Patent application title: IDENTIFICATION OF CHANNELRHODOPSIN-2 (CHR2) MUTATIONS AND METHODS OF USE
Inventors:
IPC8 Class: AC07K14405FI
USPC Class:
Class name:
Publication date: 2022-02-03
Patent application number: 20220033449
Abstract:
The invention provides compositions and kits including at least one
nucleic acid or polypeptide molecule encoding for a mutant ChR2 protein.
Methods of the invention include administering a composition comprising a
mutant ChR2 to a subject to preserve, improve, or restore
phototransduction. Preferably, the compositions and methods of the
invention are provided to a subject having impaired vision, thereby
restoring vision to normal levels.Claims:
1.-50. (canceled)
51. An expression vector comprising a polynucleotide encoding a polypeptide comprising the amino acid sequence of SEQ ID NO: 26 in which the amino acid at position 132 of SEQ ID NO: 26 is cysteine (C) or alanine (A), and the amino acid at position 159 of SEQ ID NO: 26 is cysteine (C), serine (S), or alanine (A).
52. The expression vector of claim 51, wherein the polypeptide comprises a cysteine (C) at positions 132 and 159 of SEQ ID NO: 26.
53. The expression vector of claim 52, wherein the polypeptide comprises the amino acid sequence of SEQ ID NO: 16 and the polynucleotide comprises the nucleic acid sequence of SEQ ID NO: 15.
54. The expression vector of claim 51, wherein the polypeptide comprises a cysteine (C) at position 132 and a serine (S) at position 159 of SEQ ID NO: 26.
55. The expression vector of claim 54, wherein the polypeptide comprises the amino acid sequence of SEQ ID NO: 19 and the polynucleotide comprises the nucleic acid sequence of SEQ ID NO: 18.
56. The expression vector of claim 51, wherein the polypeptide comprises a cysteine (C) at position 132 and an alanine (A) at position 159 of SEQ ID NO: 26.
57. The expression vector of claim 56, wherein the polypeptide comprises the amino acid sequence of SEQ ID NO: 25 and the polynucleotide comprises the nucleic acid sequence of SEQ ID NO: 24.
58. The expression vector of claim 51, wherein the polypeptide comprises an alanine (A) at position 132 and a cysteine (C) at position 159 of SEQ ID NO: 26.
59. The expression vector of claim 58, wherein the polypeptide comprises the amino acid sequence of SEQ ID NO: 22 and the polynucleotide comprises the nucleic acid sequence of SEQ ID NO: 21.
60. The expression vector of claim 51, wherein the polypeptide comprises an alanine (A) at position 132 and a serine (S) at position 159 of SEQ ID NO: 26.
61. The expression vector of claim 51, wherein the polypeptide comprises an alanine (A) at position 132 and an alanine (A) at position 159 of SEQ ID NO: 26.
62. The expression vector of claim 51, wherein the expression vector is an adeno-associated virus (AAV) vector.
63. The expression vector of claim 62, wherein the AAV vector is an AAV2 vector.
64. A method of improving or restoring vision in a subject, the method comprising administering to the subject the expression vector of claim 51.
65. A method of improving or restoring vision in a subject, the method comprising administering to the subject the expression vector of claim 62.
66. A method of improving or restoring vision in a subject, the method comprising administering to the subject the expression vector of claim 63.
67. The method of claim 64, wherein the subject either has normal vision or the subject is suffering from an ocular disease.
68. The method of claim 65, wherein the subject either has normal vision or the subject is suffering from an ocular disease.
69. The method of claim 66, wherein the subject either has normal vision or the subject is suffering from an ocular disease.
70. The method of claim 67, wherein the subject is suffering from an ocular disease and the ocular disease is macular degeneration or retinitis pigmentosa.
71. The method of claim 68, wherein the subject is suffering from an ocular disease and the ocular disease is macular degeneration or retinitis pigmentosa.
72. The method of claim 69, wherein the subject is suffering from an ocular disease and the ocular disease is macular degeneration or retinitis pigmentosa.
Description:
CROSS-REFERENCES TO RELATED APPLICATIONS
[0001] This application is a continuation application of U.S. patent application Ser. No. 14/383,211, filed Sep. 5, 2014, now U.S. Pat. No. 10,947,281, issued Mar. 16, 2021, which is a national stage application filed under 35 U.S.C. .sctn. 371, of International Application No. PCT/US2013/029171, filed on Mar. 5, 2013, which claims the benefit of and priority under 35 U.S.C. .sctn. 119(e) to U.S. Provisional Application No. 61/606,663, filed on Mar. 5, 2012, the contents of each of which are incorporated by reference herein in their entireties.
DESCRIPTION OF THE TEXT FILE SUBMITTED ELECTRONICALLY
[0003] The contents of the text file submitted electronically herewith are incorporated herein by reference in their entirety: A computer readable format copy of the Sequence Listing (filename: 052522_506C01US_SL25.txt, date recorded: Mar. 15, 2021, file size 98.2 kilobytes).
FIELD OF THE INVENTION
[0004] This invention relates generally to the field of molecular biology. Mutations in the Channelopsin-2 (Chop2) gene are identified. Compositions comprising a mutant Chop2 gene are used in therapeutic methods to improve and restore vision loss.
BACKGROUND OF THE INVENTION
[0005] The retina is composed of photoreceptors (or photoreceptor cells, rods and cones). Photoreceptors are highly specialized neurons that are responsible for phototransduction, or the conversion of light (in the form of electromagnetic radiation) into electrical and chemical signals that propagate a cascade of events within the visual system, ultimately generating a representation of our world.
[0006] Photoreceptor loss or degeneration severely compromises, if not completely inhibits, phototransduction of visual information within the retina. Loss of photoreceptor cells and/or loss of a photoreceptor cell function are the primary causes of diminished visual acuity, diminished light sensitivity, and blindness. There is a long-felt need in the art for compositions and method that restore photosensitivity of the retina of a subject experiencing vision loss.
SUMMARY OF THE INVENTION
[0007] The invention provides a solution for the long-felt need for a method of restoring and/or increasing the light sensitivity of photoreceptor cells by expression of advantageous mutations, and/or combinations thereof, of the Channelopsin-2 (Chop2) gene, and subsequently providing methods for Channelopsin-2 (Chop2)-based gene therapy.
[0008] Channelopsin-2 (Chop2)-based gene therapy offers a superior strategy for restoring retinal photosensitivity after photoreceptor degeneration. The protein product of the Chop2 gene, when bound to the light-isomerizable chromophore all-trans-retinal, forms a functional light-gated channel, called channelrhodopsin-2 (ChR2). Native ChR2 shows low light sensitivity. Recently, two mutant ChR2s, L132C and T159C, were reported to markedly increase their light sensitivity (Kleinlogel et al. (2011) Nat Neurosci. 14:513-8; Berndt et al. (2011) Proc Natl Acad Sci USA. 108:7595-600; Prigge et al. (2012) J Biol Chem. 287(38)3104:12; the contents of each of which are incorporated herein in their entireties). The properties of these two ChR2 mutants (i.e., L132C and T159C) were examined and compared with a number of double mutants at these two sites to identify suitable candidates for therapeutic methods. Compositions comprising one or more of these mutations are provided to a subject in need thereof for the purpose of restoring vision. Specifically, desired mutations in the Chop2 gene are introduced to a cell and/or integrated into the genomic DNA of a cell to improve or restore vision. Desired mutations in the Chop2 gene that are introduced to a cell to improve or restore vision may also remain episomal, not having integrated into the genomic DNA.
[0009] Mutations at the L132 or T159 amino acid positions of Chop2 (and therefore, the resulting ChR2) markedly lower the threshold light intensity that is required to elicit the ChR2-mediated photocurrent. Double mutants at the amino acid positions L132 and T159 further increase the photocurrent at low light intensities, exceeding that of either of the corresponding single mutations. Retinal ganglion cells expressing the double mutants at the L132 and T159 positions can respond to light intensities that fall within the range of normal outdoor lighting conditions but should still maintain adequate, and high temporal resolution that are suitable for restoring useful vision. Thus, mutant Chop2 protein of the present invention that form mutant ChR2s having improved light sensitivity are used alone or in combination to restore or improve vision.
[0010] Specifically, the invention provides an isolated polypeptide molecule comprising or consisting of SEQ ID NO: 26 in which the amino acid at position 132 of SEQ ID NO: 26 is not leucine (L). In certain embodiments of the isolated polypeptide molecule, the amino acid at position 132 is cysteine (C) or alanine (A). When the amino acid at position 132 is cysteine (C), the polypeptide molecule may comprise or consist of SEQ ID NO: 13. When the amino acid at position 132 is alanine (A), the polypeptide molecule may comprise or consist of SEQ ID NO: 20.
[0011] The invention provides an isolated polypeptide molecule comprising or consisting of SEQ ID NO: 26 in which the amino acid at position 159 of SEQ ID NO: 26 is not a threonine (T). In certain embodiments of the isolated polypeptide molecule, the amino acid at position 159 is cysteine (C), serine (S), or alanine (A). When the amino acid at position 159 is cysteine (C), the polypeptide molecule may comprise or consist of SEQ ID NO: 14. When the amino acid at position 159 is serine (S), the polypeptide molecule may comprise or consist of SEQ ID NO: 17. When the amino acid at position 159 is alanine (A), the polypeptide molecule may comprise or consist of SEQ ID NO: 23.
[0012] The invention provides isolated polypeptide molecule comprising or consisting of SEQ ID NO: 26 in which the amino acid at position 132 of SEQ ID NO: 26 is not leucine (L) and the amino acid at position 159 is not threonine (T). In certain embodiments of the isolated polypeptide molecule comprising or consisting of SEQ ID NO: 26 in which the amino acid at position 132 of SEQ ID NO: 26 is not leucine (L) and the amino acid at position 159 is not threonine (T), the amino acid at position 132 is cysteine (C), and the amino acid at position 159 is cysteine (C). In a preferred embodiment of this isolated polypeptide molecule, the polypeptide molecule comprises or consists of SEQ ID NO: 16. The invention provides an isolated nucleic acid molecule that encodes for the isolated polypeptide comprising or consisting of SEQ ID NO: 16. Preferably, the isolated nucleic acid molecule that encodes for the isolated polypeptide comprising or consisting of SEQ ID NO: 16, is a nucleic acid molecule that comprises or consists of SEQ ID NO: 15.
[0013] In certain embodiments of the isolated polypeptide molecule comprising or consisting of SEQ ID NO: 26 in which the amino acid at position 132 of SEQ ID NO: 26 is not leucine (L) and the amino acid at position 159 is not threonine (T), the amino acid at position 132 is cysteine (C) and the amino acid at position 159 is serine(S). The isolated polypeptide molecule comprising or consisting of SEQ ID NO: 26 in which the amino acid at position 132 of SEQ ID NO: 26 is not leucine (L) and the amino acid at position 159 is not threonine (T), may comprise or consist of SEQ ID NO: 19. Alternatively, or in addition, the isolated polypeptide molecule comprising or consisting of SEQ ID NO: 26 in which the amino acid at position 132 of SEQ ID NO: 26 is not leucine (L) and the amino acid at position 159 is not threonine (T), wherein the amino acid at position 132 is cysteine (C) and wherein the amino acid at position 159 is serine(S) may comprise or consist of SEQ ID NO: 19. The invention provides an isolated nucleic acid molecule that encodes for the isolated polypeptide that comprises or consists of SEQ ID NO: 19. Preferably, the nucleic acid molecule comprises or consists of SEQ ID NO: 18.
[0014] In certain embodiments of the isolated polypeptide molecule comprising or consisting of SEQ ID NO: 26 in which the amino acid at position 132 of SEQ ID NO: 26 is not leucine (L) and the amino acid at position 159 is not threonine (T), the amino acid at position 132 is alanine (A) and the amino acid at position 159 is cysteine (C). The isolated polypeptide molecule comprising or consisting of SEQ ID NO: 26 in which the amino acid at position 132 of SEQ ID NO: 26 is not leucine (L) and the amino acid at position 159 is not threonine (T) may comprise or consist of SEQ ID NO: 22. Alternatively, or in addition, the isolated polypeptide molecule comprising or consisting of SEQ ID NO: 26 in which the amino acid at position 132 of SEQ ID NO: 26 is not leucine (L) and the amino acid at position 159 is not threonine (T), wherein the amino acid at position 132 is alanine (A) and wherein the amino acid at position 159 is cysteine (C) may comprise or consist of SEQ ID NO: 22. The invention provides an isolated nucleic acid molecule that encodes for the isolated polypeptide that comprises or consists of SEQ ID NO: 22. Preferably, this nucleic acid molecule comprises or consists of SEQ ID NO: 21.
[0015] In certain embodiments of the isolated polypeptide molecule comprising or consisting of SEQ ID NO: 26 in which the amino acid at position 132 of SEQ ID NO: 26 is not leucine (L) and the amino acid at position 159 is not threonine (T), the amino acid at position 132 is cysteine (C) and the amino acid at position 159 is alanine (A). The isolated polypeptide molecule comprising or consisting of SEQ ID NO: 26 in which the amino acid at position 132 of SEQ ID NO: 26 is not leucine (L) and the amino acid at position 159 is not threonine (T) may comprise or consist of SEQ ID NO: 25. Alternatively, or in addition, the isolated polypeptide molecule comprising or consisting of SEQ ID NO: 26 in which the amino acid at position 132 of SEQ ID NO: 26 is not leucine (L) and the amino acid at position 159 is not threonine (T), wherein the amino acid at position 132 is cysteine (C) and wherein the amino acid at position 159 is alanine (A) may comprise or consist of SEQ ID NO: 25. The invention provides an isolated nucleic acid molecule that encodes for the isolated polypeptide that comprises or consists of SEQ ID NO: 25. Preferably, this nucleic acid molecule comprises or consists of SEQ ID NO: 24.
[0016] The invention provides any one of the isolated polypeptide molecules described herein, wherein the polypeptide molecule encodes for a mutant Chop2 protein that forms a mutant ChR2, which elicits a current in response to a threshold intensity of light that is lower than the threshold of a wild type ChR2 protein. Moreover, the current conducts cations. Exemplary cations include, but are not limited to, H.sup.+, Na.sup.+, K.sup.+, and Ca.sup.2+ ions. The ChR2 wild type and mutant proteins described herein non-specifically conduct cations. Consequently, the current conducts one or more of the following: H.sup.+, Na.sup.+, K.sup.+, and Ca.sup.2+ ions.
[0017] The invention provides any one of the isolated polypeptide molecules described herein further comprising a pharmaceutically acceptable carrier. The invention also provides a composition comprising at least one isolated polynucleotide molecule described herein. The composition may further comprise a pharmaceutically-acceptable carrier.
[0018] The invention provides an isolated nucleic acid molecule that encodes for any of the isolated polypeptides described herein. Moreover, the isolated nucleic acid molecule may further include a pharmaceutically acceptable carrier. The invention also provides a composition comprising at least one isolated nucleic acid molecule described herein. The composition may further comprise a pharmaceutically-acceptable carrier.
[0019] The invention provides a cell, wherein the cell has been contacted with or comprises an isolated polypeptide molecule of the invention. Moreover, the invention provides a cell, wherein the cell has been contacted with or comprises an isolated nucleic acid molecule that encodes for an isolated polypeptide molecule of the invention. The invention provides, a composition comprising, consisting essentially of, or consisting of a cell that comprises an isolated polypeptide molecule of the invention or a nucleic acid molecule that encodes for an isolated polypeptide molecule of the invention. Cells of the invention may be contacted with the isolated polypeptide or an isolated nucleic acid encoding the polypeptide in vitro, ex vivo, in vivo, or in situ. In certain embodiments of the invention, the cell is a photoreceptor; a horizontal cell; a bipolar cell; an amacrine cell, and, especially, an AII amacrine cell; or a retinal ganglion cell, including a photosensitive retinal ganglion cell. Preferably, the cell is a retinal ganglion cell, a photosensitive retinal ganglion cell, a bipolar cell, an ON-type bipolar cell, a rod bipolar cell, or an AII amacrine cell. In certain aspects of the invention, the cell is a photoreceptor, a bipolar cell, a rod bipolar cell, an ON-type cone bipolar cell, a retinal ganglion cell, a photosensitive retinal ganglion cell, a horizontal cell, an amacrine cell, or an AII amacrine cell.
[0020] The invention provides a method of improving or restoring vision, comprising administering to a subject any one of the compositions described herein. The invention further provides a prophylactic method of preserving vision, comprising administering to a subject any one of the compositions described herein.
[0021] The methods described herein may also be applied to those subjects who are healthy, blind (in part or in total), and/or those subjects with retinal degeneration (characterized by a loss of rod and/or cone photoreceptor cells), but may be dependent upon the activity of photosensitive retinal ganglion cells for a determination of ambient light levels. For example, the methods described herein can be used to preserve, improve, or restore the activity of a photosensitive retinal ganglion cell that mediates the transduction of light information for synchronizing circadian rhythms to the 24-hour light/dark cycle, pupillary control and reflexes, and photic regulation of melatonin release.
[0022] In certain embodiments of the methods of the invention, the subject may have normal vision or impaired vision. Alternatively, or in addition, the subject may be at risk for developing an ocular disease that leads to impairment of vision. For example, the subject may have a family history of, ocular disease, including, macular degeneration and retinitis pigmentosa. The subject may be at risk for incurring an eye injury that causes damage to photosensitive cells in the retina. The subject may have a genetic marker or genetic/congenital condition that results in impaired vision, low vision, legal blindness, partial blindness, or complete blindness. Subjects may have a refractive defect that results in myopia (near-sightedness) or hyperopia (far-sightedness).
[0023] Compositions of methods of the invention may be administered to a subject either systemically or locally. A preferred route of local administration is intravitreal injection.
[0024] Other features and advantages of the invention will be apparent from and are encompassed by the following detailed description and claims.
BRIEF DESCRIPTION OF THE FIGURES
[0025] FIG. 1A-B show representative recordings of the light-evoked currents from wild-type (WT) ChR2, L132C, L132C/T159C, and L132C/159S mutants in HEK cells for comparison of their light sensitivity (A). The light stimuli (photons/cm.sup.2s at 460 nm) were generated by a xenon arc lamp and attenuated by neutral density filters: ND4.0 (2.8.times.10.sup.14), ND3.0 (1.4.times.10.sup.15), ND2.5 (4.8.times.10.sup.15); ND2.0 (1.6.times.10.sup.16), ND1.0 (1.3.times.10.sup.17), ND0 (1.2.times.10.sup.18). The same current traces in FIG. 1A are shown at a different current scale in FIG. 1B. The traces pointed by arrows are evoked by the same light intensity (ND2.5).
[0026] FIG. 2 shows representative recordings of the light-evoked currents from wild-type (WT) ChR2, T159C, L132C, L132C/T159C, and L132C/T159S mutants to a 10 ms light pulse (1.2.times.10.sup.18 photons/cm.sup.2/s at 460 nm) in HEK cells for comparison of their deactivation time course (decay time course after light off).
[0027] FIG. 3 shows representative multichannel array recordings of WT ChR2, L132C, L132C/T159C, and L132C/T159S mediated spiking activities from retinal ganglion cells in retinal whole-mounts for comparison of their light sensitivity. Light stimuli (photons/cm.sup.2/s) was generated by a 473 nm blue laser and attenuated by neutral density filters: ND0 (6.3.times.10.sup.16), ND1.0 (7.4.times.10.sup.15), ND1.5 (2.7.times.10.sup.15), ND2.0 (7.3.times.10.sup.14), ND2.5 (3.2.times.10.sup.14), ND3.0 (8.5.times.10.sup.13), ND3.5 (3.8.times.10.sup.13), and ND4.0 (9.5.times.10.sup.12).
[0028] FIG. 4A-B show representative multichannel array recordings of WT ChR2, L132C, L132C/T159C, and L132C/T159S mediated spiking activities from retinal ganglion cells in retinal whole-mounts for comparison of their temporal dynamics. In each panel, the raster plots of 10 consecutive light-elicited spikes originated from a single neuron (top) and the averaged spike rate histograms (bottom) are shown. Light pulses at different frequency was generated by a 473 nm blue laser with intensities about one log unit above the threshold intensity of each mutant. Recordings of WT ChR2 and L132C are shown in FIG. 4A, and recordings of L132C/T159C and L132C/T159S are shown in FIG. 4B.
DETAILED DESCRIPTION
Visual System
[0029] The central nervous system mediates vision (also referred to herein as sight) through specialized cells and unique methods of signal transduction present in the visual system. The principle responsibility of the visual system is to transform light, in the form of electromagnetic radiation, into a representation or image of the surrounding world. In addition to the "visual" function of this system, the visual system also regulates the pupillary light reflex (PLR), circadian photoentrainment to periodic light/dark cycles, and release of the hormone melatonin.
[0030] The cells of the retina are the first cells of the visual or nervous system to encounter light (electromagnetic radiation of varying wavelengths and intensities). Photons travel through the cornea, pupil, and lens before reaching the retina. The retina has a unique structure because the photoreceptor cells that directly absorb photons are located in the outer layer of the retina. Photons that traverse the lens first encounter an inner layer of retinal ganglion cells (a minority of which are photosensitive through the expression of the opsin, melanopsin) and an intermediate layer of bipolar cells before reaching the outer layer of photoreceptor cells (also known as rods and cones). Rod photoreceptors operate in dim illumination condition (scotopic vision) while cone photoreceptors operate in bright illumination conditions (photopic vision) responsible for color vision. Cone photoreceptors synapse directly onto ON- and OFF-type cone bipolar cells, which in turn, synapse directly onto ON- and OFF-type retinal ganglion cells. Rod photoreceptors synapse to rod bipolar cells (a unique type of bipolar cells, which is ON-type), which synapse to AII amacrine cells. The AII amacrine cells then relay the visual signals to ON-type cone bipolar cells through gap junction and to OFF-type cone bipolar cells as well as OFF ganglion cells through inhibitory glycinergic synapses. Retinal ganglion cells are responsible for relating visual information to neurons of the brain.
Phototransduction
[0031] Within the retina, photoreceptor cells absorb photon particles and transform the raw data of light frequency and wavelength into chemical and subsequently electrical signals that propagate this initial information throughout the visual and nervous systems. Specifically, an opsin protein located on the surface of a photoreceptor (rod, cone, and/or photosensitive retinal ganglion cell) absorbs a photon and initiates an intracellular signaling cascade, which results in the hyperpolarization of the photoreceptor. In the dark, the opsin proteins absorb no photons, the photoreceptors are depolarized. The visual signals of photoreceptors then relay through bipolar cells, amacrine cells, and ganglion cells to the high visual centers in the brain. Specifically, when rod and cone photoreceptors are depolarized (in the dark), they cause the depolarization of rod bipolar cells and ON-type cone bipolar cells, but the hyperpolarization of OFF-type cone bipolar cells, which in turn cause the depolarization of AII amacrine cells and the increase of the spiking of ON-type retinal ganglion cells and the decrease of the spiking of OFF-type retinal ganglion cells. The opposite happens (to rod, ON- and OFF-bipolar cells, AII amacrine and ON- and OFF-ganglion cells), when rod and cone photoreceptors are hyperpolarized (in response to light).
[0032] Light information is processed and refined significantly by the actions of photoreceptors, bipolar cells, horizontal cells, amacrine cells, and retinal ganglion cells. To add to the complexity of this system, photoreceptors are found in three main varieties, including rods, cones (of which three types respond most strongly to distinct wavelengths of light), and photosensitive retinal ganglion cells. Thus, a first layer of information processing occurs at the level of the photoreceptors which respond differentially to certain wavelengths and intensities of light. Bipolar cells of the retina receive information from both photoreceptor cells and horizontal cells. Horizontal cells of the retina receive information from multiple photoreceptor cells, and, therefore, integrate information between cell types and across distances in the retina. Bipolar cells further integrate information directly from photoreceptor cells and horizontal cells by producing mainly graded potentials to retinal ganglion cells, although some recent studies indicate that some bipolar cells can generate action potentials. Cone bipolar cells synapse on retinal ganglion cells and amacrine cells while rod bipolar cells synapse only to AII amacrine cells. Similar to horizontal cells, most amacrine cells integrate information laterally within the retina. Unlike horizontal cells, most amacrine cells are inhibitory (GABAergic) interneurons. Amacrine cells are also more specialized than horizontal cells, because each amacrine cell specifically synapses on a particular type of bipolar cell (one of the ten varieties of bipolar cell). Particularly, the AII amacrine cell is a critical relay neuron in the rod pathway (under scotopic vision when cone photoreceptors do not respond). The AII amacrine cells receive synaptic inputs from rod bipolar cells and then piggy-back the signals to cone pathway through ON- and OFF-cone bipolar cells to ON- and OFF-ganglion cells as described above. Therefore, expression of Chop2, and the resulting formation of ChR2, in rod bipolar cells or AII amacrine cells can create both ON and OFF responses in retinal ganglion cells. Furthermore, retinal ganglion cells integrate information from bipolar cells and from amacrine cells. Although retinal ganglion cells vary significantly with respect to size, connectivity, and responses to visual stimulation (e.g. visual fields), all retinal ganglion cells extend a long axon into the brain. Except for a minute portion of the retinal ganglion cells that transduce non-visual information regarding the pupillary light reflex and circadian entrainment, the totality of axons extending from the retinal ganglion cells form the optic nerve, optic chiasm, and optic tract of the central nervous system. Consequently, a significant amount of information processing occurs in the retina itself.
[0033] Photoreceptor cells express endogenous opsin proteins, such as rhodopsin. The mutant Chop2 proteins of the invention may be expressed in any cell type, and form functional ChR2 channels. Preferably, the cell is a retinal cell. Exemplary cells, include, but are not limited to, photoreceptor cells (e.g., rods, cones, and photosensitive retinal ganglion cells), horizontal cells, bipolar cells, amacrine cells, and retinal ganglion cells.
Channelopsin-2 (Chop2)
[0034] Channelopsin-2 (Chop2) was first isolated from the green algae, Chlamydomonas reinhardtii. Channelopsin-2 is a seven transmembrane domain protein that becomes photo-switchable (light sensitive) when bound to the chromophore all-trans-retinal. Chop2, when linked to a retinal molecule via Schiff base linkage forms a light-gated, nonspecific, inwardly rectifying, cation channel, called Channelrhodopsin-2 (Chop2 retinalidene, abbreviated ChR2).
[0035] As referred to herein, "channelopsin-2" or "Chop2" refers to the gene that encodes channelopsin-2, which then forms Channelrhodopsin-2 (ChR2) once bound to retinal. Gene constructs of the present invention refer primarily to channelopsin-2 (i.e., without the retinal), and all Chop2 variants disclosed herein form functional channelrhodopsin-2 variants. The methods disclosed herein may include delivering Chop2 to cells without exogenous retinal. It is understood that upon expression of Chop2 in cells (i.e., retinal neurons), endogenously available retinal binds to the wild-type Chop2 or the Chop2 mutants of the present invention to form functional light-gated channels, WT ChR2 or mutant ChR2. As such, Chop2 proteins, as referred to herein, can also be synonymous with ChR2.
[0036] As used herein, "channelrhodopsin-2" or "ChR2" refers to the retinal-bound functional light-sensitive channel. In one embodiment, the bound retinal may be provided exogenously. In a preferred embodiment, the bound retinal is provided from endogenous levels available in the cell. The present invention also encompasses the functional channelrhodopsin-2 channels formed by the polypeptides and polynucleotides encoding the Chop2 mutants described herein.
[0037] Upon illumination by the preferred dose of light radiation, ChR2 opens the pore of the channel, through which H.sup.+, Na.sup.+, K.sup.+, and/or Ca.sup.2+ ions flow into the cell from the extracellular space. Activation of the ChR2 channel typically causes a depolarization of the cell expressing the channel. Depolarized cells produce graded potentials and or action potentials to carry information from the Chop2/ChR2-expressing cell to other cells of the retina or brain.
[0038] The wild type form of ChR2 or mutant ChR2s with high temporal resolution have become a central focus of neuroscience research. When expressed in a mammalian neuron, ChR2 mediates light-controlled depolarization of in vitro or ex vivo cultures. Wild type ChR2s or mutant ChR2s with high temporal resolution (the latter usually display low light sensitivity) presents several challenges that must be addressed to enable their use for the purpose of vision restoration. For the purpose of vision restoration, the ChR2 with high light sensitivity rather than high temporal resolution is desired.
[0039] Wild type ChR2 proteins require illumination from high blue light intensities for full activation (i.e. 10.sup.18-10.sup.19 photons s.sup.-1 cm.sup.-2 at a wavelength of 480 nm). Continuous illumination of this type can damage cells.
[0040] The kinetics of the wild type ChR2 protein is suboptimal for maximizing channel efficacy. Efficacy can be increased by modifying one or more amino acids of the wild type ChR2 protein either to prolong the open state of the channel or increase the unit conductance of the channel, or both. The single-channel conductance of wild-type ChR2 is small. Thus, neuronal activation in vivo would either require high expression of the wild type channel or very intense activation with the preferred wavelength of blue-light. A simpler solution may be found by altering the channel conductance or to prolong the channel open time. Either one of these mechanisms and, in particular, the combination of these mechanisms, enable lower and safer light intensities to be used to achieve the same level of cellular depolarization.
[0041] For example, mutant ChR2 proteins of the invention achieve greater light sensitivity through the prolongation of the channel open state. Consequently, each mutant ChR2 channel conducts a greater photocurrent than a wild type ChR2 channel when activated by the same light intensities. Therefore, the mutant channels are activated by light intensities that are lower than those required for activation of the wild type ChR2 channels. Quantitatively, detectable spiking activity of retinal ganglion cells expressing mutant ChR2 proteins can be elicited by a light intensity that is 1.5-2 log units lower than the light intensity required to elicit spiking activity from retinal ganglion cells expressing wild type ChR2. Thus, the light intensities required to activate the mutant ChR2 proteins are close to or fall within the range of normal outdoor lighting conditions.
[0042] The following sequences provide non-limiting examples of wild type and mutant Chop2 proteins, and polynucleotides encoding said WT and mutant Chop2 proteins of the invention, and forming WT and mutant ChR2s of the invention.
[0043] A wild type (WT) Chop2 of the invention may be encoded by the following Chlamydomonas reinhardtii chlamyopsin 4 light-gated ion channel (COP4) mRNA sequence (GenBank Accession No. XM_001701673, and SEQ ID NO: 1):
TABLE-US-00001 1 gcagcaccat acttgacatc tgtcgccaag caagcattaa acatggatta tggaggcgcc 61 ctgagtgccg ttgggcgcga gctgctattt gtaacgaacc cagtagtcgt caatggctct 121 gtacttgtgc ctgaggacca gtgttactgc gcgggctgga ttgagtcgcg tggcacaaac 181 ggtgcccaaa cggcgtcgaa cgtgctgcaa tggcttgctg ctggcttctc catcctactg 241 cttatgtttt acgcctacca aacatggaag tcaacctgcg gctgggagga gatctatgtg 301 tgcgctatcg agatggtcaa ggtgattctc gagttcttct tcgagtttaa gaacccgtcc 361 atgctgtatc tagccacagg ccaccgcgtc cagtggttgc gttacgccga gtggcttctc 421 acctgcccgg tcattctcat tcacctgtca aacctgacgg gcttgtccaa cgactacagc 481 aggcgcacca tgggtctgct tgtgtctgat attggcacaa ttgtgtgggg cgccacttcc 541 gccatggcca ccggatacgt caaggtcatc ttcttctgcc tgggtctgtg ttatggtgct 601 aacacgttct ttcacgctgc caaggcctac atcgagggtt accacaccgt gccgaagggc 661 cggtgtcgcc aggtggtgac tggcatggct tggctcttct tcgtatcatg gggtatgttc 721 cccatcctgt tcatcctcgg ccccgagggc ttcggcgtcc tgagcgtgta cggctccacc 781 gtcggccaca ccatcattga cctgatgtcg aagaactgct ggggtctgct cggccactac 841 ctgcgcgtgc tgatccacga gcatatcctc atccacggcg acattcgcaa gaccaccaaa 901 ttgaacattg gtggcactga gattgaggtc gagacgctgg tggaggacga ggccgaggct 961 ggcgcggtca acaagggcac cggcaagtac gcctcccgcg agtccttcct ggtcatgcgc 1021 gacaagatga aggagaaggg cattgacgtg cgcgcctctc tggacaacag caaggaggtg 1081 gagcaggagc aggccgccag ggctgccatg atgatgatga acggcaatgg catgggtatg 1141 ggaatgggaa tgaacggcat gaacggaatg ggcggtatga acgggatggc tggcggcgcc 1201 aagcccggcc tggagctcac tccgcagcta cagcccggcc gcgtcatcct ggcggtgccg 1261 gacatcagca tggttgactt cttccgcgag cagtttgctc agctatcggt gacgtacgag 1321 ctggtgccgg ccctgggcgc tgacaacaca ctggcgctgg ttacgcaggc gcagaacctg 1381 ggcggcgtgg actttgtgtt gattcacccc gagttcctgc gcgaccgctc tagcaccagc 1441 atcctgagcc gcctgcgcgg cgcgggccag cgtgtggctg cgttcggctg ggcgcagctg 1501 gggcccatgc gtgacctgat cgagtccgca aacctggacg gctggctgga gggcccctcg 1561 ttcggacagg gcatcctgcc ggcccacatc gttgccctgg tggccaagat gcagcagatg 1621 cgcaagatgc agcagatgca gcagattggc atgatgaccg gcggcatgaa cggcatgggc 1681 ggcggtatgg gcggcggcat gaacggcatg ggcggcggca acggcatgaa caacatgggc 1741 aacggcatgg gcggcggcat gggcaacggc atgggcggca atggcatgaa cggaatgggt 1801 ggcggcaacg gcatgaacaa catgggcggc aacggaatgg ccggcaacgg aatgggcggc 1861 ggcatgggcg gcaacggtat gggtggctcc atgaacggca tgagctccgg cgtggtggcc 1921 aacgtgacgc cctccgccgc cggcggcatg ggcggcatga tgaacggcgg catggctgcg 1981 ccccagtcgc ccggcatgaa cggcggccgc ctgggtacca acccgctctt caacgccgcg 2041 ccctcaccgc tcagctcgca gctcggtgcc gaggcaggca tgggcagcat gggaggcatg 2101 ggcggaatga gcggaatggg aggcatgggt ggaatggggg gcatgggcgg cgccggcgcc 2161 gccacgacgc aggctgcggg cggcaacgcg gaggcggaga tgctgcagaa tctcatgaac 2221 gagatcaatc gcctgaagcg cgagcttggc gagtaaaagg ctggaggccg gtactgcgat 2281 acctgcgagc tcgcgcgcct gactcgtcgt acacacggct caggagcacg cgcgcgtgga 2341 cttctcaacc tgtgtgcaac gtatctagag cggcctgtgc gcgaccgtcc gtgagcattc 2401 cggtgcgatc ttcccgcctt cgcaccgcaa gttcccttcc tggccctgct gcgcctgacg 2461 catcgtccga acggaagggc ggcttgatca gtaaagcatt gaagactgaa gtcgtgcgac 2521 cgtagtgcta tggctctgca cgtaagtggg cgctgccctg cttactacgc attgcccaag 2581 actgcttcct tttggtggcc gaggccctgg tcccacatca ttcatttgca taacgtactg 2641 tttagttaca tacgctttgc ttaacctcga caattgcaac atgggctgag agtccgtacg 2701 gcggctatgg acgaaggtgt tatcggatgt gattaggaat ctcggttgaa aggcttcgag 2761 aaagtgagct tcatctgtgg cttctgttgg ggtcatcaag aagaacgacg gtaaggcaaa 2821 cgaggtaaaa gtggcacgtc tttgtgcaca acgggcccgt ggagagtggg ggagtgcatg 2881 tgtgcggtcc taacacgcga gtgcaaagcg ggcttttctg gagctgggtt acggtctggc 2941 tcggcaactg ctctgtgttt taaccacagc ttcggaagtc tgggtatgtt ttgttggcag 3001 aaacatttgg gtaacttgag ggtgattcgt ctggagtcgg acaacatggc tgccgtccgt 3061 gtgcagggac ggtaatcaat gagctggagc tgtgatgctc accacacgtt gcatacccct 3121 gcttacaaaa acactttgat gtcgtggcca aactatgcgt gagcaaagag ttaaagaggc 3181 atgagtgcat ggttgcggac gtgcgcaaca attgcatcaa gtatttgacg ccttcaagcc 3241 aacaagtgcg cgcgcggcaa cttgattaac acgccggacg cagtggtggg ggcgtgtaca 3301 gtgtttatga gctgccattc tgcgatccgt agtgttaggt tgcgtgtgac gccgcgcggc 3361 tgtgggccct tacatggaga gttgggtgct tcaccacacg gttggcgccg ctgaagggtg 3421 tgctatgttt tggtaaagcc ggggccctga agaccgcaac cgtagaaccg tactgaaagg 3481 gtgtcagccc ggggtaactg gatgccctgg gacatagcta ttaatgttga agtgaagccg 3541 agccgag tgccgtgcgc cgctgtatca ccaaggcccg tccta
[0044] A wild type (WT) ChR2 of the invention may be encoded by the following Chlamydomonas reinhardtii chlamyopsin 4 light-gated ion channel (COP4) amino acid sequence (GenBank Accession No. XP_001701725, and SEQ ID NO: 2):
TABLE-US-00002 1 mdyggalsav grellfvtnp vvvngsvlvp edqcycagwi esrgtngaqt asnvlqwlaa 61 gfsilllmfy ayqtwkstcg weeiyvcaie mvkvilefff efknpsmlyl atghrvqwlr 121 yaewlltcpv ilihlsnltg lsndysrrtm gllvsdigti vwgatsamat gyvkviffcl 181 glcygantff haakayiegy htvpkgrcrq vvtgmawlff vswgmfpilf ilgpegfgvl 241 svygstvght iidlmskncw gllghylrvl ihehilihgd irkttklnig gteievetlv 301 edeaeagavn kgtgkyasre sflvmrdkmk ekgidvrasl dnskeveqeq aaraammmmn 361 gngmgmgmgm ngmngmggmn gmaggakpgl eltpqlqpgr vilavpdism vdffreqfaq 421 lsvtyelvpa lgadntlalv tqaqnlggvd fvlihpeflr drsstsilsr lrgagqrvaa 481 fgwaqlgpmr dliesanldg wlegpsfgqg ilpahivalv akmqqmrkmq qmqqigmmtg 541 gmngmgggmg ggmngmgggn gmnnmgngmg ggmgngmggn gmngmgggng mnnmggngma 601 gngmgggmgg ngmggsmngm ssgvvanvtp saaggmggmm nggmaapqsp gmnggrlgtn 661 plfnaapspl ssqlgaeagm gsmggmggms gmggmggmgg mggagaattq aaggnaeaem 721 nlmneinr lkrelge
[0045] A wild type (WT) Chop2 of the invention may be encoded by the following Chlamydomonas reinhardtii retinal binding protein (cop4) gene sequence (GenBank Accession No. AF461397, and SEQ ID NO: 3):
TABLE-US-00003 1 gcatctgtcg ccaagcaagc attaaacatg gattatggag gcgccctgag tgccgttggg 61 cgcgagctgc tatttgtaac gaacccagta gtcgtcaatg gctctgtact tgtgcctgag 121 gaccagtgtt actgcgcggg ctggattgag tcgcgtggca caaacggtgc ccaaacggcg 181 tcgaacgtgc tgcaatggct tgctgctggc ttctccatcc tactgcttat gttttacgcc 241 taccaaacat ggaagtcaac ctgcggctgg gaggagatct atgtgtgcgc tatcgagatg 301 gtcaaggtga ttctcgagtt cttcttcgag tttaagaacc cgtccatgct gtatctagcc 361 acaggccacc gcgtccagtg gttgcgttac gccgagtggc ttctcacctg cccggtcatt 421 ctcattcacc tgtcaaacct gacgggcttg tccaacgact acagcaggcg caccatgggt 481 ctgcttgtgt ctgatattgg cacaattgtg tggggcgcca cttccgccat ggccaccgga 541 tacgtcaagg tcatcttctt ctgcctgggt ctgtgttatg gtgctaacac gttctttcac 601 gctgccaagg cctacatcga gggttaccac accgtgccga agggccggtg tcgccaggtg 661 gtgactggca tggcttggct cttcttcgta tcatggggta tgttccccat cctgttcatc 721 ctcggccccg agggcttcgg cgtcctgagc gtgtacggct ccaccgtcgg ccacaccatc 781 attgacctga tgtcgaagaa ctgctggggt ctgctcggcc actacctgcg cgtgctgatc 841 cacgagcata tcctcatcca cggcgacatt cgcaagacca ccaaattgaa cattggtggc 901 actgagattg aggtcgagac gctggtggag gacgaggccg aggctggcgc ggtcaacaag 961 ggcaccggca agtacgcctc ccgcgagtcc ttcctggtca tgcgcgacaa gatgaaggag 1021 aagggcattg acgtgcgcgc ctctctggac aacagcaagg aggtggagca ggagcaggcc 1081 gccagggctg ccatgatgat gatgaacggc aatggcatgg gtatgggaat gggaatgaac 1141 ggcatgaacg gaatgggcgg tatgaacggg atggctggcg gcgccaagcc cggcctggag 1201 ctcactccgc agctacagcc cggccgcgtc atcctggcgg tgccggacat cagcatggtt 1261 gacttcttcc gcgagcagtt tgctcagcta tcggtgacgt acgagctggt gccggccctg 1321 ggcgctgaca acacactggc gctggttacg caggcgcaga acctgggcgg cgtggacttt 1381 gtgttgattc accccgagtt cctgcgcgac cgctctagca ccagcatcct gagccgcctg 1441 cgcggcgcgg gccagcgtgt ggctgcgttc ggctgggcgc agctggggcc catgcgtgac 1501 ctgatcgagt ccgcaaacct ggacggctgg ctggagggcc cctcgttcgg acagggcatc 1561 ctgccggccc acatcgttgc cctggtggcc aagatgcagc agatgcgcaa gatgcagcag 1621 atgcagcaga ttggcatgat gaccggcggc atgaacggca tgggcggcgg tatgggcggc 1681 ggcatgaacg gcatgggcgg cggcaacggc atgaacaaca tgggcaacgg catgggcggc 1741 ggcatgggca acggcatggg cggcaatggc atgaacggaa tgggtggcgg caacggcatg 1801 aacaacatgg gcggcaacgg aatggccggc aacggaatgg gcggcggcat gggcggcaac 1861 ggtatgggtg gctccatgaa cggcatgagc tccggcgtgg tggccaacgt gacgccctcc 1921 gccgccggcg gcatgggcgg catgatgaac ggcggcatgg ctgcgcccca gtcgcccggc 1981 atgaacggcg gccgcctggg taccaacccg ctcttcaacg ccgcgccctc accgctcagc 2041 tcgcagctcg gtgccgaggc aggcatgggc agcatgggag gcatgggcgg aatgagcgga 2101 atgggaggca tgggtggaat ggggggcatg ggcggcgccg gcgccgccac gacgcaggct 2161 gcgggcggca acgcggaggc ggagatgctg cagaatctca tgaacgagat caatcgcctg 2221 cgcgagc ttggcgagta a
[0046] A wild type (WT) Chop2 of the invention may be encoded by the following Chlamydomonas reinhardtii retinal binding protein (cop4) amino acid sequence (GenBank Accession No. AAM15777, and SEQ ID NO: 4):
TABLE-US-00004 1 mdyggalsav grellfvtnp vvvngsvlvp edqcycagwi esrgtngaqt asnvlqwlaa 61 gfsilllmfy ayqtwkstcg weeiyvcaie mvkvilefff efknpsmlyl atghrvqwlr 121 yaewlltcpv ilihlsnltg lsndysrrtm gllvsdigti vwgatsamat gyvkviffcl 181 glcygantff haakayiegy htvpkgrcrq vvtgmawlff vswgmfpilf ilgpegfgvl 241 svygstvght iidlmskncw gllghylrvl ihehilihgd irkttklnig gteievetlv 301 edeaeagavn kgtgkyasre sflvmrdkmk ekgidvrasl dnskeveqeq aaraammmmn 361 gngmgmgmgm ngmngmggmn gmaggakpgl eltpqlqpgr vilavpdism vdffreqfaq 421 lsvtyelvpa lgadntlalv tqaqnlggvd fvlihpeflr drsstsilsr lrgagqrvaa 481 fgwaqlgpmr dliesanldg wlegpsfgqg ilpahivalv akmqqmrkmq qmqqigmmtg 541 gmngmgggmg ggmngmgggn gmnnmgngmg ggmgngmggn gmngmgggng mnnmggngma 601 gngmgggmgg ngmggsmngm ssgvvanvtp saaggmggmm nggmaapqsp gmnggrlgtn 661 plfnaapspl ssqlgaeagm gsmggmggms gmggmggmgg mggagaattq aaggnaeaem 721 nlmneinr lkrelge
[0047] A wild type (WT) Chop2 of the invention may be encoded by the following Chlamydomonas reinhardtii sensory opsin B (CSOB) mRNA sequence (GenBank Accession No. AF508966, and SEQ ID NO: 5):
TABLE-US-00005 1 ttgacatctg tcgccaagca agcattaaac atggattatg gaggcgccct gagtgccgtt 61 gggcgcgagc tgctatttgt aacgaaccca gtagtcgtca atggctctgt acttgtgcct 121 gaggaccagt gttactgcgc gggctggatt gagtcgcgtg gcacaaacgg tgcccaaacg 181 gcgtcgaacg tgctgcaatg gcttgctgct ggcttctcca tcctactgct tatgttttac 241 gcctaccaaa catggaagtc aacctgcggc tgggaggaga tctatgtgtg cgctatcgag 301 atggtcaagg tgattctcga gttcttcttc gagtttaaga acccgtccat gctgtatcta 361 gccacaggcc accgcgtcca gtggttgcgt tacgccgagt ggcttctcac ctgcccggtc 421 attctcattc acctgtcaaa cctgacgggc ttgtccaacg actacagcag gcgcaccatg 481 ggtctgcttg tgtctgatat tggcacaatt gtgtggggcg ccacttccgc catggccacc 541 ggatacgtca aggtcatctt cttctgcctg ggtctgtgtt atggtgctaa cacgttcttt 601 cacgctgcca aggcctacat cgagggttac cacaccgtgc cgaagggccg gtgtcgccag 661 gtggtgactg gcatggcttg gctcttcttc gtatcatggg gtatgttccc catcctgttc 721 atcctcggcc ccgagggctt cggcgtcctg agcgtgtacg gctccaccgt cggccacacc 781 atcattgacc tgatgtcgaa gaactgctgg ggtctgctcg gccactacct gcgcgtgctg 841 atccacgagc atatcctcat ccacggcgac attcgcaaga ccaccaaatt gaacattggt 901 ggcactgaga ttgaggtcga gacgctggtg gaggacgagg ccgaggctgg cgcggtcaac 961 aagggcaccg gcaagtacgc ctcccgcgag tccttcctgg tcatgcgcga caagatgaag 1021 gagaagggca ttgacgtgcg cgcctctctg gacaacagca aggaggtgga gcaggagcag 1081 gccgccaggg ctgccatgat gatgatgaac ggcaatggca tgggtatggg aatgggaatg 1141 aacggcatga acggaatggg cggtatgaac gggatggctg gcggcgccaa gcccggcctg 1201 gagctcactc cgcagctaca gcccggccgc gtcatcctgg cggtgccgga catcagcatg 1261 gttgacttct tccgcgagca gtttgctcag ctatcggtga cgtacgagct ggtgccggcc 1321 ctgggcgctg acaacacact ggcgctggtt acgcaggcgc agaacctggg cggcgtggac 1381 tttgtgttga ttcaccccga gttcctgcgc gaccgctcta gcaccagcat cctgagccgc 1441 ctgcgcggcg cgggccagcg tgtggctgcg ttcggctggg cgcagctggg gcccatgcgt 1501 gacctgatcg agtccgcaaa cctggacggc tggctggagg gcccctcgtt cggacagggc 1561 atcctgccgg cccacatcgt tgccctggtg gccaagatgc agcagatgcg caagatgcag 1621 cagatgcagc agattggcat gatgaccggc ggcatgaacg gcatgggcgg cggtatgggc 1681 ggcggcatga acggcatggg cggcggcaac ggcatgaaca acatgggcaa cggcatgggc 1741 ggcggcatgg gcaacggcat gggcggcaat ggcatgaacg gaatgggtgg cggcaacggc 1801 atgaacaaca tgggcggcaa cggaatggcc ggcaacggaa tgggcggcgg catgggcggc 1861 aacggtatgg gtggctccat gaacggcatg agctccggcg tggtggccaa cgtgacgccc 1921 tccgccgccg gcggcatggg cggcatgatg aacggcggca tggctgcgcc ccagtcgccc 1981 ggcatgaacg gcggccgcct gggtaccaac ccgctcttca acgccgcgcc ctcaccgctc 2041 agctcgcagc tcggtgccga ggcaggcatg ggcagcatgg gaggcatggg cggaatgagc 2101 ggaatgggag gcatgggtgg aatggggggc atgggcggcg ccggcgccgc cacgacgcag 2161 gctgcgggcg gcaacgcgga ggcggagatg ctgcagaatc tcatgaacga gatcaatcgc 2221 ctgaagcgcg agcttggcga gtaaaaggct ggaggccggt actgcgatac ctgcgagctc 2281 gcgcgcctga ctcgtcgtac acacggctca ggagcacgcg cgcgtggact tctcaacctg 2341 tgtgcaacgt atctagagcg gcctgtgcgc gaccgtccgt gagcattccg gtgcgatctt 2401 cccgccttcg caccgcaagt tcccttcctg gccctgctgc gcctgacgca tcgtccgaac 2461 ggaagggcgg cttgatcagt aaagcattga agactgaagt cgtgcgaccg tagtgctatg 2521 gctctgcacg taagtgggcg ctgccctgct tactacgcat tgcccaagac tgcttccttt 2581 tggtggccga ggccctggtc ccacatcatt catttgcata acgtactgtt tagttacata 2641 cgctttgctt aacctcgaca attgcaacat gggctgagag tccgtacggc ggctatggac 2701 gaaggtgtta tcggatgtga ttaggaatct cggttgaaag gcttcgagaa agtgagcttc 2761 ttctgtggct tctgttgggg tcatcaagaa gaacgacggt aaggcaaacg aggtaaaagt 2821 ggcacgtctt tgtgcacaac gggcccgtgg agagtggggg agtgcatgtg tgcggtccta 2881 acacgcgagt gcaaagcggg cttttctgga gctgggttac ggtctggctc ggcaactgct 2941 ctgtgtttta accacagctt cggaagtctg ggtatgtttt gttggcagaa acatttgggt 3001 aacttgaggg tgattcgtct ggagtcggac aacatggctg ccgtccgtgt gcagggacgg 3061 taatcaatga agctgaagct gtgatgctca ccacacgttg catacccctg cttacaaaaa 3121 cactttgatg tcgtggccaa actatgcgtg agcaaagagt taaagaggca tgagtgcatg 3181 gttgcggacg tgcgcaacaa ttgcatcaag tatttgacgc cttcaagcca acaagtgcgc 3241 gcgcggcaac ttgattaaca cgccggacgc agtggtgggg gcgtgtacag tgtttatgag 3301 ctgccattct gcgatccgta gtgttaggtt gcgtgtgacg ccgcgcggct gtgggccctt 3361 acatggagag ttgggtgctt caccacacgg ttggcgccgc tgaagggtgt gctatgtttt 3421 ggtaaagccg gggccctgaa gaccgcaacc gtagaaccgt actgaaaggg tgtcagcccg 3481 gggtaactgg atgccctggg acatagctat taatgttgaa gtgaagccgt caagccgagt 3541 gccgtgcgcc gctgtatcac caaggcccgt ccaaaaaaaa aaaaaaaaaa aaaaaaaaa
[0048] A wild type (WT) Chop2 of the invention may be encoded by the following Chlamydomonas reinhardtii sensory opsin B (CSOB) amino acid sequence (GenBank Accession No. AAM44040, and SEQ ID NO: 6):
TABLE-US-00006 1 mdyggalsav grellfvtnp vvvngsvlvp edqcycagwi esrgtngaqt asnvlqwlaa 61 gfsilllmfy ayqtwkstcg weeiyvcaie mvkvilefff efknpsmlyl atghrvqwlr 121 yaewlltcpv ilihlsnitg lsndysrrtm gllvsdigti vwgatsamat gyvkviffcl 181 glcygantff haakayiegy htvpkgrcrq vvtgmawlff vswgmfpilf ilgpegfgvl 241 svygstvght iidlmskncw gllghylrvl ihehilihgd irkttklnig gteievetlv 301 edeaeagavn kgtgkyasre sflvmrdkmk ekgidvrasl dnskeveqeq aaraammmmn 361 gngmgmgmgm ngmngmggmn gmaggakpgl eltpqlqpgr vilavpdism vdffreqfaq 421 lsvtyelvpa lgadntlalv tqaqnlggvd fvlihpeflr drsstsilsr lrgagqrvaa 481 fgwaqlgpmr dliesanldg wlegpsfgqg ilpahivalv akmqqmrkmq qmqqigmmtg 541 gmngmgggmg ggmngmgggn gmnnmgngmg ggmgngmggn gmngmgggng mnnmggngma 601 gngmgggmgg ngmggsmngm ssgvvanvtp saaggmggmm nggmaapqsp gmnggrlgtn 661 plfnaapspl ssqlgaeagm gsmggmggms gmggmggmgg mggagaattq aaggnaeaem 721 lqnlmneinr lkrelge
[0049] A wild type (WT) Chop2 of the invention may be encoded by the following Chlamydomonas reinhardtii acop2 mRNA for archaeal-type opsin 2 nucleic acid sequence (GenBank Accession No. AB058891, and SEQ ID NO: 7):
TABLE-US-00007 1 catctgtcgc caagcaagca ttaaacatgg attatggagg cgccctgagt gccgttgggc 61 gcgagctgct atttgtaacg aacccagtag tcgtcaatgg ctctgtactt gtgcctgagg 121 accagtgtta ctgcgcgggc tggattgagt cgcgtggcac aaacggtgcc caaacggcgt 181 cgaacgtgct gcaatggctt gctgctggct tctccatcct actgcttatg ttttacgcct 241 accaaacatg gaagtcaacc tgcggctggg aggagatcta tgtgtgcgct atcgagatgg 301 tcaaggtgat tctcgagttc ttcttcgagt ttaagaaccc gtccatgctg tatctagcca 361 caggccaccg cgtccagtgg ttgcgttacg ccgagtggct tctcacctgc ccggtcattc 421 tcattcacct gtcaaacctg acgggcttgt ccaacgacta cagcaggcgc accatgggtc 481 tgcttgtgtc tgatattggc acaattgtgt ggggcgccac ttccgccatg gccaccggat 541 acgtcaaggt catcttcttc tgcctgggtc tgtgttatgg tgctaacacg ttctttcacg 601 ctgccaaggc ctacatcgag ggttaccaca ccgtgccgaa gggccggtgt cgccaggtgg 661 tgactggcat ggcttggctc ttcttcgtat catggggtat gttccccatc ctgttcatcc 721 tcggccccga gggcttcggc gtcctgagcg tgtacggctc caccgtcggc cacaccatca 781 ttgacctgat gtcgaagaac tgctggggtc tgctcggcca ctacctgcgc gtgctgatcc 841 acgagcatat cctcatccac ggcgacattc gcaagaccac caaattgaac attggtggca 901 ctgagattga ggtcgagacg ctggtggagg acgaggccga ggctggcgcg gtcaacaagg 961 gcaccggcaa gtacgcctcc cgcgagtcct tcctggtcat gcgcgacaag atgaaggaga 1021 agggcattga cgtgcgcgcc tctctggaca acagcaagga ggtggagcag gagcaggccg 1081 ccagggctgc catgatgatg atgaacggca atggcatggg tatgggaatg ggaatgaacg 1141 gcatgaacgg aatgggcggt atgaacggga tggctggcgg cgccaagccc ggcctggagc 1201 tcactccgca gctacagccc ggccgcgtca tcctggcggt gccggacatc agcatggttg 1261 acttcttccg cgagcagttt gctcagctat cggtgacgta cgagctggtg ccggccctgg 1321 gcgctgacaa cacactggcg ctggttacgc aggcgcagaa cctgggcggc gtggactttg 1381 tgttgattca ccccgagttc ctgcgcgacc gctctagcac cagcatcctg agccgcctgc 1441 gcggcgcggg ccagcgtgtg gctgcgttcg gctgggcgca gctggggccc atgcgtgacc 1501 tgatcgagtc cgcaaacctg gacggctggc tggagggccc ctcgttcgga cagggcatcc 1561 tgccggccca catcgttgcc ctggtggcca agatgcagca gatgcgcaag atgcagcaga 1621 tgcagcagat tggcatgatg accggcggca tgaacggcat gggcggcggt atgggcggcg 1681 gcatgaacgg catgggcggc ggcaacggca tgaacaacat gggcaacggc atgggcggcg 1741 gcatgggcaa cggcatgggc ggcaatggca tgaacggaat gggtggcggc aacggcatga 1801 acaacatggg cggcaacgga atggccggca acggaatggg cggcggcatg ggcggcaacg 1861 gtatgggtgg ctccatgaac ggcatgagct ccggcgtggt ggccaacgtg acgccctccg 1921 ccgccggcgg catgggcggc atgatgaacg gcggcatggc tgcgccccag tcgcccggca 1981 tgaacggcgg ccgcctgggt accaacccgc tcttcaacgc cgcgccctca ccgctcagct 2041 cgcagctcgg tgccgaggca ggcatgggca gcatgggagg catgggcgga atgagcggaa 2101 tgggaggcat gggtggaatg gggggcatgg gcggcgccgg cgccgccacg acgcaggctg 2161 cgggcggcaa cgcggaggcg gagatgctgc agaatctcat gaacgagatc aatcgcctga 2221 agcgcgagct tggcgagtaa aaggctggag gccggtactg cgatacctgc gagctcgcgc 2281 gcctgactcg tcgtacacac ggctcaggag cacgcgcgcg tggacttctc aacctgtgtg 2341 caacgtatct agagcggcct gtgcgcgacc gtccgtgagc attccggtgc gatcttcccg 2401 ccttcgcacc gcaagttccc ttcctggccc tgctgcgcct gacgcatc
[0050] A wild type (WT) Chop2 of the invention may be encoded by the following Chlamydomonas reinhardtii acop2 mRNA for archaeal-type opsin 2 amino acid sequence (GenBank Accession No. BAB68567, and SEQ ID NO: 8):
TABLE-US-00008 1 mdyggalsav grellfvtnp vvvngsvlvp edqcycagwi esrgtngaqt asnvlqwlaa 61 gfsilllmfy ayqtwkstcg weeiyvcaie mvkvilefff efknpsmlyl atghrvqwlr 121 yaewlltcpv ilihlsnitg lsndysrrtm gllvsdigti vwgatsamat gyvkviffcl 181 glcygantff haakayiegy htvpkgrcrq vvtgmawlff vswgmfpilf ilgpegfgvl 241 svygstvght iidlmskncw gllghylrvl ihehilihgd irkttklnig gteievetlv 301 edeaeagavn kgtgkyasre sflvmrdkmk ekgidvrasl dnskeveqeq aaraammmmn 361 gngmgmgmgm ngmngmggmn gmaggakpgl eltpqlqpgr vilavpdism vdffreqfaq 421 lsvtyelvpa lgadntlalv tqaqnlggvd fvlihpeflr drsstsilsr lrgagqrvaa 481 fgwaqlgpmr dliesanldg wlegpsfgqg ilpahivalv akmqqmrkmq qmqqigmmtg 541 gmngmgggmg ggmngmgggn gmnnmgngmg ggmgngmggn gmngmgggng mnnmggngma 601 gngmgggmgg ngmggsmngm ssgvvanvtp saaggmggmm nggmaapqsp gmnggrlgtn 661 plfnaapspl ssqlgaeagm gsmggmggms gmggmggmgg mggagaattq aaggnaeaem 721 lqnlmneinr lkrelge
ChR2 Mutants
[0051] The present invention provides Chop2 mutants wherein one or more amino acids are mutated. In some embodiments, the Chop2 is the full-length polypeptide, such as SEQ ID NOs: 2, 4, 6, and 8, with at least one amino acid mutation. In some embodiments, the mutation is at amino acid 132 and/or amino acid 159. In some preferred embodiments, the amino acid at position 132 is mutated from a leucine to a cysteine or an alanine. In some preferred embodiments, the amino acid at position 159 is mutated from a threonine to an alanine, a cysteine, or a serine. In all embodiments, the Chop2 mutants form a functional ChR2 channel.
[0052] The present invention also encompasses Chop2 proteins and nucleic acids that encode a biologically active fragment or a conservative amino acid substitution or other mutation variant of Chop2. Non-limiting examples of useful fragments include polypeptides encoding amino acids 1-315 of the wild-type Chop2, i.e., SEQ ID NO: 26, wherein at least one amino acid is mutated or conservatively substituted, for example at amino acid positions 132 and/or 159. Smaller fragments of wild-type Chop2, wherein at least one amino acid is mutated or conservatively substituted (i.e., at amino acid positions 132 and/or 159) may also be useful in the present invention. Accordingly, Chop2 polypeptides and nucleic acids of the present invention further include, but are not limited to, biologically active fragments encoding amino acids 1-315, 1-310, 1-300, 1-275, 1-250, 1-225, 1-200, 1-175, or 1-160 of the wild-type Chop2, wherein at least one amino acid is mutated or conservatively substituted, for example at amino acid positions 132 and/or 159. In other embodiments, the Chop2 polypeptides and nucleic acids of the present invention can be up to, or about, 315 amino acids long, 310 amino acids long, 300 amino acids long, 275 amino acids long, 250 amino acids long, 225 amino acids long, 200 amino acids long, 175 amino acids long, or 160 amino acids long.
[0053] A single mutant Chop2 of the invention may be encoded by the following Synthetic construct hVChR1-mKate-betahChR2(L132C) gene sequence (GenBank Accession No. JN836746, and SEQ ID NO: 9) with the following annotations, GFP sequence is in bold, L132C Chop2 sequence is underlined:
TABLE-US-00009 1 atggattacc ctgtggcccg gtccctgatt gtaagatacc ccaccgatct gggcaatgga 61 accgtgtgca tgcccagagg acaatgctac tgcgaggggt ggctgaggag ccggggcact 121 agtatcgaaa aaaccatcgc tatcaccctc cagtgggtag tgttcgctct gtccgtagcc 181 tgtctcggct ggtatgcata ccaagcctgg agggctacct gtgggtggga ggaagtatac 241 gtggccctga tcgagatgat gaagtccatc atcgaggctt tccatgagtt cgactcccca 301 gccacactct ggctcagcag tgggaatggc gtagtgtgga tgagatatgg agagtggctg 361 ctgacctgtc ccgtcctgct cattcatctg tccaatctga ccgggctgaa agatgactac 421 tccaagagaa caatgggact gctggtgagt gacgtggggt gtattgtgtg gggagccacc 481 tccgccatgt gcactggatg gaccaagatc ctctttttcc tgatttccct ctcctatggg 541 atgtatacat acttccacgc cgctaaggtg tatattgagg ccttccacac tgtacctaaa 601 ggcatctgta gggagctcgt gcgggtgatg gcatggacct tctttgtggc ctgggggatg 661 ttccccgtgc tgttcctcct cggcactgag ggatttggcc acattagtcc ttacgggtcc 721 gcaattggac actccatcct ggatctgatt gccaagaata tgtggggggt gctgggaaat 781 tatctgcggg taaagatcca cgagcatatc ctgctgtatg gcgatatcag aaagaagcag 841 aaaatcacca ttgctggaca ggaaatggag gtggagacac tggtagcaga ggaggaggac 901 gggaccgcgg tcgccaccat ggtgtctaag ggcgaagagc tgattaagga gaacatgcac 961 atgaagctgt acatggaggg caccgtgaac aaccaccact tcaagtgcac atccgagggc 1021 gaaggcaagc cctacgaggg cacccagacc atgagaatca aggtggtcga gggcggccct 1081 ctccccttcg ccttcgacat cctggctacc agcttcatgt acggcagcaa aaccttcatc 1141 aaccacaccc agggcatccc cgacttcttt aagcagtcct tccctgaggg cttcacatgg 1201 gagagagtca ccacatacga agacgggggc gtgctgaccg ctacccagga caccagcctc 1261 caggacggct gcctcatcta caacgtcaag atcagagggg tgaacttccc atccaacggc 1321 cctgtgatgc agaagaaaac actcggctgg gaggcctcca ccgagatgct gtaccccgct 1381 gacggcggcc tggaaggcag agccgacatg gccctgaagc tcgtgggcgg gggccacctg 1441 atctgcaact tgaagaccac atacagatcc aagaaacccg ctaagaacct caagatgccc 1501 ggcgtctact atgtggacag aagactggaa agaatcaagg aggccgacaa agagacctac 1561 gtcgagcagc acgaggtggc tgtggccaga tactgcgacc tccctagcaa actggggcac 1621 aaacttaatt gcctgcagga gaagaagtca tgcagccagc gcatggccga attccggcaa 1681 tactgttgga acccggacac tgggcagatg ctgggccgca ccccagcccg gtgggtgtgg 1741 atcagcctgt actatgcagc tttctacgtg gtcatgactg ggctctttgc cttgtgcatc 1801 tatgtgctga tgcagaccat tgatccctac acccccgact accaggacca gttaaagtca 1861 ccgggggtaa ccttgagacc ggatgtgtat ggggaaagag ggctgcagat ttcctacaac 1921 atctctgaaa acagctctag acaggcccag atcaccggac gtccggagac tgagacattg 1981 ccaccggtgg actacggggg ggccctgagc gctgtgggca gagaactcct gttcgtgaca 2041 aatccagtcg tggtgaacgg ctccgtactc gtacccgagg atcagtgcta ttgcgcagga 2101 tggatcgaga gcagaggcac aaacggcgca cagactgcat ccaacgtgct ccagtggttg 2161 gccgcaggct tttccattct cctgctcatg ttttacgcct accagacttg gaagtccaca 2221 tgtggctggg aggaaatcta cgtgtgtgca atcgaaatgg tgaaggtgat cctggagttt 2281 ttcttcgaat ttaaaaaccc aagcatgctg tacctggcta ctggccacag agtgcagtgg 2341 ctgcggtatg ccgaatggct gctgacttgc ccagtgattt gcatccacct gtccaacctg 2401 actgggctgt ctaacgatta cagtaggaga acaatgggac tgctcgtatc cgacatcggc 2461 actatcgtat ggggcgcaac tagtgccatg gccactggat acgtgaaagt gatcttcttc 2521 tgcctgggac tctgctacgg agcaaacaca ttttttcatg ccgcaaaagc atatatcgag 2581 gggtatcata ccgtcccaaa gggccggtgt agacaagtgg tgactggcat ggcttggctg 2641 ttcttcgtgt cctgggggat gtttcccatc ctctttatcc tgggcccaga aggcttcggg 2701 gtgctgagtg tgtatggcag taccgtagga cacactatca ttgacctgat gagcaaaaac 2761 tgctgggggc tgctcggcca ctacctgaga gtactcatcc acgagcatat cctgattcat 2821 ggcgatatcc ggaaaactac caagctcaat atcgggggca ccgagattga agtggagaca 2881 ctcgtggagg acgaggccga ggccggagca gtgaacaaag gcactggcaa gtatgcctcc 2941 agagaatcct ttctggtgat gcgggacaaa atgaaggaga aaggcattga tgtacggtgc 3001 agtaatgcca aagccgtcga gactgatgtg tag
[0054] A single mutant ChR2 of the invention may be encoded by the following Synthetic construct hVChR1-mKate-betahChR2(L132C) amino acid sequence (GenBank Accession No. AER29839, and SEQ ID NO: 10) with the following annotations, GFP sequence is in bold, L132C Chop2 sequence is underlined:
TABLE-US-00010 1 mdypvarsli vryptdlgng tvcmprgqcy cegw1rsrgt siektiaitl qwvvfalsva 61 clgwyayqaw ratcgweevy valiemmksi ieafhefdsp atlwlssgng vvwmrygewl 121 ltcpvllihl snitglkddy skrtmgllvs dvgcivwgat samctgwtki lfflislsyg 181 mytyfhaakv yieafhtvpk gicrelvrvm awtffvawgm fpvlfllgte gfghispygs 241 aighsildli aknmwgvlgn ylrvkihehi llygdirkkq kitiagqeme vetivaeeed 301 gtavatmvsk geelikenmh mklymegtvn nhhfkctseg egkpyegtqt mrikvveggp 361 lpfafdilat sfmygsktfi nhtqgipdff kqsfpegftw ervttyedgg vltatqdtsl 421 qdgcllynvk irgvnfpsng pvmqkktlgw eastemlypa dgglegradm alklvggghl 481 icnlkttyrs kkpaknlkmp gvyyvdrrle rikeadkety veqhevavar ycdlpsklgh 541 klnclqekks csqrmaefrq ycwnpdtgqm lgrtparwvw islyyaafyv vmtglfalci 601 yvlmqtidpy tpdyqdqlks pgvtlrpdvy gerglqisyn isenssrqaq itgrpetetl 661 ppvdyggals avgrellfvt npvvvngsvl vpedqcycag wiesrgtnga qtasnvlqwl 721 aagfsilllm fyayqtwkst cgweeiyvca iemvkvilef ffefknpsml ylatghrvqw 781 lryaewlltc pvicihlsnl tglsndysrr tmgllvsdig tivwgatsam atgyvkviff 841 clglcygant ffhaakayie gyhtvpkgrc rqvvtgmawl ffvswgmfpi lfilgpegfg 901 vlsvygstvg htiidlmskn cwgllghylr vlihehilih gdirkttkln iggteievet 961 lvedeaeaga vnkgtgkyas resflvmrdk mkekgidvrc snakavetdv
[0055] A single mutant Chop2 of the invention may be encoded by the following Synthetic construct hVChR1-mKate-betahChR2(L132C) gene sequence (GenBank Accession No. JN836745, and SEQ ID NO: 11) with the following annotations, GFP sequence is in bold, L132C Chop2 sequence is underlined:
TABLE-US-00011 1 atggattacc ctgtggcccg gtccctgatt gtaagatacc ccaccgatct gggcaatgga 61 accgtgtgca tgcccagagg acaatgctac tgcgaggggt ggctgaggag ccggggcact 121 agtatcgaaa aaaccatcgc tatcaccctc cagtgggtag tgttcgctct gtccgtagcc 181 tgtctcggct ggtatgcata ccaagcctgg agggctacct gtgggtggga ggaagtatac 241 gtggccctga tcgagatgat gaagtccatc atcgaggctt tccatgagtt cgactcccca 301 gccacactct ggctcagcag tgggaatggc gtagtgtgga tgagatatgg agagtggctg 361 ctgacctgtc ccgtcctgct cattcatctg tccaatctga ccgggctgaa agatgactac 421 tccaagagaa caatgggact gctggtgagt gacgtggggt gtattgtgtg gggagccacc 481 tccgccatgt gcactggatg gaccaagatc ctctttttcc tgatttccct ctcctatggg 541 atgtatacat acttccacgc cgctaaggtg tatattgagg ccttccacac tgtacctaaa 601 ggcatctgta gggagctcgt gcgggtgatg gcatggacct tctttgtggc ctgggggatg 661 ttccccgtgc tgttcctcct cggcactgag ggatttggcc acattagtcc ttacgggtcc 721 gcaattggac actccatcct ggatctgatt gccaagaata tgtggggggt gctgggaaat 781 tatctgcggg taaagatcca cgagcatatc ctgctgtatg gcgatatcag aaagaagcag 841 aaaatcacca ttgctggaca ggaaatggag gtggagacac tggtagcaga ggaggaggac 901 gggaccgcgg tcgccaccat ggtgtctaag ggcgaagagc tgattaagga gaacatgcac 961 atgaagctgt acatggaggg caccgtgaac aaccaccact tcaagtgcac atccgagggc 1021 gaaggcaagc cctacgaggg cacccagacc atgagaatca aggtggtcga gggcggccct 1081 ctccccttcg ccttcgacat cctggctacc agcttcatgt acggcagcaa aaccttcatc 1141 aaccacaccc agggcatccc cgacttcttt aagcagtcct tccctgaggg cttcacatgg 1201 gagagagtca ccacatacga agacgggggc gtgctgaccg ctacccagga caccagcctc 1261 caggacggct gcctcatcta caacgtcaag atcagagggg tgaacttccc atccaacggc 1321 cctgtgatgc agaagaaaac actcggctgg gaggcctcca ccgagatgct gtaccccgct 1381 gacggcggcc tggaaggcag agccgacatg gccctgaagc tcgtgggcgg gggccacctg 1441 atctgcaact tgaagaccac atacagatcc aagaaacccg ctaagaacct caagatgccc 1501 ggcgtctact atgtggacag aagactggaa agaatcaagg aggccgacaa agagacctac 1561 gtcgagcagc acgaggtggc tgtggccaga tactgcgacc tccctagcaa actggggcac 1621 aaacttaatt gcctgcagga gaagaagtca tgcagccagc gcatggccga attccggcaa 1681 tactgttgga acccggacac tgggcagatg ctgggccgca ccccagcccg gtgggtgtgg 1741 atcagcctgt actatgcagc tttctacgtg gtcatgactg ggctctttgc cttgtgcatc 1801 tatgtgctga tgcagaccat tgatccctac acccccgact accaggacca gttaaagtca 1861 ccgggggtaa ccttgagacc ggatgtgtat ggggaaagag ggctgcagat ttcctacaac 1921 atctctgaaa acagctctag acaggcccag atcaccggac gtccggagac tgagacattg 1981 ccaccggtgg actacggggg ggccctgagc gctgtgggca gagaactcct gttcgtgaca 2041 aatccagtcg tggtgaacgg ctccgtactc gtacccgagg atcagtgcta ttgcgcagga 2101 tggatcgaga gcagaggcac aaacggcgca cagactgcat ccaacgtgct ccagtggttg 2161 gccgcaggct tttccattct cctgctcatg ttttacgcct accagacttg gaagtccaca 2221 tgtggctggg aggaaatcta cgtgtgtgca atcgaaatgg tgaaggtgat cctggagttt 2281 ttcttcgaat ttaaaaaccc aagcatgctg tacctggcta ctggccacag agtgcagtgg 2341 ctgcggtatg ccgaatggct gctgacttgc ccagtgattc tgatccacct gtccaacctg 2401 actgggctgt ctaacgatta cagtaggaga acaatgggac tgctcgtatc cgacatcggc 2461 actatcgtat ggggcgcaac tagtgccatg gccactggat acgtgaaagt gatcttcttc 2521 tgcctgggac tctgctacgg agcaaacaca ttttttcatg ccgcaaaagc atatatcgag 2581 gggtatcata ccgtcccaaa gggccggtgt agacaagtgg tgactggcat ggcttggctg 2641 ttcttcgtgt cctgggggat gtttcccatc ctctttatcc tgggcccaga aggcttcggg 2701 gtgctgagtg tgtatggcag taccgtagga cacactatca ttgacctgat gagcaaaaac 2761 tgctgggggc tgctcggcca ctacctgaga gtactcatcc acgagcatat cctgattcat 2821 ggcgatatcc ggaaaactac caagctcaat atcgggggca ccgagattga agtggagaca 2881 ctcgtggagg acgaggccga ggccggagca gtgaacaaag gcactggcaa gtatgcctcc 2941 agagaatcct ttctggtgat gcgggacaaa atgaaggaga aaggcattga tgtacggtgc 3001 agtaatgcca aagccgtcga gactgatgtg tag
[0056] A single mutant Chop2 of the invention may be encoded by the following Synthetic construct hVChR1-mKate-betahChR2(L132C) amino acid sequence (GenBank Accession No. AER29838, and SEQ ID NO: 12) with the following annotations, GFP sequence is in bold, L132C Chop2 sequence is underlined:
TABLE-US-00012 1 mdypvarsli vryptdlgng tvcmprgqcy cegwlrsrgt siektiaitl qwvvfalsva 61 clgwyayqaw ratcgweevy valiemmksi ieafhefdsp atlwlssgng vvwmrygewl 121 ltcpvllihl snitglkddy skrtmgllvs dvgcivwgat samctgwtki lfflislsyg 181 mytyfhaakv yieafhtvpk gicrelvrvm awtffvawgm fpvlfllgte gfghispygs 241 aighsildli aknmwgvlgn ylrvkihehi llygdirkkq kitiagqeme vetivaeeed 301 gtavatmvsk geelikenmh mklymegtvn nhhfkctseg egkpyegtqt mrikvveggp 361 lpfafdllat sfmygsktfl nhtqgipdff kqsfpegftw ervttyedgg vltatqdtsl 421 qdgcliynvk irgvnfpsng pvmqkktlgw eastemlypa dgglegradm alklvggghl 481 icnlkttyrs kkpaknlkmp gvyyvdrrle rikeadkety veqhevavar ycdlpsklgh 541 klnclqekks csqrmaefrq ycwnpdtgqm lgrtparwvw islyyaafyv vmtglfalci 601 yvlmqtidpy tpdyqdqlks pgvtlrpdvy gerglqisyn isenssrqaq itgrpetetl 661 ppvdyggals avgrellfvt npvvvngsvl vpedqcycag wiesrgtnga qtasnvlqwl 721 aagfsilllm fyayqtwkst cgweeiyvca iemvkvilef ffefknpsml ylatghrvqw 781 lryaewlltc pvilihlsnl tglsndysrr tmgllvsdig tivwgatsam atgyvkviff 841 clglcygant ffhaakayie gyhtvpkgrc rqvvtgmawl ffvswgmfpi lfilgpegfg 901 vlsvygstvg htiidlmskn cwgllghylr vlihehilih gdirkttkln iggteievet 961 lvedeaeaga vnkgtgkyas resflvmrdk mkekgidvrc snakavetdv
[0057] A L132C single mutant Chop2 of the invention may be encoded by the following amino acid sequence (positions 132 underlined and bolded, SEQ ID NO: 13):
TABLE-US-00013 1 MDYGGALSAV GRELLFVTNP VVVNGSVLVP EDQCYCAGWI ESRGTNGAQT ASNVLQWLAA 61 GFSILLLMFY AYQTWKSTCG WEEIYVCAIE MVKVILEFFF EFKNPSMLYL ATGHRVQWLR 121 YAEWLLTCPV ICIHLSNLTG LSNDYSRRTM GLLVSDIGTI VWGATSAMAT GYVKVIFFCL 181 GLCYGANTFF HAAKAYIEGY HTVPKGRCRQ VVTGMAWLFF VSWGMFPILF ILGPEGFGVL 241 SVYGSTVGHT IIDLMSKNCW GLLGHYLRVL IHEHILIHGD IRKTTKLNIG GTEIEVETLV 301 EDEAEAGAVN KGTGK
[0058] A T159C single mutant Chop2 of the invention may be encoded by the following amino acid sequence (positions 159 underlined and bolded, SEQ ID NO: 14):
TABLE-US-00014 1 MDYGGALSAV GRELLFVTNP VVVNGSVLVP EDQCYCAGWI ESRGTNGAQT ASNVLQWLAA 61 GFSILLLMFY AYQTWKSTCG WEEIYVCAIE MVKVILEFFF EFKNPSMLYL ATGHRVQWLR 121 YAEWLLTCPV ILIHLSNLTG LSNDYSRRTM GLLVSDIGCI VWGATSAMAT GYVKVIFFCL 181 GLCYGANTFF HAAKAYIEGY HTVPKGRCRQ VVTGMAWLFF VSWGMFPILF ILGPEGFGVL 241 SVYGSTVGHT IIDLMSKNCW GLLGHYLRVL IHEHILIHGD IRKTTKLNIG GTEIEVETLV 301 EDEAEAGAVN KGTGK
[0059] A L132C/T159C double mutant Chop2 of the invention may be encoded by the following nucleotide sequence (SEQ ID NO: 15):
TABLE-US-00015 1 atggactacg ggggggctct gtctgctgtc gggagggaac tgctgtttgt gactaaccct 61 gtcgtcgtga acgggagtgt gctggtccct gaggaccagt gctactgtgc cggctggatc 121 gaatcacgcg gaaccaacgg ggcccagaca gctagcaatg tgctgcagtg gctggccgct 181 gggtttagta tcctgctgct gatgttctac gcctatcaga cttggaagtc aacctgcggc 241 tgggaggaaa tctacgtgtg cgctattgag atggtgaaag tgatcctgga gttcttcttc 301 gagttcaaga acccaagcat gctgtacctg gctactggac accgagtgca gtggctgaga 361 tatgcagaat ggctgctgac atgccccgtc atctgcattc acctgtccaa cctgacaggc 421 ctgagcaatg actactccag gagaactatg ggactgctgg tgtccgacat cggctgcatt 481 gtctggggag caacttctgc tatggcaacc ggatacgtga aggtcatctt tttctgcctg 541 gggctgtgct atggcgcaaa tacctttttc cacgcagcca aggcctacat tgaggggtat 601 cataccgtgc caaaaggccg gtgccgacag gtggtcacag gaatggcttg gctgtttttc 661 gtctcttggg gaatgtttcc catcctgttc attctggggc ctgaagggtt cggcgtgctg 721 tctgtctacg gaagtacagt ggggcatact atcattgacc tgatgtccaa aaactgttgg 781 ggcctgctgg gacactatct gagagtgctg atccacgagc atatcctgat tcatggcgat 841 attcggaaga ccacaaaact gaatatcggc ggaaccgaga ttgaagtgga aacactggtg 901 gaagacgagg ctgaggctgg ggctgtgaac aaggggactg gcaaa
[0060] A L132C/T159C double mutant Chop2 of the invention may be encoded by the following amino acid sequence (positions 132 and 159 underlined and bolded, SEQ ID NO: 16):
TABLE-US-00016 1 MDYGGALSAV GRELLFVTNP VVVNGSVLVP EDQCYCAGWI ESRGTNGAQT ASNVLQWLAA 61 GFSILLLMFY AYQTWKSTCG WEEIYVCAIE MVKVILEFFF EFKNPSMLYL ATGHRVQWLR 121 YAEWLLTCPV ICIHLSNLTG LSNDYSRRTM GLLVSDIGCI VWGATSAMAT GYVKVIFFCL 181 GLCYGANTFF HAAKAYIEGY HTVPKGRCRQ VVTGMAWLFF VSWGMFPILF ILGPEGFGVL 241 SVYGSTVGHT IIDLMSKNCW GLLGHYLRVL IHEHILIHGD IRKTTKLNIG GTEIEVETLV 301 EDEAEAGAVN KGTGK
[0061] A T159S single mutant Chop2 of the invention may be encoded by the following amino acid sequence (positions 159 underlined and bolded, SEQ ID NO: 17):
TABLE-US-00017 1 MDYGGALSAV GRELLFVTNP VVVNGSVLVP EDQCYCAGWI ESRGTNGAQT ASNVLQWLAA 61 GFSILLLMFY AYQTWKSTCG WEEIYVCAIE MVKVILEFFF EFKNPSMLYL ATGHRVQWLR 121 YAEWLLTCPV ILIHLSNLTG LSNDYSRRTM GLLVSDIGSI VWGATSAMAT GYVKVIFFCL 181 GLCYGANTFF HAAKAYIEGY HTVPKGRCRQ VVTGMAWLFF VSWGMFPILF ILGPEGFGVL 241 SVYGSTVGHT IIDLMSKNCW GLLGHYLRVL IHEHILIHGD IRKTTKLNIG GTEIEVETLV 301 EDEAEAGAVN KGTGK
[0062] A L132C/T159S double mutant Chop2 of the invention may be encoded by the following nucleotide sequence (SEQ ID NO: 18):
TABLE-US-00018 1 atggactacg ggggggctct gtctgctgtc gggagggaac tgctgtttgt gactaaccct 61 gtcgtcgtga acgggagtgt gctggtccct gaggaccagt gctactgtgc cggctggatc 121 gaatcacgcg gaaccaacgg ggcccagaca gctagcaatg tgctgcagtg gctggccgct 181 gggtttagta tcctgctgct gatgttctac gcctatcaga cttggaagtc aacctgcggc 241 tgggaggaaa tctacgtgtg cgctattgag atggtgaaag tgatcctgga gttcttcttc 301 gagttcaaga acccaagcat gctgtacctg gctactggac accgagtgca gtggctgaga 361 tatgcagaat ggctgctgac atgccccgtc atctgcattc acctgtccaa cctgacaggc 421 ctgagcaatg actactccag gagaactatg ggactgctgg tgtccgacat cggcagcatt 481 gtctggggag caacttctgc tatggcaacc ggatacgtga aggtcatctt tttctgcctg 541 gggctgtgct atggcgcaaa tacctttttc cacgcagcca aggcctacat tgaggggtat 601 cataccgtgc caaaaggccg gtgccgacag gtggtcacag gaatggcttg gctgtttttc 661 gtctcttggg gaatgtttcc catcctgttc attctggggc ctgaagggtt cggcgtgctg 721 tctgtctacg gaagtacagt ggggcatact atcattgacc tgatgtccaa aaactgttgg 781 ggcctgctgg gacactatct gagagtgctg atccacgagc atatcctgat tcatggcgat 841 attcggaaga ccacaaaact gaatatcggc ggaaccgaga ttgaagtgga aacactggtg 901 gaagacgagg ctgaggctgg ggctgtgaac aaggggactg gcaaa
[0063] A L132C/T159S double mutant Chop2 of the invention may be encoded by the following amino acid sequence (positions 132 and 159 underlined and bolded, SEQ ID NO: 19):
TABLE-US-00019 1 MDYGGALSAV GRELLFVTNP VVVNGSVLVP EDQCYCAGWI ESRGTNGAQT ASNVLQWLAA 61 GFSILLLMFY AYQTWKSTCG WEEIYVCAIE MVKVILEFFF EFKNPSMLYL ATGHRVQWLR 121 YAEWLLTCPV ICIHLSNLTG LSNDYSRRTM GLLVSDIGSI VWGATSAMAT GYVKVIFFCL 181 GLCYGANTFF HAAKAYIEGY HTVPKGRCRQ VVTGMAWLFF VSWGMFPILF ILGPEGFGVL 241 SVYGSTVGHT IIDLMSKNCW GLLGHYLRVL IHEHILIHGD IRKTTKLNIG GTEIEVETLV 301 EDEAEAGAVN KGTGK
[0064] A L132A single mutant Chop2 of the invention may be encoded by the following amino acid sequence (position 132 underlined and bolded, SEQ ID NO: 20):
TABLE-US-00020 1 MDYGGALSAV GRELLFVTNP VVVNGSVLVP EDQCYCAGWI ESRGTNGAQT ASNVLQWLAA 61 GFSILLLMFY AYQTWKSTCG WEEIYVCAIE MVKVILEFFF EFKNPSMLYL ATGHRVQWLR 121 YAEWLLTCPV IAIHLSNLTG LSNDYSRRTM GLLVSDIGTI VWGATSAMAT GYVKVIFFCL 181 GLCYGANTFF HAAKAYIEGY HTVPKGRCRQ VVTGMAWLFF VSWGMFPILF ILGPEGFGVL 241 SVYGSTVGHT IIDLMSKNCW GLLGHYLRVL IHEHILIHGD IRKTTKLNIG GTEIEVETLV 301 EDEAEAGAVN KGTGK
[0065] A L132A/T159C double mutant Chop2 of the invention may be encoded by the following nucleotide sequence (SEQ ID NO: 21):
TABLE-US-00021 1 ATGGACTACG GGGGGGCTCT GTCTGCTGTC GGGAGGGAAC TGCTGTTTGT GACTAACCCT 61 GTCGTCGTGA ACGGGAGTGT GCTGGTCCCT GAGGACCAGT GCTACTGTGC CGGCTGGATC 121 GAATCACGCG GAACCAACGG GGCCCAGACA GCTAGCAATG TGCTGCAGTG GCTGGCCGCT 181 GGGTTTAGTA TCCTGCTGCT GATGTTCTAC GCCTATCAGA CTTGGAAGTC AACCTGCGGC 241 TGGGAGGAAA TCTACGTGTG CGCTATTGAG ATGGTGAAAG TGATCCTGGA GTTCTTCTTC 301 GAGTTCAAGA ACCCAAGCAT GCTGTACCTG GCTACTGGAC ACCGAGTGCA GTGGCTGAGA 361 TATGCAGAAT GGCTGCTGAC ATGCCCCGTC ATCGCCATTC ACCTGTCCAA CCTGACAGGC 421 CTGAGCAATG ACTACTCCAG GAGAACTATG GGACTGCTGG TGTCCGACAT CGGCTGCATT 481 GTCTGGGGAG CAACTTCTGC TATGGCAACC GGATACGTGA AGGTCATCTT TTTCTGCCTG 541 GGGCTGTGCT ATGGCGCAAA TACCTTTTTC CACGCAGCCA AGGCCTACAT TGAGGGGTAT 601 CATACCGTGC CAAAAGGCCG GTGCCGACAG GTGGTCACAG GAATGGCTTG GCTGTTTTTC 661 GTCTCTTGGG GAATGTTTCC CATCCTGTTC ATTCTGGGGC CTGAAGGGTT CGGCGTGCTG 721 TCTGTCTACG GAAGTACAGT GGGGCATACT ATCATTGACC TGATGTCCAA AAACTGTTGG 781 GGCCTGCTGG GACACTATCT GAGAGTGCTG ATCCACGAGC ATATCCTGAT TCATGGCGAT 841 ATTCGGAAGA CCACAAAACT GAATATCGGC GGAACCGAGA TTGAAGTGGA AACACTGGTG 901 GAAGACGAGG CTGAGGCTGG GGCTGTGAAC AAGGGGACTG GCAAA
[0066] A L132A/T159C double mutant Chop2 of the invention may be encoded by the following amino acid sequence (positions 132 and 159 underlined and bolded, SEQ ID NO: 22):
TABLE-US-00022 1 MDYGGALSAV GRELLFVTNP VVVNGSVLVP EDQCYCAGWI ESRGTNGAQT ASNVLQWLAA 61 GFSILLLMFY AYQTWKSTCG WEEIYVCAIE MVKVILEFFF EFKNPSMLYL ATGHRVQWLR 121 YAEWLLTCPV IAIHLSNLTG LSNDYSRRTM GLLVSDIGCI VWGATSAMAT GYVKVIFFCL 181 GLCYGANTFF HAAKAYIEGY HTVPKGRCRQ VVTGMAWLFF VSWGMFPILF ILGPEGFGVL 241 SVYGSTVGHT IIDLMSKNCW GLLGHYLRVL IHEHILIHGD IRKTTKLNIG GTEIEVETLV 301 EDEAEAGAVN KGTGK
[0067] A T159A single mutant Chop2 of the invention may be encoded by the following amino acid sequence (position 159 underlined and bolded, SEQ ID NO: 23):
TABLE-US-00023 1 MDYGGALSAV GRELLFVTNP VVVNGSVLVP EDQCYCAGWI ESRGTNGAQT ASNVLQWLAA 61 GFSILLLMFY AYQTWKSTCG WEEIYVCAIE MVKVILEFFF EFKNPSMLYL ATGHRVQWLR 121 YAEWLLTCPV ILIHLSNLTG LSNDYSRRTM GLLVSDIGAI VWGATSAMAT GYVKVIFFCL 181 GLCYGANTFF HAAKAYIEGY HTVPKGRCRQ VVTGMAWLFF VSWGMFPILF ILGPEGFGVL 241 SVYGSTVGHT IIDLMSKNCW GLLGHYLRVL IHEHILIHGD IRKTTKLNIG GTEIEVETLV 301 EDEAEAGAVN KGTGK
[0068] A L132C/T159A double mutant Chop2 of the invention may be encoded by the following nucleotide sequence (SEQ ID NO: 24):
TABLE-US-00024 1 atggactacg ggggggctct gtctgctgtc gggagggaac tgctgtttgt gactaaccct 61 gtcgtcgtga acgggagtgt gctggtccct gaggaccagt gctactgtgc cggctggatc 121 gaatcacgcg gaaccaacgg ggcccagaca gctagcaatg tgctgcagtg gctggccgct 181 gggtttagta tcctgctgct gatgttctac gcctatcaga cttggaagtc aacctgcggc 241 tgggaggaaa tctacgtgtg cgctattgag atggtgaaag tgatcctgga gttcttcttc 301 gagttcaaga acccaagcat gctgtacctg gctactggac accgagtgca gtggctgaga 361 tatgcagaat ggctgctgac atgccccgtc atctgcattc acctgtccaa cctgacaggc 421 ctgagcaatg actactccag gagaactatg ggactgctgg tgtccgacat cggcgccatt 481 gtctggggag caacttctgc tatggcaacc ggatacgtga aggtcatctt tttctgcctg 541 gggctgtgct atggcgcaaa tacctttttc cacgcagcca aggcctacat tgaggggtat 601 cataccgtgc caaaaggccg gtgccgacag gtggtcacag gaatggcttg gctgtttttc 661 gtctcttggg gaatgtttcc catcctgttc attctggggc ctgaagggtt cggcgtgctg 721 tctgtctacg gaagtacagt ggggcatact atcattgacc tgatgtccaa aaactgttgg 781 ggcctgctgg gacactatct gagagtgctg atccacgagc atatcctgat tcatggcgat 841 attcggaaga ccacaaaact gaatatcggc ggaaccgaga ttgaagtgga aacactggtg 901 gaagacgagg ctgaggctgg ggctgtgaac aaggggactg gcaaa
[0069] A L132C/T159A double mutant Chop2 of the invention may be encoded by the following amino acid sequence (positions 132 and 159 underlined and bolded, SEQ ID NO: 25):
TABLE-US-00025 1 MDYGGALSAV GRELLFVTNP VVVNGSVLVP EDQCYCAGWI ESRGTNGAQT ASNVLQWLAA 61 GFSILLLMFY AYQTWKSTCG WEEIYVCAIE MVKVILEFFF EFKNPSMLYL ATGHRVQWLR 121 YAEWLLTCPV ICIHLSNLTG LSNDYSRRTM GLLVSDIGAI VWGATSAMAT GYVKVIFFCL 181 GLCYGANTFF HAAKAYIEGY HTVPKGRCRQ VVTGMAWLFF VSWGMFPILF ILGPEGFGVL 241 SVYGSTVGHT IIDLMSKNCW GLLGHYLRVL IHEHILIHGD IRKTTKLNIG GTEIEVETLV 301 EDEAEAGAVN KGTGK
[0070] A wild type (WT) Chop2 of the invention may be encoded by the following amino acid sequence (SEQ ID NO: 26):
TABLE-US-00026 1 MDYGGALSAV GRELLFVTNP VVVNGSVLVP EDQCYCAGWI ESRGTNGAQT ASNVLQWLAA 61 GFSILLLMFY AYQTWKSTCG WEEIYVCAIE MVKVILEFFF EFKNPSMLYL ATGHRVQWLR 121 YAEWLLTCPV ILIHLSNLTG LSNDYSRRTM GLLVSDIGTI VWGATSAMAT GYVKVIFFCL 181 GLCYGANTFF HAAKAYIEGY HTVPKGRCRQ VVTGMAWLFF VSWGMFPILF ILGPEGFGVL 241 SVYGSTVGHT IIDLMSKNCW GLLGHYLRVL IHEHILIHGD IRKTTKLNIG GTEIEVETLV 301 EDEAEAGAVN KGTGK
[0071] Mutant ChR2 proteins of the invention also demonstrate slower channel kinetics. Higher light sensitivity was found to correlate with slower channel kinetics, indicating a trade-off between light sensitivity and channel kinetics. Chop2 proteins that form the ChR2 proteins of the present invention may also comprise additional mutations or modifications that may improve channel kinetics, or increase the deactivation rate, of the ChR2. Particularly preferred ChR2 mutants balance the threshold of light sensitivity with channel kinetics.
Compositions and Kits
[0072] Compositions and kits of the invention comprise at least one nucleic acid molecule or polypeptide molecule that encodes a mutant Chop2 protein, and the resulting ChR2, of the invention. The at least one nucleic acid molecule or polypeptide molecule that encodes a mutant Chop2 protein of the invention may further include a pharmaceutically-acceptable carrier. Kits of the invention further include instructions for administering a composition of the invention to a subject.
Therapeutic Uses
[0073] Mutations were made on a codon optimized Chop2-GFP fusion protein to create single and double mutations at the L132 (Leucine 132) and T159 (threonine 159) sites. The functional properties of each mutant ChR2, or a combination thereof, were first examined in HEK cells. AAV2 virus vectors carrying mutant Chop2-GFP constructs driven by CAG promoter were made and injected intravitreally into the eyes of adult mice. Mutant Chop2-mediated light responses were examined by using multi-electrode array recordings from whole-mount retinas.
[0074] Single mutant ChR2, i.e., L132 and T159C, markedly lower the threshold light intensity that is required to evoke a ChR2-mediated photocurrent. Moreover, several double mutant ChR2 variants, including L132C/T159C, L132A/T159C, and L132C/T159S, were found to further increase the photocurrent above the results of any single mutant ChR2 at low light intensities. The double mutants exhibited a slower off-rate, which is likely to contribute to the increased photocurrent at the low light intensities. Spiking activity of retinal ganglion cells mediated by the L132C/T159C double mutant was observed at the light intensity of 10.sup.13 photon/cm.sup.2/s and at the wavelength of 473 nm. This light level is about 1.5 to 2 log units lower than the light level that is required to elicit the spiking activity with wild-type ChR2. The spike firing of retinal ganglion cells expressing L132C/T159C could follow a light flicker frequency of up to 15 Hz. Ongoing studies are evaluating the long-term expression and safety of mutant ChR2s of the invention in retinal neurons.
[0075] Furthermore, expression of the mutant Chop2 proteins, and the resulting ChR2 proteins, of the present invention was not found to cause neurotoxicity of up to two months after viral injection in mice, demonstrating the safety of the present invention for therapeutic use.
[0076] Vectors for use in the present invention can include various viral vectors, such as plasmids and recombinant viruses, i.e., recombinant adeno-associated virus (rAAV), recombinant adenoviruses, recombinant retroviruses, recombinant lentiviruses, and other viruses known in the art.
[0077] In some embodiments, the expression of the Chop2 proteins of the present invention is driven by a constitutive promoter, i.e., CAG promoter, CMV promoter, LTR. In other embodiments, the promoter is an inducible or a cell-specific promoter. Cell type-specific promoters that enable Chop2 protein expression in specific subpopulations of cells, i.e., retinal neuron cells or degenerating cells, may be preferred. These cells may include, but are not limited to, a retinal ganglion cell, a photoreceptor cell, a bipolar cell, a rod bipolar cell, an ON-type cone bipolar cell, a retinal ganglion cell, a photosensitive retinal ganglion cell, a horizontal cell, an amacrine cell, or an AII amacrine cell. Cell type-specific promoters are well known in the art. Particularly preferred cell type-specific promoters include, but are not limited to mGluR6, NK-3, and Pcp2(L7).
[0078] In some embodiments, use of different opsin genes in addition to the mutant Chop2 proteins of the present invention and targeted gene expression may further increase light sensitivity or improve vision. Visual information is processed through the retina through two pathways: an ON pathway which signals the light ON, and an OFF pathway which signals the light OFF. The existence of the ON and OFF pathway is important for the enhancement of contrast sensitivity. The visual signal in the ON pathway is relay from ON-cone bipolar cells to ON ganglion cells. Both ON-cone bipolar cells and ON-ganglion cells are depolarized in response to light. On the other hand, the visual signal in the OFF pathway is carried from OFF-cone bipolar cells to OFF ganglion cells. Both OFF-cone bipolar cells and OFF-ganglion cells are hypopolarized in response to light. Rod bipolar cells, which are responsible for the ability to see in dim light (scotopic vision), are ON bipolar cells (depolarized in response to light). Rod bipolar cells relay the vision signal through AII amacrine cells (an ON type retinal cells) to ON an OFF cone bipolar cells.
[0079] Accordingly, a dual rhodopsin system can be used to recapitulate the ON and OFF pathways integral to visual processing and acuity. Briefly, a Chop2 protein of the present invention can be specifically targeted to ON type retinal neurons (i.e., ON type ganglion cells and/or ON type bipolar cells), while a hypopolarizing light sensor (i.e., halorhodopsin or other chloride pump known in the art) can be targeted to OFF type retinal neurons (i.e. OFF type ganglion cells and/or OFF type bipolar cells) to create ON and OFF pathways. The specific targeting to preferred cell subpopulations can be achieved through the use of different cell type-specific promoters. For example, Chop2 expression may be driven by the mGluR6 promoter for targeted expression in ON-type retinal neurons (i.e., ON type ganglion cells and/or ON type bipolar cells) while a hypopolarizing channel, such as halorhodopsin, expression is driven by the NK-3 promoter for targeted expression in OFF-type retinal neurons (i.e., OFF type ganglion cells and/or OFF type bipolar cells).
[0080] An alternative approach to restore ON and OFF pathways in the retina is achieved by, expressing a depolarizing light sensor, such as ChR2, to rod bipolar cells or AII amacrine. In this approach, the depolarization of rod bipolar cells or AII amacrine cells can lead to the ON and OFF responses at the levels of cone bipolar cells and the downstream retinal ganglion cells. Thus, the ON and OFF pathways that are inherent in the retina are maintained.
[0081] The present invention can be formulated to a pharmaceutical composition or medicament suitable for administration into a subject or patient. Suitable routes of administration include, for example, intravitreal, intraocular, or subretinal injection.
[0082] Such formulations comprise a pharmaceutically and/or physiologically acceptable vehicle, diluent, carrier or excipient, such as buffered saline or other buffers, e.g., HEPES, to maintain physiologic pH. For a discussion of such components and their formulation, see, generally, Gennaro, A E., Remington: The Science and Practice of Pharmacy, Lippincott Williams & Wilkins Publishers; 2003 or latest edition). See also, WO00/15822. If the preparation is to be stored for long periods, it may be frozen, for example, in the presence of glycerol.
[0083] The pharmaceutical composition described above is administered to a subject having a visual or blinding disease by any appropriate route, preferably by intravitreal or subretinal injection, depending on the retinal layer being targeted.
[0084] Disclosures from Bennett and colleagues (cited herein) concern targeting of retinal pigment epithelium--the most distal layer from the vitreal space. According to the present invention, the Chop2 construct or polypeptide is targeted to retinal cells, i.e., retinal ganglion cells or bipolar cells. Such cells are known to be reasonably well-accessible to intravitreal injection as disclosed herein. Intravitreal and/or subretinal injection can provide the necessary access to the bipolar cells, especially in circumstances in which the photoreceptor cell layer is absent due to degeneration--which is the case in certain forms of degeneration that the present invention is intended to overcome.
[0085] To test for the vector's ability to express the Chop2 mutants of the present invention, specifically in mammalian retinal neurons, by AAV-mediated delivery, a combination of a preferred promoter sequence linked to a reporter gene such as LacZ or GFP linked to a SV40 poly A sequence can be inserted into a plasmid and packaged into rAAV virus particles, concentrated, tested for contaminating adenovirus and titered for rAAV using an infectious center assay. The right eyes of a number of test subjects, preferably inbred mice, can be injected sub-retinally with about 1 .mu.l of the rAAV preparation (e.g., greater than about 10.sup.10 infectious units ml). Two weeks later, the right (test) and left (control) eyes of half the animals may be removed, fixed and stained with an appropriate substrate or antibody or other substance to reveal the presence of the reporter gene. A majority of the test retinas in injected eyes will exhibited a focal stained region, e.g., blue for LacZ/Xgal, or green for GFP consistent with a subretinal bleb of the injected virus creating a localized retinal detachment. All control eyes may be negative for the reporter gene product. Reporter gene expression examined in mice sacrificed at later periods is detected for at least 10 weeks post-injection, which suggests persistent expression of the reporter transgene.
[0086] In one embodiment, the Chop2 constructs are packaged in adenoviral vectors for transgene delivery. An effective amount of rAAV virions carrying a nucleic acid sequence encoding the Chop2 DNA under the control of the promoter of choice, preferably a constitutive CMV promoter or a cell-specific promoter such as mGluR6, is preferably in the range of between about 10.sup.10 to about 10.sup.13 rAAV infectious units in a volume of between about 150 and about 800 .mu.l per injection. The rAAV infectious units can be measured according to McLaughlin, S K et al., 1988, J Virol 62:1963. More preferably, the effective amount is between about 10.sup.10 and about 10.sup.12 rAAV infectious units and the injection volume is preferably between about 250 and about 500 .mu.l. Other dosages and volumes, preferably within these ranges but possibly outside them, may be selected by the treating professional, taking into account the physical state of the subject (preferably a human), who is being treated, including, age, weight, general health, and the nature and severity of the particular ocular disorder.
[0087] It may also be desirable to administer additional doses ("boosters") of the present nucleic acid(s) or rAAV compositions. For example, depending upon the duration of the transgene expression within the ocular target cell, a second treatment may be administered after 6 months or yearly, and may be similarly repeated. Neutralizing antibodies to AAV are not expected to be generated in view of the routes and doses used, thereby permitting repeat treatment rounds.
[0088] The need for such additional doses can be monitored by the treating professional using, for example, well-known electrophysiological and other retinal and visual function tests and visual behavior tests. The treating professional will be able to select the appropriate tests applying routine skill in the art. It may be desirable to inject larger volumes of the composition in either single or multiple doses to further improve the relevant outcome parameters.
Ocular Disorders
[0089] The ocular disorders for which the present Chop2 proteins, and the resulting ChR2 proteins, are intended and may be used to improve one or more parameters of vision include, but are not limited to, developmental abnormalities that affect both anterior and posterior segments of the eye. Anterior segment disorders include glaucoma, cataracts, corneal dystrophy, keratoconus. Posterior segment disorders include blinding disorders caused by photoreceptor malfunction and/or death caused by retinal dystrophies and degenerations. Retinal disorders include congenital stationary night blindness, age-related macular degeneration, congenital cone dystrophies, and a large group of retinitis-pigmentosa (RP)-related disorders. These disorders include genetically pre-disposed death of photoreceptor cells, rods and cones in the retina, occurring at various ages. Among those are severe retinopathies, such as subtypes of RP itself that progresses with age and causes blindness in childhood and early adulthood and RP-associated diseases, such as genetic subtypes of LCA, which frequently results in loss of vision during childhood, as early as the first year of life. The latter disorders are generally characterized by severe reduction, and often complete loss of photoreceptor cells, rods and cones. (Trabulsi, E I, ed., Genetic Diseases of the Eye, Oxford University Press, NY, 1998).
[0090] In particular, the Chop2 and ChR2 proteins of the present invention useful for the treatment and/or restoration of at least partial vision to subjects that have lost vision due to ocular disorders, such as RPE-associated retinopathies, which are characterized by a long-term preservation of ocular tissue structure despite loss of function and by the association between function loss and the defect or absence of a normal gene in the ocular cells of the subject. A variety of such ocular disorders are known, such as childhood onset blinding diseases, retinitis pigmentosa, macular degeneration, and diabetic retinopathy, as well as ocular blinding diseases known in the art. It is anticipated that these other disorders, as well as blinding disorders of presently unknown causation which later are characterized by the same description as above, may also be successfully treated by the Chop2 and ChR2 proteins of the present invention. Thus, the particular ocular disorder treated by the present invention may include the above-mentioned disorders and a number of diseases which have yet to be so characterized.
Optogenetics
[0091] The emerging field of optogenetics involves the combination of genetic and optical methods to control specific events in targeted cells of a living tissue. Optogenetics may be used within freely moving mammals and other animals. Moreover, the temporal precision (millisecond-timescale) of optogeneic methods are sufficient to function within intact biological systems.
[0092] The instant invention provides Chop2-gene therapy to retinal tissues of the eye, by introducing into retinal cells a nucleic acid or polypeptide encoding for at least one mutant form of Chop2. Mutant Chop2/ChR2 proteins of the invention are specifically adapted to be light-activated at lower thresholds of light intensities than their wild type counterparts. Accordingly, the mutant Chop2/ChR2 proteins of the invention can be used to activate cells of the retina and visual system using less damaging sources of illumination. The mutant Chop2/ChR2 proteins also conduct larger photocurrents upon activation, resulting in a more robust or efficacious response from the mutant Chop2/ChR2-expressing cells.
[0093] For example, mutant Chop2 proteins of the invention are administered to a subject through local, intravitreous or subretinal, injection of a nucleic acid molecule encoding a mutant Chop2, a mutant Chop2 polypeptide molecule, or a cell expressing a mutant Chop2/ChR2. Retinal cells of the subject express the mutant Chop2 proteins within the plasma membrane. When the transfected or transformed retinal cells encounter light radiation, the transfected or transformed retinal cells transduce an improved or restored signal.
[0094] These methods may be used in subjects of normal and/or impaired vision. Chop2/ChR2 mutants of the invention may preserve, improve, or restore vision. Moreover, Chop2/ChR2 mutants of the invention are used to preserve, improve, or restore the transduction of non-visual information from photosensitive retinal ganglion cells to the brain.
[0095] The term "vision" as used herein is defined as the ability of an organism to usefully detect light as a stimulus for differentiation or action. Vision is intended to encompass the following:
[0096] 1. Light detection or perception--the ability to discern whether or not light is present;
[0097] 2. Light projection--the ability to discern the direction from which a light stimulus is coming;
[0098] 3. Resolution--the ability to detect differing brightness levels (i.e., contrast) in a grating or letter target; and
[0099] 4. Recognition--the ability to recognize the shape of a visual target by reference to the differing contrast levels within the target. Thus, "vision" includes the ability to simply detect the presence of light. The polypeptides and polynucleotides encoding mutant Chop2 of the present invention can be used to improve or restore vision, wherein the improvement or restoration in vision includes, for example, increases in light detection or perception, increase in light sensitivity or photosensitivity in response to a light stimulus, increase in the ability to discern the direction from which a light stimulus is coming, increase in the ability to detect differing brightness levels, increase in the ability to recognize the shape of a visual target, and increases in visual evoked potential or transmission from the retina to the cortex. As such, improvement or restoration of vision may or may not include full restoration of sight, i.e., wherein the vision of the patient treated with the present invention is restored to the degree to the vision of a non-affected individual. The visual recovery described in the animal studies described below may, in human terms, place the person on the low end of vision function by increasing one aspect of vision (i.e., light sensitivity, or visual evoked potential) without restoring full sight. Nevertheless, placement at such a level would be a significant benefit because these individuals could be trained in mobility and potentially in low order resolution tasks which would provide them with a greatly improved level of visual independence compared to total blindness. Even basic light perception can be used by visually impaired individuals, whose vision is improved using the present compositions and methods, to accomplish specific daily tasks and improve general mobility, capability, and quality of life.
[0100] The degree of restoration of vision can be determined through the measurement of vision before, and preferably after, administering a vector comprising, for example, DNA encoding Chop2. Vision can be measured using any of a number of methods well-known in the art or methods not yet established. Vision, as improved or restored by the present invention, can be measured by any of the following visual responses:
[0101] 1. a light detection response by the subject after exposure to a light stimulus--in which evidence is sought for a reliable response of an indication or movement in the general direction of the light by the subject individual when the light it is turned on;
[0102] 2. a light projection response by the subject after exposure to a light stimulus in which evidence is sought for a reliable response of indication or movement in the specific direction of the light by the individual when the light is turned on;
[0103] 3. light resolution by the subject of a light vs. dark patterned visual stimulus, which measures the subject's capability of resolving light vs dark patterned visual stimuli as evidenced by:
[0104] a. the presence of demonstrable reliable optokinetically produced nystagmoid eye movements and/or related head or body movements that demonstrate tracking of the target (see above) and/or
[0105] b. the presence of a reliable ability to discriminate a pattern visual stimulus and to indicate such discrimination by verbal or non-verbal means, including, for example pointing, or pressing a bar or a button; or
[0106] 4. electrical recording of a visual cortex response to a light flash stimulus or a pattern visual stimulus, which is an endpoint of electrical transmission from a restored retina to the visual cortex, also referred to as the visual evoked potential (VEP). Measurement may be by electrical recording on the scalp surface at the region of the visual cortex, on the cortical surface, and/or recording within cells of the visual cortex.
[0107] Thus, improvement or restoration of vision, according to the present invention, can include, but is not limited to: increases in amplitude or kinetics of photocurrents or electrical response in response to light stimulus in the retinal cells, increases in light sensitivity (i.e., lowering the threshold light intensity required for initiating a photocurrent or electrical response in response to light stimulus, thereby requiring less or lower light to evoke a photocurrent) of the retinal cells, increases in number or amplitude of light-evoked spiking or spike firings, increases in light responses to the visual cortex, which includes increasing in visual evoked potential transmitted from the retina or retinal cells to the visual cortex or the brain.
[0108] Both in vitro and in vivo studies to assess the various parameters of the present invention may be used, including recognized animal models of blinding human ocular disorders. Large animal models of human retinopathy, e.g., childhood blindness, are useful. The examples provided herein allow one of skill in the art to readily anticipate that this method may be similarly used in treating a range of retinal diseases.
[0109] While earlier studies by others have demonstrated that retinal degeneration can be retarded by gene therapy techniques, the present invention demonstrates a definite physiological recovery of function, which is expected to generate or improve various parameters of vision, including behavioral parameters.
[0110] Behavioral measures can be obtained using known animal models and tests, for example performance in a water maze, wherein a subject in whom vision has been preserved or restored to varying extents will swim toward light (Hayes, J M et al., 1993, Behav Genet 23:395-403).
[0111] In models in which blindness is induced during adult life or congenital blindness develops slowly enough that the individual experiences vision before losing it, training of the subject in various tests may be done. In this way, when these tests are re-administered after visual loss to test the efficacy of the present compositions and methods for their vision-restorative effects, animals do not have to learn the tasks de novo while in a blind state. Other behavioral tests do not require learning and rely on the instinctiveness of certain behaviors. An example is the optokinetic nystagmus test (Balkema G W et al., 1984, Invest Ophthalmol Vis Sci. 25:795-800; Mitchiner J C et al., 1976, Vision Res. 16:1169-71).
[0112] The present invention may also be used in combination with other forms of vision therapy known in the art to improve or restore vision. For example, the use of visual prostheses, which include retinal implants, cortical implants, lateral geniculate nucleus implants, or optic nerve implants. Thus, in addition to genetic modification of surviving retinal neurons using the present methods, the subject being treated may be provided with a visual prosthesis before, at the same time as, or after the molecular method is employed. The effectiveness of visual prosthetics can be improved with training of the individual, thus enhancing the potential impact of the Chop2 transformation of patient cells as contemplated herein. Training methods, such as habituation training characterized by training the subject to recognize (i) varying levels of light and/or pattern stimulation, and/or (ii) environmental stimulation from a common light source or object as would be understood by one skilled in the art; and orientation and mobility training characterized by training the subject to detect visually local objects and move among said objects more effectively than without the training. In fact, any visual stimulation techniques that are typically used in the field of low vision rehabilitation are applicable here.
EXAMPLES
Example 1: Generation of Labeled Mutant Chop2 Constructs
[0113] Mutations were made on a codon optimized Chop2-GFP fusion protein to create single and double mutations at the L132 (Leucine 132) and T159 (Threonine 159) sites. Several mutants were generated, for example, single mutants such as L132A, L132C, T159A, T159C, and T 159S, and double mutants such as L132C/T159C, L132C/T159S, L132A/T159C, and L132C/T159A. Chop2-GFP transgenes were cloned into a rAAV vector under the control of a CAG promoter using methods known in the art.
Example 2: In Vitro Analysis of Mutant Chop2 Constructs
[0114] The functional properties of each mutant Chop2, or a combination thereof, were first examined in HEK cells. Chop2 constructs were delivered to HEK cells by adenoviral infection, for example. Upon expression of the WT or mutant Chop2, functional WT and mutant ChR2 channels were formed. Measurements of the light sensitivity and other properties of the ChR2 channels were assessed as described herein. The light stimuli (photons/cm.sup.2s at 460 nm) were generated by a xenon arc lamp and attenuated by neutral density filters: ND4.0 (2.8.times.10.sup.14), ND3.0 (1.4.times.10.sup.15), ND2.5 (4.8.times.10.sup.15); ND2.0 (1.6.times.10.sup.16), ND1.0 (1.3.times.10.sup.17), ND0 (1.2.times.10.sup.18). Light evoked currents were measured from wild-type ChR2, T159C, L132C, L132C/T159C, and L132C/T159S. Patch clamp recordings were performed using methods known in the art.
[0115] Representative recordings from this experiment comparing light sensitivity between the Chop2 constructs demonstrated that mutations at L132 alone or in combination with mutation at T159 show increased photocurrent in comparison to WT (FIG. 1A). FIG. 1B shows the same current traces at a different scale to illustrate the difference in amplitude of the photocurrents between WT ChR2 and ChR2 mutants more clearly. FIG. 1B specifically compares the current traces resulting from light stimulation using the neutral density filter (ND 2.5), equivalent to 4.8.times.10.sup.15 photos/cm.sup.2/s; the traces are designated by the arrows. The amplitude of the photocurrent of the L132C mutant is larger than that of WT; the amplitude of the photocurrent of double mutant L132C/T159C is larger than that of L132C; and the amplitude of the photocurrent of the L132C/T159S mutant larger than L132/T159C. The current traces of the ChR2 mutants, particularly double mutants L132C/T159C and L132C/T159S, also show slower deactivation kinetics when compared to WT and L132C.
[0116] FIG. 2 shows the representative recordings of light-evoked currents from WT ChR2, L132C, L132C/T159C, and L132C/T159S after stimulation by a 10 ms light pulse (1.2.times.10.sup.18 photons/cm.sup.2/s at 460 nm wavelength) to compare the deactivation time course, or decay time course after the light is off. Mutant ChR2 show longer deactivation time courses, with the double mutant L132C/T159S having the longest. Higher light sensitivity, as demonstrated by L132C/T159C and L132C/T159S, may be correlated with slower channel kinetics.
Example 3: In Vivo Ocular Administration and Analysis of Mutant Chop2 Constructs
[0117] AAV2 virus vectors carrying mutant Chop2-GFP constructs driven by CAG promoter were made and injected intravitreally into the eyes of C57BL/6J adult mice. Adult mice were anesthetized by IP injection of ketamine (100 mg/kg) and xylazine (10 mg/kg). Under a dissecting microscope, an incision was made by scissors through the eyelid to expose the sclera. A small perforation was made in the sclera region posterior to the lens with a needle and viral vector suspension of 0.8-1.5 .mu.l at the concentration of approximately 10.sup.11 genomic particles/ml was injected into intravitreal space through the hole with a Hamilton syringe with a 32-gauge blunt-ended needle. For each animal, usually only one eye was injected with viral vectors carrying a Chop2 construct, and the other eye was uninjected or injected with control viral vectors carrying GFP alone. Upon expression of the WT or mutant Chop2 of the present invention, functional WT or mutant ChR2 channels were formed utilizing endogenous retinal, and the properties of these ChR2 proteins were assessed as described herein.
[0118] ChR2-mediated light responses were examined by using multi-electrode array recordings from whole-mount retinas. Light stimuli (photons/cm.sup.2/s) was generated by a 473 nm blue laser and attenuated by neutral density filters: ND0 (6.3.times.10.sup.16), ND1.0 (7.4.times.10.sup.15), ND1.5 (2.7.times.10.sup.15), ND2.0 (7.3.times.10.sup.14), ND2.5 (3.2.times.10.sup.14), ND3.0 (8.5.times.10.sup.13), ND3.5 (3.8.times.10.sup.13), and ND4.0 (9.5.times.10.sup.12).
[0119] The multielectrode array recordings were based on the procedures reported by Tian and Copenhagen (2003). Briefly, the retina was dissected and placed photoreceptor side down on a nitrocellulose filter paper strip (Millipore Corp., Bedford, Mass.). The mounted retina was placed in the MEA-60 multielectrode array recording chamber of 30 .mu.m diameter electrodes spaced 200 .mu.m apart (Multi Channel System MCS GmbH, Reutlingen, Germany), with the ganglion cell layer facing the recording electrodes. The retina was continuously perfused in oxygenated extracellular solution at 34.degree. C. during all experiments. The extracellular solution contained (in mM): NaCl, 124; KCl, 2.5; CaCl.sub.2, 2; MgCl.sub.2, 2; NaH.sub.2PO.sub.4, 1.25; NaHCO.sub.3, 26; and glucose, 22 (pH 7.35 with 95% O.sub.2 and 5% CO.sub.2). Recordings were usually started 60 min after the retina was positioned in the recording chamber. The interval between onsets of each light stimulus was 10-15 s. The signals were filtered between 200 Hz (low cut off) and 20 kHz (high cut off). The responses from individual neurons were analyzed using Offline Sorter software (Plexon, Inc., Dallas, Tex.).
[0120] Single mutant Chop2/ChR2 mutants, i.e., L132 and T159C, markedly lower the threshold light intensity that is required to evoke a ChR2-mediated photocurrent. Moreover, several double mutants, including L132C/T159C, L132A/T159C, and L132C/T159S, were found to further increase the photocurrent at low light intensities. Different neutral density filters were used to attenuate the light stimuli to differentiate the light-evoked responses of the Chop2 constructs in low light. Spiking activity of retinal ganglion cells mediated by the mutants of the present invention was observed at the light intensities about 1.5 to 2 log units lower than the light level that is required to elicit the spiking activity with wild-type ChR2 (FIG. 3). Specifically, WT ChR2 exhibited did not exhibit any spiking activity in response to light stimuli with neutral density filter 2.5 (3.2.times.10.sup.14 photons/cm.sup.2/s) while ChR2 mutants (L132C, L132C/T159C, and L132C/T159S) demonstrate spiking activity. In fact, the ChR2 mutants still exhibited spiking activity in response to light with neutral density filters 3.0 and 3.5. Therefore, ChR2 mutants of the present invention possess higher light sensitivity and, thus, a markedly lower threshold light intensity that is required to elicit a ChR2-mediated photocurrent. Moreover, ChR2 double mutants possess a higher light sensitivity than single mutants, i.e. L132C. In addition, the spike firing of retinal ganglion cells expressing L132C/T159C and L132/T159S could follow a light flicker frequency of up to 15 Hz and 5 Hz, respectively (FIG. 4A-B).
[0121] The L132C/T159A mutant shows high light sensitivity, probably the most light sensitive among these mutants, but it also shows extremely slow off-rate (the channel continue open for many many sends after light off). Interestingly, it can be turned off more quickly using a light with long-wavelengths, such as yellow light. The L132C/T159A mutant (encoded by SEQ ID NOs: 24 and 25) demonstrates significant potential.
[0122] Given the trade-off between light sensitivity and channel kinetics, Chop2/ChR2 mutants that demonstrate a balance between light sensitivity and channel kinetics, such as L132C/T159C or L132C/T159S, may be suitable for the application of vision restoration.
Example 4: Analysis of Mutant Chop2 Constructs in Mouse Models of Disease
[0123] Mouse models of degenerative ocular diseases are known in the art. For example, homozygous rd1 (rd1/rd1) mice are a commonly used photoreceptor degeneration model. Rd1 mice carry a null mutation in a cyclic GMP phosphodiesterase, PDE6, similar to some forms of retinitis pigmentosa in humans. Other well-established mouse models of ocular disease that may be of particular interest to demonstrate ChR2 mutant safety and efficacy include rds (also known as Prph.sup.Rd2), rd3, rd4, rd5, rd6, rd7, rd8, rd9, Pde6b.sup.rd10, or cpfl1 mice.
[0124] The Chop2-GFP constructs of the present invention can be injected intravitreally into the eyes of newborn (P1) or adult mice at 2-12 months of age. GFP signal can be observed in the Chop2-GFP-injected retinas, to determine the levels of ChR2 expression or expression in particular populations of cells, such as the retinal ganglion cells. Mutant Chop2-GFP expression can be monitored for a predetermined amount of time, i.e. 3-6 months, or 1 year after viral injection. Patch-clamp and multichannel array recordings can be performed using the methods known in the art and described herein to measure the light-evoked responses of mutant Chop2-GFP-expressing cells in vivo.
[0125] Additional techniques and tests are well-established in the art to test for the restoration of light sensitivity or vision. Visual evoked potentials from the Chop2-GFP expressing cells or visual cortex can be examined, as described in PCT publication WO 2007/131180. Other tests include behavioral assessments of the visual acuity in the mice, i.e., virtual optomotor test and visual water maze.
Example 5: Analysis of Long-Term Expression and Safety of Administration of Mutant Chop2 Constructs to Retinal Neurons
[0126] Neurotoxicity was assessed in C57BL/6J adult mice injected with Chop2 constructs of the present invention. The expression safety of Chop2 mutants in the retina was assessed by immunostaining and cell counting after exposure to strong blue light for two weeks. None of the mice were found to exhibit symptoms of neurotoxicity for up to two months after injection.
[0127] Additional ongoing studies are evaluating the long-term expression and safety of Chop2/ChR2 mutants of the invention in retinal neurons.
Other Embodiments
[0128] While the invention has been described in conjunction with the detailed description thereof, the foregoing description is intended to illustrate and not limit the scope of the invention, which is defined by the scope of the appended claims. Other aspects, advantages, and modifications are within the scope of the following claims.
[0129] The patent and scientific literature referred to herein establishes the knowledge that is available to those with skill in the art. All United States patents and published or unpublished United States patent applications cited herein are incorporated by reference. All published foreign patents and patent applications cited herein are hereby incorporated by reference. All other published references, documents, manuscripts and scientific literature cited herein are hereby incorporated by reference.
[0130] While this invention has been particularly shown and described with references to preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the scope of the invention encompassed by the appended claims.
Sequence CWU
1
1
2613585DNAChlamydomonas reinhardtii 1gcagcaccat acttgacatc tgtcgccaag
caagcattaa acatggatta tggaggcgcc 60ctgagtgccg ttgggcgcga gctgctattt
gtaacgaacc cagtagtcgt caatggctct 120gtacttgtgc ctgaggacca gtgttactgc
gcgggctgga ttgagtcgcg tggcacaaac 180ggtgcccaaa cggcgtcgaa cgtgctgcaa
tggcttgctg ctggcttctc catcctactg 240cttatgtttt acgcctacca aacatggaag
tcaacctgcg gctgggagga gatctatgtg 300tgcgctatcg agatggtcaa ggtgattctc
gagttcttct tcgagtttaa gaacccgtcc 360atgctgtatc tagccacagg ccaccgcgtc
cagtggttgc gttacgccga gtggcttctc 420acctgcccgg tcattctcat tcacctgtca
aacctgacgg gcttgtccaa cgactacagc 480aggcgcacca tgggtctgct tgtgtctgat
attggcacaa ttgtgtgggg cgccacttcc 540gccatggcca ccggatacgt caaggtcatc
ttcttctgcc tgggtctgtg ttatggtgct 600aacacgttct ttcacgctgc caaggcctac
atcgagggtt accacaccgt gccgaagggc 660cggtgtcgcc aggtggtgac tggcatggct
tggctcttct tcgtatcatg gggtatgttc 720cccatcctgt tcatcctcgg ccccgagggc
ttcggcgtcc tgagcgtgta cggctccacc 780gtcggccaca ccatcattga cctgatgtcg
aagaactgct ggggtctgct cggccactac 840ctgcgcgtgc tgatccacga gcatatcctc
atccacggcg acattcgcaa gaccaccaaa 900ttgaacattg gtggcactga gattgaggtc
gagacgctgg tggaggacga ggccgaggct 960ggcgcggtca acaagggcac cggcaagtac
gcctcccgcg agtccttcct ggtcatgcgc 1020gacaagatga aggagaaggg cattgacgtg
cgcgcctctc tggacaacag caaggaggtg 1080gagcaggagc aggccgccag ggctgccatg
atgatgatga acggcaatgg catgggtatg 1140ggaatgggaa tgaacggcat gaacggaatg
ggcggtatga acgggatggc tggcggcgcc 1200aagcccggcc tggagctcac tccgcagcta
cagcccggcc gcgtcatcct ggcggtgccg 1260gacatcagca tggttgactt cttccgcgag
cagtttgctc agctatcggt gacgtacgag 1320ctggtgccgg ccctgggcgc tgacaacaca
ctggcgctgg ttacgcaggc gcagaacctg 1380ggcggcgtgg actttgtgtt gattcacccc
gagttcctgc gcgaccgctc tagcaccagc 1440atcctgagcc gcctgcgcgg cgcgggccag
cgtgtggctg cgttcggctg ggcgcagctg 1500gggcccatgc gtgacctgat cgagtccgca
aacctggacg gctggctgga gggcccctcg 1560ttcggacagg gcatcctgcc ggcccacatc
gttgccctgg tggccaagat gcagcagatg 1620cgcaagatgc agcagatgca gcagattggc
atgatgaccg gcggcatgaa cggcatgggc 1680ggcggtatgg gcggcggcat gaacggcatg
ggcggcggca acggcatgaa caacatgggc 1740aacggcatgg gcggcggcat gggcaacggc
atgggcggca atggcatgaa cggaatgggt 1800ggcggcaacg gcatgaacaa catgggcggc
aacggaatgg ccggcaacgg aatgggcggc 1860ggcatgggcg gcaacggtat gggtggctcc
atgaacggca tgagctccgg cgtggtggcc 1920aacgtgacgc cctccgccgc cggcggcatg
ggcggcatga tgaacggcgg catggctgcg 1980ccccagtcgc ccggcatgaa cggcggccgc
ctgggtacca acccgctctt caacgccgcg 2040ccctcaccgc tcagctcgca gctcggtgcc
gaggcaggca tgggcagcat gggaggcatg 2100ggcggaatga gcggaatggg aggcatgggt
ggaatggggg gcatgggcgg cgccggcgcc 2160gccacgacgc aggctgcggg cggcaacgcg
gaggcggaga tgctgcagaa tctcatgaac 2220gagatcaatc gcctgaagcg cgagcttggc
gagtaaaagg ctggaggccg gtactgcgat 2280acctgcgagc tcgcgcgcct gactcgtcgt
acacacggct caggagcacg cgcgcgtgga 2340cttctcaacc tgtgtgcaac gtatctagag
cggcctgtgc gcgaccgtcc gtgagcattc 2400cggtgcgatc ttcccgcctt cgcaccgcaa
gttcccttcc tggccctgct gcgcctgacg 2460catcgtccga acggaagggc ggcttgatca
gtaaagcatt gaagactgaa gtcgtgcgac 2520cgtagtgcta tggctctgca cgtaagtggg
cgctgccctg cttactacgc attgcccaag 2580actgcttcct tttggtggcc gaggccctgg
tcccacatca ttcatttgca taacgtactg 2640tttagttaca tacgctttgc ttaacctcga
caattgcaac atgggctgag agtccgtacg 2700gcggctatgg acgaaggtgt tatcggatgt
gattaggaat ctcggttgaa aggcttcgag 2760aaagtgagct tcatctgtgg cttctgttgg
ggtcatcaag aagaacgacg gtaaggcaaa 2820cgaggtaaaa gtggcacgtc tttgtgcaca
acgggcccgt ggagagtggg ggagtgcatg 2880tgtgcggtcc taacacgcga gtgcaaagcg
ggcttttctg gagctgggtt acggtctggc 2940tcggcaactg ctctgtgttt taaccacagc
ttcggaagtc tgggtatgtt ttgttggcag 3000aaacatttgg gtaacttgag ggtgattcgt
ctggagtcgg acaacatggc tgccgtccgt 3060gtgcagggac ggtaatcaat gagctggagc
tgtgatgctc accacacgtt gcatacccct 3120gcttacaaaa acactttgat gtcgtggcca
aactatgcgt gagcaaagag ttaaagaggc 3180atgagtgcat ggttgcggac gtgcgcaaca
attgcatcaa gtatttgacg ccttcaagcc 3240aacaagtgcg cgcgcggcaa cttgattaac
acgccggacg cagtggtggg ggcgtgtaca 3300gtgtttatga gctgccattc tgcgatccgt
agtgttaggt tgcgtgtgac gccgcgcggc 3360tgtgggccct tacatggaga gttgggtgct
tcaccacacg gttggcgccg ctgaagggtg 3420tgctatgttt tggtaaagcc ggggccctga
agaccgcaac cgtagaaccg tactgaaagg 3480gtgtcagccc ggggtaactg gatgccctgg
gacatagcta ttaatgttga agtgaagccg 3540tcaagccgag tgccgtgcgc cgctgtatca
ccaaggcccg tccta 35852737PRTChlamydomonas reinhardtii
2Met Asp Tyr Gly Gly Ala Leu Ser Ala Val Gly Arg Glu Leu Leu Phe1
5 10 15Val Thr Asn Pro Val Val
Val Asn Gly Ser Val Leu Val Pro Glu Asp 20 25
30Gln Cys Tyr Cys Ala Gly Trp Ile Glu Ser Arg Gly Thr
Asn Gly Ala 35 40 45Gln Thr Ala
Ser Asn Val Leu Gln Trp Leu Ala Ala Gly Phe Ser Ile 50
55 60Leu Leu Leu Met Phe Tyr Ala Tyr Gln Thr Trp Lys
Ser Thr Cys Gly65 70 75
80Trp Glu Glu Ile Tyr Val Cys Ala Ile Glu Met Val Lys Val Ile Leu
85 90 95Glu Phe Phe Phe Glu Phe
Lys Asn Pro Ser Met Leu Tyr Leu Ala Thr 100
105 110Gly His Arg Val Gln Trp Leu Arg Tyr Ala Glu Trp
Leu Leu Thr Cys 115 120 125Pro Val
Ile Leu Ile His Leu Ser Asn Leu Thr Gly Leu Ser Asn Asp 130
135 140Tyr Ser Arg Arg Thr Met Gly Leu Leu Val Ser
Asp Ile Gly Thr Ile145 150 155
160Val Trp Gly Ala Thr Ser Ala Met Ala Thr Gly Tyr Val Lys Val Ile
165 170 175Phe Phe Cys Leu
Gly Leu Cys Tyr Gly Ala Asn Thr Phe Phe His Ala 180
185 190Ala Lys Ala Tyr Ile Glu Gly Tyr His Thr Val
Pro Lys Gly Arg Cys 195 200 205Arg
Gln Val Val Thr Gly Met Ala Trp Leu Phe Phe Val Ser Trp Gly 210
215 220Met Phe Pro Ile Leu Phe Ile Leu Gly Pro
Glu Gly Phe Gly Val Leu225 230 235
240Ser Val Tyr Gly Ser Thr Val Gly His Thr Ile Ile Asp Leu Met
Ser 245 250 255Lys Asn Cys
Trp Gly Leu Leu Gly His Tyr Leu Arg Val Leu Ile His 260
265 270Glu His Ile Leu Ile His Gly Asp Ile Arg
Lys Thr Thr Lys Leu Asn 275 280
285Ile Gly Gly Thr Glu Ile Glu Val Glu Thr Leu Val Glu Asp Glu Ala 290
295 300Glu Ala Gly Ala Val Asn Lys Gly
Thr Gly Lys Tyr Ala Ser Arg Glu305 310
315 320Ser Phe Leu Val Met Arg Asp Lys Met Lys Glu Lys
Gly Ile Asp Val 325 330
335Arg Ala Ser Leu Asp Asn Ser Lys Glu Val Glu Gln Glu Gln Ala Ala
340 345 350Arg Ala Ala Met Met Met
Met Asn Gly Asn Gly Met Gly Met Gly Met 355 360
365Gly Met Asn Gly Met Asn Gly Met Gly Gly Met Asn Gly Met
Ala Gly 370 375 380Gly Ala Lys Pro Gly
Leu Glu Leu Thr Pro Gln Leu Gln Pro Gly Arg385 390
395 400Val Ile Leu Ala Val Pro Asp Ile Ser Met
Val Asp Phe Phe Arg Glu 405 410
415Gln Phe Ala Gln Leu Ser Val Thr Tyr Glu Leu Val Pro Ala Leu Gly
420 425 430Ala Asp Asn Thr Leu
Ala Leu Val Thr Gln Ala Gln Asn Leu Gly Gly 435
440 445Val Asp Phe Val Leu Ile His Pro Glu Phe Leu Arg
Asp Arg Ser Ser 450 455 460Thr Ser Ile
Leu Ser Arg Leu Arg Gly Ala Gly Gln Arg Val Ala Ala465
470 475 480Phe Gly Trp Ala Gln Leu Gly
Pro Met Arg Asp Leu Ile Glu Ser Ala 485
490 495Asn Leu Asp Gly Trp Leu Glu Gly Pro Ser Phe Gly
Gln Gly Ile Leu 500 505 510Pro
Ala His Ile Val Ala Leu Val Ala Lys Met Gln Gln Met Arg Lys 515
520 525Met Gln Gln Met Gln Gln Ile Gly Met
Met Thr Gly Gly Met Asn Gly 530 535
540Met Gly Gly Gly Met Gly Gly Gly Met Asn Gly Met Gly Gly Gly Asn545
550 555 560Gly Met Asn Asn
Met Gly Asn Gly Met Gly Gly Gly Met Gly Asn Gly 565
570 575Met Gly Gly Asn Gly Met Asn Gly Met Gly
Gly Gly Asn Gly Met Asn 580 585
590Asn Met Gly Gly Asn Gly Met Ala Gly Asn Gly Met Gly Gly Gly Met
595 600 605Gly Gly Asn Gly Met Gly Gly
Ser Met Asn Gly Met Ser Ser Gly Val 610 615
620Val Ala Asn Val Thr Pro Ser Ala Ala Gly Gly Met Gly Gly Met
Met625 630 635 640Asn Gly
Gly Met Ala Ala Pro Gln Ser Pro Gly Met Asn Gly Gly Arg
645 650 655Leu Gly Thr Asn Pro Leu Phe
Asn Ala Ala Pro Ser Pro Leu Ser Ser 660 665
670Gln Leu Gly Ala Glu Ala Gly Met Gly Ser Met Gly Gly Met
Gly Gly 675 680 685Met Ser Gly Met
Gly Gly Met Gly Gly Met Gly Gly Met Gly Gly Ala 690
695 700Gly Ala Ala Thr Thr Gln Ala Ala Gly Gly Asn Ala
Glu Ala Glu Met705 710 715
720Leu Gln Asn Leu Met Asn Glu Ile Asn Arg Leu Lys Arg Glu Leu Gly
725 730
735Glu32241DNAChlamydomonas reinhardtii 3gcatctgtcg ccaagcaagc attaaacatg
gattatggag gcgccctgag tgccgttggg 60cgcgagctgc tatttgtaac gaacccagta
gtcgtcaatg gctctgtact tgtgcctgag 120gaccagtgtt actgcgcggg ctggattgag
tcgcgtggca caaacggtgc ccaaacggcg 180tcgaacgtgc tgcaatggct tgctgctggc
ttctccatcc tactgcttat gttttacgcc 240taccaaacat ggaagtcaac ctgcggctgg
gaggagatct atgtgtgcgc tatcgagatg 300gtcaaggtga ttctcgagtt cttcttcgag
tttaagaacc cgtccatgct gtatctagcc 360acaggccacc gcgtccagtg gttgcgttac
gccgagtggc ttctcacctg cccggtcatt 420ctcattcacc tgtcaaacct gacgggcttg
tccaacgact acagcaggcg caccatgggt 480ctgcttgtgt ctgatattgg cacaattgtg
tggggcgcca cttccgccat ggccaccgga 540tacgtcaagg tcatcttctt ctgcctgggt
ctgtgttatg gtgctaacac gttctttcac 600gctgccaagg cctacatcga gggttaccac
accgtgccga agggccggtg tcgccaggtg 660gtgactggca tggcttggct cttcttcgta
tcatggggta tgttccccat cctgttcatc 720ctcggccccg agggcttcgg cgtcctgagc
gtgtacggct ccaccgtcgg ccacaccatc 780attgacctga tgtcgaagaa ctgctggggt
ctgctcggcc actacctgcg cgtgctgatc 840cacgagcata tcctcatcca cggcgacatt
cgcaagacca ccaaattgaa cattggtggc 900actgagattg aggtcgagac gctggtggag
gacgaggccg aggctggcgc ggtcaacaag 960ggcaccggca agtacgcctc ccgcgagtcc
ttcctggtca tgcgcgacaa gatgaaggag 1020aagggcattg acgtgcgcgc ctctctggac
aacagcaagg aggtggagca ggagcaggcc 1080gccagggctg ccatgatgat gatgaacggc
aatggcatgg gtatgggaat gggaatgaac 1140ggcatgaacg gaatgggcgg tatgaacggg
atggctggcg gcgccaagcc cggcctggag 1200ctcactccgc agctacagcc cggccgcgtc
atcctggcgg tgccggacat cagcatggtt 1260gacttcttcc gcgagcagtt tgctcagcta
tcggtgacgt acgagctggt gccggccctg 1320ggcgctgaca acacactggc gctggttacg
caggcgcaga acctgggcgg cgtggacttt 1380gtgttgattc accccgagtt cctgcgcgac
cgctctagca ccagcatcct gagccgcctg 1440cgcggcgcgg gccagcgtgt ggctgcgttc
ggctgggcgc agctggggcc catgcgtgac 1500ctgatcgagt ccgcaaacct ggacggctgg
ctggagggcc cctcgttcgg acagggcatc 1560ctgccggccc acatcgttgc cctggtggcc
aagatgcagc agatgcgcaa gatgcagcag 1620atgcagcaga ttggcatgat gaccggcggc
atgaacggca tgggcggcgg tatgggcggc 1680ggcatgaacg gcatgggcgg cggcaacggc
atgaacaaca tgggcaacgg catgggcggc 1740ggcatgggca acggcatggg cggcaatggc
atgaacggaa tgggtggcgg caacggcatg 1800aacaacatgg gcggcaacgg aatggccggc
aacggaatgg gcggcggcat gggcggcaac 1860ggtatgggtg gctccatgaa cggcatgagc
tccggcgtgg tggccaacgt gacgccctcc 1920gccgccggcg gcatgggcgg catgatgaac
ggcggcatgg ctgcgcccca gtcgcccggc 1980atgaacggcg gccgcctggg taccaacccg
ctcttcaacg ccgcgccctc accgctcagc 2040tcgcagctcg gtgccgaggc aggcatgggc
agcatgggag gcatgggcgg aatgagcgga 2100atgggaggca tgggtggaat ggggggcatg
ggcggcgccg gcgccgccac gacgcaggct 2160gcgggcggca acgcggaggc ggagatgctg
cagaatctca tgaacgagat caatcgcctg 2220aagcgcgagc ttggcgagta a
22414737PRTChlamydomonas reinhardtii
4Met Asp Tyr Gly Gly Ala Leu Ser Ala Val Gly Arg Glu Leu Leu Phe1
5 10 15Val Thr Asn Pro Val Val
Val Asn Gly Ser Val Leu Val Pro Glu Asp 20 25
30Gln Cys Tyr Cys Ala Gly Trp Ile Glu Ser Arg Gly Thr
Asn Gly Ala 35 40 45Gln Thr Ala
Ser Asn Val Leu Gln Trp Leu Ala Ala Gly Phe Ser Ile 50
55 60Leu Leu Leu Met Phe Tyr Ala Tyr Gln Thr Trp Lys
Ser Thr Cys Gly65 70 75
80Trp Glu Glu Ile Tyr Val Cys Ala Ile Glu Met Val Lys Val Ile Leu
85 90 95Glu Phe Phe Phe Glu Phe
Lys Asn Pro Ser Met Leu Tyr Leu Ala Thr 100
105 110Gly His Arg Val Gln Trp Leu Arg Tyr Ala Glu Trp
Leu Leu Thr Cys 115 120 125Pro Val
Ile Leu Ile His Leu Ser Asn Leu Thr Gly Leu Ser Asn Asp 130
135 140Tyr Ser Arg Arg Thr Met Gly Leu Leu Val Ser
Asp Ile Gly Thr Ile145 150 155
160Val Trp Gly Ala Thr Ser Ala Met Ala Thr Gly Tyr Val Lys Val Ile
165 170 175Phe Phe Cys Leu
Gly Leu Cys Tyr Gly Ala Asn Thr Phe Phe His Ala 180
185 190Ala Lys Ala Tyr Ile Glu Gly Tyr His Thr Val
Pro Lys Gly Arg Cys 195 200 205Arg
Gln Val Val Thr Gly Met Ala Trp Leu Phe Phe Val Ser Trp Gly 210
215 220Met Phe Pro Ile Leu Phe Ile Leu Gly Pro
Glu Gly Phe Gly Val Leu225 230 235
240Ser Val Tyr Gly Ser Thr Val Gly His Thr Ile Ile Asp Leu Met
Ser 245 250 255Lys Asn Cys
Trp Gly Leu Leu Gly His Tyr Leu Arg Val Leu Ile His 260
265 270Glu His Ile Leu Ile His Gly Asp Ile Arg
Lys Thr Thr Lys Leu Asn 275 280
285Ile Gly Gly Thr Glu Ile Glu Val Glu Thr Leu Val Glu Asp Glu Ala 290
295 300Glu Ala Gly Ala Val Asn Lys Gly
Thr Gly Lys Tyr Ala Ser Arg Glu305 310
315 320Ser Phe Leu Val Met Arg Asp Lys Met Lys Glu Lys
Gly Ile Asp Val 325 330
335Arg Ala Ser Leu Asp Asn Ser Lys Glu Val Glu Gln Glu Gln Ala Ala
340 345 350Arg Ala Ala Met Met Met
Met Asn Gly Asn Gly Met Gly Met Gly Met 355 360
365Gly Met Asn Gly Met Asn Gly Met Gly Gly Met Asn Gly Met
Ala Gly 370 375 380Gly Ala Lys Pro Gly
Leu Glu Leu Thr Pro Gln Leu Gln Pro Gly Arg385 390
395 400Val Ile Leu Ala Val Pro Asp Ile Ser Met
Val Asp Phe Phe Arg Glu 405 410
415Gln Phe Ala Gln Leu Ser Val Thr Tyr Glu Leu Val Pro Ala Leu Gly
420 425 430Ala Asp Asn Thr Leu
Ala Leu Val Thr Gln Ala Gln Asn Leu Gly Gly 435
440 445Val Asp Phe Val Leu Ile His Pro Glu Phe Leu Arg
Asp Arg Ser Ser 450 455 460Thr Ser Ile
Leu Ser Arg Leu Arg Gly Ala Gly Gln Arg Val Ala Ala465
470 475 480Phe Gly Trp Ala Gln Leu Gly
Pro Met Arg Asp Leu Ile Glu Ser Ala 485
490 495Asn Leu Asp Gly Trp Leu Glu Gly Pro Ser Phe Gly
Gln Gly Ile Leu 500 505 510Pro
Ala His Ile Val Ala Leu Val Ala Lys Met Gln Gln Met Arg Lys 515
520 525Met Gln Gln Met Gln Gln Ile Gly Met
Met Thr Gly Gly Met Asn Gly 530 535
540Met Gly Gly Gly Met Gly Gly Gly Met Asn Gly Met Gly Gly Gly Asn545
550 555 560Gly Met Asn Asn
Met Gly Asn Gly Met Gly Gly Gly Met Gly Asn Gly 565
570 575Met Gly Gly Asn Gly Met Asn Gly Met Gly
Gly Gly Asn Gly Met Asn 580 585
590Asn Met Gly Gly Asn Gly Met Ala Gly Asn Gly Met Gly Gly Gly Met
595 600 605Gly Gly Asn Gly Met Gly Gly
Ser Met Asn Gly Met Ser Ser Gly Val 610 615
620Val Ala Asn Val Thr Pro Ser Ala Ala Gly Gly Met Gly Gly Met
Met625 630 635 640Asn Gly
Gly Met Ala Ala Pro Gln Ser Pro Gly Met Asn Gly Gly Arg
645 650 655Leu Gly Thr Asn Pro Leu Phe
Asn Ala Ala Pro Ser Pro Leu Ser Ser 660 665
670Gln Leu Gly Ala Glu Ala Gly Met Gly Ser Met Gly Gly Met
Gly Gly 675 680 685Met Ser Gly Met
Gly Gly Met Gly Gly Met Gly Gly Met Gly Gly Ala 690
695 700Gly Ala Ala Thr Thr Gln Ala Ala Gly Gly Asn Ala
Glu Ala Glu Met705 710 715
720Leu Gln Asn Leu Met Asn Glu Ile Asn Arg Leu Lys Arg Glu Leu Gly
725 730
735Glu53599DNAChlamydomonas reinhardtii 5ttgacatctg tcgccaagca agcattaaac
atggattatg gaggcgccct gagtgccgtt 60gggcgcgagc tgctatttgt aacgaaccca
gtagtcgtca atggctctgt acttgtgcct 120gaggaccagt gttactgcgc gggctggatt
gagtcgcgtg gcacaaacgg tgcccaaacg 180gcgtcgaacg tgctgcaatg gcttgctgct
ggcttctcca tcctactgct tatgttttac 240gcctaccaaa catggaagtc aacctgcggc
tgggaggaga tctatgtgtg cgctatcgag 300atggtcaagg tgattctcga gttcttcttc
gagtttaaga acccgtccat gctgtatcta 360gccacaggcc accgcgtcca gtggttgcgt
tacgccgagt ggcttctcac ctgcccggtc 420attctcattc acctgtcaaa cctgacgggc
ttgtccaacg actacagcag gcgcaccatg 480ggtctgcttg tgtctgatat tggcacaatt
gtgtggggcg ccacttccgc catggccacc 540ggatacgtca aggtcatctt cttctgcctg
ggtctgtgtt atggtgctaa cacgttcttt 600cacgctgcca aggcctacat cgagggttac
cacaccgtgc cgaagggccg gtgtcgccag 660gtggtgactg gcatggcttg gctcttcttc
gtatcatggg gtatgttccc catcctgttc 720atcctcggcc ccgagggctt cggcgtcctg
agcgtgtacg gctccaccgt cggccacacc 780atcattgacc tgatgtcgaa gaactgctgg
ggtctgctcg gccactacct gcgcgtgctg 840atccacgagc atatcctcat ccacggcgac
attcgcaaga ccaccaaatt gaacattggt 900ggcactgaga ttgaggtcga gacgctggtg
gaggacgagg ccgaggctgg cgcggtcaac 960aagggcaccg gcaagtacgc ctcccgcgag
tccttcctgg tcatgcgcga caagatgaag 1020gagaagggca ttgacgtgcg cgcctctctg
gacaacagca aggaggtgga gcaggagcag 1080gccgccaggg ctgccatgat gatgatgaac
ggcaatggca tgggtatggg aatgggaatg 1140aacggcatga acggaatggg cggtatgaac
gggatggctg gcggcgccaa gcccggcctg 1200gagctcactc cgcagctaca gcccggccgc
gtcatcctgg cggtgccgga catcagcatg 1260gttgacttct tccgcgagca gtttgctcag
ctatcggtga cgtacgagct ggtgccggcc 1320ctgggcgctg acaacacact ggcgctggtt
acgcaggcgc agaacctggg cggcgtggac 1380tttgtgttga ttcaccccga gttcctgcgc
gaccgctcta gcaccagcat cctgagccgc 1440ctgcgcggcg cgggccagcg tgtggctgcg
ttcggctggg cgcagctggg gcccatgcgt 1500gacctgatcg agtccgcaaa cctggacggc
tggctggagg gcccctcgtt cggacagggc 1560atcctgccgg cccacatcgt tgccctggtg
gccaagatgc agcagatgcg caagatgcag 1620cagatgcagc agattggcat gatgaccggc
ggcatgaacg gcatgggcgg cggtatgggc 1680ggcggcatga acggcatggg cggcggcaac
ggcatgaaca acatgggcaa cggcatgggc 1740ggcggcatgg gcaacggcat gggcggcaat
ggcatgaacg gaatgggtgg cggcaacggc 1800atgaacaaca tgggcggcaa cggaatggcc
ggcaacggaa tgggcggcgg catgggcggc 1860aacggtatgg gtggctccat gaacggcatg
agctccggcg tggtggccaa cgtgacgccc 1920tccgccgccg gcggcatggg cggcatgatg
aacggcggca tggctgcgcc ccagtcgccc 1980ggcatgaacg gcggccgcct gggtaccaac
ccgctcttca acgccgcgcc ctcaccgctc 2040agctcgcagc tcggtgccga ggcaggcatg
ggcagcatgg gaggcatggg cggaatgagc 2100ggaatgggag gcatgggtgg aatggggggc
atgggcggcg ccggcgccgc cacgacgcag 2160gctgcgggcg gcaacgcgga ggcggagatg
ctgcagaatc tcatgaacga gatcaatcgc 2220ctgaagcgcg agcttggcga gtaaaaggct
ggaggccggt actgcgatac ctgcgagctc 2280gcgcgcctga ctcgtcgtac acacggctca
ggagcacgcg cgcgtggact tctcaacctg 2340tgtgcaacgt atctagagcg gcctgtgcgc
gaccgtccgt gagcattccg gtgcgatctt 2400cccgccttcg caccgcaagt tcccttcctg
gccctgctgc gcctgacgca tcgtccgaac 2460ggaagggcgg cttgatcagt aaagcattga
agactgaagt cgtgcgaccg tagtgctatg 2520gctctgcacg taagtgggcg ctgccctgct
tactacgcat tgcccaagac tgcttccttt 2580tggtggccga ggccctggtc ccacatcatt
catttgcata acgtactgtt tagttacata 2640cgctttgctt aacctcgaca attgcaacat
gggctgagag tccgtacggc ggctatggac 2700gaaggtgtta tcggatgtga ttaggaatct
cggttgaaag gcttcgagaa agtgagcttc 2760ttctgtggct tctgttgggg tcatcaagaa
gaacgacggt aaggcaaacg aggtaaaagt 2820ggcacgtctt tgtgcacaac gggcccgtgg
agagtggggg agtgcatgtg tgcggtccta 2880acacgcgagt gcaaagcggg cttttctgga
gctgggttac ggtctggctc ggcaactgct 2940ctgtgtttta accacagctt cggaagtctg
ggtatgtttt gttggcagaa acatttgggt 3000aacttgaggg tgattcgtct ggagtcggac
aacatggctg ccgtccgtgt gcagggacgg 3060taatcaatga agctgaagct gtgatgctca
ccacacgttg catacccctg cttacaaaaa 3120cactttgatg tcgtggccaa actatgcgtg
agcaaagagt taaagaggca tgagtgcatg 3180gttgcggacg tgcgcaacaa ttgcatcaag
tatttgacgc cttcaagcca acaagtgcgc 3240gcgcggcaac ttgattaaca cgccggacgc
agtggtgggg gcgtgtacag tgtttatgag 3300ctgccattct gcgatccgta gtgttaggtt
gcgtgtgacg ccgcgcggct gtgggccctt 3360acatggagag ttgggtgctt caccacacgg
ttggcgccgc tgaagggtgt gctatgtttt 3420ggtaaagccg gggccctgaa gaccgcaacc
gtagaaccgt actgaaaggg tgtcagcccg 3480gggtaactgg atgccctggg acatagctat
taatgttgaa gtgaagccgt caagccgagt 3540gccgtgcgcc gctgtatcac caaggcccgt
ccaaaaaaaa aaaaaaaaaa aaaaaaaaa 35996737PRTChlamydomonas reinhardtii
6Met Asp Tyr Gly Gly Ala Leu Ser Ala Val Gly Arg Glu Leu Leu Phe1
5 10 15Val Thr Asn Pro Val Val
Val Asn Gly Ser Val Leu Val Pro Glu Asp 20 25
30Gln Cys Tyr Cys Ala Gly Trp Ile Glu Ser Arg Gly Thr
Asn Gly Ala 35 40 45Gln Thr Ala
Ser Asn Val Leu Gln Trp Leu Ala Ala Gly Phe Ser Ile 50
55 60Leu Leu Leu Met Phe Tyr Ala Tyr Gln Thr Trp Lys
Ser Thr Cys Gly65 70 75
80Trp Glu Glu Ile Tyr Val Cys Ala Ile Glu Met Val Lys Val Ile Leu
85 90 95Glu Phe Phe Phe Glu Phe
Lys Asn Pro Ser Met Leu Tyr Leu Ala Thr 100
105 110Gly His Arg Val Gln Trp Leu Arg Tyr Ala Glu Trp
Leu Leu Thr Cys 115 120 125Pro Val
Ile Leu Ile His Leu Ser Asn Leu Thr Gly Leu Ser Asn Asp 130
135 140Tyr Ser Arg Arg Thr Met Gly Leu Leu Val Ser
Asp Ile Gly Thr Ile145 150 155
160Val Trp Gly Ala Thr Ser Ala Met Ala Thr Gly Tyr Val Lys Val Ile
165 170 175Phe Phe Cys Leu
Gly Leu Cys Tyr Gly Ala Asn Thr Phe Phe His Ala 180
185 190Ala Lys Ala Tyr Ile Glu Gly Tyr His Thr Val
Pro Lys Gly Arg Cys 195 200 205Arg
Gln Val Val Thr Gly Met Ala Trp Leu Phe Phe Val Ser Trp Gly 210
215 220Met Phe Pro Ile Leu Phe Ile Leu Gly Pro
Glu Gly Phe Gly Val Leu225 230 235
240Ser Val Tyr Gly Ser Thr Val Gly His Thr Ile Ile Asp Leu Met
Ser 245 250 255Lys Asn Cys
Trp Gly Leu Leu Gly His Tyr Leu Arg Val Leu Ile His 260
265 270Glu His Ile Leu Ile His Gly Asp Ile Arg
Lys Thr Thr Lys Leu Asn 275 280
285Ile Gly Gly Thr Glu Ile Glu Val Glu Thr Leu Val Glu Asp Glu Ala 290
295 300Glu Ala Gly Ala Val Asn Lys Gly
Thr Gly Lys Tyr Ala Ser Arg Glu305 310
315 320Ser Phe Leu Val Met Arg Asp Lys Met Lys Glu Lys
Gly Ile Asp Val 325 330
335Arg Ala Ser Leu Asp Asn Ser Lys Glu Val Glu Gln Glu Gln Ala Ala
340 345 350Arg Ala Ala Met Met Met
Met Asn Gly Asn Gly Met Gly Met Gly Met 355 360
365Gly Met Asn Gly Met Asn Gly Met Gly Gly Met Asn Gly Met
Ala Gly 370 375 380Gly Ala Lys Pro Gly
Leu Glu Leu Thr Pro Gln Leu Gln Pro Gly Arg385 390
395 400Val Ile Leu Ala Val Pro Asp Ile Ser Met
Val Asp Phe Phe Arg Glu 405 410
415Gln Phe Ala Gln Leu Ser Val Thr Tyr Glu Leu Val Pro Ala Leu Gly
420 425 430Ala Asp Asn Thr Leu
Ala Leu Val Thr Gln Ala Gln Asn Leu Gly Gly 435
440 445Val Asp Phe Val Leu Ile His Pro Glu Phe Leu Arg
Asp Arg Ser Ser 450 455 460Thr Ser Ile
Leu Ser Arg Leu Arg Gly Ala Gly Gln Arg Val Ala Ala465
470 475 480Phe Gly Trp Ala Gln Leu Gly
Pro Met Arg Asp Leu Ile Glu Ser Ala 485
490 495Asn Leu Asp Gly Trp Leu Glu Gly Pro Ser Phe Gly
Gln Gly Ile Leu 500 505 510Pro
Ala His Ile Val Ala Leu Val Ala Lys Met Gln Gln Met Arg Lys 515
520 525Met Gln Gln Met Gln Gln Ile Gly Met
Met Thr Gly Gly Met Asn Gly 530 535
540Met Gly Gly Gly Met Gly Gly Gly Met Asn Gly Met Gly Gly Gly Asn545
550 555 560Gly Met Asn Asn
Met Gly Asn Gly Met Gly Gly Gly Met Gly Asn Gly 565
570 575Met Gly Gly Asn Gly Met Asn Gly Met Gly
Gly Gly Asn Gly Met Asn 580 585
590Asn Met Gly Gly Asn Gly Met Ala Gly Asn Gly Met Gly Gly Gly Met
595 600 605Gly Gly Asn Gly Met Gly Gly
Ser Met Asn Gly Met Ser Ser Gly Val 610 615
620Val Ala Asn Val Thr Pro Ser Ala Ala Gly Gly Met Gly Gly Met
Met625 630 635 640Asn Gly
Gly Met Ala Ala Pro Gln Ser Pro Gly Met Asn Gly Gly Arg
645 650 655Leu Gly Thr Asn Pro Leu Phe
Asn Ala Ala Pro Ser Pro Leu Ser Ser 660 665
670Gln Leu Gly Ala Glu Ala Gly Met Gly Ser Met Gly Gly Met
Gly Gly 675 680 685Met Ser Gly Met
Gly Gly Met Gly Gly Met Gly Gly Met Gly Gly Ala 690
695 700Gly Ala Ala Thr Thr Gln Ala Ala Gly Gly Asn Ala
Glu Ala Glu Met705 710 715
720Leu Gln Asn Leu Met Asn Glu Ile Asn Arg Leu Lys Arg Glu Leu Gly
725 730
735Glu72448DNAChlamydomonas reinhardtii 7catctgtcgc caagcaagca ttaaacatgg
attatggagg cgccctgagt gccgttgggc 60gcgagctgct atttgtaacg aacccagtag
tcgtcaatgg ctctgtactt gtgcctgagg 120accagtgtta ctgcgcgggc tggattgagt
cgcgtggcac aaacggtgcc caaacggcgt 180cgaacgtgct gcaatggctt gctgctggct
tctccatcct actgcttatg ttttacgcct 240accaaacatg gaagtcaacc tgcggctggg
aggagatcta tgtgtgcgct atcgagatgg 300tcaaggtgat tctcgagttc ttcttcgagt
ttaagaaccc gtccatgctg tatctagcca 360caggccaccg cgtccagtgg ttgcgttacg
ccgagtggct tctcacctgc ccggtcattc 420tcattcacct gtcaaacctg acgggcttgt
ccaacgacta cagcaggcgc accatgggtc 480tgcttgtgtc tgatattggc acaattgtgt
ggggcgccac ttccgccatg gccaccggat 540acgtcaaggt catcttcttc tgcctgggtc
tgtgttatgg tgctaacacg ttctttcacg 600ctgccaaggc ctacatcgag ggttaccaca
ccgtgccgaa gggccggtgt cgccaggtgg 660tgactggcat ggcttggctc ttcttcgtat
catggggtat gttccccatc ctgttcatcc 720tcggccccga gggcttcggc gtcctgagcg
tgtacggctc caccgtcggc cacaccatca 780ttgacctgat gtcgaagaac tgctggggtc
tgctcggcca ctacctgcgc gtgctgatcc 840acgagcatat cctcatccac ggcgacattc
gcaagaccac caaattgaac attggtggca 900ctgagattga ggtcgagacg ctggtggagg
acgaggccga ggctggcgcg gtcaacaagg 960gcaccggcaa gtacgcctcc cgcgagtcct
tcctggtcat gcgcgacaag atgaaggaga 1020agggcattga cgtgcgcgcc tctctggaca
acagcaagga ggtggagcag gagcaggccg 1080ccagggctgc catgatgatg atgaacggca
atggcatggg tatgggaatg ggaatgaacg 1140gcatgaacgg aatgggcggt atgaacggga
tggctggcgg cgccaagccc ggcctggagc 1200tcactccgca gctacagccc ggccgcgtca
tcctggcggt gccggacatc agcatggttg 1260acttcttccg cgagcagttt gctcagctat
cggtgacgta cgagctggtg ccggccctgg 1320gcgctgacaa cacactggcg ctggttacgc
aggcgcagaa cctgggcggc gtggactttg 1380tgttgattca ccccgagttc ctgcgcgacc
gctctagcac cagcatcctg agccgcctgc 1440gcggcgcggg ccagcgtgtg gctgcgttcg
gctgggcgca gctggggccc atgcgtgacc 1500tgatcgagtc cgcaaacctg gacggctggc
tggagggccc ctcgttcgga cagggcatcc 1560tgccggccca catcgttgcc ctggtggcca
agatgcagca gatgcgcaag atgcagcaga 1620tgcagcagat tggcatgatg accggcggca
tgaacggcat gggcggcggt atgggcggcg 1680gcatgaacgg catgggcggc ggcaacggca
tgaacaacat gggcaacggc atgggcggcg 1740gcatgggcaa cggcatgggc ggcaatggca
tgaacggaat gggtggcggc aacggcatga 1800acaacatggg cggcaacgga atggccggca
acggaatggg cggcggcatg ggcggcaacg 1860gtatgggtgg ctccatgaac ggcatgagct
ccggcgtggt ggccaacgtg acgccctccg 1920ccgccggcgg catgggcggc atgatgaacg
gcggcatggc tgcgccccag tcgcccggca 1980tgaacggcgg ccgcctgggt accaacccgc
tcttcaacgc cgcgccctca ccgctcagct 2040cgcagctcgg tgccgaggca ggcatgggca
gcatgggagg catgggcgga atgagcggaa 2100tgggaggcat gggtggaatg gggggcatgg
gcggcgccgg cgccgccacg acgcaggctg 2160cgggcggcaa cgcggaggcg gagatgctgc
agaatctcat gaacgagatc aatcgcctga 2220agcgcgagct tggcgagtaa aaggctggag
gccggtactg cgatacctgc gagctcgcgc 2280gcctgactcg tcgtacacac ggctcaggag
cacgcgcgcg tggacttctc aacctgtgtg 2340caacgtatct agagcggcct gtgcgcgacc
gtccgtgagc attccggtgc gatcttcccg 2400ccttcgcacc gcaagttccc ttcctggccc
tgctgcgcct gacgcatc 24488737PRTChlamydomonas reinhardtii
8Met Asp Tyr Gly Gly Ala Leu Ser Ala Val Gly Arg Glu Leu Leu Phe1
5 10 15Val Thr Asn Pro Val Val
Val Asn Gly Ser Val Leu Val Pro Glu Asp 20 25
30Gln Cys Tyr Cys Ala Gly Trp Ile Glu Ser Arg Gly Thr
Asn Gly Ala 35 40 45Gln Thr Ala
Ser Asn Val Leu Gln Trp Leu Ala Ala Gly Phe Ser Ile 50
55 60Leu Leu Leu Met Phe Tyr Ala Tyr Gln Thr Trp Lys
Ser Thr Cys Gly65 70 75
80Trp Glu Glu Ile Tyr Val Cys Ala Ile Glu Met Val Lys Val Ile Leu
85 90 95Glu Phe Phe Phe Glu Phe
Lys Asn Pro Ser Met Leu Tyr Leu Ala Thr 100
105 110Gly His Arg Val Gln Trp Leu Arg Tyr Ala Glu Trp
Leu Leu Thr Cys 115 120 125Pro Val
Ile Leu Ile His Leu Ser Asn Leu Thr Gly Leu Ser Asn Asp 130
135 140Tyr Ser Arg Arg Thr Met Gly Leu Leu Val Ser
Asp Ile Gly Thr Ile145 150 155
160Val Trp Gly Ala Thr Ser Ala Met Ala Thr Gly Tyr Val Lys Val Ile
165 170 175Phe Phe Cys Leu
Gly Leu Cys Tyr Gly Ala Asn Thr Phe Phe His Ala 180
185 190Ala Lys Ala Tyr Ile Glu Gly Tyr His Thr Val
Pro Lys Gly Arg Cys 195 200 205Arg
Gln Val Val Thr Gly Met Ala Trp Leu Phe Phe Val Ser Trp Gly 210
215 220Met Phe Pro Ile Leu Phe Ile Leu Gly Pro
Glu Gly Phe Gly Val Leu225 230 235
240Ser Val Tyr Gly Ser Thr Val Gly His Thr Ile Ile Asp Leu Met
Ser 245 250 255Lys Asn Cys
Trp Gly Leu Leu Gly His Tyr Leu Arg Val Leu Ile His 260
265 270Glu His Ile Leu Ile His Gly Asp Ile Arg
Lys Thr Thr Lys Leu Asn 275 280
285Ile Gly Gly Thr Glu Ile Glu Val Glu Thr Leu Val Glu Asp Glu Ala 290
295 300Glu Ala Gly Ala Val Asn Lys Gly
Thr Gly Lys Tyr Ala Ser Arg Glu305 310
315 320Ser Phe Leu Val Met Arg Asp Lys Met Lys Glu Lys
Gly Ile Asp Val 325 330
335Arg Ala Ser Leu Asp Asn Ser Lys Glu Val Glu Gln Glu Gln Ala Ala
340 345 350Arg Ala Ala Met Met Met
Met Asn Gly Asn Gly Met Gly Met Gly Met 355 360
365Gly Met Asn Gly Met Asn Gly Met Gly Gly Met Asn Gly Met
Ala Gly 370 375 380Gly Ala Lys Pro Gly
Leu Glu Leu Thr Pro Gln Leu Gln Pro Gly Arg385 390
395 400Val Ile Leu Ala Val Pro Asp Ile Ser Met
Val Asp Phe Phe Arg Glu 405 410
415Gln Phe Ala Gln Leu Ser Val Thr Tyr Glu Leu Val Pro Ala Leu Gly
420 425 430Ala Asp Asn Thr Leu
Ala Leu Val Thr Gln Ala Gln Asn Leu Gly Gly 435
440 445Val Asp Phe Val Leu Ile His Pro Glu Phe Leu Arg
Asp Arg Ser Ser 450 455 460Thr Ser Ile
Leu Ser Arg Leu Arg Gly Ala Gly Gln Arg Val Ala Ala465
470 475 480Phe Gly Trp Ala Gln Leu Gly
Pro Met Arg Asp Leu Ile Glu Ser Ala 485
490 495Asn Leu Asp Gly Trp Leu Glu Gly Pro Ser Phe Gly
Gln Gly Ile Leu 500 505 510Pro
Ala His Ile Val Ala Leu Val Ala Lys Met Gln Gln Met Arg Lys 515
520 525Met Gln Gln Met Gln Gln Ile Gly Met
Met Thr Gly Gly Met Asn Gly 530 535
540Met Gly Gly Gly Met Gly Gly Gly Met Asn Gly Met Gly Gly Gly Asn545
550 555 560Gly Met Asn Asn
Met Gly Asn Gly Met Gly Gly Gly Met Gly Asn Gly 565
570 575Met Gly Gly Asn Gly Met Asn Gly Met Gly
Gly Gly Asn Gly Met Asn 580 585
590Asn Met Gly Gly Asn Gly Met Ala Gly Asn Gly Met Gly Gly Gly Met
595 600 605Gly Gly Asn Gly Met Gly Gly
Ser Met Asn Gly Met Ser Ser Gly Val 610 615
620Val Ala Asn Val Thr Pro Ser Ala Ala Gly Gly Met Gly Gly Met
Met625 630 635 640Asn Gly
Gly Met Ala Ala Pro Gln Ser Pro Gly Met Asn Gly Gly Arg
645 650 655Leu Gly Thr Asn Pro Leu Phe
Asn Ala Ala Pro Ser Pro Leu Ser Ser 660 665
670Gln Leu Gly Ala Glu Ala Gly Met Gly Ser Met Gly Gly Met
Gly Gly 675 680 685Met Ser Gly Met
Gly Gly Met Gly Gly Met Gly Gly Met Gly Gly Ala 690
695 700Gly Ala Ala Thr Thr Gln Ala Ala Gly Gly Asn Ala
Glu Ala Glu Met705 710 715
720Leu Gln Asn Leu Met Asn Glu Ile Asn Arg Leu Lys Arg Glu Leu Gly
725 730 735Glu93033DNAArtificial
SequenceChR2 mutant 9atggattacc ctgtggcccg gtccctgatt gtaagatacc
ccaccgatct gggcaatgga 60accgtgtgca tgcccagagg acaatgctac tgcgaggggt
ggctgaggag ccggggcact 120agtatcgaaa aaaccatcgc tatcaccctc cagtgggtag
tgttcgctct gtccgtagcc 180tgtctcggct ggtatgcata ccaagcctgg agggctacct
gtgggtggga ggaagtatac 240gtggccctga tcgagatgat gaagtccatc atcgaggctt
tccatgagtt cgactcccca 300gccacactct ggctcagcag tgggaatggc gtagtgtgga
tgagatatgg agagtggctg 360ctgacctgtc ccgtcctgct cattcatctg tccaatctga
ccgggctgaa agatgactac 420tccaagagaa caatgggact gctggtgagt gacgtggggt
gtattgtgtg gggagccacc 480tccgccatgt gcactggatg gaccaagatc ctctttttcc
tgatttccct ctcctatggg 540atgtatacat acttccacgc cgctaaggtg tatattgagg
ccttccacac tgtacctaaa 600ggcatctgta gggagctcgt gcgggtgatg gcatggacct
tctttgtggc ctgggggatg 660ttccccgtgc tgttcctcct cggcactgag ggatttggcc
acattagtcc ttacgggtcc 720gcaattggac actccatcct ggatctgatt gccaagaata
tgtggggggt gctgggaaat 780tatctgcggg taaagatcca cgagcatatc ctgctgtatg
gcgatatcag aaagaagcag 840aaaatcacca ttgctggaca ggaaatggag gtggagacac
tggtagcaga ggaggaggac 900gggaccgcgg tcgccaccat ggtgtctaag ggcgaagagc
tgattaagga gaacatgcac 960atgaagctgt acatggaggg caccgtgaac aaccaccact
tcaagtgcac atccgagggc 1020gaaggcaagc cctacgaggg cacccagacc atgagaatca
aggtggtcga gggcggccct 1080ctccccttcg ccttcgacat cctggctacc agcttcatgt
acggcagcaa aaccttcatc 1140aaccacaccc agggcatccc cgacttcttt aagcagtcct
tccctgaggg cttcacatgg 1200gagagagtca ccacatacga agacgggggc gtgctgaccg
ctacccagga caccagcctc 1260caggacggct gcctcatcta caacgtcaag atcagagggg
tgaacttccc atccaacggc 1320cctgtgatgc agaagaaaac actcggctgg gaggcctcca
ccgagatgct gtaccccgct 1380gacggcggcc tggaaggcag agccgacatg gccctgaagc
tcgtgggcgg gggccacctg 1440atctgcaact tgaagaccac atacagatcc aagaaacccg
ctaagaacct caagatgccc 1500ggcgtctact atgtggacag aagactggaa agaatcaagg
aggccgacaa agagacctac 1560gtcgagcagc acgaggtggc tgtggccaga tactgcgacc
tccctagcaa actggggcac 1620aaacttaatt gcctgcagga gaagaagtca tgcagccagc
gcatggccga attccggcaa 1680tactgttgga acccggacac tgggcagatg ctgggccgca
ccccagcccg gtgggtgtgg 1740atcagcctgt actatgcagc tttctacgtg gtcatgactg
ggctctttgc cttgtgcatc 1800tatgtgctga tgcagaccat tgatccctac acccccgact
accaggacca gttaaagtca 1860ccgggggtaa ccttgagacc ggatgtgtat ggggaaagag
ggctgcagat ttcctacaac 1920atctctgaaa acagctctag acaggcccag atcaccggac
gtccggagac tgagacattg 1980ccaccggtgg actacggggg ggccctgagc gctgtgggca
gagaactcct gttcgtgaca 2040aatccagtcg tggtgaacgg ctccgtactc gtacccgagg
atcagtgcta ttgcgcagga 2100tggatcgaga gcagaggcac aaacggcgca cagactgcat
ccaacgtgct ccagtggttg 2160gccgcaggct tttccattct cctgctcatg ttttacgcct
accagacttg gaagtccaca 2220tgtggctggg aggaaatcta cgtgtgtgca atcgaaatgg
tgaaggtgat cctggagttt 2280ttcttcgaat ttaaaaaccc aagcatgctg tacctggcta
ctggccacag agtgcagtgg 2340ctgcggtatg ccgaatggct gctgacttgc ccagtgattt
gcatccacct gtccaacctg 2400actgggctgt ctaacgatta cagtaggaga acaatgggac
tgctcgtatc cgacatcggc 2460actatcgtat ggggcgcaac tagtgccatg gccactggat
acgtgaaagt gatcttcttc 2520tgcctgggac tctgctacgg agcaaacaca ttttttcatg
ccgcaaaagc atatatcgag 2580gggtatcata ccgtcccaaa gggccggtgt agacaagtgg
tgactggcat ggcttggctg 2640ttcttcgtgt cctgggggat gtttcccatc ctctttatcc
tgggcccaga aggcttcggg 2700gtgctgagtg tgtatggcag taccgtagga cacactatca
ttgacctgat gagcaaaaac 2760tgctgggggc tgctcggcca ctacctgaga gtactcatcc
acgagcatat cctgattcat 2820ggcgatatcc ggaaaactac caagctcaat atcgggggca
ccgagattga agtggagaca 2880ctcgtggagg acgaggccga ggccggagca gtgaacaaag
gcactggcaa gtatgcctcc 2940agagaatcct ttctggtgat gcgggacaaa atgaaggaga
aaggcattga tgtacggtgc 3000agtaatgcca aagccgtcga gactgatgtg tag
3033101010PRTArtificial SequenceChR2 mutant 10Met
Asp Tyr Pro Val Ala Arg Ser Leu Ile Val Arg Tyr Pro Thr Asp1
5 10 15Leu Gly Asn Gly Thr Val Cys
Met Pro Arg Gly Gln Cys Tyr Cys Glu 20 25
30Gly Trp Leu Arg Ser Arg Gly Thr Ser Ile Glu Lys Thr Ile
Ala Ile 35 40 45Thr Leu Gln Trp
Val Val Phe Ala Leu Ser Val Ala Cys Leu Gly Trp 50 55
60Tyr Ala Tyr Gln Ala Trp Arg Ala Thr Cys Gly Trp Glu
Glu Val Tyr65 70 75
80Val Ala Leu Ile Glu Met Met Lys Ser Ile Ile Glu Ala Phe His Glu
85 90 95Phe Asp Ser Pro Ala Thr
Leu Trp Leu Ser Ser Gly Asn Gly Val Val 100
105 110Trp Met Arg Tyr Gly Glu Trp Leu Leu Thr Cys Pro
Val Leu Leu Ile 115 120 125His Leu
Ser Asn Leu Thr Gly Leu Lys Asp Asp Tyr Ser Lys Arg Thr 130
135 140Met Gly Leu Leu Val Ser Asp Val Gly Cys Ile
Val Trp Gly Ala Thr145 150 155
160Ser Ala Met Cys Thr Gly Trp Thr Lys Ile Leu Phe Phe Leu Ile Ser
165 170 175Leu Ser Tyr Gly
Met Tyr Thr Tyr Phe His Ala Ala Lys Val Tyr Ile 180
185 190Glu Ala Phe His Thr Val Pro Lys Gly Ile Cys
Arg Glu Leu Val Arg 195 200 205Val
Met Ala Trp Thr Phe Phe Val Ala Trp Gly Met Phe Pro Val Leu 210
215 220Phe Leu Leu Gly Thr Glu Gly Phe Gly His
Ile Ser Pro Tyr Gly Ser225 230 235
240Ala Ile Gly His Ser Ile Leu Asp Leu Ile Ala Lys Asn Met Trp
Gly 245 250 255Val Leu Gly
Asn Tyr Leu Arg Val Lys Ile His Glu His Ile Leu Leu 260
265 270Tyr Gly Asp Ile Arg Lys Lys Gln Lys Ile
Thr Ile Ala Gly Gln Glu 275 280
285Met Glu Val Glu Thr Leu Val Ala Glu Glu Glu Asp Gly Thr Ala Val 290
295 300Ala Thr Met Val Ser Lys Gly Glu
Glu Leu Ile Lys Glu Asn Met His305 310
315 320Met Lys Leu Tyr Met Glu Gly Thr Val Asn Asn His
His Phe Lys Cys 325 330
335Thr Ser Glu Gly Glu Gly Lys Pro Tyr Glu Gly Thr Gln Thr Met Arg
340 345 350Ile Lys Val Val Glu Gly
Gly Pro Leu Pro Phe Ala Phe Asp Ile Leu 355 360
365Ala Thr Ser Phe Met Tyr Gly Ser Lys Thr Phe Ile Asn His
Thr Gln 370 375 380Gly Ile Pro Asp Phe
Phe Lys Gln Ser Phe Pro Glu Gly Phe Thr Trp385 390
395 400Glu Arg Val Thr Thr Tyr Glu Asp Gly Gly
Val Leu Thr Ala Thr Gln 405 410
415Asp Thr Ser Leu Gln Asp Gly Cys Leu Ile Tyr Asn Val Lys Ile Arg
420 425 430Gly Val Asn Phe Pro
Ser Asn Gly Pro Val Met Gln Lys Lys Thr Leu 435
440 445Gly Trp Glu Ala Ser Thr Glu Met Leu Tyr Pro Ala
Asp Gly Gly Leu 450 455 460Glu Gly Arg
Ala Asp Met Ala Leu Lys Leu Val Gly Gly Gly His Leu465
470 475 480Ile Cys Asn Leu Lys Thr Thr
Tyr Arg Ser Lys Lys Pro Ala Lys Asn 485
490 495Leu Lys Met Pro Gly Val Tyr Tyr Val Asp Arg Arg
Leu Glu Arg Ile 500 505 510Lys
Glu Ala Asp Lys Glu Thr Tyr Val Glu Gln His Glu Val Ala Val 515
520 525Ala Arg Tyr Cys Asp Leu Pro Ser Lys
Leu Gly His Lys Leu Asn Cys 530 535
540Leu Gln Glu Lys Lys Ser Cys Ser Gln Arg Met Ala Glu Phe Arg Gln545
550 555 560Tyr Cys Trp Asn
Pro Asp Thr Gly Gln Met Leu Gly Arg Thr Pro Ala 565
570 575Arg Trp Val Trp Ile Ser Leu Tyr Tyr Ala
Ala Phe Tyr Val Val Met 580 585
590Thr Gly Leu Phe Ala Leu Cys Ile Tyr Val Leu Met Gln Thr Ile Asp
595 600 605Pro Tyr Thr Pro Asp Tyr Gln
Asp Gln Leu Lys Ser Pro Gly Val Thr 610 615
620Leu Arg Pro Asp Val Tyr Gly Glu Arg Gly Leu Gln Ile Ser Tyr
Asn625 630 635 640Ile Ser
Glu Asn Ser Ser Arg Gln Ala Gln Ile Thr Gly Arg Pro Glu
645 650 655Thr Glu Thr Leu Pro Pro Val
Asp Tyr Gly Gly Ala Leu Ser Ala Val 660 665
670Gly Arg Glu Leu Leu Phe Val Thr Asn Pro Val Val Val Asn
Gly Ser 675 680 685Val Leu Val Pro
Glu Asp Gln Cys Tyr Cys Ala Gly Trp Ile Glu Ser 690
695 700Arg Gly Thr Asn Gly Ala Gln Thr Ala Ser Asn Val
Leu Gln Trp Leu705 710 715
720Ala Ala Gly Phe Ser Ile Leu Leu Leu Met Phe Tyr Ala Tyr Gln Thr
725 730 735Trp Lys Ser Thr Cys
Gly Trp Glu Glu Ile Tyr Val Cys Ala Ile Glu 740
745 750Met Val Lys Val Ile Leu Glu Phe Phe Phe Glu Phe
Lys Asn Pro Ser 755 760 765Met Leu
Tyr Leu Ala Thr Gly His Arg Val Gln Trp Leu Arg Tyr Ala 770
775 780Glu Trp Leu Leu Thr Cys Pro Val Ile Cys Ile
His Leu Ser Asn Leu785 790 795
800Thr Gly Leu Ser Asn Asp Tyr Ser Arg Arg Thr Met Gly Leu Leu Val
805 810 815Ser Asp Ile Gly
Thr Ile Val Trp Gly Ala Thr Ser Ala Met Ala Thr 820
825 830Gly Tyr Val Lys Val Ile Phe Phe Cys Leu Gly
Leu Cys Tyr Gly Ala 835 840 845Asn
Thr Phe Phe His Ala Ala Lys Ala Tyr Ile Glu Gly Tyr His Thr 850
855 860Val Pro Lys Gly Arg Cys Arg Gln Val Val
Thr Gly Met Ala Trp Leu865 870 875
880Phe Phe Val Ser Trp Gly Met Phe Pro Ile Leu Phe Ile Leu Gly
Pro 885 890 895Glu Gly Phe
Gly Val Leu Ser Val Tyr Gly Ser Thr Val Gly His Thr 900
905 910Ile Ile Asp Leu Met Ser Lys Asn Cys Trp
Gly Leu Leu Gly His Tyr 915 920
925Leu Arg Val Leu Ile His Glu His Ile Leu Ile His Gly Asp Ile Arg 930
935 940Lys Thr Thr Lys Leu Asn Ile Gly
Gly Thr Glu Ile Glu Val Glu Thr945 950
955 960Leu Val Glu Asp Glu Ala Glu Ala Gly Ala Val Asn
Lys Gly Thr Gly 965 970
975Lys Tyr Ala Ser Arg Glu Ser Phe Leu Val Met Arg Asp Lys Met Lys
980 985 990Glu Lys Gly Ile Asp Val
Arg Cys Ser Asn Ala Lys Ala Val Glu Thr 995 1000
1005Asp Val 1010113033DNAArtificial SequenceChR2
mutant 11atggattacc ctgtggcccg gtccctgatt gtaagatacc ccaccgatct
gggcaatgga 60accgtgtgca tgcccagagg acaatgctac tgcgaggggt ggctgaggag
ccggggcact 120agtatcgaaa aaaccatcgc tatcaccctc cagtgggtag tgttcgctct
gtccgtagcc 180tgtctcggct ggtatgcata ccaagcctgg agggctacct gtgggtggga
ggaagtatac 240gtggccctga tcgagatgat gaagtccatc atcgaggctt tccatgagtt
cgactcccca 300gccacactct ggctcagcag tgggaatggc gtagtgtgga tgagatatgg
agagtggctg 360ctgacctgtc ccgtcctgct cattcatctg tccaatctga ccgggctgaa
agatgactac 420tccaagagaa caatgggact gctggtgagt gacgtggggt gtattgtgtg
gggagccacc 480tccgccatgt gcactggatg gaccaagatc ctctttttcc tgatttccct
ctcctatggg 540atgtatacat acttccacgc cgctaaggtg tatattgagg ccttccacac
tgtacctaaa 600ggcatctgta gggagctcgt gcgggtgatg gcatggacct tctttgtggc
ctgggggatg 660ttccccgtgc tgttcctcct cggcactgag ggatttggcc acattagtcc
ttacgggtcc 720gcaattggac actccatcct ggatctgatt gccaagaata tgtggggggt
gctgggaaat 780tatctgcggg taaagatcca cgagcatatc ctgctgtatg gcgatatcag
aaagaagcag 840aaaatcacca ttgctggaca ggaaatggag gtggagacac tggtagcaga
ggaggaggac 900gggaccgcgg tcgccaccat ggtgtctaag ggcgaagagc tgattaagga
gaacatgcac 960atgaagctgt acatggaggg caccgtgaac aaccaccact tcaagtgcac
atccgagggc 1020gaaggcaagc cctacgaggg cacccagacc atgagaatca aggtggtcga
gggcggccct 1080ctccccttcg ccttcgacat cctggctacc agcttcatgt acggcagcaa
aaccttcatc 1140aaccacaccc agggcatccc cgacttcttt aagcagtcct tccctgaggg
cttcacatgg 1200gagagagtca ccacatacga agacgggggc gtgctgaccg ctacccagga
caccagcctc 1260caggacggct gcctcatcta caacgtcaag atcagagggg tgaacttccc
atccaacggc 1320cctgtgatgc agaagaaaac actcggctgg gaggcctcca ccgagatgct
gtaccccgct 1380gacggcggcc tggaaggcag agccgacatg gccctgaagc tcgtgggcgg
gggccacctg 1440atctgcaact tgaagaccac atacagatcc aagaaacccg ctaagaacct
caagatgccc 1500ggcgtctact atgtggacag aagactggaa agaatcaagg aggccgacaa
agagacctac 1560gtcgagcagc acgaggtggc tgtggccaga tactgcgacc tccctagcaa
actggggcac 1620aaacttaatt gcctgcagga gaagaagtca tgcagccagc gcatggccga
attccggcaa 1680tactgttgga acccggacac tgggcagatg ctgggccgca ccccagcccg
gtgggtgtgg 1740atcagcctgt actatgcagc tttctacgtg gtcatgactg ggctctttgc
cttgtgcatc 1800tatgtgctga tgcagaccat tgatccctac acccccgact accaggacca
gttaaagtca 1860ccgggggtaa ccttgagacc ggatgtgtat ggggaaagag ggctgcagat
ttcctacaac 1920atctctgaaa acagctctag acaggcccag atcaccggac gtccggagac
tgagacattg 1980ccaccggtgg actacggggg ggccctgagc gctgtgggca gagaactcct
gttcgtgaca 2040aatccagtcg tggtgaacgg ctccgtactc gtacccgagg atcagtgcta
ttgcgcagga 2100tggatcgaga gcagaggcac aaacggcgca cagactgcat ccaacgtgct
ccagtggttg 2160gccgcaggct tttccattct cctgctcatg ttttacgcct accagacttg
gaagtccaca 2220tgtggctggg aggaaatcta cgtgtgtgca atcgaaatgg tgaaggtgat
cctggagttt 2280ttcttcgaat ttaaaaaccc aagcatgctg tacctggcta ctggccacag
agtgcagtgg 2340ctgcggtatg ccgaatggct gctgacttgc ccagtgattc tgatccacct
gtccaacctg 2400actgggctgt ctaacgatta cagtaggaga acaatgggac tgctcgtatc
cgacatcggc 2460actatcgtat ggggcgcaac tagtgccatg gccactggat acgtgaaagt
gatcttcttc 2520tgcctgggac tctgctacgg agcaaacaca ttttttcatg ccgcaaaagc
atatatcgag 2580gggtatcata ccgtcccaaa gggccggtgt agacaagtgg tgactggcat
ggcttggctg 2640ttcttcgtgt cctgggggat gtttcccatc ctctttatcc tgggcccaga
aggcttcggg 2700gtgctgagtg tgtatggcag taccgtagga cacactatca ttgacctgat
gagcaaaaac 2760tgctgggggc tgctcggcca ctacctgaga gtactcatcc acgagcatat
cctgattcat 2820ggcgatatcc ggaaaactac caagctcaat atcgggggca ccgagattga
agtggagaca 2880ctcgtggagg acgaggccga ggccggagca gtgaacaaag gcactggcaa
gtatgcctcc 2940agagaatcct ttctggtgat gcgggacaaa atgaaggaga aaggcattga
tgtacggtgc 3000agtaatgcca aagccgtcga gactgatgtg tag
3033121010PRTArtificial SequenceChR2 mutant construct 12Met
Asp Tyr Pro Val Ala Arg Ser Leu Ile Val Arg Tyr Pro Thr Asp1
5 10 15Leu Gly Asn Gly Thr Val Cys
Met Pro Arg Gly Gln Cys Tyr Cys Glu 20 25
30Gly Trp Leu Arg Ser Arg Gly Thr Ser Ile Glu Lys Thr Ile
Ala Ile 35 40 45Thr Leu Gln Trp
Val Val Phe Ala Leu Ser Val Ala Cys Leu Gly Trp 50 55
60Tyr Ala Tyr Gln Ala Trp Arg Ala Thr Cys Gly Trp Glu
Glu Val Tyr65 70 75
80Val Ala Leu Ile Glu Met Met Lys Ser Ile Ile Glu Ala Phe His Glu
85 90 95Phe Asp Ser Pro Ala Thr
Leu Trp Leu Ser Ser Gly Asn Gly Val Val 100
105 110Trp Met Arg Tyr Gly Glu Trp Leu Leu Thr Cys Pro
Val Leu Leu Ile 115 120 125His Leu
Ser Asn Leu Thr Gly Leu Lys Asp Asp Tyr Ser Lys Arg Thr 130
135 140Met Gly Leu Leu Val Ser Asp Val Gly Cys Ile
Val Trp Gly Ala Thr145 150 155
160Ser Ala Met Cys Thr Gly Trp Thr Lys Ile Leu Phe Phe Leu Ile Ser
165 170 175Leu Ser Tyr Gly
Met Tyr Thr Tyr Phe His Ala Ala Lys Val Tyr Ile 180
185 190Glu Ala Phe His Thr Val Pro Lys Gly Ile Cys
Arg Glu Leu Val Arg 195 200 205Val
Met Ala Trp Thr Phe Phe Val Ala Trp Gly Met Phe Pro Val Leu 210
215 220Phe Leu Leu Gly Thr Glu Gly Phe Gly His
Ile Ser Pro Tyr Gly Ser225 230 235
240Ala Ile Gly His Ser Ile Leu Asp Leu Ile Ala Lys Asn Met Trp
Gly 245 250 255Val Leu Gly
Asn Tyr Leu Arg Val Lys Ile His Glu His Ile Leu Leu 260
265 270Tyr Gly Asp Ile Arg Lys Lys Gln Lys Ile
Thr Ile Ala Gly Gln Glu 275 280
285Met Glu Val Glu Thr Leu Val Ala Glu Glu Glu Asp Gly Thr Ala Val 290
295 300Ala Thr Met Val Ser Lys Gly Glu
Glu Leu Ile Lys Glu Asn Met His305 310
315 320Met Lys Leu Tyr Met Glu Gly Thr Val Asn Asn His
His Phe Lys Cys 325 330
335Thr Ser Glu Gly Glu Gly Lys Pro Tyr Glu Gly Thr Gln Thr Met Arg
340 345 350Ile Lys Val Val Glu Gly
Gly Pro Leu Pro Phe Ala Phe Asp Ile Leu 355 360
365Ala Thr Ser Phe Met Tyr Gly Ser Lys Thr Phe Ile Asn His
Thr Gln 370 375 380Gly Ile Pro Asp Phe
Phe Lys Gln Ser Phe Pro Glu Gly Phe Thr Trp385 390
395 400Glu Arg Val Thr Thr Tyr Glu Asp Gly Gly
Val Leu Thr Ala Thr Gln 405 410
415Asp Thr Ser Leu Gln Asp Gly Cys Leu Ile Tyr Asn Val Lys Ile Arg
420 425 430Gly Val Asn Phe Pro
Ser Asn Gly Pro Val Met Gln Lys Lys Thr Leu 435
440 445Gly Trp Glu Ala Ser Thr Glu Met Leu Tyr Pro Ala
Asp Gly Gly Leu 450 455 460Glu Gly Arg
Ala Asp Met Ala Leu Lys Leu Val Gly Gly Gly His Leu465
470 475 480Ile Cys Asn Leu Lys Thr Thr
Tyr Arg Ser Lys Lys Pro Ala Lys Asn 485
490 495Leu Lys Met Pro Gly Val Tyr Tyr Val Asp Arg Arg
Leu Glu Arg Ile 500 505 510Lys
Glu Ala Asp Lys Glu Thr Tyr Val Glu Gln His Glu Val Ala Val 515
520 525Ala Arg Tyr Cys Asp Leu Pro Ser Lys
Leu Gly His Lys Leu Asn Cys 530 535
540Leu Gln Glu Lys Lys Ser Cys Ser Gln Arg Met Ala Glu Phe Arg Gln545
550 555 560Tyr Cys Trp Asn
Pro Asp Thr Gly Gln Met Leu Gly Arg Thr Pro Ala 565
570 575Arg Trp Val Trp Ile Ser Leu Tyr Tyr Ala
Ala Phe Tyr Val Val Met 580 585
590Thr Gly Leu Phe Ala Leu Cys Ile Tyr Val Leu Met Gln Thr Ile Asp
595 600 605Pro Tyr Thr Pro Asp Tyr Gln
Asp Gln Leu Lys Ser Pro Gly Val Thr 610 615
620Leu Arg Pro Asp Val Tyr Gly Glu Arg Gly Leu Gln Ile Ser Tyr
Asn625 630 635 640Ile Ser
Glu Asn Ser Ser Arg Gln Ala Gln Ile Thr Gly Arg Pro Glu
645 650 655Thr Glu Thr Leu Pro Pro Val
Asp Tyr Gly Gly Ala Leu Ser Ala Val 660 665
670Gly Arg Glu Leu Leu Phe Val Thr Asn Pro Val Val Val Asn
Gly Ser 675 680 685Val Leu Val Pro
Glu Asp Gln Cys Tyr Cys Ala Gly Trp Ile Glu Ser 690
695 700Arg Gly Thr Asn Gly Ala Gln Thr Ala Ser Asn Val
Leu Gln Trp Leu705 710 715
720Ala Ala Gly Phe Ser Ile Leu Leu Leu Met Phe Tyr Ala Tyr Gln Thr
725 730 735Trp Lys Ser Thr Cys
Gly Trp Glu Glu Ile Tyr Val Cys Ala Ile Glu 740
745 750Met Val Lys Val Ile Leu Glu Phe Phe Phe Glu Phe
Lys Asn Pro Ser 755 760 765Met Leu
Tyr Leu Ala Thr Gly His Arg Val Gln Trp Leu Arg Tyr Ala 770
775 780Glu Trp Leu Leu Thr Cys Pro Val Ile Leu Ile
His Leu Ser Asn Leu785 790 795
800Thr Gly Leu Ser Asn Asp Tyr Ser Arg Arg Thr Met Gly Leu Leu Val
805 810 815Ser Asp Ile Gly
Thr Ile Val Trp Gly Ala Thr Ser Ala Met Ala Thr 820
825 830Gly Tyr Val Lys Val Ile Phe Phe Cys Leu Gly
Leu Cys Tyr Gly Ala 835 840 845Asn
Thr Phe Phe His Ala Ala Lys Ala Tyr Ile Glu Gly Tyr His Thr 850
855 860Val Pro Lys Gly Arg Cys Arg Gln Val Val
Thr Gly Met Ala Trp Leu865 870 875
880Phe Phe Val Ser Trp Gly Met Phe Pro Ile Leu Phe Ile Leu Gly
Pro 885 890 895Glu Gly Phe
Gly Val Leu Ser Val Tyr Gly Ser Thr Val Gly His Thr 900
905 910Ile Ile Asp Leu Met Ser Lys Asn Cys Trp
Gly Leu Leu Gly His Tyr 915 920
925Leu Arg Val Leu Ile His Glu His Ile Leu Ile His Gly Asp Ile Arg 930
935 940Lys Thr Thr Lys Leu Asn Ile Gly
Gly Thr Glu Ile Glu Val Glu Thr945 950
955 960Leu Val Glu Asp Glu Ala Glu Ala Gly Ala Val Asn
Lys Gly Thr Gly 965 970
975Lys Tyr Ala Ser Arg Glu Ser Phe Leu Val Met Arg Asp Lys Met Lys
980 985 990Glu Lys Gly Ile Asp Val
Arg Cys Ser Asn Ala Lys Ala Val Glu Thr 995 1000
1005Asp Val 101013315PRTArtificial SequenceChR2 mutant
construct 13Met Asp Tyr Gly Gly Ala Leu Ser Ala Val Gly Arg Glu Leu Leu
Phe1 5 10 15Val Thr Asn
Pro Val Val Val Asn Gly Ser Val Leu Val Pro Glu Asp 20
25 30Gln Cys Tyr Cys Ala Gly Trp Ile Glu Ser
Arg Gly Thr Asn Gly Ala 35 40
45Gln Thr Ala Ser Asn Val Leu Gln Trp Leu Ala Ala Gly Phe Ser Ile 50
55 60Leu Leu Leu Met Phe Tyr Ala Tyr Gln
Thr Trp Lys Ser Thr Cys Gly65 70 75
80Trp Glu Glu Ile Tyr Val Cys Ala Ile Glu Met Val Lys Val
Ile Leu 85 90 95Glu Phe
Phe Phe Glu Phe Lys Asn Pro Ser Met Leu Tyr Leu Ala Thr 100
105 110Gly His Arg Val Gln Trp Leu Arg Tyr
Ala Glu Trp Leu Leu Thr Cys 115 120
125Pro Val Ile Cys Ile His Leu Ser Asn Leu Thr Gly Leu Ser Asn Asp
130 135 140Tyr Ser Arg Arg Thr Met Gly
Leu Leu Val Ser Asp Ile Gly Thr Ile145 150
155 160Val Trp Gly Ala Thr Ser Ala Met Ala Thr Gly Tyr
Val Lys Val Ile 165 170
175Phe Phe Cys Leu Gly Leu Cys Tyr Gly Ala Asn Thr Phe Phe His Ala
180 185 190Ala Lys Ala Tyr Ile Glu
Gly Tyr His Thr Val Pro Lys Gly Arg Cys 195 200
205Arg Gln Val Val Thr Gly Met Ala Trp Leu Phe Phe Val Ser
Trp Gly 210 215 220Met Phe Pro Ile Leu
Phe Ile Leu Gly Pro Glu Gly Phe Gly Val Leu225 230
235 240Ser Val Tyr Gly Ser Thr Val Gly His Thr
Ile Ile Asp Leu Met Ser 245 250
255Lys Asn Cys Trp Gly Leu Leu Gly His Tyr Leu Arg Val Leu Ile His
260 265 270Glu His Ile Leu Ile
His Gly Asp Ile Arg Lys Thr Thr Lys Leu Asn 275
280 285Ile Gly Gly Thr Glu Ile Glu Val Glu Thr Leu Val
Glu Asp Glu Ala 290 295 300Glu Ala Gly
Ala Val Asn Lys Gly Thr Gly Lys305 310
31514315PRTArtificial SequenceChR2 mutant construct 14Met Asp Tyr Gly Gly
Ala Leu Ser Ala Val Gly Arg Glu Leu Leu Phe1 5
10 15Val Thr Asn Pro Val Val Val Asn Gly Ser Val
Leu Val Pro Glu Asp 20 25
30Gln Cys Tyr Cys Ala Gly Trp Ile Glu Ser Arg Gly Thr Asn Gly Ala
35 40 45Gln Thr Ala Ser Asn Val Leu Gln
Trp Leu Ala Ala Gly Phe Ser Ile 50 55
60Leu Leu Leu Met Phe Tyr Ala Tyr Gln Thr Trp Lys Ser Thr Cys Gly65
70 75 80Trp Glu Glu Ile Tyr
Val Cys Ala Ile Glu Met Val Lys Val Ile Leu 85
90 95Glu Phe Phe Phe Glu Phe Lys Asn Pro Ser Met
Leu Tyr Leu Ala Thr 100 105
110Gly His Arg Val Gln Trp Leu Arg Tyr Ala Glu Trp Leu Leu Thr Cys
115 120 125Pro Val Ile Leu Ile His Leu
Ser Asn Leu Thr Gly Leu Ser Asn Asp 130 135
140Tyr Ser Arg Arg Thr Met Gly Leu Leu Val Ser Asp Ile Gly Cys
Ile145 150 155 160Val Trp
Gly Ala Thr Ser Ala Met Ala Thr Gly Tyr Val Lys Val Ile
165 170 175Phe Phe Cys Leu Gly Leu Cys
Tyr Gly Ala Asn Thr Phe Phe His Ala 180 185
190Ala Lys Ala Tyr Ile Glu Gly Tyr His Thr Val Pro Lys Gly
Arg Cys 195 200 205Arg Gln Val Val
Thr Gly Met Ala Trp Leu Phe Phe Val Ser Trp Gly 210
215 220Met Phe Pro Ile Leu Phe Ile Leu Gly Pro Glu Gly
Phe Gly Val Leu225 230 235
240Ser Val Tyr Gly Ser Thr Val Gly His Thr Ile Ile Asp Leu Met Ser
245 250 255Lys Asn Cys Trp Gly
Leu Leu Gly His Tyr Leu Arg Val Leu Ile His 260
265 270Glu His Ile Leu Ile His Gly Asp Ile Arg Lys Thr
Thr Lys Leu Asn 275 280 285Ile Gly
Gly Thr Glu Ile Glu Val Glu Thr Leu Val Glu Asp Glu Ala 290
295 300Glu Ala Gly Ala Val Asn Lys Gly Thr Gly
Lys305 310 31515945DNAArtificial
SequenceChR2 mutant construct 15atggactacg ggggggctct gtctgctgtc
gggagggaac tgctgtttgt gactaaccct 60gtcgtcgtga acgggagtgt gctggtccct
gaggaccagt gctactgtgc cggctggatc 120gaatcacgcg gaaccaacgg ggcccagaca
gctagcaatg tgctgcagtg gctggccgct 180gggtttagta tcctgctgct gatgttctac
gcctatcaga cttggaagtc aacctgcggc 240tgggaggaaa tctacgtgtg cgctattgag
atggtgaaag tgatcctgga gttcttcttc 300gagttcaaga acccaagcat gctgtacctg
gctactggac accgagtgca gtggctgaga 360tatgcagaat ggctgctgac atgccccgtc
atctgcattc acctgtccaa cctgacaggc 420ctgagcaatg actactccag gagaactatg
ggactgctgg tgtccgacat cggctgcatt 480gtctggggag caacttctgc tatggcaacc
ggatacgtga aggtcatctt tttctgcctg 540gggctgtgct atggcgcaaa tacctttttc
cacgcagcca aggcctacat tgaggggtat 600cataccgtgc caaaaggccg gtgccgacag
gtggtcacag gaatggcttg gctgtttttc 660gtctcttggg gaatgtttcc catcctgttc
attctggggc ctgaagggtt cggcgtgctg 720tctgtctacg gaagtacagt ggggcatact
atcattgacc tgatgtccaa aaactgttgg 780ggcctgctgg gacactatct gagagtgctg
atccacgagc atatcctgat tcatggcgat 840attcggaaga ccacaaaact gaatatcggc
ggaaccgaga ttgaagtgga aacactggtg 900gaagacgagg ctgaggctgg ggctgtgaac
aaggggactg gcaaa 94516315PRTArtificial Sequencemutated
Chop2 16Met Asp Tyr Gly Gly Ala Leu Ser Ala Val Gly Arg Glu Leu Leu Phe1
5 10 15Val Thr Asn Pro
Val Val Val Asn Gly Ser Val Leu Val Pro Glu Asp 20
25 30Gln Cys Tyr Cys Ala Gly Trp Ile Glu Ser Arg
Gly Thr Asn Gly Ala 35 40 45Gln
Thr Ala Ser Asn Val Leu Gln Trp Leu Ala Ala Gly Phe Ser Ile 50
55 60Leu Leu Leu Met Phe Tyr Ala Tyr Gln Thr
Trp Lys Ser Thr Cys Gly65 70 75
80Trp Glu Glu Ile Tyr Val Cys Ala Ile Glu Met Val Lys Val Ile
Leu 85 90 95Glu Phe Phe
Phe Glu Phe Lys Asn Pro Ser Met Leu Tyr Leu Ala Thr 100
105 110Gly His Arg Val Gln Trp Leu Arg Tyr Ala
Glu Trp Leu Leu Thr Cys 115 120
125Pro Val Ile Cys Ile His Leu Ser Asn Leu Thr Gly Leu Ser Asn Asp 130
135 140Tyr Ser Arg Arg Thr Met Gly Leu
Leu Val Ser Asp Ile Gly Cys Ile145 150
155 160Val Trp Gly Ala Thr Ser Ala Met Ala Thr Gly Tyr
Val Lys Val Ile 165 170
175Phe Phe Cys Leu Gly Leu Cys Tyr Gly Ala Asn Thr Phe Phe His Ala
180 185 190Ala Lys Ala Tyr Ile Glu
Gly Tyr His Thr Val Pro Lys Gly Arg Cys 195 200
205Arg Gln Val Val Thr Gly Met Ala Trp Leu Phe Phe Val Ser
Trp Gly 210 215 220Met Phe Pro Ile Leu
Phe Ile Leu Gly Pro Glu Gly Phe Gly Val Leu225 230
235 240Ser Val Tyr Gly Ser Thr Val Gly His Thr
Ile Ile Asp Leu Met Ser 245 250
255Lys Asn Cys Trp Gly Leu Leu Gly His Tyr Leu Arg Val Leu Ile His
260 265 270Glu His Ile Leu Ile
His Gly Asp Ile Arg Lys Thr Thr Lys Leu Asn 275
280 285Ile Gly Gly Thr Glu Ile Glu Val Glu Thr Leu Val
Glu Asp Glu Ala 290 295 300Glu Ala Gly
Ala Val Asn Lys Gly Thr Gly Lys305 310
31517315PRTArtificial Sequencemutated Chop2 17Met Asp Tyr Gly Gly Ala Leu
Ser Ala Val Gly Arg Glu Leu Leu Phe1 5 10
15Val Thr Asn Pro Val Val Val Asn Gly Ser Val Leu Val
Pro Glu Asp 20 25 30Gln Cys
Tyr Cys Ala Gly Trp Ile Glu Ser Arg Gly Thr Asn Gly Ala 35
40 45Gln Thr Ala Ser Asn Val Leu Gln Trp Leu
Ala Ala Gly Phe Ser Ile 50 55 60Leu
Leu Leu Met Phe Tyr Ala Tyr Gln Thr Trp Lys Ser Thr Cys Gly65
70 75 80Trp Glu Glu Ile Tyr Val
Cys Ala Ile Glu Met Val Lys Val Ile Leu 85
90 95Glu Phe Phe Phe Glu Phe Lys Asn Pro Ser Met Leu
Tyr Leu Ala Thr 100 105 110Gly
His Arg Val Gln Trp Leu Arg Tyr Ala Glu Trp Leu Leu Thr Cys 115
120 125Pro Val Ile Leu Ile His Leu Ser Asn
Leu Thr Gly Leu Ser Asn Asp 130 135
140Tyr Ser Arg Arg Thr Met Gly Leu Leu Val Ser Asp Ile Gly Ser Ile145
150 155 160Val Trp Gly Ala
Thr Ser Ala Met Ala Thr Gly Tyr Val Lys Val Ile 165
170 175Phe Phe Cys Leu Gly Leu Cys Tyr Gly Ala
Asn Thr Phe Phe His Ala 180 185
190Ala Lys Ala Tyr Ile Glu Gly Tyr His Thr Val Pro Lys Gly Arg Cys
195 200 205Arg Gln Val Val Thr Gly Met
Ala Trp Leu Phe Phe Val Ser Trp Gly 210 215
220Met Phe Pro Ile Leu Phe Ile Leu Gly Pro Glu Gly Phe Gly Val
Leu225 230 235 240Ser Val
Tyr Gly Ser Thr Val Gly His Thr Ile Ile Asp Leu Met Ser
245 250 255Lys Asn Cys Trp Gly Leu Leu
Gly His Tyr Leu Arg Val Leu Ile His 260 265
270Glu His Ile Leu Ile His Gly Asp Ile Arg Lys Thr Thr Lys
Leu Asn 275 280 285Ile Gly Gly Thr
Glu Ile Glu Val Glu Thr Leu Val Glu Asp Glu Ala 290
295 300Glu Ala Gly Ala Val Asn Lys Gly Thr Gly Lys305
310 31518945DNAArtificial Sequencemutated
Chop2 18atggactacg ggggggctct gtctgctgtc gggagggaac tgctgtttgt gactaaccct
60gtcgtcgtga acgggagtgt gctggtccct gaggaccagt gctactgtgc cggctggatc
120gaatcacgcg gaaccaacgg ggcccagaca gctagcaatg tgctgcagtg gctggccgct
180gggtttagta tcctgctgct gatgttctac gcctatcaga cttggaagtc aacctgcggc
240tgggaggaaa tctacgtgtg cgctattgag atggtgaaag tgatcctgga gttcttcttc
300gagttcaaga acccaagcat gctgtacctg gctactggac accgagtgca gtggctgaga
360tatgcagaat ggctgctgac atgccccgtc atctgcattc acctgtccaa cctgacaggc
420ctgagcaatg actactccag gagaactatg ggactgctgg tgtccgacat cggcagcatt
480gtctggggag caacttctgc tatggcaacc ggatacgtga aggtcatctt tttctgcctg
540gggctgtgct atggcgcaaa tacctttttc cacgcagcca aggcctacat tgaggggtat
600cataccgtgc caaaaggccg gtgccgacag gtggtcacag gaatggcttg gctgtttttc
660gtctcttggg gaatgtttcc catcctgttc attctggggc ctgaagggtt cggcgtgctg
720tctgtctacg gaagtacagt ggggcatact atcattgacc tgatgtccaa aaactgttgg
780ggcctgctgg gacactatct gagagtgctg atccacgagc atatcctgat tcatggcgat
840attcggaaga ccacaaaact gaatatcggc ggaaccgaga ttgaagtgga aacactggtg
900gaagacgagg ctgaggctgg ggctgtgaac aaggggactg gcaaa
94519315PRTArtificial Sequencemutated Chop2 19Met Asp Tyr Gly Gly Ala Leu
Ser Ala Val Gly Arg Glu Leu Leu Phe1 5 10
15Val Thr Asn Pro Val Val Val Asn Gly Ser Val Leu Val
Pro Glu Asp 20 25 30Gln Cys
Tyr Cys Ala Gly Trp Ile Glu Ser Arg Gly Thr Asn Gly Ala 35
40 45Gln Thr Ala Ser Asn Val Leu Gln Trp Leu
Ala Ala Gly Phe Ser Ile 50 55 60Leu
Leu Leu Met Phe Tyr Ala Tyr Gln Thr Trp Lys Ser Thr Cys Gly65
70 75 80Trp Glu Glu Ile Tyr Val
Cys Ala Ile Glu Met Val Lys Val Ile Leu 85
90 95Glu Phe Phe Phe Glu Phe Lys Asn Pro Ser Met Leu
Tyr Leu Ala Thr 100 105 110Gly
His Arg Val Gln Trp Leu Arg Tyr Ala Glu Trp Leu Leu Thr Cys 115
120 125Pro Val Ile Cys Ile His Leu Ser Asn
Leu Thr Gly Leu Ser Asn Asp 130 135
140Tyr Ser Arg Arg Thr Met Gly Leu Leu Val Ser Asp Ile Gly Ser Ile145
150 155 160Val Trp Gly Ala
Thr Ser Ala Met Ala Thr Gly Tyr Val Lys Val Ile 165
170 175Phe Phe Cys Leu Gly Leu Cys Tyr Gly Ala
Asn Thr Phe Phe His Ala 180 185
190Ala Lys Ala Tyr Ile Glu Gly Tyr His Thr Val Pro Lys Gly Arg Cys
195 200 205Arg Gln Val Val Thr Gly Met
Ala Trp Leu Phe Phe Val Ser Trp Gly 210 215
220Met Phe Pro Ile Leu Phe Ile Leu Gly Pro Glu Gly Phe Gly Val
Leu225 230 235 240Ser Val
Tyr Gly Ser Thr Val Gly His Thr Ile Ile Asp Leu Met Ser
245 250 255Lys Asn Cys Trp Gly Leu Leu
Gly His Tyr Leu Arg Val Leu Ile His 260 265
270Glu His Ile Leu Ile His Gly Asp Ile Arg Lys Thr Thr Lys
Leu Asn 275 280 285Ile Gly Gly Thr
Glu Ile Glu Val Glu Thr Leu Val Glu Asp Glu Ala 290
295 300Glu Ala Gly Ala Val Asn Lys Gly Thr Gly Lys305
310 31520315PRTArtificial Sequencemutated
Chop2 20Met Asp Tyr Gly Gly Ala Leu Ser Ala Val Gly Arg Glu Leu Leu Phe1
5 10 15Val Thr Asn Pro
Val Val Val Asn Gly Ser Val Leu Val Pro Glu Asp 20
25 30Gln Cys Tyr Cys Ala Gly Trp Ile Glu Ser Arg
Gly Thr Asn Gly Ala 35 40 45Gln
Thr Ala Ser Asn Val Leu Gln Trp Leu Ala Ala Gly Phe Ser Ile 50
55 60Leu Leu Leu Met Phe Tyr Ala Tyr Gln Thr
Trp Lys Ser Thr Cys Gly65 70 75
80Trp Glu Glu Ile Tyr Val Cys Ala Ile Glu Met Val Lys Val Ile
Leu 85 90 95Glu Phe Phe
Phe Glu Phe Lys Asn Pro Ser Met Leu Tyr Leu Ala Thr 100
105 110Gly His Arg Val Gln Trp Leu Arg Tyr Ala
Glu Trp Leu Leu Thr Cys 115 120
125Pro Val Ile Ala Ile His Leu Ser Asn Leu Thr Gly Leu Ser Asn Asp 130
135 140Tyr Ser Arg Arg Thr Met Gly Leu
Leu Val Ser Asp Ile Gly Thr Ile145 150
155 160Val Trp Gly Ala Thr Ser Ala Met Ala Thr Gly Tyr
Val Lys Val Ile 165 170
175Phe Phe Cys Leu Gly Leu Cys Tyr Gly Ala Asn Thr Phe Phe His Ala
180 185 190Ala Lys Ala Tyr Ile Glu
Gly Tyr His Thr Val Pro Lys Gly Arg Cys 195 200
205Arg Gln Val Val Thr Gly Met Ala Trp Leu Phe Phe Val Ser
Trp Gly 210 215 220Met Phe Pro Ile Leu
Phe Ile Leu Gly Pro Glu Gly Phe Gly Val Leu225 230
235 240Ser Val Tyr Gly Ser Thr Val Gly His Thr
Ile Ile Asp Leu Met Ser 245 250
255Lys Asn Cys Trp Gly Leu Leu Gly His Tyr Leu Arg Val Leu Ile His
260 265 270Glu His Ile Leu Ile
His Gly Asp Ile Arg Lys Thr Thr Lys Leu Asn 275
280 285Ile Gly Gly Thr Glu Ile Glu Val Glu Thr Leu Val
Glu Asp Glu Ala 290 295 300Glu Ala Gly
Ala Val Asn Lys Gly Thr Gly Lys305 310
31521945DNAArtificial Sequencemutated Chop2 21atggactacg ggggggctct
gtctgctgtc gggagggaac tgctgtttgt gactaaccct 60gtcgtcgtga acgggagtgt
gctggtccct gaggaccagt gctactgtgc cggctggatc 120gaatcacgcg gaaccaacgg
ggcccagaca gctagcaatg tgctgcagtg gctggccgct 180gggtttagta tcctgctgct
gatgttctac gcctatcaga cttggaagtc aacctgcggc 240tgggaggaaa tctacgtgtg
cgctattgag atggtgaaag tgatcctgga gttcttcttc 300gagttcaaga acccaagcat
gctgtacctg gctactggac accgagtgca gtggctgaga 360tatgcagaat ggctgctgac
atgccccgtc atcgccattc acctgtccaa cctgacaggc 420ctgagcaatg actactccag
gagaactatg ggactgctgg tgtccgacat cggctgcatt 480gtctggggag caacttctgc
tatggcaacc ggatacgtga aggtcatctt tttctgcctg 540gggctgtgct atggcgcaaa
tacctttttc cacgcagcca aggcctacat tgaggggtat 600cataccgtgc caaaaggccg
gtgccgacag gtggtcacag gaatggcttg gctgtttttc 660gtctcttggg gaatgtttcc
catcctgttc attctggggc ctgaagggtt cggcgtgctg 720tctgtctacg gaagtacagt
ggggcatact atcattgacc tgatgtccaa aaactgttgg 780ggcctgctgg gacactatct
gagagtgctg atccacgagc atatcctgat tcatggcgat 840attcggaaga ccacaaaact
gaatatcggc ggaaccgaga ttgaagtgga aacactggtg 900gaagacgagg ctgaggctgg
ggctgtgaac aaggggactg gcaaa 94522315PRTArtificial
Sequencemutated Chop2 22Met Asp Tyr Gly Gly Ala Leu Ser Ala Val Gly Arg
Glu Leu Leu Phe1 5 10
15Val Thr Asn Pro Val Val Val Asn Gly Ser Val Leu Val Pro Glu Asp
20 25 30Gln Cys Tyr Cys Ala Gly Trp
Ile Glu Ser Arg Gly Thr Asn Gly Ala 35 40
45Gln Thr Ala Ser Asn Val Leu Gln Trp Leu Ala Ala Gly Phe Ser
Ile 50 55 60Leu Leu Leu Met Phe Tyr
Ala Tyr Gln Thr Trp Lys Ser Thr Cys Gly65 70
75 80Trp Glu Glu Ile Tyr Val Cys Ala Ile Glu Met
Val Lys Val Ile Leu 85 90
95Glu Phe Phe Phe Glu Phe Lys Asn Pro Ser Met Leu Tyr Leu Ala Thr
100 105 110Gly His Arg Val Gln Trp
Leu Arg Tyr Ala Glu Trp Leu Leu Thr Cys 115 120
125Pro Val Ile Ala Ile His Leu Ser Asn Leu Thr Gly Leu Ser
Asn Asp 130 135 140Tyr Ser Arg Arg Thr
Met Gly Leu Leu Val Ser Asp Ile Gly Cys Ile145 150
155 160Val Trp Gly Ala Thr Ser Ala Met Ala Thr
Gly Tyr Val Lys Val Ile 165 170
175Phe Phe Cys Leu Gly Leu Cys Tyr Gly Ala Asn Thr Phe Phe His Ala
180 185 190Ala Lys Ala Tyr Ile
Glu Gly Tyr His Thr Val Pro Lys Gly Arg Cys 195
200 205Arg Gln Val Val Thr Gly Met Ala Trp Leu Phe Phe
Val Ser Trp Gly 210 215 220Met Phe Pro
Ile Leu Phe Ile Leu Gly Pro Glu Gly Phe Gly Val Leu225
230 235 240Ser Val Tyr Gly Ser Thr Val
Gly His Thr Ile Ile Asp Leu Met Ser 245
250 255Lys Asn Cys Trp Gly Leu Leu Gly His Tyr Leu Arg
Val Leu Ile His 260 265 270Glu
His Ile Leu Ile His Gly Asp Ile Arg Lys Thr Thr Lys Leu Asn 275
280 285Ile Gly Gly Thr Glu Ile Glu Val Glu
Thr Leu Val Glu Asp Glu Ala 290 295
300Glu Ala Gly Ala Val Asn Lys Gly Thr Gly Lys305 310
31523315PRTArtificial Sequencemutated Chop2 23Met Asp Tyr Gly
Gly Ala Leu Ser Ala Val Gly Arg Glu Leu Leu Phe1 5
10 15Val Thr Asn Pro Val Val Val Asn Gly Ser
Val Leu Val Pro Glu Asp 20 25
30Gln Cys Tyr Cys Ala Gly Trp Ile Glu Ser Arg Gly Thr Asn Gly Ala
35 40 45Gln Thr Ala Ser Asn Val Leu Gln
Trp Leu Ala Ala Gly Phe Ser Ile 50 55
60Leu Leu Leu Met Phe Tyr Ala Tyr Gln Thr Trp Lys Ser Thr Cys Gly65
70 75 80Trp Glu Glu Ile Tyr
Val Cys Ala Ile Glu Met Val Lys Val Ile Leu 85
90 95Glu Phe Phe Phe Glu Phe Lys Asn Pro Ser Met
Leu Tyr Leu Ala Thr 100 105
110Gly His Arg Val Gln Trp Leu Arg Tyr Ala Glu Trp Leu Leu Thr Cys
115 120 125Pro Val Ile Leu Ile His Leu
Ser Asn Leu Thr Gly Leu Ser Asn Asp 130 135
140Tyr Ser Arg Arg Thr Met Gly Leu Leu Val Ser Asp Ile Gly Ala
Ile145 150 155 160Val Trp
Gly Ala Thr Ser Ala Met Ala Thr Gly Tyr Val Lys Val Ile
165 170 175Phe Phe Cys Leu Gly Leu Cys
Tyr Gly Ala Asn Thr Phe Phe His Ala 180 185
190Ala Lys Ala Tyr Ile Glu Gly Tyr His Thr Val Pro Lys Gly
Arg Cys 195 200 205Arg Gln Val Val
Thr Gly Met Ala Trp Leu Phe Phe Val Ser Trp Gly 210
215 220Met Phe Pro Ile Leu Phe Ile Leu Gly Pro Glu Gly
Phe Gly Val Leu225 230 235
240Ser Val Tyr Gly Ser Thr Val Gly His Thr Ile Ile Asp Leu Met Ser
245 250 255Lys Asn Cys Trp Gly
Leu Leu Gly His Tyr Leu Arg Val Leu Ile His 260
265 270Glu His Ile Leu Ile His Gly Asp Ile Arg Lys Thr
Thr Lys Leu Asn 275 280 285Ile Gly
Gly Thr Glu Ile Glu Val Glu Thr Leu Val Glu Asp Glu Ala 290
295 300Glu Ala Gly Ala Val Asn Lys Gly Thr Gly
Lys305 310 31524945DNAArtificial
Sequencemutated Chop2 24atggactacg ggggggctct gtctgctgtc gggagggaac
tgctgtttgt gactaaccct 60gtcgtcgtga acgggagtgt gctggtccct gaggaccagt
gctactgtgc cggctggatc 120gaatcacgcg gaaccaacgg ggcccagaca gctagcaatg
tgctgcagtg gctggccgct 180gggtttagta tcctgctgct gatgttctac gcctatcaga
cttggaagtc aacctgcggc 240tgggaggaaa tctacgtgtg cgctattgag atggtgaaag
tgatcctgga gttcttcttc 300gagttcaaga acccaagcat gctgtacctg gctactggac
accgagtgca gtggctgaga 360tatgcagaat ggctgctgac atgccccgtc atctgcattc
acctgtccaa cctgacaggc 420ctgagcaatg actactccag gagaactatg ggactgctgg
tgtccgacat cggcgccatt 480gtctggggag caacttctgc tatggcaacc ggatacgtga
aggtcatctt tttctgcctg 540gggctgtgct atggcgcaaa tacctttttc cacgcagcca
aggcctacat tgaggggtat 600cataccgtgc caaaaggccg gtgccgacag gtggtcacag
gaatggcttg gctgtttttc 660gtctcttggg gaatgtttcc catcctgttc attctggggc
ctgaagggtt cggcgtgctg 720tctgtctacg gaagtacagt ggggcatact atcattgacc
tgatgtccaa aaactgttgg 780ggcctgctgg gacactatct gagagtgctg atccacgagc
atatcctgat tcatggcgat 840attcggaaga ccacaaaact gaatatcggc ggaaccgaga
ttgaagtgga aacactggtg 900gaagacgagg ctgaggctgg ggctgtgaac aaggggactg
gcaaa 94525315PRTArtificial Sequencemutated Chop2
25Met Asp Tyr Gly Gly Ala Leu Ser Ala Val Gly Arg Glu Leu Leu Phe1
5 10 15Val Thr Asn Pro Val Val
Val Asn Gly Ser Val Leu Val Pro Glu Asp 20 25
30Gln Cys Tyr Cys Ala Gly Trp Ile Glu Ser Arg Gly Thr
Asn Gly Ala 35 40 45Gln Thr Ala
Ser Asn Val Leu Gln Trp Leu Ala Ala Gly Phe Ser Ile 50
55 60Leu Leu Leu Met Phe Tyr Ala Tyr Gln Thr Trp Lys
Ser Thr Cys Gly65 70 75
80Trp Glu Glu Ile Tyr Val Cys Ala Ile Glu Met Val Lys Val Ile Leu
85 90 95Glu Phe Phe Phe Glu Phe
Lys Asn Pro Ser Met Leu Tyr Leu Ala Thr 100
105 110Gly His Arg Val Gln Trp Leu Arg Tyr Ala Glu Trp
Leu Leu Thr Cys 115 120 125Pro Val
Ile Cys Ile His Leu Ser Asn Leu Thr Gly Leu Ser Asn Asp 130
135 140Tyr Ser Arg Arg Thr Met Gly Leu Leu Val Ser
Asp Ile Gly Ala Ile145 150 155
160Val Trp Gly Ala Thr Ser Ala Met Ala Thr Gly Tyr Val Lys Val Ile
165 170 175Phe Phe Cys Leu
Gly Leu Cys Tyr Gly Ala Asn Thr Phe Phe His Ala 180
185 190Ala Lys Ala Tyr Ile Glu Gly Tyr His Thr Val
Pro Lys Gly Arg Cys 195 200 205Arg
Gln Val Val Thr Gly Met Ala Trp Leu Phe Phe Val Ser Trp Gly 210
215 220Met Phe Pro Ile Leu Phe Ile Leu Gly Pro
Glu Gly Phe Gly Val Leu225 230 235
240Ser Val Tyr Gly Ser Thr Val Gly His Thr Ile Ile Asp Leu Met
Ser 245 250 255Lys Asn Cys
Trp Gly Leu Leu Gly His Tyr Leu Arg Val Leu Ile His 260
265 270Glu His Ile Leu Ile His Gly Asp Ile Arg
Lys Thr Thr Lys Leu Asn 275 280
285Ile Gly Gly Thr Glu Ile Glu Val Glu Thr Leu Val Glu Asp Glu Ala 290
295 300Glu Ala Gly Ala Val Asn Lys Gly
Thr Gly Lys305 310 31526315PRTArtificial
SequenceChR2 mutant construct 26Met Asp Tyr Gly Gly Ala Leu Ser Ala Val
Gly Arg Glu Leu Leu Phe1 5 10
15Val Thr Asn Pro Val Val Val Asn Gly Ser Val Leu Val Pro Glu Asp
20 25 30Gln Cys Tyr Cys Ala Gly
Trp Ile Glu Ser Arg Gly Thr Asn Gly Ala 35 40
45Gln Thr Ala Ser Asn Val Leu Gln Trp Leu Ala Ala Gly Phe
Ser Ile 50 55 60Leu Leu Leu Met Phe
Tyr Ala Tyr Gln Thr Trp Lys Ser Thr Cys Gly65 70
75 80Trp Glu Glu Ile Tyr Val Cys Ala Ile Glu
Met Val Lys Val Ile Leu 85 90
95Glu Phe Phe Phe Glu Phe Lys Asn Pro Ser Met Leu Tyr Leu Ala Thr
100 105 110Gly His Arg Val Gln
Trp Leu Arg Tyr Ala Glu Trp Leu Leu Thr Cys 115
120 125Pro Val Ile Leu Ile His Leu Ser Asn Leu Thr Gly
Leu Ser Asn Asp 130 135 140Tyr Ser Arg
Arg Thr Met Gly Leu Leu Val Ser Asp Ile Gly Thr Ile145
150 155 160Val Trp Gly Ala Thr Ser Ala
Met Ala Thr Gly Tyr Val Lys Val Ile 165
170 175Phe Phe Cys Leu Gly Leu Cys Tyr Gly Ala Asn Thr
Phe Phe His Ala 180 185 190Ala
Lys Ala Tyr Ile Glu Gly Tyr His Thr Val Pro Lys Gly Arg Cys 195
200 205Arg Gln Val Val Thr Gly Met Ala Trp
Leu Phe Phe Val Ser Trp Gly 210 215
220Met Phe Pro Ile Leu Phe Ile Leu Gly Pro Glu Gly Phe Gly Val Leu225
230 235 240Ser Val Tyr Gly
Ser Thr Val Gly His Thr Ile Ile Asp Leu Met Ser 245
250 255Lys Asn Cys Trp Gly Leu Leu Gly His Tyr
Leu Arg Val Leu Ile His 260 265
270Glu His Ile Leu Ile His Gly Asp Ile Arg Lys Thr Thr Lys Leu Asn
275 280 285Ile Gly Gly Thr Glu Ile Glu
Val Glu Thr Leu Val Glu Asp Glu Ala 290 295
300Glu Ala Gly Ala Val Asn Lys Gly Thr Gly Lys305
310 315
User Contributions:
Comment about this patent or add new information about this topic: