Patent application title: RAGE Fusion Proteins with Improved Stability and Ligand Binding Affinity and Uses Thereof
Inventors:
IPC8 Class: AC07K14705FI
USPC Class:
1 1
Class name:
Publication date: 2021-06-24
Patent application number: 20210188940
Abstract:
The present invention provides soluble RAGE-Fc fusion proteins with
increased stability and extended half-life capable of binding endogenous
RAGE ligands with high apparent affinity. The present invention also
provides methods of making and using stable, soluble RAGE-Fc fusion
proteins. These soluble RAGE-Fc fusion proteins are useful as
therapeutics based on their ability to bind endogenous RAGE ligands.Claims:
1. An isolated polypeptide comprising: (a) a first domain wherein said
first domain has an amino acid sequence at least 97% identical to the
sequence of SEQ ID NO:74; and (b) a second domain comprising a fragment
of a Fc region of an immunoglobulin, wherein the carboxy terminus of said
first domain is coupled to the amino terminus of said second domain by a
peptide linkage.
2. The isolated polypeptide of claim 1, wherein said polypeptide is resistant to cleavage by a disintegrin and metalloproteinase 10 (ADAM10).
3. The isolated polypeptide of claim 1, wherein said polypeptide is at least 15% more resistant to cleavage by at least one of ADAM10, matrix metalloproteinase 9 (MMP9), and trypsin as compared to a polypeptide having the sequence of SEQ ID NO: 5.
4. The isolated polypeptide of claim 1, wherein said polypeptide is at least 15% more resistant to degradation in human serum as compared to a polypeptide comprising the sequence of SEQ ID NO: 5, wherein the percent resistance equals the difference between the fraction of peptide that remains full length following incubation in human serum for a defined time period compared to a control peptide treated for the same time and under the same conditions.
5. The isolated polypeptide of claim 1, wherein said polypeptide has increased thermal stability of at least 5.degree. C. as compared to a polypeptide having the sequence of SEQ ID NO: 5.
6. The isolated polypeptide of claim 1, wherein said polypeptide specifically binds an advanced glycation endproduct (AGE).
7. The isolated polypeptide of claim 1, wherein said polypeptide specifically binds HMGB1 (Amphoterin).
8. The isolated polypeptide of claim 1, wherein said polypeptide specifically binds at least one of the group consisting of: S100A1, S100A2, S100A4 (metastasin), S100A5, S100A6, S100A7 (psoriasin), S100A8/9, S100A11, S100A12, S100B, S100P, lipopolysaccharide (LPS), oxidized low-density lipoprotein (oxLDL), CD11b (MAC1), phosphatidyl serine, C3 a, S100P, S100G, S100Z, carbonylated proteins, malondialdehyde (MDA), laminin, type I Collagen, type IV Collagen, CAPZA1, CAPZA2, DDOST, LGALS3, MAPK1, MAPK3, PRKCSH, S100A4, S100A5, S100A6, S100A8, S100A9, S100P, and SAA1.
9. The isolated polypeptide of claim 1, wherein said polypeptide specifically binds amyloid-beta.
10. The isolated polypeptide of claim 1, wherein said polypeptide is a dimer of a polypeptide having the sequence of SEQ ID NO: 74.
11. The isolated polypeptide of claim 1, wherein said first domain comprises at least one asparagine residue linked to a glycan.
12. The isolated polypeptide of claim 1, wherein said first domain comprises an amino acid substitution at one or more of amino acid residues 3 or 59 of SEQ ID NO:74.
13. The isolated polypeptide of claim 12, wherein said amino acid substitution is a substitution with glutamic acid or glutamine at amino acid residue 3.
14. The isolated polypeptide of claim 12, wherein said amino acid substitution is a substitution with alanine, glutamic acid, or glutamine at amino acid residue 59.
15. The isolated polypeptide of claim 1, wherein said first domain comprises an amino acid substitution at amino acid residue 60 of SEQ ID NO:74.
16. The isolated polypeptide of claim 1, wherein said first domain has the sequence set forth in SEQ ID NO: 74.
17. The isolated polypeptide of claim 15, wherein said amino acid substitution is a substitution with serine.
18. The isolated polypeptide of claim 1, wherein said Fc fragment comprises CH2 and CH3 domains of a human IgG.
19. An isolated polypeptide comprising a RAGE polypeptide coupled to a Fc region of an immunoglobulin, wherein the carboxy terminus of said RAGE polypeptide is coupled to the amino terminus of said immunoglobulin Fc region by a peptide linkage and wherein said RAGE polypeptide has the sequence of SEQ ID NO: 2.
20. A pharmaceutical composition for treating a RAGE-mediated disorder comprising the isolated polypeptide of claim 1.
Description:
CROSS REFERENCE TO RELATED APPLICATIONS
[0001] This application is a continuation of co-pending U.S. application Ser. No. 16/571,011, filed Sep. 13, 2019, which claims priority to U.S. Provisional Application No. 62/731,663, filed Sep. 14, 2018, which are hereby incorporated by reference in their entirety.
SEQUENCE LISTING
[0002] The instant application contains a Sequence Listing which has been submitted via EFS-Web and is hereby incorporated by reference in its entirety. Said ASCII copy, created on Oct. 11, 2019, is named 44263US_CRF_sequencelisting.txt and is 228,990 bytes in size.
BACKGROUND
[0003] The genes encoding both the bovine and human forms of receptor for advanced glycation end-products (RAGE) were reported in 1992. The open reading frame (ORF) consisted of 404 amino acid residues organized into (from N to C terminus) a projected signal sequence of 22 amino acid residues, an N-terminal exodomain of .about.321 residues, a transmembrane domain of 19 residues, and an intracellular domain of 41 residues. The exodomain was shown to have three immunoglobulin (Ig)-like domains, including a variable domain and two constant regions. The signal sequence is thought to be residues 1-22, followed by the variable domain at residues 23-116, followed by a very short intervening sequence of about 6-8 residues leading to the Cl domain at residues 124-221. The C1 and C2 domains are separated by a longer .about.18 residue linker. C2 spans residues 239-304, followed by a highly flexible stem of .about.38 residues that allows for significant range of motion of the receptor on the surface of the cell. The transmembrane domain is ca. 19 residues and the C-terminal intracellular portion of the protein spans residues 264-404, with a serine phosphorylation site at S391.
[0004] Multiple RAGE receptors may interact and form clusters, which may aid in the binding of certain ligands, such as advanced glycation end products (AGEs), and result in intracellular signaling. Binding of a RAGE ligand to cell bound RAGE can trigger a series of downstream signaling events. Specific signaling profiles can differ, depending on the nature of ligand interaction, RAGE density, and other factors. Signaling may involve phosphorylation of RAGE at amino acid residue 5391 by protein kinase C-zeta (PKC.zeta.).
[0005] Nonenzymatic glycation and oxidation of proteins, lipids, and nucleic acids generates advanced glycation endproducts (AGEs), which are canonical RAGE ligands.
[0006] In addition to AGE, RAGE binds multiple ligands including amyloid-beta, S100B, S100A1, S100A2, S100A7 (psoriasin), S100A11, S100A12, HMGB1 (amphoterin), lipopolysaccharide (LPS), oxidized low-density lipoprotein (oxLDL), CD11b (MAC1), phosphatidyl serine, C3a, S100P, S100G, S100Z, carbonylated proteins, malondialdehyde (MDA), laminin, type I Collagen, type IV Collagen, CAPZA1, CAPZA2, DDOST, LGALS3, MAPK1, MAPK3, PRKCSH, S100A4, S100A5, S100A6, S100A8, S100A9, S100P, and SAA1.
[0007] Accumulation of AGE leading to activation of RAGE has been implicated in a variety of diseases and disorders, including diabetes and its microvascular complications, macrovascular complications, and other complications. AGEs and other RAGE ligands have been implicated in aging as well in a number of other diseases, including neurodegenerative disease, diabetic complications, ischemia-reperfusion injury in multiple organs, renal disease, etc. Soluble forms of RAGE (sRAGE and esRAGE) that include the extracellular ligand binding domain but lack the transmembrane and cytoplasmic domains of the endogenous protein may be useful for binding RAGE ligands, thereby impeding RAGE activation and downstream signaling cascades. Thus, there exists a need for drug-like soluble RAGE molecules with enhanced binding affinity to RAGE ligands and an extended half-life suitable for therapeutic applications. Production of therapeutic proteins on a commercial scale requires proteins that can be efficiently expressed and purified without disrupting protein function. Manufacturability can be described as the ability to express and purify a protein in a sufficiently efficient manner and with sufficient stability and structural integrity to allow for cost-effective production of the protein. For commercial purposes, manufacturability must be determined for each potential therapeutic protein. Although protein expression and purification processes can be optimized for a protein, manufacturability may be a function of intrinsic properties of the protein.
SUMMARY OF THE INVENTION
[0008] The present disclosure provides biologically active therapeutic proteins based on RAGE having improved manufacturability properties capable of efficient production as well as enhanced ligand binding properties and enhanced stability in vivo.
[0009] Disclosed here are compositions comprising RAGE fusion and methods of use thereof. Accordingly, one embodiment of the disclosure is an isolated polypeptide comprising a first domain and a second domain. In some embodiments the first domain is at least 97% identical to the sequence of SEQ ID NO: 74. In some embodiments the second domain comprises an Fc region of an immunoglobulin. In some embodiments the carboxy terminus of the first domain is coupled to the amino terminus of the second domain by a peptide linkage.
[0010] In some embodiments the polypeptide is resistant to cleavage by a disintegrin and metalloproteinase 10 (ADAM 10). In some embodiments the polypeptide is at least 15% more resistant to cleavage by at least one of ADAM10, matrix metalloproteinase 9 (MMP9), and trypsin as compared to a polypeptide comprising the sequence set forth in SEQ ID NO: 5. In some embodiments the percent resistance equals the difference between the fraction of polypeptide that remains full length following incubation with at least one of ADAM10, MMP9, and trypsin for a defined time period compared to a control polypeptide treated for the same time and under the same conditions.
[0011] In some embodiments the polypeptide is resistant to degradation in human serum. In some embodiments the polypeptide is at least 15% more resistant to degradation in human serum as compared to a polypeptide comprising the sequence set forth in SEQ ID NO: 5. In some embodiments the percent resistance equals the difference between the fraction of polypeptide that remains full length following incubation in human serum for a defined time period as compared to a control polypeptide treated for the same time and under the same conditions.
[0012] In some embodiments the polypeptide has improved resistance to thermal denaturation. In some embodiments the polypeptide has a higher onset of thermal denaturation (T.sub.agg) of at least 5.degree. C. as compared to a polypeptide comprising the sequence set forth in SEQ ID NO: 5. In some embodiments the change in onset of thermal denaturation (T.sub.agg) equals the temperature at which the polypeptide transitions from a compact folded monomeric state to an unfolded state as analyzed in a defined temperature gradient as compared to a control polypeptide treated in the same temperature gradient and under the same conditions.
[0013] In some embodiments the polypeptide specifically binds at least one of: an advanced glycation endproduct (AGE), CML-HSA (carboxymethylated human serum albumin), HMGB1 (amphoterin), amyloid-beta, S100A1, S100A2, S100A4 (metastasin), S100A5, S100A6, S100A7 (psoriasin), S100A8/9, S100A11, S100A12, S100B, S 100P, lipopolysaccharide (LPS), oxidized low-density lipoprotein (oxLDL), CD11b (MAC1), phosphatidyl serine, C3 a, S100P, S100G, S100Z, carbonylated proteins, malondialdehyde (MDA), laminin, type I Collagen, type IV Collagen, CAPZA1, CAPZA2, DDOST, LGALS3, MAPK1, MAPK3, PRKCSH, S100A4, S100A5, S100A6, S100A8, S100A9, S100P, and SAA1.
[0014] In some embodiments the polypeptide comprises a polypeptide dimer.
[0015] In some embodiments the first domain comprises at least one asparagine residue linked to a glycan. In some embodiments the first domain an amino acid substitution at one or more of amino acid residues 3 or 59, wherein said amino acid residues 3 or 59 correspond to an amino acid at position 3 or 59 of said first domain. In a preferred embodiment the amino acid at position 3 of the domain is substituted with glutamic acid or glutamine. In another preferred embodiment the amino acid at position 59 of the first domain is substituted with alanine, glutamic acid, or glutamine. In one embodiment the amino acid residue at position 60 of the first domain is substituted with serine. In some embodiments the first domain comprises the sequence set forth in SEQ ID NO: 74.
[0016] In some embodiments the heavy chain of the polypeptide comprises CH2 and CH3 domains of a human IgG. In one embodiment the CH2 and CH3 domains comprise the amino acid sequence set forth in SEQ ID NO: 4.
[0017] In some embodiments the immunoglobulin Fc of the polypeptide comprises one or more amino acid substitutions at one or more of amino acid residues 252, 254, or 256, numbered according to the EU numbering. In some embodiments amino acid residue 252 is substituted with tyrosine. In some embodiments amino acid residue 254 is substituted with threonine. In some embodiments amino acid residue 256 is substituted with glutamine or glutamic acid.
[0018] In some embodiments of the present disclosure the polypeptide may comprise a Fc region of an IgG1, IgG2, or IgG4 immunoglobulin. In some embodiments the polypeptide may comprise a peptide linkage that comprises at least a portion of an immunoglobulin hinge region. In some embodiments the peptide linkage may comprise at least a portion of the hinge region of IgG1, IgG2, or IgG4. In some embodiments the peptide linkage may comprise an amino acid sequence having at least 95% sequence identity to the sequence set forth in SEQ ID NO: 11, SEQ ID NO: 10, or SEQ ID NO: 8.
[0019] In some embodiments the carboxy terminal lysine of the IgG4 CH2-CH3 immunoglobulin domain is deleted comprising the sequences set forth in SEQ ID NO: 54 and SEQ ID NO: 55.
[0020] In some embodiments the polypeptide has a higher apparent binding affinity to a receptor for advanced glycation endproducts (RAGE) ligand compared to a polypeptide comprising the sequence of SEQ ID NO: 5. In some embodiments the apparent equilibrium dissociation constant (Kd) of the interaction between the polypeptide and its ligand may be 20 nanomolar (nM) or less.
[0021] Exemplary embodiments include a polypeptide that is expressed a greater amount in CHO-3E7 cells than a polypeptide comprising the sequence set forth in SEQ ID NO: 5 when CHO-3E7 cells are transfected under otherwise identical defined conditions with nucleic acid plasmid encoding either polypeptide. In a preferred embodiment the greater amount is at least 5%. In another preferred embodiment the nucleic acid plasmid comprises the nucleic acid vector pTT5.
[0022] One embodiment of the disclosure is an isolated polypeptide comprising a RAGE polypeptide coupled to an Fc region of an immunoglobulin. In some embodiments the carboxy terminus of the RAGE polypeptide is coupled to the amino terminus of the immunoglobulin Fc region by a peptide linkage. In some embodiments the peptide linkages comprise novel stem and hinge regions. In some embodiments the RAGE polypeptide comprises the amino acid sequence set forth in SEQ ID NO: 2.
[0023] In some embodiments the polypeptide has the amino acid sequence of SEQ ID NO: 53. In some embodiments the polypeptide has the amino acid sequence of SEQ ID NO: 12. In some embodiments the polypeptide has the amino acid sequence of SEQ ID NO: 15. In some embodiments the polypeptide has the amino acid sequence of SEQ ID NO: 16.
[0024] Some embodiments of the disclosure comprise an isolated nucleic acid molecule comprising a polynucleotide encoding a polypeptide comprising a RAGE polypeptide coupled to a heavy chain fragment of an Fc region of an immunoglobulin. In some embodiments the polynucleotide encodes a polypeptide comprising a first amino acid sequence and a second amino acid sequence. In some embodiments the sequence of the first domain is at least 97% identical to the sequence set forth in SEQ ID NO: 74. In some embodiments the second amino acid sequence comprises an Fc region of an immunoglobulin. In some embodiments the carboxy terminus of the first amino acid sequence is coupled to the amino terminus of the second amino acid sequence by a peptide linkage. In some embodiments the polynucleotide is operably linked to a transcriptional or translational regulatory sequence.
[0025] A further embodiment comprises a vector comprising an isolated nucleic acid molecule comprising a polynucleotide encoding a polypeptide comprising a RAGE polypeptide coupled to a heavy chain fragment of an Fc region of an immunoglobulin. Some embodiments of the present disclosure comprise a host cell comprising a vector comprising an isolated nucleic acid molecule comprising a polynucleotide encoding a polypeptide comprising a RAGE polypeptide coupled to a heavy chain fragment of an Fc region of an immunoglobulin. In some embodiments the host cell is a mammalian cell.
[0026] An embodiment of the present disclosure comprises a therapeutic composition for treating a RAGE-mediated disorder wherein the composition comprises a first amino acid sequence and a second amino acid sequence. In some embodiments the first domain is at least 97% identical to the sequence set forth in SEQ ID NO: 74. In some embodiments the second amino acid sequence comprises a heavy chain fragment of an Fc region of an immunoglobulin. In some embodiments the carboxy terminus of the first amino acid sequence is coupled to the amino terminus of the second amino acid sequence by a peptide linkage. In some embodiments the peptide linkage linking the first amino acid sequence and the second amino acid sequence comprises a stem derived from a soluble splice variant and a silent antibody hinge region.
BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS
[0027] These and other features, aspects, and advantages of the present invention will become better understood with regard to the following description, and accompanying drawings, where:
[0028] FIG. 1 is a schematic of a dimerized esRAGE-Fc fusion protein. The RAGE polypeptide comprises V, C1, C2, and the stem domains. The Fc polypeptide comprises the CH2 and CH3 domains. The linker between the two polypeptides is identified as the hinge.
[0029] FIGS. 2A-2L show expression of RAGE-Fc fusion protein constructs assessed by Western blot: Construct #1 (FIG. 2A); Construct #9 (FIG. 2B); Construct #10 (FIG. 2C); Construct #11 (FIG. 2D); Construct #12 (FIG. 2E); Construct #13 (FIG. 2F); Construct #14 (FIG. 2G); Construct #15 (FIG. 2H); Construct #16 (FIG. 2I); Construct #17 (FIG. 2J); Construct #18 (FIG. 2K); and Construct #19 (FIG. 2L).
[0030] FIGS. 3A-3J show expression of RAGE-Fc fusion protein constructs assessed by Western blot: Construct #20 (FIG. 3A); Construct #21 (FIG. 3B); Construct #22 (FIG. 3C); Construct #23 (FIG. 3D); Construct #24 (FIG. 3E); Construct #25 (FIG. 3F); Construct #26 (FIG. 3G); Construct #27 (FIG. 3H); Construct #28 (FIG. 3I); and Construct #29 (FIG. 3J).
[0031] FIGS. 4A-4I show expression of RAGE-Fc fusion protein constructs assessed by Western blot: Construct #30 (FIG. 4A); Construct #31 (FIG. 4B); Construct #32 (FIG. 4C); Construct #33 (FIG. 4D); Construct #34 (FIG. 4E); Construct #35 (FIG. 4F); Construct #36 (FIG. 4G); Construct #16.DELTA.K (FIG. 4H); Construct #12.DELTA.K (FIG. 4I).
[0032] FIGS. 5A-5F show scaled-up expression of RAGE-Fc fusion protein constructs assessed by Western blot: Construct #1 (FIG. 5A); Construct #9 (FIG. 5B); Construct #10 (FIG. 5C); Construct #11 (FIG. 5D); Construct #12 (FIG. 5E); Construct #6 (FIG. 5F).
[0033] FIGS. 6A-6D show the concentration response curves generated by ELISA assays performed to assess ligand binding activities of RAGE-Fc fusion proteins: CML-HSA (FIG. 6A); HMGB1 (FIG. 6B); S100A9 (FIG. 6C); S100A12 (FIG. 6D).
[0034] FIGS. 7A-7G show SDS-PAGE results of RAGE-Fc fusion proteins incubated with buffer alone for 0 and 24 hours (FIG. 7A); MMP9 for 0 and 24 hours (FIG. 7B); MMP9 for 15 and 24 hours (FIG. 7C); ADAM10 for 0 and 2 hours (FIG. 7D); ADAM10 for 15 and 24 hours (FIG. 7E); trypsin for 0 and 2 hours (FIG. 7F); and trypsin for 15 and 24 hours (FIG. 7G).
[0035] FIGS. 8A-8D show time course proteolysis data for fusion proteins incubated in the absence of protease (FIG. 8A); or in the presence of MMP9 (FIG. 8B); ADAM10 (FIG. 8C); or trypsin (FIG. 8D).
[0036] FIGS. 9A-9D show SDS-PAGE results of RAGE-Fc fusion proteins incubated with human serum for 0 hours (FIG. 9A); 17 hours (FIG. 9B); 49 hours (FIG. 9C); and 138 hours (FIG. 9D).
[0037] FIG. 10 shows time course proteolysis data for fusion proteins incubated in human serum over 138 hours.
[0038] FIGS. 11A-11D show thermal denaturation curves of RAGE-Fc fusion proteins as measured by dynamic light scattering: Construct #1 (FIG. 11A); Construct #10 (FIG. 11B); Construct #12 (FIG. 11C); and Construct #16 (FIG. 11D).
DETAILED DESCRIPTION OF THE INVENTION
[0039] The present disclosure describes fusion proteins comprising extracellular RAGE joined via a peptide linkage at the carboxyl terminus with an immunoglobulin Fc. The fusion proteins of the disclosure are characterized by their ability to bind to at least one RAGE ligand (e.g., advanced glycation end-product (AGE), HMGB1 (amphoterin), S100A11, S100A12) with high affinity, thereby disrupting endogenous RAGE-mediated signaling. The RAGE fusion proteins of the present disclosure are further characterized by enhanced stability, extended half-life, and improved manufacturability compared to other soluble RAGE proteins.
[0040] The stabilized RAGE-Fc fusion proteins are characterized by a RAGE protein that is different from the extracellular domain of the full-length RAGE polypeptide by the addition of 16 amino acids at the carboxyl terminus. The carboxyl terminus of the RAGE protein is joined to the amino terminus of a human immunoglobulin Fc via a peptide linkage comprised of at least part of an immunoglobulin hinge. In some embodiments a short peptide linker may be inserted between the RAGE protein and the immunoglobulin hinge.
DEFINITIONS
[0041] Terms used in the claims and specification are defined as set forth below unless otherwise specified.
[0042] The term "ameliorating" refers to any therapeutically beneficial result in the treatment of a disease state (e.g., a RAGE-mediated disease).
[0043] The term "isolated" refers to a protein or polypeptide molecule purified to some degree from endogenous material.
[0044] The term "RAGE" as used herein refers to the polypeptide sequence encoding Receptor for Advanced Glycation Endproduct (RAGE) or any variation thereof, including, but not limited to, isoforms that lack all or part of the N-terminal V-type immunoglobulin domain (N-truncated), isoforms that lack all or part of the transmembrane domain (C-truncated), and isoforms that comprise 1, 2, 3, 4 or more than 4 amino acid substitutions compared to wild-type RAGE.
[0045] The term "sRAGE" as used herein refers to soluble RAGE or RAGE lacking a transmembrane domain (C-truncated). As used herein, sRAGE refers to soluble RAGE that is generated as a result of protease cleavage that removes the transmembrane domain.
[0046] The term "esRAGE" (endogenous soluble RAGE) as used herein refers to soluble RAGE generated by an alternative splice site that results in a modified C-terminus comprising the following sequence at positions 332 to 347: EGFDKVREAEDSPQHM (the C-terminal portion of the V1 stem) (SEQ ID NO: 52). As used herein, "esRAGE" may comprise one or more amino acid substitutions, including point mutations within amino acid positions 332 to 347. The term percent "identity," in the context of two or more nucleic acid or polypeptide sequences, refer to two or more sequences or subsequences that have a specified percentage of nucleotides or amino acid residues that are identical, when compared and aligned for maximum correspondence using BLASTP and BLASTN algorithms, using the default parameters as publicly available through the National Center for Biotechnology Information (www.ncbi.nlm.nih.gov/). Depending on the application, the percent "identity" can exist over a region of the sequence being compared, e.g., over a functional domain, or, alternatively, exist over the full length of the two sequences to be compared. Optimal alignment of sequences for comparison can be conducted, e.g., by the local homology algorithm of Smith & Waterman, Adv. Appl. Math. 2:482 (1981), by the homology alignment algorithm of Needleman & Wunsch, J. Mol. Biol. 48:443 (1970), by the search for similarity method of Pearson & Lipman, Proc. Nat'l. Acad. Sci. USA 85:2444 (1988), by computerized implementations of these algorithms (GAP, BESTFIT, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Genetics Computer Group, 575 Science Dr., Madison, Wis.), or by visual inspection (see generally Ausubel et al.).
[0047] As used herein, the terms "treatment," "treating," and the like, refer to administering an agent, or carrying out a procedure for the purposes of obtaining an effect. The effect may be prophylactic in terms of completely or partially preventing a disease or symptom thereof and/or may be therapeutic in terms of effecting a partial or complete cure for a disease and/or symptoms of the disease. "Treatment," as used herein, covers any treatment of any pathological state in a mammal, particularly in a human, and includes: (a) inhibiting the disease, i.e., arresting its development; (b) relieving the disease, i.e., causing regression of the disease; (c) delaying onset of the disease; (d) decreasing the duration of the disease; (e) relieving or reducing the severity of any symptom of the disease; or (f) decreasing the risk or severity of any complication of the disease.
[0048] Treating may refer to any indicia of success in the treatment or amelioration or prevention of a pathologic state, including any objective or subjective parameter such as abatement; remission; diminishing of symptoms or making the disease condition more tolerable to the patient; slowing in the rate of degeneration or decline; or making the final point of degeneration less debilitating. The treatment or amelioration of symptoms can be based on objective or subjective parameters, including the results of an examination by a physician. Accordingly, the term "treating" includes the administration of the compounds or agents of the present invention to delay, to alleviate, or to arrest or inhibit development of the symptoms or conditions associated with the pathologic state. The term "therapeutic effect" refers to the reduction, elimination, prevention, delayed onset, or accelerated resolution of the disease, symptoms of the disease, or side effects of the disease in the subject.
[0049] The term "prevent" as used herein refers to avoiding or averting the onset of a symptom or symptoms characteristic of one or more disease states.
[0050] The term "prophylaxis" as used herein refers to therapy given to prevent or ameliorate symptoms of one or more disease states.
[0051] "In combination with", "combination therapy" and "combination products" refer, in certain embodiments, to the concurrent administration to a patient of a first therapeutic and the compounds as used herein. When administered in combination, each component can be administered at the same time or sequentially in any order at different points in time. Thus, each component can be administered separately but sufficiently closely in time so as to provide the desired therapeutic effect.
[0052] The term "subject" refers to any animal, such as mammals, including humans.
[0053] The term "sufficient amount" means an amount sufficient to produce a desired effect, e.g., an amount sufficient to modulate protein aggregation in a cell.
[0054] The term "therapeutically effective amount" is an amount that is effective to ameliorate a symptom of a disease. A therapeutically effective amount can be a "prophylactically effective amount" as prophylaxis can be considered therapy.
[0055] The term "percent resistant" refers to the percent resistance equal to the difference between the fraction of peptide that remains full length following incubation with at least one of ADAM10, MMP9, and trypsin for a defined time period compared to a control peptide treated for the same time and under the same conditions.
[0056] The term "increased thermal stability" refers to the highest temperature which a polypeptide remains in a folded state following incubation in temperature gradient for a defined time period as compared to a control polypeptide treated with the same temperature gradient and under the same conditions.
[0057] The term "specific binding," as used herein, refers to an affinity between a receptor and its ligand in which the K.sub.d value is below 10.sup.-6 M, 10.sup.-7 M, 10.sup.-8 M, 10.sup.-9 M, or 10.sup.-10 M.
[0058] Abbreviations used in this application include the following: Advanced Glycation Endproduct (AGE), Receptor for Advanced Glycation Endproduct (RAGE), soluble RAGE (sRAGE), endogenous secretory RAGE (esRAGE), immunoglobulin (Ig).
[0059] It must be noted that, as used in the specification and the appended claims, the singular forms "a," "an" and "the" include plural referents unless the context clearly dictates otherwise.
RAGE Fusion Proteins
[0060] The present disclosure provides RAGE fusion proteins, and methods of making and using such fusion proteins.
[0061] In a first aspect, isolated polypeptides are provided.
[0062] Embodiments of the isolated polypeptides are fusion proteins comprising four modules: an amino-terminus derived from a RAGE exodomain, a stem derived from a soluble splice variant (esRAGE) or a shortened portion of its stem region (lacking the C-terminal 13 amino acid residues of the stem containing the proteolytic cleavage site), a silent antibody hinge region, and an antibody Fc region. In some embodiments the fusion protein comprises an esRAGE polypeptide. The esRAGE polypeptide may be at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to SEQ ID NO: 74.
[0063] In typical embodiments, the isolated polypeptides comprise a first domain wherein said first domain has an amino acid sequence at least 97% identical to the sequence of SEQ ID NO:74; and a second domain comprising a fragment of a Fc region of an immunoglobulin, wherein the carboxy terminus of said first domain is coupled to the amino terminus of said second domain by a peptide linkage.
[0064] SEQ ID NO: 1 provides the sequence of esRAGE (including the N-terminal leader sequence) and SEQ ID NO:74 provides the sequence of mature esRAGE (lacking the N-terminal leader sequence). esRAGE is an endogenous soluble form of RAGE generated by an alternative splice site which results in the extracellular domain of full RAGE, modified at the carboxyl terminus by an additional 16 amino acids beginning at position 332 (SEQ ID NO: 1) or position 310 (SEQ ID NO: 74).
[0065] In various embodiments, the first domain has a sequence that differs from SEQ ID NO: 1 by 1, 2, 3, 4, 5, 6, 7, or more than 7 amino acids. In some embodiments, the first domain has a substitution of the asparagine at position 25 of SEQ ID NO: 1 (position 3 of SEQ ID NO: 74), wherein the substitution is a glutamic acid or glutamine. In some embodiments, the first domain has the asparagine at position 81 of SEQ ID NO: 1 (position 59 of SEQ ID NO: 74) substituted with alanine. In some embodiments, the first domain has the glycine at position 82 of SEQ ID NO: 1 (position 60 of SEQ ID NO: 74) substituted with serine. In some embodiments, the first domain has an amino acid inserted, deleted, or substituted in the amino acid sequence corresponding to positions 332-347 of SEQ ID NO: 1 (positions 310-325 of SEQ ID NO: 74).
[0066] In some embodiments the fusion protein comprises a full-length RAGE polypeptide.
[0067] In some embodiments the fusion protein comprises a RAGE polypeptide with a shortened stern region lacking the C-terminal 13 amino acid residues. The shortened stem RAGE polypeptide may be at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to SEQ ID NO: 74.
[0068] In some embodiments the amino-terminus module may comprise a signal sequence. The signal sequence may comprise the amino acid residues at positions 1-22 of the amino acid sequence set forth in SEQ ID NO: 1. In some embodiments the signal sequence may be at least 50%, 60%, 70%, 80%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to the amino acid sequence at positions 1-22 of the sequence set forth in SEQ ID NO: 1. In still other embodiments the amino-terminus module may comprise any signal sequence useful for expressing RAGE fusion proteins.
[0069] In some embodiments, the amino-terminus module comprising a RAGE polypeptide of the present disclosure may be glycosylated on at least one of the asparagine residues at positions 25 and 81 (SEQ ID NO: 1) or positions 3 and 59 (SEQ ID NO: 74). In some embodiments glycosylation at either position may be required for optimal ligand binding. In some embodiments glycosylation of the asparagine residues at both position 25 and 81 (SEQ ID NO: 1) or position 3 and 59 (SEQ ID NO: 74) may impair ligand binding.
[0070] In some embodiments of the present disclosure the RAGE polypeptide may dimerize. In some embodiments the RAGE polypeptide may dimerize upon binding a RAGE ligand. In some cases the V domains of RAGE polypeptides may interact to form homodimers. In some cases dimerization may be mediated by the C1 or C2 domains.
[0071] In some embodiments, the RAGE polypeptide may be linked to a polypeptide comprising an immunoglobulin domain or a portion (e.g., a fragment thereof) of an immunoglobulin domain. In some cases the polypeptide comprising an immunoglobulin domain or a portion of an immunoglobulin domain may comprise a human IgG Fc region or a portion thereof. In some cases the human IgG Fc region comprises at least a portion of the CH2 and CH3 domains of a human IgG Fc region. The human IgG Fc region may be derived from any of the known IgG subtypes: IgG1, IgG2, IgG3, or IgG4.
[0072] In some cases the RAGE fusion protein may comprise the CH2 and CH3 domains of human IgG4. In some embodiments the fusion protein may comprise the sequence set forth in SEQ ID NO: 7. In other embodiments the fusion protein may comprise a polypeptide having at least 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% sequence identity to SEQ ID NO: 7.
[0073] In some embodiments the Fc polypeptide of the fusion protein may be proinflammatory in vivo. In other embodiments, the Fc polypeptide may be silenced (e.g. comprise a peptide sequence that prevents formation of immune complexes that otherwise would form through productive engagement (i.e. engagement that results in an inflammatory response) of the Fc polypeptide to an Fc receptor) in vivo. In some embodiments the Fc polypeptide may be silenced with respect to binding Fc-gamma receptors by the nature of specific AA sequences in the hinge region.
[0074] The Fc polypeptide of the RAGE fusion protein may increase the stability of the fusion protein. For example, the Fc polypeptide of the fusion protein may contribute to stabilizing the RAGE fusion protein, thereby increasing the half-life of the RAGE fusion protein. In some cases the Fc polypeptide may significantly increase the serum half-life.
[0075] In some embodiments the RAGE fusion protein of the present disclosure may be more stable than RAGE fusion proteins in the prior art because the RAGE fusion protein of the disclosure lacks protease cleavage sites of RAGE fusion proteins of the prior art. For example, removal of the additional 16 amino acids in the esRAGE splice variant may result in the elimination of one or more protease cleavage sites. In some embodiments the RAGE fusion protein lacks the C-terminal 13 amino acids of the RAGE stem and thereby lacks a protease cleavage site of the prior art. In some embodiments the Fc polypeptide of the present disclosure may include fewer protease cleavage sites than the prior art. In other embodiments, the peptide linkage may include fewer protease cleavage sites than that in the prior art.
[0076] Protease cleavage sites are amino acid sequences recognized and cleaved by protease enzymes, resulting in a truncated polypeptide. Protease enzymes may include but are not limited to a disintegrin and metalloproteinase 10 (ADAM10), matrix metalloproteinase 9 (MMP9), and trypsin.
[0077] In one embodiment, the RAGE fusion protein of the present disclosure comprises an Fc polypeptide optimized to increase the in vivo serum half-life of the fusion protein. In one embodiment the Fc polypeptide is optimized by generating mutations (e.g., amino acid substitutions) that increase the half-life of the fusion protein. In one embodiment the Fc polypeptide comprises mutations comprising amino acid substitutions at residue positions 252, 254, and 256 (numbered according to the EU index as in Kabat). In a preferred embodiment the residue at position 252 is substituted with tyrosine, the residue at position 254 is substituted with threonine, and the residue at position 256 is substituted with glutamic acid (glutamate).
[0078] In some embodiments the serum half-life of the fusion protein is increased by 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%, 150%, or 200% as compared to a polypeptide comprising the sequence set forth in SEQ ID NO: 5.
[0079] The RAGE fusion protein of the present disclosure further comprises a peptide linkage (linker). Linkers serve primarily as a spacer between a polypeptide and a second heterologous polypeptide or other type of fusion. In one embodiment the linker is made up of amino acids linked together by peptide bonds, preferably from 1 to 20 amino acids linked by peptide bonds, wherein the amino acids are selected from the 20 naturally occurring amino acids. In one embodiment a linker is made up of a majority of amino acids that are sterically unhindered (e.g., glycine, alanine). In a further embodiment the linker may comprise the amino acid sequence of an IgG hinge region or partial IgG hinge region, as exemplified in SEQ ID NO: 8.
Expression of RAGE Fusion Proteins
[0080] RAGE fusion proteins of the present disclosure may be produced using a variety of expression-host systems. These systems include but are not limited to microorganisms such as bacteria transformed with recombinant bacteriophage, plasmid, or cosmid DNA expression vectors; yeast transformed with yeast expression vectors; and insect cell systems infected with virus expression vectors (e.g., baculovirus); and mammalian systems. Mammalian cells useful in recombinant protein production include but are not limited to VERO cells, HeLa cells, Chinese hamster ovary (CHO) cells (e.g., CHO-3E7 cells), COS cells, W138, BHK, HepG2, 3T3, RIN, MDCK, A549, PC12, K562, L cells, C127 cells, HEK 293, epidermal A431 cells, human Colo205 cells, HL-60, U937, HaK, and Jurkat cells. Mammalian expression allows for the production of secreted or soluble polypeptides which may be recovered from the growth medium.
[0081] Recombinant expression of a RAGE fusion protein of the present disclosure may require construction of a plasmid comprising a polynucleotide that encodes the fusion protein. The plasmid may be generated by sub-cloning the polynucleotide into an expression vector (e.g. pTT5, pcDNA3.1) using standard recombinant techniques, wherein the expression vector comprises regulatory signals for transcription and translation in mammalian systems.
[0082] In one embodiment a recombinant plasmid comprising a polynucleotide that encodes the fusion protein may be introduced into CHO cells by transfection such that the cells express the fusion protein. In one embodiment, cells expressing the fusion protein may be selected and cloned to generate cell lines that stably express the fusion protein. For example, cells expressing the recombinant construct may be selected for plasmid-encoded neomycin resistance by applying the antibiotic G418 to transfected cells. Individual clones may be selected and clones expressing high levels of the fusion protein as detected by Western Blot analysis of the cell supernatant may be expanded.
[0083] The RAGE fusion proteins of the present disclosure may be purified according to protein purification techniques known to those of skill in the art. For example, supernatant from a system which secretes recombinant protein into culture may be concentrated using a commercially available protein concentration filter. In one embodiment the supernatant may be applied directly to a suitable affinity purification matrix. For example, a suitable affinity purification matrix may comprise a molecule (e.g. Protein A, AGE) bound to a support. In one embodiment the supernatant may be applied to an anion exchange resin, for example, a matrix having pendant diethylaminoethyl (DEAE) groups. In another embodiment the supernatant may be applied to a cation exchange matrix. The matrices may include but are not limited to, acrylamide, agarose, dextran, and cellulose. After washing and eluting from the purification matrix, eluted fractions may be concentrated. In some embodiments the elution may be subjected to aqueous ion exchange or size exclusion chromatography. In some embodiments the elution may be subjected to high performance liquid chromatography (HPLC) for final purification.
Pharmaceutical Compositions
[0084] Methods for treatment of RAGE-mediated diseases are also encompassed by the present disclosure. Said methods of the disclosure include administering a therapeutically effective amount of esRAGE-Fc fusion protein. The fusion protein of the disclosure can be formulated in pharmaceutical compositions. These compositions can comprise, in addition to one or more of the esRAGE-Fc fusion proteins, a pharmaceutically acceptable excipient, carrier, buffer, stabilizer, or other materials well known to those skilled in the art. Such materials should be non-toxic and should not interfere with the efficacy of the active ingredient. The precise nature of the carrier or other material can depend on the route of administration, e.g. intravenous, cutaneous or subcutaneous, nasal, intramuscular, intraperitoneal routes.
[0085] For pharmaceutical compositions for intravenous, cutaneous or subcutaneous injection, or injection at the site of affliction, the active ingredient will be in the form of a parenterally acceptable aqueous solution which is pyrogen-free and has suitable pH, isotonicity and stability. Those of relevant skill in the art are well able to prepare suitable solutions using, for example, isotonic vehicles such as Sodium Chloride Injection, Ringer's Injection, Lactated Ringer's Injection. Preservatives, stabilizers, buffers, antioxidants and/or other additives can be included, as required.
[0086] Administration of the pharmaceutically useful fusion protein of the present invention is preferably in a "therapeutically effective amount" or "prophylactically effective amount" (as the case can be, although prophylaxis can be considered therapy), this being sufficient to show benefit to the individual. The actual amount administered, and rate and time-course of administration, will depend on the nature and severity of disease being treated. Prescription of treatment, e.g. decisions on dosage etc, is within the responsibility of general practitioners and other medical doctors, and typically takes account of the disorder to be treated, the condition of the individual patient, the site of delivery, the method of administration and other factors known to practitioners. Examples of the techniques and protocols mentioned above can be found in Remington's Pharmaceutical Sciences, 16th edition, Osol, A. (ed), 1980.
[0087] A composition can be administered alone or in combination with other treatments, either simultaneously or sequentially dependent upon the condition to be treated.
Uses of RAGE Fusion Proteins
[0088] The present disclosure provides methods and pharmaceutical compositions for binding RAGE ligands with high affinity, thereby inhibiting or reducing RAGE activation and thus RAGE-mediated signaling. In one aspect, the present disclosure provides methods and reagents for treating RAGE-mediated disorders (e.g., inflammation, nephropathy, arteriosclerosis, retinopathy, and other complications resulting from diabetes) in a subject in need thereof by administering a therapeutically effective amount of the fusion proteins of the disclosure to the subject. In one embodiment the fusion proteins of the present disclosure may bind one or more RAGE ligands in a subject and thereby decrease or inhibit RAGE-mediated signaling cascades. In some embodiments the fusion proteins may thereby reduce or inhibit an inflammatory response.
EXAMPLES
[0089] Below are examples of specific embodiments for carrying out the present invention. The examples are offered for illustrative purposes only, and are not intended to limit the scope of the present invention in any way. Efforts have been made to ensure accuracy with respect to numbers used (e.g., amounts, temperatures, etc.), but some experimental error and deviation should, of course, be allowed for.
[0090] The practice of the present invention will employ, unless otherwise indicated, conventional methods of protein chemistry, biochemistry, recombinant DNA techniques and pharmacology, within the skill of the art. Such techniques are explained fully in the literature.
Example 1: Expression and Purification of RAGE-IgG Fc Fusion Proteins
[0091] The following methods were used for expressing and purifying the RAGE-Fc fusion proteins.
[0092] The following method was used to produce the RAGE-Fc protein comprising the amino acid sequence set forth in SEQ ID NO: 16. Polynucleotides encoding esRAGE (SEQ ID NO: 1) were fused to polynucleotides encoding the human IgG4 Fc (amino acid residues 359-590 of the amino acid sequence set forth in SEQ ID NO: 17) via polynucleotides encoding a linker sequence derived from the IgG2 hinge (SEQ ID NO: 9) by PCR overlap extension. Primers used for PCR contained the mutation resulting in the amino acid substitutions of methionine to tyrosine at position 252, serine to threonine at position 254, and threonine to glutamic acid (glutamate) at position 256 of the Fc polypeptide wherein the numbering is according to the EU index as in Kabat. The full polynucleotide sequence is SEQ ID NO: 43 for the RAGE-Fc fusion protein having the amino acid sequence set forth in SEQ ID NO:16. Double stranded DNA fragments were subcloned into pTT5 vector.
[0093] Transient expression of RAGE-Fc fusion proteins was carried out as follows.
[0094] The RAGE-Fc polypeptide comprising the amino acid sequence set forth in SEQ ID NO: 16 was transiently expressed in CHO-3E7 cells grown in serum-free FreeStyle.TM. CHO Expression Medium (Thermo Fisher Scientific). The cells were maintained in Erlenmeyer Flasks (Corning Inc.) at 37.degree. C. with 5% CO.sub.2 on an orbital shaker (VWR Scientific). One day before transfection the cells were seeded at an appropriate density in Corning Erlenmeyer Flasks. On the day of transfection, DNA containing a polynucleotide encoding the esRAGE-Fc polypeptide and transfection reagent were mixed at an optimal ratio and then added into the flask containing cells previously seeded for transfection. The recombinant plasmid DNA encoding the esRAGE-Fc polypeptide was transiently transfected into suspension CHO-3E7 cell cultures. The cell culture supernatant collected on post-transfection day 6 was used for purification.
[0095] Purification of esRAGE-Fc fusion proteins was carried out as follows.
[0096] The cell culture broth was centrifuged and the resulting supernatant was loaded onto a Monofinity A Resin prepacked affinity purification column at an appropriate flow rate. After washing and elution with appropriate buffer, the eluted fractions were pooled and buffer exchanged to final formulation buffer.
[0097] The purified protein was analyzed by SDS-PAGE and Western blotting for molecular weight and purity measurements. Results of Western blots of the fusion proteins are shown in FIGS. 2A-4I: Construct #1 (FIG. 2A); Construct #9 (FIG. 2B); Construct #10 (FIG. 2C); Construct #11 (FIG. 2D); Construct #12 (FIG. 2E); Construct #13 (FIG. 2F); Construct #14 (FIG. 2G); Construct #15 (FIG. 2H); Construct #16 (FIG. 2I); Construct #17 (FIG. 2J); Construct #18 (FIG. 2K); Construct #19 (FIG. 2L); Construct #20 (FIG. 3A); Construct #21 (FIG. 3B); Construct #22 (FIG. 3C); Construct #23 (FIG. 3D); Construct #24 (FIG. 3E); Construct #25 (FIG. 3F); Construct #26 (FIG. 3G); Construct #27 (FIG. 3H); Construct #28 (FIG. 3I); Construct #29 (FIG. 3J); Construct #30 (FIG. 4A); Construct #31 (FIG. 4B); Construct #32 (FIG. 4C); Construct #33 (FIG. 4D); Construct #34 (FIG. 4E); Construct #35 (FIG. 4F); Construct #36 (FIG. 4G); Construct #16.DELTA.K (FIG. 4H); Construct #12.DELTA.K (FIG. 24I).
[0098] Expression of a number of fusion proteins was performed at 1 L scale and proteins were purified by Protein A affinity chromatography, followed by Superdex200 size exclusion chromatography. Purified protein was analyzed by SDS-PAGE and Western blotting for molecular weight and purity measurements. Results of Western blots of the fusion proteins are shown in FIG. 5: Construct #1 (FIG. 5A); Construct #9 (FIG. 5B); Construct #10 (FIG. 5C); Construct #11 (FIG. 5D); Construct #12 (FIG. 5E); Construct #6 (FIG. 5F)
[0099] The lanes of each blot in FIGS. 2A-2L, FIGS. 3A-3J, FIGS. 4A-4I, and FIGS. 5A-5F are labeled according to the contents of each as follows: M.sub.2, protein marker (GenScript, Cat. No. M00521); P, Human IgG1, Kappa (as positive control) (Sigma, Cat. No. 15154); 1, RAGE-Fc fusion protein under reducing conditions (with DTT); 2, RAGE-Fc fusion protein under non-reducing conditions (no DTT). The primary antibody used for all blots was Goat Anti-Human IgG-HRP (GenScript, Cat. No. A00166).
[0100] The concentration of the purified protein was determined by Bradford assay using bovine serum albumin (BSA) as a standard. Quantified expression data is shown in Tables 9, 10 and 11.
Example 2: Assessing Binding Affinities of RAGE Fusion Proteins by ELISA
[0101] Functional ELISA assays were performed to assess the ligand binding characteristics of RAGE-Fc fusion proteins. Apparent binding affinities of RAGE-Fc fusion proteins to the RAGE ligands CML-HSA, HMGB1, S100A9 and S100A12 were measured for the following fusion proteins: Construct #1 (SEQ ID NO: 5), Construct #9 (SEQ ID NO: 53), Construct #10 (SEQ ID NO: 12), Construct #12 (SEQ ID NO: 15), and Construct #16 (SEQ ID NO: 16). Previous experiments were carried out to determine fundamental functionality of an ELISA, optimal coating concentrations and volumes, a dynamic range for the RAGE-Fc constructs, as well as optimized antibody dilutions and TMB development times.
[0102] RAGE ligands CML-HSA, HMGB1, S100A9 and S100A12 were separately coated onto a coated plate (MaxiSorp.TM.) at a concentration of 50 nanomolar (nM), 100 microliters (.mu.L) per well. RAGE ligand CML-HSA was separately coated onto a coated plate (MaxiSorp.TM.) at a concentration of 100 nanograms (ng), 100 .mu.L per well. The plates were then incubated overnight at 4.degree. C. to allow the protein to bind to the plate coating. Following the coating step, the plates were washed once with 150 .mu.L of wash solution (2.67 mM potassium chloride, 1.47 potassium phosphate monobasic, 136.9 mM sodium chloride, 8.10 mM sodium phosphate dibasic, 0.05% Tween-20). The plate was then aspirated and blocked for 90 minutes at 4.degree. C. with 130 .mu.L of a solution of 1% BSA (1 g/L) in DPBS (pH 7.4) with 0.03% sodium azide to prevent background binding to unfilled regions of the plate wells while blocking with a protein that does not interact with soluble RAGE constructs. After the blocking step, two washes were performed with the wash solution. The RAGE-Fc fusion protein was then incubated on the wells in log10 dilution with each separate ligand for 120 minutes at 37.degree. C. while shaking. After the RAGE-Fc binding step, three washes were performed with the wash solution. Binding of the RAGE-Fc fusion to CIVIL-HSA, HMGB1, S100A9, and S100A12 was detected with a horseradish peroxidase (HRP) conjugated antibody with antigen specificity to IgG Fc (Abcam, Cat. No. ab99759). 100 .mu.L of antibody diluted 1:5000 in DBPS was added to the assay wells, followed by 60 minutes of incubation at 37.degree. C. while shaking. The wells were then washed four times with the wash solution. 100 .mu.L of TMB (ThermoFisher Scientific, Cat. No. 34029) was then added to each well. After approximately one minute, the reaction was stopped by the addition of 50 .mu.L of 1 M hydrochloric acid. Absorbance of the well contents was measured on a spectrophotometer at a wavelength of 450 nM.
[0103] Results of the ELISA assays (FIGS. 6A-6D) show that the RAGE-Fc fusion proteins of the disclosure (Constructs #9, 10, 12, 16) bind to the RAGE ligands CML-HSA (FIG. 6A), HMGB1 (FIG. 6B), S100A9 (FIG. 6C) and S100A12 (FIG. 6D) with greater apparent affinity than the RAGE-Fc fusion in the prior art (Construct #1). Apparent Kd values were calculated for each fusion protein-ligand interaction and are shown in Tables 1, 2, 3, and 4.
TABLE-US-00001 TABLE 1 Apparent binding affinity of RAGE-Fc constructs to CML-HSA Construct Construct Construct Construct Construct #1 #9 #10 #12 #16 Apparent 88 nM 6 nM 99 nM 39 nM 35 nM Kd
TABLE-US-00002 TABLE 2 Apparent binding affinity of RAGE-Fc constructs to HMGB1 Construct Construct Construct Construct Construct #1 #9 #10 #12 #16 Apparent 26 nM 2 nM 15 nM 7 nM 7 nM Kd
TABLE-US-00003 TABLE 3 Apparent binding affinity of RAGE-Fc constructs to S100A9 Construct Construct Construct Construct Construct #1 #9 #10 #12 #16 Apparent 266 nM 13 nM 41 nM 25 nM 27 nM Kd
TABLE-US-00004 TABLE 4 Apparent binding affinity of RAGE-Fc constructs to S100A12 Construct Construct Construct Construct Construct #1 #9 #10 #12 #16 Apparent 180 nM 9 nM 46 nM 44 nM 36 nM Kd
Example 3: Assessing Susceptability to Proteolytic Degradation
[0104] ADAM10 (a disintegrin and metalloproteinase 10) and MMP9 (matrix metalloproteinase 9) are enzymes that cleave full length RAGE. The enzymes were used to assess the vulnerability of RAGE-Fc fusion proteins to proteolytic cleavage by biologically relevant enzymes. In addition, trypsin was used as a non-specific enzyme to assess the general protease resistance of each fusion protein. For comparison, the esRAGE-Fc fusion proteins of the present disclosure were tested against a purified version identical to commercially available RAGE-Fc construct.
[0105] Each enzyme was verified to be functional under set assay conditions by demonstrating cleavage of a known peptide substrate. In brief, 0.06 .mu.M of ADAM10 or 0.01 .mu.M of MMP9 was incubated with 5 .mu.M of fluorogenic peptide substrate [Mca-KPLGL-Dpa-AR-NH2 (SEQ ID NO: 75)]. The fluorescence was measured kinetically at 320 nm excitation and 405 nm emission via an automated fluorescence microplate reader. Trypsin at 0.002 .mu.M was incubated with 766 M of chromogenic substrate [N.alpha.-Benzoyl-DL-arginine 4-nitroanilide hydrochloride]. The absorbance was measured kinetically at 405 nm via an automated microplate spectrophotometer. All the enzymes demonstrated proteolytic activity (data not shown).
[0106] Once the enzymes were verified to be functional they were incubated at 37.degree. C. with the various RAGE-Fc fusion proteins for up to 24 hours. In brief, 0.06 .mu.M of ADAM10 (Specific Activity: 1 .mu.g of ADAM10 cleaves 20 pmol/min/.mu.g of substrate; 50,000 .mu.g=1 Unit), 0.01 .mu.M of MMP9 (Specific Activity: 1 .mu.g of MMP9 cleaves 1,300 pmol/min/.mu.g of substrate; 769 .mu.g=1 Unit), or 0.002 .mu.M of trypsin (Specific Activity: 1 .mu.g of Trypsin cleaves 2,500 pmol/min/.mu.g of substrate; 400 .mu.g=1 Unit) were incubated with 2.5 .mu.M of RAGE-Fc fusion protein. The enzymatic reaction was stopped by adding an anionic detergent 1% lithium dodecyl sulfate (LDS), at the following time points: 0, 2, 15, 24 hours. As a control, the RAGE-Fc fusion proteins were incubated without enzyme to ensure that they were stable over the 24-hour time course of the experiment. The samples were then run on SDS-PAGE using SYPRO Ruby protein gel stain. Each sample was run under reducing (0.1 M DTT) conditions. The gels were imaged on Bio-Rad Molecular Imager and the bands were analyzed using Image Lab Software.
[0107] Results of the proteolytic stability experiments are shown in FIGS. 7A-7G, FIGS. 8A-8D, and Table 5. The results show that Constructs #9 (RAGE-Fc fusion lacking the C-terminal 13 amino acid RAGE stem), and 10, 12, and 16 (esRAGE-Fc fusions) were more resistant to proteolytic cleavage by MMP9 and trypsin and Constructs #12 and 16 were more resistant to proteolytic cleavage by ADAM10, as compared to Construct #1 (commercial RAGE-Fc fusion protein without the additional 16 amino acids at the carboxy terminus of the RAGE polypeptide) (SEQ ID NO: 5). All protease experiments were conducted under non-reducing conditions to preserve disulfide bonds in the Fc polypeptide during the stability time course. Reaction products were run on SDS-PAGE under reducing conditions in order to observe the reduced monomeric products (FIGS. 7A-7G). Examples of quantification data of the SDS-PAGE results at a specific time point are shown in Table 5. Data is presented as percent of full-length RAGE-Fc fusion protein (FL) remaining after the indicated treatment. The full-length proteins were quantified by fluorescent image intensities on the SDS-PAGE gel. Percentages are expressed as of function of the time zero band intensity for each condition. FIGS. 8A-8D show time course proteolysis data for the fusion proteins. Data shown is quantified from fluorescent bands of SDS-PAGE gels run under reducing conditions. Percent change is expressed as percent of the full length RAGE-Fc construct present at the indicated time point. Table 6 identifies the SEQ ID NO. of each construct tested.
TABLE-US-00005 TABLE 5 Full Lenth Construct Protease Time (h) #1 #9 #10 #12 #16 ADAM10 15 84% 91% 92% 100% 100% MMP9 15 15% 52% 38% 51% 65% Trypsin 15 0% 39% 39% 35% 34%
TABLE-US-00006 TABLE 6 RAGE Fc Construct SEQ ID NO #1 5 #9 53 #10 12 #12 15 #16 16
Example 4: Assessing Susceptability to Degradation in Serum
[0108] The RAGE-Fc fusion proteins were assessed for their vulnerability to cleavage by enzymes found in normal human serum. For comparison, the esRAGE-Fc fusion proteins of the present disclosure were tested against a purified version identical to commercially available RAGE-Fc construct.
[0109] The serum was verified to contain active enzymes under set assay conditions by demonstrating cleavage of a fluorogenic peptide substrate. In brief, the serum was incubated with 10 .mu.M of fluorogenic peptide substrate [Mca-KPLGL-Dpa-AR-NH2 (SEQ ID NO: 75)]. The fluorescence was measured kinetically at 320 nm excitation and 405 nm emission via an automated fluorescence microplate reader. The serum demonstrated proteolytic activity (data not shown).
[0110] Once the serum was verified to contain active enzymes it was incubated at 37.degree. C. with the various RAGE-Fc fusion proteins for up to 138 hours. In brief, 75% (v/v) of serum was incubated with 25% (v/v) of 2 .mu.M of RAGE-Fc fusion protein in PBS. The enzymatic reaction was stopped by adding an anionic detergent 1% lithium dodecyl sulfate (LDS), at the following time points: 0, 17, 49, 138 hours. As a control, the serum was tested without RAGE-Fc fusion protein to ensure no endogenous soluble RAGE was detected in the serum. The serum samples were tested with Western Blot to detect the presence of the constructs. In brief, the samples were run on SDS-PAGE under reducing conditions (0.1 M DTT), then transferred to PVDF membrane and stained with Ponceau to ensure the transfer was successful. The PVDF membrane was then blocked with 5% BSA in TBS-Tween for 1 hour at room temperature, then incubated with the primary antibody diluted 1:500 in TBS-Tween containing 5% BSA (Invitrogen, Cat. No. 701316) overnight at 4.degree. C. The membrane was then washed five times with TBS-Tween for 5 min per wash and then incubated with the secondary antibody diluted 1:5000 in TBS-Tween containing 5% BSA (GenTex, Cat No. GTX213110-01) for 1 hour at room temperature. The membrane was again washed five times with TBS-Tween for 5 min per wash, and then detected using (ECL) chemiluminescence. The gels were imaged on Bio-Rad Molecular Imager and the bands were analyzed using Image Lab Software.
[0111] Results of the serum stability experiments are shown in FIGS. 9A-9D, FIG. 10, and Table 7. The results show that Constructs #9, 12, and 16 were more resistant to proteolytic cleavage by enzymes found in serum as compared to Constructs #1 and #10. All serum stability experiments were conducted under non-reducing conditions to preserve disulfide bonds in the Fc polypeptide during the stability time course. Reaction products were run on SDS-PAGE under reducing conditions in order to observe the reduced monomeric products as seen on the Western Blots (FIGS. 9A-9D). Quantification data of the Western Blot results are shown in Table 7. Data is presented as percent of full-length RAGE-Fc fusion protein (FL) remaining after the indicated time point. The full-length proteins were quantified by image intensities on the Western Blot membrane. Percentages are expressed as of function of the time zero band intensity for each condition. FIGS. 8A-8D show time course proteolysis data for the fusion proteins. Data shown is quantified from intensity bands of the Western Blot membranes run under reducing conditions. Percent change is expressed as percent of the full length RAGE-Fc construct present at the indicated time point. Table 4 identifies the SEQ ID NO. of each construct tested.
TABLE-US-00007 TABLE 7 Full Lenth Construct Time (h) #1 #9 #10 #12 #16 0 100% 100% 100% 100% 100% 17 65% 100% 100% 99% 81% 49 47% 100% 74% 86% 64% 138 0% 22% 0% 23% 17%
Example 5: Assessing Thermal Stability and Aggregation
[0112] Dynamic light scattering (DLS) was used to analyze the aggregation temperature (T.sub.agg) of RAGE-Fc fusion proteins in the same buffer solution. DLS was performed using the DynaPro.RTM. NanoStar.RTM. instrument to measure the effect of temperature on translational diffusion coefficients (D.sub.t) of nanoparticles and colloids in solution by quantifying dynamic fluctuations in scattered light. Sizes and size distributions, in turn, are calculated from the diffusion coefficients in terms of hydrodynamic diameter (d.sub.h). Results are shown in FIGS. 11A-11D: Construct #1 (FIG. 11A); Construct #10 (FIG. 11B); Construct #12 (FIG. 11C); Construct #16 (FIG. 11D). DLS profiles of fusion proteins were analyzed by the framework of Onset model, the dots indicate the raw data while the green solid line indicates the fitting curve by the model. The results show that Constructs #10 and #12 (esRAGE-Fc fusions) have enhanced thermal stability as compared to Construct #1. Results from this analysis including hydrodynamic radius (nm) and T.sub.agg (.degree. C.) are shown in Table 8.
TABLE-US-00008 TABLE 8 Concentration Construct (mg/ml) Tagg (.degree. C.) Radius (nm) #1 2.26 61.39 7.49 #10 2.86 63.40 8.06 #12 1.55 67.24 7.50 #16 2.00 52.94 8.68
Example 6: Improved Manufacturability
[0113] Further modified RAGE-Fc fusion proteins were constructed to test for improvement of protein expression and manufacturability of the fusion protein. Improved manufacturability manifests in one or more of the following ways: higher expression, increased stability, or improved solubility. Solubility may be assessed by SDS-PAGE under reducing and non-reducing conditions, followed by Western blot. In contrast to the prior art, the improved molecules of the present disclosure demonstrate reduced tendency to aggregate as shown by distinct protein bands visible under reducing conditions compared to smeared bands visible under non-reducing conditions (see FIGS. 2A-2L, FIGS. 3A-3J, FIGS. 4A-4I, and FIGS. 5A-5F, comparing bands in lane 1 (reducing condition) with bands in lane 2 (non-reducing conditions)).
[0114] For example, esRAGE-Fc fusion proteins were constructed using at least a portion of the hinge region of alternative human IgG polypeptides as a linker between the C-terminus of esRAGE and the amino terminus of the Fc polypeptide of the fusion protein. A RAGE-Fc fusion protein was also constructed using a RAGE polypeptide with a shortened stern region lacking the C-terminal 13 amino acid residues, with a portion of the hinge region of alternative human IgG polypeptides as a linker between the C-terminus of RAGE and the amino terminus of the Fc polypeptide of the fusion protein. Additional modified fusion proteins were generated by introducing amino acid substitutions into the esRAGE polypeptide, and/or the Fc polypeptide of the fusion protein. Fusion proteins comprising alternative linkers and amino acid substitutions were generated using overlap PCR mutagenesis according to known methods.
[0115] Testing of esRAGE-Fc fusion proteins comprising linkers from alternative IgG hinge regions and esRAGE-Fc fusion proteins comprising amino acid substitutions was performed as follows. Polynucleotides encoding esRAGE-Fc fusion proteins comprising an IgG4 hinge linker (SEQ ID NO: 39), a RAGE polypeptide with a shortened stem region lacking the C-terminal 13-amino acid residues (SEQ ID NO: 54), or polynucleotides encoding fusion proteins comprising an IgG2 linker (SEQ ID NO: 41) were expressed in CHO-3E7 cells as described in Example 1. Further, polynucleotides encoding esRAGE-Fc fusion proteins comprising amino substitutions M252Y, S254T, and T256E in the Fc polypeptide (SEQ ID NO: 44) were also expressed in CHO-3E7 cells as described in Example 1. The cultures were grown for six days following transfection; on day 6 the cell culture supernatant was collected and used for purification as described in Example 1. Purified protein was analyzed by SDS-PAGE under reducing and non-reducing conditions and by Western blot using a primary Goat Anti-Human IgG-HRP antibody (GenScript, Cat. No. A00166). Protein concentration was determined by Bradford assay using BSA as a protein standard. Tables 5 and 6 show the concentration, purity, and total purified protein yield for each fusion protein.
[0116] The esRAGE-Fc fusion protein encoded by the amino acid sequence set forth in SEQ ID NO: 12 (nucleotide sequence set forth in SEQ ID NO: 39) differs from the fusion protein encoded by the amino acid sequence set forth in SEQ ID NO 15 (nucleotide sequence set forth in SEQ ID NO: 41) only by the IgG hinge from which the linker is derived. Further, the esRAGE-Fc fusion protein encoded by the amino acid sequence set forth in SEQ ID NO: 16 (nucleotide sequence set forth in SEQ ID NO: 43) differs from the fusion protein encoded by the amino acid sequence set forth in SEQ ID NO: 15 (nucleotide sequence set forth in SEQ ID NO: 41) only by the amino acid substitutions at positions 252, 254, and 256 (EU numbering) of the Fc polypeptide. The results shown in Table 9 demonstrate that the purity and yield, and thus the manufacturability of the fusion protein may be improved by replacing a linker from the IgG4 hinge with a linker from the IgG2 hinge. Similarly, the results shown in Table 9 demonstrate that manufacturability of the fusion protein is improved by incorporating amino acid substitutions M252Y, S254T, and T256E (EU numbering) in the Fc polypeptide of the fusion protein.
TABLE-US-00009 TABLE 9 Amino acid Nucleotide Total sequence sequence Construct name Concentration Purity protein SEQ ID NO: 12 SEQ ID NO: 39 Construct #10: RAGEV-C1-C2-V1 stem 0.29 mg/mL 70% 580 .mu.g (M/A)-IgG4-hinge(S/P-AA)- (IgG4CH2-CH3) SEQ ID NO: 14 SEQ ID NO: 40 Construct #11: RAGEV-C1-C2-V1 stem 0.16 mg/mL 80% 640 .mu.g (M/A)-VH8aa-IgG4-hinge(S/P-AA)- (IgG4CH2-CH3) SEQ ID NO: 15 SEQ ID NO: 41 Construct #12: 0.19 mg/mL 80% 760 .mu.g RAGEV-C1-C2-V1stem(M/A)-IgG21ower- hinge-(IgG4CH2-CH3) SEQ ID NO: 16 SEQ ID NO: 43 Construct #16: 0.21 mg/mL 90% 1.68 mg RAGE V-C1-C2-V1stem(M/A)-IgG2 lower hinge-(IgG4CH2-CH3)-YTE
[0117] Data showing the concentration, purity, and total purified protein yield for RAGE-Fc fusion proteins expressed at 1L scale and purified using Monofinity A Resin affinity purification, followed by HiLoad26/600 Superdex200 pg size exclusion chromatography. The results shown in Table 10 demonstrate that the purity and yield, and thus the manufacturability of the fusion protein in scaled-up production may be improved by replacing a linker from the IgG4 hinge with a linker from the IgG2 hinge. Similarly, the results shown in Table 10 demonstrate that manufacturability of the fusion protein is improved by incorporating amino acid substitutions M252Y, S254T, and T256E (EU numbering) in the Fc polypeptide of the fusion protein.
TABLE-US-00010 TABLE 10 Amino acid Nucleotide Total sequence sequence Construct name Concentration Purity protein SEQ ID NO: 5 SEQ ID NO: 38 Construct #1: RAGE V-C1-C2-Natural 0.58 mg/mL 90% 18.27 mg Stem-short linker-IgG1 hinge-(IgG1CH2-CH3) SEQ ID NO: 54 SEQ ID NO: 57 Construct #9: RAGE V-C1-C2-shortened- 0.48 mg/mL 90% 2.88 mg stem-VH8aa-IgG4- hinge(S/P-AA)-(IgG4CH2-CH3) SEQ ID NO: 12 SEQ ID NO: 39 Construct #10: RAGE V-C1-C2-V1 stem 0.38 mg/mL 90% 4.94 mg (M/A)-IgG4-hinge(S/P-AA)- (IgG4CH2-CH3) SEQ ID NO: 14 SEQ ID NO: 40 Construct #11: RAGE V-C1-C2-V1 stem 0.43 mg/mL 90% 4.30 mg (M/A)-VH8aa-IgG4-hinge(S/P-AA)- (IgG4CH2-CH3) SEQ ID NO: 15 SEQ ID NO: 41 Construct #12: 0.66 mg/mL 90% 7.26 mg RAGE V-C1-C2-V1stem(M/A)-IgG2lower- hinge-(IgG4CH2-CH3) SEQ ID NO: 16 SEQ ID NO: 43 Construct #16: 0.43 mg/mL 90% 12.25 mg RAGE V-C1-C2-V1stem(M/A)-IgG2 lower hinge-(IgG4CH2-CH3)-YTE
[0118] Data showing the concentration, purity, and total purified protein yield for additional RAGE-Fc fusion proteins is provided in Table 11.
TABLE-US-00011 TABLE 11 Amino acid Nucleotide Total sequence sequence Construct name Concentration Purity protein SEQ ID NO: 5 SEQ ID NO: 38 Construct #1: RAGE V-C1-C2-Natural 0.26 mg/mL 80% 1.56 mg Stem-short linker-IgG1 hinge-(IgG1CH2-CH3) SEQ ID NO: 37 SEQ ID NO: 42 Construct #13: RAGE V-C1-C2 0.15 mg/mL 65% 450 .mu.g (N25E/G82S)-Natural Stem-short linker-IgG1 hinge-(IgG1CH2-CH3) SEQ ID NO: 17 SEQ ID NO: 44 Construct #17: 0.21 mg/mL 80% 2.10 mg RAGE V-C1-C2-V1stem(M/A)- (N25E)-IgG2 lower hinge-(IgG4CH2-CH3) SEQ ID NO: 18 SEQ ID NO: 45 Construct #18: 0.14 mg/mL 75% 1.40 mg RAGE V-C1-C2-V1stem(M/A)- (N25Q)-IgG2 lower hinge-(IgG4CH2-CH3) SEQ ID NO: 19 SEQ ID NO: 46 Construct #19: 0.13 mg/mL 85% 780 .mu.g RAGE V-C1-C2-V1stem(M/A)- (G82S)-IgG2 lower hinge-(IgG4CH2-CH3) SEQ ID NO: 20 SEQ ID NO: 47 Construct #20: 0.10 mg/mL 70% 1.05 mg RAGE V-C1-C2-V1stem(M/A)- (N25E/G82S)-IgG2 lower hinge-(IgG4CH2-CH3) SEQ ID NO: 21 SEQ ID NO: 48 Construct #21: 0.12 mg/mL 75% 1.08 mg RAGE V-C1-C2-V1stem(M/A)- (N25Q/G82S)-IgG2 lower hinge-(IgG4CH2-CH3) SEQ ID NO: 22 SEQ ID NO: 49 Construct #22: 0.13 mg/mL N/A 780 .mu.g RAGE V-C1-C2-V1stem(M/A)- (N81A)-IgG2 lower hinge-(IgG4CH2-CH3) SEQ ID NO: 23 SEQ ID NO: 50 Construct #23: 52 .mu.g/mL 35% 676 .mu.g RAGE V-C1-C2-V1stem(M/A)- (N25E/N81A)-IgG2 lower hinge-(IgG4CH2-CH3) SEQ ID NO: 24 SEQ ID NO: 51 Construct #24: 0.13 mg/mL N/A 1.69 mg RAGE V-C1-C2-V1stem(M/A)- (N25Q/N81A)-IgG2 lower hinge-(IgG4CH2-CH3)
[0119] While the invention has been particularly shown and described with reference to a preferred embodiment and various alternate embodiments, it will be understood by persons skilled in the relevant art that various changes in form and details can be made therein without departing from the spirit and scope of the invention.
[0120] All references, issued patents and patent applications cited within the body of the instant specification are hereby incorporated by reference in their entirety, for all purposes.
INFORMAL SEQUENCE LISTING
TABLE-US-00012
[0121] SEQ ID NO DESCRIPTION SEQUENCE SEQ ID NO: 1 esRAGE including the MAAGTAVGAW VLVLSLWGAV VGAQNITARI natural leader sequence GEPLVLKCKG APKKPPQRLE WKLNTGRTEA (natural leader sequence is WKVLSPQGGG PWDSVARVLP NGSLFLPAVG underlined) IQDEGIFRCQ AMNRNGKETK SNYRVRVYQI PGKPEIVDSA SELTAGVPNK VGTCVSEGSY PAGTLSWHLD GKPLVPNEKG VSVKEQTRRH PETGLFTLQS ELMVTPARGG DPRPTFSCSF SPGLPRHRAL RTAPIQPRVW EPVPLEEVQL VVEPEGGAVA PGGTVTLTCE VPAQPSPQIH WMKDGVPLPL PPSPVLILPE IGPQDQGTYS CVATHSSHGP QESRAVSISI IEPGEEGPTA GEGFDKVREA EDSPQHM SEQ ID NO: 2 15 of 16 AA of C-term. EGFDKVREA EDSPQH sequence unique to esRAGE SEQ ID NO: 3 AA sequence of hRAGE- MAAGTAVGAW VLVLSLWGAV VGAQNITARI IgG4Fc fusion protein of US GEPLVLKCKG APKKPPQRLE WKLNTGRTEA 9,399,668-SEQ ID NO: 6 in WKVLSPQGGG PWDSVARVLP NGSLFLPAVG the '668 patent (includes the TQDEGIFRCQ AMNRNGKETK SNYRVRVYQI natural leader sequence, PGKPEIVDSA SELTAGVPNK VGTCVSEGSY underlined) PAGTLSWHLD GKPLVPNEKG VSVKEQTRRH PETGLFTLQS ELMVTPARGG DPRPTFSCSP SPGLPRRRAL HTAPIQPRVW EPVPLEEVQL VVEPEGGAVA PGGTVTLTCE VPAQPSPQIH WMKDGVPLPL PPSPVLILPE IGPQDQGTYS CVATHSSHGP QESRAVSISI IEPGEEGPTA GSVGGSGLGT LALAASTKGP SVFPLAPCSR STSESTAALG CLVKDYFPEP VTVSWNSGAL TSGVHTFPAV LQSSGLYSLS SVVTVPSSSL GTKTYTCNVD HKPSNTKVDK RVESKYGPPC PSCPAPEFLG GPSVFLFPPK PKDTLMISRT PEVTCVVVDV SQEDPEVQFN WYVDGVEVHN AKTKPREEQF NSTYRVVSVL TVLHQDWLNG KEYKCKVSNK GLPSSTEKTI SKAKGQPREP QVYTLPPSQE EMTKNQVSLT CLVKGFYPSD IAVEWESNGQ PENNYKTTPP VLDSDGSFFL YSRLTVDKSR WQEGNVFSCS VMHEALHNHY TQKSLSLSLG K SEQ ID NO: 4 Sequence corresponding to xYxTxE M252Y/S254T/T256E mutation in CH2 domain of IgG Fc SEQ ID NO: 5 Sequence corresponding to AQNITARIGE PLVLKCKGAP KKPPQRLE Construct #1 (mature WKLNTGRTEA WKVLSPQGGG PWDSVARVLP protein; lacking the natural NGSLFLPAVG IQDEGIFRCQ AMNRNGKETK leader sequence) SNYRVRVYQI PGKPEIVDSA SELTAGVPNK VGTCVSEGSY PAGTLSWHLD GKPLVPNEKG VSVKEQTRRH PETGLFTLQS ELMVTPARGG DPRPTFSCSF SPGLPRHRAL RTAPIQPRVW EPVPLEEVQL VVEPEGGAVA PGGTVTLTCE VPAQPSPQIH WMKDGVPLPL PPSPVLILPE IGPQDQGTYS CVATHSSHGP QESRAVSISI IEPGEEGPTA GSVGGSGLGT LALAIEGRMP KSCDKTHTCP PCPAPELLGG PSVFLFPPKP KDTLMISRTP EVTCVVVDVS HEDPEVKFNW YVDGVEVHNA KTKPREEQYN STYRVVSVLT VLHQDWLNGK EYKCKVSNKA LPAPIEKTIS KAKGQPREPQ VYTLPPSRDE LTKNQVSLTC LVKGFYPSDI AVEWESNGQP ENNYKTTPPV LDSDGSFFLY SKLTVDKSRW QQGNVFSCSV MHEALHNHYT QKSLSLSPGK SEQ ID NO: 6 Sequence of extracellular AQNITARIGE PLVLKCKGAP KKPPQRLE domain of WT hRAGE (not WKLNTGRTEA WKVLSPQGGG PWDSVARVLP the splice variant) (mature NGSLFLPAVG IQDEGIFRCQ AMNRNGKETK protein; lacking the natural SNYRVRVYQI PGKPEIVDSA SELTAGVPNK leader sequence) VGTCVSEGSY PAGTLSWHLD GKPLVPNEKG VSVKEQTRRH PETGLFTLQS ELMVTPARGG DPRPTFSCSF SPGLPRHRAL RTAPIQPRVW EPVPLEEVQL VVEPEGGAVA PGGTVTLTCE VPAQPSPQIH WMKDGVPLPL PPSPVLILPE IGPQDQGTYS CVATHSSHGP QESRAVSISI IEPGEEGPTA G SEQ ID NO: 7 AA359-590 of construct #17 GG PSVFLFPPKP KDTLMISRTP EVTCVVVDVS QEDPEVQFNW YVDGVEVHNA KTKPREEQFN STYRVVSVLT VLHQDWLNGK EYKCKVSNKG LPSSIEKTIS KAKGQPREPQ VYTLPPSQEE MTKNQVSLTC LVKGFYPSDI AVEWESNGQP ENNYKTTPPV LDSDGSFFLY SRLTVDKSRW QEGNVFSCSV MHEALHNHYT QKSLSLSLGK SEQ ID NO: 8 Modified IgG4 (S/P-AA) ESKYGPPCPPCPAPEAA hinge that is present in esRAGE-Fc linker in constructs #10, 11, 33, 35, and 36 SEQ ID NO: 9 IgG2 lower hinge that is VECPPCAPPVA present in esRAGE-Fc linker in constructs #12, 16-29, 31- 32 SEQ ID NO: 10 IgG2 complete hinge that is ERKCCVECPPCAPPVA present in esRAGE-Fc linker in construct #30 SEQ ID NO: 11 IgG1 hinge that is present in EPKSCDKTHTCPPCPAPEAA esRAGE-Fc linker in construct #34 SEQ ID NO: 12 Construct #10 AQNITARIGE PLVLKCKGAP KKPPQRLE RAGE V-C1-C2- WKLNTGRTEA WKVLSPQGGG PWDSVARVLP V1stem(M/A)-IgG4-hinge NGSLFLPAVG IQDEGIFRCQ AMNRNGKETK (S/P-AA)-(IgG4CH2-CH3) SNYRVRVYQI PGKPEIVDSA SELTAGVPNK (mature protein; lacking the VGTCVSEGSY PAGTLSWHLD GKPLVPNEKG natural leader sequence) VSVKEQTRRH PETGLFTLQS ELMVTPARGG DPRPTFSCSF SPGLPRHRAL RTAPIQPRVW EPVPLEEVQL VVEPEGGAVA PGGTVTLTCE VPAQPSPQIH WMKDGVPLPL PPSPVLILPE IGPQDQGTYS CVATHSSHGP QESRAVSISI IEPGEEGPTA GEGFDKVREA EDSPQHAESK YGPPCPPCPA PEAAGGPSVF LFPPKPKDTL MISRTPEVTC VVVDVSQEDP EVQFNWYVDG VEVHNAKTKP REEQFNSTYR VVSVLTVLHQ DWLNGKEYKC KVSNKGLPSS IEKTISKAKG QPREPQVYTL PPSQEEMTKN QVSLTCLVKG FYPSDIAVEW ESNGQPENNY KTTPPVLDSD GSFFLYSRLT VDKSRWQEGN VFSCSVMHEA LHNHYTQKSL SLSLGK SEQ ID NO: 13 Shortened stem-VH8aa- GTLVTVSS IgG4-hinge(S/P-AA) SEQ ID NO: 14 Construct #11 AQNITARIGE PLVLKCKGAP KKPPQRLE RAGE V-C1-C2- WKLNTGRTEA WKVLSPQGGG PWDSVARVLP V1stem(M/A)-VH8 aa-IgG4- NGSLFLPAVG IQDEGIFRCQ AMNRNGKETK hinge (S/P-AA)- SNYRVRVYQI PGKPEIVDSA SELTAGVPNK (IgG4CH2-CH3) (mature VGTCVSEGSY PAGTLSWHLD GKPLVPNEKG protein; lacking the natural VSVKEQTRRH PETGLFTLQS ELMVTPARGG leader sequence) DPRPTFSCSF SPGLPRHRAL RTAPIQPRVW EPVPLEEVQL VVEPEGGAVA PGGTVTLTCE VPAQPSPQIH WMKDGVPLPL PPSPVLILPE IGPQDQGTYS CVATHSSHGP QESRAVSISI IEPGEEGPTA GEGFDKVREA EDSPQHAGTL VTVSSESKYG PPCPPCPAPE AAGGPSVFLF PPKPKDTLMI SRTPEVTCVV VDVSQEDPEV QFNWYVDGVE VHNAKTKPRE EQFNSTYRVV SVLTVLHQDW LNGKEYKCKV SNKGLPSSIE KTISKAKGQP REPQVYTLPP SQEEMTKNQV SLTCLVKGFY PSDIAVEWES NGQPENNYKT TPPVLDSDGS FFLYSRLTVD KSRWQEGNVF SCSVMHEALH NHYTQKSLSL SLGK SEQ ID NO: 15 Construct #12 AQNITARIGE PLVLKCKGAP KKPPQRLE RAGE V-C1-C2- WKLNTGRTEA WKVLSPQGGG PWDSVARVLP V1stem(M/A)-IgG2 lower NGSLFLPAVG IQDEGIFRCQ AMNRNGKETK hinge-(IgG4CH2-CH3) SNYRVRVYQI PGKPEIVDSA SELTAGVPNK (mature protein; lacking the VGTCVSEGSY PAGTLSWHLD GKPLVPNEKG natural leader sequence) VSVKEQTRRH PETGLFTLQS ELMVTPARGG DPRPTFSCSF SPGLPRHRAL RTAPIQPRVW EPVPLEEVQL VVEPEGGAVA PGGTVTLTCE VPAQPSPQIH WMKDGVPLPL PPSPVLILPE IGPQDQGTYS CVATHSSHGP QESRAVSISI IEPGEEGPTA GEGFDKVREA EDSPQHAVEC PPCAPPVAGG PSVFLFPPKP KDTLMISRTP EVTCVVVDVS QEDPEVQFNW YVDGVEVHNA KTKPREEQFN STYRVVSVLT VLHQDWLNGK EYKCKVSNKG LPSSIEKTIS KAKGQPREPQ VYTLPPSQEE MTKNQVSLTC LVKGFYPSDI AVEWESNGQP ENNYKTTPPV LDSDGSFFLY SRLTVDKSRW QEGNVFSCSV MHEALHNHYT QKSLSLSLGK SEQ ID NO: 16 Construct #16 AQNITARIGE PLVLKCKGAP KKPPQRLE (#12 + YTE) WKLNTGRTEA WKVLSPQGGG PWDSVARVLP RAGE V-C1-C2- NGSLFLPAVG IQDEGIFRCQ AMNRNGKETK V1stem(M/A)-IgG2 lower SNYRVRVYQI PGKPEIVDSA SELTAGVPNK hinge-(IgG4CH2-CH3)- VGTCVSEGSY PAGTLSWHLD GKPLVPNEKG YTE (mature protein; VSVKEQTRRH PETGLFTLQS ELMVTPARGG lacking the natural leader DPRPTFSCSF SPGLPRHRAL RTAPIQPRVW sequence) EPVPLEEVQL VVEPEGGAVA PGGTVTLTCE VPAQPSPQIH WMKDGVPLPL PPSPVLILPE IGPQDQGTYS CVATHSSHGP QESRAVSISI IEPGEEGPTA GEGFDKVREA EDSPQHAVEC PPCAPPVAGG PSVFLFPPKP KDTLYITREP EVTCVVVDVS QEDPEVQFNW YVDGVEVHNA KTKPREEQFN STYRVVSVLT VLHQDWLNGK EYKCKVSNKG LPSSIEKTIS KAKGQPREPQ VYTLPPSQEE MTKNQVSLTC LVKGFYPSDI AVEWESNGQP ENNYKTTPPV LDSDGSFFLY SRLTVDKSRW QEGNVFSCSV MHEALHNHYT QKSLSLSLGK SEQ ID NO: 17 Construct #17 AQEITARIGE PLVLKCKGAP KKPPQRLE RAGE V-C1-C2- WKLNTGRTEA WKVLSPQGGG PWDSVARVLP V1stem(M/A)-(N25E)-IgG2 NGSLFLPAVG IQDEGIFRCQ AMNRNGKETK lower hinge-(IgG4CH2- SNYRVRVYQI PGKPEIVDSA SELTAGVPNK CH3) (mature protein; VGTCVSEGSY PAGTLSWHLD GKPLVPNEKG lacking the natural leader VSVKEQTRRH PETGLFTLQS ELMVTPARGG sequence) DPRPTFSCSF SPGLPRHRAL RTAPIQPRVW EPVPLEEVQL VVEPEGGAVA PGGTVTLTCE VPAQPSPQIH WMKDGVPLPL PPSPVLILPE IGPQDQGTYS CVATHSSHGP QESRAVSISI IEPGEEGPTA GEGFDKVREA EDSPQHAVEC PPCAPPVAGG PSVFLFPPKP KDTLMISRTP EVTCVVVDVS QEDPEVQFNW YVDGVEVHNA KTKPREEQFN STYRVVSVLT VLHQDWLNGK EYKCKVSNKG LPSSIEKTIS KAKGQPREPQ VYTLPPSQEE MTKNQVSLTC LVKGFYPSDI AVEWESNGQP ENNYKTTPPV LDSDGSFFLY SRLTVDKSRW QEGNVFSCSV MHEALHNHYT QKSLSLSLGK SEQ ID NO: 18 Construct #18 AQQITARIGE PLVLKCKGAP KKPPQRLE RAGE V-C1-C2- WKLNTGRTEA WKVLSPQGGG PWDSVARVLP V1stem(M/A)-(N25Q)-IgG2 NGSLFLPAVG IQDEGIFRCQ AMNRNGKETK lower hinge-(IgG4CH2- SNYRVRVYQI PGKPEIVDSA SELTAGVPNK CH3) (mature protein; VGTCVSEGSY PAGTLSWHLD GKPLVPNEKG lacking the natural leader VSVKEQTRRH PETGLFTLQS ELMVTPARGG sequence) DPRPTFSCSF SPGLPRHRAL RTAPIQPRVW EPVPLEEVQL VVEPEGGAVA PGGTVTLTCE VPAQPSPQIH WMKDGVPLPL PPSPVLILPE IGPQDQGTYS CVATHSSHGP QESRAVSISI IEPGEEGPTA GEGFDKVREA EDSPQHAVEC PPCAPPVAGG PSVFLFPPKP KDTLMISRTP EVTCVVVDVS QEDPEVQFNW YVDGVEVHNA KTKPREEQFN STYRVVSVLT VLHQDWLNGK EYKCKVSNKG LPSSIEKTIS KAKGQPREPQ VYTLPPSQEE MTKNQVSLTC LVKGFYPSDI AVEWESNGQP ENNYKTTPPV LDSDGSFFLY SRLTVDKSRW QEGNVFSCSV MHEALHNHYT QKSLSLSLGK SEQ ID NO: 19 Construct #19 AQNITARIGE PLVLKCKGAP KKPPQRLE RAGE V-C1-C2- WKLNTGRTEA WKVLSPQGGG PWDSVARVLP V1stem(M/A)-(G82S)-IgG2 NSSLFLPAVG IQDEGIFRCQ AMNRNGKETK lower hinge-(IgG4CH2- SNYRVRVYQI PGKPEIVDSA SELTAGVPNK CH3) (mature protein; VGTCVSEGSY PAGTLSWHLD GKPLVPNEKG lacking the natural leader VSVKEQTRRH PETGLFTLQS ELMVTPARGG sequence) DPRPTFSCSF SPGLPRHRAL RTAPIQPRVW EPVPLEEVQL VVEPEGGAVA PGGTVTLTCE VPAQPSPQIH WMKDGVPLPL PPSPVLILPE IGPQDQGTYS CVATHSSHGP QESRAVSISI IEPGEEGPTA GEGFDKVREA EDSPQHAVEC PPCAPPVAGG PSVFLFPPKP KDTLMISRTP EVTCVVVDVS QEDPEVQFNW YVDGVEVHNA KTKPREEQFN STYRVVSVLT VLHQDWLNGK EYKCKVSNKG LPSSIEKTIS KAKGQPREPQ VYTLPPSQEE MTKNQVSLTC LVKGFYPSDI AVEWESNGQP ENNYKTTPPV LDSDGSFFLY SRLTVDKSRW QEGNVFSCSV MHEALHNHYT QKSLSLSLGK
SEQ ID NO: 20 Construct #20 AQEITARIGE PLVLKCKGAP KKPPQRLE RAGE V-C1-C2- WKLNTGRTEA WKVLSPQGGG PWDSVARVLP V1stem(M/A)- NSSLFLPAVG IQDEGIFRCQ AMNRNGKETK (N25E/G82S)-IgG2 lower SNYRVRVYQI PGKPEIVDSA SELTAGVPNK hinge-(IgG4CH2-CH3) VGTCVSEGSY PAGTLSWHLD GKPLVPNEKG (mature protein; lacking the VSVKEQTRRH PETGLFTLQS ELMVTPARGG natural leader sequence) DPRPTFSCSF SPGLPRHRAL RTAPIQPRVW EPVPLEEVQL VVEPEGGAVA PGGTVTLTCE VPAQPSPQIH WMKDGVPLPL PPSPVLILPE IGPQDQGTYS CVATHSSHGP QESRAVSISI IEPGEEGPTA GEGFDKVREA EDSPQHAVEC PPCAPPVAGG PSVFLFPPKP KDTLMISRTP EVTCVVVDVS QEDPEVQFNW YVDGVEVHNA KTKPREEQFN STYRVVSVLT VLHQDWLNGK EYKCKVSNKG LPSSIEKTIS KAKGQPREPQ VYTLPPSQEE MTKNQVSLTC LVKGFYPSDI AVEWESNGQP ENNYKTTPPV LDSDGSFFLY SRLTVDKSRW QEGNVFSCSV MHEALHNHYT QKSLSLSLGK SEQ ID NO: 21 Construct #21 AQQITARIGE PLVLKCKGAP KKPPQRLE RAGE V-C1-C2- WKLNTGRTEA WKVLSPQGGG PWDSVARVLP V1stem(M/A)- NSSLFLPAVG IQDEGIFRCQ AMNRNGKETK (N25Q/G82S)-IgG2 lower SNYRVRVYQI PGKPEIVDSA SELTAGVPNK hinge-(IgG4CH2-CH3) VGTCVSEGSY PAGTLSWHLD GKPLVPNEKG (mature protein; lacking the VSVKEQTRRH PETGLFTLQS ELMVTPARGG natural leader sequence) DPRPTFSCSF SPGLPRHRAL RTAPIQPRVW EPVPLEEVQL VVEPEGGAVA PGGTVTLTCE VPAQPSPQIH WMKDGVPLPL PPSPVLILPE IGPQDQGTYS CVATHSSHGP QESRAVSISI IEPGEEGPTA GEGFDKVREA EDSPQHAVEC PPCAPPVAGG PSVFLFPPKP KDTLMISRTP EVTCVVVDVS QEDPEVQFNW YVDGVEVHNA KTKPREEQFN STYRVVSVLT VLHQDWLNGK EYKCKVSNKG LPSSIEKTIS KAKGQPREPQ VYTLPPSQEE MTKNQVSLTC LVKGFYPSDI AVEWESNGQP ENNYKTTPPV LDSDGSFFLY SRLTVDKSRW QEGNVFSCSV MHEALHNHYT QKSLSLSLGK SEQ ID NO: 22 Construct #22 AQNITARIGE PLVLKCKGAP KKPPQRLE RAGE V-C1-C2- WKLNTGRTEA WKVLSPQGGG PWDSVARVLP V1stem(M/A)-(N81A)-IgG2 AGSLFLPAVG IQDEGIFRCQ AMNRNGKETK lower hinge-(IgG4CH2- SNYRVRVYQI PGKPEIVDSA SELTAGVPNK CH3) (mature protein; VGTCVSEGSY PAGTLSWHLD GKPLVPNEKG lacking the natural leader VSVKEQTRRH PETGLFTLQS ELMVTPARGG sequence) DPRPTFSCSF SPGLPRHRAL RTAPIQPRVW EPVPLEEVQL VVEPEGGAVA PGGTVTLTCE VPAQPSPQIH WMKDGVPLPL PPSPVLILPE IGPQDQGTYS CVATHSSHGP QESRAVSISI IEPGEEGPTA GEGFDKVREA EDSPQHAVEC PPCAPPVAGG PSVFLFPPKP KDTLMISRTP EVTCVVVDVS QEDPEVQFNW YVDGVEVHNA KTKPREEQFN STYRVVSVLT VLHQDWLNGK EYKCKVSNKG LPSSIEKTIS KAKGQPREPQ VYTLPPSQEE MTKNQVSLTC LVKGFYPSDI AVEWESNGQP ENNYKTTPPV LDSDGSFFLY SRLTVDKSRW QEGNVFSCSV MHEALHNHYT QKSLSLSLGK SEQ ID NO: 23 Construct #23 AQEITARIGE PLVLKCKGAP KKPPQRLE RAGE V-C1-C2- WKLNTGRTEA WKVLSPQGGG PWDSVARVLP V1stem(M/A)- AGSLFLPAVG IQDEGIFRCQ AMNRNGKETK (N25E/N81A)-IgG2 lower SNYRVRVYQI PGKPEIVDSA SELTAGVPNK hinge-(IgG4CH2-CH3) VGTCVSEGSY PAGTLSWHLD GKPLVPNEKG (mature protein; lacking the VSVKEQTRRH PETGLFTLQS ELMVTPARGG natural leader sequence) DPRPTFSCSF SPGLPRHRAL RTAPIQPRVW EPVPLEEVQL VVEPEGGAVA PGGTVTLTCE VPAQPSPQIH WMKDGVPLPL PPSPVLILPE IGPQDQGTYS CVATHSSHGP QESRAVSISI IEPGEEGPTA GEGFDKVREA EDSPQHAVEC PPCAPPVAGG PSVFLFPPKP KDTLMISRTP EVTCVVVDVS QEDPEVQFNW YVDGVEVHNA KTKPREEQFN STYRVVSVLT VLHQDWLNGK EYKCKVSNKG LPSSIEKTIS KAKGQPREPQ VYTLPPSQEE MTKNQVSLTC LVKGFYPSDI AVEWESNGQP ENNYKTTPPV LDSDGSFFLY SRLTVDKSRW QEGNVFSCSV MHEALHNHYT QKSLSLSLGK SEQ ID NO: 24 Construct #24 AQQITARIGE PLVLKCKGAP KKPPQRLE RAGE V-C1-C2- WKLNTGRTEA WKVLSPQGGG PWDSVARVLP V1 tem(M/A)- AGSLFLPAVG IQDEGIFRCQ AMNRNGKETK (N25Q/N81A)-IgG2 lower SNYRVRVYQI PGKPEIVDSA SELTAGVPNK hinge-(IgG4CH2-CH3) VGTCVSEGSY PAGTLSWHLD GKPLVPNEKG (mature protein; lacking the VSVKEQTRRH PETGLFTLQS ELMVTPARGG natural leader sequence) DPRPTFSCSF SPGLPRHRAL RTAPIQPRVW EPVPLEEVQL VVEPEGGAVA PGGTVTLTCE VPAQPSPQIH WMKDGVPLPL PPSPVLILPE IGPQDQGTYS CVATHSSHGP QESRAVSISI IEPGEEGPTA GEGFDKVREA EDSPQHAVEC PPCAPPVAGG PSVFLFPPKP KDTLMISRTP EVTCVVVDVS QEDPEVQFNW YVDGVEVHNA KTKPREEQFN STYRVVSVLT VLHQDWLNGK EYKCKVSNKG LPSSIEKTIS KAKGQPREPQ VYTLPPSQEE MTKNQVSLTC LVKGFYPSDI AVEWESNGQP ENNYKTTPPV LDSDGSFFLY SRLTVDKSRW QEGNVFSCSV MHEALHNHYT QKSLSLSLGK SEQ ID NO: 25 Construct #25 AQEITARIGE PLVLKCKGAP KKPPQRLE RAGE V-C1-C2- WKLNTGRTEA WKVLSPQGGG PWDSVARVLP V1stem(M/A)-(N25E)-IgG2 NGSLFLPAVG IQDEGIFRCQ AMNRNGKETK lower hinge-(IgG4CH2- SNYRVRVYQI PGKPEIVDSA SELTAGVPNK CH3)-YTE (mature protein; VGTCVSEGSY PAGTLSWHLD GKPLVPNEKG lacking the natural leader VSVKEQTRRH PETGLFTLQS ELMVTPARGG sequence) DPRPTFSCSF SPGLPRHRAL RTAPIQPRVW EPVPLEEVQL VVEPEGGAVA PGGTVTLTCE VPAQPSPQIH WMKDGVPLPL PPSPVLILPE IGPQDQGTYS CVATHSSHGP QESRAVSISI IEPGEEGPTA GEGFDKVREA EDSPQHAVEC PPCAPPVAGG PSVFLFPPKP KDTLYITREP EVTCVVVDVS QEDPEVQFNW YVDGVEVHNA KTKPREEQFN STYRVVSVLT VLHQDWLNGK EYKCKVSNKG LPSSIEKTIS KAKGQPREPQ VYTLPPSQEE MTKNQVSLTC LVKGFYPSDI AVEWESNGQP ENNYKTTPPV LDSDGSFFLY SRLTVDKSRW QEGNVFSCSV MHEALHNHYT QKSLSLSLGK SEQ ID NO: 26 Construct #26 AQQITARIGE PLVLKCKGAP KKPPQRLE RAGE V-C1-C2- WKLNTGRTEA WKVLSPQGGG PWDSVARVLP V1stem(M/A)-(N25Q)-IgG2 NGSLFLPAVG IQDEGIFRCQ AMNRNGKETK lower hinge-(IgG4CH2- SNYRVRVYQI PGKPEIVDSA SELTAGVPNK CH3)-YTE (mature protein; VGTCVSEGSY PAGTLSWHLD GKPLVPNEKG lacking the natural leader VSVKEQTRRH PETGLFTLQS ELMVTPARGG sequence) DPRPTFSCSF SPGLPRHRAL RTAPIQPRVW EPVPLEEVQL VVEPEGGAVA PGGTVTLTCE VPAQPSPQIH WMKDGVPLPL PPSPVLILPE IGPQDQGTYS CVATHSSHGP QESRAVSISI IEPGEEGPTA GEGFDKVREA EDSPQHAVEC PPCAPPVAGG PSVFLFPPKP KDTLYITREP EVTCVVVDVS QEDPEVQFNW YVDGVEVHNA KTKPREEQFN STYRVVSVLT VLHQDWLNGK EYKCKVSNKG LPSSIEKTIS KAKGQPREPQ VYTLPPSQEE MTKNQVSLTC LVKGFYPSDI AVEWESNGQP ENNYKTTPPV LDSDGSFFLY SRLTVDKSRW QEGNVFSCSV MHEALHNHYT QKSLSLSLGK SEQ ID NO: 27 Construct #27 AQNITARIGE PLVLKCKGAP KKPPQRLE RAGE V-C1-C2- WKLNTGRTEA WKVLSPQGGG PWDSVARVLP V1stem(M/A)-(G82S)-IgG2 NSSLFLPAVG IQDEGIFRCQ AMNRNGKETK lower hinge-(IgG4CH2- SNYRVRVYQI PGKPEIVDSA SELTAGVPNK CH3)-YTE (mature protein; VGTCVSEGSY PAGTLSWHLD GKPLVPNEKG lacking the natural leader VSVKEQTRRH PETGLFTLQS ELMVTPARGG sequence) DPRPTFSCSF SPGLPRHRAL RTAPIQPRVW EPVPLEEVQL VVEPEGGAVA PGGTVTLTCE VPAQPSPQIH WMKDGVPLPL PPSPVLILPE IGPQDQGTYS CVATHSSHGP QESRAVSISI IEPGEEGPTA GEGFDKVREA EDSPQHAVEC PPCAPPVAGG PSVFLFPPKP KDTLYITREP EVTCVVVDVS QEDPEVQFNW YVDGVEVHNA KTKPREEQFN STYRVVSVLT VLHQDWLNGK EYKCKVSNKG LPSSIEKTIS KAKGQPREPQ VYTLPPSQEE MTKNQVSLTC LVKGFYPSDI AVEWESNGQP ENNYKTTPPV LDSDGSFFLY SRLTVDKSRW QEGNVFSCSV MHEALHNHYT QKSLSLSLGK SEQ ID NO: 28 Construct #28 AQEITARIGE PLVLKCKGAP KKPPQRLE RAGE V-C1-C2- WKLNTGRTEA WKVLSPQGGG PWDSVARVLP V1stem(M/A)- NSSLFLPAVG IQDEGIFRCQ AMNRNGKETK (N25E/G82S)-IgG2 lower SNYRVRVYQI PGKPEIVDSA SELTAGVPNK hinge-(IgG4CH2-CH3)- VGTCVSEGSY PAGTLSWHLD GKPLVPNEKG YTE (mature protein; VSVKEQTRRH PETGLFTLQS ELMVTPARGG lacking the natural leaders DPRPTFSCSF SPGLPRHRAL RTAPIQPRVW sequence) EPVPLEEVQL VVEPEGGAVA PGGTVTLTCE VPAQPSPQIH WMKDGVPLPL PPSPVLILPE IGPQDQGTYS CVATHSSHGP QESRAVSISI IEPGEEGPTA GEGFDKVREA EDSPQHAVEC PPCAPPVAGG PSVFLFPPKP KDTLYITREP EVTCVVVDVS QEDPEVQFNW YVDGVEVHNA KTKPREEQFN STYRVVSVLT VLHQDWLNGK EYKCKVSNKG LPSSIEKTIS KAKGQPREPQ VYTLPPSQEE MTKNQVSLTC LVKGFYPSDI AVEWESNGQP ENNYKTTPPV LDSDGSFFLY SRLTVDKSRW QEGNVFSCSV MHEALHNHYT QKSLSLSLGK SEQ ID NO: 29 Construct #29 AQQITARIGE PLVLKCKGAP KKPPQRLE RAGE V-C1-C2- WKLNTGRTEA WKVLSPQGGG PWDSVARVLP V1stem(M/A)- NSSLFLPAVG IQDEGIFRCQ AMNRNGKETK (N25Q/G82S)-IgG2 lower SNYRVRVYQI PGKPEIVDSA SELTAGVPNK hinge-(IgG4CH2-CH3)- VGTCVSEGSY PAGTLSWHLD GKPLVPNEKG YTE (mature protein; VSVKEQTRRH PETGLFTLQS ELMVTPARGG lacking the natural leaders DPRPTFSCSF SPGLPRHRAL RTAPIQPRVW sequence) EPVPLEEVQL VVEPEGGAVA PGGTVTLTCE VPAQPSPQIH WMKDGVPLPL PPSPVLILPE IGPQDQGTYS CVATHSSHGP QESRAVSISI IEPGEEGPTA GEGFDKVREA EDSPQHAVEC PPCAPPVAGG PSVFLFPPKP KDTLYITREP EVTCVVVDVS QEDPEVQFNW YVDGVEVHNA KTKPREEQFN STYRVVSVLT VLHQDWLNGK EYKCKVSNKG LPSSIEKTIS KAKGQPREPQ VYTLPPSQEE MTKNQVSLTC LVKGFYPSDI AVEWESNGQP ENNYKTTPPV LDSDGSFFLY SRLTVDKSRW QEGNVFSCSV MHEALHNHYT QKSLSLSLGK SEQ ID NO: 30 Construct #30 AQNITARIGE PLVLKCKGAP KKPPQRLE RAGE V-C1-C2- WKLNTGRTEA WKVLSPQGGG PWDSVARVLP V1stem(M/A)-IgG2 NGSLFLPAVG IQDEGIFRCQ AMNRNGKETK complete hinge-(IgG4CH2- SNYRVRVYQI PGKPEIVDSA SELTAGVPNK CH3)-YTE (mature protein; VGTCVSEGSY PAGTLSWHLD GKPLVPNEKG lacking the natural leader VSVKEQTRRH PETGLFTLQS ELMVTPARGG sequence) DPRPTFSCSF SPGLPRHRAL RTAPIQPRVW EPVPLEEVQL VVEPEGGAVA PGGTVTLTCE VPAQPSPQIH WMKDGVPLPL PPSPVLILPE IGPQDQGTYS CVATHSSHGP QESRAVSISI IEPGEEGPTA GEGFDKVREA EDSPQHAERK CCVECPPCAP PVAGGPSVFL FPPKPKDTLY ITREPEVTCV VVDVSQEDPE VQFNWYVDGV EVHNAKTKPR EEQFNSTYRV VSVLTVLHQD WLNGKEYKCK VSNKGLPSSI EKTISKAKGQ PREPQVYTLP PSQEEMTKNQ VSLTCLVKGF YPSDIAVEWE SNGQPENNYK TTPPVLDSDG SFFLYSRLTV DKSRWQEGNV FSCSVMHEAL HNHYTQKSLS LSLGK SEQ ID NO: 31 Construct #31 AQNITARIGE PLVLKCKGAP KKPPQRLE RAGE V-C1-C2- WKLNTGRTEA WKVLSPQGGG PWDSVARVLP V1stem(M/A)-IgG2 lower NGSLFLPAVG IQDEGIFRCQ AMNRNGKETK hinge-(IgG2CH2-CH3)- SNYRVRVYQI PGKPEIVDSA SELTAGVPNK YTE (mature protein; VGTCVSEGSY PAGTLSWHLD GKPLVPNEKG lacking the natural leader VSVKEQTRRH PETGLFTLQS ELMVTPARGG sequence) DPRPTFSCSF SPGLPRHRAL RTAPIQPRVW EPVPLEEVQL VVEPEGGAVA PGGTVTLTCE VPAQPSPQIH WMKDGVPLPL PPSPVLILPE IGPQDQGTYS CVATHSSHGP QESRAVSISI IEPGEEGPTA GEGFDKVREA EDSPQHAVEC PPCAPPVAGP SVFLFPPKPK DTLYITREPE VTCVVVDVSH EDPEVQFNWY VDGVEVHNAK TKPREEQFNS TFRVVSVLTV VHQDWLNGKE YKCKVSNKGL PAPIEKTISK TKGQPREPQV YTLPPSREEM TKNQVSLTCL VKGFYPSDIA VEWESNGQPE NNYKTTPPML DSDGSFFLYS KLTVDKSRWQ QGNVFSCSVM HEALHNHYTQ KSLSLSPGK SEQ ID NO: 32 Construct #32 AQNITARIGE PLVLKCKGAP KKPPQRLE RAGE V-C1-C2- WKLNTGRTEA WKVLSPQGGG PWDSVARVLP V1stem(M/A)-IgG2 lower NGSLFLPAVG IQDEGIFRCQ AMNRNGKETK hinge-(IgG1CH2-CH3)- SNYRVRVYQI PGKPEIVDSA SELTAGVPNK YTE (mature protein; VGTCVSEGSY PAGTLSWHLD GKPLVPNEKG lacking the natural leader VSVKEQTRRH PETGLFTLQS ELMVTPARGG sequence) DPRPTFSCSF SPGLPRHRAL RTAPIQPRVW EPVPLEEVQL VVEPEGGAVA PGGTVTLTCE VPAQPSPQIH WMKDGVPLPL PPSPVLILPE IGPQDQGTYS CVATHSSHGP QESRAVSISI IEPGEEGPTA GEGFDKVREA EDSPQHAVEC
PPCAPPVAGG PSVFLFPPKP KDTLYITREP EVTCVVVDVS HEDPEVKFNW YVDGVEVHNA KTKPREEQYN STYRVVSVLT VLHQDWLNGK EYKCKVSNKA LPAPIEKTIS KAKGQPREPQ VYTLPPSRDE LTKNQVSLTC LVKGFYPSDI AVEWESNGQP ENNYKTTPPV LDSDGSFFLY SKLTVDKSRW QQGNVFSCSV MHEALHNHYT QKSLSLSPGK SEQ ID NO: 33 Construct #33 AQNITARIGE PLVLKCKGAP KKPPQRLE RAGE V-C1-C2- WKLNTGRTEA WKVLSPQGGG PWDSVARVLP V1stem(M/A)-IgG4-hinge NGSLFLPAVG IQDEGIFRCQ AMNRNGKETK (S/P-AA)-(IgG1CH2- SNYRVRVYQI PGKPEIVDSA SELTAGVPNK CH3)-YTE (mature protein; VGTCVSEGSY PAGTLSWHLD GKPLVPNEKG lacking the natural leaders VSVKEQTRRH PETGLFTLQS ELMVTPARGG sequence) DPRPTFSCSF SPGLPRHRAL RTAPIQPRVW EPVPLEEVQL VVEPEGGAVA PGGTVTLTCE VPAQPSPQIH WMKDGVPLPL PPSPVLILPE IGPQDQGTYS CVATHSSHGP QESRAVSISI IEPGEEGPTA GEGFDKVREA EDSPQHAESK YGPPCPPCPA PEAAGGPSVF LFPPKPKDTL YITREPEVTC VVVDVSHEDP EVKFNWYVDG VEVHNAKTKP REEQYNSTYR VVSVLTVLHQ DWLNGKEYKC KVSNKALPAP IEKTISKAKG QPREPQVYTL PPSRDELTKN QVSLTCLVKG FYPSDIAVEW ESNGQPENNY KTTPPVLDSD GSFFLYSKLT VDKSRWQQGN VFSCSVMHEA LHNHYTQKSL SLSPGK SEQ ID NO: 34 Construct #34 AQNITARIGE PLVLKCKGAP KKPPQRLE RAGE V-C1-C2- WKLNTGRTEA WKVLSPQGGG PWDSVARVLP V1stem(M/A)-IgG1 hinge NGSLFLPAVG IQDEGIFRCQ AMNRNGKETK (AA)-(IgG1CH2-CH3)- SNYRVRVYQI PGKPEIVDSA SELTAGVPNK YTE (mature protein; VGTCVSEGSY PAGTLSWHLD GKPLVPNEKG lacking the natural leaders VSVKEQTRRH PETGLFTLQS ELMVTPARGG sequence) DPRPTFSCSF SPGLPRHRAL RTAPIQPRVW EPVPLEEVQL VVEPEGGAVA PGGTVTLTCE VPAQPSPQIH WMKDGVPLPL PPSPVLILPE IGPQDQGTYS CVATHSSHGP QESRAVSISI IEPGEEGPTA GEGFDKVREA EDSPQHAEPK SCDKTHTCPP CPAPEAAGGP SVFLFPPKPK DTLYITREPE VTCVVVDVSH EDPEVKFNWY VDGVEVHNAK TKPREEQYNS TYRVVSVLTV LHQDWLNGKE YKCKVSNKAL PAPIEKTISK AKGQPREPQV YTLPPSRDEL TKNQVSLTCL VKGFYPSDIA VEWESNGQPE NNYKTTPPVL DSDGSFFLYS KLTVDKSRWQ QGNVFSCSVM HEALHNHYTQ KSLSLSPGK SEQ ID NO: 35 Construct #35 AQNITARIGE PLVLKCKGAP KKPPQRLE (10 + YTE) WKLNTGRTEA WKVLSPQGGG PWDSVARVLP RAGE V-C1-C2- RAGE V- NGSLFLPAVG IQDEGIFRCQ AMNRNGKETK C1-C2-V1stem(M/A)-IgG4- SNYRVRVYQI PGKPEIVDSA SELTAGVPNK hinge (S/P-AA)- VGTCVSEGSY PAGTLSWHLD GKPLVPNEKG (IgG4CH2-CH3)-YTE VSVKEQTRRH PETGLFTLQS ELMVTPARGG (mature protein; lacking the DPRPTFSCSF SPGLPRHRAL RTAPIQPRVW natural leaders sequence) EPVPLEEVQL VVEPEGGAVA PGGTVTLTCE VPAQPSPQIH WMKDGVPLPL PPSPVLILPE IGPQDQGTYS CVATHSSHGP QESRAVSISI IEPGEEGPTA GEGFDKVREA EDSPQHAESK YGPPCPPCPA PEAAGGPSVF LFPPKPKDTL YITREPEVTC VVVDVSQEDP EVQFNWYVDG VEVHNAKTKP REEQFNSTYR VVSVLTVLHQ DWLNGKEYKC KVSNKGLPSS IEKTISKAKG QPREPQVYTL PPSQEEMTKN QVSLTCLVKG FYPSDIAVEW ESNGQPENNY KTTPPVLDSD GSFFLYSRLT VDKSRWQEGN VFSCSVMHEA LHNHYTQKSL SLSLGK SEQ ID NO: 36 Construct #36 AQNITARIGE PLVLKCKGAP KKPPQRLE (#11 + YTE) WKLNTGRTEA WKVLSPQGGG PWDSVARVLP RAGE V-C1-C2- NGSLFLPAVG IQDEGIFRCQ AMNRNGKETK V1stem(M/A)-VH8aa-IgG4- SNYRVRVYQI PGKPEIVDSA SELTAGVPNK hinge (S/P-AA)- VGTCVSEGSY PAGTLSWHLD GKPLVPNEKG (IgG4CH2-CH3)-YTE VSVKEQTRRH PETGLFTLQS ELMVTPARGG (mature protein; lacking the DPRPTFSCSF SPGLPRHRAL RTAPIQPRVW natural leaders sequence) EPVPLEEVQL VVEPEGGAVA PGGTVTLTCE VPAQPSPQIH WMKDGVPLPL PPSPVLILPE IGPQDQGTYS CVATHSSHGP QESRAVSISI IEPGEEGPTA GEGFDKVREA EDSPQHAGTL VTVSSESKYG PPCPPCPAPE AAGGPSVFLF PPKPKDTLYI TREPEVTCVV VDVSQEDPEV QFNWYVDGVE VHNAKTKPRE EQFNSTYRVV SVLTVLHQDW LNGKEYKCKV SNKGLPSSIE KTISKAKGQP REPQVYTLPP SQEEMTKNQV SLTCLVKGFY PSDIAVEWES NGQPENNYKT TPPVLDSDGS FFLYSRLTVD KSRWQEGNVF SCSVMHEALH NHYTQKSLSL SLGK SEQ ID NO: 37 Construct #13 AQEITARIGE PLVLKCKGAP KKPPQRLEWK RAGEV-C1-C2 (N25E/G82S)- LNTGRTEAWK VLSPQGGGPW DSVARVLPNS Natural Stem-short linker-IgG1 SLFLPAVGIQ DEGIFRCQAM NRNGKETKSN hinge-(IgG1CH2-CH3) YRVRVYQIPG KPEIVDSASE LTAGVPNKVG (mature protein; lacking the TCVSEGSYPA GTLSWHLDGK PLVPNEKGVS natural leaders sequence) VKEQTRRHPE TGLFTLQSEL MVTPARGGDP RPTFSCSFSP GLPRHRALRT APIQPRVWEP VPLEEVQLVV EPEGGAVAPG GTVTLTCEVP AQPSPQIHWM KDGVPLPLPP SPVLILPEIG PQDQGTYSCV ATHSSHGPQE SRAVSISIIE PGEEGPTAGS VGGSGLGTLA LAIEGRMPKS CDKTHTCPPC PAPELLGGPS VFLFPPKPKD TLMISRTPEV TCVVVDVSHE DPEVKFNWYV DGVEVHNAKT KPREEQYNST YRVVSVLTVL HQDWLNGKEY KCKVSNKALP APIEKTISKA KGQPREPQVY TLPPSRDELT KNQVSLTCLV KGFYPSDIAV EWESNGQPEN NYKTTPPVLD SDGSFFLYSK LTVDKSRWQQ GNVFSCSVMH EALHNHYTQK SLSLSPGK SEQ ID NO: 38 Nucleotide sequence of GCTCAGAATATCACCGCCAGAATCGGCGAGCCCCTGGTG Construct #1 CTGAAATGTAAAGGCGCCCCTAAGAAGCCTCCTCAGCGG CTGGAATGGAAGCTGAACACCGGCAGAACCGAGGCCTGG AAAGTGCTGTCTCCTCAAGGCGGAGGCCCTTGGGATTCT GTGGCTAGAGTGCTGCCTAACGGCTCCCTGTTTCTGCCT GCTGTGGGCATCCAGGACGAGGGCATCTTCAGGTGTCAG GCCATGAACCGGAACGGCAAAGAGACAAAGTCCAACTAC CGCGTCAGAGTGTATCAGATCCCCGGCAAGCCTGAGATC GTGGACTCTGCCTCTGAACTGACAGCCGGCGTGCCCAAC AAAGTGGGCACTTGTGTGTCCGAGGGCAGCTATCCTGCT GGCACCCTGTCTTGGCATCTGGATGGAAAGCCTCTGGTG CCCAACGAGAAAGGCGTGTCCGTGAAAGAGCAGACCAGA CGGCATCCTGAGACTGGCCTGTTCACCCTGCAGTCCGAG CTGATGGTTACCCCTGCTAGAGGCGGCGATCCCAGACCT ACCTTCAGCTGCTCCTTCTCTCCTGGCCTGCCTCGACAT AGAGCCCTGAGAACCGCTCCTATCCAGCCTAGAGTGTGG GAGCCTGTGCCTCTGGAAGAGGTGCAGCTGGTGGTTGAA CCTGAAGGCGGAGCTGTTGCTCCTGGCGGAACAGTGACC CTGACCTGTGAAGTTCCCGCTCAGCCCTCTCCACAGATC CACTGGATGAAGGATGGCGTGCCACTGCCTCTGCCTCCA TCTCCTGTTCTGATCCTGCCAGAGATCGGCCCTCAGGAC CAGGGCACCTATTCTTGTGTGGCTACCCACTCCTCTCAC GGCCCTCAAGAGTCTAGAGCCGTGTCCATCTCCATCATC GAGCCTGGCGAGGAAGGCCCTACAGCTGGTTCTGTTGGA GGCTCTGGACTGGGCACACTGGCCCTGGCTATTGAGGGC AGAATGCCCAAGTCCTGCGACAAGACCCACACCTGTCCT CCATGTCCTGCTCCAGAACTGCTCGGCGGACCTTCCGTG TTCCTGTTTCCTCCAAAGCCTAAGGACACCCTGATGATC TCTCGGACCCCTGAAGTGACCTGCGTGGTGGTGGATGTG TCTCACGAGGATCCCGAAGTGAAGTTCAATTGGTACGTG GACGGCGTGGAAGTGCACAACGCCAAGACCAAGCCTAGA GAGGAACAGTACAACTCCACCTACAGAGTGGTGTCCGTG CTGACCGTGCTGCACCAGGATTGGCTGAATGGCAAAGAG TATAAGTGCAAGGTGTCCAACAAGGCCCTGCCTGCTCCT ATCGAAAAGACCATCTCCAAGGCCAAGGGCCAGCCTAGG GAACCCCAGGTTTACACCTTGCCACCTTCTCGGGACGAG CTGACCAAGAACCAGGTGTCCCTGACATGCCTGGTCAAG GGCTTCTACCCCTCCGATATCGCCGTGGAATGGGAGTCT AATGGCCAGCCTGAGAACAACTACAAGACAACCCCTCCT GTGCTGGACTCCGACGGCTCATTCTTCCTGTACTCCAAG CTGACAGTGGACAAGTCCAGATGGCAGCAGGGCAACGTG TTCTCCTGCTCCGTGATGCACGAGGCCCTGCACAATCAC TACACCCAGAAGTCCCTGTCTCTGTCCCCTGGCAAATGA SEQ ID NO: 39 Nucleotide sequence of GCTCAGAATATCACCGCCAGAATCGGCGAGCCCCTGGTG Construct #10 CTGAAATGTAAAGGCGCCCCTAAGAAGCCTCCTCAGCGG CTGGAATGGAAGCTGAACACCGGCAGAACCGAGGCCTGG AAAGTGCTGTCTCCTCAAGGCGGAGGCCCTTGGGATTCT GTGGCTAGAGTGCTGCCTAACGGCTCCCTGTTTCTGCCT GCTGTGGGCATCCAGGACGAGGGCATCTTCAGGTGTCAG GCCATGAACCGGAACGGCAAAGAGACAAAGTCCAACTAC CGCGTCAGAGTGTATCAGATCCCCGGCAAGCCTGAGATC GTGGACTCTGCCTCTGAACTGACAGCCGGCGTGCCCAAC AAAGTGGGCACTTGTGTGTCCGAGGGCAGCTATCCTGCT GGCACCCTGTCTTGGCATCTGGATGGAAAGCCTCTGGTG CCCAACGAGAAAGGCGTGTCCGTGAAAGAGCAGACCAGA CGGCATCCTGAGACTGGCCTGTTCACCCTGCAGTCCGAG CTGATGGTTACCCCTGCTAGAGGCGGCGATCCCAGACCT ACCTTCAGCTGCTCCTTCTCTCCTGGCCTGCCTCGACAT AGAGCCCTGAGAACCGCTCCTATCCAGCCTAGAGTGTGG GAGCCTGTGCCTCTGGAAGAGGTGCAGCTGGTGGTTGAA CCTGAAGGCGGAGCTGTTGCTCCTGGCGGAACAGTGACC CTGACCTGTGAAGTTCCCGCTCAGCCCTCTCCACAGATC CACTGGATGAAGGATGGCGTGCCACTGCCTCTGCCTCCA TCTCCTGTTCTGATCCTGCCAGAGATCGGCCCTCAGGAC CAGGGCACCTATTCTTGTGTGGCTACCCACTCCTCTCAC GGCCCTCAAGAGTCTAGAGCCGTGTCCATCTCCATCATC GAGCCTGGCGAGGAAGGACCTACAGCTGGCGAGGGCTTT GACAAAGTGCGCGAGGCCGAGGATTCTCCTCAGCATGCT GAGTCTAAGTACGGCCCTCCTTGTCCTCCATGTCCTGCT CCAGAAGCTGCTGGCGGCCCTTCCGTGTTTCTGTTCCCT CCAAAGCCTAAGGACACCCTGATGATCTCTCGGACCCCT GAAGTGACCTGCGTGGTGGTGGATGTGTCCCAAGAGGAT CCCGAGGTGCAGTTCAATTGGTACGTGGACGGCGTGGAA GTGCACAACGCCAAGACCAAGCCTAGAGAGGAACAGTTC AACTCCACCTACAGAGTGGTGTCCGTGCTGACCGTGCTG CACCAGGATTGGCTGAATGGCAAAGAGTATAAGTGCAAG GTGTCCAACAAGGGCCTGCCTTCCAGCATCGAAAAGACC ATCTCCAAGGCCAAGGGCCAGCCTAGGGAACCCCAGGTT TACACCCTGCCTCCAAGCCAAGAGGAAATGACCAAGAAC CAGGTGTCCCTGACATGCCTGGTCAAGGGCTTCTACCCC TCCGATATCGCCGTGGAATGGGAGTCTAATGGCCAGCCT GAGAACAACTACAAGACCACACCTCCTGTGCTGGACTCC GACGGCAGCTTCTTTCTGTACTCCCGCCTGACCGTGGAC AAGTCCAGGTGGCAAGAGGGCAACGTGTTCTCCTGCTCC GTGATGCACGAGGCCCTGCACAATCACTACACCCAGAAG TCCCTGTCTCTGTCCCTGGGCAAATGA SEQ ID NO: 40 Nucleotide sequence of GCTCAGAATATCACCGCCAGAATCGGCGAGCCCCTGGTG Construct #11 CTGAAATGTAAAGGCGCCCCTAAGAAGCCTCCTCAGCGG CTGGAATGGAAGCTGAACACCGGCAGAACCGAGGCCTGG AAAGTGCTGTCTCCTCAAGGCGGAGGCCCTTGGGATTCT GTGGCTAGAGTGCTGCCTAACGGCTCCCTGTTTCTGCCT GCTGTGGGCATCCAGGACGAGGGCATCTTCAGGTGTCAG GCCATGAACCGGAACGGCAAAGAGACAAAGTCCAACTAC CGCGTCAGAGTGTATCAGATCCCCGGCAAGCCTGAGATC GTGGACTCTGCCTCTGAACTGACAGCCGGCGTGCCCAAC AAAGTGGGCACTTGTGTGTCCGAGGGCAGCTATCCTGCT GGCACCCTGTCTTGGCATCTGGATGGAAAGCCTCTGGTG CCCAACGAGAAAGGCGTGTCCGTGAAAGAGCAGACCAGA CGGCATCCTGAGACTGGCCTGTTCACCCTGCAGTCCGAG CTGATGGTTACCCCTGCTAGAGGCGGCGATCCCAGACCT ACCTTCAGCTGCTCCTTCTCTCCTGGCCTGCCTCGACAT AGAGCCCTGAGAACCGCTCCTATCCAGCCTAGAGTGTGG GAGCCTGTGCCTCTGGAAGAGGTGCAGCTGGTGGTTGAA CCTGAAGGCGGAGCTGTTGCTCCTGGCGGAACAGTGACC CTGACCTGTGAAGTTCCCGCTCAGCCCTCTCCACAGATC CACTGGATGAAGGATGGCGTGCCACTGCCTCTGCCTCCA TCTCCTGTTCTGATCCTGCCAGAGATCGGCCCTCAGGAC CAGGGCACCTATTCTTGTGTGGCTACCCACTCCTCTCAC GGCCCTCAAGAGTCTAGAGCCGTGTCCATCTCCATCATC GAGCCTGGCGAGGAAGGACCTACAGCTGGCGAGGGCTTT GACAAAGTGCGCGAGGCTGAGGACTCTCCTCAGCATGCC GGAACACTGGTCACCGTGTCCTCCGAGTCTAAGTACGGC CCTCCTTGTCCTCCATGTCCTGCTCCAGAAGCTGCTGGC GGCCCTTCCGTGTTTCTGTTCCCTCCAAAGCCTAAGGAC ACCCTGATGATCTCTCGGACCCCTGAAGTGACCTGCGTG GTGGTGGATGTGTCCCAAGAGGATCCCGAGGTGCAGTTC AATTGGTACGTGGACGGCGTGGAAGTGCACAACGCCAAG ACCAAGCCTAGAGAGGAACAGTTCAACTCCACCTACAGA GTGGTGTCCGTGCTGACCGTGCTGCACCAGGATTGGCTG AATGGCAAAGAGTATAAGTGCAAGGTGTCCAACAAGGGC CTGCCTTCCAGCATCGAAAAGACCATCTCCAAGGCCAAG GGCCAGCCTAGGGAACCCCAGGTTTACACCCTGCCTCCA AGCCAAGAGGAAATGACCAAGAACCAGGTGTCCCTGACA TGCCTGGTCAAGGGCTTCTACCCCTCCGATATCGCCGTG GAATGGGAGTCTAATGGCCAGCCTGAGAACAACTACAAG ACCACACCTCCTGTGCTGGACTCCGACGGCAGCTTCTTT CTGTACTCCCGCCTGACCGTGGACAAGTCCAGGTGGCAA GAGGGCAACGTGTTCTCCTGCTCCGTGATGCACGAGGCC CTGCACAATCACTACACCCAGAAGTCCCTGTCTCTGTCC CTGGGCAAATGA SEQ ID NO: 41 Nucleotide sequence of GCTCAGAATATCACCGCCAGAATCGGCGAGCCCCTGGTG Construct #12 CTGAAATGTAAAGGCGCCCCTAAGAAGCCTCCTCAGCGG CTGGAATGGAAGCTGAACACCGGCAGAACCGAGGCCTGG AAAGTGCTGTCTCCTCAAGGCGGAGGCCCTTGGGATTCT GTGGCTAGAGTGCTGCCTAACGGCTCCCTGTTTCTGCCT
GCTGTGGGCATCCAGGACGAGGGCATCTTCAGGTGTCAG GCCATGAACCGGAACGGCAAAGAGACAAAGTCCAACTAC CGCGTCAGAGTGTATCAGATCCCCGGCAAGCCTGAGATC GTGGACTCTGCCTCTGAACTGACAGCCGGCGTGCCCAAC AAAGTGGGCACTTGTGTGTCCGAGGGCAGCTATCCTGCT GGCACCCTGTCTTGGCATCTGGATGGAAAGCCTCTGGTG CCCAACGAGAAAGGCGTGTCCGTGAAAGAGCAGACCAGA CGGCATCCTGAGACTGGCCTGTTCACCCTGCAGTCCGAG CTGATGGTTACCCCTGCTAGAGGCGGCGATCCCAGACCT ACCTTCAGCTGCTCCTTCTCTCCTGGCCTGCCTCGACAT AGAGCCCTGAGAACCGCTCCTATCCAGCCTAGAGTGTGG GAGCCTGTGCCTCTGGAAGAGGTGCAGCTGGTGGTTGAA CCTGAAGGCGGAGCTGTTGCTCCTGGCGGAACAGTGACC CTGACCTGTGAAGTTCCCGCTCAGCCCTCTCCACAGATC CACTGGATGAAGGATGGCGTGCCACTGCCTCTGCCTCCA TCTCCTGTTCTGATCCTGCCAGAGATCGGCCCTCAGGAC CAGGGCACCTATTCTTGTGTGGCTACCCACTCCTCTCAC GGCCCTCAAGAGTCTAGAGCCGTGTCCATCTCCATCATC GAGCCTGGCGAGGAAGGACCTACAGCTGGCGAGGGCTTT GACAAAGTGCGCGAGGCTGAGGACTCTCCTCAGCATGCC GTGGAATGCCCTCCTTGTGCTCCTCCTGTGGCTGGCGGC CCTTCCGTGTTTCTGTTCCCTCCAAAGCCTAAGGACACC CTGATGATCTCTCGGACCCCTGAAGTGACCTGCGTGGTG GTGGATGTGTCCCAAGAGGATCCCGAGGTGCAGTTCAAT TGGTACGTGGACGGCGTGGAAGTGCACAACGCCAAGACC AAGCCTAGAGAGGAACAGTTCAACTCCACCTACAGAGTG GTGTCCGTGCTGACCGTGCTGCACCAGGATTGGCTGAAT GGCAAAGAGTATAAGTGCAAGGTGTCCAACAAGGGCCTG CCTTCCAGCATCGAAAAGACCATCTCCAAGGCCAAGGGC CAGCCTAGGGAACCCCAGGTTTACACCCTGCCTCCAAGC CAAGAGGAAATGACCAAGAACCAGGTGTCCCTGACATGC CTGGTCAAGGGCTTCTACCCCTCCGATATCGCCGTGGAA TGGGAGTCTAATGGCCAGCCTGAGAACAACTACAAGACC ACACCTCCTGTGCTGGACTCCGACGGCAGCTTCTTTCTG TACTCCCGCCTGACCGTGGACAAGTCCAGGTGGCAAGAG GGCAACGTGTTCTCCTGCTCCGTGATGCACGAGGCCCTG CACAATCACTACACCCAGAAGTCCCTGTCTCTGTCCCTG GGCAAATGA SEQ ID NO: 42 Nucleotide sequence of GCTCAGGAGATCACCGCCAGAATCGGCGAGCCCCTGGTG Construct #13 CTGAAATGTAAAGGCGCCCCTAAGAAGCCTCCTCAGCGG CTGGAATGGAAGCTGAACACCGGCAGAACCGAGGCCTGG AAAGTGCTGTCTCCTCAAGGCGGAGGCCCTTGGGATTCT GTGGCTAGAGTGCTGCCTAACTCCTCCCTGTTTCTGCCT GCTGTGGGCATCCAGGACGAGGGCATCTTCAGGTGTCAG GCCATGAACCGGAACGGCAAAGAGACAAAGTCCAACTAC CGCGTCAGAGTGTATCAGATCCCCGGCAAGCCTGAGATC GTGGACTCTGCCTCTGAACTGACAGCCGGCGTGCCCAAC AAAGTGGGCACTTGTGTGTCCGAGGGCAGCTATCCTGCT GGCACCCTGTCTTGGCATCTGGATGGAAAGCCTCTGGTG CCCAACGAGAAAGGCGTGTCCGTGAAAGAGCAGACCAGA CGGCATCCTGAGACTGGCCTGTTCACCCTGCAGTCCGAG CTGATGGTTACCCCTGCTAGAGGCGGCGATCCCAGACCT ACCTTCAGCTGCTCCTTCTCTCCTGGCCTGCCTCGACAT AGAGCCCTGAGAACCGCTCCTATCCAGCCTAGAGTGTGG GAGCCTGTGCCTCTGGAAGAGGTGCAGCTGGTGGTTGAA CCTGAAGGCGGAGCTGTTGCTCCTGGCGGAACAGTGACC CTGACCTGTGAAGTTCCCGCTCAGCCCTCTCCACAGATC CACTGGATGAAGGATGGCGTGCCACTGCCTCTGCCTCCA TCTCCTGTTCTGATCCTGCCAGAGATCGGCCCTCAGGAC CAGGGCACCTATTCTTGTGTGGCTACCCACTCCTCTCAC GGCCCTCAAGAGTCTAGAGCCGTGTCCATCTCCATCATC GAGCCTGGCGAGGAAGGCCCTACAGCTGGTTCTGTTGGA GGCTCTGGACTGGGCACACTGGCCCTGGCTATTGAGGGC AGAATGCCCAAGTCCTGCGACAAGACCCACACCTGTCCT CCATGTCCTGCTCCAGAACTGCTCGGCGGACCTTCCGTG TTCCTGTTTCCTCCAAAGCCTAAGGACACCCTGATGATC TCTCGGACCCCTGAAGTGACCTGCGTGGTGGTGGATGTG TCTCACGAGGATCCCGAAGTGAAGTTCAATTGGTACGTG GACGGCGTGGAAGTGCACAACGCCAAGACCAAGCCTAGA GAGGAACAGTACAACTCCACCTACAGAGTGGTGTCCGTG CTGACCGTGCTGCACCAGGATTGGCTGAATGGCAAAGAG TATAAGTGCAAGGTGTCCAACAAGGCCCTGCCTGCTCCT ATCGAAAAGACCATCTCCAAGGCCAAGGGCCAGCCTAGG GAACCCCAGGTTTACACCTTGCCACCTTCTCGGGACGAG CTGACCAAGAACCAGGTGTCCCTGACATGCCTGGTCAAG GGCTTCTACCCCTCCGATATCGCCGTGGAATGGGAGTCT AATGGCCAGCCTGAGAACAACTACAAGACAACCCCTCCT GTGCTGGACTCCGACGGCTCATTCTTCCTGTACTCCAAG CTGACAGTGGACAAGTCCAGATGGCAGCAGGGCAACGTG TTCTCCTGCTCCGTGATGCACGAGGCCCTGCACAATCAC TACACCCAGAAGTCCCTGTCTCTGTCCCCTGGCAAATGA SEQ ID NO: 43 Nucleotide sequence of GCTCAGAATATCACCGCCAGAATCGGCGAGCCCCTGGTG Construct #16 CTGAAATGTAAAGGCGCCCCTAAGAAGCCTCCTCAGCGG CTGGAATGGAAGCTGAACACCGGCAGAACCGAGGCCTGG AAAGTGCTGTCTCCTCAAGGCGGAGGCCCTTGGGATTCT GTGGCTAGAGTGCTGCCTAACGGCTCCCTGTTTCTGCCT GCTGTGGGCATCCAGGACGAGGGCATCTTCAGGTGTCAG GCCATGAACCGGAACGGCAAAGAGACAAAGTCCAACTAC CGCGTCAGAGTGTATCAGATCCCCGGCAAGCCTGAGATC GTGGACTCTGCCTCTGAACTGACAGCCGGCGTGCCCAAC AAAGTGGGCACTTGTGTGTCCGAGGGCAGCTATCCTGCT GGCACCCTGTCTTGGCATCTGGATGGAAAGCCTCTGGTG CCCAACGAGAAAGGCGTGTCCGTGAAAGAGCAGACCAGA CGGCATCCTGAGACTGGCCTGTTCACCCTGCAGTCCGAG CTGATGGTTACCCCTGCTAGAGGCGGCGATCCCAGACCT ACCTTCAGCTGCTCCTTCTCTCCTGGCCTGCCTCGACAT AGAGCCCTGAGAACCGCTCCTATCCAGCCTAGAGTGTGG GAGCCTGTGCCTCTGGAAGAGGTGCAGCTGGTGGTTGAA CCTGAAGGCGGAGCTGTTGCTCCTGGCGGAACAGTGACC CTGACCTGTGAAGTTCCCGCTCAGCCCTCTCCACAGATC CACTGGATGAAGGATGGCGTGCCACTGCCTCTGCCTCCA TCTCCTGTTCTGATCCTGCCAGAGATCGGCCCTCAGGAC CAGGGCACCTATTCTTGTGTGGCTACCCACTCCTCTCAC GGCCCTCAAGAGTCTAGAGCCGTGTCCATCTCCATCATC GAGCCTGGCGAGGAAGGACCTACAGCTGGCGAGGGCTTT GACAAAGTGCGCGAGGCTGAGGACTCTCCTCAGCACGCT GTTGAGTGCCCTCCATGTGCTCCTCCAGTTGCTGGTGGC CCTTCCGTGTTCCTGTTTCCTCCAAAGCCTAAGGACACC CTGTACATCACCCGCGAGCCTGAAGTGACCTGCGTGGTG GTGGATGTGTCCCAAGAGGATCCCGAGGTGCAGTTCAAT TGGTACGTGGACGGCGTGGAAGTGCACAACGCCAAGACC AAGCCTAGAGAGGAACAGTTCAACTCCACCTACAGAGTG GTGTCCGTGCTGACCGTGCTGCACCAGGATTGGCTGAAT GGCAAAGAGTATAAGTGCAAGGTGTCCAACAAGGGCCTG CCTTCCAGCATCGAAAAGACCATCTCCAAGGCCAAGGGC CAGCCTAGGGAACCCCAGGTTTACACCCTGCCTCCAAGC CAAGAGGAAATGACCAAGAACCAGGTGTCCCTGACATGC CTGGTCAAGGGCTTCTACCCCTCCGATATCGCCGTGGAA TGGGAGTCTAATGGCCAGCCTGAGAACAACTACAAGACC ACACCTCCTGTGCTGGACTCCGACGGCAGCTTCTTTCTG TACTCCCGCCTGACCGTGGACAAGTCCAGGTGGCAAGAG GGCAACGTGTTCTCCTGCTCCGTGATGCACGAGGCCCTG CACAATCACTACACCCAGAAGTCCCTGTCTCTGTCCCTG GGCAAATGA SEQ ID NO: 44 Nucleotide sequence of GCTCAGGAAATCACCGCCAGAATCGGCGAGCCCCTGGTG Construct #17 CTGAAATGTAAAGGCGCCCCTAAGAAGCCTCCTCAGCGG CTGGAATGGAAGCTGAACACCGGCAGAACCGAGGCCTGG AAAGTGCTGTCTCCTCAAGGCGGAGGCCCTTGGGATTCT GTGGCTAGAGTGCTGCCTAACGGCTCCCTGTTTCTGCCT GCTGTGGGCATCCAGGACGAGGGCATCTTCAGGTGTCAG GCCATGAACCGGAACGGCAAAGAGACAAAGTCCAACTAC CGCGTCAGAGTGTATCAGATCCCCGGCAAGCCTGAGATC GTGGACTCTGCCTCTGAACTGACAGCCGGCGTGCCCAAC AAAGTGGGCACTTGTGTGTCCGAGGGCAGCTATCCTGCT GGCACCCTGTCTTGGCATCTGGATGGAAAGCCTCTGGTG CCCAACGAGAAAGGCGTGTCCGTGAAAGAGCAGACCAGA CGGCATCCTGAGACTGGCCTGTTCACCCTGCAGTCCGAG CTGATGGTTACCCCTGCTAGAGGCGGCGATCCCAGACCT ACCTTCAGCTGCTCCTTCTCTCCTGGCCTGCCTCGACAT AGAGCCCTGAGAACCGCTCCTATCCAGCCTAGAGTGTGG GAGCCTGTGCCTCTGGAAGAGGTGCAGCTGGTGGTTGAA CCTGAAGGCGGAGCTGTTGCTCCTGGCGGAACAGTGACC CTGACCTGTGAAGTTCCCGCTCAGCCCTCTCCACAGATC CACTGGATGAAGGATGGCGTGCCACTGCCTCTGCCTCCA TCTCCTGTTCTGATCCTGCCAGAGATCGGCCCTCAGGAC CAGGGCACCTATTCTTGTGTGGCTACCCACTCCTCTCAC GGCCCTCAAGAGTCTAGAGCCGTGTCCATCTCCATCATC GAGCCTGGCGAGGAAGGACCTACAGCTGGCGAGGGCTTT GACAAAGTGCGCGAGGCTGAGGACTCTCCTCAGCACGCT GTTGAGTGCCCTCCATGTGCTCCTCCAGTTGCTGGTGGC CCTTCCGTGTTCCTGTTTCCTCCAAAGCCTAAGGACACC CTGATGATCTCTCGCACCCCTGAAGTGACCTGCGTGGTG GTGGATGTGTCCCAAGAGGATCCCGAGGTGCAGTTCAAT TGGTACGTGGACGGCGTGGAAGTGCACAACGCCAAGACC AAGCCTAGAGAGGAACAGTTCAACTCCACCTACAGAGTG GTGTCCGTGCTGACCGTGCTGCACCAGGATTGGCTGAAT GGCAAAGAGTATAAGTGCAAGGTGTCCAACAAGGGCCTG CCTTCCAGCATCGAAAAGACCATCTCCAAGGCCAAGGGC CAGCCTAGGGAACCCCAGGTTTACACCCTGCCTCCAAGC CAAGAGGAAATGACCAAGAACCAGGTGTCCCTGACATGC CTGGTCAAGGGCTTCTACCCCTCCGATATCGCCGTGGAA TGGGAGTCTAATGGCCAGCCTGAGAACAACTACAAGACC ACACCTCCTGTGCTGGACTCCGACGGCAGCTTCTTTCTG TACTCCCGCCTGACCGTGGACAAGTCCAGGTGGCAAGAG GGCAACGTGTTCTCCTGCTCCGTGATGCACGAGGCCCTG CACAATCACTACACCCAGAAGTCCCTGTCTCTGTCCCTG GGCAAATGA SEQ ID NO: 45 Nucleotide sequence of GCTCAGCAGATCACCGCCAGAATCGGCGAGCCCCTGGTG Construct #18 CTGAAATGTAAAGGCGCCCCTAAGAAGCCTCCTCAGCGG CTGGAATGGAAGCTGAACACCGGCAGAACCGAGGCCTGG AAAGTGCTGTCTCCTCAAGGCGGAGGCCCTTGGGATTCT GTGGCTAGAGTGCTGCCTAACGGCTCCCTGTTTCTGCCT GCTGTGGGCATCCAGGACGAGGGCATCTTCAGGTGTCAG GCCATGAACCGGAACGGCAAAGAGACAAAGTCCAACTAC CGCGTCAGAGTGTATCAGATCCCCGGCAAGCCTGAGATC GTGGACTCTGCCTCTGAACTGACAGCCGGCGTGCCCAAC AAAGTGGGCACTTGTGTGTCCGAGGGCAGCTATCCTGCT GGCACCCTGTCTTGGCATCTGGATGGAAAGCCTCTGGTG CCCAACGAGAAAGGCGTGTCCGTGAAAGAGCAGACCAGA CGGCATCCTGAGACTGGCCTGTTCACCCTGCAGTCCGAG CTGATGGTTACCCCTGCTAGAGGCGGCGATCCCAGACCT ACCTTCAGCTGCTCCTTCTCTCCTGGCCTGCCTCGACAT AGAGCCCTGAGAACCGCTCCTATCCAGCCTAGAGTGTGG GAGCCTGTGCCTCTGGAAGAGGTGCAGCTGGTGGTTGAA CCTGAAGGCGGAGCTGTTGCTCCTGGCGGAACAGTGACC CTGACCTGTGAAGTTCCCGCTCAGCCCTCTCCACAGATC CACTGGATGAAGGATGGCGTGCCACTGCCTCTGCCTCCA TCTCCTGTTCTGATCCTGCCAGAGATCGGCCCTCAGGAC CAGGGCACCTATTCTTGTGTGGCTACCCACTCCTCTCAC GGCCCTCAAGAGTCTAGAGCCGTGTCCATCTCCATCATC GAGCCTGGCGAGGAAGGACCTACAGCTGGCGAGGGCTTT GACAAAGTGCGCGAGGCTGAGGACTCTCCTCAGCACGCT GTTGAGTGCCCTCCATGTGCTCCTCCAGTTGCTGGTGGC CCTTCCGTGTTCCTGTTTCCTCCAAAGCCTAAGGACACC CTGATGATCTCTCGCACCCCTGAAGTGACCTGCGTGGTG GTGGATGTGTCCCAAGAGGATCCCGAGGTGCAGTTCAAT TGGTACGTGGACGGCGTGGAAGTGCACAACGCCAAGACC AAGCCTAGAGAGGAACAGTTCAACTCCACCTACAGAGTG GTGTCCGTGCTGACCGTGCTGCACCAGGATTGGCTGAAT GGCAAAGAGTATAAGTGCAAGGTGTCCAACAAGGGCCTG CCTTCCAGCATCGAAAAGACCATCTCCAAGGCCAAGGGC CAGCCTAGGGAACCCCAGGTTTACACCCTGCCTCCAAGC CAAGAGGAAATGACCAAGAACCAGGTGTCCCTGACATGC CTGGTCAAGGGCTTCTACCCCTCCGATATCGCCGTGGAA TGGGAGTCTAATGGCCAGCCTGAGAACAACTACAAGACC ACACCTCCTGTGCTGGACTCCGACGGCAGCTTCTTTCTG TACTCCCGCCTGACCGTGGACAAGTCCAGGTGGCAAGAG GGCAACGTGTTCTCCTGCTCCGTGATGCACGAGGCCCTG CACAATCACTACACCCAGAAGTCCCTGTCTCTGTCCCTG GGCAAATGA SEQ ID NO: 46 Nucleotide sequence of GCTCAGAACATCACCGCCAGAATCGGCGAGCCCCTGGTG Construct #19 CTGAAATGTAAAGGCGCCCCTAAGAAGCCTCCTCAGCGG CTGGAATGGAAGCTGAACACCGGCAGAACCGAGGCCTGG AAAGTGCTGTCTCCTCAAGGCGGAGGCCCTTGGGATTCT GTGGCTAGAGTGCTGCCTAACTCTTCCCTGTTTCTGCCT GCTGTGGGCATCCAGGACGAGGGCATCTTCAGGTGTCAG GCCATGAACCGGAACGGCAAAGAGACAAAGTCCAACTAC CGCGTCAGAGTGTATCAGATCCCCGGCAAGCCTGAGATC GTGGACTCTGCCTCTGAACTGACAGCCGGCGTGCCCAAC AAAGTGGGCACTTGTGTGTCCGAGGGCAGCTATCCTGCT GGCACCCTGTCTTGGCATCTGGATGGAAAGCCTCTGGTG CCCAACGAGAAAGGCGTGTCCGTGAAAGAGCAGACCAGA CGGCATCCTGAGACTGGCCTGTTCACCCTGCAGTCCGAG CTGATGGTTACCCCTGCTAGAGGCGGCGATCCCAGACCT ACCTTCAGCTGCTCCTTCTCTCCTGGCCTGCCTCGACAT AGAGCCCTGAGAACCGCTCCTATCCAGCCTAGAGTGTGG GAGCCTGTGCCTCTGGAAGAGGTGCAGCTGGTGGTTGAA CCTGAAGGCGGAGCTGTTGCTCCTGGCGGAACAGTGACC CTGACCTGTGAAGTTCCCGCTCAGCCCTCTCCACAGATC CACTGGATGAAGGATGGCGTGCCACTGCCTCTGCCTCCA TCTCCTGTTCTGATCCTGCCAGAGATCGGCCCTCAGGAC CAGGGCACCTATTCTTGTGTGGCTACCCACTCCTCTCAC GGCCCTCAAGAGTCTAGAGCCGTGTCCATCTCCATCATC GAGCCTGGCGAGGAAGGACCTACAGCTGGCGAGGGCTTT GACAAAGTGCGCGAGGCTGAGGACTCTCCTCAGCACGCT GTTGAGTGCCCTCCATGTGCTCCTCCAGTTGCTGGTGGC CCTTCCGTGTTCCTGTTTCCTCCAAAGCCTAAGGACACC CTGATGATCTCTCGCACCCCTGAAGTGACCTGCGTGGTG GTGGATGTGTCCCAAGAGGATCCCGAGGTGCAGTTCAAT TGGTACGTGGACGGCGTGGAAGTGCACAACGCCAAGACC AAGCCTAGAGAGGAACAGTTCAACTCCACCTACAGAGTG
GTGTCCGTGCTGACCGTGCTGCACCAGGATTGGCTGAAT GGCAAAGAGTATAAGTGCAAGGTGTCCAACAAGGGCCTG CCTTCCAGCATCGAAAAGACCATCTCCAAGGCCAAGGGC CAGCCTAGGGAACCCCAGGTTTACACCCTGCCTCCAAGC CAAGAGGAAATGACCAAGAACCAGGTGTCCCTGACATGC CTGGTCAAGGGCTTCTACCCCTCCGATATCGCCGTGGAA TGGGAGTCTAATGGCCAGCCTGAGAACAACTACAAGACC ACACCTCCTGTGCTGGACTCCGACGGCAGCTTCTTTCTG TACTCCCGCCTGACCGTGGACAAGTCCAGGTGGCAAGAG GGCAACGTGTTCTCCTGCTCCGTGATGCACGAGGCCCTG CACAATCACTACACCCAGAAGTCCCTGTCTCTGTCCCTG GGCAAATGA SEQ ID NO: 47 Nucleotide sequence of GCTCAGGAAATCACCGCCAGAATCGGCGAGCCCCTGGTG Construct #20 CTGAAATGTAAAGGCGCCCCTAAGAAGCCTCCTCAGCGG CTGGAATGGAAGCTGAACACCGGCAGAACCGAGGCCTGG AAAGTGCTGTCTCCTCAAGGCGGAGGCCCTTGGGATTCT GTGGCTAGAGTGCTGCCTAACTCTTCCCTGTTTCTGCCT GCTGTGGGCATCCAGGACGAGGGCATCTTCAGGTGTCAG GCCATGAACCGGAACGGCAAAGAGACAAAGTCCAACTAC CGCGTCAGAGTGTATCAGATCCCCGGCAAGCCTGAGATC GTGGACTCTGCCTCTGAACTGACAGCCGGCGTGCCCAAC AAAGTGGGCACTTGTGTGTCCGAGGGCAGCTATCCTGCT GGCACCCTGTCTTGGCATCTGGATGGAAAGCCTCTGGTG CCCAACGAGAAAGGCGTGTCCGTGAAAGAGCAGACCAGA CGGCATCCTGAGACTGGCCTGTTCACCCTGCAGTCCGAG CTGATGGTTACCCCTGCTAGAGGCGGCGATCCCAGACCT ACCTTCAGCTGCTCCTTCTCTCCTGGCCTGCCTCGACAT AGAGCCCTGAGAACCGCTCCTATCCAGCCTAGAGTGTGG GAGCCTGTGCCTCTGGAAGAGGTGCAGCTGGTGGTTGAA CCTGAAGGCGGAGCTGTTGCTCCTGGCGGAACAGTGACC CTGACCTGTGAAGTTCCCGCTCAGCCCTCTCCACAGATC CACTGGATGAAGGATGGCGTGCCACTGCCTCTGCCTCCA TCTCCTGTTCTGATCCTGCCAGAGATCGGCCCTCAGGAC CAGGGCACCTATTCTTGTGTGGCTACCCACTCCTCTCAC GGCCCTCAAGAGTCTAGAGCCGTGTCCATCTCCATCATC GAGCCTGGCGAGGAAGGACCTACAGCTGGCGAGGGCTTT GACAAAGTGCGCGAGGCTGAGGACTCTCCTCAGCACGCT GTTGAGTGCCCTCCATGTGCTCCTCCAGTTGCTGGTGGC CCTTCCGTGTTCCTGTTTCCTCCAAAGCCTAAGGACACC CTGATGATCTCTCGCACCCCTGAAGTGACCTGCGTGGTG GTGGATGTGTCCCAAGAGGATCCCGAGGTGCAGTTCAAT TGGTACGTGGACGGCGTGGAAGTGCACAACGCCAAGACC AAGCCTAGAGAGGAACAGTTCAACTCCACCTACAGAGTG GTGTCCGTGCTGACCGTGCTGCACCAGGATTGGCTGAAT GGCAAAGAGTATAAGTGCAAGGTGTCCAACAAGGGCCTG CCTTCCAGCATCGAAAAGACCATCTCCAAGGCCAAGGGC CAGCCTAGGGAACCCCAGGTTTACACCCTGCCTCCAAGC CAAGAGGAAATGACCAAGAACCAGGTGTCCCTGACATGC CTGGTCAAGGGCTTCTACCCCTCCGATATCGCCGTGGAA TGGGAGTCTAATGGCCAGCCTGAGAACAACTACAAGACC ACACCTCCTGTGCTGGACTCCGACGGCAGCTTCTTTCTG TACTCCCGCCTGACCGTGGACAAGTCCAGGTGGCAAGAG GGCAACGTGTTCTCCTGCTCCGTGATGCACGAGGCCCTG CACAATCACTACACCCAGAAGTCCCTGTCTCTGTCCCTG GGCAAATGA SEQ ID NO: 48 Nucleotide sequence of GCTCAGCAGATCACCGCCAGAATCGGCGAGCCCCTGGTG Construct #21 CTGAAATGTAAAGGCGCCCCTAAGAAGCCTCCTCAGCGG CTGGAATGGAAGCTGAACACCGGCAGAACCGAGGCCTGG AAAGTGCTGTCTCCTCAAGGCGGAGGCCCTTGGGATTCT GTGGCTAGAGTGCTGCCTAACTCTTCCCTGTTTCTGCCT GCTGTGGGCATCCAGGACGAGGGCATCTTCAGGTGTCAG GCCATGAACCGGAACGGCAAAGAGACAAAGTCCAACTAC CGCGTCAGAGTGTATCAGATCCCCGGCAAGCCTGAGATC GTGGACTCTGCCTCTGAACTGACAGCCGGCGTGCCCAAC AAAGTGGGCACTTGTGTGTCCGAGGGCAGCTATCCTGCT GGCACCCTGTCTTGGCATCTGGATGGAAAGCCTCTGGTG CCCAACGAGAAAGGCGTGTCCGTGAAAGAGCAGACCAGA CGGCATCCTGAGACTGGCCTGTTCACCCTGCAGTCCGAG CTGATGGTTACCCCTGCTAGAGGCGGCGATCCCAGACCT ACCTTCAGCTGCTCCTTCTCTCCTGGCCTGCCTCGACAT AGAGCCCTGAGAACCGCTCCTATCCAGCCTAGAGTGTGG GAGCCTGTGCCTCTGGAAGAGGTGCAGCTGGTGGTTGAA CCTGAAGGCGGAGCTGTTGCTCCTGGCGGAACAGTGACC CTGACCTGTGAAGTTCCCGCTCAGCCCTCTCCACAGATC CACTGGATGAAGGATGGCGTGCCACTGCCTCTGCCTCCA TCTCCTGTTCTGATCCTGCCAGAGATCGGCCCTCAGGAC CAGGGCACCTATTCTTGTGTGGCTACCCACTCCTCTCAC GGCCCTCAAGAGTCTAGAGCCGTGTCCATCTCCATCATC GAGCCTGGCGAGGAAGGACCTACAGCTGGCGAGGGCTTT GACAAAGTGCGCGAGGCTGAGGACTCTCCTCAGCACGCT GTTGAGTGCCCTCCATGTGCTCCTCCAGTTGCTGGTGGC CCTTCCGTGTTCCTGTTTCCTCCAAAGCCTAAGGACACC CTGATGATCTCTCGCACCCCTGAAGTGACCTGCGTGGTG GTGGATGTGTCCCAAGAGGATCCCGAGGTGCAGTTCAAT TGGTACGTGGACGGCGTGGAAGTGCACAACGCCAAGACC AAGCCTAGAGAGGAACAGTTCAACTCCACCTACAGAGTG GTGTCCGTGCTGACCGTGCTGCACCAGGATTGGCTGAAT GGCAAAGAGTATAAGTGCAAGGTGTCCAACAAGGGCCTG CCTTCCAGCATCGAAAAGACCATCTCCAAGGCCAAGGGC CAGCCTAGGGAACCCCAGGTTTACACCCTGCCTCCAAGC CAAGAGGAAATGACCAAGAACCAGGTGTCCCTGACATGC CTGGTCAAGGGCTTCTACCCCTCCGATATCGCCGTGGAA TGGGAGTCTAATGGCCAGCCTGAGAACAACTACAAGACC ACACCTCCTGTGCTGGACTCCGACGGCAGCTTCTTTCTG TACTCCCGCCTGACCGTGGACAAGTCCAGGTGGCAAGAG GGCAACGTGTTCTCCTGCTCCGTGATGCACGAGGCCCTG CACAATCACTACACCCAGAAGTCCCTGTCTCTGTCCCTG GGCAAATGA SEQ ID NO: 49 Nucleotide sequence of GCTCAGAACATCACCGCCAGAATCGGCGAGCCCCTGGTG Construct #22 TGAAATGTAAAGGCGCCCCTAAGAAGCCTCCTCAGCGG CTGGAATGGAAGCTGAACACCGGCAGAACCGAGGCCTGG AAAGTGCTGTCTCCTCAAGGCGGAGGCCCTTGGGATTCT GTGGCTAGAGTGCTGCCTGCTGGCTCCCTGTTTCTGCCT GCTGTGGGCATCCAGGACGAGGGCATCTTCAGGTGTCAG GCCATGAACCGGAACGGCAAAGAGACAAAGTCCAACTAC CGCGTCAGAGTGTATCAGATCCCCGGCAAGCCTGAGATC GTGGACTCTGCCTCTGAACTGACAGCCGGCGTGCCCAAC AAAGTGGGCACTTGTGTGTCCGAGGGCAGCTATCCTGCT GGCACCCTGTCTTGGCATCTGGATGGAAAGCCTCTGGTG CCCAACGAGAAAGGCGTGTCCGTGAAAGAGCAGACCAGA CGGCATCCTGAGACTGGCCTGTTCACCCTGCAGTCCGAG CTGATGGTTACCCCTGCTAGAGGCGGCGATCCCAGACCT ACCTTCAGCTGCTCCTTCTCTCCTGGCCTGCCTCGACAT AGAGCCCTGAGAACCGCTCCTATCCAGCCTAGAGTGTGG GAGCCTGTGCCTCTGGAAGAGGTGCAGCTGGTGGTTGAA CCTGAAGGCGGAGCTGTTGCTCCTGGCGGAACAGTGACC CTGACCTGTGAAGTTCCCGCTCAGCCCTCTCCACAGATC CACTGGATGAAGGATGGCGTGCCACTGCCTCTGCCTCCA TCTCCTGTTCTGATCCTGCCAGAGATCGGCCCTCAGGAC CAGGGCACCTATTCTTGTGTGGCTACCCACTCCTCTCAC GGCCCTCAAGAGTCTAGAGCCGTGTCCATCTCCATCATC GAGCCTGGCGAGGAAGGACCTACAGCTGGCGAGGGCTTT GACAAAGTGCGCGAGGCTGAGGACTCTCCTCAGCACGCT GTTGAGTGCCCTCCATGTGCTCCTCCAGTTGCTGGTGGC CCTTCCGTGTTCCTGTTTCCTCCAAAGCCTAAGGACACC CTGATGATCTCTCGCACCCCTGAAGTGACCTGCGTGGTG GTGGATGTGTCCCAAGAGGATCCCGAGGTGCAGTTCAAT TGGTACGTGGACGGCGTGGAAGTGCACAACGCCAAGACC AAGCCTAGAGAGGAACAGTTCAACTCCACCTACAGAGTG GTGTCCGTGCTGACCGTGCTGCACCAGGATTGGCTGAAT GGCAAAGAGTATAAGTGCAAGGTGTCCAACAAGGGCCTG CCTTCCAGCATCGAAAAGACCATCTCCAAGGCCAAGGGC CAGCCTAGGGAACCCCAGGTTTACACCCTGCCTCCAAGC CAAGAGGAAATGACCAAGAACCAGGTGTCCCTGACATGC CTGGTCAAGGGCTTCTACCCCTCCGATATCGCCGTGGAA TGGGAGTCTAATGGCCAGCCTGAGAACAACTACAAGACC ACACCTCCTGTGCTGGACTCCGACGGCAGCTTCTTTCTG TACTCCCGCCTGACCGTGGACAAGTCCAGGTGGCAAGAG GGCAACGTGTTCTCCTGCTCCGTGATGCACGAGGCCCTG CACAATCACTACACCCAGAAGTCCCTGTCTCTGTCCCTG GGCAAATGA SEQ ID NO: 50 Nucleotide sequence of GCTCAGGAAATCACCGCCAGAATCGGCGAGCCCCTGGTG Construct #23 CTGAAATGTAAAGGCGCCCCTAAGAAGCCTCCTCAGCGG CTGGAATGGAAGCTGAACACCGGCAGAACCGAGGCCTGG AAAGTGCTGTCTCCTCAAGGCGGAGGCCCTTGGGATTCT GTGGCTAGAGTGCTGCCTGCTGGCTCCCTGTTTCTGCCT GCTGTGGGCATCCAGGACGAGGGCATCTTCAGGTGTCAG GCCATGAACCGGAACGGCAAAGAGACAAAGTCCAACTAC CGCGTCAGAGTGTATCAGATCCCCGGCAAGCCTGAGATC GTGGACTCTGCCTCTGAACTGACAGCCGGCGTGCCCAAC AAAGTGGGCACTTGTGTGTCCGAGGGCAGCTATCCTGCT GGCACCCTGTCTTGGCATCTGGATGGAAAGCCTCTGGTG CCCAACGAGAAAGGCGTGTCCGTGAAAGAGCAGACCAGA CGGCATCCTGAGACTGGCCTGTTCACCCTGCAGTCCGAG CTGATGGTTACCCCTGCTAGAGGCGGCGATCCCAGACCT ACCTTCAGCTGCTCCTTCTCTCCTGGCCTGCCTCGACAT AGAGCCCTGAGAACCGCTCCTATCCAGCCTAGAGTGTGG GAGCCTGTGCCTCTGGAAGAGGTGCAGCTGGTGGTTGAA CCTGAAGGCGGAGCTGTTGCTCCTGGCGGAACAGTGACC CTGACCTGTGAAGTTCCCGCTCAGCCCTCTCCACAGATC CACTGGATGAAGGATGGCGTGCCACTGCCTCTGCCTCCA TCTCCTGTTCTGATCCTGCCAGAGATCGGCCCTCAGGAC CAGGGCACCTATTCTTGTGTGGCTACCCACTCCTCTCAC GGCCCTCAAGAGTCTAGAGCCGTGTCCATCTCCATCATC GAGCCTGGCGAGGAAGGACCTACAGCTGGCGAGGGCTTT GACAAAGTGCGCGAGGCTGAGGACTCTCCTCAGCACGCT GTTGAGTGCCCTCCATGTGCTCCTCCAGTTGCTGGTGGC CCTTCCGTGTTCCTGTTTCCTCCAAAGCCTAAGGACACC CTGATGATCTCTCGCACCCCTGAAGTGACCTGCGTGGTG GTGGATGTGTCCCAAGAGGATCCCGAGGTGCAGTTCAAT TGGTACGTGGACGGCGTGGAAGTGCACAACGCCAAGACC AAGCCTAGAGAGGAACAGTTCAACTCCACCTACAGAGTG GTGTCCGTGCTGACCGTGCTGCACCAGGATTGGCTGAAT GGCAAAGAGTATAAGTGCAAGGTGTCCAACAAGGGCCTG CCTTCCAGCATCGAAAAGACCATCTCCAAGGCCAAGGGC CAGCCTAGGGAACCCCAGGTTTACACCCTGCCTCCAAGC CAAGAGGAAATGACCAAGAACCAGGTGTCCCTGACATGC CTGGTCAAGGGCTTCTACCCCTCCGATATCGCCGTGGAA TGGGAGTCTAATGGCCAGCCTGAGAACAACTACAAGACC ACACCTCCTGTGCTGGACTCCGACGGCAGCTTCTTTCTG TACTCCCGCCTGACCGTGGACAAGTCCAGGTGGCAAGAG GGCAACGTGTTCTCCTGCTCCGTGATGCACGAGGCCCTG CACAATCACTACACCCAGAAGTCCCTGTCTCTGTCCCTG GGCAAATGA SEQ ID NO: 51 Nucleotide sequence of GCTCAGCAGATCACCGCCAGAATCGGCGAGCCCCTGGTG Construct #24 CTGAAATGTAAAGGCGCCCCTAAGAAGCCTCCTCAGCGG CTGGAATGGAAGCTGAACACCGGCAGAACCGAGGCCTGG AAAGTGCTGTCTCCTCAAGGCGGAGGCCCTTGGGATTCT GTGGCTAGAGTGCTGCCTGCTGGCTCCCTGTTTCTGCCT GCTGTGGGCATCCAGGACGAGGGCATCTTCAGGTGTCAG GCCATGAACCGGAACGGCAAAGAGACAAAGTCCAACTAC CGCGTCAGAGTGTATCAGATCCCCGGCAAGCCTGAGATC GTGGACTCTGCCTCTGAACTGACAGCCGGCGTGCCCAAC AAAGTGGGCACTTGTGTGTCCGAGGGCAGCTATCCTGCT GGCACCCTGTCTTGGCATCTGGATGGAAAGCCTCTGGTG CCCAACGAGAAAGGCGTGTCCGTGAAAGAGCAGACCAGA CGGCATCCTGAGACTGGCCTGTTCACCCTGCAGTCCGAG CTGATGGTTACCCCTGCTAGAGGCGGCGATCCCAGACCT ACCTTCAGCTGCTCCTTCTCTCCTGGCCTGCCTCGACAT AGAGCCCTGAGAACCGCTCCTATCCAGCCTAGAGTGTGG GAGCCTGTGCCTCTGGAAGAGGTGCAGCTGGTGGTTGAA CCTGAAGGCGGAGCTGTTGCTCCTGGCGGAACAGTGACC CTGACCTGTGAAGTTCCCGCTCAGCCCTCTCCACAGATC CACTGGATGAAGGATGGCGTGCCACTGCCTCTGCCTCCA TCTCCTGTTCTGATCCTGCCAGAGATCGGCCCTCAGGAC CAGGGCACCTATTCTTGTGTGGCTACCCACTCCTCTCAC GGCCCTCAAGAGTCTAGAGCCGTGTCCATCTCCATCATC GAGCCTGGCGAGGAAGGACCTACAGCTGGCGAGGGCTTT GACAAAGTGCGCGAGGCTGAGGACTCTCCTCAGCACGCT GTTGAGTGCCCTCCATGTGCTCCTCCAGTTGCTGGTGGC CCTTCCGTGTTCCTGTTTCCTCCAAAGCCTAAGGACACC CTGATGATCTCTCGCACCCCTGAAGTGACCTGCGTGGTG GTGGATGTGTCCCAAGAGGATCCCGAGGTGCAGTTCAAT TGGTACGTGGACGGCGTGGAAGTGCACAACGCCAAGACC AAGCCTAGAGAGGAACAGTTCAACTCCACCTACAGAGTG GTGTCCGTGCTGACCGTGCTGCACCAGGATTGGCTGAAT GGCAAAGAGTATAAGTGCAAGGTGTCCAACAAGGGCCTG CCTTCCAGCATCGAAAAGACCATCTCCAAGGCCAAGGGC CAGCCTAGGGAACCCCAGGTTTACACCCTGCCTCCAAGC CAAGAGGAAATGACCAAGAACCAGGTGTCCCTGACATGC CTGGTCAAGGGCTTCTACCCCTCCGATATCGCCGTGGAA TGGGAGTCTAATGGCCAGCCTGAGAACAACTACAAGACC ACACCTCCTGTGCTGGACTCCGACGGCAGCTTCTTTCTG TACTCCCGCCTGACCGTGGACAAGTCCAGGTGGCAAGAG GGCAACGTGTTCTCCTGCTCCGTGATGCACGAGGCCCTG CACAATCACTACACCCAGAAGTCCCTGTCTCTGTCCCTG GGCAAATGA SEQ ID NO: 52 16 AA C-terminal sequence EGFDKVREAEDSPQHM unique to esRAGE SEQ ID NO: 53 Construct #9 AQNITARIGEPLVLKCKGAPKKPPQRLEWKLNTGRTEAW RAGE V-C1-C2-shortened KVLSPQGGGPWDSVARVLPNGSLFLPAVGIQDEGIFRCQ stem-VH8 aa-IgG4- AMNRNGKETKSNYRVRVYQIPGKPEIVDSASELTAGVPN hinge(S/P-AA)-(IgG4CH2- KVGTCVSEGSYPAGTLSWHLDGKPLVPNEKGVSVKEQTR CH3) (mature protein; RHPETGLFTLQSELMVTPARGGDPRPTFSCSFSPGLPRH lacking the natural leaders RALRTAPIQPRVWEPVPLEEVQLVVEPEGGAVAPGGTVT sequence) LTCEVPAQPSPQIHWMKDGVPLPLPPSPVLILPEIGPQD QGTYSCVATHSSHGPQESRAVSISIIEPGEEGPTAGGTL VTVSSESKYGPPCPPCPAPEAAGGPSVFLFPPKPKDTLM ISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKP
SIEKTISKAKGQPPEPQVYTLPPSQEEMTKNQVSLTCLV KGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYS RLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLGK SEQ ID NO: 54 Construct #16.DELTA.K AQNITARIGE PLVLKCKGAP KKPPQRLE RAGEV-C1-C2-V1stem WKLNTGRTEA WKVLSPQGGG PWDSVARVLP (M/A)-IgG2 lower hinge- NGSLFLPAVG IQDEGIFRCQ AMNRNGKETK (IgG4CH2-CH3)-YTE-.DELTA.K SNYRVRVYQI PGKPEIVDSA SELTAGVPNK (mature protein; lacking the VGTCVSEGSY PAGTLSWHLD GKPLVPNEKG natural leaders sequence) VSVKEQTRRH PETGLFTLQS ELMVTPARGG DPRPTFSCSF SPGLPRHRAL RTAPIQPRVW EPVPLEEVQL VVEPEGGAVA PGGTVTLTCE VPAQPSPQIH WMKDGVPLPL PPSPVLILPE IGPQDQGTYS CVATHSSHGP QESRAVSISI IEPGEEGPTA GEGFDKVREA EDSPQHAVEC PPCAPPVAGG PSVFLFPPKP KDTLYITREP EVTCVVVDVS QEDPEVQFNW YVDGVEVHNA KTKPREEQFN STYRVVSVLT VLHQDWLNGK EYKCKVSNKG LPSSIEKTIS KAKGQPREPQ VYTLPPSQEE MTKNQVSLTC LVKGFYPSDI AVEWESNGQP ENNYKTTPPV LDSDGSFFLY SRLTVDKSRW QEGNVFSCSV MHEALHNHYT QKSLSLSLG* SEQ ID NO: 55 Construct #12.DELTA.K AQNITARIGE PLVLKCKGAP KKPPQRLE RAGEV-C1-C2-V1stem WKLNTGRTEA WKVLSPQGGG PWDSVARVLP (M/A)-IgG2 lower hinge- NGSLFLPAVG IQDEGIFRCQ AMNRNGKETK (IgG4CH2-CH3)-.DELTA.K SNYRVRVYQI PGKPEIVDSA SELTAGVPNK (mature protein; lacking the VGTCVSEGSY PAGTLSWHLD GKPLVPNEKG natural leaders sequence) VSVKEQTRRH PETGLFTLQS ELMVTPARGG DPRPTFSCSF SPGLPRHRAL RTAPIQPRVW EPVPLEEVQL VVEPEGGAVA PGGTVTLTCE VPAQPSPQIH WMKDGVPLPL PPSPVLILPE IGPQDQGTYS CVATHSSHGP QESRAVSISI IEPGEEGPTA GEGFDKVREA EDSPQHAVEC PPCAPPVAGG PSVFLFPPKP KDTLMISRTP EVTCVVVDVS QEDPEVQFNW YVDGVEVHNA KTKPREEQFN STYRVVSVLT VLHQDWLNGK EYKCKVSNKG LPSSIEKTIS KAKGQPREPQ VYTLPPSQEE MTKNQVSLTC LVKGFYPSDI AVEWESNGQP ENNYKTTPPV LDSDGSFFLY SRLTVDKSRW QEGNVFSCSV MHEALHNHYT QKSLSLSL.DELTA.* SEQ ID NO: 56 Nucleotide sequence of GCTCAGAATATCACCGCCAGAATCGGCGAGCCCCTGGTG Construct #9 CTGAAATGTAAAGGCGCCCCTAAGAAGCCTCCTCAGCGG CTGGAATGGAAGCTGAACACCGGCAGAACCGAGGCCTGG AAAGTGCTGTCTCCTCAAGGCGGAGGCCCTTGGGATTCT GTGGCTAGAGTGCTGCCTAACGGCTCCCTGTTTCTGCCT GCTGTGGGCATCCAGGACGAGGGCATCTTCAGGTGTCAG GCCATGAACCGGAACGGCAAAGAGACAAAGTCCAACTAC CGCGTCAGAGTGTATCAGATCCCCGGCAAGCCTGAGATC GTGGACTCTGCCTCTGAACTGACAGCCGGCGTGCCCAAC AAAGTGGGCACTTGTGTGTCCGAGGGCAGCTATCCTGCT GGCACCCTGTCTTGGCATCTGGATGGAAAGCCTCTGGTG CCCAACGAGAAAGGCGTGTCCGTGAAAGAGCAGACCAGA CGGCATCCTGAGACTGGCCTGTTCACCCTGCAGTCCGAG CTGATGGTTACCCCTGCTAGAGGCGGCGATCCCAGACCT ACCTTCAGCTGCTCCTTCTCTCCTGGCCTGCCTCGACAT AGAGCCCTGAGAACCGCTCCTATCCAGCCTAGAGTGTGG GAGCCTGTGCCTCTGGAAGAGGTGCAGCTGGTGGTTGAA CCTGAAGGCGGAGCTGTTGCTCCTGGCGGAACAGTGACC CTGACCTGTGAAGTTCCCGCTCAGCCCTCTCCACAGATC CACTGGATGAAGGATGGCGTGCCACTGCCTCTGCCTCCA TCTCCTGTTCTGATCCTGCCAGAGATCGGCCCTCAGGAC CAGGGCACCTATTCTTGTGTGGCTACCCACTCCTCTCAC GGCCCTCAAGAGTCTAGAGCCGTGTCCATCTCCATCATC GAGCCTGGCGAGGAAGGACCTACAGCTGGCGGAACACTG GTCACCGTGTCCTCCGAGTCTAAGTACGGCCCTCCTTGT CCTCCATGTCCTGCTCCAGAAGCTGCTGGCGGCCCTTCC GTGTTTCTGTTCCCTCCAAAGCCTAAGGACACCCTGATG ATCTCTCGGACCCCTGAAGTGACCTGCGTGGTGGTGGAT GTGTCCCAAGAGGATCCCGAGGTGCAGTTCAATTGGTAC GTGGACGGCGTGGAAGTGCACAACGCCAAGACCAAGCCT AGAGAGGAACAGTTCAACTCCACCTACAGAGTGGTGTCC GTGCTGACCGTGCTGCACCAGGATTGGCTGAATGGCAAA GAGTATAAGTGCAAGGTGTCCAACAAGGGCCTGCCTTCC AGCATCGAAAAGACCATCTCCAAGGCCAAGGGCCAGCCT AGGGAACCCCAGGTTTACACCCTGCCTCCAAGCCAAGAG GAAATGACCAAGAACCAGGTGTCCCTGACATGCCTGGTC AAGGGCTTCTACCCCTCCGATATCGCCGTGGAATGGGAG TCTAATGGCCAGCCTGAGAACAACTACAAGACCACACCT CCTGTGCTGGACTCCGACGGCAGCTTCTTTCTGTACTCC CGCCTGACCGTGGACAAGTCCAGGTGGCAAGAGGGCAAC GTGTTCTCCTGCTCCGTGATGCACGAGGCCCTGCACAAT CACTACACCCAGAAGTCCCTGTCTCTGTCCCTGGGCAAA TGA SEQ ID NO: 57 Nucleotide sequence of GCTCAGGAGATCACCGCCAGAATCGGCGAGCCCCTGGTG Construct #25 CTGAAATGTAAAGGGCCCCTAAGAAGCCTCCTCAGCGGC TGGAATGGAAGCTGAACACCGGCAGAACCGAGGCCTGGA AAGTGCTGTCTCCTCAAGGCGGAGGCCCTTGGGATTCTG TGGCTAGAGTGCTGCCTAACGGCTCCTGTTTCTGCCTGC TGTGGGCATCCAGGACGAGGGCATCTTCAGGTGTCAGGC CATGAACCGGAACGGCAAAGAGACAAAGTCCAACTACCG CGTCAGAGTGTATCAGATCCCCGGCAAGCCTGAGTCGTG GACTCTGCCTCTGAACTGACAGCCGGCGTGCCCAACAAA GTGGGCACTTGTGTGTCCGAGGGCAGCTATCCTGCTGGC ACCCTGTCTTGGCATCTGGATGGAAAGCCTCTGGTGCCC AACGAAAAGGCGTGTCCGTGAAAGAGCAGACCAGACGGC ATCCTGAGACTGGCCTGTTCACCCTGCAGTCCGAGCTGA TGGTTACCCCTGCTAGAGGCGGCGATCCCAGACCTACCT TCAGCTGCTCCTTCTTCCTGGCCTGCCTCGACATAGAGC CCTGAGAACCGCTCCTATCCAGCCTAGAGTGTGGGAGCC TGTGCCTCTGGAAGAGGTGCAGCTGGTGGTTGAACCTGA AGGCGGAGCTGTTGCTCCTGGCGGACAGTGACCCTGACC TGTGAAGTTCCCGCTCAGCCCTCTCCACAGATCCACTGG ATGAAGGATGGCGTGCCACTGCCTCTGCCTCCATCTCCT GTTCTGATCCTGCCAGAGATCGGCCCTCAGGACCAGGCA CCTATTCTTGTGTGGCTACCCACTCCTCTCACGGCCCTC AAGAGTCTAGAGCCGTGTCCATCTCCATCATCGAGCCTG GCGAGGAAGGACCTACAGCTGGCGAGGGCTTTGACAAAG TGCGCGGGCTGAGGACTCTCCTCAGCACGCTGTTGAGTG CCCTCCATGTGCTCCTCCAGTTGCTGGTGGCCCTTCCGT GTTCCTGTTTCCTCCAAAGCCTAAGGACACCCTGTACAT CACCCGCGAGCCTGAATGACCTGCGTGGTGGTGGATGTG TCCCAAGAGGATCCCGAGGTGCAGTTCAATTGGTACGTG GACGGCGTGGAAGTGCACAACGCCAAGACCAAGCCTAGA GAGGAACAGTTCAACTCCACCTACAGGTGGTGTCCGTGC TGACCGTGCTGCACCAGGATTGGCTGAATGGCAAAGAGT ATAAGTGCAAGGTGTCCAACAAGGGCCTGCCTTCCAGCA TCGAAAAGACCATCTCCAAGGCCAAGGGCCAGCCTAGGA ACCCCAGGTTTACACCCTGCCTCCAAGCCAAGAGGAAAT GACCAAGAACCAGGTGTCCCTGACATGCCTGGTCAAGGG CTTCTACCCCTCCGATATCGCCGTGGAATGGGAGTCTAA TGGCCAGCTGAGAACAACTACAAGACCACACCTCCTGTG CTGGACTCCGACGGCAGCTTCTTTCTGTACTCCCGCCTG ACCGTGGACAAGTCCAGGTGGCAAGAGGGCAACGTGTTC TCCTGCTCCGTGATGCAGAGGCCCTGCACAATCACTACA CCCAGAAGTCCCTGTCTCTGTCCCTGGGCAAATGA SEQ ID NO: 58 Nucleotide sequence of GCTCAGCAGATCACCGCCAGAATCGGCGAGCCCCTGGTG Construct #26 CTGAAATGTAAAGGGCCCCTAAGAAGCCTCCTCAGCGGC TGGAATGGAAGCTGAACACCGGCAGAACCGAGGCCTGGA AAGTGCTGTCTCCTCAAGGCGGAGGCCCTTGGGATTCTG TGGCTAGAGTGCTGCCTAACGGCTCCTGTTTCTGCCTGC TGTGGGCATCCAGGACGAGGGCATCTTCAGGTGTCAGGC CATGAACCGGAACGGCAAAGAGACAAAGTCCAACTACCG CGTCAGAGTGTATCAGATCCCCGGCAAGCCTGAGTCGTG GACTCTGCCTCTGAACTGACAGCCGGCGTGCCCAACAAA GTGGGCACTTGTGTGTCCGAGGGCAGCTATCCTGCTGGC ACCCTGTCTTGGCATCTGGATGGAAAGCCTCTGGTGCCC AACGAAAAGGCGTGTCCGTGAAAGAGCAGACCAGACGGC ATCCTGAGACTGGCCTGTTCACCCTGCAGTCCGAGCTGA TGGTTACCCCTGCTAGAGGCGGCGATCCCAGACCTACCT TCAGCTGCTCCTTCTTCCTGGCCTGCCTCGACATAGAGC CCTGAGAACCGCTCCTATCCAGCCTAGAGTGTGGGAGCC TGTGCCTCTGGAAGAGGTGCAGCTGGTGGTTGAACCTGA AGGCGGAGCTGTTGCTCCTGGCGGACAGTGACCCTGACC TGTGAAGTTCCCGCTCAGCCCTCTCCACAGATCCACTGG ATGAAGGATGGCGTGCCACTGCCTCTGCCTCCATCTCCT GTTCTGATCCTGCCAGAGATCGGCCCTCAGGACCAGGCA CCTATTCTTGTGTGGCTACCCACTCCTCTCACGGCCCTC AAGAGTCTAGAGCCGTGTCCATCTCCATCATCGAGCCTG GCGAGGAAGGACCTACAGCTGGCGAGGGCTTTGACAAAG TGCGCGGGCTGAGGACTCTCCTCAGCACGCTGTTGAGTG CCCTCCATGTGCTCCTCCAGTTGCTGGTGGCCCTTCCGT GTTCCTGTTTCCTCCAAAGCCTAAGGACACCCTGTACAT CACCCGCGAGCCTGAATGACCTGCGTGGTGGTGGATGTG TCCCAAGAGGATCCCGAGGTGCAGTTCAATTGGTACGTG GACGGCGTGGAAGTGCACAACGCCAAGACCAAGCCTAGA GAGGAACAGTTCAACTCCACCTACAGGTGGTGTCCGTGC TGACCGTGCTGCACCAGGATTGGCTGAATGGCAAAGAGT ATAAGTGCAAGGTGTCCAACAAGGGCCTGCCTTCCAGCA TCGAAAAGACCATCTCCAAGGCCAAGGGCCAGCCTAGGA ACCCCAGGTTTACACCCTGCCTCCAAGCCAAGAGGAAAT GACCAAGAACCAGGTGTCCCTGACATGCCTGGTCAAGGG CTTCTACCCCTCCGATATCGCCGTGGAATGGGAGTCTAA TGGCCAGCTGAGAACAACTACAAGACCACACCTCCTGTG CTGGACTCCGACGGCAGCTTCTTTCTGTACTCCCGCCTG ACCGTGGACAAGTCCAGGTGGCAAGAGGGCAACGTGTTC TCCTGCTCCGTGATGCAGAGGCCCTGCACAATCACTACA CCCAGAAGTCCCTGTCTCTGTCCCTGGGCAAATGA SEQ ID NO: 59 Nucleotide sequence of GCTCAGAATATCACCGCCAGAATCGGCGAGCCCCTGGTG Construct #27 CTGAAATGTAAAGGGCCCCTAAGAAGCCTCCTCAGCGGC TGGAATGGAAGCTGAACACCGGCAGAACCGAGGCCTGGA AAGTGCTGTCTCCTCAAGGCGGAGGCCCTTGGGATTCTG TGGCTAGAGTGCTGCCTAACTCTTCCTGTTTCTGCCTGC TGTGGGCATCCAGGACGAGGGCATCTTCAGGTGTCAGGC CATGAACCGGAACGGCAAAGAGACAAAGTCCAACTACCG CGTCAGAGTGTATCAGATCCCCGGCAAGCCTGAGTCGTG GACTCTGCCTCTGAACTGACAGCCGGCGTGCCCAACAAA GTGGGCACTTGTGTGTCCGAGGGCAGCTATCCTGCTGGC ACCCTGTCTTGGCATCTGGATGGAAAGCCTCTGGTGCCC AACGAAAAGGCGTGTCCGTGAAAGAGCAGACCAGACGGC ATCCTGAGACTGGCCTGTTCACCCTGCAGTCCGAGCTGA TGGTTACCCCTGCTAGAGGCGGCGATCCCAGACCTACCT TCAGCTGCTCCTTCTTCCTGGCCTGCCTCGACATAGAGC CCTGAGAACCGCTCCTATCCAGCCTAGAGTGTGGGAGCC TGTGCCTCTGGAAGAGGTGCAGCTGGTGGTTGAACCTGA AGGCGGAGCTGTTGCTCCTGGCGGACAGTGACCCTGACC TGTGAAGTTCCCGCTCAGCCCTCTCCACAGATCCACTGG ATGAAGGATGGCGTGCCACTGCCTCTGCCTCCATCTCCT GTTCTGATCCTGCCAGAGATCGGCCCTCAGGACCAGGCA CCTATTCTTGTGTGGCTACCCACTCCTCTCACGGCCCTC AAGAGTCTAGAGCCGTGTCCATCTCCATCATCGAGCCTG GCGAGGAAGGACCTACAGCTGGCGAGGGCTTTGACAAAG TGCGCGGGCTGAGGACTCTCCTCAGCACGCTGTTGAGTG CCCTCCATGTGCTCCTCCAGTTGCTGGTGGCCCTTCCGT GTTCCTGTTTCCTCCAAAGCCTAAGGACACCCTGTACAT CACCCGCGAGCCTGAATGACCTGCGTGGTGGTGGATGTG TCCCAAGAGGATCCCGAGGTGCAGTTCAATTGGTACGTG GACGGCGTGGAAGTGCACAACGCCAAGACCAAGCCTAGA GAGGAACAGTTCAACTCCACCTACAGGTGGTGTCCGTGC TGACCGTGCTGCACCAGGATTGGCTGAATGGCAAAGAGT ATAAGTGCAAGGTGTCCAACAAGGGCCTGCCTTCCAGCA TCGAAAAGACCATCTCCAAGGCCAAGGGCCAGCCTAGGA ACCCCAGGTTTACACCCTGCCTCCAAGCCAAGAGGAAAT GACCAAGAACCAGGTGTCCCTGACATGCCTGGTCAAGGG CTTCTACCCCTCCGATATCGCCGTGGAATGGGAGTCTAA TGGCCAGCTGAGAACAACTACAAGACCACACCTCCTGTG CTGGACTCCGACGGCAGCTTCTTTCTGTACTCCCGCCTG ACCGTGGACAAGTCCAGGTGGCAAGAGGGCAACGTGTTC TCCTGCTCCGTGATGCAGAGGCCCTGCACAATCACTACA CCCAGAAGTCCCTGTCTCTGTCCCTGGGCAAATGA SEQ ID NO: 60 Nucleotide sequence of GCTCAGGAGATCACCGCCAGAATCGGCGAGCCCCTGGTG Construct #28 CTGAAATGTAAAGGGCCCCTAAGAAGCCTCCTCAGCGGC TGGAATGGAAGCTGAACACCGGCAGAACCGAGGCCTGGA AAGTGCTGTCTCCTCAAGGCGGAGGCCCTTGGGATTCTG TGGCTAGAGTGCTGCCTAACTCCTCCTGTTTCTGCCTGC TGTGGGCATCCAGGACGAGGGCATCTTCAGGTGTCAGGC CATGAACCGGAACGGCAAAGAGACAAAGTCCAACTACCG CGTCAGAGTGTATCAGATCCCCGGCAAGCCTGAGTCGTG GACTCTGCCTCTGAACTGACAGCCGGCGTGCCCAACAAA GTGGGCACTTGTGTGTCCGAGGGCAGCTATCCTGCTGGC ACCCTGTCTTGGCATCTGGATGGAAAGCCTCTGGTGCCC AACGAAAAGGCGTGTCCGTGAAAGAGCAGACCAGACGGC ATCCTGAGACTGGCCTGTTCACCCTGCAGTCCGAGCTGA TGGTTACCCCTGCTAGAGGCGGCGATCCCAGACCTACCT TCAGCTGCTCCTTCTTCCTGGCCTGCCTCGACATAGAGC CCTGAGAACCGCTCCTATCCAGCCTAGAGTGTGGGAGCC TGTGCCTCTGGAAGAGGTGCAGCTGGTGGTTGAACCTGA AGGCGGAGCTGTTGCTCCTGGCGGACAGTGACCCTGACC TGTGAAGTTCCCGCTCAGCCCTCTCCACAGATCCACTGG ATGAAGGATGGCGTGCCACTGCCTCTGCCTCCATCTCCT GTTCTGATCCTGCCAGAGATCGGCCCTCAGGACCAGGCA CCTATTCTTGTGTGGCTACCCACTCCTCTCACGGCCCTC AAGAGTCTAGAGCCGTGTCCATCTCCATCATCGAGCCTG GCGAGGAAGGACCTACAGCTGGCGAGGGCTTTGACAAAG TGCGCGGGCTGAGGACTCTCCTCAGCACGCTGTTGAGTG CCCTCCATGTGCTCCTCCAGTTGCTGGTGGCCCTTCCGT GTTCCTGTTTCCTCCAAAGCCTAAGGACACCCTGTACAT CACCCGCGAGCCTGAATGACCTGCGTGGTGGTGGATGTG TCCCAAGAGGATCCCGAGGTGCAGTTCAATTGGTACGTG
GACGGCGTGGAAGTGCACAACGCCAAGACCAAGCCTAGA GAGGAACAGTTCAACTCCACCTACAGGTGGTGTCCGTGC TGACCGTGCTGCACCAGGATTGGCTGAATGGCAAAGAGT ATAAGTGCAAGGTGTCCAACAAGGGCCTGCCTTCCAGCA TCGAAAAGACCATCTCCAAGGCCAAGGGCCAGCCTAGGA ACCCCAGGTTTACACCCTGCCTCCAAGCCAAGAGGAAAT GACCAAGAACCAGGTGTCCCTGACATGCCTGGTCAAGGG CTTCTACCCCTCCGATATCGCCGTGGAATGGGAGTCTAA TGGCCAGCTGAGAACAACTACAAGACCACACCTCCTGTG CTGGACTCCGACGGCAGCTTCTTTCTGTACTCCCGCCTG ACCGTGGACAAGTCCAGGTGGCAAGAGGGCAACGTGTTC TCCTGCTCCGTGATGCAGAGGCCCTGCACAATCACTACA CCCAGAAGTCCCTGTCTCTGTCCCTGGGCAAATGA SEQ ID NO: 61 Nucleotide sequence of GCTCAGCAGATCACCGCCAGAATCGGCGAGCCCCTGGTG Construct #29 CTGAAATGTAAAGGGCCCCTAAGAAGCCTCCTCAGCGGC TGGAATGGAAGCTGAACACCGGCAGAACCGAGGCCTGGA AAGTGCTGTCTCCTCAAGGCGGAGGCCCTTGGGATTCTG TGGCTAGAGTGCTGCCTAACTCTTCCTGTTTCTGCCTGC TGTGGGCATCCAGGACGAGGGCATCTTCAGGTGTCAGGC CATGAACCGGAACGGCAAAGAGACAAAGTCCAACTACCG CGTCAGAGTGTATCAGATCCCCGGCAAGCCTGAGTCGTG GACTCTGCCTCTGAACTGACAGCCGGCGTGCCCAACAAA GTGGGCACTTGTGTGTCCGAGGGCAGCTATCCTGCTGGC ACCCTGTCTTGGCATCTGGATGGAAAGCCTCTGGTGCCC AACGAAAAGGCGTGTCCGTGAAAGAGCAGACCAGACGGC ATCCTGAGACTGGCCTGTTCACCCTGCAGTCCGAGCTGA TGGTTACCCCTGCTAGAGGCGGCGATCCCAGACCTACCT TCAGCTGCTCCTTCTTCCTGGCCTGCCTCGACATAGAGC CCTGAGAACCGCTCCTATCCAGCCTAGAGTGTGGGAGCC TGTGCCTCTGGAAGAGGTGCAGCTGGTGGTTGAACCTGA AGGCGGAGCTGTTGCTCCTGGCGGACAGTGACCCTGACC TGTGAAGTTCCCGCTCAGCCCTCTCCACAGATCCACTGG ATGAAGGATGGCGTGCCACTGCCTCTGCCTCCATCTCCT GTTCTGATCCTGCCAGAGATCGGCCCTCAGGACCAGGCA CCTATTCTTGTGTGGCTACCCACTCCTCTCACGGCCCTC AAGAGTCTAGAGCCGTGTCCATCTCCATCATCGAGCCTG GCGAGGAAGGACCTACAGCTGGCGAGGGCTTTGACAAAG TGCGCGGGCTGAGGACTCTCCTCAGCACGCTGTTGAGTG CCCTCCATGTGCTCCTCCAGTTGCTGGTGGCCCTTCCGT GTTCCTGTTTCCTCCAAAGCCTAAGGACACCCTGTACAT CACCCGCGAGCCTGAATGACCTGCGTGGTGGTGGATGTG TCCCAAGAGGATCCCGAGGTGCAGTTCAATTGGTACGTG GACGGCGTGGAAGTGCACAACGCCAAGACCAAGCCTAGA GAGGAACAGTTCAACTCCACCTACAGGTGGTGTCCGTGC TGACCGTGCTGCACCAGGATTGGCTGAATGGCAAAGAGT ATAAGTGCAAGGTGTCCAACAAGGGCCTGCCTTCCAGCA TCGAAAAGACCATCTCCAAGGCCAAGGGCCAGCCTAGGA ACCCCAGGTTTACACCCTGCCTCCAAGCCAAGAGGAAAT GACCAAGAACCAGGTGTCCCTGACATGCCTGGTCAAGGG CTTCTACCCCTCCGATATCGCCGTGGAATGGGAGTCTAA TGGCCAGCTGAGAACAACTACAAGACCACACCTCCTGTG CTGGACTCCGACGGCAGCTTCTTTCTGTACTCCCGCCTG ACCGTGGACAAGTCCAGGTGGCAAGAGGGCAACGTGTTC TCCTGCTCCGTGATGCAGAGGCCCTGCACAATCACTACA CCCAGAAGTCCCTGTCTCTGTCCCTGGGCAAATGA SEQ ID NO: 62 Nucleotide sequence of GCTCAGAATATCACCGCCAGAATCGGCGAGCCCCTGGTG Construct #30 CTGAAATGTAAAGGGCCCCTAAGAAGCCTCCTCAGCGGC TGGAATGGAAGCTGAACACCGGCAGAACCGAGGCCTGGA AAGTGCTGTCTCCTCAAGGCGGAGGCCCTTGGGATTCTG TGGCTAGAGTGCTGCCTAACGGCTCCTGTTTCTGCCTGC TGTGGGCATCCAGGACGAGGGCATCTTCAGGTGTCAGGC CATGAACCGGAACGGCAAAGAGACAAAGTCCAACTACCG CGTCAGAGTGTATCAGATCCCCGGCAAGCCTGAGTCGTG GACTCTGCCTCTGAACTGACAGCCGGCGTGCCCAACAAA GTGGGCACTTGTGTGTCCGAGGGCAGCTATCCTGCTGGC ACCCTGTCTTGGCATCTGGATGGAAAGCCTCTGGTGCCC AACGAAAAGGCGTGTCCGTGAAAGAGCAGACCAGACGGC ATCCTGAGACTGGCCTGTTCACCCTGCAGTCCGAGCTGA TGGTTACCCCTGCTAGAGGCGGCGATCCCAGACCTACCT TCAGCTGCTCCTTCTTCCTGGCCTGCCTCGACATAGAGC CCTGAGAACCGCTCCTATCCAGCCTAGAGTGTGGGAGCC TGTGCCTCTGGAAGAGGTGCAGCTGGTGGTTGAACCTGA AGGCGGAGCTGTTGCTCCTGGCGGACAGTGACCCTGACC TGTGAAGTTCCCGCTCAGCCCTCTCCACAGATCCACTGG ATGAAGGATGGCGTGCCACTGCCTCTGCCTCCATCTCCT GTTCTGATCCTGCCAGAGATCGGCCCTCAGGACCAGGCA CCTATTCTTGTGTGGCTACCCACTCCTCTCACGGCCCTC AAGAGTCTAGAGCCGTGTCCATCTCCATCATCGAGCCTG GCGAGGAAGGACCTACAGCTGGCGAGGGCTTTGACAAAG TGCGCGGGCTGAGGACTCTCCTCAGCACGCTGAGAGAAA GTGCTGCGTTGAGTGCCCTCCATGTGCTCCTCCAGTTGC TGGTGGCCCTTCCGTGTTCCTGTTTCCTCCAAAGCCTAA GGACACCCTGTACATCCCCGCGAGCCTGAAGTGACCTGC GTGGTGGTGGATGTGTCCCAAGAGGATCCCGAGGTGCAG TTCAATTGGTACGTGGACGGCGTGGAAGTGCACAACGCC AAGACCAAGCCTAGAGAGGAACAGTTAACTCCACCTACA GAGTGGTGTCCGTGCTGACCGTGCTGCACCAGGATTGGC TGAATGGCAAAGAGTATAAGTGCAAGGTGTCCAACAAGG GCCTGCCTTCCAGCATCGAAAAGACCATCTCCAAGGCAA GGGCCAGCCTAGGGAACCCCAGGTTTACACCCTGCCTCC AAGCCAAGAGGAAATGACCAAGAACCAGGTGTCCCTGAC ATGCCTGGTCAAGGGCTTCTACCCCTCCGATATCGCCGT GGAATGGAGTCTAATGGCCAGCCTGAGAACAACTACAAG ACCACACCTCCTGTGCTGGACTCCGACGGCAGCTTCTTT CTGTACTCCCGCCTGACCGTGGACAAGTCCAGGTGGCAA GAGGGCAACGTGTTCTCTGCTCCGTGATGCACGAGGCCC TGCACAATCACTACACCCAGAAGTCCCTGTCTCTGTCCC TGGGCAAATGA SEQ ID NO: 63 Nucleotide sequence of GCTCAGAATATCACCGCCAGAATCGGCGAGCCCCTGGTG Construct #31 CTGAAATGTAAAGGGCCCCTAAGAAGCCTCCTCAGCGGC TGGAATGGAAGCTGAACACCGGCAGAACCGAGGCCTGGA AAGTGCTGTCTCCTCAAGGCGGAGGCCCTTGGGATTCTG TGGCTAGAGTGCTGCCTAACGGCTCCTGTTTCTGCCTGC TGTGGGCATCCAGGACGAGGGCATCTTCAGGTGTCAGGC CATGAACCGGAACGGCAAAGAGACAAAGTCCAACTACCG CGTCAGAGTGTATCAGATCCCCGGCAAGCCTGAGTCGTG GACTCTGCCTCTGAACTGACAGCCGGCGTGCCCAACAAA GTGGGCACTTGTGTGTCCGAGGGCAGCTATCCTGCTGGC ACCCTGTCTTGGCATCTGGATGGAAAGCCTCTGGTGCCC AACGAAAAGGCGTGTCCGTGAAAGAGCAGACCAGACGGC ATCCTGAGACTGGCCTGTTCACCCTGCAGTCCGAGCTGA TGGTTACCCCTGCTAGAGGCGGCGATCCCAGACCTACCT TCAGCTGCTCCTTCTTCCTGGCCTGCCTCGACATAGAGC CCTGAGAACCGCTCCTATCCAGCCTAGAGTGTGGGAGCC TGTGCCTCTGGAAGAGGTGCAGCTGGTGGTTGAACCTGA AGGCGGAGCTGTTGCTCCTGGCGGACAGTGACCCTGACC TGTGAAGTTCCCGCTCAGCCCTCTCCACAGATCCACTGG ATGAAGGATGGCGTGCCACTGCCTCTGCCTCCATCTCCT GTTCTGATCCTGCCAGAGATCGGCCCTCAGGACCAGGCA CCTATTCTTGTGTGGCTACCCACTCCTCTCACGGCCCTC AAGAGTCTAGAGCCGTGTCCATCTCCATCATCGAGCCTG GCGAGGAAGGACCTACAGCTGGCGAGGGCTTTGACAAAG TGCGCGGGCTGAGGACTCTCCTCAGCACGCTGTTGAGTG CCCTCCATGTGCTCCTCCAGTGGCTGGCCCTTCCGTGTT CCTGTTTCCTCCAAAGCCTAAGGACACCCTGTACATCAC CCGCGAGCCTGAAGTGCCTGCGTGGTGGTGGATGTGTCT CACGAGGATCCCGAGGTGCAGTTCAATTGGTACGTGGAC GGCGTGGAAGTGCACAACGCCAAGACCAAGCCTAGAGAG GAACAGTTCAACTCCACCTTCAGAGTGTGTCCGTGCTGA CCGTGGTGCATCAGGATTGGCTGAATGGGAAAGAGTACA AGTGCAAGGTGTCCAACAAGGGCCTGCCTGCTCCTATCG AAAAGACCATCTCTAAGACCAAGGGACAGCCCCGGGACC TCAGGTGTACACACTGCCACCTAGCCGGGAAGAGATGAC CAAGAACCAGGTGTCCCTGACATGCCTGGTCAAGGGCTT CTACCCCTCCGATATCGCCGTGGAATGGGAGTCTAATGG CCAGCCTAGAACAACTACAAGACCACACCTCCTATGCTG GACTCCGACGGCTCATTCTTCCTGTACTCCAAGCTGACA GTGGACAAGTCCAGATGGCAGCAGGGCAACGTGTTCTCC TGCTCCGTGATGCACGAGCCCTGCACAATCACTACACCC AGAAGTCCCTGTCTCTGTCCCCTGGCAAATGA SEQ ID NO: 64 Nucleotide sequence of GCTCAGAATATCACCGCCAGAATCGGCGAGCCCCTGGTG Construct #32 CTGAAATGTAAAGGGCCCCTAAGAAGCCTCCTCAGCGGC TGGAATGGAAGCTGAACACCGGCAGAACCGAGGCCTGGA AAGTGCTGTCTCCTCAAGGCGGAGGCCCTTGGGATTCTG TGGCTAGAGTGCTGCCTAACGGCTCCTGTTTCTGCCTGC TGTGGGCATCCAGGACGAGGGCATCTTCAGGTGTCAGGC CATGAACCGGAACGGCAAAGAGACAAAGTCCAACTACCG CGTCAGAGTGTATCAGATCCCCGGCAAGCCTGAGTCGTG GACTCTGCCTCTGAACTGACAGCCGGCGTGCCCAACAAA GTGGGCACTTGTGTGTCCGAGGGCAGCTATCCTGCTGGC ACCCTGTCTTGGCATCTGGATGGAAAGCCTCTGGTGCCC AACGAAAAGGCGTGTCCGTGAAAGAGCAGACCAGACGGC ATCCTGAGACTGGCCTGTTCACCCTGCAGTCCGAGCTGA TGGTTACCCCTGCTAGAGGCGGCGATCCCAGACCTACCT TCAGCTGCTCCTTCTTCCTGGCCTGCCTCGACATAGAGC CCTGAGAACCGCTCCTATCCAGCCTAGAGTGTGGGAGCC TGTGCCTCTGGAAGAGGTGCAGCTGGTGGTTGAACCTGA AGGCGGAGCTGTTGCTCCTGGCGGACAGTGACCCTGACC TGTGAAGTTCCCGCTCAGCCCTCTCCACAGATCCACTGG ATGAAGGATGGCGTGCCACTGCCTCTGCCTCCATCTCCT GTTCTGATCCTGCCAGAGATCGGCCCTCAGGACCAGGCA CCTATTCTTGTGTGGCTACCCACTCCTCTCACGGCCCTC AAGAGTCTAGAGCCGTGTCCATCTCCATCATCGAGCCTG GCGAGGAAGGACCTACAGCTGGCGAGGGCTTTGACAAAG TGCGCGGGCTGAGGACTCTCCTCAGCACGCTGTTGAGTG CCCTCCATGTGCTCCTCCAGTTGCTGGTGGCCCTTCCGT GTTCCTGTTTCCTCCAAAGCCTAAGGACACCCTGTACAT CACCCGCGAGCCTGAATGACCTGCGTGGTGGTGGATGTG TCTCACGAGGACCCCGAAGTGAAGTTCAATTGGTACGTG GACGGCGTGGAAGTGCACAACGCCAAGACCAAGCCTAGA GAGGAACAGTACAACTCCACCTACAGGTGGTGTCCGTGC TGACCGTGCTGCACCAGGATTGGCTGAATGGCAAAGAGT ATAAGTGCAAGGTGTCCAACAAGGCCCTGCCTGCTCCTA TCGAAAAGACCATCTCCAAGGCCAAGGGCCAGCCTAGGA ACCCCAGGTTTACACCTTGCCACCTTCTCGGGACGAGCT GACCAAGAACCAGGTGTCCCTGACATGCCTGGTCAAGGG CTTCTACCCCTCCGATATCGCCGTGGAATGGGAGTCTAA TGGCCAGCTGAGAACAACTACAAGACCACACCTCCTGTG CTGGACTCCGACGGCTCATTCTTCCTGTACTCCAAGCTG ACAGTGGACAAGTCCAGATGGCAGCAGGGCAACGTGTTC TCCTGCTCCGTGATGCAGAGGCCCTGCACAATCACTACA CCCAGAAGTCCCTGTCTCTGTCCCCTGGCAAATGA SEQ ID NO: 65 Nucleotide sequence of GCTCAGAATATCACCGCCAGAATCGGCGAGCCCCTGGTG Construct #33 CTGAAATGTAAAGGGCCCCTAAGAAGCCTCCTCAGCGGC TGGAATGGAAGCTGAACACCGGCAGAACCGAGGCCTGGA AAGTGCTGTCTCCTCAAGGCGGAGGCCCTTGGGATTCTG TGGCTAGAGTGCTGCCTAACGGCTCCTGTTTCTGCCTGC TGTGGGCATCCAGGACGAGGGCATCTTCAGGTGTCAGGC CATGAACCGGAACGGCAAAGAGACAAAGTCCAACTACCG CGTCAGAGTGTATCAGATCCCCGGCAAGCCTGAGTCGTG GACTCTGCCTCTGAACTGACAGCCGGCGTGCCCAACAAA GTGGGCACTTGTGTGTCCGAGGGCAGCTATCCTGCTGGC ACCCTGTCTTGGCATCTGGATGGAAAGCCTCTGGTGCCC AACGAAAAGGCGTGTCCGTGAAAGAGCAGACCAGACGGC ATCCTGAGACTGGCCTGTTCACCCTGCAGTCCGAGCTGA TGGTTACCCCTGCTAGAGGCGGCGATCCCAGACCTACCT TCAGCTGCTCCTTCTTCCTGGCCTGCCTCGACATAGAGC CCTGAGAACCGCTCCTATCCAGCCTAGAGTGTGGGAGCC TGTGCCTCTGGAAGAGGTGCAGCTGGTGGTTGAACCTGA AGGCGGAGCTGTTGCTCCTGGCGGACAGTGACCCTGACC TGTGAAGTTCCCGCTCAGCCCTCTCCACAGATCCACTGG ATGAAGGATGGCGTGCCACTGCCTCTGCCTCCATCTCCT GTTCTGATCCTGCCAGAGATCGGCCCTCAGGACCAGGCA CCTATTCTTGTGTGGCTACCCACTCCTCTCACGGCCCTC AAGAGTCTAGAGCCGTGTCCATCTCCATCATCGAGCCTG GCGAGGAAGGACCTACAGCTGGCGAGGGCTTTGACAAAG TGCGCGGGCTGAGGACTCTCCTCAGCACGCTGAGTCTAA GTACGGCCCTCCTTGTCCTCCATGTCCTGCTCCAGAAGC TGCTGGTGGCCCTTCCGTGTTCCTGTTTCCTCCAAAGCC TAAGGACACCCTGTACTCACCCGCGAGCCTGAAGTGACC TGCGTGGTGGTGGATGTGTCTCACGAGGACCCCGAAGTG AAGTTCAATTGGTACGTGGACGGCGTGGAAGTGCACAAC GCCAAGACCAAGCCTAGAGAGGAACATACAACTCCACCT ACAGAGTGGTGTCCGTGCTGACCGTGCTGCACCAGGATT GGCTGAATGGCAAAGAGTATAAGTGCAAGGTGTCCAACA AGGCCCTGCCTGCTCCTATCGAAAAGACCATCTCCAGGC CAAGGGCCAGCCTAGGGAACCCCAGGTTTACACCTTGCC ACCTTCTCGGGACGAGCTGACCAAGAACCAGGTGTCCCT GACATGCCTGGTCAAGGGCTTCTACCCCTCCGATATCGC CGTGGAAGGGAGTCTAATGGCCAGCCTGAGAACAACTAC AAGACCACACCTCCTGTGCTGGACTCCGACGGCTCATTC TTCCTGTACTCCAAGCTGACAGTGGACAAGTCCAGATGG CAGCAGGGCAACGTGTTTCCTGCTCCGTGATGCACGAGG CCCTGCACAATCACTACACCCAGAAGTCCCTGTCTCTGT CCCCTGGCAAATGA SEQ ID NO: 66 Nucleotide sequence of GCTCAGAATATCACCGCCAGAATCGGCGAGCCCCTGGTG Construct #34 CTGAAATGTAAAGGGCCCCTAAGAAGCCTCCTCAGCGGC TGGAATGGAAGCTGAACACCGGCAGAACCGAGGCCTGGA AAGTGCTGTCTCCTCAAGGCGGAGGCCCTTGGGATTCTG TGGCTAGAGTGCTGCCTAACGGCTCCTGTTTCTGCCTGC TGTGGGCATCCAGGACGAGGGCATCTTCAGGTGTCAGGC CATGAACCGGAACGGCAAAGAGACAAAGTCCAACTACCG CGTCAGAGTGTATCAGATCCCCGGCAAGCCTGAGTCGTG GACTCTGCCTCTGAACTGACAGCCGGCGTGCCCAACAAA GTGGGCACTTGTGTGTCCGAGGGCAGCTATCCTGCTGGC ACCCTGTCTTGGCATCTGGATGGAAAGCCTCTGGTGCCC AACGAAAAGGCGTGTCCGTGAAAGAGCAGACCAGACGGC ATCCTGAGACTGGCCTGTTCACCCTGCAGTCCGAGCTGA TGGTTACCCCTGCTAGAGGCGGCGATCCCAGACCTACCT
TCAGCTGCTCCTTCTTCCTGGCCTGCCTCGACATAGAGC CCTGAGAACCGCTCCTATCCAGCCTAGAGTGTGGGAGCC TGTGCCTCTGGAAGAGGTGCAGCTGGTGGTTGAACCTGA AGGCGGAGCTGTTGCTCCTGGCGGACAGTGACCCTGACC TGTGAAGTTCCCGCTCAGCCCTCTCCACAGATCCACTGG ATGAAGGATGGCGTGCCACTGCCTCTGCCTCCATCTCCT GTTCTGATCCTGCCAGAGATCGGCCCTCAGGACCAGGCA CCTATTCTTGTGTGGCTACCCACTCCTCTCACGGCCCTC AAGAGTCTAGAGCCGTGTCCATCTCCATCATCGAGCCTG GCGAGGAAGGACCTACAGCTGGCGAGGGCTTTGACAAAG TGCGCGGGCTGAGGACTCTCCTCAGCACGCTGAGCCTAA GTCCTGCGACAAGACCCACACCTGTCCTCCATGTCCTGC TCCAGAAGCTGCTGGTGGCCCTTCCGTGTTCCTGTTTCC TCCAAAGCCTAAGGACCCCTGTACATCACCCGCGAGCCT GAAGTGACCTGCGTGGTGGTGGATGTGTCTCACGAGGAC CCCGAAGTGAAGTTCAATTGGTACGTGGACGGCGTGGAA GTGCACAACGCCAAGACCAAGCCTAGGAGGAACAGTACA ACTCCACCTACAGAGTGGTGTCCGTGCTGACCGTGCTGC ACCAGGATTGGCTGAATGGCAAAGAGTATAAGTGCAAGG TGTCCAACAAGGCCCTGCCTGCTCCTATCGAAAAGACAT CTCCAAGGCCAAGGGCCAGCCTAGGGAACCCCAGGTTTA CACCTTGCCACCTTCTCGGGACGAGCTGACCAAGAACCA GGTGTCCCTGACATGCCTGGTCAAGGGCTTCTACCCCTC CGATATCCCGTGGAATGGGAGTCTAATGGCCAGCCTGAG AACAACTACAAGACCACACCTCCTGTGCTGGACTCCGAC GGCTCATTCTTCCTGTACTCCAAGCTGACAGTGGACAAG TCCAGATGGCAGCAGGGAACGTGTTCTCCTGCTCCGTGA TGCACGAGGCCCTGCACAATCACTACACCCAGAAGTCCC TGTCTCTGTCCCCTGGCAAATGA SEQ ID NO: 67 Nucleotide sequence of GCTCAGAATATCACCGCCAGAATCGGCGAGCCCCTGGTG Construct #35 CTGAAATGTAAAGGCGCCCCTAAGAAGCCTCCTCAGCGG CTGGAATGGAAGCTGAACACCGGCAGAACCGAGGCCTGG AAAGTGCTGTCTCCTCAAGGCGGAGGCCCTTGGGATTCT GTGGCTAGAGTGCTGCCTAACGGCTCCCTGTTTCTGCCT GCTGTGGGCATCCAGGACGAGGGCATCTTCAGGTGTCAG GCCATGAACCGGAACGGCAAAGAGACAAAGTCCAACTAC CGCGTCAGAGTGTATCAGATCCCCGGCAAGCCTGAGATC GTGGACTCTGCCTCTGAACTGACAGCCGGCGTGCCCAAC AAAGTGGGCACTTGTGTGTCCGAGGGCAGCTATCCTGCT GGCACCCTGTCTTGGCATCTGGATGGAAAGCCTCTGGTG CCCAACGAGAAAGGCGTGTCCGTGAAAGAGCAGACCAGA CGGCATCCTGAGACTGGCCTGTTCACCCTGCAGTCCGAG CTGATGGTTACCCCTGCTAGAGGCGGCGATCCCAGACCT ACCTTCAGCTGCTCCTTCTCTCCTGGCCTGCCTCGACAT AGAGCCCTGAGAACCGCTCCTATCCAGCCTAGAGTGTGG GAGCCTGTGCCTCTGGAAGAGGTGCAGCTGGTGGTTGAA CCTGAAGGCGGAGCTGTTGCTCCTGGCGGAACAGTGACC CTGACCTGTGAAGTTCCCGCTCAGCCCTCTCCACAGATC CACTGGATGAAGGATGGCGTGCCACTGCCTCTGCCTCCA TCTCCTGTTCTGATCCTGCCAGAGATCGGCCCTCAGGAC CAGGGCACCTATTCTTGTGTGGCTACCCACTCCTCTCAC GGCCCTCAAGAGTCTAGAGCCGTGTCCATCTCCATCATC GAGCCTGGCGAGGAAGGACCTACAGCTGGCGAGGGCTTT GACAAAGTGCGCGAGGCCGAGGATTCTCCTCAGCATGCT GAGTCTAAGTACGGCCCTCCTTGTCCTCCATGTCCTGCT CCAGAAGCTGCTGGCGGCCCTTCCGTGTTTCTGTTCCCT CCAAAGCCTAAGGACACCCTGTACATCACCCGGGAGCCT GAAGTGACCTGCGTGGTGGTGGATGTGTCCCAAGAGGAT CCCGAGGTGCAGTTCAATTGGTACGTGGACGGCGTGGAA GTGCACAACGCCAAGACCAAGCCTAGAGAGGAACAGTTC AACTCCACCTACAGAGTGGTGTCCGTGCTGACCGTGCTG CACCAGGATTGGCTGAATGGCAAAGAGTATAAGTGCAAG GTGTCCAACAAGGGCCTGCCTTCCAGCATCGAAAAGACC ATCTCCAAGGCCAAGGGCCAGCCTAGGGAACCCCAGGTT TACACCCTGCCTCCAAGCCAAGAGGAAATGACCAAGAAC CAGGTGTCCCTGACATGCCTGGTCAAGGGCTTCTACCCC TCCGATATCGCCGTGGAATGGGAGTCTAATGGCCAGCCT GAGAACAACTACAAGACCACACCTCCTGTGCTGGACTCC GACGGCAGCTTCTTTCTGTACTCCCGCCTGACCGTGGAC AAGTCCAGGTGGCAAGAGGGCAACGTGTTCTCCTGCTCC GTGATGCACGAGGCCCTGCACAATCACTACACCCAGAAG TCCCTGTCTCTGTCCCTGGGCAAATGA SEQ ID NO: 68 Nucleotide sequence of GCTCAGAATATCACCGCCAGAATCGGCGAGCCCCTGGTG Construct #36 CTGAAATGTAAAGGCGCCCCTAAGAAGCCTCCTCAGCGG CTGGAATGGAAGCTGAACACCGGCAGAACCGAGGCCTGG AAAGTGCTGTCTCCTCAAGGCGGAGGCCCTTGGGATTCT GTGGCTAGAGTGCTGCCTAACGGCTCCCTGTTTCTGCCT GCTGTGGGCATCCAGGACGAGGGCATCTTCAGGTGTCAG GCCATGAACCGGAACGGCAAAGAGACAAAGTCCAACTAC CGCGTCAGAGTGTATCAGATCCCCGGCAAGCCTGAGATC GTGGACTCTGCCTCTGAACTGACAGCCGGCGTGCCCAAC AAAGTGGGCACTTGTGTGTCCGAGGGCAGCTATCCTGCT GGCACCCTGTCTTGGCATCTGGATGGAAAGCCTCTGGTG CCCAACGAGAAAGGCGTGTCCGTGAAAGAGCAGACCAGA CGGCATCCTGAGACTGGCCTGTTCACCCTGCAGTCCGAG CTGATGGTTACCCCTGCTAGAGGCGGCGATCCCAGACCT ACCTTCAGCTGCTCCTTCTCTCCTGGCCTGCCTCGACAT AGAGCCCTGAGAACCGCTCCTATCCAGCCTAGAGTGTGG GAGCCTGTGCCTCTGGAAGAGGTGCAGCTGGTGGTTGAA CCTGAAGGCGGAGCTGTTGCTCCTGGCGGAACAGTGACC CTGACCTGTGAAGTTCCCGCTCAGCCCTCTCCACAGATC CACTGGATGAAGGATGGCGTGCCACTGCCTCTGCCTCCA TCTCCTGTTCTGATCCTGCCAGAGATCGGCCCTCAGGAC CAGGGCACCTATTCTTGTGTGGCTACCCACTCCTCTCAC GGCCCTCAAGAGTCTAGAGCCGTGTCCATCTCCATCATC GAGCCTGGCGAGGAAGGACCTACAGCTGGCGAGGGCTTT GACAAAGTGCGCGAGGCTGAGGACTCTCCTCAGCATGCC GGAACACTGGTCACCGTGTCCTCCGAGTCTAAGTACGGC CCTCCTTGTCCTCCATGTCCTGCTCCAGAAGCTGCTGGC GGCCCTTCCGTGTTTCTGTTCCCTCCAAAGCCTAAGGAC ACCCTGTACATCACCCGGGAGCCTGAAGTGACCTGCGTG GTGGTGGATGTGTCCCAAGAGGATCCCGAGGTGCAGTTC AATTGGTACGTGGACGGCGTGGAAGTGCACAACGCCAAG ACCAAGCCTAGAGAGGAACAGTTCAACTCCACCTACAGA GTGGTGTCCGTGCTGACCGTGCTGCACCAGGATTGGCTG AATGGCAAAGAGTATAAGTGCAAGGTGTCCAACAAGGGC CTGCCTTCCAGCATCGAAAAGACCATCTCCAAGGCCAAG GGCCAGCCTAGGGAACCCCAGGTTTACACCCTGCCTCCA AGCCAAGAGGAAATGACCAAGAACCAGGTGTCCCTGACA TGCCTGGTCAAGGGCTTCTACCCCTCCGATATCGCCGTG GAATGGGAGTCTAATGGCCAGCCTGAGAACAACTACAAG ACCACACCTCCTGTGCTGGACTCCGACGGCAGCTTCTTT CTGTACTCCCGCCTGACCGTGGACAAGTCCAGGTGGCAA GAGGGCAACGTGTTCTCCTGCTCCGTGATGCACGAGGCC CTGCACAATCACTACACCCAGAAGTCCCTGTCTCTGTCC CTGGGCAAATGA SEQ ID NO: 69 Nucleotide sequence of GCTCAGAATATCACCGCCAGAATCGGCGAGCCCCTGGTG Construct #1 64K CTGAAATGTAAAGGGCCCCTAAGAAGCCTCCTCAGCGGC TGGAATGGAAGCTGAACACCGGCAGAACCGAGGCCTGGA AAGTGCTGTCTCCTCAAGGCGGAGGCCCTTGGGATTCTG TGGCTAGAGTGCTGCCTAACGGCTCCTGTTTCTGCCTGC TGTGGGCATCCAGGACGAGGGCATCTTCAGGTGTCAGGC CATGAACCGGAACGGCAAAGAGACAAAGTCCAACTACCG CGTCAGAGTGTATCAGATCCCCGGCAAGCCTGAGTCGTG GACTCTGCCTCTGAACTGACAGCCGGCGTGCCCAACAAA GTGGGCACTTGTGTGTCCGAGGGCAGCTATCCTGCTGGC ACCCTGTCTTGGCATCTGGATGGAAAGCCTCTGGTGCCC AACGAAAAGGCGTGTCCGTGAAAGAGCAGACCAGACGGC ATCCTGAGACTGGCCTGTTCACCCTGCAGTCCGAGCTGA TGGTTACCCCTGCTAGAGGCGGCGATCCCAGACCTACCT TCAGCTGCTCCTTCTTCCTGGCCTGCCTCGACATAGAGC CCTGAGAACCGCTCCTATCCAGCCTAGAGTGTGGGAGCC TGTGCCTCTGGAAGAGGTGCAGCTGGTGGTTGAACCTGA AGGCGGAGCTGTTGCTCCTGGCGGACAGTGACCCTGACC TGTGAAGTTCCCGCTCAGCCCTCTCCACAGATCCACTGG ATGAAGGATGGCGTGCCACTGCCTCTGCCTCCATCTCCT GTTCTGATCCTGCCAGAGATCGGCCCTCAGGACCAGGCA CCTATTCTTGTGTGGCTACCCACTCCTCTCACGGCCCTC AAGAGTCTAGAGCCGTGTCCATCTCCATCATCGAGCCTG GCGAGGAAGGACCTACAGCTGGCGAGGGCTTTGACAAAG TGCGCGGGCTGAGGACTCTCCTCAGCACGCTGTTGAGTG CCCTCCATGTGCTCCTCCAGTTGCTGGTGGCCCTTCCGT GTTCCTGTTTCCTCCAAAGCCTAAGGACACCCTGTACAT CACCCGCGAGCCTGAATGACCTGCGTGGTGGTGGATGTG TCCCAAGAGGATCCCGAGGTGCAGTTCAATTGGTACGTG GACGGCGTGGAAGTGCACAACGCCAAGACCAAGCCTAGA GAGGAACAGTTCAACTCCACCTACAGGTGGTGTCCGTGC TGACCGTGCTGCACCAGGATTGGCTGAATGGCAAAGAGT ATAAGTGCAAGGTGTCCAACAAGGGCCTGCCTTCCAGCA TCGAAAAGACCATCTCCAAGGCCAAGGGCCAGCCTAGGA ACCCCAGGTTTACACCCTGCCTCCAAGCCAAGAGGAAAT GACCAAGAACCAGGTGTCCCTGACATGCCTGGTCAAGGG CTTCTACCCCTCCGATATCGCCGTGGAATGGGAGTCTAA TGGCCAGCTGAGAACAACTACAAGACCACACCTCCTGTG CTGGACTCCGACGGCAGCTTCTTTCTGTACTCCCGCCTG ACCGTGGACAAGTCCAGGTGGCAAGAGGGCAACGTGTTC TCCTGCTCCGTGATGCAGAGGCCCTGCACAATCACTACA CCCAGAAGTCCCTGTCTCTGTCCCTGGGCTGA SEQ ID NO: 70 Nucleotide sequence of GCTCAGAATATCACCGCCAGAATCGGCGAGCCCCTGGTG Construct #124K CTGAAATGTAAAGGCGCCCCTAAGAAGCCTCCTCAGCGG CTGGAATGGAAGCTGAACACCGGCAGAACCGAGGCCTGG AAAGTGCTGTCTCCTCAAGGCGGAGGCCCTTGGGATTCT GTGGCTAGAGTGCTGCCTAACGGCTCCCTGTTTCTGCCT GCTGTGGGCATCCAGGACGAGGGCATCTTCAGGTGTCAG GCCATGAACCGGAACGGCAAAGAGACAAAGTCCAACTAC CGCGTCAGAGTGTATCAGATCCCCGGCAAGCCTGAGATC GTGGACTCTGCCTCTGAACTGACAGCCGGCGTGCCCAAC AAAGTGGGCACTTGTGTGTCCGAGGGCAGCTATCCTGCT GGCACCCTGTCTTGGCATCTGGATGGAAAGCCTCTGGTG CCCAACGAGAAAGGCGTGTCCGTGAAAGAGCAGACCAGA CGGCATCCTGAGACTGGCCTGTTCACCCTGCAGTCCGAG CTGATGGTTACCCCTGCTAGAGGCGGCGATCCCAGACCT ACCTTCAGCTGCTCCTTCTCTCCTGGCCTGCCTCGACAT AGAGCCCTGAGAACCGCTCCTATCCAGCCTAGAGTGTGG GAGCCTGTGCCTCTGGAAGAGGTGCAGCTGGTGGTTGAA CCTGAAGGCGGAGCTGTTGCTCCTGGCGGAACAGTGACC CTGACCTGTGAAGTTCCCGCTCAGCCCTCTCCACAGATC CACTGGATGAAGGATGGCGTGCCACTGCCTCTGCCTCCA TCTCCTGTTCTGATCCTGCCAGAGATCGGCCCTCAGGAC CAGGGCACCTATTCTTGTGTGGCTACCCACTCCTCTCAC GGCCCTCAAGAGTCTAGAGCCGTGTCCATCTCCATCATC GAGCCTGGCGAGGAAGGACCTACAGCTGGCGAGGGCTTT GACAAAGTGCGCGAGGCTGAGGACTCTCCTCAGCATGCC GTGGAATGCCCTCCTTGTGCTCCTCCTGTGGCTGGCGGC CCTTCCGTGTTTCTGTTCCCTCCAAAGCCTAAGGACACC CTGATGATCTCTCGGACCCCTGAAGTGACCTGCGTGGTG GTGGATGTGTCCCAAGAGGATCCCGAGGTGCAGTTCAAT TGGTACGTGGACGGCGTGGAAGTGCACAACGCCAAGACC AAGCCTAGAGAGGAACAGTTCAACTCCACCTACAGAGTG GTGTCCGTGCTGACCGTGCTGCACCAGGATTGGCTGAAT GGCAAAGAGTATAAGTGCAAGGTGTCCAACAAGGGCCTG CCTTCCAGCATCGAAAAGACCATCTCCAAGGCCAAGGGC CAGCCTAGGGAACCCCAGGTTTACACCCTGCCTCCAAGC CAAGAGGAAATGACCAAGAACCAGGTGTCCCTGACATGC CTGGTCAAGGGCTTCTACCCCTCCGATATCGCCGTGGAA TGGGAGTCTAATGGCCAGCCTGAGAACAACTACAAGACC ACACCTCCTGTGCTGGACTCCGACGGCAGCTTCTTTCTG TACTCCCGCCTGACCGTGGACAAGTCCAGGTGGCAAGAG GGCAACGTGTTCTCCTGCTCCGTGATGCACGAGGCCCTG CACAATCACTACACCCAGAAGTCCCTGTCTCTGTCCCTG GGCTGA SEQ ID NO: 71 Short Stem sequence (#9) HSSHGPQESRAVSISITEPGEEGPTAG SEQ ID NO: 72 V1 stem sequence HSSHGPQESRAVSISIIEPGEEGPTAGEGFDKVREAEDS PQHA SEQ ID NO: 73 C-terminal 13 amino acids of SVGGSGLGTLALA RAGE stem SEQ ID NO: 74 esRAGE (sequence of the AQNITARI GEPLVLKCKG APKKPPQRLE mature protein; lacking the WKLNTGRTEA WKVLSPQGGG PWDSVARVLP natural leader sequence) NGSLFLPAVG IQDEGIFRCQ AMNRNGKETK SNYRVRVYQI PGKPEIVDSA SELTAGVPNK VGTCVSEGSY PAGTLSWHLD GKPLVPNEKG VSVKEQTRRH PETGLFTLQS ELMVTPARGG DPRPTFSCSF SPGLPRHRAL RTAPIQPRVW EPVPLEEVQL VVEPEGGAVA PGGTVTLTCE VPAQPSPQIH WMKDGVPLPL PPSPVLILPE IGPQDQGTYS CVATHSSHGP QESRAVSISI IEPGEEGPTA GEGFDKVREA EDSPQHM
Sequence CWU
1
1
751347PRTArtificial SequenceDescription of Artificial Sequence Synthetic
polypeptide 1Met Ala Ala Gly Thr Ala Val Gly Ala Trp Val Leu Val Leu
Ser Leu1 5 10 15Trp Gly
Ala Val Val Gly Ala Gln Asn Ile Thr Ala Arg Ile Gly Glu 20
25 30Pro Leu Val Leu Lys Cys Lys Gly Ala
Pro Lys Lys Pro Pro Gln Arg 35 40
45Leu Glu Trp Lys Leu Asn Thr Gly Arg Thr Glu Ala Trp Lys Val Leu 50
55 60Ser Pro Gln Gly Gly Gly Pro Trp Asp
Ser Val Ala Arg Val Leu Pro65 70 75
80Asn Gly Ser Leu Phe Leu Pro Ala Val Gly Ile Gln Asp Glu
Gly Ile 85 90 95Phe Arg
Cys Gln Ala Met Asn Arg Asn Gly Lys Glu Thr Lys Ser Asn 100
105 110Tyr Arg Val Arg Val Tyr Gln Ile Pro
Gly Lys Pro Glu Ile Val Asp 115 120
125Ser Ala Ser Glu Leu Thr Ala Gly Val Pro Asn Lys Val Gly Thr Cys
130 135 140Val Ser Glu Gly Ser Tyr Pro
Ala Gly Thr Leu Ser Trp His Leu Asp145 150
155 160Gly Lys Pro Leu Val Pro Asn Glu Lys Gly Val Ser
Val Lys Glu Gln 165 170
175Thr Arg Arg His Pro Glu Thr Gly Leu Phe Thr Leu Gln Ser Glu Leu
180 185 190Met Val Thr Pro Ala Arg
Gly Gly Asp Pro Arg Pro Thr Phe Ser Cys 195 200
205Ser Phe Ser Pro Gly Leu Pro Arg His Arg Ala Leu Arg Thr
Ala Pro 210 215 220Ile Gln Pro Arg Val
Trp Glu Pro Val Pro Leu Glu Glu Val Gln Leu225 230
235 240Val Val Glu Pro Glu Gly Gly Ala Val Ala
Pro Gly Gly Thr Val Thr 245 250
255Leu Thr Cys Glu Val Pro Ala Gln Pro Ser Pro Gln Ile His Trp Met
260 265 270Lys Asp Gly Val Pro
Leu Pro Leu Pro Pro Ser Pro Val Leu Ile Leu 275
280 285Pro Glu Ile Gly Pro Gln Asp Gln Gly Thr Tyr Ser
Cys Val Ala Thr 290 295 300His Ser Ser
His Gly Pro Gln Glu Ser Arg Ala Val Ser Ile Ser Ile305
310 315 320Ile Glu Pro Gly Glu Glu Gly
Pro Thr Ala Gly Glu Gly Phe Asp Lys 325
330 335Val Arg Glu Ala Glu Asp Ser Pro Gln His Met
340 345215PRTArtificial SequenceDescription of
Artificial Sequence Synthetic peptide 2Glu Gly Phe Asp Lys Val Arg
Glu Ala Glu Asp Ser Pro Gln His1 5 10
153671PRTArtificial SequenceDescription of Artificial
Sequence Synthetic polypeptide 3Met Ala Ala Gly Thr Ala Val Gly Ala
Trp Val Leu Val Leu Ser Leu1 5 10
15Trp Gly Ala Val Val Gly Ala Gln Asn Ile Thr Ala Arg Ile Gly
Glu 20 25 30Pro Leu Val Leu
Lys Cys Lys Gly Ala Pro Lys Lys Pro Pro Gln Arg 35
40 45Leu Glu Trp Lys Leu Asn Thr Gly Arg Thr Glu Ala
Trp Lys Val Leu 50 55 60Ser Pro Gln
Gly Gly Gly Pro Trp Asp Ser Val Ala Arg Val Leu Pro65 70
75 80Asn Gly Ser Leu Phe Leu Pro Ala
Val Gly Thr Gln Asp Glu Gly Ile 85 90
95Phe Arg Cys Gln Ala Met Asn Arg Asn Gly Lys Glu Thr Lys
Ser Asn 100 105 110Tyr Arg Val
Arg Val Tyr Gln Ile Pro Gly Lys Pro Glu Ile Val Asp 115
120 125Ser Ala Ser Glu Leu Thr Ala Gly Val Pro Asn
Lys Val Gly Thr Cys 130 135 140Val Ser
Glu Gly Ser Tyr Pro Ala Gly Thr Leu Ser Trp His Leu Asp145
150 155 160Gly Lys Pro Leu Val Pro Asn
Glu Lys Gly Val Ser Val Lys Glu Gln 165
170 175Thr Arg Arg His Pro Glu Thr Gly Leu Phe Thr Leu
Gln Ser Glu Leu 180 185 190Met
Val Thr Pro Ala Arg Gly Gly Asp Pro Arg Pro Thr Phe Ser Cys 195
200 205Ser Pro Ser Pro Gly Leu Pro Arg Arg
Arg Ala Leu His Thr Ala Pro 210 215
220Ile Gln Pro Arg Val Trp Glu Pro Val Pro Leu Glu Glu Val Gln Leu225
230 235 240Val Val Glu Pro
Glu Gly Gly Ala Val Ala Pro Gly Gly Thr Val Thr 245
250 255Leu Thr Cys Glu Val Pro Ala Gln Pro Ser
Pro Gln Ile His Trp Met 260 265
270Lys Asp Gly Val Pro Leu Pro Leu Pro Pro Ser Pro Val Leu Ile Leu
275 280 285Pro Glu Ile Gly Pro Gln Asp
Gln Gly Thr Tyr Ser Cys Val Ala Thr 290 295
300His Ser Ser His Gly Pro Gln Glu Ser Arg Ala Val Ser Ile Ser
Ile305 310 315 320Ile Glu
Pro Gly Glu Glu Gly Pro Thr Ala Gly Ser Val Gly Gly Ser
325 330 335Gly Leu Gly Thr Leu Ala Leu
Ala Ala Ser Thr Lys Gly Pro Ser Val 340 345
350Phe Pro Leu Ala Pro Cys Ser Arg Ser Thr Ser Glu Ser Thr
Ala Ala 355 360 365Leu Gly Cys Leu
Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser 370
375 380Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr
Phe Pro Ala Val385 390 395
400Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro
405 410 415Ser Ser Ser Leu Gly
Thr Lys Thr Tyr Thr Cys Asn Val Asp His Lys 420
425 430Pro Ser Asn Thr Lys Val Asp Lys Arg Val Glu Ser
Lys Tyr Gly Pro 435 440 445Pro Cys
Pro Ser Cys Pro Ala Pro Glu Phe Leu Gly Gly Pro Ser Val 450
455 460Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu
Met Ile Ser Arg Thr465 470 475
480Pro Glu Val Thr Cys Val Val Val Asp Val Ser Gln Glu Asp Pro Glu
485 490 495Val Gln Phe Asn
Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys 500
505 510Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr
Tyr Arg Val Val Ser 515 520 525Val
Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys 530
535 540Cys Lys Val Ser Asn Lys Gly Leu Pro Ser
Ser Thr Glu Lys Thr Ile545 550 555
560Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu
Pro 565 570 575Pro Ser Gln
Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu 580
585 590Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala
Val Glu Trp Glu Ser Asn 595 600
605Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser 610
615 620Asp Gly Ser Phe Phe Leu Tyr Ser
Arg Leu Thr Val Asp Lys Ser Arg625 630
635 640Trp Gln Glu Gly Asn Val Phe Ser Cys Ser Val Met
His Glu Ala Leu 645 650
655His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Leu Gly Lys
660 665 67046PRTArtificial
SequenceDescription of Artificial Sequence Synthetic
peptideMOD_RES(1)..(1)Any amino acidMOD_RES(3)..(3)Any amino
acidMOD_RES(5)..(5)Any amino acid 4Xaa Tyr Xaa Thr Xaa Glu1
55558PRTArtificial SequenceDescription of Artificial Sequence Synthetic
polypeptide 5Ala Gln Asn Ile Thr Ala Arg Ile Gly Glu Pro Leu Val Leu
Lys Cys1 5 10 15Lys Gly
Ala Pro Lys Lys Pro Pro Gln Arg Leu Glu Trp Lys Leu Asn 20
25 30Thr Gly Arg Thr Glu Ala Trp Lys Val
Leu Ser Pro Gln Gly Gly Gly 35 40
45Pro Trp Asp Ser Val Ala Arg Val Leu Pro Asn Gly Ser Leu Phe Leu 50
55 60Pro Ala Val Gly Ile Gln Asp Glu Gly
Ile Phe Arg Cys Gln Ala Met65 70 75
80Asn Arg Asn Gly Lys Glu Thr Lys Ser Asn Tyr Arg Val Arg
Val Tyr 85 90 95Gln Ile
Pro Gly Lys Pro Glu Ile Val Asp Ser Ala Ser Glu Leu Thr 100
105 110Ala Gly Val Pro Asn Lys Val Gly Thr
Cys Val Ser Glu Gly Ser Tyr 115 120
125Pro Ala Gly Thr Leu Ser Trp His Leu Asp Gly Lys Pro Leu Val Pro
130 135 140Asn Glu Lys Gly Val Ser Val
Lys Glu Gln Thr Arg Arg His Pro Glu145 150
155 160Thr Gly Leu Phe Thr Leu Gln Ser Glu Leu Met Val
Thr Pro Ala Arg 165 170
175Gly Gly Asp Pro Arg Pro Thr Phe Ser Cys Ser Phe Ser Pro Gly Leu
180 185 190Pro Arg His Arg Ala Leu
Arg Thr Ala Pro Ile Gln Pro Arg Val Trp 195 200
205Glu Pro Val Pro Leu Glu Glu Val Gln Leu Val Val Glu Pro
Glu Gly 210 215 220Gly Ala Val Ala Pro
Gly Gly Thr Val Thr Leu Thr Cys Glu Val Pro225 230
235 240Ala Gln Pro Ser Pro Gln Ile His Trp Met
Lys Asp Gly Val Pro Leu 245 250
255Pro Leu Pro Pro Ser Pro Val Leu Ile Leu Pro Glu Ile Gly Pro Gln
260 265 270Asp Gln Gly Thr Tyr
Ser Cys Val Ala Thr His Ser Ser His Gly Pro 275
280 285Gln Glu Ser Arg Ala Val Ser Ile Ser Ile Ile Glu
Pro Gly Glu Glu 290 295 300Gly Pro Thr
Ala Gly Ser Val Gly Gly Ser Gly Leu Gly Thr Leu Ala305
310 315 320Leu Ala Ile Glu Gly Arg Met
Pro Lys Ser Cys Asp Lys Thr His Thr 325
330 335Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly
Pro Ser Val Phe 340 345 350Leu
Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro 355
360 365Glu Val Thr Cys Val Val Val Asp Val
Ser His Glu Asp Pro Glu Val 370 375
380Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr385
390 395 400Lys Pro Arg Glu
Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val 405
410 415Leu Thr Val Leu His Gln Asp Trp Leu Asn
Gly Lys Glu Tyr Lys Cys 420 425
430Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser
435 440 445Lys Ala Lys Gly Gln Pro Arg
Glu Pro Gln Val Tyr Thr Leu Pro Pro 450 455
460Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser Leu Thr Cys Leu
Val465 470 475 480Lys Gly
Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly
485 490 495Gln Pro Glu Asn Asn Tyr Lys
Thr Thr Pro Pro Val Leu Asp Ser Asp 500 505
510Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser
Arg Trp 515 520 525Gln Gln Gly Asn
Val Phe Ser Cys Ser Val Met His Glu Ala Leu His 530
535 540Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro
Gly Lys545 550 5556309PRTHomo sapiens
6Ala Gln Asn Ile Thr Ala Arg Ile Gly Glu Pro Leu Val Leu Lys Cys1
5 10 15Lys Gly Ala Pro Lys Lys
Pro Pro Gln Arg Leu Glu Trp Lys Leu Asn 20 25
30Thr Gly Arg Thr Glu Ala Trp Lys Val Leu Ser Pro Gln
Gly Gly Gly 35 40 45Pro Trp Asp
Ser Val Ala Arg Val Leu Pro Asn Gly Ser Leu Phe Leu 50
55 60Pro Ala Val Gly Ile Gln Asp Glu Gly Ile Phe Arg
Cys Gln Ala Met65 70 75
80Asn Arg Asn Gly Lys Glu Thr Lys Ser Asn Tyr Arg Val Arg Val Tyr
85 90 95Gln Ile Pro Gly Lys Pro
Glu Ile Val Asp Ser Ala Ser Glu Leu Thr 100
105 110Ala Gly Val Pro Asn Lys Val Gly Thr Cys Val Ser
Glu Gly Ser Tyr 115 120 125Pro Ala
Gly Thr Leu Ser Trp His Leu Asp Gly Lys Pro Leu Val Pro 130
135 140Asn Glu Lys Gly Val Ser Val Lys Glu Gln Thr
Arg Arg His Pro Glu145 150 155
160Thr Gly Leu Phe Thr Leu Gln Ser Glu Leu Met Val Thr Pro Ala Arg
165 170 175Gly Gly Asp Pro
Arg Pro Thr Phe Ser Cys Ser Phe Ser Pro Gly Leu 180
185 190Pro Arg His Arg Ala Leu Arg Thr Ala Pro Ile
Gln Pro Arg Val Trp 195 200 205Glu
Pro Val Pro Leu Glu Glu Val Gln Leu Val Val Glu Pro Glu Gly 210
215 220Gly Ala Val Ala Pro Gly Gly Thr Val Thr
Leu Thr Cys Glu Val Pro225 230 235
240Ala Gln Pro Ser Pro Gln Ile His Trp Met Lys Asp Gly Val Pro
Leu 245 250 255Pro Leu Pro
Pro Ser Pro Val Leu Ile Leu Pro Glu Ile Gly Pro Gln 260
265 270Asp Gln Gly Thr Tyr Ser Cys Val Ala Thr
His Ser Ser His Gly Pro 275 280
285Gln Glu Ser Arg Ala Val Ser Ile Ser Ile Ile Glu Pro Gly Glu Glu 290
295 300Gly Pro Thr Ala
Gly3057212PRTArtificial SequenceDescription of Artificial Sequence
Synthetic polypeptide 7Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys
Pro Lys Asp Thr Leu1 5 10
15Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser
20 25 30Gln Glu Asp Pro Glu Val Gln
Phe Asn Trp Tyr Val Asp Gly Val Glu 35 40
45Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser
Thr 50 55 60Tyr Arg Val Val Ser Val
Leu Thr Val Leu His Gln Asp Trp Leu Asn65 70
75 80Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys
Gly Leu Pro Ser Ser 85 90
95Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln
100 105 110Val Tyr Thr Leu Pro Pro
Ser Gln Glu Glu Met Thr Lys Asn Gln Val 115 120
125Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile
Ala Val 130 135 140Glu Trp Glu Ser Asn
Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro145 150
155 160Pro Val Leu Asp Ser Asp Gly Ser Phe Phe
Leu Tyr Ser Arg Leu Thr 165 170
175Val Asp Lys Ser Arg Trp Gln Glu Gly Asn Val Phe Ser Cys Ser Val
180 185 190Met His Glu Ala Leu
His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu 195
200 205Ser Leu Gly Lys 210817PRTArtificial
SequenceDescription of Artificial Sequence Synthetic peptide 8Glu
Ser Lys Tyr Gly Pro Pro Cys Pro Pro Cys Pro Ala Pro Glu Ala1
5 10 15Ala911PRTArtificial
SequenceDescription of Artificial Sequence Synthetic peptide 9Val
Glu Cys Pro Pro Cys Ala Pro Pro Val Ala1 5
101016PRTArtificial SequenceDescription of Artificial Sequence Synthetic
peptide 10Glu Arg Lys Cys Cys Val Glu Cys Pro Pro Cys Ala Pro Pro
Val Ala1 5 10
151120PRTArtificial SequenceDescription of Artificial Sequence Synthetic
peptide 11Glu Pro Lys Ser Cys Asp Lys Thr His Thr Cys Pro Pro Cys Pro
Ala1 5 10 15Pro Glu Ala
Ala 2012554PRTArtificial SequenceDescription of Artificial
Sequence Synthetic polypeptide 12Ala Gln Asn Ile Thr Ala Arg Ile Gly
Glu Pro Leu Val Leu Lys Cys1 5 10
15Lys Gly Ala Pro Lys Lys Pro Pro Gln Arg Leu Glu Trp Lys Leu
Asn 20 25 30Thr Gly Arg Thr
Glu Ala Trp Lys Val Leu Ser Pro Gln Gly Gly Gly 35
40 45Pro Trp Asp Ser Val Ala Arg Val Leu Pro Asn Gly
Ser Leu Phe Leu 50 55 60Pro Ala Val
Gly Ile Gln Asp Glu Gly Ile Phe Arg Cys Gln Ala Met65 70
75 80Asn Arg Asn Gly Lys Glu Thr Lys
Ser Asn Tyr Arg Val Arg Val Tyr 85 90
95Gln Ile Pro Gly Lys Pro Glu Ile Val Asp Ser Ala Ser Glu
Leu Thr 100 105 110Ala Gly Val
Pro Asn Lys Val Gly Thr Cys Val Ser Glu Gly Ser Tyr 115
120 125Pro Ala Gly Thr Leu Ser Trp His Leu Asp Gly
Lys Pro Leu Val Pro 130 135 140Asn Glu
Lys Gly Val Ser Val Lys Glu Gln Thr Arg Arg His Pro Glu145
150 155 160Thr Gly Leu Phe Thr Leu Gln
Ser Glu Leu Met Val Thr Pro Ala Arg 165
170 175Gly Gly Asp Pro Arg Pro Thr Phe Ser Cys Ser Phe
Ser Pro Gly Leu 180 185 190Pro
Arg His Arg Ala Leu Arg Thr Ala Pro Ile Gln Pro Arg Val Trp 195
200 205Glu Pro Val Pro Leu Glu Glu Val Gln
Leu Val Val Glu Pro Glu Gly 210 215
220Gly Ala Val Ala Pro Gly Gly Thr Val Thr Leu Thr Cys Glu Val Pro225
230 235 240Ala Gln Pro Ser
Pro Gln Ile His Trp Met Lys Asp Gly Val Pro Leu 245
250 255Pro Leu Pro Pro Ser Pro Val Leu Ile Leu
Pro Glu Ile Gly Pro Gln 260 265
270Asp Gln Gly Thr Tyr Ser Cys Val Ala Thr His Ser Ser His Gly Pro
275 280 285Gln Glu Ser Arg Ala Val Ser
Ile Ser Ile Ile Glu Pro Gly Glu Glu 290 295
300Gly Pro Thr Ala Gly Glu Gly Phe Asp Lys Val Arg Glu Ala Glu
Asp305 310 315 320Ser Pro
Gln His Ala Glu Ser Lys Tyr Gly Pro Pro Cys Pro Pro Cys
325 330 335Pro Ala Pro Glu Ala Ala Gly
Gly Pro Ser Val Phe Leu Phe Pro Pro 340 345
350Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val
Thr Cys 355 360 365Val Val Val Asp
Val Ser Gln Glu Asp Pro Glu Val Gln Phe Asn Trp 370
375 380Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr
Lys Pro Arg Glu385 390 395
400Glu Gln Phe Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu
405 410 415His Gln Asp Trp Leu
Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn 420
425 430Lys Gly Leu Pro Ser Ser Ile Glu Lys Thr Ile Ser
Lys Ala Lys Gly 435 440 445Gln Pro
Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Gln Glu Glu 450
455 460Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu
Val Lys Gly Phe Tyr465 470 475
480Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn
485 490 495Asn Tyr Lys Thr
Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe 500
505 510Leu Tyr Ser Arg Leu Thr Val Asp Lys Ser Arg
Trp Gln Glu Gly Asn 515 520 525Val
Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr 530
535 540Gln Lys Ser Leu Ser Leu Ser Leu Gly
Lys545 550138PRTArtificial SequenceDescription of
Artificial Sequence Synthetic peptide 13Gly Thr Leu Val Thr Val Ser
Ser1 514562PRTArtificial SequenceDescription of Artificial
Sequence Synthetic polypeptide 14Ala Gln Asn Ile Thr Ala Arg Ile Gly
Glu Pro Leu Val Leu Lys Cys1 5 10
15Lys Gly Ala Pro Lys Lys Pro Pro Gln Arg Leu Glu Trp Lys Leu
Asn 20 25 30Thr Gly Arg Thr
Glu Ala Trp Lys Val Leu Ser Pro Gln Gly Gly Gly 35
40 45Pro Trp Asp Ser Val Ala Arg Val Leu Pro Asn Gly
Ser Leu Phe Leu 50 55 60Pro Ala Val
Gly Ile Gln Asp Glu Gly Ile Phe Arg Cys Gln Ala Met65 70
75 80Asn Arg Asn Gly Lys Glu Thr Lys
Ser Asn Tyr Arg Val Arg Val Tyr 85 90
95Gln Ile Pro Gly Lys Pro Glu Ile Val Asp Ser Ala Ser Glu
Leu Thr 100 105 110Ala Gly Val
Pro Asn Lys Val Gly Thr Cys Val Ser Glu Gly Ser Tyr 115
120 125Pro Ala Gly Thr Leu Ser Trp His Leu Asp Gly
Lys Pro Leu Val Pro 130 135 140Asn Glu
Lys Gly Val Ser Val Lys Glu Gln Thr Arg Arg His Pro Glu145
150 155 160Thr Gly Leu Phe Thr Leu Gln
Ser Glu Leu Met Val Thr Pro Ala Arg 165
170 175Gly Gly Asp Pro Arg Pro Thr Phe Ser Cys Ser Phe
Ser Pro Gly Leu 180 185 190Pro
Arg His Arg Ala Leu Arg Thr Ala Pro Ile Gln Pro Arg Val Trp 195
200 205Glu Pro Val Pro Leu Glu Glu Val Gln
Leu Val Val Glu Pro Glu Gly 210 215
220Gly Ala Val Ala Pro Gly Gly Thr Val Thr Leu Thr Cys Glu Val Pro225
230 235 240Ala Gln Pro Ser
Pro Gln Ile His Trp Met Lys Asp Gly Val Pro Leu 245
250 255Pro Leu Pro Pro Ser Pro Val Leu Ile Leu
Pro Glu Ile Gly Pro Gln 260 265
270Asp Gln Gly Thr Tyr Ser Cys Val Ala Thr His Ser Ser His Gly Pro
275 280 285Gln Glu Ser Arg Ala Val Ser
Ile Ser Ile Ile Glu Pro Gly Glu Glu 290 295
300Gly Pro Thr Ala Gly Glu Gly Phe Asp Lys Val Arg Glu Ala Glu
Asp305 310 315 320Ser Pro
Gln His Ala Gly Thr Leu Val Thr Val Ser Ser Glu Ser Lys
325 330 335Tyr Gly Pro Pro Cys Pro Pro
Cys Pro Ala Pro Glu Ala Ala Gly Gly 340 345
350Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu
Met Ile 355 360 365Ser Arg Thr Pro
Glu Val Thr Cys Val Val Val Asp Val Ser Gln Glu 370
375 380Asp Pro Glu Val Gln Phe Asn Trp Tyr Val Asp Gly
Val Glu Val His385 390 395
400Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr Tyr Arg
405 410 415Val Val Ser Val Leu
Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys 420
425 430Glu Tyr Lys Cys Lys Val Ser Asn Lys Gly Leu Pro
Ser Ser Ile Glu 435 440 445Lys Thr
Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr 450
455 460Thr Leu Pro Pro Ser Gln Glu Glu Met Thr Lys
Asn Gln Val Ser Leu465 470 475
480Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp
485 490 495Glu Ser Asn Gly
Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val 500
505 510Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser
Arg Leu Thr Val Asp 515 520 525Lys
Ser Arg Trp Gln Glu Gly Asn Val Phe Ser Cys Ser Val Met His 530
535 540Glu Ala Leu His Asn His Tyr Thr Gln Lys
Ser Leu Ser Leu Ser Leu545 550 555
560Gly Lys15548PRTArtificial SequenceDescription of Artificial
Sequence Synthetic polypeptide 15Ala Gln Asn Ile Thr Ala Arg Ile Gly
Glu Pro Leu Val Leu Lys Cys1 5 10
15Lys Gly Ala Pro Lys Lys Pro Pro Gln Arg Leu Glu Trp Lys Leu
Asn 20 25 30Thr Gly Arg Thr
Glu Ala Trp Lys Val Leu Ser Pro Gln Gly Gly Gly 35
40 45Pro Trp Asp Ser Val Ala Arg Val Leu Pro Asn Gly
Ser Leu Phe Leu 50 55 60Pro Ala Val
Gly Ile Gln Asp Glu Gly Ile Phe Arg Cys Gln Ala Met65 70
75 80Asn Arg Asn Gly Lys Glu Thr Lys
Ser Asn Tyr Arg Val Arg Val Tyr 85 90
95Gln Ile Pro Gly Lys Pro Glu Ile Val Asp Ser Ala Ser Glu
Leu Thr 100 105 110Ala Gly Val
Pro Asn Lys Val Gly Thr Cys Val Ser Glu Gly Ser Tyr 115
120 125Pro Ala Gly Thr Leu Ser Trp His Leu Asp Gly
Lys Pro Leu Val Pro 130 135 140Asn Glu
Lys Gly Val Ser Val Lys Glu Gln Thr Arg Arg His Pro Glu145
150 155 160Thr Gly Leu Phe Thr Leu Gln
Ser Glu Leu Met Val Thr Pro Ala Arg 165
170 175Gly Gly Asp Pro Arg Pro Thr Phe Ser Cys Ser Phe
Ser Pro Gly Leu 180 185 190Pro
Arg His Arg Ala Leu Arg Thr Ala Pro Ile Gln Pro Arg Val Trp 195
200 205Glu Pro Val Pro Leu Glu Glu Val Gln
Leu Val Val Glu Pro Glu Gly 210 215
220Gly Ala Val Ala Pro Gly Gly Thr Val Thr Leu Thr Cys Glu Val Pro225
230 235 240Ala Gln Pro Ser
Pro Gln Ile His Trp Met Lys Asp Gly Val Pro Leu 245
250 255Pro Leu Pro Pro Ser Pro Val Leu Ile Leu
Pro Glu Ile Gly Pro Gln 260 265
270Asp Gln Gly Thr Tyr Ser Cys Val Ala Thr His Ser Ser His Gly Pro
275 280 285Gln Glu Ser Arg Ala Val Ser
Ile Ser Ile Ile Glu Pro Gly Glu Glu 290 295
300Gly Pro Thr Ala Gly Glu Gly Phe Asp Lys Val Arg Glu Ala Glu
Asp305 310 315 320Ser Pro
Gln His Ala Val Glu Cys Pro Pro Cys Ala Pro Pro Val Ala
325 330 335Gly Gly Pro Ser Val Phe Leu
Phe Pro Pro Lys Pro Lys Asp Thr Leu 340 345
350Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp
Val Ser 355 360 365Gln Glu Asp Pro
Glu Val Gln Phe Asn Trp Tyr Val Asp Gly Val Glu 370
375 380Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln
Phe Asn Ser Thr385 390 395
400Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn
405 410 415Gly Lys Glu Tyr Lys
Cys Lys Val Ser Asn Lys Gly Leu Pro Ser Ser 420
425 430Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro
Arg Glu Pro Gln 435 440 445Val Tyr
Thr Leu Pro Pro Ser Gln Glu Glu Met Thr Lys Asn Gln Val 450
455 460Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro
Ser Asp Ile Ala Val465 470 475
480Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro
485 490 495Pro Val Leu Asp
Ser Asp Gly Ser Phe Phe Leu Tyr Ser Arg Leu Thr 500
505 510Val Asp Lys Ser Arg Trp Gln Glu Gly Asn Val
Phe Ser Cys Ser Val 515 520 525Met
His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu 530
535 540Ser Leu Gly Lys54516548PRTArtificial
SequenceDescription of Artificial Sequence Synthetic polypeptide
16Ala Gln Asn Ile Thr Ala Arg Ile Gly Glu Pro Leu Val Leu Lys Cys1
5 10 15Lys Gly Ala Pro Lys Lys
Pro Pro Gln Arg Leu Glu Trp Lys Leu Asn 20 25
30Thr Gly Arg Thr Glu Ala Trp Lys Val Leu Ser Pro Gln
Gly Gly Gly 35 40 45Pro Trp Asp
Ser Val Ala Arg Val Leu Pro Asn Gly Ser Leu Phe Leu 50
55 60Pro Ala Val Gly Ile Gln Asp Glu Gly Ile Phe Arg
Cys Gln Ala Met65 70 75
80Asn Arg Asn Gly Lys Glu Thr Lys Ser Asn Tyr Arg Val Arg Val Tyr
85 90 95Gln Ile Pro Gly Lys Pro
Glu Ile Val Asp Ser Ala Ser Glu Leu Thr 100
105 110Ala Gly Val Pro Asn Lys Val Gly Thr Cys Val Ser
Glu Gly Ser Tyr 115 120 125Pro Ala
Gly Thr Leu Ser Trp His Leu Asp Gly Lys Pro Leu Val Pro 130
135 140Asn Glu Lys Gly Val Ser Val Lys Glu Gln Thr
Arg Arg His Pro Glu145 150 155
160Thr Gly Leu Phe Thr Leu Gln Ser Glu Leu Met Val Thr Pro Ala Arg
165 170 175Gly Gly Asp Pro
Arg Pro Thr Phe Ser Cys Ser Phe Ser Pro Gly Leu 180
185 190Pro Arg His Arg Ala Leu Arg Thr Ala Pro Ile
Gln Pro Arg Val Trp 195 200 205Glu
Pro Val Pro Leu Glu Glu Val Gln Leu Val Val Glu Pro Glu Gly 210
215 220Gly Ala Val Ala Pro Gly Gly Thr Val Thr
Leu Thr Cys Glu Val Pro225 230 235
240Ala Gln Pro Ser Pro Gln Ile His Trp Met Lys Asp Gly Val Pro
Leu 245 250 255Pro Leu Pro
Pro Ser Pro Val Leu Ile Leu Pro Glu Ile Gly Pro Gln 260
265 270Asp Gln Gly Thr Tyr Ser Cys Val Ala Thr
His Ser Ser His Gly Pro 275 280
285Gln Glu Ser Arg Ala Val Ser Ile Ser Ile Ile Glu Pro Gly Glu Glu 290
295 300Gly Pro Thr Ala Gly Glu Gly Phe
Asp Lys Val Arg Glu Ala Glu Asp305 310
315 320Ser Pro Gln His Ala Val Glu Cys Pro Pro Cys Ala
Pro Pro Val Ala 325 330
335Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu
340 345 350Tyr Ile Thr Arg Glu Pro
Glu Val Thr Cys Val Val Val Asp Val Ser 355 360
365Gln Glu Asp Pro Glu Val Gln Phe Asn Trp Tyr Val Asp Gly
Val Glu 370 375 380Val His Asn Ala Lys
Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr385 390
395 400Tyr Arg Val Val Ser Val Leu Thr Val Leu
His Gln Asp Trp Leu Asn 405 410
415Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Gly Leu Pro Ser Ser
420 425 430Ile Glu Lys Thr Ile
Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln 435
440 445Val Tyr Thr Leu Pro Pro Ser Gln Glu Glu Met Thr
Lys Asn Gln Val 450 455 460Ser Leu Thr
Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val465
470 475 480Glu Trp Glu Ser Asn Gly Gln
Pro Glu Asn Asn Tyr Lys Thr Thr Pro 485
490 495Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr
Ser Arg Leu Thr 500 505 510Val
Asp Lys Ser Arg Trp Gln Glu Gly Asn Val Phe Ser Cys Ser Val 515
520 525Met His Glu Ala Leu His Asn His Tyr
Thr Gln Lys Ser Leu Ser Leu 530 535
540Ser Leu Gly Lys54517548PRTArtificial SequenceDescription of Artificial
Sequence Synthetic polypeptide 17Ala Gln Glu Ile Thr Ala Arg Ile Gly
Glu Pro Leu Val Leu Lys Cys1 5 10
15Lys Gly Ala Pro Lys Lys Pro Pro Gln Arg Leu Glu Trp Lys Leu
Asn 20 25 30Thr Gly Arg Thr
Glu Ala Trp Lys Val Leu Ser Pro Gln Gly Gly Gly 35
40 45Pro Trp Asp Ser Val Ala Arg Val Leu Pro Asn Gly
Ser Leu Phe Leu 50 55 60Pro Ala Val
Gly Ile Gln Asp Glu Gly Ile Phe Arg Cys Gln Ala Met65 70
75 80Asn Arg Asn Gly Lys Glu Thr Lys
Ser Asn Tyr Arg Val Arg Val Tyr 85 90
95Gln Ile Pro Gly Lys Pro Glu Ile Val Asp Ser Ala Ser Glu
Leu Thr 100 105 110Ala Gly Val
Pro Asn Lys Val Gly Thr Cys Val Ser Glu Gly Ser Tyr 115
120 125Pro Ala Gly Thr Leu Ser Trp His Leu Asp Gly
Lys Pro Leu Val Pro 130 135 140Asn Glu
Lys Gly Val Ser Val Lys Glu Gln Thr Arg Arg His Pro Glu145
150 155 160Thr Gly Leu Phe Thr Leu Gln
Ser Glu Leu Met Val Thr Pro Ala Arg 165
170 175Gly Gly Asp Pro Arg Pro Thr Phe Ser Cys Ser Phe
Ser Pro Gly Leu 180 185 190Pro
Arg His Arg Ala Leu Arg Thr Ala Pro Ile Gln Pro Arg Val Trp 195
200 205Glu Pro Val Pro Leu Glu Glu Val Gln
Leu Val Val Glu Pro Glu Gly 210 215
220Gly Ala Val Ala Pro Gly Gly Thr Val Thr Leu Thr Cys Glu Val Pro225
230 235 240Ala Gln Pro Ser
Pro Gln Ile His Trp Met Lys Asp Gly Val Pro Leu 245
250 255Pro Leu Pro Pro Ser Pro Val Leu Ile Leu
Pro Glu Ile Gly Pro Gln 260 265
270Asp Gln Gly Thr Tyr Ser Cys Val Ala Thr His Ser Ser His Gly Pro
275 280 285Gln Glu Ser Arg Ala Val Ser
Ile Ser Ile Ile Glu Pro Gly Glu Glu 290 295
300Gly Pro Thr Ala Gly Glu Gly Phe Asp Lys Val Arg Glu Ala Glu
Asp305 310 315 320Ser Pro
Gln His Ala Val Glu Cys Pro Pro Cys Ala Pro Pro Val Ala
325 330 335Gly Gly Pro Ser Val Phe Leu
Phe Pro Pro Lys Pro Lys Asp Thr Leu 340 345
350Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp
Val Ser 355 360 365Gln Glu Asp Pro
Glu Val Gln Phe Asn Trp Tyr Val Asp Gly Val Glu 370
375 380Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln
Phe Asn Ser Thr385 390 395
400Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn
405 410 415Gly Lys Glu Tyr Lys
Cys Lys Val Ser Asn Lys Gly Leu Pro Ser Ser 420
425 430Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro
Arg Glu Pro Gln 435 440 445Val Tyr
Thr Leu Pro Pro Ser Gln Glu Glu Met Thr Lys Asn Gln Val 450
455 460Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro
Ser Asp Ile Ala Val465 470 475
480Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro
485 490 495Pro Val Leu Asp
Ser Asp Gly Ser Phe Phe Leu Tyr Ser Arg Leu Thr 500
505 510Val Asp Lys Ser Arg Trp Gln Glu Gly Asn Val
Phe Ser Cys Ser Val 515 520 525Met
His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu 530
535 540Ser Leu Gly Lys54518548PRTArtificial
SequenceDescription of Artificial Sequence Synthetic polypeptide
18Ala Gln Gln Ile Thr Ala Arg Ile Gly Glu Pro Leu Val Leu Lys Cys1
5 10 15Lys Gly Ala Pro Lys Lys
Pro Pro Gln Arg Leu Glu Trp Lys Leu Asn 20 25
30Thr Gly Arg Thr Glu Ala Trp Lys Val Leu Ser Pro Gln
Gly Gly Gly 35 40 45Pro Trp Asp
Ser Val Ala Arg Val Leu Pro Asn Gly Ser Leu Phe Leu 50
55 60Pro Ala Val Gly Ile Gln Asp Glu Gly Ile Phe Arg
Cys Gln Ala Met65 70 75
80Asn Arg Asn Gly Lys Glu Thr Lys Ser Asn Tyr Arg Val Arg Val Tyr
85 90 95Gln Ile Pro Gly Lys Pro
Glu Ile Val Asp Ser Ala Ser Glu Leu Thr 100
105 110Ala Gly Val Pro Asn Lys Val Gly Thr Cys Val Ser
Glu Gly Ser Tyr 115 120 125Pro Ala
Gly Thr Leu Ser Trp His Leu Asp Gly Lys Pro Leu Val Pro 130
135 140Asn Glu Lys Gly Val Ser Val Lys Glu Gln Thr
Arg Arg His Pro Glu145 150 155
160Thr Gly Leu Phe Thr Leu Gln Ser Glu Leu Met Val Thr Pro Ala Arg
165 170 175Gly Gly Asp Pro
Arg Pro Thr Phe Ser Cys Ser Phe Ser Pro Gly Leu 180
185 190Pro Arg His Arg Ala Leu Arg Thr Ala Pro Ile
Gln Pro Arg Val Trp 195 200 205Glu
Pro Val Pro Leu Glu Glu Val Gln Leu Val Val Glu Pro Glu Gly 210
215 220Gly Ala Val Ala Pro Gly Gly Thr Val Thr
Leu Thr Cys Glu Val Pro225 230 235
240Ala Gln Pro Ser Pro Gln Ile His Trp Met Lys Asp Gly Val Pro
Leu 245 250 255Pro Leu Pro
Pro Ser Pro Val Leu Ile Leu Pro Glu Ile Gly Pro Gln 260
265 270Asp Gln Gly Thr Tyr Ser Cys Val Ala Thr
His Ser Ser His Gly Pro 275 280
285Gln Glu Ser Arg Ala Val Ser Ile Ser Ile Ile Glu Pro Gly Glu Glu 290
295 300Gly Pro Thr Ala Gly Glu Gly Phe
Asp Lys Val Arg Glu Ala Glu Asp305 310
315 320Ser Pro Gln His Ala Val Glu Cys Pro Pro Cys Ala
Pro Pro Val Ala 325 330
335Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu
340 345 350Met Ile Ser Arg Thr Pro
Glu Val Thr Cys Val Val Val Asp Val Ser 355 360
365Gln Glu Asp Pro Glu Val Gln Phe Asn Trp Tyr Val Asp Gly
Val Glu 370 375 380Val His Asn Ala Lys
Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr385 390
395 400Tyr Arg Val Val Ser Val Leu Thr Val Leu
His Gln Asp Trp Leu Asn 405 410
415Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Gly Leu Pro Ser Ser
420 425 430Ile Glu Lys Thr Ile
Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln 435
440 445Val Tyr Thr Leu Pro Pro Ser Gln Glu Glu Met Thr
Lys Asn Gln Val 450 455 460Ser Leu Thr
Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val465
470 475 480Glu Trp Glu Ser Asn Gly Gln
Pro Glu Asn Asn Tyr Lys Thr Thr Pro 485
490 495Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr
Ser Arg Leu Thr 500 505 510Val
Asp Lys Ser Arg Trp Gln Glu Gly Asn Val Phe Ser Cys Ser Val 515
520 525Met His Glu Ala Leu His Asn His Tyr
Thr Gln Lys Ser Leu Ser Leu 530 535
540Ser Leu Gly Lys54519548PRTArtificial SequenceDescription of Artificial
Sequence Synthetic polypeptide 19Ala Gln Asn Ile Thr Ala Arg Ile Gly
Glu Pro Leu Val Leu Lys Cys1 5 10
15Lys Gly Ala Pro Lys Lys Pro Pro Gln Arg Leu Glu Trp Lys Leu
Asn 20 25 30Thr Gly Arg Thr
Glu Ala Trp Lys Val Leu Ser Pro Gln Gly Gly Gly 35
40 45Pro Trp Asp Ser Val Ala Arg Val Leu Pro Asn Ser
Ser Leu Phe Leu 50 55 60Pro Ala Val
Gly Ile Gln Asp Glu Gly Ile Phe Arg Cys Gln Ala Met65 70
75 80Asn Arg Asn Gly Lys Glu Thr Lys
Ser Asn Tyr Arg Val Arg Val Tyr 85 90
95Gln Ile Pro Gly Lys Pro Glu Ile Val Asp Ser Ala Ser Glu
Leu Thr 100 105 110Ala Gly Val
Pro Asn Lys Val Gly Thr Cys Val Ser Glu Gly Ser Tyr 115
120 125Pro Ala Gly Thr Leu Ser Trp His Leu Asp Gly
Lys Pro Leu Val Pro 130 135 140Asn Glu
Lys Gly Val Ser Val Lys Glu Gln Thr Arg Arg His Pro Glu145
150 155 160Thr Gly Leu Phe Thr Leu Gln
Ser Glu Leu Met Val Thr Pro Ala Arg 165
170 175Gly Gly Asp Pro Arg Pro Thr Phe Ser Cys Ser Phe
Ser Pro Gly Leu 180 185 190Pro
Arg His Arg Ala Leu Arg Thr Ala Pro Ile Gln Pro Arg Val Trp 195
200 205Glu Pro Val Pro Leu Glu Glu Val Gln
Leu Val Val Glu Pro Glu Gly 210 215
220Gly Ala Val Ala Pro Gly Gly Thr Val Thr Leu Thr Cys Glu Val Pro225
230 235 240Ala Gln Pro Ser
Pro Gln Ile His Trp Met Lys Asp Gly Val Pro Leu 245
250 255Pro Leu Pro Pro Ser Pro Val Leu Ile Leu
Pro Glu Ile Gly Pro Gln 260 265
270Asp Gln Gly Thr Tyr Ser Cys Val Ala Thr His Ser Ser His Gly Pro
275 280 285Gln Glu Ser Arg Ala Val Ser
Ile Ser Ile Ile Glu Pro Gly Glu Glu 290 295
300Gly Pro Thr Ala Gly Glu Gly Phe Asp Lys Val Arg Glu Ala Glu
Asp305 310 315 320Ser Pro
Gln His Ala Val Glu Cys Pro Pro Cys Ala Pro Pro Val Ala
325 330 335Gly Gly Pro Ser Val Phe Leu
Phe Pro Pro Lys Pro Lys Asp Thr Leu 340 345
350Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp
Val Ser 355 360 365Gln Glu Asp Pro
Glu Val Gln Phe Asn Trp Tyr Val Asp Gly Val Glu 370
375 380Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln
Phe Asn Ser Thr385 390 395
400Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn
405 410 415Gly Lys Glu Tyr Lys
Cys Lys Val Ser Asn Lys Gly Leu Pro Ser Ser 420
425 430Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro
Arg Glu Pro Gln 435 440 445Val Tyr
Thr Leu Pro Pro Ser Gln Glu Glu Met Thr Lys Asn Gln Val 450
455 460Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro
Ser Asp Ile Ala Val465 470 475
480Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro
485 490 495Pro Val Leu Asp
Ser Asp Gly Ser Phe Phe Leu Tyr Ser Arg Leu Thr 500
505 510Val Asp Lys Ser Arg Trp Gln Glu Gly Asn Val
Phe Ser Cys Ser Val 515 520 525Met
His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu 530
535 540Ser Leu Gly Lys54520548PRTArtificial
SequenceDescription of Artificial Sequence Synthetic polypeptide
20Ala Gln Glu Ile Thr Ala Arg Ile Gly Glu Pro Leu Val Leu Lys Cys1
5 10 15Lys Gly Ala Pro Lys Lys
Pro Pro Gln Arg Leu Glu Trp Lys Leu Asn 20 25
30Thr Gly Arg Thr Glu Ala Trp Lys Val Leu Ser Pro Gln
Gly Gly Gly 35 40 45Pro Trp Asp
Ser Val Ala Arg Val Leu Pro Asn Ser Ser Leu Phe Leu 50
55 60Pro Ala Val Gly Ile Gln Asp Glu Gly Ile Phe Arg
Cys Gln Ala Met65 70 75
80Asn Arg Asn Gly Lys Glu Thr Lys Ser Asn Tyr Arg Val Arg Val Tyr
85 90 95Gln Ile Pro Gly Lys Pro
Glu Ile Val Asp Ser Ala Ser Glu Leu Thr 100
105 110Ala Gly Val Pro Asn Lys Val Gly Thr Cys Val Ser
Glu Gly Ser Tyr 115 120 125Pro Ala
Gly Thr Leu Ser Trp His Leu Asp Gly Lys Pro Leu Val Pro 130
135 140Asn Glu Lys Gly Val Ser Val Lys Glu Gln Thr
Arg Arg His Pro Glu145 150 155
160Thr Gly Leu Phe Thr Leu Gln Ser Glu Leu Met Val Thr Pro Ala Arg
165 170 175Gly Gly Asp Pro
Arg Pro Thr Phe Ser Cys Ser Phe Ser Pro Gly Leu 180
185 190Pro Arg His Arg Ala Leu Arg Thr Ala Pro Ile
Gln Pro Arg Val Trp 195 200 205Glu
Pro Val Pro Leu Glu Glu Val Gln Leu Val Val Glu Pro Glu Gly 210
215 220Gly Ala Val Ala Pro Gly Gly Thr Val Thr
Leu Thr Cys Glu Val Pro225 230 235
240Ala Gln Pro Ser Pro Gln Ile His Trp Met Lys Asp Gly Val Pro
Leu 245 250 255Pro Leu Pro
Pro Ser Pro Val Leu Ile Leu Pro Glu Ile Gly Pro Gln 260
265 270Asp Gln Gly Thr Tyr Ser Cys Val Ala Thr
His Ser Ser His Gly Pro 275 280
285Gln Glu Ser Arg Ala Val Ser Ile Ser Ile Ile Glu Pro Gly Glu Glu 290
295 300Gly Pro Thr Ala Gly Glu Gly Phe
Asp Lys Val Arg Glu Ala Glu Asp305 310
315 320Ser Pro Gln His Ala Val Glu Cys Pro Pro Cys Ala
Pro Pro Val Ala 325 330
335Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu
340 345 350Met Ile Ser Arg Thr Pro
Glu Val Thr Cys Val Val Val Asp Val Ser 355 360
365Gln Glu Asp Pro Glu Val Gln Phe Asn Trp Tyr Val Asp Gly
Val Glu 370 375 380Val His Asn Ala Lys
Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr385 390
395 400Tyr Arg Val Val Ser Val Leu Thr Val Leu
His Gln Asp Trp Leu Asn 405 410
415Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Gly Leu Pro Ser Ser
420 425 430Ile Glu Lys Thr Ile
Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln 435
440 445Val Tyr Thr Leu Pro Pro Ser Gln Glu Glu Met Thr
Lys Asn Gln Val 450 455 460Ser Leu Thr
Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val465
470 475 480Glu Trp Glu Ser Asn Gly Gln
Pro Glu Asn Asn Tyr Lys Thr Thr Pro 485
490 495Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr
Ser Arg Leu Thr 500 505 510Val
Asp Lys Ser Arg Trp Gln Glu Gly Asn Val Phe Ser Cys Ser Val 515
520 525Met His Glu Ala Leu His Asn His Tyr
Thr Gln Lys Ser Leu Ser Leu 530 535
540Ser Leu Gly Lys54521548PRTArtificial SequenceDescription of Artificial
Sequence Synthetic polypeptide 21Ala Gln Gln Ile Thr Ala Arg Ile Gly
Glu Pro Leu Val Leu Lys Cys1 5 10
15Lys Gly Ala Pro Lys Lys Pro Pro Gln Arg Leu Glu Trp Lys Leu
Asn 20 25 30Thr Gly Arg Thr
Glu Ala Trp Lys Val Leu Ser Pro Gln Gly Gly Gly 35
40 45Pro Trp Asp Ser Val Ala Arg Val Leu Pro Asn Ser
Ser Leu Phe Leu 50 55 60Pro Ala Val
Gly Ile Gln Asp Glu Gly Ile Phe Arg Cys Gln Ala Met65 70
75 80Asn Arg Asn Gly Lys Glu Thr Lys
Ser Asn Tyr Arg Val Arg Val Tyr 85 90
95Gln Ile Pro Gly Lys Pro Glu Ile Val Asp Ser Ala Ser Glu
Leu Thr 100 105 110Ala Gly Val
Pro Asn Lys Val Gly Thr Cys Val Ser Glu Gly Ser Tyr 115
120 125Pro Ala Gly Thr Leu Ser Trp His Leu Asp Gly
Lys Pro Leu Val Pro 130 135 140Asn Glu
Lys Gly Val Ser Val Lys Glu Gln Thr Arg Arg His Pro Glu145
150 155 160Thr Gly Leu Phe Thr Leu Gln
Ser Glu Leu Met Val Thr Pro Ala Arg 165
170 175Gly Gly Asp Pro Arg Pro Thr Phe Ser Cys Ser Phe
Ser Pro Gly Leu 180 185 190Pro
Arg His Arg Ala Leu Arg Thr Ala Pro Ile Gln Pro Arg Val Trp 195
200 205Glu Pro Val Pro Leu Glu Glu Val Gln
Leu Val Val Glu Pro Glu Gly 210 215
220Gly Ala Val Ala Pro Gly Gly Thr Val Thr Leu Thr Cys Glu Val Pro225
230 235 240Ala Gln Pro Ser
Pro Gln Ile His Trp Met Lys Asp Gly Val Pro Leu 245
250 255Pro Leu Pro Pro Ser Pro Val Leu Ile Leu
Pro Glu Ile Gly Pro Gln 260 265
270Asp Gln Gly Thr Tyr Ser Cys Val Ala Thr His Ser Ser His Gly Pro
275 280 285Gln Glu Ser Arg Ala Val Ser
Ile Ser Ile Ile Glu Pro Gly Glu Glu 290 295
300Gly Pro Thr Ala Gly Glu Gly Phe Asp Lys Val Arg Glu Ala Glu
Asp305 310 315 320Ser Pro
Gln His Ala Val Glu Cys Pro Pro Cys Ala Pro Pro Val Ala
325 330 335Gly Gly Pro Ser Val Phe Leu
Phe Pro Pro Lys Pro Lys Asp Thr Leu 340 345
350Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp
Val Ser 355 360 365Gln Glu Asp Pro
Glu Val Gln Phe Asn Trp Tyr Val Asp Gly Val Glu 370
375 380Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln
Phe Asn Ser Thr385 390 395
400Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn
405 410 415Gly Lys Glu Tyr Lys
Cys Lys Val Ser Asn Lys Gly Leu Pro Ser Ser 420
425 430Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro
Arg Glu Pro Gln 435 440 445Val Tyr
Thr Leu Pro Pro Ser Gln Glu Glu Met Thr Lys Asn Gln Val 450
455 460Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro
Ser Asp Ile Ala Val465 470 475
480Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro
485 490 495Pro Val Leu Asp
Ser Asp Gly Ser Phe Phe Leu Tyr Ser Arg Leu Thr 500
505 510Val Asp Lys Ser Arg Trp Gln Glu Gly Asn Val
Phe Ser Cys Ser Val 515 520 525Met
His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu 530
535 540Ser Leu Gly Lys54522548PRTArtificial
SequenceDescription of Artificial Sequence Synthetic polypeptide
22Ala Gln Asn Ile Thr Ala Arg Ile Gly Glu Pro Leu Val Leu Lys Cys1
5 10 15Lys Gly Ala Pro Lys Lys
Pro Pro Gln Arg Leu Glu Trp Lys Leu Asn 20 25
30Thr Gly Arg Thr Glu Ala Trp Lys Val Leu Ser Pro Gln
Gly Gly Gly 35 40 45Pro Trp Asp
Ser Val Ala Arg Val Leu Pro Ala Gly Ser Leu Phe Leu 50
55 60Pro Ala Val Gly Ile Gln Asp Glu Gly Ile Phe Arg
Cys Gln Ala Met65 70 75
80Asn Arg Asn Gly Lys Glu Thr Lys Ser Asn Tyr Arg Val Arg Val Tyr
85 90 95Gln Ile Pro Gly Lys Pro
Glu Ile Val Asp Ser Ala Ser Glu Leu Thr 100
105 110Ala Gly Val Pro Asn Lys Val Gly Thr Cys Val Ser
Glu Gly Ser Tyr 115 120 125Pro Ala
Gly Thr Leu Ser Trp His Leu Asp Gly Lys Pro Leu Val Pro 130
135 140Asn Glu Lys Gly Val Ser Val Lys Glu Gln Thr
Arg Arg His Pro Glu145 150 155
160Thr Gly Leu Phe Thr Leu Gln Ser Glu Leu Met Val Thr Pro Ala Arg
165 170 175Gly Gly Asp Pro
Arg Pro Thr Phe Ser Cys Ser Phe Ser Pro Gly Leu 180
185 190Pro Arg His Arg Ala Leu Arg Thr Ala Pro Ile
Gln Pro Arg Val Trp 195 200 205Glu
Pro Val Pro Leu Glu Glu Val Gln Leu Val Val Glu Pro Glu Gly 210
215 220Gly Ala Val Ala Pro Gly Gly Thr Val Thr
Leu Thr Cys Glu Val Pro225 230 235
240Ala Gln Pro Ser Pro Gln Ile His Trp Met Lys Asp Gly Val Pro
Leu 245 250 255Pro Leu Pro
Pro Ser Pro Val Leu Ile Leu Pro Glu Ile Gly Pro Gln 260
265 270Asp Gln Gly Thr Tyr Ser Cys Val Ala Thr
His Ser Ser His Gly Pro 275 280
285Gln Glu Ser Arg Ala Val Ser Ile Ser Ile Ile Glu Pro Gly Glu Glu 290
295 300Gly Pro Thr Ala Gly Glu Gly Phe
Asp Lys Val Arg Glu Ala Glu Asp305 310
315 320Ser Pro Gln His Ala Val Glu Cys Pro Pro Cys Ala
Pro Pro Val Ala 325 330
335Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu
340 345 350Met Ile Ser Arg Thr Pro
Glu Val Thr Cys Val Val Val Asp Val Ser 355 360
365Gln Glu Asp Pro Glu Val Gln Phe Asn Trp Tyr Val Asp Gly
Val Glu 370 375 380Val His Asn Ala Lys
Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr385 390
395 400Tyr Arg Val Val Ser Val Leu Thr Val Leu
His Gln Asp Trp Leu Asn 405 410
415Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Gly Leu Pro Ser Ser
420 425 430Ile Glu Lys Thr Ile
Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln 435
440 445Val Tyr Thr Leu Pro Pro Ser Gln Glu Glu Met Thr
Lys Asn Gln Val 450 455 460Ser Leu Thr
Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val465
470 475 480Glu Trp Glu Ser Asn Gly Gln
Pro Glu Asn Asn Tyr Lys Thr Thr Pro 485
490 495Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr
Ser Arg Leu Thr 500 505 510Val
Asp Lys Ser Arg Trp Gln Glu Gly Asn Val Phe Ser Cys Ser Val 515
520 525Met His Glu Ala Leu His Asn His Tyr
Thr Gln Lys Ser Leu Ser Leu 530 535
540Ser Leu Gly Lys54523548PRTArtificial SequenceDescription of Artificial
Sequence Synthetic polypeptide 23Ala Gln Glu Ile Thr Ala Arg Ile Gly
Glu Pro Leu Val Leu Lys Cys1 5 10
15Lys Gly Ala Pro Lys Lys Pro Pro Gln Arg Leu Glu Trp Lys Leu
Asn 20 25 30Thr Gly Arg Thr
Glu Ala Trp Lys Val Leu Ser Pro Gln Gly Gly Gly 35
40 45Pro Trp Asp Ser Val Ala Arg Val Leu Pro Ala Gly
Ser Leu Phe Leu 50 55 60Pro Ala Val
Gly Ile Gln Asp Glu Gly Ile Phe Arg Cys Gln Ala Met65 70
75 80Asn Arg Asn Gly Lys Glu Thr Lys
Ser Asn Tyr Arg Val Arg Val Tyr 85 90
95Gln Ile Pro Gly Lys Pro Glu Ile Val Asp Ser Ala Ser Glu
Leu Thr 100 105 110Ala Gly Val
Pro Asn Lys Val Gly Thr Cys Val Ser Glu Gly Ser Tyr 115
120 125Pro Ala Gly Thr Leu Ser Trp His Leu Asp Gly
Lys Pro Leu Val Pro 130 135 140Asn Glu
Lys Gly Val Ser Val Lys Glu Gln Thr Arg Arg His Pro Glu145
150 155 160Thr Gly Leu Phe Thr Leu Gln
Ser Glu Leu Met Val Thr Pro Ala Arg 165
170 175Gly Gly Asp Pro Arg Pro Thr Phe Ser Cys Ser Phe
Ser Pro Gly Leu 180 185 190Pro
Arg His Arg Ala Leu Arg Thr Ala Pro Ile Gln Pro Arg Val Trp 195
200 205Glu Pro Val Pro Leu Glu Glu Val Gln
Leu Val Val Glu Pro Glu Gly 210 215
220Gly Ala Val Ala Pro Gly Gly Thr Val Thr Leu Thr Cys Glu Val Pro225
230 235 240Ala Gln Pro Ser
Pro Gln Ile His Trp Met Lys Asp Gly Val Pro Leu 245
250 255Pro Leu Pro Pro Ser Pro Val Leu Ile Leu
Pro Glu Ile Gly Pro Gln 260 265
270Asp Gln Gly Thr Tyr Ser Cys Val Ala Thr His Ser Ser His Gly Pro
275 280 285Gln Glu Ser Arg Ala Val Ser
Ile Ser Ile Ile Glu Pro Gly Glu Glu 290 295
300Gly Pro Thr Ala Gly Glu Gly Phe Asp Lys Val Arg Glu Ala Glu
Asp305 310 315 320Ser Pro
Gln His Ala Val Glu Cys Pro Pro Cys Ala Pro Pro Val Ala
325 330 335Gly Gly Pro Ser Val Phe Leu
Phe Pro Pro Lys Pro Lys Asp Thr Leu 340 345
350Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp
Val Ser 355 360 365Gln Glu Asp Pro
Glu Val Gln Phe Asn Trp Tyr Val Asp Gly Val Glu 370
375 380Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln
Phe Asn Ser Thr385 390 395
400Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn
405 410 415Gly Lys Glu Tyr Lys
Cys Lys Val Ser Asn Lys Gly Leu Pro Ser Ser 420
425 430Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro
Arg Glu Pro Gln 435 440 445Val Tyr
Thr Leu Pro Pro Ser Gln Glu Glu Met Thr Lys Asn Gln Val 450
455 460Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro
Ser Asp Ile Ala Val465 470 475
480Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro
485 490 495Pro Val Leu Asp
Ser Asp Gly Ser Phe Phe Leu Tyr Ser Arg Leu Thr 500
505 510Val Asp Lys Ser Arg Trp Gln Glu Gly Asn Val
Phe Ser Cys Ser Val 515 520 525Met
His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu 530
535 540Ser Leu Gly Lys54524548PRTArtificial
SequenceDescription of Artificial Sequence Synthetic polypeptide
24Ala Gln Gln Ile Thr Ala Arg Ile Gly Glu Pro Leu Val Leu Lys Cys1
5 10 15Lys Gly Ala Pro Lys Lys
Pro Pro Gln Arg Leu Glu Trp Lys Leu Asn 20 25
30Thr Gly Arg Thr Glu Ala Trp Lys Val Leu Ser Pro Gln
Gly Gly Gly 35 40 45Pro Trp Asp
Ser Val Ala Arg Val Leu Pro Ala Gly Ser Leu Phe Leu 50
55 60Pro Ala Val Gly Ile Gln Asp Glu Gly Ile Phe Arg
Cys Gln Ala Met65 70 75
80Asn Arg Asn Gly Lys Glu Thr Lys Ser Asn Tyr Arg Val Arg Val Tyr
85 90 95Gln Ile Pro Gly Lys Pro
Glu Ile Val Asp Ser Ala Ser Glu Leu Thr 100
105 110Ala Gly Val Pro Asn Lys Val Gly Thr Cys Val Ser
Glu Gly Ser Tyr 115 120 125Pro Ala
Gly Thr Leu Ser Trp His Leu Asp Gly Lys Pro Leu Val Pro 130
135 140Asn Glu Lys Gly Val Ser Val Lys Glu Gln Thr
Arg Arg His Pro Glu145 150 155
160Thr Gly Leu Phe Thr Leu Gln Ser Glu Leu Met Val Thr Pro Ala Arg
165 170 175Gly Gly Asp Pro
Arg Pro Thr Phe Ser Cys Ser Phe Ser Pro Gly Leu 180
185 190Pro Arg His Arg Ala Leu Arg Thr Ala Pro Ile
Gln Pro Arg Val Trp 195 200 205Glu
Pro Val Pro Leu Glu Glu Val Gln Leu Val Val Glu Pro Glu Gly 210
215 220Gly Ala Val Ala Pro Gly Gly Thr Val Thr
Leu Thr Cys Glu Val Pro225 230 235
240Ala Gln Pro Ser Pro Gln Ile His Trp Met Lys Asp Gly Val Pro
Leu 245 250 255Pro Leu Pro
Pro Ser Pro Val Leu Ile Leu Pro Glu Ile Gly Pro Gln 260
265 270Asp Gln Gly Thr Tyr Ser Cys Val Ala Thr
His Ser Ser His Gly Pro 275 280
285Gln Glu Ser Arg Ala Val Ser Ile Ser Ile Ile Glu Pro Gly Glu Glu 290
295 300Gly Pro Thr Ala Gly Glu Gly Phe
Asp Lys Val Arg Glu Ala Glu Asp305 310
315 320Ser Pro Gln His Ala Val Glu Cys Pro Pro Cys Ala
Pro Pro Val Ala 325 330
335Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu
340 345 350Met Ile Ser Arg Thr Pro
Glu Val Thr Cys Val Val Val Asp Val Ser 355 360
365Gln Glu Asp Pro Glu Val Gln Phe Asn Trp Tyr Val Asp Gly
Val Glu 370 375 380Val His Asn Ala Lys
Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr385 390
395 400Tyr Arg Val Val Ser Val Leu Thr Val Leu
His Gln Asp Trp Leu Asn 405 410
415Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Gly Leu Pro Ser Ser
420 425 430Ile Glu Lys Thr Ile
Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln 435
440 445Val Tyr Thr Leu Pro Pro Ser Gln Glu Glu Met Thr
Lys Asn Gln Val 450 455 460Ser Leu Thr
Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val465
470 475 480Glu Trp Glu Ser Asn Gly Gln
Pro Glu Asn Asn Tyr Lys Thr Thr Pro 485
490 495Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr
Ser Arg Leu Thr 500 505 510Val
Asp Lys Ser Arg Trp Gln Glu Gly Asn Val Phe Ser Cys Ser Val 515
520 525Met His Glu Ala Leu His Asn His Tyr
Thr Gln Lys Ser Leu Ser Leu 530 535
540Ser Leu Gly Lys54525548PRTArtificial SequenceDescription of Artificial
Sequence Synthetic polypeptide 25Ala Gln Glu Ile Thr Ala Arg Ile Gly
Glu Pro Leu Val Leu Lys Cys1 5 10
15Lys Gly Ala Pro Lys Lys Pro Pro Gln Arg Leu Glu Trp Lys Leu
Asn 20 25 30Thr Gly Arg Thr
Glu Ala Trp Lys Val Leu Ser Pro Gln Gly Gly Gly 35
40 45Pro Trp Asp Ser Val Ala Arg Val Leu Pro Asn Gly
Ser Leu Phe Leu 50 55 60Pro Ala Val
Gly Ile Gln Asp Glu Gly Ile Phe Arg Cys Gln Ala Met65 70
75 80Asn Arg Asn Gly Lys Glu Thr Lys
Ser Asn Tyr Arg Val Arg Val Tyr 85 90
95Gln Ile Pro Gly Lys Pro Glu Ile Val Asp Ser Ala Ser Glu
Leu Thr 100 105 110Ala Gly Val
Pro Asn Lys Val Gly Thr Cys Val Ser Glu Gly Ser Tyr 115
120 125Pro Ala Gly Thr Leu Ser Trp His Leu Asp Gly
Lys Pro Leu Val Pro 130 135 140Asn Glu
Lys Gly Val Ser Val Lys Glu Gln Thr Arg Arg His Pro Glu145
150 155 160Thr Gly Leu Phe Thr Leu Gln
Ser Glu Leu Met Val Thr Pro Ala Arg 165
170 175Gly Gly Asp Pro Arg Pro Thr Phe Ser Cys Ser Phe
Ser Pro Gly Leu 180 185 190Pro
Arg His Arg Ala Leu Arg Thr Ala Pro Ile Gln Pro Arg Val Trp 195
200 205Glu Pro Val Pro Leu Glu Glu Val Gln
Leu Val Val Glu Pro Glu Gly 210 215
220Gly Ala Val Ala Pro Gly Gly Thr Val Thr Leu Thr Cys Glu Val Pro225
230 235 240Ala Gln Pro Ser
Pro Gln Ile His Trp Met Lys Asp Gly Val Pro Leu 245
250 255Pro Leu Pro Pro Ser Pro Val Leu Ile Leu
Pro Glu Ile Gly Pro Gln 260 265
270Asp Gln Gly Thr Tyr Ser Cys Val Ala Thr His Ser Ser His Gly Pro
275 280 285Gln Glu Ser Arg Ala Val Ser
Ile Ser Ile Ile Glu Pro Gly Glu Glu 290 295
300Gly Pro Thr Ala Gly Glu Gly Phe Asp Lys Val Arg Glu Ala Glu
Asp305 310 315 320Ser Pro
Gln His Ala Val Glu Cys Pro Pro Cys Ala Pro Pro Val Ala
325 330 335Gly Gly Pro Ser Val Phe Leu
Phe Pro Pro Lys Pro Lys Asp Thr Leu 340 345
350Tyr Ile Thr Arg Glu Pro Glu Val Thr Cys Val Val Val Asp
Val Ser 355 360 365Gln Glu Asp Pro
Glu Val Gln Phe Asn Trp Tyr Val Asp Gly Val Glu 370
375 380Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln
Phe Asn Ser Thr385 390 395
400Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn
405 410 415Gly Lys Glu Tyr Lys
Cys Lys Val Ser Asn Lys Gly Leu Pro Ser Ser 420
425 430Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro
Arg Glu Pro Gln 435 440 445Val Tyr
Thr Leu Pro Pro Ser Gln Glu Glu Met Thr Lys Asn Gln Val 450
455 460Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro
Ser Asp Ile Ala Val465 470 475
480Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro
485 490 495Pro Val Leu Asp
Ser Asp Gly Ser Phe Phe Leu Tyr Ser Arg Leu Thr 500
505 510Val Asp Lys Ser Arg Trp Gln Glu Gly Asn Val
Phe Ser Cys Ser Val 515 520 525Met
His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu 530
535 540Ser Leu Gly Lys54526548PRTArtificial
SequenceDescription of Artificial Sequence Synthetic polypeptide
26Ala Gln Gln Ile Thr Ala Arg Ile Gly Glu Pro Leu Val Leu Lys Cys1
5 10 15Lys Gly Ala Pro Lys Lys
Pro Pro Gln Arg Leu Glu Trp Lys Leu Asn 20 25
30Thr Gly Arg Thr Glu Ala Trp Lys Val Leu Ser Pro Gln
Gly Gly Gly 35 40 45Pro Trp Asp
Ser Val Ala Arg Val Leu Pro Asn Gly Ser Leu Phe Leu 50
55 60Pro Ala Val Gly Ile Gln Asp Glu Gly Ile Phe Arg
Cys Gln Ala Met65 70 75
80Asn Arg Asn Gly Lys Glu Thr Lys Ser Asn Tyr Arg Val Arg Val Tyr
85 90 95Gln Ile Pro Gly Lys Pro
Glu Ile Val Asp Ser Ala Ser Glu Leu Thr 100
105 110Ala Gly Val Pro Asn Lys Val Gly Thr Cys Val Ser
Glu Gly Ser Tyr 115 120 125Pro Ala
Gly Thr Leu Ser Trp His Leu Asp Gly Lys Pro Leu Val Pro 130
135 140Asn Glu Lys Gly Val Ser Val Lys Glu Gln Thr
Arg Arg His Pro Glu145 150 155
160Thr Gly Leu Phe Thr Leu Gln Ser Glu Leu Met Val Thr Pro Ala Arg
165 170 175Gly Gly Asp Pro
Arg Pro Thr Phe Ser Cys Ser Phe Ser Pro Gly Leu 180
185 190Pro Arg His Arg Ala Leu Arg Thr Ala Pro Ile
Gln Pro Arg Val Trp 195 200 205Glu
Pro Val Pro Leu Glu Glu Val Gln Leu Val Val Glu Pro Glu Gly 210
215 220Gly Ala Val Ala Pro Gly Gly Thr Val Thr
Leu Thr Cys Glu Val Pro225 230 235
240Ala Gln Pro Ser Pro Gln Ile His Trp Met Lys Asp Gly Val Pro
Leu 245 250 255Pro Leu Pro
Pro Ser Pro Val Leu Ile Leu Pro Glu Ile Gly Pro Gln 260
265 270Asp Gln Gly Thr Tyr Ser Cys Val Ala Thr
His Ser Ser His Gly Pro 275 280
285Gln Glu Ser Arg Ala Val Ser Ile Ser Ile Ile Glu Pro Gly Glu Glu 290
295 300Gly Pro Thr Ala Gly Glu Gly Phe
Asp Lys Val Arg Glu Ala Glu Asp305 310
315 320Ser Pro Gln His Ala Val Glu Cys Pro Pro Cys Ala
Pro Pro Val Ala 325 330
335Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu
340 345 350Tyr Ile Thr Arg Glu Pro
Glu Val Thr Cys Val Val Val Asp Val Ser 355 360
365Gln Glu Asp Pro Glu Val Gln Phe Asn Trp Tyr Val Asp Gly
Val Glu 370 375 380Val His Asn Ala Lys
Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr385 390
395 400Tyr Arg Val Val Ser Val Leu Thr Val Leu
His Gln Asp Trp Leu Asn 405 410
415Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Gly Leu Pro Ser Ser
420 425 430Ile Glu Lys Thr Ile
Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln 435
440 445Val Tyr Thr Leu Pro Pro Ser Gln Glu Glu Met Thr
Lys Asn Gln Val 450 455 460Ser Leu Thr
Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val465
470 475 480Glu Trp Glu Ser Asn Gly Gln
Pro Glu Asn Asn Tyr Lys Thr Thr Pro 485
490 495Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr
Ser Arg Leu Thr 500 505 510Val
Asp Lys Ser Arg Trp Gln Glu Gly Asn Val Phe Ser Cys Ser Val 515
520 525Met His Glu Ala Leu His Asn His Tyr
Thr Gln Lys Ser Leu Ser Leu 530 535
540Ser Leu Gly Lys54527548PRTArtificial SequenceDescription of Artificial
Sequence Synthetic polypeptide 27Ala Gln Asn Ile Thr Ala Arg Ile Gly
Glu Pro Leu Val Leu Lys Cys1 5 10
15Lys Gly Ala Pro Lys Lys Pro Pro Gln Arg Leu Glu Trp Lys Leu
Asn 20 25 30Thr Gly Arg Thr
Glu Ala Trp Lys Val Leu Ser Pro Gln Gly Gly Gly 35
40 45Pro Trp Asp Ser Val Ala Arg Val Leu Pro Asn Ser
Ser Leu Phe Leu 50 55 60Pro Ala Val
Gly Ile Gln Asp Glu Gly Ile Phe Arg Cys Gln Ala Met65 70
75 80Asn Arg Asn Gly Lys Glu Thr Lys
Ser Asn Tyr Arg Val Arg Val Tyr 85 90
95Gln Ile Pro Gly Lys Pro Glu Ile Val Asp Ser Ala Ser Glu
Leu Thr 100 105 110Ala Gly Val
Pro Asn Lys Val Gly Thr Cys Val Ser Glu Gly Ser Tyr 115
120 125Pro Ala Gly Thr Leu Ser Trp His Leu Asp Gly
Lys Pro Leu Val Pro 130 135 140Asn Glu
Lys Gly Val Ser Val Lys Glu Gln Thr Arg Arg His Pro Glu145
150 155 160Thr Gly Leu Phe Thr Leu Gln
Ser Glu Leu Met Val Thr Pro Ala Arg 165
170 175Gly Gly Asp Pro Arg Pro Thr Phe Ser Cys Ser Phe
Ser Pro Gly Leu 180 185 190Pro
Arg His Arg Ala Leu Arg Thr Ala Pro Ile Gln Pro Arg Val Trp 195
200 205Glu Pro Val Pro Leu Glu Glu Val Gln
Leu Val Val Glu Pro Glu Gly 210 215
220Gly Ala Val Ala Pro Gly Gly Thr Val Thr Leu Thr Cys Glu Val Pro225
230 235 240Ala Gln Pro Ser
Pro Gln Ile His Trp Met Lys Asp Gly Val Pro Leu 245
250 255Pro Leu Pro Pro Ser Pro Val Leu Ile Leu
Pro Glu Ile Gly Pro Gln 260 265
270Asp Gln Gly Thr Tyr Ser Cys Val Ala Thr His Ser Ser His Gly Pro
275 280 285Gln Glu Ser Arg Ala Val Ser
Ile Ser Ile Ile Glu Pro Gly Glu Glu 290 295
300Gly Pro Thr Ala Gly Glu Gly Phe Asp Lys Val Arg Glu Ala Glu
Asp305 310 315 320Ser Pro
Gln His Ala Val Glu Cys Pro Pro Cys Ala Pro Pro Val Ala
325 330 335Gly Gly Pro Ser Val Phe Leu
Phe Pro Pro Lys Pro Lys Asp Thr Leu 340 345
350Tyr Ile Thr Arg Glu Pro Glu Val Thr Cys Val Val Val Asp
Val Ser 355 360 365Gln Glu Asp Pro
Glu Val Gln Phe Asn Trp Tyr Val Asp Gly Val Glu 370
375 380Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln
Phe Asn Ser Thr385 390 395
400Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn
405 410 415Gly Lys Glu Tyr Lys
Cys Lys Val Ser Asn Lys Gly Leu Pro Ser Ser 420
425 430Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro
Arg Glu Pro Gln 435 440 445Val Tyr
Thr Leu Pro Pro Ser Gln Glu Glu Met Thr Lys Asn Gln Val 450
455 460Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro
Ser Asp Ile Ala Val465 470 475
480Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro
485 490 495Pro Val Leu Asp
Ser Asp Gly Ser Phe Phe Leu Tyr Ser Arg Leu Thr 500
505 510Val Asp Lys Ser Arg Trp Gln Glu Gly Asn Val
Phe Ser Cys Ser Val 515 520 525Met
His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu 530
535 540Ser Leu Gly Lys54528548PRTArtificial
SequenceDescription of Artificial Sequence Synthetic polypeptide
28Ala Gln Glu Ile Thr Ala Arg Ile Gly Glu Pro Leu Val Leu Lys Cys1
5 10 15Lys Gly Ala Pro Lys Lys
Pro Pro Gln Arg Leu Glu Trp Lys Leu Asn 20 25
30Thr Gly Arg Thr Glu Ala Trp Lys Val Leu Ser Pro Gln
Gly Gly Gly 35 40 45Pro Trp Asp
Ser Val Ala Arg Val Leu Pro Asn Ser Ser Leu Phe Leu 50
55 60Pro Ala Val Gly Ile Gln Asp Glu Gly Ile Phe Arg
Cys Gln Ala Met65 70 75
80Asn Arg Asn Gly Lys Glu Thr Lys Ser Asn Tyr Arg Val Arg Val Tyr
85 90 95Gln Ile Pro Gly Lys Pro
Glu Ile Val Asp Ser Ala Ser Glu Leu Thr 100
105 110Ala Gly Val Pro Asn Lys Val Gly Thr Cys Val Ser
Glu Gly Ser Tyr 115 120 125Pro Ala
Gly Thr Leu Ser Trp His Leu Asp Gly Lys Pro Leu Val Pro 130
135 140Asn Glu Lys Gly Val Ser Val Lys Glu Gln Thr
Arg Arg His Pro Glu145 150 155
160Thr Gly Leu Phe Thr Leu Gln Ser Glu Leu Met Val Thr Pro Ala Arg
165 170 175Gly Gly Asp Pro
Arg Pro Thr Phe Ser Cys Ser Phe Ser Pro Gly Leu 180
185 190Pro Arg His Arg Ala Leu Arg Thr Ala Pro Ile
Gln Pro Arg Val Trp 195 200 205Glu
Pro Val Pro Leu Glu Glu Val Gln Leu Val Val Glu Pro Glu Gly 210
215 220Gly Ala Val Ala Pro Gly Gly Thr Val Thr
Leu Thr Cys Glu Val Pro225 230 235
240Ala Gln Pro Ser Pro Gln Ile His Trp Met Lys Asp Gly Val Pro
Leu 245 250 255Pro Leu Pro
Pro Ser Pro Val Leu Ile Leu Pro Glu Ile Gly Pro Gln 260
265 270Asp Gln Gly Thr Tyr Ser Cys Val Ala Thr
His Ser Ser His Gly Pro 275 280
285Gln Glu Ser Arg Ala Val Ser Ile Ser Ile Ile Glu Pro Gly Glu Glu 290
295 300Gly Pro Thr Ala Gly Glu Gly Phe
Asp Lys Val Arg Glu Ala Glu Asp305 310
315 320Ser Pro Gln His Ala Val Glu Cys Pro Pro Cys Ala
Pro Pro Val Ala 325 330
335Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu
340 345 350Tyr Ile Thr Arg Glu Pro
Glu Val Thr Cys Val Val Val Asp Val Ser 355 360
365Gln Glu Asp Pro Glu Val Gln Phe Asn Trp Tyr Val Asp Gly
Val Glu 370 375 380Val His Asn Ala Lys
Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr385 390
395 400Tyr Arg Val Val Ser Val Leu Thr Val Leu
His Gln Asp Trp Leu Asn 405 410
415Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Gly Leu Pro Ser Ser
420 425 430Ile Glu Lys Thr Ile
Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln 435
440 445Val Tyr Thr Leu Pro Pro Ser Gln Glu Glu Met Thr
Lys Asn Gln Val 450 455 460Ser Leu Thr
Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val465
470 475 480Glu Trp Glu Ser Asn Gly Gln
Pro Glu Asn Asn Tyr Lys Thr Thr Pro 485
490 495Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr
Ser Arg Leu Thr 500 505 510Val
Asp Lys Ser Arg Trp Gln Glu Gly Asn Val Phe Ser Cys Ser Val 515
520 525Met His Glu Ala Leu His Asn His Tyr
Thr Gln Lys Ser Leu Ser Leu 530 535
540Ser Leu Gly Lys54529548PRTArtificial SequenceDescription of Artificial
Sequence Synthetic polypeptide 29Ala Gln Gln Ile Thr Ala Arg Ile Gly
Glu Pro Leu Val Leu Lys Cys1 5 10
15Lys Gly Ala Pro Lys Lys Pro Pro Gln Arg Leu Glu Trp Lys Leu
Asn 20 25 30Thr Gly Arg Thr
Glu Ala Trp Lys Val Leu Ser Pro Gln Gly Gly Gly 35
40 45Pro Trp Asp Ser Val Ala Arg Val Leu Pro Asn Ser
Ser Leu Phe Leu 50 55 60Pro Ala Val
Gly Ile Gln Asp Glu Gly Ile Phe Arg Cys Gln Ala Met65 70
75 80Asn Arg Asn Gly Lys Glu Thr Lys
Ser Asn Tyr Arg Val Arg Val Tyr 85 90
95Gln Ile Pro Gly Lys Pro Glu Ile Val Asp Ser Ala Ser Glu
Leu Thr 100 105 110Ala Gly Val
Pro Asn Lys Val Gly Thr Cys Val Ser Glu Gly Ser Tyr 115
120 125Pro Ala Gly Thr Leu Ser Trp His Leu Asp Gly
Lys Pro Leu Val Pro 130 135 140Asn Glu
Lys Gly Val Ser Val Lys Glu Gln Thr Arg Arg His Pro Glu145
150 155 160Thr Gly Leu Phe Thr Leu Gln
Ser Glu Leu Met Val Thr Pro Ala Arg 165
170 175Gly Gly Asp Pro Arg Pro Thr Phe Ser Cys Ser Phe
Ser Pro Gly Leu 180 185 190Pro
Arg His Arg Ala Leu Arg Thr Ala Pro Ile Gln Pro Arg Val Trp 195
200 205Glu Pro Val Pro Leu Glu Glu Val Gln
Leu Val Val Glu Pro Glu Gly 210 215
220Gly Ala Val Ala Pro Gly Gly Thr Val Thr Leu Thr Cys Glu Val Pro225
230 235 240Ala Gln Pro Ser
Pro Gln Ile His Trp Met Lys Asp Gly Val Pro Leu 245
250 255Pro Leu Pro Pro Ser Pro Val Leu Ile Leu
Pro Glu Ile Gly Pro Gln 260 265
270Asp Gln Gly Thr Tyr Ser Cys Val Ala Thr His Ser Ser His Gly Pro
275 280 285Gln Glu Ser Arg Ala Val Ser
Ile Ser Ile Ile Glu Pro Gly Glu Glu 290 295
300Gly Pro Thr Ala Gly Glu Gly Phe Asp Lys Val Arg Glu Ala Glu
Asp305 310 315 320Ser Pro
Gln His Ala Val Glu Cys Pro Pro Cys Ala Pro Pro Val Ala
325 330 335Gly Gly Pro Ser Val Phe Leu
Phe Pro Pro Lys Pro Lys Asp Thr Leu 340 345
350Tyr Ile Thr Arg Glu Pro Glu Val Thr Cys Val Val Val Asp
Val Ser 355 360 365Gln Glu Asp Pro
Glu Val Gln Phe Asn Trp Tyr Val Asp Gly Val Glu 370
375 380Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln
Phe Asn Ser Thr385 390 395
400Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn
405 410 415Gly Lys Glu Tyr Lys
Cys Lys Val Ser Asn Lys Gly Leu Pro Ser Ser 420
425 430Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro
Arg Glu Pro Gln 435 440 445Val Tyr
Thr Leu Pro Pro Ser Gln Glu Glu Met Thr Lys Asn Gln Val 450
455 460Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro
Ser Asp Ile Ala Val465 470 475
480Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro
485 490 495Pro Val Leu Asp
Ser Asp Gly Ser Phe Phe Leu Tyr Ser Arg Leu Thr 500
505 510Val Asp Lys Ser Arg Trp Gln Glu Gly Asn Val
Phe Ser Cys Ser Val 515 520 525Met
His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu 530
535 540Ser Leu Gly Lys54530553PRTArtificial
SequenceDescription of Artificial Sequence Synthetic polypeptide
30Ala Gln Asn Ile Thr Ala Arg Ile Gly Glu Pro Leu Val Leu Lys Cys1
5 10 15Lys Gly Ala Pro Lys Lys
Pro Pro Gln Arg Leu Glu Trp Lys Leu Asn 20 25
30Thr Gly Arg Thr Glu Ala Trp Lys Val Leu Ser Pro Gln
Gly Gly Gly 35 40 45Pro Trp Asp
Ser Val Ala Arg Val Leu Pro Asn Gly Ser Leu Phe Leu 50
55 60Pro Ala Val Gly Ile Gln Asp Glu Gly Ile Phe Arg
Cys Gln Ala Met65 70 75
80Asn Arg Asn Gly Lys Glu Thr Lys Ser Asn Tyr Arg Val Arg Val Tyr
85 90 95Gln Ile Pro Gly Lys Pro
Glu Ile Val Asp Ser Ala Ser Glu Leu Thr 100
105 110Ala Gly Val Pro Asn Lys Val Gly Thr Cys Val Ser
Glu Gly Ser Tyr 115 120 125Pro Ala
Gly Thr Leu Ser Trp His Leu Asp Gly Lys Pro Leu Val Pro 130
135 140Asn Glu Lys Gly Val Ser Val Lys Glu Gln Thr
Arg Arg His Pro Glu145 150 155
160Thr Gly Leu Phe Thr Leu Gln Ser Glu Leu Met Val Thr Pro Ala Arg
165 170 175Gly Gly Asp Pro
Arg Pro Thr Phe Ser Cys Ser Phe Ser Pro Gly Leu 180
185 190Pro Arg His Arg Ala Leu Arg Thr Ala Pro Ile
Gln Pro Arg Val Trp 195 200 205Glu
Pro Val Pro Leu Glu Glu Val Gln Leu Val Val Glu Pro Glu Gly 210
215 220Gly Ala Val Ala Pro Gly Gly Thr Val Thr
Leu Thr Cys Glu Val Pro225 230 235
240Ala Gln Pro Ser Pro Gln Ile His Trp Met Lys Asp Gly Val Pro
Leu 245 250 255Pro Leu Pro
Pro Ser Pro Val Leu Ile Leu Pro Glu Ile Gly Pro Gln 260
265 270Asp Gln Gly Thr Tyr Ser Cys Val Ala Thr
His Ser Ser His Gly Pro 275 280
285Gln Glu Ser Arg Ala Val Ser Ile Ser Ile Ile Glu Pro Gly Glu Glu 290
295 300Gly Pro Thr Ala Gly Glu Gly Phe
Asp Lys Val Arg Glu Ala Glu Asp305 310
315 320Ser Pro Gln His Ala Glu Arg Lys Cys Cys Val Glu
Cys Pro Pro Cys 325 330
335Ala Pro Pro Val Ala Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys
340 345 350Pro Lys Asp Thr Leu Tyr
Ile Thr Arg Glu Pro Glu Val Thr Cys Val 355 360
365Val Val Asp Val Ser Gln Glu Asp Pro Glu Val Gln Phe Asn
Trp Tyr 370 375 380Val Asp Gly Val Glu
Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu385 390
395 400Gln Phe Asn Ser Thr Tyr Arg Val Val Ser
Val Leu Thr Val Leu His 405 410
415Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys
420 425 430Gly Leu Pro Ser Ser
Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln 435
440 445Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser
Gln Glu Glu Met 450 455 460Thr Lys Asn
Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro465
470 475 480Ser Asp Ile Ala Val Glu Trp
Glu Ser Asn Gly Gln Pro Glu Asn Asn 485
490 495Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly
Ser Phe Phe Leu 500 505 510Tyr
Ser Arg Leu Thr Val Asp Lys Ser Arg Trp Gln Glu Gly Asn Val 515
520 525Phe Ser Cys Ser Val Met His Glu Ala
Leu His Asn His Tyr Thr Gln 530 535
540Lys Ser Leu Ser Leu Ser Leu Gly Lys545
55031547PRTArtificial SequenceDescription of Artificial Sequence
Synthetic polypeptide 31Ala Gln Asn Ile Thr Ala Arg Ile Gly Glu Pro
Leu Val Leu Lys Cys1 5 10
15Lys Gly Ala Pro Lys Lys Pro Pro Gln Arg Leu Glu Trp Lys Leu Asn
20 25 30Thr Gly Arg Thr Glu Ala Trp
Lys Val Leu Ser Pro Gln Gly Gly Gly 35 40
45Pro Trp Asp Ser Val Ala Arg Val Leu Pro Asn Gly Ser Leu Phe
Leu 50 55 60Pro Ala Val Gly Ile Gln
Asp Glu Gly Ile Phe Arg Cys Gln Ala Met65 70
75 80Asn Arg Asn Gly Lys Glu Thr Lys Ser Asn Tyr
Arg Val Arg Val Tyr 85 90
95Gln Ile Pro Gly Lys Pro Glu Ile Val Asp Ser Ala Ser Glu Leu Thr
100 105 110Ala Gly Val Pro Asn Lys
Val Gly Thr Cys Val Ser Glu Gly Ser Tyr 115 120
125Pro Ala Gly Thr Leu Ser Trp His Leu Asp Gly Lys Pro Leu
Val Pro 130 135 140Asn Glu Lys Gly Val
Ser Val Lys Glu Gln Thr Arg Arg His Pro Glu145 150
155 160Thr Gly Leu Phe Thr Leu Gln Ser Glu Leu
Met Val Thr Pro Ala Arg 165 170
175Gly Gly Asp Pro Arg Pro Thr Phe Ser Cys Ser Phe Ser Pro Gly Leu
180 185 190Pro Arg His Arg Ala
Leu Arg Thr Ala Pro Ile Gln Pro Arg Val Trp 195
200 205Glu Pro Val Pro Leu Glu Glu Val Gln Leu Val Val
Glu Pro Glu Gly 210 215 220Gly Ala Val
Ala Pro Gly Gly Thr Val Thr Leu Thr Cys Glu Val Pro225
230 235 240Ala Gln Pro Ser Pro Gln Ile
His Trp Met Lys Asp Gly Val Pro Leu 245
250 255Pro Leu Pro Pro Ser Pro Val Leu Ile Leu Pro Glu
Ile Gly Pro Gln 260 265 270Asp
Gln Gly Thr Tyr Ser Cys Val Ala Thr His Ser Ser His Gly Pro 275
280 285Gln Glu Ser Arg Ala Val Ser Ile Ser
Ile Ile Glu Pro Gly Glu Glu 290 295
300Gly Pro Thr Ala Gly Glu Gly Phe Asp Lys Val Arg Glu Ala Glu Asp305
310 315 320Ser Pro Gln His
Ala Val Glu Cys Pro Pro Cys Ala Pro Pro Val Ala 325
330 335Gly Pro Ser Val Phe Leu Phe Pro Pro Lys
Pro Lys Asp Thr Leu Tyr 340 345
350Ile Thr Arg Glu Pro Glu Val Thr Cys Val Val Val Asp Val Ser His
355 360 365Glu Asp Pro Glu Val Gln Phe
Asn Trp Tyr Val Asp Gly Val Glu Val 370 375
380His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr
Phe385 390 395 400Arg Val
Val Ser Val Leu Thr Val Val His Gln Asp Trp Leu Asn Gly
405 410 415Lys Glu Tyr Lys Cys Lys Val
Ser Asn Lys Gly Leu Pro Ala Pro Ile 420 425
430Glu Lys Thr Ile Ser Lys Thr Lys Gly Gln Pro Arg Glu Pro
Gln Val 435 440 445Tyr Thr Leu Pro
Pro Ser Arg Glu Glu Met Thr Lys Asn Gln Val Ser 450
455 460Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp
Ile Ala Val Glu465 470 475
480Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro
485 490 495Met Leu Asp Ser Asp
Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val 500
505 510Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser
Cys Ser Val Met 515 520 525His Glu
Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser 530
535 540Pro Gly Lys54532548PRTArtificial
SequenceDescription of Artificial Sequence Synthetic polypeptide
32Ala Gln Asn Ile Thr Ala Arg Ile Gly Glu Pro Leu Val Leu Lys Cys1
5 10 15Lys Gly Ala Pro Lys Lys
Pro Pro Gln Arg Leu Glu Trp Lys Leu Asn 20 25
30Thr Gly Arg Thr Glu Ala Trp Lys Val Leu Ser Pro Gln
Gly Gly Gly 35 40 45Pro Trp Asp
Ser Val Ala Arg Val Leu Pro Asn Gly Ser Leu Phe Leu 50
55 60Pro Ala Val Gly Ile Gln Asp Glu Gly Ile Phe Arg
Cys Gln Ala Met65 70 75
80Asn Arg Asn Gly Lys Glu Thr Lys Ser Asn Tyr Arg Val Arg Val Tyr
85 90 95Gln Ile Pro Gly Lys Pro
Glu Ile Val Asp Ser Ala Ser Glu Leu Thr 100
105 110Ala Gly Val Pro Asn Lys Val Gly Thr Cys Val Ser
Glu Gly Ser Tyr 115 120 125Pro Ala
Gly Thr Leu Ser Trp His Leu Asp Gly Lys Pro Leu Val Pro 130
135 140Asn Glu Lys Gly Val Ser Val Lys Glu Gln Thr
Arg Arg His Pro Glu145 150 155
160Thr Gly Leu Phe Thr Leu Gln Ser Glu Leu Met Val Thr Pro Ala Arg
165 170 175Gly Gly Asp Pro
Arg Pro Thr Phe Ser Cys Ser Phe Ser Pro Gly Leu 180
185 190Pro Arg His Arg Ala Leu Arg Thr Ala Pro Ile
Gln Pro Arg Val Trp 195 200 205Glu
Pro Val Pro Leu Glu Glu Val Gln Leu Val Val Glu Pro Glu Gly 210
215 220Gly Ala Val Ala Pro Gly Gly Thr Val Thr
Leu Thr Cys Glu Val Pro225 230 235
240Ala Gln Pro Ser Pro Gln Ile His Trp Met Lys Asp Gly Val Pro
Leu 245 250 255Pro Leu Pro
Pro Ser Pro Val Leu Ile Leu Pro Glu Ile Gly Pro Gln 260
265 270Asp Gln Gly Thr Tyr Ser Cys Val Ala Thr
His Ser Ser His Gly Pro 275 280
285Gln Glu Ser Arg Ala Val Ser Ile Ser Ile Ile Glu Pro Gly Glu Glu 290
295 300Gly Pro Thr Ala Gly Glu Gly Phe
Asp Lys Val Arg Glu Ala Glu Asp305 310
315 320Ser Pro Gln His Ala Val Glu Cys Pro Pro Cys Ala
Pro Pro Val Ala 325 330
335Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu
340 345 350Tyr Ile Thr Arg Glu Pro
Glu Val Thr Cys Val Val Val Asp Val Ser 355 360
365His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly
Val Glu 370 375 380Val His Asn Ala Lys
Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr385 390
395 400Tyr Arg Val Val Ser Val Leu Thr Val Leu
His Gln Asp Trp Leu Asn 405 410
415Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro
420 425 430Ile Glu Lys Thr Ile
Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln 435
440 445Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr
Lys Asn Gln Val 450 455 460Ser Leu Thr
Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val465
470 475 480Glu Trp Glu Ser Asn Gly Gln
Pro Glu Asn Asn Tyr Lys Thr Thr Pro 485
490 495Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr
Ser Lys Leu Thr 500 505 510Val
Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val 515
520 525Met His Glu Ala Leu His Asn His Tyr
Thr Gln Lys Ser Leu Ser Leu 530 535
540Ser Pro Gly Lys54533554PRTArtificial SequenceDescription of Artificial
Sequence Synthetic polypeptide 33Ala Gln Asn Ile Thr Ala Arg Ile Gly
Glu Pro Leu Val Leu Lys Cys1 5 10
15Lys Gly Ala Pro Lys Lys Pro Pro Gln Arg Leu Glu Trp Lys Leu
Asn 20 25 30Thr Gly Arg Thr
Glu Ala Trp Lys Val Leu Ser Pro Gln Gly Gly Gly 35
40 45Pro Trp Asp Ser Val Ala Arg Val Leu Pro Asn Gly
Ser Leu Phe Leu 50 55 60Pro Ala Val
Gly Ile Gln Asp Glu Gly Ile Phe Arg Cys Gln Ala Met65 70
75 80Asn Arg Asn Gly Lys Glu Thr Lys
Ser Asn Tyr Arg Val Arg Val Tyr 85 90
95Gln Ile Pro Gly Lys Pro Glu Ile Val Asp Ser Ala Ser Glu
Leu Thr 100 105 110Ala Gly Val
Pro Asn Lys Val Gly Thr Cys Val Ser Glu Gly Ser Tyr 115
120 125Pro Ala Gly Thr Leu Ser Trp His Leu Asp Gly
Lys Pro Leu Val Pro 130 135 140Asn Glu
Lys Gly Val Ser Val Lys Glu Gln Thr Arg Arg His Pro Glu145
150 155 160Thr Gly Leu Phe Thr Leu Gln
Ser Glu Leu Met Val Thr Pro Ala Arg 165
170 175Gly Gly Asp Pro Arg Pro Thr Phe Ser Cys Ser Phe
Ser Pro Gly Leu 180 185 190Pro
Arg His Arg Ala Leu Arg Thr Ala Pro Ile Gln Pro Arg Val Trp 195
200 205Glu Pro Val Pro Leu Glu Glu Val Gln
Leu Val Val Glu Pro Glu Gly 210 215
220Gly Ala Val Ala Pro Gly Gly Thr Val Thr Leu Thr Cys Glu Val Pro225
230 235 240Ala Gln Pro Ser
Pro Gln Ile His Trp Met Lys Asp Gly Val Pro Leu 245
250 255Pro Leu Pro Pro Ser Pro Val Leu Ile Leu
Pro Glu Ile Gly Pro Gln 260 265
270Asp Gln Gly Thr Tyr Ser Cys Val Ala Thr His Ser Ser His Gly Pro
275 280 285Gln Glu Ser Arg Ala Val Ser
Ile Ser Ile Ile Glu Pro Gly Glu Glu 290 295
300Gly Pro Thr Ala Gly Glu Gly Phe Asp Lys Val Arg Glu Ala Glu
Asp305 310 315 320Ser Pro
Gln His Ala Glu Ser Lys Tyr Gly Pro Pro Cys Pro Pro Cys
325 330 335Pro Ala Pro Glu Ala Ala Gly
Gly Pro Ser Val Phe Leu Phe Pro Pro 340 345
350Lys Pro Lys Asp Thr Leu Tyr Ile Thr Arg Glu Pro Glu Val
Thr Cys 355 360 365Val Val Val Asp
Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp 370
375 380Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr
Lys Pro Arg Glu385 390 395
400Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu
405 410 415His Gln Asp Trp Leu
Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn 420
425 430Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser
Lys Ala Lys Gly 435 440 445Gln Pro
Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu 450
455 460Leu Thr Lys Asn Gln Val Ser Leu Thr Cys Leu
Val Lys Gly Phe Tyr465 470 475
480Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn
485 490 495Asn Tyr Lys Thr
Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe 500
505 510Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg
Trp Gln Gln Gly Asn 515 520 525Val
Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr 530
535 540Gln Lys Ser Leu Ser Leu Ser Pro Gly
Lys545 55034557PRTArtificial SequenceDescription of
Artificial Sequence Synthetic polypeptide 34Ala Gln Asn Ile Thr Ala
Arg Ile Gly Glu Pro Leu Val Leu Lys Cys1 5
10 15Lys Gly Ala Pro Lys Lys Pro Pro Gln Arg Leu Glu
Trp Lys Leu Asn 20 25 30Thr
Gly Arg Thr Glu Ala Trp Lys Val Leu Ser Pro Gln Gly Gly Gly 35
40 45Pro Trp Asp Ser Val Ala Arg Val Leu
Pro Asn Gly Ser Leu Phe Leu 50 55
60Pro Ala Val Gly Ile Gln Asp Glu Gly Ile Phe Arg Cys Gln Ala Met65
70 75 80Asn Arg Asn Gly Lys
Glu Thr Lys Ser Asn Tyr Arg Val Arg Val Tyr 85
90 95Gln Ile Pro Gly Lys Pro Glu Ile Val Asp Ser
Ala Ser Glu Leu Thr 100 105
110Ala Gly Val Pro Asn Lys Val Gly Thr Cys Val Ser Glu Gly Ser Tyr
115 120 125Pro Ala Gly Thr Leu Ser Trp
His Leu Asp Gly Lys Pro Leu Val Pro 130 135
140Asn Glu Lys Gly Val Ser Val Lys Glu Gln Thr Arg Arg His Pro
Glu145 150 155 160Thr Gly
Leu Phe Thr Leu Gln Ser Glu Leu Met Val Thr Pro Ala Arg
165 170 175Gly Gly Asp Pro Arg Pro Thr
Phe Ser Cys Ser Phe Ser Pro Gly Leu 180 185
190Pro Arg His Arg Ala Leu Arg Thr Ala Pro Ile Gln Pro Arg
Val Trp 195 200 205Glu Pro Val Pro
Leu Glu Glu Val Gln Leu Val Val Glu Pro Glu Gly 210
215 220Gly Ala Val Ala Pro Gly Gly Thr Val Thr Leu Thr
Cys Glu Val Pro225 230 235
240Ala Gln Pro Ser Pro Gln Ile His Trp Met Lys Asp Gly Val Pro Leu
245 250 255Pro Leu Pro Pro Ser
Pro Val Leu Ile Leu Pro Glu Ile Gly Pro Gln 260
265 270Asp Gln Gly Thr Tyr Ser Cys Val Ala Thr His Ser
Ser His Gly Pro 275 280 285Gln Glu
Ser Arg Ala Val Ser Ile Ser Ile Ile Glu Pro Gly Glu Glu 290
295 300Gly Pro Thr Ala Gly Glu Gly Phe Asp Lys Val
Arg Glu Ala Glu Asp305 310 315
320Ser Pro Gln His Ala Glu Pro Lys Ser Cys Asp Lys Thr His Thr Cys
325 330 335Pro Pro Cys Pro
Ala Pro Glu Ala Ala Gly Gly Pro Ser Val Phe Leu 340
345 350Phe Pro Pro Lys Pro Lys Asp Thr Leu Tyr Ile
Thr Arg Glu Pro Glu 355 360 365Val
Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys 370
375 380Phe Asn Trp Tyr Val Asp Gly Val Glu Val
His Asn Ala Lys Thr Lys385 390 395
400Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val
Leu 405 410 415Thr Val Leu
His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys 420
425 430Val Ser Asn Lys Ala Leu Pro Ala Pro Ile
Glu Lys Thr Ile Ser Lys 435 440
445Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser 450
455 460Arg Asp Glu Leu Thr Lys Asn Gln
Val Ser Leu Thr Cys Leu Val Lys465 470
475 480Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu
Ser Asn Gly Gln 485 490
495Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly
500 505 510Ser Phe Phe Leu Tyr Ser
Lys Leu Thr Val Asp Lys Ser Arg Trp Gln 515 520
525Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu
His Asn 530 535 540His Tyr Thr Gln Lys
Ser Leu Ser Leu Ser Pro Gly Lys545 550
55535554PRTArtificial SequenceDescription of Artificial Sequence
Synthetic polypeptide 35Ala Gln Asn Ile Thr Ala Arg Ile Gly Glu Pro
Leu Val Leu Lys Cys1 5 10
15Lys Gly Ala Pro Lys Lys Pro Pro Gln Arg Leu Glu Trp Lys Leu Asn
20 25 30Thr Gly Arg Thr Glu Ala Trp
Lys Val Leu Ser Pro Gln Gly Gly Gly 35 40
45Pro Trp Asp Ser Val Ala Arg Val Leu Pro Asn Gly Ser Leu Phe
Leu 50 55 60Pro Ala Val Gly Ile Gln
Asp Glu Gly Ile Phe Arg Cys Gln Ala Met65 70
75 80Asn Arg Asn Gly Lys Glu Thr Lys Ser Asn Tyr
Arg Val Arg Val Tyr 85 90
95Gln Ile Pro Gly Lys Pro Glu Ile Val Asp Ser Ala Ser Glu Leu Thr
100 105 110Ala Gly Val Pro Asn Lys
Val Gly Thr Cys Val Ser Glu Gly Ser Tyr 115 120
125Pro Ala Gly Thr Leu Ser Trp His Leu Asp Gly Lys Pro Leu
Val Pro 130 135 140Asn Glu Lys Gly Val
Ser Val Lys Glu Gln Thr Arg Arg His Pro Glu145 150
155 160Thr Gly Leu Phe Thr Leu Gln Ser Glu Leu
Met Val Thr Pro Ala Arg 165 170
175Gly Gly Asp Pro Arg Pro Thr Phe Ser Cys Ser Phe Ser Pro Gly Leu
180 185 190Pro Arg His Arg Ala
Leu Arg Thr Ala Pro Ile Gln Pro Arg Val Trp 195
200 205Glu Pro Val Pro Leu Glu Glu Val Gln Leu Val Val
Glu Pro Glu Gly 210 215 220Gly Ala Val
Ala Pro Gly Gly Thr Val Thr Leu Thr Cys Glu Val Pro225
230 235 240Ala Gln Pro Ser Pro Gln Ile
His Trp Met Lys Asp Gly Val Pro Leu 245
250 255Pro Leu Pro Pro Ser Pro Val Leu Ile Leu Pro Glu
Ile Gly Pro Gln 260 265 270Asp
Gln Gly Thr Tyr Ser Cys Val Ala Thr His Ser Ser His Gly Pro 275
280 285Gln Glu Ser Arg Ala Val Ser Ile Ser
Ile Ile Glu Pro Gly Glu Glu 290 295
300Gly Pro Thr Ala Gly Glu Gly Phe Asp Lys Val Arg Glu Ala Glu Asp305
310 315 320Ser Pro Gln His
Ala Glu Ser Lys Tyr Gly Pro Pro Cys Pro Pro Cys 325
330 335Pro Ala Pro Glu Ala Ala Gly Gly Pro Ser
Val Phe Leu Phe Pro Pro 340 345
350Lys Pro Lys Asp Thr Leu Tyr Ile Thr Arg Glu Pro Glu Val Thr Cys
355 360 365Val Val Val Asp Val Ser Gln
Glu Asp Pro Glu Val Gln Phe Asn Trp 370 375
380Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg
Glu385 390 395 400Glu Gln
Phe Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu
405 410 415His Gln Asp Trp Leu Asn Gly
Lys Glu Tyr Lys Cys Lys Val Ser Asn 420 425
430Lys Gly Leu Pro Ser Ser Ile Glu Lys Thr Ile Ser Lys Ala
Lys Gly 435 440 445Gln Pro Arg Glu
Pro Gln Val Tyr Thr Leu Pro Pro Ser Gln Glu Glu 450
455 460Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val
Lys Gly Phe Tyr465 470 475
480Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn
485 490 495Asn Tyr Lys Thr Thr
Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe 500
505 510Leu Tyr Ser Arg Leu Thr Val Asp Lys Ser Arg Trp
Gln Glu Gly Asn 515 520 525Val Phe
Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr 530
535 540Gln Lys Ser Leu Ser Leu Ser Leu Gly Lys545
55036562PRTArtificial SequenceDescription of Artificial
Sequence Synthetic polypeptide 36Ala Gln Asn Ile Thr Ala Arg Ile Gly
Glu Pro Leu Val Leu Lys Cys1 5 10
15Lys Gly Ala Pro Lys Lys Pro Pro Gln Arg Leu Glu Trp Lys Leu
Asn 20 25 30Thr Gly Arg Thr
Glu Ala Trp Lys Val Leu Ser Pro Gln Gly Gly Gly 35
40 45Pro Trp Asp Ser Val Ala Arg Val Leu Pro Asn Gly
Ser Leu Phe Leu 50 55 60Pro Ala Val
Gly Ile Gln Asp Glu Gly Ile Phe Arg Cys Gln Ala Met65 70
75 80Asn Arg Asn Gly Lys Glu Thr Lys
Ser Asn Tyr Arg Val Arg Val Tyr 85 90
95Gln Ile Pro Gly Lys Pro Glu Ile Val Asp Ser Ala Ser Glu
Leu Thr 100 105 110Ala Gly Val
Pro Asn Lys Val Gly Thr Cys Val Ser Glu Gly Ser Tyr 115
120 125Pro Ala Gly Thr Leu Ser Trp His Leu Asp Gly
Lys Pro Leu Val Pro 130 135 140Asn Glu
Lys Gly Val Ser Val Lys Glu Gln Thr Arg Arg His Pro Glu145
150 155 160Thr Gly Leu Phe Thr Leu Gln
Ser Glu Leu Met Val Thr Pro Ala Arg 165
170 175Gly Gly Asp Pro Arg Pro Thr Phe Ser Cys Ser Phe
Ser Pro Gly Leu 180 185 190Pro
Arg His Arg Ala Leu Arg Thr Ala Pro Ile Gln Pro Arg Val Trp 195
200 205Glu Pro Val Pro Leu Glu Glu Val Gln
Leu Val Val Glu Pro Glu Gly 210 215
220Gly Ala Val Ala Pro Gly Gly Thr Val Thr Leu Thr Cys Glu Val Pro225
230 235 240Ala Gln Pro Ser
Pro Gln Ile His Trp Met Lys Asp Gly Val Pro Leu 245
250 255Pro Leu Pro Pro Ser Pro Val Leu Ile Leu
Pro Glu Ile Gly Pro Gln 260 265
270Asp Gln Gly Thr Tyr Ser Cys Val Ala Thr His Ser Ser His Gly Pro
275 280 285Gln Glu Ser Arg Ala Val Ser
Ile Ser Ile Ile Glu Pro Gly Glu Glu 290 295
300Gly Pro Thr Ala Gly Glu Gly Phe Asp Lys Val Arg Glu Ala Glu
Asp305 310 315 320Ser Pro
Gln His Ala Gly Thr Leu Val Thr Val Ser Ser Glu Ser Lys
325 330 335Tyr Gly Pro Pro Cys Pro Pro
Cys Pro Ala Pro Glu Ala Ala Gly Gly 340 345
350Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu
Tyr Ile 355 360 365Thr Arg Glu Pro
Glu Val Thr Cys Val Val Val Asp Val Ser Gln Glu 370
375 380Asp Pro Glu Val Gln Phe Asn Trp Tyr Val Asp Gly
Val Glu Val His385 390 395
400Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr Tyr Arg
405 410 415Val Val Ser Val Leu
Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys 420
425 430Glu Tyr Lys Cys Lys Val Ser Asn Lys Gly Leu Pro
Ser Ser Ile Glu 435 440 445Lys Thr
Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr 450
455 460Thr Leu Pro Pro Ser Gln Glu Glu Met Thr Lys
Asn Gln Val Ser Leu465 470 475
480Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp
485 490 495Glu Ser Asn Gly
Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val 500
505 510Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser
Arg Leu Thr Val Asp 515 520 525Lys
Ser Arg Trp Gln Glu Gly Asn Val Phe Ser Cys Ser Val Met His 530
535 540Glu Ala Leu His Asn His Tyr Thr Gln Lys
Ser Leu Ser Leu Ser Leu545 550 555
560Gly Lys37558PRTArtificial SequenceDescription of Artificial
Sequence Synthetic polypeptide 37Ala Gln Glu Ile Thr Ala Arg Ile Gly
Glu Pro Leu Val Leu Lys Cys1 5 10
15Lys Gly Ala Pro Lys Lys Pro Pro Gln Arg Leu Glu Trp Lys Leu
Asn 20 25 30Thr Gly Arg Thr
Glu Ala Trp Lys Val Leu Ser Pro Gln Gly Gly Gly 35
40 45Pro Trp Asp Ser Val Ala Arg Val Leu Pro Asn Ser
Ser Leu Phe Leu 50 55 60Pro Ala Val
Gly Ile Gln Asp Glu Gly Ile Phe Arg Cys Gln Ala Met65 70
75 80Asn Arg Asn Gly Lys Glu Thr Lys
Ser Asn Tyr Arg Val Arg Val Tyr 85 90
95Gln Ile Pro Gly Lys Pro Glu Ile Val Asp Ser Ala Ser Glu
Leu Thr 100 105 110Ala Gly Val
Pro Asn Lys Val Gly Thr Cys Val Ser Glu Gly Ser Tyr 115
120 125Pro Ala Gly Thr Leu Ser Trp His Leu Asp Gly
Lys Pro Leu Val Pro 130 135 140Asn Glu
Lys Gly Val Ser Val Lys Glu Gln Thr Arg Arg His Pro Glu145
150 155 160Thr Gly Leu Phe Thr Leu Gln
Ser Glu Leu Met Val Thr Pro Ala Arg 165
170 175Gly Gly Asp Pro Arg Pro Thr Phe Ser Cys Ser Phe
Ser Pro Gly Leu 180 185 190Pro
Arg His Arg Ala Leu Arg Thr Ala Pro Ile Gln Pro Arg Val Trp 195
200 205Glu Pro Val Pro Leu Glu Glu Val Gln
Leu Val Val Glu Pro Glu Gly 210 215
220Gly Ala Val Ala Pro Gly Gly Thr Val Thr Leu Thr Cys Glu Val Pro225
230 235 240Ala Gln Pro Ser
Pro Gln Ile His Trp Met Lys Asp Gly Val Pro Leu 245
250 255Pro Leu Pro Pro Ser Pro Val Leu Ile Leu
Pro Glu Ile Gly Pro Gln 260 265
270Asp Gln Gly Thr Tyr Ser Cys Val Ala Thr His Ser Ser His Gly Pro
275 280 285Gln Glu Ser Arg Ala Val Ser
Ile Ser Ile Ile Glu Pro Gly Glu Glu 290 295
300Gly Pro Thr Ala Gly Ser Val Gly Gly Ser Gly Leu Gly Thr Leu
Ala305 310 315 320Leu Ala
Ile Glu Gly Arg Met Pro Lys Ser Cys Asp Lys Thr His Thr
325 330 335Cys Pro Pro Cys Pro Ala Pro
Glu Leu Leu Gly Gly Pro Ser Val Phe 340 345
350Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg
Thr Pro 355 360 365Glu Val Thr Cys
Val Val Val Asp Val Ser His Glu Asp Pro Glu Val 370
375 380Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His
Asn Ala Lys Thr385 390 395
400Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val
405 410 415Leu Thr Val Leu His
Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys 420
425 430Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu
Lys Thr Ile Ser 435 440 445Lys Ala
Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro 450
455 460Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser
Leu Thr Cys Leu Val465 470 475
480Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly
485 490 495Gln Pro Glu Asn
Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp 500
505 510Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val
Asp Lys Ser Arg Trp 515 520 525Gln
Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His 530
535 540Asn His Tyr Thr Gln Lys Ser Leu Ser Leu
Ser Pro Gly Lys545 550
555381677DNAArtificial SequenceDescription of Artificial Sequence
Synthetic polynucleotide 38gctcagaata tcaccgccag aatcggcgag
cccctggtgc tgaaatgtaa aggcgcccct 60aagaagcctc ctcagcggct ggaatggaag
ctgaacaccg gcagaaccga ggcctggaaa 120gtgctgtctc ctcaaggcgg aggcccttgg
gattctgtgg ctagagtgct gcctaacggc 180tccctgtttc tgcctgctgt gggcatccag
gacgagggca tcttcaggtg tcaggccatg 240aaccggaacg gcaaagagac aaagtccaac
taccgcgtca gagtgtatca gatccccggc 300aagcctgaga tcgtggactc tgcctctgaa
ctgacagccg gcgtgcccaa caaagtgggc 360acttgtgtgt ccgagggcag ctatcctgct
ggcaccctgt cttggcatct ggatggaaag 420cctctggtgc ccaacgagaa aggcgtgtcc
gtgaaagagc agaccagacg gcatcctgag 480actggcctgt tcaccctgca gtccgagctg
atggttaccc ctgctagagg cggcgatccc 540agacctacct tcagctgctc cttctctcct
ggcctgcctc gacatagagc cctgagaacc 600gctcctatcc agcctagagt gtgggagcct
gtgcctctgg aagaggtgca gctggtggtt 660gaacctgaag gcggagctgt tgctcctggc
ggaacagtga ccctgacctg tgaagttccc 720gctcagccct ctccacagat ccactggatg
aaggatggcg tgccactgcc tctgcctcca 780tctcctgttc tgatcctgcc agagatcggc
cctcaggacc agggcaccta ttcttgtgtg 840gctacccact cctctcacgg ccctcaagag
tctagagccg tgtccatctc catcatcgag 900cctggcgagg aaggccctac agctggttct
gttggaggct ctggactggg cacactggcc 960ctggctattg agggcagaat gcccaagtcc
tgcgacaaga cccacacctg tcctccatgt 1020cctgctccag aactgctcgg cggaccttcc
gtgttcctgt ttcctccaaa gcctaaggac 1080accctgatga tctctcggac ccctgaagtg
acctgcgtgg tggtggatgt gtctcacgag 1140gatcccgaag tgaagttcaa ttggtacgtg
gacggcgtgg aagtgcacaa cgccaagacc 1200aagcctagag aggaacagta caactccacc
tacagagtgg tgtccgtgct gaccgtgctg 1260caccaggatt ggctgaatgg caaagagtat
aagtgcaagg tgtccaacaa ggccctgcct 1320gctcctatcg aaaagaccat ctccaaggcc
aagggccagc ctagggaacc ccaggtttac 1380accttgccac cttctcggga cgagctgacc
aagaaccagg tgtccctgac atgcctggtc 1440aagggcttct acccctccga tatcgccgtg
gaatgggagt ctaatggcca gcctgagaac 1500aactacaaga caacccctcc tgtgctggac
tccgacggct cattcttcct gtactccaag 1560ctgacagtgg acaagtccag atggcagcag
ggcaacgtgt tctcctgctc cgtgatgcac 1620gaggccctgc acaatcacta cacccagaag
tccctgtctc tgtcccctgg caaatga 1677391665DNAArtificial
SequenceDescription of Artificial Sequence Synthetic polynucleotide
39gctcagaata tcaccgccag aatcggcgag cccctggtgc tgaaatgtaa aggcgcccct
60aagaagcctc ctcagcggct ggaatggaag ctgaacaccg gcagaaccga ggcctggaaa
120gtgctgtctc ctcaaggcgg aggcccttgg gattctgtgg ctagagtgct gcctaacggc
180tccctgtttc tgcctgctgt gggcatccag gacgagggca tcttcaggtg tcaggccatg
240aaccggaacg gcaaagagac aaagtccaac taccgcgtca gagtgtatca gatccccggc
300aagcctgaga tcgtggactc tgcctctgaa ctgacagccg gcgtgcccaa caaagtgggc
360acttgtgtgt ccgagggcag ctatcctgct ggcaccctgt cttggcatct ggatggaaag
420cctctggtgc ccaacgagaa aggcgtgtcc gtgaaagagc agaccagacg gcatcctgag
480actggcctgt tcaccctgca gtccgagctg atggttaccc ctgctagagg cggcgatccc
540agacctacct tcagctgctc cttctctcct ggcctgcctc gacatagagc cctgagaacc
600gctcctatcc agcctagagt gtgggagcct gtgcctctgg aagaggtgca gctggtggtt
660gaacctgaag gcggagctgt tgctcctggc ggaacagtga ccctgacctg tgaagttccc
720gctcagccct ctccacagat ccactggatg aaggatggcg tgccactgcc tctgcctcca
780tctcctgttc tgatcctgcc agagatcggc cctcaggacc agggcaccta ttcttgtgtg
840gctacccact cctctcacgg ccctcaagag tctagagccg tgtccatctc catcatcgag
900cctggcgagg aaggacctac agctggcgag ggctttgaca aagtgcgcga ggccgaggat
960tctcctcagc atgctgagtc taagtacggc cctccttgtc ctccatgtcc tgctccagaa
1020gctgctggcg gcccttccgt gtttctgttc cctccaaagc ctaaggacac cctgatgatc
1080tctcggaccc ctgaagtgac ctgcgtggtg gtggatgtgt cccaagagga tcccgaggtg
1140cagttcaatt ggtacgtgga cggcgtggaa gtgcacaacg ccaagaccaa gcctagagag
1200gaacagttca actccaccta cagagtggtg tccgtgctga ccgtgctgca ccaggattgg
1260ctgaatggca aagagtataa gtgcaaggtg tccaacaagg gcctgccttc cagcatcgaa
1320aagaccatct ccaaggccaa gggccagcct agggaacccc aggtttacac cctgcctcca
1380agccaagagg aaatgaccaa gaaccaggtg tccctgacat gcctggtcaa gggcttctac
1440ccctccgata tcgccgtgga atgggagtct aatggccagc ctgagaacaa ctacaagacc
1500acacctcctg tgctggactc cgacggcagc ttctttctgt actcccgcct gaccgtggac
1560aagtccaggt ggcaagaggg caacgtgttc tcctgctccg tgatgcacga ggccctgcac
1620aatcactaca cccagaagtc cctgtctctg tccctgggca aatga
1665401689DNAArtificial SequenceDescription of Artificial Sequence
Synthetic polynucleotide 40gctcagaata tcaccgccag aatcggcgag
cccctggtgc tgaaatgtaa aggcgcccct 60aagaagcctc ctcagcggct ggaatggaag
ctgaacaccg gcagaaccga ggcctggaaa 120gtgctgtctc ctcaaggcgg aggcccttgg
gattctgtgg ctagagtgct gcctaacggc 180tccctgtttc tgcctgctgt gggcatccag
gacgagggca tcttcaggtg tcaggccatg 240aaccggaacg gcaaagagac aaagtccaac
taccgcgtca gagtgtatca gatccccggc 300aagcctgaga tcgtggactc tgcctctgaa
ctgacagccg gcgtgcccaa caaagtgggc 360acttgtgtgt ccgagggcag ctatcctgct
ggcaccctgt cttggcatct ggatggaaag 420cctctggtgc ccaacgagaa aggcgtgtcc
gtgaaagagc agaccagacg gcatcctgag 480actggcctgt tcaccctgca gtccgagctg
atggttaccc ctgctagagg cggcgatccc 540agacctacct tcagctgctc cttctctcct
ggcctgcctc gacatagagc cctgagaacc 600gctcctatcc agcctagagt gtgggagcct
gtgcctctgg aagaggtgca gctggtggtt 660gaacctgaag gcggagctgt tgctcctggc
ggaacagtga ccctgacctg tgaagttccc 720gctcagccct ctccacagat ccactggatg
aaggatggcg tgccactgcc tctgcctcca 780tctcctgttc tgatcctgcc agagatcggc
cctcaggacc agggcaccta ttcttgtgtg 840gctacccact cctctcacgg ccctcaagag
tctagagccg tgtccatctc catcatcgag 900cctggcgagg aaggacctac agctggcgag
ggctttgaca aagtgcgcga ggctgaggac 960tctcctcagc atgccggaac actggtcacc
gtgtcctccg agtctaagta cggccctcct 1020tgtcctccat gtcctgctcc agaagctgct
ggcggccctt ccgtgtttct gttccctcca 1080aagcctaagg acaccctgat gatctctcgg
acccctgaag tgacctgcgt ggtggtggat 1140gtgtcccaag aggatcccga ggtgcagttc
aattggtacg tggacggcgt ggaagtgcac 1200aacgccaaga ccaagcctag agaggaacag
ttcaactcca cctacagagt ggtgtccgtg 1260ctgaccgtgc tgcaccagga ttggctgaat
ggcaaagagt ataagtgcaa ggtgtccaac 1320aagggcctgc cttccagcat cgaaaagacc
atctccaagg ccaagggcca gcctagggaa 1380ccccaggttt acaccctgcc tccaagccaa
gaggaaatga ccaagaacca ggtgtccctg 1440acatgcctgg tcaagggctt ctacccctcc
gatatcgccg tggaatggga gtctaatggc 1500cagcctgaga acaactacaa gaccacacct
cctgtgctgg actccgacgg cagcttcttt 1560ctgtactccc gcctgaccgt ggacaagtcc
aggtggcaag agggcaacgt gttctcctgc 1620tccgtgatgc acgaggccct gcacaatcac
tacacccaga agtccctgtc tctgtccctg 1680ggcaaatga
1689411647DNAArtificial
SequenceDescription of Artificial Sequence Synthetic polynucleotide
41gctcagaata tcaccgccag aatcggcgag cccctggtgc tgaaatgtaa aggcgcccct
60aagaagcctc ctcagcggct ggaatggaag ctgaacaccg gcagaaccga ggcctggaaa
120gtgctgtctc ctcaaggcgg aggcccttgg gattctgtgg ctagagtgct gcctaacggc
180tccctgtttc tgcctgctgt gggcatccag gacgagggca tcttcaggtg tcaggccatg
240aaccggaacg gcaaagagac aaagtccaac taccgcgtca gagtgtatca gatccccggc
300aagcctgaga tcgtggactc tgcctctgaa ctgacagccg gcgtgcccaa caaagtgggc
360acttgtgtgt ccgagggcag ctatcctgct ggcaccctgt cttggcatct ggatggaaag
420cctctggtgc ccaacgagaa aggcgtgtcc gtgaaagagc agaccagacg gcatcctgag
480actggcctgt tcaccctgca gtccgagctg atggttaccc ctgctagagg cggcgatccc
540agacctacct tcagctgctc cttctctcct ggcctgcctc gacatagagc cctgagaacc
600gctcctatcc agcctagagt gtgggagcct gtgcctctgg aagaggtgca gctggtggtt
660gaacctgaag gcggagctgt tgctcctggc ggaacagtga ccctgacctg tgaagttccc
720gctcagccct ctccacagat ccactggatg aaggatggcg tgccactgcc tctgcctcca
780tctcctgttc tgatcctgcc agagatcggc cctcaggacc agggcaccta ttcttgtgtg
840gctacccact cctctcacgg ccctcaagag tctagagccg tgtccatctc catcatcgag
900cctggcgagg aaggacctac agctggcgag ggctttgaca aagtgcgcga ggctgaggac
960tctcctcagc atgccgtgga atgccctcct tgtgctcctc ctgtggctgg cggcccttcc
1020gtgtttctgt tccctccaaa gcctaaggac accctgatga tctctcggac ccctgaagtg
1080acctgcgtgg tggtggatgt gtcccaagag gatcccgagg tgcagttcaa ttggtacgtg
1140gacggcgtgg aagtgcacaa cgccaagacc aagcctagag aggaacagtt caactccacc
1200tacagagtgg tgtccgtgct gaccgtgctg caccaggatt ggctgaatgg caaagagtat
1260aagtgcaagg tgtccaacaa gggcctgcct tccagcatcg aaaagaccat ctccaaggcc
1320aagggccagc ctagggaacc ccaggtttac accctgcctc caagccaaga ggaaatgacc
1380aagaaccagg tgtccctgac atgcctggtc aagggcttct acccctccga tatcgccgtg
1440gaatgggagt ctaatggcca gcctgagaac aactacaaga ccacacctcc tgtgctggac
1500tccgacggca gcttctttct gtactcccgc ctgaccgtgg acaagtccag gtggcaagag
1560ggcaacgtgt tctcctgctc cgtgatgcac gaggccctgc acaatcacta cacccagaag
1620tccctgtctc tgtccctggg caaatga
1647421677DNAArtificial SequenceDescription of Artificial Sequence
Synthetic polynucleotide 42gctcaggaga tcaccgccag aatcggcgag
cccctggtgc tgaaatgtaa aggcgcccct 60aagaagcctc ctcagcggct ggaatggaag
ctgaacaccg gcagaaccga ggcctggaaa 120gtgctgtctc ctcaaggcgg aggcccttgg
gattctgtgg ctagagtgct gcctaactcc 180tccctgtttc tgcctgctgt gggcatccag
gacgagggca tcttcaggtg tcaggccatg 240aaccggaacg gcaaagagac aaagtccaac
taccgcgtca gagtgtatca gatccccggc 300aagcctgaga tcgtggactc tgcctctgaa
ctgacagccg gcgtgcccaa caaagtgggc 360acttgtgtgt ccgagggcag ctatcctgct
ggcaccctgt cttggcatct ggatggaaag 420cctctggtgc ccaacgagaa aggcgtgtcc
gtgaaagagc agaccagacg gcatcctgag 480actggcctgt tcaccctgca gtccgagctg
atggttaccc ctgctagagg cggcgatccc 540agacctacct tcagctgctc cttctctcct
ggcctgcctc gacatagagc cctgagaacc 600gctcctatcc agcctagagt gtgggagcct
gtgcctctgg aagaggtgca gctggtggtt 660gaacctgaag gcggagctgt tgctcctggc
ggaacagtga ccctgacctg tgaagttccc 720gctcagccct ctccacagat ccactggatg
aaggatggcg tgccactgcc tctgcctcca 780tctcctgttc tgatcctgcc agagatcggc
cctcaggacc agggcaccta ttcttgtgtg 840gctacccact cctctcacgg ccctcaagag
tctagagccg tgtccatctc catcatcgag 900cctggcgagg aaggccctac agctggttct
gttggaggct ctggactggg cacactggcc 960ctggctattg agggcagaat gcccaagtcc
tgcgacaaga cccacacctg tcctccatgt 1020cctgctccag aactgctcgg cggaccttcc
gtgttcctgt ttcctccaaa gcctaaggac 1080accctgatga tctctcggac ccctgaagtg
acctgcgtgg tggtggatgt gtctcacgag 1140gatcccgaag tgaagttcaa ttggtacgtg
gacggcgtgg aagtgcacaa cgccaagacc 1200aagcctagag aggaacagta caactccacc
tacagagtgg tgtccgtgct gaccgtgctg 1260caccaggatt ggctgaatgg caaagagtat
aagtgcaagg tgtccaacaa ggccctgcct 1320gctcctatcg aaaagaccat ctccaaggcc
aagggccagc ctagggaacc ccaggtttac 1380accttgccac cttctcggga cgagctgacc
aagaaccagg tgtccctgac atgcctggtc 1440aagggcttct acccctccga tatcgccgtg
gaatgggagt ctaatggcca gcctgagaac 1500aactacaaga caacccctcc tgtgctggac
tccgacggct cattcttcct gtactccaag 1560ctgacagtgg acaagtccag atggcagcag
ggcaacgtgt tctcctgctc cgtgatgcac 1620gaggccctgc acaatcacta cacccagaag
tccctgtctc tgtcccctgg caaatga 1677431647DNAArtificial
SequenceDescription of Artificial Sequence Synthetic polynucleotide
43gctcagaata tcaccgccag aatcggcgag cccctggtgc tgaaatgtaa aggcgcccct
60aagaagcctc ctcagcggct ggaatggaag ctgaacaccg gcagaaccga ggcctggaaa
120gtgctgtctc ctcaaggcgg aggcccttgg gattctgtgg ctagagtgct gcctaacggc
180tccctgtttc tgcctgctgt gggcatccag gacgagggca tcttcaggtg tcaggccatg
240aaccggaacg gcaaagagac aaagtccaac taccgcgtca gagtgtatca gatccccggc
300aagcctgaga tcgtggactc tgcctctgaa ctgacagccg gcgtgcccaa caaagtgggc
360acttgtgtgt ccgagggcag ctatcctgct ggcaccctgt cttggcatct ggatggaaag
420cctctggtgc ccaacgagaa aggcgtgtcc gtgaaagagc agaccagacg gcatcctgag
480actggcctgt tcaccctgca gtccgagctg atggttaccc ctgctagagg cggcgatccc
540agacctacct tcagctgctc cttctctcct ggcctgcctc gacatagagc cctgagaacc
600gctcctatcc agcctagagt gtgggagcct gtgcctctgg aagaggtgca gctggtggtt
660gaacctgaag gcggagctgt tgctcctggc ggaacagtga ccctgacctg tgaagttccc
720gctcagccct ctccacagat ccactggatg aaggatggcg tgccactgcc tctgcctcca
780tctcctgttc tgatcctgcc agagatcggc cctcaggacc agggcaccta ttcttgtgtg
840gctacccact cctctcacgg ccctcaagag tctagagccg tgtccatctc catcatcgag
900cctggcgagg aaggacctac agctggcgag ggctttgaca aagtgcgcga ggctgaggac
960tctcctcagc acgctgttga gtgccctcca tgtgctcctc cagttgctgg tggcccttcc
1020gtgttcctgt ttcctccaaa gcctaaggac accctgtaca tcacccgcga gcctgaagtg
1080acctgcgtgg tggtggatgt gtcccaagag gatcccgagg tgcagttcaa ttggtacgtg
1140gacggcgtgg aagtgcacaa cgccaagacc aagcctagag aggaacagtt caactccacc
1200tacagagtgg tgtccgtgct gaccgtgctg caccaggatt ggctgaatgg caaagagtat
1260aagtgcaagg tgtccaacaa gggcctgcct tccagcatcg aaaagaccat ctccaaggcc
1320aagggccagc ctagggaacc ccaggtttac accctgcctc caagccaaga ggaaatgacc
1380aagaaccagg tgtccctgac atgcctggtc aagggcttct acccctccga tatcgccgtg
1440gaatgggagt ctaatggcca gcctgagaac aactacaaga ccacacctcc tgtgctggac
1500tccgacggca gcttctttct gtactcccgc ctgaccgtgg acaagtccag gtggcaagag
1560ggcaacgtgt tctcctgctc cgtgatgcac gaggccctgc acaatcacta cacccagaag
1620tccctgtctc tgtccctggg caaatga
1647441647DNAArtificial SequenceDescription of Artificial Sequence
Synthetic polynucleotide 44gctcaggaaa tcaccgccag aatcggcgag
cccctggtgc tgaaatgtaa aggcgcccct 60aagaagcctc ctcagcggct ggaatggaag
ctgaacaccg gcagaaccga ggcctggaaa 120gtgctgtctc ctcaaggcgg aggcccttgg
gattctgtgg ctagagtgct gcctaacggc 180tccctgtttc tgcctgctgt gggcatccag
gacgagggca tcttcaggtg tcaggccatg 240aaccggaacg gcaaagagac aaagtccaac
taccgcgtca gagtgtatca gatccccggc 300aagcctgaga tcgtggactc tgcctctgaa
ctgacagccg gcgtgcccaa caaagtgggc 360acttgtgtgt ccgagggcag ctatcctgct
ggcaccctgt cttggcatct ggatggaaag 420cctctggtgc ccaacgagaa aggcgtgtcc
gtgaaagagc agaccagacg gcatcctgag 480actggcctgt tcaccctgca gtccgagctg
atggttaccc ctgctagagg cggcgatccc 540agacctacct tcagctgctc cttctctcct
ggcctgcctc gacatagagc cctgagaacc 600gctcctatcc agcctagagt gtgggagcct
gtgcctctgg aagaggtgca gctggtggtt 660gaacctgaag gcggagctgt tgctcctggc
ggaacagtga ccctgacctg tgaagttccc 720gctcagccct ctccacagat ccactggatg
aaggatggcg tgccactgcc tctgcctcca 780tctcctgttc tgatcctgcc agagatcggc
cctcaggacc agggcaccta ttcttgtgtg 840gctacccact cctctcacgg ccctcaagag
tctagagccg tgtccatctc catcatcgag 900cctggcgagg aaggacctac agctggcgag
ggctttgaca aagtgcgcga ggctgaggac 960tctcctcagc acgctgttga gtgccctcca
tgtgctcctc cagttgctgg tggcccttcc 1020gtgttcctgt ttcctccaaa gcctaaggac
accctgatga tctctcgcac ccctgaagtg 1080acctgcgtgg tggtggatgt gtcccaagag
gatcccgagg tgcagttcaa ttggtacgtg 1140gacggcgtgg aagtgcacaa cgccaagacc
aagcctagag aggaacagtt caactccacc 1200tacagagtgg tgtccgtgct gaccgtgctg
caccaggatt ggctgaatgg caaagagtat 1260aagtgcaagg tgtccaacaa gggcctgcct
tccagcatcg aaaagaccat ctccaaggcc 1320aagggccagc ctagggaacc ccaggtttac
accctgcctc caagccaaga ggaaatgacc 1380aagaaccagg tgtccctgac atgcctggtc
aagggcttct acccctccga tatcgccgtg 1440gaatgggagt ctaatggcca gcctgagaac
aactacaaga ccacacctcc tgtgctggac 1500tccgacggca gcttctttct gtactcccgc
ctgaccgtgg acaagtccag gtggcaagag 1560ggcaacgtgt tctcctgctc cgtgatgcac
gaggccctgc acaatcacta cacccagaag 1620tccctgtctc tgtccctggg caaatga
1647451647DNAArtificial
SequenceDescription of Artificial Sequence Synthetic polynucleotide
45gctcagcaga tcaccgccag aatcggcgag cccctggtgc tgaaatgtaa aggcgcccct
60aagaagcctc ctcagcggct ggaatggaag ctgaacaccg gcagaaccga ggcctggaaa
120gtgctgtctc ctcaaggcgg aggcccttgg gattctgtgg ctagagtgct gcctaacggc
180tccctgtttc tgcctgctgt gggcatccag gacgagggca tcttcaggtg tcaggccatg
240aaccggaacg gcaaagagac aaagtccaac taccgcgtca gagtgtatca gatccccggc
300aagcctgaga tcgtggactc tgcctctgaa ctgacagccg gcgtgcccaa caaagtgggc
360acttgtgtgt ccgagggcag ctatcctgct ggcaccctgt cttggcatct ggatggaaag
420cctctggtgc ccaacgagaa aggcgtgtcc gtgaaagagc agaccagacg gcatcctgag
480actggcctgt tcaccctgca gtccgagctg atggttaccc ctgctagagg cggcgatccc
540agacctacct tcagctgctc cttctctcct ggcctgcctc gacatagagc cctgagaacc
600gctcctatcc agcctagagt gtgggagcct gtgcctctgg aagaggtgca gctggtggtt
660gaacctgaag gcggagctgt tgctcctggc ggaacagtga ccctgacctg tgaagttccc
720gctcagccct ctccacagat ccactggatg aaggatggcg tgccactgcc tctgcctcca
780tctcctgttc tgatcctgcc agagatcggc cctcaggacc agggcaccta ttcttgtgtg
840gctacccact cctctcacgg ccctcaagag tctagagccg tgtccatctc catcatcgag
900cctggcgagg aaggacctac agctggcgag ggctttgaca aagtgcgcga ggctgaggac
960tctcctcagc acgctgttga gtgccctcca tgtgctcctc cagttgctgg tggcccttcc
1020gtgttcctgt ttcctccaaa gcctaaggac accctgatga tctctcgcac ccctgaagtg
1080acctgcgtgg tggtggatgt gtcccaagag gatcccgagg tgcagttcaa ttggtacgtg
1140gacggcgtgg aagtgcacaa cgccaagacc aagcctagag aggaacagtt caactccacc
1200tacagagtgg tgtccgtgct gaccgtgctg caccaggatt ggctgaatgg caaagagtat
1260aagtgcaagg tgtccaacaa gggcctgcct tccagcatcg aaaagaccat ctccaaggcc
1320aagggccagc ctagggaacc ccaggtttac accctgcctc caagccaaga ggaaatgacc
1380aagaaccagg tgtccctgac atgcctggtc aagggcttct acccctccga tatcgccgtg
1440gaatgggagt ctaatggcca gcctgagaac aactacaaga ccacacctcc tgtgctggac
1500tccgacggca gcttctttct gtactcccgc ctgaccgtgg acaagtccag gtggcaagag
1560ggcaacgtgt tctcctgctc cgtgatgcac gaggccctgc acaatcacta cacccagaag
1620tccctgtctc tgtccctggg caaatga
1647461647DNAArtificial SequenceDescription of Artificial Sequence
Synthetic polynucleotide 46gctcagaaca tcaccgccag aatcggcgag
cccctggtgc tgaaatgtaa aggcgcccct 60aagaagcctc ctcagcggct ggaatggaag
ctgaacaccg gcagaaccga ggcctggaaa 120gtgctgtctc ctcaaggcgg aggcccttgg
gattctgtgg ctagagtgct gcctaactct 180tccctgtttc tgcctgctgt gggcatccag
gacgagggca tcttcaggtg tcaggccatg 240aaccggaacg gcaaagagac aaagtccaac
taccgcgtca gagtgtatca gatccccggc 300aagcctgaga tcgtggactc tgcctctgaa
ctgacagccg gcgtgcccaa caaagtgggc 360acttgtgtgt ccgagggcag ctatcctgct
ggcaccctgt cttggcatct ggatggaaag 420cctctggtgc ccaacgagaa aggcgtgtcc
gtgaaagagc agaccagacg gcatcctgag 480actggcctgt tcaccctgca gtccgagctg
atggttaccc ctgctagagg cggcgatccc 540agacctacct tcagctgctc cttctctcct
ggcctgcctc gacatagagc cctgagaacc 600gctcctatcc agcctagagt gtgggagcct
gtgcctctgg aagaggtgca gctggtggtt 660gaacctgaag gcggagctgt tgctcctggc
ggaacagtga ccctgacctg tgaagttccc 720gctcagccct ctccacagat ccactggatg
aaggatggcg tgccactgcc tctgcctcca 780tctcctgttc tgatcctgcc agagatcggc
cctcaggacc agggcaccta ttcttgtgtg 840gctacccact cctctcacgg ccctcaagag
tctagagccg tgtccatctc catcatcgag 900cctggcgagg aaggacctac agctggcgag
ggctttgaca aagtgcgcga ggctgaggac 960tctcctcagc acgctgttga gtgccctcca
tgtgctcctc cagttgctgg tggcccttcc 1020gtgttcctgt ttcctccaaa gcctaaggac
accctgatga tctctcgcac ccctgaagtg 1080acctgcgtgg tggtggatgt gtcccaagag
gatcccgagg tgcagttcaa ttggtacgtg 1140gacggcgtgg aagtgcacaa cgccaagacc
aagcctagag aggaacagtt caactccacc 1200tacagagtgg tgtccgtgct gaccgtgctg
caccaggatt ggctgaatgg caaagagtat 1260aagtgcaagg tgtccaacaa gggcctgcct
tccagcatcg aaaagaccat ctccaaggcc 1320aagggccagc ctagggaacc ccaggtttac
accctgcctc caagccaaga ggaaatgacc 1380aagaaccagg tgtccctgac atgcctggtc
aagggcttct acccctccga tatcgccgtg 1440gaatgggagt ctaatggcca gcctgagaac
aactacaaga ccacacctcc tgtgctggac 1500tccgacggca gcttctttct gtactcccgc
ctgaccgtgg acaagtccag gtggcaagag 1560ggcaacgtgt tctcctgctc cgtgatgcac
gaggccctgc acaatcacta cacccagaag 1620tccctgtctc tgtccctggg caaatga
1647471647DNAArtificial
SequenceDescription of Artificial Sequence Synthetic polynucleotide
47gctcaggaaa tcaccgccag aatcggcgag cccctggtgc tgaaatgtaa aggcgcccct
60aagaagcctc ctcagcggct ggaatggaag ctgaacaccg gcagaaccga ggcctggaaa
120gtgctgtctc ctcaaggcgg aggcccttgg gattctgtgg ctagagtgct gcctaactct
180tccctgtttc tgcctgctgt gggcatccag gacgagggca tcttcaggtg tcaggccatg
240aaccggaacg gcaaagagac aaagtccaac taccgcgtca gagtgtatca gatccccggc
300aagcctgaga tcgtggactc tgcctctgaa ctgacagccg gcgtgcccaa caaagtgggc
360acttgtgtgt ccgagggcag ctatcctgct ggcaccctgt cttggcatct ggatggaaag
420cctctggtgc ccaacgagaa aggcgtgtcc gtgaaagagc agaccagacg gcatcctgag
480actggcctgt tcaccctgca gtccgagctg atggttaccc ctgctagagg cggcgatccc
540agacctacct tcagctgctc cttctctcct ggcctgcctc gacatagagc cctgagaacc
600gctcctatcc agcctagagt gtgggagcct gtgcctctgg aagaggtgca gctggtggtt
660gaacctgaag gcggagctgt tgctcctggc ggaacagtga ccctgacctg tgaagttccc
720gctcagccct ctccacagat ccactggatg aaggatggcg tgccactgcc tctgcctcca
780tctcctgttc tgatcctgcc agagatcggc cctcaggacc agggcaccta ttcttgtgtg
840gctacccact cctctcacgg ccctcaagag tctagagccg tgtccatctc catcatcgag
900cctggcgagg aaggacctac agctggcgag ggctttgaca aagtgcgcga ggctgaggac
960tctcctcagc acgctgttga gtgccctcca tgtgctcctc cagttgctgg tggcccttcc
1020gtgttcctgt ttcctccaaa gcctaaggac accctgatga tctctcgcac ccctgaagtg
1080acctgcgtgg tggtggatgt gtcccaagag gatcccgagg tgcagttcaa ttggtacgtg
1140gacggcgtgg aagtgcacaa cgccaagacc aagcctagag aggaacagtt caactccacc
1200tacagagtgg tgtccgtgct gaccgtgctg caccaggatt ggctgaatgg caaagagtat
1260aagtgcaagg tgtccaacaa gggcctgcct tccagcatcg aaaagaccat ctccaaggcc
1320aagggccagc ctagggaacc ccaggtttac accctgcctc caagccaaga ggaaatgacc
1380aagaaccagg tgtccctgac atgcctggtc aagggcttct acccctccga tatcgccgtg
1440gaatgggagt ctaatggcca gcctgagaac aactacaaga ccacacctcc tgtgctggac
1500tccgacggca gcttctttct gtactcccgc ctgaccgtgg acaagtccag gtggcaagag
1560ggcaacgtgt tctcctgctc cgtgatgcac gaggccctgc acaatcacta cacccagaag
1620tccctgtctc tgtccctggg caaatga
1647481647DNAArtificial SequenceDescription of Artificial Sequence
Synthetic polynucleotide 48gctcagcaga tcaccgccag aatcggcgag
cccctggtgc tgaaatgtaa aggcgcccct 60aagaagcctc ctcagcggct ggaatggaag
ctgaacaccg gcagaaccga ggcctggaaa 120gtgctgtctc ctcaaggcgg aggcccttgg
gattctgtgg ctagagtgct gcctaactct 180tccctgtttc tgcctgctgt gggcatccag
gacgagggca tcttcaggtg tcaggccatg 240aaccggaacg gcaaagagac aaagtccaac
taccgcgtca gagtgtatca gatccccggc 300aagcctgaga tcgtggactc tgcctctgaa
ctgacagccg gcgtgcccaa caaagtgggc 360acttgtgtgt ccgagggcag ctatcctgct
ggcaccctgt cttggcatct ggatggaaag 420cctctggtgc ccaacgagaa aggcgtgtcc
gtgaaagagc agaccagacg gcatcctgag 480actggcctgt tcaccctgca gtccgagctg
atggttaccc ctgctagagg cggcgatccc 540agacctacct tcagctgctc cttctctcct
ggcctgcctc gacatagagc cctgagaacc 600gctcctatcc agcctagagt gtgggagcct
gtgcctctgg aagaggtgca gctggtggtt 660gaacctgaag gcggagctgt tgctcctggc
ggaacagtga ccctgacctg tgaagttccc 720gctcagccct ctccacagat ccactggatg
aaggatggcg tgccactgcc tctgcctcca 780tctcctgttc tgatcctgcc agagatcggc
cctcaggacc agggcaccta ttcttgtgtg 840gctacccact cctctcacgg ccctcaagag
tctagagccg tgtccatctc catcatcgag 900cctggcgagg aaggacctac agctggcgag
ggctttgaca aagtgcgcga ggctgaggac 960tctcctcagc acgctgttga gtgccctcca
tgtgctcctc cagttgctgg tggcccttcc 1020gtgttcctgt ttcctccaaa gcctaaggac
accctgatga tctctcgcac ccctgaagtg 1080acctgcgtgg tggtggatgt gtcccaagag
gatcccgagg tgcagttcaa ttggtacgtg 1140gacggcgtgg aagtgcacaa cgccaagacc
aagcctagag aggaacagtt caactccacc 1200tacagagtgg tgtccgtgct gaccgtgctg
caccaggatt ggctgaatgg caaagagtat 1260aagtgcaagg tgtccaacaa gggcctgcct
tccagcatcg aaaagaccat ctccaaggcc 1320aagggccagc ctagggaacc ccaggtttac
accctgcctc caagccaaga ggaaatgacc 1380aagaaccagg tgtccctgac atgcctggtc
aagggcttct acccctccga tatcgccgtg 1440gaatgggagt ctaatggcca gcctgagaac
aactacaaga ccacacctcc tgtgctggac 1500tccgacggca gcttctttct gtactcccgc
ctgaccgtgg acaagtccag gtggcaagag 1560ggcaacgtgt tctcctgctc cgtgatgcac
gaggccctgc acaatcacta cacccagaag 1620tccctgtctc tgtccctggg caaatga
1647491647DNAArtificial
SequenceDescription of Artificial Sequence Synthetic polynucleotide
49gctcagaaca tcaccgccag aatcggcgag cccctggtgc tgaaatgtaa aggcgcccct
60aagaagcctc ctcagcggct ggaatggaag ctgaacaccg gcagaaccga ggcctggaaa
120gtgctgtctc ctcaaggcgg aggcccttgg gattctgtgg ctagagtgct gcctgctggc
180tccctgtttc tgcctgctgt gggcatccag gacgagggca tcttcaggtg tcaggccatg
240aaccggaacg gcaaagagac aaagtccaac taccgcgtca gagtgtatca gatccccggc
300aagcctgaga tcgtggactc tgcctctgaa ctgacagccg gcgtgcccaa caaagtgggc
360acttgtgtgt ccgagggcag ctatcctgct ggcaccctgt cttggcatct ggatggaaag
420cctctggtgc ccaacgagaa aggcgtgtcc gtgaaagagc agaccagacg gcatcctgag
480actggcctgt tcaccctgca gtccgagctg atggttaccc ctgctagagg cggcgatccc
540agacctacct tcagctgctc cttctctcct ggcctgcctc gacatagagc cctgagaacc
600gctcctatcc agcctagagt gtgggagcct gtgcctctgg aagaggtgca gctggtggtt
660gaacctgaag gcggagctgt tgctcctggc ggaacagtga ccctgacctg tgaagttccc
720gctcagccct ctccacagat ccactggatg aaggatggcg tgccactgcc tctgcctcca
780tctcctgttc tgatcctgcc agagatcggc cctcaggacc agggcaccta ttcttgtgtg
840gctacccact cctctcacgg ccctcaagag tctagagccg tgtccatctc catcatcgag
900cctggcgagg aaggacctac agctggcgag ggctttgaca aagtgcgcga ggctgaggac
960tctcctcagc acgctgttga gtgccctcca tgtgctcctc cagttgctgg tggcccttcc
1020gtgttcctgt ttcctccaaa gcctaaggac accctgatga tctctcgcac ccctgaagtg
1080acctgcgtgg tggtggatgt gtcccaagag gatcccgagg tgcagttcaa ttggtacgtg
1140gacggcgtgg aagtgcacaa cgccaagacc aagcctagag aggaacagtt caactccacc
1200tacagagtgg tgtccgtgct gaccgtgctg caccaggatt ggctgaatgg caaagagtat
1260aagtgcaagg tgtccaacaa gggcctgcct tccagcatcg aaaagaccat ctccaaggcc
1320aagggccagc ctagggaacc ccaggtttac accctgcctc caagccaaga ggaaatgacc
1380aagaaccagg tgtccctgac atgcctggtc aagggcttct acccctccga tatcgccgtg
1440gaatgggagt ctaatggcca gcctgagaac aactacaaga ccacacctcc tgtgctggac
1500tccgacggca gcttctttct gtactcccgc ctgaccgtgg acaagtccag gtggcaagag
1560ggcaacgtgt tctcctgctc cgtgatgcac gaggccctgc acaatcacta cacccagaag
1620tccctgtctc tgtccctggg caaatga
1647501647DNAArtificial SequenceDescription of Artificial Sequence
Synthetic polynucleotide 50gctcaggaaa tcaccgccag aatcggcgag
cccctggtgc tgaaatgtaa aggcgcccct 60aagaagcctc ctcagcggct ggaatggaag
ctgaacaccg gcagaaccga ggcctggaaa 120gtgctgtctc ctcaaggcgg aggcccttgg
gattctgtgg ctagagtgct gcctgctggc 180tccctgtttc tgcctgctgt gggcatccag
gacgagggca tcttcaggtg tcaggccatg 240aaccggaacg gcaaagagac aaagtccaac
taccgcgtca gagtgtatca gatccccggc 300aagcctgaga tcgtggactc tgcctctgaa
ctgacagccg gcgtgcccaa caaagtgggc 360acttgtgtgt ccgagggcag ctatcctgct
ggcaccctgt cttggcatct ggatggaaag 420cctctggtgc ccaacgagaa aggcgtgtcc
gtgaaagagc agaccagacg gcatcctgag 480actggcctgt tcaccctgca gtccgagctg
atggttaccc ctgctagagg cggcgatccc 540agacctacct tcagctgctc cttctctcct
ggcctgcctc gacatagagc cctgagaacc 600gctcctatcc agcctagagt gtgggagcct
gtgcctctgg aagaggtgca gctggtggtt 660gaacctgaag gcggagctgt tgctcctggc
ggaacagtga ccctgacctg tgaagttccc 720gctcagccct ctccacagat ccactggatg
aaggatggcg tgccactgcc tctgcctcca 780tctcctgttc tgatcctgcc agagatcggc
cctcaggacc agggcaccta ttcttgtgtg 840gctacccact cctctcacgg ccctcaagag
tctagagccg tgtccatctc catcatcgag 900cctggcgagg aaggacctac agctggcgag
ggctttgaca aagtgcgcga ggctgaggac 960tctcctcagc acgctgttga gtgccctcca
tgtgctcctc cagttgctgg tggcccttcc 1020gtgttcctgt ttcctccaaa gcctaaggac
accctgatga tctctcgcac ccctgaagtg 1080acctgcgtgg tggtggatgt gtcccaagag
gatcccgagg tgcagttcaa ttggtacgtg 1140gacggcgtgg aagtgcacaa cgccaagacc
aagcctagag aggaacagtt caactccacc 1200tacagagtgg tgtccgtgct gaccgtgctg
caccaggatt ggctgaatgg caaagagtat 1260aagtgcaagg tgtccaacaa gggcctgcct
tccagcatcg aaaagaccat ctccaaggcc 1320aagggccagc ctagggaacc ccaggtttac
accctgcctc caagccaaga ggaaatgacc 1380aagaaccagg tgtccctgac atgcctggtc
aagggcttct acccctccga tatcgccgtg 1440gaatgggagt ctaatggcca gcctgagaac
aactacaaga ccacacctcc tgtgctggac 1500tccgacggca gcttctttct gtactcccgc
ctgaccgtgg acaagtccag gtggcaagag 1560ggcaacgtgt tctcctgctc cgtgatgcac
gaggccctgc acaatcacta cacccagaag 1620tccctgtctc tgtccctggg caaatga
1647511647DNAArtificial
SequenceDescription of Artificial Sequence Synthetic polynucleotide
51gctcagcaga tcaccgccag aatcggcgag cccctggtgc tgaaatgtaa aggcgcccct
60aagaagcctc ctcagcggct ggaatggaag ctgaacaccg gcagaaccga ggcctggaaa
120gtgctgtctc ctcaaggcgg aggcccttgg gattctgtgg ctagagtgct gcctgctggc
180tccctgtttc tgcctgctgt gggcatccag gacgagggca tcttcaggtg tcaggccatg
240aaccggaacg gcaaagagac aaagtccaac taccgcgtca gagtgtatca gatccccggc
300aagcctgaga tcgtggactc tgcctctgaa ctgacagccg gcgtgcccaa caaagtgggc
360acttgtgtgt ccgagggcag ctatcctgct ggcaccctgt cttggcatct ggatggaaag
420cctctggtgc ccaacgagaa aggcgtgtcc gtgaaagagc agaccagacg gcatcctgag
480actggcctgt tcaccctgca gtccgagctg atggttaccc ctgctagagg cggcgatccc
540agacctacct tcagctgctc cttctctcct ggcctgcctc gacatagagc cctgagaacc
600gctcctatcc agcctagagt gtgggagcct gtgcctctgg aagaggtgca gctggtggtt
660gaacctgaag gcggagctgt tgctcctggc ggaacagtga ccctgacctg tgaagttccc
720gctcagccct ctccacagat ccactggatg aaggatggcg tgccactgcc tctgcctcca
780tctcctgttc tgatcctgcc agagatcggc cctcaggacc agggcaccta ttcttgtgtg
840gctacccact cctctcacgg ccctcaagag tctagagccg tgtccatctc catcatcgag
900cctggcgagg aaggacctac agctggcgag ggctttgaca aagtgcgcga ggctgaggac
960tctcctcagc acgctgttga gtgccctcca tgtgctcctc cagttgctgg tggcccttcc
1020gtgttcctgt ttcctccaaa gcctaaggac accctgatga tctctcgcac ccctgaagtg
1080acctgcgtgg tggtggatgt gtcccaagag gatcccgagg tgcagttcaa ttggtacgtg
1140gacggcgtgg aagtgcacaa cgccaagacc aagcctagag aggaacagtt caactccacc
1200tacagagtgg tgtccgtgct gaccgtgctg caccaggatt ggctgaatgg caaagagtat
1260aagtgcaagg tgtccaacaa gggcctgcct tccagcatcg aaaagaccat ctccaaggcc
1320aagggccagc ctagggaacc ccaggtttac accctgcctc caagccaaga ggaaatgacc
1380aagaaccagg tgtccctgac atgcctggtc aagggcttct acccctccga tatcgccgtg
1440gaatgggagt ctaatggcca gcctgagaac aactacaaga ccacacctcc tgtgctggac
1500tccgacggca gcttctttct gtactcccgc ctgaccgtgg acaagtccag gtggcaagag
1560ggcaacgtgt tctcctgctc cgtgatgcac gaggccctgc acaatcacta cacccagaag
1620tccctgtctc tgtccctggg caaatga
16475216PRTArtificial SequenceDescription of Artificial Sequence
Synthetic peptide 52Glu Gly Phe Asp Lys Val Arg Glu Ala Glu Asp Ser
Pro Gln His Met1 5 10
1553546PRTArtificial SequenceDescription of Artificial Sequence Synthetic
polypeptide 53Ala Gln Asn Ile Thr Ala Arg Ile Gly Glu Pro Leu Val
Leu Lys Cys1 5 10 15Lys
Gly Ala Pro Lys Lys Pro Pro Gln Arg Leu Glu Trp Lys Leu Asn 20
25 30Thr Gly Arg Thr Glu Ala Trp Lys
Val Leu Ser Pro Gln Gly Gly Gly 35 40
45Pro Trp Asp Ser Val Ala Arg Val Leu Pro Asn Gly Ser Leu Phe Leu
50 55 60Pro Ala Val Gly Ile Gln Asp Glu
Gly Ile Phe Arg Cys Gln Ala Met65 70 75
80Asn Arg Asn Gly Lys Glu Thr Lys Ser Asn Tyr Arg Val
Arg Val Tyr 85 90 95Gln
Ile Pro Gly Lys Pro Glu Ile Val Asp Ser Ala Ser Glu Leu Thr
100 105 110Ala Gly Val Pro Asn Lys Val
Gly Thr Cys Val Ser Glu Gly Ser Tyr 115 120
125Pro Ala Gly Thr Leu Ser Trp His Leu Asp Gly Lys Pro Leu Val
Pro 130 135 140Asn Glu Lys Gly Val Ser
Val Lys Glu Gln Thr Arg Arg His Pro Glu145 150
155 160Thr Gly Leu Phe Thr Leu Gln Ser Glu Leu Met
Val Thr Pro Ala Arg 165 170
175Gly Gly Asp Pro Arg Pro Thr Phe Ser Cys Ser Phe Ser Pro Gly Leu
180 185 190Pro Arg His Arg Ala Leu
Arg Thr Ala Pro Ile Gln Pro Arg Val Trp 195 200
205Glu Pro Val Pro Leu Glu Glu Val Gln Leu Val Val Glu Pro
Glu Gly 210 215 220Gly Ala Val Ala Pro
Gly Gly Thr Val Thr Leu Thr Cys Glu Val Pro225 230
235 240Ala Gln Pro Ser Pro Gln Ile His Trp Met
Lys Asp Gly Val Pro Leu 245 250
255Pro Leu Pro Pro Ser Pro Val Leu Ile Leu Pro Glu Ile Gly Pro Gln
260 265 270Asp Gln Gly Thr Tyr
Ser Cys Val Ala Thr His Ser Ser His Gly Pro 275
280 285Gln Glu Ser Arg Ala Val Ser Ile Ser Ile Ile Glu
Pro Gly Glu Glu 290 295 300Gly Pro Thr
Ala Gly Gly Thr Leu Val Thr Val Ser Ser Glu Ser Lys305
310 315 320Tyr Gly Pro Pro Cys Pro Pro
Cys Pro Ala Pro Glu Ala Ala Gly Gly 325
330 335Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp
Thr Leu Met Ile 340 345 350Ser
Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser Gln Glu 355
360 365Asp Pro Glu Val Gln Phe Asn Trp Tyr
Val Asp Gly Val Glu Val His 370 375
380Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr Tyr Arg385
390 395 400Val Val Ser Val
Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys 405
410 415Glu Tyr Lys Cys Lys Val Ser Asn Lys Gly
Leu Pro Ser Ser Ile Glu 420 425
430Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr
435 440 445Thr Leu Pro Pro Ser Gln Glu
Glu Met Thr Lys Asn Gln Val Ser Leu 450 455
460Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu
Trp465 470 475 480Glu Ser
Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val
485 490 495Leu Asp Ser Asp Gly Ser Phe
Phe Leu Tyr Ser Arg Leu Thr Val Asp 500 505
510Lys Ser Arg Trp Gln Glu Gly Asn Val Phe Ser Cys Ser Val
Met His 515 520 525Glu Ala Leu His
Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Leu 530
535 540Gly Lys54554547PRTArtificial SequenceDescription
of Artificial Sequence Synthetic polypeptide 54Ala Gln Asn Ile Thr
Ala Arg Ile Gly Glu Pro Leu Val Leu Lys Cys1 5
10 15Lys Gly Ala Pro Lys Lys Pro Pro Gln Arg Leu
Glu Trp Lys Leu Asn 20 25
30Thr Gly Arg Thr Glu Ala Trp Lys Val Leu Ser Pro Gln Gly Gly Gly
35 40 45Pro Trp Asp Ser Val Ala Arg Val
Leu Pro Asn Gly Ser Leu Phe Leu 50 55
60Pro Ala Val Gly Ile Gln Asp Glu Gly Ile Phe Arg Cys Gln Ala Met65
70 75 80Asn Arg Asn Gly Lys
Glu Thr Lys Ser Asn Tyr Arg Val Arg Val Tyr 85
90 95Gln Ile Pro Gly Lys Pro Glu Ile Val Asp Ser
Ala Ser Glu Leu Thr 100 105
110Ala Gly Val Pro Asn Lys Val Gly Thr Cys Val Ser Glu Gly Ser Tyr
115 120 125Pro Ala Gly Thr Leu Ser Trp
His Leu Asp Gly Lys Pro Leu Val Pro 130 135
140Asn Glu Lys Gly Val Ser Val Lys Glu Gln Thr Arg Arg His Pro
Glu145 150 155 160Thr Gly
Leu Phe Thr Leu Gln Ser Glu Leu Met Val Thr Pro Ala Arg
165 170 175Gly Gly Asp Pro Arg Pro Thr
Phe Ser Cys Ser Phe Ser Pro Gly Leu 180 185
190Pro Arg His Arg Ala Leu Arg Thr Ala Pro Ile Gln Pro Arg
Val Trp 195 200 205Glu Pro Val Pro
Leu Glu Glu Val Gln Leu Val Val Glu Pro Glu Gly 210
215 220Gly Ala Val Ala Pro Gly Gly Thr Val Thr Leu Thr
Cys Glu Val Pro225 230 235
240Ala Gln Pro Ser Pro Gln Ile His Trp Met Lys Asp Gly Val Pro Leu
245 250 255Pro Leu Pro Pro Ser
Pro Val Leu Ile Leu Pro Glu Ile Gly Pro Gln 260
265 270Asp Gln Gly Thr Tyr Ser Cys Val Ala Thr His Ser
Ser His Gly Pro 275 280 285Gln Glu
Ser Arg Ala Val Ser Ile Ser Ile Ile Glu Pro Gly Glu Glu 290
295 300Gly Pro Thr Ala Gly Glu Gly Phe Asp Lys Val
Arg Glu Ala Glu Asp305 310 315
320Ser Pro Gln His Ala Val Glu Cys Pro Pro Cys Ala Pro Pro Val Ala
325 330 335Gly Gly Pro Ser
Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu 340
345 350Tyr Ile Thr Arg Glu Pro Glu Val Thr Cys Val
Val Val Asp Val Ser 355 360 365Gln
Glu Asp Pro Glu Val Gln Phe Asn Trp Tyr Val Asp Gly Val Glu 370
375 380Val His Asn Ala Lys Thr Lys Pro Arg Glu
Glu Gln Phe Asn Ser Thr385 390 395
400Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu
Asn 405 410 415Gly Lys Glu
Tyr Lys Cys Lys Val Ser Asn Lys Gly Leu Pro Ser Ser 420
425 430Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly
Gln Pro Arg Glu Pro Gln 435 440
445Val Tyr Thr Leu Pro Pro Ser Gln Glu Glu Met Thr Lys Asn Gln Val 450
455 460Ser Leu Thr Cys Leu Val Lys Gly
Phe Tyr Pro Ser Asp Ile Ala Val465 470
475 480Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr
Lys Thr Thr Pro 485 490
495Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Arg Leu Thr
500 505 510Val Asp Lys Ser Arg Trp
Gln Glu Gly Asn Val Phe Ser Cys Ser Val 515 520
525Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu
Ser Leu 530 535 540Ser Leu
Gly54555547PRTArtificial SequenceDescription of Artificial Sequence
Synthetic polypeptide 55Ala Gln Asn Ile Thr Ala Arg Ile Gly Glu Pro
Leu Val Leu Lys Cys1 5 10
15Lys Gly Ala Pro Lys Lys Pro Pro Gln Arg Leu Glu Trp Lys Leu Asn
20 25 30Thr Gly Arg Thr Glu Ala Trp
Lys Val Leu Ser Pro Gln Gly Gly Gly 35 40
45Pro Trp Asp Ser Val Ala Arg Val Leu Pro Asn Gly Ser Leu Phe
Leu 50 55 60Pro Ala Val Gly Ile Gln
Asp Glu Gly Ile Phe Arg Cys Gln Ala Met65 70
75 80Asn Arg Asn Gly Lys Glu Thr Lys Ser Asn Tyr
Arg Val Arg Val Tyr 85 90
95Gln Ile Pro Gly Lys Pro Glu Ile Val Asp Ser Ala Ser Glu Leu Thr
100 105 110Ala Gly Val Pro Asn Lys
Val Gly Thr Cys Val Ser Glu Gly Ser Tyr 115 120
125Pro Ala Gly Thr Leu Ser Trp His Leu Asp Gly Lys Pro Leu
Val Pro 130 135 140Asn Glu Lys Gly Val
Ser Val Lys Glu Gln Thr Arg Arg His Pro Glu145 150
155 160Thr Gly Leu Phe Thr Leu Gln Ser Glu Leu
Met Val Thr Pro Ala Arg 165 170
175Gly Gly Asp Pro Arg Pro Thr Phe Ser Cys Ser Phe Ser Pro Gly Leu
180 185 190Pro Arg His Arg Ala
Leu Arg Thr Ala Pro Ile Gln Pro Arg Val Trp 195
200 205Glu Pro Val Pro Leu Glu Glu Val Gln Leu Val Val
Glu Pro Glu Gly 210 215 220Gly Ala Val
Ala Pro Gly Gly Thr Val Thr Leu Thr Cys Glu Val Pro225
230 235 240Ala Gln Pro Ser Pro Gln Ile
His Trp Met Lys Asp Gly Val Pro Leu 245
250 255Pro Leu Pro Pro Ser Pro Val Leu Ile Leu Pro Glu
Ile Gly Pro Gln 260 265 270Asp
Gln Gly Thr Tyr Ser Cys Val Ala Thr His Ser Ser His Gly Pro 275
280 285Gln Glu Ser Arg Ala Val Ser Ile Ser
Ile Ile Glu Pro Gly Glu Glu 290 295
300Gly Pro Thr Ala Gly Glu Gly Phe Asp Lys Val Arg Glu Ala Glu Asp305
310 315 320Ser Pro Gln His
Ala Val Glu Cys Pro Pro Cys Ala Pro Pro Val Ala 325
330 335Gly Gly Pro Ser Val Phe Leu Phe Pro Pro
Lys Pro Lys Asp Thr Leu 340 345
350Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser
355 360 365Gln Glu Asp Pro Glu Val Gln
Phe Asn Trp Tyr Val Asp Gly Val Glu 370 375
380Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser
Thr385 390 395 400Tyr Arg
Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn
405 410 415Gly Lys Glu Tyr Lys Cys Lys
Val Ser Asn Lys Gly Leu Pro Ser Ser 420 425
430Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu
Pro Gln 435 440 445Val Tyr Thr Leu
Pro Pro Ser Gln Glu Glu Met Thr Lys Asn Gln Val 450
455 460Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser
Asp Ile Ala Val465 470 475
480Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro
485 490 495Pro Val Leu Asp Ser
Asp Gly Ser Phe Phe Leu Tyr Ser Arg Leu Thr 500
505 510Val Asp Lys Ser Arg Trp Gln Glu Gly Asn Val Phe
Ser Cys Ser Val 515 520 525Met His
Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu 530
535 540Ser Leu Gly545561641DNAArtificial
SequenceDescription of Artificial Sequence Synthetic polynucleotide
56gctcagaata tcaccgccag aatcggcgag cccctggtgc tgaaatgtaa aggcgcccct
60aagaagcctc ctcagcggct ggaatggaag ctgaacaccg gcagaaccga ggcctggaaa
120gtgctgtctc ctcaaggcgg aggcccttgg gattctgtgg ctagagtgct gcctaacggc
180tccctgtttc tgcctgctgt gggcatccag gacgagggca tcttcaggtg tcaggccatg
240aaccggaacg gcaaagagac aaagtccaac taccgcgtca gagtgtatca gatccccggc
300aagcctgaga tcgtggactc tgcctctgaa ctgacagccg gcgtgcccaa caaagtgggc
360acttgtgtgt ccgagggcag ctatcctgct ggcaccctgt cttggcatct ggatggaaag
420cctctggtgc ccaacgagaa aggcgtgtcc gtgaaagagc agaccagacg gcatcctgag
480actggcctgt tcaccctgca gtccgagctg atggttaccc ctgctagagg cggcgatccc
540agacctacct tcagctgctc cttctctcct ggcctgcctc gacatagagc cctgagaacc
600gctcctatcc agcctagagt gtgggagcct gtgcctctgg aagaggtgca gctggtggtt
660gaacctgaag gcggagctgt tgctcctggc ggaacagtga ccctgacctg tgaagttccc
720gctcagccct ctccacagat ccactggatg aaggatggcg tgccactgcc tctgcctcca
780tctcctgttc tgatcctgcc agagatcggc cctcaggacc agggcaccta ttcttgtgtg
840gctacccact cctctcacgg ccctcaagag tctagagccg tgtccatctc catcatcgag
900cctggcgagg aaggacctac agctggcgga acactggtca ccgtgtcctc cgagtctaag
960tacggccctc cttgtcctcc atgtcctgct ccagaagctg ctggcggccc ttccgtgttt
1020ctgttccctc caaagcctaa ggacaccctg atgatctctc ggacccctga agtgacctgc
1080gtggtggtgg atgtgtccca agaggatccc gaggtgcagt tcaattggta cgtggacggc
1140gtggaagtgc acaacgccaa gaccaagcct agagaggaac agttcaactc cacctacaga
1200gtggtgtccg tgctgaccgt gctgcaccag gattggctga atggcaaaga gtataagtgc
1260aaggtgtcca acaagggcct gccttccagc atcgaaaaga ccatctccaa ggccaagggc
1320cagcctaggg aaccccaggt ttacaccctg cctccaagcc aagaggaaat gaccaagaac
1380caggtgtccc tgacatgcct ggtcaagggc ttctacccct ccgatatcgc cgtggaatgg
1440gagtctaatg gccagcctga gaacaactac aagaccacac ctcctgtgct ggactccgac
1500ggcagcttct ttctgtactc ccgcctgacc gtggacaagt ccaggtggca agagggcaac
1560gtgttctcct gctccgtgat gcacgaggcc ctgcacaatc actacaccca gaagtccctg
1620tctctgtccc tgggcaaatg a
1641571634DNAArtificial SequenceDescription of Artificial Sequence
Synthetic polynucleotide 57gctcaggaga tcaccgccag aatcggcgag
cccctggtgc tgaaatgtaa agggccccta 60agaagcctcc tcagcggctg gaatggaagc
tgaacaccgg cagaaccgag gcctggaaag 120tgctgtctcc tcaaggcgga ggcccttggg
attctgtggc tagagtgctg cctaacggct 180cctgtttctg cctgctgtgg gcatccagga
cgagggcatc ttcaggtgtc aggccatgaa 240ccggaacggc aaagagacaa agtccaacta
ccgcgtcaga gtgtatcaga tccccggcaa 300gcctgagtcg tggactctgc ctctgaactg
acagccggcg tgcccaacaa agtgggcact 360tgtgtgtccg agggcagcta tcctgctggc
accctgtctt ggcatctgga tggaaagcct 420ctggtgccca acgaaaaggc gtgtccgtga
aagagcagac cagacggcat cctgagactg 480gcctgttcac cctgcagtcc gagctgatgg
ttacccctgc tagaggcggc gatcccagac 540ctaccttcag ctgctccttc ttcctggcct
gcctcgacat agagccctga gaaccgctcc 600tatccagcct agagtgtggg agcctgtgcc
tctggaagag gtgcagctgg tggttgaacc 660tgaaggcgga gctgttgctc ctggcggaca
gtgaccctga cctgtgaagt tcccgctcag 720ccctctccac agatccactg gatgaaggat
ggcgtgccac tgcctctgcc tccatctcct 780gttctgatcc tgccagagat cggccctcag
gaccaggcac ctattcttgt gtggctaccc 840actcctctca cggccctcaa gagtctagag
ccgtgtccat ctccatcatc gagcctggcg 900aggaaggacc tacagctggc gagggctttg
acaaagtgcg cgggctgagg actctcctca 960gcacgctgtt gagtgccctc catgtgctcc
tccagttgct ggtggccctt ccgtgttcct 1020gtttcctcca aagcctaagg acaccctgta
catcacccgc gagcctgaat gacctgcgtg 1080gtggtggatg tgtcccaaga ggatcccgag
gtgcagttca attggtacgt ggacggcgtg 1140gaagtgcaca acgccaagac caagcctaga
gaggaacagt tcaactccac ctacaggtgg 1200tgtccgtgct gaccgtgctg caccaggatt
ggctgaatgg caaagagtat aagtgcaagg 1260tgtccaacaa gggcctgcct tccagcatcg
aaaagaccat ctccaaggcc aagggccagc 1320ctaggaaccc caggtttaca ccctgcctcc
aagccaagag gaaatgacca agaaccaggt 1380gtccctgaca tgcctggtca agggcttcta
cccctccgat atcgccgtgg aatgggagtc 1440taatggccag ctgagaacaa ctacaagacc
acacctcctg tgctggactc cgacggcagc 1500ttctttctgt actcccgcct gaccgtggac
aagtccaggt ggcaagaggg caacgtgttc 1560tcctgctccg tgatgcagag gccctgcaca
atcactacac ccagaagtcc ctgtctctgt 1620ccctgggcaa atga
1634581634DNAArtificial
SequenceDescription of Artificial Sequence Synthetic polynucleotide
58gctcagcaga tcaccgccag aatcggcgag cccctggtgc tgaaatgtaa agggccccta
60agaagcctcc tcagcggctg gaatggaagc tgaacaccgg cagaaccgag gcctggaaag
120tgctgtctcc tcaaggcgga ggcccttggg attctgtggc tagagtgctg cctaacggct
180cctgtttctg cctgctgtgg gcatccagga cgagggcatc ttcaggtgtc aggccatgaa
240ccggaacggc aaagagacaa agtccaacta ccgcgtcaga gtgtatcaga tccccggcaa
300gcctgagtcg tggactctgc ctctgaactg acagccggcg tgcccaacaa agtgggcact
360tgtgtgtccg agggcagcta tcctgctggc accctgtctt ggcatctgga tggaaagcct
420ctggtgccca acgaaaaggc gtgtccgtga aagagcagac cagacggcat cctgagactg
480gcctgttcac cctgcagtcc gagctgatgg ttacccctgc tagaggcggc gatcccagac
540ctaccttcag ctgctccttc ttcctggcct gcctcgacat agagccctga gaaccgctcc
600tatccagcct agagtgtggg agcctgtgcc tctggaagag gtgcagctgg tggttgaacc
660tgaaggcgga gctgttgctc ctggcggaca gtgaccctga cctgtgaagt tcccgctcag
720ccctctccac agatccactg gatgaaggat ggcgtgccac tgcctctgcc tccatctcct
780gttctgatcc tgccagagat cggccctcag gaccaggcac ctattcttgt gtggctaccc
840actcctctca cggccctcaa gagtctagag ccgtgtccat ctccatcatc gagcctggcg
900aggaaggacc tacagctggc gagggctttg acaaagtgcg cgggctgagg actctcctca
960gcacgctgtt gagtgccctc catgtgctcc tccagttgct ggtggccctt ccgtgttcct
1020gtttcctcca aagcctaagg acaccctgta catcacccgc gagcctgaat gacctgcgtg
1080gtggtggatg tgtcccaaga ggatcccgag gtgcagttca attggtacgt ggacggcgtg
1140gaagtgcaca acgccaagac caagcctaga gaggaacagt tcaactccac ctacaggtgg
1200tgtccgtgct gaccgtgctg caccaggatt ggctgaatgg caaagagtat aagtgcaagg
1260tgtccaacaa gggcctgcct tccagcatcg aaaagaccat ctccaaggcc aagggccagc
1320ctaggaaccc caggtttaca ccctgcctcc aagccaagag gaaatgacca agaaccaggt
1380gtccctgaca tgcctggtca agggcttcta cccctccgat atcgccgtgg aatgggagtc
1440taatggccag ctgagaacaa ctacaagacc acacctcctg tgctggactc cgacggcagc
1500ttctttctgt actcccgcct gaccgtggac aagtccaggt ggcaagaggg caacgtgttc
1560tcctgctccg tgatgcagag gccctgcaca atcactacac ccagaagtcc ctgtctctgt
1620ccctgggcaa atga
1634591634DNAArtificial SequenceDescription of Artificial Sequence
Synthetic polynucleotide 59gctcagaata tcaccgccag aatcggcgag
cccctggtgc tgaaatgtaa agggccccta 60agaagcctcc tcagcggctg gaatggaagc
tgaacaccgg cagaaccgag gcctggaaag 120tgctgtctcc tcaaggcgga ggcccttggg
attctgtggc tagagtgctg cctaactctt 180cctgtttctg cctgctgtgg gcatccagga
cgagggcatc ttcaggtgtc aggccatgaa 240ccggaacggc aaagagacaa agtccaacta
ccgcgtcaga gtgtatcaga tccccggcaa 300gcctgagtcg tggactctgc ctctgaactg
acagccggcg tgcccaacaa agtgggcact 360tgtgtgtccg agggcagcta tcctgctggc
accctgtctt ggcatctgga tggaaagcct 420ctggtgccca acgaaaaggc gtgtccgtga
aagagcagac cagacggcat cctgagactg 480gcctgttcac cctgcagtcc gagctgatgg
ttacccctgc tagaggcggc gatcccagac 540ctaccttcag ctgctccttc ttcctggcct
gcctcgacat agagccctga gaaccgctcc 600tatccagcct agagtgtggg agcctgtgcc
tctggaagag gtgcagctgg tggttgaacc 660tgaaggcgga gctgttgctc ctggcggaca
gtgaccctga cctgtgaagt tcccgctcag 720ccctctccac agatccactg gatgaaggat
ggcgtgccac tgcctctgcc tccatctcct 780gttctgatcc tgccagagat cggccctcag
gaccaggcac ctattcttgt gtggctaccc 840actcctctca cggccctcaa gagtctagag
ccgtgtccat ctccatcatc gagcctggcg 900aggaaggacc tacagctggc gagggctttg
acaaagtgcg cgggctgagg actctcctca 960gcacgctgtt gagtgccctc catgtgctcc
tccagttgct ggtggccctt ccgtgttcct 1020gtttcctcca aagcctaagg acaccctgta
catcacccgc gagcctgaat gacctgcgtg 1080gtggtggatg tgtcccaaga ggatcccgag
gtgcagttca attggtacgt ggacggcgtg 1140gaagtgcaca acgccaagac caagcctaga
gaggaacagt tcaactccac ctacaggtgg 1200tgtccgtgct gaccgtgctg caccaggatt
ggctgaatgg caaagagtat aagtgcaagg 1260tgtccaacaa gggcctgcct tccagcatcg
aaaagaccat ctccaaggcc aagggccagc 1320ctaggaaccc caggtttaca ccctgcctcc
aagccaagag gaaatgacca agaaccaggt 1380gtccctgaca tgcctggtca agggcttcta
cccctccgat atcgccgtgg aatgggagtc 1440taatggccag ctgagaacaa ctacaagacc
acacctcctg tgctggactc cgacggcagc 1500ttctttctgt actcccgcct gaccgtggac
aagtccaggt ggcaagaggg caacgtgttc 1560tcctgctccg tgatgcagag gccctgcaca
atcactacac ccagaagtcc ctgtctctgt 1620ccctgggcaa atga
1634601634DNAArtificial
SequenceDescription of Artificial Sequence Synthetic polynucleotide
60gctcaggaga tcaccgccag aatcggcgag cccctggtgc tgaaatgtaa agggccccta
60agaagcctcc tcagcggctg gaatggaagc tgaacaccgg cagaaccgag gcctggaaag
120tgctgtctcc tcaaggcgga ggcccttggg attctgtggc tagagtgctg cctaactcct
180cctgtttctg cctgctgtgg gcatccagga cgagggcatc ttcaggtgtc aggccatgaa
240ccggaacggc aaagagacaa agtccaacta ccgcgtcaga gtgtatcaga tccccggcaa
300gcctgagtcg tggactctgc ctctgaactg acagccggcg tgcccaacaa agtgggcact
360tgtgtgtccg agggcagcta tcctgctggc accctgtctt ggcatctgga tggaaagcct
420ctggtgccca acgaaaaggc gtgtccgtga aagagcagac cagacggcat cctgagactg
480gcctgttcac cctgcagtcc gagctgatgg ttacccctgc tagaggcggc gatcccagac
540ctaccttcag ctgctccttc ttcctggcct gcctcgacat agagccctga gaaccgctcc
600tatccagcct agagtgtggg agcctgtgcc tctggaagag gtgcagctgg tggttgaacc
660tgaaggcgga gctgttgctc ctggcggaca gtgaccctga cctgtgaagt tcccgctcag
720ccctctccac agatccactg gatgaaggat ggcgtgccac tgcctctgcc tccatctcct
780gttctgatcc tgccagagat cggccctcag gaccaggcac ctattcttgt gtggctaccc
840actcctctca cggccctcaa gagtctagag ccgtgtccat ctccatcatc gagcctggcg
900aggaaggacc tacagctggc gagggctttg acaaagtgcg cgggctgagg actctcctca
960gcacgctgtt gagtgccctc catgtgctcc tccagttgct ggtggccctt ccgtgttcct
1020gtttcctcca aagcctaagg acaccctgta catcacccgc gagcctgaat gacctgcgtg
1080gtggtggatg tgtcccaaga ggatcccgag gtgcagttca attggtacgt ggacggcgtg
1140gaagtgcaca acgccaagac caagcctaga gaggaacagt tcaactccac ctacaggtgg
1200tgtccgtgct gaccgtgctg caccaggatt ggctgaatgg caaagagtat aagtgcaagg
1260tgtccaacaa gggcctgcct tccagcatcg aaaagaccat ctccaaggcc aagggccagc
1320ctaggaaccc caggtttaca ccctgcctcc aagccaagag gaaatgacca agaaccaggt
1380gtccctgaca tgcctggtca agggcttcta cccctccgat atcgccgtgg aatgggagtc
1440taatggccag ctgagaacaa ctacaagacc acacctcctg tgctggactc cgacggcagc
1500ttctttctgt actcccgcct gaccgtggac aagtccaggt ggcaagaggg caacgtgttc
1560tcctgctccg tgatgcagag gccctgcaca atcactacac ccagaagtcc ctgtctctgt
1620ccctgggcaa atga
1634611634DNAArtificial SequenceDescription of Artificial Sequence
Synthetic polynucleotide 61gctcagcaga tcaccgccag aatcggcgag
cccctggtgc tgaaatgtaa agggccccta 60agaagcctcc tcagcggctg gaatggaagc
tgaacaccgg cagaaccgag gcctggaaag 120tgctgtctcc tcaaggcgga ggcccttggg
attctgtggc tagagtgctg cctaactctt 180cctgtttctg cctgctgtgg gcatccagga
cgagggcatc ttcaggtgtc aggccatgaa 240ccggaacggc aaagagacaa agtccaacta
ccgcgtcaga gtgtatcaga tccccggcaa 300gcctgagtcg tggactctgc ctctgaactg
acagccggcg tgcccaacaa agtgggcact 360tgtgtgtccg agggcagcta tcctgctggc
accctgtctt ggcatctgga tggaaagcct 420ctggtgccca acgaaaaggc gtgtccgtga
aagagcagac cagacggcat cctgagactg 480gcctgttcac cctgcagtcc gagctgatgg
ttacccctgc tagaggcggc gatcccagac 540ctaccttcag ctgctccttc ttcctggcct
gcctcgacat agagccctga gaaccgctcc 600tatccagcct agagtgtggg agcctgtgcc
tctggaagag gtgcagctgg tggttgaacc 660tgaaggcgga gctgttgctc ctggcggaca
gtgaccctga cctgtgaagt tcccgctcag 720ccctctccac agatccactg gatgaaggat
ggcgtgccac tgcctctgcc tccatctcct 780gttctgatcc tgccagagat cggccctcag
gaccaggcac ctattcttgt gtggctaccc 840actcctctca cggccctcaa gagtctagag
ccgtgtccat ctccatcatc gagcctggcg 900aggaaggacc tacagctggc gagggctttg
acaaagtgcg cgggctgagg actctcctca 960gcacgctgtt gagtgccctc catgtgctcc
tccagttgct ggtggccctt ccgtgttcct 1020gtttcctcca aagcctaagg acaccctgta
catcacccgc gagcctgaat gacctgcgtg 1080gtggtggatg tgtcccaaga ggatcccgag
gtgcagttca attggtacgt ggacggcgtg 1140gaagtgcaca acgccaagac caagcctaga
gaggaacagt tcaactccac ctacaggtgg 1200tgtccgtgct gaccgtgctg caccaggatt
ggctgaatgg caaagagtat aagtgcaagg 1260tgtccaacaa gggcctgcct tccagcatcg
aaaagaccat ctccaaggcc aagggccagc 1320ctaggaaccc caggtttaca ccctgcctcc
aagccaagag gaaatgacca agaaccaggt 1380gtccctgaca tgcctggtca agggcttcta
cccctccgat atcgccgtgg aatgggagtc 1440taatggccag ctgagaacaa ctacaagacc
acacctcctg tgctggactc cgacggcagc 1500ttctttctgt actcccgcct gaccgtggac
aagtccaggt ggcaagaggg caacgtgttc 1560tcctgctccg tgatgcagag gccctgcaca
atcactacac ccagaagtcc ctgtctctgt 1620ccctgggcaa atga
1634621649DNAArtificial
SequenceDescription of Artificial Sequence Synthetic polynucleotide
62gctcagaata tcaccgccag aatcggcgag cccctggtgc tgaaatgtaa agggccccta
60agaagcctcc tcagcggctg gaatggaagc tgaacaccgg cagaaccgag gcctggaaag
120tgctgtctcc tcaaggcgga ggcccttggg attctgtggc tagagtgctg cctaacggct
180cctgtttctg cctgctgtgg gcatccagga cgagggcatc ttcaggtgtc aggccatgaa
240ccggaacggc aaagagacaa agtccaacta ccgcgtcaga gtgtatcaga tccccggcaa
300gcctgagtcg tggactctgc ctctgaactg acagccggcg tgcccaacaa agtgggcact
360tgtgtgtccg agggcagcta tcctgctggc accctgtctt ggcatctgga tggaaagcct
420ctggtgccca acgaaaaggc gtgtccgtga aagagcagac cagacggcat cctgagactg
480gcctgttcac cctgcagtcc gagctgatgg ttacccctgc tagaggcggc gatcccagac
540ctaccttcag ctgctccttc ttcctggcct gcctcgacat agagccctga gaaccgctcc
600tatccagcct agagtgtggg agcctgtgcc tctggaagag gtgcagctgg tggttgaacc
660tgaaggcgga gctgttgctc ctggcggaca gtgaccctga cctgtgaagt tcccgctcag
720ccctctccac agatccactg gatgaaggat ggcgtgccac tgcctctgcc tccatctcct
780gttctgatcc tgccagagat cggccctcag gaccaggcac ctattcttgt gtggctaccc
840actcctctca cggccctcaa gagtctagag ccgtgtccat ctccatcatc gagcctggcg
900aggaaggacc tacagctggc gagggctttg acaaagtgcg cgggctgagg actctcctca
960gcacgctgag agaaagtgct gcgttgagtg ccctccatgt gctcctccag ttgctggtgg
1020cccttccgtg ttcctgtttc ctccaaagcc taaggacacc ctgtacatcc ccgcgagcct
1080gaagtgacct gcgtggtggt ggatgtgtcc caagaggatc ccgaggtgca gttcaattgg
1140tacgtggacg gcgtggaagt gcacaacgcc aagaccaagc ctagagagga acagttaact
1200ccacctacag agtggtgtcc gtgctgaccg tgctgcacca ggattggctg aatggcaaag
1260agtataagtg caaggtgtcc aacaagggcc tgccttccag catcgaaaag accatctcca
1320aggcaagggc cagcctaggg aaccccaggt ttacaccctg cctccaagcc aagaggaaat
1380gaccaagaac caggtgtccc tgacatgcct ggtcaagggc ttctacccct ccgatatcgc
1440cgtggaatgg agtctaatgg ccagcctgag aacaactaca agaccacacc tcctgtgctg
1500gactccgacg gcagcttctt tctgtactcc cgcctgaccg tggacaagtc caggtggcaa
1560gagggcaacg tgttctctgc tccgtgatgc acgaggccct gcacaatcac tacacccaga
1620agtccctgtc tctgtccctg ggcaaatga
1649631631DNAArtificial SequenceDescription of Artificial Sequence
Synthetic polynucleotide 63gctcagaata tcaccgccag aatcggcgag
cccctggtgc tgaaatgtaa agggccccta 60agaagcctcc tcagcggctg gaatggaagc
tgaacaccgg cagaaccgag gcctggaaag 120tgctgtctcc tcaaggcgga ggcccttggg
attctgtggc tagagtgctg cctaacggct 180cctgtttctg cctgctgtgg gcatccagga
cgagggcatc ttcaggtgtc aggccatgaa 240ccggaacggc aaagagacaa agtccaacta
ccgcgtcaga gtgtatcaga tccccggcaa 300gcctgagtcg tggactctgc ctctgaactg
acagccggcg tgcccaacaa agtgggcact 360tgtgtgtccg agggcagcta tcctgctggc
accctgtctt ggcatctgga tggaaagcct 420ctggtgccca acgaaaaggc gtgtccgtga
aagagcagac cagacggcat cctgagactg 480gcctgttcac cctgcagtcc gagctgatgg
ttacccctgc tagaggcggc gatcccagac 540ctaccttcag ctgctccttc ttcctggcct
gcctcgacat agagccctga gaaccgctcc 600tatccagcct agagtgtggg agcctgtgcc
tctggaagag gtgcagctgg tggttgaacc 660tgaaggcgga gctgttgctc ctggcggaca
gtgaccctga cctgtgaagt tcccgctcag 720ccctctccac agatccactg gatgaaggat
ggcgtgccac tgcctctgcc tccatctcct 780gttctgatcc tgccagagat cggccctcag
gaccaggcac ctattcttgt gtggctaccc 840actcctctca cggccctcaa gagtctagag
ccgtgtccat ctccatcatc gagcctggcg 900aggaaggacc tacagctggc gagggctttg
acaaagtgcg cgggctgagg actctcctca 960gcacgctgtt gagtgccctc catgtgctcc
tccagtggct ggcccttccg tgttcctgtt 1020tcctccaaag cctaaggaca ccctgtacat
cacccgcgag cctgaagtgc ctgcgtggtg 1080gtggatgtgt ctcacgagga tcccgaggtg
cagttcaatt ggtacgtgga cggcgtggaa 1140gtgcacaacg ccaagaccaa gcctagagag
gaacagttca actccacctt cagagtgtgt 1200ccgtgctgac cgtggtgcat caggattggc
tgaatgggaa agagtacaag tgcaaggtgt 1260ccaacaaggg cctgcctgct cctatcgaaa
agaccatctc taagaccaag ggacagcccc 1320gggacctcag gtgtacacac tgccacctag
ccgggaagag atgaccaaga accaggtgtc 1380cctgacatgc ctggtcaagg gcttctaccc
ctccgatatc gccgtggaat gggagtctaa 1440tggccagcct agaacaacta caagaccaca
cctcctatgc tggactccga cggctcattc 1500ttcctgtact ccaagctgac agtggacaag
tccagatggc agcagggcaa cgtgttctcc 1560tgctccgtga tgcacgagcc ctgcacaatc
actacaccca gaagtccctg tctctgtccc 1620ctggcaaatg a
1631641634DNAArtificial
SequenceDescription of Artificial Sequence Synthetic polynucleotide
64gctcagaata tcaccgccag aatcggcgag cccctggtgc tgaaatgtaa agggccccta
60agaagcctcc tcagcggctg gaatggaagc tgaacaccgg cagaaccgag gcctggaaag
120tgctgtctcc tcaaggcgga ggcccttggg attctgtggc tagagtgctg cctaacggct
180cctgtttctg cctgctgtgg gcatccagga cgagggcatc ttcaggtgtc aggccatgaa
240ccggaacggc aaagagacaa agtccaacta ccgcgtcaga gtgtatcaga tccccggcaa
300gcctgagtcg tggactctgc ctctgaactg acagccggcg tgcccaacaa agtgggcact
360tgtgtgtccg agggcagcta tcctgctggc accctgtctt ggcatctgga tggaaagcct
420ctggtgccca acgaaaaggc gtgtccgtga aagagcagac cagacggcat cctgagactg
480gcctgttcac cctgcagtcc gagctgatgg ttacccctgc tagaggcggc gatcccagac
540ctaccttcag ctgctccttc ttcctggcct gcctcgacat agagccctga gaaccgctcc
600tatccagcct agagtgtggg agcctgtgcc tctggaagag gtgcagctgg tggttgaacc
660tgaaggcgga gctgttgctc ctggcggaca gtgaccctga cctgtgaagt tcccgctcag
720ccctctccac agatccactg gatgaaggat ggcgtgccac tgcctctgcc tccatctcct
780gttctgatcc tgccagagat cggccctcag gaccaggcac ctattcttgt gtggctaccc
840actcctctca cggccctcaa gagtctagag ccgtgtccat ctccatcatc gagcctggcg
900aggaaggacc tacagctggc gagggctttg acaaagtgcg cgggctgagg actctcctca
960gcacgctgtt gagtgccctc catgtgctcc tccagttgct ggtggccctt ccgtgttcct
1020gtttcctcca aagcctaagg acaccctgta catcacccgc gagcctgaat gacctgcgtg
1080gtggtggatg tgtctcacga ggaccccgaa gtgaagttca attggtacgt ggacggcgtg
1140gaagtgcaca acgccaagac caagcctaga gaggaacagt acaactccac ctacaggtgg
1200tgtccgtgct gaccgtgctg caccaggatt ggctgaatgg caaagagtat aagtgcaagg
1260tgtccaacaa ggccctgcct gctcctatcg aaaagaccat ctccaaggcc aagggccagc
1320ctaggaaccc caggtttaca ccttgccacc ttctcgggac gagctgacca agaaccaggt
1380gtccctgaca tgcctggtca agggcttcta cccctccgat atcgccgtgg aatgggagtc
1440taatggccag ctgagaacaa ctacaagacc acacctcctg tgctggactc cgacggctca
1500ttcttcctgt actccaagct gacagtggac aagtccagat ggcagcaggg caacgtgttc
1560tcctgctccg tgatgcagag gccctgcaca atcactacac ccagaagtcc ctgtctctgt
1620cccctggcaa atga
1634651652DNAArtificial SequenceDescription of Artificial Sequence
Synthetic polynucleotide 65gctcagaata tcaccgccag aatcggcgag
cccctggtgc tgaaatgtaa agggccccta 60agaagcctcc tcagcggctg gaatggaagc
tgaacaccgg cagaaccgag gcctggaaag 120tgctgtctcc tcaaggcgga ggcccttggg
attctgtggc tagagtgctg cctaacggct 180cctgtttctg cctgctgtgg gcatccagga
cgagggcatc ttcaggtgtc aggccatgaa 240ccggaacggc aaagagacaa agtccaacta
ccgcgtcaga gtgtatcaga tccccggcaa 300gcctgagtcg tggactctgc ctctgaactg
acagccggcg tgcccaacaa agtgggcact 360tgtgtgtccg agggcagcta tcctgctggc
accctgtctt ggcatctgga tggaaagcct 420ctggtgccca acgaaaaggc gtgtccgtga
aagagcagac cagacggcat cctgagactg 480gcctgttcac cctgcagtcc gagctgatgg
ttacccctgc tagaggcggc gatcccagac 540ctaccttcag ctgctccttc ttcctggcct
gcctcgacat agagccctga gaaccgctcc 600tatccagcct agagtgtggg agcctgtgcc
tctggaagag gtgcagctgg tggttgaacc 660tgaaggcgga gctgttgctc ctggcggaca
gtgaccctga cctgtgaagt tcccgctcag 720ccctctccac agatccactg gatgaaggat
ggcgtgccac tgcctctgcc tccatctcct 780gttctgatcc tgccagagat cggccctcag
gaccaggcac ctattcttgt gtggctaccc 840actcctctca cggccctcaa gagtctagag
ccgtgtccat ctccatcatc gagcctggcg 900aggaaggacc tacagctggc gagggctttg
acaaagtgcg cgggctgagg actctcctca 960gcacgctgag tctaagtacg gccctccttg
tcctccatgt cctgctccag aagctgctgg 1020tggcccttcc gtgttcctgt ttcctccaaa
gcctaaggac accctgtact cacccgcgag 1080cctgaagtga cctgcgtggt ggtggatgtg
tctcacgagg accccgaagt gaagttcaat 1140tggtacgtgg acggcgtgga agtgcacaac
gccaagacca agcctagaga ggaacataca 1200actccaccta cagagtggtg tccgtgctga
ccgtgctgca ccaggattgg ctgaatggca 1260aagagtataa gtgcaaggtg tccaacaagg
ccctgcctgc tcctatcgaa aagaccatct 1320ccaggccaag ggccagccta gggaacccca
ggtttacacc ttgccacctt ctcgggacga 1380gctgaccaag aaccaggtgt ccctgacatg
cctggtcaag ggcttctacc cctccgatat 1440cgccgtggaa gggagtctaa tggccagcct
gagaacaact acaagaccac acctcctgtg 1500ctggactccg acggctcatt cttcctgtac
tccaagctga cagtggacaa gtccagatgg 1560cagcagggca acgtgtttcc tgctccgtga
tgcacgaggc cctgcacaat cactacaccc 1620agaagtccct gtctctgtcc cctggcaaat
ga 1652661661DNAArtificial
SequenceDescription of Artificial Sequence Synthetic polynucleotide
66gctcagaata tcaccgccag aatcggcgag cccctggtgc tgaaatgtaa agggccccta
60agaagcctcc tcagcggctg gaatggaagc tgaacaccgg cagaaccgag gcctggaaag
120tgctgtctcc tcaaggcgga ggcccttggg attctgtggc tagagtgctg cctaacggct
180cctgtttctg cctgctgtgg gcatccagga cgagggcatc ttcaggtgtc aggccatgaa
240ccggaacggc aaagagacaa agtccaacta ccgcgtcaga gtgtatcaga tccccggcaa
300gcctgagtcg tggactctgc ctctgaactg acagccggcg tgcccaacaa agtgggcact
360tgtgtgtccg agggcagcta tcctgctggc accctgtctt ggcatctgga tggaaagcct
420ctggtgccca acgaaaaggc gtgtccgtga aagagcagac cagacggcat cctgagactg
480gcctgttcac cctgcagtcc gagctgatgg ttacccctgc tagaggcggc gatcccagac
540ctaccttcag ctgctccttc ttcctggcct gcctcgacat agagccctga gaaccgctcc
600tatccagcct agagtgtggg agcctgtgcc tctggaagag gtgcagctgg tggttgaacc
660tgaaggcgga gctgttgctc ctggcggaca gtgaccctga cctgtgaagt tcccgctcag
720ccctctccac agatccactg gatgaaggat ggcgtgccac tgcctctgcc tccatctcct
780gttctgatcc tgccagagat cggccctcag gaccaggcac ctattcttgt gtggctaccc
840actcctctca cggccctcaa gagtctagag ccgtgtccat ctccatcatc gagcctggcg
900aggaaggacc tacagctggc gagggctttg acaaagtgcg cgggctgagg actctcctca
960gcacgctgag cctaagtcct gcgacaagac ccacacctgt cctccatgtc ctgctccaga
1020agctgctggt ggcccttccg tgttcctgtt tcctccaaag cctaaggacc cctgtacatc
1080acccgcgagc ctgaagtgac ctgcgtggtg gtggatgtgt ctcacgagga ccccgaagtg
1140aagttcaatt ggtacgtgga cggcgtggaa gtgcacaacg ccaagaccaa gcctaggagg
1200aacagtacaa ctccacctac agagtggtgt ccgtgctgac cgtgctgcac caggattggc
1260tgaatggcaa agagtataag tgcaaggtgt ccaacaaggc cctgcctgct cctatcgaaa
1320agacatctcc aaggccaagg gccagcctag ggaaccccag gtttacacct tgccaccttc
1380tcgggacgag ctgaccaaga accaggtgtc cctgacatgc ctggtcaagg gcttctaccc
1440ctccgatatc ccgtggaatg ggagtctaat ggccagcctg agaacaacta caagaccaca
1500cctcctgtgc tggactccga cggctcattc ttcctgtact ccaagctgac agtggacaag
1560tccagatggc agcagggaac gtgttctcct gctccgtgat gcacgaggcc ctgcacaatc
1620actacaccca gaagtccctg tctctgtccc ctggcaaatg a
1661671665DNAArtificial SequenceDescription of Artificial Sequence
Synthetic polynucleotide 67gctcagaata tcaccgccag aatcggcgag
cccctggtgc tgaaatgtaa aggcgcccct 60aagaagcctc ctcagcggct ggaatggaag
ctgaacaccg gcagaaccga ggcctggaaa 120gtgctgtctc ctcaaggcgg aggcccttgg
gattctgtgg ctagagtgct gcctaacggc 180tccctgtttc tgcctgctgt gggcatccag
gacgagggca tcttcaggtg tcaggccatg 240aaccggaacg gcaaagagac aaagtccaac
taccgcgtca gagtgtatca gatccccggc 300aagcctgaga tcgtggactc tgcctctgaa
ctgacagccg gcgtgcccaa caaagtgggc 360acttgtgtgt ccgagggcag ctatcctgct
ggcaccctgt cttggcatct ggatggaaag 420cctctggtgc ccaacgagaa aggcgtgtcc
gtgaaagagc agaccagacg gcatcctgag 480actggcctgt tcaccctgca gtccgagctg
atggttaccc ctgctagagg cggcgatccc 540agacctacct tcagctgctc cttctctcct
ggcctgcctc gacatagagc cctgagaacc 600gctcctatcc agcctagagt gtgggagcct
gtgcctctgg aagaggtgca gctggtggtt 660gaacctgaag gcggagctgt tgctcctggc
ggaacagtga ccctgacctg tgaagttccc 720gctcagccct ctccacagat ccactggatg
aaggatggcg tgccactgcc tctgcctcca 780tctcctgttc tgatcctgcc agagatcggc
cctcaggacc agggcaccta ttcttgtgtg 840gctacccact cctctcacgg ccctcaagag
tctagagccg tgtccatctc catcatcgag 900cctggcgagg aaggacctac agctggcgag
ggctttgaca aagtgcgcga ggccgaggat 960tctcctcagc atgctgagtc taagtacggc
cctccttgtc ctccatgtcc tgctccagaa 1020gctgctggcg gcccttccgt gtttctgttc
cctccaaagc ctaaggacac cctgtacatc 1080acccgggagc ctgaagtgac ctgcgtggtg
gtggatgtgt cccaagagga tcccgaggtg 1140cagttcaatt ggtacgtgga cggcgtggaa
gtgcacaacg ccaagaccaa gcctagagag 1200gaacagttca actccaccta cagagtggtg
tccgtgctga ccgtgctgca ccaggattgg 1260ctgaatggca aagagtataa gtgcaaggtg
tccaacaagg gcctgccttc cagcatcgaa 1320aagaccatct ccaaggccaa gggccagcct
agggaacccc aggtttacac cctgcctcca 1380agccaagagg aaatgaccaa gaaccaggtg
tccctgacat gcctggtcaa gggcttctac 1440ccctccgata tcgccgtgga atgggagtct
aatggccagc ctgagaacaa ctacaagacc 1500acacctcctg tgctggactc cgacggcagc
ttctttctgt actcccgcct gaccgtggac 1560aagtccaggt ggcaagaggg caacgtgttc
tcctgctccg tgatgcacga ggccctgcac 1620aatcactaca cccagaagtc cctgtctctg
tccctgggca aatga 1665681689DNAArtificial
SequenceDescription of Artificial Sequence Synthetic polynucleotide
68gctcagaata tcaccgccag aatcggcgag cccctggtgc tgaaatgtaa aggcgcccct
60aagaagcctc ctcagcggct ggaatggaag ctgaacaccg gcagaaccga ggcctggaaa
120gtgctgtctc ctcaaggcgg aggcccttgg gattctgtgg ctagagtgct gcctaacggc
180tccctgtttc tgcctgctgt gggcatccag gacgagggca tcttcaggtg tcaggccatg
240aaccggaacg gcaaagagac aaagtccaac taccgcgtca gagtgtatca gatccccggc
300aagcctgaga tcgtggactc tgcctctgaa ctgacagccg gcgtgcccaa caaagtgggc
360acttgtgtgt ccgagggcag ctatcctgct ggcaccctgt cttggcatct ggatggaaag
420cctctggtgc ccaacgagaa aggcgtgtcc gtgaaagagc agaccagacg gcatcctgag
480actggcctgt tcaccctgca gtccgagctg atggttaccc ctgctagagg cggcgatccc
540agacctacct tcagctgctc cttctctcct ggcctgcctc gacatagagc cctgagaacc
600gctcctatcc agcctagagt gtgggagcct gtgcctctgg aagaggtgca gctggtggtt
660gaacctgaag gcggagctgt tgctcctggc ggaacagtga ccctgacctg tgaagttccc
720gctcagccct ctccacagat ccactggatg aaggatggcg tgccactgcc tctgcctcca
780tctcctgttc tgatcctgcc agagatcggc cctcaggacc agggcaccta ttcttgtgtg
840gctacccact cctctcacgg ccctcaagag tctagagccg tgtccatctc catcatcgag
900cctggcgagg aaggacctac agctggcgag ggctttgaca aagtgcgcga ggctgaggac
960tctcctcagc atgccggaac actggtcacc gtgtcctccg agtctaagta cggccctcct
1020tgtcctccat gtcctgctcc agaagctgct ggcggccctt ccgtgtttct gttccctcca
1080aagcctaagg acaccctgta catcacccgg gagcctgaag tgacctgcgt ggtggtggat
1140gtgtcccaag aggatcccga ggtgcagttc aattggtacg tggacggcgt ggaagtgcac
1200aacgccaaga ccaagcctag agaggaacag ttcaactcca cctacagagt ggtgtccgtg
1260ctgaccgtgc tgcaccagga ttggctgaat ggcaaagagt ataagtgcaa ggtgtccaac
1320aagggcctgc cttccagcat cgaaaagacc atctccaagg ccaagggcca gcctagggaa
1380ccccaggttt acaccctgcc tccaagccaa gaggaaatga ccaagaacca ggtgtccctg
1440acatgcctgg tcaagggctt ctacccctcc gatatcgccg tggaatggga gtctaatggc
1500cagcctgaga acaactacaa gaccacacct cctgtgctgg actccgacgg cagcttcttt
1560ctgtactccc gcctgaccgt ggacaagtcc aggtggcaag agggcaacgt gttctcctgc
1620tccgtgatgc acgaggccct gcacaatcac tacacccaga agtccctgtc tctgtccctg
1680ggcaaatga
1689691631DNAArtificial SequenceDescription of Artificial Sequence
Synthetic polynucleotide 69gctcagaata tcaccgccag aatcggcgag
cccctggtgc tgaaatgtaa agggccccta 60agaagcctcc tcagcggctg gaatggaagc
tgaacaccgg cagaaccgag gcctggaaag 120tgctgtctcc tcaaggcgga ggcccttggg
attctgtggc tagagtgctg cctaacggct 180cctgtttctg cctgctgtgg gcatccagga
cgagggcatc ttcaggtgtc aggccatgaa 240ccggaacggc aaagagacaa agtccaacta
ccgcgtcaga gtgtatcaga tccccggcaa 300gcctgagtcg tggactctgc ctctgaactg
acagccggcg tgcccaacaa agtgggcact 360tgtgtgtccg agggcagcta tcctgctggc
accctgtctt ggcatctgga tggaaagcct 420ctggtgccca acgaaaaggc gtgtccgtga
aagagcagac cagacggcat cctgagactg 480gcctgttcac cctgcagtcc gagctgatgg
ttacccctgc tagaggcggc gatcccagac 540ctaccttcag ctgctccttc ttcctggcct
gcctcgacat agagccctga gaaccgctcc 600tatccagcct agagtgtggg agcctgtgcc
tctggaagag gtgcagctgg tggttgaacc 660tgaaggcgga gctgttgctc ctggcggaca
gtgaccctga cctgtgaagt tcccgctcag 720ccctctccac agatccactg gatgaaggat
ggcgtgccac tgcctctgcc tccatctcct 780gttctgatcc tgccagagat cggccctcag
gaccaggcac ctattcttgt gtggctaccc 840actcctctca cggccctcaa gagtctagag
ccgtgtccat ctccatcatc gagcctggcg 900aggaaggacc tacagctggc gagggctttg
acaaagtgcg cgggctgagg actctcctca 960gcacgctgtt gagtgccctc catgtgctcc
tccagttgct ggtggccctt ccgtgttcct 1020gtttcctcca aagcctaagg acaccctgta
catcacccgc gagcctgaat gacctgcgtg 1080gtggtggatg tgtcccaaga ggatcccgag
gtgcagttca attggtacgt ggacggcgtg 1140gaagtgcaca acgccaagac caagcctaga
gaggaacagt tcaactccac ctacaggtgg 1200tgtccgtgct gaccgtgctg caccaggatt
ggctgaatgg caaagagtat aagtgcaagg 1260tgtccaacaa gggcctgcct tccagcatcg
aaaagaccat ctccaaggcc aagggccagc 1320ctaggaaccc caggtttaca ccctgcctcc
aagccaagag gaaatgacca agaaccaggt 1380gtccctgaca tgcctggtca agggcttcta
cccctccgat atcgccgtgg aatgggagtc 1440taatggccag ctgagaacaa ctacaagacc
acacctcctg tgctggactc cgacggcagc 1500ttctttctgt actcccgcct gaccgtggac
aagtccaggt ggcaagaggg caacgtgttc 1560tcctgctccg tgatgcagag gccctgcaca
atcactacac ccagaagtcc ctgtctctgt 1620ccctgggctg a
1631701644DNAArtificial
SequenceDescription of Artificial Sequence Synthetic polynucleotide
70gctcagaata tcaccgccag aatcggcgag cccctggtgc tgaaatgtaa aggcgcccct
60aagaagcctc ctcagcggct ggaatggaag ctgaacaccg gcagaaccga ggcctggaaa
120gtgctgtctc ctcaaggcgg aggcccttgg gattctgtgg ctagagtgct gcctaacggc
180tccctgtttc tgcctgctgt gggcatccag gacgagggca tcttcaggtg tcaggccatg
240aaccggaacg gcaaagagac aaagtccaac taccgcgtca gagtgtatca gatccccggc
300aagcctgaga tcgtggactc tgcctctgaa ctgacagccg gcgtgcccaa caaagtgggc
360acttgtgtgt ccgagggcag ctatcctgct ggcaccctgt cttggcatct ggatggaaag
420cctctggtgc ccaacgagaa aggcgtgtcc gtgaaagagc agaccagacg gcatcctgag
480actggcctgt tcaccctgca gtccgagctg atggttaccc ctgctagagg cggcgatccc
540agacctacct tcagctgctc cttctctcct ggcctgcctc gacatagagc cctgagaacc
600gctcctatcc agcctagagt gtgggagcct gtgcctctgg aagaggtgca gctggtggtt
660gaacctgaag gcggagctgt tgctcctggc ggaacagtga ccctgacctg tgaagttccc
720gctcagccct ctccacagat ccactggatg aaggatggcg tgccactgcc tctgcctcca
780tctcctgttc tgatcctgcc agagatcggc cctcaggacc agggcaccta ttcttgtgtg
840gctacccact cctctcacgg ccctcaagag tctagagccg tgtccatctc catcatcgag
900cctggcgagg aaggacctac agctggcgag ggctttgaca aagtgcgcga ggctgaggac
960tctcctcagc atgccgtgga atgccctcct tgtgctcctc ctgtggctgg cggcccttcc
1020gtgtttctgt tccctccaaa gcctaaggac accctgatga tctctcggac ccctgaagtg
1080acctgcgtgg tggtggatgt gtcccaagag gatcccgagg tgcagttcaa ttggtacgtg
1140gacggcgtgg aagtgcacaa cgccaagacc aagcctagag aggaacagtt caactccacc
1200tacagagtgg tgtccgtgct gaccgtgctg caccaggatt ggctgaatgg caaagagtat
1260aagtgcaagg tgtccaacaa gggcctgcct tccagcatcg aaaagaccat ctccaaggcc
1320aagggccagc ctagggaacc ccaggtttac accctgcctc caagccaaga ggaaatgacc
1380aagaaccagg tgtccctgac atgcctggtc aagggcttct acccctccga tatcgccgtg
1440gaatgggagt ctaatggcca gcctgagaac aactacaaga ccacacctcc tgtgctggac
1500tccgacggca gcttctttct gtactcccgc ctgaccgtgg acaagtccag gtggcaagag
1560ggcaacgtgt tctcctgctc cgtgatgcac gaggccctgc acaatcacta cacccagaag
1620tccctgtctc tgtccctggg ctga
16447127PRTArtificial SequenceDescription of Artificial Sequence
Synthetic peptide 71His Ser Ser His Gly Pro Gln Glu Ser Arg Ala Val
Ser Ile Ser Ile1 5 10
15Ile Glu Pro Gly Glu Glu Gly Pro Thr Ala Gly 20
257243PRTArtificial SequenceDescription of Artificial Sequence
Synthetic polypeptide 72His Ser Ser His Gly Pro Gln Glu Ser Arg Ala
Val Ser Ile Ser Ile1 5 10
15Ile Glu Pro Gly Glu Glu Gly Pro Thr Ala Gly Glu Gly Phe Asp Lys
20 25 30Val Arg Glu Ala Glu Asp Ser
Pro Gln His Ala 35 407313PRTArtificial
SequenceDescription of Artificial Sequence Synthetic peptide 73Ser
Val Gly Gly Ser Gly Leu Gly Thr Leu Ala Leu Ala1 5
1074325PRTArtificial SequenceDescription of Artificial Sequence
Synthetic polypeptide 74Ala Gln Asn Ile Thr Ala Arg Ile Gly Glu Pro
Leu Val Leu Lys Cys1 5 10
15Lys Gly Ala Pro Lys Lys Pro Pro Gln Arg Leu Glu Trp Lys Leu Asn
20 25 30Thr Gly Arg Thr Glu Ala Trp
Lys Val Leu Ser Pro Gln Gly Gly Gly 35 40
45Pro Trp Asp Ser Val Ala Arg Val Leu Pro Asn Gly Ser Leu Phe
Leu 50 55 60Pro Ala Val Gly Ile Gln
Asp Glu Gly Ile Phe Arg Cys Gln Ala Met65 70
75 80Asn Arg Asn Gly Lys Glu Thr Lys Ser Asn Tyr
Arg Val Arg Val Tyr 85 90
95Gln Ile Pro Gly Lys Pro Glu Ile Val Asp Ser Ala Ser Glu Leu Thr
100 105 110Ala Gly Val Pro Asn Lys
Val Gly Thr Cys Val Ser Glu Gly Ser Tyr 115 120
125Pro Ala Gly Thr Leu Ser Trp His Leu Asp Gly Lys Pro Leu
Val Pro 130 135 140Asn Glu Lys Gly Val
Ser Val Lys Glu Gln Thr Arg Arg His Pro Glu145 150
155 160Thr Gly Leu Phe Thr Leu Gln Ser Glu Leu
Met Val Thr Pro Ala Arg 165 170
175Gly Gly Asp Pro Arg Pro Thr Phe Ser Cys Ser Phe Ser Pro Gly Leu
180 185 190Pro Arg His Arg Ala
Leu Arg Thr Ala Pro Ile Gln Pro Arg Val Trp 195
200 205Glu Pro Val Pro Leu Glu Glu Val Gln Leu Val Val
Glu Pro Glu Gly 210 215 220Gly Ala Val
Ala Pro Gly Gly Thr Val Thr Leu Thr Cys Glu Val Pro225
230 235 240Ala Gln Pro Ser Pro Gln Ile
His Trp Met Lys Asp Gly Val Pro Leu 245
250 255Pro Leu Pro Pro Ser Pro Val Leu Ile Leu Pro Glu
Ile Gly Pro Gln 260 265 270Asp
Gln Gly Thr Tyr Ser Cys Val Ala Thr His Ser Ser His Gly Pro 275
280 285Gln Glu Ser Arg Ala Val Ser Ile Ser
Ile Ile Glu Pro Gly Glu Glu 290 295
300Gly Pro Thr Ala Gly Glu Gly Phe Asp Lys Val Arg Glu Ala Glu Asp305
310 315 320Ser Pro Gln His
Met 325758PRTArtificial SequenceDescription of Artificial
Sequence Synthetic peptideMOD_RES(6)..(6)N-3-(2,
4-Dinitrophenyl)-L-2,3-diaminopropionyl 75Lys Pro Leu Gly Leu Xaa Ala
Arg1 5
User Contributions:
Comment about this patent or add new information about this topic: