Patent application title: VSV/NDV HYBRID VIRUSES FOR ONCOLYTIC THERAPY OF CANCER
Inventors:
IPC8 Class: AC07K14005FI
USPC Class:
1 1
Class name:
Publication date: 2021-07-22
Patent application number: 20210221851
Abstract:
The present invention relates to recombinant oncolytic viruses comprising
a vesicular stomatitis virus (VSV), wherein the glycoprotein (G protein)
of VSV is deleted; and which comprises a modified fusion protein (F
protein) of Newcastle disease virus (NDV); and the hemagglutinin
neuraminidase (HN) protein of NDV. The present invention further relates
to nucleic acids encoding for the recombinant oncolytic virus and vectors
comprising the nucleic acids. The present invention further relates to
pharmaceutical compositions comprising the rVSV of the invention, the
nucleic acid or the vector, further to uses as gene delivery tool and/or
for tumor detection. The present invention further relates to the
recombinant oncolytic vesicular stomatitis virus (VSV) for use in
medicine, in particular for the diagnosis, prevention and/or treatment of
cancer.Claims:
1. A method for producing a recombinant oncolytic virus, comprising a
vesicular stomatitis virus (VSV), wherein the method comprises the steps
of deleting glycoprotein (G protein) of VSV, and wherein the VSV
comprises a modified fusion protein (F protein) of Newcastle disease
virus (NDV), and the hemagglutinin neuraminidase (HN) protein of NDV.
2. The method of claim 1, wherein the modified fusion protein (F protein) of NDV is a F3aa-modified F protein, and/or wherein the modified fusion protein comprises at least one amino acid substitution in the protease cleavage site, and/or wherein the G protein of VSV is replaced by the modified fusion protein and the HN protein of NDV.
3. The method of claim 1, wherein the modified fusion protein (F protein) of NDV comprises an amino acid sequence having at least 95% sequence identity to the amino acid sequence of SEQ ID NOs: 10 or 12, and/or wherein the HN protein of NDV comprises an amino acid sequence having at least 95% sequence identity to the amino acid sequence of SEQ ID NO: 6.
4. A recombinant oncolytic virus, comprising a vesicular stomatitis virus (VSV), wherein the glycoprotein (G protein) of VSV is deleted, and which comprises a modified fusion protein (F protein) of Newcastle disease virus (NDV); and the hemagglutinin neuraminidase (HN) protein of NDV, wherein the modified fusion protein (F protein) of NDV comprises an amino acid sequence having at least 95% sequence identity to the amino acid sequence of SEQ ID NOs: 10 or 12, and/or wherein the HN protein of NDV comprises an amino acid sequence having at least 95% sequence identity to the amino acid sequence of SEQ ID NO: 6.
5. A nucleic acid encoding a recombinant oncolytic virus according to claim 4.
6. A vector comprising a nucleic acid of claim 5.
7. A pharmaceutical composition, comprising: (a) (i) a recombinant oncolytic virus produced by a method for producing a recombinant oncolytic virus, comprising a vesicular stomatitis virus (VSV), wherein the method comprises the steps of deleting glycoprotein (G protein) of VSV, and wherein the VSV comprises a modified fusion protein (F protein) of Newcastle disease virus (NDV), and the hemagglutinin neuraminidase (HN) protein of NDV; or (ii) a recombinant oncolytic virus, comprising a vesicular stomatitis virus (VSV), wherein the glycoprotein (G protein) of VSV is deleted, and which comprises a modified fusion protein (F protein) of Newcastle disease virus (NDV); and the hemagglutinin neuraminidase (HN) protein of NDV, wherein the modified fusion protein (F protein) of NDV comprises an amino acid sequence having at least 95% sequence identity to the amino acid sequence of SEQ ID NOs: 10 or 12, and/or wherein the HN protein of NDV comprises an amino acid sequence having at least 95% sequence identity to the amino acid sequence of SEQ ID NO: 6; or (iii) a nucleic acid encoding a recombinant oncolytic virus according to claim 5; and (b) pharmaceutically acceptable carrier(s) and/or excipient(s).
8. The pharmaceutical composition of claim 7, further comprising one or more compounds selected from chemotherapeutic agents, radiotherapeutic agents, tumor vaccines, immune checkpoint inhibitors, cell carrier systems, small molecule inhibitors, embolization agents, and shielding polymers.
9. The pharmaceutical composition of claim 7, formulated for delivery via a route selected from intravenous administration or intra-arterial administration, intradermal, subcutaneous, intramuscular, intravenous, intratumoral, intraosseous, intraperitoneal, intrathecal, epidural, intracardiac, intraarticular, intracavernous, intracerebral, intracerebroventricular and intravitreal injection.
10. A method for oncolytic therapy wherein said method comprises the step of administering to a patient a therapeutically effective amount of: a recombinant oncolytic virus produced by a method for producing a recombinant oncolytic virus, comprising a vesicular stomatitis virus (VSV), wherein the method comprises the steps of deleting glycoprotein (G protein) of VSV, and wherein the VSV comprises a modified fusion protein (F protein) of Newcastle disease virus (NDV), and the hemagglutinin neuraminidase (HN) protein of NDV; or a nucleic acid encoding the recombinant oncolytic virus according to claim 5.
11. The method according to claim 10, further comprising the step of administering one or more additional agents selected from cell carrier systems, immunotherapies, and standard tumor therapies, to said patient.
12. A method of treatment of cancer comprising the step of administering to a subject in need thereof a therapeutically effective amount of: a recombinant oncolytic virus produced by a method for producing a recombinant oncolytic virus, comprising a vesicular stomatitis virus (VSV), wherein the method comprises the steps of deleting glycoprotein (G protein) of VSV, and wherein the VSV comprises a modified fusion protein (F protein) of Newcastle disease virus (NDV), and the hemagglutinin neuraminidase (HN) protein of NDV; or a nucleic acid encoding the recombinant oncolytic virus according to claim 5.
13. The method according to claim 12, wherein the cell carrier system is selected from T cells, dendritic cells, NK cells, and mesenchymal stem cells; the immunotherapy is selected from tumor vaccines and immune checkpoint inhibitors; and the standard tumor therapy is selected from radiofrequency ablation, chemotherapy, embolization, and small molecule inhibitors.
14. The vector according to claim 6, further comprising one or more reporter genes and/or genes to be delivered to a target cell or tissue.
15. The vector according to claim 14, wherein the reporter gene is selected from HSV1-sr39TK, the sodium iodide symporter (NIS), somatostatin receptor 2 (SSTR2), luciferase, green fluorescence protein (GFP), lacZ, and tyrosinase; and the gene to be delivered to a target cell or tissue is selected from immune stimulating genes, immune checkpoint inhibitory antibodies, and tumor associated antigens (TAA).
16. A method of delivering genes, of imaging of virus biodistribution and/or for tumor detection, wherein the vector of claim 14 is administered to a patient.
Description:
CROSS-REFERENCE TO RELATED APPLICATIONS
[0001] This application is a continuation application of co-pending application Ser. No. 16/097,748, filed Oct. 30, 2018, now U.S. Pat. No. 10,906,942; which is a National Stage Application of International Application Number PCT/EP2017/062007, filed May 18, 2017; which claims priority to European Patent Application No. 16170445.7, filed May 19, 2016.
[0002] The Sequence Listing for this application is labeled "SeqList-30Oct18-ST25.txt", which was created on Oct. 30, 2018 and is 112 KB. The entire content is incorporated herein by reference in its entirety.
[0003] The present invention relates to recombinant oncolytic viruses comprising a vesicular stomatitis virus (VSV), wherein the glycoprotein (G protein) of VSV is deleted; and which comprises a modified fusion protein (F protein) of Newcastle disease virus (NDV); and the hemagglutinin neuraminidase (HN) protein of NDV. The present invention further relates to nucleic acids encoding for the recombinant oncolytic virus and vectors comprising the nucleic acids. The present invention further relates to pharmaceutical compositions comprising the rVSV of the invention, the nucleic acid or the vector, further to uses as gene delivery tool and/or for tumor detection. The present invention further relates to the recombinant oncolytic vesicular stomatitis virus (VSV) for use in medicine, in particular for the diagnosis, prevention and/or treatment of cancer.
BACKGROUND OF THE INVENTION
[0004] Oncolytic viruses (OVs) represent a novel class of therapeutic agents for cancer treatment, due to their intrinsic ability to selectively replicate and kill tumor cells, while sparing the surrounding normal tissue (Lorence et al., 1994; Coffey et al., 1998; Kirn et al., 2001; Peng et al., 2001). OV therapies involve the use of replication-competent viruses that are either inherently tumor selective or have been engineered to preferentially grow in tumor cells. During the process of malignant transformation, genetic abnormalities accumulate to provide cancer cells with growth and survival advantages. Many OVs exploit such defects in cellular signaling pathways to support their own replication in these cells. In particular, many cancer cells are impaired in their ability to secrete or respond to interferon (IFN), which is a key mechanism in the innate immune response against invading viruses in normal cells. These defects prevent tumor cells from mounting a productive antiviral defense, and, thus, replication of the OV is supported specifically in these cells.
[0005] Oncolytic viruses exert their effects both by direct killing of infected tumor cells, as well as indirect effects, such as destruction of tumor vasculature and induction of adaptive immune responses, which can be directed against the tumor and lead to destruction of neighboring uninfected tumor cells. Furthermore, genetics systems are available, which allow us to engineer and rescue recombinant viral vectors from plasmid DNA. In this way, viruses can be modified to increase tumor specificity or to express therapeutic genes and/or reporter genes.
[0006] Over the last decade, significant progress has been made in the development of enhanced OV therapies, and a variety of vectors have entered clinical trials (Kim et al., 2001; Everts and van der Poel, 2005; Patel and Kratzke, 2013). Recently, a recombinant herpes simplex virus I vector was the first oncolytic virus to be approved by the FDA for use as a clinical agent (press release Oct. 27, 2015, Amgen), and approval in Europe is expected to follow. However, in general, clinical trial results are often disappointing due to a lack of reliable and predictive preclinical models and due to inadequate tumor responses to most OV therapies in immune competent hosts.
[0007] Therapeutic efficacy of oncolytic viral therapy often comes as a trade-off with safety, such that potent vectors are often associated with toxicity, while safer viruses provide attenuated therapeutic effects. Despite promising preclinical data, the development of vesicular stomatitis virus (VSV) as a clinical agent has been substantially hampered by the fact that severe neurotoxicity has been observed in rodents and nonhuman primates in response to treatment with wild-type VSV (van den Pool et al., 2002; Johnson et al., 2007). In addition to the safety aspect, the rapid accumulation of high intratumoral titers of VSV, as a consequence of its short life cycle, results in an early and potent innate immune response, which severely limits the ability of the virus to efficiently spread and destroy the entire tumor mass before being cleared from the host (Altomonte et al., 2008).
[0008] Newcastle disease virus (NDV) has been shown to be a potent oncolytic agent with an attractive safety profile in humans; however, the use of NDV poses an environmental risk to birds and the poultry industry, as avian species are the natural hosts of the virus. Although mesogenic and velogenic strains of NDV have been shown to be the most effective as oncolytic viruses, they have been classified by the USDA as select agents since 2008, prohibiting their use and thereby severely impeding the development of NDV into a clinical agent (www.selectagents.gov).
[0009] To improve the safety of oncolytic VSV vectors, researchers have investigated a variety of approaches. First, recombinant VSVs harboring nucleotide substitutions or deletions to alter the amino acid composition of the matrix (M) protein at position 51 interfere with the ability of the endogenous M protein to inhibit cellular transcription and nucleocytoplasmic RNA transfer, allowing for antiviral cellular responses to be launched. Although these vectors have been shown to be safer than wildtype, intratumoral replication is also attenuated (Stojdl et al., 2003; Ebert et al., 2005), limiting the therapeutic value of this approach. Another strategy to improve the safety of VSV involves the incorporation of miRNA target sequences into the virus genome in order to modify the tropism of the virus, however these vectors are also less effective (Edge et al., 2008; Kelly et al., 2010).
[0010] Various attempts are being explored to engineer the NDV genome to limit the pathogenicity in avian species, see e.g. patent application WO 2015/032755 A1. Whether or not these modifications will truly improve safety and the effect of these modifications on the oncolytic capacity of the vectors remain to be seen.
[0011] Thus, there is a need in the art for improved means and methods for oncolytic virotherapy as well as for improved oncolytic viruses.
SUMMARY OF THE INVENTION
[0012] According to the present invention this object is solved by a recombinant oncolytic virus, comprising a vesicular stomatitis virus (VSV),
[0013] wherein the glycoprotein (G protein) of VSV is deleted, and which comprises a modified fusion protein (F protein) of Newcastle disease virus (NDV); and the hemagglutinin neuraminidase (HN) protein of NDV.
[0014] According to the present invention this object is solved by a nucleic acid encoding the recombinant oncolytic virus of the invention.
[0015] According to the present invention this object is solved by a vector comprising the nucleic acid of the invention.
[0016] According to the present invention this object is solved by a pharmaceutical composition, comprising:
[0017] (i) the recombinant oncolytic virus, the nucleic acid or the vector of the present invention; and
[0018] (ii) optionally, pharmaceutically acceptable carrier(s) and/or excipient(s).
[0019] According to the present invention this object is solved by the use of the recombinant oncolytic virus, the nucleic acid or the vector of the present invention or the pharmaceutical composition of the present invention, as gene delivery tool, and/or (noninvasive) imaging of virus biodistribution, and/or for tumor detection.
[0020] According to the present invention this object is solved by providing the recombinant oncolytic virus, the nucleic acid or the vector of the present invention or the pharmaceutical composition of the present invention for use in medicine.
[0021] According to the present invention this object is solved by providing the recombinant oncolytic virus, the nucleic acid or the vector of the present invention or the pharmaceutical composition of the present invention for use in the diagnosis, prevention and/or treatment of cancer.
[0022] According to the present invention this object is solved by a method of diagnosis, prevention and/or treatment of cancer comprising the step of
[0023] administering to a subject in need thereof a therapeutically effective amount of the recombinant oncolytic virus, the nucleic acid or the vector of the present invention or the pharmaceutical composition of the present invention.
DESCRIPTION OF THE PREFERRED EMBODIMENTS OF THE INVENTION
[0024] Before the present invention is described in more detail below, it is to be understood that this invention is not limited to the particular methodology, protocols and reagents described herein as these may vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to limit the scope of the present invention which will be limited only by the appended claims. Unless defined otherwise, all technical and scientific terms used herein have the same meanings as commonly understood by one of ordinary skill in the art. For the purpose of the present invention, all references cited herein are incorporated by reference in their entireties.
[0025] Concentrations, amounts, and other numerical data may be expressed or presented herein in a range format. It is to be understood that such a range format is used merely for convenience and brevity and thus should be interpreted flexibly to include not only the numerical values explicitly recited as the limits of the range, but also to include all the individual numerical values or sub-ranges encompassed within that range as if each numerical value and sub-range is explicitly recited. As an illustration, a numerical range of "20 to 100 nucleotides" should be interpreted to include not only the explicitly recited values of 20 to 100, but also include individual values and sub-ranges within the indicated range. Thus, included in this numerical range are individual values such as 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, . . . 97, 98, 100 and sub-ranges such as from 25 to 35, from 20 to 40, from 25 to 50, etc. This same principle applies to ranges reciting only one numerical value, such as "at least 25 nucleotides". Furthermore, such an interpretation should apply regardless of the breadth of the range or the characteristics being described.
Oncolytic Viruses and VSV Vectors
[0026] As discussed above, the present invention provides recombinant oncolytic viruses.
[0027] In particular, the present invention provides recombinant oncolytic VSV viruses wherein the glycoprotein protein of VSV is pseudotyped.
[0028] Among the most promising OV vector platforms under development are vesicular stomatitis virus (VSV) and Newcastle disease virus (NDV).
Vesicular stomatitis virus (VSV) is a negative-strand RNA virus of the Rhabdovirus family.
[0029] VSV vectors are very attractive oncolytic agents due to their inherent tumor specificity and rapid replication cycle, which results in high intratumoral titers and subsequent tumor cell lysis.
[0030] The genome of VSV is a single molecule of negative-sense RNA that encodes five major proteins: glycoprotein (G), large polymerase protein (L), phosphoprotein (P), matrix protein (M) and nucleoprotein (N). The total genome is about 11,000 nucleotides. The VSV G protein enables viral entry. It mediates viral attachment to an LDL receptor (LDLR) or an LDLR family member present on the host cell. Following binding the VSV-LDLR complex is rapidly endocytosed. It then mediates fusion of the viral envelope with the endosomal membrane. VSV enters the cell through partially clathrin-coated vesicles; virus-containing vesicles contain more clathrin and clathrin adaptor than conventional vesicles. Virus-containing vesicles recruit components of the actin machinery for their interaction, thus inducing its own uptake. Replication occurs in the cytoplasm.
[0031] The VSV L protein is encoded by half the genome, and combines with the phosphoprotein to catalyze replication of the mRNA.
[0032] The VSV M protein is encoded by an mRNA that is 831 nucleotides long and translates to a 229 amino acid-protein. The predicted M protein sequence does not contain any long hydrophobic or nonpolar domains that might promote membrane association. The protein is rich in basic amino acids and contains a highly basic amino terminal domain.
VSV Indiana Complete Genome SEQ ID NO: 1
[0033] NCBI GenBank accession No. J02428.1
VSV Indiana G Protein SEQ ID NOs: 2 and 3
[0034] See GenBank accession No. X03633.1 for nucleotide and amino acid sequence.
[0035] Newcastle disease virus (NDV) is an avian virus of the Paramyxovirus family. Members of this family have a single stranded linear RNA. The total genome is about 16,000 nucleotides. Replication of the virus takes place in the cytoplasm of the host cell.
[0036] It is similar to VSV in that it is a negative-stand RNA virus and has been developed as an oncolytic virus, due to its innate ability to replicate and cause lysis in tumor cells, while leaving healthy cells unharmed (Altomonte et al., 2010; Vigil et al., 2007). Phase I-II clinical trials have shown promise for NDV and suggest that there is minimal toxicity related to the therapy. A major benefit of NDV as an oncolytic agent is that the viral envelope, which is comprised of a hemagglutinin-neuraminidase (HN) and fusion (F) protein, mediates not only virus attachment and fusion to the target cell, but it causes fusion of infected cells to their neighboring uninfected cells, providing a potent mechanism for viral spread and tumor cell killing. Furthermore, new evidence indicates that the syncytia formation caused by cell-cell fusion results in a multimodal cell death response, which can synergize with the direct oncolytic effect of the virus for a potent mechanism of tumor destruction (Cuadrado-Castano et al., 2015).
[0037] Two proteins of Newcastle disease virus are inserted in the envelope. They are the haemagglutinin/neuraminidase protein (HN) and the fusion protein (F). These two proteins are important in determining the virulence of the virus and how the virus infects host cells.
[0038] The haemagglutinin/neuraminidase protein has two sections that are of interest: (1) The haemagglutinin section, which is an attachment protein and binds to receptors on the outside of the membrane of host cells including red blood cells. (2) The neuraminidase section is the active site of an enzyme that aids in the release of the virus from the membrane of host cells. The activity of this enzyme affects the time taken for the virus to elute from red blood cells.
[0039] The fusion protein F fuses the virus envelope to the membrane of the host cell. This allows penetration of the host cell by the viral genome. In order for fusion to occur, the shape of the native fusion protein must be changed. This change happens when a host cell protease cleaves the protein at a specific cleavage site. After this has happened, the fusion protein is activated and can now fuse to the membrane of the cell. The sequence of the amino acids around the cleavage site determines the range of proteases that can activate cleavage of the protein. This sequence therefore determines the virulence.
[0040] NDV F protein is responsible for viral fusion with the cell membrane and for viral spread from cell to cell via formation of syncytia. The presence of a multibasic cleavage site within the F protein allows for protein cleavage and activation by a broad range of proteases and is a determinant of virulence in velogenic viral strains.
[0041] To increase oncolytic potency of a highly attenuated lentogenic Hitchner B1 NDV strain, a polybasic cleavage site was introduced into the F protein to generate rNDV/F3aa (Vigil et al., 2007). While the resultant virus exhibited only an intermediate virulence phenotype based on a mean death time in embryonated eggs, the virus formed large syncytia and was enhanced in its replication in cancer cells, leading to enhanced oncolytic effects in various animal tumor models. Similar findings were shown when the F protein of the lentogenic NDV La Sota strain was modified in an analogous fashion (Peeters et al., 1999). The inventors have further demonstrated that a single amino acid substitution from leucine to alanine at amino acid 289 (L289A) in the F3aa-modified fusion protein results in substantially greater syncytial formation and tumor necrosis than the virus bearing only the F3aa mutation, without any additional toxicity (Altomonte et al., 2010).
[0042] The fusogenic and oncolytic activity of the rNDV/F3aa strain can be further enhanced by a point mutation in the F protein at residue 289 from leucine to alanine, generating rNDV/F3aa (L289A). In an orthotopic immunocompetent liver tumor rat model, administration of the mutant virus via hepatic arterial infusion resulted in significant syncytia formation and necrosis, which translated to a significant 20% prolongation of survival over treatment with the original rNDV/F3aa virus (Altomonte et al., 2010).
TABLE-US-00001 NDV Hitchner B1 complete genome SEQ ID NO: 4 GenBank accession No. AF375823 NDV HN protein SEQ ID NOs: 5 and 6 See GenBank accession No. AF375823 and NCBI Gene ID 912270 for nucleic acid and amino acid sequence. NDVF protein SEQ ID NOs: 7 and 8 See GenBank accession No. AF375823 and NCBI Gene ID 912271 for nucleic acid and amino acid sequence. SEQ ID NO: 8 MGSRPFTKNP APMMLTIRVA LVLSCICPAN SIDGRPFAAA GIVVTGDKAV NIYTSSQTGS 60 IIVKLLPNLP KDKEACAKAP LDAYNRTLTT LLTPLGDSIR RIQESVTTSG GGRQGRLIGA 120 IIGGVALGVA TAAQITAAAA LIQAKQNAAN ILRLKESIAA TNEAVHEVTD GLSQLAVAVG 180 KMQQFVNDQF NKTAQELDCI KIAQQVGVEL NLYLTELTTV FGPQITSPAL NKLTIQALYN 240 LACGNMDYLL TKLGIGNNQL SSLIGSGLIT GNPILYDSQT QLLGIQVTLP SVGNLNNMRA 300 TYLETLSVST TRGFASALVP KVVTQVGSVI EELDTSYCIE TDLDLYCTRI VTFPMSPGIY 360 SCLSGNTSAC MYSKTEGALT TPYMTIKGSV IANCKMTTCR CVNPPGIISQ NYGEAVSLID 420 KQSCNVLSLG GITLRLSGEF DVTYQKNISI QDSQVIITGN LDISTELGNV NNSISNALNK 480 LEESNRKLDK VNVKLTSTSA LITYIVLTII SLVFGILSLI LACYLMYKQK AQQKTLLWLG 540 NNTLDQMRAT TKM 553 NDV F3aa-modified fusion protein SEQ ID NOs: 9 and 10 SEQ ID NO: 9 (Park et al., 2006 and Altomonte et al., 2010) ATGGGCTCCAGACCTTCTACCAAGAACCCAGCACCTATGATGCTGACTATCCGGGTCGCGCTGGTACTGAGTTG- C ATCTGCCCGGCAAACTCCATTGATGGCAGGCCTCTTGCAGCTGCAGGAATTGTGGTTACAGGAGACAAAGCAGI- C AACATATACACCTCATCCCAGACAGGATCAATCATAGTTAAGCTCCTCCCGAATCTGCCCAAGGATAAGGAGGC- A TGTGCGAAAGCCCCCTTGGATGCATACAACAGGACATTGACCACTTTGCTCACCCCCCTTGGTGACTCTATCCG- T AGGATACAAGAGTCTGTGACTACATCTGGAGGGCGGAGACAGAGGCGCTTTATAGGCGCCATTATTGGCGGTGT- G GCTCTTGGGGTTGCAACTGCCGCACAAATAACAGCGGCCGCAGCTCTGATACAAGCCAAACAAAATGCTGCCAA- C ATCCTCCGACTTAAAGAGAGCATTGCCGCAACCAATGAGGCTGTGCATGAGGTCACTGACGGATTATCGCAACT- A GCAGTGGCAGTTGGGAAGATGCAGCAGTTTGTTAATGACCAATTTAATAAAACAGCTCAGGAATTAGACTGCAT- C AAAATTGCACAGCAAGTTGGTGTAGAGCTCAACCTGTACCTAACCGAATTGACTACAGTATTCGGACCACAAAT- C ACTTCACCTGCCTTAAACAAGCTGACTATTCAGGCACTTTACAATCTAGCTGGTGGGAATATGGATTACTTATT- G ACTAAGTTAGGTATAGGGAACAATCAACTCAGCTCATTAATCGGTAGCGGCTTAATCACCGGTAACCCTATTCT- A TACGACTCACAGACTCAACTCTTGGGTATACAGGTAACTCTACCTTCAGICGGGAACCTAAATAATATGCGTGC- C ACCTACTTGGAAACCTTATCCGTAAGCACAACCAGGGGATTTGCCTCGGCACTTGTCCCAAAAGTGGTGACACA- G GTCGGTTCTGTGATAGAAGAACTTGACACCTCATACTGTATAGAAACTGACTTAGATTTATATTGTACAAGAAT- A GTAACGTTCCCTATGTCCCCTGGTATTTACTCCTGCTTGAGCGGCAATACATCGGCCTGTATGTACTCAAAGAC- C GAAGGCGCACTTACTACACCATATATGACTATCAAAGGCTCAGTCATCGCTAACTOCAAGATGACAACATGTAG- A TGTGTAAACCCCCCGGGTATCATATCGCAAAACTATGGAGAAGCCGTGTCTCTAATAGATAAACAATCATGCAA- T GTTTTATCCTTAGGCGGGATAACTTTAAGGCTCAGTGGGGAATTCGATGTAACTTATCAGAAGAATATCTCAAT- A CAAGATTCTCAAGTAATAATAACAGGCAATCTTGATATCTCAACTGAGCTTGGGAATGTCAACAACTCGATCAG- T AATGCTTTGAATAAGTTAGAGGAAAGCAACAGAAAACTAGACAAAGTCAATGTCAAACTGACCAGCACATCTGC- T CTCATTACCTATATCGTTTTGACTATCATATCTCTTGTTTTTGGTATACTTAGCCTGATTCTAGCATGCTACCT- A ATGTACAAGCAAAAGGCGCAACAAAAGACCTTATTATGGCTTGGGAATAATACCCTAGATCAGATGAGAGCCAC- T ACAAAAATGTGA SEQ ID NO: 10 (Park et al., 2006 and Altomonte et al., 2010) MGSRPFTKNP APMMLTTRVA LVLSCICPAN SIDGRPFAAA GIVVTGDKAV NIYTSSQTGS 60 IIVKLLPNLP KDKEACAKAP LDAYNRTLTT LLTPLGDSIR RIQESVTTSG GRRQRRFIGA 120 IIGGVALGVA TAAQITAAAA LIQAKQNAAN ILRLKESIAA TNEAVHEVTD GLSQLAVAVG 180 KMQQFVNDQF NKTAQELDCI KIAQQVGVEL NLYLTELTTV FGPQITSPAL NKLTIQALYN 240 LAGGNMDYLL TKLGIGNNQL SSLIGSGLIT GNPILYDSQT QLLGIQVTLP SVGNLNNMRA 300 TYLETLSVST TRGFASALVP KVVTQVGSVI EELDTSYCIE TDLDLYCTRI VTFPMSPGIY 360 SCLSGNTSAC MYSKTEGALT TPYMTIKGSV IANCKMTTCR CVNPPGIISQ NYGEAVSLID 420 KQSCNVLSLG GITLRLSGEF DVTYQKNISI QDSQVIITGN LDISTELGNV NNSISNALNK 480 LEESNRKLDK VNVKLTSTSA LITYTVLTII SLVFGILSLI LACYLMYKQK AQQKTLLWLG 540 NNTLDQMRAT TKM NDV F3aa-modified fusion protein with L289A SEQ ID NOs: 11 and 12 SEQ ID NO: 11 (See also Altomonte et al., 2010) ATGGGCTCCAGACCTTCTACCAAGAACCCAGCACCTATGATGCTGACTATCCGGGTCGCGCTGGTACTGAGTTG- C ATCTGCCCGGCAAACTCCATTGATGGCAGGCCTCTTGCAGCTGCAGGAATTGTGGTTACAGGAGACAAAGCAGT- C AACATATACACCTCATCCCAGACAGGATCAATCATAGTTAAGCTCCTCCCGAATCTGCCCAAGGATAAGGAGGC- A TGTGCGAAAGCCCCCTTGGATGCATACAACAGGACATTGACCACTTTGCTCACCCCCCTTGGTGACTCTATCCG- T AGGATACAAGAGTCTGTGACTACATCTGGAGGGCGGAGACAGAGGCGCTTTATAGGCGCCATTATTGGCGGTGT- G GCTCTTGGGGTTGCAACTGCCGCACAAATAACAGCGGCCGCAGCTCTGATACAAGCCAAACAAAATGCTGCCAA- C ATCCTCCGACTTAAAGAGAGCATTGCCGCAACCAATGAGGCTGTGCATGAGGTCACTGACGGATTATCGCAACT- A GCAGTGGCAGTTGGGAAGATGCAGCAGTTTGTTAATGACCAATTTAATAAAACAGCTCAGGAATTAGACTGCAT- C AAAATTGCACAGCAAGTTGGTGTAGAGCTCAACCTGTACCTAACCGAATTGACTACAGTATTCGGACCACAAAT- C ACTTCACCTGCCTTAAACAAGCTGACTATTCAGGCACTTTACAATCTAGCTGGTGGGAATATGGATTACTTATT- G ACTAAGTTAGGTATAGGGAACAATCAACTCAGCTCATTAATCGGTAGCGGCTTAATCACCGGTAACCCTATTCT- A TACGACTCACAGACTCAACTCTTGGGTATACAGGTAACTGCACCTTCAGTCGGGAACCTAAATAATATGCGTGC- C ACCTACTTGGAAACCTTATCCGTAAGCACAACCAGGGGATTTGCCTCGGCACTTGTCCCAAAAGTGGTGACACA- G GTCGGTTCTGTGATAGAAGAACTTGACACCTCATACTGTATAGAAACTGACTTAGATTTATATTGTACAAGAAT- A GTAACGTTCCCTATGTCCCCTGGTATTTACTCCTGCTTGAGCGGCAATACATCGGCCTGTATGTACTCAAAGAC- C GAAGGCGCACTTACTACACCATATATGACTATCAAAGGCTCAGTCATCGCTAACTGCAAGATGACAACATGTAG- A TGTGTAAACCCCCCGGGTATCATATCGCAAAACTATGGAGAAGCCGTGTCTCTAATAGATAAACAATCATGCAA- T GTTTTATCCTTAGGCGGGATAACTTTAAGGCTCAGTGGGGAATTCGATGTAACTTATCAGAAGAATATCTCAAT- A CAAGATTCTCAAGTAATAATAACAGGCAATCTTGATATCTCAACTGAGCTTGGGAATGTCAACAACTCGATCAG- T AATGCTTTGAATAAGTTAGAGGAAAGCAACAGAAAACTAGACAAAGTCAATGTCAAACTGACCAGCACATCTGC- T CTCATTACCTATATCGTTTTGACTATCATATCTCTTGTTTTTGGTATACTTAGCCTGATTCTAGCATGCTACCT- A ATGTACAAGCAAAAGGCGCAACAAAAGACCTTATTATGGCTTGGGAATAATACCCTAGATCAGATGAGAGCCAC- T ACAAAAATGTGA SEQ ID NO: 12 (See also Altomonte et al., 2010) MGSRPFTKNP APMMLTIRVA LVLSCICPAN SIDGRPFAAA GIVVTGDKAV NIYTSSQTGS 60 IIVKLLPNLP KDKEACAKAP LDAYNRTLTT LLTPLGDSIR RIQESVTTSG GRRQRRFIGA 120 IIGGVALGVA TAAQITAAAA LIQAKQNAAN ILRLKESTAA TNEAVHEVTD GLSQLAVAVG 180 KMQQFVNDQF NKTAQELDCI KIAQQVGVEL NLYLTELTTV FGPQITSPAL NKLTIQALYN 240 LAGGNMDYLL TKLGIGNNQL SSLIGSGLIT GNPILYDSQT QLLGTQVTAP SVGNLNNMRA 300 TYLETLSVST TRGFASALVP KVVTQVGSVI EELDTSYCIE TDLDLYCTRI VTFPMSPGIY 360 SCLSGNTSAC MYSKTEGALT TPYMTIKGSV IANCKMTTCR CVNPPGIISQ NYGEAVSLTD 420 KQSCNVLSLG GITLRLSGEE DVTYQKNISI QDSQVIITGN LDISTELGNV NNSISNALNK 480 LEESNRKLDK VNVKLTSTSA LITYIVLTII SLVFGILSLI LACYLMYKQK AQQKTLLWLG 540 NNTLDQMRAT TKM 553
[0043] As discussed above, the present invention provides recombinant oncolytic VSV viruses, wherein the glycoprotein protein of VSV is pseudotyped.
[0044] Recently, the concept of exchanging the glycoprotein ("pseudotyping") of a virus with that of a heterologous virus has been demonstrated as an effective means of altering virus tropism. Using this approach, the viral backbone is kept intact, and therefore, it is hypothesized that virus replication in susceptible cells should be minimally effected. One group has described a VSV vector that has been pseudotyped with the envelope protein of the lymphocytic choriomemingitis virus (LCMV-GP), which has been shown to be significantly less neurotropic than the wildtype vector (Muik et al., 2011). Similarly, the VSV glycoprotein has been exchanged with that of measles virus and modified with single-chain variable antibody fragments to retarget VSV to cancer cells expressing discrete surface receptors (Ayala-Breton et al., 2012).
[0045] In the present invention a recombinant oncolytic virus is provided,
[0046] comprising a vesicular stomatitis virus (VSV),
[0047] wherein the glycoprotein (G protein) of VSV is deleted, and which comprises
[0048] a modified fusion protein (F protein) of Newcastle disease virus (NDV); and
[0049] the hemagglutinin neuraminidase (HN) protein of NDV.
[0050] In a preferred embodiment, the modified fusion protein (F protein) of NDV is the F3aa-modified F protein, and/or comprises at least one amino acid substitution in the protease cleavage site, preferably in position L289, e.g. L289A.
[0051] In a preferred embodiment, the G protein of VSV is replaced by the modified fusion protein and HN protein of NDV.
[0052] The recombinant oncolytic virus furthermore comprises the remaining proteins of VSV, namely the large polymerase protein (L), phosphoprotein (P), matrix protein (M) and nucleoprotein (N).
[0053] For example, the endogenous glycoprotein of VSV can be deleted from a plasmid encoding the full-length VSV genome. The NDV glycoprotein, comprising a modified fusion protein (NDV/F(L289A)) and hemagglutinin-neuraminidase (NDV/HN), can be inserted as discrete transcription units between the VSV matrix (M) and large polymerase (L) genes. See e.g. FIG. 1.
[0054] In an embodiment of the rVSV (vector) of the present invention, the modified fusion protein (F protein) of NDV comprises or consists of the amino acid sequence of SEQ ID NO: 10 [=aa sequence of F3aa protein] or SEQ ID NO: 12 [=aa sequence of F3aa protein/L289A], or
[0055] an amino acid sequence having at least 60%, or preferably at least 70% or 80% or 90% or 95% sequence identity to the amino acid sequence of SEQ ID NOs: 10 or 12, and/or
[0056] wherein the modified fusion protein (F protein) of NDV is encoded by a nucleotide sequence of SEQ ID NO. 9 [=nucleotide sequence of F3aa protein] or SEQ ID NO: 11[=nucleotide sequence of F3aa protein/L289A], or
[0057] a nucleotide sequence having at least 60%, or preferably at least 70% or 80% or 90% or 95% sequence identity to the nucleotide sequence of SEQ ID NOs: 9 or 11.
[0058] In an embodiment of the rVSV (vector) of the present invention, wherein the HN protein of NDV comprises or consists of the amino acid sequence of SEQ ID NO: 6, or
[0059] an amino acid sequence having at least 60%, or preferably at least 70% or 80% or 90% or 95% sequence identity to the amino acid sequence of SEQ ID NO: 6, and/or
[0060] wherein the HN protein of NDV is encoded by a nucleotide sequence of SEQ ID NO: 5 or a nucleotide sequence having at least 60%, or preferably at least 70% or 80% or 90% or 95% sequence identity to the nucleotide sequence of SEQ ID NO: 5.
[0061] As discussed above, the present invention comprises nucleic acids encoding the oncolytic viruses of the present invention.
[0062] As discussed above, the present invention comprises vectors comprising the nucleic acids of the present invention.
[0063] In preferred embodiments, the vector of the present invention further comprises:
[0064] reporter gene(s),
[0065] such as HSV1-sr39TK, the sodium iodide symporter (NIS), somatostatin receptor 2 (SSTR2), luciferase (Firefly or Renilla), green fluorescence protein (GFP), lacZ; tyrosinase
[0066] gene(s) to be delivered to target cell(s) or tissue,
[0067] such as gene(s) to be delivered to tumor cell(s) or tumor(s),
[0068] e.g.
[0069] immune stimulating genes, such as IFN-.alpha., IFN-.beta., or granulocyte macrophage colony-stimulating factor (GM-CSF);
[0070] immune checkpoint inhibitory antibodies, such as PD-1, PD1-L, CTLA-4, LAG-3, or B7-H3; and/or
[0071] tumor associated antigens (TAA) for vaccination (specific for the tumor being targeted);
[0072] or combinations thereof.
[0073] In an embodiment, the nucleic acid or the vector of the present invention comprises or consists of the nucleotide sequence of SEQ ID NO: 13 [=nucleotide sequence of complete virus/vector construct], or
[0074] a nucleotide sequence having at least 60%, or preferably at least 70% or 80% or 90% or 95% sequence identity to the nucleotide sequence of SEQ ID NO: 13, and/or
[0075] comprises or consists of the nucleotide sequence coding for an amino acid sequence with SEQ ID NOs: 6, 12, 14 to 17 [=aa sequence of the proteins encoded by the virus/vector construct], or
[0076] a nucleotide sequence having at least 60%, or preferably at least 70% or 80% or 90% or 95% sequence identity to the nucleotide sequence coding for an amino acid sequence with
[0077] SEQ ID NOs: 6, 12, 14 to 17.
[0078] SEQ ID NO: 13 shows the nucleotide sequence of complete virus/vector construct.
[0079] SEQ ID NOs: 14-17 and 12 and 6 show the amino acid sequences of the proteins encoded by SEQ ID NO: 13, namely:
[0080] SEQ ID NO: 14 amino acid sequence of the protein VSV-N;
[0081] SEQ ID NO: 15 amino acid sequence of the protein VSV-P;
[0082] SEQ ID NO: 16 amino acid sequence of the protein VSV-M;
[0083] SEQ ID NO: 12 amino acid sequence of the protein NDV-F3aa(L289A);
[0084] SEQ ID NO: 6 amino acid sequence of the protein NDV-HN;
[0085] SEQ ID NO: 17 amino acid sequence of the protein VSV-L.
Pharmaceutical Compositions
[0086] As discussed above, the present invention provides a pharmaceutical composition, comprising:
[0087] (i) the recombinant oncolytic virus of the present invention or a nucleic acid of the present invention or a vector of the present invention; and
[0088] (ii) optionally, pharmaceutically acceptable carrier(s) and/or excipient(s).
[0089] In one embodiment, the pharmaceutical composition comprises further drug(s),
[0090] such as
[0091] chemotherapeutic agent(s),
[0092] radiotherapeutic agent(s),
[0093] tumor vaccine(s),
[0094] immune checkpoint inhibitor(s),
[0095] cell carrier system(s),
[0096] small molecule inhibitor(s),
[0097] embolization agent(s),
[0098] shielding polymer(s).
[0099] In one embodiment, the pharmaceutical composition is formulated for systemic delivery, tumor injection, intravenous administration, intra-arterial administration, and/or for intradermal, subcutaneous, intramuscular, intravenous, intraosseous, intraperitoneal, intrathecal, epidural, intracardiac, intraarticular, intracavernous, intracerebral, intracerebroventricular and intravitreal injection(s).
Uses as Gene Delivery Tool and/or for Tumor Detection
[0100] As discussed above, the present invention provides the use of the recombinant oncolytic virus, the nucleic acid or the vector of the present invention or the pharmaceutical composition of the present invention:
[0101] as gene delivery tool
and/or
[0102] (noninvasive) imaging of virus biodistribution
and/or
[0103] for tumor detection.
[0104] In an embodiment, the vectors of the present invention comprise gene(s) to be delivered to target cell(s) or tissue,
[0105] such as gene(s) to be delivered to tumor cell(s) or tumor(s),
[0106] e.g.
[0107] immune stimulating genes, such as IFN-.alpha., IFN-.beta., or granulocyte macrophage colony-stimulating factor (GM-CSF);
[0108] immune checkpoint inhibitory antibodies, such as PD-1, PD1-L, CTLA-4, LAG-3, or B7-H3; and/or
[0109] tumor associated antigens (TAA) for vaccination (specific for the tumor being targeted).
[0110] In an embodiment, the vectors of the present invention comprise reporter gene(s), such as HSV1-sr39TK, the sodium iodide symporter (NIS), somatostatin receptor 2 (SSTR2), luciferase (Firefly or Renilla), green fluorescence protein (GFP), lacZ, tyrosinase and are then suitable for e.g. noninvasive imaging of virus biodistribution or tumor detection.
Medical Uses
[0111] As discussed above, the present invention provides the recombinant oncolytic viruses, the nucleic acids or the vectors of the present invention or the pharmaceutical composition of the present invention for use in medicine.
[0112] As discussed above, the present invention provides the recombinant oncolytic viruses, the nucleic acids or the vectors of the present invention or the pharmaceutical composition of the present invention for use in the diagnosis, prevention and/or treatment of cancer.
[0113] In one embodiment, the present invention provides the recombinant oncolytic viruses, the nucleic acids or the vectors of the present invention or the pharmaceutical composition of the present invention for use in oncolytic therapy.
[0114] The term "oncolytic virotherapy" as used herein refers to therapy of cancer by administration of oncolytic viruses, nucleic acids encoding them or respective vectors to induce tumor regression.
[0115] In one embodiment, the recombinant oncolytic viruses, the nucleic acids or the vectors of the present invention or the pharmaceutical composition of the present invention are provided for use in combination with other therapies.
Said other therapies can be:
[0116] cell carrier systems,
[0117] e.g. T cells, dendritic cells, NK cells, mesenchymal stem cells, immunotherapies,
[0118] e.g. tumor vaccines or immune checkpoint inhibitors,
[0119] and/or
[0120] standard tumor therapies,
[0121] e.g. radiofrequency ablation, chemotherapy, embolization, small molecule inhibitors.
[0122] In one embodiment, the administration is systemic, intravenous, intra-arterial, via injection into tumor, and/or via intradermal, subcutaneous, intramuscular, intravenous, intraosseous, intraperitoneal, intrathecal, epidural, intracardiac, intraarticular, intracavernous, intracerebral, intracerebroventricular and intravitreal injection(s).
Methods of Diagnosis, Prevention and/or Treatment of Cancer
[0123] As discussed above, the present invention provides a method of diagnosis, prevention and/or treatment of cancer comprising the step of
[0124] administering to a subject in need thereof a therapeutically effective amount of the recombinant oncolytic virus, the nucleic acid or the vector of the present invention or the pharmaceutical composition of the present invention.
[0125] A therapeutically effective amount of a recombinant oncolytic virus, nucleic acid or vector of the present invention is the amount which results in the desired therapeutic result, in particular tumor regression.
[0126] The recombinant viruses, nucleic acids, vectors or their pharmaceutical composition(s) are preferably administered in multiple cycles over a period of time, such as for several days up to several weeks.
[0127] In one embodiment, the administration is systemic, intravenous, intra-arterial, via injection into tumor, and/or via intradermal, subcutaneous, intramuscular, intravenous, intraosseous, intraperitoneal, intrathecal, epidural, intracardiac, intraarticular, intracavernous, intracerebral, intracerebroventricular and intravitreal injection(s).
[0128] In one embodiment, the recombinant oncolytic virus, nucleic acid or vector of the present invention or the pharmaceutical composition of the present invention are provided are administered to a subject in need thereof in combination with other therapies.
Said other therapies can be:
[0129] cell carrier systems,
[0130] e.g. T cells, dendritic cells, NK cells, mesenchymal stem cells, immunotherapies,
[0131] e.g. tumor vaccines or immune checkpoint inhibitors,
[0132] and/or
[0133] standard tumor therapies,
[0134] e.g. radiofrequency ablation, chemotherapy, embolization, small molecule inhibitors,
Further Description of Preferred Embodiments
[0135] The invention discloses a pseudotyped VSV vector, in which the endogenous glycoprotein has been deleted and exchanged with modified envelope proteins of Newcastle disease virus (NDV).
[0136] It has previously been demonstrated that a modification of the fusion protein of the Hitchner B1 strain of NDV by introduction of a polybasic protease cleavage site (rNDV/F3aa), allows for efficient syncytia formation in a wide range of cells in the absence of exogenous proteases (Vigil et al., 2007). We have further demonstrated that a single amino acid substitution from leucine to alanine at amino acid 289 (L289A) in the F3aa-modified fusion protein results in substantially greater syncytial formation and tumor necrosis than the virus bearing only the F3aa mutation, without any additional toxicity (Altomonte et al., 2010).
[0137] According to the present invention, said modified hyperfusogenic F protein has been inserted, together with the NDV HN attachment protein, into the VSV G-deleted vector.
[0138] By creating a hybrid of these two potent oncolytic vectors, we merge the positive features of each virus, while simultaneously eliminating the safety concerns of each.
[0139] The resulting vector has the VSV backbone and, therefore, maintains the rapid replication cycle of wildtype VSV. Furthermore, due to the incorporation of the HN and hyperfusogenic F proteins of NDV, the recombinant virus induces enhanced syncytia formation, allowing for efficient intratumoral spread of the virus and a potent mechanism of tumor cell death and induction of antitumor immune responses. Using this strategy, the benefit of a fusogenic virus can be achieved without the environmental threat associated with NDV.
[0140] Additionally, since the endogenous VSV glycoprotein has been deleted, there should be no neurotoxicity associated with the vector. Finally, since NDV attaches to target cells via sialic acid residues, which are upregulated on tumor cells (Bull et al., 2014), we can achieve additional transductional tumor targeting with the pseudotyped vector.
[0141] Although numerous pseudotyped VSV vectors have already been reported as safer vectors than wildtype VSV, our specific virus modification differs in that the substitution of the VSV envelope protein with that of NDV results in a more potent virus, in addition to being safer.
[0142] Furthermore, we introduce a mutated version of the NDV F protein for further improving the efficacy of the resulting recombinant virus, without negatively impacting safety.
[0143] The benefit of this glycoprotein exchange is three-fold:
[0144] 1. The neurotropism associated with the endogenous VSV glycoprotein can be averted by the deletion of the VSV envelope and the introduction of the non-neurotropic NDV envelope proteins;
[0145] 2. Tumor cells can be targeted via upregulation of sialic acid residues, which are the natural receptor for NDV; and
[0146] 3. Viral spread and tumor cell killing can be significantly enhanced via introduction of the highly fusogenic mutant version of the NDV F protein.
[0147] Our construct simultaneously provides both improved safety and efficacy.
[0148] The pseudotyped virus of the present invention offers improved safety and enhanced efficacy as obvious advantages over wildtype vectors.
[0149] Furthermore, there are also advantages of this particular vector over the previously reported pseudotyped VSV vectors. Although the VSV-GP vector (pseudotyped with LCMV-GP) demonstrates an enhanced safety profile, there is no additional therapeutic mechanism afforded by the LCMV glycoprotein in comparison with that of NDV (Muik et al., 2011). Although measles virus (MV) is similar to NDV in that it is a member of the paramyxovirus family, and its envelope also consists of a hemagglutinin and fusion protein, the rVSV-MV vector (Ayala-Breton et al., 2012) does not contain any modification to increase fusigenicity, and it likely is less efficient than our hyperfusogenic VSV-NDV in syncytial formation. Furthermore, MV attaches to target cells via three discrete receptors: CD46, signal lymphocyte activation molecule (SLAM), and nectin4. However, infection of SLAM-positive immune cells leads to immunosuppression, and infection of nectin4-positive airway epithelial cells results in respiratory shedding and virus transmission, both of which would be undesirable side effects of oncolytic virus therapy. Therefore, modifications to ablate the interaction of MV H with SLAM and nectin4 (Liu et al., 2014) or to retarget the attachment protein to tumor specific receptors (Ayala-Breton et al., 2012) has been performed in the context of the rVSV-MV vectors as strategies to retarget the pseudotyped virus to the tumor. However, these restrictions to the natural attachment mechanism of the MV envelope will surely result in an attenuation of the recombinant virus. Indeed, nectin4 and CD46 have substantially overlapping receptor binding surfaces on MV H, and it was shown that disruption of nectin4 binding compromised attachment to CD46, resulting in a greatly diminished oncolytic effect (Liu et al., 2014). Finally, since the majority of the human population is vaccinated against measles virus, the high levels of circulating antibodies directed at the viral envelope will likely play a role in neutralizing the rVSV-MV vectors.
[0150] Therefore, our rVSV-NDV vector is superior to the previously reported pseudotyped vectors, due to its hyperfusogenic feature, lack of pre-existing immunity in the general population, and no expected attenuation compared to VSV or NDV.
[0151] The following examples and drawings illustrate the present invention without, however, limiting the same thereto.
BRIEF DESCRIPTION OF THE DRAWINGS
[0152] FIG. 1. Recombinant pseudotyped VSV construct expressing the glycoprotein of NDV. The endogenous glycoprotein of VSV was deleted from a plasmid encoding the full-length VSV genome. The NDV glycoprotein, comprising a modified fusion protein (NDV/F(L289A)) and hemagglutinin-neuraminidase (NDV/HN), was inserted as discrete transcription units between the VSV matrix (M) and large polymerase (L) genes. The respective pseudotyped VSV vector was rescued using an established reverse-genetics system.
[0153] FIGS. 2A-2D. rVSV-NDV can replicate in HCC cell lines and cause complete cytotoxicity. Human HCC cell lines Huh7 (2A, 2B) and HepG2 (2C, 2D) were infected with a multiplicity of infection (MOI) of 0.01 of rVSV, rNDV, or rVSV-NDV. After a 1 hour infection, the cells were washed and fresh medium was added to the cells. At various time-points post-infection aliquots of the supernatant were collected for cytotoxicity measurements by LDH assay (2B, 2D) and cell monolayers were lysed for measurements of intracellular titers by TCID50 assay (2A, 2C). Experiments were performed in triplicate, and data are presented as mean+/-standard deviation.
[0154] FIG. 3. rVSV-NDV infection leads to rapid syncytia formation in HCC cells. In order to assess the ability of the pseudotyped rVSV-NDV vector to induce syncytia formation in tumor cells, various HCC cell lines were infected with rVSV-NDV, rNDV, or rVSV at an MOI of 0.01, and observed microscopically at various time-points post-infection. Additional cells were treated with PBS as a control. Huh7 cells are shown as a representative human HCC cell line, and representative images were captured under 200.times. magnification.
[0155] FIG. 4. Pseudotyping VSV with NDV envelope proteins does not alter the sensitivity of the vector to the antiviral actions of IFN. To assess the sensitivity of rVSV-NDV to type I IFN, an IFN-sensitive cell line (A549) was infected with rVSV-NDV, rVSV, and rNDV at an MOI of 0.01. Cells were lysed at 48 hours post-infection, and intracellular viral titers were measured by TCID50 assay. Experiments were performed in triplicate, and mean values+/-standard deviation are shown.
[0156] FIGS. 5A-5B. Replication and cytotoxicity of rVSV-NDV is substantially diminished in primary human hepatocytes. Primary human hepatocytes were infected at an MOI of 0.01 with rVSV, rNDV, or rVSV-NDV. Cell lysates were subjected to TCID50 analysis of intracellular virus titers at various timepoints. Additionally, aliquots of supernatant were collected at various timepoints for cytotoxicity measurements by LDH assay. Experiments were performed in duplicate, and means+/-standard deviation are shown.
[0157] FIGS. 6A-6B. Replication and cytotoxicity of rVSV-NDV is substantially diminished in primary mouse neurons. Primary mouse neurons were infected at an MOI of 0.01 with rVSV, rNDV, or rVSV-NDV. Cell lysates were subjected to TCID50 analysis of intracellular virus titers at various timepoints. Additional wells were assayed for cell viability using a standard MTS assay. Experiments were performed in duplicate, and means+/-standard deviation are shown.
[0158] FIG. 7. The pseudotyped rVSV-NDV vector causes immunogenic cell death. Huh7 cells were infected with rVSV, rNDV, or rVSV-NDV at an MOI of 0.01 or mock-infected for 48 hours. The conditioned media were concentrated, and 10 .mu.g of protein were subjected to Western blot analysis for detection of released HMGB1, Hsp70, and Hsp90.
[0159] FIG. 8. Pseudotyped rVSV-NDV vector demonstrates enhanced safety compared to rVSV in immune-deficient mice. Immune-deficient male NOD-SCID mice were treated by tail vein injection with rVSV-NDV or rVSV-GFP (referred to as rVSV in the figure for simplicity) at a dose of 10.sup.6 TCID50. Mice were monitored daily and euthanized at humane endpoints. Body weight changes were plotted over time with respect to the injection (left); Viral titers in blood were measured on day 1 and 7 by TCID50 analysis (center); The survival proportions were plotted by Kaplan-Maier survival curve (left).
[0160] FIG. 9. Mice treated with 10.sup.6 TCID50 rVSV revealed pathological changes in the liver and brain. H/E staining of liver revealed small group necrosis of hepatocytes after rVSV treatment, marked by hepatocellular degeneration with karyolysis (top left panel). Acute necrosis in the brain stem after rVSV application was observed with degenerating glial cells exhibiting pyknosis and karyorrhexis (top right panel). Degeneration of glial cells could be further confirmed by immunohistochemical staining for caspase-3 (bottom right). Representative images are shown; scale bars equal 50 .mu.m. Viral titers were quantified from brain and liver tissue lysate from mice receiving rVSV after demonstrating signs of toxicity. Means+SEM are shown.
EXAMPLES
1. Material and Methods
1.1 Viruses
[0161] Recombinant VSV expressing the GFP reporter (referred to herein as "rVSV") was engineered and rescued as previously described (Huang et al., 2003). Recombinant NDV harboring the F3aa(L289A) mutations and expressing the GFP reporter gene (referred to herein as "rNDV") was engineered and rescued as previously described (Altomonte et al., 2010).
[0162] Recombinant rVSV-NDV was produced by first modifying a plasmid encoding for the full-length VSV genome (pVSV-XN2) and expressing the F3aa(L289A)-modified fusion protein of NDV (Ebert et al., 2004) as an additional transcription unit between the G and L genes. The endogenous VSV glycoprotein (G) was deleted by digestion with MluI and XhoI restriction enzymes, which recognize the unique restriction sites in the 5' and 3' noncoding regions of the G, respectively. Following self-ligation of the G-deleted plasmid, a short oligonucleotide linker was inserted at the unique NheI restriction site following the NDV F gene, to create a multiple cloning site for insertion of the HN gene. The HN gene was amplified by PCR from a plasmid encoding the full-length NDV genome, utilizing primers to introduce PacI and PmeI restriction sites at the 5' and 3' ends of the PCR product, respectively, for insertion into the newly incorporated restriction sites in the G-deleted VSV-NDV/F3aa(L289A) plasmid. The resulting plasmid was subjected to sequence analysis to confirm the fidelity of the PCR insert, as well as the intergenic transcription start and stop sequences and the gene order. Finally, the infectious virus, referred to here as "rVSV-NDV", was rescued using the established reverse genetics system for rescuing negative-strand RNA viruses (Lawson et al., 1995).
[0163] See also FIG. 1.
1.2 Cell Lines
[0164] Two human HCC cell lines (HepG2 and Huh-7) were obtained from Dr. Ulrich Lauer (University Hospital Tubingen, Germany) and maintained in Dulbecco's modified Eagle's medium (DMEM) supplemented with 10% fetal bovine serum (FBS), 1% L-glutamine (200 mM), 1% Penicillin/streptomycin, 1% non-essential amino acids and 1% sodium pyruvate. A549 cells were obtained from the ATCC (Rockville, Md.) and cultured in the same medium as the HCC cell lines. Primary human hepatocytes were derived from patients (negative for hepatitis B and C virus and human immunodeficiency virus) who had undergone surgical resection of liver tumors, in accordance with the guidelines of the charitable state-controlled Human Tissue and Cell Research (HTCR) foundation (Regensburg, Germany). The hepatocytes were maintained in HepatoZYME-SFM medium (Gibco-Invitrogen, Karlsruhe, Germany). Primary embryonic primary cortical neurons were dissociated from E16.5 mouse cortex and provided by the laboratory of Stefan Lichtenthaler (DZNE, Munich, Germany). Neuronal cultures were maintained in Neurobasal medium (Gibco) supplemented with B27 (2%), 0.5 mM glutamine, and 1% penicillin/streptomycin. All cell lines and primary cells were maintained in the 37.degree. C. humidified incubator with 5% CO.sub.2
1.3 Microscopic Analysis
[0165] The human HCC cell lines, Huh7 and HepG2, were plated at approximately 90% confluency in 6-well dishes and infected with either rVSV, rNDV, or rVSV-NDV at an MOI of 0.01 or mock-infected. Cells were visualized at 200.times. magnification on an Axiovert 40CFL microscope (Zeiss) at 16-, 24- and 48-hours post-infection, and representative images were captured with a Canon Powershot A620 camera attached to the microscope.
1.4 IFN Dose Response Assay
[0166] Interferon-sensitive A549 cells were plated in 24-well dishes at a density of 10.sup.5 cells per well and cultured overnight. The following evening they were pre-treated with different concentrations (0, 100, 500, and 1000 IU/ml) of Universal type I Interferon added directly to the culture medium. After overnight incubation, the cells were infected with either rVSV, rNDV or rVSV-NDV at a multiplicity of infection (MOI) of 0.01. 48 hours post-infection, cells were collected in 100 .mu.l of PBS and lysed by three freeze-thaw cycles. The intratumoral virus titer was determined by TCID.sub.50 analysis of the cell lysates.
1.5 Growth Curves (TCID50 Assay)
[0167] Viral growth curves were performed in HCC cell lines (Huh7 and HepG2), as well as in primary human hepatocytes and primary mouse neurons.
HCC cell lines were plated in 6-well dishes at a density of 3.5.times.10.sup.5 cells per well, while PHH and neurons were seeded in collagen-coated 24-well dishes at a density of 10.sup.5 cells per well. Each cell line was infected with rVSV, rNDV and rVSV-NDV at a multiplicity of infection (MOI) of 0.01. The infections were performed in 1 ml of PBS (6-well dishes) or 250 .mu.l of PBS (24-well dishes) at 37.degree. C. for 1 hour. After incubation, cells were washed three times with PBS and fresh medium was added. Cell lysate was collected at 0, 16, 24, 48 and 72 hours post-infection for TCID.sub.50 analysis of intracellular virus titers.
1.6 Cytotoxicity Assays (LDH or MTS Assay)
[0168] Cell viability of infected HCC cell lines (Huh7 and HepG2) and primary human hepatocytes was analyzed by measuring released Lactate Dehyrogenase (LDH) from cell culture supernatant. The cells were plated, infected and washed as in the growth curve experiments. At 24, 48 and 72 hours post-infection, aliquots of supernatant were collected, and LDH-release was quantified using the CytoTox 96 Non-Radioactive Cytotoxicity Assay protocol (Promega). For each time point, LDH-release following virus infection was calculated as a percentage of the maximum LDH-release control. Baseline LDH levels detected in the supernatant of mock-treated cells were subtracted from the values obtained from the experimental wells.
[0169] Cell viability of neurons was analyzed by MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carbooxymethoxyphenyl)-2-(4-sulfopheny- l)-2H-tetrazolium) assay using the CellTiter96 AQueous One Solution Cell Proliferation Assay (Promega, Madison, Wis.). Neurons were seeded in collagen coated 96-well dishes at a density of 5.times.10.sup.4 cells/well and mock-treated or infected with rVSV, rNDV or rVSV-NDV at an MOI of 0.01. At 24, 48 and 72 hours post-infection, cell viability was measured according to the manufacturer's protocol. Cytotoxicity was calculated as difference in cell viability of the experimental samples compared to the uninfected controls.
1.7 Western Blots
[0170] Huh7 cells were plated in 6-well plates at approximately 90% confluence and infected with rVSV, rNDV, or rVSV-NDV at an MOI of 0.01 or mock-infected for 48 hours. The conditioned media were collected and concentrated to about 200 .mu.l using Amicon Ultra Centrifugal filters with a 10 kD cutoff (Merck Millipore, Billerica, Mass.). Protein concentrations were quantified using the Pierce BCA Protein Assay (Thermo Fisher Scientific, Waltham, Mass.), and 10 .mu.g of each sample was loaded onto a 7.5% denaturing SDS-PAGE gel, followed by transfer onto a nitrocellulose membrane. Protein bands were detected using specific antibodies against HMGB1 and Hsp90 (Cell Signaling Technology, Danvers, Mass.) and Hsp70 (Santa Cruz Biotechnology, Dallas, Tex.) and the appropriate secondary antibody conjugated with horseradish peroxidase. Bands were visualized using Amersham ECL Prime Western Blot Detection Reagent (GE Healthcare Life Sciences, Pittsburgh, Pa.).
2. Results
[0171] The recombinant VSV-NDV vector (FIG. 1) has been characterized in vitro for replication and cytotoxicity in tumor cells, as well as in healthy hepatocytes and neurons. We used two human hepatocellular carcinoma (HCC) cell lines as representative tumor cells, and compared the rVSV-NDV with rVSV and rNDV in terms of its relative ability to replicate and kill the cells. Although rVSV-NDV replication was a bit delayed compared to the wildtype vectors, it was able to reach similar titers at about 72 hours post-infection, which resulted in complete cell killing in vitro (FIG. 2).
[0172] In order to observe virus-induced syncytial formation, additional cells were infected with rVSV-NDV, as well as the parental rVSV and rNDV, for photomicroscopy. Microscopic analysis of the tumor cells revealed multiple foci of syncytia in the wells infected with rVSV-NDV by 16 hours post-infection, while it was significantly delayed in those infected with rNDV. As expected, cells that were treated with rVSV did not form syncytia; however, they were highly susceptible to the cytopathic effect (CPE), which is classic of VSV infection and occurred earlier than 16 hours post-infection (FIG. 3).
[0173] In order to rule out that the glycoprotein exchange inadvertently resulted in a loss of sensitivity of the vector to the antiviral actions of type I interferon (IFN), an IFN dose response was performed. The exquisite sensitivity of VSV to type I IFN is a key mechanism of tumor specificity, as tumor cells are often defective in their IFN signaling pathways, while healthy cells can efficiently clear the virus via IFN responsive genes. Although this assay revealed a relative insensitivity of rNDV to type I IFN, the rVSV-NDV vector was rapidly attenuated by the addition of IFN and reduced to levels similar to those observed for rVSV (FIG. 4).
[0174] We next performed growth curves and cytotoxicity assays in normal primary human hepatocytes and mouse neurons in order to assess the safety of rVSV-NDV. Very little replication of the pseudotyped vector could be observed over time, and titers were approximately 5 logs lower than the control VSV vector at 48 hours post-infection and 3 logs lower than rNDV at the same time-point in primary hepatocytes (FIG. 5). Although nearly all hepatocytes were dead by 72 hours post-infection with rVSV, no cytotoxicity could be observed by LDH assay in cells infected with rVSV-NDV (FIG. 5). Similarly, titers of rVSV-NDV were significantly lower than the control VSV vector in primary mouse neurons at all time-points investigated, which corresponded to similar levels of cell viability as those observed in PBS-treat neurons (FIG. 6). Taken together, rVSV-NDV showed little evidence of replication in primary healthy cells and resulted in little to no cytotoxicity in vitro, indicating that it is a substantially safer virus than both rVSV and rNDV.
[0175] To determine whether the pseudotyped rVSV vector would induce an immunogenic cell death, as has been shown for rNDV through syncytia formation, we investigated the release of high mobility group box 1 (HMGB1) and heat-shock proteins 70 and 90 from infected Huh7 cells. After a 48 hour infection, we observed relatively low levels of HMGB1, Hsp70, and Hsp90 released into the supernatant of rVSV-infected cells. However, infection with both rNDV and rVSV-NDV resulted in high levels of all three secreted markers for immunogenic cell death (FIG. 7). These results indicate that, in addition to the potent direct cytotoxicity caused by infection with the pseudotyped rVSV-NDV vector, in vivo treatment with this virus could result in substantial immune responses directed against the tumor.
[0176] In order to assess the safety of the pseudotyped rVSV-NDV vector in vivo, immune-deficient male NOD-SCID mice approximately 8 weeks of age were treated by tail vein injection with either rVSV-NDV or the control rVSV-GFP virus (N=6) at a dose of 10.sup.6 TCID50 per mouse. Mice were monitored daily for body weight and overall physical appearance, and they were euthanized at humane endpoints. Blood was sampled on day 1, 3, 7, 14, and at the time of euthanization for analysis serum chemistry and circulating virus titers. Two mice receiving rVSV-GFP rapidly began losing weight during the first week after treatment, and all six died acutely or were euthanized due to extreme body weight loss, dehydration, signs of distress (changes in posture, impaired movement, isolation, etc.), and/or signs of neurotoxicity (limb paralysis and circling) between 11 and 17 days post-treatment (FIG. 8). Additionally, infectious virus titers could be recovered from the blood on day 1 and 7 post-treatment (FIG. 8, center). In contrast, the mice who received rVSV-NDV lost only negligible amounts of weight, appeared healthy and exhibited normal behavior throughout the study. Three of these mice were euthanized at 21 days post-treatment for histological analysis of major organs. while the remaining animals were monitored for 60 days post-treatment, at which time they were euthanized for pathological analysis. No infectious virus titers could be detected in the blood of mice treated with rVSV-NDV at any time-point analyzed. Plasma measurements of liver function (GPT) and kidney function (BUN and Creatinine) revealed no abnormal values for either treatment group (data not shown).
[0177] Tissue sections were examined by a pathologist who was blinded to the treatment groups of the specimens. Histological analysis revealed no major pathological findings in tissue excised from mice treated with rVSV-NDV, either euthanized on day 21 or day 60. Furthermore, no detectable titers within the brain or liver tissue could be observed in mice treated with rVSV-NDV (data not shown). In stark contrast, mice that received rVSV-GFP at the same dose exhibited heavy intrasinusoidal edema, moderate acute hepatitis with single cell and small group necrosis, and apoptosis of hepatic tissue (FIG. 9). Furthermore, acute necrosis in the brain stem, with degenerating glial cells exhibiting pyknosis and karyorhexis could be observed. Degeneration of glial cells was further confirmed by immunohistochemical staining for caspase-3. TCID50 analysis of tissue lysates revealed quantifiable levels of infectious VSV in the liver and brain at the time of necropsy.
[0178] The features disclosed in the foregoing description, in the claims and/or in the accompanying drawings may, both separately and in any combination thereof, be material for realizing the invention in diverse forms thereof.
REFERENCES
[0179] Altomonte, J., L. Wu, et al. (2008). "Exponential enhancement of oncolytic vesicular stomatitis virus potency by vector-mediated suppression of inflammatory responses in vivo." Mol Ther 16(1): 146-153.
[0180] Altomonte, J., S. Marozin, et al. (2010). "Engineered newcastle disease virus as an improved oncolytic agent against hepatocellular carcinoma." Mol Ther 18(2): 275-284.
[0181] Ayala-Breton, C., G. N. Barber, et al. (2012). "Retargeting vesicular stomatitis virus using measles virus envelope glycoproteins." Hum Gene Ther 23(5): 484-491.
[0182] Bull, C., M. A. Stoel, et al. (2014). "Sialic acids sweeten a tumor's life." Cancer Res 74(12): 3199-3204.
[0183] Coffey, M. C., Strong, J. E., Forsyth, P. A., Lee, P. W. (1998). "Reovirus therapy of tumors with activated Ras pathway." Science 282: 1332-1334.
[0184] Cuadrado-Castano, S., M. T. Sanchez-Aparicio, et al. (2015). "The therapeutic effect of death: Newcastle disease virus and its antitumor potential." Virus Res 209: 56-66.
[0185] Ebert, O., K. Shinozaki, et al. (2004). "Syncytia induction enhances the oncolytic potential of vesicular stomatitis virus in virotherapy for cancer." Cancer Res 64(9): 3265-70.
[0186] Ebert, O., S. Harbaran, et al. (2005). "Systemic therapy of experimental breast cancer metastases by mutant vesicular stomatitis virus in immune-competent mice." Cancer Gene Ther 12(4): 350-358.
[0187] Edge, R. E., T. J. Falls, et al. (2008). "A let-7 MicroRNA-sensitive vesicular stomatitis virus demonstrates tumor-specific replication." Mol Ther 16(8): 1437-1443.
[0188] Everts, B. and H. G. van der Poel (2005). "Replication-selective oncolytic viruses in the treatment of cancer." Cancer Gene Ther 12(2): 141-161.
[0189] Huang H. G., O. Ebert, et al. (2003). "Oncolysis of hepatic metastasis of colorectal cancer by recombinant vesicular stomatitis virus in immune competent mice." Mol Ther 8(3): 434-40.
[0190] Johnson, J. E., F. Nasar, et al. (2007). "Neurovirulence properties of recombinant vesicular stomatitis virus vectors in non-human primates." Virology 360(1): 36-49.
[0191] Kelly, E. J., R. Nace, et al. (2010). "Attenuation of vesicular stomatitis virus encephalitis through microRNA targeting." J Virol 84(3): 1550-1562.
[0192] Kim, D., Martuza, R. L., and Zwiebel, J. (2001). "Replication-selective virotherapy for cancer: biological principles, risk management, and future directions." Nat Med 7: 781-787.
[0193] Lawson, N. D., E. A. Stillman, et al. (1995). "Recombinant vesicular stomatitis viruses from DNA." Proc Natl Acad Sci 92: 4477-81.
[0194] Liu, Y. P., S. P. Russell, et al. (2014). "Ablation of nectin4 binding compromises CD46 usage by a hybrid vesicular stomatitis virus/measles virus." J Virol 88(4): 2195-2204.
[0195] Lorence, R. M., Katubig, B. B., Reichard, K. W., et al (1994). "Complete regression of human fibrosarcoma xenografts after local Newcastle disease virus therapy." Cancer Research 54: 6017-6021.
[0196] Muik, A., I. Kneiske, et al. (2011). "Pseudotyping vesicular stomatitis virus with lymphocytic choriomeningitis virus glycoproteins enhances infectivity for glioma cells and minimizes neurotropism." J Virol 85(11): 5679-5684.
[0197] Patel, M. R. and R. A. Kratzke (2013). "Oncolytic virus therapy for cancer: the first wave of translational clinical trials." Transl Res 161(4): 355-364.
[0198] Park, M. S., Steel, J., Garcia-Sastre, A., et al (2006). "Engineered viral vaccine constructs with dual specificity: Avian influenza and Newcastle disease." PNAS 103(21): 8203-8.
[0199] Peeters, B. P., O. S. de Leeuw, et al. (1999). "Rescue of Newcastle disease virus from cloned cDNA: evidence that cleavability of the fusion protein is a major determinent of virulence." J Virol 73(6):5001-9.
[0200] Peng, K. W., Ahmann, G. J., Pham, L, et al (2001). "Systemic therapy of myeloma xenografts by an attenuated measles virus." Blood 98: 2002-2007.
[0201] Quiroz, E., N. Moreno, et al. (1988). "A human case of encephalitis associated with vesicular stomatitis virus (Indiana serotype) infection." Am J Trop Med Hyg 39(3): 312-314.
[0202] Stojdl, D. F., Lichty, B. D., tenOever, B. R., et al (2003). "VSV strains with defects in their ability to shutdown innate immunity are potent systemic anti-cancer agents." Cancer Cell 4(4): 263-275.
[0203] van den Pol, A., Dalton, K., and Rose, J. (2002). "Relative neurotropism of a recombinant rhabdovirus expressing a green fluorescent envelope glycoprotein." Journal of Virology 76(3): 1309-1327.
[0204] Vigil, A., M. S. Park, et al. (2007). "Use of reverse genetics to enhance the oncolytic properties of Newcastle disease virus." Cancer Res 67(17): 8285-8292.
Sequence CWU
1
1
17111161DNAVesicular stomatitis virus 1acgaagacaa acaaaccatt attatcatta
aaaggctcag gagaaacttt aacagtaatc 60aaaatgtctg ttacagtcaa gagaatcatt
gacaacacag tcatagttcc aaaacttcct 120gcaaatgagg atccagtgga atacccggca
gattacttca gaaaatcaaa ggagattcct 180ctttacatca atactacaaa aagtttgtca
gatctaagag gatatgtcta ccaaggcctc 240aaatccggaa atgtatcaat catacatgtc
aacagctact tgtatggagc attaaaggac 300atccggggta agttggataa agattggtca
agtttcggaa taaacatcgg gaaagcaggg 360gatacaatcg gaatatttga ccttgtatcc
ttgaaagccc tggacggcgt acttccagat 420ggagtatcgg atgcttccag aaccagcgca
gatgacaaat ggttgccttt gtatctactt 480ggcttataca gagtgggcag aacacaaatg
cctgaataca gaaaaaagct catggatggg 540ctgacaaatc aatgcaaaat gatcaatgaa
cagtttgaac ctcttgtgcc agaaggtcgt 600gacatttttg atgtgtgggg aaatgacagt
aattacacaa aaattgtcgc tgcagtggac 660atgttcttcc acatgttcaa aaaacatgaa
tgtgcctcgt tcagatacgg aactattgtt 720tccagattca aagattgtgc tgcattggca
acatttggac acctctgcaa aataaccgga 780atgtctacag aagatgtaac gacctggatc
ttgaaccgag aagttgcaga tgaaatggtc 840caaatgatgc ttccaggcca agaaattgac
aaggccgatt catacatgcc ttatttgatc 900gactttggat tgtcttctaa gtctccatat
tcttccgtca aaaaccctgc cttccacttc 960tgggggcaat tgacagctct tctgctcaga
tccaccagag caaggaatgc ccgacagcct 1020gatgacattg agtatacatc tcttactaca
gcaggtttgt tgtacgctta tgcagtagga 1080tcctctgccg acttggcaca acagttttgt
gttggagata acaaatacac tccagatgat 1140agtaccggag gattgacgac taatgcaccg
ccacaaggca gagatgtggt cgaatggctc 1200ggatggtttg aagatcaaaa cagaaaaccg
actcctgata tgatgcagta tgcgaaaaga 1260gcagtcatgt cactgcaagg cctaagagag
aagacaattg gcaagtatgc taagtcagaa 1320tttgacaaat gaccctataa ttctcagatc
acctattata tattatgcta catatgaaaa 1380aaactaacag atatcatgga taatctcaca
aaagttcgtg agtatctcaa gtcctattct 1440cgtctggatc aggcggtagg agagatagat
gagatcgaag cacaacgagc tgaaaagtcc 1500aattatgagt tgttccaaga ggatggagtg
gaagagcata ctaagccctc ttattttcag 1560gcagcagatg attctgacac agaatctgaa
ccagaaattg aagacaatca aggtttgtat 1620gcacaggatc cagaagctga gcaagttgaa
ggctttatac aggggccttt agatgactat 1680gcagatgagg aagtggatgt tgtatttact
tcggactgga aaccacctga gcttgaatct 1740gacgagcatg gaaagacctt acggttgaca
tcgccagagg gtttaagtgg agagcagaaa 1800tcccagtggc tttcgacgat taaagcagtc
gtgcaaagtg ccaaatactg gaatctggca 1860gagtgcacat ttgaagcatc gggagaaggg
gtcattatga aggagcgcca gataactccg 1920gatgtatata aggtcactcc agtgatgaac
acacatccgt cccaatcaga agcagtatca 1980gatgtttggt ctctctcaaa gacatccatg
actttccaac ccaagaaagc aagtcttcag 2040cctctcacca tatccttgga tgaattgttc
tcatctagag gagagttcat ctctgtcgga 2100ggtgacggac gaatgtctca taaagaggcc
atcctgctcg gcctgagata caaaaagttg 2160tacaatcagg cgagagtcaa atattctctg
tagactatga aaaaaagtaa cagatatcac 2220gatctaagtg ttatcccaat ccattcatca
tgagttcctt aaagaagatt ctcggtctga 2280aggggaaagg taagaaatct aagaaattag
ggatcgcacc acccccttat gaagaggaca 2340ctagcatgga gtatgctccg agcgctccaa
ttgacaaatc ctattttgga gttgacgaga 2400tggacaccta tgatccgaat caattaagat
atgagaaatt cttctttaca gtgaaaatga 2460cggttagatc taatcgtccg ttcagaacat
actcagatgt ggcagccgct gtatcccatt 2520gggatcacat gtacatcgga atggcaggga
aacgtccctt ctacaaaatc ttggcttttt 2580tgggttcttc taatctaaag gccactccag
cggtattggc agatcaaggt caaccagagt 2640atcacactca ctgcgaaggc agggcttatt
tgccacatag gatggggaag acccctccca 2700tgctcaatgt accagagcac ttcagaagac
cattcaatat aggtctttac aagggaacga 2760ttgagctcac aatgaccatc tacgatgatg
agtcactgga agcagctcct atgatctggg 2820atcatttcaa ttcttccaaa ttttctgatt
tcagagagaa ggccttaatg tttggcctga 2880ttgtcgagaa aaaggcatct ggagcgtggg
tcctggattc tatcagccac ttcaaatgag 2940ctagtctaac ttctagcttc tgaacaatcc
ccggtttact cagtctctcc taattccagc 3000ctctcgaaca actaatatcc tgtcttttct
atccctatga aaaaaactaa cagagatcga 3060tctgtttcct tgacactatg aagtgccttt
tgtacttagc ctttttattc attggggtga 3120attgcaagtt caccatagtt tttccacaca
accaaaaagg aaactggaaa aatgttcctt 3180ctaattacca ttattgcccg tcaagctcag
atttaaattg gcataatgac ttaataggca 3240cagccataca agtcaaaatg cccaagagtc
acaaggctat tcaagcagac ggttggatgt 3300gtcatgcttc caaatgggtc actacttgtg
atttccgctg gtatggaccg aagtatataa 3360cacagtccat ccgatccttc actccatctg
tagaacaatg caaggaaagc attgaacaaa 3420cgaaacaagg aacttggctg aatccaggct
tccctcctca aagttgtgga tatgcaactg 3480tgacggatgc cgaagcagtg attgtccagg
tgactcctca ccatgtgctg gttgatgaat 3540acacaggaga atgggttgat tcacagttca
tcaacggaaa atgcagcaat tacatatgcc 3600ccactgtcca taactctaca acctggcatt
ctgactataa ggtcaaaggg ctatgtgatt 3660ctaacctcat ttccatggac atcaccttct
tctcagagga cggagagcta tcatccctgg 3720gaaaggaggg cacagggttc agaagtaact
actttgctta tgaaactgga ggcaaggcct 3780gcaaaatgca atactgcaag cattggggag
tcagactccc atcaggtgtc tggttcgaga 3840tggctgataa ggatctcttt gctgcagcca
gattccctga atgcccagaa gggtcaagta 3900tctctgctcc atctcagacc tcagtggatg
taagtctaat tcaggacgtt gagaggatct 3960tggattattc cctctgccaa gaaacctgga
gcaaaatcag agcgggtctt ccaatctctc 4020cagtggatct cagctatctt gctcctaaaa
acccaggaac cggtcctgct ttcaccataa 4080tcaatggtac cctaaaatac tttgagacca
gatacatcag agtcgatatt gctgctccaa 4140tcctctcaag aatggtcgga atgatcagtg
gaactaccac agaaagggaa ctgtgggatg 4200actgggcacc atatgaagac gtggaaattg
gacccaatgg agttctgagg accagttcag 4260gatataagtt tcctttatac atgattggac
atggtatgtt ggactccgat cttcatctta 4320gctcaaaggc tcaggtgttc gaacatcctc
acattcaaga cgctgcttcg caacttcctg 4380atgatgagag tttatttttt ggtgatactg
ggctatccaa aaatccaatc gagcttgtag 4440aaggttggtt cagtagttgg aaaagctcta
ttgcctcttt tttctttatc atagggttaa 4500tcattggact attcttggtt ctccgagttg
gtatccatct ttgcattaaa ttaaagcaca 4560ccaagaaaag acagatttat acagacatag
agatgaaccg acttggaaag taactcaaat 4620cctgcacaac agattcttca tgtttggacc
aaatcaactt gtgataccat gctcaaagag 4680gcctcaatta tatttgagtt tttaattttt
atgaaaaaaa ctaacagcaa tcatggaagt 4740ccacgatttt gagaccgacg agttcaatga
tttcaatgaa gatgactatg ccacaagaga 4800attcctgaat cccgatgagc gcatgacgta
cttgaatcat gctgattaca atttgaattc 4860tcctctaatt agtgatgata ttgacaattt
gatcaggaaa ttcaattctc ttccgattcc 4920ctcgatgtgg gatagtaaga actgggatgg
agttcttgag atgttaacat catgtcaagc 4980caatcccatc tcaacatctc agatgcataa
atggatggga agttggttaa tgtctgataa 5040tcatgatgcc agtcaagggt atagtttttt
acatgaagtg gacaaagagg cagaaataac 5100atttgacgtg gtggagacct tcatccgcgg
ctggggcaac aaaccaattg aatacatcaa 5160aaaggaaaga tggactgact cattcaaaat
tctcgcttat ttgtgtcaaa agtttttgga 5220cttacacaag ttgacattaa tcttaaatgc
tgtctctgag gtggaattgc tcaacttggc 5280gaggactttc aaaggcaaag tcagaagaag
ttctcatgga acgaacatat gcaggattag 5340ggttcccagc ttgggtccta cttttatttc
agaaggatgg gcttacttca agaaacttga 5400tattctaatg gaccgaaact ttctgttaat
ggtcaaagat gtgattatag ggaggatgca 5460aacggtgcta tccatggtat gtagaataga
caacctgttc tcagagcaag acatcttctc 5520ccttctaaat atctacagaa ttggagataa
aattgtggag aggcagggaa atttttctta 5580tgacttgatt aaaatggtgg aaccgatatg
caacttgaag ctgatgaaat tagcaagaga 5640atcaaggcct ttagtcccac aattccctca
ttttgaaaat catatcaaga cttctgttga 5700tgaaggggca aaaattgacc gaggtataag
attcctccat gatcagataa tgagtgtgaa 5760aacagtggat ctcacactgg tgatttatgg
atcgttcaga cattggggtc atccttttat 5820agattattac actggactag aaaaattaca
ttcccaagta accatgaaga aagatattga 5880tgtgtcatat gcaaaagcac ttgcaagtga
tttagctcgg attgttctat ttcaacagtt 5940caatgatcat aaaaagtggt tcgtgaatgg
agacttgctc cctcatgatc atccctttaa 6000aagtcatgtt aaagaaaata catggcccac
agctgctcaa gttcaagatt ttggagataa 6060atggcatgaa cttccgctga ttaaatgttt
tgaaataccc gacttactag acccatcgat 6120aatatactct gacaaaagtc attcaatgaa
taggtcagag gtgttgaaac atgtccgaat 6180gaatccgaac actcctatcc ctagtaaaaa
ggtgttgcag actatgttgg acacaaaggc 6240taccaattgg aaagaatttc ttaaagagat
tgatgagaag ggcttagatg atgatgatct 6300aattattggt cttaaaggaa aggagaggga
actgaagttg gcaggtagat ttttctccct 6360aatgtcttgg aaattgcgag aatactttgt
aattaccgaa tatttgataa agactcattt 6420cgtccctatg tttaaaggcc tgacaatggc
ggacgatcta actgcagtca ttaaaaagat 6480gttagattcc tcatccggcc aaggattgaa
gtcatatgag gcaatttgca tagccaatca 6540cattgattac gaaaaatgga ataaccacca
aaggaagtta tcaaacggcc cagtgttccg 6600agttatgggc cagttcttag gttatccatc
cttaatcgag agaactcatg aattttttga 6660gaaaagtctt atatactaca atggaagacc
agacttgatg cgtgttcaca acaacacact 6720gatcaattca acctcccaac gagtttgttg
gcaaggacaa gagggtggac tggaaggtct 6780acggcaaaaa ggatggacta tcctcaatct
actggttatt caaagagagg ctaaaatcag 6840aaacactgct gtcaaagtct tggcacaagg
tgataatcaa gttatttgca cacagtataa 6900aacgaagaaa tcgagaaacg ttgtagaatt
acagggtgct ctcaatcaaa tggtttctaa 6960taatgagaaa attatgactg caatcaaaat
agggacaggg aagttaggac ttttgataaa 7020tgacgatgag actatgcaat ctgcagatta
cttgaattat ggaaaaatac cgattttccg 7080tggagtgatt agagggttag agaccaagag
atggtcacga gtgacttgtg tcaccaatga 7140ccaaataccc acttgtgcta atataatgag
ctcagtttcc acaaatgctc tcaccgtagc 7200tcattttgct gagaacccaa tcaatgccat
gatacagtac aattattttg ggacatttgc 7260tagactcttg ttgatgatgc atgatcctgc
tcttcgtcaa tcattgtatg aagttcaaga 7320taagataccg ggcttgcaca gttctacttt
caaatacgcc atgttgtatt tggacccttc 7380cattggagga gtgtcgggca tgtctttgtc
caggtttttg attagagcct tcccagatcc 7440cgtaacagaa agtctctcat tctggagatt
catccatgta catgctcgaa gtgagcatct 7500gaaggagatg agtgcagtat ttggaaaccc
cgagatagcc aagtttcgaa taactcacat 7560agacaagcta gtagaagatc caacctctct
gaacatcgct atgggaatga gtccagcgaa 7620cttgttaaag actgaggtta aaaaatgctt
aatcgaatca agacaaacca tcaggaacca 7680ggtgattaag gatgcaacca tatatttgta
tcatgaagag gatcggctca gaagtttctt 7740atggtcaata aatcctctgt tccctagatt
tttaagtgaa ttcaaatcag gcactttttt 7800gggagtcgca gacgggctca tcagtctatt
tcaaaattct cgtactattc ggaactcctt 7860taagaaaaag tatcataggg aattggatga
tttgattgtg aggagtgagg tatcctcttt 7920gacacattta gggaaacttc atttgagaag
gggatcatgt aaaatgtgga catgttcagc 7980tactcatgct gacacattaa gatacaaatc
ctggggccgt acagttattg ggacaactgt 8040accccatcca ttagaaatgt tgggtccaca
acatcgaaaa gagactcctt gtgcaccatg 8100taacacatca gggttcaatt atgtttctgt
gcattgtcca gacgggatcc atgacgtctt 8160tagttcacgg ggaccattgc ctgcttatct
agggtctaaa acatctgaat ctacatctat 8220tttgcagcct tgggaaaggg aaagcaaagt
cccactgatt aaaagagcta cacgtcttag 8280agatgctatc tcttggtttg ttgaacccga
ctctaaacta gcaatgacta tactttctaa 8340catccactct ttaacaggcg aagaatggac
caaaaggcag catgggttca aaagaacagg 8400gtctgccctt cataggtttt cgacatctcg
gatgagccat ggtgggttcg catctcagag 8460cactgcagca ttgaccaggt tgatggcaac
tacagacacc atgagggatc tgggagatca 8520gaatttcgac tttttattcc aagcaacgtt
gctctatgct caaattacca ccactgttgc 8580aagagacgga tggatcacca gttgtacaga
tcattatcat attgcctgta agtcctgttt 8640gagacccata gaagagatca ccctggactc
aagtatggac tacacgcccc cagatgtatc 8700ccatgtgctg aagacatgga ggaatgggga
aggttcgtgg ggacaagaga taaaacagat 8760ctatccttta gaagggaatt ggaagaattt
agcacctgct gagcaatcct atcaagtcgg 8820cagatgtata ggttttctat atggagactt
ggcgtataga aaatctactc atgccgagga 8880cagttctcta tttcctctat ctatacaagg
tcgtattaga ggtcgaggtt tcttaaaagg 8940gttgctagac ggattaatga gagcaagttg
ctgccaagta atacaccgga gaagtctggc 9000tcatttgaag aggccggcca acgcagtgta
cggaggtttg atttacttga ttgataaatt 9060gagtgtatca cctccattcc tttctcttac
tagatcagga cctattagag acgaattaga 9120aacgattccc cacaagatcc caacctccta
tccgacaagc aaccgtgata tgggggtgat 9180tgtcagaaat tacttcaaat accaatgccg
tctaattgaa aagggaaaat acagatcaca 9240ttattcacaa ttatggttat tctcagatgt
cttatccata gacttcattg gaccattctc 9300tatttccacc accctcttgc aaatcctata
caagccattt ttatctggga aagataagaa 9360tgagttgaga gagctggcaa atctttcttc
attgctaaga tcaggagagg ggtgggaaga 9420catacatgtg aaattcttca ccaaggacat
attattgtgt ccagaggaaa tcagacatgc 9480ttgcaagttc gggattgcta aggataataa
taaagacatg agctatcccc cttggggaag 9540ggaatccaga gggacaatta caacaatccc
tgtttattat acgaccaccc cttacccaaa 9600gatgctagag atgcctccaa gaatccaaaa
tcccctgctg tccggaatca ggttgggcca 9660attaccaact ggcgctcatt ataaaattcg
gagtatatta catggaatgg gaatccatta 9720cagggacttc ttgagttgtg gagacggctc
cggagggatg actgctgcat tactacgaga 9780aaatgtgcat agcagaggaa tattcaatag
tctgttagaa ttatcagggt cagtcatgcg 9840aggcgcctct cctgagcccc ccagtgccct
agaaacttta ggaggagata aatcgagatg 9900tgtaaatggt gaaacatgtt gggaatatcc
atctgactta tgtgacccaa ggacttggga 9960ctatttcctc cgactcaaag caggcttggg
gcttcaaatt gatttaattg taatggatat 10020ggaagttcgg gattcttcta ctagcctgaa
aattgagacg aatgttagaa attatgtgca 10080ccggattttg gatgagcaag gagttttaat
ctacaagact tatggaacat atatttgtga 10140gagcgaaaag aatgcagtaa caatccttgg
tcccatgttc aagacggtcg acttagttca 10200aacagaattt agtagttctc aaacgtctga
agtatatatg gtatgtaaag gtttgaagaa 10260attaatcgat gaacccaatc ccgattggtc
ttccatcaat gaatcctgga aaaacctgta 10320cgcattccag tcatcagaac aggaatttgc
cagagcaaag aaggttagta catactttac 10380cttgacaggt attccctccc aattcattcc
tgatcctttt gtaaacattg agactatgct 10440acaaatattc ggagtaccca cgggtgtgtc
tcatgcggct gccttaaaat catctgatag 10500acctgcagat ttattgacca ttagcctttt
ttatatggcg attatatcgt attataacat 10560caatcatatc agagtaggac cgatacctcc
gaacccccca tcagatggaa ttgcacaaaa 10620tgtggggatc gctataactg gtataagctt
ttggctgagt ttgatggaga aagacattcc 10680actatatcaa cagtgtttag cagttatcca
gcaatcattc ccgattaggt gggaggctgt 10740ttcagtaaaa ggaggataca agcagaagtg
gagtactaga ggtgatgggc tcccaaaaga 10800tacccgaact tcagactcct tggccccaat
cgggaactgg atcagatctc tggaattggt 10860ccgaaaccaa gttcgtctaa atccattcaa
tgagatcttg ttcaatcagc tatgtcgtac 10920agtggataat catttgaaat ggtcaaattt
gcgaagaaac acaggaatga ttgaatggat 10980caatagacga atttcaaaag aagaccggtc
tatactgatg ttgaagagtg acctacacga 11040ggaaaactct tggagagatt aaaaaatcat
gaggagactc caaactttaa gtatgaaaaa 11100aactttgatc cttaagaccc tcttgtggtt
tttatttttt atctggtttt gtggtcttcg 11160t
1116121665DNAVesicular stomatitis virus
2aacagagatc gatctgtttc cttgacacca tgaagtgctt tttgtactta gcttttttat
60tcatcggggt gaattgcaag ttcaccatag tttttccaca caaccaaaaa ggaaactgga
120aaaatgttcc ttccaattac cattattgcc cgtcaagctc agatttaaat tggcataatg
180acttaatagg cacaggctta caagtcaaaa tgcccaagag tcacaaggct attcaagcag
240acggttggat gtgtcatgct tccaaatggg tcactacttg tgatttccgc tggtacggac
300cgaagtatat aacacattcc atccgatcct tcactccatc tgtagaacaa tgcaaggaaa
360gcattgaaca aacgaaacaa ggaacttggc tgaatccagg cttccctcct caaagttgtg
420gatatgcaac tgtgacggat gccgaagcag tgattgtcca ggtgactcct caccatgtgc
480ttgttgatga atacacagga gaatgggttg attcacagtt catcaacgga aaatgcagca
540atgacatatg ccccactgtc cataactcca caacctggca ttccgactat aaggtcaaag
600ggctatgtga ttctaacctc atttccacgg acatcacctt cttctcagag gacagagagc
660tatcatccct aggaaaggag ggcacagggt tcagaagtaa ctactttgct tatgaaactg
720gagacaaggc ctgcaaaatg cagtactgca agcattgggg agtcagactc ccatcaggtg
780tctggttcga gatggctgat aaggatctct ttgctgcagc cagattccct gaatgcccag
840aagggtcaag tatctctgct ccatctcaga cctcagtgga tgtaagtctc attcaggacg
900ttgagaggat cttggattat tccctctgcc aagaaacctg gagcaaaatc agagcgggtc
960ttcccatctc tccagtggat ctcagctatc ttgctcctaa aaacccagga accggtcctg
1020cctttaccat aatcaatggt accctaaaat actttgagac cagatacatc agagtcgata
1080ttgctgctcc aatcctctca agaatggtcg gaatgatcag tggaactacc acagaaaggg
1140aactgtggga tgactgggct ccatatgaag acgtggaaat tggacccaat ggagttctga
1200ggaccagttc aggatataag tttcctttat atatgattgg acatggtatg ttggactccg
1260gtcttcatct tagctcaaag gctcaggtgt ttgaacatcc tcacattcaa gacgctgctt
1320cgcagcttcc tgatgatgag attttatttt ttggtgatac tgggctatcc aaaaatccaa
1380tcgactttgt cgaaggttgg ttcagtagtt ggaagagctc cattgcctct tttttcttta
1440tcatagggtt aatcattgga ctattcttgg ttctccgagt tggtatttat ctttacatta
1500aattaaagca caccaagaaa agacagattt atacagacat agagatgaac cgacttggaa
1560ggtaactcaa atcctgcaca acagattctt catgtttgga ccaaatcaac ttgtgatacc
1620atgctcaaag aggcctcaat tatatttgag tttttaattt ttatg
16653511PRTVesicular stomatitis virus 3Met Lys Cys Phe Leu Tyr Leu Ala
Phe Leu Phe Ile Gly Val Asn Cys1 5 10
15Lys Phe Thr Ile Val Phe Pro His Asn Gln Lys Gly Asn Trp
Lys Asn 20 25 30Val Pro Ser
Asn Tyr His Tyr Cys Pro Ser Ser Ser Asp Leu Asn Trp 35
40 45His Asn Asp Leu Ile Gly Thr Gly Leu Gln Val
Lys Met Pro Lys Ser 50 55 60His Lys
Ala Ile Gln Ala Asp Gly Trp Met Cys His Ala Ser Lys Trp65
70 75 80Val Thr Thr Cys Asp Phe Arg
Trp Tyr Gly Pro Lys Tyr Ile Thr His 85 90
95Ser Ile Arg Ser Phe Thr Pro Ser Val Glu Gln Cys Lys
Glu Ser Ile 100 105 110Glu Gln
Thr Lys Gln Gly Thr Trp Leu Asn Pro Gly Phe Pro Pro Gln 115
120 125Ser Cys Gly Tyr Ala Thr Val Thr Asp Ala
Glu Ala Val Ile Val Gln 130 135 140Val
Thr Pro His His Val Leu Val Asp Glu Tyr Thr Gly Glu Trp Val145
150 155 160Asp Ser Gln Phe Ile Asn
Gly Lys Cys Ser Asn Asp Ile Cys Pro Thr 165
170 175Val His Asn Ser Thr Thr Trp His Ser Asp Tyr Lys
Val Lys Gly Leu 180 185 190Cys
Asp Ser Asn Leu Ile Ser Thr Asp Ile Thr Phe Phe Ser Glu Asp 195
200 205Arg Glu Leu Ser Ser Leu Gly Lys Glu
Gly Thr Gly Phe Arg Ser Asn 210 215
220Tyr Phe Ala Tyr Glu Thr Gly Asp Lys Ala Cys Lys Met Gln Tyr Cys225
230 235 240Lys His Trp Gly
Val Arg Leu Pro Ser Gly Val Trp Phe Glu Met Ala 245
250 255Asp Lys Asp Leu Phe Ala Ala Ala Arg Phe
Pro Glu Cys Pro Glu Gly 260 265
270Ser Ser Ile Ser Ala Pro Ser Gln Thr Ser Val Asp Val Ser Leu Ile
275 280 285Gln Asp Val Glu Arg Ile Leu
Asp Tyr Ser Leu Cys Gln Glu Thr Trp 290 295
300Ser Lys Ile Arg Ala Gly Leu Pro Ile Ser Pro Val Asp Leu Ser
Tyr305 310 315 320Leu Ala
Pro Lys Asn Pro Gly Thr Gly Pro Ala Phe Thr Ile Ile Asn
325 330 335Gly Thr Leu Lys Tyr Phe Glu
Thr Arg Tyr Ile Arg Val Asp Ile Ala 340 345
350Ala Pro Ile Leu Ser Arg Met Val Gly Met Ile Ser Gly Thr
Thr Thr 355 360 365Glu Arg Glu Leu
Trp Asp Asp Trp Ala Pro Tyr Glu Asp Val Glu Ile 370
375 380Gly Pro Asn Gly Val Leu Arg Thr Ser Ser Gly Tyr
Lys Phe Pro Leu385 390 395
400Tyr Met Ile Gly His Gly Met Leu Asp Ser Gly Leu His Leu Ser Ser
405 410 415Lys Ala Gln Val Phe
Glu His Pro His Ile Gln Asp Ala Ala Ser Gln 420
425 430Leu Pro Asp Asp Glu Ile Leu Phe Phe Gly Asp Thr
Gly Leu Ser Lys 435 440 445Asn Pro
Ile Asp Phe Val Glu Gly Trp Phe Ser Ser Trp Lys Ser Ser 450
455 460Ile Ala Ser Phe Phe Phe Ile Ile Gly Leu Ile
Ile Gly Leu Phe Leu465 470 475
480Val Leu Arg Val Gly Ile Tyr Leu Tyr Ile Lys Leu Lys His Thr Lys
485 490 495Lys Arg Gln Ile
Tyr Thr Asp Ile Glu Met Asn Arg Leu Gly Arg 500
505 510415186DNANewcastle disease virus 4accaaacaga
gaatccgtaa gttacgataa aaggcgaagg agcaattgaa gtcgcacggg 60tagaaggtgt
gaatctcgag tgcgagcccg aagcacaaac tcgaggaagc cttctgccaa 120catgtcttcc
gtattcgacg agtacgaaca gctcctcgcg gctcagactc gccccaatgg 180agctcatgga
gggggggaga aagggagtac cttaaaagta gacgtcccgg tattcactct 240taacagtgat
gacccagaag ataggtggag ctttgtggta ttctgcctcc ggattgctgt 300tagcgaagat
gccaacaaac cactcaggca aggtgctctc atatctcttt tatgctccca 360ctcacaggta
atgaggaacc atgttgccct tgcagggaaa cagaatgaag ccacattggc 420cgtgcttgag
attgatggct ttgccaacgg cacgccccag ttcaacaata ggagtggagt 480gtctgaagag
agagcacaga gatttgcgat gatagcagga tctctccctc gggcatgcag 540caacggcacc
ccgttcgtca cagccggggc tgaagatgat gcaccagaag acatcaccga 600taccctggag
aggatcctct ctatccaggc tcaagtatgg gtcacagtag caaaagccat 660gactgcgtat
gagactgcag atgagtcgga aacaaggcga atcaataagt atatgcagca 720aggcagggtc
caaaagaaat acatcctcta ccccgtatgc aggagcacaa tccaactcac 780gatcagacag
tctcttgcag tccgcatctt tttggttagc gagctcaaga gaggccgcaa 840cacggcaggt
ggtacctcta cttattataa cctagtaggg gacgtagact catatatcag 900gaataccggg
cttactgcat tcttcttgac actcaagtac ggaatcaaca ccaagacatc 960agcccttgca
cttagtagcc tctcaggcga catccagaag atgaagcagc tcatgcgttt 1020gtatcggatg
aaaggagata atgcgccgta catgacatta cttggtgata gtgaccagat 1080gagctttgcg
cctgccgagt atgcacaact ttactccttt gccatgggta tggcatcagt 1140cctagataaa
ggtactggga aataccaatt tgccagggac tttatgagca catcattctg 1200gagacttgga
gtagagtacg ctcaggctca gggaagtagc attaacgagg atatggctgc 1260cgagctaaag
ctaaccccgg cagcaaggag gggcctggca gctgctgccc aacgagtctc 1320cgaggtgacc
agcagcatag acatgcctac tcaacaagtc ggagtcctca ctgggcttag 1380cgagggggga
tcccaagccc tacaaggcgg atcgaataga tcgcaagggc aaccagaagc 1440cggggatggg
gagacccaat tcctggatct gatgagagcg gtagcaaata gcatgaggga 1500ggcgccaaac
tctgcacagg gcactcccca atcggggcct cccccaactc ctgggccatc 1560ccaagataac
gacaccgact gggggtattg attgacaaaa cccagcctgc ttctacaaga 1620acatcccaat
gctctcaccc gtagtcgacc cctcgatttg cggctctata tgaccacacc 1680ctcaaacaaa
catccccctc tttcctccct ccccctgctg tacaactccg cacgccctag 1740ataccacagg
cacaccgcgg ctcactaaca atcaaaacag agccgaggga attagaaaaa 1800agtacgggta
gaagagggat attcagagat cagggcaagt ctcccgagtc tctgctctct 1860cctctacctg
atagaccagg acaaacatgg ccacctttac agatgcagag atcgacgagc 1920tatttgagac
aagtggaact gtcattgaca acataattac agcccagggt aaaccagcag 1980agactgttgg
aaggagtgca atcccacagg gcaagaccaa ggtgctgagc gcagcatggg 2040agaagcatgg
gagcatccag ccaccggcca gtcaagacaa cctcgatcga caggacagat 2100ctgacaaaca
accatccaca cccgagcaaa cgaccccgca cgacagcccg ccggccacat 2160ccgctgacca
gccccccacc caggccacag acgaagccgt cgacacacag ctcaggaccg 2220gagcaagcaa
ctctctgctg ttgatgcttg acaagctcag caataaatcg tccaatgcta 2280aaaagggccc
atggtcgagc ccccaagagg ggaatcacca acgtccgact caacagcagg 2340ggagtcaacc
cagtcgcgga aacagccagg aaagactgca gaaccaagtc aaggccgccc 2400ctggaaacca
gggcacagac gtgaacacag catatcatgg acaatgggag gagtcacaac 2460tatcagctgg
tgcaacccct catgctctcc gatcaaggca gagccaagac aatacccttg 2520tatctgcgga
tcatgtccag ccacctgtag actttgtgca agcgatgatg tctatgatgg 2580gggcgatatc
acagagagta agtaaggttg actatcagct agatcttgtc ttgaaacaga 2640catcctccat
ccctatgatg cggtccgaaa tccaacagct gaaaacatct gttgcagtca 2700tggaagccaa
cttgggaatg atgaagattc tggatcccgg ttgtgccaac atttcatctc 2760tgagtgatct
acgggcagtt gcccgatctc acccggtttt agtttcaggc cctggagacc 2820catctcccta
tgtgatacaa ggaggcgaaa tggcacttaa taaactttcg caaccagtgc 2880cacatccatc
tgaattgatt aaacccgcca ctgcatgcgg gcctgatata ggagtggaga 2940gggacactgt
ccgtgcattg atcatgtcac gcccaatgca cccgagttct tcagccaagc 3000tcctaagcaa
gttagatgca gccgggtcga tcgaggaaat caggaaaatc aagcgccttg 3060ctctaaatgg
ctaattacta ctgccacacg tagcgggtcc ctgtccactc ggcatcacac 3120ggaatctgca
ccgagttccc ccccgcagac ccaaggtcca actctagaag cggcaatcct 3180ctctcgcttc
ctcagcccca ctgaatgatc gcgtaaccgt aattaatcta gctacattaa 3240ggattaagaa
aaaatacggg tagaattgga gtgccccaat tgtgccaaga tggactcatc 3300taggacaatt
gggctgtact ttgattctgc ccattcttct agcaacctgt tagcatttcc 3360gatcgtccta
caagacacag gagatgggaa gaagcaaatc gccccgcaat ataggatcca 3420gcgccttgac
tcgtggactg atagtaagga agactcagta ttcatcacca cctatggatt 3480catctttcaa
gttgggaatg aggaagccac tgtcggcatg atcgatgata aacccaagcg 3540cgagttactt
tccgctgcga tgctctgcct aggaagcgtc ccaaataccg gagaccttgt 3600tgagctggca
agggcctgtc tcactatgat ggtcacatgc aagaagagtg caactaatac 3660tgagagaatg
gttttctcag tagtgcaggc accccaagtg ctgcaaagct gtagggttgt 3720ggcaaataaa
tactcatcag tgaatgcagt caagcacgtg aaagcgccag agaagatccc 3780cgggagtgga
accctagaat acaaggtgaa ctttgtctcc ttgactgtgg taccgaagaa 3840ggatgtctac
aagatcccag ctgcagtatt gaagatttct ggctcgagtc tgtacaatct 3900tgcgctcaat
gtcactatta atgtggaggt agacccgagg agtcctttgg ttaaatctct 3960gtctaagtct
gacagcggat actatgctaa cctcttcttg catattggac ttatgaccac 4020cgtagatagg
aaggggaaga aagtgacatt tgacaagctg gaaaagaaaa taaggagcct 4080tgatctatct
gtcgggctca gtgatgtgct cgggccttcc gtgttggtaa aagcaagagg 4140tgcacggact
aagcttttgg cacctttctt ctctagcagt gggacagcct gctatcccat 4200agcaaatgct
tctcctcagg tggccaagat actctggagt caaaccgcgt gcctgcggag 4260cgttaaaatc
attatccaag caggtaccca acgcgctgtc gcagtgaccg ctgaccacga 4320ggttacctct
actaagctgg agaaggggca cacccttgcc aaatacaatc cttttaagaa 4380ataagctgcg
tctctgagat tgcgctccgc ccactcaccc agatcatcat gacacaaaaa 4440actaatctgt
cttgattatt tacagttagt ttacctgtcc atcaagttag aaaaaacacg 4500ggtagaagat
tctggatccc ggttggcgcc ctccaggtgc aggatgggct ccagaccttc 4560taccaagaac
ccagcaccta tgatgctgac tatccgggtc gcgctggtac tgagttgcat 4620ctgcccggca
aactccattg atggcaggcc tcttgcagct gcaggaattg tggttacagg 4680agacaaagca
gtcaacatat acacctcatc ccagacagga tcaatcatag ttaagctcct 4740cccgaatctg
cccaaggata aggaggcatg tgcgaaagcc cccttggatg catacaacag 4800gacattgacc
actttgctca ccccccttgg tgactctatc cgtaggatac aagagtctgt 4860gactacatct
ggagggggga gacaggggcg ccttataggc gccattattg gcggtgtggc 4920tcttggggtt
gcaactgccg cacaaataac agcggccgca gctctgatac aagccaaaca 4980aaatgctgcc
aacatcctcc gacttaaaga gagcattgcc gcaaccaatg aggctgtgca 5040tgaggtcact
gacggattat cgcaactagc agtggcagtt gggaagatgc agcagtttgt 5100taatgaccaa
tttaataaaa cagctcagga attagactgc atcaaaattg cacagcaagt 5160tggtgtagag
ctcaacctgt acctaaccga attgactaca gtattcggac cacaaatcac 5220ttcacctgcc
ttaaacaagc tgactattca ggcactttac aatctagctg gtgggaatat 5280ggattactta
ttgactaagt taggtatagg gaacaatcaa ctcagctcat taatcggtag 5340cggcttaatc
accggtaacc ctattctata cgactcacag actcaactct tgggtataca 5400ggtaactcta
ccttcagtcg ggaacctaaa taatatgcgt gccacctact tggaaacctt 5460atccgtaagc
acaaccaggg gatttgcctc ggcacttgtc ccaaaagtgg tgacacaggt 5520cggttctgtg
atagaagaac ttgacacctc atactgtata gaaactgact tagatttata 5580ttgtacaaga
atagtaacgt tccctatgtc ccctggtatt tactcctgct tgagcggcaa 5640tacatcggcc
tgtatgtact caaagaccga aggcgcactt actacaccat atatgactat 5700caaaggctca
gtcatcgcta actgcaagat gacaacatgt agatgtgtaa accccccggg 5760tatcatatcg
caaaactatg gagaagccgt gtctctaata gataaacaat catgcaatgt 5820tttatcctta
ggcgggataa ctttaaggct cagtggggaa ttcgatgtaa cttatcagaa 5880gaatatctca
atacaagatt ctcaagtaat aataacaggc aatcttgata tctcaactga 5940gcttgggaat
gtcaacaact cgatcagtaa tgctttgaat aagttagagg aaagcaacag 6000aaaactagac
aaagtcaatg tcaaactgac cagcacatct gctctcatta cctatatcgt 6060tttgactatc
atatctcttg tttttggtat acttagcctg attctagcat gctacctaat 6120gtacaagcaa
aaggcgcaac aaaagacctt attatggctt gggaataata ccctagatca 6180gatgagagcc
actacaaaaa tgtgaacaca gatgaggaac gaaggtttcc ctaatagtaa 6240tttgtgtgaa
agttctggta gtctgtcagt tcggagagtt aagaaaaaac taccggttgt 6300agatgaccaa
aggacgatat acgggtagaa cggtaagaga ggccgcccct caattgcgag 6360ccagacttca
caacctccgt tctaccgctt caccgacaac agtcctcaat catggaccgc 6420gccgttagcc
aagttgcgtt agagaatgat gaaagagagg caaaaaatac atggcgcttg 6480atattccgga
ttgcaatctt attcttaaca gtagtgacct tggctatatc tgtagcctcc 6540cttttatata
gcatgggggc tagcacacct agcgatcttg taggcatacc gactaggatt 6600tccagggcag
aagaaaagat tacatctaca cttggttcca atcaagatgt agtagatagg 6660atatataagc
aagtggccct tgagtctcca ttggcattgt taaatactga gaccacaatt 6720atgaacgcaa
taacatctct ctcttatcag attaatggag ctgcaaacaa cagcgggtgg 6780ggggcaccta
ttcatgaccc agattatata ggggggatag gcaaagaact cattgtagat 6840gatgctagtg
atgtcacatc attctatccc tctgcatttc aagaacatct gaattttatc 6900ccggcgccta
ctacaggatc aggttgcact cgaataccct catttgacat gagtgctacc 6960cattactgct
acacccataa tgtaatattg tctggatgca gagatcactc acactcacat 7020cagtatttag
cacttggtgt gctccggaca tctgcaacag ggagggtatt cttttctact 7080ctgcgttcca
tcaacctgga cgacacccaa aatcggaagt cttgcagtgt gagtgcaact 7140cccctgggtt
gtgatatgct gtgctcgaaa gccacggaga cagaggaaga agattataac 7200tcagctgtcc
ctacgcggat ggtacatggg aggttagggt tcgacggcca atatcacgaa 7260aaggacctag
atgtcacaac attattcggg gactgggtgg ccaactaccc aggagtaggg 7320ggtggatctt
ttattgacag ccgcgtatgg ttctcagtct acggagggtt aaaacccaat 7380acacccagtg
acactgtaca ggaagggaaa tatgtgatat acaagcgata caatgacaca 7440tgcccagatg
agcaagacta ccagattcga atggccaagt cttcgtataa gcctggacgg 7500tttggtggga
aacgcataca gcaggctatc ttatctatca aagtgtcaac atccttaggc 7560gaagacccgg
tactgactgt accgcccaac acagtcacac tcatgggggc cgaaggcaga 7620attctcacag
tagggacatc ccatttcttg tatcagcgag ggtcatcata cttctctccc 7680gcgttattat
atcctatgac agtcagcgac aaaacagcca ctcttcatag tccttataca 7740ttcaatgcct
tcactcggcc aggtagtatc ccttgccagg cttcagcaag atgccccaac 7800tcgtgtgtta
ctggagtcta tacagatcca tatcccctaa tcttctatag aaaccacacc 7860ttgcgagggg
tattcgggac aatgcttgat ggtgaacaag caagacttaa ccctgcgtct 7920gcagtattcg
atagcacatc ccgcagtcgc ataactcgag tgagttcaag cagcatcaaa 7980gcagcataca
caacatcaac ttgttttaaa gtggtcaaga ccaataagac ctattgtctc 8040agcattgctg
aaatatctaa tactctcttc ggagaattca gaatcgtccc gttactagtt 8100gagatcctca
aagatgacgg ggttagagaa gccaggtctg gctagttgag tcaactatga 8160aagagttgga
aagatggcat tgtatcacct atcttctgcg acatcaagaa tcaaaccgaa 8220tgccggcgcg
tgctcgaatt ccatgtcgcc agttgaccac aatcagccag tgctcatgcg 8280atcagattaa
gccttgtcaa tagtctcttg attaagaaaa aatgtaagtg gcaatgagat 8340acaaggcaaa
acagctcacg gtaaataata cgggtaggac atggcgagct ccggtcctga 8400aagggcagag
catcagatta tcctaccaga gtcacacctg tcttcaccat tggtcaagca 8460caaactactc
tattattgga aattaactgg gctaccgctt cctgatgaat gtgacttcga 8520ccacctcatt
ctcagccgac aatggaaaaa aatacttgaa tcggcctctc ctgatactga 8580gagaatgata
aaactcggaa gggcagtaca ccaaactctt aaccacaatt ccagaataac 8640cggagtactc
caccccaggt gtttagaaga actggctaat attgaggtcc ctgattcaac 8700caacaaattt
cggaagattg agaagaagat ccaaattcac aacacgagat atggagaact 8760gttcacaagg
ctgtgtacgc atatagagaa gaaactgctg gggtcatctt ggtctaacaa 8820tgtcccccgg
tcagaggagt tcagcagcat tcgtacggat ccggcattct ggtttcactc 8880aaaatggtcc
acagccaagt ttgcatggct ccatataaaa cagatccaga ggcatctgat 8940tgtggcagct
aggacaaggt ctgcggccaa caaattggtg atgctaaccc ataaggtagg 9000ccaagtcttt
gtcactcctg aacttgttgt tgtgacgcat acgaatgaga acaagttcac 9060atgtcttacc
caggaacttg tattgatgta tgcagatatg atggagggca gagatatggt 9120caacataata
tcaaccacgg cggtgcatct cagaagctta tcagagaaaa ttgatgacat 9180tttgcggtta
atagacgctc tggcaaaaga cttgggtaat caagtctacg atgttgtatc 9240actaatggag
ggatttgcat acggagctgt ccagctactc gagccgtcag gtacatttgc 9300gggagatttc
ttcgcattca acctgcagga gcttaaagac attctaattg gcctcctccc 9360caatgatata
gcagaatccg tgactcatgc aatcgctact gtattctctg gtttagaaca 9420gaatcaagca
gctgagatgt tgtgcctgtt gcgtctgtgg ggtcacccac tgcttgagtc 9480ccgtattgca
gcaaaggcag tcaggagcca aatgtgcgca ccgaaaatgg tagactttga 9540tatgatcctt
caggtactgt ctttcttcaa gggaacaatc atcaacggat acagaaagaa 9600gaatgcaggt
gtgtggccgc gagtcaaagt ggatacaata tatgggaagg tcattgggca 9660actacatgca
gattcagcag agatttcaca cgatatcatg ttgagagagt ataagagttt 9720atctgcactt
gaatttgagc catgtataga atacgaccct gtcactaacc tgagcatgtt 9780cctaaaagac
aaggcaatcg cacaccccaa cgataattgg cttgcctcgt ttaggcggaa 9840ccttctctcc
gaagaccaga agaaacatgt aaaggaagcg acttcgacta accgcctctt 9900gatagagttt
ttagagtcaa atgattttga tccatataaa gagatggaat atctgacgac 9960ccttgagtac
cttagagatg acaatgtggc agtatcatac tcgctcaaag agaaggaagt 10020gaaagttaat
ggacggatct tcgctaagct gacaaagaag ttaaggaact gtcaggtgat 10080ggcggaaggg
atcctagccg atcagattgc acctttcttt cagggaaatg gagtcattca 10140ggatagcata
tccttgacca agagtatgct agcgatgagt caactgtctt ttaacagcaa 10200taagaaacgt
atcactgact gtaaagaaag agtatgttca aaccgcaatc atgatccgaa 10260aagcaagaac
cgtcggagag ttgcaacctt cataacaact gacctgcaaa agtactgtct 10320taattggaga
tatcagacga tcaaattgtt cgctcatgcc atcaatcagt tgatgggcct 10380acctcatttc
ttcgagtgga ttcacctaag actgatggac actacgatgt tcgtaggaga 10440ccctttcaat
cctccaagtg accctactga ctgtgacctc tcaagagtcc ctaatgatga 10500catatatatt
gtcagtgcca gagggggtat cgaaggatta tgccagaagc tatggacaat 10560gatctcaatt
gctgcaatcc aacttgctgc agctagatcg cattgtcgtg ttgcctgtat 10620ggtacagggt
gataatcaag taatagcagt aacgagagag gtaagatcag atgactctcc 10680ggagatggtg
ttgacacagt tgcatcaagc cagtgataat ttcttcaagg aattaatcca 10740tgtcaatcat
ttgattggcc ataatttgaa ggatcgtgaa accatcaggt cagacacatt 10800cttcatatac
agcaaacgaa tcttcaaaga tggagcaatc ctcagtcaag tcctcaaaaa 10860ttcatctaaa
ttagtgctag tgtcaggtga tctcagtgaa aacaccgtaa tgtcctgtgc 10920caacattgcc
tctactgtag cacggctatg cgagaacggg cttcccaaag acttctgtta 10980ctatttaaac
tatataatga gttgtgtgca gacatacttt gactctgagt tctccatcac 11040caacaattcg
caccccgatc ttaatcagtc gtggattgag gacatctctt ttgtgcactc 11100atatgttctg
actcctgccc aattaggggg actgagtaac cttcaatact caaggctcta 11160cactagaaat
atcggtgacc cggggactac tgcttttgca gagatcaagc gactagaagc 11220agtgggacta
ctgagtccta acattaggac taatatctta actaggccgc ctgggaatgg 11280agattgggcc
agtctgtgca acgacccata ctctttcaat tttgagactg ttgcaagccc 11340aaacattgtt
cttaagaaac atacgcaaag agtcctattt gaaacttgtt caaatccctt 11400attgtctgga
gtgcacacag aggataatga ggcagaagag aaggcattgg ctgaattctt 11460gcttaatcaa
gaggtgattc atccccgcgt tgcgcatgcc atcatggagg caagctctgt 11520aggtaggaga
aagcaaattc aagggcttgt tgacacaaca aacactgtaa ttaagattgc 11580gcttactagg
aggccattag gcatcaagag gctgatgcgg atagtcaatt attctagcat 11640gcatgcaatg
ctgtttagag acgatgtttt ttcctctagt agatccaacc accccttagt 11700ctcttctaat
atgtgttctc tgacactggc agactatgca cggaatagaa gctggtcacc 11760tttgacggga
ggcaggaaaa tactgggtgt atctaatcct gatacgatag aactcgtaga 11820gggtgagatt
cttagtgtaa gcggagggtg tacaagatgt gacagcggag atgaacaatt 11880tacttggttc
catcttccaa gcaatataga attgaccgat gacaccagca agaatcctcc 11940gatgagggta
ccatatctcg ggtcaaagac acaggagagg agagctgcct cacttgcgaa 12000aatagctcat
atgtcgccac atgtgaaggc tgccctaagg gcatcatccg tgttgatctg 12060ggcttatggg
gataatgaag taaattggac tgctgctctt acgattgcaa aatctcggtg 12120taatgtaaac
ttagagtatc ttcggttact gtccccttta cccacggctg ggaatcttca 12180acatagacta
gatgatggta taactcagat gacattcacc cctgcatctc tctacagggt 12240gtcaccttac
attcacatat ccaatgattc tcaaaggctg ttcactgaag aaggagtcaa 12300agaggggaat
gtggtttacc aacagatcat gctcttgggt ttatctctaa tcgaatcgat 12360ctttccaatg
acaacaacca gaacatatga tgagatcaca ctgcacctac atagtaaatt 12420tagttgctgt
atcagggaag cacctgttgc ggttcctttc gagctacttg gggtggcacc 12480ggaactgagg
acagtgacct caaataagtt tatgtatgat cctagccctg tatcggaggg 12540agactttgcg
agacttgact tagctatctt caagagttat gagcttaatc tggagtcata 12600tcccacgata
gagctaatga acattctttc aatatccagc gggaagttga ttggccagtc 12660tgtggtttct
tatgatgaag atacctccat aaagaatgat gccataatag tgtatgacaa 12720tacccgaaat
tggatcagtg aagctcagaa ttcagatgtg gtccgcctat ttgaatatgc 12780agcacttgaa
gtgctcctcg actgttctta ccaactctat tacctgagag taagagacct 12840agacaatatt
gtcttatata tgggtgattt atacaagaat atgccaggaa ttctactttc 12900caacattgca
gctacaatat ctcatcctgt cattcattca aggttacatg cagtgggcct 12960ggtcaaccat
gacggatcac accaacttgc agatacggat tttatcgaaa tgtctgcaaa 13020actgttagta
tcttgcaccc gacgtgtgat ctccggctta tattcaggaa ataagtatga 13080tctgctgttc
ccatctgtct tagatgataa cctgaatgag aagatgcttc agctgatatc 13140ccggttatgc
tgtctgtaca cggtactctt tgctacaaca agagaaatcc cgaaaataag 13200aggcttaact
gcagaagaga aatgttcaat actcactgag tatttactgt cggatgctgt 13260gaaaccatta
cttagccccg atcaagtgag ctctatcatg tctcctaaca taattacatt 13320cccagctaat
ctgtactaca tgtctcggaa gagcctcaat ttgatcaggg aaagggagga 13380cagggatact
atcctggcgt tgttgttccc ccaagagcca ttattagagt tcccttctgt 13440gcaagatatt
ggtgctcgag tgaaagatcc attcacccga caacctgcgg catttttgca 13500agagttagat
ttgagtgctc cagcaaggta tgacgcattc acacttagtc agattcatcc 13560tgaactcaca
tctccaaatc cggaggaaga ctacttagta cgatacttgt tcagagggat 13620agggactgca
tcttcctctt ggtataaggc atcccatctc ctttctgtac ccgaggtaag 13680atgtgcaaga
cacgggaact ccttatactt ggctgaagga agcggagcca tcatgagtct 13740tcttgaactg
catgtaccac atgaaactat ctattacaat acgctctttt caaatgagat 13800gaaccccccg
caacgacatt tcgggccgac cccaactcag tttttgaatt cggttgttta 13860taggaatcta
caggcggagg taacatgcaa ggatggattt gtccaagagt tccgtccatt 13920atggagagaa
aatacagagg aaagtgacct gacctcagat aaagcagtgg ggtatattac 13980atctgcagta
ccctacagat ctgtatcatt gctgcattgt gacattgaaa ttcctccagg 14040gtccaatcaa
agcttactag atcaactagc tatcaattta tctctgattg ccatgcattc 14100tgtaagggag
ggcggggtag taatcatcaa agtgttgtat gcaatgggat actactttca 14160tctactcatg
aacttgtttg ctccgtgttc cacaaaagga tatattctct ctaatggtta 14220tgcatgtcga
ggggatatgg agtgttacct ggtatttgtc atgggttacc tgggcgggcc 14280tacatttgta
catgaggtgg tgaggatggc aaaaactctg gtgcagcggc acggtacgct 14340tttgtctaaa
tcagatgaga tcacactgac caggttattc acctcacagc ggcagcgtgt 14400gacagacatc
ctatccagtc ctttaccaag attaataaag tacttgagga agaatattga 14460cactgcgctg
attgaagccg ggggacagcc cgtccgtcca ttctgtgcgg agagtctggt 14520gagcacgcta
gcgaacataa ctcagataac ccagatcatc gctagtcaca ttgacacagt 14580catccggtct
gtgatatata tggaagctga gggtgatctc gctgacacag tatttctatt 14640taccccttac
aatctctcta ctgacgggaa aaagaggaca tcacttaaac agtgcacgag 14700acagatccta
gaggttacaa tactaggtct tagagtcgaa aatctcaata aaataggcga 14760tataatcagc
ctagtgctta aaggcatgat ctccatggag gaccttatcc cactaaggac 14820atacttgaag
catagtacct gccctaaata tttgaaggct gtcctaggta ttaccaaact 14880caaagaaatg
tttacagaca cttctgtact gtacttgact cgtgctcaac aaaaattcta 14940catgaaaact
ataggcaatg cagtcaaagg atattacagt aactgtgact cctaacgaaa 15000atcacatatt
aataggctcc ttttttggcc aattgtattc ttgttgattt aattatatta 15060tgttagaaaa
aagttgaact ctgactcctt aggactcgaa ttcgaactca aataaatgtc 15120tttaaaaaag
gttgcgcaca attattcttg agtgtagtct cgtcattcac caaatctttg 15180tttggt
1518651992DNANewcastle disease virus 5acgggtagaa cggtaagaga ggccgcccct
caattgcgag ccagacttca caacctccgt 60tctaccgctt caccgacaac agtcctcaat
catggaccgc gccgttagcc aagttgcgtt 120agagaatgat gaaagagagg caaaaaatac
atggcgcttg atattccgga ttgcaatctt 180attcttaaca gtagtgacct tggctatatc
tgtagcctcc cttttatata gcatgggggc 240tagcacacct agcgatcttg taggcatacc
gactaggatt tccagggcag aagaaaagat 300tacatctaca cttggttcca atcaagatgt
agtagatagg atatataagc aagtggccct 360tgagtctcca ttggcattgt taaatactga
gaccacaatt atgaacgcaa taacatctct 420ctcttatcag attaatggag ctgcaaacaa
cagcgggtgg ggggcaccta ttcatgaccc 480agattatata ggggggatag gcaaagaact
cattgtagat gatgctagtg atgtcacatc 540attctatccc tctgcatttc aagaacatct
gaattttatc ccggcgccta ctacaggatc 600aggttgcact cgaataccct catttgacat
gagtgctacc cattactgct acacccataa 660tgtaatattg tctggatgca gagatcactc
acactcatat cagtatttag cacttggtgt 720gctccggaca tctgcaacag ggagggtatt
cttttctact ctgcgttcca tcaacctgga 780cgacacccaa aatcggaagt cttgcagtgt
gagtgcaact cccctgggtt gtgatatgct 840gtgctcgaaa gccacggaga cagaggaaga
agattataac tcagctgtcc ctacgcggat 900ggtacatggg aggttagggt tcgacggcca
atatcacgaa aaggacctag atgtcacaac 960attattcggg gactgggtgg ccaactaccc
aggagtaggg ggtggatctt ttattgacag 1020ccgcgtatgg ttctcagtct acggagggtt
aaaacccaat tcacccagtg acactgtaca 1080ggaagggaaa tatgtgatat acaagcgata
caatgacaca tgcccagatg agcaagacta 1140ccagattcga atggccaagt cttcgtataa
gcctggacgg tttggtggga aacgcataca 1200gcaggctatc ttatctatca aagtgtcaac
atccttaggc gaagacccgg tactgactgt 1260accgcccaac acagtcacac tcatgggggc
cgaaggcaga attctcacag tagggacatc 1320ccatttcttg tatcagcgag ggtcatcata
cttctctccc gcgttattat atcctatgac 1380agtcagcaac aaaacagcca ctcttcatag
tccttataca ttcaatgcct tcactcggcc 1440aggtagtatc ccttgccagg cttcagcaag
atgccccaac tcgtgtgtta ctggagtcta 1500tacagatcca tatcccctaa tcttctatag
aaaccacacc ttgcgagggg tattcgggac 1560aatgcttgat ggtgaacaag caagacttaa
ccctgcgtct gcagtattcg atagcacatc 1620ccgcagtcgc ataactcgag tgagttcaag
cagcatcaaa gcagcataca caacatcaac 1680ttgttttaaa gtggtcaaga ccaataagac
ctattgtctc agcattgctg aaatatctaa 1740tactctcttc ggagaattca gaatcgtccc
gttactagtt gagatcctca aagatgacgg 1800ggttagagaa gccaggtctg gctagttgag
tcaactatga aagagttgga aagatggcat 1860tgtatcacct atcttctgcg acatcaagaa
tcaaaccgaa tgccggcgcg tgctcgaatt 1920ccatgtcgcc agttgaccac aatcagccag
tgctcatgcg atcagattaa gccttgtcaa 1980tagtctcttg at
19926577PRTNewcastle disease virus 6Met
Asp Arg Ala Val Ser Gln Val Ala Leu Glu Asn Asp Glu Arg Glu1
5 10 15Ala Lys Asn Thr Trp Arg Leu
Ile Phe Arg Ile Ala Ile Leu Phe Leu 20 25
30Thr Val Val Thr Leu Ala Ile Ser Val Ala Ser Leu Leu Tyr
Ser Met 35 40 45Gly Ala Ser Thr
Pro Ser Asp Leu Val Gly Ile Pro Thr Arg Ile Ser 50 55
60Arg Ala Glu Glu Lys Ile Thr Ser Thr Leu Gly Ser Asn
Gln Asp Val65 70 75
80Val Asp Arg Ile Tyr Lys Gln Val Ala Leu Glu Ser Pro Leu Ala Leu
85 90 95Leu Asn Thr Glu Thr Thr
Ile Met Asn Ala Ile Thr Ser Leu Ser Tyr 100
105 110Gln Ile Asn Gly Ala Ala Asn Asn Ser Gly Trp Gly
Ala Pro Ile His 115 120 125Asp Pro
Asp Tyr Ile Gly Gly Ile Gly Lys Glu Leu Ile Val Asp Asp 130
135 140Ala Ser Asp Val Thr Ser Phe Tyr Pro Ser Ala
Phe Gln Glu His Leu145 150 155
160Asn Phe Ile Pro Ala Pro Thr Thr Gly Ser Gly Cys Thr Arg Ile Pro
165 170 175Ser Phe Asp Met
Ser Ala Thr His Tyr Cys Tyr Thr His Asn Val Ile 180
185 190Leu Ser Gly Cys Arg Asp His Ser His Ser His
Gln Tyr Leu Ala Leu 195 200 205Gly
Val Leu Arg Thr Ser Ala Thr Gly Arg Val Phe Phe Ser Thr Leu 210
215 220Arg Ser Ile Asn Leu Asp Asp Thr Gln Asn
Arg Lys Ser Cys Ser Val225 230 235
240Ser Ala Thr Pro Leu Gly Cys Asp Met Leu Cys Ser Lys Ala Thr
Glu 245 250 255Thr Glu Glu
Glu Asp Tyr Asn Ser Ala Val Pro Thr Arg Met Val His 260
265 270Gly Arg Leu Gly Phe Asp Gly Gln Tyr His
Glu Lys Asp Leu Asp Val 275 280
285Thr Thr Leu Phe Gly Asp Trp Val Ala Asn Tyr Pro Gly Val Gly Gly 290
295 300Gly Ser Phe Ile Asp Ser Arg Val
Trp Phe Ser Val Tyr Gly Gly Leu305 310
315 320Lys Pro Asn Thr Pro Ser Asp Thr Val Gln Glu Gly
Lys Tyr Val Ile 325 330
335Tyr Lys Arg Tyr Asn Asp Thr Cys Pro Asp Glu Gln Asp Tyr Gln Ile
340 345 350Arg Met Ala Lys Ser Ser
Tyr Lys Pro Gly Arg Phe Gly Gly Lys Arg 355 360
365Ile Gln Gln Ala Ile Leu Ser Ile Lys Val Ser Thr Ser Leu
Gly Glu 370 375 380Asp Pro Val Leu Thr
Val Pro Pro Asn Thr Val Thr Leu Met Gly Ala385 390
395 400Glu Gly Arg Ile Leu Thr Val Gly Thr Ser
His Phe Leu Tyr Gln Arg 405 410
415Gly Ser Ser Tyr Phe Ser Pro Ala Leu Leu Tyr Pro Met Thr Val Ser
420 425 430Asp Lys Thr Ala Thr
Leu His Ser Pro Tyr Thr Phe Asn Ala Phe Thr 435
440 445Arg Pro Gly Ser Ile Pro Cys Gln Ala Ser Ala Arg
Cys Pro Asn Ser 450 455 460Cys Val Thr
Gly Val Tyr Thr Asp Pro Tyr Pro Leu Ile Phe Tyr Arg465
470 475 480Asn His Thr Leu Arg Gly Val
Phe Gly Thr Met Leu Asp Gly Glu Gln 485
490 495Ala Arg Leu Asn Pro Ala Ser Ala Val Phe Asp Ser
Thr Ser Arg Ser 500 505 510Arg
Ile Thr Arg Val Ser Ser Ser Ser Ile Lys Ala Ala Tyr Thr Thr 515
520 525Ser Thr Cys Phe Lys Val Val Lys Thr
Asn Lys Thr Tyr Cys Leu Ser 530 535
540Ile Ala Glu Ile Ser Asn Thr Leu Phe Gly Glu Phe Arg Ile Val Pro545
550 555 560Leu Leu Val Glu
Ile Leu Lys Asp Asp Gly Val Arg Glu Ala Arg Ser 565
570 575Gly71782DNANewcastle disease virus
7acgggtagaa gactctggat cccggttggc gccctccagg tgcaggatgg gctccagacc
60ttttaccaag aacccagcac ctatgatgct gactatccgg gtcgcgctgg tattgagttg
120catctgtccg gcaaactcca ttgatggcag gccttttgca gctgcaggaa ttgtggttac
180aggagacaaa gcagtcaaca tatacacctc atcccagaca ggatcaatca tagttaagct
240cctcccgaat ctgcccaagg ataaggaggc atgtgcgaaa gcccccttgg atgcatacaa
300caggacattg accactttgc tcacccccct tggtgactct atccgtagga tacaagagtc
360tgtgactaca tctggagggg ggagacaggg gcgccttata ggcgccatta ttggcggtgt
420ggctcttggg gttgcaactg ccgcacaaat aacagcggcc gcagctctga tacaagccaa
480acaaaatgct gccaacatcc tccgacttaa agagagcatt gccgcaacca atgaggctgt
540gcatgaggtc actgacggat tatcccaact agcagtggca gttgggaaga tgcagcagtt
600tgttaatgac caatttaata aaacagctca ggaattagac tgcataaaaa ttgcacagca
660agttggtgta gagctcaacc tgtacctaac cgaattgact acagtattcg gaccacaaat
720cacttcacct gccttaaaca agctgactat tcaggcactt tacaatctag ctggtgggaa
780tatggattac ttattgacta agttaggtat agggaacaat caactcagct cattaatcgg
840tagcggctta atcaccggta accctattct atacgactca cagactcaac tcttgggtat
900acaggtaact ctaccttcag tcgggaacct aaataatatg cgtgccacct acttggaaac
960cttatccgta agcacaacca ggggatttgc ctcggcactt gtcccaaaag tggtgacaca
1020ggtcggttct gtgatagaag aacttgacac ctcatactgt atagaaactg acttagattt
1080atattgtaca agaatagtaa cgttccctat gtcccctggt atttactcct gcttgagcgg
1140caatacatcg gcctgtatgt actcaaagac cgaaggcgca cttactacac catatatgac
1200tatcaaaggc tcagtcatcg ctaactgcaa gatgacaaca tgtagatgtg taaacccccc
1260gggtatcata tcgcaaaact atggagaagc cgtgtctcta atagataaac aatcatgcaa
1320tgttttatcc ttaggcggga taactttaag gctcagtggg gaattcgatg taacttatca
1380gaagaatatc tcaatacaag attctcaagt aataataaca ggcaatcttg atatctcaac
1440tgagcttggg aatgtcaaca actcgatcag taatgctttg aataagttag aggaaagcaa
1500cagaaaacta gacaaagtca atgtcaaact gaccagcaca tctgctctca ttacctatat
1560cgttttgact atcatatctc ttgtttttgg tatacttagc ctgattctag catgctacct
1620aatgtacaag caaaaggcgc aacaaaagac cttattatgg cttgggaata ataccctaga
1680tcagatgaga gccactacaa aaatgtgaac acagatgagg aacgaaggtt tccctaatag
1740taatttgtgt gaaagttctg gtagtctgtc agttcggaga gt
17828553PRTNewcastle disease virus 8Met Gly Ser Arg Pro Phe Thr Lys Asn
Pro Ala Pro Met Met Leu Thr1 5 10
15Ile Arg Val Ala Leu Val Leu Ser Cys Ile Cys Pro Ala Asn Ser
Ile 20 25 30Asp Gly Arg Pro
Phe Ala Ala Ala Gly Ile Val Val Thr Gly Asp Lys 35
40 45Ala Val Asn Ile Tyr Thr Ser Ser Gln Thr Gly Ser
Ile Ile Val Lys 50 55 60Leu Leu Pro
Asn Leu Pro Lys Asp Lys Glu Ala Cys Ala Lys Ala Pro65 70
75 80Leu Asp Ala Tyr Asn Arg Thr Leu
Thr Thr Leu Leu Thr Pro Leu Gly 85 90
95Asp Ser Ile Arg Arg Ile Gln Glu Ser Val Thr Thr Ser Gly
Gly Gly 100 105 110Arg Gln Gly
Arg Leu Ile Gly Ala Ile Ile Gly Gly Val Ala Leu Gly 115
120 125Val Ala Thr Ala Ala Gln Ile Thr Ala Ala Ala
Ala Leu Ile Gln Ala 130 135 140Lys Gln
Asn Ala Ala Asn Ile Leu Arg Leu Lys Glu Ser Ile Ala Ala145
150 155 160Thr Asn Glu Ala Val His Glu
Val Thr Asp Gly Leu Ser Gln Leu Ala 165
170 175Val Ala Val Gly Lys Met Gln Gln Phe Val Asn Asp
Gln Phe Asn Lys 180 185 190Thr
Ala Gln Glu Leu Asp Cys Ile Lys Ile Ala Gln Gln Val Gly Val 195
200 205Glu Leu Asn Leu Tyr Leu Thr Glu Leu
Thr Thr Val Phe Gly Pro Gln 210 215
220Ile Thr Ser Pro Ala Leu Asn Lys Leu Thr Ile Gln Ala Leu Tyr Asn225
230 235 240Leu Ala Gly Gly
Asn Met Asp Tyr Leu Leu Thr Lys Leu Gly Ile Gly 245
250 255Asn Asn Gln Leu Ser Ser Leu Ile Gly Ser
Gly Leu Ile Thr Gly Asn 260 265
270Pro Ile Leu Tyr Asp Ser Gln Thr Gln Leu Leu Gly Ile Gln Val Thr
275 280 285Leu Pro Ser Val Gly Asn Leu
Asn Asn Met Arg Ala Thr Tyr Leu Glu 290 295
300Thr Leu Ser Val Ser Thr Thr Arg Gly Phe Ala Ser Ala Leu Val
Pro305 310 315 320Lys Val
Val Thr Gln Val Gly Ser Val Ile Glu Glu Leu Asp Thr Ser
325 330 335Tyr Cys Ile Glu Thr Asp Leu
Asp Leu Tyr Cys Thr Arg Ile Val Thr 340 345
350Phe Pro Met Ser Pro Gly Ile Tyr Ser Cys Leu Ser Gly Asn
Thr Ser 355 360 365Ala Cys Met Tyr
Ser Lys Thr Glu Gly Ala Leu Thr Thr Pro Tyr Met 370
375 380Thr Ile Lys Gly Ser Val Ile Ala Asn Cys Lys Met
Thr Thr Cys Arg385 390 395
400Cys Val Asn Pro Pro Gly Ile Ile Ser Gln Asn Tyr Gly Glu Ala Val
405 410 415Ser Leu Ile Asp Lys
Gln Ser Cys Asn Val Leu Ser Leu Gly Gly Ile 420
425 430Thr Leu Arg Leu Ser Gly Glu Phe Asp Val Thr Tyr
Gln Lys Asn Ile 435 440 445Ser Ile
Gln Asp Ser Gln Val Ile Ile Thr Gly Asn Leu Asp Ile Ser 450
455 460Thr Glu Leu Gly Asn Val Asn Asn Ser Ile Ser
Asn Ala Leu Asn Lys465 470 475
480Leu Glu Glu Ser Asn Arg Lys Leu Asp Lys Val Asn Val Lys Leu Thr
485 490 495Ser Thr Ser Ala
Leu Ile Thr Tyr Ile Val Leu Thr Ile Ile Ser Leu 500
505 510Val Phe Gly Ile Leu Ser Leu Ile Leu Ala Cys
Tyr Leu Met Tyr Lys 515 520 525Gln
Lys Ala Gln Gln Lys Thr Leu Leu Trp Leu Gly Asn Asn Thr Leu 530
535 540Asp Gln Met Arg Ala Thr Thr Lys Met545
55091662DNAArtificial SequenceNDV F3aa-modified fusion
protein 9atgggctcca gaccttctac caagaaccca gcacctatga tgctgactat
ccgggtcgcg 60ctggtactga gttgcatctg cccggcaaac tccattgatg gcaggcctct
tgcagctgca 120ggaattgtgg ttacaggaga caaagcagtc aacatataca cctcatccca
gacaggatca 180atcatagtta agctcctccc gaatctgccc aaggataagg aggcatgtgc
gaaagccccc 240ttggatgcat acaacaggac attgaccact ttgctcaccc cccttggtga
ctctatccgt 300aggatacaag agtctgtgac tacatctgga gggcggagac agaggcgctt
tataggcgcc 360attattggcg gtgtggctct tggggttgca actgccgcac aaataacagc
ggccgcagct 420ctgatacaag ccaaacaaaa tgctgccaac atcctccgac ttaaagagag
cattgccgca 480accaatgagg ctgtgcatga ggtcactgac ggattatcgc aactagcagt
ggcagttggg 540aagatgcagc agtttgttaa tgaccaattt aataaaacag ctcaggaatt
agactgcatc 600aaaattgcac agcaagttgg tgtagagctc aacctgtacc taaccgaatt
gactacagta 660ttcggaccac aaatcacttc acctgcctta aacaagctga ctattcaggc
actttacaat 720ctagctggtg ggaatatgga ttacttattg actaagttag gtatagggaa
caatcaactc 780agctcattaa tcggtagcgg cttaatcacc ggtaacccta ttctatacga
ctcacagact 840caactcttgg gtatacaggt aactctacct tcagtcggga acctaaataa
tatgcgtgcc 900acctacttgg aaaccttatc cgtaagcaca accaggggat ttgcctcggc
acttgtccca 960aaagtggtga cacaggtcgg ttctgtgata gaagaacttg acacctcata
ctgtatagaa 1020actgacttag atttatattg tacaagaata gtaacgttcc ctatgtcccc
tggtatttac 1080tcctgcttga gcggcaatac atcggcctgt atgtactcaa agaccgaagg
cgcacttact 1140acaccatata tgactatcaa aggctcagtc atcgctaact gcaagatgac
aacatgtaga 1200tgtgtaaacc ccccgggtat catatcgcaa aactatggag aagccgtgtc
tctaatagat 1260aaacaatcat gcaatgtttt atccttaggc gggataactt taaggctcag
tggggaattc 1320gatgtaactt atcagaagaa tatctcaata caagattctc aagtaataat
aacaggcaat 1380cttgatatct caactgagct tgggaatgtc aacaactcga tcagtaatgc
tttgaataag 1440ttagaggaaa gcaacagaaa actagacaaa gtcaatgtca aactgaccag
cacatctgct 1500ctcattacct atatcgtttt gactatcata tctcttgttt ttggtatact
tagcctgatt 1560ctagcatgct acctaatgta caagcaaaag gcgcaacaaa agaccttatt
atggcttggg 1620aataataccc tagatcagat gagagccact acaaaaatgt ga
166210553PRTArtificial SequenceNDV F3aa-modified fusion
protein 10Met Gly Ser Arg Pro Phe Thr Lys Asn Pro Ala Pro Met Met Leu
Thr1 5 10 15Ile Arg Val
Ala Leu Val Leu Ser Cys Ile Cys Pro Ala Asn Ser Ile 20
25 30Asp Gly Arg Pro Phe Ala Ala Ala Gly Ile
Val Val Thr Gly Asp Lys 35 40
45Ala Val Asn Ile Tyr Thr Ser Ser Gln Thr Gly Ser Ile Ile Val Lys 50
55 60Leu Leu Pro Asn Leu Pro Lys Asp Lys
Glu Ala Cys Ala Lys Ala Pro65 70 75
80Leu Asp Ala Tyr Asn Arg Thr Leu Thr Thr Leu Leu Thr Pro
Leu Gly 85 90 95Asp Ser
Ile Arg Arg Ile Gln Glu Ser Val Thr Thr Ser Gly Gly Arg 100
105 110Arg Gln Arg Arg Phe Ile Gly Ala Ile
Ile Gly Gly Val Ala Leu Gly 115 120
125Val Ala Thr Ala Ala Gln Ile Thr Ala Ala Ala Ala Leu Ile Gln Ala
130 135 140Lys Gln Asn Ala Ala Asn Ile
Leu Arg Leu Lys Glu Ser Ile Ala Ala145 150
155 160Thr Asn Glu Ala Val His Glu Val Thr Asp Gly Leu
Ser Gln Leu Ala 165 170
175Val Ala Val Gly Lys Met Gln Gln Phe Val Asn Asp Gln Phe Asn Lys
180 185 190Thr Ala Gln Glu Leu Asp
Cys Ile Lys Ile Ala Gln Gln Val Gly Val 195 200
205Glu Leu Asn Leu Tyr Leu Thr Glu Leu Thr Thr Val Phe Gly
Pro Gln 210 215 220Ile Thr Ser Pro Ala
Leu Asn Lys Leu Thr Ile Gln Ala Leu Tyr Asn225 230
235 240Leu Ala Gly Gly Asn Met Asp Tyr Leu Leu
Thr Lys Leu Gly Ile Gly 245 250
255Asn Asn Gln Leu Ser Ser Leu Ile Gly Ser Gly Leu Ile Thr Gly Asn
260 265 270Pro Ile Leu Tyr Asp
Ser Gln Thr Gln Leu Leu Gly Ile Gln Val Thr 275
280 285Leu Pro Ser Val Gly Asn Leu Asn Asn Met Arg Ala
Thr Tyr Leu Glu 290 295 300Thr Leu Ser
Val Ser Thr Thr Arg Gly Phe Ala Ser Ala Leu Val Pro305
310 315 320Lys Val Val Thr Gln Val Gly
Ser Val Ile Glu Glu Leu Asp Thr Ser 325
330 335Tyr Cys Ile Glu Thr Asp Leu Asp Leu Tyr Cys Thr
Arg Ile Val Thr 340 345 350Phe
Pro Met Ser Pro Gly Ile Tyr Ser Cys Leu Ser Gly Asn Thr Ser 355
360 365Ala Cys Met Tyr Ser Lys Thr Glu Gly
Ala Leu Thr Thr Pro Tyr Met 370 375
380Thr Ile Lys Gly Ser Val Ile Ala Asn Cys Lys Met Thr Thr Cys Arg385
390 395 400Cys Val Asn Pro
Pro Gly Ile Ile Ser Gln Asn Tyr Gly Glu Ala Val 405
410 415Ser Leu Ile Asp Lys Gln Ser Cys Asn Val
Leu Ser Leu Gly Gly Ile 420 425
430Thr Leu Arg Leu Ser Gly Glu Phe Asp Val Thr Tyr Gln Lys Asn Ile
435 440 445Ser Ile Gln Asp Ser Gln Val
Ile Ile Thr Gly Asn Leu Asp Ile Ser 450 455
460Thr Glu Leu Gly Asn Val Asn Asn Ser Ile Ser Asn Ala Leu Asn
Lys465 470 475 480Leu Glu
Glu Ser Asn Arg Lys Leu Asp Lys Val Asn Val Lys Leu Thr
485 490 495Ser Thr Ser Ala Leu Ile Thr
Tyr Ile Val Leu Thr Ile Ile Ser Leu 500 505
510Val Phe Gly Ile Leu Ser Leu Ile Leu Ala Cys Tyr Leu Met
Tyr Lys 515 520 525Gln Lys Ala Gln
Gln Lys Thr Leu Leu Trp Leu Gly Asn Asn Thr Leu 530
535 540Asp Gln Met Arg Ala Thr Thr Lys Met545
550111662DNAArtificial SequenceNDV F3aa-modified fusion protein with
L289A 11atgggctcca gaccttctac caagaaccca gcacctatga tgctgactat ccgggtcgcg
60ctggtactga gttgcatctg cccggcaaac tccattgatg gcaggcctct tgcagctgca
120ggaattgtgg ttacaggaga caaagcagtc aacatataca cctcatccca gacaggatca
180atcatagtta agctcctccc gaatctgccc aaggataagg aggcatgtgc gaaagccccc
240ttggatgcat acaacaggac attgaccact ttgctcaccc cccttggtga ctctatccgt
300aggatacaag agtctgtgac tacatctgga gggcggagac agaggcgctt tataggcgcc
360attattggcg gtgtggctct tggggttgca actgccgcac aaataacagc ggccgcagct
420ctgatacaag ccaaacaaaa tgctgccaac atcctccgac ttaaagagag cattgccgca
480accaatgagg ctgtgcatga ggtcactgac ggattatcgc aactagcagt ggcagttggg
540aagatgcagc agtttgttaa tgaccaattt aataaaacag ctcaggaatt agactgcatc
600aaaattgcac agcaagttgg tgtagagctc aacctgtacc taaccgaatt gactacagta
660ttcggaccac aaatcacttc acctgcctta aacaagctga ctattcaggc actttacaat
720ctagctggtg ggaatatgga ttacttattg actaagttag gtatagggaa caatcaactc
780agctcattaa tcggtagcgg cttaatcacc ggtaacccta ttctatacga ctcacagact
840caactcttgg gtatacaggt aactgcacct tcagtcggga acctaaataa tatgcgtgcc
900acctacttgg aaaccttatc cgtaagcaca accaggggat ttgcctcggc acttgtccca
960aaagtggtga cacaggtcgg ttctgtgata gaagaacttg acacctcata ctgtatagaa
1020actgacttag atttatattg tacaagaata gtaacgttcc ctatgtcccc tggtatttac
1080tcctgcttga gcggcaatac atcggcctgt atgtactcaa agaccgaagg cgcacttact
1140acaccatata tgactatcaa aggctcagtc atcgctaact gcaagatgac aacatgtaga
1200tgtgtaaacc ccccgggtat catatcgcaa aactatggag aagccgtgtc tctaatagat
1260aaacaatcat gcaatgtttt atccttaggc gggataactt taaggctcag tggggaattc
1320gatgtaactt atcagaagaa tatctcaata caagattctc aagtaataat aacaggcaat
1380cttgatatct caactgagct tgggaatgtc aacaactcga tcagtaatgc tttgaataag
1440ttagaggaaa gcaacagaaa actagacaaa gtcaatgtca aactgaccag cacatctgct
1500ctcattacct atatcgtttt gactatcata tctcttgttt ttggtatact tagcctgatt
1560ctagcatgct acctaatgta caagcaaaag gcgcaacaaa agaccttatt atggcttggg
1620aataataccc tagatcagat gagagccact acaaaaatgt ga
166212553PRTArtificial SequenceNDV F3aa-modified fusion protein with
L289A 12Met Gly Ser Arg Pro Phe Thr Lys Asn Pro Ala Pro Met Met Leu Thr1
5 10 15Ile Arg Val Ala
Leu Val Leu Ser Cys Ile Cys Pro Ala Asn Ser Ile 20
25 30Asp Gly Arg Pro Phe Ala Ala Ala Gly Ile Val
Val Thr Gly Asp Lys 35 40 45Ala
Val Asn Ile Tyr Thr Ser Ser Gln Thr Gly Ser Ile Ile Val Lys 50
55 60Leu Leu Pro Asn Leu Pro Lys Asp Lys Glu
Ala Cys Ala Lys Ala Pro65 70 75
80Leu Asp Ala Tyr Asn Arg Thr Leu Thr Thr Leu Leu Thr Pro Leu
Gly 85 90 95Asp Ser Ile
Arg Arg Ile Gln Glu Ser Val Thr Thr Ser Gly Gly Arg 100
105 110Arg Gln Arg Arg Phe Ile Gly Ala Ile Ile
Gly Gly Val Ala Leu Gly 115 120
125Val Ala Thr Ala Ala Gln Ile Thr Ala Ala Ala Ala Leu Ile Gln Ala 130
135 140Lys Gln Asn Ala Ala Asn Ile Leu
Arg Leu Lys Glu Ser Ile Ala Ala145 150
155 160Thr Asn Glu Ala Val His Glu Val Thr Asp Gly Leu
Ser Gln Leu Ala 165 170
175Val Ala Val Gly Lys Met Gln Gln Phe Val Asn Asp Gln Phe Asn Lys
180 185 190Thr Ala Gln Glu Leu Asp
Cys Ile Lys Ile Ala Gln Gln Val Gly Val 195 200
205Glu Leu Asn Leu Tyr Leu Thr Glu Leu Thr Thr Val Phe Gly
Pro Gln 210 215 220Ile Thr Ser Pro Ala
Leu Asn Lys Leu Thr Ile Gln Ala Leu Tyr Asn225 230
235 240Leu Ala Gly Gly Asn Met Asp Tyr Leu Leu
Thr Lys Leu Gly Ile Gly 245 250
255Asn Asn Gln Leu Ser Ser Leu Ile Gly Ser Gly Leu Ile Thr Gly Asn
260 265 270Pro Ile Leu Tyr Asp
Ser Gln Thr Gln Leu Leu Gly Ile Gln Val Thr 275
280 285Ala Pro Ser Val Gly Asn Leu Asn Asn Met Arg Ala
Thr Tyr Leu Glu 290 295 300Thr Leu Ser
Val Ser Thr Thr Arg Gly Phe Ala Ser Ala Leu Val Pro305
310 315 320Lys Val Val Thr Gln Val Gly
Ser Val Ile Glu Glu Leu Asp Thr Ser 325
330 335Tyr Cys Ile Glu Thr Asp Leu Asp Leu Tyr Cys Thr
Arg Ile Val Thr 340 345 350Phe
Pro Met Ser Pro Gly Ile Tyr Ser Cys Leu Ser Gly Asn Thr Ser 355
360 365Ala Cys Met Tyr Ser Lys Thr Glu Gly
Ala Leu Thr Thr Pro Tyr Met 370 375
380Thr Ile Lys Gly Ser Val Ile Ala Asn Cys Lys Met Thr Thr Cys Arg385
390 395 400Cys Val Asn Pro
Pro Gly Ile Ile Ser Gln Asn Tyr Gly Glu Ala Val 405
410 415Ser Leu Ile Asp Lys Gln Ser Cys Asn Val
Leu Ser Leu Gly Gly Ile 420 425
430Thr Leu Arg Leu Ser Gly Glu Phe Asp Val Thr Tyr Gln Lys Asn Ile
435 440 445Ser Ile Gln Asp Ser Gln Val
Ile Ile Thr Gly Asn Leu Asp Ile Ser 450 455
460Thr Glu Leu Gly Asn Val Asn Asn Ser Ile Ser Asn Ala Leu Asn
Lys465 470 475 480Leu Glu
Glu Ser Asn Arg Lys Leu Asp Lys Val Asn Val Lys Leu Thr
485 490 495Ser Thr Ser Ala Leu Ile Thr
Tyr Ile Val Leu Thr Ile Ile Ser Leu 500 505
510Val Phe Gly Ile Leu Ser Leu Ile Leu Ala Cys Tyr Leu Met
Tyr Lys 515 520 525Gln Lys Ala Gln
Gln Lys Thr Leu Leu Trp Leu Gly Asn Asn Thr Leu 530
535 540Asp Gln Met Arg Ala Thr Thr Lys Met545
5501313006DNAArtificial SequenceVirus/vector construct 13acgaagacaa
acaaaccatt attatcatta aaaggctcag gagaaacttt aacagtaatc 60aaaatgtctg
ttacagtcaa gagaatcatt gacaacacag tcgtagttcc aaaacttcct 120gcaaatgagg
atccagtgga atacccggca gattacttca gaaaatcaaa ggagattcct 180ctttacatca
atactacaaa aagtttgtca gatctaagag gatatgtcta ccaaggcctc 240aaatccggaa
atgtatcaat catacatgtc aacagctact tgtatggagc attaaaggac 300atccggggta
agttggataa agattggtca agtttcggaa taaacatcgg gaaagcaggg 360gatacaatcg
gaatatttga ccttgtatcc ttgaaagccc tggacggcgt acttccagat 420ggagtatcgg
atgcttccag aaccagcgca gatgacaaat ggttgccttt gtatctactt 480ggcttataca
gagtgggcag aacacaaatg cctgaataca gaaaaaagct catggatggg 540ctgacaaatc
aatgcaaaat gatcaatgaa cagtttgaac ctcttgtgcc agaaggtcgt 600gacatttttg
atgtgtgggg aaatgacagt aattacacaa aaattgtcgc tgcagtggac 660atgttcttcc
acatgttcaa aaaacatgaa tgtgcctcgt tcagatacgg aactattgtt 720tccagattca
aagattgtgc tgcattggca acatttggac acctctgcaa aataaccgga 780atgtctacag
aagatgtaac gacctggatc ttgaaccgag aagttgcaga tgaaatggtc 840caaatgatgc
ttccaggcca agaaattgac aaggccgatt catacatgcc ttatttgatc 900gactttggat
tgtcttctaa gtctccatat tcttccgtca aaaaccctgc cttccacttc 960tgggggcaat
tgacagctct tctgctcaga tccaccagag caaggaatgc ccgacagcct 1020gatgacattg
agtatacatc tcttactaca gcaggtttgt tgtacgctta tgcagtagga 1080tcctctgccg
acttggcaca acagttttgt gttggagata acaaatacac tccagatgat 1140agtaccggag
gattgacgac taatgcaccg ccacaaggca gagatgtggt cgaatggctc 1200ggatggtttg
aagatcaaaa cagaaaaccg actcctgata tgatgcagta tgcgaaaaga 1260gcagtcatgt
cactgcaagg cctaagagag aagacaattg gcaagtatgc taagtcagaa 1320tttgacaaat
gaccctataa ttctcagatc acctattata tattatgcta catatgaaaa 1380aaactaacag
atatcatgga taatctcaca aaagttcgtg agtatctcaa gtcctattct 1440cgtctggatc
aggcggtagg agagatagat gagatcgaag cacaacgagc tgaaaagtcc 1500aattatgagt
tgttccaaga ggatggagtg gaagagcata ctaagccctc ttattttcag 1560gcagcagatg
attctgacac agaatctgaa ccagaaattg aagacaatca aggcttgtat 1620gcaccagatc
cagaagctga gcaagttgaa ggctttatac aggggccttt agatgactat 1680gcagatgagg
aagtggatgt tgtatttact tcggactgga aacagcctga gcttgaatct 1740gacgagcatg
gaaagacctt acggttgaca tcgccagagg gtttaagtgg agagcagaaa 1800tcccagtggc
tttcgacgat taaagcagtc gtgcaaagtg ccaaatactg gaatctggca 1860gagtgcacat
ttgaagcatc gggagaaggg gtcattatga aggagcgcca gataactccg 1920gatgtatata
aggtcactcc agtgatgaac acacatccgt cccaatcaga agcagtatca 1980gatgtttggt
ctctctcaaa gacatccatg actttccaac ccaagaaagc aagtcttcag 2040cctctcacca
tatccttgga tgaattgttc tcatctagag gagagttcat ctctgtcgga 2100ggtgacggac
gaatgtctca taaagaggcc atcctgctcg gcctgagata caaaaagttg 2160tacaatcagg
cgagagtcaa atattctctg tagactatga aaaaaagtaa cagatatcac 2220gatctaagtg
ttatcccaat ccattcatca tgagttcctt aaagaagatt ctcggtctga 2280aggggaaagg
taagaaatct aagaaattag ggatcgcacc acccccttat gaagaggaca 2340ctagcatgga
gtatgctccg agcgctccaa ttgacaaatc ctattttgga gttgacgaga 2400tggacaccta
tgatccgaat caattaagat atgagaaatt cttctttaca gtgaaaatga 2460cggttagatc
taatcgtccg ttcagaacat actcagatgt ggcagccgct gtatcccatt 2520gggatcacat
gtacatcgga atggcaggga aacgtccctt ctacaaaatc ttggcttttt 2580tgggttcttc
taatctaaag gccactccag cggtattggc agatcaaggt caaccagagt 2640atcacgctca
ctgcgaaggc agggcttatt tgccacatag gatggggaag acccctccca 2700tgctcaatgt
accagagcac ttcagaagac cattcaatat aggtctttac aagggaacga 2760ttgagctcac
aatgaccatc tacgatgatg agtcactgga agcagctcct atgatctggg 2820atcatttcaa
ttcttccaaa ttttctgatt tcagagagaa ggccttaatg tttggcctga 2880ttgtcgagaa
aaaggcatct ggagcgtggg tcctggactc tatcggccac ttcaaatgag 2940ctagtctaac
ttctagcttc tgaacaatcc ccggtttact cagtctcccc taattccagc 3000ctctcgaaca
actaatatcc tgtcttttct atccctatga aaaaaactaa cagagatcga 3060tctgtttacg
cgtcgagatg ggctccagac cttctaccaa gaacccagca cctatgatgc 3120tgactatccg
ggtcgcgctg gtactgagtt gcatctgccc ggcaaactcc attgatggca 3180ggcctcttgc
agctgcagga attgtggtta caggagacaa agcagtcaac atatacacct 3240catcccagac
aggatcaatc atagttaagc tcctcccgaa tctgcccaag gataaggagg 3300catgtgcgaa
agcccccttg gatgcataca acaggacatt gaccactttg ctcacccccc 3360ttggtgactc
tatccgtagg atacaagagt ctgtgactac atctggaggg cggagacaga 3420ggcgctttat
aggcgccatt attggcggtg tggctcttgg ggttgcaact gccgcacaaa 3480taacagcggc
cgcagctctg atacaagcca aacaaaatgc tgccaacatc ctccgactta 3540aagagagcat
tgccgcaacc aatgaggctg tgcatgaggt cactgacgga ttatcgcaac 3600tagcagtggc
agttgggaag atgcagcagt ttgttaatga ccaatttaat aaaacagctc 3660aggaattaga
ctgcatcaaa attgcacagc aagttggtgt agagctcaac ctgtacctaa 3720ccgaattgac
tacagtattc ggaccacaaa tcacttcacc tgccttaaac aagctgacta 3780ttcaggcact
ttacaatcta gctggtggga atatggatta cttattgact aagttaggta 3840tagggaacaa
tcaactcagc tcattaatcg gtagcggctt aatcaccggt aaccctattc 3900tatacgactc
acagactcaa ctcttgggta tacaggtaac tgcaccttca gtcgggaacc 3960taaataatat
gcgtgccacc tacttggaaa ccttatccgt aagcacaacc aggggatttg 4020cctcggcact
tgtcccaaaa gtggtgacac aggtcggttc tgtgatagaa gaacttgaca 4080cctcatactg
tatagaaact gacttagatt tatattgtac aagaatagta acgttcccta 4140tgtcccctgg
tatttactcc tgcttgagcg gcaatacatc ggcctgtatg tactcaaaga 4200ccgaaggcgc
acttactaca ccatatatga ctatcaaagg ctcagtcatc gctaactgca 4260agatgacaac
atgtagatgt gtaaaccccc cgggtatcat atcgcaaaac tatggagaag 4320ccgtgtctct
aatagataaa caatcatgca atgttttatc cttaggcggg ataactttaa 4380ggctcagtgg
ggaattcgat gtaacttatc agaagaatat ctcaatacaa gattctcaag 4440taataataac
aggcaatctt gatatctcaa ctgagcttgg gaatgtcaac aactcgatca 4500gtaatgcttt
gaataagtta gaggaaagca acagaaaact agacaaagtc aatgtcaaac 4560tgaccagcac
atctgctctc attacctata tcgttttgac tatcatatct cttgtttttg 4620gtatacttag
cctgattcta gcatgctacc taatgtacaa gcaaaaggcg caacaaaaga 4680ccttattatg
gcttgggaat aataccctag atcagatgag agccactaca aaaatgtgag 4740ctagcttaat
taatatgaaa aaaactaaca gatatcatgg accgcgccgt tagccaagtt 4800gcgttagaga
atgatgaaag agaggcaaaa aatacatggc gcttgatatt ccggattgca 4860atcttattct
taacagtagt gaccttggct atatctgtag cctccctttt atatagcatg 4920ggggctagca
cacctagcga tcttgtaggc ataccgacta ggatttccag ggcagaagaa 4980aagattacat
ctacacttgg ttccaatcaa gatgtagtag ataggatata taagcaagtg 5040gcccttgagt
ctccattggc attgttaaat actgagacca caattatgaa cgcaataaca 5100tctctctctt
atcagattaa tggagctgca aacaacagcg ggtggggggc acctattcat 5160gacccagatt
atataggggg gataggcaaa gaactcattg tagatgatgc tagtgatgtc 5220acatcattct
atccctctgc atttcaagaa catctgaatt ttatcccggc gcctactaca 5280ggatcaggtt
gcactcgaat accctcattt gacatgagtg ctacccatta ctgctacacc 5340cataatgtaa
tattgtctgg atgcagagat cactcacact cacatcagta tttagcactt 5400ggtgtgctcc
ggacatctgc aacagggagg gtattctttt ctactctgcg ttccatcaac 5460ctggacgaca
cccaaaatcg gaagtcttgc agtgtgagtg caactcccct gggttgtgat 5520atgctgtgct
cgaaagccac ggagacagag gaagaagatt ataactcagc tgtccctacg 5580cggatggtac
atgggaggtt agggttcgac ggccaatatc acgaaaagga cctagatgtc 5640acaacattat
tcggggactg ggtggccaac tacccaggag tagggggtgg atcttttatt 5700gacagccgcg
tatggttctc agtctacgga gggttaaaac ccaatacacc cagtgacact 5760gtacaggaag
ggaaatatgt gatatacaag cgatacaatg acacatgccc agatgagcaa 5820gactaccaga
ttcgaatggc caagtcttcg tataagcctg gacggtttgg tgggaaacgc 5880atacagcagg
ctatcttatc tatcaaagtg tcaacatcct taggcgaaga cccggtactg 5940actgtaccgc
ccaacacagt cacactcatg ggggccgaag gcagaattct cacagtaggg 6000acatcccatt
tcttgtatca gcgagggtca tcatacttct ctcccgcgtt attatatcct 6060atgacagtca
gcgacaaaac agccactctt catagtcctt atacattcaa tgccttcact 6120cggccaggta
gtatcccttg ccaggcttca gcaagatgcc ccaactcgtg tgttactgga 6180gtctatacag
atccatatcc cctaatcttc tatagaaacc acaccttgcg aggggtattc 6240gggacaatgc
ttgatggtga acaagcaaga cttaaccctg cgtctgcagt attcgatagc 6300acatcccgca
gtcgcataac tcgagtgagt tcaagcagca tcaaagcagc atacacaaca 6360tcaacttgtt
ttaaagtggt caagaccaat aagacctatt gtctcagcat tgctgaaata 6420tctaatactc
tcttcggaga attcagaatc gtcccgttac tagttgagat cctcaaagat 6480gacggggtta
gagaagccag gtctggctag gtttaaacgc tagcggcctc aattatattt 6540gagtttttaa
tttttatgaa aaaaactaac agcaatcatg gaagtccacg attttgagac 6600cgacgagttc
aatgatttca atgaagatga ctatgccaca agagaattcc tgaatcccga 6660tgagcgcatg
acgtacttga atcatgctga ttacaacctg aattctcctc taattagtga 6720tgatattgac
aatttaatca ggaaattcaa ttctcttcca attccctcga tgtgggatag 6780taagaactgg
gatggagttc ttgagatgtt aacgtcatgt caagccaatc ccatcccaac 6840atctcagatg
cataaatgga tgggaagttg gttaatgtct gataatcatg atgccagtca 6900agggtatagt
tttttacatg aagtggacaa agaggcagaa ataacatttg acgtggtgga 6960gaccttcatc
cgcggctggg gcaacaaacc aattgaatac atcaaaaagg aaagatggac 7020tgactcattc
aaaattctcg cttatttgtg tcaaaagttt ttggacttac acaagttgac 7080attaatctta
aatgctgtct ctgaggtgga attgctcaac ttggcgagga ctttcaaagg 7140caaagtcaga
agaagttctc atggaacgaa catatgcagg attagggttc ccagcttggg 7200tcctactttt
atttcagaag gatgggctta cttcaagaaa cttgatattc taatggaccg 7260aaactttctg
ttaatggtca aagatgtgat tatagggagg atgcaaacgg tgctatccat 7320ggtatgtaga
atagacaacc tgttctcaga gcaagacatc ttctcccttc taaatatcta 7380cagaattgga
gataaaattg tggagaggca gggaaatttt tcttatgact tgattaaaat 7440ggtggaaccg
atatgcaact tgaagctgat gaaattagca agagaatcaa ggcctttagt 7500cccacaattc
cctcattttg aaaatcatat caagacttct gttgatgaag gggcaaaaat 7560tgaccgaggt
ataagattcc tccatgatca gataatgagt gtgaaaacag tggatctcac 7620actggtgatt
tatggatcgt tcagacattg gggtcatcct tttatagatt attacactgg 7680actagaaaaa
ttacattccc aagtaaccat gaagaaagat attgatgtgt catatgcaaa 7740agcacttgca
agtgatttag ctcggattgt tctatttcaa cagttcaatg atcataaaaa 7800gtggttcgtg
aatggagact tgctccctca tgatcatccc tttaaaagtc atgttaaaga 7860aaatacatgg
cccacagctg ctcaagttca agattttgga gataaatggc atgaacttcc 7920gctgattaaa
tgttttgaaa tacccgactt actagaccca tcgataatat actctgacaa 7980aagtcattca
atgaataggt cagaggtgtt gaaacatgtc cgaatgaatc cgaacactcc 8040tatccctagt
aaaaaggtgt tgcagactat gttggacaca aaggctacca attggaaaga 8100atttcttaaa
gagattgatg agaagggctt agatgatgat gatctaatta ttggtcttaa 8160aggaaaggag
agggaactga agttggcagg tagatttttc tccctaatgt cttggaaatt 8220gcgagaatac
tttgtaatta ccgaatattt gataaagact catttcgtcc ctatgtttaa 8280aggcctgaca
atggcggacg atctaactgc agtcattaaa aagatgttag attcctcatc 8340cggccaagga
ttgaagtcat atgaggcaat ttgcatagcc aatcacattg attacgaaaa 8400atggaataac
caccaaagga agttatcaaa cggcccagtg ttccgagtta tgggccagtt 8460cttaggttat
ccatccttaa tcgagagaac tcatgaattt tttgagaaaa gtcttatata 8520ctacaatgga
agaccagact tgatgcgtgt tcacaacaac acactgatca attcaacctc 8580ccaacgagtt
tgttggcaag gacaagaggg tggactggaa ggtctacggc aaaaaggatg 8640gagtatcctc
aatctactgg ttattcaaag agaggctaaa atcagaaaca ctgctgtcaa 8700agtcttggca
caaggtgata atcaagttat ttgcacacag tataaaacga agaaatcgag 8760aaacgttgta
gaattacagg gtgctctcaa tcaaatggtt tctaataatg agaaaattat 8820gactgcaatc
aaaataggga cagggaagtt aggacttttg ataaatgacg atgagactat 8880gcaatctgca
gattacttga attatggaaa aataccgatt ttccgtggag tgattagagg 8940gttagagacc
aagagatggt cacgagtgac ttgtgtcacc aatgaccaaa tacccacttg 9000tgctaatata
atgagctcag tttccacaaa tgctctcacc gtagctcatt ttgctgagaa 9060cccaatcaat
gccatgatac agtacaatta ttttgggaca tttgctagac tcttgttgat 9120gatgcatgat
cctgctcttc gtcaatcatt gtatgaagtt caagataaga taccgggctt 9180gcacagttct
actttcaaat acgccatgtt gtatttggac ccttccattg gaggagtgtc 9240gggcatgtct
ttgtccaggt ttttgattag agccttccca gatcccgtaa cagaaagtct 9300ctcattctgg
agattcatcc atgtacatgc tcgaagtgag catctgaagg agatgagtgc 9360agtatttgga
aaccccgaga tagccaagtt tcgaataact cacatagaca agctagtaga 9420agatccaacc
tctctgaaca tcgctatggg aatgagtcca gcgaacttgt taaagactga 9480ggttaaaaaa
tgcttaatcg aatcaagaca aaccatcagg aaccaggtga ttaaggatgc 9540aaccatatat
ttgtatcatg aagaggatcg gctcagaagt ttcttatggt caataaatcc 9600tctgttccct
agatttttaa gtgaattcaa atcaggcact tttttgggag tcgcagacgg 9660gctcatcagt
ctatttcaaa attctcgtac tattcggaac tcctttaaga aaaagtatca 9720tagggaattg
gatgatttga ttgtgaggag tgaggtatcc tctttgacac atttagggaa 9780acttcatttg
agaaggggat catgtaaaat gtggacatgt tcagctactc atgctgacac 9840attaagatac
aaatcctggg gccgtacagt tattgggaca actgtacccc atccattaga 9900aatgttgggt
ccacaacatc gaaaagagac tccttgtgca ccatgtaaca catcagggtt 9960caattatgtt
tctgtgcatt gtccagacgg gatccatgac gtctttagtt cacggggacc 10020attgcctgct
tatctagggt ctaaaacatc tgaatctaca tctattttgc agccttggga 10080aagggaaagc
aaagtcccac tgattaaaag agctacacgt cttagagatg ctatctcttg 10140gtttgttgaa
cccgactcta aactagcaat gactatactt tctaacatcc actctttaac 10200aggcgaagaa
tggaccaaaa ggcagcatgg gttcaaaaga acagggtctg cccttcatag 10260gttttcgaca
tctcggatga gccatggtgg gttcgcatct cagagcactg cagcattgac 10320caggttgatg
gcaactacag acaccatgag ggatctggga gatcagaatt tcgacttttt 10380attccaagca
acgttgctct atgctcaaat taccaccact gttgcaagag acggatggat 10440caccagttgt
acagatcatt atcatattgc ctgtaagtcc tgtttgagac ccatagaaga 10500gatcaccctg
gactcaagta tggactacac gcccccagat gtatcccatg tgctgaagac 10560atggaggaat
ggggaaggtt cgtggggaca agagataaaa cagatctatc ctttagaagg 10620gaattggaag
aatttagcac ctgctgagca atcctatcaa gtcggcagat gtataggttt 10680tctatatgga
gacttggcgt atagaaaatc tactcatgcc gaggacagtt ctctatttcc 10740tctatctata
caaggtcgta ttagaggtcg aggtttctta aaagggttgc tagacggatt 10800aatgagagca
agttgctgcc aagtaataca ccggagaagt ctggctcatt tgaagaggcc 10860ggccaacgca
gtgtacggag gtttgattta cttgattgat aaattgagtg tatcacctcc 10920attcctttct
cttactagat caggacctat tagagacgaa ttagaaacga ttccccacaa 10980gatcccaacc
tcctatccga caagcaaccg tgatatgggg gtgattgtca gaaattactt 11040caaataccaa
tgccgtctaa ttgaaaaggg aaaatacaga tcacattatt cacaattatg 11100gttattctca
gatgtcttat ccatagactt cattggacca ttctctattt ccaccaccct 11160cttgcaaatc
ctatacaagc catttttatc tgggaaagat aagaatgagt tgagagagct 11220ggcaaatctt
tcttcattgc taagatcagg agaggggtgg gaagacatac atgtgaaatt 11280cttcaccaag
gacatattat tgtgtccaga ggaaatcaga catgcttgca agttcgggat 11340tgctaaggat
aataataaag acatgagcta tcccccttgg ggaagggaat ccagagggac 11400aattacaaca
atccctgttt attatacgac caccccttac ccaaagatgc tagagatgcc 11460tccaagaatc
caaaatcccc tgctgtccgg aatcaggttg ggccaattac caactggcgc 11520tcattataaa
attcggagta tattacatgg aatgggaatc cattacaggg acttcttgag 11580ttgtggagac
ggctccggag ggatgactgc tgcattacta cgagaaaatg tgcatagcag 11640aggaatattc
aatagtctgt tagaattatc agggtcagtc atgcgaggcg cctctcctga 11700gccccccagt
gccctagaaa ctttaggagg agataaatcg agatgtgtaa atggtgaaac 11760atgttgggaa
tatccatctg acttatgtga cccaaggact tgggactatt tcctccgact 11820caaagcaggc
ttggggcttc aaattgattt aattgtaatg gatatggaag ttcgggattc 11880ttctactagc
ctgaaaattg agacgaatgt tagaaattat gtgcaccgga ttttggatga 11940gcaaggagtt
ttaatctaca agacttatgg aacatatatt tgtgagagcg aaaagaatgc 12000agtaacaatc
cttggtccca tgttcaagac ggtcgactta gttcaaacag aatttagtag 12060ttctcaaacg
tctgaagtat atatggtatg taaaggtttg aagaaattaa tcgatgaacc 12120caatcccgat
tggtcttcca tcaatgaatc ctggaaaaac ctgtacgcat tccagtcatc 12180agaacaggaa
tttgccagag caaagaaggt tagtacatac tttaccttga caggtattcc 12240ctcccaattc
attcctgatc cttttgtaaa cattgagact atgctacaaa tattcggagt 12300acccacgggt
gtgtctcatg cggctgcctt aaaatcatct gatagacctg cagatttatt 12360gaccattagc
cttttttata tggcgattat atcgtattat aacatcaatc atatcagagt 12420aggaccgata
cctccgaacc ccccatcaga tggaattgca caaaatgtgg ggatcgctat 12480aactggtata
agcttttggc tgagtttgat ggagaaagac attccactat atcaacagtg 12540tttagcagtt
atccagcaat cattcccgat taggtgggag gctgtttcag taaaaggagg 12600atacaagcag
aagtggagta ctagaggtga tgggctccca aaagataccc gaatttcaga 12660ctccttggcc
ccaatcggga actggatcag atctctggaa ttggtccgaa accaagttcg 12720tctaaatcca
ttcaatgaga tcttgttcaa tcagctatgt cgtacagtgg ataatcattt 12780gaaatggtca
aatttgcgaa gaaacacagg aatgattgaa tggatcaata gacgaatttc 12840aaaagaagac
cggtctatac tgatgttgaa gagtgaccta cacgaggaaa actcttggag 12900agattaaaaa
atcatgagga gactccaaac tttaagtatg aaaaaaactt tgatccttaa 12960gaccctcttg
tggtttttat tttttatctg gttttgtggt cttcgt
1300614422PRTVesicular stomatitis virus 14Met Ser Val Thr Val Lys Arg Ile
Ile Asp Asn Thr Val Ile Val Pro1 5 10
15Lys Leu Pro Ala Asn Glu Asp Pro Val Glu Tyr Pro Ala Asp
Tyr Phe 20 25 30Arg Lys Ser
Lys Glu Ile Pro Leu Tyr Ile Asn Thr Thr Lys Ser Leu 35
40 45Ser Asp Leu Arg Gly Tyr Val Tyr Gln Gly Leu
Lys Ser Gly Asn Val 50 55 60Ser Ile
Ile His Val Asn Ser Tyr Leu Tyr Gly Ala Leu Lys Asp Ile65
70 75 80Arg Gly Lys Leu Asp Lys Asp
Trp Ser Ser Phe Gly Ile Asn Ile Gly 85 90
95Lys Ala Gly Asp Thr Ile Gly Ile Phe Asp Leu Val Ser
Leu Lys Ala 100 105 110Leu Asp
Gly Val Leu Pro Asp Gly Val Ser Asp Ala Ser Arg Thr Ser 115
120 125Ala Asp Asp Lys Trp Leu Pro Leu Tyr Leu
Leu Gly Leu Tyr Arg Val 130 135 140Gly
Arg Thr Gln Met Pro Glu Tyr Arg Lys Lys Leu Met Asp Gly Leu145
150 155 160Thr Asn Gln Cys Lys Met
Ile Asn Glu Gln Phe Glu Pro Leu Val Pro 165
170 175Glu Gly Arg Asp Ile Phe Asp Val Trp Gly Asn Asp
Ser Asn Tyr Thr 180 185 190Lys
Ile Val Ala Ala Val Asp Met Phe Phe His Met Phe Lys Lys His 195
200 205Glu Cys Ala Ser Phe Arg Tyr Gly Thr
Ile Val Ser Arg Phe Lys Asp 210 215
220Cys Ala Ala Leu Ala Thr Phe Gly His Leu Cys Lys Ile Thr Gly Met225
230 235 240Ser Thr Glu Asp
Val Thr Thr Trp Ile Leu Asn Arg Glu Val Ala Asp 245
250 255Glu Met Val Gln Met Met Leu Pro Gly Gln
Glu Ile Asp Lys Ala Asp 260 265
270Ser Tyr Met Pro Tyr Leu Ile Asp Phe Gly Leu Ser Ser Lys Ser Pro
275 280 285Tyr Ser Ser Val Lys Asn Pro
Ala Phe His Phe Trp Gly Gln Leu Thr 290 295
300Ala Leu Leu Leu Arg Ser Thr Arg Ala Arg Asn Ala Arg Gln Pro
Asp305 310 315 320Asp Ile
Glu Tyr Thr Ser Leu Thr Thr Ala Gly Leu Leu Tyr Ala Tyr
325 330 335Ala Val Gly Ser Ser Ala Asp
Leu Ala Gln Gln Phe Cys Val Gly Asp 340 345
350Asn Lys Tyr Thr Pro Asp Asp Ser Thr Gly Gly Leu Thr Thr
Asn Ala 355 360 365Pro Pro Gln Gly
Arg Asp Val Val Glu Trp Leu Gly Trp Phe Glu Asp 370
375 380Gln Asn Arg Lys Pro Thr Pro Asp Met Met Gln Tyr
Ala Lys Arg Ala385 390 395
400Val Met Ser Leu Gln Gly Leu Arg Glu Lys Thr Ile Gly Lys Tyr Ala
405 410 415Lys Ser Glu Phe Asp
Lys 42015265PRTVesicular stomatitis virus 15Met Asp Asn Leu
Thr Lys Val Arg Glu Tyr Leu Lys Ser Tyr Ser Arg1 5
10 15Leu Asp Gln Ala Val Gly Glu Ile Asp Glu
Ile Glu Ala Gln Arg Ala 20 25
30Glu Lys Ser Asn Tyr Glu Leu Phe Gln Glu Asp Gly Val Glu Glu His
35 40 45Thr Lys Pro Ser Tyr Phe Gln Ala
Ala Asp Asp Ser Asp Thr Glu Ser 50 55
60Glu Pro Glu Ile Glu Asp Asn Gln Gly Leu Tyr Ala Gln Asp Pro Glu65
70 75 80Ala Glu Gln Val Glu
Gly Phe Ile Gln Gly Pro Leu Asp Asp Tyr Ala 85
90 95Asp Glu Glu Val Asp Val Val Phe Thr Ser Asp
Trp Lys Pro Pro Glu 100 105
110Leu Glu Ser Asp Glu His Gly Lys Thr Leu Arg Leu Thr Ser Pro Glu
115 120 125Gly Leu Ser Gly Glu Gln Lys
Ser Gln Trp Leu Ser Thr Ile Lys Ala 130 135
140Val Val Gln Ser Ala Lys Tyr Trp Asn Leu Ala Glu Cys Thr Phe
Glu145 150 155 160Ala Ser
Gly Glu Gly Val Ile Met Lys Glu Arg Gln Ile Thr Pro Asp
165 170 175Val Tyr Lys Val Thr Pro Val
Met Asn Thr His Pro Ser Gln Ser Glu 180 185
190Ala Val Ser Asp Val Trp Ser Leu Ser Lys Thr Ser Met Thr
Phe Gln 195 200 205Pro Lys Lys Ala
Ser Leu Gln Pro Leu Thr Ile Ser Leu Asp Glu Leu 210
215 220Phe Ser Ser Arg Gly Glu Phe Ile Ser Val Gly Gly
Asp Gly Arg Met225 230 235
240Ser His Lys Glu Ala Ile Leu Leu Gly Leu Arg Tyr Lys Lys Leu Tyr
245 250 255Asn Gln Ala Arg Val
Lys Tyr Ser Leu 260 26516229PRTVesicular
stomatitis virus 16Met Ser Ser Leu Lys Lys Ile Leu Gly Leu Lys Gly Lys
Gly Lys Lys1 5 10 15Ser
Lys Lys Leu Gly Ile Ala Pro Pro Pro Tyr Glu Glu Asp Thr Ser 20
25 30Met Glu Tyr Ala Pro Ser Ala Pro
Ile Asp Lys Ser Tyr Phe Gly Val 35 40
45Asp Glu Met Asp Thr Tyr Asp Pro Asn Gln Leu Arg Tyr Glu Lys Phe
50 55 60Phe Phe Thr Val Lys Met Thr Val
Arg Ser Asn Arg Pro Phe Arg Thr65 70 75
80Tyr Ser Asp Val Ala Ala Ala Val Ser His Trp Asp His
Met Tyr Ile 85 90 95Gly
Met Ala Gly Lys Arg Pro Phe Tyr Lys Ile Leu Ala Phe Leu Gly
100 105 110Ser Ser Asn Leu Lys Ala Thr
Pro Ala Val Leu Ala Asp Gln Gly Gln 115 120
125Pro Glu Tyr His Thr His Cys Glu Gly Arg Ala Tyr Leu Pro His
Arg 130 135 140Met Gly Lys Thr Pro Pro
Met Leu Asn Val Pro Glu His Phe Arg Arg145 150
155 160Pro Phe Asn Ile Gly Leu Tyr Lys Gly Thr Ile
Glu Leu Thr Met Thr 165 170
175Ile Tyr Asp Asp Glu Ser Leu Glu Ala Ala Pro Met Ile Trp Asp His
180 185 190Phe Asn Ser Ser Lys Phe
Ser Asp Phe Arg Glu Lys Ala Leu Met Phe 195 200
205Gly Leu Ile Val Glu Lys Lys Ala Ser Gly Ala Trp Val Leu
Asp Ser 210 215 220Ile Ser His Phe
Lys225172109PRTVesicular stomatitis virus 17Met Glu Val His Asp Phe Glu
Thr Asp Glu Phe Asn Asp Phe Asn Glu1 5 10
15Asp Asp Tyr Ala Thr Arg Glu Phe Leu Asn Pro Asp Glu
Arg Met Thr 20 25 30Tyr Leu
Asn His Ala Asp Tyr Asn Leu Asn Ser Pro Leu Ile Ser Asp 35
40 45Asp Ile Asp Asn Leu Ile Arg Lys Phe Asn
Ser Leu Pro Ile Pro Ser 50 55 60Met
Trp Asp Ser Lys Asn Trp Asp Gly Val Leu Glu Met Leu Thr Ser65
70 75 80Cys Gln Ala Asn Pro Ile
Ser Thr Ser Gln Met His Lys Trp Met Gly 85
90 95Ser Trp Leu Met Ser Asp Asn His Asp Ala Ser Gln
Gly Tyr Ser Phe 100 105 110Leu
His Glu Val Asp Lys Glu Ala Glu Ile Thr Phe Asp Val Val Glu 115
120 125Thr Phe Ile Arg Gly Trp Gly Asn Lys
Pro Ile Glu Tyr Ile Lys Lys 130 135
140Glu Arg Trp Thr Asp Ser Phe Lys Ile Leu Ala Tyr Leu Cys Gln Lys145
150 155 160Phe Leu Asp Leu
His Lys Leu Thr Leu Ile Leu Asn Ala Val Ser Glu 165
170 175Val Glu Leu Leu Asn Leu Ala Arg Thr Phe
Lys Gly Lys Val Arg Arg 180 185
190Ser Ser His Gly Thr Asn Ile Cys Arg Ile Arg Val Pro Ser Leu Gly
195 200 205Pro Thr Phe Ile Ser Glu Gly
Trp Ala Tyr Phe Lys Lys Leu Asp Ile 210 215
220Leu Met Asp Arg Asn Phe Leu Leu Met Val Lys Asp Val Ile Ile
Gly225 230 235 240Arg Met
Gln Thr Val Leu Ser Met Val Cys Arg Ile Asp Asn Leu Phe
245 250 255Ser Glu Gln Asp Ile Phe Ser
Leu Leu Asn Ile Tyr Arg Ile Gly Asp 260 265
270Lys Ile Val Glu Arg Gln Gly Asn Phe Ser Tyr Asp Leu Ile
Lys Met 275 280 285Val Glu Pro Ile
Cys Asn Leu Lys Leu Met Lys Leu Ala Arg Glu Ser 290
295 300Arg Pro Leu Val Pro Gln Phe Pro His Phe Glu Asn
His Ile Lys Thr305 310 315
320Ser Val Asp Glu Gly Ala Lys Ile Asp Arg Gly Ile Arg Phe Leu His
325 330 335Asp Gln Ile Met Ser
Val Lys Thr Val Asp Leu Thr Leu Val Ile Tyr 340
345 350Gly Ser Phe Arg His Trp Gly His Pro Phe Ile Asp
Tyr Tyr Thr Gly 355 360 365Leu Glu
Lys Leu His Ser Gln Val Thr Met Lys Lys Asp Ile Asp Val 370
375 380Ser Tyr Ala Lys Ala Leu Ala Ser Asp Leu Ala
Arg Ile Val Leu Phe385 390 395
400Gln Gln Phe Asn Asp His Lys Lys Trp Phe Val Asn Gly Asp Leu Leu
405 410 415Pro His Asp His
Pro Phe Lys Ser His Val Lys Glu Asn Thr Trp Pro 420
425 430Thr Ala Ala Gln Val Gln Asp Phe Gly Asp Lys
Trp His Glu Leu Pro 435 440 445Leu
Ile Lys Cys Phe Glu Ile Pro Asp Leu Leu Asp Pro Ser Ile Ile 450
455 460Tyr Ser Asp Lys Ser His Ser Met Asn Arg
Ser Glu Val Leu Lys His465 470 475
480Val Arg Met Asn Pro Asn Thr Pro Ile Pro Ser Lys Lys Val Leu
Gln 485 490 495Thr Met Leu
Asp Thr Lys Ala Thr Asn Trp Lys Glu Phe Leu Lys Glu 500
505 510Ile Asp Glu Lys Gly Leu Asp Asp Asp Asp
Leu Ile Ile Gly Leu Lys 515 520
525Gly Lys Glu Arg Glu Leu Lys Leu Ala Gly Arg Phe Phe Ser Leu Met 530
535 540Ser Trp Lys Leu Arg Glu Tyr Phe
Val Ile Thr Glu Tyr Leu Ile Lys545 550
555 560Thr His Phe Val Pro Met Phe Lys Gly Leu Thr Met
Ala Asp Asp Leu 565 570
575Thr Ala Val Ile Lys Lys Met Leu Asp Ser Ser Ser Gly Gln Gly Leu
580 585 590Lys Ser Tyr Glu Ala Ile
Cys Ile Ala Asn His Ile Asp Tyr Glu Lys 595 600
605Trp Asn Asn His Gln Arg Lys Leu Ser Asn Gly Pro Val Phe
Arg Val 610 615 620Met Gly Gln Phe Leu
Gly Tyr Pro Ser Leu Ile Glu Arg Thr His Glu625 630
635 640Phe Phe Glu Lys Ser Leu Ile Tyr Tyr Asn
Gly Arg Pro Asp Leu Met 645 650
655Arg Val His Asn Asn Thr Leu Ile Asn Ser Thr Ser Gln Arg Val Cys
660 665 670Trp Gln Gly Gln Glu
Gly Gly Leu Glu Gly Leu Arg Gln Lys Gly Trp 675
680 685Thr Ile Leu Asn Leu Leu Val Ile Gln Arg Glu Ala
Lys Ile Arg Asn 690 695 700Thr Ala Val
Lys Val Leu Ala Gln Gly Asp Asn Gln Val Ile Cys Thr705
710 715 720Gln Tyr Lys Thr Lys Lys Ser
Arg Asn Val Val Glu Leu Gln Gly Ala 725
730 735Leu Asn Gln Met Val Ser Asn Asn Glu Lys Ile Met
Thr Ala Ile Lys 740 745 750Ile
Gly Thr Gly Lys Leu Gly Leu Leu Ile Asn Asp Asp Glu Thr Met 755
760 765Gln Ser Ala Asp Tyr Leu Asn Tyr Gly
Lys Ile Pro Ile Phe Arg Gly 770 775
780Val Ile Arg Gly Leu Glu Thr Lys Arg Trp Ser Arg Val Thr Cys Val785
790 795 800Thr Asn Asp Gln
Ile Pro Thr Cys Ala Asn Ile Met Ser Ser Val Ser 805
810 815Thr Asn Ala Leu Thr Val Ala His Phe Ala
Glu Asn Pro Ile Asn Ala 820 825
830Met Ile Gln Tyr Asn Tyr Phe Gly Thr Phe Ala Arg Leu Leu Leu Met
835 840 845Met His Asp Pro Ala Leu Arg
Gln Ser Leu Tyr Glu Val Gln Asp Lys 850 855
860Ile Pro Gly Leu His Ser Ser Thr Phe Lys Tyr Ala Met Leu Tyr
Leu865 870 875 880Asp Pro
Ser Ile Gly Gly Val Ser Gly Met Ser Leu Ser Arg Phe Leu
885 890 895Ile Arg Ala Phe Pro Asp Pro
Val Thr Glu Ser Leu Ser Phe Trp Arg 900 905
910Phe Ile His Val His Ala Arg Ser Glu His Leu Lys Glu Met
Ser Ala 915 920 925Val Phe Gly Asn
Pro Glu Ile Ala Lys Phe Arg Ile Thr His Ile Asp 930
935 940Lys Leu Val Glu Asp Pro Thr Ser Leu Asn Ile Ala
Met Gly Met Ser945 950 955
960Pro Ala Asn Leu Leu Lys Thr Glu Val Lys Lys Cys Leu Ile Glu Ser
965 970 975Arg Gln Thr Ile Arg
Asn Gln Val Ile Lys Asp Ala Thr Ile Tyr Leu 980
985 990Tyr His Glu Glu Asp Arg Leu Arg Ser Phe Leu Trp
Ser Ile Asn Pro 995 1000 1005Leu
Phe Pro Arg Phe Leu Ser Glu Phe Lys Ser Gly Thr Phe Leu 1010
1015 1020Gly Val Ala Asp Gly Leu Ile Ser Leu
Phe Gln Asn Ser Arg Thr 1025 1030
1035Ile Arg Asn Ser Phe Lys Lys Lys Tyr His Arg Glu Leu Asp Asp
1040 1045 1050Leu Ile Val Arg Ser Glu
Val Ser Ser Leu Thr His Leu Gly Lys 1055 1060
1065Leu His Leu Arg Arg Gly Ser Cys Lys Met Trp Thr Cys Ser
Ala 1070 1075 1080Thr His Ala Asp Thr
Leu Arg Tyr Lys Ser Trp Gly Arg Thr Val 1085 1090
1095Ile Gly Thr Thr Val Pro His Pro Leu Glu Met Leu Gly
Pro Gln 1100 1105 1110His Arg Lys Glu
Thr Pro Cys Ala Pro Cys Asn Thr Ser Gly Phe 1115
1120 1125Asn Tyr Val Ser Val His Cys Pro Asp Gly Ile
His Asp Val Phe 1130 1135 1140Ser Ser
Arg Gly Pro Leu Pro Ala Tyr Leu Gly Ser Lys Thr Ser 1145
1150 1155Glu Ser Thr Ser Ile Leu Gln Pro Trp Glu
Arg Glu Ser Lys Val 1160 1165 1170Pro
Leu Ile Lys Arg Ala Thr Arg Leu Arg Asp Ala Ile Ser Trp 1175
1180 1185Phe Val Glu Pro Asp Ser Lys Leu Ala
Met Thr Ile Leu Ser Asn 1190 1195
1200Ile His Ser Leu Thr Gly Glu Glu Trp Thr Lys Arg Gln His Gly
1205 1210 1215Phe Lys Arg Thr Gly Ser
Ala Leu His Arg Phe Ser Thr Ser Arg 1220 1225
1230Met Ser His Gly Gly Phe Ala Ser Gln Ser Thr Ala Ala Leu
Thr 1235 1240 1245Arg Leu Met Ala Thr
Thr Asp Thr Met Arg Asp Leu Gly Asp Gln 1250 1255
1260Asn Phe Asp Phe Leu Phe Gln Ala Thr Leu Leu Tyr Ala
Gln Ile 1265 1270 1275Thr Thr Thr Val
Ala Arg Asp Gly Trp Ile Thr Ser Cys Thr Asp 1280
1285 1290His Tyr His Ile Ala Cys Lys Ser Cys Leu Arg
Pro Ile Glu Glu 1295 1300 1305Ile Thr
Leu Asp Ser Ser Met Asp Tyr Thr Pro Pro Asp Val Ser 1310
1315 1320His Val Leu Lys Thr Trp Arg Asn Gly Glu
Gly Ser Trp Gly Gln 1325 1330 1335Glu
Ile Lys Gln Ile Tyr Pro Leu Glu Gly Asn Trp Lys Asn Leu 1340
1345 1350Ala Pro Ala Glu Gln Ser Tyr Gln Val
Gly Arg Cys Ile Gly Phe 1355 1360
1365Leu Tyr Gly Asp Leu Ala Tyr Arg Lys Ser Thr His Ala Glu Asp
1370 1375 1380Ser Ser Leu Phe Pro Leu
Ser Ile Gln Gly Arg Ile Arg Gly Arg 1385 1390
1395Gly Phe Leu Lys Gly Leu Leu Asp Gly Leu Met Arg Ala Ser
Cys 1400 1405 1410Cys Gln Val Ile His
Arg Arg Ser Leu Ala His Leu Lys Arg Pro 1415 1420
1425Ala Asn Ala Val Tyr Gly Gly Leu Ile Tyr Leu Ile Asp
Lys Leu 1430 1435 1440Ser Val Ser Pro
Pro Phe Leu Ser Leu Thr Arg Ser Gly Pro Ile 1445
1450 1455Arg Asp Glu Leu Glu Thr Ile Pro His Lys Ile
Pro Thr Ser Tyr 1460 1465 1470Pro Thr
Ser Asn Arg Asp Met Gly Val Ile Val Arg Asn Tyr Phe 1475
1480 1485Lys Tyr Gln Cys Arg Leu Ile Glu Lys Gly
Lys Tyr Arg Ser His 1490 1495 1500Tyr
Ser Gln Leu Trp Leu Phe Ser Asp Val Leu Ser Ile Asp Phe 1505
1510 1515Ile Gly Pro Phe Ser Ile Ser Thr Thr
Leu Leu Gln Ile Leu Tyr 1520 1525
1530Lys Pro Phe Leu Ser Gly Lys Asp Lys Asn Glu Leu Arg Glu Leu
1535 1540 1545Ala Asn Leu Ser Ser Leu
Leu Arg Ser Gly Glu Gly Trp Glu Asp 1550 1555
1560Ile His Val Lys Phe Phe Thr Lys Asp Ile Leu Leu Cys Pro
Glu 1565 1570 1575Glu Ile Arg His Ala
Cys Lys Phe Gly Ile Ala Lys Asp Asn Asn 1580 1585
1590Lys Asp Met Ser Tyr Pro Pro Trp Gly Arg Glu Ser Arg
Gly Thr 1595 1600 1605Ile Thr Thr Ile
Pro Val Tyr Tyr Thr Thr Thr Pro Tyr Pro Lys 1610
1615 1620Met Leu Glu Met Pro Pro Arg Ile Gln Asn Pro
Leu Leu Ser Gly 1625 1630 1635Ile Arg
Leu Gly Gln Leu Pro Thr Gly Ala His Tyr Lys Ile Arg 1640
1645 1650Ser Ile Leu His Gly Met Gly Ile His Tyr
Arg Asp Phe Leu Ser 1655 1660 1665Cys
Gly Asp Gly Ser Gly Gly Met Thr Ala Ala Leu Leu Arg Glu 1670
1675 1680Asn Val His Ser Arg Gly Ile Phe Asn
Ser Leu Leu Glu Leu Ser 1685 1690
1695Gly Ser Val Met Arg Gly Ala Ser Pro Glu Pro Pro Ser Ala Leu
1700 1705 1710Glu Thr Leu Gly Gly Asp
Lys Ser Arg Cys Val Asn Gly Glu Thr 1715 1720
1725Cys Trp Glu Tyr Pro Ser Asp Leu Cys Asp Pro Arg Thr Trp
Asp 1730 1735 1740Tyr Phe Leu Arg Leu
Lys Ala Gly Leu Gly Leu Gln Ile Asp Leu 1745 1750
1755Ile Val Met Asp Met Glu Val Arg Asp Ser Ser Thr Ser
Leu Lys 1760 1765 1770Ile Glu Thr Asn
Val Arg Asn Tyr Val His Arg Ile Leu Asp Glu 1775
1780 1785Gln Gly Val Leu Ile Tyr Lys Thr Tyr Gly Thr
Tyr Ile Cys Glu 1790 1795 1800Ser Glu
Lys Asn Ala Val Thr Ile Leu Gly Pro Met Phe Lys Thr 1805
1810 1815Val Asp Leu Val Gln Thr Glu Phe Ser Ser
Ser Gln Thr Ser Glu 1820 1825 1830Val
Tyr Met Val Cys Lys Gly Leu Lys Lys Leu Ile Asp Glu Pro 1835
1840 1845Asn Pro Asp Trp Ser Ser Ile Asn Glu
Ser Trp Lys Asn Leu Tyr 1850 1855
1860Ala Phe Gln Ser Ser Glu Gln Glu Phe Ala Arg Ala Lys Lys Val
1865 1870 1875Ser Thr Tyr Phe Thr Leu
Thr Gly Ile Pro Ser Gln Phe Ile Pro 1880 1885
1890Asp Pro Phe Val Asn Ile Glu Thr Met Leu Gln Ile Phe Gly
Val 1895 1900 1905Pro Thr Gly Val Ser
His Ala Ala Ala Leu Lys Ser Ser Asp Arg 1910 1915
1920Pro Ala Asp Leu Leu Thr Ile Ser Leu Phe Tyr Met Ala
Ile Ile 1925 1930 1935Ser Tyr Tyr Asn
Ile Asn His Ile Arg Val Gly Pro Ile Pro Pro 1940
1945 1950Asn Pro Pro Ser Asp Gly Ile Ala Gln Asn Val
Gly Ile Ala Ile 1955 1960 1965Thr Gly
Ile Ser Phe Trp Leu Ser Leu Met Glu Lys Asp Ile Pro 1970
1975 1980Leu Tyr Gln Gln Cys Leu Ala Val Ile Gln
Gln Ser Phe Pro Ile 1985 1990 1995Arg
Trp Glu Ala Val Ser Val Lys Gly Gly Tyr Lys Gln Lys Trp 2000
2005 2010Ser Thr Arg Gly Asp Gly Leu Pro Lys
Asp Thr Arg Thr Ser Asp 2015 2020
2025Ser Leu Ala Pro Ile Gly Asn Trp Ile Arg Ser Leu Glu Leu Val
2030 2035 2040Arg Asn Gln Val Arg Leu
Asn Pro Phe Asn Glu Ile Leu Phe Asn 2045 2050
2055Gln Leu Cys Arg Thr Val Asp Asn His Leu Lys Trp Ser Asn
Leu 2060 2065 2070Arg Arg Asn Thr Gly
Met Ile Glu Trp Ile Asn Arg Arg Ile Ser 2075 2080
2085Lys Glu Asp Arg Ser Ile Leu Met Leu Lys Ser Asp Leu
His Glu 2090 2095 2100Glu Asn Ser Trp
Arg Asp 2105
User Contributions:
Comment about this patent or add new information about this topic: