Cys Arg Gln Asp Pro Glu Cys Glu
Phe Tyr Phe Ser Leu Asp3345 3350 3355
3360Ala Asp Ala Val Leu Thr Asn Leu Gln Thr Leu Arg Ile Leu Ile
Glu 3365 3370 3375Glu Asn
Arg Lys Val Ile Ala Pro Met Leu Ser Arg His Gly Lys Leu 3380
3385 3390Trp Ser Asn Phe Trp Gly Ala Leu Ser
Pro Asp Glu Tyr Tyr Ala Arg 3395 3400
3405Ser Glu Asp Tyr Val Glu Leu Val Gln Arg Lys Arg Val Gly Val Trp
3410 3415 3420Asn Val Pro Tyr Ile Ser Gln
Ala Tyr Val Ile Arg Gly Asp Thr Leu3425 3430
3435 3440Arg Met Glu Leu Pro Gln Arg Asp Val Phe Ser Gly
Ser Asp Thr Asp 3445 3450
3455Pro Asp Met Ala Phe Cys Lys Ser Phe Arg Asp Lys Gly Ile Phe Leu
3460 3465 3470His Leu Ser Asn Gln His
Glu Phe Gly Arg Leu Leu Ala Thr Ser Arg 3475 3480
3485Tyr Asp Thr Glu His Leu His Pro Asp Leu Trp Gln Ile Phe
Asp Asn 3490 3495 3500Pro Val Asp Trp
Lys Glu Gln Tyr Ile His Glu Asn Tyr Ser Arg Ala3505 3510
3515 3520Leu Glu Gly Glu Gly Ile Val Glu Gln
Pro Cys Pro Asp Val Tyr Trp 3525 3530
3535Phe Pro Leu Leu Ser Glu Gln Met Cys Asp Glu Leu Val Ala Glu
Met 3540 3545 3550Glu His Tyr
Gly Gln Trp Ser Gly Gly Arg His Glu Asp Ser Arg Leu 3555
3560 3565Ala Gly Gly Tyr Glu Asn Val Pro Thr Val Asp
Ile His Met Lys Gln 3570 3575 3580Val
Gly Tyr Glu Asp Gln Trp Leu Gln Leu Leu Arg Thr Tyr Val Gly3585
3590 3595 3600Pro Met Thr Glu Ser Leu
Phe Pro Gly Tyr His Thr Lys Ala Arg Ala 3605
3610 3615Val Met Asn Phe Val Val Arg Tyr Arg Pro Asp Glu
Gln Pro Ser Leu 3620 3625
3630Arg Pro His His Asp Ser Ser Thr Phe Thr Leu Asn Val Ala Leu Asn
3635 3640 3645His Lys Gly Leu Asp Tyr Glu
Gly Gly Gly Cys Arg Phe Leu Arg Tyr 3650 3655
3660Asp Cys Val Ile Ser Ser Pro Arg Lys Gly Trp Ala Leu Leu His
Pro3665 3670 3675 3680Gly Arg
Leu Thr His Tyr His Glu Gly Leu Pro Thr Thr Trp Gly Thr
3685 3690 3695Arg Tyr Ile Met Val Ser Phe
Val Asp Pro 3700 37052711121DNAArtificial
SequenceSynthetic Construct 27atgacctcct cggggcctgg accccggttc ctgctgctgc
tgccgctgct gctgccccct 60gcggcctcag cctccgaccg gccccggggc cgagacccgg
tcaacccaga gaagctgctg 120gtgatcactg tggccacagc tgaaaccgag gggtacctgc
gtttcctgcg ctctgcggag 180ttcttcaact acactgtgcg gaccctgggc ctgggagagg
agtggcgagg gggtgatgtg 240gctcgaacag ttggtggagg acagaaggtc cggtggttaa
agaaggaaat ggagaaatac 300gctgaccggg aggatatgat catcatgttt gtggatagct
acgacgtgat tctggccggc 360agccccacag agctgctgaa gaagttcgtc cagagtggca
gccgcctgct cttctctgca 420gagagcttct gctggcccga gtgggggctg gcggagcagt
accctgaggt gggcacgggg 480aagcgcttcc tcaattctgg tggattcatc ggttttgcca
ccaccatcca ccaaatcgtg 540cgccagtgga agtacaagga tgatgacgac gaccagctgt
tctacacacg gctctacctg 600gacccaggac tgagggagaa actcagcctt aatctggatc
ataagtctcg gatctttcag 660aacctcaacg gggctttaga tgaagtggtt ttaaagtttg
atcggaaccg tgtgcgtatc 720cggaacgtgg cctacgacac gctccccatt gtggtccatg
gaaacggtcc cactaagctg 780cagctcaact acctgggaaa ctacgtcccc aatggctgga
ctcctgaggg aggctgtggc 840ttctgcaacc aggaccggag gacactcccg ggggggcagc
ctcccccccg ggtgtttctg 900gccgtgtttg tggaacagcc tactccgttt ctgccccgct
tcctgcagcg gctgctactc 960ctggactatc cccccgacag ggtcaccctt ttcctgcaca
acaacgaggt cttccatgaa 1020ccccacatcg ctgactcctg gccgcagctc caggaccact
tctcagctgt gaagctcgtg 1080gggccggagg aggctctgag cccaggcgag gccagggaca
tggccatgga cctgtgtcgg 1140caggaccccg agtgtgagtt ctacttcagc ctggacgccg
acgctgtcct caccaacctg 1200cagaccctgc gtatcctcat tgaggagaac aggaaggtga
tcgcccccat gctgtcccgc 1260cacggcaagc tgtggtccaa cttctggggc gccctgagcc
ccgatgagta ctacgcccgc 1320tccgaggact acgtggagct ggtgcagcgg aagcgagtgg
gtgtgtggaa tgtaccatac 1380atctcccagg cctatgtgat ccggggtgat accctgcgga
tggagctgcc ccagagggat 1440gtgttctcgg gcagtgacac agacccggac atggccttct
gtaagagctt tcgagacaag 1500ggcatcttcc tccatctgag caatcagcat gaatttggcc
ggctcctggc cacttccaga 1560tacgacacgg agcacctgca ccccgacctc tggcagatct
tcgacaaccc cgtcgactgg 1620aaggagcagt acatccacga gaactacagc cgggccctgg
aaggggaagg aatcgtggag 1680cagccatgcc cggacgtgta ctggttccca ctgctgtcag
aacaaatgtg tgatgagctg 1740gtggcagaga tggagcacta cggccagtgg tcaggcggcc
ggcatgagga ttcaaggctg 1800gctggaggct acgagaatgt gcccaccgtg gacatccaca
tgaagcaggt ggggtacgag 1860gaccagtggc tgcagctgct gcggacgtat gtgggcccca
tgaccgagag cctgtttccc 1920ggttaccaca ccaaggcgcg ggcggtgatg aactttgtgg
ttcgctaccg gccagacgag 1980cagccgtctc tgcggccaca ccacgactca tccaccttca
ccctcaacgt tgccctcaac 2040cacaagggcc tggactatga gggaggtggc tgccgcttcc
tgcgctacga ctgtgtgatc 2100tcctccccga ggaagggctg ggcactcctg caccccggcc
gcctcaccca ctaccacgag 2160gggctgccaa cgacctgggg cacacgctac atcatggtgt
cctttgtcga ccccggaagc 2220ggagtgaaac agactttgaa ttttgacctt ctcaagttgg
cgggagacgt ggagtccaac 2280cctggaccta cgctgcggct tctggtggcc gcgctctgcg
ccgggatcct ggcagaggcg 2340ccccgagtgc gagcccagca cagggagaga gtgacctgca
cgcgccttta cgccgctgac 2400attgtgttct tactggatgg ctcctcatcc attggccgca
gcaatttccg cgaggtccgc 2460agctttctcg aagggctggt gctgcctttc tctggagcag
ccagtgcaca gggtgtgcgc 2520tttgccacag tgcagtacag cgatgaccca cggacagagt
tcggcctgga tgcacttggc 2580tctgggggtg atgtgatccg cgccatccgt gagcttagct
acaagggggg caacactcgc 2640acaggggctg caattctcca tgtggctgac catgtcttcc
tgccccagct ggcccgacct 2700ggtgtcccca aggtctgcat cctgatcaca gacgggaagt
cccaggacct ggtggacaca 2760gctgcccaaa ggctgaaggg gcagggggtc aagctatttg
ctgtggggat caagaatgct 2820gaccctgagg agctgaagcg agttgcctca cagcccacca
gtgacttctt cttcttcgtc 2880aatgacttca gcatcttgag gacactactg cccctcgttt
cccggagagt gtgcacgact 2940gctggtggcg tgcctgtgac ccgacctccg gatgactcga
cctctgctcc acgagacctg 3000gtgctgtctg agccaagcag ccaatccttg agagtacagt
ggacagcggc cagtggccct 3060gtgactggct acaaggtcca gtacactcct ctgacggggc
tgggacagcc actgccgagt 3120gagcggcagg aggtgaacgt cccagctggt gagaccagtg
tgcggctgcg gggtctccgg 3180ccactgaccg agtaccaagt gactgtgatt gccctctacg
ccaacagcat cggggaggct 3240gtgagcggga cagctcggac cactgcccta gaagggccgg
aactgaccat ccagaatacc 3300acagcccaca gcctcctggt ggcctggcgg agtgtgccag
gtgccactgg ctaccgtgtg 3360acatggcggg tcctcagtgg tgggcccaca cagcagcagg
agctgggccc tgggcagggt 3420tcagtgttgc tgcgtgactt ggagcctggc acggactatg
aggtgaccgt gagcacccta 3480tttggccgca gtgtggggcc cgccacttcc ctgatggctc
gcactgacgc ttctgttgag 3540cagaccctgc gcccggtcat cctgggcccc acatccatcc
tcctttcctg gaacttggtg 3600cctgaggccc gtggctaccg gttggaatgg cggcgtgaga
ctggcttgga gccaccgcag 3660aaggtggtac tgccctctga tgtgacccgc taccagttgg
atgggctgca gccgggcact 3720gagtaccgcc tcacactcta cactctgctg gagggccacg
aggtggccac ccctgcaacc 3780gtggttccca ctggaccaga gctgcctgtg agccctgtaa
cagacctgca agccaccgag 3840ctgcccgggc agcgggtgcg agtgtcctgg agcccagtcc
ctggtgccac ccagtaccgc 3900atcattgtgc gcagcaccca gggggttgag cggaccctgg
tgcttcctgg gagtcagaca 3960gcattcgact tggatgacgt tcaggctggg cttagctaca
ctgtgcgggt gtctgctcga 4020gtgggtcccc gtgagggcag tgccagtgtc ctcactgtcc
gccgggagcc ggaaactcca 4080cttgctgttc cagggctgcg ggttgtggtg tcagatgcaa
cgcgagtgag ggtggcctgg 4140ggacccgtcc ctggagccag tggatttcgg attagctgga
gcacaggcag tggtccggag 4200tccagccaga cactgccccc agactctact gccacagaca
tcacagggct gcagcctgga 4260accacctacc aggtggctgt gtcggtactg cgaggcagag
aggagggccc tgctgcagtc 4320atcgtggctc gaacggaccc actgggccca gtgaggacgg
tccatgtgac tcaggccagc 4380agctcatctg tcaccattac ctggaccagg gttcctggcg
ccacaggata cagggtttcc 4440tggcactcag cccacggccc agagaaatcc cagttggttt
ctggggaggc cacggtggct 4500gagctggatg gactggagcc agatactgag tatacggtgc
atgtgagggc ccatgtggct 4560ggcgtggatg ggccccctgc ctctgtggtt gtgaggactg
cccctgagcc tgtgggtcgt 4620gtgtcgaggc tgcagatcct caatgcttcc agcgacgttc
tacggatcac ctgggtaggg 4680gtcactggag ccacagctta cagactggcc tggggccgga
gtgaaggcgg ccccatgagg 4740caccagatac tcccaggaaa cacagactct gcagagatcc
ggggtctcga aggtggagtc 4800agctactcag tgcgagtgac tgcacttgtc ggggaccgcg
agggcacacc tgtctccatt 4860gttgtcacta cgccgcctga ggctccgcca gccctgggga
cgcttcacgt ggtgcagcgc 4920ggggagcact cgctgaggct gcgctgggag ccggtgccca
gagcgcaggg cttccttctg 4980cactggcaac ctgagggtgg ccaggaacag tcccgggtcc
tggggcccga gctcagcagc 5040tatcacctgg acgggctgga gccagcgaca cagtaccgcg
tgaggctgag tgtcctaggg 5100ccagctggag aagggccctc tgcagaggtg actgcgcgca
ctgagtcacc tcgtgttcca 5160agcattgaac tacgtgtggt ggacacctcg atcgactcgg
tgactttggc ctggactcca 5220gtgtccaggg catccagcta catcctatcc tggcggccac
tcagaggccc tggccaggaa 5280gtgcctgggt ccccgcagac acttccaggg atctcaagct
cccagcgggt gacagggcta 5340gagcctggcg tctcttacat cttctccctg acgcctgtcc
tggatggtgt gcggggtcct 5400gaggcatctg tcacacagac gccagtgtgc ccccgtggcc
tggcggatgt ggtgttccta 5460ccacatgcca ctcaagacaa tgctcaccgt gcggaggcta
cgaggagggt cctggagcgt 5520ctggtgttgg cacttgggcc tcttgggcca caggcagttc
aggttggcct gctgtcttac 5580agtcatcggc cctccccact gttcccactg aatggctccc
atgaccttgg cattatcttg 5640caaaggatcc gtgacatgcc ctacatggac ccaagtggga
acaacctggg cacagccgtg 5700gtcacagctc acagatacat gttggcacca gatgctcctg
ggcgccgcca gcacgtacca 5760ggggtgatgg ttctgctagt ggatgaaccc ttgagaggtg
acatattcag ccccatccgt 5820gaggcccagg cttctgggct taatgtggtg atgttgggaa
tggctggagc ggacccagag 5880cagctgcgtc gcttggcgcc gggtatggac tctgtccaga
ccttcttcgc cgtggatgat 5940gggccaagcc tggaccaggc agtcagtggt ctggccacag
ccctgtgtca ggcatccttc 6000actactcagc cccggccaga gccctgccca gtgtattgtc
caaagggcca gaagggggaa 6060cctggagaga tgggcctgag aggacaagtt gggcctcctg
gcgaccctgg cctcccgggc 6120aggaccggtg ctcccggccc ccaggggccc cctggaagtg
ccactgccaa gggcgagagg 6180ggcttccctg gagcagatgg gcgtccaggc agccctggcc
gcgccgggaa tcctgggacc 6240cctggagccc ctggcctaaa gggctctcca gggttgcctg
gccctcgtgg ggacccggga 6300gagcgaggac ctcgaggccc aaagggggag ccgggggctc
ccggacaagt catcggaggt 6360gaaggacctg ggcttcctgg gcggaaaggg gaccctggac
catcgggccc ccctggacct 6420cgtggaccac tgggggaccc aggaccccgt ggccccccag
ggcttcctgg aacagccatg 6480aagggtgaca aaggcgatcg tggggagcgg ggtccccctg
gaccaggtga aggtggcatt 6540gctcctgggg agcctgggct gccgggtctt cccggaagcc
ctggacccca aggccccgtt 6600ggcccccctg gaaagaaagg agaaaaaggt gactctgagg
atggagctcc aggcctccca 6660ggacaacctg ggtctccggg tgagcagggc ccacggggac
ctcctggagc tattggcccc 6720aaaggtgacc ggggctttcc agggcccctg ggtgaggctg
gagagaaggg cgaacgtgga 6780cccccaggcc cagcgggatc ccgggggctg ccaggggttg
ctggacgtcc tggagccaag 6840ggtcctgaag ggccaccagg acccactggc cgccaaggag
agaaggggga gcctggtcgc 6900cctggggacc ctgcagtggt gggacctgct gttgctggac
ccaaaggaga aaagggagat 6960gtggggcccg ctgggcccag aggagctacc ggagtccaag
gggaacgggg cccacccggc 7020ttggttcttc ctggagaccc tggccccaag ggagaccctg
gagaccgggg tcccattggc 7080cttactggca gagcaggacc cccaggtgac tcagggcctc
ctggagagaa gggagaccct 7140gggcggcctg gccccccagg acctgttggc ccccgaggac
gagatggtga agttggagag 7200aaaggtgacg agggtcctcc gggtgacccg ggtttgcctg
gaaaagcagg cgagcgtggc 7260cttcgggggg cacctggagt tcgggggcct gtgggtgaaa
agggagacca gggagatcct 7320ggagaggatg gacgaaatgg cagccctgga tcatctggac
ccaagggtga ccgtggggag 7380ccgggtcccc caggaccccc gggacggctg gtagacacag
gacctggagc cagagagaag 7440ggagagcctg gggaccgcgg acaagagggt cctcgagggc
ccaagggtga tcctggcctc 7500cctggagccc ctggggaaag gggcattgaa gggtttcggg
gacccccagg cccacagggg 7560gacccaggtg tccgaggccc agcaggagaa aagggtgacc
ggggtccccc tgggctggat 7620ggccggagcg gactggatgg gaaaccagga gccgctgggc
cctctgggcc gaatggtgct 7680gcaggcaaag ctggggaccc agggagagac gggcttccag
gcctccgtgg agaacagggc 7740ctccctggcc cctctggtcc ccctggatta ccgggaaagc
caggcgagga tggcaaacct 7800ggcctgaatg gaaaaaacgg agaacctggg gaccctggag
aagacgggag gaagggagag 7860aaaggagatt caggcgcctc tgggagagaa ggtcgtgatg
gccccaaggg tgagcgtgga 7920gctcctggta tccttggacc ccaggggcct ccaggcctcc
cagggccagt gggccctcct 7980ggccagggtt ttcctggtgt cccaggaggc acgggcccca
agggtgaccg tggggagact 8040ggatccaaag gggagcaggg cctccctgga gagcgtggcc
tgcgaggaga gcctggaagt 8100gtgccgaatg tggatcggtt gctggaaact gctggcatca
aggcatctgc cctgcgggag 8160atcgtggaga cctgggatga gagctctggt agcttcctgc
ctgtgcccga acggcgtcga 8220ggccccaagg gggactcagg cgaacagggc cccccaggca
aggagggccc catcggcttt 8280cctggagaac gcgggctgaa gggcgaccgt ggagaccctg
gccctcaggg gccacctggt 8340ctggcccttg gggagagggg cccccccggg ccttccggcc
ttgccgggga gcctggaaag 8400cctggtattc ccgggctccc aggcagggct gggggtgtgg
gagaggcagg aaggccagga 8460gagaggggag aacggggaga gaaaggagaa cgtggagaac
agggcagaga tggccctcct 8520ggactccctg gaacccctgg gccccccgga ccccctggcc
ccaaggtgtc tgtggatgag 8580ccaggtcctg gactctctgg agaacaggga ccccctggac
tcaagggtgc taagggggag 8640ccgggcagca atggtgacca aggtcccaaa ggagacaggg
gtgtgccagg catcaaagga 8700gaccggggag agcctggacc gaggggtcag gacggcaacc
cgggtctacc aggagagcgt 8760ggtatggctg ggcctgaagg gaagccgggt ctgcagggtc
caagaggccc ccctggccca 8820gtgggtggtc atggagaccc tggaccacct ggtgccccgg
gtcttgctgg ccctgcagga 8880ccccaaggac cttctggcct gaagggggag cctggagaga
caggacctcc aggacggggc 8940ctgactggac ctactggagc tgtgggactt cctggacccc
ccggcccttc aggccttgtg 9000ggtccacagg ggtctccagg tttgcctgga caagtggggg
agacagggaa gccgggagcc 9060ccaggtcgag atggtgccag tggaaaagat ggagacagag
ggagccctgg tgtgccaggg 9120tcaccaggtc tgcctggccc tgtcggacct aaaggagaac
ctggccccac gggggcccct 9180ggacaggctg tggtcgggct ccctggagca aagggagaga
agggagcccc tggaggcctt 9240gctggagacc tggtgggtga gccgggagcc aaaggtgacc
gaggactgcc agggccgcga 9300ggcgagaagg gtgaagctgg ccgtgcaggg gagcccggag
accctgggga agatggtcag 9360aaaggggctc caggacccaa aggtttcaag ggtgacccag
gagtcggggt cccgggctcc 9420cctgggcctc ctggccctcc aggtgtgaag ggagatctgg
gcctccctgg cctgcccggt 9480gctcctggtg ttgttgggtt cccgggtcag acaggccctc
gaggagagat gggtcagcca 9540ggccctagtg gagagcgggg tctggcaggc cccccaggga
gagaaggaat cccaggaccc 9600ctggggccac ctggaccacc ggggtcagtg ggaccacctg
gggcctctgg actcaaagga 9660gacaagggag accctggagt agggctgcct gggccccgag
gcgagcgtgg ggagccaggc 9720atccggggtg aagatggccg ccccggccag gagggacccc
gaggactcac ggggccccct 9780ggcagcaggg gagagcgtgg ggagaagggt gatgttggga
gtgcaggact aaagggtgac 9840aagggagact cagctgtgat cctggggcct ccaggcccac
ggggtgccaa gggggacatg 9900ggtgaacgag ggcctcgggg cttggatggt gacaaaggac
ctcggggaga caatggggac 9960cctggtgaca agggcagcaa gggagagcct ggtgacaagg
gctcagccgg gttgccagga 10020ctgcgtggac tcctgggacc ccagggtcaa cctggtgcag
cagggatccc tggtgacccg 10080ggatccccag gaaaggatgg agtgcctggt atccgaggag
aaaaaggaga tgttggcttc 10140atgggtcccc ggggcctcaa gggtgaacgg ggagtgaagg
gagcctgtgg ccttgatgga 10200gagaagggag acaagggaga agctggtccc ccaggccgcc
ccgggctggc aggacacaaa 10260ggagagatgg gggagcctgg tgtgccgggc cagtcggggg
cccctggcaa ggagggcctg 10320atcggtccca agggtgaccg aggctttgac gggcagccag
gccccaaggg tgaccagggc 10380gagaaagggg agcggggaac cccaggaatt gggggcttcc
caggccccag tggaaatgat 10440ggctctgctg gtcccccagg gccacctggc agtgttggtc
ccagaggccc cgaaggactt 10500cagggccaga agggtgagcg aggtcccccc ggagagagag
tggtgggggc tcctggggtc 10560cctggagctc ctggcgagag aggggagcag gggcggccag
ggcctgccgg tcctcgaggc 10620gagaagggag aagctgcact gacggaggat gacatccggg
gctttgtgcg ccaagagatg 10680agtcagcact gtgcctgcca gggccagttc atcgcatctg
gatcacgacc cctccctagt 10740tatgctgcag acactgccgg ctcccagctc catgctgtgc
ctgtgctccg cgtctctcat 10800gcagaggagg aagagcgggt accccctgag gatgatgagt
actctgaata ctccgagtat 10860tctgtggagg agtaccagga ccctgaagct ccttgggata
gtgatgaccc ctgttccctg 10920ccactggatg agggctcctg cactgcctac accctgcgct
ggtaccatcg ggctgtgaca 10980ggcagcacag aggcctgtca cccttttgtc tatggtggct
gtggagggaa tgccaaccgt 11040tttgggaccc gtgaggcctg cgagcgccgc tgcccacccc
gggtggtcca gagccagggg 11100acaggtactg cccaggactg a
11121283706PRTArtificial SequenceSynthetic Construct
28Met Thr Ser Ser Gly Pro Gly Pro Arg Phe Leu Leu Leu Leu Pro Leu1
5 10 15Leu Leu Pro Pro Ala Ala
Ser Ala Ser Asp Arg Pro Arg Gly Arg Asp 20 25
30Pro Val Asn Pro Glu Lys Leu Leu Val Ile Thr Val Ala
Thr Ala Glu 35 40 45Thr Glu Gly
Tyr Leu Arg Phe Leu Arg Ser Ala Glu Phe Phe Asn Tyr 50
55 60Thr Val Arg Thr Leu Gly Leu Gly Glu Glu Trp Arg
Gly Gly Asp Val65 70 75
80Ala Arg Thr Val Gly Gly Gly Gln Lys Val Arg Trp Leu Lys Lys Glu
85 90 95Met Glu Lys Tyr Ala Asp
Arg Glu Asp Met Ile Ile Met Phe Val Asp 100
105 110Ser Tyr Asp Val Ile Leu Ala Gly Ser Pro Thr Glu
Leu Leu Lys Lys 115 120 125Phe Val
Gln Ser Gly Ser Arg Leu Leu Phe Ser Ala Glu Ser Phe Cys 130
135 140Trp Pro Glu Trp Gly Leu Ala Glu Gln Tyr Pro
Glu Val Gly Thr Gly145 150 155
160Lys Arg Phe Leu Asn Ser Gly Gly Phe Ile Gly Phe Ala Thr Thr Ile
165 170 175His Gln Ile Val
Arg Gln Trp Lys Tyr Lys Asp Asp Asp Asp Asp Gln 180
185 190Leu Phe Tyr Thr Arg Leu Tyr Leu Asp Pro Gly
Leu Arg Glu Lys Leu 195 200 205Ser
Leu Asn Leu Asp His Lys Ser Arg Ile Phe Gln Asn Leu Asn Gly 210
215 220Ala Leu Asp Glu Val Val Leu Lys Phe Asp
Arg Asn Arg Val Arg Ile225 230 235
240Arg Asn Val Ala Tyr Asp Thr Leu Pro Ile Val Val His Gly Asn
Gly 245 250 255Pro Thr Lys
Leu Gln Leu Asn Tyr Leu Gly Asn Tyr Val Pro Asn Gly 260
265 270Trp Thr Pro Glu Gly Gly Cys Gly Phe Cys
Asn Gln Asp Arg Arg Thr 275 280
285Leu Pro Gly Gly Gln Pro Pro Pro Arg Val Phe Leu Ala Val Phe Val 290
295 300Glu Gln Pro Thr Pro Phe Leu Pro
Arg Phe Leu Gln Arg Leu Leu Leu305 310
315 320Leu Asp Tyr Pro Pro Asp Arg Val Thr Leu Phe Leu
His Asn Asn Glu 325 330
335Val Phe His Glu Pro His Ile Ala Asp Ser Trp Pro Gln Leu Gln Asp
340 345 350His Phe Ser Ala Val Lys
Leu Val Gly Pro Glu Glu Ala Leu Ser Pro 355 360
365Gly Glu Ala Arg Asp Met Ala Met Asp Leu Cys Arg Gln Asp
Pro Glu 370 375 380Cys Glu Phe Tyr Phe
Ser Leu Asp Ala Asp Ala Val Leu Thr Asn Leu385 390
395 400Gln Thr Leu Arg Ile Leu Ile Glu Glu Asn
Arg Lys Val Ile Ala Pro 405 410
415Met Leu Ser Arg His Gly Lys Leu Trp Ser Asn Phe Trp Gly Ala Leu
420 425 430Ser Pro Asp Glu Tyr
Tyr Ala Arg Ser Glu Asp Tyr Val Glu Leu Val 435
440 445Gln Arg Lys Arg Val Gly Val Trp Asn Val Pro Tyr
Ile Ser Gln Ala 450 455 460Tyr Val Ile
Arg Gly Asp Thr Leu Arg Met Glu Leu Pro Gln Arg Asp465
470 475 480Val Phe Ser Gly Ser Asp Thr
Asp Pro Asp Met Ala Phe Cys Lys Ser 485
490 495Phe Arg Asp Lys Gly Ile Phe Leu His Leu Ser Asn
Gln His Glu Phe 500 505 510Gly
Arg Leu Leu Ala Thr Ser Arg Tyr Asp Thr Glu His Leu His Pro 515
520 525Asp Leu Trp Gln Ile Phe Asp Asn Pro
Val Asp Trp Lys Glu Gln Tyr 530 535
540Ile His Glu Asn Tyr Ser Arg Ala Leu Glu Gly Glu Gly Ile Val Glu545
550 555 560Gln Pro Cys Pro
Asp Val Tyr Trp Phe Pro Leu Leu Ser Glu Gln Met 565
570 575Cys Asp Glu Leu Val Ala Glu Met Glu His
Tyr Gly Gln Trp Ser Gly 580 585
590Gly Arg His Glu Asp Ser Arg Leu Ala Gly Gly Tyr Glu Asn Val Pro
595 600 605Thr Val Asp Ile His Met Lys
Gln Val Gly Tyr Glu Asp Gln Trp Leu 610 615
620Gln Leu Leu Arg Thr Tyr Val Gly Pro Met Thr Glu Ser Leu Phe
Pro625 630 635 640Gly Tyr
His Thr Lys Ala Arg Ala Val Met Asn Phe Val Val Arg Tyr
645 650 655Arg Pro Asp Glu Gln Pro Ser
Leu Arg Pro His His Asp Ser Ser Thr 660 665
670Phe Thr Leu Asn Val Ala Leu Asn His Lys Gly Leu Asp Tyr
Glu Gly 675 680 685Gly Gly Cys Arg
Phe Leu Arg Tyr Asp Cys Val Ile Ser Ser Pro Arg 690
695 700Lys Gly Trp Ala Leu Leu His Pro Gly Arg Leu Thr
His Tyr His Glu705 710 715
720Gly Leu Pro Thr Thr Trp Gly Thr Arg Tyr Ile Met Val Ser Phe Val
725 730 735Asp Pro Gly Ser Gly
Val Lys Gln Thr Leu Asn Phe Asp Leu Leu Lys 740
745 750Leu Ala Gly Asp Val Glu Ser Asn Pro Gly Pro Thr
Leu Arg Leu Leu 755 760 765Val Ala
Ala Leu Cys Ala Gly Ile Leu Ala Glu Ala Pro Arg Val Arg 770
775 780Ala Gln His Arg Glu Arg Val Thr Cys Thr Arg
Leu Tyr Ala Ala Asp785 790 795
800Ile Val Phe Leu Leu Asp Gly Ser Ser Ser Ile Gly Arg Ser Asn Phe
805 810 815Arg Glu Val Arg
Ser Phe Leu Glu Gly Leu Val Leu Pro Phe Ser Gly 820
825 830Ala Ala Ser Ala Gln Gly Val Arg Phe Ala Thr
Val Gln Tyr Ser Asp 835 840 845Asp
Pro Arg Thr Glu Phe Gly Leu Asp Ala Leu Gly Ser Gly Gly Asp 850
855 860Val Ile Arg Ala Ile Arg Glu Leu Ser Tyr
Lys Gly Gly Asn Thr Arg865 870 875
880Thr Gly Ala Ala Ile Leu His Val Ala Asp His Val Phe Leu Pro
Gln 885 890 895Leu Ala Arg
Pro Gly Val Pro Lys Val Cys Ile Leu Ile Thr Asp Gly 900
905 910Lys Ser Gln Asp Leu Val Asp Thr Ala Ala
Gln Arg Leu Lys Gly Gln 915 920
925Gly Val Lys Leu Phe Ala Val Gly Ile Lys Asn Ala Asp Pro Glu Glu 930
935 940Leu Lys Arg Val Ala Ser Gln Pro
Thr Ser Asp Phe Phe Phe Phe Val945 950
955 960Asn Asp Phe Ser Ile Leu Arg Thr Leu Leu Pro Leu
Val Ser Arg Arg 965 970
975Val Cys Thr Thr Ala Gly Gly Val Pro Val Thr Arg Pro Pro Asp Asp
980 985 990Ser Thr Ser Ala Pro Arg
Asp Leu Val Leu Ser Glu Pro Ser Ser Gln 995 1000
1005Ser Leu Arg Val Gln Trp Thr Ala Ala Ser Gly Pro Val Thr
Gly Tyr 1010 1015 1020Lys Val Gln Tyr
Thr Pro Leu Thr Gly Leu Gly Gln Pro Leu Pro Ser1025 1030
1035 1040Glu Arg Gln Glu Val Asn Val Pro Ala
Gly Glu Thr Ser Val Arg Leu 1045 1050
1055Arg Gly Leu Arg Pro Leu Thr Glu Tyr Gln Val Thr Val Ile Ala
Leu 1060 1065 1070Tyr Ala Asn
Ser Ile Gly Glu Ala Val Ser Gly Thr Ala Arg Thr Thr 1075
1080 1085Ala Leu Glu Gly Pro Glu Leu Thr Ile Gln Asn
Thr Thr Ala His Ser 1090 1095 1100Leu
Leu Val Ala Trp Arg Ser Val Pro Gly Ala Thr Gly Tyr Arg Val1105
1110 1115 1120Thr Trp Arg Val Leu Ser
Gly Gly Pro Thr Gln Gln Gln Glu Leu Gly 1125
1130 1135Pro Gly Gln Gly Ser Val Leu Leu Arg Asp Leu Glu
Pro Gly Thr Asp 1140 1145
1150Tyr Glu Val Thr Val Ser Thr Leu Phe Gly Arg Ser Val Gly Pro Ala
1155 1160 1165Thr Ser Leu Met Ala Arg Thr
Asp Ala Ser Val Glu Gln Thr Leu Arg 1170 1175
1180Pro Val Ile Leu Gly Pro Thr Ser Ile Leu Leu Ser Trp Asn Leu
Val1185 1190 1195 1200Pro Glu
Ala Arg Gly Tyr Arg Leu Glu Trp Arg Arg Glu Thr Gly Leu
1205 1210 1215Glu Pro Pro Gln Lys Val Val
Leu Pro Ser Asp Val Thr Arg Tyr Gln 1220 1225
1230Leu Asp Gly Leu Gln Pro Gly Thr Glu Tyr Arg Leu Thr Leu
Tyr Thr 1235 1240 1245Leu Leu Glu
Gly His Glu Val Ala Thr Pro Ala Thr Val Val Pro Thr 1250
1255 1260Gly Pro Glu Leu Pro Val Ser Pro Val Thr Asp Leu
Gln Ala Thr Glu1265 1270 1275
1280Leu Pro Gly Gln Arg Val Arg Val Ser Trp Ser Pro Val Pro Gly Ala
1285 1290 1295Thr Gln Tyr Arg Ile
Ile Val Arg Ser Thr Gln Gly Val Glu Arg Thr 1300
1305 1310Leu Val Leu Pro Gly Ser Gln Thr Ala Phe Asp Leu
Asp Asp Val Gln 1315 1320 1325Ala
Gly Leu Ser Tyr Thr Val Arg Val Ser Ala Arg Val Gly Pro Arg 1330
1335 1340Glu Gly Ser Ala Ser Val Leu Thr Val Arg
Arg Glu Pro Glu Thr Pro1345 1350 1355
1360Leu Ala Val Pro Gly Leu Arg Val Val Val Ser Asp Ala Thr Arg
Val 1365 1370 1375Arg Val
Ala Trp Gly Pro Val Pro Gly Ala Ser Gly Phe Arg Ile Ser 1380
1385 1390Trp Ser Thr Gly Ser Gly Pro Glu Ser
Ser Gln Thr Leu Pro Pro Asp 1395 1400
1405Ser Thr Ala Thr Asp Ile Thr Gly Leu Gln Pro Gly Thr Thr Tyr Gln
1410 1415 1420Val Ala Val Ser Val Leu Arg
Gly Arg Glu Glu Gly Pro Ala Ala Val1425 1430
1435 1440Ile Val Ala Arg Thr Asp Pro Leu Gly Pro Val Arg
Thr Val His Val 1445 1450
1455Thr Gln Ala Ser Ser Ser Ser Val Thr Ile Thr Trp Thr Arg Val Pro
1460 1465 1470Gly Ala Thr Gly Tyr Arg
Val Ser Trp His Ser Ala His Gly Pro Glu 1475 1480
1485Lys Ser Gln Leu Val Ser Gly Glu Ala Thr Val Ala Glu Leu
Asp Gly 1490 1495 1500Leu Glu Pro Asp
Thr Glu Tyr Thr Val His Val Arg Ala His Val Ala1505 1510
1515 1520Gly Val Asp Gly Pro Pro Ala Ser Val
Val Val Arg Thr Ala Pro Glu 1525 1530
1535Pro Val Gly Arg Val Ser Arg Leu Gln Ile Leu Asn Ala Ser Ser
Asp 1540 1545 1550Val Leu Arg
Ile Thr Trp Val Gly Val Thr Gly Ala Thr Ala Tyr Arg 1555
1560 1565Leu Ala Trp Gly Arg Ser Glu Gly Gly Pro Met
Arg His Gln Ile Leu 1570 1575 1580Pro
Gly Asn Thr Asp Ser Ala Glu Ile Arg Gly Leu Glu Gly Gly Val1585
1590 1595 1600Ser Tyr Ser Val Arg Val
Thr Ala Leu Val Gly Asp Arg Glu Gly Thr 1605
1610 1615Pro Val Ser Ile Val Val Thr Thr Pro Pro Glu Ala
Pro Pro Ala Leu 1620 1625
1630Gly Thr Leu His Val Val Gln Arg Gly Glu His Ser Leu Arg Leu Arg
1635 1640 1645Trp Glu Pro Val Pro Arg Ala
Gln Gly Phe Leu Leu His Trp Gln Pro 1650 1655
1660Glu Gly Gly Gln Glu Gln Ser Arg Val Leu Gly Pro Glu Leu Ser
Ser1665 1670 1675 1680Tyr His
Leu Asp Gly Leu Glu Pro Ala Thr Gln Tyr Arg Val Arg Leu
1685 1690 1695Ser Val Leu Gly Pro Ala Gly
Glu Gly Pro Ser Ala Glu Val Thr Ala 1700 1705
1710Arg Thr Glu Ser Pro Arg Val Pro Ser Ile Glu Leu Arg Val
Val Asp 1715 1720 1725Thr Ser Ile
Asp Ser Val Thr Leu Ala Trp Thr Pro Val Ser Arg Ala 1730
1735 1740Ser Ser Tyr Ile Leu Ser Trp Arg Pro Leu Arg Gly
Pro Gly Gln Glu1745 1750 1755
1760Val Pro Gly Ser Pro Gln Thr Leu Pro Gly Ile Ser Ser Ser Gln Arg
1765 1770 1775Val Thr Gly Leu Glu
Pro Gly Val Ser Tyr Ile Phe Ser Leu Thr Pro 1780
1785 1790Val Leu Asp Gly Val Arg Gly Pro Glu Ala Ser Val
Thr Gln Thr Pro 1795 1800 1805Val
Cys Pro Arg Gly Leu Ala Asp Val Val Phe Leu Pro His Ala Thr 1810
1815 1820Gln Asp Asn Ala His Arg Ala Glu Ala Thr
Arg Arg Val Leu Glu Arg1825 1830 1835
1840Leu Val Leu Ala Leu Gly Pro Leu Gly Pro Gln Ala Val Gln Val
Gly 1845 1850 1855Leu Leu
Ser Tyr Ser His Arg Pro Ser Pro Leu Phe Pro Leu Asn Gly 1860
1865 1870Ser His Asp Leu Gly Ile Ile Leu Gln
Arg Ile Arg Asp Met Pro Tyr 1875 1880
1885Met Asp Pro Ser Gly Asn Asn Leu Gly Thr Ala Val Val Thr Ala His
1890 1895 1900Arg Tyr Met Leu Ala Pro Asp
Ala Pro Gly Arg Arg Gln His Val Pro1905 1910
1915 1920Gly Val Met Val Leu Leu Val Asp Glu Pro Leu Arg
Gly Asp Ile Phe 1925 1930
1935Ser Pro Ile Arg Glu Ala Gln Ala Ser Gly Leu Asn Val Val Met Leu
1940 1945 1950Gly Met Ala Gly Ala Asp
Pro Glu Gln Leu Arg Arg Leu Ala Pro Gly 1955 1960
1965Met Asp Ser Val Gln Thr Phe Phe Ala Val Asp Asp Gly Pro
Ser Leu 1970 1975 1980Asp Gln Ala Val
Ser Gly Leu Ala Thr Ala Leu Cys Gln Ala Ser Phe1985 1990
1995 2000Thr Thr Gln Pro Arg Pro Glu Pro Cys
Pro Val Tyr Cys Pro Lys Gly 2005 2010
2015Gln Lys Gly Glu Pro Gly Glu Met Gly Leu Arg Gly Gln Val Gly
Pro 2020 2025 2030Pro Gly Asp
Pro Gly Leu Pro Gly Arg Thr Gly Ala Pro Gly Pro Gln 2035
2040 2045Gly Pro Pro Gly Ser Ala Thr Ala Lys Gly Glu
Arg Gly Phe Pro Gly 2050 2055 2060Ala
Asp Gly Arg Pro Gly Ser Pro Gly Arg Ala Gly Asn Pro Gly Thr2065
2070 2075 2080Pro Gly Ala Pro Gly Leu
Lys Gly Ser Pro Gly Leu Pro Gly Pro Arg 2085
2090 2095Gly Asp Pro Gly Glu Arg Gly Pro Arg Gly Pro Lys
Gly Glu Pro Gly 2100 2105
2110Ala Pro Gly Gln Val Ile Gly Gly Glu Gly Pro Gly Leu Pro Gly Arg
2115 2120 2125Lys Gly Asp Pro Gly Pro Ser
Gly Pro Pro Gly Pro Arg Gly Pro Leu 2130 2135
2140Gly Asp Pro Gly Pro Arg Gly Pro Pro Gly Leu Pro Gly Thr Ala
Met2145 2150 2155 2160Lys Gly
Asp Lys Gly Asp Arg Gly Glu Arg Gly Pro Pro Gly Pro Gly
2165 2170 2175Glu Gly Gly Ile Ala Pro Gly
Glu Pro Gly Leu Pro Gly Leu Pro Gly 2180 2185
2190Ser Pro Gly Pro Gln Gly Pro Val Gly Pro Pro Gly Lys Lys
Gly Glu 2195 2200 2205Lys Gly Asp
Ser Glu Asp Gly Ala Pro Gly Leu Pro Gly Gln Pro Gly 2210
2215 2220Ser Pro Gly Glu Gln Gly Pro Arg Gly Pro Pro Gly
Ala Ile Gly Pro2225 2230 2235
2240Lys Gly Asp Arg Gly Phe Pro Gly Pro Leu Gly Glu Ala Gly Glu Lys
2245 2250 2255Gly Glu Arg Gly Pro
Pro Gly Pro Ala Gly Ser Arg Gly Leu Pro Gly 2260
2265 2270Val Ala Gly Arg Pro Gly Ala Lys Gly Pro Glu Gly
Pro Pro Gly Pro 2275 2280 2285Thr
Gly Arg Gln Gly Glu Lys Gly Glu Pro Gly Arg Pro Gly Asp Pro 2290
2295 2300Ala Val Val Gly Pro Ala Val Ala Gly Pro
Lys Gly Glu Lys Gly Asp2305 2310 2315
2320Val Gly Pro Ala Gly Pro Arg Gly Ala Thr Gly Val Gln Gly Glu
Arg 2325 2330 2335Gly Pro
Pro Gly Leu Val Leu Pro Gly Asp Pro Gly Pro Lys Gly Asp 2340
2345 2350Pro Gly Asp Arg Gly Pro Ile Gly Leu
Thr Gly Arg Ala Gly Pro Pro 2355 2360
2365Gly Asp Ser Gly Pro Pro Gly Glu Lys Gly Asp Pro Gly Arg Pro Gly
2370 2375 2380Pro Pro Gly Pro Val Gly Pro
Arg Gly Arg Asp Gly Glu Val Gly Glu2385 2390
2395 2400Lys Gly Asp Glu Gly Pro Pro Gly Asp Pro Gly Leu
Pro Gly Lys Ala 2405 2410
2415Gly Glu Arg Gly Leu Arg Gly Ala Pro Gly Val Arg Gly Pro Val Gly
2420 2425 2430Glu Lys Gly Asp Gln Gly
Asp Pro Gly Glu Asp Gly Arg Asn Gly Ser 2435 2440
2445Pro Gly Ser Ser Gly Pro Lys Gly Asp Arg Gly Glu Pro Gly
Pro Pro 2450 2455 2460Gly Pro Pro Gly
Arg Leu Val Asp Thr Gly Pro Gly Ala Arg Glu Lys2465 2470
2475 2480Gly Glu Pro Gly Asp Arg Gly Gln Glu
Gly Pro Arg Gly Pro Lys Gly 2485 2490
2495Asp Pro Gly Leu Pro Gly Ala Pro Gly Glu Arg Gly Ile Glu Gly
Phe 2500 2505 2510Arg Gly Pro
Pro Gly Pro Gln Gly Asp Pro Gly Val Arg Gly Pro Ala 2515
2520 2525Gly Glu Lys Gly Asp Arg Gly Pro Pro Gly Leu
Asp Gly Arg Ser Gly 2530 2535 2540Leu
Asp Gly Lys Pro Gly Ala Ala Gly Pro Ser Gly Pro Asn Gly Ala2545
2550 2555 2560Ala Gly Lys Ala Gly Asp
Pro Gly Arg Asp Gly Leu Pro Gly Leu Arg 2565
2570 2575Gly Glu Gln Gly Leu Pro Gly Pro Ser Gly Pro Pro
Gly Leu Pro Gly 2580 2585
2590Lys Pro Gly Glu Asp Gly Lys Pro Gly Leu Asn Gly Lys Asn Gly Glu
2595 2600 2605Pro Gly Asp Pro Gly Glu Asp
Gly Arg Lys Gly Glu Lys Gly Asp Ser 2610 2615
2620Gly Ala Ser Gly Arg Glu Gly Arg Asp Gly Pro Lys Gly Glu Arg
Gly2625 2630 2635 2640Ala Pro
Gly Ile Leu Gly Pro Gln Gly Pro Pro Gly Leu Pro Gly Pro
2645 2650 2655Val Gly Pro Pro Gly Gln Gly
Phe Pro Gly Val Pro Gly Gly Thr Gly 2660 2665
2670Pro Lys Gly Asp Arg Gly Glu Thr Gly Ser Lys Gly Glu Gln
Gly Leu 2675 2680 2685Pro Gly Glu
Arg Gly Leu Arg Gly Glu Pro Gly Ser Val Pro Asn Val 2690
2695 2700Asp Arg Leu Leu Glu Thr Ala Gly Ile Lys Ala Ser
Ala Leu Arg Glu2705 2710 2715
2720Ile Val Glu Thr Trp Asp Glu Ser Ser Gly Ser Phe Leu Pro Val Pro
2725 2730 2735Glu Arg Arg Arg Gly
Pro Lys Gly Asp Ser Gly Glu Gln Gly Pro Pro 2740
2745 2750Gly Lys Glu Gly Pro Ile Gly Phe Pro Gly Glu Arg
Gly Leu Lys Gly 2755 2760 2765Asp
Arg Gly Asp Pro Gly Pro Gln Gly Pro Pro Gly Leu Ala Leu Gly 2770
2775 2780Glu Arg Gly Pro Pro Gly Pro Ser Gly Leu
Ala Gly Glu Pro Gly Lys2785 2790 2795
2800Pro Gly Ile Pro Gly Leu Pro Gly Arg Ala Gly Gly Val Gly Glu
Ala 2805 2810 2815Gly Arg
Pro Gly Glu Arg Gly Glu Arg Gly Glu Lys Gly Glu Arg Gly 2820
2825 2830Glu Gln Gly Arg Asp Gly Pro Pro Gly
Leu Pro Gly Thr Pro Gly Pro 2835 2840
2845Pro Gly Pro Pro Gly Pro Lys Val Ser Val Asp Glu Pro Gly Pro Gly
2850 2855 2860Leu Ser Gly Glu Gln Gly Pro
Pro Gly Leu Lys Gly Ala Lys Gly Glu2865 2870
2875 2880Pro Gly Ser Asn Gly Asp Gln Gly Pro Lys Gly Asp
Arg Gly Val Pro 2885 2890
2895Gly Ile Lys Gly Asp Arg Gly Glu Pro Gly Pro Arg Gly Gln Asp Gly
2900 2905 2910Asn Pro Gly Leu Pro Gly
Glu Arg Gly Met Ala Gly Pro Glu Gly Lys 2915 2920
2925Pro Gly Leu Gln Gly Pro Arg Gly Pro Pro Gly Pro Val Gly
Gly His 2930 2935 2940Gly Asp Pro Gly
Pro Pro Gly Ala Pro Gly Leu Ala Gly Pro Ala Gly2945 2950
2955 2960Pro Gln Gly Pro Ser Gly Leu Lys Gly
Glu Pro Gly Glu Thr Gly Pro 2965 2970
2975Pro Gly Arg Gly Leu Thr Gly Pro Thr Gly Ala Val Gly Leu Pro
Gly 2980 2985 2990Pro Pro Gly
Pro Ser Gly Leu Val Gly Pro Gln Gly Ser Pro Gly Leu 2995
3000 3005Pro Gly Gln Val Gly Glu Thr Gly Lys Pro Gly
Ala Pro Gly Arg Asp 3010 3015 3020Gly
Ala Ser Gly Lys Asp Gly Asp Arg Gly Ser Pro Gly Val Pro Gly3025
3030 3035 3040Ser Pro Gly Leu Pro Gly
Pro Val Gly Pro Lys Gly Glu Pro Gly Pro 3045
3050 3055Thr Gly Ala Pro Gly Gln Ala Val Val Gly Leu Pro
Gly Ala Lys Gly 3060 3065
3070Glu Lys Gly Ala Pro Gly Gly Leu Ala Gly Asp Leu Val Gly Glu Pro
3075 3080 3085Gly Ala Lys Gly Asp Arg Gly
Leu Pro Gly Pro Arg Gly Glu Lys Gly 3090 3095
3100Glu Ala Gly Arg Ala Gly Glu Pro Gly Asp Pro Gly Glu Asp Gly
Gln3105 3110 3115 3120Lys Gly
Ala Pro Gly Pro Lys Gly Phe Lys Gly Asp Pro Gly Val Gly
3125 3130 3135Val Pro Gly Ser Pro Gly Pro
Pro Gly Pro Pro Gly Val Lys Gly Asp 3140 3145
3150Leu Gly Leu Pro Gly Leu Pro Gly Ala Pro Gly Val Val Gly
Phe Pro 3155 3160 3165Gly Gln Thr
Gly Pro Arg Gly Glu Met Gly Gln Pro Gly Pro Ser Gly 3170
3175 3180Glu Arg Gly Leu Ala Gly Pro Pro Gly Arg Glu Gly
Ile Pro Gly Pro3185 3190 3195
3200Leu Gly Pro Pro Gly Pro Pro Gly Ser Val Gly Pro Pro Gly Ala Ser
3205 3210 3215Gly Leu Lys Gly Asp
Lys Gly Asp Pro Gly Val Gly Leu Pro Gly Pro 3220
3225 3230Arg Gly Glu Arg Gly Glu Pro Gly Ile Arg Gly Glu
Asp Gly Arg Pro 3235 3240 3245Gly
Gln Glu Gly Pro Arg Gly Leu Thr Gly Pro Pro Gly Ser Arg Gly 3250
3255 3260Glu Arg Gly Glu Lys Gly Asp Val Gly Ser
Ala Gly Leu Lys Gly Asp3265 3270 3275
3280Lys Gly Asp Ser Ala Val Ile Leu Gly Pro Pro Gly Pro Arg Gly
Ala 3285 3290 3295Lys Gly
Asp Met Gly Glu Arg Gly Pro Arg Gly Leu Asp Gly Asp Lys 3300
3305 3310Gly Pro Arg Gly Asp Asn Gly Asp Pro
Gly Asp Lys Gly Ser Lys Gly 3315 3320
3325Glu Pro Gly Asp Lys Gly Ser Ala Gly Leu Pro Gly Leu Arg Gly Leu
3330 3335 3340Leu Gly Pro Gln Gly Gln Pro
Gly Ala Ala Gly Ile Pro Gly Asp Pro3345 3350
3355 3360Gly Ser Pro Gly Lys Asp Gly Val Pro Gly Ile Arg
Gly Glu Lys Gly 3365 3370
3375Asp Val Gly Phe Met Gly Pro Arg Gly Leu Lys Gly Glu Arg Gly Val
3380 3385 3390Lys Gly Ala Cys Gly Leu
Asp Gly Glu Lys Gly Asp Lys Gly Glu Ala 3395 3400
3405Gly Pro Pro Gly Arg Pro Gly Leu Ala Gly His Lys Gly Glu
Met Gly 3410 3415 3420Glu Pro Gly Val
Pro Gly Gln Ser Gly Ala Pro Gly Lys Glu Gly Leu3425 3430
3435 3440Ile Gly Pro Lys Gly Asp Arg Gly Phe
Asp Gly Gln Pro Gly Pro Lys 3445 3450
3455Gly Asp Gln Gly Glu Lys Gly Glu Arg Gly Thr Pro Gly Ile Gly
Gly 3460 3465 3470Phe Pro Gly
Pro Ser Gly Asn Asp Gly Ser Ala Gly Pro Pro Gly Pro 3475
3480 3485Pro Gly Ser Val Gly Pro Arg Gly Pro Glu Gly
Leu Gln Gly Gln Lys 3490 3495 3500Gly
Glu Arg Gly Pro Pro Gly Glu Arg Val Val Gly Ala Pro Gly Val3505
3510 3515 3520Pro Gly Ala Pro Gly Glu
Arg Gly Glu Gln Gly Arg Pro Gly Pro Ala 3525
3530 3535Gly Pro Arg Gly Glu Lys Gly Glu Ala Ala Leu Thr
Glu Asp Asp Ile 3540 3545
3550Arg Gly Phe Val Arg Gln Glu Met Ser Gln His Cys Ala Cys Gln Gly
3555 3560 3565Gln Phe Ile Ala Ser Gly Ser
Arg Pro Leu Pro Ser Tyr Ala Ala Asp 3570 3575
3580Thr Ala Gly Ser Gln Leu His Ala Val Pro Val Leu Arg Val Ser
His3585 3590 3595 3600Ala Glu
Glu Glu Glu Arg Val Pro Pro Glu Asp Asp Glu Tyr Ser Glu
3605 3610 3615Tyr Ser Glu Tyr Ser Val Glu
Glu Tyr Gln Asp Pro Glu Ala Pro Trp 3620 3625
3630Asp Ser Asp Asp Pro Cys Ser Leu Pro Leu Asp Glu Gly Ser
Cys Thr 3635 3640 3645Ala Tyr Thr
Leu Arg Trp Tyr His Arg Ala Val Thr Gly Ser Thr Glu 3650
3655 3660Ala Cys His Pro Phe Val Tyr Gly Gly Cys Gly Gly
Asn Ala Asn Arg3665 3670 3675
3680Phe Gly Thr Arg Glu Ala Cys Glu Arg Arg Cys Pro Pro Arg Val Val
3685 3690 3695Gln Ser Gln Gly Thr
Gly Thr Ala Gln Asp 3700 3705291299DNAHomo
sapiens 29atgaccacct ccatccgcca gttcacctcc tccagctcca tcaagggctc
ctccggcctg 60gggggcggct cgtcccgcac ctcctgccgg ctgtctggcg gcctgggtgc
cggctcctgc 120aggctgggat ctgctggcgg cctgggcagc accctcgggg gtagcagcta
ctccagctgc 180tacagctttg gctctggtgg tggctatggc agcagctttg ggggtgttga
tgggctgctg 240gctggaggtg agaaggccac catgcagaac ctcaatgacc gcctggcctc
ctacctggac 300aaggtgcgtg ccctggagga ggccaacact gagctggagg tgaagatccg
tgactggtac 360cagaggcagg ccccggggcc cgcccgtgac tacagccagt actacaggac
aattgaggag 420ctgcagaaca agatcctcac agccaccgtg gacaatgcca acatcctgct
acagattgac 480aatgcccgtc tggctgctga tgacttccgc accaagtttg agacagagca
ggccctgcgc 540ctgagtgtgg aggccgacat caatggcctg cgcagggtgc tggatgagct
gaccctggcc 600agagccgacc tggagatgca gattgagaac ctcaaggagg agctggccta
cctgaagaag 660aaccacgagg aggagatgaa cgccctgcga ggccaggtgg gtggtgagat
caatgtggag 720atggacgctg ccccaggcgt ggacctgagc cgcatcctca acgagatgcg
tgaccagtat 780gagaagatgg cagagaagaa ccgcaaggat gccgaggatt ggttcttcag
caagacagag 840gaactgaacc gcgaggtggc caccaacagt gagctggtgc agagtggcaa
gagtgagatc 900tcggagctcc ggcgcaccat gcaggccttg gagatagagc tgcagtccca
gctcagcatg 960aaagcatccc tggagggcaa cctggcggag acagagaacc gctactgcgt
gcagctgtcc 1020cagatccagg ggctgattgg cagcgtggag gagcagctgg cccagcttcg
ctgcgagatg 1080gagcagcaga accaggaata caaaatcctg ctggatgtga agacgcggct
ggagcaggag 1140attgccacct accgccgcct gctggaggga gaggatgccc acctgactca
gtacaagaaa 1200gaaccggtga ccacccgtca ggtgcgtacc attgtggaag aggtccagga
tggcaaggtc 1260atctcctccc gcgagcaggt ccaccagacc acccgctga
129930432PRTHomo sapiens 30Met Thr Thr Ser Ile Arg Gln Phe Thr
Ser Ser Ser Ser Ile Lys Gly1 5 10
15Ser Ser Gly Leu Gly Gly Gly Ser Ser Arg Thr Ser Cys Arg Leu
Ser 20 25 30Gly Gly Leu Gly
Ala Gly Ser Cys Arg Leu Gly Ser Ala Gly Gly Leu 35
40 45Gly Ser Thr Leu Gly Gly Ser Ser Tyr Ser Ser Cys
Tyr Ser Phe Gly 50 55 60Ser Gly Gly
Gly Tyr Gly Ser Ser Phe Gly Gly Val Asp Gly Leu Leu65 70
75 80Ala Gly Gly Glu Lys Ala Thr Met
Gln Asn Leu Asn Asp Arg Leu Ala 85 90
95Ser Tyr Leu Asp Lys Val Arg Ala Leu Glu Glu Ala Asn Thr
Glu Leu 100 105 110Glu Val Lys
Ile Arg Asp Trp Tyr Gln Arg Gln Ala Pro Gly Pro Ala 115
120 125Arg Asp Tyr Ser Gln Tyr Tyr Arg Thr Ile Glu
Glu Leu Gln Asn Lys 130 135 140Ile Leu
Thr Ala Thr Val Asp Asn Ala Asn Ile Leu Leu Gln Ile Asp145
150 155 160Asn Ala Arg Leu Ala Ala Asp
Asp Phe Arg Thr Lys Phe Glu Thr Glu 165
170 175Gln Ala Leu Arg Leu Ser Val Glu Ala Asp Ile Asn
Gly Leu Arg Arg 180 185 190Val
Leu Asp Glu Leu Thr Leu Ala Arg Ala Asp Leu Glu Met Gln Ile 195
200 205Glu Asn Leu Lys Glu Glu Leu Ala Tyr
Leu Lys Lys Asn His Glu Glu 210 215
220Glu Met Asn Ala Leu Arg Gly Gln Val Gly Gly Glu Ile Asn Val Glu225
230 235 240Met Asp Ala Ala
Pro Gly Val Asp Leu Ser Arg Ile Leu Asn Glu Met 245
250 255Arg Asp Gln Tyr Glu Lys Met Ala Glu Lys
Asn Arg Lys Asp Ala Glu 260 265
270Asp Trp Phe Phe Ser Lys Thr Glu Glu Leu Asn Arg Glu Val Ala Thr
275 280 285Asn Ser Glu Leu Val Gln Ser
Gly Lys Ser Glu Ile Ser Glu Leu Arg 290 295
300Arg Thr Met Gln Ala Leu Glu Ile Glu Leu Gln Ser Gln Leu Ser
Met305 310 315 320Lys Ala
Ser Leu Glu Gly Asn Leu Ala Glu Thr Glu Asn Arg Tyr Cys
325 330 335Val Gln Leu Ser Gln Ile Gln
Gly Leu Ile Gly Ser Val Glu Glu Gln 340 345
350Leu Ala Gln Leu Arg Cys Glu Met Glu Gln Gln Asn Gln Glu
Tyr Lys 355 360 365Ile Leu Leu Asp
Val Lys Thr Arg Leu Glu Gln Glu Ile Ala Thr Tyr 370
375 380Arg Arg Leu Leu Glu Gly Glu Asp Ala His Leu Thr
Gln Tyr Lys Lys385 390 395
400Glu Pro Val Thr Thr Arg Gln Val Arg Thr Ile Val Glu Glu Val Gln
405 410 415Asp Gly Lys Val Ile
Ser Ser Arg Glu Gln Val His Gln Thr Thr Arg 420
425 430
User Contributions:
Comment about this patent or add new information about this topic: