Patent application title: MUTATIONS IN MADS-BOX GENES AND USES THEREOF
Inventors:
Zachary Lippman (North Bellmore, NY, US)
Sebastian Soyk (Cold Spring Harbor, NY, US)
Zachary Hartford Lemmon (Cold Spring Harbor, NY, US)
Zachary Hartford Lemmon (Huntington Station, NY, US)
Assignees:
COLD SPRING HARBOR LABORATORY
IPC8 Class: AC12N1582FI
USPC Class:
Class name:
Publication date: 2022-01-06
Patent application number: 20220002740
Abstract:
Aspects of the disclosure relate to plants, such as Solanaceae plants
containing one or more of a mutant Solyc04g005320 gene (or a homolog
thereof), a mutant Solycl2g038510 gene (or a homolog thereof), and a
mutant Solyc03gl14840 gene (or a homolog thereof), as well as methods of
producing such plants. In some aspects, such plants have one or more
improved traits, such as modified inflorescence architecture, modified
flower number, modified fruit number, higher yield, higher quality
products, and higher fruit productivity.Claims:
1. A genetically-altered Solanaceae plant comprising a mutant
Solyc04g005320 gene or a homolog thereof.
2. The genetically-altered Solanaceae plant of claim 1, wherein the mutant Solyc04g005320 gene or homolog thereof is a null allele or a hypomorphic allele.
3. The genetically-altered Solanaceae plant of claim 1, wherein the genetically-altered Solanaceae plant is heterozygous or homozygous for the mutant Solyc04g005320 gene or homolog thereof.
4. The genetically-altered Solanaceae plant of claim 1, wherein the genetically-altered Solanaceae plant further comprises a mutant Solyc12g038510 gene or a homolog thereof, a mutant Solyc03g114840 gene or a homolog thereof, or both a mutant Solyc12g038510 gene or a homolog thereof and a mutant Solyc03g114840 gene or a homolog thereof.
5. The genetically-altered Solanaceae plant of claim 1, wherein the plant further comprises a mutant Solyc12g038510 gene or homolog thereof and the mutant Solyc12g038510 gene or homolog thereof is a null allele or a hypomorphic allele.
6. The genetically-altered Solanaceae plant of claim 5, wherein the genetically-altered Solanaceae plant is heterozygous or homozygous for the mutant Solyc12g038510 gene or homolog thereof.
7. The genetically-altered Solanaceae plant of claim 1, wherein the plant further comprises a mutant Solyc03g114840 gene or a homolog thereof and the mutant Solyc03g114840 gene or homolog thereof is a null allele or a hypomorphic allele.
8. The genetically-altered Solanaceae plant of claim 7, wherein the genetically-altered Solanaceae plant is heterozygous or homozygous for the mutant Solyc03g114840 gene or homolog thereof.
9. The genetically-altered Solanaceae plant of claim 1, wherein the plant further comprises both a mutant Solyc12g038510 gene or a homolog thereof and a mutant Solyc03g114840 gene or a homolog thereof, each of which are independently a null allele or a hypomorphic allele.
10. The genetically-altered Solanaceae plant of claim 9, wherein the genetically-altered Solanaceae plant is heterozygous or homozygous for the mutant Solyc12g038510 gene or homolog thereof and is heterozygous or homozygous for the mutant Solyc03g114840 gene or homolog thereof.
11. The genetically-altered Solanaceae plant of claim 1, wherein the genetically-altered Solanaceae plant further comprises a mutant Solyc12g038510 gene or homolog thereof, and a mutant Solyc03g114840 gene or homolog thereof, and wherein each is a hypomorphic allele.
12. A genetically-altered Solanaceae plant, comprising a mutant Solyc12g038510 gene or a homolog thereof and a mutant Solyc03g114840 gene or a homolog thereof, wherein the genetically-altered Solanaceae plant is homozygous for the mutant Solyc12g038510 gene or homolog thereof and heterozygous for the mutant Solyc03g114840 gene or homolog thereof.
13. The genetically-altered Solanaceae plant of claim 12, wherein the mutant Solyc12g038510 gene or homolog thereof is a null allele or a hypomorphic allele and the mutant Solyc03g114840 gene or homolog thereof is a null allele or a hypomorphic allele.
14. The genetically-altered Solanaceae plant of claim 1, wherein the genetically-altered Solanaceae plant is a tomato (Solanum lycopersicum) plant.
15. The genetically-altered Solanaceae plant of claim 4, wherein the mutant Solyc04g005320 gene or homolog thereof, the mutant Solyc12g038510 gene or homolog thereof, and/or the mutant Solyc03g114840 gene or homolog thereof is introduced by technical means.
16. The genetically-altered Solanaceae plant of claim 4, wherein the mutant Solyc04g005320 gene or homolog thereof, the mutant Solyc12g038510 gene or homolog thereof, and/or the mutant Solyc03g114840 gene or homolog thereof is introduced by chemical or physical means.
17. The genetically-altered Solanaceae plant of claim 16, wherein the mutant Solyc04g005320 gene or homolog thereof, the mutant Solyc12g038510 gene or homolog thereof, and/or the mutant Solyc03g114840 gene or homolog thereof is introduced using CRISPR/Cas9, chemical mutagenesis, radiation, Agrobacterium-mediated recombination, viral-vector mediated recombination, or transposon mutagenesis.
18. (canceled)
19. A crop harvested from genetically-altered Solanaceae plants as defined in claim 1.
20. A seed for producing a genetically-altered Solanaceae plant of claim 1.
21. A method for producing a genetically-altered Solanaceae plant, the method comprising introducing a mutation into a Solyc04g005320 gene or a homolog thereof in a Solanaceae plant, thereby producing a genetically-altered Solanaceae plant containing a mutant Solyc04g005320 gene or homolog thereof.
22. The method of claim 21, wherein the mutation is introduced using CRISPR/Cas9.
23. The method of claim 21, wherein the mutation produces a null allele or a hypomorphic allele of the Solyc04g005320 gene or homolog thereof.
24. The method of claim 21, wherein the method further comprises introducing into the Solanaceae plant a mutation into a Solyc12g038510 gene or a homolog thereof, introducing a mutation into a Solyc03g114840 gene or a homolog thereof, or introducing the mutation into the Solyc12g038510 gene or homolog thereof and introducing the mutation into the Solyc03g114840 gene or homolog thereof.
25. The method of claim 24, wherein the mutation(s) is/are introduced using CRISPR/Cas9.
26. The method of claim 21, wherein the genetically-altered Solanaceae plant containing the mutant Solyc04g005320 gene or homolog thereof is crossed to another genetically-altered Solanaceae plant comprising a mutant Solyc12g038510 gene or homolog thereof, a mutant Solyc03g114840 gene or homolog thereof, or both the mutant Solyc12g038510 gene or homolog thereof and the mutant Solyc03g114840 gene or homolog thereof, thereby producing a genetically-altered Solanaceae plant containing the mutant Solyc04g005320 gene or homolog thereof and the mutant Solyc12g038510 gene or homolog thereof, the mutant Solyc03g114840 gene or homolog thereof, or both the mutant Solyc12g038510 gene or homolog thereof and the mutant Solyc03g114840 gene or homolog thereof.
27. The method of claim 21, wherein the genetically-altered Solanaceae plant is a tomato (Solanum lycopersicum) plant.
28. A genetically-altered Solanaceae plant produced or obtainable by the method of claim 21.
29. The genetically-altered Solanaceae plant of claim 1, wherein the mutant Solyc04g005320 gene or homolog thereof is a hypermorphic allele.
30. The genetically-altered Solanaceae plant of claim 29, wherein the genetically-altered Solanaceae plant is heterozygous or homozygous for the mutant Solyc04g005320 gene or homolog thereof.
31. (canceled)
Description:
CROSS-REFERENCE TO RELATED APPLICATIONS
[0001] This application claims the benefit of the filing date of U.S. Provisional Application No. 62/507,369, filed on May 17, 2017. The entire contents of this referenced application are incorporated by reference herein.
BACKGROUND
[0003] The architectures of plant reproductive shoot systems--inflorescences--are major determinants of crop yield, and modified inflorescence complexity was a recurring target during crop domestication and improvement (Doebley et al., 2006; Meyer and Purugganan, 2013). Prominent examples include the cereal crops barley, maize, rice and wheat, for which humans selected variants with greater branching to increase flower and grain production (Ashikari et al., 2005; Boden et al., 2015; Doebley et al., 1997; Huang et al., 2009; Jiao et al., 2010; Komatsuda et al., 2007; Ramsay et al., 2011). Yet, for many crops, particularly fruit-bearing species such as grape and tomato, inflorescence architecture has changed little from wild ancestors, and therefore has been underexploited in breeding (Lippman et al., 2008; Mullins et al., 1992; Peralta and Spooner, 2005).
SUMMARY
[0004] Aspects of the present disclosure relate to compositions, such as novel genetic variants of plants, and methods for generating the compositions, which have favorable traits, such as yield-related traits. In some aspects, the combination of mutations in the novel genetic variants increase inflorescence and fruit production. In other aspects, mutations in one or more of the genes of the genetic variants can be used to create a quantitative range of inflorescence types, such as the development of weakly branched genetic variants that results in higher flower and fruit production.
[0005] In some aspects, the disclosure provides a genetically-altered Solanaceae plant (e.g., a tomato plant) comprising a mutant Solyc04g005320 gene or a homolog thereof. In some embodiments, the mutant Solyc04g005320 gene or homolog thereof is a null allele or a hypomorphic allele. In some embodiments, the genetically-altered Solanaceae plant (e.g., tomato plant) is heterozygous or homozygous for the mutant Solyc04g005320 gene or homolog thereof.
[0006] In some embodiments, the genetically-altered Solanaceae plant (e.g., tomato plant) further comprises a mutant Solyc12g038510 gene or a homolog thereof, a mutant Solyc03g114840 gene or a homolog thereof, or both a mutant Solyc12g038510 gene or a homolog thereof and a mutant Solyc03g114840 gene or a homolog thereof.
[0007] In some embodiments, the genetically-altered Solanaceae plant (e.g., tomato plant) further comprises a mutant Solyc12g038510 gene or homolog thereof and the mutant Solyc12g038510 gene or homolog thereof is a null allele or a hypomorphic allele. In some embodiments, the genetically-altered Solanaceae plant is heterozygous or homozygous for the mutant Solyc12g038510 gene or homolog thereof.
[0008] In some embodiments, the genetically-altered Solanaceae plant (e.g., tomato plant) further comprises a mutant Solyc03g114840 gene or a homolog thereof and the mutant Solyc03g114840 gene or homolog thereof is a null allele or a hypomorphic allele. In some embodiments, the genetically-altered Solanaceae plant is heterozygous or homozygous for the mutant Solyc03g114840 gene or homolog thereof.
[0009] In some embodiments, the genetically-altered Solanaceae plant (e.g., tomato plant) further comprises both a mutant Solyc12g038510 gene or a homolog thereof and a mutant Solyc03g114840 gene or a homolog thereof, each of which are independently a null allele or a hypomorphic allele. In some embodiments, the genetically-altered Solanaceae plant is heterozygous or homozygous for the mutant Solyc12g038510 gene or homolog thereof and is heterozygous or homozygous for the mutant Solyc03g114840 gene or homolog thereof.
[0010] In some embodiments, the genetically-altered Solanaceae plant (e.g., tomato plant) comprises the mutant Solyc04g005320 gene or homolog thereof, the mutant Solyc12g038510 gene or homolog thereof, and the mutant Solyc03g114840 gene or homolog thereof, and wherein each is a hypomorphic allele. In some embodiments, the genetically-altered Solanaceae plant (e.g., tomato plant) is heterozygous or homozygous for the mutant Solyc04g005320 gene or homolog thereof, is heterozygous or homozygous for the mutant Solyc03g114840 gene or homolog thereof and is heterozygous or homozygous for the mutant Solyc03g114840 gene or homolog thereof.
[0011] In some embodiments, the mutant Solyc04g005320 gene or homolog thereof is a hypermorphic allele. In some embodiments, the genetically-altered Solanaceae plant (e.g., tomato plant) is heterozygous or homozygous for the mutant Solyc04g005320 gene or homolog thereof.
[0012] In some embodiments, the genetically-altered Solanaceae plant (e.g., tomato plant) further comprises a mutant Solyc12g038510 gene or a homolog thereof, a mutant Solyc03g114840 gene or a homolog thereof, or both the mutant Solyc12g038510 gene or homolog thereof and the mutant Solyc03g114840 gene or homolog thereof.
[0013] In other aspects, the disclosure provides a genetically-altered Solanaceae plant (e.g., a tomato plant), comprising a mutant Solyc12g038510 gene or a homolog thereof and a mutant Solyc03g114840 gene or a homolog thereof, wherein the genetically-altered Solanaceae plant is homozygous for the mutant Solyc12g038510 gene or homolog thereof and heterozygous for the mutant Solyc03g114840 gene or homolog thereof. In some embodiments, the mutant Solyc12g038510 gene or homolog thereof is a null allele or a hypomorphic allele and the mutant Solyc03g114840 gene or homolog thereof is a null allele or a hypomorphic allele.
[0014] In some embodiments of any one of the genetically-altered Solanaceae plants (e.g., a tomato plant) provided herein, the mutant Solyc04g005320 gene or homolog thereof, the mutant Solyc12g038510 gene or homolog thereof, and/or the mutant Solyc03g114840 gene or homolog thereof is introduced by technical means. In some embodiments of any one of the genetically-altered Solanaceae plants (e.g., a tomato plant) provided herein, the mutant Solyc04g005320 gene or homolog thereof, the mutant Solyc12g038510 gene or homolog thereof, and/or the mutant Solyc03g114840 gene or homolog thereof is introduced by chemical or physical means. In some embodiments of any one of the genetically-altered Solanaceae plants (e.g., a tomato plant) provided herein, the mutant Solyc04g005320 gene or homolog thereof, the mutant Solyc12g038510 gene or homolog thereof, and/or the mutant Solyc03g114840 gene or homolog thereof is introduced using CRISPR/Cas9, chemical mutagenesis, radiation, Agrobacterium-mediated recombination, viral-vector mediated recombination, or transposon mutagenesis. In some embodiments of any one of the genetically-altered Solanaceae plants (e.g., a tomato plant) provided herein, the plants are provided with the provision that plants exclusively obtained by means of an essentially biological process are excluded.
[0015] In other aspects, the disclosure provides a crop harvested from a genetically-altered Solanaceae plant (e.g., a tomato plant) of any one of the above embodiments or of any other embodiment described herein.
[0016] In yet other aspects, the disclosure provides a seed for producing a genetically-altered Solanaceae plant (e.g., a tomato plant) of any one of the above embodiments or of any other embodiment described herein.
[0017] In other aspects, the disclosure provides a method for producing a genetically-altered Solanaceae plant (e.g., a tomato plant), the method comprising introducing a mutation into a Solyc04g005320 gene or a homolog thereof in a Solanaceae plant, thereby producing a genetically-altered Solanaceae plant containing a mutant Solyc04g005320 gene or homolog thereof. In some embodiments, the mutation is introduced using CRISPR/Cas9. In some embodiments, the mutation produces a null allele or a hypomorphic allele of the Solyc04g005320 gene or homolog thereof.
[0018] In some embodiments of any one of the methods provided herein, the method further comprises introducing into the Solanaceae plant a mutation into a Solyc12g038510 gene or a homolog thereof, introducing a mutation into a Solyc03g114840 gene or a homolog thereof, or introducing the mutation into the Solyc12g038510 gene or homolog thereof and introducing the mutation into the Solyc03g114840 gene or homolog thereof. In some embodiments, the mutation(s) is/are introduced using CRISPR/Cas9.
[0019] In some embodiments of any one of the methods provided herein, the genetically-altered Solanaceae plant (e.g., a tomato plant) containing the mutant Solyc04g005320 gene or homolog thereof is crossed to another genetically-altered Solanaceae plant (e.g., a tomato plant) comprising a mutant Solyc12g038510 gene or homolog thereof, a mutant Solyc03g114840 gene or homolog thereof, or both the mutant Solyc12g038510 gene or homolog thereof and the mutant Solyc03g114840 gene or homolog thereof, thereby producing a genetically-altered Solanaceae plant (e.g., a tomato plant) containing the mutant Solyc04g005320 gene or homolog thereof and the mutant Solyc12g038510 gene or homolog thereof, the mutant Solyc03g114840 gene or homolog thereof, or both the mutant Solyc12g038510 gene or homolog thereof and the mutant Solyc03g114840 gene or homolog thereof.
[0020] In other aspects, the disclosure provides a genetically-altered Solanaceae plant (e.g., a tomato plant) produced or obtainable by a method of any one of the above embodiments or of any other embodiment described herein.
BRIEF DESCRIPTION OF THE DRAWINGS
[0021] The following drawings form part of the present specification and are included to further demonstrate certain aspects of the present disclosure, which can be better understood by reference to one or more of these drawings in combination with the detailed description of specific embodiments presented herein. It is to be understood that the data illustrated in the drawings in no way limit the scope of the disclosure.
[0022] FIGS. 1A-1K show the s2 inflorescence architecture variant branches due to delayed meristem maturation. FIG. 1A shows a typical wild type (WT) tomato plant with unbranched, multi-flowered inflorescences and jointed pedicels (dotted asterisk in inset). Numbers in FIGS. 1A-1C indicate flowers per inflorescence (mean.+-.SEM, N=number of inflorescences). Striped arrowheads indicate successive inflorescences. P: two-tailed, two-sample t-test compared to WT. FIG. 1B shows the highly branched inflorescences and jointed pedicels of s mutants. White arrowheads indicate branch points. FIG. 1C shows the s2 mutant with moderately branched inflorescences and jointless pedicels (asterisk). FIG. 1D shows quantification of inflorescence branching events in WT, s, and s2. FIG. 1E shows phenotypic classes in a WT.times.s2 F2 population. The segregation ratio for the jointless pedicel phenotype and the branched inflorescence phenotype (s2) is given. Asterisks mark jointless pedicels. Scale bars in FIGS. 1A-1C and lE=1 cm. FIGS. 1F-1H show the transition meristem (TM), sympodial inflorescence meristem (SIM), and floral meristem (FM) from WT (FIG. 1F), s (FIG. 1G), and s2 (FIG. 1H). Scale bars in FIGS. 1F-1H represent 100 .mu.m. L, leaf. F, flower. Schematics depict developing inflorescences. Lines, internodes; circles, FMs/flowers; arrowheads, SIMs. Overproliferating branches are indicated in bolded line. FIG. 1I shows PCA of 2,582 dynamically expressed genes in the vegetative meristem (VM), TM, SIM, and FM of WT, s, and s2, determined by RNA-seq. FIGS. 1J-1K show expression (z-score normalized) of TM (FIG. 1J) and FM (FIG. 1K) marker genes in the vegetative (VM) meristem, TM and FM stage of meristem maturation of WT and mutant (s and s2). Cluster of genes with moderately (left) and strongly (right) delayed expression pattern are shown. Dashed lines indicate median expression with dot-filled-in area representing the 5.sup.th and 95.sup.th quantile.
[0023] FIGS. 2A-2N show that mutations in two SEPALLATA MADS-box genes cause s2 branching. FIG. 2A shows mapping-by-sequencing of s2. Ratio of SNP-ratios (s2/M82) between different pools of segregating phenotypic classes (top: s2/WT; middle: s2/j2; bottom: j2/WT) is shown for chromosome 3 and 12. FIG. 2B shows the j2 mapping interval includes the SEP4 homolog Solyc12g038510. FIG. 2C shows Genomic Illumina-sequence reads showing a breakpoint in Solyc12g038510 (left), and PCR showing a Copia/Rider transposon insertion in the first intron of Solyc12g038510 in s2 mutants (right). The sequence corresponds to SEQ ID NO: 89. FIG. 2D shows Sashimi plots of normalized RNA-seq reads (reads per million, RPM) for Solyc12g038510 in WT (top) and s2 (bottom) floral meristems. An intronic transcriptional start site leads to out-of-frame Solyc12g038510 transcripts in s2 mutants. Numbers indicate reads supporting splice-junctions and alternative splicing in s2 is highlighted in the bottom panel by diagonal line filling. FIG. 2E shows the generation of j2.sup.CR null mutations by CRISPR/Cas9 using two single-guide RNAs (sgRNA, target1 and target2; arrows). Black arrows indicate forward (F) and reverse (R) primers used for genotyping and sequencing. Sequences of j2.sup.CR allele 1 (a1) and a2 are shown. sgRNA targets and protospacer-adjacent motif (PAM) are indicated in bold font and deletions by dashes. Insertions are indicated in italic font and sequence gap length is shown in parentheses. From top to bottom, sequences correspond to SEQ ID NOs: 90-92. FIG. 2F shows inflorescences and fruits from WT and j2.sup.CR mutants showing unbranched inflorescence with jointless pedicels for j2.sup.CR. White and dotted asterisks indicate jointed and jointless pedicels, respectively. FIG. 2G shows a complementation test between j2.sup.CR and j2.sup.TE (jointless pedicels; asterisks). FIG. 2H shows that the ej2 mapping interval includes the SEP4 homolog Solyc03g114840. FIG. 2I shows the Genomic Illumina-sequence reads showing a breakpoint in Solyc03g114840 and PCR revealing a 564 bp insertion in the 5th intron of Solyc03g114840 in s2 mutants. The sequence corresponds to SEQ ID NO: 93. FIG. 2J shows Sashimi plots for Solyc03g114840 RNA-seq reads in WT and s2 floral meristems indicating partial exon skipping and intron retention in s2 mutants. FIG. 2K shows the generation of ej2.sup.CR null mutations by CRISPR/Cas9. From top to bottom, sequences correspond to SEQ ID NOs: 94-97. FIG. 2L shows unbranched ej2.sup.CR mutant inflorescences with extremely long sepals (arrowheads) and pear-shaped fruits. Scale bars=1 cm. FIG. 2M shows unopened flowers showing the weak natural ej2.sup.w allele causes longer sepals and fails to complement ej2.sup.CR. FIG. 2N shows quantification of relative sepal length (sepal length/petal length f SEM, N=number of flowers) for genotypes in FIG. 2M. P: two-tailed, two-sample t-test compared to WT.
[0024] FIGS. 3A-3F show the ej2.sup.w variant arose during domestication and was selected during breeding of large-fruited cultivars. FIG. 3A shows distribution of the ej2.sup.w allele in wild tomato species, early domesticates (landraces, S. lyc. var. cerasiforme), and cultivars (S. lycopersicum)(N=number of accessions). FIG. 3B shows relative sepal length (sepal length/petal length) from a subset of accessions in FIG. 3A homozygous EJ2 and ej2.sup.w. FIG. 3C shows relative sepal length in a subset of confirmed landraces (Blanca et al., 2015). FIG. 3D shows PCR genotyping for the ej2.sup.w allele in 10 landraces with the longest and shortest sepals. S. pimpinellifolium (S. pim) was used as a WT control. FIG. 3E shows inflorescences and flowers (inset) of the accessions with the shortest and longest sepals. See asterisks in FIG. 3D. Numbers indicate relative sepal length. FIG. 3F shows PCR genotyping in 258 cultivars shows enrichment of the ej2.sup.w allele in large-fruited types. Data in FIGS. 3B, 3C, and 3E are means (.+-.SEM, n=10 flowers per accession). N=number of accessions. P: two-tailed, two-sample t-test. Scale bars=1 cm.
[0025] FIGS. 4A-4D show that breeders overcame negative epistasis between j2 and ej2 by selecting suppressors of s2 branching in elite germplasm. FIG. 4A shows PCR genotyping of 153 elite breeding lines for j2.sup.TE and ej2.sup.w reveals the jointless germplasm is dominated by the j2 transposon allele and contains many j2.sup.TE ej2.sup.w double mutants. Number of accessions is indicated in parenthesis. FIG. 4B shows PCR genotyping of 31 jointless inbreds and hybrids from 4 major seed companies for ej2.sup.w. Asterisks indicate j2.sup.TE ej2.sup.w double mutants. FIG. 4C shows representative images of phenotypic classes found inj2.sup.TE ej2.sup.w double mutants isolated from an S. pimpinellifolium.times.s2 F2 population. N indicates number of plants and percentage of plants in each phenotypic class is indicated in parentheses. FIG. 4D shows mapping-by-sequencing a suppressor of s2 to a 3 Mbp interval on chromosome 2 containing 167 genes. DNA from pools of s2 and suppressed s2 plants was sequenced and the ratio (suppressed s2/s2) of the SNP-ratios (S.pin/s2) is presented.
[0026] FIGS. 5A-5I show that redundancy among three SEP4 genes regulates inflorescence branching and flower development. FIG. 5A shows the phylogenetic tree of SEP proteins in Arabidopsis and tomato. Bootstrap values (%) for 1000 replicates are shown. FIG. 5B shows normalized gene expression (RPKM) for TM5 and TM29 (left) and the SEP4 sub-clade (right) during meristem maturation (VM, vegetative meristem; TM, transition meristem; FM, floral meristem; SIM, sympodial inflorescence meristem; SYM, sympodial shoot meristem). FIG. 5C shows yeast two-hybrid assays showing heteromeric interactions for Solyc04g005320, J2, and EJ2, and homomeric interactions for Solyc04g005320 and J2 (3-AT, 3-amino-1,2,4-triazole; L, leucine; T, tryptophan; H, histidine; e.v., empty vector). FIG. 5D shows the summary of results in FIG. 5C; (-) no interaction; (+) interaction; (++) strong interaction. FIG. 5E shows the longer inflorescence of a Solyc04g005320.sup.CR mutant (hereafter referred to as long inflorescence.sup.CR; lin.sup.CR) compared to WT. Numbers indicate flowers per inflorescence (mean.+-.SEM, N=10 inflorescences). P: two-tailed, two-sample t-test. Scale bar=1 cm. FIG. 5F shows the longer inflorescence of a Solyc04g005320.sup.CR mutant in S. pimpineiolium (S. pim lin.sup.CR) compared to S. pimpinellifolium WT. FIG. 5G shows j2.sup.CR ej2.sup.CR double mutant plant (left) and inflorescence (right) showing SIM overproliferation and few flowers late in development, respectively. FIG. 5H shows j2.sup.CR ej2.sup.CR Zi.sup.CR triple mutant. Stereoscope images (insets) of j2.sup.CR ej2.sup.CR Zin.sup.CR triple mutants showing massive SIM overproliferation and no floral termination. FIG. 5I shows j2.sup.CR e j2.sup.CR Zin.sup.CR triple mutant in S. pimpinellifolium as in FIG. 5H showing massive SIM overproliferation and no floral termination. Striped arrowheads indicate successive inflorescences. Scale bars represent 1 cm and 1 mm for photographs and stereoscopic images, respectively.
[0027] FIGS. 6A-6D show the exploiting dosage effects of key meristem maturation genes to improve flower production and fruit yield. FIG. 6A shows representative inflorescences from different genotypic combinations of natural and engineered j2 and ej2 mutations in M82. Red arrowheads indicate branching events. FIG. 6B shows the percentage of inflorescences with 1 to 5 or greater branching events for the indicated genotypes. Circled, lower-case letters match genotypes shown in FIG. 6A. Weakly branched genotypes are highlighted with bolded black circles. FIG. 6C shows representative weakly branched inflorescence of a s.sup.classic/+ heterozygote. FIG. 6D shows the percentage of inflorescences with branching events for s.sup.classic/+, s.sup.multiflora/+, and s.sup.n5568/+ heterozygous genotypes. White arrowheads in FIGS. 6A and 6C mark inflorescence branch points. Nindicates number of inflorescences (FIGS. 6B and 6D). Scale bars in FIGS. 6A and 6C indicate 1 cm.
[0028] FIGS. 7A-7K show that s2 inflorescence branching variants are allelic, fail to complement the classical j2 mutant, and are genetically additive with s. FIGS. 7A-7C show the accessions LA0315 (FIG. 7A), LA3226 (FIG. 7B), and the X-ray-induced mutant frondea (FIG. 7C) (Stubbe, 1972) develop highly proliferated inflorescences that bear flowers and fruits with jointless pedicels (white asterisks). FIGS. 7D-7F show stereoscope images of primary meristems in LA0315 (FIG. 7D), LA3226 (FIG. 7E), and frondea (FIG. 7F), showing the first inflorescence branching event (white arrowhead) at the base of the first flower (F1). SYM: sympodial shoot meristem; L8: leaf 8. FIGS. 7G-7I show representative inflorescences of F.sub.1 progeny from the crosses LA0315.times.s2 (FIG. 7G), LA3226.times.s2 (FIG. 7H), and fro.times.LA0315 (FIG. 7I) showing all four accessions (mutants) are allelic. Scale bars in FIGS. 7A-7C, 7G-7I, and 7D-7F indicate 5 cm and 500 .mu.m, respectively. FIG. 7J shows inflorescences of s (left), s2 (middle), and the s s2 higher-order mutant (right). Greater inflorescence complexity in the s s2 higher-order mutant suggests additivity. FIG. 7K shows a complementation test using an s2-derived jointless mutant plants and the classical j2 mutant. Jointed fruits (dotted asterisk) of WT plants and jointless fruits (white asterisk) of F.sub.1 progeny from a cross of s2-derived j2 and j2 are shown. Scale bar=1 cm.
[0029] FIGS. 8A-8C show the rate of meristem maturation in s2 mutants is less delayed than in s. FIG. 8A shows the clustering of 2,582 genes that were dynamically expressed during the early (EVM), middle (MVM), and late (LVM) vegetative meristem, the transition meristem (TM) and floral meristem (FM) stage of meristem maturation in the WT (see STAR Methods). Genes in Cluster 06 and Cluster 08 (solid line boxes) were selected as TM and FM marker genes, respectively. Thick black lines indicate median expression with dotted area representing the 5.sup.th and 95.sup.th quantile. N=number of genes. FIGS. 8B and 8C show WT, s (top), and s2 (bottom) z-score normalized expression of TM marker genes in vegetative (VM), transition (TM), and floral (FM) meristem stages. Cluster in dotted line boxes and solid line boxes were selected as moderately and strongly delayed genes, respectively.
[0030] FIGS. 9A-9J show that mapping-by-sequencing reveals s2 branching is caused by mutations in two tomato homologs of the SEPALLATA MADS-box genes (J2 and EJ2). FIGS. 9A and 9B show representative images of the phenotypic classes found in the M82.times.s2 F.sub.2 (FIG. 9A) and S. pimpinellifolium.times.s2 F.sub.2 populations (FIG. 9B). Asterisks mark jointless pedicels and arrowheads mark inflorescence branching events. Scale bars=1 cm. FIG. 9C shows segregation ratios of the s2 branching phenotype in the two F.sub.2 populations. Note that in the M82.times.s2 F.sub.2, the j2 and s2 phenotypes segregated 1/4 and 1/16, respectively. FIG. 9D shows mapping-by-sequencing of the loci underlying s2 in an M82.times.s2 F.sub.2 population. Pooled DNA from WT, j2 and s2 plants was sequenced and the ratios of the SNP-ratios (s2/M82) between different phenotypic classes (top: s2/WT; middle: s2/j2; bottom: jointless/WT) are shown. FIG. 9E shows mapping-by-sequencing of the loci underlying s2 in a S. pimpinellifolium.times.s2 F.sub.2 population. Pooled DNA from WT,j2, and s2 plants was sequenced and ratios of the SNP-ratios (S.lyc/S.pim) are shown as in FIG. 9D. FIG. 9F shows partial sequence alignment of J2 (Solyc12g038510) from M82, the jointless S. cheesmaniae (S. che) accession LA0166, the classical j2 accession (LA0315) and the s2 accession (LA4371). A S. cheesmaniae SNP in the second exon leads to a premature stop-codon (asterisk). Allele designated as j2.sup.stop. From top to bottom, sequences correspond to SEQ ID NOs: 98, 98, 99, 100, and 101. FIG. 9G shows the CAPS marker PCR genotyping assay for j2.sup.stop in accessions from FIG. 9F. Positions of WT and mutant (mut) bands are indicated. FIG. 9H shows gene models showing the position of the Copia/Rider transposable element (TE) insertion in j2.sup.TE and the S. cheesmaniae SNP in j2.sup.stop. Predicted RNA transcripts are shown below. The j2.sup.stop allele results in a premature stop codon in the second exon. The j2.sup.TE allele results in an intronic transcriptional start site and an early stop codon. FIG. 9I shows representative inflorescences of WT, ej2.sup.w, ej2.sup.CR, and e j2.sup.CR.times.ej2.sup.w F.sub.1 progeny are shown. Scale bar=1 cm. FIG. 9J shows genotyping of s2, LA0315, LA3226,frondea (fro), and WT plants using diagnostic PCR markers for j2.sup.TE,j2.sup.stop, and ej2.sup.w. Note that both s2 and LA3226 carry the j2.sup.TE and ej2.sup.w alleles, whereas LA0315 carries j2.sup.stop and ej2.sup.w. The frondea mutant carries ej2.sup.TE, however, failed J2 amplification in frondea using both j2 markers suggest a large structural variant has disrupted the gene (SV). Band sizes are in kilobase pairs (kbp).
[0031] FIGS. 10A-10S show that the three SEP4 genes J2, EJ2 and Solyc04g005320/LIN interact to regulate branching and flower development. FIG. 10A shows normalized gene expression (RPKM) for TM5 and TM29 (left) and the SEP4 sub-clade (right) in major tissues.
[0032] FIG. 10B shows yeast two-hybrid assays showing heteromeric interaction of Solyc04g005320, RIN, J2, and EJ2, and homomeric interaction of Solyc04g005320, RIN and J2 (3-AT, 3-amino-1,2,4-triazole; L, leucine; T, tryptophan; H, histidine; A, adenine; e.v., empty vector). FIG. 10C shows the summary of results in FIG. 10B; (-) no interaction; (+) interaction; (++) strong interaction. FIG. 10D shows CRISPR/Cas9 targeting of Solyc04g005320. Sequences of Solyc04g005320.sup.CR allele 1 (a1) and a2 in S. lycopersicum cv. M82 are shown (top). Three independent first-generation (T.sub.0) chimeric S. pimpinellifolium transgenics were sequenced and 5 reads were obtained per plant (bottom). All sequenced alleles carried mutations, revealing putative biallelic (T.sub.0 #4), homozygous (T.sub.0 #8), and chimeric (T.sub.0 #9) plants. From top to bottom, sequences correspond to SEQ ID NOs: 102-111. FIG. 10E shows the quantification of flowers per inflorescence for WT and 3 independent lin.sup.CR T.sub.0 transgenics. N=number of inflorescences. FIG. 10F shows the quantification of internode length between flowers of the same plants as in FIG. 10E. N=number of internodes. FIG. 10G shows representative lin mutant plant with elongated and weakly branched inflorescences. White arrowheads indicate branch points. Inset shows lin fruit with jointed pedicel. FIG. 10H shows quantification of flowers per inflorescence for WT and lin. N=number of inflorescences. FIG. 10I shows quantification of inflorescence branching events in WT and lin. FIGS. 10J and 10K show mapping-by-sequencing of the lin mutation in a lin.times.S. pim F.sub.2 population to a 0.5 Mbp mapping interval on chromosome 4 containing 80 genes including Solyc04g005320. Reads mapping to chromosome 4 indicate a translocation in Solyc04g005320, which was assayed by PCR (FIG. 10K). The sequence in FIG. 10J corresponds to SEQ ID NO: 112. The WT allele (wt) was amplified with primer-F1 and primer-R2, which bind 5' and 3' to the translocation site, respectively. The lin mutant allele (m) was amplified with primer-F3, which binds the 3' border of the translocated sequence, and primer-R2. FIG. 10L shows semi-quantitative RT-PCR of Solyc04g005320 in WT and lin showing loss of Solyc04g005320 transcript in the lin mutant. UBIQUITIN(UBI) was used as control. FIG. 10M shows j2.sup.CR lin double mutant with elongated, weakly branched inflorescences and jointless pedicel (white asterisk). White arrowheads mark branch points. FIG. 10N shows ej2.sup.CR lin double mutant with long inflorescences, extremely enlarged sepals, and inner floral organ defects (inset). FIG. 10O shows simultaneous targeting of LIN, J2 and E/2 by CRISPR/Cas9 with two single-guide RNAs. sgRNA, Target 1 and Target 2 on each respective gene model is shown. Note that sgRNA-1 targets all three genes. Black arrows indicate forward (F) and reverse (R) primers used for PCR genotyping and sequencing (see STAR Methods). Sequencing results of second-generation (Ti) transgenicj2.sup.CR ej2.sup.CR lin.sup.CR triple mutant plants generated in M82 (top) and S. pimpinellifolium (bottom). All three genes carry homozygous mutations. From top to bottom, sequences correspond to SEQ ID NOs: 113-124. FIG. 10P shows CRISPR/Cas9 targeting of LIN in the elite cherry cultivar Sweet 100. Sequences of lin.sup.CR-allele 1 (a1) and a2 in the first-generation (T.sub.0) lin.sup.CR plant #1. Five reads were obtained per plant. All sequenced alleles carried mutations, including a complex rearrangement (italicized font). From top to bottom, sequences correspond to SEQ ID NOs: 125-127. FIG. 10Q shows representative images of Sweet 100 and Sweet 100 lin.sup.CR T.sub.0 #1 mutant inflorescences showing different degrees of branching. FIGS. 10R and 10S show quantification of flowers per inflorescence (FIG. 10R) and inflorescence branching events (FIG. 10S) for Sweet 100 and Sweet 100 lin.sup.CR T.sub.0#1. N=number of inflorescences. Bar graphs in FIGS. 10E, 10F., 10H, 10I, 10R, and 10S show means (.+-.SEM). P-values determined by two-tailed, two-sample t-tests. Scale bars represent 1 cm.
SEQUENCES
[0033] Below is a brief description of certain sequences described herein.
[0034] SEQ ID NO: 1 is a nucleic acid sequence of a wild-type Solyc04g005320 gene.
[0035] SEQ ID NO: 2 is a nucleic acid sequence of a wild-type Solyc04g005320 coding sequence.
[0036] SEQ ID NO: 3 is a nucleic acid sequence for a mutant Solyc04g005320 gene allele lin.sup.trans. The border sequences of a translocation site are shown in bold italic letters, with the translocation sequence being represented by the NNNNNN(N*X)NNNNNN sequence.
[0037] SEQ ID NO: 4 is a nucleic acid sequence for a mutant Solyc04g005320 gene allele lin.sup.CR-allele 1.
[0038] SEQ ID NO: 5 is a nucleic acid sequence for a mutant Solyc04g005320 gene allele lin.sup.CR-allele 2.
[0039] SEQ ID NO: 6 is a nucleic acid sequence of a wild-type Solyc12g038510 gene.
[0040] SEQ ID NO: 7 is a nucleic acid sequence of a wild-type Solyc12g038510 coding sequence.
[0041] SEQ ID NO: 8 is a nucleic acid sequence for a mutant Solyc12g038510 gene allele j2.sup.TE. The border sequences of a transposable element insertion site are shown in bold italic letters, with the transposable element sequence being represented by the NNNNNN(N*X)NNNNNN sequence.
[0042] SEQ ID NO: 9 is a nucleic acid sequence of a mutant Solyc12g038510 gene allele j2 stop SEQ ID NO: 10 is a nucleic acid sequence for a mutant Solyc04g005320 gene allele j2.sup.CR-allele 1.
[0043] SEQ ID NO: 11 is a nucleic acid sequence for a mutant Solyc04g005320 gene allele j2.sup.CR-allele 2.
[0044] SEQ ID NO: 12 is a nucleic acid sequence of a wild-type Solyc03g114840 gene.
[0045] SEQ ID NO: 13 is a nucleic acid sequence of a wild-type Solyc03g114840 coding sequence.
[0046] SEQ ID NO: 14 is a nucleic acid sequence for a mutant Solyc03g114840 gene allele ej2.sup.W.
[0047] SEQ ID NO: 15 is a nucleic acid sequence for a mutant Solyc04g005320 gene allele ej2.sup.CR-allele 1.
[0048] SEQ ID NO: 16 is a nucleic acid sequence for a mutant Solyc04g005320 gene allele ej2.sup.CR-allele 3.
DETAILED DESCRIPTION
[0049] Variation in inflorescence architecture is based on changes in the activity of meristems, small groups of stem cells located at the tips of shoots (Kyozuka et al., 2014; Park et al., 2014a). During the transition to flowering, vegetative meristems gradually mature to a reproductive state and, depending on the species, terminate immediately in a flower or give rise to a variable number of new inflorescence meristems that become additional flowers or flower-bearing branches (Prusinkiewicz et al., 2007). In domesticated tomato (Solanum lycopersicum) and its wild progenitor S. pimpinellifolium, a new inflorescence meristem emerges at the flank of each previous meristem. Several reiterations of this process give rise to inflorescences with multiple flowers arranged in a zigzag pattern, resulting in the familiar "tomatoes on the vine" architecture (FIG. 1A)(Park et al., 2012).
[0050] Improving tomato inflorescence architecture to boost flower production and yield has remained surprisingly challenging, despite a rich resource of wild relatives that develop weakly branched inflorescences with high fertility (Lemmon et al., 2016; Lippman et al., 2008; Park et al., 2012; Zamir, 2001). However, genetic incompatibilities and the challenge of transferring complex polygenic traits without undesired effects from linked genes has precluded exploiting wild species to improve inflorescence architecture (MacArthur and Chiasson, 1947). Another source of potentially valuable inflorescence variation is rare natural and induced highly branched mutants in domesticated germplasm. It was previously shown that branching in one of these variants and branching in a wild species is due to an extended meristem maturation schedule, which allows additional inflorescence meristems to form (Lemmon et al., 2016; Park et al., 2012). This suggested subtle modification of meristem maturation could provide beneficial changes in inflorescence architecture (Park et al., 2014a). Yet, breeders typically select against even moderate branching, primarily due to an imbalance in source-sink relationships that results in high flower abortion and low fruit production, especially in large-fruited varieties (Stephenson, 1981).
[0051] In some aspects, the present disclosure relates to the discovery of the identity of mutations in two closely related MADS-box transcription factor genes, one of which arose during domestication and the other within the last century of crop improvement. Each mutant was selected separately based on the phenotype of improved flower morphology and fruit retention traits without knowledge of the locations of the mutations and, therefore, the underlying genes affected by the mutations. However, combining these two mutants revealed some redundancy in controlling meristem maturation, which caused undesirable branching. Breeders overcame this negative epistasis by selecting suppressors of branching, but in so doing limited the potential to improve flower production through weak branching.
[0052] As described herein, the identification of the mutations in MADS-box transcription factor genes and the dissection of the interaction between the MADS-box genes by Applicants revealed a dosage relationship among natural and gene-edited mutations in multiple regulators of meristem maturation. Combining two or more of the mutations in the MADS-box genes in homozygous and heterozygous combinations allowed for the creation of a quantitative range of inflorescence types, and the development of weakly branched hybrids with desirable traits, such as higher flower and fruit production. In particular, data described herein in tomato plants demonstrates the utility of mutant MADS-box genes, such as mutant SEP4 homologs, and the interaction between such mutant genes to alter inflorescence phenotypes. In particular, mutants of the MADS-box gene Solyc12g038510, mutants of the MADS-box gene Solyc03g114840, and mutants of the MADS-box gene Solyc04g005320, each of which are homologs of Arabidopsis SEPALLATA4 (SEP4), were shown to be capable of altering inflorescence phenotypes in tomato plants. Specifically, it was found that mixing and matching these mutations in various homozygous and heterozygous combinations resulted in a quantitative range of inflorescence phenotypes and the development of weakly branched hybrids with higher flower and fruit production.
[0053] Accordingly, in some aspects, the present disclosure relates to plants (e.g., Solanaceae plants) comprising one or more mutant MADS-box genes such as mutant SEPALLATA4 (SEP4) homologs, which may provide a range of inflorescence phenotypes and may result in improved inflorescence architecture and yield.
[0054] In some aspects, provided herein are genetically-altered Solanaceae plants, such as genetically-altered Solanaceae (e.g., Solanum lycopersicum) plants comprising one or more of a mutant Solyc04g005320 gene (or a homolog thereof), a mutant Solyc12g038510 gene (or a homolog thereof), and a mutant Solyc03g114840 gene (or a homolog thereof), which exhibit characteristics different from a reference plant such as a corresponding plant that has not been genetically altered (also referred to herein as "wild-type") or a corresponding plant comprising a null mutation of one or more of the Solyc04g005320 gene, the Solyc12g038510 gene, and the Solyc03g114840 gene. The characteristics include, but are not limited to, one or more of the following: modified inflorescence architecture, modified flower number, higher yield, higher quality products (e.g., fruits), and modified fruit productivity (e.g., modified such as higher fruit number).
[0055] In some embodiments, genetically-altered Solanaceae plants, e.g., tomato plants (such as Solanum lycopersicum), comprise one or more of a mutant Solyc04g005320 gene (heterozygous or homozygous), a mutant Solyc12g038510 gene (heterozygous or homozygous), and a mutant Solyc03g114840 gene (heterozygous or homozygous). In some embodiments, the plants comprise a variety of combinations of the different mutant alleles, such as, for example, mutant Solyc04g005320 with mutant Solyc12g038510; mutant Solyc04g005320 with mutant Solyc03g114840; or mutant Solyc04g005320 with mutant Solyc12g038510 and mutant Solyc03g114840. The genetically-altered plants may be heterozygotes or homozygotes and, in some embodiments, may be double heterozygotes, double homozygotes, triple heterozygotes, or triple homozygotes. In some embodiments, such a plant comprises a mutant Solyc04g005320 gene as described herein. In some embodiments, such a plant comprises a mutant Solyc04g005320 gene as described herein and a mutant Solyc12g038510 gene as described herein. In some embodiments, such a plant comprises a mutant Solyc04g005320 gene as described herein and a mutant Solyc03g114840 gene as described herein. In some embodiments, such a plant comprises a mutant Solyc04g005320 as described herein with a mutant Solyc12g038510 as described herein and a mutant Solyc03g114840 as described herein.
Mutant Solyc04g005320 Gene
[0056] Aspects of the disclosure relate to mutants of the Solyc04g005320 gene (or a homolog thereof) as well as plants, plant cells, seeds, and nucleic acids comprising such mutant genes. The Solyc04g005320 gene is also referred to herein as Long Inflorescence or LIN. The Solyc04g005320 gene is a homolog of SEP4 in Arabidopsis.
[0057] In some embodiments, Solanaceae plants (e.g., Solanum lycopersicum) comprising a mutant Solyc04g005320 gene (or a homolog thereof), such as a hypomorphic allele or null allele, have long inflorescences, e.g., producing an average of at least 15 flowers (e.g., 9 to 30 flowers) on each inflorescence per plant. In some embodiments, the number of flowers per inflorescence may vary by variety (e.g. for plum varieties 9-15 flowers and for cherry varieties 20-40 flowers). In some embodiments, Solanaceae plants (e.g., Solanum lycopersicum) comprising a mutant Solyc04g005320 gene (or a homolog thereof), such as a hypomorphic allele or null allele, have longer inflorescences than a plant comprising a wild-type Solyc04g005320 gene (or a wild-type homolog thereof). In some embodiments, the mutant Solyc04g005320 gene (or homolog thereof) is a hypomorphic allele that, when crossed to a null allele of the Solyc04g005320 gene (or homolog thereof), does not restore a wild-type Solyc04g005320 gene (or a wild-type homolog thereof) phenotype (such as producing an average of 8 flowers (e.g., 6 to 10 flowers) on each inflorescence per plant). In some embodiments, Solanaceae plants (e.g., Solanum lycopersicum) comprising a mutant Solyc04g005320 gene (or a homolog thereof), such as a hypermorphic allele, have short inflorescences, e.g., producing an average of less than 5 flowers (e.g., 2 to 6 flowers) on each inflorescence per plant. In some embodiments, plants comprising a mutant Solyc04g005320 gene, such as a hypermorphic allele, have shorter inflorescence than a plant comprising a wild-type Solyc04g005320 gene.
[0058] In some embodiments, Solanaceae plants (e.g., Solanum lycopersicum) comprising a mutant Solyc04g005320 gene (or a homolog thereof), such as a hypomorphic allele or null allele, have more branches per inflorescence, e.g., producing 2 or more branches per inflorescence. In some embodiments, Solanaceae plants (e.g., Solanum lycopersicum) comprising a mutant Solyc04g005320 gene (or a homolog thereof), such as a hypomorphic allele or null allele, have more branches than a plant comprising a wild-type Solyc04g005320 gene (or a wild-type homolog thereof). In some embodiments, the mutant Solyc04g005320 gene (or homolog thereof) is a hypomorphic allele that, when crossed to a null allele of the Solyc04g005320 gene, does not restore a wild-type Solyc04g005320 gene (or a wild-type homolog thereof) phenotype (such as producing an average of 1 branch per inflorescence).
[0059] In some embodiments, the mutant Solyc04g005320 gene (or homolog thereof) contains a mutation in a regulatory region, a coding region or both (e.g., a missense, nonsense, insertion, deletion, duplication, inversion, indel, or translocation mutation in such a region). In some embodiments, the regulatory region is a promoter. In some embodiments, the mutation in the coding region is in an exon. In some embodiments, the mutation is a translocation in the first intron (e.g., lin.sup.trans, which contains a translocation in the first intron that eliminates transcription). In some embodiments, the mutation is a null mutation in which the coding sequence has been deleted (e.g., lin.sup.CR which is a null allele produced by CRISPR/Cas9).
[0060] In some embodiments, the mutant Solyc04g005320 gene (or homolog thereof) is a hypomorphic allele or a null allele. In some embodiments, a hypomorphic allele is an allele that results in an mRNA or protein expression level of the gene of interest that is at least 30% lower (e.g., at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80% or at least 90%) than results from an allele of the gene of interest that does not contain the mutation (e.g., a wild-type allele). As used herein, a "null allele" refers to an allele of a gene of interest in which transcription into RNA does not occur, translation into a functional protein does not occur or neither occurs due to a mutation which may be located within the coding sequence, in a regulatory region of the gene, or in both (e.g., a missense, nonsense, insertion, deletion, duplication, inversion, indel, or translocation). In some embodiments, the null allele is a knock-out allele. As used herein, a "knock out allele" refers to an allele of a gene in which transcription into RNA does not occur, translation into a functional protein does not occur or neither occurs as a result of a deletion of some portion or all of the coding sequence of the gene, e.g., using homologous recombination. One non-limiting approach to creating null mutations is to use CRISPR-Cas9 mutagenesis to target exons that encode functional protein domains or to target a large portion (e.g., at least 80%) of the coding sequence (see, e.g., Shi et al. Nature Biotechnology. (2015) 33(6): 661-667 and Online Methods).
[0061] In some embodiments, the mutant Solyc04g005320 gene (or homolog thereof) is a hypermorphic allele. In some embodiments, a hypermorphic allele is an allele that results in an mRNA or protein expression level of the gene of interest that is at least 30% greater (e.g., at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 100%, at least 200% or more) than results from an allele of the gene of interest that does not contain the mutation (e.g., a wild-type allele). mRNA and protein levels can be measured using any method known in the art or described herein, e.g., using qRT-PCR for mRNA levels or an immunoassay for protein levels.
[0062] In some embodiments, a Solanaceae plant (e.g., Solanum lycopersicum) comprising the mutant Solyc04g005320 gene, or homolog thereof, (e.g., a hypomorphic, knock-out or null allele described herein) is heterozygous for the mutant gene. In some embodiments, a Solanaceae plant (e.g., Solanum lycopersicum) comprising the mutant Solyc04g005320 gene, or homolog thereof, (e.g., a hypomorphic, knock-out or null allele described herein) is homozygous for the mutant gene.
[0063] In some embodiments, the Solyc04g005320 gene homolog (a) has a sequence that has at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identity with the sequence of SEQ ID NO: 1 or 2 and (b) is not a Solanum lycopersicum gene.
[0064] In some embodiments, the mutant lin.sup.trans gene comprises, for example, a nucleic acid (e.g., DNA) having the sequence of SEQ ID NO: 3; a portion of SEQ ID NO: 3 that exhibits substantially the same activity (e.g., encoding the same polypeptide or substantially the same polypeptide that has the same activity) as a nucleic acid (e.g., DNA) having the sequence of SEQ ID NO: 3; a nucleic acid (e.g., DNA) having at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identity with the sequence of SEQ ID NO: 3; an orthologue or homologue of the nucleic acid having the sequence of SEQ ID NO: 3.
[0065] In some embodiments, the mutant lin.sup.CR gene comprises, for example, a nucleic acid (e.g., DNA) having the sequence of SEQ ID NO: 4 or 5; a portion of SEQ ID NO: 4 or 5 that exhibits substantially the same activity (e.g., encoding the same polypeptide or substantially the same polypeptide that has the same activity) as a nucleic acid (e.g., DNA) having the sequence of SEQ ID NO: 4 or 5; a nucleic acid (e.g., DNA) having at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identity with the sequence of SEQ ID NO: 4 or 5; an orthologue or homologue of the nucleic acid having the sequence of SEQ ID NO: 4 or 5.
Mutant Solyc12g038510 Gene
[0066] Other aspects of the disclosure relate to mutants of the Solyc12g038510 gene (or a homolog thereof) as well as plants, plant cells, seeds, and nucleic acids comprising such mutant genes. The Solyc12g038510 gene is also referred to herein as Jointless-2 or J2. The Solyc12g038510 gene is a homolog of SEP4 in Arabidopsis.
[0067] In some embodiments, Solanaceae plants (e.g., Solanum lycopersicum) comprising a mutant Solyc12g038510 gene (or homolog thereof), such as a hypomorphic allele or null allele, have more branches, e.g., producing 2 or more branches per inflorescence. In some embodiments, Solanaceae plants (e.g., Solanum lycopersicum) comprising a mutant Solyc12g038510 gene (or a homolog thereof), such as a hypomorphic allele or null allele, have more branches than a plant comprising a wild-type Solyc12g038510 gene. In some embodiments, the mutant Solyc12g038510 gene (or homolog thereof) is a hypomorphic allele that, when crossed to a null allele of the Solyc12g038510 gene (or homolog thereof), does not restore a wild-type Solyc12g038510 gene (or a wild-type homolog thereof) phenotype (such as producing an average of 1 branch per inflorescence). In some embodiments, Solanaceae plants (e.g., Solanum lycopersicum) comprising a mutant Solyc12g038510 gene (or a homolog thereof), such as a hypomorphic allele or null allele, lack the abscission zone on the stems (pedicels) of flowers known as the joint (this absence of the abscission zone is also referred to herein as "jointless pedicels") or produce a visible abscission zone (i.e. joint) but abscission does not occur or requires more force (e.g., hand harvesting) to separate the fruit from the pedicel, providing better fruit retention properties. In some embodiments, Solanaceae plants (e.g., Solanum lycopersicum) comprising a mutant Solyc12g038510 gene (or a homolog thereof), such as a hypomorphic allele or null allele, have more jointless pedicels than a plant comprising a wild-type Solyc12g038510 gene (or a wild-type homolog thereof). In some embodiments, the mutant Solyc12g038510 gene (or homolog thereof) is a hypomorphic allele that, when crossed to a null allele of the Solyc12g038510 gene (or homolog thereof), does not restore a wild-type Solyc12g038510 gene (or a wild-type homolog thereof) phenotype (such as having a normal abscission zone on the pedicels).
[0068] In some embodiments, the mutant Solyc12g038510 gene (or homolog thereof) contains a mutation in a regulatory region, a coding region or both (e.g., a missense, nonsense, insertion, deletion, duplication, inversion, indel, or translocation mutation in such a region). In some embodiments, the regulatory region is a promoter. In some embodiments, the mutation in the coding region is in an exon. In some embodiments, the mutation is in the first intron (e.g., j2.sup.TE which contains a Copia/Rider-type transposable element (TE) in the first intron). In some embodiments, the mutation is a nonsense mutation that results in an early stop codon (e.g., j2.sup.stop has an early nonsense mutation). In some embodiments, the mutation is a null mutation in which the coding sequence has been deleted (e.g., j2.sup.CR which is a null allele produced by CRISPR/Cas9).
[0069] In some embodiments, the mutant Solyc12g038510 gene (or homolog thereof) is a hypomorphic allele or a null allele. In some embodiments, a hypomorphic allele is an allele that results in an mRNA or protein expression level of the gene of interest that is at least 30% lower (e.g., at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80% or at least 90%) than results from an allele of the gene of interest that does not contain the mutation (e.g., a wild-type allele).
[0070] In some embodiments, a Solanaceae plant (e.g., Solanum lycopersicum) comprising the mutant Solyc12g038510 gene, or homolog thereof, (e.g., a hypomorphic, knock-out or null allele described herein) is heterozygous for the mutant gene. In some embodiments, a Solanaceae plant (e.g., Solanum lycopersicum) comprising the mutant Solyc12g038510 gene, or homolog thereof, (e.g., a hypomorphic, knock-out or null allele described herein) is homozygous for the mutant gene.
[0071] In some embodiments, the Solyc12g038510 gene homolog (a) has a sequence that has at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identity with the sequence of SEQ ID NO: 6 or 7 and (b) is not a Solanum lycopersicum gene.
[0072] In some embodiments, the mutant j2.sup.TE gene comprises, for example, a nucleic acid (e.g., DNA) having the sequence of SEQ ID NO: 8; a portion of SEQ ID NO: 8 that exhibits substantially the same activity (e.g., encoding the same polypeptide or substantially the same polypeptide that has the same activity) as a nucleic acid (e.g., DNA) having the sequence of SEQ ID NO: 8; a nucleic acid (e.g., DNA) having at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identity with the sequence of SEQ ID NO: 8; an orthologue or homologue of the nucleic acid having the sequence of SEQ ID NO: 8.
[0073] In some embodiments, the mutant j2.sup.stop gene comprises, for example, a nucleic acid (e.g., DNA) having the sequence of SEQ ID NO: 9; a portion of SEQ ID NO: 9 that exhibits substantially the same activity (e.g., encoding the same polypeptide or substantially the same polypeptide that has the same activity) as a nucleic acid (e.g., DNA) having the sequence of SEQ ID NO: 9; a nucleic acid (e.g., DNA) having at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identity with the sequence of SEQ ID NO: 9; an orthologue or homologue of the nucleic acid having the sequence of SEQ ID NO: 9.
[0074] In some embodiments, the mutant j2.sup.CR gene comprises, for example, a nucleic acid (e.g., DNA) having the sequence of SEQ ID NO: 10 or 11; a portion of SEQ ID NO: 10 or 11 that exhibits substantially the same activity (e.g., encoding the same polypeptide or substantially the same polypeptide that has the same activity) as a nucleic acid (e.g., DNA) having the sequence of SEQ ID NO: 10 or 11; a nucleic acid (e.g., DNA) having at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identity with the sequence of SEQ ID NO: 10 or 11; an orthologue or homologue of the nucleic acid having the sequence of SEQ ID NO: 10 or 11.
Mutant Solyc03g114840 Gene
[0075] Other aspects of the disclosure relate to mutants of the Solyc03g114840 gene (or a homolog thereof) as well as plants, plant cells, seeds, and nucleic acids comprising such mutant genes. The Solyc03g114840 gene is also referred to herein as Enhancer-of-Jointless-2 or EJ2. The Solyc03g114840 gene is a homolog of SEP4 in Arabidopsis.
[0076] In some embodiments, Solanaceae plants (e.g., Solanum lycopersicum) comprising a mutant Solyc03g114840 gene (or a homolog thereof), such as a hypomorphic allele or null allele, have more branches, e.g., producing 2 or more branches per inflorescence. In some embodiments, Solanaceae plants (e.g., Solanum lycopersicum) comprising a mutant Solyc03g114840 gene (or a homolog thereof), such as a hypomorphic allele or null allele, have more branches than a plant comprising a wild-type Solyc03g114840 gene (or a wild-type homolog thereof). In some embodiments, the mutant Solyc03g114840 gene (or homolog thereof) is a hypomorphic allele that, when crossed to a null allele of the Solyc03g114840 gene (or homolog thereof), does not restore a wild-type Solyc03g114840 gene (or a wild-type homolog thereof) phenotype (such as producing an average of 1 branch per inflorescence). In some embodiments, Solanaceae plants (e.g., Solanum lycopersicum) comprising a mutant Solyc03g114840 gene (or a homolog thereof), such as a hypomorphic allele or null allele, have long sepals resulting in larger calyxes, e.g., that are an average sepal to petal ratio (sepal length/petal length) of at least 1.2. In some embodiments, Solanaceae plants (e.g., Solanum lycopersicum) comprising a mutant Solyc03g114840 gene (or a homolog thereof), such as a hypomorphic allele or null allele, have longer sepals than a plant comprising a wild-type Solyc03g114840 gene (or a wild-type homolog thereof). In some embodiments, the mutant Solyc03g114840 gene (or homolog thereof) is a hypomorphic allele that, when crossed to a null allele of the Solyc03g114840 gene (or homolog thereof), does not restore a wild-type Solyc03g114840 gene (or wild-type homolog thereof) phenotype (such as having an average sepal to petal ratio (sepal length/petal length) of not more than 0.8).
[0077] In some embodiments, the mutant Solyc03g114840 gene (or homolog thereof) contains a mutation in a regulatory region, a coding region or both (e.g., a missense, nonsense, insertion, deletion, duplication, inversion, indel, or translocation mutation in such a region). In some embodiments, the regulatory region is a promoter. In some embodiments, the mutation is a null mutation in which the coding sequence has been deleted (e.g., ej2.sup.CR which is a null allele produced by CRISPR/Cas9). In some embodiments, the mutation is an insertion mutation in the 5.sup.th intron (e.g., ej2.sup.W which is a hypomorphic allele with a 564 bp insertion in the 5th intron).
[0078] In some embodiments, the mutant Solyc03g114840 gene (or homolog thereof) is a hypomorphic allele or a null allele. In some embodiments, a hypomorphic allele is an allele that results in an mRNA or protein expression level of the gene of interest that is at least 30% lower (e.g., at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80% or at least 90%) than results from an allele of the gene of interest that does not contain the mutation (e.g., a wild-type allele).
[0079] In some embodiments, a Solanaceae plant (e.g., Solanum lycopersicum) comprising the mutant Solyc03g114840 gene, or homolog thereof, (e.g., a hypomorphic, knock-out or null allele described herein) is heterozygous for the mutant gene. In some embodiments, a Solanaceae plant (e.g., Solanum lycopersicum) comprising the mutant Solyc03g114840 gene, or homolog thereof, (e.g., a hypomorphic, knock-out or null allele described herein) is homozygous for the mutant gene.
[0080] In some embodiments, the Solyc03g114840 gene homolog (a) has a sequence that has at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identity with the sequence of SEQ ID NO: 12 or 13 and (b) is not a Solanum lycopersicum gene.
[0081] In some embodiments, the mutant ej2.sup.w gene comprises, for example, a nucleic acid (e.g., DNA) having the sequence of SEQ ID NO: 14; a portion of SEQ ID NO: 14 that exhibits substantially the same activity (e.g., encoding the same polypeptide or substantially the same polypeptide that has the same activity) as a nucleic acid (e.g., DNA) having the sequence of SEQ ID NO: 14; a nucleic acid (e.g., DNA) having at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identity with the sequence of SEQ ID NO: 14; an orthologue or homologue of the nucleic acid having the sequence of SEQ ID NO: 14.
[0082] In some embodiments, the mutant ej2.sup.CR gene comprises, for example, a nucleic acid (e.g., DNA) having the sequence of SEQ ID NO: 15 or 16; a portion of SEQ ID NO: 15 or 16 that exhibits substantially the same activity (e.g., encoding the same polypeptide or substantially the same polypeptide that has the same activity) as a nucleic acid (e.g., DNA) having the sequence of SEQ ID NO: 15 or 16; a nucleic acid (e.g., DNA) having at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identity with the sequence of SEQ ID NO: 15 or 16; an orthologue or homologue of the nucleic acid having the sequence of SEQ ID NO: 15 or 16.
Solanaceae Plants Comprising Mutant Genes
[0083] Higher yield, higher quality products (e.g., fruits) and products (e.g., fruits) with different compositions (e.g., brix, also known as enhanced soluble solids or sugar concentration in the fruits), can be manipulated in a wide variety of types of Solanaceae plants that comprise a mutant gene, such as a mutant Solyc04g005320 gene (or homolog thereof), a mutant Solyc12g038510 gene (or homolog thereof), or a mutant Solyc03g114840 gene (or homolog thereof); or two mutant genes, such as both a mutant Solyc04g005320 gene (or homolog thereof) and a mutant Solyc12g038510 gene (or homolog thereof), both a mutant Solyc04g005320 gene (or homolog thereof) and a mutant Solyc03g114840 gene (or homolog thereof), or both a mutant Solyc12g038510 gene (or homolog thereof) and a mutant Solyc03g114840 gene (or homolog thereof); or three mutant genes, such as a mutant Solyc04g005320 gene (or homolog thereof), a mutant Solyc12g038510 gene (or homolog thereof), and a mutant Solyc03g114840 gene (or homolog thereof). In some embodiments, the Solanaceae plant is a genetically-altered Solanaceae plant. In some embodiments, a "genetically-altered" plant includes a plant that has had introduced into it (or introduced into a plant that is used to produce the plant, such as introduced into a parental line) at least one mutation by chemical or physical means (e.g., using CRISPR/Cas9, chemical mutagenesis, radiation, Agrobacterium-mediated recombination, viral-vector mediated recombination, or transposon mutagenesis).
[0084] The mutant Solyc04g005320 gene (or homolog thereof) can be any of the mutant Solyc04g005320 genes (or homologs thereof) described herein. The mutant Solyc12g038510 gene (or homolog thereof) can be any of the mutant Solyc12g038510 genes (or homologs thereof) described herein. The mutant Solyc03g114840 gene (or homolog thereof) can be any of the mutant Solyc03g114840 genes (or homologs thereof) described herein.
[0085] The genetically-altered Solanaceae plant can be, for example, inbred, isogenic or hybrid, as long as the plant comprises a mutant gene, such as a mutant Solyc04g005320 gene (or homolog thereof), a mutant Solyc12g038510 gene (or homolog thereof), or a mutant Solyc03g114840 gene (or homolog thereof); or two mutant genes, such as both a mutant Solyc04g005320 gene (or homolog thereof) and a mutant Solyc12g038510 gene (or homolog thereof), both a mutant Solyc04g005320 gene (or homolog thereof) and a mutant Solyc03g114840 gene (or homolog thereof), or both a mutant Solyc12g038510 gene (or homolog thereof) and a mutant Solyc03g114840 gene (or homolog thereof); or three mutant genes, such as a mutant Solyc04g005320 gene (or homolog thereof), a mutant Solyc12g038510 gene (or homolog thereof), and a mutant Solyc03g114840 gene (or homolog thereof).
[0086] Plants in the Solanaceae family include, e.g., tomato, potato, eggplant, petunia, tobacco, and pepper. In some embodiments, the Solanaceae plant is a tomato plant. In some embodiments, the Solanaceae plant, e.g. tomato plant, is not a variety.
[0087] In some embodiments, the genetically-altered Solanaceae plant comprises one wild-type (WT) copy of the SOLYC04G005320 gene (or homolog thereof) and one mutant copy of the Solyc04g005320 gene (or homolog thereof) as described herein (is heterozygous for the mutant Solyc04g005320 gene or homolog thereof). In some embodiments, the Solanaceae plant comprises two copies of a mutant Solyc04g005320 gene (or homolog thereof) as described herein (is homozygous for the mutant Solyc04g005320 gene or homolog thereof). In some embodiments, the Solanaceae plant comprises a first mutant Solyc04g005320 gene (or homolog thereof) as described herein and a second mutant Solyc04g005320 gene (or homolog thereof) as described herein, wherein the first mutant Solyc04g005320 gene (or homolog thereof) and the second mutant Solyc04g005320 gene (or homolog thereof) are different. In some embodiments, the Solanaceae plant comprises one copy of a mutant Solyc04g005320 gene (or homolog thereof) as described herein and one copy of a mutant Solyc12g038510 gene (or homolog thereof) as described herein (is heterozygous for the mutant Solyc04g005320 gene, or homolog thereof, and heterozygous for the mutant Solyc12g038510 gene, or homolog thereof). In some embodiments, the Solanaceae plant comprises one copy of a mutant Solyc04g005320 gene (or homolog thereof) as described herein and two copies of a mutant Solyc12g038510 gene (or homolog thereof) as described herein (is heterozygous for the mutant Solyc04g005320 gene, or homolog thereof and homozygous for the mutant Solyc12g038510 gene, or homolog thereof). In some embodiments, the Solanaceae plant comprises two copies of a mutant Solyc04g005320 gene (or homolog thereof) as described herein and two copies of a mutant Solyc12g038510 gene (or homolog thereof) as described herein (is homozygous for the mutant Solyc04g005320 gene, or homolog thereof, and homozygous for the mutant Solyc12g038510 gene, or homolog thereof).
[0088] In some embodiments, the genetically-altered Solanaceae plant comprises one WT copy of a SOLYC03G114840 gene (or homolog thereof) and one mutant copy of a Solyc03g114840 gene (or homolog thereof) as described herein (is heterozygous for the mutant Solyc03g114840 gene, or homolog thereof). In some embodiments, the Solanaceae plant comprises two copies of a mutant Solyc03g114840 gene (or homolog thereof) as described herein (is homozygous for the mutant Solyc03g114840 gene or homolog thereof). In some embodiments, the Solanaceae plant comprises one copy of a mutant Solyc03g114840 gene (or homolog thereof) as described herein and one copy of a mutant Solyc04g005320 gene (or homolog thereof) as described herein (is heterozygous for the mutant Solyc03g114840 gene, or homolog thereof, and heterozygous for the mutant Solyc04g005320 gene, or homolog thereof). In some embodiments, the Solanaceae plant comprises one copy of a mutant Solyc03g114840 gene (or homolog thereof) as described herein and two copies of a mutant Solyc04g005320 gene (or homolog thereof) as described herein (is heterozygous for the mutant Solyc03g114840 gene, or homolog thereof, and homozygous for the mutant Solyc04g005320 gene, or homolog thereof). In some embodiments, the Solanaceae plant comprises two copies of a mutant Solyc03g114840 gene (or homolog thereof) as described herein and two copies of a mutant Solyc04g005320 gene (or homolog thereof) as described herein (is homozygous for the mutant Solyc03g114840 gene, or homolog thereof, and homozygous for the mutant Solyc04g005320 gene, or homolog thereof).
[0089] In some embodiments, the genetically-altered Solanaceae plant comprises one WT copy of a SOLYC03G114840 gene and one mutant copy of a Solyc03g114840 gene as described herein (is heterozygous for the mutant Solyc03g114840 gene) and comprises one WT copy of the SOLYC12G038510 gene and one mutant copy of the Solyc12g038510 gene as described herein (is heterozygous for the mutant Solyc12g038510 gene). In some embodiments, the Solanaceae plant comprises two copies of a mutant Solyc03g114840 gene as described herein (is homozygous for the mutant Solyc03g114840 gene) and comprises two copies of a mutant Solyc12g038510 gene as described herein (is homozygous for the mutant Solyc12g038510 gene). In some embodiments, the Solanaceae plant comprising a mutant Solyc03g114840 gene (one or two copies) as described herein and a mutant Solyc12g038510 gene (one or two copies) further comprises one copy of a mutant Solyc04g005320 gene as described herein (is heterozygous or homozygous for the mutant Solyc03g114840 gene and the mutant Solyc12g038510 gene and heterozygous for the mutant Solyc04g005320 gene). In some embodiments, the Solanaceae plant further comprises two copies of a mutant Solyc04g005320 gene as described herein (is homozygous for the mutant Solyc04g005320 gene).
[0090] Other, non-limiting example genotype combinations which a Solanaceae (e.g., Solanum lycopersicum) plant may comprise are displayed in Table 1. The combinations in Table 1 may also be with homologs of the genes.
TABLE-US-00001 TABLE 1 Example genotype combinations. Combination Solyc12g038510 Solyc03g114840 Solyc04g005320 No. (J2) Genotype (EJ2) Genotype (LIN) Genotype 1 j2.sup.TE/j2.sup.TE ej2.sup.W/ej2.sup.W lin.sup.trans/lin.sup.trans 2 j2.sup.TE/j2.sup.TE ej2.sup.W/+ .sup. lin.sup.trans/lin.sup.trans 3 j2.sup.TE/j2.sup.TE +/+ lin.sup.trans/lin.sup.trans 4 j2.sup.TE/j2.sup.TE ej2.sup.W/ej2.sup.W lin.sup.trans/+ .sup. 5 j2.sup.TE/j2.sup.TE ej2.sup.W/+ .sup. lin.sup.trans/+ .sup. 6 j2.sup.TE/j2.sup.TE +/+ lin.sup.trans/+ .sup. 7 j2.sup.TE/j2.sup.TE ej2.sup.W/ej2.sup.W +/+ 8 j2.sup.TE/j2.sup.TE ej2.sup.W/+ .sup. +/+ 9 j2.sup.TE/j2.sup.TE +/+ +/+ 10 j2.sup.stop/j2.sup.stop ej2.sup.W/ej2.sup.W lin.sup.trans/lin.sup.trans 11 j2.sup.stop/j2.sup.stop ej2.sup.W/+ .sup. lin.sup.trans/lin.sup.trans 12 j2.sup.stop/j2.sup.stop +/+ lin.sup.trans/lin.sup.trans 13 j2.sup.stop/j2.sup.stop ej2.sup.W/ej2.sup.W lin.sup.trans/+ .sup. 14 j2.sup.stop/j2.sup.stop ej2.sup.W/+ .sup. lin.sup.trans/+ .sup. 15 j2.sup.stop/j2.sup.stop +/+ lin.sup.trans/+ .sup. 16 j2.sup.stop/j2.sup.stop ej2.sup.W/ej2.sup.W +/+ 17 j2.sup.stop/j2.sup.stop ej2.sup.W/+ .sup. +/+ 18 j2.sup.stop/j2.sup.stop +/+ +/+ 19 j2.sup.CR/j2.sup.CR ej2.sup.W/ej2.sup.W lin.sup.trans/lin.sup.trans 20 j2.sup.CR/j2.sup.CR ej2.sup.W/+ .sup. lin.sup.trans/lin.sup.trans 21 j2.sup.CR/j2.sup.CR +/+ lin.sup.trans/lin.sup.trans 22 j2.sup.CR/j2.sup.CR ej2.sup.W/ej2.sup.W lin.sup.trans/+ .sup. 23 j2.sup.CR/j2.sup.CR ej2.sup.W/+ .sup. lin.sup.trans/+ .sup. 24 j2.sup.CR/j2.sup.CR +/+ lin.sup.trans/+ .sup. 25 j2.sup.CR/j2.sup.CR ej2.sup.W/ej2.sup.W +/+ 26 j2.sup.CR/j2.sup.CR ej2.sup.W/+ .sup. +/+ 27 j2.sup.CR/j2.sup.CR +/+ +/+ 28 j2.sup.TE/+ .sup. ej2.sup.W/ej2.sup.W lin.sup.trans/lin.sup.trans 29 j2.sup.TE/+ .sup. ej2.sup.W/+ .sup. lin.sup.trans/lin.sup.trans 30 j2.sup.TE/+ .sup. +/+ lin.sup.trans/lin.sup.trans 31 j2.sup.TE/+ .sup. ej2.sup.W/ej2.sup.W lin.sup.trans/+ .sup. 32 j2.sup.TE/+ .sup. ej2.sup.W/+ .sup. lin.sup.trans/+ .sup. 33 j2.sup.TE/+ .sup. +/+ lin.sup.trans/+ .sup. 34 j2.sup.TE/+ .sup. ej2.sup.W/ej2.sup.W +/+ 35 j2.sup.TE/+ .sup. ej2.sup.W/+ .sup. +/+ 36 j2.sup.TE/+ .sup. +/+ +/+ 37 j2.sup.stop/+ .sup. ej2.sup.W/ej2.sup.W lin.sup.trans/lin.sup.trans 38 j2.sup.stop/+ .sup. ej2.sup.W/+ .sup. lin.sup.trans/lin.sup.trans 39 j2.sup.stop/+ .sup. +/+ lin.sup.trans/lin.sup.trans 40 j2.sup.stop/+ .sup. ej2.sup.W/ej2.sup.W lin.sup.trans/+ .sup. 41 j2.sup.stop/+ .sup. ej2.sup.W/+ .sup. lin.sup.trans/+ .sup. 42 j2.sup.stop/+ .sup. +/+ lin.sup.trans/+ .sup. 43 j2.sup.stop/+ .sup. ej2.sup.W/ej2.sup.W +/+ 44 j2.sup.stop/+ .sup. ej2.sup.W/+ .sup. +/+ 45 j2.sup.stop/+ .sup. +/+ +/+ 46 j2.sup.CR/+ ej2.sup.W/ej2.sup.W lin.sup.trans/lin.sup.trans 47 j2.sup.CR/+ ej2.sup.W/+ .sup. lin.sup.trans/lin.sup.trans 48 j2.sup.CR/+ +/+ lin.sup.trans/lin.sup.trans 49 j2.sup.CR/+ ej2.sup.W/ej2.sup.W lin.sup.trans/+ .sup. 50 j2.sup.CR/+ ej2.sup.W/+ .sup. lin.sup.trans/+ .sup. 51 j2.sup.CR/+ +/+ lin.sup.trans/+ .sup. 52 j2.sup.CR/+ ej2.sup.W/ej2.sup.W +/+ 53 j2.sup.CR/+ ej2.sup.W/+ .sup. +/+ 54 j2.sup.CR/+ +/+ +/+ 55 +/+ ej2.sup.W/ej2.sup.W lin.sup.trans/lin.sup.trans 56 +/+ ej2.sup.W/+ .sup. lin.sup.trans/lin.sup.trans 57 +/+ +/+ lin.sup.trans/lin.sup.trans 58 +/+ ej2.sup.W/ej2.sup.W lin.sup.trans/+ .sup. 59 +/+ ej2.sup.W/+ .sup. lin.sup.trans/+ .sup. 60 +/+ +/+ lin.sup.trans/+ .sup. 61 +/+ ej2.sup.W/ej2.sup.W +/+ 62 +/+ ej2.sup.W/+ .sup. +/+ 63 +/+ +/+ +/+ 64 j2.sup.TE/j2.sup.TE ej2.sup.CR/ej2.sup.CR lin.sup.trans/lin.sup.trans 65 j2.sup.TE/j2.sup.TE ej2.sup.CR/+ .sup. lin.sup.trans/lin.sup.trans 66 j2.sup.TE/j2.sup.TE +/+ lin.sup.trans/lin.sup.trans 67 j2.sup.TE/j2.sup.TE ej2.sup.CR/ej2.sup.CR lin.sup.trans/+ .sup. 68 j2.sup.TE/j2.sup.TE ej2.sup.CR/+ .sup. lin.sup.trans/+ .sup. 69 j2.sup.TE/j2.sup.TE +/+ lin.sup.trans/+ .sup. 70 j2.sup.TE/j2.sup.TE ej2.sup.CR/ej2.sup.CR +/+ 71 j2.sup.TE/j2.sup.TE ej2.sup.CR/+ .sup. +/+ 72 j2.sup.TE/j2.sup.TE +/+ +/+ 73 j2.sup.stop/j2.sup.stop ej2.sup.CR/ej2.sup.CR lin.sup.trans/lin.sup.trans 74 j2.sup.stop/j2.sup.stop ej2.sup.CR/+ .sup. lin.sup.trans/lin.sup.trans 75 j2.sup.stop/j2.sup.stop +/+ lin.sup.trans/lin.sup.trans 76 j2.sup.stop/j2.sup.stop ej2.sup.CR/ej2.sup.CR lin.sup.trans/+ .sup. 77 j2.sup.stop/j2.sup.stop ej2.sup.CR/+ .sup. lin.sup.trans/+ .sup. 78 j2.sup.stop/j2.sup.stop +/+ lin.sup.trans/+ .sup. 79 j2.sup.stop/j2.sup.stop ej2.sup.CR/ej2.sup.CR +/+ 80 j2.sup.stop/j2.sup.stop ej2.sup.CR/+ .sup. +/+ 81 j2.sup.stop/j2.sup.stop +/+ +/+ 82 j2.sup.CR/j2.sup.CR ej2.sup.CR/ej2.sup.CR lin.sup.trans/lin.sup.trans 83 j2.sup.CR/j2.sup.CR ej2.sup.CR/+ .sup. lin.sup.trans/lin.sup.trans 84 j2.sup.CR/j2.sup.CR +/+ lin.sup.trans/lin.sup.trans 85 j2.sup.CR/j2.sup.CR ej2.sup.CR/ej2.sup.CR lin.sup.trans/+ .sup. 86 j2.sup.CR/j2.sup.CR ej2.sup.CR/+ .sup. lin.sup.trans/+ .sup. 87 j2.sup.CR/j2.sup.CR +/+ lin.sup.trans/+ .sup. 88 j2.sup.CR/j2.sup.CR ej2.sup.CR/ej2.sup.CR +/+ 89 j2.sup.CR/j2.sup.CR ej2.sup.CR/+ .sup. +/+ 90 j2.sup.CR/j2.sup.CR +/+ +/+ 91 j2.sup.TE/+ .sup. ej2.sup.CR/ej2.sup.CR lin.sup.trans/lin.sup.trans 92 j2.sup.TE/+ .sup. ej2.sup.CR/+ .sup. lin.sup.trans/lin.sup.trans 93 j2.sup.TE/+ .sup. +/+ lin.sup.trans/lin.sup.trans 94 j2.sup.TE/+ .sup. ej2.sup.CR/ej2.sup.CR lin.sup.trans/+ .sup. 95 j2.sup.TE/+ .sup. ej2.sup.CR/+ .sup. lin.sup.trans/+ .sup. 96 j2.sup.TE/+ .sup. +/+ lin.sup.trans/+ .sup. 97 j2.sup.TE/+ .sup. ej2.sup.CR/ej2.sup.CR +/+ 98 j2.sup.TE/+ .sup. ej2.sup.CR/+ .sup. +/+ 99 j2.sup.TE/+ .sup. +/+ +/+ 100 j2.sup.stop/+ .sup. ej2.sup.CR/ej2.sup.CR lin.sup.trans/lin.sup.trans 101 j2.sup.stop/+ .sup. ej2.sup.CR/+ .sup. lin.sup.trans/lin.sup.trans 102 j2.sup.stop/+ .sup. +/+ lin.sup.trans/lin.sup.trans 103 j2.sup.stop/+ .sup. ej2.sup.CR/ej2.sup.CR lin.sup.trans/+ .sup. 104 j2.sup.stop/+ .sup. ej2.sup.CR/+ .sup. lin.sup.trans/+ .sup. 105 j2.sup.stop/+ .sup. +/+ lin.sup.trans/+ .sup. 106 j2.sup.stop/+ .sup. ej2.sup.CR/ej2.sup.CR +/+ 107 j2.sup.stop/+ .sup. ej2.sup.CR/+ .sup. +/+ 108 j2.sup.stop/+ .sup. +/+ +/+ 109 j2.sup.CR/+ ej2.sup.CR/ej2.sup.CR lin.sup.trans/lin.sup.trans 110 j2.sup.CR/+ ej2.sup.CR/+ .sup. lin.sup.trans/lin.sup.trans 111 j2.sup.CR/+ +/+ lin.sup.trans/lin.sup.trans 112 j2.sup.CR/+ ej2.sup.CR/ej2.sup.CR lin.sup.trans/+ .sup. 113 j2.sup.CR/+ ej2.sup.CR/+ .sup. lin.sup.trans/+ .sup. 114 j2.sup.CR/+ +/+ lin.sup.trans/+ .sup. 115 j2.sup.CR/+ ej2.sup.CR/ej2.sup.CR +/+ 116 j2.sup.CR/+ ej2.sup.CR/+ .sup. +/+ 117 j2.sup.CR/+ +/+ +/+ 118 +/+ ej2.sup.CR/ej2.sup.CR lin.sup.trans/lin.sup.trans 119 +/+ ej2.sup.CR/+ .sup. lin.sup.trans/lin.sup.trans 120 +/+ +/+ lin.sup.trans/lin.sup.trans 121 +/+ ej2.sup.CR/ej2.sup.CR lin.sup.trans/+ .sup. 122 +/+ ej2.sup.CR/+ .sup. lin.sup.trans/+ .sup. 123 +/+ +/+ lin.sup.trans/+ .sup. 124 +/+ ej2.sup.CR/ej2.sup.CR +/+ 125 +/+ ej2.sup.CR/+ .sup. +/+ 126 j2.sup.TE/j2.sup.TE ej2.sup.W/ej2.sup.W lin.sup.CR/lin.sup.CR 127 j2.sup.TE/j2.sup.TE ej2.sup.W/+ .sup. lin.sup.CR/lin.sup.CR 128 j2.sup.TE/j2.sup.TE +/+ lin.sup.CR/lin.sup.CR 129 j2.sup.TE/j2.sup.TE ej2.sup.W/ej2.sup.W lin.sup.CR/+ 130 j2.sup.TE/j2.sup.TE ej2.sup.W/+ .sup. lin.sup.CR/+ 131 j2.sup.TE/j2.sup.TE +/+ lin.sup.CR/+ 132 j2.sup.TE/j2.sup.TE ej2.sup.W/ej2.sup.W +/+ 133 j2.sup.TE/j2.sup.TE ej2.sup.W/+ .sup. +/+ 134 j2.sup.TE/j2.sup.TE +/+ +/+ 135 j2.sup.stop/j2.sup.stop ej2.sup.W/ej2.sup.W lin.sup.CR/lin.sup.CR 136 j2.sup.stop/j2.sup.stop ej2.sup.W/+ .sup. lin.sup.CR/lin.sup.CR 137 j2.sup.stop/j2.sup.stop +/+ lin.sup.CR/lin.sup.CR 138 j2.sup.stop/j2.sup.stop ej2.sup.W/ej2.sup.W lin.sup.CR/+ 139 j2.sup.stop/j2.sup.stop ej2.sup.W/+ .sup. lin.sup.CR/+ 140 j2.sup.stop/j2.sup.stop +/+ lin.sup.CR/+ 141 j2.sup.stop/j2.sup.stop ej2.sup.W/ej2.sup.W +/+ 142 j2.sup.stop/j2.sup.stop ej2.sup.W/+ .sup. +/+ 143 j2.sup.stop/j2.sup.stop +/+ +/+ 144 j2.sup.CR/j2.sup.CR ej2.sup.W/ej2.sup.W lin.sup.CR/lin.sup.CR 145 j2.sup.CR/j2.sup.CR ej2.sup.W/+ .sup. lin.sup.CR/lin.sup.CR 146 j2.sup.CR/j2.sup.CR +/+ lin.sup.CR/lin.sup.CR 147 j2.sup.CR/j2.sup.CR ej2.sup.W/ej2.sup.W lin.sup.CR/+ 148 j2.sup.CR/j2.sup.CR ej2.sup.W/+ .sup. lin.sup.CR/+ 149 j2.sup.CR/j2.sup.CR +/+ lin.sup.CR/+ 150 j2.sup.CR/j2.sup.CR ej2.sup.W/ej2.sup.W +/+ 151 j2.sup.CR/j2.sup.CR ej2.sup.W/+ .sup. +/+ 152 j2.sup.CR/j2.sup.CR +/+ +/+ 153 j2.sup.TE/+ .sup. ej2.sup.W/ej2.sup.W lin.sup.CR/lin.sup.CR 154 j2.sup.TE/+ .sup. ej2.sup.W/+ .sup. lin.sup.CR/lin.sup.CR 155 j2.sup.TE/+ .sup. +/+ lin.sup.CR/lin.sup.CR 156 j2.sup.TE/+ .sup. ej2.sup.W/ej2.sup.W lin.sup.CR/+ 157 j2.sup.TE/+ .sup. ej2.sup.W/+ .sup. lin.sup.CR/+ 158 j2.sup.TE/+ .sup. +/+ lin.sup.CR/+ 159 j2.sup.TE/+ .sup. ej2.sup.W/ej2.sup.W +/+ 160 j2.sup.TE/+ .sup. ej2.sup.W/+ .sup. +/+ 161 j2.sup.TE/+ .sup. +/+ +/+ 162 j2.sup.stop/+ .sup. ej2.sup.W/ej2.sup.W lin.sup.CR/lin.sup.CR 163 j2.sup.stop/+ .sup. ej2.sup.W/+ .sup. lin.sup.CR/lin.sup.CR 164 j2.sup.stop/+ .sup. +/+ lin.sup.CR/lin.sup.CR 165 j2.sup.stop/+ .sup. ej2.sup.W/ej2.sup.W lin.sup.CR/+ 166 j2.sup.stop/+ .sup. ej2.sup.W/+ .sup. lin.sup.CR/+ 167 j2.sup.stop/+ .sup. +/+ lin.sup.CR/+ 168 j2.sup.stop/+ .sup. ej2.sup.W/ej2.sup.W +/+ 169 j2.sup.stop/+ .sup. ej2.sup.W/+ .sup. +/+ 170 j2.sup.stop/+ .sup. +/+ +/+ 171 j2.sup.CR/+ ej2.sup.W/ej2.sup.W lin.sup.CR/lin.sup.CR 172 j2.sup.CR/+ ej2.sup.W/+ .sup. lin.sup.CR/lin.sup.CR 173 j2.sup.CR/+ +/+ lin.sup.CR/lin.sup.CR 174 j2.sup.CR/+ ej2.sup.W/ej2.sup.W lin.sup.CR/+ 175 j2.sup.CR/+ ej2.sup.W/+ .sup. lin.sup.CR/+ 176 j2.sup.CR/+ +/+ lin.sup.CR/+ 177 j2.sup.CR/+ ej2.sup.W/ej2.sup.W +/+ 178 j2.sup.CR/+ ej2.sup.W/+ .sup. +/+ 179 j2.sup.CR/+ +/+ +/+ 180 +/+ ej2.sup.W/ej2.sup.W lin.sup.CR/lin.sup.CR 181 +/+ ej2.sup.W/+ .sup. lin.sup.CR/lin.sup.CR 182 +/+ +/+ lin.sup.CR/lin.sup.CR 183 +/+ ej2.sup.W/ej2.sup.W lin.sup.CR/+ 184 +/+ ej2.sup.W/+ .sup. lin.sup.CR/+ 185 +/+ +/+ lin.sup.CR/+ 186 +/+ ej2.sup.W/ej2.sup.W +/+ 187 +/+ ej2.sup.W/+ .sup. +/+ 188 +/+ +/+ +/+ 189 j2.sup.TE/j2.sup.TE ej2.sup.CR/ej2.sup.CR lin.sup.CR/lin.sup.CR 190 j2.sup.TE/j2.sup.TE ej2.sup.CR/+ .sup. lin.sup.CR/lin.sup.CR 191 j2.sup.TE/j2.sup.TE +/+ lin.sup.CR/lin.sup.CR 192 j2.sup.TE/j2.sup.TE ej2.sup.CR/ej2.sup.CR lin.sup.CR/+ 193 j2.sup.TE/j2.sup.TE ej2.sup.CR/+ .sup. lin.sup.CR/+ 194 j2.sup.TE/j2.sup.TE +/+ lin.sup.CR/+ 195 j2.sup.TE/j2.sup.TE ej2.sup.CR/ej2.sup.CR +/+ 196 j2.sup.TE/j2.sup.TE ej2.sup.CR/+ .sup. +/+ 197 j2.sup.TE/j2.sup.TE +/+ +/+ 198 j2.sup.stop/j2.sup.stop ej2.sup.CR/ej2.sup.CR lin.sup.CR/lin.sup.CR 199 j2.sup.stop/j2.sup.stop ej2.sup.CR/+ .sup. lin.sup.CR/lin.sup.CR 200 j2.sup.stop/j2.sup.stop +/+ lin.sup.CR/lin.sup.CR 201 j2.sup.stop/j2.sup.stop ej2.sup.CR/ej2.sup.CR lin.sup.CR/+ 202 j2.sup.stop/j2.sup.stop ej2.sup.CR/+ .sup. lin.sup.CR/+ 203 j2.sup.stop/j2.sup.stop +/+ lin.sup.CR/+ 204 j2.sup.stop/j2.sup.stop ej2.sup.CR/ej2.sup.CR +/+ 205 j2.sup.stop/j2.sup.stop ej2.sup.CR/+ .sup. +/+ 206 j2.sup.stop/j2.sup.stop +/+ +/+ 207 j2.sup.CR/j2.sup.CR ej2.sup.CR/ej2.sup.CR lin.sup.CR/lin.sup.CR 208 j2.sup.CR/j2.sup.CR ej2.sup.CR/+ .sup. lin.sup.CR/lin.sup.CR 209 j2.sup.CR/j2.sup.CR +/+ lin.sup.CR/lin.sup.CR 210 j2.sup.CR/j2.sup.CR ej2.sup.CR/ej2.sup.CR lin.sup.CR/+ 211 j2.sup.CR/j2.sup.CR ej2.sup.CR/+ .sup. lin.sup.CR/+ 212 j2.sup.CR/j2.sup.CR +/+ lin.sup.CR/+ 213 j2.sup.CR/j2.sup.CR ej2.sup.CR/ej2.sup.CR +/+ 214 j2.sup.CR/j2.sup.CR ej2.sup.CR/+ .sup. +/+ 215 j2.sup.CR/j2.sup.CR +/+ +/+ 216 j2.sup.TE/+ .sup. ej2.sup.CR/ej2.sup.CR lin.sup.CR/lin.sup.CR 217 j2.sup.TE/+ .sup. ej2.sup.CR/+ .sup. lin.sup.CR/lin.sup.CR 218 j2.sup.TE/+ .sup. +/+ lin.sup.CR/lin.sup.CR 219 j2.sup.TE/+ .sup. ej2.sup.CR/ej2.sup.CR lin.sup.CR/+ 220 j2.sup.TE/+ .sup. ej2.sup.CR/+ .sup. lin.sup.CR/+ 221 j2.sup.TE/+ .sup. +/+ lin.sup.CR/+ 222 j2.sup.TE/+ .sup. ej2.sup.CR/ej2.sup.CR +/+ 223 j2.sup.TE/+ .sup. ej2.sup.CR/+ .sup. +/+ 224 j2.sup.TE/+ .sup. +/+ +/+ 225 j2.sup.stop/+ .sup. ej2.sup.CR/ej2.sup.CR lin.sup.CR/lin.sup.CR 226 j2.sup.stop/+ .sup. ej2.sup.CR/+ .sup. lin.sup.CR/lin.sup.CR 227 j2.sup.stop/+ .sup. +/+ lin.sup.CR/lin.sup.CR 228 j2.sup.stop/+ .sup. ej2.sup.CR/ej2.sup.CR lin.sup.CR/+ 229 j2.sup.stop/+ .sup. ej2.sup.CR/+ .sup. lin.sup.CR/+ 230 j2.sup.stop/+ .sup. +/+ lin.sup.CR/+ 231 j2.sup.stop/+ .sup. ej2.sup.CR/ej2.sup.CR +/+ 232 j2.sup.stop/+ .sup. ej2.sup.CR/+ .sup. +/+ 233 j2.sup.stop/+ .sup. +/+ +/+ 234 j2.sup.CR/+ ej2.sup.CR/ej2.sup.CR lin.sup.CR/lin.sup.CR 235 j2.sup.CR/+ ej2.sup.CR/+ .sup. lin.sup.CR/lin.sup.CR 236 j2.sup.CR/+ +/+ lin.sup.CR/lin.sup.CR 237 j2.sup.CR/+ ej2.sup.CR/ej2.sup.CR lin.sup.CR/+ 238 j2.sup.CR/+ ej2.sup.CR/+ .sup. lin.sup.CR/+ 239 j2.sup.CR/+ +/+ lin.sup.CR/+
240 j2.sup.CR/+ ej2.sup.CR/ej2.sup.CR +/+ 241 j2.sup.CR/+ ej2.sup.CR/+ .sup. +/+ 242 j2.sup.CR/+ +/+ +/+ 243 +/+ ej2.sup.CR/ej2.sup.CR lin.sup.CR/lin.sup.CR 244 +/+ ej2.sup.CR/+ .sup. lin.sup.CR/lin.sup.CR 245 +/+ +/+ lin.sup.CR/lin.sup.CR 246 +/+ ej2.sup.CR/ej2.sup.CR lin.sup.CR/+ 247 +/+ ej2.sup.CR/+ .sup. lin.sup.CR/+ 248 +/+ +/+ lin.sup.CR/+ 249 +/+ ej2.sup.CR/ej2.sup.CR +/+ 250 +/+ ej2.sup.CR/+ .sup. +/+
[0091] Solanaceae plant cells are also contemplated herein. A Solanaceae plant cell may comprise any genotype described herein, e.g., as shown without limitation in Table 1, in the context of the Solanaceae plant (e.g., a Solanaceae plant cell heterozygous for a mutant Solyc03g114840 gene, or a homolog thereof, and a mutant Solyc12g038510 gene, or a homolog thereof, or a Solanaceae plant cell homozygous for a mutant Solyc12g038510 gene, or a homolog thereof, and a mutant Solyc04g005320 gene, or a homolog thereof). In some embodiments, the Solanaceae plant cell is isolated. In some embodiments, the Solanaceae plant cell is a non-replicating plant cell.
[0092] In some embodiments, any of the Solanaceae plants described herein may an altered phenotype compared to a WT Solanaceae plant (e.g., a Solanaceae plant comprising two copies or one copy of the corresponding WT gene). In some embodiments, any of the Solanaceae plants described herein have a higher yield than a corresponding WT Solanaceae plant. In some embodiments, any of the Solanaceae plants described herein have one or more of the following characteristics: longer sepals, larger calyxes, a different fruit shape, fewer branches, jointless pedicels, long inflorescences, or larger fruit compared to a corresponding WT Solanaceae plant. In some embodiments, such characteristics are appealing to consumers (e.g., products of the Solanaceae plant look fresher) and are advantageous for growers (e.g., products of the Solanaceae plant stay attached to the plant for a longer period of time).
[0093] Food products are also contemplated herein. Such food products comprise a Solanaceae plant part, such as a fruit (e.g., a tomato fruit). Non-limiting examples of food products include sauces (e.g., tomato sauce or ketchup), purees, pastes, juices, canned fruits, and soups. Food products may be produced or producible by using methods known in the art.
[0094] Isolated polynucleotides are also described herein, including WT and mutant alleles of the Solyc04g005320 gene, or a homolog thereof, e.g., lin.sup.trans and lin.sup.CR. Isolated polynucleotides including WT and mutant alleles of the Solyc12g038510 gene, or a homolog thereof, are also contemplated, e.g., j2.sup.CR j2.sup.TE and j2.sup.stop. Isolated polynucleotides including WT and mutant alleles of the Solyc03g114840 gene, or a homolog thereof, are also contemplated, e.g., ej2.sup.CR and ej2.sup.W.
[0095] Isolated polynucleotides can comprise, for example, a nucleic acid (e.g., DNA) having the sequence of SEQ ID NO: 3, 4, 5, 8, 9, 10, 11, 14, 15 or 16; a portion of SEQ ID NO: 3, 4, 5, 8, 9, 10, 11, 14, 15 or 16 that exhibits substantially the same activity as a nucleic acid (e.g., DNA) having the sequence of SEQ ID NO: 3, 4, 5, 8, 9, 10, 11, 14, 15 or 16; a nucleic acid (e.g., DNA) having at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identity with the sequence of SEQ ID NO: 3, 4, 5, 8, 9, 10, 11, 14, 15 or 16; an orthologue or homologue of the nucleic acid having the sequence of SEQ ID NO: 3, 4, 5, 8, 9, 10, 11, 14, 15 or 16. In some embodiments, the isolated polynucleotide is a cDNA. Such isolated polynucleotides can be used, for example, in methods of producing genetically-altered plants.
[0096] Other aspects of the disclosure relate to seeds for producing a Solanaceae plant as described herein, e.g., a mutant Solyc04g005320 gene (or a homolog thereof), a mutant Solyc12g038510 gene (or a homolog thereof), or a mutant Solyc03g114840 gene (or a homolog thereof).
Methods of Producing Plants
[0097] In other aspects, the disclosure provides methods for producing a genetically-altered Solanaceae plant. In some embodiments, the method comprises introducing a mutation into a Solyc04g005320 gene (or a homolog thereof), into a Solyc12g038510 gene (or a homolog thereof), or into a Solyc03g114840 gene (or a homolog thereof) in the Solanaceae plant, thereby producing a genetically-altered Solanaceae plant containing a mutant version of the gene. In some embodiments, the method comprises introducing a mutation into a Solyc04g005320 gene (or a homolog thereof), into a Solyc12g038510 gene (or a homolog thereof), or into a Solyc03g114840 gene (or a homolog thereof) in the Solanaceae plant part, maintaining the plant part under conditions and for sufficient time for production of a genetically-altered Solanaceae plant, thereby producing a genetically-altered Solanaceae plant (or a homolog thereof) containing a mutant version of the gene. In some embodiments, mutations are introduced into two or all three of a Solyc04g005320 gene (or a homolog thereof), a Solyc12g038510 gene (or a homolog thereof), and a Solyc03g114840 gene (or a homolog thereof).
[0098] In any of the methods described herein, the mutant gene can be introduced into a Solanaceae plant or a plant part or produced in a Solanaceae plant or plant part by any method described herein or known to those of skill in the art, such as Agrobacterium-mediated recombination, viral-vector mediated recombination, microinjection, gene gun bombardment/biolistic particle delivery, electroporation, mutagenesis (e.g., by ethyl methanesulfonate or fast neutron irradiation), TILLING (Targeting Induced Local Lesions in Genomes), conventional marker-assisted introgression, and nuclease mediated recombination (e.g., use of custom-made restriction enzymes for targeting mutagenesis by gene replacement, see, e.g., CRISPR-Cas9: Genome engineering using the CRISPR-Cas9 system. Ran F A, Hsu P D, Wright J, Agarwala V, Scott D A, Zhang F. Nat Protoc. 2013 November; 8(11):2281-308; TALEN endonucleases: Nucleic Acids Res. 2011 July; 39(12):e82. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Cermak T, Doyle E L, Christian M, Wang L, Zhang Y, Schmidt C, Baller J A, Somia N V, Bogdanove A J, Voytas D F and Plant Biotechnol J. 2012 May; 10(4):373-89. Genome modifications in plant cells by custom-made restriction enzymes. Tzfira T, Weinthal D, Marton I, Zeevi V, Zuker A, Vainstein A.). Genetically-altered Solanaceae plants produced by or producible by a method described herein are also claimed.
[0099] In some embodiments, the mutation produces a null allele, a hypomorphic allele, or a hypermorphic allele of a Solyc04g005320 gene (or a homolog thereof), a Solyc12g038510 gene (or a homolog thereof), or a Solyc03g114840 gene (or a homolog thereof) as described herein. In some embodiments, the mutation is a null mutation of a Solyc04g005320 gene (or a homolog thereof), a Solyc12g038510 gene (or a homolog thereof), or a Solyc03g114840 gene (or a homolog thereof) that is introduced using CRISPR/Cas9.
[0100] Alternatively, a method of producing a genetically-altered Solanaceae plant comprises a reducing (partially or completely) function of a wild-type Solyc04g005320 gene (or a homolog thereof), a wild-type Solyc12g038510 gene (or a homolog thereof), or a wild-type Solyc03g114840 gene (or a homolog thereof) in the plant or plant part. In some embodiments, reducing the function comprises performing any of the following methods of RNA-interference (e.g., administering to the Solanaceae plant a micro-RNA or a small interfering (si)-RNA or hairpin RNA) or translational blocking (e.g., administering to the Solanaceae plant a morpholino). Methods of RNA-interference and translational blocking are well-known in the art. Methods of producing micro-RNAs, si-RNAs, and morpholinos are well-known in the art and can involve use of the nucleotides sequences provided herein.
[0101] In some embodiments, the method comprises crossing a produced genetically-altered Solanaceae plant containing a mutant Solyc04g005320 gene (or a homolog thereof) to another genetically-altered Solanaceae plant comprising a mutant Solyc12g038510 gene (or a homolog thereof), a mutant Solyc03g114840 gene (or a homolog thereof), or both a mutant Solyc12g038510 gene (or a homolog thereof) and a mutant Solyc03g114840 gene (or a homolog thereof). In some embodiments, the method comprises crossing a produced genetically-altered Solanaceae plant containing a mutant Solyc12g038510 gene (or a homolog thereof) to another genetically-altered Solanaceae plant comprising a mutant Solyc04g005320 gene (or a homolog thereof), a mutant Solyc03g114840 gene (or a homolog thereof), or both a mutant Solyc04g005320 gene (or a homolog thereof) and a mutant Solyc03g114840 gene (or a homolog thereof). In some embodiments, the method comprises crossing a produced genetically-altered Solanaceae plant containing a mutant Solyc03g114840 gene (or a homolog thereof) to another genetically-altered Solanaceae plant comprising a mutant Solyc12g038510 gene (or a homolog thereof), a mutant Solyc04g005320 gene (or a homolog thereof), or both a mutant Solyc12g038510 gene (or a homolog thereof) and a mutant Solyc04g005320 gene (or a homolog thereof).
Example Nucleic Acid Sequences of the Disclosure
TABLE-US-00002
[0102] Wild-type Solyc04g005320 gene (SEQ ID NO: 1) ATGGGAAGAGGTAAGGTAGAATTGAAGAGAATAGAAAATAAGATAAACAGGCAAGTTACTTTTGCTAAGAGAAG- A AATGGATTACTCAAAAAAGCTTATGAGCTTTCTATTTTGTGTGAAGCTGAAGTTGCTCTTATCATTTTCTCTAA- T AGAGGCAAACTCTATGAATTTTGCAGTACCTCTAGGTAATATTTTTATGTTTATGTCGTTCCGTTTAAGCTTTA- C ATTTACGTTTTTATACGCAAAACTTTAAATTAGTTCTAAATGTATTAAAAAATTGAAATTTTGAGATTTAATTT- C AAAATCTATGGTTAAACGAATGTTTATATGCATTATGATTTTGTTATCTTCTTTTTTTTTAAAAAAAGAAATAA- A ATATATTGATGTTATAGATCTGAGTGAGAATAGAGTTTTTGGTACATTTATTAAGGGTGAATAATCAAATGTTT- C ATTTGATTAGATCTAGGTTTTCTTGAACATTAAAATTGTTAAAAAAATTAGTTCATTTTATGAGGTAAATTTTG- T TATGATTTGATGTTCCACCTCCATTTTTTCTTATTTTTATTATAAATAAATAAGTTTTAAAATATCCTTACTTT- T ATATGTTCTTTTAAGTACAGACACATGAATCAAAAAGAAGTTTTATAATATGAATTGAATTAAAGCTGGTTGAA- T TTCTATCTTCAGTTTTTGAAAACAACTAAAAACTTTGAAAAGGAATTTGATTTTATTATTTATGGCAACAAATA- A CACCTAACTACTTATCGAGTCGGAATTGACGATATGAATCCTTTAACTTTTCATTTAAGCTCAATTTATATAGA- A AATTCTGTATTGTGGATTGAAGTAATTTCTGGAGTTGATCAATTCTATTTAAAAAATTATTTAATTAATAATCA- T TATCCCAAAAAATTATATTGAAATTAAAAAATAATATTAATTTTTTTAAATAACAAACTTATTAATTGAGTGAC- C ATCTAAATCGTCTTTTTCTTAAAGTTAGGGTCTTGCCTTTCATCTAATTTTGATAGTAATGTTCTTGAACCGAC- A AATTTTGTCATTTACTCTTATCTGTTATAATTTATGTGATTCGAGTTTTACGAATCAATTTTTGTTTATAATTT- C AATCATGTATAAGAAGTATTTTAAGTTATAATAATTAACAATTTTAAGAAAGCATAATCAAGATCAAATAACTT- A GTAGAAATAATATTGGTTTATGTAACCTCTATGCATTGACAATATAGTGTTTTTTTTATACTATCAAGTCATTT- A TTGGATAATTATAATTAAAGAATATTAACTAATGAGTAAATCAATAGTTTAATATTAATGAGTTATCATAGTAG- C GTATACTTATTACTCGATATTTGTAATCTAAACATTTTCAATATGCTTAAACTTGATTTTTTTATTTGGATCAA- G TATACAATTTTTTTGTTAATAATAAATGACATTGAAACTTATAACTAATTTTATTTAAACAATTTTCTTTCTTT- C TTTCCTCAAGGAGAGCATAGTTCTAATTATTATCAATATCATTATTATTATTATCTCTATGTTTATTTTATTAT- T ACTGTTGTTTCTTTTACTTGGATTGTCTGTACTATTTTTACTTCATGGACTTTAATTTTTTGTCTATCGTATTT- T TATCATAGTTTTTACTCTTGTATTGGCTAAACCTAGTTTTGAAATTGTTTTTCATAAGCTGAAAGAGTCTATCA- A AAACAACTTCTCACGAGATAGAAATAAAGTTTACGTATATTCCATTCTTCTCAAACCCCACTTATGAGATTATA- C TGAAATGTTACTATTATTATTATACTTTGTAACATGCTAAAAAAACTAGTAATAATTACACTTCTTGCCAAAGA- G TAAATAAAGTATGATCCTTTAATAAGTTGAAAATCCCTCTAAATCAAATTATCACTTTTGTGCAACTTGTCTTC- T TTTTTTTCTTCTAGTATGTCTGATACACTGGAGAGATACCATAGATGCAGCTATGGTGACCTTGAAACTGGCCA- G TCTTCAAAGGATTCACAGGTTACTTCATCTTCCTCAGAATTACAATTTACTAATAAATTTAACTTATATACTCT- G ACACAGTATCGATGCAATTTAAACCTTTTATAACAGATTATCTGTTTTTATTTTAATTTCTTCGTAAATAATTA- A TAAGTCGATATTGATAACTAACGCCAAGCACCCTATCTTCATCTAACTAATTAGTGTTATTATGCAATAGAATA- A CTACCAAGAGTATATGAAGCTGAAAGCAAGAGTTGAAGTGCTACAACAGTCACAAAGGTGATACATTATTTGTT- T TAAAAACACTTTTACTTGTCTCATTTTGATTGGCTCATCTGAACACCTGAACCGGTCTAGAAGTATTTTGAACA- T GCATAATTGGACATGTTCAATCATGCGTTTGTTTGATCAGGTTCAGGATGTTTAGATGAGACCTCGTAAAATAA- A TTAAGGGGAGGCTTTTTAATATGATATTTGTGTCTCAAATATATCACTTTTCTACCCTAATTCTTAATAACATT- G TATTTACTTAATTATTCTTAATCTTTAAGGCATATACTTGGAGAGGACTTAGGACAATTAAACACAAAAGATTT- G GAACAGCTTGAGCGTCAACTGGATTCATCTTTGAGGCTAATAAGATCAAGAAGGGTATGTTCTATGCACCTTCA- A TTTATTTGTCAAATTTTAGGCTTTCAGATCATGTCTTAATCTTAATGTCCGATGACAGTTTCAGTGGCGGAATT- A GAAATTTATGCAAGACAATTCAAGCAATATTATATATTATAGAATGTCAGACTTGAAATTTGAACTTGAGACAT- T GAACCTCTTTACAAATACACTAATATCTAACCTCGTATCAACGGGGTTCAACAATTTATATATATATAAAAAAC- A CTTAATTTTGCCCTATTTGGTGTAATATATAATTTTATCAAAGGTATGTTGGGAAAATGATAAAAATTACTTAT- G AATAATATCCAAATGGAATAATATAATAACAATTACTTACTATTACTTGATAGTGCCACAAAACTACTAAACCT- T AAAATAAGTTCTTTTATTTTACATAATTCATTATAATCTTTGGCATGAATTTACTCAAGCATTGCTTCAGAATG- A TCAAAGCCTCCTTAATATTTTTGGGTACAGACATAAAGTCTAGACATGCAATCAAAGATATAGATGCACGAGAT- G ACTAATCAAAGGAAACAATAGGAACGATCAAAAAAATTGAAATTGAAAATATATTTTTTTTAAACTAAAGGTAA- G TCAAGATTACCAAGTAAGTGTATTATTGTAACTTTTGTATTATTTATCCTAAGTAAACATGTATCAAAAACATA- C ACAAATTTACTTTCTCTTTTATTACTAACATCAACTTACATGCTAATTATAAATAATTAAAGGGTAAATAGTTG- G TTGCATGATTTGGTAAAAGAAGTTGTTAACCTACTCTTTGATAACATATATGTTTTCAGACACAAAACATGCTT- G ATCAACTTTCTGATCTTCAACAAAAGGTATGTATTGTATAATATAATCCCTTAAGTTGACAATTAAATAGATTG- T TCAATTGTTAATTTGACATTGTATGTGTTCTTTTTTCTTTTTTTCTACAGGAACAATCTCTTCTTGAAATCAAC- A GATCCTTGAAAACAAAGGTACAAAGCACACATTTTGGACCTTTTATGAGTTTTTTAGGGCGTGTTTGATTTATT- T ATTTTTTCTGAATTTTTTCATGTTTGGTTGATCTAAATTCTGGGAAAATACTTTTTTCTATGAAAGTAAGTTTT- T TAAAAATGACTTAGCCAGTGGAAGTAGGGAAAACAAGTTGTGACGACATTCCACGTTGATTGTTTTCTCTCGAT- C TTCCTACACACCTTAAGTTCGCCACCACCTCTCGCAGTATTTGTTTAGATTATATAAAAATGTATCAAGAATGA- C ACTTTTTATTTGTGTACATAATAAAAGAAAATAAGTAAGAAACCGAACATTTTCCCATGGAAAATATTATTTTT- C ATACCAAACACACCCTTAGTCTTTGTTTTAGGGTATATGACTAATTTGTTCTCCATTTCGGATATTTAGATTCG- T ATGGGTTTTTCTTTGATGTCTAACTTATCGTACTTTTTACGCGATTTTATGAAATTCTTATAATAGTTGGAAGA- A AACTCTGTAGCACATTGGCATATCACTGGAGAGCAAAATGTACAATTCAGACAACAACCTGCTCAGTCAGAGGG- G TTCTTTCAGCCTTTACAATGCAATACTAATATAGTGCCAAACAGGTAACATATAATTTTATGTTTTCTTTTTTT- C CTTTAAATAGCATATTTTTTGCAACATTTTAAATTGAACCGTTGAATTGAGTCGTTGAGAGGTGAATTCAGAAT- C TGAAGTAACAGATACATTCAAATTAATTTCTTTGTGTATTTATCGAAGTGAGTCAAGTCGTAAGTCTAGAGGTG- A ATTTAGAATCTAAAGTAATAGATACAGTCGAATCAATCTCTTTGTGTATTTATTGAAGTGAGTCGTTTTGTAAA- G TTTGAGACGAATTCAAAACCTAAAGTAATACTAAATACATACATTCAAAATAATTTCTAAAGCGAGTTATGTTG- G AAGTCGAGAGACGAAAGTATATTATATATGGATCAATTCAAATTAATTTCTTAATGTATTTGATGAGCGTTGTT- G TAGGGGCGAATTCAGAATCTGAAGTTCATGTAAGTACAGGTACAATGTGGCTCCATTGGATAGTATAGAACCAT- C AACACAGAATGCTACTGGAATTTTACCAGGATGGATGCTTTGA Wild-type Solyc04g005320 coding sequence (SEQ ID NO: 2) ATGGGAAGAGGTAAGGTAGAATTGAAGAGAATAGAAAATAAGATAAACAGGCAAGTTACTTTTGCTAAGAGAAG- A AATGGATTACTCAAAAAAGCTTATGAGCTTTCTATTTTGTGTGAAGCTGAAGTTGCTCTTATCATTTTCTCTAA- T AGAGGCAAACTCTATGAATTTTGCAGTACCTCTAGTATGTCTGATACACTGGAGAGATACCATAGATGCAGCTA- T GGTGACCTTGAAACTGGCCAGTCTTCAAAGGATTCACAGAATAACTACCAAGAGTATATGAAGCTGAAAGCAAG- A GTTGAAGTGCTACAACAGTCACAAAGGCATATACTTGGAGAGGACTTAGGACAATTAAACACAAAAGATTTGGA- A CAGCTTGAGCGTCAACTGGATTCATCTTTGAGGCTAATAAGATCAAGAAGGACACAAAACATGCTTGATCAACT- T TCTGATCTTCAACAAAAGGAACAATCTCTTCTTGAAATCAACAGATCCTTGAAAACAAAGTTGGAAGAAAACTC- T GTAGCACATTGGCATATCACTGGAGAGCAAAATGTACAATTCAGACAACAACCTGCTCAGTCAGAGGGGTTCTT- T CAGCCTTTACAATGCAATACTAATATAGTGCCAAACAGGTACAATGTGGCTCCATTGGATAGTATAGAACCATC- A ACACAGAATGCTACTGGAATTTTACCAGGATGGATGCTTTGA Mutant Solyc04g005320 gene allele lin.sup.trans (SEQ ID NO: 3) ATGGGAAGAGGTAAGGTAGAATTGAAGAGAATAGAAAATAAGATAAACAGGCAAGTTACTTTTGCTAAGAGAAG- A AATGGATTACTCAAAAAAGCTTATGAGCTTTCTATTTTGTGTGAAGCTGAAGTTGCTCTTATCATTTTCTCTAA- T AGAGGCAAACTCTATGAATTTTGCAGTACCTCTAGGTAATATTTTTATGTTTATGTCGTTCCGTTTAAGCTTTA- C ATTTACGTTTTTATACGCAAAACTTTAAATTAGTTCTAAATGTATTAAAAAATTGAAATTTTGAGATTTAATTT- C AAAATCTATGGTTAAACGAATGTTTATATGCATTATGATTTTGTTATCTTCTTTTTTTTTAAAAAAAGAAATAA- A ATATATTGATGTTATAGATCTGAGTGAGAATAGAGTTTTTGGTACATTTATTAAGGGTGAATAATCAAATGTTT- C ATTTGATTAGATCTAGGTTTTCTTGAACATTAAAATTGTTAAAAAAATT
TTCATTTTATGAGGTAAATTTTGTTATGAT TTGATGTTCCACCTCCATTTTTTCTTATTTTTATTATAAATAAATAAGTTTTAAAATATCCTTACTTTTATATG- T TCTTTTAAGTACAGACACATGAATCAAAAAGAAGTTTTATAATATGAATTGAATTAAAGCTGGTTGAATTTCTA- T CTTCAGTTTTTGAAAACAACTAAAAACTTTGAAAAGGAATTTGATTTTATTATTTATGGCAACAAATAACACCT- A ACTACTTATCGAGTCGGAATTGACGATATGAATCCTTTAACTTTTCATTTAAGCTCAATTTATATAGAAAATTC- T GTATTGTGGATTGAAGTAATTTCTGGAGTTGATCAATTCTATTTAAAAAATTATTTAATTAATAATCATTATCC- C AAAAAATTATATTGAAATTAAAAAATAATATTAATTTTTTTAAATAACAAACTTATTAATTGAGTGACCATCTA- A ATCGTCTTTTTCTTAAAGTTAGGGTCTTGCCTTTCATCTAATTTTGATAGTAATGTTCTTGAACCGACAAATTT- T GTCATTTACTCTTATCTGTTATAATTTATGTGATTCGAGTTTTACGAATCAATTTTTGTTTATAATTTCAATCA- T GTATAAGAAGTATTTTAAGTTATAATAATTAACAATTTTAAGAAAGCATAATCAAGATCAAATAACTTAGTAGA- A ATAATATTGGTTTATGTAACCTCTATGCATTGACAATATAGTGTTTTTTTTATACTATCAAGTCATTTATTGGA- T AATTATAATTAAAGAATATTAACTAATGAGTAAATCAATAGTTTAATATTAATGAGTTATCATAGTAGCGTATA- C TTATTACTCGATATTTGTAATCTAAACATTTTCAATATGCTTAAACTTGATTTTTTTATTTGGATCAAGTATAC- A ATTTTTTTGTTAATAATAAATGACATTGAAACTTATAACTAATTTTATTTAAACAATTTTCTTTCTTTCTTTCC- T CAAGGAGAGCATAGTTCTAATTATTATCAATATCATTATTATTATTATCTCTATGTTTATTTTATTATTACTGT- T GTTTCTTTTACTTGGATTGTCTGTACTATTTTTACTTCATGGACTTTAATTTTTTGTCTATCGTATTTTTATCA- T AGTTTTTACTCTTGTATTGGCTAAACCTAGTTTTGAAATTGTTTTTCATAAGCTGAAAGAGTCTATCAAAAACA- A CTTCTCACGAGATAGAAATAAAGTTTACGTATATTCCATTCTTCTCAAACCCCACTTATGAGATTATACTGAAA- T GTTACTATTATTATTATACTTTGTAACATGCTAAAAAAACTAGTAATAATTACACTTCTTGCCAAAGAGTAAAT- A AAGTATGATCCTTTAATAAGTTGAAAATCCCTCTAAATCAAATTATCACTTTTGTGCAACTTGTCTTCTTTTTT- T TCTTCTAGTATGTCTGATACACTGGAGAGATACCATAGATGCAGCTATGGTGACCTTGAAACTGGCCAGTCTTC- A AAGGATTCACAGGTTACTTCATCTTCCTCAGAATTACAATTTACTAATAAATTTAACTTATATACTCTGACACA- G TATCGATGCAATTTAAACCTTTTATAACAGATTATCTGTTTTTATTTTAATTTCTTCGTAAATAATTAATAAGT- C GATATTGATAACTAACGCCAAGCACCCTATCTTCATCTAACTAATTAGTGTTATTATGCAATAGAATAACTACC- A AGAGTATATGAAGCTGAAAGCAAGAGTTGAAGTGCTACAACAGTCACAAAGGTGATACATTATTTGTTTTAAAA- A CACTTTTACTTGTCTCATTTTGATTGGCTCATCTGAACACCTGAACCGGTCTAGAAGTATTTTGAACATGCATA- A TTGGACATGTTCAATCATGCGTTTGTTTGATCAGGTTCAGGATGTTTAGATGAGACCTCGTAAAATAAATTAAG- G GGAGGCTTTTTAATATGATATTTGTGTCTCAAATATATCACTTTTCTACCCTAATTCTTAATAACATTGTATTT- A CTTAATTATTCTTAATCTTTAAGGCATATACTTGGAGAGGACTTAGGACAATTAAACACAAAAGATTTGGAACA- G CTTGAGCGTCAACTGGATTCATCTTTGAGGCTAATAAGATCAAGAAGGGTATGTTCTATGCACCTTCAATTTAT- T TGTCAAATTTTAGGCTTTCAGATCATGTCTTAATCTTAATGTCCGATGACAGTTTCAGTGGCGGAATTAGAAAT- T TATGCAAGACAATTCAAGCAATATTATATATTATAGAATGTCAGACTTGAAATTTGAACTTGAGACATTGAACC- T CTTTACAAATACACTAATATCTAACCTCGTATCAACGGGGTTCAACAATTTATATATATATAAAAAACACTTAA- T TTTGCCCTATTTGGTGTAATATATAATTTTATCAAAGGTATGTTGGGAAAATGATAAAAATTACTTATGAATAA- T ATCCAAATGGAATAATATAATAACAATTACTTACTATTACTTGATAGTGCCACAAAACTACTAAACCTTAAAAT- A AGTTCTTTTATTTTACATAATTCATTATAATCTTTGGCATGAATTTACTCAAGCATTGCTTCAGAATGATCAAA- G CCTCCTTAATATTTTTGGGTACAGACATAAAGTCTAGACATGCAATCAAAGATATAGATGCACGAGATGACTAA- T CAAAGGAAACAATAGGAACGATCAAAAAAATTGAAATTGAAAATATATTTTTTTTAAACTAAAGGTAAGTCAAG- A TTACCAAGTAAGTGTATTATTGTAACTTTTGTATTATTTATCCTAAGTAAACATGTATCAAAAACATACACAAA- T TTACTTTCTCTTTTATTACTAACATCAACTTACATGCTAATTATAAATAATTAAAGGGTAAATAGTTGGTTGCA- T GATTTGGTAAAAGAAGTTGTTAACCTACTCTTTGATAACATATATGTTTTCAGACACAAAACATGCTTGATCAA- C TTTCTGATCTTCAACAAAAGGTATGTATTGTATAATATAATCCCTTAAGTTGACAATTAAATAGATTGTTCAAT- T GTTAATTTGACATTGTATGTGTTCTTTTTTCTTTTTTTCTACAGGAACAATCTCTTCTTGAAATCAACAGATCC- T TGAAAACAAAGGTACAAAGCACACATTTTGGACCTTTTATGAGTTTTTTAGGGCGTGTTTGATTTATTTATTTT- T TCTGAATTTTTTCATGTTTGGTTGATCTAAATTCTGGGAAAATACTTTTTTCTATGAAAGTAAGTTTTTTAAAA- A TGACTTAGCCAGTGGAAGTAGGGAAAACAAGTTGTGACGACATTCCACGTTGATTGTTTTCTCTCGATCTTCCT- A CACACCTTAAGTTCGCCACCACCTCTCGCAGTATTTGTTTAGATTATATAAAAATGTATCAAGAATGACACTTT- T TATTTGTGTACATAATAAAAGAAAATAAGTAAGAAACCGAACATTTTCCCATGGAAAATATTATTTTTCATACC- A AACACACCCTTAGTCTTTGTTTTAGGGTATATGACTAATTTGTTCTCCATTTCGGATATTTAGATTCGTATGGG- T TTTTCTTTGATGTCTAACTTATCGTACTTTTTACGCGATTTTATGAAATTCTTATAATAGTTGGAAGAAAACTC- T GTAGCACATTGGCATATCACTGGAGAGCAAAATGTACAATTCAGACAACAACCTGCTCAGTCAGAGGGGTTCTT- T CAGCCTTTACAATGCAATACTAATATAGTGCCAAACAGGTAACATATAATTTTATGTTTTCTTTTTTTCCTTTA- A ATAGCATATTTTTTGCAACATTTTAAATTGAACCGTTGAATTGAGTCGTTGAGAGGTGAATTCAGAATCTGAAG- T AACAGATACATTCAAATTAATTTCTTTGTGTATTTATCGAAGTGAGTCAAGTCGTAAGTCTAGAGGTGAATTTA- G AATCTAAAGTAATAGATACAGTCGAATCAATCTCTTTGTGTATTTATTGAAGTGAGTCGTTTTGTAAAGTTTGA- G ACGAATTCAAAACCTAAAGTAATACTAAATACATACATTCAAAATAATTTCTAAAGCGAGTTATGTTGGAAGTC- G AGAGACGAAAGTATATTATATATGGATCAATTCAAATTAATTTCTTAATGTATTTGATGAGCGTTGTTGTAGGG- G CGAATTCAGAATCTGAAGTTCATGTAAGTACAGGTACAATGTGGCTCCATTGGATAGTATAGAACCATCAACAC- A GAATGCTACTGGAATTTTACCAGGATGGATGCTTTGA Mutant Solyc04g005320 gene allele lin.sup.CR >allele-1 (SEQ ID NO: 4) ATGGGAAGAGGTAAGGTAGAATTGAAGAGAATAGAAAATAAGATAAACAGGCAAGTTACTTTTGCTAAGAGAAG- A AATGGATTACTCAAAAAAGCTTATGAGCTTTCTATTTTGTGTGAAGCTGAAGTTGCTCTTATCATTTTCTCTAA- T AGAGGCAAACTCTATGAATTTTGCAGTACCTCTAGGTAATATTTTTATGTTTATGTCGTTCCGTTTAAGCTTTA- C ATTTACGTTTTTATACGCAAAACTTTAAATTAGTTCTAAATGTATTAAAAAATTGAAATTTTGAGATTTAATTT- C AAAATCTATGGTTAAACGAATGTTTATATGCATTATGATTTTGTTATCTTCTTTTTTTTTAAAAAAAGAAATAA- A ATATATTGATGTTATAGATCTGAGTGAGAATAGAGTTTTTGGTACATTTATTAAGGGTGAATAATCAAATGTTT- C ATTTGATTAGATCTAGGTTTTCTTGAACATTAAAATTGTTAAAAAAATTAGTTCATTTTATGAGGTAAATTTTG- T TATGATTTGATGTTCCACCTCCATTTTTTCTTATTTTTATTATAAATAAATAAGTTTTAAAATATCCTTACTTT- T ATATGTTCTTTTAAGTACAGACACATGAATCAAAAAGAAGTTTTATAATATGAATTGAATTAAAGCTGGTTGAA- T TTCTATCTTCAGTTTTTGAAAACAACTAAAAACTTTGAAAAGGAATTTGATTTTATTATTTATGGCAACAAATA- A CACCTAACTACTTATCGAGTCGGAATTGACGATATGAATCCTTTAACTTTTCATTTAAGCTCAATTTATATAGA- A AATTCTGTATTGTGGATTGAAGTAATTTCTGGAGTTGATCAATTCTATTTAAAAAATTATTTAATTAATAATCA- T TATCCCAAAAAATTATATTGAAATTAAAAAATAATATTAATTTTTTTAAATAACAAACTTATTAATTGAGTGAC- C ATCTAAATCGTCTTTTTCTTAAAGTTAGGGTCTTGCCTTTCATCTAATTTTGATAGTAATGTTCTTGAACCGAC-
A AATTTTGTCATTTACTCTTATCTGTTATAATTTATGTGATTCGAGTTTTACGAATCAATTTTTGTTTATAATTT- C AATCATGTATAAGAAGTATTTTAAGTTATAATAATTAACAATTTTAAGAAAGCATAATCAAGATCAAATAACTT- A GTAGAAATAATATTGGTTTATGTAACCTCTATGCATTGACAATATAGTGTTTTTTTTATACTATCAAGTCATTT- A TTGGATAATTATAATTAAAGAATATTAACTAATGAGTAAATCAATAGTTTAATATTAATGAGTTATCATAGTAG- C GTATACTTATTACTCGATATTTGTAATCTAAACATTTTCAATATGCTTAAACTTGATTTTTTTATTTGGATCAA- G TATACAATTTTTTTGTTAATAATAAATGACATTGAAACTTATAACTAATTTTATTTAAACAATTTTCTTTCTTT- C TTTCCTCAAGGAGAGCATAGTTCTAATTATTATCAATATCATTATTATTATTATCTCTATGTTTATTTTATTAT- T ACTGTTGTTTCTTTTACTTGGATTGTCTGTACTATTTTTACTTCATGGACTTTAATTTTTTGTCTATCGTATTT- T TATCATAGTTTTTACTCTTGTATTGGCTAAACCTAGTTTTGAAATTGTTTTTCATAAGCTGAAAGAGTCTATCA- A AAACAACTTCTCACGAGATAGAAATAAAGTTTACGTATATTCCATTCTTCTCAAACCCCACTTATGAGATTATA- C TGAAATGTTACTATTATTATTATACTTTGTAACATGCTAAAAAAACTAGTAATAATTACACTTCTTGCCAAAGA- G TAAATAAAGTATGATCCTTTAATAAGTTGAAAATCCCTCTAAATCAAATTATCACTTTTGTGCAACTTGTCTTC- T TTTTTTTCTTCTAGTATGTCCCATAGATGCAGCTATGGTGACCTTGAAACTGGCCAGTCTTCAAAGGATTCACA- G GTTACTTCATCTTCCTCAGAATTACAATTTACTAATAAATTTAACTTATATACTCTGACACAGTATCGATGCAA- T TTAAACCTTTTATAACAGATTATCTGTTTTTATTTTAATTTCTTCGTAAATAATTAATAAGTCGATATTGATAA- C TAACGCCAAGCACCCTATCTTCATCTAACTAATTAGTGTTATTATGCAATAGAATAACTACCAAGAGTATATGA- A GCTGAAAGCAAGAGTTGAAGTGCTACAACAGTCACAAAGGTGATACATTATTTGTTTTAAAAACACTTTTACTT- G TCTCATTTTGATTGGCTCATCTGAACACCTGAACCGGTCTAGAAGTATTTTGAACATGCATAATTGGACATGTT- C AATCATGCGTTTGTTTGATCAGGTTCAGGATGTTTAGATGAGACCTCGTAAAATAAATTAAGGGGAGGCTTTTT- A ATATGATATTTGTGTCTCAAATATATCACTTTTCTACCCTAATTCTTAATAACATTGTATTTACTTAATTATTC- T TAATCTTTAAGGCATATACTTGGAGAGGACTTAGGACAATTAAACACAAAAGATTTGGAACAGCTTGAGCAACT- G GATTCATCTTTGAGGCTAATAAGATCAAGAAGGGTATGTTCTATGCACCTTCAATTTATTTGTCAAATTTTAGG- C TTTCAGATCATGTCTTAATCTTAATGTCCGATGACAGTTTCAGTGGCGGAATTAGAAATTTATGCAAGACAATT- C AAGCAATATTATATATTATAGAATGTCAGACTTGAAATTTGAACTTGAGACATTGAACCTCTTTACAAATACAC- T AATATCTAACCTCGTATCAACGGGGTTCAACAATTTATATATATATAAAAAACACTTAATTTTGCCCTATTTGG- T GTAATATATAATTTTATCAAAGGTATGTTGGGAAAATGATAAAAATTACTTATGAATAATATCCAAATGGAATA- A TATAATAACAATTACTTACTATTACTTGATAGTGCCACAAAACTACTAAACCTTAAAATAAGTTCTTTTATTTT- A CATAATTCATTATAATCTTTGGCATGAATTTACTCAAGCATTGCTTCAGAATGATCAAAGCCTCCTTAATATTT- T TGGGTACAGACATAAAGTCTAGACATGCAATCAAAGATATAGATGCACGAGATGACTAATCAAAGGAAACAATA- G GAACGATCAAAAAAATTGAAATTGAAAATATATTTTTTTTAAACTAAAGGTAAGTCAAGATTACCAAGTAAGTG- T ATTATTGTAACTTTTGTATTATTTATCCTAAGTAAACATGTATCAAAAACATACACAAATTTACTTTCTCTTTT- A TTACTAACATCAACTTACATGCTAATTATAAATAATTAAAGGGTAAATAGTTGGTTGCATGATTTGGTAAAAGA- A GTTGTTAACCTACTCTTTGATAACATATATGTTTTCAGACACAAAACATGCTTGATCAACTTTCTGATCTTCAA- C AAAAGGTATGTATTGTATAATATAATCCCTTAAGTTGACAATTAAATAGATTGTTCAATTGTTAATTTGACATT- G TATGTGTTCTTTTTTCTTTTTTTCTACAGGAACAATCTCTTCTTGAAATCAACAGATCCTTGAAAACAAAGGTA- C AAAGCACACATTTTGGACCTTTTATGAGTTTTTTAGGGCGTGTTTGATTTATTTATTTTTTCTGAATTTTTTCA- T GTTTGGTTGATCTAAATTCTGGGAAAATACTTTTTTCTATGAAAGTAAGTTTTTTAAAAATGACTTAGCCAGTG- G AAGTAGGGAAAACAAGTTGTGACGACATTCCACGTTGATTGTTTTCTCTCGATCTTCCTACACACCTTAAGTTC- G CCACCACCTCTCGCAGTATTTGTTTAGATTATATAAAAATGTATCAAGAATGACACTTTTTATTTGTGTACATA- A TAAAAGAAAATAAGTAAGAAACCGAACATTTTCCCATGGAAAATATTATTTTTCATACCAAACACACCCTTAGT- C TTTGTTTTAGGGTATATGACTAATTTGTTCTCCATTTCGGATATTTAGATTCGTATGGGTTTTTCTTTGATGTC- T AACTTATCGTACTTTTTACGCGATTTTATGAAATTCTTATAATAGTTGGAAGAAAACTCTGTAGCACATTGGCA- T ATCACTGGAGAGCAAAATGTACAATTCAGACAACAACCTGCTCAGTCAGAGGGGTTCTTTCAGCCTTTACAATG- C AATACTAATATAGTGCCAAACAGGTAACATATAATTTTATGTTTTCTTTTTTTCCTTTAAATAGCATATTTTTT- G CAACATTTTAAATTGAACCGTTGAATTGAGTCGTTGAGAGGTGAATTCAGAATCTGAAGTAACAGATACATTCA- A ATTAATTTCTTTGTGTATTTATCGAAGTGAGTCAAGTCGTAAGTCTAGAGGTGAATTTAGAATCTAAAGTAATA- G ATACAGTCGAATCAATCTCTTTGTGTATTTATTGAAGTGAGTCGTTTTGTAAAGTTTGAGACGAATTCAAAACC- T AAAGTAATACTAAATACATACATTCAAAATAATTTCTAAAGCGAGTTATGTTGGAAGTCGAGAGACGAAAGTAT- A TTATATATGGATCAATTCAAATTAATTTCTTAATGTATTTGATGAGCGTTGTTGTAGGGGCGAATTCAGAATCT- G AAGTTCATGTAAGTACAGGTACAATGTGGCTCCATTGGATAGTATAGAACCATCAACACAGAATGCTACTGGAA- T TTTACCAGGATGGATGCTTTGA >allele-2 (SEQ ID NO: 5) ATGGGAAGAGGTAAGGTAGAATTGAAGAGAATAGAAAATAAGATAAACAGGCAAGTTACTTTTGCTAAGAGAAG- A AATGGATTACTCAAAAAAGCTTATGAGCTTTCTATTTTGTGTGAAGCTGAAGTTGCTCTTATCATTTTCTCTAA- T AGAGGCAAACTCTATGAATTTTGCAGTACCTCTAGGTAATATTTTTATGTTTATGTCGTTCCGTTTAAGCTTTA- C ATTTACGTTTTTATACGCAAAACTTTAAATTAGTTCTAAATGTATTAAAAAATTGAAATTTTGAGATTTAATTT- C AAAATCTATGGTTAAACGAATGTTTATATGCATTATGATTTTGTTATCTTCTTTTTTTTTAAAAAAAGAAATAA- A ATATATTGATGTTATAGATCTGAGTGAGAATAGAGTTTTTGGTACATTTATTAAGGGTGAATAATCAAATGTTT- C ATTTGATTAGATCTAGGTTTTCTTGAACATTAAAATTGTTAAAAAAATTAGTTCATTTTATGAGGTAAATTTTG- T TATGATTTGATGTTCCACCTCCATTTTTTCTTATTTTTATTATAAATAAATAAGTTTTAAAATATCCTTACTTT- T ATATGTTCTTTTAAGTACAGACACATGAATCAAAAAGAAGTTTTATAATATGAATTGAATTAAAGCTGGTTGAA- T TTCTATCTTCAGTTTTTGAAAACAACTAAAAACTTTGAAAAGGAATTTGATTTTATTATTTATGGCAACAAATA- A CACCTAACTACTTATCGAGTCGGAATTGACGATATGAATCCTTTAACTTTTCATTTAAGCTCAATTTATATAGA- A AATTCTGTATTGTGGATTGAAGTAATTTCTGGAGTTGATCAATTCTATTTAAAAAATTATTTAATTAATAATCA- T TATCCCAAAAAATTATATTGAAATTAAAAAATAATATTAATTTTTTTAAATAACAAACTTATTAATTGAGTGAC- C ATCTAAATCGTCTTTTTCTTAAAGTTAGGGTCTTGCCTTTCATCTAATTTTGATAGTAATGTTCTTGAACCGAC- A AATTTTGTCATTTACTCTTATCTGTTATAATTTATGTGATTCGAGTTTTACGAATCAATTTTTGTTTATAATTT- C AATCATGTATAAGAAGTATTTTAAGTTATAATAATTAACAATTTTAAGAAAGCATAATCAAGATCAAATAACTT- A GTAGAAATAATATTGGTTTATGTAACCTCTATGCATTGACAATATAGTGTTTTTTTTATACTATCAAGTCATTT- A TTGGATAATTATAATTAAAGAATATTAACTAATGAGTAAATCAATAGTTTAATATTAATGAGTTATCATAGTAG- C GTATACTTATTACTCGATATTTGTAATCTAAACATTTTCAATATGCTTAAACTTGATTTTTTTATTTGGATCAA- G TATACAATTTTTTTGTTAATAATAAATGACATTGAAACTTATAACTAATTTTATTTAAACAATTTTCTTTCTTT- C TTTCCTCAAGGAGAGCATAGTTCTAATTATTATCAATATCATTATTATTATTATCTCTATGTTTATTTTATTAT- T ACTGTTGTTTCTTTTACTTGGATTGTCTGTACTATTTTTACTTCATGGACTTTAATTTTTTGTCTATCGTATTT- T TATCATAGTTTTTACTCTTGTATTGGCTAAACCTAGTTTTGAAATTGTTTTTCATAAGCTGAAAGAGTCTATCA- A AAACAACTTCTCACGAGATAGAAATAAAGTTTACGTATATTCCATTCTTCTCAAACCCCACTTATGAGATTATA- C TGAAATGTTACTATTATTATTATACTTTGTAACATGCTAAAAAAACTAGTAATAATTACACTTCTTGCCAAAGA- G TAAATAAAGTATGATCCTTTAATAAGTTGAAAATCCCTCTAAATCAAATTATCACTTTTGTGCAACTTGTCTTC- T TTTTTTTCTTCTAGTATGTCTGATACACTGGAGAGATACCATAGATGCAGCTATGGTGACCTTGAAACTGGCCA- G TCTTCAAAGGATTCACAGGTTACTTCATCTTCCTCAGAATTACAATTTACTAATAAATTTAACTTATATACTCT- G ACACAGTATCGATGCAATTTAAACCTTTTATAACAGATTATCTGTTTTTATTTTAATTTCTTCGTAAATAATTA- A TAAGTCGATATTGATAACTAACGCCAAGCACCCTATCTTCATCTAACTAATTAGTGTTATTATGCAATAGAATA- A CTACCAAGAGTATATGAAGCTGAAAGCAAGAGTTGAAGTGCTACAACAGTCACAAAGGTGATACATTATTTGTT- T TAAAAACACTTTTACTTGTCTCATTTTGATTGGCTCATCTGAACACCTGAACCGGTCTAGAAGTATTTTGAACA- T
GCATAATTGGACATGTTCAATCATGCGTTTGTTTGATCAGGTTCAGGATGTTTAGATGAGACCTCGTAAAATAA- A TTAAGGGGAGGCTTTTTAATATGATATTTGTGTCTCAAATATATCACTTTTCTACCCTAATTCTTAATAACATT- G TATTTACTTAATTATTCTTAATCTTTAAGGCATATACTTGGAGAGGACTTAGGACAATTAAACACAAAAGATTT- G GAAAACTGGATTCATCTTTGAGGCTAATAAGATCAAGAAGGGTATGTTCTATGCACCTTCAATTTATTTGTCAA- A TTTTAGGCTTTCAGATCATGTCTTAATCTTAATGTCCGATGACAGTTTCAGTGGCGGAATTAGAAATTTATGCA- A GACAATTCAAGCAATATTATATATTATAGAATGTCAGACTTGAAATTTGAACTTGAGACATTGAACCTCTTTAC- A AATACACTAATATCTAACCTCGTATCAACGGGGTTCAACAATTTATATATATATAAAAAACACTTAATTTTGCC- C TATTTGGTGTAATATATAATTTTATCAAAGGTATGTTGGGAAAATGATAAAAATTACTTATGAATAATATCCAA- A TGGAATAATATAATAACAATTACTTACTATTACTTGATAGTGCCACAAAACTACTAAACCTTAAAATAAGTTCT- T TTATTTTACATAATTCATTATAATCTTTGGCATGAATTTACTCAAGCATTGCTTCAGAATGATCAAAGCCTCCT- T AATATTTTTGGGTACAGACATAAAGTCTAGACATGCAATCAAAGATATAGATGCACGAGATGACTAATCAAAGG- A AACAATAGGAACGATCAAAAAAATTGAAATTGAAAATATATTTTTTTTAAACTAAAGGTAAGTCAAGATTACCA- A GTAAGTGTATTATTGTAACTTTTGTATTATTTATCCTAAGTAAACATGTATCAAAAACATACACAAATTTACTT- T CTCTTTTATTACTAACATCAACTTACATGCTAATTATAAATAATTAAAGGGTAAATAGTTGGTTGCATGATTTG- G TAAAAGAAGTTGTTAACCTACTCTTTGATAACATATATGTTTTCAGACACAAAACATGCTTGATCAACTTTCTG- A TCTTCAACAAAAGGTATGTATTGTATAATATAATCCCTTAAGTTGACAATTAAATAGATTGTTCAATTGTTAAT- T TGACATTGTATGTGTTCTTTTTTCTTTTTTTCTACAGGAACAATCTCTTCTTGAAATCAACAGATCCTTGAAAA- C AAAGGTACAAAGCACACATTTTGGACCTTTTATGAGTTTTTTAGGGCGTGTTTGATTTATTTATTTTTTCTGAA- T TTTTTCATGTTTGGTTGATCTAAATTCTGGGAAAATACTTTTTTCTATGAAAGTAAGTTTTTTAAAAATGACTT- A GCCAGTGGAAGTAGGGAAAACAAGTTGTGACGACATTCCACGTTGATTGTTTTCTCTCGATCTTCCTACACACC- T TAAGTTCGCCACCACCTCTCGCAGTATTTGTTTAGATTATATAAAAATGTATCAAGAATGACACTTTTTATTTG- T GTACATAATAAAAGAAAATAAGTAAGAAACCGAACATTTTCCCATGGAAAATATTATTTTTCATACCAAACACA- C CCTTAGTCTTTGTTTTAGGGTATATGACTAATTTGTTCTCCATTTCGGATATTTAGATTCGTATGGGTTTTTCT- T TGATGTCTAACTTATCGTACTTTTTACGCGATTTTATGAAATTCTTATAATAGTTGGAAGAAAACTCTGTAGCA- C ATTGGCATATCACTGGAGAGCAAAATGTACAATTCAGACAACAACCTGCTCAGTCAGAGGGGTTCTTTCAGCCT- T TACAATGCAATACTAATATAGTGCCAAACAGGTAACATATAATTTTATGTTTTCTTTTTTTCCTTTAAATAGCA- T ATTTTTTGCAACATTTTAAATTGAACCGTTGAATTGAGTCGTTGAGAGGTGAATTCAGAATCTGAAGTAACAGA- T ACATTCAAATTAATTTCTTTGTGTATTTATCGAAGTGAGTCAAGTCGTAAGTCTAGAGGTGAATTTAGAATCTA- A AGTAATAGATACAGTCGAATCAATCTCTTTGTGTATTTATTGAAGTGAGTCGTTTTGTAAAGTTTGAGACGAAT- T CAAAACCTAAAGTAATACTAAATACATACATTCAAAATAATTTCTAAAGCGAGTTATGTTGGAAGTCGAGAGAC- G AAAGTATATTATATATGGATCAATTCAAATTAATTTCTTAATGTATTTGATGAGCGTTGTTGTAGGGGCGAATT- C AGAATCTGAAGTTCATGTAAGTACAGGTACAATGTGGCTCCATTGGATAGTATAGAACCATCAACACAGAATGC- T ACTGGAATTTTACCAGGATGGATGCTTTGA Wild-type Solyc12g038510 gene (SEQ ID NO: 6) ATGGGAAGAGGAAGAGTAGAACTAAAGAGAATAGAGAACAAAATAAACAGGCAAGTTACTTTTGCTAAGAGAAG- A AATGGACTTCTTAAGAAAGCTTATGAGTTATCTATACTTTGTGATGCTGAAGTTGCTCTCATCATCTTCTCTAG- C CGCGGAAAACTCTATGAGTTTTCAAGTGCTTCCAGGTATATATATATATACATATGTTTTTCTTCTTTTTGTGT- G TGCGTATGTGTTTACTTACTTTCATTAATTAACTCAACCATATATATACATCTCTCACCTCAATTATATATATG- T TTGAGATCTGAATGTCTACGGACTCCATTTAGGTACATATCTTTGTTTAGATCATAAATCATCTATCTTCATTC- C TAAGATCTACTAATATATATGTATAAGAAGATCCATCCATCTATTAGGTTTTTCAACAACATATACAGTGAAAT- C TTATATGTGGGCCCACGTATAGCCATATGAGAAAATAGTGTGCACGTAAACATTATCATTACTTAATTATAGGA- A TATACATCCATTAGGTTTATCAACAACAATAAAATCCTCTAAATGGAGTCTAGTCATAGGTCTAGCCGTTTGAA- A ATGTAAAATATATGCCGATCTTATCACTATGTCATAATAATAGATATGTTGTTATTGAAAGATTCTCAATCTTT- T TTTTTCTTCAAGGTAGAGATTCTTAAGTGGATTCATGTTTTTTTTATCAAAAAAGAAAAAAACAAAAGTGTCCA- T TTGTTCATCTAATGGGTTTTCCATGTTACCAATTCACTACACTGTTGAGATTTGATTATCAGATGTGTCAAGTT- T CGTTTGGTTCCCTAGAAGGGAGAAAAGGCTGCTTATGCAGGCAGGGTATTAAAGATGATATTAATATCTGCAGT- A ATCAGTAACAGAATATATAAACTTAATAATAAACTTGAAGGTACTTAATTATCCAGCAGATAATCTTCTGTCTC- A CCGTACACTTTTGTTATATCATAAGCATAAGAATTGTTTTATCAAATATTACCAAACAAAACTTAGTTTTGTTT- G GTAATATTTTATAAAATATGTTACCGAAAGTTACTTCCTATAACATATTTTATAAAGAAAAAAATTAAAAACTC- C ATATACCTAAGAAATGTAACCCCCCCTCCATAACAACAATTTAACAAAAATAAAAACCTACTTTTTTTGAATTT- G GTAAATTAGTTTTCTATCCTTTTTAGTAACTTCCTTTCTTATTTTCTTTTTATATTGGTAAAGTTTAATATTAC- A CATTATTTTAACATGTTATAATTTTTTGTGATGCTTAATTATTTGATACATGTAATAAACCATATATTAGAGCT- A TAAATCAATGACAATGCATGTAGATACAACTCATTTATGATATATTTTGTTTATATATATAACCAATTAGATAA- T TTGTCTGCGCTTTGTGCAGTCATAAATAATAATTGCATTGAACTTGCAAATATTTTTTTTTAATATCCATACAT- T AAAAAAAAAGAAAGAGGAAAATTGGTTCCTAAAATATTAGCAATATTCAAACATTTATTTGATTATTAATCATT- A TCACATAACTTAAGAACGTCTAATGAATGAATTATTCACGAAATAATAAATCATTGGTTCTAAAAAGGAATTTC- G TAATAAAATAAAAATTTAAGTTACCATATTCAAAAAAAGAAATTGTGCTTGAACATGAAAATAATTATAATTTT- T GAACTTGTATAATGAATTTCTTCAATTCATAAGTGGGAAATTTCATATTTATGTAATAATAGATAATATGTAAG- C TCTAATATAGTACTTTAGGTTATAGAATTTAATATAAAATATCAAAACATGAATTCTTGAAATTGAGTAGAGTA- A TTATTTTCTGCACAATGAATCGGAGACAATAACTTTGAAGAAATATAAACAATAGAGTTCAAAAGATGTAGTCA- A AAACAACAATTAATATCATAAGAATAAATTAATGAGTGTAAAAATGCATACCACGATATGTAAAAACAGAATGG- A ATATAATAAAAAAAATCGAGTTCACTGAATACACAATGTTCCTTTAAGAAAATTATTCTCCTCCAATACCAACG- A GATTACATCCTCTAAGGATGGAAATGATTTCATTCCCCAACTTATCCATATAAAAATAGTGGTGTTAGTATGTA- A CTCAATAGGAGTAAAATACACAAATATTTAATTTTGCGAAAGTAGAAGAAGAAGATCATATTTTTTTTTTAAAA- T GAGAGGATATATCACTATTTTTAAACAACAAAGGGTAGTGTTAACAAATTTTTATTGTGTCTTGTCTAAAAGGT- T ACAGCTATTTGAAAAAGTTACAACACTTCGAAAAGTGAACAACATTTCATAAAAGTCGTAACTTTTCATAAAGT- C GTAACTCTTCATAAATGTCGCAACTCTTCATAAAAATTACAACTATTGATAAAAGTCACCACTCTTGATAAAGA- T CACCACTCTTCATTGAAGTTGCAACTTTTCATAAAAATCACATCTTTTAATAAAAAAGAAAGACTAGTTTTTGG- A ATAAATTAATTTAAAAGAAAATTTTTGTTTGTGGTGGGGCGCCAAGTAGGCAGGCGTAGGGTTCTTTTTATATA- A ATATATATGATATATGATTCAATATTTGATATATATATATATAGAGAGAGAGATGACAATATAAGACAATTGCA- A AAAATAAAATAAAAAACTAATCGAGTAAGTAGGCAAAAAATTATTTATAAAATATATGTAGAATTTCTTTATCA- G ATATGACTGCCCAAATCTTATATTCAAACTAAAATGCAAGATCAATGGTGCTATATATAGGGTTTTACACAAAA- A TCAAGATCTAGTCTTGCAAATTTAAATAAAAAACAGTGGTTTACGATGAGATAATGTAGCTTTTGTAAACAATA- A AACTAGAAAAATAAATGCAAAGGCATTTTAAAGGATATAATAATGAAGATCAAAGGCAGAGAAGGGAAGAGGCA- G CAATATAATGAAGGTAACATCATGGTTCCATTCTAATATATATGCTATTTTTCTTTAGTAAATTTCAAAAATAA- T GATACATTTTCATATTTGATAAATATTTAATGATACTATCAACATTTTATCTATATTGAGTTCCATTTATTTGA- C CAAAACCTCACAAAGATGTGCTCTTCGATCTATTCAAAATTTATTCAATTTAAGGATAGCTTTAAAACATGACA- A AGTTTTCTCATATATTTCTTAAATTTTATATCCAGTCTAAATACGTATATAAACTAAAATGAAGAGAATAATAT- G AAGCTTTATTTGATGACATTGTTGAAATAACCAAAAGCTATAAGTGATACAATAGTAAATTTACCATTGGTCAA- T TCAGAATTATTTAAAAGCTAAAAAAGTCATATAAGTTGGGGTTGCTCAATGTATAGTTTTTGGCTTGTTTTAAG- C ATTTTAAAACTTTTTTTAAGCGCTTTTTAACATTGCTAAACACTCAAAAAATGATAAATAGTATTTAAATTTGA- T ATGATTAGCTTAAAAGTGAACTCATATACCTTCAAAGTAAAAATCCCCAATTCGAGCTTTCAAACCACTTGATT- T TGTGGATGAAATTATACTGAAGTTGAATATATCACTATTTATAGGGGTTAGTGAACTAATACCTTTGATTATTT- G GTAGAAATATGTATCTTAGATCACCCTAATGAGCTCCCACTTTTAAAATAGGAAAAACCTCATATGAAGTTCAT- C
ACTGTTCATTATATATCACTTTTATTCAAAAACGTTTACAAATGTTCATTGTGACTAAATACCCTTGAGTGTCG- A GTTTTCACACCAATAAGGCCTAATTAATAGGTAAACAAAACTATGTCAATCTTCAAAACGCAAATCTAATTATA- T TTTTAACAAGATTAGAGGTATATATACATATTCTCTTATGTTAACTCTTATTCATTATTGAACAAACTAAGTAA- G TGTACCCAAGGTCTCAAACAACAGTTGGTACATTCTTTGTATGTCTTCCTTTGTCTCTTAATAGTCGTCTCCTC- C TGTCGATGATTCCTCCAAATACATTAATCAAAGGAAAATCTTTCGCCCTCAACTTGCAAACTTGTCTATCTAAA- A TTGTTAACAAAGTTTCTTCATTAGAGAAACTATGATTTCTTGAATGTAGCAATTTGATGTGCCATGACTATCAT- C TTGATCAACATGCTTCTTAACCATCAAAAGATCCTAAACTAGATGCATGTCATGTTAGGAGACATATTAAGCTT- G TATATAACTACACCAACATGCTTTAGGATCTCATAAGATCCAAAATTTCTTATTTGGGAGATTTTCAATCCAAC- A ACCATCATAATGAGCAACGTGATGTTATAACATCTCTCTCACACTGCCAGAACAGTCTTATACCTTGTCGGAGT- G AAGGACATCCTTAACTAAGTAGATTCACTAAGCTATACTTAAAAAGCAATAAGGAATCATCTAAAATGTGTGAC- T CTTAACCCATATTGGCATACATGGTTTATGGGGGTTATTAATTGTCTGAACACTCCCCCATATAAATCAGTGAT- C AATATTAATCCCAATAATATACACTATTATGATTTGAGACTACACCCTGGAAGTGGCCGGCTCTCAAGAACCAT- T GCTGATCTCCAAGCCAAACCCTCATTCTGGTTGACTACAAGCTGAAGGCAAACTCAAGTATACAAAGCTTAAAA- C ATAATAAAAATAATATACTCAACTCGCCACAAAATAGGCATTTAAGTCTTTAAAACATTTTTAAAAATAAATGA- A ACAAACTTCTCAAACTGTAATGTATATCTATGAAGCCTCTAAATGAAAAAAATGAAGGCAGATGAGACATACGG- C ATCCTAACAACTGATATAACTAAGAGTACAAGTGGAGCCCTTCGGATGTAAGGAGGCTCATCAAAGCTAATGTG- A ACTCCATGTGGTATCAATGAAGCACCTATTGATGACCGTGAATACATGTATCTGCATCATGAAACGATGCAGGC- C AAAGGGCTTAGTACGTGAAATGTACGAGCATGTAAAGGGAATTCAAATACATAAACATAGGCTTGAACTTTGAT- A TAAAGGAAACATACTTACCTATTTTTAACTCAAGAATAAAAAACATAGTTCAACTCAATGAAAAGACACTCAAG- T CAGTGAAATAGGCCGCAACTCAATAATAAGATATTCGACTATGGGTAATCAACTCTGGGTACTCTATTCAATAT- A AAGTAAGAATACAAATGCATTATATGGAAAGACTTTAAAACGGTAGAAAACAACTCAATGTATTGAAAATTCAA- T AGTAAATTAGTTTGTATGTAAGGAACAATATAAACTTTGTTTGTATATGAAAATACAAAATAAACTTTGTGTAT- A TAAAAGTACAAAATATCTCTGTGAAAGTTTCTCTAACCAACAACCATCACTATGAGCTTTCTGATAATACCACG- T TTCGCCCATGATGTCAGAACTGTCCTATGATTTTCCAGTTCATAAGACCTACTCACTAAGTGGATCCACAAGTC- T ATGCTAAAAAATATTTAAGGAATCGTCTAAAAAGTATGACTCATTCTACCCACGTTGGCTACATGATTTATGGG- G GTCGTAAGTTATCTAAACTCTCCTCCATATCGATGCGTAATGCTACTCACAAATATACTAGCTCACATGTTTAA- A AATATAACTCGTTTTGTTTGAGATCATTACTCAAAATCCTTCTCTTAAAAGAGATGATACTCAAACTGCTCAAA- A CTCTTTTGGAAATCTCAAATTCGTCTCATCTTAAATGTAAAAATATTTACTCTTGGGAATACATAGTTATCATA- T ATCATTTTAAAGAAAATGAACTCAACTCTGTTCTTTCTCAACTCAAGTGCTCAGTCTTAAACCAAATTAAAAAA- A AGACTTCTCAAAATAAAGTTTATGTCGAATTATGGACGTGAACAATTCAATTCAAAGTTTTCGATAACCATAAC- T AAAACTAAATACTCGAGACTCAACATCTTAGAACTCAAGAACTTAAATGGTAATACTTCTTTCAAGAATGCTCG- A CTCAGAAGGTTAATGCAGAATAATGTGCATGAATTACTCAACTAAAGGACTCACTGATACTACTCAATCTCAAG- A TTGCTCGACTCGTAGGGTTAATGCAGAATTATGTGCATGAACTACTCAACTCAAAGACCTTCATAGGTAACATG- T AGTAGCCCCATGATTTGGAATATAATCCCAAAATGATTAGGAACTCAATACTCAGGACTTAGAACTTGAAGATA- A TACTACTTCTCTCAAAGATACCCAACTGACGGAGTTCATGCAGAATTTATGGGCATGAACTACTCGACTCAAGA- G TCTAAAACACAATATGACACTCATGTATATAACTCTTCTCATTCTAATACTTGTTTTCTCAAAACTCGGTTTAA- C TAAATAGTTGATCTCAAAGGATTCACAATTGAACTCAAAGACTTTCTTTGACTCCACTCTTAATTCTCTCTTAA- A TTTGTATTTGAATTATGAATTTAAGAGTTATGATTCATGATATGGGGAATCTCAATAACAATATAGAAATTTGA- T AATTAGGAATAGTACTTTTAAAAGAAAACATGAATTCAACTTAAAATCAACTTATCTAAAAAATATTCAAATAT- A GGGAAAGTATCCTAGACTACTGTGCTACTGATCTGAAAGTAGATGTAGGATGTGAGGATGAACTAGTCCAACAC- T ATGATAGCCTTACATACCTGGAATAACGAGGTTCTTGGAAAATCTTCACTTGAAGAAGAACTTGATTAGAAGCC- T TGAAACCTAGCTTGAAGGTAAACAATCAAGAAAACCTTTCTTAAGATTCTTGAATTAGTTTATGAAAATCTCTA- T GACCAAGCATTTTGATTTTCACTAGTGATTCATAATTGTATGGAGGAATTTGAATTGAAAAAGATGAAATGCTT- G GAGAAAAGCTATCTTTGAAGAAGCTTGAAAAAGATTGGAAAGTCCTGTACTTTGATTTTCCCTTAGGATTTTGT- C TTAGGGTTTGAGATAGAAAAGAATGATGGACTAAAAGATGAAAATCTAATTGTTTGGATCCTTTTTCAGCCAAG- A AATCCGTTTAGGGTTTTCTTGGAGACAAACAAAATAAAAAAGACCATTTTTAATATTTTTCCGTCGGCTAATTC- G TAATAACATTGTATCATGTTATTGAAAGAGTCATAACTTTTTACTCAAAAATTGGATTGATGCGAAATTAGTGG- T GTTGGAAAGTAGATTCAAGTACCTCTAATTGGATAGGTTATTCCCTACATAAGTCTTTATATTCTAAAAGATAT- G GTTGTTTGCACTTGACCTAAGTAGAATTTTACATGAAAACTTAATAGAGAAGGAAACTTCAAGAACTCATCAAG- A AATTTCAATTGCTCAATATTTATGGATAAATTTGTAGAAGAAACTCATGATTGACATGCGGGTGAATAAACCCA- A CACTATGGAAGCTTACATACCTCAAAGAACTAGGTTCTTGGCGAAATCTTGAATTTCTTCAACGAACGCTTGAA- A CTTTGAACTTTTTCTCTTCTTGAACTCTCAACTAAAACCCTAGGCGTATATTAGGATTATAAAAGTTAACATGA- T AGGATTAGACCTTTAAAAACTTTCTAAAATGAATTAAATCTGATTTAGCATGAAAAAGACCAAAATACCCCTTA- C TATTTTCGGATAACTTTTCTTAATTGGACTGCCTGACTTCAAAAAGGTATATCTCACTCATCCGACCTCAAAAT- T TAGCAAATTCAGTGGCGTTAGAAAGCTAATTTAAACACCTTTCATTTTCCATCTCATGGCACACATAACTCATT- C TTTAAAGAGAGCTATGATCGTTCAAATTAACTCAAATCTTAGAAGAATTTAGGAATGTCTTGAACGAGCTACAT- C TAGTGACCTTAACACTTTGGAAAATTTTAAATTTCTTAGTAAAAACTTACTCACTATGAAGGATGGTTCAAGTC- T TAGCTCAAAATTTTCCTAAGTTGCTATATATACTCATGCTCATATGTTTAAAACCAAAACCCTTCCTCGATTTG- A ATTAATTACCAAAAAGATTCTCTTAAAAAGATAATGCTCAAAACTCCCCCTAAACTCATTTGGAAATCTAGGTT- T CCCTTGTTTTAAATATAAAAACATTTACTCTTGGAAATATTTAGTTCTCAGATATTCACTTGAAAAAAATTAAA- C TCGACTCTCATCATCTTCATACTCAAGTGCTCAAGTCCTAAAACAATTTATAACTAATTGTATAAGACTTCTCA- A AATAGGGTTCATTCCGAATTATGGACGTGAACGACTCAATTCAAGGATTTCAATAACCATATATATAACTCAAT- A ATAGGAACTCAACAACTCCAGAACTCAATGATACTACTCATCTCAAGAATGCTCGACTCACAGGGTCTTTGCGA- A ATTATTGGGCATGAACAACTCAACTCAAAGACCTTCATTTATACCATATGGTAGTCCCATAATAGGAATATAAT- C CCAAAAAAATTAGGAACTCAATACTCAAAAACTTAGAACTCGAAGATATTACTCATCTCAAAGATATTCAATTT- A TGGAATTCATGCTGAATTATGAGCATGAACGACTTGACTCAAGGATCTCAATAATAATGTAGACTCATGAATAC- A CTCTTCTCATTCTCATACTCACATACTCGAGTATTAAAATAAATTATAAGTAATTGCAGAAGACTCCTTGAACA- G ACTCAAAAGGACTCCTTCGAATTTTACTCTTAATGCTACCTGAATTTTGTATTATAAATTTAAGGATCATGATT- A TGATATAAAGAATTTCTCAGCATATATGAAATGAACGAATTTGAGCATTGAACGTCTAACCTCATTTTTTAATT- A TTGTGATATGTAGAGTGGTGCAAAATCACAGATACCTCTCTTGATGCATTTCTATAGTTACGTTGATGTGAGAT- T ATATATAGTTCAGCAGCAGCATGTTGGGAAAATTACTAATAACTCTTCTTTTATATCAAATTGTTGAAGCATGA- T GACAACACTTGAAAAGTATCAACAATGCAGTTACGCATCTTTGGACCCGATGTTACCGGTTAGTGATACTCAGG- T ATTGTTTATCTACTTTATCATGTCGTAAGTATATTATTTGTAAAGATATATATCAAGATAGTTCGATTGCGTAC- A CTTACATTTTGATTATGTTTGGTGAATACTATTCTAATACCTTTTTTTTTCCTAAAGCCTAACAAATAAAGATA- A TTAAGATGGGAACGTAATTCAAGTACAACATGGTTCCATACGTGACATATTTACACATATAGTGGAACCAAAAG- A GCAATTTTTCCTAATATCATTTTCTAAATATCACGTGTGCCCGTGATTCTTTTTTATGGACATGAATTTTTTTT- T TAATATGAGTGGAAGTAAGGTTCGATCTTTCTATCTGCTTTGATATCATATTGAATCGTGTGATTGTCTCTTTA- A AAAATTAAGCAAGAGCATATTTTATTAATTAATTGTCTTTCTCGACGTTTTTCTCTTTCAACAGATGAACTACA- A TGAGTATGTGAGGCTAAAAGCTAGAGTTGAGCTCCTTCAACGTTCTCAAAGGTAAGATATTAGTGATGTAATTA- A ATGATTTTAGTTAGATTTACATAAGTTTTTAATAAGTGAAAATTAATAGACATATTCTTGGAGAGGATTTGGGC- A CACTAAACTCGAAAGAACTTGAGCAGCTTGAGCACCAATTGGATGCATCTTTGAAGAAAGTTAGATCAAAAAAG- G TATATCCAAATACTATAACTTAAATATATTGTAACGATTTAATTAATAGCATGTGTCACGTTCATCTATTCTTT- A GTCACAATATATAGGGGCATGTCCTTAACAACGTGCCATGCCTCGATAGTCATTTTTGTCTTTTTGTGCGTATG- A ATTTAACTTTGACACAAATTTTTGTAGTAATAATAACTCATGCTTTAGCATCTTAGGAAGCAGTCATATGAAAA- A
CAGAAGCATATATATATATTACATGAGTTAATTTAATTTAATATAAAATTTAATAAAATTGTGTCTCGCTATAA- A TAATTTTATTAAAAAATTATATAAATATATTATTTTTTTAACTGGCCGCAAAGTTATATAAATTGATAGAGAAA- G AGGTTTTGGTGTAAGGTTCATTTTCCAACAATTAGTTTTATAATTTGTAAGTGCACACTTTATCAGACTCAATC- T ATGCTGGATCAGCTGGCAGACCTTCAAGAAAAGGTACACTGCCTTAACATTACAAAATTAATTTATTTCATCAA- A AGCATATCATAAAATTCTGACAAATAAATATATTAGGAGCAAATGCTGGAAGAAGCAAATAAACAACTAAAAAA- C AAGGTACATATCTATATATGTGTGTTAATTAATTAAGTTGATTTTGTATTTTTGTTTAATGAATAATTGTTTGT- G ATCATCAGCTGGAAGAAAGTGCAGCTAGAATTCCACTTGGATTGTCATGGGGAAATAATGGAGGACAAACAATG- G AATACAATCGACTCCCTCCACAAACTACTGCACAACCTTTCTTTCAACCTCTCCGTTTGAATTCTTCATCGCCT- C AATTCGGGTAAGTATCTTATTTTATATGACTTAGTTTGACTTGACATAAAGTTTAATAAAGAAAGAAAGACTTT- T AAAACTTATAGTGTAAAATAAGTGAATAGATATATATGTGGTTGTACTAACACTACAACAAAAATAATTTTCAG- C GGCATTAAATATTGACATTAATAATGAGTGCTAAAGACTTTATCGGTATTAGTTAAGTGTCATTAGGATCAATG- T CGTTAAAGGCTTCACGGACATATACAAAGAGTGACAATTGCCGCTAATGATTATTTTTGTTGTAGTGAAAATGA- G TATTTTAAAGTTAAATTGTTACATAATATAGAAATATGTCAGAAACAGGACAAATATACCACCGAACTATCATA- T ATGTTATGGAGATATTCTCAGTCATACTTCTGCGACATTGGTACTCATGTCGTCCAAAAACTAGAACATATATA- T ACCCTTTATATATTAACGAAGATACAAGTGTCATAATCTTATGCACCGATTCGATATTTATTAAATATCGAATC- G ACGGATAAAATTATGTCACGTGTCCCTATTAAGTCTTCTATTAGAGTAAAAAGCATATATTCTCTAGTTTTTGA- A CGAAAAAAGGTATTAATGTCTCAAAAGTATAACGAAAAGCATTTGCATACAATTTATGATAATTTGGGGCATAT- T AATTTATCATTCCCCCTTTTTTTGGCACTGATTAAAAAGAAAAAGAAAGTTATAAAAATTGGGATAGAGGGAAT- A ATTGTTTCATAGGGAAAACTTAGAAGCTTCTCAGTATGTCAGTGAGAATGTGTTTCCTAATTAGTGAACTATGG- T TTGGTGAAAAATAAAGAGAAAAAAATCAGTACAAATTTTCCACTGATTAGCAATGAGAAAAATATTTGTTTCTA- G TAGTATGAGGAGAGGATAGTCCGCATAAATAATCCTTAAATTTGTGGATAAATAAACTATTTTCAATAGATTAT- C GTCTCAAAATAAAATAAAATGATTGCAAGAAAAGAATAATAGGTATGCTGGTAATATGTATAATACACTCAAAT- T TATTTGCTGTCCATGCAGATACAATCCAAATATGGGTGCAAATGATCATGAGGTTAATGCAGCAACAACTGCTC- A TAATATTAATGGATTTATTCCAGGGTGGATGCTCTAA Wild-type Solyc12g038510 coding sequence (SEQ ID NO: 7) ATGGGAAGAGGAAGAGTAGAACTAAAGAGAATAGAGAACAAAATAAACAGGCAAGTTACTTTTGCTAAGAGAAG- A AATGGACTTCTTAAGAAAGCTTATGAGTTATCTATACTTTGTGATGCTGAAGTTGCTCTCATCATCTTCTCTAG- C CGCGGAAAACTCTATGAGTTTTCAAGTGCTTCCAGCATGATGACAACACTTGAAAAGTATCAACAATGCAGTTA- C GCATCTTTGGACCCGATGTTACCGGTTAGTGATACTCAGATGAACTACAATGAGTATGTGAGGCTAAAAGCTAG- A GTTGAGCTCCTTCAACGTTCTCAAAGACATATTCTTGGAGAGGATTTGGGCACACTAAACTCGAAAGAACTTGA- G CAGCTTGAGCACCAATTGGATGCATCTTTGAAGAAAGTTAGATCAAAAAAGACTCAATCTATGCTGGATCAGCT- G GCAGACCTTCAAGAAAAGGAGCAAATGCTGGAAGAAGCAAATAAACAACTAAAAAACAAGCTGGAAGAAAGTGC- A GCTAGAATTCCACTTGGATTGTCATGGGGAAATAATGGAGGACAAACAATGGAATACAATCGACTCCCTCCACA- A ACTACTGCACAACCTTTCTTTCAACCTCTCCGTTTGAATTCTTCATCGCCTCAATTCGGATACAATCCAAATAT- G GGTGCAAATGATCATGAGGTTAATGCAGCAACAACTGCTCATAATATTAATGGATTTATTCCAGGGTGGATGCT- C TAA Mutant Solyc12g038510 gene allele j2.sup.TE (SEQ ID NO: 8) ATGGGAAGAGGAAGAGTAGAACTAAAGAGAATAGAGAACAAAATAAACAGGCAAGTTACTTTTGCTAAGAGAAG- A AATGGACTTCTTAAGAAAGCTTATGAGTTATCTATACTTTGTGATGCTGAAGTTGCTCTCATCATCTTCTCTAG- C CGCGGAAAACTCTATGAGTTTTCAAGTGCTTCCAGGTATATATATATATACATATG ATA TGTTTTTCTTCTTTTTGTGTGTGCGTATGTGTTTACTTACTTTCATTAATTAACTCAACCATATATATACATCT- C TCACCTCAATTATATATATGTTTGAGATCTGAATGTCTACGGACTCCATTTAGGTACATATCTTTGTTTAGATC- A TAAATCATCTATCTTCATTCCTAAGATCTACTAATATATATGTATAAGAAGATCCATCCATCTATTAGGTTTTT- C AACAACATATACAGTGAAATCTTATATGTGGGCCCACGTATAGCCATATGAGAAAATAGTGTGCACGTAAACAT- T ATCATTACTTAATTATAGGAATATACATCCATTAGGTTTATCAACAACAATAAAATCCTCTAAATGGAGTCTAG- T CATAGGTCTAGCCGTTTGAAAATGTAAAATATATGCCGATCTTATCACTATGTCATAATAATAGATATGTTGTT- A TTGAAAGATTCTCAATCTTTTTTTTTCTTCAAGGTAGAGATTCTTAAGTGGATTCATGTTTTTTTTATCAAAAA- A GAAAAAAACAAAAGTGTCCATTTGTTCATCTAATGGGTTTTCCATGTTACCAATTCACTACACTGTTGAGATTT- G ATTATCAGATGTGTCAAGTTTCGTTTGGTTCCCTAGAAGGGAGAAAAGGCTGCTTATGCAGGCAGGGTATTAAA- G ATGATATTAATATCTGCAGTAATCAGTAACAGAATATATAAACTTAATAATAAACTTGAAGGTACTTARTTATC- C AGCAGATAATCTTCTGTCTCACCGTACACTTTTGTTATATCATAAGCATAAGAATTGTTTTATCAAATATTACC- A AACAAAACTTAGTTTTGTTTGGTAATATTTTATAAAATATGTTACCGAAAGTTACTTCCTATAACATATTTTAT- A AAGAAAAAAATTAAAAACTCCATATACCTAAGAAATGTAACCCCCCCTCCATAACAACAATTTAACAAAAATAA- A AACCTACTTTTTTTGAATTTGGTAAATTAGTTTTCTATCCTTTTTAGTAACTTCCTTTCTTATTTTCTTTTTAT- A TTGGTAAAGTTTAATATTACACATTATTTTAACATGTTATAATTTTTTGTGATGCTTAATTATTTGATACATGT- A ATAAACCATATATTAGAGCTATAAATCAATGACAATGCATGTAGATACAACTCATTTATGATATATTTTGTTTA- T ATATATAACCAATTAGATAATTTGTCTGCGCTTTGTGCAGTCATAAATAATAATTGCATTGAACTTGCAAATAT- T TTTTTTTAATATCCATACATTAAAAAAAAAGAAAGAGGAAAATTGGTTCCTAAAATATTAGCAATATTCAAACA- T TTATTTGATTATTAATCATTATCACATAACTTAAGAACGTCTAATGAATGAATTATTCACGAAATAATAAATCA- T TGGTTCTAAAAAGGAATTTCGTAATAAAATAAAAATTTAAGTTACCATATTCAAAAAAAGAAATTGTGCTTGAA- C ATGAAAATAATTATAATTTTTGAACTTGTATAATGAATTTCTTCAATTCATAAGTGGGAAATTTCATATTTATG- T AATAATAGATAATATGTAAGCTCTAATATAGTACTTTAGGTTATAGAATTTAATATAAAATATCAAAACATGAA- T TCTTGAAATTGAGTAGAGTAATTATTTTCTGCACAATGAATCGGAGACAATAACTTTGAAGAAATATAAACAAT- A GAGTTCAAAAGATGTAGTCAAAAACAACAATTAATATCATAAGAATAAATTAATGAGTGTAAAAATGCATACCA- C GATATGTAAAAACAGAATGGAATATAATAAAAAAAATCGAGTTCACTGAATACACAATGTTCCTTTAAGAAAAT- T ATTCTCCTCCAATACCAACGAGATTACATCCTCTAAGGATGGAAATGATTTCATTCCCCAACTTATCCATATAA- A AATAGTGGTGTTAGTATGTAACTCAATAGGAGTAAAATACACAAATATTTAATTTTGCGAAAGTAGAAGAAGAA- G ATCATATTTTTTTTTTAAAATGAGAGGATATATCACTATTTTTAAACAACAAAGGGTAGTGTTAACAAATTTTT- A TTGTGTCTTGTCTAAAAGGTTACAGCTATTTGAAAAAGTTACAACACTTCGAAAAGTGAACAACATTTCATAAA- A GTCGTAACTTTTCATAAAGTCGTAACTCTTCATAAATGTCGCAACTCTTCATAAAAATTACAACTATTGATAAA- A GTCACCACTCTTGATAAAGATCACCACTCTTCATTGAAGTTGCAACTTTTCATAAAAATCACATCTTTTAATAA- A AAAGAAAGACTAGTTTTTGGAATAAATTAATTTAAAAGAAAATTTTTGTTTGTGGTGGGGCGCCAAGTAGGCAG- G CGTAGGGTTCTTTTTATATAAATATATATGATATATGATTCAATATTTGATATATATATATATAGAGAGAGAGA- T GACAATATAAGACAATTGCAAAAAATAAAATAAAAAACTAATCGAGTAAGTAGGCAAAAAATTATTTATAAAAT- A TATGTAGAATTTCTTTATCAGATATGACTGCCCAAATCTTATATTCAAACTAAAATGCAAGATCAATGGTGCTA- T ATATAGGGTTTTACACAAAAATCAAGATCTAGTCTTGCAAATTTAAATAAAAAACAGTGGTTTACGATGAGATA- A TGTAGCTTTTGTAAACAATAAAACTAGAAAAATAAATGCAAAGGCATTTTAAAGGATATAATAATGAAGATCAA- A GGCAGAGAAGGGAAGAGGCAGCAATATAATGAAGGTAACATCATGGTTCCATTCTAATATATATGCTATTTTTC- T TTAGTAAATTTCAAAAATAATGATACATTTTCATATTTGATAAATATTTAATGATACTATCAACATTTTATCTA- T
ATTGAGTTCCATTTATTTGACCAAAACCTCACAAAGATGTGCTCTTCGATCTATTCAAAATTTATTCAATTTAA- G GATAGCTTTAAAACATGACAAAGTTTTCTCATATATTTCTTAAATTTTATATCCAGTCTAAATACGTATATAAA- C TAAAATGAAGAGAATAATATGAAGCTTTATTTGATGACATTGTTGAAATAACCAAAAGCTATAAGTGATACAAT- A GTAAATTTACCATTGGTCAATTCAGAATTATTTAAAAGCTAAAAAAGTCATATAAGTTGGGGTTGCTCAATGTA- T AGTTTTTGGCTTGTTTTAAGCATTTTAAAACTTTTTTTAAGCGCTTTTTAACATTGCTAAACACTCAAAAAATG- A TAAATAGTATTTAAATTTGATATGATTAGCTTAAAAGTGAACTCATATACCTTCAAAGTAAAAATCCCCAATTC- G AGCTTTCAAACCACTTGATTTTGTGGATGAAATTATACTGAAGTTGAATATATCACTATTTATAGGGGTTAGTG- A ACTAATACCTTTGATTATTTGGTAGAAATATGTATCTTAGATCACCCTAATGAGCTCCCACTTTTAAAATAGGA- A AAACCTCATATGAAGTTCATCACTGTTCATTATATATCACTTTTATTCAAAAACGTTTACAAATGTTCATTGTG- A CTAAATACCCTTGAGTGTCGAGTTTTCACACCAATAAGGCCTAATTAATAGGTAAACAAAACTATGTCAATCTT- C AAAACGCAAATCTAATTATATTTTTAACAAGATTAGAGGTATATATACATATTCTCTTATGTTAACTCTTATTC- A TTATTGAACAAACTAAGTAAGTGTACCCAAGGTCTCAAACAACAGTTGGTACATTCTTTGTATGTCTTCCTTTG- T CTCTTAATAGTCGTCTCCTCCTGTCGATGATTCCTCCAAATACATTAATCAAAGGAAAATCTTTCGCCCTCAAC- T TGCAAACTTGTCTATCTAAAATTGTTAACAAAGTTTCTTCATTAGAGAAACTATGATTTCTTGAATGTAGCAAT- T TGATGTGCCATGACTATCATCTTGATCAACATGCTTCTTAACCATCAAAAGATCCTAAACTAGATGCATGTCAT- G TTAGGAGACATATTAAGCTTGTATATAACTACACCAACATGCTTTAGGATCTCATAAGATCCAAAATTTCTTAT- T TGGGAGATTTTCAATCCAACAACCATCATAATGAGCAACGTGATGTTATAACATCTCTCTCACACTGCCAGAAC- A GTCTTATACCTTGTCGGAGTGAAGGACATCCTTAACTAAGTAGATTCACTAAGCTATACTTAAAAAGCAATAAG- G AATCATCTAAAATGTGTGACTCTTAACCCATATTGGCATACATGGTTTATGGGGGTTATTAATTGTCTGAACAC- T CCCCCATATAAATCAGTGATCAATATTAATCCCAATAATATACACTATTATGATTTGAGACTACACCCTGGAAG- T GGCCGGCTCTCAAGAACCATTGCTGATCTCCAAGCCAAACCCTCATTCTGGTTGACTACAAGCTGAAGGCAAAC- T CAAGTATACAAAGCTTAAAACATAATAAAAATAATATACTCAACTCGCCACAAAATAGGCATTTAAGTCTTTAA- A ACATTTTTAAAAATAAATGAAACAAACTTCTCAAACTGTAATGTATATCTATGAAGCCTCTAAATGAAAAAAAT- G AAGGCAGATGAGACATACGGCATCCTAACAACTGATATAACTAAGAGTACAAGTGGAGCCCTTCGGATGTAAGG- A GGCTCATCAAAGCTAATGTGAACTCCATGTGGTATCAATGAAGCACCTATTGATGACCGTGAATACATGTATCT- G CATCATGAAACGATGCAGGCCAAAGGGCTTAGTACGTGAAATGTACGAGCATGTAAAGGGAATTCAAATACATA- A ACATAGGCTTGAACTTTGATATAAAGGAAACATACTTACCTATTTTTAACTCAAGAATAAAAAACATAGTTCAA- C TCAATGAAAAGACACTCAAGTCAGTGAAATAGGCCGCAACTCAATAATAAGATATTCGACTATGGGTAATCAAC- T CTGGGTACTCTATTCAATATAAAGTAAGAATACAAATGCATTATATGGAAAGACTTTAAAACGGTAGAAAACAA- C TCAATGTATTGAAAATTCAATAGTAAATTAGTTTGTATGTAAGGAACAATATAAACTTTGTTTGTATATGAAAA- T ACAAAATAAACTTTGTGTATATAAAAGTACAAAATATCTCTGTGAAAGTTTCTCTAACCAACAACCATCACTAT- G AGCTTTCTGATAATACCACGTTTCGCCCATGATGTCAGAACTGTCCTATGATTTTCCAGTTCATAAGACCTACT- C ACTAAGTGGATCCACAAGTCTATGCTAAAAAATATTTAAGGAATCGTCTAAAAAGTATGACTCATTCTACCCAC- G TTGGCTACATGATTTATGGGGGTCGTAAGTTATCTAAACTCTCCTCCATATCGATGCGTAATGCTACTCACAAA- T ATACTAGCTCACATGTTTAAAAATATAACTCGTTTTGTTTGAGATCATTACTCAAAATCCTTCTCTTAAAAGAG- A TGATACTCAAACTGCTCAAAACTCTTTTGGAAATCTCAAATTCGTCTCATCTTAAATGTAAAAATATTTACTCT- T GGGAATACATAGTTATCATATATCATTTTAAAGAAAATGAACTCAACTCTGTTCTTTCTCAACTCAAGTGCTCA- G TCTTAAACCAAATTAAAAAAAAGACTTCTCAAAATAAAGTTTATGTCGAATTATGGACGTGAACAATTCAATTC- A AAGTTTTCGATAACCATAACTAAAACTAAATACTCGAGACTCAACATCTTAGAACTCAAGAACTTAAATGGTAA- T ACTTCTTTCAAGAATGCTCGACTCAGAAGGTTAATGCAGAATAATGTGCATGAATTACTCAACTAAAGGACTCA- C TGATACTACTCAATCTCAAGATTGCTCGACTCGTAGGGTTAATGCAGAATTATGTGCATGAACTACTCAACTCA- A AGACCTTCATAGGTAACATGTAGTAGCCCCATGATTTGGAATATAATCCCAAAATGATTAGGAACTCAATACTC- A GGACTTAGAACTTGAAGATAATACTACTTCTCTCAAAGATACCCAACTGACGGAGTTCATGCAGAATTTATGGG- C ATGAACTACTCGACTCAAGAGTCTAAAACACAATATGACACTCATGTATATAACTCTTCTCATTCTAATACTTG- T TTTCTCAAAACTCGGTTTAACTAAATAGTTGATCTCAAAGGATTCACAATTGAACTCAAAGACTTTCTTTGACT- C CACTCTTAATTCTCTCTTAAATTTGTATTTGAATTATGAATTTAAGAGTTATGATTCATGATATGGGGAATCTC- A ATAACAATATAGAAATTTGATAATTAGGAATAGTACTTTTAAAAGAAAACATGAATTCAACTTAAAATCAACTT- A TCTAAAAAATATTCAAATATAGGGAAAGTATCCTAGACTACTGTGCTACTGATCTGAAAGTAGATGTAGGATGT- G AGGATGAACTAGTCCAACACTATGATAGCCTTACATACCTGGAATAACGAGGTTCTTGGAAAATCTTCACTTGA- A GAAGAACTTGATTAGAAGCCTTGAAACCTAGCTTGAAGGTAAACAATCAAGAAAACCTTTCTTAAGATTCTTGA- A TTAGTTTATGAAAATCTCTATGACCAAGCATTTTGATTTTCACTAGTGATTCATAATTGTATGGAGGAATTTGA- A TTGAAAAAGATGAAATGCTTGGAGAAAAGCTATCTTTGAAGAAGCTTGAAAAAGATTGGAAAGTCCTGTACTTT- G ATTTTCCCTTAGGATTTTGTCTTAGGGTTTGAGATAGAAAAGAATGATGGACTAAAAGATGAAAATCTAATTGT- T TGGATCCTTTTTCAGCCAAGAAATCCGTTTAGGGTTTTCTTGGAGACAAACAAAATAAAAAAGACCATTTTTAA- T ATTTTTCCGTCGGCTAATTCGTAATAACATTGTATCATGTTATTGAAAGAGTCATAACTTTTTACTCAAAAATT- G GATTGATGCGAAATTAGTGGTGTTGGAAAGTAGATTCAAGTACCTCTAATTGGATAGGTTATTCCCTACATAAG- T CTTTATATTCTAAAAGATATGGTTGTTTGCACTTGACCTAAGTAGAATTTTACATGAAAACTTAATAGAGAAGG- A AACTTCAAGAACTCATCAAGAAATTTCAATTGCTCAATATTTATGGATAAATTTGTAGAAGAAACTCATGATTG- A CATGCGGGTGAATAAACCCAACACTATGGAAGCTTACATACCTCAAAGAACTAGGTTCTTGGCGAAATCTTGAA- T TTCTTCAACGAACGCTTGAAACTTTGAACTTTTTCTCTTCTTGAACTCTCAACTAAAACCCTAGGCGTATATTA- G GATTATAAAAGTTAACATGATAGGATTAGACCTTTAAAAACTTTCTAAAATGAATTAAATCTGATTTAGCATGA- A AAAGACCAAAATACCCCTTACTATTTTCGGATAACTTTTCTTAATTGGACTGCCTGACTTCAAAAAGGTATATC- T CACTCATCCGACCTCAAAATTTAGCAAATTCAGTGGCGTTAGAAAGCTAATTTAAACACCTTTCATTTTCCATC- T CATGGCACACATAACTCATTCTTTAAAGAGAGCTATGATCGTTCAAATTAACTCAAATCTTAGAAGAATTTAGG- A ATGTCTTGAACGAGCTACATCTAGTGACCTTAACACTTTGGAAAATTTTAAATTTCTTAGTAAAAACTTACTCA- C TATGAAGGATGGTTCAAGTCTTAGCTCAAAATTTTCCTAAGTTGCTATATATACTCATGCTCATATGTTTAAAA- C CAAAACCCTTCCTCGATTTGAATTAATTACCAAAAAGATTCTCTTAAAAAGATAATGCTCAAAACTCCCCCTAA- A CTCATTTGGAAATCTAGGTTTCCCTTGTTTTAAATATAAAAACATTTACTCTTGGAAATATTTAGTTCTCAGAT- A TTCACTTGAAAAAAATTAAACTCGACTCTCATCATCTTCATACTCAAGTGCTCAAGTCCTAAAACAATTTATAA- C TAATTGTATAAGACTTCTCAAAATAGGGTTCATTCCGAATTATGGACGTGAACGACTCAATTCAAGGATTTCAA- T AACCATATATATAACTCAATAATAGGAACTCAACAACTCCAGAACTCAATGATACTACTCATCTCAAGAATGCT- C GACTCACAGGGTCTTTGCGAAATTATTGGGCATGAACAACTCAACTCAAAGACCTTCATTTATACCATATGGTA- G TCCCATAATAGGAATATAATCCCAAAAAAATTAGGAACTCAATACTCAAAAACTTAGAACTCGAAGATATTACT- C ATCTCAAAGATATTCAATTTATGGAATTCATGCTGAATTATGAGCATGAACGACTTGACTCAAGGATCTCAATA- A TAATGTAGACTCATGAATACACTCTTCTCATTCTCATACTCACATACTCGAGTATTAAAATAAATTATAAGTAA- T TGCAGAAGACTCCTTGAACAGACTCAAAAGGACTCCTTCGAATTTTACTCTTAATGCTACCTGAATTTTGTATT- A TAAATTTAAGGATCATGATTATGATATAAAGAATTTCTCAGCATATATGAAATGAACGAATTTGAGCATTGAAC- G TCTAACCTCATTTTTTAATTATTGTGATATGTAGAGTGGTGCAAAATCACAGATACCTCTCTTGATGCATTTCT- A TAGTTACGTTGATGTGAGATTATATATAGTTCAGCAGCAGCATGTTGGGAAAATTACTAATAACTCTTCTTTTA- T ATCAAATTGTTGAAGCATGATGACAACACTTGAAAAGTATCAACAATGCAGTTACGCATCTTTGGACCCGATGT- T ACCGGTTAGTGATACTCAGGTATTGTTTATCTACTTTATCATGTCGTAAGTATATTATTTGTAAAGATATATAT- C AAGATAGTTCGATTGCGTACACTTACATTTTGATTATGTTTGGTGAATACTATTCTAATACCTTTTTTTTTCCT- A AAGCCTAACAAATAAAGATAATTAAGATGGGAACGTAATTCAAGTACAACATGGTTCCATACGTGACATATTTA- C ACATATAGTGGAACCAAAAGAGCAATTTTTCCTAATATCATTTTCTAAATATCACGTGTGCCCGTGATTCTTTT- T
TATGGACATGAATTTTTTTTTTAATATGAGTGGAAGTAAGGTTCGATCTTTCTATCTGCTTTGATATCATATTG- A ATCGTGTGATTGTCTCTTTAAAAAATTAAGCAAGAGCATATTTTATTAATTAATTGTCTTTCTCGACGTTTTTC- T CTTTCAACAGATGAACTACAATGAGTATGTGAGGCTAAAAGCTAGAGTTGAGCTCCTTCAACGTTCTCAAAGGT- A AGATATTAGTGATGTAATTAAATGATTTTAGTTAGATTTACATAAGTTTTTAATAAGTGAAAATTAATAGACAT- A TTCTTGGAGAGGATTTGGGCACACTAAACTCGAAAGAACTTGAGCAGCTTGAGCACCAATTGGATGCATCTTTG- A AGAAAGTTAGATCAAAAAAGGTATATCCAAATACTATAACTTAAATATATTGTAACGATTTAATTAATAGCATG- T GTCACGTTCATCTATTCTTTAGTCACAATATATAGGGGCATGTCCTTAACAACGTGCCATGCCTCGATAGTCAT- T TTTGTCTTTTTGTGCGTATGAATTTAACTTTGACACAAATTTTTGTAGTAATAATAACTCATGCTTTAGCATCT- T AGGAAGCAGTCATATGAAAAACAGAAGCATATATATATATTACATGAGTTAATTTAATTTAATATAAAATTTAA- T AAAATTGTGTCTCGCTATAAATAATTTTATTAAAAAATTATATAAATATATTATTTTTTTAACTGGCCGCAAAG- T TATATAAATTGATAGAGAAAGAGGTTTTGGTGTAAGGTTCATTTTCCAACAATTAGTTTTATAATTTGTAAGTG- C ACACTTTATCAGACTCAATCTATGCTGGATCAGCTGGCAGACCTTCAAGAAAAGGTACACTGCCTTAACATTAC- A AAATTAATTTATTTCATCAAAAGCATATCATAAAATTCTGACAAATAAATATATTAGGAGCAAATGCTGGAAGA- A GCAAATAAACAACTAAAAAACAAGGTACATATCTATATATGTGTGTTAATTAATTAAGTTGATTTTGTATTTTT- G TTTAATGAATAATTGTTTGTGATCATCAGCTGGAAGAAAGTGCAGCTAGAATTCCACTTGGATTGTCATGGGGA- A ATAATGGAGGACAAACAATGGAATACAATCGACTCCCTCCACAAACTACTGCACAACCTTTCTTTCAACCTCTC- C GTTTGAATTCTTCATCGCCTCAATTCGGGTAAGTATCTTATTTTATATGACTTAGTTTGACTTGACATAAAGTT- T AATAAAGAAAGAAAGACTTTTAAAACTTATAGTGTAAAATAAGTGAATAGATATATATGTGGTTGTACTAACAC- T ACAACAAAAATAATTTTCAGCGGCATTAAATATTGACATTAATAATGAGTGCTAAAGACTTTATCGGTATTAGT- T AAGTGTCATTAGGATCAATGTCGTTAAAGGCTTCACGGACATATACAAAGAGTGACAATTGCCGCTAATGATTA- T TTTTGTTGTAGTGAAAATGAGTATTTTAAAGTTAAATTGTTACATAATATAGAAATATGTCAGAAACAGGACAA- A TATACCACCGAACTATCATATATGTTATGGAGATATTCTCAGTCATACTTCTGCGACATTGGTACTCATGTCGT- C CAAAAACTAGAACATATATATACCCTTTATATATTAACGAAGATACAAGTGTCATAATCTTATGCACCGATTCG- A TATTTATTAAATATCGAATCGACGGATAAAATTATGTCACGTGTCCCTATTAAGTCTTCTATTAGAGTAAAAAG- C ATATATTCTCTAGTTTTTGAACGAAAAAAGGTATTAATGTCTCAAAAGTATAACGAAAAGCATTTGCATACAAT- T TATGATAATTTGGGGCATATTAATTTATCATTCCCCCTTTTTTTGGCACTGATTAAAAAGAAAAAGAAAGTTAT- A AAAATTGGGATAGAGGGAATAATTGTTTCATAGGGAAAACTTAGAAGCTTCTCAGTATGTCAGTGAGAATGTGT- T TCCTAATTAGTGAACTATGGTTTGGTGAAAAATAAAGAGAAAAAAATCAGTACAAATTTTCCACTGATTAGCAA- T GAGAAAAATATTTGTTTCTAGTAGTATGAGGAGAGGATAGTCCGCATAAATAATCCTTAAATTTGTGGATAAAT- A AACTATTTTCAATAGATTATCGTCTCAAAATAAAATAAAATGATTGCAAGAAAAGAATAATAGGTATGCTGGTA- A TATGTATAATACACTCAAATTTATTTGCTGTCCATGCAGATACAATCCAAATATGGGTGCAAATGATCATGAGG- T TAATGCAGCAACAACTGCTCATAATATTAATGGATTTATTCCAGGGTGGATGCTCTAA Mutant Solyc12g038510 gene allele j2.sup.stop (SEQ ID NO: 9) ATGGGAAGAGGAAGAGTAGAACTAAAGAGAATAGAGAACAAAATAAACAGGCAAGTTACTTTTGCTAAGAGAAG- A AATGGACTTCTTAAGAAAGCTTATGAGTTATCTATACTTTGTGATGCTGAAGTTGCTCTCATCATCTTCTCTAG- C CGCGGAAAACTCTATGAGTTTTCAAGTGCTTCCAGGTATATATATATATACATATGTTTTTCTTCTTTTTGTGT- G TGCGTATGTGTTTACTTACTTTCATTAATTAACTCAACCATATATATACATCTCTCACCTCAATTATATATATG- T TTGAGATCTGAATGTCTACGGACTCCATTTAGGTACATATCTTTGTTTAGATCATAAATCATCTATCTTCATTC- C TAAGATCTACTAATATATATGTATAAGAAGATCCATCCATCTATTAGGTTTTTCAACAACATATACAGTGAAAT- C TTATATGTGGGCCCACGTATAGCCATATGAGAAAATAGTGTGCACGTAAACATTATCATTACTTAATTATAGGA- A TATACATCCATTAGGTTTATCAACAACAATAAAATCCTCTAAATGGAGTCTAGTCATAGGTCTAGCCGTTTGAA- A ATGTAAAATATATGCCGATCTTATCACTATGTCATAATAATAGATATGTTGTTATTGAAAGATTCTCAATCTTT- T TTTTTCTTCAAGGTAGAGATTCTTAAGTGGATTCATGTTTTTTTTATCAAAAAAGAAAAAAACAAAAGTGTCCA- T TTGTTCATCTAATGGGTTTTCCATGTTACCAATTCACTACACTGTTGAGATTTGATTATCAGATGTGTCAAGTT- T CGTTTGGTTCCCTAGAAGGGAGAAAAGGCTGCTTATGCAGGCAGGGTATTAAAGATGATATTAATATCTGCAGT- A ATCAGTAACAGAATATATAAACTTAATAATAAACTTGAAGGTACTTAATTATCCAGCAGATAATCTTCTGTCTC- A CCGTACACTTTTGTTATATCATAAGCATAAGAATTGTTTTATCAAATATTACCAAACAAAACTTAGTTTTGTTT- G GTAATATTTTATAAAATATGTTACCGAAAGTTACTTCCTATAACATATTTTATAAAGAAAAAAATTAAAAACTC- C ATATACCTAAGAAATGTAACCCCCCCTCCATAACAACAATTTAACAAAAATAAAAACCTACTTTTTTTGAATTT- G GTAAATTAGTTTTCTATCCTTTTTAGTAACTTCCTTTCTTATTTTCTTTTTATATTGGTAAAGTTTAATATTAC- A CATTATTTTAACATGTTATAATTTTTTGTGATGCTTAATTATTTGATACATGTAATAAACCATATATTAGAGCT- A TAAATCAATGACAATGCATGTAGATACAACTCATTTATGATATATTTTGTTTATATATATAACCAATTAGATAA- T TTGTCTGCGCTTTGTGCAGTCATAAATAATAATTGCATTGAACTTGCAAATATTTTTTTTTAATATCCATACAT- T AAAAAAAAAGAAAGAGGAAAATTGGTTCCTAAAATATTAGCAATATTCAAACATTTATTTGATTATTAATCATT- A TCACATAACTTAAGAACGTCTAATGAATGAATTATTCACGAAATAATAAATCATTGGTTCTAAAAAGGAATTTC- G TAATAAAATAAAAATTTAAGTTACCATATTCAAAAAAAGAAATTGTGCTTGAACATGAAAATAATTATAATTTT- T GAACTTGTATAATGAATTTCTTCAATTCATAAGTGGGAAATTTCATATTTATGTAATAATAGATAATATGTAAG- C TCTAATATAGTACTTTAGGTTATAGAATTTAATATAAAATATCAAAACATGAATTCTTGAAATTGAGTAGAGTA- A TTATTTTCTGCACAATGAATCGGAGACAATAACTTTGAAGAAATATAAACAATAGAGTTCAAAAGATGTAGTCA- A AAACAACAATTAATATCATAAGAATAAATTAATGAGTGTAAAAATGCATACCACGATATGTAAAAACAGAATGG- A ATATAATAAAAAAAATCGAGTTCACTGAATACACAATGTTCCTTTAAGAAAATTATTCTCCTCCAATACCAACG- A GATTACATCCTCTAAGGATGGAAATGATTTCATTCCCCAACTTATCCATATAAAAATAGTGGTGTTAGTATGTA- A CTCAATAGGAGTAAAATACACAAATATTTAATTTTGCGAAAGTAGAAGAAGAAGATCATATTTTTTTTTTAAAA- T GAGAGGATATATCACTATTTTTAAACAACAAAGGGTAGTGTTAACAAATTTTTATTGTGTCTTGTCTAAAAGGT- T ACAGCTATTTGAAAAAGTTACAACACTTCGAAAAGTGAACAACATTTCATAAAAGTCGTAACTTTTCATAAAGT- C GTAACTCTTCATAAATGTCGCAACTCTTCATAAAAATTACAACTATTGATAAAAGTCACCACTCTTGATAAAGA- T CACCACTCTTCATTGAAGTTGCAACTTTTCATAAAAATCACATCTTTTAATAAAAAAGAAAGACTAGTTTTTGG- A ATAAATTAATTTAAAAGAAAATTTTTGTTTGTGGTGGGGCGCCAAGTAGGCAGGCGTAGGGTTCTTTTTATATA- A ATATATATGATATATGATTCAATATTTGATATATATATATATAGAGAGAGAGATGACAATATAAGACAATTGCA- A AAAATAAAATAAAAAACTAATCGAGTAAGTAGGCAAAAAATTATTTATAAAATATATGTAGAATTTCTTTATCA- G ATATGACTGCCCAAATCTTATATTCAAACTAAAATGCAAGATCAATGGTGCTATATATAGGGTTTTACACAAAA- A TCAAGATCTAGTCTTGCAAATTTAAATAAAAAACAGTGGTTTACGATGAGATAATGTAGCTTTTGTAAACAATA- A AACTAGAAAAATAAATGCAAAGGCATTTTAAAGGATATAATAATGAAGATCAAAGGCAGAGAAGGGAAGAGGCA- G CAATATAATGAAGGTAACATCATGGTTCCATTCTAATATATATGCTATTTTTCTTTAGTAAATTTCAAAAATAA- T GATACATTTTCATATTTGATAAATATTTAATGATACTATCAACATTTTATCTATATTGAGTTCCATTTATTTGA- C CAAAACCTCACAAAGATGTGCTCTTCGATCTATTCAAAATTTATTCAATTTAAGGATAGCTTTAAAACATGACA- A AGTTTTCTCATATATTTCTTAAATTTTATATCCAGTCTAAATACGTATATAAACTAAAATGAAGAGAATAATAT- G AAGCTTTATTTGATGACATTGTTGAAATAACCAAAAGCTATAAGTGATACAATAGTAAATTTACCATTGGTCAA- T TCAGAATTATTTAAAAGCTAAAAAAGTCATATAAGTTGGGGTTGCTCAATGTATAGTTTTTGGCTTGTTTTAAG- C ATTTTAAAACTTTTTTTAAGCGCTTTTTAACATTGCTAAACACTCAAAAAATGATAAATAGTATTTAAATTTGA- T ATGATTAGCTTAAAAGTGAACTCATATACCTTCAAAGTAAAAATCCCCAATTCGAGCTTTCAAACCACTTGATT- T TGTGGATGAAATTATACTGAAGTTGAATATATCACTATTTATAGGGGTTAGTGAACTAATACCTTTGATTATTT- G GTAGAAATATGTATCTTAGATCACCCTAATGAGCTCCCACTTTTAAAATAGGAAAAACCTCATATGAAGTTCAT- C ACTGTTCATTATATATCACTTTTATTCAAAAACGTTTACAAATGTTCATTGTGACTAAATACCCTTGAGTGTCG- A
GTTTTCACACCAATAAGGCCTAATTAATAGGTAAACAAAACTATGTCAATCTTCAAAACGCAAATCTAATTATA- T TTTTAACAAGATTAGAGGTATATATACATATTCTCTTATGTTAACTCTTATTCATTATTGAACAAACTAAGTAA- G TGTACCCAAGGTCTCAAACAACAGTTGGTACATTCTTTGTATGTCTTCCTTTGTCTCTTAATAGTCGTCTCCTC- C TGTCGATGATTCCTCCAAATACATTAATCAAAGGAAAATCTTTCGCCCTCAACTTGCAAACTTGTCTATCTAAA- A TTGTTAACAAAGTTTCTTCATTAGAGAAACTATGATTTCTTGAATGTAGCAATTTGATGTGCCATGACTATCAT- C TTGATCAACATGCTTCTTAACCATCAAAAGATCCTAAACTAGATGCATGTCATGTTAGGAGACATATTAAGCTT- G TATATAACTACACCAACATGCTTTAGGATCTCATAAGATCCAAAATTTCTTATTTGGGAGATTTTCAATCCAAC- A ACCATCATAATGAGCAACGTGATGTTATAACATCTCTCTCACACTGCCAGAACAGTCTTATACCTTGTCGGAGT- G AAGGACATCCTTAACTAAGTAGATTCACTAAGCTATACTTAAAAAGCAATAAGGAATCATCTAAAATGTGTGAC- T CTTAACCCATATTGGCATACATGGTTTATGGGGGTTATTAATTGTCTGAACACTCCCCCATATAAATCAGTGAT- C AATATTAATCCCAATAATATACACTATTATGATTTGAGACTACACCCTGGAAGTGGCCGGCTCTCAAGAACCAT- T GCTGATCTCCAAGCCAAACCCTCATTCTGGTTGACTACAAGCTGAAGGCAAACTCAAGTATACAAAGCTTAAAA- C ATAATAAAAATAATATACTCAACTCGCCACAAAATAGGCATTTAAGTCTTTAAAACATTTTTAAAAATAAATGA- A ACAAACTTCTCAAACTGTAATGTATATCTATGAAGCCTCTAAATGAAAAAAATGAAGGCAGATGAGACATACGG- C ATCCTAACAACTGATATAACTAAGAGTACAAGTGGAGCCCTTCGGATGTAAGGAGGCTCATCAAAGCTAATGTG- A ACTCCATGTGGTATCAATGAAGCACCTATTGATGACCGTGAATACATGTATCTGCATCATGAAACGATGCAGGC- C AAAGGGCTTAGTACGTGAAATGTACGAGCATGTAAAGGGAATTCAAATACATAAACATAGGCTTGAACTTTGAT- A TAAAGGAAACATACTTACCTATTTTTAACTCAAGAATAAAAAACATAGTTCAACTCAATGAAAAGACACTCAAG- T CAGTGAAATAGGCCGCAACTCAATAATAAGATATTCGACTATGGGTAATCAACTCTGGGTACTCTATTCAATAT- A AAGTAAGAATACAAATGCATTATATGGAAAGACTTTAAAACGGTAGAAAACAACTCAATGTATTGAAAATTCAA- T AGTAAATTAGTTTGTATGTAAGGAACAATATAAACTTTGTTTGTATATGAAAATACAAAATAAACTTTGTGTAT- A TAAAAGTACAAAATATCTCTGTGAAAGTTTCTCTAACCAACAACCATCACTATGAGCTTTCTGATAATACCACG- T TTCGCCCATGATGTCAGAACTGTCCTATGATTTTCCAGTTCATAAGACCTACTCACTAAGTGGATCCACAAGTC- T ATGCTAAAAAATATTTAAGGAATCGTCTAAAAAGTATGACTCATTCTACCCACGTTGGCTACATGATTTATGGG- G GTCGTAAGTTATCTAAACTCTCCTCCATATCGATGCGTAATGCTACTCACAAATATACTAGCTCACATGTTTAA- A AATATAACTCGTTTTGTTTGAGATCATTACTCAAAATCCTTCTCTTAAAAGAGATGATACTCAAACTGCTCAAA- A CTCTTTTGGAAATCTCAAATTCGTCTCATCTTAAATGTAAAAATATTTACTCTTGGGAATACATAGTTATCATA- T ATCATTTTAAAGAAAATGAACTCAACTCTGTTCTTTCTCAACTCAAGTGCTCAGTCTTAAACCAAATTAAAAAA- A AGACTTCTCAAAATAAAGTTTATGTCGAATTATGGACGTGAACAATTCAATTCAAAGTTTTCGATAACCATAAC- T AAAACTAAATACTCGAGACTCAACATCTTAGAACTCAAGAACTTAAATGGTAATACTTCTTTCAAGAATGCTCG- A CTCAGAAGGTTAATGCAGAATAATGTGCATGAATTACTCAACTAAAGGACTCACTGATACTACTCAATCTCAAG- A TTGCTCGACTCGTAGGGTTAATGCAGAATTATGTGCATGAACTACTCAACTCAAAGACCTTCATAGGTAACATG- T AGTAGCCCCATGATTTGGAATATAATCCCAAAATGATTAGGAACTCAATACTCAGGACTTAGAACTTGAAGATA- A TACTACTTCTCTCAAAGATACCCAACTGACGGAGTTCATGCAGAATTTATGGGCATGAACTACTCGACTCAAGA- G TCTAAAACACAATATGACACTCATGTATATAACTCTTCTCATTCTAATACTTGTTTTCTCAAAACTCGGTTTAA- C TAAATAGTTGATCTCAAAGGATTCACAATTGAACTCAAAGACTTTCTTTGACTCCACTCTTAATTCTCTCTTAA- A TTTGTATTTGAATTATGAATTTAAGAGTTATGATTCATGATATGGGGAATCTCAATAACAATATAGAAATTTGA- T AATTAGGAATAGTACTTTTAAAAGAAAACATGAATTCAACTTAAAATCAACTTATCTAAAAAATATTCAAATAT- A GGGAAAGTATCCTAGACTACTGTGCTACTGATCTGAAAGTAGATGTAGGATGTGAGGATGAACTAGTCCAACAC- T ATGATAGCCTTACATACCTGGAATAACGAGGTTCTTGGAAAATCTTCACTTGAAGAAGAACTTGATTAGAAGCC- T TGAAACCTAGCTTGAAGGTAAACAATCAAGAAAACCTTTCTTAAGATTCTTGAATTAGTTTATGAAAATCTCTA- T GACCAAGCATTTTGATTTTCACTAGTGATTCATAATTGTATGGAGGAATTTGAATTGAAAAAGATGAAATGCTT- G GAGAAAAGCTATCTTTGAAGAAGCTTGAAAAAGATTGGAAAGTCCTGTACTTTGATTTTCCCTTAGGATTTTGT- C TTAGGGTTTGAGATAGAAAAGAATGATGGACTAAAAGATGAAAATCTAATTGTTTGGATCCTTTTTCAGCCAAG- A AATCCGTTTAGGGTTTTCTTGGAGACAAACAAAATAAAAAAGACCATTTTTAATATTTTTCCGTCGGCTAATTC- G TAATAACATTGTATCATGTTATTGAAAGAGTCATAACTTTTTACTCAAAAATTGGATTGATGCGAAATTAGTGG- T GTTGGAAAGTAGATTCAAGTACCTCTAATTGGATAGGTTATTCCCTACATAAGTCTTTATATTCTAAAAGATAT- G GTTGTTTGCACTTGACCTAAGTAGAATTTTACATGAAAACTTAATAGAGAAGGAAACTTCAAGAACTCATCAAG- A AATTTCAATTGCTCAATATTTATGGATAAATTTGTAGAAGAAACTCATGATTGACATGCGGGTGAATAAACCCA- A CACTATGGAAGCTTACATACCTCAAAGAACTAGGTTCTTGGCGAAATCTTGAATTTCTTCAACGAACGCTTGAA- A CTTTGAACTTTTTCTCTTCTTGAACTCTCAACTAAAACCCTAGGCGTATATTAGGATTATAAAAGTTAACATGA- T AGGATTAGACCTTTAAAAACTTTCTAAAATGAATTAAATCTGATTTAGCATGAAAAAGACCAAAATACCCCTTA- C TATTTTCGGATAACTTTTCTTAATTGGACTGCCTGACTTCAAAAAGGTATATCTCACTCATCCGACCTCAAAAT- T TAGCAAATTCAGTGGCGTTAGAAAGCTAATTTAAACACCTTTCATTTTCCATCTCATGGCACACATAACTCATT- C TTTAAAGAGAGCTATGATCGTTCAAATTAACTCAAATCTTAGAAGAATTTAGGAATGTCTTGAACGAGCTACAT- C TAGTGACCTTAACACTTTGGAAAATTTTAAATTTCTTAGTAAAAACTTACTCACTATGAAGGATGGTTCAAGTC- T TAGCTCAAAATTTTCCTAAGTTGCTATATATACTCATGCTCATATGTTTAAAACCAAAACCCTTCCTCGATTTG- A ATTAATTACCAAAAAGATTCTCTTAAAAAGATAATGCTCAAAACTCCCCCTAAACTCATTTGGAAATCTAGGTT- T CCCTTGTTTTAAATATAAAAACATTTACTCTTGGAAATATTTAGTTCTCAGATATTCACTTGAAAAAAATTAAA- C TCGACTCTCATCATCTTCATACTCAAGTGCTCAAGTCCTAAAACAATTTATAACTAATTGTATAAGACTTCTCA- A AATAGGGTTCATTCCGAATTATGGACGTGAACGACTCAATTCAAGGATTTCAATAACCATATATATAACTCAAT- A ATAGGAACTCAACAACTCCAGAACTCAATGATACTACTCATCTCAAGAATGCTCGACTCACAGGGTCTTTGCGA- A ATTATTGGGCATGAACAACTCAACTCAAAGACCTTCATTTATACCATATGGTAGTCCCATAATAGGAATATAAT- C CCAAAAAAATTAGGAACTCAATACTCAAAAACTTAGAACTCGAAGATATTACTCATCTCAAAGATATTCAATTT- A TGGAATTCATGCTGAATTATGAGCATGAACGACTTGACTCAAGGATCTCAATAATAATGTAGACTCATGAATAC- A CTCTTCTCATTCTCATACTCACATACTCGAGTATTAAAATAAATTATAAGTAATTGCAGAAGACTCCTTGAACA- G ACTCAAAAGGACTCCTTCGAATTTTACTCTTAATGCTACCTGAATTTTGTATTATAAATTTAAGGATCATGATT- A TGATATAAAGAATTTCTCAGCATATATGAAATGAACGAATTTGAGCATTGAACGTCTAACCTCATTTTTTAATT- A TTGTGATATGTAGAGTGGTGCAAAATCACAGATACCTCTCTTGATGCATTTCTATAGTTACGTTGATGTGAGAT- T ATATATAGTTCAGCAGCAGCATGTTGGGAAAATTACTAATAACTCTTCTTTTATATCAAATTGTTGAAGCATGA- T GACAACACTTGAAAAGTATCAACAATGCAGTTACGCATCTTTGGACCCGATGT ACCGGTTAGTGATACTCAGGT ATTGTTTATCTACTTTATCATGTCGTAAGTATATTATTTGTAAAGATATATATCAAGATAGTTCGATTGCGTAC- A CTTACATTTTGATTATGTTTGGTGAATACTATTCTAATACCTTTTTTTTTCCTAAAGCCTAACAAATAAAGATA- A TTAAGATGGGAACGTAATTCAAGTACAACATGGTTCCATACGTGACATATTTACACATATAGTGGAACCAAAAG- A GCAATTTTTCCTAATATCATTTTCTAAATATCACGTGTGCCCGTGATTCTTTTTTATGGACATGAATTTTTTTT- T TAATATGAGTGGAAGTAAGGTTCGATCTTTCTATCTGCTTTGATATCATATTGAATCGTGTGATTGTCTCTTTA- A AAAATTAAGCAAGAGCATATTTTATTAATTAATTGTCTTTCTCGACGTTTTTCTCTTTCAACAGATGAACTACA- A TGAGTATGTGAGGCTAAAAGCTAGAGTTGAGCTCCTTCAACGTTCTCAAAGGTAAGATATTAGTGATGTAATTA- A ATGATTTTAGTTAGATTTACATAAGTTTTTAATAAGTGAAAATTAATAGACATATTCTTGGAGAGGATTTGGGC- A CACTAAACTCGAAAGAACTTGAGCAGCTTGAGCACCAATTGGATGCATCTTTGAAGAAAGTTAGATCAAAAAAG- G TATATCCAAATACTATAACTTAAATATATTGTAACGATTTAATTAATAGCATGTGTCACGTTCATCTATTCTTT- A GTCACAATATATAGGGGCATGTCCTTAACAACGTGCCATGCCTCGATAGTCATTTTTGTCTTTTTGTGCGTATG- A ATTTAACTTTGACACAAATTTTTGTAGTAATAATAACTCATGCTTTAGCATCTTAGGAAGCAGTCATATGAAAA- A CAGAAGCATATATATATATTACATGAGTTAATTTAATTTAATATAAAATTTAATAAAATTGTGTCTCGCTATAA- A
TAATTTTATTAAAAAATTATATAAATATATTATTTTTTTAACTGGCCGCAAAGTTATATAAATTGATAGAGAAA- G AGGTTTTGGTGTAAGGTTCATTTTCCAACAATTAGTTTTATAATTTGTAAGTGCACACTTTATCAGACTCAATC- T ATGCTGGATCAGCTGGCAGACCTTCAAGAAAAGGTACACTGCCTTAACATTACAAAATTAATTTATTTCATCAA- A AGCATATCATAAAATTCTGACAAATAAATATATTAGGAGCAAATGCTGGAAGAAGCAAATAAACAACTAAAAAA- C AAGGTACATATCTATATATGTGTGTTAATTAATTAAGTTGATTTTGTATTTTTGTTTAATGAATAATTGTTTGT- G ATCATCAGCTGGAAGAAAGTGCAGCTAGAATTCCACTTGGATTGTCATGGGGAAATAATGGAGGACAAACAATG- G AATACAATCGACTCCCTCCACAAACTACTGCACAACCTTTCTTTCAACCTCTCCGTTTGAATTCTTCATCGCCT- C AATTCGGGTAAGTATCTTATTTTATATGACTTAGTTTGACTTGACATAAAGTTTAATAAAGAAAGAAAGACTTT- T AAAACTTATAGTGTAAAATAAGTGAATAGATATATATGTGGTTGTACTAACACTACAACAAAAATAATTTTCAG- C GGCATTAAATATTGACATTAATAATGAGTGCTAAAGACTTTATCGGTATTAGTTAAGTGTCATTAGGATCAATG- T CGTTAAAGGCTTCACGGACATATACAAAGAGTGACAATTGCCGCTAATGATTATTTTTGTTGTAGTGAAAATGA- G TATTTTAAACTTAAATTGTTACATAATATAGAAATATGTCAGAAACAGGACAAATATACCACCGAACTATCATA- T ATGTTATGGAGATATTCTCAGTCATACTTCTGCGACATTGGTACTCATGTCGTCCAAAAACTAGAACATATATA- T ACCCTTTATATATTAACGAAGATACAAGTGTCATAATCTTATGCACCGATTCGATATTTATTAAATATCGAATC- G ACGGATAAAATTATGTCACGTGTCCCTATTAAGTCTTCTATTAGAGTAAAAAGCATATATTCTCTAGTTTTTGA- A CGAAAAAAGGTATTAATGTCTCAAAAGTATAACGAAAAGCATTTGCATACAATTTATGATAATTTGGGGCATAT- T AATTTATCATTCCCCCTTTTTTTGGCACTGATTAAAAAGAAAAAGAAAGTTATAAAAATTGGGATAGAGGGAAT- A ATTGTTTCATAGGGAAAACTTAGAAGCTTCTCAGTATGTCAGTGAGAATGTGTTTCCTAATTAGTGAACTATGG- T TTGGTGAAAAATAAAGAGAAAAAAATCAGTACAAATTTTCCACTGATTAGCAATGAGAAAAATATTTGTTTCTA- G TAGTATGAGGAGAGGATAGTCCGCATAAATAATCCTTAAATTTGTGGATAAATAAACTATTTTCAATAGATTAT- C GTCTCAAAATAAAATAAAATGATTGCAAGAAAAGAATAATAGGTATGCTGGTAATATGTATAATACACTCAAAT- T TATTTGCTGTCCATGCAGATACAATCCAAATATGGGTGCAAATGATCATGAGGTTAATGCAGCAACAACTGCTC- A TAATATTAATGGATTTATTCCAGGGTGGATGCTCTAA Mutant Solyc12g038510 gene allele j2.sup.CR >allele-1 (SEQ ID NO: 10) ATGGGAAGAGGAAGAGTAGAACTAAAGAGAATAGAGAACAAAATAAACAGGCAAGTTACTTTTGCTAAGAGAAG- A AATGGACTTCTTAAGAAAGCTTATGAGTTATCTATACTTTGTGATGCTGAAGTTGCTCTCATCATCTTCTCTAG- C CGCGGAAAACTCTATGAGTTTTCAAGTGCTTCCAGGTATATATATATATACATATGTTTTTCTTCTTTTTGTGT- G TGCGTATGTGTTTACTTACTTTCATTAATTAACTCAACCATATATATACATCTCTCACCTCAATTATATATATG- T TTGAGATCTGAATGTCTACGGACTCCATTTAGGTACATATCTTTGTTTAGATCATAAATCATCTATCTTCATTC- C TAAGATCTACTAATATATATGTATAAGAAGATCCATCCATCTATTAGGTTTTTCAACAACATATACAGTGAAAT- C TTATATGTGGGCCCACGTATAGCCATATGAGAAAATAGTGTGCACGTAAACATTATCATTACTTAATTATAGGA- A TATACATCCATTAGGTTTATCAACAACAATAAAATCCTCTAAATGGAGTCTAGTCATAGGTCTAGCCGTTTGAA- A ATGTAAAATATATGCCGATCTTATCACTATGTCATAATAATAGATATGTTGTTATTGAAAGATTCTCAATCTTT- T TTTTTCTTCAAGGTAGAGATTCTTAAGTGGATTCATGTTTTTTTTATCAAAAAAGAAAAAAACAAAAGTGTCCA- T TTGTTCATCTAATGGGTTTTCCATGTTACCAATTCACTACACTGTTGAGATTTGATTATCAGATGTGTCAAGTT- T CGTTTGGTTCCCTAGAAGGGAGAAAAGGCTGCTTATGCAGGCAGGGTATTAAAGATGATATTAATATCTGCAGT- A ATCAGTAACAGAATATATAAACTTAATAATAAACTTGAAGGTACTTAATTATCCAGCAGATAATCTTCTGTCTC- A CCGTACACTTTTGTTATATCATAAGCATAAGAATTGTTTTATCAAATATTACCAAACAAAACTTAGTTTTGTTT- G GTAATATTTTATAAAATATGTTACCGAAAGTTACTTCCTATAACATATTTTATAAAGAAAAAAATTAAAAACTC- C ATATACCTAAGAAATGTAACCCCCCCTCCATAACAACAATTTAACAAAAATAAAAACCTACTTTTTTTGAATTT- G GTAAATTAGTTTTCTATCCTTTTTAGTAACTTCCTTTCTTATTTTCTTTTTATATTGGTAAAGTTTAATATTAC- A CATTATTTTAACATGTTATAATTTTTTGTGATGCTTAATTATTTGATACATGTAATAAACCATATATTAGAGCT- A TAAATCAATGACAATGCATGTAGATACAACTCATTTATGATATATTTTGTTTATATATATAACCAATTAGATAA- T TTGTCTGCGCTTTGTGCAGTCATAAATAATAATTGCATTGAACTTGCAAATATTTTTTTTTAATATCCATACAT- T AAAAAAAAAGAAAGAGGAAAATTGGTTCCTAAAATATTAGCAATATTCAAACATTTATTTGATTATTAATCATT- A TCACATAACTTAAGAACGTCTAATGAATGAATTATTCACGAAATAATAAATCATTGGTTCTAAAAAGGAATTTC- G TAATAAAATAAAAATTTAAGTTACCATATTCAAAAAAAGAAATTGTGCTTGAACATGAAAATAATTATAATTTT- T GAACTTGTATAATGAATTTCTTCAATTCATAAGTGGGAAATTTCATATTTATGTAATAATAGATAATATGTAAG- C TCTAATATAGTACTTTAGGTTATAGAATTTAATATAAAATATCAAAACATGAATTCTTGAAATTGAGTAGAGTA- A TTATTTTCTGCACAATGAATCGGAGACAATAACTTTGAAGAAATATAAACAATAGAGTTCAAAAGATGTAGTCA- A AAACAACAATTAATATCATAAGAATAAATTAATGAGTGTAAAAATGCATACCACGATATGTAAAAACAGAATGG- A ATATAATAAAAAAAATCGAGTTCACTGAATACACAATGTTCCTTTAAGAAAATTATTCTCCTCCAATACCAACG- A GATTACATCCTCTAAGGATGGAAATGATTTCATTCCCCAACTTATCCATATAAAAATAGTGGTGTTAGTATGTA- A CTCAATAGGAGTAAAATACACAAATATTTAATTTTGCGAAAGTAGAAGAAGAAGATCATATTTTTTTTTTAAAA- T GAGAGGATATATCACTATTTTTAAACAACAAAGGGTAGTGTTAACAAATTTTTATTGTGTCTTGTCTAAAAGGT- T ACAGCTATTTGAAAAAGTTACAACACTTCGAAAAGTGAACAACATTTCATAAAAGTCGTAACTTTTCATAAAGT- C GTAACTCTTCATAAATGTCGCAACTCTTCATAAAAATTACAACTATTGATAAAAGTCACCACTCTTGATAAAGA- T CACCACTCTTCATTGAAGTTGCAACTTTTCATAAAAATCACATCTTTTAATAAAAAAGAAAGACTAGTTTTTGG- A ATAAATTAATTTAAAAGAAAATTTTTGTTTGTGGTGGGGCGCCAAGTAGGCAGGCGTAGGGTTCTTTTTATATA- A ATATATATGATATATGATTCAATATTTGATATATATATATATAGAGAGAGAGATGACAATATAAGACAATTGCA- A AAAATAAAATAAAAAACTAATCGAGTAAGTAGGCAAAAAATTATTTATAAAATATATGTAGAATTTCTTTATCA- G ATATGACTGCCCAAATCTTATATTCAAACTAAAATGCAAGATCAATGGTGCTATATATAGGGTTTTACACAAAA- A TCAAGATCTAGTCTTGCAAATTTAAATAAAAAACAGTGGTTTACGATGAGATAATGTAGCTTTTGTAAACAATA- A AACTAGAAAAATAAATGCAAAGGCATTTTAAAGGATATAATAATGAAGATCAAAGGCAGAGAAGGGAAGAGGCA- G CAATATAATGAAGGTAACATCATGGTTCCATTCTAATATATATGCTATTTTTCTTTAGTAAATTTCAAAAATAA- T GATACATTTTCATATTTGATAAATATTTAATGATACTATCAACATTTTATCTATATTGAGTTCCATTTATTTGA- C CAAAACCTCACAAAGATGTGCTCTTCGATCTATTCAAPATTTATTCAATTTAAGGATAGCTTTAAAACATGACA- A AGTTTTCTCATATATTTCTTAAATTTTATATCCAGTCTAAATACGTATATAAACTAAAATGAAGAGAATAATAT- G AAGCTTTATTTGATGACATTGTTGAAATAACCAAAAGCTATAAGTGATACAATAGTAAATTTACCATTGGTCAA- T TCAGAATTATTTAAAAGCTAAAAAAGTCATATAAGTTGGGGTTGCTCAATGTATAGTTTTTGGCTTGTTTTAAG- C ATTTTAAAACTTTTTTTAAGCGCTTTTTAACATTGCTAAACACTCAAAAAATGATAAATAGTATTTAAATTTGA- T ATGATTAGCTTAAAAGTGAACTCATATACCTTCAAAGTAAAAATCCCCAATTCGAGCTTTCAAACCACTTGATT- T TGTGGATGAAATTATACTGAAGTTGAATATATCACTATTTATAGGGGTTAGTGAACTAATACCTTTGATTATTT- G GTAGAAATATGTATCTTAGATCACCCTAATGAGCTCCCACTTTTAAAATAGGAAAAACCTCATATGAAGTTCAT- C ACTGTTCATTATATATCACTTTTATTCAAAAACGTTTACAAATGTTCATTGTGACTAAATACCCTTGAGTGTCG- A GTTTTCACACCAATAAGGCCTAATTAATAGGTAAACAAAACTATGTCAATCTTCAAAACGCAAATCTAATTATA- T TTTTAACAAGATTAGAGGTATATATACATATTCTCTTATGTTAACTCTTATTCATTATTGAACAAACTAAGTAA- G TGTACCCAAGGTCTCAAACAACAGTTGGTACATTCTTTGTATGTCTTCCTTTGTCTCTTAATAGTCGTCTCCTC- C TGTCGATGATTCCTCCAAATACATTAATCAAAGGAAAATCTTTCGCCCTCAACTTGCAAACTTGTCTATCTAAA- A TTGTTAACAAAGTTTCTTCATTAGAGAAACTATGATTTCTTGAATGTAGCAATTTGATGTGCCATGACTATCAT- C TTGATCAACATGCTTCTTAACCATCAAAAGATCCTAAACTAGATGCATGTCATGTTAGGAGACATATTAAGCTT- G TATATAACTACACCAACATGCTTTAGGATCTCATAAGATCCAAAATTTCTTATTTGGGAGATTTTCAATCCAAC- A ACCATCATAATGAGCAACGTGATGTTATAACATCTCTCTCACACTGCCAGAACAGTCTTATACCTTGTCGGAGT- G AAGGACATCCTTAACTAAGTAGATTCACTAAGCTATACTTAAAAAGCAATAAGGAATCATCTAAAATGTGTGAC- T
CTTAACCCATATTGGCATACATGGTTTATGGGGGTTATTAATTGTCTGAACACTCCCCCATATAAATCAGTGAT- C AATATTAATCCCAATAATATACACTATTATGATTTGAGACTACACCCTGGAAGTGGCCGGCTCTCAAGAACCAT- T GCTGATCTCCAAGCCAAACCCTCATTCTGGTTGACTACAAGCTGAAGGCAAACTCAAGTATACAAAGCTTAAAA- C ATAATAAAAATAATATACTCAACTCGCCACAAAATAGGCATTTAAGTCTTTAAAACATTTTTAAAAATAAATGA- A ACAAACTTCTCAAACTGTAATGTATATCTATGAAGCCTCTAAATGAAAAAAATGAAGGCAGATGAGACATACGG- C ATCCTAACAACTGATATAACTAAGAGTACAAGTGGAGCCCTTCGGATGTAAGGAGGCTCATCAAAGCTAATGTG- A ACTCCATGTGGTATCAATGAAGCACCTATTGATGACCGTGAATACATGTATCTGCATCATGAAACGATGCAGGC- C AAAGGGCTTAGTACGTGAAATGTACGAGCATGTAAAGGGAATTCAAATACATAAACATAGGCTTGAACTTTGAT- A TAAAGGAAACATACTTACCTATTTTTAACTCAAGAATAAAAAACATAGTTCAACTCAATGAAAAGACACTCAAG- T CAGTGAAATAGGCCGCAACTCAATAATAAGATATTCGACTATGGGTAATCAACTCTGGGTACTCTATTCAATAT- A AAGTAAGAATACAAATGCATTATATGGAAAGACTTTAAAACGGTAGAAAACAACTCAATGTATTGAAAATTCAA- T AGTAAATTAGTTTGTATGTAAGGAACAATATAAACTTTGTTTGTATATGAAAATACAAAATAAACTTTGTGTAT- A TAAAAGTACAAAATATCTCTGTGAAAGTTTCTCTAACCAACAACCATCACTATGAGCTTTCTGATAATACCACG- T TTCGCCCATGATGTCAGAACTGTCCTATGATTTTCCAGTTCATAAGACCTACTCACTAAGTGGATCCACAAGTC- T ATGCTAAAAAATATTTAAGGAATCGTCTAAAAAGTATGACTCATTCTACCCACGTTGGCTACATGATTTATGGG- G GTCGTAAGTTATCTAAACTCTCCTCCATATCGATGCGTAATGCTACTCACAAATATACTAGCTCACATGTTTAA- A AATATAACTCGTTTTGTTTGAGATCATTACTCAAAATCCTTCTCTTAAAAGAGATGATACTCAAACTGCTCAAA- A CTCTTTTGGAAATCTCAAATTCGTCTCATCTTAAATGTAAAAATATTTACTCTTGGGAATACATAGTTATCATA- T ATCATTTTAAAGAAAATGAACTCAACTCTGTTCTTTCTCAACTCAAGTGCTCAGTCTTAAACCAAATTAAAAAA- A AGACTTCTCAAAATAAAGTTTATGTCGAATTATGGACGTGAACAATTCAATTCAAAGTTTTCGATAACCATAAC- T AAAACTAAATACTCGAGACTCAACATCTTAGAACTCAAGAACTTAAATGGTAATACTTCTTTCAAGAATGCTCG- A CTCAGAAGGTTAATGCAGAATAATGTGCATGAATTACTCAACTAAAGGACTCACTGATACTACTCAATCTCAAG- A TTGCTCGACTCGTAGGGTTAATGCAGAATTATGTGCATGAACTACTCAACTCAAAGACCTTCATAGGTAACATG- T AGTAGCCCCATGATTTGGAATATAATCCCAAAATGATTAGGAACTCAATACTCAGGACTTAGAACTTGAAGATA- A TACTACTTCTCTCAAAGATACCCAACTGACGGAGTTCATGCAGAATTTATGGGCATGAACTACTCGACTCAAGA- G TCTAAAACACAATATGACACTCATGTATATAACTCTTCTCATTCTAATACTTGTTTTCTCAAAACTCGGTTTAA- C TAAATAGTTGATCTCAAAGGATTCACAATTGAACTCAAAGACTTTCTTTGACTCCACTCTTAATTCTCTCTTAA- A TTTGTATTTGAATTATGAATTTAAGAGTTATGATTCATGATATGGGGAATCTCAATAACAATATAGAAATTTGA- T AATTAGGAATAGTACTTTTAAAAGAAAACATGAATTCAACTTAAAATCAACTTATCTAAAAAATATTCAAATAT- A GGGAAAGTATCCTAGACTACTGTGCTACTGATCTGAAAGTAGATGTAGGATGTGAGGATGAACTAGTCCAACAC- T ATGATAGCCTTACATACCTGGAATAACGAGGTTCTTGGAAAATCTTCACTTGAAGAAGAACTTGATTAGAAGCC- T TGAAACCTAGCTTGAAGGTAAACAATCAAGAAAACCTTTCTTAAGATTCTTGAATTAGTTTATGAAAATCTCTA- T GACCAAGCATTTTGATTTTCACTAGTGATTCATAATTGTATGGAGGAATTTGAATTGAAAAAGATGAAATGCTT- G GAGAAAAGCTATCTTTGAAGAAGCTTGAAAAAGATTGGAAAGTCCTGTACTTTGATTTTCCCTTAGGATTTTGT- C TTAGGGTTTGAGATAGAAAAGAATGATGGACTAAAAGATGAAAATCTAATTGTTTGGATCCTTTTTCAGCCAAG- A AATCCGTTTAGGGTTTTCTTGGAGACAAACAAAATAAAAAAGACCATTTTTAATATTTTTCCGTCGGCTAATTC- G TAATAACATTGTATCATGTTATTGAAAGAGTCATAACTTTTTACTCAAAAATTGGATTGATGCGAAATTAGTGG- T GTTGGAAAGTAGATTCAAGTACCTCTAATTGGATAGGTTATTCCCTACATAAGTCTTTATATTCTAAAAGATAT- G GTTGTTTGCACTTGACCTAAGTAGAATTTTACATGAAAACTTAATAGAGAAGGAAACTTCAAGAACTCATCAAG- A AATTTCAATTGCTCAATATTTATGGATAAATTTGTAGAAGAAACTCATGATTGACATGCGGGTGAATAAACCCA- A CACTATGGAAGCTTACATACCTCAAAGAACTAGGTTCTTGGCGAAATCTTGAATTTCTTCAACGAACGCTTGAA- A CTTTGAACTTTTTCTCTTCTTGAACTCTCAACTAAAACCCTAGGCGTATATTAGGATTATAAAAGTTAACATGA- T AGGATTAGACCTTTAAAAACTTTCTAAAATGAATTAAATCTGATTTAGCATGAAAAAGACCAAAATACCCCTTA- C TATTTTCGGATAACTTTTCTTAATTGGACTGCCTGACTTCAAAAAGGTATATCTCACTCATCCGACCTCAAAAT- T TAGCAAATTCAGTGGCGTTAGAAAGCTAATTTAAACACCTTTCATTTTCCATCTCATGGCACACATAACTCATT- C TTTAAAGAGAGCTATGATCGTTCAAATTAACTCAAATCTTAGAAGAATTTAGGAATGTCTTGAACGAGCTACAT- C TAGTGACCTTAACACTTTGGAAAATTTTAAATTTCTTAGTAAAAACTTACTCACTATGAAGGATGGTTCAAGTC- T TAGCTCAAAATTTTCCTAAGTTGCTATATATACTCATGCTCATATGTTTAAAACCAAAACCCTTCCTCGATTTG- A ATTAATTACCAAAAAGATTCTCTTAAAAAGATAATGCTCAAAACTCCCCCTAAACTCATTTGGAAATCTAGGTT- T CCCTTGTTTTAAATATAAAAACATTTACTCTTGGAAATATTTAGTTCTCAGATATTCACTTGAAAAAAATTAAA- C TCGACTCTCATCATCTTCATACTCAAGTGCTCAAGTCCTAAAACAATTTATAACTAATTGTATAAGACTTCTCA- A AATAGGGTTCATTCCGAATTATGGACGTGAACGACTCAATTCAAGGATTTCAATAACCATATATATAACTCAAT- A ATAGGAACTCAACAACTCCAGAACTCAATGATACTACTCATCTCAAGAATGCTCGACTCACAGGGTCTTTGCGA- A ATTATTGGGCATGAACAACTCAACTCAAAGACCTTCATTTATACCATATGGTAGTCCCATAATAGGAATATAAT- C CCAAAAAAATTAGGAACTCAATACTCAAAAACTTAGAACTCGAAGATATTACTCATCTCAAAGATATTCAATTT- A TGGAATTCATGCTGAATTATGAGCATGAACGACTTGACTCAAGGATCTCAATAATAATGTAGACTCATGAATAC- A CTCTTCTCATTCTCATACTCACATACTCGAGTATTAAAATAAATTATAAGTAATTGCAGAAGACTCCTTGAACA- G ACTCAAAAGGACTCCTTCGAATTTTACTCTTAATGCTACCTGAATTTTGTATTATAAATTTAAGGATCATGATT- A TGATATAAAGAATTTCTCAGCATATATGAAATGAACGAATTTGAGCATTGAACGTCTAACCTCATTTTTTAATT- A TTGTGATATGTAGAGTGGTGCAAAATCACAGATACCTCTCTTGATGCATTTCTATAGTTACGTTGATGTGAGAT- T ATATATAGTTCAGCAGCAGCATGTTGGGAAAATTACTAATAACTCTTCTTTTATATCAAATTGTTGAAGCATGA- T GACAACACTTGAAAAGTATCAACAATGCAGTTACGCATCTTTGGACCCGATGTTACCGGTTAGTGATACTCAGG- T ATTGTTTATCTACTTTATCATGTCGTAAGTATATTATTTGTAAAGATATATATCAAGATAGTTCGATTGCGTAC- A CTTACATTTTGATTATGTTTGGTGAATACTATTCTAATACCTTTTTTTTTCCTAAAGCCTAACAAATAAAGATA- A TTAAGATGGGAACGTAATTCAAGTACAACATGGTTCCATACGTGACATATTTACACATATAGTGGAACCAAAAG- A GCAATTTTTCCTAATATCATTTTCTAAATATCACGTGTGCCCGTGATTCTTTTTTATGGACATGAATTTTTTTT- T TAATATGAGTGGAAGTAAGGTTCGATCTTTCTATCTGCTTTGATATCATATTGAATCGTGTGATTGTCTCTTTA- A AAAATTAAGCAAGAGCATATTTTATTAATTAATTGTCTTTCTCGACGTTTTTCTCTTTCAACAGATGAACTACA- A TGAGTATGTGAGGCTAAAAGCTAGAGTTGAGCTCCTTCAACGTTCTTCAAAGGTAAGATATTAGTGATGTAATT- A AATGATTTTAGTTAGATTTACATAAGTTTTTAATAAGTGAAAATTAATAGACATATTCTTGGAGATTTGGGCAC- A CTAAACTCGAAAGAACTTGAGCAGCTTGAGCACCAATTGGATGCATCTTTGAAGAAAGTTAGATCAAAAAAGGT- A TATCCAAATACTATAACTTAAATATATTGTAACGATTTAATTAATAGCATGTGTCACGTTCATCTATTCTTTAG- T CACAATATATAGGGGCATGTCCTTAACAACGTGCCATGCCTCGATAGTCATTTTTGTCTTTTTGTGCGTATGAA- T TTAACTTTGACACAAATTTTTGTAGTAATAATAACTCATGCTTTAGCATCTTAGGAAGCAGTCATATGAAAAAC- A GAAGCATATATATATATTACATGAGTTAATTTAATTTAATATAAAATTTAATAAAATTGTGTCTCGCTATAAAT- A ATTTTATTAAAAAATTATATAAATATATTATTTTTTTAACTGGCCGCAAAGTTATATAAATTGATAGAGAAAGA- G GTTTTGGTGTAAGGTTCATTTTCCAACAATTAGTTTTATAATTTGTAAGTGCACACTTTATCAGACTCAATCTA- T GCTGGATCAGCTGGCAGACCTTCAAGAAAAGGTACACTGCCTTAACATTACAAAATTAATTTATTTCATCAAAA- G CATATCATAAAATTCTGACAAATAAATATATTAGGAGCAAATGCTGGAAGAAGCAAATAAACAACTAAAAAACA- A GGTACATATCTATATATGTGTGTTAATTAATTAAGTTGATTTTGTATTTTTGTTTAATGAATAATTGTTTGTGA- T CATCAGCTGGAAGAAAGTGCAGCTAGAATTCCACTTGGATTGTCATGGGGAAATAATGGAGGACAAACAATGGA- A TACAATCGACTCCCTCCACAAACTACTGCACAACCTTTCTTTCAACCTCTCCGTTTGAATTCTTCATCGCCTCA- A TTCGGGTAAGTATCTTATTTTATATGACTTAGTTTGACTTGACATAAAGTTTAATAAAGAAAGAAAGACTTTTA- A AACTTATAGTGTAAAATAAGTGAATAGATATATATGTGGTTGTACTAACACTACAACAAAAATAATTTTCAGCG-
G CATTAAATATTGACATTAATAATGAGTGCTAAAGACTTTATCGGTATTAGTTAAGTGTCATTAGGATCAATGTC- G TTAAAGGCTTCACGGACATATACAAAGAGTGACAATTGCCGCTAATGATTATTTTTGTTGTAGTGAAAATGAGT- A TTTTAAAGTTAAATTGTTACATAATATAGAAATATGTCAGAAACAGGACAAATATACCACCGAACTATCATATA- T GTTATGGAGATATTCTCAGTCATACTTCTGCGACATTGGTACTCATGTCGTCCAAAAACTAGAACATATATATA- C CCTTTATATATTAACGAAGATACAAGTGTCATAATCTTATGCACCGATTCGATATTTATTAAATATCGAATCGA- C GGATAAAATTATGTCACGTGTCCCTATTAAGTCTTCTATTAGAGTAAAAAGCATATATTCTCTAGTTTTTGAAC- G AAAAAAGGTATTAATGTCTCAAAAGTATAACGAAAAGCATTTGCATACAATTTATGATAATTTGGGGCATATTA- A TTTATCATTCCCCCTTTTTTTGGCACTGATTAAAAAGAAAAAGAAAGTTATAAAAATTGGGATAGAGGGAATAA- T TGTTTCATAGGGAAAACTTAGAAGCTTCTCAGTATGTCAGTGAGAATGTGTTTCCTAATTAGTGAACTATGGTT- T GGTGAAAAATAAAGAGAAAAAAATCAGTACAAATTTTCCACTGATTAGCAATGAGAAAAATATTTGTTTCTAGT- A GTATGAGGAGAGGATAGTCCGCATAAATAATCCTTAAATTTGTGGATAAATAAACTATTTTCAATAGATTATCG- T CTCAAAATAAAATAAAATGATTGCAAGAAAAGAATAATAGGTATGCTGGTAATATGTATAATACACTCAAATTT- A TTTGCTGTCCATGCAGATACAATCCAAATATGGGTGCAAATGATCATGAGGTTAATGCAGCAACAACTGCTCAT- A ATATTAATGGATTTATTCCAGGGTGGATGCTCTAA >allele-2 (SEQ ID NO: 11) ATGGGAAGAGGAAGAGTAGAACTAAAGAGAATAGAGAACAAAATAAACAGGCAAGTTACTTTTGCTAAGAGAAG- A AATGGACTTCTTAAGAAAGCTTATGAGTTATCTATACTTTGTGATGCTGAAGTTGCTCTCATCATCTTCTCTAG- C CGCGGAAAACTCTATGAGTTTTCAAGTGCTTCCAGGTATATATATATATACATATGTTTTTCTTCTTTTTGTGT- G TGCGTATGTGTTTACTTACTTTCATTAATTAACTCAACCATATATATACATCTCTCACCTCAATTATATATATG- T TTGAGATCTGAATGTCTACGGACTCCATTTAGGTACATATCTTTGTTTAGATCATAAATCATCTATCTTCATTC- C TAAGATCTACTAATATATATGTATAAGAAGATCCATCCATCTATTAGGTTTTTCAACAACATATACAGTGAAAT- C TTATATGTGGGCCCACGTATAGCCATATGAGAAAATAGTGTGCACGTAAACATTATCATTACTTAATTATAGGA- A TATACATCCATTAGGTTTATCAACAACAATAAAATCCTCTAAATGGAGTCTAGTCATAGGTCTAGCCGTTTGAA- A ATGTAAAATATATGCCGATCTTATCACTATGTCATAATAATAGATATGTTGTTATTGAAAGATTCTCAATCTTT- T TTTTTCTTCAAGGTAGAGATTCTTAAGTGGATTCATGTTTTTTTTATCAAAAAAGAAAAAAACAAAAGTGTCCA- T TTGTTCATCTAATGGGTTTTCCATGTTACCAATTCACTACACTGTTGAGATTTGATTATCAGATGTGTCAAGTT- T CGTTTGGTTCCCTAGAAGGGAGAAAAGGCTGCTTATGCAGGCAGGGTATTAAAGATGATATTAATATCTGCAGT- A ATCAGTAACAGAATATATAAACTTAATAATAAACTTGAAGGTACTTAATTATCCAGCAGATAATCTTCTGTCTC- A CCGTACACTTTTGTTATATCATAAGCATAAGAATTGTTTTATCAAATATTACCAAACAAAACTTAGTTTTGTTT- G GTAATATTTTATAAAATATGTTACCGAAAGTTACTTCCTATAACATATTTTATAAAGAAAAAAATTAAAAACTC- C ATATACCTAAGAAATGTAACCCCCCCTCCATAACAACAATTTAACAAAAATAAAAACCTACTTTTTTTGAATTT- G GTAAATTAGTTTTCTATCCTTTTTAGTAACTTCCTTTCTTATTTTCTTTTTATATTGGTAAAGTTTAATATTAC- A CATTATTTTAACATGTTATAATTTTTTGTGATGCTTAATTATTTGATACATGTAATAAACCATATATTAGAGCT- A TAAATCAATGACAATGCATGTAGATACAACTCATTTATGATATATTTTGTTTATATATATAACCAATTAGATAA- T TTGTCTGCGCTTTGTGCAGTCATAAATAATAATTGCATTGAACTTGCAAATATTTTTTTTTAATATCCATACAT- T AAAAAAAAAGAAAGAGGAAAATTGGTTCCTAAAATATTAGCAATATTCAAACATTTATTTGATTATTAATCATT- A TCACATAACTTAAGAACGTCTAATGAATGAATTATTCACGAAATAATAAATCATTGGTTCTAAAAAGGAATTTC- G TAATAAAATAAAAATTTAAGTTACCATATTCAAAAAAAGAAATTGTGCTTGAACATGAAAATAATTATAATTTT- T GAACTTGTATAATGAATTTCTTCAATTCATAAGTGGGAAATTTCATATTTATGTAATAATAGATAATATGTAAG- C TCTAATATAGTACTTTAGGTTATAGAATTTAATATAAAATATCAAAACATGAATTCTTGAAATTGAGTAGAGTA- A TTATTTTCTGCACAATGAATCGGAGACAATAACTTTGAAGAAATATAAACAATAGAGTTCAAAAGATGTAGTCA- A AAACAACAATTAATATCATAAGAATAAATTAATGAGTGTAAAAATGCATACCACGATATGTAAAAACAGAATGG- A ATATAATAAAAAAAATCGAGTTCACTGAATACACAATGTTCCTTTAAGAAAATTATTCTCCTCCAATACCAACG- A GATTACATCCTCTAAGGATGGAAATGATTTCATTCCCCAACTTATCCATATAAAAATAGTGGTGTTAGTATGTA- A CTCAATAGGAGTAAAATACACAAATATTTAATTTTGCGAAAGTAGAAGAAGAAGATCATATTTTTTTTTTAAAA- T GAGAGGATATATCACTATTTTTAAACAACAAAGGGTAGTGTTAACAAATTTTTATTGTGTCTTGTCTAAAAGGT- T ACAGCTATTTGAAAAAGTTACAACACTTCGAAAAGTGAACAACATTTCATAAAAGTCGTAACTTTTCATAAAGT- C GTAACTCTTCATAAATGTCGCAACTCTTCATAAAAATTACAACTATTGATAAAAGTCACCACTCTTGATAAAGA- T CACCACTCTTCATTGAAGTTGCAACTTTTCATAAAAATCACATCTTTTAATAAAAAAGAAAGACTAGTTTTTGG- A ATAAATTAATTTAAAAGAAAATTTTTGTTTGTGGTGGGGCGCCAAGTAGGCAGGCGTAGGGTTCTTTTTATATA- A ATATATATGATATATGATTCAATATTTGATATATATATATATAGAGAGAGAGATGACAATATAAGACAATTGCA- A AAAATAAAATAAAAAACTAATCGAGTAAGTAGGCAAAAAATTATTTATAAAATATATGTAGAATTTCTTTATCA- G ATATGACTGCCCAAATCTTATATTCAAACTAAAATGCAAGATCAATGGTGCTATATATAGGGTTTTACACAAAA- A TCAAGATCTAGTCTTGCAAATTTAAATAAAAAACAGTGGTTTACGATGAGATAATGTAGCTTTTGTAAACAATA- A AACTAGAAAAATAAATGCAAAGGCATTTTAAAGGATATAATAATGAAGATCAAAGGCAGAGAAGGGAAGAGGCA- G CAATATAATGAAGGTAACATCATGGTTCCATTCTAATATATATGCTATTTTTCTTTAGTAAATTTCAAAAATAA- T GATACATTTTCATATTTGATAAATATTTAATGATACTATCAACATTTTATCTATATTGAGTTCCATTTATTTGA- C CAAAACCTCACAAAGATGTGCTCTTCGATCTATTCAAAATTTATTCAATTTAAGGATAGCTTTAAAACATGACA- A AGTTTTCTCATATATTTCTTAAATTTTATATCCAGTCTAAATACGTATATAAACTAAAATGAAGAGAATAATAT- G AAGCTTTATTTGATGACATTGTTGAAATAACCAAAAGCTATAAGTGATACAATAGTAAATTTACCATTGGTCAA- T TCAGAATTATTTAAAAGCTAAAAAAGTCATATAAGTTGGGGTTGCTCAATGTATAGTTTTTGGCTTGTTTTAAG- C ATTTTAAAACTTTTTTTAAGCGCTTTTTAACATTGCTAAACACTCAAAAAATGATAAATAGTATTTAAATTTGA- T ATGATTAGCTTAAAAGTGAACTCATATACCTTCAAAGTAAAAATCCCCAATTCGAGCTTTCAAACCACTTGATT- T TGTGGATGAAATTATACTGAAGTTGAATATATCACTATTTATAGGGGTTAGTGAACTAATACCTTTGATTATTT- G GTAGAAATATGTATCTTAGATCACCCTAATGAGCTCCCACTTTTAAAATAGGAAAAACCTCATATGAAGTTCAT- C ACTGTTCATTATATATCACTTTTATTCAAAAACGTTTACAAATGTTCATTGTGACTAAATACCCTTGAGTGTCG- A GTTTTCACACCAATAAGGCCTAATTAATAGGTAAACAAAACTATGTCAATCTTCAAAACGCAAATCTAATTATA- T TTTTAACAAGATTAGAGGTATATATACATATTCTCTTATGTTAACTCTTATTCATTATTGAACAAACTAAGTAA- G TGTACCCAAGGTCTCAAACAACAGTTGGTACATTCTTTGTATGTCTTCCTTTGTCTCTTAATAGTCGTCTCCTC- C TGTCGATGATTCCTCCAAATACATTAATCAAAGGAAAATCTTTCGCCCTCAACTTGCAAACTTGTCTATCTAAA- A TTGTTAACAAAGTTTCTTCATTAGAGAAACTATGATTTCTTGAATGTAGCAATTTGATGTGCCATGACTATCAT- C TTGATCAACATGCTTCTTAACCATCAAAAGATCCTAAACTAGATGCATGTCATGTTAGGAGACATATTAAGCTT- G TATATAACTACACCAACATGCTTTAGGATCTCATAAGATCCAAAATTTCTTATTTGGGAGATTTTCAATCCAAC- A ACCATCATAATGAGCAACGTGATGTTATAACATCTCTCTCACACTGCCAGAACAGTCTTATACCTTGTCGGAGT- G AAGGACATCCTTAACTAAGTAGATTCACTAAGCTATACTTAAAAAGCAATAAGGAATCATCTAAAATGTGTGAC- T CTTAACCCATATTGGCATACATGGTTTATGGGGGTTATTAATTGTCTGAACACTCCCCCATATAAATCAGTGAT- C AATATTAATCCCAATAATATACACTATTATGATTTGAGACTACACCCTGGAAGTGGCCGGCTCTCAAGAACCAT- T GCTGATCTCCAAGCCAAACCCTCATTCTGGTTGACTACAAGCTGAAGGCAAACTCAAGTATACAAAGCTTAAAA- C ATAATAAAAATAATATACTCAACTCGCCACAAAATAGGCATTTAAGTCTTTAAAACATTTTTAAAAATAAATGA- A ACAAACTTCTCAAACTGTAATGTATATCTATGAAGCCTCTAAATGAAAAAAATGAAGGCAGATGAGACATACGG- C ATCCTAACAACTGATATAACTAAGAGTACAAGTGGAGCCCTTCGGATGTAAGGAGGCTCATCAAAGCTAATGTG- A ACTCCATGTGGTATCAATGAAGCACCTATTGATGACCGTGAATACATGTATCTGCATCATGAAACGATGCAGGC- C AAAGGGCTTAGTACGTGAAATGTACGAGCATGTAAAGGGAATTCAAATACATAAACATAGGCTTGAACTTTGAT- A TAAAGGAAACATACTTACCTATTTTTAACTCAAGAATAAAAAACATAGTTCAACTCAATGAAAAGACACTCAAG- T
CAGTGAAATAGGCCGCAACTCAATAATAAGATATTCGACTATGGGTAATCAACTCTGGGTACTCTATTCAATAT- A AAGTAAGAATACAAATGCATTATATGGAAAGACTTTAAAACGGTAGAAAACAACTCAATGTATTGAAAATTCAA- T AGTAAATTAGTTTGTATGTAAGGAACAATATAAACTTTGTTTGTATATGAAAATACAAAATAAACTTTGTGTAT- A TAAAAGTACAAAATATCTCTGTGAAAGTTTCTCTAACCAACAACCATCACTATGAGCTTTCTGATAATACCACG- T TTCGCCCATGATGTCAGAACTGTCCTATGATTTTCCAGTTCATAAGACCTACTCACTAAGTGGATCCACAAGTC- T ATGCTAAAAAATATTTAAGGAATCGTCTAAAAAGTATGACTCATTCTACCCACGTTGGCTACATGATTTATGGG- G GTCGTAAGTTATCTAAACTCTCCTCCATATCGATGCGTAATGCTACTCACAAATATACTAGCTCACATGTTTAA- A AATATAACTCGTTTTGTTTGAGATCATTACTCAAAATCCTTCTCTTAAAAGAGATGATACTCAAACTGCTCAAA- A CTCTTTTGGAAATCTCAAATTCGTCTCATCTTAAATGTAAAAATATTTACTCTTGGGAATACATAGTTATCATA- T ATCATTTTAAAGAAAATGAACTCAACTCTGTTCTTTCTCAACTCAAGTGCTCAGTCTTAAACCAAATTAAAAAA- A AGACTTCTCAAAATAAAGTTTATGTCGAATTATGGACGTGAACAATTCAATTCAAAGTTTTCGATAACCATAAC- T AAAACTAAATACTCGAGACTCAACATCTTAGAACTCAAGAACTTAAATGGTAATACTTCTTTCAAGAATGCTCG- A CTCAGAAGGTTAATGCAGAATAATGTGCATGAATTACTCAACTAAAGGACTCACTGATACTACTCAATCTCAAG- A TTGCTCGACTCGTAGGGTTAATGCAGAATTATGTGCATGAACTACTCAACTCAAAGACCTTCATAGGTAACATG- T AGTAGCCCCATGATTTGGAATATAATCCCAAAATGATTAGGAACTCAATACTCAGGACTTAGAACTTGAAGATA- A TACTACTTCTCTCAAAGATACCCAACTGACGGAGTTCATGCAGAATTTATGGGCATGAACTACTCGACTCAAGA- G TCTAAAACACAATATGACACTCATGTATATAACTCTTCTCATTCTAATACTTGTTTTCTCAAAACTCGGTTTAA- C TAAATAGTTGATCTCAAAGGATTCACAATTGAACTCAAAGACTTTCTTTGACTCCACTCTTAATTCTCTCTTAA- A TTTGTATTTGAATTATGAATTTAAGAGTTATGATTCATGATATGGGGAATCTCAATAACAATATAGAAATTTGA- T AATTAGGAATAGTACTTTTAAAAGAAAACATGAATTCAACTTAAAATCAACTTATCTAAAAAATATTCAAATAT- A GGGAAAGTATCCTAGACTACTGTGCTACTGATCTGAAAGTAGATGTAGGATGTGAGGATGAACTAGTCCAACAC- T ATGATAGCCTTACATACCTGGAATAACGAGGTTCTTGGAAAATCTTCACTTGAAGAAGAACTTGATTAGAAGCC- T TGAAACCTAGCTTGAAGGTAAACAATCAAGAAAACCTTTCTTAAGATTCTTGAATTAGTTTATGAAAATCTCTA- T GACCAAGCATTTTGATTTTCACTAGTGATTCATAATTGTATGGAGGAATTTGAATTGAAAAAGATGAAATGCTT- G GAGAAAAGCTATCTTTGAAGAAGCTTGAAAAAGATTGGAAAGTCCTGTACTTTGATTTTCCCTTAGGATTTTGT- C TTAGGGTTTGAGATAGAAAAGAATGATGGACTAAAAGATGAAAATCTAATTGTTTGGATCCTTTTTCAGCCAAG- A AATCCGTTTAGGGTTTTCTTGGAGACAAACAAAATAAAAAAGACCATTTTTAATATTTTTCCGTCGGCTAATTC- G TAATAACATTGTATCATGTTATTGAAAGAGTCATAACTTTTTACTCAAAAATTGGATTGATGCGAAATTAGTGG- T GTTGGAAAGTAGATTCAAGTACCTCTAATTGGATAGGTTATTCCCTACATAAGTCTTTATATTCTAAAAGATAT- G GTTGTTTGCACTTGACCTAAGTAGAATTTTACATGAAAACTTAATAGAGAAGGAAACTTCAAGAACTCATCAAG- A AATTTCAATTGCTCAATATTTATGGATAAATTTGTAGAAGAAACTCATGATTGACATGCGGGTGAATAAACCCA- A CACTATGGAAGCTTACATACCTCAAAGAACTAGGTTCTTGGCGAAATCTTGAATTTCTTCAACGAACGCTTGAA- A CTTTGAACTTTTTCTCTTCTTGAACTCTCAACTAAAACCCTAGGCGTATATTAGGATTATAAAAGTTAACATGA- T AGGATTAGACCTTTAAAAACTTTCTAAAATGAATTAAATCTGATTTAGCATGAAAAAGACCAAAATACCCCTTA- C TATTTTCGGATAACTTTTCTTAATTGGACTGCCTGACTTCAAAAAGGTATATCTCACTCATCCGACCTCAAAAT- T TAGCAAATTCAGTGGCGTTAGAAAGCTAATTTAAACACCTTTCATTTTCCATCTCATGGCACACATAACTCATT- C TTTAAAGAGAGCTATGATCGTTCAAATTAACTCAAATCTTAGAAGAATTTAGGAATGTCTTGAACGAGCTACAT- C TAGTGACCTTAACACTTTGGAAAATTTTAAATTTCTTAGTAAAAACTTACTCACTATGAAGGATGGTTCAAGTC- T TAGCTCAAAATTTTCCTAAGTTGCTATATATACTCATGCTCATATGTTTAAAACCAAAACCCTTCCTCGATTTG- A ATTAATTACCAAAAAGATTCTCTTAAAAAGATAATGCTCAAAACTCCCCCTAAACTCATTTGGAAATCTAGGTT- T CCCTTGTTTTAAATATAAAAACATTTACTCTTGGAAATATTTAGTTCTCAGATATTCACTTGAAAAAAATTAAA- C TCGACTCTCATCATCTTCATACTCAAGTGCTCAAGTCCTAAAACAATTTATAACTAATTGTATAAGACTTCTCA- A AATAGGGTTCATTCCGAATTATGGACGTGAACGACTCAATTCAAGGATTTCAATAACCATATATATAACTCAAT- A ATAGGAACTCAACAACTCCAGAACTCAATGATACTACTCATCTCAAGAATGCTCGACTCACAGGGTCTTTGCGA- A ATTATTGGGCATGAACAACTCAACTCAAAGACCTTCATTTATACCATATGGTAGTCCCATAATAGGAATATAAT- C CCAAAAAAATTAGGAACTCAATACTCAAAAACTTAGAACTCGAAGATATTACTCATCTCAAAGATATTCAATTT- A TGGAATTCATGCTGAATTATGAGCATGAACGACTTGACTCAAGGATCTCAATAATAATGTAGACTCATGAATAC- A CTCTTCTCATTCTCATACTCACATACTCGAGTATTAAAATAAATTATAAGTAATTGCAGAAGACTCCTTGAACA- G ACTCAAAAGGACTCCTTCGAATTTTACTCTTAATGCTACCTGAATTTTGTATTATAAATTTAAGGATCATGATT- A TGATATAAAGAATTTCTCAGCATATATGAAATGAACGAATTTGAGCATTGAACGTCTAACCTCATTTTTTAATT- A TTGTGATATGTAGAGTGGTGCAAAATCACAGATACCTCTCTTGATGCATTTCTATAGTTACGTTGATGTGAGAT- T ATATATAGTTCAGCAGCAGCATGTTGGGAAAATTACTAATAACTCTTCTTTTATATCAAATTGTTGAAGCATGA- T GACAACACTTGAAAAGTATCAACAATGCAGTTACGCATCTTTGGACCCGATGTTACCGGTTAGTGATACTCAGG- T ATTGTTTATCTACTTTATCATGTCGTAAGTATATTATTTGTAAAGATATATATCAAGATAGTTCGATTGCGTAC- A CTTACATTTTGATTATGTTTGGTGAATACTATTCTAATACCTTTTTTTTTCCTAAAGCCTAACAAATAAAGATA- A TTAAGATGGGAACGTAATTCAAGTACAACATGGTTCCATACGTGACATATTTACACATATAGTGGAACCAAAAG- A GCAATTTTTCCTAATATCATTTTCTAAATATCACGTGTGCCCGTGATTCTTTTTTATGGACATGAATTTTTTTT- T TAATATGAGTGGAAGTAAGGTTCGATCTTTCTATCTGCTTTGATATCATATTGAATCGTGTGATTGTCTCTTTA- A AAAATTAAGCAAGAGCATATTTTATTAATTAATTGTCTTTCTCGACGTTTTTCTCTTTCAACAGATGAACTACA- A TGAGTATGTGAGGCTAAAAGCTAGAGTTGAGCTCCTTCAACGTTC TCAAAGGTAA GATATTAGTGATGTAATTAAATGATTTTAGTTAGATTTACATAAGTTTTTAATAAGTGAAAATTAATAGACATA- T TCTTGGAGAGATTTGGGCACACTAAACTCGAAAGAACTTGAGCAGCTTGAGCACCAATTGGATGCATCTTTGAA- G AAAGTTAGATCAAAAAAGGTATATCCAAATACTATAACTTAAATATATTGTAACGATTTAATTAATAGCATGTG- T CACGTTCATCTATTCTTTAGTCACAATATATAGGGGCATGTCCTTAACAACGTGCCATGCCTCGATAGTCATTT- T TGTCTTTTTGTGCGTATGAATTTAACTTTGACACAAATTTTTGTAGTAATAATAACTCATGCTTTAGCATCTTA- G GAAGCAGTCATATGAAAAACAGAAGCATATATATATATTACATGAGTTAATTTAATTTAATATAAAATTTAATA- A AATTGTGTCTCGCTATAAATAATTTTATTAAAAAATTATATAAATATATTATTTTTTTAACTGGCCGCAAAGTT- A TATAAATTGATAGAGAAAGAGGTTTTGGTGTAAGGTTCATTTTCCAACAATTAGTTTTATAATTTGTAAGTGCA- C ACTTTATCAGACTCAATCTATGCTGGATCAGCTGGCAGACCTTCAAGAAAAGGTACACTGCCTTAACATTACAA- A ATTAATTTATTTCATCAAAAGCATATCATAAAATTCTGACAAATAAATATATTAGGAGCAAATGCTGGAAGAAG- C AAATAAACAACTAAAAAACAAGGTACATATCTATATATGTGTGTTAATTAATTAAGTTGATTTTGTATTTTTGT- T TAATGAATAATTGTTTGTGATCATCAGCTGGAAGAAAGTGCAGCTAGAATTCCACTTGGATTGTCATGGGGAAA- T AATGGAGGACAAACAATGGAATACAATCGACTCCCTCCACAAACTACTGCACAACCTTTCTTTCAACCTCTCCG- T TTGAATTCTTCATCGCCTCAATTCGGGTAAGTATCTTATTTTATATGACTTAGTTTGACTTGACATAAAGTTTA- A TAAAGAAAGAAAGACTTTTAAAACTTATAGTGTAAAATAAGTGAATAGATATATATGTGGTTGTACTAACACTA- C AACAAAAATAATTTTCAGCGGCATTAAATATTGACATTAATAATGAGTGCTAAAGACTTTATCGGTATTAGTTA- A GTGTCATTAGGATCAATGTCGTTAAAGGCTTCACGGACATATACAAAGAGTGACAATTGCCGCTAATGATTATT- T TTGTTGTAGTGAAAATGAGTATTTTAAAGTTAAATTGTTACATAATATAGAAATATGTCAGAAACAGGACAAAT- A TACCACCGAACTATCATATATGTTATGGAGATATTCTCAGTCATACTTCTGCGACATTGGTACTCATGTCGTCC- A AAAACTAGAACATATATATACCCTTTATATATTAACGAAGATACAAGTGTCATAATCTTATGCACCGATTCGAT- A TTTATTAAATATCGAATCGACGGATAAAATTATGTCACGTGTCCCTATTAAGTCTTCTATTAGAGTAAAAAGCA- T ATATTCTCTAGTTTTTGAACGAAAAAAGGTATTAATGTCTCAAAAGTATAACGAAAAGCATTTGCATACAATTT- A TGATAATTTGGGGCATATTAATTTATCATTCCCCCTTTTTTTGGCACTGATTAAAAAGAAAAAGAAAGTTATAA- A
AATTGGGATAGAGGGAATAATTGTTTCATAGGGAAAACTTAGAAGCTTCTCAGTATGTCAGTGAGAATGTGTTT- C CTAATTAGTGAACTATGGTTTGGTGAAAAATAAAGAGAAAAAAATCAGTACAAATTTTCCACTGATTAGCAATG- A GAAAAATATTTGTTTCTAGTAGTATGAGGAGAGGATAGTCCGCATAAATAATCCTTAAATTTGTGGATAAATAA- A CTATTTTCAATAGATTATCGTCTCAAAATAAAATAAAATGATTGCAAGAAAAGAATAATAGGTATGCTGGTAAT- A TGTATAATACACTCAAATTTATTTGCTGTCCATGCAGATACAATCCAAATATGGGTGCAAATGATCATGAGGTT- A ATGCAGCAACAACTGCTCATAATATTAATGGATTTATTCCAGGGTGGATGCTCTAA Wild-type Solyc03g114840 gene (SEQ ID NO: 12) ATGGGAAGAGGAAGAGTTGAGCTTAAGAGAATAGAAAATAAAATAAATAGGCAAGTCACTTTTGCTAAGAGAAG- A AATGGACTTCTTAAAAAAGCTTATGAACTTTCTGTTCTTTGTGATGCTGAAGTTGCCCTTATAATCTTCTCTAA- T AGGGGTAAACTCTATGAATTTTGCAGCACTTCAAGGTATTTTTTATTTTATTATATTAACATCAAAGATTTTAT- T TTTTTAAAAAAAACCTTAAGTCCTTCATTACCAAAACCCTTAATTGATTTACAAAGTACTTTCATTAAATTTAG- T AATTCTTTTTTTTTTTATCTCTGACTTCAATTATAATGCAAGATCTATGTTGTCTTTATATATATTGAATTATA- T ATGTACTGTATTTTTACTATATACATATAAGATCCTTTTTTCTTTTTTTTCTGTCTCTTTATATAAATATATTT- T AAATAGTTGATTTTGAAAGATCTACTAATGTATATTTATTTTTGGAACTTTTGTGTATATGGAATTTTTTTCTT- T TTTATGTTTTTTTTTTGTTCTAATTGTTTTAAAAGCGTTTAAGATCAGAATGTTCTTGATTATTCTTTTAGGAA- A AAGATTTCCCATACATTGAGTTATTTTTTGATCTGTAGATTGAATTTTTTTAATGAGTTCCGATAGATTTTCGT- T CAATTTTTCAATGAAACTATTGAGGGTTGATGATTAGATAATTACTCGATTGAAAGTTTTTATTTCAAAAAAAT- T ATAATTCTTCTTAATTTTATATTTATGAGATAGAGTTAGTTTAGTGATTATATGAAAAATCGTATCAGATTATT- G GGAATCGAAACTTAAAAATTCTGAAAATATTATTATAAATTTTACATGTTACAATATTTTTACTGTTAAGATTT- G ATTTGCAGACTAGGTGTCATGTTTGACAGTTGATAAAAAATCTGTTATTTTTGTTCTTTAATTCCCAAGACGGA- T AAACAAAGGCTGCTTATGTTGGTTTCCAATAAGCAGCCATAATTTTAAATATTTTTGTTAAGATTAATTAATAA- C AATTATTTCCACCAGATAATTTTCAAAATTTGTGACCCCGAGTTCATATAAATTGTTAATTTTACTGCTAGAAA- T TACATCGATAATAATTTATTTAGTGTAATCTTATAAATACGAGGGCAGTAGTGTATAGACTGTTTTTTATTAAT- C CTGACTCAAAGTGAGGTAAGTTAAGTATATTTTGATTAAAAGGACTACATTTCATTTATGTATGTTTAATTAAT- A TTATTTTGTAAGTCAATAAATCTAAACAACATGAGTTTATCTAGACCCTTAATTATGCACCTTCATTATCAATT- T TTTCAATACTCTCCTCAGAACATATGCTTCTCTATAATTTTGTGCACGAGTTAATCAATTCTTCCTTTTCAATA- A TTAAATATGTGATTTATGTTTAGCACTTATTTTTCGGTTAGTTAATTGATAATAGGAAAAAGCCTCTTTTTTTT- T GTGTGTGTGGTAATTAGGATCTTTATTGAATTTAAAATGACCTACTATAGAACTTGGGAGTTTTTCTTCATAAT- A ATGCACTGCAACGTGTTAAAAAAAAAGAATCAAATGAAATTAATAGATGTTTACTGGATTGCCATGGTAAAGTG- A TAAGTATTAATTTCGCTTTAACTAAGAGATCATTATATTCAAGTCCCCTTGATACAAACTTGCCTTTGTAAATA- A GTGTTTTATTTTTCAATGTGAAACTTTCGCTGTTAATTTAAATTTAATTATACTTCTATATAAATACCAAACAA- T AATGTAATAAAACAAAAAATAAAAGAGTAGATGTTTCATATTGTTAATGCAGCATGGTGAAAACAATTGAAAAG- T ACCAACGTTGCAGCTATGCTACTTTGGAAGCCAACCAATCAGTTACTGATACTCAGGTACTGCTTTATATTTTA- A TTTATTTGGCTTTTTTTTAAAAAAATAATTAGTTTTGATTAATATGCATCATTTTATTTATTTTTGGCAACTCT- T TATTTATCAGTAATAAGTAATAACTTTTTAACTAGTATATTTAAAAATCACAAAATTTAAGAATATTTTAATAG- A TTCGACATATTTTAGTTTAAAAATAACAAATTAAATTATGTTTTTAATTTTTTAAATATTCTTACTATAATTAT- C ATGTACTCTTTGATCTGTTCATCTTTTCCATGATAATATTATTTGGTCAGTTAGTGACATAAGAGTTTGAAATT- T AGAAAAAAGGAATATTTGGAGAAAACTGAAATGGATATTTAGAAATGAAAGTTATTTAATATAAATATAAGTAT- G GGCTGCTGAGTTGGGAATCCACGCTGGAGATCTCAAGTTTGAAGCGTCTCACAAACAATAGTAATGTCTTTTTG- G TCGAGTTTGTCGGATTGGACTTGTCCGTGGCCTGTGGGTTACTTTTCCTATATGGTTTGCAAGCTATCGGGAAT- T TTATCCTGGCGCACCCAAATTTGAGTTATTTTTGAGTTTTTATATGAAATAGCTTTGTGAATTCATCGAACTCC- C GAAAACATTGAACTTTACTCCAAGTTGAATTGCAGTAAAATAATAGTAGCGATTCTTTAATTTATCCTAACAGT- T TTTCGAAATAATAATCCCAAAAAAGTTTAAAATAACCATACCATAAACTTACTGGGTAAGATATTATCTGTCTA- A TAATATATAGTAGTTTCTTTTGTTTTATTAGTTTATCTAATCCATATTTCATTTCTTGATAAGTTATTCTTAAT- A GGAAAATAAACTTATTTCGAAAAACTGTTTTTAAAATTTTCTTGAGTTGAGTCTTGGATGAAAAATAGTTAATT- T TGCATTAATTAATTTTGTTCTAACAAAAACTAATTAAATTTTTTTGAAGCGCATATTCACTCAAAAAATAAATA- A AAACCATCATGCATACAGGAAATGTTCTTTTTTTAATTTATTTTTTCATTGGAGCCCTGACTAATTTTATATCG- G TTCATACTTTCATAAATTACAAAAAGTTCAAAATTTAAACTAACCATATAAGTGAATAAAATAAATCAACAAAA- T ATTCACCACATAATACTTTTTAAATAGAATTTTTCATACCAAAGACCTTACTTTAATTAATTAGGGTGAGAGAA- T CCTATAAGTCAATGCAAAACAATTCTATCTATCGGATTATAATCGTTGATTCATAAAATTTTAAAATCGACGAT- T TTCATTTAAATGACCCTTTTTTTTCTTTCATTTTTTATTGTTATTCATCTATTTAACTTGTGAGCATCTTTCAT- A TTGATATTTCAGACCCTTAAATTAATTGTTTTCTTACAGAATAACTACCACGAATATCTGAGGCTAAAAGCTAG- A GTTGAGCTCCTCCAACGATCTCAGAGGTAATTTCTGTTCACTATCTTTATCTCAAATGAATTCTCATGTTTTTA- T TTTTCGAGATTCAGATTAAATATAATTTGATGTATTATTAATTTAAATACGTTATTTAATATGGTCCTTATGTC- C AACCATTGATTTAATTTGATATTTTTTTAATGAAAATTACACAGAAACTTTCTTGGTGAAGATTTGGGCACGTT- A AGCTCGAAGGACCTTGAGCAGCTTGAGAATCAATTAGAGTCTTCCTTAAAGCAAATCAGGTCAAGGAAGGTAAA- T TATTTAATCTAATTATACAGAAAAATCATCTAAAAGTTACCTTAATTGCTAGCCCAATAAGTTTGCTATCTGTT- G ATCCTCACATTATTTTACTCACAGAAATTCACAATACCTTTATTTTTGTTTGAGTTTGAAGTATACAATTTCTT- T AAAATGTAAAATTTGAAATCTCAACAATAAGATATGTTATTGATCCTTGCAATTATGGGTAGATTGCGAATTAA- A CTATCTTGTCTTTGCTTACAACAGTCATTTTGTTTATAAACTAATTATACATAAATCCTAACTGATAGATAGTT- T ATAAAGATGAATAATGAACATAGGTCATATATTAAAAAAACAAAAAACAAAAAAAAACTAAACAAGATGAGCGA- G TCAAAAATAGTCTTAACAAAAGAATATATATATATGTATATATCATATTTGATTTGTCTATTTTTAATTTTGAA- A AAACTAAGTTAATCGATATATAATATGAAGGCATAATGCATAAATATGTCCTTTAACTTGGTTTTAAATCACAT- T TATACCTCTTCGACTTTGGGTGTATACAAACAAACACTTAAACTTATATAATGTTGAACAAATAGATATATATG- T CCTACATGTCATTTTTCGTCCTAAATGGTGTCCTAAGTGTATTGTGTCACGCAGGACTCATGTGTCTATTTGTT- C AAATTTATACAAGTTTAAGTGCTTACTTATGTATAAACAAAGTTGAATGACATAAATGTGAAATAAAATCAAAT- T AAAGGGCATATTTATGCATTATACCTAATACGAAAATCCATATTATTCACTAAAAAATGAGTCGGATTATATGA- T TACTTTTTTATTCATTTTGCCAATCGTATCCTACGACATTGTTTTTAATTTGCAGACACAATTCATGCTGGATC- A GCTTGCAGATCTTCAACAAAAGGTAATTATAAAATTCTACAAATTTCCAATAATTAATAAATGGAATAATTATG- C GCGAGAAATTTATCTATTTAAAATTTACGATGAATTTTAATTTTACAGGAGCAAATGCTTGCAGAATCTAATAG- A TTACTCCGTAGAAAGGTAAACTAACTTGATAGCCGTGCGTAATGAATAACTTATTTTATTTTCAAAATTATAAA- T CTAAATACTTAGGTAACTCGATAACATAAGAAGTATTTATACTGATGATATTGGTGTTGTGTTTTTTTTTATTA- G TTAGAAGAAAGTGTAGCTGGATTTCCACTTCGATTGTGTTGGGAAGATGGAGGTGATCATCAACTTATGCATCA- A CAAAATCGTCTCCCTAACACAGAGGGTTTCTTTCAGCCTCTTGGATTGCATTCTTCTTCTCCACATTTTGGGTA- A TTACTTTTATTATTATTAAAAATAATTTCAATTTTTTTTACTTTTATTTCGATTAATAAATCAATGTGCACCAA- G GTACGGTCTAACATAAACAAAAATGTGGGGAATGCTCTTAAAGCCCTAACAAAAGTTATTTGGTACGTGTACTA- A TGTAATCGTACTATATATCTTACTTGATTAGTGGATGGACAGTACTGGGCACACACAATTGACATAAGTTATTA- T AAGGAAAAAAAAAGGCCAATAATCAATATAGTCCAACATTACATTATTTATTATAACAGGTCACTCTAGATTAA- A TGTTAATGAATAACAAAAAGTCTCATATTGATGATTAATGTGATGGGTGGGCTTCTTATAAGGCTTTGACAATC- C TACTCTCTTTGAGCTAGTTTTGGGGGTGTGACCTAATTCAACAGAACGTAGTTAAGATTGTGAAGTAAAGTTGA- T CATTGTTATAACAGGTTTAAATACTTCTAGTAAAAATAGTTCCTAGATAATCCATCGCAAAATAGCTCCTATAT- A GTTAGTTGGATTTTCATATAATCTATAGCTTATACATAGCTAAATGGGAATAGATGAGAGTTTCTGTTGTTTAG- A TATGATATTTGATCGGTTTCTAAATCGTTACTATCATGTAGTGAATAATTTTCATGTTATTACTATTACATTTG- A TTGTTTCTGTGGTTATTTTTTTTTCTAGGTACAATCCTGTTAATACAGATGAGGTGAATGCAGCGGCAACTGCA- C ACAATATGAATGGATTTATTCATGGATGGATGCTTTAA
Wild-type Solyc03g114840 coding sequence (SEQ ID NO: 13) ATGGGAAGAGGAAGAGTTGAGCTTAAGAGAATAGAAAATAAAATAAATAGGCAAGTCACTTTTGCTAAGAGAAG- A AATGGACTTCTTAAAAAAGCTTATGAACTTTCTGTTCTTTGTGATGCTGAAGTTGCCCTTATAATCTTCTCTAA- T AGGGGTAAACTCTATGAATTTTGCAGCACTTCAAGCATGGTGAAAACAATTGAAAAGTACCAACGTTGCAGCTA- T GCTACTTTGGAAGCCAACCAATCAGTTACTGATACTCAGAATAACTACCACGAATATCTGAGGCTAAAAGCTAG- A GTTGAGCTCCTCCAACGATCTCAGAGAAACTTTCTTGGTGAAGATTTGGGCACGTTAAGCTCGAAGGACCTTGA- G CAGCTTGAGAATCAATTAGAGTCTTCCTTAAAGCAAATCAGGTCAAGGAAGACACAATTCATGCTGGATCAGCT- T GCAGATCTTCAACAAAAGGAGCAAATGCTTGCAGAATCTAATAGATTACTCCGTAGAAAGTTAGAAGAAAGTGT- A GCTGGATTTCCACTTCGATTGTGTTGGGAAGATGGAGGTGATCATCAACTTATGCATCAACAAAATCGTCTCCC- T AACACAGAGGGTTTCTTTCAGCCTCTTGGATTGCATTCTTCTTCTCCACATTTTGGGTACAATCCTGTTAATAC- A GATGAGGTGAATGCAGCGGCAACTGCACACAATATGAATGGATTTATTCATGGATGGATGCTTTAA Mutant Solyc03g114840 gene allele ej2.sup.W (SEQ ID NO: 14) ATGGGAAGAGGAAGAGTTGAGCTTAAGAGAATAGAAAATAAAATAAATAGGCAAGTCACTTTTGCTAAGAGAAG- A AATGGACTTCTTAAAAAAGCTTATGAACTTTCTGTTCTTTGTGATGCTGAAGTTGCCCTTATAATCTTCTCTAA- T AGGGGTAAACTCTATGAATTTTGCAGCACTTCAAGGTATTTTTTATTTTATTATATTAACATCAAAGATTTTAT- T TTTTTAAAAAAAACCTTAAGTCCTTCATTACCAAAACCCTTAATTGATTTACAAAGTACTTTCATTAAATTTAG- T AATTCTTTTTTTTTTTATCTCTGACTTCAATTATAATGCAAGATCTATGTTGTCTTTATATATATTGAATTATA- T ATGTACTGTATTTTTACTATATACATATAAGATCCTTTTTTCTTTTTTTTCTGTCTCTTTATATAAATATATTT- T AAATAGTTGATTTTGAAAGATCTACTAATGTATATTTATTTTTGGAACTTTTGTGTATATGGAATTTTTTTCTT- T TTTATGTTTTTTTTTTGTTCTAATTGTTTTAAAAGCGTTTAAGATCAGAATGTTCTTGATTATTCTTTTAGGAA- A AAGATTTCCCATACATTGAGTTATTTTTTGATCTGTAGATTGAATTTTTTTAATGAGTTCCGATAGATTTTCGT- T CAATTTTTCAATGAAACTATTGAGGGTTGATGATTAGATAATTACTCGATTGAAAGTTTTTATTTCAAAAAAAT- T ATAATTCTTCTTAATTTTATATTTATGAGATAGAGTTAGTTTAGTGATTATATGAAAAATCGTATCAGATTATT- G GGAATCGAAACTTAAAAATTCTGAAAATATTATTATAAATTTTACATGTTACAATATTTTTACTGTTAAGATTT- G ATTTGCAGACTAGGTGTCATGTTTGACAGTTGATAAAAAATCTGTTATTTTTGTTCTTTAATTCCCAAGACGGA- T AAACAAAGGCTGCTTATGTTGGTTTCCAATAAGCAGCCATAATTTTAAATATTTTTGTTAAGATTAATTAATAA- C AATTATTTCCACCAGATAATTTTCAAAATTTGTGACCCCGAGTTCATATAAATTGTTAATTTTACTGCTAGAAA- T TACATCGATAATAATTTATTTAGTGTAATCTTATAAATACGAGGGCAGTAGTGTATAGACTGTTTTTTATTAAT- C CTGACTCAAAGTGAGGTAAGTTAAGTATATTTTGATTAAAAGGACTACATTTCATTTATGTATGTTTAATTAAT- A TTATTTTGTAAGTCAATAAATCTAAACAACATGAGTTTATCTAGACCCTTAATTATGCACCTTCATTATCAATT- T TTTCAATACTCTCCTCAGAACATATGCTTCTCTATAATTTTGTGCACGAGTTAATCAATTCTTCCTTTTCAATA- A TTAAATATGTGATTTATGTTTAGCACTTATTTTTCGGTTAGTTAATTGATAATAGGAAAAAGCCTCTTTTTTTT- T GTGTGTGTGGTAATTAGGATCTTTATTGAATTTAAAATGACCTACTATAGAACTTGGGAGTTTTTCTTCATAAT- A ATGCACTGCAACGTGTTAAAAAAAAAGAATCAAATGAAATTAATAGATGTTTACTGGATTGCCATGGTAAAGTG- A TAAGTATTAATTTCGCTTTAACTAAGAGATCATTATATTCAAGTCCCCTTGATACAAACTTGCCTTTGTAAATA- A GTGTTTTATTTTTCAATGTGAAACTTTCGCTGTTAATTTAAATTTAATTATACTTCTATATAAATACCAAACAA- T AATGTAATAAAACAAAAAATAAAAGAGTAGATGTTTCATATTGTTAATGCAGCATGGTGAAAACAATTGAAAAG- T ACCAACGTTGCAGCTATGCTACTTTGGAAGCCAACCAATCAGTTACTGATACTCAGGTACTGCTTTATATTTTA- A TTTATTTGGCTTTTTTTTAAAAAAATAATTAGTTTTGATTAATATGCATCATTTTATTTATTTTTGGCAACTCT- T TATTTATCAGTAATAAGTAATAACTTTTTAACTAGTATATTTAAAAATCACAAAATTTAAGAATATTTTAATAG- A TTCGACATATTTTAGTTTAAAAATAACAAATTAAATTATGTTTTTAATTTTTTAAATATTCTTACTATAATTAT- C ATGTACTCTTTGATCTGTTCATCTTTTCCATGATAATATTATTTGGTCAGTTAGTGACATAAGAGTTTGAAATT- T AGAAAAAAGGAATATTTGGAGAAAACTGAAATGGATATTTAGAAATGAAAGTTATTTAATATAAATATAAGTAT- G GGCTGCTGAGTTGGGAATCCACGCTGGAGATCTCAAGTTTGAAGCGTCTCACAAACAATAGTAATGTCTTTTTG- G TCGAGTTTGTCGGATTGGACTTGTCCGTGGCCTGTGGGTTACTTTTCCTATATGGTTTGCAAGCTATCGGGAAT- T TTATCCTGGCGCACCCAAATTTGAGTTATTTTTGAGTTTTTATATGAAATAGCTTTGTGAATTCATCGAACTCC- C GAAAACATTGAACTTTACTCCAAGTTGAATTGCAGTAAAATAATAGTAGCGATTCTTTAATTTATCCTAACAGT- T TTTCGAAATAATAATCCCAAAAAAGTTTAAAATAACCATACCATAAACTTACTGGGTAAGATATTATCTGTCTA- A TAATATATAGTAGTTTCTTTTGTTTTATTAGTTTATCTAATCCATATTTCATTTCTTGATAAGTTATTCTTAAT- A GGAAAATAAACTTATTTCGAAAAACTGTTTTTAAAATTTTCTTGAGTTGAGTCTTGGATGAAAAATAGTTAATT- T TGCATTAATTAATTTTGTTCTAACAAAAACTAATTAAATTTTTTTGAAGCGCATATTCACTCAAAAAATAAATA- A AAACCATCATGCATACAGGAAATGTTCTTTTTTTAATTTATTTTTTCATTGGAGCCCTGACTAATTTTATATCG- G TTCATACTTTCATAAATTACAAAAAGTTCAAAATTTAAACTAACCATATAAGTGAATAAAATAAATCAACAAAA- T ATTCACCACATAATACTTTTTAAATAGAATTTTTCATACCAAAGACCTTACTTTAATTAATTAGGGTGAGAGAA- T CCTATAAGTCAATGCAAAACAATTCTATCTATCGGATTATAATCGTTGATTCATAAAATTTTAAAATCGACGAT- T TTCATTTAAATGACCCTTTTTTTTCTTTCATTTTTTATTGTTATTCATCTATTTAACTTGTGAGCATCTTTCAT- A TTGATATTTCAGACCCTTAAATTAATTGTTTTCTTACAGAATAACTACCACGAATATCTGAGGCTAAAAGCTAG- A GTTGAGCTCCTCCAACGATCTCAGAGGTAATTTCTGTTCACTATCTTTATCTCAAATGAATTCTCATGTTTTTA- T TTTTCGAGATTCAGATTAAATATAATTTGATGTATTATTAATTTAAATACGTTATTTAATATGGTCCTTATGTC- C AACCATTGATTTAATTTGATATTTTTTTAATGAAAATTACACAGAAACTTTCTTGGTGAAGATTTGGGCACGTT- A AGCTCGAAGGACCTTGAGCAGCTTGAGAATCAATTAGAGTCTTCCTTAAAGCAAATCAGGTCAAGGAAGGTAAA- T TATTTAATCTAATTATACAGAAAAATCATCTAAAAGTTACCTTAATTGCTAGCCCAATAAGTTTGCTATCTGTT- G ATCCTCACATTATTTTACTCACAGAAATTCACAATACCTTTATTTTTGTTTGAGTTTGAAGTATACAATTTCTT- T AAAATGTAAAATTTGAAATCTCAACAATAAGATATGTTATTGATCCTTGCAATTATGGGTAGATTGCGAATTAA- A CTATCTTGTCTTTGCTTACAACAGTCATTTTGTTTATAAACTAATTATACATAAATCCTAACTGATAGATAGTT- T ATAAAGATGAATAATGAACATAGGTCATATATTAAAAAAACAAAAAACAAAAAAAAACTAAACAAGATGAGCGA- G TCAAAAATAGTCTTAACAAAAGAATATATATATATGTATATATCATATTTGATTTGTCTATTTTTAATTTTGAA- A AAACTAAGTTAATCGATATATAATATGAAGGCATAATGCATAAATATGTCCTTTAACTTGGTTTTAAATCACAT- T TATACCTCTTCGACTTTGGGTGTATACAAACAAACACTTAAACTTATATAATGTTGAACAAATAGATATATATG- T CCTACATGTCATTTTTCGTCCTAAATGGTGTCCTAAGTGTATTGTGTCACGCAGGACTCATGTGTCTATTTGTT- C AAATTTATACAAGTTTAAGTGCTTACTTATGTATAAACAAAGTTGAATGACATAAATGTGAAATAAAATCAAAT- T AAAGGGCATATTTATGCATTATACCTAATACGAAAATCCATATTATTCACTAAAAAATGAGTCGGATTATATGA- T TACTTTTTTATTCATTTTGCCAATCGTATCCTACGACATTGTTTTTAATTTGCAGACACAATTCATGCTGGATC- A GCTTGCAGATCTTCAACAAAAGGTAATTATAAAATTCTACAAATTTCCAATAATTAATAAATGGAATAATTATG- C GCGAGAAAT CTACCCTATGTAGGCGGAATCCTCTTTTCGACTCTG ACTCTCCCACTCCAGTCGTGAAAAAACAACAAACTAGTCAAAGGACAGCCTGCCTTATTCTTCTCCCGTTCGGG- A CCCCTATTTTCTCGGAGATAGCCTGGTCTGAGCTAGAACAGCAGATTCGTGAGCAAGAGCGTATTTCACAGCTG- A TTCAACAACAGCCATTTTTTCTGGGACCCGCAATTCCGTAGAAAGACATCACGATTCCTTGTGGACGGGGAATC- G GCAGAAAGAGATGGGTCGGATACTGGAATCTGCCCAAAAGTCCTGACTTCTATTTAAAATTTACGATGAATTTT- A ATTTTACAGGAGCAAATGCTTGCAGAATCTAATAGATTACTCCGTAGAAAGGTAAACTAACTTGATAGCCGTGC- G TAATGAATAACTTATTTTATTTTCAAAATTATAAATCTAAATACTTAGGTAACTCGATAACATAAGAAGTATTT- A TACTGATGATATTGGTGTTGTGTTTTTTTTTATTAGTTAGAAGAAAGTGTAGCTGGATTTCCACTTCGATTGTG- T TGGGAAGATGGAGGTGATCATCAACTTATGCATCAACAAAATCGTCTCCCTAACACAGAGGGTTTCTTTCAGCC- T
CTTGGATTGCATTCTTCTTCTCCACATTTTGGGTAATTACTTTTATTATTATTAAAAATAATTTCAATTTTTTT- T ACTTTTATTTCGATTAATAAATCAATGTGCACCAAGGTACGGTCTAACATAAACAAAAATGTGGGGAATGCTCT- T AAAGCCCTAACAAAAGTTATTTGGTACGTGTACTAATGTAATCGTACTATATATCTTACTTGATTAGTGGATGG- A CAGTACTGGGCACACACAATTGACATAAGTTATTATAAGGAAAAAAAAAGGCCAATAATCAATATAGTCCAACA- T TACATTATTTATTATAACAGGTCACTCTAGATTAAATGTTAATGAATAACAAAAAGTCTCATATTGATGATTAA- T GTGATGGGTGGGCTTCTTATAAGGCTTTGACAATCCTACTCTCTTTGAGCTAGTTTTGGGGGTGTGACCTAATT- C AACAGAACGTAGTTAAGATTGTGAAGTAAAGTTGATCATTGTTATAACAGGTTTAAATACTTCTAGTAAAAATA- G TTCCTAGATAATCCATCGCAAAATAGCTCCTATATAGTTAGTTGGATTTTCATATAATCTATAGCTTATACATA- G CTAAATGGGAATAGATGAGAGTTTCTGTTGTTTAGATATGATATTTGATCGGTTTCTAAATCGTTACTATCATG- T AGTGAATAATTTTCATGTTATTACTATTACATTTGATTGTTTCTGTGGTTATTTTTTTTTCTAGGTACAATCCT- G TTAATACAGATGAGGTGAATGCAGCGGCAACTGCACACAATATGAATGGATTTATTCATGGATGGATGCTTTAA Mutant Solyc03g114840 gene allele ej2.sup.CR >allele-1 (SEQ ID NO: 15) ATGGGAAGAGGAAGAGTTGAGCTTAAGAGAATAGAAAATAAAATAAATAGGCAAGTCACTTTTGCTAAGAGAAG- A AATGGACTTCTTAAAAAAGCTTATGAACTTTCTGTTCTTTGTGATGCTGAAGTTGCCCTTATAATCTTCTCTAA- T AGGGGTAAACTCTATGAATTTTGCAGCACTTCAAGGTATTTTTTATTTTATTATATTAACATCAAAGATTTTAT- T TTTTTAAAAAAAACCTTAAGTCCTTCATTACCAAAACCCTTAATTGATTTACAAAGTACTTTCATTAAATTTAG- T AATTCTTTTTTTTTTTATCTCTGACTTCAATTATAATGCAAGATCTATGTTGTCTTTATATATATTGAATTATA- T ATGTACTGTATTTTTACTATATACATATAAGATCCTTTTTTCTTTTTTTTCTGTCTCTTTATATAAATATATTT- T AAATAGTTGATTTTGAAAGATCTACTAATGTATATTTATTTTTGGAACTTTTGTGTATATGGAATTTTTTTCTT- T TTTATGTTTTTTTTTTGTTCTAATTGTTTTAAAAGCGTTTAAGATCAGAATGTTCTTGATTATTCTTTTAGGAA- A AAGATTTCCCATACATTGAGTTATTTTTTGATCTGTAGATTGAATTTTTTTAATGAGTTCCGATAGATTTTCGT- T CAATTTTTCAATGAAACTATTGAGGGTTGATGATTAGATAATTACTCGATTGAAAGTTTTTATTTCAAAAAAAT- T ATAATTCTTCTTAATTTTATATTTATGAGATAGAGTTAGTTTAGTGATTATATGAAAAATCGTATCAGATTATT- G GGAATCGAAACTTAAAAATTCTGAAAATATTATTATAAATTTTACATGTTACAATATTTTTACTGTTAAGATTT- G ATTTGCAGACTAGGTGTCATGTTTGACAGTTGATAAAAAATCTGTTATTTTTGTTCTTTAATTCCCAAGACGGA- T AAACAAAGGCTGCTTATGTTGGTTTCCAATAAGCAGCCATAATTTTAAATATTTTTGTTAAGATTAATTAATAA- C AATTATTTCCACCAGATAATTTTCAAAATTTGTGACCCCGAGTTCATATAAATTGTTAATTTTACTGCTAGAAA- T TACATCGATAATAATTTATTTAGTGTAATCTTATAAATACGAGGGCAGTAGTGTATAGACTGTTTTTTATTAAT- C CTGACTCAAAGTGAGGTAAGTTAAGTATATTTTGATTAAAAGGACTACATTTCATTTATGTATGTTTAATTAAT- A TTATTTTGTAAGTCAATAAATCTAAACAACATGAGTTTATCTAGACCCTTAATTATGCACCTTCATTATCAATT- T TTTCAATACTCTCCTCAGAACATATGCTTCTCTATAATTTTGTGCACGAGTTAATCAATTCTTCCTTTTCAATA- A TTAAATATGTGATTTATGTTTAGCACTTATTTTTCGGTTAGTTAATTGATAATAGGAAAAAGCCTCTTTTTTTT- T GTGTGTGTGGTAATTAGGATCTTTATTGAATTTAAAATGACCTACTATAGAACTTGGGAGTTTTTCTTCATAAT- A ATGCACTGCAACGTGTTAAAAAAAAAGAATCAAATGAAATTAATAGATGTTTACTGGATTGCCATGGTAAAGTG- A TAAGTATTAATTTCGCTTTAACTAAGAGATCATTATATTCAAGTCCCCTTGATACAAACTTGCCTTTGTAAATA- A GTGTTTTATTTTTCAATGTGAAACTTTCGCTGTTAATTTAAATTTAATTATACTTCTATATAAATACCAAACAA- T AATGTAATAAAACAAAAAATAAAAGAGTAGATGTTTCATATTGTTAATGCAGCATGGTGAAAACAATTGAAAAG- T ACCAACGTTGCAGCTATGCTACTTTGGAAGCCAACCAATCAGTTACTGATACTCAGGTACTGCTTTATATTTTA- A TTTATTTGGCTTTTTTTTAAAAAAATAATTAGTTTTGATTAATATGCATCATTTTATTTATTTTTGGCAACTCT- T TATTTATCAGTAATAAGTAATAACTTTTTAACTAGTATATTTAAAAATCACAAAATTTAAGAATATTTTAATAG- A TTCGACATATTTTAGTTTAAAAATAACAAATTAAATTATGTTTTTAATTTTTTAAATATTCTTACTATAATTAT- C ATGTACTCTTTGATCTGTTCATCTTTTCCATGATAATATTATTTGGTCAGTTAGTGACATAAGAGTTTGAAATT- T AGAAAAAAGGAATATTTGGAGAAAACTGAAATGGATATTTAGAAATGAAAGTTATTTAATATAAATATAAGTAT- G GGCTGCTGAGTTGGGAATCCACGCTGGAGATCTCAAGTTTGAAGCGTCTCACAAACAATAGTAATGTCTTTTTG- G TCGAGTTTGTCGGATTGGACTTGTCCGTGGCCTGTGGGTTACTTTTCCTATATGGTTTGCAAGCTATCGGGAAT- T TTATCCTGGCGCACCCAAATTTGAGTTATTTTTGAGTTTTTATATGAAATAGCTTTGTGAATTCATCGAACTCC- C GAAAACATTGAACTTTACTCCAAGTTGAATTGCAGTAAAATAATAGTAGCGATTCTTTAATTTATCCTAACAGT- T TTTCGAAATAATAATCCCAAAAAAGTTTAAAATAACCATACCATAAACTTACTGGGTAAGATATTATCTGTCTA- A TAATATATAGTAGTTTCTTTTGTTTTATTAGTTTATCTAATCCATATTTCATTTCTTGATAAGTTATTCTTAAT- A GGAAAATAAACTTATTTCGAAAAACTGTTTTTAAAATTTTCTTGAGTTGAGTCTTGGATGAAAAATAGTTAATT- T TGCATTAATTAATTTTGTTCTAACAAAAACTAATTAAATTTTTTTGAAGCGCATATTCACTCAAAAAATAAATA- A AAACCATCATGCATACAGGAAATGTTCTTTTTTTAATTTATTTTTTCATTGGAGCCCTGACTAATTTTATATCG- G TTCATACTTTCATAAATTACAAAAAGTTCAAAATTTAAACTAACCATATAAGTGAATAAAATAAATCAACAAAA- T ATTCACCACATAATACTTTTTAAATAGAATTTTTCATACCAAAGACCTTACTTTAATTAATTAGGGTGAGAGAA- T CCTATAAGTCAATGCAAAACAATTCTATCTATCGGATTATAATCGTTGATTCATAAAATTTTAAAATCGACGAT- T TTCATTTAAATGACCCTTTTTTTTCTTTCATTTTTTATTGTTATTCATCTATTTAACTTGTGAGCATCTTTCAT- A TTGATATTTCAGACCCTTAAATTAATTGTTTTCTTACAGAATAACTACCACGAATATCTGAGGCTAAAAGCTAG- A GTTGAGCTCCTCCAACGATCTCAGAGGTAATTTCTGTTCACTATCTTTATCTCAAATGAATTCTCATGTTTTTA- T TTTTCGAGATTCAGATTAAATATAATTTGATGTATTATTAATTTAAATACGTTATTTAATATGGTCCTTATGTC- C AACCATTGATTTAATTTGATATTTTTTTAATGAAAATTACACAGAAACTTTCTTGGTGAAGATTTGGGCACCTT- G AGCAGCTTGAGAATCAATTAGAGTCTTCCTTAAAGTCAAGGAAGGTAAATTATTTAATCTAATTATACAGAAAA- A TCATCTAAAAGTTACCTTAATTGCTAGCCCAATAAGTTTGCTATCTGTTGATCCTCACATTATTTTACTCACAG- A AATTCACAATACCTTTATTTTTGTTTGAGTTTGAAGTATACAATTTCTTTAAAATGTAAAATTTGAAATCTCAA- C AATAAGATATGTTATTGATCCTTGCAATTATGGGTAGATTGCGAATTAAACTATCTTGTCTTTGCTTACAACAG- T CATTTTGTTTATAAACTAATTATACATAAATCCTAACTGATAGATAGTTTATAAAGATGAATAATGAACATAGG- T CATATATTAAAAAAACAAAAAACAAAAAAAAACTAAACAAGATGAGCGAGTCAAAAATAGTCTTAACAAAAGAA- T ATATATATATGTATATATCATATTTGATTTGTCTATTTTTAATTTTGAAAAAACTAAGTTAATCGATATATAAT- A TGAAGGCATAATGCATAAATATGTCCTTTAACTTGGTTTTAAATCACATTTATACCTCTTCGACTTTGGGTGTA- T ACAAACAAACACTTAAACTTATATAATGTTGAACAAATAGATATATATGTCCTACATGTCATTTTTCGTCCTAA- A TGGTGTCCTAAGTGTATTGTGTCACGCAGGACTCATGTGTCTATTTGTTCAAATTTATACAAGTTTAAGTGCTT- A CTTATGTATAAACAAAGTTGAATGACATAAATGTGAAATAAAATCAAATTAAAGGGCATATTTATGCATTATAC- C TAATACGAAAATCCATATTATTCACTAAAAAATGAGTCGGATTATATGATTACTTTTTTATTCATTTTGCCAAT- C GTATCCTACGACATTGTTTTTAATTTGCAGACACAATTCATGCTGGATCAGCTTGCAGATCTTCAACAAAAGGT- A ATTATAAAATTCTACAAATTTCCAATAATTAATAAATGGAATAATTATGCGCGAGAAATTTATCTATTTAAAAT- T TACGATGAATTTTAATTTTACAGGAGCAAATGCTTGCAGAATCTAATAGATTACTCCGTAGAAAGGTAAACTAA- C TTGATAGCCGTGCGTAATGAATAACTTATTTTATTTTCAAAATTATAAATCTAAATACTTAGGTAACTCGATAA- C ATAAGAAGTATTTATACTGATGATATTGGTGTTGTGTTTTTTTTTATTAGTTAGAAGAAAGTGTAGCTGGATTT- C CACTTCGATTGTGTTGGGAAGATGGAGGTGATCATCAACTTATGCATCAACAAAATCGTCTCCCTAACACAGAG- G GTTTCTTTCAGCCTCTTGGATTGCATTCTTCTTCTCCACATTTTGGGTAATTACTTTTATTATTATTAAAAATA- A TTTCAATTTTTTTTACTTTTATTTCGATTAATAAATCAATGTGCACCAAGGTACGGTCTAACATAAACAAAAAT- G TGGGGAATGCTCTTAAAGCCCTAACAAAAGTTATTTGGTACGTGTACTAATGTAATCGTACTATATATCTTACT- T GATTAGTGGATGGACAGTACTGGGCACACACAATTGACATAAGTTATTATAAGGAAAAAAAAAGGCCAATAATC- A ATATAGTCCAACATTACATTATTTATTATAACAGGTCACTCTAGATTAAATGTTAATGAATAACAAAAAGTCTC- A TATTGATGATTAATGTGATGGGTGGGCTTCTTATAAGGCTTTGACAATCCTACTCTCTTTGAGCTAGTTTTGGG-
G GTGTGACCTAATTCAACAGAACGTAGTTAAGATTGTGAAGTAAAGTTGATCATTGTTATAACAGGTTTAAATAC- T TCTAGTAAAAATAGTTCCTAGATAATCCATCGCAAAATAGCTCCTATATAGTTAGTTGGATTTTCATATAATCT- A TAGCTTATACATAGCTAAATGGGAATAGATGAGAGTTTCTGTTGTTTAGATATGATATTTGATCGGTTTCTAAA- T CGTTACTATCATGTAGTGAATAATTTTCATGTTATTACTATTACATTTGATTGTTTCTGTGGTTATTTTTTTTT- C TAGGTACAATCCTGTTAATACAGATGAGGTGAATGCAGCGGCAACTGCACACAATATGAATGGATTTATTCATG- G ATGGATGCTTTAA >allele-3 (SEQ ID NO: 16) ATGGGAAGAGGAAGAGTTGAGCTTAAGAGAATAGAAAATAAAATAAATAGGCAAGTCACTTTTGCTAAGAGAAG- A AATGGACTTCTTAAAAAAGCTTATGAACTTTCTGTTCTTTGTGATGCTGAAGTTGCCCTTATAATCTTCTCTAA- T AGGGGTAAACTCTATGAATTTTGCAGCACTTCAAGGTATTTTTTATTTTATTATATTAACATCAAAGATTTTAT- T TTTTTAAAAAAAACCTTAAGTCCTTCATTACCAAAACCCTTAATTGATTTACAAAGTACTTTCATTAAATTTAG- T AATTCTTTTTTTTTTTATCTCTGACTTCAATTATAATGCAAGATCTATGTTGTCTTTATATATATTGAATTATA- T ATGTACTGTATTTTTACTATATACATATAAGATCCTTTTTTCTTTTTTTTCTGTCTCTTTATATAAATATATTT- T AAATAGTTGATTTTGAAAGATCTACTAATGTATATTTATTTTTGGAACTTTTGTGTATATGGAATTTTTTTCTT- T TTTATGTTTTTTTTTTGTTCTAATTGTTTTAAAAGCGTTTAAGATCAGAATGTTCTTGATTATTCTTTTAGGAA- A AAGATTTCCCATACATTGAGTTATTTTTTGATCTGTAGATTGAATTTTTTTAATGAGTTCCGATAGATTTTCGT- T CAATTTTTCAATGAAACTATTGAGGGTTGATGATTAGATAATTACTCGATTGAAAGTTTTTATTTCAAAAAAAT- T ATAATTCTTCTTAATTTTATATTTATGAGATAGAGTTAGTTTAGTGATTATATGAAAAATCGTATCAGATTATT- G GGAATCGAAACTTAAAAATTCTGAAAATATTATTATAAATTTTACATGTTACAATATTTTTACTGTTAAGATTT- G ATTTGCAGACTAGGTGTCATGTTTGACAGTTGATAAAAAATCTGTTATTTTTGTTCTTTAATTCCCAAGACGGA- T AAACAAAGGCTGCTTATGTTGGTTTCCAATAAGCAGCCATAATTTTAAATATTTTTGTTAAGATTAATTAATAA- C AATTATTTCCACCAGATAATTTTCAAAATTTGTGACCCCGAGTTCATATAAATTGTTAATTTTACTGCTAGAAA- T TACATCGATAATAATTTATTTAGTGTAATCTTATAAATACGAGGGCAGTAGTGTATAGACTGTTTTTTATTAAT- C CTGACTCAAAGTGAGGTAAGTTAAGTATATTTTGATTAAAAGGACTACATTTCATTTATGTATGTTTAATTAAT- A TTATTTTGTAAGTCAATAAATCTAAACAACATGAGTTTATCTAGACCCTTAATTATGCACCTTCATTATCAATT- T TTTCAATACTCTCCTCAGAACATATGCTTCTCTATAATTTTGTGCACGAGTTAATCAATTCTTCCTTTTCAATA- A TTAAATATGTGATTTATGTTTAGCACTTATTTTTCGGTTAGTTAATTGATAATAGGAAAAAGCCTCTTTTTTTT- T GTGTGTGTGGTAATTAGGATCTTTATTGAATTTAAAATGACCTACTATAGAACTTGGGAGTTTTTCTTCATAAT- A ATGCACTGCAACGTGTTAAAAAAAAAGAATCAAATGAAATTAATAGATGTTTACTGGATTGCCATGGTAAAGTG- A TAAGTATTAATTTCGCTTTAACTAAGAGATCATTATATTCAAGTCCCCTTGATACAAACTTGCCTTTGTAAATA- A GTGTTTTATTTTTCAATGTGAAACTTTCGCTGTTAATTTAAATTTAATTATACTTCTATATAAATACCAAACAA- T AATGTAATAAAACAAAAAATAAAAGAGTAGATGTTTCATATTGTTAATGCAGCATGGTGAAAACAATTGAAAAG- T ACCAACGTTGCAGCTATGCTACTTTGGAAGCCAACCAATCAGTTACTGATACTCAGGTACTGCTTTATATTTTA- A TTTATTTGGCTTTTTTTTAAAAAAATAATTAGTTTTGATTAATATGCATCATTTTATTTATTTTTGGCAACTCT- T TATTTATCAGTAATAAGTAATAACTTTTTAACTAGTATATTTAAAAATCACAAAATTTAAGAATATTTTAATAG- A TTCGACATATTTTAGTTTAAAAATAACAAATTAAATTATGTTTTTAATTTTTTAAATATTCTTACTATAATTAT- C ATGTACTCTTTGATCTGTTCATCTTTTCCATGATAATATTATTTGGTCAGTTAGTGACATAAGAGTTTGAAATT- T AGAAAAAAGGAATATTTGGAGAAAACTGAAATGGATATTTAGAAATGAAAGTTATTTAATATAAATATAAGTAT- G GGCTGCTGAGTTGGGAATCCACGCTGGAGATCTCAAGTTTGAAGCGTCTCACAAACAATAGTAATGTCTTTTTG- G TCGAGTTTGTCGGATTGGACTTGTCCGTGGCCTGTGGGTTACTTTTCCTATATGGTTTGCAAGCTATCGGGAAT- T TTATCCTGGCGCACCCAAATTTGAGTTATTTTTGAGTTTTTATATGAAATAGCTTTGTGAATTCATCGAACTCC- C GAAAACATTGAACTTTACTCCAAGTTGAATTGCAGTAAAATAATAGTAGCGATTCTTTAATTTATCCTAACAGT- T TTTCGAAATAATAATCCCAAAAAAGTTTAAAATAACCATACCATAAACTTACTGGGTAAGATATTATCTGTCTA- A TAATATATAGTAGTTTCTTTTGTTTTATTAGTTTATCTAATCCATATTTCATTTCTTGATAAGTTATTCTTAAT- A GGAAAATAAACTTATTTCGAAAAACTGTTTTTAAAATTTTCTTGAGTTGAGTCTTGGATGAAAAATAGTTAATT- T TGCATTAATTAATTTTGTTCTAACAAAAACTAATTAAATTTTTTTGAAGCGCATATTCACTCAAAAAATAAATA- A AAACCATCATGCATACAGGAAATGTTCTTTTTTTAATTTATTTTTTCATTGGAGCCCTGACTAATTTTATATCG- G TTCATACTTTCATAAATTACAAAAAGTTCAAAATTTAAACTAACCATATAAGTGAATAAAATAAATCAACAAAA- T ATTCACCACATAATACTTTTTAAATAGAATTTTTCATACCAAAGACCTTACTTTAATTAATTAGGGTGAGAGAA- T CCTATAAGTCAATGCAAAACAATTCTATCTATCGGATTATAATCGTTGATTCATAAAATTTTAAAATCGACGAT- T TTCATTTAAATGACCCTTTTTTTTCTTTCATTTTTTATTGTTATTCATCTATTTAACTTGTGAGCATCTTTCAT- A TTGATATTTCAGACCCTTAAATTAATTGTTTTCTTACAGAATAACTACCACGAATATCTGAGGCTAAAAGCTAG- A GTTGAGCTCCTCCAACGATCTCAGAGGTAATTTCTGTTCACTATCTTTATCTCAAATGAATTCTCATGTTTTTA- T TTTTCGAGATTCAGATTAAATATAATTTGATGTATTATTAATTTAAATACGTTATTTAATATGGTCCTTATGTC- C AACCATTGATTTAATTTGATATTTTTTTAATGAAAATTACACAGAAACTTTCTTGGTGAAGATTTGGGCACGTT- A AGCTTCGAAGGACCTTGAGCAGCTTGAGAATCAATTAGAGTCTTCCTTAAAGCAAATCAGGTCAAGGAAGGTAA- A TTATTTAATCTAATTATACAGAAAAATCATCTAAAAGTTACCTTAATTGCTAGCCCAATAAGTTTGCTATCTGT- T GATCCTCACATTATTTTACTCACAGAAATTCACAATACCTTTATTTTTGTTTGAGTTTGAAGTATACAATTTCT- T TAAAATGTAAAATTTGAAATCTCAACAATAAGATATGTTATTGATCCTTGCAATTATGGGTAGATTGCGAATTA- A ACTATCTTGTCTTTGCTTACAACAGTCATTTTGTTTATAAACTAATTATACATAAATCCTAACTGATAGATAGT- T TATAAAGATGAATAATGAACATAGGTCATATATTAAAAAAACAAAAAACAAAAAAAAACTAAACAAGATGAGCG- A GTCAAAAATAGTCTTAACAAAAGAATATATATATATGTATATATCATATTTGATTTGTCTATTTTTAATTTTGA- A AAAACTAAGTTAATCGATATATAATATGAAGGCATAATGCATAAATATGTCCTTTAACTTGGTTTTAAATCACA- T TTATACCTCTTCGACTTTGGGTGTATACAAACAAACACTTAAACTTATATAATGTTGAACAAATAGATATATAT- G TCCTACATGTCATTTTTCGTCCTAAATGGTGTCCTAAGTGTATTGTGTCACGCAGGACTCATGTGTCTATTTGT- T CAAATTTATACAAGTTTAAGTGCTTACTTATGTATAAACAAAGTTGAATGACATAAATGTGAAATAAAATCAAA- T TAAAGGGCATATTTATGCATTATACCTAATACGAAAATCCATATTATTCACTAAAAAATGAGTCGGATTATATG- A TTACTTTTTTATTCATTTTGCCAATCGTATCCTACGACATTGTTTTTAATTTGCAGACACAATTCATGCTGGAT- C AGCTTGCAGATCTTCAACAAAAGGTAATTATAAAATTCTACAAATTTCCAATAATTAATAAATGGAATAATTAT- G CGCGAGAAATTTATCTATTTAAAATTTACGATGAATTTTAATTTTACAGGAGCAAATGCTTGCAGAATCTAATA- G ATTACTCCGTAGAAAGGTAAACTAACTTGATAGCCGTGCGTAATGAATAACTTATTTTATTTTCAAAATTATAA- A TCTAAATACTTAGGTAACTCGATAACATAAGAAGTATTTATACTGATGATATTGGTGTTGTGTTTTTTTTTATT- A GTTAGAAGAAAGTGTAGCTGGATTTCCACTTCGATTGTGTTGGGAAGATGGAGGTGATCATCAACTTATGCATC- A ACAAAATCGTCTCCCTAACACAGAGGGTTTCTTTCAGCCTCTTGGATTGCATTCTTCTTCTCCACATTTTGGGT- A ATTACTTTTATTATTATTAAAAATAATTTCAATTTTTTTTACTTTTATTTCGATTAATAAATCAATGTGCACCA- A GGTACGGTCTAACATAAACAAAAATGTGGGGAATGCTCTTAAAGCCCTAACAAAAGTTATTTGGTACGTGTACT- A ATGTAATCGTACTATATATCTTACTTGATTAGTGGATGGACAGTACTGGGCACACACAATTGACATAAGTTATT- A TAAGGAAAAAAAAAGGCCAATAATCAATATAGTCCAACATTACATTATTTATTATAACAGGTCACTCTAGATTA- A ATGTTAATGAATAACAAAAAGTCTCATATTGATGATTAATGTGATGGGTGGGCTTCTTATAAGGCTTTGACAAT- C CTACTCTCTTTGAGCTAGTTTTGGGGGTGTGACCTAATTCAACAGAACGTAGTTAAGATTGTGAAGTAAAGTTG- A TCATTGTTATAACAGGTTTAAATACTTCTAGTAAAAATAGTTCCTAGATAATCCATCGCAAAATAGCTCCTATA- T AGTTAGTTGGATTTTCATATAATCTATAGCTTATACATAGCTAAATGGGAATAGATGAGAGTTTCTGTTGTTTA- G ATATGATATTTGATCGGTTTCTAAATCGTTACTATCATGTAGTGAATAATTTTCATGTTATTACTATTACATTT- G ATTGTTTCTGTGGTTATTTTTTTTTCTAGGTACAATCCTGTTAATACAGATGAGGTGAATGCAGCGGCAACTGC- A
CACAATATGAATGGATTTATTCATGGATGGATGCTTTAA
EXAMPLES
Example 1. Bypassing Negative Epistasis on Yield in Tomato Imposed by a Domestication Gene
Abstract
[0103] Selection for inflorescence architecture with improved flower production and yield is common to many domesticated crops. However, tomato inflorescences resemble wild ancestors, and breeders avoided excessive branching because of low fertility. The present disclosure relates to the finding of branched variants that carry mutations in two related transcription factors that had been selected independently. As described herein, one founder mutation enlarged the leaf-like organs on fruits and was selected as fruit size increased during domestication. The other mutation eliminated the flower abscission zone, providing "jointless" fruit stems that reduced fruit dropping and facilitated mechanical harvesting. Stacking both beneficial traits caused undesirable branching and sterility due to epistasis, which breeders overcame with suppressors. However, this restricted the opportunity for productivity gains from weak branching. Exploiting natural and engineered alleles for multiple family members, we achieved a continuum of inflorescence complexity that allowed breeding of higher yielding hybrids. Characterizing and neutralizing similar cases of negative epistasis could improve productivity in many agricultural organisms.
Methods
Experimental Model and Subject Details
Plant Material and Growth Conditions
[0104] Seeds of the standard S. lycopersicum cultivar M82 (LA3475) were from the present stocks. Core collection germplasm (www.eu-sol.wur.nl) was from the seed stocks of Z. Lippman, D. Zamir, and S. Huang (Lin et al., 2014). Seeds of the jointless S. cheesmaniae accession LA0166 were obtained from the Charles M. Rick Tomato Genetics Resource Center (TGRC) at the University of California, Davis. The frondea mutant was obtained from the gene bank of the Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) in Gatersleben, Germany. Seed of the long inflorescence (lin) mutant in the Micro-tom background (TOM-JPG5091) was provided by the University of Tsukuba, Gene Research Center, through the National Bio-Resource Project (NBRP) of the AMED, Japan (tomatoma.nbrp.jp/). The lin mutant was backcrossed four times to the standard M82 cultivar. The landrace collection (S. lycopersicunm var. cerasifornme) was from the seed stocks of E. van der Knaap. Tissue samples, DNA, or seed of elite breeding lines were obtained from Syngenta, Nunhems, Monsanto, Lipman Seeds, Johnny's Seeds, and TomatoGrowers.
[0105] Seeds were either pre-germinated on moistened Whatman paper at 28.degree. C. in complete darkness or directly sown and germinated in soil in 96-cell plastic flats. Plants were grown under long-day conditions (16-h light/8-h dark) in a greenhouse under natural light supplemented with artificial light from high-pressure sodium bulbs (.about.250 .mu.mol m.sup.-2 s.sup.-1). Daytime and nighttime temperatures were 26-28.degree. C. and 18-20.degree. C., respectively, with a relative humidity of 40-60%.
[0106] Analyses of inflorescence architecture, sepal length, fruit type, and productivity traits were conducted on plants grown in the fields at Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y., the Cornell Long Island Horticultural Experiment Station in Riverhead, N.Y., and net houses in Hatzav, Israel. Analyses of sepal length in the landraces were conducted on plants grown in the fields of the Durham horticulture farm at the University of Georgia, Athens, Ga. Seeds were germinated in 96-cell flats and grown for 32 d in the greenhouse before being transplanted to the field. Plants were grown under drip irrigation and standard fertilizer regimes. Damaged or diseased plants were marked throughout the season and were excluded from the analyses.
Method Details
Plant Phenotyping
[0107] For analyses of sepal length, the length of sepals and petals of 10 closed flower buds per accession were manually measured and the sepal/petal ratio was calculated. Mature floral buds of similar developmental stage were collected (1-2 days before anthesis, i.e. before flower opening). For analyses of inflorescence complexity, the number of branching events was counted on at least 5 inflorescences on each replicate plant.
Yeast Two-Hybrid Analysis
[0108] Protein interaction assays in yeast were performed using the Matchmaker Gold Yeast Two-Hybrid System (Clontech) as described before (Park et al., 2014b). The coding sequences for bait proteins were cloned into the pGBKT7 vector, and the resulting vectors were transformed into the Y2HGold yeast strain. The coding sequences for prey proteins were cloned into the pGADT7 AD vector, and the resulting vectors were transformed into the Y187 yeast strain. After mating the two yeast strains expressing bait and prey proteins, diploid yeast cells were selected and grown on dropout medium without leucine and tryptophan. To assay protein-protein interactions, clones were grown on triple-dropout medium without leucine, tryptophan, and histidine for 3 d at 30.degree. C. To block auto-activation, 3 mM 3-amino-1,2,4-triazole (3-AT) were added or adenine was removed from the triple-dropout medium. All primer sequences used for cloning can be found in Table 2.
Meristem Imaging
[0109] Live meristems were imaged using a Nikon SMZ1500 stereomicroscope (Nikon). Shoot apices were dissected from seedlings and older leaf primordia were removed to expose meristems. Immediately after dissection, sequences of optical layers were imaged using a Nikon DS-Ri1 digital camera (Nikon) mounted on the stereomicroscope. Z-stacks of optical sections were aligned and merged to produce final focused images using the NIS Elements BR3.2 software (Nikon).
Meristem Transcriptome Profiling
[0110] Meristem collection, RNA extraction, and library preparation for s2 mutant plants was performed as previously described (Park et al., 2012). Briefly, seedling shoots were collected at the vegetative meristem (VM), transition meristem (TM), sympodial inflorescence meristem (SIM), and floral meristem (FM) stage of meristem maturation, and immediately fixed them in ice-cold acetone. Meristems were manually dissected under a stereoscope and two biological replicates consisting of 30-50 meristems from independent plants were generated. Total RNA was extracted with the PicoPure RNA Extraction kit (Arcturus) and mRNA was purified with Dynabeads mRNA Purification kits (Thermo Fisher). Barcoded libraries were prepared using the NEBNext Ultra RNA library prep kit for Illumina according to the manufacturer's instructions, and assessed for size distribution and concentration with a Bioanalyzer 2100 (Agilent) and the Kapa Library quantification kit (Kapa Biosystems), respectively. Libraries were sequenced on a single Illumina Hiseq 2500 lane (222,279,510 million paired-end reads) at the Genome Center of Cold Spring Harbor Laboratories, Cold Spring Harbor.
[0111] Previously collected reads for wild-type tomato cultivar M82, compound inflorescence (s) mutant (Lemmon et al., 2016; Park et al., 2012), and reads for the s2 mutant were trimmed by quality using Trimmomatic (Bolger et al., 2014b) and aligned to the reference genome sequence of tomato (SL2.50) (Consortium, 2012) using Tophat2 (Kim et al., 2013). Alignments were sorted with samtools (Li et al., 2009) and gene expression quantified as unique read pairs aligned to reference annotated gene features (ITAG2.4) using HTSeq-count (Anders et al., 2015).
[0112] All statistical analyses of gene expression were conducted in R (RTeam, 2015). Expression of individual genes is shown as transcripts per million (TPM). Significant differential expression between meristem stages in wild-type tomato cultivar M82 was identified for 2,582 genes with edgeR (Robinson et al., 2009) using 2-foldchange, average 1 CPM, and FDR.ltoreq.0.10 cutoffs (Lemmon et al., 2016). To compare expression dynamics by principal component analysis (PCA), z-score normalization of raw counts was used within genotype to minimize the impact of the different sequencing lengths (50 bp vs. 100 bp) and platforms (GAIIx and HiSeq2500). PCA was conducted on normalized expression values for the 2,582 dynamic genes in wild-type tomato cultivar M82, s, and s2 using the prcomp function in R (RTeam, 2015). The first two principal components were then plotted to assess acceleration or delay of the meristem maturation process in mutant samples. The proportion of TM and FM marker genes with moderate and severely delayed expression was assessed by a two-step k-means clustering. First, normalized WT expression was grouped into twelve clusters and the two clusters with the most specific TM and FM expression were designated as markers. Mutant expression from TM and FM marker genes was normalized with WT, producing WT:s and WT:s2 normalized expression datasets. Finally, k-means clustering (12 clusters) was performed on s and s2 normalized expression alone and clusters with delays in activation compared to WT were identified by hand.
Mapping-by-Sequencing
[0113] To map the causal mutations in the s2 mutant, two second-generation (F.sub.2) populations were generated by crossing s2 with the S. lycopersicum cultivar M82, and s2 with S. pimpinellifolium. From a total of 464 s2.times.M82 F.sub.2 plants, 25 s2 mutants, 20 j2 mutants, and 13 WT siblings were selected for tissue collection, nuclei isolation, and DNA extraction. An equal amount of tissue from each plant (.about.0.2 g) was pooled for DNA extraction using standard protocols. Libraries were prepared with the Illumina TruSeq DNA PCR-free prep kit from 2 .mu.g genomic DNA sheared to 550 bp insert size. From a total of 576 s2.times.S. pimpinellifolium F.sub.2 plants, 16 s2 mutants, 9 j2 mutants, and 13 wild-type siblings were selected for DNA extraction. DNA was also extracted from the s2 parent (LA4371). Libraries were prepared with the Illumina TruSeq Nano DNA prep kit from 200 ng genomic DNA sheared to 550 bp insert size and 8 cycles of final amplification. All DNA libraries were sequenced on an Illumina NextSeq platform at the Cold Spring Harbor Laboratory Genome Center (Woodbury, N.Y.). For the s2.times.M82 F.sub.2 population, 62,317,992, 73,496,741, and 79,699,274 paired-end 151-bp reads were obtained for the s2 mutant, j2 mutant, and the WT sibling samples, respectively. For the s2.times.S. pimpinellifolium F.sub.2 population, 32,979,728, 82,439,796, and 50,763,441 paired-end 151-bp reads were obtained for pools of s2,j2, and the WT siblings, respectively. For the s2 parent 48,281,689 paired-end 151-bp reads were obtained.
[0114] To map the causal mutation in the in mutant, a F.sub.2 population was generated by crossing the in mutant with S. pimpinellifolium. From a total of 216 F.sub.2 plants, 8 lin mutant plants were selected with the most strongly branched inflorescences and 17 WT siblings for tissue collection. An equal amount of tissue from each plant (.about.0.2 g) was pooled for nuclei isolation and DNA extraction using standard protocols. Barcoded libraries were prepared with the Illumina TruSeq DNA PCR-free prep kit from 2 .mu.g genomic DNA sheared to 550 bp insert size and sequenced as above. 4,624,816 and 5,063,861 paired-end 101-bp reads were obtained for the in mutant and the WT sibling pools, respectively. To find the in mutation, a pool of 7 lin.times.S. pimpinellifolium F.sub.2 mutant plants was resequenced on the Illumina HiSeq2500 platform, and an additional 161,827,433 paired-end 101-bp reads were obtained.
[0115] To map s2 suppressor loci in S. pimpinellifolium, 1,536 S. pimpinellifolium.times.s2 F.sub.2 plants were regrown and 92 homozygous j2.sup.TE ej2 double mutants were selected by PCR genotyping. Primers are listed in Table 2. 18 s2 mutants, 6 moderately suppressed s2 mutants, and 2 strongly suppressed s2 mutants were selected for tissue collection, nuclei isolation, and DNA extraction. Libraries were prepared with the Illumina TruSeq DNA PCR-free prep kit from 2 .mu.g genomic DNA sheared to 550 bp insert size, and sequenced as above. 38,060,212, 38,044,727 and 52,426,078 paired-end 151-bp reads were obtained for the pools of s2, moderately suppressed s2, and the strongly suppressed s2 plants, respectively.
[0116] Genomic DNA reads were trimmed by quality using Trimmomatic and paired reads mapped to the reference tomato genome (SL2.50) using BWA-MEM (Li, 2013; Li and Durbin, 2009). Alignments were then sorted with samtools and duplicates marked with PicardTools (Li et al., 2009, broadinstitute.github.io/picard). SNPs were called with samtools/bcftools (Li, 2011; Li et al., 2009) using read alignments for the various genomic DNA sequencing pools from this project in addition to reference M82 (Bolger et al., 2014a) and S. pimpinellifolium (Consortium, 2012) reads. Called SNPs were then filtered for bi-allelic high quality SNPs at least 100 bp from a called indel using bcftools (Li, 2011). Following read alignment and SNP calling, all statistics and calculations were done in R (RTeam, 2015). Read depth for each allele at segregating bi-allelic SNPs in 1 Mb sliding windows (by 100 kb) was summed for the various mutant (s2,j2.sup.TE or suppression of s2) and wild-type sequencing pools and mutant:non-mutant SNP ratios were calculated. Finally, mutant SNP ratio was divided by wild-type SNP ratio (+0.5) and plotted across the 12 tomato chromosomes.
Tissue Collection and RNA Extraction
[0117] For semi-quantitative RT-PCR, seeds were germinated on moistened Whatman paper at 28.degree. C. in complete darkness. Seedlings at similar germination stages were transferred to soil in 72-cell plastic flats and grown in the greenhouse. Shoot apices were collected at the floral meristem (FM) stage of meristem maturation (Park et al., 2012), and immediately flash-frozen in liquid nitrogen. Total RNA was extracted using the RNeasy Plant Mini Kit (Qiagen) and treated with the RNase Free DNase Set (Qiagen), or the Arcturus PicoPure RNA Extraction kit (Thermo Fisher) according to the manufacturer's instructions. 100 ng to 1 .mu.g of total RNA was used for cDNA synthesis using the SuperScript III First-Strand Synthesis System (Invitrogen). All primer sequences can be found in Table 2.
Phylogenetic Analyses and Sequence Analyses
[0118] Sequences of tomato and Arabidopsis SEP family members were obtained from the Phytozome v11 database (phytozome.net) and aligned using the ClustalW function in MEGA. Phylogenetic trees for proteins with 1,000 bootstrap replicates were constructed using the maximum likelihood method in MEGA6 (Tamura et al., 2013). Homologous proteins in the clades containing Arabidopsis SEP1/2, SEP3, and SEP4 were assigned as SEP1/2-, SEP3-, and SEP4-homologs, respectively.
[0119] For analysing linkage between EJ2 and FW3.2, the M9 SNP was genotyped at position SL2.50ch03:64799226 (Chakrabarti et al., 2013) (G in S. pimpinellifolium (FW3.2) and A in S. lycopersicum cv. M82 (fw3.2)) in accessions of the tomato core collection using published genome sequencing data (Lin et al., 2014; Tieman et al., 2017).
CRISPR/Cas9 Mutagenesis, Plant Transformation, and Selection of Mutant Alleles
[0120] CRISPR/Cas9 mutagenesis and generation of transgenic plants was performed following the standard protocol (Belhaj et al., 2013; Brooks et al., 2014). Briefly, two single-guide (sg)RNAs binding in the coding sequence of the target gene were designed using the CRISPR-P tool (cbi.hzau.edu.cn/cgi-bin/CRISPR) (Lei et al., 2014). Vectors were assembled using the Golden Gate cloning system (Werner et al., 2012). The sgRNA-1 and sgRNA-2 were cloned downstream of the Arabidopsis U6 promoter in the Level 1 acceptors pICH47751 and pICH47761, respectively. The Level1 constructs pICH47731-NOSpro::NPTII, pICH47742-35S:Cas9, pICH47751-AtU6pro:sgRNA-1, and pICH47761-AtU6::sgRNA-2 were assembled in the binary Level 2 vector pAGM4723. Fifteen-.mu.l restriction-ligation reactions were performed in a thermocycler (3 min at 37.degree. C. and 4 min at 16.degree. for 20 cycles, 5 min at 50.degree. C., 5 min at 80.degree. C., and final storage at 4.degree. C.). All sgRNA sequences are listed in Table 2.
[0121] Final binary vectors were transformed into the tomato cultivar M82 and the tomato wild species S. pimpinelifolium by Agrobacterium tumefaciens-mediated transformation (Gupta, S. and Van Eck, 2016). After in-vitro regeneration, culture medium was washed from the root system and plants transplanted into soil. For acclimation, plants were covered with transparent plastic domes and maintained in a shaded area for 5 days. A total of 8 first-generation (To) transgenics were genotyped for induced lesions using forward and reverse primer flanking the sgRNA target sites. PCR products were separated on agarose gels and selected products were cloned into pSC-A-amp/kan vector (StrataClone Blunt PCR Cloning Kit, Stratagene). At least 6 clones per PCR product were sequenced using M13-F and M13-R primer. T.sub.0 plants with lesions were backcrossed to wild type and the F.sub.1 generation was genotyped for desirable large deletion alleles and presence/absence of the CRISPR/Cas9 transgene using primer binding the 3' of the 35S promoter and the 5' of the Cas9 transgene, respectively. All primers are listed in Table 2. Plants heterozygous for the engineered deletion alleles and lacking the transgene were self-pollinated to isolate homozygous, non-transgenic null mutants from the F.sub.2 generation.
Generation of Parental and Hybrid Lines for Cherry Tomato Breeding and Yield Trials Under Agricultural Greenhouse Conditions
[0122] To test the potential of j2 ej2 and s genotypes for fresh-market tomato breeding, hybrids were generated by crossing near-isogenic lines isolated from a breeding population that was developed for breeding high-yielding, indeterminate cherry tomato cultivars with a range of fruit shapes (Dani Zamir). Depending on genotype, near-isogenic lines were generated by backcrossing once to the respective cherry parents (BC.sub.1) followed by inbreeding for 3 generations (F.sub.3) or by inbreeding for 3-6 generations (F.sub.3-F.sub.6). Fruit shapes, inflorescence types, and yield characteristics were evaluated and selected each generation. Ten replicate plants per parental and hybrid line were grown in a randomized plot design in net houses in Hatzav, Israel in the year 2017. Damaged or diseased plants were marked throughout the season and were excluded from the analyses.
j2 Ej2 Hybrid Experiment
[0123] A jointless (j2.sup.TE) processing inbred (F.sub.6) wild type for EJ2 (j2 EJ2) served as parent (P-6022) for generating test and control hybrids. Test parents were isolated from a jointless (j2.sup.TE) cherry inbred population (BC.sub.1F3), which segregated for ej2.sup.w. Twoj2.sup.TE parents (P-6086-2 and P-6086-9) and two j2.sup.TE ej2 parents (P-6086-4 and P-6086-8) were selected by ej2.sup.w genotyping, and were crossed to P-6022. Control hybrids were generated by crossing the j2.sup.TE test parents (P-6086-2 for trail-I and P-6086-9 for trial-2) to the j2.sup.TE parent (P-6022). Test hybrids were generated by bulk crossing the j2.sup.TE ej2.sup.w test parents (P-6086-4 for trail-1 and P-6086-8 for trial-2) to the j2.sup.TE parent (P-6022).
s Hybrid Experiment
[0124] An indeterminate cocktail inbred (F.sub.3) and a determinate cherry inbred (F.sub.3) served as parents (P-6097 and P-6105, respectively) for generating test and control hybrids. Test parents were isolated from an indeterminate cherry-type F.sub.5 inbred line that segregated the s mutation. One parent wild type for S (P-6089) and one s mutant parent (P-6090) were selected by phenotyping and self-fertilized. The F.sub.6 generation was stable for unbranched (P-6089) and compound inflorescences (P-6090). Control and test hybrids were generated by bulk crossing the S parents (P-6097 for trail-1 and P-6105 for trial-2) to the S (P-6089) and the s (P-6090) test parents, respectively.
[0125] For analyses of yield component traits, mature green (MG) and red fruits (MR) were collected from 6 subsequent individual inflorescences and MG fruit number (MGFN), MR fruit number (MRFN), MG fruit weight (MGFW), and MR fruit weight (MRFW) was determined per inflorescence. Total fruit number (TFN) was the sum of MGFN and MRFN from each plant. Total yield (TY) was the sum of MGFW and MRFW from each plant. The average fruit weight (FW) was calculated by dividing MRFW by MRFN. From each plant, 7-10 fruits from at least one inflorescence were randomly selected to determine total soluble sugar content (Brix) in fruit juice. Brix value (percent) was quantified with a digital Brix refractometer (ATAGO Palette). For each measured yield parameter, mean values and percentage difference to the control hybrid were statistically compared using two tailed, two-sample t-tests.
Quantification and Statistical Analyses
Sampling
[0126] For quantitative analyses of flower number per inflorescence and inflorescence internode length, at least 10 inflorescences were analyzed per genotype. For quantitative analyses of inflorescence complexity at least 5 inflorescences each from 6 individual replicate plants were analyzed per genotype. For quantitative analyses of relative sepal length, at least flowers were analyzed per genotype or ecotype. Hybrid inflorescence traits (number of branching events per inflorescence, total number of branches and flowers per plant) were determined for 6 subsequent inflorescences per individual plant and 9-10 individual plants per hybrid line. Total number of mature green and red fruits per individual plant was determined from 6 subsequent inflorescences per plant and 9-10 individual plants per hybrid line. Exact numbers of individuals (N) are presented in all FIGs. Statistical calculations were performed using R and Microsoft Excel. Mean values for each measured parameter were compared using two-tailed, two-samples Student's t-test.
Transcriptome Quantification
[0127] Reads for the wild-type M82, compound inflorescence (s) mutant (Lemmon et al., 2016; Park et al., 2012), and the s2 mutant were trimmed by quality using Trimmomatic v0.32 (HiSeq2500 parameters: ILLUMINACLIP:TruSeq3-PE-2.fa:2:40:15:1:FALSE LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:36; GAIIx parameters: ILLUMINACLIP:TruSeq2-PE.fa:2:30:10:1:FALSE LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:36 TOPHRED33) (Bolger et al., 2014b) and aligned to the reference genome sequence of tomato (SL2.50) (Consortium, 2012) using Tophat2 v2.0.127 (parameters: --b2-very-sensitive--read-mismatches 2--read-edit-dist 2--min-anchor 8--splice-mismatches 0--min-intron-length 50--max-intron-length 50000--max-multihits 20) (Kim et al., 2013). Alignments were sorted with samtools (Li et al., 2009) and gene expression quantified as unique read pairs aligned to reference annotated gene features (ITAG2.4) using HTSeq-count v0.6.08 (parameters: --format=bam--order=name--stranded=no--type=exon--idattr=Parent) (Anders et al., 2015).
[0128] All statistical analyses of gene expression were conducted in R (RTeam, 2015). Significant differential expression between meristem stages in wild-type M82 was identified for 2,582 genes with edgeR (Robinson et al., 2009) using 2-foldchange, average 1 CPM, and FDR.ltoreq.0.10 cutoffs (Lemmon et al., 2016). To compare expression dynamics between genotypes, z-score normalization was used within genotype to minimize the impact of the different sequencing lengths (50 bp vs. 100 bp) and platforms (GAIIx and HiSeq2500). A principal component analysis (PCA) was conducted on these normalized expression values for the 2,582 dynamic genes including wild-type M82, s, and s2 using the prcomp function in R (RTeam, 2015). The first two principal components were then plotted to assess modified maturation schedules in the mutant samples. The proportion of TM and FM marker genes with moderate and strongly delayed expression was assessed by a two-step k-means clustering. First, WT expression (TPM) was z-score normalized and clustered into twelve groups using the kmeans2 function from the Mfuzz package (Futschik, 2015) in R. The two clusters with the most specific TM and FM expression (clusters 06 and 08, respectively; FIG. 8A) were designated as marker clusters. Mutant s and s2 expression (TPM) from the 277 TM and 241 FM marker genes was z-score normalized with WT expression, producing a WT:s normalized expression and WT:s2 normalized expression dataset. Finally, k-means clustering (12 clusters) was performed on s (FIG. 8B) and s2 (FIG. 8C) expression alone (normalized by WT expression levels) and clusters with moderate and severe delays in activation compared to WT were manually identified.
Mapping
[0129] For mapping-by-sequencing of the various mutants, reads were trimmed by quality using Trimmomatic v0.32 (HiSeq 2500 read parameters: ILLUMINACLIP:TruSeq3-PE-2.fa:2:40:15:1:FALSE LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:36; GAIIx read parameters: ILLUMINACLIP:TruSeq2-PE.fa:2:30:10:1:FALSE LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:36 TOPHRED33) and paired reads mapped to the reference tomato genome (SL2.50) using BWA-MEM v0.7.10-r789 (parameters: -M) (Li, 2013). Alignments were then sorted with samtools and duplicates marked with PicardTools vi.126 (parameters: VALIDATION_STRINGENCY=LENIENT) (Li et al., 2009, broadinstitute.github.io/picard). SNPs were called with samtools/bcftools v1.3.1 (samtools mpileup parameters: --ignore-RG--max-depth 1000000--output-tags DP,AN--min-BQ 0--no-BAQ--uncompressed--BCF; bcftools call parameters: --multiallelic-caller--variants-only--output-type z) (Li, 2011; Li et al., 2009) using read alignments for the various sequencing pools from this project in addition to reference M82 (Bolger et al., 2014a) and S. pimpinellifolium (Consortium, 2012) reads. Called SNPs were then filtered for bi-allelic high quality (MQ>=50) SNPs at least 100 bp from a called indel using bcftools (Li, 2011). Following read alignment and SNP calling and filtering, all mapping statistics and calculations were done using R (RTeam, 2015). Read depth for each allele at segregating bi-allelic SNPs in 1 Mb sliding windows (by 100 kb) was summed for the various mutant (lin, s2,j2, suppression of s2) and wild-type sequencing pools and mutant:non-mutant SNP ratios were calculated. Finally, mutant SNP ratio was divided by wild-type SNP ratio (+0.5) and plotted across the tomato genome.
Data and Software Availability
[0130] Raw sequencing reads generated in this study have been deposited at the Sequence Read Archive (ncbi.nlm.nih.gov/sra) under BioProject SRP100435.
Additional resources for the tomato core collection (please see e.g., unity.phenome-networks.com), for CRISPR design (please see e.g., cbi.hzau.edu.cn/cgi-bin/CRISPR), for sequence retrieval (please see e.g., phytozome.jgi.doe.gov/) and for data deposition (please see e.g., ncbi.nlm.nih.gov/sra) are also available to one of ordinary skill in the art.
Results
[0131] The s2 Variants Produce Branched Inflorescences and Flowers with Jointless Pedicels
[0132] To explore the challenges with improving tomato inflorescences, a core collection of 4,193 wild and domesticated accessions was screened for deviation from the typical inflorescence architecture of multiple flowers arranged along a single branch (FIG. 1A) (unity.phenome-networks.com, see STAR Methods). Twenty-three extremely branched accessions were previously reported that were all defective in the gene COMPOUND INFLORESCENCE (S, homolog of Arabidopsis WUSCHEL-RELATED HOMEOBOX 9, WOX9) (FIG. 1B) (Lippman et al., 2008). However, three rare variants not allelic to s that branched less frequently and also lacked the abscission zone on the stems (pedicels) of flowers known as the "joint" were also found (FIGS. 1C, 1D, and 7A-7F). Searching other germplasm sources provided one additional branched jointless mutant derived from an X-ray mutagenesis (FIGS. 7C and 7F) (Stubbe, 1972). Crosses among all four accessions failed to complement (FIGS. 7G-71). Consequently, these accessions were collectively named compound inflorescence 2 (s2).
[0133] One s2 accession was designated as a reference (LA4371), and an analysis of higher-order mutants with s showed an additive genetic relationship, indicating the gene(s) underlying s2 function separately from the S gene (FIGS. 1C and 7J). It was noted during the generation of s s2 plants that s2 segregated at a ratio of .about. 1/16 (FIG. 1E), suggesting two unlinked recessive mutations underlie s2 phenotypes. Consistent with this, jointless plants (unbranched and branched) segregated as a single recessive mutation. This jointless trait resembled two classicaljointless-2 (j2) mutants reported 50 years ago. The original j2 was discovered in the unbranched wild tomato species S. cheesmaniae from the Galapagos Islands (Rick, 1956a). A second allele arose spontaneously in an agricultural field, but this mutation was also associated with inflorescence branching that caused excessive flower production and poor fruit set due to epistatic interactions with the domesticated germplasm (Reynard, 1961; Rick, 1956b). Breeders selected and utilized unbranched j2, because it reduced fruit dropping and enabled large-scale machine harvesting of processing tomatoes, while maintaining good fruit set (Robinson, 1980; Zahara and Scheuerman, 1988). Notably, the jointless phenotype of s2 was allelic to j2 (FIG. 7K), and s2 plants with normal pedicels were not found, suggesting branching required the j2 mutation. Therefore, the second locus was designated enhancer-of-jointless2 (ej2).
[0134] To better understand the developmental basis of s2 branching, the stages of meristem maturation during early inflorescence development were examined. Tomato inflorescences develop according to the sympodial growth program (Park et al., 2014a), in which each vegetative meristem matures into a transition meristem (TM) and terminates in a floral meristem (FM) that produces the first flower of the inflorescence. Additional flowers arise from iterative formation of specialized axillary (sympodial) inflorescence meristems (SIM), resulting in a multi-flowered inflorescence (FIG. 1F). In s mutants, both TM and SIM maturation are severely delayed, allowing multiple SIMs to form at each cycle (FIG. 1G) (Lippman et al., 2008; Park et al., 2012). Additional SIMs also formed in s2 plants, but less than in s (FIG. 1H). To determine if s2 was delayed in maturation, RNA-seq was performed on sequential s2 meristem maturation stages and compared transcriptome dynamics with existing maturation profiles for s and WT (see STAR Methods) (Park et al., 2012). A principal component analysis (PCA) using 2,582 maturation marker genes (Lemmon et al., 2016) showed fewer TM and FM marker genes were delayed during s2 meristem maturation compared to s, consistent with less branching in s2 inflorescences (FIGS. 1I-1K and 8).
Mutations in Two related MADS-Box Genes Cause s2 Branching
[0135] The j2 mutant was previously mapped to the centromere of chromosome 12, but poor recombination prevented identification of the responsible gene (Budiman et al., 2004; Yang et al., 2005). To clone the genes underlying j2 and ej2, two F.sub.2 populations were generated from crossing s2 with the jointed (J2/J2) cultivar M82 and the wild ancestor of tomato, S. pimpinellifolium. In the intra-species F.sub.2 population, s2 plants segregated at the expected ratio of .about. 1/16, but this segregation was substantially lower in the S. pimpinellifolium population, suggesting unknown modifier loci can suppress s2 branching (FIGS. 9A-9C). To map j2 and ej2 simultaneously, genome sequencing was performed on pools of DNA from s2,j2, and WT F.sub.2 segregating plants (see STAR Methods). Comparing SNP ratios between s2 and WT pools in both populations revealed a region near the bottom of chromosome 3 and the centromere of chromosome 12 with a strong bias for SNPs from the s2 parent (FIGS. 2A, 9D, and 9E). SNP ratios between s2 and j2 revealed a bias only at the bottom of chromosome 3. These results confirmed j2 is located near the chromosome 12 centromere and revealed ej2 resides on chromosome 3.
[0136] MADS-box transcription factors are known to contribute to pedicel abscission zone development in tomato (Liu et al., 2014; Mao et al., 2000; Nakano et al., 2012; Shalit et al., 2009). The jointless1 mutant (j1) was mapped to chromosome 11 and found to be mutated in a homolog of the Arabidopsis MADS-box flowering regulator SHORT VEGETATIVE PHASE (SVP) (Hartmann et al., 2000; Mao et al., 2000). Therefore, the .about.6 Mbp j2 mapping interval for MADS-box genes was searched, and among the 164 genes in this region only one candidate was found, Solyc12g038510, a homolog of the Arabidopsis floral organ identity MADS-box gene SEPALLATA4 (SEP4) (FIG. 2B) (Ditta et al., 2004). Previous transcriptional silencing of Solyc12g038510 resulted in jointless pedicels, but it was suggested Solyc12g038510 and J2 were different genes, because the published j2 mapping interval did not coincide with Solyc12g038510, likely from unreliable centromeric marker resolution (Budiman et al., 2004; Liu et al., 2014). However, the genomic sequencing of s2 and j2 mutants exposed a Copia/Rider-type transposable element (TE) in the first intron of Solyc12g038510 that was absent in WT (FIG. 2C). Furthermore, the s2 RNA-seq revealed that most Solyc12g038510 transcripts initiated in the first intron, resulting in an early nonsense mutation (FIGS. 2D and 9H). To validate that Solyc12g038510 is J2, CRISPR/Cas9 was used to engineer loss-of-function mutations, and the resulting j2.sup.CR plants developed jointless unbranched inflorescences (FIGS. 2E and 2F). Moreover, progeny from crossing j2.sup.CR with s2-derived j2 had jointless and unbranched inflorescences (FIG. 2G), and sequencing Solyc12g038510 in the original j2 S. cheesmaniae accession revealed an early stop codon (FIGS. 9F-9H). Thus, the SEP4 gene Solyc12g038510 is J2, and two natural mutations arose independently (hereafter designated j2.sup.TE and j2.sup.stop) (Reynard, 1961; Rick, 1956a).
[0137] Both j2 and ej2 are required for s2 branching, suggesting the underlying genes function redundantly, similar to SEP genes in Arabidopsis that control floral organ identity (Ditta et al., 2004; Pelaz et al., 2000). The 66 genes were searched in the 500 kbp ej2 mapping interval for MADS-box genes and the tandemly arranged Solyc03g114830 and Solyc03g114840 were found (FIG. 2H). Solyc03g114830 is a homolog of Arabidopsis FRUITFULL and transcriptional knockdown of this gene causes defects in fruit ripening (Bemer et al., 2012; Wang et al., 2014). The genomic sequencing of s2 mutants did not reveal any Solyc03g114830 coding or noncoding SNPs, or large indels, and s2 fruits ripened normally. In contrast, Solyc03g114840 is another homolog of SEP4, and a 564 bp insertion was found in the 5.sup.th intron of s2 mutants, which was absent in WT (FIG. 2I). Notably, RNA-seq reads from s2 revealed a third of Solyc03g114840 transcripts were misspliced, suggesting the insertion caused a partial loss of function (FIG. 2J). To test this and uncover the phenotypic consequences of strong loss of EJ2 function, new alleles were engineered with CRISPR/Cas9 and e j2.sup.CR inflorescences were found to be unbranched, but the sepals (outermost leaf-like organs of the flowers) were exceptionally large and fruits were pear-shaped (FIGS. 2K and 2L). To determine if the original ej2 mutation impacted flower and/or fruit morphology, ej2 was backcrossed into M82 and relative sepal length (defined by sepal/petal length ratio) was measured. Notably, whereas there was no obvious change in fruit shape or size, ej2 sepals were 50% longer than WT but shorter than ej2.sup.CR, consistent with a weak allele (FIGS. 2M, 2N, and 9I). Importantly, flowers of F.sub.1 progeny from crossing ej2 and ej2.sup.CR also developed long sepals. Thus, Solyc03g114840 is E12, and the natural ej2 mutation is a weak loss-of-function allele (hereafter designated ej2.sup.w).
[0138] Finally, it was verified that the other s2 accessions carried mutations in both j2 and ej2. PCR genotyping showed all but one accession was double mutant for ej2.sup.w and either j2.sup.TE or j2.sup.stop (FIG. 9J). The last accession was homozygous for ej2.sup.w, but J2 could not be amplified, consistent with having originated from an X-ray mutagenesis (Stubbe, 1972). Thus, the prolonged meristem maturation underlying s2 inflorescence branching is caused by mutations in two redundantly acting SEP MADS-box genes.
Ej2.sup.w Arose During Domestication and Hindered j2 Utilization for Breeding
[0139] In modern breeding programs, the value of jointless varieties was recognized for their potential to reduce fruit drop and post-harvest damage during mechanical harvesting for the processing tomato industry. Yet, plants carrying j1 yield poorly due to reversion of inflorescences to vegetative growth after developing a few flowers (Butler, 1936; Mao et al., 2000). Thus, j2 was widely favored over the last 50 years of breeding. However, breeders frequently experienced problems with excessive inflorescence branching and low yield upon introducing j2 into different cultivated backgrounds (Robinson, 1980), probably because of negative epistasis with ej2.sup.w. To determine to what extent ej2.sup.w hindered j2 utilization in breeding, 568 wild and domesticated accessions were genotyped from the tomato core collection and more than half were found to be homozygous for the ej2.sup.w allele (FIG. 3A). Notably, ej2.sup.w was absent from S. pimpinellifolium, but 40% of early domesticates (landraces) were homozygous for the mutation, and the percentage doubled in cultivars. Most importantly, ej2.sup.w was strongly associated with long sepals, including within a subset of confirmed landraces (Blanca et al., 2015), suggesting selection during domestication (FIGS. 3B-3E). In support of this, ej2.sup.w is in close proximity (<46 Kbp) to a previously reported domestication and improvement selective sweep (Lin et al., 2014). Notably, a minor fruit weight QTL (fv3.2) that also arose in the landraces is in close proximity (.about.85 Kbp) to EJ2 (Chakrabarti et al., 2013; Zhang et al., 2012). Among 62 landraces, accessions were found that carried ej2.sup.w but not fw3.2 (ej2.sup.w/FW3.2: 7%) and vice versa (EJ2/fv3.2: 9%), suggesting that each mutant allele arose independently and were likely combined early in domestication. It was also found that not all cultivated lines carried both alleles (ej2.sup.w/FW3.2: 2%; EJ2/fv3.2: 11%), indicating that both mutations were either passed on independently during domestication and improvement, or were co-selected and then separated later by breeding.
[0140] One explanation for the early selection of ej2.sup.w and its subsequent spread in the cultivated germplasm is that larger sepals provided an enlarged calyx that was concomitantly selected as fruit size increased, perhaps with fw3.2. Such a trait would not necessarily have been selected for improved productivity by increasing fruit size or number per se, but instead could have provided improved fruit support, strong local source tissue, or simply aesthetic value for larger fruits. To determine if ej2.sup.w was selected during domestication and breeding of larger fruits, the frequency of the ej2.sup.w allele was evaluated in 258 cultivars representing five fruit sizes ranging from small "cherry" tomatoes (<5 g) to extremely large "beefsteak" varieties (>500 g). Remarkably, the frequency of the allele increased with fruit size, and nearly all (>90%) large-fruited accessions were homozygous for ej2.sup.w, including 88% of vintage heirloom cultivars (Male, 1999). These results show that the ej2.sup.w allele was already widespread in larger fruit types before j2 was discovered and adopted in modern breeding (FIG. 3F). Since EJ2 is also expressed in developing fruits (FIG. 10A) and e j2.sup.CR fruits are elongated (FIG. 2L), it is also possible the ej2.sup.w allele impacts other fruit traits such as size/shape and/or ripening, especially in the presence of other QTL that impact these traits.
Elite breeding germplasm carries both j2.sup.TE and ej2.sup.w, but branching is suppressed
[0141] Because ej2.sup.w became widespread in tomato germplasm and j2 arose much later, introducing either of the j2 alleles into most cultivars would have resulted in undesirable branching and low yield. However, it was reported these adverse effects could be overcome by breeding (Robinson, 1980). One possibility is that ej2.sup.w was segregated away through crosses. Alternatively, breeders could have identified and selected natural suppressors of branching. To test this, 153 unbranched jointed and jointless elite inbreds and hybrids were obtained from major seed companies and public breeders (see STAR Methods), and genotyped for both mutations. All jointless lines were homozygous for j2.sup.TE, indicating the allele that arose in the domesticated germplasm was favored in breeding. Since new tomato varieties for processing and fresh-market production are developed in separate breeding programs, it was asked if j2.sup.TE was utilized in both. The value of the jointless trait is most recognized for mechanical harvesting of processing types, and in support of this the j2.sup.TE allele was present in 74% of sampled processing lines. Although less widespread, j2.sup.TE was also found in 34% of fresh-market lines, indicating that j2.sup.TE continues to be utilized in both breeding programs.
[0142] Remarkably, it was found that more than 60% of j2.sup.TE homozygotes in both processing and fresh-market lines were also homozygous ej2.sup.w (FIGS. 4A and 4B), supporting the hypothesis that suppressors were selected during improvement. This was reminiscent of the reduced segregation of s2 in the S. pimpinellifolium F.sub.2 mapping population (FIGS. 9B and 9C). To map potential suppressor loci, 1,536 F.sub.2 plants were regrown, and of 92 plants homozygous for both mutations, 24% showed various degrees of suppression (FIG. 4C).
[0143] Using genome sequencing, one large-effect suppressor was mapped near the end of chromosome 2 in the same region as a previously reported suppressor in the domesticated germplasm (FIG. 4D) (Robinson, 1980). However, given that only a small percentage of j2.sup.TE ej2.sup.w F.sub.2 plants displayed unbranched inflorescences, additional suppressors from breeding germplasm are likely involved, which together were needed to achieve complete suppression.
Three meristem expressed SEP4 genes modulate inflorescence complexity
[0144] The dissection of the negative epistasis underlying s2 branching exposed two tomato SEP4 genes that act redundantly to control meristem maturation and inflorescence development. This led to the question of to what extent these genes work with other tomato SEP family members to regulate inflorescence architecture and flower production, and could have potential for agricultural application. In Arabidopsis, a family of four redundant SEP genes is required to establish floral organ identity (Ditta et al., 2004; Pelaz et al., 2000). Tomato has an expanded SEP family of six members (Consortium, 2012), and a phylogenetic analysis of protein sequences showed Arabidopsis SEP1, 2, and 3 have two tomato homologs (Solyc05g015750/TM5 and Solyc02g089200/TM29) (FIG. 5A). In contrast, there are four homologs of SEP4, and among them is the RIPENING INHIBITOR (RIN) gene. A classical mutation in RIN blocks ripening and is widely used in hybrid breeding due to a heterozygous dosage effect that causes fruits to remain firm and ripen over a protracted period, improving shelf life (Klee and Giovannoni, 2011; Vrebalov et al., 2002).
[0145] To investigate individual and combined roles of tomato SEP genes in inflorescence development, expression patterns were first analyzed using the meristem maturation atlas and transcriptome data from other major tissues (Consortium, 2012; Park et al., 2012). Both TM5 and TM29 (SEP1/2/3 homologs) were expressed only later in reproductive development, beginning in floral meristems and extending into flowers and fruits (FIGS. 5B and 10A), supporting previously characterized roles in floral organ identity (Ampomah-Dwamena et al., 2002; Pnueli et al., 1994). RIN was only expressed in fruits, consistent with its role in ripening (FIG. 10A) (Vrebalov et al., 2002). In contrast, expression of J2, EJ2, and the fourth SEP4 homolog (Solyc04g005320) began earlier, in the TM stage of meristem maturation and in SIMs (FIG. 5B). This suggested Solyc04g005320 could function with J2 and EJ2 in meristem maturation. Moreover, given that Arabidopsis SEP redundancy is based on formation of multimeric protein complexes (Theissen et al., 2016), interactions were tested among all four tomato SEP4 proteins in yeast two-hybrid assays and J2, EJ2, and Solyc04g005320 were found to interact with each other and themselves, except for homomeric EJ2. These results validated previous findings (Leseberg et al., 2008), and further revealed that J2 and EJ2 interact with each other, supporting redundancy in the control of meristem maturation and inflorescence architecture (FIGS. 5C, 5D, 10B and 10C).
[0146] To test if Solyc04g005320 contributes to inflorescence architecture and flower production, CRISPR/Cas9 was used to engineer plants with null mutations, which resulted in exceptionally long inflorescences with nearly twice as many flowers as WT and longer internodes (FIGS. 5E and 10D). Weak branching late in inflorescence development was also frequently observed. Whether similar effects occur in genotypes that already have long inflorescences was tested by mutating Solyc04g005320 in S. pimpinellifolium, which produces 15-20 flowers on each inflorescence. Remarkably, internode length and flower number doubled (FIGS. 5F, 10D-10F). These phenotypes were reminiscent of a gamma-irradiation mutant designated long inflorescence (lin) that was previously mapped to an interval on chromosome 4 containing Solyc04g005320 (FIGS. 10G-10J)(see STAR Methods). Sequencing Solyc04g005320 from the lin mutant revealed a translocation in the first intron that eliminated transcription (FIGS. 10J-10L, also referred to herein as lin.sup.trans) and crosses with a CRISPR allele failed to complement the long inflorescence phenotype.
[0147] The increase in inflorescence complexity in lin mutants is modest compared to j2 ej2.sup.w double mutants. To study the extent of redundancy and potential dosage relationships among the three genes, strong alleles were used in the same background to create all combinations of higher-order mutants (see STAR Methods). Whereas j2.sup.CR was largely additive with lin (FIG. 10M), ej2.sup.CR and lin were synergistic for floral organ development; double-mutants had long inflorescences with more flowers that developed extremely enlarged sepals, but inner floral organs did not fully develop and fruits failed to form (FIG. 10N). As expected, j2.sup.CR and ej2.sup.CR were also synergistic, but unlike the moderately branched, highly floral inflorescences of the original j2.sup.TE/stop ej2.sup.w natural double mutants (s2), inflorescences from j2.sup.CR e j2.sup.CR plants were extraordinarily branched and rarely produced normal fertile flowers (FIG. 5G). Finally, combining all three mutants resulted in massively over proliferated SIMs without forming flowers (FIGS. 5H and 10O). The same effect was observed in S. pimpinellifolium j2.sup.CR ej2.sup.CR lin.sup.CR plants (FIGS. 5I and 10O). The sequences for S. pimpinellifolium j2.sup.CR ej2.sup.CR lin.sup.CR are shown below. Thus, J2 and E/2 have distinct roles in floral development, but all three SEP4 genes have overlapping roles in meristem maturation and inflorescence development.
Dosage of Meristem Maturation Transcription factors can be Exploited to Improve Inflorescence Architecture and Yield
[0148] The individual and combined mutations in J2, EJ2, and LIN provided a series of three forms of increased inflorescence complexity ranging from weak (lin single mutants) to extremely severe (j2 ej2 lin triple mutants), indicating quantitative relationships among these SEP4 genes. It was previously demonstrated that dosage relationships among genes in the florigen pathway could be exploited to create a quantitative range of plant architectures that translated to improved productivity in determinate field-grown tomatoes (Park et al., 2014b; Soyk et al., 2016). It was reasoned that dosage sensitivity could be similarly used to fine-tune inflorescence architecture and flower production. To test this, a series of homozygous and heterozygous combinations of j2 strong alleles with ej2.sup.w or ej2.sup.CR in the isogenic M82 background was first created (FIGS. 6A and 6B). All double heterozygotes (e.g. j2/+ej2.sup.w/+; j2/+ej2.sup.CR/+) and plants heterozygous for j2 and homozygous for ej2.sup.w (j2/+ej2.sup.w) produced unbranched inflorescences like the single mutants. In contrast, heterozygosity for ej2.sup.w in a j2 background (j2 ej2.sup.w/+) conferred weak branching, as did j2/+ej2.sup.CR. Notably, heterozygosity for the null e j2.sup.CR allele in the null j2 background (j2 ej2.sup.CR/+) resulted in branching that matched s2 inflorescences (j2 ej2.sup.w), further validating that ej2.sup.w is a weak allele and confirming a sensitive dosage relationship between these genes. Given these results, it was reasoned that other meristem maturation regulators might have similar dosage-sensitivity on inflorescence architecture and this was tested with S, a member of the WOX protein family (Graaff et al., 2009; Lippman et al., 2008). Indeed, plants heterozygous for three s mutant alleles were also mildly branched (FIGS. 6C and 6D), demonstrating dosage-sensitivity of independent meristem maturation genes allows for quantitative tuning of inflorescence architecture.
DISCUSSION
Dose-Dependent Quantitative Variation, Weak Alleles, and Crop Improvement
[0149] This study involved exploration of the potential of genes and alleles underlying natural variation in inflorescence complexity to improve productivity. By analyzing the s2 branching variant, it was found that multiple members of the SEP4 subfamily of tomato MADS-box genes play critical redundant roles in modulating meristem maturation and inflorescence architecture. The first MADS-box family member involved in tomato domestication was further described, highlighting the growing significance of this transcription factor family in contributing to domestication and improvement of diverse crops (Singh et al., 2013; Vrebalov et al., 2002; Zhao et al., 2011). By dissecting interactions between meristem expressed SEP4 genes dosage relationships were uncovered among an allelic series of MADS-box mutations with potential for breeding. This collection of alleles, including mutations in S, comprises a toolkit to manipulate inflorescence architecture, which can now be expanded to additional regulators of meristem maturation, such as LIN. To demonstrate this, CRISPR/Cas9 was used to target LIN in the elite cherry tomato cultivar Sweet 100 and mutant lines were generated with moderately branched inflorescences and increased flower production (FIGS. 10P-10S).
[0150] The present approach for creating desirable phenotypic variation in major yield traits relies on combining specific heterozygous and homozygous mutations to obtain a quantitative range of dosage effects (Park et al., 2014b). However, exploiting gene dosage may be limited by the availability of weak alleles that confer quantitative trait modifications. For example, longer sepals and weak branching were achieved through different levels of reduced EJ2 dosage from homozygosity and heterozygosity for ej2', respectively. In nature, similar dosage effects often arise from mutations in transcriptional control regions (e.g., in cis-regulatory DNA). Such alleles were widely favored in crop domestication and improvement for their subtle phenotypic changes compared to null alleles that frequently display deleterious pleiotropic effects (Meyer and Purugganan, 2013; Purugganan and Fuller, 2009). For example, increased fruit size during tomato domestication depended in part on transcriptional alleles of multiple components in the classical CLAVATA-WUSCHEL stem cell circuit (Xu et al., 2015). A potentially powerful approach to engineer novel weak alleles that are being explored (Swinnen et al., 2016) is exploiting gene-editing technology to mutate cis-regulatory control regions of productivity genes. A promising target identified in this study is LIN. CRISPR/Cas9-induced weak transcriptional alleles that confer reduced LIN expression may provide subtle increases in flower production, which may be especially valuable in large-fruited cultivars where branching often negatively impacts fruit weight and yield. Notably, a rice homolog ofLINand other meristem maturation genes control panicle architecture and grain production (Kobayashi et al., 2010, 2012; Liu et al., 2013), suggesting the present findings have broad agricultural potential. New gene-editing tools should enable the engineering of diverse types and strengths of alleles that can provide customized gene dosage effects to improve a wide range of agronomic traits in many crops.
Epistasis in Evolution, Domestication, and Breeding
[0151] Progress in breeding is largely driven by loci with predictable additive effects. For example, the majority of flowering time variation in maize is determined by thousands of small additive quantitative trait loci (QTL) (Buckler et al., 2009), and the same is true for traits in other crops (Doust et al., 2014; Gao et al., 2015). Yet, epistatic interactions, both positive and negative, are also important in breeding, particularly when working with disparate germplasm. For example, interactions between interspecific quantitative trait loci (QTL) in rice can improve aluminum tolerance (Famoso et al., 2011), whereas stacking multiple wild species-derived QTL affecting the same yield traits in tomato results in less-than-additive or "diminishing returns" epistasis (Eshed and Zamir, 1996).
[0152] In recent years, several cases of negative epistasis have emerged in diverse organisms involving clashes between newly evolved and established alleles, or upon bringing together distinct genomes, either through natural or artificial means. Examples include compromised fitness gains upon combining interacting alleles in bacteria and yeast (Chou et al., 2011; Heck et al., 2006; Khan et al., 2011; Kvitek and Sherlock, 2011), hybrid necrosis between distinct accessions of Arabidopsis (Chae et al., 2014), and loss of protection from malaria in humans when two common resistance variants are co-inherited (Williams et al., 2005). Compared to negative epistasis in evolution and natural selection, the intense artificial selection imposed by humans during domestication and breeding could drive more frequent occurrences of epistasis. While dramatic cases like the one described in this study could be overcome through selection against interactions or suppression with modifiers, there may be many undiscovered negative interactions in agriculture with more subtle phenotypic consequences that may remain challenging to detect and dissect until high throughput quantitative phenotyping platforms (phenomics) and power in genome-wide association studies (GWAS) improves.
[0153] The present dissection of the extreme negative epistasis underlying the s2 branching syndrome has highlighted an underappreciated challenge for the next generation of crop breeding. Specifically, using rapidly advancing gene-editing technologies to introduce precise novel allelic variation for specific genes into existing germplasm may not provide desirable phenotypic outcomes, and could potentially result in negative consequences due to interactions with alleles selected and stabilized during domestication and early breeding (Mackay, 2013). That the present example of negative epistasis involved two closely related MADS-box genes suggests that engineering new alleles in gene families or related developmental pathways that already played a role in domestication and improvement may be particularly sensitive to unexpected epistatic consequences, perhaps explaining other as yet uncharacterized examples of negative epistasis in agriculture (Bomblies and Weigel, 2007; Matsubara et al., 2015; Shang et al., 2016; Zhang et al., 2011). Elucidating, neutralizing, and potentially exploiting negative epistasis, as done in the present study, could have a significant impact in helping break productivity barriers in breeding of both plants and animals.
TABLE-US-00003 TABLE 2 Oligos used in this study Yeast two-hybrid assays Gene Forward Reverse Restr. name Gene ID primer primer enzyme LIN Solyc04 CACCGAATTCA TTCGGATCCTCA EcoRI + g005320 TGGGAAGAGGT AAGCATCCATCC BamHI AAGGTAGAA TGGTAA (SEQ (SEQ ID NO: ID NO: 18) 17) J2 Solyc12 CACCGAATTCA TTCGGATCCTTA EcoRI + g038510 TGGGAAGAGGA GAGCATCCACCC BamH I AGAGTAGAAC TGGAAT (SEQ (SEQ ID NO: ID NO: 20) 19) EJ2 Solyc03 CACCGAATTCA TTCGGATCCTTA EcoRI + g114840 TGGGAAGAGGA AAGCATCCATCC BamHI AGAGTTGAG ATGAATAAATC (SEQ ID NO: (SEQ ID NO: 21) 22) RIN Solyc05 CACCGAATTCA TTCGGATCCTCA EcoRI + g012020 TGGGTAGAGGG AAGCATCCATCC BamH I AAAGTAGAA AGGTACA (SEQ (SEQ ID NO: ID NO: 24) 23) Natural and induced mutant alleles analyzed in this study, and respective genotyping markers Gene Forward Reverse Allele Restr. name Gene ID primer primer name Type WT Mutant enzyme LIN Solyc04 GCAAAACTTTA CTTTTTGATTCA lin indel 396 -- -- g005320 AATTAGTTCTA TGTGTCTGTAC ATG (SEQ (SEQ ID NO: ID NO: 25) 26) LIN Solyc04 AATATCGTGTT CTTTTTGATTCA lin indel -- 358 -- g005320 AGAATGTGACA TGTGTCTGTAC C (SEQ ID (SEQ ID NO: NO: 27) 28) J2 Solyc12 TTACTTTTGCT CCGTCCTTTCTG j2-TE Indel -- 193 -- g038510 AAGAGAAGAAA TTTGTAGC bp TGG (SEQ ID (SEQ ID NO: NO: 29) 30) J2 Solyc12 TTACTTTTGCT GAATCCACTTAA j2-TE Indel 709 -- g038510 AAGAGAAGAAA GAATCTCTACC bp TGG (SEQ ID (SEQ ID NO: NO: 31) 32) J2 Solyc12 TATTGTGATAT AATACCTGAGTA j2- dCAPS 206 230 HpaI g038510 GTAGAGTGGTG TCACTAACCGTT classic bp + bp C (SEQ ID (SEQ ID NO: 24 NO: 33) 34) bp EJ2 Solyc03 CACAATTCATG CGGAGTAATCTA ej2-w Indel 177 738 -- g114840 CTGGATCAGC TTAGATTCTGC bp bp (SEQ ID NO: (SEQ ID NO: 35) 36) LIN Solyc04 CCTTTAATAAG TTGAAGGTGCAT CR-lin- Indel 855 1390 -- g005320 TTGAAAATCCC AGAACATACC a1 bp bp TC (SEQ ID (SEQ ID NO: NO: 37) 38) LIN Solyc04 CCTTTAATAAG TTGAAGGTGCAT CR-lin- CAPS 796 855 Hinc g005320 TTGAAAATCCC AGAACATACC a2 bp bp II TC (SEQ ID (SEQ ID NO: 59 NO: 39) 40) bp J2 Solyc12 ATATTGAATCG TAACTTTCTTCA CR-j2- Indel 316 411 -- g038510 TGTGATTGTCT AAGATGCATCC a1 bp bp C (SEQ ID (SEQ ID NO: NO: 41) 42) J2 Solyc12 ATATTGAATCG TAACTTTCTTCA CR-j2- CAPS 316 178 MboI g038510 TGTGATTGTCT AAGATGCATCC a2 bp bp I C (SEQ ID (SEQ ID NO: 139 NO: 43) 44) bp EJ2 Solyc03 AATATGGTCCT TAGCAAACTTAT CR-ej2- Indel 236 211 -- g114840 TATGTCCAACC TGGGCTAGC a1 bp bp (SEQ ID NO: (SEQ ID NO: 45) 46) EJ2 Solyc03 AATATGGTCCT TAGCAAACTTAT CR-ej2- CAPS 236 144 Hind g114840 TATGTCCAACC TGGGCTAGC a2 bp bp III (SEQ ID NO: (SEQ ID NO: 94 47) 48) bp Cas9 -- CTGACGTAAGG CATCTCATTACT -- T- -- 446 -- GATGACGCAC AAAGATCTCC DNA bp (SEQ ID NO: (SEQ ID NO: 49) 50) RT-PCR Gene Forward Reverse name Gene ID primer primer LIN Solyc04 ATGGGAAGAGG TCAAAGCATCCA g005320 TAAGGTAGAA TCCTGGTAAA (SEQ ID NO: (SEQ ID NO: 51) 52) J2 Solyc12 ATGGGAAGAGG TTAGAGCATCCA g038510 AAGAGTAGAAC CCCTGGAAT (SEQ ID NO: (SEQ ID NO: 53) 54) EJ2 Solyc03 ATGGGAAGAGG TTAAAGCATCCA g114840 AAGAGTTGAG TCCATGAATAAA (SEQ ID NO: TC (SEQ ID 55) NO: 56) UBI Solyc01 CGTGGTGGTGC ACGAAGCCTCTG g056940 TAAGAAGAG AACCTTTC (SEQ ID NO: (SEQ ID NO: 57) 58) CRISPR/Cas9 genome-editing sgRNA Forward Reverse sgRNA name Gene ID primer primer sequence LIN- Solyc04 TGTGGTCTCAA TGTGGTCTCAAG TTCTAGT sgRNA- g005320 TTTTCTAGTAT CGTAATGCCAAC ATGTCTG 1 GTCTGATACAC TTTGTAC (SEQ ATACAC GTTTTAGAGCT ID NO: 60) (SEQ ID AGAAATAGCAA NO: 81) G (SEQ ID NO: 59) LIN- Solyc04 TGTGGTCTCAA TGTGGTCTCAAG GGAACAG sgRNA- g005320 TTGGAACAGCT CGTAATGCCAAC CTTGAGC 2 TGAGCGTCAAC TTTGTAC (SEQ GTCAAC GTTTTAGAGCT ID NO: 62) (SEQ ID AGAAATAGCAA NO: 82) G (SEQ ID NO: 61) J2- Solyc12 TGTGGTCTCAA TGTGGTCTCAAG AGCTCCT sgRNA- g038510 TTAGCTCCTTC CGTAATGCCAAC TCAACGT 1 AACGTTCTCAA TTTGTAC (SEQ TCTCAA GTTTTAGAGCT ID NO: 64) (SEQ ID AGAAATAGCAA NO: 83) G (SEQ ID NO: 63) J2- Solyc12 TGTGGTCTCAA TGTGGTCTCAAG ACATATT sgRNA- g038510 TTACATATTCT CGTAATGCCAAC CTTGGAG 2 TGGAGAGGATT TTTGTAC (SEQ AGGATT GTTTTAGAGCT ID NO: 66) (SEQ ID AGAAATAGCAA NO: 84) G (SEQ ID NO: 65) EJ2- Solyc03 TGTGGTCTCAA TGTGGTCTCAAG TTTGGGC sgRNA- g114840 TTTTTGGGCAC CGTAATGCCAAC ACGTTAA 1 GTTAAGCTCGA TTTGTAC (SEQ GCTCGA GTTTTAGAGCT ID NO: 68) (SEQ ID AGAAATAGCAA NO: 85) G (SEQ ID NO: 67) E32- Solyc03 TGTGGTCTCAA TGTGGTCTCAAG CCTTAAA sgRNA- g114840 TTCCTTAAAGC CGTAATGCCAAC GCAAATC 2 AAATCAGGTCA TTTGTAC (SEQ AGGTCA GTTTTAGAGCT ID NO: 70) (SEQ ID AGAAATAGCAA NO: 86) G (SEQ ID NO: 69) LIN/ Solyc12 TGTGGTCTCAA TGTGGTCTCAAG GCTTTTG J2/ g038510; TTGCTTTTGCT CGTAATGCCAAC CTAAGAG EJ2- Solyc04 AAGAGAAGAAA TTTGTAC (SEQ AGAA sgRNA- g005320; GTTTTAGAGCT ID NO: 72) (SEQ ID 1 Solyc03 AGAAATAGCAA NO: 87) g114840 G (SEQ ID NO: 71) LIN/ Solyc04 TGTGGTCTCAA TGTGGTCTCAAG GCAGTCT J2/ g005320 TTGCAGTCTTC CGTAATGCCAAC TCAAAGG EJ2- AAAGGATTCAC TTTGTAC (SEQ ATTCAC sgRNA- GTTTTAGAGCT ID NO: 74) (SEQ ID 2 AGAAATAGCAA NO: 88) G (SEQ ID NO: 73) Sequencing Forward Reverse Target primer primer pSC- GTAAAACGACG CAGGAAACAGCT B- GCCAG (SEQ ATGAC (SEQ amp/ ID NO: 75) ID NO: 76) kan pICH TCCTGTCAAAC TAATGTACTGGG 47761 ACTGATAG GTGGATGCAG (SEQ ID NO: (SEQ ID NO: 77) 78) pAGM ATAAGCCCATC CGGATAAACCTT 4723 AGGGAGCAG TTCACGCC (SEQ ID NO: (SEQ ID NO: 79) 80)
REFERENCES
[0154] Ampomah-Dwamena, C., Morris, B. A., Sutherland, P., Veit, B., and Yao, J. (2002). Down-Regulation of TM29, a Tomato SEPALLATA Homolog, Causes Parthenocarpic Fruit Development and Floral Reversion. Plant Physiol 130, 605-617.
[0155] Anders, S., Pyl, P. T., and Huber, W. (2015). HTSeq-A Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166-169.
[0156] Ashikari, M., Sakakibara, H., Lin, S., Yamamoto, T., Takashi, T., Nishimura, A., Angeles, E. R., Qian, Q., Kitano, H., and Matsuoka, M. (2005). Cytokinin oxidase regulates rice grain production. Science. 309, 741-745.
[0157] Belhaj, K., Chaparro-Garcia, A., Kamoun, S., and Nekrasov, V. (2013). Plant genome editing made easy: targeted mutagenesis in model and crop plants using the CRISPR/Cas system. Plant Methods 9, doi: 10.1186/1746-4811-9-39.
[0158] Bemer, M., Karlova, R., Ballester, A. R., Tikunov, Y. M., Bovy, A. G., Wolters-Arts, M., Rossetto, P. D. B., Angenent, G. C., and de Maagd, R. a (2012). The tomato FRUITFULL homologs TDR4/FUL1 and MBP7/FUL2 regulate ethylene-independent aspects of fruit ripening. Plant Cell 24, 4437-4451.
[0159] Blanca, J., Montero-Pau, J., Sauvage, C., Bauchet, G., Illa, E., Diez, M. J., Francis, D., Causse, M., van der Knaap, E., and Canizares, J. (2015). Genomic variation in tomato, from wild ancestors to contemporary breeding accessions. BMC Genomics 16, 257.
[0160] Boden, S. A., Cavanagh, C., Cullis, B. R., Ramm, K., Greenwood, J., Jean Finnegan, E., Trevaskis, B., and Swain, S. M. (2015). Ppd-1 is a key regulator of inflorescence architecture and paired spikelet development in wheat. Nat. Plants 1, 14016.
[0161] Bolger, A., Scossa, F., Bolger, M. E., Lanz, C., Maumus, F., Tohge, T., Quesneville, H., Alseekh, S., Sorensen, I., Lichtenstein, G., et al. (2014a). The genome of the stress-tolerant wild tomato species Solanum pennellii. Nat. Genet 46, 1034-1038.
[0162] Bolger, A. M., Lohse, M., and Usadel, B. (2014b). Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114-2120.
[0163] Bomblies, K., and Weigel, D. (2007). Hybrid necrosis: autoimmunity as a potential gene-flow barrier in plant species. Nat. Rev. Genet. 8, 382-393.
[0164] Brooks, C., Nekrasov, V., Lippman, Z. B., and Van Eck, J. (2014). Efficient Gene Editing in Tomato in the First Generation Using the CRISPR/Cas9 System. Plant Physiol 166, 1292-1297.
[0165] Buckler, E. S., Holland, J. B., Bradbury, P. J., Acharya, C. B., Brown, P. J., Browne, C., Ersoz, E., Flint-Garcia, S., Garcia, A., Glaubitz, J. C., et al. (2009). The genetic architecture of maize flowering time. Science. 325, 714-718.
[0166] Budiman, M. A., Chang, S. B., Lee, S., Yang, T. J., Zhang, H. B., De Jong, H., and Wing, R. a. (2004). Localization of jointless-2 gene in the centromeric region of tomato chromosome 12 based on high resolution genetic and physical mapping. Theo Appl Genet 108, 190-196.
[0167] Butler, L. (1936). Inherited characters in the tomato. II. Jointless pedicels. J. Hered. 27, 25-26.
[0168] Chae, E., Bomblies, K., Kim, S. T., Karelina, D., Zaidem, M., Ossowski, S., Martin-Pizarro, C., Laitinen, R. A. E., Rowan, B. A., Tenenboim, H., et al. (2014). Species-wide genetic incompatibility analysis identifies immune genes as hot spots of deleterious epistasis. Cell 159, 1341-1351.
[0169] Chakrabarti, M., Zhang, N., Sauvage, C., Munos, S., Blanca, J., Canizares, J., Diez, M. J., Schneider, R., Mazourek, M., McClead, J., et al. (2013). A cytochrome P450 regulates a domestication trait in cultivated tomato. P Natl Acad Sci USA 110, 17125-17130.
[0170] Chou, H.-H., Chin, H.-C., Delaney, N. F., Segre, D., and Marx, C. J. (2011). Diminishing Returns Epistasis Among Beneficial Mutations Decelerates Adaptation. Science. 332, 1190-1192.
[0171] Consortium, T. T. G. (2012). The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485, 635-641.
[0172] Ditta, G., Pinyopich, A., Robles, P., Pelaz, S., and Yanofsky, M. F. (2004). The SEP4 Gene of Arabidopsis thaliana Functions in Floral Organ and Meristem Identity. Curr. Biol 14, 1935-1940.
[0173] Doebley, J., Stec, A., and Hubbard, L. (1997). The evolution of apical dominance in maize. Nature 386, 485-488.
[0174] Doebley, J. F., Gaut, B. S., and Smith, B. D. (2006). The Molecular Genetics of Crop Domestication. Cell 127, 1309-1321. Doust, A. N., Lukens, L., Olsen, K. M., Mauro-Herrera, M., Meyer, A., and Rogers, K. (2014).
[0175] Beyond the single gene: How epistasis and gene-by-environment effects influence crop domestication. Proc. Natl. Acad. Sci. 1-6.
[0176] Eshed, Y., and Zamir, D. (1996). Less-than-additive epistatic interactions of quantitative trait loci in tomato. Genetics 143, 1807-1817.
[0177] Famoso, A N., Zhao, K., Clark, R. T., Tung, C., Wright, M. H., Kochian, L. V, and Mccouch, S. R. (2011). Genetic Architecture of Aluminum Tolerance in Rice (Oryza sativa) Determined through Genome-Wide Association Analysis and QTL Mapping. Plos Genet 7, e1002221. doi:10.1371/journal.pgen.1002221.
[0178] Futschik, M. (2015). Mfuzz: Soft clustering of time series gene expression data. R package version 2.30.0.
[0179] Gao, X., Zhang, X., Lan, H., Huang, J., Wang, J., and Zhang, H. (2015). The additive effects of GS3 and qGL3 on rice grain length regulation revealed by genetic and transcriptome comparisons. BMC Plant Biol. 15, 156.
[0180] Graaff, E. Van Der, Laux, T., and Rensing, S. A. (2009). Protein family review The WUS homeobox-containing (WOX) protein family. Genome Biol 10, 1-9.
[0181] Gupta, S. and Van Eck, J. (2016). Modification of plant regeneration medium decreases the time for recovery of Solanum lycopersicum cultivar M82 stable transgenic lines. Plant Cell Tissue Organ Cult. 127, 417-423.
[0182] Hartmann, U., Hohmann, S., Nettesheim, K., Wisman, E., Saedler, H., and Huijser, P. (2000). Molecular cloning of SVP: A negative regulator of the floral transition in Arabidopsis. Plant J. 21, 351-360.
[0183] Heck, J. A., Argueso, J. L., Gemici, Z., Reeves, R. G., Bernard, A., Aquadro, C. F., and Alani, E. (2006). Negative epistasis between natural variants of the Saccharomyces cerevisiae MLH1 and PMS1 genes results in a defect in mismatch repair. Proc. Natl. Acad. Sci. 103, 3256-3261.
[0184] Huang, X., Qian, Q., Liu, Z., Sun, H., He, S., Luo, D., Xia, G., Chu, C., Li, J., and Fu, X. (2009). Natural variation at the DEP1 locus enhances grain yield in rice. Nat. Genet 41, 494-497.
[0185] Jiao, Y., Wang, Y., Xue, D., Wang, J., Yan, M., Liu, G., Dong, G., Zeng, D., Lu, Z., Zhu, X., et al. (2010). Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nat. Genet 42, 541-544.
[0186] Khan, A. I., Dinh, D. M., Schneider, D., Lenski, R. E., and Cooper, T. F. (2011). Negative epistasis between beneficial mutations in an evolving bacterial population. Science. 332, 1193-1196.
[0187] Kim, D., Pertea, G., Trapnell, C., Pimentel, H., Kelley, R., and Salzberg, S. L. (2013). TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol 14, R36.
[0188] Klee, H. J., and Giovannoni, J. J. (2011). Genetics and Control of Tomato Fruit Ripening and Quality Attributes. Annu. Rev. Genet. 45, 41-59.
[0189] Kobayashi, K., Maekawa, M., Miyao, A., Hirochika, H., and Kyozuka, J. (2010). PANICLE PHYTOMER2 (PAP2), encoding a SEPALLATA subfamily MADS-box protein, positively controls spikelet meristem identity in rice. Plant Cell Physiol 51, 47-57.
[0190] Kobayashi, K., Yasuno, N., Sato, Y., Yoda, M., Yamazaki, R., Kimizu, M., Yoshida, H., Nagamura, Y., and Kyozuka, J. (2012). Inflorescence Meristem Identity in Rice Is Specified by Overlapping Functions of Three API/FUL-Like MADS Box Genes and PAP2, a SEPALLATA MADS Box Gene. Plant Cell 24, 1848-1859.
[0191] Komatsuda, T., Pourkheirandish, M., He, C., Azhaguvel, P., Kanamori, H., Perovic, D., Stein, N., Graner, A., Wicker, T., Tagiri, A., et al. (2007). Six-rowed barley originated from a mutation in a homeodomain-leucine zipper I-class homeobox gene. Proc. Natl. Acad. Sci. 104, 1424-1429.
[0192] Kvitek, D. J., and Sherlock, G. (2011). Reciprocal Sign Epistasis between Frequently Experimentally Evolved Adaptive Mutations Causes a Rugged Fitness Landscape. PLoS Genet. 7, e1002056.
[0193] Kyozuka, J., Tokunaga, H., and Yoshida, A. (2014). Control of grass inflorescence form by the fine-tuning of meristem phase change. Curr Opin Plant Biol 17, 110-115.
[0194] Lei, Y., Lu, L., Liu, H. Y., Li, S., Xing, F., and Chen, L. L. (2014). CRISPR-P: A web tool for synthetic single-guide RNA design of CRISPR-system in plants. Mol Plant 7, 1494-1496.
[0195] Lemmon, Z. H., Park, S. J., Jiang, K., Van Eck, J., Schatz, M. C., and Lippman, Z. B. (2016). The evolution of inflorescence diversity in the nightshades and heterochrony during meristem maturation. Genome Res. 1-11.
[0196] Leseberg, C. H., Eissler, C. L., Wang, X., Johns, M. a., Duvall, M. R., and Mao, L. (2008). Interaction study of MADS-domain proteins in tomato. J Exp Bot 59, 2253-2265.
[0197] Li, H. (2011). A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27, 2987-2993.
[0198] Li, H. (2013). Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv Prepr. arXiv 0, 3.
[0199] Li, H., and Durbin, R. (2009). Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754-1760.
[0200] Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., and Durbin, R. (2009). The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078-2079.
[0201] Lin, T., Zhu, G., Zhang, J., Xu, X., Yu, Q., Zheng, Z., Zhang, Z., Lun, Y., Li, S., Wang, X., et al. (2014). Genomic analyses provide insights into the history of tomato breeding. Nat. Genet 46, 1220-1226.
[0202] Lippman, Z. B., Cohen, O., Alvarez, J. P., Abu-Abied, M., Pekker, I., Paran, I., Eshed, Y., and Zamir, D. (2008). The making of a compound inflorescence in tomato and related nightshades. PLoS Biol 6, e288.
[0203] Liu, C., Teo, Z. W. N., Bi, Y., Song, S., Xi, W., Yang, X., Yin, Z., and Yu, H. (2013). A conserved genetic pathway determines inflorescence architecture in Arabidopsis and rice. Dev Cell 24, 612-622.
[0204] Liu, D., Wang, D., Qin, Z., Zhang, D., Yin, L., Wu, L., Colasanti, J., Li, A., and Mao, L. (2014). The SEPALLATA MADS-box protein SLMBP21 forms protein complexes with JOINTLESS and MACROCALYX as a transcription activator for development of the tomato flower abscission zone. Plant J 77, 284-296.
[0205] MacArthur, J. W., and Chiasson, L. P. (1947). Cytogenetic Notes on Tomato Species and Hybrids. Genetics 32, 165-177.
[0206] Mackay, T. F. C. (2013). Epistasis and quantitative traits: using model organisms to study gene-gene interactions. Nat Rev Genet 15, 22-33.
[0207] Male, C. J. (1999). 100 Heirloom Tomatoes for the American Garden.
[0208] Mao, L., Begum, D., Chuang, H. W., Budiman, M. a, Szymkowiak, E. J., Irish, E. E., and Wing, R. A. (2000). JOINTLESS is a MADS-box gene controlling tomato flower abscission zone development. Nature 406, 910-913.
[0209] Matsubara, K., Yamamoto, E., Mizobuchi, R., Yonemaru, J.-i., Yamamoto, T., Kato, H., and Yano, M. (2015). Hybrid Breakdown Caused by Epistasis-Based Recessive Incompatibility in a Cross of Rice (Oryza sativa L.). J. Hered. 106, 113-122.
[0210] Meyer, R. S., and Purugganan, M. D. (2013). Evolution of crop species: genetics of domestication and diversification. Nat Rev Genet 14, 840-852.
[0211] Mullins, M. G., Bouquet, A., and Williams, L. E. (1992). Biology of the Grapevine.
[0212] Nakano, T., Kimbara, J., Fujisawa, M., Kitagawa, M., Ihashi, N., Maeda, H., Kasumi, T., and Ito, Y. (2012). MACROCALYX and JOINTLESS interact in the transcriptional regulation of tomato fruit abscission zone development. Plant Physiol 158, 439-450.
[0213] Park, S. J., Jiang, K., Schatz, M. C., and Lippman, Z. B. (2012). Rate of meristem maturation determines inflorescence architecture in tomato. P Natl Acad Sci USA 109, 639-644.
[0214] Park, S. J., Eshed, Y., and Lippman, Z. B. (2014a). Meristem maturation and inflorescence architecture--lessons from the Solanaceae. Curr Opin Plant Biol 17, 70-77.
[0215] Park, S. J., Jiang, K., Tal, L., Yichie, Y., Gar, O., Zamir, D., Eshed, Y., and Lippman, Z. B. (2014b). Optimization of crop productivity in tomato using induced mutations in the florigen pathway. Nat Genet.
[0216] Peet, M. M., and Welles, G. (2005). Greenhouse tomato production. N Tomatoes, E. Heuvelink, Ed. (Wallingford, U. K. CABI Publ. 257-304.
[0217] Pelaz, S., Ditta, G. S., and Yanofsky, M. F. (2000). B and C foral organ identity functions require SEPALLATA MADS-box genes. Nature 405, 9-12.
[0218] Peralta, I. E., and Spooner, D. M. (2005). Morphological Characterization and Relationships of Wild Tomatoes (Solanum L. sect. Lycopersicon). Mono Syst Bot. 104, 227-257.
[0219] Pnueli, L., Hareven, D., Broday, L., Hurwitz, C., and Lifschitz, E. (1994). The TM5 MADS Box Gene Mediates Organ Differentiation in the Three Inner Whorls of Tomato Flowers. Plant Cell 6, 175-186.
[0220] Prusinkiewicz, P., Erasmus, Y., Lane, B., Harder, L. D., and Coen, E. (2007). Evolution and development of inflorescence architectures. Science. 316, 1452-1456.
[0221] Purugganan, M. D., and Fuller, D. Q. (2009). The nature of selection during plant domestication. Nature 457, 843-848.
[0222] Ramsay, L., Comadran, J., Druka, A., Marshall, D. F., Thomas, W. T. B., Macaulay, M., MacKenzie, K., Simpson, C., Fuller, J., Bonar, N., et al. (2011). INTERMEDIUM-C, a modifier of lateral spikelet fertility in barley, is an ortholog of the maize domestication gene TEOSINTE BRANCHED 1. Nat. Genet 43, 169-172.
[0223] Reynard, G. B. (1961). New Source of the j2 Gene Governing Jointless Pedicel in Tomato. Science (80-.). 134, 2102.
[0224] Rick, C. M. (1956a). Genetic and Systematic Studies on Accessions of Lycospersicon from the Galapagos Islands. Am J Bot 43, 687-696.
[0225] Rick, C. M. (1956b). A new jointless gene from the Galapagos L. pimpinellifolium. TGC Rep. 23.
[0226] Robinson, R. W. (1980). Pleiotropic effects of the j-2 gene. The. TGC Rep. 30, 32.
[0227] Robinson, M. D., McCarthy, D. J., and Smyth, G. K. (2009). edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139-140.
[0228] RTeam, D. C. (2015). R Core Team (2015). R: A language and environment for statistical computing. R Found. Stat. Comput. Vienna, Austria. URL http://www.R-project.org/.
[0229] Shalit, A., Rozman, A., Goldshmidt, A., Alvarez, J. P., Bowman, J. L., Eshed, Y., and Lifschitz, E. (2009). The flowering hormone florigen functions as a general systemic regulator of growth and termination. P Natl Acad Sci USA 106, 8392-8297.
[0230] Shang, L., Liang, Q., Wang, Y., Zhao, Y., Wang, K., and Hua, J. (2016). Epistasis together with partial dominance, over-dominance and QTL by environment interactions contribute to yield heterosis in upland cotton. Theor. Appl. Genet. 129, 1429-1446.
[0231] Singh, R., Low, E.-T. L., Ooi, L. C.-L., Ong-Abdullah, M., Ting, N.-C., Nagappan, J., Nookiah, R., Amiruddin, M. D., Rosli, R., Manaf, M. A. A., et al. (2013). The oil palm SHELL gene controls oil yield and encodes a homologue of SEEDSTICK. Nature 500, 340-344.
[0232] Soyk, S., Muller, N., Park, S. J., Schmalenbach, I., Jiang, K., Hayama, R., Zhang, L., Eck, J. Van, Schmalenbach, I., Jimenez-gomez, J. M., et al. (2016). Variation in the flowering gene SELF PRUNING 5G promotes day-neutrality in tomato and early yield. Nat Genet 1-37.
[0233] Stephenson, A. G. (1981). Flower and fruit abortion: proximate causes and ultimate functions. Ann Rev Ecol Syst 12, 253-279.
[0234] Stubbe, H. (1972). Mutanten der Kulturtomate Lycopersicon esculentum Miller V I. Die Kult. 16, 185-230.
[0235] Swinnen, G., Goossens, A., and Pauwels, L. (2016). Lessons from Domestication: Targeting Cis-Regulatory Elements for Crop Improvement. Trends Plant Sci 21, 506-515.
[0236] Tamura, K., Stecher, G., Peterson, D., Filipski, A., and Kumar, S. (2013). MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30, 2725-2729.
[0237] Theissen, G., Melzer, R., and Rumpler, F. (2016). MADS-domain transcription factors and the floral quartet model of flower development: linking plant development and evolution. Development 143, 3259-3271.
[0238] Tieman, D., Zhu, G., Resende, M. F. R., Lin, T., Nguyen, C., Bies, D., Rambla, J. L., Beltran, K. S. O., Taylor, M., Zhang, B., et al. (2017). A chemical genetic roadmap to improved tomato flavor. Science. 355, 391-394.
[0239] Vrebalov, J., Ruezinsky, D., Padmanabhan, V., White, R., Medrano, D., Drake, R., Schuch, W., and Giovannoni, J. (2002). A MADS-Box Gene Necessary for Fruit Ripening at the Tomato Ripening-Inhibitor (Rin) Locus. Science (80-.). 296, 343-346.
[0240] Wang, S., Lu, G., Hou, Z., Luo, Z., Wang, T., Li, H., Zhang, J., and Ye, Z. (2014). Members of the tomato FRUITFULL MADS-box family regulate style abscission and fruit ripening. J. Exp. Bot. 65, 3005-3014.
[0241] Werner, S., Engler, C., Weber, E., Gruetzner, R., and Marillonnet, S. (2012). Fast track assembly of multigene constructs using Golden Gate cloning and the MoClo system. Bioeng Bugs 3, 38-43.
[0242] Williams, T. N., Mwangi, T. W., Wambua, S., Peto, T. E. A., Weatherall, D. J., Gupta, S., Recker, M., Penman, B. S., Uyoga, S., Macharia, A., et al. (2005). Negative epistasis between the malaria-protective effects of .alpha.+-thalassemia and the sickle cell trait. Nat. Genet. 37, 1253-1257.
[0243] Xu, C., Liberatore, K. L., MacAlister, C. a, Huang, Z., Chu, Y.-H., Jiang, K., Brooks, C., Ogawa-Ohnishi, M., Xiong, G., Pauly, M., et al. (2015). A cascade of arabinosyltransferases controls shoot meristem size in tomato. Nat. Genet.
[0244] Yang, T. J., Lee, S., Chang, S. Bin, Yu, Y., de Jong, H., and Wing, R. A. (2005). In-depth sequence analysis of the tomato chromosome 12 centromeric region: Identification of a large CAA block and characterization of pericentromere retrotranposons. Chromosoma 114, 103-117.
[0245] Zahara, M. B., and Scheuerman, R. W. (1988). Hand-harvesting jointless vs. jointed-stem tomatoes. Calif. Agric. 42, 14-14.
[0246] Zamir, D. (2001). Improving plant breeding with exotic genetic libraries. Nat Rev Genet 2, 3-9.
[0247] Zhang, L., Yang, G., Liu, P., Hong, D., Li, S., and He, Q. (2011). Genetic and correlation analysis of silique-traits in Brassica napus L. by quantitative trait locus mapping. Theor. Appl. Genet. 122, 21-31.
[0248] Zhang, N., Brewer, M. T., and van der Knaap, E. (2012). Fine mapping of fw3.2 controlling fruit weight in tomato. Theor. Appl. Genet. 125, 273-284.
[0249] Zhao, Q., Weber, A. L., McMullen, M. D., Guill, K., and Doebley, J. (2011). MADS-box genes of maize: frequent targets of selection during domestication. Genet. Res. (Camb). 93, 65-75.
[0250] From the above description, one skilled in the art can easily ascertain the essential characteristics of the present disclosure, and without departing from the spirit and scope thereof, can make various changes and modifications of the disclosure to adapt it to various usages and conditions. Thus, other embodiments are also within the claims.
Sequence CWU
1
1
12714843DNAUnknownSolanaceae 1atgggaagag gtaaggtaga attgaagaga atagaaaata
agataaacag gcaagttact 60tttgctaaga gaagaaatgg attactcaaa aaagcttatg
agctttctat tttgtgtgaa 120gctgaagttg ctcttatcat tttctctaat agaggcaaac
tctatgaatt ttgcagtacc 180tctaggtaat atttttatgt ttatgtcgtt ccgtttaagc
tttacattta cgtttttata 240cgcaaaactt taaattagtt ctaaatgtat taaaaaattg
aaattttgag atttaatttc 300aaaatctatg gttaaacgaa tgtttatatg cattatgatt
ttgttatctt cttttttttt 360aaaaaaagaa ataaaatata ttgatgttat agatctgagt
gagaatagag tttttggtac 420atttattaag ggtgaataat caaatgtttc atttgattag
atctaggttt tcttgaacat 480taaaattgtt aaaaaaatta gttcatttta tgaggtaaat
tttgttatga tttgatgttc 540cacctccatt ttttcttatt tttattataa ataaataagt
tttaaaatat ccttactttt 600atatgttctt ttaagtacag acacatgaat caaaaagaag
ttttataata tgaattgaat 660taaagctggt tgaatttcta tcttcagttt ttgaaaacaa
ctaaaaactt tgaaaaggaa 720tttgatttta ttatttatgg caacaaataa cacctaacta
cttatcgagt cggaattgac 780gatatgaatc ctttaacttt tcatttaagc tcaatttata
tagaaaattc tgtattgtgg 840attgaagtaa tttctggagt tgatcaattc tatttaaaaa
attatttaat taataatcat 900tatcccaaaa aattatattg aaattaaaaa ataatattaa
tttttttaaa taacaaactt 960attaattgag tgaccatcta aatcgtcttt ttcttaaagt
tagggtcttg cctttcatct 1020aattttgata gtaatgttct tgaaccgaca aattttgtca
tttactctta tctgttataa 1080tttatgtgat tcgagtttta cgaatcaatt tttgtttata
atttcaatca tgtataagaa 1140gtattttaag ttataataat taacaatttt aagaaagcat
aatcaagatc aaataactta 1200gtagaaataa tattggttta tgtaacctct atgcattgac
aatatagtgt tttttttata 1260ctatcaagtc atttattgga taattataat taaagaatat
taactaatga gtaaatcaat 1320agtttaatat taatgagtta tcatagtagc gtatacttat
tactcgatat ttgtaatcta 1380aacattttca atatgcttaa acttgatttt tttatttgga
tcaagtatac aatttttttg 1440ttaataataa atgacattga aacttataac taattttatt
taaacaattt tctttctttc 1500tttcctcaag gagagcatag ttctaattat tatcaatatc
attattatta ttatctctat 1560gtttatttta ttattactgt tgtttctttt acttggattg
tctgtactat ttttacttca 1620tggactttaa ttttttgtct atcgtatttt tatcatagtt
tttactcttg tattggctaa 1680acctagtttt gaaattgttt ttcataagct gaaagagtct
atcaaaaaca acttctcacg 1740agatagaaat aaagtttacg tatattccat tcttctcaaa
ccccacttat gagattatac 1800tgaaatgtta ctattattat tatactttgt aacatgctaa
aaaaactagt aataattaca 1860cttcttgcca aagagtaaat aaagtatgat cctttaataa
gttgaaaatc cctctaaatc 1920aaattatcac ttttgtgcaa cttgtcttct tttttttctt
ctagtatgtc tgatacactg 1980gagagatacc atagatgcag ctatggtgac cttgaaactg
gccagtcttc aaaggattca 2040caggttactt catcttcctc agaattacaa tttactaata
aatttaactt atatactctg 2100acacagtatc gatgcaattt aaacctttta taacagatta
tctgttttta ttttaatttc 2160ttcgtaaata attaataagt cgatattgat aactaacgcc
aagcacccta tcttcatcta 2220actaattagt gttattatgc aatagaataa ctaccaagag
tatatgaagc tgaaagcaag 2280agttgaagtg ctacaacagt cacaaaggtg atacattatt
tgttttaaaa acacttttac 2340ttgtctcatt ttgattggct catctgaaca cctgaaccgg
tctagaagta ttttgaacat 2400gcataattgg acatgttcaa tcatgcgttt gtttgatcag
gttcaggatg tttagatgag 2460acctcgtaaa ataaattaag gggaggcttt ttaatatgat
atttgtgtct caaatatatc 2520acttttctac cctaattctt aataacattg tatttactta
attattctta atctttaagg 2580catatacttg gagaggactt aggacaatta aacacaaaag
atttggaaca gcttgagcgt 2640caactggatt catctttgag gctaataaga tcaagaaggg
tatgttctat gcaccttcaa 2700tttatttgtc aaattttagg ctttcagatc atgtcttaat
cttaatgtcc gatgacagtt 2760tcagtggcgg aattagaaat ttatgcaaga caattcaagc
aatattatat attatagaat 2820gtcagacttg aaatttgaac ttgagacatt gaacctcttt
acaaatacac taatatctaa 2880cctcgtatca acggggttca acaatttata tatatataaa
aaacacttaa ttttgcccta 2940tttggtgtaa tatataattt tatcaaaggt atgttgggaa
aatgataaaa attacttatg 3000aataatatcc aaatggaata atataataac aattacttac
tattacttga tagtgccaca 3060aaactactaa accttaaaat aagttctttt attttacata
attcattata atctttggca 3120tgaatttact caagcattgc ttcagaatga tcaaagcctc
cttaatattt ttgggtacag 3180acataaagtc tagacatgca atcaaagata tagatgcacg
agatgactaa tcaaaggaaa 3240caataggaac gatcaaaaaa attgaaattg aaaatatatt
ttttttaaac taaaggtaag 3300tcaagattac caagtaagtg tattattgta acttttgtat
tatttatcct aagtaaacat 3360gtatcaaaaa catacacaaa tttactttct cttttattac
taacatcaac ttacatgcta 3420attataaata attaaagggt aaatagttgg ttgcatgatt
tggtaaaaga agttgttaac 3480ctactctttg ataacatata tgttttcaga cacaaaacat
gcttgatcaa ctttctgatc 3540ttcaacaaaa ggtatgtatt gtataatata atcccttaag
ttgacaatta aatagattgt 3600tcaattgtta atttgacatt gtatgtgttc ttttttcttt
ttttctacag gaacaatctc 3660ttcttgaaat caacagatcc ttgaaaacaa aggtacaaag
cacacatttt ggacctttta 3720tgagtttttt agggcgtgtt tgatttattt attttttctg
aattttttca tgtttggttg 3780atctaaattc tgggaaaata cttttttcta tgaaagtaag
ttttttaaaa atgacttagc 3840cagtggaagt agggaaaaca agttgtgacg acattccacg
ttgattgttt tctctcgatc 3900ttcctacaca ccttaagttc gccaccacct ctcgcagtat
ttgtttagat tatataaaaa 3960tgtatcaaga atgacacttt ttatttgtgt acataataaa
agaaaataag taagaaaccg 4020aacattttcc catggaaaat attatttttc ataccaaaca
cacccttagt ctttgtttta 4080gggtatatga ctaatttgtt ctccatttcg gatatttaga
ttcgtatggg tttttctttg 4140atgtctaact tatcgtactt tttacgcgat tttatgaaat
tcttataata gttggaagaa 4200aactctgtag cacattggca tatcactgga gagcaaaatg
tacaattcag acaacaacct 4260gctcagtcag aggggttctt tcagccttta caatgcaata
ctaatatagt gccaaacagg 4320taacatataa ttttatgttt tctttttttc ctttaaatag
catatttttt gcaacatttt 4380aaattgaacc gttgaattga gtcgttgaga ggtgaattca
gaatctgaag taacagatac 4440attcaaatta atttctttgt gtatttatcg aagtgagtca
agtcgtaagt ctagaggtga 4500atttagaatc taaagtaata gatacagtcg aatcaatctc
tttgtgtatt tattgaagtg 4560agtcgttttg taaagtttga gacgaattca aaacctaaag
taatactaaa tacatacatt 4620caaaataatt tctaaagcga gttatgttgg aagtcgagag
acgaaagtat attatatatg 4680gatcaattca aattaatttc ttaatgtatt tgatgagcgt
tgttgtaggg gcgaattcag 4740aatctgaagt tcatgtaagt acaggtacaa tgtggctcca
ttggatagta tagaaccatc 4800aacacagaat gctactggaa ttttaccagg atggatgctt
tga 48432717DNAUnknownSolanaceae 2atgggaagag
gtaaggtaga attgaagaga atagaaaata agataaacag gcaagttact 60tttgctaaga
gaagaaatgg attactcaaa aaagcttatg agctttctat tttgtgtgaa 120gctgaagttg
ctcttatcat tttctctaat agaggcaaac tctatgaatt ttgcagtacc 180tctagtatgt
ctgatacact ggagagatac catagatgca gctatggtga ccttgaaact 240ggccagtctt
caaaggattc acagaataac taccaagagt atatgaagct gaaagcaaga 300gttgaagtgc
tacaacagtc acaaaggcat atacttggag aggacttagg acaattaaac 360acaaaagatt
tggaacagct tgagcgtcaa ctggattcat ctttgaggct aataagatca 420agaaggacac
aaaacatgct tgatcaactt tctgatcttc aacaaaagga acaatctctt 480cttgaaatca
acagatcctt gaaaacaaag ttggaagaaa actctgtagc acattggcat 540atcactggag
agcaaaatgt acaattcaga caacaacctg ctcagtcaga ggggttcttt 600cagcctttac
aatgcaatac taatatagtg ccaaacaggt acaatgtggc tccattggat 660agtatagaac
catcaacaca gaatgctact ggaattttac caggatggat gctttga
71735233DNAArtificial SequenceSynthetic
polynucleotidemisc_feature(1)..(6)n is a, c, g, or t 3nnnnnnatca
ataaaaatac ggaagctcac aatttgttag agtaaccaat caaatcatcg 60tctaaagtct
attacacata aagtcatcac atcaaggaca tttgttctca atttccaagt 120ctaaaatttt
tgaaaatacc aaataagtaa aaacgatggt ccatatccga aatttaagga 180catcatgaca
tgaatgagag aatctagcac gagctagaaa taatagctta ccctgaattc 240tgatatgctg
gaggctggct agagctgagg gcgagtcgaa gtcgatggta cacttgctgc 300actccacaaa
agaacaacac aaaaaataca agtaaggatc agtacaagga acacgtattg 360agtaggtatc
atcagccacc caaaatagaa accaatatat attgaataat aatataaaat 420caactacaat
acttggcatg tgacaaacaa caaacaacat aaaccagtga caacaacacc 480atagtaggta
cacaatatca agcacaccta tgaggagtca tgcctccaca ccatactcat 540ttagaaaatg
ggttcattca gattgagtat attaagttaa tttaagattc ctttacttta 600atgttatcgt
gttgaaatgt gatactccga tcccatatac cgtgtcagaa caagaaattc 660cgattgcata
atatcgtgtt agaatgtgac actccgatcc aactataccg tgtcagaacg 720tgacactccg
atccaattat ctcattaatt tatttcatca agcgttcttt attcaacgcg 780tcatttcgat
aaagagggtt caagcttata attcaacagt ctcaaaattt ttggtcaacc 840acaatcgcaa
ccaagatata caaccacaca atcaagtaca taatcaactt cttcatttta 900tgaggtaaat
tttgttatga tttgatgttc cacctccatt ttttcttatt tttattataa 960ataaataagt
tttaaaatat ccttactttt atatgttctt ttaagtacag acacatgaat 1020caaaaagaag
ttttataata tgaattgaat taaagctggt tgaatttcta tcttcagttt 1080ttgaaaacaa
ctaaaaactt tgaaaaggaa tttgatttta ttatttatgg caacaaataa 1140cacctaacta
cttatcgagt cggaattgac gatatgaatc ctttaacttt tcatttaagc 1200tcaatttata
tagaaaattc tgtattgtgg attgaagtaa tttctggagt tgatcaattc 1260tatttaaaaa
attatttaat taataatcat tatcccaaaa aattatattg aaattaaaaa 1320ataatattaa
tttttttaaa taacaaactt attaattgag tgaccatcta aatcgtcttt 1380ttcttaaagt
tagggtcttg cctttcatct aattttgata gtaatgttct tgaaccgaca 1440aattttgtca
tttactctta tctgttataa tttatgtgat tcgagtttta cgaatcaatt 1500tttgtttata
atttcaatca tgtataagaa gtattttaag ttataataat taacaatttt 1560aagaaagcat
aatcaagatc aaataactta gtagaaataa tattggttta tgtaacctct 1620atgcattgac
aatatagtgt tttttttata ctatcaagtc atttattgga taattataat 1680taaagaatat
taactaatga gtaaatcaat agtttaatat taatgagtta tcatagtagc 1740gtatacttat
tactcgatat ttgtaatcta aacattttca atatgcttaa acttgatttt 1800tttatttgga
tcaagtatac aatttttttg ttaataataa atgacattga aacttataac 1860taattttatt
taaacaattt tctttctttc tttcctcaag gagagcatag ttctaattat 1920tatcaatatc
attattatta ttatctctat gtttatttta ttattactgt tgtttctttt 1980acttggattg
tctgtactat ttttacttca tggactttaa ttttttgtct atcgtatttt 2040tatcatagtt
tttactcttg tattggctaa acctagtttt gaaattgttt ttcataagct 2100gaaagagtct
atcaaaaaca acttctcacg agatagaaat aaagtttacg tatattccat 2160tcttctcaaa
ccccacttat gagattatac tgaaatgtta ctattattat tatactttgt 2220aacatgctaa
aaaaactagt aataattaca cttcttgcca aagagtaaat aaagtatgat 2280cctttaataa
gttgaaaatc cctctaaatc aaattatcac ttttgtgcaa cttgtcttct 2340tttttttctt
ctagtatgtc tgatacactg gagagatacc atagatgcag ctatggtgac 2400cttgaaactg
gccagtcttc aaaggattca caggttactt catcttcctc agaattacaa 2460tttactaata
aatttaactt atatactctg acacagtatc gatgcaattt aaacctttta 2520taacagatta
tctgttttta ttttaatttc ttcgtaaata attaataagt cgatattgat 2580aactaacgcc
aagcacccta tcttcatcta actaattagt gttattatgc aatagaataa 2640ctaccaagag
tatatgaagc tgaaagcaag agttgaagtg ctacaacagt cacaaaggtg 2700atacattatt
tgttttaaaa acacttttac ttgtctcatt ttgattggct catctgaaca 2760cctgaaccgg
tctagaagta ttttgaacat gcataattgg acatgttcaa tcatgcgttt 2820gtttgatcag
gttcaggatg tttagatgag acctcgtaaa ataaattaag gggaggcttt 2880ttaatatgat
atttgtgtct caaatatatc acttttctac cctaattctt aataacattg 2940tatttactta
attattctta atctttaagg catatacttg gagaggactt aggacaatta 3000aacacaaaag
atttggaaca gcttgagcgt caactggatt catctttgag gctaataaga 3060tcaagaaggg
tatgttctat gcaccttcaa tttatttgtc aaattttagg ctttcagatc 3120atgtcttaat
cttaatgtcc gatgacagtt tcagtggcgg aattagaaat ttatgcaaga 3180caattcaagc
aatattatat attatagaat gtcagacttg aaatttgaac ttgagacatt 3240gaacctcttt
acaaatacac taatatctaa cctcgtatca acggggttca acaatttata 3300tatatataaa
aaacacttaa ttttgcccta tttggtgtaa tatataattt tatcaaaggt 3360atgttgggaa
aatgataaaa attacttatg aataatatcc aaatggaata atataataac 3420aattacttac
tattacttga tagtgccaca aaactactaa accttaaaat aagttctttt 3480attttacata
attcattata atctttggca tgaatttact caagcattgc ttcagaatga 3540tcaaagcctc
cttaatattt ttgggtacag acataaagtc tagacatgca atcaaagata 3600tagatgcacg
agatgactaa tcaaaggaaa caataggaac gatcaaaaaa attgaaattg 3660aaaatatatt
ttttttaaac taaaggtaag tcaagattac caagtaagtg tattattgta 3720acttttgtat
tatttatcct aagtaaacat gtatcaaaaa catacacaaa tttactttct 3780cttttattac
taacatcaac ttacatgcta attataaata attaaagggt aaatagttgg 3840ttgcatgatt
tggtaaaaga agttgttaac ctactctttg ataacatata tgttttcaga 3900cacaaaacat
gcttgatcaa ctttctgatc ttcaacaaaa ggtatgtatt gtataatata 3960atcccttaag
ttgacaatta aatagattgt tcaattgtta atttgacatt gtatgtgttc 4020ttttttcttt
ttttctacag gaacaatctc ttcttgaaat caacagatcc ttgaaaacaa 4080aggtacaaag
cacacatttt ggacctttta tgagtttttt agggcgtgtt tgatttattt 4140attttttctg
aattttttca tgtttggttg atctaaattc tgggaaaata cttttttcta 4200tgaaagtaag
ttttttaaaa atgacttagc cagtggaagt agggaaaaca agttgtgacg 4260acattccacg
ttgattgttt tctctcgatc ttcctacaca ccttaagttc gccaccacct 4320ctcgcagtat
ttgtttagat tatataaaaa tgtatcaaga atgacacttt ttatttgtgt 4380acataataaa
agaaaataag taagaaaccg aacattttcc catggaaaat attatttttc 4440ataccaaaca
cacccttagt ctttgtttta gggtatatga ctaatttgtt ctccatttcg 4500gatatttaga
ttcgtatggg tttttctttg atgtctaact tatcgtactt tttacgcgat 4560tttatgaaat
tcttataata gttggaagaa aactctgtag cacattggca tatcactgga 4620gagcaaaatg
tacaattcag acaacaacct gctcagtcag aggggttctt tcagccttta 4680caatgcaata
ctaatatagt gccaaacagg taacatataa ttttatgttt tctttttttc 4740ctttaaatag
catatttttt gcaacatttt aaattgaacc gttgaattga gtcgttgaga 4800ggtgaattca
gaatctgaag taacagatac attcaaatta atttctttgt gtatttatcg 4860aagtgagtca
agtcgtaagt ctagaggtga atttagaatc taaagtaata gatacagtcg 4920aatcaatctc
tttgtgtatt tattgaagtg agtcgttttg taaagtttga gacgaattca 4980aaacctaaag
taatactaaa tacatacatt caaaataatt tctaaagcga gttatgttgg 5040aagtcgagag
acgaaagtat attatatatg gatcaattca aattaatttc ttaatgtatt 5100tgatgagcgt
tgttgtaggg gcgaattcag aatctgaagt tcatgtaagt acaggtacaa 5160tgtggctcca
ttggatagta tagaaccatc aacacagaat gctactggaa ttttaccagg 5220atggatgctt
tga
523344822DNAArtificial SequenceSynthetic polynucleotide 4atgggaagag
gtaaggtaga attgaagaga atagaaaata agataaacag gcaagttact 60tttgctaaga
gaagaaatgg attactcaaa aaagcttatg agctttctat tttgtgtgaa 120gctgaagttg
ctcttatcat tttctctaat agaggcaaac tctatgaatt ttgcagtacc 180tctaggtaat
atttttatgt ttatgtcgtt ccgtttaagc tttacattta cgtttttata 240cgcaaaactt
taaattagtt ctaaatgtat taaaaaattg aaattttgag atttaatttc 300aaaatctatg
gttaaacgaa tgtttatatg cattatgatt ttgttatctt cttttttttt 360aaaaaaagaa
ataaaatata ttgatgttat agatctgagt gagaatagag tttttggtac 420atttattaag
ggtgaataat caaatgtttc atttgattag atctaggttt tcttgaacat 480taaaattgtt
aaaaaaatta gttcatttta tgaggtaaat tttgttatga tttgatgttc 540cacctccatt
ttttcttatt tttattataa ataaataagt tttaaaatat ccttactttt 600atatgttctt
ttaagtacag acacatgaat caaaaagaag ttttataata tgaattgaat 660taaagctggt
tgaatttcta tcttcagttt ttgaaaacaa ctaaaaactt tgaaaaggaa 720tttgatttta
ttatttatgg caacaaataa cacctaacta cttatcgagt cggaattgac 780gatatgaatc
ctttaacttt tcatttaagc tcaatttata tagaaaattc tgtattgtgg 840attgaagtaa
tttctggagt tgatcaattc tatttaaaaa attatttaat taataatcat 900tatcccaaaa
aattatattg aaattaaaaa ataatattaa tttttttaaa taacaaactt 960attaattgag
tgaccatcta aatcgtcttt ttcttaaagt tagggtcttg cctttcatct 1020aattttgata
gtaatgttct tgaaccgaca aattttgtca tttactctta tctgttataa 1080tttatgtgat
tcgagtttta cgaatcaatt tttgtttata atttcaatca tgtataagaa 1140gtattttaag
ttataataat taacaatttt aagaaagcat aatcaagatc aaataactta 1200gtagaaataa
tattggttta tgtaacctct atgcattgac aatatagtgt tttttttata 1260ctatcaagtc
atttattgga taattataat taaagaatat taactaatga gtaaatcaat 1320agtttaatat
taatgagtta tcatagtagc gtatacttat tactcgatat ttgtaatcta 1380aacattttca
atatgcttaa acttgatttt tttatttgga tcaagtatac aatttttttg 1440ttaataataa
atgacattga aacttataac taattttatt taaacaattt tctttctttc 1500tttcctcaag
gagagcatag ttctaattat tatcaatatc attattatta ttatctctat 1560gtttatttta
ttattactgt tgtttctttt acttggattg tctgtactat ttttacttca 1620tggactttaa
ttttttgtct atcgtatttt tatcatagtt tttactcttg tattggctaa 1680acctagtttt
gaaattgttt ttcataagct gaaagagtct atcaaaaaca acttctcacg 1740agatagaaat
aaagtttacg tatattccat tcttctcaaa ccccacttat gagattatac 1800tgaaatgtta
ctattattat tatactttgt aacatgctaa aaaaactagt aataattaca 1860cttcttgcca
aagagtaaat aaagtatgat cctttaataa gttgaaaatc cctctaaatc 1920aaattatcac
ttttgtgcaa cttgtcttct tttttttctt ctagtatgtc ccatagatgc 1980agctatggtg
accttgaaac tggccagtct tcaaaggatt cacaggttac ttcatcttcc 2040tcagaattac
aatttactaa taaatttaac ttatatactc tgacacagta tcgatgcaat 2100ttaaaccttt
tataacagat tatctgtttt tattttaatt tcttcgtaaa taattaataa 2160gtcgatattg
ataactaacg ccaagcaccc tatcttcatc taactaatta gtgttattat 2220gcaatagaat
aactaccaag agtatatgaa gctgaaagca agagttgaag tgctacaaca 2280gtcacaaagg
tgatacatta tttgttttaa aaacactttt acttgtctca ttttgattgg 2340ctcatctgaa
cacctgaacc ggtctagaag tattttgaac atgcataatt ggacatgttc 2400aatcatgcgt
ttgtttgatc aggttcagga tgtttagatg agacctcgta aaataaatta 2460aggggaggct
ttttaatatg atatttgtgt ctcaaatata tcacttttct accctaattc 2520ttaataacat
tgtatttact taattattct taatctttaa ggcatatact tggagaggac 2580ttaggacaat
taaacacaaa agatttggaa cagcttgagc aactggattc atctttgagg 2640ctaataagat
caagaagggt atgttctatg caccttcaat ttatttgtca aattttaggc 2700tttcagatca
tgtcttaatc ttaatgtccg atgacagttt cagtggcgga attagaaatt 2760tatgcaagac
aattcaagca atattatata ttatagaatg tcagacttga aatttgaact 2820tgagacattg
aacctcttta caaatacact aatatctaac ctcgtatcaa cggggttcaa 2880caatttatat
atatataaaa aacacttaat tttgccctat ttggtgtaat atataatttt 2940atcaaaggta
tgttgggaaa atgataaaaa ttacttatga ataatatcca aatggaataa 3000tataataaca
attacttact attacttgat agtgccacaa aactactaaa ccttaaaata 3060agttctttta
ttttacataa ttcattataa tctttggcat gaatttactc aagcattgct 3120tcagaatgat
caaagcctcc ttaatatttt tgggtacaga cataaagtct agacatgcaa 3180tcaaagatat
agatgcacga gatgactaat caaaggaaac aataggaacg atcaaaaaaa 3240ttgaaattga
aaatatattt tttttaaact aaaggtaagt caagattacc aagtaagtgt 3300attattgtaa
cttttgtatt atttatccta agtaaacatg tatcaaaaac atacacaaat 3360ttactttctc
ttttattact aacatcaact tacatgctaa ttataaataa ttaaagggta 3420aatagttggt
tgcatgattt ggtaaaagaa gttgttaacc tactctttga taacatatat 3480gttttcagac
acaaaacatg cttgatcaac tttctgatct tcaacaaaag gtatgtattg 3540tataatataa
tcccttaagt tgacaattaa atagattgtt caattgttaa tttgacattg 3600tatgtgttct
tttttctttt tttctacagg aacaatctct tcttgaaatc aacagatcct 3660tgaaaacaaa
ggtacaaagc acacattttg gaccttttat gagtttttta gggcgtgttt 3720gatttattta
ttttttctga attttttcat gtttggttga tctaaattct gggaaaatac 3780ttttttctat
gaaagtaagt tttttaaaaa tgacttagcc agtggaagta gggaaaacaa 3840gttgtgacga
cattccacgt tgattgtttt ctctcgatct tcctacacac cttaagttcg 3900ccaccacctc
tcgcagtatt tgtttagatt atataaaaat gtatcaagaa tgacactttt 3960tatttgtgta
cataataaaa gaaaataagt aagaaaccga acattttccc atggaaaata 4020ttatttttca
taccaaacac acccttagtc tttgttttag ggtatatgac taatttgttc 4080tccatttcgg
atatttagat tcgtatgggt ttttctttga tgtctaactt atcgtacttt 4140ttacgcgatt
ttatgaaatt cttataatag ttggaagaaa actctgtagc acattggcat 4200atcactggag
agcaaaatgt acaattcaga caacaacctg ctcagtcaga ggggttcttt 4260cagcctttac
aatgcaatac taatatagtg ccaaacaggt aacatataat tttatgtttt 4320ctttttttcc
tttaaatagc atattttttg caacatttta aattgaaccg ttgaattgag 4380tcgttgagag
gtgaattcag aatctgaagt aacagataca ttcaaattaa tttctttgtg 4440tatttatcga
agtgagtcaa gtcgtaagtc tagaggtgaa tttagaatct aaagtaatag 4500atacagtcga
atcaatctct ttgtgtattt attgaagtga gtcgttttgt aaagtttgag 4560acgaattcaa
aacctaaagt aatactaaat acatacattc aaaataattt ctaaagcgag 4620ttatgttgga
agtcgagaga cgaaagtata ttatatatgg atcaattcaa attaatttct 4680taatgtattt
gatgagcgtt gttgtagggg cgaattcaga atctgaagtt catgtaagta 4740caggtacaat
gtggctccat tggatagtat agaaccatca acacagaatg ctactggaat 4800tttaccagga
tggatgcttt ga
482254830DNAArtificial SequenceSynthetic polynucleotide 5atgggaagag
gtaaggtaga attgaagaga atagaaaata agataaacag gcaagttact 60tttgctaaga
gaagaaatgg attactcaaa aaagcttatg agctttctat tttgtgtgaa 120gctgaagttg
ctcttatcat tttctctaat agaggcaaac tctatgaatt ttgcagtacc 180tctaggtaat
atttttatgt ttatgtcgtt ccgtttaagc tttacattta cgtttttata 240cgcaaaactt
taaattagtt ctaaatgtat taaaaaattg aaattttgag atttaatttc 300aaaatctatg
gttaaacgaa tgtttatatg cattatgatt ttgttatctt cttttttttt 360aaaaaaagaa
ataaaatata ttgatgttat agatctgagt gagaatagag tttttggtac 420atttattaag
ggtgaataat caaatgtttc atttgattag atctaggttt tcttgaacat 480taaaattgtt
aaaaaaatta gttcatttta tgaggtaaat tttgttatga tttgatgttc 540cacctccatt
ttttcttatt tttattataa ataaataagt tttaaaatat ccttactttt 600atatgttctt
ttaagtacag acacatgaat caaaaagaag ttttataata tgaattgaat 660taaagctggt
tgaatttcta tcttcagttt ttgaaaacaa ctaaaaactt tgaaaaggaa 720tttgatttta
ttatttatgg caacaaataa cacctaacta cttatcgagt cggaattgac 780gatatgaatc
ctttaacttt tcatttaagc tcaatttata tagaaaattc tgtattgtgg 840attgaagtaa
tttctggagt tgatcaattc tatttaaaaa attatttaat taataatcat 900tatcccaaaa
aattatattg aaattaaaaa ataatattaa tttttttaaa taacaaactt 960attaattgag
tgaccatcta aatcgtcttt ttcttaaagt tagggtcttg cctttcatct 1020aattttgata
gtaatgttct tgaaccgaca aattttgtca tttactctta tctgttataa 1080tttatgtgat
tcgagtttta cgaatcaatt tttgtttata atttcaatca tgtataagaa 1140gtattttaag
ttataataat taacaatttt aagaaagcat aatcaagatc aaataactta 1200gtagaaataa
tattggttta tgtaacctct atgcattgac aatatagtgt tttttttata 1260ctatcaagtc
atttattgga taattataat taaagaatat taactaatga gtaaatcaat 1320agtttaatat
taatgagtta tcatagtagc gtatacttat tactcgatat ttgtaatcta 1380aacattttca
atatgcttaa acttgatttt tttatttgga tcaagtatac aatttttttg 1440ttaataataa
atgacattga aacttataac taattttatt taaacaattt tctttctttc 1500tttcctcaag
gagagcatag ttctaattat tatcaatatc attattatta ttatctctat 1560gtttatttta
ttattactgt tgtttctttt acttggattg tctgtactat ttttacttca 1620tggactttaa
ttttttgtct atcgtatttt tatcatagtt tttactcttg tattggctaa 1680acctagtttt
gaaattgttt ttcataagct gaaagagtct atcaaaaaca acttctcacg 1740agatagaaat
aaagtttacg tatattccat tcttctcaaa ccccacttat gagattatac 1800tgaaatgtta
ctattattat tatactttgt aacatgctaa aaaaactagt aataattaca 1860cttcttgcca
aagagtaaat aaagtatgat cctttaataa gttgaaaatc cctctaaatc 1920aaattatcac
ttttgtgcaa cttgtcttct tttttttctt ctagtatgtc tgatacactg 1980gagagatacc
atagatgcag ctatggtgac cttgaaactg gccagtcttc aaaggattca 2040caggttactt
catcttcctc agaattacaa tttactaata aatttaactt atatactctg 2100acacagtatc
gatgcaattt aaacctttta taacagatta tctgttttta ttttaatttc 2160ttcgtaaata
attaataagt cgatattgat aactaacgcc aagcacccta tcttcatcta 2220actaattagt
gttattatgc aatagaataa ctaccaagag tatatgaagc tgaaagcaag 2280agttgaagtg
ctacaacagt cacaaaggtg atacattatt tgttttaaaa acacttttac 2340ttgtctcatt
ttgattggct catctgaaca cctgaaccgg tctagaagta ttttgaacat 2400gcataattgg
acatgttcaa tcatgcgttt gtttgatcag gttcaggatg tttagatgag 2460acctcgtaaa
ataaattaag gggaggcttt ttaatatgat atttgtgtct caaatatatc 2520acttttctac
cctaattctt aataacattg tatttactta attattctta atctttaagg 2580catatacttg
gagaggactt aggacaatta aacacaaaag atttggaaaa ctggattcat 2640ctttgaggct
aataagatca agaagggtat gttctatgca ccttcaattt atttgtcaaa 2700ttttaggctt
tcagatcatg tcttaatctt aatgtccgat gacagtttca gtggcggaat 2760tagaaattta
tgcaagacaa ttcaagcaat attatatatt atagaatgtc agacttgaaa 2820tttgaacttg
agacattgaa cctctttaca aatacactaa tatctaacct cgtatcaacg 2880gggttcaaca
atttatatat atataaaaaa cacttaattt tgccctattt ggtgtaatat 2940ataattttat
caaaggtatg ttgggaaaat gataaaaatt acttatgaat aatatccaaa 3000tggaataata
taataacaat tacttactat tacttgatag tgccacaaaa ctactaaacc 3060ttaaaataag
ttcttttatt ttacataatt cattataatc tttggcatga atttactcaa 3120gcattgcttc
agaatgatca aagcctcctt aatatttttg ggtacagaca taaagtctag 3180acatgcaatc
aaagatatag atgcacgaga tgactaatca aaggaaacaa taggaacgat 3240caaaaaaatt
gaaattgaaa atatattttt tttaaactaa aggtaagtca agattaccaa 3300gtaagtgtat
tattgtaact tttgtattat ttatcctaag taaacatgta tcaaaaacat 3360acacaaattt
actttctctt ttattactaa catcaactta catgctaatt ataaataatt 3420aaagggtaaa
tagttggttg catgatttgg taaaagaagt tgttaaccta ctctttgata 3480acatatatgt
tttcagacac aaaacatgct tgatcaactt tctgatcttc aacaaaaggt 3540atgtattgta
taatataatc ccttaagttg acaattaaat agattgttca attgttaatt 3600tgacattgta
tgtgttcttt tttctttttt tctacaggaa caatctcttc ttgaaatcaa 3660cagatccttg
aaaacaaagg tacaaagcac acattttgga ccttttatga gttttttagg 3720gcgtgtttga
tttatttatt ttttctgaat tttttcatgt ttggttgatc taaattctgg 3780gaaaatactt
ttttctatga aagtaagttt tttaaaaatg acttagccag tggaagtagg 3840gaaaacaagt
tgtgacgaca ttccacgttg attgttttct ctcgatcttc ctacacacct 3900taagttcgcc
accacctctc gcagtatttg tttagattat ataaaaatgt atcaagaatg 3960acacttttta
tttgtgtaca taataaaaga aaataagtaa gaaaccgaac attttcccat 4020ggaaaatatt
atttttcata ccaaacacac ccttagtctt tgttttaggg tatatgacta 4080atttgttctc
catttcggat atttagattc gtatgggttt ttctttgatg tctaacttat 4140cgtacttttt
acgcgatttt atgaaattct tataatagtt ggaagaaaac tctgtagcac 4200attggcatat
cactggagag caaaatgtac aattcagaca acaacctgct cagtcagagg 4260ggttctttca
gcctttacaa tgcaatacta atatagtgcc aaacaggtaa catataattt 4320tatgttttct
ttttttcctt taaatagcat attttttgca acattttaaa ttgaaccgtt 4380gaattgagtc
gttgagaggt gaattcagaa tctgaagtaa cagatacatt caaattaatt 4440tctttgtgta
tttatcgaag tgagtcaagt cgtaagtcta gaggtgaatt tagaatctaa 4500agtaatagat
acagtcgaat caatctcttt gtgtatttat tgaagtgagt cgttttgtaa 4560agtttgagac
gaattcaaaa cctaaagtaa tactaaatac atacattcaa aataatttct 4620aaagcgagtt
atgttggaag tcgagagacg aaagtatatt atatatggat caattcaaat 4680taatttctta
atgtatttga tgagcgttgt tgtaggggcg aattcagaat ctgaagttca 4740tgtaagtaca
ggtacaatgt ggctccattg gatagtatag aaccatcaac acagaatgct 4800actggaattt
taccaggatg gatgctttga
4830611812DNAUnknownSolanaceae 6atgggaagag gaagagtaga actaaagaga
atagagaaca aaataaacag gcaagttact 60tttgctaaga gaagaaatgg acttcttaag
aaagcttatg agttatctat actttgtgat 120gctgaagttg ctctcatcat cttctctagc
cgcggaaaac tctatgagtt ttcaagtgct 180tccaggtata tatatatata catatgtttt
tcttcttttt gtgtgtgcgt atgtgtttac 240ttactttcat taattaactc aaccatatat
atacatctct cacctcaatt atatatatgt 300ttgagatctg aatgtctacg gactccattt
aggtacatat ctttgtttag atcataaatc 360atctatcttc attcctaaga tctactaata
tatatgtata agaagatcca tccatctatt 420aggtttttca acaacatata cagtgaaatc
ttatatgtgg gcccacgtat agccatatga 480gaaaatagtg tgcacgtaaa cattatcatt
acttaattat aggaatatac atccattagg 540tttatcaaca acaataaaat cctctaaatg
gagtctagtc ataggtctag ccgtttgaaa 600atgtaaaata tatgccgatc ttatcactat
gtcataataa tagatatgtt gttattgaaa 660gattctcaat cttttttttt cttcaaggta
gagattctta agtggattca tgtttttttt 720atcaaaaaag aaaaaaacaa aagtgtccat
ttgttcatct aatgggtttt ccatgttacc 780aattcactac actgttgaga tttgattatc
agatgtgtca agtttcgttt ggttccctag 840aagggagaaa aggctgctta tgcaggcagg
gtattaaaga tgatattaat atctgcagta 900atcagtaaca gaatatataa acttaataat
aaacttgaag gtacttaatt atccagcaga 960taatcttctg tctcaccgta cacttttgtt
atatcataag cataagaatt gttttatcaa 1020atattaccaa acaaaactta gttttgtttg
gtaatatttt ataaaatatg ttaccgaaag 1080ttacttccta taacatattt tataaagaaa
aaaattaaaa actccatata cctaagaaat 1140gtaacccccc ctccataaca acaatttaac
aaaaataaaa acctactttt tttgaatttg 1200gtaaattagt tttctatcct ttttagtaac
ttcctttctt attttctttt tatattggta 1260aagtttaata ttacacatta ttttaacatg
ttataatttt ttgtgatgct taattatttg 1320atacatgtaa taaaccatat attagagcta
taaatcaatg acaatgcatg tagatacaac 1380tcatttatga tatattttgt ttatatatat
aaccaattag ataatttgtc tgcgctttgt 1440gcagtcataa ataataattg cattgaactt
gcaaatattt ttttttaata tccatacatt 1500aaaaaaaaag aaagaggaaa attggttcct
aaaatattag caatattcaa acatttattt 1560gattattaat cattatcaca taacttaaga
acgtctaatg aatgaattat tcacgaaata 1620ataaatcatt ggttctaaaa aggaatttcg
taataaaata aaaatttaag ttaccatatt 1680caaaaaaaga aattgtgctt gaacatgaaa
ataattataa tttttgaact tgtataatga 1740atttcttcaa ttcataagtg ggaaatttca
tatttatgta ataatagata atatgtaagc 1800tctaatatag tactttaggt tatagaattt
aatataaaat atcaaaacat gaattcttga 1860aattgagtag agtaattatt ttctgcacaa
tgaatcggag acaataactt tgaagaaata 1920taaacaatag agttcaaaag atgtagtcaa
aaacaacaat taatatcata agaataaatt 1980aatgagtgta aaaatgcata ccacgatatg
taaaaacaga atggaatata ataaaaaaaa 2040tcgagttcac tgaatacaca atgttccttt
aagaaaatta ttctcctcca ataccaacga 2100gattacatcc tctaaggatg gaaatgattt
cattccccaa cttatccata taaaaatagt 2160ggtgttagta tgtaactcaa taggagtaaa
atacacaaat atttaatttt gcgaaagtag 2220aagaagaaga tcatattttt tttttaaaat
gagaggatat atcactattt ttaaacaaca 2280aagggtagtg ttaacaaatt tttattgtgt
cttgtctaaa aggttacagc tatttgaaaa 2340agttacaaca cttcgaaaag tgaacaacat
ttcataaaag tcgtaacttt tcataaagtc 2400gtaactcttc ataaatgtcg caactcttca
taaaaattac aactattgat aaaagtcacc 2460actcttgata aagatcacca ctcttcattg
aagttgcaac ttttcataaa aatcacatct 2520tttaataaaa aagaaagact agtttttgga
ataaattaat ttaaaagaaa atttttgttt 2580gtggtggggc gccaagtagg caggcgtagg
gttcttttta tataaatata tatgatatat 2640gattcaatat ttgatatata tatatataga
gagagagatg acaatataag acaattgcaa 2700aaaataaaat aaaaaactaa tcgagtaagt
aggcaaaaaa ttatttataa aatatatgta 2760gaatttcttt atcagatatg actgcccaaa
tcttatattc aaactaaaat gcaagatcaa 2820tggtgctata tatagggttt tacacaaaaa
tcaagatcta gtcttgcaaa tttaaataaa 2880aaacagtggt ttacgatgag ataatgtagc
ttttgtaaac aataaaacta gaaaaataaa 2940tgcaaaggca ttttaaagga tataataatg
aagatcaaag gcagagaagg gaagaggcag 3000caatataatg aaggtaacat catggttcca
ttctaatata tatgctattt ttctttagta 3060aatttcaaaa ataatgatac attttcatat
ttgataaata tttaatgata ctatcaacat 3120tttatctata ttgagttcca tttatttgac
caaaacctca caaagatgtg ctcttcgatc 3180tattcaaaat ttattcaatt taaggatagc
tttaaaacat gacaaagttt tctcatatat 3240ttcttaaatt ttatatccag tctaaatacg
tatataaact aaaatgaaga gaataatatg 3300aagctttatt tgatgacatt gttgaaataa
ccaaaagcta taagtgatac aatagtaaat 3360ttaccattgg tcaattcaga attatttaaa
agctaaaaaa gtcatataag ttggggttgc 3420tcaatgtata gtttttggct tgttttaagc
attttaaaac tttttttaag cgctttttaa 3480cattgctaaa cactcaaaaa atgataaata
gtatttaaat ttgatatgat tagcttaaaa 3540gtgaactcat ataccttcaa agtaaaaatc
cccaattcga gctttcaaac cacttgattt 3600tgtggatgaa attatactga agttgaatat
atcactattt ataggggtta gtgaactaat 3660acctttgatt atttggtaga aatatgtatc
ttagatcacc ctaatgagct cccactttta 3720aaataggaaa aacctcatat gaagttcatc
actgttcatt atatatcact tttattcaaa 3780aacgtttaca aatgttcatt gtgactaaat
acccttgagt gtcgagtttt cacaccaata 3840aggcctaatt aataggtaaa caaaactatg
tcaatcttca aaacgcaaat ctaattatat 3900ttttaacaag attagaggta tatatacata
ttctcttatg ttaactctta ttcattattg 3960aacaaactaa gtaagtgtac ccaaggtctc
aaacaacagt tggtacattc tttgtatgtc 4020ttcctttgtc tcttaatagt cgtctcctcc
tgtcgatgat tcctccaaat acattaatca 4080aaggaaaatc tttcgccctc aacttgcaaa
cttgtctatc taaaattgtt aacaaagttt 4140cttcattaga gaaactatga tttcttgaat
gtagcaattt gatgtgccat gactatcatc 4200ttgatcaaca tgcttcttaa ccatcaaaag
atcctaaact agatgcatgt catgttagga 4260gacatattaa gcttgtatat aactacacca
acatgcttta ggatctcata agatccaaaa 4320tttcttattt gggagatttt caatccaaca
accatcataa tgagcaacgt gatgttataa 4380catctctctc acactgccag aacagtctta
taccttgtcg gagtgaagga catccttaac 4440taagtagatt cactaagcta tacttaaaaa
gcaataagga atcatctaaa atgtgtgact 4500cttaacccat attggcatac atggtttatg
ggggttatta attgtctgaa cactccccca 4560tataaatcag tgatcaatat taatcccaat
aatatacact attatgattt gagactacac 4620cctggaagtg gccggctctc aagaaccatt
gctgatctcc aagccaaacc ctcattctgg 4680ttgactacaa gctgaaggca aactcaagta
tacaaagctt aaaacataat aaaaataata 4740tactcaactc gccacaaaat aggcatttaa
gtctttaaaa catttttaaa aataaatgaa 4800acaaacttct caaactgtaa tgtatatcta
tgaagcctct aaatgaaaaa aatgaaggca 4860gatgagacat acggcatcct aacaactgat
ataactaaga gtacaagtgg agcccttcgg 4920atgtaaggag gctcatcaaa gctaatgtga
actccatgtg gtatcaatga agcacctatt 4980gatgaccgtg aatacatgta tctgcatcat
gaaacgatgc aggccaaagg gcttagtacg 5040tgaaatgtac gagcatgtaa agggaattca
aatacataaa cataggcttg aactttgata 5100taaaggaaac atacttacct atttttaact
caagaataaa aaacatagtt caactcaatg 5160aaaagacact caagtcagtg aaataggccg
caactcaata ataagatatt cgactatggg 5220taatcaactc tgggtactct attcaatata
aagtaagaat acaaatgcat tatatggaaa 5280gactttaaaa cggtagaaaa caactcaatg
tattgaaaat tcaatagtaa attagtttgt 5340atgtaaggaa caatataaac tttgtttgta
tatgaaaata caaaataaac tttgtgtata 5400taaaagtaca aaatatctct gtgaaagttt
ctctaaccaa caaccatcac tatgagcttt 5460ctgataatac cacgtttcgc ccatgatgtc
agaactgtcc tatgattttc cagttcataa 5520gacctactca ctaagtggat ccacaagtct
atgctaaaaa atatttaagg aatcgtctaa 5580aaagtatgac tcattctacc cacgttggct
acatgattta tgggggtcgt aagttatcta 5640aactctcctc catatcgatg cgtaatgcta
ctcacaaata tactagctca catgtttaaa 5700aatataactc gttttgtttg agatcattac
tcaaaatcct tctcttaaaa gagatgatac 5760tcaaactgct caaaactctt ttggaaatct
caaattcgtc tcatcttaaa tgtaaaaata 5820tttactcttg ggaatacata gttatcatat
atcattttaa agaaaatgaa ctcaactctg 5880ttctttctca actcaagtgc tcagtcttaa
accaaattaa aaaaaagact tctcaaaata 5940aagtttatgt cgaattatgg acgtgaacaa
ttcaattcaa agttttcgat aaccataact 6000aaaactaaat actcgagact caacatctta
gaactcaaga acttaaatgg taatacttct 6060ttcaagaatg ctcgactcag aaggttaatg
cagaataatg tgcatgaatt actcaactaa 6120aggactcact gatactactc aatctcaaga
ttgctcgact cgtagggtta atgcagaatt 6180atgtgcatga actactcaac tcaaagacct
tcataggtaa catgtagtag ccccatgatt 6240tggaatataa tcccaaaatg attaggaact
caatactcag gacttagaac ttgaagataa 6300tactacttct ctcaaagata cccaactgac
ggagttcatg cagaatttat gggcatgaac 6360tactcgactc aagagtctaa aacacaatat
gacactcatg tatataactc ttctcattct 6420aatacttgtt ttctcaaaac tcggtttaac
taaatagttg atctcaaagg attcacaatt 6480gaactcaaag actttctttg actccactct
taattctctc ttaaatttgt atttgaatta 6540tgaatttaag agttatgatt catgatatgg
ggaatctcaa taacaatata gaaatttgat 6600aattaggaat agtactttta aaagaaaaca
tgaattcaac ttaaaatcaa cttatctaaa 6660aaatattcaa atatagggaa agtatcctag
actactgtgc tactgatctg aaagtagatg 6720taggatgtga ggatgaacta gtccaacact
atgatagcct tacatacctg gaataacgag 6780gttcttggaa aatcttcact tgaagaagaa
cttgattaga agccttgaaa cctagcttga 6840aggtaaacaa tcaagaaaac ctttcttaag
attcttgaat tagtttatga aaatctctat 6900gaccaagcat tttgattttc actagtgatt
cataattgta tggaggaatt tgaattgaaa 6960aagatgaaat gcttggagaa aagctatctt
tgaagaagct tgaaaaagat tggaaagtcc 7020tgtactttga ttttccctta ggattttgtc
ttagggtttg agatagaaaa gaatgatgga 7080ctaaaagatg aaaatctaat tgtttggatc
ctttttcagc caagaaatcc gtttagggtt 7140ttcttggaga caaacaaaat aaaaaagacc
atttttaata tttttccgtc ggctaattcg 7200taataacatt gtatcatgtt attgaaagag
tcataacttt ttactcaaaa attggattga 7260tgcgaaatta gtggtgttgg aaagtagatt
caagtacctc taattggata ggttattccc 7320tacataagtc tttatattct aaaagatatg
gttgtttgca cttgacctaa gtagaatttt 7380acatgaaaac ttaatagaga aggaaacttc
aagaactcat caagaaattt caattgctca 7440atatttatgg ataaatttgt agaagaaact
catgattgac atgcgggtga ataaacccaa 7500cactatggaa gcttacatac ctcaaagaac
taggttcttg gcgaaatctt gaatttcttc 7560aacgaacgct tgaaactttg aactttttct
cttcttgaac tctcaactaa aaccctaggc 7620gtatattagg attataaaag ttaacatgat
aggattagac ctttaaaaac tttctaaaat 7680gaattaaatc tgatttagca tgaaaaagac
caaaataccc cttactattt tcggataact 7740tttcttaatt ggactgcctg acttcaaaaa
ggtatatctc actcatccga cctcaaaatt 7800tagcaaattc agtggcgtta gaaagctaat
ttaaacacct ttcattttcc atctcatggc 7860acacataact cattctttaa agagagctat
gatcgttcaa attaactcaa atcttagaag 7920aatttaggaa tgtcttgaac gagctacatc
tagtgacctt aacactttgg aaaattttaa 7980atttcttagt aaaaacttac tcactatgaa
ggatggttca agtcttagct caaaattttc 8040ctaagttgct atatatactc atgctcatat
gtttaaaacc aaaacccttc ctcgatttga 8100attaattacc aaaaagattc tcttaaaaag
ataatgctca aaactccccc taaactcatt 8160tggaaatcta ggtttccctt gttttaaata
taaaaacatt tactcttgga aatatttagt 8220tctcagatat tcacttgaaa aaaattaaac
tcgactctca tcatcttcat actcaagtgc 8280tcaagtccta aaacaattta taactaattg
tataagactt ctcaaaatag ggttcattcc 8340gaattatgga cgtgaacgac tcaattcaag
gatttcaata accatatata taactcaata 8400ataggaactc aacaactcca gaactcaatg
atactactca tctcaagaat gctcgactca 8460cagggtcttt gcgaaattat tgggcatgaa
caactcaact caaagacctt catttatacc 8520atatggtagt cccataatag gaatataatc
ccaaaaaaat taggaactca atactcaaaa 8580acttagaact cgaagatatt actcatctca
aagatattca atttatggaa ttcatgctga 8640attatgagca tgaacgactt gactcaagga
tctcaataat aatgtagact catgaataca 8700ctcttctcat tctcatactc acatactcga
gtattaaaat aaattataag taattgcaga 8760agactccttg aacagactca aaaggactcc
ttcgaatttt actcttaatg ctacctgaat 8820tttgtattat aaatttaagg atcatgatta
tgatataaag aatttctcag catatatgaa 8880atgaacgaat ttgagcattg aacgtctaac
ctcatttttt aattattgtg atatgtagag 8940tggtgcaaaa tcacagatac ctctcttgat
gcatttctat agttacgttg atgtgagatt 9000atatatagtt cagcagcagc atgttgggaa
aattactaat aactcttctt ttatatcaaa 9060ttgttgaagc atgatgacaa cacttgaaaa
gtatcaacaa tgcagttacg catctttgga 9120cccgatgtta ccggttagtg atactcaggt
attgtttatc tactttatca tgtcgtaagt 9180atattatttg taaagatata tatcaagata
gttcgattgc gtacacttac attttgatta 9240tgtttggtga atactattct aatacctttt
tttttcctaa agcctaacaa ataaagataa 9300ttaagatggg aacgtaattc aagtacaaca
tggttccata cgtgacatat ttacacatat 9360agtggaacca aaagagcaat ttttcctaat
atcattttct aaatatcacg tgtgcccgtg 9420attctttttt atggacatga attttttttt
taatatgagt ggaagtaagg ttcgatcttt 9480ctatctgctt tgatatcata ttgaatcgtg
tgattgtctc tttaaaaaat taagcaagag 9540catattttat taattaattg tctttctcga
cgtttttctc tttcaacaga tgaactacaa 9600tgagtatgtg aggctaaaag ctagagttga
gctccttcaa cgttctcaaa ggtaagatat 9660tagtgatgta attaaatgat tttagttaga
tttacataag tttttaataa gtgaaaatta 9720atagacatat tcttggagag gatttgggca
cactaaactc gaaagaactt gagcagcttg 9780agcaccaatt ggatgcatct ttgaagaaag
ttagatcaaa aaaggtatat ccaaatacta 9840taacttaaat atattgtaac gatttaatta
atagcatgtg tcacgttcat ctattcttta 9900gtcacaatat ataggggcat gtccttaaca
acgtgccatg cctcgatagt catttttgtc 9960tttttgtgcg tatgaattta actttgacac
aaatttttgt agtaataata actcatgctt 10020tagcatctta ggaagcagtc atatgaaaaa
cagaagcata tatatatatt acatgagtta 10080atttaattta atataaaatt taataaaatt
gtgtctcgct ataaataatt ttattaaaaa 10140attatataaa tatattattt ttttaactgg
ccgcaaagtt atataaattg atagagaaag 10200aggttttggt gtaaggttca ttttccaaca
attagtttta taatttgtaa gtgcacactt 10260tatcagactc aatctatgct ggatcagctg
gcagaccttc aagaaaaggt acactgcctt 10320aacattacaa aattaattta tttcatcaaa
agcatatcat aaaattctga caaataaata 10380tattaggagc aaatgctgga agaagcaaat
aaacaactaa aaaacaaggt acatatctat 10440atatgtgtgt taattaatta agttgatttt
gtatttttgt ttaatgaata attgtttgtg 10500atcatcagct ggaagaaagt gcagctagaa
ttccacttgg attgtcatgg ggaaataatg 10560gaggacaaac aatggaatac aatcgactcc
ctccacaaac tactgcacaa cctttctttc 10620aacctctccg tttgaattct tcatcgcctc
aattcgggta agtatcttat tttatatgac 10680ttagtttgac ttgacataaa gtttaataaa
gaaagaaaga cttttaaaac ttatagtgta 10740aaataagtga atagatatat atgtggttgt
actaacacta caacaaaaat aattttcagc 10800ggcattaaat attgacatta ataatgagtg
ctaaagactt tatcggtatt agttaagtgt 10860cattaggatc aatgtcgtta aaggcttcac
ggacatatac aaagagtgac aattgccgct 10920aatgattatt tttgttgtag tgaaaatgag
tattttaaag ttaaattgtt acataatata 10980gaaatatgtc agaaacagga caaatatacc
accgaactat catatatgtt atggagatat 11040tctcagtcat acttctgcga cattggtact
catgtcgtcc aaaaactaga acatatatat 11100accctttata tattaacgaa gatacaagtg
tcataatctt atgcaccgat tcgatattta 11160ttaaatatcg aatcgacgga taaaattatg
tcacgtgtcc ctattaagtc ttctattaga 11220gtaaaaagca tatattctct agtttttgaa
cgaaaaaagg tattaatgtc tcaaaagtat 11280aacgaaaagc atttgcatac aatttatgat
aatttggggc atattaattt atcattcccc 11340ctttttttgg cactgattaa aaagaaaaag
aaagttataa aaattgggat agagggaata 11400attgtttcat agggaaaact tagaagcttc
tcagtatgtc agtgagaatg tgtttcctaa 11460ttagtgaact atggtttggt gaaaaataaa
gagaaaaaaa tcagtacaaa ttttccactg 11520attagcaatg agaaaaatat ttgtttctag
tagtatgagg agaggatagt ccgcataaat 11580aatccttaaa tttgtggata aataaactat
tttcaataga ttatcgtctc aaaataaaat 11640aaaatgattg caagaaaaga ataataggta
tgctggtaat atgtataata cactcaaatt 11700tatttgctgt ccatgcagat acaatccaaa
tatgggtgca aatgatcatg aggttaatgc 11760agcaacaact gctcataata ttaatggatt
tattccaggg tggatgctct aa 118127753DNAUnknownSolanaceae
7atgggaagag gaagagtaga actaaagaga atagagaaca aaataaacag gcaagttact
60tttgctaaga gaagaaatgg acttcttaag aaagcttatg agttatctat actttgtgat
120gctgaagttg ctctcatcat cttctctagc cgcggaaaac tctatgagtt ttcaagtgct
180tccagcatga tgacaacact tgaaaagtat caacaatgca gttacgcatc tttggacccg
240atgttaccgg ttagtgatac tcagatgaac tacaatgagt atgtgaggct aaaagctaga
300gttgagctcc ttcaacgttc tcaaagacat attcttggag aggatttggg cacactaaac
360tcgaaagaac ttgagcagct tgagcaccaa ttggatgcat ctttgaagaa agttagatca
420aaaaagactc aatctatgct ggatcagctg gcagaccttc aagaaaagga gcaaatgctg
480gaagaagcaa ataaacaact aaaaaacaag ctggaagaaa gtgcagctag aattccactt
540ggattgtcat ggggaaataa tggaggacaa acaatggaat acaatcgact ccctccacaa
600actactgcac aacctttctt tcaacctctc cgtttgaatt cttcatcgcc tcaattcgga
660tacaatccaa atatgggtgc aaatgatcat gaggttaatg cagcaacaac tgctcataat
720attaatggat ttattccagg gtggatgctc taa
753812504DNAArtificial SequenceSynthetic
polynucleotidemisc_feature(607)..(619)n is a, c, g, or t 8atgggaagag
gaagagtaga actaaagaga atagagaaca aaataaacag gcaagttact 60tttgctaaga
gaagaaatgg acttcttaag aaagcttatg agttatctat actttgtgat 120gctgaagttg
ctctcatcat cttctctagc cgcggaaaac tctatgagtt ttcaagtgct 180tccaggtata
tatatatata catatgctgt tgaatgcctt gaatcggacc cgctacaaac 240agaaaggacg
ggggtctcgc tgcccggtca gcgagtcggg gggtccaggg gggcgacgcg 300ccccctggcc
tgggggtccg ggggggcgga gacgcccccg ggccgacggt atacaatgtt 360gttgtattgg
gcccttaatt ttctgttgat tctgtatgtt gggcccaagc ctgttagggc 420gtagcttagc
actatatata gacgctatgg gaaaccctat tctgtaattc tgtttttgcc 480tctccataat
aaaactgctc cctctcttcc cgtggacgta gccaatttgt tggtgaacca 540cgtaaatctg
ttgtcttatt tttcgcgttt atattttctc gtattatctc aaattccgca 600caacaannnn
nnnnnnnnnc cccgggccga cggtatacaa tgttgttgta ttgggccctt 660aattttctgt
tgattctgta tgttgggccc aagcctgtta gggcgtagct tagcactata 720tatagacgct
atgggaaacc ctattctgta attctgtttt tgcctctcca taataaaact 780gctccctctc
ttcccgtgga cgtagccaat ttgttggtga accacgtaaa tctgttgtct 840tatttttcgc
gtttatattt tctcgtatta tctcaaattc cgcacaacaa tatatatgtt 900tttcttcttt
ttgtgtgtgc gtatgtgttt acttactttc attaattaac tcaaccatat 960atatacatct
ctcacctcaa ttatatatat gtttgagatc tgaatgtcta cggactccat 1020ttaggtacat
atctttgttt agatcataaa tcatctatct tcattcctaa gatctactaa 1080tatatatgta
taagaagatc catccatcta ttaggttttt caacaacata tacagtgaaa 1140tcttatatgt
gggcccacgt atagccatat gagaaaatag tgtgcacgta aacattatca 1200ttacttaatt
ataggaatat acatccatta ggtttatcaa caacaataaa atcctctaaa 1260tggagtctag
tcataggtct agccgtttga aaatgtaaaa tatatgccga tcttatcact 1320atgtcataat
aatagatatg ttgttattga aagattctca atcttttttt ttcttcaagg 1380tagagattct
taagtggatt catgtttttt ttatcaaaaa agaaaaaaac aaaagtgtcc 1440atttgttcat
ctaatgggtt ttccatgtta ccaattcact acactgttga gatttgatta 1500tcagatgtgt
caagtttcgt ttggttccct agaagggaga aaaggctgct tatgcaggca 1560gggtattaaa
gatgatatta atatctgcag taatcagtaa cagaatatat aaacttaata 1620ataaacttga
aggtacttaa ttatccagca gataatcttc tgtctcaccg tacacttttg 1680ttatatcata
agcataagaa ttgttttatc aaatattacc aaacaaaact tagttttgtt 1740tggtaatatt
ttataaaata tgttaccgaa agttacttcc tataacatat tttataaaga 1800aaaaaattaa
aaactccata tacctaagaa atgtaacccc ccctccataa caacaattta 1860acaaaaataa
aaacctactt tttttgaatt tggtaaatta gttttctatc ctttttagta 1920acttcctttc
ttattttctt tttatattgg taaagtttaa tattacacat tattttaaca 1980tgttataatt
ttttgtgatg cttaattatt tgatacatgt aataaaccat atattagagc 2040tataaatcaa
tgacaatgca tgtagataca actcatttat gatatatttt gtttatatat 2100ataaccaatt
agataatttg tctgcgcttt gtgcagtcat aaataataat tgcattgaac 2160ttgcaaatat
ttttttttaa tatccataca ttaaaaaaaa agaaagagga aaattggttc 2220ctaaaatatt
agcaatattc aaacatttat ttgattatta atcattatca cataacttaa 2280gaacgtctaa
tgaatgaatt attcacgaaa taataaatca ttggttctaa aaaggaattt 2340cgtaataaaa
taaaaattta agttaccata ttcaaaaaaa gaaattgtgc ttgaacatga 2400aaataattat
aatttttgaa cttgtataat gaatttcttc aattcataag tgggaaattt 2460catatttatg
taataataga taatatgtaa gctctaatat agtactttag gttatagaat 2520ttaatataaa
atatcaaaac atgaattctt gaaattgagt agagtaatta ttttctgcac 2580aatgaatcgg
agacaataac tttgaagaaa tataaacaat agagttcaaa agatgtagtc 2640aaaaacaaca
attaatatca taagaataaa ttaatgagtg taaaaatgca taccacgata 2700tgtaaaaaca
gaatggaata taataaaaaa aatcgagttc actgaataca caatgttcct 2760ttaagaaaat
tattctcctc caataccaac gagattacat cctctaagga tggaaatgat 2820ttcattcccc
aacttatcca tataaaaata gtggtgttag tatgtaactc aataggagta 2880aaatacacaa
atatttaatt ttgcgaaagt agaagaagaa gatcatattt tttttttaaa 2940atgagaggat
atatcactat ttttaaacaa caaagggtag tgttaacaaa tttttattgt 3000gtcttgtcta
aaaggttaca gctatttgaa aaagttacaa cacttcgaaa agtgaacaac 3060atttcataaa
agtcgtaact tttcataaag tcgtaactct tcataaatgt cgcaactctt 3120cataaaaatt
acaactattg ataaaagtca ccactcttga taaagatcac cactcttcat 3180tgaagttgca
acttttcata aaaatcacat cttttaataa aaaagaaaga ctagtttttg 3240gaataaatta
atttaaaaga aaatttttgt ttgtggtggg gcgccaagta ggcaggcgta 3300gggttctttt
tatataaata tatatgatat atgattcaat atttgatata tatatatata 3360gagagagaga
tgacaatata agacaattgc aaaaaataaa ataaaaaact aatcgagtaa 3420gtaggcaaaa
aattatttat aaaatatatg tagaatttct ttatcagata tgactgccca 3480aatcttatat
tcaaactaaa atgcaagatc aatggtgcta tatatagggt tttacacaaa 3540aatcaagatc
tagtcttgca aatttaaata aaaaacagtg gtttacgatg agataatgta 3600gcttttgtaa
acaataaaac tagaaaaata aatgcaaagg cattttaaag gatataataa 3660tgaagatcaa
aggcagagaa gggaagaggc agcaatataa tgaaggtaac atcatggttc 3720cattctaata
tatatgctat ttttctttag taaatttcaa aaataatgat acattttcat 3780atttgataaa
tatttaatga tactatcaac attttatcta tattgagttc catttatttg 3840accaaaacct
cacaaagatg tgctcttcga tctattcaaa atttattcaa tttaaggata 3900gctttaaaac
atgacaaagt tttctcatat atttcttaaa ttttatatcc agtctaaata 3960cgtatataaa
ctaaaatgaa gagaataata tgaagcttta tttgatgaca ttgttgaaat 4020aaccaaaagc
tataagtgat acaatagtaa atttaccatt ggtcaattca gaattattta 4080aaagctaaaa
aagtcatata agttggggtt gctcaatgta tagtttttgg cttgttttaa 4140gcattttaaa
acttttttta agcgcttttt aacattgcta aacactcaaa aaatgataaa 4200tagtatttaa
atttgatatg attagcttaa aagtgaactc atataccttc aaagtaaaaa 4260tccccaattc
gagctttcaa accacttgat tttgtggatg aaattatact gaagttgaat 4320atatcactat
ttataggggt tagtgaacta atacctttga ttatttggta gaaatatgta 4380tcttagatca
ccctaatgag ctcccacttt taaaatagga aaaacctcat atgaagttca 4440tcactgttca
ttatatatca cttttattca aaaacgttta caaatgttca ttgtgactaa 4500atacccttga
gtgtcgagtt ttcacaccaa taaggcctaa ttaataggta aacaaaacta 4560tgtcaatctt
caaaacgcaa atctaattat atttttaaca agattagagg tatatataca 4620tattctctta
tgttaactct tattcattat tgaacaaact aagtaagtgt acccaaggtc 4680tcaaacaaca
gttggtacat tctttgtatg tcttcctttg tctcttaata gtcgtctcct 4740cctgtcgatg
attcctccaa atacattaat caaaggaaaa tctttcgccc tcaacttgca 4800aacttgtcta
tctaaaattg ttaacaaagt ttcttcatta gagaaactat gatttcttga 4860atgtagcaat
ttgatgtgcc atgactatca tcttgatcaa catgcttctt aaccatcaaa 4920agatcctaaa
ctagatgcat gtcatgttag gagacatatt aagcttgtat ataactacac 4980caacatgctt
taggatctca taagatccaa aatttcttat ttgggagatt ttcaatccaa 5040caaccatcat
aatgagcaac gtgatgttat aacatctctc tcacactgcc agaacagtct 5100tataccttgt
cggagtgaag gacatcctta actaagtaga ttcactaagc tatacttaaa 5160aagcaataag
gaatcatcta aaatgtgtga ctcttaaccc atattggcat acatggttta 5220tgggggttat
taattgtctg aacactcccc catataaatc agtgatcaat attaatccca 5280ataatataca
ctattatgat ttgagactac accctggaag tggccggctc tcaagaacca 5340ttgctgatct
ccaagccaaa ccctcattct ggttgactac aagctgaagg caaactcaag 5400tatacaaagc
ttaaaacata ataaaaataa tatactcaac tcgccacaaa ataggcattt 5460aagtctttaa
aacattttta aaaataaatg aaacaaactt ctcaaactgt aatgtatatc 5520tatgaagcct
ctaaatgaaa aaaatgaagg cagatgagac atacggcatc ctaacaactg 5580atataactaa
gagtacaagt ggagcccttc ggatgtaagg aggctcatca aagctaatgt 5640gaactccatg
tggtatcaat gaagcaccta ttgatgaccg tgaatacatg tatctgcatc 5700atgaaacgat
gcaggccaaa gggcttagta cgtgaaatgt acgagcatgt aaagggaatt 5760caaatacata
aacataggct tgaactttga tataaaggaa acatacttac ctatttttaa 5820ctcaagaata
aaaaacatag ttcaactcaa tgaaaagaca ctcaagtcag tgaaataggc 5880cgcaactcaa
taataagata ttcgactatg ggtaatcaac tctgggtact ctattcaata 5940taaagtaaga
atacaaatgc attatatgga aagactttaa aacggtagaa aacaactcaa 6000tgtattgaaa
attcaatagt aaattagttt gtatgtaagg aacaatataa actttgtttg 6060tatatgaaaa
tacaaaataa actttgtgta tataaaagta caaaatatct ctgtgaaagt 6120ttctctaacc
aacaaccatc actatgagct ttctgataat accacgtttc gcccatgatg 6180tcagaactgt
cctatgattt tccagttcat aagacctact cactaagtgg atccacaagt 6240ctatgctaaa
aaatatttaa ggaatcgtct aaaaagtatg actcattcta cccacgttgg 6300ctacatgatt
tatgggggtc gtaagttatc taaactctcc tccatatcga tgcgtaatgc 6360tactcacaaa
tatactagct cacatgttta aaaatataac tcgttttgtt tgagatcatt 6420actcaaaatc
cttctcttaa aagagatgat actcaaactg ctcaaaactc ttttggaaat 6480ctcaaattcg
tctcatctta aatgtaaaaa tatttactct tgggaataca tagttatcat 6540atatcatttt
aaagaaaatg aactcaactc tgttctttct caactcaagt gctcagtctt 6600aaaccaaatt
aaaaaaaaga cttctcaaaa taaagtttat gtcgaattat ggacgtgaac 6660aattcaattc
aaagttttcg ataaccataa ctaaaactaa atactcgaga ctcaacatct 6720tagaactcaa
gaacttaaat ggtaatactt ctttcaagaa tgctcgactc agaaggttaa 6780tgcagaataa
tgtgcatgaa ttactcaact aaaggactca ctgatactac tcaatctcaa 6840gattgctcga
ctcgtagggt taatgcagaa ttatgtgcat gaactactca actcaaagac 6900cttcataggt
aacatgtagt agccccatga tttggaatat aatcccaaaa tgattaggaa 6960ctcaatactc
aggacttaga acttgaagat aatactactt ctctcaaaga tacccaactg 7020acggagttca
tgcagaattt atgggcatga actactcgac tcaagagtct aaaacacaat 7080atgacactca
tgtatataac tcttctcatt ctaatacttg ttttctcaaa actcggttta 7140actaaatagt
tgatctcaaa ggattcacaa ttgaactcaa agactttctt tgactccact 7200cttaattctc
tcttaaattt gtatttgaat tatgaattta agagttatga ttcatgatat 7260ggggaatctc
aataacaata tagaaatttg ataattagga atagtacttt taaaagaaaa 7320catgaattca
acttaaaatc aacttatcta aaaaatattc aaatataggg aaagtatcct 7380agactactgt
gctactgatc tgaaagtaga tgtaggatgt gaggatgaac tagtccaaca 7440ctatgatagc
cttacatacc tggaataacg aggttcttgg aaaatcttca cttgaagaag 7500aacttgatta
gaagccttga aacctagctt gaaggtaaac aatcaagaaa acctttctta 7560agattcttga
attagtttat gaaaatctct atgaccaagc attttgattt tcactagtga 7620ttcataattg
tatggaggaa tttgaattga aaaagatgaa atgcttggag aaaagctatc 7680tttgaagaag
cttgaaaaag attggaaagt cctgtacttt gattttccct taggattttg 7740tcttagggtt
tgagatagaa aagaatgatg gactaaaaga tgaaaatcta attgtttgga 7800tcctttttca
gccaagaaat ccgtttaggg ttttcttgga gacaaacaaa ataaaaaaga 7860ccatttttaa
tatttttccg tcggctaatt cgtaataaca ttgtatcatg ttattgaaag 7920agtcataact
ttttactcaa aaattggatt gatgcgaaat tagtggtgtt ggaaagtaga 7980ttcaagtacc
tctaattgga taggttattc cctacataag tctttatatt ctaaaagata 8040tggttgtttg
cacttgacct aagtagaatt ttacatgaaa acttaataga gaaggaaact 8100tcaagaactc
atcaagaaat ttcaattgct caatatttat ggataaattt gtagaagaaa 8160ctcatgattg
acatgcgggt gaataaaccc aacactatgg aagcttacat acctcaaaga 8220actaggttct
tggcgaaatc ttgaatttct tcaacgaacg cttgaaactt tgaacttttt 8280ctcttcttga
actctcaact aaaaccctag gcgtatatta ggattataaa agttaacatg 8340ataggattag
acctttaaaa actttctaaa atgaattaaa tctgatttag catgaaaaag 8400accaaaatac
cccttactat tttcggataa cttttcttaa ttggactgcc tgacttcaaa 8460aaggtatatc
tcactcatcc gacctcaaaa tttagcaaat tcagtggcgt tagaaagcta 8520atttaaacac
ctttcatttt ccatctcatg gcacacataa ctcattcttt aaagagagct 8580atgatcgttc
aaattaactc aaatcttaga agaatttagg aatgtcttga acgagctaca 8640tctagtgacc
ttaacacttt ggaaaatttt aaatttctta gtaaaaactt actcactatg 8700aaggatggtt
caagtcttag ctcaaaattt tcctaagttg ctatatatac tcatgctcat 8760atgtttaaaa
ccaaaaccct tcctcgattt gaattaatta ccaaaaagat tctcttaaaa 8820agataatgct
caaaactccc cctaaactca tttggaaatc taggtttccc ttgttttaaa 8880tataaaaaca
tttactcttg gaaatattta gttctcagat attcacttga aaaaaattaa 8940actcgactct
catcatcttc atactcaagt gctcaagtcc taaaacaatt tataactaat 9000tgtataagac
ttctcaaaat agggttcatt ccgaattatg gacgtgaacg actcaattca 9060aggatttcaa
taaccatata tataactcaa taataggaac tcaacaactc cagaactcaa 9120tgatactact
catctcaaga atgctcgact cacagggtct ttgcgaaatt attgggcatg 9180aacaactcaa
ctcaaagacc ttcatttata ccatatggta gtcccataat aggaatataa 9240tcccaaaaaa
attaggaact caatactcaa aaacttagaa ctcgaagata ttactcatct 9300caaagatatt
caatttatgg aattcatgct gaattatgag catgaacgac ttgactcaag 9360gatctcaata
ataatgtaga ctcatgaata cactcttctc attctcatac tcacatactc 9420gagtattaaa
ataaattata agtaattgca gaagactcct tgaacagact caaaaggact 9480ccttcgaatt
ttactcttaa tgctacctga attttgtatt ataaatttaa ggatcatgat 9540tatgatataa
agaatttctc agcatatatg aaatgaacga atttgagcat tgaacgtcta 9600acctcatttt
ttaattattg tgatatgtag agtggtgcaa aatcacagat acctctcttg 9660atgcatttct
atagttacgt tgatgtgaga ttatatatag ttcagcagca gcatgttggg 9720aaaattacta
ataactcttc ttttatatca aattgttgaa gcatgatgac aacacttgaa 9780aagtatcaac
aatgcagtta cgcatctttg gacccgatgt taccggttag tgatactcag 9840gtattgttta
tctactttat catgtcgtaa gtatattatt tgtaaagata tatatcaaga 9900tagttcgatt
gcgtacactt acattttgat tatgtttggt gaatactatt ctaatacctt 9960tttttttcct
aaagcctaac aaataaagat aattaagatg ggaacgtaat tcaagtacaa 10020catggttcca
tacgtgacat atttacacat atagtggaac caaaagagca atttttccta 10080atatcatttt
ctaaatatca cgtgtgcccg tgattctttt ttatggacat gaattttttt 10140tttaatatga
gtggaagtaa ggttcgatct ttctatctgc tttgatatca tattgaatcg 10200tgtgattgtc
tctttaaaaa attaagcaag agcatatttt attaattaat tgtctttctc 10260gacgtttttc
tctttcaaca gatgaactac aatgagtatg tgaggctaaa agctagagtt 10320gagctccttc
aacgttctca aaggtaagat attagtgatg taattaaatg attttagtta 10380gatttacata
agtttttaat aagtgaaaat taatagacat attcttggag aggatttggg 10440cacactaaac
tcgaaagaac ttgagcagct tgagcaccaa ttggatgcat ctttgaagaa 10500agttagatca
aaaaaggtat atccaaatac tataacttaa atatattgta acgatttaat 10560taatagcatg
tgtcacgttc atctattctt tagtcacaat atataggggc atgtccttaa 10620caacgtgcca
tgcctcgata gtcatttttg tctttttgtg cgtatgaatt taactttgac 10680acaaattttt
gtagtaataa taactcatgc tttagcatct taggaagcag tcatatgaaa 10740aacagaagca
tatatatata ttacatgagt taatttaatt taatataaaa tttaataaaa 10800ttgtgtctcg
ctataaataa ttttattaaa aaattatata aatatattat ttttttaact 10860ggccgcaaag
ttatataaat tgatagagaa agaggttttg gtgtaaggtt cattttccaa 10920caattagttt
tataatttgt aagtgcacac tttatcagac tcaatctatg ctggatcagc 10980tggcagacct
tcaagaaaag gtacactgcc ttaacattac aaaattaatt tatttcatca 11040aaagcatatc
ataaaattct gacaaataaa tatattagga gcaaatgctg gaagaagcaa 11100ataaacaact
aaaaaacaag gtacatatct atatatgtgt gttaattaat taagttgatt 11160ttgtattttt
gtttaatgaa taattgtttg tgatcatcag ctggaagaaa gtgcagctag 11220aattccactt
ggattgtcat ggggaaataa tggaggacaa acaatggaat acaatcgact 11280ccctccacaa
actactgcac aacctttctt tcaacctctc cgtttgaatt cttcatcgcc 11340tcaattcggg
taagtatctt attttatatg acttagtttg acttgacata aagtttaata 11400aagaaagaaa
gacttttaaa acttatagtg taaaataagt gaatagatat atatgtggtt 11460gtactaacac
tacaacaaaa ataattttca gcggcattaa atattgacat taataatgag 11520tgctaaagac
tttatcggta ttagttaagt gtcattagga tcaatgtcgt taaaggcttc 11580acggacatat
acaaagagtg acaattgccg ctaatgatta tttttgttgt agtgaaaatg 11640agtattttaa
agttaaattg ttacataata tagaaatatg tcagaaacag gacaaatata 11700ccaccgaact
atcatatatg ttatggagat attctcagtc atacttctgc gacattggta 11760ctcatgtcgt
ccaaaaacta gaacatatat atacccttta tatattaacg aagatacaag 11820tgtcataatc
ttatgcaccg attcgatatt tattaaatat cgaatcgacg gataaaatta 11880tgtcacgtgt
ccctattaag tcttctatta gagtaaaaag catatattct ctagtttttg 11940aacgaaaaaa
ggtattaatg tctcaaaagt ataacgaaaa gcatttgcat acaatttatg 12000ataatttggg
gcatattaat ttatcattcc cccttttttt ggcactgatt aaaaagaaaa 12060agaaagttat
aaaaattggg atagagggaa taattgtttc atagggaaaa cttagaagct 12120tctcagtatg
tcagtgagaa tgtgtttcct aattagtgaa ctatggtttg gtgaaaaata 12180aagagaaaaa
aatcagtaca aattttccac tgattagcaa tgagaaaaat atttgtttct 12240agtagtatga
ggagaggata gtccgcataa ataatcctta aatttgtgga taaataaact 12300attttcaata
gattatcgtc tcaaaataaa ataaaatgat tgcaagaaaa gaataatagg 12360tatgctggta
atatgtataa tacactcaaa tttatttgct gtccatgcag atacaatcca 12420aatatgggtg
caaatgatca tgaggttaat gcagcaacaa ctgctcataa tattaatgga 12480tttattccag
ggtggatgct ctaa
12504911812DNAArtificial SequenceSynthetic polynucleotide 9atgggaagag
gaagagtaga actaaagaga atagagaaca aaataaacag gcaagttact 60tttgctaaga
gaagaaatgg acttcttaag aaagcttatg agttatctat actttgtgat 120gctgaagttg
ctctcatcat cttctctagc cgcggaaaac tctatgagtt ttcaagtgct 180tccaggtata
tatatatata catatgtttt tcttcttttt gtgtgtgcgt atgtgtttac 240ttactttcat
taattaactc aaccatatat atacatctct cacctcaatt atatatatgt 300ttgagatctg
aatgtctacg gactccattt aggtacatat ctttgtttag atcataaatc 360atctatcttc
attcctaaga tctactaata tatatgtata agaagatcca tccatctatt 420aggtttttca
acaacatata cagtgaaatc ttatatgtgg gcccacgtat agccatatga 480gaaaatagtg
tgcacgtaaa cattatcatt acttaattat aggaatatac atccattagg 540tttatcaaca
acaataaaat cctctaaatg gagtctagtc ataggtctag ccgtttgaaa 600atgtaaaata
tatgccgatc ttatcactat gtcataataa tagatatgtt gttattgaaa 660gattctcaat
cttttttttt cttcaaggta gagattctta agtggattca tgtttttttt 720atcaaaaaag
aaaaaaacaa aagtgtccat ttgttcatct aatgggtttt ccatgttacc 780aattcactac
actgttgaga tttgattatc agatgtgtca agtttcgttt ggttccctag 840aagggagaaa
aggctgctta tgcaggcagg gtattaaaga tgatattaat atctgcagta 900atcagtaaca
gaatatataa acttaataat aaacttgaag gtacttaatt atccagcaga 960taatcttctg
tctcaccgta cacttttgtt atatcataag cataagaatt gttttatcaa 1020atattaccaa
acaaaactta gttttgtttg gtaatatttt ataaaatatg ttaccgaaag 1080ttacttccta
taacatattt tataaagaaa aaaattaaaa actccatata cctaagaaat 1140gtaacccccc
ctccataaca acaatttaac aaaaataaaa acctactttt tttgaatttg 1200gtaaattagt
tttctatcct ttttagtaac ttcctttctt attttctttt tatattggta 1260aagtttaata
ttacacatta ttttaacatg ttataatttt ttgtgatgct taattatttg 1320atacatgtaa
taaaccatat attagagcta taaatcaatg acaatgcatg tagatacaac 1380tcatttatga
tatattttgt ttatatatat aaccaattag ataatttgtc tgcgctttgt 1440gcagtcataa
ataataattg cattgaactt gcaaatattt ttttttaata tccatacatt 1500aaaaaaaaag
aaagaggaaa attggttcct aaaatattag caatattcaa acatttattt 1560gattattaat
cattatcaca taacttaaga acgtctaatg aatgaattat tcacgaaata 1620ataaatcatt
ggttctaaaa aggaatttcg taataaaata aaaatttaag ttaccatatt 1680caaaaaaaga
aattgtgctt gaacatgaaa ataattataa tttttgaact tgtataatga 1740atttcttcaa
ttcataagtg ggaaatttca tatttatgta ataatagata atatgtaagc 1800tctaatatag
tactttaggt tatagaattt aatataaaat atcaaaacat gaattcttga 1860aattgagtag
agtaattatt ttctgcacaa tgaatcggag acaataactt tgaagaaata 1920taaacaatag
agttcaaaag atgtagtcaa aaacaacaat taatatcata agaataaatt 1980aatgagtgta
aaaatgcata ccacgatatg taaaaacaga atggaatata ataaaaaaaa 2040tcgagttcac
tgaatacaca atgttccttt aagaaaatta ttctcctcca ataccaacga 2100gattacatcc
tctaaggatg gaaatgattt cattccccaa cttatccata taaaaatagt 2160ggtgttagta
tgtaactcaa taggagtaaa atacacaaat atttaatttt gcgaaagtag 2220aagaagaaga
tcatattttt tttttaaaat gagaggatat atcactattt ttaaacaaca 2280aagggtagtg
ttaacaaatt tttattgtgt cttgtctaaa aggttacagc tatttgaaaa 2340agttacaaca
cttcgaaaag tgaacaacat ttcataaaag tcgtaacttt tcataaagtc 2400gtaactcttc
ataaatgtcg caactcttca taaaaattac aactattgat aaaagtcacc 2460actcttgata
aagatcacca ctcttcattg aagttgcaac ttttcataaa aatcacatct 2520tttaataaaa
aagaaagact agtttttgga ataaattaat ttaaaagaaa atttttgttt 2580gtggtggggc
gccaagtagg caggcgtagg gttcttttta tataaatata tatgatatat 2640gattcaatat
ttgatatata tatatataga gagagagatg acaatataag acaattgcaa 2700aaaataaaat
aaaaaactaa tcgagtaagt aggcaaaaaa ttatttataa aatatatgta 2760gaatttcttt
atcagatatg actgcccaaa tcttatattc aaactaaaat gcaagatcaa 2820tggtgctata
tatagggttt tacacaaaaa tcaagatcta gtcttgcaaa tttaaataaa 2880aaacagtggt
ttacgatgag ataatgtagc ttttgtaaac aataaaacta gaaaaataaa 2940tgcaaaggca
ttttaaagga tataataatg aagatcaaag gcagagaagg gaagaggcag 3000caatataatg
aaggtaacat catggttcca ttctaatata tatgctattt ttctttagta 3060aatttcaaaa
ataatgatac attttcatat ttgataaata tttaatgata ctatcaacat 3120tttatctata
ttgagttcca tttatttgac caaaacctca caaagatgtg ctcttcgatc 3180tattcaaaat
ttattcaatt taaggatagc tttaaaacat gacaaagttt tctcatatat 3240ttcttaaatt
ttatatccag tctaaatacg tatataaact aaaatgaaga gaataatatg 3300aagctttatt
tgatgacatt gttgaaataa ccaaaagcta taagtgatac aatagtaaat 3360ttaccattgg
tcaattcaga attatttaaa agctaaaaaa gtcatataag ttggggttgc 3420tcaatgtata
gtttttggct tgttttaagc attttaaaac tttttttaag cgctttttaa 3480cattgctaaa
cactcaaaaa atgataaata gtatttaaat ttgatatgat tagcttaaaa 3540gtgaactcat
ataccttcaa agtaaaaatc cccaattcga gctttcaaac cacttgattt 3600tgtggatgaa
attatactga agttgaatat atcactattt ataggggtta gtgaactaat 3660acctttgatt
atttggtaga aatatgtatc ttagatcacc ctaatgagct cccactttta 3720aaataggaaa
aacctcatat gaagttcatc actgttcatt atatatcact tttattcaaa 3780aacgtttaca
aatgttcatt gtgactaaat acccttgagt gtcgagtttt cacaccaata 3840aggcctaatt
aataggtaaa caaaactatg tcaatcttca aaacgcaaat ctaattatat 3900ttttaacaag
attagaggta tatatacata ttctcttatg ttaactctta ttcattattg 3960aacaaactaa
gtaagtgtac ccaaggtctc aaacaacagt tggtacattc tttgtatgtc 4020ttcctttgtc
tcttaatagt cgtctcctcc tgtcgatgat tcctccaaat acattaatca 4080aaggaaaatc
tttcgccctc aacttgcaaa cttgtctatc taaaattgtt aacaaagttt 4140cttcattaga
gaaactatga tttcttgaat gtagcaattt gatgtgccat gactatcatc 4200ttgatcaaca
tgcttcttaa ccatcaaaag atcctaaact agatgcatgt catgttagga 4260gacatattaa
gcttgtatat aactacacca acatgcttta ggatctcata agatccaaaa 4320tttcttattt
gggagatttt caatccaaca accatcataa tgagcaacgt gatgttataa 4380catctctctc
acactgccag aacagtctta taccttgtcg gagtgaagga catccttaac 4440taagtagatt
cactaagcta tacttaaaaa gcaataagga atcatctaaa atgtgtgact 4500cttaacccat
attggcatac atggtttatg ggggttatta attgtctgaa cactccccca 4560tataaatcag
tgatcaatat taatcccaat aatatacact attatgattt gagactacac 4620cctggaagtg
gccggctctc aagaaccatt gctgatctcc aagccaaacc ctcattctgg 4680ttgactacaa
gctgaaggca aactcaagta tacaaagctt aaaacataat aaaaataata 4740tactcaactc
gccacaaaat aggcatttaa gtctttaaaa catttttaaa aataaatgaa 4800acaaacttct
caaactgtaa tgtatatcta tgaagcctct aaatgaaaaa aatgaaggca 4860gatgagacat
acggcatcct aacaactgat ataactaaga gtacaagtgg agcccttcgg 4920atgtaaggag
gctcatcaaa gctaatgtga actccatgtg gtatcaatga agcacctatt 4980gatgaccgtg
aatacatgta tctgcatcat gaaacgatgc aggccaaagg gcttagtacg 5040tgaaatgtac
gagcatgtaa agggaattca aatacataaa cataggcttg aactttgata 5100taaaggaaac
atacttacct atttttaact caagaataaa aaacatagtt caactcaatg 5160aaaagacact
caagtcagtg aaataggccg caactcaata ataagatatt cgactatggg 5220taatcaactc
tgggtactct attcaatata aagtaagaat acaaatgcat tatatggaaa 5280gactttaaaa
cggtagaaaa caactcaatg tattgaaaat tcaatagtaa attagtttgt 5340atgtaaggaa
caatataaac tttgtttgta tatgaaaata caaaataaac tttgtgtata 5400taaaagtaca
aaatatctct gtgaaagttt ctctaaccaa caaccatcac tatgagcttt 5460ctgataatac
cacgtttcgc ccatgatgtc agaactgtcc tatgattttc cagttcataa 5520gacctactca
ctaagtggat ccacaagtct atgctaaaaa atatttaagg aatcgtctaa 5580aaagtatgac
tcattctacc cacgttggct acatgattta tgggggtcgt aagttatcta 5640aactctcctc
catatcgatg cgtaatgcta ctcacaaata tactagctca catgtttaaa 5700aatataactc
gttttgtttg agatcattac tcaaaatcct tctcttaaaa gagatgatac 5760tcaaactgct
caaaactctt ttggaaatct caaattcgtc tcatcttaaa tgtaaaaata 5820tttactcttg
ggaatacata gttatcatat atcattttaa agaaaatgaa ctcaactctg 5880ttctttctca
actcaagtgc tcagtcttaa accaaattaa aaaaaagact tctcaaaata 5940aagtttatgt
cgaattatgg acgtgaacaa ttcaattcaa agttttcgat aaccataact 6000aaaactaaat
actcgagact caacatctta gaactcaaga acttaaatgg taatacttct 6060ttcaagaatg
ctcgactcag aaggttaatg cagaataatg tgcatgaatt actcaactaa 6120aggactcact
gatactactc aatctcaaga ttgctcgact cgtagggtta atgcagaatt 6180atgtgcatga
actactcaac tcaaagacct tcataggtaa catgtagtag ccccatgatt 6240tggaatataa
tcccaaaatg attaggaact caatactcag gacttagaac ttgaagataa 6300tactacttct
ctcaaagata cccaactgac ggagttcatg cagaatttat gggcatgaac 6360tactcgactc
aagagtctaa aacacaatat gacactcatg tatataactc ttctcattct 6420aatacttgtt
ttctcaaaac tcggtttaac taaatagttg atctcaaagg attcacaatt 6480gaactcaaag
actttctttg actccactct taattctctc ttaaatttgt atttgaatta 6540tgaatttaag
agttatgatt catgatatgg ggaatctcaa taacaatata gaaatttgat 6600aattaggaat
agtactttta aaagaaaaca tgaattcaac ttaaaatcaa cttatctaaa 6660aaatattcaa
atatagggaa agtatcctag actactgtgc tactgatctg aaagtagatg 6720taggatgtga
ggatgaacta gtccaacact atgatagcct tacatacctg gaataacgag 6780gttcttggaa
aatcttcact tgaagaagaa cttgattaga agccttgaaa cctagcttga 6840aggtaaacaa
tcaagaaaac ctttcttaag attcttgaat tagtttatga aaatctctat 6900gaccaagcat
tttgattttc actagtgatt cataattgta tggaggaatt tgaattgaaa 6960aagatgaaat
gcttggagaa aagctatctt tgaagaagct tgaaaaagat tggaaagtcc 7020tgtactttga
ttttccctta ggattttgtc ttagggtttg agatagaaaa gaatgatgga 7080ctaaaagatg
aaaatctaat tgtttggatc ctttttcagc caagaaatcc gtttagggtt 7140ttcttggaga
caaacaaaat aaaaaagacc atttttaata tttttccgtc ggctaattcg 7200taataacatt
gtatcatgtt attgaaagag tcataacttt ttactcaaaa attggattga 7260tgcgaaatta
gtggtgttgg aaagtagatt caagtacctc taattggata ggttattccc 7320tacataagtc
tttatattct aaaagatatg gttgtttgca cttgacctaa gtagaatttt 7380acatgaaaac
ttaatagaga aggaaacttc aagaactcat caagaaattt caattgctca 7440atatttatgg
ataaatttgt agaagaaact catgattgac atgcgggtga ataaacccaa 7500cactatggaa
gcttacatac ctcaaagaac taggttcttg gcgaaatctt gaatttcttc 7560aacgaacgct
tgaaactttg aactttttct cttcttgaac tctcaactaa aaccctaggc 7620gtatattagg
attataaaag ttaacatgat aggattagac ctttaaaaac tttctaaaat 7680gaattaaatc
tgatttagca tgaaaaagac caaaataccc cttactattt tcggataact 7740tttcttaatt
ggactgcctg acttcaaaaa ggtatatctc actcatccga cctcaaaatt 7800tagcaaattc
agtggcgtta gaaagctaat ttaaacacct ttcattttcc atctcatggc 7860acacataact
cattctttaa agagagctat gatcgttcaa attaactcaa atcttagaag 7920aatttaggaa
tgtcttgaac gagctacatc tagtgacctt aacactttgg aaaattttaa 7980atttcttagt
aaaaacttac tcactatgaa ggatggttca agtcttagct caaaattttc 8040ctaagttgct
atatatactc atgctcatat gtttaaaacc aaaacccttc ctcgatttga 8100attaattacc
aaaaagattc tcttaaaaag ataatgctca aaactccccc taaactcatt 8160tggaaatcta
ggtttccctt gttttaaata taaaaacatt tactcttgga aatatttagt 8220tctcagatat
tcacttgaaa aaaattaaac tcgactctca tcatcttcat actcaagtgc 8280tcaagtccta
aaacaattta taactaattg tataagactt ctcaaaatag ggttcattcc 8340gaattatgga
cgtgaacgac tcaattcaag gatttcaata accatatata taactcaata 8400ataggaactc
aacaactcca gaactcaatg atactactca tctcaagaat gctcgactca 8460cagggtcttt
gcgaaattat tgggcatgaa caactcaact caaagacctt catttatacc 8520atatggtagt
cccataatag gaatataatc ccaaaaaaat taggaactca atactcaaaa 8580acttagaact
cgaagatatt actcatctca aagatattca atttatggaa ttcatgctga 8640attatgagca
tgaacgactt gactcaagga tctcaataat aatgtagact catgaataca 8700ctcttctcat
tctcatactc acatactcga gtattaaaat aaattataag taattgcaga 8760agactccttg
aacagactca aaaggactcc ttcgaatttt actcttaatg ctacctgaat 8820tttgtattat
aaatttaagg atcatgatta tgatataaag aatttctcag catatatgaa 8880atgaacgaat
ttgagcattg aacgtctaac ctcatttttt aattattgtg atatgtagag 8940tggtgcaaaa
tcacagatac ctctcttgat gcatttctat agttacgttg atgtgagatt 9000atatatagtt
cagcagcagc atgttgggaa aattactaat aactcttctt ttatatcaaa 9060ttgttgaagc
atgatgacaa cacttgaaaa gtatcaacaa tgcagttacg catctttgga 9120cccgatgtaa
ccggttagtg atactcaggt attgtttatc tactttatca tgtcgtaagt 9180atattatttg
taaagatata tatcaagata gttcgattgc gtacacttac attttgatta 9240tgtttggtga
atactattct aatacctttt tttttcctaa agcctaacaa ataaagataa 9300ttaagatggg
aacgtaattc aagtacaaca tggttccata cgtgacatat ttacacatat 9360agtggaacca
aaagagcaat ttttcctaat atcattttct aaatatcacg tgtgcccgtg 9420attctttttt
atggacatga attttttttt taatatgagt ggaagtaagg ttcgatcttt 9480ctatctgctt
tgatatcata ttgaatcgtg tgattgtctc tttaaaaaat taagcaagag 9540catattttat
taattaattg tctttctcga cgtttttctc tttcaacaga tgaactacaa 9600tgagtatgtg
aggctaaaag ctagagttga gctccttcaa cgttctcaaa ggtaagatat 9660tagtgatgta
attaaatgat tttagttaga tttacataag tttttaataa gtgaaaatta 9720atagacatat
tcttggagag gatttgggca cactaaactc gaaagaactt gagcagcttg 9780agcaccaatt
ggatgcatct ttgaagaaag ttagatcaaa aaaggtatat ccaaatacta 9840taacttaaat
atattgtaac gatttaatta atagcatgtg tcacgttcat ctattcttta 9900gtcacaatat
ataggggcat gtccttaaca acgtgccatg cctcgatagt catttttgtc 9960tttttgtgcg
tatgaattta actttgacac aaatttttgt agtaataata actcatgctt 10020tagcatctta
ggaagcagtc atatgaaaaa cagaagcata tatatatatt acatgagtta 10080atttaattta
atataaaatt taataaaatt gtgtctcgct ataaataatt ttattaaaaa 10140attatataaa
tatattattt ttttaactgg ccgcaaagtt atataaattg atagagaaag 10200aggttttggt
gtaaggttca ttttccaaca attagtttta taatttgtaa gtgcacactt 10260tatcagactc
aatctatgct ggatcagctg gcagaccttc aagaaaaggt acactgcctt 10320aacattacaa
aattaattta tttcatcaaa agcatatcat aaaattctga caaataaata 10380tattaggagc
aaatgctgga agaagcaaat aaacaactaa aaaacaaggt acatatctat 10440atatgtgtgt
taattaatta agttgatttt gtatttttgt ttaatgaata attgtttgtg 10500atcatcagct
ggaagaaagt gcagctagaa ttccacttgg attgtcatgg ggaaataatg 10560gaggacaaac
aatggaatac aatcgactcc ctccacaaac tactgcacaa cctttctttc 10620aacctctccg
tttgaattct tcatcgcctc aattcgggta agtatcttat tttatatgac 10680ttagtttgac
ttgacataaa gtttaataaa gaaagaaaga cttttaaaac ttatagtgta 10740aaataagtga
atagatatat atgtggttgt actaacacta caacaaaaat aattttcagc 10800ggcattaaat
attgacatta ataatgagtg ctaaagactt tatcggtatt agttaagtgt 10860cattaggatc
aatgtcgtta aaggcttcac ggacatatac aaagagtgac aattgccgct 10920aatgattatt
tttgttgtag tgaaaatgag tattttaaag ttaaattgtt acataatata 10980gaaatatgtc
agaaacagga caaatatacc accgaactat catatatgtt atggagatat 11040tctcagtcat
acttctgcga cattggtact catgtcgtcc aaaaactaga acatatatat 11100accctttata
tattaacgaa gatacaagtg tcataatctt atgcaccgat tcgatattta 11160ttaaatatcg
aatcgacgga taaaattatg tcacgtgtcc ctattaagtc ttctattaga 11220gtaaaaagca
tatattctct agtttttgaa cgaaaaaagg tattaatgtc tcaaaagtat 11280aacgaaaagc
atttgcatac aatttatgat aatttggggc atattaattt atcattcccc 11340ctttttttgg
cactgattaa aaagaaaaag aaagttataa aaattgggat agagggaata 11400attgtttcat
agggaaaact tagaagcttc tcagtatgtc agtgagaatg tgtttcctaa 11460ttagtgaact
atggtttggt gaaaaataaa gagaaaaaaa tcagtacaaa ttttccactg 11520attagcaatg
agaaaaatat ttgtttctag tagtatgagg agaggatagt ccgcataaat 11580aatccttaaa
tttgtggata aataaactat tttcaataga ttatcgtctc aaaataaaat 11640aaaatgattg
caagaaaaga ataataggta tgctggtaat atgtataata cactcaaatt 11700tatttgctgt
ccatgcagat acaatccaaa tatgggtgca aatgatcatg aggttaatgc 11760agcaacaact
gctcataata ttaatggatt tattccaggg tggatgctct aa
118121011810DNAArtificial SequenceSynthetic polynucleotide 10atgggaagag
gaagagtaga actaaagaga atagagaaca aaataaacag gcaagttact 60tttgctaaga
gaagaaatgg acttcttaag aaagcttatg agttatctat actttgtgat 120gctgaagttg
ctctcatcat cttctctagc cgcggaaaac tctatgagtt ttcaagtgct 180tccaggtata
tatatatata catatgtttt tcttcttttt gtgtgtgcgt atgtgtttac 240ttactttcat
taattaactc aaccatatat atacatctct cacctcaatt atatatatgt 300ttgagatctg
aatgtctacg gactccattt aggtacatat ctttgtttag atcataaatc 360atctatcttc
attcctaaga tctactaata tatatgtata agaagatcca tccatctatt 420aggtttttca
acaacatata cagtgaaatc ttatatgtgg gcccacgtat agccatatga 480gaaaatagtg
tgcacgtaaa cattatcatt acttaattat aggaatatac atccattagg 540tttatcaaca
acaataaaat cctctaaatg gagtctagtc ataggtctag ccgtttgaaa 600atgtaaaata
tatgccgatc ttatcactat gtcataataa tagatatgtt gttattgaaa 660gattctcaat
cttttttttt cttcaaggta gagattctta agtggattca tgtttttttt 720atcaaaaaag
aaaaaaacaa aagtgtccat ttgttcatct aatgggtttt ccatgttacc 780aattcactac
actgttgaga tttgattatc agatgtgtca agtttcgttt ggttccctag 840aagggagaaa
aggctgctta tgcaggcagg gtattaaaga tgatattaat atctgcagta 900atcagtaaca
gaatatataa acttaataat aaacttgaag gtacttaatt atccagcaga 960taatcttctg
tctcaccgta cacttttgtt atatcataag cataagaatt gttttatcaa 1020atattaccaa
acaaaactta gttttgtttg gtaatatttt ataaaatatg ttaccgaaag 1080ttacttccta
taacatattt tataaagaaa aaaattaaaa actccatata cctaagaaat 1140gtaacccccc
ctccataaca acaatttaac aaaaataaaa acctactttt tttgaatttg 1200gtaaattagt
tttctatcct ttttagtaac ttcctttctt attttctttt tatattggta 1260aagtttaata
ttacacatta ttttaacatg ttataatttt ttgtgatgct taattatttg 1320atacatgtaa
taaaccatat attagagcta taaatcaatg acaatgcatg tagatacaac 1380tcatttatga
tatattttgt ttatatatat aaccaattag ataatttgtc tgcgctttgt 1440gcagtcataa
ataataattg cattgaactt gcaaatattt ttttttaata tccatacatt 1500aaaaaaaaag
aaagaggaaa attggttcct aaaatattag caatattcaa acatttattt 1560gattattaat
cattatcaca taacttaaga acgtctaatg aatgaattat tcacgaaata 1620ataaatcatt
ggttctaaaa aggaatttcg taataaaata aaaatttaag ttaccatatt 1680caaaaaaaga
aattgtgctt gaacatgaaa ataattataa tttttgaact tgtataatga 1740atttcttcaa
ttcataagtg ggaaatttca tatttatgta ataatagata atatgtaagc 1800tctaatatag
tactttaggt tatagaattt aatataaaat atcaaaacat gaattcttga 1860aattgagtag
agtaattatt ttctgcacaa tgaatcggag acaataactt tgaagaaata 1920taaacaatag
agttcaaaag atgtagtcaa aaacaacaat taatatcata agaataaatt 1980aatgagtgta
aaaatgcata ccacgatatg taaaaacaga atggaatata ataaaaaaaa 2040tcgagttcac
tgaatacaca atgttccttt aagaaaatta ttctcctcca ataccaacga 2100gattacatcc
tctaaggatg gaaatgattt cattccccaa cttatccata taaaaatagt 2160ggtgttagta
tgtaactcaa taggagtaaa atacacaaat atttaatttt gcgaaagtag 2220aagaagaaga
tcatattttt tttttaaaat gagaggatat atcactattt ttaaacaaca 2280aagggtagtg
ttaacaaatt tttattgtgt cttgtctaaa aggttacagc tatttgaaaa 2340agttacaaca
cttcgaaaag tgaacaacat ttcataaaag tcgtaacttt tcataaagtc 2400gtaactcttc
ataaatgtcg caactcttca taaaaattac aactattgat aaaagtcacc 2460actcttgata
aagatcacca ctcttcattg aagttgcaac ttttcataaa aatcacatct 2520tttaataaaa
aagaaagact agtttttgga ataaattaat ttaaaagaaa atttttgttt 2580gtggtggggc
gccaagtagg caggcgtagg gttcttttta tataaatata tatgatatat 2640gattcaatat
ttgatatata tatatataga gagagagatg acaatataag acaattgcaa 2700aaaataaaat
aaaaaactaa tcgagtaagt aggcaaaaaa ttatttataa aatatatgta 2760gaatttcttt
atcagatatg actgcccaaa tcttatattc aaactaaaat gcaagatcaa 2820tggtgctata
tatagggttt tacacaaaaa tcaagatcta gtcttgcaaa tttaaataaa 2880aaacagtggt
ttacgatgag ataatgtagc ttttgtaaac aataaaacta gaaaaataaa 2940tgcaaaggca
ttttaaagga tataataatg aagatcaaag gcagagaagg gaagaggcag 3000caatataatg
aaggtaacat catggttcca ttctaatata tatgctattt ttctttagta 3060aatttcaaaa
ataatgatac attttcatat ttgataaata tttaatgata ctatcaacat 3120tttatctata
ttgagttcca tttatttgac caaaacctca caaagatgtg ctcttcgatc 3180tattcaaaat
ttattcaatt taaggatagc tttaaaacat gacaaagttt tctcatatat 3240ttcttaaatt
ttatatccag tctaaatacg tatataaact aaaatgaaga gaataatatg 3300aagctttatt
tgatgacatt gttgaaataa ccaaaagcta taagtgatac aatagtaaat 3360ttaccattgg
tcaattcaga attatttaaa agctaaaaaa gtcatataag ttggggttgc 3420tcaatgtata
gtttttggct tgttttaagc attttaaaac tttttttaag cgctttttaa 3480cattgctaaa
cactcaaaaa atgataaata gtatttaaat ttgatatgat tagcttaaaa 3540gtgaactcat
ataccttcaa agtaaaaatc cccaattcga gctttcaaac cacttgattt 3600tgtggatgaa
attatactga agttgaatat atcactattt ataggggtta gtgaactaat 3660acctttgatt
atttggtaga aatatgtatc ttagatcacc ctaatgagct cccactttta 3720aaataggaaa
aacctcatat gaagttcatc actgttcatt atatatcact tttattcaaa 3780aacgtttaca
aatgttcatt gtgactaaat acccttgagt gtcgagtttt cacaccaata 3840aggcctaatt
aataggtaaa caaaactatg tcaatcttca aaacgcaaat ctaattatat 3900ttttaacaag
attagaggta tatatacata ttctcttatg ttaactctta ttcattattg 3960aacaaactaa
gtaagtgtac ccaaggtctc aaacaacagt tggtacattc tttgtatgtc 4020ttcctttgtc
tcttaatagt cgtctcctcc tgtcgatgat tcctccaaat acattaatca 4080aaggaaaatc
tttcgccctc aacttgcaaa cttgtctatc taaaattgtt aacaaagttt 4140cttcattaga
gaaactatga tttcttgaat gtagcaattt gatgtgccat gactatcatc 4200ttgatcaaca
tgcttcttaa ccatcaaaag atcctaaact agatgcatgt catgttagga 4260gacatattaa
gcttgtatat aactacacca acatgcttta ggatctcata agatccaaaa 4320tttcttattt
gggagatttt caatccaaca accatcataa tgagcaacgt gatgttataa 4380catctctctc
acactgccag aacagtctta taccttgtcg gagtgaagga catccttaac 4440taagtagatt
cactaagcta tacttaaaaa gcaataagga atcatctaaa atgtgtgact 4500cttaacccat
attggcatac atggtttatg ggggttatta attgtctgaa cactccccca 4560tataaatcag
tgatcaatat taatcccaat aatatacact attatgattt gagactacac 4620cctggaagtg
gccggctctc aagaaccatt gctgatctcc aagccaaacc ctcattctgg 4680ttgactacaa
gctgaaggca aactcaagta tacaaagctt aaaacataat aaaaataata 4740tactcaactc
gccacaaaat aggcatttaa gtctttaaaa catttttaaa aataaatgaa 4800acaaacttct
caaactgtaa tgtatatcta tgaagcctct aaatgaaaaa aatgaaggca 4860gatgagacat
acggcatcct aacaactgat ataactaaga gtacaagtgg agcccttcgg 4920atgtaaggag
gctcatcaaa gctaatgtga actccatgtg gtatcaatga agcacctatt 4980gatgaccgtg
aatacatgta tctgcatcat gaaacgatgc aggccaaagg gcttagtacg 5040tgaaatgtac
gagcatgtaa agggaattca aatacataaa cataggcttg aactttgata 5100taaaggaaac
atacttacct atttttaact caagaataaa aaacatagtt caactcaatg 5160aaaagacact
caagtcagtg aaataggccg caactcaata ataagatatt cgactatggg 5220taatcaactc
tgggtactct attcaatata aagtaagaat acaaatgcat tatatggaaa 5280gactttaaaa
cggtagaaaa caactcaatg tattgaaaat tcaatagtaa attagtttgt 5340atgtaaggaa
caatataaac tttgtttgta tatgaaaata caaaataaac tttgtgtata 5400taaaagtaca
aaatatctct gtgaaagttt ctctaaccaa caaccatcac tatgagcttt 5460ctgataatac
cacgtttcgc ccatgatgtc agaactgtcc tatgattttc cagttcataa 5520gacctactca
ctaagtggat ccacaagtct atgctaaaaa atatttaagg aatcgtctaa 5580aaagtatgac
tcattctacc cacgttggct acatgattta tgggggtcgt aagttatcta 5640aactctcctc
catatcgatg cgtaatgcta ctcacaaata tactagctca catgtttaaa 5700aatataactc
gttttgtttg agatcattac tcaaaatcct tctcttaaaa gagatgatac 5760tcaaactgct
caaaactctt ttggaaatct caaattcgtc tcatcttaaa tgtaaaaata 5820tttactcttg
ggaatacata gttatcatat atcattttaa agaaaatgaa ctcaactctg 5880ttctttctca
actcaagtgc tcagtcttaa accaaattaa aaaaaagact tctcaaaata 5940aagtttatgt
cgaattatgg acgtgaacaa ttcaattcaa agttttcgat aaccataact 6000aaaactaaat
actcgagact caacatctta gaactcaaga acttaaatgg taatacttct 6060ttcaagaatg
ctcgactcag aaggttaatg cagaataatg tgcatgaatt actcaactaa 6120aggactcact
gatactactc aatctcaaga ttgctcgact cgtagggtta atgcagaatt 6180atgtgcatga
actactcaac tcaaagacct tcataggtaa catgtagtag ccccatgatt 6240tggaatataa
tcccaaaatg attaggaact caatactcag gacttagaac ttgaagataa 6300tactacttct
ctcaaagata cccaactgac ggagttcatg cagaatttat gggcatgaac 6360tactcgactc
aagagtctaa aacacaatat gacactcatg tatataactc ttctcattct 6420aatacttgtt
ttctcaaaac tcggtttaac taaatagttg atctcaaagg attcacaatt 6480gaactcaaag
actttctttg actccactct taattctctc ttaaatttgt atttgaatta 6540tgaatttaag
agttatgatt catgatatgg ggaatctcaa taacaatata gaaatttgat 6600aattaggaat
agtactttta aaagaaaaca tgaattcaac ttaaaatcaa cttatctaaa 6660aaatattcaa
atatagggaa agtatcctag actactgtgc tactgatctg aaagtagatg 6720taggatgtga
ggatgaacta gtccaacact atgatagcct tacatacctg gaataacgag 6780gttcttggaa
aatcttcact tgaagaagaa cttgattaga agccttgaaa cctagcttga 6840aggtaaacaa
tcaagaaaac ctttcttaag attcttgaat tagtttatga aaatctctat 6900gaccaagcat
tttgattttc actagtgatt cataattgta tggaggaatt tgaattgaaa 6960aagatgaaat
gcttggagaa aagctatctt tgaagaagct tgaaaaagat tggaaagtcc 7020tgtactttga
ttttccctta ggattttgtc ttagggtttg agatagaaaa gaatgatgga 7080ctaaaagatg
aaaatctaat tgtttggatc ctttttcagc caagaaatcc gtttagggtt 7140ttcttggaga
caaacaaaat aaaaaagacc atttttaata tttttccgtc ggctaattcg 7200taataacatt
gtatcatgtt attgaaagag tcataacttt ttactcaaaa attggattga 7260tgcgaaatta
gtggtgttgg aaagtagatt caagtacctc taattggata ggttattccc 7320tacataagtc
tttatattct aaaagatatg gttgtttgca cttgacctaa gtagaatttt 7380acatgaaaac
ttaatagaga aggaaacttc aagaactcat caagaaattt caattgctca 7440atatttatgg
ataaatttgt agaagaaact catgattgac atgcgggtga ataaacccaa 7500cactatggaa
gcttacatac ctcaaagaac taggttcttg gcgaaatctt gaatttcttc 7560aacgaacgct
tgaaactttg aactttttct cttcttgaac tctcaactaa aaccctaggc 7620gtatattagg
attataaaag ttaacatgat aggattagac ctttaaaaac tttctaaaat 7680gaattaaatc
tgatttagca tgaaaaagac caaaataccc cttactattt tcggataact 7740tttcttaatt
ggactgcctg acttcaaaaa ggtatatctc actcatccga cctcaaaatt 7800tagcaaattc
agtggcgtta gaaagctaat ttaaacacct ttcattttcc atctcatggc 7860acacataact
cattctttaa agagagctat gatcgttcaa attaactcaa atcttagaag 7920aatttaggaa
tgtcttgaac gagctacatc tagtgacctt aacactttgg aaaattttaa 7980atttcttagt
aaaaacttac tcactatgaa ggatggttca agtcttagct caaaattttc 8040ctaagttgct
atatatactc atgctcatat gtttaaaacc aaaacccttc ctcgatttga 8100attaattacc
aaaaagattc tcttaaaaag ataatgctca aaactccccc taaactcatt 8160tggaaatcta
ggtttccctt gttttaaata taaaaacatt tactcttgga aatatttagt 8220tctcagatat
tcacttgaaa aaaattaaac tcgactctca tcatcttcat actcaagtgc 8280tcaagtccta
aaacaattta taactaattg tataagactt ctcaaaatag ggttcattcc 8340gaattatgga
cgtgaacgac tcaattcaag gatttcaata accatatata taactcaata 8400ataggaactc
aacaactcca gaactcaatg atactactca tctcaagaat gctcgactca 8460cagggtcttt
gcgaaattat tgggcatgaa caactcaact caaagacctt catttatacc 8520atatggtagt
cccataatag gaatataatc ccaaaaaaat taggaactca atactcaaaa 8580acttagaact
cgaagatatt actcatctca aagatattca atttatggaa ttcatgctga 8640attatgagca
tgaacgactt gactcaagga tctcaataat aatgtagact catgaataca 8700ctcttctcat
tctcatactc acatactcga gtattaaaat aaattataag taattgcaga 8760agactccttg
aacagactca aaaggactcc ttcgaatttt actcttaatg ctacctgaat 8820tttgtattat
aaatttaagg atcatgatta tgatataaag aatttctcag catatatgaa 8880atgaacgaat
ttgagcattg aacgtctaac ctcatttttt aattattgtg atatgtagag 8940tggtgcaaaa
tcacagatac ctctcttgat gcatttctat agttacgttg atgtgagatt 9000atatatagtt
cagcagcagc atgttgggaa aattactaat aactcttctt ttatatcaaa 9060ttgttgaagc
atgatgacaa cacttgaaaa gtatcaacaa tgcagttacg catctttgga 9120cccgatgtta
ccggttagtg atactcaggt attgtttatc tactttatca tgtcgtaagt 9180atattatttg
taaagatata tatcaagata gttcgattgc gtacacttac attttgatta 9240tgtttggtga
atactattct aatacctttt tttttcctaa agcctaacaa ataaagataa 9300ttaagatggg
aacgtaattc aagtacaaca tggttccata cgtgacatat ttacacatat 9360agtggaacca
aaagagcaat ttttcctaat atcattttct aaatatcacg tgtgcccgtg 9420attctttttt
atggacatga attttttttt taatatgagt ggaagtaagg ttcgatcttt 9480ctatctgctt
tgatatcata ttgaatcgtg tgattgtctc tttaaaaaat taagcaagag 9540catattttat
taattaattg tctttctcga cgtttttctc tttcaacaga tgaactacaa 9600tgagtatgtg
aggctaaaag ctagagttga gctccttcaa cgttcttcaa aggtaagata 9660ttagtgatgt
aattaaatga ttttagttag atttacataa gtttttaata agtgaaaatt 9720aatagacata
ttcttggaga tttgggcaca ctaaactcga aagaacttga gcagcttgag 9780caccaattgg
atgcatcttt gaagaaagtt agatcaaaaa aggtatatcc aaatactata 9840acttaaatat
attgtaacga tttaattaat agcatgtgtc acgttcatct attctttagt 9900cacaatatat
aggggcatgt ccttaacaac gtgccatgcc tcgatagtca tttttgtctt 9960tttgtgcgta
tgaatttaac tttgacacaa atttttgtag taataataac tcatgcttta 10020gcatcttagg
aagcagtcat atgaaaaaca gaagcatata tatatattac atgagttaat 10080ttaatttaat
ataaaattta ataaaattgt gtctcgctat aaataatttt attaaaaaat 10140tatataaata
tattattttt ttaactggcc gcaaagttat ataaattgat agagaaagag 10200gttttggtgt
aaggttcatt ttccaacaat tagttttata atttgtaagt gcacacttta 10260tcagactcaa
tctatgctgg atcagctggc agaccttcaa gaaaaggtac actgccttaa 10320cattacaaaa
ttaatttatt tcatcaaaag catatcataa aattctgaca aataaatata 10380ttaggagcaa
atgctggaag aagcaaataa acaactaaaa aacaaggtac atatctatat 10440atgtgtgtta
attaattaag ttgattttgt atttttgttt aatgaataat tgtttgtgat 10500catcagctgg
aagaaagtgc agctagaatt ccacttggat tgtcatgggg aaataatgga 10560ggacaaacaa
tggaatacaa tcgactccct ccacaaacta ctgcacaacc tttctttcaa 10620cctctccgtt
tgaattcttc atcgcctcaa ttcgggtaag tatcttattt tatatgactt 10680agtttgactt
gacataaagt ttaataaaga aagaaagact tttaaaactt atagtgtaaa 10740ataagtgaat
agatatatat gtggttgtac taacactaca acaaaaataa ttttcagcgg 10800cattaaatat
tgacattaat aatgagtgct aaagacttta tcggtattag ttaagtgtca 10860ttaggatcaa
tgtcgttaaa ggcttcacgg acatatacaa agagtgacaa ttgccgctaa 10920tgattatttt
tgttgtagtg aaaatgagta ttttaaagtt aaattgttac ataatataga 10980aatatgtcag
aaacaggaca aatataccac cgaactatca tatatgttat ggagatattc 11040tcagtcatac
ttctgcgaca ttggtactca tgtcgtccaa aaactagaac atatatatac 11100cctttatata
ttaacgaaga tacaagtgtc ataatcttat gcaccgattc gatatttatt 11160aaatatcgaa
tcgacggata aaattatgtc acgtgtccct attaagtctt ctattagagt 11220aaaaagcata
tattctctag tttttgaacg aaaaaaggta ttaatgtctc aaaagtataa 11280cgaaaagcat
ttgcatacaa tttatgataa tttggggcat attaatttat cattccccct 11340ttttttggca
ctgattaaaa agaaaaagaa agttataaaa attgggatag agggaataat 11400tgtttcatag
ggaaaactta gaagcttctc agtatgtcag tgagaatgtg tttcctaatt 11460agtgaactat
ggtttggtga aaaataaaga gaaaaaaatc agtacaaatt ttccactgat 11520tagcaatgag
aaaaatattt gtttctagta gtatgaggag aggatagtcc gcataaataa 11580tccttaaatt
tgtggataaa taaactattt tcaatagatt atcgtctcaa aataaaataa 11640aatgattgca
agaaaagaat aataggtatg ctggtaatat gtataataca ctcaaattta 11700tttgctgtcc
atgcagatac aatccaaata tgggtgcaaa tgatcatgag gttaatgcag 11760caacaactgc
tcataatatt aatggattta ttccagggtg gatgctctaa
118101111906DNAArtificial SequenceSynthetic polynucleotide 11atgggaagag
gaagagtaga actaaagaga atagagaaca aaataaacag gcaagttact 60tttgctaaga
gaagaaatgg acttcttaag aaagcttatg agttatctat actttgtgat 120gctgaagttg
ctctcatcat cttctctagc cgcggaaaac tctatgagtt ttcaagtgct 180tccaggtata
tatatatata catatgtttt tcttcttttt gtgtgtgcgt atgtgtttac 240ttactttcat
taattaactc aaccatatat atacatctct cacctcaatt atatatatgt 300ttgagatctg
aatgtctacg gactccattt aggtacatat ctttgtttag atcataaatc 360atctatcttc
attcctaaga tctactaata tatatgtata agaagatcca tccatctatt 420aggtttttca
acaacatata cagtgaaatc ttatatgtgg gcccacgtat agccatatga 480gaaaatagtg
tgcacgtaaa cattatcatt acttaattat aggaatatac atccattagg 540tttatcaaca
acaataaaat cctctaaatg gagtctagtc ataggtctag ccgtttgaaa 600atgtaaaata
tatgccgatc ttatcactat gtcataataa tagatatgtt gttattgaaa 660gattctcaat
cttttttttt cttcaaggta gagattctta agtggattca tgtttttttt 720atcaaaaaag
aaaaaaacaa aagtgtccat ttgttcatct aatgggtttt ccatgttacc 780aattcactac
actgttgaga tttgattatc agatgtgtca agtttcgttt ggttccctag 840aagggagaaa
aggctgctta tgcaggcagg gtattaaaga tgatattaat atctgcagta 900atcagtaaca
gaatatataa acttaataat aaacttgaag gtacttaatt atccagcaga 960taatcttctg
tctcaccgta cacttttgtt atatcataag cataagaatt gttttatcaa 1020atattaccaa
acaaaactta gttttgtttg gtaatatttt ataaaatatg ttaccgaaag 1080ttacttccta
taacatattt tataaagaaa aaaattaaaa actccatata cctaagaaat 1140gtaacccccc
ctccataaca acaatttaac aaaaataaaa acctactttt tttgaatttg 1200gtaaattagt
tttctatcct ttttagtaac ttcctttctt attttctttt tatattggta 1260aagtttaata
ttacacatta ttttaacatg ttataatttt ttgtgatgct taattatttg 1320atacatgtaa
taaaccatat attagagcta taaatcaatg acaatgcatg tagatacaac 1380tcatttatga
tatattttgt ttatatatat aaccaattag ataatttgtc tgcgctttgt 1440gcagtcataa
ataataattg cattgaactt gcaaatattt ttttttaata tccatacatt 1500aaaaaaaaag
aaagaggaaa attggttcct aaaatattag caatattcaa acatttattt 1560gattattaat
cattatcaca taacttaaga acgtctaatg aatgaattat tcacgaaata 1620ataaatcatt
ggttctaaaa aggaatttcg taataaaata aaaatttaag ttaccatatt 1680caaaaaaaga
aattgtgctt gaacatgaaa ataattataa tttttgaact tgtataatga 1740atttcttcaa
ttcataagtg ggaaatttca tatttatgta ataatagata atatgtaagc 1800tctaatatag
tactttaggt tatagaattt aatataaaat atcaaaacat gaattcttga 1860aattgagtag
agtaattatt ttctgcacaa tgaatcggag acaataactt tgaagaaata 1920taaacaatag
agttcaaaag atgtagtcaa aaacaacaat taatatcata agaataaatt 1980aatgagtgta
aaaatgcata ccacgatatg taaaaacaga atggaatata ataaaaaaaa 2040tcgagttcac
tgaatacaca atgttccttt aagaaaatta ttctcctcca ataccaacga 2100gattacatcc
tctaaggatg gaaatgattt cattccccaa cttatccata taaaaatagt 2160ggtgttagta
tgtaactcaa taggagtaaa atacacaaat atttaatttt gcgaaagtag 2220aagaagaaga
tcatattttt tttttaaaat gagaggatat atcactattt ttaaacaaca 2280aagggtagtg
ttaacaaatt tttattgtgt cttgtctaaa aggttacagc tatttgaaaa 2340agttacaaca
cttcgaaaag tgaacaacat ttcataaaag tcgtaacttt tcataaagtc 2400gtaactcttc
ataaatgtcg caactcttca taaaaattac aactattgat aaaagtcacc 2460actcttgata
aagatcacca ctcttcattg aagttgcaac ttttcataaa aatcacatct 2520tttaataaaa
aagaaagact agtttttgga ataaattaat ttaaaagaaa atttttgttt 2580gtggtggggc
gccaagtagg caggcgtagg gttcttttta tataaatata tatgatatat 2640gattcaatat
ttgatatata tatatataga gagagagatg acaatataag acaattgcaa 2700aaaataaaat
aaaaaactaa tcgagtaagt aggcaaaaaa ttatttataa aatatatgta 2760gaatttcttt
atcagatatg actgcccaaa tcttatattc aaactaaaat gcaagatcaa 2820tggtgctata
tatagggttt tacacaaaaa tcaagatcta gtcttgcaaa tttaaataaa 2880aaacagtggt
ttacgatgag ataatgtagc ttttgtaaac aataaaacta gaaaaataaa 2940tgcaaaggca
ttttaaagga tataataatg aagatcaaag gcagagaagg gaagaggcag 3000caatataatg
aaggtaacat catggttcca ttctaatata tatgctattt ttctttagta 3060aatttcaaaa
ataatgatac attttcatat ttgataaata tttaatgata ctatcaacat 3120tttatctata
ttgagttcca tttatttgac caaaacctca caaagatgtg ctcttcgatc 3180tattcaaaat
ttattcaatt taaggatagc tttaaaacat gacaaagttt tctcatatat 3240ttcttaaatt
ttatatccag tctaaatacg tatataaact aaaatgaaga gaataatatg 3300aagctttatt
tgatgacatt gttgaaataa ccaaaagcta taagtgatac aatagtaaat 3360ttaccattgg
tcaattcaga attatttaaa agctaaaaaa gtcatataag ttggggttgc 3420tcaatgtata
gtttttggct tgttttaagc attttaaaac tttttttaag cgctttttaa 3480cattgctaaa
cactcaaaaa atgataaata gtatttaaat ttgatatgat tagcttaaaa 3540gtgaactcat
ataccttcaa agtaaaaatc cccaattcga gctttcaaac cacttgattt 3600tgtggatgaa
attatactga agttgaatat atcactattt ataggggtta gtgaactaat 3660acctttgatt
atttggtaga aatatgtatc ttagatcacc ctaatgagct cccactttta 3720aaataggaaa
aacctcatat gaagttcatc actgttcatt atatatcact tttattcaaa 3780aacgtttaca
aatgttcatt gtgactaaat acccttgagt gtcgagtttt cacaccaata 3840aggcctaatt
aataggtaaa caaaactatg tcaatcttca aaacgcaaat ctaattatat 3900ttttaacaag
attagaggta tatatacata ttctcttatg ttaactctta ttcattattg 3960aacaaactaa
gtaagtgtac ccaaggtctc aaacaacagt tggtacattc tttgtatgtc 4020ttcctttgtc
tcttaatagt cgtctcctcc tgtcgatgat tcctccaaat acattaatca 4080aaggaaaatc
tttcgccctc aacttgcaaa cttgtctatc taaaattgtt aacaaagttt 4140cttcattaga
gaaactatga tttcttgaat gtagcaattt gatgtgccat gactatcatc 4200ttgatcaaca
tgcttcttaa ccatcaaaag atcctaaact agatgcatgt catgttagga 4260gacatattaa
gcttgtatat aactacacca acatgcttta ggatctcata agatccaaaa 4320tttcttattt
gggagatttt caatccaaca accatcataa tgagcaacgt gatgttataa 4380catctctctc
acactgccag aacagtctta taccttgtcg gagtgaagga catccttaac 4440taagtagatt
cactaagcta tacttaaaaa gcaataagga atcatctaaa atgtgtgact 4500cttaacccat
attggcatac atggtttatg ggggttatta attgtctgaa cactccccca 4560tataaatcag
tgatcaatat taatcccaat aatatacact attatgattt gagactacac 4620cctggaagtg
gccggctctc aagaaccatt gctgatctcc aagccaaacc ctcattctgg 4680ttgactacaa
gctgaaggca aactcaagta tacaaagctt aaaacataat aaaaataata 4740tactcaactc
gccacaaaat aggcatttaa gtctttaaaa catttttaaa aataaatgaa 4800acaaacttct
caaactgtaa tgtatatcta tgaagcctct aaatgaaaaa aatgaaggca 4860gatgagacat
acggcatcct aacaactgat ataactaaga gtacaagtgg agcccttcgg 4920atgtaaggag
gctcatcaaa gctaatgtga actccatgtg gtatcaatga agcacctatt 4980gatgaccgtg
aatacatgta tctgcatcat gaaacgatgc aggccaaagg gcttagtacg 5040tgaaatgtac
gagcatgtaa agggaattca aatacataaa cataggcttg aactttgata 5100taaaggaaac
atacttacct atttttaact caagaataaa aaacatagtt caactcaatg 5160aaaagacact
caagtcagtg aaataggccg caactcaata ataagatatt cgactatggg 5220taatcaactc
tgggtactct attcaatata aagtaagaat acaaatgcat tatatggaaa 5280gactttaaaa
cggtagaaaa caactcaatg tattgaaaat tcaatagtaa attagtttgt 5340atgtaaggaa
caatataaac tttgtttgta tatgaaaata caaaataaac tttgtgtata 5400taaaagtaca
aaatatctct gtgaaagttt ctctaaccaa caaccatcac tatgagcttt 5460ctgataatac
cacgtttcgc ccatgatgtc agaactgtcc tatgattttc cagttcataa 5520gacctactca
ctaagtggat ccacaagtct atgctaaaaa atatttaagg aatcgtctaa 5580aaagtatgac
tcattctacc cacgttggct acatgattta tgggggtcgt aagttatcta 5640aactctcctc
catatcgatg cgtaatgcta ctcacaaata tactagctca catgtttaaa 5700aatataactc
gttttgtttg agatcattac tcaaaatcct tctcttaaaa gagatgatac 5760tcaaactgct
caaaactctt ttggaaatct caaattcgtc tcatcttaaa tgtaaaaata 5820tttactcttg
ggaatacata gttatcatat atcattttaa agaaaatgaa ctcaactctg 5880ttctttctca
actcaagtgc tcagtcttaa accaaattaa aaaaaagact tctcaaaata 5940aagtttatgt
cgaattatgg acgtgaacaa ttcaattcaa agttttcgat aaccataact 6000aaaactaaat
actcgagact caacatctta gaactcaaga acttaaatgg taatacttct 6060ttcaagaatg
ctcgactcag aaggttaatg cagaataatg tgcatgaatt actcaactaa 6120aggactcact
gatactactc aatctcaaga ttgctcgact cgtagggtta atgcagaatt 6180atgtgcatga
actactcaac tcaaagacct tcataggtaa catgtagtag ccccatgatt 6240tggaatataa
tcccaaaatg attaggaact caatactcag gacttagaac ttgaagataa 6300tactacttct
ctcaaagata cccaactgac ggagttcatg cagaatttat gggcatgaac 6360tactcgactc
aagagtctaa aacacaatat gacactcatg tatataactc ttctcattct 6420aatacttgtt
ttctcaaaac tcggtttaac taaatagttg atctcaaagg attcacaatt 6480gaactcaaag
actttctttg actccactct taattctctc ttaaatttgt atttgaatta 6540tgaatttaag
agttatgatt catgatatgg ggaatctcaa taacaatata gaaatttgat 6600aattaggaat
agtactttta aaagaaaaca tgaattcaac ttaaaatcaa cttatctaaa 6660aaatattcaa
atatagggaa agtatcctag actactgtgc tactgatctg aaagtagatg 6720taggatgtga
ggatgaacta gtccaacact atgatagcct tacatacctg gaataacgag 6780gttcttggaa
aatcttcact tgaagaagaa cttgattaga agccttgaaa cctagcttga 6840aggtaaacaa
tcaagaaaac ctttcttaag attcttgaat tagtttatga aaatctctat 6900gaccaagcat
tttgattttc actagtgatt cataattgta tggaggaatt tgaattgaaa 6960aagatgaaat
gcttggagaa aagctatctt tgaagaagct tgaaaaagat tggaaagtcc 7020tgtactttga
ttttccctta ggattttgtc ttagggtttg agatagaaaa gaatgatgga 7080ctaaaagatg
aaaatctaat tgtttggatc ctttttcagc caagaaatcc gtttagggtt 7140ttcttggaga
caaacaaaat aaaaaagacc atttttaata tttttccgtc ggctaattcg 7200taataacatt
gtatcatgtt attgaaagag tcataacttt ttactcaaaa attggattga 7260tgcgaaatta
gtggtgttgg aaagtagatt caagtacctc taattggata ggttattccc 7320tacataagtc
tttatattct aaaagatatg gttgtttgca cttgacctaa gtagaatttt 7380acatgaaaac
ttaatagaga aggaaacttc aagaactcat caagaaattt caattgctca 7440atatttatgg
ataaatttgt agaagaaact catgattgac atgcgggtga ataaacccaa 7500cactatggaa
gcttacatac ctcaaagaac taggttcttg gcgaaatctt gaatttcttc 7560aacgaacgct
tgaaactttg aactttttct cttcttgaac tctcaactaa aaccctaggc 7620gtatattagg
attataaaag ttaacatgat aggattagac ctttaaaaac tttctaaaat 7680gaattaaatc
tgatttagca tgaaaaagac caaaataccc cttactattt tcggataact 7740tttcttaatt
ggactgcctg acttcaaaaa ggtatatctc actcatccga cctcaaaatt 7800tagcaaattc
agtggcgtta gaaagctaat ttaaacacct ttcattttcc atctcatggc 7860acacataact
cattctttaa agagagctat gatcgttcaa attaactcaa atcttagaag 7920aatttaggaa
tgtcttgaac gagctacatc tagtgacctt aacactttgg aaaattttaa 7980atttcttagt
aaaaacttac tcactatgaa ggatggttca agtcttagct caaaattttc 8040ctaagttgct
atatatactc atgctcatat gtttaaaacc aaaacccttc ctcgatttga 8100attaattacc
aaaaagattc tcttaaaaag ataatgctca aaactccccc taaactcatt 8160tggaaatcta
ggtttccctt gttttaaata taaaaacatt tactcttgga aatatttagt 8220tctcagatat
tcacttgaaa aaaattaaac tcgactctca tcatcttcat actcaagtgc 8280tcaagtccta
aaacaattta taactaattg tataagactt ctcaaaatag ggttcattcc 8340gaattatgga
cgtgaacgac tcaattcaag gatttcaata accatatata taactcaata 8400ataggaactc
aacaactcca gaactcaatg atactactca tctcaagaat gctcgactca 8460cagggtcttt
gcgaaattat tgggcatgaa caactcaact caaagacctt catttatacc 8520atatggtagt
cccataatag gaatataatc ccaaaaaaat taggaactca atactcaaaa 8580acttagaact
cgaagatatt actcatctca aagatattca atttatggaa ttcatgctga 8640attatgagca
tgaacgactt gactcaagga tctcaataat aatgtagact catgaataca 8700ctcttctcat
tctcatactc acatactcga gtattaaaat aaattataag taattgcaga 8760agactccttg
aacagactca aaaggactcc ttcgaatttt actcttaatg ctacctgaat 8820tttgtattat
aaatttaagg atcatgatta tgatataaag aatttctcag catatatgaa 8880atgaacgaat
ttgagcattg aacgtctaac ctcatttttt aattattgtg atatgtagag 8940tggtgcaaaa
tcacagatac ctctcttgat gcatttctat agttacgttg atgtgagatt 9000atatatagtt
cagcagcagc atgttgggaa aattactaat aactcttctt ttatatcaaa 9060ttgttgaagc
atgatgacaa cacttgaaaa gtatcaacaa tgcagttacg catctttgga 9120cccgatgtta
ccggttagtg atactcaggt attgtttatc tactttatca tgtcgtaagt 9180atattatttg
taaagatata tatcaagata gttcgattgc gtacacttac attttgatta 9240tgtttggtga
atactattct aatacctttt tttttcctaa agcctaacaa ataaagataa 9300ttaagatggg
aacgtaattc aagtacaaca tggttccata cgtgacatat ttacacatat 9360agtggaacca
aaagagcaat ttttcctaat atcattttct aaatatcacg tgtgcccgtg 9420attctttttt
atggacatga attttttttt taatatgagt ggaagtaagg ttcgatcttt 9480ctatctgctt
tgatatcata ttgaatcgtg tgattgtctc tttaaaaaat taagcaagag 9540catattttat
taattaattg tctttctcga cgtttttctc tttcaacaga tgaactacaa 9600tgagtatgtg
aggctaaaag ctagagttga gctccttcaa cgttcatgca aaaaatgatt 9660ataaaaaaag
tactgcataa aaaaattagt taatttttta gggaatcact atgtaggcca 9720tagctagggg
tgttggtggt tcaaaggtaa gatattagtg atgtaattaa atgattttag 9780ttagatttac
ataagttttt aataagtgaa aattaataga catattcttg gagagatttg 9840ggcacactaa
actcgaaaga acttgagcag cttgagcacc aattggatgc atctttgaag 9900aaagttagat
caaaaaaggt atatccaaat actataactt aaatatattg taacgattta 9960attaatagca
tgtgtcacgt tcatctattc tttagtcaca atatataggg gcatgtcctt 10020aacaacgtgc
catgcctcga tagtcatttt tgtctttttg tgcgtatgaa tttaactttg 10080acacaaattt
ttgtagtaat aataactcat gctttagcat cttaggaagc agtcatatga 10140aaaacagaag
catatatata tattacatga gttaatttaa tttaatataa aatttaataa 10200aattgtgtct
cgctataaat aattttatta aaaaattata taaatatatt atttttttaa 10260ctggccgcaa
agttatataa attgatagag aaagaggttt tggtgtaagg ttcattttcc 10320aacaattagt
tttataattt gtaagtgcac actttatcag actcaatcta tgctggatca 10380gctggcagac
cttcaagaaa aggtacactg ccttaacatt acaaaattaa tttatttcat 10440caaaagcata
tcataaaatt ctgacaaata aatatattag gagcaaatgc tggaagaagc 10500aaataaacaa
ctaaaaaaca aggtacatat ctatatatgt gtgttaatta attaagttga 10560ttttgtattt
ttgtttaatg aataattgtt tgtgatcatc agctggaaga aagtgcagct 10620agaattccac
ttggattgtc atggggaaat aatggaggac aaacaatgga atacaatcga 10680ctccctccac
aaactactgc acaacctttc tttcaacctc tccgtttgaa ttcttcatcg 10740cctcaattcg
ggtaagtatc ttattttata tgacttagtt tgacttgaca taaagtttaa 10800taaagaaaga
aagactttta aaacttatag tgtaaaataa gtgaatagat atatatgtgg 10860ttgtactaac
actacaacaa aaataatttt cagcggcatt aaatattgac attaataatg 10920agtgctaaag
actttatcgg tattagttaa gtgtcattag gatcaatgtc gttaaaggct 10980tcacggacat
atacaaagag tgacaattgc cgctaatgat tatttttgtt gtagtgaaaa 11040tgagtatttt
aaagttaaat tgttacataa tatagaaata tgtcagaaac aggacaaata 11100taccaccgaa
ctatcatata tgttatggag atattctcag tcatacttct gcgacattgg 11160tactcatgtc
gtccaaaaac tagaacatat atataccctt tatatattaa cgaagataca 11220agtgtcataa
tcttatgcac cgattcgata tttattaaat atcgaatcga cggataaaat 11280tatgtcacgt
gtccctatta agtcttctat tagagtaaaa agcatatatt ctctagtttt 11340tgaacgaaaa
aaggtattaa tgtctcaaaa gtataacgaa aagcatttgc atacaattta 11400tgataatttg
gggcatatta atttatcatt cccccttttt ttggcactga ttaaaaagaa 11460aaagaaagtt
ataaaaattg ggatagaggg aataattgtt tcatagggaa aacttagaag 11520cttctcagta
tgtcagtgag aatgtgtttc ctaattagtg aactatggtt tggtgaaaaa 11580taaagagaaa
aaaatcagta caaattttcc actgattagc aatgagaaaa atatttgttt 11640ctagtagtat
gaggagagga tagtccgcat aaataatcct taaatttgtg gataaataaa 11700ctattttcaa
tagattatcg tctcaaaata aaataaaatg attgcaagaa aagaataata 11760ggtatgctgg
taatatgtat aatacactca aatttatttg ctgtccatgc agatacaatc 11820caaatatggg
tgcaaatgat catgaggtta atgcagcaac aactgctcat aatattaatg 11880gatttattcc
agggtggatg ctctaa
11906125813DNAUnknownSolanaceae 12atgggaagag gaagagttga gcttaagaga
atagaaaata aaataaatag gcaagtcact 60tttgctaaga gaagaaatgg acttcttaaa
aaagcttatg aactttctgt tctttgtgat 120gctgaagttg cccttataat cttctctaat
aggggtaaac tctatgaatt ttgcagcact 180tcaaggtatt ttttatttta ttatattaac
atcaaagatt ttattttttt aaaaaaaacc 240ttaagtcctt cattaccaaa acccttaatt
gatttacaaa gtactttcat taaatttagt 300aattcttttt ttttttatct ctgacttcaa
ttataatgca agatctatgt tgtctttata 360tatattgaat tatatatgta ctgtattttt
actatataca tataagatcc ttttttcttt 420tttttctgtc tctttatata aatatatttt
aaatagttga ttttgaaaga tctactaatg 480tatatttatt tttggaactt ttgtgtatat
ggaatttttt tcttttttat gttttttttt 540tgttctaatt gttttaaaag cgtttaagat
cagaatgttc ttgattattc ttttaggaaa 600aagatttccc atacattgag ttattttttg
atctgtagat tgaatttttt taatgagttc 660cgatagattt tcgttcaatt tttcaatgaa
actattgagg gttgatgatt agataattac 720tcgattgaaa gtttttattt caaaaaaatt
ataattcttc ttaattttat atttatgaga 780tagagttagt ttagtgatta tatgaaaaat
cgtatcagat tattgggaat cgaaacttaa 840aaattctgaa aatattatta taaattttac
atgttacaat atttttactg ttaagatttg 900atttgcagac taggtgtcat gtttgacagt
tgataaaaaa tctgttattt ttgttcttta 960attcccaaga cggataaaca aaggctgctt
atgttggttt ccaataagca gccataattt 1020taaatatttt tgttaagatt aattaataac
aattatttcc accagataat tttcaaaatt 1080tgtgaccccg agttcatata aattgttaat
tttactgcta gaaattacat cgataataat 1140ttatttagtg taatcttata aatacgaggg
cagtagtgta tagactgttt tttattaatc 1200ctgactcaaa gtgaggtaag ttaagtatat
tttgattaaa aggactacat ttcatttatg 1260tatgtttaat taatattatt ttgtaagtca
ataaatctaa acaacatgag tttatctaga 1320cccttaatta tgcaccttca ttatcaattt
tttcaatact ctcctcagaa catatgcttc 1380tctataattt tgtgcacgag ttaatcaatt
cttccttttc aataattaaa tatgtgattt 1440atgtttagca cttatttttc ggttagttaa
ttgataatag gaaaaagcct cttttttttt 1500gtgtgtgtgg taattaggat ctttattgaa
tttaaaatga cctactatag aacttgggag 1560tttttcttca taataatgca ctgcaacgtg
ttaaaaaaaa agaatcaaat gaaattaata 1620gatgtttact ggattgccat ggtaaagtga
taagtattaa tttcgcttta actaagagat 1680cattatattc aagtcccctt gatacaaact
tgcctttgta aataagtgtt ttatttttca 1740atgtgaaact ttcgctgtta atttaaattt
aattatactt ctatataaat accaaacaat 1800aatgtaataa aacaaaaaat aaaagagtag
atgtttcata ttgttaatgc agcatggtga 1860aaacaattga aaagtaccaa cgttgcagct
atgctacttt ggaagccaac caatcagtta 1920ctgatactca ggtactgctt tatattttaa
tttatttggc ttttttttaa aaaaataatt 1980agttttgatt aatatgcatc attttattta
tttttggcaa ctctttattt atcagtaata 2040agtaataact ttttaactag tatatttaaa
aatcacaaaa tttaagaata ttttaataga 2100ttcgacatat tttagtttaa aaataacaaa
ttaaattatg tttttaattt tttaaatatt 2160cttactataa ttatcatgta ctctttgatc
tgttcatctt ttccatgata atattatttg 2220gtcagttagt gacataagag tttgaaattt
agaaaaaagg aatatttgga gaaaactgaa 2280atggatattt agaaatgaaa gttatttaat
ataaatataa gtatgggctg ctgagttggg 2340aatccacgct ggagatctca agtttgaagc
gtctcacaaa caatagtaat gtctttttgg 2400tcgagtttgt cggattggac ttgtccgtgg
cctgtgggtt acttttccta tatggtttgc 2460aagctatcgg gaattttatc ctggcgcacc
caaatttgag ttatttttga gtttttatat 2520gaaatagctt tgtgaattca tcgaactccc
gaaaacattg aactttactc caagttgaat 2580tgcagtaaaa taatagtagc gattctttaa
tttatcctaa cagtttttcg aaataataat 2640cccaaaaaag tttaaaataa ccataccata
aacttactgg gtaagatatt atctgtctaa 2700taatatatag tagtttcttt tgttttatta
gtttatctaa tccatatttc atttcttgat 2760aagttattct taataggaaa ataaacttat
ttcgaaaaac tgtttttaaa attttcttga 2820gttgagtctt ggatgaaaaa tagttaattt
tgcattaatt aattttgttc taacaaaaac 2880taattaaatt tttttgaagc gcatattcac
tcaaaaaata aataaaaacc atcatgcata 2940caggaaatgt tcttttttta atttattttt
tcattggagc cctgactaat tttatatcgg 3000ttcatacttt cataaattac aaaaagttca
aaatttaaac taaccatata agtgaataaa 3060ataaatcaac aaaatattca ccacataata
ctttttaaat agaatttttc ataccaaaga 3120ccttacttta attaattagg gtgagagaat
cctataagtc aatgcaaaac aattctatct 3180atcggattat aatcgttgat tcataaaatt
ttaaaatcga cgattttcat ttaaatgacc 3240cttttttttc tttcattttt tattgttatt
catctattta acttgtgagc atctttcata 3300ttgatatttc agacccttaa attaattgtt
ttcttacaga ataactacca cgaatatctg 3360aggctaaaag ctagagttga gctcctccaa
cgatctcaga ggtaatttct gttcactatc 3420tttatctcaa atgaattctc atgtttttat
ttttcgagat tcagattaaa tataatttga 3480tgtattatta atttaaatac gttatttaat
atggtcctta tgtccaacca ttgatttaat 3540ttgatatttt tttaatgaaa attacacaga
aactttcttg gtgaagattt gggcacgtta 3600agctcgaagg accttgagca gcttgagaat
caattagagt cttccttaaa gcaaatcagg 3660tcaaggaagg taaattattt aatctaatta
tacagaaaaa tcatctaaaa gttaccttaa 3720ttgctagccc aataagtttg ctatctgttg
atcctcacat tattttactc acagaaattc 3780acaatacctt tatttttgtt tgagtttgaa
gtatacaatt tctttaaaat gtaaaatttg 3840aaatctcaac aataagatat gttattgatc
cttgcaatta tgggtagatt gcgaattaaa 3900ctatcttgtc tttgcttaca acagtcattt
tgtttataaa ctaattatac ataaatccta 3960actgatagat agtttataaa gatgaataat
gaacataggt catatattaa aaaaacaaaa 4020aacaaaaaaa aactaaacaa gatgagcgag
tcaaaaatag tcttaacaaa agaatatata 4080tatatgtata tatcatattt gatttgtcta
tttttaattt tgaaaaaact aagttaatcg 4140atatataata tgaaggcata atgcataaat
atgtccttta acttggtttt aaatcacatt 4200tatacctctt cgactttggg tgtatacaaa
caaacactta aacttatata atgttgaaca 4260aatagatata tatgtcctac atgtcatttt
tcgtcctaaa tggtgtccta agtgtattgt 4320gtcacgcagg actcatgtgt ctatttgttc
aaatttatac aagtttaagt gcttacttat 4380gtataaacaa agttgaatga cataaatgtg
aaataaaatc aaattaaagg gcatatttat 4440gcattatacc taatacgaaa atccatatta
ttcactaaaa aatgagtcgg attatatgat 4500tactttttta ttcattttgc caatcgtatc
ctacgacatt gtttttaatt tgcagacaca 4560attcatgctg gatcagcttg cagatcttca
acaaaaggta attataaaat tctacaaatt 4620tccaataatt aataaatgga ataattatgc
gcgagaaatt tatctattta aaatttacga 4680tgaattttaa ttttacagga gcaaatgctt
gcagaatcta atagattact ccgtagaaag 4740gtaaactaac ttgatagccg tgcgtaatga
ataacttatt ttattttcaa aattataaat 4800ctaaatactt aggtaactcg ataacataag
aagtatttat actgatgata ttggtgttgt 4860gttttttttt attagttaga agaaagtgta
gctggatttc cacttcgatt gtgttgggaa 4920gatggaggtg atcatcaact tatgcatcaa
caaaatcgtc tccctaacac agagggtttc 4980tttcagcctc ttggattgca ttcttcttct
ccacattttg ggtaattact tttattatta 5040ttaaaaataa tttcaatttt ttttactttt
atttcgatta ataaatcaat gtgcaccaag 5100gtacggtcta acataaacaa aaatgtgggg
aatgctctta aagccctaac aaaagttatt 5160tggtacgtgt actaatgtaa tcgtactata
tatcttactt gattagtgga tggacagtac 5220tgggcacaca caattgacat aagttattat
aaggaaaaaa aaaggccaat aatcaatata 5280gtccaacatt acattattta ttataacagg
tcactctaga ttaaatgtta atgaataaca 5340aaaagtctca tattgatgat taatgtgatg
ggtgggcttc ttataaggct ttgacaatcc 5400tactctcttt gagctagttt tgggggtgtg
acctaattca acagaacgta gttaagattg 5460tgaagtaaag ttgatcattg ttataacagg
tttaaatact tctagtaaaa atagttccta 5520gataatccat cgcaaaatag ctcctatata
gttagttgga ttttcatata atctatagct 5580tatacatagc taaatgggaa tagatgagag
tttctgttgt ttagatatga tatttgatcg 5640gtttctaaat cgttactatc atgtagtgaa
taattttcat gttattacta ttacatttga 5700ttgtttctgt ggttattttt ttttctaggt
acaatcctgt taatacagat gaggtgaatg 5760cagcggcaac tgcacacaat atgaatggat
ttattcatgg atggatgctt taa 581313741DNAUnknownSolanaceae
13atgggaagag gaagagttga gcttaagaga atagaaaata aaataaatag gcaagtcact
60tttgctaaga gaagaaatgg acttcttaaa aaagcttatg aactttctgt tctttgtgat
120gctgaagttg cccttataat cttctctaat aggggtaaac tctatgaatt ttgcagcact
180tcaagcatgg tgaaaacaat tgaaaagtac caacgttgca gctatgctac tttggaagcc
240aaccaatcag ttactgatac tcagaataac taccacgaat atctgaggct aaaagctaga
300gttgagctcc tccaacgatc tcagagaaac tttcttggtg aagatttggg cacgttaagc
360tcgaaggacc ttgagcagct tgagaatcaa ttagagtctt ccttaaagca aatcaggtca
420aggaagacac aattcatgct ggatcagctt gcagatcttc aacaaaagga gcaaatgctt
480gcagaatcta atagattact ccgtagaaag ttagaagaaa gtgtagctgg atttccactt
540cgattgtgtt gggaagatgg aggtgatcat caacttatgc atcaacaaaa tcgtctccct
600aacacagagg gtttctttca gcctcttgga ttgcattctt cttctccaca ttttgggtac
660aatcctgtta atacagatga ggtgaatgca gcggcaactg cacacaatat gaatggattt
720attcatggat ggatgcttta a
741146374DNAArtificial SequenceSynthetic polynucleotide 14atgggaagag
gaagagttga gcttaagaga atagaaaata aaataaatag gcaagtcact 60tttgctaaga
gaagaaatgg acttcttaaa aaagcttatg aactttctgt tctttgtgat 120gctgaagttg
cccttataat cttctctaat aggggtaaac tctatgaatt ttgcagcact 180tcaaggtatt
ttttatttta ttatattaac atcaaagatt ttattttttt aaaaaaaacc 240ttaagtcctt
cattaccaaa acccttaatt gatttacaaa gtactttcat taaatttagt 300aattcttttt
ttttttatct ctgacttcaa ttataatgca agatctatgt tgtctttata 360tatattgaat
tatatatgta ctgtattttt actatataca tataagatcc ttttttcttt 420tttttctgtc
tctttatata aatatatttt aaatagttga ttttgaaaga tctactaatg 480tatatttatt
tttggaactt ttgtgtatat ggaatttttt tcttttttat gttttttttt 540tgttctaatt
gttttaaaag cgtttaagat cagaatgttc ttgattattc ttttaggaaa 600aagatttccc
atacattgag ttattttttg atctgtagat tgaatttttt taatgagttc 660cgatagattt
tcgttcaatt tttcaatgaa actattgagg gttgatgatt agataattac 720tcgattgaaa
gtttttattt caaaaaaatt ataattcttc ttaattttat atttatgaga 780tagagttagt
ttagtgatta tatgaaaaat cgtatcagat tattgggaat cgaaacttaa 840aaattctgaa
aatattatta taaattttac atgttacaat atttttactg ttaagatttg 900atttgcagac
taggtgtcat gtttgacagt tgataaaaaa tctgttattt ttgttcttta 960attcccaaga
cggataaaca aaggctgctt atgttggttt ccaataagca gccataattt 1020taaatatttt
tgttaagatt aattaataac aattatttcc accagataat tttcaaaatt 1080tgtgaccccg
agttcatata aattgttaat tttactgcta gaaattacat cgataataat 1140ttatttagtg
taatcttata aatacgaggg cagtagtgta tagactgttt tttattaatc 1200ctgactcaaa
gtgaggtaag ttaagtatat tttgattaaa aggactacat ttcatttatg 1260tatgtttaat
taatattatt ttgtaagtca ataaatctaa acaacatgag tttatctaga 1320cccttaatta
tgcaccttca ttatcaattt tttcaatact ctcctcagaa catatgcttc 1380tctataattt
tgtgcacgag ttaatcaatt cttccttttc aataattaaa tatgtgattt 1440atgtttagca
cttatttttc ggttagttaa ttgataatag gaaaaagcct cttttttttt 1500gtgtgtgtgg
taattaggat ctttattgaa tttaaaatga cctactatag aacttgggag 1560tttttcttca
taataatgca ctgcaacgtg ttaaaaaaaa agaatcaaat gaaattaata 1620gatgtttact
ggattgccat ggtaaagtga taagtattaa tttcgcttta actaagagat 1680cattatattc
aagtcccctt gatacaaact tgcctttgta aataagtgtt ttatttttca 1740atgtgaaact
ttcgctgtta atttaaattt aattatactt ctatataaat accaaacaat 1800aatgtaataa
aacaaaaaat aaaagagtag atgtttcata ttgttaatgc agcatggtga 1860aaacaattga
aaagtaccaa cgttgcagct atgctacttt ggaagccaac caatcagtta 1920ctgatactca
ggtactgctt tatattttaa tttatttggc ttttttttaa aaaaataatt 1980agttttgatt
aatatgcatc attttattta tttttggcaa ctctttattt atcagtaata 2040agtaataact
ttttaactag tatatttaaa aatcacaaaa tttaagaata ttttaataga 2100ttcgacatat
tttagtttaa aaataacaaa ttaaattatg tttttaattt tttaaatatt 2160cttactataa
ttatcatgta ctctttgatc tgttcatctt ttccatgata atattatttg 2220gtcagttagt
gacataagag tttgaaattt agaaaaaagg aatatttgga gaaaactgaa 2280atggatattt
agaaatgaaa gttatttaat ataaatataa gtatgggctg ctgagttggg 2340aatccacgct
ggagatctca agtttgaagc gtctcacaaa caatagtaat gtctttttgg 2400tcgagtttgt
cggattggac ttgtccgtgg cctgtgggtt acttttccta tatggtttgc 2460aagctatcgg
gaattttatc ctggcgcacc caaatttgag ttatttttga gtttttatat 2520gaaatagctt
tgtgaattca tcgaactccc gaaaacattg aactttactc caagttgaat 2580tgcagtaaaa
taatagtagc gattctttaa tttatcctaa cagtttttcg aaataataat 2640cccaaaaaag
tttaaaataa ccataccata aacttactgg gtaagatatt atctgtctaa 2700taatatatag
tagtttcttt tgttttatta gtttatctaa tccatatttc atttcttgat 2760aagttattct
taataggaaa ataaacttat ttcgaaaaac tgtttttaaa attttcttga 2820gttgagtctt
ggatgaaaaa tagttaattt tgcattaatt aattttgttc taacaaaaac 2880taattaaatt
tttttgaagc gcatattcac tcaaaaaata aataaaaacc atcatgcata 2940caggaaatgt
tcttttttta atttattttt tcattggagc cctgactaat tttatatcgg 3000ttcatacttt
cataaattac aaaaagttca aaatttaaac taaccatata agtgaataaa 3060ataaatcaac
aaaatattca ccacataata ctttttaaat agaatttttc ataccaaaga 3120ccttacttta
attaattagg gtgagagaat cctataagtc aatgcaaaac aattctatct 3180atcggattat
aatcgttgat tcataaaatt ttaaaatcga cgattttcat ttaaatgacc 3240cttttttttc
tttcattttt tattgttatt catctattta acttgtgagc atctttcata 3300ttgatatttc
agacccttaa attaattgtt ttcttacaga ataactacca cgaatatctg 3360aggctaaaag
ctagagttga gctcctccaa cgatctcaga ggtaatttct gttcactatc 3420tttatctcaa
atgaattctc atgtttttat ttttcgagat tcagattaaa tataatttga 3480tgtattatta
atttaaatac gttatttaat atggtcctta tgtccaacca ttgatttaat 3540ttgatatttt
tttaatgaaa attacacaga aactttcttg gtgaagattt gggcacgtta 3600agctcgaagg
accttgagca gcttgagaat caattagagt cttccttaaa gcaaatcagg 3660tcaaggaagg
taaattattt aatctaatta tacagaaaaa tcatctaaaa gttaccttaa 3720ttgctagccc
aataagtttg ctatctgttg atcctcacat tattttactc acagaaattc 3780acaatacctt
tatttttgtt tgagtttgaa gtatacaatt tctttaaaat gtaaaatttg 3840aaatctcaac
aataagatat gttattgatc cttgcaatta tgggtagatt gcgaattaaa 3900ctatcttgtc
tttgcttaca acagtcattt tgtttataaa ctaattatac ataaatccta 3960actgatagat
agtttataaa gatgaataat gaacataggt catatattaa aaaaacaaaa 4020aacaaaaaaa
aactaaacaa gatgagcgag tcaaaaatag tcttaacaaa agaatatata 4080tatatgtata
tatcatattt gatttgtcta tttttaattt tgaaaaaact aagttaatcg 4140atatataata
tgaaggcata atgcataaat atgtccttta acttggtttt aaatcacatt 4200tatacctctt
cgactttggg tgtatacaaa caaacactta aacttatata atgttgaaca 4260aatagatata
tatgtcctac atgtcatttt tcgtcctaaa tggtgtccta agtgtattgt 4320gtcacgcagg
actcatgtgt ctatttgttc aaatttatac aagtttaagt gcttacttat 4380gtataaacaa
agttgaatga cataaatgtg aaataaaatc aaattaaagg gcatatttat 4440gcattatacc
taatacgaaa atccatatta ttcactaaaa aatgagtcgg attatatgat 4500tactttttta
ttcattttgc caatcgtatc ctacgacatt gtttttaatt tgcagacaca 4560attcatgctg
gatcagcttg cagatcttca acaaaaggta attataaaat tctacaaatt 4620tccaataatt
aataaatgga ataattatgc gcgagaaatg gatgggcttg tctataatgg 4680tagacaaatg
aaagactttc tcaagatttt gcgggcggtc cgggggggac caccacggct 4740cctctcttct
cgagaatccg ccggagtcag atcagtaggg gagttcacac cgggacttgt 4800gcaggccccc
gtcaattcct ttgagtttcg gtcttgcgac cgtactcccc aggcggagtg 4860tttcacggcc
aactcgaagg ggctgaagtt cgacgcagag caaagcattc ttttctaccc 4920tatgtaggcg
gaatcctctt ttcgactctg actctcccac tccagtcgtg aaaaaacaac 4980aaactagtca
aaggacagcc tgccttattc ttctcccgtt cgggacccct attttctcgg 5040agatagcctg
gtctgagcta gaacagcaga ttcgtgagca agagcgtatt tcacagctga 5100ttcaacaaca
gccatttttt ctgggacccg caattccgta gaaagacatc acgattcctt 5160gtggacgggg
aatcggcaga aagagatggg tcggatactg gaatctgccc aaaagtcctg 5220acttctattt
aaaatttacg atgaatttta attttacagg agcaaatgct tgcagaatct 5280aatagattac
tccgtagaaa ggtaaactaa cttgatagcc gtgcgtaatg aataacttat 5340tttattttca
aaattataaa tctaaatact taggtaactc gataacataa gaagtattta 5400tactgatgat
attggtgttg tgtttttttt tattagttag aagaaagtgt agctggattt 5460ccacttcgat
tgtgttggga agatggaggt gatcatcaac ttatgcatca acaaaatcgt 5520ctccctaaca
cagagggttt ctttcagcct cttggattgc attcttcttc tccacatttt 5580gggtaattac
ttttattatt attaaaaata atttcaattt tttttacttt tatttcgatt 5640aataaatcaa
tgtgcaccaa ggtacggtct aacataaaca aaaatgtggg gaatgctctt 5700aaagccctaa
caaaagttat ttggtacgtg tactaatgta atcgtactat atatcttact 5760tgattagtgg
atggacagta ctgggcacac acaattgaca taagttatta taaggaaaaa 5820aaaaggccaa
taatcaatat agtccaacat tacattattt attataacag gtcactctag 5880attaaatgtt
aatgaataac aaaaagtctc atattgatga ttaatgtgat gggtgggctt 5940cttataaggc
tttgacaatc ctactctctt tgagctagtt ttgggggtgt gacctaattc 6000aacagaacgt
agttaagatt gtgaagtaaa gttgatcatt gttataacag gtttaaatac 6060ttctagtaaa
aatagttcct agataatcca tcgcaaaata gctcctatat agttagttgg 6120attttcatat
aatctatagc ttatacatag ctaaatggga atagatgaga gtttctgttg 6180tttagatatg
atatttgatc ggtttctaaa tcgttactat catgtagtga ataattttca 6240tgttattact
attacatttg attgtttctg tggttatttt tttttctagg tacaatcctg 6300ttaatacaga
tgaggtgaat gcagcggcaa ctgcacacaa tatgaatgga tttattcatg 6360gatggatgct
ttaa
6374155788DNAArtificial SequenceSynthetic polynucleotide 15atgggaagag
gaagagttga gcttaagaga atagaaaata aaataaatag gcaagtcact 60tttgctaaga
gaagaaatgg acttcttaaa aaagcttatg aactttctgt tctttgtgat 120gctgaagttg
cccttataat cttctctaat aggggtaaac tctatgaatt ttgcagcact 180tcaaggtatt
ttttatttta ttatattaac atcaaagatt ttattttttt aaaaaaaacc 240ttaagtcctt
cattaccaaa acccttaatt gatttacaaa gtactttcat taaatttagt 300aattcttttt
ttttttatct ctgacttcaa ttataatgca agatctatgt tgtctttata 360tatattgaat
tatatatgta ctgtattttt actatataca tataagatcc ttttttcttt 420tttttctgtc
tctttatata aatatatttt aaatagttga ttttgaaaga tctactaatg 480tatatttatt
tttggaactt ttgtgtatat ggaatttttt tcttttttat gttttttttt 540tgttctaatt
gttttaaaag cgtttaagat cagaatgttc ttgattattc ttttaggaaa 600aagatttccc
atacattgag ttattttttg atctgtagat tgaatttttt taatgagttc 660cgatagattt
tcgttcaatt tttcaatgaa actattgagg gttgatgatt agataattac 720tcgattgaaa
gtttttattt caaaaaaatt ataattcttc ttaattttat atttatgaga 780tagagttagt
ttagtgatta tatgaaaaat cgtatcagat tattgggaat cgaaacttaa 840aaattctgaa
aatattatta taaattttac atgttacaat atttttactg ttaagatttg 900atttgcagac
taggtgtcat gtttgacagt tgataaaaaa tctgttattt ttgttcttta 960attcccaaga
cggataaaca aaggctgctt atgttggttt ccaataagca gccataattt 1020taaatatttt
tgttaagatt aattaataac aattatttcc accagataat tttcaaaatt 1080tgtgaccccg
agttcatata aattgttaat tttactgcta gaaattacat cgataataat 1140ttatttagtg
taatcttata aatacgaggg cagtagtgta tagactgttt tttattaatc 1200ctgactcaaa
gtgaggtaag ttaagtatat tttgattaaa aggactacat ttcatttatg 1260tatgtttaat
taatattatt ttgtaagtca ataaatctaa acaacatgag tttatctaga 1320cccttaatta
tgcaccttca ttatcaattt tttcaatact ctcctcagaa catatgcttc 1380tctataattt
tgtgcacgag ttaatcaatt cttccttttc aataattaaa tatgtgattt 1440atgtttagca
cttatttttc ggttagttaa ttgataatag gaaaaagcct cttttttttt 1500gtgtgtgtgg
taattaggat ctttattgaa tttaaaatga cctactatag aacttgggag 1560tttttcttca
taataatgca ctgcaacgtg ttaaaaaaaa agaatcaaat gaaattaata 1620gatgtttact
ggattgccat ggtaaagtga taagtattaa tttcgcttta actaagagat 1680cattatattc
aagtcccctt gatacaaact tgcctttgta aataagtgtt ttatttttca 1740atgtgaaact
ttcgctgtta atttaaattt aattatactt ctatataaat accaaacaat 1800aatgtaataa
aacaaaaaat aaaagagtag atgtttcata ttgttaatgc agcatggtga 1860aaacaattga
aaagtaccaa cgttgcagct atgctacttt ggaagccaac caatcagtta 1920ctgatactca
ggtactgctt tatattttaa tttatttggc ttttttttaa aaaaataatt 1980agttttgatt
aatatgcatc attttattta tttttggcaa ctctttattt atcagtaata 2040agtaataact
ttttaactag tatatttaaa aatcacaaaa tttaagaata ttttaataga 2100ttcgacatat
tttagtttaa aaataacaaa ttaaattatg tttttaattt tttaaatatt 2160cttactataa
ttatcatgta ctctttgatc tgttcatctt ttccatgata atattatttg 2220gtcagttagt
gacataagag tttgaaattt agaaaaaagg aatatttgga gaaaactgaa 2280atggatattt
agaaatgaaa gttatttaat ataaatataa gtatgggctg ctgagttggg 2340aatccacgct
ggagatctca agtttgaagc gtctcacaaa caatagtaat gtctttttgg 2400tcgagtttgt
cggattggac ttgtccgtgg cctgtgggtt acttttccta tatggtttgc 2460aagctatcgg
gaattttatc ctggcgcacc caaatttgag ttatttttga gtttttatat 2520gaaatagctt
tgtgaattca tcgaactccc gaaaacattg aactttactc caagttgaat 2580tgcagtaaaa
taatagtagc gattctttaa tttatcctaa cagtttttcg aaataataat 2640cccaaaaaag
tttaaaataa ccataccata aacttactgg gtaagatatt atctgtctaa 2700taatatatag
tagtttcttt tgttttatta gtttatctaa tccatatttc atttcttgat 2760aagttattct
taataggaaa ataaacttat ttcgaaaaac tgtttttaaa attttcttga 2820gttgagtctt
ggatgaaaaa tagttaattt tgcattaatt aattttgttc taacaaaaac 2880taattaaatt
tttttgaagc gcatattcac tcaaaaaata aataaaaacc atcatgcata 2940caggaaatgt
tcttttttta atttattttt tcattggagc cctgactaat tttatatcgg 3000ttcatacttt
cataaattac aaaaagttca aaatttaaac taaccatata agtgaataaa 3060ataaatcaac
aaaatattca ccacataata ctttttaaat agaatttttc ataccaaaga 3120ccttacttta
attaattagg gtgagagaat cctataagtc aatgcaaaac aattctatct 3180atcggattat
aatcgttgat tcataaaatt ttaaaatcga cgattttcat ttaaatgacc 3240cttttttttc
tttcattttt tattgttatt catctattta acttgtgagc atctttcata 3300ttgatatttc
agacccttaa attaattgtt ttcttacaga ataactacca cgaatatctg 3360aggctaaaag
ctagagttga gctcctccaa cgatctcaga ggtaatttct gttcactatc 3420tttatctcaa
atgaattctc atgtttttat ttttcgagat tcagattaaa tataatttga 3480tgtattatta
atttaaatac gttatttaat atggtcctta tgtccaacca ttgatttaat 3540ttgatatttt
tttaatgaaa attacacaga aactttcttg gtgaagattt gggcaccttg 3600agcagcttga
gaatcaatta gagtcttcct taaagtcaag gaaggtaaat tatttaatct 3660aattatacag
aaaaatcatc taaaagttac cttaattgct agcccaataa gtttgctatc 3720tgttgatcct
cacattattt tactcacaga aattcacaat acctttattt ttgtttgagt 3780ttgaagtata
caatttcttt aaaatgtaaa atttgaaatc tcaacaataa gatatgttat 3840tgatccttgc
aattatgggt agattgcgaa ttaaactatc ttgtctttgc ttacaacagt 3900cattttgttt
ataaactaat tatacataaa tcctaactga tagatagttt ataaagatga 3960ataatgaaca
taggtcatat attaaaaaaa caaaaaacaa aaaaaaacta aacaagatga 4020gcgagtcaaa
aatagtctta acaaaagaat atatatatat gtatatatca tatttgattt 4080gtctattttt
aattttgaaa aaactaagtt aatcgatata taatatgaag gcataatgca 4140taaatatgtc
ctttaacttg gttttaaatc acatttatac ctcttcgact ttgggtgtat 4200acaaacaaac
acttaaactt atataatgtt gaacaaatag atatatatgt cctacatgtc 4260atttttcgtc
ctaaatggtg tcctaagtgt attgtgtcac gcaggactca tgtgtctatt 4320tgttcaaatt
tatacaagtt taagtgctta cttatgtata aacaaagttg aatgacataa 4380atgtgaaata
aaatcaaatt aaagggcata tttatgcatt atacctaata cgaaaatcca 4440tattattcac
taaaaaatga gtcggattat atgattactt ttttattcat tttgccaatc 4500gtatcctacg
acattgtttt taatttgcag acacaattca tgctggatca gcttgcagat 4560cttcaacaaa
aggtaattat aaaattctac aaatttccaa taattaataa atggaataat 4620tatgcgcgag
aaatttatct atttaaaatt tacgatgaat tttaatttta caggagcaaa 4680tgcttgcaga
atctaataga ttactccgta gaaaggtaaa ctaacttgat agccgtgcgt 4740aatgaataac
ttattttatt ttcaaaatta taaatctaaa tacttaggta actcgataac 4800ataagaagta
tttatactga tgatattggt gttgtgtttt tttttattag ttagaagaaa 4860gtgtagctgg
atttccactt cgattgtgtt gggaagatgg aggtgatcat caacttatgc 4920atcaacaaaa
tcgtctccct aacacagagg gtttctttca gcctcttgga ttgcattctt 4980cttctccaca
ttttgggtaa ttacttttat tattattaaa aataatttca atttttttta 5040cttttatttc
gattaataaa tcaatgtgca ccaaggtacg gtctaacata aacaaaaatg 5100tggggaatgc
tcttaaagcc ctaacaaaag ttatttggta cgtgtactaa tgtaatcgta 5160ctatatatct
tacttgatta gtggatggac agtactgggc acacacaatt gacataagtt 5220attataagga
aaaaaaaagg ccaataatca atatagtcca acattacatt atttattata 5280acaggtcact
ctagattaaa tgttaatgaa taacaaaaag tctcatattg atgattaatg 5340tgatgggtgg
gcttcttata aggctttgac aatcctactc tctttgagct agttttgggg 5400gtgtgaccta
attcaacaga acgtagttaa gattgtgaag taaagttgat cattgttata 5460acaggtttaa
atacttctag taaaaatagt tcctagataa tccatcgcaa aatagctcct 5520atatagttag
ttggattttc atataatcta tagcttatac atagctaaat gggaatagat 5580gagagtttct
gttgtttaga tatgatattt gatcggtttc taaatcgtta ctatcatgta 5640gtgaataatt
ttcatgttat tactattaca tttgattgtt tctgtggtta tttttttttc 5700taggtacaat
cctgttaata cagatgaggt gaatgcagcg gcaactgcac acaatatgaa 5760tggatttatt
catggatgga tgctttaa
5788165814DNAArtificial SequenceSynthetic polynucleotide 16atgggaagag
gaagagttga gcttaagaga atagaaaata aaataaatag gcaagtcact 60tttgctaaga
gaagaaatgg acttcttaaa aaagcttatg aactttctgt tctttgtgat 120gctgaagttg
cccttataat cttctctaat aggggtaaac tctatgaatt ttgcagcact 180tcaaggtatt
ttttatttta ttatattaac atcaaagatt ttattttttt aaaaaaaacc 240ttaagtcctt
cattaccaaa acccttaatt gatttacaaa gtactttcat taaatttagt 300aattcttttt
ttttttatct ctgacttcaa ttataatgca agatctatgt tgtctttata 360tatattgaat
tatatatgta ctgtattttt actatataca tataagatcc ttttttcttt 420tttttctgtc
tctttatata aatatatttt aaatagttga ttttgaaaga tctactaatg 480tatatttatt
tttggaactt ttgtgtatat ggaatttttt tcttttttat gttttttttt 540tgttctaatt
gttttaaaag cgtttaagat cagaatgttc ttgattattc ttttaggaaa 600aagatttccc
atacattgag ttattttttg atctgtagat tgaatttttt taatgagttc 660cgatagattt
tcgttcaatt tttcaatgaa actattgagg gttgatgatt agataattac 720tcgattgaaa
gtttttattt caaaaaaatt ataattcttc ttaattttat atttatgaga 780tagagttagt
ttagtgatta tatgaaaaat cgtatcagat tattgggaat cgaaacttaa 840aaattctgaa
aatattatta taaattttac atgttacaat atttttactg ttaagatttg 900atttgcagac
taggtgtcat gtttgacagt tgataaaaaa tctgttattt ttgttcttta 960attcccaaga
cggataaaca aaggctgctt atgttggttt ccaataagca gccataattt 1020taaatatttt
tgttaagatt aattaataac aattatttcc accagataat tttcaaaatt 1080tgtgaccccg
agttcatata aattgttaat tttactgcta gaaattacat cgataataat 1140ttatttagtg
taatcttata aatacgaggg cagtagtgta tagactgttt tttattaatc 1200ctgactcaaa
gtgaggtaag ttaagtatat tttgattaaa aggactacat ttcatttatg 1260tatgtttaat
taatattatt ttgtaagtca ataaatctaa acaacatgag tttatctaga 1320cccttaatta
tgcaccttca ttatcaattt tttcaatact ctcctcagaa catatgcttc 1380tctataattt
tgtgcacgag ttaatcaatt cttccttttc aataattaaa tatgtgattt 1440atgtttagca
cttatttttc ggttagttaa ttgataatag gaaaaagcct cttttttttt 1500gtgtgtgtgg
taattaggat ctttattgaa tttaaaatga cctactatag aacttgggag 1560tttttcttca
taataatgca ctgcaacgtg ttaaaaaaaa agaatcaaat gaaattaata 1620gatgtttact
ggattgccat ggtaaagtga taagtattaa tttcgcttta actaagagat 1680cattatattc
aagtcccctt gatacaaact tgcctttgta aataagtgtt ttatttttca 1740atgtgaaact
ttcgctgtta atttaaattt aattatactt ctatataaat accaaacaat 1800aatgtaataa
aacaaaaaat aaaagagtag atgtttcata ttgttaatgc agcatggtga 1860aaacaattga
aaagtaccaa cgttgcagct atgctacttt ggaagccaac caatcagtta 1920ctgatactca
ggtactgctt tatattttaa tttatttggc ttttttttaa aaaaataatt 1980agttttgatt
aatatgcatc attttattta tttttggcaa ctctttattt atcagtaata 2040agtaataact
ttttaactag tatatttaaa aatcacaaaa tttaagaata ttttaataga 2100ttcgacatat
tttagtttaa aaataacaaa ttaaattatg tttttaattt tttaaatatt 2160cttactataa
ttatcatgta ctctttgatc tgttcatctt ttccatgata atattatttg 2220gtcagttagt
gacataagag tttgaaattt agaaaaaagg aatatttgga gaaaactgaa 2280atggatattt
agaaatgaaa gttatttaat ataaatataa gtatgggctg ctgagttggg 2340aatccacgct
ggagatctca agtttgaagc gtctcacaaa caatagtaat gtctttttgg 2400tcgagtttgt
cggattggac ttgtccgtgg cctgtgggtt acttttccta tatggtttgc 2460aagctatcgg
gaattttatc ctggcgcacc caaatttgag ttatttttga gtttttatat 2520gaaatagctt
tgtgaattca tcgaactccc gaaaacattg aactttactc caagttgaat 2580tgcagtaaaa
taatagtagc gattctttaa tttatcctaa cagtttttcg aaataataat 2640cccaaaaaag
tttaaaataa ccataccata aacttactgg gtaagatatt atctgtctaa 2700taatatatag
tagtttcttt tgttttatta gtttatctaa tccatatttc atttcttgat 2760aagttattct
taataggaaa ataaacttat ttcgaaaaac tgtttttaaa attttcttga 2820gttgagtctt
ggatgaaaaa tagttaattt tgcattaatt aattttgttc taacaaaaac 2880taattaaatt
tttttgaagc gcatattcac tcaaaaaata aataaaaacc atcatgcata 2940caggaaatgt
tcttttttta atttattttt tcattggagc cctgactaat tttatatcgg 3000ttcatacttt
cataaattac aaaaagttca aaatttaaac taaccatata agtgaataaa 3060ataaatcaac
aaaatattca ccacataata ctttttaaat agaatttttc ataccaaaga 3120ccttacttta
attaattagg gtgagagaat cctataagtc aatgcaaaac aattctatct 3180atcggattat
aatcgttgat tcataaaatt ttaaaatcga cgattttcat ttaaatgacc 3240cttttttttc
tttcattttt tattgttatt catctattta acttgtgagc atctttcata 3300ttgatatttc
agacccttaa attaattgtt ttcttacaga ataactacca cgaatatctg 3360aggctaaaag
ctagagttga gctcctccaa cgatctcaga ggtaatttct gttcactatc 3420tttatctcaa
atgaattctc atgtttttat ttttcgagat tcagattaaa tataatttga 3480tgtattatta
atttaaatac gttatttaat atggtcctta tgtccaacca ttgatttaat 3540ttgatatttt
tttaatgaaa attacacaga aactttcttg gtgaagattt gggcacgtta 3600agcttcgaag
gaccttgagc agcttgagaa tcaattagag tcttccttaa agcaaatcag 3660gtcaaggaag
gtaaattatt taatctaatt atacagaaaa atcatctaaa agttacctta 3720attgctagcc
caataagttt gctatctgtt gatcctcaca ttattttact cacagaaatt 3780cacaatacct
ttatttttgt ttgagtttga agtatacaat ttctttaaaa tgtaaaattt 3840gaaatctcaa
caataagata tgttattgat ccttgcaatt atgggtagat tgcgaattaa 3900actatcttgt
ctttgcttac aacagtcatt ttgtttataa actaattata cataaatcct 3960aactgataga
tagtttataa agatgaataa tgaacatagg tcatatatta aaaaaacaaa 4020aaacaaaaaa
aaactaaaca agatgagcga gtcaaaaata gtcttaacaa aagaatatat 4080atatatgtat
atatcatatt tgatttgtct atttttaatt ttgaaaaaac taagttaatc 4140gatatataat
atgaaggcat aatgcataaa tatgtccttt aacttggttt taaatcacat 4200ttatacctct
tcgactttgg gtgtatacaa acaaacactt aaacttatat aatgttgaac 4260aaatagatat
atatgtccta catgtcattt ttcgtcctaa atggtgtcct aagtgtattg 4320tgtcacgcag
gactcatgtg tctatttgtt caaatttata caagtttaag tgcttactta 4380tgtataaaca
aagttgaatg acataaatgt gaaataaaat caaattaaag ggcatattta 4440tgcattatac
ctaatacgaa aatccatatt attcactaaa aaatgagtcg gattatatga 4500ttactttttt
attcattttg ccaatcgtat cctacgacat tgtttttaat ttgcagacac 4560aattcatgct
ggatcagctt gcagatcttc aacaaaaggt aattataaaa ttctacaaat 4620ttccaataat
taataaatgg aataattatg cgcgagaaat ttatctattt aaaatttacg 4680atgaatttta
attttacagg agcaaatgct tgcagaatct aatagattac tccgtagaaa 4740ggtaaactaa
cttgatagcc gtgcgtaatg aataacttat tttattttca aaattataaa 4800tctaaatact
taggtaactc gataacataa gaagtattta tactgatgat attggtgttg 4860tgtttttttt
tattagttag aagaaagtgt agctggattt ccacttcgat tgtgttggga 4920agatggaggt
gatcatcaac ttatgcatca acaaaatcgt ctccctaaca cagagggttt 4980ctttcagcct
cttggattgc attcttcttc tccacatttt gggtaattac ttttattatt 5040attaaaaata
atttcaattt tttttacttt tatttcgatt aataaatcaa tgtgcaccaa 5100ggtacggtct
aacataaaca aaaatgtggg gaatgctctt aaagccctaa caaaagttat 5160ttggtacgtg
tactaatgta atcgtactat atatcttact tgattagtgg atggacagta 5220ctgggcacac
acaattgaca taagttatta taaggaaaaa aaaaggccaa taatcaatat 5280agtccaacat
tacattattt attataacag gtcactctag attaaatgtt aatgaataac 5340aaaaagtctc
atattgatga ttaatgtgat gggtgggctt cttataaggc tttgacaatc 5400ctactctctt
tgagctagtt ttgggggtgt gacctaattc aacagaacgt agttaagatt 5460gtgaagtaaa
gttgatcatt gttataacag gtttaaatac ttctagtaaa aatagttcct 5520agataatcca
tcgcaaaata gctcctatat agttagttgg attttcatat aatctatagc 5580ttatacatag
ctaaatggga atagatgaga gtttctgttg tttagatatg atatttgatc 5640ggtttctaaa
tcgttactat catgtagtga ataattttca tgttattact attacatttg 5700attgtttctg
tggttatttt tttttctagg tacaatcctg ttaatacaga tgaggtgaat 5760gcagcggcaa
ctgcacacaa tatgaatgga tttattcatg gatggatgct ttaa
58141731DNAArtificial SequenceSynthetic polynucleotide 17caccgaattc
atgggaagag gtaaggtaga a
311830DNAArtificial SequenceSynthetic polynucleotide 18ttcggatcct
caaagcatcc atcctggtaa
301932DNAArtificial SequenceSynthetic polynucleotide 19caccgaattc
atgggaagag gaagagtaga ac
322030DNAArtificial SequenceSynthetic polynucleotide 20ttcggatcct
tagagcatcc accctggaat
302131DNAArtificial SequenceSynthetic polynucleotide 21caccgaattc
atgggaagag gaagagttga g
312235DNAArtificial SequenceSynthetic polynucleotide 22ttcggatcct
taaagcatcc atccatgaat aaatc
352331DNAArtificial SequenceSynthetic polynucleotide 23caccgaattc
atgggtagag ggaaagtaga a
312431DNAArtificial SequenceSynthetic polynucleotide 24ttcggatcct
caaagcatcc atccaggtac a
312526DNAArtificial SequenceSynthetic polynucleotide 25gcaaaacttt
aaattagttc taaatg
262623DNAArtificial SequenceSynthetic polynucleotide 26ctttttgatt
catgtgtctg tac
232723DNAArtificial SequenceSynthetic polynucleotide 27aatatcgtgt
tagaatgtga cac
232823DNAArtificial SequenceSynthetic polynucleotide 28ctttttgatt
catgtgtctg tac
232925DNAArtificial SequenceSynthetic polynucleotide 29ttacttttgc
taagagaaga aatgg
253020DNAArtificial SequenceSynthetic polynucleotide 30ccgtcctttc
tgtttgtagc
203125DNAArtificial SequenceSynthetic polynucleotide 31ttacttttgc
taagagaaga aatgg
253223DNAArtificial SequenceSynthetic polynucleotide 32gaatccactt
aagaatctct acc
233323DNAArtificial SequenceSynthetic polynucleotide 33tattgtgata
tgtagagtgg tgc
233424DNAArtificial SequenceSynthetic polynucleotide 34aatacctgag
tatcactaac cgtt
243521DNAArtificial SequenceSynthetic polynucleotide 35cacaattcat
gctggatcag c
213623DNAArtificial SequenceSynthetic polynucleotide 36cggagtaatc
tattagattc tgc
233724DNAArtificial SequenceSynthetic polynucleotide 37cctttaataa
gttgaaaatc cctc
243822DNAArtificial SequenceSynthetic polynucleotide 38ttgaaggtgc
atagaacata cc
223924DNAArtificial SequenceSynthetic polynucleotide 39cctttaataa
gttgaaaatc cctc
244022DNAArtificial SequenceSynthetic polynucleotide 40ttgaaggtgc
atagaacata cc
224123DNAArtificial SequenceSynthetic polynucleotide 41atattgaatc
gtgtgattgt ctc
234223DNAArtificial SequenceSynthetic polynucleotide 42taactttctt
caaagatgca tcc
234323DNAArtificial SequenceSynthetic polynucleotide 43atattgaatc
gtgtgattgt ctc
234423DNAArtificial SequenceSynthetic polynucleotide 44taactttctt
caaagatgca tcc
234522DNAArtificial SequenceSynthetic polynucleotide 45aatatggtcc
ttatgtccaa cc
224621DNAArtificial SequenceSynthetic polynucleotide 46tagcaaactt
attgggctag c
214722DNAArtificial SequenceSynthetic polynucleotide 47aatatggtcc
ttatgtccaa cc
224821DNAArtificial SequenceSynthetic polynucleotide 48tagcaaactt
attgggctag c
214921DNAArtificial SequenceSynthetic polynucleotide 49ctgacgtaag
ggatgacgca c
215022DNAArtificial SequenceSynthetic polynucleotide 50catctcatta
ctaaagatct cc
225121DNAArtificial SequenceSynthetic polynucleotide 51atgggaagag
gtaaggtaga a
215222DNAArtificial SequenceSynthetic polynucleotide 52tcaaagcatc
catcctggta aa
225322DNAArtificial SequenceSynthetic polynucleotide 53atgggaagag
gaagagtaga ac
225421DNAArtificial SequenceSynthetic polynucleotide 54ttagagcatc
caccctggaa t
215521DNAArtificial SequenceSynthetic polynucleotide 55atgggaagag
gaagagttga g
215626DNAArtificial SequenceSynthetic polynucleotide 56ttaaagcatc
catccatgaa taaatc
265720DNAArtificial SequenceSynthetic polynucleotide 57cgtggtggtg
ctaagaagag
205820DNAArtificial SequenceSynthetic polynucleotide 58acgaagcctc
tgaacctttc
205956DNAArtificial SequenceSynthetic polynucleotide 59tgtggtctca
attttctagt atgtctgata cacgttttag agctagaaat agcaag
566031DNAArtificial SequenceSynthetic polynucleotide 60tgtggtctca
agcgtaatgc caactttgta c
316156DNAArtificial SequenceSynthetic polynucleotide 61tgtggtctca
attggaacag cttgagcgtc aacgttttag agctagaaat agcaag
566231DNAArtificial SequenceSynthetic polynucleotide 62tgtggtctca
agcgtaatgc caactttgta c
316356DNAArtificial SequenceSynthetic polynucleotide 63tgtggtctca
attagctcct tcaacgttct caagttttag agctagaaat agcaag
566431DNAArtificial SequenceSynthetic polynucleotide 64tgtggtctca
agcgtaatgc caactttgta c
316556DNAArtificial SequenceSynthetic polynucleotide 65tgtggtctca
attacatatt cttggagagg attgttttag agctagaaat agcaag
566631DNAArtificial SequenceSynthetic polynucleotide 66tgtggtctca
agcgtaatgc caactttgta c
316756DNAArtificial SequenceSynthetic polynucleotide 67tgtggtctca
atttttgggc acgttaagct cgagttttag agctagaaat agcaag
566831DNAArtificial SequenceSynthetic polynucleotide 68tgtggtctca
agcgtaatgc caactttgta c
316956DNAArtificial SequenceSynthetic polynucleotide 69tgtggtctca
attccttaaa gcaaatcagg tcagttttag agctagaaat agcaag
567031DNAArtificial SequenceSynthetic polynucleotide 70tgtggtctca
agcgtaatgc caactttgta c
317156DNAArtificial SequenceSynthetic polynucleotide 71tgtggtctca
attgcttttg ctaagagaag aaagttttag agctagaaat agcaag
567231DNAArtificial SequenceSynthetic polynucleotide 72tgtggtctca
agcgtaatgc caactttgta c
317356DNAArtificial SequenceSynthetic polynucleotide 73tgtggtctca
attgcagtct tcaaaggatt cacgttttag agctagaaat agcaag
567431DNAArtificial SequenceSynthetic polynucleotide 74tgtggtctca
agcgtaatgc caactttgta c
317516DNAArtificial SequenceSynthetic polynucleotide 75gtaaaacgac ggccag
167617DNAArtificial
SequenceSynthetic polynucleotide 76caggaaacag ctatgac
177719DNAArtificial SequenceSynthetic
polynucleotide 77tcctgtcaaa cactgatag
197822DNAArtificial SequenceSynthetic polynucleotide
78taatgtactg gggtggatgc ag
227920DNAArtificial SequenceSynthetic polynucleotide 79ataagcccat
cagggagcag
208020DNAArtificial SequenceSynthetic polynucleotide 80cggataaacc
ttttcacgcc
208120DNAArtificial SequenceSynthetic polynucleotide 81ttctagtatg
tctgatacac
208220DNAArtificial SequenceSynthetic polynucleotide 82ggaacagctt
gagcgtcaac
208320DNAArtificial SequenceSynthetic polynucleotide 83agctccttca
acgttctcaa
208420DNAArtificial SequenceSynthetic polynucleotide 84acatattctt
ggagaggatt
208520DNAArtificial SequenceSynthetic polynucleotide 85tttgggcacg
ttaagctcga
208620DNAArtificial SequenceSynthetic polynucleotide 86ccttaaagca
aatcaggtca
208720DNAArtificial SequenceSynthetic polynucleotide 87gcttttgcta
agagaagaaa
208820DNAArtificial SequenceSynthetic polynucleotide 88gcagtcttca
aaggattcac
208924DNAArtificial SequenceSynthetic polynucleotide 89tatatataca
tatgtttttc ttct
249064DNAArtificial SequenceSynthetic polynucleotide 90agttgagctc
cttcaacgtt ctcaaaggta agatagacat attcttggag aggatttggg 60caca
649163DNAArtificial SequenceSynthetic polynucleotide 91agttgagctc
cttcaacgtt cttcaaaggt aagatagaca tattcttgga gagtttgggc 60aca
639267DNAArtificial SequenceSynthetic polynucleotide 92agttgagctc
cttcaacgtt catgttcaaa ggtaagatag acatattctt ggagagattt 60gggcaca
679324DNAArtificial SequenceSynthetic polynucleotide 93ttttaaatag
ataaatttct cgcg
249464DNAArtificial SequenceSynthetic polynucleotide 94gaagatttgg
gcacgttaag ctcgaaggac cttcttcctt aaagcaaatc aggtcaagga 60aggt
649539DNAArtificial SequenceSynthetic polynucleotide 95gaagatttgg
gcaccttctt ccttaaagtc aaggaaggt
399658DNAArtificial SequenceSynthetic polynucleotide 96gaagatttgg
gcacgtcgaa ggaccttctt ccttaaagca aatcaggtca aggaaggt
589765DNAArtificial SequenceSynthetic polynucleotide 97gaagatttgg
gcacgttaag cttcgaagga ccttcttcct taaagcaaat caggtcaagg 60aaggt
659851DNAArtificial SequenceSynthetic polynucleotide 98agttacgcat
ctttggaccc gatgttaccg gttagtgata ctcaggtatt g
519911DNAArtificial SequenceSynthetic polynucleotide 99syasdmvsdt v
1110051DNAArtificial
SequenceSynthetic polynucleotide 100agttacgcat ctttggaccc gatgtaaccg
gttagtgata ctcaggtatt g 511016DNAArtificial
SequenceSynthetic polynucleotide 101syasdm
610292DNAArtificial SequenceSynthetic
polynucleotide 102tttttctagt atgtctgata cactggagag ataccataga tgcagctata
tttggaacag 60cttgagcgtc aactggattc atctttgagg ct
9210376DNAArtificial SequenceSynthetic polynucleotide
103tttttctagt atgtctgata ccatagatgc agctatattt ggaacagctt gagcaactgg
60attcatcttt gaggct
7610474DNAArtificial SequenceSynthetic polynucleotide 104tttttctagt
atctccactg gagagatacc atagatgcag ctatatttgg aaaactggat 60tcatctttga
ggct
7410592DNAArtificial SequenceSynthetic polynucleotide 105tttttctagt
atgtctgata cactggagag ataccataga tgcagctata tttggaacag 60cttgagcgtc
aactggattc atctttgagg ct
9210651DNAArtificial SequenceSynthetic polynucleotide 106tttttctact
ggagagatac catagatgca gctatattca tctttgaggc t
5110754DNAArtificial SequenceSynthetic polynucleotide 107tttttctagt
atatttggaa cagcttgagc gtcactggat tcatctttga ggct
5410889DNAArtificial SequenceSynthetic polynucleotide 108tttttctagt
atgtctgata cactggagag ataccataga tgcagctata tttggaacag 60cttgagcaac
tggattcatc tttgaggct
8910969DNAArtificial SequenceSynthetic polynucleotide 109tttttctagt
atgtctgata cactggagag ataccataga tgcagctata tttggaacag 60cttgaggct
6911088DNAArtificial SequenceSynthetic polynucleotide 110tttttctagt
atgtctgata cactggagag ataccataga tgcagctata tttggaacag 60cttgagaact
ggattcatct ttgaggct
8811191DNAArtificial SequenceSynthetic polynucleotide 111tttttctagt
atgtctgata cactggagag ataccataga tgcagctata tttggaacag 60cttgagcgta
cctggattca tctttgaggc t
9111227DNAArtificial SequenceSynthetic polynucleotide 112ctcataaaat
gaactaattt ttttaac
2711350DNAArtificial SequenceSynthetic polynucleotide 113gaccttgaaa
ctggccagtc ttcaaaggat tcacaggtta cttcatgcaa
5011447DNAArtificial SequenceSynthetic polynucleotide 114gaccttgaaa
ctggccagtc ttcaaaggca caggttactt catgcaa
4711554DNAArtificial SequenceSynthetic polynucleotide 115taaacaggca
agttactttt gctaagagaa gaaatggact tcttaagaaa gctt
5411655DNAArtificial SequenceSynthetic polynucleotide 116taaacaggca
agttactttt gctaagagaa ggaaatggac ttcttaagaa agctt
5511754DNAArtificial SequenceSynthetic polynucleotide 117taaataggca
agtcactttt gctaagagaa gaaatggact tcttaaaaaa gctt
5411855DNAArtificial SequenceSynthetic polynucleotide 118taaataggca
agtcactttt gctaagagaa ggaaatggac ttcttaaaaa agctt
5511946DNAArtificial SequenceSynthetic polynucleotide 119gataccatgg
ccagtcttca aaggattcac aggttacttc atgcaa
461207DNAArtificial SequenceSynthetic polynucleotide 120gatacaa
712154DNAArtificial
SequenceSynthetic polynucleotide 121taaacaggca agttactttt gctaagagaa
gaaatggact tcttaagaaa gctt 5412252DNAArtificial
SequenceSynthetic polynucleotide 122taaacaggca agttactttt gctaagagaa
aatggacttc ttaagaaagc tt 5212354DNAArtificial
SequenceSynthetic polynucleotide 123taaataggca agtcactttt gctaagagaa
gaaatggact tcttaaaaaa gctt 5412455DNAArtificial
SequenceSynthetic polynucleotide 124taaataggca agtcactttt gctaagagaa
ggaaatggac ttcttaaaaa agctt 5512567DNAArtificial
SequenceSynthetic polynucleotide 125ttttcttcta gtatgtctga tacactggag
agagatttgg aacagcttga gcgtcaactg 60gattcat
6712663DNAArtificial SequenceSynthetic
polynucleotide 126ttttcttcta gtatgtctga taacactgga gagagatttg gaacagcttg
agctatcaaa 60agg
6312764DNAArtificial SequenceSynthetic polynucleotide
127ttttcttcta gtatgtctga cactggagag agatttggaa cagcttgagc gtaactggat
60tcat
64
User Contributions:
Comment about this patent or add new information about this topic: