Patent application title: METHODS FOR THE IMPROVEMENT OF PRODUCT YIELD AND PRODUCTION IN A MICROORGANISM THROUGH THE ADDITION OF ALTERNATE ELECTRON ACCEPTORS
Inventors:
Aaron Argyros (White River Junction, VT, US)
Aaron Argyros (White River Junction, VT, US)
William Ryan Sillers (Lebanon, NH, US)
Trisha Barrett (Bradford, VT, US)
Trisha Barrett (Bradford, VT, US)
Nicky Caiazza (Lebanon, NH, US)
Arthur J. Shaw, Iv (Grantham, NH, US)
Arthur J. Shaw, Iv (Grantham, NH, US)
IPC8 Class: AC12N1581FI
USPC Class:
1 1
Class name:
Publication date: 2022-03-31
Patent application number: 20220098600
Abstract:
The present invention provides for novel metabolic pathways to reduce or
eliminate glycerol production and increase product formation. More
specifically, the invention provides for a recombinant microorganism
comprising a deletion of one or more native enzymes that function to
produce glycerol and/or regulate glycerol synthesis and one or more
native and/or heterologous enzymes that function in one or more
engineered metabolic pathways to convert a carbohydrate source, such as
lignocellulose, to a product, such as ethanol, wherein the one or more
native and/or heterologous enzymes is activated, upregulated, or
downregulated. The invention also provides for a recombinant
microorganism comprising one or more heterologous enzymes that function
to regulate glycerol synthesis and one or more native and/or heterologous
enzymes that function in one or more engineered metabolic pathways to
convert a carbohydrate source to ethanol, wherein said one or more native
and/or heterologous enzymes is activated, upregulated or downregulated.Claims:
1.-95. (canceled)
96. A recombinant yeast comprising a first heterologous pyruvate formate lyase having at least 90% identity to the amino acid sequence of SEQ ID NO: 26 and/or a second heterologous pyruvate formate lyase having at least 90% identity to the amino acid sequence of SEQ ID NO: 60.
97. The recombinant yeast of claim 96 comprising said first heterologous pyruvate formate lyase and said second heterologous pyruvate formate lyase.
98. The recombinant yeast of claim 96 further comprising a heterologous polypeptide having acetaldehyde dehydrogenase activity.
99. The recombinant yeast of claim 98, wherein said heterologous polypeptide having acetaldehyde dehydrogenase activity is a bifunctional acetaldehyde/alcohol dehydrogenase.
100. The recombinant yeast of claim 99, wherein said bifunctional acetaldehyde/alcohol dehydrogenase is from Bifidobacterium adolescentis.
101. The recombinant yeast of claim 100, wherein said bifunctional acetaldehyde/alcohol dehydrogenase comprises the amino acid sequence of SEQ ID NO: 100.
102. The recombinant yeast of claim 96, wherein said recombinant yeast comprises a downregulation in the expression of one or more native enzymes that function to produce glycerol or reduce glycerol synthesis and wherein said recombinant yeast produces less glycerol than a control recombinant microorganism with native enzymes that function to produce glycerol and/or regulate glycerol synthesis.
103. The recombinant yeast of claim 102, wherein said one or more native enzymes that function to produce glycerol and/or regulate glycerol synthesis is encoded by a gpd1 polynucleotide, a gpd2 polynucleotide, a gpp1 polynucleotide, a gpp2 polynucleotide, or an fps1 polynucleotide.
104. The recombinant yeast of claim 96, wherein said recombinant yeast further comprises a deletion of one or more native enzymes that function to produce glycerol and/or regulate glycerol synthesis.
105. The recombinant yeast of claim 104, wherein said one or more native enzymes that function to produce glycerol and/or regulate glycerol synthesis is encoded by a gpd1 polynucleotide, a gpd2 polynucleotide, a gpp1 polynucleotide, a gpp2 polynucleotide, or an fps1 polynucleotide.
106. The recombinant yeast of claim 96, further comprising a deletion of one or more native enzymes encoded by an fdh1 polynucleotide, an fdh2 polynucleotide, or both an fdh1 polynucleotide and an fdh2 polynucleotide.
107. The recombinant yeast of claim 96, wherein said recombinant yeast is selected from the group consisting of Saccharomyces cerevisiae, Khiyveromyces lactis, Kluyveromvces marxianus, Pichia pastoris, Yarrowia lipolylica, Hansenula polymorpha, Phaffia rhodozyma, Candida uthis, Arxula adeninivorans, Pichia stipitis, Debaryomvces hansenii, Debaryomvces polymorphus, Schizosaccharomyces pombe, Candida albicans, and Schwanniomyces occidentahs.
108. The recombinant yeast of claim 107, wherein said recombinant yeast is Saccharomyces cerevisiae.
109. The recombinant yeast of claim 96, wherein said recombinant yeast produces formate.
110. The recombinant yeast of any one of claim 109, wherein said recombinant yeast produces an amount of formate of: a. at least 0.012 g/L in 24 hours; b. at least 0.022 g/L in 48 hours; or c. at least 2.5 g/L in 142 hours.
111. The recombinant yeast of claim 109, wherein said recombinant yeast produces a formate yield of: a. at least 0.05-fold more formate than is produced by a recombinant yeast lacking the first and/or the second heterologous pyruvate formate lyase; b. at least 0.1-fold more formate than is produced by a recombinant yeast lacking the first and/or the second heterologous pyruvate formate lyase; c. at least 0.5-fold more formate than is produced by a recombinant yeast lacking the first and/or the second heterologous pyruvate formate lyase; d. at least 1.0-fold more formate than is produced by a recombinant yeast lacking the first and/or the second heterologous pyruvate formate lyase; e. at least 5.0-fold more formate than is produced by a recombinant yeast lacking the first and/or the second heterologous pyruvate formate lyase; f. at least 10.0-fold more formate than is produced by a recombinant yeast lacking the first and/or the second heterologous pyruvate formate lyase; g. at least 20.0-fold more formate than is produced by a recombinant yeast lacking the first and/or the second heterologous pyruvate formate lyase; h. at least 30.0-fold more formate than is produced by a recombinant yeast lacking the first and/or the second heterologous pyruvate formate lyase; i. at least 40.0-fold more formate than is produced by a recombinant yeast lacking the first and/or the second heterologous pyruvate formate lyase; j. at least 50.0-fold more formate than is produced by a recombinant yeast lacking the first and/or the second heterologous pyruvate formate lyase; k. at least 75.0-fold more formate than is produced by a recombinant yeast lacking the first and/or the second heterologous pyruvate formate lyase; or l. at least 100-fold more formate than is produced by a recombinant microorganism without activation, upregulation, or downregulation of one or more native and/or heterologous enzymes.
112. The recombinant yeast of claim 96, wherein said recombinant yeast further comprises a heterologous saccharolytic enzyme.
113. The recombinant yeast of claim 112, wherein said saccharolytic enzyme is selected from the group consisting of amylases, cellulases, hemicellulases, cellulolytic and amylolytic accessory enzymes, inulinases, levanases, and pentose sugar utilizing enzymes.
114. The recombinant yeast of claim 113, wherein said amylases comprises a glucoamylase.
115. A method of increasing cytosolic formate during the production of ethanol, the method comprises contacting the recombinant yeast of claim 1 with a biomass under conditions to allow cytosolic formate and ethanol production.
116. The method of claim 115, wherein the contact occurs in anaerobic conditions.
117. The method of claim 115, wherein the biomass comprises corn.
Description:
BACKGROUND OF THE INVENTION
[0001] The conversion of biomass, such as corn, sugarcane or other energy crops, as well as simple sugars, to ethanol is routinely completed through the use of yeast fermentation. However, during yeast metabolism a major byproduct of fermentation is glycerol. Glycerol is formed during anaerobic growth as a way for the yeast to balance its redox state and regenerate NAD.sup.+ used as a cofactor during glycolysis. It has been shown that the function of glycerol is likely not as a metabolite itself but rather as an electron sink capturing electrons allowing further growth-linked metabolism to continue. As glycerol is a byproduct with low value, it can be an undesirable by-product of fermentation. It would be beneficial to reduce or eliminate this by-product and further direct more carbon towards desired end-products, such as ethanol.
[0002] Several strategies are available in the art for the conversion of glycerol to higher value products though biochemical or other means, but relatively little has been demonstrated for the removal or reduction of glycerol and improvement of overall sugar yield to ethanol or other desired end-products of metabolism. Through engineering of alternate pathways, potentially with the simultaneous reduction or deletion of the glycerol pathway, alternate or replacement electron acceptors for the regeneration of NAD.sup.+ can be used during yeast metabolism. Such alternate or replacement electron acceptors could be molecules such as formate or hydrogen.
[0003] The elimination of glycerol synthesis genes has been demonstrated but removal of this pathway completely blocked anaerobic growth of the yeast, preventing useful application during an industrial process. Ansell, R., et al., EMBO J. 16:2179-87 (1997); Pahlman, A-K., et al., J. Biol. Chem. 276:3555-63 (2001); Guo, Z P., et al., Metab. Eng. 13:49-59 (2011). Other methods to bypass glycerol formation require the co-utilization of additional carbon sources, such as xylose or acetate, to serve as electron acceptors. Liden, G., et al., Appl. Env. Microbiol. 62:3894-96 (1996); Medina, V. G., et al., Appl. Env. Microbiol. 76:190-195 (2010). By incorporating a formate pathway as an alternate electron acceptor, glycerol formation can be bypassed and ethanol yield can be increased. The engineering of a pyruvate formate lyase from E. coli, which is capable of converting pyruvate to formate, has been done to increase formate production. Waks, Z., and Silver, P. A., Appl. Env. Microbiol. 75:1867-1875 (2009). Formate engineering in Waks and Silver was done, however, to provide a source of formate in S. cerevisiae for the production of hydrogen by a secondary microorganism, E. coli. Waks and Silver did not combine formate production with the removal of glycerol formation, and the use of formate as an alternate electron acceptor for the reduction of glycerol was not proposed or evaluated. Thus, despite prior efforts to bypass and/or eliminate glycerol production, there exists a need for the engineering of alternate or replacement electron acceptors in a cell to direct more carbon towards desired end-products, such as ethanol.
[0004] The importance of engineering alternate or replacement electron acceptors is exemplified in the process of corn mash fermentation. About 16 billion gallons of corn-based ethanol are produced annually, so even small increases in ethanol yield, such as 5-10%, can translate into an extra billion or so gallons of ethanol over current yields. Ethanol production from corn mash typically results in glycerol yields ranging from 10-12 g/L. See Yang, R. D., et al., "Pilot plant studies of ethanol production from whole ground corn, corn flour, and starch," Fuel Alcohol U.S.A., Feb. 13-16, 1982 (reported glycerol levels to be as high as 7.2% w/w of initial sugar consumed in normal corn mash fermentations or approximately 1.4 g/100 mL using 20% sugar). By reducing or eliminating the glycerol yield in the production of ethanol from corn and re-engineering metabolic processes, increased ethanol yields can be achieved. Additional benefits may be gained in the production of ethanol from corn. Corn mash is a nutrient rich medium, in some cases containing lipid and protein content that can be >3% of the total fermentation volume. As a result of the energy contained in these components, even higher ethanol yields may be achieved than what is predicted using, for example, pure sugar. The additional increases can come from the metabolism of lipids or amino acids in the corn mash medium. The recombinant cells and methods of the invention enable increasing ethanol yields from biomass fermentation by reducing or eliminating glycerol.
BRIEF SUMMARY OF THE INVENTION
[0005] The invention is generally directed to the reduction or removal of glycerol production in a host cell and to the engineering of an alternate electron acceptor for the regeneration of NAD.sup.+.
[0006] One aspect of the invention relates to a recombinant microorganism comprising: a deletion of one or more native enzymes that function to produce glycerol and/or regulate glycerol synthesis; and one or more native and/or heterologous enzymes that function in one or more engineered metabolic pathways to convert a carbohydrate source to ethanol, wherein said one or more native and/or heterologous enzymes is activated, upregulated or downregulated. In some embodiments, the recombinant microorganism produces less glycerol than a control recombinant microorganism without deletion of said one or more native enzymes that function to produce glycerol and/or regulate glycerol synthesis. In some embodiments, the carbohydrate source is biomass. In some embodiments, the biomass comprises a lignocellulosic material selected from the group consisting of grass, switch grass, cord grass, rye grass, reed canary grass, mixed prairie grass, miscanthus, sugar-processing residues, sugarcane bagasse, sugarcane straw, agricultural wastes, rice straw, rice hulls, barley straw, corn cobs, cereal straw, wheat straw, canola straw, oat straw, oat hulls, corn fiber, stover, soybean stover, corn stover, forestry wastes, recycled wood pulp fiber, paper sludge, sawdust, hardwood, softwood, agave, and combinations thereof. In some embodiments, the biomass is corn mash or corn starch.
[0007] In particular aspects, the one or more native enzymes that function to produce glycerol are encoded by a gpd1 polynucleotide, a gpd2 polynucleotide, or both a gpd1 polynucleotide and a gpd2 polynucleotide. In certain embodiments, the recombinant microorganism further comprises a native and/or heterologous gpd1 polynucleotide operably linked to a native gpd2 promoter polynucleotide. In other aspects, the one or more native enzymes that function to produce glycerol are encoded by a gpp1 polynucleotide, a gpp2 polynucleotide, or both a gpp1 polynucleotide and a gpp2 polynucleotide.
[0008] In particular aspects, the one or more native enzymes that function to regulate glycerol synthesis are encoded by an fps1 polynucleotide.
[0009] In further aspects, the engineered metabolic pathways comprise conversion of pyruvate to acetyl-CoA and formate. In certain embodiments, pyruvate is converted to acetyl-CoA and formate by a pyruvate formate lyase (PFL). In some embodiments, the PFL is of prokaryotic or eukaryotic origin. In some embodiments, PFL is from one or more of a Bifidobacteria, an Escherichia, a Thermoanaerobacter, a Clostridia, a Streptococcus, a Lactobaillus, a Chlamydomonas, a Piromyces, a Neocallimastix, or a Bacillus species. In some embodiments, PFL is from one or more of a Bacillus lichenmformis, a Streptococcus thermophilus, a Lactobacillus plantarum, a Lactobacillus casei, a Bifdobacterium adolescentis, a Clostridium cellulolyticum, a Escherichia coli, a Chlamydomonas reinhardtii PflA, a Piromyces sp. E2, or a Neocallimastix frontalis. In one embodiment, PFL is from a Bifidobacterium adolescentis.
[0010] In additional aspects, the engineered metabolic pathways comprise conversion of acetyl-CoA to ethanol. In certain embodiments, acetyl-CoA is converted to acetaldehyde by an acetaldehyde dehydrogenase and acetaldehyde is converted to ethanol by an alcohol dehydrogenase. In certain embodiments, acetyl-CoA is converted to ethanol by a bifunctional acetaldehyde/alcohol dehydrogenase. In some embodiments, the acetaldehyde dehydrogenase, alcohol dehydrogenase, or bifuntional acetaldehyde/alcohol dehydrogenase is of prokaryotic or eukaryotic origin. In one embodiment, acetaldehyde dehydrogenase is from C. phytofermentans. In some embodiments, bifunctional acetaldehydelalcohol dehydrogenase is from an Escherichia, a Clostridia, a Chlamydomonas, a Piromyces, or a Bifidobacteria species. In some embodiments, bifunctional acetaldehyde/alcohol dehydrogenase is from Escherichia coli, Clostridium phytofermentans, Chlamydomonas reinhardtii, Piromyces sp. E2, or Bifidobacterium adolescentis. In one embodiment, bifunctional acetaldehyde/alcohol dehydrogenase is from a Bifidobacterium adolescentis or Piromyces sp. E2.
[0011] In further aspects, the recombinant microorganism comprises a deletion of one or more native enzymes encoded by an fdh1 polynucleotide, an fdh2 polynucleotide, or both an fdh1 polynucleotide and an fdh2 polynucleotide.
[0012] In certain embodiments, the carbohydrate source for the recombainant microorganism is lignocellulose. In certain embodiments, the recombinant microorganism produces ethanol. In certain embodiments, the recombinant microorganism produces formate.
[0013] In certain embodiments, the recombinant microorganism is selected from the group consisting of Saccharomyces cerevisiae, Kluyveromyces lactis, Kluyveromyces marxianus, Pichia pastoris, Yarrowia lipolytica, Hansenula polymorpha, Phaffia rhodozyma, Candida utliis, Arxula adeninivorans, Pichia stipitis, Debaryomyces hansenii, Debaryomyces polymorphus, Schizosaccharomyces pombe, Candida albicans, and Schwanniomyces occidentalis. In one embodiment, the recombinant microorganism is Saccharomyces cerevisiae.
[0014] In certain embodiments, the recombinant microorganism comprises one or more native enzymes that function to produce glycerol encoded by both a gpd1 polynucleotide and a gpd2 polynucleotide, an engineered metabolic pathway that comprises conversion of pyruvate to acetyl-CoA and formate by a pyruvate formate lyase and an engineered metabolic pathway that comprises conversion of acetyl-CoA to ethanol by a bifunctional acetaldehyde/alcohol dehydrogenase, and the recombinant microorganism further comprises a deletion of one or more native enzymes encoded by both an fdh1 polynucleotide and an fdh2 polynucleotide.
[0015] In certain embodiments, the recombinant microorganism comprises one or more native enzymes that function to produce glycerol encoded by both a gpp1 polynucleotide and a gpp2 polynucleotide, an engineered metabolic pathway that comprises conversion of pyruvate to acetyl-CoA and formate by a pyruvate formate lyase. In further embodiments, one engineered metabolic pathway of the recombinant microorganism converts acetyl-CoA to ethanol by a bifunctional acetaldehyde/alcohol dehydrogenase and the recombinant microorganism further comprises a deletion of one or more native enzymes encoded by both an fdh1 polynucleotide and an fdh2 polynucleotide.
[0016] In certain embodiments, the recombinant microorganism comprises one or more native enzymes that function to regulate glycerol synthesis encoded by an fps1 polynucleotide, an engineered metabolic pathway that comprises conversion of pyruvate to acetyl-CoA and formate by a pyruvate formate lyase. In further embodiments, one engineered metabolic pathway of the recombinant microorganism converts acetyl-CoA to ethanol by a bifunctional acetaldehyde/alcohol dehydrogenase and the recombinant microorganism further comprises a deletion of one or more native enzymes encoded by both an fdh1 polynucleotide and an fdh2 polynucleotide.
[0017] In certain embodiments, the recombinant microorganism comprises one or more native enzymes that function to regulate glycerol synthesis encoded by an fps1 polynucleotide and one or more native enzymes that function to produce glycerol encoded by both a gpd1 polynucleotide and a gpd2 polynucleotide, and an engineered metabolic pathway that comprises conversion of pyruvate to acetyl-CoA and formate by a pyruvate formate lyase and an engineered metabolic pathway that comprises conversion of acetyl-CoA to ethanol by a bifunctional acetaldehyde/alcohol dehydrogenase, and the recombinant microorganism further comprises a deletion of one or more native enzymes encoded by both an fdh1 polynucleotide and an fdh2 polynucleotide.
[0018] In certain embodiments, the recombinant microorganism comprises one or more native enzymes that function to regulate glycerol synthesis encoded by an fps1 polynucleotide, an engineered metabolic pathway that comprises conversion of pyruvate to acetyl-CoA and formate by a pyruvate formate lyase and an engineered metabolic pathway that comprises conversion of acetyl-CoA to ethanol by a bifunctional acetaldehyde/alcohol dehydrogenase, and the recombinant microorganism further comprises a deletion of one or more native enzymes encoded by both an fdh1 polynucleotide and an fdh2 polynucleotide.
[0019] In certain embodiments, the recombinant microorganism comprises one or more native enzymes that function to produce glycerol encoded by both a gpd1 polynucleotide and a gpd2 polynucleotide, an engineered metabolic pathway that comprises conversion of pyruvate to acetyl-CoA and formate by a pyruvate formate lyase and an engineered metabolic pathway that comprises conversion of acetyl-CoA to ethanol by a bifunctional acetaldehyde/alcohol dehydrogenase, and the recombinant microorganism further comprises a native and/or heterologous gpd1 polynucleotide operably linked to a native gpd2 promoter polynucleotide.
[0020] In certain embodiments, the recombinant microorganism comprises one or more native enzymes that function to produce glycerol encoded by both a gpd1 polynucleotide and a gpd2 polynucleotide, and an engineered metabolic pathway that comprises conversion of pyruvate to acetyl-CoA and formate by a pyruvate formate lyase and an engineered metabolic pathway that comprises conversion of acetyl-CoA to ethanol by a bifunctional acetaldehyde/alcohol dehydrogenase, further comprising a native and/or heterologous gpd1 polynucleotide operably linked to a native gpd2 promoter polynucleotide and a deletion of one or more native enzymes encoded by both an fdh1 polynucleotide and an fdh2 polynucleotide.
[0021] In certain embodiments, the recombinant microorganism comprises one or more native enzymes that function to produce glycerol encoded by both a gpd1 polynucleotide and a gpd2 polynucleotide and one or more native enzymes that function to regulate glycerol synthesis encoded by an fps1 polynucleotide, and an engineered metabolic pathway that comprises conversion of pyruvate to acetyl-CoA and formate by a pyruvate formate lyase and an engineered metabolic pathway that comprises conversion of acetyl-CoA to ethanol by a bifunctional acetaldehyde/alcohol dehydrogenase, further comprising a native and/or heterologous gpd1 polynucleotide operably linked to a native gpd2 promoter polynucleotide.
[0022] In certain embodiments, the recombinant microorganism comprises one or more native enzymes that function to produce glycerol encoded by both a gpd1 polynucleotide and a gpd2 polynucleotide and one or more native enzymes that function to regulate glycerol synthesis encoded by an fps1 polynucleotide, and an engineered metabolic pathway that comprises conversion of pyruvate to acetyl-CoA and formate by a pyruvate formate lyase and an engineered metabolic pathway that comprises conversion of acetyl-CoA to ethanol by a bifunctional acetaldehyde/alcohol dehydrogenase, further comprising a native and/or heterologous gpd1 polynucleotide operably linked to a native gpd2 promoter polynucleotide and a deletion of one or more native enzymes encoded by both an fdh1 polynucleotide and an fdh2 polynucleotide.
[0023] In some embodiments, the deletion of one or more native enzymes that function to produce glycerol and/or regulate glycerol synthesis in the recombinant microorganism reduces glycerol formation by: more than about 10% of the glycerol produced by a recombinant microorganism without a deletion of one or more native enzymes that function to produce glycerol and/or regulate glycerol synthesis; more than about 20% of the glycerol produced by a recombinant microorganism without a deletion of one or more native enzymes that function to produce glycerol and/or regulate glycerol synthesis; more than about 30% of the glycerol produced by a recombinant microorganism without a deletion of one or more native enzymes that function to produce glycerol and/or regulate glycerol synthesis; more than about 40% of the glycerol produced by a recombinant microorganism without a deletion of one or more native enzymes that function to produce glycerol and/or regulate glycerol synthesis; more than about 50% of the glycerol produced by a recombinant microorganism without a deletion of one or more native enzymes that function to produce glycerol and/or regulate glycerol synthesis; more than about 60% of the glycerol produced by a recombinant microorganism without a deletion of one or more native enzymes that function to produce glycerol and/or regulate glycerol synthesis; more than about 70% of the glycerol produced by a recombinant microorganism without a deletion of one or more native enzymes that function to produce glycerol and/or regulate glycerol synthesis; more than about 80% of the glycerol produced by a recombinant microorganism without a deletion of one or more native enzymes that function to produce glycerol and/or regulate glycerol synthesis; more than about 90% of the glycerol produced by a recombinant microorganism without a deletion of one or more native enzymes that function to produce glycerol and/or regulate glycerol synthesis; more than about 95% of the glycerol produced by a recombinant microorganism without a deletion of one or more native enzymes that function to produce glycerol and/or regulate glycerol synthesis; or more than about 99% of the glycerol produced by a recombinant microorganism without a deletion of one or more native enzymes that function to produce glycerol and/or regulate glycerol synthesis.
[0024] In some embodiments, the recombinant microorganism produces an amount of formate selected from: at least about 0.012 g/L in 24 hours; at least about 0.022 g/L in 48 hours; or at least about 2.5 g/L in 142 hours.
[0025] In some embodiments, the recombinant microorganism produces a formate yield selected from: at least about 0.05-fold more formate than is produced by a recombinant microorganism without activation, upregulation, or downregulation of one or more native and/or heterologous enzymes; at least about 0.1-fold more formate than is produced by a recombinant microorganism without activation, upregulation, or downregulation of one or more native and/or heterologous enzymes; at least about 0.5-fold more formate than is produced by a recombinant microorganism without activation, upregulation, or downregulation of one or more native and/or heterologous enzymes; at least about 1.0-fold more formate than is produced by a recombinant microorganism without activation, upregulation, or downregulation of one or more native and/or heterologous enzymes; at least about 5.0-fold more formate than is produced by a recombinant microorganism without activation, upregulation, or downregulation of one or more native and/or heterologous enzymes; at least about 10.0-fold more formate than is produced by a recombinant microorganism without activation, upregulation, or downregulation of one or more native and/or heterologous enzymes; at least about 20.0-fold more formate than is produced by a recombinant microorganism without activation, upregulation, or downregulation of one or more native and/or heterologous enzymes; at least about 30.0-fold more formate than is produced by a recombinant microorganism without activation, upregulation, or downregulation of one or more native and/or heterologous enzymes; at least about 40.0-fold more formate than is produced by a recombinant microorganism without activation, upregulation, or downregulation of one or more native and/or heterologous enzymes; at least about 50.0-fold more formate than is produced by a recombinant microorganism without activation, upregulation, or downregulation of one or more native and/or heterologous enzymes; at least about 75.0-fold more formate than is produced by a recombinant microorganism without activation, upregulation, or downregulation of one or more native and/or heterologous enzymes; or at least about 100-fold more formate than is produced by a recombinant microorganism without activation, upregulation, or downregulation of one or more native and/or heterologous enzymes.
[0026] In some embodiments, the recombinant microorganism produces an ethanol yield selected from: at least about 1% more ethanol than is produced by a recombinant microorganism without activation, upregulation, or downregulation of one or more native and/or heterologous enzymes; at least about 2% more ethanol than is produced by a recombinant microorganism without activation, upregulation, or downregulation of one or more native and/or heterologous enzymes; at least about 3% more ethanol than is produced by a recombinant microorganism without activation, upregulation, or downregulation of one or more native and/or heterologous enzymes; at least about 4% more ethanol than is produced by a recombinant microorganism without activation, upregulation, or downregulation of one or more native and/or heterologous enzymes; at least about 5% more ethanol than is produced by a recombinant microorganism without activation, upregulation, or downregulation of one or more native and/or heterologous enzymes; at least about 10% more ethanol than is produced by a recombinant microorganism without activation, upregulation, or downregulation of one or more native and/or heterologous enzymes; at least about 20% more ethanol than is produced by a recombinant microorganism without activation, upregulation, or downregulation of one or more native and/or heterologous enzymes; at least about 30% more ethanol than is produced by a recombinant microorganism without activation, upregulation, or downregulation of one or more native and/or heterologous enzymes; at least about 40% more ethanol than is produced by a recombinant microorganism without activation, upregulation, or downregulation of one or more native and/or heterologous enzymes; at least about 50% more ethanol than is produced by a recombinant microorganism without activation, upregulation, or downregulation of one or more native and/or heterologous enzymes; at least about 60% more ethanol than is produced by a recombinant microorganism without activation, upregulation, or downregulation of one or more native and/or heterologous enzymes; at least about 70% more ethanol than is produced by a recombinant microorganism without activation, upregulation, or downregulation of one or more native and/or heterologous enzymes; at least about 80% more ethanol than is produced by a recombinant microorganism without activation, upregulation, or downregulation of one or more native and/or heterologous enzymes; at least about 90% more ethanol than is produced by a recombinant microorganism without activation, upregulation, or downregulation of one or more native and/or heterologous enzymes; at least about 95% more ethanol than is produced by a recombinant microorganism without activation, upregulation, or downregulation of one or more native and/or heterologous enzymes; or at least about 99% more ethanol than is produced by a recombinant microorganism without activation, upregulation, or downregulation of one or more native and/or heterologous enzymes.
[0027] In some embodiments, the conversion of the carbohydrate source to ethanol by the recombinant microorganism, or the enzymes engineered therein, is under anaerobic conditions.
[0028] In some embodiments, the recombinant microorganism has an acetate uptake (g/L) under anaerobic conditions selected from: at least about 1% more acetate uptake than that taken up by a recombinant microorganism without activation, upregulation, or downregulation of one or more native and/or heterologous enzymes; at least about 10% more acetate uptake than that taken up by a recombinant microorganism without activation, upregulation, or downregulation of one or more native and/or heterologous enzymes; at least about 20% more acetate uptake than that taken up by a recombinant microorganism without activation, upregulation, or downregulation of one or more native and/or heterologous enzymes; at least about 30% more acetate uptake than that taken up by a recombinant microorganism without activation, upregulation, or downregulation of one or more native and/or heterologous enzymes; at least about 40% more acetate uptake than that taken up by a recombinant microorganism without activation, upregulation, or downregulation of one or more native and/or heterologous enzymes; at least about 50% more acetate uptake than that taken up by a recombinant microorganism without activation, upregulation, or downregulation of one or more native and/or heterologous enzymes; at least about 60% more acetate uptake than that taken up by a recombinant microorganism without activation, upregulation, or downregulation of one or more native and/or heterologous enzymes; at least about 70% more acetate uptake than that taken up by a recombinant microorganism without activation, upregulation, or downregulation of one or more native and/or heterologous enzymes; at least about 80% more acetate uptake than that taken up by a recombinant microorganism without activation, upregulation, or downregulation of one or more native and/or heterologous enzymes; and at least about 90% more acetate uptake than that taken up by a recombinant microorganism without activation, upregulation, or downregulation of one or more native and/or heterologous enzymes.
[0029] In some embodiments, the recombinant microorganism produces more ethanol at a slower glucose utilization rate compared to a recombinant microorganism without deletion of one or more native enzymes that function to produce glycerol and/or regulate glycerol synthesis, wherein the glucose utilization rate is selected from: at least about 1% less glucose used per hour than that used by a recombinant microorganism without activation, upregulation, or downregulation of one or more native and/or heterologous enzymes; at least about 5% less glucose used per hour than that used by a recombinant microorganism without activation, upregulation, or downregulation of one or more native and/or heterologous enzymes; at least about 10% less glucose used per hour than that used by a recombinant microorganism without activation, upregulation, or downregulation of one or more native and/or heterologous enzymes; at least about 20% less glucose used per hour than that used by a recombinant microorganism without activation, upregulation, or downregulation of one or more native and/or heterologous enzymes; at least about 30% less glucose used per hour than that used by a recombinant microorganism without activation, upregulation, or downregulation of one or more native and/or heterologous enzymes; at least about 40% less glucose used per hour than that used by a recombinant microorganism without activation, upregulation, or downregulation of one or more native and/or heterologous enzymes; at least about 50% less glucose used per hour than that used by a recombinant microorganism without activation, upregulation, or downregulation of one or more native and/or heterologous enzymes; at least about 60% less glucose used per hour than that used by a recombinant microorganism without activation, upregulation, or downregulation of one or more native and/or heterologous enzymes; at least about 70% less glucose used per hour than that used by a recombinant microorganism without activation, upregulation, or downregulation of one or more native and/or heterologous enzymes; at least about 80% less glucose used per hour than that used by a recombinant microorganism without activation, upregulation, or downregulation of one or more native and/or heterologous enzymes; and at least about 90% less glucose used per hour than that used by a recombinant microorganism without activation, upregulation, or downregulation of one or more native and/or heterologous enzymes.
[0030] Another aspect of the invention relates to a recombinant microorganism comprising: one or more heterologous enzymes that function to regulate glycerol synthesis, wherein said one or more heterologous enzymes is activated, upregulated or downregulated; and one or more native and/or heterologous enzymes that function in one or more engineered metabolic pathways to convert a carbohydrate source to ethanol, wherein said one or more native and/or heterologous enzymes is activated, upregulated or downregulated. In certain embodiments, the one or more heterologous enzymes that function to regulate glycerol synthesis are encoded by an fps1 polynucleotide. In one embodiment, the fps1 polynucleotide is from Escherichia coli.
[0031] In some embodiments, one of the engineered metabolic pathways of the above recombinant microorganism comprises conversion of pyruvate to acetyl-CoA and formate. In certain embodiments, pyruvate is converted to acetyl-CoA and formate by a pyruvate formate lyase (PFL). In some embodiments, PFL is of prokaryotic or eukaryotic origin. In some embodiments, PFL is from one or more of a Bifidobacteria, an Escherichia, a Thermoanaerobacter, a Clostridia, a Streptococcus, a Lactobacillus, a Chlamydomonas, a Piromyces, a Neocallimastix, or a Bacillus species. In some embodiments, the PFL is from one or more of a Bacillus licheniformis, a Streptococcus thermophilus, a Lactobacillus plantarum, a Lactobacillus casei, a Bifidobacterium adolescentis, a Clostridium cellulolyticum, a Escherichia coli, a Chlamydomonas reinhardtii PflA, a Piromyces sp. E2, or a Neocallimastix frontalis. In one embodiment, PFL is from a Bifidobacterium adolescentis.
[0032] In some embodiments, one of said engineered metabolic pathways of the above recombinant microorganism comprises conversion of acetyl-CoA to ethanol. In some embodiments, acetyl-CoA is converted to acetaldehyde by an acetaldehyde dehydrogenase and acetaldehyde is converted to ethanol by an alcohol dehydrogenase. In other embodiments, acetyl-CoA is converted to ethanol by a bifunctional acetaldehyde/alcohol dehydrogenase. In some embodiments, the acetaldehyde dehydrogenase, alcohol dehydrogenase, or bifuntional acetaldehyde/alcohol dehydrogenase is of prokaryotic or eukaryotic origin. In one embodiment, acetaldehyde dehydrogenase is from C. phytofermentans. In certain embodiments, the bifunctional acetaldehyde/alcohol dehydrogenase is from an Escherichia, a Clostridia, a Chlamydomonas, a Piromyces, or a Bifidobacteria species. In some embodiments, the bifunctional acetaldehyde/alcohol dehydrogenase is from Escherichia coli, Clostridium phytofermentans, Chiamydomonas reinhardtii, Piromyces sp. E2, or Bifidobacterium adolescentis. In one embodiment, the bifunctional acetaldehyde/alcohol dehydrogenase is from a Bfidobacterium adolescentis or Piromyces sp. E2.
[0033] In further aspects, the recombinant microorganism comprises a deletion of one or more native enzymes encoded by an fdh1 polynucleotide, an fdh2 polynucleotide, or both an fdh1 polynucleotide and an fdh2 polynucleotide.
[0034] In some embodiments, the recombinant microorganism produces ethanol. In other embodiments, the recombinant microorganism produces formate. In some embodiments, the recombinant microorganism is selected from the group consisting of Saccharomyces cerevisiae, Kluyveromyces lactis, Kluyveromyces marxianus, Pichia pastoris, Yarrowia lipolytica, Hansenula polymorpha, Phaffia rhodozyma, Candida uthis, Arxula adeninivorans, Pichia stipitis, Debaryomyces hansenii, Debaryomyces polymorphus, Schizosaccharomyces pombe, Candida albicans, and Schwanniomyces occidentalis. In one embodiment, the recombinant microorganism is Saccharomyces cerevisiae.
[0035] In some embodiments, the recombinant microorganisms of the invention further comprise one or more native and/or heterologous enzymes that function in one or more engineered metabolic pathways to convert xylose to xylulose-5-phosphate and/or arabinose to xylulose-5-phosphate, wherein the one or more native and/or heterologous enzymes are activated, upregulated or downregulated.
[0036] In some embodiments, the recombinant microorganisms of the invention further comprise one or more native and/or heterologous enzymes which encodes a saccharolytic enzyme, including amylases, cellulases, hemicellulases, cellulolytic and amylolytic accessory enzymes, inulinases, levanases, and pentose sugar utilizing enzymes. In one aspect, the saccharolytic enzyme is an amylase, where the amylase is selected from H. grisea, T. aurantiacus, T. emersonii, T. reesei, C. lacteus, C. formosanus, N. takasagoensis, C. acinaciformis, M. darwinensis, N. walkeri, S. fibuligera, C. luckowense R. speratus, Thermobfida fusca, Clostridum thermocellum, Clostridium cellulolyticum, Clostridum josui, Bacillus pumilis, Cellulomonas fimi, Saccharophagus degradans, Piromyces equii, Neocallimastix patricarum or Arabidopsis thaliana. In another aspect, the saccharolytic enzyme is an amylase from S. fibuligera glucoamylase (glu-0111-CO).
[0037] Another aspect of the invention relates to a method for decreasing cellular glycerol comprising contacting biomass with a recombinant microorganism of the invention. A further aspect of the invention relates to a method for increasing cytosolic formate comprising contacting biomass with a recombinant microorganism of the invention. Another aspect of the invention relates to a process for converting biomass to ethanol comprising contacting biomass with a recombinant microorganism of the invention. In some embodiments, the biomass comprises lignocellulosic biomass. In some embodiments, the lignocellulosic biomass is selected from the group consisting of grass, switch grass, cord grass, rye grass, reed canary grass, mixed prairie grass, miscanthus, sugar-processing residues, sugarcane bagasse, sugarcane straw, agricultural wastes, rice straw, rice hulls, barley straw, corn cobs, cereal straw, wheat straw, canola straw, oat straw, oat hulls, corn fiber, stover, soybean stover, corn stover, forestry wastes, recycled wood pulp fiber, paper sludge, sawdust, hardwood, softwood, agave, and combinations thereof. In some embodiments, the biomass is corn mash or corn starch.
[0038] In another aspect, the present invention also describes industrial yeast strains that express enzymes for the production of fuel ethanol from corn starch.
BRIEF DESCRIPTION OF THE DRAWINGS/FIGURES
[0039] FIG. 1 shows a schematic of high yield metabolism.
[0040] FIG. 2 depicts the glycolysis pathway.
[0041] FIG. 3 shows a schematic of the glycolysis/fermentation pathway.
[0042] FIG. 4 shows a map depicting location of primers used to make marked deletion of GPD1.
[0043] FIG. 5 shows a map depicting location of primers used to remove marker from GPD1 locus.
[0044] FIG. 6 shows a map depicting location of primers used to make marked deletion of GPD2.
[0045] FIG. 7 shows a map depicting location of primers used to remove marker from GPD2 locus.
[0046] FIG. 8 shows a map depicting location of primers used to make marked deletion of FDH1.
[0047] FIG. 9 shows a map depicting location of primers used to remove marker from FDH1 locus.
[0048] FIG. 10 shows a map depicting location of primers used to make marked deletion of FDH2.
[0049] FIG. 11 shows a map depicting location of primers used to remove marker from FDH2 locus.
[0050] FIG. 12 shows an alignment of PFL enzymes from various organisms.
[0051] FIG. 13 shows a graph of formate production over 48 hours.
[0052] FIG. 14 shows a graph of formate production at the end of 142 hours in microaerobic and anaerobic conditions.
[0053] FIG. 15 shows a graph of the growth of strains of the invention over 72 hours as measured by OD.
[0054] FIG. 16 shows a graph of glycerol production (g/L) of strains of the invention over 72 hours.
[0055] FIG. 17 shows a graph of ethanol production (g/L) of strains of the invention over 72 hours.
[0056] FIG. 18 shows a graph of glucose utilization (g/L) of strains of the invention over 72 hours.
[0057] FIG. 19 shows a graph of the growth of a strain of the invention over 142 hours as measured by OD.
[0058] FIG. 20 shows a graph of the relative growth rate (mOD/min) of strains of the invention.
[0059] FIG. 21 shows a graph of ethanol production (g/L) of strains of the invention after 50 hours of fermentation.
[0060] FIG. 22 shows a graph of ethanol production (g/L) of strains of the invention after 50 hours of fermentation.
[0061] FIG. 23 shows a graph of glycerol production (g/L) of strains of the invention after 50 hours of fermentation.
[0062] FIG. 24 shows a graph of glycerol production (g/L) of strains of the invention after 50 hours of fermentation.
[0063] FIG. 25 shows a graph of glucose utilization (g/L), glycerol production (g/L), and ethanol production (g/L) after 72 hours of fermentation.
[0064] FIG. 26 shows a diagram depicting integration of E. coli AADHs at the GPD1 locus.
[0065] FIG. 27 shows a diagram depicting integration of E. coli AADHs at the FCY1 locus
[0066] FIG. 28 shows a schematic diagram of a strategy for PCR construction and integration of KT-MX and NT-MX integration cassettes into both chromosomes of a target loci.
[0067] FIG. 29 shows a schematic diagram of strategy used to replace integrated KT-MX and NT-MX selection cassettes with a Mascoma Assembly on both chromosomes of a target loci.
[0068] FIG. 30 shows a molecular map and genotyping of MA0370 integrated at the FDH1 site of M3625.
[0069] FIG. 31 shows an image of an agarose gel containing PCR products used to genotype and sequence the MA0370 site.
[0070] FIG. 32 shows a molecular map and genotyping of MA0280 integrated at the FDH2 site of M3625.
[0071] FIG. 33 shows an image of an agarose gel containing PCR products used to genotype and sequence the MA0280 site.
[0072] FIG. 34 shows a molecular map and genotyping of MA0289 integrated at the GPD2 site of M3625.
[0073] FIG. 35 shows an image of an agarose gel containing PCR products used to genotype and sequence the MA0370 site.
[0074] FIG. 36 shows a molecular map and genotyping of MA0317 integrated at the FCY1 site of M3625.
[0075] FIG. 37 shows an image of an agarose gel containing PCR products used to genotype and sequence the MA0317 site.
[0076] FIG. 38 shows a graph depicting the results of a starch assay performed with strains M2390, M2519, M2691, M3498, and M3625.
[0077] FIG. 39 shows an anti-peptide Western blot analysis of cell extracts (PflA, PflB, AdhE) and aerobic culture supernatants (AE9).
[0078] FIG. 40 shows a graph depicting the results of a formate lyase assay performed with engineered strains M3465, M3625, M3679, M3680, and M2390.
[0079] FIG. 41 shows a graph depicting the results of an alcohol dehydrogenase assay performed with engineered strains M3465, M3625, M3679, and M3680.
[0080] FIG. 42 shows a graph depicting the results of a glucoamylase activity assay performed with engineered strains M3625 and M3680 using 50 .mu.g/mL AE9 on corn starch at room temperature (.about.25.degree. C.).
[0081] FIG. 43A is a schematic showing insertion of promoters and terminators used to express, GPD2, and B. adolescentis pflA, pflB and adhE at the GPD1 locus in M3624 and M3515.
[0082] FIG. 43B is a schematic showing insertion of promoters and terminators used to express GPD1 and B. adolescentis pflA, pflB and adhE at the GPD2 locus in M3624 and M3515.
[0083] FIG. 43C is a schematic showing deletion of the FDH1 gene in M3624 and M3515.
[0084] FIG. 43D is a schematic showing insertions of promoters and terminators used to express B. adolescentis pflA, pflB and adhE at the FDH2 locus in M3624 and M3515.
[0085] FIG. 44A shows HPLC analysis of formate produced by glycerol reduction strains during fermentation of 28% solids corn mash.
[0086] FIG. 44B shows HPLC analysis of glycerol produced by glycerol reduction strains during fermentation of 28% solids corn mash.
[0087] FIG. 44C shows HPLC analysis of ethanol produced by glycerol reduction strains during fermentation of 28% solids corn mash.
[0088] FIG. 45A is a schematic showing insertion of promoters and terminators used to express B. adolescentis pflA, pflB and adhE at the GPD2 locus in M3465.
[0089] FIG. 45B is a schematic showing deletion of the FDH1 gene in M3465.
[0090] FIG. 45C is a schematic showing insertion of promoters and terminators used to express B. adolescentis pflA, pflB and adhE at the FDH2 locus in M3465.
[0091] FIG. 46A is a schematic showing insertion of promoters and terminators used to express B. adolescentis pflA, pflB and adhE at the GPD1 locus in M3469.
[0092] FIG. 46B is a schematic showing deletion of the FDH1 gene in M3469.
[0093] FIG. 46C is a schematic showing insertion of promoters and terminators used to express B. adolescentis pflA, pflB and adhE at the FDH2 locus in M3469.
[0094] FIG. 47 shows HPLC analysis of ethanol titers produced by glycerol reduction strains during fermentation of 30% solids corn mash.
[0095] FIG. 48 shows HPLC analysis of glycerol titers produced by glycerol reduction strains during fermentation of 30% solids corn mash.
[0096] FIG. 49 shows the reverse reaction catalyzed by Bifidobacterium adolecentis bifunctional alcohol dehydrogenase (AdhE) in which ethanol is converted to acetaldehyde.
[0097] FIG. 50 shows a diagram of the reaction for the conversion of acetaldehyde to acetyl CoA by AdhE.
[0098] FIG. 51 is a schematic showing insertion of promoters and terminators used to express B. adolescentis pflA, pflB and adhE at the GPP1 locus in TB655.
[0099] FIG. 52 is a schematic showing insertion of promoters and terminators used to express B. adolescentis pflA, pflB and adhE at the GPP2 locus in TB656.
[0100] FIG. 53 is a graph depicting decreased glycerol formation in strains TB655 and TB656 compared to strain M3297.
[0101] FIG. 54 is a graph depicting increased ethanol yield in strains TB655 and TB656 compared to strain M3297.
[0102] FIG. 55 is a graph depicting formate production in strains TB655, TB656, and M3297.
DETAILED DESCRIPTION OF THE INVENTION
Definitions
[0103] The term "heterologous" when used in reference to a polynucleotide, a gene, a polypeptide, or an enzyme refers to a polynucleotide, gene, polypeptide, or an enzyme not normally found in the host organism. "Heterologous" also includes a native coding region, or portion thereof, that is reintroduced into the source organism in a form that is different from the corresponding native gene, e.g., not in its natural location in the organism's genome. The heterologous polynucleotide or gene may be introduced into the host organism by, e.g., gene transfer. A heterologous gene may include a native coding region that is a portion of a chimeric gene including non-native regulatory regions that is reintroduced into the native host. Foreign genes can comprise native genes inserted into a non-native organism, or chimeric genes.
[0104] The term "heterologous polynucleotide" is intended to include a polynucleotide that encodes one or more polypeptides or portions or fragments of polypeptides. A heterologous polynucleotide may be derived from any source, e.g., eukaryotes, prokaryotes, viruses, or synthetic polynucleotide fragments.
[0105] The terms "promoter" or "surrogate promoter" is intended to include a polynucleotide that can transcriptionally control a gene-of-interest that it does not transcriptionally control in nature. In certain embodiments, the transcriptional control of a surrogate promoter results in an increase in expression of the gene-of-interest. In certain embodiments, a surrogate promoter is placed 5' to the gene-of-interest. A surrogate promoter may be used to replace the natural promoter, or may be used in addition to the natural promoter. A surrogate promoter may be endogenous with regard to the host cell in which it is used, or it may be a heterologous polynucleotide sequence introduced into the host cell, e.g., exogenous with regard to the host cell in which it is used.
[0106] The terms "gene(s)" or "polynucleotide" or "polynucleotide sequence(s)" are intended to include nucleic acid molecules, e.g., polynucleotides which include an open reading frame encoding a polypeptide, and can further include non-coding regulatory sequences, and introns. In addition, the terms are intended to include one or more genes that map to a functional locus. In addition, the terms are intended to include a specific gene for a selected purpose. The gene may be endogenous to the host cell or may be recombinantly introduced into the host cell, e.g., as a plasmid maintained episomally or a plasmid (or fragment thereof) that is stably integrated into the genome. In addition to the plasmid form, a gene may, for example, be in the form of linear DNA. In certain embodiments, the gene or polynucleotide is involved in at least one step in the bioconversion of biomass to, e.g., ethanol. Accordingly, the term is intended to include any gene encoding a polypeptide, such as the enzymes acetate kinase (ACK), phosphotransacetylase (PTA), lactate dehydrogenase (LDH), pyruvate formate lyase (PFL), aldehyde dehydrogenase (ADH) and/or alcohol dehydrogenase (ADH), acetyl-CoA transferase (ACS), acetaldehyde dehydrogenase (ACDH), acetaldehyde/alcohol dehydrogenase (AADH), glycerol-3-phosphate dehydrogenase (GPD), glycerol 3-phosphatase (GPP), acetyl-CoA synthetase, thiolase, CoA transferase, acetoacetate decarboxylase, alcohol acetyltransferase enzymes in the D-xylose pathway, such as xylose isomerase and xylulokinase, enzymes in the L-arabinose pathway, such as L-arabinose isomerase and L-ribulose-5-phosphate 4-epimerase. The term gene is also intended to cover all copies of a particular gene, e.g., all of the DNA sequences in a cell encoding a particular gene product.
[0107] The term "transcriptional control" is intended to include the ability to modulate gene expression at the level of transcription. In certain embodiments, transcription, and thus gene expression, is modulated by replacing or adding a surrogate promoter near the 5' end of the coding region of a gene-of-interest, thereby resulting in altered gene expression. In certain embodiments, the transcriptional control of one or more genes is engineered to result in the optimal expression of such genes, e.g., in a desired ratio. The term also includes inducible transcriptional control as recognized in the art.
[0108] The term "expression" is intended to include the expression of a gene at least at the level of mRNA production.
[0109] The term "expression product" is intended to include the resultant product, e.g., a polypeptide, of an expressed gene.
[0110] The term "increased expression" is intended to include an alteration in gene expression at least at the level of increased mRNA production and, preferably, at the level of polypeptide expression. The term "increased production" is intended to include an increase in the amount of a polypeptide expressed, in the level of the enzymatic activity of the polypeptide, or a combination thereof, as compared to the native production of, or the enzymatic activity, of the polypeptide.
[0111] The terms "activity," "activities," "enzymatic activity," and "enzymatic activities" are used interchangeably and are intended to include any functional activity normally attributed to a selected polypeptide when produced under favorable conditions. Typically, the activity of a selected polypeptide encompasses the total enzymatic activity associated with the produced polypeptide. The polypeptide produced by a host cell and having enzymatic activity may be located in the intracellular space of the cell, cell-associated, secreted into the extracellular milieu, or a combination thereof. Techniques for determining total activity as compared to secreted activity are described herein and are known in the art.
[0112] The term "xylanolytic activity" is intended to include the ability to hydrolyze glycosidic linkages in oligopentoses and polypentoses.
[0113] The term "arabinolytic activity" is intended to include the ability to hydrolyze glycosidic linkages in oligopentoses and polypentoses.
[0114] The term "cellulolytic activity" is intended to include the ability to hydrolyze glycosidic linkages in oligohexoses and polyhexoses. Cellulolytic activity may also include the ability to depolymerize or debranch cellulose and hemicellulose.
[0115] As used herein, the term "lactate dehydrogenase" or "LDH" is intended to include the enzymes capable of converting pyruvate into lactate. It is understood that LDH can also catalyze the oxidation of hydroxybutyrate. LDH includes those enzymes that correspond to Enzyme Commission Number 1.1.1.27.
[0116] As used herein the term "alcohol dehydrogenase" or "ADH" is intended to include the enzymes capable of converting acetaldehyde into an alcohol, such as ethanol. ADH also includes the enzymes capable of converting acetone to isopropanol. ADH includes those enzymes that correspond to Enzyme Commission Number 1.1.1.1.
[0117] As used herein, the term "phosphotransacetylase" or "PTA" is intended to include the enzymes capable of converting acetyl-phosphate into acetyl-CoA. PTA includes those enzymes that correspond to Enzyme Commission Number 2.3.1.8.
[0118] As used herein, the term "acetate kinase" or "ACK" is intended to include the enzymes capable of converting acetate into acetyl-phosphate. ACK includes those enzymes that correspond to Enzyme Commission Number 2.7.2.1.
[0119] As used herein, the term "pyruvate formate lyase" or "PFL" is intended to include the enzymes capable of converting pyruvate into acetyl-CoA and formate. PFL includes those enzymes that correspond to Enzyme Commission Number 2.3.1.54.
[0120] As used herein, the term "formate dehydrogenase" or "FDH" is intended to include the enzymes capable of converting formate and NAD.sup.+ to NADH and CO.sub.2. FDH includes those enzymes that correspond to Enzyme Commission Number 1.2.1.2.
[0121] As used herein, the term "acetaldehyde dehydrogenase" or "ACDH" is intended to include the enzymes capable of converting acetyl-CoA to acetaldehyde. ACDH includes those enzymes that correspond to Enzyme Commission Number 1.2.1.3.
[0122] As used herein, the term "acetaldehyde/alcohol dehydrogenase" is intended to include the enzymes capable of converting acetyl-CoA to ethanol. Acetaldehyde/alcohol dehydrogenase includes those enzymes that correspond to Enzyme Commission Numbers 1.2.1.10 and 1.1.1.1.
[0123] As used herein, the term "glycerol-3-phosphate dehydrogenase" or "GPD" is intended to include the enzymes capable of converting dihydroxyacetone phosphate to glycerol-3-phosphate. GPD includes those enzymes that correspond to Enzyme Commission Number 1.1.1.8.
[0124] As used herein, the term "glycerol 3-phosphatase" or "GPP" is intended to include the enzymes capable of converting glycerol 3-phosphate to glycerol. GPP includes those enzymes that correspond to Enzyme Commission Number 3.1.3.21.
[0125] As used herein, the term "acetyl-CoA synthetase" or "ACS" is intended to include the enzymes capable of converting acetate to acetyl-CoA. Acetyl-CoA synthetase includes those enzymes that correspond to Enzyme Commission Number 6.2.1.1.
[0126] As used herein, the term "thiolase" is intended to include the enzymes capable of converting acetyl-CoA to acetoacetyl-CoA. Thiolase includes those enzymes that correspond to Enzyme Commission Number 2.3.1.9.
[0127] As used herein, the term "CoA transferase" is intended to include the enzymes capable of converting acetate and acetoacetyl-CoA to acetoacetate and acetyl-CoA. CoA transferase includes those enzymes that correspond to Enzyme Commission Number 2.8.3.8.
[0128] As used herein, the term "acetoacetate decarboxylase" is intended to include the enzymes capable of converting acetoacetate to acetone and carbon dioxide. Acetoacetate decarboxylase includes those enzymes that correspond to Enzyme Commission Number 4.1.1.4.
[0129] As used herein, the term "alcohol acetyltransferase" is intended to include the enzymes capable of converting acetyl-CoA and ethanol to ethyl acetate. Alcohol acetyltransferase includes those enzymes that correspond to Enzyme Commission Number 2.3.1.84.
[0130] The term "pyruvate decarboxylase activity" is intended to include the ability of a polypeptide to enzymatically convert pyruvate into acetaldehyde and carbon dioxide (e.g., "pyruvate decarboxylase" or "PDC"). Typically, the activity of a selected polypeptide encompasses the total enzymatic activity associated with the produced polypeptide, comprising, e.g., the superior substrate affinity of the enzyme, thermostability, stability at different pHs, or a combination of these attributes. PDC includes those enzymes that correspond to Enzyme Commission Number 4.1.1.1.
[0131] The term "ethanologenic" is intended to include the ability of a microorganism to produce ethanol from a carbohydrate as a fermentation product. The term is intended to include, but is not limited to, naturally occurring ethanologenic organisms, ethanologenic organisms with naturally occurring or induced mutations, and ethanologenic organisms which have been genetically modified.
[0132] The terms "fermenting" and "fermentation" are intended to include the enzymatic process (e.g., cellular or acellular, e.g., a lysate or purified polypeptide mixture) by which ethanol is produced from a carbohydrate, in particular, as a product of fermentation.
[0133] The term "secreted" is intended to include the movement of polypeptides to the periplasmic space or extracellular milieu. The term "increased secretion" is intended to include situations in which a given polypeptide is secreted at an increased level (i.e., in excess of the naturally-occurring amount of secretion). In certain embodiments, the term "increased secretion" refers to an increase in secretion of a given polypeptide that is at least about 10% or at least about 100%, 200%, 300/a, 400%, 500%, 6000/, 700%, 800%, 900%, 1000%, or more, as compared to the naturally-occurring level of secretion.
[0134] The term "secretory polypeptide" is intended to include any polypeptide(s), alone or in combination with other polypeptides, that facilitate the transport of another polypeptide from the intracellular space of a cell to the extracellular milieu. In certain embodiments, the secretory polypeptide(s) encompass all the necessary secretory polypeptides sufficient to impart secretory activity to a Gram-negative or Gram-positive host cell or to a yeast host cell. Typically, secretory proteins are encoded in a single region or locus that may be isolated from one host cell and transferred to another host cell using genetic engineering. In certain embodiments, the secretory polypeptide(s) are derived from any bacterial cell having secretory activity or any yeast cell having secretory activity. In certain embodiments, the secretory polypeptide(s) are derived from a host cell having Type II secretory activity. In certain embodiments, the host cell is a thermophilic bacterial cell. In certain embodiments, the host cell is a yeast cell.
[0135] The term "derived from" is intended to include the isolation (in whole or in part) of a polynucleotide segment from an indicated source or the purification of a polypeptide from an indicated source. The term is intended to include, for example, direct cloning, PCR amplification, or artificial synthesis from or based on a sequence associated with the indicated polynucleotide source.
[0136] The term "recombinant microorganism" or "recombinant host cell" is intended to include progeny or derivatives of the recombinant microorganisms of the invention. Because certain modifications may occur in succeeding generations due to either mutation or environmental influences, such progeny or derivatives may not, in fact, be identical to the parent cell, but are still included within the scope of the term as used herein.
[0137] By "thermophilic" is meant an organism that thrives at a temperature of about 45.degree. C. or higher.
[0138] By "mesophilic" is meant an organism that thrives at a temperature of about 20-45.degree. C.
[0139] The term "organic acid" is art-recognized. "Organic acid," as used herein, also includes certain organic solvents such as ethanol. The term "lactic acid" refers to the organic acid 2-hydroxypropionic acid in either the free acid or salt form. The salt form of lactic acid is referred to as "lactate" regardless of the neutralizing agent, i.e., calcium carbonate or ammonium hydroxide. The term "acetic acid" refers to the organic acid methanecarboxylic acid, also known as ethanoic acid, in either free acid or salt form. The salt form of acetic acid is referred to as "acetate."
[0140] Certain embodiments of the present invention provide for the "insertion," (e.g., the addition, integration, incorporation, or introduction) of certain genes or particular polynucleotide sequences within thermophilic or mesophilic microorganisms, which insertion of genes or particular polynucleotide sequences may be understood to encompass "genetic modification(s)" or "transformation(s)" such that the resulting strains of said thermophilic or mesophilic microorganisms may be understood to be "genetically modified" or "transformed." In certain embodiments, strains may be of bacterial, fungal, or yeast origin.
[0141] Certain embodiments of the present invention provide for the "inactivation" or "deletion" of certain genes or particular polynucleotide sequences within thermophilic or mesophilic microorganisms, which "inactivation" or "deletion" of genes or particular polynucleotide sequences may be understood to encompass "genetic modification(s)" or "transformation(s)" such that the resulting strains of said thermophilic or mesophilic microorganisms may be understood to be "genetically modified" or "transformed." In certain embodiments, strains may be of bacterial, fungal, or yeast origin.
[0142] The term "consolidated bioprocessing" or "CBP" refers to biomass processing schemes involving enzymatic or microbial hydrolysis that commonly involve four biologically mediated transformations: (1) the production of saccharolytic enzymes (amylases, cellulases, and hemicellulases); (2) the hydrolysis of carbohydrate components present in pretreated biomass to sugars; (3) the fermentation of hexose sugars (e.g., glucose, mannose, and galactose); and (4) the fermentation of pentose sugars (e.g., xylose and arabinose). These four transformations occur in a single step in a process configuration called CBP, which is distinguished from other less highly integrated configurations in that it does not involve a dedicated process step for cellulase and/or hemicellulase production.
[0143] The term "CBP organism" is intended to include microorganisms of the invention, e.g., microorganisms that have properties suitable for CBP.
[0144] In one aspect of the invention, the genes or particular polynucleotide sequences are inserted to activate the activity for which they encode, such as the expression of an enzyme. In certain embodiments, genes encoding enzymes in the metabolic production of ethanol, e.g., enzymes that metabolize pentose and/or hexose sugars, may be added to a mesophilic or thermophilic organism. In certain embodiments of the invention, the enzyme may confer the ability to metabolize a pentose sugar and be involved, for example, in the D-xylose pathway and/or L-arabinose pathway.
[0145] In one aspect of the invention, the genes or particular polynucleotide sequences are partially, substantially, or completely deleted, silenced, inactivated, or down-regulated in order to inactivate the activity for which they encode, such as the expression of an enzyme. Deletions provide maximum stability because there is no opportunity for a reverse mutation to restore function. Alternatively, genes can be partially, substantially, or completely deleted, silenced, inactivated, or down-regulated by insertion of nucleic acid sequences that disrupt the function and/or expression of the gene (e.g., P1 transduction or other methods known in the art). The terms "eliminate," "elimination," and "knockout" are used interchangeably with the terms "deletion," "partial deletion," "substantial deletion," or "complete deletion." In certain embodiments, strains of thermophilic or mesophilic microorganisms of interest may be engineered by site directed homologous recombination to knockout the production of organic acids. In still other embodiments, RNAi or antisense DNA (asDNA) may be used to partially, substantially, or completely silence, inactivate, or down-regulate a particular gene of interest.
[0146] In certain embodiments, the genes targeted for deletion or inactivation as described herein may be endogenous to the native strain of the microorganism, and may thus be understood to be referred to as "native gene(s)" or "endogenous gene(s)." An organism is in "a native state" if it has not been genetically engineered or otherwise manipulated by the hand of man in a manner that intentionally alters the genetic and/or phenotypic constitution of the organism. For example, wild-type organisms may be considered to be in a native state. In other embodiments, the gene(s) targeted for deletion or inactivation may be non-native to the organism.
[0147] Similarly, the enzymes of the invention as described herein can be endogenous to the native strain of the microorganism, and can thus be understood to be referred to as "native" or "endogenous."
[0148] The term "upregulated" means increased in activity, e.g., increase in enzymatic activity of the enzyme as compared to activity in a native host organism.
[0149] The term "downregulated" means decreased in activity, e.g., decrease in enzymatic activity of the enzyme as compared to activity in a native host organism.
[0150] The term "activated" means expressed or metabolically functional.
[0151] The term "adapted for growing" means selection of an organism for growth under conditions in which the organism does not otherwise grow or in which the organism grows slowly or minimally. Thus, an organism that is said to be adapted for growing under the selected condition, grows better than an organism that has not been adapted for growing under the selected conditions. Growth can be measured by any methods known in the art, including, but not limited to, measurement of optical density or specific growth rate.
[0152] The term "carbohydrate source" is intended to include any source of carbohydrate including, but not limited to, biomass or carbohydrates, such as a sugar or a sugar alcohol. "Carbohydrates" include, but are not limited to, monosaccharides (e.g., glucose, fructose, galactose, xylose, arabinose, or ribose), sugar derivatives (e.g., sorbitol, glycerol, galacturonic acid, rhamnose, xylitol), disaccharides (e.g., sucrose, cellobiose, maltose, or lactose), oligosaccharides (e.g., xylooligomers, cellodextrins, or maltodextrins), and polysaccharides (e.g., xylan, cellulose, starch, mannan, alginate, or pectin).
[0153] As used herein, an "amylolytic enzyme" can be any enzyme involved in amylase digestion, metabolism and/or hydrolysis. The term "amylase" refers to an enzyme that breaks starch down into sugar. Amylase is present in human saliva, where it begins the chemical process of digestion. Foods that contain much starch but little sugar, such as rice and potato, taste slightly sweet as they are chewed because amylase turns some of their starch into sugar in the mouth. The pancreas also makes amylase (.alpha.-amylase) to hydrolyse dietary starch into disaccharides and trisaccharides which are converted by other enzymes to glucose to supply the body with energy. Plants and some bacteria also produce amylase. All amylases are glycoside hydrolases and act on .alpha.-1,4-glycosidic bonds. Some amylases, such as .gamma.-amylase (glucoamylase), also act on .alpha.-1,6-glycosidic bonds. Amylase enzymes include .alpha.-amylase (EC 3.2.1.1), .beta.-amylase (EC 3.2.1.2), and .gamma.-amylase (EC 3.2.1.3). The .alpha.-amylases are calcium metalloenzymes, unable to function in the absence of calcium. By acting at random locations along the starch chain, .alpha.-amylase breaks down long-chain carbohydrates, ultimately yielding maltotriose and maltose from amylose, or maltose, glucose and "limit dextrin" from amylopectin. Because it can act anywhere on the substrate, .alpha.-amylase tends to be faster-acting than .beta.-amylase. In animals, it is a major digestive enzyme and its optimum pH is about 6.7-7.0. Another form of amylase, .beta.-amylase is also synthesized by bacteria, fungi, and plants. Working from the non-reducing end, .beta.-amylase catalyzes the hydrolysis of the second .alpha.-1,4 glycosidic bond, cleaving off two glucose units (maltose) at a time. Many microbes produce amylase to degrade extracellular starches. In addition to cleaving the last .alpha.(1-4)glycosidic linkages at the nonreducing end of amylose and amylopectin, yielding glucose, .gamma.-amylase will cleave .alpha.(1-6) glycosidic linkages. Another amylolytic enzyme is alpha-glucosidase that acts on maltose and other short malto-oligosaccharides produced by alpha-, beta-, and gamma-amylases, converting them to glucose. Another amylolytic enzyme is pullulanase. Pullulanase is a specific kind of glucanase, an amylolytic exoenzyme, that degrades pullulan. Pullulan is regarded as a chain of maltotriose units linked by alpha-1,6-glycosidic bonds. Pullulanase (EC 3.2.1.41) is also known as pullulan-6-glucanohydrolase (Debranching enzyme). Another amylolytic enzyme, isopullulanase, hydrolyses pullulan to isopanose (6-alpha-maltosylglucose). Isopullulanase (EC 3.2.1.57) is also known as pullulan 4-glucanohydrolase. An "amylase" can be any enzyme involved in amylase digestion, metabolism and/or hydrolysis, including .alpha.-amylase, .beta.-amylase, glucoamylase, pullulanase, isopullulanase, and alpha-glucosidase.
[0154] As used herein, a "saccharolytic enzyme" can be any enzyme involved in carbohydrate digestion, metabolism and/or hydrolysis, including amylases, cellulases, hemicellulases, cellulolytic and amylolytic accessory enzymes, inulinases, levanases, and pentose sugar utilizing enzymes.
Biomass
[0155] Biomass can include any type of biomass known in the art or described herein. For example, biomass can include, but is not limited to, starch, sugar, and lignocellulosic materials. Starch materials can include, but are not limited to, mashes such as corn, wheat, rye, barley, rice, or milo. Sugar materials can include, but are not limited to, sugar beets, artichoke tubers, sweet sorghum, or cane. The terms "lignocellulosic material," "lignocellulosic substrate," and "cellulosic biomass" mean any type of biomass comprising cellulose, hemicellulose, lignin, or combinations thereof, such as but not limited to woody biomass, forage grasses, herbaceous energy crops, non-woody-plant biomass, agricultural wastes and/or agricultural residues, forestry residues and/or forestry wastes, paper-production sludge and/or waste paper sludge, waste-water-treatment sludge, municipal solid waste, corn fiber from wet and dry mill corn ethanol plants, and sugar-processing residues. The terms "hemicellulosics," "hemicellulosic portions," and "hemicellulosic fractions" mean the non-lignin, non-cellulose elements of lignocellulosic material, such as but not limited to hemicellulose (i.e., comprising xyloglucan, xylan, glucuronoxylan, arabinoxylan, mannan, glucomannan, and galactoglucomannan, inter alia), pectins (e.g., homogalacturonans, rhamnogalacturonan I and II, and xylogalacturonan), and proteoglycans (e.g., arabinogalactan-protein, extensin, and proline-rich proteins).
[0156] In a non-limiting example, the lignocellulosic material can include, but is not limited to, woody biomass, such as recycled wood pulp fiber, sawdust, hardwood, softwood, and combinations thereof; grasses, such as switch grass, cord grass, rye grass, reed canary grass, miscanthus, or a combination thereof; sugar-processing residues, such as but not limited to sugar cane bagasse; agricultural wastes, such as but not limited to rice straw, rice hulls, barley straw, corn cobs, cereal straw, wheat straw, canola straw, oat straw, oat hulls, and corn fiber; stover, such as but not limited to soybean stover, corn stover; succulents, such as but not limited to, Agave; and forestry wastes, such as but not limited to, recycled wood pulp fiber, sawdust, hardwood (e.g., poplar, oak, maple, birch, willow), softwood, or any combination thereof. Lignocellulosic material may comprise one species of fiber; alternatively, lignocellulosic material may comprise a mixture of fibers that originate from different lignocellulosic materials. Other lignocellulosic materials are agricultural wastes, such as cereal straws, including wheat straw, barley straw, canola straw and oat straw; corn fiber; stovers, such as corn stover and soybean stover; grasses, such as switch grass, reed canary grass, cord grass, and miscanthus; or combinations thereof.
[0157] Paper sludge is also a viable feedstock for lactate or acetate production. Paper sludge is solid residue arising from pulping and paper-making, and is typically removed from process wastewater in a primary clarifier. At a disposal cost of $30/wet ton, the cost of sludge disposal equates to $5/ton of paper that is produced for sale. The cost of disposing of wet sludge is a significant incentive to convert the material for other uses, such as conversion to ethanol. Processes provided by the present invention are widely applicable. Moreover, the saccharification and/or fermentation products may be used to produce ethanol or higher value added chemicals, such as organic acids, aromatics, esters, acetone and polymer intermediates.
Glycerol Reduction
[0158] Anaerobic growth conditions require the production of endogenouse electron acceptors, such as the coenzyme nicotinamide adenine dinucleotide (NAD.sup.+). In cellular redox reactions, the NAD.sup.+/NADH couple plays a vital role as a reservoir and carrier of reducing equivalents. Ansell, R., et al., EMBO J. 16:2179-87 (1997). Cellular glycerol production, which generates an NAD.sup.+, serves as a redox valve to remove excess reducing power during anaerobic fermentation in yeast. Glycerol production is, however, an energetically wasteful process that expends ATP and results in the loss of a reduced three-carbon compound. Ansell, R., et al., EMBO J. 16:2179-87 (1997). To generate glycerol from a starting glucose molecule, glycerol 3-phosphate dehydrogenase (GPD) reduces dihydroxyacetone phosphate to glycerol 3-phosphate and glycerol 3-phosphatase (GPP) dephosphorylates glycerol 3-phosphate to glycerol. Despite being energetically wasteful, glycerol production is a necessary metabolic process for anaerobic growth as deleting GPD activity completely inhibits growth under anaeroblic conditions. See Ansell, R., et al., EMBO J. 16:2179-87 (1997).
[0159] GPD is encoded by two isogenes, gpd1 and gpd2. GPD1 encodes the major isoform in anaerobically growing cells, while GPD2 is required for glycerol production in the absence of oxygen, which stimulates its expression. Pahlman, A-K., et al., J. Biol. Chem. 276:3555-63 (2001). The first step in the conversion of dihydroxyacetone phosphate to glycerol by GPD is rate controlling. Guo, Z. P., et al., Metab. Eng. 13:49-59 (2011). GPP is also encoded by two isogenes, gpp1 and gpp2. The deletion of GPP genes arrests growth when shifted to anaerobic conditions, demonstrating that GPP is important for cellular tolerance to osmotic and anaerobic stress. See Pahlman, A-K., et al., J. Biol. Chem. 276:3555-63 (2001).
[0160] Because glycerol is a major by-product of anaerobic production of ethanol, many efforts have been made to delete cellular production of glycerol. However, because of the reducing equivalents produced by glycerol synthesis, deletion of the glycerol synthesis pathway cannot be done without compensating for this valuable metabolic function. Attempts to delete glycerol production and engineer alternate electron acceptors have been made. Liden, G., et al., Appl. Env. Microbiol. 62:3894-96 (1996); Medina, V. G., et al., Appl. Env. Microbiol. 76:190-195 (2010). Liden and Medina both deleted the gpd1 and gpd2 genes and attempted to bypass glycerol formation using additional carbon sources. Liden engineered a xylose reductase from Pichia stipitis into an S. cerevisiae gpd1/2 deletion strain. The xylose reductase activity facilitated the anaerobic growth of the glycerol-deleted strain in the presence of xylose. See Liden, G., et al., Appl. Env. Microbiol. 62:3894-96 (1996). Medina engineered an acetylaldehyde dehydrogenase, mhpF, from E. coli into an S. cerevisiae gpd1/2 deletion strain to convert acetyl-CoA to acetaldehyde. The acetylaldehyde dehydrogenase activity facilitated the anaerobic growth of the glycerol-deletion strain in the presence of acetic acid but not in the presence of glucose as the sole source of carbon. Medina, V. G., et al., Appl. Env. Microbiol. 76:190-195 (2010); see also EP 2277989. Medina noted several issues with the mhpF-containing strain that needed to be addressed before implementing industrially, including significantly reduced growth and product formation rates than yeast comprising GPD1 and GPD2.
[0161] Additional attempts to redirect flux from glycerol to ethanol have included the engineering of a non-phosphorylating NADP+-dependent glyceraldehydes-3-phosphate dehydrogenase (GAPN) into yeast, either with or without the simultaneous knockout of GPD1. Bro, C., et al., Metab. Eng. 8:102-111 (2006); U.S. Patent Appl. Pub. No. US2006/0257983; Guo, Z. P., et al., Metab. Eng. 13:49-59 (2011). However, other cellular mechanisms exist to control the production and accumulation of glycerol, including glycerol exporters such as FPS1, that do not require the engineering of alternate NADP+/NADPH coupling or deletion of glycerol synthesis genes. Tams, M. J., et al., Mol. Microbiol. 31:1087-1004 (1999).
[0162] FPS1 is a channel protein located in the plasma membrane that controls the accumulation and release of glycerol in yeast osmoregulation. Null mutants of this strain accumulate large amounts of intracellular glycerol, grow much slower than wild-type, and consume the sugar substrate at a slower rate. Tamds, M. J., et al., Mol. Microbiol. 31:1087-1004 (1999). Despite slower growth under anaerobic conditions, an fps1.DELTA. strain can serve as an alternative to eliminating NAD.sup.+-dependant glycerol activity. An fps1.DELTA. strain has reduced glycerol formation yet has a completely functional NAD.sup.+-dependant glycerol synthesis pathway. Alternatively, rather than deleting endogenous FPS1, constitutively active mutants of FPS1 or homologs from other organisms can be used to regulate glycerol synthesis while keep the NAD.sup.+-dependant glycerol activity intact. In embodiments of the invention that modulate FPS1, the recombinant host cells can still synthesize and retain glycerol and achieve improved robustness relative to strains that are unable to make glycerol.
[0163] An example FPS1 sequence from S. cerevisiae is shown below.
TABLE-US-00001 S. cerevisiae FPS1 (nucleotide; coding sequence underlined; SEQ ID NO: 1): ttgacggcagttctcatagcatctcaaagcaatagcagtgcaaaagtacataaccgtaggaaggtacgcggtag- gtat ttgagttcgttggtggttatcctccgcaaggcgcttcggcggttatttgttgatagtcgaagaacaccaaaaaa- aatgctgttattgct ttctccgtaaacaataaaacccggtagcgggataacgcggctgatgcttttatttaggaaggaatacttacatt- atcatgagaacatt gtcaagggcattctgatacgggccttccatcgcaagaaaaaggcagcaacggactgagggacggagagagttac- ggcataag aagtagtaggagagcagagtgtcataaagttatattattctcgtcctaaagtcaattagttctgttgcgcttga- caatatatgtcgtgta ataccgtcccttagcagaagaaagaaagacggatccatatatgttaaaatgcttcagagatgtttctttaatgt- gccgtccaacaaa ggtatcttctgtagcttcctctattttcgatcagatctcatagtgagaaggcgcaattcagtagttaaaagcgg- ggaacagtgtgaat ccggagacggcaagattgcccggccctttttgcggaaaagataaaacaagatatattgcactttttccaccaag- aaaaacaggaa gtggattaaaaaatcaacaaagtataacgcctattgtcccaataagcgtcggttgttcttctttattattttac- caagtacgctcgaggg tacattctaatgcattaaaagacatgagtaatcctcaaaaagctctaaacgactttctgtccagtgaatctgtt- catacacatgatagtt ctaccaaacaatctaataagcagtcatccgacgaaggacgctcttcatcacaaccttcacatcatcactctggt- ggtactaacaac aataataacaataataataataataataacagtaacaacaacaacaacggcaacgatgggggaaatgatgacga- ctatgattatg aaatgcaagattatagaccttctccgcaaagtgcgcggcctactcccacgtatgttccacaatattctgtagaa- agtgggactgcttt cccgattcaagaggttattcctagcgcatacattaacacacaagatataaaccataaagataacggtccgccua- gtgcaagcagt aatagagcattcaggcctaaaaggcagaccacagtgtcggccaacgtgcttaacattgaagatttttacaaaaa- tgcagacgatg cgcataccatcccggagtcacatttatcgagaaggagaagtaggtcgagggctacgagtaatgctgggcacagt- gccaataca ggcgccacgaatggcaggactactggtgcccaaactaatatggaaagcaatgaatcaccacgtaacgtccccat- tatggtgaag ccaaagacattataccagaaccctcaaacacctacagtcttgccctccacataccatccaattaataaatggtc- ttccgtcaaaaac acttatttgaaggaatttttagccgagtttatgggaacaatggttatgattattttcggtagtgctgttgtttg- tcaggtcaatgttgctgg gaaaatacagcaggacaatttcaacgtggctttggataaccttaacgttaccgggtcttctgcagaaacgatag- acgctatgaaga gtttaacatccttggtttcatccgttgcgggcggtacctttaatgatgtggcattgggctgggctgctgccgtg- gtgatgggctatttc tgcgctggtgatagtgccatctcaggtgctcatttgaatccctctattacattagccaatttgatgtatagagg- ttttcccctgaagaa agttccttattactttgctggacaattgatcggtgccttcacaggcgctttgatcttgtttatttggtacaaaa- gggtgttacaagaggc atatagcgattggtggatgaatgaaagtgttgcgggaatgttttgcgtttttccaaagccttatctaagttcag- gacggcaatttttttc cgaatttttatgtggagctatgttacaagcaggaacatttgcgctgaccgatccttatacgtgtttgtcctctg- atgttttcccattgatg atgtttattttgattttcattatcaatgcttccatggcttatcagacaggtacagcaatgaatttggctcgtga- tctgggcccacgtcttg cactatatgcagttggatttgatcataaaatgctttgggtgcatcatcatcatttcttttaggttcccatggta- ggcccatttattggtgc gttaatgggggggttggtttacgatgtctgtatttatcagggtcatgaatctccagtcaactggtctttaccag- tttataaggaaatgat tatgagagcctggtttagaaggcctggttggaagaagagaaatagagcaagaagaacatcggacctgagtgact- tctcatacaat aacgatgatgatgaggaatttggagaaagaatggctcttcaaaagacaaagaccaagtcatctatttcagacaa- cgaaaatgaag caggagaaaagaaagtgcaatttaaatctgttcagcgcggcaaaagaacgtttggtggtataccaacaattctt- gaagaagaaga ttccattgaaactgcttcgctaggtgcgacgacgactgattctattgggttatccgacacatcatcagaagatt- cgcattatggtaat gctaagaaggtaacatgagaaaacagacaagaaaaagaaacaaataatatagactgatagaaaaaaatactgct- tactaccgcc ggtataatatatatatatatatatatttacatagatgattgcatagtgttttaaaaagctttcctaggttaagc- tatgaatcttcataaccta accaactaaatatgaaaatactgacccatcgtcttaagtaagttgacatgaactcagcctggtcacctactata- catgatgtatcgca tggatggaaagaataccaaacgctaccttccaggttaatgatagtatccaaacctagttggaatttgccttgaa- catcaagcagcg attcgatatcagttgggagcatcaatttggtcattggaataccatctatgcttttctcctcccatattcgcaaa- agtagtaagggctcgt tatatacttttgaatatgtaagatataattctatatgatttagtaatttattttctatacgctcagtatttttc- tgcagttgtcgagtaggta ttaaacgcaaaagaagtccatccttttcatcattcaaatggacatcttggcaaagggcccagttatggaaaatc- tgggagtcatacaac gattgcagttggctctgccactcctggtaaggaatcatcaagtctgataattctgttttttagccctttttttt- tttttttcatggtgttctc ttctcattgcttttcaattttaagttcgttacctttcatatagagtttcttaacagaaatttcacaacgaaaat- ataattaactacaggca S. cerevisiae FPS1 (amino acid; SEQ ID NO: 2):
Pyruvate Formate Lyase (PFL)
[0164] The conversion of the pyruvate to acetyl-CoA and formate is performed by pyruvate formate lyase (PFL). In E. coli, PFL is the primary enzyme responsible for the production of formate. PFL is a dimer of PflB that requires the activating enzyme PflAE, which is encoded by pflA, radical S-adenosylmethionine, and a single electron donor. See Waks, Z., and Silver, P. A., Appl. Env. Microbiol. 75:1867-1875 (2009). Waks and Silver engineered strains of S. cerevisiae to secrete formate by the addition of PFL and AdhE from E. coli and deletion of endogenous formate dehydrogenases and to produce hydrogen in a two-step process using E. coli. Waks and Silver, however, did not combine formate production with the removal of glycerol formation, and the use of formate as an alternate electron acceptor for the reduction of glycerol was not proposed or evaluated.
[0165] PFL enzymes for use in the recombinant host cells of the invention can come from a bacterial or eukaryotic source. Examples of bacterial PFL include, but are not limited to, Bacillus lichenmformis DSM13, Bacillus licheniformis ATCC14580, Streptococcus thermophilus CNRZ1066, Streptococcus thermophilus LMG18311, Streptococcus thermophilus LMD-9, Lactobacillus plantarum WCFS1 (Gene Accession No. lp_2598), Lactobacillus plantarum WCFS1 (Gene Accession No. lp_3313), Lactobacillus plantarum JDM1 (Gene Accession No. JDM1_2695), Lactobacillus plantarum JDM1 (Gene Accession No. JDM1_2087), Lactobacillus casei b123, Lactobacillus casei ATCC 334, Bifrdobacterium adolescentis, Bifidobacterium longum NCC2705, Bifidobacterium longum DJO10A, Bfidobacterium animalis DSM 10140, Clostridium cellulolyticum, or Escherichia coli. Additional PFL enzymes may be from the PFL1 family, the RNR pfl superfamily, or the PFL2 superfamily.
[0166] pflA sequences from bacteria include:
[0167] Bacillus licheniformis DSM13 (nucleotide; SEQ ID NO:3):
[0168] Bacillus licheniformis DSM13 (amino acid; SEQ ID NO:4):
[0169] Bacillus licheniformis ATCC14580 (nucleotide; SEQ ID NO:5):
[0170] Bacillus lichenmformis ATCC14580 (amino acid; SEQ ID NO:6):
[0171] Streptococcus thermophilus CNRZ1066 (nucleotide; SEQ ID NO:7):
[0172] Streptococcus thermophilus CNRZ1066 (amino acid; SEQ ID NO:8):
[0173] Streptococcus thermophilus LMG18311 (nucleotide; SEQ ID NO:9):
[0174] Streptococcus thermophilus LMG18311 (amino acid; SEQ ID NO:10):
[0175] Streptococcus thermophilus LMD-9 (nucleotide; SEQ ID NO:11):
[0176] Streptococcus thermophilus LMD-9 (amino acid; SEQ ID NO:12):
[0177] Lactobacillus plantarum WCFS1 (Gene Accession No: lp_2596) (nucleotide; SEQ ID NO:13):
[0178] Lactobacillus plantarum WCFS1 (Gene Accession No: lp_2596) (amino acid; SEQ ID NO:14):
[0179] Lactobacillus plantarum WCFS1 (Gene Accession No: lp_3314) (nucleotide; SEQ ID NO:15):
[0180] Lactobacillus plantarum WCFS1 (Gene Accession No: lp_3314) (amino acid; SEQ ID NO:16):
[0181] Lactobacillus plantarum JDM1 (Gene Accession No: JDM1_2660) (nucleotide; SEQ ID NO:17):
[0182] Lactobacillus plantarum JDM1 (Gene Accession No: JDM1_2660) (amino acid; SEQ ID NO:18):
[0183] Lactobacillus plantarum JDM1 (Gene Accession No: JDM1 2085) (nucleotide; SEQ ID NO:19):
[0184] Lactobacillus plantarum JDM1 (Gene Accession No: JDM1_2085) (amino acid; SEQ ID NO:20):
[0185] Lactobacillus casei bl23 (nucleotide; SEQ ID NO:21):
[0186] Lactobacillus casei b123 (amino acid; SEQ ID NO:22):
[0187] Lactobacillus casei ATCC 334 (nucleotide; SEQ ID NO:23):
[0188] Lactobacillus casei ATCC 334 (amino acid; SEQ ID NO:24):
[0189] Bifidobacterium adolescentis (nucleotide; SEQ ID NO:25):
[0190] Bifidobacterium adolescentis (amino acid; SEQ ID NO:26):
[0191] Bifidobacterium longum NCC2705 (nucleotide; SEQ ID NO:27):
[0192] Bifidobacterium longum NCC2705 (amino acid; SEQ ID NO:28):
[0193] Bifidobacterium longum DJO10A (nucleotide; SEQ ID NO:29):
[0194] Bifidobacterium longum DJO10A (amino acid; SEQ ID NO:30):
[0195] Bifidobacterium animalis DSM 10140 (nucleotide; SEQ ID NO:31):
[0196] Bifidobacterium animalis DSM 10140 (amino acid; SEQ ID NO:32):
[0197] Clostridium cellulolyticum (nucleotide; SEQ ID NO:33):
[0198] Clostridium cellulolyticum (amino acid; SEQ ID NO:34):
[0199] Escherichia coli(nucleotide; SEQ ID NO:35):
[0200] Escherichia coli(amino acid; SEQ ID NO:36):
[0201] pflB sequences from bacteria include:
[0202] Bacillus licheniformis DSM13 (nucleotide; SEQ ID NO:37):
[0203] Bacillus licheniformis DSM13 (amino acid; SEQ ID NO:38):
[0204] Bacillus lichenmformis ATCC14580 (nucleotide; SEQ ID NO:39):
[0205] Bacillus licheniformis ATCC14580 (amino acid; SEQ ID NO:40):
[0206] Streptococcus thermophilus CNRZ1066 (nucleotide; SEQ ID NO:41):
[0207] Streptococcus thermophilus CNRZ1066 (amino acid; SEQ ID NO:42):
[0208] Streptococcus thermophilus LMG18311 (nucleotide; SEQ ID NO:43):
[0209] Streptococcus thermophilus LMG18311 (amino acid; SEQ ID NO:44):
[0210] Streptococcus thermophilus LMD-9 (nucleotide; SEQ ID NO:45):
[0211] Streptococcus thermophilus LMD-9 (amino acid; SEQ ID NO:46):
[0212] Lactobacillus plantarum WCFS1 (Gene Accession No. lp_2598) (nucleotide; SEQ ID NO:47):
[0213] Lactobacillus plantarum WCFS1 (Gene Accession No. lp_2598) (amino acid; SEQ ID NO:48):
[0214] Lactobacillus plantarum WCFS1 (Gene Accession No: lp_3313) (nucleotide; SEQ ID NO:49):
[0215] Lactobacillus plantarum WCFS1 (Gene Accession No: lp_3313) (amino acid; SEQ ID NO:50):
[0216] Lactobacillus plantarum JDM1 (Gene Accession No: JDM1_2695) (nucleotide; SEQ ID NO:51):
[0217] Lactobacillus plantarum JDM1 (Gene Accession No: JDM1_2695) (amino acid; SEQ ID NO:52):
[0218] Lactobacillus plantarum JDM1 (Gene Accession No: JDM1_2087) (nucleotide; SEQ ID NO:53):
[0219] Lactobacillus plantarum JDM1 (Gene Accession No: JDM1_2087) (amino acid; SEQ ID NO:54):
[0220] Lactobacillus casei b123 (nucleotide; SEQ ID NO:55):
[0221] Lactobacillus casei b123 (amino acid; SEQ ID NO:56):
[0222] Lactobacillus casei ATCC 334 (nucleotide; SEQ ID NO:57):
[0223] Lactobacillus casei ATCC 334 (amino acid; SEQ ID NO:58):
[0224] Bifidobacterium adolescentis (nucleotide; SEQ ID NO:59):
[0225] Bifidobacterium adolescentis (amino acid; SEQ ID NO:60):
[0226] Bifidobacterium longum NCC2705 (nucleotide; SEQ ID NO:61):
[0227] Bifidobacterium longum NCC2705 (amino acid; SEQ ID NO:62):
[0228] Bifidobacterium longum DJO10A (nucleotide; SEQ ID NO:63):
[0229] Bifidobacterium longum DJO10A (amino acid; SEQ ID NO:64):
[0230] Bifidobacterium animalis DSM 10140 (nucleotide; SEQ ID NO:65):
[0231] Bifidobacterium animalis DSM 10140 (amino acid; SEQ ID NO:66):
[0232] Clostridium cellulolyticum (nucleotide; SEQ ID NO:67):
[0233] Clostridium cellulolyticum (amino acid; SEQ ID NO:68):
[0234] Escherichia coli (nucleotide; SEQ ID NO:69):
[0235] Escherichia coli(amino acid; SEQ ID NO:70):
[0236] Examples of eukaryotic PFL include, but are not limited to, Chlamydomonas reinhardtii PflA1, Piromyces sp. E2, or Neocallimastix frontalis, Acetabularia acetabulum, Haematococcus pluvialis, Volvox carteri, Ostreococcus tauri, Ostreococcus lucimarinus, Micromonas pusilla, Micromonas sp., Porphyra haitanensis, and Cyanophora paradoxa), an opisthokont (Amoebidium parasiticum), an amoebozoan (Mastigamoeba balamuthi), a stramenopile (Thalassiosira pseudonana (2)) and a haptophyte (Prymnesium parvum), M. pusilla, Micromonas sp. O. tauri and O. lucimarinus) an amoebozoan (M. balamuthi), and a stramenopile (T. pseudonana). See Stairs, C. W., et al., "Eukaryotic pyruvate formate lyase and its activating enzyme were acquired laterally from a firmicute," Mol. Biol. and Evol., published on-line on Feb. 3, 2011, at http://mbe.oxfordjoumals.org/.
[0237] pflA sequences from eukaryotes include:
[0238] Chlamydomonas reinhardtii PflA1 (nucleotide; SEQ ID NO:71):
[0239] Chlamydomonas reinhardtii PflA1 (amino acid; SEQ ID NO:72):
[0240] Neocallimastix frontalis (nucleotide; SEQ ID NO:73):
[0241] Neocallimastix frontalis (amino acid; SEQ ID NO:74):
[0242] pfl1 sequences from eukaryotes include:
[0243] Chlamydomonas reinhardtii PflA (nucleotide; SEQ ID NO:75):
[0244] Chlamydomonas reinhardtii PflA (amino acid; SEQ ID NO:76):
[0245] Piromyces sp. E2 (nucleotide; SEQ ID NO:77):
[0246] Piromyces sp. E2 (amino acid; SEQ ID NO:78):
[0247] Neocallimastix frontalis (nucleotide--partial CDS, missing start; SEQ ID NO:79):
[0248] Neocallimastix frontalis (amino acid--partial CDS, missing start; SEQ ID NO:80):
Acetaldehyde/Alcohol Dehydrogenases
[0249] Engineering of acetaldehyde dehydrogenases, alcohol dehydrogenases, and/or bifunctional acetylaldehyde/alcohol dehydrogenases into a cell can increase the production of ethanol. However, because the production of ethanol is redox neutral, an acetaldehyde/alcohol dehydrogenase activity cannot serve as an alternative for the redox balancing that the production of glycerol provides to a cell in anaerobic metabolism. When Medina attempted to express an acetylaldehyde dehydrogenase, mhpF, from E. coli in an S. cerevisiae gpd1/2 deletion strain, the strain did not grow under anaerobic conditions in the presence of glucose as the sole source of carbon. Medina, V. G., et al., Appl. Env. Microbiol. 76:190-195 (2010); see also EP 2277989. Rather, the anaerobic growth of the glycerol-deletion strain required the presence of acetic acid. However, an acetylaldehyde dehydrogenase has not been expressed in combination with PFL or with the recombinant host cells of the invention. Additionally, replacing the endogenous acetylaldehyde dehydrogenase activity with either an improved acetaldehyde dehydrogenase or using a bifunctional acetaldehyde/alcohol dehydrogenase (AADH) can positively affect the in vivo kinetics of the reaction providing for improved growth of the host strain.
[0250] AADH enzymes for use in the recombinant host cells of the invention can come from a bacterial or eukaryotic source. Examples of bacterial AADH include, but are not limited to, Clostridium phytofermentans, Escherichia coli, Bacillus coagulans, Bacillus lentus, Bacillus lichenmformis, Bacillus pumilus, Bacillus subtilis, Bacteroides amylophilus, Bacteroides capillosus, Bacteroides ruminocola, Bacteroides suis, Bifidobacterium adolescentis, Bifidobacterium animalis, Bifidobacterium bifidum, Bifidobacterium infantis, Bifidobacterium longum, Bifidobacterium thermophilum, Lactobacillus acidophilus, Lactobacillus brevis, Lactobacillus buchneri (cattle only), Lactobacillus bulgaricus, Lactobacillus casei, Lactobacillus cellobiosus, Lactobacillus curvatus, Lactobacillus delbruekii, Lactobacillus farciminis (swine only), Lactobacillus fermentum, Lactobacillus helveticus, Lactobacillus lactis, Lactobacillus plantarum, Lactobacillus reuterii, Leuconostoc mesenteroides, Pediococcus acidilacticii, Pediococcus pentosaceus, Propionibacterium acidpropionici (cattle only), Propionibacterium freudenreichii, Propionibacterium shermanii, Enterococcus cremoris, Enterococcus diacetylactis, Enterococcus faecium, Enterococcus intermedius, Enterococcus lactis, or Enterococcus thermophilus
[0251] AdhE bacterial sequences include:
[0252] Clostridium phytofermentans (nucleotide; SEQ ID NO:81):
[0253] Clostridium phytofermentans (amino acid; SEQ ID NO:82):
[0254] Escherichia coli(nucleotide; SEQ ID NO:83):
[0255] Escherichia coli (amino acid; SEQ ID NO:84):
[0256] Bifldobacterium adolescentis (amino acid; SEQ ID NO:100):
[0257] Bacillus coagulans (amino acid; SEQ ID NO:101):
[0258] Bacillus lichenmformis (amino acid; SEQ ID NO: 102):
[0259] Enterococcus faecium TX1330 (amino acid; SEQ ID NO:103):
[0260] Examples of eukaryotic AdhE include, but are not limited to, Chlamydomonas reinhardtii AdhE, Piromyces sp. E2, or Neocallimastix frontalis.
[0261] AdhE sequences from eukaryotes include:
[0262] Chlamydomonas reinhardtii AdhE (nucleotide; SEQ ID NO:85):
[0263] Chlamydomonas reinhardtii AdhE (amino acid; SEQ ID NO:86):
[0264] Piromyces sp. E2 (nucleotide; SEQ ID NO:87):
[0265] Piromyces sp. E2 (amino acid; SEQ ID NO:88):
Consolidated Bioprocessing
[0266] Consolidated bioprocessing (CBP) is a processing strategy for cellulosic biomass that involves consolidating into a single process step four biologically-mediated events: enzyme production, hydrolysis, hexose fermentation, and pentose fermentation. Implementing this strategy requires development of microorganisms that both utilize cellulose, hemicellulosics, and other biomass components while also producing a product of interest at sufficiently high yield and concentrations. The feasibility of CBP is supported by kinetic and bioenergetic analysis. See van Walsum and Lynd (1998) Biotech. Bioeng. 58:316.
[0267] CBP offers the potential for lower cost and higher efficiency than processes featuring dedicated saccharolytic enzyme production. The benefits result in part from avoided capital costs, substrate and other raw materials, and utilities associated with saccharolytic enzyme production. In addition, several factors support the realization of higher rates of hydrolysis, and hence reduced reactor volume and capital investment using CBP, including enzyme-microbe synergy and the use of thermophilic organisms and/or complexed saccharolytic systems. Moreover, cellulose-adherent cellulolytic microorganisms are likely to compete successfully for products of cellulose hydrolysis with non-adhered microbes, e.g., contaminants, which could increase the stability of industrial processes based on microbial cellulose utilization. Progress in developing CBP-enabling microorganisms is being made through two strategies: engineering naturally occurring saccharolytic microorganisms to improve product-related properties, such as yield and titer; and engineering non-saccharolytic organisms that exhibit high product yields and titers to express a heterologous saccharolytic enzyme system enabling starch, cellulose, and, hemicellulose utilization.
Starch and Cellulose Degradation
[0268] The degradation of starch into component sugar units proceeds via amylolytic enzymes. Amylase is an example of an amylolytic enzyme that is present in human saliva, where it begins the chemical process of digestion. The pancreas also makes amylase (alpha amylase) to hydrolyze dietary starch into disaccharides and trisaccharides which are converted by other enzymes to glucose to supply the body with energy. Plants and some bacteria also produce amylases. Amylases are glycoside hydrolases and act on .alpha.-1,4-glycosidic bonds.
[0269] Several amylolytic enzymes are implicated in starch hydrolysis. Alpha-amylases (EC 3.2.1.1) (alternate names: 1,4-.alpha.-D-glucan glucanohydrolase; glycogenase) are calcium metalloenzymes, i.e., completely unable to function in the absence of calcium. By acting at random locations along the starch chain, alpha-amylase breaks down long-chain carbohydrates, ultimately yielding maltotriose and maltose from amylose, or maltose, glucose and "limit dextrin" from amylopectin. Because it can act anywhere on the substrate, alpha-amylase tends to be faster-acting than beta-amylase. Another form of amylase, beta-amylase (EC 3.2.1.2) (alternate names: 1,4-.alpha.-D-glucan maltohydrolase; glycogenase; saccharogen amylase) catalyzes the hydrolysis of the second .alpha.-1,4 glycosidic bond, cleaving off two glucose units (maltose) at a time. The third amylase is gamma-amylase (EC 3.2.1.3) (alternate names: Glucan 1,4-.alpha.-glucosidase; amyloglucosidase; Exo-1,4-.alpha.-glucosidase; glucoamylase; lysosomal .alpha.-glucosidase; 1,4-.alpha.-D-glucan glucohydrolase). In addition to cleaving the last .alpha.(1-4)glycosidic linkages at the nonreducing end of amylose and amylopectin, yielding glucose, gamma-amylase will cleave .alpha.(1-6) glycosidic linkages.
[0270] A fourth enzyme, alpha-glucosidase, acts on maltose and other short malto-oligosaccharides produced by alpha-, beta-, and gamma-amylases, converting them to glucose.
[0271] Three major types of enzymatic activities degrade native cellulose. The first type is endoglucanases (1,4-.beta.-D-glucan 4-glucanohydrolases; EC 3.2.1.4). Endoglucanases cut at random in the cellulose polysaccharide chain of amorphous cellulose, generating oligosaccharides of varying lengths and consequently new chain ends. The second type are exoglucanases, including cellodextrinases (1,4-.beta.-D-glucan glucanohydrolases; EC 3.2.1.74) and cellobiohydrolases (1,4-.beta.-D-glucan cellobiohydrolases; EC 3.2.1.91). Exoglucanases act in a processive manner on the reducing or non-reducing ends of cellulose polysaccharide chains, liberating either glucose (glucanohydrolases) or cellobiose (cellobiohydrolase) as major products. Exoglucanases can also act on microcrystalline cellulose, presumably peeling cellulose chains from the microcrystalline structure. The third type are .beta.-glucosidases (.beta.-glucoside glucohydrolases; EC 3.2.1.21). .beta.-Glucosidases hydrolyze soluble cellodextrins and cellobiose to glucose units.
[0272] Even though yeast strains expressing enzymes for the production of fuel ethanol from whole grain or starch have been previously disclosed, the application has not been commercialized in the grain-based fuel ethanol industry, due to the relatively poor ability of the resulting strains to produce/tolerate high levels of ethanol. For example, U.S. Pat. No. 7,226,776 discloses that a polysaccharase enzyme expressing ethanologen can make ethanol directly from carbohydrate polymers, but the maximal ethanol titer demonstrated is 3.9 g/l. U.S. Pat. No. 5,422,267 discloses the use of a glucoamylase in yeast for production of alcoholic beverages; however, no commercially relevant titers of ethanol are disclosed.
Heterologous Saccharolytic Enzymes
[0273] According to one aspect of the present invention, the expression of heterologous saccharolytic enzymes the recombinant microorganisms of the invention can be used advantageously to produce products such as ethanol from biomass sources. For example, cellulases from a variety of sources can be heterologously expressed to successfully increase efficiency of ethanol production. The saccharolytic enzymes can be from fungi, yeast, bacteria, plant, protozoan or termite sources. In some embodiments, the saccharolytic enzyme is from H. grisea, T. aurantiacus, T. emersonii, T. reesei, C. lacteus, C. formosanus, N. takasagoensis, C. acinaciformis, M. darwinensis, N. walkeri, S. fibuligera, C. luckowense R. speratus, Thermobfida fusca, Clostridum thermocellum, Clostridium cellulolyticum, Clostridum josui, Bacillus pumilis, Cellulomonas fimi, Saccharophagus degradans, Piromyces equii, Neocallimastix patricarum or Arabidopsis thaliana.
[0274] In some embodiments, the cellulase for expression in the recombinant microorganisms of the invention is any cellulase disclosed in Table 4 or Table 7 in copending International Appl. No. PCT/US2011/039192, incorporated by reference herein, or any cellulase suitable for expression in an appropriate host cell. In other embodiments, the amylase for expression in the recombinant microorganisms of the invention is any amylase such as alpha-amylases, beta-amylases, glucoamylases, alpha-glucosidases, pullulanase, or isopullulanase paralogues or orthologues, any amylase disclosed in Tables 15-19, preferably in Table 19, in copending International Appl. No. PCT/US2011/039192, incorporated by reference herein, or any amylase suitable for expression in an appropriate host cell. In some embodiments of the invention, multiple saccharolytic enzymes from a single organism are co-expressed in the same recombinant microorganism. In some embodiments of the invention, multiple saccharolytic enzymes from different organisms are co-expressed in the same recombinant microorganism. In particular, saccharolytic enzymes from two, three, four, five, six, seven, eight, nine or more organisms can be co-expressed in the same recombinant microorganism. Similarly, the invention can encompass co-cultures of yeast strains, wherein the yeast strains express different saccharolytic enzymes. Co-cultures can include yeast strains expressing heterologous saccharolytic enzymes from the same organisms or from different organisms. Co-cultures can include yeast strains expressing saccharolytic enzymes from two, three, four, five, six, seven, eight, nine or more organisms.
[0275] Lignocellulases for expression in the recombinant microorganisms of the present invention include both endoglucanases and exoglucanases. Other lignocellulases for expression in the recombinant microorganisms of the invention include accessory enzymes which can act on the lignocellulosic material. The lignocellulases can be, for example, endoglucanases, glucosidases, cellobiohydrolases, xylanases, glucanases, xylosidases, xylan esterases, arabinofuranosidases, galactosidases, cellobiose phosphorylases, cellodextrin phosphorylases, mannanases, mannosidases, xyloglucanases, endoxylanases, glucuronidases, acetylxylanesterases, arabinofuranohydrolases, swollenins, glucuronyl esterases, expansins, pectinases, and feruoyl esterases. In some embodiments, the lignocellulases of the invention can be any suitable enzyme for digesting the desired lignocellulosic material.
[0276] In certain embodiments of the invention, the lignocellulase can be an endoglucanase, glucosidase, cellobiohydrolase, xylanase, glucanase, xylosidase, xylan esterase, arabinofuranosidase, galactosidase, cellobiose phosphorylase, cellodextrin phosphorylase, mannanase, mannosidase, xyloglucanase, endoxylanase, glucuronidase, acetylxylanesterase, arabinofuranohydrolase, swollenin, glucuronyl esterase, expansin, pectinase, and feruoyl esterase paralogue or orthologue. In particular embodiments, the lignocellulase is derived from any species named in Tables 4 and 7, in copending International Appl. No. PCT/US2011/039192, incorporated by reference herein.
Xylose Metabolism
[0277] Xylose is a five-carbon monosaccharide that can be metabolized into useful products by a variety of organisms. There are two main pathways of xylose metabolism. each unique in the characteristic enzymes they utilize. One pathway is called the "Xylose Reductase-Xylitol Dehydrogenase" or XR-XDH pathway. Xylose reductase (XR) and xylitol dehydrogenase (XDH) are the two main enzymes used in this method of xylose degradation. XR, encoded by the XYL1 gene, is responsible for the reduction of xylose to xylitol and is aided by cofactors NADH or NADPH. Xylitol is then oxidized to xylulose by XDH, which is expressed through the XYL2 gene, and accomplished exclusively with the cofactor NAD.sup.+. Because of the varying cofactors needed in this pathway and the degree to which they are available for usage, an imbalance can result in an overproduction of xylitol byproduct and an inefficient production of desirable ethanol. Varying expression of the XR and XDH enzyme levels have been tested in the laboratory in the attempt to optimize the efficiency of the xylose metabolism pathway.
[0278] The other pathway for xylose metabolism is called the "Xylose Isomerase" (XI) pathway. Enzyme XI is responsible for direct conversion of xylose into xylulose, and does not proceed via a xylitol intermediate. Both pathways create xylulose, although the enzymes utilized are different. After production of xylulose both the XR-XDH and XI pathways proceed through the enzyme xylulokinase (XK), encoded on gene XKS1, to further modify xylulose into xylulose-5-phosphate where it then enters the pentose phosphate pathway for further catabolism.
[0279] Studies on flux through the pentose phosphate pathway during xylose metabolism have revealed that limiting the speed of this step may be beneficial to the efficiency of fermentation to ethanol. Modifications to this flux that may improve ethanol production include a) lowering phosphoglucose isomerase activity, b) deleting the GND1 gene, and c) deleting the ZWF1 gene (Jeppsson et al., Appl. Environ. Microbiol. 68:1604-09 (2002)). Since the pentose phosphate pathway produces additional NADPH during metabolism, limiting this step will help to correct the already evident imbalance between NAD(P)H and NAD.sup.+ cofactors and reduce xylitol byproduct. Another experiment comparing the two xylose metabolizing pathways revealed that the XI pathway was best able to metabolize xylose to produce the greatest ethanol yield, while the XR-XDH pathway reached a much faster rate of ethanol production (Karhumaa et al., Microb Cell Fact. 2007 Feb. 5; 6:5). See also International Publication No. WO2006/009434, incorporated herein by reference in its entirety.
[0280] In some embodiments, the recombinant microorganisms of the invention have the ability to metabolize xylose using one or more of the above enzymes.
Arabinose Metabolism
[0281] Arabinose is a five-carbon monosaccharide that can be metabolized into useful products by a variety of organisms. L-Arabinose residues are found widely distributed among many heteropolysaccharides of different plant tissues, such as arabinans, arabinogalactans, xylans and arabinoxylans. Bacillus species in the soil participate in the early stages of plant material decomposition, and B. subtilis secretes three enzymes, an endo-arabanase and two arabinosidases, capable of releasing arabinosyl oligomers and L-arabinose from plant cell.
[0282] Three pathways for L-arabinose metabolism in microorganisms have been described. Many bacteria, including Escherichia coli, use arabinose isomerase (AraA; E.C. 5.3.1.4), ribulokinase (AraB; E.C. 2.7.1.16), and ribulose phosphate epimerase (AraD; E.C. 5.1.3.4) to sequentially convert L-arabinose to D-xylulose-5-phosphate through L-ribulose and L-ribulose 5-phosphate. See, e.g., Sa-Nogueira I, et al., Microbiology 143:957-69 (1997). The D-xylulose-5-phosphate then enters the pentose phosphate pathway for further catabolism. In the second pathway, L-arabinose is converted to L-2-keto-3-deoxyarabonate (L-KDA) by the consecutive action of enzymes arabinose dehydrogenase (ADH), arabinolactone (AL), and arabinonate dehydratase (AraC). See, e.g., Watanabe, S, et al., J. Biol. Chem. 281: 2612-2623 (2006). L-KDA can be further metabolized in two alternative pathways: 1) L-KDA conversion to 2-ketoglutarate via 2-ketoglutaric semialdehyde (KGSA) by L-KDA dehydratase and KGSA dehydrogenase or 2) L-KDA conversion to pyruvate and glycolaldehyde by L-KDA aldolase. In the third, fungal pathway, L-arabinose is converted to D-xylulose-5-phosphate through L-arabinitol, L-xylulose, and xylitol, by enzymes such as NAD(P)H-dependent aldose reductase (AR), L-arabinitol 4-dehydrogenase (ALDH), L-xylulose reductase (LXR), xylitol dehydrogenase (XyID), and xylulokinase (XyIB). These, and additional proteins involved in arabinose metabolism and regulation may be found at http://www.nmpdr.org/FIG/wiki/rest.cgi/NmpdrPlugin/SeedViewer?page=Subsys- tems;subsystem=L-Arabinose_utilization, visited Mar. 21, 2011, which is incorporated by reference herein in its entirety.
[0283] AraC protein regulates expression of its own synthesis and the other genes of the Ara system. See Schleif, R., Trends Genet. 16(12):559-65 (2000). In the E. coli, the AraC protein positively and negatively regulates expression of the proteins required for the uptake and catabolism of the sugar L-arabinose. Homologs of AraC, such as regulatory proteins RhaR and RhaS of the rhamnose operon, have been identified that contain regions homologous to the DNA-binding domain of AraC (Leal, T. F. and de Sa-Nogueira, L., FEMS Microbiol Lett. 241(1):41-48 (2004)). Such arabinose regulatory proteins are referred to as the AraC/XylS family. See also, Mota, L. J., et al., Mol. Microbiol. 33(3):476-89 (1999); Mota, L. J., et al., J Bacteriol. 183(14):4190-201 (2001).
[0284] In E. coli, the transport of L-arabinose across the E. coli cytoplasmic membrane requires the expression of either the high-affinity transport operon, araFGH, a binding protein-dependent system on the low-affinity transport operon, araE, a proton symporter. Additional arabinose transporters include those identified from K. marxianus and P. guilliermondii, disclosed in U.S. Pat. No. 7,846,712, which is incorporated by reference herein.
[0285] In some embodiments, the recombinant microorganisms of the invention have the ability to metabolize arabinose using one or more of the above enzymes.
Microorganisms
[0286] The present invention includes multiple strategies for the development of microorganisms with the combination of substrate-utilization and product-formation properties required for CBP. The "native cellulolytic strategy" involves engineering naturally occurring cellulolytic microorganisms to improve product-related properties, such as yield and titer. The "recombinant cellulolytic strategy" involves engineering natively non-cellulolytic organisms that exhibit high product yields and titers to express a heterologous cellulase system that enables cellulose utilization or hemicellulose utilization or both.
[0287] Many bacteria have the ability to ferment simple hexose sugars into a mixture of acidic and pH-neutral products via the process of glycolysis. The glycolytic pathway is abundant and comprises a series of enzymatic steps whereby a six carbon glucose molecule is broken down, via multiple intermediates, into two molecules of the three carbon compound pyruvate. This process results in the net generation of ATP (biological energy supply) and the reduced cofactor NADH.
[0288] Pyruvate is an important intermediary compound of metabolism. For example, under aerobic conditions pyruvate may be oxidized to acetyl coenzyme A (acetyl-CoA), which then enters the tricarboxylic acid cycle (TCA), which in turn generates synthetic precursors, CO.sub.2, and reduced cofactors. The cofactors are then oxidized by donating hydrogen equivalents, via a series of enzymatic steps, to oxygen resulting in the formation of water and ATP. This process of energy formation is known as oxidative phosphorylation.
[0289] Under anaerobic conditions (no available oxygen), fermentation occurs in which the degradation products of organic compounds serve as hydrogen donors and acceptors. Excess NADH from glycolysis is oxidized in reactions involving the reduction of organic substrates to products, such as lactate and ethanol. In addition, ATP is regenerated from the production of organic acids, such as acetate, in a process known as substrate level phosphorylation. Therefore, the fermentation products of glycolysis and pyruvate metabolism include a variety of organic acids, alcohols and CO.sub.2.
[0290] Most facultative anaerobes metabolize pyruvate aerobically via pyruvate dehydrogenase (PDH) and the tricarboxylic acid cycle (TCA). Under anaerobic conditions, the main energy pathway for the metabolism of pyruvate is via pyruvate-formate-lyase (PFL) pathway to give formate and acetyl-CoA. Acetyl-CoA is then converted to acetate, via phosphotransacetylase (PTA) and acetate kinase (ACK) with the co-production of ATP, or reduced to ethanol via acetalaldehyde dehydrogenase (ACDH) and alcohol dehydrogenase (ADH). In order to maintain a balance of reducing equivalents, excess NADH produced from glycolysis is re-oxidized to NAD.sup.+ by lactate dehydrogenase (LDH) during the reduction of pyruvate to lactate. NADH can also be re-oxidized by ACDH and ADH during the reduction of acetyl-CoA to ethanol, but this is a minor reaction in cells with a functional LDH.
Host Cells
[0291] Host cells useful in the present invention include any prokaryotic or eukaryotic cells; for example, microorganisms selected from bacterial, algal, and yeast cells. Among host cells thus suitable for the present invention are microorganisms, for example, of the genera Aeromonas, Aspergillus, Bacillus, Escherichia, Kluyveromyces, Pichia, Rhodococcus, Saccharomyces and Streptomyces.
[0292] In some embodiments, the host cells are microorganisms. In one embodiment the microorganism is a yeast. According to the present invention the yeast host cell can be, for example, from the genera Saccharomyces, Kluyveromyces, Candida, Pichia, Schizosaccharomyces, Hansenula, Kloeckera, Schwanniomyces, and Yarrowia. Yeast species as host cells may include, for example, S. cerevisiae, S. bulderi, S. barnetti, S. exiguus, S. uvarum, S. diastaticus, K. lactis, K. marxianus, or K. fragilis. In some embodiments, the yeast is selected from the group consisting of Saccharomyces cerevisiae, Schizzosaccharomyces pombe, Candida albicans, Pichia pastoris, Pichia stipitis, Yarrowia lipolytica, Hansenula polymorpha, Phaffia rhodozyma, Candida utilis, Arxula adeninivorans, Debaryomyces hansenii, Debaryomyces polymorphus, Schizosaccharomyces pombe and Schwanniomyces occidentalis. In one particular embodiment, the yeast is Saccharomyces cerevisiae. In another embodiment, the yeast is a thermotolerant Saccharomyces cerevisiae. The selection of an appropriate host is deemed to be within the scope of those skilled in the art from the teachings herein.
[0293] In some embodiments, the host cell is an oleaginous cell. The oleaginous host cell can be an oleaginous yeast cell. For example, the oleaginous yeast host cell can be from the genera Blakeslea, Candida, Cryptococcus, Cunninghamella, Lipomyces, Mortierella, Mucor, Phycomyces, Pythium, Rhodosporidum, Rhodotorula, Trichosporon or Yarrowia. According to the present invention, the oleaginous host cell can be an oleaginous microalgae host cell. For example, the oleaginous microalgea host cell can be from the genera Thraustochytrium or Schizochytrium. Biodiesel could then be produced from the triglyceride produced by the oleaginous organisms using conventional lipid transesterification processes. In some particular embodiments, the oleaginous host cells can be induced to secrete synthesized lipids. Embodiments using oleaginous host cells are advantageous because they can produce biodiesel from lignocellulosic feedstocks which, relative to oilseed substrates, are cheaper, can be grown more densely, show lower life cycle carbon dioxide emissions, and can be cultivated on marginal lands.
[0294] In some embodiments, the host cell is a thermotolerant host cell. Thermotolerant host cells can be particularly useful in simultaneous saccharification and fermentation processes by allowing externally produced cellulases and ethanol-producing host cells to perform optimally in similar temperature ranges.
[0295] Thermotolerant host cells can include, for example, Issatchenkia orientalis, Pichia mississippiensis, Pichia mexicana, Pichia farinosa, Clavispora opuntiae, Clavispora lusitaniae, Candida mexicana, Hansenula polymorpha and Kluyveromyces host cells. In some embodiments, the thermotolerant cell is an S. cerevisiae strain, or other yeast strain, that has been adapted to grow in high temperatures, for example, by selection for growth at high temperatures in a cytostat.
[0296] In some particular embodiments, the host cell is a Kluyveromyces host cell. For example, the Kluyveromyces host cell can be a K. lactis, K. marxianus, K. blattae, K. phaffi, K. yarrowii, K. aestuarii, K. dobzhanskii, K. wickerhamii K. thermotolerans, or K. waltii host cell. In one embodiment, the host cell is a K. lactis, or K. marxianus host cell. In another embodiment, the host cell is a K. marxianus host cell.
[0297] In some embodiments, the thermotolerant host cell can grow at temperatures above about 30.degree. C., about 31.degree. C., about 32.degree. C., about 33.degree. C., about 34.degree. C., about 35.degree. C., about 36.degree. C., about 37.degree. C., about 38.degree. C., about 39.degree. C., about 40.degree. C., about 41.degree. C. or about 42.degree. C. In some embodiments of the present invention the thermotolerant host cell can produce ethanol from cellulose at temperatures above about 30.degree. C., about 31.degree. C., about 32.degree. C., about 33.degree. C., about 34.degree. C., about 35.degree. C., about 36.degree. C., about 37.degree. C., about 38.degree. C., about 39.degree. C., about 40.degree. C., about 41.degree. C., about 42.degree. C., or about 43.degree. C., or about 44.degree. C., or about 45.degree. C., or about 50.degree. C.
[0298] In some embodiments of the present invention, the thermotolerant host cell can grow at temperatures from about 30.degree. C. to 60.degree. C., about 30.degree. C. to 55.degree. C., about 30.degree. C. to 50.degree. C., about 40.degree. C. to 60.degree. C., about 40.degree. C. to 55.degree. C. or about 40.degree. C. to 50.degree. C. In some embodiments of the present invention, the thermotolerant host cell can produce ethanol from cellulose at temperatures from about 30.degree. C. to 60.degree. C., about 30.degree. C. to 55.degree. C., about 30.degree. C. to 50.degree. C., about 40.degree. C. to 60.degree. C., about 40.degree. C. to 55.degree. C. or about 40.degree. C. to 50.degree. C.
[0299] In some embodiments, the host cell has the ability to metabolize xylose. Detailed information regarding the development of the xylose-utilizing technology can be found in the following publications: Kuyper M et al. FEMS Yeast Res. 4: 655-64 (2004), Kuyper M et al. FEMS Yeast Res. 5:399-409 (2005), and Kuyper M et al. FEMS Yeast Res. 5:925-34 (2005), which are herein incorporated by reference in their entirety. For example, xylose-utilization can be accomplished in S. cerevisiae by heterologously expressing the xylose isomerase gene, XylA, e.g., from the anaerobic fungus Piromyces sp. E2, overexpressing five S. cerevisiae enzymes involved in the conversion of xylulose to glycolytic intermediates (xylulokinase, ribulose 5-phosphate isomerase, ribulose 5-phosphate epimerase, transketolase and transaldolase) and deleting the GRE3 gene encoding aldose reductase to minimise xylitol production.
[0300] In some embodiments, the host cell has the ability to metabolize arabinose. For example, arabinose-utilization can be accomplished by heterologously expressing, e.g., one or more of arabinose isomerase, ribulokinase, or ribulose phosphate epimerase.
[0301] The host cells can contain antibiotic markers or can contain no antibiotic markers.
[0302] In certain embodiments, the host cell is a microorganism that is a species of the genera Thermoanaerobacterium, Thermoanaerobacter, Clostridium, Geobacillus, Saccharococcus, Paenibacillus, Bacillus, Caldicellulosiruptor, Anaerocellum, or Anoxybacillus. In certain embodiments, the host cell is a bacterium selected from the group consisting of: Thermoanaerobacterium thermosulfurigenes, Thermoanaerobacterium aotearoense, Thermoanaerobacterium polysaccharolyticum, Thermoanaerobacterium zeae, Thermoanaerobacterium xylanolyticum, Thermoanaerobacterium saccharolyticum, Thermoanaerobium brockii, Thermoanaerobacterium thermosaccharolyticum, Thermoanaerobacier thermohydrosulfuricus, Thermoanaerobacter ethanolicus, Thermoanaerobacter brocki, Clostridium thermocellum, Clostridium cellulolyticum, Clostridium phytofermentans, Clostridium straminosolvens, Geobacillus thermoglucosidasius, Geobacillus stearothermophilus, Saccharococcus caldoxylosilyticus, Saccharoccus thermophilus, Paenibacillus campinasensis, Bacillus flavothermus, Anoxybacillus kamchatkensis, Anoxybacillus gonensis, Caldicellulosiruptor acetigenus, Caldicellulosiruptor saccharolyticus. Caldicellulosiruptor kristjanssonii, Caldicellulosiruptor owensensis, Caldicellulosiruptor lactoaceticus, and Anaerocellum thermophilum. In certain embodiments, the host cell is Clostridium thermocellum, Clostridium cellulolyticum, or Thermoanaerobacterium saccharolyticum.
Codon Optimized Polynucleotides
[0303] The polynucleotides encoding heterologous cellulases can be codon-optimized. As used herein the term "codon-optimized coding region" means a nucleic acid coding region that has been adapted for expression in the cells of a given organism by replacing at least one, or more than one, or a significant number, of codons with one or more codons that are more frequently used in the genes of that organism.
[0304] In general, highly expressed genes in an organism are biased towards codons that are recognized by the most abundant tRNA species in that organism. One measure of this bias is the "codon adaptation index" or "CAI," which measures the extent to which the codons used to encode each amino acid in a particular gene are those which occur most frequently in a reference set of highly expressed genes from an organism.
[0305] The CA1 of codon optimized sequences of the present invention corresponds to between about 0.8 and 1.0, between about 0.8 and 0.9, or about 1.0. A codon optimized sequence may be further modified for expression in a particular organism, depending on that organism's biological constraints. For example, large runs of "As" or "Ts" (e.g., runs greater than 3, 4, 5, 6, 7, 8, 9, or 10 consecutive bases) can be removed from the sequences if these are known to effect transcription negatively. Furthermore, specific restriction enzyme sites may be removed for molecular cloning purposes. Examples of such restriction enzyme sites include PacI, AscI, BamHI, BgllI, EcoRI and XhoI. Additionally, the DNA sequence can be checked for direct repeats, inverted repeats and mirror repeats with lengths of ten bases or longer, which can be modified manually by replacing codons with "second best" codons, i.e., codons that occur at the second highest frequency within the particular organism for which the sequence is being optimized.
[0306] Deviations in the nucleotide sequence that comprise the codons encoding the amino acids of any polypeptide chain allow for variations in the sequence coding for the gene. Since each codon consists of three nucleotides, and the nucleotides comprising DNA are restricted to four specific bases, there are 64 possible combinations of nucleotides, 61 of which encode amino acids (the remaining three codons encode signals ending translation). The "genetic code" which shows which codons encode which amino acids is reproduced herein as Table 1. As a result, many amino acids are designated by more than one codon. For example, the amino acids alanine and proline are coded for by four triplets, serine and arginine by six, whereas tryptophan and methionine are coded by just one triplet. This degeneracy allows for DNA base composition to vary over a wide range without altering the amino acid sequence of the proteins encoded by the DNA.
TABLE-US-00002 TABLE 1 The Standard Genetic Code T C A G T TTT Phe (F) TCT Ser (S) TAT Tyr (Y) TGT Cys (C) TTC '' TCC '' TAC '' TGC TTA Leu (L) TCA '' TAA Ter TGA Ter TTG '' TCG '' TAG Ter TGG Trp (W) C CTT Leu (L) CCT Pro (P) CAT His (H) CGT Arg (R) CTC '' CCC '' CAC '' CGC '' CTA '' CCA '' CAA Gln (Q) CGA '' CTG '' CCG '' CAG '' CGG '' A ATT Ile (I) ACT Thr (T) AAT Asn (N) AGT Ser (S) ATC '' ACC '' AAC '' AGC '' ATA '' ACA '' AAA Lys (K) AGA Atg (R) ATG Met ACG '' AAG '' AGG '' (M) G GTT Val (V) GCT Ala (A) GAT Asp (D) GGT Gly (G) GTC '' GCC '' GAC '' GGC '' GTA '' GCA '' GAA Glu (E) GGA '' GTG '' GCG '' GAG '' GGG ''
[0307] Many organisms display a bias for use of particular codons to code for insertion of a particular amino acid in a growing peptide chain. Codon preference or codon bias, differences in codon usage between organisms, is afforded by degeneracy of the genetic code, and is well documented among many organisms. Codon bias often correlates with the efficiency of translation of messenger RNA (mRNA), which is in turn believed to be dependent on, inter alia, the properties of the codons being translated and the availability of particular transfer RNA (tRNA) molecules. The predominance of selected tRNAs in a cell is generally a reflection of the codons used most frequently in peptide synthesis. Accordingly, genes can be tailored for optimal gene expression in a given organism based on codon optimization.
[0308] Given the large number of gene sequences available for a wide variety of animal, plant and microbial species, it is possible to calculate the relative frequencies of codon usage. Codon usage tables are readily available, for example, at http://www.kazusa.or.jp/codon/ (visited Feb. 28, 2011), and these tables can be adapted in a number of ways. See Nakanura, Y., et al. "Codon usage tabulated from the international DNA sequence databases: status for the year 2000," Nucl. Acids Res. 28:292 (2000). Codon usage tables for yeast, calculated from GenBank Release 128.0 [15 Feb. 2002], are reproduced below as Table 2. This table uses mRNA nomenclature, and so instead of thymine (T) which is found in DNA, the tables use uracil (U) which is found in RNA. The table has been adapted so that frequencies are calculated for each amino acid, rather than for all 64 codons.
TABLE-US-00003 TABLE 2 Codon Usage Table for Saccharomyces cerevisiae Genes Frequency per Amino Acid Codon Number hundred Phe UUU 170666 26.1 Phe UUC 120510 18.4 Leu UUA 170884 26.2 Leu UUG 177573 27.2 Leu CUU 80076 12.3 Leu CUC 35545 5.4 Leu CUA 87619 13.4 Leu CUG 68494 10.5 Ile AUU 196893 30.1 Ile AUC 112176 17.2 Ile AUA 116254 17.8 Met AUG 136805 20.9 Val GUU 144243 22.1 Val GUC 76947 11.8 Val GUA 76927 11.8 Val GUG 70337 10.8 Ser UCU 153557 23.5 Ser UCC 92923 14.2 Ser UCA 122028 18.7 Ser UCG 55951 8.6 Ser AGU 92466 14.2 Ser AGC 63726 9.8 Pro CCU 88263 13.5 Pro CCC 44309 6.8 Pro CCA 119641 18.3 Pro CCG 34597 5.3 Thr ACU 132522 20.3 Thr ACC 83207 12.7 Thr ACA 116084 17.8 Thr ACG 52045 8.0 Ala GCU 138358 21.2 Ala GCC 82357 12.6 Ala GCA 105910 16.2 Ala GCG 40358 6.2 Tyr UAU 122728 18.8 Tyr UAC 96596 14.8 His CAU 89007 13.6 His CAC 50785 7.8 Gln CAA 178251 27.3 Gln CAG 79121 12.1 Asn AAU 233124 35.7 Asn AAC 162199 24.8 Lys AAA 273618 41.9 Lys AAG 201361 30.8 Asp GAU 245641 37.6 Asp GAC 132048 20.2 Glu GAA 297944 45.6 Glu GAG 125717 19.2 Cys UGU 52903 8.1 Cys UGC 31095 4.8 Trp UGG 67789 10.4 Arg CGU 41791 6.4 Arg CGC 16993 2.6 Arg CGA 19562 3.0 Arg CGG 11351 1.7 Arg AGA 139081 21.3 Arg AGG 60289 9.2 Gly GGU 156109 23.9 Gly GGC 63903 9.8 Gly GGA 71216 10.9 Gly GGG 39359 6.0 Stop UAA 6913 1.1 Stop UAG 3312 0.5 Stop UGA 4447 0.7
[0309] By utilizing this or similar tables, one of ordinary skill in the art can apply the frequencies to any given polypeptide sequence, and produce a nucleic acid fragment of a codon-optimized coding region which encodes the polypeptide, but which uses codons optimal for a given species. Codon-optimized coding regions can be designed by various different methods.
[0310] In one method, a codon usage table is used to find the single most frequent codon used for any given amino acid, and that codon is used each time that particular amino acid appears in the polypeptide sequence. For example, referring to Table 2 above, for leucine, the most frequent codon is UUG, which is used 27.2% of the time. Thus all the leucine residues in a given amino acid sequence would be assigned the codon UUG.
[0311] In another method, the actual frequencies of the codons are distributed randomly throughout the coding sequence. Thus, using this method for optimization, if a hypothetical polypeptide sequence had 100 leucine residues, referring to Table 2 for frequency of usage in the S. cerevisiae, about 5, or 5% of the leucine codons would be CUC, about 11, or 11% of the leucine codons would be CUG, about 12, or 12% of the leucine codons would be CUU, about 13, or 13% of the leucine codons would be CUA, about 26, or 26% of the leucine codons would be UUA, and about 27, or 27% of the leucine codons would be UUG.
[0312] These frequencies would be distributed randomly throughout the leucine codons in the coding region encoding the hypothetical polypeptide. As will be understood by those of ordinary skill in the art, the distribution of codons in the sequence can vary significantly using this method; however, the sequence always encodes the same polypeptide.
[0313] When using the methods above, the term "about" is used precisely to account for fractional percentages of codon frequencies for a given amino acid. As used herein, "about" is defined as one amino acid more or one amino acid less than the value given. The whole number value of amino acids is rounded up if the fractional frequency of usage is 0.50 or greater, and is rounded down if the fractional frequency of use is 0.49 or less. Using again the example of the frequency of usage of leucine in human genes for a hypothetical polypeptide having 62 leucine residues, the fractional frequency of codon usage would be calculated by multiplying 62 by the frequencies for the various codons. Thus, 7.28 percent of 62 equals 4.51 UUA codons, or "about 5," i.e., 4, 5, or 6 UUA codons, 12.66 percent of 62 equals 7.85 UUG codons or "about 8," i.e., 7, 8, or 9 UUG codons, 12.87 percent of 62 equals 7.98 CUU codons, or "about 8," i.e., 7, 8, or 9 CUU codons, 19.56 percent of 62 equals 12.13 CUC codons or "about 12," i.e., 11, 12, or 13 CUC codons, 7.00 percent of 62 equals 4.34 CUA codons or "about 4," i.e., 3, 4, or 5 CUA codons, and 40.62 percent of 62 equals 25.19 CUG codons, or "about 25," i.e., 24, 25, or 26 CUG codons.
[0314] Randomly assigning codons at an optimized frequency to encode a given polypeptide sequence, can be done manually by calculating codon frequencies for each amino acid, and then assigning the codons to the polypeptide sequence randomly. Additionally, various algorithms and computer software programs are readily available to those of ordinary skill in the art. For example, the "EditSeq" function in the Lasergene Package, available from DNAstar, Inc., Madison, Wis., the backtranslation function in the VectorNTI Suite, available from InforMax, Inc., Bethesda, Md., and the "backtranslate" function in the GCG-Wisconsin Package, available from Accelrys, Inc., San Diego, Calif. In addition, various resources are publicly available to codon-optimize coding region sequences, e.g., the "backtranslation" function at www.entelechon.com/2008/10/backtranslation-tool/ (visited Feb. 28, 2011) and the "backtranseq" function available at emboss.bioinformatics.nl/cgi-bin/emboss/backtranseq (visited Feb. 28, 2011). Constructing a rudimentary algorithm to assign codons based on a given frequency can also easily be accomplished with basic mathematical functions by one of ordinary skill in the art.
[0315] A number of options are available for synthesizing codon optimized coding regions designed by any of the methods described above, using standard and routine molecular biological manipulations well known to those of ordinary skill in the art. In one approach, a series of complementary oligonucleotide pairs of 80-90 nucleotides each in length and spanning the length of the desired sequence is synthesized by standard methods. These oligonucleotide pairs are synthesized such that upon annealing, they form double stranded fragments of 80-90 base pairs, containing cohesive ends, e.g., each oligonucleotide in the pair is synthesized to extend 3, 4, 5, 6, 7, 8, 9, 10, or more bases beyond the region that is complementary to the other oligonucleotide in the pair. The single-stranded ends of each pair of oligonucleotides is designed to anneal with the single-stranded end of another pair of oligonucleotides. The oligonucleotide pairs are allowed to anneal, and approximately five to six of these double-stranded fragments are then allowed to anneal together via the cohesive single stranded ends, and then they ligated together and cloned into a standard bacterial cloning vector, for example, a TOPO.RTM. vector available from Invitrogen Corporation, Carlsbad, Calif. The construct is then sequenced by standard methods. Several of these constructs consisting of 5 to 6 fragments of 80 to 90 base pair fragments ligated together, i.e., fragments of about 500 base pairs, are prepared, such that the entire desired sequence is represented in a series of plasmid constructs. The inserts of these plasmids are then cut with appropriate restriction enzymes and ligated together to form the final construct. The final construct is then cloned into a standard bacterial cloning vector, and sequenced. Additional methods would be immediately apparent to the skilled artisan. In addition, gene synthesis is readily available commercially.
[0316] In additional embodiments, a full-length polypeptide sequence is codon-optimized for a given species resulting in a codon-optimized coding region encoding the entire polypeptide, and then nucleic acid fragments of the codon-optimized coding region, which encode fragments, variants, and derivatives of the polypeptide are made from the original codon-optimized coding region. As would be well understood by those of ordinary skill in the art, if codons have been randomly assigned to the full-length coding region based on their frequency of use in a given species, nucleic acid fragments encoding fragments, variants, and derivatives would not necessarily be fully codon optimized for the given species. However, such sequences are still much closer to the codon usage of the desired species than the native codon usage. The advantage of this approach is that synthesizing codon-optimized nucleic acid fragments encoding each fragment, variant, and derivative of a given polypeptide, although routine, would be time consuming and would result in significant expense.
[0317] Transposons
[0318] To select for foreign DNA that has entered a host it is preferable that the DNA be stably maintained in the organism of interest. With regard to plasmids, there are two processes by which this can occur. One is through the use of replicative plasmids. These plasmids have origins of replication that are recognized by the host and allow the plasmids to replicate as stable, autonomous, extrachromosomal elements that are partitioned during cell division into daughter cells. The second process occurs through the integration of a plasmid onto the chromosome. This predominately happens by homologous recombination and results in the insertion of the entire plasmid, or parts of the plasmid, into the host chromosome. Thus, the plasmid and selectable marker(s) are replicated as an integral piece of the chromosome and segregated into daughter cells. Therefore, to ascertain if plasmid DNA is entering a cell during a transformation event through the use of selectable markers requires the use of a replicative plasmid or the ability to recombine the plasmid onto the chromosome. These qualifiers cannot always be met, especially when handling organisms that do not have a suite of genetic tools.
[0319] One way to avoid issues regarding plasmid-associated markers is through the use of transposons. A transposon is a mobile DNA element, defined by mosaic DNA sequences that are recognized by enzymatic machinery referred to as a transposase. The function of the transposase is to randomly insert the transposon DNA into host or target DNA. A selectable marker can be cloned onto a transposon by standard genetic engineering. The resulting DNA fragment can be coupled to the transposase machinery in an in vitro reaction and the complex can be introduced into target cells by electroporation. Stable insertion of the marker onto the chromosome requires only the function of the transposase machinery and alleviates the need for homologous recombination or replicative plasmids.
[0320] The random nature associated with the integration of transposons has the added advantage of acting as a form of mutagenesis. Libraries can be created that comprise amalgamations of transposon mutants. These libraries can be used in screens or selections to produce mutants with desired phenotypes. For instance, a transposon library of a CBP organism could be screened for the ability to produce more ethanol, or less lactic acid and/or more acetate.
[0321] Native Cellulolytic Strategy
[0322] Naturally occurring cellulolytic microorganisms are starting points for CBP organism development via the native strategy. Anaerobes and facultative anaerobes are of particular interest. The primary objective is to engineer the metabolization of biomass to solvents, including but not limited to, acetone, isopropanol, ethyl acetate, or ethanol. Metabolic engineering of mixed-acid fermentations in relation to, for example, ethanol production, has been successful in the case of mesophilic, non-cellulolytic, enteric bacteria. Recent developments in suitable gene-transfer techniques allow for this type of work to be undertaken with cellulolytic bacteria.
[0323] Recombinant Cellulolytic Strategy
[0324] Non-cellulolytic microorganisms with desired product-formation properties are starting points for CBP organism development by the recombinant cellulolytic strategy. The primary objective of such developments is to engineer a heterologous cellulase system that enables growth and fermentation on pretreated lignocellulose. The heterologous production of cellulases has been pursued primarily with bacterial hosts producing ethanol at high yield (engineered strains of E. coli, Klebsiella oxytoca, and Zymomonas mobilis) and the yeast Saccharomyces cerevisiae. Cellulase expression in strains of K. oxytoca resulted in increased hydrolysis yields--but not growth without added cellulase--for microcrystalline cellulose, and anaerobic growth on amorphous cellulose. Although dozens of saccharolytic enzymes have been functionally expressed in S. cerevisiae, anaerobic growth on cellulose as the result of such expression has not been definitively demonstrated.
[0325] Aspects of the present invention relate to the use of thermophilic or mesophilic microorganisms as hosts for modification via the native cellulolytic strategy. Their potential in process applications in biotechnology stems from their ability to grow at relatively high temperatures with attendant high metabolic rates, production of physically and chemically stable enzymes, and elevated yields of end products. Major groups of thermophilic bacteria include eubacteria and archaebacteria. Thermophilic eubacteria include: phototropic bacteria, such as cyanobacteria, purple bacteria, and green bacteria; Gram-positive bacteria, such as Bacillus, Clostridium, Lactic acid bacteria, and Actinomyces; and other eubacteria, such as Thiobacillus, Spirochete, Desulfotomaculum, Gram-negative aerobes, Gram-negative anaerobes, and Thermotoga. Within archaebacteria are considered Methanogens, extreme thermophiles (an art-recognized term), and Thermoplasma. In certain embodiments, the present invention relates to Gram-negative organotrophic thermophiles of the genera Thermus, Gram-positive eubacteria, such as genera Clostridium, and also which comprise both rods and cocci, genera in group of eubacteria, such as Thermosipho and Thermotoga, genera of Archaebacteria, such as Thermococcus, Thermoproteus (rod-shaped), Thermofilum (rod-shaped), Pyrodictium, Acidianus, Sulfolobus, Pyrobaculum, Pyrococcus, Thermodiscus, Staphylothermus, Desulfurococcus, Archaeoglobus, and Methanopyrus. Some examples of thermophilic or mesophilic (including bacteria, procaryotic microorganism, and fungi), which may be suitable for the present invention include, but are not limited to: Clostridium thermosulfurogenes, Clostridium cellulolyticum, Clostridium thermocellum, Clostridium thermohydrosulfuricum, Clostridium thermoaceticum, Clostridium thermosaccharolyticum, Clostridium tartarivorum, Clostridium thermocellulaseum, Clostridium phytofermentans, Clostridium straminosolvens, Thermoanaerobacterium thermosaccarolyticum, Thermoanaerobacterium saccharolyticum, Thermobacteroides acetoethylicus, Thermoanaerobium brockii, Methanobacterium thermoautotrophicum, Anaerocellum thermophilium, Pyrodictium occultum, Thermoproteus neutrophilus, Thermofilum librum, Thermothrix thioparus, Desulfovibrio thermophilus, Thermoplasma acidophilum, Hydrogenomonas thermophilus, Thermomicrobium roseum, Thermus flavas, Thermus ruber, Pyrococcus furiosus, Thermus aquaticus, Thermus thermophilus, Chloroflexus aurantiacus, Thermococcus litoralis, Pyrodictium abyssi, Bacillus stearothermophilus, Cyanidium caldarium, Mastigocladus laminosus, Chlamvdothrix calidissima, Chlamydothrix penicillata, Thiothrix carnea, Phormidium tenuissimum, Phormidium geysericola, Phormidium subterraneum, Phormidium byahensi, Oscillatoria fiformis, Synechococcus lividus, Chloroflexus aurantiacus, Pyrodictium brockii, Thiobacillus thiooxidans, Sulfolobus acidocaldarius, Thiobacillus thermophilica, Bacillus stearothermophilus, Cercosulcifer hamathensis, Vahlkampfta reichi, Cyclidium citrullus, Dactylaria gallopava, Synechococcus lividus, Synechococcus elongatus, Synechococcus minervae, Synechocystis aquatilus, Aphanocapsa thermalis, Oscillatoria terebriformis, Oscillatoria amphibia, Oscillatoria germinata, Oscillatoria okenii, Phormidium laminosum, Phormidium parparasiens, Symploca thermalis, Bacillus acidocaldarias, Bacillus coagulans, Bacillus thermocatenalatus, Bacillus lichenmformis, Bacillus pamilas, Bacillus macerans, Bacillus circulans, Bacillus laterosporus, Bacillus brevis, Bacillus subtilis, Bacillus sphaericus, Desulfotomaculum nigrnficans, Streptococcus thermophilus, Lactobacillus thermophilus, Lactobacillus bulgaricus, Bifidobacterium thermophilum, Streptomyces fragmentosporus, Streptomyces thermonitrnficans, Streptomyces thermovulgaris, Pseudonocardia thermophila, Thermoactinomyces vulgaris, Thermoactinomyces sacchari, Thermoactinomyces candidas, Thermomonospora curvata, Thermomonospora viridis, Thermomonospora citrina, Microbispora thermodiastatica, Microbispora aerata, Microbispora bispora, Actinobifida dichotomica, Actinobifida chromogena, Micropolyspora caesia, Micropolysporafaeni, Micropolyspora cectivugida, Micropolyspora cabrobrunea, Micropolyspora thermovirida, Micropolyspora viridinigra, Methanobacterium thermoautothropicum, Caldicellulosiruptor acetigenus, Caldicellulosirupbor saccharolyticus, Caldicellulosiruptor kristjanssonii, Caldicellulosiruptor owensensis, Caldicellulosiruptor lactoaceticus, variants thereof, and/or progeny thereof.
[0326] In particular embodiments, the present invention relates to thermophilic bacteria selected from the group consisting of Clostridium cellulolyticum, Clostridium thermocellum, and Thermoanaerobacterium saccharolyticum.
[0327] In certain embodiments, the present invention relates to thermophilic bacteria selected from the group consisting of Fervidobacterium gondwanense, Clostridium thermolacticum, Moorella sp., and Rhodothermus marinus.
[0328] In certain embodiments, the present invention relates to thermophilic bacteria of the genera Thermoanaerobacterium or Thermoanaerobacter, including, but not limited to, species selected from the group consisting of: Thermoanaerobacterium thermosulfurigenes, Thermoanaerobacterium aotearoense, Thermoanaerobacterium polysaccharolyticum, Thermoanaerobacterium zeae, Thermoanaerobacterium xylanolyticum, Thermoanaerobacterium saccharolyticum, Thermoanaerobium brockii, Thermoanaerobacterium thermosaccharolyticum, Thermoanaerobacter thermohydrosulfuricus, Thermoanaerobacter ethanolicus, Thermoanaerobacter brockii, variants thereof, and progeny thereof.
[0329] In certain embodiments, the present invention relates to microorganisms of the genera Geobacillus, Saccharococcus, Paenibacillus, Bacillus, and Anoxybacillus, including, but not limited to, species selected from the group consisting of: Geobacillus thermoglucosidasius, Geobacillus stearothermophilus, Saccharococcus caldoxylosilyticus, Saccharoccus thermophilus, Paenibacillus campinasensis, Bacillus flavothermus, Anoxybacillus kamchatkensis, Anoxybacillus gonensis, variants thereof, and progeny thereof.
[0330] In certain embodiments, the present invention relates to mesophilic bacteria selected from the group consisting of Saccharophagus degradans; Flavobacterium johnsoniae; Fibrobacter succinogenes; Clostridium hungatei; Clostridium phytofermentans; Clostridium cellulolyticum; Clostridium aldrichii; Clostridium termitididis; Acetivibrio cellulolyticus; Acetivibrio ethanolgignens; Acetivibrio multivorans; Bacteroides cellulosolvens; and Alkalibacter saccharofomenians, variants thereof and progeny thereof.
[0331] Organism Development Via the Native Cellulolytic Strategy
[0332] One approach to organism development for CBP begins with organisms that naturally utilize cellulose, hemicellulose and/or other biomass components, which are then genetically engineered to enhance product yield and tolerance. For example, Clostridium thermocellum is a thermophilic bacterium that has among the highest rates of cellulose utilization reported. Other organisms of interest are xylose-utilizing thermophiles such as Thermoanaerobacterium saccharolyticum and Thermoanaerobacterium thermosaccharolyticum. Organic acid production may be responsible for the low concentrations of produced ethanol generally associated with these organisms. Thus, one objective is to eliminate production of acetic and lactic acid in these organisms via metabolic engineering. Substantial efforts have been devoted to developing gene transfer systems for the above-described target organisms and multiple C. thermocellum isolates from nature have been characterized. See McLaughlin et al. (2002) Environ. Sci. Technol. 36:2122. Metabolic engineering of thermophilic, saccharolytic bacteria is an active area of interest, and knockout of lactate dehydrogenase in T. saccharolyticum has recently been reported. See Desai et al. (2004) Appl. Microbiol. Biotechnol. 65:600. Knockout of acetate kinase and phosphotransacetylase in this organism is also possible.
[0333] Organism Development Via the Recombinant Cellulolytic Strategy
[0334] An alternative approach to organism development for CBP involves conferring the ability to grow on lignocellulosic materials to microorganisms that naturally have high product yield and tolerance via expression of a heterologous cellulasic system and perhaps other features. For example, Saccharomyces cerevisiae has been engineered to express over two dozen different saccharolytic enzymes. See Lynd et al. (2002) Microbiol. Mol. Biol. Rev. 66:506.
[0335] Whereas cellulosic hydrolysis has been approached in the literature primarily in the context of an enzymatically-oriented intellectual paradigm, the CBP processing strategy requires that cellulosic hydrolysis be viewed in terms of a microbial paradigm. This microbial paradigm naturally leads to an emphasis on different fundamental issues, organisms, cellulasic systems, and applied milestones compared to those of the enzymatic paradigm. In this context, C. thermocellum has been a model organism because of its high growth rate on cellulose together with its potential utility for CBP.
[0336] In certain embodiments, organisms useful in the present invention may be applicable to the process known as simultaneous saccharification and fermentation (SSF), which is intended to include the use of said microorganisms and/or one or more recombinant hosts (or extracts thereof, including purified or unpurified extracts) for the contemporaneous degradation or depolymerization of a complex sugar (i.e., cellulosic biomass) and bioconversion of that sugar residue into ethanol by fermentation.
[0337] Ethanol Production
[0338] According to the present invention, a recombinant microorganism can be used to produce ethanol from biomass, which is referred to herein as lignocellulosic material, lignocellulosic substrate, or cellulosic biomass. Methods of producing ethanol can be accomplished, for example, by contacting the biomass with a recombinant microorganism as described herein, and as described in commonly owned U.S. Patent Application Publication No. 2011/0189744 A1, U.S. Patent Application Publication No. 2011/0312054 A1, U.S. Patent Application Publication No. 2012/0003701, International App. No. PCT/US2009/065571, International Appl. No. PCT/US2009/069443, International Appl. No. PCT/US2009/064128, International Appl. No. PCT/IB2009/005881, and PCT/US2009/065571, the contents of each are incorporated by reference herein.
[0339] Numerous cellulosic substrates can be used in accordance with the present invention. Substrates for cellulose activity assays can be divided into two categories, soluble and insoluble, based on their solubility in water. Soluble substrates include cellodextrins or derivatives, carboxymethyl cellulose (CMC), or hydroxyethyl cellulose (HEC). Insoluble substrates include crystalline cellulose, microcrystalline cellulose (Avicel), amorphous cellulose, such as phosphoric acid swollen cellulose (PASC), dyed or fluorescent cellulose, and pretreated lignocellulosic biomass. These substrates are generally highly ordered cellulosic material and thus only sparingly soluble.
[0340] It will be appreciated that suitable lignocellulosic material may be any feedstock that contains soluble and/or insoluble cellulose, where the insoluble cellulose may be in a crystalline or non-crystalline form. In various embodiments, the lignocellulosic biomass comprises, for example, wood, corn, corn stover, sawdust, bark, leaves, agricultural and forestry residues, grasses such as switchgrass, ruminant digestion products, municipal wastes, paper mill effluent, newspaper, cardboard or combinations thereof.
[0341] In some embodiments, the invention is directed to a method for hydrolyzing a cellulosic substrate, for example a cellulosic substrate as described above, by contacting the cellulosic substrate with a recombinant microorganism of the invention. In some embodiments, the invention is directed to a method for hydrolyzing a cellulosic substrate, for example a cellulosic substrate as described above, by contacting the cellulosic substrate with a co-culture comprising yeast cells expressing heterologous cellulases.
[0342] In some embodiments, the invention is directed to a method for fermenting cellulose. Such methods can be accomplished, for example, by culturing a host cell or co-culture in a medium that contains insoluble cellulose to allow saccharification and fermentation of the cellulose.
[0343] The production of ethanol can, according to the present invention, be performed at temperatures of at least about 30.degree. C., about 31.degree. C., about 32.degree. C., about 33.degree. C., about 34.degree. C., about 35.degree. C., about 36.degree. C., about 37.degree. C., about 38.degree. C., about 39.degree. C., about 40.degree. C., about 41.degree. C., about 42.degree. C., about 43.degree. C., about 44.degree. C., about 45.degree. C., about 46.degree. C., about 47.degree. C., about 48.degree. C., about 49.degree. C., or about 50.degree. C. In some embodiments of the present invention the thermotolerant host cell can produce ethanol from cellulose at temperatures above about 30.degree. C., about 31.degree. C., about 32.degree. C., about 33.degree. C., about 34.degree. C., about 35.degree. C., about 36.degree. C., about 37.degree. C., about 38.degree. C., about 39.degree. C., about 40.degree. C., about 41.degree. C., about 42.degree. C., or about 43.degree. C., or about 44.degree. C., or about 45.degree. C., or about 50.degree. C. In some embodiments of the present invention, the thermotolerant host cell can produce ethanol from cellulose at temperatures from about 30.degree. C. to 60.degree. C., about 30.degree. C. to 55.degree. C., about 30.degree. C. to 50.degree. C., about 40.degree. C. to 60.degree. C., about 40.degree. C. to 55.degree. C. or about 40.degree. C. to 50.degree. C.
[0344] In some embodiments, methods of producing ethanol can comprise contacting a cellulosic substrate with a recombinant microorganism or co-culture of the invention and additionally contacting the cellulosic substrate with externally produced cellulase enzymes. Exemplary externally produced cellulase enzymes are commercially available and are known to those of skill in the art.
[0345] In some embodiments, the methods comprise producing ethanol at a particular rate. For example, in some embodiments, ethanol is produced at a rate of at least about 0.1 mg per hour per liter, at least about 0.25 mg per hour per liter, at least about 0.5 mg per hour per liter, at least about 0.75 mg per hour per liter, at least about 1.0 mg per hour per liter, at least about 2.0 mg per hour per liter, at least about 5.0 mg per hour per liter, at least about 10 mg per hour per liter, at least about 15 mg per hour per liter, at least about 20.0 mg per hour per liter, at least about 25 mg per hour per liter, at least about 30 mg per hour per liter, at least about 50 mg per hour per liter, at least about 100 mg per hour per liter, at least about 200 mg per hour per liter, at least about 300 mg per hour per liter, at least about 400 mg per hour per liter, or at least about 500 mg per hour per liter.
[0346] In some embodiments, the host cells of the present invention can produce ethanol at a rate of at least about 0.1 mg per hour per liter, at least about 0.25 mg per hour per liter, at least about 0.5 mg per hour per liter, at least about 0.75 mg per hour per liter, at least about 1.0 mg per hour per liter, at least about 2.0 mg per hour per liter, at least about 5.0 mg per hour per liter, at least about 10 mg per hour per liter, at least about 15 mg per hour per liter, at least about 20.0 mg per hour per liter, at least about 25 mg per hour per liter, at least about 30 mg per hour per liter, at least about 50 mg per hour per liter, at least about 100 mg per hour per liter, at least about 200 mg per hour per liter, at least about 300 mg per hour per liter, at least about 400 mg per hour per liter, or at least about 500 mg per hour per liter more than a control strain (e.g., a wild-type strain) and grown under the same conditions. In some embodiments, the ethanol can be produced in the absence of any externally added cellulases.
[0347] Ethanol production can be measured using any method known in the art. For example, the quantity of ethanol in fermentation samples can be assessed using HPLC analysis. Many ethanol assay kits are commercially available that use, for example, alcohol oxidase enzyme based assays. Methods of determining ethanol production are within the scope of those skilled in the art from the teachings herein. The U.S. Department of Energy (DOE) provides a method for calculating theoretical ethanol yield. Accordingly, if the weight percentages are known of C6 sugars (i.e., glucan, galactan, mannan), the theoretical yield of ethanol in gallons per dry ton of total C6 polymers can be determined by applying a conversion factor as follows:
(1.11 pounds of C6 sugar/pound of polymeric sugar).times.(0.51 pounds of ethanol/pound of sugar).times.(2000 pounds of ethanol/ton of C6 polymeric sugar).times.(1 gallon of ethanol/6.55 pounds of ethanol).times.(1/100%), wherein the factor (1 gallon of ethanol/6.55 pounds of ethanol) is taken as the specific gravity of ethanol at 20.degree. C.
[0348] And if the weight percentages are known of C5 sugars (i.e., xylan, arabinan), the theoretical yield of ethanol in gallons per dry ton of total C5 polymers can be determined by applying a conversion factor as follows:
(1.136 pounds of C5 sugar/pound of C5 polymeric sugar).times.(0.51 pounds of ethanol/pound of sugar).times.(2000 pounds of ethanol/ton of C5 polymeric sugar).times.(1 gallon of ethanol/6.55 pounds of ethanol).times.(1/100%), wherein the factor (1 gallon of ethanol/6.55 pounds of ethanol) is taken as the specific gravity of ethanol at 20.degree. C.
[0349] It follows that by adding the theoretical yield of ethanol in gallons per dry ton of the total C6 polymers to the theoretical yield of ethanol in gallons per dry ton of the total C5 polymers gives the total theoretical yield of ethanol in gallons per dry ton of feedstock.
[0350] Applying this analysis, the DOE provides the following examples of theoretical yield of ethanol in gallons per dry ton of feedstock: corn grain, 124.4; corn stover, 113.0; rice straw, 109.9; cotton gin trash, 56.8; forest thinnings, 81.5; harwood sawdust, 100.8; bagasse, 111.5; and mixed paper, 116.2. It is important to note that these are theoretical yields. The DOE warns that depending on the nature of the feedstock and the process employed, actual yield could be anywhere from 60% to 90% of theoretical, and further states that "achieving high yield may be costly, however, so lower yield processes may often be more cost effective." (Ibid.)
EXEMPLIFICATION
[0351] The invention now being generally described, it will be more readily understood by reference to the following examples, which are included merely for purposes of illustration of certain aspects and embodiments of the present invention, and are not intended to limit the invention.
Example 1
Improving Ethanol Yield Through Engineering of Alternate Electron Acceptors
[0352] The present Example describes pathways to reduce or eliminate glycerol by engineering alternate electron acceptors in a yeast cell. Glycerol is an undesired by-product of sugar metabolism during anaerobic growth in yeast. The amount of glycerol produced during anaeroblic growth on glucose has been empirically determined by Medina, V G, el al., Appl. Env. Microbiol. 76:190-95 (2010):
56 mmol glucose.fwdarw.1 g biomass+88 mmol ethanol+95 mmol CO.sub.2+11 mmol glycerol+1.7 mmol acetate
[0353] Assuming glycerol production is primarily for the regeneration of NAD.sup.+ for the continuation of glycolysis, a half reaction for glycerol production is (Medina, V G, et al., Appl. Env. Microbiol. 76:190-95 (2010)):
0.5 glucose+NADH+H.sup.++ATP.fwdarw.glycerol+NAD.sup.++ADP+P.sub.i
[0354] The following pathways describe engineering an alternate electron acceptor for glycerol in the above half reaction, engineering an increase in ethanol yield during anaerobic growth on glucose by using improved enzyme activities for converting glucose to ethanol, and/or deleting endogenous glycerol-producing or glycerol-regulating genes.
[0355] 1.1 Engineering of a Formate Pathway in Yeast
[0356] Production of formate from glucose can provide similar reducing equivalents as glycerol, as shown in the following half reaction:
0.5 glucose+NADH+H.sup.++ADP+P.sub.i.fwdarw.formate+NAD.sup.+ATP+ethanol
[0357] In addition to balancing the redox constraints of the cell, this pathway provides increased ATP yield and results in an overall anaerobic growth equation of:
56 mmol glucose.fwdarw.1 g biomass+99 mmol ethanol+95 mmol CO.sub.2+11 mmol formate+1.7 mmol acetate
[0358] Engineering in a formate pathway as an alternate electron acceptor to glycerol results in an increase of 12.5% in the theoretical yield of ethanol. Enzymes than can be targeted to engineer such an increase include pyruvate formate lyase (PFL) and formate dehydrogenase (FDH). See FIG. 1.
[0359] 1.1.1 Expression of PFL
[0360] The conversion of pyruvate to acetyl-CoA and formate is performed by PFL. Thus, to produce formate in yeast, a PFL can be expressed. PFLs are common in bacteria from a variety of sources. Vigorous hydrogen producing bacteria, such as from a Clostridium, Thermoanaerobacterium, or other anaerobic bacteria will likely result in an increased productivity. Examples of PFL include, but are not limited, Bacillus licheniformis, Streptococcus thermophilus, Lactobacillus plantarum, Lactobacillus casei, Bifidobacterium adolescentis, Clostridium cellulolyticum, Escherichia coli, Chiamydomonas reinhardtii PflA, Piromyces sp. E2, or Neocallimastix frontalis. See Example 4 and Table 1 below.
[0361] 1.1.2 Deletion of FDH
[0362] To prevent yeast from converting formate to CO.sub.2 and NADH, endogeneous FDH genes can be deleted or downregulated. Deleting or downregulating fdh1, fdh2, or both genes can enhance the redox balance and ethanol yield of the recombinant microorganisms of the invention.
[0363] 1.2 Improving Conversion of Acetyl-CoA to Ethanol
[0364] To improve the conversion of acetyl-CoA to ethanol, endogenous yeast genes can be replaced or complimented with either an improved acetaldehyde dehydrogenase (e.g., from C. phytofermentans or other source) to convert acetyl-CoA to acetaldehyde, or a bifunctional acetaldehyde/alcohol dehydrogenase (AADH) to convert acetyl-CoA to acetaldehyde and acetaldehyde to ethanol. By engineering in one or more such enzymes, the in vivo kinetics of the conversion of acetyl-CoA to ethanol can be increased, providing for improved growth of the host strain. The bi-functional alcohol/aldehyde dehydrogenase can come from a variety of microbial sources, including but not limited to E. coli, C. acetobutylicum, T. saccharolyticum, C. thermocellum, C. phytofermentans, Piromyces SP E2, or Bifidobacterium adolescentis.
[0365] 1.3 Deletion or Downregulation of Glycerol Pathway
[0366] Deleting or altering expression of glycerol formation genes will reduce or block endogenous production of glycerol and may enhance acetate uptake. Deletion of gpd1, gpd2, or both genes and/or deletion of gpp1, gpp2, or both genes may be used to eliminate glycerol formation and enhance ethanol yield. However, the complete elimination of glycerol may not be practical for an industrial process. See Guo, Z P., et al., Metab. Eng. 13:49-59 (2011). Thus, rather than the complete removal of any one, all, or some combination of these glycerol formation genes, one or more of these genes can be altered or downregulated to reduce glycerol formation and enhance ethanol yield.
Example 2
Deletion or Downregulation of Glycerol-Regulating Gene FPS1 to Improve Ethanol Yield
[0367] Instead of, or in addition to, downregulating glycerol production through deletion or alteration of glycerol-forming genes, glycerol production can be downregulated by deletion or alteration of a glycerol-regulating gene. FPS1 is an aquaglyceroporin responsible for efflux of glycerol. An fps1.DELTA. strain has reduced glycerol formation yet has a completely functional NAD.sup.+-dependant glycerol synthesis pathway. In addition to deletion of FPS1, constitutively active mutants of FPS1 or homologs from other organisms can be expressed to alter glycerol production. Because such FPS1 deletion or alteration strains can still synthesize and retain glycerol, improved robustness may be observed relative to strains that are unable to make glycerol.
[0368] Null mutants of an fpsgA strain grow much slower anaerobically than wild-type due to intracellular glycerol accumulation. Tamiis, M. J., et al., Molecular Microbiol. 31(4):1087-1104 (1999). However, preliminary data indicates that expression of a B. adolescentis bifunctional AADH in conjunction with B. adolescentis PFL in an fps1.DELTA. strain can enable anaerobic growth of fps1.DELTA. strain (see Example 7 and FIGS. 22 and 24). Additionally, significantly improved osmotic tolerance was also observed when FPS1 was deleted in glycerol mutant strains containing ADH and PFL alone. Increased resistance to osmotic stress was determined by observation of improved growth of the fps1.DELTA. mutant on several different high osmolarity media including 1M sodium chloride, 1M sorbitol, and 1M xylitol. The fps1.DELTA. mutant was created by marker recycle resulting in a deletion of a large region of the FPS1 coding sequence (sequence of native and deletion below).
TABLE-US-00004 Sequence of FPS1 locus (coding sequence is underlined; SEQ ID NO: 104): aacgcggctgatgcttttatttaggaaggaatacttacattatcatgagaacattgtcaagggcattctgatac- gggcctt ccatcgcaagaaaaaggcagcaacggactgagggacggagagagttacggcataagaagtagtaggagagcaga- gtgtcat aaagttatattattctcgtcctaaagtcaattagttctgttgcgcttgacaatatatgtcgtgtaataccgtcc- cttagcagaagaaaga aagacggatccatatatgttaaaatgcttcagagatgtttctttaatgtgccgtccaacaaaggtatcttctgt- agcttcctctattttcg atcagatctcatagtgagaaggcgcaattcagtagttaaaagcggggaacagtgtgaatccggagacggcaaga- ttgcccggc cctttttgcggaaaagataaaacaagatatattgcactttttccaccaagaaaaacaggaagtggattaaaaaa- tcaacaaagtata acgcctattgtcccaataagcgtcggttgttcttctttattattttaccaagtacgctcgagggtacattctaa- tgcattaaaagacatg agtaatcctcaaaaagctctaaacgactttctgtccagtgaatctgttcatacacatgatagttctaggaaaca- atctaataagcagtc atccgacgaaggacgctcttcatcacaaccttcacatcatcactctggtggtactaacaacaataataacaata- ataataataataat aacagtaacaacaacaacaacggcaacgatgggggaaatgatgacgactatgattatgaaatgcaagattatag- accttctccgc aaagtgcgcggcctactcccacgtatgttccacaatattctgtagaaagtgggactgctttcccgattcaagag- gttattcctagcg catacattaacacacaagatataaaccataaagataacggtccgccgagtgcaagcagtaatagagcattcagg- cctagagggc agaccacagtgtcggccaacgtgcttaacattgaagatttttacaaaaatgcagacgatgcgcataccatcccg- gagtcacatttat cgagaaggagaagtaggtcgagggctacgagtaatgctgggcacagtgccaatacaggcgccacgaatggcagg- actactg gtgcccaaactaatatggaaagcaatgaatcaccacgtaacgtccccattatggtgaagccaaagacattatac- cagaaccctca aacacctacagtcttgccctccacataccatccaattaataaatcgtcttccgtcaaaaacacttatttgaagg- aatttttagccgagtt tatgggaacaatggttatgattattttcggtagtgctgttgtttgtcaggtcaatgttgctgggaaaatacagc- aggacaatttcaacg tggctttggataaccttaacgttaccgggtcttctgcagaaacgatagacgctatgaagagtttaacatccttg- gtttcatccgttgcg ggcggtacctttgatgatgtggcattgggctgggctgctgccgtggtgatgggctatttctgcgctggtggtag- tgccatctcaggt gctcatttgaatccgtctattacattagccaatttggtgtatagaggttttcccctgaagaaagttccttatta- ctttgctggacaattgat cggtgccttcacaggcgctttgatcttgtttatttggtacaaaagggtgttacaagaggcatatagcgattggt- ggatgaatgaaagt gttgcgggaatgttttgcgtttttccaaagccttatctaagttcaggacggcaatttttttccgaatttttatg- tggagctatgttacaagc aggaacatttgcgctgaccgatccttatacgtgtttgtcctctgatgttttcccattgatgatgtttattttga- ttttcattatcaatgcttcc atggcttatcagacaggtacagcaatgaatttggctcgtgatctgggcccacgtcttgcactatatgcagttgg- atttgatcataaaa tgctttgggtgcatcatcatcatttcttttgggttcccatggtaggcccatttattggtgcgttaatggggggg- ttggtttacgatgtctg tatttatcagggtcatgaatctccagtcaactggtctttaccagtttataaggaaatgattatgagagcctggt- ttagaaggcctggtt ggaagaagagaaatagagcaagaagaacatcggacctgagtgacttctcatacaataacgatgatgatgaggaa- tttggagaaa gaatggctcttcaaaagacaaagaccaagtcatctatttcagacaacgaaaatgaagcaggagaaaagaaagtg- caatttaaatc tgttcagcgcggcaaaagaacgtttggtggtataccaacaattcttgaagaagaagattccattgaaactgctt- cgctaggtgcga cgacgactgattctattgggttatccgacacatcatcagaagattcgcattatggtaatgctaagaaggtaaca- tgagaaaacaga caagaaaaagaaacaaataatatagactgatagaaaaaaatactgcttactaccgccggtataatatatatata- tatatatatttacat agatgattgcatagtgttttaaaaagctttcctaggttaagctatgaatcttcataacctaaccaactaaatat- gaaaatactgacccat cgtcttaagtaagttgacatgaactcagcctggtcacctactatacatgatgtatcgcatggatggaaagaata- ccaaacgctacct tccaggttaatgatagtatccaaacctagttggaatttgccttgaacatcaagcagcgattcgatatcagttgg- gagcatcaatttgg tcattggaataccatctatgcttttctcctcccatattcgcaaaagtagtaagggctcgttatatacttttgaa- tatgtaagatataattct atatgatttagtaatttattttctatacgctcagtatttttctgcagttgtcgagtaggtattaaacgcaaaag- aagtccatccttttcatca ttcaaatggacatcttggcaaagggcccagttatggaaaatctgggagtcatacaacgattgcagttggctatg- ccactcctggta aggaatcatcaagtctgataattctgttttttagccctttttttttttttttcatg Sequence of fps1A mutation (part of the fps1 coding sequence was not deleted (underlined) and the region that was deleted is represented by a A; SEQ ID NO: 105): aacgcggctgatgcttttatttaggaaggaatacttacattatcatgagaacattgtcaagggcattctgatac- gggcctt ccatcgcaagaaaaaggcagcaacggactgagggacggagagagttacggcataagaagtagtaggagagcaga- gtgtcat aaagttatattattctcgtcctaaagtcaattagttctgttgcgcttgacaatatatgtcgtgtaataccgtcc- cttagcagaagaaaga aagacggatccatatatgttaaaatgcttcagagatgtttctttaatgtgccgtccaacaaaggtatcttctgt- agcttcctctattttcg atcagatctcatagtgagaaggcgcaattcagtagttaaaagcggggaacagtgtgaatccggagacggcaaga- ttgcccggc cctttttgcggaaaagataaaacaagatatattgcactttttccaccaagaaaaacaggaagtggattaaaaaa- tcaacaaagtata acgcctattgtcccaataagcgtcggttgttcttctttattattttaccaagtacgctcgagggtacattctaa- tgcattaaaagac g attcgcattatggtaatgctaagaaggtaacatgagaaaacagacaagaaaaagaaacaaataatatagactga- tagaaaaaaat actgcttactaccgccggtataatatatatatatatatatatttacatagatgattgcatagtgttttaaaaag- ctttcctaggttaagctat gaatcttcataacctaaccaactaaatatgaaaatactgacccatcgtcttaagtaagttgacatgaactcagc- ctggtcacctacta tacatgatgtatcgcatggatggaaagaataccaaacgctaccttccaggttaatgatagtatccaaacctagt- tggaatttgccttg aacatcaagcagcgattcgatatcagttgggagcatcaatttggtcattggaataccatctatgcttttctcct- cccatattcgcaaaa gtagtaagggctcgttatatacttttgaatatgtaagatataattctatatgatttagtaatttattttctata- cgctcagtatttttctgcagt tgtcgagtaggtattaaacgcaaaagaagtccatccttttcatcattcaaatggacatettggcaaagggccca- gttatggaaaatct gggagtcatacaacgattgcagttggctatgccactcctggtaaggaatcatcaagtctgataattctgttttt- tagcccttttttttttttt ttcatg
Example 3
Generating Yeast Strains with a Deleted or Downregulated Glycerol-Production Pathway
[0369] To create yeast strains with altered glycerol production, endogenous glycerol-producing or regulating genes can either be deleted or downregulated, by generating the following genetic backgrounds:
TABLE-US-00005 Haploid Strains Diploid Strains Glycerol gpd1.DELTA. gpd2.DELTA. fdh1.DELTA. fdh2.DELTA. gpd1.DELTA./gpd1.DELTA. gpd2.DELTA./gpd2.DELTA. Elimination fdh1.DELTA. fdh2.DELTA. fps1.DELTA. fdh1.DELTA./fdh1.DELTA. fdh2.DELTA./fdh2.DELTA. Background gpd1.DELTA. gpd2.DELTA. fdh1.DELTA. fdh2.DELTA. fdh1.DELTA./fdh1.DELTA. fdh2.DELTA./fdh2.DELTA. fps1.DELTA. fps1.DELTA./ fps1.DELTA. gpd1.DELTA. gpd2.DELTA. fps1.DELTA. gpd1.DELTA./gpd1.DELTA. gpd2.DELTA./gpd2.DELTA. gpd1.DELTA. gpd2.DELTA. fdh1.DELTA./fdh1.DELTA. fdh2.DELTA./fdh2.DELTA. fps1.DELTA./ fps1.DELTA. gpd1.DELTA./gpd1.DELTA. gpd2.DELTA./gpd2.DELTA. fps1.DELTA./ fps1.DELTA. gpd1.DELTA./gpd1.DELTA. gpd2.DELTA./gpd2.DELTA. Glycerol gpd1.DELTA. gpd2.DELTA.::GPD1 fdh1.DELTA. gpd1.DELTA./gpd1.DELTA. Reduction fdh2.DELTA. gpd2.DELTA./gpd2.DELTA.::GPD1/GPD1 Background gpd1.DELTA. gpd2.DELTA.::GPD1 fdh1.DELTA./fdh1.DELTA. fdh2.DELTA./fdh2.DELTA. gpd1.DELTA. gpd2.DELTA.::GPD1 gpd1.DELTA./gpd1.DELTA. fdh1.DELTA.fdh2.DELTA. fps1.DELTA. gpd2.DELTA./gpd2.DELTA.::GPD1/GPD1 gpd1.DELTA. gpd2.DELTA.::GPD1 fps1.DELTA. gpd1.DELTA./gpd1.DELTA. gpd1.DELTA.:GPD2 gpd2.DELTA. gpd2.DELTA./gpd2.DELTA.::GPD1/GPD1 gpd1::GPD2 gpd2.DELTA. fdh1.DELTA./fdh1.DELTA. fdh2.DELTA./fdh2.DELTA. fdh1.DELTA.fdh2.DELTA. fps1.DELTA./ fps1.DELTA. gpd1.DELTA./gpd1.DELTA. gpd2.DELTA./gpd2.DELTA.::GPD1/GPD1 fps1.DELTA./ fps1.DELTA. gpd1.DELTA./gpd1.DELTA.::GPD2/GPD2 gpd2.DELTA./gpd2.DELTA. gpd1.DELTA./gpd1.DELTA.::GPD2/GPD2 gpd2.DELTA./gpd2.DELTA. fdh1.DELTA./fdh1.DELTA. fdh2.DELTA./fdh2.DELTA.
[0370] Strains in the glycerol elimination background were created by deleting one or more of the following genes: gpd1, gpd2, fdh1, fdh2, and/or fps1. Strains in the glycerol reduction background have been created by by deleting one or more of the following genes: gpd1, gpd2, fdh1, fdh2, and/or fps1, and by expressing GPD1 under the control of the gpd2 promoter (designated gpd2.DELTA.::GPD1). These strains in which GPD1 is expressed from the gpd2 promoter make a smaller amount of glycerol relative to a wild-type strain.
[0371] 3.1 Generation of Glycerol-Elimination Strain gpd1.DELTA. gpd2.DELTA. fdh1.DELTA. fdh2.DELTA.
[0372] To produce glycerol-elimination strain gpd1.DELTA. gpd2.DELTA. fdh1.DELTA. fdh2.DELTA., the following methods were used. All genetic modications were generated using positive selections to insert genetic elements and negative selections to remove genetic elements. See FIGS. 4-11. The genetic elements were amplified by PCR and transformed into host strains, followed by selection and screening for the desired modification. The sequence of native gpd1, gpd2, fdh1, fdh2 from S. cerevisiae, and resulting loci following deletion, are listed below.
TABLE-US-00006 Sequence of GPD1 locus (coding sequence is underlined; SEQ ID NO: 89): tacaaacgcaacacgaaagaacaaaaaaagaagaaaacagaaggccaagacagggtcaatgagactgttgtcct- c ctactgtccctatgtctctggccgatcacgcgccattgtccctcagaaacaaatcaaacacccacaccccgggc- acccaaagtcc ccacccacaccaccaatacgtaaacggggcgccccctgcaggccctcctgcgcgcggcctcccgccttgcttct- ctccccttcc ttttctttttccagttttccctattttgtccctttttccgcacaacaagtatcagaatgggttcatcaaatcta- tccaacctaattcgcacgt agactggcttggtattggcagtttcgtagttatatatatactaccatgagtgaaactgttacgttaccttaaat- tctttctccctttaattttc ttttatcttactctcctacataagacatcaagaaacaattgtatattgtacaccccccccctccacaaacacaa- atattgataatataaa gatgtctgctgctgctgatagattaaacttaacttccggccacttgaatgctggtagaaagagaagttcctctt- ctgtttctttgaagg ctgccgaaaagcctttcaaggttactgtgattggatctggtaactggggtactactattgccaaggtggttgcc- gaaaattgtaagg gatacccagaagttttcgctccaatagtacaaatgtgggtgttcgaagaagagatcaatggtgaaaaattgact- gaaat&ataaata ctagacatcaaaacgtgaaatacttgcctggcatcactctacccgacaatttggttgctaatccagacttgatt- gattcagtcaagga tgtcgacatcatcgttttcaacattccacatcaatttttgccccgtatctgtagccaattgaaaggtcatgttg- attcacacgtcagagc tatctcctgtctaaagggttttgaagttggtgctaaaggtgtccaattgctatcctcttacatcactgaggaac- taggtattcaatgtgg tgctctatctggtgctaacattgccaccgaagtcgctcaagaacactggtctgaaacaacagttgcttaccaca- ttccaaaggattt cagaggcgagggcaaggacgtcgaccataaggttctaaaggccttgttccacagaccttacttccacgttagtg- tcatcgaagat gttgctggtatctccatctgtggtgctttgaagaacgttgttgccttaggttgtggtttcgtcgaaggtctagg- ctggggtaacaacg cttctgctgccatccaaagagtcggtttgggtgagatcatcagattcggtcaaatgtttttcccagaatctaga- gaagaaacatacta ccaagagtctgctggtgttgctgatttgatcaccacctgcgctggtggtagaaacgtcaaggttgctaggctaa- tggctacttctgg taaggacgcctgggaatgtgaaaaggagttgttgaatggccaatccgctcaaggtttctattacctgcaaagaa- gttcacgaatggt tggaaacatgtggctctgtcgaagacttcccattatttgaagccgtataccaaatcgtttacaacaactaccca- atgaagaacctgc cggacatgattgaagaattagatctacatgaagattagatttattggagaaagataacatatcatactttcccc- cacttttttcgaggct cttctatatcatattcataaattagcattatgtcatttctcataactactttatcacgttagaaattacttatt- attattaaattaatacaaaatt tagtaaccaaataaatataaataaatatgtatatttaaattttaaaaaaaaaatcctatagagcaaaaggattt- tccattataatattagct gtacacctcttccgcattttttgagggtggttacaacaccactcattcagaggctgtcggcacagttgcttcta- gcatctggcgtccg tatgtatgggtgtattttaaataataaacaaagtgccacaccttcaccaattatgtctttaagaaatggacaag- ttccaaagagcttgc ccaaggctcgacaaggatgtactttggaatatctatattcaagtacgtggcgcgcatatgtttgagtgtgcaca- caataaaggtt Sequence of gpd1.DELTA. mutation (part of the gpd1 coding sequence was not deleted (underlined) and the region that was deleted is represented by a .DELTA.; SEQ ID NO: 90): tacaaacgcaacacgaaagaacaaaaaaagaagaaaacagaaggccaagacagggtcaatgagactgttgtcct- c ctactgtccctatgtctctggccgatcacgcgccattgtccctcagaaacaaatcaaacacccacaccccgggc- acccaaagtcc ccacccacaccaccaatacgtaaacggggcgccccctgcaggccctcctgcgcgcggcctcccgccttgcttct- ctccccttcc ttttctttttccagttttccctattttgtccctttttccgcacaacaagtatcagaatgggttcatcaaatcta- tccaacctaattcgcacgt agactggcttggtattggcagtttcgtagttatatatatactaccatgagtgaaactgttacgttaccttaaat- tctttctccctttaattttc ttttatcttactctcctacataagacatcaagaaacaattgtatattgtacaccccccccctccacaaacacaa- atattgataatataaa gatgtctgctgctgctgatag tctactgaagattagatttattggagaaagataacatatcatactttcccccacttttttcgaggc tcttctatatcatattcataaattagcattatgtcatttctcataactactttatcacgttagaaattacttat- tattattaaattaatacaaaat ttagtaaccaaataaatataaataaatatgtatatttaaattttaaaaaaaaaatcctatagagcaaaaggatt- ttccattataatattagc tgtacacctcttccgcattttttgagggtggttacaacaccactcattcagaggctgtcggcacagttgcttct- agcatctggcgtcc gtatgtatgggtgtattttaaataataaacaaagtgccacaccttcaccaattatgtctttaagaaatggacaa- gttccaaagagcttg cccaaggctcgacaaggatgtactttggaatatctatattcaagtacgtggcgcgcatatgtttgagtgtgcac- acaataaaggtt Sequence of GPD2 locus (coding sequence is underlined; SEQ ID NO: 91): atagccatcatgcaagcgtgtatcttctaagattcagtcatcatcattaccgagtttgttttccttcacatgat- gaagaaggt ttgagtatgctcgaaacaataagacgacgatggctctgccattgttatattacgcttttgcggcgaggtgccga- tgggttgctgagg ggaagagtgtttagcttacggacctattgccattgttattccgattaatctattgttcagcagctcttctctac- cctgtcattctagtatttt ttttttttttttttggttttacttttttttcttcttgcctttttttcttgttactttttttctagttttttttc- cttccactaagctttttcct tgatttatccttgggttcttctttctactcctttagattttttttttatatattaatttttaagtttatgtatt- ttggtagattcaattctct ttccctttccttttccttcgctccccttccttatcaatgcttgctgtcagaagattaacaagatacacattcct- taagcgaacgcatccggtg ttatatactcgtcgtgcatataaaattttgccttcaagatctactttcctaacaagatcattattacaaacaca- actttcactcaaagatga ctgctcatactaatatcaaacagcacaaacactgtcatgaggaccatcctatcagaagatcggactctgccgtg- tcaattgtacatttgaaa cgtgcgcccttcaaggttacagtgattggttctggtaactgggggaccaccatcgccaaagtcattgcggaaaa- cacagaattgcattccca tatcttcgaaccagaggtgagaatgtgggtttttgatgaaaagatcggcgacgaaaatctgacggatatcataa- atacaagacaccagaa cgttaaatatctacccaatattgacctgccccataatctagtggccgatcctgatcttttacactccatcaagg- gtgctgacatccttgt tttcaacatccctcatcaatttttaccaaacatagtcaaacaattgcaaggccacgtggcccctcatgtaaggg- ccatctcgtgtcta aaagggttcgagttgggctccaagggtgtgcaattgctatcctcctatgttactgatgagttaggaatccaatg- tggcgcactatct ggtgcaaacttggcaccggaagtggccaaggagcattggtccgaaaccaccgtggcttaccaactaccaaagga- ttatcaaggt gatggcaaggatgtagatcataagattttgaaattgctgttccacagaccttacttccacgtcaatgtcatcga- tgatgttgctggtat atccattgccggtgccttgaagaacgtcgtggcacttgcatgtggtttcgtagaaggtatgggatggggtaaca- atgcctccgcag ccattcaaaggctgggtttaggtgaaattatcaagttcggtagaatgtttttcccagttatccaaagtcgagac- ctactatcaagaatc cgctggtgttgcagatctgatcaccacctgctcaggcggtagaaacgtcaaggttgccacatacatggccaaga- ccggtaagtc agccttggaagcagaaaaggaattgcttaacggtcaatccgcccaagggataatcacatgcagagaaattcacg- agtggctaca aacatgtgagttgacccaagaattcccattattcgaggcagtctaccagatagtctacaacaacgtccgcatgg- aagacctaccg gagatgattgaagagctagacatcgatgacgaatagacactctccccccccctccccctctgatctttcctgtt- gcctctttttcccc caaccaatttatcattatacacaagttctacaactactactagtaacattactacagttattataattttctat- tctctttttctttaagaatct atcattaacgttaatttctatatatacataactaccattatacacgctattatcgtttacatatcacatcaccg- ttaatgaaagatacgaca ccctgtacactaacacaattaaataatcgccataaccttttctgttatctatagcccttaaagctgtttcttcg- agctttttcactgcagta attctccacatgggcccagccactgagataagagcgctatgttagtcactactgacggctctccagtcatttat- gtgattttttagtga ctcatgtcgcatttggcccgtttttttccgctgtcgcaacctatttccattaacggtgccgtatggaagagtca- tttaaaggcaggaga gagagattacteatcttcattggatcagattgatgactgcgtacggcagat Sequence of gpd2.DELTA. mutation (the entire coding sequence was deleted, which is represented by a .DELTA.; SEQ ID NO: 92): atagccatcatgcaagcgtgtatcttctaagattcagtcatcatcattaccgagtttgttttccttcacatgat- gaagaaggt ttgagtatgctcgaaacaataagacgacgatggctctgccattgttatattacgcttttgcggcgaggtgccga- tgggttgctgagg ggaagagtgtttagcttacggaoctattgccattgttattccgattaatctattgttcagcagctcttctctac- cctgtcattctagtatttt ttttttttttttttggttttacttttttttcttcttgcctttttttcttgttactttttttctagttttttttc- cttccactaagctttttcc ttgatttatccttgggttcttctttctactcctttagattttttttttatatattaatttttaagtttatgtat- tttggtagattcaattctct ttccctttccttttccttcgctccccttccttatc ctctgatctttcctgttgcctctttttcccccaaccaatttatcattatacacaagttc tacaactactactagtaacattactacagttattataattttctattctctttttctttaagaatctatcatta- acgttaatttctatatataca taactaccattatacacgctattatcgtttacatatcacatcaccgttaatgaaagatacgacaccctgtacac- taacacaattaaataategcc ataaccttttctgttatctatagcccttaaagctgtttcttcgagctttttcactgcagtaattctccacatgg- gcccagccactgagataagag cgctatgttagtcactactgacggctctccagtcatttatgtgattttttagtgactcatgtcgcatttggccc- gtttttttccgctgtcgcaacc tatttccattaacggtgccgtatggaagagtcatttaaaggcaggagagagagattactcatcttcattggatc- agattgatgactgcgtacgg cagat Sequence of FDH1 locus coding sequence is underlined; SEQ ID NO: 93): tatttttctatagatatttacactccgcaagtgcaaaaaaaaagcattatcgctaacgatcaagaggaactgag- accttatt agttgtctttgttggcgtaacataaatttcttaggaaaagagaaaattatctcgaaggcaaaaataaaccaagc- ctcgagtttaatgg ttttctaaaaaacactttaaaaacagatcgccataaaaggagaagctccgtaggagaccgttttcgaaacctat- gtagaaataaag ggaaagctccaacggtttggataaatctttagaagcatagagtttatacaacattcagtacgaaatgtactctc- gaaacgttctctttt cacggtgcttagtagcagaaaaaagtgtcggaaattacctattttgtcaccactcgaggataggcttgaaagag- agttttaacccca
acttttctattttgcacttgtttggctatggtttaaaacattctgtttggaccaacagcccaagcggcttatcc- cttttctttttttcccttata atcgggaatttccttactaggaaggcaccgatactagaactccgaatgaaaaagacatgccagtaataaaacta- ttttgatgttatg cggaatatactattcttggattattcactgttaactaaaagttggagaaatcactctgcactgtcaatcattga- aaaaaagaacatata aaagggcacaaaattgagtcttttttaatgagttcttgctgaggaaagtttagttaatatatcatttacgtaaa- atatgcatattcttgtatt gtgctttttttattcattttaagcaggaacaatttacaagtattgcaacgctaatcaaatcaaaataacagctg- aaaattaatatgtcgaa gggaaaggttttgctggttctttacgaaggtggtaagcatgctgaagagcaggaaaagttattggggtgtattg- aaaatgaacttg gtatcagaaatttcattgaagaacagggatacgagttggttactaccattgacaaggaccctgagccaacctca- acggtagacag ggagttgaaagacgctgaaattgtcattactacgccctttttccccgcctacatctcgagaaacaggattgcag- aagctcctaacct gaagctctgtgtaaccgctggcgtcggttcagaccatgtccatttagaagctgcaaatgaacggaaaatcacgg- tcaccgaagtt actggttctaacgtcgtttctgtcgcagagcacgttatggccacaattttggttttgataagaaactataatgg- tggtcatcaacaagc aattaatggtcagtgggatattgccggcgtggctaaaaatgagtatgatctggaagacaaaataatttcaacgg- taggtgccggta gaattggatatagggttctggaaagattggtcgcatttaatccgaagaagttactgtactacgactaccaggaa- ctacctgcggaa gcaatcaatagattgaacgaggccagcaagcttttcaatggcagaggtgatattgttcagagagtagagaaatt- ggaggatatgg ttgctcagtcagatgttgttaccatcaactgtccattgcacaaggactcaaggggtttattcaataaaaagctt- atttcccacatgaaa gatggtgcatacttggtgaataccgctagaggtgctatttgtgtcgcagaagatgttgccgaggcagtcaagtc- tggtaaattggct ggctatggtggtgatgtctgggataagcaaccagcaccaaaagaccatccctggaggactatggacaataagga- ccacgtggg aaacgcaatgactgttcatatcagtggcacatctctggatgctcaaaagaggtacgctcagggagtaaagaaca- tcctaaatagtt acttttccaaaaagtttgattaccgtccacaggatattattgtgcagaatggttcttatgccaccagagcttat- ggacagaagaaata agagtgattatgagtatttgtgagcagaagttttccggtctccttttgttcttgttttggcgtattctccacta- ttcgtccatagcacattta taccttagctaaatattttgtaaagcaaaattttcgttatctcttaaaaaatagaagagcggtttattaatatc- aaataattgaaactgctg atatggtagctatatacaaaatctgctgtcaaaatttggcagtaaacgatcttcacggtagcggttcaaataaa- gaggaaaagtcttt ctcccttactgtttttctggaatttggctcgtcgttaataacagaactaaagatacagtaaaaggagagatcgc- aatcaacttcattaa ttgtaacagtagcataatcacaactgatcatctacactataaacagtttttatttctaattatgggcgcctggc- cggctcaaacattgtg cttttaagactccaaaagtatctgctgcagaaaagagccatataatgttaagtgttcagggataggttatcgct- tactacttcaaacgt ttcgaaggaaagccagggaagcctatatctgattccctgtttcataatccaatgcagccactagcttataatta- tttgaactatttgtcg aacatcacagtaataaaatccccagaaagttccacttgctgcatattggcacctgttgattcactctccatcac- ttttttgttagccgcc cagcctagaaagtctttaaatacatctgaaatttttttttttttaacagtgcacccgtgcatcatacctcatgc- aaggtacctttttttctca aaggtattgtcttccattgaagtggcactatggcatgatgaaccctgagcatttctgaattcaacagaaccaaa- ttgtccagaaataa atctgtccgacatgaattatgaaactttttttcaattaagtgaagagaattttgcagcgtcttaccattatttt- gacccattggtcgcatgt ttgcgctttgacttcgagaaccatgttaaagcttacttgtacgacaaccaatgaagtatattacggcagttttt- ttggactgggtcaaa aaaagtgttgcataatcaaatcaggaacacattaaaatgttgtaaaatttgtcttagtatcacctgagtggtta- ttcattacgtacta Sequence of fdh1.DELTA. mutation (the entire coding sequence was deleted, which is represented by a .DELTA.; SEQ ID NO: 94): tatttttctatagatatttacactccgcaagtgcaaaaaaaaagcattatcgctaacgatcaagaggaactgag- accttatt agttgtctttgttggcgtaacataaatttcttaggaaaagagaaaattatctcgaaggcaaaaataaaccaagc- ctcgagtttaatgg ttttctaaaaaacactttaaaaacagatcgccataaaaggagaagctccgtaggagaccgttttcgaaacctat- gtagaaataaag ggaaagctccaacggtttggataaatctttagaagcatagagtttatacaacattcagtacgaaatgtactctc- gaaacgttctctttt cacggtgcttagtagcagaaaaaagtgtcggaaattacctattttgtcaccactcgaggataggcttgaaagag- agttttaacccca acttttctattttgcacttgtttggctatggtttaaaacattctgtttggaccaacagcccaagcggcttatcc- cttttctttttttcccttata atcgggaatttccttactaggaaggcaccgatactagaactccgaatgaaaaagacatgccagtaataaaacta- ttttgatgttatg cggaatatactattcttggattattcactgttaactaaaagttggagaaatcactctgcactgtca tggcagtaaacgatcttcacg gtagcggttcaaataaagaggaaaagtctttctcccttactgtttttctggaatttggctcgtcgttaataaca- gaactaaagatacag taaaaggagagatcgcaatcaacttcattaattgtaacagtagcataatcacaactgatcatctacactataaa- cagtttttatttctaa ttatgggcgcctggccggctcaaacattgtgcttttaagactccaaaagtatctgctgcagaaaagagccatat- aatgttaagtgttc agggataggttatcgcttactacttcaaacgtttcgaaggaaagccagggaagcctatatctgattccctgttt- cataatccaatgca gccactagcttataattatttgaactatttgtcgaacatcacagtaataaaatccccagaaagttccacttgct- gcatattggcacctgt tgattcactctccatcacttttttgttagccgcccagcctagaaagtctttaaatacatctgaaattttttttt- ttttaacagtgcacccgtg catcatacctcatgcaaggtacctttttttctcaaaggtattgtcttccattgaagtggcactatggcatgatg- aaccctgagcatttct gaattcaacagaaccaaattgtccagaaataaatctgtccgacatgaattatgaaactttttttcaaUaagtga- agagaattttgcag cgtcttaccattattttgacccattggtcgcatgtttgcgctttgacttcgagaaccatgttaaagcttacttg- tacgacaaccaatgaa gtatattacggcagtttttttggactgggtcaaaaaaagtgttgcataatcaaatcaggaacacattaaaatgt- tgtaaaatttgtctta gtatcacctgagtggttattcattacgtacta Sequence of FDH2 locus (coding sequence is underlined; SEQ ID NO: 95): tgtcgagacaatgtcattgcaagttatataaacattgtaatacatcacctcgatgaaagagaaactggaatgat- agatct ctttttctcaaaatttcgttaatatgtaataataaggttcctgatgtaatttgtttttgtacaaattattttag- attctggaggttcaaataaaa tatatattacagccaacgattaggggggacaagacttgattacacatttttcgttggtaacttgactcttttat- gaaaagaaaacattaa gttgaaggtgcacgcttgaggcgctcctttttcatggtgcttagcagcagatgaaagtgtcagaagttacctat- tttgtcaccatttga gaataagcttgaaagaaagttgtaaccccaacttttctatcttgcacttgtttggaccaacagccaaacggctt- atcccttttcttttcc cttataatcgggaatttccttactaggaaggcaccgatactataactccgaatgaaaaagacatgccagtaata- aaaataattgatgt tatgcggaatatactattcttggattattcactgttaactaaaagttggagaaatcactctgcactgtcaatca- ttgaaaaaaagaacat ataaaagggcacaaaatcgagtcttttttaatgagttcttgctgaggaaaatttagttaatatatcatttacat- aaaacatgcatattatt gtgttgtactttctttattcattttaagcaggaataattacaagtattgcaacgctaatcaaatcgaaataaca- gctgaaaattaatatgt cgaagggaaaggttttgctggttctttatgaaggtgataagcatgctgaattagcaggaaaagttattggggtg- tattgaaaatgaa cttggtatcagaaatttcattgaagaacagggatacgagttggttactaccattgacaaggaccctgagccaac- ctcaacggtaga cagggagttgaaagacgctgaaattgtcattactacgccctttttccccgcctacatctcgagaaacaggattg- cagaagctccta acctgaagctctgtgtaaccgctggcgtcggttcagaccatgtcgatttagaagctgcaaatgaacggaaaatc- acggtcaccga agcaattaatggtgagtgggatattgccggcgtggctaaaaaatgagtatgatctggaagacaaaataatttca- acggtaggtgcc ggtagaattggatatagggttctggaaagattggtcgcatttaatccgaagaagttactgtactacgactacca- ggaactacctgcg gaagcaatcaatagattgaacgaggccagcaaccttttcaatggcagaggtgatattgttcagagagtagagaa- attggaggata tggttgctcagtcagatgttgttaccatcaactgtccattgcacaaggactcaaggggtttattcaataaaaag- cttatttcccacatg aaagatggtgcatacttggtgaataccgctagaggtgctatttgtgtcgcagaagatgttgccgaggcagtcaa- gtctgctaaatt ggctggctatggtggtgatgtctcggataagcaaccagcaccaaaagaccatccctggaggactatggacaata- aggaccacg tgggaaacgcaatgactgttcatatcagtggcacatctctgcatgctcaaaagaggtacgctcagggagtatta- gaacatcctaaa tagttacttttccaaaaagtttgattaccgtccacaggatattattgtgcagaatggttcttatgccaccagag- cttatggacagaaga aataagagtgattatgagtatttgtgagcagaagttttccggtctccttttgttcttgttttggcgtattctcc- actattcgtccatagcac atttataccttagctaaatattttgtaaagcaaaattttcgttatctcttaaaaaatagaagagcggtttatta- atatcaaataattgaaact gctgatatggtagctatatacaaaatctgctgtcaaaatttggcagtaaacgatcttcacggtagcggttcaaa- taaagaggaaaag tccttctcccttactgtttttctggaatttggctcgtcgttaataacagaactaaagatacagtaaaaggagag- atcgcaatcaacttc attaattgtaacagtagcataatcacaactggttatctgcgttatagacaattcttactcacaatgatgggcgc- ttagttggctgtaaac gtcgctttttaaaactccgaaaagttaccgctacagaaaaaaaccataaatgtatgctagttgcgcagagaggt- ttagggtccaaa atttactaccctgtcgctcactacagcgactgtcccgaattaagcccgaagagacgcagaactgttgtatgaac- ctcatgaaacca ctgatcttgaagatttagaccttcagaatcgttttcaattagaagtatacaagaagtctttgtacaataatgtc- aagacagagctctga attatagttcagccttgttattttttttt Sequence of fdh2.DELTA. mutation (the entire coding sequence was deleted, which is represented by a .DELTA.; SEQ ID NO: 96): tgtcgagacaatgtcattgcaagttatataaacattgtaatacatcacctcgatgaaagagaaactggaatgat- agatct ctttttctcaaaatttcgttaatatgtaataataaggttcctgatgtaatttgtttttgtacaaattattttag- attctggaggttcaaataaaa
tatatattacagccaacgattaggggggacaagacttgattacacatttttcgttggtaacttgactcttttat- gaaaagaaaacattaa gttgaaggtgcacgcttgaggcgctcctttttcatggtgcttagcagcagatgaaagtgtcagaagttacctat- tttgtcaccatttga gaataagcttgaaagaaagttgtaaccccaacttttctatcttgcacttgtttggaccaacagccaaacggctt- atcccttttcttttcc cttataatcgggaatttccttactaggaaggcaccgatactataactccgaatgaaaaagacatgccagtaata- aaaataattgatgt tatgcggaatatactattcttggattattcactgttaactaaaagttggagaaatcactctgcactgtcaatca- ttgaaaaaaagaacat ataaaagggcacaaaatcgagtcttttttaatgagttcttgctgaggaaaatttagttaatatatcatttacat- aaaacatgcatattatt gtgttgtactttctttattcattttaagcaggaataattacaagtattgcaacgctaatcaaatcgaaataaca- gctgaaaattaat ta agagtgattatgagtatttgtgagcagaagttttccggtctccttttgttcttgttttggcgtattctccacta- ttcgtccatagcacattta taccttagctaaatattttgtaaagcaaaattttcgttatctcttaaaaaatagaagagcggtttattaatatc- aaataattgaaactgctg atatggtagctatatacaaaatctgctgtcaaaatttggcagtaaacgatcttcacggtagcggttcaaataaa- gaggaaaagtcctt ctcccttactgtttttctggaatttggctcgtcgttaataacagaactaaagatacagtaaaaggagagatcgc- aatcaacttcattaa ttgtaacagtagcataatcacaactggttatctgcgttatagacaattcttactcacaatgatgggcgcttagt- tggctgtaaacgtcg ctttttaaaactccgaaaagttaccgctacagaaaaaaaccataaatgtatgctagttgcgcagagaggtttag- ggtccaaaattta ctaccctgtcgctcactacagcgactgtcccgaattaagcccgaagagacgcagaactgttgtatgaacctcat- gaaaccactga tcttgaagatttagaccttcagaatcgttttcaattagaagtatacaagaagtctttgtacaataatgtcaaga- cagagctctgaattat agttcagccttgttattttttttt
[0373] 3.2 Generation of Glycerol-Reduced Strain Comprising gpd2d.DELTA.::GPD1
[0374] Glycerol-reduction strain gpd2d.DELTA.::GPD1, was constructed as described above. The sequence of gpd1.DELTA./gpd1.DELTA. gpd2.DELTA./gpd2.DELTA.::GPD1/GPD1 is provided below.
TABLE-US-00007 Sequence of GPD1 at GPD2 locus (inserted GPD1 is underlined; SEQ ID NO: 97): agtaactgtgacgatatcaactctttttttattatgtaataagcaaacaagcacgaatggggaaagcctatgtg- caatcaccaaggtc gtcccttttttcccatttgctaatttagaatttaaagaaaccaaaagaatgaagaaagaaaacaaatactagcc- ctaaccctgacttc gtttctatgataataccctgctttaatgaacggtatgccctagggtatatctcactctgtacgttacaaactcc- ggttattttatcggaac atccgagcacccgcgccttcctcaacccaggcaccgcccccaggtaaccgtgcgcgatgagctaatcctgagcc- atcacccac cccacccgttgatgacagcaattcgggagggcgaaaaataaaaactggagcaaggaattaccatcaccgtcacc- atcaccatca tatcgccttagcctctagccatagccatcatgcaagcgtgtatcttctaagattcagtcatcatcattaccgag- tttgttttccttcacat gatgaagaaggtttgagtatgctcgaaacaataagacgacgatggctctgccattgttatattacgcttttgcg- gcgaggtgccgat gggttgctgaggggaagagtgtttagcttacggacctattgccattgttattccgattaatctattgttcagca- gctcttctctaccctg tcattctagtattttttttttttttttttggttttacttttttttcttcttgcctttttttcttgttacttttt- ttctagttttttttcctt ccactaagctttttccttgatttatccttgggttcttctttctactcctttagattttttttttatatattaat- ttttaagtttatgtatttt ggtagattcaattctctttccctttccttttccttcgctccccttccttatcaatgtctgctgctgctgataga- ttaaacttaacttccggcc acttgaatgctggtagaaagagaagttcctcttctgtttctttgaaggctgccgaaaagcctttcaaggttact- gtgattggatctggtaact ggggtactactattgccaaggtggttgccgaaaattgtaagggatacccagaagttttcgctccaatagtacaa- atgtgggtgttcgaagaag agatcaatggtgaaaaattgactgaaatcataaatactagacatcaaaacgtgaaatacttgcctggcatcact- ctacccgacaatttggttg ctaatccagacttgattgattcagtcaaggatgtcgacatcatcgttttcaacattccacatcaatttttgccc- cgtatctgtagccaattga aaggtcatgttgattcacacgtcagagctatctcctgtctaaagggttttgaagttggtgctaaaggtgtccaa- ttgctatcctcttacatca ctgaggaactaggtattcaatgtcgtgctctatctggtcctaacattgccaccgaagtcactcaagaacactgg- tctgaaacaacagt tgcttaccacattccaaaggatttcagaggcgagggcaaggacgtcgaccataaggttctaaaggccttgttcc- acagaccttact tccacgttagtgtcatcgaagatgttgctggtatctccatctgtggtgctttgaagaacgttgttgccttaggt- tgtggtttcgtcgaag gtctaggctggggtaacaacgcttctgctgccatccaaagagtcggtttgggtgagatcatcagattcggtcaa- atgtttttcccag aatctagagaagaaacatactaccaagagtctgctggtgttgctgatttgatcaccacctgcgctggtggtaga- aacgtcaaggtt gctaggctaatggctacttctggtaaggacgcctgggaatgtgaaaaggagttgttgaatggccaatccgctca- aggtttaattac ctgcaaagaagttcacttaatggttggaaacatgtggctctgtcgaagacttcccattatttgaagccgtatac- caaatcgtttacaac aactacccaatgaagaacctgccggacatgattgaagaattagatctacatgaagattagacactctccccccc- cctccccctctg atctttcctgttgcctctttttcccccaaccaatttatcattatacacaagttctacaactactactagtaaca- ttactacagttattataat tttctattctctttttctttaagaatctatcattaacgttaatttctatatatacataactaccattatacacg- ctattatcgtttacatatc acatcaccgttaatgaaagatacgacaccctgtacactaacacaattaaataatcgccataaccttttctgtta- tctatagcccttaaagctg tttcttcgagctttttcactgcagtaattctccacatgggcccagccactgagataagagcgctatgttagtca- ctactgacggctctc cagtcatttatgtgattttttagtgactcatgtcgcatttggcccgtttttttccgctgtcgcaacctatttcc- attaacggtgccgtatgg aagagtcatttaaaggcaggagagagagattactcatcttcattggatcagattgatgactgcgtacggcagat- agtgtaatctga gcagttgcgagacccagactggcactgtctcaatagtatattaatgggcatacattcgtactcccttgttcttg- cccacagttctctct ctctttacttcttgtatcttgtctccccattgtgcagcgataaggaacattgttctaatatacacggatacaaa- agaaatacacat
Example 4
Cloning and Characterization of PFL and AADH Enzymes
[0375] To identify PFL enzymes for use in the strains of the invention, several PFL enzymes were identified for cloning and functional analysis. See Table 1. Functionality was determined by plasmid based expression of each PFL in the fcy.DELTA.::ADHE gpd1.DELTA.::ADHE gpd2.DELTA.fdh1.DELTA.fdh2.DELTA. (M2158) background. FIG. 22 shows fermentation performance in 20% corn mash. A PFL was determined to be functional based on the presence or absence of a yield increase over M2085. The C. cellulolyticum PFL was determined to be non-functional based on data shown in FIG. 13. The strain listed as M1992 +pMU2481 is M2085 plus a plasmid expressing the C. cellulolyticum PFL. This strain does not appear to make formate.
TABLE-US-00008 TABLE 1 Analysis of PFL Enzymes Organism Functional SEQ ID NOs: Bacillus licheniformis ATCC_14580 nd 6 and 40 Streptococcus thermophilus LMD_9 nd 12 and 46 Lactobacillus plantarum WCFS1 nd 16 and 50 (lp_3314 and lp_3313) Lactobacillus casei ATCC_334 yes 24 and 58 Bifidobacterium adolescentis yes 26 and 60 Clostridium cellulolyticum no 34 and 68 Escherichia coli yes 36 and 70 Chlamydomonas reinhardtii PflA yes 72 and 76 Piromyces sp. E2 yes 78 Neocallimastix frontalis yes 74 and 80
[0376] As shown in Example 7, eight of nine PFL enzymes that were tested can enable the glycerol elimination and glycerol reduction technologies described herein. An alignment of six of these PFL enzymes is shown in FIG. 12. Four of the residues are absent in C. cellulolyticum yet conserved among the other PFL enzymes (indicated with asterisks in FIG. 12). There is an insertion of 18 amino acids at position 640 of the B. adolescentis PFL, which is not present in the other PFL enzymes. The eukaryotic PFLs (Piromyces and Chlamydomonas) have an N-terminal extension which has been reported to be involved in mitochondrial targeting. Deletion of this sequence may improve the performance of these enzymes in S. cerevisiae. These differences may provide insights into identifying additional PFL enzymes for use in the strains of the invention.
[0377] To identify AADH enzymes for use in the strains of the invention, several AADH enzymes were identified for cloning and functional analysis. See Table 2. Functionality was determined though analysis of the data listed in Table 3 below and shown in FIG. 20. An AADH enzyme was determined to be functional if a strain containing the genotype gpd1.DELTA.gpd2d.DELTA. plus a given AADH, had a faster anaerobic growth rate than strain gpd1.DELTA.gpd2.DELTA. (FIG. 20) and there was evidence for acetate consumption (Table 3).
TABLE-US-00009 TABLE 2 Analysis of AADH Enzymes Organism Functional SEQ ID NO: Escherichia coli yes 84 Clostridium phytofermentans yes 82 Chlamydomonas reinhardtii yes 86 Piromyces sp. E2 yes 88 Bifidobacterium adolescentis yes 100
[0378] When glycerol deletion strains are grown anaerobically, they are not capable of growth or fermentation and cannot consume sugar during glycolysis. However, if these glycerol deletion strains are complemented with an AADH, the strains are able to grow with the supplementation of acetate in the media. FIG. 20 shows the growth rates of the parental strain, the glycerol deletion strain, and four glycerol deletion strains expressing AADHs from Escherichia coli (Eco), Clostridium phytofermentans (Cph), Chlamydomonas reinhardtii (Chi), and Piromyces sp. E2 (Pir). As shown in FIG. 20, all four genes can restore growth levels above the glycerol deletion strain (as noted by the dotted line) indicating a functional AADH.
[0379] The product yields and conversion of acetate by the strains above, as well as additional strains, are shown in Table 3. The glycerol deletion strain was unable to consume sugar or produce ethanol. The parent strain produced glycerol and ethanol but was unable to convert the acetate in the media, initially present at .about.2 g/L, giving an ethanol yield of 0.41 g/g glucose, consistent with anaerobic ethanol yields. The glycerol deletion strains complemented with AADHs, however, were able to consume glucose and produce ethanol without producing glycerol, or the glycerol production was significantly decreased compared to the parent strain (Chi AADH). See Table 3. In these glycerol deletion mutants, the acetate levels were also reduced, resulting in higher ethanol yields (calculated as grams ethanol produced per gram consumed glucose) than was achieved by the parent strain.
TABLE-US-00010 TABLE 3 Product Yields and Acetate Conversion of Glycerol Deletion Strains Expressing AADH Growth Strain Glycerol.sup.a Acetate Uptake.sup.a Ethanol.sup.a Ethanol Yield.sup.b rate (hr.sup.-1) Parent M139 1.37 0.14 10.41 0.42 0.27 .DELTA.gpd1.DELTA.gpd2 0.00 0.00 0.00 0.00 0.01 M2032 Eco AADH 0.00 0.62 11.39 0.46 0.17 M1991 Cph AADH 0.00 0.66 11.21 0.45 0.18 M1991 Chl AADH 0.00 0.32 9.04 0.47 0.04 M1991 Pir AADH 0.00 0.68 11.17 0.45 0.17 M1991 Bad AADH 0.00 0.67 10.95 0.44 0.18 M1991 Eco mhpF 0.00 0.03 0.50 0.02 0.06 M1991 Cph ADH 0.00 0.60 11.29 0.45 0.19 (1428) M1991 Cph ADH 0.00 0.74 11.22 0.45 0.20 (2642) M1991 Tsac AADH 0.00 0.59 11.89 0.48 0.16 M1991 .sup.agrams per liter .sup.bgram ethanol produced per gram sugar consumed
Example 5
Expression of PFL and AADH and Detection of Formate
[0380] To examine the expression of formate in a yeast strain of the invention, E. coli PFL was cloned and expressed in an FDH deletion strain. Strain M1992+pMU2483 has deletions of FDH1 and FDH2 and a plasmid expressing the E. coli PflA and PflB. This strain was constructed by transforming strain M1992 (fdh1.DELTA.fdh2.DELTA.) with plasmids expressing either C. cellulolyticum PFL (pMU2481) or E. coli PFL (pMU2483).
[0381] The strains were grown in YNB medium buffered with HEPES at pH 6.5, and formate was measured using a formate detection kit from Megazymes (Cat. No. K-FORM), according to manufacturer's specifications. As shown in FIG. 13, approximately 0.0125 g/L and 0.023 g/L formate was measured after 24 hours and 48 hours of growth, respectively. Similar results have been achieved by overexpressing an E. coli PFL in S. cerevesiae. Waks and Silver, Appl. Env. Microbiol. 75:1867-75 (2009).
[0382] PFL was also co-expressed in a strain expressing AADH. See FIG. 14. M2085 is a background strain with the genotype gpd1.DELTA.gpd2.DELTA.fdh1.DELTA.fdh2.DELTA. and M2032 has the genotype gpd1.DELTA.gpd2.DELTA.. Both of these strains are unable to grow anaerobically even in the presence of acetate. M2158 was created by integrating multiple copies of E. coli AADHs at the GPD1 and FCY1 locus in the M2085 background. The integration schemes are shown in FIGS. 26 and 27 and the corresponding nucleotide sequences for M2158 are listed below. One copy of AADH is driven by the native GPD1 promoter. See FIG. 26. The second copy is oriented in the reverse direction and is driven by the phosphofructokinase promoter. See FIG. 26. For AADH integration in FCY1, one copy is driven by the ENO1 promoter and a second copy is driven by the PFK1 promoter. See FIG. 27. M2182 was created by transforming a vector expressing the B. adolescentis PFLs into the M2158 background.
TABLE-US-00011 Sequence of M2158 AADH integrations at the GPD1 locus (nucleotide; SEQ ID No: 98) tagattcttttcgaatttgtggtgaagataggaaagttggtacagttctccatcaattttccatattttgctaa- aaactcccttg catgtctctttgcattcatttctcctgtatacgggttcaacacatcaatcgaattttgcaaagttgtctccatt- tctagaagactttcatcg ggaataaaaaattcatatccattattcaaaaacgataatgatccctcgtacttacctgtgtaattggatatttt- ataccatacttcaaaaa tatccttggcctcacttctggtaggatacctttcgccatgtctgccaatcatttgaacttgcgttaatctacaa- ccttcaggaatatcagt gggtataccgtagttagcgggaaaggagaaatatggcgcagaccctccaagaaagggaaacagactcttctgag- agccaatta gttcaatatccgcaaaacttctgagtgggatggagagtgccttagataatagaacacctaaacaaatggcaaaa- ataacgggcttc accattgttcctgtatggtgtattagaacatagctgaaaatacttctgcctcaaaaaagtgttaaaaaaaagag- gcattatatagagg taaagcctacaggcgcaagataacacatcaccgctctcccccctctcatgaaaagtcatcgctaaagaggaaca- ctgaaggttcc cgtaggttgtctttggcacaaggtagtacatggtaaaaactcaggatggaataattcaaattcaccaatttcaa- cgtcccttgtttaaa aagaaaagaatttttctctttaaggtagcactaatgcattatcgatgatgtaaccattcacacaggttatttag- cttttgatccttgaacc attaattaacccagaaatagaaattacccaagtggggctctccaacacaatgagaggaaaggtgactttttaag- ggggccagacc ctgttaaaaacctttgatggctatgtaataatagtaaattaagtgcaaacatgtaagaaagattctcggtaacg- accatacaaatattg ggcgtgtggcgtagtcggtagcgcgctcccttagcatgggagaggtctccggttcgattccggactcgtccaaa- ttattttttacttt ccgcggtgccgagatgcagacgtggccaactgtgtctgccgtcgcaaaatgatttgaattttgcgtcgcgcacg- tttctcacgtac ataataagtattttcatacagttctagcaagacgaggtggtcaaaatagaagcgtcctatgttttacagtacaa- gacagtccatactg aaatgacaacgtacttgacttttcagtattttctttttctcacagtctggttatttttgaaagcgcacgaaata- tatgtaggcaagcatttt ctgagtctgctgacctctaaaattaatgctattgtgcaccttagtaacccaaggcaggacagttaccttgcgtg- gtgttactatggcc ggaagcccgaaagagttatcgttactccgattattttgtacagctgatgggaccttgccgtcttcatttttttt- ttttttcacctatagagc cgggcagagctgcccggcttaactaagggccggaaaaaaaacggaaaaaagaaagccaagcgtgtagacgtagt- ataacagt atatctgacacgcacgtgatgaccacgtaatcgcatcgcccctcacctctcacctctcaccgctgactcagctt- cactaaaaagga aaatatatactctttcccaggcaaggtgacagcggtccccgtctcctccacaaaggcctctcctggggtttgag- caagtctaagttt acgtagcataaaaattctcggattgcgtcaaataataaaaaaagtaaccccacttctacttctacatcggaaaa- acattccattcaca tatcgtctttggcctatcttgttttgtcctcggtagatcaggtcagtacaaacgcaacacgaaagaacaaaaaa- agaagaaaacag aaggccaagacagggtcaatgagactgttgtcctcctactgtccctatgtctctggccgatcacgcgccattgt- ccctcagaaaca aatcaaacacccacaccccgggcacccaaagtccccacccacaccaccaatacgtaaacggggcgccccctgca- ggccctc ctgcgcgcggcctcccgccttgcttctctccccttccttttctttttccagttttccctattttgtcccttttt- ccgcacaacaagtatcag aatgggttcatcaaatctatccaacctaattcgcacgtagactggcttggtattggcagtttcgtagttatata- tatactaccatgagtga aactgttacgttaccttaaattctttctccctttaattttcttttatcttactctcctacataagacatcaaga- aacaattgtatattgtac accccccccctccacaaacacaaatattgataatataaagatggctgttactaatgtcgctgaacttaacgcac- tcgtagagcgtgtaaa aaaagcccagcgtgaatatgccagtttcactcaagagcaagtagacaaaatcttccgcgccgccgctctggctg- ctgcagatgct cgaatcccactcgcgaaaatggccgttgccgaatccggcatgggtatcgtcgaagataaagtgatcaaaaacca- ctttgcttctg aatatatctacaacgcctataaagatgaaaaaacctgtggtgttctgtctgaagacgacacttttggtaccatc- actatcgctgaacc aatcggtattatttgcggtatcgttccgaccactaacccgacttcaactgctatcttcaaatcgctgatcagtc- tgaagacccglaac gccattatcttctccccgcacccgcgtgcaaaagatgccaccaacaaagcggctgatatcgttctgcaggctgc- tatcgctgccg gtgctccgaaagatctgatcggctggatcgatcaaccttctgttgaactgtctaacgcactgatgcaccaccca- gacatcaacctg atcctcgcgactggtggtccgggcatggttaaagccgcatacagctccggtaaaccagctatcggtgtaggcgc- gggcaacact ccagttgttatcgatgaaactgctgatatcaaacgtgcagttgcatctgtactgatgtccaaaaccttcgacaa- cggcgtaatctgtg cttctgaacagtctgttgttgttgttgactctgtttatgacgctgtacgtgaacgttttgcaacccacggcggc- tatctgttgcagggta aagagctgaaagctgttcaggatgttatcctgaaaaacggtgcgctgaacgcggctatcgttggtcagccagcc- tataaaattgct gaactggcaggcttctctgtaccagaaaacaccaagattctgatcggtgaagtgaccgttgttgatgaaagcga- accgttcgcac atgaaaaactgtccccgactctggcaatgtaccgcgctaaagatttcgaagacgcggtagaaaaagcagagaaa- ctggttgctat gggcggtatcggtcatacctcttgcctgtacactgaccaggataaccaaccggctcgcgtttcttacttcggtc- agaaaatgaaaa cggcgcgtatcctgattaacaccccagcgtctcagggtggtatcggtgacctgtataacttcaaactcgcacct- tccctgactctgg gttgtggttcttggggtggtaactccatctctgaaaacgttggtccgaaacacctgatcaacaagaaaaccgtt- gctaagcgagct gaaaacatgttgtggcacaaacttccgaaatctatctacttccgccgtggctccctgccaatcgcgctggatga- agtgattactgat ggccacaaacgtgcgctcatcgtgactgaccgcttcctgttcaacaatggttatgctgatcagatcacttccgt- actgaaagcagc aggcgttgaaactgaagtcttcttcgaaglagaagcggacccgaccctgagcatcgttcgtaaaggtgcagaac- tggcaaactc cttcaaaccagacgtgattatcgcgctgggtggtggttccccgatggacgccgcgaagatcatgtgggttatgt- acgaacatccg gaaactcacttcgaagagctggcgctgcgctttatggatatccgtaaacgtatctacaagttcccgaaaatggg- cgtgaaagcga aaatgatcgctgtcaccaccacttctggtacaggttctgaagtcactccgtttgcggttgtaactgacgacgct- actggtcagaaat atccgctggcagactatgcgctgactccggatatggcgattgtcgacgccaacctggttatggacatgccgaag- tccctgtgtgct ttcggtggtctggacgcagtaactcacgccatggaagcttatgtttctgtactggcatctgagttctctgatgg- tcaggctctgcagg cactgaaactgctgaaagaatatctgccagcgtcctaccacgaagggtctaaaaatccggtagcgcgtgaacgt- gttcacagtgc agcgactatcgcgggtatcgcgtttgcgaacgccttcctgggtgtatgtcactcaatggcgcacaaactgggtt- cccagttccatat tccgcacggtctggcaaacgccctgctgatttgtaacgttattcgctacaatgcgaacgacaacccgaccaagc- agactgcattc agccagtatgaccgtccgcaggctcgccgtcgttatgctgaaattgccgaccacttgggtctgagcgcaccggg- cgaccgtact gctgctaagatcgagaaactgctggcatggctggaaacgctgaaagctgaactgggtattccgaaatctatccg- tgaagctggc gttcaggaagcagacttcctggcgaacgtggataaactgtctgaagatgcattcgatgaccagtgcaccggcgc- taacccgcgtt acccgctgatctccgagctgaaacagattctgctggatacctactacggtcgtgattatgtagaaggtgaaact- gcagcgaagaa agaagctgctccggctaaagctgagaaaaaagcgaaaaaatccgcttaagtcgagagcttttgattaagccttc- tagtccaaaaa acacgtttttttgtcatttatttcattttcttagaatagtttagtttattcattttatagtcacgaatgtttta- tgattctatatagggttg caaacaagcatttttcattttatgttaaaacaatttcaggtttaccttttattctgcttgtggtgacgcgtgta- tccgcccgctcttttggt cacccatgtatttaattgcataaataattcttaaaagtggagctagtctatttctatttacatacctctcattt- ctcatttcctcctaatgt gtcaatgatcatattcttaactggaccgatcttattcgtcagattcaaaccaaaagttcttagggctaccacag- gaggaaaattagtgtgat ataatttaaataatttatccgccattcctaatagaacgttgttcgacggatatctttctgcccaaaagggttct- aagctcaatgaagagcca atgtctaaacctcgttacattgaaaatacagtaaatggttccaccattattatgttggtcttgtttagtatggc- cgatcggcgtgtgttttg tttgcaccttttatatagtagaagaatatttgtcttaattcttattagtactgcaacctaaccactaattatca- acaattattggattatat aaaggaggtaaattgccggattaaaatcaaatatcattcatcaacaagtattcatattgtcggcatatttttac- atgcggtgtaagtatttg gatcgtattcttatagtgtcaatacctcgaagcagcgtttcaagtaccagacgtatgtaggaactttttaacgt- cgagtccgtaagatttga tcagtattaaaaaaatctagataaatgagtggtacaaataaaaacatcattaaaaatcgttaaataaaaaagta- tgaagatcatctatt aaagtattagtagccattagccttaaaaaaatcagtgctagtttaagtataatctcgggcgcgccggccgaggc- ggttaagcggat tttttcgcttttttctcagctttagccggagcagcttctttcttcgctgcagtttcaccttctacataatcacg- accgtagtaggtatccag cagaatctgtttcagctcggagatcagcgggtaacgcgggttagcgccggtgcactggtcatcgaatgcatctt- cagacagtttat ccacgttcgccaggaagtctgcttcctgaacgccagcttcacggatagatttcggaatacccagttcagctttc- agcgtttccagcc atgccagcagtttctcgatcttagcagcagtacggtcgcccggtgcgctcagacccaagtggtcggcaatttca- gcataacgacg gcgagcctgcggacggtcatactggctgaatgcagtctgcttggtcgggttgtcgttcgcattgtagcgaataa- cgttacaaatca gcagggcgtttgccagaccgtgcggaatatggaactgggaacccagtttgtgcgccattgagtgacatacaccc- aggaaggcg ttcgcaaacgcgatacccgcgatagtcgctgcactgtgaacacgttcacgcgctaccggatttttagacccttc- gtggtaggacgc tggcagatattctttcagcagtttcagtgcctgcagagcctgaccatcagagaactcagatgccagtacagaaa- cataagcttcca tggcgtgagttactgcgtccagaccaccgaaagcacacagggacttcggcatgtccataaccaggttggcgtcg- acaatcgcca tatccggagtcagcgcatagtctgccagcggatatttctgaccagtagcgtcgtcagtlacaaccgcaaacgga- gtgacttcaga acctgtaccagaagtggtggtgacagcgatcattttcgctttcacgcccattttcgggaacttgtagatacgtt- tacggatatccata aagcgcagcgccagctcttcgaagtgagtttccggatgttcgtacataacccacatgatcttcgcggcgtccat- cggggaaccac
cacccagcgcgataatcacgtctggtttgaaggagtttgccagttctgcacctttacgaacgatgctcagggtc- gggtccgcttcta cttcgaagaagacttcagtttcaacgcctgctgctttcagtacggaagtgatctgatcagcataaccattgttg- aacaggaagcggt cagtcacgatgagcgcacgtttgtggccatcagtaatcacttcatccagcgcgattggcagggagccacggcgg- aagtagatag atttcggaagtttgtgccacaacatgttttcagctcgcttagcaacggttttcttgttgatcaggtgtttcgga- ccaacgttttcagagat ggagttaccaccccaagaaccacaacccagagtcagggaaggtgcgagtttgaagttatacaggtcaccgatac- caccctgag acgctggggtgttaatcaggatacgcgccgttttcattttctgaccgaagtaagaaacgcgagccggttggtta- tcctggtcagtgt acaggcaagaggtatgaccgataccgcccatagcaaccagtttctctgctttttctaccgcgtcttcgaaatct- ttagcgcggtacat tgccagagtcggggacagtttttcatgtgcgaacggttcgctttcatcaacaacggtcacttcaccgatcagaa- tcttggtgttttctg gtacagagaagcctgccagttcagcaattttataggctggctgaccaacgatagccgcgttcagcgcaccgttt- ttcaggataaca tcctgaacagctttcagctctttaccctgcaacagatagccgccgtgggttgcaaaacgttcacgtacagcgtc- ataaacagagtc aacaacaacaacagactgttcagaagcacagattacgccgttgtcgaaggttttggacatcagtacagatgcaa- ctgcacgtttga tatcagcagtttcatcgataacaactggagtgttgcccgcgcctacaccgatagctggtttaccggagctgtat- gcggctttaacca tgcccggaccaccagtcgcgaggatcaggttgatgtctgggtggtgcatcagtgcgttagacagttcaacagaa- ggttgatcgat ccagccgatcagatctttcggagcaccggcagcgatagcagcctgcagaacgatatcagccgctttgttggtgg- catcttttgca cgcgggtgcggggagaagataatggcgttacgggtcttcagactgatcagcgatttgaagatagcagttgaagt- cgggttagtg gtcggaacgataccgcaaataataccgattggttcagcgatagtgatggtaccaaaagtgtcgtcttcagacag- aacaccacagg ttttttcatctttataggcgttgtagatatattcagaagcaaagtggtttttgatcactttatcttcgacgata- cccatgccggattcggca acggccattttcgcgagtgggattcgagcatctgcagcagccagagcggcggcgcggaagattttgtctacttg- ctcttgagtga aactggcatattcacgctgggctttttttacacgctctacgagtgcgttaagttcagcgacattagtaacagcc- ataattcttaattaac tttgatatgattttgtttcagattttttatataaaagctttcccaaatagtgctaaagtgaacttagatttttt- ggtacctgtttcgaaatt aaaaatagaaaaatttctctccctatattgttattcttacttcaaatttgtttatcgtttatttactaggcgag- acttgagtagacgacaat ccaaatagaattaacagattttattggtagaaagcaataatattctttagatggttgagaataaagaagtaaaa- aaaccagtaaagagaaa aagaaaaggaagaaaattaaagaaaaaggatgattacacaagaagataataaaaaaactcctttattaagagcg- gaagaatttaa taatgaagatgggaataagcaaaacaaaaacaaagaagggaaaaaaaataaaaaatcgtatttatttatttaaa- aaatcatgttgat gacgacaatggaaaaaaaaaaccgatttcactttctcatccttatatttttcaaaggttgatgcaagtcgatct- caaatcggataacg ctgccaactgggaaattccgcaattccgcaagaaaaaaaaaaatgtgaaaacgtgattgcattttttacaggtc- ctaaaggatttag cccacatatcaagagggtggcagtaattgcactgattaagcattcgtcagcattaggcgaatgtgtgcatgaat- attgccagtgtgc tcgatattagagagtacattgaagaatattgtaccggattatgtacaataactttgttaatgagatattaattt- tcttttttactagccgcta tcccatgcacgatgctaaatttcaagaagaaactgagatttaaaaaattagtggaagctgataaaacggactat- aatggtgtatgga ttgaggaatctcgacatgtttttccatcgttttcaacgatgactgtaacccgtagattgaaccaggcatgccaa- agttagttagatcag ggtaaaaattatagatgaggtatttattggagaaagataacatatcatactttcccccacttttttcgaggctc- ttctatatcatattcata aattagcattatgtcatttctcataactactttatcacgttagaaattacttattattattaaattaatacaaa- atttagtaaccaaataaat ataaataaatatgtatatttaaattttaaaaaaaaaatcctatagagcaaaaggattttccattataatattag- ctgtacacctcttccgcat tttttgagggtggttacaacaccactcattcagaggctgtcggcacagttgcttctagcatctggcgtccgtat- gtatgggtgtatttt aaataataaacaaagtgccacaccttcaccaattatgtctttaagaaatggacaagttccaaagagcttgccca- aggctcgacaag gatgtactttggaatatctatattcaagtacgtggcgcgcatatgtttgagtgtgcacacaataaaggttttta- gatattttgcggcgtc ctaagaaaataaggggtttcttaaaaaataacaatagcaaacaaagttccttacgatgatttcagatgtgaata- gcatggtcatgatg agtatatacgtttttataaataattaaaagttttcctcttgtctgtttttttgttggctcgtggttgttctcga- aaaaggagagttttcatt ttcgaaataggtgatttcatcatgttgttatcaccccacgacgaagataatacggagctcaccgttttcttttt- ttttccctttggctgaaa tttcccaccagaacaaacgtgacaaaattatctttgaatccaaagtagcttatatatatacgtagaagtgtttc- gagacacacatccaaa tacgaggttgttcaatttaaacccaagaatacataaaaaaaatatagatatattaacttagtaaacaatgactg- caagcacaccatcc aatgtcatgacattgttcttgttaaggcatggacaaagtgaattgaatcacgagaatatattctgtggttggat- tgacgctaagctaac cgaaaaaggtaaagaacaagctcgtcattctgccgagctaatcgaacaatattgtaaagctaataatttgagat- taccccagattgg ttacacctcacgtttaattaggacccaacagaccatagaaacgatgtgtgaagaatttaagttaaagccacaac- tgcaggttgttta cgactttaataaaatcaaacttggagacgaatttggcagtgatgacaaggataatatgaaaatcccgattcttc- aaacttggaggct aaatgaacgtcattacggttcctggcagggccagaggaaaccgaatgttttaaaagaatatggtaaggataaat- atatgttcattag gagagattacgagggtaagccaccacctgtagatcttgaccgtgagatgattcaacaagaaaatgagaagggct- cttctactggg tacgaattcaaggagccaaacagacaaataaaatatgaattggaatgcagcaatcatgacattgtattaccgga- ttccgaatctctt cgtgaagtggtttatagattgaatccttttctacaaaatgtcatattaaaattagccaatcaatatgatgaatc- ttcatgcctgattgtgg gccatggaagttcagtgagatcgctactgaaaattctggagggtatatcagatgatgacatcaagaatgttgat- attccaaatggta tccccttagtcgttgaattagataagaataatggtcttaagtttatcagaaaattctacctagatcctgaatct- gctaagatcaatgctg agaaagtccgtaatgagggtttcataaaaaatccttaaggggggtaagtatataatataattgtgtattttccg- aagtataatgaaaac caatagaaaacttattataagtccaatgaggtactttaaaaatgtgatatttataagaacattcctgaatgcag- atatatgatatatattg taaatatatatagatgtgtatatgtatttccattttgtgtgaggttttcttcttttatctcctatataatttgt- aaccttaattaacccatg acataaccaatattagcctttgcaaattttgtaacttcttgacgttgttctaacgacaaatcttcatgcttcga- ttttatatgccttgttaa agcatccagtctcgaaaacgtcttctgatagccctcagatccaagaatttttatacactccgagcaacggaaga- caatcttccttttagcgtg aatggtattttggtgtctcgttaaatcataggaccttgaaaattgggcaccacacggttcatttgtaatgagat- tcattatctgacacgt aaatatttcgttattaccgtcagaagatgacgtatgggccgatggtgatgcagtcgaaggtttcgaattcgaat- ttgtagatgaatgt gaagataagtgcttc Sequence of M2158 AADH integrations at the GPD1 locus (nucleotide; SEQ ID NO: 99): cagaattggtgatattcttcattatcccctcgacatctttacttttgatcagctttgtgtatagcgggatatcc- gattggaact tggcttcagcaacaaacttgccaaagtggattctcctactcaagctttgcaaacattctatatctctagtggca- acagaaccgaagtt attcttatcatcaccatctcttttcgaaattaatggtataatcttttcaatataaactttttttattttatcat- tgtaattaacttctgggg cataaggcgccaaaatttgtgggtagttaatgctcggtaagaatgatttctgaatcttgtcaggaaagaaggga- gtttcatcaggtgattcg aatcttctgatgcgagaatgcgcaatttcaagatttgaaagagcccaatccaagaaagatcctttaaaattcgg- aatttctaaacctg gatggtttgcctcataaactgaaggacatgtggcgaaatgcgacctctcaataaatttgaagatgatcgaatcc- tccattctaactaa ttcatctctaatattttgtagatttaaaacagtttctggttttgtgaaatccatatcttataccaattttatgc- aggatgctgagtgctatt tgttagcaaaacggaatcgatgtttcaacttttcaatactttttttcttcttttcttcgaacttcgaagattat- agagatccattgaaaatt tacgataaaggaaatgcaacacgaagtttgaaaaaaagttgatattgaaaaaaaaaaaaaaagagaaccaaaaa- aaaattaaaaaacg tgaaaacgatggtttaacaacttttttcgaatttggtatacgtggaaaaacgaatgtatagatgcatttttaaa- gaatatatataaaattt agtaattgtattccgcgagcggcgcaataggtgatttcatttagctgctttcagtttgcgtatcatttcttcat- tgatcttggcttctctatc taaatcctctttcgacttgtaaagtccccaagttctaaaccataagaaccgcctcaatctggaaaatttgtcag- tatcaagaccataat tcgtgtatgactgaatcaaatgtaatccactttcgtcatgagtaaattcggccttgctcagagactcctggatt- ttggctaacaacgca gtcccttcgatgcatatagctaggccacaaattatgccaataacggtccatgggttgatgttttcttgaattct- ttcgtttttcatgctattt gcgtcttcccaagtcccagcgttccagtattcatactgcgcgttagagtggtagccataagagccggcatattg- gtaattttcagtat taacgttagaacgtggtgaatacgatgtggtccagccttgcctcgttgtgtcatatacgatctttttctttggg- tcacaaagaatatcat atgcttgagagatgactttaaatctatgtagtttttcgcttgatgttagcagcagcggtgatttactatcactg- ttggtaaccttttctgag ctaaatatttgaatgttatcggaatggtcagggtggtacaattttacataacgatgatattttttttttaacga- cttcttgtccagtttagga tttccagatccggcctttggaatgccaaaaatatcatagggagttggatctgccaactcaggccattgttcatc- ccttatcgtaagttt tctattgccatttttatcgttcgctgtagcatacttagctataaaagtgatttgtgggggacacttttctacac- atgataagtgccacttg aataaaaatgggtatacgaacttatggtgtagcataacaaatatattgcaagtagtgacctatggtgtgtagat- atacgtacagttag ttacgagcctaaagacacaacgtgtttgttaattatactgtcgctgtaatatcttctcttccattatcaccggt- cattccttgcaggggc tttatgttgatgagagccagcttaaagagttaaaaatttcatagctactagtcttctaggcgggttatctactg- atccgagcttccacta ggatagcacccaaacacctgcatatttggacgacctttacttacaccaccaaaaaccactttcgcctctcccgc- ccctgataacgtc
cactaattgagcgattacctgagcggtcctcttttgtttgcagcatgagacttgcatactgcaaatcgtaagta- gcaacgtctcaagg tcaaaactgtatggaaaccttgtcacctcacttaattctagctagcctaccctgcaagtcaagaggtctccgtg- attcctagccacct caaggtatgcctctccccggaaactgtggccttttctggcacacatgatctccacgatttcaacatataaatag- cttttgataatggca atattaatcaaatttattttacttctttcttgtaacatctctcttgtaatcccttattccttctagctattttt- cataaaaaaccaagcaa ctgcttatcaacacacaaacactaaatcaaaatggctgttactaatgtcgctgaacttaacgcactcgtagagc- gtgtaaaaaaagcccag cgtgaatatgccagtttcactcaagagcaagtagacaaaatcttccgcgccgccgctctggctgctgcagatgc- tcgaatcccact cgcgaaaatggccgttgccgaatccggcatgggtatcgtcgaagataaagtgatcaaaaaccactttgcttctg- aatatatctaca acgcctataaagatgaaaaaacctgtggtgttctgtctgaagacgacacttttggtaccatcactatcgctgaa- ccaatcggtattat ttgcggtatcgttccgaccactaacccgacttcaactgctatcttcaaatcgctgatcagtctgaagacccgta- acgccattatcttct ccccgcacccgcgtgcaaaagatgccaccaacaaagcggctgatatcgttctgcaggctgctatcgctgccggt- gctccgaaa gatctgatcggctggatcgatcaaccttctgttgaactgtctaacgcactgatgcaccacccagacatcaacct- gatcctcgcgact ggtggtccgggcatggttaaagccgcatacagctccggtaaaccagctatcggtgtaggcgcgggcaacactcc- agttgttatc gatgaaactgctgatatcaaacgtgcagttgcatctgtactgatgtccaaaaccttcgacaacggcgtaatctg- tgcttctgaacag tctgttgttgttgttgactctgtttatgacgctgtacgtgaacgttttgcaacccacggcggctatctgttgca- gggtaaagagctgaa agctgttcaggatgttatcctgaaaaacggtgcgctgaacgcggctatcgttggtcagccagcctataaaattg- ctgaactggcag gcttctctgtaccagaaaacaccaagattctgatcggtgaagtgaccgttgttgatgaaagcgaaccgttcgca- catgaaaaactg tccccgactctggcaatgtaccgcgctaaagatttcgaagacgcggtagaaaaagcagagaaactggttgctat- gggcggtatc ggtcatacctcttgcctgtacactgaccaggataaccaaccggctcgcgtttcttacttcggtcagaaaatgaa- aacggcgcgtat cctgattaacaccccagcgtctcagggtggtatcggtgacctgtataacttcaaactcgcaccttccctgactc- tgggttgtggttct tggggtggtaactccatctctgaaaacgttggtccgaaacacctgatcaacaagaaaaccgttgctaagcgagc- tgaaaacatgt tgtggcacaaacttccgaaatctatctacttccgccgtggctccctgccaatcgcgctggatgaagtgattact- gatggccacaaa cgtgcgctcatcgtgactgaccgcttcctgttcaacaatggttatgctgatcagatcacttccgtactgaaagc- agcaggcgttgaa actgaagtcttcttcgaagtagaagcggacccgaccctgagcatcgttcgtaaaggtgcagaactggcaaactc- cttcaaaccag acgtgattatcgcgctgggtggtggttccccgatggacgccgcgaagatcatgtgggttatgtacgaacatccg- gaaactcactt cgaagagctggcgctgcgctttatggatatccgtaaacgtatctacaagttcccgaaaatgggcgtgaaagcga- aaatgatcgct gtcaccaccacttctggtacaggttctgaagtcactccgtttgcggttgtaactgacgacgctactggtcagaa- atatccgctggca gactatgcgctgactccggatatggcgattgtcgacgccaacctggttatggacatgccgaagtccctgtgtgc- tttcggtggtct ggacgcagtaactcacgccatggaagcttatgrttctgtactggcatctgagttctctgatggtcaggctctgc- aggcactgaaact gctgaaagaatatctgccagcgtcctaccacgaagggtctaaaaatccggtagcgcgtgaacgtgttcacagtg- cagcgactat cgcgggtatcgcgtttgcgaacgccttcctgggtgtatgtcactcaatggcgcacaaactgggttcccagttcc- atattccgcacg gtctggcaaacgccctgctgatttgtaacgttattcgctacaatgcgaacgacaacccgaccaagcagactgca- ttcagccagtat gaccgtccgcaggctcgccgtcgttatgctgaaattgccgaccacttgggtctgagcgcaccgggcgaccgtac- tgctgctaag atcgagaaactgctggcatggctggaaacgctgaaagctgaactgggtattccgaaatctatccgtgaagctgg- cgttcaggaa gcagacttcctggcgaacgtggataaactgtctgaagatgcattcgatgaccagtgcaccggcgctaacccgcg- ttacccgctg atctccgagctgaaacagattctgctggatacctactacggtcgtgattatgtagaaggtgaaactgcagcgaa- gaaagaagctg ctccggctaaagctgagaaaaaagcgaaaaaatccgcttaagtcgagagcttttgattaagccttctagtccaa- aaaacacgttttt ttgtcatttatttcattttcttagaatagtttagtttattcattttatagtcacgaatgttttatgattctata- tagggttgcaaacaagc atttttcattttatgttaaaacaatttcaggtttaccttttattctgcttgtggtgacgcgtgtatccgcccgc- tcttttggtcacccatg tatttaattgcataaataattcttaaaagtggagctagtctatttctatttacatacctctcatttctcatttc- ctcctaatgtgtcaatg atcatattcttaactggaccgatcttattcgtcagattcaaaccaaaagttcttagggctaccacaggaggaaa- attagtgtgatataatt taaataatttatccgccattcctaatagaacgttgttcgacggatatctttctgcccaaaagggttctaagctc- aatgaagagccaatgtc taaacctcgttacattgaaaatacagtaaatggttccaccattattatgttggtcttgtttagtatggccgatc- ggcgtgtgttttgtttg caccttttatatagtagaagaatatttgtcttaattcttattagtactgcaacctaaccactaattatcaacaa- ttattggattatataaa ggaggtaaattgccggattaaaatcaaatatcattcatcaacaagtattcatattgtcggcatatttttacatg- cggtgtaagtatttgga tcgtattcttatagtgtcaatacctcgaagcagcgtttcaagtaccagacgtatgtaggaactttttaacgtcg- agtccgtaagatttgat cagtattaaaaaaatctagataaatgagtggtacaaataaaaacatcattaaaaatcgttaaataaaaaagtat- gaagatcatctattaaa gtattagtagccattagccttaaaaaaatcagtgctagtttaagtataatctcgggcgcgccggccgaggcggt- taagcggattttttcgc ttttttctcagctttagccggagcagcttctttcttcgctgcagtttcaccttctacataatcacgaccgtagt- aggtatccagcagaatc tgtttcagctcggagatcagcgggtaacgcgggttagcgccggtgcactggtcatcgaatgcatcttcagacag- tttatccacgttcg ccaggaagtctgcttcctgaacgccagcttcacggatagatttcggaatacccagttcagctttcagcgtttcc- agccatgccagc agtttctcgatcttagcagcagtacggtcgcccggtgcgctcagacccaagtggtcggcaatttcagcataacg- acggcgagcct gcggacggtcatactggctgaatgcagtctgcttggtcgggttgtcgttcgcattgtagcgaataacgttacaa- atcagcagggcg tttgccagaccgtgcggaatatggaactgggaacccagtttgtgcgccattgagtgacatacacccaggaaggc- gttcgcaaac gcgatacccgcgatagtcgctgcactgtgaacacgttcacgcgctaccggatttttagacccttcgtggtagga- cgctggcagat attctttcagcagtttcagtgcctgcagagcctgaccatcagagaactcagatgccagtacagaaacataagct- tccatggcgtga gttactgcgtccagaccaccgaaagcacacagggacttcggcatgtccataaccaggttggcgtcgacaatcgc- catatccgga gtcagcgcatagtctgccagcggatatttctgaccagtagcgtcgtcagttacaaccgcaaacggagtgacttc- agaacctgtac cagaagtggtggtgacagcgatcattttcgctttcacgcccattttcgggaacttgtagatacgtttacggata- tccataaagcgca gcgccagctcttcgaagtgagtttccggatgttcgtacataacccacatgatcttcgcggcgtccatcggggaa- ccaccacccag cgcgataatcacgtctggtttgaaggagtttgccagttctgcacctttacgaacgatgctcagggtcgggtccg- cttctacttcgaa gaagacttcagtttcaacgcctgctgctttcagtacggaagtgatctgatcagcataaccattgttgaacagga- agcggtcagtca cgatgagcgcacgtttgtggccatcagtaatcacttcatccagcgcgattggcagggagccacggcggaagtag- atagatttcg gaagtttgtgccacaacatgttttcagctcgcttagcaacggttttcttgttgatcaggtgtttcggaccaacg- ttttcagagatggagt taccaccccaagaaccacaacccagagtcagggaaggtgcgagtttgaagttatacaggtcaccgataccaccc- tgagacgct ggggtgttaatcaggatacgcgccgttttcattttctgaccgaagtaagaaacgcgagccggttggttatcctg- gtcagtgtacag gcaagaggtatgaccgataccgcccatagcaaccagtttctctgctttttctaccgcgtcttcgaaatctttag- cgcggtacattgcc agagtcggggacagtttttcatgtgcgaacggttcgctttcatcaacaacggtcacttcaccgatcagaatctt- ggtgttttctggtac agagaagcctgccagttcagcaattttataggctggctgaccaacgatagccgcgttcagcgcaccgtttttca- ggataacatcct gaacagctttcagctctttaccctgcaacagatagccgccgtgggttgcaaaacgttcacgtacagcgtcataa- acagagtcaac aacaacaacagactgttcagaagcacagattacgccgttgtcgaaggttttggacatcagtacagatgcaactg- cacgtttgatat cagcagtttcatcgataacaactggagtgttgcccgcgcctacaccgatagctggtttaccggagctgtatgcg- gctttaaccatg cccggaccaccagtcgcgaggatcaggttgatgtctgggtggtgcatcagtgcgttagacagttcaacagaagg- ttgatcgatcc agccgatcagatctttcggagcaccggcagcgatagcagcctgcagaacgatatcagccgctttgttggtggca- tcttttgcacg cgggtgcggggagaagataatggcgttacgggtcttcagactgatcagcgatttgaagatagcagttgaagtcg- ggttagtggtc ggaacgataccgcaaataataccgattggttcagcgatagtgatggtaccaaaagtgtcgtcttcagacagaac- accacaggtttt ttcatctttataggcgttgtagatatattcagaagcaaagtggtttttgatcactttatcttcgacgataccca- tgccggattcggcaac ggccattttcgcgagtgggattcgagcatctgcagcagccagagcggcggcgcggaagattttgtctacttgct- cttgagtgaaa ctggcatattcacgctgggctttttttacacgctctacgagtgcgttaagttcagcgacattagtaacagccat- aattcttaattaacttt gatatgattttgtttcagattttttatataaaagctttcccaaatagtgctaaagtgaacttagattttttggt- acctgtttcgaaattaaa aatagaaaaatttctctccctatattgttattcttacttcaaatttgtttatcgtttatttactaggcgagact- tgagtagacgacaatcc aaatagaattaacagattttattggtagaaagcaataatattctttagatggttgagaataaagaagtaaaaaa- accagtaaagagaaaaa gaaaaggaagaaaattaaagaaaaaggatgattacacaagaagataataaaaaaactcctttattaagagcgga- agaatttaata atgaagatgggaataagcaaaacaaaaacaaagaagggaaaaaaaataaaaaatcgtatttatttatttaaaaa- atcatgttgatga cgacaatggaaaaaaaaaaccgatttcactttctcatccttatatttttcaaaggttgatgcaagtcgatctca- aatcggataacgctg
ccaactgggaaattccgcaattccgcaagaaaaaaaaaaatgtgaaaacgtgattgcattttttacaggtccta- aaggatttagccc acatatcaagagggtggcagtaattgcactgattaagcattcgtcagcattaggcgaatgtgtgcatgaatatt- gccagtgtgctcg atattagagagtacattgaagaatattgtaccggattatgtacaataactttgttaatgagatattaattttct- tttttactagccgctatcc catgcacgatgctaaatttcaagaagaaactgagatttaaaaaattagtggaagctgataaaacggactataat- ggtgtatggattg aggaatctcgacatgtttttccatcgttttcaacgatgactgtaacccgtagattgaaccaggcatgccaaagt- tagttagatcaggg taaaaattatagatgaggtttaattaaacaagcacgcagcacgctgtatttacgtatttaattttatatatttg- tgcatacactactaggg aagacttgaaaaaaacctaggaaatgaaaaaacgacacaggaagtcccgtatttactattttttccttcctttt- gatggggcagggc ggaaatagaggataggataagcctactgcttagctgtttccgtctctacttcggtagttgtctcaattgtcgtt- tcagtattacctttaga gccgctagacgatggttgagctatttgttgagggaaaactaagttcatgtaacacacgcataacccgattaaac- tcatgaatagctt gattgcaggaggctggtccattggagatggtgccttattttccttataggcaacgatgatgtcttcgtcggtgt- tcaggtagtagtgta cactctgaatcagggagaaccaggcaatgaacttgttcctcaagaaaatagcggccataggcatggattggtta- accacaccag atatgcttggtgtggcagaatatagtccttttggtggcgcaattttcttgtacctgtggtagaaagggagcggt- tgaactgttagtata tattggcaatatcagcaaatttgaaagaaaattgtcggtgaaaaacatacgaaacacaaaggtcgggccttgca- acgttattcaaa gtcattgtttagttgaggaggtagcagcggagtatatgtattccttttttttgcctatggatgttgtaccatgc- ccattctgctcaagcttt tgttaaaattatttttcagtattttttcttccatgttgcgcgttacgagaacagaagcgacagataaccgcaat- catacaactagcgcta ctgcggggtgtaaaaagcacaagaactaagccaagatcacaacagttatcgataaaatagcagtgtttgcatgg- ccattgagaag gacaacattggcgtgcgcgccaatgttgtctcaccatgtagctccaaacgagttgtaagagacggaccgctcac- gcttccgaag cggtcagaaaacgcttcccagtatgcagttgacctacattcaacctgcaaatattgctttgcttcaagaaatga- ttacacagacgtct attttcttctacataatgcacgaaacttgggcatttagtcatgtagccgcctagcgagcctgggtgccgtccta- tctcctttgttcgtgc aaagagacaggaacacacactgcgttctcttgcggccggtctggcggactcaggggtgcggcgtttgcttaacc- ggagggaat aataaaatcggggtgacgcaagtatgaagtcatgtgtgcttagcaattacgtagagggattagaaataatagtg- tgcggttatcgg aaccggctcttgttcccgtttagagcaacccaggtgcaggcgtactttaaagtattttctttcttttttttcct- gctacttacgctaggag ctgccgcagctgcaaagccgacgtcggagaggcaggtgatcttcggctcggccgacaaatcccctggatatcat- tggcctgtcg aggtatcggccgcgtggaactaccgggaattactatgcaaaacaattggaaatctggtaggaaaaccttgttct- agaacttggcg attgctgacaaagaagaaaagggcctattgttgctgcctcttttgttgttcttcctcgtattgtcttgccggtg- ttctttgtgtcttttgtgt gtaggttcttactattatagtgctctttgctattatattttcttcgttttcactttgcgtaatgtaacggtctt- aaacaaagtttttttttt ttcgctcttgcattttccttttctgctctatcttatttgctaattgtagtttcagaagttttacttaaatatag- cactattttccagtttt aatgtttcttctcattgctttcttttataattttcgcatataattatacatttacggtgtcttaactctccctc- ttcacccctcattattc cagaaaatactaatacttcttcacacaaaagaacgcagttagacaatcaacaatgaatcctaaatcctctacac- ctaagattccaagaccc aagaacgcatttattctgttcagacagcactaccacaggatcttaatagacgaatggaccgctcaaggtgtgga- aataccccataattcaa acatttctaaaattattggtacgaagtggaagggcttacaaccggaagataaggcacactgggaaaatctagcg- gagaaggagaaactaga acatgaaaggaagtatcctgaatacaaatacaagccggtaagaaagtctaagaagaagcaactacttttgaagg- aaatcgagca acagcagcagcaacaacagaaagaacagcagcagcagaaacagtcacaaccgcaattacaacagccctttaaca- acaatata gttcttatgaaaagagcacattctctttcaccatcttcctcggtgtcaagctcgaacagctatcagttccaatt- gaacaatgatcttaag aggttgcctattccttctgttaatacttctaactatatggtctccagatctttaagtggactacctttgacgca- tgataagacggcaaga gacctaccacagctgtcatctcaactaaattctattccatattactcagctccacacgacccttcaacgagaca- tcattacctcaacg tcgctcaagctcaaccaagggctaactcgacccctcaattgccctttatttcatccattatcaacaacagcagt- caaacaccggtaa ctacaactaccacatccacaacaactgcgacatcttctcctgggaaattctcctcttctccgaactcctctgta- ctggagaacaaca gattaaacagtatcaacaattcaaatcaatatttacctccccctctattaccttctctgcaagattttcaactg- gatcagtaccagcagc taaagcagatgggaccaacttatattgtcaaaccactgtctcacaccaggaacaatctattgtccacaactacc- cctacgcatcatc acattcctcatataccaaaccaaaacattcctctacatcaaattataaactcaagcaacactgaggtcaccgct- aaaactagcctag tttctccgaaatgattttttttttccatttcttctttccgttatattatattatactatattccctttaactaa- aaatttatgcatttgg ctcctgtttaataaaagtttaaatc
[0383] These strains were grown in YPD containing 50 g/L glucose under anaerobic and microaerobic conditions, and formate was measured over 142 hours. As shown in FIG. 14, at the end of 142 hours, strains containing the heterologous PFL and AADH made more formate than the wildtype strain M139.
Example 6
Expression of PFL and AADH and Detection of Ethanol
[0384] The purpose of this Example is to determine whether formate production can confer anaerobic growth on fdh, gpd, and/or fps deletion strains. Yeast strains containing an fdh1.DELTA.fdh2.DELTA.gpd1.DELTA.gpd2.DELTA. genetic background (M2025) were transformed with vectors expressing PflA/B cassettes from C. cellulolyticum (TB274) and E. coli (TB275). Each of these strains also contained a second construct expressing the E. coli AdhE. YPD medium was prepared and added to hungate tubes, oxygen was purged with nitrogen, and the tubes were autoclaved for 20 minutes. A pre-culture of TB274 and TB275 was prepared overnight in YPD medium containing antibiotics which select for maintenance of both plasmids. A pre-culture of M1901, the parent strain of M2025, and M2025 itself were prepared in YPD and included as positive and negative controls, respectively. A strain referred to as TB267 was created which contains only the bifunctional ADH plasmid. This strain was prepared in YPD plus antibiotic to select for the plasmid. This strain controls for the potential effect of ADH or other electron acceptors that may be present in YPD medium.
[0385] All strains were inoculated to final OD's of about 0.05 or below. The OD of each culture was measured at 0, 24, 48, and 72 hours (FIG. 15), and samples were prepared and submitted for HPLC determination of metabolite levels. As expected, the M1901 strain grew fairly quickly, consuming all the sugar substrate by 24 hours. The M2025 and TB267 strains, which are unable to make glycerol, did not show a significant increase in OD during this experiment. The TB274 and TB275 strains, which express both PFL and ADH, were able to grow after a 24 hour lag time. See FIG. 15. These data indicate that the introduced metabolic pathway in TB274 and TB275 does not block cellular growth.
[0386] The production of glycerol in these strains is shown in FIG. 16. The anaerobic growth of M1901 was accompanied by glycerol production as expected. A trace amount of glycerol was observed in the PflA/B containing strains TB274 and TB275, but this was at or below the level of the negative controls which did not grow. See FIG. 16. These data, in conjunction with the OD data, indicate that the expression of PflA/B and AdhE allowed for anaerobic growth of M2025 without associated glycerol production.
[0387] The production of ethanol and glucose concentration are shown in FIGS. 17 and 18, respectively. Both M1901 and TB274 consumed all the sugar, but about 5 g/L glucose remained in the TB275 fermentation. See FIG. 18. TB274 had an 11% increase in ethanol yield in comparison to M1901. See FIG. 17. The increase in yield was higher than expected and likely came partially at the expense of biomass, although this was not determined.
[0388] Strains containing PFL and AADH were compared to other strains engineered to express AADH. A description of these strains appears in Table 4.
TABLE-US-00012 TABLE 4 Genetic Backgrounds for PFL Expression Strain Name Genetic Background M139 wt control M2085 gdp1.DELTA. gpd2.DELTA. fdh1.DELTA. fdh2.DELTA. M2158 gdp1.DELTA. gpd2.DELTA. fdh1.DELTA. fdh2.DELTA. + AADH M2182 gdp1.DELTA. gpd2.DELTA. fdh1.DELTA. fdh2.DELTA. + AADH and PFL
[0389] These five strains were tested in nitrogen purged bottles. As shown in FIG. 19, strain M2182 which has both PFL and AADH expression cassettes in a gdp1.DELTA. gpd2.DELTA. fdh1.DELTA. fdh2.DELTA. background, had a faster growth rate and reached a higher OD than M2158, which contains only the bifunctional ADH activity and did not appear to grow at all. See FIG. 19. These data show that a strain expressing both PFL and AADH activities grows better than the other engineered functionalities. Similar improvements over these other engineered functionalities are also observed in corn mash fermentations (see Example 7 below).
Example 7
Production of Ethanol from Corn Mash
[0390] The purpose of this experiment was to determine whether PFLs cloned from the organisms listed below in Table 5 could provide for increased ethanol yield when used in fermentation of 20% corn mash. A total of nine PFLs have been tested for function in yeast. Of these, only the C. cellulolyticum PFL had no positive effect on growth of glycerol synthesis mutants in corn mash fermentations. Additionally, no formate was observed in formate assays when using a strain containing C. cellulolyticum PFL. This strain was not tested for performance on corn mash fermentation.
[0391] Eight PFLs were tested for functionality in strain M2158 which has the E. coli AADH integrated on the chromosome of a gpd1.DELTA. gpd2.DELTA. fdh1.DELTA. fdh2.DELTA. background (M2085) or M2275, which is identical to M2158 except that it also has the gpd2.DELTA.::GPD1 glycerol reduction mutation. Two separate corn mash fermentation experiments were performed using 20% solids in a baffled shake flask using the strains listed in Table 5. Performance of the strains was evaluated by HPLC analysis of metabolites.
TABLE-US-00013 TABLE 5 Genetic Backgrounds for Corn Mash Fermentations Strain Name Genetic Background M139 wt control M2085 gpd1.DELTA. gpd2.DELTA. fdh1.DELTA. fdh2.DELTA. M2158 integrated AADH M2180 M2158 + B. lichenformis PFL M2181 M2158 + L. planatarum PFL M2182 M2158 + B. adolescentis PFL M2183 M2158 + S. thermophilus PFL M2184 M2158 + E. coli PFL M2321 M2158 + L. casei PFL M2322 M2158 + C. reinhardtii PFL M2323 M2158 + Piromyces PFL M2324 M2158 + E. coli PFL M2275 M2158 + gpd.DELTA.::GPD1 M2326 M2275 + B. adolescentis PFL
[0392] As shown in FIGS. 21 and 22, the addition of PFL improves the ethanol yield of strains containing only AADH. FIGS. 23 and 24 show that these strains do not make glycerol as expected. The approximately 4 g/L glycerol observed is already in the industrial mash substrate used for this experiment. FIG. 25 demonstrates a 9% increase in ethanol yield with strain M2326, which is a glycerol reduction strain.
Example 8
[0393] The following example demonstrates the creation of the Saccharomyces cerevisiae strain M3625. The genotype of strain M3625 is: .DELTA.gpd2:: B. adolescentis pflA/pflB/adhE .DELTA.fdh1 .DELTA.fdh2::B. adolescentis pflA/pflB/adhE fcy1.DELTA.::S. fibuligera glucoamylase (glu-0111-CO). Strain M2390 is referred to as Ethanol Red (new) from LaSaffre (pahc.com/Phibro/Performance-Products/Catalog/23/Ethanol-Red.htm- l).
[0394] The genetic modification techniques utilized to develop Saccharomyces cerevisiae strain M3625 relied upon directed integration to insert the genes for Bifidobacterium adolescentis pflA, pflB, AdhE and S. fibuligera glu-0111-CO at specific and known sites within the yeast chromosome. The directed integration approach creates transgenic strains with integration events that are stable and easy to characterize. Chromosomal integration, by its very nature, reduces the probability of any mobilization of the heterologous DNA and enhances strain stability relative to other approaches.
[0395] The MX cassettes are the most commonly used engineering tool when an insertion or deletion of a genetic element is desired at a given chromosomal loci (Wach A, et al., Yeast 10(13):1793-1808 (1994)). A recyclable MX cassette contains one or more markers which enable both dominant and negative selection (Goldstein, A. L. and McCusker, J. H., Yeast 15:1541-1553 (1999); Ito-Harashima, S. and McCusker, J. H., Yeast 21:53-61 (2004)). The dominant marker enables selection for the modification and the counter selectable marker enables subsequent removal of the marker system via Cre-Lox mediated recombination (Gtilldener, Ulrich, et al., Nucleic Acids Research (1996) 24(13) 2519-2524) or recombination between duplicated homologous regions flanking the cassette. Since the markers are removed, they can be reused during subsequent engineering steps and ensures no undesirable foreign genetic material remains in the strain.
[0396] To create stable homozygous integrations in M3625, two new HSV-thymidine kinase (TDK) based MX cassettes were developed. Expression of thymidine kinase in S. cerevisiae results in sensitivity to the compound fluoro-deoxyuracil (FUDR). The cellular toxicity of FUDR is dependent on the presence of two enzymes involved in pyrimidine metabolism: thymidine kinase (Tdk) and thymidilate synthetase (ThyA). Tdk converts FUDR to fluoro-dUMP (F-dUMP) which is a covalent inhibitor of ThyA and the basis for counter selection in a variety of eukaryotic organisms (Czako, M., and L. Marton, (1994) Plant Physiol 104:1067-1071; Gardiner, D. M., and B. J. Howlett, (2004) Curr Genet 45:249-255; Khang, C. H., et al., (2005) Fungal Genet Biol 42:483-492; Szybalski, W. (1992) Bioessays 14:495-500).
[0397] The HSV-TDK expression cassette was independently fused to two commonly used dominant selectable markers which confer resistance to the drugs G418 (Kan) or nourseothricin (Nat) (Goldstein, A. L. and McCusker, J. H., Yeast 15:1541-1553 (1999)). Transformation of both double expression cassettes, referred to as KT-MX and NT-MX, enables positive selection for integration into both chromosomes as illustrated in FIG. 28A. The transformed deletion assembly contains four PCR products, a 5'flank (p1) which is homologous upstream of the target site, KT-MX cassette (p2), NT-MX cassette (p3), and a 3' flank (p4) homologous downstream of the target site. Each component is amplified individually using primers which create homologous overlapping extensions of each PCR product. See Tables 7 and 8. The bent dashed lines in FIG. 28A represent homology between the KT/NT-MX cassettes and the 5' flank and the bent solid lines represent homology with the 3' flank. For each round of engineering, PCR amplicons of upstream and downstream regions flanking the target site are designed to contain homologous tails for both the KT-MX and NT-MX cassettes. Both the flanks and the markers are transformed followed by selection on YPD medium containing both G418 and Nat. See FIG. 28B. FIG. 28B shows a schematic of the chromosome after replacement of the target site with KT-MX and NT-MX.
[0398] After each engineering step taken in the construction of M3625, all markers are subsequently deleted and/or replaced with a desired expression cassette (Mascoma Assembly) resulting in a strain free of antibiotic markers (FIG. 29). FIG. 29 demonstrates that the transformed Mascoma Assembly contains a quantity of PCR products which is dependent on the desired engineering event (pX), a 5'flank (p1) which homologous upstream of the target site and a 3' flank (p4) homologous downstream of the target site. Each component is amplified individually using primers which create homologous overlapping extensions. The overlapping bent lines in FIG. 29 represent homology at the end of those PCR products. FIG. 29B shows a schematic of a chromosome following selection on FUDR and replacement of genetic markers with the Mascoma assembly. Confirmation of marker removal was evaluated by southern blot, PCR and dilution plating onto selective medium as described below.
[0399] Four loci were modified during the construction of M3625. The integration procedure strategy described above was used at the FDH1, GPD1 and GPD2 loci using the Mascoma Assemblies listed in Table 6. Detailed molecular maps depicting the components of each Mascoma Assembly are provided in FIGS. 30-37.
TABLE-US-00014 TABLE 6 Genetic modifications contained in M3625. Target Locus Locus Modification Cassette ID Cassette Description FDH1 Clean Deletion MA0370 Clean Deletion of FDH1 FDH2 Replaced with MA0280 2 copies of pflA/B expression cassette and 4 copies of adhE GPD2 Replaced with MA0289 2 copies of pflA/B expression cassette and 4 copies of adhE FCY1 Replaced with MA0317 Four copies of expression cassette Glucoamylase
TABLE-US-00015 TABLE 7 Primers used for the creation of strain M3625. PCR Product 1; PCR Product 2; PCR Product 3; Target Locus Primer Pair Primer Pair Primer Pair GPD1 GPD1 5' Flank; pAGTEF-kan/nat- GPD1 3' Flank; X11824/X15546 pHXT2-TDK; X15547/X11829 X15380/X15382 GPD2 GPD2 5' Flank; pAGTEF-kan/nat- GPD2 3' flank; X11816/X15548 pHXT2-TDK; X15549/X11821 X15380/X15382 FDH2 FDH2 5' Flank; pAGTEF-kan/nat- FDH2 3' flank; X16096/X15554 pHXT2-TDK; X15555/X11845 X15380/X15382 FDH1 FHD1 5' Flank; pAGTEF-kan/nat- FDH1 3' flank; X15559/X15550 pHXT2-TDK; X15552/X15553 X15380/X15382
TABLE-US-00016 TABLE 8 Sequences of Primers used for creation of strain M3625 SEQ ID Primer Sequence NO X11824 aagcctacaggcgcaagataacacatcac 110 X15546 ggacgaggcaagctaaacagatctctagacctactttatattatcaatatttgtgtttg 111 X15380 taggtctagagatctgtttagcttgc 112 X15382 gagactacatgatagtccaaaga 113 X15547 ccgtttcttttctttggactatcatgtagtctcatttattggagaaagataacatatca 114 X11829 ctcagcattgatcttagcagattcaggatctaggt 115 X11816 gcagtcatcaggatcgtaggagataagca 116 X15548 ggacgaggcaagctaaacagatctctagacctatgataaggaaggggagcg 117 aaggaaaa X15549 ccgtttcttttctttggactatcatgtagtctcctctgatctttcctgttgcctctttt 118 X11821 tcacaagagtgtgcagaaataggaggtgga 119 X16096 catggtgcttagcagcagatgaaagtgtca 120 X15554 ggacgaggcaagctaaacagatctctagacctaattaattttcagctgttatttcgatt 121 X15555 ccgtttcttttctttggactatcatgtagtctcgagtgattatgagtatttgtgagcag 122 X11845 ttacttgtgaaactgtctccgctatgtcag 123 X15559 ggaaggcaccgatactagaactccg 124 X15550 gggacgaggcaagctaaacagatctctagacctaattaattttcagctgttattttgat 125 X15552 ccgtttcttttctttggactatcatgtagtctcgagtgattatgagtatttgtgagcag 126 X15553 accagcgtctggtggacaaacggccttcaac 127
[0400] Genotyping and Sequencing of MA0370
[0401] To confirm that FDH1 was deleted after insertion of MA370, PCR products were amplified from M2390 and M3625 genomic DNA using primers X17826 and X16944. The expected results are listed in Table 10 and the sequences of the primers used are listed in Table 11. A molecular map depicting the MA0370 integration site is shown in FIG. 30. The molecular map depicts the location of flanks used to remove the KT-MX and NT-MX markers and the position of primers used for genotyping. See FIG. 30 (5' flank, S. cerevisiae FDH1 upstream flanking region; 3' flank--S. cerevisiae FDH1 downstream flanking region. Region AA--amplified and sequenced chromosomal DNA region). Primer pair X15556/X15871 was used for the FDH1 5' Flank and primer pair X15870/X15553 was used for the FHD1 3' Flank to create the assembly shown in FIG. 30. Sequences for the primers for assembly used are found in Table 9. An agarose gel image showing PCR products used to determine genotype is shown in FIG. 31 (lane 1: 1 KB ladder; lane 2: M2390 (X17826/X16944); lane 3: M3625 (X17826/X16944)) (see Table 11).
TABLE-US-00017 TABLE 9 Primers used to create the MA0370 integration site. Primer Sequence SEQ ID NO X15556 ccactcgaggataaacttgaaaga 128 X15870 ctaatcaaatcaaaataacagctgaaaattaatgagtgattatgagta 129 tttgtgagcag X15871 aaaacttctgctcacaaatactcataatcactcattaattttcagctgttattt 130 tgatt X15553 accagCgtctggtggacaaacggccttcaac 127
[0402] In order to determine the exact DNA sequence of the M3625 MA0370 site, region AA was amplified from genomic DNA of M3625 strain in 5 independent PCR reactions. All PCR products were purified and sequenced by the Sanger method at the Dartmouth College Sequencing facility.
TABLE-US-00018 TABLE 10 Primers and summary of results of MA0370 genotyping. Expected Correct Size Lane Template DNA Primers size(bp) Observed 1 1 KB ladder N/A N/A N/A 2 M2390 X17826/X16944 4386 bp yes 3 M3625 X17826/X16944 3237 yes
TABLE-US-00019 TABLE 11 Sequence of primers used for MA0370 genotyping. Primer Sequence SEQ ID NO X17826 tcgctaacgatcaagaggaactg 152 X16944 tacacgtgcatttggacctatc 153
[0403] Genotyping and Sequencing of MA0280
[0404] To confirm that MA280 was inserted at the FDH2 site, PCR products were amplified from M3625 genomic DNA. The primers and expected genotyping results are listed in Table 13. Sequences of the primers used for genotyping and sequencing MA0280 are listed in Table 14. A molecular map depicting the MA0280 integration site is shown in FIG. 32. The molecular map depicts the location of flanks used to replace the KT-MX and NT-MX markers and insert the MA0280 expression cassette. The position of primers used for genotyping for genotyping are indicated on the map. See FIG. 32 (Feature description on map of MA0280 site of the M3625 strain; FDH2 5' flank--S. cerevisiae FDH2 upstream flanking region; PFK1p--S. cerevisiae PFK1 gene promoter; ADHE--Bifidobacterium adolescentis ADHE coding gene; HXT2t --S. cerevisiae HXT2 gene terminator; ENO1p--S. cerevisiae ENO1 gene promoter; PFLB--Bifidobacterium adolescentis PFLB coding gene; ENO1t--S. cerevisiae ENO1 gene terminator; ADH1p--S. cerevisiae ADH1 gene promoter; PFLA--Bifidobacterium adolescentis PFLA coding gene; PDC1t--S. cerevisiae PDC1 gene terminator; FBA1t--S. cerevisiae FBA1 gene terminator; TPI1p--S. cerevisiae TPI1 gene promoter; FDH2 3' flank--S. cerevisiae FDH2 downstream flanking region. Regions BA-BE, amplified and sequenced chromosomal DNA regions). Primer pair X16096/X17243 was used for the FDH2 5' Flank, primer pair X16738/X16620 was used for pPFK1-ADH-HXT2, primer pair X16621/X13208 was used for pENO1-PFL-ENO1t, primer pair X13209/X17242 was used for pADH1-PFL-PDC1t, primer pair X17241/X16744 was used for pTPI-ADH-FBA1trc, and primer pair X17244/X11845 was used for the FDH2 5' Flank to create the assembly shown in FIG. 32. Sequences for the primers used to create the assembly shown in FIG. 32 are found in Table 12. An agarose gel image showing PCR products used to genotype and sequence the MA0280 site is shown in FIG. 33 (lane 1: 1 KB ladder; lane 2: M3625 (17413/15810); lane 3: M3625 (17834/14554); lane 4: M3625 (16291/15229); lane 5: M3625 (16503/11317); lane 6: (16241/16946) lane 7: 1 KB ladder) (see Table 14).
TABLE-US-00020 TABLE 12 Primers used to create the MA0280 integration site. Primer Sequence SEQ ID NO X16096 catggtgcttagcagcagatgaaagtgtca 120 X17243 tagttagatcagggtaaaaattatagatgaggtattaattttcagct 131 gttatttcgatt X16738 ctaatcaaatcgaaataacagctgaaaattaatacctcatctataat 132 ttttaccctgat X16620 tcggatcagtagataacccgcctagaagactaggttacattgaaa 133 atacagtaaatggt X16621 tggtggaaccatttactgtattttcaatgtaacctagtcttctaggcg 134 ggttatctact X13208 ccgaaatattccacggtttagaaaaaaatcggaggtttagacattg 135 gctcttcattgag X13209 aagctcaatgaagagccaatgtctaaacctccgatttttttctaaac 136 cgtggaatattt X17242 acatcatcttttaacttgaatttattctctagctttcaatcattggagc 137 aatcatttta X17241 gtccatgtaaaatgattgctccaatgattgaaagctagagaataa 138 attcaagttaaaag X16744 aaaaacttctgctcacaaatactcataatcactcctacttattcccttc 139 gagattatatc X17244 gttcctagatataatctcgaagggaataagtaggagtgattatgagta 140 tttgtgagcag X11845 ttacttgtgaaactgtctccgctatgtcag 141
[0405] In order to determine exact DNA sequence of the M3625 MA0280 site, regions BA-BE were amplified from genomic DNA of M3625 strain in 5 independent PCR reactions. All PCR products were purified and sequenced by the Sanger method at the Dartmouth College Sequencing facility.
TABLE-US-00021 TABLE 13 Primers and summary of results of MA0280 genotyping. Expected Lane Template DNA Primers size(bp) Correct Size Observed 1 1 KB ladder N/A N/A N/A 2 M3625 17413/15810 5567 Yes 3 M3625 17834/14554 3686 Yes 4 M3625 16291/15229 2569 Yes 5 M3625 16503/11317 4352 yes 6 M3625 16241/16946 2478 yes 7 1 KB ladder N/A N/A N/A
TABLE-US-00022 TABLE 14 Sequence of primers used for genotyping MA0280. Primer Sequence SEQ ID NO 17413 ggattcttcgagagctaaga 154 15810 gacttgcagggtaggctagctagaatt 155 17834 gctgcttcgaggtattgaca 156 14554 ggctcttcattgagcttagaaccc 157 16291 aactggaccgatattattcgt 158 15229 agtccactgcggagtcatttcaaag 159 16503 ctgccagcgaattcgactctgcaat 160 11317 cagtcgctgtagtgagcgacagggtagtaa 161 16241 ctttgcattagcatgcgta 162 16946 taggtcgagaccagaatgcatgt 163
[0406] Genotyping and Sequencing of MA0289
[0407] To confirm that MA0289 was inserted at the GPD2 site, PCR products were amplified from M3625 genomic DNA. The primers and expected genotyping results are listed in Table 16. Sequences for the primers used for genotyping MA0289 are listed in Table 17. A molecular map depicting the MA0289 integration site is shown in FIG. 34. The molecular map depicts the location of flanks used to replace the KT-MX and NT-MX markers and insert the MA0280 expression cassette. The position of primers used for genotyping are indicated on the map. See FIG. 34 (Feature description on map of MA0280 site of the M3625 strain; GPD2 5' flank--S. cerevisiae GPD2 upstream flanking region; ADHE--Bifidobacterium adolescentis ADHE coding gene; HXT2t--S. cerevisiae HXT2 gene terminator; PDC1t--S. cerevisiae PDC1 gene terminator; PFLA --Bifidobacterium adolescentis PFLA coding gene; ADH1p--S. cerevisiae ADH1 gene promoter; ENO1t--S. cerevisiae ENO1 gene terminator; PFLB--Bifidobacterium adolescentis PFLB coding gene; ENO1p--S. cerevisiae ENO1 gene promoter; FBA1t--S. cerevisiae FBA1 gene terminator; TPI1p--S. cerevisiae TPI1 gene promoter; GPD2 3' flank--S. cerevisiae GPD2 downstream flanking region; Regions CA-CF--amplified and sequenced chromosomal DNA regions). Primer pair X15473/X17460 was used for the GPD2 5' Flank, primer pair X17459/X17289 was used for ADH-HXT2, primer pair X17290/X13209 was used for pADH1-PFL-PDC1trc, primer pair X13208/X15735 was used for pENO1-PFL-ENO1trc, primer pair X15736/X17457 was used for pTPI-ADH-FBA1trc, and primer pair X17458/X15476 was used for the GPD2 3' Flank to create the assembly shown in FIG. 34. Sequences for the primers used to create the assembly shown in FIG. 34 are found in Table 15. An agarose gel image showing PCR products used to genotype and sequence the MA0280 site is shown in FIG. 35 (lane 1: 1 KB ladder; lane 2: M3625 (17413/15810); lane 3: M3625 (17834/14554); lane 4: M3625 (16291/15229); lane 5: M3625 (16503/11317); lane 6: (16241/16946); lane 7: 1 KB ladder).
TABLE-US-00023 TABLE 15 Primers used to create the MA0289 integration site. Primer Sequence SEQ ID NO X15473 agtcatcaggatcgtaggagataagc 142 X17460 agaagataatatttttatataattatattaatcctaatcttcatgtag 143 atctaattctt X17459 cctttccttttccttcgctccccttccttatcaatggcagacgcaa 144 agaagaaggaaga X17289 gtccatgtaaaatgattgctccaatgattgaaagttacattgaaa 145 atacagtaaatggt X17290 tggtggaaccatttactgtattttcaatgtaactttcaatcattgga 146 gcaatcatttta X13208 ccgaaatattccacggtttagaaaaaaatcggaggtttagacattg 135 gctcttcattgag X13209 aagctcaatgaagagccaatgtctaaacctccgatttttttctaaac 136 cgtggaatattt X15735 catcttttaacttgaatttattctctagcctagtcttctaggcgggttat 147 ctactgat X15736 agataacccgcctagaagactaggctagagaataaattcaagtta 148 aaagatgatgttga X17457 tgggggaaaaagaggcaacaggaaagatcagagctacttattc 149 ccttcgagattatatc X17458 gttcctagatataatctcgaagggaataagtagctctgatctttcct 150 gttgcctcttttt X15476 gtagatctgcccagaatgatgacgtt 151
[0408] In order to determine exact DNA sequence of the M3625 MA0289 site, regions CA-CF were amplified from genomic DNA of M3625 strain in 5 independent PCR reactions. All PCR products were purified and sequenced by the Sanger method at the Dartmouth College Sequencing facility.
TABLE-US-00024 TABLE 16 Primers and summary of results of MA0289 genotyping. Expected Lane Template DNA Primers size(bp) Correct Size Observed 1 1 KB ladder N/A N/A N/A 2 M3625 16939/16940 2477 Yes 3 M3625 16807/14567 3831 Yes 4 M3625 17834/14557 2478 Yes 5 M3625 16640/14552 3978 yes 6 M3625 17586/16806 4789 yes 7 1 KB ladder N/A N/A N/A
TABLE-US-00025 TABLE 17 Sequence of primers used for genotyping MA0289. Primer Sequence SEQ ID NO 16939 atgctgatgcatgtccacaaag 164 16940 ccttatcagtcaattgaggaaaa 165 16807 gcgatgagctaatcctgagccat 166 14567 tggttccaccattattatgttggt 167 17834 gctgcttcgaggtattgaca 168 14557 ctaaaccgtggaatatttcggatat 169 16640 cctcatcagctctggaacaacga 170 14552 gatccgagcttccactaggatagc 171 17586 gcagtatgcaagtctcatgctg 172 16806 gaacttgcaggcaccgatcttca 173
[0409] Genotyping and Sequencing of MA0317
[0410] To confirm that MA0317 was inserted at the FCY1 site, PCR products were amplified from M3625 genomic DNA. The primers and expected genotyping results are listed in Table 19. Sequences for the primers used to genotype MA0317 are listed in Table 20. A molecular map depicting the MA0317 integration site is shown in FIG. 36. The molecular map depicts the location of flanks used to replace the FCY1 gene with MA0317 and the position or primers used for genotyping. See FIG. 36 (Feature description on the map of MA0371 site of M3625; FCY1 5' flank--S. cerevisiae FCY1 upstream flanking region; ENO1p--S. cerevisiae ENO1 gene promoter; AE9--S. fibuligera glu 0111 coding gene; ENO1t--S. cerevisiae ENO1 gene terminator; PDC1t --S. cerevisiae PDC1 terminator; ADH1p--S. cerevisiae ADH1 gene promoter; FCY1 3' flank--S. cerevisiae FCY1 downstream flanking region; Regions FA-FE, amplified and sequenced chromosomal DNA regions). Primer pair X18868/X18844 was used for the FCY 5' Flank, primer pair X18845/X15464 was used for pENO-AE9-ENO1t, primer pair X15465/X11750 was used for pADH1-AE9-PDC1t, and primer pair X15479/X18869 was used for the FCY 3' Flank to create the assembly shown in FIG. 36. Sequences for the primers used to create the assembly shown in FIG. 36 are found in Table 18. An agarose gel image showing PCR products used to determine genotype is shown in FIG. 37 (lane 1: 1 KB ladder; lane 2: M3625 (13092/17586); lane 3: M3625 (10871/14554); lane 4: M3625 (16291/17887); lane 5: M3625 (16640/16509); lane 6: M3625 (13246/13095); lane 7: 1 KB ladder).
TABLE-US-00026 TABLE 18 Primers used to create the MA0317 integration site. Primer Sequence SEQ ID NO X18868 gccaaagtggattctcctactcaagctttgc 184 X18844 tcggatcagtagataacccgcctagaagactagtagctatgaaattt 185 ttaactctttaa X18845 agccagcttaaagagttaaaaatttcatagctactagtcttctaggcg 186 ggttatctact X15464 gtccatgtaaaatgattgctccaatgattgaaagaggtttagacattg 187 gctcttcattg X15465 ctaagctcaatgaagagccaatgtctaaacctctttcaatcattggag 188 caatcatttta X11750 ataaaattaaatacgtaaatacagcgtgctgcgtgctcgatttttttcta 189 aaccgtgga X15479 agcacgcagcacgctgtatttacgta 190 X18869 agatcctgtggtagtgctgtctgaacagaa 191
[0411] In order to determine exact DNA sequence of the M3625 MA0317 site, regions FA-FE were amplified from genomic DNA of M3625 strain in 5 independent PCR reactions. All PCR products were purified and sequenced by the Sanger method at the Dartmouth College Sequencing facility.
TABLE-US-00027 TABLE 19 Primers and summary of results of MA0317 genotyping. Expected Lane Template DNA Primers size(bp) Correct Size Observed 1 1 KB ladder N/A N/A N/A 2 M3625 13092/17586 2368 yes 3 M3625 10871/14554 2966 yes 4 M3625 16291/17887 2778 yes 5 M3625 16640/16509 1334 yes 6 M3625 13246/13095 2863 yes 7 1 KB ladder N/A N/A N/A
TABLE-US-00028 TABLE 20 Sequence of primers used for genotyping MA0317. Primer Sequence SEQ ID NO 13092 ccacaccatagacttcagccttcttag 174 17586 gcagtatgcaagtctcatgctg 175 10871 cgttcgctgtagcatacttagctat 176 14554 ggctcttcattgagcttagaaccc 177 16291 aactggaccgatcttattcgt 178 17887 actgcctcattgatggtggta 179 16640 cctcatcagctctggaacaacga 180 16509 gtatgattgcggttatctgtcgc 181 13246 cctatggatgttgtaccatgcc 182 13095 ccaatatcttgcagtccatcctcgtcgc 183
[0412] FIG. 38 shows the results of starch assay demonstrating starch degrading activity in M3625. The assay was performed as described in copending International Appl. No. PCT/US2011/039192, incorporated by reference herein in its entirety.
Western Blot Protein Detection:
[0413] Anti-PflA, Anti-PflB, Anti-GA (AE9) and Anti-AdhE Antibodies:
[0414] In an effort to detect the presence of and help characterize a number of enzymes engineered into the yeast strain, polyclonal antibodies were produced in rabbits at Lampire Biological Products, Pipersville, Pa., against synthesized peptides with sequence similarity to the engineered proteins. Table 11 depicts the peptides that were used as immunogens for the rabbits:
TABLE-US-00029 TABLE 21 Immunogens used for antibody production Protein Immunogen SEQ ID NO Sf GA (AE9) intact purified protein 106 DNKNRYKINGNYKAGC NSGKKHIVESPQLSSRGGC CDHIDDNGQLTEEINRYTG Ba pflA CQNPDTWKMRDGKPVYYE 107 GLTSSEENVENVAKIC Ba pflB WEGFTEGNWQKDIDVRDC 108 KQRDKDSIPYRNDFTECPEC CNTITPDGLGRDEEEERIGN Ba AdhE DAKKKEEPTKPTPEEKLC 109 CKNLGVNPGKTPEEGVEN CGSYGGNSVSGVNQAVN
[0415] For all of the synthesized peptides a terminal Cys was added for conjugation. Both the peptides and the purified GA protein were conjugated to KLH prior to injection into the rabbit. A 50 day protocol was used for antibody production with ELISA monitoring of the various bleeds against the immunogen. After testing these polyclonal antibodies in a Western blot against the lysate from the engineered yeast strains, serum from the positive rabbits was purified using a Protein G column. The purified antibodies were dialyzed into PBS, concentration was determined by absorbance at 280 nm and the antibodies were used for further evaluation of the strains. Upon evaluation by SDS-PAGE, the antibodies appeared to be >90% pure.
[0416] Antibodies raised against the synthesized peptides were used in Western blot detection of each engineered protein in cell extracts and culture supernatants as described below.
[0417] Strain Growth Conditions:
[0418] Cells were plated from freezer stock on YPD (20 g/L peptone, 10 g/L yeast extract, 20 g/L glucose) agar for 48 hours and used to inoculate 25 mL YPD (20 g/L peptone, 10 g/L yeast extract, 20 g/L glucose) in a 50 mL culture tube. Cells were grown aerobically for 8 hours at 35.degree. C. with shaking at 250 rpm, then 1 mL was removed to inoculate a sealed, CO2 purged serum bottle containing 50 mL YPD (20 g/L peptone, 10 g/L yeast extract, 20 g/L glucose) with 7 mg/L ergosterol, 289 mg/L ethanol and 544 mg/L Tween 80. These cultures were then grown anaerobically overnight (.about.16h) at 35.degree. C. with shaking at 250 rpm. Cells were harvested by centrifugation and washed with 25 mL deionized water. The resulting wet cell pellets were used for Western blot detection of PflA, PflB and AdhE.
[0419] Aerobic cultures used to inoculate the serum bottles were returned to the shaking incubator for an additional 40 hours. At the end of incubation, cells were pelleted by centrifugation and the supernatant was recovered and concentrated .about.10.times. using a 10 kDa molecular weight cut-off (MWCO) filter membrane. The resulting concentrates were used for Western blot detection of extracellular AE9 glucoamylase.
[0420] Cell Lysis and Sample Preparation:
[0421] For Western blots of PflB and AdhE, cells were homogenized by mechanical disruption with 0.5 mm diameter beads and agitation at 4800 rpm in a bead beater. 100 .mu.L of wet cells were added to homogenization buffer containing 1 mM phenylmethanesulfonylfluoride (PMSF), 2 mM dithiothreitol (DTT) and 1% dimethyl sulfoxide (DMSO) in 100 mM sodium phosphate buffer pH 7.4. Cells were agitated for 6 cycles of 10 seconds each, cooling on ice between cycles. Cell debris was pelleted by centrifugation and supernatant was recovered. 15 .mu.L of the resulting supernatant was added to 15 .mu.L 2.times. concentrated SDS-PAGE sample buffer with 50 mM DTT and loaded onto a 4-20% Tris-Glycine SDS-PAGE gel.
[0422] For Western blot detection of PflA, cells were lysed by adding 40 .mu.L wet cells to 40 .mu.L 2.times. concentrated SDS-PAGE sample buffer with 50 mM DTT. The mixture was then incubated at room temperature for 30 minutes, followed by heating at 100.degree. C. for 2 minutes. Cells were pelleted by centrifugation and 30 .mu.L of the supernatant was loaded onto a 4-20% Tris-Glycine SDS-PAGE gel.
[0423] For AE9 analysis, 15 .mu.L of concentrated aerobic culture supernatant was added to 15 .mu.L 2.times. concentrated SDS-PAGE sample buffer with 50 mM DTT and loaded onto a 4-20% Tris-Glycine SDS-PAGE gel.
[0424] Following gel electrophoresis, proteins were transferred to a polyvinylidine fluoride (PVDF) membrane and blocked overnight with Tris buffered saline (TBS; 10 mM Tris, 150 mM sodium chloride pH 7.5) containing 2% weight by volume (w/v) bovine serum albumin (BSA). The blocking solution was then removed, and primary peptide antibodies were diluted to approximately 2 .mu.g/mL in Tris buffered saline with Tween 20 (TBST; TBS with 0.1% v/v Tween 20) and added to each membrane. After a 1 hour incubation, the primary antibody was discarded and the membrane was washed for 3 periods of 5 minutes each in 10 mM Tris, 500 mM sodium chloride, 0.1% Tween 20 pH-7.5 (THST). The secondary antibody, goat anti-rabbit with horseradish peroxidase label, was diluted 1:7500 in TBST, added to the blot and incubated for 1 hour. The secondary antibody was then discarded and the blot was again washed with THST for 3 periods of 5 minutes each. The wash solution was then discarded, enhanced chemiluminescence (ECL) substrate was added, and the blot was read by a series of composite exposures using a gel imaging camera.
[0425] As shown in FIG. 39, for anti-PflA, PflB and AdhE primary antibodies, bands of approximately the correct molecular weight were detected in each experimental strain, whereas no band was detected in the background control strain (M2390). For anti-AE9, bands were detected in strains engineered to express the protein (M3625 and M3680) but were absent in other strains. See FIG. 39. There appeared to be two distinct bands for PflB, which may indicate oxygenic cleavage of the protein due to aerobic cell lysis conditions.
[0426] Pyruvate Formate Lyase Activity Assay:
[0427] Pyruvate formate lyase (PflB) is activated in the absence of oxygen by Pfl activase (PflA) and catalyzes the reaction of pyruvate and CoA to formate and acetyl-CoA. The activity of PflB was measured in cell extracts by measuring formate production when extracts were added to a reaction mixture containing pyruvate, CoA and DTT.
[0428] Strain Growth Conditions:
[0429] Cells were plated from freezer stock on YPD (20 g/L peptone, 10 g/L yeast extract, 20 g/L dextrose) agar for 48 hours and used to inoculate 25 mL YPD (20 g/L peptone, 10 g/L yeast extract, 20 g/L dextrose) in a 50 mL culture tube. Cells were grown aerobically for 8 hours at 35.degree. C. with shaking at 250 rpm, then 1 mL was removed to inoculate a sealed, CO2 purged serum bottle containing 50 mL YPD (20 g/L peptone, 10 g/L yeast extract, 20 g/L dextrose) with 7 mg/L ergosterol, 289 mg/L ethanol and 544 mg/L Tween 80. These cultures were then grown anaerobically overnight (.about.16h) at 35.degree. C. with shaking at 250 rpm. Cells were harvested by centrifugation and washed with 25 mL deionized water in an anaerobic chamber.
[0430] Cell Lysis and Sample Preparation:
[0431] Cells were homogenized in an anaerobic chamber by mechanical disruption with 0.5 mm diameter beads and agitation at 4800 rpm in a bead beater. 100 .mu.L of wet cells were added to homogenization buffer containing 1 mM PMSF, 2 mM DTT and 1% DMSO in 100 mM sodium phosphate buffer pH 7.4. Cells were agitated for 6 cycles of 10 seconds each, cooling on ice between cycles. Cell debris was pelleted by centrifugation at 14,100.times.g for 10 minutes and supernatant was recovered and clarified by filtration through a 0.22 .mu.m filter membrane. The resulting extract was used directly in the activity assay.
[0432] Pfl Activity Assay:
[0433] A 2.times. concentrated assay substrate mixture consisted of 20 mM sodium pyruvate, 0.11 mM CoA and 20 mM DTT. Reagents were weighed out, brought into an anaerobic chamber and added to 10 mL of 100 mM sodium phosphate buffer pH 7.4 which had been thoroughly degassed. 100 .mu.L of cell extract was added to 100 .mu.L of the concentrated assay mixture and incubated at ambient temperature (.about.29.degree. C.) for 30 minutes. Samples were then removed from the anaerobic chamber and heated in a heating block at 100.degree. C. for 90 seconds followed by cooling on ice to precipitate protein. Precipitate was removed by centrifugation at 15,000.times.g for 10 minutes. The resulting supernatant was analyzed for formate concentration using the formic acid assay kit available from Megazyme International Ireland, Bray, Co. Wicklow, Ireland.
[0434] Remaining cell extracts were diluted 1:8 in 100 mM sodium phosphate buffer pH 7.4 and assayed for total protein content using the BCA total protein determination method. Formate concentrations of the Pfl assay samples were normalized to the total protein concentration of the sample.
[0435] As shown in FIG. 40, experimental strains with engineered Pfl activity (M3465, M3625, M3679, and M3680) showed significantly higher amounts of formate present after incubation with the reaction mixture than the background control strain (M2390).
[0436] Alcohol dehydrogenase E (AdhE) enzymatic activity assays
[0437] AdhE is an intracellular bi-functional enzyme catalyzing the formation of ethanol from acetyl-CoA by way of acetaldehyde as an intermediate. This is accomplished by an acetaldehyde dehydrogenase activity and an alcohol dehydrogenase activity working in series. Saccharomyces cerevisiae strains have native alcohol dehydrogenase (Adh) activity; the intent of these activity assays is to show that Adh activity is retained by the engineered strains, and an additional acetaldehyde dehydrogenase activity (from AdhE) is present.
[0438] Alcohol Dehydrogenase Activity:
[0439] As mentioned above, Bifidobacterium adolecentis bifunctional alcohol dehydrogenase (AdhE) has 2 primary functions. One function is the conversion of acetaldehyde to ethanol. This reversible reaction utilizes NADH as a cofactor. In order to evaluate the presence of this enzyme and ensure that it has the desired activity, an assay was developed to evaluate the reverse reaction in which ethanol is converted to acetaldehyde. See FIG. 49. The rate of the reaction is monitored by NADH absorbance at 340 nm.
[0440] Strain Growth Conditions:
[0441] Strains were patched from freezer stock onto a YPD (20 g/L peptone, 10 g/L yeast extract, 20 g/L dextrose) agar plate and incubated overnight at 35.degree. C. From that plate, 50 mL shake tubes with 25 mL YPD (20 g/L peptone, 10 g/L yeast extract, 20 g/L dextrose) were inoculated and incubated at 35.degree. C., 250 rpm overnight. The cultures were centrifuged at 5000 rpm.times.5 min at 4C, washed with deionized (DI) water and centrifuged at 5000 rpm.times.5 min at 4C, washed a second time with DI water and centrifuged at 5000 rpm.times.5 min at 4C, and then put on ice.
[0442] Cell Lysis and Sample Preparation:
[0443] 100 .mu.L of wet cell pellet was pipetted into a Zymo Research BashingBead 0.5 mm Tubes along with 500 .mu.L 100 mM Na2PO4, 2.5 mM MgCl2, 0.5 mM CaCl2 pH 7.4 buffer and 6 .mu.L 100 mM phenylmethylsulfonyl fluoride (PMSF). The cells were lysed by mechanical disruption using a MP FastPrep-24 set to run at 4.0 m/s for 10 seconds three times with cooling on ice for 10 seconds between each run. This was repeated three times with chilling on ice for one minute in between each run. Each tube was then centrifuged for 10 minutes at 15,000 rpm using an Eppendorf centrifuge 5424. The supernatant was removed and transferred to 2 mL tubes. 1p L of New England Biolabs DNAse I was added to each tube. The tubes were inverted and placed into an incubator set at 37.degree. C. for 30 min. The tubes were removed from the incubator and the samples were transferred to 0.22 .mu.m filter centrifuge tubes which were centrifuged for 2 min at 10,000 rpm. 50 .mu.L of sample was pulled and diluted with 450 .mu.L 100 mM Na.sub.2PO.sub.4 pH 7.4 in separate sample tubes and then placed on ice.
[0444] Alcohol Dehydrogenase Activity Assay:
[0445] The assay used to determine alcohol dehydrogenase activity of AdhE was adapted from the method of Vallee, B. L. and Hoch, F. L., Proc Natl Acad Sci USA (1955) 41(6): 327-338. 100 .mu.L 0.1M Na4P207 pH 9.6 buffer, 32 .mu.L 2M ethanol, and 1.66 .mu.L 0.025M NAD.sup.+ were added to each well in a 96 well plate. Once the lysate was added to the reaction mixture, the total volume of reaction was equivalent to 153.66 .mu.L resulting in final concentrations of 65 mM Na4P.sub.2O.sub.7 pH 9.6 buffer, 416.5 mM ethanol, and 0.27 mM NAD.sup.+. To begin the reaction, 20 .mu.L of 1:10 diluted lysate was pipetted into each well and the absorbance at 340 nm was observed and recorded over 1.7 min using Spectramax M2 and Softmax software. Each sample was done in duplicate to ensure reproducibility. Thermo Scientific's BCA Protein Assay Kit was used to measure total protein concentration from the lysate generated. This data was used to normalize the data generated from the actual reaction during analysis.
TABLE-US-00030 TABLE 22 Data for alcohol dehydrogenase activity assay Average activity (.mu.mol Standard % p- NADH/min/mg) Deviation % CV Change value M2390 599 15.6 2.6 M3465 659 16.2 2.5 10 0.1942 M3625 999.5 132 13.2 66.9 0.0108 M3679 755 82 10.9 26 0.0603 M3680 698 29.7 4.3 16.5 0.0996 Alcohol dehydrogenase activities of engineered strains. p-value was based on a one-tailed T-test.
[0446] The background strain, M2390, performed as expected in this assay. Although it did not have AdhE engineered into its genome, it still expressed wild-type alcohol dehydrogenase and thus was active in the alcohol dehydrogenase assay. Other strains with AdhE engineered into their genomes should have expressed the bi-functional enzyme and should have been more active given the total protein concentration was equal in each sample used in the assay. With a p-value of <0.05, M3625 demonstrated a statistically significant higher activity than the background strain. However, the other strains have a p-value >0.05 indicating that they are within error of the background strain even though there was an increase in activity as shown by the % change over the background activity. See Table 22. After normalizing the protein concentrations, a graphical representation of the data shows that each strain was more active than the background strain M2390 during a 1.7 minute reaction period. FIG. 41 shows the activity of each strain plotted in .mu.mol NADH/mg total protein vs. time during a 1.7 minute reaction.
[0447] Based on these results, the assay showed alcohol dehydrogenase activity in all strains. However, M2390 is less active and slower at converting NAD.sup.+ to NADH than the other strains indicating that the engineered AdhE is present in each strain and it appears to be functioning properly.
[0448] Acetaldehyde Dehydrogenase Activity:
[0449] The second activity of AdhE is the reversible reaction converting acetaldehyde to acetyl coenzyme A. This activity is not native to Saccharomyces cerevisiae strains, and should only be present in the engineered strains. In order to evaluate the presence of this enzyme and ensure that it has the desired activity, an assay was developed to measure the conversion of acetaldehyde to acetyl CoA by AdhE. The rate of the reaction is monitored by NADH absorbance at 340 nm. A diagram of the reaction is provided in FIG. 50.
[0450] Strain Growth Conditions:
[0451] Strains were patched from a freezer stock onto a YPD (20 g/L peptone, 10 g/L yeast extract, 20 g/L dextrose) agar plate and incubated overnight at 35.degree. C. From that plate, 50 mL shake tubes with 25 mL YPD (20 g/L peptone, 10 g/L yeast extract, 20 g/L dextrose) were inoculated and incubated at 35.degree. C., 250 rpm overnight. The cultures were centrifuged at 5000 rpm.times.5 min at 4.degree. C., washed with DI water and centrifuged at 5000 rpm.times.5 min at 4C, washed a second time with DI water and centrifuged at 5000 rpm.times.5 min at 4.degree. C., and then put on ice.
[0452] Cell Lysis and Sample Preparation:
[0453] 100 .mu.L of wet cell pellet was pipetted into a Zymo Research BashingBead 0.5 mm Tubes along with 500 .mu.L 100 mM Na.sub.2PO.sub.4, 2.5 mM MgCl.sub.2, 0.5 mM CaCl.sub.2 pH 7.4 buffer and 6 .mu.L 100 mM phenylmethylsulfonyl fluoride (PMSF). The cells were lysed by mechanical disruption using a MP FastPrep-24 set to run at 4.0 m/s for 10 seconds three times with cooling on ice for 10 seconds between each run. This was repeated three times with chilling on ice for one minute in between each run. Each tube was then centrifuged for 10 minutes at 15,000 rpm using an Eppendorf centrifuge 5424. The supernatant was removed and transferred to 2 mL tubes. 1 .mu.L of New England Biolabs DNAse I was added to each tube. The tubes were inverted and placed into an incubator set at 37.degree. C. for 30 min. The tubes were removed from the incubator and the samples were transferred to 0.22 .mu.m filter centrifuge tubes which were centrifuged for 2 min at 10,000 rpm using the Eppendorf centrifuge 5424. 50 .mu.L of sample was pulled and diluted with 450AL 100 mM Na.sub.2PO.sub.4 pH 7.4 in separate sample tubes and then were placed on ice.
[0454] Acetaldehyde Dehydrogenase Activity Assay:
[0455] 800 .mu.L 50 mM Na.sub.4P.sub.2O.sub.7 pH 9.6, 50 .mu.L 0.025M NAD+, 50 .mu.L 1 M acetaldehyde, and 50 .mu.L 1:10 diluted lysate were added to a Plastibrand micro UV-cuvette. The cuvette was placed into a Shimadzu UV-1700 set to read absorbance at 340 nm. 50 .mu.L of 2 mM CoA were pipetted into the cuvette which was then mixed by gently pipetting the contents of the cuvette and the absorbance was monitored for 5 minutes. The resulting final concentrations of each reagent were 40 mM Na.sub.4P2O.sub.7 pH 9.6, 1.25 mM NAD.sup.+, 50 mM acetaldehyde, and 0.1 mM CoA. Each sample was done in duplicate to ensure reproducibility. Thermo Scientific's BCA Protein Assay Kit was used to measure total protein concentration from the lysate generated. This data was used to normalize the data generated from the actual reaction during analysis.
[0456] Data for alcohol dehydrogenase (acetaldehyde dehydrogenase activity) assay is shown in Table 23. Note the lysate used in this assay was the same lysate used in the alcohol dehydrogenase assay detailed in the previous section.
TABLE-US-00031 TABLE 23 Acetaldehyde Dehydrogenase Activity Average activity (.mu.mol Standard NADH/min/mg) Deviation % CV p-value M2390 0 0 0.0 M3465 163 24 14.7 0.0054 M3625 115 7.07 6.2 0.0009 M3679 106 9.97 9.4 0.0022 M3680 177 7.07 4.0 0.0004 Acetaldehyde dehydrogenase activity. p-value was based on a one-tailed T-test.
[0457] The background strain, M2390, performed as expected in this assay. The wild-type strain should have no acetaldehyde dehydrogenase activity, as demonstrated by this assay. The other strains with AdhE engineered into their genomes should have expressed the protein and had acetaldehyde dehydrogenase activity. This activity was observed in all of the engineered strains (M3465, M3625, M3679, and M3680) with minimal error and a p-value of <0.05.
[0458] Formate Dehydrogenase Activity
[0459] In strains M3465, M3625, M3679, and M3680 formate dehydrogenase was knocked out of the genome in the hopes to balance redox with the various engineering steps that were undertaken. The background strain, M2390, should have the gene intact. To ensure that the native Saccharomyces cerevisiae formate dehydrogenase gene was removed, an enzymatic assay was developed. Formate dehydrogenase catalyzes the conversion of formate to carbon dioxide at the expense of NAD.sup.+.
##STR00001##
[0460] Enzymatic activity can be monitored by measuring NADH formation at 340 nm.
[0461] Strain Growth Conditions:
[0462] M2390, M3465, M3625, M3679, and M3680 were patched from a freezer stock onto a YPD (20 g/L peptone, 10 g/L yeast extract, 20 g/L dextrose) agar plate and incubated overnight at 35.degree. C. From that plate, 50 mL shake tubes with 25 mL YPD+24 mM Sodium Formate were inoculated and incubated at 35.degree. C., 250 rpm overnight (20 g/L peptone, 10 g/L yeast extract, 20 g/L dextrose). The cultures were centrifuged at 5000 rpm.times.5 min at 4.degree. C., washed with DI water and centrifuged at 5000 rpm.times.5 min at 4.degree. C., washed a second time with DI water and centrifuged at 5000 rpm.times.5 min at 4C, and then put on ice.
[0463] Cell Lysis and Sample Preparation:
[0464] 100 .mu.L of wet cell pellet was pipetted into a Zymo Research BashingBead 0.5 mm Tubes along with 500 .mu.L 100 mM Na.sub.2PO.sub.4, 2.5 mM MgCl.sub.2, 0.5 mM CaCl.sub.2 pH 7.4 buffer and 6L 100 mM phenylmethylsulfonyl fluoride (PMSF). The cells were lysed by mechanical disruption using a MP FastPrep-24 set to run at 4.0 m/s for 10 seconds three times with cooling on ice for 10 seconds between each run. This was repeated three times with chilling on ice for one minute in between each run. Each tube was then centrifuged for 10 minutes at 15,000 rpm using an Eppendorf centrifuge 5424. The supernatant was removed and transferred to 2 mL tubes. 1 .mu.L of New England Biolabs DNAse I was added to each tube. The tubes were inverted and placed into an incubator set at 37.degree. C. for 30 min. The tubes were removed from the incubator and the samples were transferred to 0.22 .mu.m filter centrifuge tubes which were centrifuged for 2 min at 10,000 rpm using the Eppendorf centrifuge 5424.
[0465] Formate Dehydrogenase Activity Assay:
[0466] 800 .mu.L 62.5 mM K.sub.2PO.sub.4 pH 7.0, 50 .mu.L 40 mM NAD.sup.+, and 50 uL 1M Sodium Formate were added to a Plastibrand micro UV-cuvette. The cuvette was placed into a Shimadzu UV-1700 set to read absorbance at 340 nm and blanked. 100 .mu.L of undiluted lysate sample were pipetted into the cuvette which was then mixed by gently pipetting the contents of the cuvette and the absorbance was monitored for 2.5 minutes. The resulting final concentrations of each reagent were 50 mM Potassium Phosphate, 2 mM NAD.sup.+, and 0.05M Sodium Formate. Each sample was done in duplicate to ensure reproducibility.
TABLE-US-00032 TABLE 24 Fdh activity of engineered strains Average .mu.mol Standard NADH/min Deviation % CV M3631 0.03 0.00269 0.865 M2390 0.008 0 0 M3465 0 0 0 M3625 0 0 0 M3679 0 0 0 M3680 0 0 0
[0467] As shown in Table 24, the FDH knockout strains (M3465, M3625, M3679, and M3680) did not exhibit any formate dehydrogenase activity. The background strain, M2390, had minimal activity. The positive control strain, M3631, which overexpresses FDH was active and produced a significant amount of NADH that was observed and recorded.
[0468] AE9 glucoamylase activity assay:
[0469] Saccharomycopsis fibuligera GLUl glucoamylase (AE9) produces glucose from starch.
[0470] Extracellular AE9 glucoamylase activity on raw corn starch was assayed to determine the presence of glucoamylase activity in aerobic culture supernatants of engineered strains. Cells were grown aerobically, removed by centrifugation, and the resulting supernatant was assayed for activity and compared to supernatant from strain M2390, which does not contain AE9.
[0471] Cell Growth Conditions:
[0472] Cells were plated on YPD (20 g/L peptone, 10 g/L yeast extract, 20 g/L dextrose) agar for 48 hours and used to inoculate 25 mL YPD (20 g/L peptone, 10 g/L yeast extract, 20 g/L glucose) in a 50 mL culture tube. Cells were grown aerobically for 48 hours at 35.degree. C. with shaking at 250 rpm. After 48 hours, cells were removed via centrifugation and the supernatant was recovered.
[0473] Sample Preparation:
[0474] The recovered aerobic culture supernatant was clarified by filtration through a 0.22 .mu.m filter membrane and concentrated .about.10.times. using a 10 kDa molecular weight cut-off filter. The retained concentrate was then analyzed for AE9 concentration via a phenyl reverse phase (phenyl-RP) HPLC method developed in-house using purified AE9 as a standard. Samples were diluted to an AE9 concentration of 50 .mu.g/mL and used directly in the activity assay.
[0475] Glucoamylase Activity Assay:
[0476] A 2.2% (weight by volume) corn starch solution was made up in 50 mM sodium acetate buffer pH 5.0. In a 96-well assay plate, 50 .mu.L of supernatant (adjusted to 50 g/mL AE9 concentration) was added to 450 .mu.L 2.2% starch. The plate was incubated at room temperature without shaking, and 50 .mu.L of sample was taken at 1, 2, 5, 10, 30, 120 and 210 minutes. Wells were mixed by pipette aspiration after initial enzyme addition, as well as at each sampling thereafter. Samples were analyzed via 3,5-dinitrosalicylic acid (DNS) method to determine reducing sugars.
[0477] As shown in FIG. 42, the aerobic culture supernatants of M3625 and M3680 showed similar activity on raw corn starch, as measured by DNS analysis (Somogyi, M., Notes on Sugar Determination, JBC (200)45 (1952)). Amylolytic activity of M2390 supernatant was negligible in this assay.
[0478] The above data show that pflA, pflB and AdhE are present in strain M3625 and have the proper activity. Fdh activity, seen in the background strain as well as in the positive control when fdh was overexpressed, was not present in the engineered strains indicating that this gene was knocked out successfully.
Example 9
[0479] The following example demonstrates the ethanol yield of the Saccharomyces cerevisiae strain M3624. The genotype of strain M3624 is: .DELTA.gpd1::GPD2-B. adolescentis pflA/pFlB/adhE.DELTA.gpd2::GPD1-B. adolescentis pflA/pflB/adhE .DELTA.fdh1 .DELTA.fdh2::B. adolescentis pflA/pflB/adhE. Strain M3624 was created according to the same methods employed above in Example 8. Detailed molecular maps for strain M3624 are shown in FIGS. 43A-D. FIG. 43A shows insertion at the GPD1 locus; GPD2 expressed from the GPD1 promoter; PFK2t-PFK2 terminator; HXT2t-HXT2 terminator; pADH1-ADH1 promoter; PDC1 term-PDC1 terminator; FBA1 term-FBA1 terminator; pTPI1-TPI1 promoter; Seer ENO1 ter-ENO1 terminator. FIG. 43B shows insertion at the GPD2 locus; GPD1 expressed from the GPD2 promoter; TDH3 term-TDH3 terminator; pPFK1-PFK1 promoter; HXT2t-HXT2 terminator; PDC1 term-PDC1 terminator; pADH1-ADH1 promoter; S.cer ENO1 ter-ENO1 terminator; FBA1 term-FBA1 terminator; pTPI1-TPI1 promoter. FIG. 43C shows deletion of the FDH1 gene; flanking regions to create deletion of FDH1. FIG. 43D shows insertion at the FDH2 locus; pPFK1-PFK1 promoter, S.cer ENO1 ter-ENO1 terminator; pADH1-ADh1 promoter; FBA1 term-FBA1 terminator; PDC1 term-PDC1 terminator; pTPI-TPI1 promoter.
[0480] The data shown in FIG. 44 demonstrates that a 3.4% ethanol yield increase is obtained through reduction of glycerol and production of formate. M2390 is the control strain, M3515 and M3624 are engineered with the genotype .DELTA.gpd1::GPD2-B. adolescenits pflA/pflB/adhE .DELTA.gpd2::GPD1-B. adolescentis pflA/PFlB/adhE fdh1.DELTA.fdh2.DELTA.::B. adolescentis pflA/pflB/adhE. M3027 is engineered with the genotype .DELTA.gpd1 .DELTA.gpd2::GPD1-B. adolescentis pflA/PFlB/adhE fdh1.DELTA.fdh2.DELTA.::B. adolescentis pflA/pflB/adhE. Panel A shows measurement of formate concentration, panel B shows measurement of glycerol concentration, and panel C shows measurement of ethanol concentration.
[0481] Both M3515 and M3624 have been engineered at 4 separate loci. The GPD1 gene is expressed from the GPD2 promoter and the GPD2 gene is expressed from the GPD1 promoter, the FDH1 and FDH2 genes have been deleted. Additionally, the B. adolescentis pflA, pflB and adhE genes are expressed as shown in FIGS. 43A, B, and D.
Example 10
[0482] The following example demonstrates the ethanol yield of the Saccharomyces cerevisiae strains M3465 and M3469. The genotype of strain M3465 is: .DELTA.gpd2:: B. adolescentis pflA/pflB/adhE .DELTA.fdh1.DELTA. fdh2:: B. adolescentis pflA/pflB/adhE. The genotype of strain M3469 is: .DELTA.gpd1:: B. adolescentis pflA/pflB/adhE fdh1A fdh2A:: B. adolescentis pflA/pflB/adhE. Strains M3465 and M3469 were created according to the same methods employed above in Example 8. Detailed molecular maps of strains M3465 and M3469 are shown in FIGS. 45 A-C and 46 A-C, respectively. FIG. 45A shows insertion at the GPD2 locus; pPFK1-PFK1 promoter; HXT2t-HXT2 terminator; PDC1 term-PDC1 terminator; pADH1-ADH1 promoter; S.cer ENO1 ter-ENO1 terminator; FBA1 term-FBA1 terminator; pTPI1-TPI1 promoter. FIG. 45B shows deletion of the FDH1 gene; flanking regions to create deletion of FDH1. FIG. 45C shows insertion at the FDH2 locus; pPFK1-PFK1 promoter; S.cer ENO1 ter-ENO terminator; pADH1-ADh1 promoter; FBA1 term-FBA1 terminator; PDC1 term-PDC1 terminator; pTPI-TPI1 promoter. FIG. 46A shows insertion at the GPD1 locus; pPFK1-PFK1 promoter; HXT2t-HXT2 terminator; PDC1 term-PDC1 terminator; pADH1-ADH1 promoter; S.cer ENO1 ter-ENO1 terminator; FBA1 term-FBA1 terminator; pTPI1-TPI1 promoter. FIG. 46B shows deletion of the FDH1 gene; flanking regions to create deletion of FDH1. FIG. 46C shows insertion at the FDH2 locus; pPFK1-PFK1 promoter, S.cer ENO1 ter-ENO1 terminator; pADH1-ADh1 promoter; FBA1 term-FBA1 terminator; PDC1 term-PDC1 terminator; pTP1-TPI1 promoter.
[0483] This example demonstrates that the ethanol yield increase is dependent on the level of glycerol reduction. Fermentation of 30% solids corn mash by M3465, which contains a deletion of the GPD2, FDH1 and FDH2 genes and expression of B. adolescentis pflA, pflB and adhE genes from the GPD2 and FDH2 loci, results in a 1.5% increase in ethanol titer. As shown in FIG. 47, fermentation of 30% solids corn mash by M3469, which contains a deletion of the GPD1, FDH1 and FDH2 genes and expression of B. adolescentis pflA, pflB and adhE genes from the GPD1 and FDH2 loci, results in a 2.5% increase in ethanol titer. M2390 is the control parent strain. As shown in FIG. 48, fermentation of corn mash by M3465 and M3469 results in .about.15% lower glycerol and 30% lower glycerol levels respectively. M2390, represented in FIGS. 47 and 48, is the control strain.
Example 11
[0484] An alternative way to reduce glycerol formation is through deletion of the glycerol-3-phosphate phosphatase (GPP) genes. Saccharomyces contains two copies of these genes, GPP1 and GPP2. The data below demonstrates that expression of B. adolescentis pflA, pflB and adhE in backgrounds containing deletions of FDH1, FDH2 and either GPP1 or GPP2 results in decreased glycerol formation (FIG. 53; strain comparison, min buff medium, glucose 40 g/L, anaerobic fermentations, 35.degree. C.--72 hr.) and increased ethanol yield (FIG. 54; strain comparison, min buff medium, glucose 40 g/L, anaerobic fermentations, 35.degree. C.--72 hr.). Production of formate was also observed. See FIG. 55 (strain comparison, min buff medium, glucose 40 g/L, anaerobic fermentations, 35.degree. C.--72 hr.).
[0485] The strains engineered to measure the glycerol formation, ethanol yield, and formate production were the Saccharomyces cerevisiae strains M3297, TB655, and TB656. Strains M3297, TB655, and TB656 were created according to the same methods employed above in Example 8. The genotype of strain M3297 is: .DELTA.fdh1.DELTA.fdh2::pflA/pflB/adhE. This strain contains only deletion in the FDH genes plus expression fo pflA, pflB and AdhE. The genotype of strain TB655 is: .DELTA.fdh1.DELTA.fdh2::pflA/pflB/adhE.DELTA.gpp1::pflA/pflB/adhE. This strain contains deletion in the FDH genes, expression of pflA, pflB and AdhE, and deletion of GPPL. See FIG. 51. The genotype of strain TB656 is: .DELTA.fdh1.DELTA.fdh2::pflA/pflB/adhE.DELTA.gpp2::pflA/pflB/adhE. This strain contains deletion in the FDH genes, expression of pflA, pflB and AdhE and deletion of GPPL. See FIG. 52.
[0486] The amount of ethanol, glycerol, and formate produced by strains TB655 and TB656 was measured using the methods described above. Compared to the control strain M3297, strains TB655 and TB656 demonstrated statistically significant changes in the amount of ethanol, glycerol, and formate produced. Relative to strain M3297, strain TB655 (gpp1 mutant) demonstrated a 1.3% increase in ethanol titer, 10% reduction in glycerol, and 100% more formate produced, whereas strain TB656 (gpp2 mutant) demonstrated a 0.95% increase in ethanol titer, 6.1% reduction in glycerol formation, and 100% more formate produced. These results demonstrate the novel combination of GPP mutation with a metabolic engineering solution to balance redox during anaerobic growth.
INCORPORATION BY REFERENCE
[0487] All of the U.S. patents and U.S. published patent applications cited herein are hereby incorporated by reference.
EQUIVALENTS
[0488] Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments of the invention described herein. Such equivalents are intended to be encompassed by the following claims.
Sequence CWU
1
1
19113599DNASaccharomyces
cerevisiaemisc_featureFPS1misc_feature(801)..(2810)coding sequence
1ttgacggcag ttctcatagc atctcaaagc aatagcagtg caaaagtaca taaccgtagg
60aaggtacgcg gtaggtattt gagttcgttg gtggttatcc tccgcaaggc gcttcggcgg
120ttatttgttg atagtcgaag aacaccaaaa aaaatgctgt tattgctttc tccgtaaaca
180ataaaacccg gtagcgggat aacgcggctg atgcttttat ttaggaagga atacttacat
240tatcatgaga acattgtcaa gggcattctg atacgggcct tccatcgcaa gaaaaaggca
300gcaacggact gagggacgga gagagttacg gcataagaag tagtaggaga gcagagtgtc
360ataaagttat attattctcg tcctaaagtc aattagttct gttgcgcttg acaatatatg
420tcgtgtaata ccgtccctta gcagaagaaa gaaagacgga tccatatatg ttaaaatgct
480tcagagatgt ttctttaatg tgccgtccaa caaaggtatc ttctgtagct tcctctattt
540tcgatcagat ctcatagtga gaaggcgcaa ttcagtagtt aaaagcgggg aacagtgtga
600atccggagac ggcaagattg cccggccctt tttgcggaaa agataaaaca agatatattg
660cactttttcc accaagaaaa acaggaagtg gattaaaaaa tcaacaaagt ataacgccta
720ttgtcccaat aagcgtcggt tgttcttctt tattatttta ccaagtacgc tcgagggtac
780attctaatgc attaaaagac atgagtaatc ctcaaaaagc tctaaacgac tttctgtcca
840gtgaatctgt tcatacacat gatagttcta ggaaacaatc taataagcag tcatccgacg
900aaggacgctc ttcatcacaa ccttcacatc atcactctgg tggtactaac aacaataata
960acaataataa taataataat aacagtaaca acaacaacaa cggcaacgat gggggaaatg
1020atgacgacta tgattatgaa atgcaagatt atagaccttc tccgcaaagt gcgcggccta
1080ctcccacgta tgttccacaa tattctgtag aaagtgggac tgctttcccg attcaagagg
1140ttattcctag cgcatacatt aacacacaag atataaacca taaagataac ggtccgccga
1200gtgcaagcag taatagagca ttcaggccta gagggcagac cacagtgtcg gccaacgtgc
1260ttaacattga agatttttac aaaaatgcag acgatgcgca taccatcccg gagtcacatt
1320tatcgagaag gagaagtagg tcgagggcta cgagtaatgc tgggcacagt gccaatacag
1380gcgccacgaa tggcaggact actggtgccc aaactaatat ggaaagcaat gaatcaccac
1440gtaacgtccc cattatggtg aagccaaaga cattatacca gaaccctcaa acacctacag
1500tcttgccctc cacataccat ccaattaata aatggtcttc cgtcaaaaac acttatttga
1560aggaattttt agccgagttt atgggaacaa tggttatgat tattttcggt agtgctgttg
1620tttgtcaggt caatgttgct gggaaaatac agcaggacaa tttcaacgtg gctttggata
1680accttaacgt taccgggtct tctgcagaaa cgatagacgc tatgaagagt ttaacatcct
1740tggtttcatc cgttgcgggc ggtacctttg atgatgtggc attgggctgg gctgctgccg
1800tggtgatggg ctatttctgc gctggtggta gtgccatctc aggtgctcat ttgaatccgt
1860ctattacatt agccaatttg gtgtatagag gttttcccct gaagaaagtt ccttattact
1920ttgctggaca attgatcggt gccttcacag gcgctttgat cttgtttatt tggtacaaaa
1980gggtgttaca agaggcatat agcgattggt ggatgaatga aagtgttgcg ggaatgtttt
2040gcgtttttcc aaagccttat ctaagttcag gacggcaatt tttttccgaa tttttatgtg
2100gagctatgtt acaagcagga acatttgcgc tgaccgatcc ttatacgtgt ttgtcctctg
2160atgttttccc attgatgatg tttattttga ttttcattat caatgcttcc atggcttatc
2220agacaggtac agcaatgaat ttggctcgtg atctgggccc acgtcttgca ctatatgcag
2280ttggatttga tcataaaatg ctttgggtgc atcatcatca tttcttttgg gttcccatgg
2340taggcccatt tattggtgcg ttaatggggg ggttggttta cgatgtctgt atttatcagg
2400gtcatgaatc tccagtcaac tggtctttac cagtttataa ggaaatgatt atgagagcct
2460ggtttagaag gcctggttgg aagaagagaa atagagcaag aagaacatcg gacctgagtg
2520acttctcata caataacgat gatgatgagg aatttggaga aagaatggct cttcaaaaga
2580caaagaccaa gtcatctatt tcagacaacg aaaatgaagc aggagaaaag aaagtgcaat
2640ttaaatctgt tcagcgcggc aaaagaacgt ttggtggtat accaacaatt cttgaagaag
2700aagattccat tgaaactgct tcgctaggtg cgacgacgac tgattctatt gggttatccg
2760acacatcatc agaagattcg cattatggta atgctaagaa ggtaacatga gaaaacagac
2820aagaaaaaga aacaaataat atagactgat agaaaaaaat actgcttact accgccggta
2880taatatatat atatatatat atttacatag atgattgcat agtgttttaa aaagctttcc
2940taggttaagc tatgaatctt cataacctaa ccaactaaat atgaaaatac tgacccatcg
3000tcttaagtaa gttgacatga actcagcctg gtcacctact atacatgatg tatcgcatgg
3060atggaaagaa taccaaacgc taccttccag gttaatgata gtatccaaac ctagttggaa
3120tttgccttga acatcaagca gcgattcgat atcagttggg agcatcaatt tggtcattgg
3180aataccatct atgcttttct cctcccatat tcgcaaaagt agtaagggct cgttatatac
3240ttttgaatat gtaagatata attctatatg atttagtaat ttattttcta tacgctcagt
3300atttttctgc agttgtcgag taggtattaa acgcaaaaga agtccatcct tttcatcatt
3360caaatggaca tcttggcaaa gggcccagtt atggaaaatc tgggagtcat acaacgattg
3420cagttggcta tgccactcct ggtaaggaat catcaagtct gataattctg ttttttagcc
3480cttttttttt ttttttcatg gtgttctctt ctcattgctt ttcaatttta agttcgttac
3540ctttcatata gagtttctta acagaaattt cacaacgaaa atataattaa ctacaggca
35992669PRTSaccharomyces cerevisiaeMISC_FEATUREFPS1 2Met Ser Asn Pro Gln
Lys Ala Leu Asn Asp Phe Leu Ser Ser Glu Ser1 5
10 15Val His Thr His Asp Ser Ser Arg Lys Gln Ser
Asn Lys Gln Ser Ser 20 25
30Asp Glu Gly Arg Ser Ser Ser Gln Pro Ser His His His Ser Gly Gly
35 40 45Thr Asn Asn Asn Asn Asn Asn Asn
Asn Asn Asn Asn Asn Ser Asn Asn 50 55
60Asn Asn Asn Gly Asn Asp Gly Gly Asn Asp Asp Asp Tyr Asp Tyr Glu65
70 75 80Met Gln Asp Tyr Arg
Pro Ser Pro Gln Ser Ala Arg Pro Thr Pro Thr 85
90 95Tyr Val Pro Gln Tyr Ser Val Glu Ser Gly Thr
Ala Phe Pro Ile Gln 100 105
110Glu Val Ile Pro Ser Ala Tyr Ile Asn Thr Gln Asp Ile Asn His Lys
115 120 125Asp Asn Gly Pro Pro Ser Ala
Ser Ser Asn Arg Ala Phe Arg Pro Arg 130 135
140Gly Gln Thr Thr Val Ser Ala Asn Val Leu Asn Ile Glu Asp Phe
Tyr145 150 155 160Lys Asn
Ala Asp Asp Ala His Thr Ile Pro Glu Ser His Leu Ser Arg
165 170 175Arg Arg Ser Arg Ser Arg Ala
Thr Ser Asn Ala Gly His Ser Ala Asn 180 185
190Thr Gly Ala Thr Asn Gly Arg Thr Thr Gly Ala Gln Thr Asn
Met Glu 195 200 205Ser Asn Glu Ser
Pro Arg Asn Val Pro Ile Met Val Lys Pro Lys Thr 210
215 220Leu Tyr Gln Asn Pro Gln Thr Pro Thr Val Leu Pro
Ser Thr Tyr His225 230 235
240Pro Ile Asn Lys Trp Ser Ser Val Lys Asn Thr Tyr Leu Lys Glu Phe
245 250 255Leu Ala Glu Phe Met
Gly Thr Met Val Met Ile Ile Phe Gly Ser Ala 260
265 270Val Val Cys Gln Val Asn Val Ala Gly Lys Ile Gln
Gln Asp Asn Phe 275 280 285Asn Val
Ala Leu Asp Asn Leu Asn Val Thr Gly Ser Ser Ala Glu Thr 290
295 300Ile Asp Ala Met Lys Ser Leu Thr Ser Leu Val
Ser Ser Val Ala Gly305 310 315
320Gly Thr Phe Asp Asp Val Ala Leu Gly Trp Ala Ala Ala Val Val Met
325 330 335Gly Tyr Phe Cys
Ala Gly Gly Ser Ala Ile Ser Gly Ala His Leu Asn 340
345 350Pro Ser Ile Thr Leu Ala Asn Leu Val Tyr Arg
Gly Phe Pro Leu Lys 355 360 365Lys
Val Pro Tyr Tyr Phe Ala Gly Gln Leu Ile Gly Ala Phe Thr Gly 370
375 380Ala Leu Ile Leu Phe Ile Trp Tyr Lys Arg
Val Leu Gln Glu Ala Tyr385 390 395
400Ser Asp Trp Trp Met Asn Glu Ser Val Ala Gly Met Phe Cys Val
Phe 405 410 415Pro Lys Pro
Tyr Leu Ser Ser Gly Arg Gln Phe Phe Ser Glu Phe Leu 420
425 430Cys Gly Ala Met Leu Gln Ala Gly Thr Phe
Ala Leu Thr Asp Pro Tyr 435 440
445Thr Cys Leu Ser Ser Asp Val Phe Pro Leu Met Met Phe Ile Leu Ile 450
455 460Phe Ile Ile Asn Ala Ser Met Ala
Tyr Gln Thr Gly Thr Ala Met Asn465 470
475 480Leu Ala Arg Asp Leu Gly Pro Arg Leu Ala Leu Tyr
Ala Val Gly Phe 485 490
495Asp His Lys Met Leu Trp Val His His His His Phe Phe Trp Val Pro
500 505 510Met Val Gly Pro Phe Ile
Gly Ala Leu Met Gly Gly Leu Val Tyr Asp 515 520
525Val Cys Ile Tyr Gln Gly His Glu Ser Pro Val Asn Trp Ser
Leu Pro 530 535 540Val Tyr Lys Glu Met
Ile Met Arg Ala Trp Phe Arg Arg Pro Gly Trp545 550
555 560Lys Lys Arg Asn Arg Ala Arg Arg Thr Ser
Asp Leu Ser Asp Phe Ser 565 570
575Tyr Asn Asn Asp Asp Asp Glu Glu Phe Gly Glu Arg Met Ala Leu Gln
580 585 590Lys Thr Lys Thr Lys
Ser Ser Ile Ser Asp Asn Glu Asn Glu Ala Gly 595
600 605Glu Lys Lys Val Gln Phe Lys Ser Val Gln Arg Gly
Lys Arg Thr Phe 610 615 620Gly Gly Ile
Pro Thr Ile Leu Glu Glu Glu Asp Ser Ile Glu Thr Ala625
630 635 640Ser Leu Gly Ala Thr Thr Thr
Asp Ser Ile Gly Leu Ser Asp Thr Ser 645
650 655Ser Glu Asp Ser His Tyr Gly Asn Ala Lys Lys Val
Thr 660 6653759DNABacillus
licheniformismisc_featureDSM13 3atggatggaa atattcattc gatcgaaaca
ttcggcaccg ttgacggtcc aggcatcagg 60tatgtcgtct tcacacaagg ctgcctgatg
cgctgtcaat tttgccataa tgctgatact 120tgggaaatcg gaaccggaaa acaaatgacg
gtttccgaaa tcgttcagga tgtccagcat 180tatctcccgt ttattcaatc atcgggcgga
ggcatcaccg tgagcggagg cgagccgctt 240ttacaactgc cgtttttaat cgagctgttc
aaagcatgca aaagcctcgg cattcacacg 300gcactcgatt cgtccggcgg atgctattcg
gctgcgccgg catttcaaga gcagatcaaa 360gaactgatcc agtatacaga ccttgttttg
cttgacctca agcatcacaa cagaaaaaaa 420catatcaacc tgacaggaat gccgaatgac
cacattttag aatttgcccg gtttctcgct 480gaacatcaag ttcccgtctg gatccgccac
gtactggttc cggggatctc cgatatcgat 540gccgatttaa cggccctcgg cacgtttatc
ggcacgcttg cgaacgttca gaaggtggag 600gttcttcctt atcacaagct cggcgtctac
aaatgggaag cgcttggcct ggattatccg 660ttaaaagggg ttgaaccgcc aagtgccgac
agggccgaaa atgcgtacag actgctcacc 720gcacacttgc aaggcggatc cttgctgcaa
gagacataa 7594252PRTBacillus
licheniformisMISC_FEATUREDSM13 4Met Asp Gly Asn Ile His Ser Ile Glu Thr
Phe Gly Thr Val Asp Gly1 5 10
15Pro Gly Ile Arg Tyr Val Val Phe Thr Gln Gly Cys Leu Met Arg Cys
20 25 30Gln Phe Cys His Asn Ala
Asp Thr Trp Glu Ile Gly Thr Gly Lys Gln 35 40
45Met Thr Val Ser Glu Ile Val Gln Asp Val Gln His Tyr Leu
Pro Phe 50 55 60Ile Gln Ser Ser Gly
Gly Gly Ile Thr Val Ser Gly Gly Glu Pro Leu65 70
75 80Leu Gln Leu Pro Phe Leu Ile Glu Leu Phe
Lys Ala Cys Lys Ser Leu 85 90
95Gly Ile His Thr Ala Leu Asp Ser Ser Gly Gly Cys Tyr Ser Ala Ala
100 105 110Pro Ala Phe Gln Glu
Gln Ile Lys Glu Leu Ile Gln Tyr Thr Asp Leu 115
120 125Val Leu Leu Asp Leu Lys His His Asn Arg Lys Lys
His Ile Asn Leu 130 135 140Thr Gly Met
Pro Asn Asp His Ile Leu Glu Phe Ala Arg Phe Leu Ala145
150 155 160Glu His Gln Val Pro Val Trp
Ile Arg His Val Leu Val Pro Gly Ile 165
170 175Ser Asp Ile Asp Ala Asp Leu Thr Ala Leu Gly Thr
Phe Ile Gly Thr 180 185 190Leu
Ala Asn Val Gln Lys Val Glu Val Leu Pro Tyr His Lys Leu Gly 195
200 205Val Tyr Lys Trp Glu Ala Leu Gly Leu
Asp Tyr Pro Leu Lys Gly Val 210 215
220Glu Pro Pro Ser Ala Asp Arg Ala Glu Asn Ala Tyr Arg Leu Leu Thr225
230 235 240Ala His Leu Gln
Gly Gly Ser Leu Leu Gln Glu Thr 245
2505759DNABacillus licheniformismisc_featureATCC14580 5atggatggaa
atattcattc gatcgaaaca ttcggcaccg ttgacggtcc aggcatcagg 60tatgtcgtct
tcacacaagg ctgcctgatg cgctgtcaat tttgccataa tgctgatact 120tgggaaatcg
gaaccggaaa acaaatgacg gtttccgaaa tcgttcagga tgtccagcat 180tatctcccgt
ttattcaatc atcgggcgga ggcatcaccg tgagcggagg cgagccgctt 240ttacaactgc
cgtttttaat cgagctgttc aaagcatgca aaagcctcgg cattcacacg 300gcactcgatt
cgtccggcgg atgctattcg gctgcgccgg catttcaaga gcagatcaaa 360gaactgatcc
agtatacaga ccttgttttg cttgacctca agcatcacaa cagaaaaaaa 420catatcaacc
tgacaggaat gccgaatgac cacattttag aatttgcccg gtttctcgct 480gaacatcaag
ttcccgtctg gatccgccac gtactggttc cggggatctc cgatatcgat 540gccgatttaa
cggccctcgg cacgtttatc ggcacgcttg cgaacgttca gaaggtggag 600gttcttcctt
atcacaagct cggcgtctac aaatgggaag cgcttggcct ggattatccg 660ttaaaagggg
ttgaaccgcc aagtgccgac agggccgaaa atgcgtacag actgctcacc 720gcacacttgc
aaggcggatc cttgctgcaa gagacataa
7596252PRTBacillus licheniformisMISC_FEATUREATCC14580 6Met Asp Gly Asn
Ile His Ser Ile Glu Thr Phe Gly Thr Val Asp Gly1 5
10 15Pro Gly Ile Arg Tyr Val Val Phe Thr Gln
Gly Cys Leu Met Arg Cys 20 25
30Gln Phe Cys His Asn Ala Asp Thr Trp Glu Ile Gly Thr Gly Lys Gln
35 40 45Met Thr Val Ser Glu Ile Val Gln
Asp Val Gln His Tyr Leu Pro Phe 50 55
60Ile Gln Ser Ser Gly Gly Gly Ile Thr Val Ser Gly Gly Glu Pro Leu65
70 75 80Leu Gln Leu Pro Phe
Leu Ile Glu Leu Phe Lys Ala Cys Lys Ser Leu 85
90 95Gly Ile His Thr Ala Leu Asp Ser Ser Gly Gly
Cys Tyr Ser Ala Ala 100 105
110Pro Ala Phe Gln Glu Gln Ile Lys Glu Leu Ile Gln Tyr Thr Asp Leu
115 120 125Val Leu Leu Asp Leu Lys His
His Asn Arg Lys Lys His Ile Asn Leu 130 135
140Thr Gly Met Pro Asn Asp His Ile Leu Glu Phe Ala Arg Phe Leu
Ala145 150 155 160Glu His
Gln Val Pro Val Trp Ile Arg His Val Leu Val Pro Gly Ile
165 170 175Ser Asp Ile Asp Ala Asp Leu
Thr Ala Leu Gly Thr Phe Ile Gly Thr 180 185
190Leu Ala Asn Val Gln Lys Val Glu Val Leu Pro Tyr His Lys
Leu Gly 195 200 205Val Tyr Lys Trp
Glu Ala Leu Gly Leu Asp Tyr Pro Leu Lys Gly Val 210
215 220Glu Pro Pro Ser Ala Asp Arg Ala Glu Asn Ala Tyr
Arg Leu Leu Thr225 230 235
240Ala His Leu Gln Gly Gly Ser Leu Leu Gln Glu Thr 245
2507801DNAStreptococcus thermophilusmisc_featureCNRZ1066
7atggcagaaa ttgattacag tcaggtgact ggacttgttc attcaaccga aagtttcgga
60tccgtagatg gtcctggtat ccgttttatt gtgtttatgc aaggctgtaa gctgcgttgc
120caatattgtc ataacccaga tacttgggcc atgaagtcaa ataaggctgt tgaacgtaca
180gttgaagatg tcttagaaga ggctcttcgc ttccgtcatt tctggggtga gcatggtgga
240atcactgtat caggtggtga agccatgctt cagattgatt ttgtcactgc cctctttaca
300gaggctaaga agttagggat tcactgtacg cttgatacgt gtggcttgtc ttatcgtaat
360actccagagt atcatgaagt tgtcgacaaa cttttggctg taactgactt ggttctactg
420gatatcaaag agattgaccc cgaacaacac aagtttgtga cccgtcaacc taataagaat
480atcttggaat ttgctcaata tctgtctgat aaacaagttc cggtctggat tcgtcatgtc
540ttggtacctg gtttgacaga ttttgacgaa cacttggtta agctcggcga gtttgtaaag
600accttgaaaa atgtcgataa atttgaaatt cttccatatc atacgatggg ggaattcaag
660tggcgtgaac ttggcatccc ttatccattg gaaggtgtca aaccaccaac tgcagatcgt
720gttaaaaatg ctaaggctct tatgcatacg gaaacttatc aagagtataa gaatcgtatc
780ggggttaaaa ccttggatta a
8018266PRTStreptococcus thermophilusMISC_FEATURECNRZ1066 8Met Ala Glu Ile
Asp Tyr Ser Gln Val Thr Gly Leu Val His Ser Thr1 5
10 15Glu Ser Phe Gly Ser Val Asp Gly Pro Gly
Ile Arg Phe Ile Val Phe 20 25
30Met Gln Gly Cys Lys Leu Arg Cys Gln Tyr Cys His Asn Pro Asp Thr
35 40 45Trp Ala Met Lys Ser Asn Lys Ala
Val Glu Arg Thr Val Glu Asp Val 50 55
60Leu Glu Glu Ala Leu Arg Phe Arg His Phe Trp Gly Glu His Gly Gly65
70 75 80Ile Thr Val Ser Gly
Gly Glu Ala Met Leu Gln Ile Asp Phe Val Thr 85
90 95Ala Leu Phe Thr Glu Ala Lys Lys Leu Gly Ile
His Cys Thr Leu Asp 100 105
110Thr Cys Gly Leu Ser Tyr Arg Asn Thr Pro Glu Tyr His Glu Val Val
115 120 125Asp Lys Leu Leu Ala Val Thr
Asp Leu Val Leu Leu Asp Ile Lys Glu 130 135
140Ile Asp Pro Glu Gln His Lys Phe Val Thr Arg Gln Pro Asn Lys
Asn145 150 155 160Ile Leu
Glu Phe Ala Gln Tyr Leu Ser Asp Lys Gln Val Pro Val Trp
165 170 175Ile Arg His Val Leu Val Pro
Gly Leu Thr Asp Phe Asp Glu His Leu 180 185
190Val Lys Leu Gly Glu Phe Val Lys Thr Leu Lys Asn Val Asp
Lys Phe 195 200 205Glu Ile Leu Pro
Tyr His Thr Met Gly Glu Phe Lys Trp Arg Glu Leu 210
215 220Gly Ile Pro Tyr Pro Leu Glu Gly Val Lys Pro Pro
Thr Ala Asp Arg225 230 235
240Val Lys Asn Ala Lys Ala Leu Met His Thr Glu Thr Tyr Gln Glu Tyr
245 250 255Lys Asn Arg Ile Gly
Val Lys Thr Leu Asp 260
2659801DNAStreptococcus thermophilusmisc_featureLMG18311 9atggcagaaa
ttgattacag tcaggtgact ggacttgttc attcaaccga aagtttcgga 60tccgtagatg
gtcctggtat ccgttttatt gtgtttatgc aaggctgtaa gctgcgttgc 120caatattgtc
ataacccaga tacttgggcc atgaagtcaa ataaggctgt tgaacgtaca 180gttgaagatg
tcttagaaga ggctcttcgc ttccgtcatt tctggggtga gcatggtgga 240atcactgtat
caggtggtga agccatgctt cagattgatt ttgtcactgc cctctttaca 300gaggctaaga
agttagggat tcactgtacg cttgatacgt gtggcttgtc ttatcgtaat 360actccagagt
atcatgaagt tgtcgacaaa cttttggctg taactgactt ggttctactg 420gatatcaaag
agattgaccc cgaacaacac aagtttgtga cccgtcaacc taataagaat 480atcttggaat
ttgctcaata tctgtctgat aaacaagttc cggtctggat tcgtcatgtc 540ttggtacctg
gtttgacaga ttttgacgaa cacttggtta agctcggcga gtttgtaaag 600accttgaaaa
atgtcgataa atttgaaatt cttccatatc atacgatggg ggaattcaag 660tggcgtgaac
ttggcatccc ttatccattg gaaggtgtca aaccaccaac tgcagatcgt 720gttaaaaatg
ctaaggctct tatgcatacg gaaacttatc aagagtataa gaatcgtatc 780ggggttaaaa
ccttggatta a
80110266PRTStreptococcus thermophilusMISC_FEATURELMG18311 10Met Ala Glu
Ile Asp Tyr Ser Gln Val Thr Gly Leu Val His Ser Thr1 5
10 15Glu Ser Phe Gly Ser Val Asp Gly Pro
Gly Ile Arg Phe Ile Val Phe 20 25
30Met Gln Gly Cys Lys Leu Arg Cys Gln Tyr Cys His Asn Pro Asp Thr
35 40 45Trp Ala Met Lys Ser Asn Lys
Ala Val Glu Arg Thr Val Glu Asp Val 50 55
60Leu Glu Glu Ala Leu Arg Phe Arg His Phe Trp Gly Glu His Gly Gly65
70 75 80Ile Thr Val Ser
Gly Gly Glu Ala Met Leu Gln Ile Asp Phe Val Thr 85
90 95Ala Leu Phe Thr Glu Ala Lys Lys Leu Gly
Ile His Cys Thr Leu Asp 100 105
110Thr Cys Gly Leu Ser Tyr Arg Asn Thr Pro Glu Tyr His Glu Val Val
115 120 125Asp Lys Leu Leu Ala Val Thr
Asp Leu Val Leu Leu Asp Ile Lys Glu 130 135
140Ile Asp Pro Glu Gln His Lys Phe Val Thr Arg Gln Pro Asn Lys
Asn145 150 155 160Ile Leu
Glu Phe Ala Gln Tyr Leu Ser Asp Lys Gln Val Pro Val Trp
165 170 175Ile Arg His Val Leu Val Pro
Gly Leu Thr Asp Phe Asp Glu His Leu 180 185
190Val Lys Leu Gly Glu Phe Val Lys Thr Leu Lys Asn Val Asp
Lys Phe 195 200 205Glu Ile Leu Pro
Tyr His Thr Met Gly Glu Phe Lys Trp Arg Glu Leu 210
215 220Gly Ile Pro Tyr Pro Leu Glu Gly Val Lys Pro Pro
Thr Ala Asp Arg225 230 235
240Val Lys Asn Ala Lys Ala Leu Met His Thr Glu Thr Tyr Gln Glu Tyr
245 250 255Lys Asn Arg Ile Gly
Val Lys Thr Leu Asp 260
26511801DNAStreptococcus thermophilusmisc_featureLMD-9 11atggcagaaa
ttgattacag tcaggtgact ggacttgttc attcaaccga aagtttcgga 60tccgtagatg
gtcctggtat ccgttttatt gtgtttatgc aaggctgtaa gctgcgttgc 120caatattgtc
ataacccaga tacttgggcc atgaagtcaa ataaggctgt tgaacgtaca 180gttgaagatg
tcttagaaga ggctcttcgc ttccgtcatt tctggggtga gcatggtgga 240atcactgtat
caggtggtga agccatgctt cagattgatt ttgtcactgc cctctttaca 300gaggctaaga
agttagggat tcactgtacg cttgatacgt gtggcttgtc ttatcgtaat 360actccagagt
atcatgaagt tgtcgacaaa cttttggctg taactgactt ggttctactg 420gatatcaaag
agattgaccc cgaacaacac aagtttgtga cccgtcaacc taataagaat 480atcttggaat
ttgctcaata tctgtctgat aaacaagttc cggtctggat tcgtcatgtc 540ttggtacctg
gtttgacaga ttttgacgaa cacttggtta agctcggcga gtttgtaaag 600accttgaaaa
atgtcgataa atttgaaatt cttccatatc atacgatggg ggaattcaag 660tggcgtgaac
ttggcatccc ttatccattg gaaggtgtca aaccaccaac tgcagatcgt 720gttaaaaatg
ctaaggctct tatgcatacg gaaacttatc aagagtataa gaatcgtatc 780ggggttaaaa
ccttggatta a
80112266PRTStreptococcus thermophilusMISC_FEATURELMD-9 12Met Ala Glu Ile
Asp Tyr Ser Gln Val Thr Gly Leu Val His Ser Thr1 5
10 15Glu Ser Phe Gly Ser Val Asp Gly Pro Gly
Ile Arg Phe Ile Val Phe 20 25
30Met Gln Gly Cys Lys Leu Arg Cys Gln Tyr Cys His Asn Pro Asp Thr
35 40 45Trp Ala Met Lys Ser Asn Lys Ala
Val Glu Arg Thr Val Glu Asp Val 50 55
60Leu Glu Glu Ala Leu Arg Phe Arg His Phe Trp Gly Glu His Gly Gly65
70 75 80Ile Thr Val Ser Gly
Gly Glu Ala Met Leu Gln Ile Asp Phe Val Thr 85
90 95Ala Leu Phe Thr Glu Ala Lys Lys Leu Gly Ile
His Cys Thr Leu Asp 100 105
110Thr Cys Gly Leu Ser Tyr Arg Asn Thr Pro Glu Tyr His Glu Val Val
115 120 125Asp Lys Leu Leu Ala Val Thr
Asp Leu Val Leu Leu Asp Ile Lys Glu 130 135
140Ile Asp Pro Glu Gln His Lys Phe Val Thr Arg Gln Pro Asn Lys
Asn145 150 155 160Ile Leu
Glu Phe Ala Gln Tyr Leu Ser Asp Lys Gln Val Pro Val Trp
165 170 175Ile Arg His Val Leu Val Pro
Gly Leu Thr Asp Phe Asp Glu His Leu 180 185
190Val Lys Leu Gly Glu Phe Val Lys Thr Leu Lys Asn Val Asp
Lys Phe 195 200 205Glu Ile Leu Pro
Tyr His Thr Met Gly Glu Phe Lys Trp Arg Glu Leu 210
215 220Gly Ile Pro Tyr Pro Leu Glu Gly Val Lys Pro Pro
Thr Ala Asp Arg225 230 235
240Val Lys Asn Ala Lys Ala Leu Met His Thr Glu Thr Tyr Gln Glu Tyr
245 250 255Lys Asn Arg Ile Gly
Val Lys Thr Leu Asp 260
26513804DNALactobacillus plantarummisc_featureWCFS1 13atgccaacga
tcacaactaa gacgcccgta aaaggactaa tatttaacat tcaaaaattt 60agtatcaatg
atggaccagg tattcgaaca gtagttttct ttaaagggtg cccgttacgc 120tgcaagtggt
gttctaatcc agaatcacaa tcaggtgagc aagaatcaat gtatgatgaa 180cagaccgcca
agcaaaccat cgtcggtgat tatatgacgg ttgatgatat tatgaaagtt 240attctacaag
ataaagactt ctatgaagag tctggcggtg gggtaacctt ctctggtggt 300gaagttcttt
ttcaagcttc ctttgcgatt gagcttgcta aggcagttaa agcagctggc 360attaatttag
cctgtgagac aactggttac gcacggccta aggtttttaa tgaattcatg 420tcttatatgg
acttcatgta ttatgactgt aaacaatggg acccagccca acatcgaatc 480ggaacgggtg
ccgataacgg ggtaatttta cgtaacttag caactgcagt gcaagctcat 540caaaagatga
tggttcggat tccggttatt ccaggtttta attatacatt gaatgacgcg 600gatcattttg
gacaactatt taatcagatt ggcgtaaccg aagttgaatt attgccattt 660caccagtttg
ggttgaaaaa gtatcaagat ttgggccgaa aatatgcgct agttaatgtt 720aaacagttac
aagcggatga cttaattgat tatgctgaac atattcgtgc acatggtgtt 780aaagtacggg
tgaatgggtg gtaa
80414267PRTLactobacillus plantarumMISC_FEATUREWCFS1 14Met Pro Thr Ile Thr
Thr Lys Thr Pro Val Lys Gly Leu Ile Phe Asn1 5
10 15Ile Gln Lys Phe Ser Ile Asn Asp Gly Pro Gly
Ile Arg Thr Val Val 20 25
30Phe Phe Lys Gly Cys Pro Leu Arg Cys Lys Trp Cys Ser Asn Pro Glu
35 40 45Ser Gln Ser Gly Glu Gln Glu Ser
Met Tyr Asp Glu Gln Thr Ala Lys 50 55
60Gln Thr Ile Val Gly Asp Tyr Met Thr Val Asp Asp Ile Met Lys Val65
70 75 80Ile Leu Gln Asp Lys
Asp Phe Tyr Glu Glu Ser Gly Gly Gly Val Thr 85
90 95Phe Ser Gly Gly Glu Val Leu Phe Gln Ala Ser
Phe Ala Ile Glu Leu 100 105
110Ala Lys Ala Val Lys Ala Ala Gly Ile Asn Leu Ala Cys Glu Thr Thr
115 120 125Gly Tyr Ala Arg Pro Lys Val
Phe Asn Glu Phe Met Ser Tyr Met Asp 130 135
140Phe Met Tyr Tyr Asp Cys Lys Gln Trp Asp Pro Ala Gln His Arg
Ile145 150 155 160Gly Thr
Gly Ala Asp Asn Gly Val Ile Leu Arg Asn Leu Ala Thr Ala
165 170 175Val Gln Ala His Gln Lys Met
Met Val Arg Ile Pro Val Ile Pro Gly 180 185
190Phe Asn Tyr Thr Leu Asn Asp Ala Asp His Phe Gly Gln Leu
Phe Asn 195 200 205Gln Ile Gly Val
Thr Glu Val Glu Leu Leu Pro Phe His Gln Phe Gly 210
215 220Leu Lys Lys Tyr Gln Asp Leu Gly Arg Lys Tyr Ala
Leu Val Asn Val225 230 235
240Lys Gln Leu Gln Ala Asp Asp Leu Ile Asp Tyr Ala Glu His Ile Arg
245 250 255Ala His Gly Val Lys
Val Arg Val Asn Gly Trp 260
26515822DNALactobacillus plantarummisc_featureWCFS1 15atggaaaaca
aacaagtttc aacaacgcaa gcggcggcaa aggagccttt gataggctac 60gttcactcca
tcgaaacgtt tggctccgtt gacggaccag gtatccgtta cgtggcattc 120cttcaaggat
gccacatgcg ttgccaatac tgtcacaacc ctgatacttg gaaactcaac 180gttggcgatc
aaatgacggc cgacgagatt ctcgaagacg cggctaaata ccgggctttc 240tggggcaaga
cgggtggcat cacagtcagt ggtggtgaat cactggtaca aatcgacttc 300atcttagact
tattcgaaaa agccaaggcg atgaatatca gtacttgtct ggatacctct 360ggacagcctt
ttacccgaga acaacctttc tttgacaagt tcgaacgtct aatgaaggtc 420acggacattt
cgttggtcga cattaagcac atcgattctg ccaaacacaa gcagttgacc 480cagtatggga
acgaaaatat cttggatatg attcagtaca tggcccaaca ccacgatgat 540atgtggattc
gtcacgtcct ggttccccaa cggactgatt acgatgaaga cttgaagaaa 600ctcggcgatt
acattgctaa aattccaaac gacgtcgttc aaaaagtcga agtattgccg 660taccatactt
tgggcgttaa aaaatatcat gaaatgaaga tcaagtaccg gcttgaagga 720atcgagtctc
caacccaaga tcgggtggca aatgccgaaa agctactgca cactgctgat 780tacaacgggt
acaagacatg gatgccattg ccaaaacttt aa
82216273PRTLactobacillus plantarumMISC_FEATUREWCFS1 16Met Glu Asn Lys Gln
Val Ser Thr Thr Gln Ala Ala Ala Lys Glu Pro1 5
10 15Leu Ile Gly Tyr Val His Ser Ile Glu Thr Phe
Gly Ser Val Asp Gly 20 25
30Pro Gly Ile Arg Tyr Val Ala Phe Leu Gln Gly Cys His Met Arg Cys
35 40 45Gln Tyr Cys His Asn Pro Asp Thr
Trp Lys Leu Asn Val Gly Asp Gln 50 55
60Met Thr Ala Asp Glu Ile Leu Glu Asp Ala Ala Lys Tyr Arg Ala Phe65
70 75 80Trp Gly Lys Thr Gly
Gly Ile Thr Val Ser Gly Gly Glu Ser Leu Val 85
90 95Gln Ile Asp Phe Ile Leu Asp Leu Phe Glu Lys
Ala Lys Ala Met Asn 100 105
110Ile Ser Thr Cys Leu Asp Thr Ser Gly Gln Pro Phe Thr Arg Glu Gln
115 120 125Pro Phe Phe Asp Lys Phe Glu
Arg Leu Met Lys Val Thr Asp Ile Ser 130 135
140Leu Val Asp Ile Lys His Ile Asp Ser Ala Lys His Lys Gln Leu
Thr145 150 155 160Gln Tyr
Gly Asn Glu Asn Ile Leu Asp Met Ile Gln Tyr Met Ala Gln
165 170 175His His Asp Asp Met Trp Ile
Arg His Val Leu Val Pro Gln Arg Thr 180 185
190Asp Tyr Asp Glu Asp Leu Lys Lys Leu Gly Asp Tyr Ile Ala
Lys Ile 195 200 205Pro Asn Asp Val
Val Gln Lys Val Glu Val Leu Pro Tyr His Thr Leu 210
215 220Gly Val Lys Lys Tyr His Glu Met Lys Ile Lys Tyr
Arg Leu Glu Gly225 230 235
240Ile Glu Ser Pro Thr Gln Asp Arg Val Ala Asn Ala Glu Lys Leu Leu
245 250 255His Thr Ala Asp Tyr
Asn Gly Tyr Lys Thr Trp Met Pro Leu Pro Lys 260
265 270Leu17822DNALactobacillus
plantarummisc_featureJDM1 17atggaaaaca aacaagtttc aacaacgcaa gcggcggcaa
aagagccttt gataggctac 60gttcactcca tcgaaacgtt tggctccgtt gacggaccag
gtatccgtta cgtggcattc 120cttcaaggat gccacatgcg ttgccaatac tgtcacaacc
ctgatacttg gaaactcaac 180gttggcgatc aaatgacggc cgacgagatt ctcgaagacg
cggctaaata ccgggctttc 240tggggcaaga cgggtggcat cacagtcagt ggtggtgaat
cactggtaca aatcgacttc 300atcttagact tattcgaaaa agccaaggcg atgaatatca
gtacttgtct ggatacctct 360ggacagcctt ttacccgaga acaacctttc tttgacaagt
tcgaacgtct aatgaaggtc 420acggacattt cgttggtcga cattaagcac atcgattctg
ccaaacacaa gcagttgacc 480cagtatggga acgaaaatat cttggatatg attcagtaca
tggcccaaca ccacgatgat 540atgtggattc gtcacgtcct ggttccccaa cggactgatt
acgatgaaga cttgaagaaa 600ctcggcgatt acattgctaa gattccaaac gacgtcgttc
aaaaagtcga agtattgccg 660taccatactt tgggcgttaa aaaatatcat gaaatgaaga
tcaagtaccg gcttgaagga 720atcgagtctc caacccaaga tcgggtggca aatgccgaaa
agctactgca cactgctgat 780tacaacgggt acaagacatg gatgccattg ccaaaacttt
aa 82218273PRTLactobacillus
plantarumMISC_FEATUREJDM1 18Met Glu Asn Lys Gln Val Ser Thr Thr Gln Ala
Ala Ala Lys Glu Pro1 5 10
15Leu Ile Gly Tyr Val His Ser Ile Glu Thr Phe Gly Ser Val Asp Gly
20 25 30Pro Gly Ile Arg Tyr Val Ala
Phe Leu Gln Gly Cys His Met Arg Cys 35 40
45Gln Tyr Cys His Asn Pro Asp Thr Trp Lys Leu Asn Val Gly Asp
Gln 50 55 60Met Thr Ala Asp Glu Ile
Leu Glu Asp Ala Ala Lys Tyr Arg Ala Phe65 70
75 80Trp Gly Lys Thr Gly Gly Ile Thr Val Ser Gly
Gly Glu Ser Leu Val 85 90
95Gln Ile Asp Phe Ile Leu Asp Leu Phe Glu Lys Ala Lys Ala Met Asn
100 105 110Ile Ser Thr Cys Leu Asp
Thr Ser Gly Gln Pro Phe Thr Arg Glu Gln 115 120
125Pro Phe Phe Asp Lys Phe Glu Arg Leu Met Lys Val Thr Asp
Ile Ser 130 135 140Leu Val Asp Ile Lys
His Ile Asp Ser Ala Lys His Lys Gln Leu Thr145 150
155 160Gln Tyr Gly Asn Glu Asn Ile Leu Asp Met
Ile Gln Tyr Met Ala Gln 165 170
175His His Asp Asp Met Trp Ile Arg His Val Leu Val Pro Gln Arg Thr
180 185 190Asp Tyr Asp Glu Asp
Leu Lys Lys Leu Gly Asp Tyr Ile Ala Lys Ile 195
200 205Pro Asn Asp Val Val Gln Lys Val Glu Val Leu Pro
Tyr His Thr Leu 210 215 220Gly Val Lys
Lys Tyr His Glu Met Lys Ile Lys Tyr Arg Leu Glu Gly225
230 235 240Ile Glu Ser Pro Thr Gln Asp
Arg Val Ala Asn Ala Glu Lys Leu Leu 245
250 255His Thr Ala Asp Tyr Asn Gly Tyr Lys Thr Trp Met
Pro Leu Pro Lys 260 265
270Leu19804DNALactobacillus plantarummisc_featureJDM1 19atgccaacga
tcacaactaa gacgcccgta aaaggactaa tatttaacat tcaaaaattt 60agtatcaatg
atggaccagg tattcgaaca gtagttttct ttaaagggtg cccgttacgc 120tgcaagtggt
gttctaatcc agaatcacaa tcaggtgagc aagaatcaat gtatgatgaa 180cagaccgcca
agcaaaccat cgtcggtgat tatatgacgg ttgatgatat tatgaaagtt 240attctacaag
ataaagactt ctatgaagag tctggcggtg gggtaacctt ctctggtggt 300gaagttcttt
ttcaagcttc ctttgcgatt gagcttgcta aggcagttaa agcagctggc 360attaatttag
cctgtgagac aactggttac gcacggccta aggtttttaa tgaattcatg 420tcttatatgg
acttcatgta ttatgactgt aaacaatggg acccagccca acatcgaatc 480ggaacgggtg
ccgataacgg ggtaatttta cgtaacttag caactgcagt gcaagctcat 540caaaagatga
tggttcggat tccggttatt ccaggtttta attatacatt gaatgacgcg 600gatcattttg
gacaactatt taatcagatt ggcgtaaccg aagttgaatt attgccattt 660caccagtttg
ggttgaaaaa gtatcaagat ttgggccgaa aatatgcgct agttaatgtt 720aaacagttac
aagcggatga cttaattgat tatgctgaac atattcgtgc acatggtgtt 780aaagtacggg
tgaatgggtg gtaa
80420267PRTLactobacillus plantarumMISC_FEATUREJDM1 20Met Pro Thr Ile Thr
Thr Lys Thr Pro Val Lys Gly Leu Ile Phe Asn1 5
10 15Ile Gln Lys Phe Ser Ile Asn Asp Gly Pro Gly
Ile Arg Thr Val Val 20 25
30Phe Phe Lys Gly Cys Pro Leu Arg Cys Lys Trp Cys Ser Asn Pro Glu
35 40 45Ser Gln Ser Gly Glu Gln Glu Ser
Met Tyr Asp Glu Gln Thr Ala Lys 50 55
60Gln Thr Ile Val Gly Asp Tyr Met Thr Val Asp Asp Ile Met Lys Val65
70 75 80Ile Leu Gln Asp Lys
Asp Phe Tyr Glu Glu Ser Gly Gly Gly Val Thr 85
90 95Phe Ser Gly Gly Glu Val Leu Phe Gln Ala Ser
Phe Ala Ile Glu Leu 100 105
110Ala Lys Ala Val Lys Ala Ala Gly Ile Asn Leu Ala Cys Glu Thr Thr
115 120 125Gly Tyr Ala Arg Pro Lys Val
Phe Asn Glu Phe Met Ser Tyr Met Asp 130 135
140Phe Met Tyr Tyr Asp Cys Lys Gln Trp Asp Pro Ala Gln His Arg
Ile145 150 155 160Gly Thr
Gly Ala Asp Asn Gly Val Ile Leu Arg Asn Leu Ala Thr Ala
165 170 175Val Gln Ala His Gln Lys Met
Met Val Arg Ile Pro Val Ile Pro Gly 180 185
190Phe Asn Tyr Thr Leu Asn Asp Ala Asp His Phe Gly Gln Leu
Phe Asn 195 200 205Gln Ile Gly Val
Thr Glu Val Glu Leu Leu Pro Phe His Gln Phe Gly 210
215 220Leu Lys Lys Tyr Gln Asp Leu Gly Arg Lys Tyr Ala
Leu Val Asn Val225 230 235
240Lys Gln Leu Gln Ala Asp Asp Leu Ile Asp Tyr Ala Glu His Ile Arg
245 250 255Ala His Gly Val Lys
Val Arg Val Asn Gly Trp 260
26521852DNALactobacillus caseimisc_featurebl23 21atgaaactca tcgatcagtc
acaaagccca ttaaatatct tagaacaagt tggtcaggat 60catgatggcc cgatcaaagg
gtatgttcac tcggtcgaaa gttttggttc ggtcgatggc 120cctggtattc gcttcgttgt
ctttatgcaa gggtgtcgca tgcgttgcca gtattgtcac 180aaccctgaca cctggaacat
tggggttggt gaagaaatga cggccgatca aattttggcg 240gatgcccagc gctataaagc
attctggggt gaccaagggg gtattacctg cagtggcggt 300gagagtttgg tacaaatcga
tttcattctc gaactcttca ccaaggctaa ggcactggga 360atttcgactt gcctcgatac
gtcaggtggc cccttcacgc gtgaccaacc gtggtttggc 420cagtttgaaa agctgatggc
tgttactgac atctcattag ttgatattaa acacattgat 480tcggccgagc ataaaaagct
caccggtttt cctaatgaga atattttgga tatggtgcag 540tatatgtcgg cgcatggtga
tgacatgtgg attcgccacg ttctggtccc ggaacgcact 600gactttgacc cttatctcaa
acggttaggg gactatattg cgacattgga caaaaacgtg 660gtccaaaaag ttgagattct
gccgtatcac acgttaggcg ttaaaaagta tcacgagctt 720ggcattacgt acccgcttga
aggcatcgaa ccgccgtctg ccgaacgcgt taagaatgca 780gagaatctgc tgcacgttaa
ggattatacc ggatggcaaa gctggcgtcc gaaaccagtt 840gcgagcaact ga
85222283PRTLactobacillus
caseiMISC_FEATUREbl23 22Met Lys Leu Ile Asp Gln Ser Gln Ser Pro Leu Asn
Ile Leu Glu Gln1 5 10
15Val Gly Gln Asp His Asp Gly Pro Ile Lys Gly Tyr Val His Ser Val
20 25 30Glu Ser Phe Gly Ser Val Asp
Gly Pro Gly Ile Arg Phe Val Val Phe 35 40
45Met Gln Gly Cys Arg Met Arg Cys Gln Tyr Cys His Asn Pro Asp
Thr 50 55 60Trp Asn Ile Gly Val Gly
Glu Glu Met Thr Ala Asp Gln Ile Leu Ala65 70
75 80Asp Ala Gln Arg Tyr Lys Ala Phe Trp Gly Asp
Gln Gly Gly Ile Thr 85 90
95Cys Ser Gly Gly Glu Ser Leu Val Gln Ile Asp Phe Ile Leu Glu Leu
100 105 110Phe Thr Lys Ala Lys Ala
Leu Gly Ile Ser Thr Cys Leu Asp Thr Ser 115 120
125Gly Gly Pro Phe Thr Arg Asp Gln Pro Trp Phe Gly Gln Phe
Glu Lys 130 135 140Leu Met Ala Val Thr
Asp Ile Ser Leu Val Asp Ile Lys His Ile Asp145 150
155 160Ser Ala Glu His Lys Lys Leu Thr Gly Phe
Pro Asn Glu Asn Ile Leu 165 170
175Asp Met Val Gln Tyr Met Ser Ala His Gly Asp Asp Met Trp Ile Arg
180 185 190His Val Leu Val Pro
Glu Arg Thr Asp Phe Asp Pro Tyr Leu Lys Arg 195
200 205Leu Gly Asp Tyr Ile Ala Thr Leu Asp Lys Asn Val
Val Gln Lys Val 210 215 220Glu Ile Leu
Pro Tyr His Thr Leu Gly Val Lys Lys Tyr His Glu Leu225
230 235 240Gly Ile Thr Tyr Pro Leu Glu
Gly Ile Glu Pro Pro Ser Ala Glu Arg 245
250 255Val Lys Asn Ala Glu Asn Leu Leu His Val Lys Asp
Tyr Thr Gly Trp 260 265 270Gln
Ser Trp Arg Pro Lys Pro Val Ala Ser Asn 275
28023852DNALactobacillus caseimisc_featureATCC 334 23atgaaactca
tcgatcagtc acaaagccca ttaaatatct tagaacaagt tggtcaggat 60catgatggcc
cgatcaaagg gtatgttcac tcggtcgaaa gttttggttc ggtcgatggc 120cctggtattc
gcttcgttgt ctttatgcaa gggtgtcgca tgcgttgcca gtattgtcac 180aaccctgaca
cctggaacat tggggttggt gaagaaatga cggccgatca aattttggcg 240gatgcccagc
gctataaagc attctggggt gaccaagggg gtattacgtg cagtggcggt 300gagagtttgg
tacaaatcga tttcattctc gaactcttca ccaaggctaa ggcactggga 360atttcgactt
gcctcgatac gtcaggcggc cccttcacgc gtgaccaacc gtggtttggc 420cagtttgaaa
agctgatggc tgttactgac atctcattag ttgatattaa acacatcgat 480tcggccgagc
ataaaaagct caccggtttt cctaatgaaa atattttaga tatggtgcag 540tatatgtcgg
cgcatggtga tgacatgtgg attcgccacg ttctggtccc ggaacgcact 600gactttgacc
cttatctcaa acgattaggg gactatattg cgacattgga caaaaacgtg 660gtccaaaaag
ttgagattct gccgtatcac acgttaggcg ttaaaaagta tcacgagctt 720ggcattacgt
acccgcttga aggcatcgaa ccgccgtctg ccgatcgcgt taagaatgca 780gagaatctgc
tgcacgttaa ggattatacc ggatggcaaa gctggcgtcc gaaaccagtt 840gcgagcaact
ga
85224283PRTLactobacillus caseiMISC_FEATUREATCC 334 24Met Lys Leu Ile Asp
Gln Ser Gln Ser Pro Leu Asn Ile Leu Glu Gln1 5
10 15Val Gly Gln Asp His Asp Gly Pro Ile Lys Gly
Tyr Val His Ser Val 20 25
30Glu Ser Phe Gly Ser Val Asp Gly Pro Gly Ile Arg Phe Val Val Phe
35 40 45Met Gln Gly Cys Arg Met Arg Cys
Gln Tyr Cys His Asn Pro Asp Thr 50 55
60Trp Asn Ile Gly Val Gly Glu Glu Met Thr Ala Asp Gln Ile Leu Ala65
70 75 80Asp Ala Gln Arg Tyr
Lys Ala Phe Trp Gly Asp Gln Gly Gly Ile Thr 85
90 95Cys Ser Gly Gly Glu Ser Leu Val Gln Ile Asp
Phe Ile Leu Glu Leu 100 105
110Phe Thr Lys Ala Lys Ala Leu Gly Ile Ser Thr Cys Leu Asp Thr Ser
115 120 125Gly Gly Pro Phe Thr Arg Asp
Gln Pro Trp Phe Gly Gln Phe Glu Lys 130 135
140Leu Met Ala Val Thr Asp Ile Ser Leu Val Asp Ile Lys His Ile
Asp145 150 155 160Ser Ala
Glu His Lys Lys Leu Thr Gly Phe Pro Asn Glu Asn Ile Leu
165 170 175Asp Met Val Gln Tyr Met Ser
Ala His Gly Asp Asp Met Trp Ile Arg 180 185
190His Val Leu Val Pro Glu Arg Thr Asp Phe Asp Pro Tyr Leu
Lys Arg 195 200 205Leu Gly Asp Tyr
Ile Ala Thr Leu Asp Lys Asn Val Val Gln Lys Val 210
215 220Glu Ile Leu Pro Tyr His Thr Leu Gly Val Lys Lys
Tyr His Glu Leu225 230 235
240Gly Ile Thr Tyr Pro Leu Glu Gly Ile Glu Pro Pro Ser Ala Asp Arg
245 250 255Val Lys Asn Ala Glu
Asn Leu Leu His Val Lys Asp Tyr Thr Gly Trp 260
265 270Gln Ser Trp Arg Pro Lys Pro Val Ala Ser Asn
275 28025879DNABifidobacterium adolescentis 25atgtctgaac
atattttccg ttccacgacc agacacatgc tgagggattc caaggactac 60gtcaatcaga
cgctgatggg aggcctgtcc ggattcgaat cgccaatcgg cttggaccgt 120ctcgaccgca
tcaaggcgtt gaaaagcggc gatatcggtt tcgtgcactc gtgggacatc 180aacacttccg
tggatggtcc tggcaccaga atgaccgtgt tcatgagcgg atgccctctg 240cgctgccagt
actgccagaa tccggatact tggaagatgc gcgacggcaa gcccgtctac 300tacgaagcca
tggtcaagaa aatcgagcgg tatgccgatt tattcaaggc caccggcggc 360ggcatcactt
tctccggcgg cgaatccatg atgcagccgg ctttcgtgtc acgcgtgttc 420catgccgcca
agcagatggg agtgcatacc tgcctcgaca cgtccggatt cctcggggcg 480agctacaccg
atgacatggt ggatgacatc gacctgtgcc tgcttgacgt caaatccggc 540gatgaggaga
cctaccataa ggtgaccggc ggcatcctgc agccgaccat cgacttcgga 600cagcgtctgg
ccaaggcagg caagaagatc tgggtgcgtt tcgtgctcgt gccgggcctc 660acatcctccg
aagaaaacgt cgagaacgtg gcgaagatct gcgagacctt cggcgacgcg 720ttggaacata
tcgacgtatt gcccttccac cagcttggcc gtccgaagtg gcacatgctg 780aacatcccat
acccgttgga ggaccagaaa ggcccgtccg cggcaatgaa acaacgtgtg 840gtcgagcagt
tccagtcgca cggcttcacc gtgtactaa
87926292PRTBifidobacterium adolescentis 26Met Ser Glu His Ile Phe Arg Ser
Thr Thr Arg His Met Leu Arg Asp1 5 10
15Ser Lys Asp Tyr Val Asn Gln Thr Leu Met Gly Gly Leu Ser
Gly Phe 20 25 30Glu Ser Pro
Ile Gly Leu Asp Arg Leu Asp Arg Ile Lys Ala Leu Lys 35
40 45Ser Gly Asp Ile Gly Phe Val His Ser Trp Asp
Ile Asn Thr Ser Val 50 55 60Asp Gly
Pro Gly Thr Arg Met Thr Val Phe Met Ser Gly Cys Pro Leu65
70 75 80Arg Cys Gln Tyr Cys Gln Asn
Pro Asp Thr Trp Lys Met Arg Asp Gly 85 90
95Lys Pro Val Tyr Tyr Glu Ala Met Val Lys Lys Ile Glu
Arg Tyr Ala 100 105 110Asp Leu
Phe Lys Ala Thr Gly Gly Gly Ile Thr Phe Ser Gly Gly Glu 115
120 125Ser Met Met Gln Pro Ala Phe Val Ser Arg
Val Phe His Ala Ala Lys 130 135 140Gln
Met Gly Val His Thr Cys Leu Asp Thr Ser Gly Phe Leu Gly Ala145
150 155 160Ser Tyr Thr Asp Asp Met
Val Asp Asp Ile Asp Leu Cys Leu Leu Asp 165
170 175Val Lys Ser Gly Asp Glu Glu Thr Tyr His Lys Val
Thr Gly Gly Ile 180 185 190Leu
Gln Pro Thr Ile Asp Phe Gly Gln Arg Leu Ala Lys Ala Gly Lys 195
200 205Lys Ile Trp Val Arg Phe Val Leu Val
Pro Gly Leu Thr Ser Ser Glu 210 215
220Glu Asn Val Glu Asn Val Ala Lys Ile Cys Glu Thr Phe Gly Asp Ala225
230 235 240Leu Glu His Ile
Asp Val Leu Pro Phe His Gln Leu Gly Arg Pro Lys 245
250 255Trp His Met Leu Asn Ile Pro Tyr Pro Leu
Glu Asp Gln Lys Gly Pro 260 265
270Ser Ala Ala Met Lys Gln Arg Val Val Glu Gln Phe Gln Ser His Gly
275 280 285Phe Thr Val Tyr
29027882DNABifidobacterium longummisc_featureNCC2705 27atgcccgcaa
cacccacgtt ccgcaccacg accaggcata tgctcaagga atcgaagacc 60tatgcctcgc
agactttgat gggcggcctt tccggctttg aatccccaat cggactcgac 120cgacgtgacc
gcctttccgc cctgaaatcc ggcgatatcg gcttcgtcca ctcttgggac 180atcaacacct
ccgtggacgg accgggcacc cgtatgaccg tgttcatgtc cggctgcccg 240ctgcgctgcc
agtactgcca gaacccggac acttggaaga tgcgcgacgg caagcccgtc 300taccttgacg
ccatgatcaa gaaggtcgat cgttacaagg acctgttcaa ggccacgcat 360ggcggtatca
ccttctccgg cggcgaatcc atgatgcagc ccgccttcgt ctcgcgtgtg 420ttccatgccg
ccaaggagat gggcgtgcac acctgcctcg acacgtccgg cttcctcaac 480acgaattaca
ccgacgagat gctcgaggac atcgacctgt gtctgctcga cgtcaaatcc 540ggcgacgagg
agacctatca caaggtcacc ggcggcacct tgcagcccac catcgatttt 600ggccagcgac
tggccaaggc cggcaagaag atctgggtgc gatttgtgct cgtgccgggc 660ctgaccgact
ccgaagagaa cgtcgaaaac gtggcgaaga tctgcgagtc cttcggcgat 720gccgtcgaac
acatcgacgt gctgggattc caccagcttg gccgcccgaa gtggcacgaa 780ctgcgcatcc
catacccgct ggagaaccag aagggaccca acgccgccac ccgcgaacgg 840gtggccaacc
agttcaagga ccacggcttc accgtgtatt aa
88228293PRTBifidobacterium longumMISC_FEATURENCC2705 28Met Pro Ala Thr
Pro Thr Phe Arg Thr Thr Thr Arg His Met Leu Lys1 5
10 15Glu Ser Lys Thr Tyr Ala Ser Gln Thr Leu
Met Gly Gly Leu Ser Gly 20 25
30Phe Glu Ser Pro Ile Gly Leu Asp Arg Arg Asp Arg Leu Ser Ala Leu
35 40 45Lys Ser Gly Asp Ile Gly Phe Val
His Ser Trp Asp Ile Asn Thr Ser 50 55
60Val Asp Gly Pro Gly Thr Arg Met Thr Val Phe Met Ser Gly Cys Pro65
70 75 80Leu Arg Cys Gln Tyr
Cys Gln Asn Pro Asp Thr Trp Lys Met Arg Asp 85
90 95Gly Lys Pro Val Tyr Leu Asp Ala Met Ile Lys
Lys Val Asp Arg Tyr 100 105
110Lys Asp Leu Phe Lys Ala Thr His Gly Gly Ile Thr Phe Ser Gly Gly
115 120 125Glu Ser Met Met Gln Pro Ala
Phe Val Ser Arg Val Phe His Ala Ala 130 135
140Lys Glu Met Gly Val His Thr Cys Leu Asp Thr Ser Gly Phe Leu
Asn145 150 155 160Thr Asn
Tyr Thr Asp Glu Met Leu Glu Asp Ile Asp Leu Cys Leu Leu
165 170 175Asp Val Lys Ser Gly Asp Glu
Glu Thr Tyr His Lys Val Thr Gly Gly 180 185
190Thr Leu Gln Pro Thr Ile Asp Phe Gly Gln Arg Leu Ala Lys
Ala Gly 195 200 205Lys Lys Ile Trp
Val Arg Phe Val Leu Val Pro Gly Leu Thr Asp Ser 210
215 220Glu Glu Asn Val Glu Asn Val Ala Lys Ile Cys Glu
Ser Phe Gly Asp225 230 235
240Ala Val Glu His Ile Asp Val Leu Gly Phe His Gln Leu Gly Arg Pro
245 250 255Lys Trp His Glu Leu
Arg Ile Pro Tyr Pro Leu Glu Asn Gln Lys Gly 260
265 270Pro Asn Ala Ala Thr Arg Glu Arg Val Ala Asn Gln
Phe Lys Asp His 275 280 285Gly Phe
Thr Val Tyr 29029882DNABifidobacterium longummisc_featureDJO10A
29atgcccgcaa cacccacgtt ccgcaccacg accaggcata tgctcaagga atcgaagacc
60tatgcctcgc agactttgat gggtggcctt tccggctttg aatccccaat cggactcgac
120cgacgtgacc gcctttccgc cctgaaatcc ggtgatatcg gcttcgtcca ctcttgggac
180atcaacacct ccgtggatgg accgggcacc cgcatgaccg tgttcatgtc cggctgcccg
240ctgcgctgcc agtactgcca gaacccggac acttggaaga tgcgcgacgg caagcccgtc
300taccttgacg ccatgatcaa gaaggtcgat cgttacaagg acctgttcaa ggccacgcat
360ggcggtatca ccttctccgg cggcgaatcc atgatgcagc ccgccttcgt ctcgcgtgtg
420ttccatgccg ccaaggagat gggcgtgcac acctgcctcg atacgtccgg cttcctcaac
480acgaattaca ccgacgagat gctcgaggac atcgacctgt gtctgctcga cgtcaaatcc
540ggcgacgagg agacctatca caaggtcacc ggcggcacct tgcagcccac catcgatttt
600ggccagcgac tggccaaggc cggcaagaag atctgggtgc gatttgtgct cgtgccgggc
660ctgaccgact ccgaagagaa cgtcgaaaac gtggcgaaga tctgcgagtc cttcggtgat
720gccgtcgaac acatcgacgt gctgggattc caccagcttg gccgcccgaa gtggcacgaa
780ctgcgtatcc catacccgct ggagaaccag aagggaccca acgccgccac ccgcgaacgg
840gtgaccaacc agttcaagga ccacggcttc accgtgtatt aa
88230293PRTBifidobacterium longumMISC_FEATUREDJO10A 30Met Pro Ala Thr Pro
Thr Phe Arg Thr Thr Thr Arg His Met Leu Lys1 5
10 15Glu Ser Lys Thr Tyr Ala Ser Gln Thr Leu Met
Gly Gly Leu Ser Gly 20 25
30Phe Glu Ser Pro Ile Gly Leu Asp Arg Arg Asp Arg Leu Ser Ala Leu
35 40 45Lys Ser Gly Asp Ile Gly Phe Val
His Ser Trp Asp Ile Asn Thr Ser 50 55
60Val Asp Gly Pro Gly Thr Arg Met Thr Val Phe Met Ser Gly Cys Pro65
70 75 80Leu Arg Cys Gln Tyr
Cys Gln Asn Pro Asp Thr Trp Lys Met Arg Asp 85
90 95Gly Lys Pro Val Tyr Leu Asp Ala Met Ile Lys
Lys Val Asp Arg Tyr 100 105
110Lys Asp Leu Phe Lys Ala Thr His Gly Gly Ile Thr Phe Ser Gly Gly
115 120 125Glu Ser Met Met Gln Pro Ala
Phe Val Ser Arg Val Phe His Ala Ala 130 135
140Lys Glu Met Gly Val His Thr Cys Leu Asp Thr Ser Gly Phe Leu
Asn145 150 155 160Thr Asn
Tyr Thr Asp Glu Met Leu Glu Asp Ile Asp Leu Cys Leu Leu
165 170 175Asp Val Lys Ser Gly Asp Glu
Glu Thr Tyr His Lys Val Thr Gly Gly 180 185
190Thr Leu Gln Pro Thr Ile Asp Phe Gly Gln Arg Leu Ala Lys
Ala Gly 195 200 205Lys Lys Ile Trp
Val Arg Phe Val Leu Val Pro Gly Leu Thr Asp Ser 210
215 220Glu Glu Asn Val Glu Asn Val Ala Lys Ile Cys Glu
Ser Phe Gly Asp225 230 235
240Ala Val Glu His Ile Asp Val Leu Gly Phe His Gln Leu Gly Arg Pro
245 250 255Lys Trp His Glu Leu
Arg Ile Pro Tyr Pro Leu Glu Asn Gln Lys Gly 260
265 270Pro Asn Ala Ala Thr Arg Glu Arg Val Thr Asn Gln
Phe Lys Asp His 275 280 285Gly Phe
Thr Val Tyr 29031903DNABifidobacterium animalismisc_featureDSM 10140
31atgtcgaatt cagagtcgaa tcacggtgca tccgcattcc gcaccacgac gcggcacatg
60ctcaagtcgt cgaaggagta ccagcgcaag acgctcatgg gcggtctgtc aggattcgaa
120tcgcccatcg gactcgatcg gcgtgaccgc atcaatgcgt tgaaaaccgg cgacataggt
180tttgtgcatt cctgggacat caatacgtcg gtggacggcc cgggcacccg catgacggta
240ttcctgagcg gctgcccact gcgctgccag tactgccaga accccgacac ctggaagatg
300cgcgacggca agccggtgta cctcgatgcc atggtggtca agatcgaacg gtacaaggac
360ctgttcgaag ccacgaaagg cggcatcacc ttctcgggcg gcgagtccat gatgcagccg
420gcattcgtgt cgcgggtgtt ccgggcggcc aaggagatgg gtgtgcacac ctgccttgat
480acttcgggct tcctcaacgc caactattcg gatgaaatga tcgacgacat cgatctgtgc
540ctgctcgatg tgaagtccgg agacgaggag acctacaagc gggtaaccgg gggagtgctc
600cagcccacca tcgatttcgg acagcggttg aacaggaggg gcaagaagat ctgggtgcgc
660ttcgtgctgg ttcccgggct cacctcgtcg gaggagaacg tggagaatgt ggcccgcatc
720tgtgagagct tcggcgacgc ggtggagcat atagacgtgc tgccgttcca ccagctcggg
780cgtccgaagt ggcatgagct gcgaatccct tacccgttgg aggaccagaa gggaccttcc
840caggcgttgc gcgaccgcgt gcgccagcag ttcgagagcc acggattcac ggtctacgtc
900taa
90332300PRTBifidobacterium animalisMISC_FEATUREDSM 10140 32Met Ser Asn
Ser Glu Ser Asn His Gly Ala Ser Ala Phe Arg Thr Thr1 5
10 15Thr Arg His Met Leu Lys Ser Ser Lys
Glu Tyr Gln Arg Lys Thr Leu 20 25
30Met Gly Gly Leu Ser Gly Phe Glu Ser Pro Ile Gly Leu Asp Arg Arg
35 40 45Asp Arg Ile Asn Ala Leu Lys
Thr Gly Asp Ile Gly Phe Val His Ser 50 55
60Trp Asp Ile Asn Thr Ser Val Asp Gly Pro Gly Thr Arg Met Thr Val65
70 75 80Phe Leu Ser Gly
Cys Pro Leu Arg Cys Gln Tyr Cys Gln Asn Pro Asp 85
90 95Thr Trp Lys Met Arg Asp Gly Lys Pro Val
Tyr Leu Asp Ala Met Val 100 105
110Val Lys Ile Glu Arg Tyr Lys Asp Leu Phe Glu Ala Thr Lys Gly Gly
115 120 125Ile Thr Phe Ser Gly Gly Glu
Ser Met Met Gln Pro Ala Phe Val Ser 130 135
140Arg Val Phe Arg Ala Ala Lys Glu Met Gly Val His Thr Cys Leu
Asp145 150 155 160Thr Ser
Gly Phe Leu Asn Ala Asn Tyr Ser Asp Glu Met Ile Asp Asp
165 170 175Ile Asp Leu Cys Leu Leu Asp
Val Lys Ser Gly Asp Glu Glu Thr Tyr 180 185
190Lys Arg Val Thr Gly Gly Val Leu Gln Pro Thr Ile Asp Phe
Gly Gln 195 200 205Arg Leu Asn Arg
Arg Gly Lys Lys Ile Trp Val Arg Phe Val Leu Val 210
215 220Pro Gly Leu Thr Ser Ser Glu Glu Asn Val Glu Asn
Val Ala Arg Ile225 230 235
240Cys Glu Ser Phe Gly Asp Ala Val Glu His Ile Asp Val Leu Pro Phe
245 250 255His Gln Leu Gly Arg
Pro Lys Trp His Glu Leu Arg Ile Pro Tyr Pro 260
265 270Leu Glu Asp Gln Lys Gly Pro Ser Gln Ala Leu Arg
Asp Arg Val Arg 275 280 285Gln Gln
Phe Glu Ser His Gly Phe Thr Val Tyr Val 290 295
30033720DNAClostridium cellulolyticum 33atggagatta aagggaggat
acattcattt gagacatttg ggaccgtgga cggtcccgga 60attagattta ttgtgtttct
gaagggctgc ccgcttcgct gtaagtactg ccacaacaga 120gatgcatgga gttcagaggg
tgcaaaactg tacagtcctc aagaggtgtt gaaggaaatc 180cagaaataca ggaattttat
agatgcctct catggaggaa taacagtcag cgggggagaa 240cctttaattc agcatgaatt
tgtaaaggaa ctatttaaat tatgtcgtga agctgggata 300cataccgctg tggacacttc
cggctacgtc aatgtggaag atgtaaagga cacactagag 360tatacagacc ttgttcttct
tgatttaaag caggcaaatg cacagaagca tttggaattg 420acaggagtgg agaataagcg
tatcaagctg tttacaacct acctgggtga aatcggaaaa 480cctgtttgga taagatatgt
gcttataccg ggttatacag atggtgaaga ggatttgctg 540gcagcataca attatttaaa
gggatttaaa aatatagaga aaatagaggt tcttccatat 600cacataatgg gaaaggcaaa
atgggagaag ctgaacgtac aatatcccct ggagggagtt 660ccttccccta cacaggaaga
ggtggacagg gccaaaaaca tcctgactac aggaaaaccg 72034240PRTClostridium
cellulolyticum 34Met Glu Ile Lys Gly Arg Ile His Ser Phe Glu Thr Phe Gly
Thr Val1 5 10 15Asp Gly
Pro Gly Ile Arg Phe Ile Val Phe Leu Lys Gly Cys Pro Leu 20
25 30Arg Cys Lys Tyr Cys His Asn Arg Asp
Ala Trp Ser Ser Glu Gly Ala 35 40
45Lys Leu Tyr Ser Pro Gln Glu Val Leu Lys Glu Ile Gln Lys Tyr Arg 50
55 60Asn Phe Ile Asp Ala Ser His Gly Gly
Ile Thr Val Ser Gly Gly Glu65 70 75
80Pro Leu Ile Gln His Glu Phe Val Lys Glu Leu Phe Lys Leu
Cys Arg 85 90 95Glu Ala
Gly Ile His Thr Ala Val Asp Thr Ser Gly Tyr Val Asn Val 100
105 110Glu Asp Val Lys Asp Thr Leu Glu Tyr
Thr Asp Leu Val Leu Leu Asp 115 120
125Leu Lys Gln Ala Asn Ala Gln Lys His Leu Glu Leu Thr Gly Val Glu
130 135 140Asn Lys Arg Ile Lys Leu Phe
Thr Thr Tyr Leu Gly Glu Ile Gly Lys145 150
155 160Pro Val Trp Ile Arg Tyr Val Leu Ile Pro Gly Tyr
Thr Asp Gly Glu 165 170
175Glu Asp Leu Leu Ala Ala Tyr Asn Tyr Leu Lys Gly Phe Lys Asn Ile
180 185 190Glu Lys Ile Glu Val Leu
Pro Tyr His Ile Met Gly Lys Ala Lys Trp 195 200
205Glu Lys Leu Asn Val Gln Tyr Pro Leu Glu Gly Val Pro Ser
Pro Thr 210 215 220Gln Glu Glu Val Asp
Arg Ala Lys Asn Ile Leu Thr Thr Gly Lys Pro225 230
235 24035741DNAEscherichia coli 35atgtcagtta
ttggtcgcat tcactccttt gaatcctgtg gaaccgtaga cggcccaggt 60attcgcttta
tcaccttttt ccagggctgc ctgatgcgct gcctgtattg tcataaccgc 120gacacctggg
acacgcatgg cggtaaagaa gttaccgttg aagatttgat gaaggaagtg 180gtgacctatc
gccactttat gaacgcttcc ggcggcggcg ttaccgcatc cggcggtgaa 240gcaatcctgc
aagctgagtt tgttcgtgac tggttccgcg cctgcaaaaa agaaggcatt 300catacctgtc
tggacaccaa cggttttgtt cgtcgttacg atccggtgat tgatgaactg 360ctggaagtaa
ccgacctggt aatgctcgat ctcaaacaga tgaacgacga gatccaccaa 420aatctggttg
gagtttccaa ccaccgcacg ctggagttcg ctaaatatct ggcgaacaaa 480aatgtgaagg
tgtggatccg ctacgttgtt gtcccaggct ggtctgacga tgacgattca 540gcgcatcgcc
tcggtgaatt tacccgtgat atgggcaacg ttgagaaaat cgagcttctc 600ccctaccacg
agctgggcaa acacaaatgg gtggcaatgg gtgaagagta caaactcgac 660ggtgttaaac
caccgaagaa agagaccatg gaacgcgtga aaggcattct tgagcagtac 720ggtcataagg
taatgttcta a
74136246PRTEscherichia coli 36Met Ser Val Ile Gly Arg Ile His Ser Phe Glu
Ser Cys Gly Thr Val1 5 10
15Asp Gly Pro Gly Ile Arg Phe Ile Thr Phe Phe Gln Gly Cys Leu Met
20 25 30Arg Cys Leu Tyr Cys His Asn
Arg Asp Thr Trp Asp Thr His Gly Gly 35 40
45Lys Glu Val Thr Val Glu Asp Leu Met Lys Glu Val Val Thr Tyr
Arg 50 55 60His Phe Met Asn Ala Ser
Gly Gly Gly Val Thr Ala Ser Gly Gly Glu65 70
75 80Ala Ile Leu Gln Ala Glu Phe Val Arg Asp Trp
Phe Arg Ala Cys Lys 85 90
95Lys Glu Gly Ile His Thr Cys Leu Asp Thr Asn Gly Phe Val Arg Arg
100 105 110Tyr Asp Pro Val Ile Asp
Glu Leu Leu Glu Val Thr Asp Leu Val Met 115 120
125Leu Asp Leu Lys Gln Met Asn Asp Glu Ile His Gln Asn Leu
Val Gly 130 135 140Val Ser Asn His Arg
Thr Leu Glu Phe Ala Lys Tyr Leu Ala Asn Lys145 150
155 160Asn Val Lys Val Trp Ile Arg Tyr Val Val
Val Pro Gly Trp Ser Asp 165 170
175Asp Asp Asp Ser Ala His Arg Leu Gly Glu Phe Thr Arg Asp Met Gly
180 185 190Asn Val Glu Lys Ile
Glu Leu Leu Pro Tyr His Glu Leu Gly Lys His 195
200 205Lys Trp Val Ala Met Gly Glu Glu Tyr Lys Leu Asp
Gly Val Lys Pro 210 215 220Pro Lys Lys
Glu Thr Met Glu Arg Val Lys Gly Ile Leu Glu Gln Tyr225
230 235 240Gly His Lys Val Met Phe
245372226DNABacillus licheniformismisc_featureDSM13 37atggaacaat
ggaaaggttt caccacaaac gtttggcaaa aagaagtcaa tgtccgcgat 60tttattctct
cgaactttga gccatatcaa ggtgacgaat cgtttctcga acctccgacg 120gaagctacat
cggcattatg ggatcatgta atggatttga caaaaaaaga gcgtgaaaac 180ggaggcgtcc
ttgatatgga tacagagatc gtctcaacga tcacctcgca cggtcccgga 240tatttgaaca
aagacctgga aaaagtcgtc ggcgttcaaa ccgatgagcc gtttaaacgg 300tcgcttcagc
ctttcggcgg catccgaatg gcaaagcagg catgcgaatc ctatggtttt 360aaactgaatg
aagaagtgga aaggatcttt accgattacc gcaaaactca taaccaaggc 420gtgtttgacg
catatacgga cgaaatgaag ctcgcccgaa aagtcggaat cattaccgga 480ctgcctgatg
cttacgggcg cgggcgcatc atcggtgatt accggagagt ggcgctttac 540ggcgtggatt
tcttgatcga tgaaaagaaa aaagatgcgg ccggcacctc tcgggtgatg 600tctgaagaaa
acatccgcct tcgtgaagaa ctgtcagaac aaatccgagc attgaacgaa 660cttaaagcgc
ttgcaaaaag ctatgggttt gacatttcca agcctgcggc gaatgcaaga 720gaagcatttc
aatggctgta ttttgcctat ttggctgcca ttaaagagca aaacggagca 780gcaatgagcc
ttggccgcgt gtccacgttc cttgatattt acatcgaaag agatttgaaa 840acgggcgtat
taacagagcg tgaagcccaa gagcttgtcg accatttcgt catgaagctg 900cgtttggtca
aattcgcgcg cacacctgac tacaatgaac tgttcagcgg cgatccgacg 960tgggtgacag
aatcaatcgg cggaatggcg cacgacggac gcgccctggt gacgaaaaac 1020tcgttccgtt
tcctgcatac gcttgacaat ttaggcccgg cgcctgaacc gaatttaacc 1080gttctttggt
ctgtcagact gccgcaaaag tttaaaaact actgtgccaa aatgtcgatt 1140aaaacaagct
cgatccaata cgaaaatgac gatatcatgc gtccagaata cggtgatgac 1200tacggaatcg
cctgctgtgt atcggcaatg gcaatcggca aacaaatgca gttcttcgga 1260gcacgcgcca
acttggcgaa agctctttta tatgcgatta acggcggaaa agacgaaaag 1320cataaaatgc
aagtcggtcc ggaaatgccg ccggttgctt ccgacgtgct ggactatgac 1380gaagtgatgc
ataaattcga tcagacgatg gaatggctcg caggcttgta catcaacacg 1440ctcaatgtca
ttcactacat gcatgataaa tattgctatg aaagaattga aatggccctg 1500cacgacacgg
aaattttgcg gacgatggcc actgggatcg ccggcttgag tgttgtcgcc 1560gattcattaa
gcgctgtcaa atatgccaaa gtcagcgtgg tccgcgatga aaacggcatt 1620gcggtcgatt
ttgaaacaga aggcgacttt cctaagtacg gaaataacga tgaccgcgtc 1680gacgcgatcg
ccgttgacat tgtcaagcgc tttatgaaaa aactgcgcaa gcatcagaca 1740tatcgccagt
ccgttcagac catgtcaatt ttaacgatca cgtcaaacgt cgtttacggc 1800aagaaaaccg
gaaatacgcc ggatggacgc cgcgcgggag aaccgtttgc tccaggtgcg 1860aatccgatgc
acggccgcga tactaaaggg acgcttgcat cgctgtcttc agtggcaaag 1920ctgccttaca
gctatgcgct cgacggcatt tccaacacct tttcaatcgt cccgaaagcg 1980cttggcaaag
acgaagagag ccgcgccgcc aatttgtcaa gcatccttga cggatatgcc 2040gcaaaaacag
gacatcactt aaatgtaaac gtatttaaca gagagacact gctcgacgcc 2100atggaacatc
cagaggaata tccgcagtta acgattcgcg tctcaggcta tgcggtcaac 2160tttattaagc
tgacgaaaga acagcagtta gacgtcatca gcagaacctt ccatgaatcg 2220atgtag
222638741PRTBacillus licheniformisMISC_FEATUREDSM13 38Met Glu Gln Trp Lys
Gly Phe Thr Thr Asn Val Trp Gln Lys Glu Val1 5
10 15Asn Val Arg Asp Phe Ile Leu Ser Asn Phe Glu
Pro Tyr Gln Gly Asp 20 25
30Glu Ser Phe Leu Glu Pro Pro Thr Glu Ala Thr Ser Ala Leu Trp Asp
35 40 45His Val Met Asp Leu Thr Lys Lys
Glu Arg Glu Asn Gly Gly Val Leu 50 55
60Asp Met Asp Thr Glu Ile Val Ser Thr Ile Thr Ser His Gly Pro Gly65
70 75 80Tyr Leu Asn Lys Asp
Leu Glu Lys Val Val Gly Val Gln Thr Asp Glu 85
90 95Pro Phe Lys Arg Ser Leu Gln Pro Phe Gly Gly
Ile Arg Met Ala Lys 100 105
110Gln Ala Cys Glu Ser Tyr Gly Phe Lys Leu Asn Glu Glu Val Glu Arg
115 120 125Ile Phe Thr Asp Tyr Arg Lys
Thr His Asn Gln Gly Val Phe Asp Ala 130 135
140Tyr Thr Asp Glu Met Lys Leu Ala Arg Lys Val Gly Ile Ile Thr
Gly145 150 155 160Leu Pro
Asp Ala Tyr Gly Arg Gly Arg Ile Ile Gly Asp Tyr Arg Arg
165 170 175Val Ala Leu Tyr Gly Val Asp
Phe Leu Ile Asp Glu Lys Lys Lys Asp 180 185
190Ala Ala Gly Thr Ser Arg Val Met Ser Glu Glu Asn Ile Arg
Leu Arg 195 200 205Glu Glu Leu Ser
Glu Gln Ile Arg Ala Leu Asn Glu Leu Lys Ala Leu 210
215 220Ala Lys Ser Tyr Gly Phe Asp Ile Ser Lys Pro Ala
Ala Asn Ala Arg225 230 235
240Glu Ala Phe Gln Trp Leu Tyr Phe Ala Tyr Leu Ala Ala Ile Lys Glu
245 250 255Gln Asn Gly Ala Ala
Met Ser Leu Gly Arg Val Ser Thr Phe Leu Asp 260
265 270Ile Tyr Ile Glu Arg Asp Leu Lys Thr Gly Val Leu
Thr Glu Arg Glu 275 280 285Ala Gln
Glu Leu Val Asp His Phe Val Met Lys Leu Arg Leu Val Lys 290
295 300Phe Ala Arg Thr Pro Asp Tyr Asn Glu Leu Phe
Ser Gly Asp Pro Thr305 310 315
320Trp Val Thr Glu Ser Ile Gly Gly Met Ala His Asp Gly Arg Ala Leu
325 330 335Val Thr Lys Asn
Ser Phe Arg Phe Leu His Thr Leu Asp Asn Leu Gly 340
345 350Pro Ala Pro Glu Pro Asn Leu Thr Val Leu Trp
Ser Val Arg Leu Pro 355 360 365Gln
Lys Phe Lys Asn Tyr Cys Ala Lys Met Ser Ile Lys Thr Ser Ser 370
375 380Ile Gln Tyr Glu Asn Asp Asp Ile Met Arg
Pro Glu Tyr Gly Asp Asp385 390 395
400Tyr Gly Ile Ala Cys Cys Val Ser Ala Met Ala Ile Gly Lys Gln
Met 405 410 415Gln Phe Phe
Gly Ala Arg Ala Asn Leu Ala Lys Ala Leu Leu Tyr Ala 420
425 430Ile Asn Gly Gly Lys Asp Glu Lys His Lys
Met Gln Val Gly Pro Glu 435 440
445Met Pro Pro Val Ala Ser Asp Val Leu Asp Tyr Asp Glu Val Met His 450
455 460Lys Phe Asp Gln Thr Met Glu Trp
Leu Ala Gly Leu Tyr Ile Asn Thr465 470
475 480Leu Asn Val Ile His Tyr Met His Asp Lys Tyr Cys
Tyr Glu Arg Ile 485 490
495Glu Met Ala Leu His Asp Thr Glu Ile Leu Arg Thr Met Ala Thr Gly
500 505 510Ile Ala Gly Leu Ser Val
Val Ala Asp Ser Leu Ser Ala Val Lys Tyr 515 520
525Ala Lys Val Ser Val Val Arg Asp Glu Asn Gly Ile Ala Val
Asp Phe 530 535 540Glu Thr Glu Gly Asp
Phe Pro Lys Tyr Gly Asn Asn Asp Asp Arg Val545 550
555 560Asp Ala Ile Ala Val Asp Ile Val Lys Arg
Phe Met Lys Lys Leu Arg 565 570
575Lys His Gln Thr Tyr Arg Gln Ser Val Gln Thr Met Ser Ile Leu Thr
580 585 590Ile Thr Ser Asn Val
Val Tyr Gly Lys Lys Thr Gly Asn Thr Pro Asp 595
600 605Gly Arg Arg Ala Gly Glu Pro Phe Ala Pro Gly Ala
Asn Pro Met His 610 615 620Gly Arg Asp
Thr Lys Gly Thr Leu Ala Ser Leu Ser Ser Val Ala Lys625
630 635 640Leu Pro Tyr Ser Tyr Ala Leu
Asp Gly Ile Ser Asn Thr Phe Ser Ile 645
650 655Val Pro Lys Ala Leu Gly Lys Asp Glu Glu Ser Arg
Ala Ala Asn Leu 660 665 670Ser
Ser Ile Leu Asp Gly Tyr Ala Ala Lys Thr Gly His His Leu Asn 675
680 685Val Asn Val Phe Asn Arg Glu Thr Leu
Leu Asp Ala Met Glu His Pro 690 695
700Glu Glu Tyr Pro Gln Leu Thr Ile Arg Val Ser Gly Tyr Ala Val Asn705
710 715 720Phe Ile Lys Leu
Thr Lys Glu Gln Gln Leu Asp Val Ile Ser Arg Thr 725
730 735Phe His Glu Ser Met
740392226DNABacillus licheniformismisc_featureATCC14580 39atggaacaat
ggaaaggttt caccacaaac gtttggcaaa aagaagtcaa tgtccgcgat 60tttattctct
cgaactttga gccatatcaa ggtgacgaat cgtttctcga acctccgacg 120gaagctacat
cggcattatg ggatcatgta atggatttga caaaaaaaga gcgtgaaaac 180ggaggcgtcc
ttgatatgga tacagagatc gtctcaacga tcacctcgca cggtcccgga 240tatttgaaca
aagacctgga aaaagtcgtc ggcgttcaaa ccgatgagcc gtttaaacgg 300tcgcttcagc
ctttcggcgg catccgaatg gcaaagcagg catgcgaatc ctatggtttt 360aaactgaatg
aagaagtgga aaggatcttt accgattacc gcaaaactca taaccaaggc 420gtgtttgacg
catatacgga cgaaatgaag ctcgcccgaa aagtcggaat cattaccgga 480ctgcctgatg
cttacgggcg cgggcgcatc atcggtgatt accggagagt ggcgctttac 540ggcgtggatt
tcttgatcga tgaaaagaaa aaagatgcgg ccggcacctc tcgggtgatg 600tctgaagaaa
acatccgcct tcgtgaagaa ctgtcagaac aaatccgagc attgaacgaa 660cttaaagcgc
ttgcaaaaag ctatgggttt gacatttcca agcctgcggc gaatgcaaga 720gaagcatttc
aatggctgta ttttgcctat ttggctgcca ttaaagagca aaacggagca 780gcaatgagcc
ttggccgcgt gtccacgttc cttgatattt acatcgaaag agatttgaaa 840acgggcgtat
taacagagcg tgaagcccaa gagcttgtcg accatttcgt catgaagctg 900cgtttggtca
aattcgcgcg cacacctgac tacaatgaac tgttcagcgg cgatccgacg 960tgggtgacag
aatcaatcgg cggaatggcg cacgacggac gcgccctggt gacgaaaaac 1020tcgttccgtt
tcctgcatac gcttgacaat ttaggcccgg cgcctgaacc gaatttaacc 1080gttctttggt
ctgtcagact gccgcaaaag tttaaaaact actgtgccaa aatgtcgatt 1140aaaacaagct
cgatccaata cgaaaatgac gatatcatgc gtccagaata cggtgatgac 1200tacggaatcg
cctgctgtgt atcggcaatg gcaatcggca aacaaatgca gttcttcgga 1260gcacgcgcca
acttggcgaa agctctttta tatgcgatta acggcggaaa agacgaaaag 1320cataaaatgc
aagtcggtcc ggaaatgccg ccggttgctt ccgacgtgct ggactatgac 1380gaagtgatgc
ataaattcga tcagacgatg gaatggctcg caggcttgta catcaacacg 1440ctcaatgtca
ttcactacat gcatgataaa tattgctatg aaagaattga aatggccctg 1500cacgacacgg
aaattttgcg gacgatggcc actgggatcg ccggcttgag tgttgtcgcc 1560gattcattaa
gcgctgtcaa atatgccaaa gtcagcgtgg tccgcgatga aaacggcatt 1620gcggtcgatt
ttgaaacaga aggcgacttt cctaagtacg gaaataacga tgaccgcgtc 1680gacgcgatcg
ccgttgacat tgtcaagcgc tttatgaaaa aactgcgcaa gcatcagaca 1740tatcgccagt
ccgttcagac catgtcaatt ttaacgatca cgtcaaacgt cgtttacggc 1800aagaaaaccg
gaaatacgcc ggatggacgc cgcgcgggag aaccgtttgc tccaggtgcg 1860aatccgatgc
acggccgcga tactaaaggg acgcttgcat cgctgtcttc agtggcaaag 1920ctgccttaca
gctatgcgct cgacggcatt tccaacacct tttcaatcgt cccgaaagcg 1980cttggcaaag
acgaagagag ccgcgccgcc aatttgtcaa gcatccttga cggatatgcc 2040gcaaaaacag
gacatcactt aaatgtaaac gtatttaaca gagagacact gctcgacgcc 2100atggaacatc
cagaggaata tccgcagtta acgattcgcg tctcaggcta tgcggtcaac 2160tttattaagc
tgacgaaaga acagcagtta gacgtcatca gcagaacctt ccatgaatcg 2220atgtag
222640741PRTBacillus licheniformisMISC_FEATUREATCC14580 40Met Glu Gln Trp
Lys Gly Phe Thr Thr Asn Val Trp Gln Lys Glu Val1 5
10 15Asn Val Arg Asp Phe Ile Leu Ser Asn Phe
Glu Pro Tyr Gln Gly Asp 20 25
30Glu Ser Phe Leu Glu Pro Pro Thr Glu Ala Thr Ser Ala Leu Trp Asp
35 40 45His Val Met Asp Leu Thr Lys Lys
Glu Arg Glu Asn Gly Gly Val Leu 50 55
60Asp Met Asp Thr Glu Ile Val Ser Thr Ile Thr Ser His Gly Pro Gly65
70 75 80Tyr Leu Asn Lys Asp
Leu Glu Lys Val Val Gly Val Gln Thr Asp Glu 85
90 95Pro Phe Lys Arg Ser Leu Gln Pro Phe Gly Gly
Ile Arg Met Ala Lys 100 105
110Gln Ala Cys Glu Ser Tyr Gly Phe Lys Leu Asn Glu Glu Val Glu Arg
115 120 125Ile Phe Thr Asp Tyr Arg Lys
Thr His Asn Gln Gly Val Phe Asp Ala 130 135
140Tyr Thr Asp Glu Met Lys Leu Ala Arg Lys Val Gly Ile Ile Thr
Gly145 150 155 160Leu Pro
Asp Ala Tyr Gly Arg Gly Arg Ile Ile Gly Asp Tyr Arg Arg
165 170 175Val Ala Leu Tyr Gly Val Asp
Phe Leu Ile Asp Glu Lys Lys Lys Asp 180 185
190Ala Ala Gly Thr Ser Arg Val Met Ser Glu Glu Asn Ile Arg
Leu Arg 195 200 205Glu Glu Leu Ser
Glu Gln Ile Arg Ala Leu Asn Glu Leu Lys Ala Leu 210
215 220Ala Lys Ser Tyr Gly Phe Asp Ile Ser Lys Pro Ala
Ala Asn Ala Arg225 230 235
240Glu Ala Phe Gln Trp Leu Tyr Phe Ala Tyr Leu Ala Ala Ile Lys Glu
245 250 255Gln Asn Gly Ala Ala
Met Ser Leu Gly Arg Val Ser Thr Phe Leu Asp 260
265 270Ile Tyr Ile Glu Arg Asp Leu Lys Thr Gly Val Leu
Thr Glu Arg Glu 275 280 285Ala Gln
Glu Leu Val Asp His Phe Val Met Lys Leu Arg Leu Val Lys 290
295 300Phe Ala Arg Thr Pro Asp Tyr Asn Glu Leu Phe
Ser Gly Asp Pro Thr305 310 315
320Trp Val Thr Glu Ser Ile Gly Gly Met Ala His Asp Gly Arg Ala Leu
325 330 335Val Thr Lys Asn
Ser Phe Arg Phe Leu His Thr Leu Asp Asn Leu Gly 340
345 350Pro Ala Pro Glu Pro Asn Leu Thr Val Leu Trp
Ser Val Arg Leu Pro 355 360 365Gln
Lys Phe Lys Asn Tyr Cys Ala Lys Met Ser Ile Lys Thr Ser Ser 370
375 380Ile Gln Tyr Glu Asn Asp Asp Ile Met Arg
Pro Glu Tyr Gly Asp Asp385 390 395
400Tyr Gly Ile Ala Cys Cys Val Ser Ala Met Ala Ile Gly Lys Gln
Met 405 410 415Gln Phe Phe
Gly Ala Arg Ala Asn Leu Ala Lys Ala Leu Leu Tyr Ala 420
425 430Ile Asn Gly Gly Lys Asp Glu Lys His Lys
Met Gln Val Gly Pro Glu 435 440
445Met Pro Pro Val Ala Ser Asp Val Leu Asp Tyr Asp Glu Val Met His 450
455 460Lys Phe Asp Gln Thr Met Glu Trp
Leu Ala Gly Leu Tyr Ile Asn Thr465 470
475 480Leu Asn Val Ile His Tyr Met His Asp Lys Tyr Cys
Tyr Glu Arg Ile 485 490
495Glu Met Ala Leu His Asp Thr Glu Ile Leu Arg Thr Met Ala Thr Gly
500 505 510Ile Ala Gly Leu Ser Val
Val Ala Asp Ser Leu Ser Ala Val Lys Tyr 515 520
525Ala Lys Val Ser Val Val Arg Asp Glu Asn Gly Ile Ala Val
Asp Phe 530 535 540Glu Thr Glu Gly Asp
Phe Pro Lys Tyr Gly Asn Asn Asp Asp Arg Val545 550
555 560Asp Ala Ile Ala Val Asp Ile Val Lys Arg
Phe Met Lys Lys Leu Arg 565 570
575Lys His Gln Thr Tyr Arg Gln Ser Val Gln Thr Met Ser Ile Leu Thr
580 585 590Ile Thr Ser Asn Val
Val Tyr Gly Lys Lys Thr Gly Asn Thr Pro Asp 595
600 605Gly Arg Arg Ala Gly Glu Pro Phe Ala Pro Gly Ala
Asn Pro Met His 610 615 620Gly Arg Asp
Thr Lys Gly Thr Leu Ala Ser Leu Ser Ser Val Ala Lys625
630 635 640Leu Pro Tyr Ser Tyr Ala Leu
Asp Gly Ile Ser Asn Thr Phe Ser Ile 645
650 655Val Pro Lys Ala Leu Gly Lys Asp Glu Glu Ser Arg
Ala Ala Asn Leu 660 665 670Ser
Ser Ile Leu Asp Gly Tyr Ala Ala Lys Thr Gly His His Leu Asn 675
680 685Val Asn Val Phe Asn Arg Glu Thr Leu
Leu Asp Ala Met Glu His Pro 690 695
700Glu Glu Tyr Pro Gln Leu Thr Ile Arg Val Ser Gly Tyr Ala Val Asn705
710 715 720Phe Ile Lys Leu
Thr Lys Glu Gln Gln Leu Asp Val Ile Ser Arg Thr 725
730 735Phe His Glu Ser Met
740412310DNAStreptococcus thermophilusmisc_featureCNRZ1066 41atggcaacgg
ttaaaactaa cacagatgtt tttgaaaaag cgtgggaagg ctttaaagga 60actgactgga
aagaaaaagc aagtgtgtct cgcttcgtac aagcaaacta cacaccatat 120gatggtgatg
aaagcttcct tgcaggacca actgaacgct cacttaaaat caaaaaaatc 180attgaagaaa
ctaaagccca ctacgaagaa actcgtttcc caatggatac tcgtccgaca 240tcaatcgcag
atattcctgc cggctatatt tcaaaagacg acgaactaat ctacggtatt 300caaaatgatg
agttattcaa attgaatttc atgccaaaag gcggaattcg tatggcagaa 360acagctctca
aggaacatgg ctatgaacct gatccagctg ttcacgaaat ttttacaaaa 420catgtaacta
cagtaaatga cggtatcttc cgtgcttata catcaaatat ccgtcgtgca 480cgtcacgcac
acactataac tggacttcca gatgcttact ctcgtggacg tatcatcggt 540gtttatgctc
gccttgctct ttacggtgct gacttcttga tgcaagaaaa agtaaacgac 600tggaactcta
tcgaagaaat caacgaagaa actattcgtc ttcgtgaaga agttaacctt 660caataccaag
cacttcaaga tgttgttcgc cttggtgacc tttacggtgt agatgttcgt 720cgtccagcct
tcgatactaa agaagctatc caatggacaa acattgcttt tatggctgta 780tgtcgtgtta
tcaatggtgc ggctacttca cttggtcgtg tgccaatcgt ccttgacata 840tatgcagaac
gtgaccttgc tcgtggtact tacactgaat cagaaatcca agaattcgtt 900gatgattttg
tcttgaaact tcgtactgta aaattcgcac gtacaaaagc ttacgacgaa 960ctttactcag
gtgacccaac attcatcaca acttctatgg ctggtatggg tgctgacgga 1020cgtcaccgtg
ttactaaaat ggactaccgt ttcttgaaca cacttgataa tattggtaat 1080gctccagaac
caaacttgac agttctttgg tctgacaaat tgccttactc attccgtcgc 1140tactgtatgc
acatgagtca caagcactct tctattcaat acgaaggtgt gactactatg 1200gctaaagacg
gatacggtga aatgagctgt atctcatgtt gtgtatcacc acttgaccca 1260gaaaacgaag
aacaacgcca caacatccaa tacttcggtg ctcgtgttaa cgtacttaaa 1320gcccttctta
ctggtttgaa cggtggttac gacgatgttc ataaagacta caaagtattt 1380gacatcgatc
cagtccgtga tgaagttctt gactttgaca ctgttaaagc taacttcgaa 1440aaatctcttg
actggttgac tgacacttat gtagatgccc ttaacatcat ccactacatg 1500actgataagt
acaactacga agctgttcaa atggccttct tgccaactaa acaacgtgct 1560aacatgggat
tcggtatctg tggtttcgca aatactgttg atacattgtc agctatcaag 1620tacgctacag
ttaaaccaat ccgtgacgaa gatggctaca tctacgacta cgaaacaatc 1680ggtgaatacc
cacgttgggg tgaagatgac ccacgttcaa acgaattggc agaatggttg 1740attgaagctt
acactactcg tcttcgtagc cataaactct acaaagatgc agaagctaca 1800gtttcacttc
ttacaatcac ttcgaacgtt gcttactcta aacaaactgg taactctcca 1860gttcacaaag
gggtatacct caacgaagat ggttcagtga acttgtccaa attggaattc 1920ttctcaccag
gtgctaaccc atctaacaaa gctaaaggtg gatggttgca aaacttgaac 1980tcacttgcaa
gccttgactt cggttatgca gctgacggta tctcacttac tactcaagta 2040tcacctcgtg
cccttggtaa gactcgcgac gaacaagttg ataacctcgt aactatcctt 2100gacggatact
tcgaaaacgg tggacaacac cttaacttga acgttatgga cttgtcagct 2160gtttacaaaa
agatcatgag cggtgaagat gttatcgtac gtatctctgg atactgtgta 2220aacactaaat
acctcactcc agaacaaaaa actgaattga cacaacgtgt cttccacgaa 2280gttctttcaa
cggacgatgc tatgggataa
231042769PRTStreptococcus thermophilusMISC_FEATURECNRZ1066 42Met Ala Thr
Val Lys Thr Asn Thr Asp Val Phe Glu Lys Ala Trp Glu1 5
10 15Gly Phe Lys Gly Thr Asp Trp Lys Glu
Lys Ala Ser Val Ser Arg Phe 20 25
30Val Gln Ala Asn Tyr Thr Pro Tyr Asp Gly Asp Glu Ser Phe Leu Ala
35 40 45Gly Pro Thr Glu Arg Ser Leu
Lys Ile Lys Lys Ile Ile Glu Glu Thr 50 55
60Lys Ala His Tyr Glu Glu Thr Arg Phe Pro Met Asp Thr Arg Pro Thr65
70 75 80Ser Ile Ala Asp
Ile Pro Ala Gly Tyr Ile Ser Lys Asp Asp Glu Leu 85
90 95Ile Tyr Gly Ile Gln Asn Asp Glu Leu Phe
Lys Leu Asn Phe Met Pro 100 105
110Lys Gly Gly Ile Arg Met Ala Glu Thr Ala Leu Lys Glu His Gly Tyr
115 120 125Glu Pro Asp Pro Ala Val His
Glu Ile Phe Thr Lys His Val Thr Thr 130 135
140Val Asn Asp Gly Ile Phe Arg Ala Tyr Thr Ser Asn Ile Arg Arg
Ala145 150 155 160Arg His
Ala His Thr Ile Thr Gly Leu Pro Asp Ala Tyr Ser Arg Gly
165 170 175Arg Ile Ile Gly Val Tyr Ala
Arg Leu Ala Leu Tyr Gly Ala Asp Phe 180 185
190Leu Met Gln Glu Lys Val Asn Asp Trp Asn Ser Ile Glu Glu
Ile Asn 195 200 205Glu Glu Thr Ile
Arg Leu Arg Glu Glu Val Asn Leu Gln Tyr Gln Ala 210
215 220Leu Gln Asp Val Val Arg Leu Gly Asp Leu Tyr Gly
Val Asp Val Arg225 230 235
240Arg Pro Ala Phe Asp Thr Lys Glu Ala Ile Gln Trp Thr Asn Ile Ala
245 250 255Phe Met Ala Val Cys
Arg Val Ile Asn Gly Ala Ala Thr Ser Leu Gly 260
265 270Arg Val Pro Ile Val Leu Asp Ile Tyr Ala Glu Arg
Asp Leu Ala Arg 275 280 285Gly Thr
Tyr Thr Glu Ser Glu Ile Gln Glu Phe Val Asp Asp Phe Val 290
295 300Leu Lys Leu Arg Thr Val Lys Phe Ala Arg Thr
Lys Ala Tyr Asp Glu305 310 315
320Leu Tyr Ser Gly Asp Pro Thr Phe Ile Thr Thr Ser Met Ala Gly Met
325 330 335Gly Ala Asp Gly
Arg His Arg Val Thr Lys Met Asp Tyr Arg Phe Leu 340
345 350Asn Thr Leu Asp Asn Ile Gly Asn Ala Pro Glu
Pro Asn Leu Thr Val 355 360 365Leu
Trp Ser Asp Lys Leu Pro Tyr Ser Phe Arg Arg Tyr Cys Met His 370
375 380Met Ser His Lys His Ser Ser Ile Gln Tyr
Glu Gly Val Thr Thr Met385 390 395
400Ala Lys Asp Gly Tyr Gly Glu Met Ser Cys Ile Ser Cys Cys Val
Ser 405 410 415Pro Leu Asp
Pro Glu Asn Glu Glu Gln Arg His Asn Ile Gln Tyr Phe 420
425 430Gly Ala Arg Val Asn Val Leu Lys Ala Leu
Leu Thr Gly Leu Asn Gly 435 440
445Gly Tyr Asp Asp Val His Lys Asp Tyr Lys Val Phe Asp Ile Asp Pro 450
455 460Val Arg Asp Glu Val Leu Asp Phe
Asp Thr Val Lys Ala Asn Phe Glu465 470
475 480Lys Ser Leu Asp Trp Leu Thr Asp Thr Tyr Val Asp
Ala Leu Asn Ile 485 490
495Ile His Tyr Met Thr Asp Lys Tyr Asn Tyr Glu Ala Val Gln Met Ala
500 505 510Phe Leu Pro Thr Lys Gln
Arg Ala Asn Met Gly Phe Gly Ile Cys Gly 515 520
525Phe Ala Asn Thr Val Asp Thr Leu Ser Ala Ile Lys Tyr Ala
Thr Val 530 535 540Lys Pro Ile Arg Asp
Glu Asp Gly Tyr Ile Tyr Asp Tyr Glu Thr Ile545 550
555 560Gly Glu Tyr Pro Arg Trp Gly Glu Asp Asp
Pro Arg Ser Asn Glu Leu 565 570
575Ala Glu Trp Leu Ile Glu Ala Tyr Thr Thr Arg Leu Arg Ser His Lys
580 585 590Leu Tyr Lys Asp Ala
Glu Ala Thr Val Ser Leu Leu Thr Ile Thr Ser 595
600 605Asn Val Ala Tyr Ser Lys Gln Thr Gly Asn Ser Pro
Val His Lys Gly 610 615 620Val Tyr Leu
Asn Glu Asp Gly Ser Val Asn Leu Ser Lys Leu Glu Phe625
630 635 640Phe Ser Pro Gly Ala Asn Pro
Ser Asn Lys Ala Lys Gly Gly Trp Leu 645
650 655Gln Asn Leu Asn Ser Leu Ala Ser Leu Asp Phe Gly
Tyr Ala Ala Asp 660 665 670Gly
Ile Ser Leu Thr Thr Gln Val Ser Pro Arg Ala Leu Gly Lys Thr 675
680 685Arg Asp Glu Gln Val Asp Asn Leu Val
Thr Ile Leu Asp Gly Tyr Phe 690 695
700Glu Asn Gly Gly Gln His Leu Asn Leu Asn Val Met Asp Leu Ser Ala705
710 715 720Val Tyr Lys Lys
Ile Met Ser Gly Glu Asp Val Ile Val Arg Ile Ser 725
730 735Gly Tyr Cys Val Asn Thr Lys Tyr Leu Thr
Pro Glu Gln Lys Thr Glu 740 745
750Leu Thr Gln Arg Val Phe His Glu Val Leu Ser Thr Asp Asp Ala Met
755 760 765Gly432310DNAStreptococcus
thermophilusMISC_FEATURELMG18311 43atggcaacgg ttaaaactaa cacagatgtt
tttgaaaaag cgtgggaagg ctttaaagga 60actgactgga aagaaaaagc aagtgtgtct
cgcttcgtac aagcaaacta cacaccatat 120gatggtgatg aaagcttcct tgcaggacca
actgaacgct cacttaaaat caaaaaaatc 180attgaagaaa ctaaagctca ctacgaagaa
actcgtttcc caatggatac tcgtccgaca 240tcaatcgcag atattcctgc cggctatatt
tcaaaagacg acgaactaat ctacggtatt 300caaaatgatg agttattcaa attgaatttc
atgccaaaag gcggaattcg tatggcagaa 360acagctctca aggaacatgg ctatgaacct
gatccagctg ttcacgaaat ttttacaaaa 420catgtaacta cagtaaatga cggtatcttc
cgtgcttata catcaaatat ccgtcgtgca 480cgtcacgcac acactataac tggacttcca
gatgcttact ctcgtggacg tatcatcggt 540gtttatgctc gccttgctct ttacggtgct
gacttcttga tgcaagaaaa agtaaacgac 600tggaactcta tcgaagaaat caacgaagaa
actattcgtc ttcgtgaaga agttaacctt 660caataccaag cacttcaaga tgttgttcgc
cttggtgacc tttacggtgt agatgttcgt 720cgtccagcct tcgatactaa agaagctatc
caatggacaa acattgcttt tatggctgta 780tgtcgtgtta tcaatggtgc ggctacttca
cttggtcgtg tgccaatcgt ccttgacata 840tatgcagaac gtgaccttgc tcgtggtact
tacactgaat cagaaatcca agaattcgtt 900gatgattttg tcttgaaact tcgtactgta
aaattcgcac gtacaaaagc ttacgacgaa 960ctttactcag gtgacccaac attcatcaca
acttctatgg ctggtatggg tgctgacgga 1020cgtcaccgtg ttactaaaat ggactaccgt
ttcttgaaca cacttgataa tattggtaat 1080gctccagaac caaacttgac agttctttgg
tctgacaaat tgccttactc attccgtcgc 1140tactgtatgc acatgagtca caagcactct
tctattcaat acgaaggtgt gactactatg 1200gctaaagacg gatacggtga aatgagctgt
atctcatgtt gtgtatcacc acttgaccca 1260gaaaacgaag aacaacgcca caacatccaa
tacttcggtg ctcgtgttaa cgtacttaaa 1320gcccttctta ctggtttgaa cggtggttac
gacgatgttc ataaagacta caaagtattt 1380gacatcgatc cagtccgtga tgaagttctt
gactttgaca ctgttaaagc taacttcgaa 1440aaatctcttg actggttgac tgacacttat
gtagatgccc ttaacatcat ccactacatg 1500actgataagt acaactacga agctgttcaa
atggccttct tgccaactaa acaacgtgct 1560aacatgggat tcggtatctg tggtttcgca
aatactgttg atacattgtc agctatcaag 1620tacgctacag ttaaaccaat ccgtgacgaa
gatggctaca tctacgacta cgaaacaatc 1680ggtgaatacc cacgttgggg tgaagatgac
ccacgttcaa acgaattggc agaatggttg 1740attgaagctt acactactcg tcttcgtagc
cataaactct acaaagatgc agaagctaca 1800gtttcacttc ttacaatcac ttcgaacgtt
gcttactcta aacaaactgg taactctcca 1860gttcacaaag gggtatacct caacgaagat
ggttcagtga acttgtctaa attggaattc 1920ttctcaccag gtgctaaccc atctaacaaa
gctaaaggtg gatggttgca aaacttgaac 1980tcacttgcaa gccttgactt cggttatgca
gctgacggta tctcacttac tactcaagta 2040tcacctcgtg cccttggtaa gactcgcgac
gaacaagttg ataacctcgt aactatcctt 2100gacggatact tcgaaaacgg tggacaacac
cttaacttga acgttatgga cttgtcagct 2160gtttacaaaa agatcatgag cggtgaagat
gttatcgtac gtatctctgg atactgtgta 2220aacactaaat acctcactcc agaacaaaaa
actgaattga cacaacgtgt cttccacgaa 2280gttctttcaa cggacgatgc tatgggataa
231044769PRTStreptococcus
thermophilusMISC_FEATURELMG18311 44Met Ala Thr Val Lys Thr Asn Thr Asp
Val Phe Glu Lys Ala Trp Glu1 5 10
15Gly Phe Lys Gly Thr Asp Trp Lys Glu Lys Ala Ser Val Ser Arg
Phe 20 25 30Val Gln Ala Asn
Tyr Thr Pro Tyr Asp Gly Asp Glu Ser Phe Leu Ala 35
40 45Gly Pro Thr Glu Arg Ser Leu Lys Ile Lys Lys Ile
Ile Glu Glu Thr 50 55 60Lys Ala His
Tyr Glu Glu Thr Arg Phe Pro Met Asp Thr Arg Pro Thr65 70
75 80Ser Ile Ala Asp Ile Pro Ala Gly
Tyr Ile Ser Lys Asp Asp Glu Leu 85 90
95Ile Tyr Gly Ile Gln Asn Asp Glu Leu Phe Lys Leu Asn Phe
Met Pro 100 105 110Lys Gly Gly
Ile Arg Met Ala Glu Thr Ala Leu Lys Glu His Gly Tyr 115
120 125Glu Pro Asp Pro Ala Val His Glu Ile Phe Thr
Lys His Val Thr Thr 130 135 140Val Asn
Asp Gly Ile Phe Arg Ala Tyr Thr Ser Asn Ile Arg Arg Ala145
150 155 160Arg His Ala His Thr Ile Thr
Gly Leu Pro Asp Ala Tyr Ser Arg Gly 165
170 175Arg Ile Ile Gly Val Tyr Ala Arg Leu Ala Leu Tyr
Gly Ala Asp Phe 180 185 190Leu
Met Gln Glu Lys Val Asn Asp Trp Asn Ser Ile Glu Glu Ile Asn 195
200 205Glu Glu Thr Ile Arg Leu Arg Glu Glu
Val Asn Leu Gln Tyr Gln Ala 210 215
220Leu Gln Asp Val Val Arg Leu Gly Asp Leu Tyr Gly Val Asp Val Arg225
230 235 240Arg Pro Ala Phe
Asp Thr Lys Glu Ala Ile Gln Trp Thr Asn Ile Ala 245
250 255Phe Met Ala Val Cys Arg Val Ile Asn Gly
Ala Ala Thr Ser Leu Gly 260 265
270Arg Val Pro Ile Val Leu Asp Ile Tyr Ala Glu Arg Asp Leu Ala Arg
275 280 285Gly Thr Tyr Thr Glu Ser Glu
Ile Gln Glu Phe Val Asp Asp Phe Val 290 295
300Leu Lys Leu Arg Thr Val Lys Phe Ala Arg Thr Lys Ala Tyr Asp
Glu305 310 315 320Leu Tyr
Ser Gly Asp Pro Thr Phe Ile Thr Thr Ser Met Ala Gly Met
325 330 335Gly Ala Asp Gly Arg His Arg
Val Thr Lys Met Asp Tyr Arg Phe Leu 340 345
350Asn Thr Leu Asp Asn Ile Gly Asn Ala Pro Glu Pro Asn Leu
Thr Val 355 360 365Leu Trp Ser Asp
Lys Leu Pro Tyr Ser Phe Arg Arg Tyr Cys Met His 370
375 380Met Ser His Lys His Ser Ser Ile Gln Tyr Glu Gly
Val Thr Thr Met385 390 395
400Ala Lys Asp Gly Tyr Gly Glu Met Ser Cys Ile Ser Cys Cys Val Ser
405 410 415Pro Leu Asp Pro Glu
Asn Glu Glu Gln Arg His Asn Ile Gln Tyr Phe 420
425 430Gly Ala Arg Val Asn Val Leu Lys Ala Leu Leu Thr
Gly Leu Asn Gly 435 440 445Gly Tyr
Asp Asp Val His Lys Asp Tyr Lys Val Phe Asp Ile Asp Pro 450
455 460Val Arg Asp Glu Val Leu Asp Phe Asp Thr Val
Lys Ala Asn Phe Glu465 470 475
480Lys Ser Leu Asp Trp Leu Thr Asp Thr Tyr Val Asp Ala Leu Asn Ile
485 490 495Ile His Tyr Met
Thr Asp Lys Tyr Asn Tyr Glu Ala Val Gln Met Ala 500
505 510Phe Leu Pro Thr Lys Gln Arg Ala Asn Met Gly
Phe Gly Ile Cys Gly 515 520 525Phe
Ala Asn Thr Val Asp Thr Leu Ser Ala Ile Lys Tyr Ala Thr Val 530
535 540Lys Pro Ile Arg Asp Glu Asp Gly Tyr Ile
Tyr Asp Tyr Glu Thr Ile545 550 555
560Gly Glu Tyr Pro Arg Trp Gly Glu Asp Asp Pro Arg Ser Asn Glu
Leu 565 570 575Ala Glu Trp
Leu Ile Glu Ala Tyr Thr Thr Arg Leu Arg Ser His Lys 580
585 590Leu Tyr Lys Asp Ala Glu Ala Thr Val Ser
Leu Leu Thr Ile Thr Ser 595 600
605Asn Val Ala Tyr Ser Lys Gln Thr Gly Asn Ser Pro Val His Lys Gly 610
615 620Val Tyr Leu Asn Glu Asp Gly Ser
Val Asn Leu Ser Lys Leu Glu Phe625 630
635 640Phe Ser Pro Gly Ala Asn Pro Ser Asn Lys Ala Lys
Gly Gly Trp Leu 645 650
655Gln Asn Leu Asn Ser Leu Ala Ser Leu Asp Phe Gly Tyr Ala Ala Asp
660 665 670Gly Ile Ser Leu Thr Thr
Gln Val Ser Pro Arg Ala Leu Gly Lys Thr 675 680
685Arg Asp Glu Gln Val Asp Asn Leu Val Thr Ile Leu Asp Gly
Tyr Phe 690 695 700Glu Asn Gly Gly Gln
His Leu Asn Leu Asn Val Met Asp Leu Ser Ala705 710
715 720Val Tyr Lys Lys Ile Met Ser Gly Glu Asp
Val Ile Val Arg Ile Ser 725 730
735Gly Tyr Cys Val Asn Thr Lys Tyr Leu Thr Pro Glu Gln Lys Thr Glu
740 745 750Leu Thr Gln Arg Val
Phe His Glu Val Leu Ser Thr Asp Asp Ala Met 755
760 765Gly452310DNAStreptococcus
thermophilusmisc_featureLMD-9 45atggcaacgg ttaaaactaa cacagatgtt
tttgaaaaag cgtgggaagg ctttaaagga 60actgactgga aagaaaaagc aagtgtgtct
cgcttcgtac aagcaaacta cacaccatat 120gatggtgatg aaagcttcct tgcaggacca
actgaacgct cacttaaaat caaaaaaatc 180attgaagaaa ctaaagctca ctacgaagaa
actcgtttcc caatggatac tcgtccgaca 240tcaatcgcag atattcctgc cggctatatt
tcaaaagacg acgaactaat ctacggtatt 300caaaatgatg agttattcaa attgaatttc
atgccaaaag gcggaattcg tatggcagaa 360acagctctca aggaacatgg ctatgaacct
gatccagctg ttcacgaaat ttttacaaaa 420catgtaacta cagtaaatga cggtatcttc
cgtgcttata catcaaatat ccgtcgtgca 480cgtcacgcac acactataac tggacttcca
gatgcttact ctcgtggacg tatcatcggt 540gtttatgctc gccttgctct ttacggtgct
gacttcttga tgcaagaaaa agtaaacgac 600tggaactcta tcgaagaaat caacgaagaa
actattcgtc ttcgtgaaga agttaacctt 660caataccaag cacttcaaga tgttgttcgc
cttggtgacc tttacggtgt agatgttcgt 720cgtccagcct tcgatactaa agaagctatc
caatggacaa acattgcttt tatggctgta 780tgtcgtgtta tcaatggtgc ggctacttca
cttggtcgtg tgccaatcgt ccttgacata 840tatgcagaac gtgaccttgc tcgtggtact
tacactgaat cagaaatcca agaattcgtt 900gatgattttg tcttgaaact tcgtactgta
aaattcgcac gtacaaaagc ttacgacgaa 960ctttactcag gtgacccaac attcatcaca
acttctatgg ctggtatggg tgctgacgga 1020cgtcaccgtg ttactaaaat ggactaccgt
ttcttgaaca cacttgataa tattggtaat 1080gctccagaac caaacttgac agttctttgg
tctgacaaat tgccttactc attccgtcgc 1140tactgtatgc acatgagtca caagcactct
tctattcaat acgaaggtgt gactactatg 1200gctaaagacg gatacggtga aatgagctgt
atctcatgtt gtgtatcacc acttgaccca 1260gaaaacgaag aacaacgcca caacatccaa
tacttcggtg ctcgtgttaa cgtacttaaa 1320gcccttctta ctggtttgaa cggtggttac
gacgatgttc ataaagacta caaagtattt 1380gacatcgatc cagtccgtga tgaagttctt
gactttgaca ctgttaaagc taacttcgaa 1440aaatctcttg actggttgac tgacacttat
gtagatgccc ttaacatcat ccactacatg 1500actgataagt acaactacga agctgttcaa
atggccttct tgccaactaa acaacgtgct 1560aacatgggat tcggtatctg tggtttcgca
aatactgttg atacattgtc agctatcaag 1620tacgctacag ttaaaccaat ccgtgacgaa
gatggctaca tctacgacta cgaaacaatc 1680ggtgaatacc cacgttgggg tgaagatgac
ccacgttcaa acgaattggc agaatggttg 1740attgaagctt acactactcg tcttcgtagc
cataaactct acaaagatgc agaagctaca 1800gtttcacttc ttacaatcac ttcgaacgtt
gcttactcta aacaaactgg taactctcca 1860gttcacaaag gggtatacct caacgaagat
ggttcagtga acttgtctaa attggaattc 1920ttctcaccag gtgctaaccc atctaacaaa
gctaaaggtg gatggttgca aaacttgaac 1980tcacttgcaa gccttgactt cggttatgca
gctgacggta tctcgcttac tactcaagta 2040tcacctcgtg cccttggtaa gactcgcgac
gaacaagttg ataacctcgt aactatcctt 2100gacggatact tcgaaaacgg tggacaacac
cttaacttga acgttatgga cttgtcagct 2160gtttacaaaa agatcatgag cggtgaagat
gttatcgtac gtatctctgg atactgtgta 2220aacactaaat acctcactcc agaacaaaaa
actgaattga cacaacgtgt cttccacgaa 2280gttctttcaa cggacgatgc tatgggataa
231046769PRTStreptococcus
thermophilusMISC_FEATURELMD-9 46Met Ala Thr Val Lys Thr Asn Thr Asp Val
Phe Glu Lys Ala Trp Glu1 5 10
15Gly Phe Lys Gly Thr Asp Trp Lys Glu Lys Ala Ser Val Ser Arg Phe
20 25 30Val Gln Ala Asn Tyr Thr
Pro Tyr Asp Gly Asp Glu Ser Phe Leu Ala 35 40
45Gly Pro Thr Glu Arg Ser Leu Lys Ile Lys Lys Ile Ile Glu
Glu Thr 50 55 60Lys Ala His Tyr Glu
Glu Thr Arg Phe Pro Met Asp Thr Arg Pro Thr65 70
75 80Ser Ile Ala Asp Ile Pro Ala Gly Tyr Ile
Ser Lys Asp Asp Glu Leu 85 90
95Ile Tyr Gly Ile Gln Asn Asp Glu Leu Phe Lys Leu Asn Phe Met Pro
100 105 110Lys Gly Gly Ile Arg
Met Ala Glu Thr Ala Leu Lys Glu His Gly Tyr 115
120 125Glu Pro Asp Pro Ala Val His Glu Ile Phe Thr Lys
His Val Thr Thr 130 135 140Val Asn Asp
Gly Ile Phe Arg Ala Tyr Thr Ser Asn Ile Arg Arg Ala145
150 155 160Arg His Ala His Thr Ile Thr
Gly Leu Pro Asp Ala Tyr Ser Arg Gly 165
170 175Arg Ile Ile Gly Val Tyr Ala Arg Leu Ala Leu Tyr
Gly Ala Asp Phe 180 185 190Leu
Met Gln Glu Lys Val Asn Asp Trp Asn Ser Ile Glu Glu Ile Asn 195
200 205Glu Glu Thr Ile Arg Leu Arg Glu Glu
Val Asn Leu Gln Tyr Gln Ala 210 215
220Leu Gln Asp Val Val Arg Leu Gly Asp Leu Tyr Gly Val Asp Val Arg225
230 235 240Arg Pro Ala Phe
Asp Thr Lys Glu Ala Ile Gln Trp Thr Asn Ile Ala 245
250 255Phe Met Ala Val Cys Arg Val Ile Asn Gly
Ala Ala Thr Ser Leu Gly 260 265
270Arg Val Pro Ile Val Leu Asp Ile Tyr Ala Glu Arg Asp Leu Ala Arg
275 280 285Gly Thr Tyr Thr Glu Ser Glu
Ile Gln Glu Phe Val Asp Asp Phe Val 290 295
300Leu Lys Leu Arg Thr Val Lys Phe Ala Arg Thr Lys Ala Tyr Asp
Glu305 310 315 320Leu Tyr
Ser Gly Asp Pro Thr Phe Ile Thr Thr Ser Met Ala Gly Met
325 330 335Gly Ala Asp Gly Arg His Arg
Val Thr Lys Met Asp Tyr Arg Phe Leu 340 345
350Asn Thr Leu Asp Asn Ile Gly Asn Ala Pro Glu Pro Asn Leu
Thr Val 355 360 365Leu Trp Ser Asp
Lys Leu Pro Tyr Ser Phe Arg Arg Tyr Cys Met His 370
375 380Met Ser His Lys His Ser Ser Ile Gln Tyr Glu Gly
Val Thr Thr Met385 390 395
400Ala Lys Asp Gly Tyr Gly Glu Met Ser Cys Ile Ser Cys Cys Val Ser
405 410 415Pro Leu Asp Pro Glu
Asn Glu Glu Gln Arg His Asn Ile Gln Tyr Phe 420
425 430Gly Ala Arg Val Asn Val Leu Lys Ala Leu Leu Thr
Gly Leu Asn Gly 435 440 445Gly Tyr
Asp Asp Val His Lys Asp Tyr Lys Val Phe Asp Ile Asp Pro 450
455 460Val Arg Asp Glu Val Leu Asp Phe Asp Thr Val
Lys Ala Asn Phe Glu465 470 475
480Lys Ser Leu Asp Trp Leu Thr Asp Thr Tyr Val Asp Ala Leu Asn Ile
485 490 495Ile His Tyr Met
Thr Asp Lys Tyr Asn Tyr Glu Ala Val Gln Met Ala 500
505 510Phe Leu Pro Thr Lys Gln Arg Ala Asn Met Gly
Phe Gly Ile Cys Gly 515 520 525Phe
Ala Asn Thr Val Asp Thr Leu Ser Ala Ile Lys Tyr Ala Thr Val 530
535 540Lys Pro Ile Arg Asp Glu Asp Gly Tyr Ile
Tyr Asp Tyr Glu Thr Ile545 550 555
560Gly Glu Tyr Pro Arg Trp Gly Glu Asp Asp Pro Arg Ser Asn Glu
Leu 565 570 575Ala Glu Trp
Leu Ile Glu Ala Tyr Thr Thr Arg Leu Arg Ser His Lys 580
585 590Leu Tyr Lys Asp Ala Glu Ala Thr Val Ser
Leu Leu Thr Ile Thr Ser 595 600
605Asn Val Ala Tyr Ser Lys Gln Thr Gly Asn Ser Pro Val His Lys Gly 610
615 620Val Tyr Leu Asn Glu Asp Gly Ser
Val Asn Leu Ser Lys Leu Glu Phe625 630
635 640Phe Ser Pro Gly Ala Asn Pro Ser Asn Lys Ala Lys
Gly Gly Trp Leu 645 650
655Gln Asn Leu Asn Ser Leu Ala Ser Leu Asp Phe Gly Tyr Ala Ala Asp
660 665 670Gly Ile Ser Leu Thr Thr
Gln Val Ser Pro Arg Ala Leu Gly Lys Thr 675 680
685Arg Asp Glu Gln Val Asp Asn Leu Val Thr Ile Leu Asp Gly
Tyr Phe 690 695 700Glu Asn Gly Gly Gln
His Leu Asn Leu Asn Val Met Asp Leu Ser Ala705 710
715 720Val Tyr Lys Lys Ile Met Ser Gly Glu Asp
Val Ile Val Arg Ile Ser 725 730
735Gly Tyr Cys Val Asn Thr Lys Tyr Leu Thr Pro Glu Gln Lys Thr Glu
740 745 750Leu Thr Gln Arg Val
Phe His Glu Val Leu Ser Thr Asp Asp Ala Met 755
760 765Gly472445DNALactobacillus
plantarummisc_featureWCFS1 47atgatcatgt ctgaaacttt aactaaaaca acgacaacta
ttaaccactt cggtaaattg 60acgccaatga tggatcgctt acgcgatagc atcattgatg
caaaacctta tgtcgatcca 120gaacgggcga ttctcacaac cgaaacttat cgacaacacc
aagacgaaca agtcgatata 180ttacgggcta aaatgcttga acacgttctt gataaaatga
gtatcttcat tgaagatgat 240actttaattg ttggtaacca agcacgccaa aatcgttggg
caccagtatt ccctgagtat 300tctatgaatt gggtcattga tgaattagat acatttgaga
agcgtcctgg tgacgttttc 360tatattacgg agaaatccaa ggaagaactt cgtgcgattg
cgcctttctg gaaacataat 420accttggaag accgcggcta cgctagtttt ccagaagcaa
gtcgtatttt ttatgattta 480ggtattattg gagccgatgg taatatcact tctggtgatg
gtcacattgc ggtcgactat 540aaaaacgttg ttaataaggg acttaaatgg tatgaagacc
gcattaagac agcacttgct 600aatcttgacc ttactgattt taaccagcaa aaacaatact
atttctataa agcgggccta 660attgtaattg atgccattca caattttgct aaacgttacg
cccaattagc gtccaagcaa 720gctcaaaaca cgacatccgc aactcgcaaa gcacaacttg
aaaaaatcgc ccaaattcta 780aacaaggttc cttacgaacc tgcaaattca ttttatgaag
cgattcaagc tgtctggtta 840gttcatctga ccttacaaat cgaatccaac ggtcattctg
tctcatatgg tcgtctagat 900cagtacctag ctccattcta tgagcacgat ttaaaaactg
gtgctattga cgccaacggt 960gcaaccgaat tactcacaaa cttatgtctt aagacgttaa
cgattaataa agtacgctca 1020tggcaacata ctgaattttc tgcagggagt cccctctacc
aaaacattac gattggtggt 1080caaacaccag atggtaaaga tgccgttaat ccgacgtcct
atctgatttt acgagcaatt 1140gcgcaagcac atttaccaca acccaactta acggtccgtt
atcaccatgg cttaagcgat 1200aagtttatgc gtgaatgtgt cgaagttatt aaacaaggct
taggtatgcc tgcgtttaat 1260aacgacgaaa ttattattcc gtcgtttatt cgtcgtggcg
tcaagaaaga agacgcctat 1320aattacagtg ccatcggttg tgtcgaaaca gcgatccctg
gaaaatgggg ctatcgttgc 1380accgggatga gcttcattaa cttcccacgc gttctcttac
tcattatgaa tggtggcatt 1440gatcctgaat ctggcaaacg gttattaccc gattatggta
agttcactga tatgacttct 1500tttgatcaac ttatgactgc ttgggacaaa gcgctccgtg
aaatgacacg acaaagtgtg 1560attatcgaaa atagttgtga tttggctttg gaacaaaatt
atcctgatat tctctgctcc 1620gttttaaccg acgattgtat cggtcgtggt aagaccatta
aagaaggtgg cgcggtatac 1680gactttatca gtggattaca agttggtatt gctaacctag
cggactccct agctgcaatc 1740aagaaacttg tctttgaaga aaagaagttg acaacaaccc
aactttggca cgcacttacc 1800actgattttg cggatgaaga tggtgaaaag attcggcaga
tgctcattaa tgatgcccca 1860aagtatggta acgatgatga ttatgttgat gatttgattg
ttgaagctta taaaccatat 1920attgatgaaa ttgccaagta caaaaacacg cgctacggtc
gcggccctat tggtggcttg 1980cgctacgcag gaacctcttc tatttcggcc aacgttggtc
aagggcacag cactttggct 2040acaccagatg gtcggcacgc tcggacacca ttagccgaag
gttgctcacc agaacatgca 2100atggatactg atggcccaac tgctgtgttc aaatcagttt
ccaaattatc cactaaggac 2160atcactggtg gcgtattact gaaccaaaag atgtcaccac
aaattctacg gagtgatgaa 2220agctgcatga aattggttgc actactacgg accttcttca
atcgacttca tggttaccat 2280gtccaataca acattgtttc acgggatacc ttgattgatg
cacagaacca tcctgacaag 2340caccgtgact tgattgttcg ggttgctgga tattccgcct
tcttcgtggg cctatccaaa 2400gaaacccaag atgatattat cgaacggacg gagcagtctc
tataa 244548814PRTLactobacillus
plantarumMISC_FEATUREWCFS1 48Met Ile Met Ser Glu Thr Leu Thr Lys Thr Thr
Thr Thr Ile Asn His1 5 10
15Phe Gly Lys Leu Thr Pro Met Met Asp Arg Leu Arg Asp Ser Ile Ile
20 25 30Asp Ala Lys Pro Tyr Val Asp
Pro Glu Arg Ala Ile Leu Thr Thr Glu 35 40
45Thr Tyr Arg Gln His Gln Asp Glu Gln Val Asp Ile Leu Arg Ala
Lys 50 55 60Met Leu Glu His Val Leu
Asp Lys Met Ser Ile Phe Ile Glu Asp Asp65 70
75 80Thr Leu Ile Val Gly Asn Gln Ala Arg Gln Asn
Arg Trp Ala Pro Val 85 90
95Phe Pro Glu Tyr Ser Met Asn Trp Val Ile Asp Glu Leu Asp Thr Phe
100 105 110Glu Lys Arg Pro Gly Asp
Val Phe Tyr Ile Thr Glu Lys Ser Lys Glu 115 120
125Glu Leu Arg Ala Ile Ala Pro Phe Trp Lys His Asn Thr Leu
Glu Asp 130 135 140Arg Gly Tyr Ala Ser
Phe Pro Glu Ala Ser Arg Ile Phe Tyr Asp Leu145 150
155 160Gly Ile Ile Gly Ala Asp Gly Asn Ile Thr
Ser Gly Asp Gly His Ile 165 170
175Ala Val Asp Tyr Lys Asn Val Val Asn Lys Gly Leu Lys Trp Tyr Glu
180 185 190Asp Arg Ile Lys Thr
Ala Leu Ala Asn Leu Asp Leu Thr Asp Phe Asn 195
200 205Gln Gln Lys Gln Tyr Tyr Phe Tyr Lys Ala Gly Leu
Ile Val Ile Asp 210 215 220Ala Ile His
Asn Phe Ala Lys Arg Tyr Ala Gln Leu Ala Ser Lys Gln225
230 235 240Ala Gln Asn Thr Thr Ser Ala
Thr Arg Lys Ala Gln Leu Glu Lys Ile 245
250 255Ala Gln Ile Leu Asn Lys Val Pro Tyr Glu Pro Ala
Asn Ser Phe Tyr 260 265 270Glu
Ala Ile Gln Ala Val Trp Leu Val His Leu Thr Leu Gln Ile Glu 275
280 285Ser Asn Gly His Ser Val Ser Tyr Gly
Arg Leu Asp Gln Tyr Leu Ala 290 295
300Pro Phe Tyr Glu His Asp Leu Lys Thr Gly Ala Ile Asp Ala Asn Gly305
310 315 320Ala Thr Glu Leu
Leu Thr Asn Leu Cys Leu Lys Thr Leu Thr Ile Asn 325
330 335Lys Val Arg Ser Trp Gln His Thr Glu Phe
Ser Ala Gly Ser Pro Leu 340 345
350Tyr Gln Asn Ile Thr Ile Gly Gly Gln Thr Pro Asp Gly Lys Asp Ala
355 360 365Val Asn Pro Thr Ser Tyr Leu
Ile Leu Arg Ala Ile Ala Gln Ala His 370 375
380Leu Pro Gln Pro Asn Leu Thr Val Arg Tyr His His Gly Leu Ser
Asp385 390 395 400Lys Phe
Met Arg Glu Cys Val Glu Val Ile Lys Gln Gly Leu Gly Met
405 410 415Pro Ala Phe Asn Asn Asp Glu
Ile Ile Ile Pro Ser Phe Ile Arg Arg 420 425
430Gly Val Lys Lys Glu Asp Ala Tyr Asn Tyr Ser Ala Ile Gly
Cys Val 435 440 445Glu Thr Ala Ile
Pro Gly Lys Trp Gly Tyr Arg Cys Thr Gly Met Ser 450
455 460Phe Ile Asn Phe Pro Arg Val Leu Leu Leu Ile Met
Asn Gly Gly Ile465 470 475
480Asp Pro Glu Ser Gly Lys Arg Leu Leu Pro Asp Tyr Gly Lys Phe Thr
485 490 495Asp Met Thr Ser Phe
Asp Gln Leu Met Thr Ala Trp Asp Lys Ala Leu 500
505 510Arg Glu Met Thr Arg Gln Ser Val Ile Ile Glu Asn
Ser Cys Asp Leu 515 520 525Ala Leu
Glu Gln Asn Tyr Pro Asp Ile Leu Cys Ser Val Leu Thr Asp 530
535 540Asp Cys Ile Gly Arg Gly Lys Thr Ile Lys Glu
Gly Gly Ala Val Tyr545 550 555
560Asp Phe Ile Ser Gly Leu Gln Val Gly Ile Ala Asn Leu Ala Asp Ser
565 570 575Leu Ala Ala Ile
Lys Lys Leu Val Phe Glu Glu Lys Lys Leu Thr Thr 580
585 590Thr Gln Leu Trp His Ala Leu Thr Thr Asp Phe
Ala Asp Glu Asp Gly 595 600 605Glu
Lys Ile Arg Gln Met Leu Ile Asn Asp Ala Pro Lys Tyr Gly Asn 610
615 620Asp Asp Asp Tyr Val Asp Asp Leu Ile Val
Glu Ala Tyr Lys Pro Tyr625 630 635
640Ile Asp Glu Ile Ala Lys Tyr Lys Asn Thr Arg Tyr Gly Arg Gly
Pro 645 650 655Ile Gly Gly
Leu Arg Tyr Ala Gly Thr Ser Ser Ile Ser Ala Asn Val 660
665 670Gly Gln Gly His Ser Thr Leu Ala Thr Pro
Asp Gly Arg His Ala Arg 675 680
685Thr Pro Leu Ala Glu Gly Cys Ser Pro Glu His Ala Met Asp Thr Asp 690
695 700Gly Pro Thr Ala Val Phe Lys Ser
Val Ser Lys Leu Ser Thr Lys Asp705 710
715 720Ile Thr Gly Gly Val Leu Leu Asn Gln Lys Met Ser
Pro Gln Ile Leu 725 730
735Arg Ser Asp Glu Ser Cys Met Lys Leu Val Ala Leu Leu Arg Thr Phe
740 745 750Phe Asn Arg Leu His Gly
Tyr His Val Gln Tyr Asn Ile Val Ser Arg 755 760
765Asp Thr Leu Ile Asp Ala Gln Asn His Pro Asp Lys His Arg
Asp Leu 770 775 780Ile Val Arg Val Ala
Gly Tyr Ser Ala Phe Phe Val Gly Leu Ser Lys785 790
795 800Glu Thr Gln Asp Asp Ile Ile Glu Arg Thr
Glu Gln Ser Leu 805
810492259DNALactobacillus plantarummisc_featureWCFS1 49atgattacat
cagaaaagac aacaaaacca gcagcttgga aaggtttcaa aggcgggcac 60tggcaggaag
aaatcaacat tcgtgatttt attcaaaata acttcacaca gtacaatggc 120gacgaaagct
tcctggccgg accaacagcc gctactaaga ccttgaatga caaagtctta 180gaattaaaga
aacaagaacg tgccgctggt ggtgtgttgg atgctgatac taaagtcgtt 240gcaacgatta
cttcacacgg ccctggttat attcaaaaag atctcgaaaa gattgttggt 300ctccagactg
acaagccttt gaagcgggcc ttcatgccat ttggtggtat tcgaatggct 360gatgacgctt
tgaaatcata cggttatacc cctgatgaag aaaacgacaa gattttcact 420gaatatcgca
agactcataa ccaaggcgtc ttcgatgttt atactcctga catgcggaaa 480gcacgtcact
acaagatcat caccggacta ccagatgcat acgcacgtgg ccgtctcatt 540cctgatcttc
cacgggtcgc tgtttatggg atcgatcgtt taatggaaga caaagctaat 600gactttgccc
acattggtga tggtgaattg actgatgatg ttattcgcct ccgtgaagaa 660gttcaagatc
aataccgtgc tttagcagat atgaagaaga tggctgccag ttatggctac 720gatattagca
agcctgcaac taatgctcaa gaagctattc aatggatgta cttcgcttac 780ttagctgcta
tcaagaccca aaacggcgct gcaatgtccg ttggccggat tgatacaacg 840atggacatct
tcatccaacg tgacttggac aatggtgttc tggacgaaag ccaagctcaa 900gaattaattg
atcaattcgt catgaaacta cggatggttc ggttcatccg tactgaagaa 960tacaattctc
tcttctctgg tgacccaatc tgggcaacct tatcaatgtg tggtttaggc 1020gtcgacggtc
aacaccatgt gactaagact gctttccgga ttttaaagac tttggacaac 1080atgggcgccg
caccagaacc aaacatcacg attttatggt cagaccgctt accagaagac 1140ttcaaacgtt
acgcaactga agtttcaatc gacagttcaa ccattcagta tgaaaatgat 1200gacttgatgc
gggtacaatg gggtaccgat tattatggca ttgcttgctg tgtttccgca 1260caaccaattg
ctgatggaat ccagtacttc ggtgcccggg caaacttagc caaagcgatt 1320ctttatgcca
tcaatggtgg ccgcgacgaa attgctggag atcaagttgg ccctgcttac 1380gaaccaatta
cttcagaata catcgattac gacgaattca tgaagaaatt agacaagcaa 1440atggattggt
tagctgacac ttacgttaac tcactgaatg caattcatta tatgcatgat 1500aagtactact
atgaagctgc ccaattagct ttgaagaata ctgatcttga tcggaccttt 1560gcaactggga
tttctggctt atcacatgcc gcggattcaa tctcagctat caagtatggt 1620cacgttaaag
taattcgtga cgaacgtggt atcgccgttg acttcaaagc cgacaatgac 1680tacccacgtt
atgggaacaa tgacgatcgc gctgatgaca ttgctaaatg gttagtcaaa 1740gaattataca
gcaagatgaa cacgcatcac ctctatcgga atgccaaact ttcaacttct 1800gttttgacga
ttacctccaa cgttgtttat ggtaagaaca ctggtaccac gccaaatggc 1860cgtcaaaaag
gcgaaccatt ctcaccaggt gctaaccctg catacggtgc tgaaaagagt 1920ggtgcattag
cttcacttct ttcaactgcc aaattaccat accgttacgc aactgacggg 1980atttccaaca
cgttcggcgt tacccctaac acgttaggcc atgacctcga atcacggaaa 2040gacacgttag
taaacatgtt agacggttac atgaagaacg atgggatgca cttgaacatc 2100aacgtcttca
ataaagacac tttgattgat gctcagaaac accctgaaga atacccaaca 2160ttaacggttc
gggtttctgg ctattgtgtc tacttcgcag atttaaccaa ggaacaacaa 2220gatgacgtta
tttcacggac attcttcgaa tcaatgtaa
225950752PRTLactobacillus plantarumMISC_FEATUREWCFS1 50Met Ile Thr Ser
Glu Lys Thr Thr Lys Pro Ala Ala Trp Lys Gly Phe1 5
10 15Lys Gly Gly His Trp Gln Glu Glu Ile Asn
Ile Arg Asp Phe Ile Gln 20 25
30Asn Asn Phe Thr Gln Tyr Asn Gly Asp Glu Ser Phe Leu Ala Gly Pro
35 40 45Thr Ala Ala Thr Lys Thr Leu Asn
Asp Lys Val Leu Glu Leu Lys Lys 50 55
60Gln Glu Arg Ala Ala Gly Gly Val Leu Asp Ala Asp Thr Lys Val Val65
70 75 80Ala Thr Ile Thr Ser
His Gly Pro Gly Tyr Ile Gln Lys Asp Leu Glu 85
90 95Lys Ile Val Gly Leu Gln Thr Asp Lys Pro Leu
Lys Arg Ala Phe Met 100 105
110Pro Phe Gly Gly Ile Arg Met Ala Asp Asp Ala Leu Lys Ser Tyr Gly
115 120 125Tyr Thr Pro Asp Glu Glu Asn
Asp Lys Ile Phe Thr Glu Tyr Arg Lys 130 135
140Thr His Asn Gln Gly Val Phe Asp Val Tyr Thr Pro Asp Met Arg
Lys145 150 155 160Ala Arg
His Tyr Lys Ile Ile Thr Gly Leu Pro Asp Ala Tyr Ala Arg
165 170 175Gly Arg Leu Ile Pro Asp Leu
Pro Arg Val Ala Val Tyr Gly Ile Asp 180 185
190Arg Leu Met Glu Asp Lys Ala Asn Asp Phe Ala His Ile Gly
Asp Gly 195 200 205Glu Leu Thr Asp
Asp Val Ile Arg Leu Arg Glu Glu Val Gln Asp Gln 210
215 220Tyr Arg Ala Leu Ala Asp Met Lys Lys Met Ala Ala
Ser Tyr Gly Tyr225 230 235
240Asp Ile Ser Lys Pro Ala Thr Asn Ala Gln Glu Ala Ile Gln Trp Met
245 250 255Tyr Phe Ala Tyr Leu
Ala Ala Ile Lys Thr Gln Asn Gly Ala Ala Met 260
265 270Ser Val Gly Arg Ile Asp Thr Thr Met Asp Ile Phe
Ile Gln Arg Asp 275 280 285Leu Asp
Asn Gly Val Leu Asp Glu Ser Gln Ala Gln Glu Leu Ile Asp 290
295 300Gln Phe Val Met Lys Leu Arg Met Val Arg Phe
Ile Arg Thr Glu Glu305 310 315
320Tyr Asn Ser Leu Phe Ser Gly Asp Pro Ile Trp Ala Thr Leu Ser Met
325 330 335Cys Gly Leu Gly
Val Asp Gly Gln His His Val Thr Lys Thr Ala Phe 340
345 350Arg Ile Leu Lys Thr Leu Asp Asn Met Gly Ala
Ala Pro Glu Pro Asn 355 360 365Ile
Thr Ile Leu Trp Ser Asp Arg Leu Pro Glu Asp Phe Lys Arg Tyr 370
375 380Ala Thr Glu Val Ser Ile Asp Ser Ser Thr
Ile Gln Tyr Glu Asn Asp385 390 395
400Asp Leu Met Arg Val Gln Trp Gly Thr Asp Tyr Tyr Gly Ile Ala
Cys 405 410 415Cys Val Ser
Ala Gln Pro Ile Ala Asp Gly Ile Gln Tyr Phe Gly Ala 420
425 430Arg Ala Asn Leu Ala Lys Ala Ile Leu Tyr
Ala Ile Asn Gly Gly Arg 435 440
445Asp Glu Ile Ala Gly Asp Gln Val Gly Pro Ala Tyr Glu Pro Ile Thr 450
455 460Ser Glu Tyr Ile Asp Tyr Asp Glu
Phe Met Lys Lys Leu Asp Lys Gln465 470
475 480Met Asp Trp Leu Ala Asp Thr Tyr Val Asn Ser Leu
Asn Ala Ile His 485 490
495Tyr Met His Asp Lys Tyr Tyr Tyr Glu Ala Ala Gln Leu Ala Leu Lys
500 505 510Asn Thr Asp Leu Asp Arg
Thr Phe Ala Thr Gly Ile Ser Gly Leu Ser 515 520
525His Ala Ala Asp Ser Ile Ser Ala Ile Lys Tyr Gly His Val
Lys Val 530 535 540Ile Arg Asp Glu Arg
Gly Ile Ala Val Asp Phe Lys Ala Asp Asn Asp545 550
555 560Tyr Pro Arg Tyr Gly Asn Asn Asp Asp Arg
Ala Asp Asp Ile Ala Lys 565 570
575Trp Leu Val Lys Glu Leu Tyr Ser Lys Met Asn Thr His His Leu Tyr
580 585 590Arg Asn Ala Lys Leu
Ser Thr Ser Val Leu Thr Ile Thr Ser Asn Val 595
600 605Val Tyr Gly Lys Asn Thr Gly Thr Thr Pro Asn Gly
Arg Gln Lys Gly 610 615 620Glu Pro Phe
Ser Pro Gly Ala Asn Pro Ala Tyr Gly Ala Glu Lys Ser625
630 635 640Gly Ala Leu Ala Ser Leu Leu
Ser Thr Ala Lys Leu Pro Tyr Arg Tyr 645
650 655Ala Thr Asp Gly Ile Ser Asn Thr Phe Gly Val Thr
Pro Asn Thr Leu 660 665 670Gly
His Asp Leu Glu Ser Arg Lys Asp Thr Leu Val Asn Met Leu Asp 675
680 685Gly Tyr Met Lys Asn Asp Gly Met His
Leu Asn Ile Asn Val Phe Asn 690 695
700Lys Asp Thr Leu Ile Asp Ala Gln Lys His Pro Glu Glu Tyr Pro Thr705
710 715 720Leu Thr Val Arg
Val Ser Gly Tyr Cys Val Tyr Phe Ala Asp Leu Thr 725
730 735Lys Glu Gln Gln Asp Asp Val Ile Ser Arg
Thr Phe Phe Glu Ser Met 740 745
750512259DNALactobacillus plantarummisc_featureJDM1 51atgattacat
cagaaaagac aacaaaacca gcagcttgga aaggtttcaa aggcgggcac 60tggcaggaag
aaatcaacat tcgtgatttt attcaaaata acttcacaca gtacaatggc 120gacgaaagct
tcctggccgg accaacagcc gctactaaga ccttgaatga caaagtctta 180gaattaaaga
aacaagaacg tgccgctggt ggtgtgttgg acgctgatac taaagtcgtt 240gcaacgatta
cttcacacgg ccctggttat attcaaaaag atctcgaaaa gattgttggt 300ctccagactg
acaagccttt gaagcgggcc ttcatgccat ttggtggtat tcgaatggct 360gatgacgctt
tgaaatcata cggttatacc cctgatgaag aaaacgacaa gattttcact 420gaatatcgca
agactcataa ccaaggcgtc ttcgatgttt atactcctga catgcggaaa 480gcacgtcact
acaagatcat caccggacta ccagatgcat acgcacgtgg ccgtctcatt 540cctgatcttc
cacgggtcgc tgtttatggg atcgatcgtt taatggaaga caaagctaat 600gactttgccc
acattggtga tggtgaattg actgatgatg ttattcgcct ccgtgaagaa 660gttcaagatc
aataccgtgc tttagcagat atgaagaaga tggctgccag ttatggctac 720gatattagca
agcctgcaac taatgctcaa gaagctattc aatggatgta cttcgcttac 780ttagctgcta
tcaagaccca aaacggcgct gcaatgtccg ttggccggat tgatacaacg 840atggacatct
tcatccaacg tgacttggac aatggtgttc tggacgaaag ccaagctcaa 900gaattaattg
atcaattcgt catgaaacta cggatggttc ggttcatccg tactgaagaa 960tacaattctc
tcttctctgg tgacccaatc tgggcaacct tatcaatgtg tggtttaggc 1020gtcgacggtc
aacaccatgt gactaagacc gctttccgga ttttaaagac tttggacaac 1080atgggcgccg
caccagaacc aaacatcacg attttatggt cagatcgctt accagaagac 1140ttcaaacgtt
acgcaactga agtttcaatc gacagttcaa ccattcagta tgaaaatgat 1200gacttgatgc
gggtacaatg gggtaccgat tattatggca ttgcttgctg tgtttccgca 1260caaccaattg
ctgatggaat ccagtacttc ggtgcccggg caaacttagc caaagcgatt 1320ctttatgcca
tcaatggtgg ccgcgacgaa attgctggag atcaagttgg ccctgcttac 1380gaaccaatta
cttcagaata catcgattac gacgaattca tgaagaaatt agacaagcaa 1440atggattggt
tagctgacac ttacgtgaac tcactgaatg caattcatta tatgcatgat 1500aagtactact
atgaagctgc ccaattagct ttgaagaata ctgatcttga tcggaccttt 1560gcaactggga
tttctggctt atcacatgcc gcggattcaa tctcagctat caagtatggt 1620cacgttaaag
taattcgtga cgaacgtggt atcgccgttg acttcaaagc cgacaatgac 1680tacccacgtt
atgggaacaa tgacgatcgc gctgatgaca ttgctaaatg gttagtcaaa 1740gaattataca
gcaagatgaa cacgcatcac ctctatcgga atgccaaact ttcaacttct 1800gttttgacga
ttacctccaa cgttgtttat ggtaagaaca ctggtaccac accaaatggc 1860cgtcaaaaag
gcgaaccatt ctcaccaggt gctaaccctg catacggtgc tgaaaagagt 1920ggtgcattag
cttcacttct ttcaactgcc aaattaccat accgttacgc aactgacggg 1980atttccaaca
cgttcggcgt tacccctaac acgttaggcc atgacctcga atcacggaaa 2040gacacgttag
taaacatgtt agacggttac atgaagaacg atgggatgca cttgaacatc 2100aacgtcttca
ataaagacac tttgattgat gctcagaaac accctgaaga atacccaaca 2160ttaacggttc
gggtttctgg ctactgtgtc tacttcgcag atttaaccaa ggaacaacaa 2220gatgacgtta
tttcacggac attcttcgaa tcaatgtaa
225952752PRTLactobacillus plantarummisc_featureJDM1 52Met Ile Thr Ser Glu
Lys Thr Thr Lys Pro Ala Ala Trp Lys Gly Phe1 5
10 15Lys Gly Gly His Trp Gln Glu Glu Ile Asn Ile
Arg Asp Phe Ile Gln 20 25
30Asn Asn Phe Thr Gln Tyr Asn Gly Asp Glu Ser Phe Leu Ala Gly Pro
35 40 45Thr Ala Ala Thr Lys Thr Leu Asn
Asp Lys Val Leu Glu Leu Lys Lys 50 55
60Gln Glu Arg Ala Ala Gly Gly Val Leu Asp Ala Asp Thr Lys Val Val65
70 75 80Ala Thr Ile Thr Ser
His Gly Pro Gly Tyr Ile Gln Lys Asp Leu Glu 85
90 95Lys Ile Val Gly Leu Gln Thr Asp Lys Pro Leu
Lys Arg Ala Phe Met 100 105
110Pro Phe Gly Gly Ile Arg Met Ala Asp Asp Ala Leu Lys Ser Tyr Gly
115 120 125Tyr Thr Pro Asp Glu Glu Asn
Asp Lys Ile Phe Thr Glu Tyr Arg Lys 130 135
140Thr His Asn Gln Gly Val Phe Asp Val Tyr Thr Pro Asp Met Arg
Lys145 150 155 160Ala Arg
His Tyr Lys Ile Ile Thr Gly Leu Pro Asp Ala Tyr Ala Arg
165 170 175Gly Arg Leu Ile Pro Asp Leu
Pro Arg Val Ala Val Tyr Gly Ile Asp 180 185
190Arg Leu Met Glu Asp Lys Ala Asn Asp Phe Ala His Ile Gly
Asp Gly 195 200 205Glu Leu Thr Asp
Asp Val Ile Arg Leu Arg Glu Glu Val Gln Asp Gln 210
215 220Tyr Arg Ala Leu Ala Asp Met Lys Lys Met Ala Ala
Ser Tyr Gly Tyr225 230 235
240Asp Ile Ser Lys Pro Ala Thr Asn Ala Gln Glu Ala Ile Gln Trp Met
245 250 255Tyr Phe Ala Tyr Leu
Ala Ala Ile Lys Thr Gln Asn Gly Ala Ala Met 260
265 270Ser Val Gly Arg Ile Asp Thr Thr Met Asp Ile Phe
Ile Gln Arg Asp 275 280 285Leu Asp
Asn Gly Val Leu Asp Glu Ser Gln Ala Gln Glu Leu Ile Asp 290
295 300Gln Phe Val Met Lys Leu Arg Met Val Arg Phe
Ile Arg Thr Glu Glu305 310 315
320Tyr Asn Ser Leu Phe Ser Gly Asp Pro Ile Trp Ala Thr Leu Ser Met
325 330 335Cys Gly Leu Gly
Val Asp Gly Gln His His Val Thr Lys Thr Ala Phe 340
345 350Arg Ile Leu Lys Thr Leu Asp Asn Met Gly Ala
Ala Pro Glu Pro Asn 355 360 365Ile
Thr Ile Leu Trp Ser Asp Arg Leu Pro Glu Asp Phe Lys Arg Tyr 370
375 380Ala Thr Glu Val Ser Ile Asp Ser Ser Thr
Ile Gln Tyr Glu Asn Asp385 390 395
400Asp Leu Met Arg Val Gln Trp Gly Thr Asp Tyr Tyr Gly Ile Ala
Cys 405 410 415Cys Val Ser
Ala Gln Pro Ile Ala Asp Gly Ile Gln Tyr Phe Gly Ala 420
425 430Arg Ala Asn Leu Ala Lys Ala Ile Leu Tyr
Ala Ile Asn Gly Gly Arg 435 440
445Asp Glu Ile Ala Gly Asp Gln Val Gly Pro Ala Tyr Glu Pro Ile Thr 450
455 460Ser Glu Tyr Ile Asp Tyr Asp Glu
Phe Met Lys Lys Leu Asp Lys Gln465 470
475 480Met Asp Trp Leu Ala Asp Thr Tyr Val Asn Ser Leu
Asn Ala Ile His 485 490
495Tyr Met His Asp Lys Tyr Tyr Tyr Glu Ala Ala Gln Leu Ala Leu Lys
500 505 510Asn Thr Asp Leu Asp Arg
Thr Phe Ala Thr Gly Ile Ser Gly Leu Ser 515 520
525His Ala Ala Asp Ser Ile Ser Ala Ile Lys Tyr Gly His Val
Lys Val 530 535 540Ile Arg Asp Glu Arg
Gly Ile Ala Val Asp Phe Lys Ala Asp Asn Asp545 550
555 560Tyr Pro Arg Tyr Gly Asn Asn Asp Asp Arg
Ala Asp Asp Ile Ala Lys 565 570
575Trp Leu Val Lys Glu Leu Tyr Ser Lys Met Asn Thr His His Leu Tyr
580 585 590Arg Asn Ala Lys Leu
Ser Thr Ser Val Leu Thr Ile Thr Ser Asn Val 595
600 605Val Tyr Gly Lys Asn Thr Gly Thr Thr Pro Asn Gly
Arg Gln Lys Gly 610 615 620Glu Pro Phe
Ser Pro Gly Ala Asn Pro Ala Tyr Gly Ala Glu Lys Ser625
630 635 640Gly Ala Leu Ala Ser Leu Leu
Ser Thr Ala Lys Leu Pro Tyr Arg Tyr 645
650 655Ala Thr Asp Gly Ile Ser Asn Thr Phe Gly Val Thr
Pro Asn Thr Leu 660 665 670Gly
His Asp Leu Glu Ser Arg Lys Asp Thr Leu Val Asn Met Leu Asp 675
680 685Gly Tyr Met Lys Asn Asp Gly Met His
Leu Asn Ile Asn Val Phe Asn 690 695
700Lys Asp Thr Leu Ile Asp Ala Gln Lys His Pro Glu Glu Tyr Pro Thr705
710 715 720Leu Thr Val Arg
Val Ser Gly Tyr Cys Val Tyr Phe Ala Asp Leu Thr 725
730 735Lys Glu Gln Gln Asp Asp Val Ile Ser Arg
Thr Phe Phe Glu Ser Met 740 745
750532445DNALactobacillus plantarummisc_featureJDM1 53atgatcatgt
ctgaaacttt aactaaaaca acgacaacta ttaaccactt cggtaaattg 60acgccaatga
tggatcgctt acgcgatagc atcattgatg caaaacctta tgtcgatcca 120gaacgggcga
ttctcacaac cgaaacttat cgacaacacc aagacgaaca agtcgatata 180ttacgggcta
aaatgcttga acacgttctt gataaaatga gtatcttcat tgaagatgat 240actttaattg
ttggtaacca agcacgccaa aatcgttggg caccagtatt ccctgagtat 300tctatgaatt
gggtcattga tgaattagat acatttgaga agcgtcctgg tgacgttttc 360tatattacgg
agaaatctaa ggaagaactt cgtgcgattg cgcctttctg gaaacataat 420accttggaag
accgcggcta cgctagtttt ccagaagcaa gtcgtatttt ttatgattta 480ggtattattg
gagccgatgg taatatcact tctggtgatg gtcacattgc ggtcgactat 540aaaaacgttg
ttaataaggg acttaaatgg tatgaagacc gcattaagac agcacttgct 600aatcttgacc
ttactgattt taaccagcaa aaacaatact atttctataa agcgggccta 660attgtaatcg
atgccattca caattttgct aaacgttacg cccaattagc gtccaagcaa 720gctcaaaaca
cgacatccgc aactcgcaaa gcacaacttg aaaaaatcgc ccaaattcta 780aacaaggttc
cttacgaacc tgcaaattca ttttatgaag cgattcaagc tgtctggtta 840gttcatctga
ccttacaaat cgaatccaac ggtcattctg tctcatatgg tcgtctagat 900cagtacctag
atccattcta tgagcacgat ttaaaaactg gtgctattga cgccaacggt 960gcaaccgaat
tactcacaaa cttatgtctt aagacgttaa cgattaataa agtacgctca 1020tggcaacata
ctgaattttc tgcagggagt cccctctacc aaaacattac gattggtggt 1080caaacaccag
atggtaaaga tgccgttaat ccgacgtcct atctgatttt acgagcaatt 1140gcgcaagcac
atttaccaca acccaactta acggtccgtt atcaccatgg cttaagcgat 1200aagtttatgc
gtgaatgtgt cgaagttatt aaacaaggct taggtatgcc tgcgtttaat 1260aacgacgaaa
ttattattcc gtcgtttatt cgtcgtggcg tcaagaaaga agacgcctat 1320aattacagtg
ccatcggttg tgtcgaaaca gcgatccctg gaaaatgggg ctatcgttgc 1380accgggatga
gcttcattaa cttcccacgc gttctcttac tcattatgaa tggtggcatt 1440gatcctgaat
ctggcaaacg gttattaccc gattatggta agttcactga tatgacttct 1500tttgatcaac
ttatgactgc ttgggacaaa gcgctccgtg aaatgacacg acaaagtgtg 1560attatcgaaa
atagttgtga tttggctttg gaacaaaatt atcctgatat tctctgctcc 1620gttttaaccg
acgattgtat cggtcgtggt aagaccatta aagaaggtgg cgcggtatac 1680gactttatca
gtggattaca agttggtatt gctaacctag cggactccct agctgcaatc 1740aagaaacttg
tctttgaaga aaagaagttg acaacaaccc aactttggca cgcacttacc 1800actgattttg
cggatgaaga cggtgaaaag attcggcaga tgctcattaa tgatgcccca 1860aagtatggta
acgatgatga ttatgttgat gatttgattg ttgaagctta taaaccatat 1920attgatgaaa
ttgccaagta caaaaacacg cgctacggtc gcggccctat tggtggcttg 1980cgttacgcag
gaacctcttc tatttcggcc aacgttggtc aagggcacag cactttggct 2040acaccagatg
gtcggcacgc tcggacacca ttagccgaag gttgctcacc agaacatgca 2100atggatacta
atggcccaac tgctgtgttc aaatcagttt ccaagttatc cactaaggac 2160atcactggtg
gcgtattact gaaccaaaag atgtcaccac aaattctacg gagtgatgaa 2220agctgcatga
aattggttgc actactacga accttcttca accgacttca tggttaccat 2280gtccaataca
acattgtttc acgggatacc ttgattgatg cacagaacca tcctgacaag 2340caccgtgact
tgattgttcg ggttgctgga tattccgcct tcttcgtggg cctatccaaa 2400gaaacccaag
atgatattat cgaacggacg gagcagtctc tataa
244554814PRTLactobacillus plantarumMISC_FEATUREJDM1 54Met Ile Met Ser Glu
Thr Leu Thr Lys Thr Thr Thr Thr Ile Asn His1 5
10 15Phe Gly Lys Leu Thr Pro Met Met Asp Arg Leu
Arg Asp Ser Ile Ile 20 25
30Asp Ala Lys Pro Tyr Val Asp Pro Glu Arg Ala Ile Leu Thr Thr Glu
35 40 45Thr Tyr Arg Gln His Gln Asp Glu
Gln Val Asp Ile Leu Arg Ala Lys 50 55
60Met Leu Glu His Val Leu Asp Lys Met Ser Ile Phe Ile Glu Asp Asp65
70 75 80Thr Leu Ile Val Gly
Asn Gln Ala Arg Gln Asn Arg Trp Ala Pro Val 85
90 95Phe Pro Glu Tyr Ser Met Asn Trp Val Ile Asp
Glu Leu Asp Thr Phe 100 105
110Glu Lys Arg Pro Gly Asp Val Phe Tyr Ile Thr Glu Lys Ser Lys Glu
115 120 125Glu Leu Arg Ala Ile Ala Pro
Phe Trp Lys His Asn Thr Leu Glu Asp 130 135
140Arg Gly Tyr Ala Ser Phe Pro Glu Ala Ser Arg Ile Phe Tyr Asp
Leu145 150 155 160Gly Ile
Ile Gly Ala Asp Gly Asn Ile Thr Ser Gly Asp Gly His Ile
165 170 175Ala Val Asp Tyr Lys Asn Val
Val Asn Lys Gly Leu Lys Trp Tyr Glu 180 185
190Asp Arg Ile Lys Thr Ala Leu Ala Asn Leu Asp Leu Thr Asp
Phe Asn 195 200 205Gln Gln Lys Gln
Tyr Tyr Phe Tyr Lys Ala Gly Leu Ile Val Ile Asp 210
215 220Ala Ile His Asn Phe Ala Lys Arg Tyr Ala Gln Leu
Ala Ser Lys Gln225 230 235
240Ala Gln Asn Thr Thr Ser Ala Thr Arg Lys Ala Gln Leu Glu Lys Ile
245 250 255Ala Gln Ile Leu Asn
Lys Val Pro Tyr Glu Pro Ala Asn Ser Phe Tyr 260
265 270Glu Ala Ile Gln Ala Val Trp Leu Val His Leu Thr
Leu Gln Ile Glu 275 280 285Ser Asn
Gly His Ser Val Ser Tyr Gly Arg Leu Asp Gln Tyr Leu Asp 290
295 300Pro Phe Tyr Glu His Asp Leu Lys Thr Gly Ala
Ile Asp Ala Asn Gly305 310 315
320Ala Thr Glu Leu Leu Thr Asn Leu Cys Leu Lys Thr Leu Thr Ile Asn
325 330 335Lys Val Arg Ser
Trp Gln His Thr Glu Phe Ser Ala Gly Ser Pro Leu 340
345 350Tyr Gln Asn Ile Thr Ile Gly Gly Gln Thr Pro
Asp Gly Lys Asp Ala 355 360 365Val
Asn Pro Thr Ser Tyr Leu Ile Leu Arg Ala Ile Ala Gln Ala His 370
375 380Leu Pro Gln Pro Asn Leu Thr Val Arg Tyr
His His Gly Leu Ser Asp385 390 395
400Lys Phe Met Arg Glu Cys Val Glu Val Ile Lys Gln Gly Leu Gly
Met 405 410 415Pro Ala Phe
Asn Asn Asp Glu Ile Ile Ile Pro Ser Phe Ile Arg Arg 420
425 430Gly Val Lys Lys Glu Asp Ala Tyr Asn Tyr
Ser Ala Ile Gly Cys Val 435 440
445Glu Thr Ala Ile Pro Gly Lys Trp Gly Tyr Arg Cys Thr Gly Met Ser 450
455 460Phe Ile Asn Phe Pro Arg Val Leu
Leu Leu Ile Met Asn Gly Gly Ile465 470
475 480Asp Pro Glu Ser Gly Lys Arg Leu Leu Pro Asp Tyr
Gly Lys Phe Thr 485 490
495Asp Met Thr Ser Phe Asp Gln Leu Met Thr Ala Trp Asp Lys Ala Leu
500 505 510Arg Glu Met Thr Arg Gln
Ser Val Ile Ile Glu Asn Ser Cys Asp Leu 515 520
525Ala Leu Glu Gln Asn Tyr Pro Asp Ile Leu Cys Ser Val Leu
Thr Asp 530 535 540Asp Cys Ile Gly Arg
Gly Lys Thr Ile Lys Glu Gly Gly Ala Val Tyr545 550
555 560Asp Phe Ile Ser Gly Leu Gln Val Gly Ile
Ala Asn Leu Ala Asp Ser 565 570
575Leu Ala Ala Ile Lys Lys Leu Val Phe Glu Glu Lys Lys Leu Thr Thr
580 585 590Thr Gln Leu Trp His
Ala Leu Thr Thr Asp Phe Ala Asp Glu Asp Gly 595
600 605Glu Lys Ile Arg Gln Met Leu Ile Asn Asp Ala Pro
Lys Tyr Gly Asn 610 615 620Asp Asp Asp
Tyr Val Asp Asp Leu Ile Val Glu Ala Tyr Lys Pro Tyr625
630 635 640Ile Asp Glu Ile Ala Lys Tyr
Lys Asn Thr Arg Tyr Gly Arg Gly Pro 645
650 655Ile Gly Gly Leu Arg Tyr Ala Gly Thr Ser Ser Ile
Ser Ala Asn Val 660 665 670Gly
Gln Gly His Ser Thr Leu Ala Thr Pro Asp Gly Arg His Ala Arg 675
680 685Thr Pro Leu Ala Glu Gly Cys Ser Pro
Glu His Ala Met Asp Thr Asn 690 695
700Gly Pro Thr Ala Val Phe Lys Ser Val Ser Lys Leu Ser Thr Lys Asp705
710 715 720Ile Thr Gly Gly
Val Leu Leu Asn Gln Lys Met Ser Pro Gln Ile Leu 725
730 735Arg Ser Asp Glu Ser Cys Met Lys Leu Val
Ala Leu Leu Arg Thr Phe 740 745
750Phe Asn Arg Leu His Gly Tyr His Val Gln Tyr Asn Ile Val Ser Arg
755 760 765Asp Thr Leu Ile Asp Ala Gln
Asn His Pro Asp Lys His Arg Asp Leu 770 775
780Ile Val Arg Val Ala Gly Tyr Ser Ala Phe Phe Val Gly Leu Ser
Lys785 790 795 800Glu Thr
Gln Asp Asp Ile Ile Glu Arg Thr Glu Gln Ser Leu 805
810552262DNALactobacillus caseimisc_featurebl23 55atgaaacagc
ttgacgaaac caaagttcct aattattggg aaggctttaa cggcggcgac 60tggcaagaag
aaattaatgt gcgcgatttt atcgagcata acctgaacca atatgacggg 120gacgaaagtt
tccttgctgg ccccactgaa gcgacaacag tcctgaacaa tcaggttcta 180aatttaaaga
agcaagaacg tgcaaatggc ggtgttttgg atgctgacaa caatattcca 240tctacgatca
cctcacacgg ccctggttat ttgaacaaag atcttgaaaa gattgttggt 300gttcagaccg
acaagccatt caaacgagca ttcatgccat ttggcggtat tcgaatggct 360gaagatgcat
tggaatctta tggcttcaag acagatcctc aagaacacaa gattttcaat 420gaatatcgta
agacccataa ccaaggtgtc tttgatgctt atacccctga tatgcgaaag 480gctcgccatt
acaagatcgt gactggcttg ccagacgcat acggccgtgg ccggattgtt 540tctgatttcc
cacggatcgc tgtttacggg atcgatcgtt taatggctga gaagttcaag 600gattataact
tgaccggcga cggcgaaatg actgacgatg taatcaaact gcgtgaagaa 660atcaatgaac
aatatcgtgc cttaaacgac atgaagaaga tggccaagga atatggctat 720gacatctcgc
gtccggcagc taatgcgcaa gaagctgttc agtggatcta ctttggctat 780ctggctgctg
ttaagactca aaacggtgcc gcaatgtccg ttggccggat cgatacggtt 840attgatgctt
atatccaacg cgatatgcgc ttaggcaaat tgaacgaaga acaggcacag 900gaactgattg
atcatttggt tatgaaattg cggatggttc gtttcatccg gactgaagaa 960tataactcac
tgttctcagg cgatccaatc tgggcaacct tgtcattggc aggaatgggc 1020aatgatggcc
gtcaccacgt taccaagacg gctttccgtt tcctgaagac tttggacaac 1080atgggcgcag
caccagaacc aaacatcacc ttgctttgga gcgaacgctt gccagaaggc 1140ttcaaacgct
atgcaaccga agtatccatc caaagttcaa ccattcaata tgaaaatgat 1200gacctgatgc
gcaacgaatg gggtaccgat tactacggta ttgcttgctg tgtctcggca 1260caaccaattg
ctgatggcgt tcaatacttt ggtgcccgtg ctaacttagc taagacggtt 1320ctgtatgcga
tcaacggtgg gaaagatgaa attcaggaag cgcaagtagg gcctgaatat 1380gcaccgatca
ccagcgatta cattgattac aaagaattca tgaataagtt cgacaagatg 1440atggactggc
tggccgacac gtatgtcaat gctttgaatg tgattcacta tatgcatgac 1500aagtattatt
atgaagctgc acagctggca ttgaaggata cccaactgaa ccggaccttc 1560gcaaccggga
tttccggcct gtcacacgcg gttgattcca tcagtgcaat caagtatggt 1620catgtcaagg
caattcgcga tgaaaacggt gttgcagttg acttcgttgc tgacaatgat 1680gactatccac
gctatggtaa caacgatgat cgcgctgatg acatcgctaa gtggttggtt 1740aagaccttct
ataacaagat gaacacgcat catctgtatc gcggcgcgaa gttgagtacc 1800agtgtcctga
ccattacctc caacgtggtt tatggtaaga atacagggac aacaccaaac 1860ggtcgtcaaa
aaggcgaacc attctcacca ggtgccaacc cggcatacgg cgcagaaaag 1920aacggcgcat
tggcatcctt gatgtccacc gccaagattc cgtatcatta cgcaactgac 1980ggcattagta
atacgtttgg ggttactccg aacacactgg gccacgatga tgaaactcgt 2040aaggatacct
tggttcacat ggttgacggc tatatggaaa acagcggcat gcatttgaac 2100atcaacgtct
tcaacaagga gaccctgatt gatgctcaga agcacccaga agaataccca 2160acattgaccg
ttcgggtttc tggctactgc gtctacttcg cagatttgac caaggaacaa 2220caagacgatg
tcattgctcg gaccttcttc gaagaaatgt aa
226256753PRTLactobacillus caseiMISC_FEATUREbl23 56Met Lys Gln Leu Asp Glu
Thr Lys Val Pro Asn Tyr Trp Glu Gly Phe1 5
10 15Asn Gly Gly Asp Trp Gln Glu Glu Ile Asn Val Arg
Asp Phe Ile Glu 20 25 30His
Asn Leu Asn Gln Tyr Asp Gly Asp Glu Ser Phe Leu Ala Gly Pro 35
40 45Thr Glu Ala Thr Thr Val Leu Asn Asn
Gln Val Leu Asn Leu Lys Lys 50 55
60Gln Glu Arg Ala Asn Gly Gly Val Leu Asp Ala Asp Asn Asn Ile Pro65
70 75 80Ser Thr Ile Thr Ser
His Gly Pro Gly Tyr Leu Asn Lys Asp Leu Glu 85
90 95Lys Ile Val Gly Val Gln Thr Asp Lys Pro Phe
Lys Arg Ala Phe Met 100 105
110Pro Phe Gly Gly Ile Arg Met Ala Glu Asp Ala Leu Glu Ser Tyr Gly
115 120 125Phe Lys Thr Asp Pro Gln Glu
His Lys Ile Phe Asn Glu Tyr Arg Lys 130 135
140Thr His Asn Gln Gly Val Phe Asp Ala Tyr Thr Pro Asp Met Arg
Lys145 150 155 160Ala Arg
His Tyr Lys Ile Val Thr Gly Leu Pro Asp Ala Tyr Gly Arg
165 170 175Gly Arg Ile Val Ser Asp Phe
Pro Arg Ile Ala Val Tyr Gly Ile Asp 180 185
190Arg Leu Met Ala Glu Lys Phe Lys Asp Tyr Asn Leu Thr Gly
Asp Gly 195 200 205Glu Met Thr Asp
Asp Val Ile Lys Leu Arg Glu Glu Ile Asn Glu Gln 210
215 220Tyr Arg Ala Leu Asn Asp Met Lys Lys Met Ala Lys
Glu Tyr Gly Tyr225 230 235
240Asp Ile Ser Arg Pro Ala Ala Asn Ala Gln Glu Ala Val Gln Trp Ile
245 250 255Tyr Phe Gly Tyr Leu
Ala Ala Val Lys Thr Gln Asn Gly Ala Ala Met 260
265 270Ser Val Gly Arg Ile Asp Thr Val Ile Asp Ala Tyr
Ile Gln Arg Asp 275 280 285Met Arg
Leu Gly Lys Leu Asn Glu Glu Gln Ala Gln Glu Leu Ile Asp 290
295 300His Leu Val Met Lys Leu Arg Met Val Arg Phe
Ile Arg Thr Glu Glu305 310 315
320Tyr Asn Ser Leu Phe Ser Gly Asp Pro Ile Trp Ala Thr Leu Ser Leu
325 330 335Ala Gly Met Gly
Asn Asp Gly Arg His His Val Thr Lys Thr Ala Phe 340
345 350Arg Phe Leu Lys Thr Leu Asp Asn Met Gly Ala
Ala Pro Glu Pro Asn 355 360 365Ile
Thr Leu Leu Trp Ser Glu Arg Leu Pro Glu Gly Phe Lys Arg Tyr 370
375 380Ala Thr Glu Val Ser Ile Gln Ser Ser Thr
Ile Gln Tyr Glu Asn Asp385 390 395
400Asp Leu Met Arg Asn Glu Trp Gly Thr Asp Tyr Tyr Gly Ile Ala
Cys 405 410 415Cys Val Ser
Ala Gln Pro Ile Ala Asp Gly Val Gln Tyr Phe Gly Ala 420
425 430Arg Ala Asn Leu Ala Lys Thr Val Leu Tyr
Ala Ile Asn Gly Gly Lys 435 440
445Asp Glu Ile Gln Glu Ala Gln Val Gly Pro Glu Tyr Ala Pro Ile Thr 450
455 460Ser Asp Tyr Ile Asp Tyr Lys Glu
Phe Met Asn Lys Phe Asp Lys Met465 470
475 480Met Asp Trp Leu Ala Asp Thr Tyr Val Asn Ala Leu
Asn Val Ile His 485 490
495Tyr Met His Asp Lys Tyr Tyr Tyr Glu Ala Ala Gln Leu Ala Leu Lys
500 505 510Asp Thr Gln Leu Asn Arg
Thr Phe Ala Thr Gly Ile Ser Gly Leu Ser 515 520
525His Ala Val Asp Ser Ile Ser Ala Ile Lys Tyr Gly His Val
Lys Ala 530 535 540Ile Arg Asp Glu Asn
Gly Val Ala Val Asp Phe Val Ala Asp Asn Asp545 550
555 560Asp Tyr Pro Arg Tyr Gly Asn Asn Asp Asp
Arg Ala Asp Asp Ile Ala 565 570
575Lys Trp Leu Val Lys Thr Phe Tyr Asn Lys Met Asn Thr His His Leu
580 585 590Tyr Arg Gly Ala Lys
Leu Ser Thr Ser Val Leu Thr Ile Thr Ser Asn 595
600 605Val Val Tyr Gly Lys Asn Thr Gly Thr Thr Pro Asn
Gly Arg Gln Lys 610 615 620Gly Glu Pro
Phe Ser Pro Gly Ala Asn Pro Ala Tyr Gly Ala Glu Lys625
630 635 640Asn Gly Ala Leu Ala Ser Leu
Met Ser Thr Ala Lys Ile Pro Tyr His 645
650 655Tyr Ala Thr Asp Gly Ile Ser Asn Thr Phe Gly Val
Thr Pro Asn Thr 660 665 670Leu
Gly His Asp Asp Glu Thr Arg Lys Asp Thr Leu Val His Met Val 675
680 685Asp Gly Tyr Met Glu Asn Ser Gly Met
His Leu Asn Ile Asn Val Phe 690 695
700Asn Lys Glu Thr Leu Ile Asp Ala Gln Lys His Pro Glu Glu Tyr Pro705
710 715 720Thr Leu Thr Val
Arg Val Ser Gly Tyr Cys Val Tyr Phe Ala Asp Leu 725
730 735Thr Lys Glu Gln Gln Asp Asp Val Ile Ala
Arg Thr Phe Phe Glu Glu 740 745
750Met572262DNALactobacillus caseimisc_featureATCC 334 57atgaaacagc
ttgacgaaac caaagttcct aattattggg aaggctttaa cggcggcgac 60tggcaagaag
aaattaatgt gcgcgatttt atcgagcata acctgaacca atatgacggg 120gacgaaagtt
tccttgctgg tcccactgaa gcgacaacag tcctgaacaa tcaggttcta 180aatttaaaga
agcaagaacg tgcaaatggc ggtgttttgg atgctgacaa caatattcca 240tctacgatca
cctcacacgg ccctggttat ttgaacaaag atcttgaaaa gattgttggt 300gttcagaccg
acaagccatt caaacgagca ttcatgccat ttggcggtat tcgaatggct 360gaagatgcat
tggaatctta tggcttcaag acagatcctc aagaacacaa gattttcaat 420gaatatcgta
agacccataa ccaaggtgtc tttgatgctt atacccctga tatgcgaaag 480gctcgccatt
acaagatcgt gactggcttg ccagacgcat acggccgcgg ccggattgtt 540tctgatttcc
cacggatcgc tgtttacggg atcgatcgtt taatggctga gaagttcaag 600gattataact
tgaccggcga cggcgaaatg actgacgatg taatcaaatt gcgtgaagaa 660atcaatgaac
aatatcgtgc cttaaacgac atgaagaaga tggccaagga atatggctat 720gacatctcgc
gtccggcagc taatgcgcaa gaagctgttc agtggatcta ctttggctat 780ctggctgctg
ttaagactca aaacggtgcc gcaatgtccg ttggccggat cgatacggtt 840attgatgctt
atatccaacg cgatatgcgc ttaggcaaat tgaacgaaga acaggcacag 900gaactgattg
atcatttggt tatgaaattg cggatggttc gtttcatccg gactgaagaa 960tataactcac
tgttctcagg cgatccaatc tgggcaacct tgtcattggc aggaatgggc 1020aatgatggcc
gtcaccacgt taccaagacg gctttccgtt tcctgaagac tttggacaac 1080atgggcgcag
caccagaacc aaacatcacc ttgctttgga gcgaacgctt gccagaaggc 1140tttaaacgct
atgcaaccga agtatccatc caaagttcaa ccattcaata tgaaaatgat 1200gacctgatgc
gcaatgaatg gggtaccgat tactacggta ttgcttgctg tgtctcggca 1260caaccaattg
ctgatggcgt tcaatacttt ggtgcccgtg ctaacttagc taagacggtt 1320ctgtatgcga
tcaacggtgg taaagatgaa attcaggaag cgcaagtagg gcctgaatat 1380gcaccgatca
ccagcgatta cattgattac aaagaattca tgaataagtt cgacaagatg 1440atggactggc
tggccgacac gtatgtcaat gctttgaatg tgattcacta tatgcatgac 1500aagtattatt
atgaagctgc acagctggca ttgaaggata cccaactgaa ccggaccttc 1560gcaaccggga
tttccggcct gtcacacgcg gttgattcca tcagtgcaat caagtatggt 1620catgtcaagg
caattcgcga tgaaaatggt gttgcagttg acttcgttgc tgacaatgat 1680gactatccac
gttatggtaa caacgatgat cgcgctgatg acatcgctaa gtggttggtt 1740aagaccttct
ataacaagat gaacacgcat catctgtatc gcggcgcgaa gttgagtacc 1800agtgtcctga
ccattacttc caacgtggtt tatggtaaga atacagggac aacaccaaac 1860ggtcgtcaaa
aaggcgaacc attctcacca ggtgccaacc cggcatacgg cgcagaaaag 1920aacggcgcat
tggcatcctt gatgtccacc gccaagattc cgtatcatta cgcaactgac 1980ggcattagta
atacgtttgg ggttactccg aacacactgg gccacgatga tgaaactcgt 2040aaggatacct
tggttcacat ggttgacggc tatatggaaa acagcggcat gcatttgaac 2100atcaacgtct
tcaacaagga gaccctgatt gatgctcaga agcacccaga agaataccca 2160acattgaccg
ttcgggtttc tggctactgc gtctacttcg cagatttgac caaggaacaa 2220caagacgatg
tcattgctcg gaccttcttc gaagaaatgt aa
226258753PRTLactobacillus caseiMISC_FEATUREATCC 334 58Met Lys Gln Leu Asp
Glu Thr Lys Val Pro Asn Tyr Trp Glu Gly Phe1 5
10 15Asn Gly Gly Asp Trp Gln Glu Glu Ile Asn Val
Arg Asp Phe Ile Glu 20 25
30His Asn Leu Asn Gln Tyr Asp Gly Asp Glu Ser Phe Leu Ala Gly Pro
35 40 45Thr Glu Ala Thr Thr Val Leu Asn
Asn Gln Val Leu Asn Leu Lys Lys 50 55
60Gln Glu Arg Ala Asn Gly Gly Val Leu Asp Ala Asp Asn Asn Ile Pro65
70 75 80Ser Thr Ile Thr Ser
His Gly Pro Gly Tyr Leu Asn Lys Asp Leu Glu 85
90 95Lys Ile Val Gly Val Gln Thr Asp Lys Pro Phe
Lys Arg Ala Phe Met 100 105
110Pro Phe Gly Gly Ile Arg Met Ala Glu Asp Ala Leu Glu Ser Tyr Gly
115 120 125Phe Lys Thr Asp Pro Gln Glu
His Lys Ile Phe Asn Glu Tyr Arg Lys 130 135
140Thr His Asn Gln Gly Val Phe Asp Ala Tyr Thr Pro Asp Met Arg
Lys145 150 155 160Ala Arg
His Tyr Lys Ile Val Thr Gly Leu Pro Asp Ala Tyr Gly Arg
165 170 175Gly Arg Ile Val Ser Asp Phe
Pro Arg Ile Ala Val Tyr Gly Ile Asp 180 185
190Arg Leu Met Ala Glu Lys Phe Lys Asp Tyr Asn Leu Thr Gly
Asp Gly 195 200 205Glu Met Thr Asp
Asp Val Ile Lys Leu Arg Glu Glu Ile Asn Glu Gln 210
215 220Tyr Arg Ala Leu Asn Asp Met Lys Lys Met Ala Lys
Glu Tyr Gly Tyr225 230 235
240Asp Ile Ser Arg Pro Ala Ala Asn Ala Gln Glu Ala Val Gln Trp Ile
245 250 255Tyr Phe Gly Tyr Leu
Ala Ala Val Lys Thr Gln Asn Gly Ala Ala Met 260
265 270Ser Val Gly Arg Ile Asp Thr Val Ile Asp Ala Tyr
Ile Gln Arg Asp 275 280 285Met Arg
Leu Gly Lys Leu Asn Glu Glu Gln Ala Gln Glu Leu Ile Asp 290
295 300His Leu Val Met Lys Leu Arg Met Val Arg Phe
Ile Arg Thr Glu Glu305 310 315
320Tyr Asn Ser Leu Phe Ser Gly Asp Pro Ile Trp Ala Thr Leu Ser Leu
325 330 335Ala Gly Met Gly
Asn Asp Gly Arg His His Val Thr Lys Thr Ala Phe 340
345 350Arg Phe Leu Lys Thr Leu Asp Asn Met Gly Ala
Ala Pro Glu Pro Asn 355 360 365Ile
Thr Leu Leu Trp Ser Glu Arg Leu Pro Glu Gly Phe Lys Arg Tyr 370
375 380Ala Thr Glu Val Ser Ile Gln Ser Ser Thr
Ile Gln Tyr Glu Asn Asp385 390 395
400Asp Leu Met Arg Asn Glu Trp Gly Thr Asp Tyr Tyr Gly Ile Ala
Cys 405 410 415Cys Val Ser
Ala Gln Pro Ile Ala Asp Gly Val Gln Tyr Phe Gly Ala 420
425 430Arg Ala Asn Leu Ala Lys Thr Val Leu Tyr
Ala Ile Asn Gly Gly Lys 435 440
445Asp Glu Ile Gln Glu Ala Gln Val Gly Pro Glu Tyr Ala Pro Ile Thr 450
455 460Ser Asp Tyr Ile Asp Tyr Lys Glu
Phe Met Asn Lys Phe Asp Lys Met465 470
475 480Met Asp Trp Leu Ala Asp Thr Tyr Val Asn Ala Leu
Asn Val Ile His 485 490
495Tyr Met His Asp Lys Tyr Tyr Tyr Glu Ala Ala Gln Leu Ala Leu Lys
500 505 510Asp Thr Gln Leu Asn Arg
Thr Phe Ala Thr Gly Ile Ser Gly Leu Ser 515 520
525His Ala Val Asp Ser Ile Ser Ala Ile Lys Tyr Gly His Val
Lys Ala 530 535 540Ile Arg Asp Glu Asn
Gly Val Ala Val Asp Phe Val Ala Asp Asn Asp545 550
555 560Asp Tyr Pro Arg Tyr Gly Asn Asn Asp Asp
Arg Ala Asp Asp Ile Ala 565 570
575Lys Trp Leu Val Lys Thr Phe Tyr Asn Lys Met Asn Thr His His Leu
580 585 590Tyr Arg Gly Ala Lys
Leu Ser Thr Ser Val Leu Thr Ile Thr Ser Asn 595
600 605Val Val Tyr Gly Lys Asn Thr Gly Thr Thr Pro Asn
Gly Arg Gln Lys 610 615 620Gly Glu Pro
Phe Ser Pro Gly Ala Asn Pro Ala Tyr Gly Ala Glu Lys625
630 635 640Asn Gly Ala Leu Ala Ser Leu
Met Ser Thr Ala Lys Ile Pro Tyr His 645
650 655Tyr Ala Thr Asp Gly Ile Ser Asn Thr Phe Gly Val
Thr Pro Asn Thr 660 665 670Leu
Gly His Asp Asp Glu Thr Arg Lys Asp Thr Leu Val His Met Val 675
680 685Asp Gly Tyr Met Glu Asn Ser Gly Met
His Leu Asn Ile Asn Val Phe 690 695
700Asn Lys Glu Thr Leu Ile Asp Ala Gln Lys His Pro Glu Glu Tyr Pro705
710 715 720Thr Leu Thr Val
Arg Val Ser Gly Tyr Cys Val Tyr Phe Ala Asp Leu 725
730 735Thr Lys Glu Gln Gln Asp Asp Val Ile Ala
Arg Thr Phe Phe Glu Glu 740 745
750Met592376DNABifidobacterium adolescentis 59atggcagcag ttgatgcaac
ggcggtctcc caggaggaac ttgaggctaa ggcttgggaa 60ggcttcaccg agggcaactg
gcagaaggac attgatgtcc gcgacttcat ccagaagaac 120tacacgccat atgagggcga
cgagtccttc ctggctgacg ccaccgacaa gaccaagcac 180ctgtggaagt atctggacga
caactatctg tccgtggagc gcaagcagcg cgtctacgac 240gtggacaccc acaccccggc
gggcatcgac gccttcccgg ccggctacat cgattccccg 300gaagtcgaca atgtgattgt
cggtctgcag accgatgtgc cgtgcaagcg cgccatgatg 360ccgaacggcg gctggcgtat
ggtcgagcag gccatcaagg aagccggcaa ggagcccgat 420ccggagatca agaagatctt
caccaagtac cgcaagaccc acaacgacgg cgtcttcggc 480gtctacacca agcagatcaa
ggtagctcgc cacaacaaga tcctcaccgg cctgccggat 540gcctacggcc gtggccgcat
catcggcgat taccgtcgtg tggccctgta cggcgtgaac 600gcgctgatca agttcaagca
gcgcgacaag gactccatcc cgtaccgcaa cgacttcacc 660gagccggaga tcgagcactg
gatccgcttc cgtgaggagc atgacgagca gatcaaggcc 720ctgaagcagc tgatcaacct
cggcaacgag tacggcctcg acctgtcccg cccggcacag 780accgcacagg aagccgtgca
gtggacctac atgggctacc tcgcctccgt caagagccag 840gacggcgccg ccatgtcctt
cggccgtgtc tccaccttct tcgacgtcta cttcgagcgc 900gacctgaagg ccggcaagat
caccgagacc gacgcacagg agatcatcga taacctggtc 960atgaagctgc gcatcgtgcg
cttcctgcgc accaaggatt acgacgcgat cttctccggc 1020gatccgtact gggcgacttg
gtccgacgcc ggcttcggcg acgacggccg taccatggtc 1080accaagacct cgttccgtct
gctcaacacc ctgaccctcg agcacctcgg acctggcccg 1140gagccgaaca tcaccatctt
ctgggatccg aagctgccgg aagcctacaa gcgcttctgc 1200gcccgaatct ccatcgacac
ctcggccatc cagtacgagt ccgataagga aatccgctcc 1260cactggggcg acgacgccgc
catcgcatgc tgcgtctccc cgatgcgcgt gggcaagcag 1320atgcagttct tcgccgcccg
tgtgaactcc gccaaggccc tgctgtacgc catcaacggc 1380ggacgcgacg agatgaccgg
catgcaggtc atcgacaagg gcgtcatcga cccgatcaag 1440ccggaagccg atggcacgct
ggattacgag aaggtcaagg ccaactacga gaaggccctc 1500gaatggctgt ccgagaccta
tgtgatggct ctgaacatca tccattacat gcatgataag 1560tacgcttacg agtccatcga
gatggctctg cacgacaagg aagtgtaccg caccctcggc 1620tgcggcatgt ccggcctgtc
gatcgcggcc gactccctgt ccgcatgcaa gtacgccaag 1680gtctacccga tctacaacaa
ggacgccaag accacgccgg gccacgagaa cgagtacgtc 1740gaaggcgccg atgacgatct
gatcgtcggc taccgcaccg aaggcgactt cccgctgtac 1800ggcaacgatg atgaccgtgc
cgacgacatc gccaagtggg tcgtctccac cgtcatgggc 1860caggtcaagc gtctgccggt
gtaccgcgac gccgtcccga cccagtccat cctgaccatc 1920acctccaatg tggaatacgg
caaggccacc ggcgccttcc cgtccggcca caagaagggc 1980accccgtacg ctccgggcgc
caacccggag aacggcatgg actcccacgg catgctgccg 2040tccatgttct ccgtcggcaa
gatcgactac aacgacgctc ttgacggcat ctcgctgacc 2100aacaccatca cccctgatgg
tctgggccgc gacgaggaag agcgtatcgg caacctcgtt 2160ggcatcctgg acgccggcaa
cggccacggc ctgtaccacg ccaacatcaa cgtgctgcgc 2220aaggagcagc tcgaggatgc
cgtcgagcat ccggagaagt acccgcacct gaccgtgcgc 2280gtctccggct acgcggtgaa
cttcgtcaag ctcaccaagg aacagcagct cgacgtgatc 2340tcccgtacgt tccaccaggg
cgctgtcgtc gactga 237660791PRTBifidobacterium
adolescentis 60Met Ala Ala Val Asp Ala Thr Ala Val Ser Gln Glu Glu Leu
Glu Ala1 5 10 15Lys Ala
Trp Glu Gly Phe Thr Glu Gly Asn Trp Gln Lys Asp Ile Asp 20
25 30Val Arg Asp Phe Ile Gln Lys Asn Tyr
Thr Pro Tyr Glu Gly Asp Glu 35 40
45Ser Phe Leu Ala Asp Ala Thr Asp Lys Thr Lys His Leu Trp Lys Tyr 50
55 60Leu Asp Asp Asn Tyr Leu Ser Val Glu
Arg Lys Gln Arg Val Tyr Asp65 70 75
80Val Asp Thr His Thr Pro Ala Gly Ile Asp Ala Phe Pro Ala
Gly Tyr 85 90 95Ile Asp
Ser Pro Glu Val Asp Asn Val Ile Val Gly Leu Gln Thr Asp 100
105 110Val Pro Cys Lys Arg Ala Met Met Pro
Asn Gly Gly Trp Arg Met Val 115 120
125Glu Gln Ala Ile Lys Glu Ala Gly Lys Glu Pro Asp Pro Glu Ile Lys
130 135 140Lys Ile Phe Thr Lys Tyr Arg
Lys Thr His Asn Asp Gly Val Phe Gly145 150
155 160Val Tyr Thr Lys Gln Ile Lys Val Ala Arg His Asn
Lys Ile Leu Thr 165 170
175Gly Leu Pro Asp Ala Tyr Gly Arg Gly Arg Ile Ile Gly Asp Tyr Arg
180 185 190Arg Val Ala Leu Tyr Gly
Val Asn Ala Leu Ile Lys Phe Lys Gln Arg 195 200
205Asp Lys Asp Ser Ile Pro Tyr Arg Asn Asp Phe Thr Glu Pro
Glu Ile 210 215 220Glu His Trp Ile Arg
Phe Arg Glu Glu His Asp Glu Gln Ile Lys Ala225 230
235 240Leu Lys Gln Leu Ile Asn Leu Gly Asn Glu
Tyr Gly Leu Asp Leu Ser 245 250
255Arg Pro Ala Gln Thr Ala Gln Glu Ala Val Gln Trp Thr Tyr Met Gly
260 265 270Tyr Leu Ala Ser Val
Lys Ser Gln Asp Gly Ala Ala Met Ser Phe Gly 275
280 285Arg Val Ser Thr Phe Phe Asp Val Tyr Phe Glu Arg
Asp Leu Lys Ala 290 295 300Gly Lys Ile
Thr Glu Thr Asp Ala Gln Glu Ile Ile Asp Asn Leu Val305
310 315 320Met Lys Leu Arg Ile Val Arg
Phe Leu Arg Thr Lys Asp Tyr Asp Ala 325
330 335Ile Phe Ser Gly Asp Pro Tyr Trp Ala Thr Trp Ser
Asp Ala Gly Phe 340 345 350Gly
Asp Asp Gly Arg Thr Met Val Thr Lys Thr Ser Phe Arg Leu Leu 355
360 365Asn Thr Leu Thr Leu Glu His Leu Gly
Pro Gly Pro Glu Pro Asn Ile 370 375
380Thr Ile Phe Trp Asp Pro Lys Leu Pro Glu Ala Tyr Lys Arg Phe Cys385
390 395 400Ala Arg Ile Ser
Ile Asp Thr Ser Ala Ile Gln Tyr Glu Ser Asp Lys 405
410 415Glu Ile Arg Ser His Trp Gly Asp Asp Ala
Ala Ile Ala Cys Cys Val 420 425
430Ser Pro Met Arg Val Gly Lys Gln Met Gln Phe Phe Ala Ala Arg Val
435 440 445Asn Ser Ala Lys Ala Leu Leu
Tyr Ala Ile Asn Gly Gly Arg Asp Glu 450 455
460Met Thr Gly Met Gln Val Ile Asp Lys Gly Val Ile Asp Pro Ile
Lys465 470 475 480Pro Glu
Ala Asp Gly Thr Leu Asp Tyr Glu Lys Val Lys Ala Asn Tyr
485 490 495Glu Lys Ala Leu Glu Trp Leu
Ser Glu Thr Tyr Val Met Ala Leu Asn 500 505
510Ile Ile His Tyr Met His Asp Lys Tyr Ala Tyr Glu Ser Ile
Glu Met 515 520 525Ala Leu His Asp
Lys Glu Val Tyr Arg Thr Leu Gly Cys Gly Met Ser 530
535 540Gly Leu Ser Ile Ala Ala Asp Ser Leu Ser Ala Cys
Lys Tyr Ala Lys545 550 555
560Val Tyr Pro Ile Tyr Asn Lys Asp Ala Lys Thr Thr Pro Gly His Glu
565 570 575Asn Glu Tyr Val Glu
Gly Ala Asp Asp Asp Leu Ile Val Gly Tyr Arg 580
585 590Thr Glu Gly Asp Phe Pro Leu Tyr Gly Asn Asp Asp
Asp Arg Ala Asp 595 600 605Asp Ile
Ala Lys Trp Val Val Ser Thr Val Met Gly Gln Val Lys Arg 610
615 620Leu Pro Val Tyr Arg Asp Ala Val Pro Thr Gln
Ser Ile Leu Thr Ile625 630 635
640Thr Ser Asn Val Glu Tyr Gly Lys Ala Thr Gly Ala Phe Pro Ser Gly
645 650 655His Lys Lys Gly
Thr Pro Tyr Ala Pro Gly Ala Asn Pro Glu Asn Gly 660
665 670Met Asp Ser His Gly Met Leu Pro Ser Met Phe
Ser Val Gly Lys Ile 675 680 685Asp
Tyr Asn Asp Ala Leu Asp Gly Ile Ser Leu Thr Asn Thr Ile Thr 690
695 700Pro Asp Gly Leu Gly Arg Asp Glu Glu Glu
Arg Ile Gly Asn Leu Val705 710 715
720Gly Ile Leu Asp Ala Gly Asn Gly His Gly Leu Tyr His Ala Asn
Ile 725 730 735Asn Val Leu
Arg Lys Glu Gln Leu Glu Asp Ala Val Glu His Pro Glu 740
745 750Lys Tyr Pro His Leu Thr Val Arg Val Ser
Gly Tyr Ala Val Asn Phe 755 760
765Val Lys Leu Thr Lys Glu Gln Gln Leu Asp Val Ile Ser Arg Thr Phe 770
775 780His Gln Gly Ala Val Val Asp785
790612415DNABifidobacterium longummisc_featureNCC2705
61gtgaagatgc gaaacctaca accccattta aggagtgaca tgaccgcagt ggaaaatgca
60gctgtctccc aggaggagct cgacgccaag gcgtgggccg gcttcaccga gggcaactgg
120cagaaggata ttgacgtccg cgacttcatc cagaagaact acaccccgta cgagggcgac
180gagacattcc tggctcctgc caccgagaag accaagcacc tgtggaagta cctcgacgac
240aactacctgg ccgtggagcg caagcagcgc gtctacgacg tggacaccca taccccggcc
300gacgtcgacg ccttcccggc cggctacatc gactccccgg aagtcgataa cgtggtcgtt
360ggcctccaga ccgacgttcc ctgcaagcgc gcgatgatgc cgaacggtgg ctggcgcatg
420gtcgagcagg ccatcaagga agccggcaag gaaccggatc cggagatcaa gaagatcttc
480accaagtacc gcaagaccca caacgacggc gtcttcggcg tgtacaccaa gcagatcaag
540gtcgcccgcc acaacaagat cctcaccggt ctgccggacg cctacggccg tggccgcatc
600atcggcgact accgccgcgt cgccctgtac ggcgtgaaca agctcatcgc cttcaagaag
660cgcgacaagg actccgtgcc gtaccgcaac gacttcaccg agccggagat cgagcactgg
720atccgcttcc gtgaggagca cgacgagcag atcaaggccc tgaagaagct catcaacctc
780ggcaacgagt acggcctcga cctgtcccgc ccggcccaga ccgcgcagga agccgtgcag
840tggacctaca tgggctacct ggcctccatc aagtcccagg acggcgccgc catgtccttc
900ggccgcaact ccgccttcct cgactgctac atcgagcgcg acctccaggc cggcaagatc
960accgagaccg acgcccagga gctcatcgac aacatcgtca tgaagctgcg catcgtgcgc
1020ttcctgcgta ccaaggacta cgattcgatc ttctccggcg acccgtactg ggcgacctgg
1080tccgacgccg gcttcggcga tgacggccgt tcgatggtca ccaagacctc gttccgtctg
1140ctcaacaccc tgaccctcga gcacctcgga cctggccccg agccgaacat caccatcttc
1200tgggatccga agctgcctga ggcctacaag cgcttctgcg ccaagatctc catcgacacc
1260tcggccatcc agtacgagtc cgacaaggag attcgtagcc actggggcga cgacgcggct
1320atcgcatgct gcgtgtcccc gatgcgtgtc ggcaagcaga tgcagttctt cgccgcccgc
1380gtgaactccg ccaaggccct gctgtacgcc atcaacggcg gccgcgacga gatgaccggc
1440atgcaggtca tcgacaaggg cgtgatcgag ccgattaccc cggaggccga cggcaccctg
1500gactacgaga aggtcaagaa caactacgag aaggctctcg agtggctgtc cgagacctac
1560gtcatggccc tgaacatcat ccactacatg cacgataagt acgcgtacga gtccatcgag
1620atggccctgc acgacaagga agtgtaccgc accctcggct gcggcatgtc cggtctgtcc
1680atcgccgccg actccctcgc cgccgtcaag tacgccaagg tctacccgat ctacaacaag
1740gacgcgaaga ccctggaagg ccacgagtac gagtacgttg agggcgccga cgacgacctg
1800atcgtcggct accgcaccga gggcgagttc ccggtctacg gcaacgacga cgaccgcgcc
1860gacgacatcg ccaagtgggt cgtctccacg gtcatgggcc aggtcaagag gctcccggtc
1920taccgcggcg ccgtcccgac ccagtccatc ctgacgatca cctccaacgt cgagtacggc
1980aagaacaccg gttccttccc gtccggccac gccaagggca ccccgtacgc tccgggcgcc
2040aacccggaga acggcatgga ctcccacggc atgctgccgt ccatgttctc cgtcggcaag
2100atcgactaca acgacgctct tgacggcatc tcgctgacca acaccatcac ccctgatggc
2160ctgggccgcg acgaggacga gcgcatcggc aacctggtcg gcatcctgga cgccggcaac
2220ggccacggcc tctaccacgc gaacatcaac gttctgcgca aggagaccat ggaggacgcc
2280gtcgagcacc ccgaaaagta cccgcacctg accgtgcgtg tctccggcta cgcggtgaac
2340ttcgtcaagc tcaccaagga gcagcagctc gacgtcatct cccgtacctt ccaccagggt
2400gccgtcgtcg actga
241562804PRTBifidobacterium longumMISC_FEATURENCC2705 62Met Lys Met Arg
Asn Leu Gln Pro His Leu Arg Ser Asp Met Thr Ala1 5
10 15Val Glu Asn Ala Ala Val Ser Gln Glu Glu
Leu Asp Ala Lys Ala Trp 20 25
30Ala Gly Phe Thr Glu Gly Asn Trp Gln Lys Asp Ile Asp Val Arg Asp
35 40 45Phe Ile Gln Lys Asn Tyr Thr Pro
Tyr Glu Gly Asp Glu Thr Phe Leu 50 55
60Ala Pro Ala Thr Glu Lys Thr Lys His Leu Trp Lys Tyr Leu Asp Asp65
70 75 80Asn Tyr Leu Ala Val
Glu Arg Lys Gln Arg Val Tyr Asp Val Asp Thr 85
90 95His Thr Pro Ala Asp Val Asp Ala Phe Pro Ala
Gly Tyr Ile Asp Ser 100 105
110Pro Glu Val Asp Asn Val Val Val Gly Leu Gln Thr Asp Val Pro Cys
115 120 125Lys Arg Ala Met Met Pro Asn
Gly Gly Trp Arg Met Val Glu Gln Ala 130 135
140Ile Lys Glu Ala Gly Lys Glu Pro Asp Pro Glu Ile Lys Lys Ile
Phe145 150 155 160Thr Lys
Tyr Arg Lys Thr His Asn Asp Gly Val Phe Gly Val Tyr Thr
165 170 175Lys Gln Ile Lys Val Ala Arg
His Asn Lys Ile Leu Thr Gly Leu Pro 180 185
190Asp Ala Tyr Gly Arg Gly Arg Ile Ile Gly Asp Tyr Arg Arg
Val Ala 195 200 205Leu Tyr Gly Val
Asn Lys Leu Ile Ala Phe Lys Lys Arg Asp Lys Asp 210
215 220Ser Val Pro Tyr Arg Asn Asp Phe Thr Glu Pro Glu
Ile Glu His Trp225 230 235
240Ile Arg Phe Arg Glu Glu His Asp Glu Gln Ile Lys Ala Leu Lys Lys
245 250 255Leu Ile Asn Leu Gly
Asn Glu Tyr Gly Leu Asp Leu Ser Arg Pro Ala 260
265 270Gln Thr Ala Gln Glu Ala Val Gln Trp Thr Tyr Met
Gly Tyr Leu Ala 275 280 285Ser Ile
Lys Ser Gln Asp Gly Ala Ala Met Ser Phe Gly Arg Asn Ser 290
295 300Ala Phe Leu Asp Cys Tyr Ile Glu Arg Asp Leu
Gln Ala Gly Lys Ile305 310 315
320Thr Glu Thr Asp Ala Gln Glu Leu Ile Asp Asn Ile Val Met Lys Leu
325 330 335Arg Ile Val Arg
Phe Leu Arg Thr Lys Asp Tyr Asp Ser Ile Phe Ser 340
345 350Gly Asp Pro Tyr Trp Ala Thr Trp Ser Asp Ala
Gly Phe Gly Asp Asp 355 360 365Gly
Arg Ser Met Val Thr Lys Thr Ser Phe Arg Leu Leu Asn Thr Leu 370
375 380Thr Leu Glu His Leu Gly Pro Gly Pro Glu
Pro Asn Ile Thr Ile Phe385 390 395
400Trp Asp Pro Lys Leu Pro Glu Ala Tyr Lys Arg Phe Cys Ala Lys
Ile 405 410 415Ser Ile Asp
Thr Ser Ala Ile Gln Tyr Glu Ser Asp Lys Glu Ile Arg 420
425 430Ser His Trp Gly Asp Asp Ala Ala Ile Ala
Cys Cys Val Ser Pro Met 435 440
445Arg Val Gly Lys Gln Met Gln Phe Phe Ala Ala Arg Val Asn Ser Ala 450
455 460Lys Ala Leu Leu Tyr Ala Ile Asn
Gly Gly Arg Asp Glu Met Thr Gly465 470
475 480Met Gln Val Ile Asp Lys Gly Val Ile Glu Pro Ile
Thr Pro Glu Ala 485 490
495Asp Gly Thr Leu Asp Tyr Glu Lys Val Lys Asn Asn Tyr Glu Lys Ala
500 505 510Leu Glu Trp Leu Ser Glu
Thr Tyr Val Met Ala Leu Asn Ile Ile His 515 520
525Tyr Met His Asp Lys Tyr Ala Tyr Glu Ser Ile Glu Met Ala
Leu His 530 535 540Asp Lys Glu Val Tyr
Arg Thr Leu Gly Cys Gly Met Ser Gly Leu Ser545 550
555 560Ile Ala Ala Asp Ser Leu Ala Ala Val Lys
Tyr Ala Lys Val Tyr Pro 565 570
575Ile Tyr Asn Lys Asp Ala Lys Thr Leu Glu Gly His Glu Tyr Glu Tyr
580 585 590Val Glu Gly Ala Asp
Asp Asp Leu Ile Val Gly Tyr Arg Thr Glu Gly 595
600 605Glu Phe Pro Val Tyr Gly Asn Asp Asp Asp Arg Ala
Asp Asp Ile Ala 610 615 620Lys Trp Val
Val Ser Thr Val Met Gly Gln Val Lys Arg Leu Pro Val625
630 635 640Tyr Arg Gly Ala Val Pro Thr
Gln Ser Ile Leu Thr Ile Thr Ser Asn 645
650 655Val Glu Tyr Gly Lys Asn Thr Gly Ser Phe Pro Ser
Gly His Ala Lys 660 665 670Gly
Thr Pro Tyr Ala Pro Gly Ala Asn Pro Glu Asn Gly Met Asp Ser 675
680 685His Gly Met Leu Pro Ser Met Phe Ser
Val Gly Lys Ile Asp Tyr Asn 690 695
700Asp Ala Leu Asp Gly Ile Ser Leu Thr Asn Thr Ile Thr Pro Asp Gly705
710 715 720Leu Gly Arg Asp
Glu Asp Glu Arg Ile Gly Asn Leu Val Gly Ile Leu 725
730 735Asp Ala Gly Asn Gly His Gly Leu Tyr His
Ala Asn Ile Asn Val Leu 740 745
750Arg Lys Glu Thr Met Glu Asp Ala Val Glu His Pro Glu Lys Tyr Pro
755 760 765His Leu Thr Val Arg Val Ser
Gly Tyr Ala Val Asn Phe Val Lys Leu 770 775
780Thr Lys Glu Gln Gln Leu Asp Val Ile Ser Arg Thr Phe His Gln
Gly785 790 795 800Ala Val
Val Asp632376DNABifidobacterium longummisc_featureDJO10A 63atgaccgcag
tggaaaatgc agctgtctcc caggaggagc tcgacgccaa ggcgtgggcc 60ggcttcaccg
agggcaactg gcagaaggat attgacgtcc gcgacttcat ccagaagaac 120tacaccccgt
acgagggcga cgagacattc ctggctcctg ccaccgagaa gaccaagcac 180ctgtggaagt
acctcgacga caactacctg gccgtggagc gcaagcagcg cgtctacgac 240gtggacaccc
ataccccggc cgacgtcgac gccttcccgg ccggctacat cgactccccg 300gaagtcgata
acgtggtcgt tggcctccag accgacgttc cctgcaagcg cgcgatgatg 360ccgaacggtg
gctggcgcat ggtcgagcag gccatcaagg aagccggcaa ggaaccggat 420ccggagatca
agaagatctt caccaagtac cgcaagaccc acaacgacgg cgtcttcggc 480gtgtacacca
agcagatcaa ggtcgcccgc cacaacaaga tcctcaccgg tctgccggac 540gcctacggcc
gtggccgcat catcggcgac taccgccgcg tcgccctgta cggcgtgaac 600aagctcatcg
ccttcaagaa gcgcgacaag gactccgtgc cgtaccgcaa cgacttcacc 660gagccggaga
tcgagcactg gatccgcttc cgtgaggagc acgacgagca gatcaaggcc 720ctgaagaagc
tcatcaacct cggcaacgag tacggcctcg acctgtcccg cccggcccag 780accgcgcagg
aagccgtgca gtggacctac atgggctacc tggcctccat caagtcccag 840gacggcgccg
ccatgtcctt cggccgcaac tccgccttcc tcgactgcta catcgagcgc 900gacctccagg
ccggcaagat caccgagacc gacgcccagg agctcatcga caacatcgtc 960atgaagctgc
gcatcgtgcg cttcctgcgt accaaggact acgattcgat cttctccggc 1020gacccgtact
gggcgacctg gtccgacgcc ggcttcggcg atgacggccg ttcgatggtc 1080accaagacct
cgttccgtct gctcaacacc ctgaccctcg agcacctcgg acctggcccc 1140gagccgaaca
tcaccatctt ctgggatccg aagctgcctg aggcctacaa gcgcttctgc 1200gccaagatct
ccatcgacac ctcggccatc cagtacgagt ccgacaagga gattcgcagc 1260cactggggcg
acgacgctgc tatcgcctgc tgcgtgtccc cgatgcgtgt cggcaagcag 1320atgcagttct
tcgccgcccg cgtgaactcc gccaaggccc tgctgtacgc catcaacggc 1380ggccgcgacg
agatgaccgg catgcaggtc atcgacaagg gcgtgatcga gccgattacc 1440ccggaggccg
acggcaccct ggactacgag aaggtcaaga acaactacga gaaggctctc 1500gagtggctgt
ccgagaccta cgtcatggcc ctgaacatca tccactacat gcacgataag 1560tacgcgtacg
agtccatcga gatggccctg cacgacaagg aagtgtaccg caccctcggc 1620tgcggcatgt
ccggtctgtc catcgccgcc gactccctcg ccgccgtcaa gtacgccaag 1680gtctacccga
tctacaacaa ggacgcgaag accctggaag gccacgagta cgagtacgtt 1740gagggcgccg
acgacgacct gatcgtcggc taccgcaccg agggcgagtt cccggtctac 1800ggcaacgacg
acgaccgcgc cgacgacatc gccaagtggg tcgtctccac ggtcatgggc 1860caggtcaaga
ggctcccggt ctaccgcggc gccgtcccga cccagtccat cctgacgatc 1920acctccaacg
tcgagtacgg caagaacacc ggttccttcc cgtccggcca cgccaagggc 1980accccgtacg
ctccgggcgc caacccggag aacggcatgg actcccacgg catgctgccg 2040tccatgttct
ccgtcggcaa gatcgactac aacgacgctc ttgacggcat ctcgctgacc 2100aacaccatca
cccctgatgg cctgggccgc gacgaggacg agcgcatcgg caacctggtc 2160ggcatcctgg
acgccggcaa cggccacggc ctctaccacg cgaacatcaa cgttctgcgc 2220aaggagacca
tggaggacgc cgtcgagcac cccgaaaagt acccgcacct gaccgtgcgt 2280gtctccggct
acgcggtgaa cttcgtcaag ctcaccaagg agcagcagct cgacgtcatc 2340tcccgtacct
tccaccaggg tgccgtcgtc gactga
237664791PRTBifidobacterium longumMISC_FEATUREDJO10A 64Met Thr Ala Val
Glu Asn Ala Ala Val Ser Gln Glu Glu Leu Asp Ala1 5
10 15Lys Ala Trp Ala Gly Phe Thr Glu Gly Asn
Trp Gln Lys Asp Ile Asp 20 25
30Val Arg Asp Phe Ile Gln Lys Asn Tyr Thr Pro Tyr Glu Gly Asp Glu
35 40 45Thr Phe Leu Ala Pro Ala Thr Glu
Lys Thr Lys His Leu Trp Lys Tyr 50 55
60Leu Asp Asp Asn Tyr Leu Ala Val Glu Arg Lys Gln Arg Val Tyr Asp65
70 75 80Val Asp Thr His Thr
Pro Ala Asp Val Asp Ala Phe Pro Ala Gly Tyr 85
90 95Ile Asp Ser Pro Glu Val Asp Asn Val Val Val
Gly Leu Gln Thr Asp 100 105
110Val Pro Cys Lys Arg Ala Met Met Pro Asn Gly Gly Trp Arg Met Val
115 120 125Glu Gln Ala Ile Lys Glu Ala
Gly Lys Glu Pro Asp Pro Glu Ile Lys 130 135
140Lys Ile Phe Thr Lys Tyr Arg Lys Thr His Asn Asp Gly Val Phe
Gly145 150 155 160Val Tyr
Thr Lys Gln Ile Lys Val Ala Arg His Asn Lys Ile Leu Thr
165 170 175Gly Leu Pro Asp Ala Tyr Gly
Arg Gly Arg Ile Ile Gly Asp Tyr Arg 180 185
190Arg Val Ala Leu Tyr Gly Val Asn Lys Leu Ile Ala Phe Lys
Lys Arg 195 200 205Asp Lys Asp Ser
Val Pro Tyr Arg Asn Asp Phe Thr Glu Pro Glu Ile 210
215 220Glu His Trp Ile Arg Phe Arg Glu Glu His Asp Glu
Gln Ile Lys Ala225 230 235
240Leu Lys Lys Leu Ile Asn Leu Gly Asn Glu Tyr Gly Leu Asp Leu Ser
245 250 255Arg Pro Ala Gln Thr
Ala Gln Glu Ala Val Gln Trp Thr Tyr Met Gly 260
265 270Tyr Leu Ala Ser Ile Lys Ser Gln Asp Gly Ala Ala
Met Ser Phe Gly 275 280 285Arg Asn
Ser Ala Phe Leu Asp Cys Tyr Ile Glu Arg Asp Leu Gln Ala 290
295 300Gly Lys Ile Thr Glu Thr Asp Ala Gln Glu Leu
Ile Asp Asn Ile Val305 310 315
320Met Lys Leu Arg Ile Val Arg Phe Leu Arg Thr Lys Asp Tyr Asp Ser
325 330 335Ile Phe Ser Gly
Asp Pro Tyr Trp Ala Thr Trp Ser Asp Ala Gly Phe 340
345 350Gly Asp Asp Gly Arg Ser Met Val Thr Lys Thr
Ser Phe Arg Leu Leu 355 360 365Asn
Thr Leu Thr Leu Glu His Leu Gly Pro Gly Pro Glu Pro Asn Ile 370
375 380Thr Ile Phe Trp Asp Pro Lys Leu Pro Glu
Ala Tyr Lys Arg Phe Cys385 390 395
400Ala Lys Ile Ser Ile Asp Thr Ser Ala Ile Gln Tyr Glu Ser Asp
Lys 405 410 415Glu Ile Arg
Ser His Trp Gly Asp Asp Ala Ala Ile Ala Cys Cys Val 420
425 430Ser Pro Met Arg Val Gly Lys Gln Met Gln
Phe Phe Ala Ala Arg Val 435 440
445Asn Ser Ala Lys Ala Leu Leu Tyr Ala Ile Asn Gly Gly Arg Asp Glu 450
455 460Met Thr Gly Met Gln Val Ile Asp
Lys Gly Val Ile Glu Pro Ile Thr465 470
475 480Pro Glu Ala Asp Gly Thr Leu Asp Tyr Glu Lys Val
Lys Asn Asn Tyr 485 490
495Glu Lys Ala Leu Glu Trp Leu Ser Glu Thr Tyr Val Met Ala Leu Asn
500 505 510Ile Ile His Tyr Met His
Asp Lys Tyr Ala Tyr Glu Ser Ile Glu Met 515 520
525Ala Leu His Asp Lys Glu Val Tyr Arg Thr Leu Gly Cys Gly
Met Ser 530 535 540Gly Leu Ser Ile Ala
Ala Asp Ser Leu Ala Ala Val Lys Tyr Ala Lys545 550
555 560Val Tyr Pro Ile Tyr Asn Lys Asp Ala Lys
Thr Leu Glu Gly His Glu 565 570
575Tyr Glu Tyr Val Glu Gly Ala Asp Asp Asp Leu Ile Val Gly Tyr Arg
580 585 590Thr Glu Gly Glu Phe
Pro Val Tyr Gly Asn Asp Asp Asp Arg Ala Asp 595
600 605Asp Ile Ala Lys Trp Val Val Ser Thr Val Met Gly
Gln Val Lys Arg 610 615 620Leu Pro Val
Tyr Arg Gly Ala Val Pro Thr Gln Ser Ile Leu Thr Ile625
630 635 640Thr Ser Asn Val Glu Tyr Gly
Lys Asn Thr Gly Ser Phe Pro Ser Gly 645
650 655His Ala Lys Gly Thr Pro Tyr Ala Pro Gly Ala Asn
Pro Glu Asn Gly 660 665 670Met
Asp Ser His Gly Met Leu Pro Ser Met Phe Ser Val Gly Lys Ile 675
680 685Asp Tyr Asn Asp Ala Leu Asp Gly Ile
Ser Leu Thr Asn Thr Ile Thr 690 695
700Pro Asp Gly Leu Gly Arg Asp Glu Asp Glu Arg Ile Gly Asn Leu Val705
710 715 720Gly Ile Leu Asp
Ala Gly Asn Gly His Gly Leu Tyr His Ala Asn Ile 725
730 735Asn Val Leu Arg Lys Glu Thr Met Glu Asp
Ala Val Glu His Pro Glu 740 745
750Lys Tyr Pro His Leu Thr Val Arg Val Ser Gly Tyr Ala Val Asn Phe
755 760 765Val Lys Leu Thr Lys Glu Gln
Gln Leu Asp Val Ile Ser Arg Thr Phe 770 775
780His Gln Gly Ala Val Val Asp785
790652379DNABifidobacterium animalismisc_featureDSM 10140 65atgtcagcaa
ttgaaaacgt ggccgaggtg tccccggaag ccatcaagga acaggcttgg 60gaggggttcg
ttcccggcaa ctgggagaag gacatcgacg ttcgtgactt cattcagaag 120aactacacgc
cttacgaggg tgatgaatcg ttcctcgcgg atgcgaccga caagacgaag 180tacctgtgga
agtacctcga cgacaactat ctggcggtgg agcgcaagca gcgtgtctat 240gatgtggaca
cccacacgcc ggcggatatc gacgccttcc cggctggcta tatcgattcc 300ccggagatcg
acaatgtgat cgtcggcctg cagaccgatg agccatgcaa gcgagccatg 360atgccgaatg
gcggttggcg catggtggag caggccatca aggaggccgg caaggagccg 420gacccggcga
tcaagaagat cttcaccaag taccgcaaga cgcataacga cggtgtgttc 480ggcgtctata
cgaagaacat caaagtggca cgccacaaca agattctcac cggcctgccg 540gatgcctacg
gccgcggccg catcatcggc gactaccgtc gtgtggccct gtatggcgtg 600gatgcgctga
ttaagttcaa gcagcgtgac aaggacgcca tcccgtaccg caacgacttc 660tcggagaccg
agatcgagca ctggatccgt taccgcgagg agcacgacga gcagattaag 720gctctgaaga
agctcatcaa cctaggcaag gaatacggac tcgatttggc gcgccccgcc 780atgaacgcgc
gtgaggccgt gcagtggacc tacatgggct acctcgcctc catcaagagc 840caggacggcg
ccgcgatgag cttcggccgc gtgtcagcgt tcttcgacat ctacttcgag 900cgcgatctca
aggaaggcaa gatcaccgag accgacgccc aggagatcat cgacaatctg 960gtgatgaagc
tgcgcatcgt gcgattcctg cgcaccaagg actacgattc gatcttctcg 1020ggcgacccct
actgggcgac atggtcggat gcaggcttcg gcgacgatgg ccgcaccatg 1080gtcaccaaga
cgtcgttccg tctgctcaac acgctcacgc tcgagcattt gggaccggga 1140cccgaaccga
acatcacgat tttctgggat ccgaagctgc cggaaggcta caagcgtttc 1200tgcgcccaga
tctccattga tacctcggcc atccagtatg aatccgacaa ggagatccgc 1260aaccattggg
gtgacgatgc ggccattgca tgctgcgtct ccccgatgcg tgtgggcaag 1320caaatgcagt
tcttcgcggc tcgcgtgaac tccgccaagg cgctgctcta cgcgatcaac 1380ggcggccgtg
acgagatgac cggcatgcag gtgatcgaca agggcatcat cgagccgatc 1440cagcccgagg
ctgacggcac gctcgattac gagaaggtga aggccaacta tgagaaggcc 1500ctcgaatggc
tttcggagac ctacgtcgaa gcgctgaaca tcattcatta catgcatgac 1560aagtatgcgt
atgagtccat cgagatggcg ctgcacgacc gcgaggtcta ccgcaccctg 1620ggctgcggca
tgtccggcct gtcgatcgcc gccgattcgc tttccgcatg caagtacgcc 1680aaggtgtacc
caatctacaa caaggacgcc aaggacatgc cgggtcacga gtacgaatat 1740gtcgaaggcg
cggacgacga tctggtggtc ggctaccgca ccgagggcga gttcccgctt 1800tacggcaacg
acgacgatcg tgccgatgac attgccaagt gggtcgtgtc caccgtcatg 1860ggccaggtca
agcgcctgcc ggtgtatcgt ggtgccgtcc ccacgcagtc gatcctcacg 1920atcacctcga
acgtcgagta tggcaagaac accggatcct tcccgtcggg ccacgccaag 1980ggaacgccgt
acgccccggg cgcgaacccg gagaacggca tggactccca tggcatgctc 2040ccctcgatgt
tctcggtggg caagatcgat tacaacgacg cccttgacgg catctcgctg 2100acgaacacga
tcacacccga cggcctgggc cgcgatgagg acgaacgcat cagcaacctc 2160gtcggcatcc
tcgacgcagg caacggccat ggactgtacc atgcgaacat caacgtgctg 2220cgcaaggaac
agctcgaaga cgccgtggag cacccggaga agtacccgca cctgaccgtg 2280cgcgtctccg
gttacgccgt gaacttcgtc aagcttacga aggaacagca gcttgacgtc 2340atttcccgca
ccttccatca gggcgcggtc gaggactaa
237966792PRTBifidobacterium animalismisc_featureDSM 10140 66Met Ser Ala
Ile Glu Asn Val Ala Glu Val Ser Pro Glu Ala Ile Lys1 5
10 15Glu Gln Ala Trp Glu Gly Phe Val Pro
Gly Asn Trp Glu Lys Asp Ile 20 25
30Asp Val Arg Asp Phe Ile Gln Lys Asn Tyr Thr Pro Tyr Glu Gly Asp
35 40 45Glu Ser Phe Leu Ala Asp Ala
Thr Asp Lys Thr Lys Tyr Leu Trp Lys 50 55
60Tyr Leu Asp Asp Asn Tyr Leu Ala Val Glu Arg Lys Gln Arg Val Tyr65
70 75 80Asp Val Asp Thr
His Thr Pro Ala Asp Ile Asp Ala Phe Pro Ala Gly 85
90 95Tyr Ile Asp Ser Pro Glu Ile Asp Asn Val
Ile Val Gly Leu Gln Thr 100 105
110Asp Glu Pro Cys Lys Arg Ala Met Met Pro Asn Gly Gly Trp Arg Met
115 120 125Val Glu Gln Ala Ile Lys Glu
Ala Gly Lys Glu Pro Asp Pro Ala Ile 130 135
140Lys Lys Ile Phe Thr Lys Tyr Arg Lys Thr His Asn Asp Gly Val
Phe145 150 155 160Gly Val
Tyr Thr Lys Asn Ile Lys Val Ala Arg His Asn Lys Ile Leu
165 170 175Thr Gly Leu Pro Asp Ala Tyr
Gly Arg Gly Arg Ile Ile Gly Asp Tyr 180 185
190Arg Arg Val Ala Leu Tyr Gly Val Asp Ala Leu Ile Lys Phe
Lys Gln 195 200 205Arg Asp Lys Asp
Ala Ile Pro Tyr Arg Asn Asp Phe Ser Glu Thr Glu 210
215 220Ile Glu His Trp Ile Arg Tyr Arg Glu Glu His Asp
Glu Gln Ile Lys225 230 235
240Ala Leu Lys Lys Leu Ile Asn Leu Gly Lys Glu Tyr Gly Leu Asp Leu
245 250 255Ala Arg Pro Ala Met
Asn Ala Arg Glu Ala Val Gln Trp Thr Tyr Met 260
265 270Gly Tyr Leu Ala Ser Ile Lys Ser Gln Asp Gly Ala
Ala Met Ser Phe 275 280 285Gly Arg
Val Ser Ala Phe Phe Asp Ile Tyr Phe Glu Arg Asp Leu Lys 290
295 300Glu Gly Lys Ile Thr Glu Thr Asp Ala Gln Glu
Ile Ile Asp Asn Leu305 310 315
320Val Met Lys Leu Arg Ile Val Arg Phe Leu Arg Thr Lys Asp Tyr Asp
325 330 335Ser Ile Phe Ser
Gly Asp Pro Tyr Trp Ala Thr Trp Ser Asp Ala Gly 340
345 350Phe Gly Asp Asp Gly Arg Thr Met Val Thr Lys
Thr Ser Phe Arg Leu 355 360 365Leu
Asn Thr Leu Thr Leu Glu His Leu Gly Pro Gly Pro Glu Pro Asn 370
375 380Ile Thr Ile Phe Trp Asp Pro Lys Leu Pro
Glu Gly Tyr Lys Arg Phe385 390 395
400Cys Ala Gln Ile Ser Ile Asp Thr Ser Ala Ile Gln Tyr Glu Ser
Asp 405 410 415Lys Glu Ile
Arg Asn His Trp Gly Asp Asp Ala Ala Ile Ala Cys Cys 420
425 430Val Ser Pro Met Arg Val Gly Lys Gln Met
Gln Phe Phe Ala Ala Arg 435 440
445Val Asn Ser Ala Lys Ala Leu Leu Tyr Ala Ile Asn Gly Gly Arg Asp 450
455 460Glu Met Thr Gly Met Gln Val Ile
Asp Lys Gly Ile Ile Glu Pro Ile465 470
475 480Gln Pro Glu Ala Asp Gly Thr Leu Asp Tyr Glu Lys
Val Lys Ala Asn 485 490
495Tyr Glu Lys Ala Leu Glu Trp Leu Ser Glu Thr Tyr Val Glu Ala Leu
500 505 510Asn Ile Ile His Tyr Met
His Asp Lys Tyr Ala Tyr Glu Ser Ile Glu 515 520
525Met Ala Leu His Asp Arg Glu Val Tyr Arg Thr Leu Gly Cys
Gly Met 530 535 540Ser Gly Leu Ser Ile
Ala Ala Asp Ser Leu Ser Ala Cys Lys Tyr Ala545 550
555 560Lys Val Tyr Pro Ile Tyr Asn Lys Asp Ala
Lys Asp Met Pro Gly His 565 570
575Glu Tyr Glu Tyr Val Glu Gly Ala Asp Asp Asp Leu Val Val Gly Tyr
580 585 590Arg Thr Glu Gly Glu
Phe Pro Leu Tyr Gly Asn Asp Asp Asp Arg Ala 595
600 605Asp Asp Ile Ala Lys Trp Val Val Ser Thr Val Met
Gly Gln Val Lys 610 615 620Arg Leu Pro
Val Tyr Arg Gly Ala Val Pro Thr Gln Ser Ile Leu Thr625
630 635 640Ile Thr Ser Asn Val Glu Tyr
Gly Lys Asn Thr Gly Ser Phe Pro Ser 645
650 655Gly His Ala Lys Gly Thr Pro Tyr Ala Pro Gly Ala
Asn Pro Glu Asn 660 665 670Gly
Met Asp Ser His Gly Met Leu Pro Ser Met Phe Ser Val Gly Lys 675
680 685Ile Asp Tyr Asn Asp Ala Leu Asp Gly
Ile Ser Leu Thr Asn Thr Ile 690 695
700Thr Pro Asp Gly Leu Gly Arg Asp Glu Asp Glu Arg Ile Ser Asn Leu705
710 715 720Val Gly Ile Leu
Asp Ala Gly Asn Gly His Gly Leu Tyr His Ala Asn 725
730 735Ile Asn Val Leu Arg Lys Glu Gln Leu Glu
Asp Ala Val Glu His Pro 740 745
750Glu Lys Tyr Pro His Leu Thr Val Arg Val Ser Gly Tyr Ala Val Asn
755 760 765Phe Val Lys Leu Thr Lys Glu
Gln Gln Leu Asp Val Ile Ser Arg Thr 770 775
780Phe His Gln Gly Ala Val Glu Asp785
790672226DNAClostridium cellulolyticum 67atggatccat ggagatattt caaaaacgga
aattggtccg aggaaataga tgtaagggat 60tttattatta ataattatat accatataaa
ggagatgatt cctttttaaa aggccctact 120gaaaagactc aaaaactctg gaaaaaagtc
agtggtatcc ttgacgagga aagagagaac 180ggaggagttc tcgatgttga taccaaaata
atatcaacta tcacttcgca tgaacccgga 240tatattgata aggatttgga aaagattgta
ggattgcaga cggataaacc tctaaaaagg 300ggtataatgc ctttcggtgg tatcaggatg
gtagtaaagg gcggagaggc ctacggcaaa 360aagattgacg aaagtgttgt aaagctattt
actgaatata ggaagactca caatgacggt 420gtttacgatg tctatactcc cgaaatgatg
agggcgaaaa aagcaggtat tataaccggg 480cttcctgatg catacggtag aggaagaata
atcggtgatt acagaagagt tgcactgtat 540ggggttgaca ggcttatcgg agataagcaa
aaacaactta caagcctaga aatggattac 600atggacagtg aaaccataca ggaaagggaa
gaaagaaaaa gtcagataaa agctcttgag 660tacttaaagc aaatggctga aatgtatggc
tttgatattt caaggcctgc tgaaaccgca 720caggaagcat ttcaatggtt gtatttcggt
ttcctcggag cagtaaagga gcagaatggt 780gcggctatga gtcttggaag agtttcaaca
ttccttgata tttatataga aagggatatg 840aaggagggga cacttaccga agaagaggca
caggagcttg ttgaccattt tgttatgaag 900cttagattag taagattcct gagaactcca
gagtatgaga aactgttctc aggtgaccct 960acatggataa ccgaaagcat tggaggtatg
ggtcttgacg gacgtactct ggtaacgaag 1020aattccttca gaatgctgca taccctattt
aatctgggtc atgcacccga gcccaatatg 1080acggtgcttt ggtcggtgca tctgcctgat
ggctttaaga aatactgctc atatgtttct 1140atcaatacaa gctctatcca atacgagagc
gatgatataa tgaggtatta ttggggagac 1200gactacggca tagcatgctg tgtttcagcc
atgagaatag gaaagcagat gcagttcttc 1260ggagcccgct gcaatatggc gaaagctttg
ttgtatgcaa ttaacggggg gcgtgatgaa 1320aaatcgggcg ttcaggtagg acctataatg
caggctattg agactgaata tcttgattat 1380gatgatgtaa taaagaggtt cgacgcagta
ctaacatggg ttgcaagact ttacatcaac 1440actctgaata taatacacta tatgcatgac
aagtacgctt atgaaagact acagatggct 1500ttgcacgaca aggacatatt aagaacaatg
gcctgcggaa tagcaggatt atctgtagtt 1560gcggattctc tgagtgcaat taaatatgca
aaggtaaagg taataagaaa tgaagagggg 1620cttgccgttg actatgacat agaaggtgat
tatccgaaat ttggaaataa cgacgaccgt 1680gtagacaata tagccgtaat gctggtaaaa
agctttatgg agaagctgga aaagcagaga 1740acctacaggc actctgttcc taccctttca
atactgacta ttacatcaaa tgttgtatac 1800ggagctaaga caggtaatac acctgacgga
agaaaagcgg gagaaccctt cggaccgggt 1860gcaaacccaa tgcacggaag agacttgaac
ggtgcacttg cagttcttaa atccatttca 1920aagctgcctt accagtttgc acaggacggt
atatcataca ctttttcaat agtaccaaag 1980gcacttggaa aagaggaaga tacaaggatc
aacaaccttg tgtcactgct tgactcttac 2040tttaaagaag gcggacatca cattaatatc
aatgtatttg agagagaaat gctgctggat 2100gcaatggatc atcctgaaaa gtacccacag
ctcacaatca gggtatccgg ctatgcggta 2160aactttataa aattgacgag ggaacagcag
ctagatgtaa ttaacagaac gatacatgaa 2220aatata
222668742PRTClostridium cellulolyticum
68Met Asp Pro Trp Arg Tyr Phe Lys Asn Gly Asn Trp Ser Glu Glu Ile1
5 10 15Asp Val Arg Asp Phe Ile
Ile Asn Asn Tyr Ile Pro Tyr Lys Gly Asp 20 25
30Asp Ser Phe Leu Lys Gly Pro Thr Glu Lys Thr Gln Lys
Leu Trp Lys 35 40 45Lys Val Ser
Gly Ile Leu Asp Glu Glu Arg Glu Asn Gly Gly Val Leu 50
55 60Asp Val Asp Thr Lys Ile Ile Ser Thr Ile Thr Ser
His Glu Pro Gly65 70 75
80Tyr Ile Asp Lys Asp Leu Glu Lys Ile Val Gly Leu Gln Thr Asp Lys
85 90 95Pro Leu Lys Arg Gly Ile
Met Pro Phe Gly Gly Ile Arg Met Val Val 100
105 110Lys Gly Gly Glu Ala Tyr Gly Lys Lys Ile Asp Glu
Ser Val Val Lys 115 120 125Leu Phe
Thr Glu Tyr Arg Lys Thr His Asn Asp Gly Val Tyr Asp Val 130
135 140Tyr Thr Pro Glu Met Met Arg Ala Lys Lys Ala
Gly Ile Ile Thr Gly145 150 155
160Leu Pro Asp Ala Tyr Gly Arg Gly Arg Ile Ile Gly Asp Tyr Arg Arg
165 170 175Val Ala Leu Tyr
Gly Val Asp Arg Leu Ile Gly Asp Lys Gln Lys Gln 180
185 190Leu Thr Ser Leu Glu Met Asp Tyr Met Asp Ser
Glu Thr Ile Gln Glu 195 200 205Arg
Glu Glu Arg Lys Ser Gln Ile Lys Ala Leu Glu Tyr Leu Lys Gln 210
215 220Met Ala Glu Met Tyr Gly Phe Asp Ile Ser
Arg Pro Ala Glu Thr Ala225 230 235
240Gln Glu Ala Phe Gln Trp Leu Tyr Phe Gly Phe Leu Gly Ala Val
Lys 245 250 255Glu Gln Asn
Gly Ala Ala Met Ser Leu Gly Arg Val Ser Thr Phe Leu 260
265 270Asp Ile Tyr Ile Glu Arg Asp Met Lys Glu
Gly Thr Leu Thr Glu Glu 275 280
285Glu Ala Gln Glu Leu Val Asp His Phe Val Met Lys Leu Arg Leu Val 290
295 300Arg Phe Leu Arg Thr Pro Glu Tyr
Glu Lys Leu Phe Ser Gly Asp Pro305 310
315 320Thr Trp Ile Thr Glu Ser Ile Gly Gly Met Gly Leu
Asp Gly Arg Thr 325 330
335Leu Val Thr Lys Asn Ser Phe Arg Met Leu His Thr Leu Phe Asn Leu
340 345 350Gly His Ala Pro Glu Pro
Asn Met Thr Val Leu Trp Ser Val His Leu 355 360
365Pro Asp Gly Phe Lys Lys Tyr Cys Ser Tyr Val Ser Ile Asn
Thr Ser 370 375 380Ser Ile Gln Tyr Glu
Ser Asp Asp Ile Met Arg Tyr Tyr Trp Gly Asp385 390
395 400Asp Tyr Gly Ile Ala Cys Cys Val Ser Ala
Met Arg Ile Gly Lys Gln 405 410
415Met Gln Phe Phe Gly Ala Arg Cys Asn Met Ala Lys Ala Leu Leu Tyr
420 425 430Ala Ile Asn Gly Gly
Arg Asp Glu Lys Ser Gly Val Gln Val Gly Pro 435
440 445Ile Met Gln Ala Ile Glu Thr Glu Tyr Leu Asp Tyr
Asp Asp Val Ile 450 455 460Lys Arg Phe
Asp Ala Val Leu Thr Trp Val Ala Arg Leu Tyr Ile Asn465
470 475 480Thr Leu Asn Ile Ile His Tyr
Met His Asp Lys Tyr Ala Tyr Glu Arg 485
490 495Leu Gln Met Ala Leu His Asp Lys Asp Ile Leu Arg
Thr Met Ala Cys 500 505 510Gly
Ile Ala Gly Leu Ser Val Val Ala Asp Ser Leu Ser Ala Ile Lys 515
520 525Tyr Ala Lys Val Lys Val Ile Arg Asn
Glu Glu Gly Leu Ala Val Asp 530 535
540Tyr Asp Ile Glu Gly Asp Tyr Pro Lys Phe Gly Asn Asn Asp Asp Arg545
550 555 560Val Asp Asn Ile
Ala Val Met Leu Val Lys Ser Phe Met Glu Lys Leu 565
570 575Glu Lys Gln Arg Thr Tyr Arg His Ser Val
Pro Thr Leu Ser Ile Leu 580 585
590Thr Ile Thr Ser Asn Val Val Tyr Gly Ala Lys Thr Gly Asn Thr Pro
595 600 605Asp Gly Arg Lys Ala Gly Glu
Pro Phe Gly Pro Gly Ala Asn Pro Met 610 615
620His Gly Arg Asp Leu Asn Gly Ala Leu Ala Val Leu Lys Ser Ile
Ser625 630 635 640Lys Leu
Pro Tyr Gln Phe Ala Gln Asp Gly Ile Ser Tyr Thr Phe Ser
645 650 655Ile Val Pro Lys Ala Leu Gly
Lys Glu Glu Asp Thr Arg Ile Asn Asn 660 665
670Leu Val Ser Leu Leu Asp Ser Tyr Phe Lys Glu Gly Gly His
His Ile 675 680 685Asn Ile Asn Val
Phe Glu Arg Glu Met Leu Leu Asp Ala Met Asp His 690
695 700Pro Glu Lys Tyr Pro Gln Leu Thr Ile Arg Val Ser
Gly Tyr Ala Val705 710 715
720Asn Phe Ile Lys Leu Thr Arg Glu Gln Gln Leu Asp Val Ile Asn Arg
725 730 735Thr Ile His Glu Asn
Ile 740692283DNAEscherichia coli 69atgtccgagc ttaatgaaaa
gttagccaca gcctgggaag gttttaccaa aggtgactgg 60cagaatgaag taaacgtccg
tgacttcatt cagaaaaact acactccgta cgagggtgac 120gagtccttcc tggctggcgc
tactgaagcg accaccaccc tgtgggacaa agtaatggaa 180ggcgttaaac tggaaaaccg
cactcacgcg ccagttgact ttgacaccgc tgttgcttcc 240accatcacct ctcacgacgc
tggctacatc aacaagcagc ttgagaaaat cgttggtctg 300cagactgaag ctccgctgaa
acgtgctctt atcccgttcg gtggtatcaa aatgatcgaa 360ggttcctgca aagcgtacaa
ccgcgaactg gatccgatga tcaaaaaaat cttcactgaa 420taccgtaaaa ctcacaacca
gggcgtgttc gacgtttaca ctccggacat cctgcgttgc 480cgtaaatctg gtgttctgac
cggtctgcca gatgcatatg gccgtggccg tatcatcggt 540gactaccgtc gcgttgcgct
gtacggtatc gactacctga tgaaagacaa actggcacag 600ttcacttctc tgcaggctga
tctggaaaac ggcgtaaacc tggaacagac tatccgtctg 660cgcgaagaaa tcgctgaaca
gcaccgcgct ctgggtcaga tgaaagaaat ggctgcgaaa 720tacggctacg acatctctgg
tccggctacc aacgctcagg aagctatcca gtggacttac 780ttcggctacc tggctgctgt
taagtctcag aacggtgctg caatgtcctt cggtcgtacc 840tccaccttcc tggatgtgta
catcgaacgt gacctgaaag ctggcaagat caccgaacaa 900gaagcgcagg aaatggttga
ccacctggtc atgaaactgc gtatggttcg cttcctgcgt 960actccggaat acgatgaact
gttctctggc gacccgatct gggcaaccga atctatcggt 1020ggtatgggcc tcgacggtcg
taccctggtt accaaaaaca gcttccgttt cctgaacacc 1080ctgtacacca tgggtccgtc
tccggaaccg aacatgacca ttctgtggtc tgaaaaactg 1140ccgctgaact tcaagaaatt
cgccgctaaa gtgtccatcg acacctcttc tctgcagtat 1200gagaacgatg acctgatgcg
tccggacttc aacaacgatg actacgctat tgcttgctgc 1260gtaagcccga tgatcgttgg
taaacaaatg cagttcttcg gtgcgcgtgc aaacctggcg 1320aaaaccatgc tgtacgcaat
caacggcggc gttgacgaaa aactgaaaat gcaggttggt 1380ccgaagtctg aaccgatcaa
aggcgatgtc ctgaactatg atgaagtgat ggagcgcatg 1440gatcacttca tggactggct
ggctaaacag tacatcactg cactgaacat catccactac 1500atgcacgaca agtacagcta
cgaagcctct ctgatggcgc tgcacgaccg tgacgttatc 1560cgcaccatgg cgtgtggtat
cgctggtctg tccgttgctg ctgactccct gtctgcaatc 1620aaatatgcga aagttaaacc
gattcgtgac gaagacggtc tggctatcga cttcgaaatc 1680gaaggcgaat acccgcagtt
tggtaacaat gatccgcgtg tagatgacct ggctgttgac 1740ctggtagaac gtttcatgaa
gaaaattcag aaactgcaca cctaccgtga cgctatcccg 1800actcagtctg ttctgaccat
cacttctaac gttgtgtatg gtaagaaaac gggtaacacc 1860ccagacggtc gtcgtgctgg
cgcgccgttc ggaccgggtg ctaacccgat gcacggtcgt 1920gaccagaaag gtgcagtagc
ctctctgact tccgttgcta aactgccgtt tgcttacgct 1980aaagatggta tctcctacac
cttctctatc gttccgaacg cactgggtaa agacgacgaa 2040gttcgtaaga ccaacctggc
tggtctgatg gatggttact tccaccacga agcatccatc 2100gaaggtggtc agcacctgaa
cgttaacgtg atgaaccgtg aaatgctgct cgacgcgatg 2160gaaaacccgg aaaaatatcc
gcagctgacc atccgtgtat ctggctacgc agtacgtttc 2220aactcgctga ctaaagaaca
gcagcaggac gttattactc gtaccttcac tcaatctatg 2280taa
228370760PRTEscherichia coli
70Met Ser Glu Leu Asn Glu Lys Leu Ala Thr Ala Trp Glu Gly Phe Thr1
5 10 15Lys Gly Asp Trp Gln Asn
Glu Val Asn Val Arg Asp Phe Ile Gln Lys 20 25
30Asn Tyr Thr Pro Tyr Glu Gly Asp Glu Ser Phe Leu Ala
Gly Ala Thr 35 40 45Glu Ala Thr
Thr Thr Leu Trp Asp Lys Val Met Glu Gly Val Lys Leu 50
55 60Glu Asn Arg Thr His Ala Pro Val Asp Phe Asp Thr
Ala Val Ala Ser65 70 75
80Thr Ile Thr Ser His Asp Ala Gly Tyr Ile Asn Lys Gln Leu Glu Lys
85 90 95Ile Val Gly Leu Gln Thr
Glu Ala Pro Leu Lys Arg Ala Leu Ile Pro 100
105 110Phe Gly Gly Ile Lys Met Ile Glu Gly Ser Cys Lys
Ala Tyr Asn Arg 115 120 125Glu Leu
Asp Pro Met Ile Lys Lys Ile Phe Thr Glu Tyr Arg Lys Thr 130
135 140His Asn Gln Gly Val Phe Asp Val Tyr Thr Pro
Asp Ile Leu Arg Cys145 150 155
160Arg Lys Ser Gly Val Leu Thr Gly Leu Pro Asp Ala Tyr Gly Arg Gly
165 170 175Arg Ile Ile Gly
Asp Tyr Arg Arg Val Ala Leu Tyr Gly Ile Asp Tyr 180
185 190Leu Met Lys Asp Lys Leu Ala Gln Phe Thr Ser
Leu Gln Ala Asp Leu 195 200 205Glu
Asn Gly Val Asn Leu Glu Gln Thr Ile Arg Leu Arg Glu Glu Ile 210
215 220Ala Glu Gln His Arg Ala Leu Gly Gln Met
Lys Glu Met Ala Ala Lys225 230 235
240Tyr Gly Tyr Asp Ile Ser Gly Pro Ala Thr Asn Ala Gln Glu Ala
Ile 245 250 255Gln Trp Thr
Tyr Phe Gly Tyr Leu Ala Ala Val Lys Ser Gln Asn Gly 260
265 270Ala Ala Met Ser Phe Gly Arg Thr Ser Thr
Phe Leu Asp Val Tyr Ile 275 280
285Glu Arg Asp Leu Lys Ala Gly Lys Ile Thr Glu Gln Glu Ala Gln Glu 290
295 300Met Val Asp His Leu Val Met Lys
Leu Arg Met Val Arg Phe Leu Arg305 310
315 320Thr Pro Glu Tyr Asp Glu Leu Phe Ser Gly Asp Pro
Ile Trp Ala Thr 325 330
335Glu Ser Ile Gly Gly Met Gly Leu Asp Gly Arg Thr Leu Val Thr Lys
340 345 350Asn Ser Phe Arg Phe Leu
Asn Thr Leu Tyr Thr Met Gly Pro Ser Pro 355 360
365Glu Pro Asn Met Thr Ile Leu Trp Ser Glu Lys Leu Pro Leu
Asn Phe 370 375 380Lys Lys Phe Ala Ala
Lys Val Ser Ile Asp Thr Ser Ser Leu Gln Tyr385 390
395 400Glu Asn Asp Asp Leu Met Arg Pro Asp Phe
Asn Asn Asp Asp Tyr Ala 405 410
415Ile Ala Cys Cys Val Ser Pro Met Ile Val Gly Lys Gln Met Gln Phe
420 425 430Phe Gly Ala Arg Ala
Asn Leu Ala Lys Thr Met Leu Tyr Ala Ile Asn 435
440 445Gly Gly Val Asp Glu Lys Leu Lys Met Gln Val Gly
Pro Lys Ser Glu 450 455 460Pro Ile Lys
Gly Asp Val Leu Asn Tyr Asp Glu Val Met Glu Arg Met465
470 475 480Asp His Phe Met Asp Trp Leu
Ala Lys Gln Tyr Ile Thr Ala Leu Asn 485
490 495Ile Ile His Tyr Met His Asp Lys Tyr Ser Tyr Glu
Ala Ser Leu Met 500 505 510Ala
Leu His Asp Arg Asp Val Ile Arg Thr Met Ala Cys Gly Ile Ala 515
520 525Gly Leu Ser Val Ala Ala Asp Ser Leu
Ser Ala Ile Lys Tyr Ala Lys 530 535
540Val Lys Pro Ile Arg Asp Glu Asp Gly Leu Ala Ile Asp Phe Glu Ile545
550 555 560Glu Gly Glu Tyr
Pro Gln Phe Gly Asn Asn Asp Pro Arg Val Asp Asp 565
570 575Leu Ala Val Asp Leu Val Glu Arg Phe Met
Lys Lys Ile Gln Lys Leu 580 585
590His Thr Tyr Arg Asp Ala Ile Pro Thr Gln Ser Val Leu Thr Ile Thr
595 600 605Ser Asn Val Val Tyr Gly Lys
Lys Thr Gly Asn Thr Pro Asp Gly Arg 610 615
620Arg Ala Gly Ala Pro Phe Gly Pro Gly Ala Asn Pro Met His Gly
Arg625 630 635 640Asp Gln
Lys Gly Ala Val Ala Ser Leu Thr Ser Val Ala Lys Leu Pro
645 650 655Phe Ala Tyr Ala Lys Asp Gly
Ile Ser Tyr Thr Phe Ser Ile Val Pro 660 665
670Asn Ala Leu Gly Lys Asp Asp Glu Val Arg Lys Thr Asn Leu
Ala Gly 675 680 685Leu Met Asp Gly
Tyr Phe His His Glu Ala Ser Ile Glu Gly Gly Gln 690
695 700His Leu Asn Val Asn Val Met Asn Arg Glu Met Leu
Leu Asp Ala Met705 710 715
720Glu Asn Pro Glu Lys Tyr Pro Gln Leu Thr Ile Arg Val Ser Gly Tyr
725 730 735Ala Val Arg Phe Asn
Ser Leu Thr Lys Glu Gln Gln Gln Asp Val Ile 740
745 750Thr Arg Thr Phe Thr Gln Ser Met 755
76071594DNAChlamydomonas reinhardtiimisc_featurePflA1
71atgttgaagg ctgcgttgcc acgaattatg aacgctgcta gcatgtcttg tgcagctact
60gggctgcagc gctccggtcc gctggcgatg aacgctgcga ctacatcgcg aacggggccc
120gcttcagggc ttccgaaaca ttcctggggt gccagtgctc gacgagcatt tgttgcacct
180gccactatct cggaacggct gcagccgaag ctctcgacga attactcggt ggttctgccg
240caatacgagc ccacggatcc ctcgggcatc cctgaggttt tcggaaacgt gcattcaaca
300gaaagcatga gcgcggtgga cggccctggc gtacggtggt ccgcaactac ctcaagccac
360gcggcggcat caccatcagc ggcggcgagg ccatgctgca gccacacttt gtgtccaccg
420tgttccaggt tccagggcat tgagctgctg ccgtaccacg tgttgggccg caacaagtgg
480gaggtcatgg ggctgccgta ccccctggac ggcacgaaca cgccgccgca cgagcaggta
540cgggccgtga tcaaggtgtt caacgacaac gacgttcccg tcatctgcgc cgag
59472198PRTChlamydomonas reinhardtiiMISC_FEATUREPflA1 72Met Leu Lys Ala
Ala Leu Pro Arg Ile Met Asn Ala Ala Ser Met Ser1 5
10 15Cys Ala Ala Thr Gly Leu Gln Arg Ser Gly
Pro Leu Ala Met Asn Ala 20 25
30Ala Thr Thr Ser Arg Thr Gly Pro Ala Ser Gly Leu Pro Lys His Ser
35 40 45Trp Gly Ala Ser Ala Arg Arg Ala
Phe Val Ala Pro Ala Thr Ile Ser 50 55
60Glu Arg Leu Gln Pro Lys Leu Ser Thr Asn Tyr Ser Val Val Leu Pro65
70 75 80Gln Tyr Glu Pro Thr
Asp Pro Ser Gly Ile Pro Glu Val Phe Gly Asn 85
90 95Val His Ser Thr Glu Ser Met Ser Ala Val Asp
Gly Pro Gly Val Arg 100 105
110Trp Ser Ala Thr Thr Ser Ser His Ala Ala Ala Ser Pro Ser Ala Ala
115 120 125Ala Arg Pro Cys Cys Ser His
Thr Leu Cys Pro Pro Cys Ser Arg Phe 130 135
140Gln Gly Ile Glu Leu Leu Pro Tyr His Val Leu Gly Arg Asn Lys
Trp145 150 155 160Glu Val
Met Gly Leu Pro Tyr Pro Leu Asp Gly Thr Asn Thr Pro Pro
165 170 175His Glu Gln Val Arg Ala Val
Ile Lys Val Phe Asn Asp Asn Asp Val 180 185
190Pro Val Ile Cys Ala Glu 19573801DNANeocallimastix
frontalis 73atgccagcta tcgttgatcc aactactatg gattatatgg aagtcaaggg
caatgtccat 60tcaactgaaa gtttggcttg tcttgaaggt ccaggaaaca gattcctttt
atttttaaat 120ggttgtgctg ctcgttgctt atactgtagt aatccagata cttgggatga
aactgttggt 180actccaatga ccgttggcca acttattaag aagattggaa atcttaaaaa
ctactatatc 240aattctgttg gtggtggtgg tgtcactgtt tctggtggtg aaccattaac
tcaatttggt 300ttcttatctt gtttcttata tgctgtcaag aagcacttaa atcttcatac
ctgtgttgaa 360accactggtc aaggttgtac taaggcttgg aattcagttt tacctcatac
tgacttatgc 420ttagtatgta ttaaacatgc tattccagaa aaatacgaac aaattactcg
tactaagaaa 480ttagatagat gtcttaagtt ccttaaggaa ttagaaaaga gaaacattcc
atggtggtgt 540cgttacgttg ttcttccagg ttacactgat tctaaggaag atattgaagc
tttaattgaa 600ttagttaaga acagtccaac ttgtgaaaga attgaattcc ttccataccc
cgaattaggt 660aaaaacaaat gggaagaatt aggtattgaa tatccattaa agaatattaa
acaacttaag 720aaaagtgaaa ttaaatggat ctgtgatatg gtccgtgaag ctttcaagga
ccgtaatatt 780ccagttactg gtgatactta a
80174266PRTNeocallimastix frontalis 74Met Pro Ala Ile Val Asp
Pro Thr Thr Met Asp Tyr Met Glu Val Lys1 5
10 15Gly Asn Val His Ser Thr Glu Ser Leu Ala Cys Leu
Glu Gly Pro Gly 20 25 30Asn
Arg Phe Leu Leu Phe Leu Asn Gly Cys Ala Ala Arg Cys Leu Tyr 35
40 45Cys Ser Asn Pro Asp Thr Trp Asp Glu
Thr Val Gly Thr Pro Met Thr 50 55
60Val Gly Gln Leu Ile Lys Lys Ile Gly Asn Leu Lys Asn Tyr Tyr Ile65
70 75 80Asn Ser Val Gly Gly
Gly Gly Val Thr Val Ser Gly Gly Glu Pro Leu 85
90 95Thr Gln Phe Gly Phe Leu Ser Cys Phe Leu Tyr
Ala Val Lys Lys His 100 105
110Leu Asn Leu His Thr Cys Val Glu Thr Thr Gly Gln Gly Cys Thr Lys
115 120 125Ala Trp Asn Ser Val Leu Pro
His Thr Asp Leu Cys Leu Val Cys Ile 130 135
140Lys His Ala Ile Pro Glu Lys Tyr Glu Gln Ile Thr Arg Thr Lys
Lys145 150 155 160Leu Asp
Arg Cys Leu Lys Phe Leu Lys Glu Leu Glu Lys Arg Asn Ile
165 170 175Pro Trp Trp Cys Arg Tyr Val
Val Leu Pro Gly Tyr Thr Asp Ser Lys 180 185
190Glu Asp Ile Glu Ala Leu Ile Glu Leu Val Lys Asn Ser Pro
Thr Cys 195 200 205Glu Arg Ile Glu
Phe Leu Pro Tyr Pro Glu Leu Gly Lys Asn Lys Trp 210
215 220Glu Glu Leu Gly Ile Glu Tyr Pro Leu Lys Asn Ile
Lys Gln Leu Lys225 230 235
240Lys Ser Glu Ile Lys Trp Ile Cys Asp Met Val Arg Glu Ala Phe Lys
245 250 255Asp Arg Asn Ile Pro
Val Thr Gly Asp Thr 260
265752496DNAChlamydomonas reinhardtiimisc_featurePflA 75atgttaacac
ccttaagcta tcctatcatc aacaccgtct cgtcaagtct gccagcgctt 60cacgccatga
gccagatgct gctggagaag acaatgcgcc ggggcctcgc cacggtctcg 120gccgcagcga
gctccgctgt tggccggccc atccccatgg ctgttaggtc gccgatgcgc 180tcgatggccg
ctgccagcgc ggccgctgag gccctcccgg tggcacccag ccacagctgc 240gctgctgacc
ccgacaagca cccgcacctg cccgaccccc gcccgaagcc ggccgtggac 300gcgggcatca
acgtccagaa gtatgtgcag gacaactaca ccgcttacgc cggcaactcg 360tccttcctgg
ctggccccac tgacaacacc aagaagctgt ggagcgagct ggagaagatg 420attgccaccg
agatcgagaa gggcgtgatg gacgtggatc cctccaagcc ctccaccatc 480accgccttcc
cgcccggcta catcgacaag gacctggaga cggtggtggg gctgcagacc 540gacgcgccgc
tcaagcgcgc catcaagccc ctgggcggcg tcaacatggt caaggcggcg 600ctggagtcgt
acggctacac ccccgacccc gaggtggccc gcctgtacag cacggtgcgc 660aagacgcaca
acagcggcgt gtttgacgcc tacacggacg agatgcgcgc cgcgcgcaag 720agcggcatcc
tgtccggcct gcccgacggc tacggccgcg gccgcatcat cggcgactac 780cgccgcgtgg
cgctgtacgg cgtggacgcg ctgatcaagg ccaagaagac cgacctgaag 840cacaacctgc
tgggcgtgat ggacgaggag aagatccgcc tgcgcgagga ggtgaacgag 900cagatccgcg
cgctcagcga gctcaaggag atgggcgccg cctacggctt cgacctgagc 960cgccccgccg
ccaactcgcg cgaggcggtg cagtggctgt acttcggcta cctgggcgcc 1020gtcaaggagc
aggacggcgc cgccatgagc ctgggccgca tcgacgcctt cctggacacc 1080tactttgagc
gcgacctcaa ggccggcacc atcactgagg ccgaggtgca ggagctgatc 1140gaccacttcg
tcatgaagct gcgcatcgtg cgccagctgc gcacgcccga gtacaacgcg 1200ctgtttgccg
gcgaccccac ctgggtcacc tgcgtgctgg gcggcactga cgccagcggc 1260aaggccatgg
tcaccaagac cagcttccgc ctgctcaaca ccctgtacaa cctgggcccc 1320gcgcccgagc
ccaacctgac ggtgctgtgg aacgacaacc tgcccgcgcc cttcaaggag 1380ttctgcgcca
aggtgtcgct ggacaccagc tccatccagt acgagtccga caacctcatg 1440agcaagctgt
ttggctccga ctactccatc gcctgctgcg tgtcggccat gcgcgtgggc 1500aaggacatgc
agtactttgg cgcccgcgcc aacctgccca agctgctgct gtacacgctc 1560aacggcggcc
gcgacgaggt gtcgggcgac caggtggggc ccaagttcgc gccggtgcgc 1620agccccaccg
cgccgttgga ctatgaggag gtcaaggcca agatcgagga cggcatggag 1680tggctggcct
ccatgtacgc gaacaccatg aacatcatcc actacatgca cgacaagtac 1740gactacgagc
ggctgcagat ggcgctgcac gacacgcacg tgcgccgcct gctggcgttc 1800ggcatcagcg
gcctgtccgt ggtgaccgac tcgctgtcgg ccatcaagta cgcccaggtg 1860acgcccgtga
ttgacgagcg cggcctcatg acggacttca aggtggaggg cagcttcccc 1920aagtacggca
acgacgatga ccgcgtggac gagatcgccg agtgggtggt gtccaccttc 1980tccagcaagc
tggccaagca gcacacctac cgcaactcgg tgcccacgct gtcggtgctg 2040accatcacct
ccaacgtggt gtacggcaag aagacgggct ccacccccga cggccgcaag 2100aagggcgagc
ccttcgcgcc cggcgccaac ccgctgcacg gccgcgacgc ccacggcgct 2160ctggcctcgc
tcaactcggt ggccaagctg ccctacacca tgtgcctgga cggcatctcc 2220aacaccttct
cgctcatccc ccaggtgctg ggcaggggcg gcgagcacga gcgcgccacc 2280aacctggcct
ccatcctgga cggctacttt gccaacggcg gccaccacat caacgtcaac 2340gtgctcaacc
gctccatgct catggacgcc gtggagcacc ccgagaagta ccccaacctc 2400accatccgcg
tgtccgggta cgctgtgcac ttcgcgcgcc tcacgcgcga gcagcagctg 2460gaggtgatcg
cgcgcacctt ccacgacacc atgtaa
249676831PRTChlamydomonas reinhardtiiMISC_FEATUREPflA 76Met Leu Thr Pro
Leu Ser Tyr Pro Ile Ile Asn Thr Val Ser Ser Ser1 5
10 15Leu Pro Ala Leu His Ala Met Ser Gln Met
Leu Leu Glu Lys Thr Met 20 25
30Arg Arg Gly Leu Ala Thr Val Ser Ala Ala Ala Ser Ser Ala Val Gly
35 40 45Arg Pro Ile Pro Met Ala Val Arg
Ser Pro Met Arg Ser Met Ala Ala 50 55
60Ala Ser Ala Ala Ala Glu Ala Leu Pro Val Ala Pro Ser His Ser Cys65
70 75 80Ala Ala Asp Pro Asp
Lys His Pro His Leu Pro Asp Pro Arg Pro Lys 85
90 95Pro Ala Val Asp Ala Gly Ile Asn Val Gln Lys
Tyr Val Gln Asp Asn 100 105
110Tyr Thr Ala Tyr Ala Gly Asn Ser Ser Phe Leu Ala Gly Pro Thr Asp
115 120 125Asn Thr Lys Lys Leu Trp Ser
Glu Leu Glu Lys Met Ile Ala Thr Glu 130 135
140Ile Glu Lys Gly Val Met Asp Val Asp Pro Ser Lys Pro Ser Thr
Ile145 150 155 160Thr Ala
Phe Pro Pro Gly Tyr Ile Asp Lys Asp Leu Glu Thr Val Val
165 170 175Gly Leu Gln Thr Asp Ala Pro
Leu Lys Arg Ala Ile Lys Pro Leu Gly 180 185
190Gly Val Asn Met Val Lys Ala Ala Leu Glu Ser Tyr Gly Tyr
Thr Pro 195 200 205Asp Pro Glu Val
Ala Arg Leu Tyr Ser Thr Val Arg Lys Thr His Asn 210
215 220Ser Gly Val Phe Asp Ala Tyr Thr Asp Glu Met Arg
Ala Ala Arg Lys225 230 235
240Ser Gly Ile Leu Ser Gly Leu Pro Asp Gly Tyr Gly Arg Gly Arg Ile
245 250 255Ile Gly Asp Tyr Arg
Arg Val Ala Leu Tyr Gly Val Asp Ala Leu Ile 260
265 270Lys Ala Lys Lys Thr Asp Leu Lys His Asn Leu Leu
Gly Val Met Asp 275 280 285Glu Glu
Lys Ile Arg Leu Arg Glu Glu Val Asn Glu Gln Ile Arg Ala 290
295 300Leu Ser Glu Leu Lys Glu Met Gly Ala Ala Tyr
Gly Phe Asp Leu Ser305 310 315
320Arg Pro Ala Ala Asn Ser Arg Glu Ala Val Gln Trp Leu Tyr Phe Gly
325 330 335Tyr Leu Gly Ala
Val Lys Glu Gln Asp Gly Ala Ala Met Ser Leu Gly 340
345 350Arg Ile Asp Ala Phe Leu Asp Thr Tyr Phe Glu
Arg Asp Leu Lys Ala 355 360 365Gly
Thr Ile Thr Glu Ala Glu Val Gln Glu Leu Ile Asp His Phe Val 370
375 380Met Lys Leu Arg Ile Val Arg Gln Leu Arg
Thr Pro Glu Tyr Asn Ala385 390 395
400Leu Phe Ala Gly Asp Pro Thr Trp Val Thr Cys Val Leu Gly Gly
Thr 405 410 415Asp Ala Ser
Gly Lys Ala Met Val Thr Lys Thr Ser Phe Arg Leu Leu 420
425 430Asn Thr Leu Tyr Asn Leu Gly Pro Ala Pro
Glu Pro Asn Leu Thr Val 435 440
445Leu Trp Asn Asp Asn Leu Pro Ala Pro Phe Lys Glu Phe Cys Ala Lys 450
455 460Val Ser Leu Asp Thr Ser Ser Ile
Gln Tyr Glu Ser Asp Asn Leu Met465 470
475 480Ser Lys Leu Phe Gly Ser Asp Tyr Ser Ile Ala Cys
Cys Val Ser Ala 485 490
495Met Arg Val Gly Lys Asp Met Gln Tyr Phe Gly Ala Arg Ala Asn Leu
500 505 510Pro Lys Leu Leu Leu Tyr
Thr Leu Asn Gly Gly Arg Asp Glu Val Ser 515 520
525Gly Asp Gln Val Gly Pro Lys Phe Ala Pro Val Arg Ser Pro
Thr Ala 530 535 540Pro Leu Asp Tyr Glu
Glu Val Lys Ala Lys Ile Glu Asp Gly Met Glu545 550
555 560Trp Leu Ala Ser Met Tyr Ala Asn Thr Met
Asn Ile Ile His Tyr Met 565 570
575His Asp Lys Tyr Asp Tyr Glu Arg Leu Gln Met Ala Leu His Asp Thr
580 585 590His Val Arg Arg Leu
Leu Ala Phe Gly Ile Ser Gly Leu Ser Val Val 595
600 605Thr Asp Ser Leu Ser Ala Ile Lys Tyr Ala Gln Val
Thr Pro Val Ile 610 615 620Asp Glu Arg
Gly Leu Met Thr Asp Phe Lys Val Glu Gly Ser Phe Pro625
630 635 640Lys Tyr Gly Asn Asp Asp Asp
Arg Val Asp Glu Ile Ala Glu Trp Val 645
650 655Val Ser Thr Phe Ser Ser Lys Leu Ala Lys Gln His
Thr Tyr Arg Asn 660 665 670Ser
Val Pro Thr Leu Ser Val Leu Thr Ile Thr Ser Asn Val Val Tyr 675
680 685Gly Lys Lys Thr Gly Ser Thr Pro Asp
Gly Arg Lys Lys Gly Glu Pro 690 695
700Phe Ala Pro Gly Ala Asn Pro Leu His Gly Arg Asp Ala His Gly Ala705
710 715 720Leu Ala Ser Leu
Asn Ser Val Ala Lys Leu Pro Tyr Thr Met Cys Leu 725
730 735Asp Gly Ile Ser Asn Thr Phe Ser Leu Ile
Pro Gln Val Leu Gly Arg 740 745
750Gly Gly Glu His Glu Arg Ala Thr Asn Leu Ala Ser Ile Leu Asp Gly
755 760 765Tyr Phe Ala Asn Gly Gly His
His Ile Asn Val Asn Val Leu Asn Arg 770 775
780Ser Met Leu Met Asp Ala Val Glu His Pro Glu Lys Tyr Pro Asn
Leu785 790 795 800Thr Ile
Arg Val Ser Gly Tyr Ala Val His Phe Ala Arg Leu Thr Arg
805 810 815Glu Gln Gln Leu Glu Val Ile
Ala Arg Thr Phe His Asp Thr Met 820 825
830772418DNAPiromyces sp. E2 77atggaaagct tagctttatc caatgtcagt
gttcttgcta acactgtttc tgttaacgct 60gttgctgcca ccaaggtcgc tggtgtcaga
atggccaagc catcccgcgc tcttcacacc 120ccagctatga agactactct taagacttct
aagaaggtcc cagctatgca agctaagacc 180tacgccactc aagctccatg catcaccaac
gatgctgctg ccaagagtga aatcgatgtt 240gaaggttgga ttaagaagca ctacacccca
tacgaaggtg atggttcttt ccttgctggt 300ccaactgaaa agaccaagaa gcttttcgcc
aaggctgaag aatacttagc taaggaacgt 360gccaacggtg gtttatacga tgttgaccca
cacactccat ccaccatcac ttcccacaag 420ccaggttacc ttgacaaaga taacgaagtt
atctacggtt accaaactga tgttccactt 480aagagagcca ttaagccatt cggtggtgtt
aacatggtta agaacgctct taaggctgtt 540aacgttccaa tggacaagga agtcgaacac
attttcactg actaccgtaa gactcacaac 600actgctgtct tcgatcttta ctccaaggaa
atgagatctg gtcgttccaa cgctatcatg 660accggtttac cagatggtta cggtcgtggt
cgtattattg gtgattaccg tcgtgttgcc 720ctttacggta ctgaccgtct tatcgcccaa
aagaacaagg ataaggccga actccaaaag 780agacaaatgg acgaaccaac catgaagctc
attggtgaag ttgctgatca agttaaggct 840cttaagcaac ttactcaaat ggccaagtcc
tacggtattg atatctctaa gccagctaag 900aacgccagag aagctactca atttgtttac
tttggttact taggttctat caaggaacaa 960gatggtgctg ccatgtctct tggtcgtgtt
gatgccttcc ttgattgttt ctttgaaaac 1020gatttaaaga acggtgttat cactgaagct
gaagctcaag aaatcattga taaccttatc 1080cttaagttac gtttcgctcg tcacttacgt
accccagaat acaacgactt attcgctggt 1140gatccaacct gggttactat gtctcttggt
ggtatgggat ctgatggtcg taccttagtt 1200actaagactt ccttccgtgt ccttaacact
ctctacaact taggtccagc tccagaacca 1260aacattactg tcctctggaa caaggctctt
ccaaagaact tcaaggactt cgccactaag 1320gtttctattg atacctcttc catccaatac
gaatccgatg ctcttatgtc tgccagattc 1380ggtgatgact acggtattgc ttgctgtgtc
tctgccatga gaattggtaa ggatatgcaa 1440ttcttcggtg ctcgttgtaa ccttgccaag
cttatgcttt acgtccttaa ccacggtaag 1500gatgaaagaa ctggtaagca agtcggtcca
gactttggtc cagttccaga aggtccaatt 1560ccattcgact ggatgtggga aacctatgac
aaggctatgg actggattgc caagctctac 1620gttaacacca tgaacgttat ccacttctgt
cacgaccaat actgttacga atcccttcaa 1680atggctcttc acgataccga tgtccgtcgt
cttatggcct tcggtgttgc tggtctttcc 1740gttgttgctg attccttctc tgctattaag
tacgctaagg ttaccccagt ccgtgatgcc 1800aagactggtt taactgttga cttcaagatt
gaaggtgaat tcccaaaatt cggtaatgat 1860gatgaccgtg ttgatttctt cgccagaact
gttactgaca agcttatcaa caagctcaga 1920aagaccccaa cctaccgtgg tgctactcac
actctttcta ttcttaccat tacctctaac 1980gtcgtttacg gtaagaagac tggttctact
ccagatggtc gtaaggctgg tcaaccattc 2040gctccaggtt gtaacccaat gcacggtcgt
gaattctctg gtgccgttgc ttctctttct 2100tctgtcgcta aggttaacta cgactcttgt
atggatggta tctctaacac cttctctatt 2160gttccaaaca ctattggtaa gtccttacaa
gaacgtcaag gtaacctttc cggtttatta 2220gatggttact tcaccaaggg tgcccaccac
cttaacgtta acgttcttaa gcgtgaaacc 2280ttagaagacg ccatggccca cccagaaaac
tatccaaacc ttactattcg tgtctctggt 2340tacgctgtca actttgttaa gttaactcca
caacaacaaa aggaagttat tgcccgtacc 2400ttccacgaaa agatgtaa
241878805PRTPiromyces sp. E2 78Met Glu
Ser Leu Ala Leu Ser Asn Val Ser Val Leu Ala Asn Thr Val1 5
10 15Ser Val Asn Ala Val Ala Ala Thr
Lys Val Ala Gly Val Arg Met Ala 20 25
30Lys Pro Ser Arg Ala Leu His Thr Pro Ala Met Lys Thr Thr Leu
Lys 35 40 45Thr Ser Lys Lys Val
Pro Ala Met Gln Ala Lys Thr Tyr Ala Thr Gln 50 55
60Ala Pro Cys Ile Thr Asn Asp Ala Ala Ala Lys Ser Glu Ile
Asp Val65 70 75 80Glu
Gly Trp Ile Lys Lys His Tyr Thr Pro Tyr Glu Gly Asp Gly Ser
85 90 95Phe Leu Ala Gly Pro Thr Glu
Lys Thr Lys Lys Leu Phe Ala Lys Ala 100 105
110Glu Glu Tyr Leu Ala Lys Glu Arg Ala Asn Gly Gly Leu Tyr
Asp Val 115 120 125Asp Pro His Thr
Pro Ser Thr Ile Thr Ser His Lys Pro Gly Tyr Leu 130
135 140Asp Lys Asp Asn Glu Val Ile Tyr Gly Tyr Gln Thr
Asp Val Pro Leu145 150 155
160Lys Arg Ala Ile Lys Pro Phe Gly Gly Val Asn Met Val Lys Asn Ala
165 170 175Leu Lys Ala Val Asn
Val Pro Met Asp Lys Glu Val Glu His Ile Phe 180
185 190Thr Asp Tyr Arg Lys Thr His Asn Thr Ala Val Phe
Asp Leu Tyr Ser 195 200 205Lys Glu
Met Arg Ser Gly Arg Ser Asn Ala Ile Met Thr Gly Leu Pro 210
215 220Asp Gly Tyr Gly Arg Gly Arg Ile Ile Gly Asp
Tyr Arg Arg Val Ala225 230 235
240Leu Tyr Gly Thr Asp Arg Leu Ile Ala Gln Lys Asn Lys Asp Lys Ala
245 250 255Glu Leu Gln Lys
Arg Gln Met Asp Glu Pro Thr Met Lys Leu Ile Gly 260
265 270Glu Val Ala Asp Gln Val Lys Ala Leu Lys Gln
Leu Thr Gln Met Ala 275 280 285Lys
Ser Tyr Gly Ile Asp Ile Ser Lys Pro Ala Lys Asn Ala Arg Glu 290
295 300Ala Thr Gln Phe Val Tyr Phe Gly Tyr Leu
Gly Ser Ile Lys Glu Gln305 310 315
320Asp Gly Ala Ala Met Ser Leu Gly Arg Val Asp Ala Phe Leu Asp
Cys 325 330 335Phe Phe Glu
Asn Asp Leu Lys Asn Gly Val Ile Thr Glu Ala Glu Ala 340
345 350Gln Glu Ile Ile Asp Asn Leu Ile Leu Lys
Leu Arg Phe Ala Arg His 355 360
365Leu Arg Thr Pro Glu Tyr Asn Asp Leu Phe Ala Gly Asp Pro Thr Trp 370
375 380Val Thr Met Ser Leu Gly Gly Met
Gly Ser Asp Gly Arg Thr Leu Val385 390
395 400Thr Lys Thr Ser Phe Arg Val Leu Asn Thr Leu Tyr
Asn Leu Gly Pro 405 410
415Ala Pro Glu Pro Asn Ile Thr Val Leu Trp Asn Lys Ala Leu Pro Lys
420 425 430Asn Phe Lys Asp Phe Ala
Thr Lys Val Ser Ile Asp Thr Ser Ser Ile 435 440
445Gln Tyr Glu Ser Asp Ala Leu Met Ser Ala Arg Phe Gly Asp
Asp Tyr 450 455 460Gly Ile Ala Cys Cys
Val Ser Ala Met Arg Ile Gly Lys Asp Met Gln465 470
475 480Phe Phe Gly Ala Arg Cys Asn Leu Ala Lys
Leu Met Leu Tyr Val Leu 485 490
495Asn His Gly Lys Asp Glu Arg Thr Gly Lys Gln Val Gly Pro Asp Phe
500 505 510Gly Pro Val Pro Glu
Gly Pro Ile Pro Phe Asp Trp Met Trp Glu Thr 515
520 525Tyr Asp Lys Ala Met Asp Trp Ile Ala Lys Leu Tyr
Val Asn Thr Met 530 535 540Asn Val Ile
His Phe Cys His Asp Gln Tyr Cys Tyr Glu Ser Leu Gln545
550 555 560Met Ala Leu His Asp Thr Asp
Val Arg Arg Leu Met Ala Phe Gly Val 565
570 575Ala Gly Leu Ser Val Val Ala Asp Ser Phe Ser Ala
Ile Lys Tyr Ala 580 585 590Lys
Val Thr Pro Val Arg Asp Ala Lys Thr Gly Leu Thr Val Asp Phe 595
600 605Lys Ile Glu Gly Glu Phe Pro Lys Phe
Gly Asn Asp Asp Asp Arg Val 610 615
620Asp Phe Phe Ala Arg Thr Val Thr Asp Lys Leu Ile Asn Lys Leu Arg625
630 635 640Lys Thr Pro Thr
Tyr Arg Gly Ala Thr His Thr Leu Ser Ile Leu Thr 645
650 655Ile Thr Ser Asn Val Val Tyr Gly Lys Lys
Thr Gly Ser Thr Pro Asp 660 665
670Gly Arg Lys Ala Gly Gln Pro Phe Ala Pro Gly Cys Asn Pro Met His
675 680 685Gly Arg Glu Phe Ser Gly Ala
Val Ala Ser Leu Ser Ser Val Ala Lys 690 695
700Val Asn Tyr Asp Ser Cys Met Asp Gly Ile Ser Asn Thr Phe Ser
Ile705 710 715 720Val Pro
Asn Thr Ile Gly Lys Ser Leu Gln Glu Arg Gln Gly Asn Leu
725 730 735Ser Gly Leu Leu Asp Gly Tyr
Phe Thr Lys Gly Ala His His Leu Asn 740 745
750Val Asn Val Leu Lys Arg Glu Thr Leu Glu Asp Ala Met Ala
His Pro 755 760 765Glu Asn Tyr Pro
Asn Leu Thr Ile Arg Val Ser Gly Tyr Ala Val Asn 770
775 780Phe Val Lys Leu Thr Pro Gln Gln Gln Lys Glu Val
Ile Ala Arg Thr785 790 795
800Phe His Glu Lys Met 805792414DNANeocallimastix
frontalis 79gcttagcttt atccaacgtc agtgttcttg ctaacactgt ttctattaac
gctgttgctg 60ccaccaaggt cgctggtgtc agaatggcta aaccaactcg tgctcttcac
actccagcta 120tgaagactac tcttaaggct tccaagaagg ctgctgttcc agtcatgcaa
gccaagacct 180acgctactgc tccagttatc actaacgatg ctgctgccaa gagcgaaatc
gatgtcgaag 240gttggattaa gaagcactat actccatacg aaggtgatgg ttctttcctt
gctggtccaa 300ctgaaaagac taagaagctt ttcgccaagg ctgaagaata cttagccaag
gaacgtgcta 360acggtggttt atacgatgtt gacccacaca ctccatctac tattacctcc
cacaagccag 420gttaccttga caaagaaaac gaagttattt acggttacca aactgatgtt
cctcttaaga 480gagccatcaa gccattcggt ggtgttaaca tggttaagaa cgctcttaag
gctgttaatg 540ttccaatgga caaggaagtc gaacacattt tctctgacta ccgtaagact
cacaacactg 600ctgtcttcga tatctactct aaggaaatga gagctggtcg ttccaacgct
atcatgactg 660gtttaccaga tggttacggt cgtggtcgta ttattggtga ttaccgtcgt
gttgcccttt 720acggtactga ccgtcttatc gcccaaaagg aaaaagataa ggctgaactc
caaaagaagc 780aaatggacga accaaccatg aaattaattg gtgaagttgc tgaccaagtt
aaggctctta 840agcaacttac tcaaatggct aagtcctacg gtattgatat taccaagcca
gccaagaacg 900ccagagaagc tactcaattt gtttacttcg gttacttagg ttctatcaag
gaacaagatg 960gtgctgccat gtctcttggt cgtgttgatg ctttcttaga ttgtttcttt
gaaaacgatt 1020taaagaatgg tgttatcact gaatctgaag ctcaagaaat cattgataac
cttatcttaa 1080agttacgttt cgctcgtcac ttacgtactc cagaatacaa cgacttattc
gctggtgatc 1140caacctgggt tactatgtct cttggtggta tgggtagtga tggtcgtacc
ttagttacta 1200agacttcctt ccgtgttctt aacactcttt acaacttagg tccagctcca
gaaccaaaca 1260tcactgtcct ctggaacaag aaccttccaa agaacttcaa ggacttcgct
actaaggttt 1320ctattgatac ctcttccatt caatacgaat ctgatgccct tatgtccgct
agattcggtg 1380atgattacgg aattgcctgc tgtgtttctg ccatgagaat tggtaaggat
atgcaattct 1440tcggtgctcg ttgtaacctt gctaagctta tgctttacgt ccttaaccat
ggtaaggatg 1500aaagaactgg taagcaagtt ggtccagact tcggtccagt tccagaaggt
ccaattccat 1560tcgactggat gtgggaaact tatgacaagg ctatggattg gattgccaag
ctttacgtta 1620acaccatgaa cgttattcac ttctgtcacg accaatactg ttacgaatct
cttcaaatgg 1680ctcttcacga taccgatgtc cgtcgtctta tggccttcgg tgttgctggt
ctttctgttg 1740ttgctgattc cttctctgct attaagtacg ctaaggttac tccaatccgt
gatccaaaga 1800ccggtttaac tgttgacttc aaggttgaag gtgaattccc aaaattcggt
aacgatgatg 1860accgtgttga cttcttcgcc agaactgtta ctgacaagct tattaacaag
ttaagaaaga 1920ctccaaccta ccgtggtgct acccacactc tttctattct taccattacc
tctaacgtcg 1980tttacggtaa gaagaccggt tctactccag atggtcgtaa ggctggtcaa
ccattcgccc 2040caggttgtaa cccaatgcac ggtcgtgaat tctctggtgc cgttgcttct
ctttcttccg 2100ttgctaaggt taactacgat tcttgtatgg atggtatctc taacaccttc
tctattgttc 2160caaacactat cggtaagact ttacaagaac gtcaaggtaa cctttctggt
ttattagatg 2220gttacttcag caagggtgct caccatctta acgttaacgt tcttaagcgt
gaaactttag 2280aagatgccat ggctcaccca gaaaactatc caaaccttac tatccgtgtt
tctggttatg 2340ctgtcaactt cgttaagtta actccagccc aacaaaagga agttattgcc
cgtaccttcc 2400acgaaaagat gtaa
241480803PRTNeocallimastix frontalis 80Leu Ala Leu Ser Asn Val
Ser Val Leu Ala Asn Thr Val Ser Ile Asn1 5
10 15Ala Val Ala Ala Thr Lys Val Ala Gly Val Arg Met
Ala Lys Pro Thr 20 25 30Arg
Ala Leu His Thr Pro Ala Met Lys Thr Thr Leu Lys Ala Ser Lys 35
40 45Lys Ala Ala Val Pro Val Met Gln Ala
Lys Thr Tyr Ala Thr Ala Pro 50 55
60Val Ile Thr Asn Asp Ala Ala Ala Lys Ser Glu Ile Asp Val Glu Gly65
70 75 80Trp Ile Lys Lys His
Tyr Thr Pro Tyr Glu Gly Asp Gly Ser Phe Leu 85
90 95Ala Gly Pro Thr Glu Lys Thr Lys Lys Leu Phe
Ala Lys Ala Glu Glu 100 105
110Tyr Leu Ala Lys Glu Arg Ala Asn Gly Gly Leu Tyr Asp Val Asp Pro
115 120 125His Thr Pro Ser Thr Ile Thr
Ser His Lys Pro Gly Tyr Leu Asp Lys 130 135
140Glu Asn Glu Val Ile Tyr Gly Tyr Gln Thr Asp Val Pro Leu Lys
Arg145 150 155 160Ala Ile
Lys Pro Phe Gly Gly Val Asn Met Val Lys Asn Ala Leu Lys
165 170 175Ala Val Asn Val Pro Met Asp
Lys Glu Val Glu His Ile Phe Ser Asp 180 185
190Tyr Arg Lys Thr His Asn Thr Ala Val Phe Asp Ile Tyr Ser
Lys Glu 195 200 205Met Arg Ala Gly
Arg Ser Asn Ala Ile Met Thr Gly Leu Pro Asp Gly 210
215 220Tyr Gly Arg Gly Arg Ile Ile Gly Asp Tyr Arg Arg
Val Ala Leu Tyr225 230 235
240Gly Thr Asp Arg Leu Ile Ala Gln Lys Glu Lys Asp Lys Ala Glu Leu
245 250 255Gln Lys Lys Gln Met
Asp Glu Pro Thr Met Lys Leu Ile Gly Glu Val 260
265 270Ala Asp Gln Val Lys Ala Leu Lys Gln Leu Thr Gln
Met Ala Lys Ser 275 280 285Tyr Gly
Ile Asp Ile Thr Lys Pro Ala Lys Asn Ala Arg Glu Ala Thr 290
295 300Gln Phe Val Tyr Phe Gly Tyr Leu Gly Ser Ile
Lys Glu Gln Asp Gly305 310 315
320Ala Ala Met Ser Leu Gly Arg Val Asp Ala Phe Leu Asp Cys Phe Phe
325 330 335Glu Asn Asp Leu
Lys Asn Gly Val Ile Thr Glu Ser Glu Ala Gln Glu 340
345 350Ile Ile Asp Asn Leu Ile Leu Lys Leu Arg Phe
Ala Arg His Leu Arg 355 360 365Thr
Pro Glu Tyr Asn Asp Leu Phe Ala Gly Asp Pro Thr Trp Val Thr 370
375 380Met Ser Leu Gly Gly Met Gly Ser Asp Gly
Arg Thr Leu Val Thr Lys385 390 395
400Thr Ser Phe Arg Val Leu Asn Thr Leu Tyr Asn Leu Gly Pro Ala
Pro 405 410 415Glu Pro Asn
Ile Thr Val Leu Trp Asn Lys Asn Leu Pro Lys Asn Phe 420
425 430Lys Asp Phe Ala Thr Lys Val Ser Ile Asp
Thr Ser Ser Ile Gln Tyr 435 440
445Glu Ser Asp Ala Leu Met Ser Ala Arg Phe Gly Asp Asp Tyr Gly Ile 450
455 460Ala Cys Cys Val Ser Ala Met Arg
Ile Gly Lys Asp Met Gln Phe Phe465 470
475 480Gly Ala Arg Cys Asn Leu Ala Lys Leu Met Leu Tyr
Val Leu Asn His 485 490
495Gly Lys Asp Glu Arg Thr Gly Lys Gln Val Gly Pro Asp Phe Gly Pro
500 505 510Val Pro Glu Gly Pro Ile
Pro Phe Asp Trp Met Trp Glu Thr Tyr Asp 515 520
525Lys Ala Met Asp Trp Ile Ala Lys Leu Tyr Val Asn Thr Met
Asn Val 530 535 540Ile His Phe Cys His
Asp Gln Tyr Cys Tyr Glu Ser Leu Gln Met Ala545 550
555 560Leu His Asp Thr Asp Val Arg Arg Leu Met
Ala Phe Gly Val Ala Gly 565 570
575Leu Ser Val Val Ala Asp Ser Phe Ser Ala Ile Lys Tyr Ala Lys Val
580 585 590Thr Pro Ile Arg Asp
Pro Lys Thr Gly Leu Thr Val Asp Phe Lys Val 595
600 605Glu Gly Glu Phe Pro Lys Phe Gly Asn Asp Asp Asp
Arg Val Asp Phe 610 615 620Phe Ala Arg
Thr Val Thr Asp Lys Leu Ile Asn Lys Leu Arg Lys Thr625
630 635 640Pro Thr Tyr Arg Gly Ala Thr
His Thr Leu Ser Ile Leu Thr Ile Thr 645
650 655Ser Asn Val Val Tyr Gly Lys Lys Thr Gly Ser Thr
Pro Asp Gly Arg 660 665 670Lys
Ala Gly Gln Pro Phe Ala Pro Gly Cys Asn Pro Met His Gly Arg 675
680 685Glu Phe Ser Gly Ala Val Ala Ser Leu
Ser Ser Val Ala Lys Val Asn 690 695
700Tyr Asp Ser Cys Met Asp Gly Ile Ser Asn Thr Phe Ser Ile Val Pro705
710 715 720Asn Thr Ile Gly
Lys Thr Leu Gln Glu Arg Gln Gly Asn Leu Ser Gly 725
730 735Leu Leu Asp Gly Tyr Phe Ser Lys Gly Ala
His His Leu Asn Val Asn 740 745
750Val Leu Lys Arg Glu Thr Leu Glu Asp Ala Met Ala His Pro Glu Asn
755 760 765Tyr Pro Asn Leu Thr Ile Arg
Val Ser Gly Tyr Ala Val Asn Phe Val 770 775
780Lys Leu Thr Pro Ala Gln Gln Lys Glu Val Ile Ala Arg Thr Phe
His785 790 795 800Glu Lys
Met812619DNAClostridium phytofermentans 81atgacgaaaa aagtggaatt
acagacaact ggattagtag actctctcga agcattaaca 60gcaaaattta gagagttaaa
agaagcacaa gagctctttg ctacctacac tcaagagcaa 120gtagataaaa tcttctttgc
tgctgccatg gctgccaatc agcaacgtat tccgttagca 180aagatggctg tagaagaaac
gggtatgggt attgtagaag ataaagtaat taagaatcat 240tatgctgcag agtatattta
caatgcatac aaagatacaa aaacatgtgg agtggttgaa 300gaagatccta gcttcggtat
caaaaaaatt gcagagccaa tcggcgtagt tgcagctgta 360atcccaacta ccaatcctac
ctccactgct atctttaaaa cattactttg tttaaagact 420cgtaacgcaa tcatcatcag
cccacatcct cgtgctaaga actgtaccat cgcagctgct 480aaggtagttt tagatgctgc
agttgctgca ggtgctcctg ctggtataat tggatggatt 540gatgttccat cacttgaatt
aaccaatgaa gttatgaaaa atgcagacat catccttgca 600actggtggac ctggtatggt
aaaggctgct tattcttctg gtaaaccagc acttggtgtt 660ggcgcaggta atacccctgt
tattatggat gaaagctgcg atgttcgcct tgcagtaagc 720tctattattc actctaagac
atttgataac ggtatgattt gtgcttccga gcaatccgta 780attattagtg ataagattta
tgaagctgct aagaaagaat tcaaggatcg tggttgccac 840atctgctccc cagaagagac
tcagaagctt cgtgaaacaa tcctaattaa tggtgctctt 900aacgctaaaa ttgttggaca
aagcgctcat acgattgcaa agcttgcagg atttgatgta 960gcagaagctg ctaagatttt
aattggtgaa gtagaatccg ttgaactaga agaacaattt 1020gcacacgaga aactttctcc
agttcttgct atgtacaaat caaaatcctt tgatgatgca 1080gtaagcaaag ctgctcgtct
tgttgcagat ggcggttatg gccatacttc ttccatctat 1140attaatgtag gtaccggaca
agaaaagatt gcaaagtttt ctgatgctat gaagacttgc 1200cgtattcttg taaatacacc
atcctcccat ggtggtatcg gtgaccttta taactttaaa 1260ttagctccat ctcttactct
tggttgtggc tcctggggcg gtaactctgt atcagaaaac 1320gtaggagtaa agcacttaat
caacattaag acagttgctg agaggagaga aaacatgctt 1380tggtttagag cacctgagaa
agtatacttt aagaagggtt gtttaccagt agccctcgca 1440gaattaaaag atgtaatgaa
taaaaagaaa gtattcattg taaccgatgc tttcctttat 1500aaaaatggct atacaaaatg
tgttactgat cagttagatg ctatgggaat tcagcatact 1560acttactatg atgttgctcc
agatccatct ttagctagtg ctacagaagg tgcagaagcg 1620atgagactct tcgagccaga
ctgtattatc gcactcggtg gtggttctgc aatggatgcc 1680ggaaagatta tgtgggttat
gtatgaacac cctgaagtaa acttccttga ccttgcaatg 1740cgtttcatgg atattagaaa
gcgtgtttac tccttcccta agatgggcga aaaagcttac 1800tttatcgcag ttccaacttc
ctccggtact ggttctgaag ttacaccatt tgctgttatt 1860accgatgaga gaactggcgt
aaaatatcca cttgcagatt acgaattact tcctaagatg 1920gctattattg atgccgatat
gatgatgaat caacctaagg gattaacttc tgcttccggt 1980attgatgccc ttacccatgc
attagaggca tatgcttcta tcatggctac tgactatacg 2040gatggtttag cattaaaagc
tatgaagaat atcttcgctt accttccaag cgcatatgaa 2100aatggtgccg ctgatccggt
tgcaagagaa aagatggcag atgcttctac cttagctggt 2160atggcattcg caaatgcatt
cttaggaatt tgccactcca tggctcataa attaggtgca 2220ttccaccact taccacacgg
tgtagcaaac gcactcttaa tcaacgaagt aatgcgcttt 2280aactccgtta gcattcctac
aaagatgggt actttctctc aataccaata cccacatgcg 2340ttagatcgtt atgtagaatg
tgcgaacttc ttaggtattg ccggaaagaa cgacaatgag 2400aaattcgaaa accttcttaa
ggcaattgat gaattaaaag aaaaagttgg tatcaagaaa 2460tccatcaaag aatatggcgt
agacgagaaa tatttcttag atactttaga tgctatggtt 2520gaacaggctt tcgatgatca
gtgtactggt gctaacccaa gatatccatt aatgaaggaa 2580atcaaggaaa tctatcttaa
agtgtactac ggtaaataa 261982872PRTClostridium
phytofermentans 82Met Thr Lys Lys Val Glu Leu Gln Thr Thr Gly Leu Val Asp
Ser Leu1 5 10 15Glu Ala
Leu Thr Ala Lys Phe Arg Glu Leu Lys Glu Ala Gln Glu Leu 20
25 30Phe Ala Thr Tyr Thr Gln Glu Gln Val
Asp Lys Ile Phe Phe Ala Ala 35 40
45Ala Met Ala Ala Asn Gln Gln Arg Ile Pro Leu Ala Lys Met Ala Val 50
55 60Glu Glu Thr Gly Met Gly Ile Val Glu
Asp Lys Val Ile Lys Asn His65 70 75
80Tyr Ala Ala Glu Tyr Ile Tyr Asn Ala Tyr Lys Asp Thr Lys
Thr Cys 85 90 95Gly Val
Val Glu Glu Asp Pro Ser Phe Gly Ile Lys Lys Ile Ala Glu 100
105 110Pro Ile Gly Val Val Ala Ala Val Ile
Pro Thr Thr Asn Pro Thr Ser 115 120
125Thr Ala Ile Phe Lys Thr Leu Leu Cys Leu Lys Thr Arg Asn Ala Ile
130 135 140Ile Ile Ser Pro His Pro Arg
Ala Lys Asn Cys Thr Ile Ala Ala Ala145 150
155 160Lys Val Val Leu Asp Ala Ala Val Ala Ala Gly Ala
Pro Ala Gly Ile 165 170
175Ile Gly Trp Ile Asp Val Pro Ser Leu Glu Leu Thr Asn Glu Val Met
180 185 190Lys Asn Ala Asp Ile Ile
Leu Ala Thr Gly Gly Pro Gly Met Val Lys 195 200
205Ala Ala Tyr Ser Ser Gly Lys Pro Ala Leu Gly Val Gly Ala
Gly Asn 210 215 220Thr Pro Val Ile Met
Asp Glu Ser Cys Asp Val Arg Leu Ala Val Ser225 230
235 240Ser Ile Ile His Ser Lys Thr Phe Asp Asn
Gly Met Ile Cys Ala Ser 245 250
255Glu Gln Ser Val Ile Ile Ser Asp Lys Ile Tyr Glu Ala Ala Lys Lys
260 265 270Glu Phe Lys Asp Arg
Gly Cys His Ile Cys Ser Pro Glu Glu Thr Gln 275
280 285Lys Leu Arg Glu Thr Ile Leu Ile Asn Gly Ala Leu
Asn Ala Lys Ile 290 295 300Val Gly Gln
Ser Ala His Thr Ile Ala Lys Leu Ala Gly Phe Asp Val305
310 315 320Ala Glu Ala Ala Lys Ile Leu
Ile Gly Glu Val Glu Ser Val Glu Leu 325
330 335Glu Glu Gln Phe Ala His Glu Lys Leu Ser Pro Val
Leu Ala Met Tyr 340 345 350Lys
Ser Lys Ser Phe Asp Asp Ala Val Ser Lys Ala Ala Arg Leu Val 355
360 365Ala Asp Gly Gly Tyr Gly His Thr Ser
Ser Ile Tyr Ile Asn Val Gly 370 375
380Thr Gly Gln Glu Lys Ile Ala Lys Phe Ser Asp Ala Met Lys Thr Cys385
390 395 400Arg Ile Leu Val
Asn Thr Pro Ser Ser His Gly Gly Ile Gly Asp Leu 405
410 415Tyr Asn Phe Lys Leu Ala Pro Ser Leu Thr
Leu Gly Cys Gly Ser Trp 420 425
430Gly Gly Asn Ser Val Ser Glu Asn Val Gly Val Lys His Leu Ile Asn
435 440 445Ile Lys Thr Val Ala Glu Arg
Arg Glu Asn Met Leu Trp Phe Arg Ala 450 455
460Pro Glu Lys Val Tyr Phe Lys Lys Gly Cys Leu Pro Val Ala Leu
Ala465 470 475 480Glu Leu
Lys Asp Val Met Asn Lys Lys Lys Val Phe Ile Val Thr Asp
485 490 495Ala Phe Leu Tyr Lys Asn Gly
Tyr Thr Lys Cys Val Thr Asp Gln Leu 500 505
510Asp Ala Met Gly Ile Gln His Thr Thr Tyr Tyr Asp Val Ala
Pro Asp 515 520 525Pro Ser Leu Ala
Ser Ala Thr Glu Gly Ala Glu Ala Met Arg Leu Phe 530
535 540Glu Pro Asp Cys Ile Ile Ala Leu Gly Gly Gly Ser
Ala Met Asp Ala545 550 555
560Gly Lys Ile Met Trp Val Met Tyr Glu His Pro Glu Val Asn Phe Leu
565 570 575Asp Leu Ala Met Arg
Phe Met Asp Ile Arg Lys Arg Val Tyr Ser Phe 580
585 590Pro Lys Met Gly Glu Lys Ala Tyr Phe Ile Ala Val
Pro Thr Ser Ser 595 600 605Gly Thr
Gly Ser Glu Val Thr Pro Phe Ala Val Ile Thr Asp Glu Arg 610
615 620Thr Gly Val Lys Tyr Pro Leu Ala Asp Tyr Glu
Leu Leu Pro Lys Met625 630 635
640Ala Ile Ile Asp Ala Asp Met Met Met Asn Gln Pro Lys Gly Leu Thr
645 650 655Ser Ala Ser Gly
Ile Asp Ala Leu Thr His Ala Leu Glu Ala Tyr Ala 660
665 670Ser Ile Met Ala Thr Asp Tyr Thr Asp Gly Leu
Ala Leu Lys Ala Met 675 680 685Lys
Asn Ile Phe Ala Tyr Leu Pro Ser Ala Tyr Glu Asn Gly Ala Ala 690
695 700Asp Pro Val Ala Arg Glu Lys Met Ala Asp
Ala Ser Thr Leu Ala Gly705 710 715
720Met Ala Phe Ala Asn Ala Phe Leu Gly Ile Cys His Ser Met Ala
His 725 730 735Lys Leu Gly
Ala Phe His His Leu Pro His Gly Val Ala Asn Ala Leu 740
745 750Leu Ile Asn Glu Val Met Arg Phe Asn Ser
Val Ser Ile Pro Thr Lys 755 760
765Met Gly Thr Phe Ser Gln Tyr Gln Tyr Pro His Ala Leu Asp Arg Tyr 770
775 780Val Glu Cys Ala Asn Phe Leu Gly
Ile Ala Gly Lys Asn Asp Asn Glu785 790
795 800Lys Phe Glu Asn Leu Leu Lys Ala Ile Asp Glu Leu
Lys Glu Lys Val 805 810
815Gly Ile Lys Lys Ser Ile Lys Glu Tyr Gly Val Asp Glu Lys Tyr Phe
820 825 830Leu Asp Thr Leu Asp Ala
Met Val Glu Gln Ala Phe Asp Asp Gln Cys 835 840
845Thr Gly Ala Asn Pro Arg Tyr Pro Leu Met Lys Glu Ile Lys
Glu Ile 850 855 860Tyr Leu Lys Val Tyr
Tyr Gly Lys865 870832676DNAEscherichia coli 83atggctgtta
ctaatgtcgc tgaacttaac gcactcgtag agcgtgtaaa aaaagcccag 60cgtgaatatg
ccagtttcac tcaagagcaa gtagacaaaa tcttccgcgc cgccgctctg 120gctgctgcag
atgctcgaat cccactcgcg aaaatggccg ttgccgaatc cggcatgggt 180atcgtcgaag
ataaagtgat caaaaaccac tttgcttctg aatatatcta caacgcctat 240aaagatgaaa
aaacctgtgg tgttctgtct gaagacgaca cttttggtac catcactatc 300gctgaaccaa
tcggtattat ttgcggtatc gttccgacca ctaacccgac ttcaactgct 360atcttcaaat
cgctgatcag tctgaagacc cgtaacgcca ttatcttctc cccgcacccg 420cgtgcaaaag
atgccaccaa caaagcggct gatatcgttc tgcaggctgc tatcgctgcc 480ggtgctccga
aagatctgat cggctggatc gatcaacctt ctgttgaact gtctaacgca 540ctgatgcacc
acccagacat caacctgatc ctcgcgactg gtggtccggg catggttaaa 600gccgcataca
gctccggtaa accagctatc ggtgtaggcg cgggcaacac tccagttgtt 660atcgatgaaa
ctgctgatat caaacgtgca gttgcatctg tactgatgtc caaaaccttc 720gacaacggcg
taatctgtgc ttctgaacag tctgttgttg ttgttgactc tgtttatgac 780gctgtacgtg
aacgttttgc aacccacggc ggctatctgt tgcagggtaa agagctgaaa 840gctgttcagg
atgttatcct gaaaaacggt gcgctgaacg cggctatcgt tggtcagcca 900gcctataaaa
ttgctgaact ggcaggcttc tctgtaccag aaaacaccaa gattctgatc 960ggtgaagtga
ccgttgttga tgaaagcgaa ccgttcgcac atgaaaaact gtccccgact 1020ctggcaatgt
accgcgctaa agatttcgaa gacgcggtag aaaaagcaga gaaactggtt 1080gctatgggcg
gtatcggtca tacctcttgc ctgtacactg accaggataa ccaaccggct 1140cgcgtttctt
acttcggtca gaaaatgaaa acggcgcgta tcctgattaa caccccagcg 1200tctcagggtg
gtatcggtga cctgtataac ttcaaactcg caccttccct gactctgggt 1260tgtggttctt
ggggtggtaa ctccatctct gaaaacgttg gtccgaaaca cctgatcaac 1320aagaaaaccg
ttgctaagcg agctgaaaac atgttgtggc acaaacttcc gaaatctatc 1380tacttccgcc
gtggctccct gccaatcgcg ctggatgaag tgattactga tggccacaaa 1440cgtgcgctca
tcgtgactga ccgcttcctg ttcaacaatg gttatgctga tcagatcact 1500tccgtactga
aagcagcagg cgttgaaact gaagtcttct tcgaagtaga agcggacccg 1560accctgagca
tcgttcgtaa aggtgcagaa ctggcaaact ccttcaaacc agacgtgatt 1620atcgcgctgg
gtggtggttc cccgatggac gccgcgaaga tcatgtgggt tatgtacgaa 1680catccggaaa
ctcacttcga agagctggcg ctgcgcttta tggatatccg taaacgtatc 1740tacaagttcc
cgaaaatggg cgtgaaagcg aaaatgatcg ctgtcaccac cacttctggt 1800acaggttctg
aagtcactcc gtttgcggtt gtaactgacg acgctactgg tcagaaatat 1860ccgctggcag
actatgcgct gactccggat atggcgattg tcgacgccaa cctggttatg 1920gacatgccga
agtccctgtg tgctttcggt ggtctggacg cagtaactca cgccatggaa 1980gcttatgttt
ctgtactggc atctgagttc tctgatggtc aggctctgca ggcactgaaa 2040ctgctgaaag
aatatctgcc agcgtcctac cacgaagggt ctaaaaatcc ggtagcgcgt 2100gaacgtgttc
acagtgcagc gactatcgcg ggtatcgcgt ttgcgaacgc cttcctgggt 2160gtatgtcact
caatggcgca caaactgggt tcccagttcc atattccgca cggtctggca 2220aacgccctgc
tgatttgtaa cgttattcgc tacaatgcga acgacaaccc gaccaagcag 2280actgcattca
gccagtatga ccgtccgcag gctcgccgtc gttatgctga aattgccgac 2340cacttgggtc
tgagcgcacc gggcgaccgt actgctgcta agatcgagaa actgctggca 2400tggctggaaa
cgctgaaagc tgaactgggt attccgaaat ctatccgtga agctggcgtt 2460caggaagcag
acttcctggc gaacgtggat aaactgtctg aagatgcatt cgatgaccag 2520tgcaccggcg
ctaacccgcg ttacccgctg atctccgagc tgaaacagat tctgctggat 2580acctactacg
gtcgtgatta tgtagaaggt gaaactgcag cgaagaaaga agctgctccg 2640gctaaagctg
agaaaaaagc gaaaaaatcc gcttaa
267684891PRTEscherichia coli 84Met Ala Val Thr Asn Val Ala Glu Leu Asn
Ala Leu Val Glu Arg Val1 5 10
15Lys Lys Ala Gln Arg Glu Tyr Ala Ser Phe Thr Gln Glu Gln Val Asp
20 25 30Lys Ile Phe Arg Ala Ala
Ala Leu Ala Ala Ala Asp Ala Arg Ile Pro 35 40
45Leu Ala Lys Met Ala Val Ala Glu Ser Gly Met Gly Ile Val
Glu Asp 50 55 60Lys Val Ile Lys Asn
His Phe Ala Ser Glu Tyr Ile Tyr Asn Ala Tyr65 70
75 80Lys Asp Glu Lys Thr Cys Gly Val Leu Ser
Glu Asp Asp Thr Phe Gly 85 90
95Thr Ile Thr Ile Ala Glu Pro Ile Gly Ile Ile Cys Gly Ile Val Pro
100 105 110Thr Thr Asn Pro Thr
Ser Thr Ala Ile Phe Lys Ser Leu Ile Ser Leu 115
120 125Lys Thr Arg Asn Ala Ile Ile Phe Ser Pro His Pro
Arg Ala Lys Asp 130 135 140Ala Thr Asn
Lys Ala Ala Asp Ile Val Leu Gln Ala Ala Ile Ala Ala145
150 155 160Gly Ala Pro Lys Asp Leu Ile
Gly Trp Ile Asp Gln Pro Ser Val Glu 165
170 175Leu Ser Asn Ala Leu Met His His Pro Asp Ile Asn
Leu Ile Leu Ala 180 185 190Thr
Gly Gly Pro Gly Met Val Lys Ala Ala Tyr Ser Ser Gly Lys Pro 195
200 205Ala Ile Gly Val Gly Ala Gly Asn Thr
Pro Val Val Ile Asp Glu Thr 210 215
220Ala Asp Ile Lys Arg Ala Val Ala Ser Val Leu Met Ser Lys Thr Phe225
230 235 240Asp Asn Gly Val
Ile Cys Ala Ser Glu Gln Ser Val Val Val Val Asp 245
250 255Ser Val Tyr Asp Ala Val Arg Glu Arg Phe
Ala Thr His Gly Gly Tyr 260 265
270Leu Leu Gln Gly Lys Glu Leu Lys Ala Val Gln Asp Val Ile Leu Lys
275 280 285Asn Gly Ala Leu Asn Ala Ala
Ile Val Gly Gln Pro Ala Tyr Lys Ile 290 295
300Ala Glu Leu Ala Gly Phe Ser Val Pro Glu Asn Thr Lys Ile Leu
Ile305 310 315 320Gly Glu
Val Thr Val Val Asp Glu Ser Glu Pro Phe Ala His Glu Lys
325 330 335Leu Ser Pro Thr Leu Ala Met
Tyr Arg Ala Lys Asp Phe Glu Asp Ala 340 345
350Val Glu Lys Ala Glu Lys Leu Val Ala Met Gly Gly Ile Gly
His Thr 355 360 365Ser Cys Leu Tyr
Thr Asp Gln Asp Asn Gln Pro Ala Arg Val Ser Tyr 370
375 380Phe Gly Gln Lys Met Lys Thr Ala Arg Ile Leu Ile
Asn Thr Pro Ala385 390 395
400Ser Gln Gly Gly Ile Gly Asp Leu Tyr Asn Phe Lys Leu Ala Pro Ser
405 410 415Leu Thr Leu Gly Cys
Gly Ser Trp Gly Gly Asn Ser Ile Ser Glu Asn 420
425 430Val Gly Pro Lys His Leu Ile Asn Lys Lys Thr Val
Ala Lys Arg Ala 435 440 445Glu Asn
Met Leu Trp His Lys Leu Pro Lys Ser Ile Tyr Phe Arg Arg 450
455 460Gly Ser Leu Pro Ile Ala Leu Asp Glu Val Ile
Thr Asp Gly His Lys465 470 475
480Arg Ala Leu Ile Val Thr Asp Arg Phe Leu Phe Asn Asn Gly Tyr Ala
485 490 495Asp Gln Ile Thr
Ser Val Leu Lys Ala Ala Gly Val Glu Thr Glu Val 500
505 510Phe Phe Glu Val Glu Ala Asp Pro Thr Leu Ser
Ile Val Arg Lys Gly 515 520 525Ala
Glu Leu Ala Asn Ser Phe Lys Pro Asp Val Ile Ile Ala Leu Gly 530
535 540Gly Gly Ser Pro Met Asp Ala Ala Lys Ile
Met Trp Val Met Tyr Glu545 550 555
560His Pro Glu Thr His Phe Glu Glu Leu Ala Leu Arg Phe Met Asp
Ile 565 570 575Arg Lys Arg
Ile Tyr Lys Phe Pro Lys Met Gly Val Lys Ala Lys Met 580
585 590Ile Ala Val Thr Thr Thr Ser Gly Thr Gly
Ser Glu Val Thr Pro Phe 595 600
605Ala Val Val Thr Asp Asp Ala Thr Gly Gln Lys Tyr Pro Leu Ala Asp 610
615 620Tyr Ala Leu Thr Pro Asp Met Ala
Ile Val Asp Ala Asn Leu Val Met625 630
635 640Asp Met Pro Lys Ser Leu Cys Ala Phe Gly Gly Leu
Asp Ala Val Thr 645 650
655His Ala Met Glu Ala Tyr Val Ser Val Leu Ala Ser Glu Phe Ser Asp
660 665 670Gly Gln Ala Leu Gln Ala
Leu Lys Leu Leu Lys Glu Tyr Leu Pro Ala 675 680
685Ser Tyr His Glu Gly Ser Lys Asn Pro Val Ala Arg Glu Arg
Val His 690 695 700Ser Ala Ala Thr Ile
Ala Gly Ile Ala Phe Ala Asn Ala Phe Leu Gly705 710
715 720Val Cys His Ser Met Ala His Lys Leu Gly
Ser Gln Phe His Ile Pro 725 730
735His Gly Leu Ala Asn Ala Leu Leu Ile Cys Asn Val Ile Arg Tyr Asn
740 745 750Ala Asn Asp Asn Pro
Thr Lys Gln Thr Ala Phe Ser Gln Tyr Asp Arg 755
760 765Pro Gln Ala Arg Arg Arg Tyr Ala Glu Ile Ala Asp
His Leu Gly Leu 770 775 780Ser Ala Pro
Gly Asp Arg Thr Ala Ala Lys Ile Glu Lys Leu Leu Ala785
790 795 800Trp Leu Glu Thr Leu Lys Ala
Glu Leu Gly Ile Pro Lys Ser Ile Arg 805
810 815Glu Ala Gly Val Gln Glu Ala Asp Phe Leu Ala Asn
Val Asp Lys Leu 820 825 830Ser
Glu Asp Ala Phe Asp Asp Gln Cys Thr Gly Ala Asn Pro Arg Tyr 835
840 845Pro Leu Ile Ser Glu Leu Lys Gln Ile
Leu Leu Asp Thr Tyr Tyr Gly 850 855
860Arg Asp Tyr Val Glu Gly Glu Thr Ala Ala Lys Lys Glu Ala Ala Pro865
870 875 880Ala Lys Ala Glu
Lys Lys Ala Lys Lys Ser Ala 885
890852865DNAChlamydomonas reinhardtiimisc_featureAdhE 85atgatgtcct
ccagcctcgt ctctggcaag agggttgccg tgccctctgc tgccaagccc 60tgtgctgctg
tgccgctgcc ccgcgtggcc ggtcgccgga ctgctgcacg cgttgtctgc 120gaggctgctc
cctctggcgc cgcccctgcc agccccaagg ctgaggctgc tgcgcccgtt 180gccgctgccc
cggccacccc ccatgctgag gtgaagaagg agcgcgcccc agccaccgat 240gaggcgctga
cggagctgaa ggcgctgctg aagcgcgccc agaccgccca ggcgcagtac 300tccacctaca
cccaggagca ggtggacgag atcttccgcg ccgccgccga ggccgccaac 360gccgcccgta
tccccctggc caagatggcc gtggaggaga cccgcatggg cgtggctgag 420gacaaggtgg
tgaagaacca cttcgcctcc gagttcatct acaacaagta caagcacact 480aagacctgcg
gcgtcatcga gcacgacccc gccggcggca tccagaaggt ggctgagccc 540gtgggcgtca
ttgccggtat cgtgcccacc accaacccca cctccaccgc catcttcaag 600tcgctgctgt
cgctcaagac ccgcaacgcg ctggtgctgt gcccgcaccc ccgcgccgcc 660aagagcacca
tcgccgccgc gcgcatcgtg cgtgacgccg ccgtggccgc cggcgcgccg 720cccaacatca
tcagctgggt ggagacgccc tcgctgccgg tgtcccaggc gctgatgcag 780gcgactgaga
tcaacctcat cctggccacc ggtggcccgg ccatggtgcg cgccgcctac 840tcgtccggca
acccgtcgct gggtgtgggc gccggcaaca ccccggccct gattgacgag 900actgccgacg
tggccatggc cgtgtcctcc atcctgctgt ccaagacctt tgacaacggc 960gtcatctgcg
cctcggagca gtcggtggtg gtggtggcca aggcctacga cgccgtgcgc 1020accgagttcg
tgcgccgcgg ggcctacttc ctgaccgagg acgacaaggt caaggtccgc 1080gccggtgtgg
ttgtggacgg caagctgaac cccaacattg tgggccagtc catccccaag 1140ctggcggccc
tgttcggcat caaggtgccc cagggcacca aggtgctcat cggcgaggtg 1200gagaagatcg
gccccgagga ggcgctgtcg caggagaagc tgtgccccat cctggccatg 1260taccgggcgc
ccgactacga ccacggcgtc aagatggcct gcgagctcat catgtacggc 1320ggcgccggcc
acacctcggt gctgtacacc aacccgctca acaacgccca catccagcag 1380taccagagcg
cggtcaagac cgtgcgcatc ctcatcaaca cccccgcctc gcagggcgcc 1440attggtgacc
tgtacaactt ccacctggac ccctccctca ccctgggctg cggcacctgg 1500ggctccacct
cggtgtccac caacgtgggc ccgcagcacc tgctgaacat caagaccgtc 1560accgcgcgcc
gcgagaacat gctgtggttc cgcgtgccgc ccaagatcta cttcaagggc 1620ggctgcctgg
aggtggcgct gaccgatctg cgtggcaaat cgcgcgcttt cattgtcacg 1680gacaagccgc
tttttgacat gggatacgcc gacaaggtca cccacatcct ggacagcatt 1740aacgtgcacc
accaggtgtt ctaccacgtg acccccgacc cgaccctggc ctgcattgag 1800gcgggtctga
aggagatcct ggagttcaag cccgatgtca tcatcgcgct gggtggtggc 1860tcgcccatgg
acgccgccaa gatcatgtgg ctgatgtacg agtgccccga cacccgcttc 1920gacggcctgg
ccatgcgctt catggacatc cgcaagcgcg tgtacgaggt gccggagctg 1980ggcaagaagg
ccaccatggt gtgcatcccc accaccagtg gcaccggctc ggaggtgacg 2040cccttctcgg
tggtcaccga cgagcgcctg ggcgccaagt accccctggc cgattacgcc 2100ctgaccccca
gcatggccat tgtggacccc cagctggtgc tcaacatgcc caagaagctg 2160accgcctggg
gcggcattga cgcgctcacg cacgcgctgg agagctacgt gtccatctgc 2220gccaccgact
acaccaaggg tctgtcgcgc gaggccatca gcctgctgtt caagtacctg 2280ccccgcgcct
acgccaacgg ctccaacgac tacctggcgc gtgagaaggt gcactacgcc 2340gccacgattg
ccggcatggc cttcgccaac gccttcctgg gcatctgcca ctccatggcg 2400cacaagctgg
gcgccgccta ccacgtgcct cacggcctgg ccaacgccgc gctgatcagc 2460cacgtcatcc
gctacaacgc caccgacatg cccgccaagc aggccgcctt cccgcagtac 2520gagtacccca
ccgccaagca ggactacgcc gacctggcca acatgctggg cctgggcggc 2580aacacggtgg
acgagaaggt gatcaagctg attgaggcgg tggaggagct caaggccaag 2640gtggacatcc
cgcccaccat caaggagatc ttcaacgacc ccaaggtgga cgccgacttc 2700ctggcgaacg
tggacgccct ggccgaggac gccttcgacg accagtgcac gggcgccaac 2760ccgcgctacc
cgctcatggc cgacctgaag cagctctacc tggacgccca cgccgcgccc 2820atcctgcccg
tcaagaccct ggagttcttc tccaagatca actaa
286586954PRTChlamydomonas reinhardtiiMISC_FEATUREAdhE 86Met Met Ser Ser
Ser Leu Val Ser Gly Lys Arg Val Ala Val Pro Ser1 5
10 15Ala Ala Lys Pro Cys Ala Ala Val Pro Leu
Pro Arg Val Ala Gly Arg 20 25
30Arg Thr Ala Ala Arg Val Val Cys Glu Ala Ala Pro Ser Gly Ala Ala
35 40 45Pro Ala Ser Pro Lys Ala Glu Ala
Ala Ala Pro Val Ala Ala Ala Pro 50 55
60Ala Thr Pro His Ala Glu Val Lys Lys Glu Arg Ala Pro Ala Thr Asp65
70 75 80Glu Ala Leu Thr Glu
Leu Lys Ala Leu Leu Lys Arg Ala Gln Thr Ala 85
90 95Gln Ala Gln Tyr Ser Thr Tyr Thr Gln Glu Gln
Val Asp Glu Ile Phe 100 105
110Arg Ala Ala Ala Glu Ala Ala Asn Ala Ala Arg Ile Pro Leu Ala Lys
115 120 125Met Ala Val Glu Glu Thr Arg
Met Gly Val Ala Glu Asp Lys Val Val 130 135
140Lys Asn His Phe Ala Ser Glu Phe Ile Tyr Asn Lys Tyr Lys His
Thr145 150 155 160Lys Thr
Cys Gly Val Ile Glu His Asp Pro Ala Gly Gly Ile Gln Lys
165 170 175Val Ala Glu Pro Val Gly Val
Ile Ala Gly Ile Val Pro Thr Thr Asn 180 185
190Pro Thr Ser Thr Ala Ile Phe Lys Ser Leu Leu Ser Leu Lys
Thr Arg 195 200 205Asn Ala Leu Val
Leu Cys Pro His Pro Arg Ala Ala Lys Ser Thr Ile 210
215 220Ala Ala Ala Arg Ile Val Arg Asp Ala Ala Val Ala
Ala Gly Ala Pro225 230 235
240Pro Asn Ile Ile Ser Trp Val Glu Thr Pro Ser Leu Pro Val Ser Gln
245 250 255Ala Leu Met Gln Ala
Thr Glu Ile Asn Leu Ile Leu Ala Thr Gly Gly 260
265 270Pro Ala Met Val Arg Ala Ala Tyr Ser Ser Gly Asn
Pro Ser Leu Gly 275 280 285Val Gly
Ala Gly Asn Thr Pro Ala Leu Ile Asp Glu Thr Ala Asp Val 290
295 300Ala Met Ala Val Ser Ser Ile Leu Leu Ser Lys
Thr Phe Asp Asn Gly305 310 315
320Val Ile Cys Ala Ser Glu Gln Ser Val Val Val Val Ala Lys Ala Tyr
325 330 335Asp Ala Val Arg
Thr Glu Phe Val Arg Arg Gly Ala Tyr Phe Leu Thr 340
345 350Glu Asp Asp Lys Val Lys Val Arg Ala Gly Val
Val Val Asp Gly Lys 355 360 365Leu
Asn Pro Asn Ile Val Gly Gln Ser Ile Pro Lys Leu Ala Ala Leu 370
375 380Phe Gly Ile Lys Val Pro Gln Gly Thr Lys
Val Leu Ile Gly Glu Val385 390 395
400Glu Lys Ile Gly Pro Glu Glu Ala Leu Ser Gln Glu Lys Leu Cys
Pro 405 410 415Ile Leu Ala
Met Tyr Arg Ala Pro Asp Tyr Asp His Gly Val Lys Met 420
425 430Ala Cys Glu Leu Ile Met Tyr Gly Gly Ala
Gly His Thr Ser Val Leu 435 440
445Tyr Thr Asn Pro Leu Asn Asn Ala His Ile Gln Gln Tyr Gln Ser Ala 450
455 460Val Lys Thr Val Arg Ile Leu Ile
Asn Thr Pro Ala Ser Gln Gly Ala465 470
475 480Ile Gly Asp Leu Tyr Asn Phe His Leu Asp Pro Ser
Leu Thr Leu Gly 485 490
495Cys Gly Thr Trp Gly Ser Thr Ser Val Ser Thr Asn Val Gly Pro Gln
500 505 510His Leu Leu Asn Ile Lys
Thr Val Thr Ala Arg Arg Glu Asn Met Leu 515 520
525Trp Phe Arg Val Pro Pro Lys Ile Tyr Phe Lys Gly Gly Cys
Leu Glu 530 535 540Val Ala Leu Thr Asp
Leu Arg Gly Lys Ser Arg Ala Phe Ile Val Thr545 550
555 560Asp Lys Pro Leu Phe Asp Met Gly Tyr Ala
Asp Lys Val Thr His Ile 565 570
575Leu Asp Ser Ile Asn Val His His Gln Val Phe Tyr His Val Thr Pro
580 585 590Asp Pro Thr Leu Ala
Cys Ile Glu Ala Gly Leu Lys Glu Ile Leu Glu 595
600 605Phe Lys Pro Asp Val Ile Ile Ala Leu Gly Gly Gly
Ser Pro Met Asp 610 615 620Ala Ala Lys
Ile Met Trp Leu Met Tyr Glu Cys Pro Asp Thr Arg Phe625
630 635 640Asp Gly Leu Ala Met Arg Phe
Met Asp Ile Arg Lys Arg Val Tyr Glu 645
650 655Val Pro Glu Leu Gly Lys Lys Ala Thr Met Val Cys
Ile Pro Thr Thr 660 665 670Ser
Gly Thr Gly Ser Glu Val Thr Pro Phe Ser Val Val Thr Asp Glu 675
680 685Arg Leu Gly Ala Lys Tyr Pro Leu Ala
Asp Tyr Ala Leu Thr Pro Ser 690 695
700Met Ala Ile Val Asp Pro Gln Leu Val Leu Asn Met Pro Lys Lys Leu705
710 715 720Thr Ala Trp Gly
Gly Ile Asp Ala Leu Thr His Ala Leu Glu Ser Tyr 725
730 735Val Ser Ile Cys Ala Thr Asp Tyr Thr Lys
Gly Leu Ser Arg Glu Ala 740 745
750Ile Ser Leu Leu Phe Lys Tyr Leu Pro Arg Ala Tyr Ala Asn Gly Ser
755 760 765Asn Asp Tyr Leu Ala Arg Glu
Lys Val His Tyr Ala Ala Thr Ile Ala 770 775
780Gly Met Ala Phe Ala Asn Ala Phe Leu Gly Ile Cys His Ser Met
Ala785 790 795 800His Lys
Leu Gly Ala Ala Tyr His Val Pro His Gly Leu Ala Asn Ala
805 810 815Ala Leu Ile Ser His Val Ile
Arg Tyr Asn Ala Thr Asp Met Pro Ala 820 825
830Lys Gln Ala Ala Phe Pro Gln Tyr Glu Tyr Pro Thr Ala Lys
Gln Asp 835 840 845Tyr Ala Asp Leu
Ala Asn Met Leu Gly Leu Gly Gly Asn Thr Val Asp 850
855 860Glu Lys Val Ile Lys Leu Ile Glu Ala Val Glu Glu
Leu Lys Ala Lys865 870 875
880Val Asp Ile Pro Pro Thr Ile Lys Glu Ile Phe Asn Asp Pro Lys Val
885 890 895Asp Ala Asp Phe Leu
Ala Asn Val Asp Ala Leu Ala Glu Asp Ala Phe 900
905 910Asp Asp Gln Cys Thr Gly Ala Asn Pro Arg Tyr Pro
Leu Met Ala Asp 915 920 925Leu Lys
Gln Leu Tyr Leu Asp Ala His Ala Ala Pro Ile Leu Pro Val 930
935 940Lys Thr Leu Glu Phe Phe Ser Lys Ile Asn945
950872658DNAPiromyces sp. E2 87atgtccggat tacaaatgtt
ccaaaacctt tctctttacg gtagtctcgc cgaaatcgat 60actagcgaaa agcttaacga
agctatggac aaattaactg ctgcccaaga acaattcaga 120gaatacaacc aagaacaagt
tgacaaaatc ttcaaggctg ttgctttagc tgcttctcaa 180aaccgtgttg ctttcgctaa
gtacgcacac gaagaaaccc aaaagggtgt tttcgaagat 240aaggttatca agaacgaatt
cgctgctgat tacatttacc acaagtactg caatgacaag 300accgccggta tcattgaata
tgatgaagcc aatggtctta tggaaattgc tgaaccagtt 360ggtccagttg ttggtattgc
tccagttact aacccaactt ctactatcat ctacaagtct 420ttaattgcct taaagacccg
taactgtatt atcttctcac cacatccagg agctcacaag 480gcctctgttt tcgttgttaa
ggtcttacac caagctgctg ttaaggctgg tgccccagaa 540aactgtattc aaatcatctt
cccaaagatg gatttaacta ctgaattatt acaccaccaa 600aagactcgtt tcatttgggc
tactggtggt ccaggtttag ttcacgcctc ttacacttct 660ggtaagccag ctcttggtgg
tggtccaggt aatgctccag ctcttattga tgaaacttgt 720gatatgaacg aagctgttgg
ttctatcgtt gtttctaaga ctttcgattg tggtatgatc 780tgtgccactg aaaacgctgt
tgtcgttgtc gaatctgtct acgaaaactt cgttgctacc 840atgaagaagc gtggtgccta
cttcatgact ccagaagaaa ccaagaaggc ttctaacctt 900cttttcggag aaggtatgag
attaaatgct aaggctgttg gtcaaactgc caagacttta 960gctgaaatgg ccggtttcga
agtcccagaa aacaccgttg ttctctgtgg tgaagcttct 1020gaagttaaat tcgaagaacc
aatggctcac gaaaagttaa ctactatcct cggtatctac 1080aaggctaagg actttgacga
tggtgtcaga ttatgtaagg aattagttac tttcggtggt 1140aagggtcaca ctgctgttct
ctacaccaac caaaacaaca aggaccgtat tgaaaagtac 1200caaaacgaag ttccagcctt
ccacatctta gttgacatgc catcttccct cggttgtatt 1260ggtgatatgt acaacttccg
tcttgctcca gctcttacca ttacttgtgg tactatgggt 1320ggtggttcct cctctgataa
cattggtcca aagcacttac ttaacatcaa gcgtgttggt 1380atgagacgcg aaaacatgct
ttggttcaag attccaaagt ctgtctactt caagcgtgct 1440atcctttctg aagctttatc
tgacttacgt gacacccaca agcgtgctat cattattacc 1500gatagaacta tgactatgtt
aggtcaaact gacaagatca ttaaggcttg tgaaggtcat 1560ggtatggtct gcactgtcta
cgataaggtt gtcccagatc caactatcaa gtgtattatg 1620gaaggtgtta atgaaatgaa
cgtcttcaag ccagatttag ctattgctct tggtggtggt 1680tctgctatgg atgccgctaa
gatgatgcgt ttattctacg aatacccaga ccaagactta 1740caagatattg ctactcgttt
cgtcgatatc cgtaagcgtg ttgttggttg tccaaagctt 1800ggtagactta ttaagactct
tgtctgtatc ccaactacct ctggtactgg tgccgaagtt 1860actccattcg ctgtcgttac
ctctgaagaa ggtcgtaagt acccattagt cgactacgaa 1920cttactccag atatggctat
tgttgatcca gaattcgctg ttggtatgcc aaagcgttta 1980acttcttgga ctggtattga
tgctcttacc cacgccattg aatcttacgt ttctattatg 2040gctactgact tcactagacc
atactctctc cgtgctgttg gtcttatctt cgaatccctt 2100tcccttgctt acaacaacgg
taaggatatt gaagctcgtg aaaagatgca caatgcttct 2160gctattgctg gtatggcctt
tgccaacgct ttccttggtt gttgtcactc tgttgctcac 2220caacttggtt ccgtctacca
cattccacac ggtcttgcca acgctttaat gctttctcac 2280atcattaagt acaacgctac
tgactctcca gttaagatgg gtaccttccc acaatacaag 2340tacccacaag ctatgcgtca
ctacgctgaa attgctgaac tcttattacc accaactcaa 2400gttgttaaga tgactgatgt
tgataaggtt caatacttaa ttgaccgtgt tgaacaatta 2460aaggctgacg ttggtattcc
aaagtctatt aaggaaactg gaatggttac tgaagaagac 2520ttcttcaaca aggttgacca
agttgctatc atggccttcg atgaccaatg tactggtgct 2580aacccacgtt acccattagt
ttctgaatta aaacaattaa tgattgatgc ctggaacggt 2640gttgtcccaa agctctaa
265888885PRTPiromyces sp. E2
88Met Ser Gly Leu Gln Met Phe Gln Asn Leu Ser Leu Tyr Gly Ser Leu1
5 10 15Ala Glu Ile Asp Thr Ser
Glu Lys Leu Asn Glu Ala Met Asp Lys Leu 20 25
30Thr Ala Ala Gln Glu Gln Phe Arg Glu Tyr Asn Gln Glu
Gln Val Asp 35 40 45Lys Ile Phe
Lys Ala Val Ala Leu Ala Ala Ser Gln Asn Arg Val Ala 50
55 60Phe Ala Lys Tyr Ala His Glu Glu Thr Gln Lys Gly
Val Phe Glu Asp65 70 75
80Lys Val Ile Lys Asn Glu Phe Ala Ala Asp Tyr Ile Tyr His Lys Tyr
85 90 95Cys Asn Asp Lys Thr Ala
Gly Ile Ile Glu Tyr Asp Glu Ala Asn Gly 100
105 110Leu Met Glu Ile Ala Glu Pro Val Gly Pro Val Val
Gly Ile Ala Pro 115 120 125Val Thr
Asn Pro Thr Ser Thr Ile Ile Tyr Lys Ser Leu Ile Ala Leu 130
135 140Lys Thr Arg Asn Cys Ile Ile Phe Ser Pro His
Pro Gly Ala His Lys145 150 155
160Ala Ser Val Phe Val Val Lys Val Leu His Gln Ala Ala Val Lys Ala
165 170 175Gly Ala Pro Glu
Asn Cys Ile Gln Ile Ile Phe Pro Lys Met Asp Leu 180
185 190Thr Thr Glu Leu Leu His His Gln Lys Thr Arg
Phe Ile Trp Ala Thr 195 200 205Gly
Gly Pro Gly Leu Val His Ala Ser Tyr Thr Ser Gly Lys Pro Ala 210
215 220Leu Gly Gly Gly Pro Gly Asn Ala Pro Ala
Leu Ile Asp Glu Thr Cys225 230 235
240Asp Met Asn Glu Ala Val Gly Ser Ile Val Val Ser Lys Thr Phe
Asp 245 250 255Cys Gly Met
Ile Cys Ala Thr Glu Asn Ala Val Val Val Val Glu Ser 260
265 270Val Tyr Glu Asn Phe Val Ala Thr Met Lys
Lys Arg Gly Ala Tyr Phe 275 280
285Met Thr Pro Glu Glu Thr Lys Lys Ala Ser Asn Leu Leu Phe Gly Glu 290
295 300Gly Met Arg Leu Asn Ala Lys Ala
Val Gly Gln Thr Ala Lys Thr Leu305 310
315 320Ala Glu Met Ala Gly Phe Glu Val Pro Glu Asn Thr
Val Val Leu Cys 325 330
335Gly Glu Ala Ser Glu Val Lys Phe Glu Glu Pro Met Ala His Glu Lys
340 345 350Leu Thr Thr Ile Leu Gly
Ile Tyr Lys Ala Lys Asp Phe Asp Asp Gly 355 360
365Val Arg Leu Cys Lys Glu Leu Val Thr Phe Gly Gly Lys Gly
His Thr 370 375 380Ala Val Leu Tyr Thr
Asn Gln Asn Asn Lys Asp Arg Ile Glu Lys Tyr385 390
395 400Gln Asn Glu Val Pro Ala Phe His Ile Leu
Val Asp Met Pro Ser Ser 405 410
415Leu Gly Cys Ile Gly Asp Met Tyr Asn Phe Arg Leu Ala Pro Ala Leu
420 425 430Thr Ile Thr Cys Gly
Thr Met Gly Gly Gly Ser Ser Ser Asp Asn Ile 435
440 445Gly Pro Lys His Leu Leu Asn Ile Lys Arg Val Gly
Met Arg Arg Glu 450 455 460Asn Met Leu
Trp Phe Lys Ile Pro Lys Ser Val Tyr Phe Lys Arg Ala465
470 475 480Ile Leu Ser Glu Ala Leu Ser
Asp Leu Arg Asp Thr His Lys Arg Ala 485
490 495Ile Ile Ile Thr Asp Arg Thr Met Thr Met Leu Gly
Gln Thr Asp Lys 500 505 510Ile
Ile Lys Ala Cys Glu Gly His Gly Met Val Cys Thr Val Tyr Asp 515
520 525Lys Val Val Pro Asp Pro Thr Ile Lys
Cys Ile Met Glu Gly Val Asn 530 535
540Glu Met Asn Val Phe Lys Pro Asp Leu Ala Ile Ala Leu Gly Gly Gly545
550 555 560Ser Ala Met Asp
Ala Ala Lys Met Met Arg Leu Phe Tyr Glu Tyr Pro 565
570 575Asp Gln Asp Leu Gln Asp Ile Ala Thr Arg
Phe Val Asp Ile Arg Lys 580 585
590Arg Val Val Gly Cys Pro Lys Leu Gly Arg Leu Ile Lys Thr Leu Val
595 600 605Cys Ile Pro Thr Thr Ser Gly
Thr Gly Ala Glu Val Thr Pro Phe Ala 610 615
620Val Val Thr Ser Glu Glu Gly Arg Lys Tyr Pro Leu Val Asp Tyr
Glu625 630 635 640Leu Thr
Pro Asp Met Ala Ile Val Asp Pro Glu Phe Ala Val Gly Met
645 650 655Pro Lys Arg Leu Thr Ser Trp
Thr Gly Ile Asp Ala Leu Thr His Ala 660 665
670Ile Glu Ser Tyr Val Ser Ile Met Ala Thr Asp Phe Thr Arg
Pro Tyr 675 680 685Ser Leu Arg Ala
Val Gly Leu Ile Phe Glu Ser Leu Ser Leu Ala Tyr 690
695 700Asn Asn Gly Lys Asp Ile Glu Ala Arg Glu Lys Met
His Asn Ala Ser705 710 715
720Ala Ile Ala Gly Met Ala Phe Ala Asn Ala Phe Leu Gly Cys Cys His
725 730 735Ser Val Ala His Gln
Leu Gly Ser Val Tyr His Ile Pro His Gly Leu 740
745 750Ala Asn Ala Leu Met Leu Ser His Ile Ile Lys Tyr
Asn Ala Thr Asp 755 760 765Ser Pro
Val Lys Met Gly Thr Phe Pro Gln Tyr Lys Tyr Pro Gln Ala 770
775 780Met Arg His Tyr Ala Glu Ile Ala Glu Leu Leu
Leu Pro Pro Thr Gln785 790 795
800Val Val Lys Met Thr Asp Val Asp Lys Val Gln Tyr Leu Ile Asp Arg
805 810 815Val Glu Gln Leu
Lys Ala Asp Val Gly Ile Pro Lys Ser Ile Lys Glu 820
825 830Thr Gly Met Val Thr Glu Glu Asp Phe Phe Asn
Lys Val Asp Gln Val 835 840 845Ala
Ile Met Ala Phe Asp Asp Gln Cys Thr Gly Ala Asn Pro Arg Tyr 850
855 860Pro Leu Val Ser Glu Leu Lys Gln Leu Met
Ile Asp Ala Trp Asn Gly865 870 875
880Val Val Pro Lys Leu 885892200DNASaccharomyces
cerevisiaemisc_featureGPDI locusmisc_feature(522)..(1698)coding sequence
89tacaaacgca acacgaaaga acaaaaaaag aagaaaacag aaggccaaga cagggtcaat
60gagactgttg tcctcctact gtccctatgt ctctggccga tcacgcgcca ttgtccctca
120gaaacaaatc aaacacccac accccgggca cccaaagtcc ccacccacac caccaatacg
180taaacggggc gccccctgca ggccctcctg cgcgcggcct cccgccttgc ttctctcccc
240ttccttttct ttttccagtt ttccctattt tgtccctttt tccgcacaac aagtatcaga
300atgggttcat caaatctatc caacctaatt cgcacgtaga ctggcttggt attggcagtt
360tcgtagttat atatatacta ccatgagtga aactgttacg ttaccttaaa ttctttctcc
420ctttaatttt cttttatctt actctcctac ataagacatc aagaaacaat tgtatattgt
480acaccccccc cctccacaaa cacaaatatt gataatataa agatgtctgc tgctgctgat
540agattaaact taacttccgg ccacttgaat gctggtagaa agagaagttc ctcttctgtt
600tctttgaagg ctgccgaaaa gcctttcaag gttactgtga ttggatctgg taactggggt
660actactattg ccaaggtggt tgccgaaaat tgtaagggat acccagaagt tttcgctcca
720atagtacaaa tgtgggtgtt cgaagaagag atcaatggtg aaaaattgac tgaaatcata
780aatactagac atcaaaacgt gaaatacttg cctggcatca ctctacccga caatttggtt
840gctaatccag acttgattga ttcagtcaag gatgtcgaca tcatcgtttt caacattcca
900catcaatttt tgccccgtat ctgtagccaa ttgaaaggtc atgttgattc acacgtcaga
960gctatctcct gtctaaaggg ttttgaagtt ggtgctaaag gtgtccaatt gctatcctct
1020tacatcactg aggaactagg tattcaatgt ggtgctctat ctggtgctaa cattgccacc
1080gaagtcgctc aagaacactg gtctgaaaca acagttgctt accacattcc aaaggatttc
1140agaggcgagg gcaaggacgt cgaccataag gttctaaagg ccttgttcca cagaccttac
1200ttccacgtta gtgtcatcga agatgttgct ggtatctcca tctgtggtgc tttgaagaac
1260gttgttgcct taggttgtgg tttcgtcgaa ggtctaggct ggggtaacaa cgcttctgct
1320gccatccaaa gagtcggttt gggtgagatc atcagattcg gtcaaatgtt tttcccagaa
1380tctagagaag aaacatacta ccaagagtct gctggtgttg ctgatttgat caccacctgc
1440gctggtggta gaaacgtcaa ggttgctagg ctaatggcta cttctggtaa ggacgcctgg
1500gaatgtgaaa aggagttgtt gaatggccaa tccgctcaag gtttaattac ctgcaaagaa
1560gttcacgaat ggttggaaac atgtggctct gtcgaagact tcccattatt tgaagccgta
1620taccaaatcg tttacaacaa ctacccaatg aagaacctgc cggacatgat tgaagaatta
1680gatctacatg aagattagat ttattggaga aagataacat atcatacttt cccccacttt
1740tttcgaggct cttctatatc atattcataa attagcatta tgtcatttct cataactact
1800ttatcacgtt agaaattact tattattatt aaattaatac aaaatttagt aaccaaataa
1860atataaataa atatgtatat ttaaatttta aaaaaaaaat cctatagagc aaaaggattt
1920tccattataa tattagctgt acacctcttc cgcatttttt gagggtggtt acaacaccac
1980tcattcagag gctgtcggca cagttgcttc tagcatctgg cgtccgtatg tatgggtgta
2040ttttaaataa taaacaaagt gccacacctt caccaattat gtctttaaga aatggacaag
2100ttccaaagag cttgcccaag gctcgacaag gatgtacttt ggaatatcta tattcaagta
2160cgtggcgcgc atatgtttga gtgtgcacac aataaaggtt
2200901060DNASaccharomyces cerevisiaemisc_featuregpd1 delta
mutationmisc_feature(523)..(542)coding
sequencemisc_feature(543)..(558)coding sequence not deleted 90tacaaacgca
acacgaaaga acaaaaaaag aagaaaacag aaggccaaga cagggtcaat 60gagactgttg
tcctcctact gtccctatgt ctctggccga tcacgcgcca ttgtccctca 120gaaacaaatc
aaacacccac accccgggca cccaaagtcc ccacccacac caccaatacg 180taaacggggc
gccccctgca ggccctcctg cgcgcggcct cccgccttgc ttctctcccc 240ttccttttct
ttttccagtt ttccctattt tgtccctttt tccgcacaac aagtatcaga 300atgggttcat
caaatctatc caacctaatt cgcacgtaga ctggcttggt attggcagtt 360tcgtagttat
atatatacta ccatgagtga aactgttacg ttaccttaaa ttctttctcc 420ctttaatttt
cttttatctt actctcctac ataagacatc aagaaacaat tgtatattgt 480acaccccccc
cctccacaaa cacaaatatt gataatataa agatgtctgc tgctgctgat 540agtctacatg
aagattagat ttattggaga aagataacat atcatacttt cccccacttt 600tttcgaggct
cttctatatc atattcataa attagcatta tgtcatttct cataactact 660ttatcacgtt
agaaattact tattattatt aaattaatac aaaatttagt aaccaaataa 720atataaataa
atatgtatat ttaaatttta aaaaaaaaat cctatagagc aaaaggattt 780tccattataa
tattagctgt acacctcttc cgcatttttt gagggtggtt acaacaccac 840tcattcagag
gctgtcggca cagttgcttc tagcatctgg cgtccgtatg tatgggtgta 900ttttaaataa
taaacaaagt gccacacctt caccaattat gtctttaaga aatggacaag 960ttccaaagag
cttgcccaag gctcgacaag gatgtacttt ggaatatcta tattcaagta 1020cgtggcgcgc
atatgtttga gtgtgcacac aataaaggtt
1060912369DNASaccharomyces cerevisiaemisc_featureGPD2
locusmisc_feature(487)..(1806)coding sequence 91atagccatca tgcaagcgtg
tatcttctaa gattcagtca tcatcattac cgagtttgtt 60ttccttcaca tgatgaagaa
ggtttgagta tgctcgaaac aataagacga cgatggctct 120gccattgtta tattacgctt
ttgcggcgag gtgccgatgg gttgctgagg ggaagagtgt 180ttagcttacg gacctattgc
cattgttatt ccgattaatc tattgttcag cagctcttct 240ctaccctgtc attctagtat
tttttttttt tttttttggt tttacttttt tttcttcttg 300cctttttttc ttgttacttt
ttttctagtt ttttttcctt ccactaagct ttttccttga 360tttatccttg ggttcttctt
tctactcctt tagatttttt ttttatatat taatttttaa 420gtttatgtat tttggtagat
tcaattctct ttccctttcc ttttccttcg ctccccttcc 480ttatcaatgc ttgctgtcag
aagattaaca agatacacat tccttaagcg aacgcatccg 540gtgttatata ctcgtcgtgc
atataaaatt ttgccttcaa gatctacttt cctaagaaga 600tcattattac aaacacaact
gcactcaaag atgactgctc atactaatat caaacagcac 660aaacactgtc atgaggacca
tcctatcaga agatcggact ctgccgtgtc aattgtacat 720ttgaaacgtg cgcccttcaa
ggttacagtg attggttctg gtaactgggg gaccaccatc 780gccaaagtca ttgcggaaaa
cacagaattg cattcccata tcttcgagcc agaggtgaga 840atgtgggttt ttgatgaaaa
gatcggcgac gaaaatctga cggatatcat aaatacaaga 900caccagaacg ttaaatatct
acccaatatt gacctgcccc ataatctagt ggccgatcct 960gatcttttac actccatcaa
gggtgctgac atccttgttt tcaacatccc tcatcaattt 1020ttaccaaaca tagtcaaaca
attgcaaggc cacgtggccc ctcatgtaag ggccatctcg 1080tgtctaaaag ggttcgagtt
gggctccaag ggtgtgcaat tgctatcctc ctatgttact 1140gatgagttag gaatccaatg
tggcgcacta tctggtgcaa acttggcacc ggaagtggcc 1200aaggagcatt ggtccgaaac
caccgtggct taccaactac caaaggatta tcaaggtgat 1260ggcaaggatg tagatcataa
gattttgaaa ttgctgttcc acagacctta cttccacgtc 1320aatgtcatcg atgatgttgc
tggtatatcc attgccggtg ccttgaagaa cgtcgtggca 1380cttgcatgtg gtttcgtaga
aggtatggga tggggtaaca atgcctccgc agccattcaa 1440aggctgggtt taggtgaaat
tatcaagttc ggtagaatgt ttttcccaga atccaaagtc 1500gagacctact atcaagaatc
cgctggtgtt gcagatctga tcaccacctg ctcaggcggt 1560agaaacgtca aggttgccac
atacatggcc aagaccggta agtcagcctt ggaagcagaa 1620aaggaattgc ttaacggtca
atccgcccaa gggataatca catgcagaga agttcacgag 1680tggctacaaa catgtgagtt
gacccaagaa ttcccattat tcgaggcagt ctaccagata 1740gtctacaaca acgtccgcat
ggaagaccta ccggagatga ttgaagagct agacatcgat 1800gacgaataga cactctcccc
ccccctcccc ctctgatctt tcctgttgcc tctttttccc 1860ccaaccaatt tatcattata
cacaagttct acaactacta ctagtaacat tactacagtt 1920attataattt tctattctct
ttttctttaa gaatctatca ttaacgttaa tttctatata 1980tacataacta ccattataca
cgctattatc gtttacatat cacatcaccg ttaatgaaag 2040atacgacacc ctgtacacta
acacaattaa ataatcgcca taaccttttc tgttatctat 2100agcccttaaa gctgtttctt
cgagcttttt cactgcagta attctccaca tgggcccagc 2160cactgagata agagcgctat
gttagtcact actgacggct ctccagtcat ttatgtgatt 2220ttttagtgac tcatgtcgca
tttggcccgt ttttttccgc tgtcgcaacc tatttccatt 2280aacggtgccg tatggaagag
tcatttaaag gcaggagaga gagattactc atcttcattg 2340gatcagattg atgactgcgt
acggcagat 2369921024DNASaccharomyces
cerevisiaemisc_featuregpd2 delta mutation 92atagccatca tgcaagcgtg
tatcttctaa gattcagtca tcatcattac cgagtttgtt 60ttccttcaca tgatgaagaa
ggtttgagta tgctcgaaac aataagacga cgatggctct 120gccattgtta tattacgctt
ttgcggcgag gtgccgatgg gttgctgagg ggaagagtgt 180ttagcttacg gacctattgc
cattgttatt ccgattaatc tattgttcag cagctcttct 240ctaccctgtc attctagtat
tttttttttt tttttttggt tttacttttt tttcttcttg 300cctttttttc ttgttacttt
ttttctagtt ttttttcctt ccactaagct ttttccttga 360tttatccttg ggttcttctt
tctactcctt tagatttttt ttttatatat taatttttaa 420gtttatgtat tttggtagat
tcaattctct ttccctttcc ttttccttcg ctccccttcc 480ttatcctctg atctttcctg
ttgcctcttt ttcccccaac caatttatca ttatacacaa 540gttctacaac tactactagt
aacattacta cagttattat aattttctat tctctttttc 600tttaagaatc tatcattaac
gttaatttct atatatacat aactaccatt atacacgcta 660ttatcgttta catatcacat
caccgttaat gaaagatacg acaccctgta cactaacaca 720attaaataat cgccataacc
ttttctgtta tctatagccc ttaaagctgt ttcttcgagc 780tttttcactg cagtaattct
ccacatgggc ccagccactg agataagagc gctatgttag 840tcactactga cggctctcca
gtcatttatg tgatttttta gtgactcatg tcgcatttgg 900cccgtttttt tccgctgtcg
caacctattt ccattaacgg tgccgtatgg aagagtcatt 960taaaggcagg agagagagat
tactcatctt cattggatca gattgatgac tgcgtacggc 1020agat
1024933180DNASaccharomyces
cerevisiaemisc_featureFDH1 locusmisc_feature(880)..(2007)coding sequence
93tatttttcta tagatattta cactccgcaa gtgcaaaaaa aaagcattat cgctaacgat
60caagaggaac tgagacctta ttagttgtct ttgttggcgt aacataaatt tcttaggaaa
120agagaaaatt atctcgaagg caaaaataaa ccaagcctcg agtttaatgg ttttctaaaa
180aacactttaa aaacagatcg ccataaaagg agaagctccg taggagaccg ttttcgaaac
240ctatgtagaa ataaagggaa agctccaacg gtttggataa atctttagaa gcatagagtt
300tatacaacat tcagtacgaa atgtactctc gaaacgttct cttttcacgg tgcttagtag
360cagaaaaaag tgtcggaaat tacctatttt gtcaccactc gaggataggc ttgaaagaga
420gttttaaccc caacttttct attttgcact tgtttggcta tggtttaaaa cattctgttt
480ggaccaacag cccaagcggc ttatcccttt tctttttttc ccttataatc gggaatttcc
540ttactaggaa ggcaccgata ctagaactcc gaatgaaaaa gacatgccag taataaaact
600attttgatgt tatgcggaat atactattct tggattattc actgttaact aaaagttgga
660gaaatcactc tgcactgtca atcattgaaa aaaagaacat ataaaagggc acaaaattga
720gtctttttta atgagttctt gctgaggaaa gtttagttaa tatatcattt acgtaaaata
780tgcatattct tgtattgtgc tttttttatt cattttaagc aggaacaatt tacaagtatt
840gcaacgctaa tcaaatcaaa ataacagctg aaaattaata tgtcgaaggg aaaggttttg
900ctggttcttt acgaaggtgg taagcatgct gaagagcagg aaaagttatt ggggtgtatt
960gaaaatgaac ttggtatcag aaatttcatt gaagaacagg gatacgagtt ggttactacc
1020attgacaagg accctgagcc aacctcaacg gtagacaggg agttgaaaga cgctgaaatt
1080gtcattacta cgcccttttt ccccgcctac atctcgagaa acaggattgc agaagctcct
1140aacctgaagc tctgtgtaac cgctggcgtc ggttcagacc atgtcgattt agaagctgca
1200aatgaacgga aaatcacggt caccgaagtt actggttcta acgtcgtttc tgtcgcagag
1260cacgttatgg ccacaatttt ggttttgata agaaactata atggtggtca tcaacaagca
1320attaatggtg agtgggatat tgccggcgtg gctaaaaatg agtatgatct ggaagacaaa
1380ataatttcaa cggtaggtgc cggtagaatt ggatataggg ttctggaaag attggtcgca
1440tttaatccga agaagttact gtactacgac taccaggaac tacctgcgga agcaatcaat
1500agattgaacg aggccagcaa gcttttcaat ggcagaggtg atattgttca gagagtagag
1560aaattggagg atatggttgc tcagtcagat gttgttacca tcaactgtcc attgcacaag
1620gactcaaggg gtttattcaa taaaaagctt atttcccaca tgaaagatgg tgcatacttg
1680gtgaataccg ctagaggtgc tatttgtgtc gcagaagatg ttgccgaggc agtcaagtct
1740ggtaaattgg ctggctatgg tggtgatgtc tgggataagc aaccagcacc aaaagaccat
1800ccctggagga ctatggacaa taaggaccac gtgggaaacg caatgactgt tcatatcagt
1860ggcacatctc tggatgctca aaagaggtac gctcagggag taaagaacat cctaaatagt
1920tacttttcca aaaagtttga ttaccgtcca caggatatta ttgtgcagaa tggttcttat
1980gccaccagag cttatggaca gaagaaataa gagtgattat gagtatttgt gagcagaagt
2040tttccggtct ccttttgttc ttgttttggc gtattctcca ctattcgtcc atagcacatt
2100tataccttag ctaaatattt tgtaaagcaa aattttcgtt atctcttaaa aaatagaaga
2160gcggtttatt aatatcaaat aattgaaact gctgatatgg tagctatata caaaatctgc
2220tgtcaaaatt tggcagtaaa cgatcttcac ggtagcggtt caaataaaga ggaaaagtct
2280ttctccctta ctgtttttct ggaatttggc tcgtcgttaa taacagaact aaagatacag
2340taaaaggaga gatcgcaatc aacttcatta attgtaacag tagcataatc acaactgatc
2400atctacacta taaacagttt ttatttctaa ttatgggcgc ctggccggct caaacattgt
2460gcttttaaga ctccaaaagt atctgctgca gaaaagagcc atataatgtt aagtgttcag
2520ggataggtta tcgcttacta cttcaaacgt ttcgaaggaa agccagggaa gcctatatct
2580gattccctgt ttcataatcc aatgcagcca ctagcttata attatttgaa ctatttgtcg
2640aacatcacag taataaaatc cccagaaagt tccacttgct gcatattggc acctgttgat
2700tcactctcca tcactttttt gttagccgcc cagcctagaa agtctttaaa tacatctgaa
2760attttttttt ttttaacagt gcacccgtgc atcatacctc atgcaaggta cctttttttc
2820tcaaaggtat tgtcttccat tgaagtggca ctatggcatg atgaaccctg agcatttctg
2880aattcaacag aaccaaattg tccagaaata aatctgtccg acatgaatta tgaaactttt
2940tttcaattaa gtgaagagaa ttttgcagcg tcttaccatt attttgaccc attggtcgca
3000tgtttgcgct ttgacttcga gaaccatgtt aaagcttact tgtacgacaa ccaatgaagt
3060atattacggc agtttttttg gactgggtca aaaaaagtgt tgcataatca aatcaggaac
3120acattaaaat gttgtaaaat ttgtcttagt atcacctgag tggttattca ttacgtacta
3180941630DNASaccharomyces cerevisiaemisc_featurefdh1 delta mutation
94tatttttcta tagatattta cactccgcaa gtgcaaaaaa aaagcattat cgctaacgat
60caagaggaac tgagacctta ttagttgtct ttgttggcgt aacataaatt tcttaggaaa
120agagaaaatt atctcgaagg caaaaataaa ccaagcctcg agtttaatgg ttttctaaaa
180aacactttaa aaacagatcg ccataaaagg agaagctccg taggagaccg ttttcgaaac
240ctatgtagaa ataaagggaa agctccaacg gtttggataa atctttagaa gcatagagtt
300tatacaacat tcagtacgaa atgtactctc gaaacgttct cttttcacgg tgcttagtag
360cagaaaaaag tgtcggaaat tacctatttt gtcaccactc gaggataggc ttgaaagaga
420gttttaaccc caacttttct attttgcact tgtttggcta tggtttaaaa cattctgttt
480ggaccaacag cccaagcggc ttatcccttt tctttttttc ccttataatc gggaatttcc
540ttactaggaa ggcaccgata ctagaactcc gaatgaaaaa gacatgccag taataaaact
600attttgatgt tatgcggaat atactattct tggattattc actgttaact aaaagttgga
660gaaatcactc tgcactgtca tggcagtaaa cgatcttcac ggtagcggtt caaataaaga
720ggaaaagtct ttctccctta ctgtttttct ggaatttggc tcgtcgttaa taacagaact
780aaagatacag taaaaggaga gatcgcaatc aacttcatta attgtaacag tagcataatc
840acaactgatc atctacacta taaacagttt ttatttctaa ttatgggcgc ctggccggct
900caaacattgt gcttttaaga ctccaaaagt atctgctgca gaaaagagcc atataatgtt
960aagtgttcag ggataggtta tcgcttacta cttcaaacgt ttcgaaggaa agccagggaa
1020gcctatatct gattccctgt ttcataatcc aatgcagcca ctagcttata attatttgaa
1080ctatttgtcg aacatcacag taataaaatc cccagaaagt tccacttgct gcatattggc
1140acctgttgat tcactctcca tcactttttt gttagccgcc cagcctagaa agtctttaaa
1200tacatctgaa attttttttt ttttaacagt gcacccgtgc atcatacctc atgcaaggta
1260cctttttttc tcaaaggtat tgtcttccat tgaagtggca ctatggcatg atgaaccctg
1320agcatttctg aattcaacag aaccaaattg tccagaaata aatctgtccg acatgaatta
1380tgaaactttt tttcaattaa gtgaagagaa ttttgcagcg tcttaccatt attttgaccc
1440attggtcgca tgtttgcgct ttgacttcga gaaccatgtt aaagcttact tgtacgacaa
1500ccaatgaagt atattacggc agtttttttg gactgggtca aaaaaagtgt tgcataatca
1560aatcaggaac acattaaaat gttgtaaaat ttgtcttagt atcacctgag tggttattca
1620ttacgtacta
1630952668DNASaccharomyces cerevisiaemisc_featureFDH2
locusmisc_feature(801)..(1929)coding sequence 95tgtcgagaca atgtcattgc
aagttatata aacattgtaa tacatcacct cgatgaaaga 60gaaactggaa tgatagatct
ctttttctca aaatttcgtt aatatgtaat aataaggttc 120ctgatgtaat ttgtttttgt
acaaattatt ttagattctg gaggttcaaa taaaatatat 180attacagcca acgattaggg
gggacaagac ttgattacac atttttcgtt ggtaacttga 240ctcttttatg aaaagaaaac
attaagttga aggtgcacgc ttgaggcgct cctttttcat 300ggtgcttagc agcagatgaa
agtgtcagaa gttacctatt ttgtcaccat ttgagaataa 360gcttgaaaga aagttgtaac
cccaactttt ctatcttgca cttgtttgga ccaacagcca 420aacggcttat cccttttctt
ttcccttata atcgggaatt tccttactag gaaggcaccg 480atactataac tccgaatgaa
aaagacatgc cagtaataaa aataattgat gttatgcgga 540atatactatt cttggattat
tcactgttaa ctaaaagttg gagaaatcac tctgcactgt 600caatcattga aaaaaagaac
atataaaagg gcacaaaatc gagtcttttt taatgagttc 660ttgctgagga aaatttagtt
aatatatcat ttacataaaa catgcatatt attgtgttgt 720actttcttta ttcattttaa
gcaggaataa ttacaagtat tgcaacgcta atcaaatcga 780aataacagct gaaaattaat
atgtcgaagg gaaaggtttt gctggttctt tatgaaggtg 840gtaagcatgc tgaagagcag
gaaaagttat tggggtgtat tgaaaatgaa cttggtatca 900gaaatttcat tgaagaacag
ggatacgagt tggttactac cattgacaag gaccctgagc 960caacctcaac ggtagacagg
gagttgaaag acgctgaaat tgtcattact acgccctttt 1020tccccgccta catctcgaga
aacaggattg cagaagctcc taacctgaag ctctgtgtaa 1080ccgctggcgt cggttcagac
catgtcgatt tagaagctgc aaatgaacgg aaaatcacgg 1140tcaccgaagt tactggttct
aacgtcgttt ctgtcgcaga gcacgttatg gccacaattt 1200tggttttgat aagaaactat
aatggtggtc atcaataagc aattaatggt gagtgggata 1260ttgccggcgt ggctaaaaaa
tgagtatgat ctggaagaca aaataatttc aacggtaggt 1320gccggtagaa ttggatatag
ggttctggaa agattggtcg catttaatcc gaagaagtta 1380ctgtactacg actaccagga
actacctgcg gaagcaatca atagattgaa cgaggccagc 1440aagcttttca atggcagagg
tgatattgtt cagagagtag agaaattgga ggatatggtt 1500gctcagtcag atgttgttac
catcaactgt ccattgcaca aggactcaag gggtttattc 1560aataaaaagc ttatttccca
catgaaagat ggtgcatact tggtgaatac cgctagaggt 1620gctatttgtg tcgcagaaga
tgttgccgag gcagtcaagt ctggtaaatt ggctggctat 1680ggtggtgatg tctgggataa
gcaaccagca ccaaaagacc atccctggag gactatggac 1740aataaggacc acgtgggaaa
cgcaatgact gttcatatca gtggcacatc tctgcatgct 1800caaaagaggt acgctcaggg
agtaaagaac atcctaaata gttacttttc caaaaagttt 1860gattaccgtc cacaggatat
tattgtgcag aatggttctt atgccaccag agcttatgga 1920cagaagaaat aagagtgatt
atgagtattt gtgagcagaa gttttccggt ctccttttgt 1980tcttgttttg gcgtattctc
cactattcgt ccatagcaca tttatacctt agctaaatat 2040tttgtaaagc aaaattttcg
ttatctctta aaaaatagaa gagcggttta ttaatatcaa 2100ataattgaaa ctgctgatat
ggtagctata tacaaaatct gctgtcaaaa tttggcagta 2160aacgatcttc acggtagcgg
ttcaaataaa gaggaaaagt ccttctccct tactgttttt 2220ctggaatttg gctcgtcgtt
aataacagaa ctaaagatac agtaaaagga gagatcgcaa 2280tcaacttcat taattgtaac
agtagcataa tcacaactgg ttatctgcgt tatagacaat 2340tcttactcac aatgatgggc
gcttagttgg ctgtaaacgt cgctttttaa aactccgaaa 2400agttaccgct acagaaaaaa
accataaatg tatgctagtt gcgcagagag gtttagggtc 2460caaaatttac taccctgtcg
ctcactacag cgactgtccc gaattaagcc cgaagagacg 2520cagaactgtt gtatgaacct
catgaaacca ctgatcttga agatttagac cttcagaatc 2580gttttcaatt agaagtatac
aagaagtctt tgtacaataa tgtcaagaca gagctctgaa 2640ttatagttca gccttgttat
tttttttt 2668961539DNASaccharomyces
cerevisiaemisc_feature(801)..(1539)deleted coding sequence 96tgtcgagaca
atgtcattgc aagttatata aacattgtaa tacatcacct cgatgaaaga 60gaaactggaa
tgatagatct ctttttctca aaatttcgtt aatatgtaat aataaggttc 120ctgatgtaat
ttgtttttgt acaaattatt ttagattctg gaggttcaaa taaaatatat 180attacagcca
acgattaggg gggacaagac ttgattacac atttttcgtt ggtaacttga 240ctcttttatg
aaaagaaaac attaagttga aggtgcacgc ttgaggcgct cctttttcat 300ggtgcttagc
agcagatgaa agtgtcagaa gttacctatt ttgtcaccat ttgagaataa 360gcttgaaaga
aagttgtaac cccaactttt ctatcttgca cttgtttgga ccaacagcca 420aacggcttat
cccttttctt ttcccttata atcgggaatt tccttactag gaaggcaccg 480atactataac
tccgaatgaa aaagacatgc cagtaataaa aataattgat gttatgcgga 540atatactatt
cttggattat tcactgttaa ctaaaagttg gagaaatcac tctgcactgt 600caatcattga
aaaaaagaac atataaaagg gcacaaaatc gagtcttttt taatgagttc 660ttgctgagga
aaatttagtt aatatatcat ttacataaaa catgcatatt attgtgttgt 720actttcttta
ttcattttaa gcaggaataa ttacaagtat tgcaacgcta atcaaatcga 780aataacagct
gaaaattaat taagagtgat tatgagtatt tgtgagcaga agttttccgg 840tctccttttg
ttcttgtttt ggcgtattct ccactattcg tccatagcac atttatacct 900tagctaaata
ttttgtaaag caaaattttc gttatctctt aaaaaataga agagcggttt 960attaatatca
aataattgaa actgctgata tggtagctat atacaaaatc tgctgtcaaa 1020atttggcagt
aaacgatctt cacggtagcg gttcaaataa agaggaaaag tccttctccc 1080ttactgtttt
tctggaattt ggctcgtcgt taataacaga actaaagata cagtaaaagg 1140agagatcgca
atcaacttca ttaattgtaa cagtagcata atcacaactg gttatctgcg 1200ttatagacaa
ttcttactca caatgatggg cgcttagttg gctgtaaacg tcgcttttta 1260aaactccgaa
aagttaccgc tacagaaaaa aaccataaat gtatgctagt tgcgcagaga 1320ggtttagggt
ccaaaattta ctaccctgtc gctcactaca gcgactgtcc cgaattaagc 1380ccgaagagac
gcagaactgt tgtatgaacc tcatgaaacc actgatcttg aagatttaga 1440ccttcagaat
cgttttcaat tagaagtata caagaagtct ttgtacaata atgtcaagac 1500agagctctga
attatagttc agccttgtta ttttttttt
1539972863DNASaccharomyces cerevisiaemisc_featureGPD1 at GPD2
locusmisc_feature(941)..(2113)inserted CDP1 97agtaactgtg acgatatcaa
ctcttttttt attatgtaat aagcaaacaa gcacgaatgg 60ggaaagccta tgtgcaatca
ccaaggtcgt cccttttttc ccatttgcta atttagaatt 120taaagaaacc aaaagaatga
agaaagaaaa caaatactag ccctaaccct gacttcgttt 180ctatgataat accctgcttt
aatgaacggt atgccctagg gtatatctca ctctgtacgt 240tacaaactcc ggttatttta
tcggaacatc cgagcacccg cgccttcctc aacccaggca 300ccgcccccag gtaaccgtgc
gcgatgagct aatcctgagc catcacccac cccacccgtt 360gatgacagca attcgggagg
gcgaaaaata aaaactggag caaggaatta ccatcaccgt 420caccatcacc atcatatcgc
cttagcctct agccatagcc atcatgcaag cgtgtatctt 480ctaagattca gtcatcatca
ttaccgagtt tgttttcctt cacatgatga agaaggtttg 540agtatgctcg aaacaataag
acgacgatgg ctctgccatt gttatattac gcttttgcgg 600cgaggtgccg atgggttgct
gaggggaaga gtgtttagct tacggaccta ttgccattgt 660tattccgatt aatctattgt
tcagcagctc ttctctaccc tgtcattcta gtattttttt 720tttttttttt tggttttact
tttttttctt cttgcctttt tttcttgtta ctttttttct 780agtttttttt ccttccacta
agctttttcc ttgatttatc cttgggttct tctttctact 840cctttagatt ttttttttat
atattaattt ttaagtttat gtattttggt agattcaatt 900ctctttccct ttccttttcc
ttcgctcccc ttccttatca atgtctgctg ctgctgatag 960attaaactta acttccggcc
acttgaatgc tggtagaaag agaagttcct cttctgtttc 1020tttgaaggct gccgaaaagc
ctttcaaggt tactgtgatt ggatctggta actggggtac 1080tactattgcc aaggtggttg
ccgaaaattg taagggatac ccagaagttt tcgctccaat 1140agtacaaatg tgggtgttcg
aagaagagat caatggtgaa aaattgactg aaatcataaa 1200tactagacat caaaacgtga
aatacttgcc tggcatcact ctacccgaca atttggttgc 1260taatccagac ttgattgatt
cagtcaagga tgtcgacatc atcgttttca acattccaca 1320tcaatttttg ccccgtatct
gtagccaatt gaaaggtcat gttgattcac acgtcagagc 1380tatctcctgt ctaaagggtt
ttgaagttgg tgctaaaggt gtccaattgc tatcctctta 1440catcactgag gaactaggta
ttcaatgtgg tgctctatct ggtgctaaca ttgccaccga 1500agtcgctcaa gaacactggt
ctgaaacaac agttgcttac cacattccaa aggatttcag 1560aggcgagggc aaggacgtcg
accataaggt tctaaaggcc ttgttccaca gaccttactt 1620ccacgttagt gtcatcgaag
atgttgctgg tatctccatc tgtggtgctt tgaagaacgt 1680tgttgcctta ggttgtggtt
tcgtcgaagg tctaggctgg ggtaacaacg cttctgctgc 1740catccaaaga gtcggtttgg
gtgagatcat cagattcggt caaatgtttt tcccagaatc 1800tagagaagaa acatactacc
aagagtctgc tggtgttgct gatttgatca ccacctgcgc 1860tggtggtaga aacgtcaagg
ttgctaggct aatggctact tctggtaagg acgcctggga 1920atgtgaaaag gagttgttga
atggccaatc cgctcaaggt ttaattacct gcaaagaagt 1980tcacgaatgg ttggaaacat
gtggctctgt cgaagacttc ccattatttg aagccgtata 2040ccaaatcgtt tacaacaact
acccaatgaa gaacctgccg gacatgattg aagaattaga 2100tctacatgaa gattagacac
tctccccccc cctccccctc tgatctttcc tgttgcctct 2160ttttccccca accaatttat
cattatacac aagttctaca actactacta gtaacattac 2220tacagttatt ataattttct
attctctttt tctttaagaa tctatcatta acgttaattt 2280ctatatatac ataactacca
ttatacacgc tattatcgtt tacatatcac atcaccgtta 2340atgaaagata cgacaccctg
tacactaaca caattaaata atcgccataa ccttttctgt 2400tatctatagc ccttaaagct
gtttcttcga gctttttcac tgcagtaatt ctccacatgg 2460gcccagccac tgagataaga
gcgctatgtt agtcactact gacggctctc cagtcattta 2520tgtgattttt tagtgactca
tgtcgcattt ggcccgtttt tttccgctgt cgcaacctat 2580ttccattaac ggtgccgtat
ggaagagtca tttaaaggca ggagagagag attactcatc 2640ttcattggat cagattgatg
actgcgtacg gcagatagtg taatctgagc agttgcgaga 2700cccagactgg cactgtctca
atagtatatt aatgggcata cattcgtact cccttgttct 2760tgcccacagt tctctctctc
tttacttctt gtatcttgtc tccccattgt gcagcgataa 2820ggaacattgt tctaatatac
acggatacaa aagaaataca cat 28639812394DNASaccharomyces
cerevisiaemisc_featureM2158 AADH integrations at the GPD1 locus
98tagattcttt tcgaatttgt ggtgaagata ggaaagttgg tacagttctc catcaatttt
60ccatattttg ctaaaaactc ccttgcatgt ctctttgcat tcatttctcc tgtatacggg
120ttcaacacat caatcgaatt ttgcaaagtt gtctccattt ctagaagact ttcatcggga
180ataaaaaatt catatccatt attcaaaaac gataatgatc cctcgtactt acctgtgtaa
240ttggatattt tataccatac ttcaaaaata tccttggcct cacttctggt aggatacctt
300tcgccatgtc tgccaatcat ttgaacttgc gttaatctac aaccttcagg aatatcagtg
360ggtataccgt agttagcggg aaaggagaaa tatggcgcag accctccaag aaagggaaac
420agactcttct gagagccaat tagttcaata tccgcaaaac ttctgagtgg gatggagagt
480gccttagata atagaacacc taaacaaatg gcaaaaataa cgggcttcac cattgttcct
540gtatggtgta ttagaacata gctgaaaata cttctgcctc aaaaaagtgt taaaaaaaag
600aggcattata tagaggtaaa gcctacaggc gcaagataac acatcaccgc tctcccccct
660ctcatgaaaa gtcatcgcta aagaggaaca ctgaaggttc ccgtaggttg tctttggcac
720aaggtagtac atggtaaaaa ctcaggatgg aataattcaa attcaccaat ttcaacgtcc
780cttgtttaaa aagaaaagaa tttttctctt taaggtagca ctaatgcatt atcgatgatg
840taaccattca cacaggttat ttagcttttg atccttgaac cattaattaa cccagaaata
900gaaattaccc aagtggggct ctccaacaca atgagaggaa aggtgacttt ttaagggggc
960cagaccctgt taaaaacctt tgatggctat gtaataatag taaattaagt gcaaacatgt
1020aagaaagatt ctcggtaacg accatacaaa tattgggcgt gtggcgtagt cggtagcgcg
1080ctcccttagc atgggagagg tctccggttc gattccggac tcgtccaaat tattttttac
1140tttccgcggt gccgagatgc agacgtggcc aactgtgtct gccgtcgcaa aatgatttga
1200attttgcgtc gcgcacgttt ctcacgtaca taataagtat tttcatacag ttctagcaag
1260acgaggtggt caaaatagaa gcgtcctatg ttttacagta caagacagtc catactgaaa
1320tgacaacgta cttgactttt cagtattttc tttttctcac agtctggtta tttttgaaag
1380cgcacgaaat atatgtaggc aagcattttc tgagtctgct gacctctaaa attaatgcta
1440ttgtgcacct tagtaaccca aggcaggaca gttaccttgc gtggtgttac tatggccgga
1500agcccgaaag agttatcgtt actccgatta ttttgtacag ctgatgggac cttgccgtct
1560tcattttttt tttttttcac ctatagagcc gggcagagct gcccggctta actaagggcc
1620ggaaaaaaaa cggaaaaaag aaagccaagc gtgtagacgt agtataacag tatatctgac
1680acgcacgtga tgaccacgta atcgcatcgc ccctcacctc tcacctctca ccgctgactc
1740agcttcacta aaaaggaaaa tatatactct ttcccaggca aggtgacagc ggtccccgtc
1800tcctccacaa aggcctctcc tggggtttga gcaagtctaa gtttacgtag cataaaaatt
1860ctcggattgc gtcaaataat aaaaaaagta accccacttc tacttctaca tcggaaaaac
1920attccattca catatcgtct ttggcctatc ttgttttgtc ctcggtagat caggtcagta
1980caaacgcaac acgaaagaac aaaaaaagaa gaaaacagaa ggccaagaca gggtcaatga
2040gactgttgtc ctcctactgt ccctatgtct ctggccgatc acgcgccatt gtccctcaga
2100aacaaatcaa acacccacac cccgggcacc caaagtcccc acccacacca ccaatacgta
2160aacggggcgc cccctgcagg ccctcctgcg cgcggcctcc cgccttgctt ctctcccctt
2220ccttttcttt ttccagtttt ccctattttg tccctttttc cgcacaacaa gtatcagaat
2280gggttcatca aatctatcca acctaattcg cacgtagact ggcttggtat tggcagtttc
2340gtagttatat atatactacc atgagtgaaa ctgttacgtt accttaaatt ctttctccct
2400ttaattttct tttatcttac tctcctacat aagacatcaa gaaacaattg tatattgtac
2460accccccccc tccacaaaca caaatattga taatataaag atggctgtta ctaatgtcgc
2520tgaacttaac gcactcgtag agcgtgtaaa aaaagcccag cgtgaatatg ccagtttcac
2580tcaagagcaa gtagacaaaa tcttccgcgc cgccgctctg gctgctgcag atgctcgaat
2640cccactcgcg aaaatggccg ttgccgaatc cggcatgggt atcgtcgaag ataaagtgat
2700caaaaaccac tttgcttctg aatatatcta caacgcctat aaagatgaaa aaacctgtgg
2760tgttctgtct gaagacgaca cttttggtac catcactatc gctgaaccaa tcggtattat
2820ttgcggtatc gttccgacca ctaacccgac ttcaactgct atcttcaaat cgctgatcag
2880tctgaagacc cgtaacgcca ttatcttctc cccgcacccg cgtgcaaaag atgccaccaa
2940caaagcggct gatatcgttc tgcaggctgc tatcgctgcc ggtgctccga aagatctgat
3000cggctggatc gatcaacctt ctgttgaact gtctaacgca ctgatgcacc acccagacat
3060caacctgatc ctcgcgactg gtggtccggg catggttaaa gccgcataca gctccggtaa
3120accagctatc ggtgtaggcg cgggcaacac tccagttgtt atcgatgaaa ctgctgatat
3180caaacgtgca gttgcatctg tactgatgtc caaaaccttc gacaacggcg taatctgtgc
3240ttctgaacag tctgttgttg ttgttgactc tgtttatgac gctgtacgtg aacgttttgc
3300aacccacggc ggctatctgt tgcagggtaa agagctgaaa gctgttcagg atgttatcct
3360gaaaaacggt gcgctgaacg cggctatcgt tggtcagcca gcctataaaa ttgctgaact
3420ggcaggcttc tctgtaccag aaaacaccaa gattctgatc ggtgaagtga ccgttgttga
3480tgaaagcgaa ccgttcgcac atgaaaaact gtccccgact ctggcaatgt accgcgctaa
3540agatttcgaa gacgcggtag aaaaagcaga gaaactggtt gctatgggcg gtatcggtca
3600tacctcttgc ctgtacactg accaggataa ccaaccggct cgcgtttctt acttcggtca
3660gaaaatgaaa acggcgcgta tcctgattaa caccccagcg tctcagggtg gtatcggtga
3720cctgtataac ttcaaactcg caccttccct gactctgggt tgtggttctt ggggtggtaa
3780ctccatctct gaaaacgttg gtccgaaaca cctgatcaac aagaaaaccg ttgctaagcg
3840agctgaaaac atgttgtggc acaaacttcc gaaatctatc tacttccgcc gtggctccct
3900gccaatcgcg ctggatgaag tgattactga tggccacaaa cgtgcgctca tcgtgactga
3960ccgcttcctg ttcaacaatg gttatgctga tcagatcact tccgtactga aagcagcagg
4020cgttgaaact gaagtcttct tcgaagtaga agcggacccg accctgagca tcgttcgtaa
4080aggtgcagaa ctggcaaact ccttcaaacc agacgtgatt atcgcgctgg gtggtggttc
4140cccgatggac gccgcgaaga tcatgtgggt tatgtacgaa catccggaaa ctcacttcga
4200agagctggcg ctgcgcttta tggatatccg taaacgtatc tacaagttcc cgaaaatggg
4260cgtgaaagcg aaaatgatcg ctgtcaccac cacttctggt acaggttctg aagtcactcc
4320gtttgcggtt gtaactgacg acgctactgg tcagaaatat ccgctggcag actatgcgct
4380gactccggat atggcgattg tcgacgccaa cctggttatg gacatgccga agtccctgtg
4440tgctttcggt ggtctggacg cagtaactca cgccatggaa gcttatgttt ctgtactggc
4500atctgagttc tctgatggtc aggctctgca ggcactgaaa ctgctgaaag aatatctgcc
4560agcgtcctac cacgaagggt ctaaaaatcc ggtagcgcgt gaacgtgttc acagtgcagc
4620gactatcgcg ggtatcgcgt ttgcgaacgc cttcctgggt gtatgtcact caatggcgca
4680caaactgggt tcccagttcc atattccgca cggtctggca aacgccctgc tgatttgtaa
4740cgttattcgc tacaatgcga acgacaaccc gaccaagcag actgcattca gccagtatga
4800ccgtccgcag gctcgccgtc gttatgctga aattgccgac cacttgggtc tgagcgcacc
4860gggcgaccgt actgctgcta agatcgagaa actgctggca tggctggaaa cgctgaaagc
4920tgaactgggt attccgaaat ctatccgtga agctggcgtt caggaagcag acttcctggc
4980gaacgtggat aaactgtctg aagatgcatt cgatgaccag tgcaccggcg ctaacccgcg
5040ttacccgctg atctccgagc tgaaacagat tctgctggat acctactacg gtcgtgatta
5100tgtagaaggt gaaactgcag cgaagaaaga agctgctccg gctaaagctg agaaaaaagc
5160gaaaaaatcc gcttaagtcg agagcttttg attaagcctt ctagtccaaa aaacacgttt
5220ttttgtcatt tatttcattt tcttagaata gtttagttta ttcattttat agtcacgaat
5280gttttatgat tctatatagg gttgcaaaca agcatttttc attttatgtt aaaacaattt
5340caggtttacc ttttattctg cttgtggtga cgcgtgtatc cgcccgctct tttggtcacc
5400catgtattta attgcataaa taattcttaa aagtggagct agtctatttc tatttacata
5460cctctcattt ctcatttcct cctaatgtgt caatgatcat attcttaact ggaccgatct
5520tattcgtcag attcaaacca aaagttctta gggctaccac aggaggaaaa ttagtgtgat
5580ataatttaaa taatttatcc gccattccta atagaacgtt gttcgacgga tatctttctg
5640cccaaaaggg ttctaagctc aatgaagagc caatgtctaa acctcgttac attgaaaata
5700cagtaaatgg ttccaccatt attatgttgg tcttgtttag tatggccgat cggcgtgtgt
5760tttgtttgca ccttttatat agtagaagaa tatttgtctt aattcttatt agtactgcaa
5820cctaaccact aattatcaac aattattgga ttatataaag gaggtaaatt gccggattaa
5880aatcaaatat cattcatcaa caagtattca tattgtcggc atatttttac atgcggtgta
5940agtatttgga tcgtattctt atagtgtcaa tacctcgaag cagcgtttca agtaccagac
6000gtatgtagga actttttaac gtcgagtccg taagatttga tcagtattaa aaaaatctag
6060ataaatgagt ggtacaaata aaaacatcat taaaaatcgt taaataaaaa agtatgaaga
6120tcatctatta aagtattagt agccattagc cttaaaaaaa tcagtgctag tttaagtata
6180atctcgggcg cgccggccga ggcggttaag cggatttttt cgcttttttc tcagctttag
6240ccggagcagc ttctttcttc gctgcagttt caccttctac ataatcacga ccgtagtagg
6300tatccagcag aatctgtttc agctcggaga tcagcgggta acgcgggtta gcgccggtgc
6360actggtcatc gaatgcatct tcagacagtt tatccacgtt cgccaggaag tctgcttcct
6420gaacgccagc ttcacggata gatttcggaa tacccagttc agctttcagc gtttccagcc
6480atgccagcag tttctcgatc ttagcagcag tacggtcgcc cggtgcgctc agacccaagt
6540ggtcggcaat ttcagcataa cgacggcgag cctgcggacg gtcatactgg ctgaatgcag
6600tctgcttggt cgggttgtcg ttcgcattgt agcgaataac gttacaaatc agcagggcgt
6660ttgccagacc gtgcggaata tggaactggg aacccagttt gtgcgccatt gagtgacata
6720cacccaggaa ggcgttcgca aacgcgatac ccgcgatagt cgctgcactg tgaacacgtt
6780cacgcgctac cggattttta gacccttcgt ggtaggacgc tggcagatat tctttcagca
6840gtttcagtgc ctgcagagcc tgaccatcag agaactcaga tgccagtaca gaaacataag
6900cttccatggc gtgagttact gcgtccagac caccgaaagc acacagggac ttcggcatgt
6960ccataaccag gttggcgtcg acaatcgcca tatccggagt cagcgcatag tctgccagcg
7020gatatttctg accagtagcg tcgtcagtta caaccgcaaa cggagtgact tcagaacctg
7080taccagaagt ggtggtgaca gcgatcattt tcgctttcac gcccattttc gggaacttgt
7140agatacgttt acggatatcc ataaagcgca gcgccagctc ttcgaagtga gtttccggat
7200gttcgtacat aacccacatg atcttcgcgg cgtccatcgg ggaaccacca cccagcgcga
7260taatcacgtc tggtttgaag gagtttgcca gttctgcacc tttacgaacg atgctcaggg
7320tcgggtccgc ttctacttcg aagaagactt cagtttcaac gcctgctgct ttcagtacgg
7380aagtgatctg atcagcataa ccattgttga acaggaagcg gtcagtcacg atgagcgcac
7440gtttgtggcc atcagtaatc acttcatcca gcgcgattgg cagggagcca cggcggaagt
7500agatagattt cggaagtttg tgccacaaca tgttttcagc tcgcttagca acggttttct
7560tgttgatcag gtgtttcgga ccaacgtttt cagagatgga gttaccaccc caagaaccac
7620aacccagagt cagggaaggt gcgagtttga agttatacag gtcaccgata ccaccctgag
7680acgctggggt gttaatcagg atacgcgccg ttttcatttt ctgaccgaag taagaaacgc
7740gagccggttg gttatcctgg tcagtgtaca ggcaagaggt atgaccgata ccgcccatag
7800caaccagttt ctctgctttt tctaccgcgt cttcgaaatc tttagcgcgg tacattgcca
7860gagtcgggga cagtttttca tgtgcgaacg gttcgctttc atcaacaacg gtcacttcac
7920cgatcagaat cttggtgttt tctggtacag agaagcctgc cagttcagca attttatagg
7980ctggctgacc aacgatagcc gcgttcagcg caccgttttt caggataaca tcctgaacag
8040ctttcagctc tttaccctgc aacagatagc cgccgtgggt tgcaaaacgt tcacgtacag
8100cgtcataaac agagtcaaca acaacaacag actgttcaga agcacagatt acgccgttgt
8160cgaaggtttt ggacatcagt acagatgcaa ctgcacgttt gatatcagca gtttcatcga
8220taacaactgg agtgttgccc gcgcctacac cgatagctgg tttaccggag ctgtatgcgg
8280ctttaaccat gcccggacca ccagtcgcga ggatcaggtt gatgtctggg tggtgcatca
8340gtgcgttaga cagttcaaca gaaggttgat cgatccagcc gatcagatct ttcggagcac
8400cggcagcgat agcagcctgc agaacgatat cagccgcttt gttggtggca tcttttgcac
8460gcgggtgcgg ggagaagata atggcgttac gggtcttcag actgatcagc gatttgaaga
8520tagcagttga agtcgggtta gtggtcggaa cgataccgca aataataccg attggttcag
8580cgatagtgat ggtaccaaaa gtgtcgtctt cagacagaac accacaggtt ttttcatctt
8640tataggcgtt gtagatatat tcagaagcaa agtggttttt gatcacttta tcttcgacga
8700tacccatgcc ggattcggca acggccattt tcgcgagtgg gattcgagca tctgcagcag
8760ccagagcggc ggcgcggaag attttgtcta cttgctcttg agtgaaactg gcatattcac
8820gctgggcttt ttttacacgc tctacgagtg cgttaagttc agcgacatta gtaacagcca
8880taattcttaa ttaactttga tatgattttg tttcagattt tttatataaa agctttccca
8940aatagtgcta aagtgaactt agattttttg gtacctgttt cgaaattaaa aatagaaaaa
9000tttctctccc tatattgtta ttcttacttc aaatttgttt atcgtttatt tactaggcga
9060gacttgagta gacgacaatc caaatagaat taacagattt tattggtaga aagcaataat
9120attctttaga tggttgagaa taaagaagta aaaaaaccag taaagagaaa aagaaaagga
9180agaaaattaa agaaaaagga tgattacaca agaagataat aaaaaaactc ctttattaag
9240agcggaagaa tttaataatg aagatgggaa taagcaaaac aaaaacaaag aagggaaaaa
9300aaataaaaaa tcgtatttat ttatttaaaa aatcatgttg atgacgacaa tggaaaaaaa
9360aaaccgattt cactttctca tccttatatt tttcaaaggt tgatgcaagt cgatctcaaa
9420tcggataacg ctgccaactg ggaaattccg caattccgca agaaaaaaaa aaatgtgaaa
9480acgtgattgc attttttaca ggtcctaaag gatttagccc acatatcaag agggtggcag
9540taattgcact gattaagcat tcgtcagcat taggcgaatg tgtgcatgaa tattgccagt
9600gtgctcgata ttagagagta cattgaagaa tattgtaccg gattatgtac aataactttg
9660ttaatgagat attaattttc ttttttacta gccgctatcc catgcacgat gctaaatttc
9720aagaagaaac tgagatttaa aaaattagtg gaagctgata aaacggacta taatggtgta
9780tggattgagg aatctcgaca tgtttttcca tcgttttcaa cgatgactgt aacccgtaga
9840ttgaaccagg catgccaaag ttagttagat cagggtaaaa attatagatg aggtatttat
9900tggagaaaga taacatatca tactttcccc cacttttttc gaggctcttc tatatcatat
9960tcataaatta gcattatgtc atttctcata actactttat cacgttagaa attacttatt
10020attattaaat taatacaaaa tttagtaacc aaataaatat aaataaatat gtatatttaa
10080attttaaaaa aaaaatccta tagagcaaaa ggattttcca ttataatatt agctgtacac
10140ctcttccgca ttttttgagg gtggttacaa caccactcat tcagaggctg tcggcacagt
10200tgcttctagc atctggcgtc cgtatgtatg ggtgtatttt aaataataaa caaagtgcca
10260caccttcacc aattatgtct ttaagaaatg gacaagttcc aaagagcttg cccaaggctc
10320gacaaggatg tactttggaa tatctatatt caagtacgtg gcgcgcatat gtttgagtgt
10380gcacacaata aaggttttta gatattttgc ggcgtcctaa gaaaataagg ggtttcttaa
10440aaaataacaa tagcaaacaa agttccttac gatgatttca gatgtgaata gcatggtcat
10500gatgagtata tacgttttta taaataatta aaagttttcc tcttgtctgt ttttttgttg
10560gctcgtggtt gttctcgaaa aaggagagtt ttcattttcg aaataggtga ttatcatcat
10620gttgttatca ccccacgacg aagataatac ggagctcacc gttttctttt tttttccctt
10680tggctgaaat ttcccaccag aacaaacgtg acaaaattat ctttgaatcc aaagtagctt
10740atatatatac gtagaagtgt ttcgagacac acatccaaat acgaggttgt tcaatttaaa
10800cccaagaata cataaaaaaa atatagatat attaacttag taaacaatga ctgcaagcac
10860accatccaat gtcatgacat tgttcttgtt aaggcatgga caaagtgaat tgaatcacga
10920gaatatattc tgtggttgga ttgacgctaa gctaaccgaa aaaggtaaag aacaagctcg
10980tcattctgcc gagctaatcg aacaatattg taaagctaat aatttgagat taccccagat
11040tggttacacc tcacgtttaa ttaggaccca acagaccata gaaacgatgt gtgaagaatt
11100taagttaaag ccacaactgc aggttgttta cgactttaat aaaatcaaac ttggagacga
11160atttggcagt gatgacaagg ataatatgaa aatcccgatt cttcaaactt ggaggctaaa
11220tgaacgtcat tacggttcct ggcagggcca gaggaaaccg aatgttttaa aagaatatgg
11280taaggataaa tatatgttca ttaggagaga ttacgagggt aagccaccac ctgtagatct
11340tgaccgtgag atgattcaac aagaaaatga gaagggctct tctactgggt acgaattcaa
11400ggagccaaac agacaaataa aatatgaatt ggaatgcagc aatcatgaca ttgtattacc
11460ggattccgaa tctcttcgtg aagtggttta tagattgaat ccttttctac aaaatgtcat
11520attaaaatta gccaatcaat atgatgaatc ttcatgcctg attgtgggcc atggaagttc
11580agtgagatcg ctactgaaaa ttctggaggg tatatcagat gatgacatca agaatgttga
11640tattccaaat ggtatcccct tagtcgttga attagataag aataatggtc ttaagtttat
11700cagaaaattc tacctagatc ctgaatctgc taagatcaat gctgagaaag tccgtaatga
11760gggtttcata aaaaatcctt aaggggggta agtatataat ataattgtgt attttccgaa
11820gtataatgaa aaccaataga aaacttatta taagtccaat gaggtacttt aaaaatgtga
11880tatttataag aacattcctg aatgcagata tatgatatat attgtaaata tatatagatg
11940tgtatatgta tttccatttt gtgtgaggtt ttcttctttt atctcctata taatttgtaa
12000ccttaattaa cccatgacat aaccaatatt agcctttgca aattttgtaa cttcttgacg
12060ttgttctaac gacaaatctt catgcttcga ttttatatgc cttgttaaag catccagtct
12120cgaaaacgtc ttctgatagc cctcagatcc aagaattttt atacactccg agcaacggaa
12180gacaatcttc cttttagcgt gaatggtatt ttggtgtctc gttaaatcat aggaccttga
12240aaattgggca ccacacggtt catttgtaat gagattcatt atctgacacg taaatatttc
12300gttattaccg tcagaagatg acgtatgggc cgatggtgat gcagtcgaag gtttcgaatt
12360cgaatttgta gatgaatgtg aagataagtg cttc
123949913300DNAEscherichia colimisc_featureM2158 AADH integrations at the
GPD1 locus 99cagaattggt gatattcttc attatcccct cgacatcttt acttttgatc
agctttgtgt 60atagcgggat atccgattgg aacttggctt cagcaacaaa cttgccaaag
tggattctcc 120tactcaagct ttgcaaacat tctatatctc tagtggcaac agaaccgaag
ttattcttat 180catcaccatc tcttttcgaa attaatggta taatcttttc aatataaact
ttttttattt 240tatcattgta attaacttct ggggcataag gcgccaaaat ttgtgggtag
ttaatgctcg 300gtaagaatga tttctgaatc ttgtcaggaa agaagggagt ttcatcaggt
gattcgaatc 360ttctgatgcg agaatgcgca atttcaagat ttgaaagagc ccaatccaag
aaagatcctt 420taaaattcgg aatttctaaa cctggatggt ttgcctcata aactgaagga
catgtggcga 480aatgcgacct ctcaataaat ttgaagatga tcgaatcctc cattctaact
aattcatctc 540taatattttg tagatttaaa acagtttctg gttttgtgaa atccatatct
tataccaatt 600ttatgcagga tgctgagtgc tatttgttag caaaacggaa tcgatgtttc
aacttttcaa 660tacttttttt cttcttttct tcgaacttcg aagattatag agatccattg
aaaatttacg 720ataaaggaaa tgcaacacga agtttgaaaa aaagttgata ttgaaaaaaa
aaaaaaaaga 780gaaccaaaaa aaaattaaaa aacgtgaaaa cgatggttta acaacttttt
tcgaatttgg 840tatacgtgga aaaacgaatg tatagatgca tttttaaaga atatatataa
aatttagtaa 900ttgtattccg cgagcggcgc aataggtgat ttcatttagc tgctttcagt
ttgcgtatca 960tttcttcatt gatcttggct tctctatcta aatcctcttt cgacttgtaa
agtccccaag 1020ttctaaacca taagaaccgc ctcaatctgg aaaatttgtc agtatcaaga
ccataattcg 1080tgtatgactg aatcaaatgt aatccacttt cgtcatgagt aaattcggcc
ttgctcagag 1140actcctggat tttggctaac aacgcagtcc cttcgatgca tatagctagg
ccacaaatta 1200tgccaataac ggtccatggg ttgatgtttt cttgaattct ttcgtttttc
atgctatttg 1260cgtcttccca agtcccagcg ttccagtatt catactgcgc gttagagtgg
tagccataag 1320agccggcata ttggtaattt tcagtattaa cgttagaacg tggtgaatac
gatgtggtcc 1380agccttgcct cgttgtgtca tatacgatct ttttctttgg gtcacaaaga
atatcatatg 1440cttgagagat gactttaaat ctatgtagtt tttcgcttga tgttagcagc
agcggtgatt 1500tactatcact gttggtaacc ttttctgagc taaatatttg aatgttatcg
gaatggtcag 1560ggtggtacaa ttttacataa cgatgatatt ttttttttaa cgacttcttg
tccagtttag 1620gatttccaga tccggccttt ggaatgccaa aaatatcata gggagttgga
tctgccaact 1680caggccattg ttcatccctt atcgtaagtt ttctattgcc atttttatcg
ttcgctgtag 1740catacttagc tataaaagtg atttgtgggg gacacttttc tacacatgat
aagtgccact 1800tgaataaaaa tgggtatacg aacttatggt gtagcataac aaatatattg
caagtagtga 1860cctatggtgt gtagatatac gtacagttag ttacgagcct aaagacacaa
cgtgtttgtt 1920aattatactg tcgctgtaat atcttctctt ccattatcac cggtcattcc
ttgcaggggc 1980ggtagtaccc ggagaccctg aacttttctt tttttttttg cgaaattaaa
aagttcattt 2040tcaattcgac aatgagatct acaagccatt gttttatgtt gatgagagcc
agcttaaaga 2100gttaaaaatt tcatagctac tagtcttcta ggcgggttat ctactgatcc
gagcttccac 2160taggatagca cccaaacacc tgcatatttg gacgaccttt acttacacca
ccaaaaacca 2220ctttcgcctc tcccgcccct gataacgtcc actaattgag cgattacctg
agcggtcctc 2280ttttgtttgc agcatgagac ttgcatactg caaatcgtaa gtagcaacgt
ctcaaggtca 2340aaactgtatg gaaaccttgt cacctcactt aattctagct agcctaccct
gcaagtcaag 2400aggtctccgt gattcctagc cacctcaagg tatgcctctc cccggaaact
gtggcctttt 2460ctggcacaca tgatctccac gatttcaaca tataaatagc ttttgataat
ggcaatatta 2520atcaaattta ttttacttct ttcttgtaac atctctcttg taatccctta
ttccttctag 2580ctatttttca taaaaaacca agcaactgct tatcaacaca caaacactaa
atcaaaatgg 2640ctgttactaa tgtcgctgaa cttaacgcac tcgtagagcg tgtaaaaaaa
gcccagcgtg 2700aatatgccag tttcactcaa gagcaagtag acaaaatctt ccgcgccgcc
gctctggctg 2760ctgcagatgc tcgaatccca ctcgcgaaaa tggccgttgc cgaatccggc
atgggtatcg 2820tcgaagataa agtgatcaaa aaccactttg cttctgaata tatctacaac
gcctataaag 2880atgaaaaaac ctgtggtgtt ctgtctgaag acgacacttt tggtaccatc
actatcgctg 2940aaccaatcgg tattatttgc ggtatcgttc cgaccactaa cccgacttca
actgctatct 3000tcaaatcgct gatcagtctg aagacccgta acgccattat cttctccccg
cacccgcgtg 3060caaaagatgc caccaacaaa gcggctgata tcgttctgca ggctgctatc
gctgccggtg 3120ctccgaaaga tctgatcggc tggatcgatc aaccttctgt tgaactgtct
aacgcactga 3180tgcaccaccc agacatcaac ctgatcctcg cgactggtgg tccgggcatg
gttaaagccg 3240catacagctc cggtaaacca gctatcggtg taggcgcggg caacactcca
gttgttatcg 3300atgaaactgc tgatatcaaa cgtgcagttg catctgtact gatgtccaaa
accttcgaca 3360acggcgtaat ctgtgcttct gaacagtctg ttgttgttgt tgactctgtt
tatgacgctg 3420tacgtgaacg ttttgcaacc cacggcggct atctgttgca gggtaaagag
ctgaaagctg 3480ttcaggatgt tatcctgaaa aacggtgcgc tgaacgcggc tatcgttggt
cagccagcct 3540ataaaattgc tgaactggca ggcttctctg taccagaaaa caccaagatt
ctgatcggtg 3600aagtgaccgt tgttgatgaa agcgaaccgt tcgcacatga aaaactgtcc
ccgactctgg 3660caatgtaccg cgctaaagat ttcgaagacg cggtagaaaa agcagagaaa
ctggttgcta 3720tgggcggtat cggtcatacc tcttgcctgt acactgacca ggataaccaa
ccggctcgcg 3780tttcttactt cggtcagaaa atgaaaacgg cgcgtatcct gattaacacc
ccagcgtctc 3840agggtggtat cggtgacctg tataacttca aactcgcacc ttccctgact
ctgggttgtg 3900gttcttgggg tggtaactcc atctctgaaa acgttggtcc gaaacacctg
atcaacaaga 3960aaaccgttgc taagcgagct gaaaacatgt tgtggcacaa acttccgaaa
tctatctact 4020tccgccgtgg ctccctgcca atcgcgctgg atgaagtgat tactgatggc
cacaaacgtg 4080cgctcatcgt gactgaccgc ttcctgttca acaatggtta tgctgatcag
atcacttccg 4140tactgaaagc agcaggcgtt gaaactgaag tcttcttcga agtagaagcg
gacccgaccc 4200tgagcatcgt tcgtaaaggt gcagaactgg caaactcctt caaaccagac
gtgattatcg 4260cgctgggtgg tggttccccg atggacgccg cgaagatcat gtgggttatg
tacgaacatc 4320cggaaactca cttcgaagag ctggcgctgc gctttatgga tatccgtaaa
cgtatctaca 4380agttcccgaa aatgggcgtg aaagcgaaaa tgatcgctgt caccaccact
tctggtacag 4440gttctgaagt cactccgttt gcggttgtaa ctgacgacgc tactggtcag
aaatatccgc 4500tggcagacta tgcgctgact ccggatatgg cgattgtcga cgccaacctg
gttatggaca 4560tgccgaagtc cctgtgtgct ttcggtggtc tggacgcagt aactcacgcc
atggaagctt 4620atgtttctgt actggcatct gagttctctg atggtcaggc tctgcaggca
ctgaaactgc 4680tgaaagaata tctgccagcg tcctaccacg aagggtctaa aaatccggta
gcgcgtgaac 4740gtgttcacag tgcagcgact atcgcgggta tcgcgtttgc gaacgccttc
ctgggtgtat 4800gtcactcaat ggcgcacaaa ctgggttccc agttccatat tccgcacggt
ctggcaaacg 4860ccctgctgat ttgtaacgtt attcgctaca atgcgaacga caacccgacc
aagcagactg 4920cattcagcca gtatgaccgt ccgcaggctc gccgtcgtta tgctgaaatt
gccgaccact 4980tgggtctgag cgcaccgggc gaccgtactg ctgctaagat cgagaaactg
ctggcatggc 5040tggaaacgct gaaagctgaa ctgggtattc cgaaatctat ccgtgaagct
ggcgttcagg 5100aagcagactt cctggcgaac gtggataaac tgtctgaaga tgcattcgat
gaccagtgca 5160ccggcgctaa cccgcgttac ccgctgatct ccgagctgaa acagattctg
ctggatacct 5220actacggtcg tgattatgta gaaggtgaaa ctgcagcgaa gaaagaagct
gctccggcta 5280aagctgagaa aaaagcgaaa aaatccgctt aagtcgagag cttttgatta
agccttctag 5340tccaaaaaac acgttttttt gtcatttatt tcattttctt agaatagttt
agtttattca 5400ttttatagtc acgaatgttt tatgattcta tatagggttg caaacaagca
tttttcattt 5460tatgttaaaa caatttcagg tttacctttt attctgcttg tggtgacgcg
tgtatccgcc 5520cgctcttttg gtcacccatg tatttaattg cataaataat tcttaaaagt
ggagctagtc 5580tatttctatt tacatacctc tcatttctca tttcctccta atgtgtcaat
gatcatattc 5640ttaactggac cgatcttatt cgtcagattc aaaccaaaag ttcttagggc
taccacagga 5700ggaaaattag tgtgatataa tttaaataat ttatccgcca ttcctaatag
aacgttgttc 5760gacggatatc tttctgccca aaagggttct aagctcaatg aagagccaat
gtctaaacct 5820cgttacattg aaaatacagt aaatggttcc accattatta tgttggtctt
gtttagtatg 5880gccgatcggc gtgtgttttg tttgcacctt ttatatagta gaagaatatt
tgtcttaatt 5940cttattagta ctgcaaccta accactaatt atcaacaatt attggattat
ataaaggagg 6000taaattgccg gattaaaatc aaatatcatt catcaacaag tattcatatt
gtcggcatat 6060ttttacatgc ggtgtaagta tttggatcgt attcttatag tgtcaatacc
tcgaagcagc 6120gtttcaagta ccagacgtat gtaggaactt tttaacgtcg agtccgtaag
atttgatcag 6180tattaaaaaa atctagataa atgagtggta caaataaaaa catcattaaa
aatcgttaaa 6240taaaaaagta tgaagatcat ctattaaagt attagtagcc attagcctta
aaaaaatcag 6300tgctagttta agtataatct cgggcgcgcc ggccgaggcg gttaagcgga
ttttttcgct 6360tttttctcag ctttagccgg agcagcttct ttcttcgctg cagtttcacc
ttctacataa 6420tcacgaccgt agtaggtatc cagcagaatc tgtttcagct cggagatcag
cgggtaacgc 6480gggttagcgc cggtgcactg gtcatcgaat gcatcttcag acagtttatc
cacgttcgcc 6540aggaagtctg cttcctgaac gccagcttca cggatagatt tcggaatacc
cagttcagct 6600ttcagcgttt ccagccatgc cagcagtttc tcgatcttag cagcagtacg
gtcgcccggt 6660gcgctcagac ccaagtggtc ggcaatttca gcataacgac ggcgagcctg
cggacggtca 6720tactggctga atgcagtctg cttggtcggg ttgtcgttcg cattgtagcg
aataacgtta 6780caaatcagca gggcgtttgc cagaccgtgc ggaatatgga actgggaacc
cagtttgtgc 6840gccattgagt gacatacacc caggaaggcg ttcgcaaacg cgatacccgc
gatagtcgct 6900gcactgtgaa cacgttcacg cgctaccgga tttttagacc cttcgtggta
ggacgctggc 6960agatattctt tcagcagttt cagtgcctgc agagcctgac catcagagaa
ctcagatgcc 7020agtacagaaa cataagcttc catggcgtga gttactgcgt ccagaccacc
gaaagcacac 7080agggacttcg gcatgtccat aaccaggttg gcgtcgacaa tcgccatatc
cggagtcagc 7140gcatagtctg ccagcggata tttctgacca gtagcgtcgt cagttacaac
cgcaaacgga 7200gtgacttcag aacctgtacc agaagtggtg gtgacagcga tcattttcgc
tttcacgccc 7260attttcggga acttgtagat acgtttacgg atatccataa agcgcagcgc
cagctcttcg 7320aagtgagttt ccggatgttc gtacataacc cacatgatct tcgcggcgtc
catcggggaa 7380ccaccaccca gcgcgataat cacgtctggt ttgaaggagt ttgccagttc
tgcaccttta 7440cgaacgatgc tcagggtcgg gtccgcttct acttcgaaga agacttcagt
ttcaacgcct 7500gctgctttca gtacggaagt gatctgatca gcataaccat tgttgaacag
gaagcggtca 7560gtcacgatga gcgcacgttt gtggccatca gtaatcactt catccagcgc
gattggcagg 7620gagccacggc ggaagtagat agatttcgga agtttgtgcc acaacatgtt
ttcagctcgc 7680ttagcaacgg ttttcttgtt gatcaggtgt ttcggaccaa cgttttcaga
gatggagtta 7740ccaccccaag aaccacaacc cagagtcagg gaaggtgcga gtttgaagtt
atacaggtca 7800ccgataccac cctgagacgc tggggtgtta atcaggatac gcgccgtttt
cattttctga 7860ccgaagtaag aaacgcgagc cggttggtta tcctggtcag tgtacaggca
agaggtatga 7920ccgataccgc ccatagcaac cagtttctct gctttttcta ccgcgtcttc
gaaatcttta 7980gcgcggtaca ttgccagagt cggggacagt ttttcatgtg cgaacggttc
gctttcatca 8040acaacggtca cttcaccgat cagaatcttg gtgttttctg gtacagagaa
gcctgccagt 8100tcagcaattt tataggctgg ctgaccaacg atagccgcgt tcagcgcacc
gtttttcagg 8160ataacatcct gaacagcttt cagctcttta ccctgcaaca gatagccgcc
gtgggttgca 8220aaacgttcac gtacagcgtc ataaacagag tcaacaacaa caacagactg
ttcagaagca 8280cagattacgc cgttgtcgaa ggttttggac atcagtacag atgcaactgc
acgtttgata 8340tcagcagttt catcgataac aactggagtg ttgcccgcgc ctacaccgat
agctggttta 8400ccggagctgt atgcggcttt aaccatgccc ggaccaccag tcgcgaggat
caggttgatg 8460tctgggtggt gcatcagtgc gttagacagt tcaacagaag gttgatcgat
ccagccgatc 8520agatctttcg gagcaccggc agcgatagca gcctgcagaa cgatatcagc
cgctttgttg 8580gtggcatctt ttgcacgcgg gtgcggggag aagataatgg cgttacgggt
cttcagactg 8640atcagcgatt tgaagatagc agttgaagtc gggttagtgg tcggaacgat
accgcaaata 8700ataccgattg gttcagcgat agtgatggta ccaaaagtgt cgtcttcaga
cagaacacca 8760caggtttttt catctttata ggcgttgtag atatattcag aagcaaagtg
gtttttgatc 8820actttatctt cgacgatacc catgccggat tcggcaacgg ccattttcgc
gagtgggatt 8880cgagcatctg cagcagccag agcggcggcg cggaagattt tgtctacttg
ctcttgagtg 8940aaactggcat attcacgctg ggcttttttt acacgctcta cgagtgcgtt
aagttcagcg 9000acattagtaa cagccataat tcttaattaa ctttgatatg attttgtttc
agatttttta 9060tataaaagct ttcccaaata gtgctaaagt gaacttagat tttttggtac
ctgtttcgaa 9120attaaaaata gaaaaatttc tctccctata ttgttattct tacttcaaat
ttgtttatcg 9180tttatttact aggcgagact tgagtagacg acaatccaaa tagaattaac
agattttatt 9240ggtagaaagc aataatattc tttagatggt tgagaataaa gaagtaaaaa
aaccagtaaa 9300gagaaaaaga aaaggaagaa aattaaagaa aaaggatgat tacacaagaa
gataataaaa 9360aaactccttt attaagagcg gaagaattta ataatgaaga tgggaataag
caaaacaaaa 9420acaaagaagg gaaaaaaaat aaaaaatcgt atttatttat ttaaaaaatc
atgttgatga 9480cgacaatgga aaaaaaaaac cgatttcact ttctcatcct tatatttttc
aaaggttgat 9540gcaagtcgat ctcaaatcgg ataacgctgc caactgggaa attccgcaat
tccgcaagaa 9600aaaaaaaaat gtgaaaacgt gattgcattt tttacaggtc ctaaaggatt
tagcccacat 9660atcaagaggg tggcagtaat tgcactgatt aagcattcgt cagcattagg
cgaatgtgtg 9720catgaatatt gccagtgtgc tcgatattag agagtacatt gaagaatatt
gtaccggatt 9780atgtacaata actttgttaa tgagatatta attttctttt ttactagccg
ctatcccatg 9840cacgatgcta aatttcaaga agaaactgag atttaaaaaa ttagtggaag
ctgataaaac 9900ggactataat ggtgtatgga ttgaggaatc tcgacatgtt tttccatcgt
tttcaacgat 9960gactgtaacc cgtagattga accaggcatg ccaaagttag ttagatcagg
gtaaaaatta 10020tagatgaggt ttaattaaac aagcacgcag cacgctgtat ttacgtattt
aattttatat 10080atttgtgcat acactactag ggaagacttg aaaaaaacct aggaaatgaa
aaaacgacac 10140aggaagtccc gtatttacta ttttttcctt ccttttgatg gggcagggcg
gaaatagagg 10200ataggataag cctactgctt agctgtttcc gtctctactt cggtagttgt
ctcaattgtc 10260gtttcagtat tacctttaga gccgctagac gatggttgag ctatttgttg
agggaaaact 10320aagttcatgt aacacacgca taacccgatt aaactcatga atagcttgat
tgcaggaggc 10380tggtccattg gagatggtgc cttattttcc ttataggcaa cgatgatgtc
ttcgtcggtg 10440ttcaggtagt agtgtacact ctgaatcagg gagaaccagg caatgaactt
gttcctcaag 10500aaaatagcgg ccataggcat ggattggtta accacaccag atatgcttgg
tgtggcagaa 10560tatagtcctt ttggtggcgc aattttcttg tacctgtggt agaaagggag
cggttgaact 10620gttagtatat attggcaata tcagcaaatt tgaaagaaaa ttgtcggtga
aaaacatacg 10680aaacacaaag gtcgggcctt gcaacgttat tcaaagtcat tgtttagttg
aggaggtagc 10740agcggagtat atgtattcct tttttttgcc tatggatgtt gtaccatgcc
cattctgctc 10800aagcttttgt taaaattatt tttcagtatt ttttcttcca tgttgcgcgt
tacgagaaca 10860gaagcgacag ataaccgcaa tcatacaact agcgctactg cggggtgtaa
aaagcacaag 10920aactaagcca agatcacaac agttatcgat aaaatagcag tgtttgcatg
gccattgaga 10980aggacaacat tggcgtgcgc gccaatgttg tctcaccatg tagctccaaa
cgagttgtaa 11040gagacggacc gctcacgctt ccgaagcggt cagaaaacgc ttcccagtat
gcagttgacc 11100tacattcaac ctgcaaatat tgctttgctt caagaaatga ttacacagac
gtctattttc 11160ttctacataa tgcacgaaac ttgggcattt agtcatgtag ccgcctagcg
agcctgggtg 11220ccgtcctatc tcctttgttc gtgcaaagag acaggaacac acactgcgtt
ctcttgcggc 11280cggtctggcg gactcagggg tgcggcgttt gcttaaccgg agggaataat
aaaatcgggg 11340tgacgcaagt atgaagtcat gtgtgcttag caattacgta gagggattag
aaataatagt 11400gtgcggttat cggaaccggc tcttgttccc gtttagagca acccaggtgc
aggcgtactt 11460taaagtattt tctttctttt ttttcctgct acttacgcta ggagctgccg
cagctgcaaa 11520gccgacgtcg gagaggcagg tgatcttcgg ctcggccgac aaatcccctg
gatatcattg 11580gcctgtcgag gtatcggccg cgtggaacta ccgggaatta ctatgcaaaa
caattggaaa 11640tctggtagga aaaccttgtt ctagaacttg gcgattgctg acaaagaaga
aaagggccta 11700ttgttgctgc ctcttttgtt gttcttcctc gtattgtctt gccggtgttc
tttgtgtctt 11760ttgtgtgtag gttcttacta ttatagtgct ctttgctatt atattttctt
cgttttcact 11820ttgcgtaatg taacggtctt aaacaaagtt tttttttttt cgctcttgca
ttttcctttt 11880ctgctctatc ttatttgcta attgtagttt cagaagtttt acttaaatat
agcactattt 11940tccagtttta atgtttcttc tcattgcttt cttttataat tttcgcatat
aattatacat 12000ttacggtgtc ttaactctcc ctcttcaccc ctcattattc cagaaaatac
taatacttct 12060tcacacaaaa gaacgcagtt agacaatcaa caatgaatcc taaatcctct
acacctaaga 12120ttccaagacc caagaacgca tttattctgt tcagacagca ctaccacagg
atcttaatag 12180acgaatggac cgctcaaggt gtggaaatac cccataattc aaacatttct
aaaattattg 12240gtacgaagtg gaagggctta caaccggaag ataaggcaca ctgggaaaat
ctagcggaga 12300aggagaaact agaacatgaa aggaagtatc ctgaatacaa atacaagccg
gtaagaaagt 12360ctaagaagaa gcaactactt ttgaaggaaa tcgagcaaca gcagcagcaa
caacagaaag 12420aacagcagca gcagaaacag tcacaaccgc aattacaaca gccctttaac
aacaatatag 12480ttcttatgaa aagagcacat tctctttcac catcttcctc ggtgtcaagc
tcgaacagct 12540atcagttcca attgaacaat gatcttaaga ggttgcctat tccttctgtt
aatacttcta 12600actatatggt ctccagatct ttaagtggac tacctttgac gcatgataag
acggcaagag 12660acctaccaca gctgtcatct caactaaatt ctattccata ttactcagct
ccacacgacc 12720cttcaacgag acatcattac ctcaacgtcg ctcaagctca accaagggct
aactcgaccc 12780ctcaattgcc ctttatttca tccattatca acaacagcag tcaaacaccg
gtaactacaa 12840ctaccacatc cacaacaact gcgacatctt ctcctgggaa attctcctct
tctccgaact 12900cctctgtact ggagaacaac agattaaaca gtatcaacaa ttcaaatcaa
tatttacctc 12960cccctctatt accttctctg caagattttc aactggatca gtaccagcag
ctaaagcaga 13020tgggaccaac ttatattgtc aaaccactgt ctcacaccag gaacaatcta
ttgtccacaa 13080ctacccctac gcatcatcac attcctcata taccaaacca aaacattcct
ctacatcaaa 13140ttataaactc aagcaacact gaggtcaccg ctaaaactag cctagtttct
ccgaaatgat 13200tttttttttc catttcttct ttccgttata ttatattata ctatattccc
tttaactaaa 13260aatttatgca tttggctcct gtttaataaa agtttaaatc
13300100910PRTBifidobacterium adolescentis 100Met Ala Asp Ala
Lys Lys Lys Glu Glu Pro Thr Lys Pro Thr Pro Glu1 5
10 15Glu Lys Leu Ala Ala Ala Glu Ala Glu Val
Asp Ala Leu Val Lys Lys 20 25
30Gly Leu Lys Ala Leu Asp Glu Phe Glu Lys Leu Asp Gln Lys Gln Val
35 40 45Asp His Ile Val Ala Lys Ala Ser
Val Ala Ala Leu Asn Lys His Leu 50 55
60Val Leu Ala Lys Met Ala Val Glu Glu Thr His Arg Gly Leu Val Glu65
70 75 80Asp Lys Ala Thr Lys
Asn Ile Phe Ala Cys Glu His Val Thr Asn Tyr 85
90 95Leu Ala Gly Gln Lys Thr Val Gly Ile Ile Arg
Glu Asp Asp Val Leu 100 105
110Gly Ile Asp Glu Ile Ala Glu Pro Val Gly Val Val Ala Gly Val Thr
115 120 125Pro Val Thr Asn Pro Thr Ser
Thr Ala Ile Phe Lys Ser Leu Ile Ala 130 135
140Leu Lys Thr Arg Cys Pro Ile Ile Phe Gly Phe His Pro Gly Ala
Gln145 150 155 160Asn Cys
Ser Val Ala Ala Ala Lys Ile Val Arg Asp Ala Ala Ile Ala
165 170 175Ala Gly Ala Pro Glu Asn Cys
Ile Gln Trp Ile Glu His Pro Ser Ile 180 185
190Glu Ala Thr Gly Ala Leu Met Lys His Asp Gly Val Ala Thr
Ile Leu 195 200 205Ala Thr Gly Gly
Pro Gly Met Val Lys Ala Ala Tyr Ser Ser Gly Lys 210
215 220Pro Ala Leu Gly Val Gly Ala Gly Asn Ala Pro Ala
Tyr Val Asp Lys225 230 235
240Asn Val Asp Val Val Arg Ala Ala Asn Asp Leu Ile Leu Ser Lys His
245 250 255Phe Asp Tyr Gly Met
Ile Cys Ala Thr Glu Gln Ala Ile Ile Ala Asp 260
265 270Lys Asp Ile Tyr Ala Pro Leu Val Lys Glu Leu Lys
Arg Arg Lys Ala 275 280 285Tyr Phe
Val Asn Ala Asp Glu Lys Ala Lys Leu Glu Gln Tyr Met Phe 290
295 300Gly Cys Thr Ala Tyr Ser Gly Gln Thr Pro Lys
Leu Asn Ser Val Val305 310 315
320Pro Gly Lys Ser Pro Gln Tyr Ile Ala Lys Ala Ala Gly Phe Glu Ile
325 330 335Pro Glu Asp Ala
Thr Ile Leu Ala Ala Glu Cys Lys Glu Val Gly Glu 340
345 350Asn Glu Pro Leu Thr Met Glu Lys Leu Ala Pro
Val Gln Ala Val Leu 355 360 365Lys
Ser Asp Asn Lys Glu Gln Ala Phe Glu Met Cys Glu Ala Met Leu 370
375 380Lys His Gly Ala Gly His Thr Ala Ala Ile
His Thr Asn Asp Arg Asp385 390 395
400Leu Val Arg Glu Tyr Gly Gln Arg Met His Ala Cys Arg Ile Ile
Trp 405 410 415Asn Ser Pro
Ser Ser Leu Gly Gly Val Gly Asp Ile Tyr Asn Ala Ile 420
425 430Ala Pro Ser Leu Thr Leu Gly Cys Gly Ser
Tyr Gly Gly Asn Ser Val 435 440
445Ser Gly Asn Val Gln Ala Val Asn Leu Ile Asn Ile Lys Arg Ile Ala 450
455 460Arg Arg Asn Asn Asn Met Gln Trp
Phe Lys Ile Pro Ala Lys Thr Tyr465 470
475 480Phe Glu Pro Asn Ala Ile Lys Tyr Leu Arg Asp Met
Tyr Gly Ile Glu 485 490
495Lys Ala Val Ile Val Cys Asp Lys Val Met Glu Gln Leu Gly Ile Val
500 505 510Asp Lys Ile Ile Asp Gln
Leu Arg Ala Arg Ser Asn Arg Val Thr Phe 515 520
525Arg Ile Ile Asp Tyr Val Glu Pro Glu Pro Ser Val Glu Thr
Val Glu 530 535 540Arg Gly Ala Ala Met
Met Arg Glu Glu Phe Glu Pro Asp Thr Ile Ile545 550
555 560Ala Val Gly Gly Gly Ser Pro Met Asp Ala
Ser Lys Ile Met Trp Leu 565 570
575Leu Tyr Glu His Pro Glu Ile Ser Phe Ser Asp Val Arg Glu Lys Phe
580 585 590Phe Asp Ile Arg Lys
Arg Ala Phe Lys Ile Pro Pro Leu Gly Lys Lys 595
600 605Ala Lys Leu Val Cys Ile Pro Thr Ser Ser Gly Thr
Gly Ser Glu Val 610 615 620Thr Pro Phe
Ala Val Ile Thr Asp His Lys Thr Gly Tyr Lys Tyr Pro625
630 635 640Ile Thr Asp Tyr Ala Leu Thr
Pro Ser Val Ala Ile Val Asp Pro Val 645
650 655Leu Ala Arg Thr Gln Pro Arg Lys Leu Ala Ser Asp
Ala Gly Phe Asp 660 665 670Ala
Leu Thr His Ala Phe Glu Ala Tyr Val Ser Val Tyr Ala Asn Asp 675
680 685Phe Thr Asp Gly Met Ala Leu His Ala
Ala Lys Leu Val Trp Asp Asn 690 695
700Leu Ala Glu Ser Val Asn Gly Glu Pro Gly Glu Glu Lys Thr Arg Ala705
710 715 720Gln Glu Lys Met
His Asn Ala Ala Thr Met Ala Gly Met Ala Phe Gly 725
730 735Ser Ala Phe Leu Gly Met Cys His Gly Met
Ala His Thr Ile Gly Ala 740 745
750Leu Cys His Val Ala His Gly Arg Thr Asn Ser Ile Leu Leu Pro Tyr
755 760 765Val Ile Arg Tyr Asn Gly Ser
Val Pro Glu Glu Pro Thr Ser Trp Pro 770 775
780Lys Tyr Asn Lys Tyr Ile Ala Pro Glu Arg Tyr Gln Glu Ile Ala
Lys785 790 795 800Asn Leu
Gly Val Asn Pro Gly Lys Thr Pro Glu Glu Gly Val Glu Asn
805 810 815Leu Ala Lys Ala Val Glu Asp
Tyr Arg Asp Asn Lys Leu Gly Met Asn 820 825
830Lys Ser Phe Gln Glu Cys Gly Val Asp Glu Asp Tyr Tyr Trp
Ser Ile 835 840 845Ile Asp Gln Ile
Gly Met Arg Ala Tyr Glu Asp Gln Cys Ala Pro Ala 850
855 860Asn Pro Arg Ile Pro Gln Ile Glu Asp Met Lys Asp
Ile Ala Ile Ala865 870 875
880Ala Tyr Tyr Gly Val Ser Gln Ala Glu Gly His Lys Leu Arg Val Gln
885 890 895Arg Gln Gly Glu Ala
Ala Thr Glu Glu Ala Ser Glu Arg Ala 900 905
910101870PRTBacillus coagulans 101Met Ala Ile Asp Glu Lys
Val Val Gly Lys Ser Ala Gln Ile Thr Glu1 5
10 15Met Val Asp Ser Leu Val Ala Lys Gly Gln Lys Ala
Leu Arg Glu Phe 20 25 30Met
Glu Leu Asp Gln Ala Gln Val Asp Asn Ile Val Lys Gln Met Ala 35
40 45Leu Ala Gly Leu Glu Gln His Met Val
Leu Ala Lys Met Ala Val Glu 50 55
60Glu Thr Gly Arg Gly Val Tyr Glu Asp Lys Met Thr Lys Asn Leu Phe65
70 75 80Ala Thr Glu Tyr Ile
Tyr His Asn Ile Lys Tyr Asn Lys Thr Val Gly 85
90 95Ile Ile Asp Glu Asn Asn Asn Glu Gly Ile Val
Lys Phe Ala Glu Pro 100 105
110Val Gly Val Ile Ala Gly Val Thr Pro Val Thr Asn Pro Thr Ser Thr
115 120 125Thr Met Phe Lys Ala Leu Ile
Ala Ile Lys Thr Arg Asn Pro Ile Ile 130 135
140Phe Ala Phe His Pro Ser Ala Gln Lys Cys Ser Ser His Ala Ala
Lys145 150 155 160Val Met
Leu Asp Ala Ala Val Lys Ala Gly Ala Pro Glu Asn Cys Ile
165 170 175Gln Trp Ile Glu Lys Pro Ala
Ile Glu Ala Thr Gln Gln Leu Met Asn 180 185
190His Ser Gly Ile Ser Leu Ile Leu Ala Thr Gly Gly Ser Gly
Met Val 195 200 205Lys Ser Ala Tyr
Ser Ser Gly Lys Pro Ala Leu Gly Val Gly Pro Gly 210
215 220Asn Val Pro Cys Tyr Ile Glu Lys Ser Ala Asp Ile
Lys Arg Ala Val225 230 235
240Asn Asp Leu Ile Leu Ser Lys Thr Phe Asp Asn Gly Met Ile Cys Ala
245 250 255Ser Glu Gln Ala Val
Ile Ile Asp Lys Glu Ile Tyr Asp Asn Val Lys 260
265 270Asn Glu Leu Ile Ala Asn Gln Cys Tyr Phe Leu Asn
Glu Ala Glu Lys 275 280 285Lys Lys
Val Glu Lys Thr Val Ile Asn Glu Lys Thr Gln Ser Val Asn 290
295 300Ser Ala Ile Val Gly Lys Pro Ala Tyr Glu Ile
Ala Lys Met Ala Gly305 310 315
320Val Asn Val Pro Glu Asp Thr Lys Ile Leu Ile Ala Glu Leu Thr Gly
325 330 335Val Gly Pro Asp
Tyr Pro Leu Ser Arg Glu Lys Leu Ser Pro Val Leu 340
345 350Ala Cys Tyr Lys Ala Asn Ser Thr Lys Gln Gly
Phe Glu Phe Ala Glu 355 360 365Ala
Met Leu Glu Phe Gly Gly Leu Gly His Ser Ala Val Ile His Ser 370
375 380Thr Asn Asp Glu Val Ile Glu Gln Tyr Gly
Leu Lys Met Lys Ala Gly385 390 395
400Arg Ile Ile Val Asn Ser Pro Ser Ser Gln Gly Ala Ile Gly Asp
Ile 405 410 415Tyr Asn Ala
Tyr Met Pro Ser Leu Thr Leu Gly Cys Gly Thr Phe Gly 420
425 430Gly Asn Ser Val Ser Thr Asn Val Gly Val
Ile Asn Leu Tyr Asn Val 435 440
445Lys Thr Met Ala Lys Arg Arg Val Asn Met Gln Trp Phe Lys Ile Pro 450
455 460Pro Arg Val Tyr Phe Glu Lys Asn
Ser Val Gln Tyr Leu Glu Lys Met465 470
475 480Pro Asp Ile Ser Ser Ala Phe Ile Val Thr Asp Pro
Asp Met Val Arg 485 490
495Leu Gly Phe Val Glu Lys Val Leu Tyr Tyr Leu Arg Lys Arg Pro Asp
500 505 510Tyr Val His Cys Glu Ile
Phe Ser Glu Val Glu Pro Asp Pro Ser Ile 515 520
525Glu Thr Val Arg Lys Gly Ala Ala Ala Met Ala Ser Phe Gln
Pro Asp 530 535 540Val Ile Ile Ala Leu
Gly Gly Gly Ser Ala Met Asp Ala Ala Lys Gly545 550
555 560Met Trp Leu Phe Tyr Glu His Pro Glu Val
Asp Phe Asn Glu Leu Lys 565 570
575Gln Lys Phe Met Asp Ile Arg Lys Arg Val Ala Lys Phe Pro Lys Leu
580 585 590Gly Glu Lys Ala Gln
Leu Val Cys Ile Pro Thr Thr Ser Gly Thr Gly 595
600 605Ser Glu Val Thr Ser Phe Ala Val Ile Ser Asp Lys
Lys Asn Asn Thr 610 615 620Lys Tyr Pro
Leu Ala Asp Tyr Glu Leu Thr Pro Asp Val Ala Ile Ile625
630 635 640Asp Pro Gln Phe Val Met Thr
Val Pro Lys Ser Val Thr Ala Asp Thr 645
650 655Gly Met Asp Val Leu Thr His Ala Ile Glu Ala Tyr
Val Ser Asn Met 660 665 670Ala
Asn Asp Tyr Thr Asp Gly Leu Ala Ile Lys Ala Ile Gln Leu Val 675
680 685His Glu Tyr Leu Pro Lys Ala Tyr Ala
Asn Gly Asn Asp Ala Leu Ala 690 695
700Arg Glu Lys Met His Asn Ala Ser Thr Leu Ala Gly Met Ala Phe Ser705
710 715 720Asn Ala Phe Leu
Gly Ile Asn His Ser Leu Ala His Lys Ile Gly Ala 725
730 735Glu Phe His Ile Pro His Gly Arg Ala Asn
Ala Ile Leu Leu Pro His 740 745
750Val Ile Arg Tyr Asn Ala Gln Lys Pro Lys Lys Phe Ala Ala Phe Pro
755 760 765Lys Tyr Glu His Phe Ile Ala
Asp Gln Arg Tyr Ala Glu Ile Ala Arg 770 775
780Val Leu Gly Leu Pro Ala Ser Thr Thr Glu Glu Gly Val Glu Ser
Leu785 790 795 800Cys Gln
Glu Ile Ile Arg Met Cys Lys Leu Phe Asn Ile Pro Leu Ser
805 810 815Leu Lys Ala Ala Gly Val Asn
Arg Ala Asp Phe Glu Lys Arg Val Ala 820 825
830Ile Ile Ala Asp Arg Ala Phe Glu Asp Gln Cys Thr Pro Ala
Asn Pro 835 840 845Lys Leu Pro Leu
Val Ser Glu Leu Glu Asp Ile Leu Arg Lys Ala Phe 850
855 860Glu Gly Val Glu Ala Lys865
870102867PRTBacillus licheniformis 102Met Ala Ile Glu Glu Lys Asn Met Lys
Gln Lys Gln Asn Ala Ser Asn1 5 10
15Met Ile Asp Gln Leu Val Glu Lys Gly Leu Lys Ala Leu Glu Glu
Phe 20 25 30Arg Ser Phe Asp
Gln Glu Gln Ile Asp Glu Ile Val Lys Gln Met Ala 35
40 45Leu Ala Gly Leu Asp Gln His Met Pro Leu Ala Lys
Leu Ala Val Glu 50 55 60Glu Thr Lys
Arg Gly Val Tyr Glu Asp Lys Ile Ile Lys Asn Met Phe65 70
75 80Ala Thr Glu Tyr Val Tyr His His
Ile Lys Tyr Asp Lys Thr Val Gly 85 90
95Ile Ile Asn Glu Asn Glu His Asp Gly Val Ile Glu Ile Ala
Glu Pro 100 105 110Val Gly Val
Ile Ala Gly Val Thr Pro Val Thr Asn Pro Thr Ser Thr 115
120 125Thr Met Phe Lys Ser Leu Ile Ser Ile Lys Thr
Arg Asn Pro Ile Val 130 135 140Phe Ala
Phe His Pro Ser Ala Gln Lys Cys Ser Arg Glu Ala Ala Arg145
150 155 160Ile Leu Arg Asp Ala Ala Val
Lys Ala Gly Ala Pro Asp Asn Cys Ile 165
170 175Gln Trp Ile Glu Thr Pro Ser Leu Asp Ala Thr Gln
Ala Leu Met Thr 180 185 190His
Pro Asn Val Ser Leu Ile Leu Ala Thr Gly Gly Ala Gly Met Val 195
200 205Lys Ser Ala Tyr Ser Ser Gly Lys Pro
Ala Leu Gly Val Gly Pro Gly 210 215
220Asn Val Pro Cys Tyr Ile Glu Lys Ser Ala Asn Leu Lys Gln Ala Val225
230 235 240Asn Asp Leu Ile
Leu Ser Lys Thr Phe Asp Asn Gly Met Ile Cys Ala 245
250 255Ser Glu Gln Ala Val Ile Ile Asp Lys Gly
Ile Tyr Ser Asp Val Lys 260 265
270Ala Glu Met Thr Arg Asn Asn Cys Tyr Phe Leu Asn Lys Thr Glu Lys
275 280 285Ser Lys Val Glu Lys Leu Val
Ile Asn Glu Asn Thr Cys Ala Val Asn 290 295
300Ala Asp Ile Val Gly Met Pro Ala Phe Lys Ile Ala Glu Met Ala
Gly305 310 315 320Ile Lys
Val Pro Gln Asp Thr Lys Ile Leu Ile Ala Glu Leu Glu Gly
325 330 335Val Gly Pro Asp Asp Pro Leu
Ser Arg Glu Lys Leu Ser Pro Val Leu 340 345
350Ala Cys Tyr Lys Val Ser Gly Leu Glu Glu Gly Leu Lys Arg
Ala Glu 355 360 365Glu Met Leu Ala
Phe Gly Gly Thr Gly His Ser Ala Val Ile His Thr 370
375 380Asn Asp Gln Glu Ala Val Lys Glu Phe Gly Leu Arg
Met Lys Ala Gly385 390 395
400Arg Ile Ile Val Asn Ala Pro Ser Ser Gln Gly Ala Ile Gly Asp Ile
405 410 415Tyr Asn Ala Tyr Met
Pro Ser Leu Thr Leu Gly Cys Gly Thr Tyr Gly 420
425 430Gly Asn Ser Val Ser Ser Asn Val Gly Ala Val His
Leu Ile Asn Thr 435 440 445Lys Lys
Val Ala Lys Arg Asn Val Asn Met Gln Trp Phe Lys Val Pro 450
455 460Pro Lys Ile Tyr Phe Glu Lys His Ala Thr Gln
Tyr Leu Ala Lys Met465 470 475
480Pro Asp Ile Ser Lys Ala Phe Ile Val Thr Asp Pro Gly Met Val Lys
485 490 495Leu Gly Tyr Val
Asp Arg Ala Leu His Tyr Leu Arg Arg Arg Pro Asp 500
505 510Tyr Val His Cys Glu Ile Phe Ser Asp Val Glu
Pro Asp Pro Ser Ile 515 520 525Glu
Thr Val Met Asn Gly Val Asp Met Met Ala Lys Phe Gln Pro Asp 530
535 540Val Ile Ile Ala Leu Gly Gly Gly Ser Ala
Met Asp Ala Ala Lys Gly545 550 555
560Met Trp Met Phe Tyr Glu His Pro Asp Ala Glu Phe Phe Gly Leu
Lys 565 570 575Gln Lys Phe
Leu Asp Ile Arg Lys Arg Ile Val Lys Tyr Pro Lys Leu 580
585 590Gly Gly Lys Ala Lys Phe Val Ala Ile Pro
Thr Thr Ser Gly Thr Gly 595 600
605Ser Glu Val Thr Ser Phe Ser Val Ile Thr Asp Lys Glu Thr Asn Thr 610
615 620Lys Tyr Pro Leu Ala Asp Tyr Glu
Leu Thr Pro Asp Val Ala Ile Ile625 630
635 640Asp Pro Gln Phe Val Met Thr Val Pro Lys His Ile
Thr Ala Asp Thr 645 650
655Gly Met Asp Val Leu Thr His Ala Ile Glu Ser Tyr Val Ser Cys Met
660 665 670Ala Asn Asp Tyr Thr Asp
Gly Leu Ala Met Lys Ala Ile Gln Leu Ile 675 680
685Phe Glu Tyr Leu Pro Arg Ala Tyr Lys Asn Gly Ser Asp Glu
Leu Ala 690 695 700Arg Glu Lys Val His
Asn Ala Ser Thr Ile Ala Gly Met Ala Phe Ser705 710
715 720Asn Ala Phe Leu Gly Ile Asn His Ser Leu
Ala His Lys Leu Gly Ala 725 730
735Glu Phe Gln Ile Ala His Gly Arg Ala Asn Ala Ile Leu Leu Pro His
740 745 750Val Ile Arg Tyr Asn
Ala Ala Lys Pro Lys Lys Phe Thr Ala Phe Pro 755
760 765Lys Tyr Ser His Phe Ile Ala Asp Gln Arg Tyr Ala
Glu Ile Ala Arg 770 775 780Thr Leu Gly
Leu Pro Ala Lys Thr Thr Ala Glu Gly Val Glu Ser Leu785
790 795 800Ile Gln Glu Ile Ile Ser Leu
Ala Lys Glu Leu Lys Ile Pro Met Ser 805
810 815Ile Lys Gln Asn Gly Val Asp Ala Ala Ala Phe Glu
Ser Lys Val Asp 820 825 830Leu
Met Ala Glu Arg Ala Phe Glu Asp Gln Cys Thr Thr Ala Asn Pro 835
840 845Lys Leu Pro Leu Val Ser Glu Leu Ala
Glu Ile Tyr Arg Ser Ala Tyr 850 855
860Lys Gly Val865103866PRTEnterococcus faecium 103Met Met Ala Lys Val Met
Glu Lys Glu Lys Thr Lys Thr Ile Asp Val1 5
10 15Gln Ala Met Ile Asp Gly Leu Ala Glu Lys Ala Asn
Val Ala Leu Lys 20 25 30Glu
Met Glu Ser Phe Asp Gln Glu Lys Val Asp His Ile Val His Glu 35
40 45Met Ala Met Ala Ala Leu Asp Gln His
Met Pro Leu Ala Lys Met Ala 50 55
60Val Glu Glu Thr Gly Arg Gly Val Tyr Glu Asp Lys Ala Ile Lys Asn65
70 75 80Met Tyr Ala Ser Glu
Tyr Ile Trp His Asn Ile Lys His Asp Lys Thr 85
90 95Val Gly Val Ile Asn Glu Asp Val Gln Lys Gly
Leu Ile Glu Ile Ala 100 105
110Glu Pro Val Gly Val Val Cys Gly Val Thr Pro Thr Thr Asn Pro Thr
115 120 125Ser Thr Thr Ile Phe Lys Ser
Met Ile Ala Leu Lys Thr Arg Asn Pro 130 135
140Ile Val Phe Ala Phe His Pro Ser Ala Gln Lys Ser Ser Ala Glu
Ala145 150 155 160Ala Arg
Val Val Arg Asp Ala Ala Ile Ala Ala Gly Ala Pro Glu Asn
165 170 175Cys Ile Gln Trp Ile Glu His
Pro Ser Ile Glu Ala Thr Ser Met Leu 180 185
190Met Asn His Pro Gly Ile Ala Ile Val Leu Ala Thr Gly Gly
Ala Gly 195 200 205Met Val Lys Ser
Ala Tyr Ser Thr Gly Lys Pro Ala Leu Gly Val Gly 210
215 220Pro Gly Asn Val Pro Ala Tyr Ile Glu Lys Thr Ala
Lys Ile Lys Arg225 230 235
240Ala Val Asn Asp Leu Ile Val Ser Lys Thr Phe Asp Asn Gly Met Ile
245 250 255Cys Ala Ser Glu Gln
Ala Val Ile Val Asp Lys Glu Ile Tyr Ala Ala 260
265 270Val Lys Ala Glu Phe Gln Ala His Gln Val Tyr Ile
Val Lys Pro Asp 275 280 285Glu Leu
Gln Lys Leu Glu Asp Ala Val Met Asn Glu Gly Lys Tyr Ala 290
295 300Val Asn Pro Ser Ile Val Gly His Ser Ala Met
Glu Ile Ala Lys Leu305 310 315
320Ala Gly Ile Ser Val Pro Lys Gly Thr Lys Met Leu Ile Ala Glu Leu
325 330 335Glu Gly Val Gly
Pro Asp Tyr Pro Leu Ser Arg Glu Lys Leu Ser Pro 340
345 350Val Leu Ala Met Ile Lys Ala Asn Asn Thr Asp
His Ala Phe Asp Leu 355 360 365Cys
Glu Gly Met Leu Asn Leu Gly Gly Leu Gly His Thr Ala Val Ile 370
375 380His Ser Glu Asn Glu Glu Leu His Val Lys
Phe Gly Leu Arg Met Lys385 390 395
400Ala Cys Arg Ile Leu Val Asn Thr Pro Ser Ala Glu Gly Gly Ile
Gly 405 410 415Asp Ile Tyr
Asn Glu Met Ile Pro Ser Leu Thr Leu Gly Cys Gly Ser 420
425 430Tyr Gly Lys Asn Ser Val Ser Arg Asn Val
Ser Ala Val Asn Leu Ile 435 440
445Asn Val Lys Thr Val Ala Lys Arg Arg Asn Asn Met Gln Trp Phe Lys 450
455 460Leu Pro Pro Lys Ile Phe Phe Glu
Lys Asn Ser Leu Leu Tyr Leu Glu465 470
475 480Lys Met Glu Asn Val Glu Arg Val Met Ile Val Cys
Asp Pro Gly Met 485 490
495Val Gln Phe Gly Tyr Cys Asp Thr Val Arg Glu Val Leu Ser Arg Arg
500 505 510Lys Asn Asp Val Lys Ile
Glu Val Phe Ser Glu Val Glu Pro Asn Pro 515 520
525Ser Thr Asn Thr Val Tyr Ala Gly Thr Lys Leu Met Ala Asp
Phe Lys 530 535 540Pro Asp Thr Val Ile
Ala Leu Gly Gly Gly Ser Ala Met Asp Ala Ala545 550
555 560Lys Gly Met Trp Met Phe Tyr Glu His Pro
Asp Thr Ser Phe Phe Gly 565 570
575Ala Lys Gln Lys Phe Leu Asp Ile Arg Lys Arg Thr Tyr Lys Ile Asp
580 585 590Lys Pro Glu Lys Thr
Gln Phe Val Cys Ile Pro Thr Thr Ser Gly Thr 595
600 605Gly Ser Glu Val Thr Pro Phe Ala Val Ile Thr Asp
Ser Glu Thr His 610 615 620Val Lys Tyr
Pro Leu Ala Asp Tyr Ala Leu Thr Pro Asp Val Ala Ile625
630 635 640Val Asp Pro Gln Phe Val Met
Ser Val Pro Ala Ser Val Thr Ala Asp 645
650 655Thr Gly Met Asp Val Leu Thr His Ala Ile Glu Ser
Tyr Val Ser Val 660 665 670Met
Ala Ser Asp Tyr Thr Arg Gly Leu Ser Leu Gln Ala Ile Lys Leu 675
680 685Val Phe Asp Tyr Leu Glu Lys Ser Val
Lys Thr Pro Asp Met Glu Ser 690 695
700Arg Glu Lys Met His Asn Ala Ser Thr Met Ala Gly Met Ala Phe Ala705
710 715 720Asn Ala Phe Leu
Gly Ile Cys His Ser Val Ala His Lys Ile Gly Gly 725
730 735Glu Tyr Gly Ile Pro His Gly Arg Thr Asn
Ala Ile Leu Leu Pro His 740 745
750Ile Ile Arg Tyr Asn Ala Lys Asp Pro Gln Lys His Ala Met Phe Pro
755 760 765Lys Tyr Asp Tyr Phe Arg Ala
Asp Thr Asp Tyr Ala Asp Ile Ala Lys 770 775
780Phe Leu Gly Leu Lys Gly Glu Thr Thr Glu Glu Leu Val Glu Ala
Leu785 790 795 800Ala Thr
Ala Val Tyr Glu Leu Gly Asn Ser Val Gly Ile Asn Met Ser
805 810 815Leu Lys Ala Gln Gly Val Thr
Gln Glu Thr Leu Asp Thr Thr Val Asp 820 825
830Arg Met Ala Glu Leu Ala Tyr Glu Asp Gln Cys Thr Thr Ala
Asn Pro 835 840 845Lys Glu Pro Leu
Ile Ser Glu Leu Lys Gln Ile Ile Ile Asp Ala Tyr 850
855 860Asn Gly8651043300DNASaccharomyces
cerevisiaemisc_feature(601)..(2610)coding sequence 104aacgcggctg
atgcttttat ttaggaagga atacttacat tatcatgaga acattgtcaa 60gggcattctg
atacgggcct tccatcgcaa gaaaaaggca gcaacggact gagggacgga 120gagagttacg
gcataagaag tagtaggaga gcagagtgtc ataaagttat attattctcg 180tcctaaagtc
aattagttct gttgcgcttg acaatatatg tcgtgtaata ccgtccctta 240gcagaagaaa
gaaagacgga tccatatatg ttaaaatgct tcagagatgt ttctttaatg 300tgccgtccaa
caaaggtatc ttctgtagct tcctctattt tcgatcagat ctcatagtga 360gaaggcgcaa
ttcagtagtt aaaagcgggg aacagtgtga atccggagac ggcaagattg 420cccggccctt
tttgcggaaa agataaaaca agatatattg cactttttcc accaagaaaa 480acaggaagtg
gattaaaaaa tcaacaaagt ataacgccta ttgtcccaat aagcgtcggt 540tgttcttctt
tattatttta ccaagtacgc tcgagggtac attctaatgc attaaaagac 600atgagtaatc
ctcaaaaagc tctaaacgac tttctgtcca gtgaatctgt tcatacacat 660gatagttcta
ggaaacaatc taataagcag tcatccgacg aaggacgctc ttcatcacaa 720ccttcacatc
atcactctgg tggtactaac aacaataata acaataataa taataataat 780aacagtaaca
acaacaacaa cggcaacgat gggggaaatg atgacgacta tgattatgaa 840atgcaagatt
atagaccttc tccgcaaagt gcgcggccta ctcccacgta tgttccacaa 900tattctgtag
aaagtgggac tgctttcccg attcaagagg ttattcctag cgcatacatt 960aacacacaag
atataaacca taaagataac ggtccgccga gtgcaagcag taatagagca 1020ttcaggccta
gagggcagac cacagtgtcg gccaacgtgc ttaacattga agatttttac 1080aaaaatgcag
acgatgcgca taccatcccg gagtcacatt tatcgagaag gagaagtagg 1140tcgagggcta
cgagtaatgc tgggcacagt gccaatacag gcgccacgaa tggcaggact 1200actggtgccc
aaactaatat ggaaagcaat gaatcaccac gtaacgtccc cattatggtg 1260aagccaaaga
cattatacca gaaccctcaa acacctacag tcttgccctc cacataccat 1320ccaattaata
aatggtcttc cgtcaaaaac acttatttga aggaattttt agccgagttt 1380atgggaacaa
tggttatgat tattttcggt agtgctgttg tttgtcaggt caatgttgct 1440gggaaaatac
agcaggacaa tttcaacgtg gctttggata accttaacgt taccgggtct 1500tctgcagaaa
cgatagacgc tatgaagagt ttaacatcct tggtttcatc cgttgcgggc 1560ggtacctttg
atgatgtggc attgggctgg gctgctgccg tggtgatggg ctatttctgc 1620gctggtggta
gtgccatctc aggtgctcat ttgaatccgt ctattacatt agccaatttg 1680gtgtatagag
gttttcccct gaagaaagtt ccttattact ttgctggaca attgatcggt 1740gccttcacag
gcgctttgat cttgtttatt tggtacaaaa gggtgttaca agaggcatat 1800agcgattggt
ggatgaatga aagtgttgcg ggaatgtttt gcgtttttcc aaagccttat 1860ctaagttcag
gacggcaatt tttttccgaa tttttatgtg gagctatgtt acaagcagga 1920acatttgcgc
tgaccgatcc ttatacgtgt ttgtcctctg atgttttccc attgatgatg 1980tttattttga
ttttcattat caatgcttcc atggcttatc agacaggtac agcaatgaat 2040ttggctcgtg
atctgggccc acgtcttgca ctatatgcag ttggatttga tcataaaatg 2100ctttgggtgc
atcatcatca tttcttttgg gttcccatgg taggcccatt tattggtgcg 2160ttaatggggg
ggttggttta cgatgtctgt atttatcagg gtcatgaatc tccagtcaac 2220tggtctttac
cagtttataa ggaaatgatt atgagagcct ggtttagaag gcctggttgg 2280aagaagagaa
atagagcaag aagaacatcg gacctgagtg acttctcata caataacgat 2340gatgatgagg
aatttggaga aagaatggct cttcaaaaga caaagaccaa gtcatctatt 2400tcagacaacg
aaaatgaagc aggagaaaag aaagtgcaat ttaaatctgt tcagcgcggc 2460aaaagaacgt
ttggtggtat accaacaatt cttgaagaag aagattccat tgaaactgct 2520tcgctaggtg
cgacgacgac tgattctatt gggttatccg acacatcatc agaagattcg 2580cattatggta
atgctaagaa ggtaacatga gaaaacagac aagaaaaaga aacaaataat 2640atagactgat
agaaaaaaat actgcttact accgccggta taatatatat atatatatat 2700atttacatag
atgattgcat agtgttttaa aaagctttcc taggttaagc tatgaatctt 2760cataacctaa
ccaactaaat atgaaaatac tgacccatcg tcttaagtaa gttgacatga 2820actcagcctg
gtcacctact atacatgatg tatcgcatgg atggaaagaa taccaaacgc 2880taccttccag
gttaatgata gtatccaaac ctagttggaa tttgccttga acatcaagca 2940gcgattcgat
atcagttggg agcatcaatt tggtcattgg aataccatct atgcttttct 3000cctcccatat
tcgcaaaagt agtaagggct cgttatatac ttttgaatat gtaagatata 3060attctatatg
atttagtaat ttattttcta tacgctcagt atttttctgc agttgtcgag 3120taggtattaa
acgcaaaaga agtccatcct tttcatcatt caaatggaca tcttggcaaa 3180gggcccagtt
atggaaaatc tgggagtcat acaacgattg cagttggcta tgccactcct 3240ggtaaggaat
catcaagtct gataattctg ttttttagcc cttttttttt ttttttcatg
33001051326DNASaccharomyces cerevisiaemisc_featurefps1 delta
mutaionmisc_feature(602)..(636)coding sequence 105aacgcggctg atgcttttat
ttaggaagga atacttacat tatcatgaga acattgtcaa 60gggcattctg atacgggcct
tccatcgcaa gaaaaaggca gcaacggact gagggacgga 120gagagttacg gcataagaag
tagtaggaga gcagagtgtc ataaagttat attattctcg 180tcctaaagtc aattagttct
gttgcgcttg acaatatatg tcgtgtaata ccgtccctta 240gcagaagaaa gaaagacgga
tccatatatg ttaaaatgct tcagagatgt ttctttaatg 300tgccgtccaa caaaggtatc
ttctgtagct tcctctattt tcgatcagat ctcatagtga 360gaaggcgcaa ttcagtagtt
aaaagcgggg aacagtgtga atccggagac ggcaagattg 420cccggccctt tttgcggaaa
agataaaaca agatatattg cactttttcc accaagaaaa 480acaggaagtg gattaaaaaa
tcaacaaagt ataacgccta ttgtcccaat aagcgtcggt 540tgttcttctt tattatttta
ccaagtacgc tcgagggtac attctaatgc attaaaagac 600gattcgcatt atggtaatgc
taagaaggta acatgagaaa acagacaaga aaaagaaaca 660aataatatag actgatagaa
aaaaatactg cttactaccg ccggtataat atatatatat 720atatatattt acatagatga
ttgcatagtg ttttaaaaag ctttcctagg ttaagctatg 780aatcttcata acctaaccaa
ctaaatatga aaatactgac ccatcgtctt aagtaagttg 840acatgaactc agcctggtca
cctactatac atgatgtatc gcatggatgg aaagaatacc 900aaacgctacc ttccaggtta
atgatagtat ccaaacctag ttggaatttg ccttgaacat 960caagcagcga ttcgatatca
gttgggagca tcaatttggt cattggaata ccatctatgc 1020ttttctcctc ccatattcgc
aaaagtagta agggctcgtt atatactttt gaatatgtaa 1080gatataattc tatatgattt
agtaatttat tttctatacg ctcagtattt ttctgcagtt 1140gtcgagtagg tattaaacgc
aaaagaagtc catccttttc atcattcaaa tggacatctt 1200ggcaaagggc ccagttatgg
aaaatctggg agtcatacaa cgattgcagt tggctatgcc 1260actcctggta aggaatcatc
aagtctgata attctgtttt ttagcccttt tttttttttt 1320ttcatg
132610653PRTSaccharomyces
fibuligeraMISC_FEATURESf GA (AE9) 106Asp Asn Lys Asn Arg Tyr Lys Ile Asn
Gly Asn Tyr Lys Ala Gly Cys1 5 10
15Asn Ser Lys Lys His Ile Val Glu Ser Pro Gln Leu Ser Ser Arg
Gly 20 25 30Gly Cys Cys Asp
His Ile Asp Asp Asn Gly Gln Leu Thr Glu Glu Ile 35
40 45Asn Arg Tyr Thr Gly 5010734PRTBifidobacterium
adolescentisMISC_FEATUREBa pflA 107Cys Gln Asn Pro Asp Thr Trp Lys Met
Arg Asp Gly Lys Pro Val Tyr1 5 10
15Tyr Glu Gly Leu Thr Ser Ser Glu Glu Asn Val Glu Asn Asn Ala
Lys 20 25 30Ile
Cys10858PRTBifidobacterium adolescentisMISC_FEATUREBa pflB 108Trp Glu Gly
Phe Thr Glu Gly Asn Trp Gln Lys Asp Ile Asp Val Arg1 5
10 15Asp Cys Lys Gln Arg Asp Lys Asp Ser
Ile Pro Tyr Arg Asn Asp Phe 20 25
30Thr Glu Cys Pro Glu Cys Cys Asn Thr Ile Thr Pro Asp Gly Leu Gly
35 40 45Arg Asp Glu Glu Glu Glu Arg
Ile Gly Asn 50 5510953PRTBifidobacterium adolescentis
109Asp Ala Lys Lys Lys Glu Glu Pro Thr Lys Pro Thr Pro Glu Glu Lys1
5 10 15Leu Cys Cys Lys Asn Leu
Gly Val Asn Pro Gly Lys Thr Pro Glu Glu 20 25
30Gly Val Glu Asn Cys Gly Ser Tyr Gly Gly Asn Ser Val
Ser Gly Val 35 40 45Asn Gln Ala
Val Asn 5011029DNAArtificial SequencePrimer X11824 110aagcctacag
gcgcaagata acacatcac
2911159DNAArtificial SequencePrimer X15546 111ggacgaggca agctaaacag
atctctagac ctactttata ttatcaatat ttgtgtttg 5911226DNAArtificial
SequencePrimer X15380 112taggtctaga gatctgttta gcttgc
2611323DNAArtificial SequencePrimer X15382
113gagactacat gatagtccaa aga
2311459DNAArtificial SequencePrimer X15547 114ccgtttcttt tctttggact
atcatgtagt ctcatttatt ggagaaagat aacatatca 5911535DNAArtificial
SequencePrimer X11829 115ctcagcattg atcttagcag attcaggatc taggt
3511629DNAArtificial SequencePrimer X11816
116gcagtcatca ggatcgtagg agataagca
2911759DNAArtificial SequencePrimer X15548 117ggacgaggca agctaaacag
atctctagac ctatgataag gaaggggagc gaaggaaaa 5911859DNAArtificial
SequencePrimer X15549 118ccgtttcttt tctttggact atcatgtagt ctcctctgat
ctttcctgtt gcctctttt 5911930DNAArtificial SequencePrimer X11821
119tcacaagagt gtgcagaaat aggaggtgga
3012030DNAArtificial SequenceX16096 120catggtgctt agcagcagat gaaagtgtca
3012159DNAArtificial SequencePrimer
X15554 121ggacgaggca agctaaacag atctctagac ctaattaatt ttcagctgtt
atttcgatt 5912259DNAArtificial SequencePrimer X15555 122ccgtttcttt
tctttggact atcatgtagt ctcgagtgat tatgagtatt tgtgagcag
5912330DNAArtificial SequencePrimer X11845 123ttacttgtga aactgtctcc
gctatgtcag 3012425DNAArtificial
SequencePrimer X15559 124ggaaggcacc gatactagaa ctccg
2512559DNAArtificial SequencePrimer X15550
125gggacgaggc aagctaaaca gatctctaga cctaattaat tttcagctgt tattttgat
5912659DNAArtificial SequencePrimer X15552 126ccgtttcttt tctttggact
atcatgtagt ctcgagtgat tatgagtatt tgtgagcag 5912731DNAArtificial
SequencePrimer X15553 127accagcgtct ggtggacaaa cggccttcaa c
3112824DNAArtificial SequencePrimer X15556
128ccactcgagg ataggcttga aaga
2412959DNAArtificial SequencePrimer X15870 129ctaatcaaat caaaataaca
gctgaaaatt aatgagtgat tatgagtatt tgtgagcag 5913059DNAArtificial
SequencePrimer X15871 130aaaacttctg ctcacaaata ctcataatca ctcattaatt
ttcagctgtt attttgatt 5913159DNAArtificial SequencePrimer X17243
131tagttagatc agggtaaaaa ttatagatga ggtattaatt ttcagctgtt atttcgatt
5913259DNAArtificial SequencePrimer X16738 132ctaatcaaat cgaaataaca
gctgaaaatt aatacctcat ctataatttt taccctgat 5913359DNAArtificial
SequencePrimer X16620 133tcggatcagt agataacccg cctagaagac taggttacat
tgaaaataca gtaaatggt 5913459DNAArtificial SequencePrimer X16621
134tggtggaacc atttactgta ttttcaatgt aacctagtct tctaggcggg ttatctact
5913559DNAArtificial SequencePrimer X13208 135ccgaaatatt ccacggttta
gaaaaaaatc ggaggtttag acattggctc ttcattgag 5913659DNAArtificial
SequencePrimer X13209 136aagctcaatg aagagccaat gtctaaacct ccgatttttt
tctaaaccgt ggaatattt 5913759DNAArtificial SequencePrimer X17242
137acatcatctt ttaacttgaa tttattctct agctttcaat cattggagca atcatttta
5913859DNAArtificial SequencePrimer X17241 138gtccatgtaa aatgattgct
ccaatgattg aaagctagag aataaattca agttaaaag 5913960DNAArtificial
SequencePrimer X16744 139aaaaacttct gctcacaaat actcataatc actcctactt
attcccttcg agattatatc 6014059DNAArtificial SequencePrimer X17244
140gttcctagat ataatctcga agggaataag taggagtgat tatgagtatt tgtgagcag
5914130DNAArtificial SequencePrimer X11845 141ttacttgtga aactgtctcc
gctatgtcag 3014226DNAArtificial
SequencePrimer X15473 142agtcatcagg atcgtaggag ataagc
2614359DNAArtificial SequencePrimer X17460
143agaagataat atttttatat aattatatta atcctaatct tcatgtagat ctaattctt
5914459DNAArtificial SequencePrimer X17459 144cctttccttt tccttcgctc
cccttcctta tcaatggcag acgcaaagaa gaaggaaga 5914559DNAArtificial
SequencePrimer X17289 145gtccatgtaa aatgattgct ccaatgattg aaagttacat
tgaaaataca gtaaatggt 5914659DNAArtificial SequencePrimer X17290
146tggtggaacc atttactgta ttttcaatgt aactttcaat cattggagca atcatttta
5914758DNAArtificial SequencePrimer X15735 147catcttttaa cttgaattta
ttctctagcc tagtcttcta ggcgggttat ctactgat 5814859DNAArtificial
SequencePrimer X15736 148agataacccg cctagaagac taggctagag aataaattca
agttaaaaga tgatgttga 5914959DNAArtificial SequencePrimer X17457
149tgggggaaaa agaggcaaca ggaaagatca gagctactta ttcccttcga gattatatc
5915060DNAArtificial SequencePrimer X17458 150gttcctagat ataatctcga
agggaataag tagctctgat ctttcctgtt gcctcttttt 6015126DNAArtificial
SequencePrimer X15476 151gtagatctgc ccagaatgat gacgtt
2615223DNAArtificial SequencePrimer X17826
152tcgctaacga tcaagaggaa ctg
2315322DNAArtificial SequencePrimer X16944 153tacacgtgca tttggaccta tc
2215420DNAArtificial
SequencePrimer 17413 154ggattcttcg agagctaaga
2015527DNAArtificial SequencePrimer 15810
155gacttgcagg gtaggctagc tagaatt
2715620DNAArtificial SequencePrimer 17834 156gctgcttcga ggtattgaca
2015724DNAArtificial
SequencePrimer 14554 157ggctcttcat tgagcttaga accc
2415821DNAArtificial SequencePrimer 16291
158aactggaccg atcttattcg t
2115925DNAArtificial SequencePrimer 15229 159agtccactgc ggagtcattt caaag
2516025DNAArtificial
SequencePrimer 16503 160ctgccagcga attcgactct gcaat
2516130DNAArtificial SequencePrimer 11317
161cagtcgctgt agtgagcgac agggtagtaa
3016219DNAArtificial SequencePrimer 16241 162ctttgcatta gcatgcgta
1916323DNAArtificial
SequencePrimer 16946 163taggtcgaga ccagaatgca tgt
2316422DNAArtificial SequencePrimer 16939
164atgctgatgc atgtccacaa ag
2216523DNAArtificial SequencePrimer 16940 165ccttatcagt caattgagga aag
2316623DNAArtificial
SequencePrimer 16807 166gcgatgagct aatcctgagc cat
2316724DNAArtificial SequencePrimer 14567
167tggttccacc attattatgt tggt
2416820DNAArtificial SequencePrimer 17834 168gctgcttcga ggtattgaca
2016925DNAArtificial
SequencePrimer 14557 169ctaaaccgtg gaatatttcg gatat
2517023DNAArtificial SequencePrimer 16640
170cctcatcagc tctggaacaa cga
2317124DNAArtificial SequencePrimer 14552 171gatccgagct tccactagga tagc
2417222DNAArtificial
SequencePrimer 17586 172gcagtatgca agtctcatgc tg
2217323DNAArtificial SequencePrimer 16806
173gaacttgcag gcaccgatct tca
2317427DNAArtificial SequencePrimer 13092 174ccacaccata gacttcagcc
ttcttag 2717522DNAArtificial
SequencePrimer 17586 175gcagtatgca agtctcatgc tg
2217625DNAArtificial SequencePrimer 10871
176cgttcgctgt agcatactta gctat
2517724DNAArtificial SequencePrimer 14554 177ggctcttcat tgagcttaga accc
2417821DNAArtificial
SequencePrimer 16291 178aactggaccg atcttattcg t
2117921DNAArtificial SequencePrimer 17887
179actgcctcat tgatggtggt a
2118023DNAArtificial SequencePrimer 16640 180cctcatcagc tctggaacaa cga
2318123DNAArtificial
SequencePrimer 16509 181gtatgattgc ggttatctgt cgc
2318222DNAArtificial SequencePrimer 13246
182cctatggatg ttgtaccatg cc
2218328DNAArtificial SequencePrimer 13095 183ccaatatctt gcagtccatc
ctcgtcgc 2818431DNAArtificial
SequencePrimer X18868 184gccaaagtgg attctcctac tcaagctttg c
3118559DNAArtificial SequencePrimer X18844
185tcggatcagt agataacccg cctagaagac tagtagctat gaaattttta actctttaa
5918659DNAArtificial SequencePrimer X18845 186agccagctta aagagttaaa
aatttcatag ctactagtct tctaggcggg ttatctact 5918759DNAArtificial
SequencePrimer X15464 187gtccatgtaa aatgattgct ccaatgattg aaagaggttt
agacattggc tcttcattg 5918859DNAArtificial SequencePrimer X15465
188ctaagctcaa tgaagagcca atgtctaaac ctctttcaat cattggagca atcatttta
5918959DNAArtificial SequencePrimer X11750 189ataaaattaa atacgtaaat
acagcgtgct gcgtgctcga tttttttcta aaccgtgga 5919026DNAArtificial
SequencePrimer X15479 190agcacgcagc acgctgtatt tacgta
2619130DNAArtificial SequencePrimer X18869
191agatcctgtg gtagtgctgt ctgaacagaa
30
User Contributions:
Comment about this patent or add new information about this topic: