Patent application title: TRUNCATED FORMS OF ATYPICAL CYS HIS RICH THIOREDOXIN 4 (ACHT4) CAPABLE OF INHIBITING ACHT4-MEDIATED OXIDATION OF THE SMALL SUBUNIT OF ADP-GLUCOSE PYROPHOSPHORYLASE (APS1)
Inventors:
IPC8 Class: AC12N1582FI
USPC Class:
Class name:
Publication date: 2022-06-02
Patent application number: 20220170039
Abstract:
The present invention provides compositions for attenuating the function
of atypical CYS HIS rich thioredoxin 4 (ACHT4), a light-regulated protein
expressed in plants and algae that controls starch storage in
chloroplast, and methods for increasing plant and algae growth and yield.Claims:
1. A recombinant polynucleotide encoding an atypical CYS HIS rich
thioredoxin 4 (ACHT4) protein, wherein the C-terminal portion of said
ACHT4 protein comprises an inactivating mutation.
2. A composition comprising the polynucleotide of claim 1.
3. An expression vector comprising the polynucleotide of claim 1.
4. The expression vector of claim 3 further comprising a constitutive, inducible, or tissue-specific promoter operably linked to the polynucleotide.
5. A composition comprising the expression vector of claim 4.
6. A cell comprising the expression vector of claim 4.
7. A composition comprising the cell of claim 6.
8. A seed comprising the recombinant polynucleotide of claim 1.
9. A plant, or plant part, comprising the recombinant polynucleotide of claim 1.
10. The plant or plant part of claim 9, wherein said plant is an Arabidopsis plant.
11. The plant or plant part of claim 9, wherein said plant is a moss.
12. A biofuel comprising the plant or plant part of claim 9.
13. An alga comprising a C-terminal inactivated form of an atypical CYS HIS rich thioredoxin 4 (ACHT4) gene.
14. A biofuel comprising the algae of claim 13.
15. A polypeptide encoded by the recombinant polynucleotide of claim 1.
16. A method of increasing the yield of a plant or algae comprising contacting a cell from said plant or algae with the recombinant polynucleotide of claim 1, thereby increasing the yield of said plant or algae.
17. A method of increasing the productivity of a plant or algae comprising contacting a cell from said plant or algae with the recombinant polynucleotide of claim 1, thereby increasing the productivity of said plant or algae.
18. A method of increasing the biomass of a plant or algae comprising contacting a cell from said plant or algae with the recombinant polynucleotide of claim 1, thereby increasing the biomass of said plant or algae.
19. A method of stimulating the growth of a plant or algae comprising contacting a cell from said plant or algae with the recombinant polynucleotide of claim 1, thereby stimulating the growth of said plant or algae.
20. A method of enhancing the starch content of a plant or algae comprising contacting a cell from said plant or algae with the recombinant polynucleotide of claim 1, thereby enhancing the starch content of said plant or algae.
Description:
RELATED APPLICATIONS
[0001] This application is a continuation of U.S. patent application Ser. No. 15/753,024 filed on Feb. 15, 2018, which is a National Phase Application of PCT Patent Application No. PCT/IL2016/050891, having International Filing Date of Aug. 16, 2016, claiming priority from U.S. Provisional Patent Application Ser. No. 62/205,768 filed on Aug. 17, 2015. The contents of the above applications are all incorporated by reference as if fully set forth herein in their entirety.
SEQUENCE LISTING STATEMENT
[0002] The ASCII file, entitled 91421SequenceListing.txt, created on Feb. 21, 2022, comprising 159,405 bytes, submitted concurrently with the filing of this application is incorporated herein by reference.
FIELD OF THE INVENTION
[0003] The present invention provides compositions for attenuating the function of atypical CYS HIS rich thioredoxin 4 (ACHT4), a light-regulated protein expressed in plants and algae that controls starch storage in chloroplast, and methods for increasing plant and algae growth and yield.
BACKGROUND OF THE INVENTION
[0004] Genetically modified plants with improved agronomic traits such as yield, pest resistance, herbicide tolerance, improved seed compositions, and the like are desired by both farmers and consumers. Although considerable efforts in plant breeding have provided significant gains in desired phenotypes, the ability to introduce specific DNA into plant genomes provides further opportunities for generation of plants with improved and/or unique phenotypes. The ability to develop genetically modified plants with improved traits depends in part on the identification of genes that are useful in recombinant DNA constructs for production of transformed plants with improved properties.
[0005] One genetic modification that would be economically desirable would be to increase the growth and yield production of the plant. There is a need to develop a method for increasing growth in plants, regardless of the locale or the environmental conditions.
[0006] The Arabidopsis thaliana atypical cysteine histidine-rich Trxs (ACHTs) constitute a small family of plant-specific and chloroplast-localized Trxs. They are light-regulated and are good catalysts of 2-Cys Prx reduction.
[0007] The expression profile of the ACHT family members suggests that they have distinct roles. The role of ACHT4, a recently identified paralog of ACHT1 in Arabidopsis, was previously unknown.
SUMMARY OF THE INVENTION
[0008] In one embodiment, the present invention provides compositions for attenuating the function of atypical CYS HIS rich thioredoxin 4 (ACHT4), a light-regulated protein expressed in plants and algae that controls starch storage in chloroplast, and methods for increasing plant and algae growth and yield.
[0009] In one embodiment, the present invention provides a recombinant polynucleotide encoding an atypical CYS HIS rich thioredoxin 4 (ACHT4) protein, wherein the C-terminal portion of said ACHT4 protein comprises an inactivating mutation.
[0010] In another embodiment, the present invention provides a composition comprising a recombinant polynucleotide encoding an atypical CYS HIS rich thioredoxin 4 (ACHT4) protein, wherein the C-terminal portion of said ACHT4 protein comprises an inactivating mutation.
[0011] In another embodiment, the present invention provides an expression vector comprising a recombinant polynucleotide encoding an atypical CYS HIS rich thioredoxin 4 (ACHT4) protein, wherein the C-terminal portion of said ACHT4 protein comprises an inactivating mutation.
[0012] In another embodiment, the present invention provides a composition comprising an expression vector comprising a recombinant polynucleotide encoding an atypical CYS HIS rich thioredoxin 4 (ACHT4) protein, wherein the C-terminal portion of said ACHT4 protein comprises an inactivating mutation.
[0013] In another embodiment, the present invention provides a cell comprising an expression vector comprising a recombinant polynucleotide encoding an atypical CYS HIS rich thioredoxin 4 (ACHT4) protein, wherein the C-terminal portion of said ACHT4 protein comprises an inactivating mutation.
[0014] In another embodiment, the present invention provides a composition comprising a cell comprising an expression vector comprising a recombinant polynucleotide encoding an atypical CYS HIS rich thioredoxin 4 (ACHT4) protein, wherein the C-terminal portion of said ACHT4 protein comprises an inactivating mutation.
[0015] In another embodiment, the present invention provides a seed comprising a C-terminal deleted form of an atypical CYS HIS rich thioredoxin 4 (ACHT4) gene.
[0016] In another embodiment, the present invention provides a plant, or plant part, comprising a C-terminal deleted form of an atypical CYS HIS rich thioredoxin 4 (ACHT4) gene.
[0017] In another embodiment, the present invention provides an algae comprising a C-terminal deleted form of an atypical CYS HIS rich thioredoxin 4 (ACHT4) gene.
[0018] In another embodiment, the present invention provides a polypeptide comprising an atypical CYS HIS rich thioredoxin 4 (ACHT4) protein, wherein the C-terminal portion of said ACHT4 protein comprises an inactivating mutation.
[0019] In another embodiment, the present invention provides a composition comprising a polypeptide comprising a C-terminal deleted form of atypical CYS HIS rich thioredoxin 4 (ACHT4).
[0020] In another embodiment, the present invention provides a method of increasing the yield of a plant or algae comprising contacting a cell from said plant or algae with a polynucleotide encoding a C-terminal deleted form of atypical CYS HIS rich thioredoxin 4 (ACHT4), thereby increasing the yield of said plant or algae.
[0021] In another embodiment, the present invention provides a method of increasing the productivity of a plant or algae comprising contacting a cell from said plant or algae with a polynucleotide encoding a C-terminal deleted form of atypical CYS HIS rich thioredoxin 4 (ACHT4), thereby increasing the productivity of said plant or algae.
[0022] In another embodiment, the present invention provides a method of increasing the size of a plant or algae comprising contacting a cell from said plant or algae with a polynucleotide encoding a C-terminal deleted form of atypical CYS HIS rich thioredoxin 4 (ACHT4), thereby increasing the size of said plant or algae.
[0023] In another embodiment, the present invention provides a method of increasing the biomass of a plant or algae comprising contacting a cell from said plant or algae with a polynucleotide encoding a C-terminal deleted form of atypical CYS HIS rich thioredoxin 4 (ACHT4), thereby increasing the biomass of said plant or algae.
[0024] In another embodiment, the present invention provides a method of stimulating the growth of a plant or algae comprising contacting a cell from said plant or algae with a polynucleotide encoding a C-terminal deleted form of atypical CYS HIS rich thioredoxin 4 (ACHT4), thereby stimulating the growth of said plant or algae.
[0025] In another embodiment, the present invention provides a method of producing a plant or algae having an enhanced phenotype, wherein said method comprises delivering a recombinant polynucleotide encoding an atypical CYS HIS rich thioredoxin 4 (ACHT4) protein to plant or algae cells, wherein the C-terminal portion of said ACHT4 protein comprises an inactivating mutation, regenerating plants or algae from said cells, and screening said plants or algae to identify a plant having an enhanced phenotype.
BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWING(S)
[0026] FIG. 1A: Immunoblot assay showing the oxidized state of ACHT4 active-site Cys residues captured in plants expressing ACHT4 fused with HA-tag at the end of the night (oxidized) and at 1 min (m), 5 min, 30 min, 1 h, and 2 h after beginning of illumination. Analysis of the purified proteins under reducing conditions (reduced), indicated that the changes in the oxidized level of ACHT4 were not the result of altered protein content. Equal loading was verified by ribulose-1,5-bis-phosphate carboxylase/oxygenase (RBCL) levels.
[0027] FIG. 1B: Immunoblot assay showing the ACHT4 intermolecular disulfide complexes, 2-Cys Prx heterotrimeric (Prx-t) and heterodimeric (Prx-d), and a unique additional complex (marked with an asterisk) extracted under nonreducing conditions (NR) from plants expressing either ACHT4MT or ACHT1MT. The conversion of the complexes to the monomer (mono) by chemical reduction (R) indicated the disulfide nature of the complexes.
[0028] FIGS. 1C and 1D: Reciprocal immunoprecipitation identified 2-Cys Prx (C) and APS1 (D) as the intermolecular disulfide partners of ACHT4. Immunoblot assay of proteins immunoprecipitated with anti-HA (ACHT4 IP), anti-2-Cys Prx (Prx IP), and anti-APS1 (APS IP) affinity matrixes or with a nonspecific matrix (Control IP) from plants expressing ACHT4MT. Purified proteins were run under reducing conditions and blotted with antibodies specific to the HA-tagged ACHT4 (aHA), 2-Cys Prx (.alpha.Prx) or APS1 (.alpha.APS1).
[0029] FIG. 2A: Immunoblot assay with HA Ab showing the ACHT4 intermolecular disulfide complexes during the transition from night to day.
[0030] FIG. 2B: Immunoblot assay showing APS1 redox state during the transition from night to day. The panels of APS1 dimer and the monomer were taken from the same immunoblot exposure.
[0031] FIG. 2C: Immunoblot assay with APS1 Ab of gel slice of 50 kDa monomer extracted from plants in the dark (D) or in the light (L) before (-DTT) and after (+DTT) chemical reduction with DTT.
[0032] FIG. 2D: Immunoblot assay with APS1 Ab showing the reduced 50 kDa APS1 monomer (red). Equal loading was verified as in FIG. 1. The results shown are representative of three independent experiments.
[0033] FIG. 2E: Immunoblot assay with HA Ab showing the ACHT4 intermolecular disulfide complexes during the transition from day to night.
[0034] FIG. 2F: Immunoblot assay showing APS1 redox state during the transition from day to night. The panels of APS1 dimer and the monomer were taken from the same immunoblot exposure.
[0035] FIG. 3A: Immunoblot assay showing the ACHT4 intermolecular disulfide complexes in plants treated for 2-hrs with 50 .mu.E*m-2*s-1 light intensity (50 .mu.E) and after abrupt decreased (10 .mu.E) followed by abrupt increased light intensity (50 .mu.E). Equal protein loading was verified as in FIG. 1. The results shown are representative of three independent experiments.
[0036] FIG. 3B: Immunoblot assay showing the APS1 redox state in plants treated for 2-hrs with 50 .mu.E*m-2*s-1 light intensity (50 .mu.E) and after abrupt decreased (10 .mu.E) followed by abrupt increased light intensity (50 .mu.E). Equal protein loading was verified as in FIG. 1. The results shown are representative of three independent experiments.
[0037] FIG. 4A: Schematic representation comparing ACHT1 and ACHT4 protein sequences. ACHT4 is comprised of a chloroplast targeting transit peptide (TP) followed by a conserved thioredoxin (Trx) domain and long C-terminus domain.
[0038] FIG. 4B: Immunoblot assay of intermolecular disulfide complexes of ACHT4.DELTA.C as in FIG. 1B.
[0039] FIG. 4C: Immunoblot assay with HA Ab showing the ACHT4.DELTA.C intermolecular disulfide complexes during the transition from night to day.
[0040] FIG. 4D: Immunoblot assay of thylakoid membranes (T), enriched grana (G), grana margin (GM) and stroma lamellae (SL) and decorated with anti-HA Ab (ACHT1, ACHT4, ACHT4.DELTA.C), or with Ab against the PS II protein PsbA (PsbA) or the PS I protein PsaD Ab (PsaD).
[0041] FIG. 5A: Immunoblot assay with APS1 Ab showing APS1 redox state in WT plants (WT), plants expressing increased level of ACHT4.DELTA.C (ACHT4.DELTA.C), or plants expressing increased level of ACHT4 (ACHT4). Equal protein loading was verified as in FIG. 1.
[0042] FIG. 5B: Leaves starch content of plants expressing increased level of ACHT4.DELTA.C, or plants expressing increased level of ACHT4 relative to that of WT plants. The results shown are representative of three independent experiments.
[0043] FIGS. 6A and 6B: Effect of overexpression of AtACHT4.DELTA.C on biomass accumulation in Arabidopsis plants. Overexpressing (OE) AtACHT4.DELTA.C in Arabidopsis plants stimulated growth (fresh weight, FW, FIG. 6A; dry weight, DW, FIG. 6B) in comparison to wild type plants, indicating that OE of AtACHT4.DELTA.C stimulates the export of photosynthates from the chloroplast which are then directed toward growth. The OE of AtACHT4 decreased growth, confirming that the C-terminus of ACHT4 attenuates growth.
[0044] FIG. 7: A phylogenetic tree showing that Arabidopsis has one paralog of ACHT4 where other crop plants, including potato, maize, rice, barley, wheat, sorghum, castor, bean, rapeseed, cotton, soybean, beat, banana, chili, chickpea, tomato, African oilpalm, Foxtail millet, cassava and the algae Chlamydomonas and Chlorella have one to five paralogs. The blastP analysis for Arabidopsis ACHT4 (AtACHT4) was performed against several crop plants, biofuel plants and algae genomes database. Pairwise distance analysis of proteins was performed using MEGA 7 program and the proteins closely related to AtACHT4 were aligned and then phylogenetic tree was constructed. The amino acid sequences of proteins were downloaded from respective databases and have accession numbers or protein ID as follow: Arabidopsis (Arabidopsis thaliana: NP_172333.1; SEQ ID NO: 1); Potato-1 (Solanum tuberosum: XP_006348023.1; SEQ ID NO: 2); Potato-2 (Solanum tuberosum: XP_006351368.1; SEQ ID NO: 3); Maize-1 (Zea mays: NP_001266702.1; SEQ ID NO: 4); Maize-2 (Zea mays: ACR34655.1; SEQ ID NO: 5); Maize-3 (Zea mays: ACN36361.1; SEQ ID NO: 6); Rice-1 (Oryza sativa: XP_015632287.1; SEQ ID NO: 7); Rice-2 (Oryza sativa: XP_015646723.1; SEQ ID NO: 8); Barley-1 (Hordeum vulgare: BAK03063.1; SEQ ID NO: 9); Barley-2 (Hordeum vulgare: BAK07858.1; SEQ ID NO: 10); Wheat (Triticum aestivum: Traslated ORF in 1.sup.st frame from mRNA AK335384.1; SEQ ID NO: 11); Cassava-1 (Manihot esculenta: OAY44415.1; SEQ ID NO: 12); Cassava-2 (Manihot esculenta: OAY41970.1; SEQ ID NO: 13); Sorghum-1 (Sorghum bicolor: KXG39469.1; SEQ ID NO: 14); Sorghum-2 (Sorghum bicolor: XP_002465837.1; SEQ ID NO: 15); Sorghum-3 (Sorghum bicolor: KXG36972.1; SEQ ID NO: 16); Rapeseed-1 (Brassica napus: CDY06319.1; SEQ ID NO: 17); Rapeseed-2 (Brassica napus: XP_013711973.1; SEQ ID NO: 18); Rapeseed-3 (Brassica napus: XP_013672630.1; SEQ ID NO: 19); Rapeseed-4 (Brassica napus: XP_013716476.1; SEQ ID NO: 20); Rapeseed-5 (Brassica napus: XP_013641071.1; SEQ ID NO: 21); Castor (Ricinus communis: XP_002525461.1; SEQ ID NO: 22); Bean-1 (Phaseolus vulgaris: XP_007161960.1; SEQ ID NO: 23); Bean-2 (Phaseolus vulgaris: XP_007161924.1; SEQ ID NO: 24); Cotton-1 (Gossypium histrum: NP_001313760.1; SEQ ID NO: 25); Cotton-2 (Gossypium histrum: XP_016753539.1; SEQ ID NO: 26); Cotton-3 (Gossypium histrum: XP_016672835.1; SEQ ID NO: 27); Soybean-1 (Glycine max: XP_003548763.1; SEQ ID NO: 28); Soybean-2 (Glycine max: NP_001276128.1; SEQ ID NO: 29); Beet (Beta vulgaris: XP_010672407.1; SEQ ID NO: 30); Banana-1 (Musa acuminata: XP_009416338.1; SEQ ID NO: 31); Banana-2 (Musa acuminata: XP_009406843.1; SEQ ID NO: 32); Chili (Capsicum annuum: XP_016552829.1; SEQ ID NO: 33); Chick pea (Cicer arietinum: XP_004493141.1; SEQ ID NO: 34); Tomato-1 (Solanum lycopersicum: XP_004252003.1; SEQ ID NO: 35); Tomato-2 (Solanum lycopersicum: XP_004249307.1; SEQ ID NO: 36); African oilpalm-1 (Elaeis guineensis: XP_010938119.1; SEQ ID NO: 37); African oilpalm-2 (Elaeis guineensis: XP_010921294.1; SEQ ID NO: 38); Foxtail millet-1 (Setaria italica: XP_004984516.2; SEQ ID NO: 39); Foxtail millet-2 (Setaria italica: XP_004985651.1; SEQ ID NO: 40); Foxtail millet-3 (Setaria italica: XP_004958724.1; SEQ ID NO: 41); Chlamydomonas (Chlamydomonas reinhardtii: XP_001697443.1; SEQ ID NO: 42); Chlorella (Chlorella variabilis: XP_005851922.1; SEQ ID NO: 43).
[0045] FIG. 8: Effect of OE of StACHT4-2.DELTA.C in potato plants on tubers yield. OE StACHT4-2.DELTA.C in potato plants nearly doubled tubers yield (g per plant) in comparison to WT plants (cultivated Desiree), indicating that StACHT4-2.DELTA.C stimulates the export of photosynthates from the chloroplast which are then directed toward growth. OE of StACHT4-2 did not change growth, confirming that the deletion of StACHT4-2 C-terminus relieves growth attenuation and tubers yield in a similar fashion to Arabidopsis AtACHT4.DELTA.C.
[0046] FIG. 9: Photographs of potato plants after 60-days growth in the greenhouse showing higher shoots growth and higher tuber yield in StACHT4-2.DELTA.C-OE plants over WT (cultivated Desiree) plants. Scale bar in each panel represents 10 cm.
[0047] FIG. 10: Percent change of transitory starch level of leaves of 6-weeks old StACHT4-1.DELTA.C OE and StACHT4-1 OE potato plants. Overexpressing (OE) StACHT4-1.DELTA.C in potato plants stimulated transitory starch accumulation in leaves relative to wild type plants. OE of StACHT4-1 decreased transitory starch accumulation, confirming that the C-terminus of StACHT4-1 attenuates starch synthesis in potato leaves.
[0048] FIG. 11: Schematic representation of plant expression vector construct for the over expression of the four StACHT4 construct. Only the construct of StACHT4-1.DELTA.C is shown.
DESCRIPTION OF SPECIFIC EMBODIMENTS OF THE INVENTION
[0049] In one embodiment, the present invention provides compositions for attenuating the function and/or expression of atypical CYS HIS rich thioredoxin 4 (ACHT4), a light-regulated protein expressed in plants and algae that controls starch storage in chloroplast, and methods for increasing plant and algae growth and yield.
[0050] ACHT4
[0051] The Arabidopsis thaliana atypical cysteine histidine-rich Trxs (ACHTs) constitute a small family of plant-specific and chloroplast-localized Trxs. They are light-regulated and are good catalysts of 2-Cys Prx reduction.
[0052] A recently discovered paralog, AtACHT4, was found by the inventors to attenuate starch synthesis in Arabidopsis thaliana by oxidizing a regulatory disulfide of the AGPase (ADP-glucose pyrophosphorylase, which catalyzes the first committed step in the starch synthesis pathway; Examples 1-2). The oxidizing reaction of AtACHT4 with AGPase requires the C-terminus of AtACHT4 (Example 2).
[0053] Thus, in one embodiment, the present invention provides compositions comprising ACHT4 proteins and nucleic acids and uses thereof. ACHT4 sequences may be from any species comprising such sequences. Table 1 hereinbelow discloses the amino acid sequences of some ACHT4 paralogs in various species, while Table 2 hereinbelow discloses the nucleic acid sequences of some ACHT4 paralogs in various species.
TABLE-US-00001 TABLE 1 ACHT4 amino acid sequences Database Accession No. (Genbank SEQ unless otherwise ID Organism Paralogs specified) Amino Acid Sequence NO: Arabidopsis AtACHT NP_172333.1 MTEVISKTSLFLGACGNHHRVDDFSFS 1 thaliana 4 PVSFGGFGLKKSFSCLKLKSQKPLRSV FYGKQIVFGDSQDESFRRSSAITAQTTL RIGTAQKWWEKGLKDNMREISSAQEL VDSLTNAGDKLVVVDFFSPGCGGCKA LHPKICQFAEMNPDVQFLQVNYEEHK SMCYSLGVHVLPFFRFYRGSQGRVCSF SCTNATIKKFRDALAKHGPDRCSLGPT KGLEEKELVALAANKELNFTYTPKPVP VEKEAATPDSNPSLPVPLPSMSSNDEK TLVSAGR Solanum StACHT4- XP_006348023. MMKLMSKGFMFPSSSDCGEIYHHRPL 2 tuberosum 1 1; NLPGICSFPNKSVNLSCLPSLNLSSSCLP (Potato) PGSC0003DMP RTDFYGRRLVINEGVSKFNRRNSQVV 400032814 DITAQMSIGIRKAQKWWEKGVQPNMK EVNSAQELVDSLLSAGDKLVVVDFFSP GCGGCKALHPKLCQLAEMNPDVHFLQ VNYEEHKSMCYSLNVHVLPFFRFYRG AEGRVCSFSCTNATIKKFKDALAKYGT DRCTLGPPKGLEEKELLALAANKDLSF NYTPKTEEAPVLVTSQKEVQDTTPPNI ESPLPLPLPLPIASTSSQTAKRDTEKEA YATSGR Solanum StACHT4- XP_006351368. MKFNRRNHKSAAATAQMSIGIRKAPK 3 tuberosum 2 1; WWEKGLQPNMKEVMGAQDLADTLL (Potato) PGSC0003DMP NAGDKLVVVDFLSPGCGGCKALHPKI 400040925 CQLAEMNPDVQFLHVNYEEHKSMCYS LNVHVLPFFRFYRGAEGRLCSFSCTNA TIKKFKDALTKYGADCCSLEPVKGLEE KELLALAANKDLSFAYTPKTEEPMPV ALQDAKVIKTSRTSSSCPNTFSLLPLPL PLPLASTSHKAKQDSKSEVF Zea mays ZmACHT4- NP_001266702. MAAAQAISKGSVVSPCGNRAAPGLLA 4 (Maize) 1 1 RRRGAVAARVAPSAARIGGFWRKNAF PGGRLTLRTRRSRAASPAQMNMNLAL GKSMRWWEKGLQPNMREIESAQDLV DALTNAGDRLVVVDFFSPGCGGCRAF HPKICQFAEQNPDVLFLQVNYEEHKS MCHSLHVHVLPLFRFYRGAQGRLCSFS CTNTTIKKFRDALAKHKPDRCSLGPTR GLEESELLALAANKDLQFTYAKEEPEL IPRGDAPGEVVAPEPAKLPAAPKPLVR LGSEERSLVSSGR Zea mays ZmACHT4- ACR34655.1 MADALCNGVVASPCGRDVAGRARGA 5 (Maize) 2 ARAALAESLQVAGHASKTSFSAGRMS VKDSKPRPLSRSLEAAAPGQMNLSFPK AMRWWKKGLHPNMREVESAQDLADS LLSAGDKLVVVDFFSPGCGGCRALHP KIAQFAEKNPGVQFLQVNYETHKSMC YSLRVHVLPFFRFYRGAEGRVSSFSCT NATINKFKDALAKHGAERCSLGPARG LDESELMALAENRDLHFTYDKPGGLV PLAEAIAKEAAAPGGPWLPLPASLLGQ GSDNSLLPSGR Zea mays ZmACHT4- ACN36361.1 MAAAQVVAKGSVVSPCGNRAVPGLL 6 (Maize) 3 GRRRDAVAAQMTPSAVRIGGSWRKN AFPGVRLALGTRRSRPASRSFSASPVQ MNMNLAIGKSMRWWEKGLQPNMREI ESAQDLVDSLTNAGERLVVVDFFSPGC GGCRALHPKICQFAERNPDVLFLQVNY EEHKSMCYSLRVHVLPFFRFYRGAQG RLCSFSCTNATVRSCPCFFCSYDYWYV LNNMQHIQNDLY Oryza OsACHT4- XP_015632287. MAATAAQAVAVKGSVAVPPCGSRGR 7 sativa 1 1 RRGAVASVRMAAAAATSALRIGRRSP (Rice) FLGRRLAVGPRRSRPVPRNLVAPVQM NLAFAKATKWWEKGLQPNMREVESA QDLVDSLTNAGDNLVIVDFFSPGCGGC RALHPKICQIAEQNPDVLFLQVNYEEH KSMCYSLHVHVLPFFRFYRGAQGRLC SFSCTNATIKKFRDALAKHKPDRCSLG PTRGLEESELLALAANKDLQFNYTKKP ELVPSGDAAAAQELDRGSTKLSPPAKP LVKQGSEERSLVSSGR Oryza OsACHT4- XP_015646723. MAEALCSGSVASPCGEVGVGFAAGLV 8 sativa 2 1 RGAAAAAALAESVPIGGYSSKSTFPSG (Rice) RVALTERKARPLPRNLEAAHGQMNLT IGKAMRWWEKCLQPNMREIESAQDLA DSLLNAGDKLVVVDFFSPGCGGCRAL HPKIAQLAEKNPEVLFLQVNYEKHKS MCYSLHVHVLPFFRFYRGAQGRVSSFS CTNATIKKFKDALAKHGPDRCGLGPA KGLEESELMALAINRDLNFTYTPNQDL VPIADALLKEAAAPGGPWLPLPATATQ LFIQGSENSLLSSGR Hordeum HvACHT4- BAK03063.1 MATAQAVAKGTVVSPCGTRAAGFGA 9 vulgare 1 RRRGAVAARMSPCAPAAVRIGRKSPFL (Barley) GARLTVGPRRSKLVPRNLVSSPVQMN LAFAKSTKWWEKGLKPNMREIESAQD LVDSLANAGDRLVVVDFFSPGCGGCR ALHPKICQFGEQNPDVLFLQVNYEEHK SMCYSLHVHVLPFFRFYRGAQGRLCSF SCTNATIKKFRDALAKHNPDRCSIGPT RGLEESELLALAANKDLQFTYTKQPEP VPSGDSEFIAPGSPRLPPPAKPLVRQGS GERTLVSSGR Hordeum HvACHT4- BAK07858.1 MANALYGGGVAAPCGDLGAAAALAE 10 vulgare 2 SLPMGGGYRARSSFPAGRVALAERPLP (Barley) RSLQVAAAAGQMNGNLTIGKAMRW WEKGTQPNMREVESAQDLADSLLNA GDKLVVVDFFSPGCGGCRALHPKIAQF AERNPDVLFLQVNYEKHKSMCYSLHV HVLPFFRFYRGAQGRVSSFSCTNATIK KFKDALAKHSPDRCSLGPARGLEKAE LLALAENRDLEFTYSEKPTLVPIAEAIR MEAASIGGPWLPLPPAATQPFPLGSEN GSLIPSGR Triticum TaACHT4 Traslated ORF in MASALCGGGSGSVAAPCGDLGAAAA 11 aestivum 1.sup.st frame from LAESLPMGAGYRAKSSFPAGRVALAD (Wheat) mRNA RPLRRGLQVAAAAGQMNGNLTIGKA AK335384.1 MRWWEKVTHPNMREVESAQDLADSL LNAGDKLVVVDFFSPGCGGCRALHPKI AQFAERNPDVLFLQVNYEKHKSMCYS LHVHVLPFFRFYRGAQGRVSSFSCTNA TIKKFKDALAKHSPDRCSLGPARGLEE AELLALAANRDLEFTYNEKPTLVPIAE AIQMEAASIGGPWMPLPAAATQPLTLG SENGSLIPSGR Manihot MeACHT4- OAY44415.1 MADVLSNTNLVSSSFSSSFTGHRNEQK 12 esculenta 1 NSSCRLKGFPRKVNRQTLRLKATSLGS (Cassava) DFHGKRVVLQDNQGKPKRGIYLQMSI KAQHTGLRLKSAPKWWEKGLQPNMR EVTSAQDFVDSLLNAGDKLVIVDFFSP GCGGCKALHPKICQFAEMNPDVLFLH VNYEEHKSMCYSLNIHVLPFFRFYRGA QGRLCSFSCTNATIKKFRDALAKHSPD RCSLGPTKGLEEKELIALASNKDLNFK YAQKPDLPTPIPAKEERVPVVSPSHPNP ALPLPLPLPTASPKSGQGSEEKTLVGSG R Manihot MeACHT4- OAY41970.1 MAAVSSNTNLVSSSCSSSFSSSQNRPEY 13 esculenta 2 RSSRLRVFPQELNHQALRLQTTSLGSD (Cassava) FHGKRVVLQEKPKCKQGISVQSSIKAQ TGLRLKNAKNWWEEELQPNMREVISA QDLVDSLLNAGDKLVIVYFFSPGCGGC RALHPKICQLAKNNADVQFLKVNYEE HKSMCYSLNVHVLPFFRFYRGAQGRV CSFSCTNATIKKFKNALAKHTPDRSSL EPTKGLEEKELIALAANKDLNLTYAPK SDKPIPAPTKEEIVPEIPQSLSLALRRSM ELAQGSAEKTLVASGR Sorghum SbACHT4- KXG39469.1 MAAAQAVAKGSVVAPCGNRAAPGLL 14 bicolor 1 GRRRGAVAARMAPSAVRIGASWRKT AFTGGRLALGLGTRRSRPASRSSFASP AQMNMNLAIGKSMRWWEKGLQPNM REIESAQDLVDSLTNAGDKLVIVDFFSP GCGGCRALHPKICQFAEQNPDVLFLQV NYEEHKSMCYSLHVHVLPFFRFYRGA QGRLCSFSCTNATIKKFKDALAKHKPD RCSLGPTRGLEESEFLALAANKDLQFT YTKEPELIPRGDAPGEVIAPEPAKLPAA TKPLVRLGSEERSLVSSGR Sorghum SbACHT4- XP_002465837. MAAAQAMAKGSVGQGSLGRRRGAEA 15 bicolor 2 1 ARVGGSWRKSAFLGGRLAVGPRRPRP VSRILVTSPAVQQTNLSFAKAMKWWQ KGLQPNMRAIQTAQDLADSLTNAGDG LVVVDFFSPGCAGCHALHPKICQFAER NPDVQFLQVNYEEHKSMCHSLHVHVF PFFRFYRGAQGRLCSFSCTNATIKKFR DALAKHRADRCSLGPTRGLEESELLAL AANKDLQFTYTKEAELAPSMEDVAEV MTADRPGLPTSTMPLARQGSEDRALV SSGR Sorghum SbACHT4- KXG36972.1 MAEALCNGVVASPYGGGDVGVAGRA 16 bicolor 3 RGAAKAALAESLPVGGYATKSSFSAG RMSVSDRKPRPLSRNLEAAAAPGQMN LSFPKAMRWWEKGLHPNMREIESAQD LADSLLNAGDKLVVVDFFSPGCGGCR ALHPKIAQFAEKNPDVLFLQVNYETHK SMCYSLHVHVLPFFRFYRGAEGRVSSF SCTNATVRIDHLSNFKNQQMNE Brassica BnACHT4- CDY06319.1 MAEAAISRTNLIFRGACVNQHKHVDD 17 napus 1 YSVSSPVSFGLRKSFPSLKVKPFNQFQS (Rapeseed) SRSSSSITAQTTLRIGTPQKWWEKGLK ENMREISSAQELVDSLTNAGDKLVVV DFFSPGCGGCKALHPKICQLAEQNPDV QFLQVNYEEHKSMCYSLGVHVLPFFR FYRGAHGRVCSFSCTNATIKKFRDALA KHSPDRCSLGPTKGLEEKELVALAAN KELNFSYTPRAVPVEEEEAPVPASNPG LPVAHPSMKANDGKTLVSSGR Brassica BnACHT4- XP_013711973. MAEVISKTSLFFRGACVNHHHHADDF 18 napus 2 1 SVSPVSFGLKKSFSSLKQKPLRSDFSGK (Rapeseed) QILQTFNRSFRSSSVTAQSTLRIGTAQK WWEKGLQENMREISSAQELVDSLADA GDKLVVVDFFSPGCGGCKALHPKMCQ LAEQSADVQFLQVNYEEHKSMCYSLG VHVLPFFRFYRGAQGRVCSFSCTNATI KKFRDALAKHSPDRCSLGPTKGLEEKE LVALAANKELNFSYTPKVVPVEKEAAI PTSNPALPVPHPSMSGSEEKTLVSAGR Brassica BnACHT4- XP_013672630. MAEAAISRTNLIFRGACVTHHHHADD 19 napus 3 1 YSVSSSPVSFGLRKSFSSLKLKPPRQID (Rapeseed) TQFQTFTRSSRASSITAQTTLRIGTPQK WWEKGLKENMREISSAQELVDSLTNA GDKLVVVDFFSPGCGGCKALHPKICQL AEQNPDVQFLQVNYEEHKSMCYSLGV HVLPFFRFYRGAHGRVCSFSCTNATIK KFRDALAKHSPDRCSLGPTKGLEEKEL VALAANKELNFSYTPRAVPVEEEEAPV PASKPGLAVPHPSMSANDEKTLVSAG R Brassica BnACHT4- XP_013716476. MAEAAISRTNLIFRGACVNQHKHVDD 20 napus 4 1 YSVSSPVSFGLRKSFPSLKVKPFNQFQS (Rapeseed) SRSSSSITAQTALRIGTPQRWWEKGLK ENMREISSAQELVDSLTNAGDKLVVV DFFSPGCGGCKALHPKICQLAEQNPDV QFLQVNYEEHKSMCYSLGVHVLPFFR FYRGAHGRVCSFSCTNATIKKFRDALA KHTPDRCSLGPTKGLEEKELVALAAN KELNFSYTPKDVPVEEEAAPVPVSNPG LPVAHPSMKANDGKTLVSSGR Brassica BnACHT4- XP_013641071. MAEVISKTSLFFGGGACVNHHHHHVD 21 napus 5 1 DLSVSPVSFGFKKSFSSSLKQKPLRSDF (Rapeseed) SGKQILETFNRSFRSSSVTAQSTLRIGT AHKWWEKGSQENMREISSAQDLVDSL ADAGDKLVVVDFFSPGCGGCKALHPK MCQLAEQSPDVQFLQVNYEEHKSMCY SLGVHVLPFFRFYRGAQGRVCSFSCTN ATIKKFRDALAKHSPDRCSLGPTKGLE EKELVALAANKELKFSYTPKVVPVEK
EVAIPTSNPGLPVPHPSTMSGSEEKTLV SAGR Ricinus RcACHT4 XP_002525461. MADVLSKTNLVPSSCCNGYKNQKKD 22 communis 1 GAFVLKRSCSLKVSSRKFNPQAFGSQK (Castor) ISLISDFYGKRVIVQEKQLKRGNFHQFS IKAQTGLRLKNAPKWWEKGLQPNMK EITSAQDLVDSLMNAGDKLVIVDFFSP GCGGCKALHPKICQFAEMNPDVQFLQ VNYEEHKSMCYSLNVHVLPFFRFYRG AQGRVCSFSCTNATIKKFKDALAKHTP DRCSLGPTKGLEEKELIALASNKDLNF TCTPKPVQPTAPAQEEIIPAALTPAHVN QTLPLPIPLSTTSLMSAQDLGEKTLVTS GR Phaseolus PvACHT4- XP_007161960. MAEVFTKASFVSSLLGSSQRHHRRVST 23 vulgaris 1 1 VPDTCTFVSGVGGSPSLKLKSPILRSWS (Bean) PSSEFQGKQLLFRVNRGKPNRVSSRLR ASTAAQMTLRIGKVQKWWEKGLQPN MKEVTSAQDLVESLLNAGDKLVVVDF FSPGCGGCKALHPKICQLAEMNPDVQF LQVNYEEHKSMCYSLNVHVLPFFRFY RGAHGRLCSFSCTNATIKKFRDALAKH SPDRCSLGPTKGLEEKELLALAANKDL SFTLPKPLQPEHANEGLATAPAPVPSSE SLPLPSLTLNSEVSQERTLTTAGR Phaseolus PvACHT4- XP_007161924. MAEVLTEASLVSSWHGTTQRHHRRVS 24 vulgaris 2 1 TVPNSSSFVSGVGRFPSLKLKSQILRSL (Bean) SSSSEFQGKKLLFHVNRGLANRISSRLG ASTAAQMTLRIGKGQKWWEKGLQPN MNEVTSAQDLVESLLNAGDKLVVVDF FSPGCGGCKALHPKICQLAEMNPDVQF LQVNYEEHKSMCYSLNVHVLPFFRFY RGAHGRLCSFSCTNATIKKFKDALAKH SPDRCSLGPTKGLEEKELLALAANKDL SFIYAPNPLQPEHENEELATAPAPVPSS ESLPLCHLISEVSKEKTLITAGR Gossypium GhACHT4- NP_001313760. MAEVLGKGNLFTTCNYSQTKNLEGGT 25 histrum 1 1 CLVPKKISGFSLERNGFSSLKVKSQALR (Cotton) SDFNGQRMVFLEKKSMNRRRFCQVPI KAQMQSGLIGRIQKWWEKGLQPNMK EVASAQDLVDSLLNAGDKLVVVDFFS PGCGGCKALHPKICQFAEMNPDVQFL QVNYEEHKSMCYSLNVHVLPFFRFYR GAQGRVCSFSCTNATIKKFRDALAKHT PDRCSLSTTKGLEEKELLALSANKDLS FNYTPIPTHGEILIWKQVPSDSTRKLPL SVPTTSAKQRDSEEKTLVGVGR Gossypium GhACHT4- XP_016753539. MAEVLGKSNLFTACNYSQKKHQEGG 26 histrum 2 1 VPLFSRRISVFCLRKNSFPSLRLEPQAL (Cotton) RSGFNGQRVVFLEKRSLNERRFCRVPI KAQMQTGLIGKTQKWWEKGNQPNM KEVTSAQDLVDSLLNAGDKLVIVDFFS PGCGGCKALHPKICQLAEMNPDVQFL KVNYEEHKSMCYSLNVHVLPFFRFYR GAQGRLCSFSCTNATIKKFKDALAKHS PDRCSLGPTKGLEEKELLALAANKDLS FNYTPKPVHPAPEEIPVLKEVPSGSSFK LKESEEKTLIGVGR Gossypium GhACHT4- XP_016672835. MAEVLGKSNLFTACNCSQKKNQEGGV 27 histrum 3 1 PLFSRRISAFCLRKNSFPSLKLEPQALRS (Cotton) GFNGQRVVVLEKRSLNERRFCRVPIKA QMQTGLIGKTQKWWEKGNQPNMKEV TSAQDLVDSLLNAGDKLVIVDFFSPGC GGCKALHPKICQLAEMNPDVQFLKLN YEEHKSMCYSLNVHVLPFFRFYRGAQ GRLCSFSCTNATIKKFKDALAKHSPDR CSLGPTKGLEEKELLALAANKDLSFNY TPKPVHPAPEEMPVLEEVPSGSSFRPKE SEEKTLVGVGR Glycine GmACHT4- XP_003548763. MAEVLTKASLVSSSWHGVSQRHHHRR 28 max 1 1 VSTVLSNNTCSFRSGVGKFSSLKMNSQ (Soybean) VLRSWSSSSEFQGKKLVFHVNRGLPNR VNSRLRASTGTQMNLRLGKVQKWWE KGLQPNMKEVTSAQDFVDSLLNAGDK LVVVDFFSPGCGGCKALHPKICQFAEM NPDVQFLQVNYEEHKSMCYSLNVHVL PFFRFYRGAHGRLCSFSCTNATIKKFK DALAKHTPDRCSLGPTIGLEEKELEAL AANKDLSFTYSPKPLQPSHENEELATE TASAPALGSGSLPSPSMTLNAVASNER TLTTSGR Glycine GmACHT4- NP_001276128. MKSQVLRSWSSSSEFQGIKLVFHVNRG 29 max 2 1 LPNRVNSRLRASTGAQMSFRLGKVQK (Soybean) WWEKGLQPNMKEVTSAQDFVDSLLS AGDKLVVVDFFSPGCGGCKALHPKIC QFAEMNPDVQFLQVNYEEHKSMCYSL NVHVLPFFRFYRGAHGRLCSFSCTNAT IKKFKDALAKHTPDRCSLGPTKGLEEK ELLALAANKDLSFTNSPEPLQPAHADE ELGTEPAPAPGSKSLPSPSMILNSEVSK KRTLTTSGR Beta BvACHT4 XP_010672407. MADVLTKSSVFSPTISHHHSGSKNFPIK 30 vulgaris 1 CSVAVSNRGRLVGISSLRSSFGGVRIAI (Beet) DKNTSFGSKRRNYQSIDAKMGLSIGKA QKWWEKGLQPNMREITSAEDLVDSLL TAGDTLVVVDFFSPGCGGCRALHPKL CQLAEMNPDVQFLQINYEEHKSMCYS LNVHVLPFFRFYRGAEGRVSSFSCTNA TIKKFKDALAKHNPARCSLGPTKGLEE KELLALAANKDLSFTYTPKPVEAEPVP APALEEVSVKADEQVLAQESLPSFNRK PLSSQPSTVSEEKTLATAAR Musa MaACHT4- XP_009416338. MAETLAQRTLLLPGGHLSLPPFCGMRS 31 acuminate 1 1 RPSLAAFTLFSRTKVEPLRSSSCDSKFH (Banana) GRRLVVGARRGRPSRARLGSGSEQMV LSFKKAIKWWQKGLQPNMVEIESAEH LVDSLLNAGDKLVIVDFFSPGCGGCRA LHPKICQFAESNQNVLFLQINYEQHKS MCYSLGVHVLPFFRFYRGAHGRLCSFS CTNATIKKFKDALAKHITDRCSLGPAR GLEESELLALAANKDLSFNYTSKPVPV PEEIPERIPTSPKLPLHAVRRPAQESEDK ALAAAGR Musa MaACHT4- XP_009406843. MADALAQMTLLSPHGHRSLSRSSDRR 32 acuminate 2 1 NRLVCASKDDLLRSSSSCNSQFHGRRL (Banana) VIGAQRERPLRGNRGSSSVQMTLSFKK ASKWWEKGLHPNMKDIKSAEDLVDSL SNAGDKLVIVDFFSPGCAGCRALHPKI CQFAELNPDVQFLQLNHEEHKSMCYS LNVHVLPFFRFYRGAHGRLCSFSCTNA TIKKFKDALAKHITERCSLGPAKGLEE TELLALAANKDLSFTYTRTPVPVPDEL AEKAPFNPNLPVHAAARLTLESEDKAF AAAGR Capsicum CaACHT4 XP_016552829. MAKLMNKGFVFPSSSDCGHHRPHGISS 33 annuum 1 FPNKSVNLSCLPSTCLLRSYFYGRRLVI (Sweet NEALPKRNAHVAITVQMSMGIRKVQK and Chili WWEKGVQPNMKEVNSAQGLVDSLLS Peppers) AGDKLVVVDFFSPGCGGCKALHPKLC QLAEMNPDVQFLQVNYEEHKSMCYSL NVHLLPFFRFYRGAEGRVCSFSCTNAT IKKFKDALAKYGTDRCTFGPPKGLEEK ELLALAANKELSFNYIPKTEEEPVLVAS QEEVEDRTPNKESPLPLPLPLPISSTSSL KPKQDTEKEAYATSGR Cicer CaACHT4 XP_004493141. MAEILTKTSLVSSWHGNRKQQHRRLS 34 arietinum 1 MVPNKTCSFNTCVGSFPSLKLKSQFLR (Chick SSSFSSEFYGKNTIFRVNRSIPNRINSQF pea) SVSAAPKMTLRIGKIQKWWEKGLQPN MREVTSAQDLVDSLLNAGDKLVIVDF FSPGCGGCRALHPKICQMAEMNPDVE FLQVNYEEHKSMCYSLNVHVLPFFRF YRGAHGRLCSFSCTNATIKKFKDALAK HTPDRCSLEPTKGLEEKELIALSENKDL NFTYTPKPLQPVHTPANEELATTKASP VCSEPLPLPSLTSNSDEVLKERTLTRAG R Solanum SlACHT4- XP_004252003. MTKLMSKGFIFPSSSSDCGEIYDRLRLN 35 lycopersicum 1 1; LHGICSFPNKSVNLSCLPSLKLSSSCLP (Tomato) Solycl2g019740. RTDFYGRRLVINEGLSNFNRRVADITA 1 QMSVGIKKAQKWWEKGVQPNMKEV NSAQELVDSLLSAGDKLVVVDFFSPGC GGCKALHPKLCQLAEMNPDVQFLQVN YEEHKSMCYSLNVHVLPFFRFYRGAE GRVCSFSCTNATIKKFRDALAKYGTDR CTIGSPKGLEEKELLALAANKDLSFNY TPKTEEEPILVTSQKEVRDRTTPNIESPL PLPLPLPITSTSSQTAKRDTEKEAYATS GR Solanum SlACHT4- XP_004249307. MEKLLNKAVFLPSILNSSGIYHSNQHAI 36 lycopersicum 2 1; CVFPVKFNRRYHKSAVATAQMSIGIKR (Tomato) SolyclOg080730. APKWWEKGLQPNMKEVTGAQDLVDT 1 LLNGGDKLVVVDFLSPGCGGCKALHP KICQLAEMNPDVQFLHVNYEEHKSMC YSLNVHVLPFFRFYRGAEGRLCSFSCT NATIKKFKDALTKYGADCCSLGPVKG LEEKELLALAANKDLSFAYTPKTEEPV PLALEEVKVIKTSRQSSSHPNTFSPLPLP LPLASTLHTAKQDSKS Elaeis EgACHT4- XP_010938119. MMEVLSQSGVMSPCGHRWVVRSCKE 37 guineensis 1 1 RSPSFVGFPRSSSRTIESLMSSSRNSGFH (African GRRLSIGAWRVNAVKGNFSSTPVQMS oilpalm) LCVGKALKWWEKELQPNMKEIESAQ DLVDSLLNAGDKLVIVDFFSPGCGGCK ALHPKICQFAKLNPDVLFLQVNYEKH KSMCYSLNVHVLPFFRFYRGAHGRLC SFSCTNATIKKFKDALAKHTTDRCSLG PTKGLEESELMALAANKDLSFSYTRKP VPVPSPDEAAEEVVLSPKLPVSSTPRVI QDSEEKALVAAGR Elaeis EgACHT4- XP_010921294. MAEVLGRSGVFSLRGHRSVAPSCQKR 38 guineensis 2 1 SPSFLGFPLSSSRPIGPPRSSSRRFVIGTR (African RGRSIKGNSSSSRVQMSLGVGKSLKW oilpalm) WEKGVQPNMKEIGSAQDLVDSLLNEG DKLVIVDFFSPGCGGCKALHPKICRIAE MNPHVLFLQINYEKHKSMCYSLHVHV LPFFRFYRGAHGRLCSFSCTNATIKKFK DALAKHTTDRCSLGPTKGLEESELVAL AANKDLSFNYTRKPVPVLTPDEAAEK VPLSPKLPVSSAPRVIKDSEDKALVAA GT Setaria SiACHT4- XP_004984516. MAAAQAVAKGSVVSPCGSRAAPGLLS 39 italic 1 2 RRRGAVATRMAPSAVRIGGSWRKTAF (Foxtail LGGRLAVGPRRSRSASRTLVASPVQM millet) NMNLAIGKSMRWWEKGLQPNMREIES AQDLVDSLTNAGDRLVIVDFFSPGCGG CRALHPKICQFAEQNPDVLFLQVNHEE HKSMCYSLHVHVLPFFRFYRGAQGRL CSFSCTNATIKKFKDALAKHKPDRCSI GPTRGLEESELLALAANKDLQFTYTKK PELIPSGDAAAEVIAPEPTKLPAATKPS VKIGSEERSXWSHQEDEMNDL Setaria SiACHT4- XP_004985651. MAAAQAMAKMSVGSPACNRAAGSLC 40 italic 2 1 RWRGAVAVRLGGSWSWRKSPFLGGR (Foxtail MAVGPRRSRPVSRNPVASPVQMNLSF millet) GKTMKWWEKGLQPNMRAIHTAQELV DSLINAGDGLVIVDFFSPGCAGCHALH PKICQFAERNPDVQFLQVNFEEHKSMC HSLHVHVFPFFRFYRGAQGRLCSFSCT NATIKKFKDALAKHKPDRCSLGPIKGL EESELLALAANRDLQFTYTKEQDLAPS MEDGAEVITHDHPRLPAAAKPLVRQG SEDRAVVSSGR Setaria SiACHT4- XP_004958724. MAEALCNGVVPSPCGGDVGVAGRVS 41 italic 3 1 GAAAALAESVPIGGYRTKSSFSAGRM (Foxtail AMTDRKMRPLPRSIEAAPGQMNLSFP millet) KAMRWWEKGLQPNMREIESAQDLAD SLLNAGDKLVVVDFFSPGCGGCRALH AKIAQFAEKNPDVMFLQVNYETHKSM CYSLHVHVLPFFRFYRGAEGRVSSFSC TNATIKKFKDALAKHGPDRCSLGPAR GLEESELMALAANKDLQFTYEKPGLV PLAEAIAKEAAAPGGPWFPLPASATQF LTQGSENSLLSSGR Chlamydomonas CrACHT4 XP_001697443. MASILNRAGSRSLVFETKQSLRSIPGSL 42 reinhardtii 1 LSLRSVALKPFRTTICAAGALLTARRST (Single- SGLGRANGVVCQAGRSTGEWWKKDN cell green PPNMRDINSIQELVDALSDAGDRLVIV alga) EFYAQWCNACRALFPKICKIMAENPD VLFLKVNFDDNRDACRTLSVKVLPYF
HFYRGAEGRVAAFSATISKLQLFKDAV ETYSAAFCSLEPAPGLAEFPDLIAHPEL HPEEAAEAARRARLASTESEEELHPLA DTPTVVG Chlorella CvACHT4 XP_005851922. WWTKSAPPNVVHIKSVQHLVDEMVR 43 (Single- 1, partial AERLAGAGERLVIMDVFAPWCAACKA cell green LYPKLMKLMEERPDVLLLTVNFDENK alga) TVVKAMGVKVLPYFMFYRGKEGKLQ EFSASNKRFHLIQEAIERHSTDRCFLDS TDEEPVLAEFPTVVPAKGISGSLDEPAG RAAGKAVGQPQPVA
[0054] In another embodiment, the amino acid sequence of ACHT4 is a homolog of any one of the sequences listed in Table 1. In another embodiment, the amino acid sequence of ACHT4 is a paralog of any one of the sequences listed in Table 1. In another embodiment, the amino acid sequence of ACHT4 is a fragment of any one of the sequences listed in Table 1. In another embodiment, the amino acid sequence of ACHT4 is a variant of any one of the sequences listed in Table 1. In another embodiment, the amino acid sequence of ACHT4 comprises any one of the sequences listed in Table 1. In another embodiment, the amino acid sequence of ACHT4 consists essentially of any one of the sequences listed in Table 1. In another embodiment, the amino acid sequence of ACHT4 consists of any one of the sequences listed in Table 1. In another embodiment, the amino acid sequence of ACHT4 corresponds to any one of the sequences listed in Table 1.
[0055] In another embodiment, the amino acid sequence of ACHT4 is a homolog of any one of SEQ ID NOs: 1-43. In another embodiment, the amino acid sequence of ACHT4 is a paralog of any one of SEQ ID NOs: 1-43. In another embodiment, the amino acid sequence of ACHT4 is a fragment of any one of SEQ ID NOs: 1-43. In another embodiment, the amino acid sequence of ACHT4 is a variant of any one of SEQ ID NOs: 1-43. In another embodiment, the amino acid sequence of ACHT4 comprises any one of SEQ ID NOs: 1-43. In another embodiment, the amino acid sequence of ACHT4 consists essentially of any one of SEQ ID NOs: 1-43. In another embodiment, the amino acid sequence of ACHT4 consists of any one of SEQ ID NOs: 1-43. In another embodiment, the amino acid sequence of ACHT4 corresponds to any one of SEQ ID NOs: 1-43.
[0056] In one embodiment, there is one paralog of ACHT4 in a species. In another embodiment, there are two paralogs of ACHT4 in a species. In another embodiment, there are three paralogs of ACHT4 in a species. In another embodiment, there are four paralogs of ACHT4 in a species. In another embodiment, there are five paralogs of ACHT4 in a species. In another embodiment, there are six paralogs of ACHT4 in a species. In another embodiment, there are seven or more paralogs of ACHT4 in a species.
[0057] In one embodiment, a "corresponding sequence" is an amino acid (or nucleic acid) sequence from a first species for which there is a similar or equivalent sequence in a second species, which may be inferred by sequence alignment, as is well known in the art.
TABLE-US-00002 TABLE 2 ACHT4 nucleic acid sequences Database SEQ Para- Accession ID Organism logs No. Nucleic Acid Sequence NO: Arabidopsis AtACHT4 NM_100730 ATGACGGAAGTGATTAGCAAAACGAGTTTGTT 44 thaliana CTTAGGAGCTTGTGGTAATCATCACCGTGTTGA TGATTTCTCTTTCTCTCCGGTGAGTTTTGGTGG GTTTGGTTTGAAAAAGAGTTTCTCTTGTCTGAA GCTTAAGAGTCAGAAGCCTCTTAGAAGTGTAT TTTACGGAAAACAGATCGTTTTCGGAGATTCTC AAGACGAGAGCTTCAGAAGATCATCAGCTATC ACAGCTCAGACAACTTTGAGGATTGGGACAGC TCAGAAGTGGTGGGAGAAAGGTCTGAAAGAT AACATGAGAGAGATCTCTTCAGCTCAAGAGCT CGTTGATTCTCTTACTAACGCTGGTGATAAGCT TGTTGTTGTTGATTTCTTCTCACCTGGCTGTGG TGGCTGCAAGGCTCTCCATCCTAAGATATGTC AGTTTGCAGAGATGAACCCGGATGTGCAGTTT CTTCAGGTGAATTACGAGGAGCATAAGTCCAT GTGTTATAGTCTTGGTGTCCATGTTCTCCCTTTT TTCCGATTCTACCGTGGCTCTCAGGGTCGTGTT TGCAGCTTTAGCTGTACCAATGCCACGATCAA GAAATTCAGAGATGCCTTGGCAAAGCATGGTC CAGATAGGTGCAGCCTCGGACCGACCAAAGGC CTTGAAGAGAAAGAGCTTGTGGCACTTGCAGC CAACAAAGAACTCAACTTTACTTACACACCAA AGCCTGTACCAGTTGAGAAAGAAGCAGCCACT CCTGATTCAAACCCAAGTCTCCCTGTTCCTCTT CCTTCGATGAGCTCCAATGACGAAAAAACATT GGTCTCCGCAGGGAGATGA Solanum StACHT4- XM_006347961.2; ATGATGAAATTGATGAGCAAAGGTTTTATGTT 45 tuberosum 1 PGSC0003DMT400048452 TCCTTCGTCTTCTGATTGTGGTGAAATTTATCA (Potato) TCATCGTCCTCTTAATCTACCTGGGATCTGTTC TTTTCCCAATAAATCGGTCAATCTTTCTTGTCT TCCTTCGTTGAACCTTTCATCTTCTTGTTTGCCA AGAACCGATTTTTATGGTCGTAGATTGGTTATA AATGAAGGCGTATCCAAGTTCAACCGAAGAAA TTCCCAAGTTGTTGATATCACTGCTCAGATGAG TATTGGAATCAGGAAAGCACAGAAATGGTGGG AGAAAGGGGTTCAACCTAACATGAAAGAGGT GAACAGTGCACAAGAACTTGTTGACTCTCTTTT GAGTGCAGGGGACAAATTAGTTGTTGTTGATT TCTTTTCCCCTGGCTGTGGAGGTTGTAAAGCTC TTCACCCCAAGTTGTGTCAGCTGGCAGAGATG AATCCAGATGTGCATTTTTTACAGGTGAACTAT GAGGAACACAAGTCGATGTGTTACTCTCTTAA TGTACATGTTCTCCCATTTTTCCGTTTCTATAG AGGAGCTGAAGGCCGTGTTTGCAGCTTTAGCT GTACCAATGCCACGATCAAAAAATTCAAAGAT GCACTGGCGAAGTATGGTACAGATCGTTGCAC CCTTGGGCCGCCAAAAGGGCTGGAGGAGAAA GAGCTACTTGCACTGGCAGCTAACAAGGATCT CTCCTTTAATTACACTCCAAAAACAGAAGAAG CACCCGTCCTTGTTACCTCACAAAAGGAAGTT CAGGATACAACTCCTCCAAATATAGAGTCCCC TCTACCACTTCCTCTTCCTCTCCCCATTGCGTC AACTAGCTCACAGACGGCCAAACGGGATACAG AGAAAGAAGCATATGCTACTTCTGGTAGATGA Solanum StACHT4- XM_006351306.2; ATGAAATTCAATAGAAGAAATCACAAATCA 46 tuberosum 2 PGSC0003DMT400060823 GCAGCTGCAACTGCTCAGATGAGCATAGGT (Potato) ATCAGGAAAGCTCCTAAATGGTGGGAGAAA GGACTTCAACCGAATATGAAAGAGGTGATG GGTGCTCAAGACCTCGCTGACACCCTTCTA AACGCTGGGGATAAACTAGTCGTTGTCGAT TTCCTTTCCCCTGGCTGTGGAGGCTGCAAA GCCCTTCATCCAAAGATATGTCAGTTAGCA GAGATGAATCCGGATGTGCAGTTTTTACAT GTGAACTATGAGGAACACAAGTCAATGTGT TACTCGCTGAACGTACATGTTCTCCCATTT TTTCGTTTCTATAGAGGTGCTGAAGGTCGT CTTTGTAGCTTTAGTTGCACCAATGCCACG ATAAAAAAATTCAAAGATGCATTGACAAAG TATGGTGCAGATTGTTGCAGCCTCGAACCA GTTAAAGGGCTCGAGGAGAAAGAGCTACTT GCCCTAGCAGCTAATAAGGACCTCTCTTTT GCTTACACACCAAAAACAGAAGAACCAATG CCTGTTGCCTTACAAGATGCTAAGGTGATA AAAACAAGCAGAACATCTTCATCTTGTCCA AATACATTCTCCCTGTTACCACTTCCCCTT CCTCTTCCTCTAGCATCAACTTCACATAAG GCCAAACAGGACTCGAAGAGTGAAGTTTTT TAA Zea mays ZmACHT4- NM_001279773.1 ATGGCGGCAGCGCAGGCGATCTCGAAGGGGA 47 (Maize) 1 GCGTGGTGTCTCCGTGCGGCAATCGAGCGGCG CCGGGCCTCCTTGCCAGGCGGAGGGGTGCCGT GGCGGCGCGGGTGGCGCCGTCAGCGGCGCGG ATCGGGGGCTTCTGGAGGAAGAACGCGTTTCC TGGCGGGAGGCTAACCCTGAGGACGAGGAGA TCCAGGGCCGCGTCACCGGCGCAGATGAACAT GAACCTTGCGCTTGGGAAATCGATGAGGTGGT GGGAGAAGGGGTTGCAGCCCAACATGCGTGA GATCGAGTCCGCCCAAGACCTTGTCGATGCTTT GACCAACGCCGGCGACAGGCTCGTCGTCGTCG ACTTCTTCTCTCCTGGCTGCGGCGGCTGCCGTG CTTTTCACCCCAAGATTTGTCAATTTGCGGAGC AGAATCCAGATGTGCTGTTCTTGCAAGTGAAC TACGAGGAGCACAAGTCTATGTGCCACAGCCT TCATGTCCATGTCCTACCCTTGTTCAGATTCTA CAGGGGAGCACAGGGACGACTCTGTAGCTTCA GTTGTACAAACACAACTATTAAGAAGTTCAGG GATGCACTCGCGAAGCACAAGCCAGATAGATG TAGCCTTGGCCCAACCAGGGGGCTAGAGGAAT CTGAGTTATTAGCCTTGGCGGCAAACAAGGAC CTGCAGTTCACCTACGCGAAGGAGGAACCAGA ACTGATCCCCAGGGGAGATGCTCCTGGGGAGG TCGTTGCTCCTGAGCCTGCAAAGCTTCCTGCGG CTCCAAAGCCTTTGGTCAGGCTGGGGTCCGAG GAGAGGTCACTGGTCTCGTCAGGAAGATGA Zea mays ZmACHT4- BT084302. ATGGCTGACGCGTTGTGCAACGGCGTCGTGGC 48 (Maize) 2 1 GTCCCCGTGCGGCCGGGACGTCGCCGGCCGGG CCAGGGGCGCCGCCAGGGCCGCGCTCGCGGAG TCCCTGCAGGTCGCCGGGCACGCCAGCAAGAC CTCCTTCTCCGCCGGGAGGATGTCGGTCAAGG ACAGCAAGCCGAGGCCCCTGTCGCGTAGCCTC GAGGCCGCCGCGCCAGGACAGATGAACCTGTC GTTCCCCAAAGCCATGCGGTGGTGGAAGAAGG GGCTGCACCCCAACATGCGCGAGGTCGAGTCC GCGCAGGACCTGGCCGACTCGCTGCTCAGCGC CGGCGACAAGCTCGTGGTCGTCGACTTCTTCTC CCCAGGCTGCGGCGGCTGCCGCGCCCTCCACC CCAAGATCGCCCAGTTCGCCGAGAAGAACCCG GGCGTGCAGTTCTTGCAGGTGAACTACGAGAC GCACAAGTCCATGTGCTACAGCCTCCGCGTCC ACGTCCTCCCTTTCTTCAGGTTCTACCGGGGAG CCGAGGGCCGGGTCAGCAGCTTCAGCTGCACC AACGCAACGATCAACAAGTTCAAGGACGCGCT CGCCAAGCACGGGGCTGAGAGGTGTAGCCTCG GGCCTGCGCGGGGGCTGGACGAGTCGGAGCTC ATGGCCTTGGCTGAGAACAGGGACCTGCACTT CACCTACGACAAGCCGGGCGGCCTCGTCCCCC TCGCCGAAGCTATTGCCAAGGAGGCTGCCGCA CCGGGAGGCCCGTGGCTTCCTCTGCCTGCGTCC CTGCTCGGCCAGGGATCCGACAACTCATTGCT GCCCTCTGGAAGATAG Zea mays ZmACHT4- BT069464. ATGGCGGCGGCGCAGGTGGTCGCGAAGGGGAGCGTGG 49 (Maize) 3 1 TGTCGCCGTGCGGCAATCGAGCGGTGCCGGGCCTCTT GGGCAGGCGGAGGGATGCCGTGGCGGCGCAGATGACG CCGTCGGCGGTGCGGATCGGGGGCTCCTGGAGGAAGA ACGCGTTTCCTGGCGTGAGGCTAGCCTTGGGGACGAG GAGATCCAGGCCCGCGTCCCGGAGTTTCTCCGCCTCG CCGGTGCAGATGAACATGAACCTTGCGATTGGGAAAT CAATGAGGTGGTGGGAGAAGGGGTTGCAGCCCAACAT GCGTGAGATCGAGTCCGCCCAAGACCTTGTAGATTCC TTAACCAACGCCGGCGAGAGGCTCGTCGTCGTCGACT TCTTCTCCCCTGGCTGCGGCGGCTGCCGTGCTCTTCA CCCGAAGATTTGCCAATTTGCGGAGCGGAACCCTGAT GTGCTGTTCTTGCAAGTGAACTACGAGGAGCACAAGT CTATGTGCTACAGCCTTCGTGTCCATGTGCTACCCTT CTTCAGATTCTACAGAGGAGCACAGGGACGACTCTGC AGCTTCAGCTGTACAAACGCAACTGTAAGATCATGTC CATGTTTCTTCTGTTCGTATGATTATTGGTATGTCCT CAATAACATGCAACATATCCAAAATGACCTTTATTGA Oryza OsACHT4- XM_015776801.1 ATGGCGGCGACGGCGGCGCAGGCGGTGGCGG 50 sativa 1 TGAAGGGGAGCGTGGCGGTGCCGCCGTGCGGG (Rice) AGCCGCGGCCGGCGGAGGGGCGCCGTGGCGTC GGTGCGCATGGCGGCGGCGGCGGCGACGTCGG CGTTGCGGATCGGCAGGAGGAGCCCCTTCCTC GGCCGGAGGCTGGCGGTTGGGCCGAGGAGATC CAGGCCCGTGCCCCGGAATCTCGTCGCGCCGG TGCAGATGAATCTCGCGTTTGCGAAAGCCACG AAGTGGTGGGAGAAGGGATTGCAGCCCAACAT GCGGGAGGTCGAGTCCGCGCAAGACCTCGTCG ACTCCTTGACCAACGCCGGCGACAATCTCGTC ATCGTCGACTTCTTCTCCCCTGGCTGCGGCGGC TGCCGTGCCCTCCACCCCAAGATTTGCCAGATT GCAGAGCAGAATCCGGACGTGCTGTTCTTGCA GGTGAACTATGAGGAGCACAAGTCTATGTGCT ACAGCCTCCATGTTCATGTTCTTCCTTTCTTCA GGTTCTACAGGGGAGCTCAGGGCCGGCTCTGC AGCTTCAGCTGTACTAACGCAACTATTAAGAA GTTCAGGGATGCGCTTGCTAAGCATAAACCAG ATAGATGCAGCCTTGGCCCAACTAGGGGGCTC GAGGAGTCGGAGCTATTGGCGCTGGCTGCGAA CAAGGATCTGCAGTTCAACTACACCAAGAAAC CAGAACTGGTTCCTAGCGGAGATGCCGCAGCT GCCCAGGAATTGGATCGTGGAAGCACAAAGCT TTCTCCACCCGCAAAACCATTGGTCAAGCAGG GCTCTGAAGAGAGGTCCTTGGTCTCATCAGGC AGATGA Oryza OsACHT4- XM_015791237.1 ATGGCTGAGGCACTGTGCAGCGGCAGCGTCGC 51 sativa 2 GTCCCCGTGCGGGGAGGTGGGTGTGGGGTTCG (Rice) CCGCCGGCCTTGTGAGGGGCGCCGCGGCGGCG GCGGCGCTCGCGGAGTCTGTGCCGATTGGTGG GTACAGCAGCAAGAGCACGTTCCCGAGTGGGA GGGTGGCGCTCACGGAGAGGAAGGCGAGGCC CCTGCCACGGAATCTCGAAGCGGCGCATGGGC AGATGAACCTGACGATTGGGAAGGCCATGAGG TGGTGGGAGAAGTGCCTGCAGCCCAACATGAG GGAGATCGAGTCGGCGCAAGACCTCGCCGACT CCCTCCTCAACGCCGGCGACAAGCTCGTCGTC GTCGACTTCTTCTCCCCGGGCTGCGGTGGCTGC CGCGCCCTACACCCCAAGATTGCTCAACTAGC CGAGAAGAACCCGGAGGTGCTGTTCTTGCAAG TGAACTACGAGAAGCACAAGTCAATGTGCTAC AGCCTCCATGTTCATGTTCTGCCATTCTTCAGG TTCTACAGGGGAGCTCAGGGCCGTGTCAGCAG CTTCAGCTGCACAAACGCAACTATCAAGAAGT TCAAGGATGCACTTGCCAAGCATGGTCCGGAC AGGTGTGGCCTCGGCCCGGCGAAGGGGCTCGA GGAGTCGGAGCTCATGGCGTTGGCCATAAACA GGGACCTGAACTTCACCTACACACCAAACCAA GACCTTGTCCCAATTGCAGACGCCCTCCTGAA GGAAGCTGCTGCACCTGGAGGTCCATGGCTGC CATTGCCCGCAACGGCGACGCAGCTGTTCATT CAGGGATCTGAGAATTCGCTGTTGTCATCTGG AAGATAG Hordeum HvACHT4- AK371865.1 ATGGCGACGGCGCAGGCGGTGGCCAAGGGGA 52 vulgare 1 CCGTGGTCTCTCCGTGCGGCACCCGGGCCGCA (Barley) GGATTTGGAGCCCGGCGGCGGGGCGCCGTGGC GGCCCGCATGTCGCCCTGCGCGCCGGCGGCGG TGCGGATCGGCAGGAAAAGCCCGTTTCTTGGC GCTAGGCTCACGGTCGGTCCCAGGAGATCCAA GCTCGTTCCCCGGAATCTTGTCTCCTCACCGGT GCAGATGAACCTTGCGTTTGCGAAATCCACCA AGTGGTGGGAAAAGGGTCTGAAGCCCAACATG AGGGAGATCGAGTCCGCCCAGGACCTCGTCGA CTCGTTGGCTAACGCCGGCGACAGGCTCGTCG TTGTTGACTTCTTCTCCCCTGGCTGCGGCGGCT GCCGTGCCCTCCACCCAAAGATTTGCCAGTTTG GGGAGCAGAACCCAGATGTGCTGTTCTTGCAA GTGAACTACGAGGAACACAAGTCCATGTGCTA CAGCCTCCATGTCCATGTGCTGCCCTTCTTCAG GTTCTACAGGGGAGCCCAGGGCCGCCTCTGCA GCTTCAGCTGTACTAACGCAACCATAAAGAAG TTCAGGGATGCGCTTGCCAAGCATAATCCTGA TAGGTGTAGCATTGGTCCAACCAGGGGCCTCG AGGAGTCTGAGCTGCTGGCTTTGGCTGCGAAC AAGGACCTGCAGTTCACATACACGAAGCAGCC AGAACCAGTTCCGAGTGGTGATTCCGAGTTCA TTGCTCCTGGGAGCCCAAGGCTTCCTCCACCTG CAAAACCATTGGTTCGGCAGGGTTCCGGAGAG AGGACCTTGGTCTCATCAGGAAGATGA Hordeum HvACHT4- AK376663.1 ATGGCCAACGCGCTTTACGGCGGCGGCGTGGC 53 vulgare 2 GGCGCCGTGCGGTGACTTGGGCGCCGCGGCCG (Barley) CGCTCGCGGAGTCTTTGCCGATGGGCGGCGGG TACCGCGCGAGGAGCTCCTTCCCCGCCGGGAG GGTGGCGCTGGCGGAGAGGCCCCTGCCCCGGA GCCTCCAGGTGGCGGCCGCTGCTGGACAGATG
AACGGGAACCTGACGATTGGCAAGGCCATGAG GTGGTGGGAGAAGGGGACGCAGCCCAACATG AGGGAGGTCGAGTCCGCGCAAGACCTCGCCGA CTCCCTGCTCAACGCCGGCGACAAGCTCGTCG TCGTCGACTTCTTCTCCCCCGGCTGCGGTGGCT GCCGCGCGCTCCACCCCAAGATTGCGCAGTTC GCCGAGCGTAATCCGGACGTGCTGTTCCTGCA AGTCAACTACGAGAAGCACAAGTCCATGTGCT ACAGCCTCCATGTCCATGTCCTCCCTTTCTTCA GGTTCTACAGGGGAGCTCAGGGCAGGGTCAGC AGCTTCAGCTGCACCAACGCAACCATAAAGAA GTTCAAGGACGCCCTCGCAAAGCACTCGCCGG ACAGGTGCAGCCTCGGCCCGGCGCGGGGGCTT GAGAAGGCGGAGCTCTTGGCTCTGGCTGAGAA CAGGGACCTGGAATTCACCTACAGCGAGAAGC CGACACTTGTGCCGATCGCAGAGGCCATCAGG ATGGAAGCTGCCTCAATCGGAGGCCCATGGCT GCCATTGCCTCCGGCCGCGACGCAGCCGTTTC CTCTGGGATCCGAGAATGGCTCGCTCATCCCCT CTGGAAGATAG Triticum TaACHT4 AK335384.1 ATGGCCAGCGCGCTATGCGGCGGCGGCAGCGG 54 aestivum CAGCGTGGCGGCGCCGTGCGGGGACTTGGGCG (Wheat) CCGCGGCGGCGCTCGCGGAGTCTTTGCCGATG GGCGCCGGGTACCGCGCCAAGAGCTCCTTCCC CGCCGGGAGGGTGGCGCTGGCGGACAGGCCCC TGCGCCGGGGCCTCCAAGTGGCGGCGGCTGCT GGACAGATGAACGGGAACCTGACGATTGGCA AGGCCATGAGGTGGTGGGAGAAGGTGACGCA CCCCAATATGAGGGAGGTCGAGTCCGCGCAAG ACCTCGCCGACTCCCTGCTCAACGCCGGCGAC AAGCTCGTCGTCGTCGACTTCTTCTCCCCCGGC TGCGGTGGCTGCCGCGCTCTCCACCCCAAGAT TGCGCAGTTCGCTGAGCGGAATCCGGACGTGC TGTTCCTGCAAGTCAACTACGAGAAGCACAAG TCCATGTGCTACAGCCTCCATGTCCATGTCCTC CCTTTCTTCAGGTTCTACAGGGGAGCCCAGGG CAGGGTCAGCAGCTTCAGCTGCACAAATGCAA CCATCAAGAAGTTCAAGGACGCCCTCGCAAAG CACTCGCCGGACAGGTGCAGCCTCGGCCCGGC GCGGGGGCTCGAGGAGGCGGAGCTCTTGGCTC TGGCGGCAAACAGGGACCTGGAATTCACCTAC AACGAGAAGCCGACGCTGGTGCCGATCGCCGA GGCTATCCAGATGGAAGCTGCCTCCATTGGCG GCCCATGGATGCCATTGCCCGCGGCCGCGACG CAGCCGCTCACTCTGGGATCTGAGAATGGCTC GCTGATCCCCTCCGGAAGATAG Manihot MeACHT4- Manes. ATGGCTGATGTTTTGAGCAATACCAATCTGGTT 55 esculenta 1 08G148200. CTTCTTCCTTCTCTTCATCTTTTACTGGTCACC (Cassava) 1 GAAACGAGCAGAAAAATAGCTCTTGCAGGCTA Downloaded AAAGGGTTCCCCCGAAAAGTGAATCGTCAGAC From TTTGAGATTGAAAGCGACATCGCTTGGCAGTG Phytozome ATTTTCATGGAAAGAGGGTTGTTCTTCAAGAC AATCAAGGCAAACCCAAGAGAGGGATTTATCT TCAAATGTCAATTAAGGCTCAGCATACTGGCC TTAGACTCAAGAGTGCTCCAAAATGGTGGGAA AAAGGATTGCAACCCAACATGAGGGAGGTGA CCTCTGCTCAAGACTTTGTGGACTCCCTCTTGA ACGCTGGAGATAAACTTGTCATTGTTGATTTCT TCTCCCCTGGTTGTGGTGGCTGCAAGGCTCTCC ATCCCAAGATATGTCAGTTTGCAGAGATGAAC CCAGATGTGCTGTTCCTTCATGTGAATTATGAG GAACATAAATCCATGTGTTATAGCCTCAATAT CCATGTGCTTCCCTTCTTCAGGTTTTATCGAGG GGCGCAAGGCCGGTTATGCAGCTTTAGCTGCA CTAATGCTACGATAAAAAAATTCAGAGATGCA CTGGCCAAGCACTCTCCAGACCGGTGCAGTCT CGGGCCAACAAAAGGGCTGGAGGAGAAAGAG CTTATTGCATTGGCTTCCAACAAAGATCTCAAC TTCAAATATGCACAGAAACCAGATCTGCCAAC GCCAATTCCTGCCAAGGAAGAGAGAGTGCCAG TAGTATCCCCATCTCATCCAAATCCAGCTCTAC CTCTACCTCTTCCTCTTCCCACAGCAAGTCCAA AATCTGGACAAGGCTCAGAGGAGAAAACGTTG GTCGGATCAGGGAGATGA Manihot MeACHT4- Manes. ATGGCCGCTGTTTCTAGCAACACCAATCTTGTT 56 esculenta 2 09G143500. TCTTCTTCTTGTTCTTCATCCTTTAGTTCTTCGC (Cassava) 1 AAAACCGCCCCGAATACCGCTCTTCCAGGCTC Downloaded AGAGTGTTCCCTCAGGAATTGAATCATCAGGC From TTTGAGATTACAAACTACGTCGCTTGGCAGTG Phytozome ATTTTCATGGAAAGAGGGTTGTTCTTCAAGAA AAACCAAAATGCAAACAAGGGATTTCCGTTCA AAGCTCAATTAAGGCTCAGCAGACTGGCCTTA GACTCAAGAATGCTAAAAATTGGTGGGAGGAG GAGTTGCAACCCAACATGAGGGAGGTGATCTC TGCTCAAGATCTTGTGGACTCCCTCCTTAATGC TGGCGATAAGCTTGTCATTGTTTATTTCTTCTC CCCTGGCTGTGGTGGCTGTAGGGCTCTCCATCC CAAGATATGTCAATTGGCAAAGAACAATGCAG ATGTGCAGTTTCTTAAAGTGAACTATGAGGAG CACAAATCCATGTGTTATAGCCTCAATGTTCAT GTCCTTCCATTCTTCAGGTTTTACAGAGGGGCT CAAGGCCGAGTCTGCAGCTTTAGCTGCACCAA CGCCACGATCAAGAAATTTAAAAATGCATTGG CCAAGCACACCCCAGACAGATCCAGCCTCGAG CCAACAAAAGGGCTGGAGGAGAAAGAGCTCA TTGCATTGGCTGCCAATAAAGATCTCAACTTA ACATATGCACCAAAATCAGATAAGCCAATCCC AGCTCCAACTAAGGAAGAGATAGTACCCGAAA TTCCCCAATCTCTTTCTCTTGCTCTTCGTAGGA GTATGGAGCTTGCTCAAGGCTCAGCCGAAAAG ACCTTGGTCGCTTCAGGGAGATGA Sorghum SbACHT4- gnl|SbGDB| ATGGCGGCAGCGCAGGCGGTCGCGAAGGGGA 57 bicolor 1 Sb01g036620.1 GCGTGGTTGCGCCGTGCGGCAATCGAGCGGCG Downloaded CCGGGCCTCCTTGGCAGGCGGAGGGGTGCCGT From GGCGGCGCGGATGGCGCCGTCGGCGGTGCGGA Phytozome TCGGGGCCTCATGGAGGAAGACCGCGTTTACA GGCGGGAGGCTAGCCTTGGGGTTGGGGACGAG GAGATCCAGGCCCGCGTCCCGGAGTTCTTTCG CGTCGCCGGCGCAGATGAACATGAACCTTGCG ATTGGGAAATCGATGAGGTGGTGGGAGAAGG GGTTGCAGCCCAACATGCGTGAGATCGAGTCC GCCCAAGACCTTGTCGATTCCTTGACCAACGC CGGCGACAAGCTCGTCATCGTCGACTTCTTCTC CCCTGGCTGCGGCGGCTGCCGTGCTCTTCACCC GAAGATTTGTCAATTTGCGGAGCAGAACCCAG ATGTGCTGTTCTTGCAAGTGAACTACGAGGAG CACAAGTCTATGTGCTACAGTCTTCATGTCCAT GTCCTACCCTTCTTCAGATTCTACAGGGGAGCA CAGGGACGGCTCTGCAGCTTCAGTTGTACAAA CGCAACCATTAAGAAGTTCAAGGATGCACTTG CGAAGCACAAGCCAGATAGATGTAGCCTTGGC CCAACCAGGGGGCTAGAGGAATCGGAGTTTTT AGCCTTGGCAGCAAACAAGGACCTGCAGTTCA CCTACACCAAGGAGCCAGAACTGATTCCCAGG GGAGATGCTCCTGGGGAGGTCATTGCTCCCGA GCCTGCAAAGCTTCCTGCGGCCACAAAGCCTT TGGTCAGGCTGGGGTCCGAAGAAAGGTCCTTG GTCTCATCAGGAAGATGA Sorghum SbACHT4- XM_002465792.1 ATGGCGGCGGCGCAGGCGATGGCGAAAGGGA 58 bicolor 2 GCGTGGGGCAGGGGTCTCTTGGTCGGCGGAGG GGCGCCGAGGCGGCGCGGGTCGGAGGATCAT GGAGGAAGAGCGCGTTCCTCGGCGGGAGGCTG GCGGTTGGGCCCAGGAGACCGAGACCCGTGTC CCGGATTCTAGTTACGTCGCCGGCGGTGCAGC AGACGAACCTTTCATTTGCGAAAGCCATGAAG TGGTGGCAGAAGGGATTGCAGCCCAACATGCG GGCGATCCAGACCGCCCAAGACCTCGCCGATT CCTTGACCAACGCCGGCGACGGGCTCGTCGTC GTCGACTTCTTCTCACCCGGCTGCGCTGGCTGC CATGCTCTCCACCCCAAGATTTGTCAGTTCGCG GAGAGGAACCCGGATGTGCAGTTCCTGCAGGT GAACTATGAGGAGCACAAGTCTATGTGCCACA GCCTTCACGTTCATGTGTTCCCTTTCTTCAGGT TCTACAGGGGAGCTCAGGGTCGGCTCTGCAGC TTCAGCTGTACCAATGCAACTATTAAGAAGTT CAGGGATGCACTTGCAAAGCACAGAGCTGATA GATGCAGCCTTGGCCCTACTCGGGGACTAGAA GAATCAGAATTGTTGGCCCTGGCTGCAAACAA GGACCTGCAGTTCACCTACACCAAGGAGGCAG AACTGGCTCCAAGCATGGAAGATGTCGCAGAG GTTATGACTGCTGACCGTCCAGGGCTTCCGAC ATCAACAATGCCATTGGCAAGGCAGGGATCTG AGGACAGGGCCTTGGTCTCGTCAGGAAGATGA Sorghum SbACHT4- gnl|SbGDB| ATGGCTGAGGCGTTGTGCAACGGCGTCGTGGC 59 bicolor 3 Sb02g043280.2 GTCGCCGTACGGCGGCGGGGACGTGGGCGTCG Downloaded CCGGCCGGGCCAGGGGCGCCGCCAAGGCCGC From GCTCGCGGAGTCCCTGCCGGTCGGCGGGTACG Phytozome CCACCAAGAGCTCCTTCTCCGCCGGGAGGATG TCGGTGTCGGACAGGAAGCCGAGGCCCCTGTC TCGGAACCTCGAGGCCGCCGCCGCGCCTGGAC AGATGAACCTGTCGTTTCCCAAGGCCATGCGG TGGTGGGAGAAGGGGCTGCACCCCAACATGCG GGAGATCGAGTCCGCGCAGGACCTCGCCGACT CCCTCCTCAACGCCGGCGACAAGCTCGTCGTC GTCGATTTTTTCTCCCCAGGCTGCGGCGGCTGC CGCGCTCTCCACCCCAAGATTGCCCAGTTCGCC GAGAAGAACCCGGACGTGCTGTTCCTGCAAGT GAACTACGAGACGCACAAGTCCATGTGCTACA GCCTCCACGTCCATGTCCTCCCGTTCTTCAGGT TCTACAGGGGAGCCGAGGGACGGGTCAGCAG CTTCAGCTGCACCAATGCAACGGTAAGAATCG ACCACCTCTCCAACTTCAAGAACCAGCAGATG AATGAATGA Brassica BnACHT4- BnaA09g48840D ATGGCGGAAGCAGCAATCAGCAGAACGAAT 60 napus 1 CTGATCTTCCGAGGAGCTTGCGTGAATCAAC (Rapeseed) ACAAGCATGTAGATGATTACTCTGTCTCATC ACCTGTGAGTTTCGGTTTGAGAAAGAGCTTC CCTTCTCTGAAGGTGAAGCCTTTTAATCAATT CCAGAGCTCCCGATCATCATCATCCATCACA GCTCAGACAACGTTGAGGATTGGGACGCCTC AGAAATGGTGGGAGAAGGGTCTGAAAGAGA ACATGAGAGAGATCTCTTCAGCTCAGGAGCT TGTTGACTCTTTAACCAACGCTGGTGATAAG CTCGTTGTGGTTGACTTCTTCTCTCCTGGCTG TGGTGGATGCAAGGCTCTTCATCCTAAGATA TGTCAGTTGGCAGAGCAGAACCCTGATGTGC AGTTTCTTCAGGTGAACTACGAGGAGCACAA GTCCATGTGTTACAGTCTCGGTGTCCACGTCC TCCCGTTTTTCAGATTCTACCGTGGCGCTCAT GGTCGTGTCTGCAGCTTCAGCTGCACCAATG CTACGATCAAGAAGTTCAGAGATGCATTGGC GAAGCATAGTCCGGATAGGTGCAGCCTTGGA CCGACCAAAGGGCTTGAAGAGAAGGAGCTT GTGGCACTTGCAGCCAACAAAGAACTCAACT TTAGTTACACACCGAGGGCTGTACCAGTTGA GGAAGAAGAAGCTCCCGTCCCCGCTTCAAAC CCTGGTCTCCCTGTTGCTCATCCATCGATGAA GGCCAATGATGGAAAGACATTGGTCTCCTCA GGGAGATGA Brassica BnACHT4- XM_013856519.1; ATGGCGGAGGTAATCAGCAAAACGAGTTTGTT 61 napus 2 LOC106415750 CTTCCGAGGAGCTTGCGTGAATCACCACCACC (Rapeseed) ACGCAGATGACTTCTCCGTCTCGCCGGTGAGTT TCGGTCTCAAAAAGAGTTTCTCTTCTCTCAAGC AGAAGCCTCTTAGAAGCGACTTCTCTGGAAAA CAGATCCTACAGACCTTCAACAGGAGCTTCCG ATCATCATCCGTTACCGCTCAGTCAACGCTGA GGATTGGGACAGCTCAGAAGTGGTGGGAGAA AGGTCTGCAAGAGAACATGAGAGAGATCTCTT CGGCGCAAGAGCTCGTCGACTCTCTCGCCGAC GCTGGCGATAAGCTCGTCGTGGTTGACTTCTTC TCTCCTGGCTGCGGCGGATGCAAGGCTCTGCA TCCTAAGATGTGCCAGCTGGCGGAGCAGAGCG CTGATGTGCAGTTTCTTCAGGTGAACTACGAG GAGCACAAGTCCATGTGTTATAGCCTCGGTGT CCACGTCCTCCCGTTTTTTCGGTTCTACCGTGG CGCTCAGGGTCGCGTCTGTAGCTTTAGCTGTAC TAATGCTACGATAAAGAAATTTAGAGACGCGT TGGCGAAGCATAGTCCGGATAGGTGCAGCCTT GGACCAACCAAGGGGCTTGAAGAGAAAGAGC TTGTGGCACTTGCAGCCAATAAAGAACTCAAC TTTAGTTACACGCCGAAGGTTGTACCTGTTGAG AAAGAAGCAGCTATTCCCACTTCCAACCCGGC ACTCCCTGTTCCTCATCCATCGATGAGTGGCAG TGAGGAGAAGACATTGGTCTCTGCAGGGAGGT GA Brassica BnACHT4- XM_013817176.1; ATGGCGGAAGCAGCAATTAGCAGAACGAATCT 62 napus 3 LOC106377028 GATCTTCAGAGGAGCTTGCGTGACTCACCACC (Rapeseed) ACCATGCAGATGATTACTCTGTCTCATCATCAC CTGTGAGTTTCGGTCTGAGAAAGAGCTTCTCTT CTCTCAAGCTGAAGCCTCCGAGACAGATCGAT ACTCAATTCCAGACCTTCACAAGGAGCTCCCG AGCATCATCCATCACAGCTCAGACGACGCTGA GGATCGGGACGCCTCAGAAATGGTGGGAGAA GGGTCTGAAAGAGAACATGAGAGAGATCTCTT CAGCTCAGGAGCTTGTTGACTCTCTAACCAAC GCTGGTGATAAGCTCGTTGTGGTTGACTTCTTC TCTCCTGGCTGCGGTGGATGCAAGGCTCTTCAT CCTAAGATATGTCAGTTGGCAGAGCAGAACCC TGATGTGCAGTTTCTTCAGGTGAACTACGAGG AGCACAAGTCCATGTGTTACAGTCTCGGTGTC CACGTCCTCCCTTTCTTTCGATTCTACCGTGGC GCTCACGGTCGTGTCTGCAGCTTCAGCTGCAC
AAATGCTACGATCAAGAAGTTCAGAGATGCAT TGGCGAAGCATAGTCCAGATAGGTGCAGCCTC GGACCGACCAAAGGGCTTGAAGAGAAGGAGC TTGTGGCGCTTGCGGCCAACAAAGAACTCAAC TTTAGTTACACACCGAGGGCTGTACCAGTTGA GGAAGAAGAAGCTCCCGTCCCCGCTTCAAAAC CAGGTCTTGCTGTTCCTCATCCATCGATGAGCG CCAATGATGAGAAGACATTGGTCTCCGCAGGG AGATGA Brassica BnACHT4- XM_013861022.1; ATGGCGGAAGCAGCAATCAGCAGAACGAATCT 63 napus 4 LOC106420177 GATCTTCCGAGGAGCTTGCGTGAATCAACACA (Rapeseed) AGCATGTAGATGATTACTCTGTCTCATCACCTG TGAGTTTCGGTCTGAGAAAGAGCTTCCCTTCTC TGAAGGTGAAGCCTTTTAATCAATTCCAGAGC TCCCGATCATCATCATCCATCACAGCTCAGAC AGCGTTGAGGATTGGGACGCCTCAGAGATGGT GGGAGAAGGGTTTGAAAGAGAACATGAGAGA GATCTCTTCAGCTCAGGAGCTCGTTGACTCTCT AACCAACGCTGGTGATAAGCTCGTTGTGGTTG ACTTCTTTTCTCCTGGCTGTGGTGGATGCAAGG CTCTTCATCCTAAGATATGTCAGTTGGCAGAGC AGAACCCTGATGTGCAGTTTCTTCAGGTGAAC TACGAGGAGCACAAGTCCATGTGTTACAGTCT CGGTGTCCACGTCCTTCCGTTTTTCAGATTCTA CCGTGGCGCTCATGGTCGTGTCTGCAGCTTCAG CTGCACCAATGCTACGATAAAGAAGTTCAGAG ATGCATTGGCGAAGCATACTCCGGATAGGTGC AGCCTTGGACCGACCAAAGGGCTTGAAGAGAA GGAGCTTGTGGCACTTGCAGCCAACAAAGAAC TCAACTTTAGTTACACACCGAAGGATGTACCA GTTGAGGAAGAGGCAGCTCCCGTCCCCGTTTC AAACCCTGGTCTCCCTGTTGCTCATCCATCGAT GAAGGCCAATGATGGAAAGACATTGGTCTCCT CAGGGAGATGA Brassica BnACHT4- XM_013785617.1; ATGGCGGAGGTAATCAGCAAAACGAGTTTGTT 64 napus 5 LOC106346322 CTTCGGAGGAGGAGCTTGCGTGAATCACCACC (Rapeseed) ACCACCACGTAGATGACTTGTCTGTCTCACCG GTGAGTTTCGGTTTCAAAAAGAGTTTCTCTTCT TCTCTCAAGCAGAAGCCTCTTAGAAGCGACTT CTCTGGAAAACAGATCCTAGAGACCTTCAACA GGAGCTTCCGATCATCATCCGTCACCGCTCAGT CGACGCTGAGGATTGGGACAGCTCACAAGTGG TGGGAGAAAGGCTCTCAAGAGAACATGAGAG AGATCTCTTCGGCGCAAGACCTCGTCGACTCTC TCGCCGACGCTGGCGATAAGCTCGTCGTGGTT GACTTCTTCTCCCCTGGCTGCGGGGGATGCAA GGCTCTGCATCCTAAGATGTGCCAGCTGGCGG AGCAGAGCCCTGATGTGCAGTTTCTTCAGGTG AATTACGAGGAGCACAAGTCCATGTGTTACAG TCTCGGTGTCCATGTCCTTCCCTTTTTTCGATTT TATCGAGGCGCTCAGGGTCGTGTCTGTAGCTTT AGCTGTACCAATGCTACGATAAAGAAATTTAG AGACGCGTTGGCGAAGCATAGTCCGGATAGGT GCAGCCTTGGACCAACCAAGGGGCTTGAAGAG AAAGAGCTTGTGGCGCTTGCAGCTAATAAAGA ACTAAAGTTTAGTTACACGCCGAAGGTTGTAC CTGTTGAGAAAGAGGTTGCCATCCCCACTTCA AACCCTGGTCTCCCTGTTCCTCATCCATCGACG ATGAGCGGCAGTGAGGAGAAGACGTTGGTCTC TGCAGGGAGGTGA Ricinus RcACHT4 XM_002525415.2; ATGGCTGATGTTTTGAGCAAGACCAATCTTGTT 65 communis LOC8276541 CCTTCGTCTTGTTGTAATGGTTACAAGAACCAG (Castor) AAGAAAGATGGTGCCTTCGTTCTAAAAAGAAG TTGCAGTCTTAAGGTGTCATCTAGGAAATTCA ATCCTCAGGCTTTCGGATCACAGAAGATATCA CTTATTTCTGATTTTTATGGCAAGAGGGTTATT GTTCAAGAAAAACAACTCAAGAGAGGGAATTT TCATCAATTTTCAATTAAGGCTCAGACTGGACT GAGACTCAAGAATGCTCCAAAATGGTGGGAAA AGGGGTTGCAACCAAACATGAAGGAGATCACC TCTGCACAAGACCTTGTGGACTCCCTTATGAAT GCTGGGGACAAACTTGTAATTGTTGATTTCTTC TCCCCTGGCTGTGGTGGCTGCAAAGCTCTCCAT CCAAAGATATGTCAATTTGCGGAGATGAACCC TGATGTCCAGTTTCTTCAGGTGAATTATGAGGA ACATAAATCCATGTGTTATAGCCTCAATGTAC ACGTACTGCCATTCTTTAGATTTTACCGAGGGG CTCAAGGCCGAGTATGCAGCTTTAGCTGTACT AATGCCACGATTAAGAAATTTAAAGATGCATT AGCCAAGCACACCCCAGACCGATGCAGCCTCG GGCCAACCAAAGGGCTGGAGGAGAAAGAGCT TATTGCGTTGGCTTCTAACAAAGATCTCAACTT TACATGCACACCAAAACCAGTTCAACCAACTG CTCCTGCTCAGGAAGAGATAATACCAGCAGCA CTCACCCCAGCTCATGTGAATCAAACCCTACCT CTTCCTATTCCTCTCTCTACAACAAGCCTGATG TCTGCCCAAGACTTGGGGGAGAAAACCTTGGT TACTTCTGGGAGATAG Phaseolus PvACHT4- XM_007161898.1; ATGGCTGAAGTTTTTACCAAGGCGAGTTTCGTT 66 vulgaris 1 PHAVU_ TCTTCTTTGCTTGGTAGTAGTCAACGCCACCAT (Bean) 001G112200g CGAAGGGTGTCGACGGTTCCTGATACTTGTAC CTTTGTTTCTGGCGTCGGAGGGTCTCCTTCTCT CAAGTTAAAGTCTCCGATTCTCAGATCTTGGTC CCCTTCTTCTGAGTTTCAGGGTAAACAGCTTCT CTTTCGTGTAAATAGAGGAAAGCCCAACAGGG TCAGTTCGCGGTTGAGAGCGTCAACTGCTGCT CAGATGACCCTTAGAATAGGGAAAGTTCAAAA ATGGTGGGAAAAGGGGCTTCAACCCAACATGA AAGAGGTGACTTCGGCCCAAGACCTTGTGGAA TCACTGTTAAACGCAGGGGACAAGTTGGTGGT GGTTGATTTCTTCTCTCCTGGTTGTGGTGGCTG CAAAGCCCTTCACCCTAAGATATGTCAACTGG CAGAGATGAATCCTGATGTTCAATTCCTTCAG GTGAACTATGAGGAGCATAAGTCCATGTGTTA TAGCCTCAATGTCCATGTTCTACCCTTCTTCCG CTTCTATAGAGGTGCTCATGGTCGATTATGTAG CTTTAGCTGCACCAATGCCACGATCAAGAAGT TTAGAGACGCATTGGCCAAACACTCCCCAGAT AGATGCAGCTTGGGCCCAACCAAAGGGTTAGA GGAGAAAGAGCTCCTAGCTCTTGCTGCCAACA AAGATCTTTCCTTTACCTTGCCAAAACCTTTAC AACCTGAACACGCAAATGAAGGGTTGGCAACT GCTCCTGCTCCTGTTCCTAGTTCAGAATCTCTT CCTTTACCTTCACTGACCCTCAATTCTGAGGTC TCCCAAGAGAGAACCTTGACCACTGCTGGGAG ATGA Phaseolus PvACH XM_007161862.1; ATGGCTGAGGTTTTGACCGAGGCAAGTTTGGT 67 vulgaris T4-2 PHAVU_ TTCTTCGTGGCATGGTACTACTCAACGCCACCA (Bean) 001G109200g TCGAAGAGTATCGACAGTTCCCAATTCTTCTAG CTTCGTTTCTGGCGTTGGAAGGTTCCCTTCTCT CAAGTTAAAGTCTCAGATTCTCAGATCCCTCTC CTCTTCTTCTGAGTTTCAGGGTAAAAAGCTTCT CTTTCATGTAAATAGAGGACTAGCCAACAGAA TCAGTTCGCGGTTGGGAGCTTCAACTGCAGCG CAGATGACCCTTAGAATAGGGAAAGGTCAGAA ATGGTGGGAAAAGGGGCTTCAACCCAACATGA ATGAGGTGACTTCCGCCCAAGATCTTGTAGAA TCACTGTTAAACGCAGGGGACAAGTTAGTGGT GGTTGATTTCTTCTCTCCTGGTTGTGGTGGCTG CAAAGCCCTTCACCCTAAGATATGTCAACTGG CAGAGATGAATCCTGATGTTCAATTCCTTCAG GTGAACTATGAGGAACATAAGTCCATGTGTTA TAGCCTCAATGTCCATGTTCTTCCCTTCTTCCG CTTCTATAGAGGTGCTCATGGTCGATTATGTAG CTTTAGCTGCACCAATGCCACGATCAAGAAGT TTAAAGATGCATTGGCCAAACACTCCCCAGAT AGATGCAGCTTGGGCCCAACCAAAGGGTTAGA GGAAAAAGAGCTCCTAGCTCTTGCTGCCAACA AAGATCTTTCGTTCATCTACGCACCAAATCCCT TACAACCTGAACATGAAAATGAAGAGTTGGCT ACTGCTCCCGCTCCTGTTCCTAGTTCAGAGTCT CTTCCTTTGTGTCACCTCATTTCTGAGGTCTCC AAAGAGAAAACCTTGATCACTGCTGGGAGATG A Gossypium GhACHT4- NM_001326831.1; ATGGCTGAAGTTTTGGGGAAGGGAAATCTGTT 68 histrum 1 LOC107894997 TACGACTTGTAACTATAGTCAGACGAAGAATC (Cotton) TAGAAGGTGGAACTTGTTTGGTTCCTAAGAAA ATTTCTGGGTTTTCTTTAGAAAGGAACGGTTTT TCTTCTTTAAAGGTTAAATCTCAGGCTTTAAGA AGTGATTTTAATGGGCAAAGAATGGTTTTTTTG GAGAAGAAAAGTATGAACAGGCGAAGGTTTT GTCAAGTTCCCATCAAAGCACAGATGCAAAGT GGTCTTATTGGTCGAATTCAGAAATGGTGGGA GAAAGGGCTTCAACCAAATATGAAAGAAGTTG CATCTGCACAAGACCTAGTAGACTCTCTTCTGA ATGCTGGTGATAAGCTTGTTGTGGTAGATTTCT TCTCCCCTGGTTGTGGTGGTTGCAAGGCTCTTC ATCCCAAGATTTGCCAATTTGCAGAGATGAAT CCAGATGTGCAGTTTCTTCAGGTTAATTACGAG GAGCACAAGTCAATGTGCTATAGCCTTAATGT CCATGTGCTGCCTTTCTTCCGGTTCTATCGAGG TGCGCAGGGGCGTGTATGCAGCTTTAGTTGTA CCAATGCCACGATCAAAAAATTCAGAGATGCA TTAGCCAAACACACACCTGATCGGTGTAGCCT CAGCACGACAAAAGGGCTCGAGGAGAAGGAG CTTTTGGCATTATCTGCGAACAAAGACCTTTCC TTCAACTACACACCAATTCCCACACATGGAGA GATTCTTATATGGAAACAAGTTCCATCTGATTC AACGAGAAAGCTCCCGCTTTCAGTCCCGACAA CATCCGCAAAACAAAGGGACAGTGAGGAGAA AACCTTGGTTGGTGTCGGAAGATGA Gossypium GhACHT4- XM_016898050.1; ATGGCTGAAGTTTTGGGGAAGTCAAATCTGTT 69 histrum 2 LOC107961887 TACAGCTTGTAACTATAGTCAGAAGAAGCATC (Cotton) AAGAAGGTGGCGTTCCTTTGTTTTCCAGGAGA ATCTCTGTGTTTTGTTTGAGAAAGAATAGTTTT CCTTCTTTGAGGTTGGAACCTCAAGCTTTGAGG AGTGGTTTTAATGGTCAAAGAGTGGTTTTTTTA GAGAAAAGAAGTCTAAATGAGAGAAGGTTCT GTCGAGTTCCCATTAAAGCACAGATGCAAACT GGGCTTATTGGTAAAACTCAAAAGTGGTGGGA GAAGGGGAATCAACCAAATATGAAAGAAGTG ACATCTGCACAAGACCTGGTGGACTCACTTTT GAATGCTGGGGATAAACTTGTTATAGTGGATT TCTTCTCTCCTGGTTGTGGTGGCTGCAAGGCTC TTCATCCCAAGATTTGCCAATTGGCAGAGATG AATCCGGATGTGCAGTTCCTTAAGGTGAACTA TGAGGAGCATAAATCCATGTGTTATAGCCTTA ATGTACATGTGTTGCCTTTCTTTAGGTTCTATA GAGGAGCTCAGGGTCGTCTATGCAGCTTTAGC TGCACCAATGCCACGATCAAAAAATTCAAAGA TGCATTGGCCAAGCACTCACCAGACCGATGCA GCCTTGGGCCGACAAAAGGTCTCGAGGAGAAG GAGCTTTTGGCATTAGCTGCCAACAAAGACCT TTCCTTCAACTACACACCGAAACCAGTTCATCC TGCACCGGAAGAAATTCCGGTGCTGAAAGAAG TTCCATCCGGTTCATCCTTCAAGCTAAAAGAA AGCGAGGAGAAGACCTTGATTGGTGTGGGGAG ATGA Gossypium GhACHT4- XM_016817346.1; ATGGCTGAAGTTTTGGGGAAGTCAAATCTGTT 70 histrum 3 LOC107892305 TACAGCTTGTAACTGTAGTCAGAAGAAGAATC (Cotton) AAGAAGGTGGCGTTCCTTTGTTTTCTAGGAGA ATCTCTGCGTTTTGTTTGAGAAAGAATAGTTTT CCTTCTTTGAAGTTGGAACCTCAAGCTTTGAGG AGTGGTTTTAATGGTCAAAGAGTGGTTGTTTTA GAGAAAAGAAGTCTAAATGAGAGAAGGTTCT GTCGAGTTCCCATTAAAGCACAGATGCAAACA GGGCTTATTGGTAAAACCCAAAAGTGGTGGGA GAAGGGGAATCAACCAAATATGAAAGAAGTG ACATCTGCACAAGACCTGGTGGACTCACTTTT GAATGCTGGGGATAAACTTGTTATAGTGGATT TTTTCTCTCCTGGTTGTGGTGGCTGCAAGGCTC TTCATCCCAAGATTTGCCAATTGGCAGAGATG AATCCGGATGTGCAGTTCCTTAAGCTGAACTA TGAGGAGCATAAATCCATGTGTTATAGCCTTA ATGTACATGTGTTGCCTTTCTTTAGGTTCTATA GAGGAGCTCAGGGTCGTTTATGCAGCTTTAGC TGCACCAATGCCACGATCAAAAAATTCAAAGA TGCATTGGCCAAGCACTCACCAGACCGATGCA GCCTTGGGCCGACAAAAGGTCTCGAGGAGAAG GAGCTTTTGGCATTAGCTGCCAACAAAGACCT TTCCTTCAACTACACACCGAAACCAGTTCATCC TGCACCAGAAGAAATGCCGGTGCTGGAAGAA GTTCCATCCGGTTCATCCTTCAGGCCAAAAGA AAGCGAGGAGAAGACCTTGGTTGGTGTGGGGA GATGA Glycine GmACHT4- XM_003548715.3; ATGGCGGAGGTTTTAACCAAGGCGAGTTTGGT 71 max 1 LOC100816892 TTCATCTTCTTGGCATGGGGTTAGTCAACGGCA (Soybean) TCATCATCGAAGGGTTTCAACGGTTCTTTCAAA TAATACATGTAGCTTCCGTTCCGGCGTGGGAA AGTTCTCTTCTTTGAAGATGAATTCTCAGGTTC TCAGATCTTGGTCCTCTTCTTCTGAGTTTCAGG GTAAAAAGCTTGTCTTTCATGTAAATAGAGGA TTACCCAATAGGGTCAATTCGCGGTTGAGAGC TTCTACTGGGACTCAGATGAACCTTAGACTAG GGAAAGTTCAGAAATGGTGGGAAAAGGGGCT TCAACCCAACATGAAAGAGGTGACTTCAGCAC AAGACTTTGTGGATTCACTGTTAAACGCAGGG GACAAGTTGGTGGTGGTTGATTTCTTCTCTCCT GGTTGTGGTGGCTGCAAAGCCCTTCATCCTAA GATATGCCAATTTGCAGAGATGAATCCTGATG TTCAGTTCCTTCAGGTGAACTATGAGGAGCAT AAGTCCATGTGTTATAGCCTTAATGTCCATGTT
CTTCCCTTCTTCCGATTCTATAGAGGCGCTCAC GGTCGATTATGTAGCTTTAGCTGCACCAATGCC ACGATCAAGAAGTTCAAAGATGCATTAGCCAA ACACACCCCAGACAGATGCAGCTTAGGCCCAA CCATAGGGTTAGAGGAGAAAGAACTCGAAGCT CTTGCTGCCAACAAAGATCTTTCCTTCACCTAC TCACCAAAACCATTACAACCTTCACATGAAAA CGAAGAGTTGGCAACCGAAACTGCTTCTGCTC CGGCTCTTGGTTCAGGATCTCTTCCTTCACCTT CAATGACCCTCAATGCTGTGGCCTCTAATGAG AGAACCTTGACCACTTCTGGGAGATGA Glycine GmACHT4- NM_001289199.1; ATGAAGTCTCAGGTTCTCAGATCTTGGTCCTCT 72 max 2 LOC100784901 TCTTCTGAGTTTCAGGGTATAAAGCTTGTCTTT (Soybean) CATGTAAATAGAGGATTACCCAATAGGGTCAA TTCGCGCTTGAGAGCTTCAACTGGGGCTCAGA TGAGCTTTAGACTAGGGAAAGTTCAGAAATGG TGGGAAAAGGGGCTTCAACCCAACATGAAGG AGGTGACTTCGGCACAAGACTTTGTGGATTCA CTGTTAAGCGCAGGGGACAAGTTGGTGGTGGT TGATTTCTTCTCTCCCGGTTGTGGTGGCTGCAA AGCCCTTCATCCTAAGATATGTCAATTTGCAGA GATGAATCCTGATGTTCAGTTCCTTCAGGTGAA CTATGAGGAGCATAAGTCCATGTGTTATAGCC TTAATGTCCATGTTCTTCCCTTCTTCCGATTCTA TAGAGGTGCTCATGGTCGATTATGTAGCTTTAG CTGCACCAATGCCACGATCAAGAAGTTTAAAG ATGCATTGGCCAAACACACCCCAGATAGATGC AGCTTGGGCCCAACCAAAGGGTTAGAAGAGA AAGAGCTTCTAGCTCTTGCTGCCAACAAAGAT CTTTCCTTCACCAACTCACCAGAACCTTTACAA CCTGCACATGCAGATGAAGAGTTGGGAACCGA ACCTGCTCCTGCTCCTGGTTCAAAATCTCTTCC TTCACCTTCAATGATTCTCAATTCTGAGGTCTC TAAAAAGAGAACCTTAACCACTTCAGGGAGAT GA Beta BvACHT4 XM_010674105.1; ATGGCGGATGTTCTTACCAAATCCAGTGTTTTT 73 vulgaris LOC104888985 TCTCCAACAATTTCTCATCATCATAGTGGAAGT (Beet) AAAAATTTTCCAATTAAATGTTCAGTTGCAGTG AGTAATCGAGGGAGATTAGTTGGAATTTCTTC GTTGAGGAGTAGTTTTGGTGGTGTAAGAATTG CGATCGATAAAAATACCAGTTTTGGGTCAAAA AGGAGGAATTACCAATCAATTGATGCTAAGAT GGGTCTGAGCATCGGCAAAGCACAGAAATGGT GGGAGAAAGGACTCCAGCCAAATATGAGAGA GATAACTTCTGCGGAAGACCTAGTCGATTCTTT ACTAACAGCAGGAGATACATTAGTTGTCGTTG ATTTTTTCTCTCCTGGATGTGGAGGCTGCAGAG CTCTTCATCCTAAGTTGTGTCAATTGGCAGAGA TGAACCCTGATGTCCAGTTTCTTCAGATTAACT ACGAAGAACATAAATCAATGTGTTACAGTCTT AATGTTCATGTTCTTCCCTTCTTTCGGTTTTACA GAGGGGCTGAAGGCCGGGTTTCCAGCTTCAGC TGTACAAATGCAACGATTAAGAAATTCAAGGA TGCTTTGGCGAAGCATAACCCAGCAAGGTGTA GCCTTGGGCCAACAAAGGGCCTAGAAGAGAA GGAGCTTCTTGCTCTTGCTGCCAACAAAGACCT TTCATTTACCTATACACCAAAGCCTGTGGAAG CGGAACCCGTACCCGCACCTGCACTTGAAGAA GTCTCTGTTAAGGCTGACGAACAAGTCTTAGC ACAAGAATCTCTCCCTTCTTTCAACAGGAAGC CTCTTAGCTCACAACCATCAACCGTGAGTGAA GAGAAAACTCTAGCTACTGCTGCGAGATGA Musa MaACHT4- XM_009418063.1; ATGGCGGAAACTTTGGCTCAGAGGACCCTCCT 74 acuminate 1 LOC103996979 TTTGCCTGGCGGGCATCTTTCTTTGCCGCCGTT (Banana) TTGCGGGATGCGGAGCCGCCCTTCTCTTGCGG CGTTCACTCTCTTTTCACGTACCAAGGTTGAGC CCTTGAGGTCTTCTTCTTGTGATAGCAAGTTCC ATGGGAGGAGACTGGTCGTTGGGGCGCGGAG AGGGAGGCCCTCGAGGGCACGCCTCGGTTCTG GCTCTGAACAGATGGTTCTGTCGTTCAAGAAG GCTATAAAATGGTGGCAGAAGGGGCTTCAACC CAATATGGTGGAGATCGAGTCGGCTGAGCATC TCGTCGACTCCTTATTGAACGCCGGCGACAAG CTTGTTATTGTGGATTTCTTCTCCCCAGGGTGT GGAGGCTGCAGAGCGCTTCATCCAAAGATTTG CCAGTTCGCCGAATCGAATCAAAATGTTTTGTT TCTCCAAATAAATTATGAGCAACATAAGTCGA TGTGCTACAGCTTGGGTGTCCATGTTCTCCCCT TCTTTAGGTTCTATCGCGGAGCACACGGGCGC CTGTGCAGCTTCAGCTGCACCAATGCAACTATT AAGAAATTTAAAGATGCTTTGGCCAAGCACAT CACTGACAGATGCAGCCTTGGGCCAGCTAGGG GGCTGGAGGAGTCAGAGCTCTTGGCTTTGGCC GCAAACAAAGATCTCTCATTTAACTACACAAG CAAGCCAGTTCCTGTGCCTGAAGAGATTCCAG AGAGAATTCCAACAAGCCCGAAACTCCCTCTT CATGCTGTCCGTAGACCTGCCCAGGAATCCGA GGACAAGGCCCTCGCCGCAGCTGGGAGATGA Musa MaACHT4- XM_009408568.1; ATGGCGGATGCTTTGGCTCAAATGACGCTCCTT 75 acuminate 2 LOC103989652 TCGCCCCATGGCCACCGTTCTTTGTCGCGCTCT (Banana) TCCGACCGGAGAAACCGCCTTGTTTGTGCGTC AAAGGATGATCTCTTGAGGTCTTCGTCTTCTTG TAATAGCCAGTTCCATGGGAGAAGGCTGGTTA TTGGCGCACAGAGAGAGAGGCCGTTGAGAGG CAACCGAGGTTCTAGCTCTGTGCAGATGACTC TGTCCTTTAAGAAGGCTTCGAAATGGTGGGAG AAGGGGCTTCATCCCAATATGAAGGACATCAA GTCGGCTGAGGATCTCGTCGACTCCTTGTCGA ACGCGGGCGACAAGCTCGTCATCGTGGATTTC TTCTCCCCAGGATGTGCAGGCTGCAGAGCCCT CCACCCAAAGATCTGCCAATTCGCAGAGTTGA ATCCAGACGTTCAATTTCTCCAACTAAACCAC GAGGAACACAAGTCCATGTGCTACAGCTTGAA TGTCCATGTTCTCCCCTTCTTTAGGTTCTATCGC GGAGCGCACGGTCGCCTGTGCAGCTTCAGCTG CACCAATGCAACCATCAAGAAATTTAAGGATG CTTTGGCGAAGCACATCACCGAAAGATGCAGT CTTGGGCCAGCCAAGGGGCTGGAGGAGACGG AGCTCCTTGCCTTGGCTGCAAACAAGGATCTCT CCTTCACCTACACAAGAACGCCTGTTCCCGTAC CTGATGAGCTTGCAGAGAAAGCTCCATTTAAC CCAAACCTACCTGTGCATGCTGCTGCTAGACTC ACCCTGGAATCTGAGGACAAGGCTTTTGCCGC AGCCGGTAGATGA Capsicum CaACHT4 XM_016697343.1; ATGGCAAAATTGATGAACAAAGGTTTTGTGTT 76 annum LOC107852277 TCCTTCATCTTCTGATTGTGGTCATCATCGCCC (Sweet TCATGGGATTTCTTCTTTCCCCAATAAATCGGT and Chili CAATCTTTCTTGTCTTCCATCTACTTGTCTGCTA Peppers) AGAAGCTATTTTTATGGTCGTAGATTGGTCATA AATGAAGCCCTACCCAAAAGAAATGCCCACGT TGCAATCACTGTCCAGATGAGTATGGGAATCA GGAAAGTACAGAAATGGTGGGAGAAAGGGGT TCAACCTAACATGAAAGAAGTGAACAGTGCTC AAGGCCTTGTTGACTCTCTTTTGAGTGCAGGAG ATAAATTAGTAGTTGTTGATTTCTTTTCCCCTG GCTGCGGTGGCTGCAAAGCCCTTCACCCTAAG TTGTGTCAGCTGGCAGAGATGAATCCAGATGT GCAGTTTTTACAGGTGAACTATGAGGAACACA AGTCCATGTGTTACTCTCTTAACGTGCACCTTC TCCCATTTTTCCGTTTCTATAGAGGAGCTGAAG GTCGTGTTTGCAGCTTTAGCTGTACCAATGCCA CGATAAAAAAATTTAAAGATGCATTGGCAAAG TATGGTACAGATCGTTGCACCTTTGGACCACC GAAAGGGCTTGAGGAGAAAGAGCTACTTGCAT TGGCAGCTAACAAGGAACTCTCGTTTAATTAC ATTCCAAAAACAGAAGAAGAACCTGTCCTTGT TGCCTCACAAGAGGAAGTTGAGGACAGAACTC CAAATAAAGAGTCCCCTCTACCACTTCCTCTTC CTCTACCCATTAGCTCAACTAGCTCACTGAAGC CCAAACAGGATACAGAGAAAGAAGCGTATGC TACTTCTGGTAGATAG Cicer CaACHT4 XM_004493084.2; ATGGCTGAAATTTTGACCAAGACAAGTTTGGT 77 arietinum LOC101501672 TTCATCTTGGCATGGGAACAGAAAACAGCAAC (Chick ATCGAAGGTTGTCCATGGTTCCCAATAAGACT pea) TGTAGCTTCAACACTTGCGTGGGAAGTTTCCCA TCTTTGAAGCTAAAATCTCAGTTTCTTAGATCT TCCTCTTTTTCATCTGAGTTTTATGGGAAAAAT ACTATCTTTCGTGTAAATAGATCAATACCCAAC AGGATTAATTCACAATTTTCAGTTTCAGCTGCG CCTAAGATGACACTTAGAATAGGAAAAATTCA GAAATGGTGGGAAAAGGGGCTTCAACCTAACA TGAGAGAAGTGACTTCAGCTCAAGATCTTGTA GATTCACTTTTAAACGCAGGGGACAAACTTGT CATTGTTGACTTTTTCTCTCCTGGTTGTGGTGG CTGCAGAGCCCTTCACCCTAAGATATGTCAAA TGGCAGAGATGAATCCTGATGTTGAGTTCCTTC AAGTGAACTATGAAGAGCATAAATCCATGTGT TATAGCCTTAATGTTCATGTCCTTCCTTTCTTCC GCTTCTATAGAGGCGCTCATGGTCGCTTATGCA GCTTTAGCTGCACCAATGCCACGATCAAGAAG TTTAAAGATGCATTGGCCAAACACACTCCAGA TAGATGCAGCTTGGAACCAACCAAAGGGTTAG AGGAGAAAGAGCTCATAGCTTTATCTGAAAAC AAAGATCTTAACTTCACATACACACCAAAACC TCTTCAACCTGTGCATACACCTGCAAATGAAG AGTTGGCGACAACCAAAGCCTCTCCTGTTTGTT CGGAGCCTCTTCCTTTACCTTCATTGACCTCGA ATTCTGATGAAGTCTTGAAGGAGAGAACCCTG ACAAGGGCTGGAAGATGA Solanum SlACHT4- XM_004251955.2; ATGACGAAATTGATGAGCAAAGGTTTTATCTT 78 lycopersicum 1 LOC101244843 TCCTTCTTCTTCTTCTGATTGTGGTGAAATTTAT (Tomato) GATCGTCTTCGTCTTAATCTACATGGGATCTGT TCTTTTCCCAATAAATCGGTCAATCTTTCTTGT CTTCCTTCGTTGAAGCTTTCTTCTTCTTGTTTGC CAAGAACCGATTTTTATGGTCGTAGATTGGTTA TAAATGAAGGCTTATCCAATTTCAACCGAAGA GTTGCTGATATCACTGCTCAGATGAGTGTTGG AATCAAGAAAGCACAGAAATGGTGGGAGAAA GGGGTTCAACCTAACATGAAAGAAGTGAACAG TGCACAAGAACTTGTTGACTCTCTATTGAGTGC AGGGGATAAATTAGTTGTTGTTGATTTCTTTTC TCCTGGCTGTGGAGGTTGTAAAGCTCTTCACCC CAAGTTGTGTCAGCTGGCAGAGATGAATCCAG ATGTGCAGTTTTTACAGGTGAACTATGAGGAA CACAAGTCGATGTGTTACTCTCTTAATGTACAT GTTCTCCCGTTTTTCCGTTTCTATAGAGGAGCT GAAGGCCGTGTTTGCAGCTTTAGCTGTACCAA TGCCACGATCAAAAAATTCAGAGATGCATTGG CGAAGTATGGTACAGATCGTTGCACCATTGGG TCACCCAAAGGGCTTGAGGAGAAAGAGCTACT TGCATTGGCAGCTAACAAGGATCTTTCCTTTAA TTACACTCCAAAAACAGAAGAAGAACCCATCC TCGTTACCTCACAAAAGGAAGTTCGGGATAGA ACTACTCCAAATATAGAGTCCCCTCTACCACTT CCTCTTCCTCTCCCCATTACGTCAACTAGCTCA CAGACGGCCAAACGGGATACAGAGAAAGAAG CATATGCTACTTCTGGTAGATGA Solanum SlACHT4- XM_004249259.2; ATGGAGAAATTGTTGAATAAGGCAGTATTTCT 79 lycopersicum 2 LOC101244047 TCCATCAATTTTGAATTCTAGTGGTATTTATCA (Tomato) TTCTAATCAACATGCGATTTGTGTTTTTCCAGT GAAATTCAATAGAAGATATCACAAATCAGCAG TTGCTACTGCTCAGATGAGCATAGGTATCAAG AGAGCTCCTAAATGGTGGGAGAAAGGACTTCA ACCGAATATGAAAGAGGTGACGGGTGCTCAAG ACCTCGTTGACACCCTTCTAAACGGTGGGGAT AAACTAGTCGTTGTTGATTTCCTTTCCCCTGGC TGTGGAGGCTGCAAAGCCCTTCATCCAAAGAT ATGTCAGTTAGCAGAGATGAATCCGGATGTGC AGTTTTTGCATGTGAACTATGAGGAACACAAG TCAATGTGTTACTCGCTGAACGTACATGTTCTC CCATTTTTCCGTTTCTATAGAGGTGCTGAAGGT CGTCTTTGTAGCTTTAGTTGCACCAATGCCACG ATAAAAAAATTCAAAGATGCATTGACAAAGTA TGGTGCAGATTGTTGCAGCCTCGGACCAGTTA AAGGGCTCGAGGAGAAAGAGCTACTTGCCCTA GCGGCTAATAAGGACCTATCTTTTGCTTACACA CCAAAAACAGAAGAACCAGTGCCTCTTGCCTT AGAAGAAGTTAAGGTGATAAAAACAAGTAGA CAATCTTCATCTCATCCCAATACATTCTCCCCA TTACCACTTCCTCTTCCTCTAGCATCAACTTTG CATACGGCCAAACAGGACTCAAAGAGTTAA Elaeis EgACHT4- XM_010939817.1; ATGATGGAGGTTTTGAGTCAGAGCGGTGTTAT 80 guineensis 1 LOC105057263 GTCGCCGTGCGGGCATCGTTGGGTGGTCCGTT (African CTTGCAAGGAGAGGAGCCCTTCTTTTGTTGGGT oilpalm) TTCCTCGCTCTTCCTCTCGGACGATCGAGTCTC TGATGTCTTCTTCTCGGAATAGCGGTTTCCATG GGAGGAGATTGAGCATTGGGGCTTGGAGAGTG AATGCCGTGAAGGGGAATTTTAGTTCTACCCC CGTACAGATGAGCCTCTGCGTTGGAAAGGCTT TGAAATGGTGGGAGAAGGAGCTCCAGCCCAAC ATGAAGGAGATCGAGTCGGCCCAGGATCTCGT CGACTCTTTATTGAACGCAGGAGACAAGCTTG TCATAGTAGATTTCTTCTCCCCTGGTTGTGGAG GCTGCAAAGCCCTCCATCCAAAGATTTGCCAG TTTGCAAAGCTGAACCCAGATGTTCTCTTCCTC CAAGTAAACTATGAAAAGCACAAATCCATGTG TTATAGCTTAAATGTCCATGTTCTTCCCTTTTTT AGGTTTTACAGGGGAGCACACGGTCGTCTTTG TAGCTTCAGCTGCACCAATGCAACTATTAAGA AATTTAAAGATGCTTTGGCCAAGCACACCACA GACAGATGCAGCCTGGGCCCAACAAAGGGGCT GGAGGAATCAGAGCTCATGGCTCTGGCTGCAA
ACAAGGATCTCTCTTTCAGTTACACAAGAAAG CCAGTCCCTGTTCCCTCGCCAGATGAGGCTGC AGAGGAAGTTGTGCTCAGCCCAAAACTTCCGG TTTCTTCAACTCCAAGAGTCATCCAAGATTCGG AGGAGAAGGCTCTGGTGGCAGCTGGGAGATG A Elaeis EgACHT4- XM_010922992.1; ATGGCGGAGGTTTTGGGCAGGAGCGGCGTGTT 81 guineensis 2 LOC105044909 CTCGCTGCGCGGGCACCGTTCCGTGGCCCCTTC (African TTGCCAGAAGAGGAGCCCTTCTTTTCTTGGGTT oilpalm) TCCTCTCTCATCCTCTCGGCCGATCGGGCCTCC TAGGTCGTCTTCTCGGAGATTTGTTATCGGGAC TCGGAGAGGGAGGTCCATCAAGGGAAATTCTA GCTCTTCCCGTGTACAGATGAGCCTCGGCGTTG GAAAGTCATTGAAGTGGTGGGAGAAGGGTGTG CAGCCCAACATGAAGGAGATTGGATCGGCCCA GGATCTTGTTGACTCCTTATTGAATGAAGGAG ACAAGCTTGTTATCGTAGATTTCTTCTCCCCTG GTTGTGGAGGCTGCAAAGCCCTCCATCCAAAG ATTTGCCGGATTGCGGAGATGAACCCACATGT TCTCTTCCTCCAAATAAACTATGAGAAGCACA AGTCCATGTGTTATAGCTTGCATGTTCACGTTC TCCCCTTTTTTAGGTTTTACCGGGGAGCTCACG GTCGCCTTTGTAGCTTCAGCTGCACCAATGCAA CTATTAAGAAATTTAAAGATGCATTGGCCAAA CACACCACAGACAGATGCAGCCTTGGGCCAAC AAAGGGGCTGGAAGAATCAGAGCTTGTGGCTC TGGCTGCAAACAAGGATCTCTCCTTCAATTAC ACAAGAAAACCGGTTCCTGTTCTCACACCAGA CGAGGCTGCAGAGAAAGTTCCTCTTAGCCCAA AACTTCCAGTGTCTTCAGCCCCAAGAGTCATC AAAGATTCTGAGGACAAGGCCCTCGTTGCAGC TGGGACATGA Setaria SiACHT4- XM_004984459.3; ATGGCGGCGGCGCAGGCGGTCGCGAAGGGCA 82 italic 1 LOC101779469 GCGTGGTGTCGCCGTGCGGCAGCAGGGCCGCG (Foxtail CCGGGGCTCCTGAGTCGGCGGAGGGGCGCCGT millet) GGCGACGCGGATGGCGCCGTCGGCGGTGCGGA TCGGGGGCTCCTGGAGGAAGACCGCGTTCCTC GGCGGTAGGCTGGCGGTCGGGCCGAGGAGATC CAGGTCCGCGTCCCGGACCCTCGTCGCGTCGC CGGTGCAGATGAACATGAACCTTGCGATTGGG AAATCCATGAGGTGGTGGGAGAAGGGGCTGC AGCCCAACATGCGGGAGATCGAGTCCGCCCAG GATCTCGTCGATTCCTTGACCAACGCCGGCGA CAGACTCGTCATCGTGGACTTCTTCTCCCCCGG CTGCGGCGGTTGCCGTGCTCTTCACCCCAAGAT TTGCCAGTTTGCGGAGCAGAACCCGGATGTGC TGTTCTTGCAAGTGAACCATGAGGAGCACAAG TCTATGTGCTACAGCCTCCATGTCCACGTCCTC CCATTCTTCAGGTTCTACAGGGGAGCTCAGGG ACGGCTCTGCAGCTTCAGTTGTACCAACGCAA CTATCAAGAAGTTCAAGGATGCACTTGCAAAG CACAAACCGGATAGATGTAGCATTGGCCCAAC TAGAGGGCTGGAGGAATCAGAGTTATTAGCAT TGGCTGCAAACAAGGACTTGCAGTTCACCTAC ACCAAGAAGCCAGAACTGATCCCCAGCGGAG ATGCTGCTGCTGAGGTCATTGCTCCCGAGCCTA CAAAGCTTCCTGCGGCAACAAAGCCGTCGGTC AAGATAGGGTCCGAGGAGAGGTCCNNTTGGTC TCATCAGGAAGATGAGATGAATGACCTCTAG Setaria SiACHT4- XM_004985594.1; ATGGCGGCAGCGCAGGCGATGGCGAAGATGA 83 italic 2 LOC101775678 GCGTGGGGTCGCCGGCCTGCAATCGGGCTGCG (Foxtail GGATCCCTCTGCCGGTGGAGGGGAGCCGTGGC millet) GGTGCGGCTCGGAGGATCCTGGTCCTGGAGGA AGAGCCCGTTCCTCGGCGGGAGGATGGCGGTT GGGCCCAGGAGATCGAGGCCCGTGTCCCGGAA TCCTGTTGCGTCGCCGGTGCAGATGAACCTTTC ATTTGGGAAAACCATGAAGTGGTGGGAGAAG GGATTGCAGCCCAACATGCGGGCGATCCACAC CGCCCAAGAACTCGTCGATTCCTTGATCAACG CCGGCGACGGGCTCGTCATAGTCGACTTCTTCT CACCTGGCTGCGCCGGCTGCCATGCCCTCCATC CCAAGATTTGCCAGTTTGCGGAGCGGAACCCA GATGTGCAGTTCCTGCAAGTGAACTTTGAGGA GCACAAGTCTATGTGCCACAGCCTTCATGTTCA TGTGTTCCCTTTCTTCAGATTCTACAGGGGAGC TCAGGGCCGGCTCTGCAGCTTCAGCTGTACCA ATGCAACTATCAAGAAGTTCAAGGATGCGCTT GCAAAGCACAAACCAGATAGATGTAGCCTTGG CCCAATTAAGGGGCTAGAGGAATCAGAGCTAC TGGCTTTGGCTGCAAACAGGGACCTGCAGTTC ACCTACACCAAGGAGCAAGATCTGGCTCCGAG CATGGAAGATGGCGCAGAGGTCATCACTCATG ACCATCCAAGGCTTCCTGCAGCAGCAAAGCCG CTGGTCAGGCAGGGGTCTGAGGACAGGGCTGT GGTCTCATCGGGAAGATAA Setaria SiACHT4- XM_004958667.1; ATGGCTGAGGCTTTGTGCAACGGCGTCGTGCC 84 italic 3 LOC101759010 GTCGCCGTGCGGCGGGGACGTGGGCGTGGCCG (Foxtail GCCGGGTCAGTGGCGCCGCGGCGGCGCTAGCG millet) GAGTCCGTGCCGATCGGCGGCTACCGCACCAA GAGCTCCTTCTCCGCAGGGAGGATGGCCATGA CCGACAGGAAGATGAGGCCCCTGCCTCGGAGC ATCGAGGCCGCGCCTGGACAGATGAACCTGTC GTTTCCTAAGGCCATGCGGTGGTGGGAGAAGG GGCTGCAGCCCAACATGCGGGAGATCGAGTCC GCGCAAGACCTCGCCGACTCCCTGCTCAACGC CGGCGACAAGCTCGTCGTCGTCGACTTCTTCTC CCCTGGCTGCGGCGGCTGCCGCGCCCTGCATG CCAAGATTGCCCAGTTTGCCGAGAAGAACCCA GATGTGATGTTCCTGCAAGTGAACTATGAGAC GCACAAGTCCATGTGCTACAGCCTCCATGTCC ATGTCCTCCCTTTCTTCAGGTTCTACAGGGGAG CCGAGGGACGGGTCAGCAGCTTCAGCTGCACA AATGCAACTATCAAGAAGTTCAAGGACGCGCT CGCAAAGCACGGACCTGACAGGTGCAGCCTCG GCCCTGCACGGGGGCTGGAGGAGTCGGAGCTC ATGGCCTTGGCTGCAAACAAGGACCTGCAATT CACCTACGAGAAGCCGGGCCTTGTCCCACTTG CAGAAGCCATTGCCAAGGAGGCTGCTGCACCA GGAGGCCCGTGGTTCCCTTTGCCTGCGTCCGCG ACGCAGTTCCTCACTCAGGGATCAGAGAATTC ATTGCTGTCATCCGGAAGATAG Chlamydonionas CrACHT4 XM_001697391.1 ATGGCCAGCATACTAAATCGTGCCGGTTCAAG 85 reinhardtii GTCGTTAGTTTTTGAGACTAAGCAGTCATTGCG (Single- TTCTATTCCTGGCAGCCTTTTATCGCTGCGGTC cell AGTGGCGCTGAAGCCATTCCGGACAACCATCT green GCGCGGCGGGAGCGCTGCTGACTGCACGGCGC alga) TCGACATCAGGCCTCGGGCGCGCCAACGGGGT CGTTTGCCAAGCAGGGCGTAGCACTGGGGAAT GGTGGAAGAAGGACAACCCCCCAAACATGCG GGACATCAACTCAATTCAGGAGCTGGTTGACG CTCTGTCGGATGCCGGAGACCGCCTCGTCATT GTGGAGTTCTACGCCCAGTGGTGCAACGCCTG CCGCGCGCTATTCCCCAAGATCTGCAAAATCA TGGCTGAGAACCCGGACGTGCTCTTCCTCAAA GTGAACTTTGACGACAACCGTGACGCGTGCCG CACCCTGAGCGTCAAGGTGCTGCCGTACTTCC ACTTCTACCGCGGTGCGGAGGGCCGTGTGGCG GCCTTCAGCGCCACCATCAGCAAGTTGCAGCT GTTCAAGGATGCCGTGGAGACCTACAGCGCCG CCTTCTGCAGCCTGGAGCCCGCGCCGGGGCTG GCGGAGTTCCCCGACCTCATCGCGCACCCGGA GCTGCACCCGGAGGAGGCCGCAGAGGCGGCG CGGCGCGCGCGGCTGGCGTCCACCGAGTCGGA GGAGGAGTTGCATCCGCTGGCCGACACGCCGA CTGTGGTGGGATAG Chlorella CvACHT4 XM_005851860.1 TGGTGGACCAAGTCTGCGCCGCCCAATGTAGT 86 (Single- partial cds GCACATCAAGTCTGTGCAGCACTTGGTGGACG cell AAATGGTGAGGGCTGAGAGGCTGGCGGGCGCT green GGCGAGCGGCTGGTGATCATGGATGTGTTTGC alga) GCCCTGGTGCGCCGCCTGCAAGGCGCTGTACC CCAAGCTGATGAAGCTGATGGAGGAGCGCCCC GATGTGCTGCTGCTGACGGTAAACTTTGATGA GAACAAGACGGTGGTGAAGGCCATGGGGGTC AAGGTCCTGCCGTACTTCATGTTCTATCGCGGC AAGGAGGGCAAGCTGCAGGAGTTCTCGGCCAG CAACAAGCGATTCCACCTCATCCAGGAAGCCA TTGAGCGGCACAGCACCGATCGCTGCTTCCTG GATAGCACCGACGAGGAGCCTGTGCTTGCAGA GTTCCCCACTGTCGTCCCCGCCAAGGGCATCA GCGGCAGCTTGGATGAGCCGGCCGGCCGTGCG GCCGGCAAGGCGGTGGGCCAGCCGCAGCCCGT GGCCTGA
[0058] In another embodiment, the nucleic acid sequence of ACHT4 is a homolog of any one of the sequences listed in Table 2. In another embodiment, the nucleic acid sequence of ACHT4 is a paralog of any one of the sequences listed in Table 2. In another embodiment, the nucleic acid sequence of ACHT4 is a fragment of any one of the sequences listed in Table 2. In another embodiment, the nucleic acid sequence of ACHT4 is a variant of any one of the sequences listed in Table 2. In another embodiment, the nucleic acid sequence of ACHT4 comprises any one of the sequences listed in Table 2. In another embodiment, the nucleic acid sequence of ACHT4 consists essentially of any one of the sequences listed in Table 2. In another embodiment, the nucleic acid sequence of ACHT4 consists of any one of the sequences listed in Table 2. In another embodiment, the nucleic acid sequence of ACHT4 corresponds to any one of the sequences listed in Table 2.
[0059] In another embodiment, the nucleic acid sequence of ACHT4 is a homolog of any one of SEQ ID NOs: 44-86. In another embodiment, the nucleic acid sequence of ACHT4 is a paralog of any one of SEQ ID NOs: 44-86. In another embodiment, the nucleic acid sequence of ACHT4 is a fragment of any one of SEQ ID NOs: 44-86. In another embodiment, the nucleic acid sequence of ACHT4 is a variant of any one of SEQ ID NOs: 44-86. In another embodiment, the nucleic acid sequence of ACHT4 comprises any one of SEQ ID NOs: 44-86. In another embodiment, the nucleic acid sequence of ACHT4 consists essentially of any one of SEQ ID NOs: 44-86. In another embodiment, the nucleic acid sequence of ACHT4 consists of any one of SEQ ID NOs: 44-86. In another embodiment, the nucleic acid sequence of ACHT4 corresponds to any one of SEQ ID NOs: 44-86.
[0060] ACHT4.DELTA.C
[0061] In one embodiment, the present invention provides a recombinant polynucleotide encoding an atypical CYS HIS rich thioredoxin 4 (ACHT4) protein, wherein the C-terminal portion of said ACHT4 protein comprises an inactivating mutation.
[0062] The inventors have demonstrated herein that over-expression (OE) of a C-terminal truncated form of AtACHT4 (AtACHT4.DELTA.C, in which there is a 47 amino acid deletion of the C-terminus) has a dominant negative effect in Arabidopsis plants. AtACHT4.DELTA.C overexpression relieves the oxidation of AGPase and boosts starch synthesis. In contrast, the OE of the full length ACHT4 does not, confirming that the C-terminus of AtACHT4 is indeed required for the attenuation of starch synthesis and the authenticity of the stimulating effect of AtACHT4-C-Del.
[0063] In addition, as demonstrated in Example 2, the stimulation of starch synthesis by AtACHT4-C-Del results in a significant increase in transitory starch content in Arabidopsis leaves and stimulates growth, indicating that AtACHT4.DELTA.C stimulates the export of photosynthates from the chloroplast which are then directed toward plant metabolism and growth.
[0064] There are homologs of the ACHT4 found in Arabidopsis (AtACHT4), and in other species including potato, cassava, maize, rice, barley, wheat, sorghum, rapeseed, castor, bean, cotton, soybean, beet, banana, peppers, chickpea, tomato, oil palm, millet, several species of algae, and other plants and algae (Tables 1-2). As described in Example 3, ACHT4 in potato (paralogs StACHT4-2 and StACHT4-1) is similarly involved in attenuating starch synthesis and growth, and overexpression of the C-terminally deleted forms of StACHT4-1 and StACHT4-2, respectively, disinhibits (i.e. promotes) starch synthesis and nearly doubles tuber yield and plant shoot growth, respectively.
[0065] Since ACHT4 is expressed in all major crop and biofuel species, including rice and corn, attenuation of ACHT4 through dominant negative C-terminal deletions or other means, represents a promising new target for increasing plant growth and yield in all major crop and biofuel species.
[0066] In one embodiment, the inactivating mutation in the ACHT4 gene as described in the methods and compositions of the present invention is a deletion mutation. In another embodiment, the inactivating mutation is an insertion mutation. In another embodiment, the inactivating mutation is a substitution mutation. In another embodiment, the inactivating mutation is a null mutation. In another embodiment, the inactivating mutation is another type of mutation known in the art. In one embodiment, the insertion, deletion or substitution mutation comprises an insertion, deletion or substitution of a single nucleic acid, while in another embodiment, it comprises an insertion, deletion or substitution of 1-5 nucleic acids, 1-10 nucleic acids, 5-20 nucleic acids, 10-50 nucleic acids, 25-100 nucleic acids, 100-500 nucleic acids, 300-400 nucleic acids, 200-500 nucleic acids, or 500 or more nucleic acids.
[0067] In one embodiment, the mutation is a dominant negative mutation. In one embodiment, a dominant negative mutation (also called an antimorphic mutation) comprises an altered gene product that acts antagonistically to, attenuates, or inhibits the function(s) of the wild-type allele.
[0068] In one embodiment, the inactivating mutation in the C-terminal portion of ACHT4 is a deletion of the entire C-terminal portion of ACHT4. In another embodiment, the inactivating mutation in the C-terminal is a deletion of a portion of the C-terminal portion of ACHT4.
[0069] In one embodiment, a "corresponding sequence" is a nucleic acid (or amino acid) sequence from a first species for which there is a similar or equivalent sequence in a second species, which may be inferred by sequence alignment, as is well known in the art.
[0070] In another embodiment, the inactivating mutation in the C-terminal is a deletion of the final 141-207 nucleic acids of the ACHT4 gene. In another embodiment, the inactivating mutation in the C-terminal is a deletion of the final 150-225 nucleic acids of the ACHT4 gene. In another embodiment, the inactivating mutation in the C-terminal is a deletion of the final 150-300 nucleic acids of the ACHT4 gene. In another embodiment, the inactivating mutation in the C-terminal is a deletion of the final 75-150 nucleic acids of the ACHT4 gene. In another embodiment, the inactivating mutation in the C-terminal is a deletion of the final 3-75 nucleic acids of the ACHT4 gene. In another embodiment, the inactivating mutation in the C-terminal is a deletion of the final 3-30 nucleic acids of the ACHT4 gene. In another embodiment, the inactivating mutation in the C-terminal is a deletion of the final 75-225 nucleic acids of the ACHT4 gene. In another embodiment, the inactivating mutation in the C-terminal is a deletion of the final 3-60 nucleic acids of the ACHT4 gene. In another embodiment, the inactivating mutation in the C-terminal is a deletion of the final 60-120 nucleic acids of the ACHT4 gene. In another embodiment, the inactivating mutation in the C-terminal is a deletion of the final 120-180 nucleic acids of the ACHT4 gene. In another embodiment, the inactivating mutation in the C-terminal is a deletion of the final 150-225 nucleic acids of the ACHT4 gene.
[0071] In one embodiment, an inactivating mutation in the C-terminal of ACHT4 comprises a deletion of nucleic acids 687-825 of any one of the sequences listed in Table 2 or a corresponding nucleic acid sequence from another species. In another embodiment, an inactivating mutation in the C-terminal of ACHT4 comprises a deletion of nucleic acids 651-825 of any one of the sequences listed in Table 2 or a corresponding nucleic acid sequence from another species. In another embodiment, an inactivating mutation in the C-terminal of ACHT4 comprises a deletion of nucleic acids 600-825 of any one of the sequences listed in Table 2 or a corresponding nucleic acid sequence from another species. In another embodiment, an inactivating mutation in the C-terminal of ACHT4 comprises a deletion of nucleic acids 801-825 of any one of the sequences listed in Table 2 or a corresponding nucleic acid sequence from another species. In another embodiment, an inactivating mutation in the C-terminal of ACHT4 comprises a deletion of nucleic acids 699-825 of any one of the sequences listed in Table 2 or a corresponding nucleic acid sequence from another species. In another embodiment, an inactivating mutation in the C-terminal of ACHT4 comprises a deletion of nucleic acids 750-825 of any one of the sequences listed in Table 2 or a corresponding nucleic acid sequence from another species. In another embodiment, an inactivating mutation in the C-terminal of ACHT4 comprises a deletion of nucleic acids 774-825 of any one of the sequences listed in Table 2 or a corresponding nucleic acid sequence from another species. In another embodiment, an inactivating mutation in the C-terminal of ACHT4 comprises a deletion of nucleic acids 687-750 of any one of the sequences listed in Table 2 or a corresponding nucleic acid sequence from another species.
[0072] In another embodiment, an inactivating mutation in the C-terminal of ACHT4 comprises a deletion of nucleic acids 699-903 of any one of the sequences listed in Table 2 or a corresponding nucleic acid sequence from another species. In another embodiment, an inactivating mutation in the C-terminal of ACHT4 comprises a deletion of nucleic acids 600-903 of any one of the sequences listed in Table 2 or a corresponding nucleic acid sequence from another species. In another embodiment, an inactivating mutation in the C-terminal of ACHT4 comprises a deletion of nucleic acids 651-903 of any one of the sequences listed in Table 2 or a corresponding nucleic acid sequence from another species. In another embodiment, an inactivating mutation in the C-terminal of ACHT4 comprises a deletion of nucleic acids 750-903 of any one of the sequences listed in Table 2 or a corresponding nucleic acid sequence from another species. In another embodiment, an inactivating mutation in the C-terminal of ACHT4 comprises a deletion of nucleic acids 801-903 of any one of the sequences listed in Table 2 or a corresponding nucleic acid sequence from another species. In another embodiment, an inactivating mutation in the C-terminal of ACHT4 comprises a deletion of nucleic acids 849-903 of any one of the sequences listed in Table 2 or a corresponding nucleic acid sequence from another species. In another embodiment, an inactivating mutation in the C-terminal of ACHT4 comprises a deletion of nucleic acids 876-903 of any one of the sequences listed in Table 2 or a corresponding nucleic acid sequence from another species. In another embodiment, an inactivating mutation in the C-terminal of ACHT4 comprises a deletion of nucleic acids 825-903 of any one of the sequences listed in Table 2 or a corresponding nucleic acid sequence from another species. In another embodiment, an inactivating mutation in the C-terminal of ACHT4 comprises a deletion of nucleic acids 699-801 of any one of the sequences listed in Table 2 or a corresponding nucleic acid sequence from another species. In another embodiment, an inactivating mutation in the C-terminal of ACHT4 comprises a deletion of nucleic acids 699-849 of any one of the sequences listed in Table 2 or a corresponding nucleic acid sequence from another species.
[0073] In another embodiment, an inactivating mutation in the C-terminal of ACHT4 comprises a deletion of nucleic acids 486-690 of any one of the sequences listed in Table 2 or a corresponding nucleic acid sequence from another species. In another embodiment, an inactivating mutation in the C-terminal of ACHT4 comprises a deletion of nucleic acids 501-690 of any one of the sequences listed in Table 2 or a corresponding nucleic acid sequence from another species. In another embodiment, an inactivating mutation in the C-terminal of ACHT4 comprises a deletion of nucleic acids 549-690 of any one of the sequences listed in Table 2 or a corresponding nucleic acid sequence from another species. In another embodiment, an inactivating mutation in the C-terminal of ACHT4 comprises a deletion of nucleic acids 600-690 of any one of the sequences listed in Table 2 or a corresponding nucleic acid sequence from another species. In another embodiment, an inactivating mutation in the C-terminal of ACHT4 comprises a deletion of nucleic acids 651-690 of any one of the sequences listed in Table 2 or a corresponding nucleic acid sequence from another species. In another embodiment, an inactivating mutation in the C-terminal of ACHT4 comprises a deletion of nucleic acids 486-651 of any one of the sequences listed in Table 2 or a corresponding nucleic acid sequence from another species. In another embodiment, an inactivating mutation in the C-terminal of ACHT4 comprises a deletion of nucleic acids 486-600 of any one of the sequences listed in Table 2 or a corresponding nucleic acid sequence from another species. In another embodiment, an inactivating mutation in the C-terminal of ACHT4 comprises a deletion of nucleic acids 486-549 of any one of the sequences listed in Table 2 or a corresponding nucleic acid sequence from another species. In another embodiment, an inactivating mutation in the C-terminal of ACHT4 comprises a deletion of nucleic acids 486-501 of any one of the sequences listed in Table 2 or a corresponding nucleic acid sequence from another species.
[0074] In another embodiment, an inactivating mutation in the C-terminal of ACHT4 comprises insertion of a non-native sequence into a portion of the C-terminal of ACHT4 encoding the C-terminal of ACHT4, wherein said the C-terminal of ACHT4 is inactivated as a result.
[0075] In another embodiment, an inactivating mutation in the C-terminal of ACHT4 comprises substitution of nucleic acid residues, as is known to one of skill in the art. In another embodiment, an inactivating mutation in the C-terminal of ACHT4 consists essentially of any of the mutations listed hereinabove. In another embodiment, an inactivating mutation in the C-terminal of ACHT4 consists of any of the mutations listed hereinabove.
[0076] In another embodiment, the present invention provides a composition comprising a recombinant polynucleotide encoding an atypical CYS HIS rich thioredoxin 4 (ACHT4) protein, wherein the C-terminal portion of said ACHT4 protein comprises an inactivating mutation.
[0077] In another embodiment, the present invention provides an expression vector comprising a recombinant polynucleotide encoding an atypical CYS HIS rich thioredoxin 4 (ACHT4) protein, wherein the C-terminal portion of said ACHT4 protein comprises an inactivating mutation.
[0078] In one embodiment, "expression" as used herein refers to transcription of DNA to produce RNA. The resulting RNA may be without limitation mRNA encoding a protein, antisense RNA that is complementary to an mRNA encoding a protein, or an RNA transcript comprising a combination of sense and antisense gene regions, such as for use in RNAi technology. Expression as used herein may also refer to production of encoded protein from mRNA.
[0079] In another embodiment, the present invention provides a composition comprising an expression vector comprising a recombinant polynucleotide encoding an atypical CYS HIS rich thioredoxin 4 (ACHT4) protein, wherein the C-terminal portion of said ACHT4 protein comprises an inactivating mutation.
[0080] Recombinant Polynucleotides
[0081] In one embodiment, "recombinant polynucleotide" refers to a polynucleotide having a genetically engineered modification introduced through manipulation via mutagenesis, restriction enzymes, and the like. Recombinant polynucleotides may comprise DNA segments obtained from different sources, or DNA segments obtained from the same source, but which have been manipulated to join DNA segments which do not naturally exist in the joined form. A recombinant polynucleotide may exist outside of the cell, for example as a PCR fragment, or integrated into a genome, such as a plant genome.
[0082] The present invention contemplates the use of polynucleotides effective for imparting an enhanced phenotype to genetically modified plants or algae expressing said polynucleotides. Exemplary polynucleotides for use in the present invention are provided herein in Table 2 (SEQ ID NO: 44 through SEQ ID NO: 86). A subset of the nucleic molecules of this invention includes fragments of the disclosed polynucleotides consisting of oligonucleotides of at least 15, preferably at least 16 or 17, more preferably at least 18 or 19, and even more preferably at least 20 or more, consecutive nucleotides. Such oligonucleotides are fragments of the larger molecules having a sequence provided herein in Table 2 (SEQ ID NO: 44 through SEQ ID NO: 86), and find use, for example as probes and primers for detection of the polynucleotides of the present invention.
[0083] Also of interest in the present invention are variants of the polynucleotides provided herein. Such variants may be naturally occurring, including homologous polynucleotides from the same or a different species, or may be non-natural variants, for example polynucleotides synthesized using chemical synthesis methods, or generated using recombinant DNA techniques. Degeneracy of the genetic code provides the possibility to substitute at least one base of the protein encoding sequence of a gene with a different base without causing the amino acid sequence of the polypeptide produced from the gene to be changed. Hence, a polynucleotide useful in the present invention may have any base sequence that has been changed from the sequences in Table 2 (SEQ ID NO: 44 to SEQ ID NO: 86) by substitution in accordance with degeneracy of the genetic code.
[0084] Homologs of the polynucleotides provided herein will generally demonstrate significant identity with the polynucleotides provided herein. A polynucleotide of the present invention is substantially identical to a reference polynucleotide if, when the sequences of the polynucleotides are optimally aligned there is about 60% nucleotide equivalence; more preferably 70%; more preferably 80% equivalence; more preferably 85% equivalence; more preferably 90%; more preferably 95%; and/or more preferably 98% or 99% equivalence over a comparison window. A comparison window is preferably at least 50-100 nucleotides, and more preferably is the entire length of the polynucleotide provided herein. Optimal alignment of sequences for aligning a comparison window may be conducted by algorithms; preferably by computerized implementations of these algorithms (such as the Wisconsin Genetics Software Package). The reference polynucleotide may be a full-length molecule or a portion of a longer molecule. Preferentially, the window of comparison for determining polynucleotide identity of protein encoding sequences is the entire coding region.
[0085] Promoters
[0086] In one embodiment, a polynucleotide of the present invention is operatively linked in a recombinant polynucleotide to a promoter functional in a plant or alga to provide for expression of the polynucleotide in the sense orientation such that a desired polypeptide is produced. Also considered are embodiments wherein a polynucleotide is operatively linked to a promoter functional in a plant to provide for expression of the polynucleotide in the antisense orientation such that a complementary copy of at least a portion of an mRNA native to the target plant host is produced. Such a transcript may contain both sense and antisense regions of a polynucleotide, for example where RNAi methods are used for gene suppression.
[0087] In one embodiment, the promoter of the expression vector of the present invention is operably linked to the polynucleotide. In one embodiment, the promoter is a constitutive promoter. In another embodiment, the promoter is an inducible promoter. In another embodiment, the promoter is a tissue-specific promoter.
[0088] In one embodiment, a promoter used in the compositions and methods of the present invention is cisgenic, i.e. is a promoter that is native to the plant.
[0089] Recombinant polynucleotides of the present invention are assembled in recombinant DNA constructs using methods known to those of ordinary skill in the art. Thus, DNA constructs used for transforming plant cells will comprise a polynucleotide one desires to introduce into a target plant. Such constructs will also typically comprise a promoter operatively linked to said polynucleotide to provide for expression in the target plant. Other construct components may include additional regulatory elements, such as 5' or 3' untranslated regions (such as polyadenylation sites), intron regions, and transit or signal peptides.
[0090] Numerous promoters that are active in plant cells have been described in the literature. These include promoters present in plant genomes as well as promoters from other sources, including nopaline synthase (NOS) promoter and octopine synthase (OCS) promoters carried on tumor-inducing plasmids of Agrobacterium tumefaciens, caulimovirus promoters such as the cauliflower mosaic virus or figwort mosaic virus promoters.
[0091] These and numerous other promoters that function in plant cells are known to those skilled in the art and available for use in recombinant polynucleotides of the present invention to provide for expression of desired genes in genetically modified plant cells.
[0092] Furthermore, the promoters may be altered to contain multiple "enhancer sequences" to assist in elevating gene expression. Such enhancers are known in the art. By including an enhancer sequence with such constructs, the expression of the selected protein may be enhanced. These enhancers often are found 5' to the start of transcription in a promoter that functions in eukaryotic cells, but can often be inserted in the forward or reverse orientation 5' or 3' to the coding sequence. In some instances, these 5' enhancing elements are introns. Deemed to be particularly useful as enhancers are the 5' introns of the rice actin 1 and rice actin 2 genes. Examples of other enhancers that can be used in accordance with the invention include elements from the CaMV 35S promoter, octopine synthase genes, the maize alcohol dehydrogenase gene, the maize shrunken 1 gene and promoters from non-plant eukaryotes.
[0093] Organ-Specific Promoters
[0094] In other aspects of the invention, expression in plant seed tissues is desired to effect improvements in seed composition. In one embodiment, promoters for use for seed composition modification include promoters from seed genes such as napin, globulin 1, glutelin 1, and peroxiredoxin antioxidant.
[0095] In still other aspects of the invention, preferential expression in plant green tissues is desired. In one embodiment, promoters for expression in plant green tissues include those from genes such as SSU, aldolase and pyruvate orthophosphate dikinase (PPDK).
[0096] Recombinant constructs prepared in accordance with the invention will also in one embodiment, include a 3' untranslated DNA region that typically contains a polyadenylation sequence following the polynucleotide coding region. Examples of useful 3' UTRs include those from the nopaline synthase gene of Agrobacterium tumefaciens (nos), a gene encoding the small subunit of a ribulose-1,5-bisphosphate carboxylase-oxygenase (rbcS), and the T7 transcript of Agrobacterium tumefaciens.
[0097] Constructs and vectors may also include a transit peptide for targeting of a gene target to a plant organelle, particularly to a chloroplast, leucoplast or other plastid organelle.
[0098] Host Cells
[0099] In another embodiment, the present invention provides a cell comprising an expression vector comprising a recombinant polynucleotide encoding an atypical CYS HIS rich thioredoxin 4 (ACHT4) protein, wherein the C-terminal portion of said ACHT4 protein comprises an inactivating mutation.
[0100] In one embodiment, the cell is from an Arabidopsis. In one embodiment, the cell is from Arabidopsis thaliana. In one embodiment, the cell is from a crop plant. In one embodiment, the crop plant is Solanum tuberosum (Potato). In another embodiment, the crop plant is Zea mays (Maize). In another embodiment, the crop plant is Oryza sativa (Rice). In another embodiment, the crop plant is Manihot esculenta (Cassava). In another embodiment, the crop plant is Hordeum vulgare (Barley). In another embodiment, the crop plant is Triticum aestivum (Wheat). In another embodiment, the crop plant is Sorghum bicolor. In another embodiment, the crop plant is Brassica napus (Rapeseed). In another embodiment, the crop plant is Ricinus communis (Castor). In another embodiment, the crop plant is Phaseolus vulgaris (Bean). In another embodiment, the crop plant is Gossypium histrum (Cotton). In another embodiment, the crop plant is Glycine max (Soybean). In another embodiment, the crop plant is Beta vulgaris (Beet). In another embodiment, the crop plant is Musa acuminate (Banana). In another embodiment, the crop plant is Capsicum annuum (Sweet and Chili Peppers). In another embodiment, the crop plant is Cicer arietinum (Chick pea). In another embodiment, the crop plant is Solanum lycopersicum (Tomato). In another embodiment, the crop plant is Elaeis guineensis (African oilpalm). In another embodiment, the crop plant is Setaria italic (Foxtail millet).
[0101] In another embodiment, the crop plant is a food crop. In another embodiment, the crop plant is a nutritionally enhanced food crop.
[0102] In another embodiment, the cell is a moss cell. In one embodiment, the moss is Physcomitrella patens. In another embodiment, the cell is an algae cell. In one embodiment, the algae cell is Chlamydomonas reinhardtii. In another embodiment, the algae cell is Ostreococcus tauri. In another embodiment, the algae cell is a Chlorella.
[0103] Provided herein are host cells that contain a vector, e.g., a DNA plasmid and support the replication and/or expression of the vector. Host cells may be prokaryotic cells such as E. coli, or eukaryotic cells such as yeast, plant, insect, amphibian, or mammalian cells. In some embodiments, host cells are monocotyledonous or dicotyledonous plant cells. In other embodiments monocotyledonous host cell is a maize host cell. In certain embodiments, the host cell utilized in the methods of the present invention is transiently transfected with the nucleic acid molecules of the invention.
[0104] In some embodiments, the host cell utilized in the methods of the present invention is a plant protoplast. Plant protoplasts are plant cells that had their entire plant cell wall enzymatically removed prior to the introduction of the molecule of interest. The complete removal of the cell wall disrupts the connection between cells producing a homogenous suspension of individualized cells which allows more uniform and large scale transfection experiments. This comprises, but is not restricted to protoplast fusion, electroporation, liposome-mediated transfection, and polyethylene glycol-mediated transfection. Protoplast preparation is therefore a very reliable and inexpensive method to produce millions of cells.
[0105] In particular embodiments, the plant protoplast is derived from one of the following genuses: Acorus, Aegilops, Allium, Amborella, Antirrhinum, Apium, Arabidopsis, Arachis, Beta, Betula, Brassica, Capsicum, Ceratopteris, Citrus, Cryptomeria, Cycas, Descurainia, Eschscholzia, Eucalyptus, Glycine, Gossypium, Hedyotis, Helianthus, Hordeum, Ipomoea, Lactuca, Linum, Liriodendron, Lotus, Lupinus, Lycopersicon, Medicago, Mesembryanthemum, Nicotiana, Nuphar, Pennisetum, Persea, Phaseolus, Physcomitrella, Picea, Pinus, Poncirus, Populus, Prunus, Robinia, Rosa, Saccharum, Schedonorus, Secale, Sesamum, Solanum, Sorghum, Stevia, Thellungiella, Theobroma, Triphysaria, Triticum, Vitis, Zea, or Zinnia. In some embodiments, the host cell is derived from a genus that is different from the genus from which the ACTH4 gene is derived.
[0106] Also provided herein are plant cells having the nucleotide sequence constructs of the invention. A further aspect of the present invention provides a method of making such a plant cell involving introduction of a vector including the construct into a plant cell. For integration of the construct into the plant genome, such introduction will be followed by recombination between the vector and the plant cell genome to introduce the sequence of nucleotides into the genome. RNA encoded by the introduced nucleic acid construct may then be transcribed in the cell and descendants thereof, including cells in plants regenerated from transformed material. A gene stably incorporated into the genome of a plant is passed from generation to generation to descendants of the plant, so such descendants should show the desired phenotype.
[0107] Optionally, germ line cells may be used in the methods described herein rather than, or in addition to, somatic cells. The term "germ line cells" refers to cells in the plant organism which can trace their eventual cell lineage to either the male or female reproductive cell of the plant. Other cells, referred to as "somatic cells" are cells which give rise to leaves, roots and vascular elements which, although important to the plant, do not directly give rise to gamete cells. Somatic cells, however, also may be used. With regard to callus and suspension cells which have somatic embryogenesis, many or most of the cells in the culture have the potential capacity to give rise to an adult plant. If the plant originates from single cells or a small number of cells from the embryogenic callus or suspension culture, the cells in the callus and suspension can therefore be referred to as germ cells. In the case of immature embryos which are prepared for treatment by the methods described herein, certain cells in the apical meristem region of the plant have been shown to produce a cell lineage which eventually gives rise to the female and male reproductive organs. With many or most species, the apical meristem is generally regarded as giving rise to the lineage that eventually will give rise to the gamete cells. An example of a non-gamete cell in an embryo would be the first leaf primordia in corn which is destined to give rise only to the first leaf and none of the reproductive structures.
[0108] In another embodiment, the present invention provides a composition comprising a cell comprising an expression vector comprising a recombinant polynucleotide encoding an atypical CYS HIS rich thioredoxin 4 (ACHT4) protein, wherein the C-terminal portion of said ACHT4 protein comprises an inactivating mutation.
[0109] Seeds
[0110] In another embodiment, the present invention provides a seed comprising a C-terminal deleted form of an atypical CYS HIS rich thioredoxin 4 (ACHT4) gene.
[0111] The present invention is directed to seed from a genetically modified plant, wherein the genome of said seed comprises an exogenous polynucleotide comprising a functional portion of an encoding region for a polypeptide provided herein, and wherein plants grown from said seed exhibit an enhanced phenotype as compared to the phenotype of a control plant. In one embodiment, the enhanced phenotype is increased yield. Exogenous polynucleotides of the present invention include recombinant polynucleotides providing for expression of mRNA encoding a polypeptide.
[0112] Plants and Plant Parts
[0113] In another embodiment, the present invention provides a plant, or plant part, comprising a C-terminal deleted form of an atypical CYS HIS rich thioredoxin 4 (ACHT4) gene.
[0114] The present invention provides a plant comprising a C-terminal deleted form of an ACHT4 gene. Transformed seeds and plant parts are also encompassed. In one embodiment, the plant part is a seed. In another embodiment, the plant part is a leaf. In another embodiment, the plant part is a stem. In another embodiment, the plant part is a root. In another embodiment, the plant part is a flower. In another embodiment, the plant part is a tuber. In another embodiment, the plant part is a fruit.
[0115] In one embodiment, a plant of the present invention is any plant that comprises an ACHT4 gene or homolog.
[0116] In one embodiment, a plant of the present invention is a crop plant. In one embodiment, the crop plant is Solanum tuberosum (Potato). In another embodiment, the crop plant is Zea mays (Maize). In another embodiment, the crop plant is Oryza sativa (Rice). In another embodiment, the crop plant is Manihot esculenta (Cassava). In another embodiment, the crop plant is Hordeum vulgare (Barley). In another embodiment, the crop plant is Triticum aestivum (Wheat). In another embodiment, the crop plant is Sorghum bicolor. In another embodiment, the crop plant is Brassica napus (Rapeseed). In another embodiment, the crop plant is Ricinus communis (Castor). In another embodiment, the crop plant is Phaseolus vulgaris (Bean). In another embodiment, the crop plant is Gossypium histrum (Cotton). In another embodiment, the crop plant is Glycine max (Soybean). In another embodiment, the crop plant is Beta vulgaris (Beet). In another embodiment, the crop plant is Musa acuminate (Banana). In another embodiment, the crop plant is Capsicum annuum (Sweet and Chili Peppers). In another embodiment, the crop plant is Cicer arietinum (Chick pea). In another embodiment, the crop plant is Solanum lycopersicum (Tomato). In another embodiment, the crop plant is Elaeis guineensis (African oilpalm). In another embodiment, the crop plant is Setaria italic (Foxtail millet).
[0117] In another embodiment, the crop plant is a food crop. In another embodiment, the crop plant is a nutritionally enhanced food crop.
[0118] In another embodiment, a plant of the present invention is an Arabidopsis. In one embodiment, the Arabidopsis plant is Arabidopsis thaliana. In another embodiment, the Arabidopsis plant is Arabidopsis arenicola, Arabidopsis arenosa, Arabidopsis cebennensis, Arabidopsis croatica, Arabidopsis halleri, Arabidopsis lyrata, Arabidopsis neglecta, Arabidopsis pedemontana, or Arabidopsis suecica.
[0119] In another embodiment, a plant of the present invention is a moss. In one embodiment, the moss is a Sphagnum. In one embodiment, the Sphagnum species is cristatum or subnitens. In one embodiment, the moss is used for peat. In one embodiment, peat is used for fuel, as a horticultural soil additive, and in smoking malt in the production of Scotch whisky. In another embodiment, the moss is used for decorative purposes, such as in gardens and in the florist trade. In another embodiment, the moss is used as insulation. In another embodiment, the moss is used as an absorber of liquids. In another embodiment, moss is used for first-aid dressings, for diapers or napkins. In another embodiment, the moss is a Physcomitrella patens. In another embodiment, the moss is a Fontinalis antipyretica which, in one embodiment, is used to subdue fires.
[0120] In one embodiment, the plant is an ornamental plant.
[0121] Plants included in the invention are any plants amenable to transformation techniques, including gymnosperms and angiosperms, both monocotyledons and dicotyledons.
[0122] In addition to a plant, the present invention provides any clone of such a plant, seed, selfed or hybrid progeny and descendants, and any part of any of these, such as cuttings, seed. The invention provides any plant propagule, that is any part which may be used in reproduction or propagation, sexual or asexual, including cuttings, seed and so on. Also encompassed by the invention is a plant which is a sexually or asexually propagated off-spring, clone or descendant of such a plant, or any part or propagule of said plant, off-spring, clone or descendant. Plant extracts and derivatives are also provided.
[0123] Algae
[0124] In another embodiment, the present invention provides an alga comprising a C-terminal deleted form of an atypical CYS HIS rich thioredoxin 4 (ACHT4) gene.
[0125] In one embodiment, the alga is a microalga. In one embodiment, the species of the alga is selected from the following species: Ankistrodesmus, Botryococcus braunii, Chlorella, Chlorella protothecoides (autotrophic/heterothrophic), Crypthecodinium cohnii, Cyclotella, Dunaliella tertiolecta, Gracilaria, Hantzschia, Nannochloris, Nannochloropsis, Neochloris oleoabundans, Nitzschia, Phaeodactylum tricornutum, Pleurochrysis carterae (also called CCMP647), Sargassum, Scenedesmus, Schizochytrium, Stichococcus, Tetraselmis suecica, and Thalassiosira pseudonana. In another embodiment, the alga is a Chlamydomonas reinhardtii. In another embodiment, the alga is a Ostreococcus tauri.
[0126] In another embodiment, the present invention provides a polypeptide comprising a C-terminal deleted form of atypical CYS HIS rich thioredoxin 4 (ACHT4).
[0127] Proteins and Polypeptides
[0128] Polypeptides considered in the present invention are entire proteins or at least a sufficient portion of the entire protein to impart the relevant biological activity of the protein, e.g. enhanced plant phenotype. The term "protein" also includes molecules consisting of one or more polypeptide chains. Thus, a polypeptide useful in the present invention may constitute an entire protein having the desired biological activity, or may constitute a portion of an oligomeric protein having multiple polypeptide chains. Polypeptides useful for generation of genetically modified plants having enhanced properties include the polypeptide provided herein as SEQ ID NOs: 1-43, as well as homologs of such polypeptides.
[0129] In one embodiment, the inactivating mutation in the C-terminal portion of ACHT4 is a deletion of the entire C-terminal domain of ACHT4. In one embodiment, the C-terminal domain of ACHT4 is the sequence that is downstream of the conserved thioredoxin (Trx) domain (as depicted in FIG. 4A). In another embodiment, the inactivating mutation in the C-terminal is a deletion of a portion of the C-terminal domain of ACHT4. In another embodiment, the inactivating mutation in the C-terminal is a deletion of the 47 amino acid C-terminal portion of ACHT4.
[0130] In one embodiment, the amino acid sequence of the C-terminal of ACHT4 comprises:
TABLE-US-00003 (SEQ ID NO: 87) KELNFTYTPKPVPVEKEAATPDSNPSLPVPLPSMSSNDEKTLVSAGR.
[0131] In another embodiment, the amino acid sequence of the C-terminal of ACHT4 is a homolog of SEQ ID NO: 87. In another embodiment, the amino acid sequence of the C-terminal of ACHT4 is a paralog of SEQ ID NO: 87. In another embodiment, the amino acid sequence of the C-terminal of ACHT4 is a fragment of SEQ ID NO: 87. In another embodiment, the amino acid sequence of the C-terminal of ACHT4 is a variant of SEQ ID NO: 87. In another embodiment, the amino acid sequence of the C-terminal of ACHT4 comprises SEQ ID NO: 87. In another embodiment, the amino acid sequence of the C-terminal of ACHT4 corresponds to SEQ ID NO: 87.
[0132] In another embodiment, the inactivating mutation in the C-terminal is a deletion of the 68-69 amino acid C-terminal portion of ACHT4.
[0133] In one embodiment, the amino acid sequence of the C-terminal of ACHT4 comprises:
TABLE-US-00004 (SEQ ID NO: 88) AANKDLSFNYTPKTEEAPVLVTSQKEVQDTTPPNIESPLPLPLPLPIAST SSQTAKRDTEKEAYATSGR.
[0134] In another embodiment, the amino acid sequence of the C-terminal of ACHT4 comprises:
TABLE-US-00005 (SEQ ID NO: 89) AANKDLSFAYTPKTEEPMPVALQDAKVIKTSRTSSSCPNTFSLLPLPLPL PLASTSHKAKQDSKSEVF.
[0135] In another embodiment, the amino acid sequence of the C-terminal of ACHT4 is a homolog any one of SEQ ID NOs: 88-89. In another embodiment, the amino acid sequence of the C-terminal of ACHT4 is a paralog any one of SEQ ID NOs: 88-89. In another embodiment, the amino acid sequence of the C-terminal of ACHT4 is a fragment any one of SEQ ID NOs: 88-89. In another embodiment, the amino acid sequence of the C-terminal of ACHT4 is a variant any one of SEQ ID NOs: 88-89. In another embodiment, the amino acid sequence of the C-terminal of ACHT4 comprises any one of SEQ ID NOs: 88-89. In another embodiment, the amino acid sequence of the C-terminal of ACHT4 corresponds to any one of SEQ ID NOs: 88-89.
[0136] In another embodiment, the inactivating mutation in the C-terminal is a deletion of the final 47-69 amino acids of the C-terminal portion of ACHT4. In another embodiment, the inactivating mutation in the C-terminal is a deletion of the final 50-75 amino acids of the C-terminal portion of ACHT4. In another embodiment, the inactivating mutation in the C-terminal is a deletion of the final 50-100 amino acids of the C-terminal portion of ACHT4. In another embodiment, the inactivating mutation in the C-terminal is a deletion of the final 25-50 amino acids of the C-terminal portion of ACHT4. In another embodiment, the inactivating mutation in the C-terminal is a deletion of the final 1-25 amino acids of the C-terminal portion of ACHT4. In another embodiment, the inactivating mutation in the C-terminal is a deletion of the final 1-10 amino acids of the C-terminal portion of ACHT4. In another embodiment, the inactivating mutation in the C-terminal is a deletion of the final 25-75 amino acids of the C-terminal portion of ACHT4. In another embodiment, the inactivating mutation in the C-terminal is a deletion of the final 1-20 amino acids of the C-terminal portion of ACHT4. In another embodiment, the inactivating mutation in the C-terminal is a deletion of the final 20-40 amino acids of the C-terminal portion of ACHT4. In another embodiment, the inactivating mutation in the C-terminal is a deletion of the final 40-60 amino acids of the C-terminal portion of ACHT4. In another embodiment, the inactivating mutation in the C-terminal is a deletion of the final 50-70 amino acids of the C-terminal portion of ACHT4.
[0137] In one embodiment, an inactivating mutation in the C-terminal of ACHT4 comprises a deletion of amino acids 229-275 of any one of the sequences listed in Table 1 or a corresponding amino acid sequence from another species. In another embodiment, an inactivating mutation in the C-terminal of ACHT4 comprises a deletion of amino acids 250-275 of any one of the sequences listed in Table 1 or a corresponding amino acid sequence from another species. In another embodiment, an inactivating mutation in the C-terminal of ACHT4 comprises a deletion of amino acids 260-275 of any one of the sequences listed in Table 1 or a corresponding amino acid sequence from another species. In another embodiment, an inactivating mutation in the C-terminal of ACHT4 comprises a deletion of amino acids 240-275 of any one of the sequences listed in Table 1 or a corresponding amino acid sequence from another species. In another embodiment, an inactivating mutation in the C-terminal of ACHT4 comprises a deletion of amino acids 229-240 of any one of the sequences listed in Table 1 or a corresponding amino acid sequence from another species. In another embodiment, an inactivating mutation in the C-terminal of ACHT4 comprises a deletion of amino acids 229-250 of any one of the sequences listed in Table 1 or a corresponding amino acid sequence from another species. In another embodiment, an inactivating mutation in the C-terminal of ACHT4 comprises a deletion of amino acids 229-260 of any one of the sequences listed in Table 1 or a corresponding amino acid sequence from another species. In another embodiment, an inactivating mutation in the C-terminal of ACHT4 comprises a deletion of amino acids 229-270 of any one of the sequences listed in Table 1 or a corresponding amino acid sequence from another species.
[0138] In another embodiment, an inactivating mutation in the C-terminal of ACHT4 comprises a deletion of amino acids 233-301 of any one of the sequences listed in Table 1 or a corresponding amino acid sequence from another species. In another embodiment, an inactivating mutation in the C-terminal of ACHT4 comprises a deletion of amino acids 240-301 of any one of the sequences listed in Table 1 or a corresponding amino acid sequence from another species. In another embodiment, an inactivating mutation in the C-terminal of ACHT4 comprises a deletion of amino acids 250-301 of any one of the sequences listed in Table 1 or a corresponding amino acid sequence from another species. In another embodiment, an inactivating mutation in the C-terminal of ACHT4 comprises a deletion of amino acids 260-301 of any one of the sequences listed in Table 1 or a corresponding amino acid sequence from another species. In another embodiment, an inactivating mutation in the C-terminal of ACHT4 comprises a deletion of amino acids 275-301 of any one of the sequences listed in Table 1 or a corresponding amino acid sequence from another species. In another embodiment, an inactivating mutation in the C-terminal of ACHT4 comprises a deletion of amino acids 290-301 of any one of the sequences listed in Table 1 or a corresponding amino acid sequence from another species. In another embodiment, an inactivating mutation in the C-terminal of ACHT4 comprises a deletion of amino acids 233-250 of any one of the sequences listed in Table 1 or a corresponding amino acid sequence from another species. In another embodiment, an inactivating mutation in the C-terminal of ACHT4 comprises a deletion of amino acids 233-275 of any one of the sequences listed in Table 1 or a corresponding amino acid sequence from another species. In another embodiment, an inactivating mutation in the C-terminal of ACHT4 comprises a deletion of amino acids 233-290 of any one of the sequences listed in Table 1 or a corresponding amino acid sequence from another species.
[0139] In another embodiment, an inactivating mutation in the C-terminal of ACHT4 comprises a deletion of amino acids 162-230 of any one of the sequences listed in Table 1 or a corresponding amino acid sequence from another species. In another embodiment, an inactivating mutation in the C-terminal of ACHT4 comprises a deletion of amino acids 175-230 of any one of the sequences listed in Table 1 or a corresponding amino acid sequence from another species. In another embodiment, an inactivating mutation in the C-terminal of ACHT4 comprises a deletion of amino acids 200-230 of any one of the sequences listed in Table 1 or a corresponding amino acid sequence from another species. In another embodiment, an inactivating mutation in the C-terminal of ACHT4 comprises a deletion of amino acids 220-230 of any one of the sequences listed in Table 1 or a corresponding amino acid sequence from another species. In another embodiment, an inactivating mutation in the C-terminal of ACHT4 comprises a deletion of amino acids 162-175 of any one of the sequences listed in Table 1 or a corresponding amino acid sequence from another species. In another embodiment, an inactivating mutation in the C-terminal of ACHT4 comprises a deletion of amino acids 162-200 of any one of the sequences listed in Table 1 or a corresponding amino acid sequence from another species. In another embodiment, an inactivating mutation in the C-terminal of ACHT4 comprises a deletion of amino acids 162-220 of any one of the sequences listed in Table 1 or a corresponding amino acid sequence from another species.
[0140] In another embodiment, an inactivating mutation in the C-terminal of ACHT4 comprises insertion of a non-native sequence into a portion of the C-terminal of ACHT4 encoding the C-terminal of ACHT4, wherein said the C-terminal of ACHT4 is inactivated as a result.
[0141] In another embodiment, an inactivating mutation in the C-terminal of ACHT4 comprises substitution of amino acid residues, such as a substitution of polar for non-polar residues, non-polar for polar residues, charged for uncharged residues, positively charged for negatively charged residues, or vice versa, or a combination thereof, as is known to one of skill in the art. In another embodiment, an inactivating mutation in the C-terminal of ACHT4 consists essentially of any of the mutations listed hereinabove. In another embodiment, an inactivating mutation in the C-terminal of ACHT4 consists of any of the mutations listed hereinabove.
[0142] In one embodiment, an ACHT4 protein having an inactivating mutation in the C-terminal portion is a truncated ACHT4. In another embodiment, an ACHT4 protein having an inactivating mutation in the C-terminal portion is represented as ACHT4.DELTA.C. In one embodiment, the truncated form of ACHT4 comprises:
TABLE-US-00006 (SEQ ID NO: 90) MTEVISKTSLFLGACGNHHRVDDFSFSPVSFGGFGLKKSFSCLKLKSQKP LRSVFYGKQIVFGDSQDESFRRSSAITAQTTLRIGTAQKWWEKGLKDNMR EISSAQELVDSLTNAGDKLVVVDFFSPGCGGCKALHPKICQFAEMNPDVQ FLQVNYEEHKSMCYSLGVHVLPFFRFYRGSQGRVCSFSCTNATIKKFRDA LAKHGPDRCSLGPTKGLEEKELVALAAN.
[0143] In another embodiment, the truncated form of ACHT4 comprises:
TABLE-US-00007 (SEQ ID NO: 91) MMKLMSKGFMFPSSSDCGEIYHHRPLNLPGICSFPNKSVNLSCLPSLNLS SSCLPRTDFYGRRLVINEGVSKFNRRNSQVVDITAQMSIGIRKAQKWWEK GVQPNMKEVNSAQELVDSLLSAGDKLVVVDFFSPGCGGCKALHPKLCQLA EMNPDVHFLQVNYEEHKSMCYSLNVHVLPFFRFYRGAEGRVCSFSCTNAT IKKFKDALAKYGTDRCTLGPPKGLEEKELLAL.
[0144] In another embodiment, the truncated form of ACHT4 comprises:
TABLE-US-00008 (SEQ ID NO: 92) MKFNRRNHKSAAATAQMSIGIRKAPKWWEKGLQPNMKEVMGAQDLADTLL NAGDKLVVVDFLSPGCGGCKALHPKICQLAEMNPDVQFLHVNYEEHKSMC YSLNVHVLPFFRFYRGAEGRLCSFSCTNATIKKFKDALTKYGADCCSLEP VKGLEEKELLAL.
[0145] In another embodiment, the amino acid sequence of the C-terminal of ACHT4 is a homolog any one of SEQ ID NOs: 90-92. In another embodiment, the amino acid sequence of the C-terminal of ACHT4 is a paralog any one of SEQ ID NOs: 90-92. In another embodiment, the amino acid sequence of the C-terminal of ACHT4 is a fragment any one of SEQ ID NOs: 90-92. In another embodiment, the amino acid sequence of the C-terminal of ACHT4 is a variant any one of SEQ ID NOs: 90-92. In another embodiment, the amino acid sequence of the C-terminal of ACHT4 comprises any one of SEQ ID NOs: 90-92. In another embodiment, the amino acid sequence of the C-terminal of ACHT4 corresponds to any one of SEQ ID NOs: 90-92.
[0146] Homologs of the polypeptides of the present invention may be identified by comparison of the amino acid sequence of the polypeptide to amino acid sequences of polypeptides from the same or different plant sources, e.g. manually or by using known homology-based search algorithms such as those commonly known and referred to as BLAST, FASTA, and Smith-Waterman. As used herein, a homolog is a peptide from the same or a different organism that performs the same biological function as the polypeptide to which it is compared. An orthologous relation between two organisms is not necessarily manifest as a one-to-one correspondence between two genes, because a gene can be duplicated or deleted after organism phylogenetic separation, such as speciation. For a given polypeptide, there may be no ortholog or more than one ortholog. Other complicating factors include alternatively spliced transcripts from the same gene, limited gene identification, redundant copies of the same gene with different sequence lengths or corrected sequence. A local sequence alignment program, e.g. BLAST, can be used to search a database of sequences to find similar sequences, and the summary Expectation value (E-value) used to measure the sequence base similarity.
[0147] A further aspect of the invention comprises functional homolog proteins which differ in one or more amino acids from those of a polypeptide provided herein as the result of one or more of the well-known conservative amino acid substitutions, e.g. valine is a conservative substitute for alanine and threonine is a conservative substitute for serine. Conservative substitutions for an amino acid within the native polypeptide sequence can be selected from other members of a class to which the naturally occurring amino acid belongs. Representative amino acids within these various classes include, but are not limited to: (1) acidic (negatively charged) amino acids such as aspartic acid and glutamic acid; (2) basic (positively charged) amino acids such as arginine, histidine, and lysine; (3) neutral polar amino acids such as glycine, serine, threonine, cysteine, tyrosine, asparagine, and glutamine; and (4) neutral nonpolar (hydrophobic) amino acids such as alanine, leucine, isoleucine, valine, proline, phenylalanine, tryptophan, and methionine. Conserved substitutes for an amino acid within a native amino acid sequence can be selected from other members of the group to which the naturally occurring amino acid belongs. For example, a group of amino acids having aliphatic side chains is glycine, alanine, valine, leucine, and isoleucine; a group of amino acids having aliphatic-hydroxyl side chains is serine and threonine; a group of amino acids having amide-containing side chains is asparagine and glutamine; a group of amino acids having aromatic side chains is phenylalanine, tyrosine, and tryptophan; a group of amino acids having basic side chains is lysine, arginine, and histidine; and a group of amino acids having sulfur-containing side chains is cysteine and methionine. Naturally conservative amino acids substitution groups are: valine-leucine, valine-isoleucine, phenylalanine-tyrosine, lysine-arginine, alanine-valine, aspartic acid-glutamic acid, and asparagine-glutamine. A further aspect of the invention comprises polypeptides that differ in one or more amino acids from those of a described protein sequence as the result of deletion or insertion of one or more amino acids in a native sequence.
[0148] Homologs of the polypeptides provided herein will generally demonstrate significant identity with the polypeptides provided herein. In one embodiment, the present invention provides polypeptides with at least about 50% sequence identity. In one embodiment, the present invention provides polypeptides with at least about 70% sequence identity. In one embodiment, the present invention provides polypeptides with at least about 80% sequence identity with an amino acid sequence of any of the amino acid sequences listed in Table 1. In one embodiment, the present invention provides polypeptides with higher identity to such a polypeptide sequence, e.g. 90% to 99% identity. Identity of protein homologs is determined by optimally aligning the amino acid sequence of a putative protein homolog with a defined amino acid sequence and by calculating the percentage of identical and conservatively substituted amino acids over the window of comparison. Preferentially, the window of comparison for determining identity is the entire polypeptide sequence disclosed herein, e.g. the full sequence of any one of the sequences listed in Table 1.
[0149] In another embodiment, the present invention provides a composition comprising a polypeptide comprising a C-terminal deleted form of atypical CYS HIS rich thioredoxin 4 (ACHT4).
[0150] Methods of Use for Plants Expressing ACHT4.DELTA.C
[0151] In another embodiment, the present invention provides a method of increasing the yield of a plant or algae comprising contacting a cell from said plant or algae with a polynucleotide encoding a C-terminal deleted form of atypical CYS HIS rich thioredoxin 4 (ACHT4), thereby increasing the yield of said plant or algae.
[0152] In another embodiment, the present invention provides a method of increasing the productivity of a plant or algae comprising contacting a cell from said plant or algae with a polynucleotide encoding a C-terminal deleted form of atypical CYS HIS rich thioredoxin 4 (ACHT4), thereby increasing the productivity of said plant or algae.
[0153] In another embodiment, the present invention provides a method of increasing the size of a plant or algae comprising contacting a cell from said plant or algae with a polynucleotide encoding a C-terminal deleted form of atypical CYS HIS rich thioredoxin 4 (ACHT4), thereby increasing the size of said plant or algae.
[0154] In another embodiment, the present invention provides a method of increasing the biomass of a plant or algae comprising contacting a cell from said plant or algae with a polynucleotide encoding a C-terminal deleted form of atypical CYS HIS rich thioredoxin 4 (ACHT4), thereby increasing the biomass of said plant or algae.
[0155] In another embodiment, the present invention provides a method of stimulating the growth of a plant or algae comprising contacting a cell from said plant or algae with a polynucleotide encoding a C-terminal deleted form of atypical CYS HIS rich thioredoxin 4 (ACHT4), thereby stimulating the growth of said plant or algae.
[0156] In another embodiment, the present invention provides a method of enhancing the starch content of a plant or algae comprising contacting a cell from said plant or algae with a polynucleotide encoding a C-terminal deleted form of atypical CYS HIS rich thioredoxin 4 (ACHT4), thereby enhancing the starch content of said plant or algae.
[0157] In one embodiment, the plant or algae has enhanced starch in transitory starch stores. In another embodiment, the plant or algae has enhanced starch in non-transitory starch stores. In one embodiment, the plant has enhanced starch content in one or more leaves. In another embodiment, the plant has enhanced starch content in the roots. In another embodiment, the plant has enhanced starch content in the stem. In another embodiment, the plant has enhanced starch content in one or more seeds. In another embodiment, the plant has enhanced starch content in its tubers. In another embodiment, the plant has enhanced starch content in its fruit. In another embodiment, the plant has enhanced starch content in one or more of its flowers.
[0158] In one embodiment, the present invention provides methods comprising the step of "contacting" a cell with a polynucleotide or expression vector as described herein. In one embodiment, plants are genetically modified using a microbial vector comprising ACHT4.DELTA.C. In one embodiment, the microbial vector is Agrobacterium tumefaciens. In another embodiment, plants are genetically modified using microprojectile bombardment. In one embodiment, corn, rice, and other cereal grains are genetically modified using microprojectile bombardment. In another embodiment, plants are genetically modified using electroporation. In another embodiment, plants are genetically modified using microinjection, which in one embodiment, is direct microinjection of genetically modified DNA into anchored cells. In another embodiment, plants are genetically modified using transposons or transposable elements.
[0159] In one embodiment, the step of contacting is performed in vitro. In another embodiment, the step of contacting is performed in vivo.
[0160] In one embodiment, the ACHT4.DELTA.C is integrated into the plant or algae chromosome. In another embodiment, the ACHT4.DELTA.C is expressed from a vector.
[0161] Methods of Producing Genetically Modified Plants
[0162] In another embodiment, the present invention provides a method of producing a plant having an enhanced phenotype, wherein said method comprises transforming plant cells with a recombinant polynucleotide encoding an atypical CYS HIS rich thioredoxin 4 (ACHT4) protein, wherein the C-terminal portion of said ACHT4 protein comprises an inactivating mutation, regenerating plants from said cells, and screening said plants to identify a plant having an enhanced phenotype.
[0163] In another embodiment, the present invention provides a method of producing an algae having an enhanced phenotype, wherein said method comprises delivering a recombinant polynucleotide encoding an atypical CYS HIS rich thioredoxin 4 (ACHT4) protein to algae cells, wherein the C-terminal portion of said ACHT4 protein comprises an inactivating mutation, growing algae from said cells, and screening said algae to identify a plant having an enhanced phenotype.
[0164] Genetically modified plant seed provided by this invention may be grown to generate genetically modified plants having an enhanced phenotype as compared to an appropriate control line. Such seed is obtained by screening transformed plants for enhanced phenotypes resulting from the introduction of a recombinant polynucleotide into the genomic DNA of tissue from a parental line. The recombinant polynucleotide is introduced into the genome to produce genetically modified cells that can be cultured into genetically modified plants having an enhanced phenotype as compared to the parental line or other appropriate control. Such genetically modified cells are cultured into genetically modified plants that produce progeny genetically modified seed. Preferably, multiple genetically modified plants (events) comprising the recombinant polynucleotides are evaluated, e.g. from 2 to 20 or more genetically modified events, to identify a desired enhanced phenotype. Although the design of a recombinant polynucleotide is based on a rational expectation of a phenotypic modification, the present invention also contemplates that unexpected, yet desired enhanced phenotypes may be obtained.
[0165] Genetically modified plants grown from genetically modified seed as described herein will have improved phenotypes that contribute to increased yield or other increased plant value, including, for example, improved seed quality. Of particular interest are plants having altered cell division, enhanced plant growth and development, stress tolerance, including tolerance to abiotic and biotic stress, altered seed or flower development, improved light response, and enhanced carbon and/or nitrogen metabolism, transport or utilization properties.
[0166] Genetic Modification
[0167] In one embodiment, the present invention provides a cisgenic plant. In one embodiment, a cisgenic plant of the present invention is genetically modified, in one embodiment, comprises a second copy of a gene in which a portion of said gene is deleted, but contains no foreign or heterologous genes. In one embodiment, the promoters used in the expression of ACHT4.DELTA.C are cisgenic. In one embodiment, food crops of the present invention are cisgenic.
[0168] In another embodiment, the present invention provides a transgenic plant. In one embodiment, a transgenic plant of the present invention is genetically modified with foreign or heterologous genes. In one embodiment, transgenic plants of the present invention are used for biofuel. In another embodiment, transgenic plants of the present invention are food crop plants.
[0169] Any method or delivery system may be used for the delivery and/or transformation (plant cells)/transfection (algae cells) of the nucleic acid vectors encoding ACHT4 and homologs, paralogs, etc. in the host cell, e.g., plant protoplast. The vectors may be delivered to the host cell either alone, or in combination with other agents. Transient expression systems may also be used. Homologous recombination may also be used.
[0170] Transformation may be accomplished by a wide variety of means, as is known to those of ordinary skill in the art. Such methods include, but are not limited to, Agrobacterium-mediated transformation (e.g., Komari et al., 1998, Curr. Opin. Plant Biol., 1:161), including floral dip transformation, particle bombardment mediated transformation (e.g., Finer et al., 1999, Curr. Top. Microbiol. Immunol., 240:59), protoplast electroporation (e.g., Bates, 1999, Methods Mol. Biol., 111:359), viral infection (e.g., Porta and Lomonossoff, 1996, Mol. Biotechnol. 5:209), microinjection, and liposome injection. Other exemplary delivery systems that can be used to facilitate uptake by a cell of the nucleic acid include calcium phosphate and other chemical mediators of intracellular transport, microinjection compositions, and homologous recombination compositions (e.g., for integrating a gene into a preselected location within the chromosome of the cell). Alternative methods may involve, for example, the use of liposomes, electroporation, or chemicals that increase free (or "naked") DNA uptake, transformation using viruses or pollen and the use of microprojection. Standard molecular biology techniques are common in the art (e.g., Sambrook et al., 1989, Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory Press, New York).
[0171] For the Agrobacterium tumefaciens-based plant transformation system, additional elements present on transformation constructs will, in one embodiment, include T-DNA left and right border sequences to facilitate incorporation of the recombinant polynucleotide into the plant genome.
[0172] In one embodiment, DNA is inserted randomly, i.e. at a non-specific location, in the genome of a target plant line. In another embodiment, DNA insertion is targeted in order to achieve site-specific integration, e.g. to replace an existing gene in the genome, to use an existing promoter in the plant genome, or to insert a recombinant polynucleotide at a predetermined site known to be active for gene expression. Several site specific recombination systems exist which are known to function in plants including cre-lox and FLP-FRT.
[0173] Transformation methods of this invention are preferably practiced in tissue culture on media and in a controlled environment. "Media" refers to the numerous nutrient mixtures that are used to grow cells in vitro, that is, outside of the intact living organism. Recipient cell targets include, but are not limited to, meristem cells, callus, immature embryos and gametic cells such as microspores, pollen, sperm and egg cells. It is contemplated that any cell from which a fertile plant may be regenerated is useful as a recipient cell. Callus may be initiated from tissue sources including, but not limited to, immature embryos, seedling apical meristems, microspores and the like. Cells capable of proliferating as callus are also recipient cells for genetic transformation. Practical transformation methods and materials for making genetically modified plants of this invention, e.g. various media and recipient target cells, transformation of immature embryos and subsequent regeneration of fertile genetically modified plants are known in the art.
[0174] In one embodiment, the method of transformation of algae comprises any of the methods as described hereinabove. In one embodiment, transformation of algae is accomplished using glass bead-assisted transformation, particle gun-mediated (biolistic) transformation, treatment with cellulolytic enzymes to weaken their cell walls, or homologous recombination.
[0175] Markers of Genetic Transformation
[0176] In one embodiment, DNA is introduced into only a small percentage of target cells in any one experiment. Marker genes are used to provide an efficient system for identification of those cells that are stably transformed by receiving and integrating a genetically modified DNA construct into their genomes. Preferred marker genes provide selective markers that confer resistance to a selective agent, such as an antibiotic or herbicide. Potentially transformed cells are exposed to the selective agent. In the population of surviving cells will be those cells where, generally, the resistance-conferring gene has been integrated and expressed at sufficient levels to permit cell survival. Cells may be tested further to confirm stable integration of the exogenous DNA. Useful selective marker genes include those conferring resistance to antibiotics such as kanamycin (nptII), hygromycin B (aph IV) and gentamycin (aac3 and aacC4) or resistance to herbicides such as glufosinate (bar or pat) and glyphosate (EPSPS).
[0177] Screenable markers which provide an ability to visually identify transformants can also be employed, e.g., a gene expressing a colored or fluorescent protein such as a luciferase or green fluorescent protein (GFP) or a gene expressing a beta-glucuronidase or uidA gene (GUS) for which various chromogenic substrates are known. It is also contemplated that combinations of screenable and selectable markers will be useful for identification of transformed cells.
[0178] Cells that survive exposure to the selective agent, or cells that have been scored positive in a screening assay, may be cultured in regeneration media and allowed to mature into plants. Developing plantlets can be transferred to soil less plant growth mix, and hardened off, e.g., in an environmentally controlled chamber at about 85% relative humidity, 600 ppm CO.sub.2, and 25-250 microeinsteins m.sup.-2s.sup.-1 of light, prior to transfer to a greenhouse or growth chamber for maturation. Plants are preferably matured either in a growth chamber or greenhouse. Plants are regenerated from about 6 weeks to 10 months after a transformant is identified, depending on the initial tissue. During regeneration, cells are grown to plants on solid media at about 19 to 28.degree. C. After regenerating plants have reached the stage of shoot and root development, they may be transferred to a greenhouse for further growth and testing. Plants may be pollinated using conventional plant breeding methods known to those of skill in the art and seed produced.
[0179] Progeny may be recovered from transformed plants and tested for expression of the exogenous recombinant polynucleotide. Useful assays include, for example, "molecular biological" assays, such as Southern and Northern blotting and PCR; "biochemical" assays, such as detecting the presence of RNA, e.g. double stranded RNA, or a protein product, e.g., by immunological means (ELISAs and Western blots) or by enzymatic function; plant part assays, such as leaf or root assays; and also, by analyzing the phenotype of the whole regenerated plant.
[0180] One of skill in the art will be able to select an appropriate vector for introducing the encoding nucleic acid sequence in a relatively intact state. Thus, any vector which will produce a host cell, e.g., plant protoplast, carrying the introduced encoding nucleic acid should be sufficient. The selection of the vector, or whether to use a vector, is typically guided by the method of transformation selected.
[0181] Plant Regeneration
[0182] Following transformation, plant cells transformed with a plant expression vector may be regenerated, e.g., from single cells, callus tissue or leaf discs according to standard plant tissue culture techniques. Almost any plant can be entirely regenerated from cells, tissues, and organs of the plant using methods that are known in the art.
[0183] The transformed plants may then be grown, and either pollinated with the same transformed strain or different strains, and the resulting hybrid having expression of the desired phenotypic characteristic identified. Two or more generations may be grown to ensure that expression of the desired phenotypic characteristic is stably maintained and inherited and then seeds harvested to ensure expression of the desired phenotypic characteristic has been achieved.
[0184] Normally, a plant cell is regenerated to obtain a whole plant from the transformation process. The term "growing" or "regeneration" as used herein means growing a whole plant from a plant cell, a group of plant cells, a plant part (including seeds), or a plant piece (e.g., from a protoplast, callus, or tissue part).
[0185] Regeneration from protoplasts varies from species to species of plants, but generally a suspension of protoplasts is first made. In certain species, embryo formation can then be induced from the protoplast suspension. The culture media will generally contain various amino acids and hormones, necessary for growth and regeneration. Examples of hormones utilized include auxins and cytokinins. Efficient regeneration will depend on the medium, on the genotype, and on the history of the culture. If these variables are controlled, regeneration is reproducible. Regeneration also occurs from plant callus, explants, organs or parts.
[0186] In vegetatively propagated crops, the mature genetically modified plants are propagated by utilizing cuttings or tissue culture techniques to produce multiple identical plants. Selection of desirable genetically modified plants is made and new varieties are obtained and propagated vegetatively for commercial use.
[0187] In seed propagated crops, mature genetically modified plants can be self-crossed to produce a homozygous inbred plant. The resulting inbred plant produces seed containing the genetic mutation. These seeds can be grown to produce plants that would produce the selected phenotype, e.g., increased lateral root growth, uptake of nutrients, overall plant growth and/or vegetative or reproductive yields.
[0188] Parts obtained from the regenerated plant, such as flowers, seeds, leaves, branches, fruit, and the like are included in the invention, provided that these parts comprise cells comprising the isolated nucleic acid of the present invention. Progeny and variants, and mutants of the regenerated plants are also included within the scope of the invention, provided that these parts comprise the introduced nucleic acid sequences. Genetically modified plants expressing a selectable marker can be screened for transmission of the nucleic acid of the present invention by, for example, standard immunoblot and DNA detection techniques. Genetically modified plant cells are also typically evaluated on levels of expression of the genetically modified nucleic acid. Expression at the RNA level can be determined initially to identify and quantitate expression-positive plants. Standard techniques for RNA analysis can be employed and include PCR amplification assays using oligonucleotide primers designed to amplify only the genetically modified RNA templates and solution hybridization assays using genetically modified nucleic acid-specific probes. The RNA-positive plants can then analyzed for protein expression by Western immunoblot analysis using the specifically reactive antibodies of the present invention. In addition, in situ hybridization and immunocytochemistry according to standard protocols can be done using genetically modified nucleic acid specific polynucleotide probes and antibodies, respectively, to localize sites of expression within genetically modified tissue. Generally, a number of genetically modified lines are usually screened for the incorporated nucleic acid to identify and select plants with the most appropriate expression profiles.
[0189] In one embodiment, the present invention provides a genetically modified plant that is homozygous for the introduced genetically modified nucleic acid; i.e., a genetically modified plant that contains two added nucleic acid sequences, one gene at the same locus on each chromosome of a chromosome pair. A homozygous genetically modified plant can be obtained by sexually mating (selfing) a heterozygous genetically modified plant that contains a single added genetically modified nucleic acid, germinating some of the seed produced and analyzing the resulting plants produced for altered expression of a polynucleotide of the present invention relative to a control plant (i.e., native, non-genetically modified). Back-crossing to a parental plant and out-crossing with a non-genetically modified plant are also contemplated.
[0190] Transformed plant cells which are derived by any of the above transformation techniques can be cultured to regenerate a whole plant which possesses the transformed genotype. Such regeneration techniques often rely on manipulation of certain phytohormones in a tissue culture growth medium.
[0191] Products of Genetically Modified Plants and Algae
[0192] Engineered plants exhibiting the desired physiological and/or agronomic changes can be used directly in agricultural production.
[0193] Thus, provided herein are products derived from the genetically modified plants or methods of producing genetically modified plants provided herein. In certain embodiments, the products are commercial products. Some non-limiting example include genetically engineered trees for e.g., the production of pulp, paper, paper products or lumber; tobacco, e.g., for the production of cigarettes, cigars, or chewing tobacco; crops, e.g., for the production of fruits, vegetables and other food, including grains, e.g., for the production of wheat, bread, flour, rice, corn; and canola, sunflower, e.g., for the production of oils or biofuels.
[0194] Biofuels
[0195] In one embodiment, biofuels are derived from a genetically engineered plant or algae of the present invention.
[0196] In one embodiment, a biofuel is a fuel that is produced through contemporary biological processes, such as agriculture and anaerobic digestion, as opposed to a fuel produced by geological processes such as those involved in the formation of fossil fuels, such as coal and petroleum, from prehistoric biological matter. Biofuels can be derived directly from plants, or indirectly from agricultural wastes.
[0197] In one embodiment, plants or plant parts as described herein are used as biofuel.
[0198] In one embodiment, algae are used as a biofuel. In one embodiment, the biofuel is selected from the group consisting of: biodiesel, ethanol, biojet fuel, and green gasoline.
[0199] In one embodiment, the biofuel is an alcohol fuel, such as bioethanol. In one embodiment, the bioethanol is produced by fermentation of sugars derived from wheat, corn, sugar beets, sugar cane, molasses, or a combination thereof. In another embodiment, the bioethanol is produced by fermentation of any sugar or starch from which alcoholic beverages such as whiskey, can be made (such as barley, potato and fruit waste, etc).
[0200] Thus, in one embodiment, the present invention provides a biofuel comprising genetically modified plants or plant parts of the present invention. In one embodiment, the present invention provides a process of producing a biofuel comprising: delivering a recombinant polynucleotide encoding a C-terminal-inactivated ACHT4 to plant or algae cells, regenerating plants or algae from said cells, screening said plants or algae to identify a plant having enhanced yield, extracting sugar or starch from some or all portions of said plant or algae or progeny thereof, fermenting said sugars to produce an alcoholic mixture, and distilling said alcohol from said mixture. Methods for producing biofuels from plants and plant parts are known in the art.
[0201] In one embodiment, algae are a sustainable source for essential omega-3 fatty acids.
[0202] In another embodiment, algae of the present invention are used as commodity animal feeds. In another embodiment, algae of the present invention are used as a source for foods. In one embodiment, essential omega-3 fatty acids from algae are used in infant formula and other food products and vitamins. In another embodiment, carbohydrates and emulsifiers produced from seaweeds are used in food products. In another embodiment, Spirulina is used in food products.
[0203] In another embodiment, algae of the present invention are used as a source for specialty feeds.
[0204] In one embodiment, algae contain carbohydrates, proteins, vegetable oils, micronutrients, vitamins, as well as valuable pigments used in animal feeds, such as beta carotene, lutein and astaxanthin. In another embodiment, algae is used as a source of feed in aquaculture operations, including as feed for fish and shellfish like clams, oysters, mussels and scallops.
[0205] In another embodiment, algae of the present invention are used as a source for chemicals. In one embodiment, the chemical is a plastic. In one embodiment, the chemical is a fertilizer. In one embodiment, the alga is seaweed. In one embodiment, some microalgae fix atmospheric nitrogen and could be a source of organic fertilizers ("green manure").
[0206] In another embodiment, algae of the present invention are used as a source for cosmetics. In one embodiment, the cosmetic is a skin-care product. In one embodiment, the cosmetic provide UV protection. In another embodiment, algae of the present invention are used as a source for pharmaceuticals.
[0207] In one embodiment, multiple products from the same algal biomass are possible.
[0208] In certain embodiments, commercial products are derived from a genetically engineered species of woody, ornamental or decorative, crop or cereal, fruit or vegetable plant, and algae (e.g., Chlamydomonas reinhardtii), which may be used in the compositions and methods provided herein. Non-limiting examples of plants include plants from the genus Arabidopsis or the genus Oryza. Other examples include plants from the genuses Acorus, Aegilops, Allium, Amborella, Antirrhinum, Apium, Arachis, Beta, Betula, Brassica, Capsicum, Ceratopteris, Citrus, Cryptomeria, Cycas, Descurainia, Eschscholzia, Eucalyptus, Glycine, Gossypium, Hedyotis, Helianthus, Hordeum, Ipomoea, Lactuca, Linum, Liriodendron, Lotus, Lupinus, Lycopersicon, Medicago, Mesembryanthemum, Nicotiana, Nuphar, Pennisetum, Persea, Phaseolus, Physcomitrella, Picea, Pinus, Poncirus, Populus, Prunus, Robinia, Rosa, Saccharum, Schedonorus, Secale, Sesamum, Solanum, Sorghum, Stevia, Thellungiella, Theobroma, Triphysaria, Triticum, Vitis, Zea, or Zinnia.
[0209] In some embodiments, commercial products are derived from a genetically engineered gymnosperms and angiosperms, both monocotyledons and dicotyledons.
[0210] Examples of monocotyledonous angiosperms include, but are not limited to, asparagus, field and sweet corn, barley, wheat, rice, sorghum, onion, pearl millet, rye and oats and other cereal grains. Examples of dicotyledonous angiosperms include, but are not limited to tomato, tobacco, cotton, rapeseed, field beans, soybeans, peppers, lettuce, peas, alfalfa, clover, cole crops or Brassica oleracea (e.g., cabbage, broccoli, cauliflower, brussel sprouts), radish, carrot, beets, eggplant, spinach, cucumber, squash, melons, cantaloupe, sunflowers and various ornamentals.
[0211] In certain embodiments, commercial products are derived from a genetically engineered woody species, such as poplar, pine, sequoia, cedar, oak, etc.
[0212] In other embodiments, commercial products are derived from a genetically engineered plant including, but are not limited to, wheat, cauliflower, tomato, tobacco, corn, petunia, trees, etc.
[0213] In certain embodiments, commercial products are derived from genetically engineered crop plants, for example, cereals and pulses, maize, wheat, potatoes, tapioca, rice, sorghum, millet, cassava, barley, pea, and other root, tuber, or seed crops. In one embodiment, commercial products are derived from a genetically engineered cereal crops, including, but are not limited to, any species of grass, or grain plant (e.g., barley, corn, oats, rice, wild rice, rye, wheat, millet, sorghum, triticale, etc.), non-grass plants (e.g., buckwheat flax, legumes or soybeans, etc.). In another embodiment, commercial products are derived from a genetically engineered grain plants that provide seeds of interest, oil-seed plants and leguminous plants. In other embodiments, commercial products are derived from a genetically engineered grain seed, such as corn, wheat, barley, rice, sorghum, rye, etc. In yet other embodiments, commercial products are derived from a genetically engineered oil seed plants, such as cotton, soybean, safflower, sunflower, Brassica, maize, alfalfa, palm, coconut, etc. In certain embodiments, commercial products are derived from a genetically engineered oil-seed rape, sugar beet, maize, sunflower, soybean, or sorghum. In some embodiments, commercial products are derived from genetically engineered leguminous plants, such as beans and peas (e.g., guar, locust bean, fenugreek, soybean, garden beans, cowpea, mungbean, lima bean, fava bean, lentils, chickpea, etc.)
[0214] In certain embodiments, commercial products are derived from a genetically engineered horticultural plant of the present invention, such as lettuce, endive, and vegetable brassicas including cabbage, broccoli, and cauliflower, and carnations and geraniums; tomato, tobacco, cucurbits, carrot, strawberry, sunflower, tomato, pepper, chrysanthemum, poplar, eucalyptus, and pine.
[0215] In still other embodiments, commercial products are derived from a genetically engineered corn (Zea mays), canola (Brassica napus, Brassica rapa ssp.), alfalfa (Medicago sativa), rice (Oryza sativa), rye (Secale cereale), sorghum (Sorghum bicolor, Sorghum vulgare), sunflower (Helianthus annuus), wheat (Triticum aestivum), soybean (Glycine max), tobacco (Nicotiana tabacum, Nicotiana benthamiana), potato (Solanum tuberosum), peanuts (Arachis hypogaea), cotton (Gossypium hirsutum), sweet potato (Ipomoea batatus), cassava (Manihot esculenta), coffee (Coffea spp.), coconut (Cocos nucifera), pineapple (Ananas comosus), citrus trees (Citrus spp.), cocoa (Theobroma cacao), tea (Camellia sinensis), banana (Musa spp.), avocado (Peryea americana), fig (Ficus casica), guava (Psidium guajava), mango (Mangifera indica), olive (Olea europaea), papaya (Carica papaya), cashew (Anacardium occidentale), macadamia (Macadamia integrifolia), almond (Prunus amygdalus), sugar beets (Beta vulgaris), oats, barley, Arabidopsis spp., vegetables, ornamentals, and conifers.
[0216] Enhanced Phenotype
[0217] In one embodiment, "enhanced phenotype" as used herein refers to a measurable improvement in a crop trait including, but not limited to, yield increase, including increased yield under non-stress conditions and increased yield under environmental stress conditions. Stress conditions may include, for example, drought, shade, fungal disease, viral disease, bacterial disease, insect infestation, nematode infestation, cold temperature exposure, heat exposure, osmotic stress, reduced nitrogen nutrient availability, reduced phosphorus nutrient availability and high plant density. Many agronomic traits can affect "yield", including without limitation, plant height, pod number, pod position on the plant, number of internodes, incidence of pod shatter, grain size, efficiency of nodulation and nitrogen fixation, efficiency of nutrient assimilation, resistance to biotic and abiotic stress, carbon assimilation, plant architecture, resistance to lodging, percent seed germination, seedling vigor, and juvenile traits. Other traits that can affect yield include, efficiency of germination (including germination in stressed conditions), growth rate (including growth rate in stressed conditions), seed size, composition of seed (starch, oil, protein) and characteristics of seed fill.
[0218] In another embodiment, the present invention also provides genetically modified plants that demonstrate enhanced phenotypic properties that may or may not confer an increase in overall plant yield. Such properties include enhanced plant morphology, plant physiology or enhanced components of the mature seed harvested from the genetically modified plant. In another embodiment, the present invention also provides genetically modified plants with enhancements in seed oil, tocopherol, protein and starch components, including increases in the quantity of any of these components, alterations in the ratios of any of these components, or production of new types of these components that do not exist in the seed from control plants. By way of example, increases in total tocopherol content are desirable, as are increases in the relative percentage of alpha-tocopherol produced by plants.
[0219] In one embodiment, "increased yield" of a genetically modified plant of the present invention may be evidenced and measured in a number of ways, including test weight, seed number per plant, seed weight, seed number per unit area (i.e. seeds, or weight of seeds, per acre), bushels per acre, tonnes per acre, tons per acre, kilo per hectare. Increased yield may result from improved utilization of key biochemical compounds, such as nitrogen, phosphorous and carbohydrate, or from improved responses to environmental stresses, such as cold, heat, drought, salt, and attack by pests or pathogens. Polynucleotides of the present invention may also be used to provide plants having improved growth and development, and ultimately increased yield, as the result of modified expression of plant growth regulators or modification of cell cycle or photosynthesis pathways.
[0220] Use for Gene Suppression
[0221] In one embodiment, polynucleotides of the present invention include recombinant polynucleotides providing for expression of mRNA encoding a polypeptide. In another embodiment, polynucleotides of the present invention include recombinant polynucleotides providing for expression of mRNA complementary to at least a portion of an mRNA native to the target plant for use in suppression of the ACTH4 gene.
[0222] In one embodiment, "gene suppression" is used herein to refer to reduction or suppression of expression of a target protein in a host cell as the result of transcription of a recombinant polynucleotide provided herein, wherein the polynucleotide is oriented with respect to a promoter to provide for production of RNA having a gene silencing effect, such as antisense RNA or interfering RNA (RNAi).
[0223] Other Methods of Down-Regulating ACHT4 Protein Expression in Plants and Algae
[0224] In another embodiment, the present invention provides an antibody against a polypeptide comprising a C-terminal deleted form of atypical CYS HIS rich thioredoxin 4 (ACHT4).
[0225] In one embodiment, down-regulation of ACHT4 protein is partial. In another embodiment, the down-regulation completely eliminates protein activity by decreasing overall steady state levels of the protein associated therewith.
[0226] In one embodiment, down-regulation of ACHT4 protein comprises decreasing the levels of ACHT4 protein. In another embodiment, down-regulation of ACHT4 protein comprises decreasing the activity of ACHT4 protein.
[0227] In one embodiment, the down-regulation is achieved by antisense RNA. In another embodiment, the down-regulation is achieved by ribozyme technology, which, in one embodiment, works at the RNA translational level and involves making catalytic RNA molecules which bind to and cleave the mRNA of interest. Both of these were found effective in regulating protein levels in plants. In another embodiment, the down-regulation is achieved by co-suppression.
[0228] In another embodiment, the down-regulation is achieved using antibodies. In one embodiment, the antibody is a monoclonal antibody. In another embodiment, the down-regulation is achieved using functional fragments of antibodies, which in one embodiment, is a single chain antibody (SCAb).
[0229] In one embodiment, the antibody binds to ACHT4.DELTA.C. In another embodiment, the antibody binds to ACHT4.
[0230] In another embodiment, the present invention provides methods for using antibodies to ACHT4 and/or ACHT4.DELTA.C as described herein and functional fragments thereof (e.g., Fv or Fab fragments), for increasing plant or algae yield and/or growth comprising administering said antibody to a plant or alga. Methods for producing antibodies and functional fragments of antibodies are known in the art.
[0231] In another embodiment, the present invention provides methods for using anti-sense RNA, ribozymes, etc for increasing plant or algae yield and/or growth comprising transforming said plant or alga with said RNA or ribozyme.
[0232] Combinations of Modified Genetic Traits
[0233] The present invention also encompasses genetically modified plants with stacked engineered traits, e.g. a crop having an enhanced phenotype resulting from expression of a recombinant polynucleotide provided herein, in combination with herbicide and/or pest resistance traits. For example, genes of the current invention can be stacked with other traits of agronomic interest, such as a trait providing herbicide resistance, for example a RoundUp Ready trait, or insect resistance, such as using a gene from Bacillus thuringensis to provide resistance against lepidopteran, coliopteran, homopteran, hemiopteran, and other insects. Herbicides for which resistance is useful in a plantinclude glyphosate herbicides, phosphinothricin herbicides, oxynil herbicides, imidazolinone herbicides, dinitroaniline herbicides, pyridine herbicides, sulfonylurea herbicides, bialaphos herbicides, sulfonamide herbicides and gluphosinate herbicides.
[0234] All patents, patent applications, and scientific publications cited herein are hereby incorporated by reference in their entirety.
[0235] The following examples are presented in order to more fully illustrate the preferred embodiments of the invention. They should in no way be construed, however, as limiting the broad scope of the invention.
EXAMPLES
Example 1
[0236] ACHT4-Driven Oxidation of APS1 Attenuates Starch Synthesis Under Low Light Intensity in Arabidopsis Plants
[0237] Materials and Methods
[0238] Plant Material and Growth Conditions
[0239] Arabidopsis thaliana var Columbia were grown under a 8/16 h light/dark cycle at 20.degree. C./18.degree. C., respectively, at 80 .mu.E*m-2*s-1 (unless otherwise stated) for 3-4 weeks. Thylakoid membranes were isolated as previously described.
[0240] Generation of Genetically Modified Plants
[0241] ACHT4, ACHT4MT (in which the non-nucleophilic cysteine of the active site was replaced with a serine), ACHT4.DELTA.C and ACHT1 open reading frames were ligated upstream and in frame of the HA3 affinity tag and under the control of the 35S promotor into pART7 vector. All four constructs were used to transform Arabidopsis leaves using a standard floral dip transformation protocol (Clough and Bent Plant J. 1998 December; 16(6):735-43, incorporated herein by reference in its entirety). In short, the floral dip transformation method involves simple dipping of developing floral tissues into a solution containing Agrobacterium tumefaciens, 5% sucrose and 500 microliters per litre of surfactant Silwet L-77.
[0242] Protein Redox Assays, Immunoblot and Affinity Purification Analyses
[0243] The disulfide state of plant-extracted proteins, the identification of intermolecular disulfide complexes, and their isolation by immunoprecipitation were assayed in planta as previously described. The mass-spectrometry (MS) analysis is detailed in Table 3.
TABLE-US-00009 TABLE 3 Identification of 2-Cys Prx and APS1 as ACHT4 targets by mass spectrometry Protein sequence Protein Protein coverage length name Queries matched Score (%) (aa) 2-CYS- APDFEAEAVFDQEFIK (3) 478 44 266 PRX LNTEVLGVSVDSVFSHLAWVQ TDR (2) SGGLGDLNYPLISDVTK (2) SFGVLIHDQGIALR (2) GLFIIDK (1) EGVIQHSTINNLGIGR (1) TLQALQYIQENPDEVCPAGWK PGEK (2) APS1 LIDIPVSNCLNSNISK (1) 572 37 520 IYVLTQFNSASLNR (2) NEGFVEVLAAQQSPENPNWFQ GTADAVR (4) ETDADITVAALPMDEQR (1) VDTTILGLDDQR (1) EMPFIASMGIYVVSR (1) NQFPGANDFGSEVIPGATSLG LR (3) VQAYLYDGYWEDIGTIEAFYN ANLGITK (1) KPVPDFSFYDR (1) MLDADVTDSVIGEGCVIK (1) IINSDNVQEAAR (1)
[0244] The Mass-spectrometry analysis was performed by the Biological Mass Spectrometry Unit at Weizmann Institute of Science by online reversed-phase nano-liquid chromatography, electrospray ionization tandem mass spectrometric analyses. Survey scans were recorded in the FT-mode followed by data-dependent collision-induced dissociation of the 7 most intense ions in the linear ion trap. Raw spectra were processed using open-source software DTA SuperCharge. The data were searched with MASCOT (Matrix Science, London, UK) against a Swissprot or NCBI database. Control samples treated with DTT or derived from wild-type plants, allowed for the subtraction of nonspecific background proteins.
[0245] Trapped intermolecular disulfide protein complexes were incubated overnight at 4.degree. C. in RIPA buffer (1% sodium deoxycholate, 0.1% SDS, 1% Triton X-100, 10 mM Tris-HCl, pH 8, and 140 mM NaCl) with either anti-HA (Sigma A2095) resin or anti-2-Cys Prx- or anti-APS1-coated protein G beads (Amersham). The proteins were eluted with either reducing or nonreducing 2.times.sample buffer and separated on SDS-PAGE gels for immunoblots or for MS analysis. Anti-APS1 polyclonal antibodies were raised in rabbits at GenScript HK Ltd., using a purified peptide (CILGLDDQRAKEMPF). 2-Cys Prx-specific polyclonal antibodies were as in Dangoor, 2009 Plant Physiol. 149:1240-1250, which is incorporated herein by reference in its entirety. Mouse monoclonal anti-HA antibodies (SIGMA H9658) were used in protein blot assays.
[0246] Starch Analysis
[0247] Starch content of 0.8 g samples of two month-old rosettes was analyzed using the SIGMA starch assay kit (SA20-1KT). Every replicate included ten rosettes.
[0248] Accession Numbers
[0249] Sequence data can be found in the Arabidopsis Genome Initiative or GenBank/EMBL databases under the following accession numbers: ACHT4 (AT1G08570), 2-Cys PrxA (At3g11630), and APS1 (AT5G48300).
[0250] Results
[0251] Reoxidation of ACHT4 by 2-Cys Prx Shortly after Illumination
[0252] In order to examine whether other thylakoid-associated members of the ACHT family have similar or unique roles to that of ACHT1, we analyzed the redox state changes of the ACHT4 catalytic site following the onset of growth light (80 to 100 .mu.E*m-2*s-1) after a typical 16 h night period in plants expressing ACHT4 (Dangoor, 2009). The catalytic site of ACHT4 was found to be mostly disulfide-bonded at the end of the night and to undergo rapid reduction within 1 min of exposure to the light (FIG. 1A). As reported for ACHT1, significant oxidation of the ACHT4 catalytic site was observed within 30 min of illumination and counteracted its reductive state. Thereafter, ACHT4 redox state appeared to be in a dynamic quasi-oxidized state. A control experiment demonstrated that the total amount of ACHT4 did not change significantly (FIG. 1A, reduced panel) under the experimental conditions.
[0253] To investigate the identity of the proteins that ACHT4 exchanges disulfides with in planta, we captured as in (Dangoor, 2012, The Plant Cell 24(5):1894-1906, which is incorporated herein by reference in its entirety) its intermolecular disulfide reaction intermediates. Protein blot analysis of denatured, but not reduced, plant extracts identified three intermolecular disulfide-linked ACHT4-containing protein complexes, verified by their susceptibility to chemical reduction by dithiothreitol (DTT) (FIG. 1B, ACHT4 panel). A comparison to the ACHT1 intermolecular disulfide-linked protein complexes (FIG. 1B, ACHT1 panel) showed that two of the main ACHT4 complexes, with estimated sizes of .about.55 kDa and .about.70 kDa, corresponded to the combined molecular weight of the previously characterized heterodimeric and the heterotrimeric ACHT1 and 2-Cys Prx complexes, respectively (Dangoor, 2012). Interestingly, an additional third intermolecular disulfide ACHT4 complex (marked with asterisk), with a higher molecular weight than that of the ACHT4 2-Cys Prx heterotrimer, and which did not form in ACHT1 extracts, was identified as well.
[0254] To verify the authenticity of ACHT4-2-Cys Prx intermolecular disulfide complexes, they were pulled down in a reciprocal analysis performed under non-reducing denaturing conditions, with either anti-HA (for ACHT4) or anti-2-Cys Prx sera. Protein blot analysis of denatured and reduced samples identified the 2-Cys Prx in the anti-HA pulled down complexes and ACHT4 in the anti-2-Cys Prx pulled down complexes (FIG. 1C). As expected, mass-spectrometry analysis identified both ACHT4 and 2-Cys Prx in the gel slice containing the heterotrimer complex but not in a corresponding gel slice containing extracts that were separated under reducing conditions (Table 3). We concluded that ACHT4 exchanged disulfides with the 2-Cys Prx in plants, in a similar manner as that reported for ACHT1.
[0255] APS1 is a Unique Target of ACHT4
[0256] The comparison of the intermolecular disulfide complexes formed in planta by ACHT4 and ACHT1 uncovered a major disulfide linked complex unique to ACHT4 (FIG. 1B). A mass spectrometry analysis identified APS1 in the gel slice containing the unique complex of ACHT4 but not in a corresponding reduced gel slice (Table 3). To verify these findings, the protein intermolecular disulfide complexes were reciprocally pulled-down under non-reducing denaturing conditions with either anti-HA, for ACHT4, or anti-APS1. Protein blot analyses identified the APS1 in the anti-HA pulled down complexes and ACHT4 in the anti-APS1 pulled down complexes (FIG. 1D), suggesting that APS1 is a target protein of ACHT4. These findings also implied that although ACHT1 and ACHT4 share a similar mode of oxidation by 2-Cys Prx, they differ in at least one major target, suggesting that they may serve to regulate distinctive processes.
[0257] ACHT4 Participates in the Diurnal Redox Regulation of AGPase
[0258] The trapping in vivo of APS1-ACHT4 and 2-Cys Prx-ACHT4 disulfide exchange reaction intermediates (RIs) opened the possibility of studying the environmental stimuli that influence ACHT4-driven AGPase redox control. First, we analyzed the changes in the 2-Cys Prx-ACHT4 and APS1-ACHT4 RIs, and the corresponding changes in the APS1 redox state upon light onset of plants grown under a 8/16 h light/dark regime. Intriguingly, the low APS1-ACHT4 RI level and the high 2-Cys Prx-ACHT4 level in the dark contrasted each other (FIG. 2A). Since the 2-Cys Prx RIs were high in the dark also with ACHT1 (Dangoor, 2012), it suggested that the ACHT4 disulfide transfer reaction with APS1 differs from the reducing reaction of either ACHT1 or ACHT4 with 2-Cys Prx (Dangoor, 2009). As the dark is a relatively stable condition, i.e. changes in redox state of reacting proteins are not expected, these finding could conceivably reflect an opposite directionality of the disulfide transfer reaction, ACHT4 to APS1 versus 2-Cys Prx to ACHT4, which could possibly be derived from dissimilar redox midpoint potentials of the proteins. Consequently, the contrasting levels of ACHT4 RIs in the dark would be a result of the levels of its two substrates, high level of oxidized 2-Cys Prx and low level of reduced APS1. Notably, the increase in the level of APS1-ACHT4 RIs upon illumination (FIG. 2A) matched the increase in reduction of APS1 at this time period, further supporting this notion. The APS1-ACHT4 RI level approached steady state level after a 30 min transition period in the light. The 2-Cys Prx-ACHT4 RI levels (FIG. 2A) showed a similar pattern to those of 2-Cys Prx-ACHT1 (Dangoor, 2012) also during illumination, a transient decrease, then an increased level, which reached a steady state after the 30 min transition period in the light.
[0259] The analysis of the concomitant changes in the redox state of APS1 showed that APS1 was resting in the inactive intermolecular disulfide form in the dark (FIG. 2B). In addition, in dark conditions, a monomeric form of APS1 with slightly lower molecular weight (MW) that was converted to the monomeric form with the expected MW during the first 5 min of illumination was observed. The conversion of the faster migrating form to the slower form upon illumination, suggested that the lower MW monomer could be a compacted APS1 form bearing an intramolecular disulfide, the reduction of which creates a stretched molecule in the light. To verify that, we compared the migration of the APS1 monomer purified from dark protein extracts and chemically reduced, with DTT, in vitro, to the monomer purified from light extracts (FIG. 2C). The DTT-reduced monomer derived from dark extracts migrated parallel to the monomer from light extract, whereas the DTT-reduced monomer isolated from light extracts did not alter its migration, indicating that an APS1 intramolecular disulfide indeed participated in the redox control of APS1. Thus, we analyzed the monomeric APS1 via a methodology that exclusively measures the levels of reduced monomer. In this method, the reduced cysteines are first blocked with N-ethyl maleimide (NEM), and the disulfides are then chemically reduced and reacted with methoxypolyethylene glycol-maleimide (mPEG). We found that the level of reduced monomer was barely detectable in the dark, gradually increased during the 30 min transition period and reached a steady state level thereafter (FIG. 2D). In parallel, 2-Cys Prx-ACHT4 RI levels, indicative of ACHT4 oxidative signal, were low during the transition period and also reached relatively stable values only thereafter (FIG. 2A), suggesting that the oxidative signal of ACHT4 dynamically counteracted APS1 reduction by Trx-f1, and approached a dynamic equilibrium after 30 min in the light.
[0260] Both 2-Cys Prx ACHT4 and APS1 RI levels and APS1 redox state after the light was switched off, i.e. the period in which oxidation is expected to turn off AGPase, were inverse to those observed after the onset of light. The 2-Cys Prx-ACHT4 RI remained stable during the first 5 min and then increased, suggesting increased oxidation by 2-Cys Prx during that time period (FIG. 2E). Levels of the reduced monomeric APS1 form gradually decreased alongside a concomitant increase in the oxidized, intramolecular disulfide-bearing monomer and intermolecular disulfide-linked dimer (FIG. 2F). At the same time, the level of the APS1 reaction intermediate, which was high at the end of the day, gradually decreased and reached levels similar to those observed before the beginning of the day (FIG. 2E). These results are consistent with an increased oxidation rate of APS1 by ACHT4 during the transition from day to night, resulting in diminishing APS1 activity.
[0261] ACHT4 Participates in the Regulation of APS1 During Fluctuations in Light Intensity
[0262] We found that ACHT4 participated in the diurnal regulation of APS1, that has been proposed to influence the day and night cycles of starch synthesis and degradation. The reactions of ACHT4 with APS1 and 2-Cys Prx, as judged by the levels of their disulfide exchange reaction intermediates, seemed to reach balanced levels after a transition period in the light (FIG. 2A), as manifested by APS1 activation levels (FIG. 2B), suggesting that ACHT4 oxidation of APS1 is active and dynamically counteracting its reduction by Trx-f1 during the day. Such activity might be important for the rationing of photosynthates to starch and sugars exported from the chloroplast during the day. Alternatively, as shown in the unicellular green alga Chlamydomonas reinhardtii, such activity may regulate the levels of starch to be used as a transient pool for reduced carbon in a fluctuating light environment. We tested this hypothesis by subjecting the plants to small fluctuations of light intensity during the day. Interestingly, when light intensity was reduced to 10 .mu.E*m-2*s-1 after a 2-hour 50 .mu.E*m-2*s-1 light regime, APS1-ACHT4 RI levels declined within 5 min, and rose again when the light intensity was switched back to 50 .mu.E*m-2*s-1 (FIG. 3A). While 2-Cys Prx-ACHT4 RI levels remained steady upon decreased light intensity, they rapidly declined following the transfer back to the higher light intensity (FIG. 3A). In parallel, a lower ratio of reduced to oxidized APS1 was obtained following the transfer to the lower light and a higher ratio was observed upon increased light intensity (FIG. 3B). These results suggest that, in addition to its diurnal role of ACHT4-driven oxidation of APS1 in the beginning of the night, it may also participate in the dynamic regulation of AGPase activity in response to natural fluctuations in light intensity. Furthermore, the reduction of APS1 upon increased light intensity occurred rapidly in comparison to its oxidation upon decreased light intensity (FIG. 3B), suggesting that AGPase redox regulation might also play a role in stimulating a transient burst of starch synthesis to accommodate an abruptly increased light intensity. The concomitant gradual decrease of both APS1-ACHT4 RIs levels and reduced APS1 upon lowering the light intensity and the abrupt increase in both upon increased intensity further supported the notion that ACHT4 reacted with the reduced APS1.
Example 2
Expression of C-Terminal Truncated Form of AtACHT4 Increases Transitory Starch Content in Arabidopsis Leaves and Increases Plant Biomass
[0263] The C-terminus of ACHT4 is important for its reaction with APS1
[0264] We then assessed whether the distinct 47-amino acid-long ACHT4 C-terminus (FIG. 4A) is responsible for its in planta differences from ACHT1, by analyzing the 2-Cys Prx and APS1 RIs in plants expressing ACHT4 lacking the C-terminus (ACHT4.DELTA.C). Notably, the ACHT4.DELTA.C form reacted with 2-Cys Prx, and formed the two intermolecular disulfide-linked 2-Cys Prx ACHT4 RIs, but failed altogether to interact with APS1 (FIG. 2B). The preferential reaction of ACHT4.DELTA.C with the 2-Cys Prx and not with APS1 was maintained throughout the transition from night to day (FIG. 4C). Moreover, the profile of the reaction of ACHT4.DELTA.C with 2-Cys Prx during the first 2 hr of illumination was similar to that of ACHT4, indicating that the oxidation of ACHT4.DELTA.C by 2-Cys Prx does not involve the protein's C-terminus and that the C-terminus deletion only affected ACHT4-driven redox control of APS1.
[0265] Both ACHT4 and ACHT1 are thylakoid-associated proteins. The distinct reaction of ACHT4, and not of ACHT1, with APS1, prompted us to investigate whether the disparity might be due to different thylakoid localization, either the grana, the grana margins, or the stroma lamella. Protein blot analysis showed that ACHT1 was primarily found in both the grana and the stroma lamella domains, whereas ACHT4 was mainly present in the stroma lamella domain and was undetectable in the grana (FIG. 4D), further promoting distinct roles of ACHT4 and ACHT1. The membrane association of ACHT4.DELTA.C was then analyzed to determine whether ACHT4 localization is influenced by its unique C-terminus. Only a small increase in the partitioning of ACHT4.DELTA.C to the grana margins was observed, suggesting that the ACHT4 C-terminus deletion effect on its disulfide exchange reaction with APS1 was direct and not mediated via its thylakoid domain localization.
[0266] The finding that the deletion of the ACHT4 C-terminus diminished its disulfide exchange reaction with APS1 (FIG. 2B) facilitated studying the effect of ACHT4 on APS1 redox state and on transitory starch content. We first compared the APS1 redox state after two hours in the light, representing steady state conditions in which transitory starch is synthesized, and when light intensity was reduced, conditions in which APS1 is being oxidized (FIG. 3). Consistently with the expected oxidative role of ACHT4 and the dominant negative effect of the C-terminus deletion, plants expressing increased levels of ACHT4 exhibited lower levels of reduced APS1 monomer, and plants expressing ACHT4.DELTA.C contained higher levels of the reduced APS1 monomer, than WT plants (FIG. 5A). Next, in order to determine whether the influence of ACHT4 on the redox state of APS1 impacts starch accumulation, we assayed the starch content of WT ACHT4 and ACHT4.DELTA.C plants at the end of the day (FIG. 5B). In agreement with the changes in the APS1 redox state, plants expressing ACHT4 showed reduced starch levels, whereas plants expressing ACHT4.DELTA.C contained increased starch levels. These results corroborate the notion that disulfides transferred by ACHT4 to APS1 are used in planta to fine-tune APS1 activity by counterbalancing the reduction of APS1 by the reductive type Trxs.
[0267] Expression of AtACHT4.DELTA.C Also Increases Arabidopsis Biomass by 10%
[0268] Stimulation of starch synthesis results not only in increased accumulation of transitory starch in Arabidopsis leaves, it also stimulates growth, indicating that OE of AtACHT4.DELTA.C stimulates the export of photosynthates from the chloroplast which are then directed toward growth and biomass accumulation.
[0269] AtACHT4.DELTA.C-OE, AtACHT4-OE and WT lines were grown under long day (18 h/6 h of light/dark cycle at 21.degree. C./18.degree. C.) for 4 weeks. The plants shoot was excised and fresh weight (FW) were recorded. The tissues were dried at 60.degree. C. for 4 days and dry weight (DW) were recorded. The FW of AtACHT4.DELTA.C-OE plants was increased by 10.6% (FIG. 6A) and the DW was increased by 9.1% over those of WT (FIG. 6B), indicating that AtACHT4.DELTA.C stimulates the export of photosynthates from the chloroplast which are then directed toward growth. The FW of AtACHT4 OE plants was decreased by 10.9% (FIG. 6A) and the DW was increased by 11.5% over those of WT (FIG. 6B), confirming that the C-terminus of ACHT4 attenuates growth.
Example 3
Expression of C-Terminal Truncated Form of Potato StACHT4-2 and StACHT4-1 Paralogs Increases Correspondingly Potato Tuber Yield and Transitory Starch Content in Leaves
[0270] Potato Plants
[0271] Arabidopsis has one paralog of ACHT4 where other crop plants, including potato, maize, rice, barley, wheat, sorghum, castor, bean, rapeseed, cotton, soybean, beat, banana, chili, chickpea, tomato, African oilpalm, Foxtail millet, cassava and the algae Chlamydomonas and Chlorella have one to five paralogs (FIG. 7).
[0272] Materials and Methods
[0273] Identification and Over Expression of AtACHT Homologs in Potato
[0274] We analyzed the potato genome for AtACHT4 homologs. Protein blast (blastP) analysis of AtACHT against the genome database of potato (solgenomics.net) identified two paralogs, StACHT4-1 (XP_006348023.1) and StACHT4-2 (XP_006351368.1). A 69 and 68 amino acid long tail region at the C-terminus of StACHT4-1 and StACHT4-2, correspondingly, were identified. Four constructs of StACHT4-1.DELTA.C and StACHT4-2.DELTA.C, StACHT4-1, and StACHT4-2 were custom synthesized by Hy-Laboratories Ltd., Israel, were subcloned into pART7 vector under control of CaMV35S promoter and OCS terminator. HA (Human influenza hemagglutinin) tag was fused in frame at the C-terminus of each of the protein coding sequences. All four StACHT4::pART7 and StACHT4-2.DELTA.C:: pART7 constructs were digested with NotI and subcloned into pART27 plant expression vector (FIG. 11) and used to transform potato leaf discs (Solanum tuberosum cv. Desiree) using a standard agrobacterium-based transformation protocol. Positive transformants were identified by PCR analysis and protein expression was verified by immunoblot analysis using anti-HA antibody.
[0275] Results
[0276] The Over Expression of StACHT4-2.DELTA.C in Potato Plants Nearly Doubles the Tubers Yield in Comparison to WT Plants
[0277] The StACHT4-2.DELTA.C-OE and WT plants (Solanum tuberosum cv. Desiree) were planted on May 22, 2016 and were grown for 60 days in the green-house. Plants were harvested, tubers were collected, counted and their fresh weight was recorded (FIG. 8). The yield analysis of the StACHT4-2.DELTA.C-OE lines showed 91% increase in the total tuber yield per plant as compared to WT plants. Photographs of representative plants show the increase in biomass accumulation of both shoots and tubers (FIG. 9).
[0278] StACHT4-1.DELTA.C OE Lines Accumulated Increased Level of Transitory Starch in Leaves
[0279] To test whether StACHT4-1.DELTA.C OE proteins regulate transitory starch content, young green leaves from 6-weeks old green-house grown plant were collected and analyzed for the starch content by Sigma starch assay kit (Catalog Number SA20) with some modifications. Approximately, 0.25-0.5 g fresh leaves were ground to fine powder using liquid nitrogen and then suspended into 20 ml DMSO and 5 ml of 8M HCl solution. The suspensions were incubated for 30 min at 60.degree. C. and then 50 ml water was added to it. The pH was adjusted between 4 and 5, allowed to cool and volume adjusted till 100 ml. From these samples 400 .mu.l were mixed with same volume of starch assay reagent, incubated for 15 min at 60.degree. C. and then allowed to cool at room temperature. Then 200 .mu.l of starch assay mixture were mixed with same volume of glucose assay reagent, incubated at room temperature for 15 min and then absorbance was recorded at 340 nm. Simultaneously, standard starch powder (provided in kit) at concentration of 0, 2, 4, 6, 8 and 10 mg were also used for starch assay and a standard curve was plotted using the absorbance data. The absorbance recorded from the leaves sample of potato transgenic lines were then used to calculate the starch level in leaves using formula obtained from the standard curve. Notably, the StACHT4-1.DELTA.C OE lines accumulated 19% higher starch content relative to WT plants (FIG. 10).
[0280] OE of the potato paralogs StACHT4-2.DELTA.C and StACHT4-1.DELTA.C relieves growth and starch synthesis attenuation, as was found for OE of Arabidopsis AtACHT4.DELTA.C. However, in potato, each of the two potato paralogs has a unique function. OE expression of StACHT4-2.DELTA.C stimulated the allocation of photosynthates towards growth and near doubles tuber yield and plants shoot growth (FIGS. 8-9), whereas OE expression of StACHT4-1.DELTA.C stimulated transitory starch (FIG. 10). Importantly, OE of the full length protein of either StACHT4-2 (FIG. 8) or StACHT4-1 (FIG. 10) did not result in the stimulating effect, again demonstrating that the expressed C-terminus truncated form of ACHT4 has a negative dominant effect, in StACHT4-2.DELTA.C or StACHT4-1-.DELTA.C, as well as in AtACHT4.DELTA.C.
[0281] It will be appreciated by those skilled in the art that changes could be made to the embodiments described above without departing from the broad inventive concept thereof. It is understood, therefore, that this invention is not limited to the particular embodiments disclosed, but it is intended to cover modifications that are within the spirit and scope of the invention, as defined by the appended claims.
[0282] It is the intent of the Applicant(s) that all publications, patents and patent applications referred to in this specification are to be incorporated in their entirety by reference into the specification, as if each individual publication, patent or patent application was specifically and individually noted when referenced that it is to be incorporated herein by reference. In addition, citation or identification of any reference in this application shall not be construed as an admission that such reference is available as prior art to the present invention. To the extent that section headings are used, they should not be construed as necessarily limiting. In addition, any priority document(s) of this application is/are hereby incorporated herein by reference in its/their entirety.
Sequence CWU
1
1
911275PRTArabidopsis thaliana 1Met Thr Glu Val Ile Ser Lys Thr Ser Leu Phe
Leu Gly Ala Cys Gly1 5 10
15Asn His His Arg Val Asp Asp Phe Ser Phe Ser Pro Val Ser Phe Gly
20 25 30Gly Phe Gly Leu Lys Lys Ser
Phe Ser Cys Leu Lys Leu Lys Ser Gln 35 40
45Lys Pro Leu Arg Ser Val Phe Tyr Gly Lys Gln Ile Val Phe Gly
Asp 50 55 60Ser Gln Asp Glu Ser Phe
Arg Arg Ser Ser Ala Ile Thr Ala Gln Thr65 70
75 80Thr Leu Arg Ile Gly Thr Ala Gln Lys Trp Trp
Glu Lys Gly Leu Lys 85 90
95Asp Asn Met Arg Glu Ile Ser Ser Ala Gln Glu Leu Val Asp Ser Leu
100 105 110Thr Asn Ala Gly Asp Lys
Leu Val Val Val Asp Phe Phe Ser Pro Gly 115 120
125Cys Gly Gly Cys Lys Ala Leu His Pro Lys Ile Cys Gln Phe
Ala Glu 130 135 140Met Asn Pro Asp Val
Gln Phe Leu Gln Val Asn Tyr Glu Glu His Lys145 150
155 160Ser Met Cys Tyr Ser Leu Gly Val His Val
Leu Pro Phe Phe Arg Phe 165 170
175Tyr Arg Gly Ser Gln Gly Arg Val Cys Ser Phe Ser Cys Thr Asn Ala
180 185 190Thr Ile Lys Lys Phe
Arg Asp Ala Leu Ala Lys His Gly Pro Asp Arg 195
200 205Cys Ser Leu Gly Pro Thr Lys Gly Leu Glu Glu Lys
Glu Leu Val Ala 210 215 220Leu Ala Ala
Asn Lys Glu Leu Asn Phe Thr Tyr Thr Pro Lys Pro Val225
230 235 240Pro Val Glu Lys Glu Ala Ala
Thr Pro Asp Ser Asn Pro Ser Leu Pro 245
250 255Val Pro Leu Pro Ser Met Ser Ser Asn Asp Glu Lys
Thr Leu Val Ser 260 265 270Ala
Gly Arg 2752301PRTSolanum tuberosum 2Met Met Lys Leu Met Ser Lys
Gly Phe Met Phe Pro Ser Ser Ser Asp1 5 10
15Cys Gly Glu Ile Tyr His His Arg Pro Leu Asn Leu Pro
Gly Ile Cys 20 25 30Ser Phe
Pro Asn Lys Ser Val Asn Leu Ser Cys Leu Pro Ser Leu Asn 35
40 45Leu Ser Ser Ser Cys Leu Pro Arg Thr Asp
Phe Tyr Gly Arg Arg Leu 50 55 60Val
Ile Asn Glu Gly Val Ser Lys Phe Asn Arg Arg Asn Ser Gln Val65
70 75 80Val Asp Ile Thr Ala Gln
Met Ser Ile Gly Ile Arg Lys Ala Gln Lys 85
90 95Trp Trp Glu Lys Gly Val Gln Pro Asn Met Lys Glu
Val Asn Ser Ala 100 105 110Gln
Glu Leu Val Asp Ser Leu Leu Ser Ala Gly Asp Lys Leu Val Val 115
120 125Val Asp Phe Phe Ser Pro Gly Cys Gly
Gly Cys Lys Ala Leu His Pro 130 135
140Lys Leu Cys Gln Leu Ala Glu Met Asn Pro Asp Val His Phe Leu Gln145
150 155 160Val Asn Tyr Glu
Glu His Lys Ser Met Cys Tyr Ser Leu Asn Val His 165
170 175Val Leu Pro Phe Phe Arg Phe Tyr Arg Gly
Ala Glu Gly Arg Val Cys 180 185
190Ser Phe Ser Cys Thr Asn Ala Thr Ile Lys Lys Phe Lys Asp Ala Leu
195 200 205Ala Lys Tyr Gly Thr Asp Arg
Cys Thr Leu Gly Pro Pro Lys Gly Leu 210 215
220Glu Glu Lys Glu Leu Leu Ala Leu Ala Ala Asn Lys Asp Leu Ser
Phe225 230 235 240Asn Tyr
Thr Pro Lys Thr Glu Glu Ala Pro Val Leu Val Thr Ser Gln
245 250 255Lys Glu Val Gln Asp Thr Thr
Pro Pro Asn Ile Glu Ser Pro Leu Pro 260 265
270Leu Pro Leu Pro Leu Pro Ile Ala Ser Thr Ser Ser Gln Thr
Ala Lys 275 280 285Arg Asp Thr Glu
Lys Glu Ala Tyr Ala Thr Ser Gly Arg 290 295
3003230PRTSolanum tuberosum 3Met Lys Phe Asn Arg Arg Asn His Lys Ser
Ala Ala Ala Thr Ala Gln1 5 10
15Met Ser Ile Gly Ile Arg Lys Ala Pro Lys Trp Trp Glu Lys Gly Leu
20 25 30Gln Pro Asn Met Lys Glu
Val Met Gly Ala Gln Asp Leu Ala Asp Thr 35 40
45Leu Leu Asn Ala Gly Asp Lys Leu Val Val Val Asp Phe Leu
Ser Pro 50 55 60Gly Cys Gly Gly Cys
Lys Ala Leu His Pro Lys Ile Cys Gln Leu Ala65 70
75 80Glu Met Asn Pro Asp Val Gln Phe Leu His
Val Asn Tyr Glu Glu His 85 90
95Lys Ser Met Cys Tyr Ser Leu Asn Val His Val Leu Pro Phe Phe Arg
100 105 110Phe Tyr Arg Gly Ala
Glu Gly Arg Leu Cys Ser Phe Ser Cys Thr Asn 115
120 125Ala Thr Ile Lys Lys Phe Lys Asp Ala Leu Thr Lys
Tyr Gly Ala Asp 130 135 140Cys Cys Ser
Leu Glu Pro Val Lys Gly Leu Glu Glu Lys Glu Leu Leu145
150 155 160Ala Leu Ala Ala Asn Lys Asp
Leu Ser Phe Ala Tyr Thr Pro Lys Thr 165
170 175Glu Glu Pro Met Pro Val Ala Leu Gln Asp Ala Lys
Val Ile Lys Thr 180 185 190Ser
Arg Thr Ser Ser Ser Cys Pro Asn Thr Phe Ser Leu Leu Pro Leu 195
200 205Pro Leu Pro Leu Pro Leu Ala Ser Thr
Ser His Lys Ala Lys Gln Asp 210 215
220Ser Lys Ser Glu Val Phe225 2304276PRTZea mays 4Met Ala
Ala Ala Gln Ala Ile Ser Lys Gly Ser Val Val Ser Pro Cys1 5
10 15Gly Asn Arg Ala Ala Pro Gly Leu
Leu Ala Arg Arg Arg Gly Ala Val 20 25
30Ala Ala Arg Val Ala Pro Ser Ala Ala Arg Ile Gly Gly Phe Trp
Arg 35 40 45Lys Asn Ala Phe Pro
Gly Gly Arg Leu Thr Leu Arg Thr Arg Arg Ser 50 55
60Arg Ala Ala Ser Pro Ala Gln Met Asn Met Asn Leu Ala Leu
Gly Lys65 70 75 80Ser
Met Arg Trp Trp Glu Lys Gly Leu Gln Pro Asn Met Arg Glu Ile
85 90 95Glu Ser Ala Gln Asp Leu Val
Asp Ala Leu Thr Asn Ala Gly Asp Arg 100 105
110Leu Val Val Val Asp Phe Phe Ser Pro Gly Cys Gly Gly Cys
Arg Ala 115 120 125Phe His Pro Lys
Ile Cys Gln Phe Ala Glu Gln Asn Pro Asp Val Leu 130
135 140Phe Leu Gln Val Asn Tyr Glu Glu His Lys Ser Met
Cys His Ser Leu145 150 155
160His Val His Val Leu Pro Leu Phe Arg Phe Tyr Arg Gly Ala Gln Gly
165 170 175Arg Leu Cys Ser Phe
Ser Cys Thr Asn Thr Thr Ile Lys Lys Phe Arg 180
185 190Asp Ala Leu Ala Lys His Lys Pro Asp Arg Cys Ser
Leu Gly Pro Thr 195 200 205Arg Gly
Leu Glu Glu Ser Glu Leu Leu Ala Leu Ala Ala Asn Lys Asp 210
215 220Leu Gln Phe Thr Tyr Ala Lys Glu Glu Pro Glu
Leu Ile Pro Arg Gly225 230 235
240Asp Ala Pro Gly Glu Val Val Ala Pro Glu Pro Ala Lys Leu Pro Ala
245 250 255Ala Pro Lys Pro
Leu Val Arg Leu Gly Ser Glu Glu Arg Ser Leu Val 260
265 270Ser Ser Gly Arg 2755272PRTZea mays
5Met Ala Asp Ala Leu Cys Asn Gly Val Val Ala Ser Pro Cys Gly Arg1
5 10 15Asp Val Ala Gly Arg Ala
Arg Gly Ala Ala Arg Ala Ala Leu Ala Glu 20 25
30Ser Leu Gln Val Ala Gly His Ala Ser Lys Thr Ser Phe
Ser Ala Gly 35 40 45Arg Met Ser
Val Lys Asp Ser Lys Pro Arg Pro Leu Ser Arg Ser Leu 50
55 60Glu Ala Ala Ala Pro Gly Gln Met Asn Leu Ser Phe
Pro Lys Ala Met65 70 75
80Arg Trp Trp Lys Lys Gly Leu His Pro Asn Met Arg Glu Val Glu Ser
85 90 95Ala Gln Asp Leu Ala Asp
Ser Leu Leu Ser Ala Gly Asp Lys Leu Val 100
105 110Val Val Asp Phe Phe Ser Pro Gly Cys Gly Gly Cys
Arg Ala Leu His 115 120 125Pro Lys
Ile Ala Gln Phe Ala Glu Lys Asn Pro Gly Val Gln Phe Leu 130
135 140Gln Val Asn Tyr Glu Thr His Lys Ser Met Cys
Tyr Ser Leu Arg Val145 150 155
160His Val Leu Pro Phe Phe Arg Phe Tyr Arg Gly Ala Glu Gly Arg Val
165 170 175Ser Ser Phe Ser
Cys Thr Asn Ala Thr Ile Asn Lys Phe Lys Asp Ala 180
185 190Leu Ala Lys His Gly Ala Glu Arg Cys Ser Leu
Gly Pro Ala Arg Gly 195 200 205Leu
Asp Glu Ser Glu Leu Met Ala Leu Ala Glu Asn Arg Asp Leu His 210
215 220Phe Thr Tyr Asp Lys Pro Gly Gly Leu Val
Pro Leu Ala Glu Ala Ile225 230 235
240Ala Lys Glu Ala Ala Ala Pro Gly Gly Pro Trp Leu Pro Leu Pro
Ala 245 250 255Ser Leu Leu
Gly Gln Gly Ser Asp Asn Ser Leu Leu Pro Ser Gly Arg 260
265 2706221PRTZea mays 6Met Ala Ala Ala Gln Val
Val Ala Lys Gly Ser Val Val Ser Pro Cys1 5
10 15Gly Asn Arg Ala Val Pro Gly Leu Leu Gly Arg Arg
Arg Asp Ala Val 20 25 30Ala
Ala Gln Met Thr Pro Ser Ala Val Arg Ile Gly Gly Ser Trp Arg 35
40 45Lys Asn Ala Phe Pro Gly Val Arg Leu
Ala Leu Gly Thr Arg Arg Ser 50 55
60Arg Pro Ala Ser Arg Ser Phe Ser Ala Ser Pro Val Gln Met Asn Met65
70 75 80Asn Leu Ala Ile Gly
Lys Ser Met Arg Trp Trp Glu Lys Gly Leu Gln 85
90 95Pro Asn Met Arg Glu Ile Glu Ser Ala Gln Asp
Leu Val Asp Ser Leu 100 105
110Thr Asn Ala Gly Glu Arg Leu Val Val Val Asp Phe Phe Ser Pro Gly
115 120 125Cys Gly Gly Cys Arg Ala Leu
His Pro Lys Ile Cys Gln Phe Ala Glu 130 135
140Arg Asn Pro Asp Val Leu Phe Leu Gln Val Asn Tyr Glu Glu His
Lys145 150 155 160Ser Met
Cys Tyr Ser Leu Arg Val His Val Leu Pro Phe Phe Arg Phe
165 170 175Tyr Arg Gly Ala Gln Gly Arg
Leu Cys Ser Phe Ser Cys Thr Asn Ala 180 185
190Thr Val Arg Ser Cys Pro Cys Phe Phe Cys Ser Tyr Asp Tyr
Trp Tyr 195 200 205Val Leu Asn Asn
Met Gln His Ile Gln Asn Asp Leu Tyr 210 215
2207279PRTOryza sativa 7Met Ala Ala Thr Ala Ala Gln Ala Val Ala Val
Lys Gly Ser Val Ala1 5 10
15Val Pro Pro Cys Gly Ser Arg Gly Arg Arg Arg Gly Ala Val Ala Ser
20 25 30Val Arg Met Ala Ala Ala Ala
Ala Thr Ser Ala Leu Arg Ile Gly Arg 35 40
45Arg Ser Pro Phe Leu Gly Arg Arg Leu Ala Val Gly Pro Arg Arg
Ser 50 55 60Arg Pro Val Pro Arg Asn
Leu Val Ala Pro Val Gln Met Asn Leu Ala65 70
75 80Phe Ala Lys Ala Thr Lys Trp Trp Glu Lys Gly
Leu Gln Pro Asn Met 85 90
95Arg Glu Val Glu Ser Ala Gln Asp Leu Val Asp Ser Leu Thr Asn Ala
100 105 110Gly Asp Asn Leu Val Ile
Val Asp Phe Phe Ser Pro Gly Cys Gly Gly 115 120
125Cys Arg Ala Leu His Pro Lys Ile Cys Gln Ile Ala Glu Gln
Asn Pro 130 135 140Asp Val Leu Phe Leu
Gln Val Asn Tyr Glu Glu His Lys Ser Met Cys145 150
155 160Tyr Ser Leu His Val His Val Leu Pro Phe
Phe Arg Phe Tyr Arg Gly 165 170
175Ala Gln Gly Arg Leu Cys Ser Phe Ser Cys Thr Asn Ala Thr Ile Lys
180 185 190Lys Phe Arg Asp Ala
Leu Ala Lys His Lys Pro Asp Arg Cys Ser Leu 195
200 205Gly Pro Thr Arg Gly Leu Glu Glu Ser Glu Leu Leu
Ala Leu Ala Ala 210 215 220Asn Lys Asp
Leu Gln Phe Asn Tyr Thr Lys Lys Pro Glu Leu Val Pro225
230 235 240Ser Gly Asp Ala Ala Ala Ala
Gln Glu Leu Asp Arg Gly Ser Thr Lys 245
250 255Leu Ser Pro Pro Ala Lys Pro Leu Val Lys Gln Gly
Ser Glu Glu Arg 260 265 270Ser
Leu Val Ser Ser Gly Arg 2758279PRTOryza sativa 8Met Ala Glu Ala
Leu Cys Ser Gly Ser Val Ala Ser Pro Cys Gly Glu1 5
10 15Val Gly Val Gly Phe Ala Ala Gly Leu Val
Arg Gly Ala Ala Ala Ala 20 25
30Ala Ala Leu Ala Glu Ser Val Pro Ile Gly Gly Tyr Ser Ser Lys Ser
35 40 45Thr Phe Pro Ser Gly Arg Val Ala
Leu Thr Glu Arg Lys Ala Arg Pro 50 55
60Leu Pro Arg Asn Leu Glu Ala Ala His Gly Gln Met Asn Leu Thr Ile65
70 75 80Gly Lys Ala Met Arg
Trp Trp Glu Lys Cys Leu Gln Pro Asn Met Arg 85
90 95Glu Ile Glu Ser Ala Gln Asp Leu Ala Asp Ser
Leu Leu Asn Ala Gly 100 105
110Asp Lys Leu Val Val Val Asp Phe Phe Ser Pro Gly Cys Gly Gly Cys
115 120 125Arg Ala Leu His Pro Lys Ile
Ala Gln Leu Ala Glu Lys Asn Pro Glu 130 135
140Val Leu Phe Leu Gln Val Asn Tyr Glu Lys His Lys Ser Met Cys
Tyr145 150 155 160Ser Leu
His Val His Val Leu Pro Phe Phe Arg Phe Tyr Arg Gly Ala
165 170 175Gln Gly Arg Val Ser Ser Phe
Ser Cys Thr Asn Ala Thr Ile Lys Lys 180 185
190Phe Lys Asp Ala Leu Ala Lys His Gly Pro Asp Arg Cys Gly
Leu Gly 195 200 205Pro Ala Lys Gly
Leu Glu Glu Ser Glu Leu Met Ala Leu Ala Ile Asn 210
215 220Arg Asp Leu Asn Phe Thr Tyr Thr Pro Asn Gln Asp
Leu Val Pro Ile225 230 235
240Ala Asp Ala Leu Leu Lys Glu Ala Ala Ala Pro Gly Gly Pro Trp Leu
245 250 255Pro Leu Pro Ala Thr
Ala Thr Gln Leu Phe Ile Gln Gly Ser Glu Asn 260
265 270Ser Leu Leu Ser Ser Gly Arg
2759276PRTHordeum vulgare 9Met Ala Thr Ala Gln Ala Val Ala Lys Gly Thr
Val Val Ser Pro Cys1 5 10
15Gly Thr Arg Ala Ala Gly Phe Gly Ala Arg Arg Arg Gly Ala Val Ala
20 25 30Ala Arg Met Ser Pro Cys Ala
Pro Ala Ala Val Arg Ile Gly Arg Lys 35 40
45Ser Pro Phe Leu Gly Ala Arg Leu Thr Val Gly Pro Arg Arg Ser
Lys 50 55 60Leu Val Pro Arg Asn Leu
Val Ser Ser Pro Val Gln Met Asn Leu Ala65 70
75 80Phe Ala Lys Ser Thr Lys Trp Trp Glu Lys Gly
Leu Lys Pro Asn Met 85 90
95Arg Glu Ile Glu Ser Ala Gln Asp Leu Val Asp Ser Leu Ala Asn Ala
100 105 110Gly Asp Arg Leu Val Val
Val Asp Phe Phe Ser Pro Gly Cys Gly Gly 115 120
125Cys Arg Ala Leu His Pro Lys Ile Cys Gln Phe Gly Glu Gln
Asn Pro 130 135 140Asp Val Leu Phe Leu
Gln Val Asn Tyr Glu Glu His Lys Ser Met Cys145 150
155 160Tyr Ser Leu His Val His Val Leu Pro Phe
Phe Arg Phe Tyr Arg Gly 165 170
175Ala Gln Gly Arg Leu Cys Ser Phe Ser Cys Thr Asn Ala Thr Ile Lys
180 185 190Lys Phe Arg Asp Ala
Leu Ala Lys His Asn Pro Asp Arg Cys Ser Ile 195
200 205Gly Pro Thr Arg Gly Leu Glu Glu Ser Glu Leu Leu
Ala Leu Ala Ala 210 215 220Asn Lys Asp
Leu Gln Phe Thr Tyr Thr Lys Gln Pro Glu Pro Val Pro225
230 235 240Ser Gly Asp Ser Glu Phe Ile
Ala Pro Gly Ser Pro Arg Leu Pro Pro 245
250 255Pro Ala Lys Pro Leu Val Arg Gln Gly Ser Gly Glu
Arg Thr Leu Val 260 265 270Ser
Ser Gly Arg 27510270PRTHordeum vulgare 10Met Ala Asn Ala Leu Tyr
Gly Gly Gly Val Ala Ala Pro Cys Gly Asp1 5
10 15Leu Gly Ala Ala Ala Ala Leu Ala Glu Ser Leu Pro
Met Gly Gly Gly 20 25 30Tyr
Arg Ala Arg Ser Ser Phe Pro Ala Gly Arg Val Ala Leu Ala Glu 35
40 45Arg Pro Leu Pro Arg Ser Leu Gln Val
Ala Ala Ala Ala Gly Gln Met 50 55
60Asn Gly Asn Leu Thr Ile Gly Lys Ala Met Arg Trp Trp Glu Lys Gly65
70 75 80Thr Gln Pro Asn Met
Arg Glu Val Glu Ser Ala Gln Asp Leu Ala Asp 85
90 95Ser Leu Leu Asn Ala Gly Asp Lys Leu Val Val
Val Asp Phe Phe Ser 100 105
110Pro Gly Cys Gly Gly Cys Arg Ala Leu His Pro Lys Ile Ala Gln Phe
115 120 125Ala Glu Arg Asn Pro Asp Val
Leu Phe Leu Gln Val Asn Tyr Glu Lys 130 135
140His Lys Ser Met Cys Tyr Ser Leu His Val His Val Leu Pro Phe
Phe145 150 155 160Arg Phe
Tyr Arg Gly Ala Gln Gly Arg Val Ser Ser Phe Ser Cys Thr
165 170 175Asn Ala Thr Ile Lys Lys Phe
Lys Asp Ala Leu Ala Lys His Ser Pro 180 185
190Asp Arg Cys Ser Leu Gly Pro Ala Arg Gly Leu Glu Lys Ala
Glu Leu 195 200 205Leu Ala Leu Ala
Glu Asn Arg Asp Leu Glu Phe Thr Tyr Ser Glu Lys 210
215 220Pro Thr Leu Val Pro Ile Ala Glu Ala Ile Arg Met
Glu Ala Ala Ser225 230 235
240Ile Gly Gly Pro Trp Leu Pro Leu Pro Pro Ala Ala Thr Gln Pro Phe
245 250 255Pro Leu Gly Ser Glu
Asn Gly Ser Leu Ile Pro Ser Gly Arg 260 265
27011273PRTTriticum aestivum 11Met Ala Ser Ala Leu Cys Gly
Gly Gly Ser Gly Ser Val Ala Ala Pro1 5 10
15Cys Gly Asp Leu Gly Ala Ala Ala Ala Leu Ala Glu Ser
Leu Pro Met 20 25 30Gly Ala
Gly Tyr Arg Ala Lys Ser Ser Phe Pro Ala Gly Arg Val Ala 35
40 45Leu Ala Asp Arg Pro Leu Arg Arg Gly Leu
Gln Val Ala Ala Ala Ala 50 55 60Gly
Gln Met Asn Gly Asn Leu Thr Ile Gly Lys Ala Met Arg Trp Trp65
70 75 80Glu Lys Val Thr His Pro
Asn Met Arg Glu Val Glu Ser Ala Gln Asp 85
90 95Leu Ala Asp Ser Leu Leu Asn Ala Gly Asp Lys Leu
Val Val Val Asp 100 105 110Phe
Phe Ser Pro Gly Cys Gly Gly Cys Arg Ala Leu His Pro Lys Ile 115
120 125Ala Gln Phe Ala Glu Arg Asn Pro Asp
Val Leu Phe Leu Gln Val Asn 130 135
140Tyr Glu Lys His Lys Ser Met Cys Tyr Ser Leu His Val His Val Leu145
150 155 160Pro Phe Phe Arg
Phe Tyr Arg Gly Ala Gln Gly Arg Val Ser Ser Phe 165
170 175Ser Cys Thr Asn Ala Thr Ile Lys Lys Phe
Lys Asp Ala Leu Ala Lys 180 185
190His Ser Pro Asp Arg Cys Ser Leu Gly Pro Ala Arg Gly Leu Glu Glu
195 200 205Ala Glu Leu Leu Ala Leu Ala
Ala Asn Arg Asp Leu Glu Phe Thr Tyr 210 215
220Asn Glu Lys Pro Thr Leu Val Pro Ile Ala Glu Ala Ile Gln Met
Glu225 230 235 240Ala Ala
Ser Ile Gly Gly Pro Trp Met Pro Leu Pro Ala Ala Ala Thr
245 250 255Gln Pro Leu Thr Leu Gly Ser
Glu Asn Gly Ser Leu Ile Pro Ser Gly 260 265
270Arg12296PRTManihot esculenta 12Met Ala Asp Val Leu Ser
Asn Thr Asn Leu Val Ser Ser Ser Phe Ser1 5
10 15Ser Ser Phe Thr Gly His Arg Asn Glu Gln Lys Asn
Ser Ser Cys Arg 20 25 30Leu
Lys Gly Phe Pro Arg Lys Val Asn Arg Gln Thr Leu Arg Leu Lys 35
40 45Ala Thr Ser Leu Gly Ser Asp Phe His
Gly Lys Arg Val Val Leu Gln 50 55
60Asp Asn Gln Gly Lys Pro Lys Arg Gly Ile Tyr Leu Gln Met Ser Ile65
70 75 80Lys Ala Gln His Thr
Gly Leu Arg Leu Lys Ser Ala Pro Lys Trp Trp 85
90 95Glu Lys Gly Leu Gln Pro Asn Met Arg Glu Val
Thr Ser Ala Gln Asp 100 105
110Phe Val Asp Ser Leu Leu Asn Ala Gly Asp Lys Leu Val Ile Val Asp
115 120 125Phe Phe Ser Pro Gly Cys Gly
Gly Cys Lys Ala Leu His Pro Lys Ile 130 135
140Cys Gln Phe Ala Glu Met Asn Pro Asp Val Leu Phe Leu His Val
Asn145 150 155 160Tyr Glu
Glu His Lys Ser Met Cys Tyr Ser Leu Asn Ile His Val Leu
165 170 175Pro Phe Phe Arg Phe Tyr Arg
Gly Ala Gln Gly Arg Leu Cys Ser Phe 180 185
190Ser Cys Thr Asn Ala Thr Ile Lys Lys Phe Arg Asp Ala Leu
Ala Lys 195 200 205His Ser Pro Asp
Arg Cys Ser Leu Gly Pro Thr Lys Gly Leu Glu Glu 210
215 220Lys Glu Leu Ile Ala Leu Ala Ser Asn Lys Asp Leu
Asn Phe Lys Tyr225 230 235
240Ala Gln Lys Pro Asp Leu Pro Thr Pro Ile Pro Ala Lys Glu Glu Arg
245 250 255Val Pro Val Val Ser
Pro Ser His Pro Asn Pro Ala Leu Pro Leu Pro 260
265 270Leu Pro Leu Pro Thr Ala Ser Pro Lys Ser Gly Gln
Gly Ser Glu Glu 275 280 285Lys Thr
Leu Val Gly Ser Gly Arg 290 29513286PRTManihot
esculenta 13Met Ala Ala Val Ser Ser Asn Thr Asn Leu Val Ser Ser Ser Cys
Ser1 5 10 15Ser Ser Phe
Ser Ser Ser Gln Asn Arg Pro Glu Tyr Arg Ser Ser Arg 20
25 30Leu Arg Val Phe Pro Gln Glu Leu Asn His
Gln Ala Leu Arg Leu Gln 35 40
45Thr Thr Ser Leu Gly Ser Asp Phe His Gly Lys Arg Val Val Leu Gln 50
55 60Glu Lys Pro Lys Cys Lys Gln Gly Ile
Ser Val Gln Ser Ser Ile Lys65 70 75
80Ala Gln Thr Gly Leu Arg Leu Lys Asn Ala Lys Asn Trp Trp
Glu Glu 85 90 95Glu Leu
Gln Pro Asn Met Arg Glu Val Ile Ser Ala Gln Asp Leu Val 100
105 110Asp Ser Leu Leu Asn Ala Gly Asp Lys
Leu Val Ile Val Tyr Phe Phe 115 120
125Ser Pro Gly Cys Gly Gly Cys Arg Ala Leu His Pro Lys Ile Cys Gln
130 135 140Leu Ala Lys Asn Asn Ala Asp
Val Gln Phe Leu Lys Val Asn Tyr Glu145 150
155 160Glu His Lys Ser Met Cys Tyr Ser Leu Asn Val His
Val Leu Pro Phe 165 170
175Phe Arg Phe Tyr Arg Gly Ala Gln Gly Arg Val Cys Ser Phe Ser Cys
180 185 190Thr Asn Ala Thr Ile Lys
Lys Phe Lys Asn Ala Leu Ala Lys His Thr 195 200
205Pro Asp Arg Ser Ser Leu Glu Pro Thr Lys Gly Leu Glu Glu
Lys Glu 210 215 220Leu Ile Ala Leu Ala
Ala Asn Lys Asp Leu Asn Leu Thr Tyr Ala Pro225 230
235 240Lys Ser Asp Lys Pro Ile Pro Ala Pro Thr
Lys Glu Glu Ile Val Pro 245 250
255Glu Ile Pro Gln Ser Leu Ser Leu Ala Leu Arg Arg Ser Met Glu Leu
260 265 270Ala Gln Gly Ser Ala
Glu Lys Thr Leu Val Ala Ser Gly Arg 275 280
28514283PRTSorghum bicolor 14Met Ala Ala Ala Gln Ala Val Ala Lys
Gly Ser Val Val Ala Pro Cys1 5 10
15Gly Asn Arg Ala Ala Pro Gly Leu Leu Gly Arg Arg Arg Gly Ala
Val 20 25 30Ala Ala Arg Met
Ala Pro Ser Ala Val Arg Ile Gly Ala Ser Trp Arg 35
40 45Lys Thr Ala Phe Thr Gly Gly Arg Leu Ala Leu Gly
Leu Gly Thr Arg 50 55 60Arg Ser Arg
Pro Ala Ser Arg Ser Ser Phe Ala Ser Pro Ala Gln Met65 70
75 80Asn Met Asn Leu Ala Ile Gly Lys
Ser Met Arg Trp Trp Glu Lys Gly 85 90
95Leu Gln Pro Asn Met Arg Glu Ile Glu Ser Ala Gln Asp Leu
Val Asp 100 105 110Ser Leu Thr
Asn Ala Gly Asp Lys Leu Val Ile Val Asp Phe Phe Ser 115
120 125Pro Gly Cys Gly Gly Cys Arg Ala Leu His Pro
Lys Ile Cys Gln Phe 130 135 140Ala Glu
Gln Asn Pro Asp Val Leu Phe Leu Gln Val Asn Tyr Glu Glu145
150 155 160His Lys Ser Met Cys Tyr Ser
Leu His Val His Val Leu Pro Phe Phe 165
170 175Arg Phe Tyr Arg Gly Ala Gln Gly Arg Leu Cys Ser
Phe Ser Cys Thr 180 185 190Asn
Ala Thr Ile Lys Lys Phe Lys Asp Ala Leu Ala Lys His Lys Pro 195
200 205Asp Arg Cys Ser Leu Gly Pro Thr Arg
Gly Leu Glu Glu Ser Glu Phe 210 215
220Leu Ala Leu Ala Ala Asn Lys Asp Leu Gln Phe Thr Tyr Thr Lys Glu225
230 235 240Pro Glu Leu Ile
Pro Arg Gly Asp Ala Pro Gly Glu Val Ile Ala Pro 245
250 255Glu Pro Ala Lys Leu Pro Ala Ala Thr Lys
Pro Leu Val Arg Leu Gly 260 265
270Ser Glu Glu Arg Ser Leu Val Ser Ser Gly Arg 275
28015266PRTSorghum bicolor 15Met Ala Ala Ala Gln Ala Met Ala Lys Gly Ser
Val Gly Gln Gly Ser1 5 10
15Leu Gly Arg Arg Arg Gly Ala Glu Ala Ala Arg Val Gly Gly Ser Trp
20 25 30Arg Lys Ser Ala Phe Leu Gly
Gly Arg Leu Ala Val Gly Pro Arg Arg 35 40
45Pro Arg Pro Val Ser Arg Ile Leu Val Thr Ser Pro Ala Val Gln
Gln 50 55 60Thr Asn Leu Ser Phe Ala
Lys Ala Met Lys Trp Trp Gln Lys Gly Leu65 70
75 80Gln Pro Asn Met Arg Ala Ile Gln Thr Ala Gln
Asp Leu Ala Asp Ser 85 90
95Leu Thr Asn Ala Gly Asp Gly Leu Val Val Val Asp Phe Phe Ser Pro
100 105 110Gly Cys Ala Gly Cys His
Ala Leu His Pro Lys Ile Cys Gln Phe Ala 115 120
125Glu Arg Asn Pro Asp Val Gln Phe Leu Gln Val Asn Tyr Glu
Glu His 130 135 140Lys Ser Met Cys His
Ser Leu His Val His Val Phe Pro Phe Phe Arg145 150
155 160Phe Tyr Arg Gly Ala Gln Gly Arg Leu Cys
Ser Phe Ser Cys Thr Asn 165 170
175Ala Thr Ile Lys Lys Phe Arg Asp Ala Leu Ala Lys His Arg Ala Asp
180 185 190Arg Cys Ser Leu Gly
Pro Thr Arg Gly Leu Glu Glu Ser Glu Leu Leu 195
200 205Ala Leu Ala Ala Asn Lys Asp Leu Gln Phe Thr Tyr
Thr Lys Glu Ala 210 215 220Glu Leu Ala
Pro Ser Met Glu Asp Val Ala Glu Val Met Thr Ala Asp225
230 235 240Arg Pro Gly Leu Pro Thr Ser
Thr Met Pro Leu Ala Arg Gln Gly Ser 245
250 255Glu Asp Arg Ala Leu Val Ser Ser Gly Arg
260 26516205PRTSorghum bicolor 16Met Ala Glu Ala Leu Cys
Asn Gly Val Val Ala Ser Pro Tyr Gly Gly1 5
10 15Gly Asp Val Gly Val Ala Gly Arg Ala Arg Gly Ala
Ala Lys Ala Ala 20 25 30Leu
Ala Glu Ser Leu Pro Val Gly Gly Tyr Ala Thr Lys Ser Ser Phe 35
40 45Ser Ala Gly Arg Met Ser Val Ser Asp
Arg Lys Pro Arg Pro Leu Ser 50 55
60Arg Asn Leu Glu Ala Ala Ala Ala Pro Gly Gln Met Asn Leu Ser Phe65
70 75 80Pro Lys Ala Met Arg
Trp Trp Glu Lys Gly Leu His Pro Asn Met Arg 85
90 95Glu Ile Glu Ser Ala Gln Asp Leu Ala Asp Ser
Leu Leu Asn Ala Gly 100 105
110Asp Lys Leu Val Val Val Asp Phe Phe Ser Pro Gly Cys Gly Gly Cys
115 120 125Arg Ala Leu His Pro Lys Ile
Ala Gln Phe Ala Glu Lys Asn Pro Asp 130 135
140Val Leu Phe Leu Gln Val Asn Tyr Glu Thr His Lys Ser Met Cys
Tyr145 150 155 160Ser Leu
His Val His Val Leu Pro Phe Phe Arg Phe Tyr Arg Gly Ala
165 170 175Glu Gly Arg Val Ser Ser Phe
Ser Cys Thr Asn Ala Thr Val Arg Ile 180 185
190Asp His Leu Ser Asn Phe Lys Asn Gln Gln Met Asn Glu
195 200 20517261PRTBrassica napus 17Met
Ala Glu Ala Ala Ile Ser Arg Thr Asn Leu Ile Phe Arg Gly Ala1
5 10 15Cys Val Asn Gln His Lys His
Val Asp Asp Tyr Ser Val Ser Ser Pro 20 25
30Val Ser Phe Gly Leu Arg Lys Ser Phe Pro Ser Leu Lys Val
Lys Pro 35 40 45Phe Asn Gln Phe
Gln Ser Ser Arg Ser Ser Ser Ser Ile Thr Ala Gln 50 55
60Thr Thr Leu Arg Ile Gly Thr Pro Gln Lys Trp Trp Glu
Lys Gly Leu65 70 75
80Lys Glu Asn Met Arg Glu Ile Ser Ser Ala Gln Glu Leu Val Asp Ser
85 90 95Leu Thr Asn Ala Gly Asp
Lys Leu Val Val Val Asp Phe Phe Ser Pro 100
105 110Gly Cys Gly Gly Cys Lys Ala Leu His Pro Lys Ile
Cys Gln Leu Ala 115 120 125Glu Gln
Asn Pro Asp Val Gln Phe Leu Gln Val Asn Tyr Glu Glu His 130
135 140Lys Ser Met Cys Tyr Ser Leu Gly Val His Val
Leu Pro Phe Phe Arg145 150 155
160Phe Tyr Arg Gly Ala His Gly Arg Val Cys Ser Phe Ser Cys Thr Asn
165 170 175Ala Thr Ile Lys
Lys Phe Arg Asp Ala Leu Ala Lys His Ser Pro Asp 180
185 190Arg Cys Ser Leu Gly Pro Thr Lys Gly Leu Glu
Glu Lys Glu Leu Val 195 200 205Ala
Leu Ala Ala Asn Lys Glu Leu Asn Phe Ser Tyr Thr Pro Arg Ala 210
215 220Val Pro Val Glu Glu Glu Glu Ala Pro Val
Pro Ala Ser Asn Pro Gly225 230 235
240Leu Pro Val Ala His Pro Ser Met Lys Ala Asn Asp Gly Lys Thr
Leu 245 250 255Val Ser Ser
Gly Arg 26018268PRTBrassica napus 18Met Ala Glu Val Ile Ser
Lys Thr Ser Leu Phe Phe Arg Gly Ala Cys1 5
10 15Val Asn His His His His Ala Asp Asp Phe Ser Val
Ser Pro Val Ser 20 25 30Phe
Gly Leu Lys Lys Ser Phe Ser Ser Leu Lys Gln Lys Pro Leu Arg 35
40 45Ser Asp Phe Ser Gly Lys Gln Ile Leu
Gln Thr Phe Asn Arg Ser Phe 50 55
60Arg Ser Ser Ser Val Thr Ala Gln Ser Thr Leu Arg Ile Gly Thr Ala65
70 75 80Gln Lys Trp Trp Glu
Lys Gly Leu Gln Glu Asn Met Arg Glu Ile Ser 85
90 95Ser Ala Gln Glu Leu Val Asp Ser Leu Ala Asp
Ala Gly Asp Lys Leu 100 105
110Val Val Val Asp Phe Phe Ser Pro Gly Cys Gly Gly Cys Lys Ala Leu
115 120 125His Pro Lys Met Cys Gln Leu
Ala Glu Gln Ser Ala Asp Val Gln Phe 130 135
140Leu Gln Val Asn Tyr Glu Glu His Lys Ser Met Cys Tyr Ser Leu
Gly145 150 155 160Val His
Val Leu Pro Phe Phe Arg Phe Tyr Arg Gly Ala Gln Gly Arg
165 170 175Val Cys Ser Phe Ser Cys Thr
Asn Ala Thr Ile Lys Lys Phe Arg Asp 180 185
190Ala Leu Ala Lys His Ser Pro Asp Arg Cys Ser Leu Gly Pro
Thr Lys 195 200 205Gly Leu Glu Glu
Lys Glu Leu Val Ala Leu Ala Ala Asn Lys Glu Leu 210
215 220Asn Phe Ser Tyr Thr Pro Lys Val Val Pro Val Glu
Lys Glu Ala Ala225 230 235
240Ile Pro Thr Ser Asn Pro Ala Leu Pro Val Pro His Pro Ser Met Ser
245 250 255Gly Ser Glu Glu Lys
Thr Leu Val Ser Ala Gly Arg 260
26519269PRTBrassica napus 19Met Ala Glu Ala Ala Ile Ser Arg Thr Asn Leu
Ile Phe Arg Gly Ala1 5 10
15Cys Val Thr His His His His Ala Asp Asp Tyr Ser Val Ser Ser Ser
20 25 30Pro Val Ser Phe Gly Leu Arg
Lys Ser Phe Ser Ser Leu Lys Leu Lys 35 40
45Pro Pro Arg Gln Ile Asp Thr Gln Phe Gln Thr Phe Thr Arg Ser
Ser 50 55 60Arg Ala Ser Ser Ile Thr
Ala Gln Thr Thr Leu Arg Ile Gly Thr Pro65 70
75 80Gln Lys Trp Trp Glu Lys Gly Leu Lys Glu Asn
Met Arg Glu Ile Ser 85 90
95Ser Ala Gln Glu Leu Val Asp Ser Leu Thr Asn Ala Gly Asp Lys Leu
100 105 110Val Val Val Asp Phe Phe
Ser Pro Gly Cys Gly Gly Cys Lys Ala Leu 115 120
125His Pro Lys Ile Cys Gln Leu Ala Glu Gln Asn Pro Asp Val
Gln Phe 130 135 140Leu Gln Val Asn Tyr
Glu Glu His Lys Ser Met Cys Tyr Ser Leu Gly145 150
155 160Val His Val Leu Pro Phe Phe Arg Phe Tyr
Arg Gly Ala His Gly Arg 165 170
175Val Cys Ser Phe Ser Cys Thr Asn Ala Thr Ile Lys Lys Phe Arg Asp
180 185 190Ala Leu Ala Lys His
Ser Pro Asp Arg Cys Ser Leu Gly Pro Thr Lys 195
200 205Gly Leu Glu Glu Lys Glu Leu Val Ala Leu Ala Ala
Asn Lys Glu Leu 210 215 220Asn Phe Ser
Tyr Thr Pro Arg Ala Val Pro Val Glu Glu Glu Glu Ala225
230 235 240Pro Val Pro Ala Ser Lys Pro
Gly Leu Ala Val Pro His Pro Ser Met 245
250 255Ser Ala Asn Asp Glu Lys Thr Leu Val Ser Ala Gly
Arg 260 26520261PRTBrassica napus 20Met Ala
Glu Ala Ala Ile Ser Arg Thr Asn Leu Ile Phe Arg Gly Ala1 5
10 15Cys Val Asn Gln His Lys His Val
Asp Asp Tyr Ser Val Ser Ser Pro 20 25
30Val Ser Phe Gly Leu Arg Lys Ser Phe Pro Ser Leu Lys Val Lys
Pro 35 40 45Phe Asn Gln Phe Gln
Ser Ser Arg Ser Ser Ser Ser Ile Thr Ala Gln 50 55
60Thr Ala Leu Arg Ile Gly Thr Pro Gln Arg Trp Trp Glu Lys
Gly Leu65 70 75 80Lys
Glu Asn Met Arg Glu Ile Ser Ser Ala Gln Glu Leu Val Asp Ser
85 90 95Leu Thr Asn Ala Gly Asp Lys
Leu Val Val Val Asp Phe Phe Ser Pro 100 105
110Gly Cys Gly Gly Cys Lys Ala Leu His Pro Lys Ile Cys Gln
Leu Ala 115 120 125Glu Gln Asn Pro
Asp Val Gln Phe Leu Gln Val Asn Tyr Glu Glu His 130
135 140Lys Ser Met Cys Tyr Ser Leu Gly Val His Val Leu
Pro Phe Phe Arg145 150 155
160Phe Tyr Arg Gly Ala His Gly Arg Val Cys Ser Phe Ser Cys Thr Asn
165 170 175Ala Thr Ile Lys Lys
Phe Arg Asp Ala Leu Ala Lys His Thr Pro Asp 180
185 190Arg Cys Ser Leu Gly Pro Thr Lys Gly Leu Glu Glu
Lys Glu Leu Val 195 200 205Ala Leu
Ala Ala Asn Lys Glu Leu Asn Phe Ser Tyr Thr Pro Lys Asp 210
215 220Val Pro Val Glu Glu Glu Ala Ala Pro Val Pro
Val Ser Asn Pro Gly225 230 235
240Leu Pro Val Ala His Pro Ser Met Lys Ala Asn Asp Gly Lys Thr Leu
245 250 255Val Ser Ser Gly
Arg 26021272PRTBrassica napus 21Met Ala Glu Val Ile Ser Lys
Thr Ser Leu Phe Phe Gly Gly Gly Ala1 5 10
15Cys Val Asn His His His His His Val Asp Asp Leu Ser
Val Ser Pro 20 25 30Val Ser
Phe Gly Phe Lys Lys Ser Phe Ser Ser Ser Leu Lys Gln Lys 35
40 45Pro Leu Arg Ser Asp Phe Ser Gly Lys Gln
Ile Leu Glu Thr Phe Asn 50 55 60Arg
Ser Phe Arg Ser Ser Ser Val Thr Ala Gln Ser Thr Leu Arg Ile65
70 75 80Gly Thr Ala His Lys Trp
Trp Glu Lys Gly Ser Gln Glu Asn Met Arg 85
90 95Glu Ile Ser Ser Ala Gln Asp Leu Val Asp Ser Leu
Ala Asp Ala Gly 100 105 110Asp
Lys Leu Val Val Val Asp Phe Phe Ser Pro Gly Cys Gly Gly Cys 115
120 125Lys Ala Leu His Pro Lys Met Cys Gln
Leu Ala Glu Gln Ser Pro Asp 130 135
140Val Gln Phe Leu Gln Val Asn Tyr Glu Glu His Lys Ser Met Cys Tyr145
150 155 160Ser Leu Gly Val
His Val Leu Pro Phe Phe Arg Phe Tyr Arg Gly Ala 165
170 175Gln Gly Arg Val Cys Ser Phe Ser Cys Thr
Asn Ala Thr Ile Lys Lys 180 185
190Phe Arg Asp Ala Leu Ala Lys His Ser Pro Asp Arg Cys Ser Leu Gly
195 200 205Pro Thr Lys Gly Leu Glu Glu
Lys Glu Leu Val Ala Leu Ala Ala Asn 210 215
220Lys Glu Leu Lys Phe Ser Tyr Thr Pro Lys Val Val Pro Val Glu
Lys225 230 235 240Glu Val
Ala Ile Pro Thr Ser Asn Pro Gly Leu Pro Val Pro His Pro
245 250 255Ser Thr Met Ser Gly Ser Glu
Glu Lys Thr Leu Val Ser Ala Gly Arg 260 265
27022296PRTRicinus communis 22Met Ala Asp Val Leu Ser Lys
Thr Asn Leu Val Pro Ser Ser Cys Cys1 5 10
15Asn Gly Tyr Lys Asn Gln Lys Lys Asp Gly Ala Phe Val
Leu Lys Arg 20 25 30Ser Cys
Ser Leu Lys Val Ser Ser Arg Lys Phe Asn Pro Gln Ala Phe 35
40 45Gly Ser Gln Lys Ile Ser Leu Ile Ser Asp
Phe Tyr Gly Lys Arg Val 50 55 60Ile
Val Gln Glu Lys Gln Leu Lys Arg Gly Asn Phe His Gln Phe Ser65
70 75 80Ile Lys Ala Gln Thr Gly
Leu Arg Leu Lys Asn Ala Pro Lys Trp Trp 85
90 95Glu Lys Gly Leu Gln Pro Asn Met Lys Glu Ile Thr
Ser Ala Gln Asp 100 105 110Leu
Val Asp Ser Leu Met Asn Ala Gly Asp Lys Leu Val Ile Val Asp 115
120 125Phe Phe Ser Pro Gly Cys Gly Gly Cys
Lys Ala Leu His Pro Lys Ile 130 135
140Cys Gln Phe Ala Glu Met Asn Pro Asp Val Gln Phe Leu Gln Val Asn145
150 155 160Tyr Glu Glu His
Lys Ser Met Cys Tyr Ser Leu Asn Val His Val Leu 165
170 175Pro Phe Phe Arg Phe Tyr Arg Gly Ala Gln
Gly Arg Val Cys Ser Phe 180 185
190Ser Cys Thr Asn Ala Thr Ile Lys Lys Phe Lys Asp Ala Leu Ala Lys
195 200 205His Thr Pro Asp Arg Cys Ser
Leu Gly Pro Thr Lys Gly Leu Glu Glu 210 215
220Lys Glu Leu Ile Ala Leu Ala Ser Asn Lys Asp Leu Asn Phe Thr
Cys225 230 235 240Thr Pro
Lys Pro Val Gln Pro Thr Ala Pro Ala Gln Glu Glu Ile Ile
245 250 255Pro Ala Ala Leu Thr Pro Ala
His Val Asn Gln Thr Leu Pro Leu Pro 260 265
270Ile Pro Leu Ser Thr Thr Ser Leu Met Ser Ala Gln Asp Leu
Gly Glu 275 280 285Lys Thr Leu Val
Thr Ser Gly Arg 290 29523292PRTPhaseolus vulgaris
23Met Ala Glu Val Phe Thr Lys Ala Ser Phe Val Ser Ser Leu Leu Gly1
5 10 15Ser Ser Gln Arg His His
Arg Arg Val Ser Thr Val Pro Asp Thr Cys 20 25
30Thr Phe Val Ser Gly Val Gly Gly Ser Pro Ser Leu Lys
Leu Lys Ser 35 40 45Pro Ile Leu
Arg Ser Trp Ser Pro Ser Ser Glu Phe Gln Gly Lys Gln 50
55 60Leu Leu Phe Arg Val Asn Arg Gly Lys Pro Asn Arg
Val Ser Ser Arg65 70 75
80Leu Arg Ala Ser Thr Ala Ala Gln Met Thr Leu Arg Ile Gly Lys Val
85 90 95Gln Lys Trp Trp Glu Lys
Gly Leu Gln Pro Asn Met Lys Glu Val Thr 100
105 110Ser Ala Gln Asp Leu Val Glu Ser Leu Leu Asn Ala
Gly Asp Lys Leu 115 120 125Val Val
Val Asp Phe Phe Ser Pro Gly Cys Gly Gly Cys Lys Ala Leu 130
135 140His Pro Lys Ile Cys Gln Leu Ala Glu Met Asn
Pro Asp Val Gln Phe145 150 155
160Leu Gln Val Asn Tyr Glu Glu His Lys Ser Met Cys Tyr Ser Leu Asn
165 170 175Val His Val Leu
Pro Phe Phe Arg Phe Tyr Arg Gly Ala His Gly Arg 180
185 190Leu Cys Ser Phe Ser Cys Thr Asn Ala Thr Ile
Lys Lys Phe Arg Asp 195 200 205Ala
Leu Ala Lys His Ser Pro Asp Arg Cys Ser Leu Gly Pro Thr Lys 210
215 220Gly Leu Glu Glu Lys Glu Leu Leu Ala Leu
Ala Ala Asn Lys Asp Leu225 230 235
240Ser Phe Thr Leu Pro Lys Pro Leu Gln Pro Glu His Ala Asn Glu
Gly 245 250 255Leu Ala Thr
Ala Pro Ala Pro Val Pro Ser Ser Glu Ser Leu Pro Leu 260
265 270Pro Ser Leu Thr Leu Asn Ser Glu Val Ser
Gln Glu Arg Thr Leu Thr 275 280
285Thr Ala Gly Arg 29024291PRTPhaseolus vulgaris 24Met Ala Glu Val Leu
Thr Glu Ala Ser Leu Val Ser Ser Trp His Gly1 5
10 15Thr Thr Gln Arg His His Arg Arg Val Ser Thr
Val Pro Asn Ser Ser 20 25
30Ser Phe Val Ser Gly Val Gly Arg Phe Pro Ser Leu Lys Leu Lys Ser
35 40 45Gln Ile Leu Arg Ser Leu Ser Ser
Ser Ser Glu Phe Gln Gly Lys Lys 50 55
60Leu Leu Phe His Val Asn Arg Gly Leu Ala Asn Arg Ile Ser Ser Arg65
70 75 80Leu Gly Ala Ser Thr
Ala Ala Gln Met Thr Leu Arg Ile Gly Lys Gly 85
90 95Gln Lys Trp Trp Glu Lys Gly Leu Gln Pro Asn
Met Asn Glu Val Thr 100 105
110Ser Ala Gln Asp Leu Val Glu Ser Leu Leu Asn Ala Gly Asp Lys Leu
115 120 125Val Val Val Asp Phe Phe Ser
Pro Gly Cys Gly Gly Cys Lys Ala Leu 130 135
140His Pro Lys Ile Cys Gln Leu Ala Glu Met Asn Pro Asp Val Gln
Phe145 150 155 160Leu Gln
Val Asn Tyr Glu Glu His Lys Ser Met Cys Tyr Ser Leu Asn
165 170 175Val His Val Leu Pro Phe Phe
Arg Phe Tyr Arg Gly Ala His Gly Arg 180 185
190Leu Cys Ser Phe Ser Cys Thr Asn Ala Thr Ile Lys Lys Phe
Lys Asp 195 200 205Ala Leu Ala Lys
His Ser Pro Asp Arg Cys Ser Leu Gly Pro Thr Lys 210
215 220Gly Leu Glu Glu Lys Glu Leu Leu Ala Leu Ala Ala
Asn Lys Asp Leu225 230 235
240Ser Phe Ile Tyr Ala Pro Asn Pro Leu Gln Pro Glu His Glu Asn Glu
245 250 255Glu Leu Ala Thr Ala
Pro Ala Pro Val Pro Ser Ser Glu Ser Leu Pro 260
265 270Leu Cys His Leu Ile Ser Glu Val Ser Lys Glu Lys
Thr Leu Ile Thr 275 280 285Ala Gly
Arg 29025287PRTGossypium histrum 25Met Ala Glu Val Leu Gly Lys Gly Asn
Leu Phe Thr Thr Cys Asn Tyr1 5 10
15Ser Gln Thr Lys Asn Leu Glu Gly Gly Thr Cys Leu Val Pro Lys
Lys 20 25 30Ile Ser Gly Phe
Ser Leu Glu Arg Asn Gly Phe Ser Ser Leu Lys Val 35
40 45Lys Ser Gln Ala Leu Arg Ser Asp Phe Asn Gly Gln
Arg Met Val Phe 50 55 60Leu Glu Lys
Lys Ser Met Asn Arg Arg Arg Phe Cys Gln Val Pro Ile65 70
75 80Lys Ala Gln Met Gln Ser Gly Leu
Ile Gly Arg Ile Gln Lys Trp Trp 85 90
95Glu Lys Gly Leu Gln Pro Asn Met Lys Glu Val Ala Ser Ala
Gln Asp 100 105 110Leu Val Asp
Ser Leu Leu Asn Ala Gly Asp Lys Leu Val Val Val Asp 115
120 125Phe Phe Ser Pro Gly Cys Gly Gly Cys Lys Ala
Leu His Pro Lys Ile 130 135 140Cys Gln
Phe Ala Glu Met Asn Pro Asp Val Gln Phe Leu Gln Val Asn145
150 155 160Tyr Glu Glu His Lys Ser Met
Cys Tyr Ser Leu Asn Val His Val Leu 165
170 175Pro Phe Phe Arg Phe Tyr Arg Gly Ala Gln Gly Arg
Val Cys Ser Phe 180 185 190Ser
Cys Thr Asn Ala Thr Ile Lys Lys Phe Arg Asp Ala Leu Ala Lys 195
200 205His Thr Pro Asp Arg Cys Ser Leu Ser
Thr Thr Lys Gly Leu Glu Glu 210 215
220Lys Glu Leu Leu Ala Leu Ser Ala Asn Lys Asp Leu Ser Phe Asn Tyr225
230 235 240Thr Pro Ile Pro
Thr His Gly Glu Ile Leu Ile Trp Lys Gln Val Pro 245
250 255Ser Asp Ser Thr Arg Lys Leu Pro Leu Ser
Val Pro Thr Thr Ser Ala 260 265
270Lys Gln Arg Asp Ser Glu Glu Lys Thr Leu Val Gly Val Gly Arg
275 280 28526279PRTGossypium histrum
26Met Ala Glu Val Leu Gly Lys Ser Asn Leu Phe Thr Ala Cys Asn Tyr1
5 10 15Ser Gln Lys Lys His Gln
Glu Gly Gly Val Pro Leu Phe Ser Arg Arg 20 25
30Ile Ser Val Phe Cys Leu Arg Lys Asn Ser Phe Pro Ser
Leu Arg Leu 35 40 45Glu Pro Gln
Ala Leu Arg Ser Gly Phe Asn Gly Gln Arg Val Val Phe 50
55 60Leu Glu Lys Arg Ser Leu Asn Glu Arg Arg Phe Cys
Arg Val Pro Ile65 70 75
80Lys Ala Gln Met Gln Thr Gly Leu Ile Gly Lys Thr Gln Lys Trp Trp
85 90 95Glu Lys Gly Asn Gln Pro
Asn Met Lys Glu Val Thr Ser Ala Gln Asp 100
105 110Leu Val Asp Ser Leu Leu Asn Ala Gly Asp Lys Leu
Val Ile Val Asp 115 120 125Phe Phe
Ser Pro Gly Cys Gly Gly Cys Lys Ala Leu His Pro Lys Ile 130
135 140Cys Gln Leu Ala Glu Met Asn Pro Asp Val Gln
Phe Leu Lys Val Asn145 150 155
160Tyr Glu Glu His Lys Ser Met Cys Tyr Ser Leu Asn Val His Val Leu
165 170 175Pro Phe Phe Arg
Phe Tyr Arg Gly Ala Gln Gly Arg Leu Cys Ser Phe 180
185 190Ser Cys Thr Asn Ala Thr Ile Lys Lys Phe Lys
Asp Ala Leu Ala Lys 195 200 205His
Ser Pro Asp Arg Cys Ser Leu Gly Pro Thr Lys Gly Leu Glu Glu 210
215 220Lys Glu Leu Leu Ala Leu Ala Ala Asn Lys
Asp Leu Ser Phe Asn Tyr225 230 235
240Thr Pro Lys Pro Val His Pro Ala Pro Glu Glu Ile Pro Val Leu
Lys 245 250 255Glu Val Pro
Ser Gly Ser Ser Phe Lys Leu Lys Glu Ser Glu Glu Lys 260
265 270Thr Leu Ile Gly Val Gly Arg
27527279PRTGossypium histrum 27Met Ala Glu Val Leu Gly Lys Ser Asn Leu
Phe Thr Ala Cys Asn Cys1 5 10
15Ser Gln Lys Lys Asn Gln Glu Gly Gly Val Pro Leu Phe Ser Arg Arg
20 25 30Ile Ser Ala Phe Cys Leu
Arg Lys Asn Ser Phe Pro Ser Leu Lys Leu 35 40
45Glu Pro Gln Ala Leu Arg Ser Gly Phe Asn Gly Gln Arg Val
Val Val 50 55 60Leu Glu Lys Arg Ser
Leu Asn Glu Arg Arg Phe Cys Arg Val Pro Ile65 70
75 80Lys Ala Gln Met Gln Thr Gly Leu Ile Gly
Lys Thr Gln Lys Trp Trp 85 90
95Glu Lys Gly Asn Gln Pro Asn Met Lys Glu Val Thr Ser Ala Gln Asp
100 105 110Leu Val Asp Ser Leu
Leu Asn Ala Gly Asp Lys Leu Val Ile Val Asp 115
120 125Phe Phe Ser Pro Gly Cys Gly Gly Cys Lys Ala Leu
His Pro Lys Ile 130 135 140Cys Gln Leu
Ala Glu Met Asn Pro Asp Val Gln Phe Leu Lys Leu Asn145
150 155 160Tyr Glu Glu His Lys Ser Met
Cys Tyr Ser Leu Asn Val His Val Leu 165
170 175Pro Phe Phe Arg Phe Tyr Arg Gly Ala Gln Gly Arg
Leu Cys Ser Phe 180 185 190Ser
Cys Thr Asn Ala Thr Ile Lys Lys Phe Lys Asp Ala Leu Ala Lys 195
200 205His Ser Pro Asp Arg Cys Ser Leu Gly
Pro Thr Lys Gly Leu Glu Glu 210 215
220Lys Glu Leu Leu Ala Leu Ala Ala Asn Lys Asp Leu Ser Phe Asn Tyr225
230 235 240Thr Pro Lys Pro
Val His Pro Ala Pro Glu Glu Met Pro Val Leu Glu 245
250 255Glu Val Pro Ser Gly Ser Ser Phe Arg Pro
Lys Glu Ser Glu Glu Lys 260 265
270Thr Leu Val Gly Val Gly Arg 27528299PRTGlycine max 28Met Ala
Glu Val Leu Thr Lys Ala Ser Leu Val Ser Ser Ser Trp His1 5
10 15Gly Val Ser Gln Arg His His His
Arg Arg Val Ser Thr Val Leu Ser 20 25
30Asn Asn Thr Cys Ser Phe Arg Ser Gly Val Gly Lys Phe Ser Ser
Leu 35 40 45Lys Met Asn Ser Gln
Val Leu Arg Ser Trp Ser Ser Ser Ser Glu Phe 50 55
60Gln Gly Lys Lys Leu Val Phe His Val Asn Arg Gly Leu Pro
Asn Arg65 70 75 80Val
Asn Ser Arg Leu Arg Ala Ser Thr Gly Thr Gln Met Asn Leu Arg
85 90 95Leu Gly Lys Val Gln Lys Trp
Trp Glu Lys Gly Leu Gln Pro Asn Met 100 105
110Lys Glu Val Thr Ser Ala Gln Asp Phe Val Asp Ser Leu Leu
Asn Ala 115 120 125Gly Asp Lys Leu
Val Val Val Asp Phe Phe Ser Pro Gly Cys Gly Gly 130
135 140Cys Lys Ala Leu His Pro Lys Ile Cys Gln Phe Ala
Glu Met Asn Pro145 150 155
160Asp Val Gln Phe Leu Gln Val Asn Tyr Glu Glu His Lys Ser Met Cys
165 170 175Tyr Ser Leu Asn Val
His Val Leu Pro Phe Phe Arg Phe Tyr Arg Gly 180
185 190Ala His Gly Arg Leu Cys Ser Phe Ser Cys Thr Asn
Ala Thr Ile Lys 195 200 205Lys Phe
Lys Asp Ala Leu Ala Lys His Thr Pro Asp Arg Cys Ser Leu 210
215 220Gly Pro Thr Ile Gly Leu Glu Glu Lys Glu Leu
Glu Ala Leu Ala Ala225 230 235
240Asn Lys Asp Leu Ser Phe Thr Tyr Ser Pro Lys Pro Leu Gln Pro Ser
245 250 255His Glu Asn Glu
Glu Leu Ala Thr Glu Thr Ala Ser Ala Pro Ala Leu 260
265 270Gly Ser Gly Ser Leu Pro Ser Pro Ser Met Thr
Leu Asn Ala Val Ala 275 280 285Ser
Asn Glu Arg Thr Leu Thr Thr Ser Gly Arg 290
29529248PRTGlycine max 29Met Lys Ser Gln Val Leu Arg Ser Trp Ser Ser Ser
Ser Glu Phe Gln1 5 10
15Gly Ile Lys Leu Val Phe His Val Asn Arg Gly Leu Pro Asn Arg Val
20 25 30Asn Ser Arg Leu Arg Ala Ser
Thr Gly Ala Gln Met Ser Phe Arg Leu 35 40
45Gly Lys Val Gln Lys Trp Trp Glu Lys Gly Leu Gln Pro Asn Met
Lys 50 55 60Glu Val Thr Ser Ala Gln
Asp Phe Val Asp Ser Leu Leu Ser Ala Gly65 70
75 80Asp Lys Leu Val Val Val Asp Phe Phe Ser Pro
Gly Cys Gly Gly Cys 85 90
95Lys Ala Leu His Pro Lys Ile Cys Gln Phe Ala Glu Met Asn Pro Asp
100 105 110Val Gln Phe Leu Gln Val
Asn Tyr Glu Glu His Lys Ser Met Cys Tyr 115 120
125Ser Leu Asn Val His Val Leu Pro Phe Phe Arg Phe Tyr Arg
Gly Ala 130 135 140His Gly Arg Leu Cys
Ser Phe Ser Cys Thr Asn Ala Thr Ile Lys Lys145 150
155 160Phe Lys Asp Ala Leu Ala Lys His Thr Pro
Asp Arg Cys Ser Leu Gly 165 170
175Pro Thr Lys Gly Leu Glu Glu Lys Glu Leu Leu Ala Leu Ala Ala Asn
180 185 190Lys Asp Leu Ser Phe
Thr Asn Ser Pro Glu Pro Leu Gln Pro Ala His 195
200 205Ala Asp Glu Glu Leu Gly Thr Glu Pro Ala Pro Ala
Pro Gly Ser Lys 210 215 220Ser Leu Pro
Ser Pro Ser Met Ile Leu Asn Ser Glu Val Ser Lys Lys225
230 235 240Arg Thr Leu Thr Thr Ser Gly
Arg 24530289PRTBeta vulgaris 30Met Ala Asp Val Leu Thr Lys
Ser Ser Val Phe Ser Pro Thr Ile Ser1 5 10
15His His His Ser Gly Ser Lys Asn Phe Pro Ile Lys Cys
Ser Val Ala 20 25 30Val Ser
Asn Arg Gly Arg Leu Val Gly Ile Ser Ser Leu Arg Ser Ser 35
40 45Phe Gly Gly Val Arg Ile Ala Ile Asp Lys
Asn Thr Ser Phe Gly Ser 50 55 60Lys
Arg Arg Asn Tyr Gln Ser Ile Asp Ala Lys Met Gly Leu Ser Ile65
70 75 80Gly Lys Ala Gln Lys Trp
Trp Glu Lys Gly Leu Gln Pro Asn Met Arg 85
90 95Glu Ile Thr Ser Ala Glu Asp Leu Val Asp Ser Leu
Leu Thr Ala Gly 100 105 110Asp
Thr Leu Val Val Val Asp Phe Phe Ser Pro Gly Cys Gly Gly Cys 115
120 125Arg Ala Leu His Pro Lys Leu Cys Gln
Leu Ala Glu Met Asn Pro Asp 130 135
140Val Gln Phe Leu Gln Ile Asn Tyr Glu Glu His Lys Ser Met Cys Tyr145
150 155 160Ser Leu Asn Val
His Val Leu Pro Phe Phe Arg Phe Tyr Arg Gly Ala 165
170 175Glu Gly Arg Val Ser Ser Phe Ser Cys Thr
Asn Ala Thr Ile Lys Lys 180 185
190Phe Lys Asp Ala Leu Ala Lys His Asn Pro Ala Arg Cys Ser Leu Gly
195 200 205Pro Thr Lys Gly Leu Glu Glu
Lys Glu Leu Leu Ala Leu Ala Ala Asn 210 215
220Lys Asp Leu Ser Phe Thr Tyr Thr Pro Lys Pro Val Glu Ala Glu
Pro225 230 235 240Val Pro
Ala Pro Ala Leu Glu Glu Val Ser Val Lys Ala Asp Glu Gln
245 250 255Val Leu Ala Gln Glu Ser Leu
Pro Ser Phe Asn Arg Lys Pro Leu Ser 260 265
270Ser Gln Pro Ser Thr Val Ser Glu Glu Lys Thr Leu Ala Thr
Ala Ala 275 280 285Arg31278PRTMusa
acuminate 31Met Ala Glu Thr Leu Ala Gln Arg Thr Leu Leu Leu Pro Gly Gly
His1 5 10 15Leu Ser Leu
Pro Pro Phe Cys Gly Met Arg Ser Arg Pro Ser Leu Ala 20
25 30Ala Phe Thr Leu Phe Ser Arg Thr Lys Val
Glu Pro Leu Arg Ser Ser 35 40
45Ser Cys Asp Ser Lys Phe His Gly Arg Arg Leu Val Val Gly Ala Arg 50
55 60Arg Gly Arg Pro Ser Arg Ala Arg Leu
Gly Ser Gly Ser Glu Gln Met65 70 75
80Val Leu Ser Phe Lys Lys Ala Ile Lys Trp Trp Gln Lys Gly
Leu Gln 85 90 95Pro Asn
Met Val Glu Ile Glu Ser Ala Glu His Leu Val Asp Ser Leu 100
105 110Leu Asn Ala Gly Asp Lys Leu Val Ile
Val Asp Phe Phe Ser Pro Gly 115 120
125Cys Gly Gly Cys Arg Ala Leu His Pro Lys Ile Cys Gln Phe Ala Glu
130 135 140Ser Asn Gln Asn Val Leu Phe
Leu Gln Ile Asn Tyr Glu Gln His Lys145 150
155 160Ser Met Cys Tyr Ser Leu Gly Val His Val Leu Pro
Phe Phe Arg Phe 165 170
175Tyr Arg Gly Ala His Gly Arg Leu Cys Ser Phe Ser Cys Thr Asn Ala
180 185 190Thr Ile Lys Lys Phe Lys
Asp Ala Leu Ala Lys His Ile Thr Asp Arg 195 200
205Cys Ser Leu Gly Pro Ala Arg Gly Leu Glu Glu Ser Glu Leu
Leu Ala 210 215 220Leu Ala Ala Asn Lys
Asp Leu Ser Phe Asn Tyr Thr Ser Lys Pro Val225 230
235 240Pro Val Pro Glu Glu Ile Pro Glu Arg Ile
Pro Thr Ser Pro Lys Leu 245 250
255Pro Leu His Ala Val Arg Arg Pro Ala Gln Glu Ser Glu Asp Lys Ala
260 265 270Leu Ala Ala Ala Gly
Arg 27532272PRTMusa acuminate 32Met Ala Asp Ala Leu Ala Gln Met
Thr Leu Leu Ser Pro His Gly His1 5 10
15Arg Ser Leu Ser Arg Ser Ser Asp Arg Arg Asn Arg Leu Val
Cys Ala 20 25 30Ser Lys Asp
Asp Leu Leu Arg Ser Ser Ser Ser Cys Asn Ser Gln Phe 35
40 45His Gly Arg Arg Leu Val Ile Gly Ala Gln Arg
Glu Arg Pro Leu Arg 50 55 60Gly Asn
Arg Gly Ser Ser Ser Val Gln Met Thr Leu Ser Phe Lys Lys65
70 75 80Ala Ser Lys Trp Trp Glu Lys
Gly Leu His Pro Asn Met Lys Asp Ile 85 90
95Lys Ser Ala Glu Asp Leu Val Asp Ser Leu Ser Asn Ala
Gly Asp Lys 100 105 110Leu Val
Ile Val Asp Phe Phe Ser Pro Gly Cys Ala Gly Cys Arg Ala 115
120 125Leu His Pro Lys Ile Cys Gln Phe Ala Glu
Leu Asn Pro Asp Val Gln 130 135 140Phe
Leu Gln Leu Asn His Glu Glu His Lys Ser Met Cys Tyr Ser Leu145
150 155 160Asn Val His Val Leu Pro
Phe Phe Arg Phe Tyr Arg Gly Ala His Gly 165
170 175Arg Leu Cys Ser Phe Ser Cys Thr Asn Ala Thr Ile
Lys Lys Phe Lys 180 185 190Asp
Ala Leu Ala Lys His Ile Thr Glu Arg Cys Ser Leu Gly Pro Ala 195
200 205Lys Gly Leu Glu Glu Thr Glu Leu Leu
Ala Leu Ala Ala Asn Lys Asp 210 215
220Leu Ser Phe Thr Tyr Thr Arg Thr Pro Val Pro Val Pro Asp Glu Leu225
230 235 240Ala Glu Lys Ala
Pro Phe Asn Pro Asn Leu Pro Val His Ala Ala Ala 245
250 255Arg Leu Thr Leu Glu Ser Glu Asp Lys Ala
Phe Ala Ala Ala Gly Arg 260 265
27033285PRTCapsicum annuum 33Met Ala Lys Leu Met Asn Lys Gly Phe Val Phe
Pro Ser Ser Ser Asp1 5 10
15Cys Gly His His Arg Pro His Gly Ile Ser Ser Phe Pro Asn Lys Ser
20 25 30Val Asn Leu Ser Cys Leu Pro
Ser Thr Cys Leu Leu Arg Ser Tyr Phe 35 40
45Tyr Gly Arg Arg Leu Val Ile Asn Glu Ala Leu Pro Lys Arg Asn
Ala 50 55 60His Val Ala Ile Thr Val
Gln Met Ser Met Gly Ile Arg Lys Val Gln65 70
75 80Lys Trp Trp Glu Lys Gly Val Gln Pro Asn Met
Lys Glu Val Asn Ser 85 90
95Ala Gln Gly Leu Val Asp Ser Leu Leu Ser Ala Gly Asp Lys Leu Val
100 105 110Val Val Asp Phe Phe Ser
Pro Gly Cys Gly Gly Cys Lys Ala Leu His 115 120
125Pro Lys Leu Cys Gln Leu Ala Glu Met Asn Pro Asp Val Gln
Phe Leu 130 135 140Gln Val Asn Tyr Glu
Glu His Lys Ser Met Cys Tyr Ser Leu Asn Val145 150
155 160His Leu Leu Pro Phe Phe Arg Phe Tyr Arg
Gly Ala Glu Gly Arg Val 165 170
175Cys Ser Phe Ser Cys Thr Asn Ala Thr Ile Lys Lys Phe Lys Asp Ala
180 185 190Leu Ala Lys Tyr Gly
Thr Asp Arg Cys Thr Phe Gly Pro Pro Lys Gly 195
200 205Leu Glu Glu Lys Glu Leu Leu Ala Leu Ala Ala Asn
Lys Glu Leu Ser 210 215 220Phe Asn Tyr
Ile Pro Lys Thr Glu Glu Glu Pro Val Leu Val Ala Ser225
230 235 240Gln Glu Glu Val Glu Asp Arg
Thr Pro Asn Lys Glu Ser Pro Leu Pro 245
250 255Leu Pro Leu Pro Leu Pro Ile Ser Ser Thr Ser Ser
Leu Lys Pro Lys 260 265 270Gln
Asp Thr Glu Lys Glu Ala Tyr Ala Thr Ser Gly Arg 275
280 28534297PRTCicer arietinum 34Met Ala Glu Ile Leu Thr
Lys Thr Ser Leu Val Ser Ser Trp His Gly1 5
10 15Asn Arg Lys Gln Gln His Arg Arg Leu Ser Met Val
Pro Asn Lys Thr 20 25 30Cys
Ser Phe Asn Thr Cys Val Gly Ser Phe Pro Ser Leu Lys Leu Lys 35
40 45Ser Gln Phe Leu Arg Ser Ser Ser Phe
Ser Ser Glu Phe Tyr Gly Lys 50 55
60Asn Thr Ile Phe Arg Val Asn Arg Ser Ile Pro Asn Arg Ile Asn Ser65
70 75 80Gln Phe Ser Val Ser
Ala Ala Pro Lys Met Thr Leu Arg Ile Gly Lys 85
90 95Ile Gln Lys Trp Trp Glu Lys Gly Leu Gln Pro
Asn Met Arg Glu Val 100 105
110Thr Ser Ala Gln Asp Leu Val Asp Ser Leu Leu Asn Ala Gly Asp Lys
115 120 125Leu Val Ile Val Asp Phe Phe
Ser Pro Gly Cys Gly Gly Cys Arg Ala 130 135
140Leu His Pro Lys Ile Cys Gln Met Ala Glu Met Asn Pro Asp Val
Glu145 150 155 160Phe Leu
Gln Val Asn Tyr Glu Glu His Lys Ser Met Cys Tyr Ser Leu
165 170 175Asn Val His Val Leu Pro Phe
Phe Arg Phe Tyr Arg Gly Ala His Gly 180 185
190Arg Leu Cys Ser Phe Ser Cys Thr Asn Ala Thr Ile Lys Lys
Phe Lys 195 200 205Asp Ala Leu Ala
Lys His Thr Pro Asp Arg Cys Ser Leu Glu Pro Thr 210
215 220Lys Gly Leu Glu Glu Lys Glu Leu Ile Ala Leu Ser
Glu Asn Lys Asp225 230 235
240Leu Asn Phe Thr Tyr Thr Pro Lys Pro Leu Gln Pro Val His Thr Pro
245 250 255Ala Asn Glu Glu Leu
Ala Thr Thr Lys Ala Ser Pro Val Cys Ser Glu 260
265 270Pro Leu Pro Leu Pro Ser Leu Thr Ser Asn Ser Asp
Glu Val Leu Lys 275 280 285Glu Arg
Thr Leu Thr Arg Ala Gly Arg 290 29535299PRTSolanum
lycopersicum 35Met Thr Lys Leu Met Ser Lys Gly Phe Ile Phe Pro Ser Ser
Ser Ser1 5 10 15Asp Cys
Gly Glu Ile Tyr Asp Arg Leu Arg Leu Asn Leu His Gly Ile 20
25 30Cys Ser Phe Pro Asn Lys Ser Val Asn
Leu Ser Cys Leu Pro Ser Leu 35 40
45Lys Leu Ser Ser Ser Cys Leu Pro Arg Thr Asp Phe Tyr Gly Arg Arg 50
55 60Leu Val Ile Asn Glu Gly Leu Ser Asn
Phe Asn Arg Arg Val Ala Asp65 70 75
80Ile Thr Ala Gln Met Ser Val Gly Ile Lys Lys Ala Gln Lys
Trp Trp 85 90 95Glu Lys
Gly Val Gln Pro Asn Met Lys Glu Val Asn Ser Ala Gln Glu 100
105 110Leu Val Asp Ser Leu Leu Ser Ala Gly
Asp Lys Leu Val Val Val Asp 115 120
125Phe Phe Ser Pro Gly Cys Gly Gly Cys Lys Ala Leu His Pro Lys Leu
130 135 140Cys Gln Leu Ala Glu Met Asn
Pro Asp Val Gln Phe Leu Gln Val Asn145 150
155 160Tyr Glu Glu His Lys Ser Met Cys Tyr Ser Leu Asn
Val His Val Leu 165 170
175Pro Phe Phe Arg Phe Tyr Arg Gly Ala Glu Gly Arg Val Cys Ser Phe
180 185 190Ser Cys Thr Asn Ala Thr
Ile Lys Lys Phe Arg Asp Ala Leu Ala Lys 195 200
205Tyr Gly Thr Asp Arg Cys Thr Ile Gly Ser Pro Lys Gly Leu
Glu Glu 210 215 220Lys Glu Leu Leu Ala
Leu Ala Ala Asn Lys Asp Leu Ser Phe Asn Tyr225 230
235 240Thr Pro Lys Thr Glu Glu Glu Pro Ile Leu
Val Thr Ser Gln Lys Glu 245 250
255Val Arg Asp Arg Thr Thr Pro Asn Ile Glu Ser Pro Leu Pro Leu Pro
260 265 270Leu Pro Leu Pro Ile
Thr Ser Thr Ser Ser Gln Thr Ala Lys Arg Asp 275
280 285Thr Glu Lys Glu Ala Tyr Ala Thr Ser Gly Arg 290
29536257PRTSolanum lycopersicum 36Met Glu Lys Leu Leu Asn
Lys Ala Val Phe Leu Pro Ser Ile Leu Asn1 5
10 15Ser Ser Gly Ile Tyr His Ser Asn Gln His Ala Ile
Cys Val Phe Pro 20 25 30Val
Lys Phe Asn Arg Arg Tyr His Lys Ser Ala Val Ala Thr Ala Gln 35
40 45Met Ser Ile Gly Ile Lys Arg Ala Pro
Lys Trp Trp Glu Lys Gly Leu 50 55
60Gln Pro Asn Met Lys Glu Val Thr Gly Ala Gln Asp Leu Val Asp Thr65
70 75 80Leu Leu Asn Gly Gly
Asp Lys Leu Val Val Val Asp Phe Leu Ser Pro 85
90 95Gly Cys Gly Gly Cys Lys Ala Leu His Pro Lys
Ile Cys Gln Leu Ala 100 105
110Glu Met Asn Pro Asp Val Gln Phe Leu His Val Asn Tyr Glu Glu His
115 120 125Lys Ser Met Cys Tyr Ser Leu
Asn Val His Val Leu Pro Phe Phe Arg 130 135
140Phe Tyr Arg Gly Ala Glu Gly Arg Leu Cys Ser Phe Ser Cys Thr
Asn145 150 155 160Ala Thr
Ile Lys Lys Phe Lys Asp Ala Leu Thr Lys Tyr Gly Ala Asp
165 170 175Cys Cys Ser Leu Gly Pro Val
Lys Gly Leu Glu Glu Lys Glu Leu Leu 180 185
190Ala Leu Ala Ala Asn Lys Asp Leu Ser Phe Ala Tyr Thr Pro
Lys Thr 195 200 205Glu Glu Pro Val
Pro Leu Ala Leu Glu Glu Val Lys Val Ile Lys Thr 210
215 220Ser Arg Gln Ser Ser Ser His Pro Asn Thr Phe Ser
Pro Leu Pro Leu225 230 235
240Pro Leu Pro Leu Ala Ser Thr Leu His Thr Ala Lys Gln Asp Ser Lys
245 250 255Ser37279PRTElaeis
guineensis 37Met Met Glu Val Leu Ser Gln Ser Gly Val Met Ser Pro Cys Gly
His1 5 10 15Arg Trp Val
Val Arg Ser Cys Lys Glu Arg Ser Pro Ser Phe Val Gly 20
25 30Phe Pro Arg Ser Ser Ser Arg Thr Ile Glu
Ser Leu Met Ser Ser Ser 35 40
45Arg Asn Ser Gly Phe His Gly Arg Arg Leu Ser Ile Gly Ala Trp Arg 50
55 60Val Asn Ala Val Lys Gly Asn Phe Ser
Ser Thr Pro Val Gln Met Ser65 70 75
80Leu Cys Val Gly Lys Ala Leu Lys Trp Trp Glu Lys Glu Leu
Gln Pro 85 90 95Asn Met
Lys Glu Ile Glu Ser Ala Gln Asp Leu Val Asp Ser Leu Leu 100
105 110Asn Ala Gly Asp Lys Leu Val Ile Val
Asp Phe Phe Ser Pro Gly Cys 115 120
125Gly Gly Cys Lys Ala Leu His Pro Lys Ile Cys Gln Phe Ala Lys Leu
130 135 140Asn Pro Asp Val Leu Phe Leu
Gln Val Asn Tyr Glu Lys His Lys Ser145 150
155 160Met Cys Tyr Ser Leu Asn Val His Val Leu Pro Phe
Phe Arg Phe Tyr 165 170
175Arg Gly Ala His Gly Arg Leu Cys Ser Phe Ser Cys Thr Asn Ala Thr
180 185 190Ile Lys Lys Phe Lys Asp
Ala Leu Ala Lys His Thr Thr Asp Arg Cys 195 200
205Ser Leu Gly Pro Thr Lys Gly Leu Glu Glu Ser Glu Leu Met
Ala Leu 210 215 220Ala Ala Asn Lys Asp
Leu Ser Phe Ser Tyr Thr Arg Lys Pro Val Pro225 230
235 240Val Pro Ser Pro Asp Glu Ala Ala Glu Glu
Val Val Leu Ser Pro Lys 245 250
255Leu Pro Val Ser Ser Thr Pro Arg Val Ile Gln Asp Ser Glu Glu Lys
260 265 270Ala Leu Val Ala Ala
Gly Arg 27538272PRTElaeis guineensis 38Met Ala Glu Val Leu Gly Arg
Ser Gly Val Phe Ser Leu Arg Gly His1 5 10
15Arg Ser Val Ala Pro Ser Cys Gln Lys Arg Ser Pro Ser
Phe Leu Gly 20 25 30Phe Pro
Leu Ser Ser Ser Arg Pro Ile Gly Pro Pro Arg Ser Ser Ser 35
40 45Arg Arg Phe Val Ile Gly Thr Arg Arg Gly
Arg Ser Ile Lys Gly Asn 50 55 60Ser
Ser Ser Ser Arg Val Gln Met Ser Leu Gly Val Gly Lys Ser Leu65
70 75 80Lys Trp Trp Glu Lys Gly
Val Gln Pro Asn Met Lys Glu Ile Gly Ser 85
90 95Ala Gln Asp Leu Val Asp Ser Leu Leu Asn Glu Gly
Asp Lys Leu Val 100 105 110Ile
Val Asp Phe Phe Ser Pro Gly Cys Gly Gly Cys Lys Ala Leu His 115
120 125Pro Lys Ile Cys Arg Ile Ala Glu Met
Asn Pro His Val Leu Phe Leu 130 135
140Gln Ile Asn Tyr Glu Lys His Lys Ser Met Cys Tyr Ser Leu His Val145
150 155 160His Val Leu Pro
Phe Phe Arg Phe Tyr Arg Gly Ala His Gly Arg Leu 165
170 175Cys Ser Phe Ser Cys Thr Asn Ala Thr Ile
Lys Lys Phe Lys Asp Ala 180 185
190Leu Ala Lys His Thr Thr Asp Arg Cys Ser Leu Gly Pro Thr Lys Gly
195 200 205Leu Glu Glu Ser Glu Leu Val
Ala Leu Ala Ala Asn Lys Asp Leu Ser 210 215
220Phe Asn Tyr Thr Arg Lys Pro Val Pro Val Leu Thr Pro Asp Glu
Ala225 230 235 240Ala Glu
Lys Val Pro Leu Ser Pro Lys Leu Pro Val Ser Ser Ala Pro
245 250 255Arg Val Ile Lys Asp Ser Glu
Asp Lys Ala Leu Val Ala Ala Gly Thr 260 265
27039287PRTSetaria italicmisc_feature(276)..(276)Xaa can be
any naturally occurring amino acid 39Met Ala Ala Ala Gln Ala Val Ala Lys
Gly Ser Val Val Ser Pro Cys1 5 10
15Gly Ser Arg Ala Ala Pro Gly Leu Leu Ser Arg Arg Arg Gly Ala
Val 20 25 30Ala Thr Arg Met
Ala Pro Ser Ala Val Arg Ile Gly Gly Ser Trp Arg 35
40 45Lys Thr Ala Phe Leu Gly Gly Arg Leu Ala Val Gly
Pro Arg Arg Ser 50 55 60Arg Ser Ala
Ser Arg Thr Leu Val Ala Ser Pro Val Gln Met Asn Met65 70
75 80Asn Leu Ala Ile Gly Lys Ser Met
Arg Trp Trp Glu Lys Gly Leu Gln 85 90
95Pro Asn Met Arg Glu Ile Glu Ser Ala Gln Asp Leu Val Asp
Ser Leu 100 105 110Thr Asn Ala
Gly Asp Arg Leu Val Ile Val Asp Phe Phe Ser Pro Gly 115
120 125Cys Gly Gly Cys Arg Ala Leu His Pro Lys Ile
Cys Gln Phe Ala Glu 130 135 140Gln Asn
Pro Asp Val Leu Phe Leu Gln Val Asn His Glu Glu His Lys145
150 155 160Ser Met Cys Tyr Ser Leu His
Val His Val Leu Pro Phe Phe Arg Phe 165
170 175Tyr Arg Gly Ala Gln Gly Arg Leu Cys Ser Phe Ser
Cys Thr Asn Ala 180 185 190Thr
Ile Lys Lys Phe Lys Asp Ala Leu Ala Lys His Lys Pro Asp Arg 195
200 205Cys Ser Ile Gly Pro Thr Arg Gly Leu
Glu Glu Ser Glu Leu Leu Ala 210 215
220Leu Ala Ala Asn Lys Asp Leu Gln Phe Thr Tyr Thr Lys Lys Pro Glu225
230 235 240Leu Ile Pro Ser
Gly Asp Ala Ala Ala Glu Val Ile Ala Pro Glu Pro 245
250 255Thr Lys Leu Pro Ala Ala Thr Lys Pro Ser
Val Lys Ile Gly Ser Glu 260 265
270Glu Arg Ser Xaa Trp Ser His Gln Glu Asp Glu Met Asn Asp Leu
275 280 28540273PRTSetaria italic 40Met
Ala Ala Ala Gln Ala Met Ala Lys Met Ser Val Gly Ser Pro Ala1
5 10 15Cys Asn Arg Ala Ala Gly Ser
Leu Cys Arg Trp Arg Gly Ala Val Ala 20 25
30Val Arg Leu Gly Gly Ser Trp Ser Trp Arg Lys Ser Pro Phe
Leu Gly 35 40 45Gly Arg Met Ala
Val Gly Pro Arg Arg Ser Arg Pro Val Ser Arg Asn 50 55
60Pro Val Ala Ser Pro Val Gln Met Asn Leu Ser Phe Gly
Lys Thr Met65 70 75
80Lys Trp Trp Glu Lys Gly Leu Gln Pro Asn Met Arg Ala Ile His Thr
85 90 95Ala Gln Glu Leu Val Asp
Ser Leu Ile Asn Ala Gly Asp Gly Leu Val 100
105 110Ile Val Asp Phe Phe Ser Pro Gly Cys Ala Gly Cys
His Ala Leu His 115 120 125Pro Lys
Ile Cys Gln Phe Ala Glu Arg Asn Pro Asp Val Gln Phe Leu 130
135 140Gln Val Asn Phe Glu Glu His Lys Ser Met Cys
His Ser Leu His Val145 150 155
160His Val Phe Pro Phe Phe Arg Phe Tyr Arg Gly Ala Gln Gly Arg Leu
165 170 175Cys Ser Phe Ser
Cys Thr Asn Ala Thr Ile Lys Lys Phe Lys Asp Ala 180
185 190Leu Ala Lys His Lys Pro Asp Arg Cys Ser Leu
Gly Pro Ile Lys Gly 195 200 205Leu
Glu Glu Ser Glu Leu Leu Ala Leu Ala Ala Asn Arg Asp Leu Gln 210
215 220Phe Thr Tyr Thr Lys Glu Gln Asp Leu Ala
Pro Ser Met Glu Asp Gly225 230 235
240Ala Glu Val Ile Thr His Asp His Pro Arg Leu Pro Ala Ala Ala
Lys 245 250 255Pro Leu Val
Arg Gln Gly Ser Glu Asp Arg Ala Val Val Ser Ser Gly 260
265 270Arg41274PRTSetaria italic 41Met Ala Glu
Ala Leu Cys Asn Gly Val Val Pro Ser Pro Cys Gly Gly1 5
10 15Asp Val Gly Val Ala Gly Arg Val Ser
Gly Ala Ala Ala Ala Leu Ala 20 25
30Glu Ser Val Pro Ile Gly Gly Tyr Arg Thr Lys Ser Ser Phe Ser Ala
35 40 45Gly Arg Met Ala Met Thr Asp
Arg Lys Met Arg Pro Leu Pro Arg Ser 50 55
60Ile Glu Ala Ala Pro Gly Gln Met Asn Leu Ser Phe Pro Lys Ala Met65
70 75 80Arg Trp Trp Glu
Lys Gly Leu Gln Pro Asn Met Arg Glu Ile Glu Ser 85
90 95Ala Gln Asp Leu Ala Asp Ser Leu Leu Asn
Ala Gly Asp Lys Leu Val 100 105
110Val Val Asp Phe Phe Ser Pro Gly Cys Gly Gly Cys Arg Ala Leu His
115 120 125Ala Lys Ile Ala Gln Phe Ala
Glu Lys Asn Pro Asp Val Met Phe Leu 130 135
140Gln Val Asn Tyr Glu Thr His Lys Ser Met Cys Tyr Ser Leu His
Val145 150 155 160His Val
Leu Pro Phe Phe Arg Phe Tyr Arg Gly Ala Glu Gly Arg Val
165 170 175Ser Ser Phe Ser Cys Thr Asn
Ala Thr Ile Lys Lys Phe Lys Asp Ala 180 185
190Leu Ala Lys His Gly Pro Asp Arg Cys Ser Leu Gly Pro Ala
Arg Gly 195 200 205Leu Glu Glu Ser
Glu Leu Met Ala Leu Ala Ala Asn Lys Asp Leu Gln 210
215 220Phe Thr Tyr Glu Lys Pro Gly Leu Val Pro Leu Ala
Glu Ala Ile Ala225 230 235
240Lys Glu Ala Ala Ala Pro Gly Gly Pro Trp Phe Pro Leu Pro Ala Ser
245 250 255Ala Thr Gln Phe Leu
Thr Gln Gly Ser Glu Asn Ser Leu Leu Ser Ser 260
265 270Gly Arg42249PRTChlamydomonas reinhardtii 42Met
Ala Ser Ile Leu Asn Arg Ala Gly Ser Arg Ser Leu Val Phe Glu1
5 10 15Thr Lys Gln Ser Leu Arg Ser
Ile Pro Gly Ser Leu Leu Ser Leu Arg 20 25
30Ser Val Ala Leu Lys Pro Phe Arg Thr Thr Ile Cys Ala Ala
Gly Ala 35 40 45Leu Leu Thr Ala
Arg Arg Ser Thr Ser Gly Leu Gly Arg Ala Asn Gly 50 55
60Val Val Cys Gln Ala Gly Arg Ser Thr Gly Glu Trp Trp
Lys Lys Asp65 70 75
80Asn Pro Pro Asn Met Arg Asp Ile Asn Ser Ile Gln Glu Leu Val Asp
85 90 95Ala Leu Ser Asp Ala Gly
Asp Arg Leu Val Ile Val Glu Phe Tyr Ala 100
105 110Gln Trp Cys Asn Ala Cys Arg Ala Leu Phe Pro Lys
Ile Cys Lys Ile 115 120 125Met Ala
Glu Asn Pro Asp Val Leu Phe Leu Lys Val Asn Phe Asp Asp 130
135 140Asn Arg Asp Ala Cys Arg Thr Leu Ser Val Lys
Val Leu Pro Tyr Phe145 150 155
160His Phe Tyr Arg Gly Ala Glu Gly Arg Val Ala Ala Phe Ser Ala Thr
165 170 175Ile Ser Lys Leu
Gln Leu Phe Lys Asp Ala Val Glu Thr Tyr Ser Ala 180
185 190Ala Phe Cys Ser Leu Glu Pro Ala Pro Gly Leu
Ala Glu Phe Pro Asp 195 200 205Leu
Ile Ala His Pro Glu Leu His Pro Glu Glu Ala Ala Glu Ala Ala 210
215 220Arg Arg Ala Arg Leu Ala Ser Thr Glu Ser
Glu Glu Glu Leu His Pro225 230 235
240Leu Ala Asp Thr Pro Thr Val Val Gly
24543172PRTChlorella 43Trp Trp Thr Lys Ser Ala Pro Pro Asn Val Val His
Ile Lys Ser Val1 5 10
15Gln His Leu Val Asp Glu Met Val Arg Ala Glu Arg Leu Ala Gly Ala
20 25 30Gly Glu Arg Leu Val Ile Met
Asp Val Phe Ala Pro Trp Cys Ala Ala 35 40
45Cys Lys Ala Leu Tyr Pro Lys Leu Met Lys Leu Met Glu Glu Arg
Pro 50 55 60Asp Val Leu Leu Leu Thr
Val Asn Phe Asp Glu Asn Lys Thr Val Val65 70
75 80Lys Ala Met Gly Val Lys Val Leu Pro Tyr Phe
Met Phe Tyr Arg Gly 85 90
95Lys Glu Gly Lys Leu Gln Glu Phe Ser Ala Ser Asn Lys Arg Phe His
100 105 110Leu Ile Gln Glu Ala Ile
Glu Arg His Ser Thr Asp Arg Cys Phe Leu 115 120
125Asp Ser Thr Asp Glu Glu Pro Val Leu Ala Glu Phe Pro Thr
Val Val 130 135 140Pro Ala Lys Gly Ile
Ser Gly Ser Leu Asp Glu Pro Ala Gly Arg Ala145 150
155 160Ala Gly Lys Ala Val Gly Gln Pro Gln Pro
Val Ala 165 17044906DNASolanum tuberosum
44atgatgaaat tgatgagcaa aggttttatg tttccttcgt cttctgattg tggtgaaatt
60tatcatcatc gtcctcttaa tctacctggg atctgttctt ttcccaataa atcggtcaat
120ctttcttgtc ttccttcgtt gaacctttca tcttcttgtt tgccaagaac cgatttttat
180ggtcgtagat tggttataaa tgaaggcgta tccaagttca accgaagaaa ttcccaagtt
240gttgatatca ctgctcagat gagtattgga atcaggaaag cacagaaatg gtgggagaaa
300ggggttcaac ctaacatgaa agaggtgaac agtgcacaag aacttgttga ctctcttttg
360agtgcagggg acaaattagt tgttgttgat ttcttttccc ctggctgtgg aggttgtaaa
420gctcttcacc ccaagttgtg tcagctggca gagatgaatc cagatgtgca ttttttacag
480gtgaactatg aggaacacaa gtcgatgtgt tactctctta atgtacatgt tctcccattt
540ttccgtttct atagaggagc tgaaggccgt gtttgcagct ttagctgtac caatgccacg
600atcaaaaaat tcaaagatgc actggcgaag tatggtacag atcgttgcac ccttgggccg
660ccaaaagggc tggaggagaa agagctactt gcactggcag ctaacaagga tctctccttt
720aattacactc caaaaacaga agaagcaccc gtccttgtta cctcacaaaa ggaagttcag
780gatacaactc ctccaaatat agagtcccct ctaccacttc ctcttcctct ccccattgcg
840tcaactagct cacagacggc caaacgggat acagagaaag aagcatatgc tacttctggt
900agatga
90645693DNASolanum tuberosum 45atgaaattca atagaagaaa tcacaaatca
gcagctgcaa ctgctcagat gagcataggt 60atcaggaaag ctcctaaatg gtgggagaaa
ggacttcaac cgaatatgaa agaggtgatg 120ggtgctcaag acctcgctga cacccttcta
aacgctgggg ataaactagt cgttgtcgat 180ttcctttccc ctggctgtgg aggctgcaaa
gcccttcatc caaagatatg tcagttagca 240gagatgaatc cggatgtgca gtttttacat
gtgaactatg aggaacacaa gtcaatgtgt 300tactcgctga acgtacatgt tctcccattt
tttcgtttct atagaggtgc tgaaggtcgt 360ctttgtagct ttagttgcac caatgccacg
ataaaaaaat tcaaagatgc attgacaaag 420tatggtgcag attgttgcag cctcgaacca
gttaaagggc tcgaggagaa agagctactt 480gccctagcag ctaataagga cctctctttt
gcttacacac caaaaacaga agaaccaatg 540cctgttgcct tacaagatgc taaggtgata
aaaacaagca gaacatcttc atcttgtcca 600aatacattct ccctgttacc acttcccctt
cctcttcctc tagcatcaac ttcacataag 660gccaaacagg actcgaagag tgaagttttt
taa 69346831DNAZea mays 46atggcggcag
cgcaggcgat ctcgaagggg agcgtggtgt ctccgtgcgg caatcgagcg 60gcgccgggcc
tccttgccag gcggaggggt gccgtggcgg cgcgggtggc gccgtcagcg 120gcgcggatcg
ggggcttctg gaggaagaac gcgtttcctg gcgggaggct aaccctgagg 180acgaggagat
ccagggccgc gtcaccggcg cagatgaaca tgaaccttgc gcttgggaaa 240tcgatgaggt
ggtgggagaa ggggttgcag cccaacatgc gtgagatcga gtccgcccaa 300gaccttgtcg
atgctttgac caacgccggc gacaggctcg tcgtcgtcga cttcttctct 360cctggctgcg
gcggctgccg tgcttttcac cccaagattt gtcaatttgc ggagcagaat 420ccagatgtgc
tgttcttgca agtgaactac gaggagcaca agtctatgtg ccacagcctt 480catgtccatg
tcctaccctt gttcagattc tacaggggag cacagggacg actctgtagc 540ttcagttgta
caaacacaac tattaagaag ttcagggatg cactcgcgaa gcacaagcca 600gatagatgta
gccttggccc aaccaggggg ctagaggaat ctgagttatt agccttggcg 660gcaaacaagg
acctgcagtt cacctacgcg aaggaggaac cagaactgat ccccagggga 720gatgctcctg
gggaggtcgt tgctcctgag cctgcaaagc ttcctgcggc tccaaagcct 780ttggtcaggc
tggggtccga ggagaggtca ctggtctcgt caggaagatg a 83147819DNAZea
mays 47atggctgacg cgttgtgcaa cggcgtcgtg gcgtccccgt gcggccggga cgtcgccggc
60cgggccaggg gcgccgccag ggccgcgctc gcggagtccc tgcaggtcgc cgggcacgcc
120agcaagacct ccttctccgc cgggaggatg tcggtcaagg acagcaagcc gaggcccctg
180tcgcgtagcc tcgaggccgc cgcgccagga cagatgaacc tgtcgttccc caaagccatg
240cggtggtgga agaaggggct gcaccccaac atgcgcgagg tcgagtccgc gcaggacctg
300gccgactcgc tgctcagcgc cggcgacaag ctcgtggtcg tcgacttctt ctccccaggc
360tgcggcggct gccgcgccct ccaccccaag atcgcccagt tcgccgagaa gaacccgggc
420gtgcagttct tgcaggtgaa ctacgagacg cacaagtcca tgtgctacag cctccgcgtc
480cacgtcctcc ctttcttcag gttctaccgg ggagccgagg gccgggtcag cagcttcagc
540tgcaccaacg caacgatcaa caagttcaag gacgcgctcg ccaagcacgg ggctgagagg
600tgtagcctcg ggcctgcgcg ggggctggac gagtcggagc tcatggcctt ggctgagaac
660agggacctgc acttcaccta cgacaagccg ggcggcctcg tccccctcgc cgaagctatt
720gccaaggagg ctgccgcacc gggaggcccg tggcttcctc tgcctgcgtc cctgctcggc
780cagggatccg acaactcatt gctgccctct ggaagatag
81948666DNAZea mays 48atggcggcgg cgcaggtggt cgcgaagggg agcgtggtgt
cgccgtgcgg caatcgagcg 60gtgccgggcc tcttgggcag gcggagggat gccgtggcgg
cgcagatgac gccgtcggcg 120gtgcggatcg ggggctcctg gaggaagaac gcgtttcctg
gcgtgaggct agccttgggg 180acgaggagat ccaggcccgc gtcccggagt ttctccgcct
cgccggtgca gatgaacatg 240aaccttgcga ttgggaaatc aatgaggtgg tgggagaagg
ggttgcagcc caacatgcgt 300gagatcgagt ccgcccaaga ccttgtagat tccttaacca
acgccggcga gaggctcgtc 360gtcgtcgact tcttctcccc tggctgcggc ggctgccgtg
ctcttcaccc gaagatttgc 420caatttgcgg agcggaaccc tgatgtgctg ttcttgcaag
tgaactacga ggagcacaag 480tctatgtgct acagccttcg tgtccatgtg ctacccttct
tcagattcta cagaggagca 540cagggacgac tctgcagctt cagctgtaca aacgcaactg
taagatcatg tccatgtttc 600ttctgttcgt atgattattg gtatgtcctc aataacatgc
aacatatcca aaatgacctt 660tattga
66649840DNAOryza sativa 49atggcggcga cggcggcgca
ggcggtggcg gtgaagggga gcgtggcggt gccgccgtgc 60gggagccgcg gccggcggag
gggcgccgtg gcgtcggtgc gcatggcggc ggcggcggcg 120acgtcggcgt tgcggatcgg
caggaggagc cccttcctcg gccggaggct ggcggttggg 180ccgaggagat ccaggcccgt
gccccggaat ctcgtcgcgc cggtgcagat gaatctcgcg 240tttgcgaaag ccacgaagtg
gtgggagaag ggattgcagc ccaacatgcg ggaggtcgag 300tccgcgcaag acctcgtcga
ctccttgacc aacgccggcg acaatctcgt catcgtcgac 360ttcttctccc ctggctgcgg
cggctgccgt gccctccacc ccaagatttg ccagattgca 420gagcagaatc cggacgtgct
gttcttgcag gtgaactatg aggagcacaa gtctatgtgc 480tacagcctcc atgttcatgt
tcttcctttc ttcaggttct acaggggagc tcagggccgg 540ctctgcagct tcagctgtac
taacgcaact attaagaagt tcagggatgc gcttgctaag 600cataaaccag atagatgcag
ccttggccca actagggggc tcgaggagtc ggagctattg 660gcgctggctg cgaacaagga
tctgcagttc aactacacca agaaaccaga actggttcct 720agcggagatg ccgcagctgc
ccaggaattg gatcgtggaa gcacaaagct ttctccaccc 780gcaaaaccat tggtcaagca
gggctctgaa gagaggtcct tggtctcatc aggcagatga 84050840DNAOryza sativa
50atggctgagg cactgtgcag cggcagcgtc gcgtccccgt gcggggaggt gggtgtgggg
60ttcgccgccg gccttgtgag gggcgccgcg gcggcggcgg cgctcgcgga gtctgtgccg
120attggtgggt acagcagcaa gagcacgttc ccgagtggga gggtggcgct cacggagagg
180aaggcgaggc ccctgccacg gaatctcgaa gcggcgcatg ggcagatgaa cctgacgatt
240gggaaggcca tgaggtggtg ggagaagtgc ctgcagccca acatgaggga gatcgagtcg
300gcgcaagacc tcgccgactc cctcctcaac gccggcgaca agctcgtcgt cgtcgacttc
360ttctccccgg gctgcggtgg ctgccgcgcc ctacacccca agattgctca actagccgag
420aagaacccgg aggtgctgtt cttgcaagtg aactacgaga agcacaagtc aatgtgctac
480agcctccatg ttcatgttct gccattcttc aggttctaca ggggagctca gggccgtgtc
540agcagcttca gctgcacaaa cgcaactatc aagaagttca aggatgcact tgccaagcat
600ggtccggaca ggtgtggcct cggcccggcg aaggggctcg aggagtcgga gctcatggcg
660ttggccataa acagggacct gaacttcacc tacacaccaa accaagacct tgtcccaatt
720gcagacgccc tcctgaagga agctgctgca cctggaggtc catggctgcc attgcccgca
780acggcgacgc agctgttcat tcagggatct gagaattcgc tgttgtcatc tggaagatag
84051831DNAHordeum vulgare 51atggcgacgg cgcaggcggt ggccaagggg accgtggtct
ctccgtgcgg cacccgggcc 60gcaggatttg gagcccggcg gcggggcgcc gtggcggccc
gcatgtcgcc ctgcgcgccg 120gcggcggtgc ggatcggcag gaaaagcccg tttcttggcg
ctaggctcac ggtcggtccc 180aggagatcca agctcgttcc ccggaatctt gtctcctcac
cggtgcagat gaaccttgcg 240tttgcgaaat ccaccaagtg gtgggaaaag ggtctgaagc
ccaacatgag ggagatcgag 300tccgcccagg acctcgtcga ctcgttggct aacgccggcg
acaggctcgt cgttgttgac 360ttcttctccc ctggctgcgg cggctgccgt gccctccacc
caaagatttg ccagtttggg 420gagcagaacc cagatgtgct gttcttgcaa gtgaactacg
aggaacacaa gtccatgtgc 480tacagcctcc atgtccatgt gctgcccttc ttcaggttct
acaggggagc ccagggccgc 540ctctgcagct tcagctgtac taacgcaacc ataaagaagt
tcagggatgc gcttgccaag 600cataatcctg ataggtgtag cattggtcca accaggggcc
tcgaggagtc tgagctgctg 660gctttggctg cgaacaagga cctgcagttc acatacacga
agcagccaga accagttccg 720agtggtgatt ccgagttcat tgctcctggg agcccaaggc
ttcctccacc tgcaaaacca 780ttggttcggc agggttccgg agagaggacc ttggtctcat
caggaagatg a 83152813DNAHordeum vulgare 52atggccaacg
cgctttacgg cggcggcgtg gcggcgccgt gcggtgactt gggcgccgcg 60gccgcgctcg
cggagtcttt gccgatgggc ggcgggtacc gcgcgaggag ctccttcccc 120gccgggaggg
tggcgctggc ggagaggccc ctgccccgga gcctccaggt ggcggccgct 180gctggacaga
tgaacgggaa cctgacgatt ggcaaggcca tgaggtggtg ggagaagggg 240acgcagccca
acatgaggga ggtcgagtcc gcgcaagacc tcgccgactc cctgctcaac 300gccggcgaca
agctcgtcgt cgtcgacttc ttctcccccg gctgcggtgg ctgccgcgcg 360ctccacccca
agattgcgca gttcgccgag cgtaatccgg acgtgctgtt cctgcaagtc 420aactacgaga
agcacaagtc catgtgctac agcctccatg tccatgtcct ccctttcttc 480aggttctaca
ggggagctca gggcagggtc agcagcttca gctgcaccaa cgcaaccata 540aagaagttca
aggacgccct cgcaaagcac tcgccggaca ggtgcagcct cggcccggcg 600cgggggcttg
agaaggcgga gctcttggct ctggctgaga acagggacct ggaattcacc 660tacagcgaga
agccgacact tgtgccgatc gcagaggcca tcaggatgga agctgcctca 720atcggaggcc
catggctgcc attgcctccg gccgcgacgc agccgtttcc tctgggatcc 780gagaatggct
cgctcatccc ctctggaaga tag
81353822DNATriticum aestivum 53atggccagcg cgctatgcgg cggcggcagc
ggcagcgtgg cggcgccgtg cggggacttg 60ggcgccgcgg cggcgctcgc ggagtctttg
ccgatgggcg ccgggtaccg cgccaagagc 120tccttccccg ccgggagggt ggcgctggcg
gacaggcccc tgcgccgggg cctccaagtg 180gcggcggctg ctggacagat gaacgggaac
ctgacgattg gcaaggccat gaggtggtgg 240gagaaggtga cgcaccccaa tatgagggag
gtcgagtccg cgcaagacct cgccgactcc 300ctgctcaacg ccggcgacaa gctcgtcgtc
gtcgacttct tctcccccgg ctgcggtggc 360tgccgcgctc tccaccccaa gattgcgcag
ttcgctgagc ggaatccgga cgtgctgttc 420ctgcaagtca actacgagaa gcacaagtcc
atgtgctaca gcctccatgt ccatgtcctc 480cctttcttca ggttctacag gggagcccag
ggcagggtca gcagcttcag ctgcacaaat 540gcaaccatca agaagttcaa ggacgccctc
gcaaagcact cgccggacag gtgcagcctc 600ggcccggcgc gggggctcga ggaggcggag
ctcttggctc tggcggcaaa cagggacctg 660gaattcacct acaacgagaa gccgacgctg
gtgccgatcg ccgaggctat ccagatggaa 720gctgcctcca ttggcggccc atggatgcca
ttgcccgcgg ccgcgacgca gccgctcact 780ctgggatctg agaatggctc gctgatcccc
tccggaagat ag 82254891DNAManihot esculenta
54atggctgatg ttttgagcaa taccaatctg gtttcttctt ccttctcttc atcttttact
60ggtcaccgaa acgagcagaa aaatagctct tgcaggctaa aagggttccc ccgaaaagtg
120aatcgtcaga ctttgagatt gaaagcgaca tcgcttggca gtgattttca tggaaagagg
180gttgttcttc aagacaatca aggcaaaccc aagagaggga tttatcttca aatgtcaatt
240aaggctcagc atactggcct tagactcaag agtgctccaa aatggtggga aaaaggattg
300caacccaaca tgagggaggt gacctctgct caagactttg tggactccct cttgaacgct
360ggagataaac ttgtcattgt tgatttcttc tcccctggtt gtggtggctg caaggctctc
420catcccaaga tatgtcagtt tgcagagatg aacccagatg tgctgttcct tcatgtgaat
480tatgaggaac ataaatccat gtgttatagc ctcaatatcc atgtgcttcc cttcttcagg
540ttttatcgag gggcgcaagg ccggttatgc agctttagct gcactaatgc tacgataaaa
600aaattcagag atgcactggc caagcactct ccagaccggt gcagtctcgg gccaacaaaa
660gggctggagg agaaagagct tattgcattg gcttccaaca aagatctcaa cttcaaatat
720gcacagaaac cagatctgcc aacgccaatt cctgccaagg aagagagagt gccagtagta
780tccccatctc atccaaatcc agctctacct ctacctcttc ctcttcccac agcaagtcca
840aaatctggac aaggctcaga ggagaaaacg ttggtcggat cagggagatg a
89155864DNAManihot esculenta 55atggccgctg tttctagcaa caccaatctt
gtttcttctt cttgttcttc atcctttagt 60tcttcgcaaa accgccccga ataccgctct
tccaggctca gagtgttccc tcaggaattg 120aatcatcagg ctttgagatt acaaactacg
tcgcttggca gtgattttca tggaaagagg 180gttgttcttc aagaaaaacc aaaatgcaaa
caagggattt ccgttcaaag ctcaattaag 240gctcagcaga ctggccttag actcaagaat
gctaaaaatt ggtgggagga ggagttgcaa 300cccaacatga gggaggtgat ctctgctcaa
gatcttgtgg actccctcct taatgctggc 360gataagcttg tcattgttta tttcttctcc
cctggctgtg gtggctgtag ggctctccat 420cccaagatat gtcaattggc aaagaacaat
gcagatgtgc agtttcttaa agtgaactat 480gaggagcaca aatccatgtg ttatagcctc
aatgttcatg tccttccatt cttcaggttt 540tacagagggg ctcaaggccg agtctgcagc
tttagctgca ccaacgccac gatcaagaaa 600tttaaaaatg cattggccaa gcacacccca
gacagatcca gcctcgagcc aacaaaaggg 660ctggaggaga aagagctcat tgcattggct
gccaataaag atctcaactt aacatatgca 720ccaaaatcag ataagccaat cccagctcca
actaaggaag agatagtacc cgaaattccc 780caatctcttt ctcttgctct tcgtaggagt
atggagcttg ctcaaggctc agccgaaaag 840accttggtcg cttcagggag atga
86456852DNASorghum bicolor 56atggcggcag
cgcaggcggt cgcgaagggg agcgtggttg cgccgtgcgg caatcgagcg 60gcgccgggcc
tccttggcag gcggaggggt gccgtggcgg cgcggatggc gccgtcggcg 120gtgcggatcg
gggcctcatg gaggaagacc gcgtttacag gcgggaggct agccttgggg 180ttggggacga
ggagatccag gcccgcgtcc cggagttctt tcgcgtcgcc ggcgcagatg 240aacatgaacc
ttgcgattgg gaaatcgatg aggtggtggg agaaggggtt gcagcccaac 300atgcgtgaga
tcgagtccgc ccaagacctt gtcgattcct tgaccaacgc cggcgacaag 360ctcgtcatcg
tcgacttctt ctcccctggc tgcggcggct gccgtgctct tcacccgaag 420atttgtcaat
ttgcggagca gaacccagat gtgctgttct tgcaagtgaa ctacgaggag 480cacaagtcta
tgtgctacag tcttcatgtc catgtcctac ccttcttcag attctacagg 540ggagcacagg
gacggctctg cagcttcagt tgtacaaacg caaccattaa gaagttcaag 600gatgcacttg
cgaagcacaa gccagataga tgtagccttg gcccaaccag ggggctagag 660gaatcggagt
ttttagcctt ggcagcaaac aaggacctgc agttcaccta caccaaggag 720ccagaactga
ttcccagggg agatgctcct ggggaggtca ttgctcccga gcctgcaaag 780cttcctgcgg
ccacaaagcc tttggtcagg ctggggtccg aagaaaggtc cttggtctca 840tcaggaagat
ga
85257801DNASorghum bicolor 57atggcggcgg cgcaggcgat ggcgaaaggg agcgtggggc
aggggtctct tggtcggcgg 60aggggcgccg aggcggcgcg ggtcggagga tcatggagga
agagcgcgtt cctcggcggg 120aggctggcgg ttgggcccag gagaccgaga cccgtgtccc
ggattctagt tacgtcgccg 180gcggtgcagc agacgaacct ttcatttgcg aaagccatga
agtggtggca gaagggattg 240cagcccaaca tgcgggcgat ccagaccgcc caagacctcg
ccgattcctt gaccaacgcc 300ggcgacgggc tcgtcgtcgt cgacttcttc tcacccggct
gcgctggctg ccatgctctc 360caccccaaga tttgtcagtt cgcggagagg aacccggatg
tgcagttcct gcaggtgaac 420tatgaggagc acaagtctat gtgccacagc cttcacgttc
atgtgttccc tttcttcagg 480ttctacaggg gagctcaggg tcggctctgc agcttcagct
gtaccaatgc aactattaag 540aagttcaggg atgcacttgc aaagcacaga gctgatagat
gcagccttgg ccctactcgg 600ggactagaag aatcagaatt gttggccctg gctgcaaaca
aggacctgca gttcacctac 660accaaggagg cagaactggc tccaagcatg gaagatgtcg
cagaggttat gactgctgac 720cgtccagggc ttccgacatc aacaatgcca ttggcaaggc
agggatctga ggacagggcc 780ttggtctcgt caggaagatg a
80158618DNASorghum bicolor 58atggctgagg cgttgtgcaa
cggcgtcgtg gcgtcgccgt acggcggcgg ggacgtgggc 60gtcgccggcc gggccagggg
cgccgccaag gccgcgctcg cggagtccct gccggtcggc 120gggtacgcca ccaagagctc
cttctccgcc gggaggatgt cggtgtcgga caggaagccg 180aggcccctgt ctcggaacct
cgaggccgcc gccgcgcctg gacagatgaa cctgtcgttt 240cccaaggcca tgcggtggtg
ggagaagggg ctgcacccca acatgcggga gatcgagtcc 300gcgcaggacc tcgccgactc
cctcctcaac gccggcgaca agctcgtcgt cgtcgatttt 360ttctccccag gctgcggcgg
ctgccgcgct ctccacccca agattgccca gttcgccgag 420aagaacccgg acgtgctgtt
cctgcaagtg aactacgaga cgcacaagtc catgtgctac 480agcctccacg tccatgtcct
cccgttcttc aggttctaca ggggagccga gggacgggtc 540agcagcttca gctgcaccaa
tgcaacggta agaatcgacc acctctccaa cttcaagaac 600cagcagatga atgaatga
61859786DNABrassica napus
59atggcggaag cagcaatcag cagaacgaat ctgatcttcc gaggagcttg cgtgaatcaa
60cacaagcatg tagatgatta ctctgtctca tcacctgtga gtttcggttt gagaaagagc
120ttcccttctc tgaaggtgaa gccttttaat caattccaga gctcccgatc atcatcatcc
180atcacagctc agacaacgtt gaggattggg acgcctcaga aatggtggga gaagggtctg
240aaagagaaca tgagagagat ctcttcagct caggagcttg ttgactcttt aaccaacgct
300ggtgataagc tcgttgtggt tgacttcttc tctcctggct gtggtggatg caaggctctt
360catcctaaga tatgtcagtt ggcagagcag aaccctgatg tgcagtttct tcaggtgaac
420tacgaggagc acaagtccat gtgttacagt ctcggtgtcc acgtcctccc gtttttcaga
480ttctaccgtg gcgctcatgg tcgtgtctgc agcttcagct gcaccaatgc tacgatcaag
540aagttcagag atgcattggc gaagcatagt ccggataggt gcagccttgg accgaccaaa
600gggcttgaag agaaggagct tgtggcactt gcagccaaca aagaactcaa ctttagttac
660acaccgaggg ctgtaccagt tgaggaagaa gaagctcccg tccccgcttc aaaccctggt
720ctccctgttg ctcatccatc gatgaaggcc aatgatggaa agacattggt ctcctcaggg
780agatga
78660807DNABrassica napus 60atggcggagg taatcagcaa aacgagtttg ttcttccgag
gagcttgcgt gaatcaccac 60caccacgcag atgacttctc cgtctcgccg gtgagtttcg
gtctcaaaaa gagtttctct 120tctctcaagc agaagcctct tagaagcgac ttctctggaa
aacagatcct acagaccttc 180aacaggagct tccgatcatc atccgttacc gctcagtcaa
cgctgaggat tgggacagct 240cagaagtggt gggagaaagg tctgcaagag aacatgagag
agatctcttc ggcgcaagag 300ctcgtcgact ctctcgccga cgctggcgat aagctcgtcg
tggttgactt cttctctcct 360ggctgcggcg gatgcaaggc tctgcatcct aagatgtgcc
agctggcgga gcagagcgct 420gatgtgcagt ttcttcaggt gaactacgag gagcacaagt
ccatgtgtta tagcctcggt 480gtccacgtcc tcccgttttt tcggttctac cgtggcgctc
agggtcgcgt ctgtagcttt 540agctgtacta atgctacgat aaagaaattt agagacgcgt
tggcgaagca tagtccggat 600aggtgcagcc ttggaccaac caaggggctt gaagagaaag
agcttgtggc acttgcagcc 660aataaagaac tcaactttag ttacacgccg aaggttgtac
ctgttgagaa agaagcagct 720attcccactt ccaacccggc actccctgtt cctcatccat
cgatgagtgg cagtgaggag 780aagacattgg tctctgcagg gaggtga
80761810DNABrassica napus 61atggcggaag cagcaattag
cagaacgaat ctgatcttca gaggagcttg cgtgactcac 60caccaccatg cagatgatta
ctctgtctca tcatcacctg tgagtttcgg tctgagaaag 120agcttctctt ctctcaagct
gaagcctccg agacagatcg atactcaatt ccagaccttc 180acaaggagct cccgagcatc
atccatcaca gctcagacga cgctgaggat cgggacgcct 240cagaaatggt gggagaaggg
tctgaaagag aacatgagag agatctcttc agctcaggag 300cttgttgact ctctaaccaa
cgctggtgat aagctcgttg tggttgactt cttctctcct 360ggctgcggtg gatgcaaggc
tcttcatcct aagatatgtc agttggcaga gcagaaccct 420gatgtgcagt ttcttcaggt
gaactacgag gagcacaagt ccatgtgtta cagtctcggt 480gtccacgtcc tccctttctt
tcgattctac cgtggcgctc acggtcgtgt ctgcagcttc 540agctgcacaa atgctacgat
caagaagttc agagatgcat tggcgaagca tagtccagat 600aggtgcagcc tcggaccgac
caaagggctt gaagagaagg agcttgtggc gcttgcggcc 660aacaaagaac tcaactttag
ttacacaccg agggctgtac cagttgagga agaagaagct 720cccgtccccg cttcaaaacc
aggtcttgct gttcctcatc catcgatgag cgccaatgat 780gagaagacat tggtctccgc
agggagatga 81062786DNABrassica napus
62atggcggaag cagcaatcag cagaacgaat ctgatcttcc gaggagcttg cgtgaatcaa
60cacaagcatg tagatgatta ctctgtctca tcacctgtga gtttcggtct gagaaagagc
120ttcccttctc tgaaggtgaa gccttttaat caattccaga gctcccgatc atcatcatcc
180atcacagctc agacagcgtt gaggattggg acgcctcaga gatggtggga gaagggtttg
240aaagagaaca tgagagagat ctcttcagct caggagctcg ttgactctct aaccaacgct
300ggtgataagc tcgttgtggt tgacttcttt tctcctggct gtggtggatg caaggctctt
360catcctaaga tatgtcagtt ggcagagcag aaccctgatg tgcagtttct tcaggtgaac
420tacgaggagc acaagtccat gtgttacagt ctcggtgtcc acgtccttcc gtttttcaga
480ttctaccgtg gcgctcatgg tcgtgtctgc agcttcagct gcaccaatgc tacgataaag
540aagttcagag atgcattggc gaagcatact ccggataggt gcagccttgg accgaccaaa
600gggcttgaag agaaggagct tgtggcactt gcagccaaca aagaactcaa ctttagttac
660acaccgaagg atgtaccagt tgaggaagag gcagctcccg tccccgtttc aaaccctggt
720ctccctgttg ctcatccatc gatgaaggcc aatgatggaa agacattggt ctcctcaggg
780agatga
78663819DNABrassica napus 63atggcggagg taatcagcaa aacgagtttg ttcttcggag
gaggagcttg cgtgaatcac 60caccaccacc acgtagatga cttgtctgtc tcaccggtga
gtttcggttt caaaaagagt 120ttctcttctt ctctcaagca gaagcctctt agaagcgact
tctctggaaa acagatccta 180gagaccttca acaggagctt ccgatcatca tccgtcaccg
ctcagtcgac gctgaggatt 240gggacagctc acaagtggtg ggagaaaggc tctcaagaga
acatgagaga gatctcttcg 300gcgcaagacc tcgtcgactc tctcgccgac gctggcgata
agctcgtcgt ggttgacttc 360ttctcccctg gctgcggggg atgcaaggct ctgcatccta
agatgtgcca gctggcggag 420cagagccctg atgtgcagtt tcttcaggtg aattacgagg
agcacaagtc catgtgttac 480agtctcggtg tccatgtcct tccctttttt cgattttatc
gaggcgctca gggtcgtgtc 540tgtagcttta gctgtaccaa tgctacgata aagaaattta
gagacgcgtt ggcgaagcat 600agtccggata ggtgcagcct tggaccaacc aaggggcttg
aagagaaaga gcttgtggcg 660cttgcagcta ataaagaact aaagtttagt tacacgccga
aggttgtacc tgttgagaaa 720gaggttgcca tccccacttc aaaccctggt ctccctgttc
ctcatccatc gacgatgagc 780ggcagtgagg agaagacgtt ggtctctgca gggaggtga
81964891DNARicinus communis 64atggctgatg
ttttgagcaa gaccaatctt gttccttcgt cttgttgtaa tggttacaag 60aaccagaaga
aagatggtgc cttcgttcta aaaagaagtt gcagtcttaa ggtgtcatct 120aggaaattca
atcctcaggc tttcggatca cagaagatat cacttatttc tgatttttat 180ggcaagaggg
ttattgttca agaaaaacaa ctcaagagag ggaattttca tcaattttca 240attaaggctc
agactggact gagactcaag aatgctccaa aatggtggga aaaggggttg 300caaccaaaca
tgaaggagat cacctctgca caagaccttg tggactccct tatgaatgct 360ggggacaaac
ttgtaattgt tgatttcttc tcccctggct gtggtggctg caaagctctc 420catccaaaga
tatgtcaatt tgcggagatg aaccctgatg tccagtttct tcaggtgaat 480tatgaggaac
ataaatccat gtgttatagc ctcaatgtac acgtactgcc attctttaga 540ttttaccgag
gggctcaagg ccgagtatgc agctttagct gtactaatgc cacgattaag 600aaatttaaag
atgcattagc caagcacacc ccagaccgat gcagcctcgg gccaaccaaa 660gggctggagg
agaaagagct tattgcgttg gcttctaaca aagatctcaa ctttacatgc 720acaccaaaac
cagttcaacc aactgctcct gctcaggaag agataatacc agcagcactc 780accccagctc
atgtgaatca aaccctacct cttcctattc ctctctctac aacaagcctg 840atgtctgccc
aagacttggg ggagaaaacc ttggttactt ctgggagata g
89165879DNAPhaseolus vulgaris 65atggctgaag tttttaccaa ggcgagtttc
gtttcttctt tgcttggtag tagtcaacgc 60caccatcgaa gggtgtcgac ggttcctgat
acttgtacct ttgtttctgg cgtcggaggg 120tctccttctc tcaagttaaa gtctccgatt
ctcagatctt ggtccccttc ttctgagttt 180cagggtaaac agcttctctt tcgtgtaaat
agaggaaagc ccaacagggt cagttcgcgg 240ttgagagcgt caactgctgc tcagatgacc
cttagaatag ggaaagttca aaaatggtgg 300gaaaaggggc ttcaacccaa catgaaagag
gtgacttcgg cccaagacct tgtggaatca 360ctgttaaacg caggggacaa gttggtggtg
gttgatttct tctctcctgg ttgtggtggc 420tgcaaagccc ttcaccctaa gatatgtcaa
ctggcagaga tgaatcctga tgttcaattc 480cttcaggtga actatgagga gcataagtcc
atgtgttata gcctcaatgt ccatgttcta 540cccttcttcc gcttctatag aggtgctcat
ggtcgattat gtagctttag ctgcaccaat 600gccacgatca agaagtttag agacgcattg
gccaaacact ccccagatag atgcagcttg 660ggcccaacca aagggttaga ggagaaagag
ctcctagctc ttgctgccaa caaagatctt 720tcctttacct tgccaaaacc tttacaacct
gaacacgcaa atgaagggtt ggcaactgct 780cctgctcctg ttcctagttc agaatctctt
cctttacctt cactgaccct caattctgag 840gtctcccaag agagaacctt gaccactgct
gggagatga 87966876DNAPhaseolus vulgaris
66atggctgagg ttttgaccga ggcaagtttg gtttcttcgt ggcatggtac tactcaacgc
60caccatcgaa gagtatcgac agttcccaat tcttctagct tcgtttctgg cgttggaagg
120ttcccttctc tcaagttaaa gtctcagatt ctcagatccc tctcctcttc ttctgagttt
180cagggtaaaa agcttctctt tcatgtaaat agaggactag ccaacagaat cagttcgcgg
240ttgggagctt caactgcagc gcagatgacc cttagaatag ggaaaggtca gaaatggtgg
300gaaaaggggc ttcaacccaa catgaatgag gtgacttccg cccaagatct tgtagaatca
360ctgttaaacg caggggacaa gttagtggtg gttgatttct tctctcctgg ttgtggtggc
420tgcaaagccc ttcaccctaa gatatgtcaa ctggcagaga tgaatcctga tgttcaattc
480cttcaggtga actatgagga acataagtcc atgtgttata gcctcaatgt ccatgttctt
540cccttcttcc gcttctatag aggtgctcat ggtcgattat gtagctttag ctgcaccaat
600gccacgatca agaagtttaa agatgcattg gccaaacact ccccagatag atgcagcttg
660ggcccaacca aagggttaga ggaaaaagag ctcctagctc ttgctgccaa caaagatctt
720tcgttcatct acgcaccaaa tcccttacaa cctgaacatg aaaatgaaga gttggctact
780gctcccgctc ctgttcctag ttcagagtct cttcctttgt gtcacctcat ttctgaggtc
840tccaaagaga aaaccttgat cactgctggg agatga
87667864DNAGossypium histrum 67atggctgaag ttttggggaa gggaaatctg
tttacgactt gtaactatag tcagacgaag 60aatctagaag gtggaacttg tttggttcct
aagaaaattt ctgggttttc tttagaaagg 120aacggttttt cttctttaaa ggttaaatct
caggctttaa gaagtgattt taatgggcaa 180agaatggttt ttttggagaa gaaaagtatg
aacaggcgaa ggttttgtca agttcccatc 240aaagcacaga tgcaaagtgg tcttattggt
cgaattcaga aatggtggga gaaagggctt 300caaccaaata tgaaagaagt tgcatctgca
caagacctag tagactctct tctgaatgct 360ggtgataagc ttgttgtggt agatttcttc
tcccctggtt gtggtggttg caaggctctt 420catcccaaga tttgccaatt tgcagagatg
aatccagatg tgcagtttct tcaggttaat 480tacgaggagc acaagtcaat gtgctatagc
cttaatgtcc atgtgctgcc tttcttccgg 540ttctatcgag gtgcgcaggg gcgtgtatgc
agctttagtt gtaccaatgc cacgatcaaa 600aaattcagag atgcattagc caaacacaca
cctgatcggt gtagcctcag cacgacaaaa 660gggctcgagg agaaggagct tttggcatta
tctgcgaaca aagacctttc cttcaactac 720acaccaattc ccacacatgg agagattctt
atatggaaac aagttccatc tgattcaacg 780agaaagctcc cgctttcagt cccgacaaca
tccgcaaaac aaagggacag tgaggagaaa 840accttggttg gtgtcggaag atga
86468840DNAGossypium histrum
68atggctgaag ttttggggaa gtcaaatctg tttacagctt gtaactatag tcagaagaag
60catcaagaag gtggcgttcc tttgttttcc aggagaatct ctgtgttttg tttgagaaag
120aatagttttc cttctttgag gttggaacct caagctttga ggagtggttt taatggtcaa
180agagtggttt ttttagagaa aagaagtcta aatgagagaa ggttctgtcg agttcccatt
240aaagcacaga tgcaaactgg gcttattggt aaaactcaaa agtggtggga gaaggggaat
300caaccaaata tgaaagaagt gacatctgca caagacctgg tggactcact tttgaatgct
360ggggataaac ttgttatagt ggatttcttc tctcctggtt gtggtggctg caaggctctt
420catcccaaga tttgccaatt ggcagagatg aatccggatg tgcagttcct taaggtgaac
480tatgaggagc ataaatccat gtgttatagc cttaatgtac atgtgttgcc tttctttagg
540ttctatagag gagctcaggg tcgtctatgc agctttagct gcaccaatgc cacgatcaaa
600aaattcaaag atgcattggc caagcactca ccagaccgat gcagccttgg gccgacaaaa
660ggtctcgagg agaaggagct tttggcatta gctgccaaca aagacctttc cttcaactac
720acaccgaaac cagttcatcc tgcaccggaa gaaattccgg tgctgaaaga agttccatcc
780ggttcatcct tcaagctaaa agaaagcgag gagaagacct tgattggtgt ggggagatga
84069840DNAGossypium histrum 69atggctgaag ttttggggaa gtcaaatctg
tttacagctt gtaactgtag tcagaagaag 60aatcaagaag gtggcgttcc tttgttttct
aggagaatct ctgcgttttg tttgagaaag 120aatagttttc cttctttgaa gttggaacct
caagctttga ggagtggttt taatggtcaa 180agagtggttg ttttagagaa aagaagtcta
aatgagagaa ggttctgtcg agttcccatt 240aaagcacaga tgcaaacagg gcttattggt
aaaacccaaa agtggtggga gaaggggaat 300caaccaaata tgaaagaagt gacatctgca
caagacctgg tggactcact tttgaatgct 360ggggataaac ttgttatagt ggattttttc
tctcctggtt gtggtggctg caaggctctt 420catcccaaga tttgccaatt ggcagagatg
aatccggatg tgcagttcct taagctgaac 480tatgaggagc ataaatccat gtgttatagc
cttaatgtac atgtgttgcc tttctttagg 540ttctatagag gagctcaggg tcgtttatgc
agctttagct gcaccaatgc cacgatcaaa 600aaattcaaag atgcattggc caagcactca
ccagaccgat gcagccttgg gccgacaaaa 660ggtctcgagg agaaggagct tttggcatta
gctgccaaca aagacctttc cttcaactac 720acaccgaaac cagttcatcc tgcaccagaa
gaaatgccgg tgctggaaga agttccatcc 780ggttcatcct tcaggccaaa agaaagcgag
gagaagacct tggttggtgt ggggagatga 84070900DNAGlycine max 70atggcggagg
ttttaaccaa ggcgagtttg gtttcatctt cttggcatgg ggttagtcaa 60cggcatcatc
atcgaagggt ttcaacggtt ctttcaaata atacatgtag cttccgttcc 120ggcgtgggaa
agttctcttc tttgaagatg aattctcagg ttctcagatc ttggtcctct 180tcttctgagt
ttcagggtaa aaagcttgtc tttcatgtaa atagaggatt acccaatagg 240gtcaattcgc
ggttgagagc ttctactggg actcagatga accttagact agggaaagtt 300cagaaatggt
gggaaaaggg gcttcaaccc aacatgaaag aggtgacttc agcacaagac 360tttgtggatt
cactgttaaa cgcaggggac aagttggtgg tggttgattt cttctctcct 420ggttgtggtg
gctgcaaagc ccttcatcct aagatatgcc aatttgcaga gatgaatcct 480gatgttcagt
tccttcaggt gaactatgag gagcataagt ccatgtgtta tagccttaat 540gtccatgttc
ttcccttctt ccgattctat agaggcgctc acggtcgatt atgtagcttt 600agctgcacca
atgccacgat caagaagttc aaagatgcat tagccaaaca caccccagac 660agatgcagct
taggcccaac catagggtta gaggagaaag aactcgaagc tcttgctgcc 720aacaaagatc
tttccttcac ctactcacca aaaccattac aaccttcaca tgaaaacgaa 780gagttggcaa
ccgaaactgc ttctgctccg gctcttggtt caggatctct tccttcacct 840tcaatgaccc
tcaatgctgt ggcctctaat gagagaacct tgaccacttc tgggagatga
90071747DNAGlycine max 71atgaagtctc aggttctcag atcttggtcc tcttcttctg
agtttcaggg tataaagctt 60gtctttcatg taaatagagg attacccaat agggtcaatt
cgcgcttgag agcttcaact 120ggggctcaga tgagctttag actagggaaa gttcagaaat
ggtgggaaaa ggggcttcaa 180cccaacatga aggaggtgac ttcggcacaa gactttgtgg
attcactgtt aagcgcaggg 240gacaagttgg tggtggttga tttcttctct cccggttgtg
gtggctgcaa agcccttcat 300cctaagatat gtcaatttgc agagatgaat cctgatgttc
agttccttca ggtgaactat 360gaggagcata agtccatgtg ttatagcctt aatgtccatg
ttcttccctt cttccgattc 420tatagaggtg ctcatggtcg attatgtagc tttagctgca
ccaatgccac gatcaagaag 480tttaaagatg cattggccaa acacacccca gatagatgca
gcttgggccc aaccaaaggg 540ttagaagaga aagagcttct agctcttgct gccaacaaag
atctttcctt caccaactca 600ccagaacctt tacaacctgc acatgcagat gaagagttgg
gaaccgaacc tgctcctgct 660cctggttcaa aatctcttcc ttcaccttca atgattctca
attctgaggt ctctaaaaag 720agaaccttaa ccacttcagg gagatga
74772870DNABeta vulgaris 72atggcggatg ttcttaccaa
atccagtgtt ttttctccaa caatttctca tcatcatagt 60ggaagtaaaa attttccaat
taaatgttca gttgcagtga gtaatcgagg gagattagtt 120ggaatttctt cgttgaggag
tagttttggt ggtgtaagaa ttgcgatcga taaaaatacc 180agttttgggt caaaaaggag
gaattaccaa tcaattgatg ctaagatggg tctgagcatc 240ggcaaagcac agaaatggtg
ggagaaagga ctccagccaa atatgagaga gataacttct 300gcggaagacc tagtcgattc
tttactaaca gcaggagata cattagttgt cgttgatttt 360ttctctcctg gatgtggagg
ctgcagagct cttcatccta agttgtgtca attggcagag 420atgaaccctg atgtccagtt
tcttcagatt aactacgaag aacataaatc aatgtgttac 480agtcttaatg ttcatgttct
tcccttcttt cggttttaca gaggggctga aggccgggtt 540tccagcttca gctgtacaaa
tgcaacgatt aagaaattca aggatgcttt ggcgaagcat 600aacccagcaa ggtgtagcct
tgggccaaca aagggcctag aagagaagga gcttcttgct 660cttgctgcca acaaagacct
ttcatttacc tatacaccaa agcctgtgga agcggaaccc 720gtacccgcac ctgcacttga
agaagtctct gttaaggctg acgaacaagt cttagcacaa 780gaatctctcc cttctttcaa
caggaagcct cttagctcac aaccatcaac cgtgagtgaa 840gagaaaactc tagctactgc
tgcgagatga 87073837DNAMusa acuminate
73atggcggaaa ctttggctca gaggaccctc cttttgcctg gcgggcatct ttctttgccg
60ccgttttgcg ggatgcggag ccgcccttct cttgcggcgt tcactctctt ttcacgtacc
120aaggttgagc ccttgaggtc ttcttcttgt gatagcaagt tccatgggag gagactggtc
180gttggggcgc ggagagggag gccctcgagg gcacgcctcg gttctggctc tgaacagatg
240gttctgtcgt tcaagaaggc tataaaatgg tggcagaagg ggcttcaacc caatatggtg
300gagatcgagt cggctgagca tctcgtcgac tccttattga acgccggcga caagcttgtt
360attgtggatt tcttctcccc agggtgtgga ggctgcagag cgcttcatcc aaagatttgc
420cagttcgccg aatcgaatca aaatgttttg tttctccaaa taaattatga gcaacataag
480tcgatgtgct acagcttggg tgtccatgtt ctccccttct ttaggttcta tcgcggagca
540cacgggcgcc tgtgcagctt cagctgcacc aatgcaacta ttaagaaatt taaagatgct
600ttggccaagc acatcactga cagatgcagc cttgggccag ctagggggct ggaggagtca
660gagctcttgg ctttggccgc aaacaaagat ctctcattta actacacaag caagccagtt
720cctgtgcctg aagagattcc agagagaatt ccaacaagcc cgaaactccc tcttcatgct
780gtccgtagac ctgcccagga atccgaggac aaggccctcg ccgcagctgg gagatga
83774819DNAMusa acuminate 74atggcggatg ctttggctca aatgacgctc ctttcgcccc
atggccaccg ttctttgtcg 60cgctcttccg accggagaaa ccgccttgtt tgtgcgtcaa
aggatgatct cttgaggtct 120tcgtcttctt gtaatagcca gttccatggg agaaggctgg
ttattggcgc acagagagag 180aggccgttga gaggcaaccg aggttctagc tctgtgcaga
tgactctgtc ctttaagaag 240gcttcgaaat ggtgggagaa ggggcttcat cccaatatga
aggacatcaa gtcggctgag 300gatctcgtcg actccttgtc gaacgcgggc gacaagctcg
tcatcgtgga tttcttctcc 360ccaggatgtg caggctgcag agccctccac ccaaagatct
gccaattcgc agagttgaat 420ccagacgttc aatttctcca actaaaccac gaggaacaca
agtccatgtg ctacagcttg 480aatgtccatg ttctcccctt ctttaggttc tatcgcggag
cgcacggtcg cctgtgcagc 540ttcagctgca ccaatgcaac catcaagaaa tttaaggatg
ctttggcgaa gcacatcacc 600gaaagatgca gtcttgggcc agccaagggg ctggaggaga
cggagctcct tgccttggct 660gcaaacaagg atctctcctt cacctacaca agaacgcctg
ttcccgtacc tgatgagctt 720gcagagaaag ctccatttaa cccaaaccta cctgtgcatg
ctgctgctag actcaccctg 780gaatctgagg acaaggcttt tgccgcagcc ggtagatga
81975858DNACapsicum annuum 75atggcaaaat tgatgaacaa
aggttttgtg tttccttcat cttctgattg tggtcatcat 60cgccctcatg ggatttcttc
tttccccaat aaatcggtca atctttcttg tcttccatct 120acttgtctgc taagaagcta
tttttatggt cgtagattgg tcataaatga agccctaccc 180aaaagaaatg cccacgttgc
aatcactgtc cagatgagta tgggaatcag gaaagtacag 240aaatggtggg agaaaggggt
tcaacctaac atgaaagaag tgaacagtgc tcaaggcctt 300gttgactctc ttttgagtgc
aggagataaa ttagtagttg ttgatttctt ttcccctggc 360tgcggtggct gcaaagccct
tcaccctaag ttgtgtcagc tggcagagat gaatccagat 420gtgcagtttt tacaggtgaa
ctatgaggaa cacaagtcca tgtgttactc tcttaacgtg 480caccttctcc catttttccg
tttctataga ggagctgaag gtcgtgtttg cagctttagc 540tgtaccaatg ccacgataaa
aaaatttaaa gatgcattgg caaagtatgg tacagatcgt 600tgcacctttg gaccaccgaa
agggcttgag gagaaagagc tacttgcatt ggcagctaac 660aaggaactct cgtttaatta
cattccaaaa acagaagaag aacctgtcct tgttgcctca 720caagaggaag ttgaggacag
aactccaaat aaagagtccc ctctaccact tcctcttcct 780ctacccatta gctcaactag
ctcactgaag cccaaacagg atacagagaa agaagcgtat 840gctacttctg gtagatag
85876894DNACicer arietinum
76atggctgaaa ttttgaccaa gacaagtttg gtttcatctt ggcatgggaa cagaaaacag
60caacatcgaa ggttgtccat ggttcccaat aagacttgta gcttcaacac ttgcgtggga
120agtttcccat ctttgaagct aaaatctcag tttcttagat cttcctcttt ttcatctgag
180ttttatggga aaaatactat ctttcgtgta aatagatcaa tacccaacag gattaattca
240caattttcag tttcagctgc gcctaagatg acacttagaa taggaaaaat tcagaaatgg
300tgggaaaagg ggcttcaacc taacatgaga gaagtgactt cagctcaaga tcttgtagat
360tcacttttaa acgcagggga caaacttgtc attgttgact ttttctctcc tggttgtggt
420ggctgcagag cccttcaccc taagatatgt caaatggcag agatgaatcc tgatgttgag
480ttccttcaag tgaactatga agagcataaa tccatgtgtt atagccttaa tgttcatgtc
540cttcctttct tccgcttcta tagaggcgct catggtcgct tatgcagctt tagctgcacc
600aatgccacga tcaagaagtt taaagatgca ttggccaaac acactccaga tagatgcagc
660ttggaaccaa ccaaagggtt agaggagaaa gagctcatag ctttatctga aaacaaagat
720cttaacttca catacacacc aaaacctctt caacctgtgc atacacctgc aaatgaagag
780ttggcgacaa ccaaagcctc tcctgtttgt tcggagcctc ttcctttacc ttcattgacc
840tcgaattctg atgaagtctt gaaggagaga accctgacaa gggctggaag atga
89477900DNASolanum lycopersicum 77atgacgaaat tgatgagcaa aggttttatc
tttccttctt cttcttctga ttgtggtgaa 60atttatgatc gtcttcgtct taatctacat
gggatctgtt cttttcccaa taaatcggtc 120aatctttctt gtcttccttc gttgaagctt
tcttcttctt gtttgccaag aaccgatttt 180tatggtcgta gattggttat aaatgaaggc
ttatccaatt tcaaccgaag agttgctgat 240atcactgctc agatgagtgt tggaatcaag
aaagcacaga aatggtggga gaaaggggtt 300caacctaaca tgaaagaagt gaacagtgca
caagaacttg ttgactctct attgagtgca 360ggggataaat tagttgttgt tgatttcttt
tctcctggct gtggaggttg taaagctctt 420caccccaagt tgtgtcagct ggcagagatg
aatccagatg tgcagttttt acaggtgaac 480tatgaggaac acaagtcgat gtgttactct
cttaatgtac atgttctccc gtttttccgt 540ttctatagag gagctgaagg ccgtgtttgc
agctttagct gtaccaatgc cacgatcaaa 600aaattcagag atgcattggc gaagtatggt
acagatcgtt gcaccattgg gtcacccaaa 660gggcttgagg agaaagagct acttgcattg
gcagctaaca aggatctttc ctttaattac 720actccaaaaa cagaagaaga acccatcctc
gttacctcac aaaaggaagt tcgggataga 780actactccaa atatagagtc ccctctacca
cttcctcttc ctctccccat tacgtcaact 840agctcacaga cggccaaacg ggatacagag
aaagaagcat atgctacttc tggtagatga 90078774DNASolanum lycopersicum
78atggagaaat tgttgaataa ggcagtattt cttccatcaa ttttgaattc tagtggtatt
60tatcattcta atcaacatgc gatttgtgtt tttccagtga aattcaatag aagatatcac
120aaatcagcag ttgctactgc tcagatgagc ataggtatca agagagctcc taaatggtgg
180gagaaaggac ttcaaccgaa tatgaaagag gtgacgggtg ctcaagacct cgttgacacc
240cttctaaacg gtggggataa actagtcgtt gttgatttcc tttcccctgg ctgtggaggc
300tgcaaagccc ttcatccaaa gatatgtcag ttagcagaga tgaatccgga tgtgcagttt
360ttgcatgtga actatgagga acacaagtca atgtgttact cgctgaacgt acatgttctc
420ccatttttcc gtttctatag aggtgctgaa ggtcgtcttt gtagctttag ttgcaccaat
480gccacgataa aaaaattcaa agatgcattg acaaagtatg gtgcagattg ttgcagcctc
540ggaccagtta aagggctcga ggagaaagag ctacttgccc tagcggctaa taaggaccta
600tcttttgctt acacaccaaa aacagaagaa ccagtgcctc ttgccttaga agaagttaag
660gtgataaaaa caagtagaca atcttcatct catcccaata cattctcccc attaccactt
720cctcttcctc tagcatcaac tttgcatacg gccaaacagg actcaaagag ttaa
77479840DNAElaeis guineensis 79atgatggagg ttttgagtca gagcggtgtt
atgtcgccgt gcgggcatcg ttgggtggtc 60cgttcttgca aggagaggag cccttctttt
gttgggtttc ctcgctcttc ctctcggacg 120atcgagtctc tgatgtcttc ttctcggaat
agcggtttcc atgggaggag attgagcatt 180ggggcttgga gagtgaatgc cgtgaagggg
aattttagtt ctacccccgt acagatgagc 240ctctgcgttg gaaaggcttt gaaatggtgg
gagaaggagc tccagcccaa catgaaggag 300atcgagtcgg cccaggatct cgtcgactct
ttattgaacg caggagacaa gcttgtcata 360gtagatttct tctcccctgg ttgtggaggc
tgcaaagccc tccatccaaa gatttgccag 420tttgcaaagc tgaacccaga tgttctcttc
ctccaagtaa actatgaaaa gcacaaatcc 480atgtgttata gcttaaatgt ccatgttctt
ccctttttta ggttttacag gggagcacac 540ggtcgtcttt gtagcttcag ctgcaccaat
gcaactatta agaaatttaa agatgctttg 600gccaagcaca ccacagacag atgcagcctg
ggcccaacaa aggggctgga ggaatcagag 660ctcatggctc tggctgcaaa caaggatctc
tctttcagtt acacaagaaa gccagtccct 720gttccctcgc cagatgaggc tgcagaggaa
gttgtgctca gcccaaaact tccggtttct 780tcaactccaa gagtcatcca agattcggag
gagaaggctc tggtggcagc tgggagatga 84080819DNAElaeis guineensis
80atggcggagg ttttgggcag gagcggcgtg ttctcgctgc gcgggcaccg ttccgtggcc
60ccttcttgcc agaagaggag cccttctttt cttgggtttc ctctctcatc ctctcggccg
120atcgggcctc ctaggtcgtc ttctcggaga tttgttatcg ggactcggag agggaggtcc
180atcaagggaa attctagctc ttcccgtgta cagatgagcc tcggcgttgg aaagtcattg
240aagtggtggg agaagggtgt gcagcccaac atgaaggaga ttggatcggc ccaggatctt
300gttgactcct tattgaatga aggagacaag cttgttatcg tagatttctt ctcccctggt
360tgtggaggct gcaaagccct ccatccaaag atttgccgga ttgcggagat gaacccacat
420gttctcttcc tccaaataaa ctatgagaag cacaagtcca tgtgttatag cttgcatgtt
480cacgttctcc ccttttttag gttttaccgg ggagctcacg gtcgcctttg tagcttcagc
540tgcaccaatg caactattaa gaaatttaaa gatgcattgg ccaaacacac cacagacaga
600tgcagccttg ggccaacaaa ggggctggaa gaatcagagc ttgtggctct ggctgcaaac
660aaggatctct ccttcaatta cacaagaaaa ccggttcctg ttctcacacc agacgaggct
720gcagagaaag ttcctcttag cccaaaactt ccagtgtctt cagccccaag agtcatcaaa
780gattctgagg acaaggccct cgttgcagct gggacatga
81981864DNASetaria italicmisc_feature(826)..(827)n is a, c, g, or t
81atggcggcgg cgcaggcggt cgcgaagggc agcgtggtgt cgccgtgcgg cagcagggcc
60gcgccggggc tcctgagtcg gcggaggggc gccgtggcga cgcggatggc gccgtcggcg
120gtgcggatcg ggggctcctg gaggaagacc gcgttcctcg gcggtaggct ggcggtcggg
180ccgaggagat ccaggtccgc gtcccggacc ctcgtcgcgt cgccggtgca gatgaacatg
240aaccttgcga ttgggaaatc catgaggtgg tgggagaagg ggctgcagcc caacatgcgg
300gagatcgagt ccgcccagga tctcgtcgat tccttgacca acgccggcga cagactcgtc
360atcgtggact tcttctcccc cggctgcggc ggttgccgtg ctcttcaccc caagatttgc
420cagtttgcgg agcagaaccc ggatgtgctg ttcttgcaag tgaaccatga ggagcacaag
480tctatgtgct acagcctcca tgtccacgtc ctcccattct tcaggttcta caggggagct
540cagggacggc tctgcagctt cagttgtacc aacgcaacta tcaagaagtt caaggatgca
600cttgcaaagc acaaaccgga tagatgtagc attggcccaa ctagagggct ggaggaatca
660gagttattag cattggctgc aaacaaggac ttgcagttca cctacaccaa gaagccagaa
720ctgatcccca gcggagatgc tgctgctgag gtcattgctc ccgagcctac aaagcttcct
780gcggcaacaa agccgtcggt caagataggg tccgaggaga ggtccnnttg gtctcatcag
840gaagatgaga tgaatgacct ctag
86482822DNASetaria italic 82atggcggcag cgcaggcgat ggcgaagatg agcgtggggt
cgccggcctg caatcgggct 60gcgggatccc tctgccggtg gaggggagcc gtggcggtgc
ggctcggagg atcctggtcc 120tggaggaaga gcccgttcct cggcgggagg atggcggttg
ggcccaggag atcgaggccc 180gtgtcccgga atcctgttgc gtcgccggtg cagatgaacc
tttcatttgg gaaaaccatg 240aagtggtggg agaagggatt gcagcccaac atgcgggcga
tccacaccgc ccaagaactc 300gtcgattcct tgatcaacgc cggcgacggg ctcgtcatag
tcgacttctt ctcacctggc 360tgcgccggct gccatgccct ccatcccaag atttgccagt
ttgcggagcg gaacccagat 420gtgcagttcc tgcaagtgaa ctttgaggag cacaagtcta
tgtgccacag ccttcatgtt 480catgtgttcc ctttcttcag attctacagg ggagctcagg
gccggctctg cagcttcagc 540tgtaccaatg caactatcaa gaagttcaag gatgcgcttg
caaagcacaa accagataga 600tgtagccttg gcccaattaa ggggctagag gaatcagagc
tactggcttt ggctgcaaac 660agggacctgc agttcaccta caccaaggag caagatctgg
ctccgagcat ggaagatggc 720gcagaggtca tcactcatga ccatccaagg cttcctgcag
cagcaaagcc gctggtcagg 780caggggtctg aggacagggc tgtggtctca tcgggaagat
aa 82283825DNASetaria italic 83atggctgagg
ctttgtgcaa cggcgtcgtg ccgtcgccgt gcggcgggga cgtgggcgtg 60gccggccggg
tcagtggcgc cgcggcggcg ctagcggagt ccgtgccgat cggcggctac 120cgcaccaaga
gctccttctc cgcagggagg atggccatga ccgacaggaa gatgaggccc 180ctgcctcgga
gcatcgaggc cgcgcctgga cagatgaacc tgtcgtttcc taaggccatg 240cggtggtggg
agaaggggct gcagcccaac atgcgggaga tcgagtccgc gcaagacctc 300gccgactccc
tgctcaacgc cggcgacaag ctcgtcgtcg tcgacttctt ctcccctggc 360tgcggcggct
gccgcgccct gcatgccaag attgcccagt ttgccgagaa gaacccagat 420gtgatgttcc
tgcaagtgaa ctatgagacg cacaagtcca tgtgctacag cctccatgtc 480catgtcctcc
ctttcttcag gttctacagg ggagccgagg gacgggtcag cagcttcagc 540tgcacaaatg
caactatcaa gaagttcaag gacgcgctcg caaagcacgg acctgacagg 600tgcagcctcg
gccctgcacg ggggctggag gagtcggagc tcatggcctt ggctgcaaac 660aaggacctgc
aattcaccta cgagaagccg ggccttgtcc cacttgcaga agccattgcc 720aaggaggctg
ctgcaccagg aggcccgtgg ttccctttgc ctgcgtccgc gacgcagttc 780ctcactcagg
gatcagagaa ttcattgctg tcatccggaa gatag
82584750DNAChlamydomonas reinhardtii 84atggccagca tactaaatcg tgccggttca
aggtcgttag tttttgagac taagcagtca 60ttgcgttcta ttcctggcag ccttttatcg
ctgcggtcag tggcgctgaa gccattccgg 120acaaccatct gcgcggcggg agcgctgctg
actgcacggc gctcgacatc aggcctcggg 180cgcgccaacg gggtcgtttg ccaagcaggg
cgtagcactg gggaatggtg gaagaaggac 240aaccccccaa acatgcggga catcaactca
attcaggagc tggttgacgc tctgtcggat 300gccggagacc gcctcgtcat tgtggagttc
tacgcccagt ggtgcaacgc ctgccgcgcg 360ctattcccca agatctgcaa aatcatggct
gagaacccgg acgtgctctt cctcaaagtg 420aactttgacg acaaccgtga cgcgtgccgc
accctgagcg tcaaggtgct gccgtacttc 480cacttctacc gcggtgcgga gggccgtgtg
gcggccttca gcgccaccat cagcaagttg 540cagctgttca aggatgccgt ggagacctac
agcgccgcct tctgcagcct ggagcccgcg 600ccggggctgg cggagttccc cgacctcatc
gcgcacccgg agctgcaccc ggaggaggcc 660gcagaggcgg cgcggcgcgc gcggctggcg
tccaccgagt cggaggagga gttgcatccg 720ctggccgaca cgccgactgt ggtgggatag
75085519DNAChlorella 85tggtggacca
agtctgcgcc gcccaatgta gtgcacatca agtctgtgca gcacttggtg 60gacgaaatgg
tgagggctga gaggctggcg ggcgctggcg agcggctggt gatcatggat 120gtgtttgcgc
cctggtgcgc cgcctgcaag gcgctgtacc ccaagctgat gaagctgatg 180gaggagcgcc
ccgatgtgct gctgctgacg gtaaactttg atgagaacaa gacggtggtg 240aaggccatgg
gggtcaaggt cctgccgtac ttcatgttct atcgcggcaa ggagggcaag 300ctgcaggagt
tctcggccag caacaagcga ttccacctca tccaggaagc cattgagcgg 360cacagcaccg
atcgctgctt cctggatagc accgacgagg agcctgtgct tgcagagttc 420cccactgtcg
tccccgccaa gggcatcagc ggcagcttgg atgagccggc cggccgtgcg 480gccggcaagg
cggtgggcca gccgcagccc gtggcctga
5198647PRTArabidopsis thaliana 86Lys Glu Leu Asn Phe Thr Tyr Thr Pro Lys
Pro Val Pro Val Glu Lys1 5 10
15Glu Ala Ala Thr Pro Asp Ser Asn Pro Ser Leu Pro Val Pro Leu Pro
20 25 30Ser Met Ser Ser Asn Asp
Glu Lys Thr Leu Val Ser Ala Gly Arg 35 40
458769PRTSolanum tuberosum 87Ala Ala Asn Lys Asp Leu Ser Phe Asn
Tyr Thr Pro Lys Thr Glu Glu1 5 10
15Ala Pro Val Leu Val Thr Ser Gln Lys Glu Val Gln Asp Thr Thr
Pro 20 25 30Pro Asn Ile Glu
Ser Pro Leu Pro Leu Pro Leu Pro Leu Pro Ile Ala 35
40 45Ser Thr Ser Ser Gln Thr Ala Lys Arg Asp Thr Glu
Lys Glu Ala Tyr 50 55 60Ala Thr Ser
Gly Arg658868PRTSolanum tuberosum 88Ala Ala Asn Lys Asp Leu Ser Phe Ala
Tyr Thr Pro Lys Thr Glu Glu1 5 10
15Pro Met Pro Val Ala Leu Gln Asp Ala Lys Val Ile Lys Thr Ser
Arg 20 25 30Thr Ser Ser Ser
Cys Pro Asn Thr Phe Ser Leu Leu Pro Leu Pro Leu 35
40 45Pro Leu Pro Leu Ala Ser Thr Ser His Lys Ala Lys
Gln Asp Ser Lys 50 55 60Ser Glu Val
Phe6589228PRTArabidopsis thaliana 89Met Thr Glu Val Ile Ser Lys Thr Ser
Leu Phe Leu Gly Ala Cys Gly1 5 10
15Asn His His Arg Val Asp Asp Phe Ser Phe Ser Pro Val Ser Phe
Gly 20 25 30Gly Phe Gly Leu
Lys Lys Ser Phe Ser Cys Leu Lys Leu Lys Ser Gln 35
40 45Lys Pro Leu Arg Ser Val Phe Tyr Gly Lys Gln Ile
Val Phe Gly Asp 50 55 60Ser Gln Asp
Glu Ser Phe Arg Arg Ser Ser Ala Ile Thr Ala Gln Thr65 70
75 80Thr Leu Arg Ile Gly Thr Ala Gln
Lys Trp Trp Glu Lys Gly Leu Lys 85 90
95Asp Asn Met Arg Glu Ile Ser Ser Ala Gln Glu Leu Val Asp
Ser Leu 100 105 110Thr Asn Ala
Gly Asp Lys Leu Val Val Val Asp Phe Phe Ser Pro Gly 115
120 125Cys Gly Gly Cys Lys Ala Leu His Pro Lys Ile
Cys Gln Phe Ala Glu 130 135 140Met Asn
Pro Asp Val Gln Phe Leu Gln Val Asn Tyr Glu Glu His Lys145
150 155 160Ser Met Cys Tyr Ser Leu Gly
Val His Val Leu Pro Phe Phe Arg Phe 165
170 175Tyr Arg Gly Ser Gln Gly Arg Val Cys Ser Phe Ser
Cys Thr Asn Ala 180 185 190Thr
Ile Lys Lys Phe Arg Asp Ala Leu Ala Lys His Gly Pro Asp Arg 195
200 205Cys Ser Leu Gly Pro Thr Lys Gly Leu
Glu Glu Lys Glu Leu Val Ala 210 215
220Leu Ala Ala Asn22590232PRTSolanum tuberosum 90Met Met Lys Leu Met Ser
Lys Gly Phe Met Phe Pro Ser Ser Ser Asp1 5
10 15Cys Gly Glu Ile Tyr His His Arg Pro Leu Asn Leu
Pro Gly Ile Cys 20 25 30Ser
Phe Pro Asn Lys Ser Val Asn Leu Ser Cys Leu Pro Ser Leu Asn 35
40 45Leu Ser Ser Ser Cys Leu Pro Arg Thr
Asp Phe Tyr Gly Arg Arg Leu 50 55
60Val Ile Asn Glu Gly Val Ser Lys Phe Asn Arg Arg Asn Ser Gln Val65
70 75 80Val Asp Ile Thr Ala
Gln Met Ser Ile Gly Ile Arg Lys Ala Gln Lys 85
90 95Trp Trp Glu Lys Gly Val Gln Pro Asn Met Lys
Glu Val Asn Ser Ala 100 105
110Gln Glu Leu Val Asp Ser Leu Leu Ser Ala Gly Asp Lys Leu Val Val
115 120 125Val Asp Phe Phe Ser Pro Gly
Cys Gly Gly Cys Lys Ala Leu His Pro 130 135
140Lys Leu Cys Gln Leu Ala Glu Met Asn Pro Asp Val His Phe Leu
Gln145 150 155 160Val Asn
Tyr Glu Glu His Lys Ser Met Cys Tyr Ser Leu Asn Val His
165 170 175Val Leu Pro Phe Phe Arg Phe
Tyr Arg Gly Ala Glu Gly Arg Val Cys 180 185
190Ser Phe Ser Cys Thr Asn Ala Thr Ile Lys Lys Phe Lys Asp
Ala Leu 195 200 205Ala Lys Tyr Gly
Thr Asp Arg Cys Thr Leu Gly Pro Pro Lys Gly Leu 210
215 220Glu Glu Lys Glu Leu Leu Ala Leu225
23091162PRTSolanum tuberosum 91Met Lys Phe Asn Arg Arg Asn His Lys Ser
Ala Ala Ala Thr Ala Gln1 5 10
15Met Ser Ile Gly Ile Arg Lys Ala Pro Lys Trp Trp Glu Lys Gly Leu
20 25 30Gln Pro Asn Met Lys Glu
Val Met Gly Ala Gln Asp Leu Ala Asp Thr 35 40
45Leu Leu Asn Ala Gly Asp Lys Leu Val Val Val Asp Phe Leu
Ser Pro 50 55 60Gly Cys Gly Gly Cys
Lys Ala Leu His Pro Lys Ile Cys Gln Leu Ala65 70
75 80Glu Met Asn Pro Asp Val Gln Phe Leu His
Val Asn Tyr Glu Glu His 85 90
95Lys Ser Met Cys Tyr Ser Leu Asn Val His Val Leu Pro Phe Phe Arg
100 105 110Phe Tyr Arg Gly Ala
Glu Gly Arg Leu Cys Ser Phe Ser Cys Thr Asn 115
120 125Ala Thr Ile Lys Lys Phe Lys Asp Ala Leu Thr Lys
Tyr Gly Ala Asp 130 135 140Cys Cys Ser
Leu Glu Pro Val Lys Gly Leu Glu Glu Lys Glu Leu Leu145
150 155 160Ala Leu
User Contributions:
Comment about this patent or add new information about this topic: