Patent application title: MIRNA FINGERPRINT IN THE DIAGNOSIS OF LUNG CANCER
Inventors:
IPC8 Class: AC12Q16883FI
USPC Class:
1 1
Class name:
Publication date: 2022-02-10
Patent application number: 20220042102
Abstract:
The present invention provides novel methods for diagnosing diseases
based on the determination of specific miRNAs that have altered
expression levels in disease states compared to healthy controls.Claims:
1.-24. (canceled)
25. A method for diagnosing lung cancer in a patient comprising the steps of: (a) determining an expression profile of a miRNA in a blood sample from a patient, wherein the miRNA has a nucleotide sequence selected from the group consisting of SEQ ID NO: 49, SEQ ID NO: 109, SEQ ID NO: 161, SEQ ID NO: 289, SEQ ID NO: 426, SEQ ID NO: 579, SEQ ID NO: 783, SEQ ID NO: 799, SEQ ID NO: 807, and SEQ ID NO: 857, (b) comparing said expression profile to a reference expression profile, wherein the comparison of said determined expression profile to said reference expression profile allows for the diagnosis of lung cancer.
26. The method of claim 25, wherein the blood sample is a blood cellular fraction.
27. The method of claim 26, wherein the blood cellular fraction comprises erythrocytes, leukocytes, and thrombocytes.
28. The method of claim 25, wherein the determination of the expression profile of the predetermined set of miRNAs comprises the steps of: extracting total RNA from said blood sample, (ii) reverse-transcribing the total RNA into cDNA, and (iii) amplifying the cDNA and thereby quantifying said miRNAs.
29. The method of claim 25, wherein the diagnosis comprises determining type, grade, and/or stage of cancer.
30. The method of claim 25, wherein the diagnosis comprises determining survival rate, responsiveness to drugs, and/or monitoring the course of the disease or the therapy, e.g. chemotherapy, staging of the disease, measuring the response of a patient to therapeutic intervention, segmentation of patients suffering from the disease, identifying of a patient who has a risk to develop the disease, predicting/estimating the occurrence, preferably the severity of the occurrence of the disease, predicting the response of a patient with the disease to therapeutic intervention.
31. The method of claim 25, wherein the lung cancer selected from the group consisting of lung carcinoid, lung pleural mesothelioma and lung squamous cell carcinoma, in particular non-small cell lung carcinoma.
32. The method of claim 25, wherein the determination of an expression profile in step (a) comprises nucleic acid hybridization, nucleic acid amplification, polymerase extension, sequencing, mass spectroscopy or any combinations thereof, wherein the nucleic acid hybridization is particularly performed using a solid-phase nucleic acid biochip array, in particular a microarray, a bead-based assay, or in situ hybridization or wherein the nucleic acid amplification method is real-time PCR (RT-PCR).
33. A method for diagnosing lung cancer in a patient comprising the steps of: (a) determining an expression profile of a set comprising at least two miRNAs in a blood sample from a patient, wherein the at least two miRNAs comprised in the set have a nucleotide sequence selected from the group consisting of SEQ ID NO: 49, SEQ ID NO: 109, SEQ ID NO: 161, SEQ ID NO: 289, SEQ ID NO: 426, SEQ ID NO: 579, SEQ ID NO: 783, SEQ ID NO: 799, SEQ ID NO: 807, and SEQ ID NO: 857, and (b) comparing said expression profile to a reference expression profile, wherein the comparison of said determined expression profile to said reference expression profile allows for the diagnosis of lung cancer.
34. The method of claim 33, wherein the blood sample is a blood cellular fraction.
35. The method of claim 34, wherein the blood cellular fraction comprises erythrocytes, leukocytes, and thrombocytes.
36. The method of claim 33, wherein the determination of the expression profile of the predetermined set of miRNAs comprises the steps of: (i) extracting total RNA from said blood sample, (iv) reverse-transcribing the total RNA into cDNA, and (v) amplifying the cDNA and thereby quantifying said miRNAs.
37. The method of claim 33, wherein the diagnosis comprises determining type, grade, and/or stage of cancer.
38. The method of claim 33, wherein the diagnosis comprises determining survival rate, responsiveness to drugs, and/or monitoring the course of the disease or the therapy, e.g. chemotherapy, staging of the disease, measuring the response of a patient to therapeutic intervention, segmentation of patients suffering from the disease, identifying of a patient who has a risk to develop the disease, predicting/estimating the occurrence, preferably the severity of the occurrence of the disease, predicting the response of a patient with the disease to therapeutic intervention.
39. The method of claim 33, wherein the lung cancer selected from the group consisting of lung carcinoid, lung pleural mesothelioma and lung squamous cell carcinoma, in particular non-small cell lung carcinoma.
40. The method of claim 33, wherein the determination of an expression profile in step (a) comprises nucleic acid hybridization, nucleic acid amplification, polymerase extension, sequencing, mass spectroscopy or any combinations thereof, wherein the nucleic acid hybridization is particularly performed using a solid-phase nucleic acid biochip array, in particular a microarray, a bead-based assay, or in situ hybridization or wherein the nucleic acid amplification method is real-time PCR (RT-PCR).
Description:
CROSS REFERENCE TO RELATED APPLICATION
[0001] This application is a Divisional Application of U.S. application Ser. No. 15/671,856, filed Aug. 8, 2017, which is a Divisional Application of U.S. application Ser. No. 13/376,281, filed Jan. 19, 2012, now U.S. Pat. No. 9,758,827, issued Sep. 12, 2017, which is a 35 U.S.C. 371 National Phase Entry Application from PCT/EP2010/057942, filed Jun. 7, 2010, which claims the benefit of U.S. Provisional Applications No. 61/184,452 filed Jun. 5, 2009, 61/213,971 filed Aug. 3, 2009, 61/287,521 filed Dec. 17, 2009 and European Patent Application No. 09015668.8 filed on Dec. 17, 2009, the disclosures of all of the above are incorporated herein in their entirety by reference.
BACKGROUND OF THE INVENTION
[0002] MicroRNAs (miRNA) are a recently discovered class of small non-coding RNAs (17-14 nucleotides). Due to their function as regulators of gene expression they play a critical role both in physiological and in pathological processes, such as cancer (Calin and Croce 2006; Esquela-Kerscher and Slack 2006; Zhang, Pan et al. 2007; Sassen, Miska et al. 2008).
[0003] There is increasing evidence that miRNAs are not only found in tissues but also in human blood both as free circulating nucleic acids (also called circulating miRNAs) and in mononuclear cells. A recent proof-of-principle study demonstrated miRNA expression pattern in pooled blood sera and pooled blood cells, both in healthy individuals and in cancer patients including patients with lung cancer (Chen, Ba et al. 2008). In addition, a remarkable stability of miRNAs in human sera was recently demonstrated (Chen, Ba et al. 2008; Gilad, Meiri et al. 2008). These findings make miRNA a potential tool for diagnostics for various types of diseases based on blood analysis.
[0004] Lung cancer is the leading cause of cancer death worldwide (Jemal, Siegel et al. 2008). Its five-year survival rate is among the lowest of all cancer types and is markedly correlated to the stage at the time of diagnosis (Scott, Howington et al. 2007). Using currently existing techniques, more than two-thirds of lung cancers are diagnosed at late stages, when the relative survival rate is low (Henschke and Yankelevitz 2008). This reality calls for the search of new biomarkers that are able to catch lung cancer while it is still small and locally defined.
[0005] Various markers have been proposed to indicate specific types of disorders and in particular cancer. However, there is still a need for more efficient and effective methods and compositions for the diagnosis of diseases and in particular cancer.
SUMMARY OF THE INVENTION
[0006] The present invention provides novel methods for diagnosing diseases based on the determination of specific miRNAs that have altered expression levels in disease states compared to healthy or other relevant controls. The present invention particularly provides novel methods for the diagnosis and/or prognosis and/or monitoring of lung cancer or related diseases in human individuals based on miRNA analysis from samples derived from blood.
[0007] Subject-matter of the invention is a method for diagnosing lung cancer, comprising the steps
[0008] (a) determining an expression profile of a predetermined set of miRNAs in a biological sample from a patient; and
[0009] (b) comparing said expression profile to a reference expression profile, wherein the comparison of said determined expression profile to said reference expression profile allows for the diagnosis of lung cancer.
[0010] A "biological sample" in terms of the invention means a sample of biological tissue or fluid. Examples of biological samples are sections of tissues, blood, blood fractions, plasma, serum, etc. A biological sample may be provided by removing a sample of cells from a subject, but can also be provided by using a previously isolated sample. For example, a tissue sample can be removed from a subject suspected of having a disease by conventional biopsy techniques. In a preferred embodiment, a blood sample is taken from the subject. In one embodiment, the blood or tissue sample is obtained from the subject prior to initiation of radiotherapy, chemotherapy or other therapeutic treatment. According to the invention, the biological sample preferably is a blood, plasma, PBMC (peripheral blood mononuclear cell) or a serum sample. Further, it is also preferred to use blood cells, e.g. erythrocytes, leukocytes or thrombocytes.
[0011] A biological sample from a patient means a sample from a subject suspected to be affected by a disease. As used herein, the term "subject" refers to any mammal, including both human and other mammals. Preferably, the methods of the present invention are applied to human subjects.
[0012] In step (a) of the method of the invention, an expression profile of a predetermined set of miRNAs is determined. The determination may be carried out by any convenient means for determining nucleic acids. For expression profiling, qualitative, semi-quantitative and preferably quantitative detection methods can be used. A variety of techniques are well known to those of skill in the art. In particular, the determination may comprise nucleic acid hybridization and/or nucleic acid amplification steps.
[0013] Nucleic acid hybridization may for example be performed using a solid phase nucleic acid biochip array, in particular a microarray, beads, or in situ hybridization. The miRNA microarray technology affords the analysis of a complex biological sample for all expressed miRNAs. Nucleotides with complementarity to the corresponding miRNAs are spotted or synthesized on coated carriers. E.g., miRNAs isolated from the sample of interest may be labeled, e.g. fluorescently labeled, so that upon hybridization of the miRNAs to the complementary sequences on the carrier the resulting signal indicates the occurrence of a distinct miRNA. Preferably, microarray methods are employed that do not require a labeling of the miRNAs prior to hybridization (FIG. 3-4) and start directly from total RNA input. On one miRNA microarray, preferably the whole predetermined set of miRNAs can be analyzed. Examples of preferred hybridization assays are shown in FIGS. 1-4. The design of exemplary miRNA capture probes for use in hybridization assays is depicted in FIGS. 5 and 6.
[0014] Further, real-time or quantitative real-time polymerase chain reaction (RT-RCR or qRT-PCR) can be used to detect also low abandoned miRNAs. Furthermore, bead-based assays, e.g. the Luminex platform, are suitable.
[0015] Alternative methods for obtaining expression profiles may also contain sequencing, next generation sequencing or mass spectroscopy.
[0016] The predetermined set of miRNAs in step (a) of the method of the invention depends on the disease to be diagnosed. The inventors found out that single miRNA biomarkers lack sufficient accuracy, specificity and sensitivity, and therefore it is preferred to analyze more complex miRNA expression patterns, so-called miRNA signatures. The predetermined set of miRNAs comprises one or more, preferably a larger number of miRNAs (miRNA signatures) that are differentially regulated in samples of a patient affected by a particular disease compared to healthy or other relevant controls.
[0017] The expression profile determined in step (a) is subsequently compared to a reference expression profile in step (b). The reference expression profile is the expression profile of the same set of miRNAs in a biological sample originating from the same source as the biological sample from a patient but obtained from a healthy subject. Preferably, both the reference expression profile and the expression profile of step (a) are determined in a blood or serum sample including whole blood, plasma, serum or fractions thereof, or in a sample of peripheral blood mononuclear cells, of erythrocytes, leukocytes and/or thrombocytes. It is understood that the reference expression profile is not necessarily obtained from a single healthy subject but may be an average expression profile of a plurality of healthy subjects. It is preferred to use a reference expression profile obtained from a person of the same gender, and a similar age as the patient. It is also understood that the reference expression profile is not necessarily determined for each test. Appropriate reference profiles stored in databases may also be used. These stored references profiles may, e.g., be derived from previous tests. The reference expression profile may also be a mathematical function or algorithm developed on the basis of a plurality of reference expression profiles.
[0018] The method of the invention is suitable for diagnosing lung cancer. The diagnosis may comprise determining type, rate and/or stage of lung cancer. The course of the disease and the success of therapy such as chemotherapy may be monitored. The method of the invention provides a prognosis on the survivor rate and enables to determine a patient's response to drugs.
[0019] The inventors succeeded in developing a generally applicable approach to arrive at miRNA signatures that are correlated with a particular disease. The general work flow is depicted in FIG. 9. In more detail, the following steps are accomplished:
[0020] 1. miRNAs are extracted from a biological sample of a patient, preferably a blood or serum sample or a sample comprising erythrocytes, leukocytes or thrombocytes, using suitable kits/purification methods
[0021] 2. The respective samples are measured using experimental techniques. These techniques include but are not restricted to:
[0022] Array based approaches
[0023] Real time quantitative polymerase chain reaction
[0024] Bead-based assays (e.g. Luminex)
[0025] Sequencing
[0026] Next Generation Sequencing
[0027] Mass Spectroscopy
[0028] 3. Mathematical approaches are applied to gather information on the value and the redundancy of single biomarkers. These methods include, but are not restricted to:
[0029] basic mathematic approaches (e.g. Fold Quotients, Signal to Noise ratios, Correlation)
[0030] statistical methods as hypothesis tests (e.g. t-test, Wilcoxon-Mann-Whitney test), the Area under the Receiver operator Characteristics Curve
[0031] Information Theory approaches, (e.g. the Mutual Information, Cross-entropy)
[0032] Probability theory (e.g. joint and conditional probabilities)
[0033] Combinations and modifications of the previously mentioned examples
[0034] 4. The information collected in 3) are used to estimate for each biomarker the diagnostic content or value. Usually, however, this diagnostic value is too small to get a highly accurate diagnosis with accuracy rates, specificities and sensitivities beyond the 90% barrier.
[0035] Please note that the diagnostic content for our miRNAs can be found in the attached figures. These figures include the miRNAs with the sequences, the fold quotient, the mutual information and the significance value as computed by a t-test.
[0036] 5. Thus statistical learning/machine learning/bioinformatics/computational approaches are applied to define subsets of biomarkers that are tailored for the detection of diseases. These techniques includes but are not restricted to
[0037] Wrapper subset selection techniques (e.g. forward step-wise, backward step-wise, combinatorial approaches, optimization approaches)
[0038] Filter subset selection methods (e.g. the methods mentioned in 3)
[0039] Principal Component Analysis
[0040] Combinations and modifications of such methods (e.g. hybrid approaches)
[0041] 6. The diagnostic content of each detected set can be estimated by mathematical and/or computational techniques to define the diagnostic information content of subsets.
[0042] 7. The subsets, detected in step 5, which may range from only a small number (at least two) to all measured biomarkers is then used to carry out a diagnosis. To this end, statistical learning/machine learning/bioinformatics/computational approaches are applied that include but are not restricted to any type of supervised or unsupervised analysis:
[0043] Classification techniques (e.g. naive Bayes, Linear Discriminant Analysis, Quadratic Discriminant Analysis Neural Nets, Tree based approaches, Support Vector Machines, Nearest Neighbour Approaches)
[0044] Regression techniques (e.g. linear Regression, Multiple Regression, logistic regression, probit regression, ordinal logistic regression ordinal Probit-Regression, Poisson Regression, negative binomial Regression, multinomial logistic Regression, truncated regression)
[0045] Clustering techniques (e.g. k-means clustering, hierarchical clustering, PCA)
[0046] Adaptations, extensions, and combinations of the previously mentioned approaches
[0047] The inventors surprisingly found out that the described approach yields in miRNA signatures that provide high diagnostic accuracy, specificity and sensitivity in the determination of lung cancer.
[0048] According to the invention, the disease to be determined is lung cancer, e.g. lung carcinoid, lung pleural mesothelioma or lung squamous cell carcinoma, in particular non-small cell lung carcinoma.
[0049] The inventors succeeded in determining miRNAs that are differentially regulated in samples from lung cancer patients as compared to healthy controls. A complete overview of all miRNAs that are found to be differentially regulated in blood samples of lung cancer patients is provided in the tables shown in FIGS. 10A and 10B. In the tables shown in FIGS. 10A and 10B, the miRNAs that are found to be differentially regulated are sorted in the order of their mutual information and in the order of their t-test significance as described in more detail below. Mutual information (MI) (Shannon, 1984) is an adequate measure to estimate the overall diagnostic information content of single biomarkers (Keller, Ludwig et al., 2006). According to the invention mutual information is considered as the reduction in uncertainty about the class labels "0" for controls and "1" for tumor samples due to the knowledge of the miRNA expression. The higher the value of the MI of a miRNA, the higher is the diagnostic content of the respective miRNA. The computation of the MI of each miRNA is explained in the experimental section below.
[0050] For example, the predetermined set of miRNAs representative for lung cancer comprises at least 1, 7 ,10 ,15 ,20, 25, 30, 35, 40, 50, 75, 100 of the miRNAs selected from the group consisting of hsa-miR-126, hsa-miR-423-5p, hsa-let-7i, hsa-let-7d, hsa-miR-22, hsa-miR-15a, hsa-miR-98, hsa-miR-19a, hsa-miR-574-5p, hsa-miR-324-3p, hsa-miR-20b, hsa-miR-25, hsa-miR-195, hsa-let-7e, hsa-let-7c, hsa-let-7f, hsa-let-7a, hsa-let-7g, hsa-miR-140-3p, hsa-miR-339-5p, hsa-miR-361-5p, hsa-miR-1283, hsa-miR-18a*, hsa-miR-26b, hsa-miR-604, hsa-miR-423-3p, hsa-miR-93*, hsa-miR-29a, hsa-miR-1248, hsa-miR-210, hsa-miR-19b, hsa-miR-453, hsa-miR-126*, hsa-miR-188-3p, hsa-miR-624*, hsa-miR-505*, hsa-miR-425, hsa-miR-339-3p, hsa-miR-668, hsa-miR-363*, hsa-miR-15b*, hsa-miR-29c*, hsa-miR-550*, hsa-miR-34c-3p, hsa-miR-20a, hsa-miR-374a, hsa-miR-145*, hsa-miR-302b, hsa-miR-106a, hsa-miR-30e, hsa-miR-223, hsa-miR-1269, hsa-let-7b, hsa-miR-542-3p, hsa-miR-516b*, hsa-miR-451, hsa-miR-519c-3p, hsa-miR-1244, hsa-miR-602, hsa-miR-361-3p, hsa-miR-19a*, hsa-miR-433, hsa-miR-1200, hsa-miR-522, hsa-miR-520f, hsa-miR-519c-5p, hsa-miR-192, hsa-miR-1245, hsa-miR-151-5p, hsa-miR-1288, hsa-miR-503, hsa-miR-563, hsa-miR-663b, hsa-let-7d*, hsa-miR-199a-5p, hsa-miR-720, hsa-miR-1246, hsa-miR-338-5p, hsa-miR-297, hsa-miR-1261, hsa-miR-922, hsa-miR-185, hsa-miR-611, hsa-miR-1272, hsa-miR-1299, hsa-miR-335*, hsa-miR-497, hsa-miR-1207-3p, hsa-miR-16, hsa-miR-1, hsa-miR-1291, hsa-miR-138-2*, hsa-miR-136, hsa-miR-548d-3p, hsa-miR-561, hsa-miR-548h, hsa-miR-331-3p, hsa-miR-186*, hsa-miR-145, hsa-miR-17, hsa-miR-30b, hsa-let-7f-1*, hsa-miR-1305, hsa-miR-129-5p, hsa-miR-1204, hsa-miR-106b*, hsa-miR-619, hsa-miR-34a*, hsa-miR-652, hsa-miR-1256, hsa-miR-20b*, hsa-miR-424*, hsa-miR-517a, hsa-miR-1284, hsa-miR-199b-3p, hsa-miR-599, hsa-miR-411, hsa-miR-23b, hsa-miR-1302, hsa-miR-449a, hsa-miR-548f, hsa-miR-597, hsa-miR-603, hsa-miR-1247, hsa-miR-1539, hsa-miR-1911, hsa-miR-325, hsa-miR-409-5p, hsa-miR-182, hsa-miR-658, hsa-miR-215, hsa-miR-147b, hsa-miR-30d, hsa-miR-378*, hsa-miR-221*, hsa-miR-34b, hsa-miR-593*, hsa-miR-552, hsa-miR-378, hsa-miR-143*, hsa-miR-1266, hsa-miR-554, hsa-miR-631, hsa-miR-609, hsa-miR-30c, hsa-miR-28-5p, hsa-miR-23a, hsa-miR-645, hsa-miR-647, hsa-miR-302b*, hsa-miR-607, hsa-miR-1289, hsa-miR-1324, hsa-miR-513a-3p, hsa-miR-939, hsa-miR-29b, hsa-miR-665, hsa-miR-18a, hsa-miR-1224-5p, hsa-miR-10a*, hsa-miR-181a*, hsa-miR-218-2*, hsa-miR-371-3p, hsa-miR-377, hsa-miR-140-5p, hsa-miR-301a, hsa-miR-1277, hsa-miR-130a*, hsa-miR-1912, hsa-miR-193b, hsa-miR-214*, hsa-miR-216b, hsa-miR-302f, hsa-miR-522*, hsa-miR-548j, hsa-miR-568, hsa-miR-648, hsa-miR-662, hsa-miR-222, hsa-miR-1287, hsa-miR-891b, hsa-miR-342-3p, hsa-miR-512-3p, hsa-miR-623, hsa-miR-208b, hsa-miR-16-1*, hsa-miR-551b, hsa-miR-146b-3p, hsa-miR-520b, hsa-miR-449b, hsa-miR-520g, hsa-miR-24-2*, hsa-miR-518f, hsa-miR-649, hsa-miR-32, hsa-miR-151-3p, hsa-miR-454, hsa-miR-101, hsa-miR-19b-1*, hsa-miR-509-5p, hsa-miR-144, hsa-miR-508-5p, hsa-miR-569, hsa-miR-636, hsa-miR-937, hsa-miR-346, hsa-miR-506, hsa-miR-379*, hsa-miR-1184, hsa-miR-579, hsa-miR-23b*, hsa-miR-1262, hsa-miR-153, hsa-miR-520e, hsa-miR-632, hsa-miR-106a*, hsa-miR-31*, hsa-miR-33b*, hsa-miR-654-3p, hsa-miR-99b*, hsa-miR-1278, hsa-miR-135b, hsa-let-7c*, hsa-miR-1468, hsa-miR-374b*, hsa-miR-514, hsa-miR-590-3p, hsa-miR-606, hsa-miR-369-3p, hsa-miR-488, hsa-miR-128, hsa-miR-362-5p, hsa-miR-671-5p, hsa-miR-874, hsa-miR-1911*, hsa-miR-1292, hsa-miR-194, hsa-miR-15b, hsa-miR-342-5p, hsa-miR-125b-2*, hsa-miR-1297, hsa-miR-933, hsa-miR-493*, hsa-miR-105, hsa-miR-141, hsa-miR-181c*, hsa-miR-193a-3p, hsa-miR-302c, hsa-miR-485-5p, hsa-miR-499-3p, hsa-miR-545, hsa-miR-548b-5p, hsa-miR-549, hsa-miR-576-5p, hsa-miR-577, hsa-miR-583, hsa-miR-587, hsa-miR-624, hsa-miR-646, hsa-miR-655, hsa-miR-885-5p, hsa-miR-194*, hsa-miR-299-5p, hsa-miR-337-3p, hsa-miR-493, hsa-miR-497*, hsa-miR-519a, hsa-miR-99a*, hsa-miR-1280, hsa-miR-523*, hsa-miR-198, hsa-miR-934, hsa-miR-30d*, hsa-miR-452*, hsa-miR-548b-3p, hsa-miR-586, hsa-miR-92b, hsa-miR-517b, hsa-miR-548a-3p, hsa-miR-875-5p, hsa-miR-431*, hsa-miR-384, hsa-miR-644, hsa-miR-1185, hsa-miR-29b-2*, hsa-miR-489, hsa-miR-566, hsa-miR-1538, hsa-miR-28-3p, hsa-let-7f-2*, hsa-miR-1322, hsa-miR-1827, hsa-miR-192*, hsa-miR-302e, hsa-miR-411*, hsa-miR-424, hsa-miR-582-3p, hsa-miR-629*, hsa-miR-491-3p, hsa-miR-519b-3p, hsa-miR-1197, hsa-miR-127-5p, hsa-miR-1286, hsa-miR-132*, hsa-miR-33b, hsa-miR-553, hsa-miR-620, hsa-miR-708, hsa-miR-892b, hsa-miR-520h, hsa-miR-500*, hsa-miR-551b*, hsa-miR-186, hsa-miR-558, hsa-miR-26a, hsa-miR-1263, hsa-miR-211, hsa-miR-1304, hsa-miR-220b, hsa-miR-891a, hsa-miR-1253, hsa-miR-1205, hsa-miR-137, hsa-miR-154*, hsa-miR-555, hsa-miR-887, hsa-miR-363, hsa-miR-1537, hsa-miR-219-1-3p, hsa-miR-220a, hsa-miR-222*, hsa-miR-323-3p, hsa-miR-376b, hsa-miR-490-5p, hsa-miR-523, hsa-miR-302a*, hsa-miR-27b*, hsa-miR-591, hsa-miR-888, hsa-miR-376a*, hsa-miR-618, hsa-miR-1182, hsa-miR-532-3p, hsa-miR-181b, hsa-miR-521, hsa-miR-545*, hsa-miR-9*, hsa-miR-920, hsa-miR-571, hsa-miR-635, hsa-miR-200b, hsa-miR-455-5p, hsa-miR-876-3p, hsa-miR-373*, hsa-miR-146a*, hsa-miR-122*, hsa-miR-450b-3p, hsa-miR-24, hsa-miR-484, hsa-miR-103-as, hsa-miR-380, hsa-miR-513a-5p, hsa-miR-509-3-5p, hsa-miR-873, hsa-miR-556-5p, hsa-miR-369-5p, hsa-miR-653, hsa-miR-767-3p, hsa-miR-516a-3p, hsa-miR-520c-3p, hsa-miR-708*, hsa-miR-924, hsa-miR-520d-5p, hsa-miR-512-5p, hsa-miR-374a*, hsa-miR-921, hsa-miR-1206, hsa-miR-1259, hsa-miR-525-5p, hsa-miR-200a*, hsa-miR-1293, hsa-miR-372, hsa-miR-548a-5p, hsa-miR-548k, hsa-miR-1300, hsa-miR-1264, hsa-miR-551a, hsa-miR-196b, hsa-miR-32*, hsa-miR-33a, hsa-miR-548d-5p, hsa-miR-616, hsa-miR-876-5p, hsa-miR-508-3p, hsa-miR-26a-2*, hsa-miR-187, hsa-miR-199a-3p, hsa-miR-96*, hsa-miR-18b, hsa-miR-432*, hsa-miR-509-3p, hsa-miR-1183, hsa-miR-626, hsa-miR-513b, hsa-miR-617, hsa-miR-9, hsa-miR-519e, hsa-miR-204, hsa-miR-29c, hsa-miR-1268, hsa-miR-122, hsa-miR-7-2*, hsa-miR-15a*, hsa-miR-181d, hsa-miR-219-5p, hsa-miR-302d, hsa-miR-34a, hsa-miR-410, hsa-miR-33a*, hsa-miR-502-3p, hsa-miR-379, hsa-miR-498, hsa-miR-518d-5p, hsa-miR-556-3p, hsa-miR-502-5p, hsa-miR-31, hsa-miR-100, hsa-miR-296-3p, hsa-miR-615-5p, hsa-miR-21*, hsa-miR-657, hsa-miR-651, hsa-miR-765, hsa-miR-548m, hsa-miR-219-2-3p, hsa-miR-501-3p, hsa-miR-302a, hsa-miR-202*, hsa-miR-206, hsa-miR-520d-3p, hsa-miR-548i, hsa-miR-511, hsa-miR-30a, hsa-miR-1224-3p, hsa-miR-525-3p, hsa-miR-1225-5p, hsa-miR-223*, hsa-miR-615-3p, hsa-miR-570, hsa-miR-320a, hsa-miR-770-5p, hsa-miR-582-5p, hsa-miR-590-5p, hsa-miR-659, hsa-miR-1251, hsa-miR-664, hsa-miR-488*, hsa-miR-548g, hsa-miR-802, hsa-miR-542-5p, hsa-miR-190, hsa-miR-218-1*, hsa-miR-367*, hsa-miR-450a, hsa-miR-367, hsa-miR-124, hsa-miR-767-5p, hsa-miR-200c, hsa-miR-572, hsa-miR-526a, hsa-miR-936, hsa-miR-548n, hsa-miR-21, hsa-miR-182*, hsa-miR-34c-5p, hsa-miR-429, hsa-miR-628-5p, hsa-miR-29a*, hsa-miR-370, hsa-let-7a*, hsa-miR-101*, hsa-miR-559, hsa-miR-217, hsa-miR-519b-5p, hsa-miR-30e*, hsa-miR-147, hsa-miR-487b, hsa-miR-888*, hsa-miR-205, hsa-miR-1257, hsa-miR-7, hsa-miR-296-5p, hsa-miR-1255a, hsa-miR-380*, hsa-miR-1275, hsa-miR-330-5p, hsa-miR-1243, hsa-miR-136*, hsa-miR-141*, hsa-miR-517c, hsa-miR-621, hsa-miR-1915*, hsa-miR-541, hsa-miR-543, hsa-miR-942, hsa-miR-26a-1*, hsa-miR-567, hsa-miR-184, hsa-miR-376a, hsa-miR-124*, hsa-miR-1254, hsa-miR-1207-5p, hsa-miR-580, hsa-let-7b*, hsa-miR-539, hsa-miR-520a-3p, hsa-miR-585, hsa-miR-675b, hsa-miR-943, hsa-miR-573, hsa-miR-93, hsa-miR-27a*, hsa-miR-613, hsa-miR-220c, hsa-miR-524-3p, hsa-miR-500, hsa-miR-1201, hsa-miR-20a*, hsa-miR-1914*, hsa-miR-425*, hsa-miR-515-3p, hsa-miR-377*, hsa-miR-504, hsa-miR-548c-3p, hsa-miR-1276, hsa-miR-138, hsa-miR-431, hsa-miR-494, hsa-miR-448, hsa-miR-633, hsa-miR-487a, hsa-miR-149, hsa-miR-300, hsa-miR-1826, hsa-miR-127-3p, hsa-miR-486-5p, hsa-miR-148a, hsa-miR-1294, hsa-miR-5481, hsa-miR-142-5p, hsa-miR-889, hsa-miR-365, hsa-miR-99b, hsa-miR-200b*, hsa-miR-200a, hsa-miR-518e, hsa-miR-612, hsa-miR-183*, hsa-miR-148b, hsa-miR-103, hsa-miR-5480, hsa-miR-1203, hsa-miR-135a*, hsa-miR-383, hsa-miR-1913, hsa-miR-373, hsa-miR-371-5p, hsa-miR-298, hsa-miR-758, hsa-miR-412, hsa-miR-518c, hsa-miR-589*, hsa-miR-643, hsa-miR-592, hsa-miR-892a, hsa-miR-944, hsa-miR-576-3p, hsa-miR-581, hsa-miR-625*, hsa-miR-1260, hsa-miR-1281, hsa-miR-337-5p, hsa-miR-133b, hsa-miR-92a-2*, hsa-miR-100*, hsa-miR-589, hsa-miR-218, hsa-miR-224, hsa-miR-16-2*, hsa-miR-301b, hsa-miR-190b, hsa-miR-375, hsa-miR-548p, hsa-miR-185*, hsa-miR-519d, hsa-miR-605, hsa-miR-877, hsa-miR-125a-3p, hsa-miR-744*, hsa-miR-520c-5p, hsa-miR-148a*, hsa-miR-212, hsa-miR-505, hsa-miR-496, hsa-miR-1323, hsa-miR-548e, hsa-miR-628-3p, hsa-miR-1914, hsa-miR-584, hsa-miR-135b*, hsa-miR-1295, hsa-miR-95, hsa-miR-133a, hsa-miR-485-3p, hsa-miR-541*, hsa-miR-374b, hsa-miR-329, hsa-miR-483-5p, hsa-miR-885-3p, hsa-let-7i*, hsa-miR-935, hsa-miR-130b, hsa-miR-1274a, hsa-miR-1226, hsa-miR-518e*, hsa-miR-1225-3p, hsa-miR-923, hsa-miR-196a*, hsa-miR-1270, hsa-miR-1271, hsa-miR-610, hsa-miR-574-3p, hsa-miR-1282, hsa-miR-10b*, hsa-miR-216a, hsa-miR-144*, hsa-miR-23a*, hsa-miR-499-5p, hsa-miR-183, hsa-miR-490-3p, hsa-miR-330-3p, hsa-let-7g*, hsa-miR-483-3p, hsa-miR-214, hsa-miR-34b*, hsa-miR-302d*, hsa-miR-382, hsa-miR-454*, hsa-miR-1202, hsa-miR-202, hsa-miR-544, hsa-miR-593, hsa-miR-760, hsa-miR-940, hsa-let-7e*, hsa-miR-1237, hsa-miR-18b*, hsa-miR-630, hsa-miR-519e*, hsa-miR-452, hsa-miR-26b*, hsa-miR-516b, hsa-miR-299-3p, hsa-miR-381, hsa-miR-340, hsa-miR-132, hsa-miR-142-3p, hsa-miR-125b-1*, hsa-miR-30c-2*, hsa-miR-627, hsa-miR-1908, hsa-miR-1267, hsa-miR-507, hsa-miR-188-5p, hsa-miR-486-3p, hsa-miR-596, hsa-miR-193a-5p, hsa-miR-671-3p, hsa-miR-24-1*, hsa-miR-19b-2*, hsa-miR-1308, hsa-miR-208a, hsa-miR-135a, hsa-miR-331-5p, hsa-miR-181c, hsa-miR-640, hsa-miR-1909, hsa-miR-629, hsa-miR-10a, hsa-miR-491-5p, hsa-miR-492, hsa-miR-516a-5p, hsa-miR-510, hsa-miR-1915, hsa-miR-518c*, hsa-miR-1273, hsa-miR-25*, hsa-miR-744, hsa-miR-550, hsa-miR-890, hsa-miR-1303, hsa-miR-650, hsa-miR-1227, hsa-miR-595, hsa-miR-1255b, hsa-miR-1252, hsa-miR-455-3p, hsa-miR-345, hsa-miR-96, hsa-miR-1321, hsa-miR-513c, hsa-miR-548c-5p, hsa-miR-663, hsa-miR-320c, hsa-miR-320b, hsa-miR-654-5p, hsa-miR-326, hsa-miR-1825, hsa-miR-328, hsa-miR-146b-5p, hsa-miR-886-3p, hsa-miR-1909*, hsa-miR-1469, hsa-miR-338-3p, hsa-miR-886-5p, hsa-miR-601, hsa-miR-1298, hsa-miR-1910, hsa-miR-1226*, hsa-miR-421, hsa-miR-1471, hsa-miR-150*, hsa-miR-1229, hsa-miR-17*, hsa-miR-320d, hsa-miR-10b, hsa-miR-766, hsa-miR-600, hsa-miR-641, hsa-miR-340*, hsa-miR-616*, hsa-miR-520a-5p, hsa-miR-1179, hsa-miR-1178, hsa-miR-30b*, hsa-miR-155*, hsa-miR-138-1*, hsa-miR-501-5p, hsa-miR-191, hsa-miR-107, hsa-miR-639, hsa-miR-518d-3p, hsa-miR-106b, hsa-miR-129-3p, hsa-miR-1306, hsa-miR-187*, hsa-miR-125b, hsa-miR-642, hsa-miR-30a*, hsa-miR-139-5p, hsa-miR-1307, hsa-miR-769-3p, hsa-miR-532-5p, hsa-miR-7-1*, hsa-miR-196a, hsa-miR-1296, hsa-miR-191*, hsa-miR-221, hsa-miR-92a-1*, hsa-miR-1285, hsa-miR-518f*, hsa-miR-1233, hsa-miR-1290, hsa-miR-598, hsa-miR-769-5p, hsa-miR-614, hsa-miR-578, hsa-miR-1301, hsa-miR-515-5p, hsa-miR-564, hsa-miR-634, hsa-miR-518b, hsa-miR-941, hsa-miR-376c, hsa-miR-195*, hsa-miR-518a-5p, hsa-miR-557, hsa-miR-1228*, hsa-miR-22*, hsa-miR-1234, hsa-miR-149*, hsa-miR-30c-1*, hsa-miR-200c*, hsa-miR-1181, hsa-miR-323-5p, hsa-miR-1231, hsa-miR-203, hsa-miR-302c*, hsa-miR-99a, hsa-miR-146a, hsa-miR-656, hsa-miR-526b*, hsa-miR-148b*, hsa-miR-181a, hsa-miR-622, hsa-miR-125a-5p, hsa-miR-152, hsa-miR-197, hsa-miR-27b, hsa-miR-1236, hsa-miR-495, hsa-miR-143, hsa-miR-362-3p, hsa-miR-675, hsa-miR-1274b, hsa-miR-139-3p, hsa-miR-130b*, hsa-miR-1228, hsa-miR-1180, hsa-miR-575, hsa-miR-134, hsa-miR-875-3p, hsa-miR-92b*, hsa-miR-660, hsa-miR-526b, hsa-miR-422a, hsa-miR-1250, hsa-miR-938, hsa-miR-608, hsa-miR-1279, hsa-miR-1249, hsa-miR-661, hsa-miR-1208, hsa-miR-130a, hsa-miR-450b-5p, hsa-miR-432, hsa-miR-409-3p, hsa-miR-527, hsa-miR-877*, hsa-miR-1238, hsa-miR-517*, hsa-miR-193b*, hsa-miR-524-5p, hsa-miR-1258, hsa-miR-154, hsa-miR-637, hsa-miR-588, hsa-miR-155, hsa-miR-664*, hsa-miR-1470, hsa-miR-105*, hsa-miR-324-5p, hsa-miR-129*, hsa-miR-625, hsa-miR-519a*, hsa-miR-181a-2*, hsa-miR-199b-5p, hsa-miR-27a, hsa-miR-518a-3p, hsa-miR-1265, hsa-miR-92a, hsa-miR-29b-1*, hsa-miR-150, hsa-miR-335, hsa-miR-638.
[0051] The miRNAs that provide the highest mutual information in samples from lung cancer patients compared to healthy controls are hsa-miR-361-5p, hsa-miR-23b, hsa-miR-126, hsa-miR-527, hsa-miR-29a, hsa-let-7i, hsa-miR-19a, hsa-miR-28-5p, hsa-miR-185*, hsa-miR-23a, hsa-miR-1914*, hsa-miR-29c, hsa-miR-505*, hsa-let-7d, hsa-miR-378, hsa-miR-29b, hsa-miR-604, hsa-miR-29b, hsa-let-7b, hsa-miR-299-3p, hsa-miR-423-3p, hsa-miR-18a*, hsa-miR-1909, hsa-let-7c, hsa-miR-15a, hsa-miR-425, hsa-miR-93*, hsa-miR-665, hsa-miR-30e, hsa-miR-339-3p, hsa-miR-1307, hsa-miR-625*, hsa-miR-193a-5p, hsa-miR-130b, hsa-miR-17*, hsa-miR-574-5p, hsa-miR-324-3p (group (a)).
[0052] Further, the measured miRNA profiles of FIGS. 10A and 10B were classified according to their significance in t-tests as described in more detail in the experimental section. The miRNAs that performed best according to the t-test results are hsa-miR-126, hsa-miR-423-5p, hsa-let-7i, hsa-let-7d, hsa-miR-22, hsa-miR-15a, hsa-miR-98, hsa-miR-19a, hsa-miR-574-5p, hsa-miR-324-3p, hsa-miR-20b, hsa-miR-25, hsa-miR-195, hsa-let-7e, hsa-let-7c, hsa-let-7f, hsa-let-7a, hsa-let-7g, hsa-miR-140-3p, hsa-miR-339-5p, hsa-miR-361-5p, hsa-miR-1283, hsa-miR-18a*, hsa-miR-26b, hsa-miR-604, hsa-miR-423-3p, hsa-miR-93* (group (b)). A comparison of a subset of 15 of these miRNAs is depicted in FIG. 12.
[0053] The miRNAs given above that have been grouped in the order of their performance in the t-tests or in the order of their MI-values provide the highest diagnostic power. Thus, preferably the predetermined set of miRNAs for the diagnosis of lung cancer comprises one or more nucleic acids selected from the above groups (a) and (b) of miRNAs. The predetermined set of miRNAs should preferably comprise at least 7, preferably at least 10, 15, 20 or 24 of the indicated nucleic acids. Most preferably, all of the above indicated miRNAs are included in the predetermined set of miRNAs. It is particularly preferred to include the 24, 20, 15, 10 or at least 7 of the first mentioned miRNAs in the order of their performance in the t-tests or of their MI-values. A comparison of the results obtained by determining 4, 8, 10, 16, 20, 24, 28 or 40 miRNAs provided in FIG. 13A-G shows that the accuracy of the diagnosis is improved, the more miRNAs are measured.
[0054] In a particularly preferred embodiment of the method of the invention, the predetermined set of miRNAs includes the miRNAs hsa-miR-126, hsa-miR-423-5p, hsa-let-7i, hsa-let-7d, hsa-miR-22, hsa-miR-15a, hsa-miR-98, hsa-miR-19a, hsa-miR-574-5p, hsa-miR-324-3p, hsa-miR-20b, hsa-miR-25, hsa-miR-195, hsa-let-7e, hsa-let-7c, hsa-let-7f, hsa-let-7a, hsa-let-7g, hsa-miR-140-3p, hsa-miR-339-5p, hsa-miR-361-5p, hsa-miR-1283, hsa-miR-18a* and hsa-miR-26b.
[0055] In a further particularly preferred embodiment of the method of the invention, the miRNAs are selected from the miRNAs shown in FIG. 11A. The predetermined set of miRNAs should preferably comprise at least 7, preferably at least 10, 15, 20 or 24 of the indicated nucleic acids. It is particularly preferred to include the 24, 20, 15, 10 or at least 7 of the first mentioned miRNAs according to their order in the table in FIG. 11A.
[0056] In another embodiment, the predetermined set of miRNAs for the diagnosis of lung cancer comprises at least one preferred signature L1-251 as shown in FIG. 11B. It should be noted that preferred diagnostic sets may also comprise one or more miRNAs of the miRNAs disclosed in FIG. 11B and any combination of the miRNAs together with one or more further diagnostically relevant miRNA from FIGS. 10A, 10B or 11A. Preferred predetermined sets of miRNA molecules based on FIG. 11B comprise at least 3, 4, 5, 6, 7, 8, 9 or 10 miRNAs and up to 10, 15, or 20 or more miRNAs.
[0057] For the diagnosis of different types of diseases, such as for a different type of cancer, a different predetermined set of miRNAs should be determined in step (a) of the method of the invention. The relevant miRNA signatures can be obtained according to the workflow depicted in FIG. 9 and as explained above.
[0058] Another embodiment of the present invention is a kit for diagnosing a disease, comprising means for determining an expression profile of a predetermined set of miRNAs in a biological sample, in particular in a blood, plasma, and/or serum sample including whole blood, plasma, serum or fractions thereof, or in a sample comprising peripheral blood mononuclear cells, erythrocytes, leukocytes and/or thrombocytes. Preferably, one or more reference expression profiles are also provided which show the expression profile of the same set of miRNAs in the same type of biological sample, in particular in a blood and/or serum sample, obtained from one or more healthy subjects. A comparison to said reference expression profile(s) allows for the diagnosis of the disease.
[0059] The kit is preferably a test kit for detecting a predetermined set of miRNAs in sample by nucleic acid hybridization and optionally amplification such as PCR or RT-PCR. The kit preferably comprises probes and/or primers for detecting a predetermined set of miRNAs. Further, the kit may comprise enzymes and reagents including reagents for cDNA synthesis from miRNAs prior to realtime PCR.
[0060] A kit for diagnosing lung cancer preferably comprises means for determining the expression profile of one or more miRNAs selected from the group (a) consisting of hsa-miR-361-5p, hsa-miR-23b, hsa-miR-126, hsa-miR-527, hsa-miR-29a, hsa-let-7i, hsa-miR-19a, hsa-miR-28-5p, hsa-miR-185*, hsa-miR-23a, hsa-miR-1914*, hsa-miR-29c, hsa-miR-505*, hsa-let-7d, hsa-miR-378, hsa-miR-29b, hsa-miR-604, hsa-miR-29b, hsa-let-7b, hsa-miR-299-3p, hsa-miR-423-3p, hsa-miR-18a*, hsa-miR-1909, hsa-let-7c, hsa-miR-15a, hsa-miR-425, hsa-miR-93*, hsa-miR-665, hsa-miR-30e, hsa-miR-339-3p, hsa-miR-1307, hsa-miR-625*, hsa-miR-193a-5p, hsa-miR-130b, hsa-miR-17*, hsa-miR-574-5p and hsa-miR-324-3p.
[0061] According to another embodiment of the invention, the kit for diagnosing lung cancer preferably comprises means for determining the expression profile of one or more miRNAs selected from the group (b) consisting of hsa-miR-126, hsa-miR-423-5p, hsa-let-7i, hsa-let-7d, hsa-miR-22, hsa-miR-15a, hsa-miR-98, hsa-miR-19a, hsa-miR-574-5p, hsa-miR-324-3p, hsa-miR-20b, hsa-miR-25, hsa-miR-195, hsa-let-7e, hsa-let-7c, hsa-let-7f, hsa-let-7a, hsa-let-7g, hsa-miR-140-3p, hsa-miR-339-5p, hsa-miR-361-5p, hsa-miR-1283, hsa-miR-18a*, hsa-miR-26b, hsa-miR-604, hsa-miR-423-3p and hsa-miR-93*.
[0062] In a preferred embodiment, the kit comprises means for determining at least 7, preferably at least 10, 15, 20 or 24 of the indicated groups of miRNAs. It is particularly preferred to include means for determining the 24, 20, 15, 10 or at least 7 of the first mentioned miRNAs in the order of their MI-values or their performance in the t-tests as shown in the tables in FIGS. 10 and 11. Most preferably, means for determining all of the above indicated miRNAs are included in the kit for diagnosing lung cancer. The kit is particularly suitable for diagnosing lung cancer in a blood, plasma and/or serum sample or in a sample comprising peripheral erythrocytes, leukocytes and/or thrombocytes.
[0063] In a particularly preferred embodiment, the kit comprises means for determining the miRNAs hsa-miR-126, hsa-miR-423-5p, hsa-let-7i, hsa-let-7d, hsa-miR-22, hsa-miR-15a, hsa-miR-98, hsa-miR-19a, hsa-miR-574-5p, hsa-miR-324-3p, hsa-miR-20b, hsa-miR-25, hsa-miR-195, hsa-let-7e, hsa-let-7c, hsa-let-7f, hsa-let-7a, hsa-let-7g, hsa-miR-140-3p, hsa-miR-339-5p, hsa-miR-361-5p, hsa-miR-1283, hsa-miR-18a* and hsa-miR-26b.
[0064] The means for determining a predetermined set of miRNAs may for example comprise a microarray comprising miRNA-specific oligonucleotide probes. In a preferred embodiment, the microarray comprises miRNA-specific oligonucleotide probes for one or more miRNAs selected from the group consisting of (a) hsa-miR-361-5p, hsa-miR-23b, hsa-miR-126, hsa-miR-527, hsa-miR-29a, hsa-let-7i, hsa-miR-19a, hsa-miR-28-5p, hsa-miR-185*, hsa-miR-23a, hsa-miR-1914*, hsa-miR-29c, hsa-miR-505*, hsa-let-7d, hsa-miR-378, hsa-miR-29b, hsa-miR-604, hsa-miR-29b, hsa-let-7b, hsa-miR-299-3p, hsa-miR-423-3p, hsa-miR-18a*, hsa-miR-1909, hsa-let-7c, hsa-miR-15a, hsa-miR-425, hsa-miR-93*, hsa-miR-665, hsa-miR-30e, hsa-miR-339-3p, hsa-miR-1307, hsa-miR-625*, hsa-miR-193a-5p, hsa-miR-130b, hsa-miR-17*, hsa-miR-574-5p and hsa-miR-324-3p or (b) hsa-miR-126, hsa-miR-423-5p, hsa-let-7i, hsa-let-7d, hsa-miR-22, hsa-miR-15a, hsa-miR-98, hsa-miR-19a, hsa-miR-574-5p, hsa-miR-324-3p, hsa-miR-20b, hsa-miR-25, hsa-miR-195, hsa-let-7e, hsa-let-7c, hsa-let-7f, hsa-let-7a, hsa-let-7g, hsa-miR-140-3p, hsa-miR-339-5p, hsa-miR-361-5p, hsa-miR-1283, hsa-miR-18a*, hsa-miR-26b, hsa-miR-604, hsa-miR-423-3p and hsa-miR-93*. In a preferred embodiment, the microarray comprises oligonucleotide probes for determining at least 7, preferably at least 10, 15, 20 or 24 of the indicated groups (a) and (b) of miRNAs. It is particularly preferred to include oligonucleotide probes for determining the 24, 20, 15, 10 or at least 7 of the first mentioned miRNAs in the order of their MI-values or their performance in the t-tests as shown in the tables in FIGS. 10 and 11. Most preferably, oligonucleotide probes for determining all of the above indicated miRNAs of groups (a) or (b) are included in the microarray for diagnosing lung cancer.
[0065] In a particularly preferred embodiment, the microarray comprises oligonucleotide probes for determining the miRNAs hsa-miR-126, hsa-miR-423-5p, hsa-let-7i, hsa-let-7d, hsa-miR-22, hsa-miR-15a, hsa-miR-98, hsa-miR-19a, hsa-miR-574-5p, hsa-miR-324-3p, hsa-miR-20b, hsa-miR-25, hsa-miR-195, hsa-let-7e, hsa-let-7c, hsa-let-7f, hsa-let-7a, hsa-let-7g, hsa-miR-140-3p, hsa-miR-339-5p, hsa-miR-361-5p, hsa-miR-1283, hsa-miR-18a* and hsa-miR-26b.
[0066] The microarray can comprise oligonucleotide probes obtained from known or predicted miRNA sequences. The array may contain different oligonucleotide probes for each miRNA, for example one containing the active mature sequence and another being specific for the precursor of the miRNA. The array may also contain controls such as one or more sequences differing from the human orthologs by only a few bases, which can serve as controls for hybridization stringency conditions. It is also possible to include viral miRNAs or putative miRNAs as predicted from bioinformatic tools. Further, it is possible to include appropriate controls for non-specific hybridization on the microarray.
[0067] The invention also relates to sets of oligo- or polynucleotides for diagnosing lung cancer comprising the sequences of at least 5, preferably at least 7, 10, 15, 20 or all of the indicated miRNAs, and/or the complement of such sequences. It is particularly preferred to include oligo- or polynucleotides for detecting of the most significant miRNAs, which are represented by their order in the table depicted in FIGS. 10A, 10B or 11A. In a further embodiment, the set includes oligo- or polynucleotides for detecting the miRNA sets based on FIG. 11B as described above. The oligo- or polynucleotides preferably have a length of 10, 15 or 20 and up to 30, 40, 50, 100 or more nucleotides. The term "oligo- or polynucleotides" includes single- or double-stranded molecules, RNA molecules, DNA molecules or nucleic acid analogs such as PNA or LNA.
[0068] Another embodiment of the present invention relates to a method for the assessment of a clinical condition related to lung cancer of a patient.
[0069] Recent developments have shown that there is a tendency towards smaller sets of biomarkers for the detection of diseases. However, for single biomarkers and small biomarker sets, there is only a basic understanding whether these biomarkers are specific for only the single diseases or whether they occur in any other disease.
[0070] Therefore, the present inventors developed a novel class of diagnostic tests improving the current test scenarios. The inventors found out that a variety of diseases are correlated with a specific expression profile of miRNAs. In case a patient is affected by a particular disease, several miRNAs are present in larger amounts compared to a healthy normal control, whereas the amount of other miRNAs is decreased. Interestingly, the amount of some miRNAs is deregulated, i.e. increased or decreased, in more than one disease. The miRNA profile for a particular disease therefore shows conformity with the miRNA profile of other diseases in regard of individual miRNAs while other miRNAs show significant differences. If the expression profile of a large variety of miRNAs in a biological sample of a patient is measured, the comparison of the expression profile with a variety of reference expression profiles which are each characteristic for different diseases makes it possible to obtain information about the clinical condition of a certain patient and to determine, which disease(s) is/are present in said patient.
[0071] A further subject matter of the invention is a method for the assessment of a clinical condition related to lung cancer of a patient comprising the steps
[0072] (a) providing a sample from the patient,
[0073] (b) determining a predetermined set of miRNAs in said sample to obtain a miRNA expression profile,
[0074] (c) comparing said miRNA expression profile with a plurality of miRNA reference expression profiles characteristic for different diseases, and
[0075] (d) assessing the clinical condition of the patient based on the comparison of step (c).
[0076] The inventors found out that the above method for the assessment of a clinical condition makes it possible to carry out an integrative diagnosis of a wide variety of diseases, particularly including lung cancer. Comparing a miRNA profile obtained from a biological sample of a patient whose clinical condition is not known with a plurality of reference profiles characteristic for different diseases enables the diagnosis of a wide variety of diseases with high specificity and sensitivity.
[0077] A "biological sample" in terms of the invention means a sample of biological tissue or fluid as described hereinabove. Examples of biological samples are sections of tissues, blood, blood fractions, plasma, serum, urine or samples from other peripheral sources. Preferred biological samples are blood, plasma and/or serum samples including blood fractions such as PBMC.
[0078] The set of miRNAs determined in step (d) preferably includes a large number of different miRNAs. It is particularly preferred to use at least 10, 20, 30, 50, preferably at least 100, 200, 500 or 1,000 miRNAs. Most preferably, all known miRNAs are included in the set of miRNAs determined in step (b) Such a complex set of miRNA-biomarkers enables a diagnosis with higher specificity and sensitivity compared to single biomarkers or sets of only a few dozens of such markers.
[0079] The determination of the set of miRNAs can be done as described herein above. Preferably, the determination is done on an experimental platform which shows a high degree of automation to minimize experimental variations, measure results time- and cost-efficiently, measures results highly reproduceably and be able for measuring more than one sample at once in order to ensure a high throughput.
[0080] Step (c) preferably includes a comparison of the miRNA profile measured for a patient with a large number of different reference profiles to provide information about the presence of as many different diseases as possible. The reference expression profiles may be laid down in a database, e.g. an internet database, a centralized or a decentralized database. The reference profiles do not necessarily have to include information about all miRNAs included in step (b), which are determined in the sample of the patient. It is, according to the invention, sufficient if the reference profile provides information on those miRNAs which are altered to a large extent compared to the condition of a healthy individual in case of the presence of a disease. Alternatively, the said relevant reference may be a mathematical function or algorithm.
[0081] Preferably, an miRNA reference profile or the relevant reference according to the invention provides information on miRNA expression characteristic for a particular disease in the same type of biological sample as used in step (b) for determining a predetermined set of miRNAs in a sample from a patient. This means that, if a patient with an unknown disease is to be classified with the analysis of a blood sample, the comparison is preferably made with miRNA reference expression profiles, which do also relate to the miRNA expression pattern in a blood sample.
[0082] The reference profiles or the relevant reference characteristic for particular diseases provide information on one or more miRNAs, which are, in case of the disease, highly deregulated, for example strongly increased or decreased, as compared to a healthy condition. It is not necessary for the reference profiles to provide information about all miRNAs included in the set of biomarkers determined in step (b). However, the more miRNAs are included in the reference profile or relevant reference, the more precise the diagnosis will be. If, for example, a reference profile for lung cancer is included, it is preferred to include the characteristic miRNAs for lung cancer.
[0083] Another embodiment of this aspect of the invention is a kit for the assessment of a clinical condition related to lung cancer of a patient comprising
[0084] (a) means for determining a predetermined set of miRNAs in a biological sample from a patient, and
[0085] (b) a plurality of miRNA reference expression profiles characteristic for different diseases or a mathematical function that allows for the diagnosis on the basis of the data derived from the miRNA expression profiles of a patient.
[0086] The set of miRNAs to be determined in a biological sample from a patient preferably includes a large number of different miRNAs. It is particularly preferred to include all known miRNAs in the set of miRNAs to be determined. In each case, said predetermined set of miRNAs should include those miRNAs for which information is provided in the reference profiles characteristic for particular diseases. It is understood that only in case the set of miRNAs determined in a biological sample from a patient comprises those miRNAs included in the reference profile/reference for a disease, a diagnosis regarding this particular disease can be provided or otherwise the diagnosis may be less informative.
[0087] The assessment of a clinical condition of a patient according to the invention is suitable for diagnosing any diseases which are correlated with a characteristic miRNA profile. Accordingly, the kit for the assessment of a clinical condition preferably includes reference profiles/references for a plurality of diseases that are correlated with a characteristic miRNA profile. It is understood that all miRNAs that are significantly deregulated in the disease states for which reference profiles are provided should be included in the set of miRNAs to be determined in a biological sample from a patient. If the kit for the assessment of a clinical condition of a patient should provide information regarding, e.g. lung cancer or multiple sclerosis, a reference profile should be available providing information about the significantly deregulated miRNAs compared to a normal or any other relevant control individual or any other relevant control individual(s). A kit for the assessment of a clinical condition shall provide information on the presence of lung cancer, a reference profile characteristic for lung cancer should be included. Said reference profile preferably includes information on those miRNAs that are most significantly deregulated in the case of lung cancer. The relevant miRNAs are as disclosed hereinabove.
[0088] The invention will now be illustrated by the following figures and the non-limiting experimental examples.
FIGURES
[0089] FIG. 1:
[0090] Scheme of a miRNA hybridization assay for use in the invention.
[0091] miRNA capture probes consist of 1 miRNA probe sequence stretch that is linked to support via 3'-end or alternatively by 5'-end (not depicted here)
[0092] the miRNA probe sequence stretches are complementary to miRNA target sequences
[0093] each miRNA capture probe can bind 1 miRNA target sequences
[0094] the miRNA target sequences are labeled prior to hybridization (e.g. by biotin labeling)
[0095] FIG. 2:
[0096] Scheme of an miRNA tandem hybridization assay for use in the invention
[0097] miRNA capture probes consist of 2 DNA-based miRNA probe sequence stretches that are linked to each other by a spacer element
[0098] the miRNA probe sequence stretches are complementary to miRNA target sequences
[0099] each miRNA capture probe can bind 2 miRNA target sequences
[0100] the spacer sequence consists of 0-8 nucleotides the miRNA target sequences are labeled prior to hybridization (e.g. by biotin labeling)
[0101] FIG. 3:
[0102] miRNA RAKE-Assay for use in the invention (PT Nelson et al., Nature Methods, 2004, 1(2), 1)
[0103] the miRNA capture probes consist of one miRNA probe sequence stretch (green) and one elongation element (orange)
[0104] probes are oriented 5'.fwdarw.3', presenting a free terminal 3'-OH
[0105] the miRNA probe sequence stretch (green) is complementary to miRNA target sequences (dark green)
[0106] the elongation sequences (orange) can be freely chosen and is typically between 1-12 nucleotides long, preferably a homomeric sequence
[0107] each miRNA capture probe can bind 1 miRNA target sequences
[0108] the miRNA target sequences are NOT labeled prior to hybridization
[0109] Labeling occurs after hybridization during elongation by polymerase extention reaction
[0110] Biochip is not reusable due to exonuclease treatment
[0111] FIG. 4:
[0112] miRNA MPEA-Assay for use in the invention (Vorwerk S. et al., Microfluidic-based enzymatic on-chip labeling of miRNAs, N. Biotechnol. 2008; 25(2-3):142-9. Epub 2008 Aug. 20)
[0113] the miRNA capture probes consist of one miRNA probe sequence stretch (green) and one elongation element (orange)
[0114] probes are oriented 3'.fwdarw.5', presenting a free terminal 5'-OH the miRNA probe sequence stretch (green) is complementary to miRNA target sequences (dark green)
[0115] the elongation sequences (orange) can be freely chosen and is typically between 1-12 nucleotides long, preferably a homomeric sequence
[0116] each miRNA capture probe can bind 1 miRNA target sequences
[0117] the miRNA target sequences are NOT labeled prior to hybridization
[0118] Labeling occurs after hybridization during elongation by polymerase extention reaction
[0119] Biochip is reusable after removal of target / elongated target
[0120] FIG. 5:
[0121] miRNA capture probe design
[0122] Depicted is the design of a capture probe for the exemplary miRNA human mature miRNA let-7a for use in the various types of hybridization assays shown in FIGS. 1-4. SP=spacer element; EL=elongation element
[0123] FIG. 6:
[0124] Spacer Element.
[0125] Capture probes for use in e.g. a tandem hybridization assay as shown in FIG. 2 may comprise a spacer element SP. The spacer element represents a nucleotide sequence with n=0-12 nucleotides chosen on the basis of showing low complementarity to potential target sequences, therefore resulting in no to low degree of crosshybridization to target mixture. Preferably, n=0, i.e. there is no spacer between the 2 miRNA probe sequence stretches.
[0126] FIG. 7:
[0127] Elongation element
[0128] A capture probe, e.g. for use in a RAKE or MPEA assay as shown in FIGS. 3 and 4 may include an elongation element. The elongation element comprises a nucleotide sequence with N=0-30 nucleotides chosen on the basis of showing low complementarity to potential target sequences, therefore resulting in no to low degree of crosshybridization to target mixture. Preferred is a homomeric sequence stretch --N.sub.n-- with n=1-30, N=A or C, or T, or G. Especially preferred is a homomeric sequence stretch --Nn- with n=1-12, N=A or C, or T, or G.
[0129] FIG. 8:
[0130] Pearson Correlation Coefficient depending on the number of elongated nucleotides in capture probes in an MPEA assay.
[0131] FIG. 9:
[0132] Diagram describing the general approach for determining miRNA signatures for use as biomarkers in disease diagnosis.
[0133] FIG. 10A:
[0134] Overview of all miRNAs that are found to be differentially regulated in blood samples of lung cancer patients, grouped according to their mutual information (MI).
[0135] FIG. 10B:
[0136] Overview of all miRNAs that are found to be differentially regulated in blood samples of lung cancer patients, grouped according to their results in t-tests.
[0137] FIG. 11A:
[0138] Overview of preferred miRNAs that are found to be significantly (p<0.1) differentially regulated in blood samples of lung cancer patients.
[0139] FIG. 11B:
[0140] Overview of preferred signatures of miRNAs for the diagnosis of lung cancer.
[0141] FIG. 12:
[0142] Expression of some relevant miRNAs. The bar-chart shows for 15 deregulated miRNAs the median value of cancer samples and normal samples. Here, blue bars correspond to cancer samples while red bars to controls.
[0143] FIGS. 13A-13G:
[0144] Bar diagrams showing a classification of the accuracy, specificity and sensitivity of the diagnosis of lung cancer based on blood samples using different sizes of subsets of miRNAs. Blue bars represent accuracy, specificity and sensitivity of the diagnosis using the indicated biomarkers and red bars represent the results of the same experiments of random classifications. The relevant value is the population median (horizontal black lines inside the bars).
[0145] FIG. 13A: 4 biomarkers:
[0146] hsa-miR-126, hsa-miR-423-5p, hsa-let-7i and hsa-let-7d;
[0147] FIG. 13B: 8 biomarkers:
[0148] hsa-miR-126, hsa-miR-423-5p, hsa-let-7i; hsa-let-7d, hsa-miR-22, hsa-miR-15a, hsa-miR-98, and hsa-miR-19a;
[0149] FIG. 13C: 10 biomarkers:
[0150] hsa-miR-126, hsa-miR-423-5p, hsa-let-7i, hsa-let-7d, hsa-miR-22, hsa-miR-15a, hsa-miR-98, hsa-miR-19a, hsa-miR-574-5p, and hsa-miR-324-3p;
[0151] FIG. 13D: 16 biomarkers:
[0152] hsa-miR-126, hsa-miR-423-5p, hsa-let-7i, hsa-let-7d, hsa-miR-22, hsa-miR-15a, hsa-miR-98, hsa-miR-19a; hsa-miR-574-5p; hsa-miR-324-3p, hsa-miR-20b, hsa-miR-25, hsa-miR-195, hsa-let-7e, hsa-let-7c, and has-let-7f;
[0153] FIG. 13E: 20 biomarkers:
[0154] hsa-miR-126, hsa-miR-423-5p, hsa-let-7i, hsa-let-7d, hsa-miR-22, hsa-miR-15a, hsa-miR-98, hsa-miR-19a; hsa-miR-574-5p; hsa-miR-324-3p, hsa-miR-20b, hsa-miR-25, hsa-miR-195, hsa-let-7e, hsa-let-7c, hsa-let-7f, hsa-let-7a, hsa-let-7g, hsa-miR-140-3p and hsa-miR-339-5p;
[0155] FIG. 13F: 28 biomarkers:
[0156] hsa-miR-126, hsa-miR-423-5p, hsa-let-7i, hsa-let-7d, hsa-miR-22, hsa-miR-15a, hsa-miR-98, hsa-miR-19a; hsa-miR-574-5p; hsa-miR-324-3p, hsa-miR-20b, hsa-miR-25, hsa-miR-195, hsa-let-7e, hsa-let-7c, hsa-let-7f, hsa-let-7a, hsa-let-7g, hsa-miR-140-3p, hsa-miR-339-5p, hsa-miR-361-5p, hsa-miR-1283, hsa-miR-18a*, hsa-miR-26b, hsa-miR-604, hsa-miR-423-3p, hsa-miR-93*, and hsa-miR-29a;
[0157] FIG. 13G: 40 biomarkers:
[0158] hsa-miR-126, hsa-miR-423-5p, hsa-let-7i, hsa-let-7d, hsa-miR-22, hsa-miR-15a, hsa-miR-98, hsa-miR-19a; hsa-miR-574-5p; hsa-miR-324-3p, hsa-miR-20b, hsa-miR-25, hsa-miR-195, hsa-let-7e, hsa-let-7c, hsa-let-7f, hsa-let-7a, hsa-let-7g, hsa-miR-140-3p, hsa-miR-339-5p, hsa-miR-361-5p, hsa-miR-1283, hsa-miR-18a*, hsa-miR-26b, hsa-miR-604, hsa-miR-423-3p, hsa-miR-93*, hsa-miR-29a, hsa-miR-1248, hsa-miR-210, hsa-miR-19b, hsa-miR-453, hsa-miR-126*, hsa-miR-188-3p, hsa-miR-624*, hsa-miR-505*, hsa-miR-425, hsa-miR-339-3p, hsa-miR-668, and hsa-miR-363*.
[0159] FIG. 14:
[0160] Classification of cancer samples versus controls for two individual miRNAs (miR-126 and miR-196). Blue bars correspond to cancer samples, while red bars correspond to controls.
[0161] FIG. 15:
[0162] Scatterplot of fold quotients of rt-qPCR (x-axis) and microarray experiments (y-axis).
[0163] FIG. 16:
[0164] The mutual information of all miRNAs that have higher information content than the best permutation test (upper red line). The middle red line denotes the 95% quantile of the 1000 permutation tests and the bottom red line the mean of the permutation experiments, corresponding to the background MI.
[0165] FIG. 17:
[0166] Box plots of the classification accuracy, specificity and sensitivity of the set of 24 best miRNAs (obtained with radial basis function support vector machine). These miRNAs allow for the discrimination between blood cells of lung cancer patients and blood cells of controls with an accuracy of 95.4% [94.9%-95.9%], a specificity of 98.1% [97.3%-98.8%], and a sensitivity of 92.5% [91.8%-92.5%]. The permutation tests showed significantly decreased accuracy, specificity and sensitivity with 94.2% [47.2%-51.3%], 56.9% [54.5%-59.3%] and 40.6% [37.9%-43.4%], respectively, providing evidence that the obtained results are not due to an overfit of the statistical model on the miRNA fingerprints.
EXAMPLE 1
[0167] Lung Cancer
[0168] 1. Material and Methods
[0169] 1.1 Samples
[0170] Blood samples were obtained with patients' informed consent. The patient samples stem from 17 patients with non-small cell lung carcinoma and normal controls. Normal samples were obtained from 19 different volunteers. More detailed information of patients and controls is given in Table 1.
TABLE-US-00001 TABLE 1 Detailed information on lung cancer patients and healthy control subjects blood donors male female lung cancer patients number 9 8 average age 67.4 60.6 squamous cell lung cancer 3 4 adenocarcinoma 6 1 adenosquamous carcinoma 0 1 broncholaveolar carcinoma 0 1 typical carcinoid 0 1 healthy subjects number 7 12 average age 43.3 36.7 blood donors male female lung cancer patients number 9 8 average age 67.4 60.6 squamous cell lung cancer 3 4 adenocarcinoma 6 1 adenosquamous carcinoma 0 1 broncholaveolar carcinoma 0 1 typical carcinoid 0 1 healthy subjects number 7 12 average age 43.3 36.7 blood donors male female lung cancer patients number 9 8 average age 67.4 60.6 squamous cell lung cancer 3 4 adenocarcinoma 6 1 adenosquamous carcinoma 0 1 broncholaveolar carcinoma 0 1 typical carcinoid 0 1 healthy subjects number 7 12 average age 43.3 36.7
[0171] 1.2 miRNA Microarray Screening
[0172] Blood of lung cancer patients and volunteers without known disease was extracted in PAXgene Blood RNA tubes (BD, Franklin Lakes, N.J. USA). For each blood donor, 5 ml of peripheral blood were obtained. Total RNA was extracted from blood cells using the miRNeasy Mini Kit (Qiagen GmbH, Hilden, Germany) and the RNA has been stored at -70.degree. C. Samples were analyzed with the Geniom Realtime Analyzer (GRTA, febit gmbh, Heidelberg, Germany) using the Geniom Biochip miRNA homo sapiens. Each array contains 7 replicates of 866 miRNAs and miRNA star sequences as annotated in the Sanger mirBase 12.0 (Griffiths-Jones, Moxon et al. 2005; Griffiths-Jones, Saini et al. 2008). Sample labeling with Biotin has been carried out either by using the miRVANA.TM. miRNA Labeling Kit (Applied Biosystems Inc, Foster City, Calif. USA) or by multifluidic-based enzymatic on-chip labeling of miRNAs (MPEA (Vorwerk, Ganter et al. 2008), incorporated herein by reference).
[0173] Following hybridization for 16 hours at 42.degree. C. the biochip was washed automatically and a program for signal enhancement was processed with the GRTA. The resulting detection pictures were evaluated using the Geniom Wizard Software. For each array, the median signal intensity was extracted from the raw data file such that for each miRNA seven intensity values have been calculated corresponding to each replicate copy of mirBase on the array. Following background correction, the seven replicate intensity values of each miRNA were summarized by their median value. To normalize the data across different arrays, quantile normalization (Bolstad, Irizarry et al. 2003) was applied and all further analyses were carried out using the normalized and background subtracted intensity values.
[0174] 1.3 Statistical Analysis
[0175] After having verified the normal distribution of the measured data, parametric t-tests (unpaired, two-tailed) were carried out for each miRNA separately, to detect miRNAs that show a different behavior in different groups of blood donors. The resulting p-values were adjusted for multiple testing by Benjamini-Hochberg (Hochberg 1988; Benjamini and Hochberg 1995) adjustment. Moreover, the Mutual Information (MI) (Shannon 1984) was computed as a measure to access the diagnostic value of single miRNA biomarkers. To this end, all biomarkers were transformed to z-scores and binned in three bins before the MI values of each biomarker, and the information whether the marker has been measured from a normal or lung cancer sample, was computed. In addition to the single biomarker analysis classification of samples using miRNA patterns was carried out using Support Vector Machines (SVM, (Vapnik 2000)) as implemented in the R (Team 2008) e1071 package. In detail, different kernel (linear, polynomial, sigmoid, radial basis function) Support Vector Machines were evaluated, where the cost parameter was sampled from 0.01 to 10 in decimal powers. The measured miRNA profiles were classified using 100 repetitions of standard 10-fold cross-validation. As a subset selection technique a filter approach based on t-test was applied . In detail, the s miRNAs with lowest p-values were computed on the training set in each fold of the cross validation, where s was sampled from 1 to 866. The respective subset was used to train the SVM and to carry out the prediction of the test samples. As result, the mean accuracy, specificity, and sensitivity were calculated together with the 95% Confidence Intervals (95% CI) for each subset size. To check for overtraining permutation tests were applied. Here the class labels were sampled randomly and classifications were carried out using the permuted class labels. All statistical analyzes were performed using R (Team 2008).
[0176] 2. Results
[0177] 2.1 miRNA Experiments
[0178] The expression of 866 miRNAs and miRNA star sequences was analyzed in blood cells of 17 patients with NSCLC. As a control blood cells of 19 volunteers without known disease were used (see also Materials and Methods).
[0179] Following RNA isolation and labeling by miRVANA.TM. miRNA Labeling Kit, the miRNA expression profiles were measured by the Geniom Bioship miRNA homo sapiens in the GRTA (febit gmbh, Heidelberg). Following intensity value computation and quantile normalization of the miRNA profiles (Bolstad, Irizarry et al. 2003), a mean correlation value of 0.97 for technical replicates was determined by using purchased total RNA from Ambion (four heart and four liver replicates). For the biological replicates the different tumor samples were compared between each other and the different normal samples between each other. The biological replicates showed a mean correlation of 0.87 and a variance of 0.009.
[0180] 2.2 Ruling Out the Influence of Age and Gender
[0181] To cross-check that age and gender do not have an influence on our analysis, t-tests were computed for the normal samples. In the case of males versus females there was no statistically significant deregulated miRNA. The most significant miRNA, hsa-miR-423, showed an adjusted significance level of 0.78.
[0182] To test for the influence of donor age the profiles obtained from samples obtained from the oldest versus youngest patients were compared by splitting the group in half based on age. Here, the most significant miRNA, miR-890, obtained an adjusted p-value of 0.87. As for gender, there were no deregulated miRNAs, thus providing evidence that age and gender do not have a substantial influence on the miRNA profiles.
[0183] 2.3 Single Deregulated miRNAs
[0184] Hypothesis testing was applied to identify miRNAs deregulated in the blood cells of lung cancer patients as compared to the blood cells of the controls. Following verification of an approximately normal distribution, two-tailed unpaired t-tests were performed for each miRNA. The respective p-values were adjusted for multiple testing by the Benjamini-Hochberg approach (Hochberg 1988; Benjamini and Hochberg 1995). In total 27 miRNAs significantly deregulated in blood cells of lung cancer patients as compared to the controls were detected. A complete list of deregulated miRNAs is given in the tables in FIGS. 10 and 11. The miRNAs that were most significantly deregulated included hsa-miR-126 with a p-value of 0.00003, hsa-let-7d with a p-value of 0.003, hsa-let-7i with a p-value of 0.003, and hsa-miR-423 with a p-value of 0.001 (FIG. 1 and FIG. 2). Other members of the let-7 family that were also found to be deregulated included hsa-let-7c, hsa-let-7e, hsa-let-7f, hsa-let-7g and hsa-let-7a. Besides miR-423, all above mentioned miRNAs were down-regulated in blood cells of lung cancer patients compared to blood cells of healthy subjects indicating an overall decreased miRNA repertoire.
[0185] To validate the findings, the miRNA profiling was repeated using an enzymatic on-chip labeling technique termed MPEA (Microfluidic-based enzymatic on-chip labeling of miRNAs). For this control experiment, 4 out of the 17 lung cancer patients and 10 of the controls were used. Hereby, 100 differentially regulated miRNAs were detected. The miRNAs that were most significantly deregulated include hsa-miR-1253 with a p-value of 0.001, hsa-miR-126 with a p-value of 0.006, hsa-let-7d with a p-value of 0.006, and hsa-let-7f with a p-value of 0.006. Of the previously identified 27 miRNAs 12 were detected to be significant in the second experiment, while the remaining miRNAs showed increased p-values. The correlation of fold changes was 0.62. Also other members of the let-7 family were confirmed as deregulated in blood cells of lung cancer patients. Furthermore, it was confirmed that the majority of the deregulated miRNAs were down-regulated in patients' blood samples. Here, 62% of the deregulated miRNAs showed decreased intensity values in lung cancer samples.
[0186] As a further control experiment an expression analysis by qRT-PCR was performed. As a test sample the fold changes of has-miR-106b, miR-98, miR-140-3p, let-7d, mir-126, and miR-22 were analyzed in blood cells of eight tumor patients and five controls. The fold quotients detected by the Geniom Biochip experiments agreed very well with the qRT-PCR experiments, as demonstrated by an excellent R.sup.2 value of 0.994. The fold quotients are presented as a scatterplot together with the R.sup.2 value and the regression line in FIG. 16.
[0187] 2.4 Diagnostic Value of miRNA Biomarkers
[0188] Mutual Information (MI) (Shannon 1984) is an adequate measure to estimate the overall diagnostic information content of single biomarkers (Keller, Ludwig et al. 2006). In the present study, Mutual Information is considered as the reduction in uncertainty about the class labels `0` for controls and `1` for tumor samples due to the knowledge of the miRNA expression. The higher the value of the MI of a miRNA, the higher is the diagnostic content of the respective miRNA.
[0189] The MI of each miRNA with the class labels was computed. First, a permutation test was carried out to determine the background noise of the miRNAs, e.g. the random information content of each miRNA. 1000 miRNAs (with replacements) were randomly selected and the class labels were sampled for each miRNA. These permutation tests yielded a mean MI value of 0.029, a 95% quantile of 0.096 and a value of 0.217 for the highest random MI. Second, the MI values were calculated for the comparison between the miRNAs in blood cells of tumor patients and controls. The overall comparison of the 866 miRNAs yielded significantly increased MI values with a two-tailed p-value of .ltoreq.10.sup.-10 as shown by an unpaired Wilcoxon Mann-Whitney test (Wilcoxon 1945; Mann and Wilcoxon 1947). The miRNA hsa-miR-361-5p showed the highest MI with a value of 0.446. The miRNAs with the best significance values as computed by the t-test, namely hsa-miR-126 and hsa-miR-98, were also among the miRNAs showing the highest MI values. In total 37 miRNAs with MI values higher than the highest of 1000 permuted miRNAs and 200 miRNAs with MI values higher than the 95% quantile were detected (FIG. 16). A complete list of miRNAs, the respective MI and the enrichment compared to the background MI is provided in the table in FIG. 10.
[0190] 2.5 Evaluating Complex Fingerprints
[0191] Even single miRNAs with highest MI values are not sufficient to differentiate between blood cells of tumor patients as compared to controls with high specificity. For example, the has-miR-126 separates blood cells of tumor patients from blood cells of healthy individuals with a specificity of 68%, only. In order to improve the classification accuracy the predictive power of multiple miRNAs was combined by using statistical learning techniques. In detail, Support Vector Machines with different kernels (linear, polynomial, sigmoid, radial basis function) were applied to the data and a hypothesis test was carried out based subset selection as described in Material and Methods. To gain statistical significance 100 repetitions of 10-fold cross validation were carried out. Likewise, 100 repetitions for the permutation tests were computed.
[0192] The best results were obtained with radial basis function Support Vector Machines and a subset of 24 miRNAs. These miRNAs allowed for the discrimination between blood cells of lung tumor patients and blood cells of controls with an accuracy of 95.4% [94.9%-95.9%], a specificity of 98.1% [97.3%-98.8%], and a sensitivity of 92.5% [91.8%-92.5%]. The permutation tests showed significantly decreased accuracy, specificity, and sensitivity with 49.2% [47.2%-51.3%], 56.9% [54.5%-59.3%] and 40.6% [37.9%-43.4%], respectively (FIG. 5), providing evidence that the obtained results are not due to an overfit of the statistical model on the miRNA fingerprints.
[0193] 3. Discussion
[0194] While complex miRNA expression patterns have been reported for a huge variety of human tumors, information there was only one study analyzing miRNA expression in blood cells derived from tumor patients. In the following the present miRNA expression profiling is related to both the miRNA expression in blood cells and in cancer cells of non-small cell lung cancer patients. A significant down-regulation of has-miR-126 was found that was recently detected in blood cells of healthy individuals, but not in blood cells of lung cancer patients (Chen, Ba et al. 2008). Down-regulation of has-miR-126 was also found in lung cancer tissue in this study. Functional studies on has-miR-126 revealed this miRNA as a regulator of the endothelial expression of vascular cell adhesion molecule 1 (VCAM-1), which is an intercellular adhesion molecule expressed by endothelial cells focuses on the identification of miRNAs in serum of patients with cancer and other diseases or healthy controls. Since most miRNAs are expressed in both, serum and blood cells of healthy controls, most serum miRNAs are likely derived from circulating blood cells. Since there was only a weak correlation between the miRNA expression in serum and blood cell, miRNA expression appears to be deregulated in either serum or blood cells of cancer patients. The present experimental example focused on the analysis of miRNA expression in blood cells of non-small cell lung cancer patients and healthy controls. Significant downregulation of has-miR-126 was found that was recently detected in blood cells of healthy individuals, but not in blood cells of lung cancer patients (Harris, YamakuchiChen, Ba et al. 2008). Downregulation of has-miR-126 was also found in lung cancer tissue (Yanaihara, Caplen et al. 2006). Functional studies on has-miR-126 revealed this miRNA as regulator of the endothelial expression of vascular cell adhesion molecule 1 (VCAM-1), which is an intercellular adhesion molecule expressed by endothelial cells (Harris, Yamakuchi et al. 2008). hsa-miR-126 is also reported to be an inhibitor of cell invasion in non-small cell lung cancer cell lines, and down-regulation of this miRNA 126 might be a mechanism of lung cancer cells to evade these inhibitory effects (Crawford, Brawner et al. 2008). Members of the has-let-7 family that were found down-regulated in the present invention were the first miRNAs reported as de-regulated in lung cancer (Johnson, Grosshans et al. 2005). This down-regulation of the let-7 family in lung cancer was confirmed by several independent studies (Takamizawa, Konishi et al. 2004; Stahlhut Espinosa and Slack 2006; Tong 2006; Zhang, Wang et al. 2007; Williams 2008). The present data are also in agreement with a recent study showing the down-regulation of has-let-7a, has-let-7d, has-let-7f, has-let-7g, and has-let-7i in blood cells of lung cancer patients (Chen, Ba et al. 2008). Notably, down-regulation of let-7 in lung cancer was strongly associated with poor clinical outcome (Takamizawa, Konishi et al. 2004). The let-7 family members negatively regulate oncogene RAS (Johnson, Grosshans et al. 2005). The miRNA has-miR-22 that showed a high MI value and up-regulation in the present study, was recently also reported to be up-regulated in blood cells of lung cancer patients (Chen, Ba et al. 2008). The miRNA has-miR-19a that also showed a high MI value and up-regulation in the present study was reported to be up-regulated in lung cancer tissue (Hayashita, Osada et al. 2005; Calin and Croce 2006). In contrast, has-miR-20a, which is significantly down-regulated in the present experiments, was reported as up-regulated in lung cancer tissue (Hayashita, Osada et al. 2005; Calin and Croce 2006). The up-regulation of has-miR-20a was found in small-cell lung cancer cell lines, the present study investigated only NSCLC. In summary, there is a high degree of consistency between miRNA expression found in the peripheral blood cells of lung cancer patients and miRNA expression in lung cancer tissue (Takamizawa, Konishi et al. 2004; Hayashita, Osada et al. 2005; Lu, Getz et al. 2005; Calin and Croce 2006; Stahlhut Espinosa and Slack 2006; Tong 2006; Volinia, Calin et al. 2006; Yanaihara, Caplen et al. 2006; Zhang, Wang et al. 2007; Williams 2008).
[0195] Some of the deregulated miRNAs identified in the present invention are also reported as de-regulated in other cancer entities, e.g. has-miR-346 in gastritic cancer, has-miR-145 in bladder cancer, and has-miR-19a in hepatocellular carcinoma and B-cell leukemia (Alvarez-Garcia and Miska 2005; He, Thomson et al. 2005; Feitelson and Lee 2007; Guo, Huang et al. 2008; Ichimi, Enokida et al. 2009). In addition, miRNAs with high diagnostic potential e.g. high MI value, were found that were not yet related to cancer as for example has-miR-527 or has-mir-361-5p that were both up-regulated in blood cells of lung cancer patients.
[0196] Besides the deregulation of single miRNAs, the overall expression pattern of miRNAs in peripheral blood cells of lung cancer patients were analyzed in comparison to the pattern in blood cells of healthy controls. Recently, Chen et al. (Chen, Ba et al. 2008) reported a high correlation of 0.9205 between miRNA profiles in serum and miRNA profiles in blood cells, both in healthy individuals. The correlation of the miRNA profiles between serum and blood cells in lung cancer patients were significantly lower (0.4492). These results are indicative of deregulated miRNAs in blood and/or serum of patients and are in agreement with the present data that show the deregulation of miRNAs in the blood cells of lung carcinoma patients. These deregulated miRNAs can be used to differentiate patients with lung cancer from normal controls with high specificity and sensitivity. This is the first evidence for the diagnostic potential of miRNA expression profiles in peripheral blood cells of cancer patients and healthy individuals.
REFERENCES
[0197] Alvarez-Garcia, I. and E. A. Miska (2005). "MicroRNA functions in animal development and human disease." Development 132(21): 4653-62.
[0198] Benjamini, Y. and Y. Hochberg (1995). "Controlling the false discovery rate: A practical and powerful approach to multiple testing." J R Statist Soc B 57: 289-300.
[0199] Bolstad, B. M., R. A. Irizarry, et al. (2003). "A comparison of normalization methods for high density oligonucleotide array data based on variance and bias." Bioinformatics 19(2): 185-93.
[0200] Calin, G. A. and C. M. Croce (2006). "MicroRNA-cancer connection: the beginning of a new tale." Cancer Res 66(15): 7390-4.
[0201] Calin, G. A. and C. M. Croce (2006). "MicroRNA signatures in human cancers." Nat Rev Cancer 6(11): 857-66.
[0202] Chen, X., Y. Ba, et al. (2008). "Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases." Cell Res 18(10): 997-1006.
[0203] Crawford, M., E. Brawner, et al. (2008). "MicroRNA-126 inhibits invasion in non-small cell lung carcinoma cell lines." Biochem Biophys Res Commun 373(4): 607-12.
[0204] Esquela-Kerscher, A. and F. J. Slack (2006). "Oncomirs--microRNAs with a role in cancer." Nat Rev Cancer 6(4): 259-69.
[0205] Feitelson, M. A. and J. Lee (2007). "Hepatitis B virus integration, fragile sites, and hepatocarcinogenesis." Cancer Lett 252(2): 157-70.
[0206] Gilad, S., E. Meiri, et al. (2008). "Serum microRNAs are promising novel biomarkers." PLoS ONE 3(9): e3148.
[0207] Griffiths-Jones, S., R. J. Grocock, et al. (2006). "miRBase: microRNA sequences, targets and gene nomenclature." Nucleic Acids Res 34(Database issue): D140-4.
[0208] Griffiths-Jones, S., S. Moxon, et al. (2005). "Rfam: annotating non-coding RNAs in complete genomes." Nucleic Acids Res 33(Database issue): D121-4.
[0209] Griffiths-Jones, S., H. K. Saini, et al. (2008). "miRBase: tools for microRNA genomics." Nucleic Acids Res 36(Database issue): D154-8.
[0210] Guo, L., Z. X. Huang, et al. (2008). "Differential Expression Profiles of microRNAs in NIH3T3 Cells in Response to UVB Irradiation." Photochem Photobiol.
[0211] Harris, T. A., M. Yamakuchi, et al. (2008). "MicroRNA-126 regulates endothelial expression of vascular cell adhesion molecule 1." Proc Natl Acad Sci USA 105(5): 1516-21.
[0212] Hayashita, Y., H. Osada, et al. (2005). "A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation." Cancer Res 65(21): 9628-32.
[0213] He, L., J. M. Thomson, et al. (2005). "A microRNA polycistron as a potential human oncogene." Nature 435(7043): 828-33.
[0214] Henschke, C. I. and D. F. Yankelevitz (2008). "CT screening for lung cancer: update 2007." Oncologist 13(1): 65-78.
[0215] Hochberg, Y. (1988). "A sharper bonferroni procedure for multiple tests of significance." Biometrica 75: 185-193.
[0216] Ichimi, T., H. Enokida, et al. (2009). "Identification of novel microRNA targets based on microRNA signatures in bladder cancer." Int J Cancer.
[0217] Jemal, A., R. Siegel, et al. (2008). "Cancer statistics, 2008." CA Cancer J Clin 58(2): 71-96.
[0218] Johnson, S. M., H. Grosshans, et al. (2005). "RAS is regulated by the let-7 microRNA family." Cell 120(5): 635-47.
[0219] Keller, A., N. Ludwig, et al. (2006). "A minimally invasive multiple marker approach allows highly efficient detection of meningioma tumors." BMC Bioinformatics 7: 539.
[0220] Lee, R. C., R. L. Feinbaum, et al. (1993). "The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14." Cell 75(5): 843-54.
[0221] Lu, J., G. Getz, et al. (2005). "MicroRNA expression profiles classify human cancers." Nature 435(7043): 834-8.
[0222] Mann, H. and F. Wilcoxon (1947). "On a test whether one of two random variables is stochastically larger than the other." Ann Mat Stat 18: 50-60.
[0223] Sassen, S., E. A. Miska, et al. (2008). "MicroRNA: implications for cancer." Virchows Arch 452(1): 1-10.
[0224] Scott, W. J., J. Howington, et al. (2007). "Treatment of non-small cell lung cancer stage I and stage II: ACCP evidence-based clinical practice guidelines (2nd edition)." Chest 132(3 Suppl): 234S-242S.
[0225] Shannon, C. (1984). "A mathematical theory of communication." The Bell System Technical Journal 27: 623-656.
[0226] Stahlhut Espinosa, C. E. and F. J. Slack (2006). "The role of microRNAs in cancer." Yale J Biol Med 79(3-4): 131-40.
[0227] Takamizawa, J., H. Konishi, et al. (2004). "Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival." Cancer Res 64(11): 3753-6.
[0228] Team, R. D. C. (2008). R: A Language and Environment for Statistical Computing. Vienna, Austria, R Foundation for Statistical Computing.
[0229] Tong, A. W. (2006). "Small RNAs and non-small cell lung cancer." Curr Mol Med 6(3): 339-49.
[0230] Vapnik, V. (2000). The Nature of Statistical Learning Theory. Springer.
[0231] Volinia, S., G. A. Calin, et al. (2006). "A microRNA expression signature of human solid tumors defines cancer gene targets." Proc Natl Acad Sci USA 103(7): 2257-61.
[0232] Vorwerk, S., K. Ganter, et al. (2008). "Microfluidic-based enzymatic on-chip labeling of miRNAs." N Biotechnol 25(2-3): 142-9.
[0233] Wilcoxon, F. (1945). "Individual comparisons by ranking methods." Biometric Bull 1: 80-83.
[0234] Williams, A. E. (2008). "Functional aspects of animal microRNAs." Cell Mol Life Sci 65(4): 545-62.
[0235] Yanaihara, N., N. Caplen, et al. (2006). "Unique microRNA molecular profiles in lung cancer diagnosis and prognosis." Cancer Cell 9(3): 189-98.
[0236] Zhang, B., X. Pan, et al. (2007). "microRNAs as oncogenes and tumor suppressors." Dev Biol 302(1): 1-12.
[0237] Zhang, B., Q. Wang, et al. (2007). "MicroRNAs and their regulatory roles in animals and plants." J Cell Physiol 210(2): 279-89.
Sequence CWU
1
1
866122RNAHomo sapiens 1ucguaccgugaguaauaaugcg
22223RNAHomo sapiens 2ugaggggcagagagcgagacuuu
23322RNAHomo sapiens
3ugagguaguaguuugugcuguu
22422RNAHomo sapiens 4agagguaguagguugcauaguu
22522RNAHomo sapiens 5aagcugccaguugaagaacugu
22622RNAHomo sapiens
6uagcagcacauaaugguuugug
22722RNAHomo sapiens 7ugagguaguaaguuguauuguu
22823RNAHomo sapiens 8ugugcaaaucuaugcaaaacuga
23923RNAHomo sapiens
9ugagugugugugugugagugugu
231020RNAHomo sapiens 10acugccccaggugcugcugg
201123RNAHomo sapiens 11caaagugcucauagugcagguag
231222RNAHomo sapiens
12cauugcacuugucucggucuga
221321RNAHomo sapiens 13uagcagcacagaaauauuggc
211422RNAHomo sapiens 14ugagguaggagguuguauaguu
221522RNAHomo sapiens
15ugagguaguagguuguaugguu
221622RNAHomo sapiens 16ugagguaguagauuguauaguu
221722RNAHomo sapiens 17ugagguaguagguuguauaguu
221822RNAHomo sapiens
18ugagguaguaguuuguacaguu
221921RNAHomo sapiens 19uaccacaggguagaaccacgg
212023RNAHomo sapiens 20ucccuguccuccaggagcucacg
232122RNAHomo sapiens
21uuaucagaaucuccagggguac
222222RNAHomo sapiens 22ucuacaaaggaaagcgcuuucu
222323RNAHomo sapiens 23acugcccuaagugcuccuucugg
232421RNAHomo sapiens
24uucaaguaauucaggauaggu
212519RNAHomo sapiens 25aggcugcggaauucaggac
192623RNAHomo sapiens 26agcucggucugaggccccucagu
232722RNAHomo sapiens
27acugcugagcuagcacuucccg
222822RNAHomo sapiens 28uagcaccaucugaaaucgguua
222927RNAHomo sapiens 29accuucuuguauaagcacugugcuaaa
273022RNAHomo sapiens
30cugugcgugugacagcggcuga
223123RNAHomo sapiens 31ugugcaaauccaugcaaaacuga
233223RNAHomo sapiens 32agguuguccguggugaguucgca
233321RNAHomo sapiens
33cauuauuacuuuugguacgcg
213421RNAHomo sapiens 34cucccacaugcaggguuugca
213522RNAHomo sapiens 35uaguaccaguaccuuguguuca
223622RNAHomo sapiens
36gggagccaggaaguauugaugu
223723RNAHomo sapiens 37aaugacacgaucacucccguuga
233823RNAHomo sapiens 38ugagcgccucgacgacagagccg
233923RNAHomo sapiens
39ugucacucggcucggcccacuac
234022RNAHomo sapiens 40cggguggaucacgaugcaauuu
224122RNAHomo sapiens 41cgaaucauuauuugcugcucua
224222RNAHomo sapiens
42ugaccgauuucuccugguguuc
224322RNAHomo sapiens 43ugucuuacucccucaggcacau
224422RNAHomo sapiens 44aaucacuaaccacacggccagg
224523RNAHomo sapiens
45uaaagugcuuauagugcagguag
234622RNAHomo sapiens 46uuauaauacaaccugauaagug
224722RNAHomo sapiens 47ggauuccuggaaauacuguucu
224823RNAHomo sapiens
48uaagugcuuccauguuuuaguag
234923RNAHomo sapiens 49aaaagugcuuacagugcagguag
235022RNAHomo sapiens 50uguaaacauccuugacuggaag
225122RNAHomo sapiens
51ugucaguuugucaaauacccca
225222RNAHomo sapiens 52cuggacugagccgugcuacugg
225322RNAHomo sapiens 53ugagguaguagguugugugguu
225422RNAHomo sapiens
54ugugacagauugauaacugaaa
225518RNAHomo sapiens 55ugcuuccuuucagagggu
185622RNAHomo sapiens 56aaaccguuaccauuacugaguu
225722RNAHomo sapiens
57aaagugcaucuuuuuagaggau
225826RNAHomo sapiens 58aaguaguugguuuguaugagaugguu
265923RNAHomo sapiens 59gacacgggcgacagcugcggccc
236023RNAHomo sapiens
60ucccccaggugugauucugauuu
236122RNAHomo sapiens 61aguuuugcauaguugcacuaca
226222RNAHomo sapiens 62aucaugaugggcuccucggugu
226322RNAHomo sapiens
63cuccugagccauucugagccuc
226422RNAHomo sapiens 64aaaaugguucccuuuagagugu
226522RNAHomo sapiens 65aagugcuuccuuuuagaggguu
226622RNAHomo sapiens
66cucuagagggaagcgcuuucug
226721RNAHomo sapiens 67cugaccuaugaauugacagcc
216821RNAHomo sapiens 68aagugaucuaaaggccuacau
216921RNAHomo sapiens
69ucgaggagcucacagucuagu
217021RNAHomo sapiens 70uggacugcccugaucuggaga
217123RNAHomo sapiens 71uagcagcgggaacaguucugcag
237219RNAHomo sapiens
72agguugacauacguuuccc
197322RNAHomo sapiens 73gguggcccggccgugccugagg
227422RNAHomo sapiens 74cuauacgaccugcugccuuucu
227523RNAHomo sapiens
75cccaguguucagacuaccuguuc
237617RNAHomo sapiens 76ucucgcuggggccucca
177719RNAHomo sapiens 77aauggauuuuuggagcagg
197822RNAHomo sapiens
78aacaauauccuggugcugagug
227921RNAHomo sapiens 79auguaugugugcaugugcaug
218019RNAHomo sapiens 80auggauaaggcuuuggcuu
198123RNAHomo sapiens
81gcagcagagaauaggacuacguc
238222RNAHomo sapiens 82uggagagaaaggcaguuccuga
228323RNAHomo sapiens 83gcgaggaccccucggggucugac
238426RNAHomo sapiens
84gaugaugauggcagcaaauucugaaa
268522RNAHomo sapiens 85uucuggaauucugugugaggga
228622RNAHomo sapiens 86uuuuucauuauugcuccugacc
228721RNAHomo sapiens
87cagcagcacacugugguuugu
218818RNAHomo sapiens 88ucagcuggcccucauuuc
188922RNAHomo sapiens 89uagcagcacguaaauauuggcg
229022RNAHomo sapiens
90uggaauguaaagaaguauguau
229124RNAHomo sapiens 91uggcccugacugaagaccagcagu
249222RNAHomo sapiens 92gcuauuucacgacaccaggguu
229323RNAHomo sapiens
93acuccauuuguuuugaugaugga
239422RNAHomo sapiens 94caaaaaccacaguuucuuuugc
229522RNAHomo sapiens 95caaaguuuaagauccuugaagu
229622RNAHomo sapiens
96aaaaguaaucgcgguuuuuguc
229721RNAHomo sapiens 97gccccugggccuauccuagaa
219822RNAHomo sapiens 98gcccaaaggugaauuuuuuggg
229923RNAHomo sapiens
99guccaguuuucccaggaaucccu
2310023RNAHomo sapiens 100caaagugcuuacagugcagguag
2310122RNAHomo sapiens 101uguaaacauccuacacucagcu
2210222RNAHomo sapiens
102cuauacaaucuauugccuuccc
2210322RNAHomo sapiens 103uuuucaacucuaaugggagaga
2210421RNAHomo sapiens 104cuuuuugcggucugggcuugc
2110521RNAHomo sapiens
105ucguggccuggucuccauuau
2110622RNAHomo sapiens 106ccgcacuguggguacuugcugc
2210724RNAHomo sapiens 107gaccuggacauguuugugcccagu
2410822RNAHomo sapiens
108caaucagcaaguauacugcccu
2210921RNAHomo sapiens 109aauggcgccacuaggguugug
2111022RNAHomo sapiens 110aggcauugacuucucacuagcu
2211122RNAHomo sapiens
111acuguaguaugggcacuuccag
2211221RNAHomo sapiens 112caaaacgugaggcgcugcuau
2111322RNAHomo sapiens 113aucgugcaucccuuuagagugu
2211422RNAHomo sapiens
114ucuauacagacccuggcuuuuc
2211522RNAHomo sapiens 115acaguagucugcacauugguua
2211620RNAHomo sapiens 116guugugucaguuuaucaaac
2011721RNAHomo sapiens
117uaguagaccguauagcguacg
2111821RNAHomo sapiens 118aucacauugccagggauuacc
2111921RNAHomo sapiens 119uugggacauacuuaugcuaaa
2112022RNAHomo sapiens
120uggcaguguauuguuagcuggu
2212119RNAHomo sapiens 121aaaaacuguaauuacuuuu
1912222RNAHomo sapiens 122ugugucacucgaugaccacugu
2212322RNAHomo sapiens
123cacacacugcaauuacuuuugc
2212422RNAHomo sapiens 124acccgucccguucguccccgga
2212521RNAHomo sapiens 125uccugcgcgucccagaugccc
2112623RNAHomo sapiens
126ugaguaccgccaugucuguuggg
2312723RNAHomo sapiens 127ccuaguagguguccaguaagugu
2312823RNAHomo sapiens 128agguuacccgagcaacuuugcau
2312924RNAHomo sapiens
129uuuggcaaugguagaacucacacu
2413025RNAHomo sapiens 130ggcggagggaaguagguccguuggu
2513121RNAHomo sapiens 131augaccuaugaauugacagac
2113222RNAHomo sapiens
132gugugcggaaaugcuucugcua
2213322RNAHomo sapiens 133uguaaacauccccgacuggaag
2213422RNAHomo sapiens 134cuccugacuccagguccugugu
2213522RNAHomo sapiens
135accuggcauacaauguagauuu
2213622RNAHomo sapiens 136caaucacuaacuccacugccau
2213725RNAHomo sapiens 137aggcaccagccaggcauugcucagc
2513821RNAHomo sapiens
138aacaggugacugguuagacaa
2113921RNAHomo sapiens 139acuggacuuggagucagaagg
2114022RNAHomo sapiens 140ggugcagugcugcaucucuggu
2214123RNAHomo sapiens
141ccucagggcuguagaacagggcu
2314221RNAHomo sapiens 142gcuaguccugacucagccagu
2114321RNAHomo sapiens 143agaccuggcccagaccucagc
2114420RNAHomo sapiens
144aggguguuucucucaucucu
2014523RNAHomo sapiens 145uguaaacauccuacacucucagc
2314622RNAHomo sapiens 146aaggagcucacagucuauugag
2214721RNAHomo sapiens
147aucacauugccagggauuucc
2114819RNAHomo sapiens 148ucuaggcugguacugcuga
1914921RNAHomo sapiens 149guggcugcacucacuuccuuc
2115022RNAHomo sapiens
150acuuuaacauggaagugcuuuc
2215121RNAHomo sapiens 151guucaaauccagaucuauaac
2115223RNAHomo sapiens 152uggaguccaggaaucugcauuuu
2315324RNAHomo sapiens
153ccagacagaauucuaugcacuuuc
2415423RNAHomo sapiens 154uaaauuucaccuuucugagaagg
2315524RNAHomo sapiens 155uggggagcugaggcucugggggug
2415623RNAHomo sapiens
156uagcaccauuugaaaucaguguu
2315720RNAHomo sapiens 157accaggaggcugaggccccu
2015823RNAHomo sapiens 158uaaggugcaucuagugcagauag
2315919RNAHomo sapiens
159gugaggacucgggaggugg
1916022RNAHomo sapiens 160caaauucguaucuaggggaaua
2216122RNAHomo sapiens 161accaucgaccguugauuguacc
2216222RNAHomo sapiens
162caugguucugucaagcaccgcg
2216323RNAHomo sapiens 163aagugccgccaucuuuugagugu
2316422RNAHomo sapiens 164aucacacaaaggcaacuuuugu
2216522RNAHomo sapiens
165cagugguuuuacccuaugguag
2216623RNAHomo sapiens 166cagugcaauaguauugucaaagc
2316722RNAHomo sapiens 167uacguagauauauauguauuuu
2216822RNAHomo sapiens
168uucacauugugcuacugucugc
2216922RNAHomo sapiens 169uacccagagcaugcagugugaa
2217022RNAHomo sapiens 170aacuggcccucaaagucccgcu
2217122RNAHomo sapiens
171ugccugucuacacuugcugugc
2217222RNAHomo sapiens 172aaaucucugcaggcaaauguga
2217317RNAHomo sapiens 173uaauugcuuccauguuu
1717422RNAHomo sapiens
174cucuagagggaagcgcuuucug
2217522RNAHomo sapiens 175aaaaguaauugcggucuuuggu
2217620RNAHomo sapiens 176auguauaaauguauacacac
2017719RNAHomo sapiens
177aagugugcagggcacuggu
1917821RNAHomo sapiens 178ucccacguuguggcccagcag
2117921RNAHomo sapiens 179agcuacaucuggcuacugggu
2118022RNAHomo sapiens
180ugcuggaucagugguucgaguc
2218122RNAHomo sapiens 181ugcaacuuaccugagucauuga
2218223RNAHomo sapiens 182ucucacacagaaaucgcacccgu
2318322RNAHomo sapiens
183aagugcugucauagcugagguc
2218423RNAHomo sapiens 184aucccuugcaggggcuguugggu
2318522RNAHomo sapiens 185auaagacgaacaaaagguuugu
2218622RNAHomo sapiens
186ccaguauuaacugugcugcuga
2218721RNAHomo sapiens 187gcgacccauacuugguuucag
2118822RNAHomo sapiens 188ugcccuguggacucaguucugg
2218921RNAHomo sapiens
189aaagugcuuccuuuuagaggg
2119022RNAHomo sapiens 190aggcaguguauuguuagcuggc
2219124RNAHomo sapiens 191acaaagugcuucccuuuagagugu
2419222RNAHomo sapiens
192ugccuacugagcugaaacacag
2219321RNAHomo sapiens 193gaaagcgcuucucuuuagagg
2119422RNAHomo sapiens 194aaaccuguguuguucaagaguc
2219522RNAHomo sapiens
195uauugcacauuacuaaguugca
2219621RNAHomo sapiens 196cuagacugaagcuccuugagg
2119723RNAHomo sapiens 197uagugcaauauugcuuauagggu
2319821RNAHomo sapiens
198uacaguacugugauaacugaa
2119923RNAHomo sapiens 199aguuuugcagguuugcauccagc
2320021RNAHomo sapiens 200uacugcagacaguggcaauca
2120120RNAHomo sapiens
201uacaguauagaugauguacu
2020223RNAHomo sapiens 202uacuccagagggcgucacucaug
2320321RNAHomo sapiens 203aguuaaugaauccuggaaagu
2120423RNAHomo sapiens
204ugugcuugcucgucccgcccgca
2320522RNAHomo sapiens 205auccgcgcucugacucucugcc
2220623RNAHomo sapiens 206ugucugcccgcaugccugccucu
2320721RNAHomo sapiens
207uaaggcacccuucugaguaga
2120822RNAHomo sapiens 208uauguaacaugguccacuaacu
2220923RNAHomo sapiens 209ccugcagcgacuugauggcuucc
2321023RNAHomo sapiens
210uucauuugguauaaaccgcgauu
2321122RNAHomo sapiens 211uggguuccuggcaugcugauuu
2221222RNAHomo sapiens 212augggugaauuuguagaaggau
2221322RNAHomo sapiens
213uugcauagucacaaaagugauc
2221421RNAHomo sapiens 214aaagugcuuccuuuuugaggg
2121519RNAHomo sapiens 215gugucugcuuccuguggga
1921622RNAHomo sapiens
216cugcaauguaagcacuucuuac
2221722RNAHomo sapiens 217ugcuaugccaacauauugccau
2221822RNAHomo sapiens 218cagugccucggcagugcagccc
2221922RNAHomo sapiens
219uaugucugcugaccaucaccuu
2222022RNAHomo sapiens 220caagcucgugucuguggguccg
2222122RNAHomo sapiens 221uaguacugugcauaucaucuau
2222223RNAHomo sapiens
222uauggcuuuucauuccuauguga
2322322RNAHomo sapiens 223uagaguuacacccugggaguua
2222421RNAHomo sapiens 224cuccguuugccuguuucgcug
2122522RNAHomo sapiens
225cuuagcagguuguauuaucauu
2222621RNAHomo sapiens 226auugacacuucugugaguaga
2122721RNAHomo sapiens 227uaauuuuauguauaagcuagu
2122821RNAHomo sapiens
228aaacuacugaaaaucaaagau
2122921RNAHomo sapiens 229aauaauacaugguugaucuuu
2123021RNAHomo sapiens 230uugaaaggcuauuucuugguc
2123121RNAHomo sapiens
231ucacagugaaccggucucuuu
2123224RNAHomo sapiens 232aauccuuggaaccuaggugugagu
2423323RNAHomo sapiens 233aggaagcccuggaggggcuggag
2323422RNAHomo sapiens
234cugcccuggcccgagggaccga
2223520RNAHomo sapiens 235caccaggcauuguggucucc
2023625RNAHomo sapiens 236ugggaacggguuccggcagacgcug
2523722RNAHomo sapiens
237uguaacagcaacuccaugugga
2223822RNAHomo sapiens 238uagcagcacaucaugguuuaca
2223921RNAHomo sapiens 239aggggugcuaucugugauuga
2124022RNAHomo sapiens
240ucacaagucaggcucuugggac
2224117RNAHomo sapiens 241uucaaguaauucaggug
1724222RNAHomo sapiens 242ugugcgcagggagaccucuccc
2224322RNAHomo sapiens
243uuguacaugguaggcuuucauu
2224423RNAHomo sapiens 244ucaaaugcucagacuccuguggu
2324522RNAHomo sapiens 245uaacacugucugguaaagaugg
2224622RNAHomo sapiens
246aaccaucgaccguugaguggac
2224722RNAHomo sapiens 247aacuggccuacaaagucccagu
2224823RNAHomo sapiens 248uaagugcuuccauguuucagugg
2324922RNAHomo sapiens
249agaggcuggccgugaugaauuc
2225022RNAHomo sapiens 250aacaucacagcaagucugugcu
2225122RNAHomo sapiens 251ucagcaaacauuuauugugugc
2225222RNAHomo sapiens
252aaaaguaauugugguuuuggcc
2225321RNAHomo sapiens 253ugacaacuauggaugagcucu
2125422RNAHomo sapiens 254auucuaauuucuccacgucuuu
2225521RNAHomo sapiens
255uagauaaaauauugguaccug
2125621RNAHomo sapiens 256caaagaggaaggucccauuac
2125721RNAHomo sapiens 257uuuccauaggugaugagucac
2125821RNAHomo sapiens
258cacaagguauugguauuaccu
2125919RNAHomo sapiens 259aagcagcugccucugaggc
1926022RNAHomo sapiens 260auaauacaugguuaaccucuuu
2226122RNAHomo sapiens
261uccauuacacuacccugccucu
2226222RNAHomo sapiens 262ccaguggggcugcuguuaucug
2226322RNAHomo sapiens 263ugguuuaccgucccacauacau
2226422RNAHomo sapiens
264cuccuauaugaugccuuucuuc
2226522RNAHomo sapiens 265ugaaggucuacugugugccagg
2226622RNAHomo sapiens 266caaaccacacugugguguuaga
2226722RNAHomo sapiens
267aaagugcauccuuuuagagugu
2226822RNAHomo sapiens 268caagcucgcuucuaugggucug
2226917RNAHomo sapiens 269ucccaccgcugccaccc
1727022RNAHomo sapiens
270cucuagagggaagcgcuuucug
2227122RNAHomo sapiens 271gguccagaggggagauagguuc
2227222RNAHomo sapiens 272ugucuacuacuggagacacugg
2227322RNAHomo sapiens
273cuuucagucagauguuugcugc
2227422RNAHomo sapiens 274cucaucugcaaagaaguaagug
2227522RNAHomo sapiens 275caagaaccucaguugcuuuugu
2227622RNAHomo sapiens
276uaugcauuguauuuuuaggucc
2227722RNAHomo sapiens 277uauugcacucgucccggccucc
2227822RNAHomo sapiens 278ucgugcaucccuuuagaguguu
2227922RNAHomo sapiens
279caaaacuggcaauuacuuuugc
2228022RNAHomo sapiens 280uauaccucaguuuuaucaggug
2228122RNAHomo sapiens 281caggucgucuugcagggcuucu
2228220RNAHomo sapiens
282auuccuagaaauuguucaua
2028319RNAHomo sapiens 283aguguggcuuucuuagagc
1928421RNAHomo sapiens 284agaggauacccuuuguauguu
2128522RNAHomo sapiens
285cugguuucacaugguggcuuag
2228622RNAHomo sapiens 286gugacaucacauauacggcagc
2228719RNAHomo sapiens 287gggcgccugugaucccaac
1928823RNAHomo sapiens
288cggcccgggcugcugcuguuccu
2328922RNAHomo sapiens 289cacuagauugugagcuccugga
2229022RNAHomo sapiens 290cuauacagucuacugucuuucc
2229119RNAHomo sapiens
291gaugaugcugcugaugcug
1929218RNAHomo sapiens 292ugaggcaguagauugaau
1829322RNAHomo sapiens 293cugccaauuccauaggucacag
2229417RNAHomo sapiens
294uaagugcuuccaugcuu
1729522RNAHomo sapiens 295uauguaacacgguccacuaacc
2229622RNAHomo sapiens 296cagcagcaauucauguuuugaa
2229722RNAHomo sapiens
297uaacugguugaacaacugaacc
2229822RNAHomo sapiens 298guucucccaacguaagcccagc
2229922RNAHomo sapiens 299cuuaugcaagauucccuucuac
2230022RNAHomo sapiens
300aaagugcauccuuuuagagguu
2230121RNAHomo sapiens 301uaggacacauggucuacuucu
2130222RNAHomo sapiens 302cugaagcucagagggcucugau
2230321RNAHomo sapiens
303ugcaggaccaagaugagcccu
2130422RNAHomo sapiens 304accguggcuuucgauuguuacu
2230520RNAHomo sapiens 305gugcauugcuguugcauugc
2030621RNAHomo sapiens
306aaaacggugagauuuuguuuu
2130720RNAHomo sapiens 307auggagauagauauagaaau
2030823RNAHomo sapiens 308aaggagcuuacaaucuagcuggg
2330922RNAHomo sapiens
309cacuggcuccuuucuggguaga
2231022RNAHomo sapiens 310acaaagugcuucccuuuagagu
2231122RNAHomo sapiens 311augcaccugggcaaggauucug
2231222RNAHomo sapiens
312gaaaucaagcgugggugagacc
2231322RNAHomo sapiens 313caaagaauucuccuuuugggcu
2231419RNAHomo sapiens 314ugagcugcuguaccaaaau
1931522RNAHomo sapiens
315uucaaguaauccaggauaggcu
2231622RNAHomo sapiens 316augguacccuggcauacugagu
2231722RNAHomo sapiens 317uucccuuugucauccuucgccu
2231822RNAHomo sapiens
318uuugaggcuacagugagaugug
2231921RNAHomo sapiens 319ccaccaccgugucugacacuu
2132022RNAHomo sapiens 320ugcaacgaaccugagccacuga
2232121RNAHomo sapiens
321agagaagaagaucagccugca
2132220RNAHomo sapiens 322ucugcaggguuugcuuugag
2032323RNAHomo sapiens 323uuauugcuuaagaauacgcguag
2332422RNAHomo sapiens
324aaucauacacgguugaccuauu
2232521RNAHomo sapiens 325aggguaagcugaaccucugau
2132622RNAHomo sapiens 326gugaacgggcgccaucccgagg
2232722RNAHomo sapiens
327aauugcacgguauccaucugua
2232822RNAHomo sapiens 328aaaaccgucuaguuacaguugu
2232922RNAHomo sapiens 329agaguugagucuggacgucccg
2233021RNAHomo sapiens
330ccacaccguaucugacacuuu
2133122RNAHomo sapiens 331cucaguagccaguguagauccu
2233221RNAHomo sapiens 332cacauuacacggucgaccucu
2133322RNAHomo sapiens
333aucauagaggaaaauccauguu
2233420RNAHomo sapiens 334ccauggaucuccaggugggu
2033523RNAHomo sapiens 335gaacgcgcuucccuauagagggu
2333623RNAHomo sapiens
336acuuaaacguggauguacuugcu
2333722RNAHomo sapiens 337agagcuuagcugauuggugaac
2233820RNAHomo sapiens 338agaccauggguucucauugu
2033921RNAHomo sapiens
339uacucaaaaagcugucaguca
2134022RNAHomo sapiens 340guagauucuccuucuaugagua
2234123RNAHomo sapiens 341aaacucuacuuguccuucugagu
2334223RNAHomo sapiens
342gagggucuugggagggaugugac
2334322RNAHomo sapiens 343ccucccacacccaaggcuugca
2234423RNAHomo sapiens 344aacauucauugcugucggugggu
2334522RNAHomo sapiens
345aacgcacuucccuuuagagugu
2234622RNAHomo sapiens 346ucaguaaauguuuauuagauga
2234722RNAHomo sapiens 347auaaagcuagauaaccgaaagu
2234820RNAHomo sapiens
348ggggagcuguggaagcagua
2034921RNAHomo sapiens 349ugaguuggccaucugagugag
2135023RNAHomo sapiens 350acuugggcacugaaacaaugucc
2335122RNAHomo sapiens
351uaauacugccugguaaugauga
2235222RNAHomo sapiens 352uaugugccuuuggacuacaucg
2235322RNAHomo sapiens 353uggugguuuacaaaguaauuca
2235422RNAHomo sapiens
354acucaaaaugggggcgcuuucc
2235522RNAHomo sapiens 355ccucugaaauucaguucuucag
2235622RNAHomo sapiens 356aacgccauuaucacacuaaaua
2235722RNAHomo sapiens
357uugggaucauuuugcauccaua
2235822RNAHomo sapiens 358uggcucaguucagcaggaacag
2235922RNAHomo sapiens 359ucaggcucaguccccucccgau
2236023RNAHomo sapiens
360ucauagcccuguacaaugcugcu
2336122RNAHomo sapiens 361uauguaauaugguccacaucuu
2236218RNAHomo sapiens 362uucacagggaggugucau
1836322RNAHomo sapiens
363uacugcagacguggcaaucaug
2236421RNAHomo sapiens 364gcaggaacuugugagucuccu
2136522RNAHomo sapiens 365gaugagcucauuguaauaugag
2236622RNAHomo sapiens
366agaucgaccguguuauauucgc
2236721RNAHomo sapiens 367guguugaaacaaucucuacug
2136823RNAHomo sapiens 368ucugcucauaccccaugguuucu
2336918RNAHomo sapiens
369ugcuuccuuucagagggu
1837022RNAHomo sapiens 370aaagugcuuccuuuuagagggu
2237122RNAHomo sapiens 371caacuagacugugagcuucuag
2237220RNAHomo sapiens
372agagucuugugaugucuugc
2037320RNAHomo sapiens 373cuacaaagggaagcccuuuc
2037423RNAHomo sapiens 374cacucagccuugagggcacuuuc
2337522RNAHomo sapiens
375cuuaucagauuguauuguaauu
2237625RNAHomo sapiens 376cuagugagggacagaaccaggauuc
2537721RNAHomo sapiens 377uguucauguagauguuuaagc
2137821RNAHomo sapiens
378auauaugaugacuuagcuuuu
2137921RNAHomo sapiens 379cuccagagggaugcacuuucu
2138022RNAHomo sapiens 380caucuuaccggacagugcugga
2238122RNAHomo sapiens
381uggguggucuggagauuugugc
2238223RNAHomo sapiens 382aaagugcugcgacauuugagcgu
2338322RNAHomo sapiens 383aaaaguaauugcgaguuuuacc
2238422RNAHomo sapiens
384aaaaguacuugcggauuuugcu
2238518RNAHomo sapiens 385uugagaaggaggcugcug
1838623RNAHomo sapiens 386caagucuuauuugagcaccuguu
2338721RNAHomo sapiens
387gcgacccacucuugguuucca
2138822RNAHomo sapiens 388uagguaguuuccuguuguuggg
2238922RNAHomo sapiens 389caauuuagugugugugauauuu
2239021RNAHomo sapiens
390gugcauuguaguugcauugca
2139122RNAHomo sapiens 391aaaaguaauugugguuuuugcc
2239222RNAHomo sapiens 392agucauuggaggguuugagcag
2239322RNAHomo sapiens
393uggauuucuuugugaaucacca
2239423RNAHomo sapiens 394ugauuguagccuuuuggaguaga
2339522RNAHomo sapiens 395ccuauucuugauuacuuguuuc
2239622RNAHomo sapiens
396ucgugucuuguguugcagccgg
2239722RNAHomo sapiens 397acaguagucugcacauugguua
2239822RNAHomo sapiens 398aaucaugugcagugccaauaug
2239923RNAHomo sapiens
399uaaggugcaucuagugcaguuag
2340021RNAHomo sapiens 400cuggauggcuccuccaugucu
2140122RNAHomo sapiens 401ugauugguacgucuguggguag
2240227RNAHomo sapiens
402cacuguaggugauggugagagugggca
2740319RNAHomo sapiens 403agcugucugaaaaugucuu
1940422RNAHomo sapiens 404uucacaaggaggugucauuuau
2240522RNAHomo sapiens
405agacuucccauuugaagguggc
2240623RNAHomo sapiens 406ucuuugguuaucuagcuguauga
2340722RNAHomo sapiens 407aagugccuccuuuuagaguguu
2240822RNAHomo sapiens
408uucccuuugucauccuaugccu
2240922RNAHomo sapiens 409uagcaccauuugaaaucgguua
2241018RNAHomo sapiens 410cgggcguggugguggggg
1841122RNAHomo sapiens
411uggagugugacaaugguguuug
2241222RNAHomo sapiens 412caacaaaucccagucuaccuaa
2241322RNAHomo sapiens 413caggccauauugugcugccuca
2241423RNAHomo sapiens
414aacauucauuguugucggugggu
2341521RNAHomo sapiens 415ugauuguccaaacgcaauucu
2141623RNAHomo sapiens 416uaagugcuuccauguuugagugu
2341722RNAHomo sapiens
417uggcagugucuuagcugguugu
2241821RNAHomo sapiens 418aauauaacacagauggccugu
2141922RNAHomo sapiens 419caauguuuccacagugcaucac
2242022RNAHomo sapiens
420aaugcaccugggcaaggauuca
2242121RNAHomo sapiens 421ugguagacuauggaacguagg
2142223RNAHomo sapiens 422uuucaagccagggggcguuuuuc
2342322RNAHomo sapiens
423cucuagagggaagcacuuucug
2242422RNAHomo sapiens 424auauuaccauuagcucaucuuu
2242521RNAHomo sapiens 425auccuugcuaucugggugcua
2142621RNAHomo sapiens
426aggcaagaugcuggcauagcu
2142722RNAHomo sapiens 427aacccguagauccgaacuugug
2242822RNAHomo sapiens 428gaggguuggguggaggcucucc
2242922RNAHomo sapiens
429ggggguccccggugcucggauc
2243021RNAHomo sapiens 430caacaccagucgaugggcugu
2143123RNAHomo sapiens 431ggcagguucucacccucucuagg
2343222RNAHomo sapiens
432uuuaggauaagcuugacuuuug
2243321RNAHomo sapiens 433uggaggagaaggaaggugaug
2143421RNAHomo sapiens 434caaagguauuugugguuuuug
2143522RNAHomo sapiens
435agaauuguggcuggacaucugu
2243622RNAHomo sapiens 436aaugcacccgggcaaggauucu
2243723RNAHomo sapiens 437uaagugcuuccauguuuugguga
2343822RNAHomo sapiens
438uuccuaugcauauacuucuuug
2243922RNAHomo sapiens 439uggaauguaaggaagugugugg
2244022RNAHomo sapiens 440aaagugcuucucuuuggugggu
2244122RNAHomo sapiens
441aaaaguaauugcggauuuugcc
2244221RNAHomo sapiens 442gugucuuuugcucugcaguca
2144322RNAHomo sapiens 443uguaaacauccucgacuggaag
2244421RNAHomo sapiens
444ccccaccuccucucuccucag
2144522RNAHomo sapiens 445gaaggcgcuucccuuuagagcg
2244622RNAHomo sapiens 446guggguacggcccagugggggg
2244722RNAHomo sapiens
447cguguauuugacaagcugaguu
2244822RNAHomo sapiens 448uccgagccugggucucccucuu
2244922RNAHomo sapiens 449cgaaaacagcaauuaccuuugc
2245022RNAHomo sapiens
450aaaagcuggguugagagggcga
2245123RNAHomo sapiens 451uccaguaccacgugucagggcca
2345223RNAHomo sapiens 452uuacaguuguucaaccaguuacu
2345322RNAHomo sapiens
453gagcuuauucauaaaagugcag
2245422RNAHomo sapiens 454cuugguucagggagggucccca
2245521RNAHomo sapiens 455acucuagcugccaaaggcgcu
2145623RNAHomo sapiens
456uauucauuuauccccagccuaca
2345721RNAHomo sapiens 457cccagauaauggcacucucaa
2145822RNAHomo sapiens 458aaaacuguaauuacuuuuguac
2245923RNAHomo sapiens
459caguaacaaagauucauccuugu
2346023RNAHomo sapiens 460ucggggaucaucaugucacgaga
2346122RNAHomo sapiens 461ugauauguuugauauauuaggu
2246222RNAHomo sapiens
462augguuccgucaagcaccaugg
2246322RNAHomo sapiens 463acuguugcuaauaugcaacucu
2246422RNAHomo sapiens 464uuuugcgauguguuccuaauau
2246522RNAHomo sapiens
465aauugcacuuuagcaaugguga
2246620RNAHomo sapiens 466uaaggcacgcggugaaugcc
2046723RNAHomo sapiens 467ugcaccaugguugucugagcaug
2346823RNAHomo sapiens
468uaauacugccggguaaugaugga
2346920RNAHomo sapiens 469guccgcucggcgguggccca
2047022RNAHomo sapiens 470cucuagagggaagcacuuucug
2247122RNAHomo sapiens
471acaguagagggaggaaucgcag
2247222RNAHomo sapiens 472caaaaguaauuguggauuuugu
2247322RNAHomo sapiens 473uagcuuaucagacugauguuga
2247421RNAHomo sapiens
474ugguucuagacuugccaacua
2147523RNAHomo sapiens 475aggcaguguaguuagcugauugc
2347622RNAHomo sapiens 476uaauacugucugguaaaaccgu
2247722RNAHomo sapiens
477augcugacauauuuacuagagg
2247822RNAHomo sapiens 478acugauuucuuuugguguucag
2247922RNAHomo sapiens 479gccugcugggguggaaccuggu
2248021RNAHomo sapiens
480cuauacaaucuacugucuuuc
2148122RNAHomo sapiens 481caguuaucacagugcugaugcu
2248221RNAHomo sapiens 482uaaaguaaauaugcaccaaaa
2148323RNAHomo sapiens
483uacugcaucaggaacugauugga
2348422RNAHomo sapiens 484cucuagagggaagcgcuuucug
2248522RNAHomo sapiens 485cuuucagucggauguuuacagc
2248620RNAHomo sapiens
486guguguggaaaugcuucugc
2048722RNAHomo sapiens 487aaucguacagggucauccacuu
2248822RNAHomo sapiens 488gacugacaccucuuugggugaa
2248922RNAHomo sapiens
489uccuucauuccaccggagucug
2249021RNAHomo sapiens 490agugaaugauggguucugacc
2149123RNAHomo sapiens 491uggaagacuagugauuuuguugu
2349221RNAHomo sapiens
492agggcccccccucaauccugu
2149323RNAHomo sapiens 493aggaugagcaaagaaaguagauu
2349422RNAHomo sapiens 494ugguugaccauagaacaugcgc
2249517RNAHomo sapiens
495gugggggagaggcuguc
1749622RNAHomo sapiens 496ucucugggccugugucuuaggc
2249722RNAHomo sapiens 497aacuggaucaauuauaggagug
2249822RNAHomo sapiens
498caucaucgucucaaaugagucu
2249922RNAHomo sapiens 499caucuuccaguacaguguugga
2250022RNAHomo sapiens 500aucgugcauccuuuuagagugu
2250121RNAHomo sapiens
501ggcuagcaacagcgcuuaccu
2150222RNAHomo sapiens 502accuugccuugcugcccgggcc
2250322RNAHomo sapiens 503uggugggcacagaaucuggacu
2250422RNAHomo sapiens
504aaacauucgcggugcacuucuu
2250522RNAHomo sapiens 505ucuucucuguuuuggccaugug
2250622RNAHomo sapiens 506ccuauucuugguuacuugcacg
2250723RNAHomo sapiens
507aguauguucuuccaggacagaac
2350822RNAHomo sapiens 508uggacggagaacugauaagggu
2250921RNAHomo sapiens 509aucauagaggaaaauccacgu
2151022RNAHomo sapiens
510cguguucacagcggaccuugau
2251124RNAHomo sapiens 511agccuggaagcuggagccugcagu
2451221RNAHomo sapiens 512uggcagggaggcugggagggg
2151322RNAHomo sapiens
513uugagaaugaugaaucauuagg
2251422RNAHomo sapiens 514cuauacaaccuacugccuuccc
2251522RNAHomo sapiens 515ggagaaauuauccuuggugugu
2251622RNAHomo sapiens
516aaagugcuucccuuuggacugu
2251719RNAHomo sapiens 517ugggcguaucuguaugcua
1951820RNAHomo sapiens 518cuguaugcccucaccgcuca
2051921RNAHomo sapiens
519cugacuguugccguccuccag
2152024RNAHomo sapiens 520cugaagugauguguaacugaucag
2452123RNAHomo sapiens 521caaagugcuguucgugcagguag
2352222RNAHomo sapiens
522agggcuuagcugcuugugagca
2252320RNAHomo sapiens 523aggaauguuccuucuuugcc
2052422RNAHomo sapiens 524acacagggcuguugugaagacu
2252521RNAHomo sapiens
525gaaggcgcuucccuuuggagu
2152623RNAHomo sapiens 526uaauccuugcuaccugggugaga
2352724RNAHomo sapiens 527agccugauuaaacacaugcucuga
2452822RNAHomo sapiens
528acugcauuaugagcacuuaaag
2252922RNAHomo sapiens 529ggaggggucccgcacugggagg
2253022RNAHomo sapiens 530aucgggaaugucguguccgccc
2253122RNAHomo sapiens
531gagugccuucuuuuggagcguu
2253222RNAHomo sapiens 532agagguugcccuuggugaauuc
2253322RNAHomo sapiens 533agacccuggucugcacucuauc
2253422RNAHomo sapiens
534caaaaaucucaauuacuuuugc
2253520RNAHomo sapiens 535uaaagagcccuguggagaca
2053623RNAHomo sapiens 536agcugguguugugaaucaggccg
2353721RNAHomo sapiens
537ugucuugcaggccgucaugca
2153822RNAHomo sapiens 538ugaaacauacacgggaaaccuc
2253922RNAHomo sapiens 539uugcauauguaggaugucccau
2254023RNAHomo sapiens
540cuaauaguaucuaccacaauaaa
2354122RNAHomo sapiens 541aaucauacagggacauccaguu
2254223RNAHomo sapiens 542ucuggcuccgugucuucacuccc
2354322RNAHomo sapiens
543uauacaagggcagacucucucu
2254427RNAHomo sapiens 544auugaucaucgacacuucgaacgcaau
2754522RNAHomo sapiens 545ucggauccgucugagcuuggcu
2254622RNAHomo sapiens
546uccuguacugagcugccccgag
2254722RNAHomo sapiens 547ucagugcacuacagaacuuugu
2254822RNAHomo sapiens 548ugugagguuggcauuguugucu
2254922RNAHomo sapiens
549aaaaguauuugcggguuuuguc
2255021RNAHomo sapiens 550cauaaaguagaaagcacuacu
2155121RNAHomo sapiens 551uuaauaucggacaaccauugu
2155222RNAHomo sapiens
552uaaugccccuaaaaauccuuau
2255322RNAHomo sapiens 553cacccguagaaccgaccuugcg
2255422RNAHomo sapiens 554caucuuacugggcagcauugga
2255522RNAHomo sapiens
555uaacacugucugguaacgaugu
2255621RNAHomo sapiens 556aaagcgcuucccuucagagug
2155725RNAHomo sapiens 557gcugggcagggcuucugagcuccuu
2555822RNAHomo sapiens
558gugaauuaccgaagggccauaa
2255922RNAHomo sapiens 559ucagugcaucacagaacuuugu
2256023RNAHomo sapiens 560agcagcauuguacagggcuauga
2356122RNAHomo sapiens
561ccaaaacugcaguuacuuuugc
2256221RNAHomo sapiens 562cccggagccaggaugcagcuc
2156322RNAHomo sapiens 563uauagggauuggagccguggcg
2256422RNAHomo sapiens
564agaucagaaggugauuguggcu
2256522RNAHomo sapiens 565ucugcccccuccgcugcugcca
2256623RNAHomo sapiens 566gaagugcuucgauuuuggggugu
2356720RNAHomo sapiens
567acucaaacugugggggcacu
2056824RNAHomo sapiens 568agcagaagcagggagguucuccca
2456922RNAHomo sapiens 569uuugugaccugguccacuaacc
2257023RNAHomo sapiens
570acuucaccugguccacuagccgu
2357123RNAHomo sapiens 571caaagcgcuucucuuuagagugu
2357224RNAHomo sapiens 572ucagaacaaaugccgguucccaga
2457322RNAHomo sapiens
573acuuguaugcuagcucagguag
2257422RNAHomo sapiens 574uugugucaauaugcgaugaugu
2257521RNAHomo sapiens 575cacuguguccuuucugcguag
2157622RNAHomo sapiens
576aaauuauuguacaucggaugag
2257722RNAHomo sapiens 577aagauguggaaaaauuggaauc
2257821RNAHomo sapiens 578ucuuguguucucuagaucagu
2157922RNAHomo sapiens
579gacuauagaacuuucccccuca
2258018RNAHomo sapiens 580aucccaccucugccacca
1858117RNAHomo sapiens 581ucgccuccuccucuccc
1758221RNAHomo sapiens
582gaacggcuucauacaggaguu
2158322RNAHomo sapiens 583uuugguccccuucaaccagcua
2258422RNAHomo sapiens 584ggguggggauuuguugcauuac
2258522RNAHomo sapiens
585caagcuuguaucuauagguaug
2258622RNAHomo sapiens 586ugagaaccacgucugcucugag
2258721RNAHomo sapiens 587uugugcuugaucuaaccaugu
2158821RNAHomo sapiens
588caagucacuagugguuccguu
2158922RNAHomo sapiens 589ccaauauuacugugcugcuuua
2259023RNAHomo sapiens 590cagugcaaugauauugucaaagc
2359121RNAHomo sapiens
591ugauauguuugauauuggguu
2159222RNAHomo sapiens 592uuuguucguucggcucgcguga
2259322RNAHomo sapiens 593uagcaaaaacugcaguuacuuu
2259422RNAHomo sapiens
594aggggcuggcuuuccucugguc
2259522RNAHomo sapiens 595caaagugccucccuuuagagug
2259623RNAHomo sapiens 596uaaaucccauggugccuucuccu
2359720RNAHomo sapiens
597guagaggagauggcgcaggg
2059822RNAHomo sapiens 598acaggugagguucuugggagcc
2259922RNAHomo sapiens 599cuguugccacuaaccucaaccu
2260022RNAHomo sapiens
600cucuagagggaagcacuuucug
2260122RNAHomo sapiens 601aaaguucugagacacuccgacu
2260221RNAHomo sapiens 602uaacagucuccagucacggcc
2160322RNAHomo sapiens
603cgucaacacuugcugguuuccu
2260422RNAHomo sapiens 604ugaguauuacauggccaaucuc
2260522RNAHomo sapiens 605ucaaaacugaggggcauuuucu
2260622RNAHomo sapiens
606aaaaacugagacuacuuuugca
2260721RNAHomo sapiens 607ucuaguaagaguggcagucga
2160822RNAHomo sapiens 608cccugugcccggcccacuucug
2260922RNAHomo sapiens
609uuaugguuugccugggacugag
2261022RNAHomo sapiens 610auguagggcuaaaagccauggg
2261121RNAHomo sapiens 611uuaggccgcagaucuggguga
2161222RNAHomo sapiens
612uucaacggguauuuauugagca
2261322RNAHomo sapiens 613uuugguccccuucaaccagcug
2261422RNAHomo sapiens 614gucauacacggcucuccucucu
2261525RNAHomo sapiens
615aaaggauucugcugucggucccacu
2561622RNAHomo sapiens 616auauaauacaaccugcuaagug
2261722RNAHomo sapiens 617aacacaccugguuaaccucuuu
2261822RNAHomo sapiens
618aagacgggaggaaagaagggag
2261922RNAHomo sapiens 619aggcagcgggguguaguggaua
2262022RNAHomo sapiens 620cugcgcaagcuacugccuugcu
2262123RNAHomo sapiens
621ccaguuaccgcuuccgcuaccgc
2362222RNAHomo sapiens 622cagugcaaugaugaaagggcau
2262318RNAHomo sapiens 623gucccuguucaggcgcca
1862422RNAHomo sapiens
624ucaccagcccuguguucccuag
2262522RNAHomo sapiens 625cucuagagggaagcgcuuucug
2262622RNAHomo sapiens 626ugagccccugugccgcccccag
2262721RNAHomo sapiens
627gucagcggaggaaaagaaacu
2162822RNAHomo sapiens 628cggcaacaagaaacugccugag
2262923RNAHomo sapiens 629cuggagauauggaagagcugugu
2363022RNAHomo sapiens
630cuuggcaccuagcaagcacuca
2263121RNAHomo sapiens 631ugagcuaaaugugugcuggga
2163222RNAHomo sapiens 632cacgcucaugcacacacccaca
2263320RNAHomo sapiens
633ucguuugccuuuuucugcuu
2063422RNAHomo sapiens 634acagauucgauucuaggggaau
2263522RNAHomo sapiens 635uaaucucagcuggcaacuguga
2263622RNAHomo sapiens
636ggauaucaucauauacuguaag
2263722RNAHomo sapiens 637gggguuccuggggaugggauuu
2263821RNAHomo sapiens 638uuaagacuugcagugauguuu
2163922RNAHomo sapiens
639uauggcacugguagaauucacu
2264022RNAHomo sapiens 640caaccuggaggacuccaugcug
2264123RNAHomo sapiens 641gcaaagcacacggccugcagaga
2364221RNAHomo sapiens
642cuguacaggccacugccuugc
2164321RNAHomo sapiens 643ucacuccucuccucccgucuu
2164422RNAHomo sapiens 644acagcaggcacagacaggcagu
2264523RNAHomo sapiens
645uaggcagugucauuagcugauug
2364622RNAHomo sapiens 646acuuuaacauggaggcacuugc
2264722RNAHomo sapiens 647gaaguuguucgugguggauucg
2264822RNAHomo sapiens
648acccuaucaauauugucucugc
2264921RNAHomo sapiens 649gugccagcugcagugggggag
2165020RNAHomo sapiens 650agagguauagggcaugggaa
2065122RNAHomo sapiens
651auucugcauuuuuagcaaguuc
2265219RNAHomo sapiens 652ugucucugcugggguuucu
1965320RNAHomo sapiens 653cggcucugggucugugggga
2065421RNAHomo sapiens
654aaggcagggcccccgcucccc
2165522RNAHomo sapiens 655cuauacggccuccuagcuuucc
2265621RNAHomo sapiens 656uccuucugcuccgucccccag
2165722RNAHomo sapiens
657ugcccuaaaugccccuucuggc
2265822RNAHomo sapiens 658aguauucuguaccagggaaggu
2265922RNAHomo sapiens 659uucuccaaaagggagcacuuuc
2266022RNAHomo sapiens
660aacuguuugcagaggaaacuga
2266122RNAHomo sapiens 661ccuguucuccauuacuuggcuc
2266222RNAHomo sapiens 662aucuggagguaagaagcacuuu
2266322RNAHomo sapiens
663uaugugggaugguaaaccgcuu
2266422RNAHomo sapiens 664uauacaagggcaagcucucugu
2266522RNAHomo sapiens 665uuauaaagcaaugagacugauu
2266622RNAHomo sapiens
666uaacagucuacagccauggucg
2266723RNAHomo sapiens 667uguaguguuuccuacuuuaugga
2366822RNAHomo sapiens 668acggguuaggcucuugggagcu
2266922RNAHomo sapiens
669cugggagaaggcuguuuacucu
2267022RNAHomo sapiens 670gugagucucuaagaaaagagga
2267121RNAHomo sapiens 671cggcggggacggcgauugguc
2167221RNAHomo sapiens
672ccuguugaaguguaaucccca
2167321RNAHomo sapiens 673uuuugcaccuuuuggagugaa
2167421RNAHomo sapiens 674caucccuugcaugguggaggg
2167521RNAHomo sapiens
675cggggcagcucaguacaggau
2167621RNAHomo sapiens 676aagccugcccggcuccucggg
2167722RNAHomo sapiens 677ugggucuuugcgggcgagauga
2267821RNAHomo sapiens
678uccgguucucagggcuccacc
2167922RNAHomo sapiens 679ugccuacugagcugauaucagu
2268022RNAHomo sapiens 680aguuuugcagguuugcauuuca
2268118RNAHomo sapiens
681gcaugggugguucagugg
1868222RNAHomo sapiens 682auaagacgagcaaaaagcuugu
2268323RNAHomo sapiens 683uauggcuuuuuauuccuauguga
2368422RNAHomo sapiens
684cuagguauggucccagggaucc
2268522RNAHomo sapiens 685aacauucaaccugucggugagu
2268621RNAHomo sapiens 686augauccaggaaccugccucu
2168722RNAHomo sapiens
687cgcaggggccgggugcucaccg
2268821RNAHomo sapiens 688uggguuuacguugggagaacu
2168923RNAHomo sapiens 689uacccuguagauccgaauuugug
2369022RNAHomo sapiens
690aguggggaacccuuccaugagg
2269123RNAHomo sapiens 691aggaccugcgggacaagauucuu
2369223RNAHomo sapiens 692uucucgaggaaagaagcacuuuc
2369322RNAHomo sapiens
693uacucaggagaguggcaaucac
2269420RNAHomo sapiens 694ccccagggcgacgcggcggg
2069523RNAHomo sapiens 695ucucuggagggaagcacuuucug
2369625RNAHomo sapiens
696gggcgacaaagcaagacucuuucuu
2569721RNAHomo sapiens 697aggcggagacuugggcaauug
2169822RNAHomo sapiens 698ugcggggcuagggcuaacagca
2269923RNAHomo sapiens
699agugccugagggaguaagagccc
2370021RNAHomo sapiens 700uacuuggaaaggcaucaguug
2170122RNAHomo sapiens 701uuuagagacggggucuugcucu
2270221RNAHomo sapiens
702aggaggcagcgcucucaggac
2170320RNAHomo sapiens 703cgugccacccuuuuccccag
2070421RNAHomo sapiens 704gaagugugccguggugugucu
2170522RNAHomo sapiens
705cggaugagcaaagaaagugguu
2270622RNAHomo sapiens 706agaaggaaauugaauucauuua
2270721RNAHomo sapiens 707gcaguccaugggcauauacac
2170822RNAHomo sapiens
708gcugacuccuaguccagggcuc
2270923RNAHomo sapiens 709uuuggcacuagcacauuuuugcu
2371018RNAHomo sapiens 710cagggaggugaaugugau
1871122RNAHomo sapiens
711uucucaaggaggugucguuuau
2271222RNAHomo sapiens 712aaaaguaauugcgguuuuugcc
2271322RNAHomo sapiens 713aggcggggcgccgcgggaccgc
2271420RNAHomo sapiens
714aaaagcuggguugagagggu
2071522RNAHomo sapiens 715aaaagcuggguugagagggcaa
2271622RNAHomo sapiens 716uggugggccgcagaacaugugc
2271720RNAHomo sapiens
717ccucugggcccuuccuccag
2071818RNAHomo sapiens 718uccagugcccuccucucc
1871922RNAHomo sapiens 719cuggcccucucugcccuuccgu
2272022RNAHomo sapiens
720ugagaacugaauuccauaggcu
2272121RNAHomo sapiens 721cgcgggugcuuacugacccuu
2172221RNAHomo sapiens 722ugagugccggugccugcccug
2172322RNAHomo sapiens
723cucggcgcggggcgcgggcucc
2272422RNAHomo sapiens 724uccagcaucagugauuuuguug
2272523RNAHomo sapiens 725cgggucggaguuagcucaagcgg
2372622RNAHomo sapiens
726uggucuaggauuguuggaggag
2272722RNAHomo sapiens 727uucauucggcuguccagaugua
2272821RNAHomo sapiens 728ccaguccugugccugccgccu
2172926RNAHomo sapiens
729gugagggcaugcaggccuggaugggg
2673023RNAHomo sapiens 730aucaacagacauuaauugggcgc
2373122RNAHomo sapiens 731gcccgcguguggagccaggugu
2273222RNAHomo sapiens
732cugguacaggccugggggacag
2273323RNAHomo sapiens 733cucucaccacugcccucccacag
2373422RNAHomo sapiens 734acugcagugaaggcacuuguag
2273519RNAHomo sapiens
735aaaagcuggguugagagga
1973623RNAHomo sapiens 736uacccuguagaaccgaauuugug
2373722RNAHomo sapiens 737acuccagccccacagccucagc
2273823RNAHomo sapiens
738acuuacagacaagagccuugcuc
2373924RNAHomo sapiens 739aaagacauaggauagagucaccuc
2474022RNAHomo sapiens 740uccgucucaguuacuuuauagc
2274122RNAHomo sapiens
741acucaaaacccuucagugacuu
2274221RNAHomo sapiens 742cuccagagggaaguacuuucu
2174321RNAHomo sapiens 743aagcauucuuucauugguugg
2174421RNAHomo sapiens
744uugcucacuguucuucccuag
2174522RNAHomo sapiens 745cugggagguggauguuuacuuc
2274622RNAHomo sapiens 746cuccuacauauuagcauuaaca
2274722RNAHomo sapiens
747gcuacuucacaacaccagggcc
2274822RNAHomo sapiens 748aauccuuugucccugggugaga
2274923RNAHomo sapiens 749caacggaaucccaaaagcagcug
2375023RNAHomo sapiens
750agcagcauuguacagggcuauca
2375123RNAHomo sapiens 751aucgcugcgguugcgagcgcugu
2375221RNAHomo sapiens 752caaagcgcuucccuuuggagc
2175321RNAHomo sapiens
753uaaagugcugacagugcagau
2175422RNAHomo sapiens 754aagcccuuaccccaaaaagcau
2275518RNAHomo sapiens 755acguuggcucugguggug
1875622RNAHomo sapiens
756ggcuacaacacaggacccgggc
2275722RNAHomo sapiens 757ucccugagacccuaacuuguga
2275822RNAHomo sapiens 758gucccucuccaaaugugucuug
2275922RNAHomo sapiens
759cuuucagucggauguuugcagc
2276022RNAHomo sapiens 760ucuacagugcacgugucuccag
2276122RNAHomo sapiens 761acucggcguggcgucggucgug
2276223RNAHomo sapiens
762cugggaucuccggggucuugguu
2376322RNAHomo sapiens 763caugccuugaguguaggaccgu
2276422RNAHomo sapiens 764caacaaaucacagucugccaua
2276522RNAHomo sapiens
765uagguaguuucauguuguuggg
2276622RNAHomo sapiens 766uuagggcccuggcuccaucucc
2276722RNAHomo sapiens 767gcugcgcuuggauuucgucccc
2276823RNAHomo sapiens
768agcuacauugucugcuggguuuc
2376923RNAHomo sapiens 769agguugggaucgguugcaaugcu
2377022RNAHomo sapiens 770ucugggcaacaaagugagaccu
2277122RNAHomo sapiens
771cucuagagggaagcacuuucuc
2277220RNAHomo sapiens 772ugagcccuguccucccgcag
2077319RNAHomo sapiens 773uggauuuuuggaucaggga
1977422RNAHomo sapiens
774uacgucaucguugucaucguca
2277522RNAHomo sapiens 775ugagaccucuggguucugagcu
2277623RNAHomo sapiens 776gaacgccuguucuugccaggugg
2377721RNAHomo sapiens
777cuucuugugcucuaggauugu
2177824RNAHomo sapiens 778uugcagcugccugggagugacuuc
2477924RNAHomo sapiens 779uucuccaaaagaaagcacuuucug
2478019RNAHomo sapiens
780aggcacggugucagcaggc
1978122RNAHomo sapiens 781aaccagcaccccaacuuuggac
2278222RNAHomo sapiens 782caaagcgcuccccuuuagaggu
2278323RNAHomo sapiens
783cacccggcugugugcacaugugc
2378421RNAHomo sapiens 784aacauagaggaaauuccacgu
2178522RNAHomo sapiens 785ccaauauuggcugugcugcucc
2278620RNAHomo sapiens
786cugcaaagggaagcccuuuc
2078723RNAHomo sapiens 787guuugcacgggugggccuugucu
2378821RNAHomo sapiens 788gugggcgggggcaggugugug
2178922RNAHomo sapiens
789aguucuucaguggcaagcuuua
2279022RNAHomo sapiens 790ucggccugaccacccaccccac
2279121RNAHomo sapiens 791agggagggacgggggcugugc
2179222RNAHomo sapiens
792cugggagaggguuguuuacucc
2279322RNAHomo sapiens 793cgucuuacccagcaguguuugg
2279421RNAHomo sapiens 794ccgucgccgccacccgagccg
2179522RNAHomo sapiens
795aggugguccguggcgcguucgc
2279620RNAHomo sapiens 796gugucugggcggacagcugc
2079722RNAHomo sapiens 797gugaaauguuuaggaccacuag
2279822RNAHomo sapiens
798uuuaacauggggguaccugcug
2279922RNAHomo sapiens 799aacccguagauccgaucuugug
2280022RNAHomo sapiens 800ugagaacugaauuccauggguu
2280121RNAHomo sapiens
801aauauuauacagucaaccucu
2180222RNAHomo sapiens 802gaaagugcuuccuuuuagaggc
2280322RNAHomo sapiens 803aaguucuguuauacacucaggc
2280423RNAHomo sapiens
804aacauucaacgcugucggugagu
2380521RNAHomo sapiens 805acagucugcugagguuggagc
2180624RNAHomo sapiens 806ucccugagacccuuuaaccuguga
2480721RNAHomo sapiens
807ucagugcaugacagaacuugg
2180822RNAHomo sapiens 808uucaccaccuucuccacccagc
2280921RNAHomo sapiens 809uucacaguggcuaaguucugc
2181022RNAHomo sapiens
810ccucuuccccuugucucuccag
2281122RNAHomo sapiens 811aaacaaacauggugcacuucuu
2281221RNAHomo sapiens 812ugagaugaagcacuguagcuc
2181322RNAHomo sapiens
813aacacaccuauucaaggauuca
2281423RNAHomo sapiens 814uggugcggagagggcccacagug
2381517RNAHomo sapiens 815ucccuguucgggcgcca
1781622RNAHomo sapiens
816ggagacgcggcccuguuggagu
2281721RNAHomo sapiens 817acucuuucccuguugcacuac
2181820RNAHomo sapiens 818ucacaccugccucgcccccc
2081922RNAHomo sapiens
819uuuccggcucgcgugggugugu
2282019RNAHomo sapiens 820gagccaguuggacaggagc
1982122RNAHomo sapiens 821ugugacugguugaccagagggg
2282221RNAHomo sapiens
822ccuggaaacacugagguugug
2182322RNAHomo sapiens 823agggacgggacgcggugcagug
2282422RNAHomo sapiens 824uacccauugcauaucggaguug
2282523RNAHomo sapiens
825cucuugagggaagcacuuucugu
2382622RNAHomo sapiens 826acuggacuuagggucagaaggc
2282721RNAHomo sapiens 827acggugcuggauguggccuuu
2182822RNAHomo sapiens
828ugcccuuaaaggugaacccagu
2282925RNAHomo sapiens 829aggggugguguugggacagcuccgu
2583017RNAHomo sapiens 830ucauauugcuucuuucu
1783122RNAHomo sapiens
831acgcccuucccccccuucuuca
2283224RNAHomo sapiens 832ugccugggucucuggccugcgcgu
2483320RNAHomo sapiens 833ucacuguucagacaggcgga
2083422RNAHomo sapiens
834cagugcaauguuaaaagggcau
2283522RNAHomo sapiens 835uuuugcaauauguuccugaaua
2283623RNAHomo sapiens 836ucuuggaguaggucauugggugg
2383722RNAHomo sapiens
837gaauguugcucggugaaccccu
2283820RNAHomo sapiens 838cugcaaagggaagcccuuuc
2083921RNAHomo sapiens 839uccucuucucccuccucccag
2184020RNAHomo sapiens
840cuuccucgucugucugcccc
2084122RNAHomo sapiens 841ccucuagauggaagcacugucu
2284222RNAHomo sapiens 842cgggguuuugagggcgagauga
2284322RNAHomo sapiens
843cuacaaagggaagcacuuucuc
2284421RNAHomo sapiens 844aguuaggauuaggucguggaa
2184522RNAHomo sapiens 845uagguuauccguguugccuucg
2284624RNAHomo sapiens
846acugggggcuuucgggcucugcgu
2484721RNAHomo sapiens 847uuggccacaauggguuagaac
2184823RNAHomo sapiens 848uuaaugcuaaucgugauaggggu
2384924RNAHomo sapiens
849acuggcuagggaaaaugauuggau
2485021RNAHomo sapiens 850gcccuccgcccgugcaccccg
2185122RNAHomo sapiens 851acggauguuugagcaugugcua
2285223RNAHomo sapiens
852cgcauccccuagggcauuggugu
2385322RNAHomo sapiens 853aagcccuuaccccaaaaaguau
2285421RNAHomo sapiens 854agggggaaaguucuauagucc
2185522RNAHomo sapiens
855cucuagagggaagcgcuuucug
2285622RNAHomo sapiens 856accacugaccguugacuguacc
2285723RNAHomo sapiens 857cccaguguuuagacuaucuguuc
2385821RNAHomo sapiens
858uucacaguggcuaaguuccgc
2185922RNAHomo sapiens 859gaaagcgcuucccuuugcugga
2286022RNAHomo sapiens 860caggauguggucaaguguuguu
2286122RNAHomo sapiens
861uauugcacuugucccggccugu
2286224RNAHomo sapiens 862gcugguuucauauggugguuuaga
2486322RNAHomo sapiens 863ucucccaacccuuguaccagug
2286423RNAHomo sapiens
864ucaagagcaauaacgaaaaaugu
2386525RNAHomo sapiens 865agggaucgcgggcggguggcggccu
2586622DNAHomo sapiens 866aactatacaacctactacctca
22
User Contributions:
Comment about this patent or add new information about this topic: