Patent application title: BACTERIAL STRAINS WITH TOXIN COMPLEX FOR INSECT CONTROL
Inventors:
IPC8 Class: AC12N1582FI
USPC Class:
1 1
Class name:
Publication date: 2022-06-23
Patent application number: 20220195454
Abstract:
Biological strains, compositions, and methods of using the strains and
compositions for reducing overall insect damage.Claims:
1. A composition comprising an agriculturally acceptable carrier, a plant
or a plant part, and a bacterial strain having a 16S rDNA sequence
comprising at least 95% sequence identity to any one of SEQ ID NOs:
37-39, wherein the bacterial strain further comprises an IPD126 gene, and
wherein the bacterial strain has insecticidal activity.
2. The composition of claim 1, wherein the bacterial strain is a Pantoea agglomerans.
3. The composition of claim 1, wherein the bacterial strain is a Pantoea agglomerans strain PMC3671E3-1 (NRRL Deposit No. B-67697), a Pantoea agglomerans strain PMC3671E9-1 (NRRL Deposit No. B-67698), or a Pantoea agglomerans strain PMCJ4082D4-1 (NRRL Deposit No. B-67699), or a progeny, mutant, or variant thereof.
4. The composition of claim 1, wherein the IPD126 gene comprises a nucleic acid sequence encoding a polypeptide, wherein the polypeptide has at least 90% sequence identity to any one of SEQ ID NOs: 19-36.
5. The composition of claim 4, wherein the nucleic acid sequence comprises at least 90% sequence identity to any one of SEQ ID NOs: 1-18.
6. The composition of claim 1, wherein the composition further comprises a biocontrol agent selected from the group consisting of a bacteria, a fungus, a yeast, a protozoa, a virus, an entomopathogenic nematode, a botanical extract, a protein, a nucleic acid, a secondary metabolite, and an inoculant.
7. The composition of claim 1, wherein the composition further comprises an agrochemically active compound selected from the group consisting of an insecticide, a fungicide, a bactericide, and a nematicide.
8. The composition of claim 1, wherein the composition further comprises a compound selected from the group consisting of a safener, a lipo-chitooligosaccharide, a triglucosamine lipoglycine salt, an isoflavone, and a ryanodine receptor modulator.
9. The composition of claim 1, wherein the plant or the plant part is genetically modified.
10. A fermantate broth, wherein the fermentate broth is produced using a bacterial strain having a 16S rDNA sequence comprising at least 95% sequence identity to any one of SEQ ID NOs: 37-39, wherein the bacterial strain further comprises an IPD126 gene, and wherein the fermentate broth has insecticidal activity.
11. The fermentate broth of claim 10, wherein the bacterial strain is a Pantoea agglomerans.
12. The fermentate broth of claim 11, wherein the bacterial strain is a Pantoea agglomerans strain PMC3671E3-1 (NRRL Deposit No. B-67697), a Pantoea agglomerans strain PMC3671E9-1 (NRRL Deposit No. B-67698), or a Pantoea agglomerans strain PMCJ4082D4-1 (NRRL Deposit No. B-67699), or a progeny, mutant, or variant thereof.
13. The fermentate broth of claim 10, wherein the IPD126 gene comprises a nucleic acid sequence encoding a polypeptide, wherein the polypeptide has at least 90% sequence identity to any one of SEQ ID NOs: 19-36.
14. The fermentate broth of claim 13, wherein the nucleic acid sequence comprises at least 90% sequence identity to any one of SEQ ID NOs: 1-18.
15. A composition comprising the fermentate broth of claim 10, wherein the composition further comprises a biocontrol agent selected from the group consisting of a bacteria, a fungus, a yeast, a protozoa, a virus, an entomopathogenic nematode, a botanical extract, a protein, a nucleic acid, a secondary metabolite, and an innoculant.
16. A composition comprising the fermentate broth of claim 10, wherein the composition further comprises an agrochemically active compound selected from the group consisting of an insecticide, a fungicide, a bactericide, and a nematicide.
17. A composition comprising the fermentate broth of claim 10, wherein the composition further comprises a compound selected from the group consisting of a safener, a lipo-chitooligosaccharide, a triglucosamine lipoglycine salt, an isoflavone, and a ryanodine receptor modulator.
18. A method for controlling a plant pathogen, pest, or insect comprising applying to a plant, a plant part, or an environment of a plant or a plant part bacterial strain or a fermentate broth produced by a bacterial strain, wherein the bacterial strain has a 16S rDNA sequence comprising at least 95% sequence identity to any one of SEQ ID NOs: 37-39, wherein the bacterial strain further comprises an IPD126 gene, and wherein the bacterial strain has insecticidal activity.
19. The method of claim 18, wherein the bacterial strain is a Pantoea agglomerans.
20. The method of claim 18, wherein the bacterial strain is a Pantoea agglomerans strain PMC3671E3-1 (NRRL Deposit No. B-67697), a Pantoea agglomerans strain PMC3671E9-1 (NRRL Deposit No. B-67698), or a Pantoea agglomerans strain PMCJ4082D4-1 (NRRL Deposit No. B-67699), or a progeny, mutant, or variant thereof.
21. The method of claim 18, wherein the IPD126 gene comprises a nucleic acid sequence encoding a polypeptide, wherein the polypeptide has at least 90% sequence identity to any one of SEQ ID NOs: 19-36.
22. The method of claim 21, wherein the nucleic acid sequence comprises at least 90% sequence identity to any one of SEQ ID NOs: 1-18.
23. The method of claim 18, further comprising applying to the plant, plant part, seed, or environment of the plant or plant part with an agriculturally acceptable carrier.
24. The method of claim 18, wherein the composition further comprises applying to the plant, plant part, or environment of the plant or plant part a biocontrol agent selected from the group consisting of a bacteria, a fungus, a yeast, a protozoa, a virus, an entomopathogenic nematode, a botanical extract, a protein, a nucleic acid, a secondary metabolite, and an innoculant.
25. The method of claim 18, wherein the composition further comprises applying to the plant, plant part, or environment of the plant or the plant part an agrochemically active compound selected from the group consisting of an insecticide, a fungicide, a bactericide, and a nematicide.
26. The method of claim 18, wherein the composition further comprises applying to the plant, plant part, or environment of the plant or the plant part a compound selected from the group consisting of a safener, a lipo-chitooligosaccharide, a triglucosamine lipoglycine salt, an isoflavone, and a ryanodine receptor modulator.
27. The method of claim 18, wherein the plant, the plant part, or the environment of the plant or the plant part comprises a genetically modified plant, a genetically modified plant part, or an environment of a genetically modified plant or a genetically modified plant part.
28. A recombinant polynucleotide encoding an insecticidal polypeptide an IPD126 polypeptide comprising an amino acid sequence having greater than 80% sequence identity compared to the amino acid sequence of any one of SEQ ID NOs: 19-36.
29. The recombinant polynucleotide of claim 28, wherein the recombinant polynucleotide comprises the polynucleotide of any one of SEQ ID NOs: 1-18.
30. A DNA construct comprising, the recombinant polynucleotide of claim 28 and a heterologous regulatory sequence operably linked to the recombinant polynucleotide.
31. A transgenic plant or plant cell comprising the DNA construct of claim 30.
32. A method of controlling Lepidoptera and/or Coleoptera insect infestation in a transgenic plant and providing insect resistance management, comprising expressing in the plant the polynucleotide of claim 28.
Description:
FIELD
[0001] Biological strains, compositions, and methods of using the strains and compositions for reducing overall insect damage. Also provided are novel genes that encode pesticidal proteins. These pesticidal proteins and the nucleic acid sequences that encode them are useful in preparing pesticidal formulations and in the production of transgenic pest-resistant plants.
REFERENCE TO SEQUENCE LISTING SUBMITTED ELECTRONICALLY
[0002] The official copy of the sequence listing is submitted electronically via EFS-Web as an ASCII formatted sequence listing with a file named 8472 SeqList.txt created on Oct. 8, 2020 and having a size of 344 kilobytes and is filed concurrently with the specification. The sequence listing contained in this ASCII formatted document is part of the specification and is herein incorporated by reference in its entirety.
BACKGROUND
[0003] Certain species of microorganisms of the genus Bacillus are known to possess pesticidal activity against a range of insect pests including Lepidoptera, Diptera, Coleoptera, Hemiptera and others. Bacillus thuringiensis (Bt) and Bacillus popilliae are among the most successful biocontrol agents discovered to date. Insect pathogenicity has also been attributed to strains of B. larvae, B. lentimorbus, B. sphaericus and B. cereus. Microbial insecticides, particularly those obtained from Bacillus strains, have played an important role in agriculture as alternatives to chemical pest control.
[0004] Crop plants have been developed with enhanced insect resistance by genetically engineering crop plants to produce pesticidal proteins from Bacillus. For example, corn and cotton plants have been genetically engineered to produce pesticidal proteins isolated from strains of Bt. These genetically modified crops are now widely used in agriculture and have provided the farmer with an environmentally friendly alternative to traditional insect-control methods. While they have proven to be very successful commercially, these genetically modified, insect-resistant crop plants provide resistance to only a narrow range of the economically important insect pests. In some cases, insects can develop resistance to different insecticidal compounds, which raises the need to identify alternative biological control agents for pest control.
[0005] There has been a long felt need for environmentally friendly compositions and methods for controlling or eradicating insect pests of agricultural significance, i.e., methods that are selective, environmentally inert, non-persistent, and biodegradable, and that fit well into insect pest management schemes.
SUMMARY
[0006] Some embodiments relate to a composition comprising a Pantoea agglomerans, wherein the Pantoea agglomerans has insecticidal activity. In some embodiments, the methods and compositions relate to a insecticidal bacterial strain comprising IPD126 gene or gene cluster. In some embodiments, the IPD126 gene comprises an amino acid sequence having at least 90% sequence identity to any one of SEQ ID NOs: 19-36. In some embodiments, the methods and compositions relate to bacterial strains comprising a 16S RNA sequence having at least 95% identity to any one of SEQ ID NOs: 37-39.
[0007] In one embodiment, the disclosure relates to a composition comprising a Pantoea agglomerans strain PMC3671E3-1 (NRRL Deposit No. B-67697), wherein the Pantoea agglomerans strain PMC3671E3-1 has insecticidal activity.
[0008] In one embodiment, the disclosure relates to a composition comprising a Pantoea agglomerans strain PMC3671E9-1 (NRRL Deposit No. B-67698), wherein the Pantoea agglomerans strain PMC3671E9-1 has insecticidal activity.
[0009] In one embodiment, the disclosure relates to a composition comprising a Pantoea agglomerans strain PMCJ4082D4-1 (NRRL Deposit No. B-67699), wherein the Pantoea agglomerans strain PMCJ4082D4-1 has insecticidal activity.
[0010] In yet another embodiment, the disclosure relates methods and compositions comprising a bacterial strain disclosed herein, or a progeny, mutant, or variant thereof, a fermentate produced from a strain disclosed herein progeny, mutant, or variant thereof in an effective amount to achieve an effect of inhibit growth of a plant pathogen, pest or insect. In another embodiment, the composition further comprises a biocontrol agent selected from the group consisting of bacteria, fungi, yeast, protozoans, viruses, entomopathogenic nematodes, botanical extracts, proteins, secondary metabolites, and inoculants.
[0011] In another embodiment, the compositions and methods disclosed herein further comprise one or more agrochemically active compounds selected from the group consisting of an insecticide, a fungicide, a bactericide, and a nematicide. In still another embodiment, the composition further comprises a compound selected from the group consisting of a safener, a lipo-chitooligosaccharide, an isoflavone, and a ryanodine receptor modulator.
[0012] In another embodiment, the compositions and methods comprise at least one at least one seed, plant, or plant part. In one embodiment, the seed, plant, or plant part is genetically modified.
[0013] In one embodiment, the compositions and methods inhibit the growth of one or more plant pathogens, pests, or insects including but not limited to bacteria, a fungus, a virus, protozoa, nematode, or an arthropod. In one embodiment, the compositions and methods inhibit the growth of an insect, including but not limited to a Coleopteran, Hemipteran, or Lepidopteran insect. In still another embodiment, the composition inhibits the growth of Diabrotica virgifera virgifera, Ostrinia nubilalis, Spodoptera frugiperda, Pseudoplusia includens, Anticarsia gemmatalis, Plutella xylostella, and/or Aphis fabae.
[0014] In another embodiment, the compositions and methods comprise an effective amount to provide pesticidal activity to bacteria, plants, plant cells, tissues and seeds. In another embodiment, the composition is an effective amount to provide pesticidal activity to Coleopteran or Lepidopteran insects. In still another embodiment, the composition is an effective amount to provide pesticidal activity to Diabrotica virgifera virgifera, Ostrinia nubilalis, Spodoptera frugiperda, Pseudoplusia includens, Anticarsia gemmatalis, Plutella xylostella, and/or Aphis fabae.
[0015] In another embodiment, the compositions and methods comprise in an effective amount to improve plant performance including but not limited to increased root formation, increased root mass, increased root function, increased shoot height, increased shoot function, increased flower bud presence, increased flower bud formation, increased seed germination, increased yield, increased total plant wet weight, and increased total plant dry weight.
[0016] In another embodiment, the disclosure relates to a method comprising applying a composition comprising a bacterial strain disclosed herein, or a progeny, mutant, or variant thereof, a fermentate produced from a strain disclosed herein, or a progeny, mutant, or variant thereof, a plant, plant part or soil in an effective amount to achieve an effect selected from the group consisting of: inhibit a plant pathogen, pest, or insect or to prevent damage to a plant by a pathogen, pest, or insect; improve plant performance; improve plant yield; improve plant vigor; increase phosphate availability; increase production of a plant hormone; increase root formation; increase shoot height in a plant, increase leaf length of a plant; increase flower bud formation of a plant; increase total plant fresh weight; increase total plant dry weight; and increase seed germination.
[0017] In another embodiment, the method further comprises applying a biocontrol agent, wherein the biocontrol agent is selected from the group consisting of bacteria, fungi, yeast, protozoans, viruses, entomopathogenic nematodes, botanical extracts, proteins, secondary metabolites, and inoculants.
[0018] In yet another embodiment, the method further comprises applying an agrochemically active compound selected from the group consisting of an insecticide, a fungicide, a bactericide, and a nematicide.
[0019] In still another embodiment, the method further comprises applying a compound selected from the group consisting of a safener, a lipo-chitooligosaccharide, an isoflavone, and a ryanodine receptor modulator.
[0020] In another embodiment, the method comprises applying the composition in an effective amount to inhibit growth of a plant pathogen, including but not limited to bacteria, a fungus, a nematode, an insect, a virus, and protozoa.
[0021] In one aspect compositions and methods for conferring pesticidal activity to bacteria, plants, plant cells, tissues and seeds are provided. Compositions include nucleic acid molecules encoding sequences for pesticidal and insecticidal polypeptides, vectors comprising those nucleic acid molecules, and host cells comprising the vectors. Compositions also include the pesticidal polypeptide sequences and antibodies to those polypeptides. Compositions also comprise transformed bacteria, plants, plant cells, tissues and seeds.
[0022] In another aspect methods are provided for producing the polypeptides and for using those polypeptides for controlling or killing a Hemipteran, Coleopteran, Lepidopteran, or nematode pests. The transgenic plants of the embodiments express one or more of the pesticidal sequences disclosed herein. In various embodiments, the transgenic plant further comprises one or more additional genes for insect resistance, for example, one or more additional genes for controlling Hemipteran, Coleopteran, Lepidopteran, or nematode pests. It will be understood by one of skill in the art that the transgenic plant may comprise any gene imparting an agronomic trait of interest.
[0023] In another aspect methods for detecting the nucleic acids and polypeptides of the embodiments in a sample are also included. A kit for detecting the presence of an IPD126 polypeptide or detecting the presence of a polynucleotide encoding an IPD126 polypeptide in a sample is provided. The kit may be provided along with all reagents and control samples necessary for carrying out a method for detecting the intended agent, as well as instructions for use.
[0024] In another aspect, the compositions and methods of the embodiments are useful for the production of organisms with enhanced pest resistance or tolerance. These organisms and compositions comprising the organisms are desirable for agricultural purposes. The compositions of the embodiments are also useful for generating altered or improved proteins that have pesticidal activity or for detecting the presence of IPD126 polypeptides.
DESCRIPTION OF FIGURES
[0025] FIG. 1 shows IPD126 gene clusters in insecticidal strains of Pantoea agglomerans.
DESCRIPTION OF THE SEQUENCES
[0026] The disclosure can be more fully understood from the following detailed description and the accompanying drawings and Sequence Listing that form a part of this application.
[0027] The sequence descriptions summarize the Sequence Listing attached hereto, which is hereby incorporated by reference. The Sequence Listing contains one letter codes for nucleotide sequence characters and the single and three letter codes for amino acids as defined in the IUPAC-IUB standards described in Nucleic Acids Research 13:3021-3030 (1985) and in the Biochemical Journal 219(2):345-373 (1984).
TABLE-US-00001 TABLE 1 Sequence Listing Description Strain_Gene SEQ ID NO: PMC3671E9-1_IPD126Aa-1 DNA 1 PMC3671E9-1_IPD126Aa-2 DNA 2 PMC3671E9-1_IPD126Aa-3 DNA 3 PMC3671E9-1_IPD126Aa-4 DNA 4 PCM3671E3-1_IPD126Aa-1 DNA 5 PCM3671E3-1_IPD126Aa-2 DNA 6 PCM3671E3-1_IPD126Aa-3 DNA 7 PCM3671E3-1_IPD126Aa-4 DNA 8 PCM3671E3-1_IPD126Aa-1.2 DNA 9 PCM3671E3-1_IPD126Aa-2.2 DNA 10 PCM3671E3-1_IPD126Aa-3.2 DNA 11 PMCJ4082D4-1_IPD126Aa-1 DNA 12 PMCJ4082D4-1_IPD126Aa-2 DNA 13 PMCJ4082D4-1_IPD126Aa-3 DNA 14 PMCJ4082D4-1_IPD126Aa-4 DNA 15 PMCJ4082D4-1_IPD126Aa-1.2 DNA 16 PMCJ4082D4-1_IPD126Aa-2.2 DNA 17 PMCJ4082D4-1_IPD126Aa-3.2 DNA 18 PMC3671E9-1_IPD126Aa-1 protein 19 PMC3671E9-1_IPD126Aa-2 Protein 20 PMC3671E9-1_IPD126Aa-3 Protein 21 PMC3671E9-1_IPD126Aa-4 Protein 22 PCM3671E3-1_IPD126Aa-1 protein 23 PCM3671E3-1_IPD126Aa-2 protein 24 PCM3671E3-1_IPD126Aa-3 Protein 25 PCM3671E3-1_IPD126Aa-4 Protein 26 PCM3671E3-1_IPD126Aa-1.2 protein 27 PCM3671E3-1_IPD126Aa-2.2 Protein 28 PCM3671E3-1_IPD126Aa-3.2 Protein 29 PMCJ4082D4-1_IPD126Aa-1 Protein 30 PMCJ4082D4-1_IPD126Aa-2 protein 31 PMCJ4082D4-1_IPD126Aa-3 protein 32 PMCJ4082D4-1_IPD126Aa-4 protein 33 PMCJ4082D4-1_IPD126Aa-1.2 protein 34 PMCJ4082D4-1_IPD126Aa-2.2 protein 35 PMCJ4082D4-1_IPD126Aa-3.2 protein 36 PMC3671E3-1-16S 37 PMC3671E9-1-16S 38 PMCJ4082D4-1-16S 39
DETAILED DESCRIPTION
[0028] As used herein the singular forms "a", "and", and "the" include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to "a cell" includes a plurality of such cells and reference to "the protein" includes reference to one or more proteins and equivalents thereof, and so forth. All technical and scientific terms used herein have the same meaning as commonly understood to one of ordinary skill in the art to which this disclosure belongs unless clearly indicated otherwise.
[0029] As used herein, "administer" refers to the action of introducing a strain and/or a composition to an environment for pathogen, pest, or insect inhibition or to improve plant performance.
[0030] As used herein, the term "agrochemically active compounds" refers to any substance that is or may be customarily used for treating plants including, but not limited to, fungicides, bactericides, insecticides, acaricides, nematicides, molluscicides, safeners, plant growth regulators, and plant nutrients, as well as, microorganisms.
[0031] As used herein, a composition may be a liquid, a heterogeneous mixture, a homogeneous mixture, a powder, a solution, a dispersion or any combination thereof.
[0032] As used herein, "effective amount" refers to a quantity of a bacterial strain disclosed herein, or a progeny, mutant, or variant thereof, a fermentate produced from a strain disclosed herein progeny, mutant, or variant thereof sufficient to inhibit growth of a pathogenic microorganism or to impede the rate of growth of the pathogenic microorganism. In another embodiment, the term "effective amount" refers to a quantity of a bacterial strain disclosed herein, or a progeny, mutant, or variant thereof, a fermentate produced from a strain disclosed herein progeny, mutant, or variant thereof sufficient to improve plant performance. In another embodiment, the term "effective amount" refers to a quantity of a bacterial strain disclosed herein, or a progeny, mutant, or variant thereof, a fermentate produced from a strain disclosed herein progeny, mutant, or variant thereof, sufficient to control, kill, inhibit, and reduce the number, emergence, or growth of a pathogen, pest, or insect. In another embodiment, the term "effective amount" refers to a quantity of a bacterial strain disclosed herein, or a progeny, mutant, or variant thereof, a fermentate produced from a strain disclosed herein progeny, mutant, or variant thereof sufficient to prevent damage from a pathogen, pest, or insect. One skilled in the art will recognized that an effective amount of a bacterial strain disclosed herein, or a progeny, mutant, or variant thereof, a fermentate produced from a strain disclosed herein progeny, mutant, or variant thereof may not reduce the numbers of pathogens, pests or insects, but is effective in decreasing damage to plants and/or plant parts as a result of a pathogen, pest or insect. For example, a pesticidally effective amount may reduce pathogen, pest or insect emergence, or damage to seeds, roots, shoots, or foliage of plants that are treated compared to those that are untreated.
[0033] As used herein, "fermentate broth," "fermentate," or "fermented broth" refers to a media. used to grow or ferment a bacterial strain disclosed herein. The bacterial strain may be removed from a media by filtration, sterilization, or other means. The leftover broth contains metabolites produced by a bacterial strain disclosed herein, which is collectively referred to as a "fermentate broth," "fermentate," or "fermented broth."
[0034] As used herein, the term "inhibit" refers to destroy, prevent, reduce, resist, control, decrease, slow or otherwise interfere with the growth or survival of a pathogen, pest, or insect when compared to the growth or survival of the pathogen, pest, or insect in an untreated control. Any of the terms of inhibit, destroy, prevent, control, decrease, slow, interfere, resist, or reduce may be used interchangeably. In one embodiment, to "inhibit" is to destroy, prevent, control, reduce, resist, decrease, slow or otherwise interfere with the growth, emergence, or survival of a pathogen, pest, or insect by at least about 3% to at least about 100%, or any value in between for example at least about 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 99%, or 100% when compared to the growth or survival of the pathogen, pest, or insect in an untreated control. The amount of inhibition can be measured as described herein or by other methods known in the art. As used herein, "protects a plant from a pathogen, pest, or insect pest" is intended to mean the limiting or eliminating of the pathogen, pest, or insect related damage to a plant and/or plant part by, for example, inhibiting the ability of the pathogen, pest, or insect to grow, emerge, feed, and/or reproduce or by killing the pathogen, pest, or insect. As used herein, pesticidal and/or insecticidal activity refers to an activity of compound, composition, and or method that protects a plant and/or plant part from a pathogen, pest, or insect.
[0035] In some embodiments, inhibition a pathogen, pest, or insect lasts for or provides protection for greater than a day, two days, three days, four days, five days, six days, a week, two weeks, three weeks, a month or more after of a bacterial strain disclosed herein, or a progeny, mutant, or variant thereof, a fermentate produced from a strain disclosed herein progeny, mutant, or variant thereof disclosed herein is applied to subject material. In another embodiment, inhibition a pathogen, pest or insect lasts from one to seven days, from seven to 14 days, from 14 to 21 days, or from 21 to 30 days or more. In another embodiment, the inhibition of the growth of a pathogen, pest, or insect lasts for or provides protection for greater than the time from application to adult emergence of the pathogen, pest, or insect.
[0036] As used herein, the term "genetically modified" is intended to mean any species containing a genetic trait, loci, or sequence that was not found in the species or strain prior to manipulation. A genetically modified plant may be transgenic, cis-genic, genome edited, or bred to contain a new genetic trait, loci, or sequence. A genetically modified plant or bacteria may be prepared by means known to those skilled in the art, such as transformation by bombardment, by a gene editing technique such as Cas/CRISPR or TALENS, or by breeding techniques. As used herein, a "trait" is a new or modified locus or sequence of a genetically modified plant or bacteria, including but not limited to a transgenic plant or bacteria. In some embodiments, a bacterial strain disclosed herein, or a progeny, mutant, or variant thereof, may be edited. In some embodiments any bacterial strain may be modified or edited to comprise an IPD126 gene. In some embodiments, the methods and compositions relate to an insecticidal bacterial strain comprising an IPD126 gene
[0037] As used herein, the term "environment of a plant or plant part" is intended to mean the area surrounding the plant or plant part, including but not limited to the soil, the air, or in-furrow. The environment of a plant or plant part may be in proximity, touching, adjacent to, or in the same field as the plant or plant part. The compositions described herein may be applied to the environment of the plant or plant part as a seed treatment, as a foliar application, as a granular application, as a soil application, or as an encapsulated application. As used herein, "in-furrow" is intended to mean within or near the area where a seed is planted. The compositions disclosed herein may be applied in-furrow concurrently or simultaneously with a seed. In another embodiment, the compositions disclosed herein may be applied sequentially, either before or after a seed is planted.
[0038] As used herein, the term "different mode of action" is used to refer to a pesticidal composition inhibiting a pathogen, pest, or insect through a pathway or receptor that is different from another pesticidal composition. As used herein, the term "different mode of action" includes the pesticidal effects of one or more pesticidal compositions to different binding sites (i.e., different toxin receptors and/or different sites on the same toxin receptor) in the gut membranes of insects or through the RNA interference pathway to different target genes.
[0039] As used herein, the term "pathogen, pest, or insect" includes but is not limited to pathogenic fungi, bacteria, mites, ticks, pathogenic microorganisms, and nematodes, as well as insect from the orders Coleoptera, Lepidoptera, Mallophaga, Homoptera, Hemiptera, Orthoptera, Thysanoptera, Dermaptera, Isoptera, Anoplura, Siphonatpera, Trichoptera, and others, including but not limited to Diabrotica virgifera virgifera, Diabrotica undecimpunctata howardi, and Diabrotica barberi.
[0040] Larvae of the order Lepidoptera include, but are not limited to, armyworms, cutworms, loopers and heliothines in the family Noctuidae Spodoptera frugiperda JE Smith (fall armyworm); S. exigua Hubner (beet armyworm); S. litura Fabricius (tobacco cutworm, cluster caterpillar); Mamestra configurata Walker (bertha armyworm); M. brassicae Linnaeus (cabbage moth); Agrotis ipsilon Hufnagel (black cutworm); A. orthogonia Morrison (western cutworm); A. subterranea Fabricius (granulate cutworm); Alabama argillacea Hubner (cotton leaf worm); Trichoplusia ni Hubner (cabbage looper); Pseudoplusia includens Walker (soybean looper); Anticarsia gemmatalis Hubner (velvetbean caterpillar); Hypena scabra Fabricius (green cloverworm); Heliothis virescens Fabricius (tobacco budworm); Pseudaletia unipuncta Haworth (armyworm); Athetis mindara Barnes and Mcdunnough (rough skinned cutworm); Euxoa messoria Harris (darksided cutworm); Earias insulana Boisduval (spiny bollworm); E. vittella Fabricius (spotted bollworm); Helicoverpa armigera Hubner (American bollworm); H. zea Boddie (corn earworm or cotton bollworm); Melanchra picta Harris (zebra caterpillar); Egira (Xylomyges) curialis Grote (citrus cutworm); borers, casebearers, webworms, coneworms, and skeletonizers from the family Pyralidae Ostrinia nubilalis Hubner (European corn borer); Amyelois transitella Walker (naval orangeworm); Anagasta kuehniella Zeller (Mediterranean flour moth); Cadra cautella Walker (almond moth); Chilo suppressalis Walker (rice stem borer); C. partellus, (sorghum borer); Corcyra cephalonica Stainton (rice moth); Crambus caliginosellus Clemens (corn root webworm); C. teterrellus Zincken (bluegrass webworm); Cnaphalocrocis medinalis Guenee (rice leaf roller); Desmia funeralis Hubner (grape leaffolder); Diaphania hyalinata Linnaeus (melon worm); D. nitidalis Stoll (pickleworm); Diatraea grandiosella Dyar (southwestern corn borer), D. saccharalis Fabricius (surgarcane borer); Eoreuma loftini Dyar (Mexican rice borer); Ephestia elutella Hubner (tobacco (cacao) moth); Galleria mellonella Linnaeus (greater wax moth); Herpetogramma licarsisalis Walker (sod webworm); Homoeosoma electellum Hulst (sunflower moth); Elasmopalpus lignosellus Zeller (lesser cornstalk borer); Achroia grisella Fabricius (lesser wax moth); Loxostege sticticalis Linnaeus (beet webworm); Orthaga thyrisalis Walker (tea tree web moth); Maruca testulalis Geyer (bean pod borer); Plodia interpunctella Hubner (Indian meal moth); Scirpophaga incertulas Walker (yellow stem borer); Udea rubigalis Guenee (celery leaftier); and leafrollers, budworms, seed worms and fruit worms in the family Tortricidae Acleris gloverana Walsingham (Western blackheaded budworm); A. variana Fernald (Eastern blackheaded budworm); Archips argyrospila Walker (fruit tree leaf roller); A. rosana Linnaeus (European leaf roller); and other Archips species, Adoxophyes orana Fischer von Rosslerstamm (summer fruit tortrix moth); Cochylis hospes Walsingham (banded sunflower moth); Cydia latiferreana Walsingham (filbertworm); C. pomonella Linnaeus (coding moth); Platynota flavedana Clemens (variegated leafroller); P. stultana Walsingham (omnivorous leafroller); Lobesia botrana Denis & Schiffermuller (European grape vine moth); Spilonota ocellana Denis & Schiffermuller (eyespotted bud moth); Endopiza viteana Clemens (grape berry moth); Eupoecilia ambiguella Hubner (vine moth); Bonagota salubricola Meyrick (Brazilian apple leafroller); Grapholita molesta Busck (oriental fruit moth); Suleima helianthana Riley (sunflower bud moth); Argyrotaenia spp.; Choristoneura spp.
[0041] Selected other agronomic pests in the order Lepidoptera include, but are not limited to, Alsophila pometaria Harris (fall cankerworm); Anarsia lineatella Zeller (peach twig borer); Anisota senatoria J. E. Smith (orange striped oakworm); Antheraea pernyi Guerin-Meneville (Chinese Oak Tussah Moth); Bombyx mori Linnaeus (Silkworm); Bucculatrix thurberiella Busck (cotton leaf perforator); Colias eurytheme Boisduval (alfalfa caterpillar); Datana integerrima Grote & Robinson (walnut caterpillar); Dendrolimus sibiricus Tschetwerikov (Siberian silk moth), Ennomos subsignaria Hubner (elm spanworm); Erannis tiliaria Harris (linden looper); Euproctis chrysorrhoea Linnaeus (browntail moth); Harrisina americana Guerin-Meneville (grapeleaf skeletonizer); Hemileuca oliviae Cockrell (range caterpillar); Hyphantria cunea Drury (fall webworm); Keiferia lycopersicella Walsingham (tomato pinworm); Lambdina fiscellaria fiscellaria Hulst (Eastern hemlock looper); L. fiscellaria lugubrosa Hulst (Western hemlock looper); Leucoma salicis Linnaeus (satin moth); Lymantria dispar Linnaeus (gypsy moth); Manduca quinquemaculata Haworth (five spotted hawk moth, tomato hornworm); M. sexta Haworth (tomato hornworm, tobacco hornworm); Operophtera brumata Linnaeus (winter moth); Paleacrita vernata Peck (spring cankerworm); Papilio cresphontes Cramer (giant swallowtail orange dog); Phryganidia californica Packard (California oakworm); Phyllocnistis citrella Stainton (citrus leafminer); Phyllonorycter blancardella Fabricius (spotted tentiform leafminer); Pieris brassicae Linnaeus (large white butterfly); P. rapae Linnaeus (small white butterfly); P. napi Linnaeus (green veined white butterfly); Platyptilia carduidactyla Riley (artichoke plume moth); Plutella xylostella Linnaeus (diamondback moth); Pectinophora gossypiella Saunders (pink bollworm); Pontia protodice Boisduval and Leconte (Southern cabbageworm); Sabulodes aegrotata Guenee (omnivorous looper); Schizura concinna J. E. Smith (red humped caterpillar); Sitotroga cerealella Olivier (Angoumois grain moth); Thaumetopoea pityocampa Schiffermuller (pine processionary caterpillar); Tineola bisselliella Hummel (webbing clothesmoth); Tuta absoluta Meyrick (tomato leafminer); Yponomeuta padella Linnaeus (ermine moth); Heliothis subflexa Guenee; Malacosoma spp. and Orgyia spp.
[0042] Of interest are larvae and adults of the order Coleoptera including weevils from the families Anthribidae, Bruchidae and Curculionidae (including, but not limited to: Anthonomus grandis Boheman (boll weevil); Lissorhoptrus oryzophilus Kuschel (rice water weevil); Sitophilus granarius Linnaeus (granary weevil); S. oryzae Linnaeus (rice weevil); Hypera punctata Fabricius (clover leaf weevil); Cylindrocopturus adspersus LeConte (sunflower stem weevil); Smicronyx fulvus LeConte (red sunflower seed weevil); S. sordidus LeConte (gray sunflower seed weevil); Sphenophorus maidis Chittenden (maize billbug)); flea beetles, cucumber beetles, rootworms, leaf beetles, potato beetles and leafminers in the family Chrysomelidae (including, but not limited to: Leptinotarsa decemlineata Say (Colorado potato beetle); Diabrotica virgifera virgifera LeConte (western corn rootworm); D. barberi Smith and Lawrence (northern corn rootworm); D. undecimpunctata howardi Barber (southern corn rootworm); Chaetocnema pulicaria Melsheimer (corn flea beetle); Phyllotreta cruciferae Goeze (Crucifer flea beetle); Phyllotreta striolata (stripped flea beetle); Colaspis brunnea Fabricius (grape colaspis); Oulema melanopus Linnaeus (cereal leaf beetle); Zygogramma exclamationis Fabricius (sunflower beetle)); beetles from the family Coccinellidae (including, but not limited to: Epilachna varivestis Mulsant (Mexican bean beetle)); chafers and other beetles from the family Scarabaeidae (including, but not limited to: Popillia japonica Newman (Japanese beetle); Cyclocephala borealis Arrow (northern masked chafer, white grub); C. immaculata Olivier (southern masked chafer, white grub); Rhizotrogus majalis Razoumowsky (European chafer); Phyllophaga crinita Burmeister (white grub); Ligyrus gibbosus De Geer (carrot beetle)); carpet beetles from the family Dermestidae; wireworms from the family Elateridae, Eleodes spp., Melanotus spp.; Conoderus spp.; Limonius spp.; Agriotes spp.; Ctenicera spp.; Aeolus spp.; bark beetles from the family Scolytidae and beetles from the family Tenebrionidae.
[0043] Adults and immatures of the order Diptera are of interest, including leafminers Agromyza parvicornis Loew (corn blotch leafminer); midges (including, but not limited to: Contarinia sorghicola Coquillett (sorghum midge); Mayetiola destructor Say (Hessian fly); Sitodiplosis mosellana Gehin (wheat midge); Neolasioptera murtfeldtiana Felt, (sunflower seed midge)); fruit flies (Tephritidae), Oscinella frit Linnaeus (fruit flies); maggots (including, but not limited to: Delia platura Meigen (seedcorn maggot); D. coarctata Fallen (wheat bulb fly) and other Delia spp., Meromyza americana Fitch (wheat stem maggot); Musca domestica Linnaeus (house flies); Fannia canicularis Linnaeus, F. femoralis Stein (lesser house flies); Stomoxys calcitrans Linnaeus (stable flies)); face flies, horn flies, blow flies, Chrysomya spp.; Phormia spp. and other muscoid fly pests, horse flies Tabanus spp.; bot flies Gastrophilus spp.; Oestrus spp.; cattle grubs Hypoderma spp.; deer flies Chrysops spp.; Melophagus ovinus Linnaeus (keds) and other Brachycera, mosquitoes Aedes spp.; Anopheles spp.; Culex spp.; black flies Prosimulium spp.; Simulium spp.; biting midges, sand flies, sciarids, and other Nematocera.
[0044] Included as insects of interest are adults and nymphs of the orders Hemiptera and Homoptera such as, but not limited to, adelgids from the family Adelgidae, plant bugs from the family Miridae, cicadas from the family Cicadidae, leafhoppers, Empoasca spp.; from the family Cicadellidae, planthoppers from the families Cixiidae, Flatidae, Fulgoroidea, Issidae and Delphacidae, treehoppers from the family Membracidae, psyllids from the family Psyllidae, whiteflies from the family Aleyrodidae, aphids from the family Aphididae, phylloxera from the family Phylloxeridae, mealybugs from the family Pseudococcidae, scales from the families Asterolecanidae, Coccidae, Dactylopiidae, Diaspididae, Eriococcidae Ortheziidae, Phoenicococcidae and Margarodidae, lace bugs from the family Tingidae, stink bugs from the family Pentatomidae, cinch bugs, Blissus spp.; and other seed bugs from the family Lygaeidae, spittlebugs from the family Cercopidae squash bugs from the family Coreidae and red bugs and cotton stainers from the family Pyrrhocoridae.
[0045] Agronomically important members from the order Homoptera further include, but are not limited to: Acyrthisiphon pisum Harris (pea aphid); Aphis craccivora Koch (cowpea aphid); A. fabae Scopoli (black bean aphid); A. gossypii Glover (cotton aphid, melon aphid); A. maidiradicis Forbes (corn root aphid); A. pomi De Geer (apple aphid); A. spiraecola Patch (spirea aphid); Aulacorthum solani Kaltenbach (foxglove aphid); Chaetosiphon fragaefolii Cockerell (strawberry aphid); Diuraphis noxia Kurdjumov/Mordvilko (Russian wheat aphid); Dysaphis plantaginea Paaserini (rosy apple aphid); Eriosoma lanigerum Hausmann (woolly apple aphid); Brevicoryne brassicae Linnaeus (cabbage aphid); Hyalopterus pruni Geoffroy (mealy plum aphid); Lipaphis erysimi Kaltenbach (turnip aphid); Metopolophium dirrhodum Walker (cereal aphid); Macrosiphum euphorbiae Thomas (potato aphid); Myzus persicae Sulzer (peach-potato aphid, green peach aphid); Nasonovia ribisnigri Mosley (lettuce aphid); Pemphigus spp. (root aphids and gall aphids); Rhopalosiphum maidis Fitch (corn leaf aphid); R. padi Linnaeus (bird cherry-oat aphid); Schizaphis graminum Rondani (greenbug); Sipha flava Forbes (yellow sugarcane aphid); Sitobion avenae Fabricius (English grain aphid); Therioaphis maculata Buckton (spotted alfalfa aphid); Toxoptera aurantii Boyer de Fonscolombe (black citrus aphid) and T. citricida Kirkaldy (brown citrus aphid); Melanaphis sacchari (sugarcane aphid); Adelges spp. (adelgids); Phylloxera devastatrix Pergande (pecan phylloxera); Bemisia tabaci Gennadius (tobacco whitefly, sweetpotato whitefly); B. argentifolii Bellows & Perring (silverleaf whitefly); Dialeurodes citri Ashmead (citrus whitefly); Trialeurodes abutiloneus (bandedwinged whitefly) and T. vaporariorum Westwood (greenhouse whitefly); Empoasca fabae Harris (potato leafhopper); Laodelphax striatellus Fallen (smaller brown planthopper); Macrolestes quadrilineatus Forbes (aster leafhopper); Nephotettix cinticeps Uhler (green leafhopper); N. nigropictus Stal (rice leafhopper); Nilaparvata lugens Stal (brown planthopper); Peregrinus maidis Ashmead (corn planthopper); Sogatella furcifera Horvath (white-backed planthopper); Sogatodes orizicola Muir (rice delphacid); Typhlocyba pomaria McAtee (white apple leafhopper); Erythroneoura spp. (grape leafhoppers); Magicicada septendecim Linnaeus (periodical cicada); Icerya purchasi Maskell (cottony cushion scale); Quadraspidiotus perniciosus Comstock (San Jose scale); Planococcus citri Risso (citrus mealybug); Pseudococcus spp. (other mealybug complex); Cacopsylla pyricola Foerster (pear psylla); Trioza diospyri Ashmead (persimmon psylla).
[0046] Agronomically important species of interest from the order Hemiptera include, but are not limited to: Acrosternum hilare Say (green stink bug); Anasa tristis De Geer (squash bug); Blissus leucopterus leucopterus Say (chinch bug); Corythuca gossypii Fabricius (cotton lace bug); Cyrtopeltis modesta Distant (tomato bug); Dysdercus suturellus Herrich-Schiffer (cotton stainer); Euschistus servus Say (brown stink bug); E. variolarius Palisot de Beauvois (one-spotted stink bug); Graptostethus spp. (complex of seed bugs); Leptoglossus corculus Say (leaf-footed pine seed bug); Lygus lineolaris Palisot de Beauvois (tarnished plant bug); L. Hesperus Knight (Western tarnished plant bug); L. pratensis Linnaeus (common meadow bug); L. rugulipennis Poppius (European tarnished plant bug); Lygocoris pabulinus Linnaeus (common green capsid); Nezara viridula Linnaeus (southern green stink bug); Oebalus pugnax Fabricius (rice stink bug); Oncopeltus fasciatus Dallas (large milkweed bug); Pseudatomoscelis seriatus Reuter (cotton fleahopper).
[0047] Furthermore, embodiments may be effective against Hemiptera such, Calocoris norvegicus Gmelin (strawberry bug); Orthops campestris Linnaeus; Plesiocoris rugicollis Fallen (apple capsid); Cyrtopeltis modestus Distant (tomato bug); Cyrtopeltis notatus Distant (suckfly); Spanagonicus albofasciatus Reuter (whitemarked fleahopper); Diaphnocoris chlorionis Say (honeylocust plant bug); Labopidicola allii Knight (onion plant bug); Pseudatomoscelis seriatus Reuter (cotton fleahopper); Adelphocoris rapidus Say (rapid plant bug); Poecilocapsus lineatus Fabricius (four-lined plant bug); Nysius ericae Schilling (false chinch bug); Nysius raphanus Howard (false chinch bug); Nezara viridula Linnaeus (Southern green stink bug); Eurygaster spp.; Coreidae spp.; Pyrrhocoridae spp.; Tinidae spp.; Blostomatidae spp.; Reduviidae spp. and Cimicidae spp.
[0048] Also included are adults and larvae of the order Acari (mites) such as Aceria tosichella Keifer (wheat curl mite); Petrobia latens Muller (brown wheat mite); spider mites and red mites in the family Tetranychidae, Panonychus ulmi Koch (European red mite); Tetranychus urticae Koch (two spotted spider mite); (T. mcdanieli McGregor (McDaniel mite); T. cinnabarinus Boisduval (carmine spider mite); T. turkestani Ugarov & Nikolski (strawberry spider mite); flat mites in the family Tenuipalpidae, Brevipalpus lewisi McGregor (citrus flat mite); rust and bud mites in the family Eriophyidae and other foliar feeding mites and mites important in human and animal health, i.e., dust mites in the family Epidermoptidae, follicle mites in the family Demodicidae, grain mites in the family Glycyphagidae, ticks in the order Ixodidae. Ixodes scapularis Say (deer tick); I. holocyclus Neumann (Australian paralysis tick); Dermacentor variabilis Say (American dog tick); Amblyomma americanum Linnaeus (lone star tick) and scab and itch mites in the families Psoroptidae, Pyemotidae and Sarcoptidae.
[0049] Insect pests of the order Thysanura are of interest, such as Lepisma saccharina Linnaeus (silverfish); Thermobia domestica Packard (firebrat).
[0050] Additional arthropod pests covered include: spiders in the order Araneae such as Loxosceles reclusa Gertsch and Mulaik (brown recluse spider) and the Latrodectus mactans Fabricius (black widow spider) and centipedes in the order Scutigeromorpha such as Scutigera coleoptrata Linnaeus (house centipede).
[0051] Insect pest of interest include the superfamily of stink bugs and other related insects including but not limited to species belonging to the family Pentatomidae (Nezara viridula, Halyomorpha halys, Piezodorus guildini, Euschistus servus, Acrosternum hilare, Euschistus heros, Euschistus tristigmus, Acrosternum hilare, Dichelops furcatus, Dichelops melacanthus, and Bagrada hilaris (Bagrada Bug)), the family Plataspidae (Megacopta cribraria--Bean plataspid) and the family Cydnidae (Scaptocoris castanea--Root stink bug) and Lepidoptera species including but not limited to: diamond-back moth, e.g., Helicoverpa zea Boddie; soybean looper, e.g., Pseudoplusia includens Walker and velvet bean caterpillar e.g., Anticarsia gemmatalis Hubner.
[0052] Methods for measuring pesticidal activity are well known in the art. See, for example, Czapla and Lang, (1990) J. Econ. Entomol. 83:2480-2485; Andrews, et al., (1988) Biochem. J. 252:199-206; Marrone, et al., (1985) J. of Economic Entomology 78:290-293 and U.S. Pat. No. 5,743,477. Generally, the pesticide is mixed and used in feeding assays. See, for example Marrone, et al., (1985) J. of Economic Entomology 78:290-293. Such assays can include contacting plants with one or more pests and determining the plant's ability to survive and/or cause the death of the pests.
[0053] "Percent (%) sequence identity" with respect to a reference sequence (subject) is determined as the percentage of amino acid residues or nucleotides in a candidate sequence (query) that are identical with the respective amino acid residues or nucleotides in the reference sequence, after aligning the sequences and introducing gaps, if necessary, to achieve the maximum percent sequence identity, and not considering any amino acid conservative substitutions as part of the sequence identity. Alignment for purposes of determining percent sequence identity can be achieved in various ways that are within the skill in the art, for instance, using publicly available computer software such as BLAST, BLAST-2. Those skilled in the art can determine appropriate parameters for aligning sequences, including any algorithms needed to achieve maximal alignment over the full length of the sequences being compared. The percent identity between the two sequences is a function of the number of identical positions shared by the sequences (e.g., percent identity of query sequence=number of identical positions between query and subject sequences/total number of positions of query sequence.times.100).
[0054] In some embodiments, an IPD126 polypeptide comprises an amino acid sequence having at least about 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater identity across the entire length of the amino acid sequence of any one of SEQ ID NOs: 19-36. In some embodiments, a nucleic acid sequence encoding an IPD126 polynucleotide sequence having at least about 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater identity across the entire length of the amino acid sequence of any one of SEQ ID NOs: 1-18.
[0055] As used herein, the term "plant" refers to all plants, plant parts, seed, and plant populations, such as desirable and undesirable wild plants, cultivars, transgenic plants, and plant varieties (whether or not protectable by plant variety or plant breeder's rights). Cultivars and plant varieties can be plants obtained by conventional propagation and breeding methods that can be assisted or supplemented by one or more biotechnological methods such as by use of double haploids, protoplast fusion, random and directed mutagenesis, molecular or genetic markers or by bioengineering and genetic engineering methods.
[0056] The embodiments disclosed herein may generally be used for any plant species, including, but not limited to, monocots and dicots. Examples of plants of interest include, but are not limited to, corn (Zea mays), Brassica sp. (e.g., B. napus, B. rapa, B. juncea), particularly those Brassica species useful as sources of seed oil, alfalfa (Medicago sativa), rice (Oryza sativa), rye (Secale cereale), sorghum (Sorghum bicolor, Sorghum vulgare), millet (e.g., pearl millet (Pennisetum glaucum), proso millet (Panicum miliaceum), foxtail millet (Setaria italica), finger millet (Eleusine coracana)), sunflower (Helianthus annuus), safflower (Carthamus tinctorius), wheat (Triticum aestivum), soybean (Glycine max), tobacco (Nicotiana tabacum), potato (Solanum tuberosum), peanuts (Arachis hypogaea), cotton (Gossypium barbadense, Gossypium hirsutum), sweet potato (Ipomoea batatus), cassava (Manihot esculenta), coffee (Coffea spp.), coconut (Cocos nucifera), pineapple (Ananas comosus), citrus trees (Citrus spp.), cocoa (Theobroma cacao), tea (Camellia sinensis), banana (Musa spp.), avocado (Persea americana), fig (Ficus casica), guava (Psidium guajava), mango (Mangifera indica), olive (Olea europaea), papaya (Carica papaya), cashew (Anacardium occidentale), macadamia (Macadamia integrifolia), almond (Prunus amygdalus), sugar beets (Beta vulgaris), sugarcane (Saccharum spp.), oats, barley, vegetables ornamentals, and conifers.
[0057] As used herein, the term "plant parts" refers to all above ground and below ground parts and organs of plants such as shoot, leaf, blossom and root, whereby for example leaves, needles, stems, branches, blossoms, fruiting bodies, fruits and seeds, as well as roots, tubers, corms and rhizomes are included. Crops and vegetative and generative propagating material, for example, cuttings, corms, rhizomes, tubers, runners and seeds are also plant parts.
[0058] As used herein, the term "viable" refers to a microbial cell, propagule, or spore that is metabolically active or able to differentiate. Thus, propagules, such as spores, are "viable" when they are dormant and capable of germinating.
[0059] The embodiments disclosed herein relate to a Pantoea agglomerans strain PMC3671E3-1 (NRRL Deposit No. B-67697), a Pantoea agglomerans strain PMC3671E9-1 (NRRL Deposit No. B-67698), or a Pantoea agglomerans strain PMCJ4082D4-1 (NRRL Deposit No. B-67699); and/or a fermentate produced from a growth medium comprising a Pantoea agglomerans strain PMC3671E3-1 (NRRL Deposit No. B-67697), a Pantoea agglomerans strain PMC3671E9-1 (NRRL Deposit No. B-67698), or a Pantoea agglomerans strain PMCJ4082D4-1 (NRRL Deposit No. B-67699. In one embodiment the bacterial strain disclosed herein, or a progeny, mutant, or variant thereof; and/or a fermentate produced from a strain disclosed herein progeny, mutant, or variant thereof; compositions and methods find use in inhibiting, controlling, or killing a pathogen, pest, or insect, including, but is not limited to, fungi, pathogenic fungi, bacteria, mites, ticks, pathogenic microorganisms, and nematodes, as well as insects from the orders Coleoptera, Diptera, Hymenoptera, Lepidoptera, Mallophaga, Homoptera, Hemiptera Orthroptera, Thysanoptera, Dermaptera, Isoptera, Anoplura, Siphonaptera, Trichoptera, etc., particularly Coleoptera, including but not limited to Diabrotica virgifera virgifera, Diabrotica undecimpunctata howardi, and Diabrotica barberi, and for producing compositions with pesticidal activity.
[0060] The Pantoea agglomerans strain PMC3671E3-1 (NRRL Deposit No. B-67697), Pantoea agglomerans strain PMC3671E9-1 (NRRL Deposit No. B-67698), and Pantoea agglomerans strain PMCJ4082D4-1 (NRRL Deposit No. B-67699) were deposited on Nov. 9, 2018 at the Agricultural Research Service Culture Collection (NRRL), 1815 North University Street, Peoria, Ill., 61604. The deposits were made under the provisions of the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purposes of Patent Procedure. Further, these deposits will be maintained under the terms of the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purposes of Patent Procedure. Access to these deposits will be available during the pendency of the application to the Commissioner of Patents and Trademarks and persons determined by the Commissioner to be entitled thereto upon request. Upon allowance of any claims in the application, the Applicant will make available to the public, pursuant to 37 C.F.R. .sctn. 1.808, sample(s) of the deposits. The deposits will be maintained in the NRRL depository, which is a public depository, for a period of 30 years, or 5 years after the most recent request, or for the enforceable life of the patent, whichever is longer, and will be replaced if it becomes nonviable during that period. Additionally, Applicant has satisfied all the requirements of 37 C.F.R. .sctn..sctn. 1.801-1.809, including providing an indication of the viability of the sample upon deposit.
[0061] Some embodiments relate to compositions comprising or consisting of or consisting essentially of a bacterial strain disclosed herein, or a progeny, mutant, or variant thereof, a fermentate produced from a strain disclosed herein progeny, mutant, or variant thereof. In one embodiment, the compositions are biologically pure cultures of the strain disclosed herein.
[0062] Some embodiments relate to a composition comprising a bacterial strain disclosed herein, or a progeny, mutant, or variant thereof, a fermentate produced from a strain disclosed herein progeny, mutant, or variant thereof disclosed herein and one or more compounds or agents selected from the group consisting of: agrochemically active compounds, biocontrol agents, lipo-chitooligosaccharide compounds (LCOs), isoflavones, quinazolines, insecticidal compounds, azolopyrimidinylamines, polymeric compounds, ionic compound, substituted thiophenes, substituted dithiines, fluopyramm, enaminocarbonyl compounds, strigolactone compound, and dithiino-tetracarboximide compounds.
[0063] A further embodiment relates to the use of a first composition comprising a bacterial strain disclosed herein, or a progeny, mutant, or variant thereof, a fermentate produced from a strain disclosed herein progeny, mutant, or variant thereof disclosed herein and a second composition comprising one or more compounds or agents selected from the group consisting of: agrochemically active compounds, biocontrol agents, lipo-chitooligosaccharide compounds (LCOs), isoflavones, quinazolines, insecticidal compound, azolopyrimidinylamine, polymeric compounds, ionic compound, substituted thiophenes, substituted dithiines, fluopyramm, enaminocarbonyl compounds, strigolactone compound, and dithiino-tetracarboximide compounds.
[0064] In one embodiment, the disclosure relates to a composition comprising a bacterial strain disclosed herein, or a progeny, mutant, or variant thereof, a fermentate produced from a strain disclosed herein progeny, mutant, or variant thereof disclosed herein and one or more biocontrol agents. As used herein, the term "biocontrol agent" ("BCA") includes bacteria, fungi or yeasts, protozoans, viruses, entomopathogenic nematodes, and botanical extracts, or products produced by microorganisms including proteins or secondary metabolite, and inoculants that have one or both of the following characteristics: (1) inhibits or reduces plant infestation and/or growth of pathogens, pests, or insects, including but not limited to pathogenic fungi, bacteria, and nematodes, as well as arthropod pests such as insects, arachnids, chilopods, diplopods, or that inhibits plant infestation and/or growth of a combination of plant pathogens, pests, or insects; (2) improves plant performance; (3) improves plant yield; (4) improves plant vigor; and (5) improves plant health.
[0065] In one embodiment, the disclosure relates to a composition comprising a bacterial strain disclosed herein, or a progeny, mutant, or variant thereof, a fermentate produced from a strain disclosed herein progeny, mutant, or variant thereof disclosed herein and one or more agrochemically active compounds. Agrochemically active compounds are substances that are or may be used for treating a seed, a plant, plant part, or the environment of the seed or plant or plant part including but not limited to fungicides, bactericides, insecticides, acaricides, nematicides, molluscicides, safeners, plant growth regulators, plant nutrients, chemical entities with a known mechanism of action, additional microorganisms, and biocontrol agents.
[0066] In another embodiment, the disclosure relates to a first composition comprising a bacterial strain disclosed herein, or a progeny, mutant, or variant thereof, a fermentate produced from a strain disclosed herein progeny, mutant, or variant thereof and a second composition comprising one or more agrochemically active compounds, wherein the first and second composition may inhibit plant pathogens, pests, or insects and/or improve plant performance.
[0067] In one embodiment, the first and second compositions can be applied at the same time to a seed, a plant, plant part, or the environment of the plant. In another embodiment, the first composition can be applied to the seed followed by application of the second composition to the seed. In yet another embodiment, the second composition can be applied to the seed followed by, application of the first composition to the seed.
[0068] In another embodiment, the first composition can be applied to the plant or plant part followed by application of the second composition to the plant or plant part. In yet another embodiment, the second composition can be applied to the plant or plant part followed by application of the first composition to the plant or plant part.
[0069] In another embodiment, the first composition can be applied to the seed and the second composition applied to the plant or plant part. In yet another embodiment, the second composition can be applied to the seed and the first composition applied to the plant or plant part.
[0070] In another embodiment, the first composition may be planted on or near the seed in a field. In yet another embodiment, the second composition can be applied to the seed and the first composition applied to the plant or plant part.
[0071] In one embodiment, the disclosure relates to the use of a bacterial strain disclosed herein, or a progeny, mutant, or variant thereof, a fermentate produced from a strain disclosed herein, progeny, mutant, or variant thereof, disclosed herein with a composition comprising an insecticidal protein from Pseudomonas sp. such as PSEEN3174 (Monalysin; (2011) PLoS Pathogens 7:1-13); from Pseudomonas protegens strain CHAO and Pf-5 (previously fluorescens) (Pechy-Tarr, (2008) Environmental Microbiology 10:2368-2386; GenBank Accession No. EU400157); from Pseudomonas Taiwanensis (Liu, et al., (2010) J. Agric. Food Chem., 58:12343-12349) and from Pseudomonas pseudoalcligenes (Zhang, et al., (2009) Annals of Microbiology 59:45-50 and Li, et al., (2007) Plant Cell Tiss. Organ Cult. 89:159-168); insecticidal proteins from Photorhabdus sp. and Xenorhabdus sp. (Hinchliffe, et al., (2010) The Open Toxicology Journal, 3:101-118 and Morgan, et al., (2001) Applied and Envir. Micro. 67:2062-2069); U.S. Pat. Nos. 6,048,838, and 6,379,946; a PIP-1 polypeptide of U.S. Pat. No. 9,688,730; an AfIP-1A and/or AfIP-1B polypeptide of U.S. Pat. No. 9,475,847; a PIP-47 polypeptide of US Publication Number US20160186204; an IPD045 polypeptide, an IPD064 polypeptide, an IPD074 polypeptide, an IPD075 polypeptide, and an IPD077 polypeptide of PCT Publication Number WO 2016/114973; an IPD080 polypeptide of PCT Serial Number PCT/US17/56517; an IPD078 polypeptide, an IPD084 polypeptide, an IPD085 polypeptide, an IPD086 polypeptide, an IPD087 polypeptide, an IPD088 polypeptide, and an IPD089 polypeptide of Serial Number PCT/US17/54160; PIP-72 polypeptide of US Patent Publication Number US20160366891; a PtIP-50 polypeptide and a PtIP-65 polypeptide of US Publication Number US20170166921; an IPD098 polypeptide, an IPD059 polypeptide, an IPD108 polypeptide, an IPD109 polypeptide of U.S. Ser. No. 62/521,084; a PtIP-83 polypeptide of US Publication Number US20160347799; a PtIP-96 polypeptide of US Publication Number US20170233440; an IPD079 polypeptide of PCT Publication Number WO2017/23486; an IPD082 polypeptide of PCT Publication Number WO 2017/105987, an IPD090 polypeptide of Serial Number PCT/US17/30602, an IPD093 polypeptide of U.S. Ser. No. 62/434,020; an IPD103 polypeptide of Serial Number PCT/US17/39376; an IPD101 polypeptide of U.S. Ser. No. 62/438,179; an IPD121 polypeptide of US Serial Number U.S. 62/508,514; and .delta.-endotoxins including, but not limited to, the Cry1, Cry2, Cry3, Cry4, Cry5, Cry6, Cry7, Cry8, Cry9, Cry10, Cry11, Cry12, Cry13, Cry14, Cry15, Cry16, Cry17, Cry18, Cry19, Cry20, Cry21, Cry22, Cry23, Cry24, Cry25, Cry26, Cry27, Cry28, Cry29, Cry30, Cry31, Cry32, Cry33, Cry34, Cry35, Cry36, Cry37, Cry38, Cry39, Cry40, Cry41, Cry42, Cry43, Cry44, Cry45, Cry46, Cry47, Cry49, Cry51 and Cry55 classes of .delta.-endotoxin genes and the B. thuringiensis cytolytic Cyt1 and Cyt2 genes. Other Cry proteins are well known to one skilled in the art (see, Crickmore, et al., "Bacillus thuringiensis toxin nomenclature" (2011), at lifesci.sussex.ac.uk/home/Neil_Crickmore/Bt/ which can be accessed on the world-wide web using the "www" prefix). The insecticidal activity of Cry proteins is well known to one skilled in the art (for review, see, van Frannkenhuyzen, (2009) J. Invert. Path. 101:1-16).
[0072] In one embodiment the composition comprises a silencing element of one or more polynucleotides of interest resulting in suppression of one or more target pathogen, pest, or insect polypeptides. By "silencing element" is it intended to mean a polynucleotide which when contacted by or ingested by a pest, is capable of reducing or eliminating the level or expression of a target polynucleotide or the polypeptide encoded thereby. The silencing element employed can reduce or eliminate the expression level of the target sequence by influencing the level of the target RNA transcript or, alternatively, by influencing translation and thereby affecting the level of the encoded polypeptide. Silencing elements may include, but are not limited to, a sense suppression element, an antisense suppression element, a double stranded RNA, a siRNA, an amiRNA, a miRNA, or a hairpin suppression element.
[0073] Nucleic acid molecules including silencing elements for targeting the vacuolar ATPase H subunit, useful for controlling a coleopteran pest population and infestation as described in US Patent Application Publication 2012/0198586. PCT Publication WO 2012/055982 describes ribonucleic acid (RNA or double stranded RNA) that inhibits or down regulates the expression of a target gene that encodes: an insect ribosomal protein such as the ribosomal protein L19, the ribosomal protein L40 or the ribosomal protein S27A; an insect proteasome subunit such as the Rpn6 protein, the Pros 25, the Rpn2 protein, the proteasome beta 1 subunit protein or the Pros beta 2 protein; an insect .beta.-coatomer of the COPI vesicle, the .gamma.-coatomer of the COPI vesicle, the (3'-coatomer protein or the .zeta.-coatomer of the COPI vesicle; an insect Tetraspanine 2 A protein which is a putative transmembrane domain protein; an insect protein belonging to the actin family such as Actin 5C; an insect ubiquitin-5E protein; an insect Sec23 protein which is a GTPase activator involved in intracellular protein transport; an insect crinkled protein which is an unconventional myosin which is involved in motor activity; an insect crooked neck protein which is involved in the regulation of nuclear alternative mRNA splicing; an insect vacuolar H+-ATPase G-subunit protein and an insect Tbp-1 such as Tat-binding protein. PCT publication WO 2007/035650 describes ribonucleic acid (RNA or double stranded RNA) that inhibits or down regulates the expression of a target gene that encodes Snf7. US Patent Application publication 2011/0054007 describes polynucleotide silencing elements targeting RPS10. US Patent Application publication 2014/0275208 describes polynucleotide silencing elements targeting RyanR and PAT3. US Patent Application Publications 2012/029750, US 20120297501, and 2012/0322660 describe interfering ribonucleic acids (RNA or double stranded RNA) that functions upon uptake by an insect pest species to down-regulate expression of a target gene in said insect pest, wherein the RNA comprises at least one silencing element wherein the silencing element is a region of double-stranded RNA comprising annealed complementary strands, one strand of which comprises or consists of a sequence of nucleotides which is at least partially complementary to a target nucleotide sequence within the target gene. US Patent Application Publication 2012/0164205 describe potential targets for interfering double stranded ribonucleic acids for inhibiting invertebrate pests including: a Chd3 Homologous Sequence, a Beta-Tubulin Homologous Sequence, a 40 kDa V-ATPase Homologous Sequence, a EF1.alpha. Homologous Sequence, a 26S Proteosome Subunit p28 Homologous Sequence, a Juvenile Hormone Epoxide Hydrolase Homologous Sequence, a Swelling Dependent Chloride Channel Protein Homologous Sequence, a Glucose-6-Phosphate 1-Dehydrogenase Protein Homologous Sequence, an Act42A Protein Homologous Sequence, a ADP-Ribosylation Factor 1 Homologous Sequence, a Transcription Factor IIB Protein Homologous Sequence, a Chitinase Homologous Sequences, a Ubiquitin Conjugating Enzyme Homologous Sequence, a Glyceraldehyde-3-Phosphate Dehydrogenase Homologous Sequence, an Ubiquitin B Homologous Sequence, a Juvenile Hormone Esterase Homolog, and an Alpha Tubulin Homologous Sequence.
[0074] Some embodiments comprise an additional component, which may be a carrier, an adjuvant, a solubilizing agent, a suspending agent, a diluent, an oxygen scavenger, an antioxidant, a food material, an anti-contaminant agent, or combinations thereof.
[0075] In another embodiment, the additional component(s) may be required for the application to which the strain or composition is to be utilized. For example, if the strain or composition is to be utilized on, or in, an agricultural product, the additional component(s) may be an agriculturally acceptable carrier, excipient, or diluent. Likewise, if the strain or composition is to be utilized on, or in, a foodstuff the additional component(s) may be an edible carrier, excipient or diluent.
[0076] In one aspect, the one or more additional component(s) is a carrier, excipient, or diluent. "Carriers" or "vehicles" mean materials suitable for compound administration and include any such material known in the art such as, for example, any liquid, gel, solvent, liquid diluent, solubilizer, or the like, which is non-toxic and does not interact with any components of the composition in a deleterious manner.
[0077] Examples of nutritionally acceptable carriers include, for example, water, salt solutions, alcohol, silicone, waxes, petroleum jelly, vegetable oils, polyethylene glycols, propylene glycol, liposomes, sugars, gelatin, lactose, amylose, magnesium stearate, talc, surfactants, silicic acid, viscous paraffin, perfume oil, fatty acid monoglycerides and diglycerides, petroethral fatty acid esters, hydroxymethyl-cellulose, polyvinylpyrrolidone, and the like.
[0078] Examples of excipients include but are not limited to: microcrystalline cellulose and other celluloses, lactose, sodium citrate, calcium carbonate, dibasic calcium phosphate, glycine, starch, milk sugar, and high molecular weight polyethylene glycols.
[0079] Examples of diluents include but are not limited to: water, ethanol, propylene glycol and glycerin, and combinations thereof.
[0080] The other components may be used simultaneously (e.g. when they are in admixture together or even when they are delivered by different routes) or sequentially (e.g. they may be delivered by different routes).
[0081] The composition or its diluent may also contain chelating agents such as EDTA, citric acid, tartaric acid, etc. Moreover, the composition or its diluent may contain active agents selected from fatty acids esters, such as mono- and diglycerides, non-ionic surfactants, such as polysorbates, phospholipids, etc. Emulsifiers may enhance the stability of the composition, especially after dilution.
[0082] The bacterial strain disclosed herein, or a progeny, mutant, or variant thereof, a fermentate produced from a strain disclosed herein progeny, mutant, or variant thereof may be used in any suitable form--whether when alone or when present in a composition. The compositions may be formulated in any suitable way to ensure that the composition comprises an active compound(s) of interest.
[0083] The bacterial strain disclosed herein, or a progeny, mutant, or variant thereof, a fermentate produced from a strain disclosed herein progeny, mutant, or variant thereof compositions thereof may be in the form of a dry powder that can be sprinkled on or mixed in with a product. The compositions in the form of a dry powder may include an additive such as microcrystalline cellulose, gum tragacanth, gelatin, starch, lactose, alginic acid, Primogel, or corn starch (which can be used as a disintegrating agent).
[0084] In yet another embodiment, a bacterial strain disclosed herein, or a progeny, mutant, or variant thereof, a fermentate produced from a strain disclosed herein progeny, mutant, or variant thereof compositions disclosed herein can be a spray-dried fermentate re-suspended in H.sub.2O to a percentage selected from the following: 0.05-1, 1-3, 3-5, 5-7, 7-10, 10-15, 15-20, and greater than 20%. In another embodiment, one or more than one clarification step(s) can be performed prior to spray-drying.
[0085] In one embodiment, the compositions disclosed herein can comprise concentrated, dried propagules, from the strain disclosed herein. In one embodiment, compositions can be in the range of 1.times.10.sup.3 to 1.times.10.sup.13 CFU/g.
[0086] In one embodiment, the compositions disclosed herein can be applied in wet or partially or completely desiccated form or in slurry, gel, or other form.
[0087] In at least some embodiments, the compositions disclosed herein can be freeze-dried or lypholized. In at least some embodiments, the compositions can be mixed with a carrier. The carrier includes but is not limited to whey, maltodextrin, sucrose, dextrose, limestone (calcium carbonate), rice hulls, yeast culture, dried starch, clay, and sodium silico aluminate. The compositions can also be used with or without preservatives and in concentrated, un-concentrated, or diluted form. In one embodiment, the compositions can be in the form of a pellet or a biologically pure pellet.
[0088] The compositions described herein can be added to one or more carrier. Where used, the carrier(s) and the compositions can be added to a ribbon or paddle mixer and mixed for about 15 minutes, although the timing can be increased or decreased. The components are blended such that a uniform mixture of the culture and carrier(s) is produced. The final product is preferably a dry, flowable powder.
[0089] In one embodiment, the compositions may be formulated as a liquid, a dry powder, or a granule. The dry powder or granules may be prepared by means known to those skilled in the art, such as, in top-spray fluid bed coater, in a bottom spray Wurster, or by drum granulation (e.g. high sheer granulation), extrusion, pan coating or in a micro-ingredients mixer.
[0090] In another embodiment, the compositions disclosed herein may be provided as a spray-dried or freeze-dried powder.
[0091] In yet another embodiment, the compositions are in a liquid formulation. Such liquid consumption may contain one or more of the following: a buffer, salt, sorbitol, and/or glycerol.
[0092] In one embodiment, the compositions disclosed herein may be formulated with at least one physiologically acceptable carrier selected from at least one of maltodextrin, calcined (illite) clay, limestone (calcium carbonate), cyclodextrin, wheat or a wheat component, sucrose, starch, Na.sub.2SO.sub.4, Talc, PVA, sorbitol, benzoate, sorbiate, glycerol, sucrose, propylene glycol, 1,3-propane diol, glucose, parabens, sodium chloride, citrate, acetate, phosphate, calcium, metabisulfite, formate and mixtures thereof.
[0093] In one embodiment, the compositions disclosed herein may be formulated by encapsulation technology to improve stability and as a way to protect the compositions from seed applications. In one embodiment the encapsulation technology may comprise a bead polymer for timed release of the compositions over time. In one embodiment, the encapsulated compositions may be applied in a separate application of beads in-furrow to the seeds. In another embodiment, the encapsulated compositions may be co-applied along with seeds simultaneously.
[0094] The coating agent usable for the sustained release microparticles of an encapsulation embodiment may be a substance which is useful for coating the microgranular form with the substance to be supported thereon. Any coating agent which can form a coating difficultly permeable for the supported substance may be used in general, without any particular limitation. For example, higher saturated fatty acid, wax, thermoplastic resin, thermosetting resin and the like may be used.
[0095] Examples of useful higher saturated fatty acid include stearic acid, zinc stearate, stearic acid amide and ethylenebis-stearic acid amide; those of wax include synthetic waxes such as polyethylene wax, carbon wax, Hoechst wax, and fatty acid ester; natural waxes such as carnauba wax, bees wax and Japan wax; and petroleum waxes such as paraffin wax and petrolatum. Examples of thermoplastic resin include polyolefins such as polyethylene, polypropylene, polybutene and polystyrene; vinyl polymers such as polyvinyl acetate, polyvinyl chloride, polyvinylidene chloride, polyacrylic acid, polymethacrylic acid, polyacrylate and polymethacrylate; diene polymers such as butadiene polymer, isoprene polymer, chloroprene polymer, butadiene-styrene copolymer, ethylene-propylene-diene copolymer, styrene-isoprene copolymer, MMA-butadiene copolymer and acrylonitrile-butadiene copolymer; polyolefin copolymers such as ethylene-propylene copolymer, butene-ethylene copolymer, butene-propylene copolymer, ethylene-vinyl acetate copolymer, ethylene-acrylic acid copolymer, styreneacrylic acid copolymer, ethylene-methacrylic acid copolymer, ethylene-methacrylic ester copolymer, ethylene-carbon monoxide copolymer, ethylene-vinyl acetate-carbon monoxide copolymer, ethylene-vinyl acetate-vinyl chloride copolymer and ethylene-vinyl acetate-acrylic copolymer; and vinyl chloride copolymers such as vinyl chloride-vinyl acetate copolymer and vinylidene chloride-vinyl chloride copolymer. Examples of thermosetting resin include polyurethane resin, epoxy resin, alkyd resin, unsaturated polyester resin, phenolic resin, urea-melamine resin, urea resin and silicone resin. Of those, thermoplastic acrylic ester resin, butadienestyrene copolymer resin, thermosetting polyurethane resin and epoxy resin are preferred, and among the preferred resins, particularly thermosetting polyurethane resin is preferred. These coating agents can be used either singly or in combination of two or more kinds.
[0096] In one embodiment, the compositions may include a seed, a part of a seed, a plant, or a plant part.
[0097] All plants, plant parts, seeds or soil may be treated in accordance with the compositions and methods disclosed herein. The compositions disclosed herein may include a plant, a plant part, a seed, a seed part, or soil. The compositions and methods disclosed herein may be applied to the seed, the plant or plant parts, the fruit, or the soil in which the plants grow.
[0098] Some embodiments relate to a method for reducing plant pathogen, pest, or insect damage to a plant or plant part comprising: (a) treating a seed with a composition disclosed herein prior to planting. In another embodiment, the method further comprises: (b) treating a plant part obtained from the seed with a composition disclosed herein. The composition used in step (a) may be the same or different than the composition used in step (b).
[0099] Some embodiments relate to a method for reducing plant pathogen, pest, or insect damage to a plant or plant part comprising: (a) treating the soil surrounding a seed or plant a bacterial strain disclosed herein, or a progeny, mutant, or variant thereof, a fermentate produced from a strain disclosed herein progeny, mutant, or variant thereof. In another embodiment, the method further comprises: (b) treating a plant part with a bacterial strain disclosed herein, or a progeny, mutant, or variant thereof, a fermentate produced from a strain disclosed herein progeny, mutant, or variant thereof disclosed herein. The bacterial strain disclosed herein, or a progeny, mutant, or variant thereof, a fermentate produced from a strain disclosed herein progeny, mutant, or variant thereof used in step (a) may be the same or different than a bacterial strain disclosed herein, or a progeny, mutant, or variant thereof, a fermentate produced from a strain disclosed herein progeny, mutant, or variant thereof used in step (b).
[0100] Some embodiments relate to a method for reducing plant pathogen, pest, or insect damage to a plant or plant part comprising: (a) treating a seed prior to planting with a bacterial strain disclosed herein, or a progeny, mutant, or variant thereof, a fermentate produced from a strain disclosed herein progeny, mutant, or variant thereof disclosed herein. In another embodiment, the method further comprises: (b) treating the soil surrounding the seed or plant with a bacterial strain disclosed herein, or a progeny, mutant, or variant thereof, a fermentate produced from a strain disclosed herein progeny, mutant, or variant thereof disclosed herein. In still another embodiment, the method further comprises: (c) treating a plant part of a plant produced from the seed with a bacterial strain disclosed herein, or a progeny, mutant, or variant thereof, a fermentate produced from a strain disclosed herein progeny, mutant, or variant thereof disclosed herein. The bacterial strain disclosed herein, or a progeny, mutant, or variant thereof, a fermentate produced from a strain disclosed herein progeny, mutant, or variant thereof used in step (a) may be the same or different than the bacterial strain disclosed herein, or a progeny, mutant, or variant thereof, a fermentate produced from a strain disclosed herein progeny, mutant, or variant thereof used in step (b). The bacterial strain disclosed herein, or a progeny, mutant, or variant thereof, a fermentate produced from a strain disclosed herein progeny, mutant, or variant thereof used in step (a) may be the same or different than the bacterial strain disclosed herein, or a progeny, mutant, or variant thereof, a fermentate produced from a strain disclosed herein progeny, mutant, or variant thereof, used in step (c). The bacterial strain disclosed herein, or a progeny, mutant, or variant thereof, a fermentate produced from a strain disclosed herein progeny, mutant, or variant thereof used in step (b) may be the same or different than the bacterial strain disclosed herein, or a progeny, mutant, or variant thereof, a fermentate produced from a strain disclosed herein progeny, mutant, or variant thereof used in step (c).
[0101] In one embodiment, wild plant species and plant cultivars, or those obtained by conventional biological breeding, such as crossing or protoplast fusion, and parts thereof, can be treated with a bacterial strain disclosed herein, or a progeny, mutant, or variant thereof, a fermentate produced from a strain disclosed herein progeny, mutant, or variant thereof disclosed herein. In another embodiment, transgenic plants and plant cultivars obtained by genetic engineering, and plant parts thereof, are treated with a bacterial strain disclosed herein, or a progeny, mutant, or variant thereof, a fermentate produced from a strain disclosed herein progeny, mutant, or variant thereof disclosed herein.
[0102] In another embodiment, plants or plant cultivars (obtained by plant biotechnology methods such as genetic engineering or editing) that may be treated according to the strains, compositions and methods disclosed herein are herbicide-tolerant plants, i.e. plants made tolerant to one or more given herbicides. Such plants can be obtained either by genetic modification, or by selection of plants containing a mutation imparting such herbicide tolerance. Herbicide-resistant plants are for example glyphosate-tolerant plants, i.e. plants made tolerant to the herbicide glyphosate or salts thereof. Plants can be made tolerant to glyphosate through different means. For example, glyphosate-tolerant plants can be obtained by transforming the plant with a gene encoding the enzyme 5-enolpyruvylshilcimate-3-phosphate synthase (EPSPS).
[0103] Plants or plant cultivars (obtained by plant biotechnology methods such as genetic engineering or editing) that may also be treated are insect-resistant genetically modified plants, i.e. plants made resistant to attack by certain target insects. Such plants can be obtained by genetic transformation, or by selection of plants containing a mutation imparting such insect resistance.
[0104] In another embodiment, plants or plant cultivars (obtained by plant biotechnology methods such as genetic engineering) that may be treated according to the disclosure are tolerant to abiotic stresses. Such plants can be obtained by genetic transformation, or by selection of plants containing a mutation imparting such stress resistance.
[0105] In another embodiment, plants or plant cultivars (obtained by plant biotechnology methods such as genetic engineering or editing) that may be treated according to the disclosure are conventionally bred, by mutagenesis, or genetically engineered to contain a combination or stack of valuable traits, including but not limited to, herbicide tolerance, insect resistance, and abiotic stress tolerance.
[0106] The embodiments disclosed herein also apply to plant varieties which will be developed, or marketed, in the future and which have these genetic traits or traits to be developed in the future.
[0107] As used herein, applying a bacterial strain disclosed herein, or a progeny, mutant, or variant thereof, a fermentate produced from a strain disclosed herein progeny, mutant, or variant thereof to a seed, a plant, or plant part includes contacting the seed, plant, or plant part directly and/or indirectly with the bacterial strain disclosed herein, or a progeny, mutant, or variant thereof, a fermentate produced from a strain disclosed herein progeny, mutant, or variant thereof. In one embodiment, a bacterial strain disclosed herein, or a progeny, mutant, or variant thereof, a fermentate produced from a strain disclosed herein progeny, mutant, or variant thereof may be directly applied as a spray, a rinse, or a powder, or any combination thereof.
[0108] As used herein, a spray refers to a mist of liquid particles that contain a bacterial strain disclosed herein, or a progeny, mutant, or variant thereof, a fermentate produced from a strain disclosed herein progeny, mutant, or variant thereof of the present disclosure. In one embodiment, a spray may be applied to a plant or plant part while a plant or plant part is being grown. In another aspect, a spray may be applied to a plant or plant part while a plant or plant part is being fertilized. In another aspect, a spray may be applied to a plant or plant part while a plant or plant part is being harvested. In another aspect, a spray may be applied to a plant or plant part after a plant or plant part has been harvested. In another aspect, a spray may be applied to a plant or plant part while a plant or plant part is being processed. In another aspect, a spray may be applied to a plant or plant part while a plant or plant part is being packaged. In another aspect, a spray may be applied to a plant or plant part while a plant or plant part is being stored.
[0109] In another embodiment, a bacterial strain disclosed herein, or a progeny, mutant, or variant thereof, a fermentate produced from a strain disclosed herein progeny, mutant, or variant thereof disclosed herein may be applied directly to a plant or plant part as a rinse. As used herein, a rinse is a liquid containing a bacterial strain disclosed herein, or a progeny, mutant, or variant thereof, a fermentate produced from a strain disclosed herein progeny, mutant, or variant thereof disclosed herein. Such a rinse may be poured over a plant or plant part. A plant or plant part may also be immersed or submerged in the rinse, then removed and allowed to dry.
[0110] In another embodiment, a bacterial strain disclosed herein, or a progeny, mutant, or variant thereof, a fermentate produced from a strain disclosed herein progeny, mutant, or variant thereof may be applied to a plant or plant part and may cover 50% of the surface area of a plant material. In another embodiment, a bacterial strain disclosed herein, or a progeny, mutant, or variant thereof, a fermentate produced from a strain disclosed herein progeny, mutant, or variant thereof may be applied to a plant or plant part and may cover a percentage of the surface area of a plant material selected from the group consisting of: from 50% to about 95%, from 60% to about 95%, from 70% to about 95%, from 80% to about 95%, and from 90% to about 95%.
[0111] In another aspect, a bacterial strain disclosed herein, or a progeny, mutant, or variant thereof, a fermentate produced from a strain disclosed herein progeny, mutant, or variant thereof may cover from about 20% to about 30%, from about 30% to about 40%, from about 40% to about 50%, from about 50% to about 60%, from about 60% to about 70%, from about 70% to about 80%, from about 80% to about 90%, from about 90% to about 95%, from about 95% to about 98%, from about 98% to about 99% or 100% of the surface area of a plant or plant part.
[0112] In another aspect, a bacterial strain disclosed herein, or a progeny, mutant, or variant thereof, a fermentate produced from a strain disclosed herein progeny, mutant, or variant thereof disclosed herein may be applied directly to a plant or plant part as a powder. As used herein, a powder is a dry or nearly dry bulk solid composed of a large number of very fine particles that may flow freely when shaken or tilted. A dry or nearly dry powder composition disclosed herein preferably contains a low percentage of water, such as, for example, in various aspects, less than 5%, less than 2.5%, or less than 1% by weight.
[0113] In another aspect, a composition can be applied indirectly to the plant or plant part. For example, a plant or plant part having a bacterial strain disclosed herein, or a progeny, mutant, or variant thereof, a fermentate produced from a strain disclosed herein progeny, mutant, or variant thereof already applied may be touching a second plant or plant part so that a bacterial strain disclosed herein, or a progeny, mutant, or variant thereof, a fermentate produced from a strain disclosed herein progeny, mutant, or variant thereof rubs off on a second plant or plant part. In a further aspect, a bacterial strain disclosed herein, or a progeny, mutant, or variant thereof, a fermentate produced from a strain disclosed herein progeny, mutant, or variant thereof may be applied using an applicator. In various aspects, an applicator may include, but is not limited to, a syringe, a sponge, a paper towel, or a cloth, or any combination thereof.
[0114] A contacting step may occur while a plant material is being grown, while a plant or plant part is being fertilized, while a plant or plant part is being harvested, after a plant or plant part has been harvested, while a plant or plant part is being processed, while a plant or plant part is being packaged, or while a plant or plant part is being stored in warehouse or on the shelf of a store.
[0115] In another embodiment, a bacterial strain disclosed herein, or a progeny, mutant, or variant thereof, a fermentate produced from a strain disclosed herein progeny, mutant, or variant thereof disclosed herein may be a colloidal dispersion. A colloidal dispersion is a type of chemical mixture where one substance is dispersed evenly throughout another. Particles of the dispersed substance are only suspended in the mixture, unlike a solution, where they are completely dissolved within. This occurs because the particles in a colloidal dispersion are larger than in a solution--small enough to be dispersed evenly and maintain a homogenous appearance, but large enough to scatter light and not dissolve. Colloidal dispersions are an intermediate between homogeneous and heterogeneous mixtures and are sometimes classified as either "homogeneous" or "heterogeneous" based upon their appearance.
[0116] In one embodiment, the bacterial strain disclosed herein, or a progeny, mutant, or variant thereof, a fermentate produced from a strain disclosed herein progeny, mutant, or variant thereof compositions and methods disclosed herein are suitable for use with a seed. In another embodiment, the bacterial strain disclosed herein, or a progeny, mutant, or variant thereof, a fermentate produced from a strain disclosed herein progeny, mutant, or variant thereof compositions and methods disclosed herein are suitable for use with a seed of one or more of any of the plants recited previously.
[0117] In still another embodiment, the bacterial strain disclosed herein, or a progeny, mutant, or variant thereof, a fermentate produced from a strain disclosed herein progeny, mutant, or variant thereof compositions and methods disclosed herein can be used to treat transgenic or genetically, modified or edited seed. A transgenic seed refers to the seed of plants containing at least one heterologous gene that allows the expression of a polypeptide or protein not naturally found in the plant. The heterologous gene in transgenic seed can originate, for example, from microorganisms of the species Bacillus, Rhizobium, Pseudomonas, Serratia, Trichoderma, Clavibacter, Glomus or Gliocladium.
[0118] In one embodiment, the seed is treated in a state in which it is sufficiently stable so that the treatment does not cause any damage. In general, treatment of the seed may take place at any point in time between harvesting and sowing. In one embodiment, the seed used is separated from the plant and freed from cobs, shells, stalks, coats, hairs or the flesh of the fruits. Thus, it is possible to use, for example, seed which has been harvested, cleaned and dried. Alternatively, it is also possible to use seed which, after drying, has been treated, for example, with water and then dried again.
[0119] In one embodiment, seed is treated with a bacterial strain disclosed herein, or a progeny, mutant, or variant thereof, a fermentate produced from a strain disclosed herein progeny, mutant, or variant thereof compositions and methods disclosed herein in such a way that the germination of the seed is not adversely affected, or that the resulting plant is not damaged.
[0120] In one embodiment, a bacterial strain disclosed herein, or a progeny, mutant, or variant thereof, a fermentate produced from a strain disclosed herein progeny, mutant, or variant thereof compositions disclosed herein may be applied directly to the seed. For example, the bacterial strain disclosed herein, or a progeny, mutant, or variant thereof, fermentate produced from a strain disclosed herein progeny, mutant, or variant thereof compositions disclosed herein may be applied without additional components and without having been diluted.
[0121] In another embodiment, a bacterial strain disclosed herein, or a progeny, mutant, or variant thereof, a fermentate produced from a strain disclosed herein progeny, mutant, or variant thereof disclosed herein may be applied to the seed in the form of a suitable formulation. Suitable formulations and methods for the treatment of seed are known to the person skilled in the art and are described, for example, in the following documents: U.S. Pat. Nos. 4,272,417 A, 4,245,432 A, 4,808,430 A, 5,876,739 A, US 2003/0176428 A1, WO 2002/080675 A1, WO 2002/028186 A2.
[0122] A bacterial strain disclosed herein, or a progeny, mutant, or variant thereof, a fermentate produced from a strain disclosed herein progeny, mutant, or variant thereof disclosed herein can be converted into customary seed dressing formulations, such as solutions, emulsions, suspensions, powders, foams, slurries or other coating materials for seed, and also ULV formulations. These formulations are prepared in a known manner by mixing A bacterial strain disclosed herein, or a progeny, mutant, or variant thereof, a fermentate produced from a strain disclosed herein progeny, mutant, or variant thereof disclosed herein with customary additives, such as, for example, customary extenders and also solvents or diluents, colorants, wetting agents, dispersants, emulsifiers, defoamers, preservatives, secondary thickeners, adhesives, gibberellins and water as well.
[0123] In another embodiment, suitable colorants that may be present in the seed dressing formulations include all colorants customary for such purposes. Use may be made both of pigments, of sparing solubility in water, and of dyes, which are soluble in water. Examples that may be mentioned include the colorants known under the designations Rhodamine B, C.I. Pigment Red 112, and C.I. Solvent Red 1.
[0124] In another embodiment, suitable wetting agents that may be present in the seed dressing formulations include all substances that promote wetting and are customary in the formulation of active agrochemical substances. With preference it is possible to use alkylnaphthalene-sulphonates, such as diisopropyl- or diisobutylnaphthalene-sulphonates.
[0125] In still another embodiment, suitable dispersants and/or emulsifiers that may be present in the seed dressing formulations include all nonionic, anionic, and cationic dispersants that are customary in the formulation of active agrochemical substances. In one embodiment, nonionic or anionic dispersants or mixtures of nonionic or anionic dispersants can be used. In one embodiment, nonionic dispersants include but are not limited to ethylene oxide-propylene oxide block polymers, alkylphenol polyglycol ethers, and tristyrylphenol polyglycol ethers, and their phosphated or sulphated derivatives.
[0126] In still another embodiment, defoamers that may be present in the seed dressing formulations to be used include all foam-inhibiting compounds that are customary in the formulation of agrochemically active compounds including but not limited to silicone defoamers, magnesium stearate, silicone emulsions, long-chain alcohols, fatty acids and their salts and also organofluorine compounds and mixtures thereof.
[0127] In still another embodiment, secondary thickeners that may be present in the seed dressing formulations include all compounds which can be used for such purposes in agrochemical compositions, including but not limited to cellulose derivatives, acrylic acid derivatives, polysaccharides, such as xanthan gum or Veegum, modified clays, phyllosilicates, such as attapulgite and bentonite, and also finely divided silicic acids.
[0128] Suitable adhesives that may be present in the seed dressing formulations may include all customary binders which can be used in seed dressings. Polyvinylpyrrolidone, polyvinyl acetate, polyvinyl alcohol and tylose may be mentioned as being preferred.
[0129] In yet another embodiment, seed dressing formulations may be used directly or after dilution with water beforehand to treat seed of any of a very wide variety of types. The seed dressing formulations or their dilute preparations may also be used to dress seed of transgenic plants. In this context, synergistic effects may also arise in interaction with the substances formed by expression.
[0130] Suitable mixing equipment for treating seed with the seed dressing formulations or the preparations prepared from them by adding water includes all mixing equipment that can commonly be used for dressing. The specific procedure adopted when dressing comprises introducing the seed into a mixer, adding the particular desired amount of seed dressing formulation, either as it is or following dilution with water beforehand, and carrying out mixing until the formulation is uniformly distributed on the seed. Optionally, a drying operation follows.
[0131] In various embodiments, a bacterial strain disclosed herein, or a progeny, mutant, or variant thereof, a fermentate produced from a strain disclosed herein progeny, mutant, or variant thereof, can be added to the plant, plant part, and/or seed at a rate of about 1.times.10.sup.2 to 1.times.10.sup.13 colony forming units (cfu) per seed, including about 1.times.10.sup.3 cfu/seed, or about 1.times.10.sup.4 cfu/seed, 1.times.10.sup.5 cfu/seed, or about 1.times.10.sup.6 cfu/seed, or about 1.times.10.sup.7 cfu/seed, or about 1.times.10.sup.8 cfu/seed, or about 1.times.10.sup.9 cfu/seed, or about 1.times.10.sup.10 cfu/seed, or about 1.times.10.sup.11 cfu/seed, or about 1.times.10.sup.12 cfu/seed, or about 1.times.10.sup.13 cfu/seed including about 1.times.10.sup.3 to 1.times.10.sup.8 cfu/seed about 1.times.10.sup.3 to 1.times.10.sup.7 cfu/seed, about 1.times.10.sup.3 to 1.times.10.sup.5 cfu/seed, about 1.times.10.sup.3 to 1.times.10.sup.6 cfu/seed, about 1.times.10.sup.3 to 1.times.10.sup.4 cfu/seed, about 1.times.10.sup.3 to 1.times.10.sup.9 cfu/seed, about 1.times.10.sup.3 to 1.times.10.sup.10 cfu/seed, about 1.times.10.sup.3 to 1.times.10.sup.11 cfu/seed, about 1.times.10.sup.3 to 1.times.10.sup.12 cfu/seed, about 1.times. to 1.times.10.sup.13 clip/seed, about 1.times.10.sup.4 to 1.times.10.sup.8 cfu/seed about 1.times.10.sup.4 to 1.times.10.sup.7 cfu/seed, about 1.times.10.sup.4 to 1.times.10.sup.5 cfu/seed, about 1.times.10.sup.4 to 1.times.10.sup.6 cfu/seed, about 1.times.10.sup.4 to 1.times.10.sup.9 cfu/seed, about 1.times.10.sup.4 to 1.times.10.sup.10 cfu/seed, about 1.times.10.sup.11 to 1.times.10.sup.9 cfu/seed, about 1.times.10.sup.4 to 1.times.10.sup.12 cfu/seed about 1.times.10.sup.4 to 1.times.10.sup.13 cfu/seed, about 1.times.10.sup.5 to 1.times.10.sup.7 cfu/per seed, about 1.times.10.sup.5 to 1.times.10.sup.6 cfu/per seed, about 1.times.10.sup.5 to 1.times.10.sup.8 cfu/per seed, about 1.times.10.sup.5 to 1.times.10.sup.9 cfu/per seed, about 1.times.10.sup.5 to 1.times.10.sup.10 cfu/per seed, about 1.times.10.sup.5 to 1.times.10.sup.11 cfu/per seed, about 1.times.10.sup.5 to 1.times.10.sup.12 cfu/per seed, about 1.times.10.sup.5 to 1.times.10.sup.13 cfu/per seed, about 1.times.10.sup.6 to 1.times.10.sup.8 cfu/per seed, about 1.times.10.sup.6 to 1.times.10.sup.7 cfu/per seed, about 1.times.10.sup.6 to 1.times.10.sup.9 cfu/per seed, about 1.times.10.sup.6 to 1.times.10.sup.10 cfu/per seed, about 1.times.10.sup.6 to 1.times.10.sup.11 cfu/per seed, about 1.times.10.sup.6 to 1.times.10.sup.12 cfu/per seed, about 1.times.10.sup.6 to 1.times.10.sup.13 cfu/per seed, about 1.times.10.sup.7 to 1.times.10.sup.8 cfu/per seed, about 1.times.10.sup.7 to 1.times.10.sup.9 cfu/per seed, about 1.times.10.sup.7 to 1.times.10.sup.10 cfu/per seed, about 1.times.10.sup.7 to 1.times.10.sup.11 cfu/per seed, about 1.times.10.sup.7 to 1.times.10.sup.12 cfu/per seed, about 1.times.10.sup.7 to 1.times.10.sup.13 cfu/per seed, about 1.times.10.sup.8 to 1.times.10.sup.9 cfu/per seed, about 1.times.10.sup.8 to 1.times.10.sup.10 cfu/per seed, about 1.times.10.sup.8 to 1.times.10.sup.11 cfu/per seed, about 1.times.10.sup.8 to 1.times.10.sup.12 cfu/per seed, about 1.times.10.sup.8 to 1.times.10.sup.13 cfu/per seed, about 1.times.10.sup.9 to 1.times.10.sup.10 cfu/per seed, about 1.times.10.sup.9 to 1.times.10.sup.11 cfu/per seed, about 1.times.10.sup.9 to 1.times.10.sup.12 cfu/per seed, about 1.times.10.sup.9 to 1.times.10.sup.13 cfu/per seed, about 1.times.10.sup.10 to 1.times.10.sup.11 cfu/per seed, about 1.times.10.sup.10 to 1.times.10.sup.12 cfu/per seed, about 1.times.10.sup.10 to 1.times.10.sup.13 cfu/per seed, about 1.times.10.sup.13 to 1.times.10.sup.12 cfu/per seed, about 1.times.10.sup.11 to 1.times.10.sup.13 cfu/per seed, and about 1.times.10.sup.12 to 1.times.10.sup.13 cfu/per seed. As used herein, the tem "colony forming unit" or "cfu" is a unit capable of growing and producing a colony of a microbial strain in favorable conditions.
[0132] In one embodiment, a bacterial strain disclosed herein, or a progeny, mutant, or variant thereof, a fermentate produced from a strain disclosed herein progeny, mutant, or variant thereof, may be formulated as a liquid seed treatment. A seed treatment may comprise at least one a bacterial strain disclosed herein, or a progeny, mutant, or variant thereof, a fermentate produced from a strain disclosed herein progeny, mutant, or variant thereof. The seeds are substantially uniformly coated with one or more layers of a bacterial strain disclosed herein, or a progeny, mutant, or variant thereof, a fermentate produced from a strain disclosed herein progeny, mutant, or variant thereof, using conventional methods of mixing, spraying or a combination thereof. Application is done using equipment that accurately, safely, and efficiently applies seed treatment products to seeds. Such equipment uses various types of coating technology such as rotary coaters, drum coaters, fluidized bed techniques, spouted beds, rotary mists or a combination thereof.
[0133] In one embodiment, the application is done via either a spinning "atomizer" disk or a spray nozzle that evenly distributes the seed treatment onto the seed as it moves through the spray pattern. In yet another embodiment, the seed is then mixed or tumbled for an additional period of time to achieve additional treatment distribution and drying. The seeds may be primed or unprimed before coating with a composition disclosed herein to increase the uniformity of germination and emergence. In an alternative embodiment, a dry powder composition can be metered onto the moving seed.
[0134] In still another embodiment, the seeds may be coated via a continuous or batch coating process. In a continuous coating process, continuous flow equipment simultaneously meters both the seed flow and the seed treatment products. A slide gate, cone and orifice, seed wheel, or weight device (belt or diverter) regulates seed flow. Once the seed flow rate through treating equipment is determined, the flow rate of the seed treatment is calibrated to the seed flow rate in order to deliver the desired dose to the seed as it flows through the seed treating equipment. Additionally, a computer system may monitor the seed input to the coating machine, thereby maintaining a constant flow of the appropriate amount of seed.
[0135] In a batch coating process, batch treating equipment weighs out a prescribed amount of seed and places the seed into a closed treating chamber or bowl where the corresponding of seed treatment is then applied. The seed and seed treatment are then mixed to achieve a substantially uniform coating on each seed. This batch is then dumped out of the treating chamber in preparation for the treatment of the next batch. With computer control systems, this batch process is automated enabling it to continuously repeat the batch treating process.
[0136] A variety of additives can be added to the seed treatments. Binders can be added and include those composed preferably of an adhesive polymer that can be natural or synthetic without phytotoxic effect on the seed to be coated. A variety of colorants may be employed, including organic chromophores classified as nitroso, nitro, azo, including monoazo, bisazo, and polyazo, diphenylmethane, triarylmethane, xanthene, methane, acridine, thiazole, thiazine, indamine, indophenol, azine, oxazine, anthraquinone, and phthalocyanine. Other additives that can be added include trace nutrients such as salts of iron, manganese, boron, copper, cobalt, molybdenum, and zinc. A polymer or other dust control agent can be applied to retain the treatment on the seed surface.
[0137] Other conventional seed treatment additives include, but are not limited to, coating agents, wetting agents, buffering agents, and polysaccharides. At least one agriculturally acceptable carrier can be added to the seed treatment formulation such as water, solids or dry powders. The dry powders can be derived from a variety of materials such as wood barks, calcium carbonate, gypsum, vermiculite, talc, humus, activated charcoal, and various phosphorous compounds.
[0138] In one embodiment, the seed coating can comprise of at least one filler, which is an organic or inorganic, natural or synthetic component with which a bacterial strain disclosed herein, or a progeny, mutant, or variant thereof, a fermentate produced from a strain disclosed herein progeny, mutant, or variant thereof described herein is combined to facilitate its application onto the seed. In one embodiment, the filler is an inert solid such as clays, natural or synthetic silicates, silica, resins, waxes, solid fertilizers (for example ammonium salts), natural soil minerals, such as kaolins, clays, talc, lime, quartz, attapulgite, montmorillonite, bentonite, or diatomaceous earths, or synthetic minerals, such as silica, alumina, or silicates, in particular aluminum or magnesium silicates.
[0139] In one embodiment, a bacterial strain disclosed herein, or a progeny, mutant, or variant thereof, a fermentate produced from a strain disclosed herein progeny, mutant, or variant thereof disclosed herein may be formulated by encapsulation technology to improve fungal spore stability and as a way to protect the fungal spores from seed applied fungicides. In one embodiment the encapsulation technology may comprise a bead polymer for timed release of fungal spores over time. In one embodiment, the encapsulation technology may comprise a zeolite material. In one embodiment, an encapsulated bacterial strain disclosed herein, or a progeny, mutant, or variant thereof, fermentate produced from a strain disclosed herein progeny, mutant, or variant thereof may be applied in a separate application of beads in-furrow to the seeds. In another embodiment, the encapsulated bacterial strain disclosed herein, or a progeny, mutant, or variant thereof, fermentate produced from a strain disclosed herein progeny, mutant, or variant thereof may be co-applied along with seeds simultaneously.
[0140] Insect resistance management (IRM) is the term used to describe practices aimed at reducing the potential for insect pests to become resistant to an insect management tactic. IRM maintenance of Bt (Bacillus thuringiensis) derived pesticidal proteins, other pesticidal proteins, a chemical, a biological agent, or other biologicals, is of great importance because of the threat insect resistance poses to the future use of pesticidal plant-incorporated protectants and insecticidal trait technology as a whole. Specific IRM strategies, such as the refuge strategy, mitigate insect resistance to specific insecticidal proteins produced in corn, soybean, cotton, and other crops. However, such strategies result in portions of crops being left susceptible to one or more pests in order to ensure that non-resistant insects develop and become available to mate with any resistant pests produced in protected crops. Accordingly, from a farmer/producer's perspective, it is highly desirable to have as small a refuge as possible and yet still manage insect resistance, in order that the greatest yield be obtained while still maintaining the efficacy of the pest control method used, whether Bt, a different pesticidal protein, chemical, biological agent or other biologicals, some other method, or combinations thereof.
[0141] Another strategy to reduce the need for refuge is the pyramiding of traits with different modes of action against a target insect pest. For example, Bt toxins that have different modes of action pyramided in one transgenic plant are able to have reduced refuge requirements due to reduced resistance risk. Different modes of action in a pyramid combination also extend the durability of each trait, as resistance is slower to develop to each trait.
[0142] Currently, the size, placement, and management of the refuge are often considered critical to the success of refuge strategies to mitigate insect resistance to the Bt/pesticidal trait produced in corn, cotton, soybean, and other crops. Because of the decrease in yield in refuge planting areas, some farmers choose to eschew the refuge requirements, and others do not follow the size and/or placement requirements. These issues result in either no refuge or a less effective refuge, and a corresponding risk of the increase in the development of resistance pests.
[0143] Accordingly, there remains a need for methods for managing pest resistance in a plot of pest resistant crop plants. It would be useful to provide an improved method for the protection of plants, especially corn or other crop plants, from feeding damage by pests. It would be particularly useful if such a method would reduce the required application rate of conventional chemical pesticides, and also if it would limit the number of separate field operations that were required for crop planting and cultivation. In addition, it would be useful to have a method of deploying a biocontrol agent that increases the durability of an insecticidal trait or increases the efficacy of many resistance management strategies.
[0144] One embodiment relates to a method of reducing or preventing the resistance of pests to a plant pesticidal composition comprising providing a plant protection composition, such as a Bt pesticidal protein, a transgenic pesticidal protein, other pesticidal proteins, chemical pesticides, or pesticidal biological entomopathogens, to a plant and/or plant part or a planted area or insecticidal trait and providing a bacterial strain disclosed herein, or a progeny, mutant, or variant thereof, a fermentate produced from a strain disclosed herein progeny, mutant, or variant thereof described herein to the plant and/or plant part or planted area. Another embodiment relates to a method of reducing or preventing the resistance to a plant insecticidal trait comprising providing or contacting a plant with a bacterial strain disclosed herein, or a progeny, mutant, or variant thereof, a fermentate produced from a strain disclosed herein progeny, mutant, or variant thereof described herein.
[0145] A further embodiment relates to a method of increasing the durability of plant pest compositions comprising providing a plant protection composition to a plant or planted area, and providing a bacterial strain disclosed herein, or a progeny, mutant, or variant thereof, a fermentate produced from a strain disclosed herein progeny, mutant, or variant thereof described herein to the plant or planted area, wherein the bacterial strain disclosed herein, or a progeny, mutant, or variant thereof, fermentate produced from a strain disclosed herein progeny, mutant, or variant thereof described herein have a different mode of action than the plant protection composition.
[0146] In a still further embodiment, the refuge required may be reduced or eliminated by the presence of a bacterial strain disclosed herein, or a progeny, mutant, or variant thereof, a fermentate produced from a strain disclosed herein progeny, mutant, or variant thereof described herein applied to the non-refuge plants. In another embodiment, the refuge may include a bacterial strain disclosed herein, or a progeny, mutant, or variant thereof, a fermentate produced from a strain disclosed herein progeny, mutant, or variant thereof described herein as a spray, bait, or as a different mode of action.
[0147] In one embodiment, a composition comprises a bacterial strain disclosed herein, or a progeny, mutant, or variant thereof, a fermentate produced from a strain disclosed herein progeny, mutant, or variant thereof disclosed herein and a non-Bt insecticidal trait increases resistance to a pathogen, pest, or insect. In another embodiment, the non-Bt insecticidal trait comprises a plant-derived insecticidal protein, a bacterial/archeal-derived insecticidal protein not from a Bt (such as a Pseudomonas insecticidal protein), an animal-derived insecticidal protein, or a silencing element. In another embodiment, a composition comprising a bacterial strain disclosed herein, or a progeny, mutant, or variant thereof, a fermentate produced from a strain disclosed herein progeny, mutant, or variant thereof disclosed herein and a non-Bt insecticidal trait increases durability of the non-Bt insecticidal trait. In another embodiment, the non-Bt insecticidal trait comprises a PIP-72 polypeptide of PCT Serial Number PCT/US14/55128. In another embodiment, the non-Bt insecticidal trait comprises a polynucleotide silencing elements targeting RyanR (DvSSJ) (US Patent Application publication 2014/0275208). In another embodiment, the non-Bt insecticidal trait comprises a polynucleotide silencing elements targeting RyanR (DvSSJ) (US Patent Application publication 2014/0275208, herein incorporated by reference in its entirety) and a PIP-72 polypeptide of PCT Serial Number PCT/US14/55128, herein incorporated by reference in its entirety.
[0148] In another embodiment, a composition comprising a bacterial strain disclosed herein, or a progeny, mutant, or variant thereof, a fermentate produced from a strain disclosed herein progeny, mutant, or variant thereof disclosed herein and a fungal entomopathogen disclosed in U.S. Pat. No. 9,993,006, herein incorporated by reference in its entirety.
[0149] In some embodiments, a composition comprises a bacterial strain disclosed herein, or a progeny, mutant, or variant thereof, a fermentate produced from a strain disclosed herein progeny, mutant, or variant thereof disclosed herein and a Bt insecticidal trait that increases resistance to a pathogen, pest, or insect. A Bt insecticidal trait may have activity to Coleopteran, Lepidopteran, or Hemipteran plant pests. The compositions disclosed herein may provide to a plant or plant part additive or synergistic resistance to a pathogen, pest, or insect plant in combination with a Bt insecticidal trait. In one embodiment, a composition comprises a bacterial strain disclosed herein, or a progeny, mutant, or variant thereof, a fermentate produced from a strain disclosed herein progeny, mutant, or variant thereof disclosed herein and a Bt insecticidal trait, wherein the Bt insecticidal trait comprises a Cry3B toxin disclosed in U.S. Pat. Nos. 8,101,826, 6,551,962, 6,586,365, 6,593,273, and PCT Publication WO 2000/011185, a mCry3B toxin disclosed in U.S. Pat. Nos. 8,269,069, and 8,513,492, a mCry3A toxin disclosed in U.S. Pat. Nos. 8,269,069, 7,276,583 and 8,759,620, or a Cry34/35 toxin disclosed in U.S. Pat. Nos. 7,309,785, 7,524,810, 7,985,893, 7,939,651 and 6,548,291, and transgenic events containing these Bt insecticidal toxins and other Coleopteran active Bt insecticidal traits for example, event MON863 disclosed in U.S. Pat. No. 7,705,216, event MIR604 disclosed in U.S. Pat. No. 8,884,102, event 5307 disclosed in U.S. Pat. No. 9,133,474, event DAS-59122 disclosed in U.S. Pat. No. 7,875,429, event DP-4114 disclosed in U.S. Pat. No. 8,575,434, event MON87411 disclosed in US Published Patent Application Number 2013/0340111, and event MON88017 disclosed in U.S. Pat. No. 8,686,230 all of which are incorporated herein by reference. All publications, patents and patent applications mentioned in the specification indicate the level of those skilled in the art to which this disclosure pertains. All publications, patents and patent applications are incorporated by reference to the same extent as if each individual publication, patent or patent application was specifically and individually indicated to be incorporated by reference.
IPD126 Proteins and Variants and Fragments Thereof
[0150] IPD126 polypeptides are encompassed by the disclosure as set forth in SEQ ID NOs: 19-36. "IPD126 polypeptide," and "IPD126 protein" as used herein interchangeably refers to a polypeptide(s) having insecticidal activity including but not limited to insecticidal activity against one or more insect pests of the Lepidoptera, Hemiptera, and/or Coleoptera orders. A variety of IPD126 polypeptides are contemplated.
[0151] "Sufficiently identical" is used herein to refer to an amino acid sequence that has at least about 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity. In one embodiment the IPD126 polypeptide has at least about 40%, 45%, 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity compared to any one of SEQ ID NOs: 19-36. The term "about" when used herein in context with percent sequence identity means +/-1.0%.
[0152] A "recombinant protein" is used herein to refer to a protein that is no longer in its natural environment, for example in vitro or in a recombinant bacterial or plant host cell.
[0153] "Fragments" or "biologically active portions" include polypeptide fragments comprising amino acid sequences sufficiently identical to an IPD126 polypeptide and that exhibit insecticidal activity. "Fragments" or "biologically active portions" of IPD126 polypeptides includes fragments comprising amino acid sequences sufficiently identical to the amino acid sequence set forth in any one of SEQ ID NOs: 19-36 wherein the IPD126 polypeptide has insecticidal activity. Such biologically active portions can be prepared by recombinant techniques and evaluated for insecticidal activity.
[0154] "Variants" as used herein refers to proteins or polypeptides having an amino acid sequence that is at least about 50%, 55%, 60%, 65%, 70%, 75%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater identical to the parental amino acid sequence.
[0155] In some embodiments an IPD126 polypeptide comprises an amino acid sequence having at least about 40%, 45%, 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity to the full length or a fragment of the amino acid sequence of any one of SEQ ID NOs: 19-36, wherein the IPD126 polypeptide has insecticidal activity.
[0156] In some embodiments an IPD126 polypeptide comprises an amino acid sequence of any one or more of SEQ ID NOS: 19-36 having 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95 or more amino acid substitutions compared to the amino acid at the corresponding position of any one or more of the respective SEQ ID NOS: 19-36.
[0157] Methods for such manipulations are generally known in the art. For example, amino acid sequence variants of an IPD126 polypeptide can be prepared by mutations in the DNA. This may also be accomplished by one of several forms of mutagenesis, such as for example site-specific double strand break technology, and/or in directed evolution. In some aspects, the changes encoded in the amino acid sequence will not substantially affect the function of the protein. Such variants will possess a desired pesticidal activity. However, it is understood that the ability of an IPD126 polypeptide to confer pesticidal activity or other polypeptide physical property may be improved or altered by the use of such techniques upon the compositions of this disclosure.
[0158] Conservative amino acid substitutions may be made at one or more predicted nonessential amino acid residues. A "nonessential" amino acid residue is a residue that can be altered from the wild-type sequence of an IPD126 polypeptide without altering the biological activity. A "conservative amino acid substitution" is one in which the amino acid residue is replaced with an amino acid residue having a similar side chain. Families of amino acid residues having similar side chains have been defined in the art. These families include: amino acids with basic side chains (e.g., lysine, arginine, histidine); acidic side chains (e.g., aspartic acid, glutamic acid); polar, negatively charged residues and their amides (e.g., aspartic acid, asparagine, glutamic, acid, glutamine; uncharged polar side chains (e.g., glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine); small aliphatic, nonpolar or slightly polar residues (e.g., Alanine, serine, threonine, proline, glycine); nonpolar side chains (e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan); large aliphatic, nonpolar residues (e.g., methionine, leucine, isoleucine, valine, cystine); beta-branched side chains (e.g., threonine, valine, isoleucine); aromatic side chains (e.g., tyrosine, phenylalanine, tryptophan, histidine); large aromatic side chains (e.g., tyrosine, phenylalanine, tryptophan).
[0159] Amino acid substitutions may be made in nonconserved regions that retain function. In general, such substitutions would not be made for conserved amino acid residues or for amino acid residues residing within a conserved motif, where such residues are essential for protein activity. Examples of residues that are conserved and that may be essential for protein activity include, for example, residues that are identical between all proteins contained in an alignment of similar or related toxins to the sequences of the embodiments (e.g., residues that are identical in an alignment of homologous proteins). Examples of residues that are conserved but that may allow conservative amino acid substitutions and still retain activity include, for example, residues that have only conservative substitutions between all proteins contained in an alignment of similar or related toxins to the sequences of the embodiments (e.g., residues that have only conservative substitutions between all proteins contained in the alignment homologous proteins). However, one of skill in the art would understand that functional variants may have minor conserved or nonconserved alterations in the conserved residues.
[0160] Variant nucleotide and amino acid sequences of the disclosure also encompass sequences derived from mutagenic and recombinogenic procedures such as DNA shuffling. With such a procedure, one or more different IPD126 polypeptide coding regions can be used to create a new IPD126 polypeptide possessing the desired properties. In this manner, libraries of recombinant polynucleotides are generated from a population of related sequence polynucleotides comprising sequence regions that have substantial sequence identity and can be homologously recombined in vitro or in vivo. For example, using this approach, sequence motifs encoding a domain of interest may be shuffled between a pesticidal gene and other known pesticidal genes to obtain a new gene coding for a protein with an improved property of interest, such as an increased insecticidal activity. Strategies for such DNA shuffling are known in the art. See, for example, Stemmer, (1994) Proc. Natl. Acad. Sci. USA 91:10747-10751; Stemmer, (1994) Nature 370:389-391; and U.S. Pat. Nos. 5,605,793 and 5,837,458.
[0161] In some embodiments, chimeric polypeptides are provided comprising regions of at least two different IPD126 polypeptides selected from any one or more of SEQ ID NOS: 19-36.
Nucleic Acid Molecules, and Variants and Fragments Thereof
[0162] Isolated or recombinant nucleic acid molecules comprising nucleic acid sequences encoding IPD126 polypeptides or biologically active portions thereof, as well as nucleic acid molecules sufficient for use as hybridization probes to identify nucleic acid molecules encoding proteins with regions of sequence homology are provided. As used herein, the term "nucleic acid molecule" refers to DNA molecules (e.g., recombinant DNA, cDNA, genomic DNA, plastid DNA, mitochondrial DNA) and RNA molecules (e.g., mRNA) and analogs of the DNA or RNA generated using nucleotide analogs. The nucleic acid molecule can be single-stranded or double-stranded, but preferably is double-stranded DNA.
[0163] An "isolated" nucleic acid molecule (or DNA) is used herein to refer to a nucleic acid sequence (or DNA) that is no longer in its natural environment, for example in vitro. A "recombinant" nucleic acid molecule (or DNA) is used herein to refer to a nucleic acid sequence (or DNA) that is in a recombinant bacterial or plant host cell. In some embodiments, an "isolated" or "recombinant" nucleic acid is free of sequences (preferably protein encoding sequences) that naturally flank the nucleic acid (i.e., sequences located at the 5' and 3' ends of the nucleic acid) in the genomic DNA of the organism from which the nucleic acid is derived. For purposes of the disclosure, "isolated" or "recombinant" when used to refer to nucleic acid molecules excludes isolated chromosomes. For example, in various embodiments, the recombinant nucleic acid molecules encoding IPD126 polypeptides can contain less than about 5 kb, 4 kb, 3 kb, 2 kb, 1 kb, 0.5 kb or 0.1 kb of nucleic acid sequences that naturally flank the nucleic acid molecule in genomic DNA of the cell from which the nucleic acid is derived.
[0164] In some embodiments an isolated nucleic acid molecule encoding IPD126 polypeptides has one or more change in the nucleic acid sequence compared to the native or genomic nucleic acid sequence. In some embodiments the change in the native or genomic nucleic acid sequence includes but is not limited to: changes in the nucleic acid sequence due to the degeneracy of the genetic code; changes in the nucleic acid sequence due to the amino acid substitution, insertion, deletion and/or addition compared to the native or genomic sequence; removal of one or more intron; deletion of one or more upstream or downstream regulatory regions; and deletion of the 5' and/or 3' untranslated region associated with the genomic nucleic acid sequence. In some embodiments the nucleic acid molecule encoding an IPD126 polypeptide is a non-genomic sequence.
[0165] A variety of polynucleotides that encode IPD126 polypeptides or related proteins are contemplated. Such polynucleotides are useful for production of IPD126 polypeptides in host cells when operably linked to a suitable promoter, transcription termination and/or polyadenylation sequences. Such polynucleotides are also useful as probes for isolating homologous or substantially homologous polynucleotides that encode IPD126 polypeptides or related proteins.
[0166] The polynucleotides of any one or more of SEQ ID NOS: 1-18, can be used to express IPD126 polypeptides in recombinant bacterial hosts that include but are not limited to Agrobacterium, Bacillus, Escherichia, Salmonella, Lysinibacillus, Acetobacter, Pseudomonas and Rhizobium bacterial host cells. The polynucleotides are also useful as probes for isolating homologous or substantially homologous polynucleotides encoding IPD126 polypeptides or related proteins. Such probes can be used to identify homologous or substantially homologous polynucleotides, or portions thereof, derived from Bacillus thurengiensis.
[0167] Polynucleotides encoding IPD126 polypeptides can also be synthesized de novo from an IPD126 polypeptide sequence. The sequence of the polynucleotide gene can be deduced from an IPD126 polypeptide sequence through use of the genetic code. Computer programs such as "BackTranslate" (GCG.TM. Package, Acclerys, Inc. San Diego, Calif) can be used to convert a peptide sequence to the corresponding nucleotide sequence encoding the peptide. Examples of IPD126 polypeptide sequences that can be used to obtain corresponding nucleotide encoding sequences include, but are not limited to the IPD126 polypeptides of SEQ ID NOS: 19-36. Furthermore, synthetic IPD126 polynucleotide sequences of the disclosure can be designed so that they will be expressed in plants.
[0168] In some embodiments the nucleic acid molecule encoding a IPD126 polypeptide is a polynucleotide having the sequence set forth in any one of SEQ ID NOS: 1-18, and variants, fragments and complements thereof. "Complement" is used herein to refer to a nucleic acid sequence that is sufficiently complementary to a given nucleic acid sequence such that it can hybridize to the given nucleic acid sequence to thereby form a stable duplex. "Polynucleotide sequence variants" is used herein to refer to a nucleic acid sequence that except for the degeneracy of the genetic code encodes the same polypeptide.
[0169] In some embodiments the nucleic acid molecule encoding the IPD126 polypeptide is a non-genomic nucleic acid sequence. As used herein a "non-genomic nucleic acid sequence" or "non-genomic nucleic acid molecule" or "non-genomic polynucleotide" refers to a nucleic acid molecule that has one or more change in the nucleic acid sequence compared to a native or genomic nucleic acid sequence. In some embodiments the change to a native or genomic nucleic acid molecule includes but is not limited to: changes in the nucleic acid sequence due to the degeneracy of the genetic code; optimization of the nucleic acid sequence for expression in plants; changes in the nucleic acid sequence to introduce at least one amino acid substitution, insertion, deletion and/or addition compared to the native or genomic sequence; removal of one or more intron associated with the genomic nucleic acid sequence; insertion of one or more heterologous introns; deletion of one or more upstream or downstream regulatory regions associated with the genomic nucleic acid sequence; insertion of one or more heterologous upstream or downstream regulatory regions; deletion of the 5' and/or 3' untranslated region associated with the genomic nucleic acid sequence; insertion of a heterologous 5' and/or 3' untranslated region; and modification of a polyadenylation site. In some embodiments the non-genomic nucleic acid molecule is a synthetic nucleic acid sequence.
[0170] In some embodiments the nucleic acid molecule encoding a IPD126 polypeptide disclosed herein is a non-genomic polynucleotide having a nucleotide sequence having at least 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity, to the nucleic acid sequence of any one of SEQ ID NOS: 1-18, wherein the IPD126 polypeptide has insecticidal activity.
[0171] In some embodiments the nucleic acid molecule encodes an IPD126 polypeptide variant comprising one or more amino acid substitutions to the amino acid sequence of any one of SEQ ID NOS: 19-36.
[0172] Nucleic acid molecules that are fragments of these nucleic acid sequences encoding IPD126 polypeptides are also encompassed by the embodiments. "nucleotide fragment" as used herein refers to a portion of the nucleic acid sequence encoding an IPD126 polypeptide. A nucleotide fragment of a nucleic acid sequence may encode a biologically active portion of an IPD126 polypeptide or it may be a fragment that can be used as a hybridization probe or PCR primer using methods disclosed below. Nucleic acid molecules that are fragments of a nucleic acid sequence encoding an IPD126 polypeptide comprise at least about 150, 180, 210, 240, 270, 300, 330, 360, 400, 450, or 500 contiguous nucleotides or up to the number of nucleotides present in a full-length nucleic acid sequence encoding an IPD126 polypeptide disclosed herein, depending upon the intended use. "Contiguous nucleotides" is used herein to refer to nucleotide residues that are immediately adjacent to one another. Fragments of the nucleic acid sequences of the embodiments will encode protein fragments that retain the biological activity of the IPD126 polypeptide and, hence, retain insecticidal activity. "Retains insecticidal activity" is used herein to refer to a polypeptide having at least about 10%, at least about 30%, at least about 50%, at least about 70%, 80%, 90%, 95% or higher of the insecticidal activity of any one of the full-length IPD126 polypeptides set forth in SEQ ID NOS: 19-36. In some embodiments, the insecticidal activity is against a Lepidopteran species. In one embodiment, the insecticidal activity is against a Coleopteran species. In some embodiments, the insecticidal activity is against one or more insect pests of the corn rootworm complex: western corn rootworm, Diabrotica virgifera; northern corn rootworm, D. barberi: Southern corn rootworm or spotted cucumber beetle; Diabrotica undecimpunctata howardi, Diabrotica speciosa, and the Mexican corn rootworm, D. virgifera zeae. In one embodiment, the insecticidal activity is against a Diabrotica species.
[0173] In some embodiments the IPD126 polypeptide is encoded by a nucleic acid sequence sufficiently homologous to any one of the nucleic acid sequences of SEQ ID NOS: 1-18.
[0174] "Percent (%) sequence identity" with respect to a reference sequence (subject) is determined as the percentage of amino acid residues or nucleotides in a candidate sequence (query) that are identical with the respective amino acid residues or nucleotides in the reference sequence, after aligning the sequences and introducing gaps, if necessary, to achieve the maximum percent sequence identity, and not considering any amino acid conservative substitutions as part of the sequence identity. Alignment for purposes of determining percent sequence identity can be achieved in various ways that are within the skill in the art, for instance, using publicly available computer software such as BLAST, BLAST-2. Those skilled in the art can determine appropriate parameters for aligning sequences, including any algorithms needed to achieve maximal alignment over the full length of the sequences being compared. The percent identity between the two sequences is a function of the number of identical positions shared by the sequences (e.g., percent identity of query sequence=number of identical positions between query and subject sequences/total number of positions of query sequence.times.100).
[0175] In some embodiments an IPD126 polynucleotide encodes an IPD126 polypeptide comprising an amino acid sequence having at least about 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity across the entire length of the amino acid sequence of any one of SEQ ID NOS: 19-36.
[0176] In some embodiments polynucleotides are provided encoding chimeric polypeptides comprising regions of at least two different IPD126 polypeptides of the disclosure.
[0177] The embodiments also encompass nucleic acid molecules encoding IPD126 polypeptide variants. "Variants" of the IPD126 polypeptide encoding nucleic acid sequences include those sequences that encode the IPD126 polypeptides disclosed herein but that differ conservatively because of the degeneracy of the genetic code as well as those that are sufficiently identical as discussed above. Naturally occurring allelic variants can be identified with the use of well-known molecular biology techniques, such as polymerase chain reaction (PCR) and hybridization techniques as outlined below. Variant nucleic acid sequences also include synthetically derived nucleic acid sequences that have been generated, for example, by using site-directed mutagenesis but which still encode the IPD126 polypeptides disclosed as discussed below.
[0178] The present disclosure provides isolated or recombinant polynucleotides that encode any of the IPD126 polypeptides disclosed herein. Those having ordinary skill in the art will readily appreciate that due to the degeneracy of the genetic code, a multitude of nucleotide sequences encoding IPD126 polypeptides of the present disclosure exist.
[0179] The skilled artisan will further appreciate that changes can be introduced by mutation of the nucleic acid sequences thereby leading to changes in the amino acid sequence of the encoded IPD126 polypeptides, without altering the biological activity of the proteins. Thus, variant nucleic acid molecules can be created by introducing one or more nucleotide substitutions, additions and/or deletions into the corresponding nucleic acid sequence disclosed herein, such that one or more amino acid substitutions, additions or deletions are introduced into the encoded protein. Mutations can be introduced by standard techniques, such as site-directed mutagenesis and PCR-mediated mutagenesis. Such variant nucleic acid sequences are also encompassed by the present disclosure.
[0180] The polynucleotides of the disclosure and fragments thereof are optionally used as substrates for a variety of recombination and recursive recombination reactions, in addition to standard cloning methods as set forth in, e.g., Ausubel, Berger and Sambrook, i.e., to produce additional pesticidal polypeptide homologues and fragments thereof with desired properties. A variety of such reactions are known. Methods for producing a variant of any nucleic acid listed herein comprising recursively recombining such polynucleotide with a second (or more) polynucleotide, thus forming a library of variant polynucleotides are also embodiments of the disclosure, as are the libraries produced, the cells comprising the libraries and any recombinant polynucleotide produced by such methods. Additionally, such methods optionally comprise selecting a variant polynucleotide from such libraries based on pesticidal activity, as is wherein such recursive recombination is done in vitro or in vivo.
[0181] The nucleotide sequences of the embodiments can also be used to isolate corresponding sequences from a bacterial source. In this manner, methods such as PCR, hybridization, and the like can be used to identify such sequences based on their sequence homology to the sequences set forth herein. Sequences that are selected based on their sequence identity to the entire sequences set forth herein or to fragments thereof are encompassed by the embodiments. Such sequences include sequences that are orthologs of the disclosed sequences. The term "orthologs" refers to genes derived from a common ancestral gene and which are found in different species as a result of speciation. Genes found in different species are considered orthologs when their nucleotide sequences and/or their encoded protein sequences share substantial identity as defined elsewhere herein. Functions of orthologs are often highly conserved among species.
[0182] To identify potential IPD126 polypeptides from bacterium collections, the bacterial cell lysates can be screened with antibodies generated against IPD126 using Western blotting and/or ELISA methods. This type of assay can be performed in a high throughput fashion. Positive samples can be further analyzed by various techniques such as antibody based protein purification and identification. Methods of generating antibodies are well known in the art as discussed infra.
[0183] In hybridization methods, all or part of the pesticidal nucleic acid sequence can be used to screen cDNA or genomic libraries. Methods for construction of such cDNA and genomic libraries are generally known in the art and are disclosed in Sambrook and Russell, (2001), supra. The so-called hybridization probes may be genomic DNA fragments, cDNA fragments, RNA fragments or other oligonucleotides and may be labeled with a detectable group such as 32P or any other detectable marker, such as other radioisotopes, a fluorescent compound, an enzyme or an enzyme co-factor. Probes for hybridization can be made by labeling synthetic oligonucleotides based on the IPD126 polypeptide-encoding nucleic acid sequences disclosed herein. Degenerate primers designed on the basis of conserved nucleotides or amino acid residues in the nucleic acid sequence or encoded amino acid sequence can additionally be used. The probe typically comprises a region of nucleic acid sequence that hybridizes under stringent conditions to at least about 12, at least about 25, at least about 50, 75, 100, 125, 150, 175 or 200 consecutive nucleotides of nucleic acid sequences encoding IPD126 polypeptides of the disclosure or a fragment or variant thereof. Methods for the preparation of probes for hybridization and stringency conditions are generally known in the art and are disclosed in Sambrook and Russell, (2001), supra, herein incorporated by reference.
Antibodies
[0184] Antibodies to an IPD126 polypeptide of the embodiments or to variants or fragments thereof are also encompassed. The antibodies of the disclosure include polyclonal and monoclonal antibodies as well as fragments thereof which retain their ability to bind to an IPD126 polypeptide. An antibody, monoclonal antibody or fragment thereof is said to be capable of binding a molecule if it is capable of specifically reacting with the molecule to thereby bind the molecule to the antibody, monoclonal antibody or fragment thereof. The term "antibody" (Ab) or "monoclonal antibody" (Mab) is meant to include intact molecules as well as fragments or binding regions or domains thereof (such as, for example, Fab and F(ab).sub.2 fragments) which are capable of binding hapten. Such fragments are typically produced by proteolytic cleavage, such as papain or pepsin. Alternatively, hapten-binding fragments can be produced through the application of recombinant DNA technology or through synthetic chemistry. Methods for the preparation of the antibodies of the present disclosure are generally known in the art. For example, see, Antibodies, A Laboratory Manual, Ed Harlow and David Lane (eds.) Cold Spring Harbor Laboratory, N.Y. (1988), as well as the references cited therein. Standard reference works setting forth the general principles of immunology include: Klein, J. Immunology: The Science of Cell-Noncell Discrimination, John Wiley & Sons, N.Y. (1982); Dennett, et al., Monoclonal Antibodies, Hybridoma: A New Dimension in Biological Analyses, Plenum Press, N.Y. (1980) and Campbell, "Monoclonal Antibody Technology," In Laboratory Techniques in Biochemistry and Molecular Biology, Vol. 13, Burdon, et al., (eds.), Elsevier, Amsterdam (1984). See also, U.S. Pat. Nos. 4,196,265; 4,609,893; 4,713,325; 4,714,681; 4,716,111; 4,716,117 and 4,720,459. Antibodies against IPD126 polypeptides or antigen-binding portions thereof can be produced by a variety of techniques, including conventional monoclonal antibody methodology, for example the standard somatic cell hybridization technique of Kohler and Milstein, (1975) Nature 256:495. Other techniques for producing monoclonal antibody can also be employed such as viral or oncogenic transformation of B lymphocytes. An animal system for preparing hybridomas is a murine system. Immunization protocols and techniques for isolation of immunized splenocytes for fusion are known in the art. Fusion partners (e.g., murine myeloma cells) and fusion procedures are also known. The antibody and monoclonal antibodies of the disclosure can be prepared by utilizing an IPD126 polypeptide as antigens.
[0185] A kit for detecting the presence of an IPD126 polypeptide or detecting the presence of a nucleotide sequence encoding an IPD126 polypeptide in a sample is provided. In one embodiment, the kit provides antibody-based reagents for detecting the presence of an IPD126 polypeptide in a tissue sample. In another embodiment, the kit provides labeled nucleic acid probes useful for detecting the presence of one or more polynucleotides encoding an IPD126 polypeptide. The kit is provided along with appropriate reagents and controls for carrying out a detection method, as well as instructions for use of the kit.
Receptor Identification and Isolation
[0186] Receptors to the IPD126 polypeptides of the embodiments or to variants or fragments thereof are also encompassed. Methods for identifying receptors are known in the art (see, Hofmann, et. al., (1988) Eur. J. Biochem. 173:85-91; Gill, et al., (1995) J. Biol. Chem. 27277-27282) and can be employed to identify and isolate the receptor that recognizes the IPD126 polypeptide using the brush-border membrane vesicles from susceptible insects. In addition to the radioactive labeling method listed in the cited literatures, an IPD126 polypeptide can be labeled with fluorescent dye and other common labels such as streptavidin. Brush-border membrane vesicles (BBMV) of susceptible insects such as soybean looper and stink bugs can be prepared according to the protocols listed in the references of Hofmann and Gill above and separated on SDS-PAGE gel and blotted on suitable membrane. Labeled IPD126 polypeptide can be incubated with blotted membrane of BBMV and labeled IPD126 polypeptide can be identified with the labeled reporters. Identification of protein band(s) that interact with the IPD126 polypeptide can be detected by N-terminal amino acid gas phase sequencing or mass spectrometry based protein identification method (Patterson, (1998) 10.22, 1-24, Current Protocol in Molecular Biology published by John Wiley & Son Inc). Once the protein is identified, the corresponding gene can be cloned from genomic DNA or cDNA library of the susceptible insects and binding affinity can be measured directly with the IPD126 polypeptide. Receptor function for insecticidal activity by the IPD126 polypeptide can be verified by RNAi type of gene knock out method (Rajagopal, et al., (2002) J. Biol. Chem. 277:46849-46851).
Nucleotide Constructs, Expression Cassettes and Vectors
[0187] The use of the term "nucleotide constructs" herein is not intended to limit the embodiments to nucleotide constructs comprising DNA. Those of ordinary skill in the art will recognize that nucleotide constructs, particularly polynucleotides and oligonucleotides composed of ribonucleotides and combinations of ribonucleotides and deoxyribonucleotides, may also be employed in the methods disclosed herein. The nucleotide constructs, nucleic acids, and nucleotide sequences of the embodiments additionally encompass all complementary forms of such constructs, molecules, and sequences. Further, the nucleotide constructs, nucleotide molecules, and nucleotide sequences of the embodiments encompass all nucleotide constructs, molecules, and sequences which can be employed in the methods of the embodiments for transforming plants including, but not limited to, those comprised of deoxyribonucleotides, ribonucleotides, and combinations thereof. Such deoxyribonucleotides and ribonucleotides include both naturally occurring molecules and synthetic analogues. The nucleotide constructs, nucleic acids, and nucleotide sequences of the embodiments also encompass all forms of nucleotide constructs including, but not limited to, single-stranded forms, double-stranded forms, hairpins, stem-and-loop structures and the like.
[0188] A further embodiment relates to a transformed organism such as an organism selected from plant and insect cells, bacteria, yeast, baculovirus, protozoa, nematodes and algae. The transformed organism comprises a DNA molecule of the embodiments, an expression cassette comprising the DNA molecule or a vector comprising the expression cassette, which may be stably incorporated into the genome of the transformed organism.
[0189] The sequences of the embodiments are provided in DNA constructs for expression in the organism of interest. The construct will include 5' and 3' regulatory sequences operably linked to a sequence of the embodiments. The term "operably linked" as used herein refers to a functional linkage between a promoter and a second sequence, wherein the promoter sequence initiates and mediates transcription of the DNA sequence corresponding to the second sequence. Generally, operably linked means that the nucleic acid sequences being linked are contiguous and where necessary to join two protein coding regions in the same reading frame. The construct may additionally contain at least one additional gene to be cotransformed into the organism. Alternatively, the additional gene(s) can be provided on multiple DNA constructs.
[0190] Such a DNA construct is provided with a plurality of restriction sites for insertion of the IPD126 polypeptide gene sequence of the disclosure to be under the transcriptional regulation of the regulatory regions. The DNA construct may additionally contain selectable marker genes.
[0191] The DNA construct will generally include in the 5' to 3' direction of transcription: a transcriptional and translational initiation region (i.e., a promoter), a DNA sequence of the embodiments, and a transcriptional and translational termination region (i.e., termination region) functional in the organism serving as a host. The transcriptional initiation region (i.e., the promoter) may be native, analogous, foreign or heterologous to the host organism and/or to the sequence of the embodiments. Additionally, the promoter may be the natural sequence or alternatively a synthetic sequence. The term "foreign" as used herein indicates that the promoter is not found in the native organism into which the promoter is introduced. Where the promoter or any other nucleotide or amino acid sequence is "foreign" or "heterologous" to the sequence of the embodiments, it is intended that the nucleotide or amino acid sequence is not the native or naturally occurring promoter or nucleotide sequence for the operably linked sequence of the embodiments. As used herein, a chimeric gene comprises a coding sequence operably linked to a transcription initiation region that is heterologous to the coding sequence. Where the promoter is a native or natural sequence, the expression of the operably linked sequence is altered from the wild-type expression, which results in an alteration in phenotype.
[0192] In some embodiments the DNA construct comprises a polynucleotide encoding an IPD126 polypeptide of the embodiments. In some embodiments the DNA construct comprises a polynucleotide encoding a fusion protein comprising an IPD126 polypeptide of the embodiments.
[0193] In some embodiments the DNA construct may also include a transcriptional enhancer sequence. As used herein, the term an "enhancer" refers to a DNA sequence which can stimulate promoter activity, and may be an innate element of the promoter or a heterologous element inserted to enhance the level or tissue-specificity of a promoter. Various enhancers are known in the art including for example, introns with gene expression enhancing properties in plants (US Patent Application Publication Number 2009/0144863, the ubiquitin intron (i.e., the maize ubiquitin intron 1 (see, for example, NCBI sequence S94464)), the omega enhancer or the omega prime enhancer (Gallie, et al., (1989) Molecular Biology of RNA ed. Cech (Liss, New York) 237-256 and Gallie, et al., (1987) Gene 60:217-25), the CaMV 35S enhancer (see, e.g., Benfey, et al., (1990) EMBO J. 9:1685-96) and the enhancers of U.S. Pat. No. 7,803,992 may also be used. The above list of transcriptional enhancers is not meant to be limiting. Any appropriate transcriptional enhancer can be used in the embodiments.
[0194] The termination region may be native with the transcriptional initiation region, may be native with the operably linked DNA sequence of interest, may be native with the plant host or may be derived from another source (i.e., foreign or heterologous to the promoter, the sequence of interest, the plant host or any combination thereof).
[0195] Convenient termination regions are available from the Ti-plasmid of A. tumefaciens, such as the octopine synthase and nopaline synthase termination regions. See also, Guerineau, et al., (1991) Mol. Gen. Genet. 262:141-144; Proudfoot, (1991) Cell 64:671-674; Sanfacon, et al., (1991) Genes Dev. 5:141-149; Mogen, et al., (1990) Plant Cell 2:1261-1272; Munroe, et al., (1990) Gene 91:151-158; Ballas, et al., (1989) Nucleic Acids Res. 17:7891-7903 and Joshi, et al., (1987) Nucleic Acid Res. 15:9627-9639.
[0196] Where appropriate, a nucleic acid may be optimized for increased expression in the host organism. Thus, where the host organism is a plant, the synthetic nucleic acids can be synthesized using plant-preferred codons for improved expression. See, for example, Campbell and Gowri, (1990) Plant Physiol. 92:1-11 for a discussion of host-preferred usage. For example, although nucleic acid sequences of the embodiments may be expressed in both monocotyledonous and dicotyledonous plant species, sequences can be modified to account for the specific preferences and GC content preferences of monocotyledons or dicotyledons as these preferences have been shown to differ (Murray et al. (1989) Nucleic Acids Res. 17:477-498). Thus, the maize-preferred for a particular amino acid may be derived from known gene sequences from maize. Maize usage for 28 genes from maize plants is listed in Table 4 of Murray, et al., supra. Methods are available in the art for synthesizing plant-preferred genes. See, for example, Murray, et al., (1989) Nucleic Acids Res. 17:477-498, and Liu H et al. Mol Bio Rep 37:677-684, 2010, herein incorporated by reference. A Zea maize usage table can be also found at kazusa.or.jp//cgi-bin/show.cgi?species=4577, which can be accessed using the www prefix. A Glycine max usage table can be found at kazusa.or.jp//cgi-bin/show.cgi?species=3847&aa=1&style=N, which can be accessed using the www prefix.
[0197] In some embodiments the recombinant nucleic acid molecule encoding an IPD126 polypeptide has maize optimized codons.
[0198] Additional sequence modifications are known to enhance gene expression in a cellular host. These include elimination of sequences encoding spurious polyadenylation signals, exon-intron splice site signals, transposon-like repeats, and other well-characterized sequences that may be deleterious to gene expression. The GC content of the sequence may be adjusted to levels average for a given cellular host, as calculated by reference to known genes expressed in the host cell. The term "host cell" as used herein refers to a cell which contains a vector and supports the replication and/or expression of the expression vector is intended. Host cells may be prokaryotic cells such as E. coli or eukaryotic cells such as yeast, insect, amphibian or mammalian cells or monocotyledonous or dicotyledonous plant cells. An example of a monocotyledonous host cell is a maize host cell. When possible, the sequence is modified to avoid predicted hairpin secondary mRNA structures.
[0199] In preparing the expression cassette, the various DNA fragments may be manipulated so as to provide for the DNA sequences in the proper orientation and, as appropriate, in the proper reading frame. Toward this end, adapters or linkers may be employed to join the DNA fragments or other manipulations may be involved to provide for convenient restriction sites, removal of superfluous DNA, removal of restriction sites or the like. For this purpose, in vitro mutagenesis, primer repair, restriction, annealing, resubstitutions, e.g., transitions and transversions, may be involved.
[0200] A number of promoters can be used in the practice of the embodiments. The promoters can be selected based on the desired outcome. The nucleic acids can be combined with constitutive, tissue-preferred, inducible or other promoters for expression in the host organism. Suitable constitutive promoters for use in a plant host cell include, for example, the core promoter of the Rsyn7 promoter and other constitutive promoters disclosed in WO 1999/43838 and U.S. Pat. No. 6,072,050; the core CaMV 35S promoter (Odell, et al., (1985) Nature 313:810-812); rice actin (McElroy, et al., (1990) Plant Cell 2:163-171); ubiquitin (Christensen, et al., (1989) Plant Mol. Biol. 12:619-632 and Christensen, et al., (1992) Plant Mol. Biol. 18:675-689); pEMU (Last, et al., (1991) Theor. Appl. Genet. 81:581-588); MAS (Velten, et al., (1984) EMBO J. 3:2723-2730); ALS promoter (U.S. Pat. No. 5,659,026) and the like. Other constitutive promoters include, for example, those discussed in U.S. Pat. Nos. 5,608,149; 5,608,144; 5,604,121; 5,569,597; 5,466,785; 5,399,680; 5,268,463; 5,608,142 and 6,177,611.
[0201] Generally, the expression cassette will comprise a selectable marker gene for the selection of transformed cells. Selectable marker genes are utilized for the selection of transformed cells or tissues. Marker genes include genes encoding antibiotic resistance, such as those encoding neomycin phosphotransferase II (NEO) and hygromycin phosphotransferase (HPT), as well as genes conferring resistance to herbicidal compounds, such as glufosinate ammonium, bromoxynil, imidazolinones and 2,4-dichlorophenoxyacetate (2,4-D). Additional examples of suitable selectable marker genes include, but are not limited to, genes encoding resistance to chloramphenicol (Herrera Estrella, et al., (1983) EMBO J. 2:987-992); methotrexate (Herrera Estrella, et al., (1983) Nature 303:209-213 and Meijer, et al., (1991) Plant Mol. Biol. 16:807-820); streptomycin (Jones, et al., (1987) Mol. Gen. Genet. 210:86-91); spectinomycin (Bretagne-Sagnard, et al., (1996) Transgenic Res. 5:131-137); bleomycin (Hille, et al., (1990) Plant Mol. Biol. 7:171-176); sulfonamide (Guerineau, et al., (1990) Plant Mol. Biol. 15:127-136); bromoxynil (Stalker, et al., (1988) Science 242:419-423); glyphosate (Shaw, et al., (1986) Science 233:478-481 and U.S. patent application Ser. Nos. 10/004,357 and 10/427,692); phosphinothricin (DeBlock, et al., (1987) EMBO J. 6:2513-2518). See generally, Yarranton, (1992) Curr. Opin. Biotech. 3:506-511; Christopherson, et al., (1992) Proc. Natl. Acad. Sci. USA 89:6314-6318; Yao, et al., (1992) Cell 71:63-72; Reznikoff, (1992) Mol. Microbiol. 6:2419-2422; Barkley, et al., (1980) in The Operon, pp. 177-220; Hu, et al., (1987) Cell 48:555-566; Brown, et al., (1987) Cell 49:603-612; Figge, et al., (1988) Cell 52:713-722; Deuschle, et al., (1989) Proc. Natl. Acad Sci. USA 86:5400-5404; Fuerst, et al., (1989) Proc. Natl. Acad Sci. USA 86:2549-2553; Deuschle, et al., (1990) Science 248:480-483; Gossen, (1993) Ph.D. Thesis, University of Heidelberg; Reines, et al., (1993) Proc. Natl. Acad Sci. USA 90:1917-1921; Labow, et al., (1990) Mol. Cell. Biol. 10:3343-3356; Zambretti, et al., (1992) Proc. Natl. Acad. Sci. USA 89:3952-3956; Baim, et al., (1991) Proc. Natl. Acad Sci. USA 88:5072-5076; Wyborski, et al., (1991) Nucleic Acids Res. 19:4647-4653; Hillenand-Wissman, (1989) Topics Mol. Struc. Biol. 10:143-162; Degenkolb, et al., (1991) Antimicrob. Agents Chemother. 35:1591-1595; Kleinschnidt, et al., (1988) Biochemistry 27:1094-1104; Bonin, (1993) Ph.D. Thesis, University of Heidelberg; Gossen, et al., (1992) Proc. Natl. Acad Sci. USA 89:5547-5551; Oliva, et al., (1992) Antimicrob. Agents Chemother. 36:913-919; Hlavka, et al., (1985) Handbook of Experimental Pharmacology, Vol. 78 (Springer-Verlag, Berlin) and Gill, et al., (1988) Nature 334:721-724.
[0202] The above list of selectable marker genes is not meant to be limiting. Any selectable marker gene can be used in the embodiments.
Plant Transformation
[0203] The methods of the embodiments involve introducing a polypeptide or polynucleotide into a plant. "Introducing" as used herein means presenting to the plant the polynucleotide or polypeptide in such a manner that the sequence gains access to the interior of a cell of the plant. The methods of the embodiments do not depend on a particular method for introducing a polynucleotide or polypeptide into a plant, only that the polynucleotide(s) or polypeptide(s) gains access to the interior of at least one cell of the plant. Methods for introducing polynucleotide(s) or polypeptide(s) into plants are known in the art including, but not limited to, stable transformation methods, transient transformation methods, and virus-mediated methods.
[0204] "Stable transformation" as used herein means that the nucleotide construct introduced into a plant integrates into the genome of the plant and is capable of being inherited by the progeny thereof "Transient transformation" as used herein means that a polynucleotide is introduced into the plant and does not integrate into the genome of the plant or a polypeptide is introduced into a plant. "Plant" as used herein refers to whole plants, plant organs (e.g., leaves, stems, roots, etc.), seeds, plant cells, propagules, embryos and progeny of the same. Plant cells can be differentiated or undifferentiated (e.g. callus, suspension culture cells, protoplasts, leaf cells, root cells, phloem cells and pollen).
[0205] Transformation protocols as well as protocols for introducing nucleotide sequences into plants may vary depending on the type of plant or plant cell, i.e., monocot or dicot, targeted for transformation. Suitable methods of introducing nucleotide sequences into plant cells and subsequent insertion into the plant genome include microinjection (Crossway, et al., (1986) Biotechniques 4:320-334), electroporation (Riggs, et al., (1986) Proc. Natl. Acad. Sci. USA 83:5602-5606), Agrobacterium-mediated transformation (U.S. Pat. Nos. 5,563,055 and 5,981,840), direct gene transfer (Paszkowski, et al., (1984) EMBO J. 3:2717-2722) and ballistic particle acceleration (see, for example, U.S. Pat. Nos. 4,945,050; 5,879,918; 5,886,244 and 5,932,782; Tomes, et al., (1995) in Plant Cell, Tissue, and Organ Culture: Fundamental Methods, ed. Gamborg and Phillips, (Springer-Verlag, Berlin) and McCabe, et al., (1988) Biotechnology 6:923-926) and Led transformation (WO 00/28058). For potato transformation see, Tu, et al., (1998) Plant Molecular Biology 37:829-838 and Chong, et al., (2000) Transgenic Research 9: 71-78. Additional transformation procedures can be found in Weissinger, et al., (1988) Ann. Rev. Genet. 22:421-477; Sanford, et al., (1987) Particulate Science and Technology 5:27-37 (onion); Christou, et al., (1988) Plant Physiol. 87:671-674 (soybean); McCabe, et al., (1988) Bio/Technology 6:923-926 (soybean); Finer and McMullen, (1991) In Vitro Cell Dev. Biol. 27P:175-182 (soybean); Singh, et al., (1998) Theor. Appl. Genet. 96:319-324 (soybean); Datta, et al., (1990) Biotechnology 8:736-740 (rice); Klein, et al., (1988) Proc. Natl. Acad. Sci. USA 85:4305-4309 (maize); Klein, et al., (1988) Biotechnology 6:559-563 (maize); U.S. Pat. Nos. 5,240,855; 5,322,783 and 5,324,646; Klein, et al., (1988) Plant Physiol. 91:440-444 (maize); Fromm, et al., (1990) Biotechnology 8:833-839 (maize); Hooykaas-Van Slogteren, et al., (1984) Nature (London) 311:763-764; U.S. Pat. No. 5,736,369 (cereals); Bytebier, et al., (1987) Proc. Natl. Acad. Sci. USA 84:5345-5349 (Liliaceae); De Wet, et al., (1985) in The Experimental Manipulation of Ovule Tissues, ed. Chapman, et al., (Longman, N.Y.), pp. 197-209 (pollen); Kaeppler, et al., (1990) Plant Cell Reports 9:415-418 and Kaeppler, et al., (1992) Theor. Appl. Genet. 84:560-566 (whisker-mediated transformation); D'Halluin, et al., (1992) Plant Cell 4:1495-1505 (electroporation); Li, et al., (1993) Plant Cell Reports 12:250-255 and Christou and Ford, (1995) Annals of Botany 75:407-413 (rice); Osjoda, et al., (1996) Nature Biotechnology 14:745-750 (maize via Agrobacterium tumefaciens).
[0206] In specific embodiments, the sequences of the embodiments can be provided to a plant using a variety of transient transformation methods. Such transient transformation methods include, but are not limited to, the introduction of the IPD126 polynucleotide or variants and fragments thereof directly into the plant or the introduction of the IPD126 polypeptide transcript into the plant. Such methods include, for example, microinjection or particle bombardment. See, for example, Crossway, et al., (1986) Mol Gen. Genet. 202:179-185; Nomura, et al., (1986) Plant Sci. 44:53-58; Hepler, et al, (1994) Proc. Natl. Acad. Sci. 91:2176-2180 and Hush, et al., (1994) The Journal of Cell Science 107:775-784. Alternatively, the IPD126 polynucleotide can be transiently transformed into the plant using techniques known in the art. Such techniques include viral vector system and the precipitation of the polynucleotide in a manner that precludes subsequent release of the DNA. Thus, transcription from the particle-bound DNA can occur, but the frequency with which it is released to become integrated into the genome is greatly reduced. Such methods include the use of particles coated with polyethylimine (PEI; Sigma #P3143).
[0207] Methods are known in the art for the targeted insertion of a polynucleotide at a specific location in the plant genome. In one embodiment, the insertion of the polynucleotide at a desired genomic location is achieved using a site-specific recombination system. See, for example, WO 1999/25821, WO 1999/25854, WO 1999/25840, WO 1999/25855 and WO 1999/25853. Briefly, the polynucleotide of the embodiments can be contained in transfer cassette flanked by two non-identical recombination sites. The transfer cassette is introduced into a plant have stably incorporated into its genome a target site which is flanked by two non-identical recombination sites that correspond to the sites of the transfer cassette. An appropriate recombinase is provided and the transfer cassette is integrated at the target site. The polynucleotide of interest is thereby integrated at a specific chromosomal position in the plant genome.
[0208] Plant transformation vectors may be comprised of one or more DNA vectors needed for achieving plant transformation. For example, it is a common practice in the art to utilize plant transformation vectors that are comprised of more than one contiguous DNA segment. These vectors are often referred to in the art as "binary vectors". Binary vectors as well as vectors with helper plasmids are most often used for Agrobacterium-mediated transformation, where the size and complexity of DNA segments needed to achieve efficient transformation is quite large, and it is advantageous to separate functions onto separate DNA molecules. Binary vectors typically contain a plasmid vector that contains the cis-acting sequences required for T-DNA transfer (such as left border and right border), a selectable marker that is engineered to be capable of expression in a plant cell, and a "gene of interest" (a gene engineered to be capable of expression in a plant cell for which generation of transgenic plants is desired). Also present on this plasmid vector are sequences required for bacterial replication. The cis-acting sequences are arranged in a fashion to allow efficient transfer into plant cells and expression therein. For example, the selectable marker gene and the pesticidal gene are located between the left and right borders. Often a second plasmid vector contains the trans-acting factors that mediate T-DNA transfer from Agrobacterium to plant cells. This plasmid often contains the virulence functions (Vir genes) that allow infection of plant cells by Agrobacterium, and transfer of DNA by cleavage at border sequences and vir-mediated DNA transfer, as is understood in the art (Hellens and Mullineaux, (2000) Trends in Plant Science 5:446-451). Several types of Agrobacterium strains (e.g. LBA4404, GV3101, EHA101, EHA105, etc.) can be used for plant transformation. The second plasmid vector is not necessary for transforming the plants by other methods such as microprojection, microinjection, electroporation, polyethylene glycol, etc.
[0209] In general, plant transformation methods involve transferring heterologous DNA into target plant cells (e.g., immature or mature embryos, suspension cultures, undifferentiated callus, protoplasts, etc.), followed by applying a maximum threshold level of appropriate selection (depending on the selectable marker gene) to recover the transformed plant cells from a group of untransformed cell mass. Following integration of heterologous foreign DNA into plant cells, one then applies a maximum threshold level of appropriate selection in the medium to kill the untransformed cells and separate and proliferate the putatively transformed cells that survive from this selection treatment by transferring regularly to a fresh medium. By continuous passage and challenge with appropriate selection, one identifies and proliferates the cells that are transformed with the plasmid vector. Molecular and biochemical methods can then be used to confirm the presence of the integrated heterologous gene of interest into the genome of the transgenic plant.
[0210] Explants are typically transferred to a fresh supply of the same medium and cultured routinely. Subsequently, the transformed cells are differentiated into shoots after placing on regeneration medium supplemented with a maximum threshold level of selecting agent. The shoots are then transferred to a selective rooting medium for recovering rooted shoot or plantlet. The transgenic plantlet then grows into a mature plant and produces fertile seeds (e.g., Hiei, et al., (1994) The Plant Journal 6:271-282; Ishida, et al, (1996) Nature Biotechnology 14:745-750). Explants are typically transferred to a fresh supply of the same medium and cultured routinely. A general description of the techniques and methods for generating transgenic plants are found in Ayres and Park, (1994) Critical Reviews in Plant Science 13:219-239 and Bommineni and Jauhar, (1997) Maydica 42:107-120. Since the transformed material contains many cells; both transformed and non-transformed cells are present in any piece of subjected target callus or tissue or group of cells. The ability to kill non-transformed cells and allow transformed cells to proliferate results in transformed plant cultures. Often, the ability to remove non-transformed cells is a limitation to rapid recovery of transformed plant cells and successful generation of transgenic plants.
[0211] The cells that have been transformed may be grown into plants in accordance with conventional ways. See, for example, McCormick, et al., (1986) Plant Cell Reports 5:81-84. These plants may then be grown, and either pollinated with the same transformed strain or different strains, and the resulting hybrid having constitutive or inducible expression of the desired phenotypic characteristic identified. Two or more generations may be grown to ensure that expression of the desired phenotypic characteristic is stably maintained and inherited and then seeds harvested to ensure that expression of the desired phenotypic characteristic has been achieved.
[0212] The embodiments further relate to plant-propagating material of a transformed plant of the embodiments including, but not limited to, seeds, tubers, corms, bulbs, leaves and cuttings of roots and shoots.
[0213] The embodiments may be used for transformation of any plant species, including, but not limited to, monocots and dicots. Examples of plants of interest include, but are not limited to, corn (Zea mays), Brassica sp. (e.g., B. napus, B. rapa, B. juncea), particularly those Brassica species useful as sources of seed oil, alfalfa (Medicago sativa), rice (Oryza sativa), rye (Secale cereale), sorghum (Sorghum bicolor, Sorghum vulgare), millet (e.g., pearl millet (Pennisetum glaucum), proso millet (Panicum miliaceum), foxtail millet (Setaria italica), finger millet (Eleusine coracana)), sunflower (Helianthus annuus), safflower (Carthamus tinctorius), wheat (Triticum aestivum), soybean (Glycine max), tobacco (Nicotiana tabacum), potato (Solanum tuberosum), peanuts (Arachis hypogaea), cotton (Gossypium barbadense, Gossypium hirsutum), sweet potato (Ipomoea batatus), cassava (Manihot esculenta), coffee (Coffea spp.), coconut (Cocos nucifera), pineapple (Ananas comosus), citrus trees (Citrus spp.), cocoa (Theobroma cacao), tea (Camellia sinensis), banana (Musa spp.), avocado (Persea americana), fig (Ficus casica), guava (Psidium guajava), mango (Mangifera indica), olive (Olea europaea), papaya (Carica papaya), cashew (Anacardium occidentale), macadamia (Macadamia integrifolia), almond (Prunus amygdalus), sugar beets (Beta vulgaris), sugarcane (Saccharum spp.), oats, barley, vegetables ornamentals, and conifers.
[0214] Vegetables include tomatoes (Lycopersicon esculentum), lettuce (e.g., Lactuca sativa), green beans (Phaseolus vulgaris), lima beans (Phaseolus limensis), peas (Lathyrus spp.), and members of the genus Cucumis such as cucumber (C. sativus), cantaloupe (C. cantalupensis), and musk melon (C. melo). Ornamentals include azalea (Rhododendron spp.), hydrangea (Macrophylla hydrangea), hibiscus (Hibiscus rosasanensis), roses (Rosa spp.), tulips (Tulipa spp.), daffodils (Narcissus spp.), petunias (Petunia hybrida), carnation (Dianthus caryophyllus), poinsettia (Euphorbia pulcherrima), and chrysanthemum. Conifers that may be employed in practicing the embodiments include, for example, pines such as loblolly pine (Pinus taeda), slash pine (Pinus elliotii), ponderosa pine (Pinus ponderosa), lodgepole pine (Pinus contorta), and Monterey pine (Pinus radiata); Douglas-fir (Pseudotsuga menziesii); Western hemlock (Tsuga canadensis); Sitka spruce (Picea glauca); redwood (Sequoia sempervirens); true firs such as silver fir (Abies amabilis) and balsam fir (Abies balsamea); and cedars such as Western red cedar (Thuja plicata) and Alaska yellow-cedar (Chamaecyparis nootkatensis). Plants of the embodiments include crop plants (for example, corn, alfalfa, sunflower, Brassica, soybean, cotton, safflower, peanut, sorghum, wheat, millet, tobacco, etc.), such as corn and soybean plants.
[0215] Turf grasses include, but are not limited to: annual bluegrass (Poa annua); annual ryegrass (Lolium multiflorum); Canada bluegrass (Poa compressa); Chewing's fescue (Festuca rubra); colonial bentgrass (Agrostis tenuis); creeping bentgrass (Agrostis palustris); crested wheatgrass (Agropyron desertorum); fairway wheatgrass (Agropyron cristatum); hard fescue (Festuca longifolia); Kentucky bluegrass (Poa pratensis); orchardgrass (Dactylis glomerata); perennial ryegrass (Lolium perenne); red fescue (Festuca rubra); redtop (Agrostis alba); rough bluegrass (Poa triviahs); sheep fescue (Festuca ovina); smooth bromegrass (Bromus inermis); tall fescue (Festuca arundinacea); timothy (Phleum pratense); velvet bentgrass (Agrostis canina); weeping alkaligrass (Puccinelia distans); western wheatgrass (Agropyron smithii); Bermuda grass (Cynodon spp.); St. Augustine grass (Stenotaphrum secundatum); zoysia grass (Zoysia spp.); Bahia grass (Paspalum notatum); carpet grass (Axonopus affinis); centipede grass (Eremochloa ophiuroides); kikuyu grass (Pennisetum clandesinum); seashore paspalum (Paspalum vaginatum); blue gramma (Bouteloua gracilis); buffalo grass (Buchloe dactyloids); sideoats gramma (Bouteloua curtipendula).
[0216] Plants of interest include grain plants that provide seeds of interest, oil-seed plants, and leguminous plants. Seeds of interest include grain seeds, such as corn, wheat, barley, rice, sorghum, rye, millet, etc. Oil-seed plants include cotton, soybean, safflower, sunflower, Brassica, maize, alfalfa, palm, coconut, flax, castor, olive, etc. Leguminous plants include beans and peas. Beans include guar, locust bean, fenugreek, soybean, garden beans, cowpea, mung bean, lima bean, fava bean, lentils, chickpea, etc.
[0217] Following introduction of heterologous foreign DNA into plant cells, the transformation or integration of heterologous gene in the plant genome is confirmed by various methods such as analysis of nucleic acids, proteins and metabolites associated with the integrated gene.
[0218] PCR analysis is a rapid method to screen transformed cells, tissue or shoots for the presence of incorporated gene at the earlier stage before transplanting into the soil (Sambrook and Russell, (2001) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.). PCR is carried out using oligonucleotide primers specific to the gene of interest or Agrobacterium vector background, etc.
[0219] Plant transformation may be confirmed by Southern blot analysis of genomic DNA (Sambrook and Russell, (2001) supra). In Northern blot analysis, RNA is isolated from specific tissues of transformant, fractionated in a formaldehyde agarose gel, and blotted onto a nylon filter according to standard procedures that are routinely used in the art (Sambrook and Russell, (2001) supra). Expression of RNA encoded by the pesticidal gene is then tested by hybridizing the filter to a radioactive probe derived from a pesticidal gene, by methods known in the art (Sambrook and Russell, (2001) supra). Western blot, biochemical assays and the like may be carried out on the transgenic plants to confirm the presence of protein encoded by the pesticidal gene by standard procedures (Sambrook and Russell, 2001, supra) using antibodies that bind to one or more epitopes present on the IPD126 polypeptide.
Methods to Introduce Genome Editing Technologies into Plants
[0220] In some embodiments, the disclosed IPD126 polynucleotide compositions can be introduced into the genome of a plant using genome editing technologies, or previously introduced IPD126 polynucleotides in the genome of a plant may be edited using genome editing technologies. For example, the disclosed polynucleotides can be introduced into a desired location in the genome of a plant through the use of double-stranded break technologies such as TALENs, meganucleases, zinc finger nucleases, CRISPR-Cas, and the like. For example, the disclosed polynucleotides can be introduced into a desired location in a genome using a CRISPR-Cas system, for the purpose of site-specific insertion. The desired location in a plant genome can be any desired target site for insertion, such as a genomic region amenable for breeding or may be a target site located in a genomic window with an existing trait of interest. Existing traits of interest could be either an endogenous trait or a previously introduced trait.
[0221] In some embodiments, where the disclosed IPD126 polynucleotide has previously been introduced into a genome, genome editing technologies may be used to alter or modify the introduced polynucleotide sequence. Site specific modifications that can be introduced into the disclosed IPD126 polynucleotide compositions include those produced using any method for introducing site specific modification, including, but not limited to, through the use of gene repair oligonucleotides (e.g. US Publication 2013/0019349), or through the use of double-stranded break technologies such as TALENs, meganucleases, zinc finger nucleases, CRISPR-Cas, and the like. Such technologies can be used to modify the previously introduced polynucleotide through the insertion, deletion or substitution of nucleotides within the introduced polynucleotide. Alternatively, double-stranded break technologies can be used to add additional nucleotide sequences to the introduced polynucleotide. Additional sequences that may be added include, additional expression elements, such as enhancer and promoter sequences. In another embodiment, genome editing technologies may be used to position additional insecticidally-active proteins in proximity to the disclosed IPD126 polynucleotide compositions disclosed herein within the genome of a plant, in order to generate molecular stacks of insecticidally-active proteins.
[0222] An "altered target site," "altered target sequence." "modified target site," and "modified target sequence" are used interchangeably herein and refer to a target sequence as disclosed herein that comprises at least one alteration when compared to non-altered target sequence. Such "alterations" include, for example: (i) replacement of at least one nucleotide, (ii) a deletion of at least one nucleotide, (iii) an insertion of at least one nucleotide, or (iv) any combination of (i)-(iii).
Stacking of Traits in Transgenic Plant
[0223] Transgenic plants may comprise a stack of one or more insecticidal polynucleotides disclosed herein with one or more additional polynucleotides resulting in the production or suppression of multiple polypeptide sequences. Transgenic plants comprising stacks of polynucleotide sequences can be obtained by either or both of traditional breeding methods or through genetic engineering methods. These methods include, but are not limited to, breeding individual lines each comprising a polynucleotide of interest, transforming a transgenic plant comprising a gene disclosed herein with a subsequent gene and co-transformation of genes into a single plant cell. As used herein, the term "stacked" includes having the multiple traits present in the same plant (i.e., both traits are incorporated into the nuclear genome, one trait is incorporated into the nuclear genome and one trait is incorporated into the genome of a plastid or both traits are incorporated into the genome of a plastid). In one non-limiting example, "stacked traits" comprise a molecular stack where the sequences are physically adjacent to each other. A trait, as used herein, refers to the phenotype derived from a particular sequence or groups of sequences. Co-transformation of genes can be carried out using single transformation vectors comprising multiple genes or genes carried separately on multiple vectors. If the sequences are stacked by genetically transforming the plants, the polynucleotide sequences of interest can be combined at any time and in any order. The traits can be introduced simultaneously in a co-transformation protocol with the polynucleotides of interest provided by any combination of transformation cassettes. For example, if two sequences will be introduced, the two sequences can be contained in separate transformation cassettes (trans) or contained on the same transformation cassette (cis). Expression of the sequences can be driven by the same promoter or by different promoters. In certain cases, it may be desirable to introduce a transformation cassette that will suppress the expression of the polynucleotide of interest. This may be combined with any combination of other suppression cassettes or overexpression cassettes to generate the desired combination of traits in the plant. It is further recognized that polynucleotide sequences can be stacked at a desired genomic location using a site-specific recombination system. See, for example, WO 1999/25821, WO 1999/25854, WO 1999/25840, WO 1999/25855 and WO 1999/25853, all of which are herein incorporated by reference.
[0224] In some embodiments, one or more of the polynucleotides encoding the IPD126 polypeptide(s) disclosed herein, alone or stacked with one or more additional insect resistance traits can be stacked with one or more additional input traits (e.g., herbicide resistance, fungal resistance, virus resistance, stress tolerance, disease resistance, male sterility, stalk strength, and the like) or output traits (e.g., increased yield, modified starches, improved oil profile, balanced amino acids, high lysine or methionine, increased digestibility, improved fiber quality, drought resistance, and the like). Thus, the polynucleotide embodiments can be used to provide a complete agronomic package of improved crop quality with the ability to flexibly and cost effectively control any number of agronomic pests.
[0225] Transgenes useful for stacking include but are not limited to: transgenes that confer resistance to an herbicide; transgenes that confer or contribute to an altered grain characteristic; genes that control male-sterility; genes that create a site for site specific dna integration; genes that affect abiotic stress resistance; genes that confer increased yield genes that confer plant digestibility; and transgenes that confer resistance to insects or disease.
[0226] Examples of transgenes that confer resistance to insects include genes encoding a Bacillus thuringiensis protein, a derivative thereof or a synthetic polypeptide modeled thereon. See, for example, Geiser, et al., (1986) Gene 48:109, who disclose the cloning and nucleotide sequence of a Bt delta-endotoxin gene. Moreover, DNA molecules encoding delta-endotoxin genes can be purchased from American Type Culture Collection (Rockville, Md.), for example, under ATCC.RTM. Accession Numbers 40098, 67136, 31995 and 31998. Other non-limiting examples of Bacillus thuringiensis transgenes being genetically engineered are given in the following patents and patent applications: U.S. Pat. Nos. 5,188,960; 5,689,052; 5,880,275; 5,986,177; 6,023,013, 6,060,594, 6,063,597, 6,077,824, 6,620,988, 6,642,030, 6,713,259, 6,893,826, 7,105,332; 7,179,965, 7,208,474; 7,227,056, 7,288,643, 7,323,556, 7,329,736, 7,449,552, 7,468,278, 7,510,878, 7,521,235, 7,544,862, 7,605,304, 7,696,412, 7,629,504, 7,705,216, 7,772,465, 7,790,846, 7,858,849 and WO 1991/14778; WO 1999/31248; WO 2001/12731; WO 1999/24581 and WO 1997/40162.
[0227] Genes encoding pesticidal proteins may also be stacked including but are not limited to: insecticidal proteins from Pseudomonas sp. such as PSEEN3174 (Monalysin, (2011) PLoS Pathogens, 7:1-13), from Pseudomonas protegens strain CHAO and Pf-5 (previously fluorescens) (Pechy-Tarr, (2008) Environmental Microbiology 10:2368-2386: GenBank Accession No. EU400157); from Pseudomonas taiwanensis (Liu, et al., (2010) J. Agric. Food Chem. 58:12343-12349) and from Pseudomonas pseudoalcaligenes (Zhang, et al., (2009) Annals of Microbiology 59:45-50 and Li, et al., (2007) Plant Cell Tiss. Organ Cult. 89:159-168); insecticidal proteins from Photorhabdus sp. and Xenorhabdus sp. (Hinchliffe, et al., (2010)The Open Toxinology Journal 3:101-118 and Morgan, et al., (2001) Applied and Envir. Micro. 67:2062-2069), U.S. Pat. Nos. 6,048,838, and 6,379,946; a PIP-1 polypeptide of U.S. Pat. No. 9,688,730; an AfIP-1A and/or AfIP-1B polypeptide of U.S. Pat. No. 9,475,847; a PIP-47 polypeptide of US Publication Number US20160186204; an IPD045 polypeptide, an IPD064 polypeptide, an IPD074 polypeptide, an IPD075 polypeptide, and an IPD077 polypeptide of PCT Publication Number WO 2016/114973; an IPD080 polypeptide of PCT Serial Number PCT/US17/56517; an IPD078 polypeptide, an IPD084 polypeptide, an IPD085 polypeptide, an IPD086 polypeptide, an IPD087 polypeptide, an IPD088 polypeptide, and an IPD089 polypeptide of Serial Number PCT/US17/54160; PIP-72 polypeptide of US Patent Publication Number US20160366891; a PtIP-50 polypeptide and a PtIP-65 polypeptide of US Publication Number US20170166921; an IPD098 polypeptide, an IPD059 polypeptide, an IPD108 polypeptide, an IPD109 polypeptide of U.S. Ser. No. 62/521,084; a PtIP-83 polypeptide of US Publication Number US20160347799; a PtIP-96 polypeptide of US Publication Number US20170233440; an IPD079 polypeptide of PCT Publication Number WO2017/23486; an IPD082 polypeptide of PCT Publication Number WO 2017/105987, an IPD090 polypeptide of Serial Number PCT/US17/30602, an IPD093 polypeptide of U.S. Ser. No. 62/434,020; an IPD103 polypeptide of Serial Number PCT/US17/39376; an IPD101 polypeptide of U.S. Ser. No. 62/438,179; an IPD121 polypeptide of US Serial Number U.S. 62/508,514, and .delta.-endotoxins including, but not limited to, the Cry1, Cry2, Cry3, Cry4, Cry5, Cry6, Cry7, Cry8, Cry9, Cry10, Cry11, Cry12, Cry13, Cry14, Cry15, Cry16, Cry17, Cry18, Cry19, Cry20, Cry21, Cry22, Cry23, Cry24, Cry25, Cry26, Cry27, Cry28, Cry29, Cry30, Cry31, Cry32, Cry33, Cry34, Cry35, Cry36, Cry37, Cry38, Cry39, Cry40, Cry41, Cry42, Cry43, Cry44, Cry45, Cry46, Cry47, Cry49, Cry50, Cry51, Cry52, Cry53, Cry54, Cry55, Cry56, Cry57, Cry58, Cry59, Cry60, Cry61, Cry62, Cry63, Cry64, Cry65, Cry66, Cry67, Cry68, Cry69, Cry70, Cry71, and Cry72 classes of .delta.-endotoxin genes and the B. thuringiensis cytolytic Cyt1 and Cyt2 genes.
[0228] Examples of .delta.-endotoxins also include but are not limited to Cry1A proteins of U.S. Pat. Nos. 5,880,275 and 7,858,849; a DIG-3 or DIG-11 toxin (N-terminal deletion of .alpha.-helix 1 and/or .alpha.-helix 2 variants of Cry proteins such as Cry1A) of US Patent Numbers 8,304,604 and 8,304,605, Cry1B of U.S. patent application Ser. No. 10/525,318; Cry1C of U.S. Pat. No. 6,033,874; Cry1F of U.S. Pat. Nos. 5,188,960, 6,218,188; Cry1A/F chimeras of U.S. Pat. Nos. 7,070,982; 6,962,705 and 6,713,063); a Cry2 protein such as Cry2Ab protein of U.S. Pat. No. 7,064,249); a Cry3A protein including but not limited to an engineered hybrid insecticidal protein (eHIP) created by fusing unique combinations of variable regions and conserved blocks of at least two different Cry proteins (US Patent Application Publication Number 2010/0017914); a Cry4 protein; a Cry5 protein; a Cry6 protein; Cry8 proteins of U.S. Pat. Nos. 7,329,736, 7,449,552, 7,803,943, 7,476,781, 7,105,332, 7,378,499 and 7,462,760; a Cry9 protein such as such as members of the Cry9A, Cry9B, Cry9C, Cry9D, Cry9E, and Cry9F families; a Cry15 protein of Naimov, et al., (2008) Applied and Environmental Microbiology 74:7145-7151; a Cry22, a Cry34Ab1 protein of U.S. Pat. Nos. 6,127,180, 6,624,145 and 6,340,593; a CryET33 and CryET34 protein of U.S. Pat. Nos. 6,248,535, 6,326,351, 6,399,330, 6,949,626, 7,385,107 and 7,504,229; a CryET33 and CryET34 homologs of US Patent Publication Number 2006/0191034, 2012/0278954, and PCT Publication Number WO 2012/139004; a Cry35Ab1 protein of U.S. Pat. Nos. 6,083,499, 6,548,291 and 6,340,593; a Cry46 protein, a Cry51 protein, a Cry binary toxin; a TIC901 or related toxin; TIC807 of US 2008/0295207; ET29, ET37, TIC809, TIC810, TIC812, TIC127, TIC128 of PCT US 2006/033867; AXMI-027, AXMI-036, and AXMI-038 of U.S. Pat. No. 8,236,757; AXMI-031, AXMI-039, AXMI-040, AXMI-049 of U.S. Pat. No. 7,923,602; AXMI-018, AXMI-020, and AXMI-021 of WO 2006/083891; AXMI-010 of WO 2005/038032; AXMI-003 of WO 2005/021585; AXMI-008 of US 2004/0250311; AXMI-006 of US 2004/0216186; AXMI-007 of US 2004/0210965; AXMI-009 of US 2004/0210964; AXMI-014 of US 2004/0197917; AXMI-004 of US 2004/0197916; AXMI-028 and AXMI-029 of WO 2006/119457; AXMI-007, AXMI-008, AXMI-0080rf2, AXMI-009, AXMI-014 and AXMI-004 of WO 2004/074462; AXMI-150 of U.S. Pat. No. 8,084,416; AXMI-205 of US20110023184; AXMI-011, AXMI-012, AXMI-013, AXMI-015, AXMI-019, AXMI-044, AXMI-037, AXMI-043, AXMI-033, AXMI-034, AXMI-022, AXMI-023, AXMI-041, AXMI-063, and AXMI-064 of US 2011/0263488; AXMI-R1 and related proteins of US 2010/0197592; AXMI221Z, AXMI222z, AXMI223z, AXMI224z and AXMI225z of WO 2011/103248; AXMI218, AXMI219, AXMI220, AXMI226, AXMI227, AXMI228, AXMI229, AXMI230, and AXMI231 of WO11/103247; AXMI-115, AXMI-113, AXMI-005, AXMI-163 and AXMI-184 of U.S. Pat. No. 8,334,431; AXMI-001, AXMI-002, AXMI-030, AXMI-035, and AXMI-045 of US 2010/0298211; AXMI-066 and AXMI-076 of US2009/0144852; AXMI128, AXMI130, AXMI131, AXMI133, AXMI140, AXMI141, AXMI142, AXMI143, AXMI144, AXMI146, AXMI148, AXMI149, AXMI152, AXMI153, AXMI154, AXMI155, AXMI156, AXMI157, AXMI158, AXMI162, AXMI165, AXMI166, AXMI167, AXMI168, AXMI169, AXMI170, AXMI171, AXMI172, AXMI173, AXMI174, AXMI175, AXMI176, AXMI177, AXMI178, AXMI179, AXMI180, AXMI181, AXMI182, AXMI185, AXMI186, AXMI187, AXMI188, AXMI189 of U.S. Pat. No. 8,318,900; AXMI079, AXMI080, AXMI081, AXMI082, AXMI091, AXMI092, AXMI096, AXMI097, AXMI098, AXMI099, AXMI100, AXMI101, AXMI102, AXMI103, AXMI104, AXMI107, AXMI108, AXMI109, AXMI110, AXMI111, AXMI112, AXMI114, AXMI116, AXMI117, AXMI118, AXMI119, AXMI120, AXMI121, AXMI122, AXMI123, AXMI124, AXMI1257, AXMI1268, AXMI127, AXMI129, AXMI164, AXMI151, AXMI161, AXMI183, AXMI132, AXMI138, AXMI137 of US 2010/0005543; and Cry proteins such as Cry1A and Cry3A having modified proteolytic sites of U.S. Pat. No. 8,319,019; and a Cry1Ac, Cry2Aa and Cry1Ca toxin protein from Bacillus thuringiensis strain VBTS 2528 of US Patent Application Publication Number 2011/0064710. Other Cry proteins are well known to one skilled in the art (see, Crickmore, et al., "Bacillus thuringiensis toxin nomenclature" (2011), at lifesci.sussex.ac.uk/home/Neil_Crickmore/Bt/which can be accessed on the world-wide web using the "www" prefix). The insecticidal activity of Cry proteins is well known to one skilled in the art (for review, see, van Frannkenhuyzen, (2009) 1 Invert. Path. 101:1-16). The use of Cry proteins as transgenic plant traits is well known to one skilled in the art and Cry-transgenic plants including but not limited to Cry1Ac, Cry1Ac+Cry2Ab, Cry1Ab, Cry1A.105, Cry1F, Cry1Fa2, Cry1F+Cry1Ac, Cry2Ab, Cry3A, mCry3A, Cry3Bb1, Cry34Ab1, Cry35Ab1, Vip3A, mCry3A, Cry9c and CBI-Bt have received regulatory approval (see, Sanahuja, (2011) Plant Biotech Journal 9:283-300 and the CERA (2010) GM Crop Database Center for Environmental Risk Assessment (CERA), ILSI Research Foundation, Washington D.C. at cera-gmc.org/index.php?action=gm_crop_database which can be accessed on the world-wide web using the "www" prefix). More than one pesticidal proteins well known to one skilled in the art can also be expressed in plants such as Vip3Ab & Cry1Fa (US2012/0317682), Cry1BE & Cry1F (US2012/0311746), Cry1CA & CrylAB (US2012/0311745), Cry1F & CryCa (US2012/0317681), Cry1DA & Cry1BE (US2012/0331590), Cry1DA & Cry1Fa (US2012/0331589), CrylAB & Cry1BE (US2012/0324606), and Cry1Fa & Cry2Aa, Cry1I or Cry1E (US2012/0324605). Pesticidal proteins also include insecticidal lipases including lipid acyl hydrolases of U.S. Pat. No. 7,491,869, and cholesterol oxidases such as from Streptomyces (Purcell et al. (1993) Biochem Biophys Res Commun 15:1406-1413). Pesticidal proteins also include VIP (vegetative insecticidal proteins) toxins of U.S. Pat. Nos. 5,877,012, 6,107,279, 6,137,033, 7,244,820, 7,615,686, and 8,237,020, and the like. Other VIP proteins are well known to one skilled in the art (see, lifesci.sussex.ac.uk/home/Neil_Crickmore/Bt/vip.html which can be accessed on the world-wide web using the "www" prefix). Pesticidal proteins also include toxin complex (TC) proteins, obtainable from organisms such as Xenorhabdus, Photorhabdus and Paenibacillus (see, U.S. Pat. Nos. 7,491,698 and 8,084,418). Some TC proteins have "stand alone" insecticidal activity and other TC proteins enhance the activity of the stand-alone toxins produced by the same given organism. The toxicity of a "stand-alone" TC protein (from Photorhabdus, Xenorhabdus or Paenibacillus, for example) can be enhanced by one or more TC protein "potentiators" derived from a source organism of a different genus. There are three main types of TC proteins. As referred to herein, Class A proteins ("Protein A") are stand-alone toxins. Class B proteins ("Protein B") and Class C proteins ("Protein C") enhance the toxicity of Class A proteins. Examples of Class A proteins are TcbA, TcdA, XptA1 and XptA2. Examples of Class B proteins are TcaC, TcdB, XptB1Xb and XptC1Wi. Examples of Class C proteins are TccC, XptC1Xb and XptB1Wi. Pesticidal proteins also include spider, snake and scorpion venom proteins. Examples of spider venom peptides include but are not limited to lycotoxin-1 peptides and mutants thereof (U.S. Pat. No. 8,334,366).
[0229] Further transgenes that confer resistance to insects may down-regulation of expression of target genes in insect pest species by interfering ribonucleic acid (RNA) molecules through RNA interference. RNA interference refers to the process of sequence-specific post-transcriptional gene silencing in animals mediated by short interfering RNAs (siRNAs) (Fire, et al., (1998) Nature 391:806). RNAi transgenes may include but are not limited to expression of dsRNA, siRNA, miRNA, iRNA, antisense RNA, or sense RNA molecules that down-regulate expression of target genes in insect pests. PCT Publication WO 2007/074405 describes methods of inhibiting expression of target genes in invertebrate pests including Colorado potato beetle. PCT Publication WO 2005/110068 describes methods of inhibiting expression of target genes in invertebrate pests including in particular Western corn rootworm as a means to control insect infestation. Furthermore, PCT Publication WO 2009/091864 describes compositions and methods for the suppression of target genes from insect pest species including pests from the Lygus genus. RNAi transgenes are provided for targeting the vacuolar ATPase H subunit, useful for controlling a coleopteran pest population and infestation as described in US Patent Application Publication 2012/0198586. PCT Publication WO 2012/055982 describes ribonucleic acid (RNA or double stranded RNA) that inhibits or down regulates the expression of a target gene that encodes: an insect ribosomal protein such as the ribosomal protein L19, the ribosomal protein L40 or the ribosomal protein S27A; an insect proteasome subunit such as the Rpn6 protein, the Pros 25, the Rpn2 protein, the proteasome beta 1 subunit protein or the Pros beta 2 protein; an insect .beta.-coatomer of the COPI vesicle, the .gamma.-coatomer of the COPI vesicle, the .beta.'-coatomer protein or the .zeta.-coatomer of the COPI vesicle; an insect Tetraspanine 2 A protein which is a putative transmembrane domain protein; an insect protein belonging to the actin family such as Actin 5C; an insect ubiquitin-5E protein; an insect Sec23 protein which is a GTPase activator involved in intracellular protein transport; an insect crinkled protein which is an unconventional myosin which is involved in motor activity; an insect crooked neck protein which is involved in the regulation of nuclear alternative mRNA splicing; an insect vacuolar H+-ATPase G-subunit protein and an insect Tbp-1 such as Tat-binding protein. PCT publication WO 2007/035650 describes ribonucleic acid (RNA or double stranded RNA) that inhibits or down regulates the expression of a target gene that encodes Snf7. US Patent Application publication 2011/0054007 describes polynucleotide silencing elements targeting RPS10. PCT publication WO 2016/205445 describes polynucleotide silencing elements that reduce fecundity, with target polynucleotides, including NCLB, MAEL, BOULE, and VgR. US Patent Application publication 2014/0275208 and US2015/0257389 describes polynucleotide silencing elements targeting RyanR and PAT3. PCT publications WO/2016/138106, WO 2016/060911, WO 2016/060912, WO 2016/060913, and WO 2016/060914 describe polynucleotide silencing elements targeting COPI coatomer subunit nucleic acid molecules that confer resistance to Coleopteran and Hemipteran pests. US Patent Application Publications 2012/029750, US 20120297501, and 2012/0322660 describe interfering ribonucleic acids (RNA or double stranded RNA) that functions upon uptake by an insect pest species to down-regulate expression of a target gene in said insect pest, wherein the RNA comprises at least one silencing element wherein the silencing element is a region of double-stranded RNA comprising annealed complementary strands, one strand of which comprises or consists of a sequence of nucleotides which is at least partially complementary to a target nucleotide sequence within the target gene. US Patent Application Publication 2012/0164205 describe potential targets for interfering double stranded ribonucleic acids for inhibiting invertebrate pests including: a Chd3 Homologous Sequence, a Beta-Tubulin Homologous Sequence, a 40 kDa V-ATPase Homologous Sequence, a EF1.alpha. Homologous Sequence, a 26S Proteosome Subunit p28 Homologous Sequence, a Juvenile Hormone Epoxide Hydrolase Homologous Sequence, a Swelling Dependent Chloride Channel Protein Homologous Sequence, a Glucose-6-Phosphate 1-Dehydrogenase Protein Homologous Sequence, an Act42A Protein Homologous Sequence, a ADP-Ribosylation Factor 1 Homologous Sequence, a Transcription Factor IIB Protein Homologous Sequence, a Chitinase Homologous Sequences, a Ubiquitin Conjugating Enzyme Homologous Sequence, a Glyceraldehyde-3-Phosphate Dehydrogenase Homologous Sequence, an Ubiquitin B Homologous Sequence, a Juvenile Hormone Esterase Homolog, and an Alpha Tubuliln Homologous Sequence.
Methods for Killing an Insect Pest and Controlling an Insect Population
[0230] In some embodiments methods are provided for killing an insect pest, comprising contacting the insect pest, either simultaneously or sequentially, with an insecticidally-effective amount of a recombinant IPD126 polypeptide of the disclosure. In some embodiments methods are provided for killing an insect pest, comprising contacting the insect pest with an insecticidally-effective amount of one or more of a recombinant pesticidal protein of SEQ ID NOS: 19-36, or a variant or insecticidally active fragment thereof.
[0231] In some embodiments methods are provided for controlling an insect pest population, comprising contacting the insect pest population, either simultaneously or sequentially, with an insecticidally-effective amount of one or more of a recombinant IPD126 polypeptide of the disclosure. In some embodiments, methods are provided for controlling an insect pest population, comprising contacting the insect pest population with an insecticidally-effective amount of one or more of a recombinant IPD126 polypeptide of SEQ ID NOS: 19-36, or a variant or insecticidally active fragment thereof. As used herein, "controlling a pest population" or "controls a pest" refers to any effect on a pest that results in limiting the damage that the pest causes. Controlling a pest includes, but is not limited to, killing the pest, inhibiting development of the pest, altering fertility or growth of the pest in such a manner that the pest provides less damage to the plant, decreasing the number of offspring produced, producing less fit pests, producing pests more susceptible to predator attack or deterring the pests from eating the plant.
[0232] In some embodiments methods are provided for controlling an insect pest population resistant to a pesticidal protein, comprising contacting the insect pest population, either simultaneously or sequentially, with an insecticidally-effective amount of one or more of a recombinant IPD126 polypeptide of the disclosure. In some embodiments, methods are provided for controlling an insect pest population resistant to a pesticidal protein, comprising contacting the insect pest population with an insecticidally-effective amount of one or more of a recombinant IPD126 polypeptide of SEQ ID NOS: 19-36, or a variant or insecticidally active fragment thereof.
[0233] In some embodiments methods are provided for protecting a plant from an insect pest, comprising expressing in the plant or cell thereof at least one recombinant polynucleotide encoding a IPD126 polypeptide of the disclosure. In some embodiments methods are provided for protecting a plant from an insect pest, comprising expressing in the plant or cell thereof a recombinant polynucleotide encoding one or more IPD126 polypeptides of SEQ ID NOS: 19-36, or variants or insecticidally active fragments thereof.
Insect Resistance Management (IRM) Strategies
[0234] Expression of B. thuringiensis .delta.-endotoxins in transgenic corn plants has proven to be an effective means of controlling agriculturally important insect pests (Perlak, et al., 1990; 1993). However, in certain instances insects have evolved that are resistant to B. thuringiensis .delta.-endotoxins expressed in transgenic plants. Such resistance, should it become widespread, would clearly limit the commercial value of germplasm containing genes encoding such B. thuringiensis .delta.-endotoxins.
[0235] One way of increasing the effectiveness of the transgenic insecticides against target pests and contemporaneously reducing the development of insecticide-resistant pests is to use non-transgenic (i.e., non-insecticidal protein) refuges (a section of non-insecticidal crops/corn) with transgenic crops producing a single insecticidal protein active against target pests. The United States Environmental Protection Agency (epa.gov/oppbppdl/biopesticides/pips/bt_corn_refuge_2006.htm, which can be accessed using the www prefix) publishes the requirements for use with transgenic crops producing a single Bt protein active against target pests. In addition, the National Corn Growers Association, on their website: (ncga.com/insect-resistance-management-fact-sheet-bt-corn, which can be accessed using the www prefix) also provides similar guidance regarding refuge requirements. Due to losses to insects within the refuge area, larger refuges may reduce overall yield.
[0236] Another way of increasing the effectiveness of the transgenic insecticides against target pests and contemporaneously reducing the development of insecticide-resistant pests would be to have a repository of insecticidal genes that are effective against groups of insect pests and which manifest their effects through different modes of action.
[0237] Expression in a plant of two or more insecticidal compositions toxic to the same insect species, each insecticide being expressed at efficacious levels would be another way to achieve control of the development of resistance. This is based on the principle that evolution of resistance against two separate modes of action is far more unlikely than only one. Roush, for example, outlines two-toxin strategies, also called "pyramiding" or "stacking," for management of insecticidal transgenic crops. (The Royal Society. Phil. Trans. R. Soc. Lond. B. (1998) 353:1777-1786). Stacking or pyramiding of two different proteins each effective against the target pests and with little or no cross-resistance can allow for use of a smaller refuge. The US Environmental Protection Agency requires significantly less (generally 5%) structured refuge of non-Bt corn be planted than for single trait products (generally 20%). There are various ways of providing the IRM effects of a refuge, including various geometric planting patterns in the fields and in-bag seed mixtures, as discussed further by Roush.
[0238] In some embodiments the IPD126 polypeptides of the disclosure are useful as an insect resistance management strategy in combination (i.e., pyramided) with other pesticidal proteins or other transgenes (i.e., an RNAi trait) including but not limited to Bt toxins, Xenorhabdus sp. or Photorhabdus sp. insecticidal proteins, other insecticidally active proteins, and the like.
[0239] Provided are methods of controlling Lepidoptera and/or Coleoptera insect infestation(s) in a transgenic plant that promote insect resistance management, comprising expressing in the plant at least two different insecticidal proteins having different modes of action.
[0240] In some embodiments the methods of controlling Lepidoptera and/or Coleoptera insect infestation in a transgenic plant and promoting insect resistance management comprises the presentation of at least one of the IPD126 polypeptide insecticidal proteins to insects in the order Lepidoptera and/or Coleoptera.
[0241] In some embodiments the methods of controlling Lepidoptera and/or Coleoptera insect infestation in a transgenic plant and promoting insect resistance management comprises the presentation of at least one of the IPD126 polypeptides of SEQ ID NOS: 19-36, or variants or insecticidally active fragments thereof, insecticidal to insects in the order Lepidoptera and/or Coleoptera.
[0242] Also provided are methods of reducing likelihood of emergence of Lepidoptera and/or Coleoptera insect resistance to transgenic plants expressing in the plants insecticidal proteins to control the insect species, comprising expression of at least one of the IPD126 polypeptides to the insect species in combination with a second insecticidal protein to the insect species having different modes of action.
[0243] The following examples are offered by way of illustration and not by way of limitation.
EXAMPLES
Example 1. Coleoptera Diet-Based Feeding Assays
[0244] Western corn rootworm (WCRW, Diabrotica virgifera virgifera) bioassays were conducted using the cell lysates 10 microliter samples mixed with molten low-melt diet (Southland Products Inc., Lake Village, Ark.) in a 96 well format. WCRW neonates were placed into each well of a 96 well plate. The assay was run four days at 25.degree. C. and then was scored for insect mortality and stunting of insect growth. The scores were noted as dead, severely stunted (little or no growth but alive), stunted (growth to second instar but not equivalent to controls) or no activity.
Example 2. Strain Isolation, Cultivation and Activity Bioassay
[0245] Plant samples were collected from multiple locations in Iowa. Plant samples were broken into smaller pieces and submerged in PBS buffer. After 15 min at low rpm shaking, 100 ul of the wash was then serial diluted out and plated on several different isolation agar media. Various bacterial strains were picked and cultured in liquid Trypticase soy medium (Tryptone 17 g/L, enzymatic digest of soy meal 3 g/L, Dextrose 2.5 g/L, Sodium Chloride 5 g/L, K2HPO4 2.5 g/L) overnight at 26.degree. C. with shaking at 250 rpm. The total protein was extracted from cell mass and used for insect bioassay. Some strains, including Pantoea agglomerans strain PMC3671E3-1 (NRRL Deposit No. B-67697), Pantoea agglomerans strain PMC3671E9-1 (NRRL Deposit No. B-67698), and Pantoea agglomerans strain PMCJ4082D4-1 (NRRL Deposit No. B-67699) showed strong insecticidal activity against WCRW. The insecticidal activity was further confirmed with new cultures.
Example 3. Strain Sequencing and Species Identification
[0246] Genomic DNA from strain PMC3671E9-1, PMC3671E3-1, and PMCJ4082D4-1 was extracted with a Sigma Bacterial Genomic DNA Extraction Kit (Cat #NA2110-KT, Sigma-Aldrich, PO Box 14508, St. Louis, Mo. 63178) according to the manufactures' instructions. The DNA concentration was determined using a NanoDrop Spectrophotometer (Thermo Scientific, 3411 Silverside Road, Bancroft Building, Suite 100, Wilmington, Del. 19810) and the genomic DNA was diluted to 50 ng/ul with sterile water. The genomes were sequenced with Illumina and PacBio sequencers. The sequences were assembled and annotated. The 16S rDNA (SEQ ID NO: 37, SEQ ID NO: 38, and SEQ ID NO: 39) was extracted from the genome sequence and blasted against NCBI database. The results indicated that PMC3671E9-1, PMC3671E3-1, and and PMCJ4082D4-1 are Pantoea agglomerans strains.
Example 4. Active Protein Identification and Confirmation
[0247] This insecticidal activity of these strains exhibited heat and proteinase sensitivity indicating proteinaceous nature. Insecticidal activity against WCRW was observed from both cell culture supernatant and clear cell lysate from Pantoea agglomerans strain PMC3671E9-1 grown in Terrific Broth and cultured for 2 days at 26.degree. C. with shaking at 250 rpm. 80 ml of Cell supernatant of PMC3671E9-1 was subjected to Tangential Flow Filtration in a 100 kDa MWCO Polyethersulfone (PES) membrane from Spectrum Labs equilibrated in 20 mM Tris-HCl buffer, pH 8.0, 150 mM NaCl (buffer A). The cell supernatant was concentrated, and buffer exchanged into buffer A and a volume of 8 ml was recovered. This material was loaded onto a Superdex 200 26/600 pg column (size exclusion, GE Healthcare) equilibrated in buffer A. Fractions corresponding with insecticidal activity were pooled and buffer exchanged into 1M Ammonium Sulfate, 20 mM Tris-HCl, pH 8 (buffer B) and applied to a Source 15 Phenyl 4.6/100 column (hydrophobic interaction, GE Healthcare) equilibrated in buffer B. Protein was eluted with a linear gradient from 1 M to 0 M ammonium sulfate. Fractions were desalted and subjected for identification of insecticidal activity. SDS-PAGE analysis of fractions with WCRW activity showed a band corresponding with insecticidal activity after staining with SYPRO ruby gel stain (Invitrogen). Mass spectrometry was used to identify a four gene operon encoded by strain PMC3671E9-1. The proteins were designated as IPD126Aa-1, IPD126Aa-2, IPD126Aa-3 and IPD126Aa-4.
[0248] The PMC3671E9-1 DNA fragment containing IPD126Aa-1, IPD126Aa-2, IPD126-3 and IPD126Aa-4 were subcloned into E. coli. The total protein extract from the transformed E. coli cells showed strong activity against WCRW, confirming the insecticidal activity of these proteins.
Example 5. Identification of Homologous Sequences
[0249] Genome sequences analysis indicated homolog sequences in other strains. Pantoea agglomerans strain PMC3671E3-1 contains all four IPD126 genes and have second copy of the first three genes upstream. Another Pantoea agglomerans strain, PMCJ4082D4-1 (NRRL Deposit No. B-67699), is also active on WCRW and contains two operons, similar to PMC3671E3-1. These corresponding homolog sequences show 70 to 100% amino acid sequence identities to those in PMC3671E9-1.
Example 6. Live Culture Assay and Results
[0250] WCRW bioassays were conducting using live cultures of 20 ul samples and molten artificial diet in a 96 well format. A serial dilution of the overnight PMC3671E3-1 culture was tested on multiple insect targets. The culture and washed pellet showed killing activity against WCRW.
TABLE-US-00002 TABLE 1 WCRW Bioactivity PMC3671E3-1 culture Dilution SBL ECB FAW VBC CEW WCRW 1 x 0 0 0 0 0 3 1/2 x 0 0.5 0 0 0 3 1/4 x 0 0 0 0.25 0 3 1/8 x 0 0.5 0 0 0 3 1/16 x 0 0 0 0 0 3 1/32 x 0 0 0 0.75 0 2.5 1/64 x 0 0 0 0 0 2 1/128 x 0.75 0.8 0 0 0 0 PMC3671E3-1 spent media SBL ECB FAW VBC CEW WCRW 1 x 0 0.75 0 0 0 1.5 1/2 x 0 0.25 0 0 0 1.5 1/4 x 0 0.25 0 0.75 0 1 1/8 x 0.25 0 0 0 0 1 1/16 x 0 0 0 0 0 0 1/32 x 0 0.5 0 0 0 0 1/64 x 0.25 0 0 0 0 0 1/128 x 0 0 0 0.75 0 0 PMC3671E3-1 washed cell pellet SBL ECB FAW VBC CEW WCRW 1 x 0 0 0 0 0 3 1/2 x 0 0.25 0 0 0 3 1/4 x 0 0.25 0 0 0 3 1/8 x 0 0 0 0 0 3 1/16 x 0.25 0 0 0 0 3 1/32 x 0 0.75 0 0 0 2.5 1/64 x 0.25 0 0 0 0 1.83 1/128 x 0 0 0 0 0 1 Scores: 3-killing; 2-severe stunting; 1-stunting; 1-no activity.
Sequence CWU
1
1
3917569DNAPantoea agglomerans 1atgtatctga ccgaagaaat acttgccaaa ctgaatgccg
gaaacggcaa gctacaatct 60actgtagagc aggaaattac gctgccagat attatggtgc
gctcttttgc tcaggtaaaa 120gaactggcag gagacaggtt aagttggggt gagaaaaact
tcctttatca gcaggctcag 180acacagctga aagaaaataa aatggcagaa tcccgcattc
tcagccgtgc caacccgcaa 240ctggcaaatg ctgtccggct gggcatccgc cagtcttcga
tgctgggtag ctatgacgac 300ctgttcccgc agcgcgccag ccgctttgtt aagccaggtg
cggttgcctc aatgttttca 360ccggctggct atctgaccga gctgtaccgc gaggccagag
gattacacaa ggctgaatcg 420caatataatc ttgataaccg ccgtccggat ctggcctcgc
tgacgctatc ccagtcaaac 480atggatgacg agttgtccac cctgtcgctc tccaatgaac
tgctgctgaa gttaattcag 540tcaaaggaaa gcctgactta tgaacaggtt atggaaaagc
tggcgactta cagactgacc 600ggcaccacgc cttacaatca accctatgaa gcaatccgtc
aggctatttt gctgcaggac 660ccggagttta acgcgttcag taataatccg gcagtggccg
caaaaatcaa caccagcggg 720ctattaggca ttacttccga tatcgccccg gagctgcatg
cgatactgac tgaagagata 780acagaagaaa acgcggaagc actggttaaa aagaacttcg
gcgatgtcaa tatcaagcag 840ttccaaaatc ttgcgtggct ggccaactgg tacggcttgt
cctatgagaa gcttaataac 900ctggtaggca tgatttggtc cagagatgat cttgaccccg
ctattgagca ctataaaaat 960tccagcctgg tcactttggt ggctgaagac ggtggatcgc
ttaacgcggt gttgattaag 1020cgtactaaag gccatgattc cgatgatatg cattatgcgg
aattaattcc tgtgggagga 1080gacaaatttc agtacaactt cagccttatt gatgctgaag
ccagtagttc ttattatcaa 1140ttcggtacaa aaggaaagta ctcccaagat ttagttcctg
caatccataa gcctttgctg 1200ggtaatactc cctatgctgt tacattcaca cttacacaag
agcagctaag taacccagtt 1260gaaatatccc tgacgcatgg tagtggcggt ggtgatcgcc
ttacctcaac aattttcact 1320gttacgactt ccccatttga tatcttcctg ctgaagctga
ataaacttat acgcctctat 1380aaagccaccg gtatctcccc ggccagcatc aggaccgtga
ttgaaagcga taacactgac 1440cttatcatca cagaaagcgt attaagccag ctattctgga
ctaattacta tacacaaacg 1500ttcgaaatgg aattttctgc cgcactggtg ctggcaggag
cggacatcgg tcagatagca 1560cacagtgaaa gccagccaag tgcgttcacc cgcctgttta
acacgccgcc gctggataac 1620cagcagtttt cggccagcga cgagtcactg gatctggagc
cgggtaaggg agccgatgct 1680ttccggatcg ctgtacttaa acgtgcattg caggtgaatg
acgccggact gtataccctt 1740tatggtctga gtttcaccga taaagataaa aacggtgagt
tgattccgtt caccactaaa 1800attgagaacc tttctgccct ctatcgcacc cgactgctgg
ccgacatatt taatatttct 1860gtcactgagc tgagcatgct gctgtcggtt tcaccttatg
ccagtcagaa ggtggacagc 1920ctcaaaggtc aggcactaca tcagtttgtt actaccctca
gcgactatat gcaacggctg 1980aaagcgatga actggagcgt cagcgatctc tacctgatgc
tgaccaacag ctacagcacg 2040gtactgtcgc cagaaattaa aagcctgatg actaccctga
aaaatggact cagcgagcag 2100gattttaaca acacggatga aatcgctcag ctgaatgcga
cggcaccttt aatcgccgca 2160gcgatgcagc ttgactccac agaaaccgct gcagcactgc
tggaatggct taatcaattg 2220caaccagcag ggctgacagt ggcaggtttc ctgtctcttg
tgaatcagac gacacccgaa 2280gataaggatg ttgtaaaact ggtctctttc tgccaggtga
tggggcagct tgcactgatc 2340gtgcgcaagg cggctctggg ctccagcgaa atcatctttg
cagttgcgca tccggctatc 2400tttaacaaag atgcgaactc actggctcag gatattggca
cgctctttga cctgacccag 2460ctgcatgcat ttctgacaga atgtggtact tatgcctctg
aaattcttac ctcactgaat 2520gaagggaacc tcgacgttag cacagtggcg acggcgctga
cgctggacaa aactacactg 2580gcgcaggcac ttgctcaggt ttcagaatct aaggcctttt
ctaactggca cgaactgcgt 2640gatgcacttc agtggacaga tgccgccagc attttcaaca
tcacaccagt ggctctgact 2700gcgatggtga acctgaaatt cagtggtgac aacgcttcac
cgtatcagga gtgggtaacg 2760gtcagcaaag ctatgcaggc cgggctgaat cagacgcaaa
gtgctcagct gcaagcttcg 2820ctggatgaat ccctcggtgc agccgtcagc gcctatgtga
ttaaaaacag ttcgccgtcc 2880tgggttaccg atcgcgacaa actttacagc tggctgctga
ttgataacca ggtgtcggcg 2940caggtcaaaa ccacccgcat cgccgaagcg attgccagcg
tgcagctgta tgtaaaccgg 3000gcattaagcg gccttgagaa tggccaatca atcactgacg
ctgttgataa tgccgttaaa 3060tccggggtat tttttacccg cgactgggat acatacaaca
aacgctacag cacctgggcc 3120ggcgtctctg agttggttta ctatccggaa aactatgttg
acccgaccct gcgccctggt 3180cagaccggca tgatggatga gatgctgcag acgcttagcc
agagccagct gacgtccgat 3240tcggtggaag acgcgttcaa aacctacatg acccgctttg
aagaaatcgc taacctggat 3300attgtcagcg gctatcatga caacctcaat gaccagaagg
gtgtaacata tctgatcggt 3360cgctccgctg ctggcgacta ttactggcgt tcggcagata
tcagtaagct ttctgacggt 3420aagctcccag ctaacgcctg ggccgagtgg aaaaaaatta
ccaccgcgct gacgcccgta 3480aataacctgg tgcgcccggt aatatttcag tcacgattgt
atgtgacctg ggtggaaagc 3540cgcgaagtcg gcatatccgc cgacaaagag cacaacagtg
aaaccaaaat tctggagtat 3600gctctgaagt atgcacatat tctgcatgac ggtacctgga
gcgcacccgt gtctgttaag 3660cttgagaacg gaacgctgcc tcttgacagc gtggctattg
atgttacagg catgtattgc 3720gcaaaggata cacagcatga ccagctttat attttatttt
ataagaaaaa ggaaacttac 3780aatgacgtca atgacgttct gaaaggaata atactgcacg
atgacgggac taccaccatt 3840acttccggta atagcgtatc tggattggtt gtctataaac
aactggatac tactaaggaa 3900gtcaggctga atacgcctta cccgggagga aaaacatact
actctattaa taatatgagg 3960gaatcgagta aatggggaga tgataatatt tcaatgctgt
caggatgtag cgtgaaagat 4020tttgtcttta ccgaaggcga tgggaaactg aatgttgcgt
tcaatgccac cgaacgcatt 4080atataccgtg gtaatccgga tagtcagggc tatgtggccc
tggtcaatat gattaaagct 4140atcggaaata ttggagacac ctttaaaatt ccggttttga
attcaaatgg agagggctta 4200gacaaacctt ttacatgtat attcagacag cctgatgaaa
agactgatgc gattgcttat 4260ttctccgatg tccagggatt aaatatagat catttcgctt
tcaacgatga aagtcagaaa 4320atgctgggtc gtatcttaag gcctgaagag aaagattttt
ataaattaga gtgtgtcaat 4380actaatctcc atatatacaa agacagtagc aaaacaatca
aaccggataa cttcgtgtat 4440tttggcccag gcatggatct tatcgtagtt aaaggaatga
tcgtggaaac cctttttgga 4500ttatttggag agcttaaaac cggaataaaa gataagagtg
tgaaactatc cgtttctgcc 4560ggagtcattg acaattcacc agccgctacg aagactaagt
atacattcga cgaatcgctg 4620tatgttattg aaggccaaac cgtttctatt caacttagtg
aatttaaaga aaataatatt 4680gaccttgaat tcactttctt tgcttctgga gacagtggga
actcactagg caaaagtgtc 4740atcagcgcaa cattgacccg aacgagtgaa aacactatac
ccgttatttc tctgaataaa 4800acctctgaca acgcgcagta tttgcagtat ggcattcatc
gcataagggt gaatacgctg 4860tttgcaaaac agctggttgc gcgcgcgaac gccggactgg
acactgtact gtctatggca 4920acccagcagc tgacggaacc taaaatgggc aaaggtgcgt
acattgacct tgaacttaat 4980gccagcagcg atggcagttc ggcggtattt gaagtattga
tgtgtgacgt ttttaccaaa 5040ggtgaccgca ttgctttgac cagcggcaca ctcagcccca
cagcacgcac cagctgctca 5100tttttcattc cccgactggg tgagtctact gaatctccat
ggaatatgta tttttgcgta 5160aaaactcaga atgatgagag taagcgggta gaagtaatgg
gaggcgaggg gaaatggagt 5220taccagtacg tcgatgaatc tggtactgcc attaagccgc
cctataccga tccatatatt 5280gcaagcgtat atgtacggaa cgatacaaca gagccgatgg
acttcaacgg tgccaatgcg 5340ctctatttct gggaaatgtt ctattacgta ccgatgatgg
tatttaagcg cctgctaagc 5400gaaagtaagt tcgctgaagc gacccagtgg atcaaatata
tctggaatcc cgatggctat 5460ctggtgaaca atcagcccgc gacctatagc tggaatgtgc
gcccgctgga ggaggatacc 5520tcctggcacg ctgacccgct agactcggtt aacccggatg
ctgtcgcgca ggccgatccg 5580ctgcactaca aggttgctac ttttatggcg taccttgatc
tgctgattgc ccgcggtgat 5640gctgcctatc gccagctgga gcgcgatacc ctgaatgaag
ccaaaatgtg gtacgtgcag 5700gcgctgaaca tccttggcga tgaaccctac cagtcatcat
ccagcggctg gagctcgcca 5760gttctctcca gcgcagcagc tcagactaca gagaaaaacg
ttcagcaggc gatgctggcg 5820gtgcgtcagc agcctgacgc aggagaactg cgcaccgcca
actcgctgac tgacctgttc 5880ctgccccagc agaacgcgaa gctggctggt tactggcaga
cgctggcgca gcgcctgtat 5940aacctgcgcc acaacctgtc aattgacggc agcccattgt
cactggccat ctatgccgcg 6000ccagccgatc cggcagcgct gctcagcgcg gcggtcaaca
gcgcgtccgg cggcagcgac 6060ctgcctgctg ttgttatgcc gctgtaccgc ttcccggtca
ttctggagag cgcccggggg 6120atggcaggtc aactgatcca gttcggcagc acgctgctca
gcattgctga acggcaggat 6180gcggaagcgt tgtcggagct gatgcagact cagggtagtc
aactgatttt gcagagcatc 6240gcactgcaaa acagtacgat ttctgaaatt gatgcggata
aaaccgtgct ggaagcgagc 6300ctaagcggtg cacgttcgcg cctcgaccgg tacaccacgc
tgtatgacga ggatgtaaat 6360acgggggaac agcaggctat ggatctgttc tacgcctcct
ccctccaggc aaacggcggc 6420cagatgttcc acactatcgc aggcgcactt gacctggtgc
ctaacatctt tggtctggcc 6480gacggcggtt cgcgctgggg tgcggtatct actgcaatgg
ccagcatcgc cgatttgtcc 6540gccgcagcct gtcacacgac cgcagagcgc ctcagccagt
ctgaggtcta ccgccgccgc 6600cgccaggagt gggaaatcca gcgcaacgcc gcgcagtctg
aaattgacca gattgacgct 6660cagctggcct cactgacgat acgtcgcgag ggcgcggtac
tgcagaaaac ctacctggaa 6720acgcagcagg gtcagatgca ggcgcagatg actttcctgc
agaataagtt caccagcaag 6780gcgctgtaca actggctgcg cggcaagctg gcggccattt
actatcagtt ctacgacctg 6840acggtatcgc gctgcctgat ggcagaagcc gcctatagct
gggatattaa aggtaatcag 6900gaaacaggta cctttatccg tcccggcgcc tggcagggca
cctatgccgg cctgatggca 6960ggggaaacgc tgatgctgaa tctggcacag atggaaaaca
gctacctgac aaaagatgag 7020cgcctgaaag aggtcacgcg cacggtctgc ctgtctgaag
tttatgcagg gctctcttcg 7080gattcgttcg cgctggctga taccgtcacc acactggtga
gtaacgggaa aggcaacgcc 7140ggcacggacg ataacggagt gaagatcgat gacaagcagc
ttctggctac cctgaaactc 7200tccgatctga gcattgataa cgattatccg gagtcactgg
gcaaaacccg acgcattaag 7260caaatcagcg tgacgctgcc gacgctggtc gggccgtatc
aggacgtccg ggcggtactg 7320agctatggcg gcagtgtggc tctgccacgc ggctgcacgg
cggtcgccgt ttcgcacggc 7380atgaatgaca gcggccagtt ccagctggac ttcaatgaca
gccgctggtt gccgtttgaa 7440ggtatacctg tcggggattc cggtacgctg acgctcagct
tcccggacat taccgataaa 7500cagcaggaaa atctgctgct cagtctgagc gacatcatcc
tgcacatccg ctataccatc 7560gcaagctga
756924266DNAPantoea agglomerans 2atgcaaaata
cagatcagat gagcctgacg cccccttcct taccctcagg tgggggtgcc 60gtcaccggac
tgaaaggcga tatgtcagga gccggccccg atggcgccgc cacgctgaac 120cttcccttgc
cgatcagccc cggacgtggc tatgcgccgt cgttgtctct gggttaccac 180agtcgtaacg
gcaacggtgt ttttggcgca ggctggagct gcggtcagat ggctattcgc 240ctgcaaaccc
gcaaaggcgt gccgttttat gacggcagcg acgtctttac cgctcctgac 300ggtgaggttc
tggtgccggc gctggacgcc agcggcaaga ctgaggttcg cacgaccact 360acgctgctcg
gcgaaaacct cggcggcacc tttaccgtac agacctaccg ttcccgggtg 420gaaaccgact
tcagtcgcct ggagcgctgg gtttcgcagg ccgacgcagc ggctgatttc 480tggttgattt
atagtccgga cggccagatc cacctgctgg gtcgtaaccc gcaggcgcgg 540gtgagcaacc
ctgaggatac aacccagacc gccgcctggc tgatagagtc gtcggtctct 600gccagcggcg
agcagattta ctggcaatac cggcaggaag atgagctggg ctgtacgcag 660gatgagaaaa
cggctcatgc acacgcgctc gcccagcgct atctggtggc ggtatggtat 720ggcaataaag
cggccagccg gacgctgccg gggctgctgt ctgttcctgc ggctggcagc 780tggctgttta
cgctggtgct ggactacggt gagcggacga cagatcctgc aacgccaccg 840gcctggcttt
caccaggcag tggtacatgg ctctgccggc aggatgtgtt ttccagctgg 900gaatatggct
ttgagctgcg cacgcgtcgc ctgtgccgac aggtactgat gtatcatgac 960gtcgcggcgc
tggcaggtaa gcctggttca gatgccgtgc cacagctggt caccagactg 1020ctgctggact
ataacctgtc tccgtcgctg actaccctga aaaccgcaca gcaggccgcc 1080tgggaagcgg
atgggacgtt gcgcagtctg ccgccgctgg cgttcagctg gcagaccttc 1140ccgtcaacac
cagagaaaag tgtcagctgg cagcagcgga atgacatggg gaaactcaac 1200ccacagcagc
cttatcagat ggttgacctg cacggtgaag gactggcggg tatcctctac 1260caggacagtg
gtgcctggtg gtatcgggag ccggttcgtc agttgggcga tgatgataat 1320gccgtgacct
gggcggctgc ccgaccgctg ccggcgttcc ctgctctgcg caagggcgga 1380atgctgctgg
atctggacgg tgatggctac ctggaatggg tggtcaccgc gccaggcgtc 1440gcgggctgct
atgcgcaaac gcctgaacaa tgctggcagc gcttcacgcc gctgtctgca 1500ctgcctgtgg
aataccgcca ctcgcgaatg gagataaccg acgtcaccgg tgcgggtctt 1560gcggatatgc
tgctgatcgg cccgaaaagc gtacgcctgt acagcggcag cggcagaggc 1620tggaaaaaag
cacgaacggt catgcaggac agtggcatca ccctgccggt ccccggcaca 1680aacgcccgtg
tcatggtggc attcagcgat atggccggca gcggtcagca acacctgacg 1740gaaatcaaag
ccagcggcgt acgttactgg cccagcctgg ggcatggtcg ctttgcggcg 1800ccggtgacac
tccccggctt cagtcagccc gcagaaacct tcaacccggc acagctctat 1860ctggccgacg
ttgacggttc cggtaccacc gatctgatct atgctctgag cgatcatctg 1920ctggtatggc
taaaccagag cggaaaccgc tttgacgagc ctttccgcat cgaccttccg 1980gaaggcgtgc
gctatgacaa tacctgcagc ttgcaggtcg ccgatattca ggggctgggc 2040atctccagcc
tggtgctgtc ggtgccacat ccgacgccgc gccattgggt atgtcacctg 2100acggcggaaa
agccctggct gctcgacggc atgaacaaca atatgggtgc ccgccatact 2160ctctgttacc
gtagttcggc gcagttctgg ctggatgaaa aggctgctgc tactgccgat 2220cggcccgcgc
cggcgtgtta tatgccgttt gcgttgcata cactgagccg tactgaagtc 2280agtgatgaaa
ttaccggaaa ccggctcacc aggacgatac gctaccggca cggcgtctgg 2340gacaggcgcg
agcgagagtt ccgcggcttt ggctttgttg aagtcagtga tgccgaagcg 2400ctggcaaaac
aaactgaagg gatgagcgca ccggcagtta aacgcagctg gtatgctacc 2460ggactgacag
ccgtggatgc acagctcccg gatgagttct ggaaaggcga tcatgcggcc 2520tttgccggtt
ttacccctcg ttttaccacc ggctatggtg aacaagaggc ggcactggat 2580accatcagcg
acgatacccg tttctggctg acccgggcga ttcgcggtac gctgctgcgt 2640agcgaactgt
atggcgcgga tggcagcagc caggccggga tcccttacag catcacggaa 2700tcgcggccac
aagtgcggtt gattactgag gcgggtaatt cgccggtggt ctggccctcc 2760gttatcgaga
accgcgccag tcattatgag cgcgtcagca gcgatccgca gtgcggccag 2820cagatcctgt
taaccagtaa tgaatatggt cagccgcttc gacagatcgg cgtcagttat 2880ccccggcgca
ccaggcccga tgccagcccc tacccggacg atctgccgga cggactgttt 2940gccgacagct
ttgatgagca acagcaggcg ttacgcctga cgctgacaca aagcagctgg 3000catacgctga
aagatatcag cagcggcatc tggctgccgg ccgtggctga tgcaacccga 3060agcgatctgt
tcgttcacca ggccgcgcag gtgccgccag cgggtcttac gctggagaat 3120ttactcaccg
atagtgcgct gctgaccagc ccggtttttg gtggacagtc gcaaacctgg 3180tatcaggaca
gcgcgggtca ggcgagcacc acctcacccg attttcccct ccgaccgtcc 3240tttagcgaaa
ccgcagcgct ggacgaggca caggtcagcg cgctgtcagc cgatattgat 3300caaacgaagc
tggagcaggc gggctatacc cgctcagcgt atctgtttgc acgcagcggt 3360gaggagggta
aaaccctgtg gacagtgcgc cagggatata tcaccttcag cagcgcagac 3420catttttatc
tgccgattgc cgcacagcag acgctgctga ccggtaaaac cacggtcacc 3480tatgatccgt
acgactgtgt tgtcttacag gcaaaggatg ccgcaggtgc agttacctcc 3540gcgacatacg
actggcgttt tctcgcgccg acgcagatta ctgatatcaa cgataatctg 3600aaaagcgtca
cgctggatgc gctgggtcgg gtaacgtcgc agcgtttcag cggcagtgaa 3660aacggaaaac
cggcgggcta cagcgatgat gcgtttccac tgccggccag cgccgatgca 3720gcgctggcgc
tcagtgcccc gctaccggtg gcacagtgca tcatctacgt accggacagc 3780tggatgctga
ccggtgagca gcagcagccg ccgcacgtgg taacgctgct caccgaccgt 3840tacgacagcg
acagtcagca gcagatccga cagcaggttg ttttcagcga tggttttggc 3900cgggtgctgc
aggctgcctc aaggcaggtg aacggcgaag cgtggcagcg ggcggcaaac 3960ggctcgttcg
ttgccgaccc gaacggttcg cccgtgctga cggagaccac gttccgctgg 4020gctgtcaccg
gacgcactga atatgacaat aagggacagg ccattcgtac ttatcagcca 4080tattttctgg
acagctggaa atacgtgcgt gacgacagcg cgcgacacga tctgtacgcc 4140gacacccact
attacgatcc ggtggggcgg gagcggcagg tcattaccgc aaaaggtttg 4200ctgcggcgtg
tcacttacac cccctggttc gtagtcagcg aagacgaaaa cgatacgcag 4260gcgtag
426633015DNAPantoea agglomerans 3atgtccgccg cgtatgtctt aagtaattta
tcttatcaac gggagaatac tatgagcacc 60tcgctttaca gcaggacccc ctcagtcacg
gtcctcgaca accgcggcct gaccgtacgc 120gatatcgcgt accaccgcca tccggatacc
ccggcggtga ccagtgaacg catcacccgc 180catcagtacg atgcccgcgg ctttctgacg
cagagcgccg acccgcgcct gcacgacgcc 240gggctggcga acttcagcta ccggaccgac
ctgaccggca gcgttctccg cctacagggc 300gtcgataacg gcatcaccgt ggcgctgaac
gatgccgccg gacggccgtt tctggcggtc 360agcaacatcc gcacggccgg tgatggctcg
gaggacagaa gccaggcact gacccgtacg 420tgtcagtacg aggacgcaac cctgcccgga
cgtccgttaa gtattacgga gcaggtaaag 480ggtggagccg cccgcatcac ggagcgcttc
atctatgccg gtaacgctgt tgaggagaaa 540gccctgaacc tcgccgggca gcccgtcagc
cactatgata ccgccggtct gacacagaca 600gacagcatcg ccctgaccgg cgtgccgctc
tccgtcaccc gccgcctgct gaaggacgca 660gacaatcctg acgccgtggc tgactggcag
ggaacagacg cctccgtctg gaacgacccg 720ctcgacgtgg aaacatacac taccctgtcc
acggcagacg ccaccggcgc ggtgctgacc 780accaccgatg cgaagggaaa cctgcagcgg
ctggcctacg acgtggcggg cctgttgtcg 840ggcagctggc tgacgctgaa ggatggcacg
gagcaggtta tcgtgacgtc cctgacctac 900tccgccgccg ggcagaagct gcgcgaggag
cacggcaacg gcgtggtgac cacctacacg 960tatgaagccg agacgcagcg cctgaccggc
attaaaacgg cgcggccggc cggacacacc 1020tcaggtgcga aggtgctgca ggacctgcgc
tacacctatg acccggtggg caacgtcctg 1080aaaatcagca acgatgccga agagacccgc
ttctggcgta accagaaagt ggtgccggag 1140agcgcgtacg tttatgacag cctgtaccag
ctggtcagcg ccaccggacg cgagatggcg 1200aacgccggtc agcagggcag cagctcatcg
tcagccaccg tcccccttcc cgccgacagt 1260tccgcgttta caaactatac ccgcaactat
acttacgatg aggccggcaa cctgacgcag 1320gtccgtcata ccccggctac gggcagcggc
tacaccacaa aaataaccgt ctctgataaa 1380agcaaccggg gtgtgctgag cacgctgacg
gaaaatccct ccgacgttga cgcgctgttc 1440acggcgggcg gccagcagaa acagctgcag
ccggggcaga gtctcatctg gacgccgcgt 1500aacgagctgc tgaaggtgac gccggtagca
cgtgacggcg gtgcggatga cagcgaaagc 1560taccgctacg acgggggcag cctgcggctg
ctgaaggtca gcgtgcagaa aaccgggaac 1620agcacgcaga cgcagcgggc gctgtacctg
ccaggactgg agctgcgcaa cacaacatcc 1680ggtgatacgg aaacggagag cctgcaggtg
gttaccgtgg gtgaagcggg gcgcgcgcag 1740gtgcgggtgc tgcactggga gagcggaacg
ccggacagtg tcagcaacga ccagctacgc 1800tacagctacg ataacctgac cggcagcagc
gggcttgagc tggacagcag cggcaatatt 1860atcagcatgg aggaatacta tccgtacggc
ggcacggcgg tctggacggc gcgcagcgcg 1920gtggaggcga agtacaaaac cgtgcgctac
tcggccaagg agcgtgacgc cacggggctg 1980tactactacg ggtaccggta ctaccagccg
tgggctggcc gctggctgag cgcggacccg 2040gcgggcacgg cggacgggct gaacctgttc
aggatggtaa gaaataatcc ggttacgctt 2100aaggacacaa acgggttgat cagtacgggt
caggatgccc ggaaattagt ggccgaagca 2160tttgttcacc ctttgcatat gactgtcttt
gaaagaattt cttcagaaga aaatcttgca 2220atgagcgtga gagaggctgg catttatact
atttcggcac tgggtgaagg tgctgcagca 2280aaagggcata atattcttga gaagaccatt
aaacctggtt cattaaaggc tgtttatggt 2340gataacgccg aatccattct tgcgcaggca
aaacgcagcg gttttgttgg ccgggtaggt 2400cagtgggatg catccggtgt acggggaatt
tatgcacaca acacaccagg tggcgaagac 2460ctggcctatc cagtcaactt aaaaaatagt
tctgctaatg aacttgttaa tgcatggata 2520aaatttaaaa tcatcacgcc ttataccggt
gattatgaca tgcacgatat tattaaaatc 2580tcggatggaa aagggcatgt gcccctggcg
gaaagtaatg aggaaaaagg tgtaaaggat 2640atgattaatg aaggtgttgc gcaggtcgac
cctgccagac cctttacgtc tacagcgatg 2700aatgttgttc gccatggccc tcaggtaaac
tttgttccct atatgtggga acatgagcac 2760gaaaatgtcg taagggataa tggttatctg
ggagtggtag ctcgtccggg tccattccct 2820gttgcgatgg tacataaggg tgaatggact
gttttcgaca ataaaaacga gctgtttgag 2880ttttataaat ctacaaacac tcctcttccc
gaacactggt ctcaggattt tgttgagaga 2940gggaaaggaa atgttgcaac gccccgacac
gctgaaattc ttgatcgtaa ttcctcgcgt 3000ctaagagcgg cctga
301542913DNAPantoea agglomerans
4atgtgtagcg ttgccgattt tgatcggctg cacaacataa aacaggagaa tatcatgagc
60acctcgcttt acagcaggac cccctcggtc acggtcctcg acaaccgcgg cctgaccgta
120cgcgatatcg cgtaccaccg ccatccggat accccggcgg tgaccagtga acgcatcacc
180cgccatcagt acgatgcccg cggctttctg acgcagagcg ccgacccgcg cctgcacgac
240gccgggctgg cgaacttcag ctaccggacc gacctgaccg gcagcgttct ccgcctacag
300ggcgtcgata acggcatcac cgtggcgctg aacgatgccg ccggacggcc gtttctggcg
360gtcagcaaca tccgcacggc cggtgatggc tcggaggaca gaagccaggc actgacccgt
420acgtgtcagt acgaggacgc aaccctgccc ggacgtccgt taagtattac ggagcaggta
480aagggtggag ccgcccgcat cacggagcgc ttcatctatg ccggtaacgc tgttgaggag
540aaagccctga acctcgccgg gcagcccgtc agccactatg ataccgccgg cctgacacag
600acagacagca tcgccctgac cggcgtgccg ctctccgtca cccgccgcct gctgaaggac
660gcggacaatc ctgacgccgt ggctgactgg cagggaacag acgcctccgt ctggaacgac
720ctgctcggcg cggaaacata caccaccctg tccacggcag acgtcaccgg cgcggtgctg
780accaccaccg atgcgaaggg aaacctgcag cggctggcct acgacgtggc gggcctgctg
840tcaggcagct ggctgacgct gaaggatggc acggagcagg ttatcgtgac gtccctgacc
900tactccgccg ccgggcagaa gctgcgcgag gagcacggca acggcgtggt gaccacctac
960acgtatgaag ccgaaacgca gcgcctgacc ggcattaaaa cggagcggcc ggccggacac
1020gcctcaggtg cgaaggtgct gcaggacctg cgctacacct atgacccggt gggcaacgtc
1080ctgaaaatca gcaacgacgc cgaagagacc cgcttctggc gcaaccagaa agtggtgccg
1140gagaacgcgt acgtttatga cagcctgtac cagctggtca gcgccaccgg acgcgagatg
1200gcgaacgccg gtcagcaggg cagcagctca tcgtcagcca ccgtccccct tcctgccgac
1260agttccgcgt ttacaaacta tacccgcaac tatacttacg atgaggccgg caacctgacg
1320caggtccgcc ataccccggc tacgggcagc ggctacacca caaaaataac cgtctctgat
1380aaaagcaacc ggggtgtgct gagcacgctg acggaaaatc cctccgacgt tgacgcgctg
1440ttcacggcgg gcggccagca gaaacagctg cagccggggc agagtcttat ctggacgccg
1500cgcaacgagc tgctgaaggt gatgccgata atgcgtgacg gcggtacgga tgacagcgaa
1560agctaccgct acgacggggg cagccagcgg ctgctgaagg tcagcgtgca gaaaaccggc
1620aacagcacgc agacgcagcg ggcgctgtac ctgccgggac tggagctgcg gacgacaaaa
1680tctggcgata cgctaacaga aagcctgcag gtgattaccg cgggcgaagc gggccgggcg
1740caggtgcggg tgctgcactg ggagagcgga acgccggaca gtgtcagcaa cgaccagcta
1800cgctacagct acgataacct gaccggcagc agcgggcttg agctggacag cagcggcaat
1860attatcagta tggaggaata ctatccgtac ggcggcacgg cggtctggac ggcgcgcagc
1920gcagtggagg cgaagtacaa aaccgtgcgc tactcgggca aggagcgtga cgccacggga
1980ctgtattact acggataccg gtattatcag ccgtgggcgg gcagatggct gagtgcggac
2040ccggcgggca cggtggacgg gctgaacctg ttcagaatgg tgcgcaataa tccgctcaca
2100ttaaaagata acgatgggct aaaaccaata aatgaaaatt tcagagaaaa taaaggcgat
2160ctggtttatg ggctggctgc cccccgagga gcttatatat caacggcaat agggcgcaaa
2220ttcgctccag aagagaaaga tgcacctgct tcaattattg acttatataa caatacggtt
2280tccggacaag cccttcttag cgttgatttc aaaatactgc aagacttcat gaagtcacca
2340aaaaaaaatg aaaaaaaact agcccctcca tctaacatta aagagttggt aaaaaaatcc
2400agggattatc ctctgtggga ggattatttt ctggcagggg aaaacaaccc caaatttaac
2460attgcatcca tatataaaga ggtcagaaaa gatgcaggaa agacccagta tcatgagtgg
2520catatagcgg gaggacaatc ggcacctaag ctactttgga aacgaggaag taagttgggt
2580attgaaatgg cggccagcgg tgctggcaat aaaatccatt ttgttcttga tgaactggat
2640atatcaaatg ttgtaaataa ggaagggccg ggggggaaat ctataacggc cagtgagtta
2700cgttatgcgt acagaaatcg tgaaagactg actggaaata tacattttta caaaaataat
2760gctgaaactg gcgcaccatg ggatacaaat gctgaactgt gggcatctta tcaccccaaa
2820ccaaagcata aaggaaatga atcgacacac ataatgtcgc aaaggagaaa tggtagtctg
2880ttcaaatcca tgagaaaggt tttctcaaga aat
291357572DNAPantoea agglomerans 5atgtatctga ccgaagaaat acttgccaaa
ctgaatgccg gaaacggcaa actacaatct 60actgtagagc agataattac gctgccagat
attatggtgc gctctttttc tcaggtaaaa 120gagctggcag gagacaagct aagttggggt
gagaaaaact ttctttatca gcaggctcag 180acacagctga aagaaaataa aatggcggaa
tcccgcattc tcagccgtgc caacccgcaa 240ctggcaaatg ctgtccggct gggcatccgt
cagtcttcga tgctgggtag ctatgacgac 300ctgttcccgc agcgcgccag ccgctttgtt
aagccaggtg cggtggcctc aatgttttca 360ccggctggct atctgaccga gctgtaccgt
gaggccagag gattacacaa ggctgaatcg 420caatataatc tcgataaacg ccgtccggat
ctggcctcgc tggcgctatc ccagtcaaac 480atggatgacg agttgtccac tctgtcactg
tcaaatgagc tgctgctgaa taatatccag 540cagcatgatg gcctcagcta tgacgatgcg
ctgaagaagc tcgccggata ccgacaaacc 600gggacaacac cctatagcca gccgtatgaa
acgatccgcg aggctattct tctgcaggat 660cctgcgttta attcgattcg caacaatcca
gctgtggcga ctaaaatgaa taccagtggc 720ctgctgggac tgacagcaaa cctgccacct
gaactgcatg cgatcctgac tgaaacgatt 780accgaagaga atgcggaaca actgattaag
gacaatttcg gtgatgtcaa cgtcagcaga 840tttcaagatg ttagttatct tgcccgctgg
tatgggatga ccccttatga actgaactcg 900gtgctgggac tgatggaggt gggcagcaat
cctgtcgacg gtgttacgta ttaccaggat 960gaccagctga tttccctggt ggataatggc
ggtaatctgg atgctgtgct gatgcaacgt 1020gcgggcggtg acaattatag ccagtttggt
tatatcgaac tgctaccggt gtcaggggat 1080acctaccagc ttcggtttac cgtacaaagt
ggttacgtgg gtcaggactc agaagtccgc 1140attggaactt cagagaatgc cggaagcaag
gatattctta gcgatggtcg catcgccgga 1200cttaacatcc ctatggtcct gaacgttaaa
cttgacagca ctaagttggc ccaggggatc 1260actatcggcg taacccgata cgaccccagc
ggtagttata taaattttgc gtccgttcgt 1320ttccagagat acgacttttc ttataatgtc
ttcctgctca aattaaacaa aattattcgc 1380ctctacaaag ccaccggcat ttcgccatcc
gatatccaga ccctgattga aagtgctaat 1440catgacctgg ctattaccga agatgtacta
agccagctct tctggacgaa ctattatacg 1500cagcgttacg gtattgattt ttctgctgcg
ctggtgctgg cgggtgcgaa catcagtcag 1560attgcccaca gcaataaaca gagcgcgttc
acccgcttgt ttaacactcc gccgctgaac 1620aatcagtttt tttatgctga tgggaaaaag
ctgaacctcg aacccggtaa gtcggatgac 1680tcacacggtc ttggggtact caaacgggca
ttacaggtta atgatagcgc cctgtatacc 1740ctttttaatc tgacctttgc ggataaagac
gcccagggta atgctgttgt tttcaccaaa 1800actcctgaaa atctttctgc gctgtaccgt
accagattgc tggcgacggt taacaacctg 1860accgttaacg aactgagcct gctgctttcc
gtttcaccat acgtaaaggt gaagctggct 1920acgctaaaag acgaggcgct cagccagctg
tcgactaccc tggaaaggta tacgcaatgg 1980ctggacaaga tgaactggac gatcggcgat
ctgtacctga tgctgacccc tgtttacagc 2040accgttctgt cgccggatat tgaaaatctg
gtgacgacgc tgaaaaatgg cctggcgggt 2100caggacttaa ccagcgatga aaaacgcatc
gctgcgctgg ctccgtttgt tgctgccgcc 2160actcagctgg actctgcgga gacggccagg
gcgcttttac gatggctgaa cgatcttaaa 2220ccgggaaccc tgtcattagc ggattttatc
gcgcaggtta acaacaccac ccaaaccgaa 2280aatctggtca cattcagcca ggtgatggcg
cagctcgccc ttattacgcg caacgccagc 2340ctgagtgcaa atgagctgtc atgggcggtt
gcgcacccgg aaattttcca ggaaaaggcc 2400actgttctta aaaacgacat cgccactctc
aatgatctga cgcagctgca tgatctgctg 2460gcgcgctgtg gcagccatgc ctcagagatc
cttacctcgc tgagtgggaa tgccagcaag 2520gctgaaaata accttgccgt cagcaccctg
gcgacggcgt taaatctgga cgagcgggca 2580ctgacccagg cgctggcgaa ggtttccacc
tatgaatatt tttataattg ggcacactta 2640aatgaagcgc tgcagtggct ggacgttgcc
accacctttg gcatcacgcc cgataacctg 2700gccgcgctga ttgggctgaa gttcgataat
caggatgacg cctcgtttgc cagctggctt 2760accgcaagcc ggtttatgca ggcagggctt
aacacgcagc agacagctca gctgtccgcc 2820actctggatg aatccctcag cgcagcggtc
agcgcctacg cgatcaaaaa tattttctcc 2880ggcgcggtaa gtaacaggga gcagctctac
agctggctgc tgattgataa ccaggtgtcg 2940gcgcaggtca aaaccacccg catcgccgaa
gcgattgcca gcgtgcagct gtatgtaaac 3000cgggcattaa gcggccttga gaatggccaa
tcagccactg acgctgttga taatgccgtt 3060aaatccgggg tattttttac ccgcgactgg
gatacataca acaaacgcta cagcacctgg 3120gccggcgtct ctgagctggt ttactatccg
gaaaactatg ttgacccgac cctgcgcctt 3180ggtcagaccg gcatgatgga tgagatgctg
cagacgctca gccagagcca gctgacgtcc 3240gatacggtgg aagacgcgtt caaaacctac
atgacccgct ttgaagaaat cgctaacctg 3300gatattgtca gcggctatca tgacaacctc
agcgaccaga agggtgtaac atatctgatc 3360ggtcgctccg ctgctggcga ctattattgg
cgttcggcag atatcagtaa gctttctgac 3420ggtaagctcc cggctaacgc ctgggccgag
tggaaaaaaa ttaccaccgc gctgacgccc 3480gtaaataacc tggtgcgccc ggtaatattt
cagtcacgat tgtatgtgac ctgggtggaa 3540agccgcgagg tcggcatatc cgccgtcaaa
aagcaaaaca gtgaaaccaa acctctggag 3600tatgctctga agtatgcaca tattctgcat
gacggtacct ggagcgcacc cgtgtctgtt 3660aagcttgaga acggaacgct gcctcttgac
agcgtggcta ttgatgttac aggcatgtat 3720tgcgcaaagg atacacagca tgaccagctt
tatattttat tttataagaa aaaggaaact 3780tacaatgacg tcaatgacgt tctgaaagga
ataatactgc acgatgacgg gactaccacc 3840attacttccg gtaatagcgt atctggattg
gttgtctata aacaactgga tactactaag 3900gaagtcaggc tgaatacgcc ttacccggga
ggaaaaacat actactctat taataatatg 3960agggaatcga gtaaatgggg agatgataat
atttcaatgc tgtcaggatg tagcgtgaaa 4020gattttgtct ttaccgaagg cgatgggaaa
ctgaatgttg cgttcaatgc caccgaacgc 4080attatatacc gtggtaatcc ggatagtcag
ggctatgtgg ccctggtcaa tatgattaaa 4140gctatcggaa atattggaga cacctttaaa
attccggttt tgaattcaaa tggagagggc 4200ttagacagac cttttacatg tatattcaga
cagcctgatg aaaagactga tgcgattgct 4260tatttctccg atgtccaggg attaaatata
gatcatttcg ctttcaacga tgaaagtcag 4320aaaatgctgg gtcgtatctt aaggcctgaa
gagaaagatt tttataaatt agagtgtgtc 4380aatactaatc tccatatata caaagacagt
agcaaaacaa tcaaaccgga taacttcgtg 4440tattttggcc caggcatgga tcttatcgta
gttaaaggaa tgatcgtgga aacccttttt 4500ggattatttg gagagcttaa aaccggaata
aaagataaga gtgtgaaact atccgtttct 4560gccggagtca ttgacaattc accagccgct
acgaagacta agtatacatt cgacgaatcg 4620ctgtatgtta ttgaaggcca aaccgtttct
attcaactta gtgaatttaa agaaaataat 4680attgaccttg aattcacttt cttggcttct
ggagacagtg ggaactcact aggccaaagt 4740gtcatcagcg caacattgac ccgaacgagt
gaaaacacta tacccgttat ttctctgaat 4800aaaacctctg acaacgcgca gtatttgcag
tatggcattc atcgcataag ggtgaatacg 4860ctgtttgcaa aacagctggt tgcgcgcgcg
aacgccggac tggacactgt actgtctatg 4920gcaacccagc agctgacgga acctaaaatg
ggcaaaggtg cgtacattga ccttgaactt 4980aatgccagca gcgatggcag ttcggcggta
tttgaagtat tgatgtgtga cgtttttacc 5040aacggtgacc gcattgcttt gaccagcggc
acactcagcc ccacagcacg caccagctgc 5100tcatttttcg tgccccgact ggatgagtct
actgcatctg catataatat gtacttttgc 5160gtaaaaactc agaatactga gagtaagcgg
gtagaagtaa cgggaggcga ggggaaatgg 5220gattaccagt acgtcgatga atctggtgct
gccattaagc cgccctatac cgatccatat 5280attgcaagca tatatgtacg gaacgataca
acagagccga tggacttcaa cggtgccaat 5340gcgctctatt tctgggaaat gttctattac
gtgccgatga tggtatttaa gcgcctgcta 5400agcgaaagta agttcgctga agcgacccag
tggatcaaat atatctggaa tcccgatggc 5460tatctggtga acaatcagcc cgcgacctat
acctggaatg tgcgccctct ggaggaggat 5520acctcctggc acgctgaccc gctagactcg
gttaacccgg atgctgtcgc gcaggccgat 5580ccgctgcact acaaggttgc tacctttatg
gcgtaccttg atctgctgat tgcccgcggt 5640gatgccgcct atcgccagct gcagcgcgac
accctgaatg aagcaaaaat gtggtacgtg 5700caggcgctga acatccttgg cgatgaaccc
taccagtcat catccagcga ctggagctcg 5760ccagttctct ccagcgcagc agatcagact
acagagaaaa acgttcagca ggcgatgctg 5820gcggtgcgtc agcagcctga cgcaggagaa
ctgcgcaccg ccaattctct gaccagtctg 5880ttcctgccgc agcagaatga aaagctggct
ggttactggc agacgctggc gcagcgcctg 5940tataacctgc gccacaacct gtcaattgac
ggcagcccat tgtcactggc catctatgcc 6000gcgccagccg atccggcagc gctgctcagc
gcggcggtca acagcgcgtc cggcggcagc 6060gaactgcctg ctgctgttat gccgctgtac
cgcttcccga ttattctgga gagcgcccgg 6120gggatggcag gtcaactgac ccagttcggc
agcacgctgc tcagcattgc tgaacggcag 6180gatgcggaag ccttgtcgga gctgatgcag
actcagggta gtcaactgat tttgcagagc 6240atcgccctgc aaaacagtac gatttctgaa
attgatgcgg ataaaaccgt gctggaagcg 6300agcctaagcg gtgcacgttc gcgcctcgac
cgatacacca cgctgtatga cgaggatgta 6360aatacggggg aacagcaggc tatggatctg
ttctacgcct cctctatcca ggcaaacggc 6420ggccaggcgt tccacactgt cgcaggcgga
cttgacctgg cgcctaacat ctttggtctg 6480gctgacggcg gttcgcgctg gggtgcagca
tttactgcat tggccagcat cgccgatttg 6540tccgccgcag cctctcacac ggccgcagag
cgcctcagcc agtctgaggt ctaccgccgc 6600cgccgccagg agtgggaaat ccagcgcaac
gccgcgcagt ctgaaattga ccagattgac 6660gctcagctgg cctcactgac gatacgtcgc
aaaggcgcgg tactgcagaa aacctacctg 6720gaaactcagc agggtcagat gcaggcgcag
atgaccttcc tgcagaataa gttcaccagc 6780aaggcgctgt acaactggct gcgcggcaag
ctggcggcca tctactatca gttctacgac 6840ctgacggtat cgcgctgcct gatggcagaa
gccgcctata gctggcatat taaaggtaat 6900caggaaacag gtacctttat ccgtcccggc
gcctggcagg gaatctatgc cggcctgatg 6960gcaggggaag cgctgatgct gaatctggca
cagatggaaa acagctacct gacaaaagat 7020gagcgcctgc aagaggtcac gcgcacggtc
tgcctgtctg aattttattc agggctctct 7080tcgaataagt tcgcgctggc tgataccgtt
accacactgg tgaatagcgg gaaaggcaac 7140gccggcacga ccgataacgg agtgaagatc
gatggcaagc agcttctggc taccctgaaa 7200ctctccgatc tgaacattaa gacggattat
ccagagtcac tggacaaagc caaacgcatt 7260aagcaaatca gcgtgacgct gccgatgctg
gtcgggccgt atcaggacgt ccgggcggta 7320ctgagctatg gcggcagcgt ggttctgcca
cgcggctgca cggcggtcgc cgtttcgcac 7380ggcatgaacg acagcggcca gttccagctg
gacttcaatg acagccgctg gctgcctttt 7440gaaggtatac ctgttgatga ttccggtacg
ctgacgctca gcttcccgga cattaccgat 7500aagcaacagg aaaatctgct gctcagtctg
agcgacatca tcctgcacat ccgctatacc 7560atcgcaagct ga
757264266DNAPantoea agglomerans
6atgcaaaata cagatcagat gagcctgacg cccccttcct taccctcagg tgggggtgcc
60gtcaccggac tgaaaggcga tatgtcagga gccggacccg atggcgccgc cacgctgagc
120cttcccctgc cgatcagccc cggacgtggc tatgccccgt cgctgtcact gggttaccac
180agtcgtaacg gcaacggtgt ttttggcgca ggctggagct gcggtcagat ggctattcgc
240ctccaaaccc gcaaaggcgt gccgttttat gacggcagcg acgtctttac cgctcctgat
300ggtgaggttc tggtgccggc gctggacgcc agcggcaagg ctgaggttcg cacgaccact
360acgctgctcg gcgaaaacct cggcggcacc tttaccgtac agacctaccg ttcccgagtg
420gaaaccgact tcagtcgcct ggagcgctgg gttccgcaga ccgacgcagc ggctgatttc
480tggttgattt atagtccgga cggccagatc cacctgctgg gtcgtaaccc gcaggcgcgg
540gtgaacaacc ctgaggatac aacccagacc gccgcctggc tgatagagtc gtcggtctcc
600gccagcggcg agcagattta ctggcaatac cggcaggaag atgagctggg ctgtacgcag
660gatgagaaaa cggctcacgc acacgcgctc gcccagcgct atctggtggc ggtatggtat
720ggcaataaag cggccagccg gacgctgccg gggctgctgt ctgttcctgc ggctggcagc
780tggctgttta cgctggtgct ggactacggt gagcgggcga cagatcctgc aacaccaccg
840gcctggctgt caccgggcag tggcacatgg ctctgccggc aggatgtgtt ctccagctgg
900gaatatggct ttgagctgcg cacgcgtcgc ctgtgccgac aggtactgat gtatcatgac
960gtcgcggcgc tggcaggtca gtcaggttca gatgccgtgc cacagctggt caccagactg
1020ctgctggact ataacacgtc tccgtcgctg actaccctga aaaccgcaca gcaggccgcc
1080tgggaaccgg atgggacgtt gcgcagtctg ccgccgctgg cgttcagctg gcagaccttc
1140ccgtcaacac cagagaaaag tgtcagctgg cagcggcgga atgacatggg gaaactcaac
1200ccacagcagc cttatcagat ggttgacctg cacggtgaag gactggcggg tatcctctat
1260caggacagtg gtgcctggtg gtatcgggag ccggttcgtc agtcgggtga tgatgataat
1320gccgtgacct gggcggctgc ccgaccgctg ccggcgttcc ctgctctgcg caagggcgga
1380atgctgctgg atctggacgg tgatggttac ctggaatggg tggtcaccgc gccgggcgtc
1440gcgggctgct atgcgcaagc gcctgaacaa tgctggcagc gcttcacgcc gctgtctgcg
1500ctgccagtgg aataccgcca ctcgcgaatg gagataaccg acgtcaccgg tgcgggtctt
1560gcggatatgc tgctgatcgg cccgaaaagc gtacgcctgt acagcggcag cggcagaggc
1620tggaaaaaag cacgaacggt catgcaggac agtggcatca ccctgccggt tcccggtaca
1680aatgcccgtg tcatggtggc attcagcgat atggccggca gcggtcagca acacctgacg
1740gaaatcaaag ccagcggcgt acgttactgg cccagcctgg ggcatggtcg ctttgcggct
1800ccggtgacac tccccggctt cagtcagccc gctgaaacct tcaacccggc acagctctat
1860ctggccgacg ttgacggttc cggcaccacc gatctgatct atgctctgag cgatcatctg
1920ctggtatggc taaaccagag cggaaacagc tttgacgcgc ctttccgtat cagtcttcca
1980gaaggcgtgc gctatgacaa tacctgcagt ttgcaggtcg ccgatattca ggggctgggc
2040atctccagcc tggtgctatc ggtgccacat ccgacgccgc gccattgggt atgtcacctg
2100acgacggaaa agccctggct gctcgacggc atgaacaaca atatgggtgc ccgccatact
2160ctctgttacc gtagttcggc gcagttctgg ctggatgaaa aggctgctgc taccgccgat
2220cgacccgcgc cggcgtgtta tctgccgttt gcgctgcata cactgagccg tactgaagtc
2280agtgatgaaa tcaccggaaa ccggctcacc aggacgatac gctaccggca cggggtctgg
2340gacaggcgcg agcgagagtt ccgcggcttt ggctttgttg aagtcagcga tgccgaagcg
2400ctggcaaaac aaactgaggg gatgagcgca ccagcagtta aacgcagctg gtatgctacc
2460ggactggcag ccgtggatgc acagctcccg gatgagttct ggaaagggga tcatgcagcc
2520tttgccggtt ttacccctcg ctttaccacc ggcgatggcg aacaagaggc ggcactggat
2580accatcagcg acgatacccg tttctggctg acccgggcga ttcgcggtac gctgctgcgt
2640agcgaactgt atggcgcgga tggcagcagc caggccggga tcccttacag catcacggaa
2700tcgcggccac aagtgcggtt gattactgag gcgggtaatt cgccggtggt ctggccctcc
2760gttatcgaga accgcgccag tcattatgag cgcgtcagca gcgatccgca gtgcggccag
2820cagatcctgt taaccagtaa tgaatacggc cagccgctcc gtcagatcgg catcagttat
2880ccccggcgca ccaggcccga taccagcccc tacccggacg atctgccgga cggactgttt
2940gccgacagct ttgatgagca acagcaggcg ctgcgcctga cgctgacaca aagcagctgg
3000catacgctga aagatatcag cagcggcatc tggctgccgg ccgtggcgga tgcaacccga
3060agcgatctgt tcgttcacca ggcagcgcag gtgccgccag cgggtcttac gctggagaat
3120ttactcaccg atagcgcgct gctgaccagc ccggtttttg gcggacagtc gcaaatctgg
3180tatcaggaca gggcgggtca ggcgagcatc acctcacccg attttccccc ccgaccgtcc
3240tttagcgaaa ccgcagcgct ggacgaggca caggtcagcg cgctgtcagc cgatattgat
3300caaacgaagc tggagcaggc gggctatacc cgctcagcgt atctgtttgc acgcagcggt
3360gaggagagta aaacgctgtg ggcagtgcgc cagggatata tcaccttcag cggcgcagac
3420catttctatc tgccgattgc cgcacagcag acgctgctgg ccggtaaaac cacagtcacc
3480tatgatccgt acgactgtgt tgtcttacag gcaaaggacg ccgcaggtgc ggttacctcc
3540gcgacatacg actggcgttt tctcgcgccg acgcagatta ctgatattaa cgataatctg
3600aaaagcgtca cgctggatgc gctgggtcgg gtaacgtcgc agcgtttcag cggcactgaa
3660aacggaaagc cggcgggcta cagcgatgac gagtttccac tgccggccag cgccgatgca
3720gcgctggcgc tcagtgcccc gctaccggtg gcacagtgca tcatctacgt accggacagc
3780tggatgctga ccggggagca gcagcagccg ccgcacgtga taacgctgct caccgaccgt
3840tacgacagcg acagtcagca gcagatccgt cagcaggttg ttttcagcga tggttttggc
3900cgggtgctgc aggctgcctc aaggcaggtg aacggcgaag cgtggcagcg ggcggcaaac
3960ggctcgttcg ttgccggcac gaacgattcg cccgtgctga ctgagacaac gttccgctgg
4020gccgttaccg gacgcactga atatgacaat aagggacagg ccatccgtgc ttatcagcca
4080tattttctgg acagctggaa atacgtgcgt gacgacagcg cgcgacagga tctgtacgcc
4140gacacccact attacgatcc ggtggggcgg gagcggcagg tcattaccgc aaaaggctgg
4200ctgcggcgcg tcactcacac cccctggttc gtagtcagcg aagacgaaaa cgatacccag
4260gcgtag
426673015DNAPantoea agglomerans 7atgtccgccg cgtatgtctt aagtaattta
tcttataaac tggagaatcc tatgagcacc 60tcgctttaca gcaggacccc ctcagtcacg
atcctcgaca accggggcct gaccgtacgc 120ggtatcgcgt accagcgcca tccggatacc
ccggcggtga ccagtgaacg catcacccgc 180catcagtacg acgcccgcgg ctttctgatg
caaagcgccg acccgcgcct gcacgacgcc 240gggctggcga acgtcagcta ccggaccaac
ctgaccggca gcgttctccg ctcacagggc 300gtggataacg gcatcaccgt gacgctgaac
gatgccgccg gacggccgtt tctggcggtc 360agcaacatca gcactgccgg tgatggcacg
gaggacagaa gccaggcagt gacccgtacg 420tgtcagtacg aggacgccac cctgcccgga
cgtccgttaa gtattacgga gcaggtgaat 480ggtggagccg cccgcatcac ggagcgcttc
gtctatgccg gtaacgctgt tgaggagaaa 540gccctgaacc tcgccgggca gcccgtcagc
cactatgata ccgccggtct gacacagaca 600gacagcatcg ccctgaccgg cgtgccgctc
tccgtcaccc gccgcctgct gaaggacgca 660gacaatcctg acgccgtggc tgactggcag
ggaacagacg cctccgtctg gaacgacccg 720ctcgacgtgg aaacatacac taccctgtcc
acggcagacg ccaccggcgc ggtgctgacc 780accaccgatg cgaagggaaa cctgcagcgg
ctggcctacg acgtggcggg cctgttgtcg 840ggcagctggc tgacgctgaa ggatggcacg
gagcaggtta tcgtgacgtc cctgacctac 900tccgccgccg ggcagaagct gcgcgaggag
cacggcaacg gcgtggtgac cacctacacg 960tatgaagccg agacgcagcg cctgaccggc
attaaaacgg cgcggccggc cggacacacc 1020tcaggtgcga aggtgctgca ggacctgcga
tacacctatg acccggtggg caacgtcctg 1080aaaatcagca acgatgccga agagacccgc
ttctggcgta accagaaagt ggcgccggag 1140agcgcgtacg tttatgacag cctgtaccag
ctggtcagcg ccaccggacg cgagatggcg 1200aacgccggtc agcagggcag cagctcatcg
tcagccaccg tcccccttcc cgccgacagt 1260tccgcgttta caaactatac ccgcaactat
acttacgatg aggccggcaa cctgacgcag 1320gtccgtcata ccccggctac gggcagcggc
tacaccacaa aaataaccgt ctctgataaa 1380agcaaccggg gtgtgctgag cacgctgacg
gaaaatccct ccgacgttga cgcgctgttc 1440acggcgggcg gccagcagaa acagctgcag
ccggggcaga gtctcatctg gacgccgcgt 1500aacgagctgc tgaaggtgac gccggtagca
cgtgacggcg gtgcggatga cagcgaaagc 1560taccgctacg acgggggcag cctgcggctg
ctgaaggtca gcgtgcagaa aaccgggaac 1620agcacgcaga cgcagcgggc gctgtacctg
ccaggactgg agctgcgcaa cacaacatcc 1680ggtgatacgg aaacggagag cctgcaggtg
gttaccgtgg gtgaagcggg gcgcgcgcag 1740gtgcgggtgc tgcactggga gagcggaacg
ccggacagtg tcagcaacga cccggtgcgt 1800tacagctacg ataacctgac cggcagcagc
gggcttgagc tggacagcag cggcaatatt 1860atcagcatgg aggaatacta tccgtacggc
ggcacggcgg tctggacggc gcgcagcgcg 1920gtggaggcga agtacaaaac cgtgcgctac
tcggccaagg agcgtgacgc cacggggctg 1980tactactacg ggtaccggta ctaccagccg
tgggctggcc gctggctgag cgcggacccg 2040gcgggcacgg cggacgggct gaacctgttc
aggatggtaa gaaataatcc ggttacgctt 2100aaggacacaa acgggttgat cagtacgggt
caggatgccc ggaaattagt ggccgaagca 2160tttgttcacc ctttgcatat gactgtcttt
gaaagaattt cttcagaaga aaatcttgca 2220atgagcgtga gagaggctgg catttatact
atttcggcac tgggtgaagg tgctgcagca 2280aaagggcata atattcttga gaagaccatt
aaacctggtt cattaaaggc tgtttatggt 2340gataacgccg aatccattct tgcgcaggca
aaacgcagcg gttttgttgg ccgggtaggt 2400cagtgggatg catccggtgt acggggaatt
tatgcacaca acacaccagg tggcgaagac 2460ctggcctatc cagtcaactt aaaaaatagt
tctgctaatg aacttgttaa tgcatggata 2520aaatttaaaa tcatcacgcc ttataccggt
gattatgaca tgcacgatat tattaaaatc 2580tcggatggaa aagggcatgt gcccatggcg
gaaagtaatg aggaaaaagg tgtaaaggat 2640atgattaatg aaggtgttgc gcaggtcgac
cctgccagac cctttacgtc tacagcgatg 2700aatgttgttc gccatggccc tcaggtaaac
tttgttccct atatgtggga acatgagcac 2760gaaaatgtcg taagggataa tggttatctg
ggagtggtag ctcgtccggg tccattccct 2820gttgcgatgg tacataaggg tgaatggact
gttttcgaca ataaaaacga gctgtttgag 2880ttttataaat ctacaaacac tcctcttccc
gaacactggt ctcaggattt tgttgagaga 2940gggaaaggaa atgttgcaac gccccgacac
gctgaaattc ttgatcgtaa ttcctcgcgt 3000ctaagagcgg cctga
301582916DNAPantoea agglomerans
8atgtgtagcg ttgccgattt tgatcggctg cacaacataa aacaggagaa tatcatgggc
60acctcgcttt acagcaagac cccctcagtc acgatcctcg acaaccgcgg cctgtccgta
120cgcgatatcg cgtaccagcg ccatccggat accccggcgg tgaccagtga atgcatcacc
180cgccatcagt acgacgcccg cggctttctg atgcaaagcg ccgacccgcg cctgcacgac
240gccggcctgg cgaacttcag ctaccggacc gacctgaccg gcagcgttct ccgctcacag
300ggcgtggata acggcatcac cgtgacgctg aacgatgccg ccggacggcc gtttctggcg
360gtcagcaaca tcagcactgc cggtgatggc acggaggaca gaagccaggc agtgacccgt
420acgtgtcagt acgaggacgc caccctgccc ggacgtccgt taagtattac ggagcaggtg
480aatggtggag ccgcccgcat cacggagcgc ttcatctatg ccggtaacgc tgttgaggag
540aaagccctga acctcgccgg gcagcccgtc agccactatg ataccgccgg cctgacacag
600acagacagca tcgccctgac cggtgcgccg ctctccgtca cccgccgcct gctgaaggac
660gcggacaatc ctgacgccgt ggctgactgg cagggaacag acgcctccgt ctggaacgac
720ccgctcgacg tggaaacata cactaccctg tccacggcag acgccaccgg cgcggtgctg
780accaccaccg atgcgaaggg aaacctgcag cggctggcct acgacgtggc gggcctgttg
840tcgggcagct ggctgacgct gaaggatggc acggagcagg ttatcgtgac gtccctgacc
900tactccgccg ccgggcagaa gctgcgcgag gagcacggca acggcgtggt gaccacctac
960acgtatgaag ccgagacgca gcgcctgacc ggcattaaaa cggcgcggcc ggccggacac
1020acctcaggtg cgaaggtgct gcaggacctg cgctacacct atgacccggt gggcaacgtc
1080ctgaaaatca gcaacgatgc cgaagagacc cgcttctggc gtaaccagaa agtggtgccg
1140gagagcgcgt acgtttatga cagcctgtac cagctggtca gcgccaccgg acgcgagatg
1200gcgaacgccg gtcagcaggg cagcagctca tcgtcagcca ccgtccccct tcccgccgac
1260agttccgcgt ttacaaacta tacccgcaac tatacttacg atgaggccgg caacctgacg
1320caggtccgtc ataccccggc tacgggcagc ggctacacca caaaaataac cgtctctgat
1380aaaagcaacc ggggtgtgct gagcacgctg acggaaaatc cctccgacgt tgacgcgctg
1440ttcacggcgg gcggccagca gaaacagctg cagccggggc agagtcttat ctggacgccg
1500cgcaatgagc tgctgaaggt gatgccgata atgcgtgacg gcggtacgga tgacagcgaa
1560agctaccgct acgacggggg cagccagcgg ctgctgaagg tcagcgtgca gaaaaccggg
1620aacagcacgc agacgcagcg ggcgctgtac ctgccggggc tggagctgcg caacacaaca
1680tccggtgata cggaaacgga gagcctgcag gtggttaccg cgggtgaagc ggggcgcgcg
1740caggtgcggg tgctgcactg ggagagcgga acgccggaca gtgtcagcaa cgacccggtg
1800cgttacagct acgataacct gaccggcagc agcgggcttg agctggacag cagcggcaat
1860attatcagca tggaggaata ctatccgtac ggcggcacgg cggtctggac ggcgcgcagc
1920gcggtggagg cgaagtacaa aaccgtgcgc tactcggcca aggagcgtga cgccacgggg
1980ctgtactact acgggtaccg gtactaccag ccgtgggctg gccgctggct gagcgcggac
2040ccggcgggca cggtggacgg gctgaacctg ttcagaatgg tgcgcaataa tccgctcaca
2100ttaaaggata acgatgggct aaaaccaata aatgaaaatt tcagagaaaa taaaggcgat
2160ctggtttatg ggctggctgc cccccgagga gcttatatat caacggcaat agggcgcgaa
2220ttcgctccag aagagaaaga tgcacctgct tcaattattg acttatataa caatacggtt
2280tccggacaag cccttcttag cgttgatttc aaaatactgc aagacttcat gaagtcacca
2340aaaaaacatg aaaaaaaact agcccctcca tctaacatta aagagttagt aaaaaaatcc
2400agggtttatc ctctgtggga ggattatttt ctggcagggg aaaataaccc caaatttaac
2460attgcatcca tatataaaga ggtcagaaaa gatgcaggaa agacccagta tcatgagtgg
2520catatagcgg gaggacaatc ggcacctaag ctactttgga aacgaggaag taaattgggt
2580attgaaatgg cggccagcgg tgctggtaat aaaatccatt ttgttcttga tgaactggat
2640atatcaaatg ttgtaaataa ggaagggccg gggggaaaat ctataacggc cagtgagtta
2700cgttatgcgt acagaaatcg tgaaagactg actggaaata tacattttta caaaaataat
2760gctgaaactg gcgcgccatg ggatacaaat gctgaactgt gggcatctta ccaccccaaa
2820ccaaagcata aaggaaatga atcgacacac atgatgtctc aaaggagaaa tggtagtctg
2880ttcaaatcta tgagaaaggt tttctcgaga aattaa
291697557DNAPantoea agglomerans 9atgtatctga ccgaagaaat acttgccaaa
ctgaatgccg gaaacggcaa actacaatct 60actgtagagc agataattac gctgccagat
attatgctgc actcttttgc tcaggtaaaa 120gaactggcag gagacaagtt aagttggggt
gagaaaaact tcctttatca acaggctcag 180aaacagctga aagaaaataa aatggcggaa
tcccgcattc tcagccgtgc caacccgcaa 240ctggcaaatg ctgtccggat gggcatccgt
cagtctgcga tgctgggtag ctatgacgac 300ctgttcccgc agcgcgccag ccgctttgtt
aagccgggtg cggtggcctc aatgttttca 360ccggctggtt atctgaccga gctgtatcgg
gaagcccgag gcctgcacga cgacacgtca 420gactatcatc tggatacccg ccgtccggac
ctggcatcaa tggtgttgtc tcagtcaaat 480atggacactg agttgtccac cctgtcgctc
tccaatgaac tgttgctgaa gttaattcag 540tcaaaggaaa gcctgaatta tgaccaggtt
attgaaaagc tggcgactta cagactgacc 600ggcaccacgc cttacaatca accctatgaa
accatccgtc aggctatttt gctgcaggac 660ccggagttta acgcattcag taataatccg
gcagtggccg taaaaatcaa caccagcggg 720ctattaggta ttacttccga tatcgccccg
gagctgcatg cgatactgac tgaagagata 780acagaaaaaa aaacggaagc actgattaaa
aagaacttcg gcgatgccaa tatcaaccag 840ttccaaaatc ttgcgtggct ggcccactgg
tacggcttgt cctatgagga gcttaataac 900ctggtaggca tgatttggtc cagagatgat
cttgaccccg ctgttgagca ctataaaaat 960tccagcctgg tcactttggt ggctgaagac
ggtggatcgc ttaacgcggt gttgattaag 1020cgtactaaag gccatgattc cgatgatatg
cattatgcgg aattaattcc tgtgggagga 1080gacaaatttc agtacaactt cagccttatt
gatgctgaaa gcagtagtgt ttattatcaa 1140ttcggtacaa aaggaaagaa ctcccaagat
ttagttcctg taatccatga gcctttgctg 1200ggtaatactc cctatgctgt tacattcaca
cttacacaag agcagctaag taacccagtt 1260gaaatatccc tgacgcatgg tagtggcggt
ggtgatcgcc ttacctcaac aattttcact 1320gttacgactt acccatttga taccttcctg
ctgaagctga ataaactcat acgcctctat 1380aaagccaccg gtatctcccc ggccagcatc
aggaccgtga ttgaaagcga taacactgac 1440cttatcatca cagaaagcgt attaaaccag
ctattctgga ctaattacta tacacaaacg 1500ttcgaaatgg aattttctgc cgcactggtg
ctggcaggag cggacatcgg tcagatagca 1560cacagtgaaa gccagccaag tgcgttcacc
cgcctgttta acacaccgtt gctggataac 1620cagcagtttt cggccagcga cgagtcactg
gatctggagc cgggtaaggg agccgatgct 1680ttccgtatcg ctgtactcaa gcgtgcattg
caggtgaatg acgccggact gtataccctt 1740tatggtctga gtttcaccga taaagataaa
aacggtaagt tgattccgtt caccaccaat 1800attgagaacc tttctgccct ctatcgcacc
cgactgctgg ccgacatatt taatatttct 1860gttactgagc tgagcatgct gctgtcggtt
tcaccttatg ccagtcagaa ggtggacagc 1920cttaaaggtc aggcactata tcagtttgtt
gctaccctca gtgactatat gcaacggctg 1980aaagcgatga actggagcgt cagcgatctc
tacctgatgc tgaccaacag ctacagcacg 2040gtactgtcgc cagaaattaa aaacctgatg
actaccctga aaaatggact cagcgagcag 2100gattttaata acacggatga aatcgctcag
ctgaatgcga cggcaccttt aatcgccgca 2160gcgatgcagc ttgacttcac agaaaccgca
gcagcactgc tggaatggct taatcaattg 2220caaccagcag ggctgacagt ggcaggtttc
ctgtctcttg tgaatcagac gacactcgaa 2280gataaggatg ttgtaaaact ggtctctttc
tgccaggtta tggggcagct tgcactgatc 2340gtgcgcaagg cggctctggg ctccagcgaa
atcacctttg cagttgcgca tccggctatt 2400tttaaaaaag atgcgaactc actggctcag
gatattggca cgctctttga cctgacccag 2460ctgcatgcat ttctgacaga ctgtggtact
tatgcctctg aaattctcac ctcactgaat 2520gaagggaatc tcgacgttag cacggtggcg
acggcgctga cgctggacaa aacttcactg 2580gcgcaggcac ttgctcaggt ttcagaatct
caggcctttt ctaactggca cgaactgcgt 2640gatgcacttc agtggacaga tgccgccagc
attttcaaca tcacaccagt ggctctgact 2700gcgatggtga acctgaaatt cagcggtgac
aactcttctc cgtatcagga gtgggtaacg 2760gtcagcaaag ctatgcaggt cgggctgaat
cagacgcaaa gcgctcagct gcaagcctcg 2820ctggatgaat ccctcagcgc agcactcagc
gcctacgtca ttaagaacat aacaccccca 2880tcagtaactg atcgcgacga actttacggc
tggctgctga ttgacaatca ggtctctgca 2940cagattaaaa ctacccgcat tgctgaagcg
attgccagcg ttcagcttta cgtaaaccgg 3000tcactgacgg gtcaggaaga tggcgtggat
agcaaggtta aatccggcca gttctttacg 3060gcagactggg atacttataa caaacgctac
agtacatggg ccggtgtgtc ggagctggtc 3120tattatccgg aaaactatgt tgatccgacg
ctgcgtatcg ggcagaccgg gatgatggat 3180gaaatgttgc agacgctcag ccagagccag
attaatttag acaccgtcag tgatggtatg 3240gggcgttacc ttactgattt tgaagaaata
gcaaatctaa aattcctcag tggttatcat 3300gataatgttt ctggccgtca ggggaaaacc
tggtttatcg gtggcagtca gtctgaaccc 3360caaaaatttt actggcgatc cctggattac
agtaaaggcg atggggagga attcgctgcc 3420aatgcatggt cagaatggaa ccatatctca
tgtgcaataa cacccttacc tggttttgtt 3480cgtgtggttt tatttaactc ccgactatat
cttgcttgcg tggaaaaaaa agaaattcgg 3540gatagtgaaa acaaaaataa agcatcgtat
caattaaaga tagctcacat cctttacaat 3600ggtgagtgga gcgctccctt ctcacacgat
attactgatt tatatgaggc aggctttgat 3660ccgagtacaa cagtaatgca cttatctgta
catgatgaga gtgatgcaat agtttgtata 3720tttaataaca gcgcgctaga aagtgacaaa
aataaagggg tggcagtcaa tgctgatatg 3780tcatttaaca acattgacag caaaagagta
gatcagataa ttagtctttt agttcctgat 3840cgttttatag atgaaggtaa tgttatagat
aatttagttt ctgagttaaa gggatcggaa 3900gtcacggaaa ataaaaaaac gctggagaat
gattcgttca ctatagatgg atcaataaat 3960ttgaataagc attctatcga tatcacaggg
aaggccaatt tagatattca ggcatcaatt 4020gctgtgcgta gtaaagcatc tcctactagc
catgagcgcg agctaatagg ctggttagat 4080gaatctcaat ttgattacat tcgattattc
aggggtggct ataattttgg ccagaacgac 4140ggcattttgg aatcatgcat gatttcggca
gttaatagtg cctatacctg cttcctttta 4200cgagctgacc acttcagtgg tttatttagt
tatggatatg acctttttgt attcaacggt 4260gacgggtcaa aaacatatac acctcaagtg
ttgtttgaag atgatattca agggactatg 4320gtgctcaaga tcgtgctcct aaatgaggat
aaaaattcaa aactggaaaa ctttgaatcc 4380ctggggctta tgaaaacatc agcaggcgat
catcagggag aaatagtttg cgaacttgct 4440aaaagaagga cacctgagcc ttactgtgta
gaattgagtc gctacttacc ctcgaatgtt 4500actgttaccg ttacatcacc atcggggaac
tttactgcca aagactatgt gttacctctt 4560cccgcattca ataatggcga cgctgactat
aaattcgcac cattccccct ctcgcttgaa 4620agtatatggg gagatggaaa aagtaccagt
cgggacatta agtttacaat aagcgtaaaa 4680gatacttgcg gcaaggtggc cacctcagag
ctaatcttta cactttataa aaacacctcg 4740cctgaattaa ttacactgaa aacgagtgac
gcgggagcgc agtatatgca gcagggagtg 4800taccgcacaa ggcttaatac cctgtttgca
cagaaattga tcaagcgtgt tagcgccgga 4860attgatgcag tgctgtcgtg ggaaacccag
cagttgcagg agcctaaact gggtactggc 4920agttacattt cagtgcttat ccccgcctat
atcaaacttg agcacggaga tagcagacag 4980gctaacctgc agtttagtaa tgtcgatcaa
acaggaccgg ataatgggaa ttatatatta 5040tggtccggct cattaaatga cactccgcag
caggtcacga tttttgtgcc cacgatgcaa 5100actattggcg agctgcaatt cccttatgac
cggactagtg gcctgaatct gagtttagca 5160tgtgcagctg gagtttattt gcaggggaca
ttcaagaata tatctgcgtc cgatttatct 5220ttaactgagt ttgttgctgc aaagaacaat
gactctaaac gggatgtcga agtgacagta 5280ttaacttcaa tcaatacgga gccaatggac
ttcaagggtg ccaacgccct ctatttctgg 5340gagatgttct actacctccc tatgatggtg
tttaaacgcc ttctcagcga aagtcggttt 5400actgaagcca ctcagtggat aaggtacgtc
tggaacccgg acggctacct ggtaaacgac 5460acgcccgcca cctaccagtg gaacgtgcgc
ccgctggagg atgaaacctc ctggcacgct 5520aacccgctgg actccgtgga cccggatgcc
atagcccagg ctgacccgct gcactacaag 5580gtcgccacct ttatggcgta ccttgacctg
ctgattgccc gcggcgacgc ggcctaccgt 5640cagcttgagc gcgatgcgct cagcgaagca
aaaatgtggt acgtgcaggc gctggacacc 5700cttggcgatg agccgtacct gagccagaac
acaggctggg cgtccccatg cctgacggat 5760gctgccgatg agaccaccca taaaaacagg
cagcaggcaa tgctgaccgt gcgccagaag 5820gttgcctcca gcgaactgcg caccgccaac
tccctaaccg ccctgttcct gccacagcag 5880aacgcgaagc tggcaggcta ctggcagacg
ctgaaccagc gcctgtataa cctgcgcaac 5940aacctctcca ttgacggtaa cccgctgtcg
ctgtccattt atgccacccc gactgacccg 6000gcggcgctgc tcagctcggc ggtgattagt
tctcaggggg gcagtgacct gccagcggcc 6060gttatgccgc tgtaccgctt cccggtgatt
ctggaaagcg cacggagcat ggtgaatcag 6120ctgacccagt tcggcagcac gctgctcggc
atcaccgagc gtcaggatgc agaggcgctg 6180tctgatctgc tgcagacaca gggggctgga
ctggcgctgc aaagcattgc cctgcagaac 6240agtaccatca gcgagattga tgcggatagg
gccgcgctca gggagagcct cagtggcgca 6300cagtcgcgcc tcaacagcta taccaccctg
tatgatgaaa atgttaatgc tggtgaaacg 6360cacgccatga acctgtttct ttcctccgcc
atcctggcag atggcgggca ggcctatcat 6420accgccgcgg gtgcgcttga cctggcgccg
aatatctttg gcctggccga cgggggttcc 6480cgctggggtg cggcatttac cgcaatggcc
ggaatagctg atttggccgc ctcggccacc 6540catacggccg ccgaccgcat cagccagtct
gaggcatacc gccgccgccg ccaggagtgg 6600gaaatccagc gcaacgcggc gcagttcgag
gtcagccaaa tcaatgccca gctggacgcg 6660ctggcggtgc gtcgtgaaag cgccgtgctg
cagaagacct atctggaaac acagcagggc 6720cagatgcagg cgcagatgac cttcctgcag
aacaagttca ccagcaaagc actgtacaac 6780tggctgcgcg gtaaactggc ggccatctac
tatcagttct atgacctgac cgtttcacgc 6840tgtctgatgg cagaagctgc ctacagctgg
gagatgaaag gctctcagga tacgggcacc 6900tttatccgtc ccggcgcctg gcagggaacc
tatgccggcc tgatggcagg ggaaacgctg 6960atgctgaatc tggcacagat ggaaaacagc
tatctgacaa aagaggagcg ccagaaagag 7020gtcacgcgca cggtctgcct gtctgaagtt
tatgcagggc tctcttcggg ttcgttcgcg 7080ctggctgata ccgtcaccac actggtgggt
agcgggaaag gcaccgccgg cacgaacgat 7140aacggagtga agatcgatgg caagcagctt
ctggctaccc tgaaactctc cgatctgaac 7200attaagacgg attatccaga gtcactggac
aaagccaaac gcattaagca aatcagcgtg 7260acgctgccga cgctggtcgg gccgtatcag
gacgtccggg cggtactgag ctatggcggc 7320agcgtggttc tgccacgcgg ctgcacggcg
gtcgccgttt cgcacggcat gaacgacagc 7380ggccagttcc agctggactt caatgacagc
cgctggctgc cttttgaagg tatacctgtt 7440gatgattccg gtacgctgac gctcagcttc
ccggacatta ccgataagca acaggaaaat 7500ctgctgctca gtctgagcga catcatcctg
cacatccgct ataccatcgc aagctga 7557104266DNAPantoea agglomerans
10atgcaaaata cagatcagat gagcctgacg cccccttcct taccctcagg tgggggtgcc
60gtcaccggac tgaaaggcga tatgtcagga gccggacccg atggcgccgc cacgctgagc
120cttcccttgc cgatcagccc cggacgtggc tatgccccgt cgctgtcact gggttaccac
180agtcgtaacg gcaacggtgt ttttggcgca ggctggagct gcggtcagat ggctattcgc
240ctccaaaccc gcaaaggcgt gccgttttat gacggcagcg acgtctttac cgctcctgat
300ggtgaggttc tggtgccggc gctggacgcc agcggcaagg ctgaggttcg cacgaccact
360acgctgctcg gcgaaaacct cggcggcacc tttaccgtac agacctaccg ttcccgagtg
420gaaaccgact tcagtcgcct ggagcgctgg gttccgcaga ccgacgcagc ggctgatttc
480tggttgattt atagtccgga cggccagatc cacctgctgg gtcgtaaccc gcaggcgcgg
540gtgaacaacc ctgaggatac aacccagacc gccgcctggc tgatagagtc gtcggtctcc
600gccagcggcg agcagattta ctggcaatac cggcaggaag atgagctggg ctgtacgcag
660gatgagaaaa cggctcacgc acacgcgctc gcccagcgct atctggtggc ggtatggtat
720ggcaataaag cggccagccg gacgctgccg gggctgctgt ctgttcctgc ggctggcagc
780tggctgttta cgctggcgct ggactacggt gagcgggcga cagatcctgc aacaccaccg
840gcctggctgt caccgggcag tggcacatgg ctctgccggc aggatgtgtt ctccagctgg
900gaatatggct ttgagctgcg cacgcgtcgc ctgtgccgac aggtactgat gtatcatgac
960gtcgcggcgc tggcaggtca gtcaggttca gatgccgtgc cacagctggt caccagactg
1020ctgctggact ataacacgtc tccgtcgctg actaccctga aaaccgcaca gcaggccgcc
1080tgggaaccgg atgggacgtt gcgcagtctg ccgccgctgg cgttcagctg gcagaccttc
1140ccgtcaacac cagagaaaag tgtcagctgg cagcggcgga atgacatggg gaaactcaac
1200ccacagcagc cttatcagat ggttgacctg cacggtgaag gactggcggg tatcctctat
1260caggacagtg gtgcctggtg gtatcgggag ccggttcgtc agtcgggtga tgatgataat
1320gccgtgacct gggcggctgc ccgaccgctg ccggcgttcc ctgctctgcg caagggcgga
1380atgctgctgg atctggacgg tgatggttac ctggaatggg tggtcaccgc gccgggcgtc
1440gcgggctgct atgcgcaagc gcctgaacaa tactggcagc gcttcacgcc gctgtctgcg
1500ctgccagtgg aataccgcca ctcgcgaatg gagatagccg acgtcaccgg tgcgggtctt
1560gcggatatgc tgctgatcgg cccgaaaagc gtacgcctgt acagcggcag cggcagaggc
1620tggaaaaaag cacgaacggt catgcaggac agtggcatca ccctgccggt tcccggtaca
1680aatgcccgtg tcatggtggc attcagcgat atggccggca gcggtcagca acacctgacg
1740gaaatcaaag ccagcggcgt acgttactgg cccagccttg ggcatggtcg ctttgcggct
1800ccggtgacac tccccggctt cagtcagccc gctgaaacct tcaacccggc acagctctat
1860ctggccgacg ttgacggttc cggcaccacc gatctgatct atgctctgag cgatcatctg
1920ctggtatggc taaaccagag cggaaacagc tttgacgcgc ctttccgtat cagtcttcca
1980gaaggcgtgc gctatgacaa tacctgcagt ttgcaggtcg ccgatattca ggggctgggc
2040atctccagcc tggtgctatc ggtgccacat ccgacgccgc gccattgggt atgtcacctg
2100acgacggaaa agccctggct gctcgacggc atgaacaaca atatgggtgc ccgccatact
2160ctctgttacc gtagttcggc gcagttctgg ctggatgaaa aggctgctgc taccgccgat
2220cgacccgcgc cggcgtgtta tctgccgttt gcgctgcata cactgagccg tactgaagtc
2280agtgatgaaa tcaccggaaa ccggctcacc aggacgatac gctaccggca cggggtctgg
2340gacaggcgcg agcgagagtt ccgcggcttt ggctttgttg aagtcagcga tgccgaagcg
2400ctggcaaaac aaactgaggg gatgagcgca ccagcagtta aacgcagctg gtatgctacc
2460ggactggcag ccgtggatgc acagctcccg gatgagttct ggaaagggga tcatgcagcc
2520tttgccggtt ttacccctcg ctttaccacc ggcgatggcg aacaagaggc ggcactggat
2580accatcagcg acgatacccg tttctggctg acccgggcga ttcgcggtac gctgctgcgt
2640agcgaactgt atggcgcgga tggcagcagc caggccggga tcccttacag catcacggaa
2700tcgcggccac aagtgcggtt gattactgag gcgggtaatt cgccggtggt ctggccctcc
2760gttatcgaga accgcgccag tcattatgag cgcgtcagca gcgatccgca gtgcggccag
2820cagatcctgt taaccagtaa tgaatacggc cagccgctcc gtcagatcgg catcagttat
2880ccccggcgca ccaggcccga tgccagcccc tacccggacg atctgccgga cggactgttt
2940gccgacagct ttgatgagca acagcaggcg ctgcgcctga cgctgacaca aagcagctgg
3000catacgctga aagatatcag cagcggcatc tggctgccgg ccgtggcgga tgcaacccga
3060agcgatctgt tcgttcacca ggcagcgcag gtgccgccag cgggtcttac gctggagaat
3120ttactcaccg atagcgcgct gctgaccagc ccggtttttg gcggacagtc gcaaatctgg
3180tatcaggaca gggcgggtca ggcgagcatc acctcacccg attttccccc ccgaccgtcc
3240tttagcgaaa ccgcagcgct ggacgaggca caggtcagca cgctgtcagc cgatattgat
3300caaacgaagc tggagcaggc gggctatacc cgctcagcgt atctgtttgc acgcagcggt
3360gaggagagta aaacgctgtg ggcagtgcgc cagggatata tcaccttcag cggcgcagac
3420catttctatc tgccgattgc cgcacagcag acgctgctgg ccggtaaaac cacagtcacc
3480tatgatccgt acgactgtgt tgtcttacag gcaaaggacg ccgcaggtgc ggttacctcc
3540gcgacatacg actggcgttt tctcgcgccg acgcagatta ctgatattaa cgataatctg
3600aaaagcgtca cgctggatgc gctgggtcgg gtaacgtcgc agcgtttcag cggcactgaa
3660aacggaaaac cggcgggcta cagcgatcac gagtttccac tgccggccag cgccgatgca
3720gcgctggcgc tcagtgcccc gctaccggtg gcacagtgca tcatctacgt accggacagc
3780tggatgctga ccggggagca gcagcagccg ccgcacgtgg taacgctgct caccgaccgt
3840tacgacagcg acagtcagca gcagatccgt cagcaggttg ttttcagcga tggttttggc
3900cgggtgctgc aggctgcctc aaggcaggtg aacggcgaag cgtggcagcg ggcggcaaac
3960ggctcgttcg ttgccggcac gaacgattcg cccgtgctga ctgagacaac gttccgctgg
4020gccgttaccg gacgcactga atatgacaat aagggacagg ccatccgtgc ttatcagcca
4080tattttctgg acagctggaa atacgtgcgt gacgacagcg cgcgacagga tctgtacgcc
4140gacacccact attacgatcc ggtggggcgg gagcggcagg tcattaccgc aaaaggctgg
4200ctgcggcgcg tcactcacac cccctggttc gtagtcagcg aagacgaaaa cgatacccag
4260gcgtag
4266112856DNAPantoea agglomerans 11atgtccgccg cgtatgtctt aagtaattta
tcttatcaac gggagaatac tatgagcacc 60tcgctttaca gcaggacccc ctcagtcacg
gtcctcgaca accgcggcct gaccgtacgc 120gatatcgcgt accaccgcca tccggatacc
ccggcggtga ccagtgaacg catcacccgc 180catcagtacg atgcccgcgg ctttctgacg
cagagcgccg acccgcgcct gcacgacgcc 240gggctggcga acttcagcta ccggaccgac
ctgaccggca gcgttctccg cctacagggc 300gtcgataacg gcatcaccgt ggcgctgaac
gatgccgccg gacggccgtt tctggcggtc 360agcaacatcc gcacggccgg tgatggctcg
gaggacagaa gccaggcagt gacccgtacg 420tgtcagtacg aggacgccac cctgcccgga
cgtccgttaa gtattacgga gcaggtaaag 480ggtggagccg cccgcatcac ggagcgcttc
atctatgccg gtaacgctgt tgaggagaaa 540gccctgaacc tcgccgggca gcccgtcagc
cactatgata ccgccggtct gacacagaca 600gacagcatcg ccctgaccgg cgtgccgctc
tccgtcaccc gccgcctgct gaaggacgca 660gacaatcctg acgccgtggc tgactggcag
ggaacagacg cctccgtctg gaacgacccg 720ctcgacgtgg aaacatacac taccctgtcc
acggcagacg ccaccggcgc ggtgctgacc 780accaccgatg cgaagggaaa cctgcagcgg
ctggcctacg acgtggcggg cctgttgtcg 840ggcagctggc tgacgctgaa ggatggcacg
gagcaggtta tcgtgacgtc cctgacctac 900tccgccgccg ggcagaagct gcgcgaggag
cacggcaacg gcgtggtgac cacctacacg 960tatgaagccg agacgcagcg cctgaccggc
attaaaacgg cgcggccggc cggacacacc 1020tcaggtgcga aggtgctgca ggacctgcgc
tacacctatg acccggtggg caacgtcctg 1080aaaatcagca acgatgccga agagacccgc
ttctggcgta accagaaagt ggcgccggag 1140agcgcgtacg tttatgacag cctgtaccag
ctggtcagcg ccaccggacg cgagatggcg 1200aacgccggtc agcagggcag cagctcatcg
tcagccaccg tcccccttcc cgccgacagt 1260tccgcgttta caaactatac ccgcaactat
acttacgatg aggccggcaa cctgacgcag 1320gtccgtcata ccccggctac gggcagcggc
tacaccacaa aaataaccgt ctctgataaa 1380agcaaccggg gtgtgctgag cacgctgacg
gaaaatccct ccgacgttga cgcgctgttc 1440acggcgggcg gccagcagaa acagctgcag
ccggggcaga gtctcatctg gacgccgcgt 1500aacgagctgc tgaaggtgac gccggtagca
cgtgacggcg gtgcggatga cagcgaaagc 1560taccgctacg acgggggcag cctgcggctg
ctgaaggtca gcgtgcagaa aaccgggaac 1620agcacgcaga cgcagcgggc gctgtacctg
ccagggctgg agctgcgcaa cacaacatcc 1680ggtgatacgg aaacggagag cctgcaggtg
gttaccgtgg gtgaagcggg gcgcgcgcag 1740gtgcgggtgc tgcactggga gagcggaacg
ccggacagtg tcagcaacga cccggtgcgt 1800tacagctacg ataacctgac cggcagcagc
gggcttgagc tggacagcag cggcaatatt 1860atcagcatgg aggaatacta tccgtacggc
ggcacggcgg tctggacggc gcgcagcgcg 1920gtggaggcgg agtacaaaac cgtgcgctac
tcgggcaagg agcgtgacgc cacggggctg 1980tactactacg ggtaccggta ctaccagccg
tgggctggcc gctggctgag cgcggacccg 2040gcgggcacgg tggacgggct gaatttgttc
aggatggtaa ggaataaccc ggtaacattg 2100gttgatgata atggtttatt cacgtcctcc
cctttattgg ggatttatga aaaggagatg 2160aaaacctttg atagtatcaa attgtcgatt
ggttcttata aatacaaacc atctaaattt 2220gatgaaaaga aaggtaagta tgttagctca
gataaataca aactgataat ggcagatgat 2280aacgatctta atgggtattt atttgacgag
cgcgagatga caagccatct aaaggactat 2340gctgataagt tcagtaaaat aagcaggcta
aatataggcg atgagcggat gaaaaccaat 2400attaattttg ggactagaat atcaagatat
ttgctatctt cagcacaagc atcatcacgc 2460gaaaatcgtg aagtagatgt tttgtcattc
gaaagaaaat tttttgctgt agtaaagaaa 2520aaagataaaa gtcattattt tggacgaaaa
atatatgcca taggagaagc tcatgtacta 2580acagattttg aagagaaaaa aagaaccatt
gccattaaga ctctagttgc gcacccctat 2640acgcaaatta atgaaagcat taaaaataga
attaatgatt ttgataaaga atataacgtt 2700aaagggattg gaacttttgc aacgtttaaa
gctacgaaca agctcatagg tggtattaag 2760ggagctttaa aatataagac taaagtgttg
actcaagcgg taaatgtacg ctcggcagct 2820atagcaataa agtatggggc aaagcacgtt
ccgtaa 2856127572DNAPantoea agglomerans
12atgtatctga ccgaagaaat acttgccaaa ctgaatgccg gaaacggcaa actacaatct
60actgtagagc agataattac gctgccagat attatggtgc gctctttttc tcaggtaaaa
120gagctggcag gagacaagct aagttggggt gagaaaaact ttctttatca gcaggctcag
180acacagctga aagaaaataa aatggcggaa tcccgcattc tcagccgtgc caacccgcaa
240ctggcaaatg ctgtccggct gggcatccgt cagtcttcga tgctgggtag ctatgacgac
300ctgttcccgc agcgcgccag ccgctttgtt aagccaggtg cggtggcctc aatgttttca
360ccggctggct atctgaccga gctgtaccgt gaggccagag gattacacaa ggctgaatcg
420caatataatc tcgataaacg ccgtccggat ctggcctcgc tggcgctatc ccagtcaaac
480atggatgacg agttgtccac tctgtcactg tcaaatgagc tgctgctgaa taatatccag
540cagcatgatg gcctcagcta tgacgatgcg ctgaagaagc tcgccggata ccgacaaacc
600gggacaacac cctatagcca gccgtatgaa acgatccgcg aggctattct tctgcaggat
660cctgcgttta attcgattcg caacaatcca gctgtggcga ctaaaatgaa taccagtggc
720ctgctgggac tgacagcaaa cctgccacct gaactgcatg cgatcctgac tgaaacgatt
780accgaagaga atgcggaaca actgattaag gacaatttcg gtgatgtcaa cgtcagcaga
840tttcaagatg ttagttatct tgcccgctgg tatgggatga ccccttatga actgaactcg
900gtgctgggac tgatggaggt gggcagcaat cctgtcgacg gtgttacgta ttaccaggat
960gaccagctga tttccctggt ggataatggc ggtaatctgg atgctgtgct gatgcaacgt
1020gcgggcggtg acaattatag ccagtttggt tatatcgaac tgctaccggt gtcaggggat
1080acctaccagc ttcggtttac cgtacaaagt ggttacgtgg gtcaggactc agaagtccgc
1140attggaactt cagagaatgc cggaagcaag gatattctta gcgatggtcg catcgccgga
1200cttaacatcc ctatggtcct gaacgttaaa cttgacagca ctaagttggc ccaggggatc
1260actatcggcg taacccgata cgaccccagc ggtagttata taaattttgc gtccgttcgt
1320ttccagagat acgacttttc ttataatgtc ttcctgctca aattaaacaa aattattcgc
1380ctctacaaag ccaccggcat ttcgccatcc gatatccaga ccctgattga aagtgctaat
1440catgacctgg ctattaccga agatgtacta agccagctct tctggacgaa ctattatacg
1500cagcgttacg gtattgattt ttctgctgcg ctggtgctgg cgggtgcgaa catcagtcag
1560attgcccaca gcaataaaca gagcgcgttc acccgcttgt ttaacactcc gccgctgaac
1620aatcagtttt tttatgctga tgggaaaaag ctgaacctcg aacccggtaa gtcggatgac
1680tcacacggtc ttggggtact caaacgggca ttacaggtta atgatagcgc cctgtatacc
1740ctttttaatc tgacctttgc ggataaagac gcccagggta atgctgttgt tttcaccaaa
1800actcctgaaa atctttctgc gctgtaccgt accagattgc tggcgacggt taacaacctg
1860accgttaacg aactgagcct gctgctttcc gtttcaccat acgtaaaggt gaagctggct
1920acgctaaaag acgaggcgct cagccagctg tcgactaccc tggaaaggta tacgcaatgg
1980ctggacaaga tgaactggac gatcggcgat ctgtacctga tgctgacccc tgtttacagc
2040accgttctgt cgccggatat tgaaaatctg gtgacgacgc tgaaaaatgg cctggcgggt
2100caggacttaa ccagcgatga aaaacgcatc gctgcgctgg ctccgtttgt tgctgccgcc
2160actcagctgg actctgcgga gacggccagg gcgcttttac gatggctgaa cgatcttaaa
2220ccgggaaccc tgtcattagc ggattttatc gcgcaggtta acaacaccac ccaaaccgaa
2280aatctggtca cattcagcca ggtgatggcg cagctcgccc ttattacgcg caacgccagc
2340ctgagtgcaa atgagctgtc atgggcggtt gcgcacccgg aaattttcca ggaaaaggcc
2400actgttctta aaaacgacat cgccactctc aatgatctga cgcagctgca tgatctgctg
2460gcgcgctgtg gcagccatgc ctcagagatc cttacctcgc tgagtgggaa tgccagcaag
2520gctgaaaata accttgccgt cagcaccctg gcgacggcgt taaatctgga cgagcgggca
2580ctgacccagg cgctggcgaa ggtttccacc tatgaatatt tttataattg ggcacactta
2640aatgaagcgc tgcagtggct ggacgttgcc accacctttg gcatcacgcc cgataacctg
2700gccgcgctga ttgggctgaa gttcgataat caggatgacg cctcgtttgc cagctggctt
2760accgcaagcc ggtttatgca ggcagggctt aacacgcagc agacagctca gctgtccgcc
2820actctggatg aatccctcag cgcagcggtc agcgcctacg cgatcaaaaa tattttctcc
2880ggcgcggtaa gtaacaggga gcagctctac agctggctgc tgattgataa ccaggtgtcg
2940gcgcaggtca aaaccacccg catcgccgaa gcgattgcca gcgtgcagct gtatgtaaac
3000cgggcattaa gcggccttga gaatggccaa tcagccactg acgctgttga taatgccgtt
3060aaatccgggg tattttttac ccgcgactgg gatacataca acaaacgcta cagcacctgg
3120gccggcgtct ctgagctggt ttactatccg gaaaactatg ttgacccgac cctgcgcctt
3180ggtcagaccg gcatgatgga tgagatgctg cagacgctca gccagagcca gctgacgtcc
3240gatacggtgg aagacgcgtt caaaacctac atgacccgct ttgaagaaat cgctaacctg
3300gatattgtca gcggctatca tgacaacctc agcgaccaga agggtgtaac atatctgatc
3360ggtcgctccg ctgctggcga ctattattgg cgttcggcag atatcagtaa gctttctgac
3420ggtaagctcc cggctaacgc ctgggccgag tggaaaaaaa ttaccaccgc gctgacgccc
3480gtaaataacc tggtgcgccc ggtaatattt cagtcacgat tgtatgtgac ctgggtggaa
3540agccgcgagg tcggcatatc cgccgtcaaa aagcaaaaca gtgaaaccaa acctctggag
3600tatgctctga agtatgcaca tattctgcat gacggtacct ggagcgcacc cgtgtctgtt
3660aagcttgaga acggaacgct gcctcttgac agcgtggcta ttgatgttac aggcatgtat
3720tgcgcaaagg atacacagca tgaccagctt tatattttat tttataagaa aaaggaaact
3780tacaatgacg tcaatgacgt tctgaaagga ataatactgc acgatgacgg gactaccacc
3840attacttccg gtaatagcgt atctggattg gttgtctata aacaactgga tactactaag
3900gaagtcaggc tgaatacgcc ttacccggga ggaaaaacat actactctat taataatatg
3960agggaatcga gtaaatgggg agatgataat atttcaatgc tgtcaggatg tagcgtgaaa
4020gattttgtct ttaccgaagg cgatgggaaa ctgaatgttg cgttcaatgc caccgaacgc
4080attatatacc gtggtaatcc ggatagtcag ggctatgtgg ccctggtcaa tatgattaaa
4140gctatcggaa atattggaga cacctttaaa attccggttt tgaattcaaa tggagagggc
4200ttagacagac cttttacatg tatattcaga cagcctgatg aaaagactga tgcgattgct
4260tatttctccg atgtccaggg attaaatata gatcatttcg ctttcaacga tgaaagtcag
4320aaaatgctgg gtcgtatctt aaggcctgaa gagaaagatt tttataaatt agagtgtgtc
4380aatactaatc tccatatata caaagacagt agcaaaacaa tcaaaccgga taacttcgtg
4440tattttggcc caggcatgga tcttatcgta gttaaaggaa tgatcgtgga aacccttttt
4500ggattatttg gagagcttaa aaccggaata aaagataaga gtgtgaaact atccgtttct
4560gccggagtca ttgacaattc accagccgct acgaagacta agtatacatt cgacgaatcg
4620ctgtatgtta ttgaaggcca aaccgtttct attcaactta gtgaatttaa agaaaataat
4680attgaccttg aattcacttt cttggcttct ggagacagtg ggaactcact aggccaaagt
4740gtcatcagcg caacattgac ccgaacgagt gaaaacacta tacccgttat ttctctgaat
4800aaaacctctg acaacgcgca gtatttgcag tatggcattc atcgcataag ggtgaatacg
4860ctgtttgcaa aacagctggt tgcgcgcgcg aacgccggac tggacactgt actgtctatg
4920gcaacccagc agctgacgga acctaaaatg ggcaaaggtg cgtacattga ccttgaactt
4980aatgccagca gcgatggcag ttcggcggta tttgaagtat tgatgtgtga cgtttttacc
5040aacggtgacc gcattgcttt gaccagcggc acactcagcc ccacagcacg caccagctgc
5100tcatttttcg tgccccgact ggatgagtct actgcatctg catataatat gtacttttgc
5160gtaaaaactc agaatactga gagtaagcgg gtagaagtaa cgggaggcga ggggaaatgg
5220gattaccagt acgtcgatga atctggtgct gccattaagc cgccctatac cgatccatat
5280attgcaagca tatatgtacg gaacgataca acagagccga tggacttcaa cggtgccaat
5340gcgctctatt tctgggaaat gttctattac gtgccgatga tggtatttaa gcgcctgcta
5400agcgaaagta agttcgctga agcgacccag tggatcaaat atatctggaa tcccgatggc
5460tatctggtga acaatcagcc cgcgacctat acctggaatg tgcgccctct ggaggaggat
5520acctcctggc acgctgaccc gctagactcg gttaacccgg atgctgtcgc gcaggccgat
5580ccgctgcact acaaggttgc tacctttatg gcgtaccttg atctgctgat tgcccgcggt
5640gatgccgcct atcgccagct gcagcgcgac accctgaatg aagcaaaaat gtggtacgtg
5700caggcgctga acatccttgg cgatgaaccc taccagtcat catccagcga ctggagctcg
5760ccagttctct ccagcgcagc agatcagact acagagaaaa acgttcagca ggcgatgctg
5820gcggtgcgtc agcagcctga cgcaggagaa ctgcgcaccg ccaattctct gaccagtctg
5880ttcctgccgc agcagaatga aaagctggct ggttactggc agacgctggc gcagcgcctg
5940tataacctgc gccacaacct gtcaattgac ggcagcccat tgtcactggc catctatgcc
6000gcgccagccg atccggcagc gctgctcagc gcggcggtca acagcgcgtc cggcggcagc
6060gaactgcctg ctgctgttat gccgctgtac cgcttcccga ttattctgga gagcgcccgg
6120gggatggcag gtcaactgac ccagttcggc agcacgctgc tcagcattgc tgaacggcag
6180gatgcggaag ccttgtcgga gctgatgcag actcagggta gtcaactgat tttgcagagc
6240atcgccctgc aaaacagtac gatttctgaa attgatgcgg ataaaaccgt gctggaagcg
6300agcctaagcg gtgcacgttc gcgcctcgac cgatacacca cgctgtatga cgaggatgta
6360aatacggggg aacagcaggc tatggatctg ttctacgcct cctctatcca ggcaaacggc
6420ggccaggcgt tccacactgt cgcaggcgga cttgacctgg cgcctaacat ctttggtctg
6480gctgacggcg gttcgcgctg gggtgcagca tttactgcat tggccagcat cgccgatttg
6540tccgccgcag cctctcacac ggccgcagag cgcctcagcc agtctgaggt ctaccgccgc
6600cgccgccagg agtgggaaat ccagcgcaac gccgcgcagt ctgaaattga ccagattgac
6660gctcagctgg cctcactgac gatacgtcgc aaaggcgcgg tactgcagaa aacctacctg
6720gaaactcagc agggtcagat gcaggcgcag atgaccttcc tgcagaataa gttcaccagc
6780aaggcgctgt acaactggct gcgcggcaag ctggcggcca tctactatca gttctacgac
6840ctgacggtat cgcgctgcct gatggcagaa gccgcctata gctggcatat taaaggtaat
6900caggaaacag gtacctttat ccgtcccggc gcctggcagg gaatctatgc cggcctgatg
6960gcaggggaag cgctgatgct gaatctggca cagatggaaa acagctacct gacaaaagat
7020gagcgcctgc aagaggtcac gcgcacggtc tgcctgtctg aattttattc agggctctct
7080tcgaataagt tcgcgctggc tgataccgtt accacactgg tgaatagcgg gaaaggcaac
7140gccggcacga ccgataacgg agtgaagatc gatggcaagc agcttctggc taccctgaaa
7200ctctccgatc tgaacattaa gacggattat ccagagtcac tggacaaagc caaacgcatt
7260aagcaaatca gcgtgacgct gccgatgctg gtcgggccgt atcaggacgt ccgggcggta
7320ctgagctatg gcggcagcgt ggttctgcca cgcggctgca cggcggtcgc cgtttcgcac
7380ggcatgaacg acagcggcca gttccagctg gacttcaatg acagccgctg gctgcctttt
7440gaaggtatac ctgttgatga ttccggtacg ctgacgctca gcttcccgga cattaccgat
7500aagcaacagg aaaatctgct gctcagtctg agcgacatca tcctgcacat ccgctatacc
7560atcgcaagct ga
7572134266DNAPantoea agglomerans 13atgcaaaata cagatcagat gagcctgacg
cccccttcct taccctcagg tgggggtgcc 60gtcaccggac tgaaaggcga tatgtcagga
gccggacccg atggcgccgc cacgctgagc 120cttcccctgc cgatcagccc cggacgtggc
tatgccccgt cgctgtcact gggttaccac 180agtcgtaacg gcaacggtgt ttttggcgca
ggctggagct gcggtcagat ggctattcgc 240ctccaaaccc gcaaaggcgt gccgttttat
gacggcagcg acgtctttac cgctcctgat 300ggtgaggttc tggtgccggc gctggacgcc
agcggcaagg ctgaggttcg cacgaccact 360acgctgctcg gcgaaaacct cggcggcacc
tttaccgtac agacctaccg ttcccgagtg 420gaaaccgact tcagtcgcct ggagcgctgg
gttccgcaga ccgacgcagc ggctgatttc 480tggttgattt atagtccgga cggccagatc
cacctgctgg gtcgtaaccc gcaggcgcgg 540gtgaacaacc ctgaggatac aacccagacc
gccgcctggc tgatagagtc gtcggtctcc 600gccagcggcg agcagattta ctggcaatac
cggcaggaag atgagctggg ctgtacgcag 660gatgagaaaa cggctcacgc acacgcgctc
gcccagcgct atctggtggc ggtatggtat 720ggcaataaag cggccagccg gacgctgccg
gggctgctgt ctgttcctgc ggctggcagc 780tggctgtttt cgctggtgct ggactacggt
gagcggacga cagatcctgc aacgctaccg 840gcctggctgt caccgggcag tggcacatgg
ctctgccggc aggatgtgtt ctccagctgg 900gaatatggct ttgagctgcg cacgcgtcgc
ctgtgccgac aggtactgat gtatcatgac 960gtcgcagcgc tggcaggtca gtcaggttca
gatgccgtgc cacagctggt caccagactg 1020ctgctggact ataacctatc tccgtcgctg
actaccctga aaaccgcaca gcaggccgcc 1080tgggaaccgg atgggacgtt gcgcagtctg
ccgccgctgg cgttcagctg gcagaccttc 1140ccgtcaacac cagagaaaag tgtcagctgg
caacggcgga atgacatggg gaaactcaac 1200ccacagcagc cttatcagat ggttgacctg
cacggtgaag gactggcggg tatcctctat 1260caggacagtg gtgcctggtg gtatcgggag
ccggttcgtc agtcgggtga tgatgataat 1320gccgtgacct gggcggctgc ccgaccgctg
ccggcgttcc ctgctctgcg caagggcgga 1380atgctgctgg atctggacgg tgatggttac
ctggaatggg tggtcaccgc gccgggcgtc 1440gcgggctgct atgcgcaagc gcctgaacaa
tgctggcagc gcttcacgcc gctgtctgcg 1500ctgccagtgg aataccgcca ctcgcgaatg
gagatagccg acgtcaccgg tgcgggtctt 1560gcggatatgc tgctgatcgg cccgaaaagc
gtacgcctgt acagcggcag cggcagaggc 1620tggaaaaaag cacgaacggt catgcaggac
agtggcatca ccctgccggt tcccggtaca 1680aatgcccgtg tcatggtggc attcagcgat
atggccggca gcggtcagca acacctgacg 1740gaaatcaaag ccagcggcgt acgttactgg
cccagcctgg ggcatggtcg ctttgcggct 1800ccggtgacac tccccggctt cagtcagccc
gctgaaacct tcaacccggc acagctctat 1860ctggccgacg ttgacggttc cggcaccacc
gatctgatct atgctctgag cgatcatctg 1920ctggtatggc taaaccagag cggaaacagc
tttgacgcgc ctttccgtat cagtcttcca 1980gaaggcgtgc gctatgacaa tacctgcagt
ttgcaggtcg ccgatattca ggggctgggc 2040atctccagcc tggtgctatc ggtgccacat
ccgacgccgc gccattgggt atgtcacctg 2100acgacggaaa agccctggct gctcgacggc
atgaacaaca atatgggtgc ccgccatact 2160ctctgttacc gtagttcggc gcagttctgg
ctggatgaaa aggctgctgc taccgccgat 2220cggcccgcgc cggcgtgtta tctgccgttt
gcgctgcata cactgagccg tactgaagtc 2280agtgatgaaa tcaccggaaa ccggctcacc
aggacgatac gctaccggca cggcgtctgg 2340gacaggcgcg agcgagagtt ccgcggcttt
ggctttgttg aagtcagcga tgccgaagcg 2400ctggcaaaac aaactgaggg gatgagcgca
ccagcagtta aacgcagctg gtatgctacc 2460ggactggcag ccgtggatgc acagctcccg
gatgagttct ggaaagggga tcatgcagcc 2520tttgccggtt ttacccctcg ctttaccacc
ggcgatggcg aacaagaggc ggtactggat 2580accatcagcg acgatacccg tttctggctg
acccgggcga ttcgcggtac gctgctgcgt 2640agcgaactgt atggcgcgga tggcagcagc
caggccggga tcccttacag catcacggaa 2700tcgcggccac aagtgcggtt gattactgag
gcgggtaatt cgccggtggt ctggccctcc 2760gttatcgaga accgtaccag tcattatgag
cgcgtcagca gcgatccgca gtgcggccag 2820cagatcctgt taaccagtaa tgaatacggc
cagccgctcc gtcagatcgg catcagttat 2880ccccggcgca ccaggcccga tgccagcccc
tacccggacg atctgccgga cggactgttt 2940gccgacagct ttgatgagca acagcaggcg
ctgcgcctga cgctgacaca aagcagctgg 3000catacgctga aagatatcag cagcggcatc
tggctgccgg ccgtggcgga tgcaacccga 3060agcgatctgt tcgttcacca ggcagcgcag
gtgccgccag cgggtcttac gctggagaat 3120ttactcaccg atagcgcgct gctgaccagc
ccggtttttg gcggacagtc gcaaatctgg 3180tatcaggaca gggcgggtca ggcgagcatc
acctcacccg attttccccc ccgaccgtcc 3240tttagcgaaa ccgcagcgct ggacgaggca
caggtcagcg cgctgtcagc cgatattgat 3300caaacgaagc tggagcaggc gggctatacc
cgctcagcgt atctgtttgc acgcagcggt 3360gaggagagta aaacgctgtg ggcagtgcgc
cagggatata tcaccttcag cggcgcagac 3420catttctatc tgccgattgc cgcacagcag
acgctgctgg ccggtaaaac cacagtcacc 3480tatgatccgt acgactgtgt tgtcttacag
gcaaaggacg ccgcaggtgc ggttacctcc 3540gcgacatacg actggcgttt tctcgcgccg
acgcagatta ctgatattaa cgataatctg 3600aaaagcgtca cgctggatgc gctgggtcgg
gtaacgtcgc agcgtttcag cggcactgaa 3660aacggaaagc cggcgggcta cagcgatgac
gagtttccac tgccggccag cgccgatgca 3720gcgctggcgc tcagtgcccc gctaccggtg
gcacagtgca tcatctacgt accggacagc 3780tggatgctga ccggggagca gcagcagccg
ccgcacgtga taacgctgct caccgaccgt 3840tacgacagcg acagtcagca gcagatccgt
cagcaggttg ttttcagcga tggttttggc 3900cgggtgctgc aggctgcctc aaggcaggtg
aacggcgaag cgtggcagcg ggcggcaaac 3960ggctcgttcg ttgccggcac gaacgattcg
cccgtgctga ctgagacaac gttccgctgg 4020gccgttaccg gacgcactga atatgacaat
aagggacagg ccatccgtgc ttatcagcca 4080tattttctgg acagctggaa atacgtgcgt
gacgacagcg cgcgacagga tctgtacgcc 4140gacacccact attacgatcc ggtggggcgg
gagcggcagg tcattaccgc aaaaggctgg 4200ctgcggcgcg tcattcacac cccctggttc
gtagtcagcg aagacgaaaa cgatacccag 4260gcgtag
4266143015DNAPantoea agglomerans
14atgtccgccg cgtatgtctt aagtaattta tcttataaac tggagaatcc tatgagcacc
60tcgctttaca gcaggacccc ctcggtcacg atcctcgaca accggggcct gaccgtacgc
120ggtatcgcgt accagcgcca tccggatacc ccggcggtga ccagtgaacg catcacccgc
180catcagtacg atgcccgcgg ctttctgatg caaagcgccg acccgcgcct gcacgacgcc
240gggctggcga acgtcagcta ccggaccaac ctgaccggca gcgttctccg ctcacagggc
300gtggataacg gcatcaccgt gacgctgaac gatgccgccg gacggccgtt tctggcggtc
360agcaacatca gcactgccgg tgatggcacg gaggacagaa gccaggcagt gacccgtacg
420tgtcagtacg aggacgccac cctgcccgga cgtccgttaa gtattacgga gcaggtgaat
480ggtggagccg cccgcatcac ggagcgcttc gtctatgccg gtaacgctgt tgaggagaaa
540gccctgaacc tcgccgggca gcccgtcagc cactatgata ccgccggtct gacacagaca
600gacagcatcg ccctgaccgg cgtgccgctc tccgtcaccc gccgcctgct gaaggacgca
660gacaatcctg acgccgtggc tgactggcag ggaacagacg cctccgtctg gaacgacccg
720ctcgacgtgg aaacatacac taccctgtcc acggcagacg ccaccggcgc ggtgctgacc
780accaccgatg cgaagggaaa cctgcagcgg ctggcctacg acgtggcggg cctgttgtcg
840ggcagctggc tgacgctgaa ggatggcacg gagcaggtta tcgtgacgtc cctgacctac
900tccgccgccg ggcagaagct gcgcgaggag cacggcaacg gcgtggtgac cacctacacg
960tatgaagccg agacgcagcg cctgaccggc attaaaacgg cgcggccggc cggacacacc
1020tcaggtgcga aggtgctgca ggacctgcgc tacacctatg acccggtggg caacgtcctg
1080aaaatcagca acgatgccga agagacccgc ttctggcgta accagaaagt ggcgccggag
1140agcgcgtacg tttatgacag cctgtaccag ctggtcagcg ccaccggacg cgagatggcg
1200aacgccggtc agcagggcag cagctcatcg tcagccaccg tcccccttcc cgccgacagt
1260tccgcgttta caaactatac ccgcacttat gcttacgatg aggccggcaa cctgacgcag
1320gtccgtcata ccccggctac gggcagcggc tacaccacaa aaataaccgt ctctgataaa
1380agcaaccggg ccgtgctgag cgtgctgacg aaaaatccct ctgatgtgga cgcgctgttc
1440acggcgggcg gccagcagaa acagctgcag ccggggcaga gtcttatctg gacgccgcgc
1500aatgagctgc tgaaggtgat gccgataatg cgtgacggcg gtacggatga cagcgaaagc
1560taccgctacg acgggggcag ccagcggctg ctgaaggtca gcgtgcagaa aaccggcaac
1620agcacgcaga cgcagcgggc gctgtacctg ccaggactgg agctgcgcaa cacaacatcc
1680ggtgatacgg aaacggagag cctgcaggtg gttaccgcgg gtgaagcggg gcgcgcgcag
1740gtgcgggtgc tgcactggga gagcggaacg ccggacagtg tcagcaacga ccagctacgc
1800tacagctacg ataacctgac cggcagcagc gggcttgagc tggacagcag cggcaatatt
1860atcagcatgg aggaatacta tccgtacggc ggcacggcgg tctggacggc gcgcagcgcg
1920gtggaggcga agtacaaaac cgtgcgctac tcgggcaagg agcgtgacgc cacggggctg
1980tactactacg ggtaccggta ctaccagccg tgggctggcc gctggctgag cgcggacccg
2040gcgggcacgg cggacgggct gaacctgttc aggatggtaa gaaataatcc ggttacgctt
2100aaggacacaa acgggttgat cagtacgggt caggatgccc ggaaattagt ggccgaagca
2160tttgttcacc ctttgcatat gactgtcttt gaaagaattt cttcagaaga aaatcttgca
2220atgagcgtga gagaggctgg catttatact atttcggcac tgggtgaagg tgctgcagca
2280aaagggcata atattcttga gaagaccatt aaacctggtt cattaaaggc tgtttatggt
2340gataacgccg aatccattct tgcgcaggca aaacgcagcg gttttgttgg ccgggtaggt
2400cagtgggatg catccggtgt acggggaatt tatgcacaca acacaccagg tggcgaagac
2460ctggcctatc cagtcaactt aaaaaatagt tctgctaatg aacttgttaa tgcatggata
2520aaatttaaaa tcatcacgcc ttataccggt gattatgaca tgcacgatat tattaaaatc
2580tcggatggaa aagggcatgt gcccatggcg gaaagtaatg aggaaaaagg tgtaaaggat
2640atgattaatg aaggtgttgc gcaggtcgac cctgccagac cctttacgtc tacagcgatg
2700aatgttgttc gccatggccc tcaggtaaac tttgttccct atatgtggga acatgagcac
2760gaaaatgtcg taagggataa tggttatctg ggagtggtag ctcgtccggg tccattccct
2820gttgcgatgg tacataaggg tgaatggact gttttcgaca ataaaaacga gctgtttgag
2880ttttataaat ctacaaacac tcctcttccc gaacactggt ctcaggattt tgttgagaga
2940gggaaaggaa atgttgcaac gccccgacac gctgaaattc ttgatcgtaa ttcctcgcgt
3000ctaagagcgg cctga
3015152079DNAPantoea agglomerans 15atgtgtagcg ttgccgattt tgatcggctg
cacaacataa aacaggagaa tatcatgggc 60acctcgcttt acagcaagac cccctcggtc
acgatcctcg acaaccgcgg cctgaccgta 120cgcgatatcg cgtaccagcg ccatccggat
accccggcgg tgaccagtga acgcatcacc 180cgccatcagt acgatgcccg cggctttctg
atgcaaagcg ccgacccgcg cctgcacgac 240gccgggctgg cgaacgtcag ctaccggacc
aacctgaccg gcagcgttct ccgctcacag 300ggcgtggata acggcatcac cgtgacgctg
aacgatgccg ccggacggcc gtttctggcg 360gtcagcaaca tcagcactgc cggtgatggc
acggaggaca gaagccaggc agtgacccgt 420acgtgtcagt acgaggacgc caccctgccc
ggacgtccgt taagtattac ggagcaggtg 480aatggtggag ccgcccgcat cacggagcgc
ttcgtctatg ccggtaacgc tgttgaggag 540aaagccctga acctcgccgg gcagcccgtc
agccactatg ataccgccgg tctgacacag 600acagacagca tcgccctgac cggcgtgccg
ctctccgtca cccgccgcct gctgaaggac 660gcagacaatc ctgacgccgt ggctgactgg
cagggaacag acgcctccgt ctggaacgac 720ccgctcgacg tggaaacata cactaccctg
tccacggcag acgccaccgg cgcggtgctg 780accaccaccg atgcgaaggg aaacctgcag
cggctggcct acgacgtggc gggcctgttg 840tcgggcagct ggctgacgct gaaggatggc
acggagcagg ttatcgtgac gtccctgacc 900tactccgccg ccgggcagaa gctgcgcgag
gagcacggca acggcgtggt gaccacctac 960acgtatgaag ccgagacgca gcgcctgacc
ggcattaaaa cggcgcggcc ggccggacac 1020acctcaggtg cgaaggtgct gcaggacctg
cgctacacct atgacccggt gggcaacgtc 1080ctgaaaatca gcaacgatgc cgaagagacc
cgcttctggc gtaaccagaa agtggtgccg 1140gagagcgcgt acgtttatga cagcctgtac
cagctggtca gcgccaccgg acgcgagatg 1200gcgaacgccg gtcagcaggg cagcagctca
tcgtcagcca ccgtccccct tcccgccgac 1260agttccgcgt ttacaaacta tacccgcaac
tatacttacg atgaggccgg caacctgacg 1320caggtccgtc ataccccggc tacgggcagc
ggctacacca caaaaataac cgtctctgat 1380aaaagcaacc ggggtgtgct gagcacgctg
acggaaaatc cctccgacgt tgacgcgctg 1440ttcacggcgg gcggccagca gaaacagctg
cagccggggc agagtctcat ctggacgccg 1500cgtaacgagc tgctgaaggt gacgccggta
gcacgtgacg gcggtgcgga tgacagcgaa 1560agctaccgct acgacggggg cagcctgcgg
ctgctgaagg tcagcgtgca gaaaaccggg 1620aacagcacgc agacgcagcg ggcgctgtac
ctgccagggc tggagctgcg caacacaaca 1680tccggtgata cggaaacgga gagcctgcag
gtggttaccg tgggtgaagc ggggcgcgcg 1740caggtgcggg tgctgcactg ggagagcgga
acgccggaca gtgtcagcaa cgacccggtg 1800cgttacagct acgataacct gaccggcagc
agcgggcttg agctggacag cagcggcaat 1860attatcagca tggaggaata ctatccgtac
ggcggcacgg cggtctggac ggcgcgcagc 1920gcggtggagg cgaagtacaa aaccgtgcgc
tactcgggca aggagcgtga cgccacgggg 1980ctgtactact acgggtaccg gtactaccag
ccgtgggctg agcgcggacc cggcgggcac 2040ggtggacggg ctgaacctgt tcagaatggt
gcgcaataa 2079167557DNAPantoea agglomerans
16atgtatctga ccgaagaaat acttgccaaa ctgaatgccg gaaacggcaa actacaatct
60actgtagagc agataattac gctgccagat attatgctgc actcttttgc tcaggtaaaa
120gaactggcag gagacaagtt aagttggggt gagaaaaact tcctttatca gcaggctcag
180aaacagctga aagaaaataa aatggcggaa tcccgcattc tcagccgtgc caacccgcaa
240ctggcaaatg ctgtccggat gggcatccgt cagtctgcga tgctgggtag ctatgacgac
300ctgttcccgc agcgcgccag ccgctttgtt aagccgggtg cggtggcctc aatgttttca
360ccggctggtt atctgaccga gctgtatcgg gaagcccgag gcctgcacga cgacacgtca
420gactatcatc tggatacccg ccgtccggac ctggcatcaa tggtgttgtc tcagtcaaat
480atggacactg agttgtccac cctgtcgctc tccaatgaac tgttgctgaa gttaattcag
540tcaaaggaaa gcctgaatta tgaccaggtt attgaaaagc tggcgactta cagactgacc
600ggcaccacgc cttacaatca accctatgaa accatccgtc aggctatttt gctgcaggac
660ccggagttta acgcattcag taataatccg gcagtggccg taaaaatcaa caccagcggg
720ctattaggta ttacttccga tatcgccccg gagctgcatg cgatactgac tgaagagata
780acagaaaaaa aaacggaagc actgattaaa aagaacttcg gcgatgccaa tatcaaccag
840ttccaaaatc ttgcgtggct ggcccactgg tacggcttgt cctatgagga gcttaataac
900ctggtaggca tgatttggtc cagagatgat cttgaccccg ctgttgagca ctataaaaat
960tccagcctgg tcactttggt ggctgaagac ggtggatcgc ttaacgcggt gttgattaag
1020cgtactaaag gccatgattc cgatgatatg cattatgcgg aattaattcc tgtgggagga
1080gacaaatttc agtacaactt cagccttatt gatgctgaaa gcagtagtgt ttattatcaa
1140ttcggtacaa aaggaaagaa ctcccaagat ttagttcctg taatccatga gcctttgctg
1200ggtaatactc cctatgctgt tacattcaca cttacacaag agcagctaag taacccagtt
1260gaaatatccc tgacgcatgg tagtggcggt ggtgatcgcc ttacctcaac aattttcact
1320gttacgactt acccatttga taccttcctg ctgaagctga ataaactcat acgcctctat
1380aaagccaccg gtatctcccc ggccagcatc aggaccgtga ttgaaagcga taacactgac
1440cttatcatca cagaaagcgt attaaaccag ctattctgga ctaattacta tacacaaacg
1500ttcgaaatgg aattttctgc cgcactggtg ctggcaggag cggacatcgg tcagatagca
1560cacagtgaaa gccagccaag tgcgttcacc cgcctgttta acacaccgtt gctggataac
1620cagcagtttt cggccagcga cgagtcactg gatctggagc cgggtaaggg agccgatgct
1680ttccgtatcg ctgtactcaa gcgtgcattg caggtgaatg acgccggact gtataccctt
1740tatggtctga gtttcaccga taaagataaa aacggtaagt tgattccgtt caccaccaat
1800attgagaacc tttctgccct ctatcgcacc cgactgctgg ccgacatatt taatatttct
1860gttactgagc tgagcatgct gctgtcggtt tcaccttatg ccagtcagaa ggtggacagc
1920cttaaaggtc aggcactata tcagtttgtt gctaccctca gtgactatat gcaacggctg
1980aaagcgatga actggagcgt cagcgatctc tacctgatgc tgaccaacag ctacagcacg
2040gtactgtcgc cagaaattaa aaacctgatg actaccctga aaaatggact cagcgagcag
2100gattttaata acacggatga aatcgctcag ctgaatgcga cggcaccttt aatcgccgca
2160gcgatgcagc ttgacttcac agaaaccgca gcagcactgc tggaatggct taatcaattg
2220caaccagcag ggctgacagt ggcaggtttc ctgtctcttg tgaatcagac gacactcgaa
2280gataaggatg ttgtaaaact ggtctctttc tgccaggtta tggggcagct tgcactgatc
2340gtgcgcaagg cggctctggg ctccagcgaa atcacctttg cagttgcgca tccggctatt
2400tttaaaaaag atgcgaactc actggctcag gatattggca cgctctttga cctgacccag
2460ctgcatgcat ttctgacaga ctgtggtact tatgcctctg aaattctcac ctcactgaat
2520gaagggaatc tcgacgttag cacggtggcg acggcgctga cgctggacaa aacttcactg
2580gcgcaggcac ttgctcaggt ttcagaatct caggcctttt ctaactggca cgaactgcgt
2640gatgcacttc agtggacaga tgccgccagc attttcaaca tcacaccagt ggctctgact
2700gcgatggtga acctgaaatt cagcggtgac aactcttctc cgtatcagga gtgggtaacg
2760gtcagcaaag ctatgcaggt cgggctgaat cagacgcaaa gcgctcagct gcaagcctcg
2820ctggatgaat ccctcagcgc agcactcagc gcctacgtca ttaagaacat aacaccccca
2880tcagtaactg atcgcgacga actttacggc tggctgctga ttgacaatca ggtctctgca
2940cagattaaaa ctacccgcat tgctgaagcg attgccagcg ttcagcttta cgtaaaccgg
3000tcactgacgg gtcaggaaga tggcgtggat agcaaggtta aatccggcca gttctttacg
3060gcagactggg atacttataa caaacgctac agtacatggg ccggtgtgtc ggagctggtc
3120tattatccgg aaaactatgt tgatccgacg ctgcgtatcg ggcagaccgg gatgatggat
3180gaaatgttgc agacgctcag ccagagccag attaatttag acaccgtcag tgatggtatg
3240gggcgttacc ttactgattt tgaagaaata gcaaatctaa aattcctcag tggttatcat
3300gataatgttt ctggccgtca ggggaaaacc tggtttatcg gtggcagtca gtctgaaccc
3360caaaaatttt actggcgatc cctggattac agtaaaggcg atggggagga attcgctgcc
3420aatgcatggt cagaatggaa ccatatctca tgtgcaataa cacccttacc tggttttgtt
3480cgtgtggttt tatttaactc ccgactatat cttgcttgcg tggaaaaaaa agaaattcgg
3540gatagtgaaa acaaaaataa agcatcgtat caattaaaga tagctcacat cctttacaat
3600ggtgagtgga gcgctccctt ctcacacgat attactgatt tatatgaggc aggctttgat
3660ccgagtacaa cagtaatgca cttatctgta catgatgaga gtgatgcaat agtttgtata
3720tttaataaca gcgcgctaga aagtgacaaa aataaagggg tggcagtcaa tgctgatatg
3780tcatttaaca acattgacag caaaagagta gatcagataa ttagtctttt agttcctgat
3840cgttttatag atgaaggtaa tgttatagat aatttagttt ctgagttaaa gggatcggaa
3900gtcacggaaa ataaaaaaac gctggagaat gattcgttca ctatagatgg atcaataaat
3960ttgaataagc attctatcga tatcacaggg aaggccaatt tagatattca ggcatcaatt
4020gctgtgcgta gtaaagcatc tcctactagc catgagcgcg agctaatagg ctggttagat
4080gaatctcaat ttgattacat tcgattattc aggggtggct ataattttgg ccagaacgac
4140ggcattttgg aatcatgcat gatttcggca gttaatagtg cctatacctg cttcctttta
4200cgagctgacc acttcagtgg tttatttagt tatggatatg acctttttgt attcaacggt
4260gacgggtcaa aaacatatac acctcaagtg ttgtttgaag atgatattca agggactatg
4320gtgctcaaga tcgtgctcct aaatgaggat aaaaattcaa aactggaaaa ctttgaatcc
4380ctggggctta tgaaaacatc agcaggcgat catcagggag aaatagtttg cgaacttgct
4440aaaagaagga cacctgagcc ttactgtgta gaattgagtc gctacttacc ctcgaatgtt
4500actgttaccg ttacatcacc atcggggaac tttactgcca aagactatgt gttacctctt
4560cccgcattca ataatggcga cgctgactat aaattcgcac cattccccct ctcgcttgaa
4620agtatatggg gagatggaaa aagtaccagt cgggacatta agtttacaat aagcgtaaaa
4680gatacttgcg gcaaggtggc cacctcagag ctaatcttta cactttataa aaacacctcg
4740cctgaattaa ttacactgaa aacgagtgac gcgggagcgc agtatatgca gcagggagtg
4800taccgcacaa ggcttaatac cctgtttgca cagaaattga tcaagcgtgt tagcgccgga
4860attgatgcag tgctgtcgtg ggaaacccag cagttgcagg agcctaaact gggtactggc
4920agttacattt cagtgcttat ccccgcctat atcaaacttg agcacggaga tagcagacag
4980gctaacctgc agtttagtaa tgtcgatcaa acaggaccgg ataatgggaa ttatatatta
5040tggtccggct cattaaatga cactccgcag caggtcacga tttttgtgcc cacgatgcaa
5100actattggcg agctgcaatt cccttatgac cggactagtg gcctgaatct gagtttagca
5160tgtgcagctg gagtttattt gcaggggaca ttcaagaata tatctgcgtc cgatttatct
5220ttaactgagt ttgttgctgc aaagaacaat gactctaaac gggatgtcga agtgacagta
5280ttaacttcaa tcaatacgga gccaatggac ttcaagggtg ccaacgccct ctatttctgg
5340gagatgttct actacctccc tatgatggtg tttaaacgcc ttctcagcga aagtcggttt
5400actgaagcca ctcagtggat aaggtacgtc tggaacccgg acggctacct ggtaaacgac
5460acgcccgcca cctaccagtg gaacgtgcgc ccgctggagg atgaaacctc ctggcacgct
5520aacccgctgg actccgtgga cccggatgcc atagcccagg ctgacccgct gcactacaag
5580gtcgccacct ttatggcgta ccttgacctg ctgattgccc gcggcgacgc ggcctaccgt
5640cagcttgagc gcgatgcgct cagcgaagca aaaatgtggt acgtgcaggc gctggacacc
5700cttggcgatg agccgtacct gagccagaac acaggctggg cgtccccatg cctgacggat
5760gctgccgatg agaccaccca taaaaacagg cagcaggcaa tgctgaccgt gcgccagaag
5820gttgcctcca gcgaactgcg caccgccaac tccctaaccg ccctgttcct gccacagcag
5880aacgcgaagc tggcaggcta ctggcagacg ctgaaccagc gcctgtataa cctgcgcaac
5940aacctctcca ttgacggtaa cccgctgtcg ctgtccattt atgccacccc gactgacccg
6000gcggcgctgc tcagctcggc ggtgattagt tctcaggggg gcagtgacct gccagcggcc
6060gttatgccgc tgtaccgctt cccggtgatt ctggaaagcg cacggagcat ggtgaatcag
6120ctgacccagt tcggcagcac gctgctcggc atcaccgagc gtcaggatgc agaggcgctg
6180tctgatctgc tgcagacaca gggggctgga ctggcgctgc aaagcattgc cctgcagaac
6240agtaccatca gcgagattga tgcggatagg gccgcgctca gggagagcct cagtggcgca
6300cagtcgcgcc tcaacagcta taccaccctg tatgatgaaa atgttaatgc tggtgaaacg
6360cacgccatga acctgtttct ttcctccgcc atcctggcag atggcgggca ggcctatcat
6420accgccgcgg gtgcgcttga cctggcgccg aatatctttg gcctggccga cgggggttcc
6480cgctggggtg cggcatttac cgcaatggcc ggaatagctg atttggccgc ctcggccacc
6540catacggccg ccgaccgcat cagccagtct gaggcatacc gccgccgccg ccaggagtgg
6600gaaatccagc gcaacgcggc gcagttcgag gtcagccaaa tcaatgccca gctggacgcg
6660ctggcggtgc gtcgtgaaag cgccgtgctg cagaagacct atctggaaac acagcagggc
6720cagatgcagg cgcagatgac cttcctgcag aacaagttca ccagcaaagc actgtataac
6780tggttgcgcg gtaaactggc ggccatctac tatcagttct atgacctgac cgtttcacgc
6840tgtctgatgg cagaagctgc ctacagctgg gagatgaaag gctctcagga tacgggcacc
6900tttatccgtc ccggcgcctg gcagggaacc tatgccggcc tgatggcagg ggaaacgctg
6960atgctgaatc tggcacagat ggaaaacagc tatctgacaa aagaggagcg ccagaaagag
7020gtcacgcgca cggtctgcct gtctgaagtt tatgcagggc tctcttcggg ttcgttcgcg
7080ctggctgata ccgtcaccac actggtgggt agcgggaaag gcaccgccgg cacgaacgat
7140aacggagtga agatcgatgg caagcagctt ctggctaccc tgaaactctc cgatctgaac
7200attaagacgg attatccaga gtcactggac aaagccaaac gcattaagca aatcagcgtg
7260acgctgccga tgctggtcgg gccgtatcag gacgtccggg cggtactgag ctatggcggc
7320agcgtggttc tgccacgcgg ctgcacggcg gtcgccgttt cgcacggcat gaacgacagc
7380ggccagttcc agctggactt caatgacagc cgctggctgc cttttgaagg tatacctgtt
7440gatgattccg gtacgctgac gctcagcttc ccggacatta ccgataagca acaggaaaat
7500ctgctgctca gtctgagcga catcatcctg cacatccgct ataccatcgc aagctga
7557174266DNAPantoea agglomerans 17atgcaaaata cagatcagat gagcctgacg
cccccttcct taccctcagg tgggggtgcc 60gtcaccggac tgaaaggcga tatgtcagga
gccggacccg atggcgccgc cacgctgagc 120cttcccctgc cgatcagccc cggacgtggc
tatgccccgt cgctgtcact gggttaccac 180agtcgtaacg gcaacggtgt ttttggcgca
ggctggagct gcggtcagat ggctattcgc 240ctccaaaccc gcaaaggcgt gccgttttat
gacggcagcg acgtctttac cgctcctgat 300ggtgaggttc tggtgccggc gctggacgcc
agcggcaagg ctgaggttcg cacgaccact 360acgctgctcg gcgaaaacct cggcggcacc
tttaccgtac agacctaccg ttcccgagtg 420gaaaccgact tcagtcgcct ggagcgctgg
gttccgcaga ccgacgcagc ggctgatttc 480tggttgattt atagtccgga cggccagatc
cacctgctgg gtcgtaaccc gcaggcgcgg 540gtgaacaacc ctgaggatac aacccagacc
gccgcctggc tgatagagtc gtcggtctcc 600gccagcggcg agcagattta ctggcaatac
cggcaggaag atgagctggg ctgtacgcag 660gatgagaaaa cggctcacgc acacgcgctc
gcccagcgct atctggtggc ggtatggtat 720ggcaataaag cggccagccg gacgctgccg
gggctgctgt ctgttcctgc ggctggcagc 780tggctgttta cgctggcgct ggactacggt
gagcgggcga cagatcctgc aacaccaccg 840gcctggctgt caccgggcag tggcacatgg
ctctgccggc aggatgtgtt ctccagctgg 900gaatatggct ttgagctgcg cacgcgtcgc
ctgtgccgac aggtactgat gtatcatgac 960gtcgcggcgc tggcaggtca gtcaggttca
gatgccgtgc cacagctggt caccagactg 1020ctgctggact ataacacgtc tccgtcgctg
actaccctga aaaccgcaca gcaggccgcc 1080tgggaaccgg atgggacgtt gcgcagtctg
ccgccgctgg cgttcagctg gcagaccttc 1140ccgtcaacac cagagaaaag tgtcagctgg
cagcggcgga atgacatggg gaaactcaac 1200ccacagcagc cttatcagat ggttgacctg
cacggtgaag gactggcggg tatcctctat 1260caggacagtg gtgcctggtg gtatcgggag
ccggttcgtc agtcgggtga tgatgataat 1320gccgtgacct gggcggctgc ccgaccgctg
ccggcgttcc ctgctctgcg caagggcgga 1380atgctgctgg atctggacgg tgatggttac
ctggaatggg tggtcaccgc gccgggcgtc 1440gcgggctgct atgcgcaagc gcctgaacaa
tactggcagc gcttcacgcc gctgtctgcg 1500ctgccagtgg aataccgcca ctcgcgaatg
gagatagccg acgtcaccgg tgcgggtctt 1560gcggatatgc tgctgatcgg cccgaaaagc
gtacgcctgt acagcggcag cggcagaggc 1620tggaaaaaag cacgaacggt catgcaggac
agtggcatca ccctgccggt tcccggtaca 1680aatgcccgtg tcatggtggc attcagcgat
atggccggca gcggtcagca acacctgacg 1740gaaatcaaag ccagcggcgt acgttactgg
cccagccttg ggcatggtcg ctttgcggct 1800ccggtgacac tccccggctt cagtcagccc
gctgaaacct tcaacccggc acagctctat 1860ctggccgacg ttgacggttc cggcaccacc
gatctgatct atgctctgag cgatcatctg 1920ctggtatggc taaaccagag cggaaacagc
tttgacgcgc ctttccgtat cagtcttcca 1980gaaggcgtgc gctatgacaa tacctgcagt
ttgcaggtcg ccgatattca ggggctgggc 2040atctccagcc tggtgctatc ggtgccacat
ccgacgccgc gccattgggt atgtcacctg 2100acgacggaaa agccctggct gctcgacggc
atgaacaaca atatgggtgc ccgccatact 2160ctctgttacc gtagttcggc gcagttctgg
ctggatgaaa aggctgctgc taccgccgat 2220cgacccgcgc cggcgtgtta tctgccgttt
gcgctgcata cactgagccg tactgaagtc 2280agtgatgaaa tcaccggaaa ccggctcacc
aggacgatac gctaccggca cggggtctgg 2340gacaggcgcg agcgagagtt ccgcggcttt
ggctttgttg aagtcagcga tgccgaagcg 2400ctggcaaaac aaactgaggg gatgagcgca
ccagcagtta aacgcagctg gtatgctacc 2460ggactggcag ccgtggatgc acagctcccg
gatgagttct ggaaagggga tcatgcagcc 2520tttgccggtt ttacccctcg ctttaccacc
ggcgatggcg aacaagaggc ggcactggat 2580accatcagcg acgatacccg tttctggctg
acccgggcga ttcgcggtac gctgctgcgt 2640agcgaactgt atggcgcgga tggcagcagc
caggccggga tcccttacag catcacggaa 2700tcgcggccac aagtgcggtt gattactgag
gcgggtaatt cgccggtggt ctggccctcc 2760gttatcgaga accgcgccag tcattatgag
cgcgtcagca gcgatccgca gtgcggccag 2820cagatcctgt taaccagtaa tgaatacggc
cagccgctcc gtcagatcgg catcagttat 2880ccccggcgca ccaggcccga tgccagcccc
tacccggacg atctgccgga cggactgttt 2940gccgacagct ttgatgagca acagcaggcg
ctgcgcctga cgctgacaca aagcagctgg 3000catacgctga aagatatcag cagcggcatc
tggctgccgg ccgtggcgga tgcaacccga 3060agcgatctgt tcgttcacca ggcagcgcag
gtgccgccag cgggtcttac gctggagaat 3120ttactcaccg atagcgcgct gctgaccagc
ccggtttttg gcggacagtc gcaaatctgg 3180tatcaggaca gggcgggtca ggcgagcatc
acctcacccg attttccccc ccgaccgtcc 3240tttagcgaaa ccgcagcgct ggacgaggca
caggtcagca cgctgtcagc cgatattgat 3300caaacgaagc tggagcaggc gggctatacc
cgctcagcgt atctgtttgc acgcagcggt 3360gaggagagta aaacgctgtg ggcagtgcgc
cagggatata tcaccttcag cggcgcagac 3420catttctatc tgccgattgc cgcacagcag
acgctgctgg ccggtaaaac cacagtcacc 3480tatgatccgt acgactgtgt tgtcttacag
gcaaaggacg ccgcaggtgc ggttacctcc 3540gcgacatacg actggcgttt tctcgcgccg
acgcagatta ctgatattaa cgataatctg 3600aaaagcgtca cgctggatgc gctgggtcgg
gtaacgtcgc agcgtttcag cggcactgaa 3660aacggaaaac cggcgggcta cagcgatcac
gagtttccac tgccggccag cgccgatgca 3720gcgctggcgc tcagtgcccc gctaccggtg
gcacagtgca tcatctacgt accggacagc 3780tggatgctga ccggggagca gcagcagccg
ccgcacgtgg taacgctgct caccgaccgt 3840tacgacagcg acagtcagca gcagatccgt
cagcaggttg ttttcagcga tggttttggc 3900cgggtgctgc aggctgcctc aaggcaggtg
aacggcgaag cgtggcagcg ggcggcaaac 3960ggctcgttcg ttgccggcac gaacgattcg
cccgtgctga ctgagacaac gttccgctgg 4020gccgttaccg gacgcactga atatgacaat
aagggacagg ccatccgtgc ttatcagcca 4080tattttctgg acagctggaa atacgtgcgt
gacgacagcg cgcgacagga tctgtacgcc 4140gacacccact attacgatcc ggtggggcgg
gagcggcagg tcattaccgc aaaaggctgg 4200ctgcggcgcg tcactcacac cccctggttc
gtagtcagcg aagacgaaaa cgatacccag 4260gcgtag
4266182856DNAPantoea agglomerans
18atgtccgccg cgtatgtctt aagtaattta tcttataaac tggagaatcc tatgagcacc
60tcgctttaca gcaggacccc ctcggtcacg atcctcgaca accggggcct gtccgtacgc
120gatatcgcgt accagcgcca tccggatacc ccggcggtga ccagtgaacg catcacccgc
180catcagtacg atgcccgcgg ctttctgatg caaagcgccg acccgcgcct gcacgacgcc
240gggctggcga acgtcagcta ccggaccaac ctgaccggca gcgttctccg ctcacagggc
300gtggataacg gcatcaccgt gacgctgaac gatgccgccg gacggccgtt tctggcggtc
360agcaacatca gcactgccgg tgatggcacg gaggacagaa gccaggcagt gacccgtacg
420tgtcagtacg aggacgccac cctgcccgga cgtccgttaa gtattacgga gcaggtgaat
480ggtggagccg cccgcatcac ggagcgcttc gtctatgccg gtaacgctgt tgaggagaaa
540gccctgaacc tcgccgggca gcccgtcagc cactatgata ccgccggtct gacacagaca
600gacagcatcg ccctgaccgg cgtgccgctc tccgtcaccc gccgcctgct gaaggacgca
660gacaatcctg acgccgtggc tgactggcag ggaacagacg cctccgtctg gaacgacccg
720ctcgacgtgg aaacatacac taccctgtcc acggcagacg ccaccggcgc ggtgctgacc
780accaccgatg cgaagggaaa cctgcagcgg ctggcctacg acgtggcggg cctgttgtcg
840ggcagctggc tgacgctgaa ggatggcacg gagcaggtta tcgtgacgtc cctgacctac
900tccgccgccg ggcagaagct gcgcgaggag cacggcaacg gcgtggtgac cacctacacg
960tatgaagccg aaacgcagcg cctgaccggc attaaaacgg cgcggccggc cggacacgcc
1020tcaggtgcga aggtgctgca ggacctgcgc tacacctatg acccggtggg caacgtcctg
1080aaaatcagca acgatgccga agagacccgc ttctggcgta accagaaagt ggcgccggag
1140agcgcgtacg tttatgacag cctgtaccag ctggtcagcg ccaccggacg cgagatggcg
1200aacgccggtc agcagggcag cagctcatcg tcagccaccg tcccccttcc cgccgacagt
1260tccgcgttta caaactatac ccgcaactat acttacgatg aggccggcaa cctgacgcag
1320gtccgtcata ccccggctac gggcagcggc tacaccacaa aaataaccgt ctctgataaa
1380agcaaccggg gtgtgctgag cacgctgacg gaaaatccct ccgacgttga cgcgctgttc
1440acggcgggcg gccagcagaa acagctgcag ccggggcaga gtctcatctg gacgccgcgt
1500aacgagctgc tgaaggtgac gccggtagca cgtgacggcg gtgcggatga cagcgaaagc
1560taccgctacg acgggggcag cctgcggctg ctgaaggtca gcgtgcagaa aaccgggaac
1620agcacgcaga cgcagcgggc gctgtacctg ccagggctgg agctgcgcaa cacaacatcc
1680ggtgatacgg aaacggagag cctgcaggtg gttaccgtgg gtgaagcggg gcgcgcgcag
1740gtgcgggtgc tgcactggga gagcggaacg ccggacagtg tcagcaacga cccggtgcgt
1800tacagctacg ataacctgac cggcagcagc gggcttgagc tggacagcag cggcaatatt
1860atcagcatgg aggaatacta tccgtacggc ggcacggcgg tctggacggc gcgcagcgcg
1920gtggaggcgg agtacaaaac cgtgcgctac tcgggcaagg agcgtgacgc cacggggctg
1980tactactacg ggtaccggta ctaccagccg tgggctggcc gctggctgag cgcggacccg
2040gcgggcacgg tggacgggct gaatttgttc aggatggtaa ggaataaccc ggtaacattg
2100gttgatgata atggtttatt cacgtcctcc cctttattgg ggatttatga aaaggagatg
2160aaaacctttg atagtatcaa attgtcgatt ggttcttata aatacaaacc atctaaattt
2220gatgaaaaga aaggtaagta tgttagctca gataaataca aactgataat ggcagatgat
2280aacgatctta atgggtattt atttgacgag cgcgagatga caagccatct aaaggactat
2340gctgataagt tcagtaaaat aagcaggcta aatataggcg atgagcggat gaaaaccaat
2400attaattttg ggactagaat atcaagatat ttgctatctt cagcacaagc atcatcacgc
2460gaaaatcgtg aagtagatgt tttgtcattc gaaagaaaat tttttgctgt agtaaagaaa
2520aaagataaaa gtcattattt tggacgaaaa atatatgcca taggagaagc tcatgtacta
2580acagattttg aagagaaaaa aagaaccatt gccattaaga ctctagttgc gcacccctat
2640acgcaaatta atgaaagcat taaaaataga attaatgatt ttgataaaga atataacgtt
2700aaagggattg gaacttttgc aacgtttaaa gctacgaaca agctcatagg tggtattaag
2760ggagctttaa aatataagac taaagtgttg actcaagcgg taaatgtacg ctcggcagct
2820atagcaataa agtatggggc aaagcacgtt ccgtaa
2856192522PRTPantoea agglomerans 19Met Tyr Leu Thr Glu Glu Ile Leu Ala
Lys Leu Asn Ala Gly Asn Gly1 5 10
15Lys Leu Gln Ser Thr Val Glu Gln Glu Ile Thr Leu Pro Asp Ile
Met 20 25 30Val Arg Ser Phe
Ala Gln Val Lys Glu Leu Ala Gly Asp Arg Leu Ser 35
40 45Trp Gly Glu Lys Asn Phe Leu Tyr Gln Gln Ala Gln
Thr Gln Leu Lys 50 55 60Glu Asn Lys
Met Ala Glu Ser Arg Ile Leu Ser Arg Ala Asn Pro Gln65 70
75 80Leu Ala Asn Ala Val Arg Leu Gly
Ile Arg Gln Ser Ser Met Leu Gly 85 90
95Ser Tyr Asp Asp Leu Phe Pro Gln Arg Ala Ser Arg Phe Val
Lys Pro 100 105 110Gly Ala Val
Ala Ser Met Phe Ser Pro Ala Gly Tyr Leu Thr Glu Leu 115
120 125Tyr Arg Glu Ala Arg Gly Leu His Lys Ala Glu
Ser Gln Tyr Asn Leu 130 135 140Asp Asn
Arg Arg Pro Asp Leu Ala Ser Leu Thr Leu Ser Gln Ser Asn145
150 155 160Met Asp Asp Glu Leu Ser Thr
Leu Ser Leu Ser Asn Glu Leu Leu Leu 165
170 175Lys Leu Ile Gln Ser Lys Glu Ser Leu Thr Tyr Glu
Gln Val Met Glu 180 185 190Lys
Leu Ala Thr Tyr Arg Leu Thr Gly Thr Thr Pro Tyr Asn Gln Pro 195
200 205Tyr Glu Ala Ile Arg Gln Ala Ile Leu
Leu Gln Asp Pro Glu Phe Asn 210 215
220Ala Phe Ser Asn Asn Pro Ala Val Ala Ala Lys Ile Asn Thr Ser Gly225
230 235 240Leu Leu Gly Ile
Thr Ser Asp Ile Ala Pro Glu Leu His Ala Ile Leu 245
250 255Thr Glu Glu Ile Thr Glu Glu Asn Ala Glu
Ala Leu Val Lys Lys Asn 260 265
270Phe Gly Asp Val Asn Ile Lys Gln Phe Gln Asn Leu Ala Trp Leu Ala
275 280 285Asn Trp Tyr Gly Leu Ser Tyr
Glu Lys Leu Asn Asn Leu Val Gly Met 290 295
300Ile Trp Ser Arg Asp Asp Leu Asp Pro Ala Ile Glu His Tyr Lys
Asn305 310 315 320Ser Ser
Leu Val Thr Leu Val Ala Glu Asp Gly Gly Ser Leu Asn Ala
325 330 335Val Leu Ile Lys Arg Thr Lys
Gly His Asp Ser Asp Asp Met His Tyr 340 345
350Ala Glu Leu Ile Pro Val Gly Gly Asp Lys Phe Gln Tyr Asn
Phe Ser 355 360 365Leu Ile Asp Ala
Glu Ala Ser Ser Ser Tyr Tyr Gln Phe Gly Thr Lys 370
375 380Gly Lys Tyr Ser Gln Asp Leu Val Pro Ala Ile His
Lys Pro Leu Leu385 390 395
400Gly Asn Thr Pro Tyr Ala Val Thr Phe Thr Leu Thr Gln Glu Gln Leu
405 410 415Ser Asn Pro Val Glu
Ile Ser Leu Thr His Gly Ser Gly Gly Gly Asp 420
425 430Arg Leu Thr Ser Thr Ile Phe Thr Val Thr Thr Ser
Pro Phe Asp Ile 435 440 445Phe Leu
Leu Lys Leu Asn Lys Leu Ile Arg Leu Tyr Lys Ala Thr Gly 450
455 460Ile Ser Pro Ala Ser Ile Arg Thr Val Ile Glu
Ser Asp Asn Thr Asp465 470 475
480Leu Ile Ile Thr Glu Ser Val Leu Ser Gln Leu Phe Trp Thr Asn Tyr
485 490 495Tyr Thr Gln Thr
Phe Glu Met Glu Phe Ser Ala Ala Leu Val Leu Ala 500
505 510Gly Ala Asp Ile Gly Gln Ile Ala His Ser Glu
Ser Gln Pro Ser Ala 515 520 525Phe
Thr Arg Leu Phe Asn Thr Pro Pro Leu Asp Asn Gln Gln Phe Ser 530
535 540Ala Ser Asp Glu Ser Leu Asp Leu Glu Pro
Gly Lys Gly Ala Asp Ala545 550 555
560Phe Arg Ile Ala Val Leu Lys Arg Ala Leu Gln Val Asn Asp Ala
Gly 565 570 575Leu Tyr Thr
Leu Tyr Gly Leu Ser Phe Thr Asp Lys Asp Lys Asn Gly 580
585 590Glu Leu Ile Pro Phe Thr Thr Lys Ile Glu
Asn Leu Ser Ala Leu Tyr 595 600
605Arg Thr Arg Leu Leu Ala Asp Ile Phe Asn Ile Ser Val Thr Glu Leu 610
615 620Ser Met Leu Leu Ser Val Ser Pro
Tyr Ala Ser Gln Lys Val Asp Ser625 630
635 640Leu Lys Gly Gln Ala Leu His Gln Phe Val Thr Thr
Leu Ser Asp Tyr 645 650
655Met Gln Arg Leu Lys Ala Met Asn Trp Ser Val Ser Asp Leu Tyr Leu
660 665 670Met Leu Thr Asn Ser Tyr
Ser Thr Val Leu Ser Pro Glu Ile Lys Ser 675 680
685Leu Met Thr Thr Leu Lys Asn Gly Leu Ser Glu Gln Asp Phe
Asn Asn 690 695 700Thr Asp Glu Ile Ala
Gln Leu Asn Ala Thr Ala Pro Leu Ile Ala Ala705 710
715 720Ala Met Gln Leu Asp Ser Thr Glu Thr Ala
Ala Ala Leu Leu Glu Trp 725 730
735Leu Asn Gln Leu Gln Pro Ala Gly Leu Thr Val Ala Gly Phe Leu Ser
740 745 750Leu Val Asn Gln Thr
Thr Pro Glu Asp Lys Asp Val Val Lys Leu Val 755
760 765Ser Phe Cys Gln Val Met Gly Gln Leu Ala Leu Ile
Val Arg Lys Ala 770 775 780Ala Leu Gly
Ser Ser Glu Ile Ile Phe Ala Val Ala His Pro Ala Ile785
790 795 800Phe Asn Lys Asp Ala Asn Ser
Leu Ala Gln Asp Ile Gly Thr Leu Phe 805
810 815Asp Leu Thr Gln Leu His Ala Phe Leu Thr Glu Cys
Gly Thr Tyr Ala 820 825 830Ser
Glu Ile Leu Thr Ser Leu Asn Glu Gly Asn Leu Asp Val Ser Thr 835
840 845Val Ala Thr Ala Leu Thr Leu Asp Lys
Thr Thr Leu Ala Gln Ala Leu 850 855
860Ala Gln Val Ser Glu Ser Lys Ala Phe Ser Asn Trp His Glu Leu Arg865
870 875 880Asp Ala Leu Gln
Trp Thr Asp Ala Ala Ser Ile Phe Asn Ile Thr Pro 885
890 895Val Ala Leu Thr Ala Met Val Asn Leu Lys
Phe Ser Gly Asp Asn Ala 900 905
910Ser Pro Tyr Gln Glu Trp Val Thr Val Ser Lys Ala Met Gln Ala Gly
915 920 925Leu Asn Gln Thr Gln Ser Ala
Gln Leu Gln Ala Ser Leu Asp Glu Ser 930 935
940Leu Gly Ala Ala Val Ser Ala Tyr Val Ile Lys Asn Ser Ser Pro
Ser945 950 955 960Trp Val
Thr Asp Arg Asp Lys Leu Tyr Ser Trp Leu Leu Ile Asp Asn
965 970 975Gln Val Ser Ala Gln Val Lys
Thr Thr Arg Ile Ala Glu Ala Ile Ala 980 985
990Ser Val Gln Leu Tyr Val Asn Arg Ala Leu Ser Gly Leu Glu
Asn Gly 995 1000 1005Gln Ser Ile
Thr Asp Ala Val Asp Asn Ala Val Lys Ser Gly Val 1010
1015 1020Phe Phe Thr Arg Asp Trp Asp Thr Tyr Asn Lys
Arg Tyr Ser Thr 1025 1030 1035Trp Ala
Gly Val Ser Glu Leu Val Tyr Tyr Pro Glu Asn Tyr Val 1040
1045 1050Asp Pro Thr Leu Arg Pro Gly Gln Thr Gly
Met Met Asp Glu Met 1055 1060 1065Leu
Gln Thr Leu Ser Gln Ser Gln Leu Thr Ser Asp Ser Val Glu 1070
1075 1080Asp Ala Phe Lys Thr Tyr Met Thr Arg
Phe Glu Glu Ile Ala Asn 1085 1090
1095Leu Asp Ile Val Ser Gly Tyr His Asp Asn Leu Asn Asp Gln Lys
1100 1105 1110Gly Val Thr Tyr Leu Ile
Gly Arg Ser Ala Ala Gly Asp Tyr Tyr 1115 1120
1125Trp Arg Ser Ala Asp Ile Ser Lys Leu Ser Asp Gly Lys Leu
Pro 1130 1135 1140Ala Asn Ala Trp Ala
Glu Trp Lys Lys Ile Thr Thr Ala Leu Thr 1145 1150
1155Pro Val Asn Asn Leu Val Arg Pro Val Ile Phe Gln Ser
Arg Leu 1160 1165 1170Tyr Val Thr Trp
Val Glu Ser Arg Glu Val Gly Ile Ser Ala Asp 1175
1180 1185Lys Glu His Asn Ser Glu Thr Lys Ile Leu Glu
Tyr Ala Leu Lys 1190 1195 1200Tyr Ala
His Ile Leu His Asp Gly Thr Trp Ser Ala Pro Val Ser 1205
1210 1215Val Lys Leu Glu Asn Gly Thr Leu Pro Leu
Asp Ser Val Ala Ile 1220 1225 1230Asp
Val Thr Gly Met Tyr Cys Ala Lys Asp Thr Gln His Asp Gln 1235
1240 1245Leu Tyr Ile Leu Phe Tyr Lys Lys Lys
Glu Thr Tyr Asn Asp Val 1250 1255
1260Asn Asp Val Leu Lys Gly Ile Ile Leu His Asp Asp Gly Thr Thr
1265 1270 1275Thr Ile Thr Ser Gly Asn
Ser Val Ser Gly Leu Val Val Tyr Lys 1280 1285
1290Gln Leu Asp Thr Thr Lys Glu Val Arg Leu Asn Thr Pro Tyr
Pro 1295 1300 1305Gly Gly Lys Thr Tyr
Tyr Ser Ile Asn Asn Met Arg Glu Ser Ser 1310 1315
1320Lys Trp Gly Asp Asp Asn Ile Ser Met Leu Ser Gly Cys
Ser Val 1325 1330 1335Lys Asp Phe Val
Phe Thr Glu Gly Asp Gly Lys Leu Asn Val Ala 1340
1345 1350Phe Asn Ala Thr Glu Arg Ile Ile Tyr Arg Gly
Asn Pro Asp Ser 1355 1360 1365Gln Gly
Tyr Val Ala Leu Val Asn Met Ile Lys Ala Ile Gly Asn 1370
1375 1380Ile Gly Asp Thr Phe Lys Ile Pro Val Leu
Asn Ser Asn Gly Glu 1385 1390 1395Gly
Leu Asp Lys Pro Phe Thr Cys Ile Phe Arg Gln Pro Asp Glu 1400
1405 1410Lys Thr Asp Ala Ile Ala Tyr Phe Ser
Asp Val Gln Gly Leu Asn 1415 1420
1425Ile Asp His Phe Ala Phe Asn Asp Glu Ser Gln Lys Met Leu Gly
1430 1435 1440Arg Ile Leu Arg Pro Glu
Glu Lys Asp Phe Tyr Lys Leu Glu Cys 1445 1450
1455Val Asn Thr Asn Leu His Ile Tyr Lys Asp Ser Ser Lys Thr
Ile 1460 1465 1470Lys Pro Asp Asn Phe
Val Tyr Phe Gly Pro Gly Met Asp Leu Ile 1475 1480
1485Val Val Lys Gly Met Ile Val Glu Thr Leu Phe Gly Leu
Phe Gly 1490 1495 1500Glu Leu Lys Thr
Gly Ile Lys Asp Lys Ser Val Lys Leu Ser Val 1505
1510 1515Ser Ala Gly Val Ile Asp Asn Ser Pro Ala Ala
Thr Lys Thr Lys 1520 1525 1530Tyr Thr
Phe Asp Glu Ser Leu Tyr Val Ile Glu Gly Gln Thr Val 1535
1540 1545Ser Ile Gln Leu Ser Glu Phe Lys Glu Asn
Asn Ile Asp Leu Glu 1550 1555 1560Phe
Thr Phe Phe Ala Ser Gly Asp Ser Gly Asn Ser Leu Gly Lys 1565
1570 1575Ser Val Ile Ser Ala Thr Leu Thr Arg
Thr Ser Glu Asn Thr Ile 1580 1585
1590Pro Val Ile Ser Leu Asn Lys Thr Ser Asp Asn Ala Gln Tyr Leu
1595 1600 1605Gln Tyr Gly Ile His Arg
Ile Arg Val Asn Thr Leu Phe Ala Lys 1610 1615
1620Gln Leu Val Ala Arg Ala Asn Ala Gly Leu Asp Thr Val Leu
Ser 1625 1630 1635Met Ala Thr Gln Gln
Leu Thr Glu Pro Lys Met Gly Lys Gly Ala 1640 1645
1650Tyr Ile Asp Leu Glu Leu Asn Ala Ser Ser Asp Gly Ser
Ser Ala 1655 1660 1665Val Phe Glu Val
Leu Met Cys Asp Val Phe Thr Lys Gly Asp Arg 1670
1675 1680Ile Ala Leu Thr Ser Gly Thr Leu Ser Pro Thr
Ala Arg Thr Ser 1685 1690 1695Cys Ser
Phe Phe Ile Pro Arg Leu Gly Glu Ser Thr Glu Ser Pro 1700
1705 1710Trp Asn Met Tyr Phe Cys Val Lys Thr Gln
Asn Asp Glu Ser Lys 1715 1720 1725Arg
Val Glu Val Met Gly Gly Glu Gly Lys Trp Ser Tyr Gln Tyr 1730
1735 1740Val Asp Glu Ser Gly Thr Ala Ile Lys
Pro Pro Tyr Thr Asp Pro 1745 1750
1755Tyr Ile Ala Ser Val Tyr Val Arg Asn Asp Thr Thr Glu Pro Met
1760 1765 1770Asp Phe Asn Gly Ala Asn
Ala Leu Tyr Phe Trp Glu Met Phe Tyr 1775 1780
1785Tyr Val Pro Met Met Val Phe Lys Arg Leu Leu Ser Glu Ser
Lys 1790 1795 1800Phe Ala Glu Ala Thr
Gln Trp Ile Lys Tyr Ile Trp Asn Pro Asp 1805 1810
1815Gly Tyr Leu Val Asn Asn Gln Pro Ala Thr Tyr Ser Trp
Asn Val 1820 1825 1830Arg Pro Leu Glu
Glu Asp Thr Ser Trp His Ala Asp Pro Leu Asp 1835
1840 1845Ser Val Asn Pro Asp Ala Val Ala Gln Ala Asp
Pro Leu His Tyr 1850 1855 1860Lys Val
Ala Thr Phe Met Ala Tyr Leu Asp Leu Leu Ile Ala Arg 1865
1870 1875Gly Asp Ala Ala Tyr Arg Gln Leu Glu Arg
Asp Thr Leu Asn Glu 1880 1885 1890Ala
Lys Met Trp Tyr Val Gln Ala Leu Asn Ile Leu Gly Asp Glu 1895
1900 1905Pro Tyr Gln Ser Ser Ser Ser Gly Trp
Ser Ser Pro Val Leu Ser 1910 1915
1920Ser Ala Ala Ala Gln Thr Thr Glu Lys Asn Val Gln Gln Ala Met
1925 1930 1935Leu Ala Val Arg Gln Gln
Pro Asp Ala Gly Glu Leu Arg Thr Ala 1940 1945
1950Asn Ser Leu Thr Asp Leu Phe Leu Pro Gln Gln Asn Ala Lys
Leu 1955 1960 1965Ala Gly Tyr Trp Gln
Thr Leu Ala Gln Arg Leu Tyr Asn Leu Arg 1970 1975
1980His Asn Leu Ser Ile Asp Gly Ser Pro Leu Ser Leu Ala
Ile Tyr 1985 1990 1995Ala Ala Pro Ala
Asp Pro Ala Ala Leu Leu Ser Ala Ala Val Asn 2000
2005 2010Ser Ala Ser Gly Gly Ser Asp Leu Pro Ala Val
Val Met Pro Leu 2015 2020 2025Tyr Arg
Phe Pro Val Ile Leu Glu Ser Ala Arg Gly Met Ala Gly 2030
2035 2040Gln Leu Ile Gln Phe Gly Ser Thr Leu Leu
Ser Ile Ala Glu Arg 2045 2050 2055Gln
Asp Ala Glu Ala Leu Ser Glu Leu Met Gln Thr Gln Gly Ser 2060
2065 2070Gln Leu Ile Leu Gln Ser Ile Ala Leu
Gln Asn Ser Thr Ile Ser 2075 2080
2085Glu Ile Asp Ala Asp Lys Thr Val Leu Glu Ala Ser Leu Ser Gly
2090 2095 2100Ala Arg Ser Arg Leu Asp
Arg Tyr Thr Thr Leu Tyr Asp Glu Asp 2105 2110
2115Val Asn Thr Gly Glu Gln Gln Ala Met Asp Leu Phe Tyr Ala
Ser 2120 2125 2130Ser Leu Gln Ala Asn
Gly Gly Gln Met Phe His Thr Ile Ala Gly 2135 2140
2145Ala Leu Asp Leu Val Pro Asn Ile Phe Gly Leu Ala Asp
Gly Gly 2150 2155 2160Ser Arg Trp Gly
Ala Val Ser Thr Ala Met Ala Ser Ile Ala Asp 2165
2170 2175Leu Ser Ala Ala Ala Cys His Thr Thr Ala Glu
Arg Leu Ser Gln 2180 2185 2190Ser Glu
Val Tyr Arg Arg Arg Arg Gln Glu Trp Glu Ile Gln Arg 2195
2200 2205Asn Ala Ala Gln Ser Glu Ile Asp Gln Ile
Asp Ala Gln Leu Ala 2210 2215 2220Ser
Leu Thr Ile Arg Arg Glu Gly Ala Val Leu Gln Lys Thr Tyr 2225
2230 2235Leu Glu Thr Gln Gln Gly Gln Met Gln
Ala Gln Met Thr Phe Leu 2240 2245
2250Gln Asn Lys Phe Thr Ser Lys Ala Leu Tyr Asn Trp Leu Arg Gly
2255 2260 2265Lys Leu Ala Ala Ile Tyr
Tyr Gln Phe Tyr Asp Leu Thr Val Ser 2270 2275
2280Arg Cys Leu Met Ala Glu Ala Ala Tyr Ser Trp Asp Ile Lys
Gly 2285 2290 2295Asn Gln Glu Thr Gly
Thr Phe Ile Arg Pro Gly Ala Trp Gln Gly 2300 2305
2310Thr Tyr Ala Gly Leu Met Ala Gly Glu Thr Leu Met Leu
Asn Leu 2315 2320 2325Ala Gln Met Glu
Asn Ser Tyr Leu Thr Lys Asp Glu Arg Leu Lys 2330
2335 2340Glu Val Thr Arg Thr Val Cys Leu Ser Glu Val
Tyr Ala Gly Leu 2345 2350 2355Ser Ser
Asp Ser Phe Ala Leu Ala Asp Thr Val Thr Thr Leu Val 2360
2365 2370Ser Asn Gly Lys Gly Asn Ala Gly Thr Asp
Asp Asn Gly Val Lys 2375 2380 2385Ile
Asp Asp Lys Gln Leu Leu Ala Thr Leu Lys Leu Ser Asp Leu 2390
2395 2400Ser Ile Asp Asn Asp Tyr Pro Glu Ser
Leu Gly Lys Thr Arg Arg 2405 2410
2415Ile Lys Gln Ile Ser Val Thr Leu Pro Thr Leu Val Gly Pro Tyr
2420 2425 2430Gln Asp Val Arg Ala Val
Leu Ser Tyr Gly Gly Ser Val Ala Leu 2435 2440
2445Pro Arg Gly Cys Thr Ala Val Ala Val Ser His Gly Met Asn
Asp 2450 2455 2460Ser Gly Gln Phe Gln
Leu Asp Phe Asn Asp Ser Arg Trp Leu Pro 2465 2470
2475Phe Glu Gly Ile Pro Val Gly Asp Ser Gly Thr Leu Thr
Leu Ser 2480 2485 2490Phe Pro Asp Ile
Thr Asp Lys Gln Gln Glu Asn Leu Leu Leu Ser 2495
2500 2505Leu Ser Asp Ile Ile Leu His Ile Arg Tyr Thr
Ile Ala Ser 2510 2515
2520201421PRTPantoea agglomerans 20Met Gln Asn Thr Asp Gln Met Ser Leu
Thr Pro Pro Ser Leu Pro Ser1 5 10
15Gly Gly Gly Ala Val Thr Gly Leu Lys Gly Asp Met Ser Gly Ala
Gly 20 25 30Pro Asp Gly Ala
Ala Thr Leu Asn Leu Pro Leu Pro Ile Ser Pro Gly 35
40 45Arg Gly Tyr Ala Pro Ser Leu Ser Leu Gly Tyr His
Ser Arg Asn Gly 50 55 60Asn Gly Val
Phe Gly Ala Gly Trp Ser Cys Gly Gln Met Ala Ile Arg65 70
75 80Leu Gln Thr Arg Lys Gly Val Pro
Phe Tyr Asp Gly Ser Asp Val Phe 85 90
95Thr Ala Pro Asp Gly Glu Val Leu Val Pro Ala Leu Asp Ala
Ser Gly 100 105 110Lys Thr Glu
Val Arg Thr Thr Thr Thr Leu Leu Gly Glu Asn Leu Gly 115
120 125Gly Thr Phe Thr Val Gln Thr Tyr Arg Ser Arg
Val Glu Thr Asp Phe 130 135 140Ser Arg
Leu Glu Arg Trp Val Ser Gln Ala Asp Ala Ala Ala Asp Phe145
150 155 160Trp Leu Ile Tyr Ser Pro Asp
Gly Gln Ile His Leu Leu Gly Arg Asn 165
170 175Pro Gln Ala Arg Val Ser Asn Pro Glu Asp Thr Thr
Gln Thr Ala Ala 180 185 190Trp
Leu Ile Glu Ser Ser Val Ser Ala Ser Gly Glu Gln Ile Tyr Trp 195
200 205Gln Tyr Arg Gln Glu Asp Glu Leu Gly
Cys Thr Gln Asp Glu Lys Thr 210 215
220Ala His Ala His Ala Leu Ala Gln Arg Tyr Leu Val Ala Val Trp Tyr225
230 235 240Gly Asn Lys Ala
Ala Ser Arg Thr Leu Pro Gly Leu Leu Ser Val Pro 245
250 255Ala Ala Gly Ser Trp Leu Phe Thr Leu Val
Leu Asp Tyr Gly Glu Arg 260 265
270Thr Thr Asp Pro Ala Thr Pro Pro Ala Trp Leu Ser Pro Gly Ser Gly
275 280 285Thr Trp Leu Cys Arg Gln Asp
Val Phe Ser Ser Trp Glu Tyr Gly Phe 290 295
300Glu Leu Arg Thr Arg Arg Leu Cys Arg Gln Val Leu Met Tyr His
Asp305 310 315 320Val Ala
Ala Leu Ala Gly Lys Pro Gly Ser Asp Ala Val Pro Gln Leu
325 330 335Val Thr Arg Leu Leu Leu Asp
Tyr Asn Leu Ser Pro Ser Leu Thr Thr 340 345
350Leu Lys Thr Ala Gln Gln Ala Ala Trp Glu Ala Asp Gly Thr
Leu Arg 355 360 365Ser Leu Pro Pro
Leu Ala Phe Ser Trp Gln Thr Phe Pro Ser Thr Pro 370
375 380Glu Lys Ser Val Ser Trp Gln Gln Arg Asn Asp Met
Gly Lys Leu Asn385 390 395
400Pro Gln Gln Pro Tyr Gln Met Val Asp Leu His Gly Glu Gly Leu Ala
405 410 415Gly Ile Leu Tyr Gln
Asp Ser Gly Ala Trp Trp Tyr Arg Glu Pro Val 420
425 430Arg Gln Leu Gly Asp Asp Asp Asn Ala Val Thr Trp
Ala Ala Ala Arg 435 440 445Pro Leu
Pro Ala Phe Pro Ala Leu Arg Lys Gly Gly Met Leu Leu Asp 450
455 460Leu Asp Gly Asp Gly Tyr Leu Glu Trp Val Val
Thr Ala Pro Gly Val465 470 475
480Ala Gly Cys Tyr Ala Gln Thr Pro Glu Gln Cys Trp Gln Arg Phe Thr
485 490 495Pro Leu Ser Ala
Leu Pro Val Glu Tyr Arg His Ser Arg Met Glu Ile 500
505 510Thr Asp Val Thr Gly Ala Gly Leu Ala Asp Met
Leu Leu Ile Gly Pro 515 520 525Lys
Ser Val Arg Leu Tyr Ser Gly Ser Gly Arg Gly Trp Lys Lys Ala 530
535 540Arg Thr Val Met Gln Asp Ser Gly Ile Thr
Leu Pro Val Pro Gly Thr545 550 555
560Asn Ala Arg Val Met Val Ala Phe Ser Asp Met Ala Gly Ser Gly
Gln 565 570 575Gln His Leu
Thr Glu Ile Lys Ala Ser Gly Val Arg Tyr Trp Pro Ser 580
585 590Leu Gly His Gly Arg Phe Ala Ala Pro Val
Thr Leu Pro Gly Phe Ser 595 600
605Gln Pro Ala Glu Thr Phe Asn Pro Ala Gln Leu Tyr Leu Ala Asp Val 610
615 620Asp Gly Ser Gly Thr Thr Asp Leu
Ile Tyr Ala Leu Ser Asp His Leu625 630
635 640Leu Val Trp Leu Asn Gln Ser Gly Asn Arg Phe Asp
Glu Pro Phe Arg 645 650
655Ile Asp Leu Pro Glu Gly Val Arg Tyr Asp Asn Thr Cys Ser Leu Gln
660 665 670Val Ala Asp Ile Gln Gly
Leu Gly Ile Ser Ser Leu Val Leu Ser Val 675 680
685Pro His Pro Thr Pro Arg His Trp Val Cys His Leu Thr Ala
Glu Lys 690 695 700Pro Trp Leu Leu Asp
Gly Met Asn Asn Asn Met Gly Ala Arg His Thr705 710
715 720Leu Cys Tyr Arg Ser Ser Ala Gln Phe Trp
Leu Asp Glu Lys Ala Ala 725 730
735Ala Thr Ala Asp Arg Pro Ala Pro Ala Cys Tyr Met Pro Phe Ala Leu
740 745 750His Thr Leu Ser Arg
Thr Glu Val Ser Asp Glu Ile Thr Gly Asn Arg 755
760 765Leu Thr Arg Thr Ile Arg Tyr Arg His Gly Val Trp
Asp Arg Arg Glu 770 775 780Arg Glu Phe
Arg Gly Phe Gly Phe Val Glu Val Ser Asp Ala Glu Ala785
790 795 800Leu Ala Lys Gln Thr Glu Gly
Met Ser Ala Pro Ala Val Lys Arg Ser 805
810 815Trp Tyr Ala Thr Gly Leu Thr Ala Val Asp Ala Gln
Leu Pro Asp Glu 820 825 830Phe
Trp Lys Gly Asp His Ala Ala Phe Ala Gly Phe Thr Pro Arg Phe 835
840 845Thr Thr Gly Tyr Gly Glu Gln Glu Ala
Ala Leu Asp Thr Ile Ser Asp 850 855
860Asp Thr Arg Phe Trp Leu Thr Arg Ala Ile Arg Gly Thr Leu Leu Arg865
870 875 880Ser Glu Leu Tyr
Gly Ala Asp Gly Ser Ser Gln Ala Gly Ile Pro Tyr 885
890 895Ser Ile Thr Glu Ser Arg Pro Gln Val Arg
Leu Ile Thr Glu Ala Gly 900 905
910Asn Ser Pro Val Val Trp Pro Ser Val Ile Glu Asn Arg Ala Ser His
915 920 925Tyr Glu Arg Val Ser Ser Asp
Pro Gln Cys Gly Gln Gln Ile Leu Leu 930 935
940Thr Ser Asn Glu Tyr Gly Gln Pro Leu Arg Gln Ile Gly Val Ser
Tyr945 950 955 960Pro Arg
Arg Thr Arg Pro Asp Ala Ser Pro Tyr Pro Asp Asp Leu Pro
965 970 975Asp Gly Leu Phe Ala Asp Ser
Phe Asp Glu Gln Gln Gln Ala Leu Arg 980 985
990Leu Thr Leu Thr Gln Ser Ser Trp His Thr Leu Lys Asp Ile
Ser Ser 995 1000 1005Gly Ile Trp
Leu Pro Ala Val Ala Asp Ala Thr Arg Ser Asp Leu 1010
1015 1020Phe Val His Gln Ala Ala Gln Val Pro Pro Ala
Gly Leu Thr Leu 1025 1030 1035Glu Asn
Leu Leu Thr Asp Ser Ala Leu Leu Thr Ser Pro Val Phe 1040
1045 1050Gly Gly Gln Ser Gln Thr Trp Tyr Gln Asp
Ser Ala Gly Gln Ala 1055 1060 1065Ser
Thr Thr Ser Pro Asp Phe Pro Leu Arg Pro Ser Phe Ser Glu 1070
1075 1080Thr Ala Ala Leu Asp Glu Ala Gln Val
Ser Ala Leu Ser Ala Asp 1085 1090
1095Ile Asp Gln Thr Lys Leu Glu Gln Ala Gly Tyr Thr Arg Ser Ala
1100 1105 1110Tyr Leu Phe Ala Arg Ser
Gly Glu Glu Gly Lys Thr Leu Trp Thr 1115 1120
1125Val Arg Gln Gly Tyr Ile Thr Phe Ser Ser Ala Asp His Phe
Tyr 1130 1135 1140Leu Pro Ile Ala Ala
Gln Gln Thr Leu Leu Thr Gly Lys Thr Thr 1145 1150
1155Val Thr Tyr Asp Pro Tyr Asp Cys Val Val Leu Gln Ala
Lys Asp 1160 1165 1170Ala Ala Gly Ala
Val Thr Ser Ala Thr Tyr Asp Trp Arg Phe Leu 1175
1180 1185Ala Pro Thr Gln Ile Thr Asp Ile Asn Asp Asn
Leu Lys Ser Val 1190 1195 1200Thr Leu
Asp Ala Leu Gly Arg Val Thr Ser Gln Arg Phe Ser Gly 1205
1210 1215Ser Glu Asn Gly Lys Pro Ala Gly Tyr Ser
Asp Asp Ala Phe Pro 1220 1225 1230Leu
Pro Ala Ser Ala Asp Ala Ala Leu Ala Leu Ser Ala Pro Leu 1235
1240 1245Pro Val Ala Gln Cys Ile Ile Tyr Val
Pro Asp Ser Trp Met Leu 1250 1255
1260Thr Gly Glu Gln Gln Gln Pro Pro His Val Val Thr Leu Leu Thr
1265 1270 1275Asp Arg Tyr Asp Ser Asp
Ser Gln Gln Gln Ile Arg Gln Gln Val 1280 1285
1290Val Phe Ser Asp Gly Phe Gly Arg Val Leu Gln Ala Ala Ser
Arg 1295 1300 1305Gln Val Asn Gly Glu
Ala Trp Gln Arg Ala Ala Asn Gly Ser Phe 1310 1315
1320Val Ala Asp Pro Asn Gly Ser Pro Val Leu Thr Glu Thr
Thr Phe 1325 1330 1335Arg Trp Ala Val
Thr Gly Arg Thr Glu Tyr Asp Asn Lys Gly Gln 1340
1345 1350Ala Ile Arg Thr Tyr Gln Pro Tyr Phe Leu Asp
Ser Trp Lys Tyr 1355 1360 1365Val Arg
Asp Asp Ser Ala Arg His Asp Leu Tyr Ala Asp Thr His 1370
1375 1380Tyr Tyr Asp Pro Val Gly Arg Glu Arg Gln
Val Ile Thr Ala Lys 1385 1390 1395Gly
Leu Leu Arg Arg Val Thr Tyr Thr Pro Trp Phe Val Val Ser 1400
1405 1410Glu Asp Glu Asn Asp Thr Gln Ala
1415 1420211004PRTPantoea agglomerans 21Met Ser Ala Ala
Tyr Val Leu Ser Asn Leu Ser Tyr Gln Arg Glu Asn1 5
10 15Thr Met Ser Thr Ser Leu Tyr Ser Arg Thr
Pro Ser Val Thr Val Leu 20 25
30Asp Asn Arg Gly Leu Thr Val Arg Asp Ile Ala Tyr His Arg His Pro
35 40 45Asp Thr Pro Ala Val Thr Ser Glu
Arg Ile Thr Arg His Gln Tyr Asp 50 55
60Ala Arg Gly Phe Leu Thr Gln Ser Ala Asp Pro Arg Leu His Asp Ala65
70 75 80Gly Leu Ala Asn Phe
Ser Tyr Arg Thr Asp Leu Thr Gly Ser Val Leu 85
90 95Arg Leu Gln Gly Val Asp Asn Gly Ile Thr Val
Ala Leu Asn Asp Ala 100 105
110Ala Gly Arg Pro Phe Leu Ala Val Ser Asn Ile Arg Thr Ala Gly Asp
115 120 125Gly Ser Glu Asp Arg Ser Gln
Ala Leu Thr Arg Thr Cys Gln Tyr Glu 130 135
140Asp Ala Thr Leu Pro Gly Arg Pro Leu Ser Ile Thr Glu Gln Val
Lys145 150 155 160Gly Gly
Ala Ala Arg Ile Thr Glu Arg Phe Ile Tyr Ala Gly Asn Ala
165 170 175Val Glu Glu Lys Ala Leu Asn
Leu Ala Gly Gln Pro Val Ser His Tyr 180 185
190Asp Thr Ala Gly Leu Thr Gln Thr Asp Ser Ile Ala Leu Thr
Gly Val 195 200 205Pro Leu Ser Val
Thr Arg Arg Leu Leu Lys Asp Ala Asp Asn Pro Asp 210
215 220Ala Val Ala Asp Trp Gln Gly Thr Asp Ala Ser Val
Trp Asn Asp Pro225 230 235
240Leu Asp Val Glu Thr Tyr Thr Thr Leu Ser Thr Ala Asp Ala Thr Gly
245 250 255Ala Val Leu Thr Thr
Thr Asp Ala Lys Gly Asn Leu Gln Arg Leu Ala 260
265 270Tyr Asp Val Ala Gly Leu Leu Ser Gly Ser Trp Leu
Thr Leu Lys Asp 275 280 285Gly Thr
Glu Gln Val Ile Val Thr Ser Leu Thr Tyr Ser Ala Ala Gly 290
295 300Gln Lys Leu Arg Glu Glu His Gly Asn Gly Val
Val Thr Thr Tyr Thr305 310 315
320Tyr Glu Ala Glu Thr Gln Arg Leu Thr Gly Ile Lys Thr Ala Arg Pro
325 330 335Ala Gly His Thr
Ser Gly Ala Lys Val Leu Gln Asp Leu Arg Tyr Thr 340
345 350Tyr Asp Pro Val Gly Asn Val Leu Lys Ile Ser
Asn Asp Ala Glu Glu 355 360 365Thr
Arg Phe Trp Arg Asn Gln Lys Val Val Pro Glu Ser Ala Tyr Val 370
375 380Tyr Asp Ser Leu Tyr Gln Leu Val Ser Ala
Thr Gly Arg Glu Met Ala385 390 395
400Asn Ala Gly Gln Gln Gly Ser Ser Ser Ser Ser Ala Thr Val Pro
Leu 405 410 415Pro Ala Asp
Ser Ser Ala Phe Thr Asn Tyr Thr Arg Asn Tyr Thr Tyr 420
425 430Asp Glu Ala Gly Asn Leu Thr Gln Val Arg
His Thr Pro Ala Thr Gly 435 440
445Ser Gly Tyr Thr Thr Lys Ile Thr Val Ser Asp Lys Ser Asn Arg Gly 450
455 460Val Leu Ser Thr Leu Thr Glu Asn
Pro Ser Asp Val Asp Ala Leu Phe465 470
475 480Thr Ala Gly Gly Gln Gln Lys Gln Leu Gln Pro Gly
Gln Ser Leu Ile 485 490
495Trp Thr Pro Arg Asn Glu Leu Leu Lys Val Thr Pro Val Ala Arg Asp
500 505 510Gly Gly Ala Asp Asp Ser
Glu Ser Tyr Arg Tyr Asp Gly Gly Ser Leu 515 520
525Arg Leu Leu Lys Val Ser Val Gln Lys Thr Gly Asn Ser Thr
Gln Thr 530 535 540Gln Arg Ala Leu Tyr
Leu Pro Gly Leu Glu Leu Arg Asn Thr Thr Ser545 550
555 560Gly Asp Thr Glu Thr Glu Ser Leu Gln Val
Val Thr Val Gly Glu Ala 565 570
575Gly Arg Ala Gln Val Arg Val Leu His Trp Glu Ser Gly Thr Pro Asp
580 585 590Ser Val Ser Asn Asp
Gln Leu Arg Tyr Ser Tyr Asp Asn Leu Thr Gly 595
600 605Ser Ser Gly Leu Glu Leu Asp Ser Ser Gly Asn Ile
Ile Ser Met Glu 610 615 620Glu Tyr Tyr
Pro Tyr Gly Gly Thr Ala Val Trp Thr Ala Arg Ser Ala625
630 635 640Val Glu Ala Lys Tyr Lys Thr
Val Arg Tyr Ser Ala Lys Glu Arg Asp 645
650 655Ala Thr Gly Leu Tyr Tyr Tyr Gly Tyr Arg Tyr Tyr
Gln Pro Trp Ala 660 665 670Gly
Arg Trp Leu Ser Ala Asp Pro Ala Gly Thr Ala Asp Gly Leu Asn 675
680 685Leu Phe Arg Met Val Arg Asn Asn Pro
Val Thr Leu Lys Asp Thr Asn 690 695
700Gly Leu Ile Ser Thr Gly Gln Asp Ala Arg Lys Leu Val Ala Glu Ala705
710 715 720Phe Val His Pro
Leu His Met Thr Val Phe Glu Arg Ile Ser Ser Glu 725
730 735Glu Asn Leu Ala Met Ser Val Arg Glu Ala
Gly Ile Tyr Thr Ile Ser 740 745
750Ala Leu Gly Glu Gly Ala Ala Ala Lys Gly His Asn Ile Leu Glu Lys
755 760 765Thr Ile Lys Pro Gly Ser Leu
Lys Ala Val Tyr Gly Asp Asn Ala Glu 770 775
780Ser Ile Leu Ala Gln Ala Lys Arg Ser Gly Phe Val Gly Arg Val
Gly785 790 795 800Gln Trp
Asp Ala Ser Gly Val Arg Gly Ile Tyr Ala His Asn Thr Pro
805 810 815Gly Gly Glu Asp Leu Ala Tyr
Pro Val Asn Leu Lys Asn Ser Ser Ala 820 825
830Asn Glu Leu Val Asn Ala Trp Ile Lys Phe Lys Ile Ile Thr
Pro Tyr 835 840 845Thr Gly Asp Tyr
Asp Met His Asp Ile Ile Lys Ile Ser Asp Gly Lys 850
855 860Gly His Val Pro Leu Ala Glu Ser Asn Glu Glu Lys
Gly Val Lys Asp865 870 875
880Met Ile Asn Glu Gly Val Ala Gln Val Asp Pro Ala Arg Pro Phe Thr
885 890 895Ser Thr Ala Met Asn
Val Val Arg His Gly Pro Gln Val Asn Phe Val 900
905 910Pro Tyr Met Trp Glu His Glu His Glu Asn Val Val
Arg Asp Asn Gly 915 920 925Tyr Leu
Gly Val Val Ala Arg Pro Gly Pro Phe Pro Val Ala Met Val 930
935 940His Lys Gly Glu Trp Thr Val Phe Asp Asn Lys
Asn Glu Leu Phe Glu945 950 955
960Phe Tyr Lys Ser Thr Asn Thr Pro Leu Pro Glu His Trp Ser Gln Asp
965 970 975Phe Val Glu Arg
Gly Lys Gly Asn Val Ala Thr Pro Arg His Ala Glu 980
985 990Ile Leu Asp Arg Asn Ser Ser Arg Leu Arg Ala
Ala 995 100022971PRTPantoea agglomerans 22Met Cys
Ser Val Ala Asp Phe Asp Arg Leu His Asn Ile Lys Gln Glu1 5
10 15Asn Ile Met Ser Thr Ser Leu Tyr
Ser Arg Thr Pro Ser Val Thr Val 20 25
30Leu Asp Asn Arg Gly Leu Thr Val Arg Asp Ile Ala Tyr His Arg
His 35 40 45Pro Asp Thr Pro Ala
Val Thr Ser Glu Arg Ile Thr Arg His Gln Tyr 50 55
60Asp Ala Arg Gly Phe Leu Thr Gln Ser Ala Asp Pro Arg Leu
His Asp65 70 75 80Ala
Gly Leu Ala Asn Phe Ser Tyr Arg Thr Asp Leu Thr Gly Ser Val
85 90 95Leu Arg Leu Gln Gly Val Asp
Asn Gly Ile Thr Val Ala Leu Asn Asp 100 105
110Ala Ala Gly Arg Pro Phe Leu Ala Val Ser Asn Ile Arg Thr
Ala Gly 115 120 125Asp Gly Ser Glu
Asp Arg Ser Gln Ala Leu Thr Arg Thr Cys Gln Tyr 130
135 140Glu Asp Ala Thr Leu Pro Gly Arg Pro Leu Ser Ile
Thr Glu Gln Val145 150 155
160Lys Gly Gly Ala Ala Arg Ile Thr Glu Arg Phe Ile Tyr Ala Gly Asn
165 170 175Ala Val Glu Glu Lys
Ala Leu Asn Leu Ala Gly Gln Pro Val Ser His 180
185 190Tyr Asp Thr Ala Gly Leu Thr Gln Thr Asp Ser Ile
Ala Leu Thr Gly 195 200 205Val Pro
Leu Ser Val Thr Arg Arg Leu Leu Lys Asp Ala Asp Asn Pro 210
215 220Asp Ala Val Ala Asp Trp Gln Gly Thr Asp Ala
Ser Val Trp Asn Asp225 230 235
240Leu Leu Gly Ala Glu Thr Tyr Thr Thr Leu Ser Thr Ala Asp Val Thr
245 250 255Gly Ala Val Leu
Thr Thr Thr Asp Ala Lys Gly Asn Leu Gln Arg Leu 260
265 270Ala Tyr Asp Val Ala Gly Leu Leu Ser Gly Ser
Trp Leu Thr Leu Lys 275 280 285Asp
Gly Thr Glu Gln Val Ile Val Thr Ser Leu Thr Tyr Ser Ala Ala 290
295 300Gly Gln Lys Leu Arg Glu Glu His Gly Asn
Gly Val Val Thr Thr Tyr305 310 315
320Thr Tyr Glu Ala Glu Thr Gln Arg Leu Thr Gly Ile Lys Thr Glu
Arg 325 330 335Pro Ala Gly
His Ala Ser Gly Ala Lys Val Leu Gln Asp Leu Arg Tyr 340
345 350Thr Tyr Asp Pro Val Gly Asn Val Leu Lys
Ile Ser Asn Asp Ala Glu 355 360
365Glu Thr Arg Phe Trp Arg Asn Gln Lys Val Val Pro Glu Asn Ala Tyr 370
375 380Val Tyr Asp Ser Leu Tyr Gln Leu
Val Ser Ala Thr Gly Arg Glu Met385 390
395 400Ala Asn Ala Gly Gln Gln Gly Ser Ser Ser Ser Ser
Ala Thr Val Pro 405 410
415Leu Pro Ala Asp Ser Ser Ala Phe Thr Asn Tyr Thr Arg Asn Tyr Thr
420 425 430Tyr Asp Glu Ala Gly Asn
Leu Thr Gln Val Arg His Thr Pro Ala Thr 435 440
445Gly Ser Gly Tyr Thr Thr Lys Ile Thr Val Ser Asp Lys Ser
Asn Arg 450 455 460Gly Val Leu Ser Thr
Leu Thr Glu Asn Pro Ser Asp Val Asp Ala Leu465 470
475 480Phe Thr Ala Gly Gly Gln Gln Lys Gln Leu
Gln Pro Gly Gln Ser Leu 485 490
495Ile Trp Thr Pro Arg Asn Glu Leu Leu Lys Val Met Pro Ile Met Arg
500 505 510Asp Gly Gly Thr Asp
Asp Ser Glu Ser Tyr Arg Tyr Asp Gly Gly Ser 515
520 525Gln Arg Leu Leu Lys Val Ser Val Gln Lys Thr Gly
Asn Ser Thr Gln 530 535 540Thr Gln Arg
Ala Leu Tyr Leu Pro Gly Leu Glu Leu Arg Thr Thr Lys545
550 555 560Ser Gly Asp Thr Leu Thr Glu
Ser Leu Gln Val Ile Thr Ala Gly Glu 565
570 575Ala Gly Arg Ala Gln Val Arg Val Leu His Trp Glu
Ser Gly Thr Pro 580 585 590Asp
Ser Val Ser Asn Asp Gln Leu Arg Tyr Ser Tyr Asp Asn Leu Thr 595
600 605Gly Ser Ser Gly Leu Glu Leu Asp Ser
Ser Gly Asn Ile Ile Ser Met 610 615
620Glu Glu Tyr Tyr Pro Tyr Gly Gly Thr Ala Val Trp Thr Ala Arg Ser625
630 635 640Ala Val Glu Ala
Lys Tyr Lys Thr Val Arg Tyr Ser Gly Lys Glu Arg 645
650 655Asp Ala Thr Gly Leu Tyr Tyr Tyr Gly Tyr
Arg Tyr Tyr Gln Pro Trp 660 665
670Ala Gly Arg Trp Leu Ser Ala Asp Pro Ala Gly Thr Val Asp Gly Leu
675 680 685Asn Leu Phe Arg Met Val Arg
Asn Asn Pro Leu Thr Leu Lys Asp Asn 690 695
700Asp Gly Leu Lys Pro Ile Asn Glu Asn Phe Arg Glu Asn Lys Gly
Asp705 710 715 720Leu Val
Tyr Gly Leu Ala Ala Pro Arg Gly Ala Tyr Ile Ser Thr Ala
725 730 735Ile Gly Arg Lys Phe Ala Pro
Glu Glu Lys Asp Ala Pro Ala Ser Ile 740 745
750Ile Asp Leu Tyr Asn Asn Thr Val Ser Gly Gln Ala Leu Leu
Ser Val 755 760 765Asp Phe Lys Ile
Leu Gln Asp Phe Met Lys Ser Pro Lys Lys Asn Glu 770
775 780Lys Lys Leu Ala Pro Pro Ser Asn Ile Lys Glu Leu
Val Lys Lys Ser785 790 795
800Arg Asp Tyr Pro Leu Trp Glu Asp Tyr Phe Leu Ala Gly Glu Asn Asn
805 810 815Pro Lys Phe Asn Ile
Ala Ser Ile Tyr Lys Glu Val Arg Lys Asp Ala 820
825 830Gly Lys Thr Gln Tyr His Glu Trp His Ile Ala Gly
Gly Gln Ser Ala 835 840 845Pro Lys
Leu Leu Trp Lys Arg Gly Ser Lys Leu Gly Ile Glu Met Ala 850
855 860Ala Ser Gly Ala Gly Asn Lys Ile His Phe Val
Leu Asp Glu Leu Asp865 870 875
880Ile Ser Asn Val Val Asn Lys Glu Gly Pro Gly Gly Lys Ser Ile Thr
885 890 895Ala Ser Glu Leu
Arg Tyr Ala Tyr Arg Asn Arg Glu Arg Leu Thr Gly 900
905 910Asn Ile His Phe Tyr Lys Asn Asn Ala Glu Thr
Gly Ala Pro Trp Asp 915 920 925Thr
Asn Ala Glu Leu Trp Ala Ser Tyr His Pro Lys Pro Lys His Lys 930
935 940Gly Asn Glu Ser Thr His Ile Met Ser Gln
Arg Arg Asn Gly Ser Leu945 950 955
960Phe Lys Ser Met Arg Lys Val Phe Ser Arg Asn
965 970232523PRTPantoea agglomerans 23Met Tyr Leu Thr Glu
Glu Ile Leu Ala Lys Leu Asn Ala Gly Asn Gly1 5
10 15Lys Leu Gln Ser Thr Val Glu Gln Ile Ile Thr
Leu Pro Asp Ile Met 20 25
30Val Arg Ser Phe Ser Gln Val Lys Glu Leu Ala Gly Asp Lys Leu Ser
35 40 45Trp Gly Glu Lys Asn Phe Leu Tyr
Gln Gln Ala Gln Thr Gln Leu Lys 50 55
60Glu Asn Lys Met Ala Glu Ser Arg Ile Leu Ser Arg Ala Asn Pro Gln65
70 75 80Leu Ala Asn Ala Val
Arg Leu Gly Ile Arg Gln Ser Ser Met Leu Gly 85
90 95Ser Tyr Asp Asp Leu Phe Pro Gln Arg Ala Ser
Arg Phe Val Lys Pro 100 105
110Gly Ala Val Ala Ser Met Phe Ser Pro Ala Gly Tyr Leu Thr Glu Leu
115 120 125Tyr Arg Glu Ala Arg Gly Leu
His Lys Ala Glu Ser Gln Tyr Asn Leu 130 135
140Asp Lys Arg Arg Pro Asp Leu Ala Ser Leu Ala Leu Ser Gln Ser
Asn145 150 155 160Met Asp
Asp Glu Leu Ser Thr Leu Ser Leu Ser Asn Glu Leu Leu Leu
165 170 175Asn Asn Ile Gln Gln His Asp
Gly Leu Ser Tyr Asp Asp Ala Leu Lys 180 185
190Lys Leu Ala Gly Tyr Arg Gln Thr Gly Thr Thr Pro Tyr Ser
Gln Pro 195 200 205Tyr Glu Thr Ile
Arg Glu Ala Ile Leu Leu Gln Asp Pro Ala Phe Asn 210
215 220Ser Ile Arg Asn Asn Pro Ala Val Ala Thr Lys Met
Asn Thr Ser Gly225 230 235
240Leu Leu Gly Leu Thr Ala Asn Leu Pro Pro Glu Leu His Ala Ile Leu
245 250 255Thr Glu Thr Ile Thr
Glu Glu Asn Ala Glu Gln Leu Ile Lys Asp Asn 260
265 270Phe Gly Asp Val Asn Val Ser Arg Phe Gln Asp Val
Ser Tyr Leu Ala 275 280 285Arg Trp
Tyr Gly Met Thr Pro Tyr Glu Leu Asn Ser Val Leu Gly Leu 290
295 300Met Glu Val Gly Ser Asn Pro Val Asp Gly Val
Thr Tyr Tyr Gln Asp305 310 315
320Asp Gln Leu Ile Ser Leu Val Asp Asn Gly Gly Asn Leu Asp Ala Val
325 330 335Leu Met Gln Arg
Ala Gly Gly Asp Asn Tyr Ser Gln Phe Gly Tyr Ile 340
345 350Glu Leu Leu Pro Val Ser Gly Asp Thr Tyr Gln
Leu Arg Phe Thr Val 355 360 365Gln
Ser Gly Tyr Val Gly Gln Asp Ser Glu Val Arg Ile Gly Thr Ser 370
375 380Glu Asn Ala Gly Ser Lys Asp Ile Leu Ser
Asp Gly Arg Ile Ala Gly385 390 395
400Leu Asn Ile Pro Met Val Leu Asn Val Lys Leu Asp Ser Thr Lys
Leu 405 410 415Ala Gln Gly
Ile Thr Ile Gly Val Thr Arg Tyr Asp Pro Ser Gly Ser 420
425 430Tyr Ile Asn Phe Ala Ser Val Arg Phe Gln
Arg Tyr Asp Phe Ser Tyr 435 440
445Asn Val Phe Leu Leu Lys Leu Asn Lys Ile Ile Arg Leu Tyr Lys Ala 450
455 460Thr Gly Ile Ser Pro Ser Asp Ile
Gln Thr Leu Ile Glu Ser Ala Asn465 470
475 480His Asp Leu Ala Ile Thr Glu Asp Val Leu Ser Gln
Leu Phe Trp Thr 485 490
495Asn Tyr Tyr Thr Gln Arg Tyr Gly Ile Asp Phe Ser Ala Ala Leu Val
500 505 510Leu Ala Gly Ala Asn Ile
Ser Gln Ile Ala His Ser Asn Lys Gln Ser 515 520
525Ala Phe Thr Arg Leu Phe Asn Thr Pro Pro Leu Asn Asn Gln
Phe Phe 530 535 540Tyr Ala Asp Gly Lys
Lys Leu Asn Leu Glu Pro Gly Lys Ser Asp Asp545 550
555 560Ser His Gly Leu Gly Val Leu Lys Arg Ala
Leu Gln Val Asn Asp Ser 565 570
575Ala Leu Tyr Thr Leu Phe Asn Leu Thr Phe Ala Asp Lys Asp Ala Gln
580 585 590Gly Asn Ala Val Val
Phe Thr Lys Thr Pro Glu Asn Leu Ser Ala Leu 595
600 605Tyr Arg Thr Arg Leu Leu Ala Thr Val Asn Asn Leu
Thr Val Asn Glu 610 615 620Leu Ser Leu
Leu Leu Ser Val Ser Pro Tyr Val Lys Val Lys Leu Ala625
630 635 640Thr Leu Lys Asp Glu Ala Leu
Ser Gln Leu Ser Thr Thr Leu Glu Arg 645
650 655Tyr Thr Gln Trp Leu Asp Lys Met Asn Trp Thr Ile
Gly Asp Leu Tyr 660 665 670Leu
Met Leu Thr Pro Val Tyr Ser Thr Val Leu Ser Pro Asp Ile Glu 675
680 685Asn Leu Val Thr Thr Leu Lys Asn Gly
Leu Ala Gly Gln Asp Leu Thr 690 695
700Ser Asp Glu Lys Arg Ile Ala Ala Leu Ala Pro Phe Val Ala Ala Ala705
710 715 720Thr Gln Leu Asp
Ser Ala Glu Thr Ala Arg Ala Leu Leu Arg Trp Leu 725
730 735Asn Asp Leu Lys Pro Gly Thr Leu Ser Leu
Ala Asp Phe Ile Ala Gln 740 745
750Val Asn Asn Thr Thr Gln Thr Glu Asn Leu Val Thr Phe Ser Gln Val
755 760 765Met Ala Gln Leu Ala Leu Ile
Thr Arg Asn Ala Ser Leu Ser Ala Asn 770 775
780Glu Leu Ser Trp Ala Val Ala His Pro Glu Ile Phe Gln Glu Lys
Ala785 790 795 800Thr Val
Leu Lys Asn Asp Ile Ala Thr Leu Asn Asp Leu Thr Gln Leu
805 810 815His Asp Leu Leu Ala Arg Cys
Gly Ser His Ala Ser Glu Ile Leu Thr 820 825
830Ser Leu Ser Gly Asn Ala Ser Lys Ala Glu Asn Asn Leu Ala
Val Ser 835 840 845Thr Leu Ala Thr
Ala Leu Asn Leu Asp Glu Arg Ala Leu Thr Gln Ala 850
855 860Leu Ala Lys Val Ser Thr Tyr Glu Tyr Phe Tyr Asn
Trp Ala His Leu865 870 875
880Asn Glu Ala Leu Gln Trp Leu Asp Val Ala Thr Thr Phe Gly Ile Thr
885 890 895Pro Asp Asn Leu Ala
Ala Leu Ile Gly Leu Lys Phe Asp Asn Gln Asp 900
905 910Asp Ala Ser Phe Ala Ser Trp Leu Thr Ala Ser Arg
Phe Met Gln Ala 915 920 925Gly Leu
Asn Thr Gln Gln Thr Ala Gln Leu Ser Ala Thr Leu Asp Glu 930
935 940Ser Leu Ser Ala Ala Val Ser Ala Tyr Ala Ile
Lys Asn Ile Phe Ser945 950 955
960Gly Ala Val Ser Asn Arg Glu Gln Leu Tyr Ser Trp Leu Leu Ile Asp
965 970 975Asn Gln Val Ser
Ala Gln Val Lys Thr Thr Arg Ile Ala Glu Ala Ile 980
985 990Ala Ser Val Gln Leu Tyr Val Asn Arg Ala Leu
Ser Gly Leu Glu Asn 995 1000
1005Gly Gln Ser Ala Thr Asp Ala Val Asp Asn Ala Val Lys Ser Gly
1010 1015 1020Val Phe Phe Thr Arg Asp
Trp Asp Thr Tyr Asn Lys Arg Tyr Ser 1025 1030
1035Thr Trp Ala Gly Val Ser Glu Leu Val Tyr Tyr Pro Glu Asn
Tyr 1040 1045 1050Val Asp Pro Thr Leu
Arg Leu Gly Gln Thr Gly Met Met Asp Glu 1055 1060
1065Met Leu Gln Thr Leu Ser Gln Ser Gln Leu Thr Ser Asp
Thr Val 1070 1075 1080Glu Asp Ala Phe
Lys Thr Tyr Met Thr Arg Phe Glu Glu Ile Ala 1085
1090 1095Asn Leu Asp Ile Val Ser Gly Tyr His Asp Asn
Leu Ser Asp Gln 1100 1105 1110Lys Gly
Val Thr Tyr Leu Ile Gly Arg Ser Ala Ala Gly Asp Tyr 1115
1120 1125Tyr Trp Arg Ser Ala Asp Ile Ser Lys Leu
Ser Asp Gly Lys Leu 1130 1135 1140Pro
Ala Asn Ala Trp Ala Glu Trp Lys Lys Ile Thr Thr Ala Leu 1145
1150 1155Thr Pro Val Asn Asn Leu Val Arg Pro
Val Ile Phe Gln Ser Arg 1160 1165
1170Leu Tyr Val Thr Trp Val Glu Ser Arg Glu Val Gly Ile Ser Ala
1175 1180 1185Val Lys Lys Gln Asn Ser
Glu Thr Lys Pro Leu Glu Tyr Ala Leu 1190 1195
1200Lys Tyr Ala His Ile Leu His Asp Gly Thr Trp Ser Ala Pro
Val 1205 1210 1215Ser Val Lys Leu Glu
Asn Gly Thr Leu Pro Leu Asp Ser Val Ala 1220 1225
1230Ile Asp Val Thr Gly Met Tyr Cys Ala Lys Asp Thr Gln
His Asp 1235 1240 1245Gln Leu Tyr Ile
Leu Phe Tyr Lys Lys Lys Glu Thr Tyr Asn Asp 1250
1255 1260Val Asn Asp Val Leu Lys Gly Ile Ile Leu His
Asp Asp Gly Thr 1265 1270 1275Thr Thr
Ile Thr Ser Gly Asn Ser Val Ser Gly Leu Val Val Tyr 1280
1285 1290Lys Gln Leu Asp Thr Thr Lys Glu Val Arg
Leu Asn Thr Pro Tyr 1295 1300 1305Pro
Gly Gly Lys Thr Tyr Tyr Ser Ile Asn Asn Met Arg Glu Ser 1310
1315 1320Ser Lys Trp Gly Asp Asp Asn Ile Ser
Met Leu Ser Gly Cys Ser 1325 1330
1335Val Lys Asp Phe Val Phe Thr Glu Gly Asp Gly Lys Leu Asn Val
1340 1345 1350Ala Phe Asn Ala Thr Glu
Arg Ile Ile Tyr Arg Gly Asn Pro Asp 1355 1360
1365Ser Gln Gly Tyr Val Ala Leu Val Asn Met Ile Lys Ala Ile
Gly 1370 1375 1380Asn Ile Gly Asp Thr
Phe Lys Ile Pro Val Leu Asn Ser Asn Gly 1385 1390
1395Glu Gly Leu Asp Arg Pro Phe Thr Cys Ile Phe Arg Gln
Pro Asp 1400 1405 1410Glu Lys Thr Asp
Ala Ile Ala Tyr Phe Ser Asp Val Gln Gly Leu 1415
1420 1425Asn Ile Asp His Phe Ala Phe Asn Asp Glu Ser
Gln Lys Met Leu 1430 1435 1440Gly Arg
Ile Leu Arg Pro Glu Glu Lys Asp Phe Tyr Lys Leu Glu 1445
1450 1455Cys Val Asn Thr Asn Leu His Ile Tyr Lys
Asp Ser Ser Lys Thr 1460 1465 1470Ile
Lys Pro Asp Asn Phe Val Tyr Phe Gly Pro Gly Met Asp Leu 1475
1480 1485Ile Val Val Lys Gly Met Ile Val Glu
Thr Leu Phe Gly Leu Phe 1490 1495
1500Gly Glu Leu Lys Thr Gly Ile Lys Asp Lys Ser Val Lys Leu Ser
1505 1510 1515Val Ser Ala Gly Val Ile
Asp Asn Ser Pro Ala Ala Thr Lys Thr 1520 1525
1530Lys Tyr Thr Phe Asp Glu Ser Leu Tyr Val Ile Glu Gly Gln
Thr 1535 1540 1545Val Ser Ile Gln Leu
Ser Glu Phe Lys Glu Asn Asn Ile Asp Leu 1550 1555
1560Glu Phe Thr Phe Leu Ala Ser Gly Asp Ser Gly Asn Ser
Leu Gly 1565 1570 1575Gln Ser Val Ile
Ser Ala Thr Leu Thr Arg Thr Ser Glu Asn Thr 1580
1585 1590Ile Pro Val Ile Ser Leu Asn Lys Thr Ser Asp
Asn Ala Gln Tyr 1595 1600 1605Leu Gln
Tyr Gly Ile His Arg Ile Arg Val Asn Thr Leu Phe Ala 1610
1615 1620Lys Gln Leu Val Ala Arg Ala Asn Ala Gly
Leu Asp Thr Val Leu 1625 1630 1635Ser
Met Ala Thr Gln Gln Leu Thr Glu Pro Lys Met Gly Lys Gly 1640
1645 1650Ala Tyr Ile Asp Leu Glu Leu Asn Ala
Ser Ser Asp Gly Ser Ser 1655 1660
1665Ala Val Phe Glu Val Leu Met Cys Asp Val Phe Thr Asn Gly Asp
1670 1675 1680Arg Ile Ala Leu Thr Ser
Gly Thr Leu Ser Pro Thr Ala Arg Thr 1685 1690
1695Ser Cys Ser Phe Phe Val Pro Arg Leu Asp Glu Ser Thr Ala
Ser 1700 1705 1710Ala Tyr Asn Met Tyr
Phe Cys Val Lys Thr Gln Asn Thr Glu Ser 1715 1720
1725Lys Arg Val Glu Val Thr Gly Gly Glu Gly Lys Trp Asp
Tyr Gln 1730 1735 1740Tyr Val Asp Glu
Ser Gly Ala Ala Ile Lys Pro Pro Tyr Thr Asp 1745
1750 1755Pro Tyr Ile Ala Ser Ile Tyr Val Arg Asn Asp
Thr Thr Glu Pro 1760 1765 1770Met Asp
Phe Asn Gly Ala Asn Ala Leu Tyr Phe Trp Glu Met Phe 1775
1780 1785Tyr Tyr Val Pro Met Met Val Phe Lys Arg
Leu Leu Ser Glu Ser 1790 1795 1800Lys
Phe Ala Glu Ala Thr Gln Trp Ile Lys Tyr Ile Trp Asn Pro 1805
1810 1815Asp Gly Tyr Leu Val Asn Asn Gln Pro
Ala Thr Tyr Thr Trp Asn 1820 1825
1830Val Arg Pro Leu Glu Glu Asp Thr Ser Trp His Ala Asp Pro Leu
1835 1840 1845Asp Ser Val Asn Pro Asp
Ala Val Ala Gln Ala Asp Pro Leu His 1850 1855
1860Tyr Lys Val Ala Thr Phe Met Ala Tyr Leu Asp Leu Leu Ile
Ala 1865 1870 1875Arg Gly Asp Ala Ala
Tyr Arg Gln Leu Gln Arg Asp Thr Leu Asn 1880 1885
1890Glu Ala Lys Met Trp Tyr Val Gln Ala Leu Asn Ile Leu
Gly Asp 1895 1900 1905Glu Pro Tyr Gln
Ser Ser Ser Ser Asp Trp Ser Ser Pro Val Leu 1910
1915 1920Ser Ser Ala Ala Asp Gln Thr Thr Glu Lys Asn
Val Gln Gln Ala 1925 1930 1935Met Leu
Ala Val Arg Gln Gln Pro Asp Ala Gly Glu Leu Arg Thr 1940
1945 1950Ala Asn Ser Leu Thr Ser Leu Phe Leu Pro
Gln Gln Asn Glu Lys 1955 1960 1965Leu
Ala Gly Tyr Trp Gln Thr Leu Ala Gln Arg Leu Tyr Asn Leu 1970
1975 1980Arg His Asn Leu Ser Ile Asp Gly Ser
Pro Leu Ser Leu Ala Ile 1985 1990
1995Tyr Ala Ala Pro Ala Asp Pro Ala Ala Leu Leu Ser Ala Ala Val
2000 2005 2010Asn Ser Ala Ser Gly Gly
Ser Glu Leu Pro Ala Ala Val Met Pro 2015 2020
2025Leu Tyr Arg Phe Pro Ile Ile Leu Glu Ser Ala Arg Gly Met
Ala 2030 2035 2040Gly Gln Leu Thr Gln
Phe Gly Ser Thr Leu Leu Ser Ile Ala Glu 2045 2050
2055Arg Gln Asp Ala Glu Ala Leu Ser Glu Leu Met Gln Thr
Gln Gly 2060 2065 2070Ser Gln Leu Ile
Leu Gln Ser Ile Ala Leu Gln Asn Ser Thr Ile 2075
2080 2085Ser Glu Ile Asp Ala Asp Lys Thr Val Leu Glu
Ala Ser Leu Ser 2090 2095 2100Gly Ala
Arg Ser Arg Leu Asp Arg Tyr Thr Thr Leu Tyr Asp Glu 2105
2110 2115Asp Val Asn Thr Gly Glu Gln Gln Ala Met
Asp Leu Phe Tyr Ala 2120 2125 2130Ser
Ser Ile Gln Ala Asn Gly Gly Gln Ala Phe His Thr Val Ala 2135
2140 2145Gly Gly Leu Asp Leu Ala Pro Asn Ile
Phe Gly Leu Ala Asp Gly 2150 2155
2160Gly Ser Arg Trp Gly Ala Ala Phe Thr Ala Leu Ala Ser Ile Ala
2165 2170 2175Asp Leu Ser Ala Ala Ala
Ser His Thr Ala Ala Glu Arg Leu Ser 2180 2185
2190Gln Ser Glu Val Tyr Arg Arg Arg Arg Gln Glu Trp Glu Ile
Gln 2195 2200 2205Arg Asn Ala Ala Gln
Ser Glu Ile Asp Gln Ile Asp Ala Gln Leu 2210 2215
2220Ala Ser Leu Thr Ile Arg Arg Lys Gly Ala Val Leu Gln
Lys Thr 2225 2230 2235Tyr Leu Glu Thr
Gln Gln Gly Gln Met Gln Ala Gln Met Thr Phe 2240
2245 2250Leu Gln Asn Lys Phe Thr Ser Lys Ala Leu Tyr
Asn Trp Leu Arg 2255 2260 2265Gly Lys
Leu Ala Ala Ile Tyr Tyr Gln Phe Tyr Asp Leu Thr Val 2270
2275 2280Ser Arg Cys Leu Met Ala Glu Ala Ala Tyr
Ser Trp His Ile Lys 2285 2290 2295Gly
Asn Gln Glu Thr Gly Thr Phe Ile Arg Pro Gly Ala Trp Gln 2300
2305 2310Gly Ile Tyr Ala Gly Leu Met Ala Gly
Glu Ala Leu Met Leu Asn 2315 2320
2325Leu Ala Gln Met Glu Asn Ser Tyr Leu Thr Lys Asp Glu Arg Leu
2330 2335 2340Gln Glu Val Thr Arg Thr
Val Cys Leu Ser Glu Phe Tyr Ser Gly 2345 2350
2355Leu Ser Ser Asn Lys Phe Ala Leu Ala Asp Thr Val Thr Thr
Leu 2360 2365 2370Val Asn Ser Gly Lys
Gly Asn Ala Gly Thr Thr Asp Asn Gly Val 2375 2380
2385Lys Ile Asp Gly Lys Gln Leu Leu Ala Thr Leu Lys Leu
Ser Asp 2390 2395 2400Leu Asn Ile Lys
Thr Asp Tyr Pro Glu Ser Leu Asp Lys Ala Lys 2405
2410 2415Arg Ile Lys Gln Ile Ser Val Thr Leu Pro Met
Leu Val Gly Pro 2420 2425 2430Tyr Gln
Asp Val Arg Ala Val Leu Ser Tyr Gly Gly Ser Val Val 2435
2440 2445Leu Pro Arg Gly Cys Thr Ala Val Ala Val
Ser His Gly Met Asn 2450 2455 2460Asp
Ser Gly Gln Phe Gln Leu Asp Phe Asn Asp Ser Arg Trp Leu 2465
2470 2475Pro Phe Glu Gly Ile Pro Val Asp Asp
Ser Gly Thr Leu Thr Leu 2480 2485
2490Ser Phe Pro Asp Ile Thr Asp Lys Gln Gln Glu Asn Leu Leu Leu
2495 2500 2505Ser Leu Ser Asp Ile Ile
Leu His Ile Arg Tyr Thr Ile Ala Ser 2510 2515
2520241421PRTPantoea agglomerans 24Met Gln Asn Thr Asp Gln Met
Ser Leu Thr Pro Pro Ser Leu Pro Ser1 5 10
15Gly Gly Gly Ala Val Thr Gly Leu Lys Gly Asp Met Ser
Gly Ala Gly 20 25 30Pro Asp
Gly Ala Ala Thr Leu Ser Leu Pro Leu Pro Ile Ser Pro Gly 35
40 45Arg Gly Tyr Ala Pro Ser Leu Ser Leu Gly
Tyr His Ser Arg Asn Gly 50 55 60Asn
Gly Val Phe Gly Ala Gly Trp Ser Cys Gly Gln Met Ala Ile Arg65
70 75 80Leu Gln Thr Arg Lys Gly
Val Pro Phe Tyr Asp Gly Ser Asp Val Phe 85
90 95Thr Ala Pro Asp Gly Glu Val Leu Val Pro Ala Leu
Asp Ala Ser Gly 100 105 110Lys
Ala Glu Val Arg Thr Thr Thr Thr Leu Leu Gly Glu Asn Leu Gly 115
120 125Gly Thr Phe Thr Val Gln Thr Tyr Arg
Ser Arg Val Glu Thr Asp Phe 130 135
140Ser Arg Leu Glu Arg Trp Val Pro Gln Thr Asp Ala Ala Ala Asp Phe145
150 155 160Trp Leu Ile Tyr
Ser Pro Asp Gly Gln Ile His Leu Leu Gly Arg Asn 165
170 175Pro Gln Ala Arg Val Asn Asn Pro Glu Asp
Thr Thr Gln Thr Ala Ala 180 185
190Trp Leu Ile Glu Ser Ser Val Ser Ala Ser Gly Glu Gln Ile Tyr Trp
195 200 205Gln Tyr Arg Gln Glu Asp Glu
Leu Gly Cys Thr Gln Asp Glu Lys Thr 210 215
220Ala His Ala His Ala Leu Ala Gln Arg Tyr Leu Val Ala Val Trp
Tyr225 230 235 240Gly Asn
Lys Ala Ala Ser Arg Thr Leu Pro Gly Leu Leu Ser Val Pro
245 250 255Ala Ala Gly Ser Trp Leu Phe
Thr Leu Val Leu Asp Tyr Gly Glu Arg 260 265
270Ala Thr Asp Pro Ala Thr Pro Pro Ala Trp Leu Ser Pro Gly
Ser Gly 275 280 285Thr Trp Leu Cys
Arg Gln Asp Val Phe Ser Ser Trp Glu Tyr Gly Phe 290
295 300Glu Leu Arg Thr Arg Arg Leu Cys Arg Gln Val Leu
Met Tyr His Asp305 310 315
320Val Ala Ala Leu Ala Gly Gln Ser Gly Ser Asp Ala Val Pro Gln Leu
325 330 335Val Thr Arg Leu Leu
Leu Asp Tyr Asn Thr Ser Pro Ser Leu Thr Thr 340
345 350Leu Lys Thr Ala Gln Gln Ala Ala Trp Glu Pro Asp
Gly Thr Leu Arg 355 360 365Ser Leu
Pro Pro Leu Ala Phe Ser Trp Gln Thr Phe Pro Ser Thr Pro 370
375 380Glu Lys Ser Val Ser Trp Gln Arg Arg Asn Asp
Met Gly Lys Leu Asn385 390 395
400Pro Gln Gln Pro Tyr Gln Met Val Asp Leu His Gly Glu Gly Leu Ala
405 410 415Gly Ile Leu Tyr
Gln Asp Ser Gly Ala Trp Trp Tyr Arg Glu Pro Val 420
425 430Arg Gln Ser Gly Asp Asp Asp Asn Ala Val Thr
Trp Ala Ala Ala Arg 435 440 445Pro
Leu Pro Ala Phe Pro Ala Leu Arg Lys Gly Gly Met Leu Leu Asp 450
455 460Leu Asp Gly Asp Gly Tyr Leu Glu Trp Val
Val Thr Ala Pro Gly Val465 470 475
480Ala Gly Cys Tyr Ala Gln Ala Pro Glu Gln Cys Trp Gln Arg Phe
Thr 485 490 495Pro Leu Ser
Ala Leu Pro Val Glu Tyr Arg His Ser Arg Met Glu Ile 500
505 510Thr Asp Val Thr Gly Ala Gly Leu Ala Asp
Met Leu Leu Ile Gly Pro 515 520
525Lys Ser Val Arg Leu Tyr Ser Gly Ser Gly Arg Gly Trp Lys Lys Ala 530
535 540Arg Thr Val Met Gln Asp Ser Gly
Ile Thr Leu Pro Val Pro Gly Thr545 550
555 560Asn Ala Arg Val Met Val Ala Phe Ser Asp Met Ala
Gly Ser Gly Gln 565 570
575Gln His Leu Thr Glu Ile Lys Ala Ser Gly Val Arg Tyr Trp Pro Ser
580 585 590Leu Gly His Gly Arg Phe
Ala Ala Pro Val Thr Leu Pro Gly Phe Ser 595 600
605Gln Pro Ala Glu Thr Phe Asn Pro Ala Gln Leu Tyr Leu Ala
Asp Val 610 615 620Asp Gly Ser Gly Thr
Thr Asp Leu Ile Tyr Ala Leu Ser Asp His Leu625 630
635 640Leu Val Trp Leu Asn Gln Ser Gly Asn Ser
Phe Asp Ala Pro Phe Arg 645 650
655Ile Ser Leu Pro Glu Gly Val Arg Tyr Asp Asn Thr Cys Ser Leu Gln
660 665 670Val Ala Asp Ile Gln
Gly Leu Gly Ile Ser Ser Leu Val Leu Ser Val 675
680 685Pro His Pro Thr Pro Arg His Trp Val Cys His Leu
Thr Thr Glu Lys 690 695 700Pro Trp Leu
Leu Asp Gly Met Asn Asn Asn Met Gly Ala Arg His Thr705
710 715 720Leu Cys Tyr Arg Ser Ser Ala
Gln Phe Trp Leu Asp Glu Lys Ala Ala 725
730 735Ala Thr Ala Asp Arg Pro Ala Pro Ala Cys Tyr Leu
Pro Phe Ala Leu 740 745 750His
Thr Leu Ser Arg Thr Glu Val Ser Asp Glu Ile Thr Gly Asn Arg 755
760 765Leu Thr Arg Thr Ile Arg Tyr Arg His
Gly Val Trp Asp Arg Arg Glu 770 775
780Arg Glu Phe Arg Gly Phe Gly Phe Val Glu Val Ser Asp Ala Glu Ala785
790 795 800Leu Ala Lys Gln
Thr Glu Gly Met Ser Ala Pro Ala Val Lys Arg Ser 805
810 815Trp Tyr Ala Thr Gly Leu Ala Ala Val Asp
Ala Gln Leu Pro Asp Glu 820 825
830Phe Trp Lys Gly Asp His Ala Ala Phe Ala Gly Phe Thr Pro Arg Phe
835 840 845Thr Thr Gly Asp Gly Glu Gln
Glu Ala Ala Leu Asp Thr Ile Ser Asp 850 855
860Asp Thr Arg Phe Trp Leu Thr Arg Ala Ile Arg Gly Thr Leu Leu
Arg865 870 875 880Ser Glu
Leu Tyr Gly Ala Asp Gly Ser Ser Gln Ala Gly Ile Pro Tyr
885 890 895Ser Ile Thr Glu Ser Arg Pro
Gln Val Arg Leu Ile Thr Glu Ala Gly 900 905
910Asn Ser Pro Val Val Trp Pro Ser Val Ile Glu Asn Arg Ala
Ser His 915 920 925Tyr Glu Arg Val
Ser Ser Asp Pro Gln Cys Gly Gln Gln Ile Leu Leu 930
935 940Thr Ser Asn Glu Tyr Gly Gln Pro Leu Arg Gln Ile
Gly Ile Ser Tyr945 950 955
960Pro Arg Arg Thr Arg Pro Asp Thr Ser Pro Tyr Pro Asp Asp Leu Pro
965 970 975Asp Gly Leu Phe Ala
Asp Ser Phe Asp Glu Gln Gln Gln Ala Leu Arg 980
985 990Leu Thr Leu Thr Gln Ser Ser Trp His Thr Leu Lys
Asp Ile Ser Ser 995 1000 1005Gly
Ile Trp Leu Pro Ala Val Ala Asp Ala Thr Arg Ser Asp Leu 1010
1015 1020Phe Val His Gln Ala Ala Gln Val Pro
Pro Ala Gly Leu Thr Leu 1025 1030
1035Glu Asn Leu Leu Thr Asp Ser Ala Leu Leu Thr Ser Pro Val Phe
1040 1045 1050Gly Gly Gln Ser Gln Ile
Trp Tyr Gln Asp Arg Ala Gly Gln Ala 1055 1060
1065Ser Ile Thr Ser Pro Asp Phe Pro Pro Arg Pro Ser Phe Ser
Glu 1070 1075 1080Thr Ala Ala Leu Asp
Glu Ala Gln Val Ser Ala Leu Ser Ala Asp 1085 1090
1095Ile Asp Gln Thr Lys Leu Glu Gln Ala Gly Tyr Thr Arg
Ser Ala 1100 1105 1110Tyr Leu Phe Ala
Arg Ser Gly Glu Glu Ser Lys Thr Leu Trp Ala 1115
1120 1125Val Arg Gln Gly Tyr Ile Thr Phe Ser Gly Ala
Asp His Phe Tyr 1130 1135 1140Leu Pro
Ile Ala Ala Gln Gln Thr Leu Leu Ala Gly Lys Thr Thr 1145
1150 1155Val Thr Tyr Asp Pro Tyr Asp Cys Val Val
Leu Gln Ala Lys Asp 1160 1165 1170Ala
Ala Gly Ala Val Thr Ser Ala Thr Tyr Asp Trp Arg Phe Leu 1175
1180 1185Ala Pro Thr Gln Ile Thr Asp Ile Asn
Asp Asn Leu Lys Ser Val 1190 1195
1200Thr Leu Asp Ala Leu Gly Arg Val Thr Ser Gln Arg Phe Ser Gly
1205 1210 1215Thr Glu Asn Gly Lys Pro
Ala Gly Tyr Ser Asp Asp Glu Phe Pro 1220 1225
1230Leu Pro Ala Ser Ala Asp Ala Ala Leu Ala Leu Ser Ala Pro
Leu 1235 1240 1245Pro Val Ala Gln Cys
Ile Ile Tyr Val Pro Asp Ser Trp Met Leu 1250 1255
1260Thr Gly Glu Gln Gln Gln Pro Pro His Val Ile Thr Leu
Leu Thr 1265 1270 1275Asp Arg Tyr Asp
Ser Asp Ser Gln Gln Gln Ile Arg Gln Gln Val 1280
1285 1290Val Phe Ser Asp Gly Phe Gly Arg Val Leu Gln
Ala Ala Ser Arg 1295 1300 1305Gln Val
Asn Gly Glu Ala Trp Gln Arg Ala Ala Asn Gly Ser Phe 1310
1315 1320Val Ala Gly Thr Asn Asp Ser Pro Val Leu
Thr Glu Thr Thr Phe 1325 1330 1335Arg
Trp Ala Val Thr Gly Arg Thr Glu Tyr Asp Asn Lys Gly Gln 1340
1345 1350Ala Ile Arg Ala Tyr Gln Pro Tyr Phe
Leu Asp Ser Trp Lys Tyr 1355 1360
1365Val Arg Asp Asp Ser Ala Arg Gln Asp Leu Tyr Ala Asp Thr His
1370 1375 1380Tyr Tyr Asp Pro Val Gly
Arg Glu Arg Gln Val Ile Thr Ala Lys 1385 1390
1395Gly Trp Leu Arg Arg Val Thr His Thr Pro Trp Phe Val Val
Ser 1400 1405 1410Glu Asp Glu Asn Asp
Thr Gln Ala 1415 1420251004PRTPantoea agglomerans
25Met Ser Ala Ala Tyr Val Leu Ser Asn Leu Ser Tyr Lys Leu Glu Asn1
5 10 15Pro Met Ser Thr Ser Leu
Tyr Ser Arg Thr Pro Ser Val Thr Ile Leu 20 25
30Asp Asn Arg Gly Leu Thr Val Arg Gly Ile Ala Tyr Gln
Arg His Pro 35 40 45Asp Thr Pro
Ala Val Thr Ser Glu Arg Ile Thr Arg His Gln Tyr Asp 50
55 60Ala Arg Gly Phe Leu Met Gln Ser Ala Asp Pro Arg
Leu His Asp Ala65 70 75
80Gly Leu Ala Asn Val Ser Tyr Arg Thr Asn Leu Thr Gly Ser Val Leu
85 90 95Arg Ser Gln Gly Val Asp
Asn Gly Ile Thr Val Thr Leu Asn Asp Ala 100
105 110Ala Gly Arg Pro Phe Leu Ala Val Ser Asn Ile Ser
Thr Ala Gly Asp 115 120 125Gly Thr
Glu Asp Arg Ser Gln Ala Val Thr Arg Thr Cys Gln Tyr Glu 130
135 140Asp Ala Thr Leu Pro Gly Arg Pro Leu Ser Ile
Thr Glu Gln Val Asn145 150 155
160Gly Gly Ala Ala Arg Ile Thr Glu Arg Phe Val Tyr Ala Gly Asn Ala
165 170 175Val Glu Glu Lys
Ala Leu Asn Leu Ala Gly Gln Pro Val Ser His Tyr 180
185 190Asp Thr Ala Gly Leu Thr Gln Thr Asp Ser Ile
Ala Leu Thr Gly Val 195 200 205Pro
Leu Ser Val Thr Arg Arg Leu Leu Lys Asp Ala Asp Asn Pro Asp 210
215 220Ala Val Ala Asp Trp Gln Gly Thr Asp Ala
Ser Val Trp Asn Asp Pro225 230 235
240Leu Asp Val Glu Thr Tyr Thr Thr Leu Ser Thr Ala Asp Ala Thr
Gly 245 250 255Ala Val Leu
Thr Thr Thr Asp Ala Lys Gly Asn Leu Gln Arg Leu Ala 260
265 270Tyr Asp Val Ala Gly Leu Leu Ser Gly Ser
Trp Leu Thr Leu Lys Asp 275 280
285Gly Thr Glu Gln Val Ile Val Thr Ser Leu Thr Tyr Ser Ala Ala Gly 290
295 300Gln Lys Leu Arg Glu Glu His Gly
Asn Gly Val Val Thr Thr Tyr Thr305 310
315 320Tyr Glu Ala Glu Thr Gln Arg Leu Thr Gly Ile Lys
Thr Ala Arg Pro 325 330
335Ala Gly His Thr Ser Gly Ala Lys Val Leu Gln Asp Leu Arg Tyr Thr
340 345 350Tyr Asp Pro Val Gly Asn
Val Leu Lys Ile Ser Asn Asp Ala Glu Glu 355 360
365Thr Arg Phe Trp Arg Asn Gln Lys Val Ala Pro Glu Ser Ala
Tyr Val 370 375 380Tyr Asp Ser Leu Tyr
Gln Leu Val Ser Ala Thr Gly Arg Glu Met Ala385 390
395 400Asn Ala Gly Gln Gln Gly Ser Ser Ser Ser
Ser Ala Thr Val Pro Leu 405 410
415Pro Ala Asp Ser Ser Ala Phe Thr Asn Tyr Thr Arg Asn Tyr Thr Tyr
420 425 430Asp Glu Ala Gly Asn
Leu Thr Gln Val Arg His Thr Pro Ala Thr Gly 435
440 445Ser Gly Tyr Thr Thr Lys Ile Thr Val Ser Asp Lys
Ser Asn Arg Gly 450 455 460Val Leu Ser
Thr Leu Thr Glu Asn Pro Ser Asp Val Asp Ala Leu Phe465
470 475 480Thr Ala Gly Gly Gln Gln Lys
Gln Leu Gln Pro Gly Gln Ser Leu Ile 485
490 495Trp Thr Pro Arg Asn Glu Leu Leu Lys Val Thr Pro
Val Ala Arg Asp 500 505 510Gly
Gly Ala Asp Asp Ser Glu Ser Tyr Arg Tyr Asp Gly Gly Ser Leu 515
520 525Arg Leu Leu Lys Val Ser Val Gln Lys
Thr Gly Asn Ser Thr Gln Thr 530 535
540Gln Arg Ala Leu Tyr Leu Pro Gly Leu Glu Leu Arg Asn Thr Thr Ser545
550 555 560Gly Asp Thr Glu
Thr Glu Ser Leu Gln Val Val Thr Val Gly Glu Ala 565
570 575Gly Arg Ala Gln Val Arg Val Leu His Trp
Glu Ser Gly Thr Pro Asp 580 585
590Ser Val Ser Asn Asp Pro Val Arg Tyr Ser Tyr Asp Asn Leu Thr Gly
595 600 605Ser Ser Gly Leu Glu Leu Asp
Ser Ser Gly Asn Ile Ile Ser Met Glu 610 615
620Glu Tyr Tyr Pro Tyr Gly Gly Thr Ala Val Trp Thr Ala Arg Ser
Ala625 630 635 640Val Glu
Ala Lys Tyr Lys Thr Val Arg Tyr Ser Ala Lys Glu Arg Asp
645 650 655Ala Thr Gly Leu Tyr Tyr Tyr
Gly Tyr Arg Tyr Tyr Gln Pro Trp Ala 660 665
670Gly Arg Trp Leu Ser Ala Asp Pro Ala Gly Thr Ala Asp Gly
Leu Asn 675 680 685Leu Phe Arg Met
Val Arg Asn Asn Pro Val Thr Leu Lys Asp Thr Asn 690
695 700Gly Leu Ile Ser Thr Gly Gln Asp Ala Arg Lys Leu
Val Ala Glu Ala705 710 715
720Phe Val His Pro Leu His Met Thr Val Phe Glu Arg Ile Ser Ser Glu
725 730 735Glu Asn Leu Ala Met
Ser Val Arg Glu Ala Gly Ile Tyr Thr Ile Ser 740
745 750Ala Leu Gly Glu Gly Ala Ala Ala Lys Gly His Asn
Ile Leu Glu Lys 755 760 765Thr Ile
Lys Pro Gly Ser Leu Lys Ala Val Tyr Gly Asp Asn Ala Glu 770
775 780Ser Ile Leu Ala Gln Ala Lys Arg Ser Gly Phe
Val Gly Arg Val Gly785 790 795
800Gln Trp Asp Ala Ser Gly Val Arg Gly Ile Tyr Ala His Asn Thr Pro
805 810 815Gly Gly Glu Asp
Leu Ala Tyr Pro Val Asn Leu Lys Asn Ser Ser Ala 820
825 830Asn Glu Leu Val Asn Ala Trp Ile Lys Phe Lys
Ile Ile Thr Pro Tyr 835 840 845Thr
Gly Asp Tyr Asp Met His Asp Ile Ile Lys Ile Ser Asp Gly Lys 850
855 860Gly His Val Pro Met Ala Glu Ser Asn Glu
Glu Lys Gly Val Lys Asp865 870 875
880Met Ile Asn Glu Gly Val Ala Gln Val Asp Pro Ala Arg Pro Phe
Thr 885 890 895Ser Thr Ala
Met Asn Val Val Arg His Gly Pro Gln Val Asn Phe Val 900
905 910Pro Tyr Met Trp Glu His Glu His Glu Asn
Val Val Arg Asp Asn Gly 915 920
925Tyr Leu Gly Val Val Ala Arg Pro Gly Pro Phe Pro Val Ala Met Val 930
935 940His Lys Gly Glu Trp Thr Val Phe
Asp Asn Lys Asn Glu Leu Phe Glu945 950
955 960Phe Tyr Lys Ser Thr Asn Thr Pro Leu Pro Glu His
Trp Ser Gln Asp 965 970
975Phe Val Glu Arg Gly Lys Gly Asn Val Ala Thr Pro Arg His Ala Glu
980 985 990Ile Leu Asp Arg Asn Ser
Ser Arg Leu Arg Ala Ala 995 100026971PRTPantoea
agglomerans 26Met Cys Ser Val Ala Asp Phe Asp Arg Leu His Asn Ile Lys Gln
Glu1 5 10 15Asn Ile Met
Gly Thr Ser Leu Tyr Ser Lys Thr Pro Ser Val Thr Ile 20
25 30Leu Asp Asn Arg Gly Leu Ser Val Arg Asp
Ile Ala Tyr Gln Arg His 35 40
45Pro Asp Thr Pro Ala Val Thr Ser Glu Cys Ile Thr Arg His Gln Tyr 50
55 60Asp Ala Arg Gly Phe Leu Met Gln Ser
Ala Asp Pro Arg Leu His Asp65 70 75
80Ala Gly Leu Ala Asn Phe Ser Tyr Arg Thr Asp Leu Thr Gly
Ser Val 85 90 95Leu Arg
Ser Gln Gly Val Asp Asn Gly Ile Thr Val Thr Leu Asn Asp 100
105 110Ala Ala Gly Arg Pro Phe Leu Ala Val
Ser Asn Ile Ser Thr Ala Gly 115 120
125Asp Gly Thr Glu Asp Arg Ser Gln Ala Val Thr Arg Thr Cys Gln Tyr
130 135 140Glu Asp Ala Thr Leu Pro Gly
Arg Pro Leu Ser Ile Thr Glu Gln Val145 150
155 160Asn Gly Gly Ala Ala Arg Ile Thr Glu Arg Phe Ile
Tyr Ala Gly Asn 165 170
175Ala Val Glu Glu Lys Ala Leu Asn Leu Ala Gly Gln Pro Val Ser His
180 185 190Tyr Asp Thr Ala Gly Leu
Thr Gln Thr Asp Ser Ile Ala Leu Thr Gly 195 200
205Ala Pro Leu Ser Val Thr Arg Arg Leu Leu Lys Asp Ala Asp
Asn Pro 210 215 220Asp Ala Val Ala Asp
Trp Gln Gly Thr Asp Ala Ser Val Trp Asn Asp225 230
235 240Pro Leu Asp Val Glu Thr Tyr Thr Thr Leu
Ser Thr Ala Asp Ala Thr 245 250
255Gly Ala Val Leu Thr Thr Thr Asp Ala Lys Gly Asn Leu Gln Arg Leu
260 265 270Ala Tyr Asp Val Ala
Gly Leu Leu Ser Gly Ser Trp Leu Thr Leu Lys 275
280 285Asp Gly Thr Glu Gln Val Ile Val Thr Ser Leu Thr
Tyr Ser Ala Ala 290 295 300Gly Gln Lys
Leu Arg Glu Glu His Gly Asn Gly Val Val Thr Thr Tyr305
310 315 320Thr Tyr Glu Ala Glu Thr Gln
Arg Leu Thr Gly Ile Lys Thr Ala Arg 325
330 335Pro Ala Gly His Thr Ser Gly Ala Lys Val Leu Gln
Asp Leu Arg Tyr 340 345 350Thr
Tyr Asp Pro Val Gly Asn Val Leu Lys Ile Ser Asn Asp Ala Glu 355
360 365Glu Thr Arg Phe Trp Arg Asn Gln Lys
Val Val Pro Glu Ser Ala Tyr 370 375
380Val Tyr Asp Ser Leu Tyr Gln Leu Val Ser Ala Thr Gly Arg Glu Met385
390 395 400Ala Asn Ala Gly
Gln Gln Gly Ser Ser Ser Ser Ser Ala Thr Val Pro 405
410 415Leu Pro Ala Asp Ser Ser Ala Phe Thr Asn
Tyr Thr Arg Asn Tyr Thr 420 425
430Tyr Asp Glu Ala Gly Asn Leu Thr Gln Val Arg His Thr Pro Ala Thr
435 440 445Gly Ser Gly Tyr Thr Thr Lys
Ile Thr Val Ser Asp Lys Ser Asn Arg 450 455
460Gly Val Leu Ser Thr Leu Thr Glu Asn Pro Ser Asp Val Asp Ala
Leu465 470 475 480Phe Thr
Ala Gly Gly Gln Gln Lys Gln Leu Gln Pro Gly Gln Ser Leu
485 490 495Ile Trp Thr Pro Arg Asn Glu
Leu Leu Lys Val Met Pro Ile Met Arg 500 505
510Asp Gly Gly Thr Asp Asp Ser Glu Ser Tyr Arg Tyr Asp Gly
Gly Ser 515 520 525Gln Arg Leu Leu
Lys Val Ser Val Gln Lys Thr Gly Asn Ser Thr Gln 530
535 540Thr Gln Arg Ala Leu Tyr Leu Pro Gly Leu Glu Leu
Arg Asn Thr Thr545 550 555
560Ser Gly Asp Thr Glu Thr Glu Ser Leu Gln Val Val Thr Ala Gly Glu
565 570 575Ala Gly Arg Ala Gln
Val Arg Val Leu His Trp Glu Ser Gly Thr Pro 580
585 590Asp Ser Val Ser Asn Asp Pro Val Arg Tyr Ser Tyr
Asp Asn Leu Thr 595 600 605Gly Ser
Ser Gly Leu Glu Leu Asp Ser Ser Gly Asn Ile Ile Ser Met 610
615 620Glu Glu Tyr Tyr Pro Tyr Gly Gly Thr Ala Val
Trp Thr Ala Arg Ser625 630 635
640Ala Val Glu Ala Lys Tyr Lys Thr Val Arg Tyr Ser Ala Lys Glu Arg
645 650 655Asp Ala Thr Gly
Leu Tyr Tyr Tyr Gly Tyr Arg Tyr Tyr Gln Pro Trp 660
665 670Ala Gly Arg Trp Leu Ser Ala Asp Pro Ala Gly
Thr Val Asp Gly Leu 675 680 685Asn
Leu Phe Arg Met Val Arg Asn Asn Pro Leu Thr Leu Lys Asp Asn 690
695 700Asp Gly Leu Lys Pro Ile Asn Glu Asn Phe
Arg Glu Asn Lys Gly Asp705 710 715
720Leu Val Tyr Gly Leu Ala Ala Pro Arg Gly Ala Tyr Ile Ser Thr
Ala 725 730 735Ile Gly Arg
Glu Phe Ala Pro Glu Glu Lys Asp Ala Pro Ala Ser Ile 740
745 750Ile Asp Leu Tyr Asn Asn Thr Val Ser Gly
Gln Ala Leu Leu Ser Val 755 760
765Asp Phe Lys Ile Leu Gln Asp Phe Met Lys Ser Pro Lys Lys His Glu 770
775 780Lys Lys Leu Ala Pro Pro Ser Asn
Ile Lys Glu Leu Val Lys Lys Ser785 790
795 800Arg Val Tyr Pro Leu Trp Glu Asp Tyr Phe Leu Ala
Gly Glu Asn Asn 805 810
815Pro Lys Phe Asn Ile Ala Ser Ile Tyr Lys Glu Val Arg Lys Asp Ala
820 825 830Gly Lys Thr Gln Tyr His
Glu Trp His Ile Ala Gly Gly Gln Ser Ala 835 840
845Pro Lys Leu Leu Trp Lys Arg Gly Ser Lys Leu Gly Ile Glu
Met Ala 850 855 860Ala Ser Gly Ala Gly
Asn Lys Ile His Phe Val Leu Asp Glu Leu Asp865 870
875 880Ile Ser Asn Val Val Asn Lys Glu Gly Pro
Gly Gly Lys Ser Ile Thr 885 890
895Ala Ser Glu Leu Arg Tyr Ala Tyr Arg Asn Arg Glu Arg Leu Thr Gly
900 905 910Asn Ile His Phe Tyr
Lys Asn Asn Ala Glu Thr Gly Ala Pro Trp Asp 915
920 925Thr Asn Ala Glu Leu Trp Ala Ser Tyr His Pro Lys
Pro Lys His Lys 930 935 940Gly Asn Glu
Ser Thr His Met Met Ser Gln Arg Arg Asn Gly Ser Leu945
950 955 960Phe Lys Ser Met Arg Lys Val
Phe Ser Arg Asn 965 970272518PRTPantoea
agglomerans 27Met Tyr Leu Thr Glu Glu Ile Leu Ala Lys Leu Asn Ala Gly Asn
Gly1 5 10 15Lys Leu Gln
Ser Thr Val Glu Gln Ile Ile Thr Leu Pro Asp Ile Met 20
25 30Leu His Ser Phe Ala Gln Val Lys Glu Leu
Ala Gly Asp Lys Leu Ser 35 40
45Trp Gly Glu Lys Asn Phe Leu Tyr Gln Gln Ala Gln Lys Gln Leu Lys 50
55 60Glu Asn Lys Met Ala Glu Ser Arg Ile
Leu Ser Arg Ala Asn Pro Gln65 70 75
80Leu Ala Asn Ala Val Arg Met Gly Ile Arg Gln Ser Ala Met
Leu Gly 85 90 95Ser Tyr
Asp Asp Leu Phe Pro Gln Arg Ala Ser Arg Phe Val Lys Pro 100
105 110Gly Ala Val Ala Ser Met Phe Ser Pro
Ala Gly Tyr Leu Thr Glu Leu 115 120
125Tyr Arg Glu Ala Arg Gly Leu His Asp Asp Thr Ser Asp Tyr His Leu
130 135 140Asp Thr Arg Arg Pro Asp Leu
Ala Ser Met Val Leu Ser Gln Ser Asn145 150
155 160Met Asp Thr Glu Leu Ser Thr Leu Ser Leu Ser Asn
Glu Leu Leu Leu 165 170
175Lys Leu Ile Gln Ser Lys Glu Ser Leu Asn Tyr Asp Gln Val Ile Glu
180 185 190Lys Leu Ala Thr Tyr Arg
Leu Thr Gly Thr Thr Pro Tyr Asn Gln Pro 195 200
205Tyr Glu Thr Ile Arg Gln Ala Ile Leu Leu Gln Asp Pro Glu
Phe Asn 210 215 220Ala Phe Ser Asn Asn
Pro Ala Val Ala Val Lys Ile Asn Thr Ser Gly225 230
235 240Leu Leu Gly Ile Thr Ser Asp Ile Ala Pro
Glu Leu His Ala Ile Leu 245 250
255Thr Glu Glu Ile Thr Glu Lys Lys Thr Glu Ala Leu Ile Lys Lys Asn
260 265 270Phe Gly Asp Ala Asn
Ile Asn Gln Phe Gln Asn Leu Ala Trp Leu Ala 275
280 285His Trp Tyr Gly Leu Ser Tyr Glu Glu Leu Asn Asn
Leu Val Gly Met 290 295 300Ile Trp Ser
Arg Asp Asp Leu Asp Pro Ala Val Glu His Tyr Lys Asn305
310 315 320Ser Ser Leu Val Thr Leu Val
Ala Glu Asp Gly Gly Ser Leu Asn Ala 325
330 335Val Leu Ile Lys Arg Thr Lys Gly His Asp Ser Asp
Asp Met His Tyr 340 345 350Ala
Glu Leu Ile Pro Val Gly Gly Asp Lys Phe Gln Tyr Asn Phe Ser 355
360 365Leu Ile Asp Ala Glu Ser Ser Ser Val
Tyr Tyr Gln Phe Gly Thr Lys 370 375
380Gly Lys Asn Ser Gln Asp Leu Val Pro Val Ile His Glu Pro Leu Leu385
390 395 400Gly Asn Thr Pro
Tyr Ala Val Thr Phe Thr Leu Thr Gln Glu Gln Leu 405
410 415Ser Asn Pro Val Glu Ile Ser Leu Thr His
Gly Ser Gly Gly Gly Asp 420 425
430Arg Leu Thr Ser Thr Ile Phe Thr Val Thr Thr Tyr Pro Phe Asp Thr
435 440 445Phe Leu Leu Lys Leu Asn Lys
Leu Ile Arg Leu Tyr Lys Ala Thr Gly 450 455
460Ile Ser Pro Ala Ser Ile Arg Thr Val Ile Glu Ser Asp Asn Thr
Asp465 470 475 480Leu Ile
Ile Thr Glu Ser Val Leu Asn Gln Leu Phe Trp Thr Asn Tyr
485 490 495Tyr Thr Gln Thr Phe Glu Met
Glu Phe Ser Ala Ala Leu Val Leu Ala 500 505
510Gly Ala Asp Ile Gly Gln Ile Ala His Ser Glu Ser Gln Pro
Ser Ala 515 520 525Phe Thr Arg Leu
Phe Asn Thr Pro Leu Leu Asp Asn Gln Gln Phe Ser 530
535 540Ala Ser Asp Glu Ser Leu Asp Leu Glu Pro Gly Lys
Gly Ala Asp Ala545 550 555
560Phe Arg Ile Ala Val Leu Lys Arg Ala Leu Gln Val Asn Asp Ala Gly
565 570 575Leu Tyr Thr Leu Tyr
Gly Leu Ser Phe Thr Asp Lys Asp Lys Asn Gly 580
585 590Lys Leu Ile Pro Phe Thr Thr Asn Ile Glu Asn Leu
Ser Ala Leu Tyr 595 600 605Arg Thr
Arg Leu Leu Ala Asp Ile Phe Asn Ile Ser Val Thr Glu Leu 610
615 620Ser Met Leu Leu Ser Val Ser Pro Tyr Ala Ser
Gln Lys Val Asp Ser625 630 635
640Leu Lys Gly Gln Ala Leu Tyr Gln Phe Val Ala Thr Leu Ser Asp Tyr
645 650 655Met Gln Arg Leu
Lys Ala Met Asn Trp Ser Val Ser Asp Leu Tyr Leu 660
665 670Met Leu Thr Asn Ser Tyr Ser Thr Val Leu Ser
Pro Glu Ile Lys Asn 675 680 685Leu
Met Thr Thr Leu Lys Asn Gly Leu Ser Glu Gln Asp Phe Asn Asn 690
695 700Thr Asp Glu Ile Ala Gln Leu Asn Ala Thr
Ala Pro Leu Ile Ala Ala705 710 715
720Ala Met Gln Leu Asp Phe Thr Glu Thr Ala Ala Ala Leu Leu Glu
Trp 725 730 735Leu Asn Gln
Leu Gln Pro Ala Gly Leu Thr Val Ala Gly Phe Leu Ser 740
745 750Leu Val Asn Gln Thr Thr Leu Glu Asp Lys
Asp Val Val Lys Leu Val 755 760
765Ser Phe Cys Gln Val Met Gly Gln Leu Ala Leu Ile Val Arg Lys Ala 770
775 780Ala Leu Gly Ser Ser Glu Ile Thr
Phe Ala Val Ala His Pro Ala Ile785 790
795 800Phe Lys Lys Asp Ala Asn Ser Leu Ala Gln Asp Ile
Gly Thr Leu Phe 805 810
815Asp Leu Thr Gln Leu His Ala Phe Leu Thr Asp Cys Gly Thr Tyr Ala
820 825 830Ser Glu Ile Leu Thr Ser
Leu Asn Glu Gly Asn Leu Asp Val Ser Thr 835 840
845Val Ala Thr Ala Leu Thr Leu Asp Lys Thr Ser Leu Ala Gln
Ala Leu 850 855 860Ala Gln Val Ser Glu
Ser Gln Ala Phe Ser Asn Trp His Glu Leu Arg865 870
875 880Asp Ala Leu Gln Trp Thr Asp Ala Ala Ser
Ile Phe Asn Ile Thr Pro 885 890
895Val Ala Leu Thr Ala Met Val Asn Leu Lys Phe Ser Gly Asp Asn Ser
900 905 910Ser Pro Tyr Gln Glu
Trp Val Thr Val Ser Lys Ala Met Gln Val Gly 915
920 925Leu Asn Gln Thr Gln Ser Ala Gln Leu Gln Ala Ser
Leu Asp Glu Ser 930 935 940Leu Ser Ala
Ala Leu Ser Ala Tyr Val Ile Lys Asn Ile Thr Pro Pro945
950 955 960Ser Val Thr Asp Arg Asp Glu
Leu Tyr Gly Trp Leu Leu Ile Asp Asn 965
970 975Gln Val Ser Ala Gln Ile Lys Thr Thr Arg Ile Ala
Glu Ala Ile Ala 980 985 990Ser
Val Gln Leu Tyr Val Asn Arg Ser Leu Thr Gly Gln Glu Asp Gly 995
1000 1005Val Asp Ser Lys Val Lys Ser Gly
Gln Phe Phe Thr Ala Asp Trp 1010 1015
1020Asp Thr Tyr Asn Lys Arg Tyr Ser Thr Trp Ala Gly Val Ser Glu
1025 1030 1035Leu Val Tyr Tyr Pro Glu
Asn Tyr Val Asp Pro Thr Leu Arg Ile 1040 1045
1050Gly Gln Thr Gly Met Met Asp Glu Met Leu Gln Thr Leu Ser
Gln 1055 1060 1065Ser Gln Ile Asn Leu
Asp Thr Val Ser Asp Gly Met Gly Arg Tyr 1070 1075
1080Leu Thr Asp Phe Glu Glu Ile Ala Asn Leu Lys Phe Leu
Ser Gly 1085 1090 1095Tyr His Asp Asn
Val Ser Gly Arg Gln Gly Lys Thr Trp Phe Ile 1100
1105 1110Gly Gly Ser Gln Ser Glu Pro Gln Lys Phe Tyr
Trp Arg Ser Leu 1115 1120 1125Asp Tyr
Ser Lys Gly Asp Gly Glu Glu Phe Ala Ala Asn Ala Trp 1130
1135 1140Ser Glu Trp Asn His Ile Ser Cys Ala Ile
Thr Pro Leu Pro Gly 1145 1150 1155Phe
Val Arg Val Val Leu Phe Asn Ser Arg Leu Tyr Leu Ala Cys 1160
1165 1170Val Glu Lys Lys Glu Ile Arg Asp Ser
Glu Asn Lys Asn Lys Ala 1175 1180
1185Ser Tyr Gln Leu Lys Ile Ala His Ile Leu Tyr Asn Gly Glu Trp
1190 1195 1200Ser Ala Pro Phe Ser His
Asp Ile Thr Asp Leu Tyr Glu Ala Gly 1205 1210
1215Phe Asp Pro Ser Thr Thr Val Met His Leu Ser Val His Asp
Glu 1220 1225 1230Ser Asp Ala Ile Val
Cys Ile Phe Asn Asn Ser Ala Leu Glu Ser 1235 1240
1245Asp Lys Asn Lys Gly Val Ala Val Asn Ala Asp Met Ser
Phe Asn 1250 1255 1260Asn Ile Asp Ser
Lys Arg Val Asp Gln Ile Ile Ser Leu Leu Val 1265
1270 1275Pro Asp Arg Phe Ile Asp Glu Gly Asn Val Ile
Asp Asn Leu Val 1280 1285 1290Ser Glu
Leu Lys Gly Ser Glu Val Thr Glu Asn Lys Lys Thr Leu 1295
1300 1305Glu Asn Asp Ser Phe Thr Ile Asp Gly Ser
Ile Asn Leu Asn Lys 1310 1315 1320His
Ser Ile Asp Ile Thr Gly Lys Ala Asn Leu Asp Ile Gln Ala 1325
1330 1335Ser Ile Ala Val Arg Ser Lys Ala Ser
Pro Thr Ser His Glu Arg 1340 1345
1350Glu Leu Ile Gly Trp Leu Asp Glu Ser Gln Phe Asp Tyr Ile Arg
1355 1360 1365Leu Phe Arg Gly Gly Tyr
Asn Phe Gly Gln Asn Asp Gly Ile Leu 1370 1375
1380Glu Ser Cys Met Ile Ser Ala Val Asn Ser Ala Tyr Thr Cys
Phe 1385 1390 1395Leu Leu Arg Ala Asp
His Phe Ser Gly Leu Phe Ser Tyr Gly Tyr 1400 1405
1410Asp Leu Phe Val Phe Asn Gly Asp Gly Ser Lys Thr Tyr
Thr Pro 1415 1420 1425Gln Val Leu Phe
Glu Asp Asp Ile Gln Gly Thr Met Val Leu Lys 1430
1435 1440Ile Val Leu Leu Asn Glu Asp Lys Asn Ser Lys
Leu Glu Asn Phe 1445 1450 1455Glu Ser
Leu Gly Leu Met Lys Thr Ser Ala Gly Asp His Gln Gly 1460
1465 1470Glu Ile Val Cys Glu Leu Ala Lys Arg Arg
Thr Pro Glu Pro Tyr 1475 1480 1485Cys
Val Glu Leu Ser Arg Tyr Leu Pro Ser Asn Val Thr Val Thr 1490
1495 1500Val Thr Ser Pro Ser Gly Asn Phe Thr
Ala Lys Asp Tyr Val Leu 1505 1510
1515Pro Leu Pro Ala Phe Asn Asn Gly Asp Ala Asp Tyr Lys Phe Ala
1520 1525 1530Pro Phe Pro Leu Ser Leu
Glu Ser Ile Trp Gly Asp Gly Lys Ser 1535 1540
1545Thr Ser Arg Asp Ile Lys Phe Thr Ile Ser Val Lys Asp Thr
Cys 1550 1555 1560Gly Lys Val Ala Thr
Ser Glu Leu Ile Phe Thr Leu Tyr Lys Asn 1565 1570
1575Thr Ser Pro Glu Leu Ile Thr Leu Lys Thr Ser Asp Ala
Gly Ala 1580 1585 1590Gln Tyr Met Gln
Gln Gly Val Tyr Arg Thr Arg Leu Asn Thr Leu 1595
1600 1605Phe Ala Gln Lys Leu Ile Lys Arg Val Ser Ala
Gly Ile Asp Ala 1610 1615 1620Val Leu
Ser Trp Glu Thr Gln Gln Leu Gln Glu Pro Lys Leu Gly 1625
1630 1635Thr Gly Ser Tyr Ile Ser Val Leu Ile Pro
Ala Tyr Ile Lys Leu 1640 1645 1650Glu
His Gly Asp Ser Arg Gln Ala Asn Leu Gln Phe Ser Asn Val 1655
1660 1665Asp Gln Thr Gly Pro Asp Asn Gly Asn
Tyr Ile Leu Trp Ser Gly 1670 1675
1680Ser Leu Asn Asp Thr Pro Gln Gln Val Thr Ile Phe Val Pro Thr
1685 1690 1695Met Gln Thr Ile Gly Glu
Leu Gln Phe Pro Tyr Asp Arg Thr Ser 1700 1705
1710Gly Leu Asn Leu Ser Leu Ala Cys Ala Ala Gly Val Tyr Leu
Gln 1715 1720 1725Gly Thr Phe Lys Asn
Ile Ser Ala Ser Asp Leu Ser Leu Thr Glu 1730 1735
1740Phe Val Ala Ala Lys Asn Asn Asp Ser Lys Arg Asp Val
Glu Val 1745 1750 1755Thr Val Leu Thr
Ser Ile Asn Thr Glu Pro Met Asp Phe Lys Gly 1760
1765 1770Ala Asn Ala Leu Tyr Phe Trp Glu Met Phe Tyr
Tyr Leu Pro Met 1775 1780 1785Met Val
Phe Lys Arg Leu Leu Ser Glu Ser Arg Phe Thr Glu Ala 1790
1795 1800Thr Gln Trp Ile Arg Tyr Val Trp Asn Pro
Asp Gly Tyr Leu Val 1805 1810 1815Asn
Asp Thr Pro Ala Thr Tyr Gln Trp Asn Val Arg Pro Leu Glu 1820
1825 1830Asp Glu Thr Ser Trp His Ala Asn Pro
Leu Asp Ser Val Asp Pro 1835 1840
1845Asp Ala Ile Ala Gln Ala Asp Pro Leu His Tyr Lys Val Ala Thr
1850 1855 1860Phe Met Ala Tyr Leu Asp
Leu Leu Ile Ala Arg Gly Asp Ala Ala 1865 1870
1875Tyr Arg Gln Leu Glu Arg Asp Ala Leu Ser Glu Ala Lys Met
Trp 1880 1885 1890Tyr Val Gln Ala Leu
Asp Thr Leu Gly Asp Glu Pro Tyr Leu Ser 1895 1900
1905Gln Asn Thr Gly Trp Ala Ser Pro Cys Leu Thr Asp Ala
Ala Asp 1910 1915 1920Glu Thr Thr His
Lys Asn Arg Gln Gln Ala Met Leu Thr Val Arg 1925
1930 1935Gln Lys Val Ala Ser Ser Glu Leu Arg Thr Ala
Asn Ser Leu Thr 1940 1945 1950Ala Leu
Phe Leu Pro Gln Gln Asn Ala Lys Leu Ala Gly Tyr Trp 1955
1960 1965Gln Thr Leu Asn Gln Arg Leu Tyr Asn Leu
Arg Asn Asn Leu Ser 1970 1975 1980Ile
Asp Gly Asn Pro Leu Ser Leu Ser Ile Tyr Ala Thr Pro Thr 1985
1990 1995Asp Pro Ala Ala Leu Leu Ser Ser Ala
Val Ile Ser Ser Gln Gly 2000 2005
2010Gly Ser Asp Leu Pro Ala Ala Val Met Pro Leu Tyr Arg Phe Pro
2015 2020 2025Val Ile Leu Glu Ser Ala
Arg Ser Met Val Asn Gln Leu Thr Gln 2030 2035
2040Phe Gly Ser Thr Leu Leu Gly Ile Thr Glu Arg Gln Asp Ala
Glu 2045 2050 2055Ala Leu Ser Asp Leu
Leu Gln Thr Gln Gly Ala Gly Leu Ala Leu 2060 2065
2070Gln Ser Ile Ala Leu Gln Asn Ser Thr Ile Ser Glu Ile
Asp Ala 2075 2080 2085Asp Arg Ala Ala
Leu Arg Glu Ser Leu Ser Gly Ala Gln Ser Arg 2090
2095 2100Leu Asn Ser Tyr Thr Thr Leu Tyr Asp Glu Asn
Val Asn Ala Gly 2105 2110 2115Glu Thr
His Ala Met Asn Leu Phe Leu Ser Ser Ala Ile Leu Ala 2120
2125 2130Asp Gly Gly Gln Ala Tyr His Thr Ala Ala
Gly Ala Leu Asp Leu 2135 2140 2145Ala
Pro Asn Ile Phe Gly Leu Ala Asp Gly Gly Ser Arg Trp Gly 2150
2155 2160Ala Ala Phe Thr Ala Met Ala Gly Ile
Ala Asp Leu Ala Ala Ser 2165 2170
2175Ala Thr His Thr Ala Ala Asp Arg Ile Ser Gln Ser Glu Ala Tyr
2180 2185 2190Arg Arg Arg Arg Gln Glu
Trp Glu Ile Gln Arg Asn Ala Ala Gln 2195 2200
2205Phe Glu Val Ser Gln Ile Asn Ala Gln Leu Asp Ala Leu Ala
Val 2210 2215 2220Arg Arg Glu Ser Ala
Val Leu Gln Lys Thr Tyr Leu Glu Thr Gln 2225 2230
2235Gln Gly Gln Met Gln Ala Gln Met Thr Phe Leu Gln Asn
Lys Phe 2240 2245 2250Thr Ser Lys Ala
Leu Tyr Asn Trp Leu Arg Gly Lys Leu Ala Ala 2255
2260 2265Ile Tyr Tyr Gln Phe Tyr Asp Leu Thr Val Ser
Arg Cys Leu Met 2270 2275 2280Ala Glu
Ala Ala Tyr Ser Trp Glu Met Lys Gly Ser Gln Asp Thr 2285
2290 2295Gly Thr Phe Ile Arg Pro Gly Ala Trp Gln
Gly Thr Tyr Ala Gly 2300 2305 2310Leu
Met Ala Gly Glu Thr Leu Met Leu Asn Leu Ala Gln Met Glu 2315
2320 2325Asn Ser Tyr Leu Thr Lys Glu Glu Arg
Gln Lys Glu Val Thr Arg 2330 2335
2340Thr Val Cys Leu Ser Glu Val Tyr Ala Gly Leu Ser Ser Gly Ser
2345 2350 2355Phe Ala Leu Ala Asp Thr
Val Thr Thr Leu Val Gly Ser Gly Lys 2360 2365
2370Gly Thr Ala Gly Thr Asn Asp Asn Gly Val Lys Ile Asp Gly
Lys 2375 2380 2385Gln Leu Leu Ala Thr
Leu Lys Leu Ser Asp Leu Asn Ile Lys Thr 2390 2395
2400Asp Tyr Pro Glu Ser Leu Asp Lys Ala Lys Arg Ile Lys
Gln Ile 2405 2410 2415Ser Val Thr Leu
Pro Thr Leu Val Gly Pro Tyr Gln Asp Val Arg 2420
2425 2430Ala Val Leu Ser Tyr Gly Gly Ser Val Val Leu
Pro Arg Gly Cys 2435 2440 2445Thr Ala
Val Ala Val Ser His Gly Met Asn Asp Ser Gly Gln Phe 2450
2455 2460Gln Leu Asp Phe Asn Asp Ser Arg Trp Leu
Pro Phe Glu Gly Ile 2465 2470 2475Pro
Val Asp Asp Ser Gly Thr Leu Thr Leu Ser Phe Pro Asp Ile 2480
2485 2490Thr Asp Lys Gln Gln Glu Asn Leu Leu
Leu Ser Leu Ser Asp Ile 2495 2500
2505Ile Leu His Ile Arg Tyr Thr Ile Ala Ser 2510
2515281421PRTPantoea agglomerans 28Met Gln Asn Thr Asp Gln Met Ser Leu
Thr Pro Pro Ser Leu Pro Ser1 5 10
15Gly Gly Gly Ala Val Thr Gly Leu Lys Gly Asp Met Ser Gly Ala
Gly 20 25 30Pro Asp Gly Ala
Ala Thr Leu Ser Leu Pro Leu Pro Ile Ser Pro Gly 35
40 45Arg Gly Tyr Ala Pro Ser Leu Ser Leu Gly Tyr His
Ser Arg Asn Gly 50 55 60Asn Gly Val
Phe Gly Ala Gly Trp Ser Cys Gly Gln Met Ala Ile Arg65 70
75 80Leu Gln Thr Arg Lys Gly Val Pro
Phe Tyr Asp Gly Ser Asp Val Phe 85 90
95Thr Ala Pro Asp Gly Glu Val Leu Val Pro Ala Leu Asp Ala
Ser Gly 100 105 110Lys Ala Glu
Val Arg Thr Thr Thr Thr Leu Leu Gly Glu Asn Leu Gly 115
120 125Gly Thr Phe Thr Val Gln Thr Tyr Arg Ser Arg
Val Glu Thr Asp Phe 130 135 140Ser Arg
Leu Glu Arg Trp Val Pro Gln Thr Asp Ala Ala Ala Asp Phe145
150 155 160Trp Leu Ile Tyr Ser Pro Asp
Gly Gln Ile His Leu Leu Gly Arg Asn 165
170 175Pro Gln Ala Arg Val Asn Asn Pro Glu Asp Thr Thr
Gln Thr Ala Ala 180 185 190Trp
Leu Ile Glu Ser Ser Val Ser Ala Ser Gly Glu Gln Ile Tyr Trp 195
200 205Gln Tyr Arg Gln Glu Asp Glu Leu Gly
Cys Thr Gln Asp Glu Lys Thr 210 215
220Ala His Ala His Ala Leu Ala Gln Arg Tyr Leu Val Ala Val Trp Tyr225
230 235 240Gly Asn Lys Ala
Ala Ser Arg Thr Leu Pro Gly Leu Leu Ser Val Pro 245
250 255Ala Ala Gly Ser Trp Leu Phe Thr Leu Ala
Leu Asp Tyr Gly Glu Arg 260 265
270Ala Thr Asp Pro Ala Thr Pro Pro Ala Trp Leu Ser Pro Gly Ser Gly
275 280 285Thr Trp Leu Cys Arg Gln Asp
Val Phe Ser Ser Trp Glu Tyr Gly Phe 290 295
300Glu Leu Arg Thr Arg Arg Leu Cys Arg Gln Val Leu Met Tyr His
Asp305 310 315 320Val Ala
Ala Leu Ala Gly Gln Ser Gly Ser Asp Ala Val Pro Gln Leu
325 330 335Val Thr Arg Leu Leu Leu Asp
Tyr Asn Thr Ser Pro Ser Leu Thr Thr 340 345
350Leu Lys Thr Ala Gln Gln Ala Ala Trp Glu Pro Asp Gly Thr
Leu Arg 355 360 365Ser Leu Pro Pro
Leu Ala Phe Ser Trp Gln Thr Phe Pro Ser Thr Pro 370
375 380Glu Lys Ser Val Ser Trp Gln Arg Arg Asn Asp Met
Gly Lys Leu Asn385 390 395
400Pro Gln Gln Pro Tyr Gln Met Val Asp Leu His Gly Glu Gly Leu Ala
405 410 415Gly Ile Leu Tyr Gln
Asp Ser Gly Ala Trp Trp Tyr Arg Glu Pro Val 420
425 430Arg Gln Ser Gly Asp Asp Asp Asn Ala Val Thr Trp
Ala Ala Ala Arg 435 440 445Pro Leu
Pro Ala Phe Pro Ala Leu Arg Lys Gly Gly Met Leu Leu Asp 450
455 460Leu Asp Gly Asp Gly Tyr Leu Glu Trp Val Val
Thr Ala Pro Gly Val465 470 475
480Ala Gly Cys Tyr Ala Gln Ala Pro Glu Gln Tyr Trp Gln Arg Phe Thr
485 490 495Pro Leu Ser Ala
Leu Pro Val Glu Tyr Arg His Ser Arg Met Glu Ile 500
505 510Ala Asp Val Thr Gly Ala Gly Leu Ala Asp Met
Leu Leu Ile Gly Pro 515 520 525Lys
Ser Val Arg Leu Tyr Ser Gly Ser Gly Arg Gly Trp Lys Lys Ala 530
535 540Arg Thr Val Met Gln Asp Ser Gly Ile Thr
Leu Pro Val Pro Gly Thr545 550 555
560Asn Ala Arg Val Met Val Ala Phe Ser Asp Met Ala Gly Ser Gly
Gln 565 570 575Gln His Leu
Thr Glu Ile Lys Ala Ser Gly Val Arg Tyr Trp Pro Ser 580
585 590Leu Gly His Gly Arg Phe Ala Ala Pro Val
Thr Leu Pro Gly Phe Ser 595 600
605Gln Pro Ala Glu Thr Phe Asn Pro Ala Gln Leu Tyr Leu Ala Asp Val 610
615 620Asp Gly Ser Gly Thr Thr Asp Leu
Ile Tyr Ala Leu Ser Asp His Leu625 630
635 640Leu Val Trp Leu Asn Gln Ser Gly Asn Ser Phe Asp
Ala Pro Phe Arg 645 650
655Ile Ser Leu Pro Glu Gly Val Arg Tyr Asp Asn Thr Cys Ser Leu Gln
660 665 670Val Ala Asp Ile Gln Gly
Leu Gly Ile Ser Ser Leu Val Leu Ser Val 675 680
685Pro His Pro Thr Pro Arg His Trp Val Cys His Leu Thr Thr
Glu Lys 690 695 700Pro Trp Leu Leu Asp
Gly Met Asn Asn Asn Met Gly Ala Arg His Thr705 710
715 720Leu Cys Tyr Arg Ser Ser Ala Gln Phe Trp
Leu Asp Glu Lys Ala Ala 725 730
735Ala Thr Ala Asp Arg Pro Ala Pro Ala Cys Tyr Leu Pro Phe Ala Leu
740 745 750His Thr Leu Ser Arg
Thr Glu Val Ser Asp Glu Ile Thr Gly Asn Arg 755
760 765Leu Thr Arg Thr Ile Arg Tyr Arg His Gly Val Trp
Asp Arg Arg Glu 770 775 780Arg Glu Phe
Arg Gly Phe Gly Phe Val Glu Val Ser Asp Ala Glu Ala785
790 795 800Leu Ala Lys Gln Thr Glu Gly
Met Ser Ala Pro Ala Val Lys Arg Ser 805
810 815Trp Tyr Ala Thr Gly Leu Ala Ala Val Asp Ala Gln
Leu Pro Asp Glu 820 825 830Phe
Trp Lys Gly Asp His Ala Ala Phe Ala Gly Phe Thr Pro Arg Phe 835
840 845Thr Thr Gly Asp Gly Glu Gln Glu Ala
Ala Leu Asp Thr Ile Ser Asp 850 855
860Asp Thr Arg Phe Trp Leu Thr Arg Ala Ile Arg Gly Thr Leu Leu Arg865
870 875 880Ser Glu Leu Tyr
Gly Ala Asp Gly Ser Ser Gln Ala Gly Ile Pro Tyr 885
890 895Ser Ile Thr Glu Ser Arg Pro Gln Val Arg
Leu Ile Thr Glu Ala Gly 900 905
910Asn Ser Pro Val Val Trp Pro Ser Val Ile Glu Asn Arg Ala Ser His
915 920 925Tyr Glu Arg Val Ser Ser Asp
Pro Gln Cys Gly Gln Gln Ile Leu Leu 930 935
940Thr Ser Asn Glu Tyr Gly Gln Pro Leu Arg Gln Ile Gly Ile Ser
Tyr945 950 955 960Pro Arg
Arg Thr Arg Pro Asp Ala Ser Pro Tyr Pro Asp Asp Leu Pro
965 970 975Asp Gly Leu Phe Ala Asp Ser
Phe Asp Glu Gln Gln Gln Ala Leu Arg 980 985
990Leu Thr Leu Thr Gln Ser Ser Trp His Thr Leu Lys Asp Ile
Ser Ser 995 1000 1005Gly Ile Trp
Leu Pro Ala Val Ala Asp Ala Thr Arg Ser Asp Leu 1010
1015 1020Phe Val His Gln Ala Ala Gln Val Pro Pro Ala
Gly Leu Thr Leu 1025 1030 1035Glu Asn
Leu Leu Thr Asp Ser Ala Leu Leu Thr Ser Pro Val Phe 1040
1045 1050Gly Gly Gln Ser Gln Ile Trp Tyr Gln Asp
Arg Ala Gly Gln Ala 1055 1060 1065Ser
Ile Thr Ser Pro Asp Phe Pro Pro Arg Pro Ser Phe Ser Glu 1070
1075 1080Thr Ala Ala Leu Asp Glu Ala Gln Val
Ser Thr Leu Ser Ala Asp 1085 1090
1095Ile Asp Gln Thr Lys Leu Glu Gln Ala Gly Tyr Thr Arg Ser Ala
1100 1105 1110Tyr Leu Phe Ala Arg Ser
Gly Glu Glu Ser Lys Thr Leu Trp Ala 1115 1120
1125Val Arg Gln Gly Tyr Ile Thr Phe Ser Gly Ala Asp His Phe
Tyr 1130 1135 1140Leu Pro Ile Ala Ala
Gln Gln Thr Leu Leu Ala Gly Lys Thr Thr 1145 1150
1155Val Thr Tyr Asp Pro Tyr Asp Cys Val Val Leu Gln Ala
Lys Asp 1160 1165 1170Ala Ala Gly Ala
Val Thr Ser Ala Thr Tyr Asp Trp Arg Phe Leu 1175
1180 1185Ala Pro Thr Gln Ile Thr Asp Ile Asn Asp Asn
Leu Lys Ser Val 1190 1195 1200Thr Leu
Asp Ala Leu Gly Arg Val Thr Ser Gln Arg Phe Ser Gly 1205
1210 1215Thr Glu Asn Gly Lys Pro Ala Gly Tyr Ser
Asp His Glu Phe Pro 1220 1225 1230Leu
Pro Ala Ser Ala Asp Ala Ala Leu Ala Leu Ser Ala Pro Leu 1235
1240 1245Pro Val Ala Gln Cys Ile Ile Tyr Val
Pro Asp Ser Trp Met Leu 1250 1255
1260Thr Gly Glu Gln Gln Gln Pro Pro His Val Val Thr Leu Leu Thr
1265 1270 1275Asp Arg Tyr Asp Ser Asp
Ser Gln Gln Gln Ile Arg Gln Gln Val 1280 1285
1290Val Phe Ser Asp Gly Phe Gly Arg Val Leu Gln Ala Ala Ser
Arg 1295 1300 1305Gln Val Asn Gly Glu
Ala Trp Gln Arg Ala Ala Asn Gly Ser Phe 1310 1315
1320Val Ala Gly Thr Asn Asp Ser Pro Val Leu Thr Glu Thr
Thr Phe 1325 1330 1335Arg Trp Ala Val
Thr Gly Arg Thr Glu Tyr Asp Asn Lys Gly Gln 1340
1345 1350Ala Ile Arg Ala Tyr Gln Pro Tyr Phe Leu Asp
Ser Trp Lys Tyr 1355 1360 1365Val Arg
Asp Asp Ser Ala Arg Gln Asp Leu Tyr Ala Asp Thr His 1370
1375 1380Tyr Tyr Asp Pro Val Gly Arg Glu Arg Gln
Val Ile Thr Ala Lys 1385 1390 1395Gly
Trp Leu Arg Arg Val Thr His Thr Pro Trp Phe Val Val Ser 1400
1405 1410Glu Asp Glu Asn Asp Thr Gln Ala
1415 142029951PRTPantoea agglomerans 29Met Ser Ala Ala
Tyr Val Leu Ser Asn Leu Ser Tyr Gln Arg Glu Asn1 5
10 15Thr Met Ser Thr Ser Leu Tyr Ser Arg Thr
Pro Ser Val Thr Val Leu 20 25
30Asp Asn Arg Gly Leu Thr Val Arg Asp Ile Ala Tyr His Arg His Pro
35 40 45Asp Thr Pro Ala Val Thr Ser Glu
Arg Ile Thr Arg His Gln Tyr Asp 50 55
60Ala Arg Gly Phe Leu Thr Gln Ser Ala Asp Pro Arg Leu His Asp Ala65
70 75 80Gly Leu Ala Asn Phe
Ser Tyr Arg Thr Asp Leu Thr Gly Ser Val Leu 85
90 95Arg Leu Gln Gly Val Asp Asn Gly Ile Thr Val
Ala Leu Asn Asp Ala 100 105
110Ala Gly Arg Pro Phe Leu Ala Val Ser Asn Ile Arg Thr Ala Gly Asp
115 120 125Gly Ser Glu Asp Arg Ser Gln
Ala Val Thr Arg Thr Cys Gln Tyr Glu 130 135
140Asp Ala Thr Leu Pro Gly Arg Pro Leu Ser Ile Thr Glu Gln Val
Lys145 150 155 160Gly Gly
Ala Ala Arg Ile Thr Glu Arg Phe Ile Tyr Ala Gly Asn Ala
165 170 175Val Glu Glu Lys Ala Leu Asn
Leu Ala Gly Gln Pro Val Ser His Tyr 180 185
190Asp Thr Ala Gly Leu Thr Gln Thr Asp Ser Ile Ala Leu Thr
Gly Val 195 200 205Pro Leu Ser Val
Thr Arg Arg Leu Leu Lys Asp Ala Asp Asn Pro Asp 210
215 220Ala Val Ala Asp Trp Gln Gly Thr Asp Ala Ser Val
Trp Asn Asp Pro225 230 235
240Leu Asp Val Glu Thr Tyr Thr Thr Leu Ser Thr Ala Asp Ala Thr Gly
245 250 255Ala Val Leu Thr Thr
Thr Asp Ala Lys Gly Asn Leu Gln Arg Leu Ala 260
265 270Tyr Asp Val Ala Gly Leu Leu Ser Gly Ser Trp Leu
Thr Leu Lys Asp 275 280 285Gly Thr
Glu Gln Val Ile Val Thr Ser Leu Thr Tyr Ser Ala Ala Gly 290
295 300Gln Lys Leu Arg Glu Glu His Gly Asn Gly Val
Val Thr Thr Tyr Thr305 310 315
320Tyr Glu Ala Glu Thr Gln Arg Leu Thr Gly Ile Lys Thr Ala Arg Pro
325 330 335Ala Gly His Thr
Ser Gly Ala Lys Val Leu Gln Asp Leu Arg Tyr Thr 340
345 350Tyr Asp Pro Val Gly Asn Val Leu Lys Ile Ser
Asn Asp Ala Glu Glu 355 360 365Thr
Arg Phe Trp Arg Asn Gln Lys Val Ala Pro Glu Ser Ala Tyr Val 370
375 380Tyr Asp Ser Leu Tyr Gln Leu Val Ser Ala
Thr Gly Arg Glu Met Ala385 390 395
400Asn Ala Gly Gln Gln Gly Ser Ser Ser Ser Ser Ala Thr Val Pro
Leu 405 410 415Pro Ala Asp
Ser Ser Ala Phe Thr Asn Tyr Thr Arg Asn Tyr Thr Tyr 420
425 430Asp Glu Ala Gly Asn Leu Thr Gln Val Arg
His Thr Pro Ala Thr Gly 435 440
445Ser Gly Tyr Thr Thr Lys Ile Thr Val Ser Asp Lys Ser Asn Arg Gly 450
455 460Val Leu Ser Thr Leu Thr Glu Asn
Pro Ser Asp Val Asp Ala Leu Phe465 470
475 480Thr Ala Gly Gly Gln Gln Lys Gln Leu Gln Pro Gly
Gln Ser Leu Ile 485 490
495Trp Thr Pro Arg Asn Glu Leu Leu Lys Val Thr Pro Val Ala Arg Asp
500 505 510Gly Gly Ala Asp Asp Ser
Glu Ser Tyr Arg Tyr Asp Gly Gly Ser Leu 515 520
525Arg Leu Leu Lys Val Ser Val Gln Lys Thr Gly Asn Ser Thr
Gln Thr 530 535 540Gln Arg Ala Leu Tyr
Leu Pro Gly Leu Glu Leu Arg Asn Thr Thr Ser545 550
555 560Gly Asp Thr Glu Thr Glu Ser Leu Gln Val
Val Thr Val Gly Glu Ala 565 570
575Gly Arg Ala Gln Val Arg Val Leu His Trp Glu Ser Gly Thr Pro Asp
580 585 590Ser Val Ser Asn Asp
Pro Val Arg Tyr Ser Tyr Asp Asn Leu Thr Gly 595
600 605Ser Ser Gly Leu Glu Leu Asp Ser Ser Gly Asn Ile
Ile Ser Met Glu 610 615 620Glu Tyr Tyr
Pro Tyr Gly Gly Thr Ala Val Trp Thr Ala Arg Ser Ala625
630 635 640Val Glu Ala Glu Tyr Lys Thr
Val Arg Tyr Ser Gly Lys Glu Arg Asp 645
650 655Ala Thr Gly Leu Tyr Tyr Tyr Gly Tyr Arg Tyr Tyr
Gln Pro Trp Ala 660 665 670Gly
Arg Trp Leu Ser Ala Asp Pro Ala Gly Thr Val Asp Gly Leu Asn 675
680 685Leu Phe Arg Met Val Arg Asn Asn Pro
Val Thr Leu Val Asp Asp Asn 690 695
700Gly Leu Phe Thr Ser Ser Pro Leu Leu Gly Ile Tyr Glu Lys Glu Met705
710 715 720Lys Thr Phe Asp
Ser Ile Lys Leu Ser Ile Gly Ser Tyr Lys Tyr Lys 725
730 735Pro Ser Lys Phe Asp Glu Lys Lys Gly Lys
Tyr Val Ser Ser Asp Lys 740 745
750Tyr Lys Leu Ile Met Ala Asp Asp Asn Asp Leu Asn Gly Tyr Leu Phe
755 760 765Asp Glu Arg Glu Met Thr Ser
His Leu Lys Asp Tyr Ala Asp Lys Phe 770 775
780Ser Lys Ile Ser Arg Leu Asn Ile Gly Asp Glu Arg Met Lys Thr
Asn785 790 795 800Ile Asn
Phe Gly Thr Arg Ile Ser Arg Tyr Leu Leu Ser Ser Ala Gln
805 810 815Ala Ser Ser Arg Glu Asn Arg
Glu Val Asp Val Leu Ser Phe Glu Arg 820 825
830Lys Phe Phe Ala Val Val Lys Lys Lys Asp Lys Ser His Tyr
Phe Gly 835 840 845Arg Lys Ile Tyr
Ala Ile Gly Glu Ala His Val Leu Thr Asp Phe Glu 850
855 860Glu Lys Lys Arg Thr Ile Ala Ile Lys Thr Leu Val
Ala His Pro Tyr865 870 875
880Thr Gln Ile Asn Glu Ser Ile Lys Asn Arg Ile Asn Asp Phe Asp Lys
885 890 895Glu Tyr Asn Val Lys
Gly Ile Gly Thr Phe Ala Thr Phe Lys Ala Thr 900
905 910Asn Lys Leu Ile Gly Gly Ile Lys Gly Ala Leu Lys
Tyr Lys Thr Lys 915 920 925Val Leu
Thr Gln Ala Val Asn Val Arg Ser Ala Ala Ile Ala Ile Lys 930
935 940Tyr Gly Ala Lys His Val Pro945
950302523PRTPantoea agglomerans 30Met Tyr Leu Thr Glu Glu Ile Leu Ala
Lys Leu Asn Ala Gly Asn Gly1 5 10
15Lys Leu Gln Ser Thr Val Glu Gln Ile Ile Thr Leu Pro Asp Ile
Met 20 25 30Val Arg Ser Phe
Ser Gln Val Lys Glu Leu Ala Gly Asp Lys Leu Ser 35
40 45Trp Gly Glu Lys Asn Phe Leu Tyr Gln Gln Ala Gln
Thr Gln Leu Lys 50 55 60Glu Asn Lys
Met Ala Glu Ser Arg Ile Leu Ser Arg Ala Asn Pro Gln65 70
75 80Leu Ala Asn Ala Val Arg Leu Gly
Ile Arg Gln Ser Ser Met Leu Gly 85 90
95Ser Tyr Asp Asp Leu Phe Pro Gln Arg Ala Ser Arg Phe Val
Lys Pro 100 105 110Gly Ala Val
Ala Ser Met Phe Ser Pro Ala Gly Tyr Leu Thr Glu Leu 115
120 125Tyr Arg Glu Ala Arg Gly Leu His Lys Ala Glu
Ser Gln Tyr Asn Leu 130 135 140Asp Lys
Arg Arg Pro Asp Leu Ala Ser Leu Ala Leu Ser Gln Ser Asn145
150 155 160Met Asp Asp Glu Leu Ser Thr
Leu Ser Leu Ser Asn Glu Leu Leu Leu 165
170 175Asn Asn Ile Gln Gln His Asp Gly Leu Ser Tyr Asp
Asp Ala Leu Lys 180 185 190Lys
Leu Ala Gly Tyr Arg Gln Thr Gly Thr Thr Pro Tyr Ser Gln Pro 195
200 205Tyr Glu Thr Ile Arg Glu Ala Ile Leu
Leu Gln Asp Pro Ala Phe Asn 210 215
220Ser Ile Arg Asn Asn Pro Ala Val Ala Thr Lys Met Asn Thr Ser Gly225
230 235 240Leu Leu Gly Leu
Thr Ala Asn Leu Pro Pro Glu Leu His Ala Ile Leu 245
250 255Thr Glu Thr Ile Thr Glu Glu Asn Ala Glu
Gln Leu Ile Lys Asp Asn 260 265
270Phe Gly Asp Val Asn Val Ser Arg Phe Gln Asp Val Ser Tyr Leu Ala
275 280 285Arg Trp Tyr Gly Met Thr Pro
Tyr Glu Leu Asn Ser Val Leu Gly Leu 290 295
300Met Glu Val Gly Ser Asn Pro Val Asp Gly Val Thr Tyr Tyr Gln
Asp305 310 315 320Asp Gln
Leu Ile Ser Leu Val Asp Asn Gly Gly Asn Leu Asp Ala Val
325 330 335Leu Met Gln Arg Ala Gly Gly
Asp Asn Tyr Ser Gln Phe Gly Tyr Ile 340 345
350Glu Leu Leu Pro Val Ser Gly Asp Thr Tyr Gln Leu Arg Phe
Thr Val 355 360 365Gln Ser Gly Tyr
Val Gly Gln Asp Ser Glu Val Arg Ile Gly Thr Ser 370
375 380Glu Asn Ala Gly Ser Lys Asp Ile Leu Ser Asp Gly
Arg Ile Ala Gly385 390 395
400Leu Asn Ile Pro Met Val Leu Asn Val Lys Leu Asp Ser Thr Lys Leu
405 410 415Ala Gln Gly Ile Thr
Ile Gly Val Thr Arg Tyr Asp Pro Ser Gly Ser 420
425 430Tyr Ile Asn Phe Ala Ser Val Arg Phe Gln Arg Tyr
Asp Phe Ser Tyr 435 440 445Asn Val
Phe Leu Leu Lys Leu Asn Lys Ile Ile Arg Leu Tyr Lys Ala 450
455 460Thr Gly Ile Ser Pro Ser Asp Ile Gln Thr Leu
Ile Glu Ser Ala Asn465 470 475
480His Asp Leu Ala Ile Thr Glu Asp Val Leu Ser Gln Leu Phe Trp Thr
485 490 495Asn Tyr Tyr Thr
Gln Arg Tyr Gly Ile Asp Phe Ser Ala Ala Leu Val 500
505 510Leu Ala Gly Ala Asn Ile Ser Gln Ile Ala His
Ser Asn Lys Gln Ser 515 520 525Ala
Phe Thr Arg Leu Phe Asn Thr Pro Pro Leu Asn Asn Gln Phe Phe 530
535 540Tyr Ala Asp Gly Lys Lys Leu Asn Leu Glu
Pro Gly Lys Ser Asp Asp545 550 555
560Ser His Gly Leu Gly Val Leu Lys Arg Ala Leu Gln Val Asn Asp
Ser 565 570 575Ala Leu Tyr
Thr Leu Phe Asn Leu Thr Phe Ala Asp Lys Asp Ala Gln 580
585 590Gly Asn Ala Val Val Phe Thr Lys Thr Pro
Glu Asn Leu Ser Ala Leu 595 600
605Tyr Arg Thr Arg Leu Leu Ala Thr Val Asn Asn Leu Thr Val Asn Glu 610
615 620Leu Ser Leu Leu Leu Ser Val Ser
Pro Tyr Val Lys Val Lys Leu Ala625 630
635 640Thr Leu Lys Asp Glu Ala Leu Ser Gln Leu Ser Thr
Thr Leu Glu Arg 645 650
655Tyr Thr Gln Trp Leu Asp Lys Met Asn Trp Thr Ile Gly Asp Leu Tyr
660 665 670Leu Met Leu Thr Pro Val
Tyr Ser Thr Val Leu Ser Pro Asp Ile Glu 675 680
685Asn Leu Val Thr Thr Leu Lys Asn Gly Leu Ala Gly Gln Asp
Leu Thr 690 695 700Ser Asp Glu Lys Arg
Ile Ala Ala Leu Ala Pro Phe Val Ala Ala Ala705 710
715 720Thr Gln Leu Asp Ser Ala Glu Thr Ala Arg
Ala Leu Leu Arg Trp Leu 725 730
735Asn Asp Leu Lys Pro Gly Thr Leu Ser Leu Ala Asp Phe Ile Ala Gln
740 745 750Val Asn Asn Thr Thr
Gln Thr Glu Asn Leu Val Thr Phe Ser Gln Val 755
760 765Met Ala Gln Leu Ala Leu Ile Thr Arg Asn Ala Ser
Leu Ser Ala Asn 770 775 780Glu Leu Ser
Trp Ala Val Ala His Pro Glu Ile Phe Gln Glu Lys Ala785
790 795 800Thr Val Leu Lys Asn Asp Ile
Ala Thr Leu Asn Asp Leu Thr Gln Leu 805
810 815His Asp Leu Leu Ala Arg Cys Gly Ser His Ala Ser
Glu Ile Leu Thr 820 825 830Ser
Leu Ser Gly Asn Ala Ser Lys Ala Glu Asn Asn Leu Ala Val Ser 835
840 845Thr Leu Ala Thr Ala Leu Asn Leu Asp
Glu Arg Ala Leu Thr Gln Ala 850 855
860Leu Ala Lys Val Ser Thr Tyr Glu Tyr Phe Tyr Asn Trp Ala His Leu865
870 875 880Asn Glu Ala Leu
Gln Trp Leu Asp Val Ala Thr Thr Phe Gly Ile Thr 885
890 895Pro Asp Asn Leu Ala Ala Leu Ile Gly Leu
Lys Phe Asp Asn Gln Asp 900 905
910Asp Ala Ser Phe Ala Ser Trp Leu Thr Ala Ser Arg Phe Met Gln Ala
915 920 925Gly Leu Asn Thr Gln Gln Thr
Ala Gln Leu Ser Ala Thr Leu Asp Glu 930 935
940Ser Leu Ser Ala Ala Val Ser Ala Tyr Ala Ile Lys Asn Ile Phe
Ser945 950 955 960Gly Ala
Val Ser Asn Arg Glu Gln Leu Tyr Ser Trp Leu Leu Ile Asp
965 970 975Asn Gln Val Ser Ala Gln Val
Lys Thr Thr Arg Ile Ala Glu Ala Ile 980 985
990Ala Ser Val Gln Leu Tyr Val Asn Arg Ala Leu Ser Gly Leu
Glu Asn 995 1000 1005Gly Gln Ser
Ala Thr Asp Ala Val Asp Asn Ala Val Lys Ser Gly 1010
1015 1020Val Phe Phe Thr Arg Asp Trp Asp Thr Tyr Asn
Lys Arg Tyr Ser 1025 1030 1035Thr Trp
Ala Gly Val Ser Glu Leu Val Tyr Tyr Pro Glu Asn Tyr 1040
1045 1050Val Asp Pro Thr Leu Arg Leu Gly Gln Thr
Gly Met Met Asp Glu 1055 1060 1065Met
Leu Gln Thr Leu Ser Gln Ser Gln Leu Thr Ser Asp Thr Val 1070
1075 1080Glu Asp Ala Phe Lys Thr Tyr Met Thr
Arg Phe Glu Glu Ile Ala 1085 1090
1095Asn Leu Asp Ile Val Ser Gly Tyr His Asp Asn Leu Ser Asp Gln
1100 1105 1110Lys Gly Val Thr Tyr Leu
Ile Gly Arg Ser Ala Ala Gly Asp Tyr 1115 1120
1125Tyr Trp Arg Ser Ala Asp Ile Ser Lys Leu Ser Asp Gly Lys
Leu 1130 1135 1140Pro Ala Asn Ala Trp
Ala Glu Trp Lys Lys Ile Thr Thr Ala Leu 1145 1150
1155Thr Pro Val Asn Asn Leu Val Arg Pro Val Ile Phe Gln
Ser Arg 1160 1165 1170Leu Tyr Val Thr
Trp Val Glu Ser Arg Glu Val Gly Ile Ser Ala 1175
1180 1185Val Lys Lys Gln Asn Ser Glu Thr Lys Pro Leu
Glu Tyr Ala Leu 1190 1195 1200Lys Tyr
Ala His Ile Leu His Asp Gly Thr Trp Ser Ala Pro Val 1205
1210 1215Ser Val Lys Leu Glu Asn Gly Thr Leu Pro
Leu Asp Ser Val Ala 1220 1225 1230Ile
Asp Val Thr Gly Met Tyr Cys Ala Lys Asp Thr Gln His Asp 1235
1240 1245Gln Leu Tyr Ile Leu Phe Tyr Lys Lys
Lys Glu Thr Tyr Asn Asp 1250 1255
1260Val Asn Asp Val Leu Lys Gly Ile Ile Leu His Asp Asp Gly Thr
1265 1270 1275Thr Thr Ile Thr Ser Gly
Asn Ser Val Ser Gly Leu Val Val Tyr 1280 1285
1290Lys Gln Leu Asp Thr Thr Lys Glu Val Arg Leu Asn Thr Pro
Tyr 1295 1300 1305Pro Gly Gly Lys Thr
Tyr Tyr Ser Ile Asn Asn Met Arg Glu Ser 1310 1315
1320Ser Lys Trp Gly Asp Asp Asn Ile Ser Met Leu Ser Gly
Cys Ser 1325 1330 1335Val Lys Asp Phe
Val Phe Thr Glu Gly Asp Gly Lys Leu Asn Val 1340
1345 1350Ala Phe Asn Ala Thr Glu Arg Ile Ile Tyr Arg
Gly Asn Pro Asp 1355 1360 1365Ser Gln
Gly Tyr Val Ala Leu Val Asn Met Ile Lys Ala Ile Gly 1370
1375 1380Asn Ile Gly Asp Thr Phe Lys Ile Pro Val
Leu Asn Ser Asn Gly 1385 1390 1395Glu
Gly Leu Asp Arg Pro Phe Thr Cys Ile Phe Arg Gln Pro Asp 1400
1405 1410Glu Lys Thr Asp Ala Ile Ala Tyr Phe
Ser Asp Val Gln Gly Leu 1415 1420
1425Asn Ile Asp His Phe Ala Phe Asn Asp Glu Ser Gln Lys Met Leu
1430 1435 1440Gly Arg Ile Leu Arg Pro
Glu Glu Lys Asp Phe Tyr Lys Leu Glu 1445 1450
1455Cys Val Asn Thr Asn Leu His Ile Tyr Lys Asp Ser Ser Lys
Thr 1460 1465 1470Ile Lys Pro Asp Asn
Phe Val Tyr Phe Gly Pro Gly Met Asp Leu 1475 1480
1485Ile Val Val Lys Gly Met Ile Val Glu Thr Leu Phe Gly
Leu Phe 1490 1495 1500Gly Glu Leu Lys
Thr Gly Ile Lys Asp Lys Ser Val Lys Leu Ser 1505
1510 1515Val Ser Ala Gly Val Ile Asp Asn Ser Pro Ala
Ala Thr Lys Thr 1520 1525 1530Lys Tyr
Thr Phe Asp Glu Ser Leu Tyr Val Ile Glu Gly Gln Thr 1535
1540 1545Val Ser Ile Gln Leu Ser Glu Phe Lys Glu
Asn Asn Ile Asp Leu 1550 1555 1560Glu
Phe Thr Phe Leu Ala Ser Gly Asp Ser Gly Asn Ser Leu Gly 1565
1570 1575Gln Ser Val Ile Ser Ala Thr Leu Thr
Arg Thr Ser Glu Asn Thr 1580 1585
1590Ile Pro Val Ile Ser Leu Asn Lys Thr Ser Asp Asn Ala Gln Tyr
1595 1600 1605Leu Gln Tyr Gly Ile His
Arg Ile Arg Val Asn Thr Leu Phe Ala 1610 1615
1620Lys Gln Leu Val Ala Arg Ala Asn Ala Gly Leu Asp Thr Val
Leu 1625 1630 1635Ser Met Ala Thr Gln
Gln Leu Thr Glu Pro Lys Met Gly Lys Gly 1640 1645
1650Ala Tyr Ile Asp Leu Glu Leu Asn Ala Ser Ser Asp Gly
Ser Ser 1655 1660 1665Ala Val Phe Glu
Val Leu Met Cys Asp Val Phe Thr Asn Gly Asp 1670
1675 1680Arg Ile Ala Leu Thr Ser Gly Thr Leu Ser Pro
Thr Ala Arg Thr 1685 1690 1695Ser Cys
Ser Phe Phe Val Pro Arg Leu Asp Glu Ser Thr Ala Ser 1700
1705 1710Ala Tyr Asn Met Tyr Phe Cys Val Lys Thr
Gln Asn Thr Glu Ser 1715 1720 1725Lys
Arg Val Glu Val Thr Gly Gly Glu Gly Lys Trp Asp Tyr Gln 1730
1735 1740Tyr Val Asp Glu Ser Gly Ala Ala Ile
Lys Pro Pro Tyr Thr Asp 1745 1750
1755Pro Tyr Ile Ala Ser Ile Tyr Val Arg Asn Asp Thr Thr Glu Pro
1760 1765 1770Met Asp Phe Asn Gly Ala
Asn Ala Leu Tyr Phe Trp Glu Met Phe 1775 1780
1785Tyr Tyr Val Pro Met Met Val Phe Lys Arg Leu Leu Ser Glu
Ser 1790 1795 1800Lys Phe Ala Glu Ala
Thr Gln Trp Ile Lys Tyr Ile Trp Asn Pro 1805 1810
1815Asp Gly Tyr Leu Val Asn Asn Gln Pro Ala Thr Tyr Thr
Trp Asn 1820 1825 1830Val Arg Pro Leu
Glu Glu Asp Thr Ser Trp His Ala Asp Pro Leu 1835
1840 1845Asp Ser Val Asn Pro Asp Ala Val Ala Gln Ala
Asp Pro Leu His 1850 1855 1860Tyr Lys
Val Ala Thr Phe Met Ala Tyr Leu Asp Leu Leu Ile Ala 1865
1870 1875Arg Gly Asp Ala Ala Tyr Arg Gln Leu Gln
Arg Asp Thr Leu Asn 1880 1885 1890Glu
Ala Lys Met Trp Tyr Val Gln Ala Leu Asn Ile Leu Gly Asp 1895
1900 1905Glu Pro Tyr Gln Ser Ser Ser Ser Asp
Trp Ser Ser Pro Val Leu 1910 1915
1920Ser Ser Ala Ala Asp Gln Thr Thr Glu Lys Asn Val Gln Gln Ala
1925 1930 1935Met Leu Ala Val Arg Gln
Gln Pro Asp Ala Gly Glu Leu Arg Thr 1940 1945
1950Ala Asn Ser Leu Thr Ser Leu Phe Leu Pro Gln Gln Asn Glu
Lys 1955 1960 1965Leu Ala Gly Tyr Trp
Gln Thr Leu Ala Gln Arg Leu Tyr Asn Leu 1970 1975
1980Arg His Asn Leu Ser Ile Asp Gly Ser Pro Leu Ser Leu
Ala Ile 1985 1990 1995Tyr Ala Ala Pro
Ala Asp Pro Ala Ala Leu Leu Ser Ala Ala Val 2000
2005 2010Asn Ser Ala Ser Gly Gly Ser Glu Leu Pro Ala
Ala Val Met Pro 2015 2020 2025Leu Tyr
Arg Phe Pro Ile Ile Leu Glu Ser Ala Arg Gly Met Ala 2030
2035 2040Gly Gln Leu Thr Gln Phe Gly Ser Thr Leu
Leu Ser Ile Ala Glu 2045 2050 2055Arg
Gln Asp Ala Glu Ala Leu Ser Glu Leu Met Gln Thr Gln Gly 2060
2065 2070Ser Gln Leu Ile Leu Gln Ser Ile Ala
Leu Gln Asn Ser Thr Ile 2075 2080
2085Ser Glu Ile Asp Ala Asp Lys Thr Val Leu Glu Ala Ser Leu Ser
2090 2095 2100Gly Ala Arg Ser Arg Leu
Asp Arg Tyr Thr Thr Leu Tyr Asp Glu 2105 2110
2115Asp Val Asn Thr Gly Glu Gln Gln Ala Met Asp Leu Phe Tyr
Ala 2120 2125 2130Ser Ser Ile Gln Ala
Asn Gly Gly Gln Ala Phe His Thr Val Ala 2135 2140
2145Gly Gly Leu Asp Leu Ala Pro Asn Ile Phe Gly Leu Ala
Asp Gly 2150 2155 2160Gly Ser Arg Trp
Gly Ala Ala Phe Thr Ala Leu Ala Ser Ile Ala 2165
2170 2175Asp Leu Ser Ala Ala Ala Ser His Thr Ala Ala
Glu Arg Leu Ser 2180 2185 2190Gln Ser
Glu Val Tyr Arg Arg Arg Arg Gln Glu Trp Glu Ile Gln 2195
2200 2205Arg Asn Ala Ala Gln Ser Glu Ile Asp Gln
Ile Asp Ala Gln Leu 2210 2215 2220Ala
Ser Leu Thr Ile Arg Arg Lys Gly Ala Val Leu Gln Lys Thr 2225
2230 2235Tyr Leu Glu Thr Gln Gln Gly Gln Met
Gln Ala Gln Met Thr Phe 2240 2245
2250Leu Gln Asn Lys Phe Thr Ser Lys Ala Leu Tyr Asn Trp Leu Arg
2255 2260 2265Gly Lys Leu Ala Ala Ile
Tyr Tyr Gln Phe Tyr Asp Leu Thr Val 2270 2275
2280Ser Arg Cys Leu Met Ala Glu Ala Ala Tyr Ser Trp His Ile
Lys 2285 2290 2295Gly Asn Gln Glu Thr
Gly Thr Phe Ile Arg Pro Gly Ala Trp Gln 2300 2305
2310Gly Ile Tyr Ala Gly Leu Met Ala Gly Glu Ala Leu Met
Leu Asn 2315 2320 2325Leu Ala Gln Met
Glu Asn Ser Tyr Leu Thr Lys Asp Glu Arg Leu 2330
2335 2340Gln Glu Val Thr Arg Thr Val Cys Leu Ser Glu
Phe Tyr Ser Gly 2345 2350 2355Leu Ser
Ser Asn Lys Phe Ala Leu Ala Asp Thr Val Thr Thr Leu 2360
2365 2370Val Asn Ser Gly Lys Gly Asn Ala Gly Thr
Thr Asp Asn Gly Val 2375 2380 2385Lys
Ile Asp Gly Lys Gln Leu Leu Ala Thr Leu Lys Leu Ser Asp 2390
2395 2400Leu Asn Ile Lys Thr Asp Tyr Pro Glu
Ser Leu Asp Lys Ala Lys 2405 2410
2415Arg Ile Lys Gln Ile Ser Val Thr Leu Pro Met Leu Val Gly Pro
2420 2425 2430Tyr Gln Asp Val Arg Ala
Val Leu Ser Tyr Gly Gly Ser Val Val 2435 2440
2445Leu Pro Arg Gly Cys Thr Ala Val Ala Val Ser His Gly Met
Asn 2450 2455 2460Asp Ser Gly Gln Phe
Gln Leu Asp Phe Asn Asp Ser Arg Trp Leu 2465 2470
2475Pro Phe Glu Gly Ile Pro Val Asp Asp Ser Gly Thr Leu
Thr Leu 2480 2485 2490Ser Phe Pro Asp
Ile Thr Asp Lys Gln Gln Glu Asn Leu Leu Leu 2495
2500 2505Ser Leu Ser Asp Ile Ile Leu His Ile Arg Tyr
Thr Ile Ala Ser 2510 2515
2520311421PRTPantoea agglomerans 31Met Gln Asn Thr Asp Gln Met Ser Leu
Thr Pro Pro Ser Leu Pro Ser1 5 10
15Gly Gly Gly Ala Val Thr Gly Leu Lys Gly Asp Met Ser Gly Ala
Gly 20 25 30Pro Asp Gly Ala
Ala Thr Leu Ser Leu Pro Leu Pro Ile Ser Pro Gly 35
40 45Arg Gly Tyr Ala Pro Ser Leu Ser Leu Gly Tyr His
Ser Arg Asn Gly 50 55 60Asn Gly Val
Phe Gly Ala Gly Trp Ser Cys Gly Gln Met Ala Ile Arg65 70
75 80Leu Gln Thr Arg Lys Gly Val Pro
Phe Tyr Asp Gly Ser Asp Val Phe 85 90
95Thr Ala Pro Asp Gly Glu Val Leu Val Pro Ala Leu Asp Ala
Ser Gly 100 105 110Lys Ala Glu
Val Arg Thr Thr Thr Thr Leu Leu Gly Glu Asn Leu Gly 115
120 125Gly Thr Phe Thr Val Gln Thr Tyr Arg Ser Arg
Val Glu Thr Asp Phe 130 135 140Ser Arg
Leu Glu Arg Trp Val Pro Gln Thr Asp Ala Ala Ala Asp Phe145
150 155 160Trp Leu Ile Tyr Ser Pro Asp
Gly Gln Ile His Leu Leu Gly Arg Asn 165
170 175Pro Gln Ala Arg Val Asn Asn Pro Glu Asp Thr Thr
Gln Thr Ala Ala 180 185 190Trp
Leu Ile Glu Ser Ser Val Ser Ala Ser Gly Glu Gln Ile Tyr Trp 195
200 205Gln Tyr Arg Gln Glu Asp Glu Leu Gly
Cys Thr Gln Asp Glu Lys Thr 210 215
220Ala His Ala His Ala Leu Ala Gln Arg Tyr Leu Val Ala Val Trp Tyr225
230 235 240Gly Asn Lys Ala
Ala Ser Arg Thr Leu Pro Gly Leu Leu Ser Val Pro 245
250 255Ala Ala Gly Ser Trp Leu Phe Ser Leu Val
Leu Asp Tyr Gly Glu Arg 260 265
270Thr Thr Asp Pro Ala Thr Leu Pro Ala Trp Leu Ser Pro Gly Ser Gly
275 280 285Thr Trp Leu Cys Arg Gln Asp
Val Phe Ser Ser Trp Glu Tyr Gly Phe 290 295
300Glu Leu Arg Thr Arg Arg Leu Cys Arg Gln Val Leu Met Tyr His
Asp305 310 315 320Val Ala
Ala Leu Ala Gly Gln Ser Gly Ser Asp Ala Val Pro Gln Leu
325 330 335Val Thr Arg Leu Leu Leu Asp
Tyr Asn Leu Ser Pro Ser Leu Thr Thr 340 345
350Leu Lys Thr Ala Gln Gln Ala Ala Trp Glu Pro Asp Gly Thr
Leu Arg 355 360 365Ser Leu Pro Pro
Leu Ala Phe Ser Trp Gln Thr Phe Pro Ser Thr Pro 370
375 380Glu Lys Ser Val Ser Trp Gln Arg Arg Asn Asp Met
Gly Lys Leu Asn385 390 395
400Pro Gln Gln Pro Tyr Gln Met Val Asp Leu His Gly Glu Gly Leu Ala
405 410 415Gly Ile Leu Tyr Gln
Asp Ser Gly Ala Trp Trp Tyr Arg Glu Pro Val 420
425 430Arg Gln Ser Gly Asp Asp Asp Asn Ala Val Thr Trp
Ala Ala Ala Arg 435 440 445Pro Leu
Pro Ala Phe Pro Ala Leu Arg Lys Gly Gly Met Leu Leu Asp 450
455 460Leu Asp Gly Asp Gly Tyr Leu Glu Trp Val Val
Thr Ala Pro Gly Val465 470 475
480Ala Gly Cys Tyr Ala Gln Ala Pro Glu Gln Cys Trp Gln Arg Phe Thr
485 490 495Pro Leu Ser Ala
Leu Pro Val Glu Tyr Arg His Ser Arg Met Glu Ile 500
505 510Ala Asp Val Thr Gly Ala Gly Leu Ala Asp Met
Leu Leu Ile Gly Pro 515 520 525Lys
Ser Val Arg Leu Tyr Ser Gly Ser Gly Arg Gly Trp Lys Lys Ala 530
535 540Arg Thr Val Met Gln Asp Ser Gly Ile Thr
Leu Pro Val Pro Gly Thr545 550 555
560Asn Ala Arg Val Met Val Ala Phe Ser Asp Met Ala Gly Ser Gly
Gln 565 570 575Gln His Leu
Thr Glu Ile Lys Ala Ser Gly Val Arg Tyr Trp Pro Ser 580
585 590Leu Gly His Gly Arg Phe Ala Ala Pro Val
Thr Leu Pro Gly Phe Ser 595 600
605Gln Pro Ala Glu Thr Phe Asn Pro Ala Gln Leu Tyr Leu Ala Asp Val 610
615 620Asp Gly Ser Gly Thr Thr Asp Leu
Ile Tyr Ala Leu Ser Asp His Leu625 630
635 640Leu Val Trp Leu Asn Gln Ser Gly Asn Ser Phe Asp
Ala Pro Phe Arg 645 650
655Ile Ser Leu Pro Glu Gly Val Arg Tyr Asp Asn Thr Cys Ser Leu Gln
660 665 670Val Ala Asp Ile Gln Gly
Leu Gly Ile Ser Ser Leu Val Leu Ser Val 675 680
685Pro His Pro Thr Pro Arg His Trp Val Cys His Leu Thr Thr
Glu Lys 690 695 700Pro Trp Leu Leu Asp
Gly Met Asn Asn Asn Met Gly Ala Arg His Thr705 710
715 720Leu Cys Tyr Arg Ser Ser Ala Gln Phe Trp
Leu Asp Glu Lys Ala Ala 725 730
735Ala Thr Ala Asp Arg Pro Ala Pro Ala Cys Tyr Leu Pro Phe Ala Leu
740 745 750His Thr Leu Ser Arg
Thr Glu Val Ser Asp Glu Ile Thr Gly Asn Arg 755
760 765Leu Thr Arg Thr Ile Arg Tyr Arg His Gly Val Trp
Asp Arg Arg Glu 770 775 780Arg Glu Phe
Arg Gly Phe Gly Phe Val Glu Val Ser Asp Ala Glu Ala785
790 795 800Leu Ala Lys Gln Thr Glu Gly
Met Ser Ala Pro Ala Val Lys Arg Ser 805
810 815Trp Tyr Ala Thr Gly Leu Ala Ala Val Asp Ala Gln
Leu Pro Asp Glu 820 825 830Phe
Trp Lys Gly Asp His Ala Ala Phe Ala Gly Phe Thr Pro Arg Phe 835
840 845Thr Thr Gly Asp Gly Glu Gln Glu Ala
Val Leu Asp Thr Ile Ser Asp 850 855
860Asp Thr Arg Phe Trp Leu Thr Arg Ala Ile Arg Gly Thr Leu Leu Arg865
870 875 880Ser Glu Leu Tyr
Gly Ala Asp Gly Ser Ser Gln Ala Gly Ile Pro Tyr 885
890 895Ser Ile Thr Glu Ser Arg Pro Gln Val Arg
Leu Ile Thr Glu Ala Gly 900 905
910Asn Ser Pro Val Val Trp Pro Ser Val Ile Glu Asn Arg Thr Ser His
915 920 925Tyr Glu Arg Val Ser Ser Asp
Pro Gln Cys Gly Gln Gln Ile Leu Leu 930 935
940Thr Ser Asn Glu Tyr Gly Gln Pro Leu Arg Gln Ile Gly Ile Ser
Tyr945 950 955 960Pro Arg
Arg Thr Arg Pro Asp Ala Ser Pro Tyr Pro Asp Asp Leu Pro
965 970 975Asp Gly Leu Phe Ala Asp Ser
Phe Asp Glu Gln Gln Gln Ala Leu Arg 980 985
990Leu Thr Leu Thr Gln Ser Ser Trp His Thr Leu Lys Asp Ile
Ser Ser 995 1000 1005Gly Ile Trp
Leu Pro Ala Val Ala Asp Ala Thr Arg Ser Asp Leu 1010
1015 1020Phe Val His Gln Ala Ala Gln Val Pro Pro Ala
Gly Leu Thr Leu 1025 1030 1035Glu Asn
Leu Leu Thr Asp Ser Ala Leu Leu Thr Ser Pro Val Phe 1040
1045 1050Gly Gly Gln Ser Gln Ile Trp Tyr Gln Asp
Arg Ala Gly Gln Ala 1055 1060 1065Ser
Ile Thr Ser Pro Asp Phe Pro Pro Arg Pro Ser Phe Ser Glu 1070
1075 1080Thr Ala Ala Leu Asp Glu Ala Gln Val
Ser Ala Leu Ser Ala Asp 1085 1090
1095Ile Asp Gln Thr Lys Leu Glu Gln Ala Gly Tyr Thr Arg Ser Ala
1100 1105 1110Tyr Leu Phe Ala Arg Ser
Gly Glu Glu Ser Lys Thr Leu Trp Ala 1115 1120
1125Val Arg Gln Gly Tyr Ile Thr Phe Ser Gly Ala Asp His Phe
Tyr 1130 1135 1140Leu Pro Ile Ala Ala
Gln Gln Thr Leu Leu Ala Gly Lys Thr Thr 1145 1150
1155Val Thr Tyr Asp Pro Tyr Asp Cys Val Val Leu Gln Ala
Lys Asp 1160 1165 1170Ala Ala Gly Ala
Val Thr Ser Ala Thr Tyr Asp Trp Arg Phe Leu 1175
1180 1185Ala Pro Thr Gln Ile Thr Asp Ile Asn Asp Asn
Leu Lys Ser Val 1190 1195 1200Thr Leu
Asp Ala Leu Gly Arg Val Thr Ser Gln Arg Phe Ser Gly 1205
1210 1215Thr Glu Asn Gly Lys Pro Ala Gly Tyr Ser
Asp Asp Glu Phe Pro 1220 1225 1230Leu
Pro Ala Ser Ala Asp Ala Ala Leu Ala Leu Ser Ala Pro Leu 1235
1240 1245Pro Val Ala Gln Cys Ile Ile Tyr Val
Pro Asp Ser Trp Met Leu 1250 1255
1260Thr Gly Glu Gln Gln Gln Pro Pro His Val Ile Thr Leu Leu Thr
1265 1270 1275Asp Arg Tyr Asp Ser Asp
Ser Gln Gln Gln Ile Arg Gln Gln Val 1280 1285
1290Val Phe Ser Asp Gly Phe Gly Arg Val Leu Gln Ala Ala Ser
Arg 1295 1300 1305Gln Val Asn Gly Glu
Ala Trp Gln Arg Ala Ala Asn Gly Ser Phe 1310 1315
1320Val Ala Gly Thr Asn Asp Ser Pro Val Leu Thr Glu Thr
Thr Phe 1325 1330 1335Arg Trp Ala Val
Thr Gly Arg Thr Glu Tyr Asp Asn Lys Gly Gln 1340
1345 1350Ala Ile Arg Ala Tyr Gln Pro Tyr Phe Leu Asp
Ser Trp Lys Tyr 1355 1360 1365Val Arg
Asp Asp Ser Ala Arg Gln Asp Leu Tyr Ala Asp Thr His 1370
1375 1380Tyr Tyr Asp Pro Val Gly Arg Glu Arg Gln
Val Ile Thr Ala Lys 1385 1390 1395Gly
Trp Leu Arg Arg Val Ile His Thr Pro Trp Phe Val Val Ser 1400
1405 1410Glu Asp Glu Asn Asp Thr Gln Ala
1415 1420321004PRTPantoea agglomerans 32Met Ser Ala Ala
Tyr Val Leu Ser Asn Leu Ser Tyr Lys Leu Glu Asn1 5
10 15Pro Met Ser Thr Ser Leu Tyr Ser Arg Thr
Pro Ser Val Thr Ile Leu 20 25
30Asp Asn Arg Gly Leu Thr Val Arg Gly Ile Ala Tyr Gln Arg His Pro
35 40 45Asp Thr Pro Ala Val Thr Ser Glu
Arg Ile Thr Arg His Gln Tyr Asp 50 55
60Ala Arg Gly Phe Leu Met Gln Ser Ala Asp Pro Arg Leu His Asp Ala65
70 75 80Gly Leu Ala Asn Val
Ser Tyr Arg Thr Asn Leu Thr Gly Ser Val Leu 85
90 95Arg Ser Gln Gly Val Asp Asn Gly Ile Thr Val
Thr Leu Asn Asp Ala 100 105
110Ala Gly Arg Pro Phe Leu Ala Val Ser Asn Ile Ser Thr Ala Gly Asp
115 120 125Gly Thr Glu Asp Arg Ser Gln
Ala Val Thr Arg Thr Cys Gln Tyr Glu 130 135
140Asp Ala Thr Leu Pro Gly Arg Pro Leu Ser Ile Thr Glu Gln Val
Asn145 150 155 160Gly Gly
Ala Ala Arg Ile Thr Glu Arg Phe Val Tyr Ala Gly Asn Ala
165 170 175Val Glu Glu Lys Ala Leu Asn
Leu Ala Gly Gln Pro Val Ser His Tyr 180 185
190Asp Thr Ala Gly Leu Thr Gln Thr Asp Ser Ile Ala Leu Thr
Gly Val 195 200 205Pro Leu Ser Val
Thr Arg Arg Leu Leu Lys Asp Ala Asp Asn Pro Asp 210
215 220Ala Val Ala Asp Trp Gln Gly Thr Asp Ala Ser Val
Trp Asn Asp Pro225 230 235
240Leu Asp Val Glu Thr Tyr Thr Thr Leu Ser Thr Ala Asp Ala Thr Gly
245 250 255Ala Val Leu Thr Thr
Thr Asp Ala Lys Gly Asn Leu Gln Arg Leu Ala 260
265 270Tyr Asp Val Ala Gly Leu Leu Ser Gly Ser Trp Leu
Thr Leu Lys Asp 275 280 285Gly Thr
Glu Gln Val Ile Val Thr Ser Leu Thr Tyr Ser Ala Ala Gly 290
295 300Gln Lys Leu Arg Glu Glu His Gly Asn Gly Val
Val Thr Thr Tyr Thr305 310 315
320Tyr Glu Ala Glu Thr Gln Arg Leu Thr Gly Ile Lys Thr Ala Arg Pro
325 330 335Ala Gly His Thr
Ser Gly Ala Lys Val Leu Gln Asp Leu Arg Tyr Thr 340
345 350Tyr Asp Pro Val Gly Asn Val Leu Lys Ile Ser
Asn Asp Ala Glu Glu 355 360 365Thr
Arg Phe Trp Arg Asn Gln Lys Val Ala Pro Glu Ser Ala Tyr Val 370
375 380Tyr Asp Ser Leu Tyr Gln Leu Val Ser Ala
Thr Gly Arg Glu Met Ala385 390 395
400Asn Ala Gly Gln Gln Gly Ser Ser Ser Ser Ser Ala Thr Val Pro
Leu 405 410 415Pro Ala Asp
Ser Ser Ala Phe Thr Asn Tyr Thr Arg Thr Tyr Ala Tyr 420
425 430Asp Glu Ala Gly Asn Leu Thr Gln Val Arg
His Thr Pro Ala Thr Gly 435 440
445Ser Gly Tyr Thr Thr Lys Ile Thr Val Ser Asp Lys Ser Asn Arg Ala 450
455 460Val Leu Ser Val Leu Thr Lys Asn
Pro Ser Asp Val Asp Ala Leu Phe465 470
475 480Thr Ala Gly Gly Gln Gln Lys Gln Leu Gln Pro Gly
Gln Ser Leu Ile 485 490
495Trp Thr Pro Arg Asn Glu Leu Leu Lys Val Met Pro Ile Met Arg Asp
500 505 510Gly Gly Thr Asp Asp Ser
Glu Ser Tyr Arg Tyr Asp Gly Gly Ser Gln 515 520
525Arg Leu Leu Lys Val Ser Val Gln Lys Thr Gly Asn Ser Thr
Gln Thr 530 535 540Gln Arg Ala Leu Tyr
Leu Pro Gly Leu Glu Leu Arg Asn Thr Thr Ser545 550
555 560Gly Asp Thr Glu Thr Glu Ser Leu Gln Val
Val Thr Ala Gly Glu Ala 565 570
575Gly Arg Ala Gln Val Arg Val Leu His Trp Glu Ser Gly Thr Pro Asp
580 585 590Ser Val Ser Asn Asp
Gln Leu Arg Tyr Ser Tyr Asp Asn Leu Thr Gly 595
600 605Ser Ser Gly Leu Glu Leu Asp Ser Ser Gly Asn Ile
Ile Ser Met Glu 610 615 620Glu Tyr Tyr
Pro Tyr Gly Gly Thr Ala Val Trp Thr Ala Arg Ser Ala625
630 635 640Val Glu Ala Lys Tyr Lys Thr
Val Arg Tyr Ser Gly Lys Glu Arg Asp 645
650 655Ala Thr Gly Leu Tyr Tyr Tyr Gly Tyr Arg Tyr Tyr
Gln Pro Trp Ala 660 665 670Gly
Arg Trp Leu Ser Ala Asp Pro Ala Gly Thr Ala Asp Gly Leu Asn 675
680 685Leu Phe Arg Met Val Arg Asn Asn Pro
Val Thr Leu Lys Asp Thr Asn 690 695
700Gly Leu Ile Ser Thr Gly Gln Asp Ala Arg Lys Leu Val Ala Glu Ala705
710 715 720Phe Val His Pro
Leu His Met Thr Val Phe Glu Arg Ile Ser Ser Glu 725
730 735Glu Asn Leu Ala Met Ser Val Arg Glu Ala
Gly Ile Tyr Thr Ile Ser 740 745
750Ala Leu Gly Glu Gly Ala Ala Ala Lys Gly His Asn Ile Leu Glu Lys
755 760 765Thr Ile Lys Pro Gly Ser Leu
Lys Ala Val Tyr Gly Asp Asn Ala Glu 770 775
780Ser Ile Leu Ala Gln Ala Lys Arg Ser Gly Phe Val Gly Arg Val
Gly785 790 795 800Gln Trp
Asp Ala Ser Gly Val Arg Gly Ile Tyr Ala His Asn Thr Pro
805 810 815Gly Gly Glu Asp Leu Ala Tyr
Pro Val Asn Leu Lys Asn Ser Ser Ala 820 825
830Asn Glu Leu Val Asn Ala Trp Ile Lys Phe Lys Ile Ile Thr
Pro Tyr 835 840 845Thr Gly Asp Tyr
Asp Met His Asp Ile Ile Lys Ile Ser Asp Gly Lys 850
855 860Gly His Val Pro Met Ala Glu Ser Asn Glu Glu Lys
Gly Val Lys Asp865 870 875
880Met Ile Asn Glu Gly Val Ala Gln Val Asp Pro Ala Arg Pro Phe Thr
885 890 895Ser Thr Ala Met Asn
Val Val Arg His Gly Pro Gln Val Asn Phe Val 900
905 910Pro Tyr Met Trp Glu His Glu His Glu Asn Val Val
Arg Asp Asn Gly 915 920 925Tyr Leu
Gly Val Val Ala Arg Pro Gly Pro Phe Pro Val Ala Met Val 930
935 940His Lys Gly Glu Trp Thr Val Phe Asp Asn Lys
Asn Glu Leu Phe Glu945 950 955
960Phe Tyr Lys Ser Thr Asn Thr Pro Leu Pro Glu His Trp Ser Gln Asp
965 970 975Phe Val Glu Arg
Gly Lys Gly Asn Val Ala Thr Pro Arg His Ala Glu 980
985 990Ile Leu Asp Arg Asn Ser Ser Arg Leu Arg Ala
Ala 995 100033692PRTPantoea agglomerans 33Met Cys
Ser Val Ala Asp Phe Asp Arg Leu His Asn Ile Lys Gln Glu1 5
10 15Asn Ile Met Gly Thr Ser Leu Tyr
Ser Lys Thr Pro Ser Val Thr Ile 20 25
30Leu Asp Asn Arg Gly Leu Thr Val Arg Asp Ile Ala Tyr Gln Arg
His 35 40 45Pro Asp Thr Pro Ala
Val Thr Ser Glu Arg Ile Thr Arg His Gln Tyr 50 55
60Asp Ala Arg Gly Phe Leu Met Gln Ser Ala Asp Pro Arg Leu
His Asp65 70 75 80Ala
Gly Leu Ala Asn Val Ser Tyr Arg Thr Asn Leu Thr Gly Ser Val
85 90 95Leu Arg Ser Gln Gly Val Asp
Asn Gly Ile Thr Val Thr Leu Asn Asp 100 105
110Ala Ala Gly Arg Pro Phe Leu Ala Val Ser Asn Ile Ser Thr
Ala Gly 115 120 125Asp Gly Thr Glu
Asp Arg Ser Gln Ala Val Thr Arg Thr Cys Gln Tyr 130
135 140Glu Asp Ala Thr Leu Pro Gly Arg Pro Leu Ser Ile
Thr Glu Gln Val145 150 155
160Asn Gly Gly Ala Ala Arg Ile Thr Glu Arg Phe Val Tyr Ala Gly Asn
165 170 175Ala Val Glu Glu Lys
Ala Leu Asn Leu Ala Gly Gln Pro Val Ser His 180
185 190Tyr Asp Thr Ala Gly Leu Thr Gln Thr Asp Ser Ile
Ala Leu Thr Gly 195 200 205Val Pro
Leu Ser Val Thr Arg Arg Leu Leu Lys Asp Ala Asp Asn Pro 210
215 220Asp Ala Val Ala Asp Trp Gln Gly Thr Asp Ala
Ser Val Trp Asn Asp225 230 235
240Pro Leu Asp Val Glu Thr Tyr Thr Thr Leu Ser Thr Ala Asp Ala Thr
245 250 255Gly Ala Val Leu
Thr Thr Thr Asp Ala Lys Gly Asn Leu Gln Arg Leu 260
265 270Ala Tyr Asp Val Ala Gly Leu Leu Ser Gly Ser
Trp Leu Thr Leu Lys 275 280 285Asp
Gly Thr Glu Gln Val Ile Val Thr Ser Leu Thr Tyr Ser Ala Ala 290
295 300Gly Gln Lys Leu Arg Glu Glu His Gly Asn
Gly Val Val Thr Thr Tyr305 310 315
320Thr Tyr Glu Ala Glu Thr Gln Arg Leu Thr Gly Ile Lys Thr Ala
Arg 325 330 335Pro Ala Gly
His Thr Ser Gly Ala Lys Val Leu Gln Asp Leu Arg Tyr 340
345 350Thr Tyr Asp Pro Val Gly Asn Val Leu Lys
Ile Ser Asn Asp Ala Glu 355 360
365Glu Thr Arg Phe Trp Arg Asn Gln Lys Val Val Pro Glu Ser Ala Tyr 370
375 380Val Tyr Asp Ser Leu Tyr Gln Leu
Val Ser Ala Thr Gly Arg Glu Met385 390
395 400Ala Asn Ala Gly Gln Gln Gly Ser Ser Ser Ser Ser
Ala Thr Val Pro 405 410
415Leu Pro Ala Asp Ser Ser Ala Phe Thr Asn Tyr Thr Arg Asn Tyr Thr
420 425 430Tyr Asp Glu Ala Gly Asn
Leu Thr Gln Val Arg His Thr Pro Ala Thr 435 440
445Gly Ser Gly Tyr Thr Thr Lys Ile Thr Val Ser Asp Lys Ser
Asn Arg 450 455 460Gly Val Leu Ser Thr
Leu Thr Glu Asn Pro Ser Asp Val Asp Ala Leu465 470
475 480Phe Thr Ala Gly Gly Gln Gln Lys Gln Leu
Gln Pro Gly Gln Ser Leu 485 490
495Ile Trp Thr Pro Arg Asn Glu Leu Leu Lys Val Thr Pro Val Ala Arg
500 505 510Asp Gly Gly Ala Asp
Asp Ser Glu Ser Tyr Arg Tyr Asp Gly Gly Ser 515
520 525Leu Arg Leu Leu Lys Val Ser Val Gln Lys Thr Gly
Asn Ser Thr Gln 530 535 540Thr Gln Arg
Ala Leu Tyr Leu Pro Gly Leu Glu Leu Arg Asn Thr Thr545
550 555 560Ser Gly Asp Thr Glu Thr Glu
Ser Leu Gln Val Val Thr Val Gly Glu 565
570 575Ala Gly Arg Ala Gln Val Arg Val Leu His Trp Glu
Ser Gly Thr Pro 580 585 590Asp
Ser Val Ser Asn Asp Pro Val Arg Tyr Ser Tyr Asp Asn Leu Thr 595
600 605Gly Ser Ser Gly Leu Glu Leu Asp Ser
Ser Gly Asn Ile Ile Ser Met 610 615
620Glu Glu Tyr Tyr Pro Tyr Gly Gly Thr Ala Val Trp Thr Ala Arg Ser625
630 635 640Ala Val Glu Ala
Lys Tyr Lys Thr Val Arg Tyr Ser Gly Lys Glu Arg 645
650 655Asp Ala Thr Gly Leu Tyr Tyr Tyr Gly Tyr
Arg Tyr Tyr Gln Pro Trp 660 665
670Ala Glu Arg Gly Pro Gly Gly His Gly Gly Arg Ala Glu Pro Val Gln
675 680 685Asn Gly Ala Gln
690342518PRTPantoea agglomerans 34Met Tyr Leu Thr Glu Glu Ile Leu Ala Lys
Leu Asn Ala Gly Asn Gly1 5 10
15Lys Leu Gln Ser Thr Val Glu Gln Ile Ile Thr Leu Pro Asp Ile Met
20 25 30Leu His Ser Phe Ala Gln
Val Lys Glu Leu Ala Gly Asp Lys Leu Ser 35 40
45Trp Gly Glu Lys Asn Phe Leu Tyr Gln Gln Ala Gln Lys Gln
Leu Lys 50 55 60Glu Asn Lys Met Ala
Glu Ser Arg Ile Leu Ser Arg Ala Asn Pro Gln65 70
75 80Leu Ala Asn Ala Val Arg Met Gly Ile Arg
Gln Ser Ala Met Leu Gly 85 90
95Ser Tyr Asp Asp Leu Phe Pro Gln Arg Ala Ser Arg Phe Val Lys Pro
100 105 110Gly Ala Val Ala Ser
Met Phe Ser Pro Ala Gly Tyr Leu Thr Glu Leu 115
120 125Tyr Arg Glu Ala Arg Gly Leu His Asp Asp Thr Ser
Asp Tyr His Leu 130 135 140Asp Thr Arg
Arg Pro Asp Leu Ala Ser Met Val Leu Ser Gln Ser Asn145
150 155 160Met Asp Thr Glu Leu Ser Thr
Leu Ser Leu Ser Asn Glu Leu Leu Leu 165
170 175Lys Leu Ile Gln Ser Lys Glu Ser Leu Asn Tyr Asp
Gln Val Ile Glu 180 185 190Lys
Leu Ala Thr Tyr Arg Leu Thr Gly Thr Thr Pro Tyr Asn Gln Pro 195
200 205Tyr Glu Thr Ile Arg Gln Ala Ile Leu
Leu Gln Asp Pro Glu Phe Asn 210 215
220Ala Phe Ser Asn Asn Pro Ala Val Ala Val Lys Ile Asn Thr Ser Gly225
230 235 240Leu Leu Gly Ile
Thr Ser Asp Ile Ala Pro Glu Leu His Ala Ile Leu 245
250 255Thr Glu Glu Ile Thr Glu Lys Lys Thr Glu
Ala Leu Ile Lys Lys Asn 260 265
270Phe Gly Asp Ala Asn Ile Asn Gln Phe Gln Asn Leu Ala Trp Leu Ala
275 280 285His Trp Tyr Gly Leu Ser Tyr
Glu Glu Leu Asn Asn Leu Val Gly Met 290 295
300Ile Trp Ser Arg Asp Asp Leu Asp Pro Ala Val Glu His Tyr Lys
Asn305 310 315 320Ser Ser
Leu Val Thr Leu Val Ala Glu Asp Gly Gly Ser Leu Asn Ala
325 330 335Val Leu Ile Lys Arg Thr Lys
Gly His Asp Ser Asp Asp Met His Tyr 340 345
350Ala Glu Leu Ile Pro Val Gly Gly Asp Lys Phe Gln Tyr Asn
Phe Ser 355 360 365Leu Ile Asp Ala
Glu Ser Ser Ser Val Tyr Tyr Gln Phe Gly Thr Lys 370
375 380Gly Lys Asn Ser Gln Asp Leu Val Pro Val Ile His
Glu Pro Leu Leu385 390 395
400Gly Asn Thr Pro Tyr Ala Val Thr Phe Thr Leu Thr Gln Glu Gln Leu
405 410 415Ser Asn Pro Val Glu
Ile Ser Leu Thr His Gly Ser Gly Gly Gly Asp 420
425 430Arg Leu Thr Ser Thr Ile Phe Thr Val Thr Thr Tyr
Pro Phe Asp Thr 435 440 445Phe Leu
Leu Lys Leu Asn Lys Leu Ile Arg Leu Tyr Lys Ala Thr Gly 450
455 460Ile Ser Pro Ala Ser Ile Arg Thr Val Ile Glu
Ser Asp Asn Thr Asp465 470 475
480Leu Ile Ile Thr Glu Ser Val Leu Asn Gln Leu Phe Trp Thr Asn Tyr
485 490 495Tyr Thr Gln Thr
Phe Glu Met Glu Phe Ser Ala Ala Leu Val Leu Ala 500
505 510Gly Ala Asp Ile Gly Gln Ile Ala His Ser Glu
Ser Gln Pro Ser Ala 515 520 525Phe
Thr Arg Leu Phe Asn Thr Pro Leu Leu Asp Asn Gln Gln Phe Ser 530
535 540Ala Ser Asp Glu Ser Leu Asp Leu Glu Pro
Gly Lys Gly Ala Asp Ala545 550 555
560Phe Arg Ile Ala Val Leu Lys Arg Ala Leu Gln Val Asn Asp Ala
Gly 565 570 575Leu Tyr Thr
Leu Tyr Gly Leu Ser Phe Thr Asp Lys Asp Lys Asn Gly 580
585 590Lys Leu Ile Pro Phe Thr Thr Asn Ile Glu
Asn Leu Ser Ala Leu Tyr 595 600
605Arg Thr Arg Leu Leu Ala Asp Ile Phe Asn Ile Ser Val Thr Glu Leu 610
615 620Ser Met Leu Leu Ser Val Ser Pro
Tyr Ala Ser Gln Lys Val Asp Ser625 630
635 640Leu Lys Gly Gln Ala Leu Tyr Gln Phe Val Ala Thr
Leu Ser Asp Tyr 645 650
655Met Gln Arg Leu Lys Ala Met Asn Trp Ser Val Ser Asp Leu Tyr Leu
660 665 670Met Leu Thr Asn Ser Tyr
Ser Thr Val Leu Ser Pro Glu Ile Lys Asn 675 680
685Leu Met Thr Thr Leu Lys Asn Gly Leu Ser Glu Gln Asp Phe
Asn Asn 690 695 700Thr Asp Glu Ile Ala
Gln Leu Asn Ala Thr Ala Pro Leu Ile Ala Ala705 710
715 720Ala Met Gln Leu Asp Phe Thr Glu Thr Ala
Ala Ala Leu Leu Glu Trp 725 730
735Leu Asn Gln Leu Gln Pro Ala Gly Leu Thr Val Ala Gly Phe Leu Ser
740 745 750Leu Val Asn Gln Thr
Thr Leu Glu Asp Lys Asp Val Val Lys Leu Val 755
760 765Ser Phe Cys Gln Val Met Gly Gln Leu Ala Leu Ile
Val Arg Lys Ala 770 775 780Ala Leu Gly
Ser Ser Glu Ile Thr Phe Ala Val Ala His Pro Ala Ile785
790 795 800Phe Lys Lys Asp Ala Asn Ser
Leu Ala Gln Asp Ile Gly Thr Leu Phe 805
810 815Asp Leu Thr Gln Leu His Ala Phe Leu Thr Asp Cys
Gly Thr Tyr Ala 820 825 830Ser
Glu Ile Leu Thr Ser Leu Asn Glu Gly Asn Leu Asp Val Ser Thr 835
840 845Val Ala Thr Ala Leu Thr Leu Asp Lys
Thr Ser Leu Ala Gln Ala Leu 850 855
860Ala Gln Val Ser Glu Ser Gln Ala Phe Ser Asn Trp His Glu Leu Arg865
870 875 880Asp Ala Leu Gln
Trp Thr Asp Ala Ala Ser Ile Phe Asn Ile Thr Pro 885
890 895Val Ala Leu Thr Ala Met Val Asn Leu Lys
Phe Ser Gly Asp Asn Ser 900 905
910Ser Pro Tyr Gln Glu Trp Val Thr Val Ser Lys Ala Met Gln Val Gly
915 920 925Leu Asn Gln Thr Gln Ser Ala
Gln Leu Gln Ala Ser Leu Asp Glu Ser 930 935
940Leu Ser Ala Ala Leu Ser Ala Tyr Val Ile Lys Asn Ile Thr Pro
Pro945 950 955 960Ser Val
Thr Asp Arg Asp Glu Leu Tyr Gly Trp Leu Leu Ile Asp Asn
965 970 975Gln Val Ser Ala Gln Ile Lys
Thr Thr Arg Ile Ala Glu Ala Ile Ala 980 985
990Ser Val Gln Leu Tyr Val Asn Arg Ser Leu Thr Gly Gln Glu
Asp Gly 995 1000 1005Val Asp Ser
Lys Val Lys Ser Gly Gln Phe Phe Thr Ala Asp Trp 1010
1015 1020Asp Thr Tyr Asn Lys Arg Tyr Ser Thr Trp Ala
Gly Val Ser Glu 1025 1030 1035Leu Val
Tyr Tyr Pro Glu Asn Tyr Val Asp Pro Thr Leu Arg Ile 1040
1045 1050Gly Gln Thr Gly Met Met Asp Glu Met Leu
Gln Thr Leu Ser Gln 1055 1060 1065Ser
Gln Ile Asn Leu Asp Thr Val Ser Asp Gly Met Gly Arg Tyr 1070
1075 1080Leu Thr Asp Phe Glu Glu Ile Ala Asn
Leu Lys Phe Leu Ser Gly 1085 1090
1095Tyr His Asp Asn Val Ser Gly Arg Gln Gly Lys Thr Trp Phe Ile
1100 1105 1110Gly Gly Ser Gln Ser Glu
Pro Gln Lys Phe Tyr Trp Arg Ser Leu 1115 1120
1125Asp Tyr Ser Lys Gly Asp Gly Glu Glu Phe Ala Ala Asn Ala
Trp 1130 1135 1140Ser Glu Trp Asn His
Ile Ser Cys Ala Ile Thr Pro Leu Pro Gly 1145 1150
1155Phe Val Arg Val Val Leu Phe Asn Ser Arg Leu Tyr Leu
Ala Cys 1160 1165 1170Val Glu Lys Lys
Glu Ile Arg Asp Ser Glu Asn Lys Asn Lys Ala 1175
1180 1185Ser Tyr Gln Leu Lys Ile Ala His Ile Leu Tyr
Asn Gly Glu Trp 1190 1195 1200Ser Ala
Pro Phe Ser His Asp Ile Thr Asp Leu Tyr Glu Ala Gly 1205
1210 1215Phe Asp Pro Ser Thr Thr Val Met His Leu
Ser Val His Asp Glu 1220 1225 1230Ser
Asp Ala Ile Val Cys Ile Phe Asn Asn Ser Ala Leu Glu Ser 1235
1240 1245Asp Lys Asn Lys Gly Val Ala Val Asn
Ala Asp Met Ser Phe Asn 1250 1255
1260Asn Ile Asp Ser Lys Arg Val Asp Gln Ile Ile Ser Leu Leu Val
1265 1270 1275Pro Asp Arg Phe Ile Asp
Glu Gly Asn Val Ile Asp Asn Leu Val 1280 1285
1290Ser Glu Leu Lys Gly Ser Glu Val Thr Glu Asn Lys Lys Thr
Leu 1295 1300 1305Glu Asn Asp Ser Phe
Thr Ile Asp Gly Ser Ile Asn Leu Asn Lys 1310 1315
1320His Ser Ile Asp Ile Thr Gly Lys Ala Asn Leu Asp Ile
Gln Ala 1325 1330 1335Ser Ile Ala Val
Arg Ser Lys Ala Ser Pro Thr Ser His Glu Arg 1340
1345 1350Glu Leu Ile Gly Trp Leu Asp Glu Ser Gln Phe
Asp Tyr Ile Arg 1355 1360 1365Leu Phe
Arg Gly Gly Tyr Asn Phe Gly Gln Asn Asp Gly Ile Leu 1370
1375 1380Glu Ser Cys Met Ile Ser Ala Val Asn Ser
Ala Tyr Thr Cys Phe 1385 1390 1395Leu
Leu Arg Ala Asp His Phe Ser Gly Leu Phe Ser Tyr Gly Tyr 1400
1405 1410Asp Leu Phe Val Phe Asn Gly Asp Gly
Ser Lys Thr Tyr Thr Pro 1415 1420
1425Gln Val Leu Phe Glu Asp Asp Ile Gln Gly Thr Met Val Leu Lys
1430 1435 1440Ile Val Leu Leu Asn Glu
Asp Lys Asn Ser Lys Leu Glu Asn Phe 1445 1450
1455Glu Ser Leu Gly Leu Met Lys Thr Ser Ala Gly Asp His Gln
Gly 1460 1465 1470Glu Ile Val Cys Glu
Leu Ala Lys Arg Arg Thr Pro Glu Pro Tyr 1475 1480
1485Cys Val Glu Leu Ser Arg Tyr Leu Pro Ser Asn Val Thr
Val Thr 1490 1495 1500Val Thr Ser Pro
Ser Gly Asn Phe Thr Ala Lys Asp Tyr Val Leu 1505
1510 1515Pro Leu Pro Ala Phe Asn Asn Gly Asp Ala Asp
Tyr Lys Phe Ala 1520 1525 1530Pro Phe
Pro Leu Ser Leu Glu Ser Ile Trp Gly Asp Gly Lys Ser 1535
1540 1545Thr Ser Arg Asp Ile Lys Phe Thr Ile Ser
Val Lys Asp Thr Cys 1550 1555 1560Gly
Lys Val Ala Thr Ser Glu Leu Ile Phe Thr Leu Tyr Lys Asn 1565
1570 1575Thr Ser Pro Glu Leu Ile Thr Leu Lys
Thr Ser Asp Ala Gly Ala 1580 1585
1590Gln Tyr Met Gln Gln Gly Val Tyr Arg Thr Arg Leu Asn Thr Leu
1595 1600 1605Phe Ala Gln Lys Leu Ile
Lys Arg Val Ser Ala Gly Ile Asp Ala 1610 1615
1620Val Leu Ser Trp Glu Thr Gln Gln Leu Gln Glu Pro Lys Leu
Gly 1625 1630 1635Thr Gly Ser Tyr Ile
Ser Val Leu Ile Pro Ala Tyr Ile Lys Leu 1640 1645
1650Glu His Gly Asp Ser Arg Gln Ala Asn Leu Gln Phe Ser
Asn Val 1655 1660 1665Asp Gln Thr Gly
Pro Asp Asn Gly Asn Tyr Ile Leu Trp Ser Gly 1670
1675 1680Ser Leu Asn Asp Thr Pro Gln Gln Val Thr Ile
Phe Val Pro Thr 1685 1690 1695Met Gln
Thr Ile Gly Glu Leu Gln Phe Pro Tyr Asp Arg Thr Ser 1700
1705 1710Gly Leu Asn Leu Ser Leu Ala Cys Ala Ala
Gly Val Tyr Leu Gln 1715 1720 1725Gly
Thr Phe Lys Asn Ile Ser Ala Ser Asp Leu Ser Leu Thr Glu 1730
1735 1740Phe Val Ala Ala Lys Asn Asn Asp Ser
Lys Arg Asp Val Glu Val 1745 1750
1755Thr Val Leu Thr Ser Ile Asn Thr Glu Pro Met Asp Phe Lys Gly
1760 1765 1770Ala Asn Ala Leu Tyr Phe
Trp Glu Met Phe Tyr Tyr Leu Pro Met 1775 1780
1785Met Val Phe Lys Arg Leu Leu Ser Glu Ser Arg Phe Thr Glu
Ala 1790 1795 1800Thr Gln Trp Ile Arg
Tyr Val Trp Asn Pro Asp Gly Tyr Leu Val 1805 1810
1815Asn Asp Thr Pro Ala Thr Tyr Gln Trp Asn Val Arg Pro
Leu Glu 1820 1825 1830Asp Glu Thr Ser
Trp His Ala Asn Pro Leu Asp Ser Val Asp Pro 1835
1840 1845Asp Ala Ile Ala Gln Ala Asp Pro Leu His Tyr
Lys Val Ala Thr 1850 1855 1860Phe Met
Ala Tyr Leu Asp Leu Leu Ile Ala Arg Gly Asp Ala Ala 1865
1870 1875Tyr Arg Gln Leu Glu Arg Asp Ala Leu Ser
Glu Ala Lys Met Trp 1880 1885 1890Tyr
Val Gln Ala Leu Asp Thr Leu Gly Asp Glu Pro Tyr Leu Ser 1895
1900 1905Gln Asn Thr Gly Trp Ala Ser Pro Cys
Leu Thr Asp Ala Ala Asp 1910 1915
1920Glu Thr Thr His Lys Asn Arg Gln Gln Ala Met Leu Thr Val Arg
1925 1930 1935Gln Lys Val Ala Ser Ser
Glu Leu Arg Thr Ala Asn Ser Leu Thr 1940 1945
1950Ala Leu Phe Leu Pro Gln Gln Asn Ala Lys Leu Ala Gly Tyr
Trp 1955 1960 1965Gln Thr Leu Asn Gln
Arg Leu Tyr Asn Leu Arg Asn Asn Leu Ser 1970 1975
1980Ile Asp Gly Asn Pro Leu Ser Leu Ser Ile Tyr Ala Thr
Pro Thr 1985 1990 1995Asp Pro Ala Ala
Leu Leu Ser Ser Ala Val Ile Ser Ser Gln Gly 2000
2005 2010Gly Ser Asp Leu Pro Ala Ala Val Met Pro Leu
Tyr Arg Phe Pro 2015 2020 2025Val Ile
Leu Glu Ser Ala Arg Ser Met Val Asn Gln Leu Thr Gln 2030
2035 2040Phe Gly Ser Thr Leu Leu Gly Ile Thr Glu
Arg Gln Asp Ala Glu 2045 2050 2055Ala
Leu Ser Asp Leu Leu Gln Thr Gln Gly Ala Gly Leu Ala Leu 2060
2065 2070Gln Ser Ile Ala Leu Gln Asn Ser Thr
Ile Ser Glu Ile Asp Ala 2075 2080
2085Asp Arg Ala Ala Leu Arg Glu Ser Leu Ser Gly Ala Gln Ser Arg
2090 2095 2100Leu Asn Ser Tyr Thr Thr
Leu Tyr Asp Glu Asn Val Asn Ala Gly 2105 2110
2115Glu Thr His Ala Met Asn Leu Phe Leu Ser Ser Ala Ile Leu
Ala 2120 2125 2130Asp Gly Gly Gln Ala
Tyr His Thr Ala Ala Gly Ala Leu Asp Leu 2135 2140
2145Ala Pro Asn Ile Phe Gly Leu Ala Asp Gly Gly Ser Arg
Trp Gly 2150 2155 2160Ala Ala Phe Thr
Ala Met Ala Gly Ile Ala Asp Leu Ala Ala Ser 2165
2170 2175Ala Thr His Thr Ala Ala Asp Arg Ile Ser Gln
Ser Glu Ala Tyr 2180 2185 2190Arg Arg
Arg Arg Gln Glu Trp Glu Ile Gln Arg Asn Ala Ala Gln 2195
2200 2205Phe Glu Val Ser Gln Ile Asn Ala Gln Leu
Asp Ala Leu Ala Val 2210 2215 2220Arg
Arg Glu Ser Ala Val Leu Gln Lys Thr Tyr Leu Glu Thr Gln 2225
2230 2235Gln Gly Gln Met Gln Ala Gln Met Thr
Phe Leu Gln Asn Lys Phe 2240 2245
2250Thr Ser Lys Ala Leu Tyr Asn Trp Leu Arg Gly Lys Leu Ala Ala
2255 2260 2265Ile Tyr Tyr Gln Phe Tyr
Asp Leu Thr Val Ser Arg Cys Leu Met 2270 2275
2280Ala Glu Ala Ala Tyr Ser Trp Glu Met Lys Gly Ser Gln Asp
Thr 2285 2290 2295Gly Thr Phe Ile Arg
Pro Gly Ala Trp Gln Gly Thr Tyr Ala Gly 2300 2305
2310Leu Met Ala Gly Glu Thr Leu Met Leu Asn Leu Ala Gln
Met Glu 2315 2320 2325Asn Ser Tyr Leu
Thr Lys Glu Glu Arg Gln Lys Glu Val Thr Arg 2330
2335 2340Thr Val Cys Leu Ser Glu Val Tyr Ala Gly Leu
Ser Ser Gly Ser 2345 2350 2355Phe Ala
Leu Ala Asp Thr Val Thr Thr Leu Val Gly Ser Gly Lys 2360
2365 2370Gly Thr Ala Gly Thr Asn Asp Asn Gly Val
Lys Ile Asp Gly Lys 2375 2380 2385Gln
Leu Leu Ala Thr Leu Lys Leu Ser Asp Leu Asn Ile Lys Thr 2390
2395 2400Asp Tyr Pro Glu Ser Leu Asp Lys Ala
Lys Arg Ile Lys Gln Ile 2405 2410
2415Ser Val Thr Leu Pro Met Leu Val Gly Pro Tyr Gln Asp Val Arg
2420 2425 2430Ala Val Leu Ser Tyr Gly
Gly Ser Val Val Leu Pro Arg Gly Cys 2435 2440
2445Thr Ala Val Ala Val Ser His Gly Met Asn Asp Ser Gly Gln
Phe 2450 2455 2460Gln Leu Asp Phe Asn
Asp Ser Arg Trp Leu Pro Phe Glu Gly Ile 2465 2470
2475Pro Val Asp Asp Ser Gly Thr Leu Thr Leu Ser Phe Pro
Asp Ile 2480 2485 2490Thr Asp Lys Gln
Gln Glu Asn Leu Leu Leu Ser Leu Ser Asp Ile 2495
2500 2505Ile Leu His Ile Arg Tyr Thr Ile Ala Ser
2510 2515351421PRTPantoea agglomerans 35Met Gln Asn Thr
Asp Gln Met Ser Leu Thr Pro Pro Ser Leu Pro Ser1 5
10 15Gly Gly Gly Ala Val Thr Gly Leu Lys Gly
Asp Met Ser Gly Ala Gly 20 25
30Pro Asp Gly Ala Ala Thr Leu Ser Leu Pro Leu Pro Ile Ser Pro Gly
35 40 45Arg Gly Tyr Ala Pro Ser Leu Ser
Leu Gly Tyr His Ser Arg Asn Gly 50 55
60Asn Gly Val Phe Gly Ala Gly Trp Ser Cys Gly Gln Met Ala Ile Arg65
70 75 80Leu Gln Thr Arg Lys
Gly Val Pro Phe Tyr Asp Gly Ser Asp Val Phe 85
90 95Thr Ala Pro Asp Gly Glu Val Leu Val Pro Ala
Leu Asp Ala Ser Gly 100 105
110Lys Ala Glu Val Arg Thr Thr Thr Thr Leu Leu Gly Glu Asn Leu Gly
115 120 125Gly Thr Phe Thr Val Gln Thr
Tyr Arg Ser Arg Val Glu Thr Asp Phe 130 135
140Ser Arg Leu Glu Arg Trp Val Pro Gln Thr Asp Ala Ala Ala Asp
Phe145 150 155 160Trp Leu
Ile Tyr Ser Pro Asp Gly Gln Ile His Leu Leu Gly Arg Asn
165 170 175Pro Gln Ala Arg Val Asn Asn
Pro Glu Asp Thr Thr Gln Thr Ala Ala 180 185
190Trp Leu Ile Glu Ser Ser Val Ser Ala Ser Gly Glu Gln Ile
Tyr Trp 195 200 205Gln Tyr Arg Gln
Glu Asp Glu Leu Gly Cys Thr Gln Asp Glu Lys Thr 210
215 220Ala His Ala His Ala Leu Ala Gln Arg Tyr Leu Val
Ala Val Trp Tyr225 230 235
240Gly Asn Lys Ala Ala Ser Arg Thr Leu Pro Gly Leu Leu Ser Val Pro
245 250 255Ala Ala Gly Ser Trp
Leu Phe Thr Leu Ala Leu Asp Tyr Gly Glu Arg 260
265 270Ala Thr Asp Pro Ala Thr Pro Pro Ala Trp Leu Ser
Pro Gly Ser Gly 275 280 285Thr Trp
Leu Cys Arg Gln Asp Val Phe Ser Ser Trp Glu Tyr Gly Phe 290
295 300Glu Leu Arg Thr Arg Arg Leu Cys Arg Gln Val
Leu Met Tyr His Asp305 310 315
320Val Ala Ala Leu Ala Gly Gln Ser Gly Ser Asp Ala Val Pro Gln Leu
325 330 335Val Thr Arg Leu
Leu Leu Asp Tyr Asn Thr Ser Pro Ser Leu Thr Thr 340
345 350Leu Lys Thr Ala Gln Gln Ala Ala Trp Glu Pro
Asp Gly Thr Leu Arg 355 360 365Ser
Leu Pro Pro Leu Ala Phe Ser Trp Gln Thr Phe Pro Ser Thr Pro 370
375 380Glu Lys Ser Val Ser Trp Gln Arg Arg Asn
Asp Met Gly Lys Leu Asn385 390 395
400Pro Gln Gln Pro Tyr Gln Met Val Asp Leu His Gly Glu Gly Leu
Ala 405 410 415Gly Ile Leu
Tyr Gln Asp Ser Gly Ala Trp Trp Tyr Arg Glu Pro Val 420
425 430Arg Gln Ser Gly Asp Asp Asp Asn Ala Val
Thr Trp Ala Ala Ala Arg 435 440
445Pro Leu Pro Ala Phe Pro Ala Leu Arg Lys Gly Gly Met Leu Leu Asp 450
455 460Leu Asp Gly Asp Gly Tyr Leu Glu
Trp Val Val Thr Ala Pro Gly Val465 470
475 480Ala Gly Cys Tyr Ala Gln Ala Pro Glu Gln Tyr Trp
Gln Arg Phe Thr 485 490
495Pro Leu Ser Ala Leu Pro Val Glu Tyr Arg His Ser Arg Met Glu Ile
500 505 510Ala Asp Val Thr Gly Ala
Gly Leu Ala Asp Met Leu Leu Ile Gly Pro 515 520
525Lys Ser Val Arg Leu Tyr Ser Gly Ser Gly Arg Gly Trp Lys
Lys Ala 530 535 540Arg Thr Val Met Gln
Asp Ser Gly Ile Thr Leu Pro Val Pro Gly Thr545 550
555 560Asn Ala Arg Val Met Val Ala Phe Ser Asp
Met Ala Gly Ser Gly Gln 565 570
575Gln His Leu Thr Glu Ile Lys Ala Ser Gly Val Arg Tyr Trp Pro Ser
580 585 590Leu Gly His Gly Arg
Phe Ala Ala Pro Val Thr Leu Pro Gly Phe Ser 595
600 605Gln Pro Ala Glu Thr Phe Asn Pro Ala Gln Leu Tyr
Leu Ala Asp Val 610 615 620Asp Gly Ser
Gly Thr Thr Asp Leu Ile Tyr Ala Leu Ser Asp His Leu625
630 635 640Leu Val Trp Leu Asn Gln Ser
Gly Asn Ser Phe Asp Ala Pro Phe Arg 645
650 655Ile Ser Leu Pro Glu Gly Val Arg Tyr Asp Asn Thr
Cys Ser Leu Gln 660 665 670Val
Ala Asp Ile Gln Gly Leu Gly Ile Ser Ser Leu Val Leu Ser Val 675
680 685Pro His Pro Thr Pro Arg His Trp Val
Cys His Leu Thr Thr Glu Lys 690 695
700Pro Trp Leu Leu Asp Gly Met Asn Asn Asn Met Gly Ala Arg His Thr705
710 715 720Leu Cys Tyr Arg
Ser Ser Ala Gln Phe Trp Leu Asp Glu Lys Ala Ala 725
730 735Ala Thr Ala Asp Arg Pro Ala Pro Ala Cys
Tyr Leu Pro Phe Ala Leu 740 745
750His Thr Leu Ser Arg Thr Glu Val Ser Asp Glu Ile Thr Gly Asn Arg
755 760 765Leu Thr Arg Thr Ile Arg Tyr
Arg His Gly Val Trp Asp Arg Arg Glu 770 775
780Arg Glu Phe Arg Gly Phe Gly Phe Val Glu Val Ser Asp Ala Glu
Ala785 790 795 800Leu Ala
Lys Gln Thr Glu Gly Met Ser Ala Pro Ala Val Lys Arg Ser
805 810 815Trp Tyr Ala Thr Gly Leu Ala
Ala Val Asp Ala Gln Leu Pro Asp Glu 820 825
830Phe Trp Lys Gly Asp His Ala Ala Phe Ala Gly Phe Thr Pro
Arg Phe 835 840 845Thr Thr Gly Asp
Gly Glu Gln Glu Ala Ala Leu Asp Thr Ile Ser Asp 850
855 860Asp Thr Arg Phe Trp Leu Thr Arg Ala Ile Arg Gly
Thr Leu Leu Arg865 870 875
880Ser Glu Leu Tyr Gly Ala Asp Gly Ser Ser Gln Ala Gly Ile Pro Tyr
885 890 895Ser Ile Thr Glu Ser
Arg Pro Gln Val Arg Leu Ile Thr Glu Ala Gly 900
905 910Asn Ser Pro Val Val Trp Pro Ser Val Ile Glu Asn
Arg Ala Ser His 915 920 925Tyr Glu
Arg Val Ser Ser Asp Pro Gln Cys Gly Gln Gln Ile Leu Leu 930
935 940Thr Ser Asn Glu Tyr Gly Gln Pro Leu Arg Gln
Ile Gly Ile Ser Tyr945 950 955
960Pro Arg Arg Thr Arg Pro Asp Ala Ser Pro Tyr Pro Asp Asp Leu Pro
965 970 975Asp Gly Leu Phe
Ala Asp Ser Phe Asp Glu Gln Gln Gln Ala Leu Arg 980
985 990Leu Thr Leu Thr Gln Ser Ser Trp His Thr Leu
Lys Asp Ile Ser Ser 995 1000
1005Gly Ile Trp Leu Pro Ala Val Ala Asp Ala Thr Arg Ser Asp Leu
1010 1015 1020Phe Val His Gln Ala Ala
Gln Val Pro Pro Ala Gly Leu Thr Leu 1025 1030
1035Glu Asn Leu Leu Thr Asp Ser Ala Leu Leu Thr Ser Pro Val
Phe 1040 1045 1050Gly Gly Gln Ser Gln
Ile Trp Tyr Gln Asp Arg Ala Gly Gln Ala 1055 1060
1065Ser Ile Thr Ser Pro Asp Phe Pro Pro Arg Pro Ser Phe
Ser Glu 1070 1075 1080Thr Ala Ala Leu
Asp Glu Ala Gln Val Ser Thr Leu Ser Ala Asp 1085
1090 1095Ile Asp Gln Thr Lys Leu Glu Gln Ala Gly Tyr
Thr Arg Ser Ala 1100 1105 1110Tyr Leu
Phe Ala Arg Ser Gly Glu Glu Ser Lys Thr Leu Trp Ala 1115
1120 1125Val Arg Gln Gly Tyr Ile Thr Phe Ser Gly
Ala Asp His Phe Tyr 1130 1135 1140Leu
Pro Ile Ala Ala Gln Gln Thr Leu Leu Ala Gly Lys Thr Thr 1145
1150 1155Val Thr Tyr Asp Pro Tyr Asp Cys Val
Val Leu Gln Ala Lys Asp 1160 1165
1170Ala Ala Gly Ala Val Thr Ser Ala Thr Tyr Asp Trp Arg Phe Leu
1175 1180 1185Ala Pro Thr Gln Ile Thr
Asp Ile Asn Asp Asn Leu Lys Ser Val 1190 1195
1200Thr Leu Asp Ala Leu Gly Arg Val Thr Ser Gln Arg Phe Ser
Gly 1205 1210 1215Thr Glu Asn Gly Lys
Pro Ala Gly Tyr Ser Asp His Glu Phe Pro 1220 1225
1230Leu Pro Ala Ser Ala Asp Ala Ala Leu Ala Leu Ser Ala
Pro Leu 1235 1240 1245Pro Val Ala Gln
Cys Ile Ile Tyr Val Pro Asp Ser Trp Met Leu 1250
1255 1260Thr Gly Glu Gln Gln Gln Pro Pro His Val Val
Thr Leu Leu Thr 1265 1270 1275Asp Arg
Tyr Asp Ser Asp Ser Gln Gln Gln Ile Arg Gln Gln Val 1280
1285 1290Val Phe Ser Asp Gly Phe Gly Arg Val Leu
Gln Ala Ala Ser Arg 1295 1300 1305Gln
Val Asn Gly Glu Ala Trp Gln Arg Ala Ala Asn Gly Ser Phe 1310
1315 1320Val Ala Gly Thr Asn Asp Ser Pro Val
Leu Thr Glu Thr Thr Phe 1325 1330
1335Arg Trp Ala Val Thr Gly Arg Thr Glu Tyr Asp Asn Lys Gly Gln
1340 1345 1350Ala Ile Arg Ala Tyr Gln
Pro Tyr Phe Leu Asp Ser Trp Lys Tyr 1355 1360
1365Val Arg Asp Asp Ser Ala Arg Gln Asp Leu Tyr Ala Asp Thr
His 1370 1375 1380Tyr Tyr Asp Pro Val
Gly Arg Glu Arg Gln Val Ile Thr Ala Lys 1385 1390
1395Gly Trp Leu Arg Arg Val Thr His Thr Pro Trp Phe Val
Val Ser 1400 1405 1410Glu Asp Glu Asn
Asp Thr Gln Ala 1415 142036950PRTPantoea agglomerans
36Ser Ala Ala Tyr Val Leu Ser Asn Leu Ser Tyr Lys Leu Glu Asn Pro1
5 10 15Met Ser Thr Ser Leu Tyr
Ser Arg Thr Pro Ser Val Thr Ile Leu Asp 20 25
30Asn Arg Gly Leu Ser Val Arg Asp Ile Ala Tyr Gln Arg
His Pro Asp 35 40 45Thr Pro Ala
Val Thr Ser Glu Arg Ile Thr Arg His Gln Tyr Asp Ala 50
55 60Arg Gly Phe Leu Met Gln Ser Ala Asp Pro Arg Leu
His Asp Ala Gly65 70 75
80Leu Ala Asn Val Ser Tyr Arg Thr Asn Leu Thr Gly Ser Val Leu Arg
85 90 95Ser Gln Gly Val Asp Asn
Gly Ile Thr Val Thr Leu Asn Asp Ala Ala 100
105 110Gly Arg Pro Phe Leu Ala Val Ser Asn Ile Ser Thr
Ala Gly Asp Gly 115 120 125Thr Glu
Asp Arg Ser Gln Ala Val Thr Arg Thr Cys Gln Tyr Glu Asp 130
135 140Ala Thr Leu Pro Gly Arg Pro Leu Ser Ile Thr
Glu Gln Val Asn Gly145 150 155
160Gly Ala Ala Arg Ile Thr Glu Arg Phe Val Tyr Ala Gly Asn Ala Val
165 170 175Glu Glu Lys Ala
Leu Asn Leu Ala Gly Gln Pro Val Ser His Tyr Asp 180
185 190Thr Ala Gly Leu Thr Gln Thr Asp Ser Ile Ala
Leu Thr Gly Val Pro 195 200 205Leu
Ser Val Thr Arg Arg Leu Leu Lys Asp Ala Asp Asn Pro Asp Ala 210
215 220Val Ala Asp Trp Gln Gly Thr Asp Ala Ser
Val Trp Asn Asp Pro Leu225 230 235
240Asp Val Glu Thr Tyr Thr Thr Leu Ser Thr Ala Asp Ala Thr Gly
Ala 245 250 255Val Leu Thr
Thr Thr Asp Ala Lys Gly Asn Leu Gln Arg Leu Ala Tyr 260
265 270Asp Val Ala Gly Leu Leu Ser Gly Ser Trp
Leu Thr Leu Lys Asp Gly 275 280
285Thr Glu Gln Val Ile Val Thr Ser Leu Thr Tyr Ser Ala Ala Gly Gln 290
295 300Lys Leu Arg Glu Glu His Gly Asn
Gly Val Val Thr Thr Tyr Thr Tyr305 310
315 320Glu Ala Glu Thr Gln Arg Leu Thr Gly Ile Lys Thr
Ala Arg Pro Ala 325 330
335Gly His Ala Ser Gly Ala Lys Val Leu Gln Asp Leu Arg Tyr Thr Tyr
340 345 350Asp Pro Val Gly Asn Val
Leu Lys Ile Ser Asn Asp Ala Glu Glu Thr 355 360
365Arg Phe Trp Arg Asn Gln Lys Val Ala Pro Glu Ser Ala Tyr
Val Tyr 370 375 380Asp Ser Leu Tyr Gln
Leu Val Ser Ala Thr Gly Arg Glu Met Ala Asn385 390
395 400Ala Gly Gln Gln Gly Ser Ser Ser Ser Ser
Ala Thr Val Pro Leu Pro 405 410
415Ala Asp Ser Ser Ala Phe Thr Asn Tyr Thr Arg Asn Tyr Thr Tyr Asp
420 425 430Glu Ala Gly Asn Leu
Thr Gln Val Arg His Thr Pro Ala Thr Gly Ser 435
440 445Gly Tyr Thr Thr Lys Ile Thr Val Ser Asp Lys Ser
Asn Arg Gly Val 450 455 460Leu Ser Thr
Leu Thr Glu Asn Pro Ser Asp Val Asp Ala Leu Phe Thr465
470 475 480Ala Gly Gly Gln Gln Lys Gln
Leu Gln Pro Gly Gln Ser Leu Ile Trp 485
490 495Thr Pro Arg Asn Glu Leu Leu Lys Val Thr Pro Val
Ala Arg Asp Gly 500 505 510Gly
Ala Asp Asp Ser Glu Ser Tyr Arg Tyr Asp Gly Gly Ser Leu Arg 515
520 525Leu Leu Lys Val Ser Val Gln Lys Thr
Gly Asn Ser Thr Gln Thr Gln 530 535
540Arg Ala Leu Tyr Leu Pro Gly Leu Glu Leu Arg Asn Thr Thr Ser Gly545
550 555 560Asp Thr Glu Thr
Glu Ser Leu Gln Val Val Thr Val Gly Glu Ala Gly 565
570 575Arg Ala Gln Val Arg Val Leu His Trp Glu
Ser Gly Thr Pro Asp Ser 580 585
590Val Ser Asn Asp Pro Val Arg Tyr Ser Tyr Asp Asn Leu Thr Gly Ser
595 600 605Ser Gly Leu Glu Leu Asp Ser
Ser Gly Asn Ile Ile Ser Met Glu Glu 610 615
620Tyr Tyr Pro Tyr Gly Gly Thr Ala Val Trp Thr Ala Arg Ser Ala
Val625 630 635 640Glu Ala
Glu Tyr Lys Thr Val Arg Tyr Ser Gly Lys Glu Arg Asp Ala
645 650 655Thr Gly Leu Tyr Tyr Tyr Gly
Tyr Arg Tyr Tyr Gln Pro Trp Ala Gly 660 665
670Arg Trp Leu Ser Ala Asp Pro Ala Gly Thr Val Asp Gly Leu
Asn Leu 675 680 685Phe Arg Met Val
Arg Asn Asn Pro Val Thr Leu Val Asp Asp Asn Gly 690
695 700Leu Phe Thr Ser Ser Pro Leu Leu Gly Ile Tyr Glu
Lys Glu Met Lys705 710 715
720Thr Phe Asp Ser Ile Lys Leu Ser Ile Gly Ser Tyr Lys Tyr Lys Pro
725 730 735Ser Lys Phe Asp Glu
Lys Lys Gly Lys Tyr Val Ser Ser Asp Lys Tyr 740
745 750Lys Leu Ile Met Ala Asp Asp Asn Asp Leu Asn Gly
Tyr Leu Phe Asp 755 760 765Glu Arg
Glu Met Thr Ser His Leu Lys Asp Tyr Ala Asp Lys Phe Ser 770
775 780Lys Ile Ser Arg Leu Asn Ile Gly Asp Glu Arg
Met Lys Thr Asn Ile785 790 795
800Asn Phe Gly Thr Arg Ile Ser Arg Tyr Leu Leu Ser Ser Ala Gln Ala
805 810 815Ser Ser Arg Glu
Asn Arg Glu Val Asp Val Leu Ser Phe Glu Arg Lys 820
825 830Phe Phe Ala Val Val Lys Lys Lys Asp Lys Ser
His Tyr Phe Gly Arg 835 840 845Lys
Ile Tyr Ala Ile Gly Glu Ala His Val Leu Thr Asp Phe Glu Glu 850
855 860Lys Lys Arg Thr Ile Ala Ile Lys Thr Leu
Val Ala His Pro Tyr Thr865 870 875
880Gln Ile Asn Glu Ser Ile Lys Asn Arg Ile Asn Asp Phe Asp Lys
Glu 885 890 895Tyr Asn Val
Lys Gly Ile Gly Thr Phe Ala Thr Phe Lys Ala Thr Asn 900
905 910Lys Leu Ile Gly Gly Ile Lys Gly Ala Leu
Lys Tyr Lys Thr Lys Val 915 920
925Leu Thr Gln Ala Val Asn Val Arg Ser Ala Ala Ile Ala Ile Lys Tyr 930
935 940Gly Ala Lys His Val Pro945
950371537DNAPantoea agglomerans 37attgaagagt ttgatcatgg
ctcagattga acgctggcgg caggcctaac acatgcaagt 60cggacggtag cacagagagc
ttgctcttgg gtgacgagtg gcggacgggt gagtaatgtc 120tgggaaactg cccgatggag
ggggataact actggaaacg gtagctaata ccgcataacg 180tcgcaagacc aaagtggggg
accttcgggc ctcacaccat cggatgtgcc cagatgggat 240tagctagtag gcggggtaat
ggcccaccta ggcgacgatc cctagctggt ctgagaggat 300gaccagccac actggaactg
agacacggtc cagactccta cgggaggcag cagtggggaa 360tattgcacaa tgggcgcaag
cctgatgcag ccatgccgcg tgtatgaaga aggccttagg 420gttgtaaagt actttcagcg
gggaggaagg cggtgcggtt aataaccgtg ccgattgacg 480ttacccgcag aagaagcacc
ggctaactcc gtgccagcag ccgcggtaat acggagggtg 540caagcgttaa tcggaattac
tgggcgtaaa gcgcacgcag gcggtctgtt aagtcagatg 600tgaaatcccc gggcttaacc
tgggaactgc atttgaaact ggcaggcttg agtcttgtag 660aggggggtag aattccaggt
gtagcggtga aatgcgtaga gatctggagg aataccggtg 720gcgaaggcgg ccccctggac
aaagactgac gctcaggtgc gaaagcgtgg ggagcaaaca 780ggattagata ccctggtagt
ccacgccgta aacgatgtcg acttggaggt tgttcccttg 840aggagtggct tccggagcta
acgcgttaag tcgaccgcct ggggagtacg gccgcaaggt 900taaaactcaa atgaattgac
gggggcccgc acaagcggtg gagcatgtgg tttaattcga 960tgcaacgcga agaaccttac
ctactcttga catccagcga actttccaga gatggattgg 1020tgccttcggg aacgctgaga
caggtgctgc atggctgtcg tcagctcgtg ttgtgaaatg 1080ttgggttaag tcccgcaacg
agcgcaaccc ttatcctttg ttgccagcga ttcggtcggg 1140aactcaaagg agactgccgg
tgataaaccg gaggaaggtg gggatgacgt caagtcatca 1200tggcccttac gagtagggct
acacacgtgc tacaatggcg catacaaaga gaagcgacct 1260cgcgagagca agcggacctc
acaaagtgcg tcgtagtccg gatcggagtc tgcaactcga 1320ctccgtgaag tcggaatcgc
tagtaatcgt ggatcagaat gccacggtga atacgttccc 1380gggccttgta cacaccgccc
gtcacaccat gggagtgggt tgcaaaagaa gtaggtagct 1440taaccttcgg gagggcgctt
accactttgt gattcatgac tggggtgaag tcgtaacaag 1500gtaaccgtag gggaacctgc
ggttggatca cctcctt 1537381537DNAPantoea
agglomerans 38attgaagagt ttgatcatgg ctcagattga acgctggcgg caggcctaac
acatgcaagt 60cggacggtag cacagagagc ttgctcttgg gtgacgagtg gcggacgggt
gagtaatgtc 120tgggaaactg cccgatggag ggggataact actggaaacg gtagctaata
ccgcataacg 180tcgcaagacc aaagtggggg accttcgggc ctcacaccat cggatgtgcc
cagatgggat 240tagctagtag gcggggtaat ggcccaccta ggcgacgatc cctagctggt
ctgagaggat 300gaccagccac actggaactg agacacggtc cagactccta cgggaggcag
cagtggggaa 360tattgcacaa tgggcgcaag cctgatgcag ccatgccgcg tgtatgaaga
aggccttagg 420gttgtaaagt actttcagcg gggaggaagg cggtgcggtt aataaccgtg
ccgattgacg 480ttacccgcag aagaagcacc ggctaactcc gtgccagcag ccgcggtaat
acggagggtg 540caagcgttaa tcggaattac tgggcgtaaa gcgcacgcag gcggtctgtt
aagtcagatg 600tgaaatcccc gggcttaacc tgggaactgc atttgaaact ggcaggcttg
agtcttgtag 660aggggggtag aattccaggt gtagcggtga aatgcgtaga gatctggagg
aataccggtg 720gcgaaggcgg ccccctggac aaagactgac gctcaggtgc gaaagcgtgg
ggagcaaaca 780ggattagata ccctggtagt ccacgccgta aacgatgtcg acttggaggt
tgttcccttg 840aggagtggct tccggagcta acgcgttaag tcgaccgcct ggggagtacg
gccgcaaggt 900taaaactcaa atgaattgac gggggcccgc acaagcggtg gagcatgtgg
tttaattcga 960tgcaacgcga agaaccttac ctactcttga catccagcga actttccaga
gatggattgg 1020tgccttcggg aacgctgaga caggtgctgc atggctgtcg tcagctcgtg
ttgtgaaatg 1080ttgggttaag tcccgcaacg agcgcaaccc ttatcctttg ttgccagcga
ttcggtcggg 1140aactcaaagg agactgccgg tgataaaccg gaggaaggtg gggatgacgt
caagtcatca 1200tggcccttac gagtagggct acacacgtgc tacaatggcg catacaaaga
gaagcgacct 1260cgcgagagca agcggacctc acaaagtgcg tcgtagtccg gatcggagtc
tgcaactcga 1320ctccgtgaag tcggaatcgc tagtaatcgt ggatcagaat gccacggtga
atacgttccc 1380gggccttgta cacaccgccc gtcacaccat gggagtgggt tgcaaaagaa
gtaggtagct 1440taaccttcgg gagggcgctt accactttgt gattcatgac tggggtgaag
tcgtaacaag 1500gtaaccgtag gggaacctgc ggttggatca cctcctt
1537391063DNAPantoea agglomerans 39ttgacgttac ccgcagaaga
agcaccggct aactccgtgc cagcagccgc ggtaatacgg 60agggtgcaag cgttaatcgg
aattactggg cgtaaagcgc acgcaggcgg tctgttaagt 120cagatgtgaa atccccgggc
ttaacctggg aactgcattt gaaactggca ggcttgagtc 180ttgtagaggg gggtagaatt
ccaggtgtag cggtgaaatg cgtagagatc tggaggaata 240ccggtggcga aggcggcccc
ctggacaaag actgacgctc aggtgcgaaa gcgtggggag 300caaacaggat tagataccct
ggtagtccac gccgtaaacg atgtcgactt ggaggttgtt 360cccttgagga gtggcttccg
gagctaacgc gttaagtcga ccgcctgggg agtacggccg 420caaggttaaa actcaaatga
attgacgggg gcccgcacaa gcggtggagc atgtggttta 480attcgatgca acgcgaagaa
ccttacctac tcttgacatc cagcgaactt tccagagatg 540gattggtgcc ttcgggaacg
ctgagacagg tgctgcatgg ctgtcgtcag ctcgtgttgt 600gaaatgttgg gttaagtccc
gcaacgagcg caacccttat cctttgttgc cagcgattcg 660gtcgggaact caaaggagac
tgccggtgat aaaccggagg aaggtgggga tgacgtcaag 720tcatcatggc ccttacgagt
agggctacac acgtgctaca atggcgcata caaagagaag 780cgacctcgcg agagcaagcg
gacctcacaa agtgcgtcgt agtccggatc ggagtctgca 840actcgactcc gtgaagtcgg
aatcgctagt aatcgtggat cagaatgcca cggtgaatac 900gttcccgggc cttgtacaca
ccgcccgtca caccatggga gtgggttgca aaagaagtag 960gtagcttaac cttcgggagg
gcgcttacca ctttgtgatt catgactggg gtgaagtcgt 1020aacaaggtaa ccgtagggga
acctgcggtt ggatcacctc ctt 1063
User Contributions:
Comment about this patent or add new information about this topic: