Patent application title: ZIKA VIRUS RNA VACCINES
Inventors:
IPC8 Class: AA61K3912FI
USPC Class:
Class name:
Publication date: 2022-06-09
Patent application number: 20220175906
Abstract:
Provided herein, in some embodiments, are Zika virus RNA vaccines and
methods of producing an antigen-specific immune response in a subject.Claims:
1. A method comprising administering to a subject a messenger ribonucleic
acid (mRNA) comprising an open reading frame (ORF) encoding a Japanese
encephalitis virus (JEV) signal peptide fused to a Zika virus (ZIKV) prME
protein comprising a sequence having at least 90% identity to SEQ ID NO:
7, wherein the mRNA is in a composition comprising a lipid nanoparticle.
2-38. (canceled)
39. The method of claim 1, wherein 20 .mu.g-200 .mu.g of the mRNA is administered to the subject.
40. The method of claim 39, wherein 20 .mu.g-60 .mu.g of the mRNA is administered to the subject.
41. The method of claim 1, wherein a first dose and a second dose of the mRNA is administered to the subject.
42. The method of claim 1, wherein the ZIKV prME protein comprises a sequence having at least 95% identity to SEQ ID NO: 7.
43. The method of claim 42, wherein the ZIKV prME protein comprises the sequence of SEQ ID NO: 7.
44. The method of claim 1, wherein the mRNA vaccine comprises at least one modified nucleotide.
45. The method of claim 44, wherein at least 80% of uracil nucleotides in the ORF of the mRNA have a 1-methyl-pseudouridine modification.
46. The method of claim 45, wherein 100% of uracil nucleotides in the ORF of the mRNA have a 1-methyl-pseudouridine modification.
47. The method of claim 1, wherein the lipid nanoparticle comprises 20-60 mol % ionizable cationic lipid, 5-25 mol % non-cationic lipid, 25-55 mol % sterol, and 0.5-15 mol % PEG-modified lipid.
48. The method of claim 47, wherein the ionizable cationic lipid comprises the following compound: ##STR00002##
49. A method comprising: administering to a subject a first dose and a second dose of a messenger ribonucleic acid (mRNA) comprising an open reading frame (ORF) encoding a Japanese encephalitis virus (JEV) signal peptide fused to a Zika virus (ZIKV) prME protein comprising a sequence having at least 95% identity to SEQ ID NO: 7, wherein the mRNA is in a composition comprising a lipid nanoparticle.
50. The method of claim 49, wherein 20 .mu.g-60 .mu.g of the mRNA is administered to the subject.
51. The method of claim 49, wherein at least 80% of uracil nucleotides in the ORF of the mRNA have a 1-methyl-pseudouridine modification.
52. The method of claim 51, wherein 100% of uracil nucleotides in the ORF of mRNA have a 1-methyl-pseudouridine modification.
53. The method of claim 49, wherein the lipid nanoparticle comprises 20-60 mol % ionizable cationic lipid, 5-25 mol % non-cationic lipid, 25-55 mol % sterol, and 0.5-15 mol % PEG-modified lipid.
54. The method of claim 53, wherein the ionizable cationic lipid comprises the following compound: ##STR00003##
55. A method comprising: administering to a subject a first dose and a second dose of a messenger ribonucleic acid (mRNA) comprising an open reading frame (ORF) encoding a Japanese encephalitis virus (JEV) signal peptide fused to a Zika virus (ZIKV) prME protein comprising a sequence having at least 95% identity to SEQ ID NO: 7, wherein 100% of uracil nucleotides in the ORF of mRNA have a 1-methyl-pseudouridine modification, and wherein the mRNA is in a composition comprising a lipid nanoparticle, and wherein 20 .mu.g-60 .mu.g of the mRNA is administered to the subject.
56. The method of claim 55, wherein the lipid nanoparticle comprises 20-60 mol % ionizable cationic lipid, 5-25 mol % non-cationic lipid, 25-55 mol % sterol, and 0.5-15 mol % PEG-modified lipid.
57. The method of claim 56, wherein the ionizable cationic lipid comprises the following compound: ##STR00004##
Description:
RELATED APPLICATIONS
[0001] This application is a division of U.S. application Ser. No. 16/131,793, filed Sep. 14, 2018, which claims the benefit under 35 U.S.C. .sctn. 119(e) of U.S. provisional application No. 62/558,746, filed Sep. 14, 2017, each of which is incorporated by reference herein in its entirety.
BACKGROUND
[0002] Zika virus (ZIKV) was identified in 1947 from a sentinel Rhesus monkey in the Zika Forest of Uganda. Historically, ZIKV circulated between Aedes species mosquitoes, non-human primates in the jungle, and episodically spilled into human populations in Africa and parts of Southeast Asia. Infection was associated with a mild, self-limiting febrile illness characterized by headache, rash, conjunctivitis, myalgia, and arthralgia. Since 2010, and especially in the context of its spread and dissemination to countries of the Western Hemisphere, more severe clinical consequences have been observed. Infection of fetuses in utero during pregnancy, particularly during the first and second trimesters, has been associated with placental insufficiency and congenital malformations including cerebral calcifications, microcephaly, and miscarriage. In adults, ZIKV infection is linked to an increased incidence of Guillain-Barre syndrome (GBS), an autoimmune disease characterized by paralysis and polyneuropathy. In addition to mosquito and in utero transmission, sexual transmission of ZIKV has been described from men-to-women, men-to-men, and women-to-men. Persistent ZIKV infection can occur, as viral RNA has been detected in semen, sperm, and vaginal secretions up to 6 months following infection. Thus, ZIKV is now a global disease with locally-acquired and travel-associated transmission through multiple routes in the Americas, Africa, and Asia. The emergence of ZIKV infection has prompted a global effort to develop safe and effective vaccines.
SUMMARY
[0003] Experimental results provided herein demonstrate an unexpected improvement in efficacy with Zika virus (ZIKV) RNA vaccines encoding a Japanese encephalitis virus (JEV) signal peptide fused to a ZIKV prME protein. As shown in the Examples, the ZIKV mRNA vaccine encoding a JEV signal peptide fused to prME unexpectedly provided sterilizing immunity in non-human primates at a 20-fold lower dose relative to a ZIKV mRNA vaccine encoding a IgE signal peptide fused to prME.
[0004] Thus, in some aspects, provided herein are RNA vaccines that comprise a 5' UTR, an ORF encoding a JEV signal peptide fused to a ZIKV prME protein, and a 3' UTR. In some embodiments, the 5' UTR is selected from SEQ ID NO:13 and SEQ ID NO:14. In some embodiments, the ORF comprises a sequence selected from SEQ ID NOs:1-6. In some embodiments, the 3' UTR is selected from SEQ ID NO:15 and SEQ ID NO:16. In some embodiments, the JEV signal peptide comprises the following sequence: MWLVSLAIVTACAGA (SEQ ID NO:18). In some embodiments, the JEV signal peptide is encoded by the following sequence: AUGUGGCUGGUGUCCCUGGCCAUCGUGACA GCCUGUGCUGGCGCC (SEQ ID NO:19).
[0005] Also provided herein are methods comprising administering to a subject a RNA vaccine comprising an open reading frame (ORF) encoding a JEV signal peptide fused to a ZIKV prME protein in an effective amount to induce in the subject a ZIKV prME-specific immune response, wherein the effective amount is sufficient to provide sterilizing immunity in the subject at an at least 10-fold lower dose relative to a ZIKV mRNA vaccine encoding a IgE signal peptide fused to prME. In some embodiments, the effective amount is sufficient to provide sterilizing immunity in the subject at an at least 20-fold lower dose relative to a ZIKV mRNA vaccine encoding a IgE signal peptide fused to prME.
[0006] In some aspects, the methods comprise administering to a subject a RNA vaccine comprising an ORF encoding a JEV signal peptide fused to a ZIKV prME protein in an effective amount to reduce viral load in the subject by at least 80%, relative to a control, at 3-7 days following exposure to ZIKV, wherein the control is the viral load in a subject administered a ZIKV RNA vaccine lacking the JEV signal sequence.
[0007] In other aspects, the methods comprise administering to a subject a RNA vaccine comprising an ORF encoding a JEV signal peptide fused to a ZIKV prME protein in an effective amount to induce in the subject a ZIKV prME-specific immune response, wherein efficacy of the RNA vaccine is at least 80% relative to unvaccinated control subjects.
BRIEF DESCRIPTION OF THE DRAWINGS
[0008] FIG. 1 is a graph showing the viral yield (log.sub.10 focus forming units (FFU)/ml) 3, 4, 5, 6 and 7 days post challenge (with ZIKV) in non-human primates (NHPs) vaccinated with 10 .mu.g, 50 .mu.g, or 200 .mu.g ZIKV mRNA vaccine. Vaccine `mRNA-1325` encodes an IgE signal peptide fused to ZIKV prME. Vaccine `mRNA-1893` encodes a JEV signal peptide fused to ZIKV prME. A single 200 .mu.g dose of the mRNA-1325 vaccine confers nearly complete protection. Unexpectedly, the mRNA-1893 vaccine outperforms the mRNA-1325 vaccine in this model by at least 20.times..
[0009] FIG. 2 includes graphs showing neutralizing antibody titers (EC.sub.50 fold change relative to week 8) obtained from the same NHP experiments described in FIG. 1.
DETAILED DESCRIPTION
[0010] Zika virus (ZIKV) is a member of the Flaviviridae virus family and the flavivirus genus. In humans, it causes a disease known as Zika fever. It is related to dengue, yellow fever, West Nile and Japanese encephalitis, viruses that are also members of the virus family Flaviviridae. ZIKV is spread to people through mosquito bites. The most common symptoms of ZIKV disease (Zika) are fever, rash, joint pain, and red eye. The illness is usually mild with symptoms lasting from several days to a week. There is no vaccine to prevent, or medicine to treat ZIKV.
[0011] Provided herein, in some embodiments, are ZIKV ribonucleic acid (RNA) vaccines (e.g., mRNA vaccines) comprising a 5' untranslated region (UTR), an open reading frame (ORF) encoding a JEV signal peptide fused to a ZIKV prME protein, and a 3' UTR. In some embodiments, the ZIKV RNA vaccines comprise a polyA tail.
[0012] A 5' UTR is region of an mRNA that is directly upstream (5') from the start codon (the first codon of an mRNA transcript translated by a ribosome). A 5' UTR does not encode a polypeptide (is non-coding). In some embodiments, a 5' UTR of the present disclosure comprises a sequence selected from SEQ ID NO:13 and SEQ ID NO:14.
[0013] A 3' UTR is region of an mRNA that is directly downstream (3') from the stop codon (the codon of an mRNA transcript that signals a termination of translation) A 3' UTR does not encode a polypeptide (is non-coding). In some embodiments, a 3' UTR of the present disclosure comprises a sequence selected from SEQ ID NO:15 and SEQ ID NO:16.
[0014] A polyA tail is a region of mRNA that is downstream, e.g., directly downstream, from the 3' UTR and contains multiple, consecutive adenosine monophosphates. In a relevant biological setting (e.g., in cells, in vivo), the polyA tail functions to protect mRNA from enzymatic degradation, e.g., in the cytoplasm, and aids in transcription termination, export of the mRNA from the nucleus, and translation. A polyA tail may comprise, for example, 10 to 300 adenosine monophosphates. For example, a polyA tail may comprise 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 210, 220, 230, 240, 250, 260, 270, 280, 290 or 300 adenosine monophosphates. In some embodiments, a polyA tail comprises 50 to 250 adenosine monophosphates. In some embodiments, a polyA tail comprises 100 adenosine monophosphates.
[0015] In some embodiments, the ZIKV RNA vaccine comprises 5' terminal cap, for example, 7mG(5')ppp(5')NlmpNp.
[0016] An open reading frame is a continuous stretch of DNA or RNA beginning with a start codon (e.g., methionine (ATG or AUG)) and ending with a stop codon (e.g., TAA, TAG or TGA, or UAA, UAG or UGA). In some embodiments, an ORF of the present disclosure is selected from SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, and SEQ ID NO:6. In some embodiments, the ORF comprises the sequence of SEQ ID NO:1. In some embodiments, the ORF comprises the sequence of SEQ ID NO:2. In some embodiments, the ORF comprises the sequence of SEQ ID NO:3. In some embodiments, the ORF comprises the sequence of SEQ ID NO:4. In some embodiments, the ORF comprises the sequence of SEQ ID NO:5. In some embodiments, the ORF comprises the sequence of SEQ ID NO:6.
[0017] The ZIKV RNA vaccines (e.g., mRNA vaccines) of the present disclosure encode a JEV signal peptide (e.g., SEQ ID NO:18) fused (in frame) to a ZIKV prME protein. The particular prME sequence may be from any ZIKV strain, for example those strains as are known in the art or as otherwise described herein, such as a Brazilian strain, a Micronesian strain, or an African strain. Within the Zika family, there is a high level of homology within the prME sequence (>90%) across all strains so far isolated. The high degree of homology is also preserved when comparing the original isolates from 1947 to the more contemporary strains circulating in Brazil in 2015, suggesting that there is "drift" occurring from the original isolates. Furthermore, attenuated virus preparations have provided cross-immunization to all other strains tested, including Latin American/Asian, and African. Overall, this data suggests that cross-protection of all Zika strains is possible with a vaccine based on prME. In fact, the prM/M and E proteins of ZIKV have a very high level (99%) of sequence conservation between the currently circulating Asiatic and Brazilian viral strains.
[0018] The M and E proteins are on the surface of the viral particle. Neutralizing antibodies predominantly bind to the E protein, the preM/M protein functions as a chaperone for proper folding of E protein and prevent premature fusion of E protein within acidic compartments along the cellular secretory pathway.
[0019] In some embodiments, the ZIKV prME protein comprises a sequence selected from SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:11, and SEQ ID NO:12. In some embodiments, the ZIKV prME protein comprises the sequence of SEQ ID NO:7. In some embodiments, the ZIKV prME protein comprises the sequence of SEQ ID NO:8. In some embodiments, the ZIKV prME protein comprises the sequence of SEQ ID NO:9. In some embodiments, the ZIKV prME protein comprises the sequence of SEQ ID NO:10. In some embodiments, the ZIKV prME protein comprises the sequence of SEQ ID NO:11. In some embodiments, the ZIKV prME protein comprises the sequence of SEQ ID NO:12.
[0020] ZIKV RNA vaccines (e.g., mRNA vaccines) of the present disclosure encode a JEV signal peptide fused to a prME protein. Signal peptides, comprising the N-terminal 15-60 amino acids of proteins, are typically needed for the translocation across the membrane on the secretory pathway and, thus, universally control the entry of most proteins both in eukaryotes and prokaryotes to the secretory pathway. In eukaryotes, the signal peptide of a nascent precursor protein (pre-protein) directs the ribosome to the rough endoplasmic reticulum (ER) membrane and initiates the transport of the growing peptide chain across it for processing. ER processing produces mature proteins, wherein the signal peptide is cleaved from precursor proteins, typically by a ER-resident signal peptidase of the host cell, or they remain uncleaved and function as a membrane anchor. A signal peptide may also facilitate the targeting of the protein to the cell membrane. In some embodiments, the JEV signal peptide of the present disclosure comprises the sequence of SEQ ID NO:18.
[0021] In some embodiments, a RNA (e.g., mRNA) of a ZIKV RNA vaccine of the present disclosure is chemically modified. For example, at least 80% of the uracil in the ORF may have a chemical modification selected from N1-methyl-pseudouridine and N1-ethyl-pseudouridine. In some embodiments, at least 85%, at least 90%, at least 95% or 100% of the uracil in the ORF have a chemical modification. In some embodiments, the chemical modification is in the 5-position of the uracil.
[0022] In some embodiments, at least one RNA (e.g., mRNA) of the ZIKV RNA vaccines of the present disclosure are not chemically modified, and comprise the standard ribonucleotides consisting of adenosine, guanosine, cytosine and uridine.
[0023] ZIKV RNA vaccines (e.g., mRNA vaccines) of the present disclosure are typically formulated in lipid nanoparticle. In some embodiments, the lipid nanoparticle comprises at least one ionizable cationic lipid, at least one non-cationic lipid, at least one sterol, and/or at least one polyethylene glycol (PEG)-modified lipid. In some embodiments, the lipid nanoparticle comprises a molar ratio of 20-60% ionizable cationic lipid, 5-25% non-cationic lipid, 25-55% sterol, and 0.5-15% PEG-modified lipid. In some embodiments, the ionizable cationic lipid comprises the following compound:
##STR00001##
[0024] Data provided herein demonstrates that ZIKV mRNA vaccines encoding a JEV signal peptide fused to prME provide sterilizing immunity in non-human primates at a 20-fold lower dose relative to a ZIKV mRNA vaccine encoding a IgE signal peptide fused to prME. Thus, provided herein, in some embodiments, are methods comprising administering to a subject a RNA vaccine comprising an ORF encoding a JEV signal peptide fused to a ZIKV prME protein in an effective amount to induce in the subject a ZIKV prME-specific immune response, wherein the effective amount is sufficient to provide sterilizing immunity in the subject at an at least 5-fold lower dose relative to a ZIKV mRNA vaccine encoding a IgE signal peptide fused to prME. In some embodiments, the effective amount is sufficient to provide sterilizing immunity in the subject at an at least 10-fold lower dose relative to a ZIKV mRNA vaccine encoding a IgE signal peptide fused to prME. the effective amount is sufficient to provide sterilizing immunity in the subject at an at least 15-fold lower dose relative to a ZIKV mRNA vaccine encoding a IgE signal peptide fused to prME. the effective amount is sufficient to provide sterilizing immunity in the subject at an at least 20-fold lower dose relative to a ZIKV mRNA vaccine encoding a IgE signal peptide fused to prME.
[0025] A subject may be any mammal, including non-human primate and human subjects. Typically, a subject is a human subject.
[0026] In some embodiments, methods of the present disclosure comprise administering to a subject a RNA vaccine comprising an ORF encoding a JEV signal peptide fused to a ZIKV prME protein in an effective amount to reduce viral load in the subject by at least 80%, relative to a control (e.g., at 3-7 days following exposure to ZIKV), wherein the control is the viral load in a subject administered a ZIKV RNA vaccine lacking the JEV signal sequence. In some embodiments, the amount of ZIKV RNA vaccine administered is effective to reduce viral load in the subject by at least 85%, at least 90%, at least 95%, at least 98% or 100%. In some embodiments, the control is the viral load in a subject administered a ZIKV RNA vaccine containing an IgE signal sequence. In some embodiments, the control is the viral load in an unvaccinated subject.
[0027] In some embodiments, the methods comprise administering to a subject ZIKV vaccine comprising an ORF encoding a JEV signal peptide fused to a ZIKV prME protein in an effective amount to induce in the subject a ZIKV prME-specific immune response, wherein efficacy of the RNA vaccine is at least 60% relative to unvaccinated control subjects. For example, the efficacy of the ZIKV RNA vaccine may be at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, or at least 98%, relative to unvaccinated control subjects. In some embodiments, the efficacy of the RNA vaccine is at least 80% relative to unvaccinated control subjects. In some embodiments, the efficacy of the RNA vaccine is at least 95% relative to unvaccinated control subjects.
[0028] Vaccine efficacy may be assessed using standard analyses (see, e.g., Weinberg et al., J Infect Dis. 2010 Jun. 1; 201(11):1607-10). For example, vaccine efficacy may be measured by double-blind, randomized, clinical controlled trials. Vaccine efficacy may be expressed as a proportionate reduction in disease attack rate (AR) between the unvaccinated (ARU) and vaccinated (ARV) study cohorts and can be calculated from the relative risk (RR) of disease among the vaccinated group with use of the following formulas:
Efficacy=(ARU-ARV)/ARU.times.100; and
Efficacy=(1-RR).times.100.
[0029] Likewise, vaccine effectiveness may be assessed using standard analyses (see, e.g., Weinberg et al., J Infect Dis. 2010 Jun. 1; 201(11):1607-10). Vaccine effectiveness is an assessment of how a vaccine (which may have already proven to have high vaccine efficacy) reduces disease in a population. This measure can assess the net balance of benefits and adverse effects of a vaccination program, not just the vaccine itself, under natural field conditions rather than in a controlled clinical trial. Vaccine effectiveness is proportional to vaccine efficacy (potency) but is also affected by how well target groups in the population are immunized, as well as by other non-vaccine-related factors that influence the `real-world` outcomes of hospitalizations, ambulatory visits, or costs. For example, a retrospective case control analysis may be used, in which the rates of vaccination among a set of infected cases and appropriate controls are compared. Vaccine effectiveness may be expressed as a rate difference, with use of the odds ratio (OR) for developing infection despite vaccination:
Effectiveness=(1-OR).times.100.
[0030] In some embodiments, the effective amount of a ZIKV RNA vaccine is sufficient to produce detectable levels of ZIKV prME protein as measured in serum of the subject at 1-72 hours post administration.
[0031] In some embodiments, the effective amount of a ZIKV RNA vaccine amount is sufficient to produce a 1,000-10,000 neutralization titer produced by neutralizing antibody against the ZIKV prME protein as measured in serum of the subject at 1-72 hours post administration. In some embodiments, the effective amount of a ZIKV RNA vaccine amount is sufficient to produce a 1,000-5,000 neutralization titer produced by neutralizing antibody against the ZIKV prME protein as measured in serum of the subject at 1-72 hours post administration. In some embodiments, the effective amount of a ZIKV RNA vaccine amount is sufficient to produce a 5,000-10,000 neutralization titer produced by neutralizing antibody against the ZIKV prME protein as measured in serum of the subject at 1-72 hours post administration.
[0032] In some embodiments, an anti-ZIKV prME protein antibody titer produced in a subject administered a ZIKV RNA vaccine is increased by at least 1 log relative to a control, wherein the control is an anti-ZIKV prME protein antibody titer produced in a subject who has not been administered a vaccine against ZIKV. In some embodiments, an anti-ZIKV prME protein antibody titer produced in a subject administered a ZIKV RNA vaccine is increased by at least 2 log relative to the control. In some embodiments, an anti-ZIKV prME protein antibody titer produced in a subject administered a ZIKV RNA vaccine is increased by at least 5 log relative to the control. In some embodiments, an anti-ZIKV prME protein antibody titer produced in a subject administered a ZIKV RNA vaccine is increased by at least 10 log relative to the control.
[0033] In some embodiments, an anti-ZIKV prME protein antibody titer produced in a subject is increased at least 2 times relative to a control, wherein the control is an anti-ZIKV prME protein antibody titer produced in a subject who has not been administered a vaccine against ZIKV. In some embodiments, an anti-ZIKV prME protein antibody titer produced in a subject is increased at least 5 times relative to a control. In some embodiments, an anti-ZIKV prME protein antibody titer produced in a subject is increased at least 10 times relative to a control.
[0034] The effective amount of a ZIKV RNA vaccine (e.g., mRNA vaccine), as provided herein, surprisingly may be as low as 20 .mu.g, administered for example as a single dose or as two 10 .mu.g doses. In some embodiments, the effective amount is 20 .mu.g, 25 .mu.g, 30 .mu.g, 35 .mu.g, 40 .mu.g, 45 .mu.g, 50 .mu.g, 55 .mu.g, 60 .mu.g, 65 .mu.g, 70 .mu.g, 75 .mu.g, 80 .mu.g, 85 .mu.g, 90 .mu.g, 95 .mu.g, 100 .mu.g, 110 .mu.g, 120 .mu.g, 130 .mu.g, 140 .mu.g, 150 .mu.g, 160 .mu.g, 170 .mu.g, 180 .mu.g, 190 .mu.g or 200 .mu.g. In some embodiments, the effective amount is a total dose of 25 .mu.g-200 .mu.g.
[0035] Table 1 below provides examples of ZIKV mRNA vaccine sequences and corresponding protein sequences encoded by the vaccines.
TABLE-US-00001 TABLE 1 ZIKV mRNA Vaccine Sequences ORF (with JEV signal sequence Protein (with JEV signal sequence underlined) underlined) ZIKV prME Brazil Isolate (mRNA) ZIKV prME Brazil Isolate (protein) AUGUGGCUGGUGUCCCUGGCCAUCGUGACA MWLVSLAIVTACAGAAEVTRRGSAYYMYLDR GCCUGUGCUGGCGCCGCUGAAGUGACCAGA NDAGEAISFPTTLGMNKCYIQIMDLGHMCDAT AGAGGCAGCGCCUACUACAUGUACCUGGAC MSYECPMLDEGVEPDDVDCWCNTTSTWVVY CGGAACGAUGCCGGCGAGGCCAUCAGCUUU GTCHHKKGEARRSRRAVTLPSHSTRKLQTRSQ CCAACCACCCUGGGCAUGAACAAGUGCUAC TWLESREYTKHLIRVENWIFRNPGFALAAAAIA AUCCAGAUCAUGGACCUGGGCCACAUGUGC WLLGSSTSQKVIYLVMILLIAPAYSIRCIGVSNR GACGCCACCAUGAGCUACGAGUGCCCCAUG DFVEGMSGGTWVDVVLEHGGCVTVMAQDKP CUGGACGAGGGCGUGGAACCCGACGAUGUG TVDIELVTTTVSNMAEVRSYCYEASISDMASDS GACUGCUGGUGCAACACCACCAGCACCUGG RCPTQGEAYLDKQSDTQYVCKRTLVDRGWGN GUGGUGUACGGCACCUGUCACCACAAGAAG GCGLFGKGSLVTCAKFACSKKMTGKSIQPENL GGCGAAGCCAGACGGUCCAGACGGGCCGUG EYRIMLSVHGSQHSGMIVNDTGHETDENRAKV ACACUGCCUAGCCACAGCACCAGAAAGCUG EITPNSPRAEATLGGFGSLGLDCEPRTGLDFSDL CAGACCCGGUCCCAGACCUGGCUGGAAAGC YYLTMNNKHWLVHKEWFHDIPLPWHAGADT AGAGAGUACACCAAGCACCUGAUCCGGGUG GTPHWNNKEALVEFKDAHAKRQTVVVLGSQE GAAAACUGGAUCUUCCGGAACCCCGGCUUU GAVHTALAGALEAEMDGAKGRLSSGHLKCRL GCCCUGGCCGCUGCUGCUAUUGCUUGGCUG KMDKLRLKGVSYSLCTAAFTFTKIPAETLHGT CUGGGCAGCAGCACCUCCCAGAAAGUGAUC VTVEVQYAGTDGPCKVPAQMAVDMQTLTPV UACCUCGUGAUGAUCCUGCUGAUCGCCCCU GRLITANPVITESTENSKMMLELDPPFGDSYIVI GCCUACAGCAUCCGGUGUAUCGGCGUGUCC GVGEKKITHHWHRSGSTIGKAFEATVRGAKR AACCGGGACUUCGUGGAAGGCAUGAGCGGC MAVLGDTAWDFGSVGGALNSLGKGIHQIFGA GGCACAUGGGUGGACGUGGUGCUGGAACAU AFKSLFGGMSWFSQILIGTLLMWLGLNTKNGSI GGCGGCUGCGUGACAGUGAUGGCCCAGGAC SLMCLALGGVLIFLSTAVSA (SEQ ID NO: 7) AAGCCCACCGUGGACAUCGAGCUCGUGACC ACCACCGUGUCCAAUAUGGCCGAAGUGCGG AGCUACUGCUACGAGGCCAGCAUCAGCGAC AUGGCCAGCGACAGCAGAUGCCCUACACAG GGCGAGGCCUACCUGGACAAGCAGUCCGAC ACCCAGUACGUGUGCAAGCGGACCCUGGUG GAUAGAGGCUGGGGCAAUGGCUGCGGCCUG UUUGGCAAGGGCAGCCUCGUGACCUGCGCC AAGUUCGCCUGCAGCAAGAAGAUGACCGGC AAGAGCAUCCAGCCCGAGAACCUGGAAUAC CGGAUCAUGCUGAGCGUGCACGGCAGCCAG CACUCCGGCAUGAUCGUGAACGACACCGGC CACGAGACAGACGAGAACCGGGCCAAGGUG GAAAUCACCCCUAACAGCCCUAGAGCCGAG GCCACACUGGGCGGCUUUGGAUCUCUGGGC CUGGACUGCGAGCCUAGAACCGGCCUGGAU UUCAGCGACCUGUACUACCUGACCAUGAAC AACAAGCACUGGCUGGUGCACAAAGAGUGG UUCCACGACAUCCCUCUGCCCUGGCAUGCC GGCGCUGAUACAGGCACACCCCACUGGAAC AACAAAGAGGCUCUGGUGGAAUUCAAGGAC GCCCACGCCAAGCGGCAGACCGUGGUGGUG CUGGGAUCUCAGGAAGGCGCCGUGCAUACA GCUCUGGCAGGCGCCCUGGAAGCCGAAAUG GAUGGCGCCAAAGGCAGACUGUCCAGCGGC CACCUGAAGUGCCGGCUGAAGAUGGACAAG CUGCGGCUGAAGGGCGUGUCCUACUCCCUG UGUACCGCCGCCUUCACCUUCACCAAGAUC CCCGCCGAGACACUGCACGGCACCGUGACU GUGGAAGUGCAGUACGCCGGCACCGACGGC CCUUGUAAAGUGCCUGCUCAGAUGGCCGUG GAUAUGCAGACCCUGACCCCUGUGGGCAGA CUGAUCACCGCCAACCCCGUGAUCACCGAG AGCACCGAGAACAGCAAGAUGAUGCUGGAA CUGGACCCACCCUUCGGCGACAGCUACAUC GUGAUCGGCGUGGGAGAGAAGAAGAUCACC CACCACUGGCACAGAAGCGGCAGCACCAUC GGCAAGGCCUUUGAGGCUACAGUGCGGGGA GCCAAGAGAAUGGCCGUGCUGGGAGAUACC GCCUGGGACUUUGGCUCUGUGGGCGGAGCC CUGAACUCUCUGGGCAAGGGAAUCCACCAG AUCUUCGGAGCCGCCUUUAAGAGCCUGUUC GGCGGCAUGAGCUGGUUCAGCCAGAUCCUG AUCGGCACCCUGCUGAUGUGGCUGGGCCUG AACACCAAGAACGGCAGCAUCUCCCUGAUG UGCCUGGCUCUGGGAGGCGUGCUGAUCUUC CUGAGCACAGCCGUGUCUGCC (SEQ ID NO: 1) ZIKV prME Brazil Isolate (mRNA), ZIKV prME Brazil Isolate (protein), with T76R, Q77E, W101R, L107R with T76R, Q77E, W101R, L107R mutations mutations AUGUGGCUGGUGUCCCUGGCCAUCGUGACA MWLVSLAIVTACAGAAEVTRRGSAYYMYLDR GCCUGUGCUGGCGCCGCUGAAGUGACCAGA NDAGEAISFPTTLGMNKCYIQIMDLGHMCDAT AGAGGCAGCGCCUACUACAUGUACCUGGAC MSYECPMLDEGVEPDDVDCWCNTTSTWVVY CGGAACGAUGCCGGCGAGGCCAUCAGCUUU GTCHHKKGEARRSRRAVTLPSHSTRKLQTRSQ CCAACCACCCUGGGCAUGAACAAGUGCUAC TWLESREYTKHLIRVENWIFRNPGFALAAAAIA AUCCAGAUCAUGGACCUGGGCCACAUGUGC WLLGSSTSQKVIYLVMILLIAPAYSIRCIGVSNR GACGCCACCAUGAGCUACGAGUGCCCCAUG DFVEGMSGGTWVDVVLEHGGCVTVMAQDKP CUGGACGAGGGCGUGGAACCCGACGAUGUG TVDIELVTTTVSNMAEVRSYCYEASISDMASDS GACUGCUGGUGCAACACCACCAGCACCUGG RCPREGEAYLDKQSDTQYVCKRTLVDRGRGN GUGGUGUACGGCACCUGUCACCACAAGAAG GCGRFGKGSLVTCAKFACSKKMTGKSIQPENL GGCGAAGCCAGACGGUCCAGACGGGCCGUG EYRIMLSVHGSQHSGMIVNDTGHETDENRAKV ACACUGCCUAGCCACAGCACCAGAAAGCUG EITPNSPRAEATLGGFGSLGLDCEPRTGLDFSDL CAGACCCGGUCCCAGACCUGGCUGGAAAGC YYLTMNNKHWLVHKEWFHDIPLPWHAGADT AGAGAGUACACCAAGCACCUGAUCCGGGUG GTPHWNNKEALVEFKDAHAKRQTVVVLGSQE GAAAACUGGAUCUUCCGGAACCCCGGCUUU GAVHTALAGALEAEMDGAKGRLSSGHLKCRL GCCCUGGCCGCUGCUGCUAUUGCUUGGCUG KMDKLRLKGVSYSLCTAAFTFTKIPAETLHGT CUGGGCAGCAGCACCUCCCAGAAAGUGAUC VTVEVQYAGTDGPCKVPAQMAVDMQTLTPV UACCUCGUGAUGAUCCUGCUGAUCGCCCCU GRLITANPVITESTENSKMMLELDPPFGDSYIVI GCCUACAGCAUCCGGUGUAUCGGCGUGUCC GVGEKKITHHWHRSGSTIGKAFEATVRGAKR AACCGGGACUUCGUGGAAGGCAUGAGCGGC MAVLGDTAWDFGSVGGALNSLGKGIHQIFGA GGCACAUGGGUGGACGUGGUGCUGGAACAU AFKSLFGGMSWFSQILIGTLLMWLGLNTKNGSI GGCGGCUGCGUGACAGUGAUGGCCCAGGAC SLMCLALGGVLIFLSTAVSA (SEQ ID NO: 8) AAGCCCACCGUGGACAUCGAGCUCGUGACC ACCACCGUGUCCAAUAUGGCCGAAGUGCGG AGCUACUGCUACGAGGCCAGCAUCAGCGAC AUGGCCAGCGACAGCAGAUGCCCCAGAGAG GGCGAGGCCUACCUGGACAAGCAGUCCGAC ACCCAGUACGUGUGCAAGCGGACCCUGGUG GACAGAGGCAGAGGCAAUGGCUGCGGCAGA UUCGGCAAGGGCAGCCUCGUGACCUGCGCC AAGUUCGCCUGCAGCAAGAAGAUGACCGGC AAGAGCAUCCAGCCCGAGAACCUGGAAUAC CGGAUCAUGCUGAGCGUGCACGGCAGCCAG CACUCCGGCAUGAUCGUGAACGACACCGGC CACGAGACAGACGAGAACCGGGCCAAGGUG GAAAUCACCCCUAACAGCCCUAGAGCCGAG GCCACACUGGGCGGCUUUGGAUCUCUGGGC CUGGACUGCGAGCCUAGAACCGGCCUGGAU UUCAGCGACCUGUACUACCUGACCAUGAAC AACAAGCACUGGCUGGUGCACAAAGAGUGG UUCCACGACAUCCCUCUGCCCUGGCAUGCC GGCGCUGAUACAGGCACACCCCACUGGAAC AACAAAGAGGCUCUGGUGGAAUUCAAGGAC GCCCACGCCAAGCGGCAGACCGUGGUGGUG CUGGGAUCUCAGGAAGGCGCCGUGCAUACA GCUCUGGCAGGCGCCCUGGAAGCCGAAAUG GAUGGCGCCAAAGGCAGACUGUCCAGCGGC CACCUGAAGUGCCGGCUGAAGAUGGACAAG CUGCGGCUGAAGGGCGUGUCCUACUCCCUG UGUACCGCCGCCUUCACCUUCACCAAGAUC CCCGCCGAGACACUGCACGGCACCGUGACU GUGGAAGUGCAGUACGCCGGCACCGACGGC CCUUGUAAAGUGCCUGCUCAGAUGGCCGUG GAUAUGCAGACCCUGACCCCUGUGGGCAGA CUGAUCACCGCCAACCCCGUGAUCACCGAG AGCACCGAGAACAGCAAGAUGAUGCUGGAA CUGGACCCACCCUUCGGCGACAGCUACAUC GUGAUCGGCGUGGGAGAGAAGAAGAUCACC CACCACUGGCACAGAAGCGGCAGCACCAUC GGCAAGGCCUUUGAGGCUACAGUGCGGGGA GCCAAGAGAAUGGCCGUGCUGGGAGAUACC GCCUGGGACUUUGGCUCUGUGGGCGGAGCC CUGAACUCUCUGGGCAAGGGAAUCCACCAG AUCUUCGGAGCCGCCUUUAAGAGCCUGUUC GGCGGCAUGAGCUGGUUCAGCCAGAUCCUG AUCGGCACCCUGCUGAUGUGGCUGGGCCUG AACACCAAGAACGGCAGCAUCUCCCUGAUG UGCCUGGCUCUGGGAGGCGUGCUGAUCUUC CUGAGCACAGCCGUGUCUGCC (SEQ ID NO: 2) ZIKV prME Micronesia Isolate ZIKV prME Micronesia Isolate (mRNA) (protein) AUGUGGCUGGUGAGCCUGGCCAUCGUGACC MWLVSLAIVTACAGAVEVTRRGSAYYMYLDR GCCUGCGCCGGCGCCGUGGAGGUGACCAGA SDAGEAISFPTTLGMNKCYIQIMDLGHMCDAT AGAGGCAGCGCCUACUACAUGUACCUGGAC MSYECPMLDEGVEPDDVDCWCNTTSTWVVY AGAAGCGACGCCGGCGAGGCCAUCAGCUUC GTCHHKKGEARRSRRAVTLPSHSTRKLQTRSQ CCUACCACCCUGGGCAUGAACAAGUGCUAC TWLESREYTKHLIRVENWIFRNPGFALAAAAIA AUCCAGAUCAUGGACCUGGGCCACAUGUGC WLLGSSTSQKVIYLVMILLIAPAYSIRCIGVSNR GACGCCACCAUGAGCUACGAGUGCCCUAUG DFVEGMSGGTWVDVVLEHGGCVTVMAQDKP CUGGACGAGGGCGUGGAGCCUGACGACGUG AVDIELVTTTVSNMAEVRSYCYEASISDMASD GACUGCUGGUGCAACACCACCAGCACCUGG SRCPTQGEAYLDKQSDTQYVCKRTLVDRGWG GUGGUGUACGGCACCUGCCACCACAAGAAG NGCGLFGKGSLVTCAKFACSKKMTGKSIQPEN GGAGAGGCGAGAAGAAGCAGGAGAGCCGUG LEYRIMLSVHGSQHSGMIVNDTGHETDENRAK ACCCUGCCUAGCCACAGCACCAGAAAGCUG VEITPNSPRAEATLGGFGSLGLDCEPRTGLDFS CAGACCCGGAGCCAGACCUGGCUGGAGAGC DLYYLTMNNKHWLVHKEWFHDIPLPWHAGA AGAGAGUACACCAAGCACCUGAUCAGAGUG DTGTPHWNNKEALVEFKDAHAKRQTVVVLGS GAGAACUGGAUCUUCAGAAACCCUGGCUUC QEGAVHTALAGALEAEMDGAKGRLSSGHLKC GCCCUGGCCGCGGCUGCUAUCGCCUGGCUG RLKMDKLRLKGVSYSLCTAAFTFTKIPAETLH CUGGGUAGUUCAACCAGCCAGAAGGUGAUC GTVTVEVQYAGTDGPCKVPAQMAVDMQTLTP UACCUGGUGAUGAUCCUGCUGAUCGCCCCG VGRLITANPVITESTENSKMMLELDPPFGDSYI GCAUACAGCAUCCGCUGCAUCGGCGUGAGC VIGVGEKKITHHWHRSGSTIGKAFEATVRGAK AACAGAGACUUCGUGGAGGGCAUGAGCGGA RMAVLGDTAWDFGSVGGALNSLGKGIHQIFG GGAACGUGGGUUGACGUGGUGCUGGAGCAC AAFKSLFGGMSWFSQILIGTLLVWLGLNTKNG GGCGGCUGCGUGACCGUGAUGGCCCAGGAC SISLTCLALGGVLIFLSTAVSA (SEQ ID AAGCCUGCCGUGGACAUCGAGCUGGUGACC NO: 9) ACCACCGUAUCCAACAUGGCCGAGGUGAGA AGCUACUGCUACGAGGCUAGCAUAAGCGAC AUGGCCAGCGACAGCCGAUGCCCUACCCAG GGAGAAGCCUACCUGGACAAGCAGAGCGAC ACCCAGUACGUGUGCAAGAGAACCCUGGUG GACAGAGGCUGGGGCAACGGCUGCGGCCUG UUCGGCAAGGGCAGCCUGGUUACUUGCGCC AAGUUCGCCUGCAGCAAGAAGAUGACCGGC AAGAGCAUCCAGCCUGAGAACCUGGAGUAC AGAAUCAUGCUGAGCGUGCACGGCAGCCAG CACAGCGGCAUGAUCGUGAACGACACCGGC CACGAAACAGACGAGAACAGAGCCAAGGUG GAGAUCACCCCUAACAGCCCUAGAGCCGAG GCCACCCUUGGCGGCUUCGGCAGCCUCGGC CUGGACUGCGAGCCUAGAACGGGCCUGGAU UUCAGCGACCUGUACUACCUGACUAUGAAU AACAAGCACUGGCUUGUUCACAAGGAGUGG UUCCACGACAUCCCUCUGCCUUGGCACGCG GGAGCUGACACAGGAACCCCUCACUGGAAC AACAAGGAGGCCCUAGUUGAGUUCAAGGAC GCCCACGCCAAGAGACAGACCGUGGUCGUG CUGGGUUCCCAAGAGGGCGCUGUCCACACU GCACUCGCUGGCGCCCUGGAGGCCGAGAUG GACGGCGCCAAGGGAAGACUGAGCAGCGGC CACCUGAAGUGCAGGCUGAAGAUGGACAAG CUGCGGCUGAAGGGCGUGUCCUACAGCCUG UGCACCGCCGCCUUCACCUUCACCAAGAUC CCUGCCGAGACACUACACGGCACAGUGACC GUCGAGGUGCAGUACGCCGGCACCGACGGC CCUUGCAAGGUGCCUGCCCAGAUGGCCGUC GAUAUGCAAACUCUGACCCCUGUGGGACGG CUUAUCACCGCCAACCCUGUGAUUACUGAG AGCACCGAGAAUAGCAAGAUGAUGUUGGAA CUGGACCCUCCUUUCGGCGACAGCUACAUC GUGAUUGGAGUUGGAGAGAAGAAGAUCAC ACACCACUGGCACAGAUCUGGAUCUACUAU UGGCAAGGCCUUCGAGGCAACAGUGAGAGG AGCAAAGAGAAUGGCAGUUCUGGGAGACAC CGCCUGGGAUUUCGGAAGCGUAGGAGGUGC AUUGAACUCCCUAGGAAAGGGAAUCCACCA GAUCUUCGGAGCUGCAUUCAAGAGCCUAUU CGGCGGAAUGUCCUGGUUCAGCCAGAUCCU GAUCGGCACCCUGCUUGUGUGGCUUGGAUU GAACACCAAGAACGGUAGUAUUAGUCUGAC CUGCCUGGCUCUCGGCGGUGUGCUGAUCUU CCUGAGUACUGCGGUGAGCGCC (SEQ ID NO: 3) ZIKV prME Micronesia Isolate ZIKV prME Micronesia Isolate (mRNA), with T76R, Q77E, W101R, (protein), with T76R, Q77E, W101R, L107R mutations L107R mutations AUGUGGCUGGUGAGCCUGGCCAUCGUGACC MWLVSLAIVTACAGAVEVTRRGSAYYMYLDR GCCUGCGCCGGCGCCGUGGAGGUGACCAGA SDAGEAISFPTTLGMNKCYIQIMDLGHMCDAT AGAGGCAGCGCCUACUACAUGUACCUGGAC MSYECPMLDEGVEPDDVDCWCNTTSTWVVY AGAAGCGACGCCGGCGAGGCCAUCAGCUUC GTCHHKKGEARRSRRAVTLPSHSTRKLQTRSQ CCUACCACCCUGGGCAUGAACAAGUGCUAC TWLESREYTKHLIRVENWIFRNPGFALAAAAIA AUCCAGAUCAUGGACCUGGGCCACAUGUGC WLLGSSTSQKVIYLVMILLIAPAYSIRCIGVSNR GACGCCACCAUGAGCUACGAGUGCCCUAUG DFVEGMSGGTWVDVVLEHGGCVTVMAQDKP CUGGACGAGGGCGUGGAGCCUGACGACGUG AVDIELVTTTVSNMAEVRSYCYEASISDMASD GACUGCUGGUGCAACACCACCAGCACCUGG SRCPREGEAYLDKQSDTQYVCKRTLVDRGRG GUGGUGUACGGCACCUGCCACCACAAGAAG NGCGRFGKGSLVTCAKFACSKKMTGKSIQPEN GGCGAGGCCAGAAGAAGCAGAAGAGCCGUG LEYRIMLSVHGSQHSGMIVNDTGHETDENRAK ACCCUGCCUAGCCACAGCACCAGAAAGCUG VEITPNSPRAEATLGGFGSLGLDCEPRTGLDFS CAGACCAGAAGCCAGACCUGGCUGGAGAGC DLYYLTMNNKHWLVHKEWFHDIPLPWHAGA AGAGAGUACACCAAGCACCUGAUCAGAGUG DTGTPHWNNKEALVEFKDAHAKRQTVVVLGS GAGAACUGGAUCUUCAGAAACCCUGGCUUC QEGAVHTALAGALEAEMDGAKGRLSSGHLKC GCCCUGGCCGCCGCCGCCAUCGCCUGGCUG RLKMDKLRLKGVSYSLCTAAFTFTKIPAETLH CUGGGCAGCAGCACCAGCCAGAAGGUGAUC GTVTVEVQYAGTDGPCKVPAQMAVDMQTLTP UACCUGGUGAUGAUCCUGCUGAUCGCCCCU VGRLITANPVITESTENSKMMLELDPPFGDSYI GCCUACAGCAUCAGAUGCAUCGGCGUGAGC VIGVGEKKITHHWHRSGSTIGKAFEATVRGAK AACAGAGACUUCGUGGAGGGCAUGAGCGGC RMAVLGDTAWDFGSVGGALNSLGKGIHQIFG GGCACCUGGGUGGACGUGGUGCUGGAGCAC AAFKSLFGGMSWFSQILIGTLLVWLGLNTKNG GGCGGCUGCGUGACCGUGAUGGCCCAGGAC SISLTCLALGGVLIFLSTAVSA (SEQ ID
AAGCCUGCCGUGGACAUCGAGCUGGUGACC NO: 10) ACCACCGUGAGCAACAUGGCCGAGGUGAGA AGCUACUGCUACGAGGCCAGCAUCAGCGAC AUGGCCAGCGACAGCAGAUGCCCUAGAGAG GGCGAGGCCUACCUGGACAAGCAGAGCGAC ACCCAGUACGUGUGCAAGAGAACCCUGGUG GACAGAGGCAGAGGCAACGGCUGCGGCAGA UUCGGCAAGGGCAGCCUGGUGACCUGCGCC AAGUUCGCCUGCAGCAAGAAGAUGACCGGC AAGAGCAUCCAGCCUGAGAACCUGGAGUAC AGAAUCAUGCUGAGCGUGCACGGCAGCCAG CACAGCGGCAUGAUCGUGAACGACACCGGC CACGAGACCGACGAGAACAGAGCCAAGGUG GAGAUCACCCCUAACAGCCCUAGAGCCGAG GCCACCCUGGGCGGCUUCGGCAGCCUGGGC CUGGACUGCGAGCCUAGAACCGGCCUGGAC UUCAGCGACCUGUACUACCUGACCAUGAAC AACAAGCACUGGCUGGUGCACAAGGAGUGG UUCCACGACAUCCCUCUGCCUUGGCACGCC GGCGCCGACACCGGCACCCCUCACUGGAAC AACAAGGAGGCCCUGGUGGAGUUCAAGGAC GCCCACGCCAAGAGACAGACCGUGGUGGUG CUGGGCAGCCAGGAGGGCGCCGUGCACACC GCCCUGGCCGGCGCCCUGGAGGCCGAGAUG GACGGCGCCAAGGGCAGACUGAGCAGCGGC CACCUGAAGUGCAGACUGAAGAUGGACAAG CUGAGACUGAAGGGCGUGAGCUACAGCCUG UGCACCGCCGCCUUCACCUUCACCAAGAUC CCUGCCGAGACCCUGCACGGCACCGUGACC GUGGAGGUGCAGUACGCCGGCACCGACGGC CCUUGCAAGGUGCCUGCCCAGAUGGCCGUG GACAUGCAGACCCUGACCCCUGUGGGCAGA CUGAUCACCGCCAACCCUGUGAUCACCGAG AGCACCGAGAACAGCAAGAUGAUGCUGGAG CUGGACCCUCCUUUCGGCGACAGCUACAUC GUGAUCGGCGUGGGCGAGAAGAAGAUCACC CACCACUGGCACAGAAGCGGCAGCACCAUC GGCAAGGCCUUCGAGGCCACCGUGAGAGGC GCCAAGAGAAUGGCCGUGCUGGGCGACACC GCCUGGGACUUCGGCAGCGUGGGCGGCGCC CUGAACAGCCUGGGCAAGGGCAUCCACCAG AUCUUCGGCGCCGCCUUCAAGAGCCUGUUC GGCGGCAUGAGCUGGUUCAGCCAGAUCCUG AUCGGCACCCUGCUGGUGUGGCUGGGCCUG AACACCAAGAACGGCAGCAUCAGCCUGACC UGCCUGGCCCUGGGCGGCGUGCUGAUCUUC CUGAGCACCGCCGUGAGCGCC (SEQ ID NO: 4) ZIKV prME Africa Isolate (mRNA) ZIKV prME Africa Isolate (protein) AUGUGGCUGGUGAGCCUGGCCAUCGUGACA MWLVSLAIVTACAGAAEITRRGSAYYMYLDR GCGUGCGCUGGAGCCGCCGAGAUCACCAGA SDAGKAISFATTLGVNKCHVQIMDLGHMCDA AGAGGCAGCGCCUACUACAUGUACCUGGAC TMSYECPMLDEGVEPDDVDCWCNTTSTWVVY AGAAGCGACGCCGGCAAGGCCAUCAGCUUC GTCHHKKGEARRSRRAVTLPSHSTRKLQTRSQ GCCACCACCCUGGGCGUGAACAAGUGCCAC TWLESREYTKHLIKVENWIFRNPGFALVAVAIA GUGCAGAUCAUGGACCUGGGCCACAUGUGC WLLGSSTSQKVIYLVMILLIAPAYSIRCIGVSNR GACGCCACCAUGAGCUACGAGUGCCCUAUG DFVEGMSGGTWVDVVLEHGGCVTVMAQDKP CUGGACGAGGGCGUGGAGCCUGACGACGUG TVDIELVTTTVSNMAEVRSYCYEASISDMASDS GACUGCUGGUGCAACACCACCAGCACCUGG RCPTQGEAYLDKQSDTQYVCKRTLVDRGWGN GUGGUGUACGGCACCUGCCACCACAAGAAG GCGLFGKGSLVTCAKFTCSKKMTGKSIQPENL GGCGAGGCCAGAAGAAGCAGACGUGCCGUG EYRIMLSVHGSQHSGMIGYETDEDRAKVEVTP ACCCUGCCUAGCCACAGCACCAGAAAGCUG NSPRAEATLGGFGSLGLDCEPRTGLDFSDLYYL CAGACCAGAAGCCAGACCUGGCUGGAGAGC TMNNKHWLVHKEWFHDIPLPWHAGADTGTP AGAGAGUACACCAAGCACCUGAUCAAGGUG HWNNKEALVEFKDAHAKRQTVVVLGSQEGA GAGAACUGGAUCUUCAGAAACCCUGGCUUC VHTALAGALEAEMDGAKGRLFSGHLKCRLKM GCCCUGGUGGCCGUGGCAAUUGCCUGGCUG DKLRLKGVSYSLCTAAFTFTKVPAETLHGTVT CUGGGCAGCUCCACAAGCCAGAAGGUGAUC VEVQYAGTDGPCKIPVQMAVDMQTLTPVGRLI UACCUGGUGAUGAUCCUGCUGAUCGCUCCA TANPVITESTENSKMMLELDPPFGDSYIVIGVG GCCUACAGCAUCCGAUGCAUCGGCGUGAGC DKKITHHWHRSGSTIGKAFEATVRGAKRMAV AACAGAGACUUCGUGGAGGGCAUGAGCGGC LGDTAWDFGSVGGVFNSLGKGIHQIFGAAFKS GGAACCUGGGUUGACGUGGUGCUGGAGCAC LFGGMSWFSQILIGTLLVWLGLNTKNGSISLTC GGCGGCUGCGUGACCGUGAUGGCCCAGGAC LALGGVMIFLSTAVSA (SEQ ID NO: 11) AAGCCUACCGUGGACAUCGAGCUGGUGACC ACCACCGUUAGCAACAUGGCCGAGGUGAGA AGCUACUGCUACGAGGCAUCCAUCAGCGAC AUGGCCAGCGACAGCCGCUGCCCUACCCAG GGCGAAGCAUACCUCGAUAAGCAGAGCGAC ACCCAGUACGUGUGCAAGAGAACUCUCGUG GACAGAGGCUGGGGCAACGGCUGCGGCCUG UUCGGCAAGGGCAGCCUGGUGACUUGCGCC AAGUUCACCUGCAGCAAGAAGAUGACCGGC AAGAGCAUCCAGCCUGAGAACCUGGAGUAC AGAAUCAUGCUGAGCGUGCACGGCAGCCAG CACAGCGGCAUGAUCGGCUACGAAACUGAC GAGGACAGAGCCAAGGUCGAAGUGACCCCU AACAGCCCUAGAGCCGAGGCCACCCUUGGA GGCUUCGGCUCCCUCGGCCUGGACUGCGAG CCUAGAACAGGACUCGACUUCAGCGACCUG UACUACCUGACCAUGAACAACAAGCACUGG CUGGUCCACAAGGAGUGGUUCCACGACAUC CCUCUGCCUUGGCACGCCGGAGCAGACACC GGCACCCCUCACUGGAAUAACAAGGAGGCG CUUGUGGAGUUCAAGGACGCCCACGCCAAG AGACAGACCGUGGUUGUGCUCGGAAGUCAG GAGGGCGCCGUGCACACCGCCCUGGCCGGA GCCCUGGAGGCCGAGAUGGACGGCGCAAAG GGCAGACUGUUCAGCGGCCACCUGAAGUGC AGACUGAAGAUGGACAAGCUGAGACUUAAG GGCGUCAGCUACAGCCUGUGCACCGCCGCC UUCACCUUCACCAAGGUGCCUGCCGAAACC CUGCACGGAACUGUAACCGUAGAGGUCCAG UACGCAGGAACCGACGGCCCUUGCAAGAUC CCUGUGCAGAUGGCGGUGGAUAUGCAGACC CUGACCCCUGUUGGCCGUUUGAUCACCGCC AACCCUGUGAUAACCGAGAGCACCGAGAAC AGCAAGAUGAUGCUGGAACUGGACCCUCCU UUCGGCGACAGCUACAUCGUGAUCGGAGUG GGCGAUAAGAAGAUCACCCACCACUGGCAU CGCAGCGGUUCUACCAUCGGAAAGGCCUUC GAAGCUACCGUUAGAGGUGCAAAGCGCAUG GCAGUCUUAGGUGACACCGCCUGGGACUUC GGUUCUGUCGGAGGCGUGUUCAACAGUCUG GGCAAGGGAAUCCACCAGAUCUUCGGCGCU GCCUUCAAGUCUUUGUUCGGAGGUAUGUCU UGGUUCAGCCAGAUCCUGAUCGGCACCCUU CUGGUUUGGCUGGGCCUCAACACCAAGAAC GGAUCCAUAUCCCUGACCUGCCUGGCCUUG GGCGGUGUCAUGAUCUUCCUGUCGACUGCC GUGAGCGCC (SEQ ID NO: 5) ZIKV prME Africa Isolate (mRNA), ZIKV prME Africa Isolate (protein), with T76R, Q77E, W101R, L107R with T76R, Q77E, W101R, L107R mutations mutations AUGUGGCUGGUGAGCCUGGCCAUCGUGACU MWLVSLAIVTACAGAAEITRRGSAYYMYLDR GCUUGCGCGGGUGCCGCCGAGAUCACCAGA SDAGKAISFATTLGVNKCHVQIMDLGHMCDA AGAGGCAGCGCCUACUACAUGUACCUGGAC TMSYECPMLDEGVEPDDVDCWCNTTSTWVVY AGAAGCGACGCCGGCAAGGCCAUCAGCUUC GTCHHKKGEARRSRRAVTLPSHSTRKLQTRSQ GCCACCACCCUGGGCGUGAACAAGUGCCAC TWLESREYTKHLIKVENWIFRNPGFALVAVAIA GUGCAGAUCAUGGACCUGGGCCACAUGUGC WLLGSSTSQKVIYLVMILLIAPAYSIRCIGVSNR GACGCCACCAUGAGCUACGAGUGCCCUAUG DFVEGMSGGTWVDVVLEHGGCVTVMAQDKP CUGGACGAGGGCGUGGAGCCUGACGACGUG TVDIELVTTTVSNMAEVRSYCYEASISDMASDS GACUGCUGGUGCAACACCACCAGCACCUGG RCPREGEAYLDKQSDTQYVCKRTLVDRGRGN GUGGUGUACGGCACCUGCCACCACAAGAAG GCGRFGKGSLVTCAKFTCSKKMTGKSIQPENL GGCGAGGCCAGAAGAAGCAGGAGGGCCGUG EYRIMLSVHGSQHSGMIGYETDEDRAKVEVTP ACCCUGCCUAGCCACAGCACCAGAAAGCUG NSPRAEATLGGFGSLGLDCEPRTGLDFSDLYYL CAGACCAGAAGCCAGACCUGGCUGGAGAGC TMNNKHWLVHKEWFHDIPLPWHAGADTGTP AGAGAGUACACCAAGCACCUGAUCAAGGUG HWNNKEALVEFKDAHAKRQTVVVLGSQEGA GAGAACUGGAUCUUCAGAAACCCUGGCUUC VHTALAGALEAEMDGAKGRLFSGHLKCRLKM GCCCUGGUGGCCGUGGCUAUAGCCUGGCUG DKLRLKGVSYSLCTAAFTFTKVPAETLHGTVT CUGGGAUCUUCAACAAGCCAGAAGGUGAUC VEVQYAGTDGPCKIPVQMAVDMQTLTPVGRLI UACCUGGUGAUGAUCCUGCUGAUCGCGCCA TANPVITESTENSKMMLELDPPFGDSYIVIGVG GCCUACAGCAUCCGCUGCAUCGGCGUGAGC DKKITHHWHRSGSTIGKAFEATVRGAKRMAV AACAGAGACUUCGUGGAGGGCAUGAGCGGC LGDTAWDFGSVGGVFNSLGKGIHQIFGAAFKS GGAACUUGGGUGGACGUGGUGCUGGAGCAC LFGGMSWFSQILIGTLLVWLGLNTKNGSISLTC GGCGGCUGCGUGACCGUGAUGGCCCAGGAC LALGGVMIFLSTAVSA (SEQ ID NO: 12) AAGCCUACCGUGGACAUCGAGCUGGUGACC ACCACGGUUUCUAAUAUGGCCGAGGUGAGA AGCUACUGCUACGAGGCAUCCAUCAGCGAC AUGGCCAGCGACAGCAGGUGCCCUAGAGAA GGAGAAGCCUAUCUCGACAAGCAGAGCGAC ACCCAGUACGUGUGCAAGAGAACCCUCGUG GACAGAGGCAGAGGCAACGGCUGCGGCAGA UUCGGCAAGGGCAGCCUGGUUACGUGCGCC AAGUUCACCUGCAGCAAGAAGAUGACCGGC AAGAGCAUCCAGCCUGAGAACCUGGAGUAC AGAAUCAUGCUGAGCGUGCACGGCAGCCAG CACAGCGGCAUGAUCGGCUACGAGACAGAC GAGGACAGAGCUAAGGUCGAGGUGACCCCU AACUCCCCACGCGCCGAGGCUACGCUGGGA GGCUUCGGAUCUCUGGGCCUGGACUGCGAG CCUAGAACCGGCUUGGAUUUCAGCGACCUG UACUACCUGACCAUGAACAACAAGCACUGG UUGGUCCACAAGGAGUGGUUCCACGACAUC CCUCUGCCUUGGCACGCGGGCGCUGACACC GGCACCCCUCACUGGAAUAACAAGGAGGCC UUGGUGGAGUUCAAGGACGCCCACGCCAAG AGACAGACCGUGGUGGUCUUGGGUUCCCAG GAGGGCGCCGUGCACACCGCCCUGGCAGGA GCUCUGGAGGCCGAGAUGGACGGCGCCAAG GGUAGACUGUUCAGCGGCCACCUGAAGUGC AGACUGAAGAUGGAUAAGCUGAGACUCAAG GGUGUGUCAUACAGCCUGUGCACCGCCGCC UUCACCUUCACCAAGGUGCCUGCCGAAACC CUGCACGGAACCGUGACUGUAGAGGUACAG UACGCUGGCACCGACGGCCCUUGCAAGAUC CCUGUGCAGAUGGCCGUUGACAUGCAGACC CUGACCCCUGUGGGCAGGCUGAUCACCGCC AACCCUGUGAUCACUGAGAGCACCGAGAAC AGCAAGAUGAUGCUGGAACUGGACCCUCCU UUCGGCGACAGCUACAUCGUGAUAGGCGUG GGCGAUAAGAAGAUCACCCACCAUUGGCAC AGAAGUGGUUCGACUAUCGGUAAGGCAUUC GAAGCUACAGUGAGAGGAGCCAAGAGGAUG GCAGUGCUGGGUGACACCGCCUGGGAUUUC GGUUCAGUGGGCGGCGUGUUCAAUUCCCUG GGCAAGGGUAUCCACCAGAUCUUCGGCGCU GCCUUCAAGAGCCUGUUCGGUGGAAUGAGC UGGUUCAGCCAGAUCCUGAUCGGCACCCUC CUGGUUUGGCUUGGUUUGAACACCAAGAAC GGCUCUAUUUCCCUGACCUGCCUGGCACUA GGAGGCGUCAUGAUAUUCCUGAGUACCGCC GUGAGCGCC (SEQ ID NO: 6)
[0036] Any of the open reading frames (ORFs) provided in Table 1 may include any of the following 5' UTR sequences or other 5' UTR sequence (e.g., wild-type 5' UTR sequence):
TABLE-US-00002 (SEQ ID NO: 13) GGGAAAUAAGAGAGAAAAGAAGAGUAAGAAGAAAUAUAAGACCCCGGCG CCGCCACC (SEQ ID NO: 14) GGGAAAUAAGAGAGAAAAGAAGAGUAAGAAGAAAUAUAAGAGCCACC.
[0037] Likewise, any of the ORFs provided in Table 1 may include any of the following 3' UTR sequences or other 3' UTR sequence (e.g., wild-type 3' UTR sequence):
TABLE-US-00003 (SEQ ID NO: 15) UGAUAAUAGGCUGGAGCCUCGGUGGCCUAGCUUCUUGCCCCUUGGGCCU CCCCCCAGCCCCUCCUCCCCUUCCUGCACCCGUACCCCCGUGGUCUUUG AAUAAAGUCUGAGUGGGCGGC (SEQ ID NO: 16) UGAUAAUAGGCUGGAGCCUCGGUGGCCAUGCUUCUUGCCCCUUGGGCCU CCCCCCAGCCCCUCCUCCCCUUCCUGCACCCGUACCCCCGUGGUCUUUG AAUAAAGUCUGAGUGGGCGGC
[0038] Further, any of the ORFs provided in Table 1 may include a polyA tail (e.g., 100 nucleotides).
[0039] In some embodiments, a ZIKV mRNA vaccine (mRNA-1893) comprises the following sequence, including a 5' UTR, 3' UTR and polyA tail:
TABLE-US-00004 (SEQ ID NO: 20) GGGAAAUAAGAGAGAAAAGAAGAGUAAGAAGAAAUAUAAGACCCCGGCG CCGCCACCAUGUGGCUGGUGUCCCUGGCCAUCGUGACAGCCUGUGCUGG CGCCGCUGAAGUGACCAGAAGAGGCAGCGCCUACUACAUGUACCUGGAC CGGAACGAUGCCGGCGAGGCCAUCAGCUUUCCAACCACCCUGGGCAUGA ACAAGUGCUACAUCCAGAUCAUGGACCUGGGCCACAUGUGCGACGCCAC CAUGAGCUACGAGUGCCCCAUGCUGGACGAGGGCGUGGAACCCGACGAU GUGGACUGCUGGUGCAACACCACCAGCACCUGGGUGGUGUACGGCACCU GUCACCACAAGAAGGGCGAAGCCAGACGGUCCAGACGGGCCGUGACACU GCCUAGCCACAGCACCAGAAAGCUGCAGACCCGGUCCCAGACCUGGCUG GAAAGCAGAGAGUACACCAAGCACCUGAUCCGGGUGGAAAACUGGAUCU UCCGGAACCCCGGCUUUGCCCUGGCCGCUGCUGCUAUUGCUUGGCUGCU GGGCAGCAGCACCUCCCAGAAAGUGAUCUACCUCGUGAUGAUCCUGCUG AUCGCCCCUGCCUACAGCAUCCGGUGUAUCGGCGUGUCCAACCGGGACU UCGUGGAAGGCAUGAGCGGCGGCACAUGGGUGGACGUGGUGCUGGAACA UGGCGGCUGCGUGACAGUGAUGGCCCAGGACAAGCCCACCGUGGACAUC GAGCUCGUGACCACCACCGUGUCCAAUAUGGCCGAAGUGCGGAGCUACU GCUACGAGGCCAGCAUCAGCGACAUGGCCAGCGACAGCAGAUGCCCUAC ACAGGGCGAGGCCUACCUGGACAAGCAGUCCGACACCCAGUACGUGUGC AAGCGGACCCUGGUGGAUAGAGGCUGGGGCAAUGGCUGCGGCCUGUUUG GCAAGGGCAGCCUCGUGACCUGCGCCAAGUUCGCCUGCAGCAAGAAGAU GACCGGCAAGAGCAUCCAGCCCGAGAACCUGGAAUACCGGAUCAUGCUG AGCGUGCACGGCAGCCAGCACUCCGGCAUGAUCGUGAACGACACCGGCC ACGAGACAGACGAGAACCGGGCCAAGGUGGAAAUCACCCCUAACAGCCC UAGAGCCGAGGCCACACUGGGCGGCUUUGGAUCUCUGGGCCUGGACUGC GAGCCUAGAACCGGCCUGGAUUUCAGCGACCUGUACUACCUGACCAUGA ACAACAAGCACUGGCUGGUGCACAAAGAGUGGUUCCACGACAUCCCUCU GCCCUGGCAUGCCGGCGCUGAUACAGGCACACCCCACUGGAACAACAAA GAGGCUCUGGUGGAAUUCAAGGACGCCCACGCCAAGCGGCAGACCGUGG UGGUGCUGGGAUCUCAGGAAGGCGCCGUGCAUACAGCUCUGGCAGGCGC CCUGGAAGCCGAAAUGGAUGGCGCCAAAGGCAGACUGUCCAGCGGCCAC CUGAAGUGCCGGCUGAAGAUGGACAAGCUGCGGCUGAAGGGCGUGUCCU ACUCCCUGUGUACCGCCGCCUUCACCUUCACCAAGAUCCCCGCCGAGAC ACUGCACGGCACCGUGACUGUGGAAGUGCAGUACGCCGGCACCGACGGC CCUUGUAAAGUGCCUGCUCAGAUGGCCGUGGAUAUGCAGACCCUGACCC CUGUGGGCAGACUGAUCACCGCCAACCCCGUGAUCACCGAGAGCACCGA GAACAGCAAGAUGAUGCUGGAACUGGACCCACCCUUCGGCGACAGCUAC AUCGUGAUCGGCGUGGGAGAGAAGAAGAUCACCCACCACUGGCACAGAA GCGGCAGCACCAUCGGCAAGGCCUUUGAGGCUACAGUGCGGGGAGCCAA GAGAAUGGCCGUGCUGGGAGAUACCGCCUGGGACUUUGGCUCUGUGGGC GGAGCCCUGAACUCUCUGGGCAAGGGAAUCCACCAGAUCUUCGGAGCCG CCUUUAAGAGCCUGUUCGGCGGCAUGAGCUGGUUCAGCCAGAUCCUGAU CGGCACCCUGCUGAUGUGGCUGGGCCUGAACACCAAGAACGGCAGCAUC UCCCUGAUGUGCCUGGCUCUGGGAGGCGUGCUGAUCUUCCUGAGCACAG CCGUGUCUGCCUGAUAAUAGGCUGGAGCCUCGGUGGCCUAGCUUCUUGC CCCUUGGGCCUCCCCCCAGCCCCUCCUCCCCUUCCUGCACCCGUACCCC CGUGGUCUUUGAAUAAAGUCUGAGUGGGCGGCAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
EXAMPLES
[0040] Non-human primates (n=5) were immunized intramuscularly (IM) with a vaccine composition comprising mRNA encoding either an IgE signal peptide fused to a ZIKV prME antigen (mRNA-1325, SEQ ID NO:17) (a single 200 .mu.g dose, or a 10 .mu.g, 50 .mu.g or 200 .mu.g dose followed by an equivalent boost at week 4, or a JEV signal peptide fused to a ZIKV prME antigen (mRNA-1893, SEQ ID NO:7) (a 10 .mu.g followed by an equivalent boost at week 4). Animals were challenged at week 8 with 1000 focus-forming units (FFU) of Zika virus. Serum was collected 3, 4, 5, 6 and 7 days post challenge. The data in FIG. 1 shows that while a single 200 .mu.g dose of the mRNA-1325 vaccine conferred nearly complete protection, the mRNA-1893 vaccine unexpectedly provided sterilizing immunity at a 20 fold lower dose. Neutralizing antibody titers (EC.sub.50 fold change relative to week 8) are shown in FIG. 2.
TABLE-US-00005 mRNA-1325 (SEQ ID NO: 17) MDWTWILFLVAAATRVHSVEVTRRGSAYYMYLDRSDAGEAISFPTTLG MNKCYIQIMDLGHMCDATMSYECPMLDEGVEPDDVDCWCNTTSTWVVY GTCHHKKGEARRSRRAVTLPSHSTRKLQTRSQTWLESREYTKHLIRVE NWIFRNPGFALAAAAIAWLLGSSTSQKVIYLVMILLIAPAYSIRCIGV SNRDFVEGMSGGTWVDVVLEHGGCVTVMAQDKPAVDIELVTTTVSNMA EVRSYCYEASISDMASDSRCPTQGEAYLDKQSDTQYVCKRTLVDRGWG NGCGLFGKGSLVTCAKFACSKKMTGKSIQPENLEYRIMLSVHGSQHSG MIVNDTGHETDENRAKVEITPNSPRAEATLGGFGSLGLDCEPRTGLDF SDLYYLTMNNKHWLVHKEWFHDIPLPWHAGADTGTPHWNNKEALVEFK DAHAKRQTVVVLGSQEGAVHTALAGALEAEMDGAKGRLSSGHLKCRLK MDKLRLKGVSYSLCTAAFTFTKIPAETLHGTVTVEVQYAGTDGPCKVP AQMAVDMQTLTPVGRLITANPVITESTENSKMMLELDPPFGDSYIVIG VGEKKITHHWHRSGSTIGKAFEATVRGAKRMAVLGDTAWDFGSVGGAL NSLGKGIHQIFGAAFKSLFGGMSWFSQILIGTLLVWLGLNTKNGSISL TCLALGGVLIFLSTAVSA mRNA-1893 (SEQ ID NO: 7) MWLVSLAIVTACAGAAEVTRRGSAYYMYLDRNDAGEAISFPTTLGMNK CYIQIMDLGHMCDATMSYECPMLDEGVEPDDVDCWCNTTSTWVVYGTC HHKKGEARRSRRAVTLPSHSTRKLQTRSQTWLESREYTKHLIRVENWI FRNPGFALAAAAIAWLLGSSTSQKVIYLVMILLIAPAYSIRCIGVSNR DFVEGMSGGTWVDVVLEHGGCVTVMAQDKPTVDIELVTTTVSNMAEVR SYCYEASISDMASDSRCPTQGEAYLDKQSDTQYVCKRTLVDRGWGNGC GLFGKGSLVTCAKFACSKKMTGKSIQPENLEYRIMLSVHGSQHSGMIV NDTGHETDENRAKVEITPNSPRAEATLGGFGSLGLDCEPRTGLDFSDL YYLTMNNKHWLVHKEWFHDIPLPWHAGADTGTPHWNNKEALVEFKDAH AKRQTVVVLGSQEGAVHTALAGALEAEMDGAKGRLSSGHLKCRLKMDK LRLKGVSYSLCTAAFTFTKIPAETLHGTVTVEVQYAGTDGPCKVPAQM AVDMQTLTPVGRLITANPVITESTENSKMMLELDPPFGDSYIVIGVGE KKITHHWHRSGSTIGKAFEATVRGAKRMAVLGDTAWDFGSVGGALNSL GKGIHQIFGAAFKSLFGGMSWFSQILIGTLLMWLGLNTKNGSISLMCL ALGGVLIFLSTAVSA
[0041] All references, patents and patent applications disclosed herein are incorporated by reference with respect to the subject matter for which each is cited, which in some cases may encompass the entirety of the document.
[0042] The indefinite articles "a" and "an," as used herein in the specification and in the claims, unless clearly indicated to the contrary, should be understood to mean "at least one."
[0043] It should also be understood that, unless clearly indicated to the contrary, in any methods claimed herein that include more than one step or act, the order of the steps or acts of the method is not necessarily limited to the order in which the steps or acts of the method are recited.
[0044] In the claims, as well as in the specification above, all transitional phrases such as "comprising," "including," "carrying," "having," "containing," "involving," "holding," "composed of," and the like are to be understood to be open-ended, i.e., to mean including but not limited to. Only the transitional phrases "consisting of" and "consisting essentially of" shall be closed or semi-closed transitional phrases, respectively, as set forth in the United States Patent Office Manual of Patent Examining Procedures, Section 2111.03.
Sequence CWU
1
1
2012061RNAArtificial SequenceSynthetic Polynucleotide 1auguggcugg
ugucccuggc caucgugaca gccugugcug gcgccgcuga agugaccaga 60agaggcagcg
ccuacuacau guaccuggac cggaacgaug ccggcgaggc caucagcuuu 120ccaaccaccc
ugggcaugaa caagugcuac auccagauca uggaccuggg ccacaugugc 180gacgccacca
ugagcuacga gugccccaug cuggacgagg gcguggaacc cgacgaugug 240gacugcuggu
gcaacaccac cagcaccugg gugguguacg gcaccuguca ccacaagaag 300ggcgaagcca
gacgguccag acgggccgug acacugccua gccacagcac cagaaagcug 360cagacccggu
cccagaccug gcuggaaagc agagaguaca ccaagcaccu gauccgggug 420gaaaacugga
ucuuccggaa ccccggcuuu gcccuggccg cugcugcuau ugcuuggcug 480cugggcagca
gcaccuccca gaaagugauc uaccucguga ugauccugcu gaucgccccu 540gccuacagca
uccgguguau cggcgugucc aaccgggacu ucguggaagg caugagcggc 600ggcacauggg
uggacguggu gcuggaacau ggcggcugcg ugacagugau ggcccaggac 660aagcccaccg
uggacaucga gcucgugacc accaccgugu ccaauauggc cgaagugcgg 720agcuacugcu
acgaggccag caucagcgac auggccagcg acagcagaug cccuacacag 780ggcgaggccu
accuggacaa gcaguccgac acccaguacg ugugcaagcg gacccuggug 840gauagaggcu
ggggcaaugg cugcggccug uuuggcaagg gcagccucgu gaccugcgcc 900aaguucgccu
gcagcaagaa gaugaccggc aagagcaucc agcccgagaa ccuggaauac 960cggaucaugc
ugagcgugca cggcagccag cacuccggca ugaucgugaa cgacaccggc 1020cacgagacag
acgagaaccg ggccaaggug gaaaucaccc cuaacagccc uagagccgag 1080gccacacugg
gcggcuuugg aucucugggc cuggacugcg agccuagaac cggccuggau 1140uucagcgacc
uguacuaccu gaccaugaac aacaagcacu ggcuggugca caaagagugg 1200uuccacgaca
ucccucugcc cuggcaugcc ggcgcugaua caggcacacc ccacuggaac 1260aacaaagagg
cucuggugga auucaaggac gcccacgcca agcggcagac cgugguggug 1320cugggaucuc
aggaaggcgc cgugcauaca gcucuggcag gcgcccugga agccgaaaug 1380gauggcgcca
aaggcagacu guccagcggc caccugaagu gccggcugaa gauggacaag 1440cugcggcuga
agggcguguc cuacucccug uguaccgccg ccuucaccuu caccaagauc 1500cccgccgaga
cacugcacgg caccgugacu guggaagugc aguacgccgg caccgacggc 1560ccuuguaaag
ugccugcuca gauggccgug gauaugcaga cccugacccc ugugggcaga 1620cugaucaccg
ccaaccccgu gaucaccgag agcaccgaga acagcaagau gaugcuggaa 1680cuggacccac
ccuucggcga cagcuacauc gugaucggcg ugggagagaa gaagaucacc 1740caccacuggc
acagaagcgg cagcaccauc ggcaaggccu uugaggcuac agugcgggga 1800gccaagagaa
uggccgugcu gggagauacc gccugggacu uuggcucugu gggcggagcc 1860cugaacucuc
ugggcaaggg aauccaccag aucuucggag ccgccuuuaa gagccuguuc 1920ggcggcauga
gcugguucag ccagauccug aucggcaccc ugcugaugug gcugggccug 1980aacaccaaga
acggcagcau cucccugaug ugccuggcuc ugggaggcgu gcugaucuuc 2040cugagcacag
ccgugucugc c
206122061RNAArtificial SequenceSynthetic Polynucleotide 2auguggcugg
ugucccuggc caucgugaca gccugugcug gcgccgcuga agugaccaga 60agaggcagcg
ccuacuacau guaccuggac cggaacgaug ccggcgaggc caucagcuuu 120ccaaccaccc
ugggcaugaa caagugcuac auccagauca uggaccuggg ccacaugugc 180gacgccacca
ugagcuacga gugccccaug cuggacgagg gcguggaacc cgacgaugug 240gacugcuggu
gcaacaccac cagcaccugg gugguguacg gcaccuguca ccacaagaag 300ggcgaagcca
gacgguccag acgggccgug acacugccua gccacagcac cagaaagcug 360cagacccggu
cccagaccug gcuggaaagc agagaguaca ccaagcaccu gauccgggug 420gaaaacugga
ucuuccggaa ccccggcuuu gcccuggccg cugcugcuau ugcuuggcug 480cugggcagca
gcaccuccca gaaagugauc uaccucguga ugauccugcu gaucgccccu 540gccuacagca
uccgguguau cggcgugucc aaccgggacu ucguggaagg caugagcggc 600ggcacauggg
uggacguggu gcuggaacau ggcggcugcg ugacagugau ggcccaggac 660aagcccaccg
uggacaucga gcucgugacc accaccgugu ccaauauggc cgaagugcgg 720agcuacugcu
acgaggccag caucagcgac auggccagcg acagcagaug ccccagagag 780ggcgaggccu
accuggacaa gcaguccgac acccaguacg ugugcaagcg gacccuggug 840gacagaggca
gaggcaaugg cugcggcaga uucggcaagg gcagccucgu gaccugcgcc 900aaguucgccu
gcagcaagaa gaugaccggc aagagcaucc agcccgagaa ccuggaauac 960cggaucaugc
ugagcgugca cggcagccag cacuccggca ugaucgugaa cgacaccggc 1020cacgagacag
acgagaaccg ggccaaggug gaaaucaccc cuaacagccc uagagccgag 1080gccacacugg
gcggcuuugg aucucugggc cuggacugcg agccuagaac cggccuggau 1140uucagcgacc
uguacuaccu gaccaugaac aacaagcacu ggcuggugca caaagagugg 1200uuccacgaca
ucccucugcc cuggcaugcc ggcgcugaua caggcacacc ccacuggaac 1260aacaaagagg
cucuggugga auucaaggac gcccacgcca agcggcagac cgugguggug 1320cugggaucuc
aggaaggcgc cgugcauaca gcucuggcag gcgcccugga agccgaaaug 1380gauggcgcca
aaggcagacu guccagcggc caccugaagu gccggcugaa gauggacaag 1440cugcggcuga
agggcguguc cuacucccug uguaccgccg ccuucaccuu caccaagauc 1500cccgccgaga
cacugcacgg caccgugacu guggaagugc aguacgccgg caccgacggc 1560ccuuguaaag
ugccugcuca gauggccgug gauaugcaga cccugacccc ugugggcaga 1620cugaucaccg
ccaaccccgu gaucaccgag agcaccgaga acagcaagau gaugcuggaa 1680cuggacccac
ccuucggcga cagcuacauc gugaucggcg ugggagagaa gaagaucacc 1740caccacuggc
acagaagcgg cagcaccauc ggcaaggccu uugaggcuac agugcgggga 1800gccaagagaa
uggccgugcu gggagauacc gccugggacu uuggcucugu gggcggagcc 1860cugaacucuc
ugggcaaggg aauccaccag aucuucggag ccgccuuuaa gagccuguuc 1920ggcggcauga
gcugguucag ccagauccug aucggcaccc ugcugaugug gcugggccug 1980aacaccaaga
acggcagcau cucccugaug ugccuggcuc ugggaggcgu gcugaucuuc 2040cugagcacag
ccgugucugc c
206132061RNAArtificial SequenceSynthetic Polynucleotide 3auguggcugg
ugagccuggc caucgugacc gccugcgccg gcgccgugga ggugaccaga 60agaggcagcg
ccuacuacau guaccuggac agaagcgacg ccggcgaggc caucagcuuc 120ccuaccaccc
ugggcaugaa caagugcuac auccagauca uggaccuggg ccacaugugc 180gacgccacca
ugagcuacga gugcccuaug cuggacgagg gcguggagcc ugacgacgug 240gacugcuggu
gcaacaccac cagcaccugg gugguguacg gcaccugcca ccacaagaag 300ggagaggcga
gaagaagcag gagagccgug acccugccua gccacagcac cagaaagcug 360cagacccgga
gccagaccug gcuggagagc agagaguaca ccaagcaccu gaucagagug 420gagaacugga
ucuucagaaa cccuggcuuc gcccuggccg cggcugcuau cgccuggcug 480cuggguaguu
caaccagcca gaaggugauc uaccugguga ugauccugcu gaucgccccg 540gcauacagca
uccgcugcau cggcgugagc aacagagacu ucguggaggg caugagcgga 600ggaacguggg
uugacguggu gcuggagcac ggcggcugcg ugaccgugau ggcccaggac 660aagccugccg
uggacaucga gcuggugacc accaccguau ccaacauggc cgaggugaga 720agcuacugcu
acgaggcuag cauaagcgac auggccagcg acagccgaug cccuacccag 780ggagaagccu
accuggacaa gcagagcgac acccaguacg ugugcaagag aacccuggug 840gacagaggcu
ggggcaacgg cugcggccug uucggcaagg gcagccuggu uacuugcgcc 900aaguucgccu
gcagcaagaa gaugaccggc aagagcaucc agccugagaa ccuggaguac 960agaaucaugc
ugagcgugca cggcagccag cacagcggca ugaucgugaa cgacaccggc 1020cacgaaacag
acgagaacag agccaaggug gagaucaccc cuaacagccc uagagccgag 1080gccacccuug
gcggcuucgg cagccucggc cuggacugcg agccuagaac gggccuggau 1140uucagcgacc
uguacuaccu gacuaugaau aacaagcacu ggcuuguuca caaggagugg 1200uuccacgaca
ucccucugcc uuggcacgcg ggagcugaca caggaacccc ucacuggaac 1260aacaaggagg
cccuaguuga guucaaggac gcccacgcca agagacagac cguggucgug 1320cuggguuccc
aagagggcgc uguccacacu gcacucgcug gcgcccugga ggccgagaug 1380gacggcgcca
agggaagacu gagcagcggc caccugaagu gcaggcugaa gauggacaag 1440cugcggcuga
agggcguguc cuacagccug ugcaccgccg ccuucaccuu caccaagauc 1500ccugccgaga
cacuacacgg cacagugacc gucgaggugc aguacgccgg caccgacggc 1560ccuugcaagg
ugccugccca gauggccguc gauaugcaaa cucugacccc ugugggacgg 1620cuuaucaccg
ccaacccugu gauuacugag agcaccgaga auagcaagau gauguuggaa 1680cuggacccuc
cuuucggcga cagcuacauc gugauuggag uuggagagaa gaagaucaca 1740caccacuggc
acagaucugg aucuacuauu ggcaaggccu ucgaggcaac agugagagga 1800gcaaagagaa
uggcaguucu gggagacacc gccugggauu ucggaagcgu aggaggugca 1860uugaacuccc
uaggaaaggg aauccaccag aucuucggag cugcauucaa gagccuauuc 1920ggcggaaugu
ccugguucag ccagauccug aucggcaccc ugcuugugug gcuuggauug 1980aacaccaaga
acgguaguau uagucugacc ugccuggcuc ucggcggugu gcugaucuuc 2040cugaguacug
cggugagcgc c
206142061RNAArtificial SequenceSynthetic Polynucleotide 4auguggcugg
ugagccuggc caucgugacc gccugcgccg gcgccgugga ggugaccaga 60agaggcagcg
ccuacuacau guaccuggac agaagcgacg ccggcgaggc caucagcuuc 120ccuaccaccc
ugggcaugaa caagugcuac auccagauca uggaccuggg ccacaugugc 180gacgccacca
ugagcuacga gugcccuaug cuggacgagg gcguggagcc ugacgacgug 240gacugcuggu
gcaacaccac cagcaccugg gugguguacg gcaccugcca ccacaagaag 300ggcgaggcca
gaagaagcag aagagccgug acccugccua gccacagcac cagaaagcug 360cagaccagaa
gccagaccug gcuggagagc agagaguaca ccaagcaccu gaucagagug 420gagaacugga
ucuucagaaa cccuggcuuc gcccuggccg ccgccgccau cgccuggcug 480cugggcagca
gcaccagcca gaaggugauc uaccugguga ugauccugcu gaucgccccu 540gccuacagca
ucagaugcau cggcgugagc aacagagacu ucguggaggg caugagcggc 600ggcaccuggg
uggacguggu gcuggagcac ggcggcugcg ugaccgugau ggcccaggac 660aagccugccg
uggacaucga gcuggugacc accaccguga gcaacauggc cgaggugaga 720agcuacugcu
acgaggccag caucagcgac auggccagcg acagcagaug cccuagagag 780ggcgaggccu
accuggacaa gcagagcgac acccaguacg ugugcaagag aacccuggug 840gacagaggca
gaggcaacgg cugcggcaga uucggcaagg gcagccuggu gaccugcgcc 900aaguucgccu
gcagcaagaa gaugaccggc aagagcaucc agccugagaa ccuggaguac 960agaaucaugc
ugagcgugca cggcagccag cacagcggca ugaucgugaa cgacaccggc 1020cacgagaccg
acgagaacag agccaaggug gagaucaccc cuaacagccc uagagccgag 1080gccacccugg
gcggcuucgg cagccugggc cuggacugcg agccuagaac cggccuggac 1140uucagcgacc
uguacuaccu gaccaugaac aacaagcacu ggcuggugca caaggagugg 1200uuccacgaca
ucccucugcc uuggcacgcc ggcgccgaca ccggcacccc ucacuggaac 1260aacaaggagg
cccuggugga guucaaggac gcccacgcca agagacagac cgugguggug 1320cugggcagcc
aggagggcgc cgugcacacc gcccuggccg gcgcccugga ggccgagaug 1380gacggcgcca
agggcagacu gagcagcggc caccugaagu gcagacugaa gauggacaag 1440cugagacuga
agggcgugag cuacagccug ugcaccgccg ccuucaccuu caccaagauc 1500ccugccgaga
cccugcacgg caccgugacc guggaggugc aguacgccgg caccgacggc 1560ccuugcaagg
ugccugccca gauggccgug gacaugcaga cccugacccc ugugggcaga 1620cugaucaccg
ccaacccugu gaucaccgag agcaccgaga acagcaagau gaugcuggag 1680cuggacccuc
cuuucggcga cagcuacauc gugaucggcg ugggcgagaa gaagaucacc 1740caccacuggc
acagaagcgg cagcaccauc ggcaaggccu ucgaggccac cgugagaggc 1800gccaagagaa
uggccgugcu gggcgacacc gccugggacu ucggcagcgu gggcggcgcc 1860cugaacagcc
ugggcaaggg cauccaccag aucuucggcg ccgccuucaa gagccuguuc 1920ggcggcauga
gcugguucag ccagauccug aucggcaccc ugcuggugug gcugggccug 1980aacaccaaga
acggcagcau cagccugacc ugccuggccc ugggcggcgu gcugaucuuc 2040cugagcaccg
ccgugagcgc c
206152049RNAArtificial SequenceSynthetic Polynucleotide 5auguggcugg
ugagccuggc caucgugaca gcgugcgcug gagccgccga gaucaccaga 60agaggcagcg
ccuacuacau guaccuggac agaagcgacg ccggcaaggc caucagcuuc 120gccaccaccc
ugggcgugaa caagugccac gugcagauca uggaccuggg ccacaugugc 180gacgccacca
ugagcuacga gugcccuaug cuggacgagg gcguggagcc ugacgacgug 240gacugcuggu
gcaacaccac cagcaccugg gugguguacg gcaccugcca ccacaagaag 300ggcgaggcca
gaagaagcag acgugccgug acccugccua gccacagcac cagaaagcug 360cagaccagaa
gccagaccug gcuggagagc agagaguaca ccaagcaccu gaucaaggug 420gagaacugga
ucuucagaaa cccuggcuuc gcccuggugg ccguggcaau ugccuggcug 480cugggcagcu
ccacaagcca gaaggugauc uaccugguga ugauccugcu gaucgcucca 540gccuacagca
uccgaugcau cggcgugagc aacagagacu ucguggaggg caugagcggc 600ggaaccuggg
uugacguggu gcuggagcac ggcggcugcg ugaccgugau ggcccaggac 660aagccuaccg
uggacaucga gcuggugacc accaccguua gcaacauggc cgaggugaga 720agcuacugcu
acgaggcauc caucagcgac auggccagcg acagccgcug cccuacccag 780ggcgaagcau
accucgauaa gcagagcgac acccaguacg ugugcaagag aacucucgug 840gacagaggcu
ggggcaacgg cugcggccug uucggcaagg gcagccuggu gacuugcgcc 900aaguucaccu
gcagcaagaa gaugaccggc aagagcaucc agccugagaa ccuggaguac 960agaaucaugc
ugagcgugca cggcagccag cacagcggca ugaucggcua cgaaacugac 1020gaggacagag
ccaaggucga agugaccccu aacagcccua gagccgaggc cacccuugga 1080ggcuucggcu
cccucggccu ggacugcgag ccuagaacag gacucgacuu cagcgaccug 1140uacuaccuga
ccaugaacaa caagcacugg cugguccaca aggagugguu ccacgacauc 1200ccucugccuu
ggcacgccgg agcagacacc ggcaccccuc acuggaauaa caaggaggcg 1260cuuguggagu
ucaaggacgc ccacgccaag agacagaccg ugguugugcu cggaagucag 1320gagggcgccg
ugcacaccgc ccuggccgga gcccuggagg ccgagaugga cggcgcaaag 1380ggcagacugu
ucagcggcca ccugaagugc agacugaaga uggacaagcu gagacuuaag 1440ggcgucagcu
acagccugug caccgccgcc uucaccuuca ccaaggugcc ugccgaaacc 1500cugcacggaa
cuguaaccgu agagguccag uacgcaggaa ccgacggccc uugcaagauc 1560ccugugcaga
uggcggugga uaugcagacc cugaccccug uuggccguuu gaucaccgcc 1620aacccuguga
uaaccgagag caccgagaac agcaagauga ugcuggaacu ggacccuccu 1680uucggcgaca
gcuacaucgu gaucggagug ggcgauaaga agaucaccca ccacuggcau 1740cgcagcgguu
cuaccaucgg aaaggccuuc gaagcuaccg uuagaggugc aaagcgcaug 1800gcagucuuag
gugacaccgc cugggacuuc gguucugucg gaggcguguu caacagucug 1860ggcaagggaa
uccaccagau cuucggcgcu gccuucaagu cuuuguucgg agguaugucu 1920ugguucagcc
agauccugau cggcacccuu cugguuuggc ugggccucaa caccaagaac 1980ggauccauau
cccugaccug ccuggccuug ggcgguguca ugaucuuccu gucgacugcc 2040gugagcgcc
204962049RNAArtificial SequenceSynthetic Polynucleotide 6auguggcugg
ugagccuggc caucgugacu gcuugcgcgg gugccgccga gaucaccaga 60agaggcagcg
ccuacuacau guaccuggac agaagcgacg ccggcaaggc caucagcuuc 120gccaccaccc
ugggcgugaa caagugccac gugcagauca uggaccuggg ccacaugugc 180gacgccacca
ugagcuacga gugcccuaug cuggacgagg gcguggagcc ugacgacgug 240gacugcuggu
gcaacaccac cagcaccugg gugguguacg gcaccugcca ccacaagaag 300ggcgaggcca
gaagaagcag gagggccgug acccugccua gccacagcac cagaaagcug 360cagaccagaa
gccagaccug gcuggagagc agagaguaca ccaagcaccu gaucaaggug 420gagaacugga
ucuucagaaa cccuggcuuc gcccuggugg ccguggcuau agccuggcug 480cugggaucuu
caacaagcca gaaggugauc uaccugguga ugauccugcu gaucgcgcca 540gccuacagca
uccgcugcau cggcgugagc aacagagacu ucguggaggg caugagcggc 600ggaacuuggg
uggacguggu gcuggagcac ggcggcugcg ugaccgugau ggcccaggac 660aagccuaccg
uggacaucga gcuggugacc accacgguuu cuaauauggc cgaggugaga 720agcuacugcu
acgaggcauc caucagcgac auggccagcg acagcaggug cccuagagaa 780ggagaagccu
aucucgacaa gcagagcgac acccaguacg ugugcaagag aacccucgug 840gacagaggca
gaggcaacgg cugcggcaga uucggcaagg gcagccuggu uacgugcgcc 900aaguucaccu
gcagcaagaa gaugaccggc aagagcaucc agccugagaa ccuggaguac 960agaaucaugc
ugagcgugca cggcagccag cacagcggca ugaucggcua cgagacagac 1020gaggacagag
cuaaggucga ggugaccccu aacuccccac gcgccgaggc uacgcuggga 1080ggcuucggau
cucugggccu ggacugcgag ccuagaaccg gcuuggauuu cagcgaccug 1140uacuaccuga
ccaugaacaa caagcacugg uugguccaca aggagugguu ccacgacauc 1200ccucugccuu
ggcacgcggg cgcugacacc ggcaccccuc acuggaauaa caaggaggcc 1260uugguggagu
ucaaggacgc ccacgccaag agacagaccg ugguggucuu ggguucccag 1320gagggcgccg
ugcacaccgc ccuggcagga gcucuggagg ccgagaugga cggcgccaag 1380gguagacugu
ucagcggcca ccugaagugc agacugaaga uggauaagcu gagacucaag 1440ggugugucau
acagccugug caccgccgcc uucaccuuca ccaaggugcc ugccgaaacc 1500cugcacggaa
ccgugacugu agagguacag uacgcuggca ccgacggccc uugcaagauc 1560ccugugcaga
uggccguuga caugcagacc cugaccccug ugggcaggcu gaucaccgcc 1620aacccuguga
ucacugagag caccgagaac agcaagauga ugcuggaacu ggacccuccu 1680uucggcgaca
gcuacaucgu gauaggcgug ggcgauaaga agaucaccca ccauuggcac 1740agaagugguu
cgacuaucgg uaaggcauuc gaagcuacag ugagaggagc caagaggaug 1800gcagugcugg
gugacaccgc cugggauuuc gguucagugg gcggcguguu caauucccug 1860ggcaagggua
uccaccagau cuucggcgcu gccuucaaga gccuguucgg uggaaugagc 1920ugguucagcc
agauccugau cggcacccuc cugguuuggc uugguuugaa caccaagaac 1980ggcucuauuu
cccugaccug ccuggcacua ggaggcguca ugauauuccu gaguaccgcc 2040gugagcgcc
20497687PRTArtificial SequenceSynthetic Polypeptide 7Met Trp Leu Val Ser
Leu Ala Ile Val Thr Ala Cys Ala Gly Ala Ala1 5
10 15Glu Val Thr Arg Arg Gly Ser Ala Tyr Tyr Met
Tyr Leu Asp Arg Asn 20 25
30Asp Ala Gly Glu Ala Ile Ser Phe Pro Thr Thr Leu Gly Met Asn Lys
35 40 45Cys Tyr Ile Gln Ile Met Asp Leu
Gly His Met Cys Asp Ala Thr Met 50 55
60Ser Tyr Glu Cys Pro Met Leu Asp Glu Gly Val Glu Pro Asp Asp Val65
70 75 80Asp Cys Trp Cys Asn
Thr Thr Ser Thr Trp Val Val Tyr Gly Thr Cys 85
90 95His His Lys Lys Gly Glu Ala Arg Arg Ser Arg
Arg Ala Val Thr Leu 100 105
110Pro Ser His Ser Thr Arg Lys Leu Gln Thr Arg Ser Gln Thr Trp Leu
115 120 125Glu Ser Arg Glu Tyr Thr Lys
His Leu Ile Arg Val Glu Asn Trp Ile 130 135
140Phe Arg Asn Pro Gly Phe Ala Leu Ala Ala Ala Ala Ile Ala Trp
Leu145 150 155 160Leu Gly
Ser Ser Thr Ser Gln Lys Val Ile Tyr Leu Val Met Ile Leu
165 170 175Leu Ile Ala Pro Ala Tyr Ser
Ile Arg Cys Ile Gly Val Ser Asn Arg 180 185
190Asp Phe Val Glu Gly Met Ser Gly Gly Thr Trp Val Asp Val
Val Leu 195 200 205Glu His Gly Gly
Cys Val Thr Val Met Ala Gln Asp Lys Pro Thr Val 210
215 220Asp Ile Glu Leu Val Thr Thr Thr Val Ser Asn Met
Ala Glu Val Arg225 230 235
240Ser Tyr Cys Tyr Glu Ala Ser Ile Ser Asp Met Ala Ser Asp Ser Arg
245 250 255Cys Pro Thr Gln Gly
Glu Ala Tyr Leu Asp Lys Gln Ser Asp Thr Gln 260
265 270Tyr Val Cys Lys Arg Thr Leu Val Asp Arg Gly Trp
Gly Asn Gly Cys 275 280 285Gly Leu
Phe Gly Lys Gly Ser Leu Val Thr Cys Ala Lys Phe Ala Cys 290
295 300Ser Lys Lys Met Thr Gly Lys Ser Ile Gln Pro
Glu Asn Leu Glu Tyr305 310 315
320Arg Ile Met Leu Ser Val His Gly Ser Gln His Ser Gly Met Ile Val
325 330 335Asn Asp Thr Gly
His Glu Thr Asp Glu Asn Arg Ala Lys Val Glu Ile 340
345 350Thr Pro Asn Ser Pro Arg Ala Glu Ala Thr Leu
Gly Gly Phe Gly Ser 355 360 365Leu
Gly Leu Asp Cys Glu Pro Arg Thr Gly Leu Asp Phe Ser Asp Leu 370
375 380Tyr Tyr Leu Thr Met Asn Asn Lys His Trp
Leu Val His Lys Glu Trp385 390 395
400Phe His Asp Ile Pro Leu Pro Trp His Ala Gly Ala Asp Thr Gly
Thr 405 410 415Pro His Trp
Asn Asn Lys Glu Ala Leu Val Glu Phe Lys Asp Ala His 420
425 430Ala Lys Arg Gln Thr Val Val Val Leu Gly
Ser Gln Glu Gly Ala Val 435 440
445His Thr Ala Leu Ala Gly Ala Leu Glu Ala Glu Met Asp Gly Ala Lys 450
455 460Gly Arg Leu Ser Ser Gly His Leu
Lys Cys Arg Leu Lys Met Asp Lys465 470
475 480Leu Arg Leu Lys Gly Val Ser Tyr Ser Leu Cys Thr
Ala Ala Phe Thr 485 490
495Phe Thr Lys Ile Pro Ala Glu Thr Leu His Gly Thr Val Thr Val Glu
500 505 510Val Gln Tyr Ala Gly Thr
Asp Gly Pro Cys Lys Val Pro Ala Gln Met 515 520
525Ala Val Asp Met Gln Thr Leu Thr Pro Val Gly Arg Leu Ile
Thr Ala 530 535 540Asn Pro Val Ile Thr
Glu Ser Thr Glu Asn Ser Lys Met Met Leu Glu545 550
555 560Leu Asp Pro Pro Phe Gly Asp Ser Tyr Ile
Val Ile Gly Val Gly Glu 565 570
575Lys Lys Ile Thr His His Trp His Arg Ser Gly Ser Thr Ile Gly Lys
580 585 590Ala Phe Glu Ala Thr
Val Arg Gly Ala Lys Arg Met Ala Val Leu Gly 595
600 605Asp Thr Ala Trp Asp Phe Gly Ser Val Gly Gly Ala
Leu Asn Ser Leu 610 615 620Gly Lys Gly
Ile His Gln Ile Phe Gly Ala Ala Phe Lys Ser Leu Phe625
630 635 640Gly Gly Met Ser Trp Phe Ser
Gln Ile Leu Ile Gly Thr Leu Leu Met 645
650 655Trp Leu Gly Leu Asn Thr Lys Asn Gly Ser Ile Ser
Leu Met Cys Leu 660 665 670Ala
Leu Gly Gly Val Leu Ile Phe Leu Ser Thr Ala Val Ser Ala 675
680 6858687PRTArtificial SequenceSynthetic
Polypeptide 8Met Trp Leu Val Ser Leu Ala Ile Val Thr Ala Cys Ala Gly Ala
Ala1 5 10 15Glu Val Thr
Arg Arg Gly Ser Ala Tyr Tyr Met Tyr Leu Asp Arg Asn 20
25 30Asp Ala Gly Glu Ala Ile Ser Phe Pro Thr
Thr Leu Gly Met Asn Lys 35 40
45Cys Tyr Ile Gln Ile Met Asp Leu Gly His Met Cys Asp Ala Thr Met 50
55 60Ser Tyr Glu Cys Pro Met Leu Asp Glu
Gly Val Glu Pro Asp Asp Val65 70 75
80Asp Cys Trp Cys Asn Thr Thr Ser Thr Trp Val Val Tyr Gly
Thr Cys 85 90 95His His
Lys Lys Gly Glu Ala Arg Arg Ser Arg Arg Ala Val Thr Leu 100
105 110Pro Ser His Ser Thr Arg Lys Leu Gln
Thr Arg Ser Gln Thr Trp Leu 115 120
125Glu Ser Arg Glu Tyr Thr Lys His Leu Ile Arg Val Glu Asn Trp Ile
130 135 140Phe Arg Asn Pro Gly Phe Ala
Leu Ala Ala Ala Ala Ile Ala Trp Leu145 150
155 160Leu Gly Ser Ser Thr Ser Gln Lys Val Ile Tyr Leu
Val Met Ile Leu 165 170
175Leu Ile Ala Pro Ala Tyr Ser Ile Arg Cys Ile Gly Val Ser Asn Arg
180 185 190Asp Phe Val Glu Gly Met
Ser Gly Gly Thr Trp Val Asp Val Val Leu 195 200
205Glu His Gly Gly Cys Val Thr Val Met Ala Gln Asp Lys Pro
Thr Val 210 215 220Asp Ile Glu Leu Val
Thr Thr Thr Val Ser Asn Met Ala Glu Val Arg225 230
235 240Ser Tyr Cys Tyr Glu Ala Ser Ile Ser Asp
Met Ala Ser Asp Ser Arg 245 250
255Cys Pro Arg Glu Gly Glu Ala Tyr Leu Asp Lys Gln Ser Asp Thr Gln
260 265 270Tyr Val Cys Lys Arg
Thr Leu Val Asp Arg Gly Arg Gly Asn Gly Cys 275
280 285Gly Arg Phe Gly Lys Gly Ser Leu Val Thr Cys Ala
Lys Phe Ala Cys 290 295 300Ser Lys Lys
Met Thr Gly Lys Ser Ile Gln Pro Glu Asn Leu Glu Tyr305
310 315 320Arg Ile Met Leu Ser Val His
Gly Ser Gln His Ser Gly Met Ile Val 325
330 335Asn Asp Thr Gly His Glu Thr Asp Glu Asn Arg Ala
Lys Val Glu Ile 340 345 350Thr
Pro Asn Ser Pro Arg Ala Glu Ala Thr Leu Gly Gly Phe Gly Ser 355
360 365Leu Gly Leu Asp Cys Glu Pro Arg Thr
Gly Leu Asp Phe Ser Asp Leu 370 375
380Tyr Tyr Leu Thr Met Asn Asn Lys His Trp Leu Val His Lys Glu Trp385
390 395 400Phe His Asp Ile
Pro Leu Pro Trp His Ala Gly Ala Asp Thr Gly Thr 405
410 415Pro His Trp Asn Asn Lys Glu Ala Leu Val
Glu Phe Lys Asp Ala His 420 425
430Ala Lys Arg Gln Thr Val Val Val Leu Gly Ser Gln Glu Gly Ala Val
435 440 445His Thr Ala Leu Ala Gly Ala
Leu Glu Ala Glu Met Asp Gly Ala Lys 450 455
460Gly Arg Leu Ser Ser Gly His Leu Lys Cys Arg Leu Lys Met Asp
Lys465 470 475 480Leu Arg
Leu Lys Gly Val Ser Tyr Ser Leu Cys Thr Ala Ala Phe Thr
485 490 495Phe Thr Lys Ile Pro Ala Glu
Thr Leu His Gly Thr Val Thr Val Glu 500 505
510Val Gln Tyr Ala Gly Thr Asp Gly Pro Cys Lys Val Pro Ala
Gln Met 515 520 525Ala Val Asp Met
Gln Thr Leu Thr Pro Val Gly Arg Leu Ile Thr Ala 530
535 540Asn Pro Val Ile Thr Glu Ser Thr Glu Asn Ser Lys
Met Met Leu Glu545 550 555
560Leu Asp Pro Pro Phe Gly Asp Ser Tyr Ile Val Ile Gly Val Gly Glu
565 570 575Lys Lys Ile Thr His
His Trp His Arg Ser Gly Ser Thr Ile Gly Lys 580
585 590Ala Phe Glu Ala Thr Val Arg Gly Ala Lys Arg Met
Ala Val Leu Gly 595 600 605Asp Thr
Ala Trp Asp Phe Gly Ser Val Gly Gly Ala Leu Asn Ser Leu 610
615 620Gly Lys Gly Ile His Gln Ile Phe Gly Ala Ala
Phe Lys Ser Leu Phe625 630 635
640Gly Gly Met Ser Trp Phe Ser Gln Ile Leu Ile Gly Thr Leu Leu Met
645 650 655Trp Leu Gly Leu
Asn Thr Lys Asn Gly Ser Ile Ser Leu Met Cys Leu 660
665 670Ala Leu Gly Gly Val Leu Ile Phe Leu Ser Thr
Ala Val Ser Ala 675 680
6859687PRTArtificial SequenceSynthetic Polypeptide 9Met Trp Leu Val Ser
Leu Ala Ile Val Thr Ala Cys Ala Gly Ala Val1 5
10 15Glu Val Thr Arg Arg Gly Ser Ala Tyr Tyr Met
Tyr Leu Asp Arg Ser 20 25
30Asp Ala Gly Glu Ala Ile Ser Phe Pro Thr Thr Leu Gly Met Asn Lys
35 40 45Cys Tyr Ile Gln Ile Met Asp Leu
Gly His Met Cys Asp Ala Thr Met 50 55
60Ser Tyr Glu Cys Pro Met Leu Asp Glu Gly Val Glu Pro Asp Asp Val65
70 75 80Asp Cys Trp Cys Asn
Thr Thr Ser Thr Trp Val Val Tyr Gly Thr Cys 85
90 95His His Lys Lys Gly Glu Ala Arg Arg Ser Arg
Arg Ala Val Thr Leu 100 105
110Pro Ser His Ser Thr Arg Lys Leu Gln Thr Arg Ser Gln Thr Trp Leu
115 120 125Glu Ser Arg Glu Tyr Thr Lys
His Leu Ile Arg Val Glu Asn Trp Ile 130 135
140Phe Arg Asn Pro Gly Phe Ala Leu Ala Ala Ala Ala Ile Ala Trp
Leu145 150 155 160Leu Gly
Ser Ser Thr Ser Gln Lys Val Ile Tyr Leu Val Met Ile Leu
165 170 175Leu Ile Ala Pro Ala Tyr Ser
Ile Arg Cys Ile Gly Val Ser Asn Arg 180 185
190Asp Phe Val Glu Gly Met Ser Gly Gly Thr Trp Val Asp Val
Val Leu 195 200 205Glu His Gly Gly
Cys Val Thr Val Met Ala Gln Asp Lys Pro Ala Val 210
215 220Asp Ile Glu Leu Val Thr Thr Thr Val Ser Asn Met
Ala Glu Val Arg225 230 235
240Ser Tyr Cys Tyr Glu Ala Ser Ile Ser Asp Met Ala Ser Asp Ser Arg
245 250 255Cys Pro Thr Gln Gly
Glu Ala Tyr Leu Asp Lys Gln Ser Asp Thr Gln 260
265 270Tyr Val Cys Lys Arg Thr Leu Val Asp Arg Gly Trp
Gly Asn Gly Cys 275 280 285Gly Leu
Phe Gly Lys Gly Ser Leu Val Thr Cys Ala Lys Phe Ala Cys 290
295 300Ser Lys Lys Met Thr Gly Lys Ser Ile Gln Pro
Glu Asn Leu Glu Tyr305 310 315
320Arg Ile Met Leu Ser Val His Gly Ser Gln His Ser Gly Met Ile Val
325 330 335Asn Asp Thr Gly
His Glu Thr Asp Glu Asn Arg Ala Lys Val Glu Ile 340
345 350Thr Pro Asn Ser Pro Arg Ala Glu Ala Thr Leu
Gly Gly Phe Gly Ser 355 360 365Leu
Gly Leu Asp Cys Glu Pro Arg Thr Gly Leu Asp Phe Ser Asp Leu 370
375 380Tyr Tyr Leu Thr Met Asn Asn Lys His Trp
Leu Val His Lys Glu Trp385 390 395
400Phe His Asp Ile Pro Leu Pro Trp His Ala Gly Ala Asp Thr Gly
Thr 405 410 415Pro His Trp
Asn Asn Lys Glu Ala Leu Val Glu Phe Lys Asp Ala His 420
425 430Ala Lys Arg Gln Thr Val Val Val Leu Gly
Ser Gln Glu Gly Ala Val 435 440
445His Thr Ala Leu Ala Gly Ala Leu Glu Ala Glu Met Asp Gly Ala Lys 450
455 460Gly Arg Leu Ser Ser Gly His Leu
Lys Cys Arg Leu Lys Met Asp Lys465 470
475 480Leu Arg Leu Lys Gly Val Ser Tyr Ser Leu Cys Thr
Ala Ala Phe Thr 485 490
495Phe Thr Lys Ile Pro Ala Glu Thr Leu His Gly Thr Val Thr Val Glu
500 505 510Val Gln Tyr Ala Gly Thr
Asp Gly Pro Cys Lys Val Pro Ala Gln Met 515 520
525Ala Val Asp Met Gln Thr Leu Thr Pro Val Gly Arg Leu Ile
Thr Ala 530 535 540Asn Pro Val Ile Thr
Glu Ser Thr Glu Asn Ser Lys Met Met Leu Glu545 550
555 560Leu Asp Pro Pro Phe Gly Asp Ser Tyr Ile
Val Ile Gly Val Gly Glu 565 570
575Lys Lys Ile Thr His His Trp His Arg Ser Gly Ser Thr Ile Gly Lys
580 585 590Ala Phe Glu Ala Thr
Val Arg Gly Ala Lys Arg Met Ala Val Leu Gly 595
600 605Asp Thr Ala Trp Asp Phe Gly Ser Val Gly Gly Ala
Leu Asn Ser Leu 610 615 620Gly Lys Gly
Ile His Gln Ile Phe Gly Ala Ala Phe Lys Ser Leu Phe625
630 635 640Gly Gly Met Ser Trp Phe Ser
Gln Ile Leu Ile Gly Thr Leu Leu Val 645
650 655Trp Leu Gly Leu Asn Thr Lys Asn Gly Ser Ile Ser
Leu Thr Cys Leu 660 665 670Ala
Leu Gly Gly Val Leu Ile Phe Leu Ser Thr Ala Val Ser Ala 675
680 68510687PRTArtificial SequenceSynthetic
Polypeptide 10Met Trp Leu Val Ser Leu Ala Ile Val Thr Ala Cys Ala Gly Ala
Val1 5 10 15Glu Val Thr
Arg Arg Gly Ser Ala Tyr Tyr Met Tyr Leu Asp Arg Ser 20
25 30Asp Ala Gly Glu Ala Ile Ser Phe Pro Thr
Thr Leu Gly Met Asn Lys 35 40
45Cys Tyr Ile Gln Ile Met Asp Leu Gly His Met Cys Asp Ala Thr Met 50
55 60Ser Tyr Glu Cys Pro Met Leu Asp Glu
Gly Val Glu Pro Asp Asp Val65 70 75
80Asp Cys Trp Cys Asn Thr Thr Ser Thr Trp Val Val Tyr Gly
Thr Cys 85 90 95His His
Lys Lys Gly Glu Ala Arg Arg Ser Arg Arg Ala Val Thr Leu 100
105 110Pro Ser His Ser Thr Arg Lys Leu Gln
Thr Arg Ser Gln Thr Trp Leu 115 120
125Glu Ser Arg Glu Tyr Thr Lys His Leu Ile Arg Val Glu Asn Trp Ile
130 135 140Phe Arg Asn Pro Gly Phe Ala
Leu Ala Ala Ala Ala Ile Ala Trp Leu145 150
155 160Leu Gly Ser Ser Thr Ser Gln Lys Val Ile Tyr Leu
Val Met Ile Leu 165 170
175Leu Ile Ala Pro Ala Tyr Ser Ile Arg Cys Ile Gly Val Ser Asn Arg
180 185 190Asp Phe Val Glu Gly Met
Ser Gly Gly Thr Trp Val Asp Val Val Leu 195 200
205Glu His Gly Gly Cys Val Thr Val Met Ala Gln Asp Lys Pro
Ala Val 210 215 220Asp Ile Glu Leu Val
Thr Thr Thr Val Ser Asn Met Ala Glu Val Arg225 230
235 240Ser Tyr Cys Tyr Glu Ala Ser Ile Ser Asp
Met Ala Ser Asp Ser Arg 245 250
255Cys Pro Arg Glu Gly Glu Ala Tyr Leu Asp Lys Gln Ser Asp Thr Gln
260 265 270Tyr Val Cys Lys Arg
Thr Leu Val Asp Arg Gly Arg Gly Asn Gly Cys 275
280 285Gly Arg Phe Gly Lys Gly Ser Leu Val Thr Cys Ala
Lys Phe Ala Cys 290 295 300Ser Lys Lys
Met Thr Gly Lys Ser Ile Gln Pro Glu Asn Leu Glu Tyr305
310 315 320Arg Ile Met Leu Ser Val His
Gly Ser Gln His Ser Gly Met Ile Val 325
330 335Asn Asp Thr Gly His Glu Thr Asp Glu Asn Arg Ala
Lys Val Glu Ile 340 345 350Thr
Pro Asn Ser Pro Arg Ala Glu Ala Thr Leu Gly Gly Phe Gly Ser 355
360 365Leu Gly Leu Asp Cys Glu Pro Arg Thr
Gly Leu Asp Phe Ser Asp Leu 370 375
380Tyr Tyr Leu Thr Met Asn Asn Lys His Trp Leu Val His Lys Glu Trp385
390 395 400Phe His Asp Ile
Pro Leu Pro Trp His Ala Gly Ala Asp Thr Gly Thr 405
410 415Pro His Trp Asn Asn Lys Glu Ala Leu Val
Glu Phe Lys Asp Ala His 420 425
430Ala Lys Arg Gln Thr Val Val Val Leu Gly Ser Gln Glu Gly Ala Val
435 440 445His Thr Ala Leu Ala Gly Ala
Leu Glu Ala Glu Met Asp Gly Ala Lys 450 455
460Gly Arg Leu Ser Ser Gly His Leu Lys Cys Arg Leu Lys Met Asp
Lys465 470 475 480Leu Arg
Leu Lys Gly Val Ser Tyr Ser Leu Cys Thr Ala Ala Phe Thr
485 490 495Phe Thr Lys Ile Pro Ala Glu
Thr Leu His Gly Thr Val Thr Val Glu 500 505
510Val Gln Tyr Ala Gly Thr Asp Gly Pro Cys Lys Val Pro Ala
Gln Met 515 520 525Ala Val Asp Met
Gln Thr Leu Thr Pro Val Gly Arg Leu Ile Thr Ala 530
535 540Asn Pro Val Ile Thr Glu Ser Thr Glu Asn Ser Lys
Met Met Leu Glu545 550 555
560Leu Asp Pro Pro Phe Gly Asp Ser Tyr Ile Val Ile Gly Val Gly Glu
565 570 575Lys Lys Ile Thr His
His Trp His Arg Ser Gly Ser Thr Ile Gly Lys 580
585 590Ala Phe Glu Ala Thr Val Arg Gly Ala Lys Arg Met
Ala Val Leu Gly 595 600 605Asp Thr
Ala Trp Asp Phe Gly Ser Val Gly Gly Ala Leu Asn Ser Leu 610
615 620Gly Lys Gly Ile His Gln Ile Phe Gly Ala Ala
Phe Lys Ser Leu Phe625 630 635
640Gly Gly Met Ser Trp Phe Ser Gln Ile Leu Ile Gly Thr Leu Leu Val
645 650 655Trp Leu Gly Leu
Asn Thr Lys Asn Gly Ser Ile Ser Leu Thr Cys Leu 660
665 670Ala Leu Gly Gly Val Leu Ile Phe Leu Ser Thr
Ala Val Ser Ala 675 680
68511683PRTArtificial SequenceSynthetic Polypeptide 11Met Trp Leu Val Ser
Leu Ala Ile Val Thr Ala Cys Ala Gly Ala Ala1 5
10 15Glu Ile Thr Arg Arg Gly Ser Ala Tyr Tyr Met
Tyr Leu Asp Arg Ser 20 25
30Asp Ala Gly Lys Ala Ile Ser Phe Ala Thr Thr Leu Gly Val Asn Lys
35 40 45Cys His Val Gln Ile Met Asp Leu
Gly His Met Cys Asp Ala Thr Met 50 55
60Ser Tyr Glu Cys Pro Met Leu Asp Glu Gly Val Glu Pro Asp Asp Val65
70 75 80Asp Cys Trp Cys Asn
Thr Thr Ser Thr Trp Val Val Tyr Gly Thr Cys 85
90 95His His Lys Lys Gly Glu Ala Arg Arg Ser Arg
Arg Ala Val Thr Leu 100 105
110Pro Ser His Ser Thr Arg Lys Leu Gln Thr Arg Ser Gln Thr Trp Leu
115 120 125Glu Ser Arg Glu Tyr Thr Lys
His Leu Ile Lys Val Glu Asn Trp Ile 130 135
140Phe Arg Asn Pro Gly Phe Ala Leu Val Ala Val Ala Ile Ala Trp
Leu145 150 155 160Leu Gly
Ser Ser Thr Ser Gln Lys Val Ile Tyr Leu Val Met Ile Leu
165 170 175Leu Ile Ala Pro Ala Tyr Ser
Ile Arg Cys Ile Gly Val Ser Asn Arg 180 185
190Asp Phe Val Glu Gly Met Ser Gly Gly Thr Trp Val Asp Val
Val Leu 195 200 205Glu His Gly Gly
Cys Val Thr Val Met Ala Gln Asp Lys Pro Thr Val 210
215 220Asp Ile Glu Leu Val Thr Thr Thr Val Ser Asn Met
Ala Glu Val Arg225 230 235
240Ser Tyr Cys Tyr Glu Ala Ser Ile Ser Asp Met Ala Ser Asp Ser Arg
245 250 255Cys Pro Thr Gln Gly
Glu Ala Tyr Leu Asp Lys Gln Ser Asp Thr Gln 260
265 270Tyr Val Cys Lys Arg Thr Leu Val Asp Arg Gly Trp
Gly Asn Gly Cys 275 280 285Gly Leu
Phe Gly Lys Gly Ser Leu Val Thr Cys Ala Lys Phe Thr Cys 290
295 300Ser Lys Lys Met Thr Gly Lys Ser Ile Gln Pro
Glu Asn Leu Glu Tyr305 310 315
320Arg Ile Met Leu Ser Val His Gly Ser Gln His Ser Gly Met Ile Gly
325 330 335Tyr Glu Thr Asp
Glu Asp Arg Ala Lys Val Glu Val Thr Pro Asn Ser 340
345 350Pro Arg Ala Glu Ala Thr Leu Gly Gly Phe Gly
Ser Leu Gly Leu Asp 355 360 365Cys
Glu Pro Arg Thr Gly Leu Asp Phe Ser Asp Leu Tyr Tyr Leu Thr 370
375 380Met Asn Asn Lys His Trp Leu Val His Lys
Glu Trp Phe His Asp Ile385 390 395
400Pro Leu Pro Trp His Ala Gly Ala Asp Thr Gly Thr Pro His Trp
Asn 405 410 415Asn Lys Glu
Ala Leu Val Glu Phe Lys Asp Ala His Ala Lys Arg Gln 420
425 430Thr Val Val Val Leu Gly Ser Gln Glu Gly
Ala Val His Thr Ala Leu 435 440
445Ala Gly Ala Leu Glu Ala Glu Met Asp Gly Ala Lys Gly Arg Leu Phe 450
455 460Ser Gly His Leu Lys Cys Arg Leu
Lys Met Asp Lys Leu Arg Leu Lys465 470
475 480Gly Val Ser Tyr Ser Leu Cys Thr Ala Ala Phe Thr
Phe Thr Lys Val 485 490
495Pro Ala Glu Thr Leu His Gly Thr Val Thr Val Glu Val Gln Tyr Ala
500 505 510Gly Thr Asp Gly Pro Cys
Lys Ile Pro Val Gln Met Ala Val Asp Met 515 520
525Gln Thr Leu Thr Pro Val Gly Arg Leu Ile Thr Ala Asn Pro
Val Ile 530 535 540Thr Glu Ser Thr Glu
Asn Ser Lys Met Met Leu Glu Leu Asp Pro Pro545 550
555 560Phe Gly Asp Ser Tyr Ile Val Ile Gly Val
Gly Asp Lys Lys Ile Thr 565 570
575His His Trp His Arg Ser Gly Ser Thr Ile Gly Lys Ala Phe Glu Ala
580 585 590Thr Val Arg Gly Ala
Lys Arg Met Ala Val Leu Gly Asp Thr Ala Trp 595
600 605Asp Phe Gly Ser Val Gly Gly Val Phe Asn Ser Leu
Gly Lys Gly Ile 610 615 620His Gln Ile
Phe Gly Ala Ala Phe Lys Ser Leu Phe Gly Gly Met Ser625
630 635 640Trp Phe Ser Gln Ile Leu Ile
Gly Thr Leu Leu Val Trp Leu Gly Leu 645
650 655Asn Thr Lys Asn Gly Ser Ile Ser Leu Thr Cys Leu
Ala Leu Gly Gly 660 665 670Val
Met Ile Phe Leu Ser Thr Ala Val Ser Ala 675
68012683PRTArtificial SequenceSynthetic Polypeptide 12Met Trp Leu Val Ser
Leu Ala Ile Val Thr Ala Cys Ala Gly Ala Ala1 5
10 15Glu Ile Thr Arg Arg Gly Ser Ala Tyr Tyr Met
Tyr Leu Asp Arg Ser 20 25
30Asp Ala Gly Lys Ala Ile Ser Phe Ala Thr Thr Leu Gly Val Asn Lys
35 40 45Cys His Val Gln Ile Met Asp Leu
Gly His Met Cys Asp Ala Thr Met 50 55
60Ser Tyr Glu Cys Pro Met Leu Asp Glu Gly Val Glu Pro Asp Asp Val65
70 75 80Asp Cys Trp Cys Asn
Thr Thr Ser Thr Trp Val Val Tyr Gly Thr Cys 85
90 95His His Lys Lys Gly Glu Ala Arg Arg Ser Arg
Arg Ala Val Thr Leu 100 105
110Pro Ser His Ser Thr Arg Lys Leu Gln Thr Arg Ser Gln Thr Trp Leu
115 120 125Glu Ser Arg Glu Tyr Thr Lys
His Leu Ile Lys Val Glu Asn Trp Ile 130 135
140Phe Arg Asn Pro Gly Phe Ala Leu Val Ala Val Ala Ile Ala Trp
Leu145 150 155 160Leu Gly
Ser Ser Thr Ser Gln Lys Val Ile Tyr Leu Val Met Ile Leu
165 170 175Leu Ile Ala Pro Ala Tyr Ser
Ile Arg Cys Ile Gly Val Ser Asn Arg 180 185
190Asp Phe Val Glu Gly Met Ser Gly Gly Thr Trp Val Asp Val
Val Leu 195 200 205Glu His Gly Gly
Cys Val Thr Val Met Ala Gln Asp Lys Pro Thr Val 210
215 220Asp Ile Glu Leu Val Thr Thr Thr Val Ser Asn Met
Ala Glu Val Arg225 230 235
240Ser Tyr Cys Tyr Glu Ala Ser Ile Ser Asp Met Ala Ser Asp Ser Arg
245 250 255Cys Pro Arg Glu Gly
Glu Ala Tyr Leu Asp Lys Gln Ser Asp Thr Gln 260
265 270Tyr Val Cys Lys Arg Thr Leu Val Asp Arg Gly Arg
Gly Asn Gly Cys 275 280 285Gly Arg
Phe Gly Lys Gly Ser Leu Val Thr Cys Ala Lys Phe Thr Cys 290
295 300Ser Lys Lys Met Thr Gly Lys Ser Ile Gln Pro
Glu Asn Leu Glu Tyr305 310 315
320Arg Ile Met Leu Ser Val His Gly Ser Gln His Ser Gly Met Ile Gly
325 330 335Tyr Glu Thr Asp
Glu Asp Arg Ala Lys Val Glu Val Thr Pro Asn Ser 340
345 350Pro Arg Ala Glu Ala Thr Leu Gly Gly Phe Gly
Ser Leu Gly Leu Asp 355 360 365Cys
Glu Pro Arg Thr Gly Leu Asp Phe Ser Asp Leu Tyr Tyr Leu Thr 370
375 380Met Asn Asn Lys His Trp Leu Val His Lys
Glu Trp Phe His Asp Ile385 390 395
400Pro Leu Pro Trp His Ala Gly Ala Asp Thr Gly Thr Pro His Trp
Asn 405 410 415Asn Lys Glu
Ala Leu Val Glu Phe Lys Asp Ala His Ala Lys Arg Gln 420
425 430Thr Val Val Val Leu Gly Ser Gln Glu Gly
Ala Val His Thr Ala Leu 435 440
445Ala Gly Ala Leu Glu Ala Glu Met Asp Gly Ala Lys Gly Arg Leu Phe 450
455 460Ser Gly His Leu Lys Cys Arg Leu
Lys Met Asp Lys Leu Arg Leu Lys465 470
475 480Gly Val Ser Tyr Ser Leu Cys Thr Ala Ala Phe Thr
Phe Thr Lys Val 485 490
495Pro Ala Glu Thr Leu His Gly Thr Val Thr Val Glu Val Gln Tyr Ala
500 505 510Gly Thr Asp Gly Pro Cys
Lys Ile Pro Val Gln Met Ala Val Asp Met 515 520
525Gln Thr Leu Thr Pro Val Gly Arg Leu Ile Thr Ala Asn Pro
Val Ile 530 535 540Thr Glu Ser Thr Glu
Asn Ser Lys Met Met Leu Glu Leu Asp Pro Pro545 550
555 560Phe Gly Asp Ser Tyr Ile Val Ile Gly Val
Gly Asp Lys Lys Ile Thr 565 570
575His His Trp His Arg Ser Gly Ser Thr Ile Gly Lys Ala Phe Glu Ala
580 585 590Thr Val Arg Gly Ala
Lys Arg Met Ala Val Leu Gly Asp Thr Ala Trp 595
600 605Asp Phe Gly Ser Val Gly Gly Val Phe Asn Ser Leu
Gly Lys Gly Ile 610 615 620His Gln Ile
Phe Gly Ala Ala Phe Lys Ser Leu Phe Gly Gly Met Ser625
630 635 640Trp Phe Ser Gln Ile Leu Ile
Gly Thr Leu Leu Val Trp Leu Gly Leu 645
650 655Asn Thr Lys Asn Gly Ser Ile Ser Leu Thr Cys Leu
Ala Leu Gly Gly 660 665 670Val
Met Ile Phe Leu Ser Thr Ala Val Ser Ala 675
6801357RNAArtificial SequenceSynthetic Polynucleotide 13gggaaauaag
agagaaaaga agaguaagaa gaaauauaag accccggcgc cgccacc
571447RNAArtificial SequenceSynthetic Polynucleotide 14gggaaauaag
agagaaaaga agaguaagaa gaaauauaag agccacc
4715119RNAArtificial SequenceSynthetic Polynucleotide 15ugauaauagg
cuggagccuc gguggccuag cuucuugccc cuugggccuc cccccagccc 60cuccuccccu
uccugcaccc guacccccgu ggucuuugaa uaaagucuga gugggcggc
11916119RNAArtificial SequenceSynthetic Polynucleotide 16ugauaauagg
cuggagccuc gguggccaug cuucuugccc cuugggccuc cccccagccc 60cuccuccccu
uccugcaccc guacccccgu ggucuuugaa uaaagucuga gugggcggc
11917690PRTArtificial SequenceSynthetic Polypeptide 17Met Asp Trp Thr Trp
Ile Leu Phe Leu Val Ala Ala Ala Thr Arg Val1 5
10 15His Ser Val Glu Val Thr Arg Arg Gly Ser Ala
Tyr Tyr Met Tyr Leu 20 25
30Asp Arg Ser Asp Ala Gly Glu Ala Ile Ser Phe Pro Thr Thr Leu Gly
35 40 45Met Asn Lys Cys Tyr Ile Gln Ile
Met Asp Leu Gly His Met Cys Asp 50 55
60Ala Thr Met Ser Tyr Glu Cys Pro Met Leu Asp Glu Gly Val Glu Pro65
70 75 80Asp Asp Val Asp Cys
Trp Cys Asn Thr Thr Ser Thr Trp Val Val Tyr 85
90 95Gly Thr Cys His His Lys Lys Gly Glu Ala Arg
Arg Ser Arg Arg Ala 100 105
110Val Thr Leu Pro Ser His Ser Thr Arg Lys Leu Gln Thr Arg Ser Gln
115 120 125Thr Trp Leu Glu Ser Arg Glu
Tyr Thr Lys His Leu Ile Arg Val Glu 130 135
140Asn Trp Ile Phe Arg Asn Pro Gly Phe Ala Leu Ala Ala Ala Ala
Ile145 150 155 160Ala Trp
Leu Leu Gly Ser Ser Thr Ser Gln Lys Val Ile Tyr Leu Val
165 170 175Met Ile Leu Leu Ile Ala Pro
Ala Tyr Ser Ile Arg Cys Ile Gly Val 180 185
190Ser Asn Arg Asp Phe Val Glu Gly Met Ser Gly Gly Thr Trp
Val Asp 195 200 205Val Val Leu Glu
His Gly Gly Cys Val Thr Val Met Ala Gln Asp Lys 210
215 220Pro Ala Val Asp Ile Glu Leu Val Thr Thr Thr Val
Ser Asn Met Ala225 230 235
240Glu Val Arg Ser Tyr Cys Tyr Glu Ala Ser Ile Ser Asp Met Ala Ser
245 250 255Asp Ser Arg Cys Pro
Thr Gln Gly Glu Ala Tyr Leu Asp Lys Gln Ser 260
265 270Asp Thr Gln Tyr Val Cys Lys Arg Thr Leu Val Asp
Arg Gly Trp Gly 275 280 285Asn Gly
Cys Gly Leu Phe Gly Lys Gly Ser Leu Val Thr Cys Ala Lys 290
295 300Phe Ala Cys Ser Lys Lys Met Thr Gly Lys Ser
Ile Gln Pro Glu Asn305 310 315
320Leu Glu Tyr Arg Ile Met Leu Ser Val His Gly Ser Gln His Ser Gly
325 330 335Met Ile Val Asn
Asp Thr Gly His Glu Thr Asp Glu Asn Arg Ala Lys 340
345 350Val Glu Ile Thr Pro Asn Ser Pro Arg Ala Glu
Ala Thr Leu Gly Gly 355 360 365Phe
Gly Ser Leu Gly Leu Asp Cys Glu Pro Arg Thr Gly Leu Asp Phe 370
375 380Ser Asp Leu Tyr Tyr Leu Thr Met Asn Asn
Lys His Trp Leu Val His385 390 395
400Lys Glu Trp Phe His Asp Ile Pro Leu Pro Trp His Ala Gly Ala
Asp 405 410 415Thr Gly Thr
Pro His Trp Asn Asn Lys Glu Ala Leu Val Glu Phe Lys 420
425 430Asp Ala His Ala Lys Arg Gln Thr Val Val
Val Leu Gly Ser Gln Glu 435 440
445Gly Ala Val His Thr Ala Leu Ala Gly Ala Leu Glu Ala Glu Met Asp 450
455 460Gly Ala Lys Gly Arg Leu Ser Ser
Gly His Leu Lys Cys Arg Leu Lys465 470
475 480Met Asp Lys Leu Arg Leu Lys Gly Val Ser Tyr Ser
Leu Cys Thr Ala 485 490
495Ala Phe Thr Phe Thr Lys Ile Pro Ala Glu Thr Leu His Gly Thr Val
500 505 510Thr Val Glu Val Gln Tyr
Ala Gly Thr Asp Gly Pro Cys Lys Val Pro 515 520
525Ala Gln Met Ala Val Asp Met Gln Thr Leu Thr Pro Val Gly
Arg Leu 530 535 540Ile Thr Ala Asn Pro
Val Ile Thr Glu Ser Thr Glu Asn Ser Lys Met545 550
555 560Met Leu Glu Leu Asp Pro Pro Phe Gly Asp
Ser Tyr Ile Val Ile Gly 565 570
575Val Gly Glu Lys Lys Ile Thr His His Trp His Arg Ser Gly Ser Thr
580 585 590Ile Gly Lys Ala Phe
Glu Ala Thr Val Arg Gly Ala Lys Arg Met Ala 595
600 605Val Leu Gly Asp Thr Ala Trp Asp Phe Gly Ser Val
Gly Gly Ala Leu 610 615 620Asn Ser Leu
Gly Lys Gly Ile His Gln Ile Phe Gly Ala Ala Phe Lys625
630 635 640Ser Leu Phe Gly Gly Met Ser
Trp Phe Ser Gln Ile Leu Ile Gly Thr 645
650 655Leu Leu Val Trp Leu Gly Leu Asn Thr Lys Asn Gly
Ser Ile Ser Leu 660 665 670Thr
Cys Leu Ala Leu Gly Gly Val Leu Ile Phe Leu Ser Thr Ala Val 675
680 685Ser Ala 6901815PRTArtificial
SequenceSynthetic Polypeptide 18Met Trp Leu Val Ser Leu Ala Ile Val Thr
Ala Cys Ala Gly Ala1 5 10
151945RNAArtificial SequenceSynthetic Polynucleotide 19auguggcugg
ugucccuggc caucgugaca gccugugcug gcgcc
45202337RNAArtificial SequenceSynthetic Polynucleotide 20gggaaauaag
agagaaaaga agaguaagaa gaaauauaag accccggcgc cgccaccaug 60uggcuggugu
cccuggccau cgugacagcc ugugcuggcg ccgcugaagu gaccagaaga 120ggcagcgccu
acuacaugua ccuggaccgg aacgaugccg gcgaggccau cagcuuucca 180accacccugg
gcaugaacaa gugcuacauc cagaucaugg accugggcca caugugcgac 240gccaccauga
gcuacgagug ccccaugcug gacgagggcg uggaacccga cgauguggac 300ugcuggugca
acaccaccag caccugggug guguacggca ccugucacca caagaagggc 360gaagccagac
gguccagacg ggccgugaca cugccuagcc acagcaccag aaagcugcag 420acccgguccc
agaccuggcu ggaaagcaga gaguacacca agcaccugau ccggguggaa 480aacuggaucu
uccggaaccc cggcuuugcc cuggccgcug cugcuauugc uuggcugcug 540ggcagcagca
ccucccagaa agugaucuac cucgugauga uccugcugau cgccccugcc 600uacagcaucc
gguguaucgg cguguccaac cgggacuucg uggaaggcau gagcggcggc 660acaugggugg
acguggugcu ggaacauggc ggcugcguga cagugauggc ccaggacaag 720cccaccgugg
acaucgagcu cgugaccacc accgugucca auauggccga agugcggagc 780uacugcuacg
aggccagcau cagcgacaug gccagcgaca gcagaugccc uacacagggc 840gaggccuacc
uggacaagca guccgacacc caguacgugu gcaagcggac ccugguggau 900agaggcuggg
gcaauggcug cggccuguuu ggcaagggca gccucgugac cugcgccaag 960uucgccugca
gcaagaagau gaccggcaag agcauccagc ccgagaaccu ggaauaccgg 1020aucaugcuga
gcgugcacgg cagccagcac uccggcauga ucgugaacga caccggccac 1080gagacagacg
agaaccgggc caagguggaa aucaccccua acagcccuag agccgaggcc 1140acacugggcg
gcuuuggauc ucugggccug gacugcgagc cuagaaccgg ccuggauuuc 1200agcgaccugu
acuaccugac caugaacaac aagcacuggc uggugcacaa agagugguuc 1260cacgacaucc
cucugcccug gcaugccggc gcugauacag gcacacccca cuggaacaac 1320aaagaggcuc
ugguggaauu caaggacgcc cacgccaagc ggcagaccgu gguggugcug 1380ggaucucagg
aaggcgccgu gcauacagcu cuggcaggcg cccuggaagc cgaaauggau 1440ggcgccaaag
gcagacuguc cagcggccac cugaagugcc ggcugaagau ggacaagcug 1500cggcugaagg
gcguguccua cucccugugu accgccgccu ucaccuucac caagaucccc 1560gccgagacac
ugcacggcac cgugacugug gaagugcagu acgccggcac cgacggcccu 1620uguaaagugc
cugcucagau ggccguggau augcagaccc ugaccccugu gggcagacug 1680aucaccgcca
accccgugau caccgagagc accgagaaca gcaagaugau gcuggaacug 1740gacccacccu
ucggcgacag cuacaucgug aucggcgugg gagagaagaa gaucacccac 1800cacuggcaca
gaagcggcag caccaucggc aaggccuuug aggcuacagu gcggggagcc 1860aagagaaugg
ccgugcuggg agauaccgcc ugggacuuug gcucuguggg cggagcccug 1920aacucucugg
gcaagggaau ccaccagauc uucggagccg ccuuuaagag ccuguucggc 1980ggcaugagcu
gguucagcca gauccugauc ggcacccugc ugauguggcu gggccugaac 2040accaagaacg
gcagcaucuc ccugaugugc cuggcucugg gaggcgugcu gaucuuccug 2100agcacagccg
ugucugccug auaauaggcu ggagccucgg uggccuagcu ucuugccccu 2160ugggccuccc
cccagccccu ccuccccuuc cugcacccgu acccccgugg ucuuugaaua 2220aagucugagu
gggcggcaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 2280aaaaaaaaaa
aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaa 2337
User Contributions:
Comment about this patent or add new information about this topic: