Patent application title: COMPOSITIONS AND METHODS FOR CONTROLLING ARTHORPOD PARASITE AND PEST INFESTATIONS
Inventors:
Alex Inberg (Ballwin, MO, US)
Mahak Kapoor (Chesterfield, MO, US)
Jay Evans (Harwood, MD, US)
IPC8 Class: AC12N15113FI
USPC Class:
Class name:
Publication date: 2022-01-06
Patent application number: 20220002720
Abstract:
This application provides and discloses anti-parasitic, anti-pest or
insecticidal nucleic acid molecules and their calmodulin target genes for
the control of arthropod parasites and pests. This application further
provides methods and compositions for the control and treatment of
parasites and pests in Apis mellifera (honey bee) hives.Claims:
1-29. (canceled)
30. A method of providing a composition to a honeybee, comprising providing the bee an effective amount of a composition comprising an excipient and a nucleic acid that is at least 95% identical or complementary to at least 21 contiguous nucleotides of SEQ ID NO:3, or an RNA transcribed therefrom.
31. (canceled)
32. The method of claim 30, wherein said honeybee is a forager.
33. The method of claim 30, wherein said honeybee is a hive bee.
34. The method of claim 30, wherein said honeybee is a bee of a colony and said feeding reduces the susceptibility of said bee colony to Varroa destructor.
35. A method of reducing the parasitation of a honeybee by Varroa destructor, comprising providing the bee an effective amount a nucleic acid composition, wherein said nucleic acid is is at least 95% identical or complementary to at least 21 contiguous nucleotides of SEQ ID NO:3, or an RNA transcribed therefrom, thereby reducing the parasitation of said bee by Varroa destructor.
36. The method of claim 35, wherein said honeybee is a forager.
37. The method of claim 35, wherein said honeybee is a hive bee.
38. The method of claim 35, wherein said honeybee is a bee of a colony and said feeding reduces the parasitation of said bee colony by Varroa destructor.
39. The method of claim 38, wherein said reduction of parasitation of said bee colony comprises survival of less than 25%, 15%, 10%, or 5% of said Varroa destructor.
40. A method of reducing the parasite load of a honeybee hive, comprising providing said hive an effective amount of a nucleic acid that is at least 95% identical or complementary to SEQ ID NO:3, or an RNA transcribed therefrom, whereby the parasite load of said hive is reduced.
41. The method of claim 40, wherein said parasite is Varroa destructor.
42. The method of claim 40, wherein said honeybee hive has an initial parasite load of at least 1 parasite per 100 bees.
43. The method of claim 42, wherein said honeybee hive has an initial parasite load of 2, 3, 5, 10, or more parasites per 100 bees.
44. The method of claim 40, wherein said parasite load is reduced to less than 2, less than 3, less than 5, or less than 10 parasites per 100 bees.
45. A method of selectively treating an arthropod species for parasites, comprising delivering an effective amount of a nucleic acid that is at least 95% identical or complementary to SEQ ID NO: 3, or an RNA transcribed therefrom, to an arthropod species.
46. The method of claim 45, wherein said treatment decreases the parasitic load of said arthropod species, reduces the death of said arthropod species, or prevents parasitation of said arthropod species.
47. The method of claim 45, wherein said arthropod species is Apis mellifera or Apis cerana.
48. The method of claim 45, wherein said arthropod species is a colony species.
49. The method of claim 48, wherein said arthropod species is Apis Mellifera.
50. The method of claim 45, wherein said parasites is Acari (ticks, mites).
51. The method of claim 50, wherein said parasite is a mite or a tick.
53-62. (canceled)
Description:
INCORPORATION OF SEQUENCE LISTING
[0001] A computer readable form of the Sequence Listing is filed with this application by electronic submission and is incorporated into this application by reference in its entirety. The Sequence Listing is contained in the file created on Dec. 13, 2016, having the file name P34094US02_SEQ.txt, and is 65,536 bytes in size (as measured in the MS-Windows.RTM. operating system).
FIELD OF THE DISCLOSURE
[0002] Methods and compositions for controlling parasite and pest infestations of arthropods are provided. Also provided are methods and compositions for controlling Varroa mite infestation in bees.
BACKGROUND
[0003] Arthropods of various species are increasingly cultured on a commercial scale. Insects and their grubs are nutritious and are eaten both raw and cooked in many cultures. Crustaceans such as crabs, lobsters, crayfish, shrimp and prawns are farmed on a large commercial scale and are an important part of the human diet. In addition to the culture of arthropod species for food, arthropods are also cultured as part of pest management strategies, including for the biological control of other arthropods, for example the culture parasitic wasps for the control of roaches and fire ants. Arthropods may also serve as the source of raw materials such as dyes, drugs, medicines, and antibiotics. Growing with the increasing importance of arthropod culture, are various pests and parasites that destroy the arthropod colonies or greatly reduce the yields of products obtained from arthropod culture. Accordingly, there is an increasing need for methods to control arthropod pests and parasites.
[0004] Among the most important species of cultured arthropods is the honey bee. Honey bees, Apis mellifera, are required for the effective pollination of crops and are therefore critical to world agriculture. Honey bees also produce economically important products, including honey and bees wax. Honey bees are susceptible to a number of parasites and pathogens, including the ectoparasitic mite, Varroa destructor.
[0005] Varroa (Varroa destructor) mites are the number one parasite of managed honey bees (Apis mellifera) and the biggest global threat to commercial beekeeping (Rosenkranz et al. 2010). An adult mite typically enters the worker and drone brood cells before they are capped, primed by honeybee brood pheromone. The mite submerges into the brood food that the bees put inside the cell in anticipation of capping, most probably to avoid being recognized and removed by nurse bees. Following capping of the brood cells by the nurse bees, the mite adheres to the larva and starts to ingest bee larval hemolymph. This process primes oogenesis in the mites, and is followed several days later in laying of male and female eggs. Eventually, the adult Varroa exit the cell and cling onto the emerging bees. Varroa directly damages the honeybees in multiple ways, most notably by draining resources, adversely affecting the innate honey bee immune system, and by being a very effective vector of viruses (Di Prisco et al. 2011), some of which are known to replicate in the mite, thus dramatically increasing the viral load.
[0006] A safe, efficacious and long-lasting solution to the Varroa problem is an ongoing challenge that has yet to be met. Currently, beekeepers use a plethora of methods to control Varroa levels that include various chemical miticides, most of which have lost efficacy and are toxic and/or leave residues in wax and honey. Other methods include application of oxalic or formic acid, monoterpenes (thymol) and a variety of other management practices, with highly variable outcomes, including toxicity to the treated colonies. Breeding of bees for resistance to Varroa, such as selection for Hygienic behavior which results in the removal of infested brood, has provided a limited practical success.
[0007] Colony Collapse Disorder (CCD) of honeybees is threatening to annihilate U.S. and world agriculture. Indeed, in the recent outbreak of CCD in the U.S in the winter of 2006-2007, an estimated 25% or more of the 2.4 million honeybee hives were lost because of CCD. An estimated 23% of beekeeping operations in the United States suffered from CCD over the winter of 2006-2007, affecting an average of 45% of the beekeepers operations. In the winter of 2007-2008, the CCD action group of the USDA-ARS estimated that a total of 36% of all hives from commercial operations were destroyed by CCD.
[0008] CCD is characterized by the rapid loss from a colony of its adult bee population, with dead adult bees usually found at a distance from the colony. At the final stages of collapse, a queen is attended only by a few newly emerged adult bees. Collapsed colonies often have considerable capped brood and food reserves. The phenomenon of CCD was first reported in 2006; however, beekeepers noted unique colony declines consistent with CCD as early as 2004. Various factors such as mites and infectious agents, weather patterns, electromagnetic (cellular antennas) radiation, pesticides, poor nutrition and stress have been postulated as causes. To date, control of CCD has focused on Varroa mite control, sanitation and removal of affected hives, treating for opportunistic infections (such as Nosema) and improved nutrition. No effective preventative measures have been developed to date.
[0009] Varroa mites parasitize pupae and adult bees and reproduce in the pupal brood cells. The mites use their mouths to puncture the exoskeleton and feed on the bee's hemolymph. These wound sites in the exoskeleton harbor bacterial infections, such as Melissococcus pluton, which causes European foulbrood. In addition, to their parasitic effects, Varroa mites are suspected of acting as vectors for a number of honey bee pathogens, including deformed wing virus (DWV), Kashmir bee virus (KBV), acute bee paralysis virus (ABPV) and black queen cell virus (BQCV), and may weaken the immune systems of their hosts, leaving them vulnerable to infections. If left untreated Varroa infestations typically result in colony-level mortality.
[0010] Current methods of treating Varroa infestations are proving to be ineffective as the mites develop resistance to existing miticides. In addition, the use of such miticides may introduce injurious chemicals into honey that is intended for human consumption.
SUMMARY OF THE INVENTION
[0011] The present disclosure provides for, and includes, selective insecticide compositions comprising an anti-parasitic, anti-pest or insecticidal nucleic acid molecule having a sequence that is essentially complementary or essentially identical to a region of a calmodulin gene sequence or an RNA transcribed therefrom. In some aspects, the composition further comprises an excipient.
[0012] In one aspect, the nucleic acid molecule in the selective insecticide composition is a dsRNA. In some aspects, the dsRNA is an siRNA.
[0013] In one aspect, the calmodulin gene sequence has at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% or 100% sequence identity to a sequence selected from SEQ ID NOs:1-4, 6, 23, 26-35, and 69-89. In some aspects, the calmodulin gene sequence comprises at least 18 contiguous nucleotides of a sequence selected from SEQ ID NOs: 1-4, 6, 23, 26-35, and 69-89.
[0014] In one aspect, the selective insecticide composition further comprises one or more anti-parasitic, anti-pest or insecticidal nucleic acid molecules that are essentially complementary or essentially identical to a first region of a calmodulin gene sequence. In some aspects, the one or more nucleic acid molecules comprise a second nucleic acid sequence complementary to a second region of a calmodulin gene sequence.
[0015] In one aspect, the selective insecticide composition is bee-ingestible, bee-absorbable, mite-ingestible, or mite-absorbable.
[0016] In one aspect, the expedient is selected from the group consisting of protein, pollen, carbohydrate, polymer, liquid solvent, sugar syrup, sugar solid, and semi-solid feed. In some aspects, the liquid solvent is selected from the group consisting of sucrose solution and corn syrup solution. In some aspects, the protein is selected from the group consisting of pollen and soy protein. In another aspect, the excipient is a solid selected from sugar, a sugar substitute, or a sugar supplement. In some aspects, the sugar solid comprises sugar microparticles impregnated with a dsRNA nucleic acid sequence.
[0017] In one aspect, the instant application discloses bee-ingestible compositions comprising a bee feed and a nucleic acid molecule having a sequence that is essentially identical or essentially complementary to one or more regions of a calmodulin gene sequence, or an RNA transcribed therefrom. In some aspects, the bee feed comprises a bee food selected from the group consisting of corn syrup, a pollen substitute, pollen, a pollen patty, and a fondant. In some aspects, the bee feed further comprises one or more of a mineral salt, an essential oil, Brewers Yeast, yeast extract, trehalose, tryptone, dry milk, lecithin, and Vitamin C. Examples of essential oils include, but are not limited to, wintergreen oil, spearmint oil, peppermint oil, lemongrass oil and tea tree oil.
[0018] In another aspect, the instant application discloses a nucleic acid construct comprising an anti-parasitic, anti-pest or insecticidal nucleic acid sequence that is essentially identical or complementary to a region of a calmodulin gene sequence, or an RNA transcribed therefrom, operably linked to a promoter sequence functional in a host cell and capable of producing a dsRNA when introduced into said host cell. In some aspects, the nucleic acid construct further comprises at least one regulatory element selected from the group consisting of translation leader sequences, introns, enhancers, stem-loop structures, repressor binding sequences, termination sequences, pausing sequences, and polyadenylation recognition sequences. In some aspects, the host cell is a bacterial or yeast cell.
[0019] In another aspect, the instant application discloses a method of providing a composition to a honeybee, comprising providing the bee an effective amount of a composition comprising an anti-parasitic, anti-pest or insecticidal nucleic acid that is essentially identical or essentially complementary to one or more regions of a calmodulin gene sequence, or an RNA transcribed therefrom, whereby the nucleic acid is present in honeybee tissue.
[0020] In another aspect, the instant application discloses a method of treating or preventing disease in a honeybee colony, comprising providing an effective amount of a composition comprising an anti-parasitic, anti-pest or insecticidal nucleic acid that is essentially identical or essentially complementary to one or more regions of a calmodulin gene sequence to a honeybee whereby the nucleic acid is present in honeybee tissue. In some aspects, the calmodulin gene sequence is a Varroa destructor calmodulin gene sequence.
[0021] In another aspect, the instant application discloses a method of reducing parasitation of a bee by Varroa destructor, comprising providing the bee an effective amount of an anti-parasitic, anti-pest or insecticidal nucleic acid composition, wherein the nucleic acid is essentially identical or essentially complementary to one or more regions of a Varroa destructor calmodulin gene sequence, or an RNA transcribed therefrom, thereby reducing the parasitation of the bee by Varroa destructor.
[0022] In another aspect, the instant application discloses a method of reducing the parasite load of a honeybee hive, comprising providing said hive an effective amount of an anti-parasitic, anti-pest or insecticidal nucleic acid that is essentially identical or essentially complementary to one or more regions of a parasite calmodulin gene sequence, or an RNA transcribed therefrom, whereby the parasite load of said hive is reduced.
[0023] In another aspect, the instant application discloses a method of selectively treating an arthropod species for parasites, comprising delivering an effective amount of an anti-parasitic, anti-pest or insecticidal nucleic acid that is essentially identical or essentially complementary to one or more regions of a parasite calmodulin gene sequence, or an RNA transcribed therefrom, to an arthropod species.
[0024] In another aspect, the instant application provides for, and discloses a method of treating or preventing Colony Collapse Disorder in a honeybee colony, comprising providing an effective amount of a composition to a honeybee colony comprising an anti-parasitic, anti-pest or insecticidal nucleic acid molecule having a sequence that is essentially identical to or essentially complementary to one or more regions of a Varroa destructor calmodulin gene sequence whereby the level of Varroa destructor infestation is reduced or prevented.
BRIEF DESCRIPTION OF THE DRAWINGS
[0025] FIG. 1 presents a phylogenetic tree for Calmodulin (CAM) genes from different species. The number immediately preceding the species name corresponds to a Sequence Identification Number (SEQ ID NO).
[0026] FIG. 2 presents the survival rate of mites exposed to a nucleic acid of SEQ ID NO: 3 (CAM373) in a direct feeding bioassay at 3 day post treatment relative to a non treated control (CNTR) or a non-specific sequence (SCRAM, SEQ ID NO: 5).
[0027] FIG. 3 Panel A presents a gene expression analysis at five day post treatment with a nucleic acid of SEQ ID NO: 3 (CAM373) or SEQ ID NO: 4 (CAM186) relative to controls. Panel B shows the survival rate of mites exposed to nucleic acids of SEQ ID NOS: 3 (CAM373) and 4 (CAM186) relative to controls.
[0028] FIG. 4 presents a mite load/100 bees of treated hives relative to untreated controls over a distinct time period.
[0029] FIG. 5 presents the % survival of mites treated with SEQ ID NO: 3, SEQ ID NO: 88 or SEQ ID NO: 89 relative to untreated (NTC) at Day 5 (D %) or Day 6 (D6) post-treatment.
[0030] FIG. 6 presents the % survival of mites treated with SEQ ID NO: 3 or a mixture of SEQ ID NO: 88 and SEQ ID NO: 89 relative to untreated (NTC) at Day 5 (5), Day 6 (6) and Day 7 (7).
[0031] FIG. 7 presents the Varroa mite load/100 bees of treated hives relative to untreated controls over a 17 week time period. The leftmost bars represent hives treated with the non-specific sequence (SCRAM, SEQ ID NO: 5), the middle bars are hives left untreated, and the rightmost bar are hives treated with SEQ ID NO: 3 (CAM 373).
DETAILED DESCRIPTION
[0032] Unless defined otherwise, technical and scientific terms as used herein have the same meaning as commonly understood by one of ordinary skill in the art. One skilled in the art will recognize many methods can be used in the practice of the present disclosure. Indeed, the present disclosure is in no way limited to the methods and materials described. Any references cited herein are incorporated by reference in their entireties. For purposes of the present disclosure, the following terms are defined below.
[0033] It is understood that any Sequence Identification Number (SEQ ID NO) disclosed in the instant application can refer to either a DNA sequence or a RNA sequence, depending on the context where that SEQ ID NO is mentioned, even if that SEQ ID NO is expressed only in a DNA sequence format or a RNA sequence format. For example, SEQ ID NO: 1 is expressed in a DNA sequence format (e.g., reciting T for thymine), but it can refer to either a DNA sequence that corresponds to a mature Varroa destructor calmodulin nucleic acid sequence, or the RNA sequence of a mature Varroa destructor calmodulin molecule nucleic acid sequence. Similarly, though SEQ ID NO: 3 is expressed in a RNA sequence format (e.g., reciting U for uracil), depending on the actual type of molecule being described, SEQ ID NO: 3 can refer to either the sequence of a RNA molecule comprising a dsRNA, or the sequence of a DNA molecule that corresponds to the RNA sequence shown. In any event, both DNA and RNA molecules having the sequences disclosed with any substitutes are envisioned.
[0034] As used herein the term "about" refers to .+-.10%.
[0035] As used herein, the singular form "a", "an" and "the" include plural references unless the context clearly dictates otherwise. For example, the term "a compound" or "at least one compound" may include a plurality of compounds, including mixtures thereof.
[0036] As used herein, "essentially identical" or "essentially complementary" refers to a nucleic acid (or at least one strand of a double-stranded nucleic acid or portion thereof, or a portion of a single strand nucleic acid) that hybridizes under physiological conditions to the endogenous gene, an RNA transcribed therefrom, or a fragment thereof, to effect regulation or suppression of the endogenous gene. For example, in some aspects, a nucleic acid has 100 percent sequence identity or at least about 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, or 99 percent sequence identity when compared to a region of 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60 or more contiguous nucleotides in the target gene or RNA transcribed from the target gene. In some aspects, a nucleic acid has 100 percent sequence complementarity or at least about 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, or 99 percent sequence complementarity when compared to a region of 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60 or more contiguous nucleotides in the target gene or RNA transcribed from the target gene. In some aspects, a nucleic acid has 100 percent sequence identity with or complementarity to one allele or one family member of a given target gene (coding or non-coding sequence of a gene). In some aspects, a nucleic acid has at least about 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, or 99 percent sequence identity with or complementarity to multiple alleles or family members of a given target gene. In some aspects, a nucleic acid has 100 percent sequence identity with or complementarity to multiple alleles or family members of a given target gene.
[0037] In some aspects, the nucleic acid is essentially identical or essentially complementary to at least about 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70 or more contiguous nucleotides of an endogenous calmodulin gene of a targeted pest, or an RNA transcribed therefrom. The nucleic acid may be a single-stranded DNA, a single-stranded RNA, a double-stranded RNA, a double-stranded DNA, or a double-stranded DNA/RNA hybrid. In some aspects, the calmodulin gene sequence is a Varroa destructor calmodulin gene sequence. In an aspect, the calmodulin gene sequence is a calmodulin gene sequence selected from SEQ ID NO: 1. In an aspect, the calmodulin gene sequence is a calmodulin gene sequence selected from SEQ ID NO: 2. In an aspect, the calmodulin gene sequence is a calmodulin gene sequence selected from SEQ ID NO: 3. In an aspect, the calmodulin gene sequence is a calmodulin gene sequence selected from SEQ ID NO: 4. In an aspect, the calmodulin gene sequence is a calmodulin gene sequence selected from SEQ ID NO: 69. In an aspect, the calmodulin gene sequence is a calmodulin gene sequence selected from SEQ ID NO: 70. In an aspect, the calmodulin gene sequence is a calmodulin gene sequence selected from SEQ ID NOs: 71-87. In an aspect, the calmodulin gene sequence is a calmodulin gene sequence selected from SEQ ID NO: 88. In an aspect, the calmodulin gene sequence is a calmodulin gene sequence selected from SEQ ID NO: 89.
[0038] As used herein, the term "treating" includes abrogating, substantially inhibiting, slowing or reversing the progression of a condition, substantially ameliorating clinical or aesthetical symptoms of a condition or substantially preventing the appearance of clinical or aesthetical symptoms of a condition. In an aspect according to the present disclosure, a composition may be used to treat an organism or colony of organisms for the effects of parasitation. In an aspect, a nucleic acid composition may be used to treat a host organism or colony for parasites. In an aspect, the host organism is a bee and the parasite is the mite, Varroa destructor.
[0039] As used herein, the phrase "RNA silencing" refers to a group of regulatory mechanisms (e.g. RNA interference (RNAi), transcriptional gene silencing (TGS), post-transcriptional gene silencing (PTGS), quelling, co-suppression, and translational repression) mediated by RNA molecules which result in the inhibition or "silencing" of the expression of a corresponding protein-coding gene or bee pathogen RNA sequence. RNA silencing has been observed in many types of organisms, including plants, animals, and fungi. In aspects according the present disclosure, nucleic acid compositions provide for RNA silencing. In certain aspects, the nucleic acid compositions provide for RNA silencing and mortality in a parasite.
[0040] As used herein, the term "RNA silencing agent" refers to a nucleic acid which is capable of inhibiting or "silencing" the expression of a target gene. In certain aspects, the RNA silencing agent is capable of preventing complete processing (e.g., the full translation and/or expression) of an mRNA molecule through a post-transcriptional silencing mechanism. RNA silencing agents can be single- or double-stranded RNA or single- or double-stranded DNA or double-stranded DNA/RNA hybrids or modified analogues thereof. In some aspects, the RNA silencing agents are selected from the group consisting of (a) a single-stranded RNA molecule (ssRNA), (b) a ssRNA molecule that self-hybridizes to form a double-stranded RNA molecule, (c) a double-stranded RNA molecule (dsRNA), (d) a single-stranded DNA molecule (ssDNA), (e) a ssDNA molecule that self-hybridizes to form a double-stranded DNA molecule, and (f) a single-stranded DNA molecule including a modified Pol III gene that is transcribed to an RNA molecule, (g) a double-stranded DNA molecule (dsDNA), (h) a double-stranded DNA molecule including a modified Pol III promoter that is transcribed to an RNA molecule, (i) a double-stranded, hybridized RNA/DNA molecule, or combinations thereof. In some aspects these polynucleotides include chemically modified nucleotides or non-canonical nucleotides. In some aspects, the RNA silencing agents are noncoding RNA molecules, for example RNA duplexes comprising paired strands, as well as precursor RNAs from which such small non-coding RNAs can be generated. In some aspects, the RNA silencing agents are dsRNAs such as siRNAs, miRNAs and shRNAs. In one aspect, the RNA silencing agent is capable of inducing RNA interference. In another aspect, the RNA silencing agent is capable of mediating translational repression. In an aspect, the RNA silencing agent is capable of inhibiting the expression of a calmodulin gene. In another aspect, the RNA silencing agent is capable of being used in methods to inhibit the expression of a target gene and thereby kill a target organism. In certain aspects, the target gene is a calmodulin gene and the target organism is Varroa destructor.
[0041] RNA interference refers to the process of sequence-specific post-transcriptional gene silencing in animals mediated by small RNAs. The corresponding process in plants is commonly referred to as post-transcriptional gene silencing or RNA silencing and is also referred to as quelling in fungi. While not being limited to any particular theory, the process of post-transcriptional gene silencing is thought to be an evolutionarily-conserved cellular defense mechanism used to prevent the expression of foreign genes and is commonly shared by diverse flora and phyla. Such protection from foreign gene expression may have evolved in response to the production of double-stranded RNAs (dsRNAs) derived from viral infection or from the random integration of transposon elements into a host genome via a cellular response that specifically destroys homologous single-stranded RNA or viral genomic RNA. In aspects according to the present disclosure, a nucleic acid composition results in RNA interference in a target organism. In certain aspects, the nucleic acid composition results in RNA interference in Varroa destructor when present in the host organism, the bee. According to aspects of the present disclosure, a selective insecticide may cause RNA interference in the targeted organism, while having no RNA interference activity in non-target organisms.
[0042] As used herein, "small RNA" refers to any RNA molecule that is at least 15 base pairs in length, generally 15-30 nucleotides long, preferably 20-24 nucleotides long. In aspects according to the present disclosure, a "small RNA" is greater than 50 base pairs in length. In an aspect, the small RNA is greater than 50 base pairs in length but less than about 500 base pairs. In an aspect, the small RNA is greater than 100 base pairs in length but less than about 500 base pairs. In an aspect, the small RNA is greater than 200 base pairs in length but less than about 500 base pairs. A small RNA can be either double-stranded or single-stranded. Small RNA includes, without limitation, miRNA (microRNA), ta-siRNA (trans activating siRNA), siRNA, activating RNA (RNAa), nat-siRNA (natural anti-sense siRNA), hc-siRNA (heterochromatic siRNA), cis-acting siRNA, lmiRNA (long miRNA), IsiRNA (long siRNA) and easiRNA (epigenetically activated siRNA) and their respective precursors. In some embodiments, siRNA molecules of the disclosure are miRNA molecules, ta-siRNA molecules and RNAa molecules and their respective precursors. A small RNA may be processed in vivo by an organism to an active form. According to aspects of the present disclosure, a selective insecticide may be a small RNA.
[0043] In aspects according to the present disclosure, a small RNA is provided directly in a composition. In other aspects, a small RNA is produced by in vivo by an organism from either a DNA or an RNA precursor. In some aspects, the small RNA is produced as a product of a transgene in an organism, for example a yeast or bacterial cell. In certain aspects, a small RNA produced as a product of a transgene is produced as a precursor that is processed in vivo after ingestion or absorption by an organism. In other aspects, a small RNA produced as a product of a transgene is produced as a precursor that is processed in vivo after ingestion or absorption by an organism.
[0044] In some aspects, the RNA silencing agent may be an artificial microRNA. As used herein, an "artificial microRNA" (amiRNA) is a type of miRNA which is derived by replacing native miRNA duplexes from a natural miRNA precursor. Generally, an artificial miRNA is a non-naturally-existing miRNA molecule produced from a pre-miRNA molecule scaffold engineered by exchanging a miRNA sequence of a naturally-existing pre-miRNA molecule for a sequence of interest which corresponds to the sequence of an artificial miRNA. In aspects according to the present disclosure a nucleic acid composition may be an amiRNA composition.
[0045] Various studies demonstrate that long dsRNAs can be used to silence gene expression without inducing the stress response or causing significant off-target effects--see for example (Strat et al., Nucleic Acids Research, 2006, Vol. 34, No. 13 3803-3810; Bhargava A et al. Brain Res. Protoc. 2004; 13:115-125; Diallo M., et al., Oligonucleotides. 2003; 13:381-392; Paddison P. J., et al., Proc. Natl Acad. Sci. USA. 2002; 99:1443-1448; Tran N., et al., FEBS Lett. 2004; 573:127-134). The present disclosure provides for, and includes, methods and compositions having long dsRNAs.
[0046] As used herein, with respect to a nucleic acid sequence, nucleic acid molecule, or a gene, the term "natural" or "native" means that the respective sequence or molecule is present in a wild-type organism, that has not been genetically modified or manipulated by man. A small RNA molecule naturally targeting a target gene means a small RNA molecule present in a wild-type organism, the cell has not been genetically modified or manipulated by man which is targeting a target gene naturally occurring in the respective organism.
[0047] As used herein, the terms "homology" and "identity" when used in relation to nucleic acids, describe the degree of similarity between two or more nucleotide sequences. The percentage of "sequence identity" between two sequences is determined by comparing two optimally aligned sequences over a comparison window, such that the portion of the sequence in the comparison window may comprise additions or deletions (gaps) as compared to the reference sequence (which does not comprise additions or deletions) for optimal alignment of the two sequences. The percentage is calculated by determining the number of positions at which the identical nucleic acid base or amino acid residue occurs in both sequences to yield the number of matched positions, dividing the number of matched positions by the total number of positions in the window of comparison, and multiplying the result by 100 to yield the percentage of sequence identity. A sequence that is identical at every position in comparison to a reference sequence is said to be identical to the reference sequence and vice-versa. An alignment of two or more sequences may be performed using any suitable computer program. For example, a widely used and accepted computer program for performing sequence alignments is CLUSTALW v1.6 (Thompson, et al. Nucl. Acids Res., 22: 4673-4680, 1994).
[0048] As used herein, the terms "exogenous polynucleotide" and "exogenous nucleic acid molecule" relative to an organisms refer to a heterologous nucleic acid sequence which is not naturally expressed within that organism. An exogenous nucleic acid molecule may be introduced into an organism in a stable or transient manner. An exogenous nucleic acid molecule may comprise a nucleic acid sequence which is identical or partially homologous to an endogenous nucleic acid sequence of the organism or a pest or pathogen of that organism. In certain aspects, an "exogenous polynucleotide" and "exogenous nucleic acid molecule" may refer to a parasite nucleic acid sequence expressed or present in a host, either transiently or stably. The present disclosure provides for, and includes, compositions comprising exogenous polynucleotides and exogenous nucleic acid molecules and methods for introducing them into a target organism. In some aspects, the present disclosure provides for, and includes, compositions comprising exogenous polynucleotides and exogenous nucleic acid molecules and methods for introducing them into a non-target organism that is a host to the target organism.
[0049] As used herein, a "control organism" means an organism that does not contain the recombinant DNA, small RNA, or other nucleic acid (e.g., protein, miRNA, small RNA-resistant target mRNA, dsRNA, target mimic) that provides for control of a pest or parasite. Control organisms are generally from same species and of the same developmental stage which is grown under the same growth conditions as the treated organism. Similarly, a "control colony" means a colony of organisms that do not contain the recombinant DNA, small RNA, or other nucleic acid (e.g., protein, miRNA, small RNA-resistant target mRNA, target mimic) that provides for control of a pest or parasite. Control colonies of organisms are generally from same species and of the same developmental stage which are grown under the same growth conditions as the treated colony of organisms. As a non-limiting example, a control organism could be a bee provided with a composition that does not contain a nucleic acid of the present disclosure. In another non-limiting example, a control organism could be a bee provided with a composition that contains a nucleic acid that does not act a an RNA silencer in either a bee or a parasite, such as SEQ ID NO: 5.
[0050] As used herein, the terms "improving," "improved," "increasing," and "increased" refer to at least about 2%, at least about 3%, at least about 4%, at least about 5%, at least about 10%, at least about 15%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 45%, at least about 50%, at least about 60%, at least about 70%, at least about 80%, at least about 90%, or greater increase in an organism or colony population, in increased productivity of an organism or colony (e.g., increased honey productions), increase growth rate of an organism or colony, or increased reproductive rate as compared to a control organism or colony. The present disclosure provides for methods of improving the health of an organism or colony by providing a selective insecticidal composition.
[0051] As used herein, "a reduction" of the level of an agent such as a protein or mRNA means that the level is reduced relative to an organism or colony lacking a nucleic acid capable of reducing the agent. Also as used herein, "a reduction" in reference to parasitation or parasite load, means that the level is reduced relative to an organism or colony lacking a nucleic acid, such as a dsRNA molecule, capable of reducing the viability, fecundity or number of the parasite. The present disclosure provides for, and includes, methods and compositions for reducing the level of a protein or mRNA and reducing the level or number of parasites.
[0052] As used herein, the term "at least a partial reduction" of the level of an agent, such as a protein or mRNA, means that the level is reduced at least 25% relative to an organism or colony lacking a nucleic acid, such as a dsRNA molecule, capable of reducing the agent. Also as used herein, "at least a partial reduction" in reference to parasitation or parasite load, means that the level is reduced at least 25% relative to an organism or colony lacking a nucleic acid, such as a dsRNA molecule, capable of reducing the viability, fecundity or number of the parasite. The present disclosure provides for, and includes, methods and compositions for at least partially reducing the level of a protein or mRNA and at least partially reducing the level or number of parasites.
[0053] As used herein, "a substantial reduction" of the level of an agent such as a protein or mRNA means that the level is reduced relative to an organism or colony lacking a nucleic acid, such as a dsRNA molecule, capable of reducing the agent, where the reduction of the level of the agent is at least 75%. Also as used herein, "a substantial reduction" in reference to parasitation or parasite load, means that the level is reduced at least 75% relative to an organism or colony lacking a nucleic acid, such as a dsRNA molecule, capable of reducing the viability, fecundity or number of the parasite. The present disclosure provides for, and includes, methods and compositions for substantially reducing the level of a protein or mRNA and substantially reducing the level or number of parasites.
[0054] As used herein, "an effective elimination" of an agent such as a protein or mRNA is relative to an organism or colony lacking a dsRNA molecule capable of reducing the agent, where the reduction of the level of the agent is greater than 95%. An agent, such as a dsRNA molecule, is preferably capable of providing at least a partial reduction, more preferably a substantial reduction, or most preferably effective elimination of another agent such as a protein or mRNA, or a parasite, wherein the agent leaves the level of a second agent, or host organism, essentially unaffected, substantially unaffected, or partially unaffected. Also as used herein, "an effective elimination" in reference to parasitation or parasite load, means that the level is reduced at least 95% relative to an organism or colony lacking a nucleic acid, such as a dsRNA molecule, capable of reducing the viability, fecundity or number of the parasite. The present disclosure provides for, and includes, methods and compositions for the effective elimination of a protein or mRNA and effectively eliminating parasites.
[0055] As used herein, the terms "suppress," "repress," and "downregulate" when referring to the expression or activity of a nucleic acid molecule in an organism are used equivalently herein and mean that the level of expression or activity of the nucleic acid molecule in a cell of an organism after applying a method of the present disclosure is lower than its expression or activity in the cell of an organism before applying the method, or compared to a control organism lacking a nucleic acid molecule of the disclosure. The present disclosure provides for, and includes, methods and compositions for suppressing, repressing and down-regulating the level of a protein or mRNA and suppressing, repressing and down-regulating the level or number of parasites.
[0056] The terms "suppressed," "repressed" and "downregulated" as used herein are synonymous and mean herein lower, preferably significantly lower, expression or activity of a targeted nucleic acid molecule. Also as used herein, "suppressed," "repressed" and "downregulated" in reference to parasitation or parasite load, means that the level of parasitation or parasite load is lower, preferably significantly lower, relative to an organism or colony lacking a nucleic acid, such as a dsRNA molecule, capable of reducing the viability, fecundity or number of the parasite. The present disclosure provides for, and includes, methods and compositions for suppressing, repressing and down-regulating the expression or activity of a protein or mRNA and suppressing, repressing and down-regulating the activity of parasites.
[0057] As used herein, a "suppression," "repression," or "downregulation" of the level or activity of an agent such as a protein, mRNA, or RNA means that the level or activity is reduced relative to a substantially identical cell, organism or colony grown under substantially identical conditions, lacking a nucleic acid molecule of the disclosure, for example, lacking the region complementary to at least a part of the precursor molecule of a dsRNA or siRNA, the recombinant construct or recombinant vector of the disclosure. As used herein, "suppression," "repression," or "downregulation" of the level or activity of an agent, such as, for example, a preRNA, mRNA, rRNA, tRNA, snoRNA, snRNA expressed by the target gene, and/or of the protein product encoded by it, means that the amount is reduced by 10% or more, for example, 20% or more, preferably 30% or more, more preferably 50% or more, even more preferably 70% or more, most preferably 80% or more, for example, 90%, relative to a cell, organism or colony lacking a recombinant nucleic acid molecule of the disclosure. The present disclosure provides for, and includes, methods and compositions for suppression, repression and downregulation of an agent such as a protein, mRNA, RNA, or parasite compared to an untreated organism or colony.
[0058] As used herein, the term "arthropod" refers to both adult and pupa of invertebrate animals having an exoskeleton (external skeleton), a segmented body, and jointed appendages. Arthropods are members of the phylum Arthropoda and includes the insects, arachnids, and crustaceans. Arthropods according to the present disclosure, include but are not limited to Apis mellifera, Apis cerana, Trigona minima, Halictidae, Bombus sp., fleas, flies, lice, ticks, mites, and beneficial insects. The present disclosure provides for, and includes, methods and compositions for treating arthropods as either a host or as a parasite or pest.
[0059] In an aspect, an arthropod may be an insect. In certain aspects, an insect may be a bee. As used herein, the term "bee" refers to both an adult bee and pupal cells thereof. According to one aspect, the bee is in a hive. An adult bee is defined as any of several winged, hairy-bodied, usually stinging insects of the superfamily Apoidea in the order Hymenoptera, including both solitary and social species and characterized by sucking and chewing mouthparts for gathering nectar and pollen. Examples of bee species include, but are not limited to, Apis, Bombus, Trigona, Osmia and the like. In one aspect, bees include, but are not limited to bumblebees (Bombus terrestris), honeybees (Apis mellifera) (including foragers and hive bees) and Apis cerana. The present disclosure provides for, and includes, methods and compositions for treating bees as a host for parasites, such as Varroa mites.
[0060] According to one aspect, a bee is part of a colony. The term "colony" refers to a population of bees comprising dozens to typically several tens of thousands of bees that cooperate in nest building, food collection, and brood rearing. A colony normally has a single queen, the remainder of the bees being either "workers" (females) or "drones" (males). The social structure of the colony is maintained by the queen and workers and depends on an effective system of communication. Division of labor within the worker caste primarily depends on the age of the bee but varies with the needs of the colony. Reproduction and colony strength depend on the queen, the quantity of food stores, and the size of the worker force. Honeybees can also be subdivided into the categories of "hive bees", usually for the first part of a workers lifetime, during which the "hive bee" performs tasks within the hive, and "forager bee", during the latter part of the bee's lifetime, during which the "forager" locates and collects pollen and nectar from outside the hive, and brings the nectar or pollen into the hive for consumption and storage. The present disclosure provides for, and includes, methods and compositions for treating insects colonies.
[0061] As used herein, the term "pest" refers to both adult and immature forms of an organism that is invasive or prolific, detrimental, troublesome, noxious, destructive, a nuisance to either plants or animals, or ecosystems. A parasite is a type of pest. It is possible for an organism to be a pest in one setting but beneficial, domesticated, or acceptable in another.
[0062] As used herein, the term "parasite" refers to both adult and immature forms of organisms that directly benefit at the expense of another, host, organism, for example by feeding on the blood or fluids of the host, living intracellularly in a host organism cell, or living within a body of a host organism. Parasites include organisms that are animals, fungi, bacterial or plants and are identified by their negative or detrimental interaction with a host. In some aspects, a parasite as used herein may in turn serve as a host to a second parasite. In some aspects, a parasite and host may be of the same type of organism (e.g., an arthropod host and an arthropod parasite).
[0063] Parasites include, but are not limited to, Acari (ticks, mites), Hippoboscoidea (flies), Ichneumonoidea (parasitic wasps), Oestridae (bot flies), Phthiraptera (lice), Siphonaptera (fleas), Tantulocarida, Pea crab, and Sacculina. As used herein, a pest may include both parasitic and non-parasitic life stages. The present disclosure provides for, and includes, methods and compositions for treating parasites. In an aspect, the parasite may be Varroa destructor.
[0064] As provided for, and included, in the present disclosure, parasites and/or pests include Varroa destructor, Ixodes scapularis, Solenopsis invicta, Tetranychus urticae, Aedes aegypti, Culex quinquefasciatus, Acyrthosiphon pisum, and Pediculus humanus. In aspects according to the present disclosure, selective insecticides may be selective for Varroa destructor, Ixodes scapularis, Solenopsis invicta, Tetranychus urticae, Aedes aegypti, Culex quinquefasciatus, Acyrthosiphon pisum, and Pediculus humanus and inactive, or significantly less active, against a non-target organism, such as the host organism.
[0065] As used herein, the term "excipient" refers to any inactive substance in a formulation having an active ingredient such as an anti-parasitic, anti-pest or insecticidal nucleic acid, including without limitation dsRNA, small RNAs, miRNAs and antisense RNAs. In some embodiments, an excipient includes substances that may provide additional functionality to a composition that is distinct to the anti-parasitic, anti-pest, or insecticidal nucleic acids. Excipient functions include, but are not limited to "bulking agents," "fillers," "diluents," and "carriers." Bulking up allows convenient and accurate dispensation of compositions of the present disclosure. Excipients can also serve to facilitate ingestion of the compositions by organisms and include various carbohydrates, proteins, fatty acids, pollens, and pollen substitutes. Excipients can also serve to facilitate absorption of compositions by organisms an include, for example, both aqueous and non-aqueous solutions of active ingredients. Non-limiting examples of excipients include corn syrup, sugar syrup, sugar solid, sugar semi-solids, pollen, soy protein, pollen and protein mixtures. Excipients may further comprise attractants, buffers and nutrient supplements. Compositions of the present disclosure may be coated with, encapsulated in, dissolved in, mixed with, or otherwise combined with an excipient. As used herein, the term excipient may refer to a mixture of inactive substances.
[0066] This application provides and discloses anti-parasitic, anti-pest or insecticidal nucleic acid molecules that are substantially homologous or complementary to a polynucleotide sequence of a calmodulin target gene or an RNA expressed from the calmodulin target gene or a fragment thereof and functions to suppress the expression of the calmodulin target gene or produce a knock-down phenotype. The anti-parasitic, anti-pest or insecticidal nucleic acid molecules are capable of inhibiting or "silencing" the expression of a calmodulin target gene. These nucleic acid molecules are generally described in relation to their "target sequence." In some embodiments, the target sequence is selected from SEQ ID NOs. 1, 2 and 6-77. The anti-parasitic, anti-pest or insecticidal nucleic acid molecules may be single-stranded DNA (ssDNA), single-stranded RNA (ssRNA), double-stranded RNA (dsRNA), double-stranded DNA (dsDNA), or double-stranded DNA/RNA hybrids. The nucleic acid molecules may comprise naturally-occurring nucleotides, modified nucleotides, nucleotide analogues or any combination thereof. In some embodiments, a anti-parasitic, anti-pest or insecticidal nucleic acid molecule may be incorporated within a larger polynucleotide, for example in a pri-miRNA molecule. In some embodiments, a anti-parasitic, anti-pest or insecticidal nucleic acid molecule may be processed into a small interfering RNA (siRNA). In some embodiments, nucleic acid molecules are provided or disclosed that are selectively anti-parasitical or miticidal, and methods of modulating expression or activity of their target genes to reduce or eliminate parasites from a colony or population.
[0067] In aspects according to the present disclosure, a anti-parasitic, anti-pest or insecticidal nucleic acid molecule comprises a nucleotide sequence having at least 80%, 85%, 88%, 90%, 92%, 95%, 96%, 97%, 98%, or 99% sequence identity to a sequence or a portion of a sequence selected from the group consisting of SEQ ID NOs: 1 to 89. In certain aspects, the nucleic acid molecule is selected from the group consisting of ssDNA, ssRNA, dsRNA, dsDNA, or DNA/RNA hybrids. Several embodiments relate to a dsRNA comprising a nucleotide sequence having at least 80%, 85%, 88%, 90%, 92%, 95%, 96%, 97%, 98%, or 99% sequence identity to a sequence or a portion of a sequence selected from the group consisting of SEQ ID NOs: 1 to 89. In another aspect, a DNA encoding at least one nucleic acid, such as a ssRNA or dsRNA, comprises a nucleotide sequence or a portion of a nucleotide sequence selected from the group consisting of SEQ ID NOs: 1 to 89, or having at least 80%, 85%, 88%, 90%, 92%, 95%, 96%, 97%, 98%, or 99% sequence identity to SEQ ID NOs: 1 to 89 or a portion thereof is provided.
[0068] In yet another aspect, a recombinant DNA encoding at least one nucleic acid, such as a ssRNA or dsRNA, comprises a nucleotide sequence or a portion of a nucleotide sequence selected from the group consisting of SEQ ID NOs: 1 to 89, a heterologous promoter and a transcription terminator sequence are provided. In another aspect, the present disclosure provides a recombinant DNA encoding at least one nucleic acid, such as a ssRNA or dsRNA, that comprises a nucleotide sequence having at least 80%, 85%, 88%, 90%, 92%, 95%, 96%, 97%, 98%, or 99% sequence identity to a sequence or a portion of a sequence selected from the group consisting of SEQ ID NOs: 1 to 89, and further comprising a heterologous promoter and a transcription terminator.
[0069] In aspects according to the present disclosure, a composition comprises an anti-parasitic, anti-pest or insecticidal nucleic acid molecule having 100 percent sequence identity to a region of 10 to 17 or more contiguous nucleotides in the target gene or RNA transcribed from the target gene. In an aspect, a composition comprises an anti-parasitic, anti-pest or insecticidal nucleic acid molecule having 100 percent sequence identity to a region of 18 to 25, or more contiguous nucleotides in the target gene or RNA transcribed from the target gene. In an aspect, a composition comprises an anti-parasitic, anti-pest or insecticidal nucleic acid molecule having 100 percent sequence identity to a region of 20 to 30, or more contiguous nucleotides in the target gene or RNA transcribed from the target gene. In an aspect, a composition comprises an anti-parasitic, anti-pest or insecticidal nucleic acid molecule having 100 percent sequence identity to a region of 25 to 35, or more contiguous nucleotides in the target gene or RNA transcribed from the target gene. In an aspect, a composition comprises an anti-parasitic, anti-pest or insecticidal nucleic acid molecule having 100 percent sequence identity to a region of 30 to 40, or more contiguous nucleotides in the target gene or RNA transcribed from the target gene. In an aspect, a composition comprises an anti-parasitic, anti-pest or insecticidal nucleic acid molecule having 100 percent sequence identity to a region of 40 to 50, or more contiguous nucleotides in the target gene or RNA transcribed from the target gene. In an aspect, a composition comprises an anti-parasitic, anti-pest or insecticidal nucleic acid molecule having 100 percent sequence identity to a region of 50 to 60, or more contiguous nucleotides in the target gene or RNA transcribed from the target gene. In an aspect, a composition comprises an anti-parasitic, anti-pest or insecticidal nucleic acid molecule having 100 percent sequence identity to a region of 45 to 60, or more contiguous nucleotides in the target gene or RNA transcribed from the target gene. In an aspect, a composition comprises an anti-parasitic, anti-pest or insecticidal nucleic acid molecule having 100 percent sequence identity to a region up to 60 contiguous nucleotides in the target gene or RNA transcribed from the target gene. In an aspect, a composition comprises an anti-parasitic, anti-pest or insecticidal nucleic acid molecule having 100 percent sequence identity to a region up to 50 contiguous nucleotides in the target gene or RNA transcribed from the target gene. In an aspect, a composition comprises an anti-parasitic, anti-pest or insecticidal nucleic acid molecule having 100 percent sequence identity to a region up to 40 contiguous nucleotides in the target gene or RNA transcribed from the target gene. In an aspect, a composition comprises an anti-parasitic, anti-pest or insecticidal nucleic acid molecule having 100 percent sequence identity to a region of at least 25 contiguous nucleotides in the target gene or RNA transcribed from the target gene. In an aspect, a composition comprises an anti-parasitic, anti-pest or insecticidal nucleic acid molecule having 100 percent sequence identity to a region of at least 35 contiguous nucleotides in the target gene or RNA transcribed from the target gene. In an aspect, a composition comprises an anti-parasitic, anti-pest or insecticidal nucleic acid molecule having 100 percent sequence identity to a region of at least 40 contiguous nucleotides in the target gene or RNA transcribed from the target gene. In an aspect, a composition comprises an anti-parasitic, anti-pest or insecticidal nucleic acid molecule having 100 percent sequence identity to a region of at least 50 contiguous nucleotides in the target gene or RNA transcribed from the target gene. In an aspect, a composition comprises an anti-parasitic, anti-pest or insecticidal nucleic acid molecule having 100 percent sequence identity to a region of at least 60 contiguous nucleotides in the target gene or RNA transcribed from the target gene. In an aspect, a target gene may be a gene comprising SEQ ID NO: 1 to 89. In an aspect, a target gene may be a gene comprising SEQ ID NO: 1. In an aspect, a target gene may be a gene comprising SEQ ID NO: 2. In an aspect, a target gene may be a gene comprising SEQ ID NO: 3. In an aspect, a target gene may be a gene comprising SEQ ID NO: 4. In an aspect, a target gene may be a gene comprising SEQ ID NO: 69. In an aspect, a target gene may be a gene comprising SEQ ID NO: 70. In an aspect, a target gene may be a gene comprising SEQ ID NO: 88. In an aspect, a target gene may be a gene comprising SEQ ID NO: 89. In an aspect, a target gene may be a gene comprising a sequence selected from SEQ ID NOs:71-87. In an aspect, a target gene may be a gene comprising a sequence selected from SEQ ID NOs:6-68.
[0070] In aspects according to the present disclosure, a composition comprises an anti-parasitic, anti-pest or insecticidal nucleic acid molecule having 99 percent sequence identity to a region of 10 to 17 or more contiguous nucleotides in the target gene or RNA transcribed from the target gene. In an aspect, a composition comprises an anti-parasitic, anti-pest or insecticidal nucleic acid molecule having 99 percent sequence identity to a region of 18 to 25, or more contiguous nucleotides in the target gene or RNA transcribed from the target gene. In an aspect, a composition comprises an anti-parasitic, anti-pest or insecticidal nucleic acid molecule having 99 percent sequence identity to a region of 20 to 30, or more contiguous nucleotides in the target gene or RNA transcribed from the target gene. In an aspect, a composition comprises an anti-parasitic, anti-pest or insecticidal nucleic acid molecule having 99 percent sequence identity to a region of 25 to 35, or more contiguous nucleotides in the target gene or RNA transcribed from the target gene. In an aspect, a composition comprises an anti-parasitic, anti-pest or insecticidal nucleic acid molecule having 99 percent sequence identity to a region of 30 to 40, or more contiguous nucleotides in the target gene or RNA transcribed from the target gene. In an aspect, a composition comprises an anti-parasitic, anti-pest or insecticidal nucleic acid molecule having 99 percent sequence identity to a region of 40 to 50, or more contiguous nucleotides in the target gene or RNA transcribed from the target gene. In an aspect, an anti-parasitic, anti-pest or insecticidal composition comprises a nucleic acid molecule having 99 percent sequence identity to a region of 50 to 60, or more contiguous nucleotides in the target gene or RNA transcribed from the target gene. In an aspect, a composition comprises an anti-parasitic, anti-pest or insecticidal nucleic acid molecule having 99 percent sequence identity to a region of 45 to 60, or more contiguous nucleotides in the target gene or RNA transcribed from the target gene. In an aspect, a composition comprises an anti-parasitic, anti-pest or insecticidal nucleic acid molecule having 99 percent sequence identity to a region up to 60 contiguous nucleotides in the target gene or RNA transcribed from the target gene. In an aspect, a composition comprises an anti-parasitic, anti-pest or insecticidal nucleic acid molecule having 99 percent sequence identity to a region up to 50 contiguous nucleotides in the target gene or RNA transcribed from the target gene. In an aspect, a composition comprises an anti-parasitic, anti-pest or insecticidal nucleic acid molecule having 99 percent sequence identity to a region up to 40 contiguous nucleotides in the target gene or RNA transcribed from the target gene. In an aspect, a composition comprises an anti-parasitic, anti-pest or insecticidal nucleic acid molecule having 99 percent sequence identity to a region of at least 25 contiguous nucleotides in the target gene or RNA transcribed from the target gene. In an aspect, a composition comprises an anti-parasitic, anti-pest or insecticidal nucleic acid molecule having 99 percent sequence identity to a region of at least 35 contiguous nucleotides in the target gene or RNA transcribed from the target gene. In an aspect, a composition comprises an anti-parasitic, anti-pest or insecticidal nucleic acid molecule having 99 percent sequence identity to a region of at least 40 contiguous nucleotides in the target gene or RNA transcribed from the target gene. In an aspect, a composition comprises an anti-parasitic, anti-pest or insecticidal nucleic acid molecule having 99 percent sequence identity to a region of at least 50 contiguous nucleotides in the target gene or RNA transcribed from the target gene. In an aspect, a composition comprises an anti-parasitic, anti-pest or insecticidal nucleic acid molecule having 99 percent sequence identity to a region of at least 60 contiguous nucleotides in the target gene or RNA transcribed from the target gene. In some aspects, an anti-parasitic, anti-pest or insecticidal nucleic acid has at least 98 percent sequence identity to a region of the target gene. In an aspect, an anti-parasitic, anti-pest or insecticidal nucleic acid has at least 97 percent sequence identity to a region of the target gene. In some aspects, an anti-parasitic, anti-pest or insecticidal nucleic acid has at least 96 percent sequence identity to a region of the target gene. In an aspect, an anti-parasitic, anti-pest or insecticidal nucleic acid has at least 95 percent sequence identity to a region of the target gene. In some aspects, an anti-parasitic, anti-pest or insecticidal nucleic acid has at least 94 percent sequence identity to a region of the target gene. In an aspect, an anti-parasitic, anti-pest or insecticidal nucleic acid has at least 93 percent sequence identity to a region of the target gene. In some aspects, an anti-parasitic, anti-pest or insecticidal nucleic acid has at least 92 percent sequence identity to a region of the target gene. In an aspect, an anti-parasitic, anti-pest or insecticidal nucleic acid has at least 91 percent sequence identity to a region of the target gene. In an aspect, an anti-parasitic, anti-pest or insecticidal nucleic acid has at least about 83, 84, 85, 86, 87, 88, 89, 90 percent identity to a region of the target gene as provided above. In an aspect, a target gene may be a gene comprising SEQ ID NO: 1 to 89. In an aspect, a target gene may be a gene comprising SEQ ID NO: 1. In an aspect, a target gene may be a gene comprising SEQ ID NO: 2. In an aspect, a target gene may be a gene comprising SEQ ID NO: 3. In an aspect, a target gene may be a gene comprising SEQ ID NO: 4. In an aspect, a target gene may be a gene comprising SEQ ID NO: 69. In an aspect, a target gene may be a gene comprising SEQ ID NO: 70. In an aspect, a target gene may be a gene comprising SEQ ID NO: 88. In an aspect, a target gene may be a gene comprising SEQ ID NO: 89. In an aspect, a target gene may be a gene comprising sequence selected from SEQ ID NOs:71-87. In an aspect, a target gene may be a gene comprising a sequence selected from SEQ ID NOs:6-68.
[0071] In aspects according to the present disclosure, a composition comprises an anti-parasitic, anti-pest or insecticidal nucleic acid molecule having 100 percent sequence identity to a region of 10 to 17 or more contiguous nucleotides in to one allele or one family member of a given target gene (coding or non-coding sequence of a gene). In an aspect, a composition comprises an anti-parasitic, anti-pest or insecticidal nucleic acid molecule having 100 percent sequence identity to a region of 18 to 25, or more contiguous nucleotides to one allele or one family member of a given target gene). In an aspect, a composition comprises an anti-parasitic, anti-pest or insecticidal nucleic acid molecule having 100 percent sequence identity to a region of 20 to 30, or more contiguous nucleotides to one allele or one family member of a given target gene. In an aspect, a composition comprises an anti-parasitic, anti-pest or insecticidal nucleic acid molecule having 100 percent sequence identity to a region of 25 to 35, or more contiguous nucleotides to one allele or one family member of a given target gene. In an aspect, a composition comprises an anti-parasitic, anti-pest or insecticidal nucleic acid molecule having 100 percent sequence identity to a region of 30 to 40, or more contiguous nucleotides to one allele or one family member of a given target gene. In an aspect, a composition comprises an anti-parasitic, anti-pest or insecticidal nucleic acid molecule having 100 percent sequence identity to a region of 40 to 50, or more contiguous nucleotides to one allele or one family member of a given target gene. In an aspect, a composition comprises an anti-parasitic, anti-pest or insecticidal nucleic acid molecule having 100 percent sequence identity to a region of 50 to 60, or more contiguous nucleotides to one allele or one family member of a given target gene. In an aspect, a composition comprises an anti-parasitic, anti-pest or insecticidal nucleic acid molecule having 100 percent sequence identity to a region of 45 to 60, or more contiguous nucleotides to one allele or one family member of a given target gene. In an aspect, a composition comprises an anti-parasitic, anti-pest or insecticidal nucleic acid molecule having 100 percent sequence identity to a region up to 60 contiguous nucleotides to one allele or one family member of a given target gene. In an aspect, a composition comprises an anti-parasitic, anti-pest or insecticidal nucleic acid molecule having 100 percent sequence identity to a region up to 50 contiguous nucleotides to one allele or one family member of a given target gene. In an aspect, a composition comprises an anti-parasitic, anti-pest or insecticidal nucleic acid molecule having 100 percent sequence identity to a region up to 40 contiguous nucleotides to one allele or one family member of a given target gene. In an aspect, a composition comprises an anti-parasitic, anti-pest or insecticidal nucleic acid molecule having 100 percent sequence identity to a region of at least 25 contiguous nucleotides to one allele or one family member of a given target gene.
[0072] In an aspect, a composition comprises an anti-parasitic, anti-pest or insecticidal nucleic acid molecule having 100 percent sequence identity to a region of at least 35 contiguous nucleotides to one allele or one family member of a given target gene. In an aspect, a composition comprises an anti-parasitic, anti-pest or insecticidal nucleic acid molecule having 100 percent sequence identity to a region of at least 40 contiguous nucleotides to one allele or one family member of a given target gene. In an aspect, a composition comprises an anti-parasitic, anti-pest or insecticidal nucleic acid molecule having 100 percent sequence identity to a region of at least 50 contiguous nucleotides to one allele or one family member of a given target gene. In an aspect, a composition comprises an anti-parasitic, anti-pest or insecticidal nucleic acid molecule having 100 percent sequence identity to a region of at least 60 contiguous nucleotides to one allele or one family member of a given target gene. In an aspect, a target gene may be a gene comprising SEQ ID NO: 1 to 89. In an aspect, a target gene may be a gene comprising SEQ ID NO: 1. In an aspect, a target gene may be a gene comprising SEQ ID NO: 2. In an aspect, a target gene may be a gene comprising SEQ ID NO: 3. In an aspect, a target gene may be a gene comprising SEQ ID NO: 4. In an aspect, a target gene may be a gene comprising SEQ ID NO: 69. In an aspect, a target gene may be a gene comprising SEQ ID NO: 70. In an aspect, a target gene may be a gene comprising SEQ ID NO: 88. In an aspect, a target gene may be a gene comprising SEQ ID NO: 89. In an aspect, a target gene may be a gene comprising a sequence selected from SEQ ID NOs:71-87. In an aspect, a target gene may be a gene comprising a sequence selected from SEQ ID NOs:6-68.
[0073] In aspects according to the present disclosure, a composition comprises an anti-parasitic, anti-pest or insecticidal nucleic acid molecule having 99 percent sequence identity to a region of 10 to 17 or more contiguous nucleotides to one allele or one family member of a given target gene. In an aspect, a composition comprises an anti-parasitic, anti-pest or insecticidal nucleic acid molecule having 99 percent sequence identity to a region of 18 to 25, or more contiguous nucleotides to one allele or one family member of a given target gene. In an aspect, a composition comprises an anti-parasitic, anti-pest or insecticidal nucleic acid molecule having 99 percent sequence identity to a region of 20 to 30, or more contiguous nucleotides to one allele or one family member of a given target gene. In an aspect, a composition comprises an anti-parasitic, anti-pest or insecticidal nucleic acid molecule having 99 percent sequence identity to a region of 25 to 35, or more contiguous nucleotides to one allele or one family member of a given target gene. In an aspect, a composition comprises an anti-parasitic, anti-pest or insecticidal nucleic acid molecule having 99 percent sequence identity to a region of 30 to 40, or more contiguous nucleotides to one allele or one family member of a given target gene. In an aspect, a composition comprises an anti-parasitic, anti-pest or insecticidal nucleic acid molecule having 99 percent sequence identity to a region of 40 to 50, or more contiguous nucleotides to one allele or one family member of a given target gene. In an aspect, a composition comprises an anti-parasitic, anti-pest or insecticidal nucleic acid molecule having 99 percent sequence identity to a region of 50 to 60, or more contiguous nucleotides to one allele or one family member of a given target gene. In an aspect, a composition comprises an anti-parasitic, anti-pest or insecticidal nucleic acid molecule having 99 percent sequence identity to a region of 45 to 60, or more contiguous nucleotides to one allele or one family member of a given target gene. In an aspect, a composition comprises an anti-parasitic, anti-pest or insecticidal nucleic acid molecule having 99 percent sequence identity to a region up to 60 contiguous nucleotides to one allele or one family member of a given target gene. In an aspect, a composition comprises an anti-parasitic, anti-pest or insecticidal nucleic acid molecule having 99 percent sequence identity to a region up to 50 contiguous nucleotides to one allele or one family member of a given target gene. In an aspect, a composition comprises an anti-parasitic, anti-pest or insecticidal nucleic acid molecule having 99 percent sequence identity to a region up to 40 contiguous nucleotides to one allele or one family member of a given target gene. In an aspect, a composition comprises an anti-parasitic, anti-pest or insecticidal nucleic acid molecule having 99 percent sequence identity to a region of at least 25 contiguous nucleotides to one allele or one family member of a given target gene. In an aspect, a composition comprises an anti-parasitic, anti-pest or insecticidal nucleic acid molecule having 99 percent sequence identity to a region of at least 35 contiguous nucleotides to one allele or one family member of a given target gene. In an aspect, a composition comprises an anti-parasitic, anti-pest or insecticidal nucleic acid molecule having 99 percent sequence identity to a region of at least 40 contiguous nucleotides to one allele or one family member of a given target gene. In an aspect, a composition comprises an anti-parasitic, anti-pest or insecticidal nucleic acid molecule having 99 percent sequence identity to a region of at least 50 contiguous nucleotides to one allele or one family member of a given target gene. In an aspect, a composition comprises an anti-parasitic, anti-pest or insecticidal nucleic acid molecule having 99 percent sequence identity to a region of at least 60 contiguous nucleotides to one allele or one family member of a given target gene. In some aspects, an anti-parasitic, anti-pest or insecticidal nucleic acid has at least 98 percent sequence identity to a region of the target gene. In an aspect, an anti-parasitic, anti-pest or insecticidal nucleic acid has at least 97 percent sequence identity to a region of the target gene. In some aspects, an anti-parasitic, anti-pest or insecticidal nucleic acid has at least 96 percent sequence identity to a region of the target gene. In an aspect, an anti-parasitic, anti-pest or insecticidal nucleic acid has at least 95 percent sequence identity to a region of the target gene. In some aspects, an anti-parasitic, anti-pest or insecticidal nucleic acid has at least 94 percent sequence identity to a region of the target gene. In an aspect, an anti-parasitic, anti-pest or insecticidal nucleic acid has at least 93 percent sequence identity to a region of the target gene. In some aspects, an anti-parasitic, anti-pest or insecticidal nucleic acid has at least 92 percent sequence identity to a region of the target gene. In an aspect, an anti-parasitic, anti-pest or insecticidal nucleic acid has at least 91 percent sequence identity to a region of the target gene. In an aspect, an anti-parasitic, anti-pest or insecticidal nucleic acid has at least about 83, 84, 85, 86, 87, 88, 89, 90 percent identity to a region of the target gene as provided above. In an aspect, a target gene may be a gene comprising SEQ ID NO: 1 to 89. In an aspect, a target gene may be a gene comprising SEQ ID NO: 1. In an aspect, a target gene may be a gene comprising SEQ ID NO: 2. In an aspect, a target gene may be a gene comprising SEQ ID NO: 3. In an aspect, a target gene may be a gene comprising SEQ ID NO: 4. In an aspect, a target gene may be a gene comprising SEQ ID NO: 69. In an aspect, a target gene may be a gene comprising SEQ ID NO: 70. In an aspect, a target gene may be a gene comprising SEQ ID NO: 88. In an aspect, a target gene may be a gene comprising SEQ ID NO: 89. In an aspect, a target gene may be a gene comprising a sequence selected from SEQ ID NOs:71-87. In an aspect, a target gene may be a gene comprising a sequence selected from SEQ ID NOs:6-68.
[0074] In aspects according to the present disclosure, a composition comprises an anti-parasitic, anti-pest or insecticidal nucleic acid molecule having 100 percent sequence identity to a region of 10 to 17 or more contiguous nucleotides of identity with or complementarity to multiple alleles or family members of a given target gene. In an aspect, a composition comprises an anti-parasitic, anti-pest or insecticidal nucleic acid molecule having 100 percent sequence identity to a region of 18 to 25, or more contiguous nucleotides to one allele or one family member of a given target gene. In an aspect, a composition comprises an anti-parasitic, anti-pest or insecticidal nucleic acid molecule having 100 percent sequence identity to a region of 20 to 30, or more contiguous nucleotides of identity with or complementarity to multiple alleles or family members of a given target gene. In an aspect, a composition comprises an anti-parasitic, anti-pest or insecticidal nucleic acid molecule having 100 percent sequence identity to a region of 25 to 35, or more contiguous nucleotides of identity with or complementarity to multiple alleles or family members of a given target gene. In an aspect, a composition comprises an anti-parasitic, anti-pest or insecticidal nucleic acid molecule having 100 percent sequence identity to a region of 30 to 40, or more contiguous nucleotides of identity with or complementarity to multiple alleles or family members of a given target gene. In an aspect, a composition comprises an anti-parasitic, anti-pest or insecticidal nucleic acid molecule having 100 percent sequence identity to a region of 40 to 50, or more contiguous nucleotides of identity with or complementarity to multiple alleles or family members of a given target gene. In an aspect, a composition comprises an anti-parasitic, anti-pest or insecticidal nucleic acid molecule having 100 percent sequence identity to a region of 50 to 60, or more contiguous nucleotides of identity with or complementarity to multiple alleles or family members of a given target gene. In an aspect, a composition comprises an anti-parasitic, anti-pest or insecticidal nucleic acid molecule having 100 percent sequence identity to a region of 45 to 60, or more contiguous nucleotides of identity with or complementarity to multiple alleles or family members of a given target gene. In an aspect, a composition comprises an anti-parasitic, anti-pest or insecticidal nucleic acid molecule having 100 percent sequence identity to a region up to 60 contiguous nucleotides of identity with or complementarity to multiple alleles or family members of a given target gene. In an aspect, a composition comprises an anti-parasitic, anti-pest or insecticidal nucleic acid molecule having 100 percent sequence identity to a region up to 50 contiguous nucleotides of identity with or complementarity to multiple alleles or family members of a given target gene. In an aspect, a composition comprises an anti-parasitic, anti-pest or insecticidal nucleic acid molecule having 100 percent sequence identity to a region up to 40 contiguous nucleotides of identity with or complementarity to multiple alleles or family members of a given target gene. In an aspect, a composition comprises an anti-parasitic, anti-pest or insecticidal nucleic acid molecule having 100 percent sequence identity to a region of at least 25 contiguous nucleotides of identity with or complementarity to multiple alleles or family members of a given target gene. In an aspect, a composition comprises an anti-parasitic, anti-pest or insecticidal nucleic acid molecule having 100 percent sequence identity to a region of at least 35 contiguous nucleotides of identity with or complementarity to multiple alleles or family members of a given target gene. In an aspect, a composition comprises an anti-parasitic, anti-pest or insecticidal nucleic acid molecule having 100 percent sequence identity to a region of at least 40 contiguous nucleotides of identity with or complementarity to multiple alleles or family members of a given target gene. In an aspect, a composition comprises an anti-parasitic, anti-pest or insecticidal nucleic acid molecule having 100 percent sequence identity to a region of at least 50 contiguous nucleotides of identity with or complementarity to multiple alleles or family members of a given target gene. In an aspect, a composition comprises an anti-parasitic, anti-pest or insecticidal nucleic acid molecule having 100 percent sequence identity to a region of at least 60 contiguous nucleotides of identity with or complementarity to multiple alleles or family members of a given target gene. In an aspect, a target gene may be a gene comprising SEQ ID NO: 1 to 89. In an aspect, a target gene may be a gene comprising SEQ ID NO: 1. In an aspect, a target gene may be a gene comprising SEQ ID NO: 2. In an aspect, a target gene may be a gene comprising SEQ ID NO: 3. In an aspect, a target gene may be a gene comprising SEQ ID NO: 4. In an aspect, a target gene may be a gene comprising SEQ ID NO: 69. In an aspect, a target gene may be a gene comprising SEQ ID NO: 70. In an aspect, a target gene may be a gene comprising SEQ ID NO: 88. In an aspect, a target gene may be a gene comprising SEQ ID NO: 89. In an aspect, a target gene may be a gene comprising a sequence selected from SEQ ID NOs:71-87. In an aspect, a target gene may be a gene comprising a sequence selected from SEQ ID NOs:6-68.
[0075] In aspects according to the present disclosure, a composition comprises an anti-parasitic, anti-pest or insecticidal nucleic acid molecule having 99 percent sequence identity to a region of 10 to 17 or more contiguous nucleotides of identity with or complementarity to multiple alleles or family members of a given target gene. In an aspect, a composition comprises an anti-parasitic, anti-pest or insecticidal nucleic acid molecule having 99 percent sequence identity to a region of 18 to 25, or more contiguous nucleotides of identity with or complementarity to multiple alleles or family members of a given target gene. In an aspect, a composition comprises an anti-parasitic, anti-pest or insecticidal nucleic acid molecule having 99 percent sequence identity to a region of 20 to 30, or more contiguous nucleotides of identity with or complementarity to multiple alleles or family members of a given target gene. In an aspect, a composition comprises an anti-parasitic, anti-pest or insecticidal nucleic acid molecule having 99 percent sequence identity to a region of 25 to 35, or more contiguous nucleotides of identity with or complementarity to multiple alleles or family members of a given target gene. In an aspect, a composition comprises an anti-parasitic, anti-pest or insecticidal nucleic acid molecule having 99 percent sequence identity to a region of 30 to 40, or more contiguous nucleotides of identity with or complementarity to multiple alleles or family members of a given target gene. In an aspect, a composition comprises an anti-parasitic, anti-pest or insecticidal nucleic acid molecule having 99 percent sequence identity to a region of 40 to 50, or more contiguous nucleotides of identity with or complementarity to multiple alleles or family members of a given target gene. In an aspect, a composition comprises an anti-parasitic, anti-pest or insecticidal nucleic acid molecule having 99 percent sequence identity to a region of 50 to 60, or more contiguous nucleotides of identity with or complementarity to multiple alleles or family members of a given target gene. In an aspect, a composition comprises an anti-parasitic, anti-pest or insecticidal nucleic acid molecule having 99 percent sequence identity to a region of 45 to 60, or more contiguous nucleotides of identity with or complementarity to multiple alleles or family members of a given target gene. In an aspect, a composition comprises an anti-parasitic, anti-pest or insecticidal nucleic acid molecule having 99 percent sequence identity to a region up to 60 contiguous nucleotides of identity with or complementarity to multiple alleles or family members of a given target gene. In an aspect, a composition comprises an anti-parasitic, anti-pest or insecticidal nucleic acid molecule having 99 percent sequence identity to a region up to 50 contiguous nucleotides of identity with or complementarity to multiple alleles or family members of a given target gene. In an aspect, a composition comprises an anti-parasitic, anti-pest or insecticidal nucleic acid molecule having 99 percent sequence identity to a region up to 40 contiguous nucleotides of identity with or complementarity to multiple alleles or family members of a given target gene. In an aspect, a composition comprises an anti-parasitic, anti-pest or insecticidal nucleic acid molecule having 99 percent sequence identity to a region of at least 25 contiguous nucleotides of identity with or complementarity to multiple alleles or family members of a given target gene. In an aspect, a composition comprises an anti-parasitic, anti-pest or insecticidal nucleic acid molecule having 99 percent sequence identity to a region of at least 35 contiguous nucleotides of identity with or complementarity to multiple alleles or family members of a given target gene. In an aspect, a composition comprises an anti-parasitic, anti-pest or insecticidal nucleic acid molecule having 99 percent sequence identity to a region of at least 40 contiguous nucleotides of identity with or complementarity to multiple alleles or family members of a given target gene. In an aspect, a composition comprises an anti-parasitic, anti-pest or insecticidal nucleic acid molecule having 99 percent sequence identity to a region of at least 50 contiguous nucleotides of identity with or complementarity to multiple alleles or family members of a given target gene. In an aspect, a composition comprises an anti-parasitic, anti-pest or insecticidal nucleic acid molecule having 99 percent sequence identity to a region of at least 60 contiguous nucleotides of identity with or complementarity to multiple alleles or family members of a given target gene. In some aspects, an anti-parasitic, anti-pest or insecticidal nucleic acid has at least 98 percent sequence identity to a region of a target gene. In an aspect, an anti-parasitic, anti-pest or insecticidal nucleic acid has at least 97 percent sequence identity to a region of a target gene. In some aspects, an anti-parasitic, anti-pest or insecticidal nucleic acid has at least 96 percent sequence identity to a region of a target gene. In an aspect, an anti-parasitic, anti-pest or insecticidal nucleic acid has at least 95 percent sequence identity to a region of a target gene. In some aspects, an anti-parasitic, anti-pest or insecticidal nucleic acid has at least 94 percent sequence identity to a region of a target gene. In an aspect, an anti-parasitic, anti-pest or insecticidal nucleic acid has at least 93 percent sequence identity to a region of a target gene. In some aspects, an anti-parasitic, anti-pest or insecticidal nucleic acid has at least 92 percent sequence identity to a region of a target gene. In an aspect, an anti-parasitic, anti-pest or insecticidal nucleic acid has at least 91 percent sequence identity to a region of a target gene. In an aspect, an anti-parasitic, anti-pest or insecticidal nucleic acid has at least about 83, 84, 85, 86, 87, 88, 89, 90 percent identity to a region of a target gene as provided above. In an aspect, a target gene may be a gene comprising SEQ ID NO: 1 to 89. In an aspect, a target gene may be a gene comprising SEQ ID NO: 1. In an aspect, a target gene may be a gene comprising SEQ ID NO: 2. In an aspect, a target gene may be a gene comprising SEQ ID NO: 3. In an aspect, a target gene may be a gene comprising SEQ ID NO: 4. In an aspect, a target gene may be a gene comprising SEQ ID NO: 69. In an aspect, a target gene may be a gene comprising SEQ ID NO: 70. In an aspect, a target gene may be a gene comprising SEQ ID NO: 88. In an aspect, a target gene may be a gene comprising SEQ ID NO: 89. In an aspect, a target gene may be a gene comprising a sequence selected from SEQ ID NOs:71-87. In an aspect, a target gene may be a gene comprising a sequence selected from SEQ ID NOs: 6-68.
[0076] This application provides and discloses compositions comprising an anti-parasitic, anti-pest or insecticidal nucleic acid molecule and an excipient substance. In an aspect, the excipient can be a combination of one or more inactive components. In some aspects, the excipient comprises a sugar. Exemplary sugars include hexoses, disaccharides, trisaccharides and higher sugars. Excipient sugars include, for example, fructose, glucose, sucrose, trehalose, lactose, galactose, ribose. In other aspects the excipient comprises a sugar and a solvent. In other aspects, the excipient comprises a protein. In an aspect, the protein is a soy protein. In other aspects the excipient may be pollen. In aspects according to the present disclosure, the excipient may be a bee food. In some aspects, the excipient comprises Tryptone. In some aspects, the excipient comprises yeast extract. In some aspects, the excipient comprises an essential oil.
[0077] Bee feeding is common practice amongst bee-keepers, for providing both nutritional and other, for example, supplemental needs. Bees typically feed on honey and pollen, but have been known to ingest non-natural feeds as well. Bees can be fed various foodstuffs including, but not limited to Wheast (a dairy yeast grown on cottage cheese), soybean flour, yeast (e.g. brewer's yeast, torula yeast) and yeast products products-fed singly or in combination and soybean flour fed as a dry mix or moist cake inside the hive or as a dry mix in open feeders outside the hive. Also useful is sugar, or a sugar syrup. The addition of 10 to 12 percent pollen to a supplement fed to bees improves palatability. The addition of 25 to percent pollen improves the quality and quantity of essential nutrients that are required by bees for vital activity. Cane or beet sugar, isomerized corn syrup, and type-50 sugar syrup are satisfactory substitutes for honey in the natural diet of honey bees. The last two can be supplied only as a liquid to bees. Liquid feed can be supplied to bees inside the hive by, for example, any of the following methods: friction-top pail, combs within the brood chamber, division board feeder, boardman feeder, etc. Dry sugar may be fed by placing a pound or two on the inverted inner cover. A supply of water must be available to bees at all times. In one aspect, pan or trays in which floating supports-such as wood chips, cork, or plastic sponge--are present are envisaged. Detailed descriptions of supplemental feeds for bees can be found in, for example, USDA publication by Standifer, et al. 1977, entitled "Supplemental Feeding of Honey Bee Colonies" (USDA, Agriculture Information Bulletin No. 413).
[0078] In aspects according to the present disclosure, an anti-parasitic, anti-pest or insecticidal nucleic acid, for example a dsRNA, is absorbable. As used herein "absorbable," refers to mechanisms the provide for the uptake of a nucleic acid that is not by ingestion. In an aspect, an anti-parasitic, anti-pest or insecticidal nucleic acid may be absorbed through the skin of an organism, or the exoskeleton of an arthropod. In an aspect, an absorbable nucleic acid is dissolved in an excipient. In other aspects, an absorbable nucleic acid is suspended in an excipient. Excipients for solvation or suspension may be aqueous or non-aqueous. In some aspects, the anti-parasitic, anti-pest or insecticidal nucleic acid is absorbed by a host organism and transferred to a parasitic organism by feeding. In other aspects, the anti-parasitic, anti-pest or insecticidal nucleic acid is absorbed by a host organism and transferred to a parasitic organism by absorption. In an aspect, an anti-parasitic, anti-pest or insecticidal nucleic acid of the present disclosure is absorbed directly by the parasite.
[0079] In aspects according to the present disclosure an anti-parasitic, anti-pest or insecticidal nucleic acid, for example a dsRNA, is combined with an excipient. In an aspect, the nucleic acid may be provided as a ratio of nucleic acid to excipient. In an aspect, the ratio may be one part nucleic acid to 4 parts excipient. In an aspect the ratio of nucleic acid to excipient may be 1:1, 1:2, 1:5, or 1:10. In other aspects, the ratio of nucleic acid to excipient may be 1:20, 1:25, 1:30, 1:40, or more. In an aspect, ratio of nucleic acid to excipient may be 1:50. In aspects according to the present disclosure, the ratio may be determined as a volume to volume (v/v) ratio, a weight:weight (w/w) ratio. In certain aspects, the ratio may be expressed as a weight:volume (w/v) ratio. In certain aspects, a nucleic acid and an excipient may be a dsRNA and an excipient.
[0080] In aspects according to the present disclosure, the composition may comprise a weight of an anti-parasitic, anti-pest or insecticidal nucleic acid combined with an excipient. In an aspect, the nucleic acid may comprise a percentage of the total weight of the composition. In an aspect, the nucleic acid may comprise about 0.1% by weight of the composition. In an aspect, the nucleic acid may comprise about 0.2% by weight of the composition. In an aspect, the nucleic acid may comprise about 0.3% by weight of the composition. In another aspect, the nucleic acid may comprise about 0.4% by weight of the composition. In an aspect, the nucleic acid may comprise up to 0.5% by weight of the composition. In an aspect, the nucleic acid may comprise up to 0.6% by weight of the composition. In an aspect, the nucleic acid may comprise up to 0.7% by weight of the composition. In an aspect, the nucleic acid may comprise up to 0.8% by weight of the composition. In another aspect, the nucleic acid may comprise up to 1.0% by weight of the composition. In other aspects, the nucleic acid may comprise up to 1.5% by weight of the composition. In yet other aspects, the nucleic acid may comprise up to 2.0% by weight, or 2.5% by weight of the composition. In certain aspects, a nucleic acid and an excipient may be a dsRNA and an excipient.
[0081] The present disclosure provides for, and includes, compositions having from 0.1% to 5% by weight of one or more anti-parasitic, anti-pest or insecticidal nucleic acids. In other aspects, a composition may comprise from 0.1 to 4%, 0.1 to 3%, 0.1 to 2%, 0.1 to 1%, 0.1 to 2%, 0.1 to 3%, or 0.1 to 4% by weight nucleic acid. In an aspect, a composition may comprise from 0.2% to 5% by weight nucleic acid. In other aspects, a composition may comprise from 0.2 to 4%, 0.2 to 3%, 0.2 to 2%, 0.2 to 1%, 0.2 to 2%, 0.2 to 3%, or 0.2 to 4% by weight nucleic acid. In other aspects, a composition may comprise up to 1%, up to 2%, up to 3%, up to 4%, or up to 5% nucleic acid. In other aspects, a composition may comprise up to 7.5%, up to 10%, or up to 15% nucleic acid. In certain aspects, a nucleic acid and an excipient may be a dsRNA and an excipient.
[0082] The present disclosure provides for, and includes, compositions having from 0.1 to 10 mg/ml of one or more anti-parasitic, anti-pest or insecticidal nucleic acids. In other aspects, a composition may comprise from 0.1 to 1.0 mg/ml, 0.1 to 2.0 mg/ml, 0.1 to 2.5 mg/ml, 0.1 to 5 mg/ml, 0.1 to 10 mg/ml, 0.1 to 15 mg/ml, or 0.1 to 20 mg/ml nucleic acid. In certain aspects, a composition may comprise at least 0.1 .mu.g/ml nucleic acid. In certain other aspects, a composition may comprise at least 1.0 .mu.g/ml nucleic acid. In yet other aspects, a composition may comprise at least 10 .mu.g/ml nucleic acid. In an aspect, a composition may comprise from 0.5 to 10 mg/ml nucleic acid. In other aspects, a composition may comprise from 0.5 to 1.0 mg/ml, 0.5 to 2.0 mg/ml, 0.5 to 2.5 mg/ml, 0.5 to 5 mg/ml, 0.5 to 10 mg/ml, 0.5 to 15 mg/ml, or 0.5 to 20 mg/ml nucleic acid. In an aspect, a composition may comprise from 1.0 to 10 mg/ml nucleic acid. In other aspects, a composition may comprise from 1.0 to 2.0 mg/ml, 1.0 to 2.5 mg/ml, 1.0 to 5 mg/ml, 1.0 to 10 mg/ml, 1.0 to 15 mg/ml, or 1.0 to 20 mg/ml nucleic acid. In certain aspects, the anti-parasitic, anti-pest or insecticidal nucleic acid in the composition comprises a dsRNA.
[0083] The present disclosure, provides for, and includes selective insecticide compositions and methods of using selective insecticide compositions.
[0084] As used herein, a "selective insecticide composition," is a composition that is more effective for one or more arthropod species and is less effective for one or more different arthropod species. A selective insecticide composition includes compositions that kill adults or immature arthropods and includes compositions that are larvicides and ovicides. A selective insecticide may be a systemic insecticides incorporated by treated food, including the blood or hemolymph obtained from a host organisms. A selective insecticide may be a contact insecticides are toxic to certain insects brought into direct contact, and are non-toxic or minimally toxic to certain other insects. In some embodiments, a selective insecticide composition is anti-pest. In some embodiments, a selective insecticide composition is anti-parasitic. In some embodiments, a selective insecticide composition is a miticide. In some embodiments, a selective insecticide composition is toxic to a targeted parasitic or pest insect and non-toxic or minimally toxic to non-target organisms. Examples of non-target organisms include, but are not limited to beneficial insects, nematodes, birds, mammals, and plants. In some embodiments, a selective insecticide composition is toxic to a parasitic insect, for example Varroa mite, and non-toxic or minimally toxic to the host organism, for example bees. In some embodiments, a selective insecticide composition is toxic to one or more pest or parasitic insects selected from the group consisting of: Varroa destructor, Ixodes scapularis, Solenopsis invicta, Tetranychus urticae, Aedes aegypti, Culex quinquefasciatus, Acyrthosiphon pisum, and Pediculus humanus.
[0085] In certain aspects according to the present disclosure, a selective insecticide may be incorporated into a bacteria or yeast by genetic modification (for example, a transgenic bacteria or yeast engineered to express a nucleic acid of the present disclosure). A selective insecticide introduced by genetic modification of a bacteria or yeast may act directly on the pest organism, or indirectly by being ingested by a host of the pest organism.
[0086] In an aspect according to the present disclosure, a selective insecticide may be a more effective insecticide against one or more first insects than against one or more second insects. In an aspect, a selective insecticide may be toxic to a first insect and have no effect on a second insect. In an aspect, a selective insecticide may be toxic to a first insect and require significantly higher concentrations or amounts to have an effect on a second insect. In an aspect, a selective insecticide may be 2 times or more toxic to a first insect compared to a second insect. In an aspect, a selective insecticide may be 4 times or more toxic to a first insect compared to a second insect. In an aspect, a selective insecticide may be 5 times or more toxic to a first insect compared to a second insect. In an aspect, a selective insecticide may be 10 times or more toxic to a first insect compared to a second insect.
[0087] In an aspect, a selective insecticide may inhibit the growth, development or fecundity of a first insect and have no effect on a second insect. In an aspect, a selective insecticide may inhibit the growth, development or fecundity a first insect and require significantly higher concentrations or amounts to have a similar effect on a second insect. In an aspect, a selective insecticide may require 2 times or more of the active ingredient to inhibit the growth, development or fecundity of a second insect. In an aspect, a selective insecticide may require 4 times or more of the active ingredient to inhibit the growth, development or fecundity of a second insect. In an aspect, a selective insecticide may require 5 times or more of the active ingredient to inhibit the growth, development or fecundity of a second insect. In an aspect, a selective insecticide may require 10 times or more of the active ingredient to inhibit the growth, development or fecundity of a second insect.
[0088] The present disclosure further includes, and provides for, methods of treating or preventing Colony Collapse Disorder in a honeybee colony, comprising providing an effective amount of a composition comprising a nucleic acid that is essentially identical or essentially complementary to a region of a Varroa destructor calmodulin gene sequence to a honeybee whereby the level of Varroa destructor infestation is reduced. In an aspect, the method comprises providing an effective amount of a composition comprising a nucleic acid that is essentially identical or essentially complementary to at least 19 contiguous nucleotides of SEQ ID NO: 1. In an aspect, the method comprises providing an effective amount of a composition comprising a nucleic acid that is essentially identical or essentially complementary to at least 19 contiguous nucleotides of SEQ ID NO: 2. In an aspect, the method comprises providing an effective amount of a composition comprising a nucleic acid that is essentially identical or essentially complementary to at least 19 contiguous nucleotides of SEQ ID NO: 69. In an aspect, the method comprises providing an effective amount of a composition comprising a nucleic acid that is essentially identical or essentially complementary to at least 19 contiguous nucleotides of SEQ ID NO: 70. In an aspect, the method comprises providing an effective amount of a composition comprising a nucleic acid according to SEQ ID NO: 3. In an aspect, the method comprises providing an effective amount of a composition comprising a nucleic acid according to SEQ ID NO: 4. In an aspect, the method comprises providing an effective amount of a composition comprising a nucleic acid according to SEQ ID NO: 88. In an aspect, the method comprises providing an effective amount of a composition comprising a nucleic acid according to SEQ ID NO: 89. In an aspect, the method comprises providing an effective amount of a composition comprising two or more nucleic acids having a sequence selected from the group consisting of: SEQ ID NOs: 3, 4, 88 and 89. In an aspect, the method comprises providing an effective amount of a composition comprising a nucleic acid that is essentially identical or essentially complementary to at least 19 contiguous nucleotides of a sequence selected from SEQ ID NOs: 71-87. In an aspect, the method comprises providing an effective amount of a composition comprising a nucleic acid that is essentially identical or essentially complementary to at least 23 contiguous nucleotides of a sequence selected from SEQ ID NOs: 71-87. In an aspect, the method comprises providing an effective amount of a composition comprising a nucleic acid that is essentially identical or essentially complementary to at least 30 contiguous nucleotides of a sequence selected from SEQ ID NOs: 71-87. In an aspect, the method comprises providing an effective amount of a composition comprising a nucleic acid that is essentially identical or essentially complementary to at least 40 contiguous nucleotides of a sequence selected from SEQ ID NOs: 71-87. In an aspect, the method comprises providing an effective amount of a composition comprising a nucleic acid that is essentially identical or essentially complementary to at least 50 contiguous nucleotides of a sequence selected from SEQ ID NOs: 71-87. In an aspect, the method comprises providing an effective amount of a composition comprising a nucleic acid that is essentially identical or essentially complementary to at least 60 contiguous nucleotides of a sequence selected from SEQ ID NOs: 71-87. In an aspect, the method comprises providing an effective amount of a composition comprising a nucleic acid that is essentially identical or essentially complementary to at least 70 contiguous nucleotides of a sequence selected from SEQ ID NOs: 71-87. In an aspect, the method comprises providing an effective amount of a composition comprising a nucleic acid that is essentially identical or essentially complementary to at least 80 contiguous nucleotides of a sequence selected from SEQ ID NOs: 71-87. In an aspect, the method comprises providing an effective amount of a composition comprising a nucleic acid that is essentially identical or essentially complementary to at least 90 contiguous nucleotides of a sequence selected from SEQ ID NOs: 71-87. In an aspect, the method comprises providing an effective amount of a composition comprising a nucleic acid that is essentially identical or essentially complementary to at least 100 contiguous nucleotides of a sequence selected from SEQ ID NOs: 71-87. In an aspect, the method comprises providing an effective amount of a composition comprising a nucleic acid that is essentially identical or essentially complementary to at least 110 contiguous nucleotides of a sequence selected from SEQ ID NOs: 71-87. In an aspect, the method comprises providing an effective amount of a composition comprising a nucleic acid that is essentially identical or essentially complementary to at least 120 contiguous nucleotides of a sequence selected from SEQ ID NOs: 71-87. In an aspect, the method comprises providing an effective amount of a composition comprising a nucleic acid that is essentially identical or essentially complementary to at least 130 contiguous nucleotides of a sequence selected from SEQ ID NOs: 71-87. In an aspect, the method comprises providing an effective amount of a composition comprising a nucleic acid that is essentially identical or essentially complementary to at least 140 contiguous nucleotides of a sequence selected from SEQ ID NOs: 71-87. In an aspect, the method comprises providing an effective amount of a composition comprising a nucleic acid that is essentially identical or essentially complementary to a sequence selected from SEQ ID NOs: 71-87. In an aspect, the method comprises providing an effective amount of a composition comprising a nucleic acid according to a sequence selected from SEQ ID NOs: 71-87.
[0089] The present disclosure provides for, and includes, methods for reducing the parasite load of a host organism. In an aspect, the parasite load refers to the number of parasites per individual host. In an aspect, the parasite load refers to the average number of parasites per 100 host organisms. In an aspect, the parasite load may refer to the number of parasites per colony of parasite hosts. In aspects according to the present disclosure the parasite is Varroa destructor and the host is the honey bee, Apis mellifera. In certain aspects, the parasite load refers to the number of Varroa destructor parasites per 100 honeybees in a colony. In some embodiments, the present disclosure provides for, and includes, methods and compositions for reducing the parasite load to less than 6 Varroa destructor parasites per 100 honeybees in a colony. In some embodiments, the present disclosure provides for, and includes, methods and compositions for reducing the parasite load to less than 5 Varroa destructor parasites per 100 honeybees in a colony. In some embodiments, the present disclosure provides for, and includes, methods and compositions for reducing the parasite load to less than 4 Varroa destructor parasites per 100 honeybees in a colony. In some embodiments, the present disclosure provides for, and includes, methods and compositions for reducing the parasite load to less than 2 Varroa destructor parasites per 100 honeybees in a colony.
[0090] In an aspect, the methods of reducing a parasite load comprises providing an effective amount of an anti-parasitic, anti-pest or insecticidal nucleic acid composition to a host organism. An effective amount of a composition of the present disclosure results in a decrease in the parasite load over a period of time. In an aspect, a decrease in parasite load may measured within one day of providing an effective amount of a nucleic acid composition. In an aspect, the parasite load may be measured after two days. In an aspect, the parasite load may be measured after 3 days. In other aspects, the parasite load may be measured after 5 days or after 1 week. In another aspect, the parasite load may be measured more than one time, for example every 3 days, every 5 days, every week or once a month. In certain aspects, according to the present disclosure, a decrease in the number of parasites may be measured and compared to an untreated control organism or colony. In aspects according to the present disclosure the parasite is Varroa destructor and the host is the honey bee, Apis mellifera.
[0091] In aspects according to the present disclosure, a reduction in parasite load after a period of time means a decrease in the number of parasites. In an aspect, the number of parasites may decrease by 10%, 20%, 30% or more between measurements. In another aspect, the number of parasites may decrease by 40% or more between measurements. In another aspect, the number of parasites may decrease by 50% or more between measurements. In another aspect, the number of parasites may decrease by 60% or more between measurements. In another aspect, the number of parasites may decrease by 70% or more between measurements. In another aspect, the number of parasites may decrease by 80% or more between measurements. In another aspect, the number of parasites may decrease by 90% or more between measurements.
[0092] In other aspects, the parasite load may be measured as the average number of parasites per host organism. In an aspect, a decreased parasitic load may comprise fewer than 20 parasites per 100 host organisms. In an aspect, a decreased parasitic load may comprise fewer than 15 parasites per 100 host organisms. In an aspect, a decreased parasitic load may comprise fewer than 10 parasites per 100 host organisms. In an aspect, a decreased parasitic load may comprise fewer than 5 parasites per 100 host organisms. In an aspect, a decreased parasitic load may comprise fewer than 4 parasites per 100 host organisms. In an aspect, a decreased parasitic load may comprise fewer than 3 parasites per 100 host organisms. In an aspect, a decreased parasitic load may comprise fewer than 2 parasites per 100 host organisms. In an aspect, a decreased parasitic load may comprise fewer than 1 parasite per 100 host organisms. In an aspect, a decreased parasitic load may comprise fewer than 20 parasites per 1000 host organisms. In an aspect, a decreased parasitic load may comprise fewer than 15 parasites per 1000 host organisms. In an aspect, a decreased parasitic load may comprise fewer than 10 parasites per 1000 host organisms. In an aspect, a decreased parasitic load may comprise fewer than 5 parasites per 1000 host organisms. In an aspect, a decreased parasitic load may comprise fewer than 4 parasites per 1000 host organisms. In an aspect, a decreased parasitic load may comprise fewer than 3 parasites per 1000 host organisms. In an aspect, a decreased parasitic load may comprise fewer than 2 parasites per 1000 host organisms. In an aspect, a decreased parasitic load may comprise fewer than 1 parasite per 1000 host organisms.
[0093] In aspects according to the present disclosure, a colony of host organisms has an initial parasite load, prior to being provided a source of an effective amount of a nucleic acid. In an aspect, an initial parasite load may comprise fewer than 20 parasites per 100 host organisms. In an aspect, an initial parasite load may comprise fewer than 15 parasites per 100 host organisms. In an aspect, an initial parasite load may comprise fewer than 10 parasites per 100 host organisms. In an aspect, an initial parasite load may comprise fewer than 5 parasites per 100 host organisms.
[0094] In an aspect, an initial parasite load may comprise fewer than 4 parasites per 100 host organisms. In an aspect, an initial parasite load may comprise fewer than 3 parasites per 100 host organisms. In an aspect, an initial parasite load may comprise fewer than 2 parasites per 100 host organisms. In an aspect, an initial parasite load may comprise fewer than 1 parasite per 100 host organisms.
[0095] In aspects according to the present disclosure, an effective amount may be provided periodically or continually. In an aspect, an effective amount of an anti-parasitic, anti-pest or insecticidal nucleic acid composition may be provided once, twice or three times a day. In other aspects, an effective amount of an anti-parasitic, anti-pest or insecticidal nucleic acid composition may be provided once a day. In another aspect, an effective amount of an anti-parasitic, anti-pest or insecticidal nucleic acid composition may be provided one or more times every other day. In an aspect, an effective amount of an anti-parasitic, anti-pest or insecticidal nucleic acid composition may be provided every two days, every three days, or once a week. In an aspect, an effective amount of an anti-parasitic, anti-pest or insecticidal nucleic acid composition may be provided every two weeks. In an aspect, an effective amount of an anti-parasitic, anti-pest or insecticidal nucleic acid composition may be provided every three weeks. In an aspect, an effective amount of an anti-parasitic, anti-pest or insecticidal nucleic acid composition may be provided once a month. In an aspect, an effective amount of an anti-parasitic, anti-pest or insecticidal nucleic acid composition may be provided every two months. In an aspect, an effective amount of a nucleic acid composition may be provided continuously to an organism in need, for example by providing a continuous source of food. In one aspect, an effective amount of a nucleic acid composition may be provided continuously as a bee-ingestible composition. In aspects according to the present disclosure the parasite is Varroa destructor and the host is the honey bee, Apis mellifera. In aspects according to the present disclosure, an anti-parasitic, anti-pest or insecticidal nucleic acid may be a dsRNA.
[0096] In aspects according to the present disclosure, the parasitic load may decrease over a period of time. In an aspect, the time period necessary for a parasitic load decrease may be 15 weeks. In another aspect, the time period for a parasitic load decrease may be 12 weeks. In an aspect, the parasitic load decrease occurs of a period of 10 weeks. In an aspect, the time period necessary for a parasitic load decrease may be 5 weeks. In another aspect, the time period for a parasitic load decrease may be 2 weeks. In an aspect, the parasitic load decrease occurs of a period of 1 weeks. In some aspects, the parasitic load may decrease after one day, two days or three days.
[0097] The present disclosure provides for methods of reducing the parasitation of a honey bee colony comprising providing a bee colony an effective amount of an anti-parasitic, anti-pest or insecticidal nucleic acid composition. An effective amount of a composition of the present disclosure results in a reduction of parasitation over a period of time. In an aspect, a reduction of parasitation may measured within one day of providing an effective amount of an anti-parasitic, anti-pest or insecticidal nucleic acid composition. In an aspect, the reduction of parasitation may be measured after two days. In an aspect, the reduction of parasitation may be measured after 3 days. In other aspects, the reduction of parasitation may be measured after 5 days or after 1 week. In another aspect, the reduction of parasitation may be measured more than one time, for example every 3 days, every 5 days, every week or once a month. In certain aspects, according to the present disclosure, a reduction of parasitation may be measured and compared to an untreated control organism or colony.
[0098] In aspects according to the present disclosure, a reduction of parasitation after a period of time means a decrease in the total number of parasites. In an aspect, the number of parasites may decrease by 10%, 20%, 30% or more between measurements. In another aspect, the number of parasites may decrease by 40% or more between measurements. In another aspect, the number of parasites may decrease by 50% or more between measurements. In another aspect, the number of parasites may decrease by 60% or more between measurements. In another aspect, the number of parasites may decrease by 70% or more between measurements. In another aspect, the number of parasites may decrease by 80% or more between measurements. In another aspect, the number of parasites may decrease by 90% or more between measurements.
[0099] In other aspects, reduction of parasitation may be measured as the average number of parasites per host organism. In an aspect, a reduction of parasitation may comprise fewer than 20 parasites per 100 host organisms. In an aspect, a reduction of parasitation may comprise fewer than 15 parasites per 100 host organisms. In an aspect, a reduction of parasitation may comprise fewer than 10 parasites per 100 host organisms. In an aspect, a reduction of parasitation may comprise fewer than 5 parasites per 100 host organisms. In an aspect, a reduction of parasitation may comprise fewer than 4 parasites per 100 host organisms. In an aspect, a reduction of parasitation may comprise fewer than 3 parasites per 100 host organisms. In an aspect, a reduction of parasitation may comprise fewer than 2 parasites per 100 host organisms. In an aspect, a reduction of parasitation may comprise fewer than 1 parasite per 100 host organisms.
[0100] In aspects according to the present disclosure, an effective amount of an anti-parasitic, anti-pest or insecticidal nucleic acid resulting in a reduction of parasitation may be provided periodically or continually. In an aspect, an effective amount of a nucleic acid composition may be provided once, twice or three times a day. In other aspects, an effective amount of an anti-parasitic, anti-pest or insecticidal nucleic acid composition may be provided once a day. In another aspect, an effective amount of an anti-parasitic, anti-pest or insecticidal nucleic acid composition may be provided one or more times every other day. In an aspect, an effective amount of an anti-parasitic, anti-pest or insecticidal nucleic acid composition may be provided provide every two days, every three days, or once a week. In an aspect, an effective amount of an anti-parasitic, anti-pest or insecticidal nucleic acid composition may be provided continuously to an organism in need, for example by providing a continuous source of food. In one aspect, an effective amount of an anti-parasitic, anti-pest or insecticidal nucleic acid composition may be provided continuously as a bee-ingestible composition. In aspects according to the present disclosure the parasite is Varroa destructor and the host is the honey bee, Apis mellifera. In aspects according to the present disclosure, an anti-parasitic, anti-pest or insecticidal nucleic acid may be a dsRNA.
[0101] In aspects according to the present disclosure, the reduction of parasitation may decrease over a period of time. In an aspect, the time period necessary for a reduction of parasitation may be 15 weeks. In another aspect, the time period for a reduction of parasitation may be 12 weeks. In an aspect, the reduction of parasitation occurs of a period of 10 weeks. In an aspect, the time period necessary for a reduction of parasitation may be 5 weeks. In another aspect, the time period for a reduction of parasitation may be 2 weeks. In an aspect, the reduction of parasitation occurs of a period of 1 weeks. In some aspects, the reduction of parasitation may occur after one day, two days or three days.
[0102] In aspects according to the present disclosure, a reduction of parasitation is measured by the number of surviving parasites as compared to an initial measurement of the number of parasites in a colony of host organisms. In an aspect, the parasite may be a Varroa destructor mite and the host may be a honey bee, Apis mellifera. In an aspect, the number of surviving parasites may be 25% of the initial number of parasites. In an aspect, the number of surviving parasites may be 15% of the initial number of parasites. In an aspect, the number of surviving parasites may be 10% of the initial number of parasites. In an aspect, the number of surviving parasites may be 5% of the initial number of parasites. In an aspect the number of surviving parasites may be less than 5% or even undetectable after providing a host colony an effective amount of an anti-parasitic, anti-pest or insecticidal nucleic acid composition.
[0103] In an aspect, the present disclosure provides for methods and compositions for reducing the susceptibility of bees to Varroa mite infestation. In other aspects, the present disclosure provides for methods and compositions to prevent the infestation of colonies of bees. In another aspect, the present disclosure provides methods and compositions for reducing the parasitation of honeybees by the mite Varroa destructor.
[0104] According to the present disclosure, a host organism provided with a source of an anti-parasitic, anti-pest or insecticidal nucleic acid, can accumulate nucleic acid in the host body, usually the hemolymph. By harboring nucleic acid, such host organisms become resistant, or less susceptible to parasitation. In other aspects, a colony of host organisms, provided with a source of nucleic acid, can accumulate nucleic acid in the host body of multiple members of the colony, thereby providing resistance or decreased susceptibility to a parasite. nucleic acid found in host organisms provided with a source of nucleic acid, can be detected using methods known to those of ordinary skill in the art. In aspects according to the present disclosure, an anti-parasitic, anti-pest or insecticidal nucleic acid may be a dsRNA.
[0105] In an aspect of the present disclosure, methods and compositions for treating Varroa mite infestations in bees by down-regulating calmodulin and calmodulin related Varroa mite gene products, are provided. In an aspect, the compositions comprise an anti-parasitic, anti-pest or insecticidal nucleic acid corresponding to the Varroa destructor calmodulin sequence of SEQ ID NO: 1. In an aspect, the compositions comprise an anti-parasitic, anti-pest or insecticidal nucleic acid corresponding to the Varroa destructor calmodulin sequence of SEQ ID NO: 2. In an aspect, the compositions comprise an anti-parasitic, anti-pest or insecticidal nucleic acid corresponding to the Varroa destructor calmodulin sequence of SEQ ID NO: 69. In an aspect, the compositions comprise an anti-parasitic, anti-pest or insecticidal nucleic acid corresponding to the Varroa destructor calmodulin sequence of SEQ ID NO: 70. In some aspects, the compositions comprise an anti-parasitic, anti-pest or insecticidal nucleic acid corresponding to a Varroa destructor calmodulin sequence selected from SEQ ID NOs: 71-87. In another aspect, the compositions comprise an anti-parasitic, anti-pest or insecticidal nucleic acid corresponding to a Varroa destructor calmodulin sequence selected from SEQ ID NOs: 3, 4, 88 and 89. In an aspect, the compositions comprise a small RNA corresponding to the Varroa destructor calmodulin sequence of SEQ ID NO: 1. In an aspect, the compositions comprise a small RNA corresponding to the Varroa destructor calmodulin sequence of SEQ ID NO: 2. In an aspect, the compositions comprise a small RNA corresponding to the Varroa destructor calmodulin sequence of SEQ ID NO: 69. In an aspect, the compositions comprise a small RNA corresponding to the Varroa destructor calmodulin sequence of SEQ ID NO: 70. In some aspects, the compositions comprise a small RNA corresponding to a Varroa destructor calmodulin sequence selected from SEQ ID NOs: 71-87. In another aspect, the compositions comprise a small RNA corresponding to a Varroa destructor calmodulin sequence selected from SEQ ID NOs: 3, 4, 88 and 89. In an aspect, the compositions comprise a dsRNA corresponding to the Varroa destructor calmodulin sequence of SEQ ID NO: 1. In an aspect, the compositions comprise a dsRNA corresponding to the Varroa destructor calmodulin sequence of SEQ ID NO: 2. In an aspect, the compositions comprise a dsRNA corresponding to the Varroa destructor calmodulin sequence of SEQ ID NO: 69. In an aspect, the compositions comprise a dsRNA corresponding to the Varroa destructor calmodulin sequence of SEQ ID NO: 70. In some aspects, the compositions comprise a dsRNA corresponding to a Varroa destructor calmodulin sequence selected from SEQ ID NOs: 71-87. In another aspect, the compositions comprise a dsRNA corresponding to a Varroa destructor calmodulin sequence selected from SEQ ID NOs: 3, 4, 88 and 89. In an aspect, the compositions comprise an siRNA corresponding to the Varroa destructor calmodulin sequence of SEQ ID NO: 1. In an aspect, the compositions comprise a siRNA corresponding to the Varroa destructor calmodulin sequence of SEQ ID NO: 2. In an aspect, the compositions comprise a siRNA corresponding to the Varroa destructor calmodulin sequence of SEQ ID NO: 69. In an aspect, the compositions comprise a siRNA corresponding to the Varroa destructor calmodulin sequence of SEQ ID NO: 70. In some aspects, the compositions comprise a siRNA corresponding to a Varroa destructor calmodulin sequence selected from SEQ ID NOs: 71-87. In another aspect, the compositions comprise a siRNA corresponding to a Varroa destructor calmodulin sequence selected from SEQ ID NOs: 3, 4, 88 and 89. In aspects according to the present disclosure the composition may comprise an anti-parasitic, anti-pest or insecticidal nucleic acid corresponding to a region of SEQ ID NO: 1 or 2. In other aspects according to the present disclosure the composition may comprise an anti-parasitic, anti-pest or insecticidal nucleic acid corresponding to a region of SEQ ID NO: 69 or 70. In yet other aspects according to the present disclosure the composition may comprise a nucleic acid corresponding to a region of a sequence selected from SEQ ID NOs: 3, 4, 88 and 89.
[0106] Varroa mites parasitize pupae and adult bees and reproduce in the pupal brood cells. The mites use their mouths to puncture the exoskeleton and feed on the bee's hemolymph. The present inventors unexpectedly found that polynucleotide agents administered to the bees to treat Varroa mite infestations presented in the bee's hemolymph thereby becoming available to the mite.
[0107] The present inventors have shown that calmodulin-targeting dsRNA fragments can successfully be transferred to Varroa mites (see, e.g., FIG. 2), that the dsRNA can serve to down-regulate expression of calmodulin genes in the Varroa mite (see, e.g., FIG. 3A) and further that targeting of calmodulin genes for down-regulation can result in a reduction in the number of Varroa mites (see, e.g., FIG. 3B).
[0108] Thus, according to one aspect of the present disclosure there is provided a method of preventing or treating a Varroa destructor mite infestation of a bee, the method comprising administering to the bee an effective amount of a nucleic acid agent comprising a nucleic acid sequence which downregulates expression of a calmodulin gene of a Varroa destructor mite, thereby preventing or treating a Varroa destructor mite infestation of a bee.
[0109] According to this aspect of the present disclosure the agents of the present disclosure are used to prevent the Varroa destructor mite from living as a parasite on the bee, or larvae thereof. The phrase "Varroa destructor mite" refers to the external parasitic mite that attacks honey bees Apis cerana and Apis mellifera. The mite may be at an adult stage, feeding off the bee, or at a larval stage, inside the honey bee brood cell.
[0110] As mentioned, the agents of the present disclosure are capable of selectively down-regulating expression of a gene product of a Varroa destructor mite. As used herein, the phrase "gene product" refers to an RNA molecule or a protein. According to one aspect, the Varroa destructor mite gene product is one which is essential for mite viability. Down-regulation of such a gene product would typically result in killing of the Varroa mite. According to another aspect, the Varroa destructor mite gene product is one which is essential for mite reproduction. Down-regulation of such a gene product would typically result in the prevention of reproduction of the Varroa mite and the eventual extermination of the mite population. According to yet another aspect, the Varroa destructor mite gene product is one which is required to generate pathogenic symptoms in the bee. In some aspects, the Varroa destructor gene product is a calmodulin gene. In certain aspects, the calmodulin gene may comprise a nucleic acid sequence according to SEQ ID NO: 1 or SEQ ID NO: 2. In certain aspects, the calmodulin gene may comprise a nucleic acid sequence according to SEQ ID NO: 69 or SEQ ID NO: 70.
[0111] Examples of gene products that may be down-regulated according to this aspect of the present disclosure include, but are not limited to a calmodulin gene.
[0112] In an aspect according to the present disclosure, agents capable of down-regulating expression of a gene product of a Varroa destructor mite or other parasite, may downregulate to a lesser extent expression of the gene product in other animals, such as the bee or other non-target organism. Accordingly, certain agents of the present disclosure are able to distinguish between the mite gene and the bee gene, down-regulating the former to a greater extent than the latter. In some aspects, certain agents of the present disclosure are able to distinguish between the target gene in the target organism and orthologs in non-target organisms, down-regulating the former to a greater extent than the latter. In other aspects, the target gene of the parasite is downregulated while the homologous host gene is not. In yet another aspect, the target gene of the parasite does not have a homologue in the host. According to another aspect the agents of the present disclosure do not down-regulate the bee gene whatsoever. For example, this may be effected by targeting a gene that is expressed differentially in the mite and not in the bee e.g. the mite sodium channel gene--FJ216963. Alternatively, the agents of the present disclosure may be targeted to mite-specific sequences of a gene that is expressed both in the mite and in the bee.
[0113] According to one aspect, the agents of the present disclosure target segments of Varroa genes that are at least 100 bases long and do not carry any sequence longer than 19 bases that is entirely homologous to any bee-genome sequence or human-genome sequence. While it will be appreciated that more than one gene may be targeted in order to maximize the cytotoxic effect on the Varroa mites, compositions that comprise one, or a few, small RNA's would increase the probability of being a selective insecticide composition as cross reactivity with other insects may be reduced.
[0114] According to one aspect, a dsRNA composition can be prepared corresponding to the Varroa destructor Calmodulin-1 and Calmodulin-2 genes (e.g. using nucleic acid agents having the sequence as set forth in SEQ ID NOs: 1 to 4, and 69 to 89, their complements or nucleic acids directed to regions thereof).
[0115] It will be appreciated that as well as down-regulating a number of genes, the present disclosure further provides for, and includes, using a number of agents to down-regulate the same gene (e.g. a number of nucleic acids, or dsRNAs, each hybridizing to a different segment of the same gene). For example, in an aspect a combination of one or more nucleic acids corresponding to a sequence selected from the group consisting of SEQ ID NOs: 1 to 4, 6, 23, 26 to 35, and 69 to 89 may be used to increase the cytotoxic and anti-parasitic effects of the composition. Tools which are capable of identifying species-specific sequences may be used for this purpose--e.g. BLASTN and other such computer programs. U.S. Patent Publication NOs. 20090118214 and 20120108497 provide for the use of dsRNA for preventing and treating viral infections in honeybees. U.S. Patent Publication Nos. 20120258646 provides for the use of dsRNA to control Varroa destructor in honeybee. Each publication is hereby incorporated in their entireties.
[0116] The present disclosure provides for, and includes, compositions and methods for down-regulating the expression of a gene in a target organism. In an aspect the target organism may be a parasite. In certain aspects, the parasite may be Varroa destructor. As used herein, the term "down-regulating expression" refers to causing, directly or indirectly, reduction in the transcription of a desired gene, reduction in the amount, stability or translatability of transcription products (e.g. RNA) of the gene, and/or reduction in translation of the polypeptide(s) encoded by the desired gene. Down-regulating expression of a gene product of a Varroa destructor mite can be monitored, for example, by direct detection of gene transcripts (for example, by PCR), by detection of polypeptide(s) encoded by the gene or bee pathogen RNA (for example, by Western blot or immunoprecipitation), by detection of biological activity of polypeptides encode by the gene (for example, catalytic activity, ligand binding, and the like), or by monitoring changes in the Varroa destructor mite (for example, reduced proliferation of the mite, reduced virulence of the mite, reduced motility of the mite etc) and by testing bee infectivity/pathogenicity.
[0117] Downregulation of a pest or parasite gene product can be effected on the genomic and/or the transcript level using a variety of agents which interfere with transcription and/or translation (e.g., RNA silencing agents, Ribozyme, DNAzyme and antisense nucleic acid molecules). Downregulation of a Varroa destructor mite gene product can be effected on the genomic and/or the transcript level using a variety of agents which interfere with transcription and/or translation (e.g., RNA silencing agents, Ribozyme, DNAzyme and antisense nucleic acid molecules).
[0118] According to one aspect, the agent which down-regulates expression of a pest or parasite gene product is a small RNA, such as an RNA silencing agent. According to this aspect, the small RNA is greater than 15 base pairs in length. In another aspect, the small RNA is greater than 50 base pairs in length. In an aspect, the small RNA is greater than 50 base pairs in length but less than about 500 base pairs. In an aspect, the small RNA is greater than 100 base pairs in length but less than about 500 base pairs. In an aspect, the small RNA is greater than 200 base pairs in length but less than about 500 base pairs. In an aspect, the pest or parasite may be a Varroa destructor mite.
[0119] Another method of down-regulating a pest or parasite gene product is by introduction of small inhibitory RNAs (siRNAs). Another method of down-regulating a Varroa mite gene product is by introduction of small inhibitory RNAs (siRNAs).
[0120] In one aspect of the present disclosure, synthesis of RNA silencing agents suitable for use with the present disclosure can be effected as follows. First, the pest or parasite target mRNA is scanned downstream of the AUG start codon for AA dinucleotide sequences. Occurrence of each AA and the 3' adjacent 19 nucleotides is recorded as potential siRNA target sites. Preferably, siRNA target sites are selected from the open reading frame, as untranslated regions (UTRs) are richer in regulatory protein binding sites. UTR-binding proteins and/or translation initiation complexes may interfere with binding of the siRNA endonuclease complex (Tuschl ChemBiochem. 2:239-245). It will be appreciated though, that siRNAs directed at untranslated regions may also be effective, as demonstrated for GAPDH wherein siRNA directed at the 5' UTR mediated about 90% decrease in cellular GAPDH mRNA and completely abolished protein level (available on the internet at www.ambion.com/techlib/tn/91/912.html).
[0121] Second, potential target sites are compared to an appropriate genomic database (e.g., human, bee, monarch butterfly, mouse, rat etc.) using any sequence alignment software, such as the BLAST software available from the NCBI server (available on the internet at www.ncbi.nlm.nih.gov/BLAST/). Putative target sites which exhibit significant homology to other coding sequences are filtered out.
[0122] Qualifying target sequences are selected as template for siRNA synthesis. Preferred sequences are those including low G/C content as these have proven to be more effective in mediating gene silencing as compared to those with G/C content higher than 55%. Several target sites are preferably selected along the length of the target gene or sequence for evaluation. For better evaluation of the selected siRNAs, a negative control is preferably used in conjunction. Negative control siRNA preferably include the same nucleotide composition as the siRNAs but lack significant homology to the genome. Thus, a scrambled nucleotide sequence of the siRNA is preferably used, provided it does not display any significant homology to any other gene or pest or parasite target sequence. An example of a scrambled nucleotide sequence is provided at SEQ ID NO. 5.
[0123] For example, a siRNA that may be used in this aspect of the present disclosure is one which targets a mite-specific calmodulin gene. Examples of siRNAs are provided in SEQ ID NOs: 3, 4, 88 and 89.
[0124] It will be appreciated that the RNA silencing agent of the present disclosure need not be limited to those molecules containing only RNA, but further encompasses chemically-modified nucleotides and non-nucleotides.
[0125] In some aspects, the RNA silencing agent provided herein can be functionally associated with a cell-penetrating peptide. As used herein, a "cell-penetrating peptide" is a peptide that comprises a short (about 12-residues) amino acid sequence or functional motif that confers the energy-independent (i.e., non-endocytotic) translocation properties associated with transport of the membrane-permeable complex across the plasma and/or nuclear membranes of a cell. The cell-penetrating peptide used in the membrane-permeable complex of the present disclosure preferably comprises at least one non-functional cysteine residue, which is either free or derivatized to form a disulfide link with a double-stranded ribonucleic acid that has been modified for such linkage. Representative amino acid motifs conferring such properties are listed in U.S. Pat. No. 6,348,185, the contents of which are expressly incorporated herein by reference. The cell-penetrating peptides of the present disclosure preferably include, but are not limited to, penetratin, transportan, plsl, TAT(48-60), pVEC, MTS, and MAP.
[0126] Another agent capable of down-regulating a pest or parasite gene product is a DNAzyme molecule capable of specifically cleaving an mRNA transcript or DNA sequence of the bee pathogen polypeptide. DNAzymes are single-stranded polynucleotides which are capable of cleaving both single and double stranded target sequences (Breaker, R. R. and Joyce, G. Chemistry and Biology 1995; 2:655; Santoro, S. W. & Joyce, G. F. Proc. Natl, Acad. Sci. USA 1997; 943:4262) A general model (the "10-23" model) for the DNAzyme has been proposed. "10-23" DNAzymes have a catalytic domain of 15 deoxyribonucleotides, flanked by two substrate-recognition domains of seven to nine deoxyribonucleotides each. This type of DNAzyme can effectively cleave its substrate RNA at purine:pyrimidine junctions (Santoro, S. W. & Joyce, G. F. Proc. Natl, Acad. Sci. USA 199; for a review of DNAzymes, see Khachigian, L M, Curr Opin Mol Ther 4:119-21 (2002)). In an aspect, the pest or parasite gene product may be a Varroa mite gene product. Downregulation of pest or parasite gene products can also be effected by using an antisense polynucleotide capable of specifically hybridizing with an mRNA transcript encoding the pest or parasite gene product. Design of antisense molecules which can be used to efficiently downregulate a pest or parasite gene product must be effected while considering two aspects important to the antisense approach. The first aspect is delivery of the oligonucleotide into the cytoplasm of the appropriate cells, while the second aspect is design of an oligonucleotide which specifically binds the designated mRNA or RNA target sequence within cells in a way which inhibits translation thereof. In an aspect, the pest or parasite gene product may be a Varroa mite gene product. In another aspect, the pest or parasite gene product may be calmodulin gene product.
[0127] A number of delivery strategies which can be used to efficiently deliver oligonucleotides into a wide variety of cell types (see, for example, Luft J Mol Med 76: 75-6 (1998); Kronenwett et al. Blood 91: 852-62 (1998); Rajur et al. Bioconjug Chem 8: 935-40 (1997); Lavigne et al. Biochem Biophys Res Commun 237: 566-71 (1997) and Aoki et al. (1997) Biochem Biophys Res Commun 231: 540-5 (1997)).
[0128] In addition, algorithms for identifying those sequences with the highest predicted binding affinity for their target mRNA based on a thermodynamic cycle that accounts for the energetics of structural alterations in both the target mRNA and the oligonucleotide are also available (see, for example, Walton et al. Biotechnol Bioeng 65: 1-9 (1999)). Such algorithms have been successfully used to implement an antisense approach in cells. For example, the algorithm developed by Walton et al. enabled scientists to successfully design antisense oligonucleotides for rabbit beta-globin (RBG) and mouse tumor necrosis factor-alpha (TNF alpha) transcripts.
[0129] The same research group has more recently reported that the antisense activity of rationally selected oligonucleotides against three model target mRNAs (human lactate dehydrogenase A and B and rat gpl) in cell culture as evaluated by a kinetic PCR technique proved effective in almost all cases, including tests against three different targets in two cell types with phosphodiester and phosphorothioate oligonucleotide chemistries. In addition, several approaches for designing and predicting efficiency of specific oligonucleotides using an in vitro system were also published (Matveeva et al., Nature Biotechnology 16: 1374-1375 (1998)].
[0130] Another agent capable of down-regulating a pest or parasite gene product is a ribozyme molecule capable of specifically cleaving an mRNA transcript encoding the Varroa mite gene product. Ribozymes are being increasingly used for the sequence-specific inhibition of gene expression by the cleavage of mRNAs encoding proteins of interest (Welch et al., Curr Opin Biotechnol. 9:486-96 (1998)). The possibility of designing ribozymes to cleave any specific target RNA, including viral RNA, has rendered them valuable tools in both basic research and therapeutic applications. In an aspect, the pest or parasite gene product may be a Varroa mite gene product. In another aspect, the pest or parasite gene product may be calmodulin gene product.
[0131] An additional method of down-regulating the expression of a pest or parasite gene product in cells is via triplex forming oligonucleotides (TFOs). Recent studies have shown that TFOs can be designed which can recognize and bind to polypurine/polypyrimidine regions in double-stranded helical DNA in a sequence-specific manner. These recognition rules are outlined by Maher III, L. J., et al., Science (1989) 245:725-7; Moser, H. E., et al., Science, (1987) 238:645-6; Beal, P. A., et al., Science (1992) 251:1360-1363; Cooney, M., et al., Science (1988) 241:456-459; and Hogan, M. E., et al., EP Publication 375408. Modification of the oligonucleotides, such as the introduction of intercalators and backbone substitutions, and optimization of binding conditions (pH and cation concentration) have aided in overcoming inherent obstacles to TFO activity such as charge repulsion and instability, and it was recently shown that synthetic oligonucleotides can be targeted to specific sequences (for a recent review see Seidman and Glazer, J Clin Invest 2003; 112:487-94). In an aspect, the pest or parasite gene product may be a Varroa mite gene product. In another aspect, the pest or parasite gene product may be calmodulin gene product.
[0132] In general, the triplex-forming oligonucleotide has the sequence correspondence:
TABLE-US-00001 oligo 3'--A G G T duplex 5'--A G C T duplex 3'--T C G A
[0133] However, it has been shown that the A-AT and G-GC triplets have the greatest triple helical stability (Reither and Jeltsch, BMC Biochem, 2002, Sept12, Epub). The same authors have demonstrated that TFOs designed according to the A-AT and G-GC rule do not form non-specific triplexes, indicating that the triplex formation is indeed sequence specific.
[0134] Triplex-forming oligonucleotides preferably are at least 15, more preferably 25, still more preferably or more nucleotides in length, up to 50 or 100 bp.
[0135] Transfection of cells (for example, via cationic liposomes) with TFOs, and formation of the triple helical structure with the target DNA induces steric and functional changes, blocking transcription initiation and elongation, allowing the introduction of desired sequence changes in the endogenous DNA and resulting in the specific downregulation of gene expression.
[0136] Detailed description of the design, synthesis and administration of effective TFOs can be found in U.S. Patent Publication Nos. 2003/017068 and 2003/0096980 to Froehler et al., and 2002/0128218 and 2002/0123476 to Emanuele et al., and U.S. Pat. No. 5,721,138 to Lawn.
[0137] The polynucleotide down-regulating agents of the present disclosure may be generated according to any polynucleotide synthesis method known in the art such as enzymatic synthesis or solid phase synthesis. Equipment and reagents for executing solid-phase synthesis are commercially available from, for example, Applied Biosystems. Any other means for such synthesis may also be employed; the actual synthesis of the polynucleotides is well within the capabilities of one skilled in the art and can be accomplished via established methodologies as detailed in, for example, "Molecular Cloning: A laboratory Manual" Sambrook et al., (1989); "Current Protocols in Molecular Biology" Volumes I-III Ausubel, R. M., ed. (1994); Ausubel et al., "Current Protocols in Molecular Biology", John Wiley and Sons, Baltimore, Md. (1989); Perbal, "A Practical Guide to Molecular Cloning", John Wiley & Sons, New York (1988) and "Oligonucleotide Synthesis" Gait, M. J., ed. (1984) utilizing solid phase chemistry, e.g. cyanoethyl phosphoramidite followed by deprotection, desalting and purification by for example, an automated trityl-on method or HPLC.
[0138] The polynucleotide agents of the present disclosure may comprise heterocylic nucleosides consisting of purines and the pyrimidines bases, bonded in a 3' to 5' 5phosphodiester linkage. Preferably used polynucleotide agents are those modified in either backbone, internucleoside linkages or bases, as is broadly described hereinunder.
[0139] Specific examples of polynucleotide agents useful according to this aspect of the present disclosure include polynucleotide agents containing modified backbones or non-natural internucleoside linkages. Polynucleotide agents having modified backbones include those that retain a phosphorus atom in the backbone, as disclosed in U.S. Pat. Nos. 4,469,863; 4,476,301; 5,023,243; 5,177,196; 5,188,897; 5,264,423; 5,276,019; 5,278,302; 5,286,717; 5,321,131; 5,399,676; 5,405,939; 5,453,496; 5,455,233; 5,466,677; 5,476,925; 5,519,126; 5,536,821; 5,541,306; 5,550,111; 5,563,253; 5,571,799; 5,587,361; and 5,625,050.
[0140] Modified polynucleotide backbones include, for example, phosphorothioates, chiral phosphorothioates, phosphorodithioates, phosphotriesters, aminoalkyl phosphotriesters, methyl and other alkyl phosphonates including 3'-alkylene phosphonates and chiral phosphonates, phosphinates, phosphoramidates including 3'-amino phosphoramidate and aminoalkylphosphoramidates, thionophosphoramidates, thionoalkylphosphonates, thionoalkylphosphotriesters, and boranophosphates having normal 3'-5' linkages, 2'-5' linked analogs of these, and those having inverted polarity wherein the adjacent pairs of nucleoside units are linked 3'-5' to 5'-3' or 2'-5' to 5'-2'. Various salts, mixed salts and free acid forms can also be used.
[0141] Alternatively, modified polynucleotide backbones that do not include a phosphorus atom therein have backbones that are formed by short chain alkyl or cycloalkyl internucleoside linkages, mixed heteroatom and alkyl or cycloalkyl internucleoside linkages, or one or more short chain heteroatomic or heterocyclic internucleoside linkages. These include those having morpholino linkages (formed in part from the sugar portion of a nucleoside); siloxane backbones; sulfide, sulfoxide and sulfone backbones; formacetyl and thioformacetyl backbones; methylene formacetyl and thioformacetyl backbones; alkene containing backbones; sulfamate backbones; methyleneimino and methylenehydrazino backbones; sulfonate and sulfonamide backbones; amide backbones; and others having mixed N, O, S and CH.sub.2 component parts, as disclosed in U.S. Pat. Nos. 5,034,506; 5,166,315; 5,185,444; 5,216,141; 5,235,033; 5,264,562; 5,264,564; 5,405,938; 5,470,967; 5,489,677; 5,541,307; 5,561,225; 5,596,086; 5,602,240; 5,602,240; 5,608,046; 5,610,289; 5,618,704; 5,623,070; 5,663,312; 5,214,134; 5,466,677; 5,610,289; 5,633,360; 5,677,437; and 5,677,439.
[0142] Other polynucleotide agents which can be used according to the present disclosure, are those modified in both sugar and the internucleoside linkage, i.e., the backbone, of the nucleotide units are replaced with novel groups. The base units are maintained for complementation with the appropriate polynucleotide target. An example for such an polynucleotide mimetic, includes peptide nucleic acid (PNA). A PNA polynucleotide refers to a polynucleotide where the sugar-backbone is replaced with an amide containing backbone, in particular an aminoethylglycine backbone. The bases are retained and are bound directly or indirectly to aza nitrogen atoms of the amide portion of the backbone. United States patents that teach the preparation of PNA compounds include, but are not limited to, U.S. Pat. Nos. 5,539,082; 5,714,331; and 5,719,262, each of which is herein incorporated by reference. Other backbone modifications, which can be used in the present disclosure are disclosed in U.S. Pat. No. 6,303,374.
[0143] Polynucleotide agents of the present disclosure may also include base modifications or substitutions. As used herein, "unmodified" or "natural" bases include the purine bases adenine (A) and guanine (G), and the pyrimidine bases thymine (T), cytosine (C) and uracil (U). Modified bases include but are not limited to other synthetic and natural bases such as 5-methylcytosine (5-me-C), 5-hydroxymethyl cytosine, xanthine, hypoxanthine, 2-aminoadenine, 6-methyl and other alkyl derivatives of adenine and guanine, 2-propyl and other alkyl derivatives of adenine and guanine, 2-thiouracil, 2-thiothymine and 2-thiocytosine, 5-halouracil and cytosine, 5-propynyl uracil and cytosine, 6-azo uracil, cytosine and thymine, 5-uracil (pseudouracil), 4-thiouracil, 8-halo, 8-amino, 8-thiol, 8-thioalkyl, 8-hydroxyl and other 8-substituted adenines and guanines, 5-halo particularly 5-bromo, 5-trifluoromethyl and other 5-substituted uracils and cytosines, 7-methylguanine and 7-methyladenine, 8-azaguanine and 8-azaadenine, 7-deazaguanine and 7-deazaadenine and 3-deazaguanine and 3-deazaadenine. Further bases include those disclosed in U.S. Pat. No. 3,687,808, those disclosed in The Concise Encyclopedia Of Polymer Science And Engineering, pages 858-859, Kroschwitz, J. I., ed. John Wiley & Sons, 1990, those disclosed by Englisch et al., Angewandte Chemie, International Edition, 1991, 613, and those disclosed by Sanghvi, Y. S., Chapter 15, Antisense Research and Applications, pages 289-2, Crooke, S. T. and Lebleu, B., ed., CRC Press, 1993. Such bases are particularly useful for increasing the binding affinity of the oligomeric compounds of the disclosure. These include 5-substituted pyrimidines, 6-azapyrimidines and N-2, N-6 and 0-6 substituted purines, including 2-aminopropyladenine, 5-propynyluracil and 5-propynylcytosine. 5-methylcytosine substitutions have been shown to increase nucleic acid duplex stability by 0.6-1.2.degree. C. (Sanghvi Y S et al. (1993) Antisense Research and Applications, CRC Press, Boca Raton 276-278) and are presently preferred base substitutions, even more particularly when combined with 2'-O-methoxyethyl sugar modifications.
[0144] Following synthesis, the polynucleotide agents of the present disclosure may optionally be purified. For example, polynucleotides can be purified from a mixture by extraction with a solvent or resin, precipitation, electrophoresis, chromatography, or a combination thereof. Alternatively, polynucleotides may be used with no, or a minimum of, purification to avoid losses due to sample processing. The polynucleotides may be dried for storage or dissolved in an aqueous solution. The solution may contain buffers or salts to promote annealing, and/or stabilization of the duplex strands.
[0145] It will be appreciated that a polynucleotide agent of the present disclosure may be provided per se, or as a nucleic acid construct comprising a nucleic acid sequence encoding the polynucleotide agent. Typically, the nucleic acid construct comprises a promoter sequence which is functional in the host cell, as detailed herein below.
[0146] The polynucleotide sequences of the present disclosure, under the control of an operably linked promoter sequence, may further be flanked by additional sequences that advantageously affect its transcription and/or the stability of a resulting transcript. Such sequences are generally located upstream of the promoter and/or downstream of the 3' end of the expression construct.
[0147] The term "operably linked", as used in reference to a regulatory sequence and a structural nucleotide sequence, means that the regulatory sequence causes regulated expression of the linked structural nucleotide sequence. "Regulatory sequences" or "control elements" refer to nucleotide sequences located upstream, within, or downstream of a structural nucleotide sequence, and which influence the timing and level or amount of transcription, RNA processing or stability, or translation of the associated structural nucleotide sequence. Regulatory sequences may include promoters, translation leader sequences, introns, enhancers, stem-loop structures, repressor binding sequences, termination sequences, pausing sequences, polyadenylation recognition sequences, and the like.
[0148] It will be appreciated that the nucleic acid agents can be delivered to the pest or parasite in a great variety of ways. According to one aspect, the nucleic acid agents are delivered directly to the pest or parasite (e.g. by spraying a mite infested hive). The nucleic acid agents, or constructs encoding same may enter the mites bodies by diffusion. In this aspect, the promoter of the nucleic acid construct is typically operational in mite cells. In an aspect, the pest or parasite may be Varroa destructor.
[0149] It will be appreciated that since many parasites use their mouths to puncture the host arthropod exoskeleton and feed on the arthropod's hemolymph, the present disclosure contemplates delivering the polynucleotide agents of the present disclosure to the arthropod, whereby they become presented in the arthropod hemolymph thereby becoming available to the pest or parasite. Thus, according to another aspect, the nucleic acid agents are delivered indirectly to the pest or parasite (for example to a mite via a host bee). In this aspect, the promoter of the nucleic acid construct is typically operational in host cells. In certain aspects, the pest or parasite may be Varroa destructor and the host arthropod may be a bee.
[0150] According to one aspect, the nucleic acid agents are delivered to the infested hosts by spraying. The nucleic acid agents, or constructs encoding same may enter the host's bodies by diffusion.
[0151] In certain aspects, the pest or parasite may be Varroa destructor and the host arthropod may be a bee.
[0152] According to another aspect, the nucleic acid agents are delivered to the host via its food. The present inventors consider that following ingestion of the nucleic acid agents of the present disclosure, the agents can be presented, for example in a host arthropod in the host's hemolymph, whereby it becomes available to the parasite, for example a Varroa mite.
[0153] Thus the polynucleotides of the present disclosure may be synthesized in vitro or in vivo, for example in a bacterial or yeast cell, and added to the food. For example double stranded RNA may be synthesized by adding two opposing promoters (e.g. T7 promoters) to the ends of the gene segments, wherein the promoter is placed immediately 5' to the gene and the promoter is placed immediately 3' to the gene segment in the opposite orientation. The dsRNA may then be prepared by transcribing in vitro with the T7 RNA polymerase.
[0154] Examples of sequences for synthesizing nucleic acids, including dsRNA, according to aspects of the present disclosure are provided in SEQ ID NOs: 1 to 4, 6, 23, 26 to 35, and 69 to 89.
[0155] It will be appreciated that some pests or parasites cause wound sites in the exoskeleton of a host arthropod. Such wound sites harbor bacterial infections. For example, a host bee wound site may harbor a bacteria such as Melissococcus pluton, which causes European foulbrood. In addition, to their parasitic effects, parasites are known to act as vectors for a number of other pathogens and parasites. For example, Varroa mites are suspected of acting as vectors for a number of honey bee pathogens, including deformed wing virus (DWV), Kashmir bee virus (KBV), acute bee paralysis virus (ABPV) and black queen cell virus (BQCV), and may weaken the immune systems of their hosts, leaving them vulnerable to infections.
[0156] Thus, by killing the pest or parasite (or preventing reproduction thereof), the anti-parasitic, anti-pest or insecticidal agents of the present disclosure may be used to prevent and/or treat bacterial infections of host organisms. For example, Melissococcus pluton and viral infections in host bees caused by the above named viruses. Since Varroa mite infestation and viral infections are thought to be responsible for colony collapse disorder (CCD), the present agents may also be used to prevent or reduce the susceptibility of a bee colony to CCD.
[0157] It will be appreciated that in addition to feeding of anti-parasitic, anti-pest or insecticidal nucleic acid agents for reduction of the bee pathogen infection and infestation, enforcement of proper sanitation (for example, refraining from reuse of infested hives) can augment the effectiveness of treatment and prevention of infections.
[0158] Also included and provided for by the present disclosure are transgenic bacteria and yeast cells that express a selective insecticide. In one aspect, a nucleic acid encoding a small RNA, dsRNA, miRNA or a small or miRNA-resistant target nucleic acid molecule used herein is operably linked to a promoter and optionally a terminator. In some embodiments, the transgenic bacteria and yeast cells are killed, for example, by applying heat or pressure. In some embodiments, the transgenic bacteria and yeast cells are lysed prior to providing the selective insecticide to the target organism. In some embodiments, the transgenic bacteria and yeast cells are not lysed.
[0159] In one aspect, an exogenous nucleic acid molecule used herein is or encodes a small RNA, or in a particular aspect a siRNA, which can modulate the expression of a gene in a target organism.
[0160] In an aspect, an exogenous nucleic acid encodes a small RNA having at least 80%, 85%, 88%, 90%, 92%, 95%, 96%, 97%, 98%, or 99% sequence identity to a sequence selected from the group consisting of SEQ ID NOs: 1-4 and 6-89. In a further aspect, an exogenous nucleic acid molecule used herein is or encodes a dsRNA molecule. In another aspect, an exogenous nucleic acid molecule used herein is or encodes an artificial miRNA. In a further aspect, an exogenous nucleic acid molecule used herein is or encodes an siRNA. In one aspect, an exogenous nucleic acid molecule used herein is or encodes a precursor of a small RNA. In another aspect, an exogenous nucleic acid molecule used herein is or encodes a precursor of a miRNA or siRNA. In one aspect, an exogenous nucleic acid molecule used herein is a naturally-occurring molecule. In another aspect, an exogenous nucleic acid molecule used herein is a synthetic molecule.
[0161] In one aspect, an exogenous nucleic acid molecule used herein is or encodes a stem-loop precursor of a small RNA or in a particular aspect a miRNA, comprising a sequence having at least 80%, 85%, 88%, 90%, 92%, 95%, 96%, 97%, 98%, or 99% sequence identity to a sequence selected from the group consisting of SEQ ID NOs: 1-4 and 6-89. A stem-loop precursor used herein comprises a sequence having at least 60%, 65%, 70%, 75%, 80%, 85%, 88%, 90%, 92%, 95%, 96%, 97%, 98%, or 99% sequence identity to a sequence selected from the group consisting of SEQ ID NOs: 1-4 and 6-89.
[0162] In one aspect, an exogenous nucleic acid molecule used herein is naked RNA or expressed from a nucleic acid expression construct, where it is operably linked to a regulatory sequence.
[0163] In one aspect, a recombinant DNA construct or a transgene disclosed herein further comprises a transcription terminator.
[0164] It is expected that during the life of a patent maturing from this application many relevant methods for down-regulating expression of gene products can be developed and the scope of the term "down-regulating expression of a gene product of a Varroa destructor mite" is intended to include all such new technologies a priori.
[0165] It is appreciated that certain features of the disclosure, which are, for clarity, described in the context of separate aspects, may also be provided in combination in a single aspect. Conversely, various features of the disclosure, which are, for brevity, described in the context of a single aspect, may also be provided separately or in any suitable subcombination or as suitable in any other described aspect of the disclosure. Certain features described in the context of various aspects are not to be considered essential features of those aspects, unless the aspect is inoperative without those elements. Various aspects and aspects of the present disclosure as delineated hereinabove and as claimed in the claims section below find experimental support in the following examples.
EXAMPLES
Example 1. Varroa Mite Calmodulin Gene Sequences
[0166] The Calmodulin (CAM) genes provided in Table 1 (SEQ ID NO: 1 and 2), or their corresponding transcripts, were used as targets of polynucleotide compositions comprising a polynucleotide that is at least 18 contiguous nucleotides identical or complementary to those genes or transcripts. The gene sequences provided in Table 1, protein sequences encoded by those genes, or sequences contained within those genes were used to obtain orthologous Calmodulin (CAM) genes from other arthropod pest and parasitic species not listed in Table 1. Such orthologous genes and their transcripts can then serve as targets of polynucleotides provided herein or as a source of anti-parasitic, anti-pest or insecticidal polynucleotides that are specifically designed to target the orthologous genes or transcripts.
TABLE-US-00002 TABLE 1 Target Calmodulin (CAM) genes of Varroa destructor Gene name SEQ ID Open reading frame DNA sequence CAM-1 1 ATGGCTGATCAGCTAACTGAGGAACAGATCGCCGAGTTCAAAGAGGCGTTTAGCCTGTTTGACAAG- G ACGGAGATGGCACGATCACGACAAAGGAGCTCGGTACGGTAATGCGATCTCTCGGCCAGAACCCCAC TGAGGCTGAACTGCAGGACATGATCAACGAGGTCGACGCCGACGGCTCCGGAACGATAGATTTCCCT GAGTTCCTCACAATGATGGCAAGAAAGATGAAGGACACCGACTCGGAGGAGGAGATCCGAGAGGCGT TCCGCGTATTCGACAAGGATGGCAACGGTTTCATTTCGGCGGCCGAGCTCAGGCACGTTATGACCAA CCTTGGCGAGAAGCTTACGGACGAGGAGGTAGATGAGATGATTCGGGAGGCAGATATTGACGGTGAT GGTCAGGTCAACTACGAGGAGTTCGTCACCATGATGACGTCCAAGTAA CAM-2 2 ATGGCGGATCAGCTGACCGAGGAGCAAATCGCCGAATTCAAGGAGGCTTTCAGCCTGTTCGATAAA- G ACGGTGATGGCACAATTACGACCAAGGAACTAGGGACCGTCATGCGGTCCCTCGGCCAGAACCCTAC TGAGGCTGAGCTTCAAGACATGATCAACGAGGTCGACGCTGACGGTAACGGCACTATTGACTTTCCA GAGTTTCTCACGATGATGGCGCGTAAAATGAAGGACACCGACTCCGAGGAGGAGATCCGGGAAGCTT TTAGGGTTTTTGATAAAGACGGAAATGGCTTCATTTCGGCTGCAGAGCTGAGGCACGTAATGACCAA CCTTGGCGAAAAGCTCACGGACGAGGAAGTGGACGAGATGATCCGCGAGGCGGATATCGACGGCGAC GGACAGGTCAACTACGAGGAGTTCGTCACGATGATGACATCAAAATGA
[0167] For each Calmodulin DNA gene sequence provided in SEQ ID NO: 1 and 2, single stranded or double stranded DNA or RNA fragments in sense or antisense orientation or both are fed in vitro to Varroa mites grown on a petri plate or applied topically to bee hives to effect the expression of the CAM target genes and obtain a reduction in Varroa destructor mite population.
Example 2. Suppression of Calmodulin (CAM) Genes of Varroa destructor
[0168] Polynucleotides for the suppression of expression of Calmodulin (CAM) genes in Varroa destructor mite corresponding to SEQ ID NOs: 3 and 4 (Table 2) are provided and were used to suppress expression of Calmodulin (CAM) genes in Varroa destructor mite. The SEQ ID NOs: 3 and 4 describe a 373 bp dsRNA polynucleotide sequence and a 186 bp dsRNA polynucleotide sequence, respectively, selected from CAM-1 (SEQ ID NO: 1). SEQ ID NO: 3, corresponding to dsRNA polynucleotide CAM_L/CAM373 covers most of the open reading frame of the Calmodulin CAM-1 (SEQ ID NO: 1) gene. SEQ ID NO 4, corresponding to dsRNA polynucleotide CAM_S/CAM186 is a partial fragment of CAM_L/CAM373 (SEQ ID NO: 3) and is also derived from CAM-1 (SEQ ID NO: 1). SEQ ID NO: 5 in Table 2 is a control dsRNA sequence polynucleotide sequence with no more than 19 bp sequence identity to any known Varroa destructor gene.
TABLE-US-00003 TABLE 2 dsRNAs targeting Varroa destructor Calmodulin (CAM) genes dsRNA name SEQ ID Nucleic acid sequence CAM_L/CAMm 3 ACAGAUCGCCGAGUUCAAAGAGGCGUUUAGCCUGUUUGACAAGGACGGAGAUGGCACGAUCACGACAAAGGAG 373 CUCGGUACGGUAAUGCGAUCUCUCGGCCAGAACCCCACUGAGGCUGAACUGCAGGACAUGAUCAACGAG- GUCG ACGCCGACGGCUCCGGAACGAUAGAUUUCCCUGAGUUCCUCACAAUGAUGGCAAGAAAGAUGAAGGACACCG- A CUCGGAGGAGGAGAUCCGAGAGGCGUUCCGCGUAUUCGACAAGGAUGGCAACGGUUUCAUUUCGGCGGCCGA- G CUCAGGCACGUUAUGACCAACCUUGGCGAGAAGCUUACGGACGAGGAGGUAGAUGAGAUGAUUCGGGAGGCA- G AUAUUGAC CAM_S/CAM 4 ACAAUGAUGGCAAGAAAGAUGAAGGACACCGACUCGGAGGAGGAGAUCCGAGAGGCGUUCCGCGUAUUCGACA 186 AGGAUGGCAACGGUUUCAUUUCGGCGGCCGAGCUCAGGCACGUUAUGACCAACCUUGGCGAGAAGCUUA- CGGA CGAGGAGGUAGAUGAGAUGAUUCGGGAGGCAGAUAUUGAC SCRAM 5 AUACUUACUGGUGCUAAUUUUUAUCGAGGAUGCCCAACUCCCCCCACUUUAAAACUGCGAUCAUAC- UAACGAA CUCCCGAAGGAGUGAAAGGUGUCUAUGUUGAGCUUAAUAACCUACCUUGCGAGCAAAGAAGGACUAGUUGAC- C CUGGGCACCCUAUAUUGUUAUGUUGUUUCGAACUGAGUUGGCACCCAUGCUGCACAUGCAACAAACAUGUCG- G CCUUCGUGUCUAUCCUAGAAAAGUACCUGUGAACUUGGCUGUCUACAUCAUCAUC
Example 3. Varroa destructor Bioassay at 3 Day Post-Treatment with Specific dsRNAs
[0169] Adult female mites were collected from honeybee colonies and placed in a petri dish plate on top of an artificial diet solution containing a mixture of 1% tryptone, 0.5% yeast extract, 1% NaCl and 15 mg/mL agar. In this example the diet was supplemented with 50 .mu.g kanamycin per 1 mL of diet solution. The diet/agar solution was further supplemented with 200-500 .mu.g/mL of dsRNA and the resulting solution was poured on a petri dish. The dsRNA in this example consisted of either SEQ ID NO: 3 (CAM_L/CAM373) or SEQ ID NO: 5 (SCRAM). Fifteen mites were applied to each plate and the experiment was conducted in triplicate. The diet plates with the mites were incubated at 29.degree. C. with 50-60% relative humidity. At specific time intervals the plates were inspected and dead mites were counted and removed. For mortality studies the mites were counted three days after being placed on the diet (FIG. 2). FIG. 2 shows that all mites were dead at three day after treatment compared to untreated plates or plates where the mites were fed on a diet supplemented with the non-specific (SCRAM) dsRNA polynucleotide.
Example 4. Varroa destructor Bioassay at 5 Day Post-Treatment with dsRNAs Targeting Calmodulin
[0170] Adult female mites were collected from honeybee colonies and placed in a petri dish plate on top of an artificial diet solution. The artificial diet contained a mixture of 1% tryptone, 0.5% yeast extract, 1% NaCl and 15 mg/mL agar. In this example the diet was further supplemented with Antimycotic Solution (100.times., Sigma Aldrich) at 8.times. final concentration, 500 .mu.g/mL kanamycin and 220 U/mL nystatin. The diet/agar solution was further supplemented with 200-500 .mu.g/mL of dsRNA and the resulting solution was poured on a petri dish. The dsRNA in this example consisted of either SEQ ID NO: 3 (CAM_L/CAM373), or SEQ ID NO: 4 (CAM_S/CAM186), or SEQ ID NO: 5 (SCRAM). Fifteen mites were applied to each plate and the experiment was conducted in triplicate. The diet plates with the mites were incubated at 29.degree. C. with 50-60% relative humidity. At specific time intervals the plates were inspected and dead mites were counted and removed. For mortality studies the mites were counted at five days after being placed on the diet (FIG. 3). For molecular analysis, live mites were removed from the plates, snap frozen in liquid nitrogen and TAQMAN.TM. analysis was performed to assess the levels of Calmodulin (CAM) RNA. FIG. 3, Panel A. the RNA levels for Calmodulin (CAM) genes in mites exposed to SEQ ID NO: 3 (CAM_L/CAM373) or SEQ ID NO: 4 (CAM_S/CAM186) was highly reduced compared to the non-specific (SCRAM) treatment or no treatment (CNTR). FIG. 3, Panel B, a statistically significant mortality in mites that were exposed to dsRNA against Calmodulin (CAM) was observed at 5 days after treatment.
Example 5. Method for Delivering of dsRNA Polynucleotides Targeting Varroa Genes Using a Spray-Dried or Semi-Solid Formulation
[0171] dsRNA used to suppress expression of Varroa target Calmodulin (CAM) genes was prepared in a formulation containing 1 part dsRNA and .sup..about.14 parts trehalose in a phosphate buffer (a solution of 1.15 mM KH.sub.2PO.sub.4 (monobasic) and 8 mM Na.sub.2HPO.sub.4 (dibasic), pH 8.0) as illustrated in Table 3. Using a Buchi B-290 mini spray dryer, the liquid formulation was atomized into droplets and heated with gas to produce a flowable powder.
TABLE-US-00004 TABLE 3 Formulation Preparation Ratio of Stock buffer Final buffer Active Active (dsRNA) (X % w/v (X % w/v Total Stock dsRNA Ingredient Ingredient to Buffer trehalose + trehalose + vol buffer stock conc conc (trehalose + dsRNA phosphate buffer) phosphate buffer) (mL) (mL) (mL) Ratio (mg/mL) (% solids) phosphate buffer) CAM_L/CAM373 40 10 1100 275.00 825.00 1/4 7.20 0.720 13.9 CAM_S/CAM186 40 10 1285 321.21 963.75 1/4 6.75 0.675 14.8 indicates data missing or illegible when filed
[0172] The resulting particles were formulated with powdered sugar and applied evenly to hives by spreading the powdered sugar evenly on top of the frames. In other aspects, a semi-solid preparation of the spray-dried material is prepared with water and the sugar-water ("bee-candy") formulation is fed to the bee hives by allowing the bees to feed on it.
Example 6. In Vivo Reduction of Varroa Mite in Bee Hives after Treatment with dsRNA Targeting Calmodulin (CAM).sub.2Genes
[0173] Varroa mites infesting adult honey bees in the hives were collected and counted using standard mite counting methodology. Hives were treated with spray dried dsRNA according to Example 7 comprising SEQ ID NO: 3 (CAM-L), SEQ ID NO: 4 (CAM-S), or no treatment (CONTROL). The mite load of each hive was assessed at the beginning of the experiment and at 2 weeks, 4 weeks and 12 weeks after treatment. FIG. 4 shows the mite load of the treated hives compared to the hives that did not receive the treatment. The number of mites counted was normalized to 100 adult bees and is representative of the Varroa mite load.
Example 7. Detection of Transitive Small RNAs in Varroa Following Treatment with dsRNA Targeting Calmodulin (CAM).sub.2Genes
[0174] Varroa mites were collected from hives treated with SEQ ID NO: 3 dsRNA polynucleotides and collected from the hive at 7 day after treatment. Varroa RNA was extracted and small RNA sequencing analysis performed using the SOLiD platform. The majority of small RNA molecules were detected outside the dsRNA sequence region and specifically toward the 3' portion of the dsRNA region of SEQ ID NO: 3. Additionally, the majority of the transitive reads were in the antisense orientation relative to the Calmodulin (CAM) gene transcript sequence. Further, small RNAs specific for CAM-2 (SEQ ID NO: 2) were detected in this experiment despite the hives being treated with dsRNA for SEQ ID NO: 3, which is predicted to be specific for CAM-1 (SEQ ID NO: 1). This observation supports the hypothesis that suppression of RNA expression and transitive small RNA generation in Varroa works even when only a small fragment between the two genes shares complete identity at the DNA level (in this case 23 nucleotides).
Example 8. Calmodulin (CAM) Gene Homologs from Arthropod Pest and Parasite Species and Corresponding dsRNA Polynucleotides
[0175] Using standard bioinformatics technique and the sequences SEQ ID NOs: 1 and 2 for Varroa destructor a set of 31 conserved Calmodulin (CAM) gene sequences were identified in arthropod pest species that infest either other arthropods or mammals and that will be targeted for gene regulation. These sequences were identified and presented as a phylogenetic tree in FIG. 1. The DNA sequences in FIG. 1 were further analyzed by identifying the conserved 373 bp domain within each sequence that corresponds to SEQ ID NO: 3 (CAM_L/CAM373). Table 4 lists the SEQ ID NOs of the newly identified Calmodulin (CAM) gene sequences as well as the corresponding 373 bp dsRNA polynucleotide trigger sequences. The 373 bp polynucleotide dsRNA sequences will be tested either alone or in combination in direct feeding assays against their respective arthropod species.
TABLE-US-00005 TABLE 4 Calmodulin (CAM) gene sequences identified from arthropod pests or parasites and their corresponding 373bp RNA polynucleotides. SEQ ID NO Gene Name Organism/Species Type 6 CAM-3 Varroa destructor cDNA 7 CAM-1 Ixodes scapularis cDNA 8 CAM-1 Aedes aegypti cDNA 9 CAM-1 Culex quinquefasciatus cDNA 10 CAM-1 Acyrthosiphon pisum cDNA 11 CAM-1 Harpegnathos saltator cDNA 12 CAM-1 Pediculus humanus corporis cDNA 13 CAM-1 Anopheles gambiae cDNA 14 CAM-1 Solenopsis invicta cDNA 15 CAM-1 Ixodes scapularis RNA 16 CAM-1 Aedes aegypti RNA 17 CAM-1 Culex quinquefasciatus RNA 18 CAM-1 Acyrthosiphon pisum RNA 19 CAM-1 Harpegnathos saltator RNA 20 CAM-1 Pediculus humanus corporis RNA 21 CAM-1 Anopheles gambiae RNA 22 CAM-1 Solenopsis invicta RNA 23 CAM-3 Varroa destructor RNA 24 CAM-1 Tetranychus urticae cDNA 25 CAM-1 Tetranychus urticae RNA 26 CAM-4 Varroa destructor cDNA 27 CAM-4 Varroa destructor RNA 28 CAM-5 Varroa destructor cDNA 29 CAM-5 Varroa destructor RNA 30 CAM-7 Varroa destructor cDNA 31 CAM-7 Varroa destructor RNA 32 CAM-8 Varroa destructor cDNA 33 CAM-8 Varroa destructor RNA 34 CAM-9 Varroa destructor cDNA 35 CAM-9 Varroa destructor RNA 36 CAM Ixodes scapularis cDNA 37 CAM Ixodes scapularis RNA 38 CAM Ixodes scapularis cDNA 39 CAM Ixodes scapularis RNA 40 CAM Ixodes scapularis cDNA 41 CAM Ixodes scapularis cDNA 42 CAM Ixodes scapularis RNA 43 CAM Aedes aegypti cDNA 44 CAM Aedes aegypti RNA 45 CAM Aedes aegypti cDNA 46 CAM Aedes aegypti RNA 47 CAM Aedes aegypti cDNA 48 CAM Aedes aegypti RNA 49 CAM Culex quinquefasciatus cDNA 50 CAM Culex quinquefasciatus RNA 51 CAM Culex quinquefasciatus cDNA 52 CAM Culex quinquefasciatus RNA 53 CAM Culex quinquefasciatus cDNA 54 CAM Culex quinquefasciatus RNA 55 CAM Culex quinquefasciatus cDNA 56 CAM Culex quinquefasciatus RNA 57 CAM Acyrthosiphon pisum cDNA 58 CAM Acyrthosiphon pisum RNA 59 CAM Acyrthosiphon pisum cDNA 60 CAM Acyrthosiphon pisum RNA 61 CAM Pediculus humanus cDNA 62 CAM Pediculus humanus RNA 63 CAM Pediculus humanus cDNA 64 CAM Pediculus humanus RNA 65 CAM Pediculus humanus cDNA 66 CAM Pediculus humanus RNA 67 CAM Pediculus humanus cDNA 68 CAM Pediculus humanus RNA
Example 9. Varroa Calmodulin (CAM) Gene Transcripts and dsRNA Trigger Sequences
[0176] The Calmodulin (CAM) sequences provided in Table 5 (SEQ ID NOs: 69 and 70), or their corresponding transcripts, were used as targets of polynucleotide compositions comprising a polynucleotide that is at least 18 contiguous nucleotides identical or complementary to those genes or transcripts. The 5' and 3'UTR sequences for the Varroa Calmodulin sequences were identified by RNA sequencing.
TABLE-US-00006 TABLE 5 Target transcripts for Calmodulin (CAM) genes of Varroa destructor Gene name and Species SEQ ID NO Type CAM-1; Varroa destructor 69 RNA CAM-2; Varroa destructor 70 RNA
[0177] SEQ ID NOs: 69 and 70 were tiled in 150 bp fragments. Table 6 illustrates the top strand (5'-3') for the 150 bp fragments that tile across SEQ ID NOs: 69 and 70.
TABLE-US-00007 TABLE 6 Tiled polynucleotide sequences for CAM-1 and CAM-2 genes Gene name SEQ ID NO Position within transcript sequence CAM-1 71 1-150 CAM-1 72 151-300 CAM-1 73 301-450 CAM-1 74 451-600 CAM-1 75 601-750 CAM-1 76 751-900 CAM-1 77 901-1050 CAM-1 78 1051-1200 CAM-1 79 1201-1350 CAM-1 80 1351-1500 CAM-2 81 1-150 CAM-2 82 151-300 CAM-2 83 301-450 CAM-2 84 451-600 CAM-2 85 601-750 CAM-2 86 751-900 CAM-2 87 901-1050
[0178] One or more dsRNA comprising a sequence selected from SEQ ID NOs: 71-87 is provided in vitro to Varroa mites grown on a petri plate or applied topically to bee hives to effect the expression of the CAM target genes and obtain a reduction in Varroa destructor mite population.
Example 10. In Vitro Bioassay of Calmodulin (CAM) Targeting Triggers in Varroa Mite
[0179] Polynucleotide trigger sequences targeting Calmodulin (CAM)-1 and 2 were generated based on conserved sequence overlap between CAM-1 and CAM-2 sequences. These are presented as SEQ ID NOs: 88 and 89 (targeting CAM-1 and CAM-2, respectively).
[0180] Polynucleotide sequences selected from SEQ ID NOs: 88 and 89 were tested in an in vitro bioassay for their ability to suppress viability of adult Varroa mites. Adult female mites were collected from honeybee colonies and placed in a petri dish plate on top of an artificial diet solution. The artificial diet contained a mixture of 1% tryptone, 0.5% yeast extract, 1% NaCl and 15 mg/mL agar. In this example, the diet was further supplemented with Antimycotic Solution (100.times., Sigma Aldrich) at 8.times. final concentration, 500 .mu.g/mL kanamycin and 220 U/mL nystatin.
[0181] The diet/agar solution was further supplemented with 200-500 .mu.g/mL of dsRNA and the resulting solution was poured on a petri dish. The dsRNA in this example consisted of either SEQ ID NO: 3 (CAM373), SEQ ID NO: 88 (CAM-1), or SEQ ID NO: 89 (CAM-2) or non-treated control (NTC). Fifteen mites were applied to each plate and the experiment was conducted in triplicate. The diet plates with the mites were incubated at 29.degree. C. with 50-60% relative humidity. At specific time intervals the plates were inspected and dead mites were counted and removed. For mortality studies the mites were counted at five and six days after being placed on the diet (FIG. 5.). Additionally, the dsRNA for SEQ ID NO: 88 (CAM-1) and SEQ ID NO: 89 (CAM-2) were mixed in equimolar amount and fed as described above to the mites. FIG. 6 shows the result of this application.
[0182] For molecular analysis, live mites are removed from the plates, snap frozen in liquid nitrogen and TAQMAN.TM. analysis is performed to assess the levels of Calmodulin (CAM) RNA.
Example 11. In Vivo Field Reduction of Varroa Mite Infestation in Field Treated Bee Hives
[0183] after Treatment with dsRNA Targeting Calmodulin (CAM) Gene dsRNA used to suppress expression of Varroa targeted Calmodulin (CAM) genes was prepared by mixing dsRNA stock in Phosphate Buffer with 66% sugar syrup. The liquid formulation was supplied as a syrup to the bees, allowed to feed on it until fully consumes (approximately 2-3 days). Each field testing group consisted of 33 hives. The groups consisted of non-treated hives, non-specific trigger treated (SEQ ID NO: 5) and specific trigger treated (SEQ ID NO: 3). Bees were treated in two rounds, each round consisted of two feedings two weeks apart: at the start of the delivery (week 0) and two weeks later (week 2), then again on week 13 and 15. Assessment of bee survival was done at 4, 9, 13, 15 and 17 weeks (FIG. 7). Significant suppression of Varroa population was observed following treatment with the specific trigger (SEQ ID NO:3) at week 9.
Sequence CWU
1
1
891450DNAVarroa destructor 1atggctgatc agctaactga ggaacagatc gccgagttca
aagaggcgtt tagcctgttt 60gacaaggacg gagatggcac gatcacgaca aaggagctcg
gtacggtaat gcgatctctc 120ggccagaacc ccactgaggc tgaactgcag gacatgatca
acgaggtcga cgccgacggc 180tccggaacga tagatttccc tgagttcctc acaatgatgg
caagaaagat gaaggacacc 240gactcggagg aggagatccg agaggcgttc cgcgtattcg
acaaggatgg caacggtttc 300atttcggcgg ccgagctcag gcacgttatg accaaccttg
gcgagaagct tacggacgag 360gaggtagatg agatgattcg ggaggcagat attgacggtg
atggtcaggt caactacgag 420gagttcgtca ccatgatgac gtccaagtaa
4502450DNAVarroa destructor 2atggcggatc agctgaccga
ggagcaaatc gccgaattca aggaggcttt cagcctgttc 60gataaagacg gtgatggcac
aattacgacc aaggaactag ggaccgtcat gcggtccctc 120ggccagaacc ctactgaggc
tgagcttcaa gacatgatca acgaggtcga cgctgacggt 180aacggcacta ttgactttcc
agagtttctc acgatgatgg cgcgtaaaat gaaggacacc 240gactccgagg aggagatccg
ggaagctttt agggtttttg ataaagacgg aaatggcttc 300atttcggctg cagagctgag
gcacgtaatg accaaccttg gcgaaaagct cacggacgag 360gaagtggacg agatgatccg
cgaggcggat atcgacggcg acggacaggt caactacgag 420gagttcgtca cgatgatgac
atcaaaatga 4503373RNAVarroa
destructor 3acagaucgcc gaguucaaag aggcguuuag ccuguuugac aaggacggag
auggcacgau 60cacgacaaag gagcucggua cgguaaugcg aucucucggc cagaacccca
cugaggcuga 120acugcaggac augaucaacg aggucgacgc cgacggcucc ggaacgauag
auuucccuga 180guuccucaca augauggcaa gaaagaugaa ggacaccgac ucggaggagg
agauccgaga 240ggcguuccgc guauucgaca aggauggcaa cgguuucauu ucggcggccg
agcucaggca 300cguuaugacc aaccuuggcg agaagcuuac ggacgaggag guagaugaga
ugauucggga 360ggcagauauu gac
3734186RNAVarroa destructor 4acaaugaugg caagaaagau gaaggacacc
gacucggagg aggagauccg agaggcguuc 60cgcguauucg acaaggaugg caacgguuuc
auuucggcgg ccgagcucag gcacguuaug 120accaaccuug gcgagaagcu uacggacgag
gagguagaug agaugauucg ggaggcagau 180auugac
1865274RNAUnkown 5auacuuacug gugcuaauuu
uuaucgagga ugcccaacuc cccccacuuu aaaacugcga 60ucauacuaac gaacucccga
aggagugaaa ggugucuaug uugagcuuaa uaaccuaccu 120ugcgagcaaa gaaggacuag
uugacccugg gcacccuaua uuguuauguu guuucgaacu 180gaguuggcac ccaugcugca
caugcaacaa acaugucggc cuucgugucu auccuagaaa 240aguaccugug aacuuggcug
ucuacaucau cauc 2746432DNAVarroa
destructor 6ctgccggagg aacaggtggc tgaatttaaa gaggcctttc ttttgtttga
caaggacgcc 60gatggaatga ttacggccgc cgaactaggc gtcgtcatgc gatcgcttgg
ccagcgacct 120acggagcaag agctcaagaa aatggttacc atggttgacc aggacggcaa
tggtacaatc 180gagttcaacg agtttttgat gatgatgtct cgcaagatga aggaggcaga
ctcggaggaa 240gaactccggg aggcgttccg tgtgttcgat cgagacggtg acggattcat
ctcgcgggac 300gagctcagtg tcgtcatgaa caacctcggc gagaaattaa gtgacgatga
tgttgaggat 360atgattcgag aggccgatct ggacggcgat ggcaagatta actaccaaga
gtttgtgctc 420attatcacct cc
4327480DNAIxodes scapularis 7atggctgatc agcttacaga agaacagatt
gcagttcaag gaggcgttct tcgctgttcg 60acaaggacgg aggatggcac catcacgacc
aaggagctgg gcacggtcat gcgctcgctc 120ggccagaacc cgacggaggc ggagctgcag
gacatgatca acgaggtgga cgcagacggc 180aacggaacga tcgacttccc cgagttcctt
acgatgatgg cgcgcaagat gaaggacacg 240gactctgagg aggagatccg ggaggcgttc
cgggtgttcg acaaggacgg caacggcttc 300atctctgcgg cggagctgcg ccacgtcatg
accaacctgg gcgagaagct gacggacgag 360gaggtggacg agatgatccg ggaggcggac
atcgacgggg acgggcaggt caactacgaa 420ggtgggcacg ctttccctcc cttggttatc
ctcctgctat gctttctgca gttgctgtga 4808450DNAAedes aegypti 8atggccgatc
aacttacaga agagcagatt gccgaattca aagaagcgtt ttcgctgttc 60gacaaagacg
gtgacggcac aatcacaacc aaggaactgg gaaccgtgat gcgatcgtta 120ggccagaacc
ccacagaagc agaactgcaa gatatgataa acgaagtcga cgcggacggc 180aacggcacga
tcgatttccc cgaattcctg accatgatgg ctcgcaaaat gaaggacacc 240gatagcgaag
aggaaatccg ggaggcgttc cgagtcttcg acaaggacgg caacggcttc 300atctcggcag
ctgagctgcg tcatgtcatg accaatctcg gcgagaagct aacggacgag 360gaggtggatg
agatgatccg cgaagccgac atagatggcg atggccaagt taattatgaa 420gaattcgtaa
caatgatgac atcgaagtga 4509450DNACulex
quinquefasciatus 9atggccgatc aacttacaga ggaacagatc gccgagttca aagaagcgtt
ctcgctgttc 60gacaaagacg gtgacggcac gatcacgacc aaggagctgg gcaccgtgat
gcgatcgtta 120ggccagaacc ccacagaagc agagctgcaa gacatgataa acgaggtcga
tgcggacggc 180aacggcacga tcgacttccc cgagtttctc accatgatgg ctcgcaaaat
gaaggacacc 240gatagcgaag aggaaatccg ggaggcgttc cgagtcttcg acaaggacgg
caacggcttc 300atctcggcgg ccgagctgcg ccacgtcatg accaatctcg gcgagaagct
cacggacgag 360gaggtggatg agatgatccg cgaggccgac attgacggcg atggccaagt
taattatgaa 420gaattcgtaa caatgatgac atcgaagtga
45010450DNAAcyrthosiphon pisum 10atggctgatc aactaacaga
agaacagatt gccgaattca aagaggcgtt ttcgctattc 60gacaaggacg gagatggtac
catcaccacc aaagaacttg gaaccgtcat gaggtcttta 120ggccaaaatc cgactgaagc
tgaactccaa gatatgatta acgaggtcga tgctgatggc 180aacggcacga tagatttccc
agagttcttg actatgatgg cccgcaaaat gaaggatacc 240gatagtgagg aagaaatcag
agaggctttc cgtgtatttg ataaggatgg aaacggcttt 300attagtgcag ctgagctgcg
tcatgtgatg actaaccttg gagaaaagct caccgatgaa 360gaggttgatg aaatgatcag
ggaagctgac attgatggtg atggtcaagt caactatgaa 420gagttcgtga ccatgatgac
ttctaagtga 45011441DNAHarpegnathos
saltator 11caactcacag aggaacagat cgcagagttt aaggaagcct tctcgctatt
cgacaaagat 60ggcgatggca ctataacgac taaagaattg ggtacagtca tgcgatccct
gggtcaaaat 120cccacagagg ccgagttaca agacatgatt aatgaagtag acgcagatgg
taacggtaca 180atcgactttc cggagttctt gaccatgatg gcacgcaaaa tgaaggatac
ggacagcgag 240gaggagatca gggaggcctt cagagtgttc gataaggatg gaaatggttt
catatccgca 300gcggaactca gacatgttat gacaaatctg ggcgagaaac tgaccgatga
ggaagtagat 360gaaatgatac gggaggcaga tatcgacggc gatggccaag tgaattatga
agaatttgtg 420acgatgatga catcaaagtg a
44112459DNAPediculus humanus corporis 12atggtttctt tttttttgcg
agctgatcag ttgaccgaag aacaaattgc cgaattcaag 60gaagcatttt ccttattcga
caaagatggc gatggtacca taacaactaa ggaattgggt 120acggttatga gatcactcgg
tcagaatccc acagaagcag aattacaaga tatgattaat 180gaagtggatg cagatggtaa
tggtaccatc gattttcccg agttcctcac catgatggct 240agaaaaatga aggatacaga
cagcgaagaa gaaattagag aagcattcag agttttcgat 300aaggatggta atggttttat
atcggcagcc gagctaaggc acgtcatgac gaacctgggt 360gaaaaattaa cagacgaaga
agtggatgaa atgattcgag aggctgatat cgacggagat 420ggacaagtga attacgaaga
atttgtggaa aacttgtga 45913459DNAAnopheles
gambiae 13atggccgatc aacttacgga agaacagatc gctgaattca aagaagcgtt
ctcgctgttc 60gacaaggacg gcgatggcac aatcaccacc aaggaattag gcaccgtgat
gcgatcgcta 120ggccagaacc ccacagaagc tgaattgcaa gacatgatca acgaagtcga
cgcggacggt 180aacggcacga tcgatttccc cgagtttcta acaatgatgg ctcgtaaaat
gaaggacacg 240gacagtgaag aggaaatccg ggaggcattc cgagtcttcg acaaggacgg
caacggtttt 300atctctgcag ctgagctgcg ccacgtcatg actaatctgg gcgagaagct
aacagacgag 360gaggtcgacg agatgatccg tgaagccgat atagatggcg atggccaggt
taattatgaa 420ggtaagagtt gcctttcgcg cccacaccaa gcattgttt
45914501DNASolenopsis invicta 14atgatcggca cgataacgac
gagaaattcc attatttcag aattcaaaga ggcatttatg 60cttttcgaca aggacgaaga
tggcacgatt acgatggcgg aattaggggt tgtcatgcgg 120tctctcggtc aaagaccgtc
ggagacggaa ctgcgcgata tggtgaatga ggtagatcaa 180gatggaaatg gtaccatcga
gtttaacgaa tttctgcaga tgatgtcgaa gaagatgaaa 240agcgccgacg gagaggacga
acttcgcgag gcgttccgag tgttcgataa gaacaacgat 300ggcttaatat cttcgaaaga
gttgcgacac gtaatgacga atcttggtga aaagctctct 360gaggaggagg tcgatgatat
gattaaggag gcggatctag atggcgacgg aatggtcaac 420tacgaaggta acattttgtt
ttgcctagat gtttattcta taatagattt agaatttatt 480ctaagcgata tagatgaatt g
50115364RNAIxodes scapularis
15aguucaagga ggcguucuuc gcuguucgac aaggacggag gauggcacca ucacgaccaa
60ggagcugggc acggucaugc gcucgcucgg ccagaacccg acggaggcgg agcugcagga
120caugaucaac gagguggacg cagacggcaa cggaacgauc gacuuccccg aguuccuuac
180gaugauggcg cgcaagauga aggacacgga cucugaggag gagauccggg aggcguuccg
240gguguucgac aaggacggca acggcuucau cucugcggcg gagcugcgcc acgucaugac
300caaccugggc gagaagcuga cggacgagga gguggacgag augauccggg aggcggacau
360cgac
36416372RNAAedes aegypti 16gcagauugcc gaauucaaag aagcguuuuc gcuguucgac
aaagacggug acggcacaau 60cacaaccaag gaacugggaa ccgugaugcg aucguuaggc
cagaacccca cagaagcaga 120acugcaagau augauaaacg aagucgacgc ggacggcaac
ggcacgaucg auuuccccga 180auuccugacc augauggcuc gcaaaaugaa ggacaccgau
agcgaagagg aaauccggga 240ggcguuccga gucuucgaca aggacggcaa cggcuucauc
ucggcagcug agcugcguca 300ugucaugacc aaucucggcg agaagcuaac ggacgaggag
guggaugaga ugauccgcga 360agccgacaua ga
37217373RNACulex quinquefasciatus 17acagaucgcc
gaguucaaag aagcguucuc gcuguucgac aaagacggug acggcacgau 60cacgaccaag
gagcugggca ccgugaugcg aucguuaggc cagaacccca cagaagcaga 120gcugcaagac
augauaaacg aggucgaugc ggacggcaac ggcacgaucg acuuccccga 180guuucucacc
augauggcuc gcaaaaugaa ggacaccgau agcgaagagg aaauccggga 240ggcguuccga
gucuucgaca aggacggcaa cggcuucauc ucggcggccg agcugcgcca 300cgucaugacc
aaucucggcg agaagcucac ggacgaggag guggaugaga ugauccgcga 360ggccgacauu
gac
37318372RNAAcyrthosiphon pisum 18acagauugcc gaauucaaag aggcguuuuc
gcuauucgac aaggacggag augguaccau 60caccaccaaa gaacuuggaa ccgucaugag
gucuuuaggc caaaauccga cugaagcuga 120acuccaagau augauuaacg aggucgaugc
ugauggcaac ggcacgauag auuucccaga 180guucuugacu augauggccc gcaaaaugaa
ggauaccgau agugaggaag aaaucagaga 240ggcuuuccgu guauuugaua aggauggaaa
cggcuuuauu agugcagcug agcugcguca 300ugugaugacu aaccuuggag aaaagcucac
cgaugaagag guugaugaaa ugaucaggga 360agcugacauu ga
37219373RNAHarpegnathos saltator
19acagaucgca gaguuuaagg aagccuucuc gcuauucgac aaagauggcg auggcacuau
60aacgacuaaa gaauugggua cagucaugcg aucccugggu caaaauccca cagaggccga
120guuacaagac augauuaaug aaguagacgc agaugguaac gguacaaucg acuuuccgga
180guucuugacc augauggcac gcaaaaugaa ggauacggac agcgaggagg agaucaggga
240ggccuucaga guguucgaua aggauggaaa ugguuucaua uccgcagcgg aacucagaca
300uguuaugaca aaucugggcg agaaacugac cgaugaggaa guagaugaaa ugauacggga
360ggcagauauc gac
37320373RNAPediculus humanus corporis 20acaaauugcc gaauucaagg aagcauuuuc
cuuauucgac aaagauggcg augguaccau 60aacaacuaag gaauugggua cgguuaugag
aucacucggu cagaauccca cagaagcaga 120auuacaagau augauuaaug aaguggaugc
agaugguaau gguaccaucg auuuucccga 180guuccucacc augauggcua gaaaaaugaa
ggauacagac agcgaagaag aaauuagaga 240agcauucaga guuuucgaua aggaugguaa
ugguuuuaua ucggcagccg agcuaaggca 300cgucaugacg aaccugggug aaaaauuaac
agacgaagaa guggaugaaa ugauucgaga 360ggcugauauc gac
37321372RNAAnopheles gambiae
21acagaucgcu gaauucaaag aagcguucuc gcuguucgac aaggacggcg auggcacaau
60caccaccaag gaauuaggca ccgugaugcg aucgcuaggc cagaacccca cagaagcuga
120auugcaagac augaucaacg aagucgacgc ggacgguaac ggcacgaucg auuuccccga
180guuucuaaca augauggcuc guaaaaugaa ggacacggac agugaagagg aaauccggga
240ggcauuccga gucuucgaca aggacggcaa cgguuuuauc ucugcagcug agcugcgcca
300cgucaugacu aaucugggcg agaagcuaac agacgaggag gucgacgaga ugauccguga
360agccgauaua ga
37222364RNASolenopsis invicta 22cagaauucaa agaggcauuu augcuuuucg
acaaggacga agauggcacg auuacgaugg 60cggaauuagg gguugucaug cggucucucg
gucaaagacc gucggagacg gaacugcgcg 120auauggugaa ugagguagau caagauggaa
augguaccau cgaguuuaac gaauuucugc 180agaugauguc gaagaagaug aaaagcgccg
acggagagga cgaacuucgc gaggcguucc 240gaguguucga uaagaacaac gauggcuuaa
uaucuucgaa agaguugcga cacguaauga 300cgaaucuugg ugaaaagcuc ucugaggagg
aggucgauga uaugauuaag gaggcggauc 360uaga
36423373RNAVarroa destructor
23acagguggcu gaauuuaaag aggccuuucu uuuguuugac aaggacgccg auggaaugau
60uacggccgcc gaacuaggcg ucgucaugcg aucgcuuggc cagcgaccua cggagcaaga
120gcucaagaaa augguuacca ugguugacca ggacggcaau gguacaaucg aguucaacga
180guuuuugaug augaugucuc gcaagaugaa ggaggcagac ucggaggaag aacuccggga
240ggcguuccgu guguucgauc gagacgguga cggauucauc ucgcgggacg agcucagugu
300cgucaugaac aaccucggcg agaaauuaag ugacgaugau guugaggaua ugauucgaga
360ggccgaucug gac
37324627DNATetranychus urticae 24attcatcaga tttaaaatta ttcaccttgt
acctgaatta aaacaatagt attatataag 60atggctgacc agctaactga agagcaaatt
gctgaattta aggaggcctt ttcattgttt 120gataaagatg gtgatggtac aattaccacc
aaggaattgg gaactgttat gagaagtcta 180ggtcaaaatc caacagaagc ggaattacaa
gatatgatca atgaagttga tgccgatggt 240aatggtacta ttgattttcc tgaattcttg
actatgatgg ctagaaaaat gaaggataca 300gactcagagg aggaaatccg tgaagctttc
cgtgtttttg ataaagatgg taatggtttt 360atttctgctg ctgaattgag acatgtaatg
accaatttgg gtgaaaaatt gaccgacgaa 420gaagtagatg aaatgattcg tgaagccgat
attgacggtg atggtcaagt taattatgaa 480gaatttgtaa cgatgatgac atccaaatga
ataaaagcac aaggttaatt gttcatttta 540attagatcca atggatccca tcagtgacag
ggataaaaat taatcaataa aagatgaaaa 600gcaaaaaata catggaagct atcatca
62725372RNATetranychus urticae
25caaauugcug aauuuaagga ggccuuuuca uuguuugaua aagaugguga ugguacaauu
60accaccaagg aauugggaac uguuaugaga agucuagguc aaaauccaac agaagcggaa
120uuacaagaua ugaucaauga aguugaugcc gaugguaaug guacuauuga uuuuccugaa
180uucuugacua ugauggcuag aaaaaugaag gauacagacu cagaggagga aauccgugaa
240gcuuuccgug uuuuugauaa agaugguaau gguuuuauuu cugcugcuga auugagacau
300guaaugacca auuuggguga aaaauugacc gacgaagaag uagaugaaau gauucgugaa
360gccgauauug ac
372261114DNAVarroa destructorunsure(1)..(1114)unsure at all n
locationsmisc_feature(1100)..(1110)n is a, c, g, or t 26ggctcgtaca
ccgagagaga acggtggact ccattgctgt cctgagtgcg tttctcgtcg 60gctgtgtcgt
attgcgtgtc tgtccgtgct ttcgtgcaca taagttttct ttccacattg 120gagatattgt
gaatagtatc ctttgtgttt agtgcctgaa caatatttga aatcgtcgaa 180cgtatcaaga
cataaaaacg agccaaaatg gctgatcaac ttacggaaga acaaatcgca 240gaatttaagg
aagcattttc actatttgat aaagatggag atggtaccat cacaactaaa 300gagttgggta
cagttatgcg atcactaggt caaaatccca cagaagctga gcttcaggat 360atgattaatg
aagttgatgc agatggtaat ggcacaatcg attttccgga attcttaact 420atgatggctc
gtaaaatgaa agatactgat agtgaggaag aaattaggga ggccttcaga 480gtatttgata
aggatggaaa tggtttcata tccgcagcag aactcagaca tgttatgaca 540aatcttggcg
agaaactcac tgatgaagaa gttgatgaaa tgattcggga ggctgacatt 600gatggtgatg
gccaagttaa ttatgaagaa ttcgtcacaa tgatgacatc aaagtgaatg 660caacctgtgt
aatggaaaaa cttgcaactt ggagtggtgt tgacgtatta agataaatca 720agaaacaaag
aaaaatataa tgttaacaaa aaacgaatcg accagaaagt gaaaaaaatc 780ttgtatctgg
acgcaaagat gtctataaaa cgcgaaaaat taacgtccaa cacgcgttaa 840tcatcattaa
cgataagtaa tacagggcaa ttgtttaatt aaaagagtta taccactaaa 900aatcattatc
tctaaataca caaaacttaa ttacacaaca tgaacataaa aatacatatt 960actcgcgcac
atacatgaat acaaaaaaat atacagcaca cagaaatacc atctacataa 1020aagataattt
atttccgtat taaaaagtat ataattaaaa aatgttagag atatatatat 1080ataatatata
tatatatatn nnnnnnnnnn gtaa
111427372RNAVarroa destructor 27acaaaucgca gaauuuaagg aagcauuuuc
acuauuugau aaagauggag augguaccau 60cacaacuaaa gaguugggua caguuaugcg
aucacuaggu caaaauccca cagaagcuga 120gcuucaggau augauuaaug aaguugaugc
agaugguaau ggcacaaucg auuuuccgga 180auucuuaacu augauggcuc guaaaaugaa
agauacugau agugaggaag aaauuaggga 240ggccuucaga guauuugaua aggauggaaa
ugguuucaua uccgcagcag aacucagaca 300uguuaugaca aaucuuggcg agaaacucac
ugaugaagaa guugaugaaa ugauucggga 360ggcugacauu ga
37228822DNAVarroa destructor
28tttttttttt ttttcgaaga aatcgtatca tcgaacatcg gatcgaattt cgatccacga
60cgctcgaatt acatgcaacg aagtgaatgt cagagggggg ggggcagggg aaaagtatgc
120gacgaacgtg tacgtccgtc gtccgctggc tcgtcgttaa ttcgttctat ctaacacaga
180cacgagaata agtaagatcc tagtagcccg gggacagcac ctcctcctcc tcgtcctcct
240cgtcgtcgtc gatccccggc tctccgagcg cgtggacgaa ttcgtagaaa tcgatacggc
300cgtctccgtc cacgtccact tccttgatca tatcctcgat ctcttcttcc gacaagtcct
360cgccgagaca ttgcagcact gccctcaaat cggatgcggt gatgtatcct cgattgtgtt
420tatcgaatac ccggaacgca tccctcagct cctgctcttc ctgatcctga tccgtggggg
480cggtttcatt cgcacctatg ttgctcacga tttccacgaa ctcttcgaag ctgacatttc
540catccccgtc gatgtcgatc tcctgcaaca tggtgcgcag ctcctcggcc ctcgcgaatt
600gccccaacga gcgcatcacc ctcccgagct cctccttcgt gatgctcccg tccccgtcct
660tgtcgaacag tctgaacgct tccctgaatt ctttcatttg agatttggat atattgctcg
720gtatcttggt ggacgactca gaggcggatt ttttcggcga cgcaggtaag gagaagagga
780cgttggtcga caatttgccg gcctccgtgg acgaggaggc cg
82229300RNAVarroa destructor 29aacguguacg uccgucgucc gcuggcucgu
cguuaauucg uucuaucuaa cacagacacg 60agaauaagua agauccuagu agcccgggga
cagcaccucc uccuccucgu ccuccucguc 120gucgucgauc cccggcucuc cgagcgcgug
gacgaauucg uagaaaucga uacggccguc 180uccguccacg uccacuuccu ugaucauauc
cucgaucucu ucuuccgaca aguccucgcc 240gagacauugc agcacugccc ucaaaucgga
ugcggugaug uauccucgau uguguuuauc 300302577DNAVarroa destructor
30ctgctgctgc tgctgctgct gctgctgccg tgttaagaac tagacaaagg caacaaccgg
60aagacatctg ttaggccagt tgggtgaagg gaaataaact cgcaacaaag agctactgtt
120gcaaaagcta tctgttctga gtcctagact agactgggat cgactaacaa ctctgcaggc
180cgtggaccac tatcactgaa caacgccgca ggaccgagcg attgagaagt tggccgcggc
240tgggacgctc tggctcactt gatctgatta ctacttacac caggtcaatt taaccaagcc
300gttgaaccac tcctacatgg aaacacacat ctacactctc atccaattgt gtacacgcga
360agcaaacgac aacggtatta gcagcgacac taacaaaaac gaatctgcca gaaaccgagt
420aacgctgatt tctgcagcgg cgttcctacg aacttaccac agacccggtc ggcacaatag
480tttgaaggtt agcatcggcc cgtgaactat agtgaaagga actgagcgaa atactatagt
540tgttgaacag caggcttcaa agtaaagaag tgaatattct tatggtgaca acaaattttg
600tctgtagtgg tcaagaccct actcaatgaa gtgagaagcg aattcatatg tgctcagtta
660tagcagttgt ttgtcgtaat gccgccaata tacgacgtct gtgtgtctcg atactggcgt
720atctgactga ttccgatcgg tgtcattgat ctgcaaagcc aattgttttc tttacgtccc
780ggatagagca aacgatcatg gcaacggaaa catttggcct gccggaggaa caggtggctg
840aatttaaaga ggcctttctt ttgtttgaca aggacgccga tggaatgatt acggccgccg
900aactaggcgt cgtcatgcga tcgcttggcc agcgacctac ggagcaagag ctcaagaaaa
960tggttaccat ggttgaccag gacggcaatg gtacaatcga gttcaacgag tttttgatga
1020tgatgtctcg caagatgaag gaggcagact cggaggaaga actccgggag gcgttccgtg
1080tgttcgatcg agacggtgac ggattcatct cgcgggacga gctcagtgtc gtcatgaaca
1140acctcggcga gaaattaagt gacgatgatg ttgaggatat gattcgagag gccgatctgg
1200acggcgatgg caagattaac taccaagagt ttgtgctcat tatcacctcc gccaagtagg
1260ccttggagtt gctcgcgcac acacatgcta ttcctcttgt cctacacgac aaacactata
1320cacgttacaa tacggaaaaa tgaaataaaa gcacagtcac acttattcat tcattcacag
1380aggatcactg gcgtgtcctc attaatatgg ctgacaaata ctattgattt gtctcgactg
1440agctatcagg cacacgcata ttgtctgttc cgatacgtgc aataataggt aaagtggtgt
1500tagcttgagc accttacggt ttacatttat tccgtattaa cggtactatg tctcaatagt
1560catgtcgcag cattagccag ctaacattaa atttagttga tttttatttt atttttttac
1620acaacaagaa ttatcttact atttggcaag ctgactgcga gtagtaaaat taccctagta
1680aaaaaaaaag gctttaaaaa cgatttaaca aaggtgcgtc catttaaaaa agtatgacac
1740aagctaatgt gttcgatcgc ggtcggttgc attcggccag tttgtgagac gcgaaattta
1800ccagcagccg tcaacaacga tggaataatt atatattaaa tataaataat aaaatatctg
1860ttacacattc tatgtgaata aagttataca tatatatata catacaacag caatgatata
1920tatgatgata cgtatactat atagaagtat ccactgatat aggataatgg gaaattctgg
1980aaaggagaaa acatattctt ctttcataat taatgaatta tcatcgagca cctcaagaat
2040ttgcttagac atattacaaa aaaaaaatta attcactata tataaataat cgcaattaat
2100caaaaaaaaa atacggtcat ttatggcata ccctaggtta ataaacttca taaaggtacc
2160tatatatata tcttttttac tgtctcttta atcgtcatta tacatagtga cgattaaaga
2220gagagagtaa aaaagaggtc aaaataaaag acttgaagtc gattgaggtt aatttttatt
2280ctaggttata tgtgttttag cggatttata gtgtgctcgt tgtaaaagtt gacgtaagga
2340gttgaaacgc ggagagcagt ataacagtaa aatggagagg aagtttagaa gttgggaaat
2400aaatgatttg ctactaattg gaaattacaa aaatgaccat ttaaagaact tatcattaga
2460attttaatat ctgccacact gaaccgtttt gtcattattt cgaccatagc gattttcaca
2520cagttgtctc acgtttgagg ccttatcgtt taaaggctaa cggaaatttc tctaaag
257731373RNAVarroa destructor 31acagguggcu gaauuuaaag aggccuuucu
uuuguuugac aaggacgccg auggaaugau 60uacggccgcc gaacuaggcg ucgucaugcg
aucgcuuggc cagcgaccua cggagcaaga 120gcucaagaaa augguuacca ugguugacca
ggacggcaau gguacaaucg aguucaacga 180guuuuugaug augaugucuc gcaagaugaa
ggaggcagac ucggaggaag aacuccggga 240ggcguuccgu guguucgauc gagacgguga
cggauucauc ucgcgggacg agcucagugu 300cgucaugaac aaccucggcg agaaauuaag
ugacgaugau guugaggaua ugauucgaga 360ggccgaucug gac
37332693DNAVarroa destructor
32cgcctctata cagtgaaaaa gtcggataag gttatgttac tcagtaactt aaccttatct
60tggataacgt tatttgacac gtaaacgaaa agtaataaca aagttttgta ttatggctcg
120ttattttcga gaggaagata tagatgaatt cagggaatgt ttttatctat ttgcaaggaa
180tggtcaaata cgtactttgg atgagcttac aatcattatg agatcattag gattaagtcc
240aactattgca gaattaaata aatatttgaa agataaaggt ggaaaaatgt cttttgccga
300tttcttggaa gttatgcatc tacaaactag agctgaagat ttaccaaaag aagtgataga
360tgcttttcaa gctgcagata aatttaggac tggcactata ccagctagac agttagcgca
420tatgttactc cactggggtg aacaattaag taacaaagaa gtggagcaaa ttttcagaga
480ggcaaatgtg tctccaaatg gacaagtaaa gtacgaagat tttgttaaaa tagcttgtgc
540acctgtacct gattactatt aaaataaata tttttcatat tttttaaaga tatttatata
600ctttttacac aatacacacg tatttaatta ataaaaggat aaaaatgatc ataaaagaaa
660aagaatttat tcttccagca acttatcttc gac
69333315RNAVarroa destructor 33augcuuuuca agcugcagau aaauuuagga
cuggcacuau accagcuaga caguuagcgc 60auauguuacu ccacuggggu gaacaauuaa
guaacaaaga aguggagcaa auuuucagag 120aggcaaaugu gucuccaaau ggacaaguaa
aguacgaaga uuuuguuaaa auagcuugug 180caccuguacc ugauuacuau uaaaauaaau
auuuuucaua uuuuuuaaag auauuuauau 240acuuuuuaca caauacacac guauuuaauu
aauaaaagga uaaaaaugau cauaaaagaa 300aaagaauuua uucuu
31534612DNAVarroa destructor
34cgttttttta atttcaaaga ctcctgattt tcttttcttt tcctttccta caaaccaaac
60acaagctaga aagaggttcg atttttgcag gaagaagaag gaacaatggc tgatcagctc
120accgatgacc agatctctga gtttaaggaa gccttcagcc tcttcgataa ggatggagat
180ggttgtatca ccaccaagga gcttggaact gtgatgaggt ctcttggcca gaaccccact
240gaggcagagc tccaggacat gatcaacgag gtggatgctg atggcaatgg aacaattgac
300tttcctgagt tcttaaacct catggccagg aagatgaagg atactgattc tgaggaggag
360ctcaaggaag ctttccgcgt gtttgacaag gaccagaatg gcttcatttc tgcggctgag
420ctccgccatg ttatgacgaa tcttggtgag aagctcacag acgaggaagt tgatgagatg
480atccgtgagg ctgatgtaga tggtgacggc cagattaact acgaggagtt tgtcaaagtc
540atgatggcca agtgaggatc attaaccaaa ccttaaaatt tcgaaagcat aaacatttaa
600aaaaaaaaaa aa
61235371RNAVarroa destructor 35cagaucucug aguuuaagga agccuucagc
cucuucgaua aggauggaga ugguuguauc 60accaccaagg agcuuggaac ugugaugagg
ucucuuggcc agaaccccac ugaggcagag 120cuccaggaca ugaucaacga gguggaugcu
gauggcaaug gaacaauuga cuuuccugag 180uucuuaaacc ucauggccag gaagaugaag
gauacugauu cugaggagga gcucaaggaa 240gcuuuccgcg uguuugacaa ggaccagaau
ggcuucauuu cugcggcuga gcuccgccau 300guuaugacga aucuugguga gaagcucaca
gacgaggaag uugaugagau gauccgugag 360gcugauguag a
37136659DNAIxodes scapularis
36acaccgcgct cgacgagaac tcgcgcaagg agcgcgtgct aacgccgata gctctcgtac
60aaaagaaaac taaagacttg acacgctcaa taccgatctt tcacattttc agcaaaattt
120gagcattccg aatatggacc tgactccgga agagatcgcg gacatcaagg gagcgtttct
180gctgtttgac cgcaacggcg acggaaccat ctccacgact gagctagaga tggtcctccg
240cgccatgggc gaacggccca gtccttccca gctggcccgt atagtgcggc aaattgacag
300cgaccgcaat ggaagcatcg acttccaaga gtttctcttt ttcatggccg gcaggatttc
360ccacaaaggc ctctccaaaa gcgcagtcct caaggccttc caactcttcg accgcgatgg
420caatggatac atcaccaggg aggaactcgt ccacattttc acgcacgttg ggcagagcat
480gagccaagaa gacgccgaaa agataatccg cgaagtggat gtggacaagg acggaaagat
540ccattacact gaattggtca acaaggtgct gcccaccaag aagcaaaaag aagaaaccaa
600aacctagaag gtcgtcgctt ggcacggtct ttattattaa acaagtgctt tatcgcttg
65937374RNAIxodes scapularis 37agaucgcgga caucaaggga gcguuucugc
uguuugaccg caacggcgac ggaaccaucu 60ccacgacuga gcuagagaug guccuccgcg
ccaugggcga acggcccagu ccuucccagc 120uggcccguau agugcggcaa auugacagcg
accgcaaugg aagcaucgac uuccaagagu 180uucucuuuuu cauggccggc aggauuuccc
acaaaggccu cuccaaaagc gcaguccuca 240aggccuucca acucuucgac cgcgauggca
auggauacau caccagggag gaacucgucc 300acauuuucac gcacguuggg cagagcauga
gccaagaaga cgccgaaaag auaauccgcg 360aaguggaugu ggac
37438549DNAIxodes scapularis
38gattcgtcca cttattttgt ccctattctt cgtccgcagt cgtcctcgag gaaaagtgcg
60tcaggtgcgg gctacaagcg gaaactgagc ggaaagccag aaccgagcga ggagcagaag
120aatgacatga aggaagcgtt cagtctcttc gatcccagtg gcacgggctt catggagtct
180aaagatatga agtttgcaat gagagcactg ggttttgaac caaaaaagga ggaagtgaaa
240aaactgatag cagagattga caagcagggg actggaaaaa ttcccttgga ggagttcatg
300agcgtcatgt ccacgaggct ggctgagaaa gacataaatg aggagattat gaaggcgttt
360cagctgtttg atgaggatgg cactgggaag atttctttta agaacctcaa gaatgtggcc
420aaggaactgt cggagaacct cacagatgag gagcttcagg aaatgatcaa tgaagctgac
480agggatggag atggcgaagt gaaccaagag gagttcctta ggataatgaa gaagacctgc
540ctctactga
54939373RNAIxodes scapularis 39ugaaggaagc guucagucuc uucgauccca
guggcacggg cuucauggag ucuaaagaua 60ugaaguuugc aaugagagca cuggguuuug
aaccaaaaaa ggaggaagug aaaaaacuga 120uagcagagau ugacaagcag gggacuggaa
aaauucccuu ggaggaguuc augagcguca 180uguccacgag gcuggcugag aaagacauaa
augaggagau uaugaaggcg uuucagcugu 240uugaugagga uggcacuggg aagauuucuu
uuaagaaccu caagaaugug gccaaggaac 300ugucggagaa ccucacagau gaggagcuuc
aggaaaugau caaugaagcu gacagggaug 360gagauggcga agu
37340234DNAIxodes scapularis
40atggccaaga acgtccgcgc cctggacacc gaggaggaga ttttggaggc cttcaaagtc
60ttcgaccgca acggcgacgg cttcgtgagc acagccgagc tccgtcacgt gatgaccacg
120ttaggcgaga agttgacgca cgaagaagtg gacgagatga tccgcgaggc cgaccgcgac
180ggcgacggac agatcaacta cgacgagttc gtggccatga tgacttccaa gtga
23441213DNAIxodes scapularis 41cctggaaccg aggaggagat tctggaggcc
ttcaaagtct tcgaccgcaa cggcgacggc 60ttcgtgagca cggccgagct ccgtcacgtg
atgaccacgc taggcgagaa gttgacgcac 120gaagaagtgg acgagatgat ccgcgaggcc
gaccgtgacg gcgacggaca gatcaactac 180gacgagttcg tggccatgat gacctccaag
tga 21342200RNAIxodes scapularis
42gaggaggaga uucuggaggc cuucaaaguc uucgaccgca acggcgacgg cuucgugagc
60acggccgagc uccgucacgu gaugaccacg cuaggcgaga aguugacgca cgaagaagug
120gacgagauga uccgcgaggc cgaccgugac ggcgacggac agaucaacua cgacgaguuc
180guggccauga ugaccuccaa
20043450DNAAedes aegypti 43atgtccgccc atagtctaac agaggaacaa gggcgccagt
tccgtcagat gttcgagatg 60ttcgacaaaa atggcgacgg ttcgatcagc acatcggaac
tgggatcggt cattcgggcc 120ttgggtatga atccctccat tgcggaaatc gagcaaatga
tccacgaggt cgatttggac 180ggaagtgggt cgattgagtt gaacgaattt ctcatactga
tggcacgtaa gtcacgggag 240ggttccacac aggaagagct acgggatgcg ttcaaaattt
ttgacaagga tggagatgga 300tttctcacgg ttgacgagtt gtcggctgtt atgaagaact
ttggcgagag attgaccgat 360gacgaactag cagatctgct ggaggaagcc gacatcgatg
gagacggaaa gatcaactat 420gaagaatttg tcatcatgtt gagcaagtga
45044300RNAAedes aegypti 44acagaggaac aagggcgcca
guuccgucag auguucgaga uguucgacaa aaauggcgac 60gguucgauca gcacaucgga
acugggaucg gucauucggg ccuuggguau gaaucccucc 120auugcggaaa ucgagcaaau
gauccacgag gucgauuugg acggaagugg gucgauugag 180uugaacgaau uucucauacu
gauggcacgu aagucacggg aggguuccac acaggaagag 240cuacgggaug cguucaaaau
uuuugacaag gauggagaug gauuucucac gguugacgag 30045465DNAAedes aegypti
45atgtccgccc aaaccccgcc agacaagctt tcccaggatc aaatcgaaga actgcgggaa
60gctttctccc tgttcgacac caacggcgac ggaaccataa cctgttcaga acttggcaca
120gtccttcgat cccttggcaa aaatgtatcc gacgcggaag tggaagaact gctcaaagaa
180gtcaacgtcg accacgaagg aatgatccac tttccggact tcgtggcaat gatgtccatc
240cgattgcggg acttcaatag cgaggaggaa ctcaaggaag ccttccggat cttcgaccgc
300aacggagatg ggctgatttc ggcggacgaa ttgcgagcgg ctctccaatc tttcggggaa
360cagctggccg aggaggaaat cgaagaactg ctccgggagg cggatgtcaa ctgcgacgga
420caaatagact acgaggagtt tgttaaaatg atcacgctga aataa
46546300RNAAedes aegypti 46caaaucgaag aacugcggga agcuuucucc cuguucgaca
ccaacggcga cggaaccaua 60accuguucag aacuuggcac aguccuucga ucccuuggca
aaaauguauc cgacgcggaa 120guggaagaac ugcucaaaga agucaacguc gaccacgaag
gaaugaucca cuuuccggac 180uucguggcaa ugauguccau ccgauugcgg gacuucaaua
gcgaggagga acucaaggaa 240gccuuccgga ucuucgaccg caacggagau gggcugauuu
cggcggacga auugcgagcg 300471150DNAAedes aegypti 47tcgtcaagga
tatccggcaa ctgattatga cccggcaaac caacgatccc aacggccagc 60aacaggaaca
gaacgaacca gaatccagtc agaacaccca gagcgaccaa agcaacaacc 120agcccacgca
gcgattggga ggaaccacct cggacttcag tgtcagctcc gcggccacta 180atcgaagtat
gccccgccac caggaggaca atcccaatca accggccagc gactgttcca 240gcctcgaggg
aaatgtattc gtcgaaggcg gatccggcac cggagcgcac ccgaaaacac 300gccgctcgca
aacttccgat tcgatcacct ccagcaactt caactacagt ctcaaccgga 360ggttcatatc
gaagaaccag atgaaggagt ttcgagaagc gttccggctg ttcgacaagg 420ataatgacgg
ctcaatcacc aaggaagaac tgggaactgt catgaggtcg ttgggacaat 480ttgctcgcgt
ggaagaatta caagagatgt tactggagat tgatgttgat ggcgatggaa 540acgtaagttt
cgaagagttt gtcgacatca tgtccaacat gacggatacc gtggcggaaa 600catcggccga
ccaggaggaa cgtgagctac gtgatgcctt ccgtgtcttc gacaagcaca 660atcgaggtta
cattacggca tcagatctac gggcggttct tcaatgtctg ggcgaagatt 720tggatgaaga
agaaattgaa gacatgatca aagaagtgga cgtggatgga gacggacgga 780tcgatttcta
cgaattcgta catgctcttg gagaaccgga agattcccaa gaaaacgacg 840acgaagacga
ggcagtgtcc ccccattcgc tgtcctgtga cgtgcatgtc taagaaccgc 900caggagaaaa
atagctaacg ccaacgaatc gcattcctaa caaaatgtcg aacaatctag 960agacattgac
cagatttttt ttaaatattt aacacacaaa aaaacttcgc ttaacgccat 1020tgtacttctc
catacgcttg ataacagatt ccagaacacc taatgaattt atcaatctat 1080acataataac
tattcatctc taatcacgaa aaaagtttaa ataaacatat caaattgagc 1140aaccaataag
115048300RNAAedes
aegypti 48gaguuucgag aagcguuccg gcuguucgac aaggauaaug acggcucaau
caccaaggaa 60gaacugggaa cugucaugag gucguuggga caauuugcuc gcguggaaga
auuacaagag 120auguuacugg agauugaugu ugauggcgau ggaaacguaa guuucgaaga
guuugucgac 180aucaugucca acaugacgga uaccguggcg gaaacaucgg ccgaccagga
ggaacgugag 240cuacgugaug ccuuccgugu cuucgacaag cacaaucgag guuacauuac
ggcaucagau 30049450DNACulex quinquefasciatus 49atgtcggccc actcgctcac
cgacgaacag cagcgccagt accggcaaat gttcgaaacg 60ttcgacaagg atggcaacgg
ttccatcacg acgacggaac tgggaacgct agtgcgagcg 120ctaggtctta atccttcgat
cgccgagatc gagcagatga tccacgaggt cgacctggac 180ggaagcggga cgatcgagct
gaacgagttt tacgtgctga tggcccggaa gcatcgggaa 240gcctcgtcgg aggacgagct
gaggcaggct ttcaaggtgt ttgacaagaa cgaggatggg 300ttcttgacgg tggaggaact
gtcgatggtg atgaagaact ttggtgagcg gttgagcgat 360gaagagttgg cggatttgtt
ggaggaggcg gatgttgaca aggacggtcg gattaattac 420gaggaatttg tgaccatgtt
gaccaagtag 45050300RNACulex
quinquefasciatus 50acagcagcgc caguaccggc aaauguucga aacguucgac aaggauggca
acgguuccau 60cacgacgacg gaacugggaa cgcuagugcg agcgcuaggu cuuaauccuu
cgaucgccga 120gaucgagcag augauccacg aggucgaccu ggacggaagc gggacgaucg
agcugaacga 180guuuuacgug cugauggccc ggaagcaucg ggaagccucg ucggaggacg
agcugaggca 240ggcuuucaag guguuugaca agaacgagga uggguucuug acgguggagg
aacugucgau 30051477DNACulex quinquefasciatus 51atgtcatcgt cttcccgcca
ccccaaaccc accgcggacc ccctgaccaa ggagcaaatc 60gaagaactgc gcgaagcgtt
caccctgttc gacaccaacg gcgacggaac gatttccggc 120tcggaactgt ccaccgtgct
gcgggccctc ggcaagaacg tctcggacgc cgaagtcgag 180gaactgctga aggaggtccg
caccgacgac gagggccgca tccggttcgg ggactttgtg 240gccatgatga cggtccggtt
gaaggacttt aacaacgagg accagctgca ggaggcgttt 300cggatcttcg atcgggacgg
gaatgggcgg atttcggcgg aagagctacg ggtcgcgttg 360aggtcgtttg gggagcagtt
gaccgaagag gagctggagg agttgctgcg cgaggcggac 420gtcaacagtg acggccagat
tgactacggg gagtttgtgc ggatgataac gcagtga 47752300RNACulex
quinquefasciatus 52gcgaagcguu cacccuguuc gacaccaacg gcgacggaac gauuuccggc
ucggaacugu 60ccaccgugcu gcgggcccuc ggcaagaacg ucucggacgc cgaagucgag
gaacugcuga 120aggagguccg caccgacgac gagggccgca uccgguucgg ggacuuugug
gccaugauga 180cgguccgguu gaaggacuuu aacaacgagg accagcugca ggaggcguuu
cggaucuucg 240aucgggacgg gaaugggcgg auuucggcgg aagagcuacg ggucgcguug
aggucguuug 30053927DNACulex quinquefasciatus 53atgaccgatt ttctccagct
tccccaatgc aatactcgac aaaccaacga cccaaacagc 60gccgagcagc aacaacagag
cgaacccgaa tcgaaccaga gcagcacgca ccagagcagc 120agccacagct accagcagcc
gtcgtcaacg cagcaccggt tggccggatc tccgtcgagc 180agtgccaacg cgagtcccgt
gatcggccgg aacatgcccc gccaccagca ccaggacacc 240gcgcccagtg acgatgggac
ctcgagcagt ctggacggga gtgtctttgc cgccgacgga 300actccgaccg ctccgggggc
gttggccagg acgcgccgct cgcagacctc ggaatcgatc 360acctccagca acttcaacta
cagtttgaac cggaggttca tctccaagaa ccagatgaaa 420gagttccggg aggcgttccg
gctgtttgac aaggacaacg acgggtcgat cacgaaggag 480gagctgggca cggtgatgcg
atcactgggg cagtttgccc gtgtcgagga actgcaggag 540atgctgctgg agattgacgt
cgatggtgat ggcaacgtca gcttcgagga gtttgtcgac 600atcatgtcca acatgaccga
cacggtggcg gaggcatccg ccgaccagga ggagcgcgaa 660ctccgggatg cgttccgcgt
gtttgacaag cacaaccggg gctacatcac ggcgtctgat 720ctgcgggcgg ttctgcagtg
tctgggagaa gatttggacg aggaagaaat cgaagacatg 780atcaaggagg tggacgtcga
cggcgatgga cggatcgact tttacgagtt tgtgcacgcc 840ctcggagagc cggaagattc
acaggagaac gacgacgagg aggaccccct gtcacctccg 900tcactgtcgt gtgacgtaaa
cgcctaa 92754300RNACulex
quinquefasciatus 54gaguuccggg aggcguuccg gcuguuugac aaggacaacg acgggucgau
cacgaaggag 60gagcugggca cggugaugcg aucacugggg caguuugccc gugucgagga
acugcaggag 120augcugcugg agauugacgu cgauggugau ggcaacguca gcuucgagga
guuugucgac 180aucaugucca acaugaccga cacgguggcg gaggcauccg ccgaccagga
ggagcgcgaa 240cuccgggaug cguuccgcgu guuugacaag cacaaccggg gcuacaucac
ggcgucugau 30055333DNACulex quinquefasciatus 55atggtcggtg tccaagctgg
ccatttgata tctcaatcac ggcggggcgg ctccgcgtgc 60gaaaacgggg aaattttgat
tgatgacggc ggcggcgggg agcggcgggt tttaaacctg 120ttctacaagg ggaataaaaa
tgccgatcaa cttacagagg aacagatcgc cgagttcaaa 180gaagcgttct cgctgttcga
caaagacggt gacggcacga tcacgaccaa ggagctgggc 240accgtgatgc gatcgttagg
ccagaacccc acagaagcag agctgcaaga catgataaac 300gaggtcgatg cggacggact
gcatccgctt taa 33356300RNACulex
quinquefasciatus 56gucggugucc aagcuggcca uuugauaucu caaucacggc ggggcggcuc
cgcgugcgaa 60aacggggaaa uuuugauuga ugacggcggc ggcggggagc ggcggguuuu
aaaccuguuc 120uacaagggga auaaaaaugc cgaucaacuu acagaggaac agaucgccga
guucaaagaa 180gcguucucgc uguucgacaa agacggugac ggcacgauca cgaccaagga
gcugggcacc 240gugaugcgau cguuaggcca gaaccccaca gaagcagagc ugcaagacau
gauaaacgag 30057934DNAAcyrthosiphon pisum 57gctgtgcacg ttttgtttac
ccgaaaaatg tgattcaaac tttcagtttt ttaaatctta 60actgcgttgt ttaagaaaaa
aaaaacccta aatttattat tgtttattaa taataaatca 120atcgatcgaa taatcgtttg
cgggtatacc taagtacgaa gtaaaatatg agtgcacaaa 180atagtgataa tgaccgttat
aaaaaggaat attcgagaat aaggaaactg acgagtagat 240atgacatacg gactcaatca
aatgaatttg gtttgtcgga agatcaagtt gcggaattca 300aagaagcatt tatgttgttc
gataaagacc atgatggacg gattactgag gcagaactag 360gagtggtcat gagatctttg
ggtcaaaggc ctactgaaac tgatttgcga ggtatggtta 420aagaagtgga taaagatggc
aatggtagta ttgagtttga tgaattcctg ctaatgatgg 480ctagaaaact aaaagcagca
gatggcgagg aagaaatgca ccaagctttt aaagtatttg 540acaaaaatgg cgatggattc
ataacatttg atgaactcaa acgtgttatg tgcagtatcg 600gagaaaggct cactgatgaa
gaaattgagg acatgataaa agaagcagat ttaaatggtg 660ataaaaaaat tgattataaa
gaatttatta caataataag ttctaagaaa taaaacgaat 720tacggacttg gatgtaccct
catatggcat tcgttcctca tctgcatctg tgtcattggc 780tgctaagact ttacttaata
ataaaccttg atcttctcta ctagaataaa atagctctgg 840atcctaaagt aaaatataca
gtataatttt aaaatagtcg tatacaaatt tttttttaaa 900tattgagtgt acctcatcca
ttccagcaag tttc 93458372RNAAcyrthosiphon
pisum 58ucaaguugcg gaauucaaag aagcauuuau guuguucgau aaagaccaug auggacggau
60uacugaggca gaacuaggag uggucaugag aucuuugggu caaaggccua cugaaacuga
120uuugcgaggu augguuaaag aaguggauaa agauggcaau gguaguauug aguuugauga
180auuccugcua augauggcua gaaaacuaaa agcagcagau ggcgaggaag aaaugcacca
240agcuuuuaaa guauuugaca aaaauggcga uggauucaua acauuugaug aacucaaacg
300uguuaugugc aguaucggag aaaggcucac ugaugaagaa auugaggaca ugauaaaaga
360agcagauuua aa
372592509DNAAcyrthosiphon pisum 59gatttttcgt ttaaataacc cccccgggtt
tcggataaac tcggtgtgcg tgtggacgcc 60gccgccgccg cgtgagcgtt atttcgctcg
ctgtgattac gaacgctcgt gcagtcgtcg 120tcatgcagca tctccgagac ccggcgaaag
accatcagag tacgtgaaca ctgcacatca 180cactccatcg cgatatactt atctgtagga
cgacaccctt taccgaggac acaatgatat 240acacgttata atactatcgt acatcgtata
tattgtattc ttatcatcta atattatatt 300atcacaatcg ttatattgta ttatagaatt
attgtatatc gttttaattt gacacgatac 360gacatttggt gttgagaatc gcgcagagag
agaaagagag agagaaaaag agagaataga 420tattttgatg taaataatta ttacaatata
atattgtatt tgaaaataga aacagataat 480tggtcgttga ggcagttctc acctttttaa
gatatacata ttatattata tataaacagt 540attttgtttt actcctttga gtgaacattt
cgtttaacta taccacaatt tattaatatt 600atataatatc tatcatggac ggtaaaatat
catcggtatt cgaaaaatac ttttcacctt 660caccgctggt gaaccaaata aggaattttg
tcaatcggca aatagacgag caaacgccac 720aaaacgtaag cacacaacca accgctgtag
cgaaacttca cagtaataat gtagtgaacg 780gcaccactcc gaaacccatc acaagcaacg
aaaaaccaac ggaagtccaa gtacatccac 840aacccactca gcctgccgat agaaacttag
tgcacgttac taaagcacag atgaaagaat 900ttcaagaagc atttaggtta tttgataaag
acggtgacgg cagcatcact aaagaggaat 960tgggtcgagt tatgcggagt cttggacagt
ttgctagaga agaagaattg gagacaatgt 1020tacaagaagt cgacatcgat ggcgatggag
cgttcagttt tcaagagttt gtagaaattg 1080tgtacaatat gggtggtaca gcagaaaaga
cggcggacca agaggaaaaa gagctccgag 1140acgcatttag ggtatttgac aaacataacc
gaggatatat aagtgcgtcg gacttgagag 1200ctgtccttca atgtttgggt gaagatttgt
cagaagaaga aatcgaggat atgatcaagg 1260aagtagacgt ggacggagat ggaagaatcg
atttttacga atttgtgaat gcccttggag 1320aaccaggaga tgattatgat gaaaacgacg
aagatgaaga agatatttat ccccaattgg 1380acattcaaac ataacttata aacaattaca
cgttttagta tgatgcgata acaagttcag 1440ttaaaattga attatcaaaa atgataacaa
tattttttgt aaacttaggt taaaatgtta 1500aaaacttacc cattttgtaa tttctatcag
gaataaacac accaatatct gttttttttt 1560tgccaactaa tgatctctaa taagtaaaac
atattttact ttaatatcaa tgtactactg 1620tagtattgtt aagtaattta tgtcattttc
aatgtttaat gtataaatta atcatttaat 1680ggtacaatca gtaattcacc ttaagaccca
attatttatt aaaaacatat tatatcatta 1740atttacttaa tgtatacatt ttagtcaaaa
aacattcagt tatatgttat aagtcgttat 1800aactatttat ttaagaaact ataaaaaatt
attatttatt ataatagttt acgtatctat 1860ttacttccat ggaaggtatt tataaataga
aaatgttaag gtaacttaat taaaacaata 1920attatgaaca agtattttta ctttaaaaaa
attacataat tatattgtca gtattctttc 1980aaatacaatt aattcaaatt tgtgaaattg
tccattcctc ctttatgctt tgtgaactaa 2040atttaaatac attaagaacc agagtacaat
taaaggaaat agtcagctgc gtgttttttt 2100gttggcattc ctcggttttc ttgtggtgct
gcctcaaata ttgtaaaatc tctttgaagt 2160gtttcactga gttccaatat tgccgcaacg
ttaccacatc tattatttac aattagtatt 2220aacaattaaa taacagcatt aataaataaa
tagtataatg taatttttag agtagtattt 2280accgataaca atagttgggt gctgaccaaa
cagtaagcac ggtttcatca aaatgccatt 2340tatatccttc catgactagt tgatgagctc
gacaaataat atctatatca tttgtagtat 2400taaactggga gacaacatca gaaccaaata
ggtatccagc accccgagga ctcacacccc 2460atccctgagt atctaaaata attgtgtatg
ttaaaaatct atttttttt 250960294RNAAcyrthosiphon pisum
60acagaugaaa gaauuucaag aagcauuuag guuauuugau aaagacggug acggcagcau
60cacuaaagag gaauuggguc gaguuaugcg gagucuugga caguuugcua gagaagaaga
120auuggagaca auguuacaag aagucgacau cgauggcgau ggagcguuca guuuucaaga
180guuuguagaa auuguguaca auaugggugg uacagcagaa aagacggcgg accaagagga
240aaaagagcuc cgagacgcau uuaggguauu ugacaaacau aaccgaggau auau
29461477DNAPediculus humanus 61atggccgacg aaacgacgac ggaattaccg
gaggaaaatc tttcggttga aaaaatcgca 60gaattccgcg aagctttcaa ccttttcgac
aaagatggcg acggtaacat aacgaccaaa 120gaattgggta cttgcatgag gtctctcggg
cagaatccga cggaagcgga aatcgcggag 180ctgatttgcg aagtagacgt agagggaaca
ggtttaatcg atttcacatc gttcgttttg 240ataatggcta aaaagataaa agacgtcgac
aacgaggaag aactcagaga agcttttaga 300atattcgata aggaaggtaa cggattcata
accgcatccg agctcaggca cataatgatg 360aacttgggtg aaaaattaac ggaagaagaa
tgcgacgaaa tgattaggga agcggatgtc 420atgggtgacg gaaatatcaa ttacgaagaa
ttcgtcacca tgatgatgtc aaagtga 47762379RNAPediculus humanus
62aaaaaucgca gaauuccgcg aagcuuucaa ccuuuucgac aaagauggcg acgguaacau
60aacgaccaaa gaauugggua cuugcaugag gucucucggg cagaauccga cggaagcgga
120aaucgcggag cugauuugcg aaguagacgu agagggaaca gguuuaaucg auuucacauc
180guucguuuug auaauggcua aaaagauaaa agacgucgac aacgaggaag aacucagaga
240agcuuuuaga auauucgaua aggaagguaa cggauucaua accgcauccg agcucaggca
300cauaaugaug aacuugggug aaaaauuaac ggaagaagaa ugcgacgaaa ugauuaggga
360agcggauguc augggugac
37963537DNAPediculus humanus 63atggatgcta ggaatgaagt ttacaacacc
gaatataatc gtttaagaaa attgacgtgt 60agaacggaaa ttaaattatc ttgctctgaa
tatggtctta cggaggaaca agtcgctgaa 120tttaaagaag cttttatgct ttttgacaaa
gatgaagatg gacaaataac aatggccgaa 180ttaggagtcg ttatgagatc tttgggacaa
cgtccgacag aaacggaatt aagagacatg 240gttaaagagg ttgatcaaga tggaaatggt
acaatcgaat tcaatgaatt tttacaaatg 300atggcaaaaa aaatgaaagg agctgatggt
gaagaagaac ttcgagaagc attcagggtg 360tttgataaaa ataacgatgg actcatttca
tccattgaac ttcgacatgt catgacaaat 420ttaggtgaga aactttcaga cgaagaagtt
gatgatatga taaaagaagc agatttagat 480ggagatggta tggttaacta caatgaattt
gtaacgatat taacatcaaa aaattaa 53764417RNAPediculus humanus
64acaagucgcu gaauuuaaag aagcuuuuau gcuuuuugac aaagaugaag auggacaaau
60aacaauggcc gaauuaggag ucguuaugag aucuuuggga caacguccga cagaaacgga
120auuaagagac augguuaaag agguugauca agauggaaau gguacaaucg aauucaauga
180auuuuuacaa augauggcaa aaaaaaugaa aggagcugau ggugaagaag aacuucgaga
240agcauucagg guguuugaua aaaauaacga uggacucauu ucauccauug aacuucgaca
300ugucaugaca aauuuaggug agaaacuuuc agacgaagaa guugaugaua ugauaaaaga
360agcagauuua gauggagaug guaugguuaa cuacaaugaa uuuguaacga uauuaac
41765648DNAPediculus humanus 65atgactacga aacataatat atctggaaga
atacgggacg aaccaggggg acaaagggaa 60aaaaatggaa atgtaaccgg tcgaacaata
acatatccaa caacagggaa caaaagaaat 120attgatacaa tgacgaaaaa taacatatca
aaatcgcaaa tgaaggaatt tcgagaagct 180tttcgacttt ttgacaaaga tggtgatggt
agtataactc aagaagaact tggaagagtt 240atgagatctt taggacaatt tgccagagaa
gaagaactac aagaaatgct taaggaagtt 300gatatagatg gagatggaaa ttttagcttt
gaagaatttg ttgaaatcgt atcaaatatg 360ggaggtgcag caactgaaaa aacagctgat
gaagaagaga aagaacttag agatgctttt 420agagtatttg ataaacataa tcgaggtttt
ataagtgctt ctgatcttcg agctgttttg 480caatgtctgg gtgaagaatt atcagaagaa
gaaaaaatga taagagaagt tgatgtggat 540ggagatggta gaattgattt tttcgaattt
gttcgagctt tgggtacaca ctacaggcaa 600aatttctttt tcaggtttct atccatttat
attattagca cagtttga 64866449RNAPediculus humanus
66aucgcaaaug aaggaauuuc gagaagcuuu ucgacuuuuu gacaaagaug gugaugguag
60uauaacucaa gaagaacuug gaagaguuau gagaucuuua ggacaauuug ccagagaaga
120agaacuacaa gaaaugcuua aggaaguuga uauagaugga gauggaaauu uuagcuuuga
180agaauuuguu gaaaucguau caaauauggg aggugcagca acugaaaaaa cagcugauga
240agaagagaaa gaacuuagag augcuuuuag aguauuugau aaacauaauc gagguuuuau
300aagugcuucu gaucuucgag cuguuuugca augucugggu gaagaauuau cagaagaaga
360aaaaaugaua agagaaguug auguggaugg agaugguaga auugauuuuu ucgaauuugu
420ucgagcuuug gguacacacu acaggcaaa
44967648DNAPediculus humanus 67atgatgaaaa acaaaactga cagcagtctc
ggagctgagc attcagattt gaaacattcg 60acgagtgaaa ccgaagaact ccaatcctcg
gaactcgaag tgataaaaga tgaagagcct 120caaatagatc tgagacagtt tctgacgaaa
gaacaagtgc aagaattcaa aagaattttc 180caggcttacg atgtcaacaa cgaagataaa
atcccggtca aagccatcgg aatcattttg 240agaaacatgg gattgaatcc gtccaaggcg
attctcaaga gaatgacaaa ggaaatcgat 300ccggataaaa acggttacgt ggatttcgaa
atgtttttac atcccatggc acgaatgata 360cacgaagtcc cggaaaatca cgaggacata
atcgcagcat tcaaagtttt cgacgaagac 420gacgaaggtt tcgtatccgt taaagctttg
accgaatacc tcacgaacct gggcgaagat 480ttggaagatt tcgaaattga taatttgatt
aaaatggcgg atcccaaagg cacgggccga 540gtctactacg aaggattcgt cgagaaaatt
ttcggaatcg taagaaacgg gaaaaaaaag 600aaaaatctca aagggaaaaa gggaaaaaaa
cgaaaaaaaa atgaatga 64868451RNAPediculus humanus
68ucaaauagau cugagacagu uucugacgaa agaacaagug caagaauuca aaagaauuuu
60ccaggcuuac gaugucaaca acgaagauaa aaucccgguc aaagccaucg gaaucauuuu
120gagaaacaug ggauugaauc cguccaaggc gauucucaag agaaugacaa aggaaaucga
180uccggauaaa aacgguuacg uggauuucga aauguuuuua caucccaugg cacgaaugau
240acacgaaguc ccggaaaauc acgaggacau aaucgcagca uucaaaguuu ucgacgaaga
300cgacgaaggu uucguauccg uuaaagcuuu gaccgaauac cucacgaacc ugggcgaaga
360uuuggaagau uucgaaauug auaauuugau uaaaauggcg gaucccaaag gcacgggccg
420agucuacuac gaaggauucg ucgagaaaau u
451691546RNAVarroa destructor 69guuuagccca uuuucgcgcu gugucugucg
gcgacugcgg aaguacugag cuagcugagu 60cguggugcuu agaaggcagu ggcagugagu
ggcaucagcg guaauaagug agggacaaca 120gccggagagu cgugucgguu gguaggucgg
uucguugccg auuaaugccc cacaugugag 180uuacgugcgg ugcuuguucc gcugugcauu
ggacguuaca uacagagagu cagguguagu 240uuauuuuaga cgaaaaacua ccagcacuac
cugauacagc gacccaacgu agagagggaa 300agagaaagag cuguuguuuc gcuagguuag
uucugaacaa uuggauugau ucgcaaaugu 360acgcuuguac ggcuaacggu ugaacggacu
gugcaaacug cggauagugc gugaacuagc 420agacaacaua uccaauaacu aacuacacgg
uuauuauuga uacaaacacc uaguucagac 480agacaauuuc gguuugcuuu guuggcacua
uaaggaguaa gugauauugu uuuuuguuua 540ucagucggcc uaguauuguc ggugcacuua
cggauaacag gagaggcagu acaaaggcaa 600cucgauucac uaucguucac gggcgcuaau
acagcgaaau auuaauaggc aaagcaagca 660agccagccgg ccaagcccaa accccgggcg
aaacgcagau accaacagcg cugaagugcg 720uggcaaacga caacgggaca guagggcaua
agcuagacag cauauagcuu uucuaaccau 780ggcugaucag cuaacugagg aacagaucgc
cgaguucaaa gaggcguuua gccuguuuga 840caaggacgga gauggcacga ucacgacaaa
ggagcucggu acgguaaugc gaucucucgg 900ccagaacccc acugaggcug aacugcagga
caugaucaac gaggucgacg ccgacggcuc 960cggaacgaua gauuucccug aguuccucac
aaugauggca agaaagauga aggacaccga 1020cucggaggag gagauccgag aggcguuccg
cguauucgac aaggauggca acgguuucau 1080uucggcggcc gagcucaggc acguuaugac
caaccuuggc gagaagcuua cggacgagga 1140gguagaugag augauucggg aggcagauau
ugacggugau ggucagguca acuacgagga 1200guucgucacc augaugacgu ccaaguaaau
auaugauaau guuggcuguc ucguguaaug 1260ucgugagaaa gaaagcgcgc gcgaaagaaa
gagagaaagg aauagaaaac uauaaauagc 1320uuguuguuaa agcaacgcaa caacaagcug
uaagcaacaa acaauauuua cgaaguauac 1380gauaaugaaa gucgacaggg aagcaagcac
ggauauauau gaaaacuaag cgaaaugacg 1440ucgucaucau caccagcagc agcagcagca
gcagcagcag cagcagcagc accaccacca 1500ccaccaucac gaccaccacc accaccacca
ccaucacgac caccac 1546701136RNAVarroa destructor
70guucggcucg gggacuagcu gaucggucgg uguguauugu uggcuauugg caaagaccgu
60uguugagugg gcucgcugca cugagcguuu aaaucuggug aaaucguugg caauggcgga
120ucagcugacc gaggagcaaa ucgccgaauu caaggaggcu uucagccugu ucgauaaaga
180cggugauggc acaauuacga ccaaggaacu agggaccguc augcgguccc ucggccagaa
240cccuacugag gcugagcuuc aagacaugau caacgagguc gacgcugacg guaacggcac
300uauugacuuu ccagaguuuc ucacgaugau ggcgcguaaa augaaggaca ccgacuccga
360ggaggagauc cgggaagcuu uuaggguuuu ugauaaagac ggaaauggcu ucauuucggc
420ugcagagcug aggcacguaa ugaccaaccu uggcgaaaag cucacggacg aggaagugga
480cgagaugauc cgcgaggcgg auaucgacgg cgacggacag gucaacuacg aggaguucgu
540cacgaugaug acaucaaaau gaagggcuca cuauugcgcg ggaaaagcag cccaacaaag
600aaaccuagag ugcgaaagcg agaacguuaa acacgaugau augcuaauga uaauacauac
660gacuagagga cagaaagaca gacagacaga cugagcagac gaacgggcaa guugaagaaa
720agccgaguug aacuggcuaa ccguugggua cucauucaua uucgauaguu acagacaaca
780acaugaaaaa cgacagcaac aauccgcaac aaacacacgg agauugcaca caaugagggu
840aaacugaaca uggugcagcg gaaguuggau ggcagcggua cacagugcug cuacugcugc
900ugcugcaaau gcuaacacuc aauaaugaua auaauaauua uaauuauaga aauaugauua
960uguuguccaa aagagaaaca aacaacacaa acaaagcuau uaaaaaucug aauaaaagcu
1020aagaagaaau caaguagcag ucgacauggg gaguggcaaa cgauaagagu ccacagaaaa
1080cugaagcggc cgaaagaaaa cacgaggcaa aaggcaaugu auucauuaag acgagg
113671150RNAArtificial SequenceSynthetic Sequence 71guuuagccca uuuucgcgcu
gugucugucg gcgacugcgg aaguacugag cuagcugagu 60cguggugcuu agaaggcagu
ggcagugagu ggcaucagcg guaauaagug agggacaaca 120gccggagagu cgugucgguu
gguaggucgg 15072150RNAArtificial
SequenceSynthetic Sequence 72uucguugccg auuaaugccc cacaugugag uuacgugcgg
ugcuuguucc gcugugcauu 60ggacguuaca uacagagagu cagguguagu uuauuuuaga
cgaaaaacua ccagcacuac 120cugauacagc gacccaacgu agagagggaa
15073150RNAArtificial Sequencesynthetic sequence
73agagaaagag cuguuguuuc gcuagguuag uucugaacaa uuggauugau ucgcaaaugu
60acgcuuguac ggcuaacggu ugaacggacu gugcaaacug cggauagugc gugaacuagc
120agacaacaua uccaauaacu aacuacacgg
15074150RNAArtificial Sequencesynthetic sequence 74uuauuauuga uacaaacacc
uaguucagac agacaauuuc gguuugcuuu guuggcacua 60uaaggaguaa gugauauugu
uuuuuguuua ucagucggcc uaguauuguc ggugcacuua 120cggauaacag gagaggcagu
acaaaggcaa 15075150RNAArtificial
Sequencesynthetic sequence 75cucgauucac uaucguucac gggcgcuaau acagcgaaau
auuaauaggc aaagcaagca 60agccagccgg ccaagcccaa accccgggcg aaacgcagau
accaacagcg cugaagugcg 120uggcaaacga caacgggaca guagggcaua
15076150RNAArtificial Sequencesynthetic sequence
76agcuagacag cauauagcuu uucuaaccau ggcugaucag cuaacugagg aacagaucgc
60cgaguucaaa gaggcguuua gccuguuuga caaggacgga gauggcacga ucacgacaaa
120ggagcucggu acgguaaugc gaucucucgg
15077150RNAArtificial Sequencesynthetic sequence 77ccagaacccc acugaggcug
aacugcagga caugaucaac gaggucgacg ccgacggcuc 60cggaacgaua gauuucccug
aguuccucac aaugauggca agaaagauga aggacaccga 120cucggaggag gagauccgag
aggcguuccg 15078150RNAArtificial
Sequencesynthetic sequence 78cguauucgac aaggauggca acgguuucau uucggcggcc
gagcucaggc acguuaugac 60caaccuuggc gagaagcuua cggacgagga gguagaugag
augauucggg aggcagauau 120ugacggugau ggucagguca acuacgagga
15079150RNAArtificial Sequencesynthetic sequence
79guucgucacc augaugacgu ccaaguaaau auaugauaau guuggcuguc ucguguaaug
60ucgugagaaa gaaagcgcgc gcgaaagaaa gagagaaagg aauagaaaac uauaaauagc
120uuguuguuaa agcaacgcaa caacaagcug
15080150RNAArtificial Sequencesynthetic sequence 80uaagcaacaa acaauauuua
cgaaguauac gauaaugaaa gucgacaggg aagcaagcac 60ggauauauau gaaaacuaag
cgaaaugacg ucgucaucau caccagcagc agcagcagca 120gcagcagcag cagcagcagc
accaccacca 15081150RNAArtificial
Sequencesynthetic sequence 81guucggcucg gggacuagcu gaucggucgg uguguauugu
uggcuauugg caaagaccgu 60uguugagugg gcucgcugca cugagcguuu aaaucuggug
aaaucguugg caauggcgga 120ucagcugacc gaggagcaaa ucgccgaauu
15082150RNAArtificial Sequencesynthetic sequence
82caaggaggcu uucagccugu ucgauaaaga cggugauggc acaauuacga ccaaggaacu
60agggaccguc augcgguccc ucggccagaa cccuacugag gcugagcuuc aagacaugau
120caacgagguc gacgcugacg guaacggcac
15083150RNAArtificial Sequencesynthetic sequence 83uauugacuuu ccagaguuuc
ucacgaugau ggcgcguaaa augaaggaca ccgacuccga 60ggaggagauc cgggaagcuu
uuaggguuuu ugauaaagac ggaaauggcu ucauuucggc 120ugcagagcug aggcacguaa
ugaccaaccu 15084150RNAArtificial
Sequencesynthetic sequence 84uggcgaaaag cucacggacg aggaagugga cgagaugauc
cgcgaggcgg auaucgacgg 60cgacggacag gucaacuacg aggaguucgu cacgaugaug
acaucaaaau gaagggcuca 120cuauugcgcg ggaaaagcag cccaacaaag
15085150RNAArtificial Sequencesynthetic sequence
85aaaccuagag ugcgaaagcg agaacguuaa acacgaugau augcuaauga uaauacauac
60gacuagagga cagaaagaca gacagacaga cugagcagac gaacgggcaa guugaagaaa
120agccgaguug aacuggcuaa ccguugggua
15086150RNAArtificial Sequencesynthetic sequence 86cucauucaua uucgauaguu
acagacaaca acaugaaaaa cgacagcaac aauccgcaac 60aaacacacgg agauugcaca
caaugagggu aaacugaaca uggugcagcg gaaguuggau 120ggcagcggua cacagugcug
cuacugcugc 15087150RNAArtificial
Sequencesynthetic sequence 87ugcugcaaau gcuaacacuc aauaaugaua auaauaauua
uaauuauaga aauaugauua 60uguuguccaa aagagaaaca aacaacacaa acaaagcuau
uaaaaaucug aauaaaagcu 120aagaagaaau caaguagcag ucgacauggg
15088156RNAArtificial Sequencesynthetic sequence
88ggcaacgguu ucauuucggc ggccgagcuc aggcacguua ugaccaaccu uggcgagaag
60cuuacggacg aggagguaga ugagaugauu cgggaggcag auauugacgg ugauggucag
120gucaacuacg aggaguucgu caccaugaug acgucc
15689257RNAArtificial Sequencesynthetic sequence 89ggcggaucag cugaccgagg
agcaaaucgc cgaauucaag gaggcuuuca gccuguucga 60uaaagacggu gauggcacaa
uuacgaccaa ggaacuaggg accgucaugc ggucccucgg 120ccagaacccu acugaggcug
agcuucaaga caugaucaac gaggucgacg cugacgguaa 180cggcacuauu gacuuuccag
aguuucucac gaugauggcg cguaaaauga aggacaccga 240cuccgaggag gagaucc
257
User Contributions:
Comment about this patent or add new information about this topic:
People who visited this patent also read: | |
Patent application number | Title |
---|---|
20190037380 | HEARING DEVICE AND METHOD OF HEARING DEVICE COMMUNICATION |
20190037379 | PHY LAYER PARAMETERS FOR BODY AREA NETWORK (BAN) DEVICES |
20190037378 | ACCESS METHOD, DEVICE, AND SYSTEM |
20190037377 | METHOD AND EQUIPMENT FOR DETERMINING IOT SERVICE, AND METHOD AND EQUIPMENT FOR CONTROLLING IOT SERVICE BEHAVIOR |
20190037376 | ENHANCED MACHINE TYPE COMMUNICATIONS PHYSICAL UPLINK CONTROL CHANNEL DESIGN |