Patent application title: METHOD FOR TREATING DISEASE USING FOXP3+CD4+ T CELLS
Inventors:
IPC8 Class: AC07K1447FI
USPC Class:
Class name:
Publication date: 2022-06-02
Patent application number: 20220169687
Abstract:
This document relates to methods and materials for treating a mammal
having an autoimmune disease. For example, materials and methods for
producing a T cell comprising a FOXP3 polypeptide and one or more
transcription factors are provided herein. Methods and materials for
treating a mammal having an autoimmune disease comprising administering
to a mammal having an autoimmune disease an effective amount of a T cell
are also provided herein.Claims:
1-143. (canceled)
144. A method of producing a T cell having a Treg phenotype, the method comprising: (a) introducing into a T cell a first nucleic acid sequence encoding a FOXP3 polypeptide and a second nucleic acid sequence encoding one or more transcription factor(s), and optionally (b) culturing the T cell in growth media under conditions sufficient to expand the T cell.
145. The method of claim 144, wherein the one or more transcriptions factor(s), when present in a mammalian cell, elicit a Treg phenotype in the mammalian cell as compared to when the one or more transcription factor(s) is/are not present in the mammalian cell.
146. The method of claim 145, wherein the one or more transcription factor(s) are selected from the group consisting of: BLIMIP1, EOS, ROR-gt, FOXO1, GATA1, HELIOS, ID2, ID3, IRF4, LEF1, SATB1, GATA3, NFATc2, RUNX1, BC111b, FOXP1, FOXP4, BACH2, STAT3, and XBP1.
147. The method of claim 144, wherein the step (a) comprises introducing a nucleic acid construct into the T cell, wherein the nucleic acid construct comprises the first nucleic acid and the second nucleic acid.
148. The method of claim 147, wherein the nucleic acid construct further comprises a promoter operably linked to the first nucleic acid sequence, and wherein the first nucleic acid sequence is positioned 5' relative to the second nucleic acid sequence in the nucleic acid construct.
149. The method of claim 147, wherein the nucleic acid construct further comprises a promoter operably linked to the second nucleic acid sequence, and wherein the second nucleic acid sequence is positioned 5' relative to the first nucleic acid sequence in the nucleic acid construct.
150. The method of claim 147, wherein the nucleic acid construct further comprises an additional nucleic acid sequence between the second nucleic acid sequence and the first nucleic acid sequence, wherein the additional nucleic acid sequence operably links the first nucleic acid sequence to the second nucleic acid sequence.
151. The method of claim 150, wherein the additional nucleic acid sequence encodes (i) an internal ribosome entry site (IRES) sequence or a self-cleaving amino acid, and/or (ii) a promoter or an enhancer.
152. The method of claim 144, wherein step (a) further comprises introducing a third nucleic acid sequence encoding a therapeutic gene product into the T cell, wherein the therapeutic gene product is an antigen-binding antibody fragment or antibody that is capable of binding to an IL-6 polypeptide, an IL-6R polypeptide, an IFN alpha receptor, or a TGF beta receptor polypeptide.
153. The method of claim 147, wherein the nucleic acid construct further comprises a third nucleic acid sequence encoding a therapeutic gene product, wherein the therapeutic gene product is an antigen-binding antibody fragment or antibody that is capable of binding to an IL-6 polypeptide, an IL-6R polypeptide, an IFN alpha receptor, or a TGF beta receptor polypeptide.
154. The method of claim 153, wherein the third nucleic acid sequence is positioned 5' relative to the first nucleic acid sequence and the second nucleic acid sequence in the nucleic acid construct, wherein the third nucleic acid sequence is operably linked a promoter.
155. The method of claim 153, wherein the third nucleic acid sequence is positioned 3' relative to the first and second nucleic acid sequences in the nucleic acid construct, wherein the third nucleic acid sequence is operably linked to the first nucleic acid sequence and/or the second nucleic acid sequence.
156. The method of claim 144, wherein step (a) further comprises introducing a fourth nucleic acid sequence encoding a binding agent into the T cell, wherein the binding agent is an antibody, antigen-binding fragment, or a chimeric antigen receptor.
157. The method of claim 153, wherein the nucleic acid construct further comprises a fourth nucleic acid sequence encoding a binding agent, wherein the binding agent is an antibody, antigen-binding fragment, or a chimeric antigen receptor.
158. The method of claim 156, wherein the antigen-binding fragment is a Fab, a F(ab')2 fragment, a scFv, a scAb, a dAb, a single domain heavy chain antibody, or a single domain light chain antibody that is capable of binding to an antigen on an autoimmune cell.
159. The method of claim 156, wherein the antigen-binding fragment is a Fab, a F(ab')2 fragment, a scFv, a scAb, a dAb, a single domain heavy chain antibody, or a single domain light chain antibody that is capable of binding to a cell adhesion molecule, wherein the cell adhesion molecule is ICAM-1, VCAM-1, or MADCAM-1.
160. The method of claim 156, wherein the binding agent is a chimeric antigen receptor, wherein the chimeric antigen receptor comprises an extracellular domain, a transmembrane domain, and an intracellular domain, wherein: the extracellular domain comprises an antibody or antigen-binding fragment that is capable of binding to an antigen on an autoimmune cell or a cell adhesion molecule; and the intracellular domain comprises a cytoplasmic signaling domain and one or more co-stimulatory domain(s).
161. The method of claim 160, wherein the antigen-binding fragment is an scFv, wherein the scFv is capable of binding to a cell adhesion molecule selected from the group consisting of: ICAM-1, VCAM-1, and MADCAM-1.
162. The method of claim 160, wherein the cytoplasmic signaling domain is a CD3 zeta domain and the one or more co-stimulatory domain(s) comprise(s) at least one of a cytoplasmic signaling domain from a CD48 polypeptide, a 4-1BB polypeptide, an ICOS polypeptide, a X-40 polypeptide, and a CD27 polypeptide.
163. The method of claim 157, wherein: the fourth nucleic acid sequence is positioned 5' relative to the first nucleic acid sequence and the second nucleic acid sequence in the nucleic acid construct, wherein the fourth nucleic acid sequence is operably linked to a promoter; or the fourth nucleic acid sequence is positioned 3' relative to the first nucleic acid sequence and the second nucleic acid sequence in the nucleic acid construct, wherein the fourth nucleic acid sequence is operably linked to the first nucleic acid sequence and/or the second nucleic acid sequence.
164. The method of claim 147, wherein the nucleic acid construct comprises a viral vector selected from the group consisting of: a lentiviral vector, a retroviral vector, an adenoviral vector, and an adeno-associated viral (AAV) vector.
165. The method of claim 144, wherein the T cell is a CD4+ T cell or a CD4+/CD45RA+ T cell.
166. The method of claim 144, wherein the method further comprises: obtaining the T cell from a patient.
167. A vector comprising a first nucleic acid sequence encoding a FOXP3 polypeptide and a second nucleic acid sequence encoding a one or more transcription factors.
168. The vector of claim 167, wherein the one or more transcription factors, when present in a mammalian cell, elicit a T reg phenotype in the mammalian cell as compared to when the one or more transcription factor(s) is/are not present in the mammalian cell and wherein the one or more transcription factor(s) is/are selected from the group consisting of: BLIMIP1, EOS, ROR-gt, FOXO1, GATA1, HELIOS, ID2, ID3, IRF4, LEF1, SATB1, GATA3, NFATc2, RUNX1, BC111b, FOXP1, FOXP4, BACH2, STAT3, and XBP1.
Description:
CROSS-REFERENCE TO RELATED APPLICATIONS
[0001] This application claims priority to U.S. Provisional Patent Application No. 63/111,905, filed on Nov. 10, 2020, the content of which is incorporated herein by reference in its entirety.
BACKGROUND
[0002] This document relates to methods and materials for treating a mammal having an autoimmune disease. For example, this document provides materials and methods for producing a T cell comprising a forkhead box P3 (FOXP3) polypeptide and one or more transcription factors. This document also provides methods and materials for treating a mammal having an autoimmune disease, where the methods include administering to a mammal having an autoimmune disease an effective amount of the T cell.
[0003] Autoimmunity is a common disease in the United States, with more than 20 million people suffering from one of 81 known autoimmune diseases. Regulatory T cells (Tregs) are a subpopulation of T cells that modulate the immune system and maintain tolerance to self-antigens. Tregs play a role in preventing or treating autoimmune disease (Sakaguchi et al., Int'l Immun., 21(10):1105-1111 (2009)). FOXP3, a transcription factor expressed in Tregs, has been implicated in maintaining Treg immunosuppressive functions (Hort et al., Science, 299:1057-1061 (2003)). FOXP3.sup.+ Tregs may impair (e.g., eliminate and/or inhibit) responder T cells involved in causing autoimmune disease by a granzyme-dependent or perforin-dependent mechanism (Trzonkowski et al., Clin. Immunol., 112:258-67 (2004)). FOXP3.sup.+ Tregs also may impair (e.g., eliminate and/or inhibit) responder T cells involved in causing autoimmune disease, by delivering a negative signal to responder T cells via up-regulation of intracellular cyclic AMP, which causes inhibition of responder T cell proliferation (Gondex et al., J. Immunol., 174:1783-6 (2005)).
SUMMARY
[0004] This document provides methods and materials that can be used to treat mammals identified as having an autoimmune disease. For example, this document provides materials and methods for a T cell containing a FOXP3 polypeptide and one or more transcription factors. In another example, this document provides materials and methods for producing a T cell containing a FOXP3 polypeptide, one or more transcription factors, and a therapeutic gene product. This document also provides materials and methods for producing a T cell containing a FOXP3 polypeptide, one or more transcription factors, and a therapeutic gene product and/or a binding agent. In addition, this document provides methods and materials for treating a mammal having an autoimmune disease, where the methods include administering to the mammal an effective amount of a T cell (e.g., any of the T cells described herein). The methods and materials provided herein can provide a way to enhance and/or stabilize the immunosuppressive effects of a T cell in order to treat the autoimmune disease.
[0005] In general, one aspect of this document features a method for increasing T cell function, where the method includes introducing into a T cell: (i) a first nucleic acid sequence encoding a FOXP3 polypeptide; and (ii) a second nucleic acid sequence encoding one or more transcription factors. In some embodiments, the one or more transcription activators, when present in a mammalian cell, elicit a T reg phenotype in the mammalian cell as compared to when the one or more transcription factors is/are not present in the mammalian cell. In some embodiments, the first nucleic acid sequence can include a mutation that results in nuclear localization of the FOXP3 polypeptide. In some embodiments, the mutation that results in nuclear localization of the FOXP3 polypeptide can be in a sequence encoding a nuclear export sequence. In some embodiments, the nuclear export sequence can include an amino acid substitution selected from the group of L69A, L71A, L74A, L76A, L242A, L246A, and L248A. In some embodiments, the first nucleic acid sequence can include a mutation that results in stabilization of the FOXP3 polypeptide. In some embodiments, the mutation that results in stabilization of the FOXP3 polypeptide can change the level of phosphorylation of the FOXP3 polypeptide compared to FOXP3 polypeptide not having the mutation. In some embodiments, the mutation can result in the expression of a FOXP3 polypeptide having an amino acid substitution selected from the group of S19A, S33A, S57A, S58A, S59A, T115A, S418D, and S422A. In some embodiments, the mutation that results in the stabilization of the FOXP3 polypeptide can change the level of acetylation of the FOXP3 polypeptide compared to FOXP3 polypeptide that not having the mutation. In some embodiments, the mutation can result in the production of a FOXP3 polypeptide having an amino acid substitution mutation selected from the group of K31R, K206R, K216R, K227R, K250R, K252R, K268R, and K277R. In some embodiments, the one or more transcription factors can be selected from the group of: BLIMIP1, EOS, ROR-gt, FOXO1, GATA1, HELIOS, ID2, ID3, IRF4, LEF1, SATB1, GATA3, NFATc2, RUNX1, BC111b, Foxp1, Fox4, BACH2, STAT3, and XBP1. In some embodiments, the one or more transcription factors can be selected from selected form the group of: BLIMIP1, EOS, GATA1, HELIOS, GATA3, and NFATc2. In some embodiments, the transcription factor can be BLIMP-1.
[0006] In some embodiments, the introducing step further includes introducing a nucleic acid construct, where the nucleic acid construct includes the first nucleic acid sequence and the second nucleic acid sequence. In some embodiments, the nucleic acid construct can further include a promoter operably linked to the first nucleic acid sequence. In some embodiments, the first nucleic acid sequence can be 5' positioned relative to the second nucleic acid sequence in the nucleic acid construct. In some embodiments, the nucleic acid construct further can include an additional nucleic acid sequence between the first nucleic acid sequence and the second nucleic acid sequence, where the additional nucleic acid sequence operably links the second nucleic acid sequence to the first nucleic acid sequence. In some embodiments, the second nucleic acid sequence is 5' positioned relative to the first nucleic acid sequence in the nucleic acid construct. In some embodiments, the nucleic acid construct further includes an additional nucleic acid sequence between the second nucleic acid sequence and the first nucleic acid sequence, where the additional nucleic acid sequence operably links the first nucleic acid sequence to the second nucleic acid sequence. In some embodiments, the additional nucleic acid sequence can encode an internal ribosome entry site (IRES) sequence or a self-cleaving amino acid. In some embodiments, the additional nucleic acid sequence can include a promoter or enhancer.
[0007] In some embodiments, the introducing step further includes introducing a third nucleic acid sequence encoding a therapeutic gene product into the T cell, where the third nucleic acid sequence is operably linked to a promoter. In some embodiments, the therapeutic gene product can be an antigen-binding antibody fragment or antibody that is capable of binding to an IL-6, an IL-6R, an IFN alpha receptor, or a TGF beta receptor polypeptide. In some embodiments, the therapeutic gene product can be an antigen-binding fragment or antibody that is capable of binding to a IL-6 polypeptide or an IL-6R polypeptide.
[0008] In some embodiments, the nucleic acid sequence construct further includes a third nucleic acid sequence encoding the therapeutic gene product. In some embodiments, the introducing step further can include introducing a third nucleic acid sequence encoding a therapeutic gene product into the T cell, where the third nucleic acid sequence is operably linked to a promoter. In some embodiments, the therapeutic gene product can be an antigen-binding antibody fragment or antibody that is capable of binding to an IL-6, an IL-6R, an IFN alpha receptor, or a TGF beta receptor polypeptide. In some embodiments, the therapeutic gene product is an antigen-binding fragment or antibody that is capable of binding to an IL-6 polypeptide or an IL-6R polypeptide. In some embodiments, the third sequence can be 5' positioned relative to the first sequence and the second sequence, where the third sequence is operably linked a promoter. In some embodiments, the third sequence can be 3' positioned relative to the first and second sequence, where the third sequence is operably linked to the first sequence and/or the second sequence.
[0009] In some embodiments, the introducing step further includes introducing a fourth nucleic acid sequence encoding a binding agent into the T cell, where the fourth nucleic acid sequence is operably linked to a promoter. In some embodiments, the nucleic acid construct further includes a fourth nucleic acid sequence encoding a binding agent. In some embodiments, the binding agent can be an antibody or antigen-binding fragment. In some embodiments, the antigen-binding domain can be an antigen-binding fragment selected from the group of a Fab, a F(ab')2 fragment, a scFV, a scab, a dAb, a single domain heavy chain antibody, and a single domain light chain antibody. In some embodiments, the antigen-binding fragment can be a scFv that is capable of binding to an antigen on an autoimmune cell. In some embodiments, the scFv is capable of binding to a cell adhesion molecule. In some embodiments, the cell adhesion molecule can be ICAM-1, VCAM-1, or MADCAM-1. In some embodiments, the binding agent can be a LFA-1 polypeptide. In some embodiments, the binding agent is a chimeric antigen receptor, where the chimeric antigen receptor includes an extracellular domain, a transmembrane domain, and an intracellular domain, where the extracellular domain includes an antibody or antigen-binding fragment capable of binding to an antigen on an autoimmune cell, and where the intracellular domain includes a cytoplasmic signaling domain and one or more co-stimulatory domains. In some embodiments, the antigen-binding domain is an antigen-binding fragment can be selected from the group of a Fab, a F(ab')2 fragment, a scFV, a scAb, a dAb, a single domain heavy chain antibody, and a single domain light chain antibody. In some embodiments, the antigen-binding fragment can be a scFv that is capable of binding to an antigen on an autoimmune cell. In some embodiments, the scFv can be capable of binding to a cell adhesion molecule. In some embodiments, the cell adhesion molecule can be ICAM-1, VCAM-1, or MADCAM-1. In some embodiments, the cytoplasmic signaling domain can be a CD3 zeta domain. In some embodiments, the co-stimulatory domain can include at least one of a CD48, 4-1BB, ICOS, X-40, or CD27 domain. In some embodiments, the fourth sequence can be 5' positioned relative to the first sequence and the second sequence, where the fourth sequence is operably linked a promoter. In some embodiments, the fourth sequence can be 3' positioned relative to the first and second sequence, where the fourth sequence is operably linked to the first sequence and/or the second sequence.
[0010] In some embodiments, the nucleic acid construct further includes a third sequence encoding any of the therapeutic gene products described herein and a fourth sequence encoding any of the binding agents described herein. In some embodiments, the third sequence can be operably linked to a promoter and/or operably linked the first sequence and/or second sequence, and where the fourth sequence is operably linked to a promoter and/or operably linked the first sequence and/or second sequence.
[0011] In some embodiments, the nucleic acid construct can include a viral vector selected from the group of a lentiviral vector, a retroviral vector, an adenoviral vector, or an adeno-associated viral (AAV) vector. In some embodiments, the viral vector can be a lentiviral vector. In some embodiments, the introducing step includes viral transduction.
[0012] In some embodiments, the T cell is a CD4.sup.+ T cell or a CD4.sup.+/CD45RA.sup.+ T cell. In some embodiments, the method further includes: obtaining a T cell from a patient or obtaining T cells allogenic to the patient. In some embodiments, the method further includes: treating the obtained T cells to isolate a population of cells enriched for CD4.sup.+ T cells or CD4.sup.+/CD45RA.sup.+ T cells.
[0013] In another aspect, this document features a T cell produced by any of the methods described herein. In another aspect, this document features a composition including any of the T cells described herein.
[0014] In another aspect, this document features a T-cell including: a first nucleic acid sequence encoding a FOXP3 polypeptide; and a second nucleic acid sequence encoding one or more transcription factors. In some embodiments, the one or more transcription factors, when present in a mammalian cell, elicit a T reg phenotype in the mammalian cell as compared to when the transcription factor is not present in the mammalian cell. In some embodiments, the nuclear export sequence of the FOX3P polypeptide can include an amino acid substitution selected from the group of L69A, L71A, L74A, L76A, L242A, L246A, and L248A. In some embodiments, the first nucleic acid sequence can include a mutation that results in stabilization of the FOXP3 polypeptide. In some embodiments, the mutation that results in stabilization of the FOXP3 polypeptide can change the level of phosphorylation of the FOXP3 polypeptide compared to FOXP3 polypeptide not having the mutation. In some embodiments, the mutation results in the production of a FOXP3 polypeptide having an amino acid substitution selected from the group of S19A, S33A, S57A, S58A, S59A, T115A, S418D, and S422A. In some embodiments, the mutation that results in the stabilization of the FOXP3 polypeptide can change the level of acetylation of the FOXP3 polypeptide compared to FOXP3 polypeptide that not having the mutation. In some embodiments, the mutation results in the production of a FOXP3 polypeptide having an amino acid substitution mutation selected from the group of K31R, K206R, K216R, K227R, K250R, K252R, K268R, and K277R. In some embodiments, the one or more transcription factors can be selected from the group of: BLIMP1, EOS, ROR-gt, FOXO1, GATA1, HELIOS, ID2, ID3, IRF4, LEF1, SATB1, GATA3, NFATc2, RUNX1, BC111b, Foxp1, Fox4, BACH2, STAT3, and XBP1. In some embodiments, the one or more transcription factors can be selected from selected form the group of: BLIMP1, EOS, GATA1, HELIOS, GATA3, and NFATc2. In some embodiments, the transcription factor can be BLIMP-1. In some embodiments, the first nucleic acid sequence can be operably linked to a promoter. In some embodiments, the second nucleic acid sequence can be operably linked to a promoter.
[0015] In some embodiments, the T-cell further includes a third nucleic acid sequence encoding a therapeutic gene product into the T cell, where the third nucleic acid sequence is operably linked to a promoter. In some embodiments, the therapeutic gene product can be an antigen-binding antibody fragment or antibody that is capable of binding to an IL-6, an IL-6R, an IFN alpha receptor, or a TGF beta receptor polypeptide. In some embodiments, the therapeutic gene product can be an antigen-binding fragment or antibody that is capable of binding to a IL-6 polypeptide or an IL-6R polypeptide.
[0016] In some embodiments, the T-cell further includes introducing a fourth nucleic acid sequence encoding a binding agent into the T cell, where the fourth nucleic acid sequence is operably linked to a promoter. In some embodiments, the binding agent can be an antibody or antigen-binding fragment. In some embodiments, the antigen-binding domain can be an antigen-binding fragment selected from the group of a Fab, a F(ab')2 fragment, a scFV, a scAb, a dAb, a single domain heavy chain antibody, and a single domain light chain antibody. In some embodiments, the antigen-binding fragment can be a scFv that is capable of binding to an antigen on an autoimmune cell. In some embodiments, the scFv is capable of binding to a cell adhesion molecule. In some embodiments, the cell adhesion molecule can be ICAM-1, VCAM-1, or MADCAM-1. In some embodiments, the binding agent can be a LFA-1 polypeptide.
[0017] In some embodiments, the binding agent is a chimeric antigen receptor, where the chimeric antigen receptor includes an extracellular domain, a transmembrane domain, and an intracellular domain, where the extracellular domain includes an antibody or antigen-binding fragment capable of binding to an antigen on an autoimmune cell, and where the intracellular domain includes a cytoplasmic signaling domain and one or more co-stimulatory domains. In some embodiments, the antigen-binding domain can be an antigen-binding fragment selected from the group of a Fab, a F(ab')2 fragment, a scFV, a scAb, a dAb, a single domain heavy chain antibody, and a single domain light chain antibody. In some embodiments, the antigen-binding fragment can be a scFv that is capable of binding to an antigen on an autoimmune cell. In some embodiments, the scFv is capable of binding to a cell adhesion molecule. In some embodiments, the cell adhesion molecule can be ICAM-1, VCAM-1, or MADCAM-1. In some embodiments, the cytoplasmic signaling domain can be a CD3 zeta domain. In some embodiments, the co-stimulatory domain can include at least one of a CD48, 4-1BB, ICOS, X-40, or CD27 domain.
[0018] In another aspect, this document features a composition including a T cell produced using any of the methods described herein.
[0019] In another aspect, this document features a method of producing a T cell population expressing an exogenous FOXP3 polypeptide and one or more transcription factors, where the method includes culturing a T cell (e.g., any of the exemplary T cells described herein) in growth media under conditions sufficient to expand the population of T cells.
[0020] In another aspect, this document features a population of T cells produced using any of the methods described herein. In another aspect, this document features a composition including the population of T cells produced using any of the methods described herein.
[0021] In another aspect, this document features a vector including a first nucleic acid sequence encoding a FOXP3 polypeptide and a second nucleic acid sequence encoding a one or more transcription factors. In some embodiments, the one or more transcription factors, when present in a mammalian cell, elicit a T reg phenotype in the mammalian cell as compared to when the transcription factor is not present in the mammalian cell. In some embodiments, the nuclear export sequence of the FOX3P polypeptide can include an amino acid substitution selected from the group of L69A, L71A, L74A, L76A, L242A, L246A, and L248A. In some embodiments, the first nucleic acid sequence can include a mutation that results in stabilization of the FOXP3 polypeptide. In some embodiments, the mutation that results in stabilization of the FOXP3 polypeptide can change the level of phosphorylation of the FOXP3 polypeptide compared to FOXP3 polypeptide not having the mutation. In some embodiments, the mutation results in the production of a FOXP3 polypeptide having an amino acid substitution selected from the group of S19A, S33A, S57A, S58A, S59A, T115A, S418D, and S422A. In some embodiments, the mutation that results in the stabilization of the FOXP3 polypeptide can change the level of acetylation of the FOXP3 polypeptide compared to FOXP3 polypeptide that not having the mutation. In some embodiments, the mutation can result in the production of a FOXP3 polypeptide having an amino acid substitution selected from the group of K31R, K206R, K216R, K227R, K250R, K252R, K268R, and K277R. In some embodiments, the one or more transcription factors can be selected from the group of: BLIMIP1, EOS, ROR-gt, FOXO1, GATA1, HELIOS, ID2, ID3, IRF4, LEF1, SATB1, GATA3, NFATc2, RUNX1, BC111b, Foxp1, Fox4, BACH2, STAT3, and XBP1. In some embodiments, the one or more transcription factors can be selected from selected form the group of: BLIMIP1, EOS, GATA1, HELIOS, GATA3, and NFATc2. In some embodiments, the transcription factor can be BLIMP-1.
[0022] In some embodiments, the vector further includes a promoter operably linked to the first nucleic acid sequence. In some embodiments, the first nucleic acid sequence can be 5' positioned relative to the second nucleic acid in the vector. In some embodiments, the vector further includes an additional nucleic acid sequence between the first nucleic acid sequence and the second nucleic acid sequence, where the additional nucleic acid sequence operably links the second nucleic acid sequence to the first nucleic acid sequence. In some embodiments, the second nucleic acid sequence can be 5' positioned relative to the first nucleic acid sequence in the vector. In some embodiments, the vector further includes an additional nucleic acid sequence between the second nucleic acid sequence and the first nucleic acid sequence, where the additional nucleic acid sequence operably links the first nucleic acid sequence to the second nucleic acid sequence. In some embodiments, the additional nucleic acid sequence can encode an internal ribosome entry site (IRES) sequence or a self-cleaving amino acid. In some embodiments, the additional nucleic acid sequence can include a promoter or enhancer.
[0023] In some embodiments, the vector further includes a third nucleic acid sequence encoding a therapeutic gene product. In some embodiments, the therapeutic gene product can be an antigen-binding antibody fragment or antibody that is capable of binding to an IL-6, an IL-6R, an IFN alpha receptor, or a TGF beta receptor polypeptide. In some embodiments, the therapeutic gene product can be an antigen-binding fragment or antibody that is capable of binding to an IL-6 polypeptide or an IL-6R polypeptide. In some embodiments, the third nucleic acid sequence can be 5' positioned relative to the first sequence and the second sequence, where the third nucleic acid sequence is operably linked to a promoter. In some embodiments, the third nucleic acid sequence can be 3' positioned relative to the first and second nucleic acid sequence, where the third nucleic acid sequence is operably linked to the first nucleic acid sequence and/or the second nucleic acid sequence.
[0024] In some embodiments, the vector further includes a fourth nucleic acid sequence encoding a binding agent. In some embodiments, the binding agent can be an antibody or antigen-binding fragment. In some embodiments, the antigen-binding domain can be an antigen-binding fragment selected from the group of a Fab, a F(ab')2 fragment, a scFV, a scAb, a dAb, a single domain heavy chain antibody, and a single domain light chain antibody. In some embodiments, the antigen-binding fragment can be a scFv that is capable of binding to an antigen on an autoimmune cell. In some embodiments, the scFv is capable of binding to a cell adhesion molecule. In some embodiments, the cell adhesion molecule can be ICAM-1, VCAM-1, or MADCAM-1. In some embodiments, the binding agent can be a LFA-1 polypeptide.
[0025] In some embodiments, the binding agent is a chimeric antigen receptor, where the chimeric antigen receptor includes an extracellular domain, a transmembrane domain, and an intracellular domain, where the extracellular domain includes an antibody or antigen-binding fragment capable of binding to an antigen on an autoimmune cell, and where the intracellular domain includes a cytoplasmic signaling domain and one or more co-stimulatory domains. In some embodiments, the antigen-binding domain can be an antigen-binding fragment selected from the group of a Fab, a F(ab')2 fragment, a scFV, a scAb, a dAb, a single domain heavy chain antibody, and a single domain light chain antibody. In some embodiments, the antigen-binding fragment can be a scFv that is capable of binding to an antigen on an autoimmune cell. In some embodiments, the scFv is capable of binding to a cell adhesion molecule. In some embodiments, the cell adhesion molecule can be ICAM-1, VCAM-1, or MADCAM-1. In some embodiments, the cytoplasmic signaling domain can be a CD3 zeta domain. In some embodiments, the co-stimulatory domain includes at least one of a CD48, 4-1BB, ICOS, X-40, or CD27 domain.
[0026] In some embodiments, the fourth nucleic acid sequence can be 5' positioned relative to the first nucleic acid sequence and the second nucleic acid sequence, where the fourth nucleic acid sequence is operably linked a promoter. In some embodiments, the fourth nucleic acid sequence can be 3' positioned relative to the first and second nucleic acid sequence, where the fourth nucleic acid sequence is operably linked to the first nucleic acid sequence and/or the second nucleic acid sequence. In some embodiments, the third nucleic acid sequence is operably linked to a promoter and/or operably linked the first nucleic acid sequence and/or second nucleic acid sequence, and where the fourth nucleic acid sequence is operably linked to a promoter and/or operably linked the first nucleic acid sequence and/or second nucleic acid sequence.
[0027] In some embodiments, the vector includes a viral vector selected from the group of a lentiviral vector, a retroviral vector, an adenoviral vector, or an adeno-associated viral (AAV) vector. In some embodiments, the viral vector can be a lentiviral vector.
[0028] In another aspect, this document features a composition including any of the vectors described herein. In another aspect, this document features a kit including any of the compositions described herein.
[0029] In another aspect, this document features a method of treating an autoimmune disease or disorder in a patient including administering any of the T cells described herein, or any of the compositions described herein. In some embodiments, the subject can be previously diagnosed or identified as having an autoimmune disease or disorder. In some embodiments, the autoimmune disease or disorder can be lupus, rheumatoid arthritis, multiple sclerosis, insulin dependent diabetes mellitis, myasthenia gravis, Graves disease, autoimmune hemolytic anemia, autoimmune thrombocytopenia purpura, Goodpasture's syndrome, pemphigus vulgaris, acute rheumatic fever, post-streptococcal glomerulonephritis, Crohn's disease, Celiac disease, or polyarteritis nodosa. In some embodiments, the administering of the autologous or allogenic T cell population can include intravenous injection or intravenous infusion. In some embodiments, the administering can result in amelioration of one or more symptoms of the autoimmune disease or disorder.
[0030] Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention pertains. Although methods and materials similar or equivalent to those described herein can be used to practice the invention, suitable methods and materials are described below. All publications, patent applications, patents, and other references mentioned herein are incorporated by reference in their entirety. In case of conflict, the present specification, including definitions, will control. In addition, the materials, methods, and examples are illustrative only and not intended to be limiting.
[0031] The details of one or more embodiments of the invention are set forth in the accompanying drawings and the description below. Other features, objects, and advantages of the invention will be apparent from the description and drawings, and from the claims.
DESCRIPTION OF THE DRAWING
[0032] FIG. 1 is a diagram showing an exemplary targetable cell with enforced expression of a FOXP3 polypeptide. Enforced expression of a FOXP3 polypeptide results in a core Treg suppressive program (e.g., IL-2 consumption and increase in CD25 expression, an increase in adenosine, an increase in CD39 expression, and expression of CTLA-4).
[0033] FIG. 2 is a diagram showing an exemplary targetable cell with enforced expression of a FOXP3 polypeptide and a therapeutic gene product. Expression of a therapeutic gene product in addition to a FOXP3 polypeptide can result in enhancement of a core Treg program. Examples of suitable therapeutic gene products include, without limitation, IL6R scFv, IFN.alpha.R scFv, IL-10, IL-4, IL-13, and any other anti-fibrotic-related output.
DETAILED DESCRIPTION
[0034] This document provides methods and materials that can be used to treat mammals identified as having an autoimmune disease. For example, this document provides materials and methods for producing a T cell containing a FOXP3 polypeptide and one or more transcription factors (miRNA). In another example, this document provides materials and methods for producing a T cell containing a FOXP3 polypeptide, one or more transcription factors, and a therapeutic gene product. In a third example, this document also provides materials and methods for producing a T cell containing a FOXP3 polypeptide, one or more transcription factors, and a binding agent. In a fourth example, this document provides materials and methods for producing a T cell containing a FOXP3 polypeptide, one or more transcription factors, a therapeutic gene product, and a binding agent. In addition, this document provides methods and materials for treating a mammal having an autoimmune disease, where the methods include administering to the mammal an effective amount of a T cell produced using any of the methods described herein.
[0035] This document provides methods and materials for introducing into a T cell (e.g., CD4.sup.+ T cell, CD4.sup.+CD45RA.sup.+ T cell, CD4.sup.+ CD62L.sup.+ T cell, or central memory T cell) a first nucleic acid sequence encoding a FOXP3 polypeptide and a second nucleic acid sequence encoding one or more transcription factors. In some embodiments, the one or more transcription factors, when present in a mammalian cell, elicits a T reg phenotype in the mammalian cell as compared to when the transcription factor(s) is/are not present in the mammalian cell.
[0036] In some embodiments, a first nucleic acid sequence encoding a FOXP3 polypeptide having one or more mutations is introduced into a T cell (e.g., CD4.sup.+ T cell, CD4.sup.+CD45RA.sup.+ T cell, CD4.sup.+ CD62L.sup.+ T cell, or central memory T cell). For example, a mutation in the first nucleic acid sequence encoding a FOXP3 polypeptide can include, without limitation, mutations that result in an amino acid substitution that changes the stability (e.g., level of phosphorylation or acetylation), function (e.g., transcriptional regulation), or sub-cellular localization (e.g., nuclear localization) of the encoded FOXP3 polypeptide.
[0037] In some embodiments, a FOXP3 polypeptide can have an amino acid substitution in one or more nuclear export sequences (NES) that can result in nuclear localization of the FOXP3 polypeptide. Transducing cells with a FOXP3 polypeptide having one or more amino acid substitutions, amino acid insertions, and/or amino acid deletions in the nuclear export sequences can result in establishment, maintenance, or enhancement of a FOXP3 polypeptide-dependent expression profile that is indicative of expression profiles seen in native Treg cells (e.g., Treg cells isolated from a healthy human). In some cases, a cell (e.g., a CD4.sup.+ T cell) with a FOXP3 polypeptide-dependent expression profile can have increased immunosuppressive function. For example, a cell transduced with a FOXP3 polypeptide having one or more amino acid substitutions, amino acid insertions, and/or amino acid deletions as described herein can have increased expression of genes that are transcriptional targets of a FOXP3. Increased expression of these genes (e.g., Il-2, Ctla-4, and Tnfrsf18) can result in increased Treg cell function (e.g., inhibition of responder cell proliferation). In some embodiments, a FOXP3 polypeptide can having one or more amino acid substitutions, amino acid insertions, and/or amino acid deletions within a sequence encoding a NES. In cases where the FOXP3 polypeptide includes one or more amino acid deletions, the one or more deletions can be within a part of a NES (e.g., deletion of a part of a NES, deletion of an entire NES, or deletion of a larger fragment containing a NES sequence (e.g., corresponding to exon 2 or exon 7 of a FOXP3 polypeptide). For example, a FOXP3 polypeptide having the amino acids corresponding to exon 2-deleted (FOXP3d2), amino acids corresponding to exon 7 deleted (FOXP3d7), or amino acids corresponding to exon 2 and 7-deleted (FOXP3d2d7) can result in the nuclear localization of the FOXP3 polypeptide. In some embodiments, point mutations in the first nucleic acid sequence encoding the nuclear export sequences (e.g., NES1, having an amino acid sequence set forth in SEQ ID NO: 4, and NES2, having the amino acid sequence of SEQ ID NO: 5) can be any mutation (e.g., nucleic acid substitution, insertion, and/or deletion) that results in a change within the amino acid sequence of NES1 and/or NES2 and renders the nuclear export signal non-functional. Amino acid substitutions in NES1 and/or NES2 that can result in nuclear localization of a FOXP3 polypeptide include, without limitation: of L69A, L71A, L74A, L76A, L242A, L246A, and L248A. FOXP3 polypeptides harboring any one or more of these amino acid substitutions, amino acid insertions, and/or amino acid deletions can sequestered to the nucleus.
[0038] In some embodiments, the first nucleic acid sequence encoding the FOXP3 polypeptide can encode one or more fragments of a full length FOXP3 polypeptide (e.g., a full length FOXP3 polypeptide such as version NP_001107849.1). In some embodiments, a cell can be transduced with a first nucleic acid sequence encoding a FOXP3 polypeptide that includes at least the regions of FOXP3 that have DNA-binding properties (e.g., polypeptide fragments of FOXP3 that can bind to a ATAACA DNA sequence) (Li et al., Acta Biochim. Biophysc. Sin., 49(9):792-99 (2017)).
[0039] In some embodiments, an amino acid substitution in a FOXP3 polypeptide that changes the level of phosphorylation can stabilize the FOXP3 polypeptide (e.g., increase the half-life of the FOXP3 polypeptide). For example, a mutation in a first nucleic acid sequence encoding a FOXP3 polypeptide can result in an amino acid substitution that changes the level of phosphorylation of the FOXP3 polypeptide compared to a FOXP3 polypeptide not having the amino acid substitution. Non-limiting examples of amino acid substitutions that can change the level of phosphorylation of the FOXP3 polypeptide include S19A, S33A, S57A, S58A, S59A, T115A, S418D, and S422A.
[0040] In some embodiments, an amino acid substitution in a FOXP3 polypeptide is a phosphomimetic amino acid substitution. Phosphomimetics are amino acid substitutions that mimic a phosphorylated polypeptide or can encourage phosphorylation at a particular amino acid position, thereby activating or deactivating the polypeptide. For example, the phosphorylation of Ser418 can be enforced by a phospho-serine mimetic substitution of that residue into an alanine or aspartate. A mutation can be made in the first nucleic acid sequence encoding a FOXP3 polypeptide to produce a FOXP3 polypeptide having the S418D substitution. The S418D residue then serves as phosphomimetic amino acid residue. Additional amino acid residues that can be substituted to produce phosphomimetic amino acid residues include serines at positions 19, 33, 41, 88, and 422, threonines at sites 114 and 175 in FOXP3. See, Morawski, et al., J Biol Chem., 288(34): 24494-24502 (2013). For example, phosphomimetics of these sites can be engineered by substituting the serine or threonine for alanine. These phosphomimetics can enhance the stability and immunosuppressive activity of a FOXP3 polypeptide.
[0041] In some embodiments, an amino acid substitution in a FOXP3 polypeptide that changes the level of acetylation can stabilize the FOXP3 polypeptide (e.g., increase the half-life of the FOXP3 polypeptide). For example, a mutation in a first nucleic acid sequence encoding a FOXP3 polypeptide can result in an amino acid substitution that changes the level of acetylation of the FOXP3 polypeptide compared to a FOXP3 polypeptide not having the amino acid substitution. Non-limiting examples of amino acid substitutions that can change the level of acetylation of the FOXP3 polypeptide include K31R, K206R, K216R, K227R, K250R, K252R, K268R, and K277R.
[0042] In some embodiments, a second nucleic acid encoding one or more transcription factors is introduced into a T cell (e.g., CD4.sup.+ T cell, CD4.sup.+CD45RA.sup.+ T cell, CD4.sup.+ CD62L.sup.+ T cell, or central memory T cell) along with the first nucleic acid sequence encoding the FOXP3 polypeptide. In some embodiments, introducing a first nucleic acid sequence encoding a FOXP3 polypeptide and a second nucleic acid sequence encoding one or more transcription factors into a CD4.sup.+ T cell enhances the suppressive activity of the T cell. In some embodiments, introducing a second nucleic acid sequence encoding one or more transcription factors into a CD4.sup.+ T cell elicits a T reg phenotype (e.g., immune suppression phenotype) in the T cell as compared to when the one or more transcription factors is/are not present in the mammalian cell. For example, introducing a second nucleic acid sequence encoding an NFATC2 polypeptide into a T cell (e.g., CD4.sup.+ T cell or any of the other exemplary T cells described herein) can induce a T reg phenotype (e.g., immune suppression phenotype) in the T cell. In another example, introducing a second nucleic acid sequence encoding a GATA3 polypeptide into a T cell (e.g., CD4.sup.+ T cell or any of the other exemplary T cells described herein) can induce a T reg phenotype (e.g., immune suppression phenotype) in the T cell. Non-limiting examples of transcription factors that can be used to enhance the T reg phenotype of a T cell include BLIMP1, EOS, ROR-.gamma.t, FOXO1, GATA1, HELIOS, ID2, ID3, IRF4, LEF1, SATB1, GATA3, NFATc2, RUNX1, BC111b, Foxp1, Fox4, BACH2, STAT3, and XBP1. For example, a first nucleic acid sequence encoding the FOXP3 polypeptide and a second nucleic acid sequence encoding BLIMP-1 polypeptide can be introduced into a T cell (e.g., CD4.sup.+ T cell, CD4.sup.+CD45RA.sup.+ T cell, CD4.sup.+ CD62L.sup.+ T cell, or central memory T cell). Dntmt3a is responsible for methylation of genomic DNA encoding FOXP3 causing downregulation of FOXP3 and reducing the immunosuppressive functionality of the T cell. BLIMP1 blocks the upregulation of Dnmt3a. (See Garg, et al., Cell Reports, 26:1854-1868 (2019)). Expression of BLIMIP1 prevents methylation (e.g., silencing) of FOXP3 thereby enabling continued expression of FOXP3 and maintenance of the T reg phenotype in the T cell. A T reg phenotype can include, e.g., one or more of IL-2 consumption, an increase in CD25 expression, an increase in adenosine, an increase in CD39 expression, and expression of CTLA-4. Additional markers of a T reg phenotype are known in the art.
[0043] This document provides methods and materials for introducing into a T cell (e.g., CD4.sup.+ T cell, CD4.sup.+CD45RA.sup.+ T cell, CD4.sup.+ CD62L.sup.+ T cell, or central memory T cell) a first nucleic acid sequence encoding a FOXP3 polypeptide (e.g., any of the exemplary FOXP3 polypeptides described herein) and a second nucleic acid sequence encoding one or more transcription factors (e.g., any of the exemplary transcription factors described herein), and a therapeutic gene product. Any appropriate therapeutic gene product that enhances the immunosuppressive effects of a T cell (e.g., a CD4.sup.+CD45.sup.+ T cell) can be used. Examples of therapeutic gene products include, without limitation, antigen or antigen-binding fragments directed to interferon alpha receptor 1 (IFNAR1), interleukin 10 (IL-10, interleukin 4 (IL-4), interleukin 13 (IL-13), interleukin 6 (IL-6), IL-6 receptor (IL-6R), and any other anti-fibrotic agent. In some embodiments, the therapeutic gene product can enhance the immunosuppressive effect of the transduced cell. For example, a therapeutic gene product can be any polypeptide or other agent that prohibits an IL-6 polypeptide from binding to an IL-6 receptor (IL-6R). In such cases, a therapeutic gene product can be an antagonist for IL-6R (e.g., an antibody or antigen-binding fragment that binds to IL-6R) and/or blocking antibody or antigen-binding fragment of IL-6 (e.g., a scFv capable of binding to IL-6). Additional examples of therapeutic gene products include, without limitation, cytokines, cytokine receptors, differentiation factors, growth factors, growth factor receptors, peptide hormones, metabolic enzymes, receptors, T cell receptors, chimeric antigen receptors (CARs), transcriptional activators, transcriptional repressors, translation activators, translational repressors, immune-receptors, apoptosis inhibitors, apoptosis inducers, immune-activators, and immune-inhibitors.
[0044] This document provides methods and materials for introducing into a T cell (e.g., CD4.sup.+ T cell, CD4.sup.+CD45RA.sup.+ T cell, CD4.sup.+ CD62L.sup.+ T cell, or central memory T cell) a first nucleic acid sequence encoding a FOXP3 polypeptide (e.g., any of the exemplary FOXP3 polypeptides described herein) and a second nucleic acid sequence encoding one or more transcription factors (e.g., any of the exemplary transcription factors described herein), a therapeutic gene product (e.g., any of the exemplary therapeutic gene products as described herein), and a binding agent. Also provided herein are methods and materials for introducing into a T cell (e.g., CD4.sup.+ T cell, CD4.sup.+CD45RA.sup.+ T cell, CD4.sup.+ CD62L.sup.+ T cell, or central memory T cell) a first nucleic acid sequence encoding a FOXP3 polypeptide (e.g., any of the exemplary FOXP3 polypeptides described herein) and a second nucleic acid sequence encoding one or more transcription factors (e.g., any of the exemplary transcription factors described herein), and a binding agent.
[0045] As used herein, "binding agent" refers to any variety of extracellular substance that binds with specificity to its cognate binding partner. In some embodiments, a cell (e.g., a CD4.sup.+CD45RA.sup.+ T cell) can be transduced with nucleic acid sequences encoding a mutated FOXP3 polypeptide as described herein, one or more transcription factors, and a binding agent. In some embodiments, a binding agent can be any polypeptide that enhances the immunosuppressive effect of a T cell (e.g., a CD4.sup.+CD45RA.sup.+ T cell). In some embodiments, a binding agent can be a polypeptide that binds to molecules found specifically on autoimmune cells or tissues. For example, a binding agent can be a lymphocyte function associated antigen-1 (LFA-1) polypeptide. An LFA-1 can bind to cell adhesion molecules on the surface of cells associated with autoimmune diseases. Examples of binding partners for LFA-1 include, without limitation, ICAM-1, VCAM-1 and MADCAM-1. In another example, a binding agent can be a polypeptide that binds to a VCAM-1 polypeptide (e.g., a scFv capable of binding to a VCAM-1 polypeptide). In yet another example, a binding agent can be a polypeptide that binds to a MADCAM-1 polypeptide (e.g., a scFv capable of binding to a MADCAM-1 polypeptide). In some embodiments, a binding agent can be a chimeric antigen receptor (CAR) as described herein where the CAR has an extracellular domain, a transmembrane domain, and an intracellular domain. In cases where the binding agent is a CAR, the extracellular domain includes a polypeptide capable of binding to a molecule found specifically on autoimmune cells or tissues. For example, the extracellular domain can include an scFV capable of binding to antigen on an autoimmune cell.
[0046] As used herein, "FOXP3" refers to the FOXP3 gene or protein that is a transcription factor in the Forkhead box (Fox) family of transcription factors (Sakaguchi et al., Int'l Immun., 21(10):1105-1111 (2009); Pandiyan, et al., Cytokine, 76(1):13-24 (2015)), or a variant thereof (e.g., a FOXP3 protein having one or more (e.g., one, two, three, four, five, six, seven, eight, nine, ten, eleven, twelve, thirteen, fourteen, fifteen, sixteen, seventeen, eighteen, nineteen, or twenty amino acid substitutions, amino acid deletions, or amino acid insertions as compared to a wildtype FOXP3 protein). In some embodiments, when preparing a T cell to be used in the treatment of a mammal having an autoimmune disease by administering to the mammal the T cell, FOXP3 refers to human FOXP3 or a variant thereof. An example of a wildtype human FOXP3 polypeptide includes, without limitation, NCBI reference sequence: NP 001107849.1 or a fragment thereof.
[0047] As used herein, "nuclear localization" means an increase in the level of FOXP3 (e.g., any of the FOXP3 polypeptides described herein) in the nucleus of a mammalian cell (e.g., any of the T cells described herein) as compared to a control mammalian cell (e.g., a mammalian cell expressing wildtype FOXP3 or a mammalian cell not genetically modified to include any of a first, second, third, and fourth nucleic acid sequences as described herein).
[0048] In some embodiments referring to a first nucleic acid sequence encoding a FOXP3 (e.g., full length FOXP3) polypeptide, the nucleic acid sequence is at least 70% (e.g., at least 75%, 80%, 85%, 90%, 95%, 99% and 100%) identical to:
TABLE-US-00001 (SEQ ID NO: 1) AGTTTCCCACAAGCCAGGCTGATCCTTTTCTGTCAGTCCACTTCACCAA GCCTGCCCTTGGACAAGGACCCGATGCCCAACCCCAGGCCTGGCAAGCC CTCGGCCCCTTCCTTGGCCCTTGGCCCATCCCCAGGAGCCTCGCCCAGC TGGAGGGCTGCACCCAAAGCCTCAGACCTGCTGGGGGCCCGGGGCCCAG GGGGAACCTTCCAGGGCCGAGATCTTCGAGGCGGGGCCCATGCCTCCTC TTCTTCCTTGAACCCCATGCCACCATCGCAGCTGCAGCTCTCAACGGTG GATGCCCACGCCCGGACCCCTGTGCTGCAGGTGCACCCCCTGGAGAGCC CAGCCATGATCAGCCTCACACCACCCACCACCGCCACTGGGGTCTTCTC CCTCAAGGCCCGGCCTGGCCTCCCACCTGGGATCAACGTGGCCAGCCTG GAATGGGTGTCCAGGGAGCCGGCACTGCTCTGCACCTTCCCAAATCCCA GTGCACCCAGGAAGGACAGCACCCTTTCGGCTGTGCCCCAGAGCTCCTA CCCACTGCTGGCAAATGGTGTCTGCAAGTGGCCCGGATGTGAGAAGGTC TTCGAAGAGCCAGAGGACTTCCTCAAGCACTGCCAGGCGGACCATCTTC TGGATGAGAAGGGCAGGGCACAATGTCTCCTCCAGAGAGAGATGGTACA GTCTCTGGAGCAGCAGCTGGTGCTGGAGAAGGAGAAGCTGAGTGCCATG CAGGCCCACCTGGCTGGGAAAATGGCACTGACCAAGGCTTCATCTGTGG CATCATCCGACAAGGGCTCCTGCTGCATCGTAGCTGCTGGCAGCCAAGG CCCTGTCGTCCCAGCCTGGTCTGGCCCCCGGGAGGCCCCTGACAGCCTG TTTGCTGTCCGGAGGCACCTGTGGGGTAGCCATGGAAACAGCACATTCC CAGAGTTCCTCCACAACATGGACTACTTCAAGTTCCACAACATGCGACC CCCTTTCACCTACGCCACGCTCATCCGCTGGGCCATCCTGGAGGCTCCA GAGAAGCAGCGGACACTCAATGAGATCTACCACTGGTTCACACGCATGT TTGCCTTCTTCAGAAACCATCCTGCCACCTGGAAGAACGCCATCCGCCA CAACCTGAGTCTGCACAAGTGCTTTGTGCGGGTGGAGAGCGAGAAGGGG GCTGTGTGGACCGTGGATGAGCTGGAGTTCCGCAAGAAACGGAGCCAGA GGCCCAGCAGGTGTTCCAACCCTACACCTGGCCCCTGACCTCAAGATCA AGGAAAGGAGGATGGACGAACAGGGGCCAAACTGGTGGGAGGCAGAGGT GGTGGGGGCAGGGATGATAGGCCCTGGATGTGCCCACAGGGACCAAGAA GTGAGGTTTCCACTGTCTTGCCTGCCAGGGCCCCTGTTCCCCCGCTGGC AGCCACCCCCTCCCCCATCATATCCTTTGCCCCAAGGCTGCTCAGAGGG GCCCCGGTCCTGGCCCCAGCCCCCACCTCCGCCCCAGACACACCCCCCA GTCGAGCCCTGCAGCCAAACAGAGCCTTCACAACCAGCCACACAGAGCC TGCCTCAGCTGCTCGCACAGATTACTTCAGGGCTGGAAAAGTCACACAG ACACACAAAATGTCACAATCCTGTCCCTCACTCAACACAAACCCCAAAA CACAGAGAGCCTGCCTCAGTACACTCAAACAACCTCAAAGCTGCATCAT CACACAATCACACACAAGCACAGCCCTGACAACCCACACACCCCAAGGC ACGCACCCACAGCCAGCCTCAGGGCCCACAGGGGCACTGTCAACACAGG GGTGTGCCCAGAGGCCTACACAGAAGCAGCGTCAGTACCCTCAGGATCT GAGGTCCCAACACGTGCTCGCTCACACACACGGCCTGTTAGAATTCACC TGTGTATCTCACGCATATGCACACGCACAGCCCCCCAGTGGGTCTCTTG AGTCCCGTGCAGACACACACAGCCACACACACTGCCTTGCCAAAAATAC CCCGTGTCTCCCCTGCCACTCACCTCACTCCCATTCCCTGAGCCCTGAT CCATGCCTCAGCTTAGACTGCAGAGGAACTACTCATTTATTTGGGATCC AAGGCCCCCAACCCACAGTACCGTCCCCAATAAACTGCAGCCGAGCTCC CCA.
[0049] In some embodiments referring to a first nucleic acid sequence encoding a FOXP3 polypeptide having a mutation in exon 2, the nucleic acid sequence corresponding to FOXP3 exon 2 is at least 80% (e.g., at least 85%, 90%, 95%, 99% and 100%) identical to: CCTGCCCTTGGACAAGGACCCGATGCCCAACCCCAGGCCTGGCAAGCCCTCGGCCC CTTCCTTGGCCCTTGGCCCATCCCCAGGAGCCTCGCCCAGCTGGAGGGCTGCACCCA AAGCCTCAGACCTGCTGGGGGCCCGGGGCCCAGGGGGAACCTTCCAGGGCCGAGAT CTTCGAGGCGGGGCCCATGCCTCCTCTTCTTCCTTGAACCCCATGCCACCATCGCAG CTGCAG (SEQ ID NO: 2). In some embodiments referring to a first nucleic acid sequence encoding a FOXP3 polypeptide having a deleted exon 2, the nucleic acid sequence that is deleted from full length FOXP3 polypeptide (SEQ ID NO: 1) is SEQ ID NO: 2 or a fragment of SEQ ID NO: 2.
[0050] In some embodiments referring to a first nucleic acid sequence encoding a FOXP3 polypeptide having a mutation in exon 7, the nucleic acid sequence corresponding to FOXP3 exon 7 is at least 80% (e.g., at least 85%, 90%, 95%, 99% and 100%) identical to: CTGGTGCTGGAGAAGGAGAAGCTGAGTGCCATGCAGGCCCACCTGGCTGGGAAAAT GGCACTGACCAAGGCTTCATCTGTG (SEQ ID NO: 3). In some embodiments referring to a first nucleic acid sequence encoding a FOXP3 polypeptide having a deleted exon 7, the nucleic acid sequence that is deleted from full length FOXP3 (SEQ ID NO: 1) is SEQ ID NO: 3 or a fragment of SEQ ID NO: 3. In some embodiments referring to a first nucleic acid sequence encoding a FOXP3 polypeptide having a deleted exon 2 and a deleted exon 7, the nucleic acid sequences that are deleted from full length FOXP3 (SEQ ID NO: 1) are SEQ ID NO: 2 or a fragment thereof and SEQ ID NO: 3 or a fragment thereof.
[0051] In some embodiments referring to a mutation in a nuclear export sequence of FOXP3, the amino acid sequence corresponding to the NES1 is QLQLPTLPL (SEQ ID NO: 4). In some embodiments referring to a mutation in a nuclear export sequence of FOXP3, the amino acid sequence corresponding to the NES2 is VQSLEQQLVL (SEQ ID NO: 5).
[0052] As used herein, the term "chimeric antigen receptor" or "CAR" refers to a chimeric antigen receptor comprising an extracellular domain, a transmembrane domain, and an intracellular domain. In some cases, the extracellular domain can comprise an antigen-binding domain as described herein. In some cases, the transmembrane domain can comprise a transmembrane domain derived from a natural polypeptide obtained from a membrane-binding or transmembrane protein. For example, a transmembrane domain can include, without limitation, a transmembrane domain from a T cell receptor alpha or beta chain, a CD3 zeta chain, a CD28 polypeptide, or a CD8 polypeptide. In some cases, the intracellular domain can comprise a cytoplasmic signaling domain as described herein. In some cases, the intracellular domain can comprise a co-stimulatory domain as described herein.
[0053] As used herein, "T-cell function" refers to a T cell's (e.g., any of the exemplary T cells described herein) survival, stability, and/or ability to execute its intended function. For example, a CD4.sup.+ T cell can have an immunosuppressive function. A CD4.sup.+ T cell including a first nucleic acid sequence encoding a FOXP3 polypeptide can have a FOXP3-dependent expression profile that increases the immunosuppressive function of the T cell. For example, a cell transduced with a mutated FOXP3 polypeptide as described herein can have increased expression of genes that are transcriptional targets of a FOXP3 that can result in increased T reg cell function. In some embodiments, a T cell is considered to have T reg function if the T cell exhibits or maintains the potential to exhibit an immune suppression function.
[0054] As used herein, the term "activation" refers to induction of a signal on an immune cell (e.g., a B cell or T cell) that to results in initiation of the immune response (e.g., T cell activation). In some cases, upon binding of an antigen to a T cell receptor (TCR) or an exogenous chimeric antigen receptor (CAR), the immune cell can undergo changes in protein expression that result in the activation of the immune response. In some cases, a TCR or CAR includes a cytoplasmic signaling sequence that can drive T cell activation. For example, upon binding of the antigen, a chimeric antigen receptor comprising an intracellular domain that includes a cytoplasmic signaling sequence (e.g., an immune-receptor tyrosine-based inhibition motifs (ITAM)) that can be phosphorylated. A phosphorylated ITAM results in the induction of a T cell activation pathway that ultimately results in a T cell immune response. Examples of ITAMs include, without limitation, CD3 gamma, CD3 delta, CD3 epsilon, TCR zeta, FcR gamma, FcR beta, CD5, CD22, CD79a, and CD66d.
[0055] As used herein, the term "stimulation" refers to stage of TCR or CAR signaling where a co-stimulatory signal can be used to achieve a robust and sustained TCR or CAR signaling response. As described herein, a co-stimulatory domain can be referred to as a signaling domain. In some cases, a signaling domain (e.g., co-stimulatory domain) can be a CD27, CD28, OX40, CD30, CD40, B7-H3, NKG2C, LIGHT, CD7, CD2, 4-1BB, or PD-1.
[0056] In some embodiments where the chimeric antigen receptor polypeptide includes a CD3 zeta cytoplasmic signaling domain, the CD3 zeta cytoplasmic signaling domain has an amino acid sequence that is at least 80% (e.g., at least 85%, 90%, 95%, 99% and 100%) identical to:
TABLE-US-00002 (NCBI Reference No.: NP_932170) (SEQ ID NO: 13) MKWKALFTAAILQAQLPITEAQSFGLLDPKLCYLLDGILFIYGVILTAL FLRVKFSRSADAPAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGG KPQRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLST ATKDTYDALHMQALPPR,
or a fragment thereof that has activating or stimulatory activity.
[0057] In some embodiments where the chimeric antigen receptor polypeptide includes a CD28 co-stimulatory domain, the CD28 co-stimulatory domain is at least 80% (e.g., at least 85%, 90%, 95%, 99% and 100%) identical to:
TABLE-US-00003 (SEQ ID NO: 6) IEVMYPPPYLDNEKSNGTIIHVKGKHLCPSPLFPGPSKPFWVLVVVGGV LACYSLLVTVAFIIFWVRSKRSRLLHSDYMNMTPRRPGPTRKHYQPYAP PRDFAAY.
Transcription Factors
[0058] As used herein, the term "transcription factor" refers to a polypeptide possessing one or more domains that bind to a DNA-regulatory sequence (e.g., promoter, enhancer, or silencer) to modulate the rate of gene transcription. This may result in increased or decreased gene transcription, protein synthesis, and subsequent altered cellular function.
[0059] As used herein, BLIMP1 also known as PRDM1 refers to PR/SET domain 1 polypeptide. When preparing a T cell or treating a mammal with a T cell, BLIMP1 or PRDM1 refers to human BLIMP1 or PRDM1. An example of a human BLIMP1 or PRDM1 polypeptide includes, without limitation, NCBI reference sequence: NP_001189.2. In some embodiments referring to a second nucleic acid sequence encoding a BLIMP1 (e.g., full length BLIMP1) polypeptide, the nucleic acid sequence is at least 70% (e.g., at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 99%, or at least 100%) identical to:
TABLE-US-00004 (SEQ ID NO: 7) AACACAGACAAAGTGCTGCCGTGACACTCGGCCCTCCAGTGTTGCGGAG AGGCAAGAGCAGCGACCGCGGCACCTGTCCGCCCGGAGCTGGGACGCGG GCGCCCGGGCGGCCGGACGAAGCGAGGAGGGACCGCCGAGGTGCGCGTC TGTGCGGCTCAGCCTGGCGGGGGACGCGGGGAGAATGTGGACTGGGTAG AGATGAACGAGACTTTTCTCAGATGTTGGATATTTGCTTGGAAAAACGT GTGGGTACGACCTTGGCTGCCCCCAAGTGTAACTCCAGCACTGTGAGGT TTCAGGGATTGGCAGAGGGGACCAAGGGGACCATGAAAATGGACATGGA GGATGCGGATATGACTCTGTGGACAGAGGCTGAGTTTGAAGAGAAGTGT ACATACATTGTGAACGACCACCCCTGGGATTCTGGTGCTGATGGCGGTA CTTCGGTTCAGGCGGAGGCATCCTTACCAAGGAATCTGCTTTTCAAGTA TGCCACCAACAGTGAAGAGGTTATTGGAGTGATGAGTAAAGAATACATA CCAAAGGGCACACGTTTTGGACCCCTAATAGGTGAAATCTACACCAATG ACACAGTTCCTAAGAACGCCAACAGGAAATATTTTTGGAGGATCTATTC CAGAGGGGAGCTTCACCACTTCATTGACGGCTTTAATGAAGAGAAAAGC AACTGGATGCGCTATGTGAATCCAGCACACTCTCCCCGGGAGCAAAACC TGGCTGCGTGTCAGAACGGGATGAACATCTACTTCTACACCATTAAGCC CATCCCTGCCAACCAGGAACTTCTTGTGTGGTATTGTCGGGACTTTGCA GAAAGGCTTCACTACCCTTATCCCGGAGAGCTGACAATGATGAATCTCA CACAAACACAGAGCAGTCTAAAGCAACCGAGCACTGAGAAAAATGAACT CTGCCCAAAGAATGTCCCAAAGAGAGAGTACAGCGTGAAAGAAATCCTA AAATTGGACTCCAACCCCTCCAAAGGAAAGGACCTCTACCGTTCTAACA TTTCACCCCTCACATCAGAAAAGGACCTCGATGACTTTAGAAGACGTGG GAGCCCCGAAATGCCCTTCTACCCTCGGGTCGTTTACCCCATCCGGGCC CCTCTGCCAGAAGACTTTTTGAAAGCTTCCCTGGCCTACGGGATCGAGA GACCCACGTACATCACTCGCTCCCCCATTCCATCCTCCACCACTCCAAG CCCCTCTGCAAGAAGCAGCCCCGACCAAAGCCTCAAGAGCTCCAGCCCT CACAGCAGCCCTGGGAATACGGTGTCCCCTGTGGGCCCCGGCTCTCAAG AGCACCGGGACTCCTACGCTTACTTGAACGCGTCCTACGGCACGGAAGG TTTGGGCTCCTACCCTGGCTACGCACCCCTGCCCCACCTCCCGCCAGCT TTCATCCCCTCGTACAACGCTCACTACCCCAAGTTCCTCTTGCCCCCCT ACGGCATGAATTGTAATGGCCTGAGCGCTGTGAGCAGCATGAATGGCAT CAACAACTTTGGCCTCTTCCCGAGGCTGTGCCCTGTCTACAGCAATCTC CTCGGTGGGGGCAGCCTGCCCCACCCCATGCTCAACCCCACTTCTCTCC CGAGCTCGCTGCCCTCAGATGGAGCCCGGAGGTTGCTCCAGCCGGAGCA TCCCAGGGAGGTGCTTGTCCCGGCGCCCCACAGTGCCTTCTCCTTTACC GGGGCCGCCGCCAGCATGAAGGACAAGGCCTGTAGCCCCACAAGCGGGT CTCCCACGGCGGGAACAGCCGCCACGGCAGAACATGTGGTGCAGCCCAA AGCTACCTCAGCAGCGATGGCAGCCCCCAGCAGCGACGAAGCCATGAAT CTCATTAAAAACAAAAGAAACATGACCGGCTACAAGACCCTTCCCTACC CGCTGAAGAAGCAGAACGGCAAGATCAAGTACGAATGCAACGTTTGCGC CAAGACTTTCGGCCAGCTCTCCAATCTGAAGGTCCACCTGAGAGTGCAC AGTGGAGAACGGCCTTTCAAATGTCAGACTTGCAACAAGGGCTTTACTC AGCTCGCCCACCTGCAGAAACACTACCTGGTACACACGGGAGAAAAGCC ACATGAATGCCAGGTCTGCCACAAGAGATTTAGCAGCACCAGCAATCTC AAGACCCACCTGCGACTCCATTCTGGAGAGAAACCATACCAATGCAAGG TGTGCCCTGCCAAGTTCACCCAGTTTGTGCACCTGAAACTGCACAAGCG TCTGCACACCCGGGAGCGGCCCCACAAGTGCTCCCAGTGCCACAAGAAC TACATCCATCTCTGTAGCCTCAAGGTTCACCTGAAAGGGAACTGCGCTG CGGCCCCGGCGCCTGGGCTGCCCTTGGAAGATCTGACCCGAATCAATGA AGAAATCGAGAAGTTTGACATCAGTGACAATGCTGACCGGCTCGAGGAC GTGGAGGATGACATCAGTGTGATCTCTGTAGTGGAGAAGGAAATTCTGG CCGTGGTCAGAAAAGAGAAAGAAGAAACTGGCCTGAAAGTGTCTTTGCA AAGAAACATGGGGAATGGACTCCTCTCCTCAGGGTGCAGCCTTTATGAG TCATCAGATCTACCCCTCATGAAGTTGCCTCCCAGCAACCCACTACCTC TGGTACCTGTAAAGGTCAAACAAGAAACAGTTGAACCAATGGATCCTTA AGATTTTCAGAAAACACTTATTTTGTTTCTTAAGTTATGACTTGGTGAG TCAGGGTGCCTGTAGGAAGTGGCTTGTACATAATCCCAGCTCTGCAAAG CTCTCTCGACAGCAAATGGTTTCCCCTCACCTCTGGAATTAAAGAAGGA ACTCCAAAGTTACTGAAATCTCAGGGCATGAACAAGGCAAAGGCCATAT ATATATATATATATATATCTGTATACATATTATATATACTTATTTACAC CTGTGTCTATATATTTGCCCCTGTGTATTTTGAATATTTGTGTGGACAT GTTTGCATAGCCTTCCCATTACTAAGACTATTACCTAGTCATAATTATT TTTTCAATGATAATCCTTCATAATTTATTATACAATTTATCATTCAGAA AGCAATAATTAAAAAAGTTTACAATGACTGGAAAGATTCCTTGTAATTT GAGTATAAATGTATTTTTGTCTTGTGGCCATTCTTTGTAGATAATTTCT GCACATCTGTATAAGTACCTAAGATTTAGTTAAACAAATATATGACTTC AGTCAACCTCTCTCTCTAATAATGGTTTGAAAATGAGGTTTGGGTAATT GCCAATGTTGGACAGTTGATGTGTTCATTCCTGGGATCCTATCATTTGA ACAGCATTGTACATAACTTGGGGGTATGTGTGCAGGATTACCCAAGAAT AACTTAAGTAGAAGAAACAAGAAAGGGAATCTTGTATATTTTTGTTGAT AGTTCATGTTTTTCCCCCAGCCACAATTTTACCGGAAGGGTGACAGGAA GGCTTTACCAACCTGTCTCTCCCTCCAAAAGAGCAGAATCCTCCCACCG CCCTGCCCTCCCCACCGAGTCCTGTGGCCATTCAGAGCGGCCACATGAC TTTTGCATCCATTGTATTATCAGAAAATGTGAAGAAGAAAAAAATGCCA TGTTTTAAAACCACTGCGAAAATTTCCCCAAAGCATAGGTGGCTTTGTG TGTGTGCGATTTGGGGGCTTGAGTCTGGGTGGTGTTTTGTTGTTGGTTT TTGTTGCTTTTTTTTTTTTTTTTTTTTTAATGTCAAAATTGCACAAACA TGGTGCTCTACCAGGAAGGATTCGAGGTAGATAGGCTCAGGCCACACTT TAAAAACAAACACACAAACAACAAAAAACGGGTATTCTAGTCATCTTGG GGTAAAAGCGGGTAATGAACATTCCTATCCCCAACACATCAATTGTATT TTTTCTGTAAAACTCAGATTTTCCTCAGTATTTGTGTTTTTACATTTTA TGGTTAATTTAATGGAAGATGAAAGGGCATTGCAAAGTTGTTCAACAAC AGTTACCTCATTGAGTGTGTCCAGTAGTGCAGGAAATGATGTCTTATCT AATGATTTGCTTCTCTAGAGGAGAAACCGAGTAAATGTGCTCCAGCAAG ATAGACTTTGTGTTATTCTATCTTTTATTCTGCTAAGCCCAAAGATTAC ATGTTGGTGTTCAAAGTGTAGCAAAAAATGATGTATATTTATAAATCTA TTTATACCACTATATCATATGTATATATATTTATAACCACTTAAATTGT GAGCCAAGCCATGTAAAAGATCTACTTTTTCTAAGGGCAAAAAAAAAAA AAAAAAAAAAAGAACACTCCTTTCTGAGACTTTGCTTAATACTTGGTGA CCTCACAATCACGTCGGTATGATTGGGCACCCTTGCCTACTGTAAGAGA CCCTAAAACCTTGGTGCAGTGGTGGGGACCACAAAACAACCAGGGAGGA AGAGATACATCATTTTTTAGTATTAAGGACCATCTAAGACAGCTCTATT TTTTTTTTGCCACTTTATGATTATGTGGTCACACCCAAGTCACAGAAAT AAAAAACTGACTTTACCGCTGCAATTTTTCTGTTTTCCTCCTTACTAAA TACTGATACATTACTCCAATCTATTTTATAATTATATTTGACATTTTGT TCACATCAACTAATGTTCACCTGTAGAAGAGAACAAATTTCGAATAATC CAGGGAAACCCAAGAGCCTTACTGGTCTTCTGTAACTTCCAAGACTGAC AGCTTTTTATGTATCAGTGTTTGATAAACACAGTCCTTAACTGAAGGTA AACCAAAGCATCACGTTGACATTAGACCAAATACTTTTGATTCCCAACT ACTCGTTTGTTCTTTTTCTCCTTTTGTGCTTTCCCATAGTGAGAATTTT TATAAAGACTTCTTGCTTCTCTCACCATCCATCCTTCTCTTTTCTGCCT CTTACATGTGAATGTTGAGCCCACAATCAACAGTGGTTTTATTTTTTCC TCTACTCAAAGTTAAAACTGACCAAAGTTACTGGCTTTTTACTTTGCTA GAACAACAAACTATCTTATGTTTACATACTGGTTTACAATGTTATTTAT GTGCAAATTGTCAAAATGTAAATTAAATATAAATGTTCATGCTTTACCA AAA.
[0060] As used herein, EOS also known as Ikzf4 refers to Ikaros family zinc finger 4 polypeptide. When preparing a T cell or treating a mammal with a T cell, EOS or Ikzf4 refers to human EOS or Ikzf4. An example of a human EOS or Ikzf4 polypeptide includes, without limitation, NCBI reference sequence: NP_001338018.1. In some embodiments referring to a second nucleic acid sequence encoding a EOS (e.g., full length EOS) polypeptide, the nucleic acid sequence is at least 70% (e.g., at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 99%, or at least 100%) identical to:
TABLE-US-00005 (SEQ ID NO: 8) CCCTTCTCAGGTGAAGCTGCTGATGGAGATGGAGCC GCCGCCACCGCCGCCTCTGAGCGCCCGGGTCCTGG CTCCGGCCCGGCGACTGCCGCCGCCTCAGTGACCC CACTCCCCCCGCACTGGGCCGCCCGGGCCAGAGTG GGGGACCCCCGCCCCCTCGCCTCCCTCTCCCCCAA CACTGTCCCCTCTCCCCAACCCCTCACAGCCTGCG CGCGCGCGGAGACACCTCAGTCTACATGGGGAGGA CAGAGAAGCGCAAAGAACAAGAGAAAAGATGCATC CATCTGAGATCTAAAAGGAGACAATGAGAATCTCT TTAAAATGGACATAGAAGACTGCAATGGCCGCTCC TATGTGTCTGTAGGACCAATGAAGGAATTATTGGC ATGCACTAAAGGAGATAGCAAGATGGGTCAGACAC ACATATGAGAGTCATTGGCAACACCCGGGTAATGT AAGGAATCCACGCTTCCTGGAAGGTGAGTGGCTGG GCTCACCCCTGCCTGCCACTGAGACGCAGACATGC ATACACCACCCGCACTCCCTCGCCGTTTCCAAGGC GGCGGCCGCGTTCGCACCCCAGGGTCTCACCGGCA AGGGAAGGATAATCTGGAGAGGGATCCCTCAGGAG GGTGTGTTCCGGATTTCTTGCCTCAGGCCCAAGAC TCCAACCATTTTATAATGGAATCTTTATTTTGTGA AAGTAGCGGGGACTCATCTCTGGAGAAGGAGTTCC TCGGGGCCCCAGTGGGGCCCTCGGTGAGCACCCCC AACAGCCAGCACTCTTCTCCTAGCCGCTCACTCAG TGCCAACTCCATCAAGGTGGAGATGTACAGCGATG AGGAGTCAAGCAGACTGCTGGGGCCAGATGAGCGG CTCCTGGAAAAGGACGACAGCGTGATTGTGGAAGA TTCATTGTCTGAGCCCCTGGGCTACTGTGATGGGA GTGGGCCAGAGCCTCACTCCCCTGGGGGCATCCGG CTGCCCAATGGCAAGCTCAAGTGTGACGTCTGCGG CATGGTCTGTATTGGACCCAACGTGCTCATGGTGC ACAAGCGCAGTCACACTGGTGAAAGGCCCTTCCAT TGCAACCAGTGTGGTGCCTCCTTCACCCAGAAGGG GAACCTGCTGCGCCACATCAAGCTGCACTCTGGGG AGAAGCCCTTTAAATGTCCCTTCTGCAACTATGCC TGCCGCCGGCGTGATGCACTCACTGGTCACCTCCG CACACACTCAGTCTCCTCTCCCACAGTGGGCAAGC CCTACAAGTGTAACTACTGTGGCCGGAGCTACAAA CAGCAGAGTACCCTGGAGGAGCACAAGGAGCGGTG CCATAACTACCTACAGAGTCTCAGCACTGAAGCCC AAGCTTTGGCTGGCCAACCAGGTGACGAAATACGT GACCTGGAGATGGTGCCAGACTCCATGCTGCACTC ATCCTCTGAGCGGCCAACTTTCATCGATCGTCTGG CCAATAGCCTCACCAAACGCAAGCGTTCCACACCC CAGAAGTTTGTAGGCGAAAAGCAGATGCGCTTCAG CCTCTCAGACCTCCCCTATGATGTGAACTCGGGTG GCTATGAAAAGGATGTGGAGTTGGTGGCACACCAC AGCCTAGAGCCTGGCTTTGGAAGTTCCCTGGCCTT TGTGGGTGCAGAGCATCTGCGTCCCCTCCGCCTTC CACCCACCAATTGCATCTCAGAACTCACGCCTGTC ATCAGCTCTGTCTACACCCAGATGCAGCCCCTCCC TGGTCGACTGGAGCTTCCAGGATCCCGAGAAGCAG GTGAGGGACCTGAGGACCTGGCTGATGGAGGTCCC CTCCTCTACCGGCCCCGAGGCCCCCTGACTGACCC TGGGGCATCCCCCAGCAATGGCTGCCAGGACTCCA CAGACACAGAAAGCAACCACGAAGATCGGGTTGCG GGGGTGGTATCCCTCCCTCAGGGTCCCCCACCCCA GCCACCTCCCACCATTGTGGTGGGCCGGCACAGTC CTGCCTACGCCAAAGAGGACCCCAAGCCACAGGAG GGGTTATTGCGGGGCACCCCAGGCCCCTCCAAGGA AGTGCTTCGGGTGGTGGGCGAGAGTGGTGAGCCTG TGAAGGCCTTCAAGTGTGAGCACTGCCGTATCCTC TTCCTGGACCACGTCATGTTCACTATCCACATGGG CTGCCATGGCTTCAGAGACCCTTTTGAGTGCAACA TCTGTGGTTATCACAGCCAGGACCGGTACGAATTC TCTTCCCACATTGTCCGGGGGGAGCATAAGGTGGG CTAGCAACCTCTCCCTCTCTCCTCAGTCCACCACT CCACTGCCCTGACTACAGGCATTGATCCCTGTCCC CACCATTTCCCAAGGAGTTTTGCTTTGTAGCCCTC ACTACTGGCCACCTGACCTCACACCTGACCCTGAC CCCTCCTCACCTATTCTCTTCCTCTATCCTGACCG ATGTAAGCATTGTGATGAAACAGATCTTTTGCTTA TGTTTTTCCTTTTTATCTTCTCTCATCCCAGCATA CTGAGTTATTTATTAATTAGTTGATTTATTTTTGC CTTTTTAAATTTTAACTTATATCAGTCACTTGCCA CTCCCCCACCCTCCTGTCCACAACTCCTTTCCACT TTAGGCCAATTTTTCTCTCTTAGATCTTCCAGCAG CCCCAGGGGTAGGAAGCTCCTCTTAGTACTAAGAG ACTTCAAGCTTCTTGCTTTAAGTCCTCACCCTTTA CATTATCTAATTCTTCAGTTTTGATGCTGATACCT GCCCCCGGCCCTACCTTAGCTCTGTGGCATTATAT CTCCTCTCTGGGACTCTTCAACCTGGTACTCCATA CCTCTTGTGCCCTCTCACTTTAGGCAGCTTGCACT ATTCTTGAATGAATGAAGAATTATTTCCTCATTTG GAAGTAGGAGGGACTGAAGAAATTCTCCCCAGGCA CTGTGGGACTGAGAGTCCTATTCCCCTAGTAATAG GTCATATTCCCCTAGTAATATGAGTTCTCAAAGCC TACATTCAGGATCTCCCTCTAGGATGTGATAGATC TGGTCCCTCTCCTTGAACTACCCCTCCACACGCTC TAGTCCCTTCAACCTACCGGTCTATTAAGTGGTGG CTTTTCTCTCCTTGGAGTGCCCCAATTTTATATTC TCAGGGGCCAAGGCTAGGTCTGCAACCCTCTGTCT CTGACAGATTGGGAGCCACAGGTGCCTAATTGGGA ACCAGGGCATGGGAAAGGAGTGGGTCAAAATTCTT CTCTTTCTCCTCCACCTCTCAAACTTCTTCACTAT AGTGACCTTCCTAGGCTCTCAGGGGCTCCTTCAGT CCCCATCCTATGAGAAACTAGTGGGTTGCTGCCTG ATGACAAGGGGTTGTTTCAGCCCCTCAGTCATGCT GCCTTCTGCTGCTCCCTCCCAGCAGGATTCACCCT CTCATTCCCGGGCTCCTGGGCCCTGTTCTTAGGAT CAGTGGCAGGGAGAAACGGGTATCTCTTTTCTCTC TTCTAATTTTCAGTATAACCAAAAATTATCCCAGC ATGAGCACGGGCACGTGCCCTTCACCCCATTCCAC CCTTGTTCCAGCAAGACTGGGATGGGTACAACTGA ACTGGGGTCTTCCTTTACTACCCCCTTCTACACTC AGCTCCCAGACACAGGGTAGGAGGGGGGACTGCTG GCTACTGCAGAGACCCTTGGCTATTTGAGTAACCT AGGATTAGTGAGAAGGGGCAGAAGGAGATACAACT CCACTGCAAGTGGAGGTTTCTTTCTACAAGAGTTT TCTGCCCAAGGCCACAGCCATCCCACTCTCTGCTT CCTTGAGATTCAAACCAAAGGCTGTTTTTCTATGT TTAAAGAAAAAAAAAAGTAAAAACCAAACACAACA CCTCACAAGTTGTAACTCTTGGTCCTTCTCTCTCT CCTTTTCTCTTCCCTTCCTTCCCCTTCCATCTTTC TTTCCACATGTCCTTTCCTTATTGGCTCTTTTACC TCCTACTTTTCTCACTCCCTATCAGGGATATTTTG GGGGGGGATGGTAAAGGGTGGGCTAAGGAACAGAC CCTGGGATTAGGGCCTTAAGGGCTCTGAGAGGAGT CTACCTTGCCTTCTTATGGGAAGGGAGACCCTAAA AAACTTTCTCCTCTTTGTCCTCCTTTTTCTCCCCC ACTCTGAGGTTTCCCCAAGAGAACCAGATTGGCAG GGAGAAGCATTGTGGGGCAATTGTTCCTCCTTGAC AATGTAGCAATAAATAGATGCTGCCAAGGGCAGAA AATGGGGAGGTTAGCTCAGAGCAGAGTAGTCTCTA GAGAAAGGAAGAATCCTCAACGGCACCCTGGGGTG CTAGCTCCTTTTTAGAATGTCAGCAGAGCTGAGAT
TAATATCTGGGCTTTTCCTGAACTATTCTGGTTAT TGAGCCCTTCCTGTTAGACCTACCGCCTCCCACCT CTTCTGTGTCTGCTGTGTATTTGGTGACACTTCAT AAGGACTAGTCCCTTCTGGGGTATCAGAGCCTTAG GGTGCCCCCATCCCCTTCCCCAGTCAACTGTGGCA CCTGTAACCTCCCGGAACATGAAGGACTATGCTCT GAGGCTATACTCTGTGCCCATGAGAGCAGAGACTG GAAGGGCAAGACCAGGTGCTAAGGAGGGGAGAGGG GGCATCCTGTCTCTCTCCAGACCATCACTGCACTT TAACCAGGGTCTTAGGTACAAAATCCTACTTTTCA GAGCCTTCCAGCTCTGGAACCTCAAACATCCTCAT GCTCTCTCCCAGCTCCTTTTGCATAAAAAAAAAAG TAAAGAAAAAGAAAAAAAAATACACACACACTGAA ACCCACATGGAGAAAAGAGGTGTTTCCTTTTATAT TGCTATTCAAAATCAATACCACCAACAAAATATTT CTAAGTAGACACTTTTCCAGACCTTTGTTTTTTTG TGTCAGTGTCCAAGCTGCAGATAGGATTTTGTAAT ACTTCTGGCAGCTTCTTTCCTTGTGTACATAATAT ATATATATACATATATATATATATTTTTAATCAGA AGTTATGAAGAACAAAAAGAAAAAATAAACACAGA AGCAAGTGCAATACCACCTCTCTTCTCCCTCTCTC CTAGGGTTTCCTTTGTAGCCTATGTTTGGTGTCTC TTTTGACCTTTACCCCTTCACCTCCTCCTCTCTTC TTCTGATTCCCCTCCCCCCCTTTTTTAAAGAGTTT TTCTCCTTTCTCAAGGGGAGTTAAACTAGCTTTTG AGACTTATTGCAAAGCATTTTGTATATGTAATATA TTGTAAGTAAATATTTGTGTAACGGAGATATACTA CTGTAAGTTTTGTACTGTACTGGCTGAAAGTCTGT TATAAATAAACATGAGTAATTTAACA.
[0061] As used herein, GATA1 refers to a GATA binding protein 1 polypeptide. When preparing a T cell or treating a mammal with a T cell, GATA1 refers to human GATA1. An example of a human GATA1 polypeptide includes, without limitation, NCBI reference sequence: NP_002040.1. In some embodiments referring to a second nucleic acid sequence encoding a GATA1 (e.g., full length GATA1) polypeptide, the nucleic acid sequence is at least 70% (e.g., at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 99%, or at least 100%) identical to:
TABLE-US-00006 (SEQ ID NO: 9) ACACTGAGCTTGCCACATCCCCAAGGCGGCCGAAC CCTCCGCAACCACCAGCCCAGGTTAATCCCCAGAG GCTCCATGGAGTTCCCTGGCCTGGGGTCCCTGGGG ACCTCAGAGCCCCTCCCCCAGTTTGTGGATCCTGC TCTGGTGTCCTCCACACCAGAATCAGGGGTTTTCT TCCCCTCTGGGCCTGAGGGCTTGGATGCAGCAGCT TCCTCCACTGCCCCGAGCACAGCCACCGCTGCAGC TGCGGCACTGGCCTACTACAGGGACGCTGAGGCCT ACAGACACTCCCCAGTCTTTCAGGTGTACCCATTG CTCAACTGTATGGAGGGGATCCCAGGGGGCTCACC ATATGCCGGCTGGGCCTACGGCAAGACGGGGCTCT ACCCTGCCTCAACTGTGTGTCCCACCCGCGAGGAC TCTCCTCCCCAGGCCGTGGAAGATCTGGATGGAAA AGGCAGCACCAGCTTCCTGGAGACTTTGAAGACAG AGCGGCTGAGCCCAGACCTCCTGACCCTGGGACCT GCACTGCCTTCATCACTCCCTGTCCCCAATAGTGC TTATGGGGGCCCTGACTTTTCCAGTACCTTCTTTT CTCCCACCGGGAGCCCCCTCAATTCAGCAGCCTAT TCCTCTCCCAAGCTTCGTGGAACTCTCCCCCTGCC TCCCTGTGAGGCCAGGGAGTGTGTGAACTGCGGAG CAACAGCCACTCCACTGTGGCGGAGGGACAGGACA GGCCACTACCTATGCAACGCCTGCGGCCTCTATCA CAAGATGAATGGGCAGAACAGGCCCCTCATCCGGC CCAAGAAGCGCCTGATTGTCAGTAAACGGGCAGGT ACTCAGTGCACCAACTGCCAGACGACCACCACGAC ACTGTGGCGGAGAAATGCCAGTGGGGATCCCGTGT GCAATGCCTGCGGCCTCTACTACAAGCTACACCAG GTGAACCGGCCACTGACCATGCGGAAGGATGGTAT TCAGACTCGAAACCGCAAGGCATCTGGAAAAGGGA AAAAGAAACGGGGCTCCAGTCTGGGAGGCACAGGA GCAGCCGAAGGACCAGCTGGTGGCTTTATGGTGGT GGCTGGGGGCAGCGGTAGCGGGAATTGTGGGGAGG TGGCTTCAGGCCTGACACTGGGCCCCCCAGGTACT GCCCATCTCTACCAAGGCCTGGGCCCTGTGGTGCT GTCAGGGCCTGTTAGCCACCTCATGCCTTTCCCTG GACCCCTACTGGGCTCACCCACGGGCTCCTTCCCC ACAGGCCCCATGCCCCCCACCACCAGCACTACTGT GGTGGCTCCGCTCAGCTCATGAGGGCACAGAGCAT GGCCTCCAGAGGAGGGGTGGTGTCCTTCTCCTCTT GTAGCCAGAATTCTGGACAACCCAAGTCTCTGGGC CCCAGGCACCCCCTGGCTTGAACCTTCAAAGCTTT TGTAAAATAAAACCACCAAAGTCCTGAAA.
[0062] As used herein, IKZF2 refers to a IKAROS family zinc finger 2 polypeptide. When preparing a T cell or treating a mammal with a T cell, IKZF2 refers to human IKZF2. An example of a human IKZF2 polypeptide includes, without limitation, NCBI reference sequence: NP_001072994.1. In some embodiments referring to a second nucleic acid sequence encoding a IKZF2 (e.g., full length IKZF2) polypeptide, the nucleic acid sequence is at least 70% (e.g., at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 99%, or at least 100%) identical to:
TABLE-US-00007 (SEQ ID NO: 10) GCTAACCCTGCTCCTCGCTGAAGATGGAGGAAGTA AAAACAGGATTACCCTTAGCTACAGATCCACTGCC TTAGTTTCCACCACCAACTGCAGTGCACAAACACA CGTTAGGCACAGGAAAGAAAGAAAGACAGAGGACA CATTAACAGTAAACACAAACAAAAGGGTGATGGGA TTATTTTACTGCATGCACTGCTGAGCCCGACATTG TCACCTCCTCTTTGAGGGGTTAGAAGAAGCTGAGA TCTCCCGACAGAGCTGGAAATGGTGATGAATCTTT TTTAATCAAAGGACAATTTCTTTTCATTGCACTTT GACTATGGAAACAGAGGCTATTGATGGCTATATAA CGTGTGACAATGAGCTTTCACCCGAAAGGGAGCAC TCCAATATGGCAATTGACCTCACCTCAAGCACACC CAATGGACAGCATGCCTCACCAAGTCACATGACAA GCACAAATTCAGTAAAGCTAGAAATGCAGAGTGAT GAAGAGTGTGACAGGAAACCCCTGAGCCGTGAAGA TGAGATCAGGGGCCATGATGAGGGTAGCAGCCTAG AAGAACCCCTAATTGAGAGCAGCGAGGTGGCTGAC AACAGGAAAGTCCAGGAGCTTCAAGGCGAGGGAGG AATCCGGCTTCCGAATGGTGAACGCCCCTTCCACT GTAACCAGTGTGGAGCTTCTTTTACTCAGAAGGGC AACCTTCTGAGACACATAAAGTTACACTCTGGAGA GAAGCCGTTCAAATGTCCTTTCTGTAGCTACGCCT GTAGAAGAAGGGACGCCCTCACAGGACACCTCAGG ACCCATTCTGTGGGTAAACCTCACAAGTGCAACTA CTGTGGACGAAGCTACAAGCAGCGCAGTTCACTGG AGGAGCACAAGGAACGCTGCCACAACTATCTCCAG AATGTCAGCATGGAGGCTGCTGGGCAGGTCATGAG TCACCATGTACCTCCTATGGAAGATTGTAAGGAAC AAGAGCCTATTATGGACAACAATATTTCTCTGGTG CCTTTTGAGAGACCTGCTGTCATAGAGAAGCTCAC GGGGAATATGGGAAAACGTAAAAGCTCCACTCCAC AAAAGTTTGTGGGGGAAAAGCTCATGCGATTCAGC TACCCAGATATTCACTTTGATATGAACTTAACATA TGAGAAGGAGGCTGAGCTGATGCAGTCTCATATGA TGGACCAAGCCATCAACAATGCAATCACCTACCTT GGAGCTGAGGCCCTTCACCCTCTGATGCAGCACCC GCCAAGCACAATCGCTGAAGTGGCCCCAGTTATAA GCTCAGCTTATTCTCAGGTCTATCATCCAAATAGG ATAGAAAGACCCATTAGCAGGGAAACTGCTGATAG TCATGAAAACAACATGGATGGCCCCATCTCTCTCA TCAGACCAAAGAGTCGACCCCAGGAAAGAGAGGCC TCTCCCAGCAATAGCTGCCTGGATTCCACTGACTC AGAAAGCAGCCATGATGACCACCAGTCCTACCAAG GACACCCTGCCTTAAATCCCAAGAGGAAACAAAGC CCAGCTTACATGAAGGAGGATGTCAAAGCTTTGGA TACTACCAAGGCTCCTAAGGGCTCTCTGAAGGACA TCTACAAGGTCTTCAATGGAGAAGGAGAACAGATT AGGGCCTTCAAGTGTGAGCACTGCCGAGTCCTTTT CCTAGACCATGTCATGTACACCATTCACATGGGTT GCCATGGCTACCGGGACCCACTGGAATGCAACATC TGTGGCTACAGAAGCCAGGACCGTTATGAGTTTTC ATCACACATTGTTCGAGGGGAGCACACATTCCACT AGGCCTTTTCATTCCAAAGGGGACCCCTATGAAGT AAAGAACTGCACATGAAGAAATACTGCACTTACAA TCCCACCTTTCCTCAAATGTTGACATACCTTTTAT TTTTTTTAATATTATTACTGTTGATAATTCTTATT TTGTGGAGGCAGTGTCATTTGCTCTGCCTAATTAC GATAAGGAAGAAACAGAAGAGAGAAGGGGCGGGAA TATTGTTTCTTTATCACCTGGCTTGTTTATTTTGT GGGAATTTAAGAGCAGTCCATTTCTACCAAGGCAT ATCATGCTTTGAAAAATCACTTGATTCATAAAGAT TCACCTAAGAGATTCTGATTTGCCACTGATATTCA GAATTATGATGGAAGACAGGAAAGTTCAGAGTTTT CTGGGTAGGACTTTGGTGGTTTAAAAATGGTATAA GTAACTTTATTCTTGAAAGAAGAATGTGTTTCAAA CTGTAAACCAATTTTTTGTTCTTCAGAGATCATGG AACACAAACACATTGTTATTTTCAGTGATAACTCC TAAGAGGAGCTGAGTTGTTGTGGGTTCTATGTTTA CTTCCCCTATGGAATTTATAATTCAGTATGTTTTA CACTGTACCATATAGCAAAACTTTTAAACTACAGG TAGTTAAGGGCCACCTACAATACATCTGAGGTCCT GTGATCTTATTTTTCTAAACGTAAGCACTGTTTTT CCATAGTTTTGATGACTGGCATTTTATAGACACCC TGGCAGCCTTACTTTTAACACCTTTAAGGAATAGT ATTTTTATGTAGTTTTCAGAATAACATATGGTCTA AGAGTGGATAAAAGGCAGTCAATAATTTCTGGGAG GGACTTCTACTTTCATAAATTTGTTTGAGAGGTTT TCTTTTAAAGTTGTAATGTGATGGCAGCATAGTAT ATGTATTTGTTTCTAAAAGTATGCTTACGATTGTC ACTTTATCAGCATTTAATCAGTGTTAACCAGTCAG CAGAAAAATATAATTATGCTAACAGTAGGGGGAGA AAACCCACTTAGAAATCCCTTTTCTGGTATTTCTC TTTTCACTAGTTTTTTTCAAGATGTGACCTCCCGG TGTTCTGTCCATAGTTCATTCATCCTTTACTCTTC GAGTAGAAGGTCTTAAAAGTCTTCCTGTCGGCTGT TTCTTTCAAAATCTCCTCAGAGCAATTGCTAATTT GGCCTGAATCTGGTAACTTGAACCCTGTAAGGTTA CAGAACTAGGGCTATTTATTTTAGCATTTCTTCAG TAGTATTTACTACTCTTGTTGCAAAGAAAAGGGAA TGGGACTTCTTTGTAACCTGTACCTTGGACAACAG ATAAAAGAAACAAAAAAATAAGAAAGTTTACTTTT ACCCTTCTTGGAGTCTAGAATGTGACAGAACCCCC AAAGGAAAGTCCTGCACATTTTTCTGTTTCCAAAA CATTTAATTGTGTAAGTCCTTGTCAGAAATGAATC TCAATCCCTTAGTATAGAATTCCCCTTACATGGTA TAGGTTGCCATATTTCATGTGCAGATTTTAATTTC ATTTATGTGGGCGCTCTGTTTTTTCTTTGCAGTCC AGCCACATTAGAGGGGAGGAACCGAGTGATATTGA TTCAAGTCATTTTAGGGGGACATACTTGGAAGGCA GAACTTGCTGCTTCTGTTTGGGGAGGACAGACCTG ACTGTGACTGGATTATCTGATAACCATTTGTGAAT ACTGAAATTCTGTTAGGCAGTAACTGATAACTGCT CTAAAGGATCATTAAATAGGATGCTGAAATTATGT ATCTTAATACAGTGTGGTATGAGAATTACCAAGTC AAGAGAATTGTGGACATAAGCAAGTTTGGCCCCAA TACTGCTCTTAACTCATTTTCCAGCTTACTATTTG CTATTTAAATGGTAGGCACCAGCTAAGCACTTCTA AGCACTAACACAGCTAGAACTAGGCAAAAATGGTT AGAACTCAGCTCTCTTCTACTAGTCCCTGTCATAA TTATTTTTGGGAAAATGTCCAAACTGCCCCCTTTA AATCTAAGGGAATGCACCAAAACAGAGATATATAG AATGTCAACCATTTCATTTTTTTTTTTCTGCATGC CTTGGTACATAGTGAACATACAACCTATTTAAAGA TAAAGCATGTTTTTGAGACTCGCTCACCCCCCCCC ACCCAACCACTCCCAAATAATAATTGGGATGCCAT TTTTTTTCCTTTTGGATGAGGTAAATAATTTTAAG GTTCACAATTTTGTCTTTTACTGCAATTTAAGGAA ACATTTGGATGTCAGTCAATATGTTCATAATTTTG GCTGTGTGCGAATTTCTGCTGGCATTATCTATGAA TTTTCTTCCTACTTATTTTTTTTTCAGTATATGAA CAATCATGTATCTACCTGCCCCAGGATGAAACTAA ATTTAGGTGGACCCTAAACCTTATGAAGACAGTGC TGAGGCACTTTCCTTTTCTGATTTCATCTTTTTGG GAATCTGTTTTATTGAAGGTAGTTAGTAGTTGAGA GTGCATTTGCTACAAGCATATACTTGTATCTTCCT
AGCTTCATGAGGAACAGAAAGAGGTGGATATGGCT CAGGGTGTGGCAGGGACAATTGAGGACAAAGTCAA TTCAAATTTGTGGGTCAGAAAGAATTTTTGTGGAC GTAGTGTTTTTGGAGAAACTCTGGATGGTTATATG TGCATGCCTTTTCTTCAAAAGGAAATACGCAAGGT TGTAGCATCTAAAAATAAACATAAGAGTCAGACAC CAAATAAATCAAGTTTTACATAACAGTTGTATGCC CAGTTTGTTTAGGTGAGATTTCACATTACAGAAAG TATTTGAGGAGCATGAAAATGGGTTATCTTCTGTA TTTTCCAGTTTGGCAAAAGTTCAGAATTTCATCAC ATTGCTTTGCCCTAATTTTGCCCAGAATTTTATCT TAGCCTCTCTCTGACAGTGATGAATCATGCTCAAA AGCCATTCTAATTGGACCTTTTTAAGACAGGGAAA GGGATCAGTAGGCGGATTGGAAGAAATTTCAAGTC ATTGAAATATTCCATTGAGATTTCCTAAAGGGACA AAATTGGGAAAATAAGAAACTACGACTTAGATTTG GCTACGTAGTAGAAAGTATCTCCCCTACATACATA CAGGCAATTGTATGTATGAATCATAGGGTATATGT GTGTGTATACTACACACACATTCTTTTAAAGAGAA TTCATGGAAAAAAAAGCAGTTGGAGTGATCAGATG TATTGCAAAAACATACAGAGAATTTAAATGACAGT TAATACCAAGAAATTAGTTGGGTTTACTTTATCAG GTCGTAATAGGAATCACTAAAGAAGTTACTAGTGT GTCTTTAGGACCAGTGGCAACTCTTAAACTAAAAC TTTGGGTCCTTATTATCTACTTACAGAACAAAGTG AAACAAACAATGATTAAGCTGATTGGATATACATT CAAAGATATTTAATGTAAAGTTTTTTGGAATACGA AGAAAATTCAGAAAATAAATATTATCAACAGTTAC TTATTGGCAAATAGAGAAAGACAAGAATAGTTTAG TGAGCCCGGTATTTTGTTTTTATAGTTTTTATCTC AGTTGTACAACTCACAAAACCATGAAGTCTTTGGT ATTTTATAAATGTTTAACAAAATTTACATCAGATT AAGGCATTTAGATGAAAATTATTATGTTCTCACTA TCTTCCAAATTTTATTTCATCCTATCTCCAAAATG ATTTCTTAGGGTACAAAAAGAGCAGACGGGGCTGT AAAAATACAAGCAAAAAACTGTGTGCCCCTAGTTT CAGGCAGAACTTAAACTGTCAGAGGTACTAGCTAC ATGATTTGTTTTTTAACTTTGGATTGTTCACGTCC AAAAATGGATAAATTACATTTGTGTTTATCATCAG TTGCATTTTATGTATTATTTTAATAAATACTATCT GAATGAAGACTATTCTAAACCAGAAAATTCCCCAA ATCCAAAAGAAAAAAAAAGTGGGAAGAGGTGAAAT TGAAGTTTGTGTATATGAAAGTTATCTTAGACATA TTTTTAATTCTCCAGTTTCTGCAAAATAATTAAAA TATACAGTAACTGGTCTCCTAAATCCTGAATTTAA TGTATTAAATACTTATGTTCTTTATATTGGTGCCT TTTTAAAATGCATTGAGAGTGTTGGTTAGCTGTTG CAGCTGTACAACACTTTTAATATGCATTTTTAAAA ATCACTTAAAATTGAGTACTATATAATTCATCTCT GCATTTTTAGTGCAAATCTTTAGAGCAATTTCTAA TAGAGAAATTTTCAGCTCAGCTGTTAAAAGGAAAA GGAAACTTTGAAACTAGACTTTACTACCTTTTTAG TTTCATAGTATTTCTGAATATGATTACAAGATTAT GCAGGTAAAATATAGAGTGAAACTTTACCTGTGAA TTGAATTATAATTTGTGTTTTTGTTTTGTTTTTAA GGAAGAATAAGTTCTGTATCAAACAAGAATTTATT AGATAATTTTTTGGTCAATAAAATACAGTATTCAT TTGGATTTTCATCTCCAGACTAGTATTGTTCTAGT CTTGGAATCTGTATTTTCTAATCTGTTAGAAAATA GAGATTGAAAATTGATGGAATAATGTGAAAAAGCA GGTAATTAATTCTCCTTGAACAAAGCAAAACTGAA CAGTCATATCACATTGCTATTCTCCAAAGCATAAT CTCAAATGGTTTCATATCATGGTTGTGTATTACTT GCAATGGGTGTGTTAGGATATGACAGCTTTTTAAA AAAATGAGCTGCTGGTTATACAAAGCAAATGGCAT ATGACCAAGAAGCTGTGATATGCTAGTGTTTCTTT TTATCATAGTGTATTACTAGGCCAAATAATGACAC CTTGAATATTTTTACATTTATTGCAGAAACCTTAA ACTTTGGAATTTCCATAAGGTTTTTATGTAATATT CTATTTCTAGCTTTTTAGTTTTATCTTGCTGTACT GTAAGTTTGAGGATATTTTTCACCTGCACTCTTAG GAATAAGTTCATAATTCTGTTTATGGGGCTTTCCT CCCATAACACTGCATTTGTATATTTTCTGTATAAA ATATGTGTTGTGTATTAACCTTTATCCCATACAGA GAGTGGTACATGAATGACTAGTTTTCTAAGATGTC CTTTTTATTGTGAATAAAATATAAAAGTTAAAGGC CCTCTGCTAAGTCACATAAAGTACAGCATATAAGT TCATATAGGTACAAATAAATGAGTTTGCAGTGAAT TGGGCCTTCAAATTACCTCAAGTGACAGATAGTAA GAAAAGCTTCTTGAGCAGGTGGAGGTCACTGAATC CCCTACTATGCACTTACCAAGATTTTACTTACTTT AATTTACTGGAAATTGATTTTTTAAAAAATGACTA CACTGTAACAAGGGAAGGGATCTGGGTTTTTTTGT TGTTTTATTCTTGTTTTTTTTAAGTAGTTCAAATT CTGAAACTGTGATTTAAAAATTTTTTACAGTCAAG CATTCTGATTTTGAACATAACTCCCTTCCCTTTCT GTGTAACAAAGGTCTCTCTGTTATCTCTTAAATTT TGTTACATCTCCCTCAGCCTCTTTCTTTGTCCGTC TCCCTTCTGTCATTGTCTATGGATGTTTACCTCTC TGTTCTCCTAAAAGTTTGAAGATTAGGTCAACTCT TATTTCTAGTTCATTGGTAATTTAATCTTAATTTT TTTTTCGTGATTTTTGTTGGTTGTATAATCTGCTG ACGTATTTTTATACTCAAGTGTAGTTTTCTATTAA AAAGAAAAGTGGTTGGATTAAAAATAGTAAGCTAT GTAACCCTCATGTTACTTTCACTTTCAAATATTGG GTACCTAAAACATTACTTCAGAGATTATGTAATCC TATTATAGTATGTTTGCTTTCCTTTATTGTTGGAT TTTACATTCTGATTTGGCTTTCCTCCAAAAAATGT ATATCATGAAAGACTAGACAGTTATTTGCAAGTGT TTAGAAAGGTGTTAAAAATGTAAAGCAAAGAGTCT TAACTTTCTCCTAATTGGGAGAAAAATGCTTTAAC ATTACTATAATAATATTCCAGGTTTGGAGGGGGTC TCCAGGCCCCATATTTGCTGTTAATAGTTGGACCT TTTAGACCATGTGTTATTTGCAATCCCAGAATGAT TGCTTCTGCTATTAGTTAAAAAGATACTATTCTTT TCTTTCTGTACAAGTGCAATACTCCCCTTGAAGTC TTAAAAACTATGGTGATTTTTTTTTCTTTTCTGAC CTATTCTTCCTTTAGCTAATGACAAAAAGAAACTC ATAAAAGTCATAGTATGTTAAAGGACACAACAAGC AAAGAGAAAAACACTCCACAATCAAAAGATTACAG AATGTGGAAACCACTAGTCTGATCTCATGGTATCT TTATTTAAGCTAAATTTCCATGGAAATTAGTAATC TTTTGCTTGAAAAATGTGTCCTAAAGTTGAACTTT TTACAGATTGAATCTTCTTAGACCCTCGCCCAATG CTCTAAATTAAGAACCTAATACTTAATATTTTTAT TTTACTTCTCCCCTTTTAGAAATAAACTTTTAAAT AAAAGCAAAGCACTTAGCTGAGTTTTAAACACTTA CATATCACCTATTGGAGAAATTTTTTTTAAAAATA TTTGGAGCAGTCCTGTTTTCATACAAATTTAAGTA AGAGGTATTTTTCTTATACATATTTATATGTAGTG TGCTAATTTTCTTTTTTTATACCTGTGTCCCTGTA GTAAAACTGCTGTAATATAAATACATGTTTTGTTA AAAGATAACATTTCTTTGGCATTTCTTTTAAAGGC AGTTACTGCATTTCTGCATTTGTACAGTATGTGTC TTGGCCATTTTAGATATTCTTTCTTTAACAATACC
AAAGGTAATTAGACTATTTTAAAGACTAATTGCTT GACAGTTTCTAGGGTATTTTGTGTTTTAGAAGCAA AAAAAGAAAAAAAAATAGGTCAAACCAGTAAACCT CATTTTTTTTCAAACTAATAATTTGGGGAAATAAA AACTATTGTTTAAAAAAGAAATATATATATATATA TATAAATATATATGTAAAGTTAAAATTCCATACCT TGTATGTCAGGTTTGCTAAGTGTAATGTAGTTTTT TTAAGGCTCAAATACCATACCTCAGAAAATGAGGT TTACTATGGAAATACTGAAACAGTCTTTGCAGCTG TGTGACAAGTCACTCTACTACATACTGATTTGGAG ACCTCCGCTAAATAGTTTTATCACTGCAGACTAAA ATGTGGGACTTGTATCTTCTTTGTTTTTAATGCAC ACACATACATGTTCTGTGCATGTATGTGGTTACTG TGTATATGTGTATGAGTGTTGTATATGCATGTGTG AGTGTGTGTCTGTATGTGTGTACAACTAAAGAAGC TGCAGAAACTTTGTAATACTTTGTGAAAAGGATTA TATTATAAAGGTTTGTACTGTCTGAGTGCACAGCT ACTGGAATAAATTTAGGGAATCTCAGGAACAAGCA TATAATTTGTCCAAGATTTATTTCTTCTCAGAAGT GTAAGTGCAGTTTTTAATTCTGTATATTATTTAAT ATTTTACCAATAAAATAAACTTCTGACATAAAAA.
[0063] As used herein, GATA3 refers to a GATA binding protein 3 polypeptide. When preparing a T cell or treating a mammal with a T cell, GATA3 refers to human GATA3. An example of a human GATA3 polypeptide includes, without limitation, NCBI reference sequence: NP_001002295.1. In some embodiments referring to a second nucleic acid sequence encoding a GATA3 (e.g., full length GATA3) polypeptide, the nucleic acid sequence is at least 70% (e.g., at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 99%, or at least 100%) identical to:
TABLE-US-00008 (SEQ ID NO: 11) GAACACTGAGCTGCCTGGCGCCGTCTTGATACTTT CAGAAAGAATGCATTCCCTGTAAAAAAAAAAAAAA AATACTGAGAGAGGGAGAGAGAGAGAGAAGAAGAG AGAGAGACGGAGGGAGAGCGAGACAGAGCGAGCAA CGCAATCTGACCGAGCAGGTCGTACGCCGCCGCCT CCTCCTCCTCTCTGCTCTTCGCTACCCAGGTGACC CGAGGAGGGACTCCGCCTCCGAGCGGCTGAGGACC CCGGTGCAGAGGAGCCTGGCTCGCAGAATTGCAGA GTCGTCGCCCCTTTTTACAACCTGGTCCCGTTTTA TTCTGCCGTACCCAGTTTTTGGATTTTTGTCTTCC CCTTCTTCTCTTTGCTAAACGACCCCTCCAAGATA ATTTTTAAAAAACCTTCTCCTTTGCTCACCTTTGC TTCCCAGCCTTCCCATCCCCCCACCGAAAGCAAAT CATTCAACGACCCCCGACCCTCCGACGGCAGGAGC CCCCCGACCTCCCAGGCGGACCGCCCTCCCTCCCC GCGCGCGGGTTCCGGGCCCGGCGAGAGGGCGCGAG CACAGCCGAGGCCATGGAGGTGACGGCGGACCAGC CGCGCTGGGTGAGCCACCACCACCCCGCCGTGCTC AACGGGCAGCACCCGGACACGCACCACCCGGGCCT CAGCCACTCCTACATGGACGCGGCGCAGTACCCGC TGCCGGAGGAGGTGGATGTGCTTTTTAACATCGAC GGTCAAGGCAACCACGTCCCGCCCTACTACGGAAA CTCGGTCAGGGCCACGGTGCAGAGGTACCCTCCGA CCCACCACGGGAGCCAGGTGTGCCGCCCGCCTCTG CTTCATGGATCCCTACCCTGGCTGGACGGCGGCAA AGCCCTGGGCAGCCACCACACCGCCTCCCCCTGGA ATCTCAGCCCCTTCTCCAAGACGTCCATCCACCAC GGCTCCCCGGGGCCCCTCTCCGTCTACCCCCCGGC CTCGTCCTCCTCCTTGTCGGGGGGCCACGCCAGCC CGCACCTCTTCACCTTCCCGCCCACCCCGCCGAAG GACGTCTCCCCGGACCCATCGCTGTCCACCCCAGG CTCGGCCGGCTCGGCCCGGCAGGACGAGAAAGAGT GCCTCAAGTACCAGGTGCCCCTGCCCGACAGCATG AAGCTGGAGTCGTCCCACTCCCGTGGCAGCATGAC CGCCCTGGGTGGAGCCTCCTCGTCGACCCACCACC CCATCACCACCTACCCGCCCTACGTGCCCGAGTAC AGCTCCGGACTCTTCCCCCCCAGCAGCCTGCTGGG CGGCTCCCCCACCGGCTTCGGATGCAAGTCCAGGC CCAAGGCCCGGTCCAGCACAGAAGGCAGGGAGTGT GTGAACTGTGGGGCAACCTCGACCCCACTGTGGCG GCGAGATGGCACGGGACACTACCTGTGCAACGCCT GCGGGCTCTATCACAAAATGAACGGACAGAACCGG CCCCTCATTAAGCCCAAGCGAAGGCTGTCTGCAGC CAGGAGAGCAGGGACGTCCTGTGCGAACTGTCAGA CCACCACAACCACACTCTGGAGGAGGAATGCCAAT GGGGACCCTGTCTGCAATGCCTGTGGGCTCTACTA CAAGCTTCACAATATTAACAGACCCCTGACTATGA AGAAGGAAGGCATCCAGACCAGAAACCGAAAAATG TCTAGCAAATCCAAAAAGTGCAAAAAAGTGCATGA CTCACTGGAGGACTTCCCCAAGAACAGCTCGTTTA ACCCGGCCGCCCTCTCCAGACACATGTCCTCCCTG AGCCACATCTCGCCCTTCAGCCACTCCAGCCACAT GCTGACCACGCCCACGCCGATGCACCCGCCATCCA GCCTGTCCTTTGGACCACACCACCCCTCCAGCATG GTCACCGCCATGGGTTAGAGCCCTGCTCGATGCTC ACAGGGCCCCCAGCGAGAGTCCCTGCAGTCCCTTT CGACTTGCATTTTTGCAGGAGCAGTATCATGAAGC CTAAACGCGATGGATATATGTTTTTGAAGGCAGAA AGCAAAATTATGTTTGCCACTTTGCAAAGGAGCTC ACTGTGGTGTCTGTGTTCCAACCACTGAATCTGGA CCCCATCTGTGAATAAGCCATTCTGACTCATATCC CCTATTTAACAGGGTCTCTAGTGCTGTGAAAAAAA AAATGCTGAACATTGCATATAACTTATATTGTAAG AAATACTGTACAATGACTTTATTGCATCTGGGTAG CTGTAAGGCATGAAGGATGCCAAGAAGTTTAAGGA ATATGGGAGAAATAGTGTGGAAATTAAGAAGAAAC TAGGTCTGATATTCAAATGGACAAACTGCCAGTTT TGTTTCCTTTCACTGGCCACAGTTGTTTGATGCAT TAAAAGAAAATAAAAAAAAGAAAAAAGAGAAAAGA AAAAAAAAGAAAAAAGTTGTAGGCGAATCATTTGT TCAAAGCTGTTGGCCTCTGCAAAGGAAATACCAGT TCTGGGCAATCAGTGTTACCGTTCACCAGTTGCCG TTGAGGGTTTCAGAGAGCCTTTTTCTAGGCCTACA TGCTTTGTGAACAAGTCCCTGTAATTGTTGTTTGT ATGTATAATTCAAAGCACCAAAATAAGAAAAGATG TAGATTTATTTCATCATATTATACAGACCGAACTG TTGTATAAATTTATTTACTGCTAGTCTTAAGAACT GCTTTCTTTCGTTTGTTTGTTTCAATATTTTCCTT CTCTCTCAATTTTTGGTTGAATAAACTAGATTACA TTCAGTTGGCCTAAGGTGGTTGTGCTCGGAGGGTT TCTTGTTTCTTTTCCATTTTGTTTTTGGATGATAT TTATTAAATAGCTTCTAAGAGTCCGGCGGCATCTG TCTTGTCCCTATTCCTGCAGCCTGTGCTGAGGGTA GCAGTGTATGAGCTACCAGCGTGCATGTCAGCGAC CCTGGCCCGACAGGCCACGTCCTGCAATCGGCCCG GCTGCCTCTTCGCCCTGTCGTGTTCTGTGTTAGTG ATCACTGCCTTTAATACAGTCTGTTGGAATAATAT TATAAGCATAATAATAAAGTGAAAATATTTTAAAA CTA.
[0064] As used herein, NFATC2 refers to a nuclear factor of activated T cells 2 polypeptide. When preparing a T cell or treating a mammal with a T cell, NFATC2 refers to human NFATC2. An example of a human NFATC2 polypeptide includes, without limitation, NCBI reference sequence: NP_001129493.1. In some embodiments referring to a second nucleic acid sequence encoding a NFATC2 (e.g., full length NFATC2) polypeptide, the nucleic acid sequence is at least 70% (e.g., at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 99%, or at least 100%) identical to:
TABLE-US-00009 (SEQ ID NO: 12) GCGTTGCCTCTGGAGTAAGCCGGATCGCGGAGCCG CGCCGACTCCGCCGAGCCGGGAGCCGGGAGGCGCG CAGCTCCCGGGTCGCTCCGAGGCTCCTCGGCCAGG GCAGCCCCGCGGGCACGCGGTAGAGAAGACGGCGT CCCCTCGGCTGCTGGTCGATACAAACAGATCCCCC TTTCCAAACACGCGCCAAGTCCCCGTGCCCTCCAG ATGCAGAGAGAGGCTGCGTTCAGACTGGGGCACTG CCATCCCCTCCGCATCATGGGGTCTGTGGACCAAG AAGAGCCGAATGCACATAAGGTCGCCAGCCCACCC TCCGGACCCGCATACCCCGATGATGTCCTGGACTA TGGCCTCAAGCCATACAGCCCCCTTGCTAGTCTCT CTGGCGAGCCCCCCGGCCGATTCGGAGAGCCGGAT AGGGTAGGGCCGCAGAAGTTTCTGAGCGCGGCCAA GCCAGCAGGGGCCTCGGGCCTGAGCCCTCGGATCG AGATCACTCCGTCCCACGAACTGATCCAGGCAGTG GGGCCCCTCCGCATGAGAGACGCGGGCCTCCTGGT GGAGCAGCCGCCCCTGGCCGGGGTGGCCGCCAGCC CGAGGTTCACCCTGCCCGTGCCCGGCTTCGAGGGC TACCGCGAGCCGCTTTGCTTGAGCCCCGCTAGCAG CGGCTCCTCTGCCAGCTTCATTTCTGACACCTTCT CCCCCTACACCTCGCCCTGCGTCTCGCCCAATAAC GGCGGGCCCGACGACCTGTGTCCGCAGTTTCAAAA CATCCCTGCTCATTATTCCCCCAGAACCTCGCCAA TAATGTCACCTCGAACCAGCCTCGCCGAGGACAGC TGCCTGGGCCGCCACTCGCCCGTGCCCCGTCCGGC CTCCCGCTCCTCATCGCCTGGTGCCAAGCGGAGGC ATTCGTGCGCCGAGGCCTTGGTTGCCCTGCCGCCC GGAGCCTCACCCCAGCGCTCCCGGAGCCCCTCGCC GCAGCCCTCATCTCACGTGGCACCCCAGGACCACG GCTCCCCGGCTGGGTACCCCCCTGTGGCTGGCTCT GCCGTGATCATGGATGCCCTGAACAGCCTCGCCAC GGACTCGCCTTGTGGGATCCCCCCCAAGATGTGGA AGACCAGCCCTGACCCCTCGCCGGTGTCTGCCGCC CCATCCAAGGCCGGCCTGCCTCGCCACATCTACCC GGCCGTGGAGTTCCTGGGGCCCTGCGAGCAGGGCG AGAGGAGAAACTCGGCTCCAGAATCCATCCTGCTG GTTCCGCCCACTTGGCCCAAGCCGCTGGTGCCTGC CATTCCCATCTGCAGCATCCCAGTGACTGCATCCC TCCCTCCACTTGAGTGGCCGCTGTCCAGTCAGTCA GGCTCTTACGAGCTGCGGATCGAGGTGCAGCCCAA GCCACATCACCGGGCCCACTATGAGACAGAAGGCA GCCGAGGGGCTGTCAAAGCTCCAACTGGAGGCCAC CCTGTGGTTCAGCTCCATGGCTACATGGAAAACAA GCCTCTGGGACTTCAGATCTTCATTGGGACAGCTG ATGAGCGGATCCTTAAGCCGCACGCCTTCTACCAG GTGCACCGAATCACGGGGAAAACTGTCACCACCAC CAGCTATGAGAAGATAGTGGGCAACACCAAAGTCC TGGAGATACCCTTGGAGCCCAAAAACAACATGAGG GCAACCATCGACTGTGCGGGGATCTTGAAGCTTAG AAACGCCGACATTGAGCTGCGGAAAGGCGAGACGG ACATTGGAAGAAAGAACACGCGGGTGAGACTGGTT TTCCGAGTTCACATCCCAGAGTCCAGTGGCAGAAT CGTCTCTTTACAGACTGCATCTAACCCCATCGAGT GCTCCCAGCGATCTGCTCACGAGCTGCCCATGGTT GAAAGACAAGACACAGACAGCTGCCTGGTCTATGG CGGCCAGCAAATGATCCTCACGGGGCAGAACTTTA CATCCGAGTCCAAAGTTGTGTTTACTGAGAAGACC ACAGATGGACAGCAAATTTGGGAGATGGAAGCCAC GGTGGATAAGGACAAGAGCCAGCCCAACATGCTTT TTGTTGAGATCCCTGAATATCGGAACAAGCATATC CGCACACCTGTAAAAGTGAACTTCTACGTCATCAA TGGGAAGAGAAAACGAAGTCAGCCTCAGCACTTTA CCTACCACCCAGTCCCAGCCATCAAGACGGAGCCC ACGGATGAATATGACCCCACTCTGATCTGCAGCCC CACCCATGGAGGCCTGGGGAGCCAGCCTTACTACC CCCAGCACCCGATGGTGGCCGAGTCCCCCTCCTGC CTCGTGGCCACCATGGCTCCCTGCCAGCAGTTCCG CACGGGGCTCTCATCCCCTGACGCCCGCTACCAGC AACAGAACCCAGCGGCCGTACTCTACCAGCGGAGC AAGAGCCTGAGCCCCAGCCTGCTGGGCTATCAGCA GCCGGCCCTCATGGCCGCCCCGCTGTCCCTTGCGG ACGCTCACCGCTCTGTGCTGGTGCACGCCGGCTCC CAGGGCCAGAGCTCAGCCCTGCTCCACCCCTCTCC GACCAACCAGCAGGCCTCGCCTGTGATCCACTACT CACCCACCAACCAGCAGCTGCGCTGCGGAAGCCAC CAGGAGTTCCAGCACATCATGTACTGCGAGAATTT CGCACCAGGCACCACCAGACCTGGCCCGCCCCCGG TCAGTCAAGGTCAGAGGCTGAGCCCGGGTTCCTAC CCCACAGTCATTCAGCAGCAGAATGCCACGAGCCA AAGAGCCGCCAAAAACGGACCCCCGGTCAGTGACC AAAAGGAAGTATTACCTGCGGGGGTGACCATTAAA CAGGAGCAGAACTTGGACCAGACCTACTTGGATGA TGAGCTGATAGACACACACCTTAGCTGGATACAAA ACATATTATGAAACAGAATGACTGTGATCTTTGAT CCGAGAAATCAAAGTTAAAGTTAATGAAATTATCA GGAAGGAGTTTTCAGGACCTCCTGCCAGAAATCAG ACGTAAAAGAAGCCATTATAGCAAGACACCTTCTG TATCTGACCCCTCGGAGCCCTCCACAGCCCCTCAC CTTCTGTCTCCTTTCATGTTCATCTCCCAGCCCGG AGTCCACACGCGGATCAATGTATGGGCACTAAGCG GACTCTCACTTAAGGAGCTCGCCACCTCCCTCTAA ACACCAGAGAGAACTCTTCTTTTCGGTTTATGTTT TAAATCCCAGAGAGCATCCTGGTTGATCTTAATGG TGTTCCGTCCAAATAGTAAGCACCTGCTGACCAAA AGCACATTCTACATGAGACAGGACACTGGAACTCT CCTGAGAACAGAGTGACTGGAGCTTGGGGGGATGG ACGGGGGACAGAAGATGTGGGCACTGTGATTAAAC CCCAGCCCTTGCGTTCGTTTTTCCAGGTCACAGAT ACAGCTCCTGTACCTTTTGAAGGCAAGGAGTTCTC AGAGCAACCAAAGGAACGTGACCCAAGAGCCCAGC TTACAGGCTGAAGAAACCCAAAACCCTCGATAGAG ACAGAAACTGAACTGTCAGTCCTTAGAGCTCGCCC AGTCCATGCCACAACTGGGCCACAGCTAAAGCTTT ATTTTTGAATTCTCATTCCAAAACCAAACTGTCTT GCCCAGACAAGATCACCTGTTAAGACTTCTTGGCG TTAAGTTATGACATGTATACGCGTTTGTTATTATT ATTTTTTCTGCTTTAAAAGGCTGACCAGGGCACCT AGCCCTGGAGCTGTCTTGGCGAGCTGTTCTTTAAC CCCTGCAGCACGCAGTCCTGCTAACACAATTTCCA TAGACTTGGGGGGCTGACCCAGGCTGCAGAGAGCA AGCACCTGTCTGCTGCAGCTGTACAACCTGGATGC TTTGCAAGGTTCCGGCTTGCTTTCTTCCTAGCAGC CAGAGTGCTTTTCCGTAAAGCGGTGGAGAATCTCA AGCATGTGCATTTAATTGAGGAATAGCAGAAGGGC TAAAGCAACCAAGAAAAGAAGTGTGGGTATTTTTG TTAAGTAAAACAGCCCAAGTGCTTCTGGAGGTGGG TTTCTACCAAGATAGAGGAAAAGGGCTGAATTCCC TCTAAGTGGGACAGCCGAGCTCAGGATGTGCTTCC CAGCTTCACTGGTTAATTTGACCTGAACCTATTTA AAGATCCCTTCTGCCCCTGAAGACCTATCCGCACT CAAATTCTAACATGAAGAAATCTACTCGAATGCAT CCTTTACTTTGAATGAGCTCTATTCGGTTGCATGT TATATGTGATTTCCTTCCTCCCAACTGTTTCCACT GAGCGCACCCAGTCTCCCCTAGTCTTCCTCTGTGG GTGTGATTTTTGTGATTTTTACAAACAAAACCCTT
GAAGTTCTTGGCAGATGTGTTTGTTTCTGTTTGCA TGTACTGCAGATACCCCAGGACAAGCGGGGGATTC ATTTTTCAGCCATTCAGTTGTTTCCTCAATAATCC GCAGCAAAGTGAAAATATTCTTAGCACTCAGACTG TACTTAGAGTGTTTTCTCAGTCCAGTCTGTACAGT CTGTAGGCAGAAGGCCTCAGAAGAAAGTCATGGCC ACTCAGTGCCCACTGTGGGCTTTGTAAGTCCTGGC TCTCCCGTCAAGGTTACCCAGAGGTAAAAGCTTCC TGGGAGTGGGGCCAGGTGTGTTTGGCACTCCAGAT AGAAGGCAAAATGCTCAGATTCGGGCCTGTGCACT TGTATGCAACCTGTCGGTCGATACCTAGCATTTAT TTTTCCCTGACAATGAACGACCTTTCCCTCACCCA CCCTAAGCTCAAAGAGTTTAGCAAAATTCTCTTTT AAATAAACAGAATGCCAGTAAGAGGTTGACCCCTA CCATGGAACTTCTGGGATGCTAAATACTTCCTCAT GAACAAAATAAGTTCCTTATTATAAGTTCCTTATA CTAGCAGCTTCACCTAAAGAATTTTCTCTCCAGCA ATATTGACTTCACTGGGGAAAAGCCAAGAGTGTGT GGTGAGTGATTTGTTCTCACTCGACCTGGCTAGGA CTGGCTAGGAGCTGTTTTTTGTACATGAGGGAATT TGGGCTTTCCTCAGTTATCTGAATGTTTTACCCAA GTGCCTTCCTGCTATTGTAGCAAAGTAGCTCAGCT TCCTTGTCCACAGGGTGAAAAAGGACTAATGCATT TTCCATCAGTTTTCTAACTATGTTAGCAAAAACGG CCTCCTGGTAGCTCAACCTCCTGTACGCGTGTGTG TGTGTAATACACACACAAATAAACCCCTCTGTTTT TCTAAGACATCTTAGCTGGATATTATAGGAAGCAC TTTCATAAACAACTGTAACAAATCGCAAAGGAAAG AGAAACAAAAGCATTAGATTTGAGACATAAACAGG CAAGAGAAAGTGTATTAGGAACTGACAGCTATCAA GGAAGTTTTGTCAGTTACAAATGCTAGGAGGAAAT TTTGCCAAGAAGGATGGCTCATGAAATATTTCCAG TACGGGAAGAGGCAATAAGATCCTCTAAGAGAATG AGAAAGTAGGGGTGTCTAAATGGTAAAGATGGGTG TGTTGCACGTGTGTTAGAAGGATCTCAGTTGAGTG AAGGTTTGCACTGCTACATCTAAGTTAATGTAAAT ATGTAGCACTCTGACAGGTCTACCGTGTTGCTGAA TGTAGTATATTTCCAAAGTTTGCAAGTCTTCCTGT ATTGTACAAAGATGCTGCTGCTTGATAATATGTAT AGCAATCCAGATTAGTATGTTATTAAATTTTATTT TCTTACCTGTATTTTTATGCTTTTTACCTGTCCTC AAAATATTACACCCCTGTTGGAATTAGATTTATAT TTATAAATGGTCAGAAATCTTTTTAAGTGTCTCTT TTTACACATAGGTTGATTTTTTTTTCTTAAGAGAA ATGATGTATTCTTGAAACATTTGTTACTCATTCCA GGAAACAAAAACCCATATAATAAAACCCCCACTCA GAGCCTGTTAGTCACCTCTCTAGAAGATGGCATCT CAGGAGAAGGAATGGCTTTGTGGAAGAAGGAATCA CCTTTTTCTTGCTCAAGAATTATGCTGACTTCAGC CCTGAGCCTGGATCTGGTCACTGAGAATCATCAAG TGTCTAGATCCTCCCCCCAAAATAACTAATTTAGT AGGTGATTTTGATTTTAAAAAATTGACACCAAAAC CCTGCCTGCATTGTAATGGAATTCGAAAAGAATTC ATGTTCACAGAACTCAACGTTCAGGCTAATATTTA CAGAAGGGACCAAATCTAAATCCTGGTAGATAACT CCTGTATGCTTTATCCAAAGGACACCCACAGTTTT CCAGCATAGATATAACCAAGGATGAATTGATTCCT TCAAAGAACTGGGAGGCACGGATATTGCATTTTTT GTTTACATCCAGTAGCCAAGACGCCTCAGTGAGCC AGTCTTGGGCAGAGGCTGTCACATTTAGGCAGATT GGAAGTTGGTATGTTCTAATTCTCACTCTGGACTA CAGTGAGGCTGAATTTATCATGTCAAAAAAAAAAA AAAAAAAAGACCTTTCCAAGTGCTTTCTATTGCTC AGAATTGAAAGAATGTTTTCATTTCAAGTTTACAA GAGGCATGGATGGAGTTGTGACGTTCTTGACAAGC TGGGCTAACCTTTCCCGAACTTGTTTCCCGGAGGC AAGGTGCTCGGTGACCCAGCGCATCTTAACCTTGG GTCTCCTAGGCTCGAGGCTAGGGCATTACGTTTCG TGGAACCAAAGCAGCCAATTGCATAGCAAGTATTT TCCTGCATTCCAATTAAATGCTTAAGAAAAAGCAG CATCCTATAAAATTGTGATCATAAACATCCATTTC CCTCAGCTTTTGTGAGTGCCTTGACTTACAGCCAA CATCACTGTTTAACTCAGTCTGTTTAAAAACAAAC TTTTCTGGTGGTTGATAACAGAGAGTTGCTCCCTG AGCCATCAGGGTCCTGGGAGCTGGAAGTGAAAGGG TTATTAACATTCTACCTTTATGCAGCTGTTGGCTG ACCAGAATAAACTCCCTGCTGAGTTCAAGCTTTGA ATGGAATGGATGCAAATGATGTTGTTTCCATTAGA GCAGGTGCTCACAGCATTCTGATTGGCCTGAGCAG ACCGAGGCTATGGCTGTTGGGACAAGCTTAGCATC CTGGACATCTTGTCAAAGAACCTCACTCACCCCTC TGGCCTCTACAGCCCTCAGAGGAGAGAAAACCAAT TCTCCAACAAACAGGTCTCTCCAACATGGTGGTGC TGGCAGGCTTAGGTTTAGAAAATCCTGACTGTTAA AGGCGTTTGAATACATCACATTCCTATGCAAATGT TTTTAATCTCCAGTTTAATGTAGTTTATTTTTCCT ATATGTAAAGTATTTTTATACGGCTTGTATCATGA TAGTTTAGCAATAAAACAGTTGGAAGCAA.
[0065] As used herein, XBP1 also known as refers to an X-box binding protein 1 polypeptide. When preparing a T cell or treating a mammal with a T cell, XBP1 refers to human XBP1. An example of a human XBP1 polypeptide includes, without limitation, NCBI reference sequence: NP_005071.2. In some embodiments referring to a second nucleic acid sequence encoding a XBP1 (e.g., full length XBP1) polypeptide, the nucleic acid sequence is at least 70% (e.g., at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 99%, or at least 100%) identical to:
TABLE-US-00010 (SEQ ID NO: 14) GAGCATGCTCCCGCTGCAGTTAACTAGCCCAACCT ATTTCTTTAATTCAGCCCATCCCTTCGTTTCCCTT AAGGGATACTTTTAGTTAATTTAATATCTATAGAA ACAATGCTAATGACTGGTTTGCTGTTAATAAATAT GTGGGTAAATCTCTGTTCAGGGTTCTCAGCTCTGA AGGTTGTAAGATCCCTGATTTCCCACTTCACACCT CTATATTTCCTTTTTTTTTTTTTTTTTTTTTGAGA CAGAGTCTCACTCTCGCCCAGGCTGGAGTGCAGTG GCACGATCTCTGCTCACTGCAAGCTCCGCCTCCCG GGTTCACGCCATTCTCCCGCCTCAGCCTTCCGAGT AGCTGGGACTACAGGCGCCCGCCACTACGCCCGGC TAATTTTTTGTATTTTTAGTAGAGACGGGGTTTCA CCGTGTTAGCCAGGATGGTCTTGATCTCCTGACTT CGTGATCCGCCTGCCTCGGCCTCCGAAAGTGCTGG GATTACAAGCGTGAGCCACCGCGCCCGGCCTCACA CCTCTATATTTCTGTGTGTGTGTCTTTAATTCCTC TAGCACTGCTGGGTTAGGGTCTCCCTGACCGAGCT GGTCTCGGCAGATAAGGTTTCACCATGTTGGCCAG GCTGGTCTCAAACTCCTGACTTCAGGGGATCCCCG CCCCAGCCTCCCAAAGAGCTGGGATTACGGGCATG AGTCACCGTGCCCAGCCAATTTTCTTTTGTTTTTT CTTTTGAGACAGGATCTCACTCTGTCACCCAGGCT TGAATGCAGTGGTACCATCTCGGCTCACTGCAGCC TCAATCTTCTGGGCTCAAATGATCCTCCCACCTTA GCCTCCCGAGCAGCTGGGGCTACAAGTGCACACTA CCAAGCCCAGCTAATTTTTTTTTTTTTTTTTTTTT TTTGAGACAGAGTCTTGCTGTGTCCCTCACCCAGG TTGGAGAGCAGTGGTTCGATCTTGGCTCACTACAA CCTCTGCCTCCCGTGTTCAAGCAATTCTCGTGCCT CAGCCTCCTCAGTAGCTGGGATTACAGGCACGTGC CACCATGCCCAGTTAATTTTTGTATTTTTAATAGA GACGGGGTTTCGCCATGTTGACCAGGCTGGTCTTG AACCCCTGACCTCAGCCTCCCAAAGTGCTGAGATT ACAGGTGTGAGCCGACATGCTAGGCCTATACATTT CAAAATTATGTTGCTATGTTCATAAAGATGTATAT ATGGTAACTTGTACCTTCAATCAACATGAAATACC CTTCTTTGTCCTTTTAATGCCTTTATGATAAATTC TGTCTCATATTAATATTGCTACATATGCTTTCTTT CCATAAACATTTCCATAAACATAAAAATGGCTGGT AAGTCATTTTCCTTTTTTTTAAAAAAATTTTTGTT TTTTAGAGGCAGGAGCTCATTCTGTCTCCCAGGTT GGAGTACAATGGTTCAATCATAGCTCATAGTTTAC TGCAGCCTCGAACTCCTGGGTTCAAGGGATCTTAC CACCTCCGTCTTCCGAGCAGCTGGGACTACAGGTG CAAGTCACCACGCCTGGTTAATTTTTTTAAATTTT TTGTAGAGACAAGGTCACAATATGTTTCCCAGCCT GGTCTTGAACTCCTGGCCTCAAGCAATCCTCCTGC CTTGAGAAATATAGTAAACAAAAAATGTGAAATAA CATGGCAGAAATAAGTCCAAATAAATAAATAATCA AAAATAAATACAAATGATTTATATTCTCTTCTTAA AAGAGAGCTCTGAGAAACCCCAAAGCCAGCTATAT GTTGTTTATAAAGAGACATACATAAAACAAAACAG CATGATTAAGAAGATAATATAACCCATTCACATTT ATGTTTTATTATTTATATATTTGGACTTATTCCTG CCATGTTATTTTCTGTTTTCTGCTTACCAGTGTAC AGTATTTTTCTGTTTTCCCTTTTCTGGAATGCCTA TTTATTTCTGTTCCTGTTTTGTCCACCCTTTCCTG ACTGATTCTTTCTGAATAATGACTTTTTTTTTTTT TTTTTTTTTTTTTGAGAAAGTCTCACTCTGTTGAC CAGGCTGGAGTGCAATGGCACAATCTTGGCTAATT GCAACCTCTGCCTCCCAGGTTCAAGACATTATCCT GCCTCAGCCTCCCCAGTAGCTGAGATTACAGGCGC CCCCCACCATGTCCGGCTAATTTTTGTATTTTTAG TAGAGACTGGGTTTCACCATGTTGGCCAGGCTGGT CTCGAACTCCTGATCTCAGGTGATCTGCCCACCTC GGCCTCCCAAAGTGCTGGGATTACAGGGGTGAGCC ACCGCGTTTGGCCTCAAAGACCGAGAACTTTGTAA TTTATATATTTTATAGCTCTTATCACAGGTGTCTA GTAAATATTTTTAAACACTTATGGCACCTGATGCA AGAATTACCAGGTTCATTTTATAGAGAGGATATGA AACTGTCCAAGGGTTTGGACTCACATGTTCAAGAC TGCATGGACAGCAATCTGTAGTGGGTCAAATTATT GTTTTTAGTATGATTTAAAGTGTTTGTCAAAAATA TAAAAGTTTTGAAAACAAGCTGGGGAAGTGAATTT CAATATCGCATTAACTAAGATCAAAGTGCAATTCA TCAACCTTTTTTCCCCATCCCGCACCCTGTGCTTT CTCTACTCAGTTACTCACTACACCCTGCTGGACTA AAAGGGTCCTCCAGCATTTTCTTTCTTACACAGTG AAAGACATTCTCTTGGCATTAATAAATGTTCACTT AATAAATAAAAAGGGCCGGGCTCTGTGGTTCCTGC CTGCAATCCCAGCAGTTTGGGAGGCCAAGGCAAGA GGATCGCTTGAGCCTAGGAGTTCCAGCCTAGGCAA CGTGGCGAAACCCAGTCTCAAAAAAAAAAAAAAGG AAAAAAAAGGCATCAAAAAATAAAACGTAACAGGT GGCATGACATGACATGACTTTTCTAACAGCCTCTT ACAGCTTTCCAAGGTCTTTTAATATGAAGCTATAG GTCTCGGCTAGAAGACACCTCCAGACTTCTCCCAA AACATTTCAGAGGCCCGGAGTAAGTCTCCCCACAT CTGAAGGCACATCAGAACCCAGGTGGCCCAAGCTG ATGAGAGTTAAACAGGAAGTTGGTTTCTTGGTCCG GCAGAGACTCCAATCACCCCCACCTCTTTTCCAAC CCACAGGACAGCACGTGCTCAGGAGGCTCTGGAGT TGGGACAGCCCAGTTAAAAAAAAAAAAATCATTGA TTTCCCTCCCAACGAAGAGGGAGAAAACACGTTAG GAGACTCGTGGCCCAGTCCTGGCAAAAACCAAAAC TATGTCCCTTTAGAGGGCTTAGATATCAAGAGATG GACTTGCTTTTAGTTCTTTTTCCCATCCTGTTCCC TCCCTACCAAAATAAAATTGACCAGCTAATCCGAC TTAATAACACTAAAGAATTACTTAGGAACCTGCTA TCTTAACATTTCACTTTTTGCATATCCTCCAAATA CCAGGTAGCAGTCTTACTACTGTTTGCACCCCTAG AACCTGGAATAGTGCTGCCCGCAGAGGAGGAAGCA ATAATTACTTGTTAGAGAAGGTATTGCTGTGCATT TCTGGGGAATTTCACATTTTGTAATTTGCTTTAAA AAAAGTGGACAGGCATATTTACGGGGGTTTCTCGG ACTTCTCCATGTTAATATTCGTGTGTATAAATCGC TCCCGTGCTGCTCTCTGGGGGCCCCTCTTTCACAA ACACCTGGCCACCCTCACGCCACAATGGCCAGGCA GGAACCTCGACCTCCCCTCGGAGAGGGGGCTCAGG GTCAACCCCGGGGTCTCAGTCTCTACATGTGACGT TTTCCTGTCCCCTCATTTAAAATAACAAGAGGCTG GGCGCAGTGGCTTACGCCTGTAATCCCAGCACTTT GGGAGGCCGAGGCGGGCGATCACGAGGTCAGGAGA TGGAGACCATCCTGGCCAACACGGTGAAACCCCGC CTCTACTAAACTACAAAAAATTAGCCGGGTGTGGT GGCGGGCGCCTGTAGTCCCAGCTACTCGGGAGGCT GAGGCAGGAGAATTGCTTGAACCCGGAGGCGAAGG TTGCAGTGAGCTGAGATCTCGCCACTGCACTCCAG CCTGGTGACAGAGCCTGACTCCGTCTCAAAAAATA AGAAAAAAAAATAAAATAAAAATAATAGAGGCCGA AGCGGGAGGTTCACTTGAGCTCAGAAGTTCGAGAT CAGCCTGGGCAACACAGTGAGACCTCGTTTCTATT TAAAAAATAAAATAAAACTAAATTTAAAAAAATGC ACGCTCATAGTACAAACTTTAGAAATGGAACGAAA AACTAAAATTGAAGGTATTCCCCTCCAACCCAGAG
ATAACACCTATCGTTTATTAAGCCCTCACTATTGT TAAACTTAGTTTTAAAGGGCACGATCTCATTTCTT AAAGACTTCTATTCCGCAGAATTTCTTTCCAGGCT TTTTTCTTTTTCTTTTTTTGAGACGGAGTCTCGCT CTGTCGCCCAGGCCGGGGTGCAGTGGCGCGATCTC GGCTCACTGAAACCTCTGTCCAGTCTTTTCGAACC CAAGGCCCAACTGCGCTCTATCTCGACTTTCGGCT CCACTCGGATCCCGAAGTGGCGCACGAGATAAAAT GTTGTCAGGCTGAGGTAATTCTCTGTTAGTCCCGG TAAAAATTCGTCAGTCTGGAAAGCTCTCGGTTTGG AATTAAATTCTGTCACTCCGGATGGAAATAAGTCC GCTTAAGGGGGGAAAATCCGTTTGTGGAGGACACG CTCCCGCACGTAACCCCCCGCGGAAAATGACCCCA AGTACCTTTGGCCAGGGATTGCCGCTGCCACGCCG GACTCCATAGCCACGGTCCTGAAACGCCCCGCCGG GCAGGCCGGACCAATGGACGCCGAGCTCGGCCGTG CGTCACGCGACGCTGGCCAATCGCGGAGGGCCACG ACCGTAGAAAGGCCGGGCGCGGCGAGGCTGGGCGC TGGGCGGCTGCGGCGCGCGGTGCGCGGTGCGTAGT CTGGAGCTATGGTGGTGGTGGCAGCCGCGCCGAAC CCGGCCGACGGGACCCCTAAAGTTCTGCTTCTGTC GGGGCAGCCCGCCTCCGCCGCCGGAGCCCCGGCCG GCCAGGCCCTGCCGCTCATGGTGCCAGCCCAGAGA GGGGCCAGCCCGGAGGCAGCGAGCGGGGGGCTGCC CCAGGCGCGCAAGCGACAGCGCCTCACGCACCTGA GCCCCGAGGAGAAGGCGCTGAGGAGGTGGGCGAGG GGCCGGGGTCTGGGGCCAGATCTGAAGCCGGGACT AGGGACAGGGGCAGGGGCAGGGGCTGGGAGCGGGG ACCCAGCACTGGCCGCCCCGCAGGGCTCCGTCGCC TTTGGCCTGGCGGGTCGGTGCCAGCGTGGCGCGGG GCGGGGCAGGAAGCCCGGACTGACCGGATCCGCCA CGCTGGGAACCTAGGGCGGCCCAGGGCTCTTTTCT GTACTTTTTAACTCTCTCGTTAGAGATGACCAGAG CTGGGGATGCGGGCACCTGTCTTCCAGGCCCTCTT GCTGTGTGGCCGCAGACTGGTGGTTCAGCCTCTTA ACTCGGACATGAGGTCGAATAATCTGTTTTGGTTT ACTGCTATTTCTGGAGAGGCGCGGAGCTGAAATAA CAGAGCTGTTGAAAGGGCTGGGAATTCTGCGAGGC TCACTGGTCTAGCTCAGTATCTGCGTTCTTAAAAT GGAACCTACTTCATGAGGTCTTTGGGGAGATTGAG ACTTGGATATAATGTGCCTAGCACTTAGTCCTCCG TAAATGTTCACTCTTTTGTGATCATTGTGCCTTCT GTGATTTATGAAGTGTCTCTTCTGAGTTAATTCTT TTAAAAAAAAAAGTGTCTCCTCCAACAGACACGGA CCCATCAGCAGGTCACTGCCTAGGATCTCAACACT AGAGATCAGGGAGTGGCATCAGCCTCTCCCTTTTC TAAATTGGACTGGGGGACGGAGGGTTGATGTCATA GCAAGATTGCAGCCTTCACTAGATTAATGAGGCCA GGTTGGATCCTGTTTAAGAGAACTGGAGACAGGAA GCAGCGGGGGAATAGATGGGGAAAGAGGAAAGTTC CTTATGATGCAAGATGAATAGTGTGTGTGTCCAGC CCCAGTGCTGTGACGGGGATGAGTCTGAGGTGGAC GGATGATGCAATATAGGAGAGAATAAAGCAGGTCT TCGAGCTAGATTGACAGAAGACTGTATTTTTTATT TTGTTTTATTGAGGGGAGGAGCCTGAAGTGTATTT TATCATTAGTCTGTCTTATACTGTAAATAAAAATG AAAGCACCAGCTGGTAAAGTTTTCAAATAAAGACA TAAATAAGGTTTGATATGACTCAGTGTGGTATGTT CCTTCTCTTCCTAGGAAACTGAAAAACAGAGTAGC AGCTCAGACTGCCAGAGATCGAAAGAAGGCTCGAA TGAGTGAGCTGGAACAGCAAGTGGTAGATTTAGAA GAAGAGGTAAAACTACTTAAGGTCAAACTCTTTTA TCCATTGTATACCCTTCCTTGGTGAATGTTCTGAT ATTTGCTTCCCATCCCAAGTTGTTTCAGCCCCTAT TAGAATACAATTGAATATATGATTAAAAGTTAAAC TAGGCTGGGCATGGTGGCTCATGCCTGTAATCCCA GCACTTTGGGAGCCTGAGTTGGGCAGATCACTTGA AGCCAGCAGTTTGAGACCAGCCTAGCCAACATGGT AAAATCCCGTCTCTACCCAAAAATATACCAAAAAA AAAAAAAAAAAAAAGGCCAAGCGTGAGTGCCTGTA GTCCCAGCTACTCGGGAGGTTGAGGTGGGAGGATT GTTTGAACCTGGGAGAGGGAGGTTGCAGTGAGCTG AGATCGCACCACTGCACTCCAGCCTGGGCAACAGA GTGAGACTCTGTCTCAAGAAAAAAAAAAAAAGTTT GCTGGGCACCGGGGCTCACACCTGTAATCCCAGCA CTTTGGGAGGCCAAGGTGGGTAGATAACTTGAGAT CAGGAGTTCGAGACCAGCCTGACCAACGTGGTGAA ACCCCATCTCTATTAAAAATACAAAAATTAGCCGG GTGTCGTGGCAGGCACCTGTAATCCCAGCTGCTCC GGAGGCTGACGCAGGAGAATCACTTGAACCCAGGA GGCGGAGGTTGCAGTGAGCTGAGATCACGAGATCA TGCCACTGCACTCCAGTCTGGGCGACAGAGCAAAA ACCCTGTCTCAAAAAAAAAAAAAAAGTTAATCTAA GTTAGGACAGAGAGTTGGTGAAGTGGTGAAGCTTG TTGAGGGCAGAAGTGATTGACTTTGTGGCATTTGG TGCTAGATGTATCTCAAAGTAGATGGATTTAACAA TGTTTATTGAGTTTGTAGTAAGAAATTAGCAAGGG CTAATAGGAAATAATTGCTTAAACTTTACATTCTT CCTGGCATGGCCAGAAATTCACTAAAGGTTCCTTT CCCCCTCTAGGGTCCACCTGTTAATCAATCTTAAA TTGTTGCCAATTACACATCTTGAATACATAGAGAT TATTTATATTGTTTTTTTAACCCCTTGGTCAATTT GCATATATTGAGCTTTTTAAAGTTTTAATCATTAG TTGGTTCTTCTAAGAATCATGAGTCAGGAGCAGGG ATTTTTTTTAACTTATTTTGGATTTATAGTCACCA CTACCACTTTTATTATTACCTGCCAGTTCAAGATA GTTATTTATTTTTATTTTATATTATTATTATTATT ATTATCATCATCATTATTTTGAGATGGAGTCTCAC TCTGTTGCCCAGGCTGGAGTGCAGTGGTGCAATCT CGGCTCACTGCAACCTCTGCCTCCCAGGTTCAAGC AATTCTCCCTGCTTCAGCCTCCAGATTAGCTGGGA TTACAGGCACCCCTCACCACATCCAGCTAATTTTT GGATTTTTTAGTAGAGATGGGGGTTTGCCATGTTG GCCAGGCTGGTTTTGAACTCTTGACCTCAGGTGAT CCACCTGCCTTGGCCTCCCAAAGTGTTAGGATTAC AAGTGTGAGCCACCGAGCCTGGCCAAGATAGTTTA AAAAAAAAATTATATCTACATTAAAGCCACAAGTC ACCCTTTGCTGAAGTCAGTATTAGTAGTTGGAAGC AGTGTGTTATTCTTGACCCCATGAAGTGGCACTTA TTAAGTAGCTTGCTTTTCCATAATTATGGCCTAGC TTTTTAAAACCTACTATGAACACCACAAGCATAGA GTTTTCCAAAAGTTCAAGAAGGAAAGGAAACCAAT TATACTGAATCAGGTAGATTCTTAACTGAAATAAT TAGATGTTTTAATAGCCTCTTATGAACTTTCTTCC AGAACCAAAAACTTTTGCTAGAAAATCAGCTTTTA CGAGAGAAAACTCATGGCCTTGTAGTTGAGAACCA GGAGTTAAGACAGCGCTTGGGGATGGATGCCCTGG TTGCTGAAGAGGAGGCGGAAGCCAAGGTAAATCAT CTCCTTTATTTGGTGCCTCATGTGAGTACTGGTTC CAAGTGACATGACCCAGCGATTATGTTTACAGTCT GGACTTCTGATCAAGAGCGTTCTTGAAATTTTCCT TCAGTTTTAAGACATTTTCATGCAGGCAGAGTGTT CTTCCCCTAAAGGCACTTGACACTCATTTTTTAAG TGTGTAGTGAACAGTACTAAGATCTAATAATGAAA ACAAGTTACATGGCTCCCTAAGAACAAGTACTAAC
AAATGCAGTAGCCAACAAGATTACCATGCAATCAT TAAGGAGAACCAAAGTAAGAGAGCCACTCAAACCA GATTTTGAACGCTACTAAAATTAAAGTAGTTCTTT GATGAATATGAATGAGTAGGGAAAGGATTCTTTGT AATAGTGATACCTCTGTGGTAAGAGAAGGGTGGTA TGTGAGTTTTAGTCTACAGATTATGGCAAATTCAG TGACAACAATCAAATGGTCTAAGATTGACAGTAGC ACAGTTTTACTCTGTGAAGGTAATGTTCAGGACAA ATTTCAAGAAAACTAGAAAACCATTCTTTACAGCT GAAATCTTTCCCTAACCATTGTTATTTCCACTTTT AAGTCCTCAAGAGATGAGAAAAGGGAGGTAAGGCT TCCTTATACATTTCCTGCACAATGAAACATTTTTC CTCCTCCAGGCAAAGATTCAAGCAGAACTGGCAAA TATCTTATCTTGCTCTTCTCAATAATAATAATGTT GTTAGATAATAAAGTTCTATAGCAATTTAACCCTA GAATCTTTTTGAAAAGTAATTCTTTAAAGTTGAGA ATCACAGCTGTCTAGCAAGCATTTCCTTGGGCACT TGAAGCTGTTTATTCACTTTGGTCTTTCCTCCCAG GGGAATGAAGTGAGGCCAGTGGCCGGGTCTGCTGA GTCCGCAGCACTCAGACTACGTGCACCTCTGCAGC AGGTGCAGGCCCAGTTGTCACCCCTCCAGAACATC TCCCCATGGATTCTGGCGGTATTGACTCTTCAGAT TCAGAGGTAGGGATCATTCTGACTTATTAAAGAGC TATATAACCAGTTAATTCCATCTGTTTGATGCTTG ACATCCCTAACTAGACAGATGAGGGTTGAAGTTAG TTTTTGGTGGGGTTGGAGGTGAACATCAACTACCT TCCTAGTTCCAGGTAATATAGAACATGGAGTGAAG TGTAGATAAATGGGTCTGGTGGGTCCCGAGGTCAT CTTATCACATAATGACTAATTTACATTATGGAACC CAGTACAAAGTGTTCCAGTTAGATTTTCCATTGTA TTCTGACAGTTGTACTTCATTTAATTTTTGCCTCT TACAGTCTGATATCCTGTTGGGCATTCTGGACAAC TTGGACCCAGTCATGTTCTTCAAATGCCCTTCCCC AGAGCCTGCCAGCCTGGAGGAGCTCCCAGAGGTCT ACCCAGAAGGACCCAGTTCCTTACCAGCCTCCCTT TCTCTGTCAGTGGGGACGTCATCAGCCAAGCTGGA AGCCATTAATGAACTAATTCGTTTTGACCACATAT ATACCAAGCCCCTAGTCTTAGAGATACCCTCTGAG ACAGAGAGCCAAGCTAATGTGGTAGTGAAAATCGA GGAAGCACCTCTCAGCCCCTCAGAGAATGATCACC CTGAATTCATTGTCTCAGTGAAGGAAGAACCTGTA GAAGATGACCTCGTTCCGGAGCTGGGTATCTCAAA TCTGCTTTCATCCAGCCACTGCCCAAAGCCATCTT CCTGCCTACTGGATGCTTACAGTGACTGTGGATAC GGGGGTTCCCTTTCCCCATTCAGTGACATGTCCTC TCTGCTTGGTGTAAACCATTCTTGGGAGGACACTT TTGCCAATGAACTCTTTCCCCAGCTGATTAGTGTC TAAGGAATGATCCAATACTGTTGCCCTTTTCCTTG ACTATTACACTGCCTGGAGGATAGCAGAGAAGCCT GTCTGTACTTCATTCAAAAAGCCAAAATAGAGAGT ATACAGTCCTAGAGAATTCCTCTATTTGTTCAGAT CTCATAGATGACCCCCAGGTATTGTCTTTTGACAT CCAGCAGTCCAAGGTATTGAGACATATTACTGGAA GTAAGAAATATTACTATAATTGAGAACTACAGCTT TTAAGATTGTACTTTTATCTTAAAAGGGTGGTAGT TTTCCCTAAAATACTTATTATGTAAGGGTCATTAG ACAAATGTCTTGAAGTAGACATGGAATTTATGAAT GGTTCTTTATCATTTCTCTTCCCCCTTTTTGGCAT CCTGGCTTGCCTCCAGTTTTAGGTCCTTTAGTTTG CTTCTGTAAGCAACGGGAACACCTGCTGAGGGGGC TCTTTCCCTCATGTATACTTCAAGTAAGATCAAGA ATCTTTTGTGAAATTATAGAAATTTACTATGTAAA TGCTTGATGGAATTTTTTCCTGCTAGTGTAGCTTC TGAAAGGTGCTTTCTCCATTTATTTAAAACTACCC ATGCAATTAAAAGGTACAATGCAGCATCCTTGTTT GATTTCTTCTAGGGCCGTAAGTCTTGTTTTCTCTC CAGATGTTTATCTGTGTGCTGTGGTAGGAATTAAT CCAACTGAAGTGAGCCTAACGCTTTTTAAAGTGAC TGAAGGCTTTTCCACCTTAATTACTGCCTGCTTTA ATTCTGGACTGCCATAAGTGATATAAGCTATAATT TGAGCAGTTACTGTCTTTCTGAGACAGATTCTTGA GCCTAACTGACCAATATCACAGCTAGTAAGTGGAA GAGCTAGAACCCTAACCACTATTTGCTACACCATC TTATAAATGTTAAACAAGGACACACCATCACATAT CGAGATTCTCTTGCCCTTATTATGGGAATTAAGAG CATTTTCTAGACTGAAACTCCCTATTTTCAACTCT GCCACTGGTAAGCTGGGTAACCCAGGGGTTATATA TAATCACTTATTTCCTCATCTGTAAAGTTGGATAA TGGTATCTCTAAAGGTTAAGATTCAAAGAGACGAT GCATTATAAGCATTTAGTATATGCTAGGCACCATC CTAAACACTGGAAAGTTAGTTAGTTATTATCTCCT AATCCACTTTGGAAGGGTTTTAATCTCTTCCAGAA TTATATTTACTCAAGAATTTGTTTCATCAAAGAAT AAACCTCGGCCAGGCGCGGTGGCTCATGCCTGTAA TCCCAGCACTTTGGGAGGCTGAGGCGGGTGGATCA CGAGGTCAGGAGATCGAGACCATCCTGCCTAACAT GGGGAAACCCTGTCTCTACTAAAATTACAAAAAAT TAGCCAGGCGTGGTGGTGGGCGCCTGTAATCCCAG CTACTTGGGAGGCTGAGGCAGGAGAATGGCGTGAA CCCGGGAGGCGGAGCTTGCGGTGAGGGGAGATCGC GCCACTGCACTCCAGCCTGGGCAACAGAGCGAGAC TCTGTCTCAAAAAATAAATAAATAAATAAATAAAT AAATAAATAAACCTCTTCAAGAAAAAATCCTAGTG ATATTAATACAACTCCCAAAGACTTGATAACCTCC TCATCCTTCATAGCATCTTTTCCTTGGAAATCTTA CAAGGTTTTACAGGACTTTACTTATTTATAAAAAT TTCACCTATGCCAGTAGATGAAATCATTCTATGCC AATTTAGCATTTAAATGCTATGTTCCCAACTTACA AAGACTAACTCTGGGGAGGTCAAAGTGAATGAGTA GAAAAAAGGCAGGATTCAGAGAATCCCAAGCAGCA AGGCAAAGTGGATTATAGAATACCTTTGGTGTAGG CCAGGTGTAGTGGCTCACGCTTGTAATCCCAACAC TTTGGGAGGCTGAGGTGGGCGGATCACCTGAGGTC AGGAGTTCATGGCCAGCCTGACCAACATAGTGAAA CCCCATCTCTAGTAAAAATACAAAATTAGCTGGGT GTGGTGGCGCATATGCCTGTAATCCCAGCTACTCA GGAGGCTGAGGCGGCAGAATCACTTGAACCCGGGA GGCAGAGGATGCAGCGAGCCGAGATCGTGCCATTG CACTCCAGCCTGGGCAACAAGAGCGAAACTCCATT TAAAAAAGAAAAAAAAAAATAGAATGCCTTTCATG TAGTGACTGGAGGCAAGTCAGCTAGCTGCCTTCAA GATCCGGTCGTTGAAGCCAGGGCCCAATCCTGGTG CTCAGCAATACAAACTTGCTTAGGCTCTTAAGTTT CTTCAGAAACAGGCCAGGCATGGTGGCTCACACCT ATAATCCCAGCACTTTGGGAGGCCGAGGCCAGCAG ATTGCTTGGTTCAAGACTAGCCTGGACAACATGGC AAACCCGTCTCTCCATGAAAAGTAAAAAAAAATAG CCAGGCATGGTGGTGTGCACTGGTGGTCACAGCCA CTCAGGAAGCTGAGGTGGGAGGATCGCTTGAGGCC AGGGGGCAGAGGTTGCAGTCAGCCAAGATCGCAGC ACTGCACTCCAGACTGGGTGAAAAAGCAAGACTGC CTAAAAAAAAAAAGGTTCTGTATATAAG.
[0066] As used herein, FOXO1 refers to a forkhead box 1 polypeptide. When preparing a T cell or treating a mammal with a T cell, FOXO1 refers to human FOXO1. An example of a human FOXO1 polypeptide includes, without limitation, NCBI reference sequence: NP_002006.2.
[0067] As used herein, ID2 refers to an inhibitor or DNA binding 2 polypeptide. When preparing a T cell or treating a mammal with a T cell, ID2 refers to human ID2. An example of a human ID2 polypeptide includes, without limitation, NCBI reference sequence: NP_002157.2.
[0068] As used herein, ID3 refers to an inhibitor or DNA binding 3 polypeptide. When preparing a T cell or treating a mammal with a T cell, ID3 refers to human ID3. An example of a human ID3 polypeptide includes, without limitation, NCBI reference sequence: NP_002158.3.
[0069] As used herein, IRF4 refers to a interferon regulatory factor 4 polypeptide. When preparing a T cell or treating a mammal with a T cell, IRF4 refers to human IRF4. An example of a human IRF4 polypeptide includes, without limitation, NCBI reference sequence: NP_001182215.1.
[0070] As used herein, LEF1 refers to a lymphoid enhancer binding factor 1 polypeptide. When preparing a T cell or treating a mammal with a T cell, LEF1 refers to human LEF1. An example of a human LEF1 polypeptide includes, without limitation, NCBI reference sequence: NP_001124185.1.
[0071] As used herein, SATB1 refers to a SATB1 homeobox 1 polypeptide. When preparing a T cell or treating a mammal with a T cell, SATB1 refers to human SATB1. An example of a human SATB1 polypeptide includes, without limitation, NCBI reference sequence: NP_001124482.1.
[0072] As used herein, RUNX1 refers to a RUNX family transcription factor 1 polypeptide. When preparing a T cell or treating a mammal with a T cell, RUNX1 refers to human RUNX1. An example of a human RUNX1 polypeptide includes, without limitation, NCBI reference sequence: NP_001001890.1.
[0073] As used herein, BCL11b refers to a BAF chromatin remodeling complex subunit BCL11b polypeptide. When preparing a T cell or treating a mammal with a T cell, BCL11b refers to human BCL11b. An example of a human BCL11b polypeptide includes, without limitation, NCBI reference sequence: NP_001269166.1.
[0074] As used herein, FOXP1 refers to a forkhead box P1 polypeptide. When preparing a T cell or treating a mammal with a T cell, FOXP1 refers to human v. An example of a human FOXP1 polypeptide includes, without limitation, NCBI reference sequence: NP_001012523.1.
[0075] As used herein, FOXP4 refers to a forkhead box P4 polypeptide. When preparing a T cell or treating a mammal with a T cell, FOXP4 refers to human v. An example of a human FOXP4 polypeptide includes, without limitation, NCBI reference sequence: NP_001012426.1.
[0076] As used herein, BACH2 refers to a BTB domain and CNC homolog 2 polypeptide. When preparing a T cell or treating a mammal with a T cell, BACH2 refers to human BACH2. An example of a human BACH2 polypeptide includes, without limitation, NCBI reference sequence: NP_001164265.1.
[0077] As used herein, STAT3 refers to a signal transducer and activator of transcription 3 polypeptide. When preparing a T cell or treating a mammal with a T cell, STAT3 refers to human STAT3. An example of a human STAT3 polypeptide includes, without limitation, NCBI reference sequence: NP_001356441.1.
[0078] As used herein XBP1 refers to an X-box binding protein 1 polypeptide. When preparing a T cell or treating a mammal with a T cell, XBP1 refers to human XBP1. An example of a human XBP1 polypeptide includes, without limitation, NCBI reference sequence: NP_005071.2.
Antigen-Binding Domains
[0079] As used herein, the term "antibody," "antigen-binding domain," or "antigen-binding fragment" refers to an intact immunoglobulin or to an antigen-binding portion thereof. In some embodiments, a binding agent refers to an intact immunoglobulin or to an antigen-binding portion thereof. Antigen-binding portions may be produced by recombinant DNA techniques or by enzymatic or chemical cleavage of intact antibodies. Examples of antigen-binding portions include Fab, Fab', F(ab')2, Fv, domain antibodies (dAbs), and complementarity determining region (CDR) fragments, single-chain antibodies (scFv), chimeric antibodies, diabodies, triabodies, tetrabodies, and polypeptides that contain at least a portion of an immunoglobulin that is sufficient to confer specific antigen-binding to the polypeptide. As used herein, the term "scFv" antibody fragments comprise the V.sub.H and V.sub.L domains of an antibody, wherein these domains are present in a single polypeptide chain. Included in the definition are single domain antibody, including camelids. In some cases, the antibody is human or humanized.
[0080] In some embodiments, any of the "antigen-binding domains," "antibodies," "ligand binding domains," or "binding agents" described herein can bind specifically to a target selected from the group of: CD16a, CD28, CD3 (e.g., one or more of CD3.alpha., CD3.beta., CD3.delta., CD3.epsilon., and CD3.gamma.), CD33, CD20, CD19, CD22, CD123, IL-1R, IL-1, VEGF, IL-6R, IL-4, IL-10, LAG3, PDL-1, TIGIT, PD-1, TIM3, CTLA4, MICA, MICB, IL-6, IL-8, TNF.alpha., CD26a, CD36, ULBP2, CD30, CD200, IGF-1R, MUC4AC, MUC5AC, Trop-2, CMET, EGFR, HER1, HER2, HER3, PSMA, CEA, B7H3, EPCAM, BCMA, P-cadherin, CEACAM5, a UL16-binding protein (e.g., ULBP1, ULBP2, ULBP3, ULBP4, ULBP5, and ULBP6), HLA-DR, DLL4, TYRO3, AXL, MER, CD122, CD155, PDGFDD, a ligand of TGF-.beta. receptor II (TGF-.beta.RII), a ligand of TGF-.beta.RIII, a ligand of DNAM1, a ligand of NKp46, a ligand of NKp44, a ligand of NKG2D, a ligand of NK30, a ligand for a scMHICI, a ligand for a scMHICII, a ligand for a scTCR, a receptor for IL-1, a receptor for IL-2, a receptor for IL-3, a receptor for IL-7, a receptor for IL-8, a receptor for IL-10, a receptor for IL-12, a receptor for IL-15, a receptor for IL-17, a receptor for IL-18, a receptor for IL-21, a receptor for PDGF-D, a receptor for stem cell factor (SCF), a receptor for stem cell-like tyrosine kinase 3 ligand (FLT3L), a receptor for MICA, a receptor for MICB, a receptor for a ULP16-binding protein, a receptor for CD155, a receptor for CD122, and a receptor for CD28.
[0081] In some embodiments, any of the "antigen-binding domains," "antibodies," "ligand binding domains," or "binding agents" further include a secretion signal peptide. For example, a nucleic acid sequence encoding a binding agent further includes a nucleic acid sequence encoding a secretion signal peptide.
[0082] As used herein, ICAM-1 refers to intercellular adhesion molecule 1 polypeptide. When preparing the T cell or treating a mammal with the T cell, ICAM-1 refers to human ICAM-1. An example of a human ICAM-1 polypeptide includes, without limitation, NCBI reference sequence: NP_000192.2 or a fragment thereof.
[0083] As used herein, VCAM-1 refers to vascular cell adhesion molecule 1 polypeptide. When preparing the T cell or treating a mammal with the T cell, VCAM-1 refers to human VCAM-1. An example of a human VCAM-1 polypeptide includes, without limitation, NCBI reference sequence: NP_001069.1 or a fragment thereof.
[0084] As used herein, LFA-1 also known as ITGB2 refers to lymphocyte function associated antigen-1 (LFA-1) polypeptide or integrin subunit beta 2 (ITGB2) polypeptide. When preparing the T cell or treating a mammal with the T cell, LFA-1 or ITGB2 refers to human LFA-1 or ITGB2. An example of a human LFA-1 or ITGB2 polypeptide includes, without limitation, NCBI reference sequence: NP_000620.2 or a fragment thereof.
[0085] As used herein, TGFBR2 refers to transforming growth factor beta receptor 2. When preparing the T cell or treating a mammal with the T cell, TGFBR2 refers to human TGFBR2. An example of a human TGFBR2 polypeptide includes, without limitation, NCBI reference sequence: NP_001020018.1 or a fragment thereof.
[0086] As used herein, IFNAR1 refers to interferon (alpha and beta) receptor 1. When preparing the T cell or treating a mammal with the T cell, IFNAR1 refers to human IFNAR1. An example of a human IFNAR1 polypeptide includes, without limitation, NCBI reference sequence: NP_000620.2 or a fragment thereof.
Methods of Producing T Cells
[0087] As described herein, any appropriate method of producing cells (e.g., T cells) comprising a FOXP3 polypeptide and one or more transcription factors can be used to generate the T cells as described herein. In some embodiments, a cell (e.g., a T cell) that is transduced with the nucleic acid sequences described herein is isolated from a mammal (e.g., a human) using any appropriate method (e.g., magnetic activated sorting or flow cytometry-mediated sorting). In some cases, nucleic acid sequences encoding a FOXP3 polypeptide and one or more transcription factors can be transformed into a cell (e.g., a T cell) along with nucleic acid sequences encoding a therapeutic gene product and/or a binding agent. For example, a T cell can be made by transducing nucleic acid sequences encoding a FOXP3 polypeptide and one or more transcription factors into a cell (e.g., a T cell) using a lentivirus. In another example, a T cell can be made by transducing nucleic acid sequences encoding a FOXP3 polypeptide, one or more transcription factors, and a therapeutic gene product into a cell (e.g., a T cell) using a lentivirus. In yet another example, a T cell can be made by co-transducing nucleic acid sequences encoding a FOXP3 polypeptide, one or more transcription factors, a therapeutic gene product, and a binding agent into an immune cell (e.g., a T cell) using a lentivirus. In all cases described herein, the nucleic acid sequences are operably linked to a promoter or are operably linked to other nucleic acid sequences using a self-cleaving 2A polypeptide or IRES sequence.
[0088] Methods of introducing nucleic acids and expression vectors into a cell (e.g., a eukaryotic cell) are known in the art. Non-limiting examples of methods that can be used to introduce a nucleic acid into a cell include lipofection, transfection, electroporation, microinjection, calcium phosphate transfection, dendrimer-based transfection, cationic polymer transfection, cell squeezing, sonoporation, optical transfection, impalefection, hydrodynamic delivery, magnetofection, viral transduction (e.g., adenoviral and lentiviral transduction), and nanoparticle transfection. As used herein, "transformed" and "transduced" are used interchangeably.
[0089] In some embodiments, the transformed cell can be an immune cell, an epithelial cell, an endothelial cell, or a stem cell. In some embodiments, the transformed cell is an immune cell selected from the group consisting of a T cell, a B cell, a natural killer (NK) cell, a dendritic cell, a macrophage, a regulatory T cell, a helper T cell and a cytotoxic T cell. In some examples, the immune cell is a NK cell, and the detection of a memory NK cell can include, for example, the detection of the level of one or more of IL-12, IL-18, IL-33, STAT4, Zbtb32, DNAM-1, BIM, Noxa, SOCS1, BNIP3, BNIP3L, interferon-.gamma., CXCL16, CXCR6, NKG2D, TRAIL, CD49, Ly49D, CD49b, and Ly79H. A description of NK memory cells and methods of detecting the same is described in O'Sullivan et al., Immunity 43:634-645, 2015. In some examples, the immune cell is a T cell, and the detection of memory T cells can include, e.g., the detection of the level of expression of one or more of CD45RO, CCR7, L-selectin (CD62L), CD44, CD45RA, integrin .alpha.e.beta.7, CD43, CD4, CD8, CD27, CD28, IL-7R.alpha., CD95, IL-2R.beta., CXCR3, and LFA-1. Additional examples of T-cells that can be transduced are described herein.
Nucleic Acids/Vectors
[0090] Also provided herein are nucleic acids sequences that encode any of the polypeptides described herein. For example, nucleic acid sequences are included that encode for a FOXP3 polypeptide, one or more transcription factors, a therapeutic agent comprising a polypeptide, and a binding agent comprising a polypeptide. Also provided herein are vectors that include any of the nucleic acid sequences encoding any of the polypeptides described herein. For example, the polypeptides include, without limitation, a FOXP3 polypeptide, one or more transcription factors, a therapeutic agent comprising a polypeptide, and a binding agent comprising a polypeptide.
[0091] Any of the vectors described herein can be an expression vector. For example, an expression vector can include a promoter sequence operably linked to the sequence encoding any of the polypeptides as described herein. Non-limiting examples of vectors include plasmids, transposons, cosmids, and viral vectors (e.g., any adenoviral vectors (e.g., pSV or pCMV vectors), adeno-associated virus (AAV) vectors, lentivirus vectors, and retroviral vectors), and any Gateway.RTM. vectors. In some cases, a vector can include sufficient cis-acting elements that supplement expression where the remaining elements needed for expression can be supplied by the host mammalian cell or in an in vitro expression system. Skilled practitioners will be capable of selecting suitable vectors and mammalian cells for making any of the T cells as described herein. Any appropriate promoter (e.g., EF1 alpha) can be operably linked to any of the nucleic acid sequences described herein. Non-limiting examples of promoters to be used in any of the vectors or constructs described herein include EF1a, SFFV, PGK, CMV, CAG, UbC, MSCV, MND, EF1a hybrid, and/or CAG hybrid. As used herein, the term "operably linked" is well known in the art and refers to genetic components that are combined such that they carry out their normal functions. For example, a nucleic acid sequence is operably linked to a promoter when its transcription is under the control of the promoter. In another example, a nucleic acid sequence can be operably linked to other nucleic acid sequence by a self-cleaving 2A polypeptide or an internal ribosome entry site (IRES). In such cases, the self-cleaving 2A polypeptide allows the second nucleic acid sequence to be under the control of the promoter operably linked to the first nucleic acid sequence. The nucleic acid sequences described herein can be operably linked to a promoter. In some cases, the nucleic acid sequences described herein can be operably linked to any other nucleic acid sequence described herein using a self-cleaving 2A polypeptide or IRES. In some cases, the nucleic acid sequences are all included on one vector and operably linked either to a promoter upstream of the nucleic acid sequences or operably linked to the other nucleic acid sequences through a self-cleaving 2A polypeptide or an IRES.
Compositions
[0092] Also provided herein are compositions (e.g., pharmaceutical compositions) that include at least one of any of the polypeptides (e.g., FOXP3 polypeptides, one or more transcription factors, therapeutic polypeptides, and binding agent polypeptides), any of the cells, or any of the nucleic acids or vectors described herein. In some embodiments, the compositions include at least one of the any of polypeptides (e.g., FOXP3 polypeptides, one or more transcription factors, therapeutic polypeptides, and binding agent polypeptides) described herein. In some embodiments, the compositions include any of the cells (e.g., any of the cells described herein including any of the cells produced using any of the methods described herein). In some embodiments, the pharmaceutical compositions are formulated for different routes of administration (e.g., intravenous, subcutaneous). In some embodiments, the pharmaceutical compositions can include a pharmaceutically acceptable carrier (e.g., phosphate buffered saline).
Cells
[0093] Also provided herein are cells (e.g., any of the exemplary cells described herein or known in the art) comprising any of the nucleic acid sequences described herein that encode any of the polypeptides (e.g., FOXP3 polypeptides, one or more transcription factors, therapeutic polypeptides, and/or binding agent polypeptides) described herein. Also provided herein are cells (e.g., any of the exemplary cells described herein or known in the art) that include any of the vectors described herein. In some embodiments, the cells are any of the exemplary types of T cells described herein or known in the art.
[0094] In some embodiments of any of the methods described herein, the cell can be a eukaryotic cell. As used herein, the term "eukaryotic cell" refers to a cell having a distinct, membrane-bound nucleus. Such cells may include, for example, mammalian (e.g., rodent, non-human primate, or human) cells. Non-limiting examples of mammalian cells include Chinese hamster ovary cells and human embryonic kidney cells (e.g., HEK293 cells).
Methods of Treatment
[0095] Also provided herein are methods of treating a mammal (e.g., a human) having an autoimmune disease that includes administering to the mammal (e.g., human) a therapeutically effective amount of a cell (e.g., any of the exemplary T cells described herein) or any of the compositions (e.g., pharmaceutical compositions) described herein.
[0096] In some embodiments, these methods can result in a reduction in the number, severity, or frequency of one or more symptoms of the autoimmune diseases in the mammal (e.g., as compared to the number, severity, or frequency of the one or more symptoms of the autoimmune disease in the mammal prior to treatment). For example, a mammal having an autoimmune disease having been administered a T cell as described here can experience a reduction in inflammation or autoantibody production.
[0097] Any appropriate method of administration can be used to administer the T cells to a mammal (e.g. a human) having an autoimmune disease. Examples of methods of administration include, without limitation, parenteral administration and intravenous injection.
[0098] A pharmaceutical composition containing the T cells and a pharmaceutically acceptable carrier or buffer can be administered to a mammal (e.g., a human) having an autoimmune disease. For example, a pharmaceutical composition (e.g., a T cell along with a pharmaceutically acceptable carrier) to be administered to a mammal having an autoimmune disease can be formulated in an injectable form (e.g., emulsion, solution and/or suspension). In some embodiments, a pharmaceutical composition containing the T cells can include phosphate buffered saline.
[0099] Pharmaceutically acceptable carriers, fillers, and vehicles that can be used in a pharmaceutical composition described herein can include, without limitation, ion exchangers, alumina, aluminum stearate, lecithin, serum proteins, such as human serum albumin, buffer substances such as phosphates, glycine, sorbic acid, potassium sorbate, partial glyceride mixtures of saturated vegetable fatty acids, water, salts or electrolytes, such as protamine sulfate, disodium hydrogen phosphate, potassium hydrogen phosphate, sodium chloride, zinc salts, colloidal silica, magnesium trisilicate, polyvinyl pyrrolidone, cellulose-based substances, polyethylene glycol, sodium carboxymethylcellulose, polyacrylates, waxes, polyethylene-polyoxypropylene-block polymers, polyethylene glycol and wool fat.
[0100] Effective dosage can vary depending on the severity of the autoimmune disease, the route of administration, the age and general health condition of the subject, excipient usage, the possibility of co-usage with other therapeutic treatments, and the judgment of the treating physician. An effective amount of a T cell can be any amount that reduces inflammation and autoantibody production within a mammal having an autoimmune disease without producing significant toxicity to the mammal. For example, an effective amount of T cells administered to a mammal having an autoimmune disease can be from about 1.times.10.sup.6 cells to about 1.times.10.sup.10 (e.g., from about 1.times.10.sup.6 to about 1.times.10.sup.9, from about 1.times.10.sup.6 to about 1.times.10.sup.8, from about 1.times.10.sup.6 to about 1.times.10.sup.7, from about 1.times.10.sup.7 to about 1.times.10.sup.10, from about 1.times.10.sup.7 to about 1.times.10.sup.9, from about 1.times.10.sup.7 to about 1.times.10.sup.8, from about 1.times.10.sup.8 to about 1.times.10.sup.10, from about 1.times.10.sup.8 to about 1.times.10.sup.9, or form about 1.times.10.sup.9 to about 1.times.10.sup.10) cells. In some cases, the T cells can be a purified population of immune cells generated as described herein. In some cases, the purity of the population of T cells can be assessed using any appropriate method, including, without limitation, flow cytometry. In some cases, the population of T cells to be administered can include a range of purities from about 70% to about 100%, from about 70% to about 90%, from about 70% to about 80%, from about 80% to about 90%, from about 90% to about 100%, from about 80% to about 100%, from about 80% to about 90%, or from about 90% to 100%. In some cases, the dosage (e.g., number of T cells to be administered) can adjusted based on the level of purity of the T cells.
[0101] The frequency of administration of a T cell can be any frequency that reduces inflammation or autoantibody production within a mammal having an autoimmune disease without producing toxicity to the mammal. In some cases, the actual frequency of administration can vary depending on various factors including, without limitation, the effective amount, duration of treatment, use of multiple treatment agents, route of administration, and severity of the condition may require an increase or decrease in frequency of administration.
[0102] An effective duration for administering a composition containing a T cell can be any duration that reduces inflammation or autoantibody production within a mammal having an autoimmune disease without producing toxicity to the mammal. In some cases, the effective duration can vary from several days to several months. In general, the effective treatment duration for administering a composition containing a T cell to treat an autoimmune disease can range in duration from about one month to about five years (e.g., from about two months to about five years, from about three months to about five years, from about six months to about five years, from about eight months to about five years, from about one year to about five years, from about one month to about four years, from about one month to about three years, from about one month to about two years, from about six months to about four years, from about six months to about three years, or from about six months to about two years). In some cases, the effective treatment duration for administering a composition containing a T cell can be for the remainder of the life of the mammal.
[0103] In some cases, a course of treatment and/or the severity of one or more symptoms related to autoimmune disease can be monitored. Any appropriate method can be used to determine whether the autoimmune disease is being treated. For example, immunological techniques (e.g., ELISA) can be performed to determine if the level of autoantibodies present within a mammal being treated as described herein is reduced following the administration of the T cells. Remission and relapse of the disease can be monitored by testing for one or more markers of autoimmune disease.
[0104] Any appropriate autoimmune disease can be treated with a T cell as described herein. In some cases, an autoimmune disease caused by the accumulation of autoantibodies can be treated with a T cell as described herein. Examples of autoimmune diseases include, without limitation, lupus, rheumatoid arthritis, multiple sclerosis, insulin dependent diabetes mellitis, myasthenia gravis, Grave's disease, autoimmune hemolytic anemia, autoimmune thrombocytopenia purpura, Goodpasture's syndrome, pemphigus vulgaris, acute rheumatic fever, post-streptococcal glomerulonephritis, Crohn's disease, Celiac disease, and polyarteritis nodosa.
[0105] The invention will be further described in the following examples, which do not limit the scope of the invention described in the claims.
EXAMPLES
Example 1. T Cell Transduced with Nucleic Acid Sequences Encoding FOXP3 and BLIMP1
[0106] A set of experiments is performed to assess the effect of co-expression of a BLIMP1 polypeptide and a FOXP3 polypeptide. In these experiments, CD4.sup.+ T cells are transduced with a lentivirus where the lentiviral vector includes a first nucleic acid sequence encoding a FOXP3 polypeptide harboring mutations in NES1 and NES2 that result in nuclear localization of FOXP3 and a second nucleic acid sequence encoding BLIMP1 polypeptide. The vector includes an EF1.alpha. promoter. Lentivirus is produced in HEK293 cells according to standard protocols.
[0107] CD4.sup.+ T cells are counted and checked for viability. Next cells are re-suspended in fresh serum free ImmunoCult T cell expansion media at a concentration of 10.sup.6 cells/mL. Then 500 .mu.L (.about.500,000 cells) of the cell suspension is aliquoted to each well. The cells are then cultured in the presence of CD3/CD28 for 1-2 days prior to addition of virus. Different concentrations of lentiviral particles are added to each well for the desired target MOI. The plates are then sealed with parafilm, and the cells are spun in a table top centrifuge at 300.times.g for 5 minutes. After spinoculation, the cells are incubated at 37.degree. C. The cells are then assessed for FOXP3 expression and cellular localization, BLIMP1 expression, and expression of a T reg phenotype.
Example 2
[0108] Table 1 (below) shows the percentage of Mean Fluorescence Intensity (MFI) as compared to donor-matched expanded Tregs.
[0109] Each column represents values for synReg transduced with FOXP3 alone or co-transduced with FOXP3 and the indicated modifier. Each row displays data for the specified marker. Values are displayed as mean of 3 donors.+-.SD, *p<0.05, **p<0.01 by paired t-test of co-transduced modifier versus FOXP3 alone.
TABLE-US-00011 Table 1 Percentage of Mean Fluorescence Intensity (MFI) as compared to donor-matched expanded Tregs. FOXP3 FOXP3 FOXP3 FOXP FOXP3 FOXP3 FOXP3 only and ID2 and ID3 and GATA1 and GATA3 and XBP1 and SATB1 CTLA4 119.6 .+-. 24.5 248.3 .+-. 100.8 226.1 .+-. 58.5, * 207.5 .+-. 48.0 167.5 .+-. 19.5, * 121.5 .+-. 22.4 129.2 .+-. 31.7 CD25 206.9 .+-. 130.8 322.0 .+-. 202.6 274.7 .+-. 166.8 293.8 .+-. 142.8 230.2 .+-. 115.1 281.3 .+-. 147.9, * 257.1 .+-. 168.0 ICOS 239.9 .+-. 123.0 564.1 .+-. 355.1 467.8 .+-. 284.5 205.3 .+-. 115.2 242.7 .+-. 119.8 249.7 .+-. 138.2 239.3 .+-. 134.4 LAG3 168.28 .+-. 78.8 318.6 .+-. 146.7 256.0 .+-. 102.5, * 254.7 .+-. 38.5 207.9 .+-. 62.5 200.0 .+-. 84.8, * 191.4 .+-. 77.7, **
Other Embodiments
[0110] It is to be understood that while the invention has been described in conjunction with the detailed description thereof, the foregoing description is intended to illustrate and not limit the scope of the invention, which is defined by the scope of the appended claims. Other aspects, advantages, and modifications are within the scope of the following claims.
Sequence CWU
1
1
1412159DNAHomo sapiens 1agtttcccac aagccaggct gatccttttc tgtcagtcca
cttcaccaag cctgcccttg 60gacaaggacc cgatgcccaa ccccaggcct ggcaagccct
cggccccttc cttggccctt 120ggcccatccc caggagcctc gcccagctgg agggctgcac
ccaaagcctc agacctgctg 180ggggcccggg gcccaggggg aaccttccag ggccgagatc
ttcgaggcgg ggcccatgcc 240tcctcttctt ccttgaaccc catgccacca tcgcagctgc
agctctcaac ggtggatgcc 300cacgcccgga cccctgtgct gcaggtgcac cccctggaga
gcccagccat gatcagcctc 360acaccaccca ccaccgccac tggggtcttc tccctcaagg
cccggcctgg cctcccacct 420gggatcaacg tggccagcct ggaatgggtg tccagggagc
cggcactgct ctgcaccttc 480ccaaatccca gtgcacccag gaaggacagc accctttcgg
ctgtgcccca gagctcctac 540ccactgctgg caaatggtgt ctgcaagtgg cccggatgtg
agaaggtctt cgaagagcca 600gaggacttcc tcaagcactg ccaggcggac catcttctgg
atgagaaggg cagggcacaa 660tgtctcctcc agagagagat ggtacagtct ctggagcagc
agctggtgct ggagaaggag 720aagctgagtg ccatgcaggc ccacctggct gggaaaatgg
cactgaccaa ggcttcatct 780gtggcatcat ccgacaaggg ctcctgctgc atcgtagctg
ctggcagcca aggccctgtc 840gtcccagcct ggtctggccc ccgggaggcc cctgacagcc
tgtttgctgt ccggaggcac 900ctgtggggta gccatggaaa cagcacattc ccagagttcc
tccacaacat ggactacttc 960aagttccaca acatgcgacc ccctttcacc tacgccacgc
tcatccgctg ggccatcctg 1020gaggctccag agaagcagcg gacactcaat gagatctacc
actggttcac acgcatgttt 1080gccttcttca gaaaccatcc tgccacctgg aagaacgcca
tccgccacaa cctgagtctg 1140cacaagtgct ttgtgcgggt ggagagcgag aagggggctg
tgtggaccgt ggatgagctg 1200gagttccgca agaaacggag ccagaggccc agcaggtgtt
ccaaccctac acctggcccc 1260tgacctcaag atcaaggaaa ggaggatgga cgaacagggg
ccaaactggt gggaggcaga 1320ggtggtgggg gcagggatga taggccctgg atgtgcccac
agggaccaag aagtgaggtt 1380tccactgtct tgcctgccag ggcccctgtt cccccgctgg
cagccacccc ctcccccatc 1440atatcctttg ccccaaggct gctcagaggg gccccggtcc
tggccccagc ccccacctcc 1500gccccagaca caccccccag tcgagccctg cagccaaaca
gagccttcac aaccagccac 1560acagagcctg cctcagctgc tcgcacagat tacttcaggg
ctggaaaagt cacacagaca 1620cacaaaatgt cacaatcctg tccctcactc aacacaaacc
ccaaaacaca gagagcctgc 1680ctcagtacac tcaaacaacc tcaaagctgc atcatcacac
aatcacacac aagcacagcc 1740ctgacaaccc acacacccca aggcacgcac ccacagccag
cctcagggcc cacaggggca 1800ctgtcaacac aggggtgtgc ccagaggcct acacagaagc
agcgtcagta ccctcaggat 1860ctgaggtccc aacacgtgct cgctcacaca cacggcctgt
tagaattcac ctgtgtatct 1920cacgcatatg cacacgcaca gccccccagt gggtctcttg
agtcccgtgc agacacacac 1980agccacacac actgccttgc caaaaatacc ccgtgtctcc
cctgccactc acctcactcc 2040cattccctga gccctgatcc atgcctcagc ttagactgca
gaggaactac tcatttattt 2100gggatccaag gcccccaacc cacagtaccg tccccaataa
actgcagccg agctcccca 21592232DNAHomo sapiens 2cctgcccttg gacaaggacc
cgatgcccaa ccccaggcct ggcaagccct cggccccttc 60cttggccctt ggcccatccc
caggagcctc gcccagctgg agggctgcac ccaaagcctc 120agacctgctg ggggcccggg
gcccaggggg aaccttccag ggccgagatc ttcgaggcgg 180ggcccatgcc tcctcttctt
ccttgaaccc catgccacca tcgcagctgc ag 232381DNAHomo sapiens
3ctggtgctgg agaaggagaa gctgagtgcc atgcaggccc acctggctgg gaaaatggca
60ctgaccaagg cttcatctgt g
8149PRTHomo sapiens 4Gln Leu Gln Leu Pro Thr Leu Pro Leu1
5510PRTHomo sapiens 5Val Gln Ser Leu Glu Gln Gln Leu Val Leu1
5 106105PRTHomo sapiens 6Ile Glu Val Met Tyr Pro Pro
Pro Tyr Leu Asp Asn Glu Lys Ser Asn1 5 10
15Gly Thr Ile Ile His Val Lys Gly Lys His Leu Cys Pro
Ser Pro Leu 20 25 30Phe Pro
Gly Pro Ser Lys Pro Phe Trp Val Leu Val Val Val Gly Gly 35
40 45Val Leu Ala Cys Tyr Ser Leu Leu Val Thr
Val Ala Phe Ile Ile Phe 50 55 60Trp
Val Arg Ser Lys Arg Ser Arg Leu Leu His Ser Asp Tyr Met Asn65
70 75 80Met Thr Pro Arg Arg Pro
Gly Pro Thr Arg Lys His Tyr Gln Pro Tyr 85
90 95Ala Pro Pro Arg Asp Phe Ala Ala Tyr 100
10575148DNAHomo sapiens 7aacacagaca aagtgctgcc gtgacactcg
gccctccagt gttgcggaga ggcaagagca 60gcgaccgcgg cacctgtccg cccggagctg
ggacgcgggc gcccgggcgg ccggacgaag 120cgaggaggga ccgccgaggt gcgcgtctgt
gcggctcagc ctggcggggg acgcggggag 180aatgtggact gggtagagat gaacgagact
tttctcagat gttggatatt tgcttggaaa 240aacgtgtggg tacgaccttg gctgccccca
agtgtaactc cagcactgtg aggtttcagg 300gattggcaga ggggaccaag gggaccatga
aaatggacat ggaggatgcg gatatgactc 360tgtggacaga ggctgagttt gaagagaagt
gtacatacat tgtgaacgac cacccctggg 420attctggtgc tgatggcggt acttcggttc
aggcggaggc atccttacca aggaatctgc 480ttttcaagta tgccaccaac agtgaagagg
ttattggagt gatgagtaaa gaatacatac 540caaagggcac acgttttgga cccctaatag
gtgaaatcta caccaatgac acagttccta 600agaacgccaa caggaaatat ttttggagga
tctattccag aggggagctt caccacttca 660ttgacggctt taatgaagag aaaagcaact
ggatgcgcta tgtgaatcca gcacactctc 720cccgggagca aaacctggct gcgtgtcaga
acgggatgaa catctacttc tacaccatta 780agcccatccc tgccaaccag gaacttcttg
tgtggtattg tcgggacttt gcagaaaggc 840ttcactaccc ttatcccgga gagctgacaa
tgatgaatct cacacaaaca cagagcagtc 900taaagcaacc gagcactgag aaaaatgaac
tctgcccaaa gaatgtccca aagagagagt 960acagcgtgaa agaaatccta aaattggact
ccaacccctc caaaggaaag gacctctacc 1020gttctaacat ttcacccctc acatcagaaa
aggacctcga tgactttaga agacgtggga 1080gccccgaaat gcccttctac cctcgggtcg
tttaccccat ccgggcccct ctgccagaag 1140actttttgaa agcttccctg gcctacggga
tcgagagacc cacgtacatc actcgctccc 1200ccattccatc ctccaccact ccaagcccct
ctgcaagaag cagccccgac caaagcctca 1260agagctccag ccctcacagc agccctggga
atacggtgtc ccctgtgggc cccggctctc 1320aagagcaccg ggactcctac gcttacttga
acgcgtccta cggcacggaa ggtttgggct 1380cctaccctgg ctacgcaccc ctgccccacc
tcccgccagc tttcatcccc tcgtacaacg 1440ctcactaccc caagttcctc ttgcccccct
acggcatgaa ttgtaatggc ctgagcgctg 1500tgagcagcat gaatggcatc aacaactttg
gcctcttccc gaggctgtgc cctgtctaca 1560gcaatctcct cggtgggggc agcctgcccc
accccatgct caaccccact tctctcccga 1620gctcgctgcc ctcagatgga gcccggaggt
tgctccagcc ggagcatccc agggaggtgc 1680ttgtcccggc gccccacagt gccttctcct
ttaccggggc cgccgccagc atgaaggaca 1740aggcctgtag ccccacaagc gggtctccca
cggcgggaac agccgccacg gcagaacatg 1800tggtgcagcc caaagctacc tcagcagcga
tggcagcccc cagcagcgac gaagccatga 1860atctcattaa aaacaaaaga aacatgaccg
gctacaagac ccttccctac ccgctgaaga 1920agcagaacgg caagatcaag tacgaatgca
acgtttgcgc caagactttc ggccagctct 1980ccaatctgaa ggtccacctg agagtgcaca
gtggagaacg gcctttcaaa tgtcagactt 2040gcaacaaggg ctttactcag ctcgcccacc
tgcagaaaca ctacctggta cacacgggag 2100aaaagccaca tgaatgccag gtctgccaca
agagatttag cagcaccagc aatctcaaga 2160cccacctgcg actccattct ggagagaaac
cataccaatg caaggtgtgc cctgccaagt 2220tcacccagtt tgtgcacctg aaactgcaca
agcgtctgca cacccgggag cggccccaca 2280agtgctccca gtgccacaag aactacatcc
atctctgtag cctcaaggtt cacctgaaag 2340ggaactgcgc tgcggccccg gcgcctgggc
tgcccttgga agatctgacc cgaatcaatg 2400aagaaatcga gaagtttgac atcagtgaca
atgctgaccg gctcgaggac gtggaggatg 2460acatcagtgt gatctctgta gtggagaagg
aaattctggc cgtggtcaga aaagagaaag 2520aagaaactgg cctgaaagtg tctttgcaaa
gaaacatggg gaatggactc ctctcctcag 2580ggtgcagcct ttatgagtca tcagatctac
ccctcatgaa gttgcctccc agcaacccac 2640tacctctggt acctgtaaag gtcaaacaag
aaacagttga accaatggat ccttaagatt 2700ttcagaaaac acttattttg tttcttaagt
tatgacttgg tgagtcaggg tgcctgtagg 2760aagtggcttg tacataatcc cagctctgca
aagctctctc gacagcaaat ggtttcccct 2820cacctctgga attaaagaag gaactccaaa
gttactgaaa tctcagggca tgaacaaggc 2880aaaggccata tatatatata tatatatatc
tgtatacata ttatatatac ttatttacac 2940ctgtgtctat atatttgccc ctgtgtattt
tgaatatttg tgtggacatg tttgcatagc 3000cttcccatta ctaagactat tacctagtca
taattatttt ttcaatgata atccttcata 3060atttattata caatttatca ttcagaaagc
aataattaaa aaagtttaca atgactggaa 3120agattccttg taatttgagt ataaatgtat
ttttgtcttg tggccattct ttgtagataa 3180tttctgcaca tctgtataag tacctaagat
ttagttaaac aaatatatga cttcagtcaa 3240cctctctctc taataatggt ttgaaaatga
ggtttgggta attgccaatg ttggacagtt 3300gatgtgttca ttcctgggat cctatcattt
gaacagcatt gtacataact tgggggtatg 3360tgtgcaggat tacccaagaa taacttaagt
agaagaaaca agaaagggaa tcttgtatat 3420ttttgttgat agttcatgtt tttcccccag
ccacaatttt accggaaggg tgacaggaag 3480gctttaccaa cctgtctctc cctccaaaag
agcagaatcc tcccaccgcc ctgccctccc 3540caccgagtcc tgtggccatt cagagcggcc
acatgacttt tgcatccatt gtattatcag 3600aaaatgtgaa gaagaaaaaa atgccatgtt
ttaaaaccac tgcgaaaatt tccccaaagc 3660ataggtggct ttgtgtgtgt gcgatttggg
ggcttgagtc tgggtggtgt tttgttgttg 3720gtttttgttg cttttttttt tttttttttt
ttaatgtcaa aattgcacaa acatggtgct 3780ctaccaggaa ggattcgagg tagataggct
caggccacac tttaaaaaca aacacacaaa 3840caacaaaaaa cgggtattct agtcatcttg
gggtaaaagc gggtaatgaa cattcctatc 3900cccaacacat caattgtatt ttttctgtaa
aactcagatt ttcctcagta tttgtgtttt 3960tacattttat ggttaattta atggaagatg
aaagggcatt gcaaagttgt tcaacaacag 4020ttacctcatt gagtgtgtcc agtagtgcag
gaaatgatgt cttatctaat gatttgcttc 4080tctagaggag aaaccgagta aatgtgctcc
agcaagatag actttgtgtt attctatctt 4140ttattctgct aagcccaaag attacatgtt
ggtgttcaaa gtgtagcaaa aaatgatgta 4200tatttataaa tctatttata ccactatatc
atatgtatat atatttataa ccacttaaat 4260tgtgagccaa gccatgtaaa agatctactt
tttctaaggg caaaaaaaaa aaaaaaaaaa 4320aaagaacact cctttctgag actttgctta
atacttggtg acctcacaat cacgtcggta 4380tgattgggca cccttgccta ctgtaagaga
ccctaaaacc ttggtgcagt ggtggggacc 4440acaaaacaac cagggaggaa gagatacatc
attttttagt attaaggacc atctaagaca 4500gctctatttt ttttttgcca ctttatgatt
atgtggtcac acccaagtca cagaaataaa 4560aaactgactt taccgctgca atttttctgt
tttcctcctt actaaatact gatacattac 4620tccaatctat tttataatta tatttgacat
tttgttcaca tcaactaatg ttcacctgta 4680gaagagaaca aatttcgaat aatccaggga
aacccaagag ccttactggt cttctgtaac 4740ttccaagact gacagctttt tatgtatcag
tgtttgataa acacagtcct taactgaagg 4800taaaccaaag catcacgttg acattagacc
aaatactttt gattcccaac tactcgtttg 4860ttctttttct ccttttgtgc tttcccatag
tgagaatttt tataaagact tcttgcttct 4920ctcaccatcc atccttctct tttctgcctc
ttacatgtga atgttgagcc cacaatcaac 4980agtggtttta ttttttcctc tactcaaagt
taaaactgac caaagttact ggctttttac 5040tttgctagaa caacaaacta tcttatgttt
acatactggt ttacaatgtt atttatgtgc 5100aaattgtcaa aatgtaaatt aaatataaat
gttcatgctt taccaaaa 514885382DNAHomo sapiens 8cccttctcag
gtgaagctgc tgatggagat ggagccgccg ccaccgccgc ctctgagcgc 60ccgggtcctg
gctccggccc ggcgactgcc gccgcctcag tgaccccact ccccccgcac 120tgggccgccc
gggccagagt gggggacccc cgccccctcg cctccctctc ccccaacact 180gtcccctctc
cccaacccct cacagcctgc gcgcgcgcgg agacacctca gtctacatgg 240ggaggacaga
gaagcgcaaa gaacaagaga aaagatgcat ccatctgaga tctaaaagga 300gacaatgaga
atctctttaa aatggacata gaagactgca atggccgctc ctatgtgtct 360gtaggaccaa
tgaaggaatt attggcatgc actaaaggag atagcaagat gggtcagaca 420cacatatgag
agtcattggc aacacccggg taatgtaagg aatccacgct tcctggaagg 480tgagtggctg
ggctcacccc tgcctgccac tgagacgcag acatgcatac accacccgca 540ctccctcgcc
gtttccaagg cggcggccgc gttcgcaccc cagggtctca ccggcaaggg 600aaggataatc
tggagaggga tccctcagga gggtgtgttc cggatttctt gcctcaggcc 660caagactcca
accattttat aatggaatct ttattttgtg aaagtagcgg ggactcatct 720ctggagaagg
agttcctcgg ggccccagtg gggccctcgg tgagcacccc caacagccag 780cactcttctc
ctagccgctc actcagtgcc aactccatca aggtggagat gtacagcgat 840gaggagtcaa
gcagactgct ggggccagat gagcggctcc tggaaaagga cgacagcgtg 900attgtggaag
attcattgtc tgagcccctg ggctactgtg atgggagtgg gccagagcct 960cactcccctg
ggggcatccg gctgcccaat ggcaagctca agtgtgacgt ctgcggcatg 1020gtctgtattg
gacccaacgt gctcatggtg cacaagcgca gtcacactgg tgaaaggccc 1080ttccattgca
accagtgtgg tgcctccttc acccagaagg ggaacctgct gcgccacatc 1140aagctgcact
ctggggagaa gccctttaaa tgtcccttct gcaactatgc ctgccgccgg 1200cgtgatgcac
tcactggtca cctccgcaca cactcagtct cctctcccac agtgggcaag 1260ccctacaagt
gtaactactg tggccggagc tacaaacagc agagtaccct ggaggagcac 1320aaggagcggt
gccataacta cctacagagt ctcagcactg aagcccaagc tttggctggc 1380caaccaggtg
acgaaatacg tgacctggag atggtgccag actccatgct gcactcatcc 1440tctgagcggc
caactttcat cgatcgtctg gccaatagcc tcaccaaacg caagcgttcc 1500acaccccaga
agtttgtagg cgaaaagcag atgcgcttca gcctctcaga cctcccctat 1560gatgtgaact
cgggtggcta tgaaaaggat gtggagttgg tggcacacca cagcctagag 1620cctggctttg
gaagttccct ggcctttgtg ggtgcagagc atctgcgtcc cctccgcctt 1680ccacccacca
attgcatctc agaactcacg cctgtcatca gctctgtcta cacccagatg 1740cagcccctcc
ctggtcgact ggagcttcca ggatcccgag aagcaggtga gggacctgag 1800gacctggctg
atggaggtcc cctcctctac cggccccgag gccccctgac tgaccctggg 1860gcatccccca
gcaatggctg ccaggactcc acagacacag aaagcaacca cgaagatcgg 1920gttgcggggg
tggtatccct ccctcagggt cccccacccc agccacctcc caccattgtg 1980gtgggccggc
acagtcctgc ctacgccaaa gaggacccca agccacagga ggggttattg 2040cggggcaccc
caggcccctc caaggaagtg cttcgggtgg tgggcgagag tggtgagcct 2100gtgaaggcct
tcaagtgtga gcactgccgt atcctcttcc tggaccacgt catgttcact 2160atccacatgg
gctgccatgg cttcagagac ccttttgagt gcaacatctg tggttatcac 2220agccaggacc
ggtacgaatt ctcttcccac attgtccggg gggagcataa ggtgggctag 2280caacctctcc
ctctctcctc agtccaccac tccactgccc tgactacagg cattgatccc 2340tgtccccacc
atttcccaag gagttttgct ttgtagccct cactactggc cacctgacct 2400cacacctgac
cctgacccct cctcacctat tctcttcctc tatcctgacc gatgtaagca 2460ttgtgatgaa
acagatcttt tgcttatgtt tttccttttt atcttctctc atcccagcat 2520actgagttat
ttattaatta gttgatttat ttttgccttt ttaaatttta acttatatca 2580gtcacttgcc
actcccccac cctcctgtcc acaactcctt tccactttag gccaattttt 2640ctctcttaga
tcttccagca gccccagggg taggaagctc ctcttagtac taagagactt 2700caagcttctt
gctttaagtc ctcacccttt acattatcta attcttcagt tttgatgctg 2760atacctgccc
ccggccctac cttagctctg tggcattata tctcctctct gggactcttc 2820aacctggtac
tccatacctc ttgtgccctc tcactttagg cagcttgcac tattcttgaa 2880tgaatgaaga
attatttcct catttggaag taggagggac tgaagaaatt ctccccaggc 2940actgtgggac
tgagagtcct attcccctag taataggtca tattccccta gtaatatgag 3000ttctcaaagc
ctacattcag gatctccctc taggatgtga tagatctggt ccctctcctt 3060gaactacccc
tccacacgct ctagtccctt caacctaccg gtctattaag tggtggcttt 3120tctctccttg
gagtgcccca attttatatt ctcaggggcc aaggctaggt ctgcaaccct 3180ctgtctctga
cagattggga gccacaggtg cctaattggg aaccagggca tgggaaagga 3240gtgggtcaaa
attcttctct ttctcctcca cctctcaaac ttcttcacta tagtgacctt 3300cctaggctct
caggggctcc ttcagtcccc atcctatgag aaactagtgg gttgctgcct 3360gatgacaagg
ggttgtttca gcccctcagt catgctgcct tctgctgctc cctcccagca 3420ggattcaccc
tctcattccc gggctcctgg gccctgttct taggatcagt ggcagggaga 3480aacgggtatc
tcttttctct cttctaattt tcagtataac caaaaattat cccagcatga 3540gcacgggcac
gtgcccttca ccccattcca cccttgttcc agcaagactg ggatgggtac 3600aactgaactg
gggtcttcct ttactacccc cttctacact cagctcccag acacagggta 3660ggagggggga
ctgctggcta ctgcagagac ccttggctat ttgagtaacc taggattagt 3720gagaaggggc
agaaggagat acaactccac tgcaagtgga ggtttctttc tacaagagtt 3780ttctgcccaa
ggccacagcc atcccactct ctgcttcctt gagattcaaa ccaaaggctg 3840tttttctatg
tttaaagaaa aaaaaaagta aaaaccaaac acaacacctc acaagttgta 3900actcttggtc
cttctctctc tccttttctc ttcccttcct tccccttcca tctttctttc 3960cacatgtcct
ttccttattg gctcttttac ctcctacttt tctcactccc tatcagggat 4020attttggggg
gggatggtaa agggtgggct aaggaacaga ccctgggatt agggccttaa 4080gggctctgag
aggagtctac cttgccttct tatgggaagg gagaccctaa aaaactttct 4140cctctttgtc
ctcctttttc tcccccactc tgaggtttcc ccaagagaac cagattggca 4200gggagaagca
ttgtggggca attgttcctc cttgacaatg tagcaataaa tagatgctgc 4260caagggcaga
aaatggggag gttagctcag agcagagtag tctctagaga aaggaagaat 4320cctcaacggc
accctggggt gctagctcct ttttagaatg tcagcagagc tgagattaat 4380atctgggctt
ttcctgaact attctggtta ttgagccctt cctgttagac ctaccgcctc 4440ccacctcttc
tgtgtctgct gtgtatttgg tgacacttca taaggactag tcccttctgg 4500ggtatcagag
ccttagggtg cccccatccc cttccccagt caactgtggc acctgtaacc 4560tcccggaaca
tgaaggacta tgctctgagg ctatactctg tgcccatgag agcagagact 4620ggaagggcaa
gaccaggtgc taaggagggg agagggggca tcctgtctct ctccagacca 4680tcactgcact
ttaaccaggg tcttaggtac aaaatcctac ttttcagagc cttccagctc 4740tggaacctca
aacatcctca tgctctctcc cagctccttt tgcataaaaa aaaaagtaaa 4800gaaaaagaaa
aaaaaataca cacacactga aacccacatg gagaaaagag gtgtttcctt 4860ttatattgct
attcaaaatc aataccacca acaaaatatt tctaagtaga cacttttcca 4920gacctttgtt
tttttgtgtc agtgtccaag ctgcagatag gattttgtaa tacttctggc 4980agcttctttc
cttgtgtaca taatatatat atatacatat atatatatat ttttaatcag 5040aagttatgaa
gaacaaaaag aaaaaataaa cacagaagca agtgcaatac cacctctctt 5100ctccctctct
cctagggttt cctttgtagc ctatgtttgg tgtctctttt gacctttacc 5160ccttcacctc
ctcctctctt cttctgattc ccctcccccc cttttttaaa gagtttttct 5220cctttctcaa
ggggagttaa actagctttt gagacttatt gcaaagcatt ttgtatatgt 5280aatatattgt
aagtaaatat ttgtgtaacg gagatatact actgtaagtt ttgtactgta 5340ctggctgaaa
gtctgttata aataaacatg agtaatttaa ca 538291464DNAHomo
sapiens 9acactgagct tgccacatcc ccaaggcggc cgaaccctcc gcaaccacca
gcccaggtta 60atccccagag gctccatgga gttccctggc ctggggtccc tggggacctc
agagcccctc 120ccccagtttg tggatcctgc tctggtgtcc tccacaccag aatcaggggt
tttcttcccc 180tctgggcctg agggcttgga tgcagcagct tcctccactg ccccgagcac
agccaccgct 240gcagctgcgg cactggccta ctacagggac gctgaggcct acagacactc
cccagtcttt 300caggtgtacc cattgctcaa ctgtatggag gggatcccag ggggctcacc
atatgccggc 360tgggcctacg gcaagacggg gctctaccct gcctcaactg tgtgtcccac
ccgcgaggac 420tctcctcccc aggccgtgga agatctggat ggaaaaggca gcaccagctt
cctggagact 480ttgaagacag agcggctgag cccagacctc ctgaccctgg gacctgcact
gccttcatca 540ctccctgtcc ccaatagtgc ttatgggggc cctgactttt ccagtacctt
cttttctccc 600accgggagcc ccctcaattc agcagcctat tcctctccca agcttcgtgg
aactctcccc 660ctgcctccct gtgaggccag ggagtgtgtg aactgcggag caacagccac
tccactgtgg 720cggagggaca ggacaggcca ctacctatgc aacgcctgcg gcctctatca
caagatgaat 780gggcagaaca ggcccctcat ccggcccaag aagcgcctga ttgtcagtaa
acgggcaggt 840actcagtgca ccaactgcca gacgaccacc acgacactgt ggcggagaaa
tgccagtggg 900gatcccgtgt gcaatgcctg cggcctctac tacaagctac accaggtgaa
ccggccactg 960accatgcgga aggatggtat tcagactcga aaccgcaagg catctggaaa
agggaaaaag 1020aaacggggct ccagtctggg aggcacagga gcagccgaag gaccagctgg
tggctttatg 1080gtggtggctg ggggcagcgg tagcgggaat tgtggggagg tggcttcagg
cctgacactg 1140ggccccccag gtactgccca tctctaccaa ggcctgggcc ctgtggtgct
gtcagggcct 1200gttagccacc tcatgccttt ccctggaccc ctactgggct cacccacggg
ctccttcccc 1260acaggcccca tgccccccac caccagcact actgtggtgg ctccgctcag
ctcatgaggg 1320cacagagcat ggcctccaga ggaggggtgg tgtccttctc ctcttgtagc
cagaattctg 1380gacaacccaa gtctctgggc cccaggcacc ccctggcttg aaccttcaaa
gcttttgtaa 1440aataaaacca ccaaagtcct gaaa
1464109484DNAHomo sapiens 10gctaaccctg ctcctcgctg aagatggagg
aagtaaaaac aggattaccc ttagctacag 60atccactgcc ttagtttcca ccaccaactg
cagtgcacaa acacacgtta ggcacaggaa 120agaaagaaag acagaggaca cattaacagt
aaacacaaac aaaagggtga tgggattatt 180ttactgcatg cactgctgag cccgacattg
tcacctcctc tttgaggggt tagaagaagc 240tgagatctcc cgacagagct ggaaatggtg
atgaatcttt tttaatcaaa ggacaatttc 300ttttcattgc actttgacta tggaaacaga
ggctattgat ggctatataa cgtgtgacaa 360tgagctttca cccgaaaggg agcactccaa
tatggcaatt gacctcacct caagcacacc 420caatggacag catgcctcac caagtcacat
gacaagcaca aattcagtaa agctagaaat 480gcagagtgat gaagagtgtg acaggaaacc
cctgagccgt gaagatgaga tcaggggcca 540tgatgagggt agcagcctag aagaacccct
aattgagagc agcgaggtgg ctgacaacag 600gaaagtccag gagcttcaag gcgagggagg
aatccggctt ccgaatggtg aacgcccctt 660ccactgtaac cagtgtggag cttcttttac
tcagaagggc aaccttctga gacacataaa 720gttacactct ggagagaagc cgttcaaatg
tcctttctgt agctacgcct gtagaagaag 780ggacgccctc acaggacacc tcaggaccca
ttctgtgggt aaacctcaca agtgcaacta 840ctgtggacga agctacaagc agcgcagttc
actggaggag cacaaggaac gctgccacaa 900ctatctccag aatgtcagca tggaggctgc
tgggcaggtc atgagtcacc atgtacctcc 960tatggaagat tgtaaggaac aagagcctat
tatggacaac aatatttctc tggtgccttt 1020tgagagacct gctgtcatag agaagctcac
ggggaatatg ggaaaacgta aaagctccac 1080tccacaaaag tttgtggggg aaaagctcat
gcgattcagc tacccagata ttcactttga 1140tatgaactta acatatgaga aggaggctga
gctgatgcag tctcatatga tggaccaagc 1200catcaacaat gcaatcacct accttggagc
tgaggccctt caccctctga tgcagcaccc 1260gccaagcaca atcgctgaag tggccccagt
tataagctca gcttattctc aggtctatca 1320tccaaatagg atagaaagac ccattagcag
ggaaactgct gatagtcatg aaaacaacat 1380ggatggcccc atctctctca tcagaccaaa
gagtcgaccc caggaaagag aggcctctcc 1440cagcaatagc tgcctggatt ccactgactc
agaaagcagc catgatgacc accagtccta 1500ccaaggacac cctgccttaa atcccaagag
gaaacaaagc ccagcttaca tgaaggagga 1560tgtcaaagct ttggatacta ccaaggctcc
taagggctct ctgaaggaca tctacaaggt 1620cttcaatgga gaaggagaac agattagggc
cttcaagtgt gagcactgcc gagtcctttt 1680cctagaccat gtcatgtaca ccattcacat
gggttgccat ggctaccggg acccactgga 1740atgcaacatc tgtggctaca gaagccagga
ccgttatgag ttttcatcac acattgttcg 1800aggggagcac acattccact aggccttttc
attccaaagg ggacccctat gaagtaaaga 1860actgcacatg aagaaatact gcacttacaa
tcccaccttt cctcaaatgt tgacatacct 1920tttatttttt ttaatattat tactgttgat
aattcttatt ttgtggaggc agtgtcattt 1980gctctgccta attacgataa ggaagaaaca
gaagagagaa ggggcgggaa tattgtttct 2040ttatcacctg gcttgtttat tttgtgggaa
tttaagagca gtccatttct accaaggcat 2100atcatgcttt gaaaaatcac ttgattcata
aagattcacc taagagattc tgatttgcca 2160ctgatattca gaattatgat ggaagacagg
aaagttcaga gttttctggg taggactttg 2220gtggtttaaa aatggtataa gtaactttat
tcttgaaaga agaatgtgtt tcaaactgta 2280aaccaatttt ttgttcttca gagatcatgg
aacacaaaca cattgttatt ttcagtgata 2340actcctaaga ggagctgagt tgttgtgggt
tctatgttta cttcccctat ggaatttata 2400attcagtatg ttttacactg taccatatag
caaaactttt aaactacagg tagttaaggg 2460ccacctacaa tacatctgag gtcctgtgat
cttatttttc taaacgtaag cactgttttt 2520ccatagtttt gatgactggc attttataga
caccctggca gccttacttt taacaccttt 2580aaggaatagt atttttatgt agttttcaga
ataacatatg gtctaagagt ggataaaagg 2640cagtcaataa tttctgggag ggacttctac
tttcataaat ttgtttgaga ggttttcttt 2700taaagttgta atgtgatggc agcatagtat
atgtatttgt ttctaaaagt atgcttacga 2760ttgtcacttt atcagcattt aatcagtgtt
aaccagtcag cagaaaaata taattatgct 2820aacagtaggg ggagaaaacc cacttagaaa
tcccttttct ggtatttctc ttttcactag 2880tttttttcaa gatgtgacct cccggtgttc
tgtccatagt tcattcatcc tttactcttc 2940gagtagaagg tcttaaaagt cttcctgtcg
gctgtttctt tcaaaatctc ctcagagcaa 3000ttgctaattt ggcctgaatc tggtaacttg
aaccctgtaa ggttacagaa ctagggctat 3060ttattttagc atttcttcag tagtatttac
tactcttgtt gcaaagaaaa gggaatggga 3120cttctttgta acctgtacct tggacaacag
ataaaagaaa caaaaaaata agaaagttta 3180cttttaccct tcttggagtc tagaatgtga
cagaaccccc aaaggaaagt cctgcacatt 3240tttctgtttc caaaacattt aattgtgtaa
gtccttgtca gaaatgaatc tcaatccctt 3300agtatagaat tccccttaca tggtataggt
tgccatattt catgtgcaga ttttaatttc 3360atttatgtgg gcgctctgtt ttttctttgc
agtccagcca cattagaggg gaggaaccga 3420gtgatattga ttcaagtcat tttaggggga
catacttgga aggcagaact tgctgcttct 3480gtttggggag gacagacctg actgtgactg
gattatctga taaccatttg tgaatactga 3540aattctgtta ggcagtaact gataactgct
ctaaaggatc attaaatagg atgctgaaat 3600tatgtatctt aatacagtgt ggtatgagaa
ttaccaagtc aagagaattg tggacataag 3660caagtttggc cccaatactg ctcttaactc
attttccagc ttactatttg ctatttaaat 3720ggtaggcacc agctaagcac ttctaagcac
taacacagct agaactaggc aaaaatggtt 3780agaactcagc tctcttctac tagtccctgt
cataattatt tttgggaaaa tgtccaaact 3840gcccccttta aatctaaggg aatgcaccaa
aacagagata tatagaatgt caaccatttc 3900attttttttt ttctgcatgc cttggtacat
agtgaacata caacctattt aaagataaag 3960catgtttttg agactcgctc accccccccc
acccaaccac tcccaaataa taattgggat 4020gccatttttt ttccttttgg atgaggtaaa
taattttaag gttcacaatt ttgtctttta 4080ctgcaattta aggaaacatt tggatgtcag
tcaatatgtt cataattttg gctgtgtgcg 4140aatttctgct ggcattatct atgaattttc
ttcctactta tttttttttc agtatatgaa 4200caatcatgta tctacctgcc ccaggatgaa
actaaattta ggtggaccct aaaccttatg 4260aagacagtgc tgaggcactt tccttttctg
atttcatctt tttgggaatc tgttttattg 4320aaggtagtta gtagttgaga gtgcatttgc
tacaagcata tacttgtatc ttcctagctt 4380catgaggaac agaaagaggt ggatatggct
cagggtgtgg cagggacaat tgaggacaaa 4440gtcaattcaa atttgtgggt cagaaagaat
ttttgtggac gtagtgtttt tggagaaact 4500ctggatggtt atatgtgcat gccttttctt
caaaaggaaa tacgcaaggt tgtagcatct 4560aaaaataaac ataagagtca gacaccaaat
aaatcaagtt ttacataaca gttgtatgcc 4620cagtttgttt aggtgagatt tcacattaca
gaaagtattt gaggagcatg aaaatgggtt 4680atcttctgta ttttccagtt tggcaaaagt
tcagaatttc atcacattgc tttgccctaa 4740ttttgcccag aattttatct tagcctctct
ctgacagtga tgaatcatgc tcaaaagcca 4800ttctaattgg acctttttaa gacagggaaa
gggatcagta ggcggattgg aagaaatttc 4860aagtcattga aatattccat tgagatttcc
taaagggaca aaattgggaa aataagaaac 4920tacgacttag atttggctac gtagtagaaa
gtatctcccc tacatacata caggcaattg 4980tatgtatgaa tcatagggta tatgtgtgtg
tatactacac acacattctt ttaaagagaa 5040ttcatggaaa aaaaagcagt tggagtgatc
agatgtattg caaaaacata cagagaattt 5100aaatgacagt taataccaag aaattagttg
ggtttacttt atcaggtcgt aataggaatc 5160actaaagaag ttactagtgt gtctttagga
ccagtggcaa ctcttaaact aaaactttgg 5220gtccttatta tctacttaca gaacaaagtg
aaacaaacaa tgattaagct gattggatat 5280acattcaaag atatttaatg taaagttttt
tggaatacga agaaaattca gaaaataaat 5340attatcaaca gttacttatt ggcaaataga
gaaagacaag aatagtttag tgagcccggt 5400attttgtttt tatagttttt atctcagttg
tacaactcac aaaaccatga agtctttggt 5460attttataaa tgtttaacaa aatttacatc
agattaaggc atttagatga aaattattat 5520gttctcacta tcttccaaat tttatttcat
cctatctcca aaatgatttc ttagggtaca 5580aaaagagcag acggggctgt aaaaatacaa
gcaaaaaact gtgtgcccct agtttcaggc 5640agaacttaaa ctgtcagagg tactagctac
atgatttgtt ttttaacttt ggattgttca 5700cgtccaaaaa tggataaatt acatttgtgt
ttatcatcag ttgcatttta tgtattattt 5760taataaatac tatctgaatg aagactattc
taaaccagaa aattccccaa atccaaaaga 5820aaaaaaaagt gggaagaggt gaaattgaag
tttgtgtata tgaaagttat cttagacata 5880tttttaattc tccagtttct gcaaaataat
taaaatatac agtaactggt ctcctaaatc 5940ctgaatttaa tgtattaaat acttatgttc
tttatattgg tgccttttta aaatgcattg 6000agagtgttgg ttagctgttg cagctgtaca
acacttttaa tatgcatttt taaaaatcac 6060ttaaaattga gtactatata attcatctct
gcatttttag tgcaaatctt tagagcaatt 6120tctaatagag aaattttcag ctcagctgtt
aaaaggaaaa ggaaactttg aaactagact 6180ttactacctt tttagtttca tagtatttct
gaatatgatt acaagattat gcaggtaaaa 6240tatagagtga aactttacct gtgaattgaa
ttataatttg tgtttttgtt ttgtttttaa 6300ggaagaataa gttctgtatc aaacaagaat
ttattagata attttttggt caataaaata 6360cagtattcat ttggattttc atctccagac
tagtattgtt ctagtcttgg aatctgtatt 6420ttctaatctg ttagaaaata gagattgaaa
attgatggaa taatgtgaaa aagcaggtaa 6480ttaattctcc ttgaacaaag caaaactgaa
cagtcatatc acattgctat tctccaaagc 6540ataatctcaa atggtttcat atcatggttg
tgtattactt gcaatgggtg tgttaggata 6600tgacagcttt ttaaaaaaat gagctgctgg
ttatacaaag caaatggcat atgaccaaga 6660agctgtgata tgctagtgtt tctttttatc
atagtgtatt actaggccaa ataatgacac 6720cttgaatatt tttacattta ttgcagaaac
cttaaacttt ggaatttcca taaggttttt 6780atgtaatatt ctatttctag ctttttagtt
ttatcttgct gtactgtaag tttgaggata 6840tttttcacct gcactcttag gaataagttc
ataattctgt ttatggggct ttcctcccat 6900aacactgcat ttgtatattt tctgtataaa
atatgtgttg tgtattaacc tttatcccat 6960acagagagtg gtacatgaat gactagtttt
ctaagatgtc ctttttattg tgaataaaat 7020ataaaagtta aaggccctct gctaagtcac
ataaagtaca gcatataagt tcatataggt 7080acaaataaat gagtttgcag tgaattgggc
cttcaaatta cctcaagtga cagatagtaa 7140gaaaagcttc ttgagcaggt ggaggtcact
gaatccccta ctatgcactt accaagattt 7200tacttacttt aatttactgg aaattgattt
tttaaaaaat gactacactg taacaaggga 7260agggatctgg gtttttttgt tgttttattc
ttgttttttt taagtagttc aaattctgaa 7320actgtgattt aaaaattttt tacagtcaag
cattctgatt ttgaacataa ctcccttccc 7380tttctgtgta acaaaggtct ctctgttatc
tcttaaattt tgttacatct ccctcagcct 7440ctttctttgt ccgtctccct tctgtcattg
tctatggatg tttacctctc tgttctccta 7500aaagtttgaa gattaggtca actcttattt
ctagttcatt ggtaatttaa tcttaatttt 7560tttttcgtga tttttgttgg ttgtataatc
tgctgacgta tttttatact caagtgtagt 7620tttctattaa aaagaaaagt ggttggatta
aaaatagtaa gctatgtaac cctcatgtta 7680ctttcacttt caaatattgg gtacctaaaa
cattacttca gagattatgt aatcctatta 7740tagtatgttt gctttccttt attgttggat
tttacattct gatttggctt tcctccaaaa 7800aatgtatatc atgaaagact agacagttat
ttgcaagtgt ttagaaaggt gttaaaaatg 7860taaagcaaag agtcttaact ttctcctaat
tgggagaaaa atgctttaac attactataa 7920taatattcca ggtttggagg gggtctccag
gccccatatt tgctgttaat agttggacct 7980tttagaccat gtgttatttg caatcccaga
atgattgctt ctgctattag ttaaaaagat 8040actattcttt tctttctgta caagtgcaat
actccccttg aagtcttaaa aactatggtg 8100attttttttt cttttctgac ctattcttcc
tttagctaat gacaaaaaga aactcataaa 8160agtcatagta tgttaaagga cacaacaagc
aaagagaaaa acactccaca atcaaaagat 8220tacagaatgt ggaaaccact agtctgatct
catggtatct ttatttaagc taaatttcca 8280tggaaattag taatcttttg cttgaaaaat
gtgtcctaaa gttgaacttt ttacagattg 8340aatcttctta gaccctcgcc caatgctcta
aattaagaac ctaatactta atatttttat 8400tttacttctc cccttttaga aataaacttt
taaataaaag caaagcactt agctgagttt 8460taaacactta catatcacct attggagaaa
ttttttttaa aaatatttgg agcagtcctg 8520ttttcataca aatttaagta agaggtattt
ttcttataca tatttatatg tagtgtgcta 8580attttctttt tttatacctg tgtccctgta
gtaaaactgc tgtaatataa atacatgttt 8640tgttaaaaga taacatttct ttggcatttc
ttttaaaggc agttactgca tttctgcatt 8700tgtacagtat gtgtcttggc cattttagat
attctttctt taacaatacc aaaggtaatt 8760agactatttt aaagactaat tgcttgacag
tttctagggt attttgtgtt ttagaagcaa 8820aaaaagaaaa aaaaataggt caaaccagta
aacctcattt tttttcaaac taataatttg 8880gggaaataaa aactattgtt taaaaaagaa
atatatatat atatatataa atatatatgt 8940aaagttaaaa ttccatacct tgtatgtcag
gtttgctaag tgtaatgtag tttttttaag 9000gctcaaatac catacctcag aaaatgaggt
ttactatgga aatactgaaa cagtctttgc 9060agctgtgtga caagtcactc tactacatac
tgatttggag acctccgcta aatagtttta 9120tcactgcaga ctaaaatgtg ggacttgtat
cttctttgtt tttaatgcac acacatacat 9180gttctgtgca tgtatgtggt tactgtgtat
atgtgtatga gtgttgtata tgcatgtgtg 9240agtgtgtgtc tgtatgtgtg tacaactaaa
gaagctgcag aaactttgta atactttgtg 9300aaaaggatta tattataaag gtttgtactg
tctgagtgca cagctactgg aataaattta 9360gggaatctca ggaacaagca tataatttgt
ccaagattta tttcttctca gaagtgtaag 9420tgcagttttt aattctgtat attatttaat
attttaccaa taaaataaac ttctgacata 9480aaaa
9484113083DNAHomo sapiens 11gaacactgag
ctgcctggcg ccgtcttgat actttcagaa agaatgcatt ccctgtaaaa 60aaaaaaaaaa
aatactgaga gagggagaga gagagagaag aagagagaga gacggaggga 120gagcgagaca
gagcgagcaa cgcaatctga ccgagcaggt cgtacgccgc cgcctcctcc 180tcctctctgc
tcttcgctac ccaggtgacc cgaggaggga ctccgcctcc gagcggctga 240ggaccccggt
gcagaggagc ctggctcgca gaattgcaga gtcgtcgccc ctttttacaa 300cctggtcccg
ttttattctg ccgtacccag tttttggatt tttgtcttcc ccttcttctc 360tttgctaaac
gacccctcca agataatttt taaaaaacct tctcctttgc tcacctttgc 420ttcccagcct
tcccatcccc ccaccgaaag caaatcattc aacgaccccc gaccctccga 480cggcaggagc
cccccgacct cccaggcgga ccgccctccc tccccgcgcg cgggttccgg 540gcccggcgag
agggcgcgag cacagccgag gccatggagg tgacggcgga ccagccgcgc 600tgggtgagcc
accaccaccc cgccgtgctc aacgggcagc acccggacac gcaccacccg 660ggcctcagcc
actcctacat ggacgcggcg cagtacccgc tgccggagga ggtggatgtg 720ctttttaaca
tcgacggtca aggcaaccac gtcccgccct actacggaaa ctcggtcagg 780gccacggtgc
agaggtaccc tccgacccac cacgggagcc aggtgtgccg cccgcctctg 840cttcatggat
ccctaccctg gctggacggc ggcaaagccc tgggcagcca ccacaccgcc 900tccccctgga
atctcagccc cttctccaag acgtccatcc accacggctc cccggggccc 960ctctccgtct
accccccggc ctcgtcctcc tccttgtcgg ggggccacgc cagcccgcac 1020ctcttcacct
tcccgcccac cccgccgaag gacgtctccc cggacccatc gctgtccacc 1080ccaggctcgg
ccggctcggc ccggcaggac gagaaagagt gcctcaagta ccaggtgccc 1140ctgcccgaca
gcatgaagct ggagtcgtcc cactcccgtg gcagcatgac cgccctgggt 1200ggagcctcct
cgtcgaccca ccaccccatc accacctacc cgccctacgt gcccgagtac 1260agctccggac
tcttcccccc cagcagcctg ctgggcggct cccccaccgg cttcggatgc 1320aagtccaggc
ccaaggcccg gtccagcaca gaaggcaggg agtgtgtgaa ctgtggggca 1380acctcgaccc
cactgtggcg gcgagatggc acgggacact acctgtgcaa cgcctgcggg 1440ctctatcaca
aaatgaacgg acagaaccgg cccctcatta agcccaagcg aaggctgtct 1500gcagccagga
gagcagggac gtcctgtgcg aactgtcaga ccaccacaac cacactctgg 1560aggaggaatg
ccaatgggga ccctgtctgc aatgcctgtg ggctctacta caagcttcac 1620aatattaaca
gacccctgac tatgaagaag gaaggcatcc agaccagaaa ccgaaaaatg 1680tctagcaaat
ccaaaaagtg caaaaaagtg catgactcac tggaggactt ccccaagaac 1740agctcgttta
acccggccgc cctctccaga cacatgtcct ccctgagcca catctcgccc 1800ttcagccact
ccagccacat gctgaccacg cccacgccga tgcacccgcc atccagcctg 1860tcctttggac
cacaccaccc ctccagcatg gtcaccgcca tgggttagag ccctgctcga 1920tgctcacagg
gcccccagcg agagtccctg cagtcccttt cgacttgcat ttttgcagga 1980gcagtatcat
gaagcctaaa cgcgatggat atatgttttt gaaggcagaa agcaaaatta 2040tgtttgccac
tttgcaaagg agctcactgt ggtgtctgtg ttccaaccac tgaatctgga 2100ccccatctgt
gaataagcca ttctgactca tatcccctat ttaacagggt ctctagtgct 2160gtgaaaaaaa
aaatgctgaa cattgcatat aacttatatt gtaagaaata ctgtacaatg 2220actttattgc
atctgggtag ctgtaaggca tgaaggatgc caagaagttt aaggaatatg 2280ggagaaatag
tgtggaaatt aagaagaaac taggtctgat attcaaatgg acaaactgcc 2340agttttgttt
cctttcactg gccacagttg tttgatgcat taaaagaaaa taaaaaaaag 2400aaaaaagaga
aaagaaaaaa aaagaaaaaa gttgtaggcg aatcatttgt tcaaagctgt 2460tggcctctgc
aaaggaaata ccagttctgg gcaatcagtg ttaccgttca ccagttgccg 2520ttgagggttt
cagagagcct ttttctaggc ctacatgctt tgtgaacaag tccctgtaat 2580tgttgtttgt
atgtataatt caaagcacca aaataagaaa agatgtagat ttatttcatc 2640atattataca
gaccgaactg ttgtataaat ttatttactg ctagtcttaa gaactgcttt 2700ctttcgtttg
tttgtttcaa tattttcctt ctctctcaat ttttggttga ataaactaga 2760ttacattcag
ttggcctaag gtggttgtgc tcggagggtt tcttgtttct tttccatttt 2820gtttttggat
gatatttatt aaatagcttc taagagtccg gcggcatctg tcttgtccct 2880attcctgcag
cctgtgctga gggtagcagt gtatgagcta ccagcgtgca tgtcagcgac 2940cctggcccga
caggccacgt cctgcaatcg gcccggctgc ctcttcgccc tgtcgtgttc 3000tgtgttagtg
atcactgcct ttaatacagt ctgttggaat aatattataa gcataataat 3060aaagtgaaaa
tattttaaaa cta
3083127449DNAHomo sapiens 12gcgttgcctc tggagtaagc cggatcgcgg agccgcgccg
actccgccga gccgggagcc 60gggaggcgcg cagctcccgg gtcgctccga ggctcctcgg
ccagggcagc cccgcgggca 120cgcggtagag aagacggcgt cccctcggct gctggtcgat
acaaacagat ccccctttcc 180aaacacgcgc caagtccccg tgccctccag atgcagagag
aggctgcgtt cagactgggg 240cactgccatc ccctccgcat catggggtct gtggaccaag
aagagccgaa tgcacataag 300gtcgccagcc caccctccgg acccgcatac cccgatgatg
tcctggacta tggcctcaag 360ccatacagcc cccttgctag tctctctggc gagccccccg
gccgattcgg agagccggat 420agggtagggc cgcagaagtt tctgagcgcg gccaagccag
caggggcctc gggcctgagc 480cctcggatcg agatcactcc gtcccacgaa ctgatccagg
cagtggggcc cctccgcatg 540agagacgcgg gcctcctggt ggagcagccg cccctggccg
gggtggccgc cagcccgagg 600ttcaccctgc ccgtgcccgg cttcgagggc taccgcgagc
cgctttgctt gagccccgct 660agcagcggct cctctgccag cttcatttct gacaccttct
ccccctacac ctcgccctgc 720gtctcgccca ataacggcgg gcccgacgac ctgtgtccgc
agtttcaaaa catccctgct 780cattattccc ccagaacctc gccaataatg tcacctcgaa
ccagcctcgc cgaggacagc 840tgcctgggcc gccactcgcc cgtgccccgt ccggcctccc
gctcctcatc gcctggtgcc 900aagcggaggc attcgtgcgc cgaggccttg gttgccctgc
cgcccggagc ctcaccccag 960cgctcccgga gcccctcgcc gcagccctca tctcacgtgg
caccccagga ccacggctcc 1020ccggctgggt acccccctgt ggctggctct gccgtgatca
tggatgccct gaacagcctc 1080gccacggact cgccttgtgg gatccccccc aagatgtgga
agaccagccc tgacccctcg 1140ccggtgtctg ccgccccatc caaggccggc ctgcctcgcc
acatctaccc ggccgtggag 1200ttcctggggc cctgcgagca gggcgagagg agaaactcgg
ctccagaatc catcctgctg 1260gttccgccca cttggcccaa gccgctggtg cctgccattc
ccatctgcag catcccagtg 1320actgcatccc tccctccact tgagtggccg ctgtccagtc
agtcaggctc ttacgagctg 1380cggatcgagg tgcagcccaa gccacatcac cgggcccact
atgagacaga aggcagccga 1440ggggctgtca aagctccaac tggaggccac cctgtggttc
agctccatgg ctacatggaa 1500aacaagcctc tgggacttca gatcttcatt gggacagctg
atgagcggat ccttaagccg 1560cacgccttct accaggtgca ccgaatcacg gggaaaactg
tcaccaccac cagctatgag 1620aagatagtgg gcaacaccaa agtcctggag atacccttgg
agcccaaaaa caacatgagg 1680gcaaccatcg actgtgcggg gatcttgaag cttagaaacg
ccgacattga gctgcggaaa 1740ggcgagacgg acattggaag aaagaacacg cgggtgagac
tggttttccg agttcacatc 1800ccagagtcca gtggcagaat cgtctcttta cagactgcat
ctaaccccat cgagtgctcc 1860cagcgatctg ctcacgagct gcccatggtt gaaagacaag
acacagacag ctgcctggtc 1920tatggcggcc agcaaatgat cctcacgggg cagaacttta
catccgagtc caaagttgtg 1980tttactgaga agaccacaga tggacagcaa atttgggaga
tggaagccac ggtggataag 2040gacaagagcc agcccaacat gctttttgtt gagatccctg
aatatcggaa caagcatatc 2100cgcacacctg taaaagtgaa cttctacgtc atcaatggga
agagaaaacg aagtcagcct 2160cagcacttta cctaccaccc agtcccagcc atcaagacgg
agcccacgga tgaatatgac 2220cccactctga tctgcagccc cacccatgga ggcctgggga
gccagcctta ctacccccag 2280cacccgatgg tggccgagtc cccctcctgc ctcgtggcca
ccatggctcc ctgccagcag 2340ttccgcacgg ggctctcatc ccctgacgcc cgctaccagc
aacagaaccc agcggccgta 2400ctctaccagc ggagcaagag cctgagcccc agcctgctgg
gctatcagca gccggccctc 2460atggccgccc cgctgtccct tgcggacgct caccgctctg
tgctggtgca cgccggctcc 2520cagggccaga gctcagccct gctccacccc tctccgacca
accagcaggc ctcgcctgtg 2580atccactact cacccaccaa ccagcagctg cgctgcggaa
gccaccagga gttccagcac 2640atcatgtact gcgagaattt cgcaccaggc accaccagac
ctggcccgcc cccggtcagt 2700caaggtcaga ggctgagccc gggttcctac cccacagtca
ttcagcagca gaatgccacg 2760agccaaagag ccgccaaaaa cggacccccg gtcagtgacc
aaaaggaagt attacctgcg 2820ggggtgacca ttaaacagga gcagaacttg gaccagacct
acttggatga tgagctgata 2880gacacacacc ttagctggat acaaaacata ttatgaaaca
gaatgactgt gatctttgat 2940ccgagaaatc aaagttaaag ttaatgaaat tatcaggaag
gagttttcag gacctcctgc 3000cagaaatcag acgtaaaaga agccattata gcaagacacc
ttctgtatct gacccctcgg 3060agccctccac agcccctcac cttctgtctc ctttcatgtt
catctcccag cccggagtcc 3120acacgcggat caatgtatgg gcactaagcg gactctcact
taaggagctc gccacctccc 3180tctaaacacc agagagaact cttcttttcg gtttatgttt
taaatcccag agagcatcct 3240ggttgatctt aatggtgttc cgtccaaata gtaagcacct
gctgaccaaa agcacattct 3300acatgagaca ggacactgga actctcctga gaacagagtg
actggagctt ggggggatgg 3360acgggggaca gaagatgtgg gcactgtgat taaaccccag
cccttgcgtt cgtttttcca 3420ggtcacagat acagctcctg taccttttga aggcaaggag
ttctcagagc aaccaaagga 3480acgtgaccca agagcccagc ttacaggctg aagaaaccca
aaaccctcga tagagacaga 3540aactgaactg tcagtcctta gagctcgccc agtccatgcc
acaactgggc cacagctaaa 3600gctttatttt tgaattctca ttccaaaacc aaactgtctt
gcccagacaa gatcacctgt 3660taagacttct tggcgttaag ttatgacatg tatacgcgtt
tgttattatt attttttctg 3720ctttaaaagg ctgaccaggg cacctagccc tggagctgtc
ttggcgagct gttctttaac 3780ccctgcagca cgcagtcctg ctaacacaat ttccatagac
ttggggggct gacccaggct 3840gcagagagca agcacctgtc tgctgcagct gtacaacctg
gatgctttgc aaggttccgg 3900cttgctttct tcctagcagc cagagtgctt ttccgtaaag
cggtggagaa tctcaagcat 3960gtgcatttaa ttgaggaata gcagaagggc taaagcaacc
aagaaaagaa gtgtgggtat 4020ttttgttaag taaaacagcc caagtgcttc tggaggtggg
tttctaccaa gatagaggaa 4080aagggctgaa ttccctctaa gtgggacagc cgagctcagg
atgtgcttcc cagcttcact 4140ggttaatttg acctgaacct atttaaagat cccttctgcc
cctgaagacc tatccgcact 4200caaattctaa catgaagaaa tctactcgaa tgcatccttt
actttgaatg agctctattc 4260ggttgcatgt tatatgtgat ttccttcctc ccaactgttt
ccactgagcg cacccagtct 4320cccctagtct tcctctgtgg gtgtgatttt tgtgattttt
acaaacaaaa cccttgaagt 4380tcttggcaga tgtgtttgtt tctgtttgca tgtactgcag
ataccccagg acaagcgggg 4440gattcatttt tcagccattc agttgtttcc tcaataatcc
gcagcaaagt gaaaatattc 4500ttagcactca gactgtactt agagtgtttt ctcagtccag
tctgtacagt ctgtaggcag 4560aaggcctcag aagaaagtca tggccactca gtgcccactg
tgggctttgt aagtcctggc 4620tctcccgtca aggttaccca gaggtaaaag cttcctggga
gtggggccag gtgtgtttgg 4680cactccagat agaaggcaaa atgctcagat tcgggcctgt
gcacttgtat gcaacctgtc 4740ggtcgatacc tagcatttat ttttccctga caatgaacga
cctttccctc acccacccta 4800agctcaaaga gtttagcaaa attctctttt aaataaacag
aatgccagta agaggttgac 4860ccctaccatg gaacttctgg gatgctaaat acttcctcat
gaacaaaata agttccttat 4920tataagttcc ttatactagc agcttcacct aaagaatttt
ctctccagca atattgactt 4980cactggggaa aagccaagag tgtgtggtga gtgatttgtt
ctcactcgac ctggctagga 5040ctggctagga gctgtttttt gtacatgagg gaatttgggc
tttcctcagt tatctgaatg 5100ttttacccaa gtgccttcct gctattgtag caaagtagct
cagcttcctt gtccacaggg 5160tgaaaaagga ctaatgcatt ttccatcagt tttctaacta
tgttagcaaa aacggcctcc 5220tggtagctca acctcctgta cgcgtgtgtg tgtgtaatac
acacacaaat aaacccctct 5280gtttttctaa gacatcttag ctggatatta taggaagcac
tttcataaac aactgtaaca 5340aatcgcaaag gaaagagaaa caaaagcatt agatttgaga
cataaacagg caagagaaag 5400tgtattagga actgacagct atcaaggaag ttttgtcagt
tacaaatgct aggaggaaat 5460tttgccaaga aggatggctc atgaaatatt tccagtacgg
gaagaggcaa taagatcctc 5520taagagaatg agaaagtagg ggtgtctaaa tggtaaagat
gggtgtgttg cacgtgtgtt 5580agaaggatct cagttgagtg aaggtttgca ctgctacatc
taagttaatg taaatatgta 5640gcactctgac aggtctaccg tgttgctgaa tgtagtatat
ttccaaagtt tgcaagtctt 5700cctgtattgt acaaagatgc tgctgcttga taatatgtat
agcaatccag attagtatgt 5760tattaaattt tattttctta cctgtatttt tatgcttttt
acctgtcctc aaaatattac 5820acccctgttg gaattagatt tatatttata aatggtcaga
aatcttttta agtgtctctt 5880tttacacata ggttgatttt tttttcttaa gagaaatgat
gtattcttga aacatttgtt 5940actcattcca ggaaacaaaa acccatataa taaaaccccc
actcagagcc tgttagtcac 6000ctctctagaa gatggcatct caggagaagg aatggctttg
tggaagaagg aatcaccttt 6060ttcttgctca agaattatgc tgacttcagc cctgagcctg
gatctggtca ctgagaatca 6120tcaagtgtct agatcctccc cccaaaataa ctaatttagt
aggtgatttt gattttaaaa 6180aattgacacc aaaaccctgc ctgcattgta atggaattcg
aaaagaattc atgttcacag 6240aactcaacgt tcaggctaat atttacagaa gggaccaaat
ctaaatcctg gtagataact 6300cctgtatgct ttatccaaag gacacccaca gttttccagc
atagatataa ccaaggatga 6360attgattcct tcaaagaact gggaggcacg gatattgcat
tttttgttta catccagtag 6420ccaagacgcc tcagtgagcc agtcttgggc agaggctgtc
acatttaggc agattggaag 6480ttggtatgtt ctaattctca ctctggacta cagtgaggct
gaatttatca tgtcaaaaaa 6540aaaaaaaaaa aaagaccttt ccaagtgctt tctattgctc
agaattgaaa gaatgttttc 6600atttcaagtt tacaagaggc atggatggag ttgtgacgtt
cttgacaagc tgggctaacc 6660tttcccgaac ttgtttcccg gaggcaaggt gctcggtgac
ccagcgcatc ttaaccttgg 6720gtctcctagg ctcgaggcta gggcattacg tttcgtggaa
ccaaagcagc caattgcata 6780gcaagtattt tcctgcattc caattaaatg cttaagaaaa
agcagcatcc tataaaattg 6840tgatcataaa catccatttc cctcagcttt tgtgagtgcc
ttgacttaca gccaacatca 6900ctgtttaact cagtctgttt aaaaacaaac ttttctggtg
gttgataaca gagagttgct 6960ccctgagcca tcagggtcct gggagctgga agtgaaaggg
ttattaacat tctaccttta 7020tgcagctgtt ggctgaccag aataaactcc ctgctgagtt
caagctttga atggaatgga 7080tgcaaatgat gttgtttcca ttagagcagg tgctcacagc
attctgattg gcctgagcag 7140accgaggcta tggctgttgg gacaagctta gcatcctgga
catcttgtca aagaacctca 7200ctcacccctc tggcctctac agccctcaga ggagagaaaa
ccaattctcc aacaaacagg 7260tctctccaac atggtggtgc tggcaggctt aggtttagaa
aatcctgact gttaaaggcg 7320tttgaataca tcacattcct atgcaaatgt ttttaatctc
cagtttaatg tagtttattt 7380ttcctatatg taaagtattt ttatacggct tgtatcatga
tagtttagca ataaaacagt 7440tggaagcaa
744913164PRTHomo sapiens 13Met Lys Trp Lys Ala Leu
Phe Thr Ala Ala Ile Leu Gln Ala Gln Leu1 5
10 15Pro Ile Thr Glu Ala Gln Ser Phe Gly Leu Leu Asp
Pro Lys Leu Cys 20 25 30Tyr
Leu Leu Asp Gly Ile Leu Phe Ile Tyr Gly Val Ile Leu Thr Ala 35
40 45Leu Phe Leu Arg Val Lys Phe Ser Arg
Ser Ala Asp Ala Pro Ala Tyr 50 55
60Gln Gln Gly Gln Asn Gln Leu Tyr Asn Glu Leu Asn Leu Gly Arg Arg65
70 75 80Glu Glu Tyr Asp Val
Leu Asp Lys Arg Arg Gly Arg Asp Pro Glu Met 85
90 95Gly Gly Lys Pro Gln Arg Arg Lys Asn Pro Gln
Glu Gly Leu Tyr Asn 100 105
110Glu Leu Gln Lys Asp Lys Met Ala Glu Ala Tyr Ser Glu Ile Gly Met
115 120 125Lys Gly Glu Arg Arg Arg Gly
Lys Gly His Asp Gly Leu Tyr Gln Gly 130 135
140Leu Ser Thr Ala Thr Lys Asp Thr Tyr Asp Ala Leu His Met Gln
Ala145 150 155 160Leu Pro
Pro Arg1413013DNAHomo sapiens 14gagcatgctc ccgctgcagt taactagccc
aacctatttc tttaattcag cccatccctt 60cgtttccctt aagggatact tttagttaat
ttaatatcta tagaaacaat gctaatgact 120ggtttgctgt taataaatat gtgggtaaat
ctctgttcag ggttctcagc tctgaaggtt 180gtaagatccc tgatttccca cttcacacct
ctatatttcc tttttttttt tttttttttt 240tgagacagag tctcactctc gcccaggctg
gagtgcagtg gcacgatctc tgctcactgc 300aagctccgcc tcccgggttc acgccattct
cccgcctcag ccttccgagt agctgggact 360acaggcgccc gccactacgc ccggctaatt
ttttgtattt ttagtagaga cggggtttca 420ccgtgttagc caggatggtc ttgatctcct
gacttcgtga tccgcctgcc tcggcctccg 480aaagtgctgg gattacaagc gtgagccacc
gcgcccggcc tcacacctct atatttctgt 540gtgtgtgtct ttaattcctc tagcactgct
gggttagggt ctccctgacc gagctggtct 600cggcagataa ggtttcacca tgttggccag
gctggtctca aactcctgac ttcaggggat 660ccccgcccca gcctcccaaa gagctgggat
tacgggcatg agtcaccgtg cccagccaat 720tttcttttgt tttttctttt gagacaggat
ctcactctgt cacccaggct tgaatgcagt 780ggtaccatct cggctcactg cagcctcaat
cttctgggct caaatgatcc tcccacctta 840gcctcccgag cagctggggc tacaagtgca
cactaccaag cccagctaat tttttttttt 900tttttttttt tttgagacag agtcttgctg
tgtccctcac ccaggttgga gagcagtggt 960tcgatcttgg ctcactacaa cctctgcctc
ccgtgttcaa gcaattctcg tgcctcagcc 1020tcctcagtag ctgggattac aggcacgtgc
caccatgccc agttaatttt tgtattttta 1080atagagacgg ggtttcgcca tgttgaccag
gctggtcttg aacccctgac ctcagcctcc 1140caaagtgctg agattacagg tgtgagccga
catgctaggc ctatacattt caaaattatg 1200ttgctatgtt cataaagatg tatatatggt
aacttgtacc ttcaatcaac atgaaatacc 1260cttctttgtc cttttaatgc ctttatgata
aattctgtct catattaata ttgctacata 1320tgctttcttt ccataaacat ttccataaac
ataaaaatgg ctggtaagtc attttccttt 1380tttttaaaaa aatttttgtt ttttagaggc
aggagctcat tctgtctccc aggttggagt 1440acaatggttc aatcatagct catagtttac
tgcagcctcg aactcctggg ttcaagggat 1500cttaccacct ccgtcttccg agcagctggg
actacaggtg caagtcacca cgcctggtta 1560atttttttaa attttttgta gagacaaggt
cacaatatgt ttcccagcct ggtcttgaac 1620tcctggcctc aagcaatcct cctgccttga
gaaatatagt aaacaaaaaa tgtgaaataa 1680catggcagaa ataagtccaa ataaataaat
aatcaaaaat aaatacaaat gatttatatt 1740ctcttcttaa aagagagctc tgagaaaccc
caaagccagc tatatgttgt ttataaagag 1800acatacataa aacaaaacag catgattaag
aagataatat aacccattca catttatgtt 1860ttattattta tatatttgga cttattcctg
ccatgttatt ttctgttttc tgcttaccag 1920tgtacagtat ttttctgttt tcccttttct
ggaatgccta tttatttctg ttcctgtttt 1980gtccaccctt tcctgactga ttctttctga
ataatgactt tttttttttt tttttttttt 2040tttgagaaag tctcactctg ttgaccaggc
tggagtgcaa tggcacaatc ttggctaatt 2100gcaacctctg cctcccaggt tcaagacatt
atcctgcctc agcctcccca gtagctgaga 2160ttacaggcgc cccccaccat gtccggctaa
tttttgtatt tttagtagag actgggtttc 2220accatgttgg ccaggctggt ctcgaactcc
tgatctcagg tgatctgccc acctcggcct 2280cccaaagtgc tgggattaca ggggtgagcc
accgcgtttg gcctcaaaga ccgagaactt 2340tgtaatttat atattttata gctcttatca
caggtgtcta gtaaatattt ttaaacactt 2400atggcacctg atgcaagaat taccaggttc
attttataga gaggatatga aactgtccaa 2460gggtttggac tcacatgttc aagactgcat
ggacagcaat ctgtagtggg tcaaattatt 2520gtttttagta tgatttaaag tgtttgtcaa
aaatataaaa gttttgaaaa caagctgggg 2580aagtgaattt caatatcgca ttaactaaga
tcaaagtgca attcatcaac cttttttccc 2640catcccgcac cctgtgcttt ctctactcag
ttactcacta caccctgctg gactaaaagg 2700gtcctccagc attttctttc ttacacagtg
aaagacattc tcttggcatt aataaatgtt 2760cacttaataa ataaaaaggg ccgggctctg
tggttcctgc ctgcaatccc agcagtttgg 2820gaggccaagg caagaggatc gcttgagcct
aggagttcca gcctaggcaa cgtggcgaaa 2880cccagtctca aaaaaaaaaa aaaggaaaaa
aaaggcatca aaaaataaaa cgtaacaggt 2940ggcatgacat gacatgactt ttctaacagc
ctcttacagc tttccaaggt cttttaatat 3000gaagctatag gtctcggcta gaagacacct
ccagacttct cccaaaacat ttcagaggcc 3060cggagtaagt ctccccacat ctgaaggcac
atcagaaccc aggtggccca agctgatgag 3120agttaaacag gaagttggtt tcttggtccg
gcagagactc caatcacccc cacctctttt 3180ccaacccaca ggacagcacg tgctcaggag
gctctggagt tgggacagcc cagttaaaaa 3240aaaaaaaatc attgatttcc ctcccaacga
agagggagaa aacacgttag gagactcgtg 3300gcccagtcct ggcaaaaacc aaaactatgt
ccctttagag ggcttagata tcaagagatg 3360gacttgcttt tagttctttt tcccatcctg
ttccctccct accaaaataa aattgaccag 3420ctaatccgac ttaataacac taaagaatta
cttaggaacc tgctatctta acatttcact 3480ttttgcatat cctccaaata ccaggtagca
gtcttactac tgtttgcacc cctagaacct 3540ggaatagtgc tgcccgcaga ggaggaagca
ataattactt gttagagaag gtattgctgt 3600gcatttctgg ggaatttcac attttgtaat
ttgctttaaa aaaagtggac aggcatattt 3660acgggggttt ctcggacttc tccatgttaa
tattcgtgtg tataaatcgc tcccgtgctg 3720ctctctgggg gcccctcttt cacaaacacc
tggccaccct cacgccacaa tggccaggca 3780ggaacctcga cctcccctcg gagagggggc
tcagggtcaa ccccggggtc tcagtctcta 3840catgtgacgt tttcctgtcc cctcatttaa
aataacaaga ggctgggcgc agtggcttac 3900gcctgtaatc ccagcacttt gggaggccga
ggcgggcgat cacgaggtca ggagatggag 3960accatcctgg ccaacacggt gaaaccccgc
ctctactaaa ctacaaaaaa ttagccgggt 4020gtggtggcgg gcgcctgtag tcccagctac
tcgggaggct gaggcaggag aattgcttga 4080acccggaggc gaaggttgca gtgagctgag
atctcgccac tgcactccag cctggtgaca 4140gagcctgact ccgtctcaaa aaataagaaa
aaaaaataaa ataaaaataa tagaggccga 4200agcgggaggt tcacttgagc tcagaagttc
gagatcagcc tgggcaacac agtgagacct 4260cgtttctatt taaaaaataa aataaaacta
aatttaaaaa aatgcacgct catagtacaa 4320actttagaaa tggaacgaaa aactaaaatt
gaaggtattc ccctccaacc cagagataac 4380acctatcgtt tattaagccc tcactattgt
taaacttagt tttaaagggc acgatctcat 4440ttcttaaaga cttctattcc gcagaatttc
tttccaggct tttttctttt tctttttttg 4500agacggagtc tcgctctgtc gcccaggccg
gggtgcagtg gcgcgatctc ggctcactga 4560aacctctgtc cagtcttttc gaacccaagg
cccaactgcg ctctatctcg actttcggct 4620ccactcggat cccgaagtgg cgcacgagat
aaaatgttgt caggctgagg taattctctg 4680ttagtcccgg taaaaattcg tcagtctgga
aagctctcgg tttggaatta aattctgtca 4740ctccggatgg aaataagtcc gcttaagggg
ggaaaatccg tttgtggagg acacgctccc 4800gcacgtaacc ccccgcggaa aatgacccca
agtacctttg gccagggatt gccgctgcca 4860cgccggactc catagccacg gtcctgaaac
gccccgccgg gcaggccgga ccaatggacg 4920ccgagctcgg ccgtgcgtca cgcgacgctg
gccaatcgcg gagggccacg accgtagaaa 4980ggccgggcgc ggcgaggctg ggcgctgggc
ggctgcggcg cgcggtgcgc ggtgcgtagt 5040ctggagctat ggtggtggtg gcagccgcgc
cgaacccggc cgacgggacc cctaaagttc 5100tgcttctgtc ggggcagccc gcctccgccg
ccggagcccc ggccggccag gccctgccgc 5160tcatggtgcc agcccagaga ggggccagcc
cggaggcagc gagcgggggg ctgccccagg 5220cgcgcaagcg acagcgcctc acgcacctga
gccccgagga gaaggcgctg aggaggtggg 5280cgaggggccg gggtctgggg ccagatctga
agccgggact agggacaggg gcaggggcag 5340gggctgggag cggggaccca gcactggccg
ccccgcaggg ctccgtcgcc tttggcctgg 5400cgggtcggtg ccagcgtggc gcggggcggg
gcaggaagcc cggactgacc ggatccgcca 5460cgctgggaac ctagggcggc ccagggctct
tttctgtact ttttaactct ctcgttagag 5520atgaccagag ctggggatgc gggcacctgt
cttccaggcc ctcttgctgt gtggccgcag 5580actggtggtt cagcctctta actcggacat
gaggtcgaat aatctgtttt ggtttactgc 5640tatttctgga gaggcgcgga gctgaaataa
cagagctgtt gaaagggctg ggaattctgc 5700gaggctcact ggtctagctc agtatctgcg
ttcttaaaat ggaacctact tcatgaggtc 5760tttggggaga ttgagacttg gatataatgt
gcctagcact tagtcctccg taaatgttca 5820ctcttttgtg atcattgtgc cttctgtgat
ttatgaagtg tctcttctga gttaattctt 5880ttaaaaaaaa aagtgtctcc tccaacagac
acggacccat cagcaggtca ctgcctagga 5940tctcaacact agagatcagg gagtggcatc
agcctctccc ttttctaaat tggactgggg 6000gacggagggt tgatgtcata gcaagattgc
agccttcact agattaatga ggccaggttg 6060gatcctgttt aagagaactg gagacaggaa
gcagcggggg aatagatggg gaaagaggaa 6120agttccttat gatgcaagat gaatagtgtg
tgtgtccagc cccagtgctg tgacggggat 6180gagtctgagg tggacggatg atgcaatata
ggagagaata aagcaggtct tcgagctaga 6240ttgacagaag actgtatttt ttattttgtt
ttattgaggg gaggagcctg aagtgtattt 6300tatcattagt ctgtcttata ctgtaaataa
aaatgaaagc accagctggt aaagttttca 6360aataaagaca taaataaggt ttgatatgac
tcagtgtggt atgttccttc tcttcctagg 6420aaactgaaaa acagagtagc agctcagact
gccagagatc gaaagaaggc tcgaatgagt 6480gagctggaac agcaagtggt agatttagaa
gaagaggtaa aactacttaa ggtcaaactc 6540ttttatccat tgtataccct tccttggtga
atgttctgat atttgcttcc catcccaagt 6600tgtttcagcc cctattagaa tacaattgaa
tatatgatta aaagttaaac taggctgggc 6660atggtggctc atgcctgtaa tcccagcact
ttgggagcct gagttgggca gatcacttga 6720agccagcagt ttgagaccag cctagccaac
atggtaaaat cccgtctcta cccaaaaata 6780taccaaaaaa aaaaaaaaaa aaaaggccaa
gcgtgagtgc ctgtagtccc agctactcgg 6840gaggttgagg tgggaggatt gtttgaacct
gggagaggga ggttgcagtg agctgagatc 6900gcaccactgc actccagcct gggcaacaga
gtgagactct gtctcaagaa aaaaaaaaaa 6960agtttgctgg gcaccggggc tcacacctgt
aatcccagca ctttgggagg ccaaggtggg 7020tagataactt gagatcagga gttcgagacc
agcctgacca acgtggtgaa accccatctc 7080tattaaaaat acaaaaatta gccgggtgtc
gtggcaggca cctgtaatcc cagctgctcc 7140ggaggctgac gcaggagaat cacttgaacc
caggaggcgg aggttgcagt gagctgagat 7200cacgagatca tgccactgca ctccagtctg
ggcgacagag caaaaaccct gtctcaaaaa 7260aaaaaaaaaa gttaatctaa gttaggacag
agagttggtg aagtggtgaa gcttgttgag 7320ggcagaagtg attgactttg tggcatttgg
tgctagatgt atctcaaagt agatggattt 7380aacaatgttt attgagtttg tagtaagaaa
ttagcaaggg ctaataggaa ataattgctt 7440aaactttaca ttcttcctgg catggccaga
aattcactaa aggttccttt ccccctctag 7500ggtccacctg ttaatcaatc ttaaattgtt
gccaattaca catcttgaat acatagagat 7560tatttatatt gtttttttaa ccccttggtc
aatttgcata tattgagctt tttaaagttt 7620taatcattag ttggttcttc taagaatcat
gagtcaggag cagggatttt ttttaactta 7680ttttggattt atagtcacca ctaccacttt
tattattacc tgccagttca agatagttat 7740ttatttttat tttatattat tattattatt
attatcatca tcattatttt gagatggagt 7800ctcactctgt tgcccaggct ggagtgcagt
ggtgcaatct cggctcactg caacctctgc 7860ctcccaggtt caagcaattc tccctgcttc
agcctccaga ttagctggga ttacaggcac 7920ccctcaccac atccagctaa tttttggatt
ttttagtaga gatgggggtt tgccatgttg 7980gccaggctgg ttttgaactc ttgacctcag
gtgatccacc tgccttggcc tcccaaagtg 8040ttaggattac aagtgtgagc caccgagcct
ggccaagata gtttaaaaaa aaaattatat 8100ctacattaaa gccacaagtc accctttgct
gaagtcagta ttagtagttg gaagcagtgt 8160gttattcttg accccatgaa gtggcactta
ttaagtagct tgcttttcca taattatggc 8220ctagcttttt aaaacctact atgaacacca
caagcataga gttttccaaa agttcaagaa 8280ggaaaggaaa ccaattatac tgaatcaggt
agattcttaa ctgaaataat tagatgtttt 8340aatagcctct tatgaacttt cttccagaac
caaaaacttt tgctagaaaa tcagctttta 8400cgagagaaaa ctcatggcct tgtagttgag
aaccaggagt taagacagcg cttggggatg 8460gatgccctgg ttgctgaaga ggaggcggaa
gccaaggtaa atcatctcct ttatttggtg 8520cctcatgtga gtactggttc caagtgacat
gacccagcga ttatgtttac agtctggact 8580tctgatcaag agcgttcttg aaattttcct
tcagttttaa gacattttca tgcaggcaga 8640gtgttcttcc cctaaaggca cttgacactc
attttttaag tgtgtagtga acagtactaa 8700gatctaataa tgaaaacaag ttacatggct
ccctaagaac aagtactaac aaatgcagta 8760gccaacaaga ttaccatgca atcattaagg
agaaccaaag taagagagcc actcaaacca 8820gattttgaac gctactaaaa ttaaagtagt
tctttgatga atatgaatga gtagggaaag 8880gattctttgt aatagtgata cctctgtggt
aagagaaggg tggtatgtga gttttagtct 8940acagattatg gcaaattcag tgacaacaat
caaatggtct aagattgaca gtagcacagt 9000tttactctgt gaaggtaatg ttcaggacaa
atttcaagaa aactagaaaa ccattcttta 9060cagctgaaat ctttccctaa ccattgttat
ttccactttt aagtcctcaa gagatgagaa 9120aagggaggta aggcttcctt atacatttcc
tgcacaatga aacatttttc ctcctccagg 9180caaagattca agcagaactg gcaaatatct
tatcttgctc ttctcaataa taataatgtt 9240gttagataat aaagttctat agcaatttaa
ccctagaatc tttttgaaaa gtaattcttt 9300aaagttgaga atcacagctg tctagcaagc
atttccttgg gcacttgaag ctgtttattc 9360actttggtct ttcctcccag gggaatgaag
tgaggccagt ggccgggtct gctgagtccg 9420cagcactcag actacgtgca cctctgcagc
aggtgcaggc ccagttgtca cccctccaga 9480acatctcccc atggattctg gcggtattga
ctcttcagat tcagaggtag ggatcattct 9540gacttattaa agagctatat aaccagttaa
ttccatctgt ttgatgcttg acatccctaa 9600ctagacagat gagggttgaa gttagttttt
ggtggggttg gaggtgaaca tcaactacct 9660tcctagttcc aggtaatata gaacatggag
tgaagtgtag ataaatgggt ctggtgggtc 9720ccgaggtcat cttatcacat aatgactaat
ttacattatg gaacccagta caaagtgttc 9780cagttagatt ttccattgta ttctgacagt
tgtacttcat ttaatttttg cctcttacag 9840tctgatatcc tgttgggcat tctggacaac
ttggacccag tcatgttctt caaatgccct 9900tccccagagc ctgccagcct ggaggagctc
ccagaggtct acccagaagg acccagttcc 9960ttaccagcct ccctttctct gtcagtgggg
acgtcatcag ccaagctgga agccattaat 10020gaactaattc gttttgacca catatatacc
aagcccctag tcttagagat accctctgag 10080acagagagcc aagctaatgt ggtagtgaaa
atcgaggaag cacctctcag cccctcagag 10140aatgatcacc ctgaattcat tgtctcagtg
aaggaagaac ctgtagaaga tgacctcgtt 10200ccggagctgg gtatctcaaa tctgctttca
tccagccact gcccaaagcc atcttcctgc 10260ctactggatg cttacagtga ctgtggatac
gggggttccc tttccccatt cagtgacatg 10320tcctctctgc ttggtgtaaa ccattcttgg
gaggacactt ttgccaatga actctttccc 10380cagctgatta gtgtctaagg aatgatccaa
tactgttgcc cttttccttg actattacac 10440tgcctggagg atagcagaga agcctgtctg
tacttcattc aaaaagccaa aatagagagt 10500atacagtcct agagaattcc tctatttgtt
cagatctcat agatgacccc caggtattgt 10560cttttgacat ccagcagtcc aaggtattga
gacatattac tggaagtaag aaatattact 10620ataattgaga actacagctt ttaagattgt
acttttatct taaaagggtg gtagttttcc 10680ctaaaatact tattatgtaa gggtcattag
acaaatgtct tgaagtagac atggaattta 10740tgaatggttc tttatcattt ctcttccccc
tttttggcat cctggcttgc ctccagtttt 10800aggtccttta gtttgcttct gtaagcaacg
ggaacacctg ctgagggggc tctttccctc 10860atgtatactt caagtaagat caagaatctt
ttgtgaaatt atagaaattt actatgtaaa 10920tgcttgatgg aattttttcc tgctagtgta
gcttctgaaa ggtgctttct ccatttattt 10980aaaactaccc atgcaattaa aaggtacaat
gcagcatcct tgtttgattt cttctagggc 11040cgtaagtctt gttttctctc cagatgttta
tctgtgtgct gtggtaggaa ttaatccaac 11100tgaagtgagc ctaacgcttt ttaaagtgac
tgaaggcttt tccaccttaa ttactgcctg 11160ctttaattct ggactgccat aagtgatata
agctataatt tgagcagtta ctgtctttct 11220gagacagatt cttgagccta actgaccaat
atcacagcta gtaagtggaa gagctagaac 11280cctaaccact atttgctaca ccatcttata
aatgttaaac aaggacacac catcacatat 11340cgagattctc ttgcccttat tatgggaatt
aagagcattt tctagactga aactccctat 11400tttcaactct gccactggta agctgggtaa
cccaggggtt atatataatc acttatttcc 11460tcatctgtaa agttggataa tggtatctct
aaaggttaag attcaaagag acgatgcatt 11520ataagcattt agtatatgct aggcaccatc
ctaaacactg gaaagttagt tagttattat 11580ctcctaatcc actttggaag ggttttaatc
tcttccagaa ttatatttac tcaagaattt 11640gtttcatcaa agaataaacc tcggccaggc
gcggtggctc atgcctgtaa tcccagcact 11700ttgggaggct gaggcgggtg gatcacgagg
tcaggagatc gagaccatcc tgcctaacat 11760ggggaaaccc tgtctctact aaaattacaa
aaaattagcc aggcgtggtg gtgggcgcct 11820gtaatcccag ctacttggga ggctgaggca
ggagaatggc gtgaacccgg gaggcggagc 11880ttgcggtgag gggagatcgc gccactgcac
tccagcctgg gcaacagagc gagactctgt 11940ctcaaaaaat aaataaataa ataaataaat
aaataaataa acctcttcaa gaaaaaatcc 12000tagtgatatt aatacaactc ccaaagactt
gataacctcc tcatccttca tagcatcttt 12060tccttggaaa tcttacaagg ttttacagga
ctttacttat ttataaaaat ttcacctatg 12120ccagtagatg aaatcattct atgccaattt
agcatttaaa tgctatgttc ccaacttaca 12180aagactaact ctggggaggt caaagtgaat
gagtagaaaa aaggcaggat tcagagaatc 12240ccaagcagca aggcaaagtg gattatagaa
tacctttggt gtaggccagg tgtagtggct 12300cacgcttgta atcccaacac tttgggaggc
tgaggtgggc ggatcacctg aggtcaggag 12360ttcatggcca gcctgaccaa catagtgaaa
ccccatctct agtaaaaata caaaattagc 12420tgggtgtggt ggcgcatatg cctgtaatcc
cagctactca ggaggctgag gcggcagaat 12480cacttgaacc cgggaggcag aggatgcagc
gagccgagat cgtgccattg cactccagcc 12540tgggcaacaa gagcgaaact ccatttaaaa
aagaaaaaaa aaaatagaat gcctttcatg 12600tagtgactgg aggcaagtca gctagctgcc
ttcaagatcc ggtcgttgaa gccagggccc 12660aatcctggtg ctcagcaata caaacttgct
taggctctta agtttcttca gaaacaggcc 12720aggcatggtg gctcacacct ataatcccag
cactttggga ggccgaggcc agcagattgc 12780ttggttcaag actagcctgg acaacatggc
aaacccgtct ctccatgaaa agtaaaaaaa 12840aatagccagg catggtggtg tgcactggtg
gtcacagcca ctcaggaagc tgaggtggga 12900ggatcgcttg aggccagggg gcagaggttg
cagtcagcca agatcgcagc actgcactcc 12960agactgggtg aaaaagcaag actgcctaaa
aaaaaaaagg ttctgtatat aag 13013
User Contributions:
Comment about this patent or add new information about this topic: