Patent application title: CELL
Inventors:
IPC8 Class: AA61K3517FI
USPC Class:
1 1
Class name:
Publication date: 2021-06-24
Patent application number: 20210187026
Abstract:
The present invention provides a cell which co-expresses a first chimeric
antigen receptor (CAR) and second CAR at the cell surface, each CAR
comprising: (i) an antigen-binding domain; (ii) a spacer (iii) a
trans-membrane domain; and (iv) an endodomain wherein the antigen binding
domains of the first and second CARs bind to different antigens, and
wherein each of the first and second CARs is an activating CAR comprising
an activating endodomain.Claims:
1. A T cell which co-expresses a first chimeric antigen receptor (CAR)
and second CAR at the cell surface, each CAR comprising: (i) an
antigen-binding domain; (ii) a spacer (iii) a trans-membrane domain; and
(iv) an endodomain wherein the antigen binding domains of the first and
second CARs bind to different antigens, and wherein each of the first and
second CARs is an activating CAR comprising an activating endodomain,
wherein the spacer of the first CAR has a different length and/or
configuration from the spacer of the second CAR, such that each CAR is
tailored for recognition of its respective target antigen.
2. A T cell according to claim 1, wherein either the first CAR spacer or the second CAR spacer comprises a CD8 stalk and the other spacer comprises the hinge, CH2 and CH3 domain of IgG1.
3. (canceled)
4. A T cell according to claim 1, wherein one CAR binds CD19 and the other CAR binds CD20.
5. A T cell according to claim 1 which comprises more than two CARs such that it is specifically stimulated by a cell, such as a target cell, bearing a distinct pattern of more than two antigens.
6. A nucleic acid sequence encoding both first and second chimeric antigen receptors (CARs) each CAR comprising: (i) an antigen-binding domain; (ii) a spacer (iii) a trans-membrane domain; and (iv) an endodomain wherein the antigen binding domains of the first and second CARs bind to different antigens, and wherein each of the first and second CARs is an activating CAR comprising an activating endodomain, wherein the spacer of the first CAR has a different length and/or configuration from the spacer of the second CAR, such that each CAR is tailored for recognition of its respective target antigen.
7. A nucleic acid sequence according to claim 6, which has the following structure: AgB1-spacer1-TM1-endo1-coexpr-AbB2-spacer2-TM2-endo2 in which AgB1 is a nucleic acid sequence encoding the antigen-binding domain of the first CAR; spacer 1 is a nucleic acid sequence encoding the spacer of the first CAR; TM1 is a nucleic acid sequence encoding the transmembrane domain of the first CAR; endo 1 is a nucleic acid sequence encoding the endodomain of the first CAR; coexpr is a nucleic acid sequence enabling co-expression of both CARs AgB2 is a nucleic acid sequence encoding the antigen-binding domain of the second CAR; spacer 2 is a nucleic acid sequence encoding the spacer of the second CAR; TM2 is a nucleic acid sequence encoding the transmembrane domain of the second CAR; endo 2 is a nucleic acid sequence encoding the endodomain of the second CAR; which nucleic acid sequence, when expressed in a T cell, encodes a polypeptide which is cleaved at the cleavage site such that the first and second CARs are co-expressed at the T cell surface.
8. (canceled)
9. A nucleic acid sequence according to claim 7, wherein alternative codons are used in regions of sequence encoding the same or similar amino acid sequences, in order to avoid homologous recombination.
10. A kit which comprises (i) a first nucleic acid sequence encoding a first chimeric antigen receptor (CAR), which nucleic acid sequence has the following structure: AgB1-spacer1-TM1-endo1 in which AgB1 is a nucleic acid sequence encoding the antigen-binding domain of the first CAR; spacer 1 is a nucleic acid sequence encoding the spacer of the first CAR; TM1 is a nucleic acid sequence encoding the transmembrane domain of the first CAR; endo 1 is a nucleic acid sequence encoding the endodomain of the first CAR; and (ii) a second nucleic acid sequence encoding a second chimeric antigen receptor (CAR), which nucleic acid sequence has the following structure: AgB2-spacer2-TM2-endo2 AgB2 is a nucleic acid sequence encoding the antigen-binding domain of the second CAR; spacer 2 is a nucleic acid sequence encoding the spacer of the second CAR; TM2 is a nucleic acid sequence encoding the transmembrane domain of the second CAR; endo 2 is a nucleic acid sequence encoding the endodomain of the second CAR wherein the antigen binding domains of the first and second CARs bind to different antigens, and wherein each of the first and second CARs is an activating CAR comprising an activating endodomain, wherein the spacer of the first CAR has a different length and/or configuration from the spacer of the second CAR, such that each CAR is tailored for recognition of its respective target antigen.
11. A kit comprising: a first vector which comprises the first nucleic acid sequence nucleic acid sequence as defined in claim 10 encoding a first chimeric antigen receptor (CAR), which nucleic acid sequence has the following structure: AgB1-spacer1-TM1-endo1 in which AgB1 is a nucleic acid sequence encoding the antigen-binding domain of the first CAR; spacer 1 is a nucleic acid sequence encoding the spacer of the first CAR; TM1 is a nucleic acid sequence encoding the transmembrane domain of the first CAR; endo 1 is a nucleic acid sequence encoding the endodomain of the first CAR; and a second vector which comprises a second nucleic acid sequence encoding a second CAR, which nucleic acid sequence has the following structure: AgB2-spacer2-TM2-endo2 AgB2 is a nucleic acid sequence encoding the antigen-binding domain of the second CAR; spacer 2 is a nucleic acid sequence encoding the spacer of the second CAR; TM2 is a a nucleic acid sequence encoding the transmembrane domain of the second CAR; endo 2 is a nucleic acid sequence encoding the endodomain of the second CAR wherein the antigen binding domains of the first and second CARs bind to different antigens, and wherein each of the first and second CARs is an activating CAR comprising an activating endodomain, wherein the spacer of the first CAR has a different length and/or configuration from the spacer of the second CAR, such that each CAR is tailored for recognition of its respective target antigens.
12. A kit according to claim 11, wherein the vectors are integrating viral vectors or transposons.
13. A vector comprising a nucleic acid sequence according to claim 6.
14. A retroviral vector or a lentiviral vector or a transposon according to claim 13.
15. A method for making a T cell according to claim 1, which comprises the step of introducing into a T cell: (i) a nucleic acid sequence or a vector comprising a nucleic acid sequence encoding both first and second chimeric antigen receptors (CARs), each CAR comprising: (a) an antigen-binding domain; (b) a spacer (c) a trans-membrane domain; and (d) an endodomain wherein the antigen binding domains of the first and second CARs bind to different antigens, and wherein each of the first and second CARs is an activating CAR comprising an activating endodomain, wherein the spacer of the first CAR has a different length and/or configuration from the spacer of the second CAR, such that each CAR is tailored for recognition of its respective target antigen; (ii) a kit comprising (a) a first nucleic acid sequence encoding a first chimeric antigen receptor (CAR), which nucleic acid sequence has the following structure: AgB1-spacer1-TM1-endo1 in which AgB1 is a nucleic acid sequence encoding the antigen-binding domain of the first CAR; spacer 1 is a nucleic acid sequence encoding the spacer of the first CAR; TM1 is a nucleic acid sequence encoding the transmembrane domain of the first CAR; endo 1 is a nucleic acid sequence encoding the endodomain of the first CAR; and (b) a second nucleic acid sequence encoding a second chimeric antigen receptor (CAR), which nucleic acid sequence has the following structure: AgB2-spacer2-TM2-endo2 AgB2 is a nucleic acid sequence encoding the antigen-binding domain of the second CAR; spacer 2 is a nucleic acid sequence encoding the spacer of the second CAR; TM2 is a nucleic acid sequence encoding the transmembrane domain of the second CAR; endo 2 is a nucleic acid sequence encoding the endodomain of the second CAR wherein the antigen binding domains of the first and second CARs bind to different antigens, and wherein each of the first and second CARs is an activating CAR comprising an activating endodomain, wherein the spacer of the first CAR has a different length and/or configuration from the spacer of the second CAR, such that each CAR is tailored for recognition of its respective target antigen; or (iii) a kit comprising: (a) a first vector which comprises the first nucleic acid sequence encoding a first chimeric antigen receptor (CAR), which nucleic acid sequence has the following structure: AgB1-spacer1-TM1-endo1 in which AgB1 is a nucleic acid sequence encoding the antigen-binding domain of the first CAR; spacer 1 is a nucleic acid sequence encoding the spacer of the first CAR: TM1 is a nucleic acid sequence encoding the transmembrane domain of the first CAR; endo 1 is a nucleic acid sequence encoding the endodomain of the first CAR; and (b) a second vector which comprises a second nucleic acid sequence encoding a second CAR, which nucleic acid sequence has the following structure: AgB2-spacer2-TM2-endo2 AgB2 is a nucleic acid sequence encoding the antigen-binding domain of the second CAR; spacer 2 is a nucleic acid sequence encoding the spacer of the second CAR; TM2 is a nucleic acid sequence encoding the transmembrane domain of the second CAR; endo 2 is a nucleic acid sequence encoding the endodomain of the second CAR wherein the antigen binding domains of the first and second CARs bind to different antigens, and wherein each of the first and second CARs is an activating CAR comprising an activating endodomain, wherein the spacer of the first CAR has a different length and/or configuration from the spacer of the second CAR, such that each CAR is tailored for recognition of its respective target antigens.
16. A method according to claim 15, wherein the T cell is from a sample isolated from a subject.
17. A pharmaceutical composition comprising a plurality of T cells according to claim 1.
18. A method for treating and/or preventing a disease, which comprises the step of administering a pharmaceutical composition according to claim 17 to a subject.
19. A method according to claim 18, which comprises the following steps: (i) isolation of a T cell-containing sample from a subject; (ii) transduction or transfection of the T cells with: (a) a nucleic acid sequence or a vector comprising a nucleic acid sequence encoding both first and second chimeric antigen receptors (CARs), each CAR comprising: (1) an antigen-binding domain; (2) a spacer (3) a trans-membrane domain; and (4) an endodomain wherein the antigen binding domains of the first and second CARs bind to different antigens, and wherein each of the first and second CARs is an activating CAR comprising an activating endodomain, wherein the spacer of the first CAR has a different length and/or configuration from the spacer of the second CAR, such that each CAR is tailored for recognition of its respective target antigen; (b) a kit comprising (1) a first nucleic acid sequence encoding a first chimeric antigen receptor (CAR), which nucleic acid sequence has the following structure: AgB1-spacer1-TM1-endo1 in which AgB1 is a nucleic acid sequence encoding the antigen-binding domain of the first CAR; spacer 1 is a nucleic acid sequence encoding the spacer of the first CAR: TM1 is a nucleic acid sequence encoding the transmembrane domain of the first CAR; endo 1 is a nucleic acid sequence encoding the endodomain of the first CAR; and (2) a second nucleic acid sequence encoding a second chimeric antigen receptor (CAR), which nucleic acid sequence has the following structure: AgB2-spacer2-TM2-endo2 AgB2 is a nucleic acid sequence encoding the antigen-binding domain of the second CAR; spacer 2 is a nucleic acid sequence encoding the spacer of the second CAR; TM2 is a nucleic acid sequence encoding the transmembrane domain of the second CAR; endo 2 is a nucleic acid sequence encoding the endodomain of the second CAR wherein the antigen binding domains of the first and second CARs bind to different antigens, and wherein each of the first and second CARs is an activating CAR comprising an activating endodomain, wherein the spacer of the first CAR has a different length and/or configuration from the spacer of the second CAR, such that each CAR is tailored for recognition of its respective target antigen; or (c) a kit comprising: (1) a first vector which comprises the first nucleic acid sequence encoding a first chimeric antigen receptor (CAR), which nucleic acid sequence has the following structure: AgB1-spacer1-TM1-endo1 in which AgB1 is a nucleic acid sequence encoding the antigen-binding domain of the first CAR; spacer 1 is a nucleic acid sequence encoding the spacer of the first CAR: TM1 is a nucleic acid sequence encoding the transmembrane domain of the first CAR; endo 1 is a nucleic acid sequence encoding the endodomain of the first CAR; and (2) a second vector which comprises a second nucleic acid sequence encoding a second CAR, which nucleic acid sequence has the following structure: AgB2-spacer2-TM2-endo2 AgB2 is a nucleic acid sequence encoding the antigen-binding domain of the second CAR; spacer 2 is a nucleic acid sequence encoding the spacer of the second CAR; TM2 is a nucleic acid sequence encoding the transmembrane domain of the second CAR; endo 2 is a nucleic acid sequence encoding the endodomain of the second CAR wherein the antigen binding domains of the first and second CARs bind to different antigens, and wherein each of the first and second CARs is an activating CAR comprising an activating endodomain, wherein the spacer of the first CAR has a different length and/or configuration from the spacer of the second CAR, such that each CAR is tailored for recognition of its respective target antigens; and (iii) administering the T cells from (ii) to a the subject.
20. A method according to claim 19, wherein the disease is a cancer.
21-26. (canceled)
27. A natural killer (NK) cell which co-expresses a first chimeric antigen receptor (CAR) and second CAR at the cell surface, each CAR comprising: (i) an antigen-binding domain; (ii) a spacer (iii) a trans-membrane domain; and (iv) an endodomain wherein the antigen binding domains of the first and second CARs bind to different antigens, and wherein each of the first and second CARs is an activating CAR comprising an activating endodomain, wherein the spacer of the first CAR has a different length and/or configuration from the spacer of the second CAR, such that each CAR is tailored for recognition of its respective target antigen.
28. A cell composition comprising: (i) T cells according to claim 1, and/or (ii) NK cells which co-express a first chimeric antigen receptor (CAR) and second CAR at the cell surface, each CAR comprising: (i) an antigen-binding domain; (ii) a spacer (iii) a trans-membrane domain; and (iv) an endodomain wherein the antigen binding domains of the first and second CARs bind to different antigens, and wherein each of the first and second CARs is an activating CAR comprising an activating endodomain, wherein the spacer of the first CAR has a different length and/or configuration from the spacer of the second CAR, such that each CAR is tailored for recognition of its respective target antigen made by transducing a blood-sample ex vivo with a nucleic acid encoding the first and second CARs.
Description:
CROSS-REFERENCE TO RELATED APPLICATIONS
[0001] This is a Continuation of U.S. application Ser. No. 15/037,391, filed May 18, 2016, which is a U.S. National Phase of International Application No. PCT/GB2014/053451, filed Nov. 21, 2014, which claims priority to Great Britain Application No. 1410934.2, filed Jun. 19, 2014 and Great Britain Application No. 1320573.7, filed Nov. 21, 2013.
FIELD OF THE INVENTION
[0002] The present invention relates to a cell which comprises more than one chimeric antigen receptor (CAR). The cell may be capable of specifically recognising a target cell, due to a differential pattern of expression (or non-expression) of two or more antigens by the target cell.
BACKGROUND TO THE INVENTION
[0003] A number of immunotherapeutic agents have been described for use in cancer treatment, including therapeutic monoclonal antibodies (mAbs), immunoconjugated mAbs, radioconjugated mAbs and bi-specific T-cell engagers.
[0004] Typically these immunotherapeutic agents target a single antigen: for instance, Rituximab targets CD20; Myelotarg targets CD33; and Alemtuzumab targets CD52.
[0005] However, it is relatively rare for the presence (or absence) of a single antigen effectively to describe a cancer.
[0006] A particular problem in the field of oncology is provided by the Goldie-Coldman hypothesis: which describes that the sole targeting of a single antigen may result in tumour escape by modulation of said antigen due to the high mutation rate inherent in most cancers. This modulation of antigen expression may reduce the efficacy of known immunotherapeutics.
[0007] Tumour heterogeneity describes the observation that different tumour cells can show distinct morphological and phenotypic profiles, including cellular morphology, gene expression, metabolism, proliferation and metastatic potential. This phenomenon occurs both between tumours and within tumours. Tumour heterogeneity has been observed in leukaemias, breast, prostate, colon, brain, head and neck, bladder and gynecological cancers, for example. Tumour heterogeneity may result in the expression of different antigens on the surface of cells within a tumour or between tumours. This heterogeneity of cancer cells introduces significant challenges in designing effective treatment strategies.
[0008] There is thus a need for immunotherapeutic agents which are capable of more targeting to reflect the complex pattern of marker expression that is associated with many cancers.
[0009] Chimeric Antigen Receptors (CARs)
[0010] Chimeric antigen receptors are proteins which graft the specificity of a monoclonal antibody (mAb) to the effector function of a T-cell. Their usual form is that of a type I transmembrane domain protein with an antigen recognizing amino terminus, a spacer, a transmembrane domain all connected to a compound endodomain which transmits T-cell survival and activation signals (see FIG. 1A).
[0011] The most common form of these molecules are fusions of single-chain variable fragments (scFv) derived from monoclonal antibodies which recognize a target antigen, fused via a spacer and a trans-membrane domain to a signaling endodomain. Such molecules result in activation of the T-cell in response to recognition by the scFv of its target. When T cells express such a CAR, they recognize and kill target cells that express the target antigen. Several CARs have been developed against tumour associated antigens, and adoptive transfer approaches using such CAR-expressing T cells are currently in clinical trial for the treatment of various cancers.
[0012] It has been observed that using a CAR approach for cancer treatment, tumour heterogeneity and immunoediting can cause escape from CAR treatment. For example, in the study described by Grupp et al (2013; New Eng. J. Med 368:1509-1518) CAR-modified T cell approach was used for the treatment of acute lymphoid leukemia. It was found that one patient of the anti-CD19 CAR trial relapsed with CD19-negative disease two months after treatment.
[0013] There is thus a need for alternative CAR treatment approaches which address the problems of cancer escape and tumour heterogeneity.
[0014] Expression of Two CAR Binding Specificities
[0015] Bispecific CARs known as tandem CARs or TanCARs have been developed in an attempt to target multiple cancer specific markers simultaneously. In a TanCAR, the extracellular domain comprises two antigen binding specificities in tandem, joined by a linker. The two binding specificities (scFvs) are thus both linked to a single transmembrane portion: one scFv being juxtaposed to the membrane and the other being in a distal position.
[0016] Grada et al (2013, Mol Ther Nucleic Acids 2:e105 describes a TanCAR which includes a CD19-specific scFv, followed by a Gly-Ser linker and then a HER2-specific scFv. The HER2-scFv was in the juxta-membrane position, and the CD19-scFv in the distal position. The Tan CAR was shown to induce distinct T cell reactivity against each of the two tumour restricted antigens. This arrangement was chosen because the respective lengths of HER2 (632 aa/125 .ANG.) and CD19 (280aa, 65 .ANG.) lends itself to that particular spatial arrangement. It was also known that the HER2 scFv bound the distal-most 4 loops of HER2.
[0017] The problem with this approach is that the juxta-membrane scFv may be inaccessible due to the presence of the distal scFv, especially which it is bound to the antigen. In view of the need to choose the relative positions of the two scFvs in view of the spatial arrangement of the antigen on the target cell, it may not be possible to use this approach for all scFv binding pairs. Moreover, it is unlikely that the TanCar approach could be used for more than two scFvs, a TanCAR with three or more scFvs would be a very large molecule and the scFvs may well fold back on each other, obscuring the antigen-binding sites. It is also doubtful that antigen-binding by the most distal scFv, which is separated from the transmembrane domain by two or more further scFvs, would be capable of triggering T cell activation.
[0018] There is thus a need for an alternative approach to express two CAR binding specificities on the surface of a cell such as a T cell.
DESCRIPTION OF THE FIGURES
[0019] FIG. 1A-1D: FIG. 1A. Generalized architecture of a CAR: A binding domain recognizes antigen; the spacer elevates the binding domain from the cell surface; the trans-membrane domain anchors the protein to the membrane and the endodomain transmits signals. FIG. 1B-1D. Different generations and permutations of CAR endodomains: FIG. 1B. initial designs transmitted ITAM signals alone through Fc.epsilon.R1-.gamma. or CD3.zeta. endodomain, while later designs transmitted additional FIG. 1C. one or FIG. 1D. two co-stimulatory signals in cis.
[0020] FIG. 2: Schematic diagram illustrating the invention
[0021] The invention relates to engineering T-cells to respond to logical rules of target cell antigen expression. This is best illustrated with an imaginary FACS scatter-plot. Target cell populations express both, either or neither of antigens "A" and "B". Different target populations (marked in red) are killed by T-cells transduced with a pair of CARs connected by different gates. With OR gated receptors, both single-positive and double-positive cells will be killed. With AND gated receptors, only double-positive target cells are killed. With AND NOT gating, double-positive targets are preserved while single-positive targets
[0022] FIG. 3: Creation of target cell populations
[0023] SupT1 cells were used as target cells. These cells were transduced to express either CD19, CD33 or both CD19 and CD33. Target cells were stained with appropriate antibodies and analysed by flow cytometry.
[0024] FIG. 4: Cassette design for an OR gate
[0025] A single open reading frame provides both CARs with an in-frame FMD-2A sequence resulting in two proteins. Signal1 is a signal peptide derived from IgG1 (but can be any effective signal peptide). scFv1 is the single-chain variable segment which recognizes CD19 (but can be a scFv or peptide loop or ligand or in fact any domain which recognizes any desired arbitrary target). STK is the CD8 stalk but may be any suitable extracellular domain. CD28tm is the
[0026] CD28 trans-membrane domain but can by any stable type I protein transmembrane domain and CD3Z is the CD3 Zeta endodomain but can be any endodomain which contains ITAMs. Signal2 is a signal peptide derived from CD8 but can be any effective signal peptide which is different in DNA sequence from signal1. scFv recognizes CD33 but as for scFv1 is arbitrary. HC2CH3 is the hinge-CH2-CH3 of human IgG1 but can be any extracellular domain which does not cross-pair with the spacer used in the first CAR. CD28tm' and CD3Z' code for the same protein sequence as CD28tm and CD3Z but are codon-wobbled to prevent homologous recombination.
[0027] FIG. 5A-5B: Schematic representation of the chimeric antigen receptors (CARs) for an OR gate
[0028] Stimulatory CARs were constructed consisting of either an N-terminal FIG. 5A. anti-CD19 scFv domain followed by the extracellular hinge region of human CD8 or FIG. 5B. anti-CD33 scFv domain followed by the extracellular hinge, CH2 and CH3 (containing a pvaa mutation to reduce FcR binding) region of human IgG1. Both receptors contain a human CD28 transmembrane domain and a human CD3 Zeta (CD247) intracellular domain. "S" depicts the presence of disulphide bonds.
[0029] FIG. 6: Expression data showing co-expression of both CARs on the surface of one T-cell.
[0030] FIG. 7: Functional analysis of the OR gate
[0031] Effector cells (5.times.10{circumflex over ( )}4 cells) expressing the OR gate construct were co-incubated with a varying number of target cells and IL-2 was analysed after 16 hours by ELISA. The graph displays the average maximum IL-2 secretion from a chemical stimulation (PMA and lonomycin) of the effector cells alone and the average background IL-2 from effector cells without any stimulus from three replicates.
[0032] FIG. 8: Cartoon showing both versions of the cassette used to express both AND gates Activating and inhibiting CARs were co-expressed once again using a FMD-2A sequence. Signal1 is a signal peptide derived from IgG1 (but can be any effective signal peptide). scFv1 is the single-chain variable segment which recognizes CD19 (but can be a scFv or peptide loop or ligand or in fact any domain which recognizes any desired arbitrary target). STK is the CD8 stalk but may be any non-bulky extracellular domain. CD28tm is the CD28 trans-membrane domain but can by any stable type I protein transmembrane domain and CD3Z is the CD3 Zeta endodomain but can be any endodomain which contains ITAMs. Signal2 is a signal peptide derived from CD8 but can be any effective signal peptide which is different in DNA sequence from signal1. scFv recognizes CD33 but as for scFv1 is arbitrary. HC2CH3 is the hinge-CH2-CH3 of human IgG1 but can be any bulky extracellular domain. CD45 and CD148 are the transmembrane and endodomains of CD45 and CD148 respectively but can be derived from any of this class of protein.
[0033] FIG. 9: Schematic representation of the protein structure of chimeric antigen receptors (CARs) for the AND gates
[0034] The stimulatory CAR consisting of an N-terminal anti-CD19 scFv domain followed by the extracellular stalk region of human CD8, human CD28 transmembrane domain and human CD3 Zeta (CD247) intracellular domain. Two inhibitory CARs were tested. These consist of an N-terminal anti-CD33 scFv domain followed by the extracellular hinge, CH2 and CH3 (containing a pvaa mutation to reduce FcR binding) region of human IgG1 followed by the transmembrane and intracellular domain of either human CD148 or CD45. "S" depicts the presence of disulphide bonds.
[0035] FIG. 10: Co-expression of activation and inhibitory CARs
[0036] BW5147 cells were used as effector cells and were transduced to express both the activation anti-CD19 CAR and one of the inhibitory anti-CD33 CARs. Effector cells were stained with CD19-mouse-Fc and CD33-rabbit-Fc and with appropriate secondary antibodies and analysed by flow cytometry.
[0037] FIG. 11A-11B: Functional analysis of the AND gates
[0038] Effector cells (5.times.10{circumflex over ( )}4 cells) expressing activation anti-CD19 CAR and the inhibitory anti-CD33 CAR with the FIG. 11A. CD148 or FIG. 11B. CXD45 intracellular domain were co-incubated with a varying number of target cells and IL-2 was analysed after 16 hours by ELISA. The graph displays the maximum IL-2 secretion from a chemical stimulation (PMA and lonomycin) of the effector cells alone and the background IL-2 from effector cells without any stimulus from three replicates.
[0039] FIG. 12: Cartoon showing three versions of the cassette used to generate the AND NOT gate
[0040] Activating and inhibiting CARs were co-expressed once again using a FMD-2A sequence. Signal1 is a signal peptide derived from IgG1 (but can be any effective signal peptide). scFv1 is the single-chain variable segment which recognizes CD19 (but can be a scFv or peptide loop or ligand or in fact any domain which recognizes any desired arbitrary target). STK is the human CD8 stalk but may be any non-bulky extracellular domain. CD28tm is the CD28 trans-membrane domain but can by any stable type I protein transmembrane domain and CD3Z is the CD3 Zeta endodomain but can be any endodomain which contains ITAMs. Signal2 is a signal peptide derived from CD8 but can be any effective signal peptide which is different in DNA sequence from signal1. scFv recognizes CD33 but as for scFv1 is arbitrary. muSTK is the mouse CD8 stalk but can be any spacer which co-localises but does not cross-pair with that of the activating CAR. dPTPN6 is the phosphatase domain of PTPN6. LAIR1 is the transmembrane and endodomain of LAIR1. 2Aw is a codon-wobbled version of the FMD-2A sequence. SH2-CD148 is the SH2 domain of PTPN6 fused with the phosphatase domain of CD148.
[0041] FIG. 13A-13D: Schematic representation of the chimeric antigen receptors (CARs) for the NOT AND gates
[0042] FIG. 13A. A stimulatory CAR consisting of an N-terminal anti-CD19 scFv domain followed by the stalk region of human CD8, human CD28 transmembrane domain and human CD247 intracellular domain. FIG. 13B. An inhibitory CAR consisting of an N-terminal anti-CD33 scFv domain followed by the stalk region of mouse CD8, transmembrane region of mouse CD8 and the phosphatase domain of PTPN6. FIG. 13C. an inhibitory CAR consisting of an N-terminal anti-CD33 scFv domain followed by the stalk region of mouse CD8 and the transmembrane and intracellular segments of LAIR1. FIG. 13D. An inhibitory CAR identical to previous CAR except it is co-expressed with a fusion protein of the PTPN6 SH2 domain and the CD148 phosphatase domain.
[0043] FIG. 14A-14B: Functional analysis of the NOT AND gate
[0044] Effector cells (5.times.10{circumflex over ( )}4 cells) expressing the FIG. 14A. full length SHP-1 or FIG. 14B. truncated form of SHP-1 were co-incubated with a varying number of target cells and IL-2 was analysed after 16 hours by ELISA. The graph displays the average maximum IL-2 secretion from a chemical stimulation (PMA and lonomycin) of the effector cells alone and the average background IL-2 from effector cells without any stimulus from three replicates.
[0045] FIG. 15: Amino acid sequence of an OR gate
[0046] FIG. 16: Amino acid sequence of a CD148 and a CD45 based AND gate
[0047] FIG. 17: Amino acid sequence of three AND NOT gates
[0048] FIG. 18A-18C: Dissection of AND gate function
[0049] FIG. 18A. The prototype AND gate is illustrated on the right and its function in response to CD19, CD33 single and CD19, CD33 double positive targets is shown on the left. FIG. 18B. The scFvs are swapped so the activating endodomain is triggered by CD33 and the inhibitory endodomain is activated by CD19. This AND gate remains functional despite this scFv swap. FIG. 18C. The CD8 mouse stalk replaced Fc in the spacer of the inhibitory CAR. With this modification, the gate fails to respond to either CD19 single positive or CD19, CD33 double positive targets.
[0050] FIG. 19A-19D: Expression of target antigens on artificial target cells
[0051] FIG. 19A. Shows flow cytometry scatter plots CD19 vs CD33 of the original set of artificial target cells derived from SupT1 cells. From left to right: double negative SupT1 cells, SupT1 cells positive for CD19, positive for CD33 and positive for both CD19 and CD33. FIG. 19B. Shows flow cytometry scatter plots CD19 vs GD2 of the artificial target cells generated to test the CD19 AND GD2 gate: From left to right: negative SupT1 cells, SupT1 cells expressing CD19, SupT1 cells transduced with GD2 and GM3 synthase vectors which become GD2 positive and SupT1 cells transduced with CD19 as well as GD2 and GM3 synthase which are positive for both GD2 and CD19. FIG. 19C. Shows flow cytometry scatter plots of CD19 vs EGFRvIII of the artificial targets generated to test the CD19 AND EGFRvIII gate. From left to right: negative SupT1 cells, SupT1 cells expressing CD19, SupT1 cells transduced with EGFRvIII and SupT1 cells transduced with both CD19 and EGFRvIII. FIG. 19D. Shows flow cytometry scatter plots of CD19 vs CD5 of the artificial targets generated to test the CD19 AND CD5 gate. From left to right: negative 293T cells, 293T cells transduced with CD19, 293T cells transduced with CD5, 293T cells transduced with both CD5 and CD19 vectors.
[0052] FIG. 20A-20D: Generalizability of the AND gate
[0053] FIG. 20A. Cartoon of AND gate modified so the second CAR's specificity is changed from the original specificity of CD33, to generate 3 new CARs: CD19 AND GD2, CD19 AND EGFRvIII, CD19 AND CD5. FIG. 20B. CD19 AND GD2 AND gate: Left: expression of AND gate is shown recombinant CD19-Fc staining (x-axis) for the CD19 CAR, versus anti-human-Fc staining (Y-axis) for the GD2 CAR. Right: function in response to single positive and double positive targets. FIG. 20C. CD19 AND EGFRvIII AND gate: Left: expression of AND gate is shown recombinant CD19-Fc staining (x-axis) for the CD19 CAR, versus anti-human-Fc staining (Y-axis) for the EGFRvIII CAR. Right: function in response to single positive and double positive targets. FIG. 20D. CD19 AND CD5 AND gate: Left: expression of AND gate is shown recombinant CD19-Fc staining (x-axis) for the CD19 CAR, versus anti-human-Fc staining (Y-axis) for the CD5 CAR. Right: function in response to single positive and double positive targets.
[0054] FIG. 21A-21C: Function of the AND NOT Gates
[0055] Function of the three implementations of an AND NOT gate is shown. A cartoon of the gates tested is shown to the right, and function in response to single positive and double positive targets is shown to the left. FIG. 21A. PTPN6 based AND NOT gate whereby the first CAR recognizes CD19, has a human CD8 stalk spacer and an ITAM containing activating endodomain; is co-expressed with a second CAR that recognizes CD33, has a mouse CD8 stalk spacer and has an endodomain comprising of a PTPN6 phosphatase domain. FIG. 21B. ITIM based AND NOT gate is identical to the PTPN6 gate, except the endodomain is replaced by the endodomain from LAIR1. FIG. 21C. CD148 boosted AND NOT gate is identical to the ITIM based gate except an additional fusion between the PTPN6 SH2 and the endodomain of CD148 is expressed. All three gates work as expected with activation in response to CD19 but not in response to CD19 and CD33 together.
[0056] FIG. 22A-22C: Dissection of PTPN6 based AND NOT gate function
[0057] The original PTPN6 based AND NOT gate is compared with several controls to demonstrate the model. A cartoon of the gates tested is shown to the right, and function in response to single positive and double positive targets is shown to the left. FIG. 22A. Original AND NOT gate whereby the first CAR recognizes CD19, has a human CD8 stalk spacer and an ITAM containing activating endodomain; is co-expressed with a second CAR recognizes CD33, has a mouse CD8 stalk spacer and has an endodomain comprising of a PTPN6 phosphatase domain. FIG. 22B. AND NOT gate modified so the mouse CD8 stalk spacer is replaced with an Fc spacer. FIG. 22C. AND NOT gate modified so that the PTPN6 phosphatase domain is replaced with the endodomain from CD148. Original AND NOT gate (FIG. 22A) functions as expected triggering in response to CD19, but not in response to both CD19 and CD33. The gate in FIG. 22B. triggers both in response to CD19 along or CD19 and CD33 together. The gate in FIG. 22C. does not trigger in response to one or both targets.
[0058] FIG. 23A-23B: Dissection of LAIR1 based AND NOT gate
[0059] Functional activity against CD19 positive, CD33 positive and CD19, CD33 double-positive targets is shown. FIG. 23A. Structure and activity of the original ITIM based AND NOT gate. This gate is composed of two CARs: the first recognizes CD19, has a human CD8 stalk spacer and an ITAM containing endodomain; the second CAR recognizes CD33, has a mouse CD8 stalk spacer and an ITIM containing endodomain. FIG. 23B. Structure and activity of the control ITIM based gate where the mouse CD8 stalk spacer has been replaced by an Fc domain. This gate is composed of two CARs: the first recognizes CD19, has a human CD8 stalk spacer and an ITAM containing endodomain; the second CAR recognizes CD33, has an Fc spacer and an ITIM containing endodomain. Both gates respond to CD19 single positive targets, while only the original gate is inactive in response to CD19 and CD33 double positive targets.
[0060] FIG. 24A-24D: Kinetic segregation model of CAR logic gates
[0061] Model of kinetic segregation and behaviour of AND gate, NOT AND gate and controls. CARs recognize either CD19 or CD33. The immunological synapse can be imagined between the blue line, which represents the target cell membrane and the red line, which represents the T-cell membrane. `45` is the native CD45 protein present on T-cells. `H8` is a CAR ectodomain with human CD8 stalk as the spacer. `Fc` is a CAR ectodomain with human HCH2CH3 as the spacer. `M8` is a CAR ectodomain with murine CD8 stalk as the spacer. `19` represents CD19 on the target cell surface. `33` represents CD33 on the target cell surface. The symbol `.sym.` represents an activating endodomain containing ITAMS. The symbol `.crclbar.` represents a phosphatase with slow kinetics--a `ligation on` endodomain such as one comprising of the catalytic domain of PTPN6 or an ITIM. The symbol `0` represents a phosphatase with fast kinetics--a `ligation off` endodomain such as the endodomain of CD45 or CD148. This symbol is enlarged in the figure to emphasize its potent activity.
[0062] FIG. 24A. Shows the postulated behaviour of the functional AND gate which comprises of a pair of CARs whereby the first CAR recognizes CD19, has a human CD8 stalk spacer and an activating endodomain; and the second CAR recognizes CD33, has an Fc spacer and a CD148 endodomain;
[0063] FIG. 24B. Shows the postulated behaviour of the control AND gate. Here, the first CAR recognizes CD19, has a human CD8 stalk spacer and an activating endodomain; and the second CAR recognizes CD33, but has a mouse CD8 stalk spacer and a CD148 endodomain;
[0064] FIG. 24C. Shows the behaviour of a functional AND NOT gate which comprises of a pair of CARs whereby the first CAR recognizes CD19, has a human CD8 stalk spacer and an activating endodomain; and the second CAR recognizes CD33, has a mouse CD8 stalk spacer and a PTPN6 endodomain;
[0065] FIG. 24D. Shows the postulated behaviour of the control AND NOT gate which comprises of a pair of CARs whereby the first CAR recognizes CD19, has a human CD8 stalk spacer and an activating endodomain; and the second CAR recognizes CD33, but has an Fc spacer and a PTPN6 endodomain; In the first column, target cells are both CD19 and CD33 negative. In the second column, targets are CD19 negative and CD33 positive. In the third column, target cells are CD19 positive and CD33 negative. In the fourth column, target cells are positive for both CD19 and CD33.
[0066] FIG. 25A-25C: Design of APRIL-based CARs.
[0067] The CAR design was modified so that the scFv was replaced with a modified form of A proliferation-inducing ligand (APRIL), which interacts with interacts with BCMA, TACl and proteoglycans, to act as an antigen binding domain: APRIL was truncated so that the proteoglycan binding amino-terminus is absent. FIG. 25A. signal peptide was then attached to truncated APRIL amino-terminus to direct the protein to the cell surface. Three CARs were generated with this APRIL based binding domain: FIG. 25A. In the first CAR, the human CD8 stalk domain was used as a spacer domain. B. In the second CAR, the hinge from IgG1 was used as a spacer domain. FIG. 25C. In the third CAR, the hinge, CH2 and CH3 domains of human IgG1 modified with the pva/a mutations described by Hombach et al (2010 Gene Ther. 17:1206-1213) to reduce Fc Receptor binding was used as a spacer (henceforth referred as Fc-pvaa). In all CARs, these spacers were connected to the CD28 transmembrane domain and then to a tripartite endodomain containing a fusion of the CD28, OX40 and the CD3-Zeta endodomain (Pule et al, Molecular therapy, 2005: Volume 12; Issue 5; Pages 933-41).
[0068] FIG. 26A-26C: Annotated Amino acid sequence of the above three APRIL-CARS
[0069] FIG. 26A. Shows the annotated amino acid sequence of the CD8 stalk APRIL CAR; FIG. 26B. Shows the annotated amino acid sequence of the APRIL IgG1 hinge based CAR; FIG. 26C. Shows the annotated amino acid sequence of the APRIL Fc-pvaa based CAR.
[0070] FIG. 27A-27C: Expression and ligand binding of different APRIL based CARs
[0071] FIG. 27A. The receptors were co-expressed with a marker gene truncated CD34 in a retroviral gene vector. Expression of the marker gene on transduced cells allows confirmation of transduction. FIG. 27B. T-cells were transduced with APRIL based CARs with either the CD8 stalk spacer, IgG1 hinge or Fc spacer. To test whether these receptors could be stably expressed on the cell surface, T-cells were then stained with anti-APRIL-biotin/Streptavidin APC and anti-CD34. Flow-cytometric analysis was performed. APRIL was equally detected on the cell surface in the three CARs suggesting they are equally stably expressed. FIG. 27C. Next, the capacity of the CARs to recognize TACl and BCMA was determined. The transduced T-cells were stained with either recombinant BCMA or TACl fused to mouse IgG2a Fc fusion along with an anti-mouse secondary and anti-CD34. All three receptor formats showed binding to both BCMA and TACl. A surprising finding was that binding to BCMA seemed greater than to TACl. A further surprising finding was that although all three CARs were equally expressed, the CD8 stalk and IgG1 hinge CARs appeared better at recognizing BCMA and TACl than that with the Fc spacer.
[0072] FIG. 28A-28C: Function of the different CAR constructs.
[0073] Functional assays were performed with the three different APRIL based CARs. Normal donor peripheral blood T-cells either non-transduced (NT), or transduced to express the different CARs. Transduction was performed using equal titer supernatant. These T-cells were then CD56 depleted to remove non-specific NK activity and used as effectors. SupT1 cells either non-transduced (NT), or transduced to express BCMA or TACl were used as targets. Data shown is mean and standard deviation from 5 independent experiments. FIG. 28A. Specific killing of BCMA and TACl expressing T-cells was determined using Chromium release. FIG. 28B. Interferon-.mu. release was also determined. Targets and effectors were co-cultured at a ratio of 1:1. After 24 hours, Interferon-.mu. in the supernatant was assayed by ELISA. FIG. 28C. Proliferation/survival of CAR T-cells were also determined by counting number of CAR T-cells in the same co-culture incubated for a further 6 days. All 3 CARs direct responses against BCMA and TACl expressing targets. The responses to BCMA were greater than for TACl.
[0074] FIG. 29: AND gate functionality in primary cells.
[0075] PBMCs were isolated from blood and stimulated using PHA and IL-2. Two days later the cells were transduced on retronectin coated plates with retro virus containing the CD19:CD33 AND gate construct. On day 5 the expression level of the two CARs translated by the AND gate construct was evaluated via flow cytometry and the cells were depleted of CD56+ cells (predominantly NK cells). On day 6 the PBMCs were placed in a co-culture with target cells at a 1:2 effector to target cell ratio. On day 8 the supernatant was collected and analysed for IFN-gamma secretion via ELISA
[0076] FIG. 30A-30B: FIG. 30A. DNA alignment of the CD28 transmembrane and cytosolic domain of TCRz in the OR gate platform FIG. 30B. Protein alignment of the CD28 transmembrane and cytosolic domain of TCRz in the OR gate platform.
[0077] FIG. 31: Design rules for building logic gated CAR T-cells. OR, AND NOT and AND gated CARs are shown in cartoon format with the target cell on top, and the T-cell at the bottom with the synapse in the middle. Target cells express arbitrary target antigens A, and B.
[0078] T-cells express two CARs which comprise of anti-A and anti-B recognition domains, spacers and endodomains. An OR gate requires (1) spacers simply which allow antigen recognition and CAR activation, and (2) both CARs to have activatory endodomains; An AND NOT gate requires (1) spacers which result in co-segregation of both CARs upon recognition of both antigens and (2) one CAR with an activatory endodomain, and the other whose endodomain comprises or recruits a weak phosphatase; An AND gate requires (1) spacers which result in segregation of both CARs into different parts of the immunological synapse upon recognition of both antigens and (2) one CAR with an activatory endodomain, and the other whose endodomain comprises of a potent phosphatase.
SUMMARY OF ASPECTS OF THE INVENTION
[0079] The present inventors have developed a panel of "logic-gated" chimeric antigen receptor pairs which, when expressed by a cell, such as a T cell, are capable of detecting a particular pattern of expression of at least two target antigens. If the at least two target antigens are arbitrarily denoted as antigen A and antigen B, the three possible options are as follows:
[0080] "OR GATE"--T cell triggers when either antigen A or antigen B is present on the target cell "AND GATE"--T cell triggers only when both antigens A and B are present on the target cell "AND NOT GATE"--T cell triggers if antigen A is present alone on the target cell, but not if both antigens A and B are present on the target cell
[0081] Engineered T cells expressing these CAR combinations can be tailored to be exquisitely specific for cancer cells, based on their particular expression (or lack of expression) of two or more markers.
[0082] Thus in a first aspect, the present invention provides a cell which co-expresses a first chimeric antigen receptor (CAR) and second CAR at the cell surface, each CAR comprising:
[0083] (i) an antigen-binding domain;
[0084] (ii) a spacer
[0085] (iii) a trans-membrane domain; and
[0086] (iv) an intracellular T cell signaling domain (endodomain)
[0087] wherein the antigen binding domains of the first and second CARs bind to different antigens, and wherein each of the first or second CARs is an activating CAR comprising an activating intracellular T cell signaling domain.
[0088] The cell may be an immune effector cell, such as a T-cell or natural killer (NK) cell. Features mentioned herein in connection with a T cell apply equally to other immune effector cells, such as NK cells.
[0089] The spacer of the first CAR may be different to the spacer of the second CAR. such that the first and second CARs do not form heterodimers
[0090] The spacer of the first CAR may have a different length and/or size and/or configuration from the spacer of the second CAR, such that each CAR is tailored for recognition of its respective target antigen.
[0091] The spacer of the first CAR may have a different length and/or charge and/or shape and/or configuration and/or glycosylation to the spacer of the second CAR, such that when the first CAR and the second CAR bind their respective target antigens, the first CAR and second CAR become spatially separated on the T cell. Ligation of the first and second CARs to their respective antigens causes them to be compartmentalized together or separately in the immunological synapse resulting in control of activation. This may be understood when one considers the kinetic separation model of T-cell activation (see below).
[0092] The first spacer or the second spacer may comprise a CD8 stalk and the other spacer may comprise the hinge, CH2 and CH3 domain of an IgG1.
[0093] In the present invention, relating to the "OR" gate, both the first and second CAR are activating CARs. An activating CAR comprises an activating endodomain, such that it causes T cell activation upon antigen binding. Since the OR gate comprises first and second CARs which are both activating, T cell activation occurs when a target cell expresses either or both target antigens.
[0094] Either the first or the second CAR may bind CD19 and the other CAR may bind CD20. This is advantageous because some lymphomas and leukemias become CD19 negative after CD19 targeting, so it gives a "back-up" antigen, should this occur.
[0095] In a second aspect, the present invention provides a nucleic acid sequence encoding both the first and second chimeric antigen receptors (CARs) as defined in the first aspect of the invention.
[0096] The nucleic acid sequence according may have the following structure: AgB1-spacer1-TM1-endo1-coexpr-AgB2-spacer2-TM2-endo2
[0097] in which
[0098] AgB1 is a nucleic acid sequence encoding the antigen-binding domain of the first CAR; spacer 1 is a nucleic acid sequence encoding the spacer of the first CAR;
[0099] TM1 is a nucleic acid sequence encoding the transmembrane domain of the first CAR; endo 1 is a nucleic acid sequence encoding the endodomain of the first CAR;
[0100] coexpr is a nucleic acid sequence allowing co-expression of two CARs (e.g. a cleavage site);
[0101] AgB2 is a nucleic acid sequence encoding the antigen-binding domain of the second CAR;
[0102] spacer 2 is a nucleic acid sequence encoding the spacer of the second CAR;
[0103] TM2 is a a nucleic acid sequence encoding the transmembrane domain of the second CAR;
[0104] endo 2 is a nucleic acid sequence encoding the endodomain of the second CAR;
[0105] which nucleic acid sequence, when expressed in a T cell, encodes a polypeptide which is cleaved at the cleavage site such that the first and second CARs are co-expressed at the T cell surface.
[0106] The nucleic acid sequence allowing co-expression of two CARs may encode a self-cleaving peptide or a sequence which allows alternative means of co-expressing two CARs such as an internal ribosome entry sequence or a 2.sup.nd promoter or other such means whereby one skilled in the art can express two proteins from the same vector.
[0107] Alternative codons may be used in regions of sequence encoding the same or similar amino acid sequences, such as the transmembrane and/or intracellular T cell signalling domain (endodomain) in order to avoid homologous recombination. An example of such "codon wobbling" is shown in FIG. 30.
[0108] In a third aspect, the present invention provides a kit which comprises
[0109] (i) a first nucleic acid sequence encoding the first chimeric antigen receptor (CAR) as defined in the first aspect of the invention, which nucleic acid sequence has the following structure:
[0109] AgB1-spacer1-TM1-endo1
[0110] in which
[0111] AgB1 is a nucleic acid sequence encoding the antigen-binding domain of the first CAR;
[0112] spacer 1 is a nucleic acid sequence encoding the spacer of the first CAR;
[0113] TM1 is a nucleic acid sequence encoding the transmembrane domain of the first CAR;
[0114] endo 1 is a nucleic acid sequence encoding the endodomain of the first CAR; and
[0115] (ii) a second nucleic acid sequence encoding the second chimeric antigen receptor
[0116] (CAR) as defined in the first aspect of the invention, which nucleic acid sequence has the following structure:
Ag B2-spacer2-TM2-endo2
[0117] AgB2 is a nucleic acid sequence encoding the antigen-binding domain of the second CAR;
[0118] spacer 2 is a nucleic acid sequence encoding the spacer of the second CAR;
[0119] TM2 is a nucleic acid sequence encoding the transmembrane domain of the second CAR;
[0120] endo 2 is a nucleic acid sequence encoding the endodomain of the second CAR.
[0121] In a fourth aspect, the present invention provides a kit comprising: a first vector which comprises the first nucleic acid sequence as defined above; and a second vector which comprises the first nucleic acid sequence as defined above.
[0122] The vectors may be plasmid vectors, retroviral vectors or transposon vectors. The vectors may be lentiviral vectors.
[0123] In a fifth aspect, the present invention provides a vector comprising a nucleic acid sequence according to the second aspect of the invention. The vector may be a lentiviral vector.
[0124] The vector may be a plasmid vector, a retroviral vector or a transposon vector.
[0125] In a sixth aspect, the present invention involves co-expressing more than two CARs in such a fashion that a complex pattern of more than two antigens can be recognized on the target cell.
[0126] In a seventh aspect, the present invention provides a method for making a T cell according to the first aspect of the invention, which comprises the step of introducing one or more nucleic acid sequence (s) encoding the first and second CARs; or one or more vector(s) as defined above into a T cell.
[0127] The T cell may be from a sample isolated from a patient, a related or unrelated haematopoietic transplant donor, a completely unconnected donor, from cord blood, differentiated from an embryonic cell line, differentiated from an inducible progenitor cell line, or derived from a transformed T cell line.
[0128] In an eighth aspect, the present invention provides a pharmaceutical composition comprising a plurality of T cells according to the first aspect of the invention.
[0129] In a ninth aspect, the present invention provides a method for treating and/or preventing a disease, which comprises the step of administering a pharmaceutical composition according to the eighth aspect of the invention to a subject.
[0130] The method may comprise the following steps:
[0131] (i) isolation of a T cell as listed above.
[0132] (ii) transduction or transfection of the T cells with one or more nucleic acid sequence(s) encoding the first and second CAR or one or more vector(s) comprising such nucleic acid sequence(s); and
[0133] (iii) administering the T cells from (ii) to the subject.
[0134] The disease may be a cancer.
[0135] In a tenth aspect, the present invention provides a pharmaceutical composition according to the eighth aspect of the invention for use in treating and/or preventing a disease.
[0136] The disease may be a cancer.
[0137] In an eleventh aspect, the present invention provides use of a T cell according to the first aspect of the invention in the manufacture of a medicament for treating and/or preventing a disease.
[0138] The disease may be a cancer.
[0139] The present invention also provides a nucleic acid sequence which comprises:
[0140] a) a first nucleotide sequence encoding a first chimeric antigen receptor (CAR);
[0141] b) a second nucleotide sequence encoding a second CAR;
[0142] c) a sequence encoding a self-cleaving peptide positioned between the first and second nucleotide sequences, such that the two CARs are expressed as separate entities.
[0143] Alternative codons may be used in one or more portion(s) of the first and second nucleotide sequences in regions which encode the same or similar amino acid sequence(s).
[0144] The present invention also provides a vector and a cell comprising such a nucleic acid.
[0145] By providing two or more CARs on the surface of the T cell, it is possible to target multiple cancer markers simultaneously, providing better therapeutic efficacy for heterogeneic tumours and avoiding the problem of cancer escape.
[0146] Because the CARs are expressed on the surface of the T cell as separate molecules, this approach overcomes the spatial and accessibility issues associated with TanCARs. T-cell activation efficiency is also improved. As each CAR has its own spacer, it is possible to tailor the spacer and therefore the distance that the binding domain projects from the T cell surface and its flexibility etc to the particular target antigen. This choice is unfettered by the design considerations associated with TanCARs, i.e. that one CAR needs to be juxta-posed to the T cell membrane and one CAR needs to be distal, positioned in tandem to the first CAR.
[0147] By providing a single nucleic acid which encodes the two CARs separated by a cleavage site, it is possible to engineer T cells to co-express the two CARs using a simple single transduction procedure. A double transfection procedure could be used with CAR-encoding sequences in separate constructs, but this would be more complex and expensive and requires more integration sites for the nucleic acids. A double transfection procedure would also be associated with uncertainty as to whether both CAR-encoding nucleic acids had been transduced and expressed effectively. This is especially true for a multiple CAR approach where three or more CARs are introduced to the cell.
[0148] The two or more CARs will have portions of high homology, for example the transmembrane and/or intracellular signalling domains are likely to be highly homologous. If the same or similar linkers are use for the two CARs, then they will also be highly homologous. This would suggest that an approach where both CARs are provided on a single nucleic acid sequence would be inappropriate, because of the likelihood of homologous recombination between the sequences. However, the present inventors have found that by "codon wobbling" the portions of sequence encoding areas of high homology, it is possible to express two CARs from a single construct with high efficiency. Codon wobbling involves using alternative codons in regions of sequence encoding the same or similar amino acid sequences.
FURTHER ASPECTS OF THE INVENTION
[0149] The present invention also relates to the aspects listed in the following numbered paragraphs:
[0150] 1. A T cell which co-expresses a first chimeric antigen receptor (CAR) and second CAR at the cell surface, each CAR comprising:
[0151] (i) an antigen-binding domain;
[0152] (ii) a spacer
[0153] (iii) a trans-membrane domain; and
[0154] (iv) an endodomain
[0155] wherein the antigen binding domains of the first and second CARs bind to different antigens, wherein the spacer of the first CAR is different to the spacer of the second CAR and wherein one of the first or second CARs is an activating CAR comprising an activating endodomain and the other CAR is either an activating CAR comprising an activating endodomain or an inhibitory CAR comprising a ligation-on or ligation-off inhibitory endodomain.
[0156] 2. A T cell according to paragraph 1, wherein the spacer of the first CAR has a different length and/or charge and/or size and/or configuration and/or glycosylation of the spacer of the second CAR, such that when the first CAR and the second CAR bind their respective target antigens, the first CAR and second CAR become spatially separated on the T cell membrane.
[0157] 3. A T cell according to paragraph 2, wherein either the first spacer or the second spacer comprises a CD8 stalk and the other spacer comprises the hinge, CH2 and CH3 domain of IgG1.
[0158] 4. A T cell according to paragraph 1, wherein both the first and second CARs are activating CARs.
[0159] 5. A T cell according to paragraph 4, wherein one CAR binds CD19 and the other CAR binds CD20.
[0160] 6. A T cell according to paragraph 2 or 3, wherein one of the first or second CARs is an activating CAR comprising an activating endodomain, and the other CAR is an inhibitory CAR comprising a ligation-off inhibitory endodomain, which inhibitory CAR inhibits T-cell activation by the activating CAR in the absence of inhibitory CAR ligation, but does not significantly inhibit T-cell activation by the activating CAR when the inhibitory CAR is ligated.
[0161] 7. A T cell according to paragraph 6, wherein the inhibitory endodomain comprises all or part of the endodomain from CD148 or CD45.
[0162] 8. A T cell according to paragraph 6 or 7, wherein the antigen-binding domain of the first CAR binds CD5 and the antigen-binding domain of the second CAR binds CD19.
[0163] 9. A T cell according to paragraph 1 wherein the first and second spacers are sufficiently different so as to prevent cross-pairing of the first and second CARs but are sufficiently similar to result in co-localisation of the first and second CARs following ligation.
[0164] 10. A T cell according to paragraph 9, wherein one of the first or second CARs in an activating CAR comprising an activating endodomain, and the other CAR is an inhibitory CAR comprising a ligation-on inhibitory endodomain, which inhibitory CAR does not significantly inhibit T-cell activation by the activating CAR in the absence of inhibitory CAR ligation, but inhibits T-cell activation by the activating CAR when the inhibitory CAR is ligated.
[0165] 11. A T cell according to paragraph 10, wherein the ligation-on inhibitory endodomain comprises at least part of a phosphatase.
[0166] 12. A T cell according to paragraph 11, wherein the ligation-on inhibitory endodomain comprises all or part of PTPN6.
[0167] 13. A T cell according to paragraph 10, wherein the ligation-on inhibitory endodomain comprises at least one ITIM domain.
[0168] 14. A T cell according to paragraph 13, wherein activity of the ligation-on inhibitory endodomain is enhanced by co-expression of a PTPN6-CD45 or -CD148 fusion protein.
[0169] 15. A T cell according to any of paragraphs 10 to 14, wherein the CAR comprising the activating endodomain comprises an antigen-binding domain which binds CD33 and the CAR which comprises the ligation-on inhibitory endodomain comprises an antigen-binding domain which binds CD34.
[0170] 16. A T cell which comprises more than two CARs as defined in the preceding paragraphs such that it is specifically stimulated by a cell, such as a T cell, bearing a distinct pattern of more than two antigens.
[0171] 17. A nucleic acid sequence encoding both the first and second chimeric antigen receptors (CARs) as defined in any of paragraphs 1 to 16.
[0172] 18. A nucleic acid sequence according to paragraph 17, which has the following structure:
AgB1-spacer1-TM1-endo1-coexpr-AbB2-spacer2-TM2-endo2
[0173] in which
[0174] AgB1 is a nucleic acid sequence encoding the antigen-binding domain of the first CAR;
[0175] spacer 1 is a nucleic acid sequence encoding the spacer of the first CAR;
[0176] TM1 is a nucleic acid sequence encoding the transmembrane domain of the first CAR;
[0177] endo 1 is a nucleic acid sequence encoding the endodomain of the first CAR;
[0178] coexpr is a nucleic acid sequence enabling co-expression of both CARs
[0179] AgB2 is a nucleic acid sequence encoding the antigen-binding domain of the second CAR;
[0180] spacer 2 is a nucleic acid sequence encoding the spacer of the second CAR;
[0181] TM2 is a nucleic acid sequence encoding the transmembrane domain of the second CAR;
[0182] endo 2 is a nucleic acid sequence encoding the endodomain of the second CAR;
[0183] which nucleic acid sequence, when expressed in a T cell, encodes a polypeptide which is cleaved at the cleavage site such that the first and second CARs are co-expressed at the T cell surface.
[0184] 19. A nucleic acid sequence according to paragraph 18, wherein coexpr encodes a sequence comprising a self-cleaving peptide.
[0185] 20. A nucleic acid sequence according to paragraph 18 or 19, wherein alternative codons are used in regions of sequence encoding the same or similar amino acid sequences, in order to avoid homologous recombination.
[0186] 21. A kit which comprises
[0187] (i) a first nucleic acid sequence encoding the first chimeric antigen receptor (CAR) as defined in any of paragraphs 1 to 16, which nucleic acid sequence has the following structure:
[0187] AgB1-spacer1-TM1-endo1
[0188] in which
[0189] AgB1 is a nucleic acid sequence encoding the antigen-binding domain of the first CAR;
[0190] spacer 1 is a nucleic acid sequence encoding the spacer of the first CAR;
[0191] TM1 is a nucleic acid sequence encoding the transmembrane domain of the first CAR;
[0192] endo 1 is a nucleic acid sequence encoding the endodomain of the first CAR; and
[0193] (ii) a second nucleic acid sequence encoding the second chimeric antigen receptor (CAR) as defined in any of paragraphs 1 to 16, which nucleic acid sequence has the following structure:
[0193] AgB2-spacer2-TM2-endo2
[0194] AgB2 is a nucleic acid sequence encoding the antigen-binding domain of the second CAR; spacer 2 is a nucleic acid sequence encoding the spacer of the second CAR;
[0195] TM2 is a nucleic acid sequence encoding the transmembrane domain of the second CAR;
[0196] endo 2 is a nucleic acid sequence encoding the endodomain of the second CAR.
[0197] 22. A kit comprising: a first vector which comprises the first nucleic acid sequence as defined in paragraph 21; and a second vector which comprises the first nucleic acid sequence as defined in paragraph 21.
[0198] 23. A kit according to paragraph 22, wherein the vectors are integrating viral vectors or transposons.
[0199] 24. A vector comprising a nucleic acid sequence according to any of paragraphs 17 to 20.
[0200] 25. A retroviral vector or a lentiviral vector or a transposon according to paragraph 24.
[0201] 26. A method for making a T cell according to any of paragraphs 1 to 16, which comprises the step of introducing: a nucleic acid sequence according to any of paragraphs 17 to 20; a first nucleic acid sequence and a second nucleic acid sequence as defined in paragraph 21; and/or a first vector and a second vector as defined in paragraph 22 or a vector according to paragraph 24 or 25, into a T cell.
[0202] 27. A method according to paragraph 24, wherein the T cell is from a sample isolated from a subject.
[0203] 28. A pharmaceutical composition comprising a plurality of T cells according to any of paragraphs 1 to 16.
[0204] 29. A method for treating and/or preventing a disease, which comprises the step of administering a pharmaceutical composition according to paragraph 28 to a subject.
[0205] 30. A method according to paragraph 29, which comprises the following steps:
[0206] (i) isolation of a T cell-containing sample from a subject;
[0207] (ii) transduction or transfection of the T cells with: a nucleic acid sequence according to any of paragraphs 17 to 20; a first nucleic acid sequence and a second nucleic acid sequence as defined in paragraph 21; a first vector and a second vector as defined in paragraph 22 or 23 or a vector according to paragraph 24 or 25; and
[0208] (iii) administering the T cells from (ii) to a the subject.
[0209] 31. A method according to paragraph 29 or 30, wherein the disease is a cancer.
[0210] 32. A pharmaceutical composition according to paragraph 28 for use in treating and/or preventing a disease.
[0211] 33. The use of a T cell according to any of paragraphs 1 to 16 in the manufacture of a medicament for treating and/or preventing a disease.
DETAILED DESCRIPTION
[0212] Chimeric Antigen Receptors (CARs)
[0213] CARs, which are shown schematically in FIG. 1, are chimeric type I trans-membrane proteins which connect an extracellular antigen-recognizing domain (binder) to an intracellular signalling domain (endodomain). The binder is typically a single-chain variable fragment (scFv) derived from a monoclonal antibody (mAb), but it can be based on other formats which comprise an antibody-like antigen binding site. A spacer domain is usually necessary to isolate the binder from the membrane and to allow it a suitable orientation. A common spacer domain used is the Fc of IgG1. More compact spacers can suffice e.g. the stalk from CD8a and even just the IgG1 hinge alone, depending on the antigen. A trans-membrane domain anchors the protein in the cell membrane and connects the spacer to the endodomain.
[0214] Early CAR designs had endodomains derived from the intracellular parts of either the .gamma. chain of the Fc.epsilon.R1 or CD3.zeta.. Consequently, these first generation receptors transmitted immunological signal 1, which was sufficient to trigger T-cell killing of cognate target cells but failed to fully activate the T-cell to proliferate and survive. To overcome this limitation, compound endodomains have been constructed: fusion of the intracellular part of a T-cell co-stimulatory molecule to that of CD3.zeta. results in second generation receptors which can transmit an activating and co-stimulatory signal simultaneously after antigen recognition. The co-stimulatory domain most commonly used is that of CD28. This supplies the most potent co-stimulatory signal--namely immunological signal 2, which triggers T-cell proliferation. Some receptors have also been described which include TNF receptor family endodomains, such as the closely related OX40 and 41 BB which transmit survival signals. Even more potent third generation CARs have now been described which have endodomains capable of transmitting activation, proliferation and survival signals.
[0215] CAR-encoding nucleic acids may be transferred to T cells using, for example, retroviral vectors. Lentiviral vectors may be employed. In this way, a large number of cancer-specific T cells can be generated for adoptive cell transfer. When the CAR binds the target-antigen, this results in the transmission of an activating signal to the T-cell it is expressed on. Thus the CAR directs the specificity and cytotoxicity of the T cell towards tumour cells expressing the targeted antigen.
[0216] The first aspect of the invention relates to a T-cell which co-expresses a first CAR and a second CAR such that a T-cell can recognize a desired pattern of expression on target cells in the manner of a logic gate as detailed in the truth tables: table 1, 2 and 3.
[0217] Both the first and second (and optionally subsequent) CARs comprise:
[0218] (i) an antigen-binding domain;
[0219] (ii) a spacer;
[0220] (iii) a transmembrane domain; and
[0221] (iii) an intracellular domain.
TABLE-US-00001 TABLE 1 Truth Table for CAR OR GATE Antigen A Antigen B Response Absent Absent No activation Absent Present Activation Present Absent Activation Present Present Activation
TABLE-US-00002 TABLE 2 Truth Table for CAR AND GATE Antigen A Antigen B Response Absent Absent No activation Absent Present No Activation Present Absent No Activation Present Present Activation
TABLE-US-00003 TABLE 3 Truth Table for CAR AND NOT GATE Antigen A Antigen B Response Absent Absent No activation Absent Present No Activation Present Absent Activation Present Present No Activation
[0222] The first and second CAR of the T cell of the present invention may be produced as a polypeptide comprising both CARs, together with a cleavage site.
[0223] SEQ ID No. 1 to 5 give examples of such polypeptides, which each comprise two CARs. The CAR may therefore comprise one or other part of the following amino acid sequences, which corresponds to a single CAR.
[0224] SEQ ID No 1 is a CAR OR gate which recognizes CD19 OR CD33
[0225] SEQ ID No 2 Is a CAR AND gate which recognizes CD19 AND CD33 using a CD148 phosphatase
[0226] SEQ ID No 3 Is an alternative implementation of the CAR AND GATE which recognizes CD19 AND CD33 which uses a CD45 phosphatase
[0227] SEQ ID No 4 Is a CAR AND NOT GATE which recognizes CD19 AND NOT CD33 based on PTPN6 phosphatase
[0228] SEQ ID No 5 Is an alternative implementation of the CAR AND NOT gate which recognizes CD19 AND NOT CD33 and is based on an ITIM containing endodomain from LAIR1
[0229] SEQ ID No 6. Is a further alternative implementation of the CAR AND NOT gate which recognizes CD19 AND NOT CD33 and recruits a PTPN6-CD148 fusion protein to an ITIM containing endodomain.
TABLE-US-00004 SEQ ID No. 1 MSLPVTALLLPLALLLHAARPDIQMTQTTSSLSASLGDRVTISCRAS QDISKYLNWYQQKPDGTVKLLIYHTSRLHSGVPSRFSGSGSGTDYSL TISNLEQEDIATYFCQQGNTLPYTFGGGTKLEITKAGGGGSGGGGSG GGGSGGGGSEVKLQESGPGLVAPSQSLSVTCTVSGVSLPDYGVSWIR QPPRKGLEWLGVIWGSETTYYNSALKSRLTIIKDNSKSQVFLKMNSL QTDDTAIYYCAKHYYYGGSYAMDYWGQGTSVTVSSDPTTTPAPRPPT PAPTIASQPLSLRPEACRPAAGGAVHTRGLDFACDIFWVLVVVGGVL ACYSLLVTVAFIIFWVRRVKFSRSADAPAYQQGQNQLYNELNLGRRE EYDVLDKRRGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMK GERRRGKGHDGLYQGLSTATKDTYDALHMQALPPRRAEGRGSLLTCG DVEENPGPMAVPIQVLGLLLLWLTDARCDIQMTQSPSSLSASVGDRV TITCRASEDIYFNLVWYQQKPGKAPKLLIYDTNRLADGVPSRFSGSG SGTQYTLTISSLQPEDFATYYCQHYKNYPLTFGQGTKLEIKRSGGGG SGGGGSGGGGSGGGGSRSEVQLVESGGGLVQPGGSLRLSCAASGFTL SNYGMHWIRQAPGKGLEWVSSISLNGGSTYYRDSVKGRFTISRDNAK STLYLQMNSLRAEDTAVYYCAAQDAYTGGYFDYWGQGTLVTVSSMDP AEPKSPDKTHTCPPCPAPPVAGPSVFLFPPKPKDTLMIARTPEVTCV VVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVL HQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRD ELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGS FFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGKKDP KFWVLVVVGGVLACYSLLVTVAFIIFWVRSRVKFSRSADAPAYQQGQ NQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRKNPQEGLYNELQK DKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDTYDALHMQALPP R SEQ ID No. 2 MSLPVTALLLPLALLLHAARPDIQMTQTTSSLSASLGDRVTISCRAS QDISKYLNWYQQKPDGTVKLLIYHTSRLHSGVPSRFSGSGSGTDYSL TISNLEQEDIATYFCQQGNTLPYTFGGGTKLEITKAGGGGSGGGGSG GGGSGGGGSEVKLQESGPGLVAPSQSLSVTCTVSGVSLPDYGVSWIR QPPRKGLEWLGVIWGSETTYYNSALKSRLTIIKDNSKSQVFLKMNSL QTDDTAIYYCAKHYYYGGSYAMDYWGQGTSVTVSSDPTTTPAPRPPT PAPTIASQPLSLRPEACRPAAGGAVHTRGLDFACDIFWVLVVVGGVL ACYSLLVTVAFIIFWVRRVKFSRSADAPAYQQGQNQLYNELNLGRRE EYDVLDKRRGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMK GERRRGKGHDGLYQGLSTATKDTYDALHMQALPPRRAEGRGSLLTCG DVEENPGPMAVPIQVLGLLLLWLTDARCDIQMTQSPSSLSASVGDRV TITCRASEDIYFNLVWYQQKPGKAPKLLIYDTNRLADGVPSRFSGSG SGTQYTLTISSLQPEDFATYYCQHYKNYPLTFGQGTKLEIKRSGGGG SGGGGSGGGGSGGGGSRSEVQLVESGGGLVQPGGSLRLSCAASGFTL SNYGMHWIRQAPGKGLEWVSSISLNGGSTYYRDSVKGRFTISRDNAK STLYLQMNSLRAEDTAVYYCAAQDAYTGGYFDYWGQGTLVTVSSMDP AEPKSPDKTHTCPPCPAPPVAGPSVFLFPPKPKDTLMIARTPEVTCV VVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVL HQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRD ELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGS FFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGKKDP KAVFGCIFGALVIVTVGGFIFWRKKRKDAKNNEVSFSQIKPKKSKLI RVENFEAYFKKQQADSNCGFAEEYEDLKLVGISQPKYAAELAENRGK NRYNNVLPYDISRVKLSVQTHSTDDYINANYMPGYHSKKDFIATQGP LPNTLKDFWRMVWEKNVYAIIMLTKCVEQGRTKCEEYWPSKQAQDYG DITVAMTSEIVLPEWTIRDFTVKNIQTSESHPLRQFHFTSWPDHGVP DTTDLLINFRYLVRDYMKQSPPESPILVHCSAGVGRTGTFIAIDRLI YQIENENTVDVYGIVYDLRMHRPLMVQTEDQYVFLNQCVLDIVRSQK DSKVDLIYQNTTAMTIYENLAPVTTFGKTNGYIA SEQ ID No. 3 MSLPVTALLLPLALLLHAARPDIQMTQTTSSLSASLGDRVTISCRAS QDISKYLNWYQQKPDGTVKLLIYHTSRLHSGVPSRFSGSGSGTDYSL TISNLEQEDIATYFCQQGNTLPYTFGGGTKLEITKAGGGGSGGGGSG GGGSGGGGSEVKLQESGPGLVAPSQSLSVTCTVSGVSLPDYGVSWIR QPPRKGLEWLGVIWGSETTYYNSALKSRLTIIKDNSKSQVFLKMNSL QTDDTAIYYCAKHYYYGGSYAMDYWGQGTSVTVSSDPTTTPAPRPPT PAPTIASQPLSLRPEACRPAAGGAVHTRGLDFACDIFWVLVVVGGVL ACYSLLVTVAFIIFWVRRVKFSRSADAPAYQQGQNQLYNELNLGRRE EYDVLDKRRGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMK GERRRGKGHDGLYQGLSTATKDTYDALHMQALPPRRAEGRGSLLTCG DVEENPGPMAVPTQVLGLLLLWLTDARCDIQMTQSPSSLSASVGDRV TITCRASEDIYFNLVWYQQKPGKAPKLLIYDTNRLADGVPSRFSGSG SGTQYTLTISSLQPEDFATYYCQHYKNYPLTFGQGTKLEIKRSGGGG SGGGGSGGGGSGGGGSRSEVQLVESGGGLVQPGGSLRLSCAASGFTL SNYGMHWIRQAPGKGLEWVSSISLNGGSTYYRDSVKGRFTISRDNAK STLYLQMNSLRAEDTAVYYCAAQDAYTGGYFDYWGQGTLVTVSSMDP AEPKSPDKTHTCPPCPAPPVAGPSVFLFPPKPKDTLMIARTPEVTCV VVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVL HQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRD ELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGS FFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGKKDP KALIAFLAFLIIVTSIALLVVLYKIYDLHKKRSCNLDEQQELVERDD EKQLMNVEPIHADILLETYKRKIADEGRLFLAEFQSIPRVFSKFPIK EARKPFNQNKNRYVDILPYDYNRVELSEINGDAGSNYINASYIDGFK EPRKYIAAQGPRDETVDDFWRMIWEQKATVIVMVTRCEEGNRNKCAE YWPSMEEGTRAFGDVVVKINQHKRCPDYIIQKLNIVNKKEKATGREV THIQFTSWPDHGVPEDPHLLLKLRRRVNAFSNFFSGPIVVHCSAGVG RTGTYIGIDAMLEGLEAENKVDVYGYVVKLRRQRCLMVQVEAQYILI HQALVEYNQFGETEVNLSELHPYLHNMKKRDPPSEPSPLEAEFQRLP SYRSWRTQHIGNQEENKSKNRNSNVIPYDYNRVPLKHELEMSKESEH DSDESSDDDSDSEEPSKYINASFIMSYWKPEVMIAAQGPLKETIGDF WQMIFQRKVKVIVMLTELKHGDQEICAQYWGEGKQTYGDIEVDLKDT DKSSTYTLRVFELRHSKRKDSRTVYQYQYTNWSVEQLPAEPKELISM IQVVKQKLPQKNSSEGNKHHKSTPLLIHCRDGSQQTGIFCALLNLLE SAETEEVVDIFQVVKALRKARPGMVSTFEQYQFLYDVIASTYPAQNG QVKKNNHQEDKIEFDNEVDKVKQDANCVNPLGAPEKLPEAKEQAEGS EPTSGTEGPEHSVNGPASPALNQGS SEQ ID No. 4 MSLPVTALLLPLALLLHAARPDIQMTQTTSSLSASLGDRVTISCRAS QDISKYLNWYQQKPDGTVKLLIYHTSRLHSGVPSRFSGSGSGTDYSLT ISNLEQEDIATYFCQQGNTLPYTFGGGTKLEITKAGGGGSGGGGSGGG GSGGGGSEVKLQESGPGLVAPSQSLSVTCTVSGVSLPDYGVSWIRQPP RKGLEWLGVIWGSETTYYNSALKSRLTIIKDNSKSQVFLKMNSLQTDD TAIYYCAKHYYYGGSYAMDYWGQGTSVTVSSDPTTTPAPRPPTPAPTI ASQPLSLRPEACRPAAGGAVHTRGLDFACDIFWVLVVVGGVLACYSLL VTVAFIIFWVRRVKFSRSADAPAYQQGQNQLYNELNLGRREEYDVLDK RRGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKG HDGLYQGLSTATKDTYDALHMQALPPRRAEGRGSLLTCGDVEENPGPM AVPTQVLGLLLLWLTDARCDIQMTQSPSSLSASVGDRVTITCRASEDI YFNLVWYQQKPGKAPKLLIYDTNRLADGVPSRFSGSGSGTQYTLTISS LQPEDFATYYCQHYKNYPLTFGQGTKLEIKRSGGGGSGGGGSGGGGSG GGGSRSEVQLVESGGGLVQPGGSLRLSCAASGFTLSNYGMHWIRQAPG KGLEWVSSISLNGGSTYYRDSVKGRFTISRDNAKSTLYLQMNSLRAED TAVYYCAAQDAYTGGYFDYWGQGTLVTVSSMDPATTTKPVLRTPSPVH PTGTSQPQRPEDCRPRGSVKGTGLDFACDIYWAPLAGICVALLLSLII TLICYHRSRKRVCKSGGGSFWEEFESLQKQEVKNLHQRLEGQRPENKG KNRYKNILPFDHSRVILQGRDSNIPGSDYINANYIKNQLLGPDENAKT YIASQGCLEATVNDFWQMAWQENSRVIVMTTREVEKGRNKCVPYWPEV GMQRAYGPYSVTNCGEHDTTEYKLRTLQVSPLDNGDLIREIWHYQYLS WPDHGVPSEPGGVLSFLDQINQRQESLPHAGPIIVHCSAGIGRTGTII VIDMLMENISTKGLDCDIDIQKTIQMVRAQRSGMVQTEAQYKFIYVAI AQFIETTKKKL SEQ ID No. 5 MSLPVTALLLPLALLLHAARPDIQMTQTTSSLSASLGDRVTISCRAS QDISKYLNWYQQKPDGTVKLLIYHTSRLHSGVPSRFSGSGSGTDYSL TISNLEQEDIATYFCQQGNTLPYTFGGGTKLEITKAGGGGSGGGGSG GGGSGGGGSEVKLQESGPGLVAPSQSLSVTCTVSGVSLPDYGVSWIR QPPRKGLEWLGVIWGSETTYYNSALKSRLTIIKDNSKSQVFLKMNSL QTDDTAIYYCAKHYYYGGSYAMDYWGQGTSVTVSSDPTTTPAPRPPT PAPTIASQPLSLRPEACRPAAGGAVHTRGLDFACDIFWVLVVVGGVL ACYSLLVTVAFIIFWVRRVKFSRSADAPAYQQGQNQLYNELNLGRRE
EYDVLDKRRGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMK GERRRGKGHDGLYQGLSTATKDTYDALHMQALPPRRAEGRGSLLTCG DVEENPGPMAVPTQVLGLLLLWLTDARCDIQMTQSPSSLSASVGDRV TITCRASEDIYFNLVWYQQKPGKAPKLLIYDTNRLADGVPSRFSGSG SGTQYTLTISSLQPEDFATYYCQHYKNYPLTFGQGTKLEIKRSGGGG SGGGGSGGGGSGGGGSRSEVQLVESGGGLVQPGGSLRLSCAASGFTL SNYGMHWIRQAPGKGLEWVSSISLNGGSTYYRDSVKGRFTISRDNAK STLYLQMNSLRAEDTAVYYCAAQDAYTGGYFDYWGQGTLVTVSSMDP ATTTKPVLRTPSPVHPTGTSQPQRPEDCRPRGSVKGTGLDFACDILI GVSVVFLFCLLLLVLFCLHRQNQIKQGPPRSKDEEQKPQQRPDLAVD VLERTADKATVNGLPEKDRETDTSALAAGSSQEVTYAQLDHWALTQR TARAVSPQSTKPMAESITYAAVARH SEQ ID No. 6 MSLPVTALLLPLALLLHAARPDIQMTQTTSSLSASLGDRVTISCRAS QDISKYLNWYQQKPDGTVKLLIYHTSRLHSGVPSRFSGSGSGTDYSL TISNLEQEDIATYFCQQGNTLPYTFGGGTKLEITKAGGGGSGGGGSG GGGSGGGGSEVKLQESGPGLVAPSQSLSVTCTVSGVSLPDYGVSWIR QPPRKGLEWLGVIWGSETTYYNSALKSRLTIIKDNSKSQVFLKMNSL QTDDTAIYYCAKHYYYGGSYAMDYWGQGTSVTVSSDPTTTPAPRPPT PAPTIASQPLSLRPEACRPAAGGAVHTRGLDFACDIFWVLVVVGGVL ACYSLLVTVAFIIFWVRRVKFSRSADAPAYQQGQNQLYNELNLGRRE EYDVLDKRRGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMK GERRRGKGHDGLYQGLSTATKDTYDALHMQALPPRRAEGRGSLLTCG DVEENPGPMAVPIQVLGLLLLWLTDARCDIQMTQSPSSLSASVGDRV TITCRASEDIYFNLVWYQQKPGKAPKLLIYDTNRLADGVPSRFSGSG SGTQYTLTISSLQPEDFATYYCQHYKNYPLTFGQGTKLEIKRSGGGG SGGGGSGGGGSGGGGSRSEVQLVESGGGLVQPGGSLRLSCAASGFTL SNYGMHWIRQAPGKGLEWVSSISLNGGSTYYRDSVKGRFTISRDNAK STLYLQMNSLRAEDTAVYYCAAQDAYTGGYFDYWGQGTLVTVSSMDP ATTTKPVLRTPSPVHPTGTSQPQRPEDCRPRGSVKGTGLDFACDILI GVSVVFLFCLLLLVLFCLHRQNQIKQGPPRSKDEEQKPQQRPDLAVD VLERTADKATVNGLPEKDRETDTSALAAGSSQEVIYAQLDHWALTQR TARAVSPQSTKPMAESITYAAVARHRAEGRGSLLTCGDVEENPGPWY HGHMSGGQAETLLQAKGEPWTFLVRESLSQPGDFVLSVLSDQPKAGP GSPLRVTHIKVMCEGGRYTVGGLETFDSLTDLVEHFKKTGIEEASGA FVYLRQPYSGGGGSFEAYFKKQQADSNCGFAEEYEDLKLVGISQPKY AAELAENRGKNRYNNVLPYDISRVKLSVQTHSTDDYINANYMPGYHS KKDFIATQGPLPNTLKDFWRMVWEKNVYAIIMLTKCVEQGRTKCEEY WPSKQAQDYGDITVAMTSEIVLPEWTIRDFTVKNIQTSESHPLRQFH FTSWPDHGVPDTTDLLINFRYLVRDYMKQSPPESPILVHCSAGVGRT GTFIAIDRLIYQIENENTVDVYGIVYDLRMHRPLMVQTEDQYVFLNQ CVLDIVRSQKDSKVDLIYQNTTAMTIYENLAPVTTFGKTNGYIASGS
[0230] The CAR may comprise a variant of the CAR-encoding part of the sequence shown as SEQ ID No. 1, 2, 3, 4, 5 or 6 having at least 80, 85, 90, 95, 98 or 99% sequence identity, provided that the variant sequence is a CAR having the required properties.
[0231] Methods of sequence alignment are well known in the art and are accomplished using suitable alignment programs. The % sequence identity refers to the percentage of amino acid or nucleotide residues that are identical in the two sequences when they are optimally aligned. Nucleotide and protein sequence homology or identity may be determined using standard algorithms such as a BLAST program (Basic Local Alignment Search Tool at the National Center for Biotechnology Information) using default parameters, which is publicly available at http://blast.ncbi.nlm.nih.gov. Other algorithms for determining sequence identity or homology include: LALIGN (http://www.ebi.ac.uk/Tools/psa/Ialign/ and http://www.ebi.ac.uk/Tools/psa/Ialign/nucleotide.html), AMAS (Analysis of Multiply Aligned Sequences, at http://www.compbio.dundee.ac.uk/Softwar/Amas/amas.html), FASTA (http://ebi.ac.uk/Tools/sss/fasta/) Clustal Omega (http://www.ebi.ac.uk.Tools/msa/clustalo/), SIM (http://web.expasy.org/sim/), and EMBOSS Needle (http://www.ebi.ac.uk/Tools/psa/emboss_needle/nucleotide.ht,l).
[0232] Car Logical or Gate
[0233] In this embodiment, the antigen binding domains of the first and second CARs of the present invention bind to different antigens and both CARs comprise an activating endodomain. The spacer domains may be the same, or sufficiently different to prevent cross-pairing of the two different receptors. A T cell can hence be engineered to activate upon recognition of either or both antigens. This is useful in the field of oncology as indicated by the Goldie-Coldman hypothesis: sole targeting of a single antigen may result in tumour escape by modulation of said antigen due to the high mutation rate inherent in most cancers. By simultaneously targeting two antigens, the probably of such escape is exponentially reduced.
[0234] Various tumour associated antigens are known as shown in the following Table 4. For a given disease, the first CAR and second CAR may bind to two different TAAs associated with that disease. In this way, tumour escape by modulating a single antigen is prevented, since a second antigen is also targeted. For example, when targeting a B-cell malignancy, both CD19 and CD20 can be simultaneously targeted. In this embodiment, it is important that the two CARs do not heterodimerize.
TABLE-US-00005 TABLE 4 Cancer type TAA Diffuse Large B-cell Lymphoma CD19, CD20 Breast cancer ErbB2, MUC1 AML CD13, CD33 Neuroblastoma GD2, NCAM B-CLL CD19, CD52 Colorectal cancer Folate binding protein, CA-125
[0235] Kinetic Segregation Model
[0236] Subsequent pairing of CARs to generate the AND gate and the AND NOT gate are based on the kinetic segregation model (KS) of T-cell activation. This is a functional model, backed by experimental data, which explains how antigen recognition by a T-cell receptor is converted into down-stream activation signals. Briefly: at the ground state, the signalling components on the T-cell membrane are in dynamic homeostasis whereby dephosphorylated ITAMs are favoured over phosphorylated ITAMs. This is due to greater activity of the transmembrane CD45/CD148 phosphatases over membrane-tethered kinases such as Ick. When a T-cell engages a target cell through a T-cell receptor (or CAR) recognition of cognate antigen, tight immunological synapses form. This close juxtapositioning of the T-cell and target membranes excludes CD45/CD148 due to their large ectodomains which cannot fit into the synapse. Segregation of a high concentration of T-cell receptor associated ITAMs and kinases in the synapse, in the absence of phosphatases, leads to a state whereby phosphorylated ITAMs are favoured. ZAP70 recognizes a threshold of phosphorylated ITAMs and propagates a T-cell activation signal. This advanced understanding of T-cell activation is exploited by the present invention. In particular, the invention is based on this understanding of how ectodomains of different length and/or bulk and/or charge and/or configuration and/or glycosylation result in differential segregation upon synapse formation.
[0237] The Car Logical and Gate
[0238] In this embodiment, one CAR comprises an activating endodomain and one CAR comprises an inhibitory endodomain whereby the inhibitory CAR constitutively inhibits the first activating CAR, but upon recognition of its cognate antigen releases its inhibition of the activating CAR. In this manner, a T-cell can be engineered to trigger only if a target cell expresses both cognate antigens. This behaviour is achieved by the activating CAR comprising an activating endodomain containing ITAM domains for example the endodomain of CD3 Zeta, and the inhibitory CAR comprising the endodomain from a phosphatase able to dephosphorylate an ITAM (e.g. CD45 or CD148). Crucially, the spacer domains of both CARs are significantly different in size and/or shape and/or charge etc. When only the activating CAR is ligated, the inhibitory CAR is in solution on the T-cell surface and can diffuse in and out of the synapse inhibiting the activating CAR. When both CARs are ligated, due to differences in spacer properties, the activating and inhibiting CAR are differentially segregated allowing the activating CAR to trigger T-cell activation unhindered by the inhibiting CAR.
[0239] This is of considerable utility in the field of cancer therapy. Currently, immunotherapies typically target a single antigen. Most cancers cannot be differentiated from normal tissues on the basis of a single antigen. Hence, considerable "on-target off-tumour" toxicity occurs whereby normal tissues are damaged by the therapy. For instance, whilst targeting CD20 to treat B-cell lymphomas with Rituximab, the entire normal B-cell compartment is depleted. For instance, whilst targeting CD52 to treat chronic lymphocytic leukaemia, the entire lymphoid compartment is depleted. For instance, whilst targeting CD33 to treat acute myeloid leukaemia, the entire myeloid compartment is damaged etc. By restricting activity to a pair of antigens, much more refined targeting, and hence less toxic therapy can be developed. A practical example is targeting of CLL which expresses both CD5 and CD19. Only a small proportion of normal B-cells express both antigens, so the off-target toxicity of targeting both antigens with a logical AND gate is substantially less than targeting each antigen individually.
[0240] The design of the present invention is a considerable improvement on previous implementation as described by Wilkie et al. ((2012). J. Clin. Immunol. 32, 1059-1070) and then tested in vivo (Kloss et al (2013) Nat. Biotechnol. 31, 71-75). In this implementation, the first CAR comprises of an activating endodomain, and the second a co-stimulatory domain. This way, a T-cell only receives an activating and co-stimulatory signal when both antigens are present. However, the T-cell still will activate in the sole presence of the first antigen resulting in the potential for off-target toxicity. Further, the implementation of the present invention allows for multiple compound linked gates whereby a cell can interpret a complex pattern of antigens.
TABLE-US-00006 TABLE 5 Cancer Type Antigens Chronic Lymphocytic Leukaemia CD5, CD19 Neuroblastoma ALK, GD2 Glioma EGFR, Vimentin Multiple myeloma BCMA, CD138 Renal Cell Carcinoma Carbonic anhydrase IX, G250 T-ALL CD2, N-Cadherin Prostate Cancer PSMA, hepsin (or others)
[0241] The Car Logical and not Gate
[0242] In this embodiment, one CAR comprises an activating endodomain and one CAR comprises an inhibitory endodomain such that this inhibitory CAR is only active when it recognizes its cognate antigen. Hence a T-cell engineered in this manner is activated in response to the sole presence of the first antigen but is not activated when both antigens are present. This invention is implemented by inhibitory CARs with a spacer that co-localise with the first CAR but either the phosphatase activity of the inhibitory CAR should not be so potent that it inhibits in solution, or the inhibitory endodomain in fact recruits a phosphatase solely when the inhibitory CAR recognizes its cognate target. Such endodomains are termed "ligation-on" or semi-inhibitory herein.
[0243] This invention is of use in refining targeting when a tumour can be distinguished from normal tissue by the presence of tumour associated antigen and the loss of an antigen expressed on normal tissue. The AND NOT gate is of considerable utility in the field of oncology as it allows targeting of an antigen which is expressed by a normal cell, which normal cell also expresses the antigen recognised by the CAR comprising the activating endodomain. An example of such an antigen is CD33 which is expressed by normal stem cells and acute myeloid leukaemia (AML) cells. CD34 is expressed on stem cells but not typically expressed on AML cells. A T-cell recognizing CD33 AND NOT CD34 would result in destruction of leukaemia cells but sparing of normal stem cells.
[0244] Potential antigen pairs for use with AND NOT gates are shown in Table 6.
TABLE-US-00007 TABLE 6 Antigen expressed Normal cell which by normal cell but Disease TAA expresses TAA not cancer cell AML CD33 stem cells CD34 Myeloma BCMA Dendritic cells CD1c B-CLL CD160 Natural Killer cells CD56 Prostate cancer PSMA Neural Tissue NCAM Bowel cancer A33 Normal bowel HLA class I epithelium
[0245] Compound Gates
[0246] The kinetic segregation model with the above components allows compound gates to be made e.g. a T-cell which triggers in response to patterns of more than two target antigens. For example, it is possible to make a T cell which only triggers when three antigens are present (A AND B AND C). Here, a cell expresses three CARs, each recognizing antigens A, B and C. One CAR is excitatory and two are inhibitory, which each CAR having spacer domains which result in differential segregation. Only when all three are ligated, will the T-cell activate. A further example: (A OR B) AND C: here, CARs recognizing antigens A and B are activating and have spacers which co-localise, while CAR recognizing antigen C is inhibitory and has a spacer which results in different co-segregation. A further example (A AND NOT B) AND C: Here CAR against antigen A has an activating endodomain and co-localises with CAR against antigen B which has a conditionally inhibiting endodomain. CAR against antigen C has a spacer who segregates differently from A or B and is inhibitory. In fact, ever more complex boolean logic can be programmed with these simple components of the invention with any number of CARs and spacers.
[0247] Signal Peptide
[0248] The CARs of the T cell of the present invention may comprise a signal peptide so that when the CAR is expressed inside a cell, such as a T-cell, the nascent protein is directed to the endoplasmic reticulum and subsequently to the cell surface, where it is expressed.
[0249] The core of the signal peptide may contain a long stretch of hydrophobic amino acids that has a tendency to form a single alpha-helix. The signal peptide may begin with a short positively charged stretch of amino acids, which helps to enforce proper topology of the polypeptide during translocation. At the end of the signal peptide there is typically a stretch of amino acids that is recognized and cleaved by signal peptidase. Signal peptidase may cleave either during or after completion of translocation to generate a free signal peptide and a mature protein. The free signal peptides are then digested by specific proteases.
[0250] The signal peptide may be at the amino terminus of the molecule.
[0251] The signal peptide may comprise the SEQ ID No. 7, 8 or 9 or a variant thereof having 5, 4, 3, 2 or 1 amino acid mutations (insertions, substitutions or additions) provided that the signal peptide still functions to cause cell surface expression of the CAR.
TABLE-US-00008 SEQ ID No. 7: MGTSLLCWMALCLLGADHADG
[0252] The signal peptide of SEQ ID No. 7 is compact and highly efficient. It is predicted to give about 95% cleavage after the terminal glycine, giving efficient removal by signal peptidase.
TABLE-US-00009 SEQ ID No. 8: MSLPVTALLLPLALLLHAARP
[0253] The signal peptide of SEQ ID No. 8 is derived from IgG1.
TABLE-US-00010 SEQ ID No. 9: MAVPTQVLGLLLLWLTDARC
[0254] The signal peptide of SEQ ID No. 9 is derived from CD8.
[0255] The signal peptide for the first CAR may have a different sequence from the signal peptide of the second CAR (and from the 3.sup.rd CAR and 4.sup.th CAR etc).
[0256] Antigen Binding Domain
[0257] The antigen binding domain is the portion of the CAR which recognizes antigen. Numerous antigen-binding domains are known in the art, including those based on the antigen binding site of an antibody, antibody mimetics, and T-cell receptors. For example, the antigen-binding domain may comprise: a single-chain variable fragment (scFv) derived from a monoclonal antibody; a natural ligand of the target antigen; a peptide with sufficient affinity for the target; a single domain antibody; an artificial single binder such as a Darpin (designed ankyrin repeat protein); or a single-chain derived from a T-cell receptor.
[0258] The antigen binding domain may comprise a domain which is not based on the antigen binding site of an antibody. For example the antigen binding domain may comprise a domain based on a protein/peptide which is a soluble ligand for a tumour cell surface receptor (e.g. a soluble peptide such as a cytokine or a chemokine); or an extracellular domain of a membrane anchored ligand or a receptor for which the binding pair counterpart is expressed on the tumour cell.
[0259] Examples 11 to 13 relate to a CAR which binds BCMA, in which the antigen binding doaimn comprises APRIL, a ligand for BCMA.
[0260] The antigen binding domain may be based on a natural ligand of the antigen.
[0261] The antigen binding domain may comprise an affinity peptide from a combinatorial library or a de novo designed affinity protein/peptide.
[0262] Spacer Domain
[0263] CARs comprise a spacer sequence to connect the antigen-binding domain with the transmembrane domain and spatially separate the antigen-binding domain from the endodomain. A flexible spacer allows the antigen-binding domain to orient in different directions to facilitate binding.
[0264] In the T cell of the present invention, the first and second CARs comprise different spacer molecules. For example, the spacer sequence may, for example, comprise an IgG1 Fc region, an IgG1 hinge or a human CD8 stalk or the mouse CD8 stalk. The spacer may alternatively comprise an alternative linker sequence which has similar length and/or domain spacing properties as an IgG1 Fc region, an IgG1 hinge or a CD8 stalk. A human IgG1 spacer may be altered to remove Fc binding motifs.
[0265] Examples of amino acid sequences for these spacers are given below:
TABLE-US-00011 (hinge-CH2CH3 of human IgG1) SEQ ID No. 10 AEPKSPDKTHTCPPCPAPPVAGPSVFLFPPKPKDTLMIARTPEVTCVVVD VSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLN GKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSL TCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKS RWQQGNVFSCSVMHEALHNHYTQKSLSLSPGKKD (human CD8 stalk): SEQ ID No. 11 ITTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHIRGLDFACDI (human IgG1 hinge): SEQ ID No. 12 AEPKSPDKTHTCPPCPKDPK (CD2 ectodomain) SEQ ID No. 13 KEITNALETWGALGQDINLDIPSFQMSDDIDDIKWEKTSDKKKIAQFRKE KETFKEKDTYKLFKNGTLKIKHLKTDDQDIYKVSIYDTKGKNVLEKIFDL KIQERVSKPKISWTCINTTLTCEVMNGTDPELNLYQDGKHLKLSQRVITH KWTTSLSAKFKCTAGNKVSKESSVEPVSCPEKGLD (CD34 ectodomain) SEQ ID No. 14 SLDNNGTATPELPTQGTFSNVSTNVSYQETTTPSTLGSTSLHPVSQHGNE ATTNITETTVKFTSTSVITSVYGNTNSSVQSQTSVISTVFTTPANVSTPE TTLKPSLSPGNVSDLSTTSTSLATSPTKPYTSSSPILSDIKAEIKCSGIR EVKLTQGICLEQNKTSSCAEFKKDRGEGLARVLCGEEQADADAGAQVCSL LLAQSEVRPQCLLLVLANRTEISSKLQLMKKHQSDLKKLGILDFTEQDVA SHQSYSQKT
[0266] Since CARs are typically homodimers (see FIG. 1a), cross-pairing may result in a heterodimeric chimeric antigen receptor. This is undesirable for various reasons, for example: (1) the epitope may not be at the same "level" on the target cell so that a cross-paired CAR may only be able to bind to one antigen; (2) the VH and VL from the two different scFv could swap over and either fail to recognize target or worse recognize an unexpected and unpredicted antigen. For the "OR" gate and the "AND NOT" gate, the spacer of the first CAR may be sufficiently different from the spacer of the second CAR in order to avoid cross-pairing. The amino acid sequence of the first spacer may share less that 50%, 40%, 30% or 20% identity at the amino acid level with the second spacer.
[0267] In other aspects of the invention (for example the AND gate) it is important that the spacer of the first CAR has a different length, and/or charge and/or shape and/or configuration and/or glycosylation, such that when both first and second CARs bind their target antigen, the difference in spacer charge or dimensions results in spatial separation of the two types of CAR to different parts of the membrane to result in activation as predicted by the kinetic separation model. In these aspects, the different length, shape and/or configuration of the spacers is carefully chosen bearing in mind the size and binding epitope on the target antigen to allow differential segregation upon cognate target recognition. For example the IgG1 Hinge, CD8 stalk, IgG1 Fc, ectodomain of CD34, ectodomain of CD45 are expected to differentially segregate.
[0268] Examples of spacer pairs which differentially segregate and are therefore suitable for use with the AND gate are shown in the following Table:
TABLE-US-00012 Stimulatory CAR spacer Inhibitory CAR spacer Human-CD8STK Human-IgG-Hinge-CH2CH3 Human-CD3z ectodomain Human-IgG-Hinge-CH2CH3 Human-IgG-Hinge Human-IgG-Hinge-CH2CH3 Human-CD28STK Human-IgG-Hinge-CH2CH3 Human-CD8STK Human-IgM-Hinge-CH2CH3CD4 Human-CD3z ectodomain Human-IgM-Hinge-CH2CH3CD4 Human-IgG-Hinge Human-IgM-Hinge-CH2CH3CD4 Human-CD28STK Human-IgM-Hinge-CH2CH3CD4
[0269] In other aspects of the invention (for example the AND NOT gate), it is important that the spacer be sufficiently different as to prevent cross-pairing, but to be sufficiently similar to co-localise. Pairs of orthologous spacer sequences may be employed. Examples are murine and human CD8 stalks, or alternatively spacer domains which are monomeric--for instance the ectodomain of CD2.
[0270] Examples of spacer pairs which co-localise and are therefore suitable for use with the AND NOT gate are shown in the following Table:
TABLE-US-00013 Stimulatory CAR spacer Inhibitory CAR spacer Human-CD8aSTK Mouse CD8aSTK Human-CD28STK Mouse CD8aSTK Human-IgG-Hinge Human-CD3z ectodomain Human-CD8aSTK Mouse CD28STK Human-CD28STK Mouse CD28STK Human-IgG-Hinge-CH2CH3 Human-IgM-Hinge-CH2CH3CD4
[0271] All the spacer domains mentioned above form homodimers. However the mechanism is not limited to using homodimeric receptors and should work with monomeric receptors as long as the spacer is sufficiently rigid. An example of such a spacer is CD2 or truncated CD22.
[0272] Transmembrane Domain
[0273] The transmembrane domain is the sequence of the CAR that spans the membrane.
[0274] A transmembrane domain may be any protein structure which is thermodynamically stable in a membrane. This is typically an alpha helix comprising of several hydrophobic residues. The transmembrane domain of any transmembrane protein can be used to supply the transmembrane portion of the invention. The presence and span of a transmembrane domain of a protein can be determined by those skilled in the art using the TMHMM algorithm (http://www.cbs.dtu.dk/services/TMHMM-2.0/). Further, given that the transmembrane domain of a protein is a relatively simple structure, i.e. a polypeptide sequence predicted to form a hydrophobic alpha helix of sufficient length to span the membrane, an artificially designed TM domain may also be used (U.S. Pat. No. 7,052,906 B1 describes synthetic transmembrane components).
[0275] The transmembrane domain may be derived from CD28, which gives good receptor stability.
[0276] Activating Endodomain
[0277] The endodomain is the signal-transmission portion of the CAR. After antigen recognition, receptors cluster, native CD45 and CD148 are excluded from the synapse and a signal is transmitted to the cell. The most commonly used endodomain component is that of CD3-zeta which contains 3 ITAMs. This transmits an activation signal to the T cell after antigen is bound. CD3-zeta may not provide a fully competent activation signal and additional co-stimulatory signaling may be needed. For example, chimeric CD28 and OX40 can be used with CD3-Zeta to transmit a proliferative/survival signal, or all three can be used together.
[0278] In the "OR gate", the cell of the present invention comprises two CARs, each with an activating endodomain. The activating endodomain is capable of transmitting both immunological signal 1 and immunological signal 2. An endodomain is not considered "activating" if it just comprises CD3.zeta., which is sufficient to trigger T-cell killing of cognate target cells does not fully activate the T-cell to proliferate and survive. An "activating endodomain" is a compound endodomains: in which the intracellular part of a T-cell co-stimulatory molecule is fused to that of CD3.zeta. resulting in a "second generation" receptor which can transmit an activating and co-stimulatory signal simultaneously after antigen recognition. The co-stimulatory domain most commonly used is that of CD28. This supplies the most potent co-stimulatory signal--namely immunological signal 2, which triggers T-cell proliferation. In addition to a co-stimulatory domain, the activating endodomain may also include TNF receptor family endodomains, such as the closely related OX40 and 41 BB which transmit survival signals.
[0279] An "activating" endodomain.may therefore not comprise the CD3-Zeta endodomain or the CD28 endodomain alone. An activating endodomain may, for example, comprise the CD3-Zeta endodomain with that of either CD28 or OX40 or the CD28 endodomain and OX40 and CD3-Zeta endodomain.
[0280] Each of the CARs in the OR gate is independently capable of activating the T cell. The T cell is thus activated by the presence of either antigen alone. The two CARs are not "complementary" in the sense that activation of both CARs is necessary to provide activation and co-stimulatory signals.
[0281] A endodomain which contains an ITAM motif can act as an activation endodomain in this invention. Several proteins are known to contain endodomains with one or more ITAM motifs. Examples of such proteins include the CD3 epsilon chain, the CD3 gamma chain and the CD3 delta chain to name a few. The ITAM motif can be easily recognized as a tyrosine separated from a leucine or isoleucine by any two other amino acids, giving the signature YxxL/I. Typically, but not always, two of these motifs are separated by between 6 and 8 amino acids in the tail of the molecule (YxxL/Ix(6-8)YxxL/I). Hence, one skilled in the art can readily find existing proteins which contain one or more ITAM to transmit an activation signal. Further, given the motif is simple and a complex secondary structure is not required, one skilled in the art can design polypeptides containing artificial ITAMs to transmit an activation signal (see WO 2000063372, which relates to synthetic signalling molecules).
[0282] The transmembrane and intracellular T-cell signalling domain (endodomain) of a CAR with an activating endodomain may comprise the sequence shown as SEQ ID No. 16 or 17 or a variant thereof having at least 80% sequence identity.
TABLE-US-00014 comprising CD28 transmembrane domain and CD3 Z endodomain SEQ ID No. 15 FWVLVVVGGVLACYSLLVTVAFIIFWVRRVKFSRSADAPAYQQGQNQLYN ELNLGRREEYDVLDKRRGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYS EIGMKGERRRGKGHDGLYQGLSTATKDTYDALHMQALPPR comprising CD28 transmembrane domain and CD28 and CD3 Zeta endodomains SEQ ID No. 16 FWVLVVVGGVLACYSLLVTVAFIIFWVRSKRSRLLHSDYMNMTPRRPGPT RKHYQPYAPPRDFAAYRSRVKFSRSADAPAYQQGQNQLYNELNLGRREEY DVLDKRRGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRR GKGHDGLYQGLSTATKDTYDALHMQALPPR comprising CD28 transmembrane domain and CD28, OX40 and CD3 Zeta endodomains. SEQ ID No. 17 FWVLVVVGGVLACYSLLVTVAFIIFWVRSKRSRLLHSDYMNMTPRRPGPT RKHYQPYAPPRDFAAYRSRDQRLPPDAHKPPGGGSFRTPIQEEQADAHST LAKIRVKFSRSADAPAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMG GKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTA TKDTYDALHMQALPPR
[0283] A variant sequence may have at least 80%, 85%, 90%, 95%, 98% or 99% sequence identity to SEQ ID No. 16 or 17, provided that the sequence provides an effective trans-membrane domain and an effective intracellular T cell signaling domain.
[0284] "Ligation-Off" Inhibitory Endodomain
[0285] In the embodiment referred above as the AND gate, one of the CARs comprises an inhibitory endodomain such that the inhibitory CAR inhibits T-cell activation by the activating CAR in the absence of inhibitory CAR ligation, but does not significantly inhibit T-cell activation by the activating CAR when the inhibitory CAR is ligated. This is termed a "ligation-off" inhibitory endodomain.
[0286] In this case, the spacer of the inhibitory CAR is of a different length, charge, shape and/or configuration and/or glycosylation from the spacer of the activating CAR, such that when both receptors are ligated, the difference in spacer dimensions results in isolation of the activating CARs and the inhibitory CARs in different membrane compartments of the immunological synapse, so that the activating endodomain is released from inhibition by the inhibitory endodomain.
[0287] The inhibitory endodomains for use in a ligation-off inhibitory CAR may therefore comprise any sequence which inhibits T-cell signaling by the activating CAR when it is in the same membrane compartment (i.e. in the absence of the antigen for the inhibitory CAR) but which does not significantly inhibit T cell signaling when it is isolated in a separate part of the membrane from the inhibitory CAR.
[0288] The ligation-off inhibitory endodomain may be or comprise a tyrosine phosphatase, such as a receptor-like tyrosine phosphatase. An inhibitory endodomain may be or comprise any tyrosine phosphatase that is capable of inhibiting the TCR signalling when only the stimulatory receptor is ligated. An inhibitory endodomain may be or comprise any tyrosine phosphatase with a sufficiently fast catalytic rate for phosphorylated ITAMs that is capable of inhibiting the TCR signalling when only the stimulatory receptor is ligated.
[0289] For example, the inhibitory endodomain of an AND gate may comprise the endodomain of CD148 or CD45. CD148 and CD45 have been shown to act naturally on the phosphorylated tyrosines up-stream of TCR signalling.
[0290] CD148 is a receptor-like protein tyrosine phosphatase which negatively regulates TCR signaling by interfering with the phosphorylation and function of PLC.gamma.1 and LAT.
[0291] CD45 present on all hematopoetic cells, is a protein tyrosine phosphatase which is capable of regulating signal transduction and functional responses, again by phosphorylating PLC.gamma.1.
[0292] An inhibitory endodomain may comprise all of part of a receptor-like tyrosine phosphatase. The phospatase may interfere with the phosphorylation and/or function of elements involved in T-cell signalling, such as PLC.gamma.1 and/or LAT.
[0293] The transmembrane and endodomain of CD45 and CD148 is shown as SEQ ID No. 18 and No. 19 respectively.
TABLE-US-00015 CD45 trans-membrane and endodomain sequence SEQ ID 18 ALIAFLAFLIIVTSIALLVVLYKIYDLHKKRSCNLDEQQELVERDDEKQL MNVEPIHADILLETYKRKIADEGRLFLAEFQSIPRVFSKFPIKEARKPFN QNKNRYVDILPYDYNRVELSEINGDAGSNYINASYIDGFKEPRKYIAAQG PRDETVDDFWRMIWEQKATVIVMVTRCEEGNRNKCAEYWPSMEEGTRAFG DVVVKINQHKRCPDYIIQKLNIVNKKEKATGREVTHIQFTSWPDHGVPED PHLLLKLRRRVNAFSNFFSGPIVVHCSAGVGRTGTYIGIDAMLEGLEAEN KVDVYGYVVKLRRQRCLMVQVEAQYILIHQALVEYNQFGETEVNLSELHP YLHNMKKRDPPSEPSPLEAEFQRLPSYRSWRTQHIGNQEENKSKNRNSNV IPYDYNRVPLKHELEMSKESEHDSDESSDDDSDSEEPSKYINASFIMSYW KPEVMIAAQGPLKETIGDFWQMIFQRKVKVIVMLTELKHGDQEICAQYWG EGKQTYGDIEVDLKDTDKSSTYTLRVFELRHSKRKDSRTVYQYQYTNWSV EQLPAEPKELISMIQVVKQKLPQKNSSEGNKHHKSTPLLIHCRDGSQQTG IFCALLNLLESAETEEVVDIFQVVKALRKARPGMVSTFEQYQFLYDVIAS TYPAQNGQVKKNNHQEDKIEFDNEVDKVKQDANCVNPLGAPEKLPEAKEQ AEGSEPTSGTEGPEHSVNGPASPALNQGS CD148 trans-membrane and endodomain sequence SEQ ID 19 AVFGCIFGALVIVTVGGFIFWRKKRKDAKNNEVSFSQIKPKKSKLIRVEN FEAYFKKQQADSNCGFAEEYEDLKLVGISQPKYAAELAENRGKNRYNNVL PYDISRVKLSVQTHSTDDYINANYMPGYHSKKDFIATQGPLPNTLKDFWR MVWEKNVYAIIMLTKCVEQGRTKCEEYWPSKQAQDYGDITVAMTSEIVLP EWTIRDFTVKNIQTSESHPLRQFHFTSWPDHGVPDTTDLLINFRYLVRDY MKQSPPESPILVHCSAGVGRTGTFIAIDRLIYQIENENTVDVYGIVYDLR MHRPLMVQTEDQYVFLNQCVLDIVRSQKDSKVDLIYQNTTAMTIYENLAP VTTFGKTNGYIA
[0294] An inhibitory CAR may comprise all or part of SEQ ID No 18 or 19 (for example, it may comprise the phosphatase function of the endodomain). It may comprise a variant of the sequence or part thereof having at least 80% sequence identity, as long as the variant retains the capacity to basally inhibit T cell signalling by the activating CAR.
[0295] Other spacers and endodomains may be tested for example using the model system exemplified herein. Target cell populations can be created by transducing a suitable cell line such as a SupT1 cell line either singly or doubly to establish cells negative for both antigens (the wild-type), positive for either and positive for both (e.g. CD19-CD33-, CD19+CD33-, CD19-CD33+ and CD19+CD33+). T cells such as the mouse T cell line BW5147 which releases IL-2 upon activation may be transduced with pairs of CARs and their ability to function in a logic gate measured through measurement of IL-2 release (for example by ELISA). For example, it is shown in Example 4 that both CD148 and CD45 endodomains can function as inhibitory CARs in combination with an activating CAR containing a CD3 Zeta endodomain. These CARs rely upon a short/non-bulky CD8 stalk spacer on one CAR and a bulky Fc spacer on the other CAR to achieve AND gating. When both receptors are ligated, the difference in spacer dimensions results in isolation of the different receptors in different membrane compartments, releasing the CD3 Zeta receptor from inhibition by the CD148 or CD45 endodomains. In this way, activation only occurs once both receptors are activated. It can be readily seen that this modular system can be used to test alternative spacer pairs and inhibitory endodomains. If the spacers do not achieve isolation following ligation of both receptors, the inhibition would not be released and so no activation would occur. If the inhibitory endodomain under test is ineffective, activation would be expected in the presence of ligation of the activating CAR irrespective of the ligation status of the inhibitory CAR.
[0296] "Ligation-On" Endodomain
[0297] In the embodiment referred above as the AND NOT gate, one of the CARs comprises a "ligation-on" inhibitory endodomain such that the inhibitory CAR does not significantly inhibit T-cell activation by the activating CAR in the absence of inhibitory CAR ligation, but inhibits T-cell activation by the activating CAR when the inhibitory CAR is ligated.
[0298] The "ligation-on" inhibitory endodomain may be or comprise a tyrosine phosphatase that is incapable of inhibiting the TCR signalling when only the stimulatory receptor is ligated.
[0299] The "ligation-on" inhibitory endodomain may be or comprise a tyrosine phosphatase with a sufficiently slow catalytic rate for phosphorylated ITAMs that is incapable of inhibiting the TCR signalling when only the stimulatory receptor is ligated but it is capable of inhibiting the TCR signalling response when concentrated at the synapse. Concentration at the synapse is achieved through inhibitory receptor ligation.
[0300] If a tyrosine phosphatase has a catalytic rate which is too fast for a "ligation-on" inhibitory endodomain, then it is possible to tune-down the catalytic rates of phosphatase through modification such as point mutations and short linkers (which cause steric hindrance) to make it suitable for a "ligation-on" inhibitory endodomain.
[0301] In this first embodiment the endodomain may be or comprise a phosphatase which is considerably less active than CD45 or CD148, such that significant dephosphorylation of ITAMS only occurs when activating and inhibitory endodomains are co-localised. Many suitable sequences are known in the art. For example, the inhibitory endodomain of a NOT AND gate may comprise all or part of a protein-tyrosine phosphatase such as PTPN6.
[0302] Protein tyrosine phosphatases (PTPs) are signaling molecules that regulate a variety of cellular processes including cell growth, differentiation, mitotic cycle, and oncogenic transformation. The N-terminal part of this PTP contains two tandem Src homolog (SH2) domains, which act as protein phospho-tyrosine binding domains, and mediate the interaction of this PTP with its substrates. This PTP is expressed primarily in hematopoietic cells, and functions as an important regulator of multiple signaling pathways in hematopoietic cells.
[0303] The inhibitor domain may comprise all of PTPN6 (SEQ ID No. 20) or just the phosphatase domain (SEQ ID No. 21).
TABLE-US-00016 sequence of PTPN6 SEQ ID 20 MVRWFHRDLSGLDAETLLKGRGVHGSFLARPSRKNQGDFSLSVRVGDQVT HIRIQNSGDFYDLYGGEKFATLTELVEYYTQQQGVLQDRDGTIIHLKYPL NCSDPTSERWYHGHMSGGQAETLLQAKGEPWTFLVRESLSQPGDFVLSVL SDQPKAGPGSPLRVTHIKVMCEGGRYTVGGLETFDSLTDLVEHFKKTGIE EASGAFVYLRQPYYATRVNAADIENRVLELNKKQESEDTAKAGFWEEFES LQKQEVKNLHQRLEGQRPENKGKNRYKNILPFDHSRVILQGRDSNIPGSD YINANYIKNQLLGPDENAKTYIASQGCLEATVNDFWQMAWQENSRVIVMT TREVEKGRNKCVPYWPEVGMQRAYGPYSVINCGEHDTTEYKLRTLQVSPL DNGDLIREIWHYQYLSWPDHGVPSEPGGVLSFLDQINQRQESLPHAGPII VHCSAGIGRTGTIIVIDMLMENISTKGLDCDIDIQKTIQMVRAQRSGMVQ TEAQYKFIYVAIAQFIETTKKKLEVLQSQKGQESEYGNITYPPAMKNAHA KASRTSSKHKEDVYENLHTKNKREEKVKKQRSADKEKSKGSLKRK sequence of phosphatase domain of PTPN6 SEQ ID 21 FWEEFESLQKQEVKNLHQRLEGQRPENKGKNRYKNILPFDHSRVILQGRD SNIPGSDYINANYIKNQLLGPDENAKTYIASQGCLEATVNDFWQMAWQEN SRVIVMTTREVEKGRNKCVPYWPEVGMQRAYGPYSVINCGEHDTTEYKLR TLQVSPLDNGDLIREIWHYQYLSWPDHGVPSEPGGVLSFLDQINQRQESL PHAGPIIVHCSAGIGRTGTIIVIDMLMENISTKGLDCDIDIQKTIQMVRA QRSGMVQTEAQYKFIYVAIAQF
[0304] A second embodiment of a ligation-on inhibitory endodomain is an ITIM (Immunoreceptor Tyrosine-based Inhibition motif) containing endodomain such as that from CD22, LAIR-1, the Killer inhibitory receptor family (KIR), LILRB1, CTLA4, PD-1, BTLA etc. When phosphorylated, ITIMs recruits endogenous PTPN6 through its SH2 domain. If co-localised with an ITAM containing endodomain, dephosphorylation occurs and the activating CAR is inhibited.
[0305] An ITIM is a conserved sequence of amino acids (S/I/V/LxYxxI/V/L) that is found in the cytoplasmic tails of many inhibitory receptors of the immune system. One skilled in the art can easily find protein domains containing an ITIM. A list of human candidate ITIM-containing proteins has been generated by proteome-wide scans (Staub, et al (2004) Cell. Signal. 16, 435-456). Further, since the consensus sequence is well known and little secondary structure appears to be required, one skilled in the art could generate an artificial ITIM.
[0306] ITIM endodomains from PDCD1, BTLA4, LILRB1, LAIR1, CTLA4, KIR2DL1, KIR2DL4, KIR2DL5, KIR3DL1 and KIR3DL3 are shown in SEQ ID 22 to 31 respectively
TABLE-US-00017 PDCD1 endodomain SEQ ID 22 CSRAARGTIGARRTGQPLKEDPSAVPVFSVDYGELDFQWREKTPEPPVPC VPEQTEYATIVFPSGMGTSSPARRGSADGPRSAQPLRPEDGHCSWPL BTLA4 SEQ ID 23 KLQRRWKRTQSQQGLQENSSGQSFFVRNKKVRRAPLSEGPHSLGCYNPMM EDGISYTTLRFPEMNIPRTGDAESSEMQRPPPDCDDTVTYSALHKRQVGD YENVIPDFPEDEGIHYSELIQFGVGERPQAQENVDYVILKH LILRB1 SEQ ID 24 LRHRRQGKHWTSTQRKADFQHPAGAVGPEPTDRGLQWRSSPAADAQEENL YAAVKHTQPEDGVEMDTRSPHDEDPQAVTYAEVKHSRPRREMASPPSPLS GEFLDTKDRQAEEDRQMDTEAAASEAPQDVTYAQLHSLTLRREATEPPPS QEGPSPAVPSIYATLAIH LAIR1 SEQ ID 25 HRQNQIKQGPPRSKDEEQKPQQRPDLAVDVLERTADKATVNGLPEKDRET DTSALAAGSSQEVTYAQLDHWALTQRTARAVSPQSTKPMAESITYAAVAR H CTLA4 SEQ ID 26 FLLWILAAVSSGLFFYSFLLTAVSLSKMLKKRSPLTTGVYVKMPPTEPEC EKQFQPYFIPIN KIR2DL1 SEQ ID 27 GNSRHLHVLIGTSVVIIPFAILLFFLLHRWCANKKNAVVMDQEPAGNRTV NREDSDEQDPQEVTYTQLNHCVFTQRKITRPSQRPKTPPTDIIVYTELPN AESRSKVVSCP KIR2DL4 SEQ ID 28 GIARHLHAVIRYSVAIILFTILPFFLLHRWCSKKKENAAVMNQEPAGHRT VNREDSDEQDPQEVTYAQLDHCIFTQRKITGPSQRSKRPSTDTSVCIELP NAEPRALSPAHEHHSQALMGSSRETTALSQTQLASSNVPAAGI KIR2DL5 SEQ ID 29 TGIRRHLHILIGTSVAIILFIILFFFLLHCCCSNKKNAAVMDQEPAGDRT VNREDSDDQDPQEVTYAQLDHCVFTQTKITSPSQRPKTPPTDTTMYMELP NAKPRSLSPAHKHHSQALRGSSRETTALSQNRVASSHVPAAGI KIR3DL1 SEQ ID 30 KDPRHLHILIGTSVVIILFILLLFFLLHLWCSNKKNAAVMDQEPAGNRTA NSEDSDEQDPEEVTYAQLDHCVFTQRKITRPSQRPKTPPTDTILYTELPN AKPRSKVVSCP KIR3DL3 SEQ ID 31 KDPGNSRHLHVLIGTSVVIIPFAILLFFLLHRWCANKKNAVVMDQEPAGN RTVNREDSDEQDPQEVTYAQLNHCVFTQRKITRPSQRPKTPPTDTSV
[0307] A third embodiment of a ligation-on inhibitory endodomain is an ITIM containing endodomain co-expressed with a fusion protein. The fusion protein may comprise at least part of a protein-tyrosine phosphatase and at least part of a receptor-like tyrosine phosphatase. The fusion may comprise one or more SH2 domains from the protein-tyrosine phosphatase. For example, the fusion may be between a PTPN6 SH2 domain and CD45 endodomain or between a PTPN6 SH2 domain and CD148 endodomain. When phosphorylated, the ITIM domains recruit the fusion protein bring the highly potent CD45 or CD148 phosphatase to proximity to the activating endodomain blocking activation.
[0308] Sequences of fusion proteins are listed 32 and 33
TABLE-US-00018 PTPN6-CD45 fusion protein SEQ ID 32 WYHGHMSGGQAETLLQAKGEPWTFLVRESLSQPGDFVLSVLSDQPKAGPG SPLRVTHIKVMCEGGRYTVGGLETFDSLTDLVEHFKKTGIEEASGAFVYL RQPYKIYDLHKKRSCNLDEQQELVERDDEKQLMNVEPIHADILLETYKRK IADEGRLFLAEFQSIPRVFSKFPIKEARKPFNQNKNRYVDILPYDYNRVE LSEINGDAGSNYINASYIDGFKEPRKYIAAQGPRDETVDDFWRMIWEQKA TVIVMVTRCEEGNRNKCAEYWPSMEEGTRAFGDVVVKINQHKRCPDYIIQ KLNIVNKKEKATGREVTHIQFTSWPDHGVPEDPHLLLKLRRRVNAFSNFF SGPIVVHCSAGVGRTGTYIGIDAMLEGLEAENKVDVYGYVVKLRRQRCLM VQVEAQYILIHQALVEYNQFGETEVNLSELHPYLHNMKKRDPPSEPSPLE AEFQRLPSYRSWRTQHIGNQEENKSKNRNSNVIPYDYNRVLKHELEMSKE SEHDSDESSDDDSDSEEPSKYINASFIMSYWKPEVMIAAQGPLKETIGDF MIQRKVKVIVMLTELKHGDQEICAQYWGEGKQTYGDIEVDLKDTDKSSTY TLRVFELRHSKRKDSRTVYQYQYTNWSVEQLPAEPKELISMIQVVKQKLP QKNSSEGNKHHKSTPLLIHCRDGSQQTGIFCALLNLLESAETEEVVDIFQ VVKALRKARPGMVSTFEQYQFLYDVIASTYPAQNGQVKKNNHQEDKIEFD NEVDKVKQDANCVNPLGAPEKLPEAKEQAEGSEPTSGTEGPEHSVNGPAS PALNQGS PTPN6-CD148 fusion SEQ ID 33 ETLLQAKGEPWTFLVRESLSQPGDFVLSVLSDQPKAGPGSPLRVTHIKVM CEGGRYTVGGLETFDSLTDLVEHFKKTGIEEASGAFVYLRQPYRKKRKDA KNNEVSFSQIKPKKSKLIRVENFEAYFKKQQADSNCGFAEEYEDLKLVGI SQPKYAAELAENRGKNRYNNVLPYDISRVKLSVQTHSTDDYINANYMPGY HSKKDFIATQGPLPNTLKDFWRMVWEKNVYAIIMLTKCVEQGRTKCEEYW PSKQAQDYGDITVAMTSEIVLPEWTIRDFTVKNIQTSESHPLRQFHFTSW PDHGVPDTTDLLINFRYLVRDYMKQSPPESPILVHCSAGVGRTGTFIAID RLIYQIENENTVDVYGIVYDLRMHRPLMVQTEDQYVFLNQCVLDIVRSQK DSKVDLIYQNTTAMTIYENLAPVTTFGKTNGYIA
[0309] A ligation-on inhibitory CAR may comprise all or part of SEQ ID No 20 or 21. It may comprise all or part of SEQ ID 22 to 31. It may comprise all or part of SEQ ID 22 to 31 co-expressed with either SEQ ID 32 or 33. It may comprise a variant of the sequence or part thereof having at least 80% sequence identity, as long as the variant retains the capacity to inhibit T cell signaling by the activating CAR upon ligation of the inhibitory CAR.
[0310] As above, alternative spacers and endodomains may be tested for example using the model system exemplified herein. It is shown in Example 5 that the PTPN6 endodomain can function as a semi-inhibitory CAR in combination with an activating CAR containing a CD3 Zeta endodomain. These CARs rely upon a human CD8 stalk spacer on one CAR and a mouse CD8 stalk spacer on the other CAR. The orthologous sequences prevent cross pairing. However, when both receptors are ligated, the similarity between the spacers results in co-segregation of the different receptors in the same membrane compartments. This results in inhibition of the CD3 Zeta receptor by the PTPN6 endodomain. If only the activating CAR is ligated the PTPN6 endodomain is not sufficiently active to prevent T cell activation. In this way, activation only occurs if the activating CAR is ligated and the inhibitory CAR is not ligated (AND NOT gating). It can be readily seen that this modular system can be used to test alternative spacer pairs and inhibitory domains. If the spacers do not achieve co-segregation following ligation of both receptors, the inhibition would not be effective and so activation would occur. If the semi-inhibitory endodomain under test is ineffective, activation would be expected in the presence of ligation of the activating CAR irrespective of the ligation status of the semi-inhibitory CAR.
[0311] Co-Expression Site
[0312] The second aspect of the invention relates to a nucleic acid which encodes the first and second CARs.
[0313] The nucleic acid may produce a polypeptide which comprises the two CAR molecules joined by a cleavage site. The cleavage site may be self-cleaving, such that when the polypeptide is produced, it is immediately cleaved into the first and second CARs without the need for any external cleavage activity.
[0314] Various self-cleaving sites are known, including the Foot-and-Mouth disease virus (FMDV) 2a self-cleaving peptide, which has the sequence shown as SEQ ID No. 34:
TABLE-US-00019 SEQ ID No. 34 RAEGRGSLLTCGDVEENPGP.
[0315] The co-expressing sequence may be an internal ribosome entry sequence (IRES). The co-expressing sequence may be an internal promoter.
[0316] Cell
[0317] The first aspect of the invention relates to a cell which co-expresses a first CAR and a second CAR at the cell surface.
[0318] The cell may be any eukaryotic cell capable of expressing a CAR at the cell surface, such as an immunological cell.
[0319] In particular the cell may be an immune effector cell such as a T cell or a natural killer (NK) cell.
[0320] T cells or T lymphocytes are a type of lymphocyte that play a central role in cell-mediated immunity. They can be distinguished from other lymphocytes, such as B cells and natural killer cells (NK cells), by the presence of a T-cell receptor (TCR) on the cell surface. There are various types of T cell, as summarised below.
[0321] Helper T helper cells (TH cells) assist other white blood cells in immunologic processes, including maturation of B cells into plasma cells and memory B cells, and activation of cytotoxic T cells and macrophages. TH cells express CD4 on their surface. TH cells become activated when they are presented with peptide antigens by MHC class II molecules on the surface of antigen presenting cells (APCs). These cells can differentiate into one of several subtypes, including TH1, TH2, TH3, TH17, Th9, or TFH, which secrete different cytokines to facilitate different types of immune responses.
[0322] Cytotoxic T cells (TC cells, or CTLs) destroy virally infected cells and tumor cells, and are also implicated in transplant rejection. CTLs express the CD8 at their surface. These cells recognize their targets by binding to antigen associated with MHC class I, which is present on the surface of all nucleated cells. Through IL-10, adenosine and other molecules secreted by regulatory T cells, the CD8+ cells can be inactivated to an anergic state, which prevent autoimmune diseases such as experimental autoimmune encephalomyelitis.
[0323] Memory T cells are a subset of antigen-specific T cells that persist long-term after an infection has resolved. They quickly expand to large numbers of effector T cells upon re-exposure to their cognate antigen, thus providing the immune system with "memory" against past infections. Memory T cells comprise three subtypes: central memory T cells (TCM cells) and two types of effector memory T cells (TEM cells and TEMRA cells). Memory cells may be either CD4+ or CD8+. Memory T cells typically express the cell surface protein CD45RO.
[0324] Regulatory T cells (Treg cells), formerly known as suppressor T cells, are crucial for the maintenance of immunological tolerance. Their major role is to shut down T cell-mediated immunity toward the end of an immune reaction and to suppress auto-reactive T cells that escaped the process of negative selection in the thymus.
[0325] Two major classes of CD4+ Treg cells have been described--naturally occurring Treg cells and adaptive Treg cells.
[0326] Naturally occurring Treg cells (also known as CD4+CD25+FoxP3+ Treg cells) arise in the thymus and have been linked to interactions between developing T cells with both myeloid (CD11c+) and plasmacytoid (CD123+) dendritic cells that have been activated with TSLP. Naturally occurring Treg cells can be distinguished from other T cells by the presence of an intracellular molecule called FoxP3. Mutations of the FOXP3 gene can prevent regulatory T cell development, causing the fatal autoimmune disease IPEX.
[0327] Adaptive Treg cells (also known as Tr1 cells or Th3 cells) may originate during a normal immune response.
[0328] The T cell of the invention may be any of the T cell types mentioned above, in particular a CTL.
[0329] Natural killer (NK) cells are a type of cytolytic cell which forms part of the innate immune system. NK cells provide rapid responses to innate signals from virally infected cells in an MHC independent manner
[0330] NK cells (belonging to the group of innate lymphoid cells) are defined as large granular lymphocytes (LGL) and constitute the third kind of cells differentiated from the common lymphoid progenitor generating B and T lymphocytes. NK cells are known to differentiate and mature in the bone marrow, lymph node, spleen, tonsils and thymus where they then enter into the circulation.
[0331] The CAR cells of the invention may be any of the cell types mentioned above.
[0332] CAR- expressing cells, such as CAR-expressing T or NK cells may either be created ex vivo either from a patient's own peripheral blood (1st party), or in the setting of a haematopoietic stem cell transplant from donor peripheral blood (2.sup.nd party), or peripheral blood from an unconnected donor (3.sup.rd party).
[0333] The present invention also provide a cell composition comprising CAR expressing T cells and/or CAR expressing NK cells according to the present invention. The cell composition may be made by tranducing a blood-sample ex vivo with a nucleic acid according to the present invention.
[0334] Alternatively, CAR-expressing cells may be derived from ex vivo differentiation of inducible progenitor cells or embryonic progenitor cells to the relevant cell type, such as T cells. Alternatively, an immortalized cell line such as a T-cell line which retains its lytic function and could act as a therapeutic may be used.
[0335] In all these embodiments, CAR cells are generated by introducing DNA or RNA coding for the CARs by one of many means including transduction with a viral vector, transfection with DNA or RNA.
[0336] A CAR T cell of the invention may be an ex vivo T cell from a subject. The T cell may be from a peripheral blood mononuclear cell (PBMC) sample. T cells may be activated and/or expanded prior to being transduced with CAR-encoding nucleic acid, for example by treatment with an anti-CD3 monoclonal antibody.
[0337] A CAR T cell of the invention may be made by:
[0338] (i) isolation of a T cell-containing sample from a subject or other sources listed above; and
[0339] (ii) transduction or transfection of the T cells with one or more nucleic acid sequence(s) encoding the first and second CAR.
[0340] The T cells may then by purified, for example, selected on the basis of co-expression of the first and second CAR.
[0341] Nucleic Acid Sequences
[0342] The second aspect of the invention relates to one or more nucleic acid sequence(s) which codes for a first CAR and a second CAR as defined in the first aspect of the invention.
[0343] The nucleic acid sequence may comprise one of the following sequences, or a variant thereof
[0344] SEQ ID 35 OR gate
[0345] SEQ ID 36 AND gate using CD45
[0346] SEQ ID 37 AND gate using CD148
[0347] SEQ ID 38 AND NOT gate using PTPN6 as endodomain
[0348] SEQ ID 39 AND NOT gate using LAIR1 endodomain
[0349] SEQ ID 40 AND NOT gate using LAIR1 and PTPN6 SH2 fusion with CD148 phosphatase
TABLE-US-00020 SEQ ID No. 35: >MP13974.SFG.aCD19fmc63-CD8STK-CD28tmZ-2A- aCD33glx-HCH2CH3pvaa-CD28tmZw ATGAGCCTGCCCGTGACCGCCCTGCTGCTGCCCCTGGCCCTGCTGCTGCACGCCGCCAG ACCAGACATCCAGATGACCCAGACCACCAGCAGCCTGAGCGCCAGCCTGGGCGACCGGG TGACCATCAGCTGCAGAGCCAGCCAGGACATCAGCAAGTACCTGAACTGGTACCAGCAG AAGCCCGACGGCACCGTGAAGCTGCTGATCTACCACACCAGCCGGCTGCACAGCGGCGT GCCCAGCCGGTTCAGCGGCAGCGGCAGCGGCACCGACTACAGCCTGACCATCAGCAACC TGGAGCAGGAGGACATCGCCACCTACTTCTGCCAGCAGGGCAACACCCTGCCCTACACC TTCGGAGGCGGCACCAAGCTGGAGATCACCAAGGCCGGAGGCGGAGGCTCTGGCGGAGG CGGCTCTGGCGGAGGCGGCTCTGGCGGAGGCGGCAGCGAGGTGAAGCTGCAGGAGTCTG GCCCAGGCCTGGTGGCCCCAAGCCAGAGCCTGAGCGTGACCTGCACCGTGAGCGGCGTG AGCCTGCCCGACTACGGCGTGAGCTGGATCAGGCAGCCCCCACGGAAGGGCCTGGAGTG GCTGGGCGTGATCTGGGGCAGCGAGACCACCTACTACAACAGCGCCCTGAAGAGCCGGC TGACCATCATCAAGGACAACAGCAAGAGCCAGGTGTTCCTGAAGATGAACAGCCTGCAG ACCGACGACACCGCCATCTACTACTGCGCCAAGCACTACTACTATGGCGGCAGCTACGC TATGGACTACTGGGGCCAGGGCACCAGCGTGACCGTGAGCTCAGATCCCACCACGACGC CAGCGCCGCGACCACCAACACCGGCGCCCACCATCGCGTCGCAGCCCCTGTCCCTGCGC CCAGAGGCGTGCCGGCCAGCGGCGGGGGGCGCAGTGCACACGAGGGGGCTGGACTTCGC CTGTGATATCTTTTGGGTGCTGGTGGTGGTTGGTGGAGTCCTGGCTTGCTATAGCTTGC TAGTAACAGTGGCCTTTATTATTTTCTGGGTGAGGAGAGTGAAGTTCAGCAGGAGCGCA GACGCCCCCGCGTACCAGCAGGGCCAGAACCAGCTCTATAACGAGCTCAATCTAGGACG AAGAGAGGAGTACGATGTTTTGGACAAGAGACGTGGCCGGGACCCTGAGATGGGGGGAA AGCCGAGAAGGAAGAACCCTCAGGAAGGCCTGTACAATGAACTGCAGAAAGATAAGATG GCGGAGGCCTACAGTGAGATTGGGATGAAAGGCGAGCGCCGGAGGGGCAAGGGGCACGA TGGCCTTTACCAGGGTCTCAGTACAGCCACCAAGGACACCTACGACGCCCTTCACATGC AGGCCCTGCCTCCTCGCAGAGCCGAGGGCAGGGGAAGTCTTCTAACATGCGGGGACGTG GAGGAAAATCCCGGGCCCATGGCCGTGCCCACTCAGGTCCTGGGGTTGTTGCTACTGTG GCTTACAGATGCCAGATGTGACATCCAGATGACACAGTCTCCATCTTCCCTGTCTGCAT CTGTCGGAGATCGCGTCACCATCACCTGTCGAGCAAGTGAGGACATTTATTTTAATTTA GTGTGGTATCAGCAGAAACCAGGAAAGGCCCCTAAGCTCCTGATCTATGATACAAATCG CTTGGCAGATGGGGTCCCATCACGGTTCAGTGGCTCTGGATCTGGCACACAGTATACTC TAACCATAAGTAGCCTGCAACCCGAAGATTTCGCAACCTATTATTGTCAACACTATAAG AATTATCCGCTCACGTTCGGTCAGGGGACCAAGCTGGAAATCAAAAGATCTGGTGGCGG AGGGTCAGGAGGCGGAGGCAGCGGAGGCGGTGGCTCGGGAGGCGGAGGCTCGAGATCTG AGGTGCAGTTGGTGGAGTCTGGGGGCGGCTTGGTGCAGCCTGGAGGGTCCCTGAGGCTC TCCTGTGCAGCCTCAGGATTCACTCTCAGTAATTATGGCATGCACTGGATCAGGCAGGC TCCAGGGAAGGGTCTGGAGTGGGTCTCGTCTATTAGTCTTAATGGTGGTAGCACTTACT ATCGAGACTCCGTGAAGGGCCGATTCACTATCTCCAGGGACAATGCAAAAAGCACCCTC TACCTTCAAATGAATAGTCTGAGGGCCGAGGACACGGCCGTCTATTACTGTGCAGCACA GGACGCTTATACGGGAGGTTACTTTGATTACTGGGGCCAAGGAACGCTGGTCACAGTCT CGTCTATGGATCCCGCCGAGCCCAAATCTCCTGACAAAACTCACACATGCCCACCGTGC CCAGCACCTCCCGTGGCCGGCCCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACAC CCTCATGATCGCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAG ACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACA AAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCT GCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCC CAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTG TACACCCTGCCCCCATCCCGGGATGAGCTGACCAAGAACCAGGTCAGCCTGACCTGCCT GGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAACCGG AGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTAC AGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGT GATGCATGAGGCCCTGCACAATCACTATACCCAGAAATCTCTGAGTCTGAGCCCAGGCA AGAAGGACCCCAAGTTCTGGGTCCTGGTGGTGGTGGGAGGCGTGCTGGCCTGTTACTCT CTCCTGGTGACCGTGGCCTTCATCATCTTTTGGGTGCGCTCCCGGGTGAAGTTTTCTCG CTCTGCCGATGCCCCAGCCTATCAGCAGGGCCAGAATCAGCTGTACAATGAACTGAACC TGGGCAGGCGGGAGGAGTACGACGTGCTGGATAAGCGGAGAGGCAGAGACCCCGAGATG GGCGGCAAACCACGGCGCAAAAATCCCCAGGAGGGACTCTATAACGAGCTGCAGAAGGA CAAAATGGCCGAGGCCTATTCCGAGATCGGCATGAAGGGAGAGAGAAGACGCGGAAAGG GCCACGACGGCCTGTATCAGGGATTGTCCACCGCTACAAAAGATACATATGATGCCCTG CACATGCAGGCCCTGCCACCCAGATGA SEQ ID No. 36 >MP14802.SFG.aCD19fmc63_clean-CD8STK-CD28tmZ- 2A-aCD33glx-HCH2CH3pvaa-dCD45 ATGAGCCTGCCCGTGACCGCCCTGCTGCTGCCCCTGGCCCTGCTGCTGCACGCCGCCAG ACCAGACATCCAGATGACCCAGACCACCAGCAGCCTGAGCGCCAGCCTGGGCGACCGGG TGACCATCAGCTGCAGAGCCAGCCAGGACATCAGCAAGTACCTGAACTGGTACCAGCAG AAGCCCGACGGCACCGTGAAGCTGCTGATCTACCACACCAGCCGGCTGCACAGCGGCGT GCCCAGCCGGTTCAGCGGCAGCGGCAGCGGCACCGACTACAGCCTGACCATCAGCAACC TGGAGCAGGAGGACATCGCCACCTACTTCTGCCAGCAGGGCAACACCCTGCCCTACACC TTCGGAGGCGGCACCAAGCTGGAGATCACCAAGGCCGGAGGCGGAGGCTCTGGCGGAGG CGGCTCTGGCGGAGGCGGCTCTGGCGGAGGCGGCAGCGAGGTGAAGCTGCAGGAGTCTG GCCCAGGCCTGGTGGCCCCAAGCCAGAGCCTGAGCGTGACCTGCACCGTGAGCGGCGTG AGCCTGCCCGACTACGGCGTGAGCTGGATCAGGCAGCCCCCACGGAAGGGCCTGGAGTG GCTGGGCGTGATCTGGGGCAGCGAGACCACCTACTACAACAGCGCCCTGAAGAGCCGGC TGACCATCATCAAGGACAACAGCAAGAGCCAGGTGTTCCTGAAGATGAACAGCCTGCAG ACCGACGACACCGCCATCTACTACTGCGCCAAGCACTACTACTATGGCGGCAGCTACGC TATGGACTACTGGGGCCAGGGCACCAGCGTGACCGTGAGCTCAGATCCCACCACGACGC CAGCGCCGCGACCACCAACACCGGCGCCCACCATCGCGTCGCAGCCCCTGTCCCTGCGC CCAGAGGCGTGCCGGCCAGCGGCGGGGGGCGCAGTGCACACGAGGGGGCTGGACTTCGC CTGTGATATCTTTTGGGTGCTGGTGGTGGTTGGTGGAGTCCTGGCTTGCTATAGCTTGC TAGTAACAGTGGCCTTTATTATTTTCTGGGTGAGGAGAGTGAAGTTCAGCAGGAGCGCA GACGCCCCCGCGTACCAGCAGGGCCAGAACCAGCTCTATAACGAGCTCAATCTAGGACG AAGAGAGGAGTACGATGTTTTGGACAAGAGACGTGGCCGGGACCCTGAGATGGGGGGAA AGCCGAGAAGGAAGAACCCTCAGGAAGGCCTGTACAATGAACTGCAGAAAGATAAGATG GCGGAGGCCTACAGTGAGATTGGGATGAAAGGCGAGCGCCGGAGGGGCAAGGGGCACGA TGGCCTTTACCAGGGTCTCAGTACAGCCACCAAGGACACCTACGACGCCCTTCACATGC AGGCCCTGCCTCCTCGCAGAGCCGAGGGCAGGGGAAGTCTTCTAACATGCGGGGACGTG GAGGAAAATCCCGGGCCCATGGCCGTGCCCACTCAGGTCCTGGGGTTGTTGCTACTGTG GCTTACAGATGCCAGATGTGACATCCAGATGACACAGTCTCCATCTTCCCTGTCTGCAT CTGTCGGAGATCGCGTCACCATCACCTGTCGAGCAAGTGAGGACATTTATTTTAATTTA GTGTGGTATCAGCAGAAACCAGGAAAGGCCCCTAAGCTCCTGATCTATGATACAAATCG CTTGGCAGATGGGGTCCCATCACGGTTCAGTGGCTCTGGATCTGGCACACAGTATACTC TAACCATAAGTAGCCTGCAACCCGAAGATTTCGCAACCTATTATTGTCAACACTATAAG AATTATCCGCTCACGTTCGGTCAGGGGACCAAGCTGGAAATCAAAAGATCTGGTGGCGG AGGGTCAGGAGGCGGAGGCAGCGGAGGCGGTGGCTCGGGAGGCGGAGGCTCGAGATCTG AGGTGCAGTTGGTGGAGTCTGGGGGCGGCTTGGTGCAGCCTGGAGGGTCCCTGAGGCTC TCCTGTGCAGCCTCAGGATTCACTCTCAGTAATTATGGCATGCACTGGATCAGGCAGGC TCCAGGGAAGGGTCTGGAGTGGGTCTCGTCTATTAGTCTTAATGGTGGTAGCACTTACT ATCGAGACTCCGTGAAGGGCCGATTCACTATCTCCAGGGACAATGCAAAAAGCACCCTC TACCTTCAAATGAATAGTCTGAGGGCCGAGGACACGGCCGTCTATTACTGTGCAGCACA GGACGCTTATACGGGAGGTTACTTTGATTACTGGGGCCAAGGAACGCTGGTCACAGTCT CGTCTATGGATCCCGCCGAGCCCAAATCTCCTGACAAAACTCACACATGCCCACCGTGC CCAGCACCTCCCGTGGCCGGCCCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACAC CCTCATGATCGCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAG ACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACA AAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCT GCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCC CAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTG TACACCCTGCCCCCATCCCGGGATGAGCTGACCAAGAACCAGGTCAGCCTGACCTGCCT GGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAACCGG AGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTAC AGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGT GATGCATGAGGCCCTGCACAATCACTATACCCAGAAATCTCTGAGTCTGAGCCCAGGCA AGAAGGACCCCAAGGCACTGATAGCATTTCTGGCATTTCTGATTATTGTGACATCAATA GCCCTGCTTGTTGTTCTCTACAAAATCTATGATCTACATAAGAAAAGATCCTGCAATTT AGATGAACAGCAGGAGCTTGTTGAAAGGGATGATGAAAAACAACTGATGAATGTGGAGC CAATCCATGCAGATATTTTGTTGGAAACTTATAAGAGGAAGATTGCTGATGAAGGAAGA CTTTTTCTGGCTGAATTTCAGAGCATCCCGCGGGTGTTCAGCAAGTTTCCTATAAAGGA AGCTCGAAAGCCCTTTAACCAGAATAAAAACCGTTATGTTGACATTCTTCCTTATGATT ATAACCGTGTTGAACTCTCTGAGATAAACGGAGATGCAGGGTCAAACTACATAAATGCC AGCTATATTGATGGTTTCAAAGAACCCAGGAAATACATTGCTGCACAAGGTCCCAGGGA TGAAACTGTTGATGATTTCTGGAGGATGATTTGGGAACAGAAAGCCACAGTTATTGTCA TGGTCACTCGATGTGAAGAAGGAAACAGGAACAAGTGTGCAGAATACTGGCCGTCAATG GAAGAGGGCACTCGGGCTTTTGGAGATGTTGTTGTAAAGATCAACCAGCACAAAAGATG TCCAGATTACATCATTCAGAAATTGAACATTGTAAATAAAAAAGAAAAAGCAACTGGAA GAGAGGTGACTCACATTCAGTTCACCAGCTGGCCAGACCACGGGGTGCCTGAGGATCCT CACTTGCTCCTCAAACTGAGAAGGAGAGTGAATGCCTTCAGCAATTTCTTCAGTGGTCC
CATTGTGGTGCACTGCAGTGCTGGTGTTGGGCGCACAGGAACCTATATCGGAATTGATG CCATGCTAGAAGGCCTGGAAGCCGAGAACAAAGTGGATGTTTATGGTTATGTTGTCAAG CTAAGGCGACAGAGATGCCTGATGGTTCAAGTAGAGGCCCAGTACATCTTGATCCATCA GGCTTTGGTGGAATACAATCAGTTTGGAGAAACAGAAGTGAATTTGTCTGAATTACATC CATATCTACATAACATGAAGAAAAGGGATCCACCCAGTGAGCCGTCTCCACTAGAGGCT GAATTCCAGAGACTTCCTTCATATAGGAGCTGGAGGACACAGCACATTGGAAATCAAGA AGAAAATAAAAGTAAAAACAGGAATTCTAATGTCATCCCATATGACTATAACAGAGTGC CACTTAAACATGAGCTGGAAATGAGTAAAGAGAGTGAGCATGATTCAGATGAATCCTCT GATGATGACAGTGATTCAGAGGAACCAAGCAAATACATCAATGCATCTTTTATAATGAG CTACTGGAAACCTGAAGTGATGATTGCTGCTCAGGGACCACTGAAGGAGACCATTGGTG ACTTTTGGCAGATGATCTTCCAAAGAAAAGTCAAAGTTATTGTTATGCTGACAGAACTG AAACATGGAGACCAGGAAATCTGTGCTCAGTACTGGGGAGAAGGAAAGCAAACATATGG AGATATTGAAGTTGACCTGAAAGACACAGACAAATCTTCAACTTATACCCTTCGTGTCT TTGAACTGAGACATTCCAAGAGGAAAGACTCTCGAACTGTGTACCAGTACCAATATACA AACTGGAGTGTGGAGCAGCTTCCTGCAGAACCCAAGGAATTAATCTCTATGATTCAGGT CGTCAAACAAAAACTTCCCCAGAAGAATTCCTCTGAAGGGAACAAGCATCACAAGAGTA CACCTCTACTCATTCACTGCAGGGATGGATCTCAGCAAACGGGAATATTTTGTGCTTTG TTAAATCTCTTAGAAAGTGCGGAAACAGAAGAGGTAGTGGATATTTTTCAAGTGGTAAA AGCTCTACGCAAAGCTAGGCCAGGCATGGTTTCCACATTCGAGCAATATCAATTCCTAT ATGACGTCATTGCCAGCACCTACCCTGCTCAGAATGGACAAGTAAAGAAAAACAACCAT CAAGAAGATAAAATTGAATTTGATAATGAAGTGGACAAAGTAAAGCAGGATGCTAATTG TGTTAATCCACTTGGTGCCCCAGAAAAGCTCCCTGAAGCAAAGGAACAGGCTGAAGGTT CTGAACCCACGAGTGGCACTGAGGGGCCAGAACATTCTGTCAATGGTCCTGCAAGTCCA GCTTTAAATCAAGGTTCATAG SEQ ID No. 37: >MP14801.SFG.aCD19fmc63_clean-CD8STK-CD28tmZ-2A- aCD33glx-HCH2CH3pvaa-dCD148 ATGAGCCTGCCCGTGACCGCCCTGCTGCTGCCCCTGGCCCTGCTGCTGCACGCCGCCAG ACCAGACATCCAGATGACCCAGACCACCAGCAGCCTGAGCGCCAGCCTGGGCGACCGGG TGACCATCAGCTGCAGAGCCAGCCAGGACATCAGCAAGTACCTGAACTGGTACCAGCAG AAGCCCGACGGCACCGTGAAGCTGCTGATCTACCACACCAGCCGGCTGCACAGCGGCGT GCCCAGCCGGTTCAGCGGCAGCGGCAGCGGCACCGACTACAGCCTGACCATCAGCAACC TGGAGCAGGAGGACATCGCCACCTACTTCTGCCAGCAGGGCAACACCCTGCCCTACACC TTCGGAGGCGGCACCAAGCTGGAGATCACCAAGGCCGGAGGCGGAGGCTCTGGCGGAGG CGGCTCTGGCGGAGGCGGCTCTGGCGGAGGCGGCAGCGAGGTGAAGCTGCAGGAGTCTG GCCCAGGCCTGGTGGCCCCAAGCCAGAGCCTGAGCGTGACCTGCACCGTGAGCGGCGTG AGCCTGCCCGACTACGGCGTGAGCTGGATCAGGCAGCCCCCACGGAAGGGCCTGGAGTG GCTGGGCGTGATCTGGGGCAGCGAGACCACCTACTACAACAGCGCCCTGAAGAGCCGGC TGACCATCATCAAGGACAACAGCAAGAGCCAGGTGTTCCTGAAGATGAACAGCCTGCAG ACCGACGACACCGCCATCTACTACTGCGCCAAGCACTACTACTATGGCGGCAGCTACGC TATGGACTACTGGGGCCAGGGCACCAGCGTGACCGTGAGCTCAGATCCCACCACGACGC CAGCGCCGCGACCACCAACACCGGCGCCCACCATCGCGTCGCAGCCCCTGTCCCTGCGC CCAGAGGCGTGCCGGCCAGCGGCGGGGGGCGCAGTGCACACGAGGGGGCTGGACTTCGC CTGTGATATCTTTTGGGTGCTGGTGGTGGTTGGTGGAGTCCTGGCTTGCTATAGCTTGC TAGTAACAGTGGCCTTTATTATTTTCTGGGTGAGGAGAGTGAAGTTCAGCAGGAGCGCA GACGCCCCCGCGTACCAGCAGGGCCAGAACCAGCTCTATAACGAGCTCAATCTAGGACG AAGAGAGGAGTACGATGTTTTGGACAAGAGACGTGGCCGGGACCCTGAGATGGGGGGAA AGCCGAGAAGGAAGAACCCTCAGGAAGGCCTGTACAATGAACTGCAGAAAGATAAGATG GCGGAGGCCTACAGTGAGATTGGGATGAAAGGCGAGCGCCGGAGGGGCAAGGGGCACGA TGGCCTTTACCAGGGTCTCAGTACAGCCACCAAGGACACCTACGACGCCCTTCACATGC AGGCCCTGCCTCCTCGCAGAGCCGAGGGCAGGGGAAGTCTTCTAACATGCGGGGACGTG GAGGAAAATCCCGGGCCCATGGCCGTGCCCACTCAGGTCCTGGGGTTGTTGCTACTGTG GCTTACAGATGCCAGATGTGACATCCAGATGACACAGTCTCCATCTTCCCTGTCTGCAT CTGTCGGAGATCGCGTCACCATCACCTGTCGAGCAAGTGAGGACATTTATTTTAATTTA GTGTGGTATCAGCAGAAACCAGGAAAGGCCCCTAAGCTCCTGATCTATGATACAAATCG CTTGGCAGATGGGGTCCCATCACGGTTCAGTGGCTCTGGATCTGGCACACAGTATACTC TAACCATAAGTAGCCTGCAACCCGAAGATTTCGCAACCTATTATTGTCAACACTATAAG AATTATCCGCTCACGTTCGGTCAGGGGACCAAGCTGGAAATCAAAAGATCTGGTGGCGG AGGGTCAGGAGGCGGAGGCAGCGGAGGCGGTGGCTCGGGAGGCGGAGGCTCGAGATCTG AGGTGCAGTTGGTGGAGTCTGGGGGCGGCTTGGTGCAGCCTGGAGGGTCCCTGAGGCTC TCCTGTGCAGCCTCAGGATTCACTCTCAGTAATTATGGCATGCACTGGATCAGGCAGGC TCCAGGGAAGGGTCTGGAGTGGGTCTCGTCTATTAGTCTTAATGGTGGTAGCACTTACT ATCGAGACTCCGTGAAGGGCCGATTCACTATCTCCAGGGACAATGCAAAAAGCACCCTC TACCTTCAAATGAATAGTCTGAGGGCCGAGGACACGGCCGTCTATTACTGTGCAGCACA GGACGCTTATACGGGAGGTTACTTTGATTACTGGGGCCAAGGAACGCTGGTCACAGTCT CGTCTATGGATCCCGCCGAGCCCAAATCTCCTGACAAAACTCACACATGCCCACCGTGC CCAGCACCTCCCGTGGCCGGCCCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACAC CCTCATGATCGCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAG ACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACA AAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCT GCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCC CAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTG TACACCCTGCCCCCATCCCGGGATGAGCTGACCAAGAACCAGGTCAGCCTGACCTGCCT GGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAACCGG AGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTAC AGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGT GATGCATGAGGCCCTGCACAATCACTATACCCAGAAATCTCTGAGTCTGAGCCCAGGCA AGAAGGACCCCAAGGCGGTTTTTGGCTGTATCTTTGGTGCCCTGGTTATTGTGACTGTG GGAGGCTTCATCTTCTGGAGAAAGAAGAGGAAAGATGCAAAGAATAATGAAGTGTCCTT TTCTCAAATTAAACCTAAAAAATCTAAGTTAATCAGAGTGGAGAATTTTGAGGCCTACT TCAAGAAGCAGCAAGCTGACTCCAACTGTGGGTTCGCAGAGGAATACGAAGATCTGAAG CTTGTTGGAATTAGTCAACCTAAATATGCAGCAGAACTGGCTGAGAATAGAGGAAAGAA TCGCTATAATAATGTTCTGCCCTATGATATTTCCCGTGTCAAACTTTCGGTCCAGACCC ATTCAACGGATGACTACATCAATGCCAACTACATGCCTGGCTACCACTCCAAGAAAGAT TTTATTGCCACACAAGGACCTTTACCGAACACTTTGAAAGATTTTTGGCGTATGGTTTG GGAGAAAAATGTATATGCCATCATTATGTTGACTAAATGTGTTGAACAGGGAAGAACCA AATGTGAGGAGTATTGGCCCTCCAAGCAGGCTCAGGACTATGGAGACATAACTGTGGCA ATGACATCAGAAATTGTTCTTCCGGAATGGACCATCAGAGATTTCACAGTGAAAAATAT CCAGACAAGTGAGAGTCACCCTCTGAGACAGTTCCATTTCACCTCCTGGCCAGACCACG GTGTTCCCGACACCACTGACCTGCTCATCAACTTCCGGTACCTCGTTCGTGACTACATG AAGCAGAGTCCTCCCGAATCGCCGATTCTGGTGCATTGCAGTGCTGGGGTCGGAAGGAC GGGCACTTTCATTGCCATTGATCGTCTCATCTACCAGATAGAGAATGAGAACACCGTGG ATGTGTATGGGATTGTGTATGACCTTCGAATGCATAGGCCTTTAATGGTGCAGACAGAG GACCAGTATGTTTTCCTCAATCAGTGTGTTTTGGATATTGTCAGATCCCAGAAAGACTC AAAAGTAGATCTTATCTACCAGAACACAACTGCAATGACAATCTATGAAAACCTTGCGC CCGTGACCACATTTGGAAAGACCAATGGTTACATCGCCTAA SEQ ID No. 38 >16076.SFG.aCD19fmc63-CD8STK-CD28tmZ-2A- aCD33glx-muCD8STK-tm-dPTPN6 ATGAGCCTGCCCGTGACCGCCCTGCTGCTGCCCCTGGCCCTGCTGCTGCACGCCGCCAG ACCAGACATCCAGATGACCCAGACCACCAGCAGCCTGAGCGCCAGCCTGGGCGACCGGG TGACCATCAGCTGCAGAGCCAGCCAGGACATCAGCAAGTACCTGAACTGGTACCAGCAG AAGCCCGACGGCACCGTGAAGCTGCTGATCTACCACACCAGCCGGCTGCACAGCGGCGT GCCCAGCCGGTTCAGCGGCAGCGGCAGCGGCACCGACTACAGCCTGACCATCAGCAACC TGGAGCAGGAGGACATCGCCACCTACTTCTGCCAGCAGGGCAACACCCTGCCCTACACC TTCGGAGGCGGCACCAAGCTGGAGATCACCAAGGCCGGAGGCGGAGGCTCTGGCGGAGG CGGCTCTGGCGGAGGCGGCTCTGGCGGAGGCGGCAGCGAGGTGAAGCTGCAGGAGTCTG GCCCAGGCCTGGTGGCCCCAAGCCAGAGCCTGAGCGTGACCTGCACCGTGAGCGGCGTG AGCCTGCCCGACTACGGCGTGAGCTGGATCAGGCAGCCCCCACGGAAGGGCCTGGAGTG GCTGGGCGTGATCTGGGGCAGCGAGACCACCTACTACAACAGCGCCCTGAAGAGCCGGC TGACCATCATCAAGGACAACAGCAAGAGCCAGGTGTTCCTGAAGATGAACAGCCTGCAG ACCGACGACACCGCCATCTACTACTGCGCCAAGCACTACTACTATGGCGGCAGCTACGC TATGGACTACTGGGGCCAGGGCACCAGCGTGACCGTGAGCTCAGATCCCACCACGACGC CAGCGCCGCGACCACCAACACCGGCGCCCACCATCGCGTCGCAGCCCCTGTCCCTGCGC CCAGAGGCGTGCCGGCCAGCGGCGGGGGGCGCAGTGCACACGAGGGGGCTGGACTTCGC CTGTGATATCTTTTGGGTGCTGGTGGTGGTTGGTGGAGTCCTGGCTTGCTATAGCTTGC TAGTAACAGTGGCCTTTATTATTTTCTGGGTGAGGAGAGTGAAGTTCAGCAGGAGCGCA GACGCCCCCGCGTACCAGCAGGGCCAGAACCAGCTCTATAACGAGCTCAATCTAGGACG AAGAGAGGAGTACGATGTTTTGGACAAGAGACGTGGCCGGGACCCTGAGATGGGGGGAA AGCCGAGAAGGAAGAACCCTCAGGAAGGCCTGTACAATGAACTGCAGAAAGATAAGATG GCGGAGGCCTACAGTGAGATTGGGATGAAAGGCGAGCGCCGGAGGGGCAAGGGGCACGA TGGCCTTTACCAGGGTCTCAGTACAGCCACCAAGGACACCTACGACGCCCTTCACATGC AGGCCCTGCCTCCTCGCAGAGCCGAGGGCAGGGGAAGTCTTCTAACATGCGGGGACGTG GAGGAAAATCCCGGGCCCATGGCCGTGCCCACTCAGGTCCTGGGGTTGTTGCTACTGTG GCTTACAGATGCCAGATGTGACATCCAGATGACACAGTCTCCATCTTCCCTGTCTGCAT CTGTCGGAGATCGCGTCACCATCACCTGTCGAGCAAGTGAGGACATTTATTTTAATTTA GTGTGGTATCAGCAGAAACCAGGAAAGGCCCCTAAGCTCCTGATCTATGATACAAATCG CTTGGCAGATGGGGTCCCATCACGGTTCAGTGGCTCTGGATCTGGCACACAGTATACTC TAACCATAAGTAGCCTGCAACCCGAAGATTTCGCAACCTATTATTGTCAACACTATAAG
AATTATCCGCTCACGTTCGGTCAGGGGACCAAGCTGGAAATCAAAAGATCTGGTGGCGG AGGGTCAGGAGGCGGAGGCAGCGGAGGCGGTGGCTCGGGAGGCGGAGGCTCGAGATCTG AGGTGCAGTTGGTGGAGTCTGGGGGCGGCTTGGTGCAGCCTGGAGGGTCCCTGAGGCTC TCCTGTGCAGCCTCAGGATTCACTCTCAGTAATTATGGCATGCACTGGATCAGGCAGGC TCCAGGGAAGGGTCTGGAGTGGGTCTCGTCTATTAGTCTTAATGGTGGTAGCACTTACT ATCGAGACTCCGTGAAGGGCCGATTCACTATCTCCAGGGACAATGCAAAAAGCACCCTC TACCTTCAAATGAATAGTCTGAGGGCCGAGGACACGGCCGTCTATTACTGTGCAGCACA GGACGCTTATACGGGAGGTTACTTTGATTACTGGGGCCAAGGAACGCTGGTCACAGTCT CGTCTATGGATCCCGCCACCACAACCAAGCCCGTGCTGCGGACCCCAAGCCCTGTGCAC CCTACCGGCACCAGCCAGCCTCAGAGACCCGAGGACTGCCGGCCTCGGGGCAGCGTGAA GGGCACCGGCCTGGACTTCGCCTGCGACATCTACTGGGCACCTCTGGCCGGAATATGCG TGGCACTGCTGCTGAGCCTCATCATCACCCTGATCTGTTATCACCGAAGCCGCAAGCGG GTGTGTAAAAGTGGAGGCGGAAGCTTCTGGGAGGAGTTTGAGAGTTTGCAGAAGCAGGA GGTGAAGAACTTGCACCAGCGTCTGGAAGGGCAGCGGCCAGAGAACAAGGGCAAGAACC GCTACAAGAACATTCTCCCCTTTGACCACAGCCGAGTGATCCTGCAGGGACGGGACAGT AACATCCCCGGGTCCGACTACATCAATGCCAACTACATCAAGAACCAGCTGCTAGGCCC TGATGAGAACGCTAAGACCTACATCGCCAGCCAGGGCTGTCTGGAGGCCACGGTCAATG ACTTCTGGCAGATGGCGTGGCAGGAGAACAGCCGTGTCATCGTCATGACCACCCGAGAG GTGGAGAAAGGCCGGAACAAATGCGTCCCATACTGGCCCGAGGTGGGCATGCAGCGTGC TTATGGGCCCTACTCTGTGACCAACTGCGGGGAGCATGACACAACCGAATACAAACTCC GTACCTTACAGGTCTCCCCGCTGGACAATGGAGACCTGATTCGGGAGATCTGGCATTAC CAGTACCTGAGCTGGCCCGACCACGGGGTCCCCAGTGAGCCTGGGGGTGTCCTCAGCTT CCTGGACCAGATCAACCAGCGGCAGGAAAGTCTGCCTCACGCAGGGCCCATCATCGTGC ACTGCAGCGCCGGCATCGGCCGCACAGGCACCATCATTGTCATCGACATGCTCATGGAG AACATCTCCACCAAGGGCCTGGACTGTGACATTGACATCCAGAAGACCATCCAGATGGT GCGGGCGCAGCGCTCGGGCATGGTGCAGACGGAGGCGCAGTACAAGTTCATCTACGTGG CCATCGCCCAGTTCATTGAAACCACTAAGAAGAAGCTGTGA SEQ ID No. 39 >MP16091.SFG.aCD19fmc63-CD8STK-CD28tmZ-2A- aCD33glx-muCD8STK-LAIR1tm-endo ATGAGCCTGCCCGTGACCGCCCTGCTGCTGCCCCTGGCCCTGCTGCTGCACGCCGCCAG ACCAGACATCCAGATGACCCAGACCACCAGCAGCCTGAGCGCCAGCCTGGGCGACCGGG TGACCATCAGCTGCAGAGCCAGCCAGGACATCAGCAAGTACCTGAACTGGTACCAGCAG AAGCCCGACGGCACCGTGAAGCTGCTGATCTACCACACCAGCCGGCTGCACAGCGGCGT GCCCAGCCGGTTCAGCGGCAGCGGCAGCGGCACCGACTACAGCCTGACCATCAGCAACC TGGAGCAGGAGGACATCGCCACCTACTTCTGCCAGCAGGGCAACACCCTGCCCTACACC TTCGGAGGCGGCACCAAGCTGGAGATCACCAAGGCCGGAGGCGGAGGCTCTGGCGGAGG CGGCTCTGGCGGAGGCGGCTCTGGCGGAGGCGGCAGCGAGGTGAAGCTGCAGGAGTCTG GCCCAGGCCTGGTGGCCCCAAGCCAGAGCCTGAGCGTGACCTGCACCGTGAGCGGCGTG AGCCTGCCCGACTACGGCGTGAGCTGGATCAGGCAGCCCCCACGGAAGGGCCTGGAGTG GCTGGGCGTGATCTGGGGCAGCGAGACCACCTACTACAACAGCGCCCTGAAGAGCCGGC TGACCATCATCAAGGACAACAGCAAGAGCCAGGTGTTCCTGAAGATGAACAGCCTGCAG ACCGACGACACCGCCATCTACTACTGCGCCAAGCACTACTACTATGGCGGCAGCTACGC TATGGACTACTGGGGCCAGGGCACCAGCGTGACCGTGAGCTCAGATCCCACCACGACGC CAGCGCCGCGACCACCAACACCGGCGCCCACCATCGCGTCGCAGCCCCTGTCCCTGCGC CCAGAGGCGTGCCGGCCAGCGGCGGGGGGCGCAGTGCACACGAGGGGGCTGGACTTCGC CTGTGATATCTTTTGGGTGCTGGTGGTGGTTGGTGGAGTCCTGGCTTGCTATAGCTTGC TAGTAACAGTGGCCTTTATTATTTTCTGGGTGAGGAGAGTGAAGTTCAGCAGGAGCGCA GACGCCCCCGCGTACCAGCAGGGCCAGAACCAGCTCTATAACGAGCTCAATCTAGGACG AAGAGAGGAGTACGATGTTTTGGACAAGAGACGTGGCCGGGACCCTGAGATGGGGGGAA AGCCGAGAAGGAAGAACCCTCAGGAAGGCCTGTACAATGAACTGCAGAAAGATAAGATG GCGGAGGCCTACAGTGAGATTGGGATGAAAGGCGAGCGCCGGAGGGGCAAGGGGCACGA TGGCCTTTACCAGGGTCTCAGTACAGCCACCAAGGACACCTACGACGCCCTTCACATGC AGGCCCTGCCTCCTCGCAGAGCCGAGGGCAGGGGAAGTCTTCTAACATGCGGGGACGTG GAGGAAAATCCCGGGCCCATGGCCGTGCCCACTCAGGTCCTGGGGTTGTTGCTACTGTG GCTTACAGATGCCAGATGTGACATCCAGATGACACAGTCTCCATCTTCCCTGTCTGCAT CTGTCGGAGATCGCGTCACCATCACCTGTCGAGCAAGTGAGGACATTTATTTTAATTTA GTGTGGTATCAGCAGAAACCAGGAAAGGCCCCTAAGCTCCTGATCTATGATACAAATCG CTTGGCAGATGGGGTCCCATCACGGTTCAGTGGCTCTGGATCTGGCACACAGTATACTC TAACCATAAGTAGCCTGCAACCCGAAGATTTCGCAACCTATTATTGTCAACACTATAAG AATTATCCGCTCACGTTCGGTCAGGGGACCAAGCTGGAAATCAAAAGATCTGGTGGCGG AGGGTCAGGAGGCGGAGGCAGCGGAGGCGGTGGCTCGGGAGGCGGAGGCTCGAGATCTG AGGTGCAGTTGGTGGAGTCTGGGGGCGGCTTGGTGCAGCCTGGAGGGTCCCTGAGGCTC TCCTGTGCAGCCTCAGGATTCACTCTCAGTAATTATGGCATGCACTGGATCAGGCAGGC TCCAGGGAAGGGTCTGGAGTGGGTCTCGTCTATTAGTCTTAATGGTGGTAGCACTTACT ATCGAGACTCCGTGAAGGGCCGATTCACTATCTCCAGGGACAATGCAAAAAGCACCCTC TACCTTCAAATGAATAGTCTGAGGGCCGAGGACACGGCCGTCTATTACTGTGCAGCACA GGACGCTTATACGGGAGGTTACTTTGATTACTGGGGCCAAGGAACGCTGGTCACAGTCT CGTCTATGGATCCCGCCACCACAACCAAGCCCGTGCTGCGGACCCCAAGCCCTGTGCAC CCTACCGGCACCAGCCAGCCTCAGAGACCCGAGGACTGCCGGCCTCGGGGCAGCGTGAA GGGCACCGGCCTGGACTTCGCCTGCGACATTCTCATCGGGGTCTCAGTGGTCTTCCTCT TCTGTCTCCTCCTCCTGGTCCTCTTCTGCCTCCATCGCCAGAATCAGATAAAGCAGGGG CCCCCCAGAAGCAAGGACGAGGAGCAGAAGCCACAGCAGAGGCCTGACCTGGCTGTTGA TGTTCTAGAGAGGACAGCAGACAAGGCCACAGTCAATGGACTTCCTGAGAAGGACCGGG AGACCGACACCAGCGCCCTGGCTGCAGGGAGTTCCCAGGAGGTGACGTATGCTCAGCTG GACCACTGGGCCCTCACACAGAGGACAGCCCGGGCTGTGTCCCCACAGTCCACAAAGCC CATGGCCGAGTCCATCACGTATGCAGCCGTTGCCAGACACTGA SEQ ID no. 40 >MP16092.SFG.aCD19fmc63-CD8STK-CD28tmZ-2A- aCD33glx-muCD8STK-LAIR1tm-endo-2A-PTPN6_SH2-dCD148 ATGAGCCTGCCCGTGACCGCCCTGCTGCTGCCCCTGGCCCTGCTGCTGCACGCCGCCAG ACCAGACATCCAGATGACCCAGACCACCAGCAGCCTGAGCGCCAGCCTGGGCGACCGGG TGACCATCAGCTGCAGAGCCAGCCAGGACATCAGCAAGTACCTGAACTGGTACCAGCAG AAGCCCGACGGCACCGTGAAGCTGCTGATCTACCACACCAGCCGGCTGCACAGCGGCGT GCCCAGCCGGTTCAGCGGCAGCGGCAGCGGCACCGACTACAGCCTGACCATCAGCAACC TGGAGCAGGAGGACATCGCCACCTACTTCTGCCAGCAGGGCAACACCCTGCCCTACACC TTCGGAGGCGGCACCAAGCTGGAGATCACCAAGGCCGGAGGCGGAGGCTCTGGCGGAGG CGGCTCTGGCGGAGGCGGCTCTGGCGGAGGCGGCAGCGAGGTGAAGCTGCAGGAGTCTG GCCCAGGCCTGGTGGCCCCAAGCCAGAGCCTGAGCGTGACCTGCACCGTGAGCGGCGTG AGCCTGCCCGACTACGGCGTGAGCTGGATCAGGCAGCCCCCACGGAAGGGCCTGGAGTG GCTGGGCGTGATCTGGGGCAGCGAGACCACCTACTACAACAGCGCCCTGAAGAGCCGGC TGACCATCATCAAGGACAACAGCAAGAGCCAGGTGTTCCTGAAGATGAACAGCCTGCAG ACCGACGACACCGCCATCTACTACTGCGCCAAGCACTACTACTATGGCGGCAGCTACGC TATGGACTACTGGGGCCAGGGCACCAGCGTGACCGTGAGCTCAGATCCCACCACGACGC CAGCGCCGCGACCACCAACACCGGCGCCCACCATCGCGTCGCAGCCCCTGTCCCTGCGC CCAGAGGCGTGCCGGCCAGCGGCGGGGGGCGCAGTGCACACGAGGGGGCTGGACTTCGC CTGTGATATCTTTTGGGTGCTGGTGGTGGTTGGTGGAGTCCTGGCTTGCTATAGCTTGC TAGTAACAGTGGCCTTTATTATTTTCTGGGTGAGGAGAGTGAAGTTCAGCAGGAGCGCA GACGCCCCCGCGTACCAGCAGGGCCAGAACCAGCTCTATAACGAGCTCAATCTAGGACG AAGAGAGGAGTACGATGTTTTGGACAAGAGACGTGGCCGGGACCCTGAGATGGGGGGAA AGCCGAGAAGGAAGAACCCTCAGGAAGGCCTGTACAATGAACTGCAGAAAGATAAGATG GCGGAGGCCTACAGTGAGATTGGGATGAAAGGCGAGCGCCGGAGGGGCAAGGGGCACGA TGGCCTTTACCAGGGTCTCAGTACAGCCACCAAGGACACCTACGACGCCCTTCACATGC AGGCCCTGCCTCCTCGCAGAGCCGAGGGCAGGGGAAGTCTTCTAACATGCGGGGACGTG GAGGAAAATCCCGGGCCCATGGCCGTGCCCACTCAGGTCCTGGGGTTGTTGCTACTGTG GCTTACAGATGCCAGATGTGACATCCAGATGACACAGTCTCCATCTTCCCTGTCTGCAT CTGTCGGAGATCGCGTCACCATCACCTGTCGAGCAAGTGAGGACATTTATTTTAATTTA GTGTGGTATCAGCAGAAACCAGGAAAGGCCCCTAAGCTCCTGATCTATGATACAAATCG CTTGGCAGATGGGGTCCCATCACGGTTCAGTGGCTCTGGATCTGGCACACAGTATACTC TAACCATAAGTAGCCTGCAACCCGAAGATTTCGCAACCTATTATTGTCAACACTATAAG AATTATCCGCTCACGTTCGGTCAGGGGACCAAGCTGGAAATCAAAAGATCTGGTGGCGG AGGGTCAGGAGGCGGAGGCAGCGGAGGCGGTGGCTCGGGAGGCGGAGGCTCGAGATCTG AGGTGCAGTTGGTGGAGTCTGGGGGCGGCTTGGTGCAGCCTGGAGGGTCCCTGAGGCTC TCCTGTGCAGCCTCAGGATTCACTCTCAGTAATTATGGCATGCACTGGATCAGGCAGGC TCCAGGGAAGGGTCTGGAGTGGGTCTCGTCTATTAGTCTTAATGGTGGTAGCACTTACT ATCGAGACTCCGTGAAGGGCCGATTCACTATCTCCAGGGACAATGCAAAAAGCACCCTC TACCTTCAAATGAATAGTCTGAGGGCCGAGGACACGGCCGTCTATTACTGTGCAGCACA GGACGCTTATACGGGAGGTTACTTTGATTACTGGGGCCAAGGAACGCTGGTCACAGTCT CGTCTATGGATCCCGCCACCACAACCAAGCCCGTGCTGCGGACCCCAAGCCCTGTGCAC CCTACCGGCACCAGCCAGCCTCAGAGACCCGAGGACTGCCGGCCTCGGGGCAGCGTGAA GGGCACCGGCCTGGACTTCGCCTGCGACATTCTCATCGGGGTCTCAGTGGTCTTCCTCT TCTGTCTCCTCCTCCTGGTCCTCTTCTGCCTCCATCGCCAGAATCAGATAAAGCAGGGG CCCCCCAGAAGCAAGGACGAGGAGCAGAAGCCACAGCAGAGGCCTGACCTGGCTGTTGA TGTTCTAGAGAGGACAGCAGACAAGGCCACAGTCAATGGACTTCCTGAGAAGGACCGGG AGACCGACACCAGCGCCCTGGCTGCAGGGAGTTCCCAGGAGGTGACGTATGCTCAGCTG GACCACTGGGCCCTCACACAGAGGACAGCCCGGGCTGTGTCCCCACAGTCCACAAAGCC CATGGCCGAGTCCATCACGTATGCAGCCGTTGCCAGACACAGGGCAGAAGGAAGAGGTA GCCTGCTGACTTGCGGGGACGTGGAAGAGAACCCAGGGCCATGGTATCATGGCCACATG
TCTGGCGGGCAGGCAGAGACGCTGCTGCAGGCCAAGGGCGAGCCCTGGACGTTTCTTGT GCGTGAGAGCCTCAGCCAGCCTGGAGACTTCGTGCTTTCTGTGCTCAGTGACCAGCCCA AGGCTGGCCCAGGCTCCCCGCTCAGGGTCACCCACATCAAGGTCATGTGCGAGGGTGGA CGCTACACAGTGGGTGGTTTGGAGACCTTCGACAGCCTCACGGACCTGGTGGAGCATTT CAAGAAGACGGGGATTGAGGAGGCCTCAGGCGCCTTTGTCTACCTGCGGCAGCCGTACA GCGGTGGCGGTGGCAGCTTTGAGGCCTACTTCAAGAAGCAGCAAGCTGACTCCAACTGT GGGTTCGCAGAGGAATACGAAGATCTGAAGCTTGTTGGAATTAGTCAACCTAAATATGC AGCAGAACTGGCTGAGAATAGAGGAAAGAATCGCTATAATAATGTTCTGCCCTATGATA TTTCCCGTGTCAAACTTTCGGTCCAGACCCATTCAACGGATGACTACATCAATGCCAAC TACATGCCTGGCTACCACTCCAAGAAAGATTTTATTGCCACACAAGGACCTTTACCGAA CACTTTGAAAGATTTTTGGCGTATGGTTTGGGAGAAAAATGTATATGCCATCATTATGT TGACTAAATGTGTTGAACAGGGAAGAACCAAATGTGAGGAGTATTGGCCCTCCAAGCAG GCTCAGGACTATGGAGACATAACTGTGGCAATGACATCAGAAATTGTTCTTCCGGAATG GACCATCAGAGATTTCACAGTGAAAAATATCCAGACAAGTGAGAGTCACCCTCTGAGAC AGTTCCATTTCACCTCCTGGCCAGACCACGGTGTTCCCGACACCACTGACCTGCTCATC AACTTCCGGTACCTCGTTCGTGACTACATGAAGCAGAGTCCTCCCGAATCGCCGATTCT GGTGCATTGCAGTGCTGGGGTCGGAAGGACGGGCACTTTCATTGCCATTGATCGTCTCA TCTACCAGATAGAGAATGAGAACACCGTGGATGTGTATGGGATTGTGTATGACCTTCGA ATGCATAGGCCTTTAATGGTGCAGACAGAGGACCAGTATGTTTTCCTCAATCAGTGTGT TTTGGATATTGTCAGATCCCAGAAAGACTCAAAAGTAGATCTTATCTACCAGAACACAA CTGCAATGACAATCTATGAAAACCTTGCGCCCGTGACCACATTTGGAAAGACCAATGGT TACATCGCCAGCGGTAGCTAA
[0350] The nucleic acid sequence may encode the same amino acid sequence as that encoded by SEQ ID No. 35, 36, 37, 38, 39 or 40, but may have a different nucleic acid sequence, due to the degeneracy of the genetic code. The nucleic acid sequence may have at least 80, 85, 90, 95, 98 or 99% identity to the sequence shown as SEQ ID No. 35, 36, 37, 38, 39 or 40, provided that it encodes a first CAR and a second CAR as defined in the first aspect of the invention.
[0351] Vector
[0352] The present invention also provides a vector, or kit of vectors which comprises one or more CAR-encoding nucleic acid sequence(s). Such a vector may be used to introduce the nucleic acid sequence(s) into a host cell so that it expresses the first and second CARs.
[0353] The vector may, for example, be a plasmid or a viral vector, such as a retroviral vector or a lentiviral vector, or a transposon based vector or synthetic mRNA.
[0354] The vector may be capable of transfecting or transducing a T cell.
[0355] Pharmaceutical Composition
[0356] The present invention also relates to a pharmaceutical composition containing a plurality of CAR-expressing T cells or NK cells according to the first aspect of the invention. The pharmaceutical composition may additionally comprise a pharmaceutically acceptable carrier, diluent or excipient. The pharmaceutical composition may optionally comprise one or more further pharmaceutically active polypeptides and/or compounds. Such a formulation may, for example, be in a form suitable for intravenous infusion.
[0357] Method of Treatment
[0358] The T cells of the present invention may be capable of killing target cells, such as cancer cells. The target cell may be recognisable by a defined pattern of antigen expression, for example the expression of antigen A AND antigen B; the expression of antigen A OR antigen B; or the expression of antigen A AND NOT antigen B or complex iterations of these gates.
[0359] T cells of the present invention may be used for the treatment of an infection, such as a viral infection.
[0360] T cells of the invention may also be used for the control of pathogenic immune responses, for example in autoimmune diseases, allergies and graft-vs-host rejection.
[0361] T cells of the invention may be used for the treatment of a cancerous disease, such as bladder cancer, breast cancer, colon cancer, endometrial cancer, kidney cancer (renal cell), leukemia, lung cancer, melanoma, non-Hodgkin lymphoma, pancreatic cancer, prostate cancer and thyroid cancer.
[0362] It is particularly suited for treatment of solid tumours where the availability of good selective single targets is limited.
[0363] T cells of the invention may be used to treat: cancers of the oral cavity and pharynx which includes cancer of the tongue, mouth and pharynx; cancers of the digestive system which includes oesophageal, gastric and colorectal cancers; cancers of the liver and biliary tree which includes hepatocellular carcinomas and cholangiocarcinomas; cancers of the respiratory system which includes bronchogenic cancers and cancers of the larynx; cancers of bone and joints which includes osteosarcoma; cancers of the skin which includes melanoma; breast cancer; cancers of the genital tract which include uterine, ovarian and cervical cancer in women, prostate and testicular cancer in men; cancers of the renal tract which include renal cell carcinoma and transitional cell carcinomas of the utterers or bladder; brain cancers including gliomas, glioblastoma multiforme and medullobastomas; cancers of the endocrine system including thyroid cancer, adrenal carcinoma and cancers associated with multiple endocrine neoplasm syndromes; lymphomas including Hodgkin's lymphoma and non-Hodgkin lymphoma; Multiple Myeloma and plasmacytomas; leukaemias both acute and chronic, myeloid or lymphoid; and cancers of other and unspecified sites including neuroblastoma.
[0364] Treatment with the T cells of the invention may help prevent the escape or release of tumour cells which often occurs with standard approaches.
[0365] The invention will now be further described by way of Examples, which are meant to serve to assist one of ordinary skill in the art in carrying out the invention and are not intended in any way to limit the scope of the invention.
EXAMPLES
Example 1--Creation of Target Cell Populations
[0366] For the purposes of proving the principle of the invention, receptors based on anti-CD19 and anti-CD33 were arbitrarily chosen. Using retroviral vectors, CD19 and CD33 were cloned. These proteins were truncated so that they do not signal and could be stably expressed for prolonged periods. Next, these vectors were used to transduce the SupT1 cell line either singly or doubly to establish cells negative for both antigen (the wild-type), positive for either and positive for both. The expression data are shown in FIG. 3.
Example 2--Design and Function of the OR Gate
[0367] To construct the OR gate, a pair of receptors recognizing CD19 and CD33 were co-expressed. Different spacers were used to prevent cross-pairing. Both receptors had a trans-membrane domain derived from CD28 to improve surface stability and an endodomain derived from that of CD3 Zeta to provide a simple activating signal. In this way, a pair of independent 1st generation CARs were co-expressed. The retroviral vector cassette used to co-express the sequences utilizes a foot-and-mouth 2A self-cleaving peptide to allow co-expression 1:1 of both receptors. The cassette design is shown in FIG. 4, and the protein structures in FIG. 5. The nucleotide sequence of homologous regions was codon-wobbled to prevent recombination during retroviral vector reverse transcription.
Example 3--Testing the OR Gate
[0368] Expression of both CARs was tested on the T-cell surface by staining with cognate antigen fused to Fc. By using different species of Fc domains (mouse for CD19 and rabbit for CD33), co-expression of both CARs was determined on the cell surface by staining with different secondary antibodies conjugated with different fluorophores. This is shown in FIG. 6.
[0369] Functional testing was then carried out using the mouse T-cell line BW5147. This cell line releases IL2 upon activation allowing a simple quantitative readout. These T-cells were co-cultured with increasing amounts of the artificial target cells described above. T-cells responded to target cells expressing either antigen, as shown by IL2 release measured by ELISA. Both CARs were shown to be expressed on the cell surfaces and the T-cells were shown to respond to either or both antigens. These data are show in FIG. 7.
Example 4--Design and Function of the AND Gate
[0370] The AND gate combines a simple activating receptor with a receptor which basally inhibits activity, but whose inhibition is turned off once the receptor is ligated. This was achieved by combining a standard 1St generation CAR with a short/non-bulky CD8 stalk spacer and a CD3 Zeta endodomain with a second receptor with a bulky Fc spacer whose endodomain contained either CD148 or CD45 endodomains. When both receptors are ligated, the difference in spacer dimensions results in isolation of the different receptors in different membrane compartments, releasing the CD3 Zeta receptor from inhibition by the CD148 or CD45 endodomains. In this way, activation only occurs once both receptors are activated. CD148 and CD45 were chosen for this as they function in this manner natively: for instance, the very bulky CD45 ectodomain excludes the entire receptor from the immunological synapse. The expression cassette is depicted in FIG. 8 and the subsequent proteins in FIG. 9.
[0371] Surface staining for the different specificity showed that both receptor pairs could be effectively expressed on the cell surface shown in FIG. 10. Function in BW5147 shows that the T-cell is only activated in the presence of both antigens (FIG. 11).
Example 5: Demonstration of Generalizability of the AND Gate
[0372] To ensure that the observations were not a manifestation of some specific characteristic of CD19/CD33 and their binders which had been used, the two targeting scFvs were swapped such that now, the activation (ITAM) signal was transmitted upon recognition of CD33, rather than CD19; and the inhibitory (CD148) signal was transmitted upon recognition of CD19, rather than of CD33. Since CD45 and CD148 endodomains are considered to be functionally similar, experimentation was restricted to AND gates with CD148 endodomain. This should still result in a functional AND gate. T-cells expressing the new logic gate where challenged with targets bearing either CD19 or CD33 alone, or both. The T-cells responded to targets expressing both CD19 and CD33, but not to targets expressing only one or none of these antigens. This shows that the AND gate is still functional in this format (FIG. 18B).
[0373] On the same lines, it was sought to establish how generalizable our AND gate is: the AND gate should be generalizable across different targets. While there may be lesser or greater fidelity of the gate given relative antigen density, cognate scFv binding kinetics and precise distance of the scFv binding epitope, one would expect to see some AND gate manifestations with a wide set of targets and binders. To test this, three additional AND gates were generated. Once again, experimentation was restricted to the CD148 version of the AND gate. The second scFv from the original CD148 AND gate was replaced with the anti-GD2 scFv huK666 (SEQ ID 41 and SEQ ID 42), or with the anti-CD5 scFv (SEQ ID 43 and SEQ ID 44), or the anti-EGFRvIII scFv MR1.1 (SEQ ID 45 AND SEQ ID 46) to generate the following CAR AND gates: CD19 AND GD2; CD19 AND CD5; CD19 AND EGFRvIII. The following artificial antigen expressing cell lines were also generated: by transducing SupT1, and our SupT1.CD19 with GM3 and GD2 synthases SupT1.GD2 and SupT1.CD19.GD2 were generated. By transducing SupT1 and SupT1.CD19 with a retroviral vector coding for EGFRvIII SupT1.EGFRvIII and SupT1.CD19.EGFRvIII were generated. Since CD5 is expressed on SupT1 cells, a different cell line was used to generate the target cells: 293T cells were generated which express CD19 alone, CD5 alone and both CD5 and CD19 together. Expression was confirmed by flow-cytometry (FIG. 19). T-cells expressing the three new CAR AND gates were challenged with SupT1.CD19 and respective cognate double positive and single positive target cells. All three AND gates demonstrated reduced activation by the double positive cell lines in comparison with the single positive targets (FIG. 20). This demonstrates generalizability of the AND gate design to arbitrary targets and cognate binders.
Example 6: Experimental Proof of Kinetic Segregation Model of CAR AND Gate
[0374] The aim was to prove the model that differential segregation caused by different spacers is the central mechanism behind the ability to generate these logic CAR gates. The model is that if only the activating CAR is ligated, the potent inhibiting `ligation off` type CAR is in solution in the membrane and can inhibit the activating CAR. Once both CARs are ligated, if both CAR spacers are sufficiently different, they will segregate within the synapse and not co-localize. Hence, a key requirement is that the spacers are sufficiently different. If the model is correct, if both spacers are sufficiently similar so they co-localize when both receptors are ligated, the gate will fail to function. To test this, the "bulky" Fc spacer in the original CAR we replaced with a murine CD8 spacer. It was predicted that this has the similar length, bulk and charge as human CD8 but so should not cross-pair with it. Hence, the new gate had a first CAR which recognizes CD19, a human CD8 stalk spacer and an activatory endodomain; while the second CAR recognizes CD33, has a mouse CD8 stalk spacer and a CD148 endodomain (FIG. 18C). T-cells were transduced to express this new CAR gate. These T-cells were then challenged with SupT1 cells expressing CD19 alone, CD33 alone or CD19 and CD33 together. T-cells did not respond to SupT1 cells expressing either antigen alone as per the original AND gate. However, CAR T-cells failed to respond to SupT1 cells expressing both antigens, thereby confirming the model (FIG. 18C). A functional AND gate requires both CARs to have spacers sufficiently different so that they do not co-localize within an immunological synapse (FIGS. 23A and B).
Example 7--Design and Function of an AND NOT Gate
[0375] Phosphatases such as CD45 and CD148 are so potent that even a small amount entering an immunological synapse can inhibit ITAM activation. This is the basis of inhibition of the logical AND gate. Other classes of phosphatases are not as potent e.g. PTPN6 and related phosphatases. It was predicted that a small amount of PTPN6 entering a synapse by diffusion would not inhibit activation. In addition, it was predicted that if an inhibitory CAR had a sufficiently similar spacer to an activating CAR, it could co-localize within a synapse if both CARs were ligated. In this case, large amounts of the inhibitory endodomain would be sufficient to stop the ITAMS from activating when both antigens were present. In this way, an AND NOT gate could be created.
[0376] For the NOT AND gate, the second signal needs to "veto" activation. This is done by bringing an inhibitory signal into the immunological synapse, for example by bringing in the phosphatase of an enzyme such as PTPN6. We hence generated an initial AND NOT gate as follows: two CARs co-expressed whereby the first recognizes CD19, has a human CD8 stalk spacer and an activating endodomain; co-expressed with an anti-CD33 CAR with a mouse CD8 stalk spacer and an endodomain comprising of the catalytic domain of PTPN6 (SEQ ID 38, FIG. 13 A with B). A suitable cassette is shown in FIG. 12 and preliminary functional data are shown in FIG. 14.
[0377] In addition, an alternative strategy was developed for generating an AND NOT gate. Immune Tyrosinase Inhibitory Motifs (ITIMs) are activated in a similar manner to ITAMS, in that they become phosphorylated by Ick upon clustering and exclusion of phosphatases. Instead of triggering activation by binding ZAP70, phosphorylated ITIMs recruit phosphatases like PTPN6 through their cognate SH2 domains. An ITIM can function as an inhibitory endodomain, as long as the spacers on the activating and inhibiting CARs can co-localize. To generate this construct, an AND NOT gate was generated as follows: two CARs co-expressed--the first recognizes CD19, has a human CD8 stalk spacer and an activating endodomain; co-expressed with an anti-CD33 CAR with a mouse CD8 stalk spacer and an ITIM containing endodomain derived from that of LAIR1 (SEQ ID 39, FIG. 13 A with C).
[0378] A further, more complex AND NOT gate was also developed, whereby an ITIM is enhanced by the presence of an additional chimeric protein: an intracellular fusion of the SH2 domain of PTPN6 and the endodomain of CD148. In this design three proteins are expressed--the first recognizes CD19, has a human CD8 stalk spacer and an activating endodomain; co-expressed with an anti-CD33 CAR with a mouse CD8 stalk spacer and an ITIM containing endodomain derived from that of LAIR1. A further 2A peptide, allows co-expression of the PTPN6-CD148 fusion (SEQ ID 40, FIGS. 13 A and D). It was predicted that these AND NOT gates would have a different range of inhibition: PTPN6-CD148>PTPN6>>ITIM.
[0379] T-cells were transduced with these gates and challenged with targets expressing either CD19 or CD33 alone, or both CD19 and CD33 together. All three gates responded to targets expressing only CD19, but not targets expressing both CD19 and CD33 together (FIG. 21), confirming that all three of the AND NOT gates were functional.
Example 8: Experimental Proof of Kinetic Segregation Model of PTPN6 Based AND NOT Gate
[0380] The model of the AND NOT gate centres around the fact that the nature of the spacers used in both CARs is pivotal for the correct function of the gate. In the functional AND NOT gate with PTPN6, both CAR spacers are sufficiently similar that when both CARs are ligated, both co-localize within the synapse so the high concentration even the weak PTPN6 is sufficient to inhibit activation. If the spacers were different, segregation in the synapse will isolate the PTPN6 from the ITAM allowing activation disrupting the AND NOT gate. To test this, a control was generated replacing the murine CD8 stalk spacer with that of Fc. In this case, the test gate consisted of two CARs, the first recognizes CD19, has a human CD8 stalk spacer and an ITAM endodomain; while the second CAR recognizes CD33, has an Fc spacer and an endodomain comprising of the phosphatase from PTPN6. This gate activates in response to CD19, but also activates in response to CD19 and CD33 together (FIG. 22B, where function of this gate is compared with that of the original AND NOT, and the control AND gate variant described in Example 6). This experimental data proves the model that for a functional AND NOT gate with PTPN6, co-localizing spacers are needed.
Example 9: Experimental Proof of Kinetic Segregation Model of ITIM Based AND NOT Gate
[0381] Similar to the PTPN6 based AND NOT gate, the ITIM based gate also requires co-localization in an immunological synapse to function as an AND NOT gate. To prove this hypothesis, a control ITIM based gate was generated as follows: two CARs co-expressed--the first recognizes CD19, has a human CD8 stalk spacer and an activating endodomain; co-expressed with an anti-CD33 CAR with an Fc spacer and an ITIM containing endodomain derived from that of LAIR1. The activity of this gate was compared with that of the original ITIM based AND NOT gate. In this case, the modified gate activated in response to targets expressing CD19, but also activated in response to cells expressing both CD19 and CD33. These data indicate that ITIM based AND NOT gates follow the kinetic segregation based model and a correct spacer must be selected to create a functional gate (FIG. 23B).
Example 10: Summary of Model of CAR Logic Gates Generated by Kinetic Segregation
[0382] Based on current understanding of the kinetic-segregation model and the experimental data described herein, a summary of the model for a two-CAR gate is presented in FIG. 24. The Figure shows a cell expressing two CARs, each recognizing a different antigen. When either or both CARs recognize a target antigen on a cell, a synapse forms and native CD45 and CD148 are excluded from the synapse due to the bulk of their ectodomain. This sets the stage for T-cell activation. In the case that the target cell bears only one cognate antigen, the cognate CAR is ligated and the cognate CAR segregates into the synapse. The unligated CAR remains in solution on the T-cell membrane and can diffuse in and out of the synapse so that an area of high local concentration of ligated CAR with low concentration of unligated CAR forms. In this case, if the ligated CAR has an ITAM and the non-ligated CAR has `ligation off" type inhibitory endodomain such as that of CD148, the amount of non-ligated CAR is sufficient to inhibit activation and the gate is off. In contrast, in this case, if the ligated CAR has an ITAM and the non-ligated CAR has a `ligation on` type inhibitory endodomain such as PTPN6, the amount of non-ligated CAR is insufficient to inhibit and the gate is on. When challenged by a target cell bearing both cognate antigens, both cognate CARs are ligated and form part of an immunological synapse. Importantly, if the CAR spacers are sufficiently similar, the CARs co-localize in the synapse but if the CAR spacers are sufficiently different the CARs segregate within the synapse. In this latter case, areas of membrane form whereby high concentrations of one CAR are present but the other CAR is absent. In this case since segregation is complete, even if the inhibitory endodomain is a `ligation off` type, the gate is on. In the former case, areas of membrane form with high concentrations of both CARs mixed together. In this case, since both endodomains are concentrated, even if the inhibitory endodomain is `ligation on` type, the gate is off. By selecting the correct combination of spacer and endodomain logic can be programmed into a CAR T-cell.
[0383] Based on our work above, we have established a series of design rules to allow generation of logic-gated CARs (illustrated in FIG. 31). To generate an "antigen A OR antigen B" gated CAR T-cell, anti-A and anti-B CARs must be generated such that (1) each CAR has a spacer which simply allows antigen access and synapse formation such that the CAR functions, and (2) Each CAR has an activating endodomain; To generate an "antigen A AND NOT B" gated CAR T-cell, anti-A and anti-B CARs must be generated such that (1) both CARs have spacers which do not cross-pair, but which will allow the CARs to co-segregate upon recognition of both cognate antigens on the target cell, (2) and one CAR has an activating endodomain, while the other CAR has an endodomain which comprises or recruits a weak phosphatase (e.g. PTPN6); (3) To generate an "antigen A AND antigen B" gated CAR T-cell, anti-A and anti-B CARs must be generated such that (1) one CAR has a spacer sufficiently different from the other CAR such that both CARs will not co-segregate upon recognition of both cognate antigens on the target cell, (2) one CAR has an activating endodomain, while the other car has an endodomain which comprises of a potent phosphatase (e.g. that of CD45 or CD148). The correct spacers to achieve the desired effect can be selected from a set of spacers with known size/shape etc as well as taking into consideration size/shape etc of the target antigen and the location of the cognate epitope on the target antigen.
TABLE-US-00021 SEQ ID No 41: SFG.aCD19-CD8STK-CD28tmZ-2A-aGD2-HCH2CH3pvaa-dCD148 MSLPVTALLLPLALLLHAARPDIQMTQTTSSLSASLGDRVTISCRASQDISKYLNWYQQKPDGTVKLL IYHTSRLHSGVPSRFSGSGSGTDYSLTISNLEQEDIATYFCQQGNTLPYTFGGGTKLEITKAGGGGSG GGGSGGGGSGGGGSEVKLQESGPGLVAPSQSLSVTCTVSGVSLPDYGVSWIRQPPRKGLEWLGVIWGS ETTYYNSALKSRLTIIKDNSKSQVFLKMNSLQTDDTAIYYCAKHYYYGGSYAMDYWGQGTSVTVSSDP TTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTRGLDFACDIFWVLVVVGGVLACYSLLVTVAF IIFWVRRVKFSRSADAPAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRKNPQEGLYNEL QKDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDTYDALHMQALPPRRAEGRGSLLTCGDVEENP GPMETDTLLLWVLLLWVPGSTGQVQLQESGPGLVKPSQTLSITCTVSGFSLASYNIHWVRQPPGKGLE WLGVIWAGGSTNYNSALMSRLTISKDNSKNQVFLKMSSLTAADTAVYYCAKRSDDYSWFAYWGQGTLV TVSSGGGGSGGGGSGGGGSENQMTQSPSSLSASVGDRVTMTCRASSSVSSSYLHWYQQKSGKAPKVWI YSTSNLASGVPSRFSGSGSGTDYTLTISSLQPEDFATYYCQQYSGYPITFGQGTKVEIKRSDPAEPKS PDKTHTCPPCPAPPVAGPSVFLFPPKPKDTLMIARTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAK TKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRD ELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFS CSVMHEALHNHYTQKSLSLSPGKKDPKAVFGCIFGALVIVTVGGFIFWRKKRKDAKNNEVSFSQIKPK KSKLIRVENFEAYFKKQQADSNCGFAEEYEDLKLVGISQPKYAAELAENRGKNRYNNVLPYDISRVKL SVQTHSTDDYINANYMPGYHSKKDFIATQGPLPNTLKDFWRMVWEKNVYAIIMLTKCVEQGRTKCEEY WPSKQAQDYGDITVAMTSEIVLPEWTIRDFTVKNIQTSESHPLRQFHFTSWPDHGVPDTTDLLINFRY LVRDYMKQSPPESPILVHCSAGVGRTGTFIAIDRLIYQIENENTVDVYGIVYDLRMHRPLMVQTEDQY VFLNQCVLDIVRSQKDSKVDLIYQNTTAMTIYENLAPVTTFGKTNGYIA SEQ ID No. 42: SFG.aCD19-CD8STK-CD28tmZ-2A-aGD2-HCH2CH3pvaa-dCD148 ATGAGCCTGCCCGTGACCGCCCTGCTGCTGCCCCTGGCCCTGCTGCTGCACGCCGCCAGACCAGACAT CCAGATGACCCAGACCACCAGCAGCCTGAGCGCCAGCCTGGGCGACCGGGTGACCATCAGCTGCAGAG CCAGCCAGGACATCAGCAAGTACCTGAACTGGTACCAGCAGAAGCCCGACGGCACCGTGAAGCTGCTG ATCTACCACACCAGCCGGCTGCACAGCGGCGTGCCCAGCCGGTTCAGCGGCAGCGGCAGCGGCACCGA CTACAGCCTGACCATCAGCAACCTGGAGCAGGAGGACATCGCCACCTACTTCTGCCAGCAGGGCAACA CCCTGCCCTACACCTTCGGAGGCGGCACCAAGCTGGAGATCACCAAGGCCGGAGGCGGAGGCTCTGGC GGAGGCGGCTCTGGCGGAGGCGGCTCTGGCGGAGGCGGCAGCGAGGTGAAGCTGCAGGAGTCTGGCCC AGGCCTGGTGGCCCCAAGCCAGAGCCTGAGCGTGACCTGCACCGTGAGCGGCGTGAGCCTGCCCGACT ACGGCGTGAGCTGGATCAGGCAGCCCCCACGGAAGGGCCTGGAGTGGCTGGGCGTGATCTGGGGCAGC GAGACCACCTACTACAACAGCGCCCTGAAGAGCCGGCTGACCATCATCAAGGACAACAGCAAGAGCCA GGTGTTCCTGAAGATGAACAGCCTGCAGACCGACGACACCGCCATCTACTACTGCGCCAAGCACTACT ACTATGGCGGCAGCTACGCTATGGACTACTGGGGCCAGGGCACCAGCGTGACCGTGAGCTCAGATCCC ACCACGACGCCAGCGCCGCGACCACCAACACCGGCGCCCACCATCGCGTCGCAGCCCCTGTCCCTGCG CCCAGAGGCGTGCCGGCCAGCGGCGGGGGGCGCAGTGCACACGAGGGGGCTGGACTTCGCCTGTGATA TCTTTTGGGTGCTGGTGGTGGTTGGTGGAGTCCTGGCTTGCTATAGCTTGCTAGTAACAGTGGCCTTT ATTATTTTCTGGGTGAGGAGAGTGAAGTTCAGCAGGAGCGCAGACGCCCCCGCGTACCAGCAGGGCCA GAACCAGCTCTATAACGAGCTCAATCTAGGACGAAGAGAGGAGTACGATGTTTTGGACAAGAGACGTG GCCGGGACCCTGAGATGGGGGGAAAGCCGAGAAGGAAGAACCCTCAGGAAGGCCTGTACAATGAACTG CAGAAAGATAAGATGGCGGAGGCCTACAGTGAGATTGGGATGAAAGGCGAGCGCCGGAGGGGCAAGGG GCACGATGGCCTTTACCAGGGTCTCAGTACAGCCACCAAGGACACCTACGACGCCCTTCACATGCAGG CCCTGCCTCCTCGCAGAGCCGAGGGCAGGGGAAGTCTTCTAACATGCGGGGACGTGGAGGAAAATCCC GGGCCCATGGAGACCGACACCCTGCTGCTGTGGGTGCTGCTGCTGTGGGTGCCAGGCAGCACCGGCCA GGTGCAGCTGCAGGAGTCTGGCCCAGGCCTGGTGAAGCCCAGCCAGACCCTGAGCATCACCTGCACCG TGAGCGGCTTCAGCCTGGCCAGCTACAACATCCACTGGGTGCGGCAGCCCCCAGGCAAGGGCCTGGAG TGGCTGGGCGTGATCTGGGCTGGCGGCAGCACCAACTACAACAGCGCCCTGATGAGCCGGCTGACCAT CAGCAAGGACAACAGCAAGAACCAGGTGTTCCTGAAGATGAGCAGCCTGACAGCCGCCGACACCGCCG TGTACTACTGCGCCAAGCGGAGCGACGACTACAGCTGGTTCGCCTACTGGGGCCAGGGCACCCTGGTG ACCGTGAGCTCTGGCGGAGGCGGCTCTGGCGGAGGCGGCTCTGGCGGAGGCGGCAGCGAGAACCAGAT GACCCAGAGCCCCAGCAGCTTGAGCGCCAGCGTGGGCGACCGGGTGACCATGACCTGCAGAGCCAGCA GCAGCGTGAGCAGCAGCTACCTGCACTGGTACCAGCAGAAGAGCGGCAAGGCCCCAAAGGTGTGGATC TACAGCACCAGCAACCTGGCCAGCGGCGTGCCCAGCCGGTTCAGCGGCAGCGGCAGCGGCACCGACTA CACCCTGACCATCAGCAGCCTGCAGCCCGAGGACTTCGCCACCTACTACTGCCAGCAGTACAGCGGCT ACCCCATCACCTTCGGCCAGGGCACCAAGGTGGAGATCAAGCGGTCGGATCCCGCCGAGCCCAAATCT CCTGACAAAACTCACACATGCCCACCGTGCCCAGCACCTCCCGTGGCCGGCCCGTCAGTCTTCCTCTT CCCCCCAAAACCCAAGGACACCCTCATGATCGCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACG TGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAG ACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCA GGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGA AAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATCCCGGGAT GAGCTGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGT GGAGTGGGAGAGCAATGGGCAACCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACG GCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCA TGCTCCGTGATGCATGAGGCCCTGCACAATCACTATACCCAGAAATCTCTGAGTCTGAGCCCAGGCAA GAAGGACCCCAAGGCGGTTTTTGGCTGTATCTTTGGTGCCCTGGTTATTGTGACTGTGGGAGGCTTCA TCTTCTGGAGAAAGAAGAGGAAAGATGCAAAGAATAATGAAGTGTCCTTTTCTCAAATTAAACCTAAA AAATCTAAGTTAATCAGAGTGGAGAATTTTGAGGCCTACTTCAAGAAGCAGCAAGCTGACTCCAACTG TGGGTTCGCAGAGGAATACGAAGATCTGAAGCTTGTTGGAATTAGTCAACCTAAATATGCAGCAGAAC TGGCTGAGAATAGAGGAAAGAATCGCTATAATAATGTTCTGCCCTATGATATTTCCCGTGTCAAACTT TCGGTCCAGACCCATTCAACGGATGACTACATCAATGCCAACTACATGCCTGGCTACCACTCCAAGAA AGATTTTATTGCCACACAAGGACCTTTACCGAACACTTTGAAAGATTTTTGGCGTATGGTTTGGGAGA AAAATGTATATGCCATCATTATGTTGACTAAATGTGTTGAACAGGGAAGAACCAAATGTGAGGAGTAT TGGCCCTCCAAGCAGGCTCAGGACTATGGAGACATAACTGTGGCAATGACATCAGAAATTGTTCTTCC GGAATGGACCATCAGAGATTTCACAGTGAAAAATATCCAGACAAGTGAGAGTCACCCTCTGAGACAGT TCCATTTCACCTCCTGGCCAGACCACGGTGTTCCCGACACCACTGACCTGCTCATCAACTTCCGGTAC CTCGTTCGTGACTACATGAAGCAGAGTCCTCCCGAATCGCCGATTCTGGTGCATTGCAGTGCTGGGGT CGGAAGGACGGGCACTTTCATTGCCATTGATCGTCTCATCTACCAGATAGAGAATGAGAACACCGTGG ATGTGTATGGGATTGTGTATGACCTTCGAATGCATAGGCCTTTAATGGTGCAGACAGAGGACCAGTAT GTTTTCCTCAATCAGTGTGTTTTGGATATTGTCAGATCCCAGAAAGACTCAAAAGTAGATCTTATCTA CCAGAACACAACTGCAATGACAATCTATGAAAACCTTGCGCCCGTGACCACATTTGGAAAGACCAATG GTTACATCGCCTAA SEQ ID No. 43: SFG.aCD19-CD8STK-CD28tmZ-2A-aCD5-HCH2CH3pvaa-dCD148 MSLPVTALLLPLALLLHAARPDIQMTQTTSSLSASLGDRVTISCRASQDISKYLNWYQQKPDGTVKLL IYHTSRLHSGVPSRFSGSGSGTDYSLTISNLEQEDIATYFCQQGNTLPYTFGGGTKLEITKAGGGGSG GGGSGGGGSGGGGSEVKLQESGPGLVAPSQSLSVTCTVSGVSLPDYGVSWIRQPPRKGLEWLGVIWGS ETTYYNSALKSRLTIIKDNSKSQVFLKMNSLQTDDTAIYYCAKHYYYGGSYAMDYWGQGTSVTVSSDP TTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTRGLDFACDIFWVLVVVGGVLACYSLLVTVAF IIFWVRRVKFSRSADAPAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRKNPQEGLYNEL QKDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDTYDALHMQALPPRRAEGRGSLLTCGDVEENP GPMETDTLLLWVLLLWVPGSTGQVTLKESGPGILKPSQTLSLTCSFSGFSLSTSGMGVGWIRQPSGKG LEWLAHIWWDDDVYYNPSLKNQLTISKDASRDQVFLKITNLDTADTATYYCVRRRATGTGFDYWGQGT TLTVSSGGGGSGGGGSGGGGSNIVMTQSHKFMSTSVGDRVSIACKASQDVGTAVAWYQQKPGQSPKLL IYWTSTRHTGVPDRFTGSGSGTDFTLTITNVQSEDLADYFCHQYNSYNTFGSGTRLELKRSDPAEPKS PDKTHTCPPCPAPPVAGPSVFLFPPKPKDTLMIARTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAK TKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRD ELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFS CSVMHEALHNHYTQKSLSLSPGKKDPKAVFGCIFGALVIVTVGGFIFWRKKRKDAKNNEVSFSQIKPK KSKLIRVENFEAYFKKQQADSNCGFAEEYEDLKLVGISQPKYAAELAENRGKNRYNNVLPYDISRVKL SVQTHSTDDYINANYMPGYHSKKDFIATQGPLPNTLKDFWRMVWEKNVYAIIMLTKCVEQGRTKCEEY WPSKQAQDYGDITVAMTSEIVLPEWTIRDFTVKNIQTSESHPLRQFHFTSWPDHGVPDTTDLLINFRY LVRDYMKQSPPESPILVHCSAGVGRTGTFIAIDRLIYQIENENTVDVYGIVYDLRMHRPLMVQTEDQY VFLNQCVLDIVRSQKDSKVDLIYQNTTAMTIYENLAPVTTFGKTNGYIA SEQ ID No. 44: SFG.aCD19-CD8STK-CD28tmZ-2A-aCD5-HCH2CH3pvaa-dCD148 ATGAGCCTGCCCGTGACCGCCCTGCTGCTGCCCCTGGCCCTGCTGCTGCACGCCGCCAGACCAGACAT CCAGATGACCCAGACCACCAGCAGCCTGAGCGCCAGCCTGGGCGACCGGGTGACCATCAGCTGCAGAG CCAGCCAGGACATCAGCAAGTACCTGAACTGGTACCAGCAGAAGCCCGACGGCACCGTGAAGCTGCTG ATCTACCACACCAGCCGGCTGCACAGCGGCGTGCCCAGCCGGTTCAGCGGCAGCGGCAGCGGCACCGA CTACAGCCTGACCATCAGCAACCTGGAGCAGGAGGACATCGCCACCTACTTCTGCCAGCAGGGCAACA CCCTGCCCTACACCTTCGGAGGCGGCACCAAGCTGGAGATCACCAAGGCCGGAGGCGGAGGCTCTGGC GGAGGCGGCTCTGGCGGAGGCGGCTCTGGCGGAGGCGGCAGCGAGGTGAAGCTGCAGGAGTCTGGCCC AGGCCTGGTGGCCCCAAGCCAGAGCCTGAGCGTGACCTGCACCGTGAGCGGCGTGAGCCTGCCCGACT ACGGCGTGAGCTGGATCAGGCAGCCCCCACGGAAGGGCCTGGAGTGGCTGGGCGTGATCTGGGGCAGC GAGACCACCTACTACAACAGCGCCCTGAAGAGCCGGCTGACCATCATCAAGGACAACAGCAAGAGCCA GGTGTTCCTGAAGATGAACAGCCTGCAGACCGACGACACCGCCATCTACTACTGCGCCAAGCACTACT ACTATGGCGGCAGCTACGCTATGGACTACTGGGGCCAGGGCACCAGCGTGACCGTGAGCTCAGATCCC ACCACGACGCCAGCGCCGCGACCACCAACACCGGCGCCCACCATCGCGTCGCAGCCCCTGTCCCTGCG CCCAGAGGCGTGCCGGCCAGCGGCGGGGGGCGCAGTGCACACGAGGGGGCTGGACTTCGCCTGTGATA TCTTTTGGGTGCTGGTGGTGGTTGGTGGAGTCCTGGCTTGCTATAGCTTGCTAGTAACAGTGGCCTTT ATTATTTTCTGGGTGAGGAGAGTGAAGTTCAGCAGGAGCGCAGACGCCCCCGCGTACCAGCAGGGCCA GAACCAGCTCTATAACGAGCTCAATCTAGGACGAAGAGAGGAGTACGATGTTTTGGACAAGAGACGTG GCCGGGACCCTGAGATGGGGGGAAAGCCGAGAAGGAAGAACCCTCAGGAAGGCCTGTACAATGAACTG CAGAAAGATAAGATGGCGGAGGCCTACAGTGAGATTGGGATGAAAGGCGAGCGCCGGAGGGGCAAGGG GCACGATGGCCTTTACCAGGGTCTCAGTACAGCCACCAAGGACACCTACGACGCCCTTCACATGCAGG CCCTGCCTCCTCGCAGAGCCGAGGGCAGGGGAAGTCTTCTAACATGCGGGGACGTGGAGGAAAATCCC GGGCCCATGGAGACCGACACCCTGCTGCTGTGGGTGCTGCTGCTGTGGGTGCCCGGCAGCACCGGCCA GGTGACCCTGAAGGAGAGCGGTCCCGGCATCCTGAAGCCCAGCCAGACCCTGAGCCTGACCTGCAGCT
TCAGCGGCTTCAGCCTGAGCACCAGCGGCATGGGCGTGGGCTGGATTCGGCAGCCCAGCGGCAAGGGC CTGGAGTGGCTGGCCCACATCTGGTGGGACGACGACGTGTACTACAACCCCAGCCTGAAGAACCAGCT GACCATCAGCAAGGACGCCAGCCGGGACCAGGTGTTCCTGAAGATCACCAACCTGGACACCGCCGACA CCGCCACCTACTACTGCGTGCGGCGCCGGGCCACCGGCACCGGCTTCGACTACTGGGGCCAGGGCACC ACCCTGACCGTGAGCAGCGGTGGCGGTGGCAGCGGCGGCGGCGGAAGCGGAGGTGGTGGCAGCAACAT CGTGATGACCCAGAGCCACAAGTTCATGAGCACCAGCGTGGGCGACCGGGTGAGCATCGCCTGCAAGG CCAGCCAGGACGTGGGCACCGCCGTGGCCTGGTACCAGCAGAAGCCTGGCCAGAGCCCCAAGCTGCTG ATCTACTGGACCAGCACCCGGCACACCGGCGTGCCCGACCGGTTCACCGGCAGCGGCAGCGGCACCGA CTTCACCCTGACCATCACCAACGTGCAGAGCGAGGACCTGGCCGACTACTTCTGCCACCAGTACAACA GCTACAACACCTTCGGCAGCGGCACCCGGCTGGAGCTGAAGCGGTCGGATCCCGCCGAGCCCAAATCT CCTGACAAAACTCACACATGCCCACCGTGCCCAGCACCTCCCGTGGCCGGCCCGTCAGTCTTCCTCTT CCCCCCAAAACCCAAGGACACCCTCATGATCGCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACG TGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAG ACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCA GGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGA AAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATCCCGGGAT GAGCTGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGT GGAGTGGGAGAGCAATGGGCAACCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACG GCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCA TGCTCCGTGATGCATGAGGCCCTGCACAATCACTATACCCAGAAATCTCTGAGTCTGAGCCCAGGCAA GAAGGACCCCAAGGCGGTTTTTGGCTGTATCTTTGGTGCCCTGGTTATTGTGACTGTGGGAGGCTTCA TCTTCTGGAGAAAGAAGAGGAAAGATGCAAAGAATAATGAAGTGTCCTTTTCTCAAATTAAACCTAAA AAATCTAAGTTAATCAGAGTGGAGAATTTTGAGGCCTACTTCAAGAAGCAGCAAGCTGACTCCAACTG TGGGTTCGCAGAGGAATACGAAGATCTGAAGCTTGTTGGAATTAGTCAACCTAAATATGCAGCAGAAC TGGCTGAGAATAGAGGAAAGAATCGCTATAATAATGTTCTGCCCTATGATATTTCCCGTGTCAAACTT TCGGTCCAGACCCATTCAACGGATGACTACATCAATGCCAACTACATGCCTGGCTACCACTCCAAGAA AGATTTTATTGCCACACAAGGACCTTTACCGAACACTTTGAAAGATTTTTGGCGTATGGTTTGGGAGA AAAATGTATATGCCATCATTATGTTGACTAAATGTGTTGAACAGGGAAGAACCAAATGTGAGGAGTAT TGGCCCTCCAAGCAGGCTCAGGACTATGGAGACATAACTGTGGCAATGACATCAGAAATTGTTCTTCC GGAATGGACCATCAGAGATTTCACAGTGAAAAATATCCAGACAAGTGAGAGTCACCCTCTGAGACAGT TCCATTTCACCTCCTGGCCAGACCACGGTGTTCCCGACACCACTGACCTGCTCATCAACTTCCGGTAC CTCGTTCGTGACTACATGAAGCAGAGTCCTCCCGAATCGCCGATTCTGGTGCATTGCAGTGCTGGGGT CGGAAGGACGGGCACTTTCATTGCCATTGATCGTCTCATCTACCAGATAGAGAATGAGAACACCGTGG ATGTGTATGGGATTGTGTATGACCTTCGAATGCATAGGCCTTTAATGGTGCAGACAGAGGACCAGTAT GTTTTCCTCAATCAGTGTGTTTTGGATATTGTCAGATCCCAGAAAGACTCAAAAGTAGATCTTATCTA CCAGAACACAACTGCAATGACAATCTATGAAAACCTTGCGCCCGTGACCACATTTGGAAAGACCAATG GTTACATCGCCTAA SEQ ID No. 45: SFG.aCD19-CD8STK-CD28tmZ-2A-aEGFRvIII-HCH2CH3pvaa- dCD148 MSLPVTALLLPLALLLHAARPDIQMTQTTSSLSASLGDRVTISCRASQDISKYLNWYQQKPDGTVKLL IYHTSRLHSGVPSRFSGSGSGTDYSLTISNLEQEDIATYFCQQGNTLPYTFGGGTKLEITKAGGGGSG GGGSGGGGSGGGGSEVKLQESGPGLVAPSQSLSVTCTVSGVSLPDYGVSWIRQPPRKGLEWLGVIWGS ETTYYNSALKSRLTIIKDNSKSQVFLKMNSLQTDDTAIYYCAKHYYYGGSYAMDYWGQGTSVTVSSDP TTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTRGLDFACDIFWVLVVVGGVLACYSLLVTVAF IIFWVRRVKFSRSADAPAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRKNPQEGLYNEL QKDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDTYDALHMQALPPRRAEGRGSLLTCGDVEENP GPMETDTLLLWVLLLWVPGSTGQVKLQQSGGGLVKPGASLKLSCVTSGFTFRKFGMSWVRQTSDKRLE WVASISTGGYNTYYSDNVKGRFTISRENAKNTLYLQMSSLKSEDTALYYCTRGYSSTSYAMDYWGQGT TVTVSSGGGGSGGGGSGGGGSDIELTQSPASLSVATGEKVTIRCMTSTDIDDDMNWYQQKPGEPPKFL ISEGNTLRPGVPSRFSSSGTGTDFVFTIENTLSEDVGDYYCLQSFNVPLTFGDGTKLEIKRSDPAEPK SPDKTHTCPPCPAPPVAGPSVFLFPPKPKDTLMIARTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNA KTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSR DELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVF SCSVMHEALHNHYTQKSLSLSPGKKDPKAVFGCIFGALVIVTVGGFIFWRKKRKDAKNNEVSFSQIKP KKSKLIRVENFEAYFKKQQADSNCGFAEEYEDLKLVGISQPKYAAELAENRGKNRYNNVLPYDISRVK LSVQTHSTDDYINANYMPGYHSKKDFIATQGPLPNTLKDFWRMVWEKNVYAIIMLTKCVEQGRTKCEE YWPSKQAQDYGDITVAMTSEIVLPEWTIRDFTVKNIQTSESHPLRQFHFTSWPDHGVPDTTDLLINFR YLVRDYMKQSPPESPILVHCSAGVGRTGTFIAIDRLIYQIENENTVDVYGIVYDLRMHRPLMVQTEDQ YVFLNQCVLDIVRSQKDSKVDLIYQNTTAMTIYENLAPVTTFGKTNGYIA SEQ ID No. 46: SFG.aCD19-CD8STK-CD28tmZ-2A-aEGFRvIII-HCH2CH3pvaa- dCD148 ATGAGCCTGCCCGTGACCGCCCTGCTGCTGCCCCTGGCCCTGCTGCTGCACGCCGCCAGACCAGACAT CCAGATGACCCAGACCACCAGCAGCCTGAGCGCCAGCCTGGGCGACCGGGTGACCATCAGCTGCAGAG CCAGCCAGGACATCAGCAAGTACCTGAACTGGTACCAGCAGAAGCCCGACGGCACCGTGAAGCTGCTG ATCTACCACACCAGCCGGCTGCACAGCGGCGTGCCCAGCCGGTTCAGCGGCAGCGGCAGCGGCACCGA CTACAGCCTGACCATCAGCAACCTGGAGCAGGAGGACATCGCCACCTACTTCTGCCAGCAGGGCAACA CCCTGCCCTACACCTTCGGAGGCGGCACCAAGCTGGAGATCACCAAGGCCGGAGGCGGAGGCTCTGGC GGAGGCGGCTCTGGCGGAGGCGGCTCTGGCGGAGGCGGCAGCGAGGTGAAGCTGCAGGAGTCTGGCCC AGGCCTGGTGGCCCCAAGCCAGAGCCTGAGCGTGACCTGCACCGTGAGCGGCGTGAGCCTGCCCGACT ACGGCGTGAGCTGGATCAGGCAGCCCCCACGGAAGGGCCTGGAGTGGCTGGGCGTGATCTGGGGCAGC GAGACCACCTACTACAACAGCGCCCTGAAGAGCCGGCTGACCATCATCAAGGACAACAGCAAGAGCCA GGTGTTCCTGAAGATGAACAGCCTGCAGACCGACGACACCGCCATCTACTACTGCGCCAAGCACTACT ACTATGGCGGCAGCTACGCTATGGACTACTGGGGCCAGGGCACCAGCGTGACCGTGAGCTCAGATCCC ACCACGACGCCAGCGCCGCGACCACCAACACCGGCGCCCACCATCGCGTCGCAGCCCCTGTCCCTGCG CCCAGAGGCGTGCCGGCCAGCGGCGGGGGGCGCAGTGCACACGAGGGGGCTGGACTTCGCCTGTGATA TCTTTTGGGTGCTGGTGGTGGTTGGTGGAGTCCTGGCTTGCTATAGCTTGCTAGTAACAGTGGCCTTT ATTATTTTCTGGGTGAGGAGAGTGAAGTTCAGCAGGAGCGCAGACGCCCCCGCGTACCAGCAGGGCCA GAACCAGCTCTATAACGAGCTCAATCTAGGACGAAGAGAGGAGTACGATGTTTTGGACAAGAGACGTG GCCGGGACCCTGAGATGGGGGGAAAGCCGAGAAGGAAGAACCCTCAGGAAGGCCTGTACAATGAACTG CAGAAAGATAAGATGGCGGAGGCCTACAGTGAGATTGGGATGAAAGGCGAGCGCCGGAGGGGCAAGGG GCACGATGGCCTTTACCAGGGTCTCAGTACAGCCACCAAGGACACCTACGACGCCCTTCACATGCAGG CCCTGCCTCCTCGCAGAGCCGAGGGCAGGGGAAGTCTTCTAACATGCGGGGACGTGGAGGAAAATCCC GGGCCCATGGAGACCGACACCCTGCTGCTGTGGGTGCTGCTGCTGTGGGTGCCCGGCAGCACCGGCCA GGTGAAGCTGCAGCAGAGCGGCGGAGGCCTGGTGAAGCCCGGCGCCAGCCTGAAGCTGAGCTGCGTGA CCAGCGGCTTCACCTTCCGGAAGTTCGGCATGAGCTGGGTGCGGCAGACCAGCGACAAGCGGCTGGAG TGGGTGGCCAGCATCAGCACCGGCGGCTACAACACCTACTACAGCGACAACGTGAAGGGCCGGTTCAC CATCAGCCGGGAGAACGCCAAGAACACCCTGTACCTGCAGATGAGCAGCCTGAAGAGCGAGGACACCG CCCTGTACTACTGCACCCGGGGCTACAGCAGCACCAGCTACGCTATGGACTACTGGGGCCAGGGCACC ACCGTGACAGTGAGCAGCGGCGGAGGAGGCAGTGGTGGGGGTGGATCTGGCGGAGGTGGCAGCGACAT CGAGCTGACCCAGAGCCCCGCCAGCCTGAGCGTGGCCACCGGCGAGAAGGTGACCATCCGGTGCATGA CCAGCACCGACATCGACGACGACATGAACTGGTACCAGCAGAAGCCCGGCGAGCCCCCAAAGTTCCTG ATCAGCGAGGGCAACACCCTGCGGCCCGGCGTGCCCAGCCGGTTCAGCAGCAGCGGCACCGGCACCGA CTTCGTGTTCACCATCGAGAACACCCTGAGCGAGGACGTGGGCGACTACTACTGCCTGCAGAGCTTCA ACGTGCCCCTGACCTTCGGCGACGGCACCAAGCTGGAGATCAAGCGGTCGGATCCCGCCGAGCCCAAA TCTCCTGACAAAACTCACACATGCCCACCGTGCCCAGCACCTCCCGTGGCCGGCCCGTCAGTCTTCCT CTTCCCCCCAAAACCCAAGGACACCCTCATGATCGCCCGGACCCCTGAGGTCACATGCGTGGTGGTGG ACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCC AAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCA CCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCG AGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATCCCGG GATGAGCTGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGC CGTGGAGTGGGAGAGCAATGGGCAACCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCG ACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTC TCATGCTCCGTGATGCATGAGGCCCTGCACAATCACTATACCCAGAAATCTCTGAGTCTGAGCCCAGG CAAGAAGGACCCCAAGGCGGTTTTTGGCTGTATCTTTGGTGCCCTGGTTATTGTGACTGTGGGAGGCT TCATCTTCTGGAGAAAGAAGAGGAAAGATGCAAAGAATAATGAAGTGTCCTTTTCTCAAATTAAACCT AAAAAATCTAAGTTAATCAGAGTGGAGAATTTTGAGGCCTACTTCAAGAAGCAGCAAGCTGACTCCAA CTGTGGGTTCGCAGAGGAATACGAAGATCTGAAGCTTGTTGGAATTAGTCAACCTAAATATGCAGCAG AACTGGCTGAGAATAGAGGAAAGAATCGCTATAATAATGTTCTGCCCTATGATATTTCCCGTGTCAAA CTTTCGGTCCAGACCCATTCAACGGATGACTACATCAATGCCAACTACATGCCTGGCTACCACTCCAA GAAAGATTTTATTGCCACACAAGGACCTTTACCGAACACTTTGAAAGATTTTTGGCGTATGGTTTGGG AGAAAAATGTATATGCCATCATTATGTTGACTAAATGTGTTGAACAGGGAAGAACCAAATGTGAGGAG TATTGGCCCTCCAAGCAGGCTCAGGACTATGGAGACATAACTGTGGCAATGACATCAGAAATTGTTCT TCCGGAATGGACCATCAGAGATTTCACAGTGAAAAATATCCAGACAAGTGAGAGTCACCCTCTGAGAC AGTTCCATTTCACCTCCTGGCCAGACCACGGTGTTCCCGACACCACTGACCTGCTCATCAACTTCCGG TACCTCGTTCGTGACTACATGAAGCAGAGTCCTCCCGAATCGCCGATTCTGGTGCATTGCAGTGCTGG GGTCGGAAGGACGGGCACTTTCATTGCCATTGATCGTCTCATCTACCAGATAGAGAATGAGAACACCG TGGATGTGTATGGGATTGTGTATGACCTTCGAATGCATAGGCCTTTAATGGTGCAGACAGAGGACCAG TATGTTTTCCTCAATCAGTGTGTTTTGGATATTGTCAGATCCCAGAAAGACTCAAAAGTAGATCTTAT CTACCAGAACACAACTGCAATGACAATCTATGAAAACCTTGCGCCCGTGACCACATTTGGAAAGACCA ATGGTTACATCGCCTAA
Example 11: Design and Construction of APRIL Based CARs
[0384] APRIL in its natural form is a secreted type II protein. The use of APRIL as a BCMA binding domain for a CAR requires conversion of this type II secreted protein to a type I membrane bound protein and for this protein to be stable and to retain binding to BCMA in this form. To generate candidate molecules, the extreme amino-terminus of APRIL was deleted to remove binding to proteoglycans. Next, a signal peptide was added to direct the nascent protein to the endoplasmic reticulum and hence the cell surface. Also, because the nature of spacer used can alter the function of a CAR, three different spacer domains were tested: an APRIL based CAR was generated comprising (i) a human IgG1 spacer altered to remove Fc binding motifs; (ii) a CD8 stalk; and (iii) the IgG1 hinge alone (cartoon in FIG. 25 and amino acid sequences in FIG. 26). These CARs were expressed in a bicistronic retroviral vector (FIG. 27A) so that a marker protein--truncated CD34 could be co-expressed as a convenient marker gene.
Example 12: Expression and Function of APRIL Based CARs
[0385] The aim of this study was to test whether the APRIL based CARs which had been constructed were expressed on the cell surface and whether APRIL had folded to form the native protein. T-cells were transduced with these different CAR constructs and stained using a commercially available anti-APRIL mAb, along with staining for the marker gene and analysed by flow-cytometry. The results of this experiment are shown in FIG. 27B where APRIL binding is plotting against marker gene fluorescence. These data show that in this format, the APRIL based CARs are expressed on the cell surface and APRIL folds sufficiently to be recognized by an anti-APRIL mAb.
[0386] Next, it was determined whether APRIL in this format could recognize BCMA and TACl. Recombinant BCMA and TACl were generated as fusions with mouse IgG2a-Fc. These recombinant proteins were incubated with the transduced T-cells. After this, the cells were washed and stained with an anti-mouse fluorophore conjugated antibody and an antibody to detect the marker gene conjugated to a different fluorophore. The cells were analysed by flow cytometry and the results are presented in FIG. 27C. The different CARs were able to bind both BCMA and TACl. Surprisingly, the CARs were better able to bind BCMA than TACl. Also, surprisingly CARs with a CD8 stalk or IgG1 hinge spacer were better able to bind BCMA and TACl than CAR with an Fc spacer.
Example 13: APRIL Based Chimeric Antigen Receptors are Active Against BCMA Expressing Cells
[0387] T-cells from normal donors were transduced with the different APRIL CARs and tested against SupT1 cells either wild-type, or engineered to express BCMA and TACI. Several different assays were used to determine function. A classical chromium release assay was performed. Here, the target cells (the SupT1 cells) were labelled with 51Cr and mixed with effectors (the transduced T-cells) at different ratio. Lysis of target cells was determined by counting 51Cr in the co-culture supernatant (FIG. 28A shows the cumulative data).
[0388] In addition, supernatant from T-cells cultured 1:1 with SupT1 cells was assayed by ELISA for Interferon-gamma (FIG. 28B shows cumulative data). Measurement of T-cell expansion after one week of co-culture with SupT1 cells was also performed (FIG. 28C). T-cells were counted by flow-cytometry calibrated with counting beads. These experimental data show that APRIL based CARs can kill BCMA expressing targets. Further, these data show that CARs based on the CD8 stalk or IgG1 hinge performed better than the Fc-pvaa based CAR.
Example 14: Functional Analysis of the AND Gate in Primary Cells
[0389] PBMCs were isolated from blood and stimulated using PHA and IL-2. Two days later the cells were transduced on retronectin coated plates with retro virus containing the CD19:CD33 AND gate construct. On day 5 the expression level of the two CARs translated by the AND gate construct was evaluated via flow cytometry and the cells were depleted of CD56+ cells (predominantly NK cells). On day 6 the PBMCs were placed in a co-culture with target cells at a 1:2 effector to target cell ratio. On day 8 the supernatant was collected and analysed for IFN-gamma secretion via ELISA (FIG. 29).
[0390] These data demonstrate that the AND gate functions in primary cells.
[0391] All publications mentioned in the above specification are herein incorporated by reference. Various modifications and variations of the described methods and system of the invention will be apparent to those skilled in the art without departing from the scope and spirit of the invention. Although the invention has been described in connection with specific preferred embodiments, it should be understood that the invention as claimed should not be unduly limited to such specific embodiments. Indeed, various modifications of the described modes for carrying out the invention which are obvious to those skilled in molecular biology, cell biology or related fields are intended to be within the scope of the following claims.
Sequence CWU
1
1
5611129PRTArtificial SequenceChimeric antigen receptor (CAR) 1Met Ser Leu
Pro Val Thr Ala Leu Leu Leu Pro Leu Ala Leu Leu Leu1 5
10 15His Ala Ala Arg Pro Asp Ile Gln Met
Thr Gln Thr Thr Ser Ser Leu 20 25
30Ser Ala Ser Leu Gly Asp Arg Val Thr Ile Ser Cys Arg Ala Ser Gln
35 40 45Asp Ile Ser Lys Tyr Leu Asn
Trp Tyr Gln Gln Lys Pro Asp Gly Thr 50 55
60Val Lys Leu Leu Ile Tyr His Thr Ser Arg Leu His Ser Gly Val Pro65
70 75 80Ser Arg Phe Ser
Gly Ser Gly Ser Gly Thr Asp Tyr Ser Leu Thr Ile 85
90 95Ser Asn Leu Glu Gln Glu Asp Ile Ala Thr
Tyr Phe Cys Gln Gln Gly 100 105
110Asn Thr Leu Pro Tyr Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Thr
115 120 125Lys Ala Gly Gly Gly Gly Ser
Gly Gly Gly Gly Ser Gly Gly Gly Gly 130 135
140Ser Gly Gly Gly Gly Ser Glu Val Lys Leu Gln Glu Ser Gly Pro
Gly145 150 155 160Leu Val
Ala Pro Ser Gln Ser Leu Ser Val Thr Cys Thr Val Ser Gly
165 170 175Val Ser Leu Pro Asp Tyr Gly
Val Ser Trp Ile Arg Gln Pro Pro Arg 180 185
190Lys Gly Leu Glu Trp Leu Gly Val Ile Trp Gly Ser Glu Thr
Thr Tyr 195 200 205Tyr Asn Ser Ala
Leu Lys Ser Arg Leu Thr Ile Ile Lys Asp Asn Ser 210
215 220Lys Ser Gln Val Phe Leu Lys Met Asn Ser Leu Gln
Thr Asp Asp Thr225 230 235
240Ala Ile Tyr Tyr Cys Ala Lys His Tyr Tyr Tyr Gly Gly Ser Tyr Ala
245 250 255Met Asp Tyr Trp Gly
Gln Gly Thr Ser Val Thr Val Ser Ser Asp Pro 260
265 270Thr Thr Thr Pro Ala Pro Arg Pro Pro Thr Pro Ala
Pro Thr Ile Ala 275 280 285Ser Gln
Pro Leu Ser Leu Arg Pro Glu Ala Cys Arg Pro Ala Ala Gly 290
295 300Gly Ala Val His Thr Arg Gly Leu Asp Phe Ala
Cys Asp Ile Phe Trp305 310 315
320Val Leu Val Val Val Gly Gly Val Leu Ala Cys Tyr Ser Leu Leu Val
325 330 335Thr Val Ala Phe
Ile Ile Phe Trp Val Arg Arg Val Lys Phe Ser Arg 340
345 350Ser Ala Asp Ala Pro Ala Tyr Gln Gln Gly Gln
Asn Gln Leu Tyr Asn 355 360 365Glu
Leu Asn Leu Gly Arg Arg Glu Glu Tyr Asp Val Leu Asp Lys Arg 370
375 380Arg Gly Arg Asp Pro Glu Met Gly Gly Lys
Pro Arg Arg Lys Asn Pro385 390 395
400Gln Glu Gly Leu Tyr Asn Glu Leu Gln Lys Asp Lys Met Ala Glu
Ala 405 410 415Tyr Ser Glu
Ile Gly Met Lys Gly Glu Arg Arg Arg Gly Lys Gly His 420
425 430Asp Gly Leu Tyr Gln Gly Leu Ser Thr Ala
Thr Lys Asp Thr Tyr Asp 435 440
445Ala Leu His Met Gln Ala Leu Pro Pro Arg Arg Ala Glu Gly Arg Gly 450
455 460Ser Leu Leu Thr Cys Gly Asp Val
Glu Glu Asn Pro Gly Pro Met Ala465 470
475 480Val Pro Thr Gln Val Leu Gly Leu Leu Leu Leu Trp
Leu Thr Asp Ala 485 490
495Arg Cys Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser
500 505 510Val Gly Asp Arg Val Thr
Ile Thr Cys Arg Ala Ser Glu Asp Ile Tyr 515 520
525Phe Asn Leu Val Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro
Lys Leu 530 535 540Leu Ile Tyr Asp Thr
Asn Arg Leu Ala Asp Gly Val Pro Ser Arg Phe545 550
555 560Ser Gly Ser Gly Ser Gly Thr Gln Tyr Thr
Leu Thr Ile Ser Ser Leu 565 570
575Gln Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Gln His Tyr Lys Asn Tyr
580 585 590Pro Leu Thr Phe Gly
Gln Gly Thr Lys Leu Glu Ile Lys Arg Ser Gly 595
600 605Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly
Gly Ser Gly Gly 610 615 620Gly Gly Ser
Arg Ser Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu625
630 635 640Val Gln Pro Gly Gly Ser Leu
Arg Leu Ser Cys Ala Ala Ser Gly Phe 645
650 655Thr Leu Ser Asn Tyr Gly Met His Trp Ile Arg Gln
Ala Pro Gly Lys 660 665 670Gly
Leu Glu Trp Val Ser Ser Ile Ser Leu Asn Gly Gly Ser Thr Tyr 675
680 685Tyr Arg Asp Ser Val Lys Gly Arg Phe
Thr Ile Ser Arg Asp Asn Ala 690 695
700Lys Ser Thr Leu Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr705
710 715 720Ala Val Tyr Tyr
Cys Ala Ala Gln Asp Ala Tyr Thr Gly Gly Tyr Phe 725
730 735Asp Tyr Trp Gly Gln Gly Thr Leu Val Thr
Val Ser Ser Met Asp Pro 740 745
750Ala Glu Pro Lys Ser Pro Asp Lys Thr His Thr Cys Pro Pro Cys Pro
755 760 765Ala Pro Pro Val Ala Gly Pro
Ser Val Phe Leu Phe Pro Pro Lys Pro 770 775
780Lys Asp Thr Leu Met Ile Ala Arg Thr Pro Glu Val Thr Cys Val
Val785 790 795 800Val Asp
Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val
805 810 815Asp Gly Val Glu Val His Asn
Ala Lys Thr Lys Pro Arg Glu Glu Gln 820 825
830Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu
His Gln 835 840 845Asp Trp Leu Asn
Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala 850
855 860Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala
Lys Gly Gln Pro865 870 875
880Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr
885 890 895Lys Asn Gln Val Ser
Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser 900
905 910Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro
Glu Asn Asn Tyr 915 920 925Lys Thr
Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr 930
935 940Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln
Gln Gly Asn Val Phe945 950 955
960Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys
965 970 975Ser Leu Ser Leu
Ser Pro Gly Lys Lys Asp Pro Lys Phe Trp Val Leu 980
985 990Val Val Val Gly Gly Val Leu Ala Cys Tyr Ser
Leu Leu Val Thr Val 995 1000
1005Ala Phe Ile Ile Phe Trp Val Arg Ser Arg Val Lys Phe Ser Arg
1010 1015 1020Ser Ala Asp Ala Pro Ala
Tyr Gln Gln Gly Gln Asn Gln Leu Tyr 1025 1030
1035Asn Glu Leu Asn Leu Gly Arg Arg Glu Glu Tyr Asp Val Leu
Asp 1040 1045 1050Lys Arg Arg Gly Arg
Asp Pro Glu Met Gly Gly Lys Pro Arg Arg 1055 1060
1065Lys Asn Pro Gln Glu Gly Leu Tyr Asn Glu Leu Gln Lys
Asp Lys 1070 1075 1080Met Ala Glu Ala
Tyr Ser Glu Ile Gly Met Lys Gly Glu Arg Arg 1085
1090 1095Arg Gly Lys Gly His Asp Gly Leu Tyr Gln Gly
Leu Ser Thr Ala 1100 1105 1110Thr Lys
Asp Thr Tyr Asp Ala Leu His Met Gln Ala Leu Pro Pro 1115
1120 1125Arg21350PRTArtificial SequenceChimeric
antigen receptor (CAR) 2Met Ser Leu Pro Val Thr Ala Leu Leu Leu Pro Leu
Ala Leu Leu Leu1 5 10
15His Ala Ala Arg Pro Asp Ile Gln Met Thr Gln Thr Thr Ser Ser Leu
20 25 30Ser Ala Ser Leu Gly Asp Arg
Val Thr Ile Ser Cys Arg Ala Ser Gln 35 40
45Asp Ile Ser Lys Tyr Leu Asn Trp Tyr Gln Gln Lys Pro Asp Gly
Thr 50 55 60Val Lys Leu Leu Ile Tyr
His Thr Ser Arg Leu His Ser Gly Val Pro65 70
75 80Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp
Tyr Ser Leu Thr Ile 85 90
95Ser Asn Leu Glu Gln Glu Asp Ile Ala Thr Tyr Phe Cys Gln Gln Gly
100 105 110Asn Thr Leu Pro Tyr Thr
Phe Gly Gly Gly Thr Lys Leu Glu Ile Thr 115 120
125Lys Ala Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly
Gly Gly 130 135 140Ser Gly Gly Gly Gly
Ser Glu Val Lys Leu Gln Glu Ser Gly Pro Gly145 150
155 160Leu Val Ala Pro Ser Gln Ser Leu Ser Val
Thr Cys Thr Val Ser Gly 165 170
175Val Ser Leu Pro Asp Tyr Gly Val Ser Trp Ile Arg Gln Pro Pro Arg
180 185 190Lys Gly Leu Glu Trp
Leu Gly Val Ile Trp Gly Ser Glu Thr Thr Tyr 195
200 205Tyr Asn Ser Ala Leu Lys Ser Arg Leu Thr Ile Ile
Lys Asp Asn Ser 210 215 220Lys Ser Gln
Val Phe Leu Lys Met Asn Ser Leu Gln Thr Asp Asp Thr225
230 235 240Ala Ile Tyr Tyr Cys Ala Lys
His Tyr Tyr Tyr Gly Gly Ser Tyr Ala 245
250 255Met Asp Tyr Trp Gly Gln Gly Thr Ser Val Thr Val
Ser Ser Asp Pro 260 265 270Thr
Thr Thr Pro Ala Pro Arg Pro Pro Thr Pro Ala Pro Thr Ile Ala 275
280 285Ser Gln Pro Leu Ser Leu Arg Pro Glu
Ala Cys Arg Pro Ala Ala Gly 290 295
300Gly Ala Val His Thr Arg Gly Leu Asp Phe Ala Cys Asp Ile Phe Trp305
310 315 320Val Leu Val Val
Val Gly Gly Val Leu Ala Cys Tyr Ser Leu Leu Val 325
330 335Thr Val Ala Phe Ile Ile Phe Trp Val Arg
Arg Val Lys Phe Ser Arg 340 345
350Ser Ala Asp Ala Pro Ala Tyr Gln Gln Gly Gln Asn Gln Leu Tyr Asn
355 360 365Glu Leu Asn Leu Gly Arg Arg
Glu Glu Tyr Asp Val Leu Asp Lys Arg 370 375
380Arg Gly Arg Asp Pro Glu Met Gly Gly Lys Pro Arg Arg Lys Asn
Pro385 390 395 400Gln Glu
Gly Leu Tyr Asn Glu Leu Gln Lys Asp Lys Met Ala Glu Ala
405 410 415Tyr Ser Glu Ile Gly Met Lys
Gly Glu Arg Arg Arg Gly Lys Gly His 420 425
430Asp Gly Leu Tyr Gln Gly Leu Ser Thr Ala Thr Lys Asp Thr
Tyr Asp 435 440 445Ala Leu His Met
Gln Ala Leu Pro Pro Arg Arg Ala Glu Gly Arg Gly 450
455 460Ser Leu Leu Thr Cys Gly Asp Val Glu Glu Asn Pro
Gly Pro Met Ala465 470 475
480Val Pro Thr Gln Val Leu Gly Leu Leu Leu Leu Trp Leu Thr Asp Ala
485 490 495Arg Cys Asp Ile Gln
Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser 500
505 510Val Gly Asp Arg Val Thr Ile Thr Cys Arg Ala Ser
Glu Asp Ile Tyr 515 520 525Phe Asn
Leu Val Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu 530
535 540Leu Ile Tyr Asp Thr Asn Arg Leu Ala Asp Gly
Val Pro Ser Arg Phe545 550 555
560Ser Gly Ser Gly Ser Gly Thr Gln Tyr Thr Leu Thr Ile Ser Ser Leu
565 570 575Gln Pro Glu Asp
Phe Ala Thr Tyr Tyr Cys Gln His Tyr Lys Asn Tyr 580
585 590Pro Leu Thr Phe Gly Gln Gly Thr Lys Leu Glu
Ile Lys Arg Ser Gly 595 600 605Gly
Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly 610
615 620Gly Gly Ser Arg Ser Glu Val Gln Leu Val
Glu Ser Gly Gly Gly Leu625 630 635
640Val Gln Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly
Phe 645 650 655Thr Leu Ser
Asn Tyr Gly Met His Trp Ile Arg Gln Ala Pro Gly Lys 660
665 670Gly Leu Glu Trp Val Ser Ser Ile Ser Leu
Asn Gly Gly Ser Thr Tyr 675 680
685Tyr Arg Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala 690
695 700Lys Ser Thr Leu Tyr Leu Gln Met
Asn Ser Leu Arg Ala Glu Asp Thr705 710
715 720Ala Val Tyr Tyr Cys Ala Ala Gln Asp Ala Tyr Thr
Gly Gly Tyr Phe 725 730
735Asp Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser Met Asp Pro
740 745 750Ala Glu Pro Lys Ser Pro
Asp Lys Thr His Thr Cys Pro Pro Cys Pro 755 760
765Ala Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe Pro Pro
Lys Pro 770 775 780Lys Asp Thr Leu Met
Ile Ala Arg Thr Pro Glu Val Thr Cys Val Val785 790
795 800Val Asp Val Ser His Glu Asp Pro Glu Val
Lys Phe Asn Trp Tyr Val 805 810
815Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln
820 825 830Tyr Asn Ser Thr Tyr
Arg Val Val Ser Val Leu Thr Val Leu His Gln 835
840 845Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val
Ser Asn Lys Ala 850 855 860Leu Pro Ala
Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro865
870 875 880Arg Glu Pro Gln Val Tyr Thr
Leu Pro Pro Ser Arg Asp Glu Leu Thr 885
890 895Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly
Phe Tyr Pro Ser 900 905 910Asp
Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr 915
920 925Lys Thr Thr Pro Pro Val Leu Asp Ser
Asp Gly Ser Phe Phe Leu Tyr 930 935
940Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe945
950 955 960Ser Cys Ser Val
Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys 965
970 975Ser Leu Ser Leu Ser Pro Gly Lys Lys Asp
Pro Lys Ala Val Phe Gly 980 985
990Cys Ile Phe Gly Ala Leu Val Ile Val Thr Val Gly Gly Phe Ile Phe
995 1000 1005Trp Arg Lys Lys Arg Lys
Asp Ala Lys Asn Asn Glu Val Ser Phe 1010 1015
1020Ser Gln Ile Lys Pro Lys Lys Ser Lys Leu Ile Arg Val Glu
Asn 1025 1030 1035Phe Glu Ala Tyr Phe
Lys Lys Gln Gln Ala Asp Ser Asn Cys Gly 1040 1045
1050Phe Ala Glu Glu Tyr Glu Asp Leu Lys Leu Val Gly Ile
Ser Gln 1055 1060 1065Pro Lys Tyr Ala
Ala Glu Leu Ala Glu Asn Arg Gly Lys Asn Arg 1070
1075 1080Tyr Asn Asn Val Leu Pro Tyr Asp Ile Ser Arg
Val Lys Leu Ser 1085 1090 1095Val Gln
Thr His Ser Thr Asp Asp Tyr Ile Asn Ala Asn Tyr Met 1100
1105 1110Pro Gly Tyr His Ser Lys Lys Asp Phe Ile
Ala Thr Gln Gly Pro 1115 1120 1125Leu
Pro Asn Thr Leu Lys Asp Phe Trp Arg Met Val Trp Glu Lys 1130
1135 1140Asn Val Tyr Ala Ile Ile Met Leu Thr
Lys Cys Val Glu Gln Gly 1145 1150
1155Arg Thr Lys Cys Glu Glu Tyr Trp Pro Ser Lys Gln Ala Gln Asp
1160 1165 1170Tyr Gly Asp Ile Thr Val
Ala Met Thr Ser Glu Ile Val Leu Pro 1175 1180
1185Glu Trp Thr Ile Arg Asp Phe Thr Val Lys Asn Ile Gln Thr
Ser 1190 1195 1200Glu Ser His Pro Leu
Arg Gln Phe His Phe Thr Ser Trp Pro Asp 1205 1210
1215His Gly Val Pro Asp Thr Thr Asp Leu Leu Ile Asn Phe
Arg Tyr 1220 1225 1230Leu Val Arg Asp
Tyr Met Lys Gln Ser Pro Pro Glu Ser Pro Ile 1235
1240 1245Leu Val His Cys Ser Ala Gly Val Gly Arg Thr
Gly Thr Phe Ile 1250 1255 1260Ala Ile
Asp Arg Leu Ile Tyr Gln Ile Glu Asn Glu Asn Thr Val 1265
1270 1275Asp Val Tyr Gly Ile Val Tyr Asp Leu Arg
Met His Arg Pro Leu 1280 1285 1290Met
Val Gln Thr Glu Asp Gln Tyr Val Phe Leu Asn Gln Cys Val 1295
1300 1305Leu Asp Ile Val Arg Ser Gln Lys Asp
Ser Lys Val Asp Leu Ile 1310 1315
1320Tyr Gln Asn Thr Thr Ala Met Thr Ile Tyr Glu Asn Leu Ala Pro
1325 1330 1335Val Thr Thr Phe Gly Lys
Thr Asn Gly Tyr Ile Ala 1340 1345
135031717PRTArtificial SequenceChimeric antigen receptor (CAR) 3Met Ser
Leu Pro Val Thr Ala Leu Leu Leu Pro Leu Ala Leu Leu Leu1 5
10 15His Ala Ala Arg Pro Asp Ile Gln
Met Thr Gln Thr Thr Ser Ser Leu 20 25
30Ser Ala Ser Leu Gly Asp Arg Val Thr Ile Ser Cys Arg Ala Ser
Gln 35 40 45Asp Ile Ser Lys Tyr
Leu Asn Trp Tyr Gln Gln Lys Pro Asp Gly Thr 50 55
60Val Lys Leu Leu Ile Tyr His Thr Ser Arg Leu His Ser Gly
Val Pro65 70 75 80Ser
Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Tyr Ser Leu Thr Ile
85 90 95Ser Asn Leu Glu Gln Glu Asp
Ile Ala Thr Tyr Phe Cys Gln Gln Gly 100 105
110Asn Thr Leu Pro Tyr Thr Phe Gly Gly Gly Thr Lys Leu Glu
Ile Thr 115 120 125Lys Ala Gly Gly
Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly 130
135 140Ser Gly Gly Gly Gly Ser Glu Val Lys Leu Gln Glu
Ser Gly Pro Gly145 150 155
160Leu Val Ala Pro Ser Gln Ser Leu Ser Val Thr Cys Thr Val Ser Gly
165 170 175Val Ser Leu Pro Asp
Tyr Gly Val Ser Trp Ile Arg Gln Pro Pro Arg 180
185 190Lys Gly Leu Glu Trp Leu Gly Val Ile Trp Gly Ser
Glu Thr Thr Tyr 195 200 205Tyr Asn
Ser Ala Leu Lys Ser Arg Leu Thr Ile Ile Lys Asp Asn Ser 210
215 220Lys Ser Gln Val Phe Leu Lys Met Asn Ser Leu
Gln Thr Asp Asp Thr225 230 235
240Ala Ile Tyr Tyr Cys Ala Lys His Tyr Tyr Tyr Gly Gly Ser Tyr Ala
245 250 255Met Asp Tyr Trp
Gly Gln Gly Thr Ser Val Thr Val Ser Ser Asp Pro 260
265 270Thr Thr Thr Pro Ala Pro Arg Pro Pro Thr Pro
Ala Pro Thr Ile Ala 275 280 285Ser
Gln Pro Leu Ser Leu Arg Pro Glu Ala Cys Arg Pro Ala Ala Gly 290
295 300Gly Ala Val His Thr Arg Gly Leu Asp Phe
Ala Cys Asp Ile Phe Trp305 310 315
320Val Leu Val Val Val Gly Gly Val Leu Ala Cys Tyr Ser Leu Leu
Val 325 330 335Thr Val Ala
Phe Ile Ile Phe Trp Val Arg Arg Val Lys Phe Ser Arg 340
345 350Ser Ala Asp Ala Pro Ala Tyr Gln Gln Gly
Gln Asn Gln Leu Tyr Asn 355 360
365Glu Leu Asn Leu Gly Arg Arg Glu Glu Tyr Asp Val Leu Asp Lys Arg 370
375 380Arg Gly Arg Asp Pro Glu Met Gly
Gly Lys Pro Arg Arg Lys Asn Pro385 390
395 400Gln Glu Gly Leu Tyr Asn Glu Leu Gln Lys Asp Lys
Met Ala Glu Ala 405 410
415Tyr Ser Glu Ile Gly Met Lys Gly Glu Arg Arg Arg Gly Lys Gly His
420 425 430Asp Gly Leu Tyr Gln Gly
Leu Ser Thr Ala Thr Lys Asp Thr Tyr Asp 435 440
445Ala Leu His Met Gln Ala Leu Pro Pro Arg Arg Ala Glu Gly
Arg Gly 450 455 460Ser Leu Leu Thr Cys
Gly Asp Val Glu Glu Asn Pro Gly Pro Met Ala465 470
475 480Val Pro Thr Gln Val Leu Gly Leu Leu Leu
Leu Trp Leu Thr Asp Ala 485 490
495Arg Cys Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser
500 505 510Val Gly Asp Arg Val
Thr Ile Thr Cys Arg Ala Ser Glu Asp Ile Tyr 515
520 525Phe Asn Leu Val Trp Tyr Gln Gln Lys Pro Gly Lys
Ala Pro Lys Leu 530 535 540Leu Ile Tyr
Asp Thr Asn Arg Leu Ala Asp Gly Val Pro Ser Arg Phe545
550 555 560Ser Gly Ser Gly Ser Gly Thr
Gln Tyr Thr Leu Thr Ile Ser Ser Leu 565
570 575Gln Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Gln His
Tyr Lys Asn Tyr 580 585 590Pro
Leu Thr Phe Gly Gln Gly Thr Lys Leu Glu Ile Lys Arg Ser Gly 595
600 605Gly Gly Gly Ser Gly Gly Gly Gly Ser
Gly Gly Gly Gly Ser Gly Gly 610 615
620Gly Gly Ser Arg Ser Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu625
630 635 640Val Gln Pro Gly
Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe 645
650 655Thr Leu Ser Asn Tyr Gly Met His Trp Ile
Arg Gln Ala Pro Gly Lys 660 665
670Gly Leu Glu Trp Val Ser Ser Ile Ser Leu Asn Gly Gly Ser Thr Tyr
675 680 685Tyr Arg Asp Ser Val Lys Gly
Arg Phe Thr Ile Ser Arg Asp Asn Ala 690 695
700Lys Ser Thr Leu Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp
Thr705 710 715 720Ala Val
Tyr Tyr Cys Ala Ala Gln Asp Ala Tyr Thr Gly Gly Tyr Phe
725 730 735Asp Tyr Trp Gly Gln Gly Thr
Leu Val Thr Val Ser Ser Met Asp Pro 740 745
750Ala Glu Pro Lys Ser Pro Asp Lys Thr His Thr Cys Pro Pro
Cys Pro 755 760 765Ala Pro Pro Val
Ala Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro 770
775 780Lys Asp Thr Leu Met Ile Ala Arg Thr Pro Glu Val
Thr Cys Val Val785 790 795
800Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val
805 810 815Asp Gly Val Glu Val
His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln 820
825 830Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr
Val Leu His Gln 835 840 845Asp Trp
Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala 850
855 860Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys
Ala Lys Gly Gln Pro865 870 875
880Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr
885 890 895Lys Asn Gln Val
Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser 900
905 910Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln
Pro Glu Asn Asn Tyr 915 920 925Lys
Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr 930
935 940Ser Lys Leu Thr Val Asp Lys Ser Arg Trp
Gln Gln Gly Asn Val Phe945 950 955
960Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln
Lys 965 970 975Ser Leu Ser
Leu Ser Pro Gly Lys Lys Asp Pro Lys Ala Leu Ile Ala 980
985 990Phe Leu Ala Phe Leu Ile Ile Val Thr Ser
Ile Ala Leu Leu Val Val 995 1000
1005Leu Tyr Lys Ile Tyr Asp Leu His Lys Lys Arg Ser Cys Asn Leu
1010 1015 1020Asp Glu Gln Gln Glu Leu
Val Glu Arg Asp Asp Glu Lys Gln Leu 1025 1030
1035Met Asn Val Glu Pro Ile His Ala Asp Ile Leu Leu Glu Thr
Tyr 1040 1045 1050Lys Arg Lys Ile Ala
Asp Glu Gly Arg Leu Phe Leu Ala Glu Phe 1055 1060
1065Gln Ser Ile Pro Arg Val Phe Ser Lys Phe Pro Ile Lys
Glu Ala 1070 1075 1080Arg Lys Pro Phe
Asn Gln Asn Lys Asn Arg Tyr Val Asp Ile Leu 1085
1090 1095Pro Tyr Asp Tyr Asn Arg Val Glu Leu Ser Glu
Ile Asn Gly Asp 1100 1105 1110Ala Gly
Ser Asn Tyr Ile Asn Ala Ser Tyr Ile Asp Gly Phe Lys 1115
1120 1125Glu Pro Arg Lys Tyr Ile Ala Ala Gln Gly
Pro Arg Asp Glu Thr 1130 1135 1140Val
Asp Asp Phe Trp Arg Met Ile Trp Glu Gln Lys Ala Thr Val 1145
1150 1155Ile Val Met Val Thr Arg Cys Glu Glu
Gly Asn Arg Asn Lys Cys 1160 1165
1170Ala Glu Tyr Trp Pro Ser Met Glu Glu Gly Thr Arg Ala Phe Gly
1175 1180 1185Asp Val Val Val Lys Ile
Asn Gln His Lys Arg Cys Pro Asp Tyr 1190 1195
1200Ile Ile Gln Lys Leu Asn Ile Val Asn Lys Lys Glu Lys Ala
Thr 1205 1210 1215Gly Arg Glu Val Thr
His Ile Gln Phe Thr Ser Trp Pro Asp His 1220 1225
1230Gly Val Pro Glu Asp Pro His Leu Leu Leu Lys Leu Arg
Arg Arg 1235 1240 1245Val Asn Ala Phe
Ser Asn Phe Phe Ser Gly Pro Ile Val Val His 1250
1255 1260Cys Ser Ala Gly Val Gly Arg Thr Gly Thr Tyr
Ile Gly Ile Asp 1265 1270 1275Ala Met
Leu Glu Gly Leu Glu Ala Glu Asn Lys Val Asp Val Tyr 1280
1285 1290Gly Tyr Val Val Lys Leu Arg Arg Gln Arg
Cys Leu Met Val Gln 1295 1300 1305Val
Glu Ala Gln Tyr Ile Leu Ile His Gln Ala Leu Val Glu Tyr 1310
1315 1320Asn Gln Phe Gly Glu Thr Glu Val Asn
Leu Ser Glu Leu His Pro 1325 1330
1335Tyr Leu His Asn Met Lys Lys Arg Asp Pro Pro Ser Glu Pro Ser
1340 1345 1350Pro Leu Glu Ala Glu Phe
Gln Arg Leu Pro Ser Tyr Arg Ser Trp 1355 1360
1365Arg Thr Gln His Ile Gly Asn Gln Glu Glu Asn Lys Ser Lys
Asn 1370 1375 1380Arg Asn Ser Asn Val
Ile Pro Tyr Asp Tyr Asn Arg Val Pro Leu 1385 1390
1395Lys His Glu Leu Glu Met Ser Lys Glu Ser Glu His Asp
Ser Asp 1400 1405 1410Glu Ser Ser Asp
Asp Asp Ser Asp Ser Glu Glu Pro Ser Lys Tyr 1415
1420 1425Ile Asn Ala Ser Phe Ile Met Ser Tyr Trp Lys
Pro Glu Val Met 1430 1435 1440Ile Ala
Ala Gln Gly Pro Leu Lys Glu Thr Ile Gly Asp Phe Trp 1445
1450 1455Gln Met Ile Phe Gln Arg Lys Val Lys Val
Ile Val Met Leu Thr 1460 1465 1470Glu
Leu Lys His Gly Asp Gln Glu Ile Cys Ala Gln Tyr Trp Gly 1475
1480 1485Glu Gly Lys Gln Thr Tyr Gly Asp Ile
Glu Val Asp Leu Lys Asp 1490 1495
1500Thr Asp Lys Ser Ser Thr Tyr Thr Leu Arg Val Phe Glu Leu Arg
1505 1510 1515His Ser Lys Arg Lys Asp
Ser Arg Thr Val Tyr Gln Tyr Gln Tyr 1520 1525
1530Thr Asn Trp Ser Val Glu Gln Leu Pro Ala Glu Pro Lys Glu
Leu 1535 1540 1545Ile Ser Met Ile Gln
Val Val Lys Gln Lys Leu Pro Gln Lys Asn 1550 1555
1560Ser Ser Glu Gly Asn Lys His His Lys Ser Thr Pro Leu
Leu Ile 1565 1570 1575His Cys Arg Asp
Gly Ser Gln Gln Thr Gly Ile Phe Cys Ala Leu 1580
1585 1590Leu Asn Leu Leu Glu Ser Ala Glu Thr Glu Glu
Val Val Asp Ile 1595 1600 1605Phe Gln
Val Val Lys Ala Leu Arg Lys Ala Arg Pro Gly Met Val 1610
1615 1620Ser Thr Phe Glu Gln Tyr Gln Phe Leu Tyr
Asp Val Ile Ala Ser 1625 1630 1635Thr
Tyr Pro Ala Gln Asn Gly Gln Val Lys Lys Asn Asn His Gln 1640
1645 1650Glu Asp Lys Ile Glu Phe Asp Asn Glu
Val Asp Lys Val Lys Gln 1655 1660
1665Asp Ala Asn Cys Val Asn Pro Leu Gly Ala Pro Glu Lys Leu Pro
1670 1675 1680Glu Ala Lys Glu Gln Ala
Glu Gly Ser Glu Pro Thr Ser Gly Thr 1685 1690
1695Glu Gly Pro Glu His Ser Val Asn Gly Pro Ala Ser Pro Ala
Leu 1700 1705 1710Asn Gln Gly Ser
171541114PRTArtificial SequenceChimeric antigen receptor (CAR) 4Met Ser
Leu Pro Val Thr Ala Leu Leu Leu Pro Leu Ala Leu Leu Leu1 5
10 15His Ala Ala Arg Pro Asp Ile Gln
Met Thr Gln Thr Thr Ser Ser Leu 20 25
30Ser Ala Ser Leu Gly Asp Arg Val Thr Ile Ser Cys Arg Ala Ser
Gln 35 40 45Asp Ile Ser Lys Tyr
Leu Asn Trp Tyr Gln Gln Lys Pro Asp Gly Thr 50 55
60Val Lys Leu Leu Ile Tyr His Thr Ser Arg Leu His Ser Gly
Val Pro65 70 75 80Ser
Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Tyr Ser Leu Thr Ile
85 90 95Ser Asn Leu Glu Gln Glu Asp
Ile Ala Thr Tyr Phe Cys Gln Gln Gly 100 105
110Asn Thr Leu Pro Tyr Thr Phe Gly Gly Gly Thr Lys Leu Glu
Ile Thr 115 120 125Lys Ala Gly Gly
Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly 130
135 140Ser Gly Gly Gly Gly Ser Glu Val Lys Leu Gln Glu
Ser Gly Pro Gly145 150 155
160Leu Val Ala Pro Ser Gln Ser Leu Ser Val Thr Cys Thr Val Ser Gly
165 170 175Val Ser Leu Pro Asp
Tyr Gly Val Ser Trp Ile Arg Gln Pro Pro Arg 180
185 190Lys Gly Leu Glu Trp Leu Gly Val Ile Trp Gly Ser
Glu Thr Thr Tyr 195 200 205Tyr Asn
Ser Ala Leu Lys Ser Arg Leu Thr Ile Ile Lys Asp Asn Ser 210
215 220Lys Ser Gln Val Phe Leu Lys Met Asn Ser Leu
Gln Thr Asp Asp Thr225 230 235
240Ala Ile Tyr Tyr Cys Ala Lys His Tyr Tyr Tyr Gly Gly Ser Tyr Ala
245 250 255Met Asp Tyr Trp
Gly Gln Gly Thr Ser Val Thr Val Ser Ser Asp Pro 260
265 270Thr Thr Thr Pro Ala Pro Arg Pro Pro Thr Pro
Ala Pro Thr Ile Ala 275 280 285Ser
Gln Pro Leu Ser Leu Arg Pro Glu Ala Cys Arg Pro Ala Ala Gly 290
295 300Gly Ala Val His Thr Arg Gly Leu Asp Phe
Ala Cys Asp Ile Phe Trp305 310 315
320Val Leu Val Val Val Gly Gly Val Leu Ala Cys Tyr Ser Leu Leu
Val 325 330 335Thr Val Ala
Phe Ile Ile Phe Trp Val Arg Arg Val Lys Phe Ser Arg 340
345 350Ser Ala Asp Ala Pro Ala Tyr Gln Gln Gly
Gln Asn Gln Leu Tyr Asn 355 360
365Glu Leu Asn Leu Gly Arg Arg Glu Glu Tyr Asp Val Leu Asp Lys Arg 370
375 380Arg Gly Arg Asp Pro Glu Met Gly
Gly Lys Pro Arg Arg Lys Asn Pro385 390
395 400Gln Glu Gly Leu Tyr Asn Glu Leu Gln Lys Asp Lys
Met Ala Glu Ala 405 410
415Tyr Ser Glu Ile Gly Met Lys Gly Glu Arg Arg Arg Gly Lys Gly His
420 425 430Asp Gly Leu Tyr Gln Gly
Leu Ser Thr Ala Thr Lys Asp Thr Tyr Asp 435 440
445Ala Leu His Met Gln Ala Leu Pro Pro Arg Arg Ala Glu Gly
Arg Gly 450 455 460Ser Leu Leu Thr Cys
Gly Asp Val Glu Glu Asn Pro Gly Pro Met Ala465 470
475 480Val Pro Thr Gln Val Leu Gly Leu Leu Leu
Leu Trp Leu Thr Asp Ala 485 490
495Arg Cys Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser
500 505 510Val Gly Asp Arg Val
Thr Ile Thr Cys Arg Ala Ser Glu Asp Ile Tyr 515
520 525Phe Asn Leu Val Trp Tyr Gln Gln Lys Pro Gly Lys
Ala Pro Lys Leu 530 535 540Leu Ile Tyr
Asp Thr Asn Arg Leu Ala Asp Gly Val Pro Ser Arg Phe545
550 555 560Ser Gly Ser Gly Ser Gly Thr
Gln Tyr Thr Leu Thr Ile Ser Ser Leu 565
570 575Gln Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Gln His
Tyr Lys Asn Tyr 580 585 590Pro
Leu Thr Phe Gly Gln Gly Thr Lys Leu Glu Ile Lys Arg Ser Gly 595
600 605Gly Gly Gly Ser Gly Gly Gly Gly Ser
Gly Gly Gly Gly Ser Gly Gly 610 615
620Gly Gly Ser Arg Ser Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu625
630 635 640Val Gln Pro Gly
Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe 645
650 655Thr Leu Ser Asn Tyr Gly Met His Trp Ile
Arg Gln Ala Pro Gly Lys 660 665
670Gly Leu Glu Trp Val Ser Ser Ile Ser Leu Asn Gly Gly Ser Thr Tyr
675 680 685Tyr Arg Asp Ser Val Lys Gly
Arg Phe Thr Ile Ser Arg Asp Asn Ala 690 695
700Lys Ser Thr Leu Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp
Thr705 710 715 720Ala Val
Tyr Tyr Cys Ala Ala Gln Asp Ala Tyr Thr Gly Gly Tyr Phe
725 730 735Asp Tyr Trp Gly Gln Gly Thr
Leu Val Thr Val Ser Ser Met Asp Pro 740 745
750Ala Thr Thr Thr Lys Pro Val Leu Arg Thr Pro Ser Pro Val
His Pro 755 760 765Thr Gly Thr Ser
Gln Pro Gln Arg Pro Glu Asp Cys Arg Pro Arg Gly 770
775 780Ser Val Lys Gly Thr Gly Leu Asp Phe Ala Cys Asp
Ile Tyr Trp Ala785 790 795
800Pro Leu Ala Gly Ile Cys Val Ala Leu Leu Leu Ser Leu Ile Ile Thr
805 810 815Leu Ile Cys Tyr His
Arg Ser Arg Lys Arg Val Cys Lys Ser Gly Gly 820
825 830Gly Ser Phe Trp Glu Glu Phe Glu Ser Leu Gln Lys
Gln Glu Val Lys 835 840 845Asn Leu
His Gln Arg Leu Glu Gly Gln Arg Pro Glu Asn Lys Gly Lys 850
855 860Asn Arg Tyr Lys Asn Ile Leu Pro Phe Asp His
Ser Arg Val Ile Leu865 870 875
880Gln Gly Arg Asp Ser Asn Ile Pro Gly Ser Asp Tyr Ile Asn Ala Asn
885 890 895Tyr Ile Lys Asn
Gln Leu Leu Gly Pro Asp Glu Asn Ala Lys Thr Tyr 900
905 910Ile Ala Ser Gln Gly Cys Leu Glu Ala Thr Val
Asn Asp Phe Trp Gln 915 920 925Met
Ala Trp Gln Glu Asn Ser Arg Val Ile Val Met Thr Thr Arg Glu 930
935 940Val Glu Lys Gly Arg Asn Lys Cys Val Pro
Tyr Trp Pro Glu Val Gly945 950 955
960Met Gln Arg Ala Tyr Gly Pro Tyr Ser Val Thr Asn Cys Gly Glu
His 965 970 975Asp Thr Thr
Glu Tyr Lys Leu Arg Thr Leu Gln Val Ser Pro Leu Asp 980
985 990Asn Gly Asp Leu Ile Arg Glu Ile Trp His
Tyr Gln Tyr Leu Ser Trp 995 1000
1005Pro Asp His Gly Val Pro Ser Glu Pro Gly Gly Val Leu Ser Phe
1010 1015 1020Leu Asp Gln Ile Asn Gln
Arg Gln Glu Ser Leu Pro His Ala Gly 1025 1030
1035Pro Ile Ile Val His Cys Ser Ala Gly Ile Gly Arg Thr Gly
Thr 1040 1045 1050Ile Ile Val Ile Asp
Met Leu Met Glu Asn Ile Ser Thr Lys Gly 1055 1060
1065Leu Asp Cys Asp Ile Asp Ile Gln Lys Thr Ile Gln Met
Val Arg 1070 1075 1080Ala Gln Arg Ser
Gly Met Val Gln Thr Glu Ala Gln Tyr Lys Phe 1085
1090 1095Ile Tyr Val Ala Ile Ala Gln Phe Ile Glu Thr
Thr Lys Lys Lys 1100 1105
1110Leu5918PRTArtificial SequenceChimeric antigen receptor (CAR) 5Met Ser
Leu Pro Val Thr Ala Leu Leu Leu Pro Leu Ala Leu Leu Leu1 5
10 15His Ala Ala Arg Pro Asp Ile Gln
Met Thr Gln Thr Thr Ser Ser Leu 20 25
30Ser Ala Ser Leu Gly Asp Arg Val Thr Ile Ser Cys Arg Ala Ser
Gln 35 40 45Asp Ile Ser Lys Tyr
Leu Asn Trp Tyr Gln Gln Lys Pro Asp Gly Thr 50 55
60Val Lys Leu Leu Ile Tyr His Thr Ser Arg Leu His Ser Gly
Val Pro65 70 75 80Ser
Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Tyr Ser Leu Thr Ile
85 90 95Ser Asn Leu Glu Gln Glu Asp
Ile Ala Thr Tyr Phe Cys Gln Gln Gly 100 105
110Asn Thr Leu Pro Tyr Thr Phe Gly Gly Gly Thr Lys Leu Glu
Ile Thr 115 120 125Lys Ala Gly Gly
Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly 130
135 140Ser Gly Gly Gly Gly Ser Glu Val Lys Leu Gln Glu
Ser Gly Pro Gly145 150 155
160Leu Val Ala Pro Ser Gln Ser Leu Ser Val Thr Cys Thr Val Ser Gly
165 170 175Val Ser Leu Pro Asp
Tyr Gly Val Ser Trp Ile Arg Gln Pro Pro Arg 180
185 190Lys Gly Leu Glu Trp Leu Gly Val Ile Trp Gly Ser
Glu Thr Thr Tyr 195 200 205Tyr Asn
Ser Ala Leu Lys Ser Arg Leu Thr Ile Ile Lys Asp Asn Ser 210
215 220Lys Ser Gln Val Phe Leu Lys Met Asn Ser Leu
Gln Thr Asp Asp Thr225 230 235
240Ala Ile Tyr Tyr Cys Ala Lys His Tyr Tyr Tyr Gly Gly Ser Tyr Ala
245 250 255Met Asp Tyr Trp
Gly Gln Gly Thr Ser Val Thr Val Ser Ser Asp Pro 260
265 270Thr Thr Thr Pro Ala Pro Arg Pro Pro Thr Pro
Ala Pro Thr Ile Ala 275 280 285Ser
Gln Pro Leu Ser Leu Arg Pro Glu Ala Cys Arg Pro Ala Ala Gly 290
295 300Gly Ala Val His Thr Arg Gly Leu Asp Phe
Ala Cys Asp Ile Phe Trp305 310 315
320Val Leu Val Val Val Gly Gly Val Leu Ala Cys Tyr Ser Leu Leu
Val 325 330 335Thr Val Ala
Phe Ile Ile Phe Trp Val Arg Arg Val Lys Phe Ser Arg 340
345 350Ser Ala Asp Ala Pro Ala Tyr Gln Gln Gly
Gln Asn Gln Leu Tyr Asn 355 360
365Glu Leu Asn Leu Gly Arg Arg Glu Glu Tyr Asp Val Leu Asp Lys Arg 370
375 380Arg Gly Arg Asp Pro Glu Met Gly
Gly Lys Pro Arg Arg Lys Asn Pro385 390
395 400Gln Glu Gly Leu Tyr Asn Glu Leu Gln Lys Asp Lys
Met Ala Glu Ala 405 410
415Tyr Ser Glu Ile Gly Met Lys Gly Glu Arg Arg Arg Gly Lys Gly His
420 425 430Asp Gly Leu Tyr Gln Gly
Leu Ser Thr Ala Thr Lys Asp Thr Tyr Asp 435 440
445Ala Leu His Met Gln Ala Leu Pro Pro Arg Arg Ala Glu Gly
Arg Gly 450 455 460Ser Leu Leu Thr Cys
Gly Asp Val Glu Glu Asn Pro Gly Pro Met Ala465 470
475 480Val Pro Thr Gln Val Leu Gly Leu Leu Leu
Leu Trp Leu Thr Asp Ala 485 490
495Arg Cys Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser
500 505 510Val Gly Asp Arg Val
Thr Ile Thr Cys Arg Ala Ser Glu Asp Ile Tyr 515
520 525Phe Asn Leu Val Trp Tyr Gln Gln Lys Pro Gly Lys
Ala Pro Lys Leu 530 535 540Leu Ile Tyr
Asp Thr Asn Arg Leu Ala Asp Gly Val Pro Ser Arg Phe545
550 555 560Ser Gly Ser Gly Ser Gly Thr
Gln Tyr Thr Leu Thr Ile Ser Ser Leu 565
570 575Gln Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Gln His
Tyr Lys Asn Tyr 580 585 590Pro
Leu Thr Phe Gly Gln Gly Thr Lys Leu Glu Ile Lys Arg Ser Gly 595
600 605Gly Gly Gly Ser Gly Gly Gly Gly Ser
Gly Gly Gly Gly Ser Gly Gly 610 615
620Gly Gly Ser Arg Ser Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu625
630 635 640Val Gln Pro Gly
Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe 645
650 655Thr Leu Ser Asn Tyr Gly Met His Trp Ile
Arg Gln Ala Pro Gly Lys 660 665
670Gly Leu Glu Trp Val Ser Ser Ile Ser Leu Asn Gly Gly Ser Thr Tyr
675 680 685Tyr Arg Asp Ser Val Lys Gly
Arg Phe Thr Ile Ser Arg Asp Asn Ala 690 695
700Lys Ser Thr Leu Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp
Thr705 710 715 720Ala Val
Tyr Tyr Cys Ala Ala Gln Asp Ala Tyr Thr Gly Gly Tyr Phe
725 730 735Asp Tyr Trp Gly Gln Gly Thr
Leu Val Thr Val Ser Ser Met Asp Pro 740 745
750Ala Thr Thr Thr Lys Pro Val Leu Arg Thr Pro Ser Pro Val
His Pro 755 760 765Thr Gly Thr Ser
Gln Pro Gln Arg Pro Glu Asp Cys Arg Pro Arg Gly 770
775 780Ser Val Lys Gly Thr Gly Leu Asp Phe Ala Cys Asp
Ile Leu Ile Gly785 790 795
800Val Ser Val Val Phe Leu Phe Cys Leu Leu Leu Leu Val Leu Phe Cys
805 810 815Leu His Arg Gln Asn
Gln Ile Lys Gln Gly Pro Pro Arg Ser Lys Asp 820
825 830Glu Glu Gln Lys Pro Gln Gln Arg Pro Asp Leu Ala
Val Asp Val Leu 835 840 845Glu Arg
Thr Ala Asp Lys Ala Thr Val Asn Gly Leu Pro Glu Lys Asp 850
855 860Arg Glu Thr Asp Thr Ser Ala Leu Ala Ala Gly
Ser Ser Gln Glu Val865 870 875
880Thr Tyr Ala Gln Leu Asp His Trp Ala Leu Thr Gln Arg Thr Ala Arg
885 890 895Ala Val Ser Pro
Gln Ser Thr Lys Pro Met Ala Glu Ser Ile Thr Tyr 900
905 910Ala Ala Val Ala Arg His
91561363PRTArtificial SequenceChimeric antigen receptor (CAR) 6Met Ser
Leu Pro Val Thr Ala Leu Leu Leu Pro Leu Ala Leu Leu Leu1 5
10 15His Ala Ala Arg Pro Asp Ile Gln
Met Thr Gln Thr Thr Ser Ser Leu 20 25
30Ser Ala Ser Leu Gly Asp Arg Val Thr Ile Ser Cys Arg Ala Ser
Gln 35 40 45Asp Ile Ser Lys Tyr
Leu Asn Trp Tyr Gln Gln Lys Pro Asp Gly Thr 50 55
60Val Lys Leu Leu Ile Tyr His Thr Ser Arg Leu His Ser Gly
Val Pro65 70 75 80Ser
Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Tyr Ser Leu Thr Ile
85 90 95Ser Asn Leu Glu Gln Glu Asp
Ile Ala Thr Tyr Phe Cys Gln Gln Gly 100 105
110Asn Thr Leu Pro Tyr Thr Phe Gly Gly Gly Thr Lys Leu Glu
Ile Thr 115 120 125Lys Ala Gly Gly
Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly 130
135 140Ser Gly Gly Gly Gly Ser Glu Val Lys Leu Gln Glu
Ser Gly Pro Gly145 150 155
160Leu Val Ala Pro Ser Gln Ser Leu Ser Val Thr Cys Thr Val Ser Gly
165 170 175Val Ser Leu Pro Asp
Tyr Gly Val Ser Trp Ile Arg Gln Pro Pro Arg 180
185 190Lys Gly Leu Glu Trp Leu Gly Val Ile Trp Gly Ser
Glu Thr Thr Tyr 195 200 205Tyr Asn
Ser Ala Leu Lys Ser Arg Leu Thr Ile Ile Lys Asp Asn Ser 210
215 220Lys Ser Gln Val Phe Leu Lys Met Asn Ser Leu
Gln Thr Asp Asp Thr225 230 235
240Ala Ile Tyr Tyr Cys Ala Lys His Tyr Tyr Tyr Gly Gly Ser Tyr Ala
245 250 255Met Asp Tyr Trp
Gly Gln Gly Thr Ser Val Thr Val Ser Ser Asp Pro 260
265 270Thr Thr Thr Pro Ala Pro Arg Pro Pro Thr Pro
Ala Pro Thr Ile Ala 275 280 285Ser
Gln Pro Leu Ser Leu Arg Pro Glu Ala Cys Arg Pro Ala Ala Gly 290
295 300Gly Ala Val His Thr Arg Gly Leu Asp Phe
Ala Cys Asp Ile Phe Trp305 310 315
320Val Leu Val Val Val Gly Gly Val Leu Ala Cys Tyr Ser Leu Leu
Val 325 330 335Thr Val Ala
Phe Ile Ile Phe Trp Val Arg Arg Val Lys Phe Ser Arg 340
345 350Ser Ala Asp Ala Pro Ala Tyr Gln Gln Gly
Gln Asn Gln Leu Tyr Asn 355 360
365Glu Leu Asn Leu Gly Arg Arg Glu Glu Tyr Asp Val Leu Asp Lys Arg 370
375 380Arg Gly Arg Asp Pro Glu Met Gly
Gly Lys Pro Arg Arg Lys Asn Pro385 390
395 400Gln Glu Gly Leu Tyr Asn Glu Leu Gln Lys Asp Lys
Met Ala Glu Ala 405 410
415Tyr Ser Glu Ile Gly Met Lys Gly Glu Arg Arg Arg Gly Lys Gly His
420 425 430Asp Gly Leu Tyr Gln Gly
Leu Ser Thr Ala Thr Lys Asp Thr Tyr Asp 435 440
445Ala Leu His Met Gln Ala Leu Pro Pro Arg Arg Ala Glu Gly
Arg Gly 450 455 460Ser Leu Leu Thr Cys
Gly Asp Val Glu Glu Asn Pro Gly Pro Met Ala465 470
475 480Val Pro Thr Gln Val Leu Gly Leu Leu Leu
Leu Trp Leu Thr Asp Ala 485 490
495Arg Cys Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser
500 505 510Val Gly Asp Arg Val
Thr Ile Thr Cys Arg Ala Ser Glu Asp Ile Tyr 515
520 525Phe Asn Leu Val Trp Tyr Gln Gln Lys Pro Gly Lys
Ala Pro Lys Leu 530 535 540Leu Ile Tyr
Asp Thr Asn Arg Leu Ala Asp Gly Val Pro Ser Arg Phe545
550 555 560Ser Gly Ser Gly Ser Gly Thr
Gln Tyr Thr Leu Thr Ile Ser Ser Leu 565
570 575Gln Pro Glu Asp Phe Ala Thr Tyr Tyr Cys Gln His
Tyr Lys Asn Tyr 580 585 590Pro
Leu Thr Phe Gly Gln Gly Thr Lys Leu Glu Ile Lys Arg Ser Gly 595
600 605Gly Gly Gly Ser Gly Gly Gly Gly Ser
Gly Gly Gly Gly Ser Gly Gly 610 615
620Gly Gly Ser Arg Ser Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu625
630 635 640Val Gln Pro Gly
Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe 645
650 655Thr Leu Ser Asn Tyr Gly Met His Trp Ile
Arg Gln Ala Pro Gly Lys 660 665
670Gly Leu Glu Trp Val Ser Ser Ile Ser Leu Asn Gly Gly Ser Thr Tyr
675 680 685Tyr Arg Asp Ser Val Lys Gly
Arg Phe Thr Ile Ser Arg Asp Asn Ala 690 695
700Lys Ser Thr Leu Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp
Thr705 710 715 720Ala Val
Tyr Tyr Cys Ala Ala Gln Asp Ala Tyr Thr Gly Gly Tyr Phe
725 730 735Asp Tyr Trp Gly Gln Gly Thr
Leu Val Thr Val Ser Ser Met Asp Pro 740 745
750Ala Thr Thr Thr Lys Pro Val Leu Arg Thr Pro Ser Pro Val
His Pro 755 760 765Thr Gly Thr Ser
Gln Pro Gln Arg Pro Glu Asp Cys Arg Pro Arg Gly 770
775 780Ser Val Lys Gly Thr Gly Leu Asp Phe Ala Cys Asp
Ile Leu Ile Gly785 790 795
800Val Ser Val Val Phe Leu Phe Cys Leu Leu Leu Leu Val Leu Phe Cys
805 810 815Leu His Arg Gln Asn
Gln Ile Lys Gln Gly Pro Pro Arg Ser Lys Asp 820
825 830Glu Glu Gln Lys Pro Gln Gln Arg Pro Asp Leu Ala
Val Asp Val Leu 835 840 845Glu Arg
Thr Ala Asp Lys Ala Thr Val Asn Gly Leu Pro Glu Lys Asp 850
855 860Arg Glu Thr Asp Thr Ser Ala Leu Ala Ala Gly
Ser Ser Gln Glu Val865 870 875
880Thr Tyr Ala Gln Leu Asp His Trp Ala Leu Thr Gln Arg Thr Ala Arg
885 890 895Ala Val Ser Pro
Gln Ser Thr Lys Pro Met Ala Glu Ser Ile Thr Tyr 900
905 910Ala Ala Val Ala Arg His Arg Ala Glu Gly Arg
Gly Ser Leu Leu Thr 915 920 925Cys
Gly Asp Val Glu Glu Asn Pro Gly Pro Trp Tyr His Gly His Met 930
935 940Ser Gly Gly Gln Ala Glu Thr Leu Leu Gln
Ala Lys Gly Glu Pro Trp945 950 955
960Thr Phe Leu Val Arg Glu Ser Leu Ser Gln Pro Gly Asp Phe Val
Leu 965 970 975Ser Val Leu
Ser Asp Gln Pro Lys Ala Gly Pro Gly Ser Pro Leu Arg 980
985 990Val Thr His Ile Lys Val Met Cys Glu Gly
Gly Arg Tyr Thr Val Gly 995 1000
1005Gly Leu Glu Thr Phe Asp Ser Leu Thr Asp Leu Val Glu His Phe
1010 1015 1020Lys Lys Thr Gly Ile Glu
Glu Ala Ser Gly Ala Phe Val Tyr Leu 1025 1030
1035Arg Gln Pro Tyr Ser Gly Gly Gly Gly Ser Phe Glu Ala Tyr
Phe 1040 1045 1050Lys Lys Gln Gln Ala
Asp Ser Asn Cys Gly Phe Ala Glu Glu Tyr 1055 1060
1065Glu Asp Leu Lys Leu Val Gly Ile Ser Gln Pro Lys Tyr
Ala Ala 1070 1075 1080Glu Leu Ala Glu
Asn Arg Gly Lys Asn Arg Tyr Asn Asn Val Leu 1085
1090 1095Pro Tyr Asp Ile Ser Arg Val Lys Leu Ser Val
Gln Thr His Ser 1100 1105 1110Thr Asp
Asp Tyr Ile Asn Ala Asn Tyr Met Pro Gly Tyr His Ser 1115
1120 1125Lys Lys Asp Phe Ile Ala Thr Gln Gly Pro
Leu Pro Asn Thr Leu 1130 1135 1140Lys
Asp Phe Trp Arg Met Val Trp Glu Lys Asn Val Tyr Ala Ile 1145
1150 1155Ile Met Leu Thr Lys Cys Val Glu Gln
Gly Arg Thr Lys Cys Glu 1160 1165
1170Glu Tyr Trp Pro Ser Lys Gln Ala Gln Asp Tyr Gly Asp Ile Thr
1175 1180 1185Val Ala Met Thr Ser Glu
Ile Val Leu Pro Glu Trp Thr Ile Arg 1190 1195
1200Asp Phe Thr Val Lys Asn Ile Gln Thr Ser Glu Ser His Pro
Leu 1205 1210 1215Arg Gln Phe His Phe
Thr Ser Trp Pro Asp His Gly Val Pro Asp 1220 1225
1230Thr Thr Asp Leu Leu Ile Asn Phe Arg Tyr Leu Val Arg
Asp Tyr 1235 1240 1245Met Lys Gln Ser
Pro Pro Glu Ser Pro Ile Leu Val His Cys Ser 1250
1255 1260Ala Gly Val Gly Arg Thr Gly Thr Phe Ile Ala
Ile Asp Arg Leu 1265 1270 1275Ile Tyr
Gln Ile Glu Asn Glu Asn Thr Val Asp Val Tyr Gly Ile 1280
1285 1290Val Tyr Asp Leu Arg Met His Arg Pro Leu
Met Val Gln Thr Glu 1295 1300 1305Asp
Gln Tyr Val Phe Leu Asn Gln Cys Val Leu Asp Ile Val Arg 1310
1315 1320Ser Gln Lys Asp Ser Lys Val Asp Leu
Ile Tyr Gln Asn Thr Thr 1325 1330
1335Ala Met Thr Ile Tyr Glu Asn Leu Ala Pro Val Thr Thr Phe Gly
1340 1345 1350Lys Thr Asn Gly Tyr Ile
Ala Ser Gly Ser 1355 1360721PRTArtificial
SequenceSignal peptide 7Met Gly Thr Ser Leu Leu Cys Trp Met Ala Leu Cys
Leu Leu Gly Ala1 5 10
15Asp His Ala Asp Gly 20821PRTArtificial SequenceSignal
peptide 8Met Ser Leu Pro Val Thr Ala Leu Leu Leu Pro Leu Ala Leu Leu Leu1
5 10 15His Ala Ala Arg
Pro 20920PRTArtificial SequenceSignal peptide 9Met Ala Val Pro
Thr Gln Val Leu Gly Leu Leu Leu Leu Trp Leu Thr1 5
10 15Asp Ala Arg Cys
2010234PRTArtificial SequenceSpacer (hinge-CH2CH3 of human IgG1) 10Ala
Glu Pro Lys Ser Pro Asp Lys Thr His Thr Cys Pro Pro Cys Pro1
5 10 15Ala Pro Pro Val Ala Gly Pro
Ser Val Phe Leu Phe Pro Pro Lys Pro 20 25
30Lys Asp Thr Leu Met Ile Ala Arg Thr Pro Glu Val Thr Cys
Val Val 35 40 45Val Asp Val Ser
His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val 50 55
60Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg
Glu Glu Gln65 70 75
80Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln
85 90 95Asp Trp Leu Asn Gly Lys
Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala 100
105 110Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala
Lys Gly Gln Pro 115 120 125Arg Glu
Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr 130
135 140Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys
Gly Phe Tyr Pro Ser145 150 155
160Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr
165 170 175Lys Thr Thr Pro
Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr 180
185 190Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln
Gln Gly Asn Val Phe 195 200 205Ser
Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys 210
215 220Ser Leu Ser Leu Ser Pro Gly Lys Lys
Asp225 2301146PRTArtificial SequenceSpacer (human CD8
stalk) 11Thr Thr Thr Pro Ala Pro Arg Pro Pro Thr Pro Ala Pro Thr Ile Ala1
5 10 15Ser Gln Pro Leu
Ser Leu Arg Pro Glu Ala Cys Arg Pro Ala Ala Gly 20
25 30Gly Ala Val His Thr Arg Gly Leu Asp Phe Ala
Cys Asp Ile 35 40
451220PRTArtificial SequenceSpacer (human IgG1 hinge) 12Ala Glu Pro Lys
Ser Pro Asp Lys Thr His Thr Cys Pro Pro Cys Pro1 5
10 15Lys Asp Pro Lys
2013185PRTArtificial SequenceSpacer (CD2 ectodomain) 13Lys Glu Ile Thr
Asn Ala Leu Glu Thr Trp Gly Ala Leu Gly Gln Asp1 5
10 15Ile Asn Leu Asp Ile Pro Ser Phe Gln Met
Ser Asp Asp Ile Asp Asp 20 25
30Ile Lys Trp Glu Lys Thr Ser Asp Lys Lys Lys Ile Ala Gln Phe Arg
35 40 45Lys Glu Lys Glu Thr Phe Lys Glu
Lys Asp Thr Tyr Lys Leu Phe Lys 50 55
60Asn Gly Thr Leu Lys Ile Lys His Leu Lys Thr Asp Asp Gln Asp Ile65
70 75 80Tyr Lys Val Ser Ile
Tyr Asp Thr Lys Gly Lys Asn Val Leu Glu Lys 85
90 95Ile Phe Asp Leu Lys Ile Gln Glu Arg Val Ser
Lys Pro Lys Ile Ser 100 105
110Trp Thr Cys Ile Asn Thr Thr Leu Thr Cys Glu Val Met Asn Gly Thr
115 120 125Asp Pro Glu Leu Asn Leu Tyr
Gln Asp Gly Lys His Leu Lys Leu Ser 130 135
140Gln Arg Val Ile Thr His Lys Trp Thr Thr Ser Leu Ser Ala Lys
Phe145 150 155 160Lys Cys
Thr Ala Gly Asn Lys Val Ser Lys Glu Ser Ser Val Glu Pro
165 170 175Val Ser Cys Pro Glu Lys Gly
Leu Asp 180 18514259PRTArtificial
SequenceSpacer (CD34 ectodomain) 14Ser Leu Asp Asn Asn Gly Thr Ala Thr
Pro Glu Leu Pro Thr Gln Gly1 5 10
15Thr Phe Ser Asn Val Ser Thr Asn Val Ser Tyr Gln Glu Thr Thr
Thr 20 25 30Pro Ser Thr Leu
Gly Ser Thr Ser Leu His Pro Val Ser Gln His Gly 35
40 45Asn Glu Ala Thr Thr Asn Ile Thr Glu Thr Thr Val
Lys Phe Thr Ser 50 55 60Thr Ser Val
Ile Thr Ser Val Tyr Gly Asn Thr Asn Ser Ser Val Gln65 70
75 80Ser Gln Thr Ser Val Ile Ser Thr
Val Phe Thr Thr Pro Ala Asn Val 85 90
95Ser Thr Pro Glu Thr Thr Leu Lys Pro Ser Leu Ser Pro Gly
Asn Val 100 105 110Ser Asp Leu
Ser Thr Thr Ser Thr Ser Leu Ala Thr Ser Pro Thr Lys 115
120 125Pro Tyr Thr Ser Ser Ser Pro Ile Leu Ser Asp
Ile Lys Ala Glu Ile 130 135 140Lys Cys
Ser Gly Ile Arg Glu Val Lys Leu Thr Gln Gly Ile Cys Leu145
150 155 160Glu Gln Asn Lys Thr Ser Ser
Cys Ala Glu Phe Lys Lys Asp Arg Gly 165
170 175Glu Gly Leu Ala Arg Val Leu Cys Gly Glu Glu Gln
Ala Asp Ala Asp 180 185 190Ala
Gly Ala Gln Val Cys Ser Leu Leu Leu Ala Gln Ser Glu Val Arg 195
200 205Pro Gln Cys Leu Leu Leu Val Leu Ala
Asn Arg Thr Glu Ile Ser Ser 210 215
220Lys Leu Gln Leu Met Lys Lys His Gln Ser Asp Leu Lys Lys Leu Gly225
230 235 240Ile Leu Asp Phe
Thr Glu Gln Asp Val Ala Ser His Gln Ser Tyr Ser 245
250 255Gln Lys Thr15140PRTArtificial
SequenceCD28 transmembrane domain and CD3 Z endodomains 15Phe Trp Val Leu
Val Val Val Gly Gly Val Leu Ala Cys Tyr Ser Leu1 5
10 15Leu Val Thr Val Ala Phe Ile Ile Phe Trp
Val Arg Arg Val Lys Phe 20 25
30Ser Arg Ser Ala Asp Ala Pro Ala Tyr Gln Gln Gly Gln Asn Gln Leu
35 40 45Tyr Asn Glu Leu Asn Leu Gly Arg
Arg Glu Glu Tyr Asp Val Leu Asp 50 55
60Lys Arg Arg Gly Arg Asp Pro Glu Met Gly Gly Lys Pro Arg Arg Lys65
70 75 80Asn Pro Gln Glu Gly
Leu Tyr Asn Glu Leu Gln Lys Asp Lys Met Ala 85
90 95Glu Ala Tyr Ser Glu Ile Gly Met Lys Gly Glu
Arg Arg Arg Gly Lys 100 105
110Gly His Asp Gly Leu Tyr Gln Gly Leu Ser Thr Ala Thr Lys Asp Thr
115 120 125Tyr Asp Ala Leu His Met Gln
Ala Leu Pro Pro Arg 130 135
14016180PRTArtificial SequenceCD28 transmembrane domain and CD28 and CD3
Zeta endodomains 16Phe Trp Val Leu Val Val Val Gly Gly Val Leu Ala
Cys Tyr Ser Leu1 5 10
15Leu Val Thr Val Ala Phe Ile Ile Phe Trp Val Arg Ser Lys Arg Ser
20 25 30Arg Leu Leu His Ser Asp Tyr
Met Asn Met Thr Pro Arg Arg Pro Gly 35 40
45Pro Thr Arg Lys His Tyr Gln Pro Tyr Ala Pro Pro Arg Asp Phe
Ala 50 55 60Ala Tyr Arg Ser Arg Val
Lys Phe Ser Arg Ser Ala Asp Ala Pro Ala65 70
75 80Tyr Gln Gln Gly Gln Asn Gln Leu Tyr Asn Glu
Leu Asn Leu Gly Arg 85 90
95Arg Glu Glu Tyr Asp Val Leu Asp Lys Arg Arg Gly Arg Asp Pro Glu
100 105 110Met Gly Gly Lys Pro Arg
Arg Lys Asn Pro Gln Glu Gly Leu Tyr Asn 115 120
125Glu Leu Gln Lys Asp Lys Met Ala Glu Ala Tyr Ser Glu Ile
Gly Met 130 135 140Lys Gly Glu Arg Arg
Arg Gly Lys Gly His Asp Gly Leu Tyr Gln Gly145 150
155 160Leu Ser Thr Ala Thr Lys Asp Thr Tyr Asp
Ala Leu His Met Gln Ala 165 170
175Leu Pro Pro Arg 18017216PRTArtificial SequenceCD28
transmembrane domain and CD28, OX40 and CD3 Zeta endodomains 17Phe
Trp Val Leu Val Val Val Gly Gly Val Leu Ala Cys Tyr Ser Leu1
5 10 15Leu Val Thr Val Ala Phe Ile
Ile Phe Trp Val Arg Ser Lys Arg Ser 20 25
30Arg Leu Leu His Ser Asp Tyr Met Asn Met Thr Pro Arg Arg
Pro Gly 35 40 45Pro Thr Arg Lys
His Tyr Gln Pro Tyr Ala Pro Pro Arg Asp Phe Ala 50 55
60Ala Tyr Arg Ser Arg Asp Gln Arg Leu Pro Pro Asp Ala
His Lys Pro65 70 75
80Pro Gly Gly Gly Ser Phe Arg Thr Pro Ile Gln Glu Glu Gln Ala Asp
85 90 95Ala His Ser Thr Leu Ala
Lys Ile Arg Val Lys Phe Ser Arg Ser Ala 100
105 110Asp Ala Pro Ala Tyr Gln Gln Gly Gln Asn Gln Leu
Tyr Asn Glu Leu 115 120 125Asn Leu
Gly Arg Arg Glu Glu Tyr Asp Val Leu Asp Lys Arg Arg Gly 130
135 140Arg Asp Pro Glu Met Gly Gly Lys Pro Arg Arg
Lys Asn Pro Gln Glu145 150 155
160Gly Leu Tyr Asn Glu Leu Gln Lys Asp Lys Met Ala Glu Ala Tyr Ser
165 170 175Glu Ile Gly Met
Lys Gly Glu Arg Arg Arg Gly Lys Gly His Asp Gly 180
185 190Leu Tyr Gln Gly Leu Ser Thr Ala Thr Lys Asp
Thr Tyr Asp Ala Leu 195 200 205His
Met Gln Ala Leu Pro Pro Arg 210 21518729PRTArtificial
SequenceCD45 transmembrane and endodomain 18Ala Leu Ile Ala Phe Leu Ala
Phe Leu Ile Ile Val Thr Ser Ile Ala1 5 10
15Leu Leu Val Val Leu Tyr Lys Ile Tyr Asp Leu His Lys
Lys Arg Ser 20 25 30Cys Asn
Leu Asp Glu Gln Gln Glu Leu Val Glu Arg Asp Asp Glu Lys 35
40 45Gln Leu Met Asn Val Glu Pro Ile His Ala
Asp Ile Leu Leu Glu Thr 50 55 60Tyr
Lys Arg Lys Ile Ala Asp Glu Gly Arg Leu Phe Leu Ala Glu Phe65
70 75 80Gln Ser Ile Pro Arg Val
Phe Ser Lys Phe Pro Ile Lys Glu Ala Arg 85
90 95Lys Pro Phe Asn Gln Asn Lys Asn Arg Tyr Val Asp
Ile Leu Pro Tyr 100 105 110Asp
Tyr Asn Arg Val Glu Leu Ser Glu Ile Asn Gly Asp Ala Gly Ser 115
120 125Asn Tyr Ile Asn Ala Ser Tyr Ile Asp
Gly Phe Lys Glu Pro Arg Lys 130 135
140Tyr Ile Ala Ala Gln Gly Pro Arg Asp Glu Thr Val Asp Asp Phe Trp145
150 155 160Arg Met Ile Trp
Glu Gln Lys Ala Thr Val Ile Val Met Val Thr Arg 165
170 175Cys Glu Glu Gly Asn Arg Asn Lys Cys Ala
Glu Tyr Trp Pro Ser Met 180 185
190Glu Glu Gly Thr Arg Ala Phe Gly Asp Val Val Val Lys Ile Asn Gln
195 200 205His Lys Arg Cys Pro Asp Tyr
Ile Ile Gln Lys Leu Asn Ile Val Asn 210 215
220Lys Lys Glu Lys Ala Thr Gly Arg Glu Val Thr His Ile Gln Phe
Thr225 230 235 240Ser Trp
Pro Asp His Gly Val Pro Glu Asp Pro His Leu Leu Leu Lys
245 250 255Leu Arg Arg Arg Val Asn Ala
Phe Ser Asn Phe Phe Ser Gly Pro Ile 260 265
270Val Val His Cys Ser Ala Gly Val Gly Arg Thr Gly Thr Tyr
Ile Gly 275 280 285Ile Asp Ala Met
Leu Glu Gly Leu Glu Ala Glu Asn Lys Val Asp Val 290
295 300Tyr Gly Tyr Val Val Lys Leu Arg Arg Gln Arg Cys
Leu Met Val Gln305 310 315
320Val Glu Ala Gln Tyr Ile Leu Ile His Gln Ala Leu Val Glu Tyr Asn
325 330 335Gln Phe Gly Glu Thr
Glu Val Asn Leu Ser Glu Leu His Pro Tyr Leu 340
345 350His Asn Met Lys Lys Arg Asp Pro Pro Ser Glu Pro
Ser Pro Leu Glu 355 360 365Ala Glu
Phe Gln Arg Leu Pro Ser Tyr Arg Ser Trp Arg Thr Gln His 370
375 380Ile Gly Asn Gln Glu Glu Asn Lys Ser Lys Asn
Arg Asn Ser Asn Val385 390 395
400Ile Pro Tyr Asp Tyr Asn Arg Val Pro Leu Lys His Glu Leu Glu Met
405 410 415Ser Lys Glu Ser
Glu His Asp Ser Asp Glu Ser Ser Asp Asp Asp Ser 420
425 430Asp Ser Glu Glu Pro Ser Lys Tyr Ile Asn Ala
Ser Phe Ile Met Ser 435 440 445Tyr
Trp Lys Pro Glu Val Met Ile Ala Ala Gln Gly Pro Leu Lys Glu 450
455 460Thr Ile Gly Asp Phe Trp Gln Met Ile Phe
Gln Arg Lys Val Lys Val465 470 475
480Ile Val Met Leu Thr Glu Leu Lys His Gly Asp Gln Glu Ile Cys
Ala 485 490 495Gln Tyr Trp
Gly Glu Gly Lys Gln Thr Tyr Gly Asp Ile Glu Val Asp 500
505 510Leu Lys Asp Thr Asp Lys Ser Ser Thr Tyr
Thr Leu Arg Val Phe Glu 515 520
525Leu Arg His Ser Lys Arg Lys Asp Ser Arg Thr Val Tyr Gln Tyr Gln 530
535 540Tyr Thr Asn Trp Ser Val Glu Gln
Leu Pro Ala Glu Pro Lys Glu Leu545 550
555 560Ile Ser Met Ile Gln Val Val Lys Gln Lys Leu Pro
Gln Lys Asn Ser 565 570
575Ser Glu Gly Asn Lys His His Lys Ser Thr Pro Leu Leu Ile His Cys
580 585 590Arg Asp Gly Ser Gln Gln
Thr Gly Ile Phe Cys Ala Leu Leu Asn Leu 595 600
605Leu Glu Ser Ala Glu Thr Glu Glu Val Val Asp Ile Phe Gln
Val Val 610 615 620Lys Ala Leu Arg Lys
Ala Arg Pro Gly Met Val Ser Thr Phe Glu Gln625 630
635 640Tyr Gln Phe Leu Tyr Asp Val Ile Ala Ser
Thr Tyr Pro Ala Gln Asn 645 650
655Gly Gln Val Lys Lys Asn Asn His Gln Glu Asp Lys Ile Glu Phe Asp
660 665 670Asn Glu Val Asp Lys
Val Lys Gln Asp Ala Asn Cys Val Asn Pro Leu 675
680 685Gly Ala Pro Glu Lys Leu Pro Glu Ala Lys Glu Gln
Ala Glu Gly Ser 690 695 700Glu Pro Thr
Ser Gly Thr Glu Gly Pro Glu His Ser Val Asn Gly Pro705
710 715 720Ala Ser Pro Ala Leu Asn Gln
Gly Ser 72519362PRTArtificial SequenceCD148 transmembrane
and endodomain 19Ala Val Phe Gly Cys Ile Phe Gly Ala Leu Val Ile Val Thr
Val Gly1 5 10 15Gly Phe
Ile Phe Trp Arg Lys Lys Arg Lys Asp Ala Lys Asn Asn Glu 20
25 30Val Ser Phe Ser Gln Ile Lys Pro Lys
Lys Ser Lys Leu Ile Arg Val 35 40
45Glu Asn Phe Glu Ala Tyr Phe Lys Lys Gln Gln Ala Asp Ser Asn Cys 50
55 60Gly Phe Ala Glu Glu Tyr Glu Asp Leu
Lys Leu Val Gly Ile Ser Gln65 70 75
80Pro Lys Tyr Ala Ala Glu Leu Ala Glu Asn Arg Gly Lys Asn
Arg Tyr 85 90 95Asn Asn
Val Leu Pro Tyr Asp Ile Ser Arg Val Lys Leu Ser Val Gln 100
105 110Thr His Ser Thr Asp Asp Tyr Ile Asn
Ala Asn Tyr Met Pro Gly Tyr 115 120
125His Ser Lys Lys Asp Phe Ile Ala Thr Gln Gly Pro Leu Pro Asn Thr
130 135 140Leu Lys Asp Phe Trp Arg Met
Val Trp Glu Lys Asn Val Tyr Ala Ile145 150
155 160Ile Met Leu Thr Lys Cys Val Glu Gln Gly Arg Thr
Lys Cys Glu Glu 165 170
175Tyr Trp Pro Ser Lys Gln Ala Gln Asp Tyr Gly Asp Ile Thr Val Ala
180 185 190Met Thr Ser Glu Ile Val
Leu Pro Glu Trp Thr Ile Arg Asp Phe Thr 195 200
205Val Lys Asn Ile Gln Thr Ser Glu Ser His Pro Leu Arg Gln
Phe His 210 215 220Phe Thr Ser Trp Pro
Asp His Gly Val Pro Asp Thr Thr Asp Leu Leu225 230
235 240Ile Asn Phe Arg Tyr Leu Val Arg Asp Tyr
Met Lys Gln Ser Pro Pro 245 250
255Glu Ser Pro Ile Leu Val His Cys Ser Ala Gly Val Gly Arg Thr Gly
260 265 270Thr Phe Ile Ala Ile
Asp Arg Leu Ile Tyr Gln Ile Glu Asn Glu Asn 275
280 285Thr Val Asp Val Tyr Gly Ile Val Tyr Asp Leu Arg
Met His Arg Pro 290 295 300Leu Met Val
Gln Thr Glu Asp Gln Tyr Val Phe Leu Asn Gln Cys Val305
310 315 320Leu Asp Ile Val Arg Ser Gln
Lys Asp Ser Lys Val Asp Leu Ile Tyr 325
330 335Gln Asn Thr Thr Ala Met Thr Ile Tyr Glu Asn Leu
Ala Pro Val Thr 340 345 350Thr
Phe Gly Lys Thr Asn Gly Tyr Ile Ala 355
36020595PRTArtificial Sequencesequence of PTPN6 20Met Val Arg Trp Phe His
Arg Asp Leu Ser Gly Leu Asp Ala Glu Thr1 5
10 15Leu Leu Lys Gly Arg Gly Val His Gly Ser Phe Leu
Ala Arg Pro Ser 20 25 30Arg
Lys Asn Gln Gly Asp Phe Ser Leu Ser Val Arg Val Gly Asp Gln 35
40 45Val Thr His Ile Arg Ile Gln Asn Ser
Gly Asp Phe Tyr Asp Leu Tyr 50 55
60Gly Gly Glu Lys Phe Ala Thr Leu Thr Glu Leu Val Glu Tyr Tyr Thr65
70 75 80Gln Gln Gln Gly Val
Leu Gln Asp Arg Asp Gly Thr Ile Ile His Leu 85
90 95Lys Tyr Pro Leu Asn Cys Ser Asp Pro Thr Ser
Glu Arg Trp Tyr His 100 105
110Gly His Met Ser Gly Gly Gln Ala Glu Thr Leu Leu Gln Ala Lys Gly
115 120 125Glu Pro Trp Thr Phe Leu Val
Arg Glu Ser Leu Ser Gln Pro Gly Asp 130 135
140Phe Val Leu Ser Val Leu Ser Asp Gln Pro Lys Ala Gly Pro Gly
Ser145 150 155 160Pro Leu
Arg Val Thr His Ile Lys Val Met Cys Glu Gly Gly Arg Tyr
165 170 175Thr Val Gly Gly Leu Glu Thr
Phe Asp Ser Leu Thr Asp Leu Val Glu 180 185
190His Phe Lys Lys Thr Gly Ile Glu Glu Ala Ser Gly Ala Phe
Val Tyr 195 200 205Leu Arg Gln Pro
Tyr Tyr Ala Thr Arg Val Asn Ala Ala Asp Ile Glu 210
215 220Asn Arg Val Leu Glu Leu Asn Lys Lys Gln Glu Ser
Glu Asp Thr Ala225 230 235
240Lys Ala Gly Phe Trp Glu Glu Phe Glu Ser Leu Gln Lys Gln Glu Val
245 250 255Lys Asn Leu His Gln
Arg Leu Glu Gly Gln Arg Pro Glu Asn Lys Gly 260
265 270Lys Asn Arg Tyr Lys Asn Ile Leu Pro Phe Asp His
Ser Arg Val Ile 275 280 285Leu Gln
Gly Arg Asp Ser Asn Ile Pro Gly Ser Asp Tyr Ile Asn Ala 290
295 300Asn Tyr Ile Lys Asn Gln Leu Leu Gly Pro Asp
Glu Asn Ala Lys Thr305 310 315
320Tyr Ile Ala Ser Gln Gly Cys Leu Glu Ala Thr Val Asn Asp Phe Trp
325 330 335Gln Met Ala Trp
Gln Glu Asn Ser Arg Val Ile Val Met Thr Thr Arg 340
345 350Glu Val Glu Lys Gly Arg Asn Lys Cys Val Pro
Tyr Trp Pro Glu Val 355 360 365Gly
Met Gln Arg Ala Tyr Gly Pro Tyr Ser Val Thr Asn Cys Gly Glu 370
375 380His Asp Thr Thr Glu Tyr Lys Leu Arg Thr
Leu Gln Val Ser Pro Leu385 390 395
400Asp Asn Gly Asp Leu Ile Arg Glu Ile Trp His Tyr Gln Tyr Leu
Ser 405 410 415Trp Pro Asp
His Gly Val Pro Ser Glu Pro Gly Gly Val Leu Ser Phe 420
425 430Leu Asp Gln Ile Asn Gln Arg Gln Glu Ser
Leu Pro His Ala Gly Pro 435 440
445Ile Ile Val His Cys Ser Ala Gly Ile Gly Arg Thr Gly Thr Ile Ile 450
455 460Val Ile Asp Met Leu Met Glu Asn
Ile Ser Thr Lys Gly Leu Asp Cys465 470
475 480Asp Ile Asp Ile Gln Lys Thr Ile Gln Met Val Arg
Ala Gln Arg Ser 485 490
495Gly Met Val Gln Thr Glu Ala Gln Tyr Lys Phe Ile Tyr Val Ala Ile
500 505 510Ala Gln Phe Ile Glu Thr
Thr Lys Lys Lys Leu Glu Val Leu Gln Ser 515 520
525Gln Lys Gly Gln Glu Ser Glu Tyr Gly Asn Ile Thr Tyr Pro
Pro Ala 530 535 540Met Lys Asn Ala His
Ala Lys Ala Ser Arg Thr Ser Ser Lys His Lys545 550
555 560Glu Asp Val Tyr Glu Asn Leu His Thr Lys
Asn Lys Arg Glu Glu Lys 565 570
575Val Lys Lys Gln Arg Ser Ala Asp Lys Glu Lys Ser Lys Gly Ser Leu
580 585 590Lys Arg Lys
59521272PRTArtificial Sequencesequence of phosphatase domain of PTPN6
21Phe Trp Glu Glu Phe Glu Ser Leu Gln Lys Gln Glu Val Lys Asn Leu1
5 10 15His Gln Arg Leu Glu Gly
Gln Arg Pro Glu Asn Lys Gly Lys Asn Arg 20 25
30Tyr Lys Asn Ile Leu Pro Phe Asp His Ser Arg Val Ile
Leu Gln Gly 35 40 45Arg Asp Ser
Asn Ile Pro Gly Ser Asp Tyr Ile Asn Ala Asn Tyr Ile 50
55 60Lys Asn Gln Leu Leu Gly Pro Asp Glu Asn Ala Lys
Thr Tyr Ile Ala65 70 75
80Ser Gln Gly Cys Leu Glu Ala Thr Val Asn Asp Phe Trp Gln Met Ala
85 90 95Trp Gln Glu Asn Ser Arg
Val Ile Val Met Thr Thr Arg Glu Val Glu 100
105 110Lys Gly Arg Asn Lys Cys Val Pro Tyr Trp Pro Glu
Val Gly Met Gln 115 120 125Arg Ala
Tyr Gly Pro Tyr Ser Val Thr Asn Cys Gly Glu His Asp Thr 130
135 140Thr Glu Tyr Lys Leu Arg Thr Leu Gln Val Ser
Pro Leu Asp Asn Gly145 150 155
160Asp Leu Ile Arg Glu Ile Trp His Tyr Gln Tyr Leu Ser Trp Pro Asp
165 170 175His Gly Val Pro
Ser Glu Pro Gly Gly Val Leu Ser Phe Leu Asp Gln 180
185 190Ile Asn Gln Arg Gln Glu Ser Leu Pro His Ala
Gly Pro Ile Ile Val 195 200 205His
Cys Ser Ala Gly Ile Gly Arg Thr Gly Thr Ile Ile Val Ile Asp 210
215 220Met Leu Met Glu Asn Ile Ser Thr Lys Gly
Leu Asp Cys Asp Ile Asp225 230 235
240Ile Gln Lys Thr Ile Gln Met Val Arg Ala Gln Arg Ser Gly Met
Val 245 250 255Gln Thr Glu
Ala Gln Tyr Lys Phe Ile Tyr Val Ala Ile Ala Gln Phe 260
265 2702297PRTArtificial SequencePDCD1
endodomain 22Cys Ser Arg Ala Ala Arg Gly Thr Ile Gly Ala Arg Arg Thr Gly
Gln1 5 10 15Pro Leu Lys
Glu Asp Pro Ser Ala Val Pro Val Phe Ser Val Asp Tyr 20
25 30Gly Glu Leu Asp Phe Gln Trp Arg Glu Lys
Thr Pro Glu Pro Pro Val 35 40
45Pro Cys Val Pro Glu Gln Thr Glu Tyr Ala Thr Ile Val Phe Pro Ser 50
55 60Gly Met Gly Thr Ser Ser Pro Ala Arg
Arg Gly Ser Ala Asp Gly Pro65 70 75
80Arg Ser Ala Gln Pro Leu Arg Pro Glu Asp Gly His Cys Ser
Trp Pro 85 90
95Leu23141PRTArtificial SequenceBTLA4 endodomain 23Lys Leu Gln Arg Arg
Trp Lys Arg Thr Gln Ser Gln Gln Gly Leu Gln1 5
10 15Glu Asn Ser Ser Gly Gln Ser Phe Phe Val Arg
Asn Lys Lys Val Arg 20 25
30Arg Ala Pro Leu Ser Glu Gly Pro His Ser Leu Gly Cys Tyr Asn Pro
35 40 45Met Met Glu Asp Gly Ile Ser Tyr
Thr Thr Leu Arg Phe Pro Glu Met 50 55
60Asn Ile Pro Arg Thr Gly Asp Ala Glu Ser Ser Glu Met Gln Arg Pro65
70 75 80Pro Pro Asp Cys Asp
Asp Thr Val Thr Tyr Ser Ala Leu His Lys Arg 85
90 95Gln Val Gly Asp Tyr Glu Asn Val Ile Pro Asp
Phe Pro Glu Asp Glu 100 105
110Gly Ile His Tyr Ser Glu Leu Ile Gln Phe Gly Val Gly Glu Arg Pro
115 120 125Gln Ala Gln Glu Asn Val Asp
Tyr Val Ile Leu Lys His 130 135
14024168PRTArtificial SequenceLILRB1 endodomain 24Leu Arg His Arg Arg Gln
Gly Lys His Trp Thr Ser Thr Gln Arg Lys1 5
10 15Ala Asp Phe Gln His Pro Ala Gly Ala Val Gly Pro
Glu Pro Thr Asp 20 25 30Arg
Gly Leu Gln Trp Arg Ser Ser Pro Ala Ala Asp Ala Gln Glu Glu 35
40 45Asn Leu Tyr Ala Ala Val Lys His Thr
Gln Pro Glu Asp Gly Val Glu 50 55
60Met Asp Thr Arg Ser Pro His Asp Glu Asp Pro Gln Ala Val Thr Tyr65
70 75 80Ala Glu Val Lys His
Ser Arg Pro Arg Arg Glu Met Ala Ser Pro Pro 85
90 95Ser Pro Leu Ser Gly Glu Phe Leu Asp Thr Lys
Asp Arg Gln Ala Glu 100 105
110Glu Asp Arg Gln Met Asp Thr Glu Ala Ala Ala Ser Glu Ala Pro Gln
115 120 125Asp Val Thr Tyr Ala Gln Leu
His Ser Leu Thr Leu Arg Arg Glu Ala 130 135
140Thr Glu Pro Pro Pro Ser Gln Glu Gly Pro Ser Pro Ala Val Pro
Ser145 150 155 160Ile Tyr
Ala Thr Leu Ala Ile His 16525101PRTArtificial
SequenceLAIR1 endodomain 25His Arg Gln Asn Gln Ile Lys Gln Gly Pro Pro
Arg Ser Lys Asp Glu1 5 10
15Glu Gln Lys Pro Gln Gln Arg Pro Asp Leu Ala Val Asp Val Leu Glu
20 25 30Arg Thr Ala Asp Lys Ala Thr
Val Asn Gly Leu Pro Glu Lys Asp Arg 35 40
45Glu Thr Asp Thr Ser Ala Leu Ala Ala Gly Ser Ser Gln Glu Val
Thr 50 55 60Tyr Ala Gln Leu Asp His
Trp Ala Leu Thr Gln Arg Thr Ala Arg Ala65 70
75 80Val Ser Pro Gln Ser Thr Lys Pro Met Ala Glu
Ser Ile Thr Tyr Ala 85 90
95Ala Val Ala Arg His 1002662PRTArtificial SequenceCTLA4
endodomain 26Phe Leu Leu Trp Ile Leu Ala Ala Val Ser Ser Gly Leu Phe Phe
Tyr1 5 10 15Ser Phe Leu
Leu Thr Ala Val Ser Leu Ser Lys Met Leu Lys Lys Arg 20
25 30Ser Pro Leu Thr Thr Gly Val Tyr Val Lys
Met Pro Pro Thr Glu Pro 35 40
45Glu Cys Glu Lys Gln Phe Gln Pro Tyr Phe Ile Pro Ile Asn 50
55 6027111PRTArtificial SequenceKIR2DL1
endodomain 27Gly Asn Ser Arg His Leu His Val Leu Ile Gly Thr Ser Val Val
Ile1 5 10 15Ile Pro Phe
Ala Ile Leu Leu Phe Phe Leu Leu His Arg Trp Cys Ala 20
25 30Asn Lys Lys Asn Ala Val Val Met Asp Gln
Glu Pro Ala Gly Asn Arg 35 40
45Thr Val Asn Arg Glu Asp Ser Asp Glu Gln Asp Pro Gln Glu Val Thr 50
55 60Tyr Thr Gln Leu Asn His Cys Val Phe
Thr Gln Arg Lys Ile Thr Arg65 70 75
80Pro Ser Gln Arg Pro Lys Thr Pro Pro Thr Asp Ile Ile Val
Tyr Thr 85 90 95Glu Leu
Pro Asn Ala Glu Ser Arg Ser Lys Val Val Ser Cys Pro 100
105 11028143PRTArtificial SequenceKIR2DL4
endodomain 28Gly Ile Ala Arg His Leu His Ala Val Ile Arg Tyr Ser Val Ala
Ile1 5 10 15Ile Leu Phe
Thr Ile Leu Pro Phe Phe Leu Leu His Arg Trp Cys Ser 20
25 30Lys Lys Lys Glu Asn Ala Ala Val Met Asn
Gln Glu Pro Ala Gly His 35 40
45Arg Thr Val Asn Arg Glu Asp Ser Asp Glu Gln Asp Pro Gln Glu Val 50
55 60Thr Tyr Ala Gln Leu Asp His Cys Ile
Phe Thr Gln Arg Lys Ile Thr65 70 75
80Gly Pro Ser Gln Arg Ser Lys Arg Pro Ser Thr Asp Thr Ser
Val Cys 85 90 95Ile Glu
Leu Pro Asn Ala Glu Pro Arg Ala Leu Ser Pro Ala His Glu 100
105 110His His Ser Gln Ala Leu Met Gly Ser
Ser Arg Glu Thr Thr Ala Leu 115 120
125Ser Gln Thr Gln Leu Ala Ser Ser Asn Val Pro Ala Ala Gly Ile 130
135 14029143PRTArtificial SequenceKIR2DL5
endodomain 29Thr Gly Ile Arg Arg His Leu His Ile Leu Ile Gly Thr Ser Val
Ala1 5 10 15Ile Ile Leu
Phe Ile Ile Leu Phe Phe Phe Leu Leu His Cys Cys Cys 20
25 30Ser Asn Lys Lys Asn Ala Ala Val Met Asp
Gln Glu Pro Ala Gly Asp 35 40
45Arg Thr Val Asn Arg Glu Asp Ser Asp Asp Gln Asp Pro Gln Glu Val 50
55 60Thr Tyr Ala Gln Leu Asp His Cys Val
Phe Thr Gln Thr Lys Ile Thr65 70 75
80Ser Pro Ser Gln Arg Pro Lys Thr Pro Pro Thr Asp Thr Thr
Met Tyr 85 90 95Met Glu
Leu Pro Asn Ala Lys Pro Arg Ser Leu Ser Pro Ala His Lys 100
105 110His His Ser Gln Ala Leu Arg Gly Ser
Ser Arg Glu Thr Thr Ala Leu 115 120
125Ser Gln Asn Arg Val Ala Ser Ser His Val Pro Ala Ala Gly Ile 130
135 14030111PRTArtificial SequenceKIR3DL1
endodomain 30Lys Asp Pro Arg His Leu His Ile Leu Ile Gly Thr Ser Val Val
Ile1 5 10 15Ile Leu Phe
Ile Leu Leu Leu Phe Phe Leu Leu His Leu Trp Cys Ser 20
25 30Asn Lys Lys Asn Ala Ala Val Met Asp Gln
Glu Pro Ala Gly Asn Arg 35 40
45Thr Ala Asn Ser Glu Asp Ser Asp Glu Gln Asp Pro Glu Glu Val Thr 50
55 60Tyr Ala Gln Leu Asp His Cys Val Phe
Thr Gln Arg Lys Ile Thr Arg65 70 75
80Pro Ser Gln Arg Pro Lys Thr Pro Pro Thr Asp Thr Ile Leu
Tyr Thr 85 90 95Glu Leu
Pro Asn Ala Lys Pro Arg Ser Lys Val Val Ser Cys Pro 100
105 1103197PRTArtificial SequenceKIR3DL3
endodomain 31Lys Asp Pro Gly Asn Ser Arg His Leu His Val Leu Ile Gly Thr
Ser1 5 10 15Val Val Ile
Ile Pro Phe Ala Ile Leu Leu Phe Phe Leu Leu His Arg 20
25 30Trp Cys Ala Asn Lys Lys Asn Ala Val Val
Met Asp Gln Glu Pro Ala 35 40
45Gly Asn Arg Thr Val Asn Arg Glu Asp Ser Asp Glu Gln Asp Pro Gln 50
55 60Glu Val Thr Tyr Ala Gln Leu Asn His
Cys Val Phe Thr Gln Arg Lys65 70 75
80Ile Thr Arg Pro Ser Gln Arg Pro Lys Thr Pro Pro Thr Asp
Thr Ser 85 90
95Val32807PRTArtificial SequencePTPN6-CD45 fusion protein 32Trp Tyr His
Gly His Met Ser Gly Gly Gln Ala Glu Thr Leu Leu Gln1 5
10 15Ala Lys Gly Glu Pro Trp Thr Phe Leu
Val Arg Glu Ser Leu Ser Gln 20 25
30Pro Gly Asp Phe Val Leu Ser Val Leu Ser Asp Gln Pro Lys Ala Gly
35 40 45Pro Gly Ser Pro Leu Arg Val
Thr His Ile Lys Val Met Cys Glu Gly 50 55
60Gly Arg Tyr Thr Val Gly Gly Leu Glu Thr Phe Asp Ser Leu Thr Asp65
70 75 80Leu Val Glu His
Phe Lys Lys Thr Gly Ile Glu Glu Ala Ser Gly Ala 85
90 95Phe Val Tyr Leu Arg Gln Pro Tyr Lys Ile
Tyr Asp Leu His Lys Lys 100 105
110Arg Ser Cys Asn Leu Asp Glu Gln Gln Glu Leu Val Glu Arg Asp Asp
115 120 125Glu Lys Gln Leu Met Asn Val
Glu Pro Ile His Ala Asp Ile Leu Leu 130 135
140Glu Thr Tyr Lys Arg Lys Ile Ala Asp Glu Gly Arg Leu Phe Leu
Ala145 150 155 160Glu Phe
Gln Ser Ile Pro Arg Val Phe Ser Lys Phe Pro Ile Lys Glu
165 170 175Ala Arg Lys Pro Phe Asn Gln
Asn Lys Asn Arg Tyr Val Asp Ile Leu 180 185
190Pro Tyr Asp Tyr Asn Arg Val Glu Leu Ser Glu Ile Asn Gly
Asp Ala 195 200 205Gly Ser Asn Tyr
Ile Asn Ala Ser Tyr Ile Asp Gly Phe Lys Glu Pro 210
215 220Arg Lys Tyr Ile Ala Ala Gln Gly Pro Arg Asp Glu
Thr Val Asp Asp225 230 235
240Phe Trp Arg Met Ile Trp Glu Gln Lys Ala Thr Val Ile Val Met Val
245 250 255Thr Arg Cys Glu Glu
Gly Asn Arg Asn Lys Cys Ala Glu Tyr Trp Pro 260
265 270Ser Met Glu Glu Gly Thr Arg Ala Phe Gly Asp Val
Val Val Lys Ile 275 280 285Asn Gln
His Lys Arg Cys Pro Asp Tyr Ile Ile Gln Lys Leu Asn Ile 290
295 300Val Asn Lys Lys Glu Lys Ala Thr Gly Arg Glu
Val Thr His Ile Gln305 310 315
320Phe Thr Ser Trp Pro Asp His Gly Val Pro Glu Asp Pro His Leu Leu
325 330 335Leu Lys Leu Arg
Arg Arg Val Asn Ala Phe Ser Asn Phe Phe Ser Gly 340
345 350Pro Ile Val Val His Cys Ser Ala Gly Val Gly
Arg Thr Gly Thr Tyr 355 360 365Ile
Gly Ile Asp Ala Met Leu Glu Gly Leu Glu Ala Glu Asn Lys Val 370
375 380Asp Val Tyr Gly Tyr Val Val Lys Leu Arg
Arg Gln Arg Cys Leu Met385 390 395
400Val Gln Val Glu Ala Gln Tyr Ile Leu Ile His Gln Ala Leu Val
Glu 405 410 415Tyr Asn Gln
Phe Gly Glu Thr Glu Val Asn Leu Ser Glu Leu His Pro 420
425 430Tyr Leu His Asn Met Lys Lys Arg Asp Pro
Pro Ser Glu Pro Ser Pro 435 440
445Leu Glu Ala Glu Phe Gln Arg Leu Pro Ser Tyr Arg Ser Trp Arg Thr 450
455 460Gln His Ile Gly Asn Gln Glu Glu
Asn Lys Ser Lys Asn Arg Asn Ser465 470
475 480Asn Val Ile Pro Tyr Asp Tyr Asn Arg Val Leu Lys
His Glu Leu Glu 485 490
495Met Ser Lys Glu Ser Glu His Asp Ser Asp Glu Ser Ser Asp Asp Asp
500 505 510Ser Asp Ser Glu Glu Pro
Ser Lys Tyr Ile Asn Ala Ser Phe Ile Met 515 520
525Ser Tyr Trp Lys Pro Glu Val Met Ile Ala Ala Gln Gly Pro
Leu Lys 530 535 540Glu Thr Ile Gly Asp
Phe Met Ile Gln Arg Lys Val Lys Val Ile Val545 550
555 560Met Leu Thr Glu Leu Lys His Gly Asp Gln
Glu Ile Cys Ala Gln Tyr 565 570
575Trp Gly Glu Gly Lys Gln Thr Tyr Gly Asp Ile Glu Val Asp Leu Lys
580 585 590Asp Thr Asp Lys Ser
Ser Thr Tyr Thr Leu Arg Val Phe Glu Leu Arg 595
600 605His Ser Lys Arg Lys Asp Ser Arg Thr Val Tyr Gln
Tyr Gln Tyr Thr 610 615 620Asn Trp Ser
Val Glu Gln Leu Pro Ala Glu Pro Lys Glu Leu Ile Ser625
630 635 640Met Ile Gln Val Val Lys Gln
Lys Leu Pro Gln Lys Asn Ser Ser Glu 645
650 655Gly Asn Lys His His Lys Ser Thr Pro Leu Leu Ile
His Cys Arg Asp 660 665 670Gly
Ser Gln Gln Thr Gly Ile Phe Cys Ala Leu Leu Asn Leu Leu Glu 675
680 685Ser Ala Glu Thr Glu Glu Val Val Asp
Ile Phe Gln Val Val Lys Ala 690 695
700Leu Arg Lys Ala Arg Pro Gly Met Val Ser Thr Phe Glu Gln Tyr Gln705
710 715 720Phe Leu Tyr Asp
Val Ile Ala Ser Thr Tyr Pro Ala Gln Asn Gly Gln 725
730 735Val Lys Lys Asn Asn His Gln Glu Asp Lys
Ile Glu Phe Asp Asn Glu 740 745
750Val Asp Lys Val Lys Gln Asp Ala Asn Cys Val Asn Pro Leu Gly Ala
755 760 765Pro Glu Lys Leu Pro Glu Ala
Lys Glu Gln Ala Glu Gly Ser Glu Pro 770 775
780Thr Ser Gly Thr Glu Gly Pro Glu His Ser Val Asn Gly Pro Ala
Ser785 790 795 800Pro Ala
Leu Asn Gln Gly Ser 80533434PRTArtificial
SequencePTPN6-CD148 fusion protein 33Glu Thr Leu Leu Gln Ala Lys Gly Glu
Pro Trp Thr Phe Leu Val Arg1 5 10
15Glu Ser Leu Ser Gln Pro Gly Asp Phe Val Leu Ser Val Leu Ser
Asp 20 25 30Gln Pro Lys Ala
Gly Pro Gly Ser Pro Leu Arg Val Thr His Ile Lys 35
40 45Val Met Cys Glu Gly Gly Arg Tyr Thr Val Gly Gly
Leu Glu Thr Phe 50 55 60Asp Ser Leu
Thr Asp Leu Val Glu His Phe Lys Lys Thr Gly Ile Glu65 70
75 80Glu Ala Ser Gly Ala Phe Val Tyr
Leu Arg Gln Pro Tyr Arg Lys Lys 85 90
95Arg Lys Asp Ala Lys Asn Asn Glu Val Ser Phe Ser Gln Ile
Lys Pro 100 105 110Lys Lys Ser
Lys Leu Ile Arg Val Glu Asn Phe Glu Ala Tyr Phe Lys 115
120 125Lys Gln Gln Ala Asp Ser Asn Cys Gly Phe Ala
Glu Glu Tyr Glu Asp 130 135 140Leu Lys
Leu Val Gly Ile Ser Gln Pro Lys Tyr Ala Ala Glu Leu Ala145
150 155 160Glu Asn Arg Gly Lys Asn Arg
Tyr Asn Asn Val Leu Pro Tyr Asp Ile 165
170 175Ser Arg Val Lys Leu Ser Val Gln Thr His Ser Thr
Asp Asp Tyr Ile 180 185 190Asn
Ala Asn Tyr Met Pro Gly Tyr His Ser Lys Lys Asp Phe Ile Ala 195
200 205Thr Gln Gly Pro Leu Pro Asn Thr Leu
Lys Asp Phe Trp Arg Met Val 210 215
220Trp Glu Lys Asn Val Tyr Ala Ile Ile Met Leu Thr Lys Cys Val Glu225
230 235 240Gln Gly Arg Thr
Lys Cys Glu Glu Tyr Trp Pro Ser Lys Gln Ala Gln 245
250 255Asp Tyr Gly Asp Ile Thr Val Ala Met Thr
Ser Glu Ile Val Leu Pro 260 265
270Glu Trp Thr Ile Arg Asp Phe Thr Val Lys Asn Ile Gln Thr Ser Glu
275 280 285Ser His Pro Leu Arg Gln Phe
His Phe Thr Ser Trp Pro Asp His Gly 290 295
300Val Pro Asp Thr Thr Asp Leu Leu Ile Asn Phe Arg Tyr Leu Val
Arg305 310 315 320Asp Tyr
Met Lys Gln Ser Pro Pro Glu Ser Pro Ile Leu Val His Cys
325 330 335Ser Ala Gly Val Gly Arg Thr
Gly Thr Phe Ile Ala Ile Asp Arg Leu 340 345
350Ile Tyr Gln Ile Glu Asn Glu Asn Thr Val Asp Val Tyr Gly
Ile Val 355 360 365Tyr Asp Leu Arg
Met His Arg Pro Leu Met Val Gln Thr Glu Asp Gln 370
375 380Tyr Val Phe Leu Asn Gln Cys Val Leu Asp Ile Val
Arg Ser Gln Lys385 390 395
400Asp Ser Lys Val Asp Leu Ile Tyr Gln Asn Thr Thr Ala Met Thr Ile
405 410 415Tyr Glu Asn Leu Ala
Pro Val Thr Thr Phe Gly Lys Thr Asn Gly Tyr 420
425 430Ile Ala3420PRTFoot-and-mouth disease virus 34Arg
Ala Glu Gly Arg Gly Ser Leu Leu Thr Cys Gly Asp Val Glu Glu1
5 10 15Asn Pro Gly Pro
20353390DNAArtificial SequenceNucleic acid sequences coding for CARs
(MP13974.SFG.aCD19fmc63-CD8STK-CD28tmZ-2A-aCD33glx-HCH2CH3pvaa-CD
28tmZw) 35atgagcctgc ccgtgaccgc cctgctgctg cccctggccc tgctgctgca
cgccgccaga 60ccagacatcc agatgaccca gaccaccagc agcctgagcg ccagcctggg
cgaccgggtg 120accatcagct gcagagccag ccaggacatc agcaagtacc tgaactggta
ccagcagaag 180cccgacggca ccgtgaagct gctgatctac cacaccagcc ggctgcacag
cggcgtgccc 240agccggttca gcggcagcgg cagcggcacc gactacagcc tgaccatcag
caacctggag 300caggaggaca tcgccaccta cttctgccag cagggcaaca ccctgcccta
caccttcgga 360ggcggcacca agctggagat caccaaggcc ggaggcggag gctctggcgg
aggcggctct 420ggcggaggcg gctctggcgg aggcggcagc gaggtgaagc tgcaggagtc
tggcccaggc 480ctggtggccc caagccagag cctgagcgtg acctgcaccg tgagcggcgt
gagcctgccc 540gactacggcg tgagctggat caggcagccc ccacggaagg gcctggagtg
gctgggcgtg 600atctggggca gcgagaccac ctactacaac agcgccctga agagccggct
gaccatcatc 660aaggacaaca gcaagagcca ggtgttcctg aagatgaaca gcctgcagac
cgacgacacc 720gccatctact actgcgccaa gcactactac tatggcggca gctacgctat
ggactactgg 780ggccagggca ccagcgtgac cgtgagctca gatcccacca cgacgccagc
gccgcgacca 840ccaacaccgg cgcccaccat cgcgtcgcag cccctgtccc tgcgcccaga
ggcgtgccgg 900ccagcggcgg ggggcgcagt gcacacgagg gggctggact tcgcctgtga
tatcttttgg 960gtgctggtgg tggttggtgg agtcctggct tgctatagct tgctagtaac
agtggccttt 1020attattttct gggtgaggag agtgaagttc agcaggagcg cagacgcccc
cgcgtaccag 1080cagggccaga accagctcta taacgagctc aatctaggac gaagagagga
gtacgatgtt 1140ttggacaaga gacgtggccg ggaccctgag atggggggaa agccgagaag
gaagaaccct 1200caggaaggcc tgtacaatga actgcagaaa gataagatgg cggaggccta
cagtgagatt 1260gggatgaaag gcgagcgccg gaggggcaag gggcacgatg gcctttacca
gggtctcagt 1320acagccacca aggacaccta cgacgccctt cacatgcagg ccctgcctcc
tcgcagagcc 1380gagggcaggg gaagtcttct aacatgcggg gacgtggagg aaaatcccgg
gcccatggcc 1440gtgcccactc aggtcctggg gttgttgcta ctgtggctta cagatgccag
atgtgacatc 1500cagatgacac agtctccatc ttccctgtct gcatctgtcg gagatcgcgt
caccatcacc 1560tgtcgagcaa gtgaggacat ttattttaat ttagtgtggt atcagcagaa
accaggaaag 1620gcccctaagc tcctgatcta tgatacaaat cgcttggcag atggggtccc
atcacggttc 1680agtggctctg gatctggcac acagtatact ctaaccataa gtagcctgca
acccgaagat 1740ttcgcaacct attattgtca acactataag aattatccgc tcacgttcgg
tcaggggacc 1800aagctggaaa tcaaaagatc tggtggcgga gggtcaggag gcggaggcag
cggaggcggt 1860ggctcgggag gcggaggctc gagatctgag gtgcagttgg tggagtctgg
gggcggcttg 1920gtgcagcctg gagggtccct gaggctctcc tgtgcagcct caggattcac
tctcagtaat 1980tatggcatgc actggatcag gcaggctcca gggaagggtc tggagtgggt
ctcgtctatt 2040agtcttaatg gtggtagcac ttactatcga gactccgtga agggccgatt
cactatctcc 2100agggacaatg caaaaagcac cctctacctt caaatgaata gtctgagggc
cgaggacacg 2160gccgtctatt actgtgcagc acaggacgct tatacgggag gttactttga
ttactggggc 2220caaggaacgc tggtcacagt ctcgtctatg gatcccgccg agcccaaatc
tcctgacaaa 2280actcacacat gcccaccgtg cccagcacct cccgtggccg gcccgtcagt
cttcctcttc 2340cccccaaaac ccaaggacac cctcatgatc gcccggaccc ctgaggtcac
atgcgtggtg 2400gtggacgtga gccacgaaga ccctgaggtc aagttcaact ggtacgtgga
cggcgtggag 2460gtgcataatg ccaagacaaa gccgcgggag gagcagtaca acagcacgta
ccgtgtggtc 2520agcgtcctca ccgtcctgca ccaggactgg ctgaatggca aggagtacaa
gtgcaaggtc 2580tccaacaaag ccctcccagc ccccatcgag aaaaccatct ccaaagccaa
agggcagccc 2640cgagaaccac aggtgtacac cctgccccca tcccgggatg agctgaccaa
gaaccaggtc 2700agcctgacct gcctggtcaa aggcttctat cccagcgaca tcgccgtgga
gtgggagagc 2760aatgggcaac cggagaacaa ctacaagacc acgcctcccg tgctggactc
cgacggctcc 2820ttcttcctct acagcaagct caccgtggac aagagcaggt ggcagcaggg
gaacgtcttc 2880tcatgctccg tgatgcatga ggccctgcac aatcactata cccagaaatc
tctgagtctg 2940agcccaggca agaaggaccc caagttctgg gtcctggtgg tggtgggagg
cgtgctggcc 3000tgttactctc tcctggtgac cgtggccttc atcatctttt gggtgcgctc
ccgggtgaag 3060ttttctcgct ctgccgatgc cccagcctat cagcagggcc agaatcagct
gtacaatgaa 3120ctgaacctgg gcaggcggga ggagtacgac gtgctggata agcggagagg
cagagacccc 3180gagatgggcg gcaaaccacg gcgcaaaaat ccccaggagg gactctataa
cgagctgcag 3240aaggacaaaa tggccgaggc ctattccgag atcggcatga agggagagag
aagacgcgga 3300aagggccacg acggcctgta tcagggattg tccaccgcta caaaagatac
atatgatgcc 3360ctgcacatgc aggccctgcc acccagatga
3390365154DNAArtificial SequenceNucleic acid sequences coding
for CARs
(MP14802.SFG.aCD19fmc63_clean-CD8STK-CD28tmZ-2A-aCD33glx-HCH2CH3p
vaa-dCD45) 36atgagcctgc ccgtgaccgc cctgctgctg cccctggccc tgctgctgca
cgccgccaga 60ccagacatcc agatgaccca gaccaccagc agcctgagcg ccagcctggg
cgaccgggtg 120accatcagct gcagagccag ccaggacatc agcaagtacc tgaactggta
ccagcagaag 180cccgacggca ccgtgaagct gctgatctac cacaccagcc ggctgcacag
cggcgtgccc 240agccggttca gcggcagcgg cagcggcacc gactacagcc tgaccatcag
caacctggag 300caggaggaca tcgccaccta cttctgccag cagggcaaca ccctgcccta
caccttcgga 360ggcggcacca agctggagat caccaaggcc ggaggcggag gctctggcgg
aggcggctct 420ggcggaggcg gctctggcgg aggcggcagc gaggtgaagc tgcaggagtc
tggcccaggc 480ctggtggccc caagccagag cctgagcgtg acctgcaccg tgagcggcgt
gagcctgccc 540gactacggcg tgagctggat caggcagccc ccacggaagg gcctggagtg
gctgggcgtg 600atctggggca gcgagaccac ctactacaac agcgccctga agagccggct
gaccatcatc 660aaggacaaca gcaagagcca ggtgttcctg aagatgaaca gcctgcagac
cgacgacacc 720gccatctact actgcgccaa gcactactac tatggcggca gctacgctat
ggactactgg 780ggccagggca ccagcgtgac cgtgagctca gatcccacca cgacgccagc
gccgcgacca 840ccaacaccgg cgcccaccat cgcgtcgcag cccctgtccc tgcgcccaga
ggcgtgccgg 900ccagcggcgg ggggcgcagt gcacacgagg gggctggact tcgcctgtga
tatcttttgg 960gtgctggtgg tggttggtgg agtcctggct tgctatagct tgctagtaac
agtggccttt 1020attattttct gggtgaggag agtgaagttc agcaggagcg cagacgcccc
cgcgtaccag 1080cagggccaga accagctcta taacgagctc aatctaggac gaagagagga
gtacgatgtt 1140ttggacaaga gacgtggccg ggaccctgag atggggggaa agccgagaag
gaagaaccct 1200caggaaggcc tgtacaatga actgcagaaa gataagatgg cggaggccta
cagtgagatt 1260gggatgaaag gcgagcgccg gaggggcaag gggcacgatg gcctttacca
gggtctcagt 1320acagccacca aggacaccta cgacgccctt cacatgcagg ccctgcctcc
tcgcagagcc 1380gagggcaggg gaagtcttct aacatgcggg gacgtggagg aaaatcccgg
gcccatggcc 1440gtgcccactc aggtcctggg gttgttgcta ctgtggctta cagatgccag
atgtgacatc 1500cagatgacac agtctccatc ttccctgtct gcatctgtcg gagatcgcgt
caccatcacc 1560tgtcgagcaa gtgaggacat ttattttaat ttagtgtggt atcagcagaa
accaggaaag 1620gcccctaagc tcctgatcta tgatacaaat cgcttggcag atggggtccc
atcacggttc 1680agtggctctg gatctggcac acagtatact ctaaccataa gtagcctgca
acccgaagat 1740ttcgcaacct attattgtca acactataag aattatccgc tcacgttcgg
tcaggggacc 1800aagctggaaa tcaaaagatc tggtggcgga gggtcaggag gcggaggcag
cggaggcggt 1860ggctcgggag gcggaggctc gagatctgag gtgcagttgg tggagtctgg
gggcggcttg 1920gtgcagcctg gagggtccct gaggctctcc tgtgcagcct caggattcac
tctcagtaat 1980tatggcatgc actggatcag gcaggctcca gggaagggtc tggagtgggt
ctcgtctatt 2040agtcttaatg gtggtagcac ttactatcga gactccgtga agggccgatt
cactatctcc 2100agggacaatg caaaaagcac cctctacctt caaatgaata gtctgagggc
cgaggacacg 2160gccgtctatt actgtgcagc acaggacgct tatacgggag gttactttga
ttactggggc 2220caaggaacgc tggtcacagt ctcgtctatg gatcccgccg agcccaaatc
tcctgacaaa 2280actcacacat gcccaccgtg cccagcacct cccgtggccg gcccgtcagt
cttcctcttc 2340cccccaaaac ccaaggacac cctcatgatc gcccggaccc ctgaggtcac
atgcgtggtg 2400gtggacgtga gccacgaaga ccctgaggtc aagttcaact ggtacgtgga
cggcgtggag 2460gtgcataatg ccaagacaaa gccgcgggag gagcagtaca acagcacgta
ccgtgtggtc 2520agcgtcctca ccgtcctgca ccaggactgg ctgaatggca aggagtacaa
gtgcaaggtc 2580tccaacaaag ccctcccagc ccccatcgag aaaaccatct ccaaagccaa
agggcagccc 2640cgagaaccac aggtgtacac cctgccccca tcccgggatg agctgaccaa
gaaccaggtc 2700agcctgacct gcctggtcaa aggcttctat cccagcgaca tcgccgtgga
gtgggagagc 2760aatgggcaac cggagaacaa ctacaagacc acgcctcccg tgctggactc
cgacggctcc 2820ttcttcctct acagcaagct caccgtggac aagagcaggt ggcagcaggg
gaacgtcttc 2880tcatgctccg tgatgcatga ggccctgcac aatcactata cccagaaatc
tctgagtctg 2940agcccaggca agaaggaccc caaggcactg atagcatttc tggcatttct
gattattgtg 3000acatcaatag ccctgcttgt tgttctctac aaaatctatg atctacataa
gaaaagatcc 3060tgcaatttag atgaacagca ggagcttgtt gaaagggatg atgaaaaaca
actgatgaat 3120gtggagccaa tccatgcaga tattttgttg gaaacttata agaggaagat
tgctgatgaa 3180ggaagacttt ttctggctga atttcagagc atcccgcggg tgttcagcaa
gtttcctata 3240aaggaagctc gaaagccctt taaccagaat aaaaaccgtt atgttgacat
tcttccttat 3300gattataacc gtgttgaact ctctgagata aacggagatg cagggtcaaa
ctacataaat 3360gccagctata ttgatggttt caaagaaccc aggaaataca ttgctgcaca
aggtcccagg 3420gatgaaactg ttgatgattt ctggaggatg atttgggaac agaaagccac
agttattgtc 3480atggtcactc gatgtgaaga aggaaacagg aacaagtgtg cagaatactg
gccgtcaatg 3540gaagagggca ctcgggcttt tggagatgtt gttgtaaaga tcaaccagca
caaaagatgt 3600ccagattaca tcattcagaa attgaacatt gtaaataaaa aagaaaaagc
aactggaaga 3660gaggtgactc acattcagtt caccagctgg ccagaccacg gggtgcctga
ggatcctcac 3720ttgctcctca aactgagaag gagagtgaat gccttcagca atttcttcag
tggtcccatt 3780gtggtgcact gcagtgctgg tgttgggcgc acaggaacct atatcggaat
tgatgccatg 3840ctagaaggcc tggaagccga gaacaaagtg gatgtttatg gttatgttgt
caagctaagg 3900cgacagagat gcctgatggt tcaagtagag gcccagtaca tcttgatcca
tcaggctttg 3960gtggaataca atcagtttgg agaaacagaa gtgaatttgt ctgaattaca
tccatatcta 4020cataacatga agaaaaggga tccacccagt gagccgtctc cactagaggc
tgaattccag 4080agacttcctt catataggag ctggaggaca cagcacattg gaaatcaaga
agaaaataaa 4140agtaaaaaca ggaattctaa tgtcatccca tatgactata acagagtgcc
acttaaacat 4200gagctggaaa tgagtaaaga gagtgagcat gattcagatg aatcctctga
tgatgacagt 4260gattcagagg aaccaagcaa atacatcaat gcatctttta taatgagcta
ctggaaacct 4320gaagtgatga ttgctgctca gggaccactg aaggagacca ttggtgactt
ttggcagatg 4380atcttccaaa gaaaagtcaa agttattgtt atgctgacag aactgaaaca
tggagaccag 4440gaaatctgtg ctcagtactg gggagaagga aagcaaacat atggagatat
tgaagttgac 4500ctgaaagaca cagacaaatc ttcaacttat acccttcgtg tctttgaact
gagacattcc 4560aagaggaaag actctcgaac tgtgtaccag taccaatata caaactggag
tgtggagcag 4620cttcctgcag aacccaagga attaatctct atgattcagg tcgtcaaaca
aaaacttccc 4680cagaagaatt cctctgaagg gaacaagcat cacaagagta cacctctact
cattcactgc 4740agggatggat ctcagcaaac gggaatattt tgtgctttgt taaatctctt
agaaagtgcg 4800gaaacagaag aggtagtgga tatttttcaa gtggtaaaag ctctacgcaa
agctaggcca 4860ggcatggttt ccacattcga gcaatatcaa ttcctatatg acgtcattgc
cagcacctac 4920cctgctcaga atggacaagt aaagaaaaac aaccatcaag aagataaaat
tgaatttgat 4980aatgaagtgg acaaagtaaa gcaggatgct aattgtgtta atccacttgg
tgccccagaa 5040aagctccctg aagcaaagga acaggctgaa ggttctgaac ccacgagtgg
cactgagggg 5100ccagaacatt ctgtcaatgg tcctgcaagt ccagctttaa atcaaggttc
atag 5154374053DNAArtificial SequenceNucleic acid sequences
coding for CARs
(MP14801.SFG.aCD19fmc63_clean-CD8STK-CD28tmZ-2A-aCD33glx-HCH2CH3p
vaa-dCD148) 37atgagcctgc ccgtgaccgc cctgctgctg cccctggccc tgctgctgca
cgccgccaga 60ccagacatcc agatgaccca gaccaccagc agcctgagcg ccagcctggg
cgaccgggtg 120accatcagct gcagagccag ccaggacatc agcaagtacc tgaactggta
ccagcagaag 180cccgacggca ccgtgaagct gctgatctac cacaccagcc ggctgcacag
cggcgtgccc 240agccggttca gcggcagcgg cagcggcacc gactacagcc tgaccatcag
caacctggag 300caggaggaca tcgccaccta cttctgccag cagggcaaca ccctgcccta
caccttcgga 360ggcggcacca agctggagat caccaaggcc ggaggcggag gctctggcgg
aggcggctct 420ggcggaggcg gctctggcgg aggcggcagc gaggtgaagc tgcaggagtc
tggcccaggc 480ctggtggccc caagccagag cctgagcgtg acctgcaccg tgagcggcgt
gagcctgccc 540gactacggcg tgagctggat caggcagccc ccacggaagg gcctggagtg
gctgggcgtg 600atctggggca gcgagaccac ctactacaac agcgccctga agagccggct
gaccatcatc 660aaggacaaca gcaagagcca ggtgttcctg aagatgaaca gcctgcagac
cgacgacacc 720gccatctact actgcgccaa gcactactac tatggcggca gctacgctat
ggactactgg 780ggccagggca ccagcgtgac cgtgagctca gatcccacca cgacgccagc
gccgcgacca 840ccaacaccgg cgcccaccat cgcgtcgcag cccctgtccc tgcgcccaga
ggcgtgccgg 900ccagcggcgg ggggcgcagt gcacacgagg gggctggact tcgcctgtga
tatcttttgg 960gtgctggtgg tggttggtgg agtcctggct tgctatagct tgctagtaac
agtggccttt 1020attattttct gggtgaggag agtgaagttc agcaggagcg cagacgcccc
cgcgtaccag 1080cagggccaga accagctcta taacgagctc aatctaggac gaagagagga
gtacgatgtt 1140ttggacaaga gacgtggccg ggaccctgag atggggggaa agccgagaag
gaagaaccct 1200caggaaggcc tgtacaatga actgcagaaa gataagatgg cggaggccta
cagtgagatt 1260gggatgaaag gcgagcgccg gaggggcaag gggcacgatg gcctttacca
gggtctcagt 1320acagccacca aggacaccta cgacgccctt cacatgcagg ccctgcctcc
tcgcagagcc 1380gagggcaggg gaagtcttct aacatgcggg gacgtggagg aaaatcccgg
gcccatggcc 1440gtgcccactc aggtcctggg gttgttgcta ctgtggctta cagatgccag
atgtgacatc 1500cagatgacac agtctccatc ttccctgtct gcatctgtcg gagatcgcgt
caccatcacc 1560tgtcgagcaa gtgaggacat ttattttaat ttagtgtggt atcagcagaa
accaggaaag 1620gcccctaagc tcctgatcta tgatacaaat cgcttggcag atggggtccc
atcacggttc 1680agtggctctg gatctggcac acagtatact ctaaccataa gtagcctgca
acccgaagat 1740ttcgcaacct attattgtca acactataag aattatccgc tcacgttcgg
tcaggggacc 1800aagctggaaa tcaaaagatc tggtggcgga gggtcaggag gcggaggcag
cggaggcggt 1860ggctcgggag gcggaggctc gagatctgag gtgcagttgg tggagtctgg
gggcggcttg 1920gtgcagcctg gagggtccct gaggctctcc tgtgcagcct caggattcac
tctcagtaat 1980tatggcatgc actggatcag gcaggctcca gggaagggtc tggagtgggt
ctcgtctatt 2040agtcttaatg gtggtagcac ttactatcga gactccgtga agggccgatt
cactatctcc 2100agggacaatg caaaaagcac cctctacctt caaatgaata gtctgagggc
cgaggacacg 2160gccgtctatt actgtgcagc acaggacgct tatacgggag gttactttga
ttactggggc 2220caaggaacgc tggtcacagt ctcgtctatg gatcccgccg agcccaaatc
tcctgacaaa 2280actcacacat gcccaccgtg cccagcacct cccgtggccg gcccgtcagt
cttcctcttc 2340cccccaaaac ccaaggacac cctcatgatc gcccggaccc ctgaggtcac
atgcgtggtg 2400gtggacgtga gccacgaaga ccctgaggtc aagttcaact ggtacgtgga
cggcgtggag 2460gtgcataatg ccaagacaaa gccgcgggag gagcagtaca acagcacgta
ccgtgtggtc 2520agcgtcctca ccgtcctgca ccaggactgg ctgaatggca aggagtacaa
gtgcaaggtc 2580tccaacaaag ccctcccagc ccccatcgag aaaaccatct ccaaagccaa
agggcagccc 2640cgagaaccac aggtgtacac cctgccccca tcccgggatg agctgaccaa
gaaccaggtc 2700agcctgacct gcctggtcaa aggcttctat cccagcgaca tcgccgtgga
gtgggagagc 2760aatgggcaac cggagaacaa ctacaagacc acgcctcccg tgctggactc
cgacggctcc 2820ttcttcctct acagcaagct caccgtggac aagagcaggt ggcagcaggg
gaacgtcttc 2880tcatgctccg tgatgcatga ggccctgcac aatcactata cccagaaatc
tctgagtctg 2940agcccaggca agaaggaccc caaggcggtt tttggctgta tctttggtgc
cctggttatt 3000gtgactgtgg gaggcttcat cttctggaga aagaagagga aagatgcaaa
gaataatgaa 3060gtgtcctttt ctcaaattaa acctaaaaaa tctaagttaa tcagagtgga
gaattttgag 3120gcctacttca agaagcagca agctgactcc aactgtgggt tcgcagagga
atacgaagat 3180ctgaagcttg ttggaattag tcaacctaaa tatgcagcag aactggctga
gaatagagga 3240aagaatcgct ataataatgt tctgccctat gatatttccc gtgtcaaact
ttcggtccag 3300acccattcaa cggatgacta catcaatgcc aactacatgc ctggctacca
ctccaagaaa 3360gattttattg ccacacaagg acctttaccg aacactttga aagatttttg
gcgtatggtt 3420tgggagaaaa atgtatatgc catcattatg ttgactaaat gtgttgaaca
gggaagaacc 3480aaatgtgagg agtattggcc ctccaagcag gctcaggact atggagacat
aactgtggca 3540atgacatcag aaattgttct tccggaatgg accatcagag atttcacagt
gaaaaatatc 3600cagacaagtg agagtcaccc tctgagacag ttccatttca cctcctggcc
agaccacggt 3660gttcccgaca ccactgacct gctcatcaac ttccggtacc tcgttcgtga
ctacatgaag 3720cagagtcctc ccgaatcgcc gattctggtg cattgcagtg ctggggtcgg
aaggacgggc 3780actttcattg ccattgatcg tctcatctac cagatagaga atgagaacac
cgtggatgtg 3840tatgggattg tgtatgacct tcgaatgcat aggcctttaa tggtgcagac
agaggaccag 3900tatgttttcc tcaatcagtg tgttttggat attgtcagat cccagaaaga
ctcaaaagta 3960gatcttatct accagaacac aactgcaatg acaatctatg aaaaccttgc
gcccgtgacc 4020acatttggaa agaccaatgg ttacatcgcc taa
4053383345DNAArtificial SequenceNucleic acid sequences coding
for CARs
(16076.SFG.aCD19fmc63-CD8STK-CD28tmZ-2A-aCD33glx-muCD8STK-tm-dPTP
N6) 38atgagcctgc ccgtgaccgc cctgctgctg cccctggccc tgctgctgca cgccgccaga
60ccagacatcc agatgaccca gaccaccagc agcctgagcg ccagcctggg cgaccgggtg
120accatcagct gcagagccag ccaggacatc agcaagtacc tgaactggta ccagcagaag
180cccgacggca ccgtgaagct gctgatctac cacaccagcc ggctgcacag cggcgtgccc
240agccggttca gcggcagcgg cagcggcacc gactacagcc tgaccatcag caacctggag
300caggaggaca tcgccaccta cttctgccag cagggcaaca ccctgcccta caccttcgga
360ggcggcacca agctggagat caccaaggcc ggaggcggag gctctggcgg aggcggctct
420ggcggaggcg gctctggcgg aggcggcagc gaggtgaagc tgcaggagtc tggcccaggc
480ctggtggccc caagccagag cctgagcgtg acctgcaccg tgagcggcgt gagcctgccc
540gactacggcg tgagctggat caggcagccc ccacggaagg gcctggagtg gctgggcgtg
600atctggggca gcgagaccac ctactacaac agcgccctga agagccggct gaccatcatc
660aaggacaaca gcaagagcca ggtgttcctg aagatgaaca gcctgcagac cgacgacacc
720gccatctact actgcgccaa gcactactac tatggcggca gctacgctat ggactactgg
780ggccagggca ccagcgtgac cgtgagctca gatcccacca cgacgccagc gccgcgacca
840ccaacaccgg cgcccaccat cgcgtcgcag cccctgtccc tgcgcccaga ggcgtgccgg
900ccagcggcgg ggggcgcagt gcacacgagg gggctggact tcgcctgtga tatcttttgg
960gtgctggtgg tggttggtgg agtcctggct tgctatagct tgctagtaac agtggccttt
1020attattttct gggtgaggag agtgaagttc agcaggagcg cagacgcccc cgcgtaccag
1080cagggccaga accagctcta taacgagctc aatctaggac gaagagagga gtacgatgtt
1140ttggacaaga gacgtggccg ggaccctgag atggggggaa agccgagaag gaagaaccct
1200caggaaggcc tgtacaatga actgcagaaa gataagatgg cggaggccta cagtgagatt
1260gggatgaaag gcgagcgccg gaggggcaag gggcacgatg gcctttacca gggtctcagt
1320acagccacca aggacaccta cgacgccctt cacatgcagg ccctgcctcc tcgcagagcc
1380gagggcaggg gaagtcttct aacatgcggg gacgtggagg aaaatcccgg gcccatggcc
1440gtgcccactc aggtcctggg gttgttgcta ctgtggctta cagatgccag atgtgacatc
1500cagatgacac agtctccatc ttccctgtct gcatctgtcg gagatcgcgt caccatcacc
1560tgtcgagcaa gtgaggacat ttattttaat ttagtgtggt atcagcagaa accaggaaag
1620gcccctaagc tcctgatcta tgatacaaat cgcttggcag atggggtccc atcacggttc
1680agtggctctg gatctggcac acagtatact ctaaccataa gtagcctgca acccgaagat
1740ttcgcaacct attattgtca acactataag aattatccgc tcacgttcgg tcaggggacc
1800aagctggaaa tcaaaagatc tggtggcgga gggtcaggag gcggaggcag cggaggcggt
1860ggctcgggag gcggaggctc gagatctgag gtgcagttgg tggagtctgg gggcggcttg
1920gtgcagcctg gagggtccct gaggctctcc tgtgcagcct caggattcac tctcagtaat
1980tatggcatgc actggatcag gcaggctcca gggaagggtc tggagtgggt ctcgtctatt
2040agtcttaatg gtggtagcac ttactatcga gactccgtga agggccgatt cactatctcc
2100agggacaatg caaaaagcac cctctacctt caaatgaata gtctgagggc cgaggacacg
2160gccgtctatt actgtgcagc acaggacgct tatacgggag gttactttga ttactggggc
2220caaggaacgc tggtcacagt ctcgtctatg gatcccgcca ccacaaccaa gcccgtgctg
2280cggaccccaa gccctgtgca ccctaccggc accagccagc ctcagagacc cgaggactgc
2340cggcctcggg gcagcgtgaa gggcaccggc ctggacttcg cctgcgacat ctactgggca
2400cctctggccg gaatatgcgt ggcactgctg ctgagcctca tcatcaccct gatctgttat
2460caccgaagcc gcaagcgggt gtgtaaaagt ggaggcggaa gcttctggga ggagtttgag
2520agtttgcaga agcaggaggt gaagaacttg caccagcgtc tggaagggca gcggccagag
2580aacaagggca agaaccgcta caagaacatt ctcccctttg accacagccg agtgatcctg
2640cagggacggg acagtaacat ccccgggtcc gactacatca atgccaacta catcaagaac
2700cagctgctag gccctgatga gaacgctaag acctacatcg ccagccaggg ctgtctggag
2760gccacggtca atgacttctg gcagatggcg tggcaggaga acagccgtgt catcgtcatg
2820accacccgag aggtggagaa aggccggaac aaatgcgtcc catactggcc cgaggtgggc
2880atgcagcgtg cttatgggcc ctactctgtg accaactgcg gggagcatga cacaaccgaa
2940tacaaactcc gtaccttaca ggtctccccg ctggacaatg gagacctgat tcgggagatc
3000tggcattacc agtacctgag ctggcccgac cacggggtcc ccagtgagcc tgggggtgtc
3060ctcagcttcc tggaccagat caaccagcgg caggaaagtc tgcctcacgc agggcccatc
3120atcgtgcact gcagcgccgg catcggccgc acaggcacca tcattgtcat cgacatgctc
3180atggagaaca tctccaccaa gggcctggac tgtgacattg acatccagaa gaccatccag
3240atggtgcggg cgcagcgctc gggcatggtg cagacggagg cgcagtacaa gttcatctac
3300gtggccatcg cccagttcat tgaaaccact aagaagaagc tgtga
3345392757DNAArtificial SequenceNucleic acid sequences coding for CARs
(MP16091.SFG.aCD19fmc63-CD8STK-CD28tmZ-2A-aCD33glx-muCD8STK-LAIR1
tm-endo) 39atgagcctgc ccgtgaccgc cctgctgctg cccctggccc tgctgctgca
cgccgccaga 60ccagacatcc agatgaccca gaccaccagc agcctgagcg ccagcctggg
cgaccgggtg 120accatcagct gcagagccag ccaggacatc agcaagtacc tgaactggta
ccagcagaag 180cccgacggca ccgtgaagct gctgatctac cacaccagcc ggctgcacag
cggcgtgccc 240agccggttca gcggcagcgg cagcggcacc gactacagcc tgaccatcag
caacctggag 300caggaggaca tcgccaccta cttctgccag cagggcaaca ccctgcccta
caccttcgga 360ggcggcacca agctggagat caccaaggcc ggaggcggag gctctggcgg
aggcggctct 420ggcggaggcg gctctggcgg aggcggcagc gaggtgaagc tgcaggagtc
tggcccaggc 480ctggtggccc caagccagag cctgagcgtg acctgcaccg tgagcggcgt
gagcctgccc 540gactacggcg tgagctggat caggcagccc ccacggaagg gcctggagtg
gctgggcgtg 600atctggggca gcgagaccac ctactacaac agcgccctga agagccggct
gaccatcatc 660aaggacaaca gcaagagcca ggtgttcctg aagatgaaca gcctgcagac
cgacgacacc 720gccatctact actgcgccaa gcactactac tatggcggca gctacgctat
ggactactgg 780ggccagggca ccagcgtgac cgtgagctca gatcccacca cgacgccagc
gccgcgacca 840ccaacaccgg cgcccaccat cgcgtcgcag cccctgtccc tgcgcccaga
ggcgtgccgg 900ccagcggcgg ggggcgcagt gcacacgagg gggctggact tcgcctgtga
tatcttttgg 960gtgctggtgg tggttggtgg agtcctggct tgctatagct tgctagtaac
agtggccttt 1020attattttct gggtgaggag agtgaagttc agcaggagcg cagacgcccc
cgcgtaccag 1080cagggccaga accagctcta taacgagctc aatctaggac gaagagagga
gtacgatgtt 1140ttggacaaga gacgtggccg ggaccctgag atggggggaa agccgagaag
gaagaaccct 1200caggaaggcc tgtacaatga actgcagaaa gataagatgg cggaggccta
cagtgagatt 1260gggatgaaag gcgagcgccg gaggggcaag gggcacgatg gcctttacca
gggtctcagt 1320acagccacca aggacaccta cgacgccctt cacatgcagg ccctgcctcc
tcgcagagcc 1380gagggcaggg gaagtcttct aacatgcggg gacgtggagg aaaatcccgg
gcccatggcc 1440gtgcccactc aggtcctggg gttgttgcta ctgtggctta cagatgccag
atgtgacatc 1500cagatgacac agtctccatc ttccctgtct gcatctgtcg gagatcgcgt
caccatcacc 1560tgtcgagcaa gtgaggacat ttattttaat ttagtgtggt atcagcagaa
accaggaaag 1620gcccctaagc tcctgatcta tgatacaaat cgcttggcag atggggtccc
atcacggttc 1680agtggctctg gatctggcac acagtatact ctaaccataa gtagcctgca
acccgaagat 1740ttcgcaacct attattgtca acactataag aattatccgc tcacgttcgg
tcaggggacc 1800aagctggaaa tcaaaagatc tggtggcgga gggtcaggag gcggaggcag
cggaggcggt 1860ggctcgggag gcggaggctc gagatctgag gtgcagttgg tggagtctgg
gggcggcttg 1920gtgcagcctg gagggtccct gaggctctcc tgtgcagcct caggattcac
tctcagtaat 1980tatggcatgc actggatcag gcaggctcca gggaagggtc tggagtgggt
ctcgtctatt 2040agtcttaatg gtggtagcac ttactatcga gactccgtga agggccgatt
cactatctcc 2100agggacaatg caaaaagcac cctctacctt caaatgaata gtctgagggc
cgaggacacg 2160gccgtctatt actgtgcagc acaggacgct tatacgggag gttactttga
ttactggggc 2220caaggaacgc tggtcacagt ctcgtctatg gatcccgcca ccacaaccaa
gcccgtgctg 2280cggaccccaa gccctgtgca ccctaccggc accagccagc ctcagagacc
cgaggactgc 2340cggcctcggg gcagcgtgaa gggcaccggc ctggacttcg cctgcgacat
tctcatcggg 2400gtctcagtgg tcttcctctt ctgtctcctc ctcctggtcc tcttctgcct
ccatcgccag 2460aatcagataa agcaggggcc ccccagaagc aaggacgagg agcagaagcc
acagcagagg 2520cctgacctgg ctgttgatgt tctagagagg acagcagaca aggccacagt
caatggactt 2580cctgagaagg accgggagac cgacaccagc gccctggctg cagggagttc
ccaggaggtg 2640acgtatgctc agctggacca ctgggccctc acacagagga cagcccgggc
tgtgtcccca 2700cagtccacaa agcccatggc cgagtccatc acgtatgcag ccgttgccag
acactga 2757404092DNAArtificial SequenceNucleic acid sequences
coding for CARs
(MP16092.SFG.aCD19fmc63-CD8STK-CD28tmZ-2A-aCD33glx-muCD8STK-LAIR1
tm-endo-2A-PTPN6_SH2-dCD148) 40atgagcctgc ccgtgaccgc cctgctgctg
cccctggccc tgctgctgca cgccgccaga 60ccagacatcc agatgaccca gaccaccagc
agcctgagcg ccagcctggg cgaccgggtg 120accatcagct gcagagccag ccaggacatc
agcaagtacc tgaactggta ccagcagaag 180cccgacggca ccgtgaagct gctgatctac
cacaccagcc ggctgcacag cggcgtgccc 240agccggttca gcggcagcgg cagcggcacc
gactacagcc tgaccatcag caacctggag 300caggaggaca tcgccaccta cttctgccag
cagggcaaca ccctgcccta caccttcgga 360ggcggcacca agctggagat caccaaggcc
ggaggcggag gctctggcgg aggcggctct 420ggcggaggcg gctctggcgg aggcggcagc
gaggtgaagc tgcaggagtc tggcccaggc 480ctggtggccc caagccagag cctgagcgtg
acctgcaccg tgagcggcgt gagcctgccc 540gactacggcg tgagctggat caggcagccc
ccacggaagg gcctggagtg gctgggcgtg 600atctggggca gcgagaccac ctactacaac
agcgccctga agagccggct gaccatcatc 660aaggacaaca gcaagagcca ggtgttcctg
aagatgaaca gcctgcagac cgacgacacc 720gccatctact actgcgccaa gcactactac
tatggcggca gctacgctat ggactactgg 780ggccagggca ccagcgtgac cgtgagctca
gatcccacca cgacgccagc gccgcgacca 840ccaacaccgg cgcccaccat cgcgtcgcag
cccctgtccc tgcgcccaga ggcgtgccgg 900ccagcggcgg ggggcgcagt gcacacgagg
gggctggact tcgcctgtga tatcttttgg 960gtgctggtgg tggttggtgg agtcctggct
tgctatagct tgctagtaac agtggccttt 1020attattttct gggtgaggag agtgaagttc
agcaggagcg cagacgcccc cgcgtaccag 1080cagggccaga accagctcta taacgagctc
aatctaggac gaagagagga gtacgatgtt 1140ttggacaaga gacgtggccg ggaccctgag
atggggggaa agccgagaag gaagaaccct 1200caggaaggcc tgtacaatga actgcagaaa
gataagatgg cggaggccta cagtgagatt 1260gggatgaaag gcgagcgccg gaggggcaag
gggcacgatg gcctttacca gggtctcagt 1320acagccacca aggacaccta cgacgccctt
cacatgcagg ccctgcctcc tcgcagagcc 1380gagggcaggg gaagtcttct aacatgcggg
gacgtggagg aaaatcccgg gcccatggcc 1440gtgcccactc aggtcctggg gttgttgcta
ctgtggctta cagatgccag atgtgacatc 1500cagatgacac agtctccatc ttccctgtct
gcatctgtcg gagatcgcgt caccatcacc 1560tgtcgagcaa gtgaggacat ttattttaat
ttagtgtggt atcagcagaa accaggaaag 1620gcccctaagc tcctgatcta tgatacaaat
cgcttggcag atggggtccc atcacggttc 1680agtggctctg gatctggcac acagtatact
ctaaccataa gtagcctgca acccgaagat 1740ttcgcaacct attattgtca acactataag
aattatccgc tcacgttcgg tcaggggacc 1800aagctggaaa tcaaaagatc tggtggcgga
gggtcaggag gcggaggcag cggaggcggt 1860ggctcgggag gcggaggctc gagatctgag
gtgcagttgg tggagtctgg gggcggcttg 1920gtgcagcctg gagggtccct gaggctctcc
tgtgcagcct caggattcac tctcagtaat 1980tatggcatgc actggatcag gcaggctcca
gggaagggtc tggagtgggt ctcgtctatt 2040agtcttaatg gtggtagcac ttactatcga
gactccgtga agggccgatt cactatctcc 2100agggacaatg caaaaagcac cctctacctt
caaatgaata gtctgagggc cgaggacacg 2160gccgtctatt actgtgcagc acaggacgct
tatacgggag gttactttga ttactggggc 2220caaggaacgc tggtcacagt ctcgtctatg
gatcccgcca ccacaaccaa gcccgtgctg 2280cggaccccaa gccctgtgca ccctaccggc
accagccagc ctcagagacc cgaggactgc 2340cggcctcggg gcagcgtgaa gggcaccggc
ctggacttcg cctgcgacat tctcatcggg 2400gtctcagtgg tcttcctctt ctgtctcctc
ctcctggtcc tcttctgcct ccatcgccag 2460aatcagataa agcaggggcc ccccagaagc
aaggacgagg agcagaagcc acagcagagg 2520cctgacctgg ctgttgatgt tctagagagg
acagcagaca aggccacagt caatggactt 2580cctgagaagg accgggagac cgacaccagc
gccctggctg cagggagttc ccaggaggtg 2640acgtatgctc agctggacca ctgggccctc
acacagagga cagcccgggc tgtgtcccca 2700cagtccacaa agcccatggc cgagtccatc
acgtatgcag ccgttgccag acacagggca 2760gaaggaagag gtagcctgct gacttgcggg
gacgtggaag agaacccagg gccatggtat 2820catggccaca tgtctggcgg gcaggcagag
acgctgctgc aggccaaggg cgagccctgg 2880acgtttcttg tgcgtgagag cctcagccag
cctggagact tcgtgctttc tgtgctcagt 2940gaccagccca aggctggccc aggctccccg
ctcagggtca cccacatcaa ggtcatgtgc 3000gagggtggac gctacacagt gggtggtttg
gagaccttcg acagcctcac ggacctggtg 3060gagcatttca agaagacggg gattgaggag
gcctcaggcg cctttgtcta cctgcggcag 3120ccgtacagcg gtggcggtgg cagctttgag
gcctacttca agaagcagca agctgactcc 3180aactgtgggt tcgcagagga atacgaagat
ctgaagcttg ttggaattag tcaacctaaa 3240tatgcagcag aactggctga gaatagagga
aagaatcgct ataataatgt tctgccctat 3300gatatttccc gtgtcaaact ttcggtccag
acccattcaa cggatgacta catcaatgcc 3360aactacatgc ctggctacca ctccaagaaa
gattttattg ccacacaagg acctttaccg 3420aacactttga aagatttttg gcgtatggtt
tgggagaaaa atgtatatgc catcattatg 3480ttgactaaat gtgttgaaca gggaagaacc
aaatgtgagg agtattggcc ctccaagcag 3540gctcaggact atggagacat aactgtggca
atgacatcag aaattgttct tccggaatgg 3600accatcagag atttcacagt gaaaaatatc
cagacaagtg agagtcaccc tctgagacag 3660ttccatttca cctcctggcc agaccacggt
gttcccgaca ccactgacct gctcatcaac 3720ttccggtacc tcgttcgtga ctacatgaag
cagagtcctc ccgaatcgcc gattctggtg 3780cattgcagtg ctggggtcgg aaggacgggc
actttcattg ccattgatcg tctcatctac 3840cagatagaga atgagaacac cgtggatgtg
tatgggattg tgtatgacct tcgaatgcat 3900aggcctttaa tggtgcagac agaggaccag
tatgttttcc tcaatcagtg tgttttggat 3960attgtcagat cccagaaaga ctcaaaagta
gatcttatct accagaacac aactgcaatg 4020acaatctatg aaaaccttgc gcccgtgacc
acatttggaa agaccaatgg ttacatcgcc 4080agcggtagct aa
4092411341PRTArtificial
SequenceSingle-chain variable fragment (scFv)
SFG.aCD19-CD8STK-CD28tmZ-2A-aGD2-HCH2CH3pvaa-dCD148 41Met Ser Leu Pro Val
Thr Ala Leu Leu Leu Pro Leu Ala Leu Leu Leu1 5
10 15His Ala Ala Arg Pro Asp Ile Gln Met Thr Gln
Thr Thr Ser Ser Leu 20 25
30Ser Ala Ser Leu Gly Asp Arg Val Thr Ile Ser Cys Arg Ala Ser Gln
35 40 45Asp Ile Ser Lys Tyr Leu Asn Trp
Tyr Gln Gln Lys Pro Asp Gly Thr 50 55
60Val Lys Leu Leu Ile Tyr His Thr Ser Arg Leu His Ser Gly Val Pro65
70 75 80Ser Arg Phe Ser Gly
Ser Gly Ser Gly Thr Asp Tyr Ser Leu Thr Ile 85
90 95Ser Asn Leu Glu Gln Glu Asp Ile Ala Thr Tyr
Phe Cys Gln Gln Gly 100 105
110Asn Thr Leu Pro Tyr Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Thr
115 120 125Lys Ala Gly Gly Gly Gly Ser
Gly Gly Gly Gly Ser Gly Gly Gly Gly 130 135
140Ser Gly Gly Gly Gly Ser Glu Val Lys Leu Gln Glu Ser Gly Pro
Gly145 150 155 160Leu Val
Ala Pro Ser Gln Ser Leu Ser Val Thr Cys Thr Val Ser Gly
165 170 175Val Ser Leu Pro Asp Tyr Gly
Val Ser Trp Ile Arg Gln Pro Pro Arg 180 185
190Lys Gly Leu Glu Trp Leu Gly Val Ile Trp Gly Ser Glu Thr
Thr Tyr 195 200 205Tyr Asn Ser Ala
Leu Lys Ser Arg Leu Thr Ile Ile Lys Asp Asn Ser 210
215 220Lys Ser Gln Val Phe Leu Lys Met Asn Ser Leu Gln
Thr Asp Asp Thr225 230 235
240Ala Ile Tyr Tyr Cys Ala Lys His Tyr Tyr Tyr Gly Gly Ser Tyr Ala
245 250 255Met Asp Tyr Trp Gly
Gln Gly Thr Ser Val Thr Val Ser Ser Asp Pro 260
265 270Thr Thr Thr Pro Ala Pro Arg Pro Pro Thr Pro Ala
Pro Thr Ile Ala 275 280 285Ser Gln
Pro Leu Ser Leu Arg Pro Glu Ala Cys Arg Pro Ala Ala Gly 290
295 300Gly Ala Val His Thr Arg Gly Leu Asp Phe Ala
Cys Asp Ile Phe Trp305 310 315
320Val Leu Val Val Val Gly Gly Val Leu Ala Cys Tyr Ser Leu Leu Val
325 330 335Thr Val Ala Phe
Ile Ile Phe Trp Val Arg Arg Val Lys Phe Ser Arg 340
345 350Ser Ala Asp Ala Pro Ala Tyr Gln Gln Gly Gln
Asn Gln Leu Tyr Asn 355 360 365Glu
Leu Asn Leu Gly Arg Arg Glu Glu Tyr Asp Val Leu Asp Lys Arg 370
375 380Arg Gly Arg Asp Pro Glu Met Gly Gly Lys
Pro Arg Arg Lys Asn Pro385 390 395
400Gln Glu Gly Leu Tyr Asn Glu Leu Gln Lys Asp Lys Met Ala Glu
Ala 405 410 415Tyr Ser Glu
Ile Gly Met Lys Gly Glu Arg Arg Arg Gly Lys Gly His 420
425 430Asp Gly Leu Tyr Gln Gly Leu Ser Thr Ala
Thr Lys Asp Thr Tyr Asp 435 440
445Ala Leu His Met Gln Ala Leu Pro Pro Arg Arg Ala Glu Gly Arg Gly 450
455 460Ser Leu Leu Thr Cys Gly Asp Val
Glu Glu Asn Pro Gly Pro Met Glu465 470
475 480Thr Asp Thr Leu Leu Leu Trp Val Leu Leu Leu Trp
Val Pro Gly Ser 485 490
495Thr Gly Gln Val Gln Leu Gln Glu Ser Gly Pro Gly Leu Val Lys Pro
500 505 510Ser Gln Thr Leu Ser Ile
Thr Cys Thr Val Ser Gly Phe Ser Leu Ala 515 520
525Ser Tyr Asn Ile His Trp Val Arg Gln Pro Pro Gly Lys Gly
Leu Glu 530 535 540Trp Leu Gly Val Ile
Trp Ala Gly Gly Ser Thr Asn Tyr Asn Ser Ala545 550
555 560Leu Met Ser Arg Leu Thr Ile Ser Lys Asp
Asn Ser Lys Asn Gln Val 565 570
575Phe Leu Lys Met Ser Ser Leu Thr Ala Ala Asp Thr Ala Val Tyr Tyr
580 585 590Cys Ala Lys Arg Ser
Asp Asp Tyr Ser Trp Phe Ala Tyr Trp Gly Gln 595
600 605Gly Thr Leu Val Thr Val Ser Ser Gly Gly Gly Gly
Ser Gly Gly Gly 610 615 620Gly Ser Gly
Gly Gly Gly Ser Glu Asn Gln Met Thr Gln Ser Pro Ser625
630 635 640Ser Leu Ser Ala Ser Val Gly
Asp Arg Val Thr Met Thr Cys Arg Ala 645
650 655Ser Ser Ser Val Ser Ser Ser Tyr Leu His Trp Tyr
Gln Gln Lys Ser 660 665 670Gly
Lys Ala Pro Lys Val Trp Ile Tyr Ser Thr Ser Asn Leu Ala Ser 675
680 685Gly Val Pro Ser Arg Phe Ser Gly Ser
Gly Ser Gly Thr Asp Tyr Thr 690 695
700Leu Thr Ile Ser Ser Leu Gln Pro Glu Asp Phe Ala Thr Tyr Tyr Cys705
710 715 720Gln Gln Tyr Ser
Gly Tyr Pro Ile Thr Phe Gly Gln Gly Thr Lys Val 725
730 735Glu Ile Lys Arg Ser Asp Pro Ala Glu Pro
Lys Ser Pro Asp Lys Thr 740 745
750His Thr Cys Pro Pro Cys Pro Ala Pro Pro Val Ala Gly Pro Ser Val
755 760 765Phe Leu Phe Pro Pro Lys Pro
Lys Asp Thr Leu Met Ile Ala Arg Thr 770 775
780Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro
Glu785 790 795 800Val Lys
Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys
805 810 815Thr Lys Pro Arg Glu Glu Gln
Tyr Asn Ser Thr Tyr Arg Val Val Ser 820 825
830Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu
Tyr Lys 835 840 845Cys Lys Val Ser
Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile 850
855 860Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val
Tyr Thr Leu Pro865 870 875
880Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser Leu Thr Cys Leu
885 890 895Val Lys Gly Phe Tyr
Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn 900
905 910Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro
Val Leu Asp Ser 915 920 925Asp Gly
Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg 930
935 940Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val
Met His Glu Ala Leu945 950 955
960His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys Lys
965 970 975Asp Pro Lys Ala
Val Phe Gly Cys Ile Phe Gly Ala Leu Val Ile Val 980
985 990Thr Val Gly Gly Phe Ile Phe Trp Arg Lys Lys
Arg Lys Asp Ala Lys 995 1000
1005Asn Asn Glu Val Ser Phe Ser Gln Ile Lys Pro Lys Lys Ser Lys
1010 1015 1020Leu Ile Arg Val Glu Asn
Phe Glu Ala Tyr Phe Lys Lys Gln Gln 1025 1030
1035Ala Asp Ser Asn Cys Gly Phe Ala Glu Glu Tyr Glu Asp Leu
Lys 1040 1045 1050Leu Val Gly Ile Ser
Gln Pro Lys Tyr Ala Ala Glu Leu Ala Glu 1055 1060
1065Asn Arg Gly Lys Asn Arg Tyr Asn Asn Val Leu Pro Tyr
Asp Ile 1070 1075 1080Ser Arg Val Lys
Leu Ser Val Gln Thr His Ser Thr Asp Asp Tyr 1085
1090 1095Ile Asn Ala Asn Tyr Met Pro Gly Tyr His Ser
Lys Lys Asp Phe 1100 1105 1110Ile Ala
Thr Gln Gly Pro Leu Pro Asn Thr Leu Lys Asp Phe Trp 1115
1120 1125Arg Met Val Trp Glu Lys Asn Val Tyr Ala
Ile Ile Met Leu Thr 1130 1135 1140Lys
Cys Val Glu Gln Gly Arg Thr Lys Cys Glu Glu Tyr Trp Pro 1145
1150 1155Ser Lys Gln Ala Gln Asp Tyr Gly Asp
Ile Thr Val Ala Met Thr 1160 1165
1170Ser Glu Ile Val Leu Pro Glu Trp Thr Ile Arg Asp Phe Thr Val
1175 1180 1185Lys Asn Ile Gln Thr Ser
Glu Ser His Pro Leu Arg Gln Phe His 1190 1195
1200Phe Thr Ser Trp Pro Asp His Gly Val Pro Asp Thr Thr Asp
Leu 1205 1210 1215Leu Ile Asn Phe Arg
Tyr Leu Val Arg Asp Tyr Met Lys Gln Ser 1220 1225
1230Pro Pro Glu Ser Pro Ile Leu Val His Cys Ser Ala Gly
Val Gly 1235 1240 1245Arg Thr Gly Thr
Phe Ile Ala Ile Asp Arg Leu Ile Tyr Gln Ile 1250
1255 1260Glu Asn Glu Asn Thr Val Asp Val Tyr Gly Ile
Val Tyr Asp Leu 1265 1270 1275Arg Met
His Arg Pro Leu Met Val Gln Thr Glu Asp Gln Tyr Val 1280
1285 1290Phe Leu Asn Gln Cys Val Leu Asp Ile Val
Arg Ser Gln Lys Asp 1295 1300 1305Ser
Lys Val Asp Leu Ile Tyr Gln Asn Thr Thr Ala Met Thr Ile 1310
1315 1320Tyr Glu Asn Leu Ala Pro Val Thr Thr
Phe Gly Lys Thr Asn Gly 1325 1330
1335Tyr Ile Ala 1340424026DNAArtificial SequenceSingle-chain variable
fragment (scFv) SFG.aCD19-CD8STK-CD28tmZ-2A-aGD2-HCH2CH3pvaa-dCD148
42atgagcctgc ccgtgaccgc cctgctgctg cccctggccc tgctgctgca cgccgccaga
60ccagacatcc agatgaccca gaccaccagc agcctgagcg ccagcctggg cgaccgggtg
120accatcagct gcagagccag ccaggacatc agcaagtacc tgaactggta ccagcagaag
180cccgacggca ccgtgaagct gctgatctac cacaccagcc ggctgcacag cggcgtgccc
240agccggttca gcggcagcgg cagcggcacc gactacagcc tgaccatcag caacctggag
300caggaggaca tcgccaccta cttctgccag cagggcaaca ccctgcccta caccttcgga
360ggcggcacca agctggagat caccaaggcc ggaggcggag gctctggcgg aggcggctct
420ggcggaggcg gctctggcgg aggcggcagc gaggtgaagc tgcaggagtc tggcccaggc
480ctggtggccc caagccagag cctgagcgtg acctgcaccg tgagcggcgt gagcctgccc
540gactacggcg tgagctggat caggcagccc ccacggaagg gcctggagtg gctgggcgtg
600atctggggca gcgagaccac ctactacaac agcgccctga agagccggct gaccatcatc
660aaggacaaca gcaagagcca ggtgttcctg aagatgaaca gcctgcagac cgacgacacc
720gccatctact actgcgccaa gcactactac tatggcggca gctacgctat ggactactgg
780ggccagggca ccagcgtgac cgtgagctca gatcccacca cgacgccagc gccgcgacca
840ccaacaccgg cgcccaccat cgcgtcgcag cccctgtccc tgcgcccaga ggcgtgccgg
900ccagcggcgg ggggcgcagt gcacacgagg gggctggact tcgcctgtga tatcttttgg
960gtgctggtgg tggttggtgg agtcctggct tgctatagct tgctagtaac agtggccttt
1020attattttct gggtgaggag agtgaagttc agcaggagcg cagacgcccc cgcgtaccag
1080cagggccaga accagctcta taacgagctc aatctaggac gaagagagga gtacgatgtt
1140ttggacaaga gacgtggccg ggaccctgag atggggggaa agccgagaag gaagaaccct
1200caggaaggcc tgtacaatga actgcagaaa gataagatgg cggaggccta cagtgagatt
1260gggatgaaag gcgagcgccg gaggggcaag gggcacgatg gcctttacca gggtctcagt
1320acagccacca aggacaccta cgacgccctt cacatgcagg ccctgcctcc tcgcagagcc
1380gagggcaggg gaagtcttct aacatgcggg gacgtggagg aaaatcccgg gcccatggag
1440accgacaccc tgctgctgtg ggtgctgctg ctgtgggtgc caggcagcac cggccaggtg
1500cagctgcagg agtctggccc aggcctggtg aagcccagcc agaccctgag catcacctgc
1560accgtgagcg gcttcagcct ggccagctac aacatccact gggtgcggca gcccccaggc
1620aagggcctgg agtggctggg cgtgatctgg gctggcggca gcaccaacta caacagcgcc
1680ctgatgagcc ggctgaccat cagcaaggac aacagcaaga accaggtgtt cctgaagatg
1740agcagcctga cagccgccga caccgccgtg tactactgcg ccaagcggag cgacgactac
1800agctggttcg cctactgggg ccagggcacc ctggtgaccg tgagctctgg cggaggcggc
1860tctggcggag gcggctctgg cggaggcggc agcgagaacc agatgaccca gagccccagc
1920agcttgagcg ccagcgtggg cgaccgggtg accatgacct gcagagccag cagcagcgtg
1980agcagcagct acctgcactg gtaccagcag aagagcggca aggccccaaa ggtgtggatc
2040tacagcacca gcaacctggc cagcggcgtg cccagccggt tcagcggcag cggcagcggc
2100accgactaca ccctgaccat cagcagcctg cagcccgagg acttcgccac ctactactgc
2160cagcagtaca gcggctaccc catcaccttc ggccagggca ccaaggtgga gatcaagcgg
2220tcggatcccg ccgagcccaa atctcctgac aaaactcaca catgcccacc gtgcccagca
2280cctcccgtgg ccggcccgtc agtcttcctc ttccccccaa aacccaagga caccctcatg
2340atcgcccgga cccctgaggt cacatgcgtg gtggtggacg tgagccacga agaccctgag
2400gtcaagttca actggtacgt ggacggcgtg gaggtgcata atgccaagac aaagccgcgg
2460gaggagcagt acaacagcac gtaccgtgtg gtcagcgtcc tcaccgtcct gcaccaggac
2520tggctgaatg gcaaggagta caagtgcaag gtctccaaca aagccctccc agcccccatc
2580gagaaaacca tctccaaagc caaagggcag ccccgagaac cacaggtgta caccctgccc
2640ccatcccggg atgagctgac caagaaccag gtcagcctga cctgcctggt caaaggcttc
2700tatcccagcg acatcgccgt ggagtgggag agcaatgggc aaccggagaa caactacaag
2760accacgcctc ccgtgctgga ctccgacggc tccttcttcc tctacagcaa gctcaccgtg
2820gacaagagca ggtggcagca ggggaacgtc ttctcatgct ccgtgatgca tgaggccctg
2880cacaatcact atacccagaa atctctgagt ctgagcccag gcaagaagga ccccaaggcg
2940gtttttggct gtatctttgg tgccctggtt attgtgactg tgggaggctt catcttctgg
3000agaaagaaga ggaaagatgc aaagaataat gaagtgtcct tttctcaaat taaacctaaa
3060aaatctaagt taatcagagt ggagaatttt gaggcctact tcaagaagca gcaagctgac
3120tccaactgtg ggttcgcaga ggaatacgaa gatctgaagc ttgttggaat tagtcaacct
3180aaatatgcag cagaactggc tgagaataga ggaaagaatc gctataataa tgttctgccc
3240tatgatattt cccgtgtcaa actttcggtc cagacccatt caacggatga ctacatcaat
3300gccaactaca tgcctggcta ccactccaag aaagatttta ttgccacaca aggaccttta
3360ccgaacactt tgaaagattt ttggcgtatg gtttgggaga aaaatgtata tgccatcatt
3420atgttgacta aatgtgttga acagggaaga accaaatgtg aggagtattg gccctccaag
3480caggctcagg actatggaga cataactgtg gcaatgacat cagaaattgt tcttccggaa
3540tggaccatca gagatttcac agtgaaaaat atccagacaa gtgagagtca ccctctgaga
3600cagttccatt tcacctcctg gccagaccac ggtgttcccg acaccactga cctgctcatc
3660aacttccggt acctcgttcg tgactacatg aagcagagtc ctcccgaatc gccgattctg
3720gtgcattgca gtgctggggt cggaaggacg ggcactttca ttgccattga tcgtctcatc
3780taccagatag agaatgagaa caccgtggat gtgtatggga ttgtgtatga ccttcgaatg
3840cataggcctt taatggtgca gacagaggac cagtatgttt tcctcaatca gtgtgttttg
3900gatattgtca gatcccagaa agactcaaaa gtagatctta tctaccagaa cacaactgca
3960atgacaatct atgaaaacct tgcgcccgtg accacatttg gaaagaccaa tggttacatc
4020gcctaa
4026431341PRTArtificial SequenceSingle-chain variable fragment (scFv)
SFG.aCD19-CD8STK-CD28tmZ-2A-aCD5-HCH2CH3pvaa-dCD148 43Met Ser Leu Pro
Val Thr Ala Leu Leu Leu Pro Leu Ala Leu Leu Leu1 5
10 15His Ala Ala Arg Pro Asp Ile Gln Met Thr
Gln Thr Thr Ser Ser Leu 20 25
30Ser Ala Ser Leu Gly Asp Arg Val Thr Ile Ser Cys Arg Ala Ser Gln
35 40 45Asp Ile Ser Lys Tyr Leu Asn Trp
Tyr Gln Gln Lys Pro Asp Gly Thr 50 55
60Val Lys Leu Leu Ile Tyr His Thr Ser Arg Leu His Ser Gly Val Pro65
70 75 80Ser Arg Phe Ser Gly
Ser Gly Ser Gly Thr Asp Tyr Ser Leu Thr Ile 85
90 95Ser Asn Leu Glu Gln Glu Asp Ile Ala Thr Tyr
Phe Cys Gln Gln Gly 100 105
110Asn Thr Leu Pro Tyr Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Thr
115 120 125Lys Ala Gly Gly Gly Gly Ser
Gly Gly Gly Gly Ser Gly Gly Gly Gly 130 135
140Ser Gly Gly Gly Gly Ser Glu Val Lys Leu Gln Glu Ser Gly Pro
Gly145 150 155 160Leu Val
Ala Pro Ser Gln Ser Leu Ser Val Thr Cys Thr Val Ser Gly
165 170 175Val Ser Leu Pro Asp Tyr Gly
Val Ser Trp Ile Arg Gln Pro Pro Arg 180 185
190Lys Gly Leu Glu Trp Leu Gly Val Ile Trp Gly Ser Glu Thr
Thr Tyr 195 200 205Tyr Asn Ser Ala
Leu Lys Ser Arg Leu Thr Ile Ile Lys Asp Asn Ser 210
215 220Lys Ser Gln Val Phe Leu Lys Met Asn Ser Leu Gln
Thr Asp Asp Thr225 230 235
240Ala Ile Tyr Tyr Cys Ala Lys His Tyr Tyr Tyr Gly Gly Ser Tyr Ala
245 250 255Met Asp Tyr Trp Gly
Gln Gly Thr Ser Val Thr Val Ser Ser Asp Pro 260
265 270Thr Thr Thr Pro Ala Pro Arg Pro Pro Thr Pro Ala
Pro Thr Ile Ala 275 280 285Ser Gln
Pro Leu Ser Leu Arg Pro Glu Ala Cys Arg Pro Ala Ala Gly 290
295 300Gly Ala Val His Thr Arg Gly Leu Asp Phe Ala
Cys Asp Ile Phe Trp305 310 315
320Val Leu Val Val Val Gly Gly Val Leu Ala Cys Tyr Ser Leu Leu Val
325 330 335Thr Val Ala Phe
Ile Ile Phe Trp Val Arg Arg Val Lys Phe Ser Arg 340
345 350Ser Ala Asp Ala Pro Ala Tyr Gln Gln Gly Gln
Asn Gln Leu Tyr Asn 355 360 365Glu
Leu Asn Leu Gly Arg Arg Glu Glu Tyr Asp Val Leu Asp Lys Arg 370
375 380Arg Gly Arg Asp Pro Glu Met Gly Gly Lys
Pro Arg Arg Lys Asn Pro385 390 395
400Gln Glu Gly Leu Tyr Asn Glu Leu Gln Lys Asp Lys Met Ala Glu
Ala 405 410 415Tyr Ser Glu
Ile Gly Met Lys Gly Glu Arg Arg Arg Gly Lys Gly His 420
425 430Asp Gly Leu Tyr Gln Gly Leu Ser Thr Ala
Thr Lys Asp Thr Tyr Asp 435 440
445Ala Leu His Met Gln Ala Leu Pro Pro Arg Arg Ala Glu Gly Arg Gly 450
455 460Ser Leu Leu Thr Cys Gly Asp Val
Glu Glu Asn Pro Gly Pro Met Glu465 470
475 480Thr Asp Thr Leu Leu Leu Trp Val Leu Leu Leu Trp
Val Pro Gly Ser 485 490
495Thr Gly Gln Val Thr Leu Lys Glu Ser Gly Pro Gly Ile Leu Lys Pro
500 505 510Ser Gln Thr Leu Ser Leu
Thr Cys Ser Phe Ser Gly Phe Ser Leu Ser 515 520
525Thr Ser Gly Met Gly Val Gly Trp Ile Arg Gln Pro Ser Gly
Lys Gly 530 535 540Leu Glu Trp Leu Ala
His Ile Trp Trp Asp Asp Asp Val Tyr Tyr Asn545 550
555 560Pro Ser Leu Lys Asn Gln Leu Thr Ile Ser
Lys Asp Ala Ser Arg Asp 565 570
575Gln Val Phe Leu Lys Ile Thr Asn Leu Asp Thr Ala Asp Thr Ala Thr
580 585 590Tyr Tyr Cys Val Arg
Arg Arg Ala Thr Gly Thr Gly Phe Asp Tyr Trp 595
600 605Gly Gln Gly Thr Thr Leu Thr Val Ser Ser Gly Gly
Gly Gly Ser Gly 610 615 620Gly Gly Gly
Ser Gly Gly Gly Gly Ser Asn Ile Val Met Thr Gln Ser625
630 635 640His Lys Phe Met Ser Thr Ser
Val Gly Asp Arg Val Ser Ile Ala Cys 645
650 655Lys Ala Ser Gln Asp Val Gly Thr Ala Val Ala Trp
Tyr Gln Gln Lys 660 665 670Pro
Gly Gln Ser Pro Lys Leu Leu Ile Tyr Trp Thr Ser Thr Arg His 675
680 685Thr Gly Val Pro Asp Arg Phe Thr Gly
Ser Gly Ser Gly Thr Asp Phe 690 695
700Thr Leu Thr Ile Thr Asn Val Gln Ser Glu Asp Leu Ala Asp Tyr Phe705
710 715 720Cys His Gln Tyr
Asn Ser Tyr Asn Thr Phe Gly Ser Gly Thr Arg Leu 725
730 735Glu Leu Lys Arg Ser Asp Pro Ala Glu Pro
Lys Ser Pro Asp Lys Thr 740 745
750His Thr Cys Pro Pro Cys Pro Ala Pro Pro Val Ala Gly Pro Ser Val
755 760 765Phe Leu Phe Pro Pro Lys Pro
Lys Asp Thr Leu Met Ile Ala Arg Thr 770 775
780Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro
Glu785 790 795 800Val Lys
Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys
805 810 815Thr Lys Pro Arg Glu Glu Gln
Tyr Asn Ser Thr Tyr Arg Val Val Ser 820 825
830Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu
Tyr Lys 835 840 845Cys Lys Val Ser
Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile 850
855 860Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val
Tyr Thr Leu Pro865 870 875
880Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser Leu Thr Cys Leu
885 890 895Val Lys Gly Phe Tyr
Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn 900
905 910Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro
Val Leu Asp Ser 915 920 925Asp Gly
Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg 930
935 940Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val
Met His Glu Ala Leu945 950 955
960His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys Lys
965 970 975Asp Pro Lys Ala
Val Phe Gly Cys Ile Phe Gly Ala Leu Val Ile Val 980
985 990Thr Val Gly Gly Phe Ile Phe Trp Arg Lys Lys
Arg Lys Asp Ala Lys 995 1000
1005Asn Asn Glu Val Ser Phe Ser Gln Ile Lys Pro Lys Lys Ser Lys
1010 1015 1020Leu Ile Arg Val Glu Asn
Phe Glu Ala Tyr Phe Lys Lys Gln Gln 1025 1030
1035Ala Asp Ser Asn Cys Gly Phe Ala Glu Glu Tyr Glu Asp Leu
Lys 1040 1045 1050Leu Val Gly Ile Ser
Gln Pro Lys Tyr Ala Ala Glu Leu Ala Glu 1055 1060
1065Asn Arg Gly Lys Asn Arg Tyr Asn Asn Val Leu Pro Tyr
Asp Ile 1070 1075 1080Ser Arg Val Lys
Leu Ser Val Gln Thr His Ser Thr Asp Asp Tyr 1085
1090 1095Ile Asn Ala Asn Tyr Met Pro Gly Tyr His Ser
Lys Lys Asp Phe 1100 1105 1110Ile Ala
Thr Gln Gly Pro Leu Pro Asn Thr Leu Lys Asp Phe Trp 1115
1120 1125Arg Met Val Trp Glu Lys Asn Val Tyr Ala
Ile Ile Met Leu Thr 1130 1135 1140Lys
Cys Val Glu Gln Gly Arg Thr Lys Cys Glu Glu Tyr Trp Pro 1145
1150 1155Ser Lys Gln Ala Gln Asp Tyr Gly Asp
Ile Thr Val Ala Met Thr 1160 1165
1170Ser Glu Ile Val Leu Pro Glu Trp Thr Ile Arg Asp Phe Thr Val
1175 1180 1185Lys Asn Ile Gln Thr Ser
Glu Ser His Pro Leu Arg Gln Phe His 1190 1195
1200Phe Thr Ser Trp Pro Asp His Gly Val Pro Asp Thr Thr Asp
Leu 1205 1210 1215Leu Ile Asn Phe Arg
Tyr Leu Val Arg Asp Tyr Met Lys Gln Ser 1220 1225
1230Pro Pro Glu Ser Pro Ile Leu Val His Cys Ser Ala Gly
Val Gly 1235 1240 1245Arg Thr Gly Thr
Phe Ile Ala Ile Asp Arg Leu Ile Tyr Gln Ile 1250
1255 1260Glu Asn Glu Asn Thr Val Asp Val Tyr Gly Ile
Val Tyr Asp Leu 1265 1270 1275Arg Met
His Arg Pro Leu Met Val Gln Thr Glu Asp Gln Tyr Val 1280
1285 1290Phe Leu Asn Gln Cys Val Leu Asp Ile Val
Arg Ser Gln Lys Asp 1295 1300 1305Ser
Lys Val Asp Leu Ile Tyr Gln Asn Thr Thr Ala Met Thr Ile 1310
1315 1320Tyr Glu Asn Leu Ala Pro Val Thr Thr
Phe Gly Lys Thr Asn Gly 1325 1330
1335Tyr Ile Ala 1340444026DNAArtificial SequenceSingle-chain variable
fragment (scFv) SFG.aCD19-CD8STK-CD28tmZ-2A-aCD5-HCH2CH3pvaa-dCD148
44atgagcctgc ccgtgaccgc cctgctgctg cccctggccc tgctgctgca cgccgccaga
60ccagacatcc agatgaccca gaccaccagc agcctgagcg ccagcctggg cgaccgggtg
120accatcagct gcagagccag ccaggacatc agcaagtacc tgaactggta ccagcagaag
180cccgacggca ccgtgaagct gctgatctac cacaccagcc ggctgcacag cggcgtgccc
240agccggttca gcggcagcgg cagcggcacc gactacagcc tgaccatcag caacctggag
300caggaggaca tcgccaccta cttctgccag cagggcaaca ccctgcccta caccttcgga
360ggcggcacca agctggagat caccaaggcc ggaggcggag gctctggcgg aggcggctct
420ggcggaggcg gctctggcgg aggcggcagc gaggtgaagc tgcaggagtc tggcccaggc
480ctggtggccc caagccagag cctgagcgtg acctgcaccg tgagcggcgt gagcctgccc
540gactacggcg tgagctggat caggcagccc ccacggaagg gcctggagtg gctgggcgtg
600atctggggca gcgagaccac ctactacaac agcgccctga agagccggct gaccatcatc
660aaggacaaca gcaagagcca ggtgttcctg aagatgaaca gcctgcagac cgacgacacc
720gccatctact actgcgccaa gcactactac tatggcggca gctacgctat ggactactgg
780ggccagggca ccagcgtgac cgtgagctca gatcccacca cgacgccagc gccgcgacca
840ccaacaccgg cgcccaccat cgcgtcgcag cccctgtccc tgcgcccaga ggcgtgccgg
900ccagcggcgg ggggcgcagt gcacacgagg gggctggact tcgcctgtga tatcttttgg
960gtgctggtgg tggttggtgg agtcctggct tgctatagct tgctagtaac agtggccttt
1020attattttct gggtgaggag agtgaagttc agcaggagcg cagacgcccc cgcgtaccag
1080cagggccaga accagctcta taacgagctc aatctaggac gaagagagga gtacgatgtt
1140ttggacaaga gacgtggccg ggaccctgag atggggggaa agccgagaag gaagaaccct
1200caggaaggcc tgtacaatga actgcagaaa gataagatgg cggaggccta cagtgagatt
1260gggatgaaag gcgagcgccg gaggggcaag gggcacgatg gcctttacca gggtctcagt
1320acagccacca aggacaccta cgacgccctt cacatgcagg ccctgcctcc tcgcagagcc
1380gagggcaggg gaagtcttct aacatgcggg gacgtggagg aaaatcccgg gcccatggag
1440accgacaccc tgctgctgtg ggtgctgctg ctgtgggtgc ccggcagcac cggccaggtg
1500accctgaagg agagcggtcc cggcatcctg aagcccagcc agaccctgag cctgacctgc
1560agcttcagcg gcttcagcct gagcaccagc ggcatgggcg tgggctggat tcggcagccc
1620agcggcaagg gcctggagtg gctggcccac atctggtggg acgacgacgt gtactacaac
1680cccagcctga agaaccagct gaccatcagc aaggacgcca gccgggacca ggtgttcctg
1740aagatcacca acctggacac cgccgacacc gccacctact actgcgtgcg gcgccgggcc
1800accggcaccg gcttcgacta ctggggccag ggcaccaccc tgaccgtgag cagcggtggc
1860ggtggcagcg gcggcggcgg aagcggaggt ggtggcagca acatcgtgat gacccagagc
1920cacaagttca tgagcaccag cgtgggcgac cgggtgagca tcgcctgcaa ggccagccag
1980gacgtgggca ccgccgtggc ctggtaccag cagaagcctg gccagagccc caagctgctg
2040atctactgga ccagcacccg gcacaccggc gtgcccgacc ggttcaccgg cagcggcagc
2100ggcaccgact tcaccctgac catcaccaac gtgcagagcg aggacctggc cgactacttc
2160tgccaccagt acaacagcta caacaccttc ggcagcggca cccggctgga gctgaagcgg
2220tcggatcccg ccgagcccaa atctcctgac aaaactcaca catgcccacc gtgcccagca
2280cctcccgtgg ccggcccgtc agtcttcctc ttccccccaa aacccaagga caccctcatg
2340atcgcccgga cccctgaggt cacatgcgtg gtggtggacg tgagccacga agaccctgag
2400gtcaagttca actggtacgt ggacggcgtg gaggtgcata atgccaagac aaagccgcgg
2460gaggagcagt acaacagcac gtaccgtgtg gtcagcgtcc tcaccgtcct gcaccaggac
2520tggctgaatg gcaaggagta caagtgcaag gtctccaaca aagccctccc agcccccatc
2580gagaaaacca tctccaaagc caaagggcag ccccgagaac cacaggtgta caccctgccc
2640ccatcccggg atgagctgac caagaaccag gtcagcctga cctgcctggt caaaggcttc
2700tatcccagcg acatcgccgt ggagtgggag agcaatgggc aaccggagaa caactacaag
2760accacgcctc ccgtgctgga ctccgacggc tccttcttcc tctacagcaa gctcaccgtg
2820gacaagagca ggtggcagca ggggaacgtc ttctcatgct ccgtgatgca tgaggccctg
2880cacaatcact atacccagaa atctctgagt ctgagcccag gcaagaagga ccccaaggcg
2940gtttttggct gtatctttgg tgccctggtt attgtgactg tgggaggctt catcttctgg
3000agaaagaaga ggaaagatgc aaagaataat gaagtgtcct tttctcaaat taaacctaaa
3060aaatctaagt taatcagagt ggagaatttt gaggcctact tcaagaagca gcaagctgac
3120tccaactgtg ggttcgcaga ggaatacgaa gatctgaagc ttgttggaat tagtcaacct
3180aaatatgcag cagaactggc tgagaataga ggaaagaatc gctataataa tgttctgccc
3240tatgatattt cccgtgtcaa actttcggtc cagacccatt caacggatga ctacatcaat
3300gccaactaca tgcctggcta ccactccaag aaagatttta ttgccacaca aggaccttta
3360ccgaacactt tgaaagattt ttggcgtatg gtttgggaga aaaatgtata tgccatcatt
3420atgttgacta aatgtgttga acagggaaga accaaatgtg aggagtattg gccctccaag
3480caggctcagg actatggaga cataactgtg gcaatgacat cagaaattgt tcttccggaa
3540tggaccatca gagatttcac agtgaaaaat atccagacaa gtgagagtca ccctctgaga
3600cagttccatt tcacctcctg gccagaccac ggtgttcccg acaccactga cctgctcatc
3660aacttccggt acctcgttcg tgactacatg aagcagagtc ctcccgaatc gccgattctg
3720gtgcattgca gtgctggggt cggaaggacg ggcactttca ttgccattga tcgtctcatc
3780taccagatag agaatgagaa caccgtggat gtgtatggga ttgtgtatga ccttcgaatg
3840cataggcctt taatggtgca gacagaggac cagtatgttt tcctcaatca gtgtgttttg
3900gatattgtca gatcccagaa agactcaaaa gtagatctta tctaccagaa cacaactgca
3960atgacaatct atgaaaacct tgcgcccgtg accacatttg gaaagaccaa tggttacatc
4020gcctaa
4026451342PRTArtificial SequenceSingle-chain variable fragment (scFv)
SFG.aCD19-CD8STK-CD28tmZ-2A-aEGFRvIII-HCH2CH3pvaa-dCD148 45Met Ser Leu
Pro Val Thr Ala Leu Leu Leu Pro Leu Ala Leu Leu Leu1 5
10 15His Ala Ala Arg Pro Asp Ile Gln Met
Thr Gln Thr Thr Ser Ser Leu 20 25
30Ser Ala Ser Leu Gly Asp Arg Val Thr Ile Ser Cys Arg Ala Ser Gln
35 40 45Asp Ile Ser Lys Tyr Leu Asn
Trp Tyr Gln Gln Lys Pro Asp Gly Thr 50 55
60Val Lys Leu Leu Ile Tyr His Thr Ser Arg Leu His Ser Gly Val Pro65
70 75 80Ser Arg Phe Ser
Gly Ser Gly Ser Gly Thr Asp Tyr Ser Leu Thr Ile 85
90 95Ser Asn Leu Glu Gln Glu Asp Ile Ala Thr
Tyr Phe Cys Gln Gln Gly 100 105
110Asn Thr Leu Pro Tyr Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Thr
115 120 125Lys Ala Gly Gly Gly Gly Ser
Gly Gly Gly Gly Ser Gly Gly Gly Gly 130 135
140Ser Gly Gly Gly Gly Ser Glu Val Lys Leu Gln Glu Ser Gly Pro
Gly145 150 155 160Leu Val
Ala Pro Ser Gln Ser Leu Ser Val Thr Cys Thr Val Ser Gly
165 170 175Val Ser Leu Pro Asp Tyr Gly
Val Ser Trp Ile Arg Gln Pro Pro Arg 180 185
190Lys Gly Leu Glu Trp Leu Gly Val Ile Trp Gly Ser Glu Thr
Thr Tyr 195 200 205Tyr Asn Ser Ala
Leu Lys Ser Arg Leu Thr Ile Ile Lys Asp Asn Ser 210
215 220Lys Ser Gln Val Phe Leu Lys Met Asn Ser Leu Gln
Thr Asp Asp Thr225 230 235
240Ala Ile Tyr Tyr Cys Ala Lys His Tyr Tyr Tyr Gly Gly Ser Tyr Ala
245 250 255Met Asp Tyr Trp Gly
Gln Gly Thr Ser Val Thr Val Ser Ser Asp Pro 260
265 270Thr Thr Thr Pro Ala Pro Arg Pro Pro Thr Pro Ala
Pro Thr Ile Ala 275 280 285Ser Gln
Pro Leu Ser Leu Arg Pro Glu Ala Cys Arg Pro Ala Ala Gly 290
295 300Gly Ala Val His Thr Arg Gly Leu Asp Phe Ala
Cys Asp Ile Phe Trp305 310 315
320Val Leu Val Val Val Gly Gly Val Leu Ala Cys Tyr Ser Leu Leu Val
325 330 335Thr Val Ala Phe
Ile Ile Phe Trp Val Arg Arg Val Lys Phe Ser Arg 340
345 350Ser Ala Asp Ala Pro Ala Tyr Gln Gln Gly Gln
Asn Gln Leu Tyr Asn 355 360 365Glu
Leu Asn Leu Gly Arg Arg Glu Glu Tyr Asp Val Leu Asp Lys Arg 370
375 380Arg Gly Arg Asp Pro Glu Met Gly Gly Lys
Pro Arg Arg Lys Asn Pro385 390 395
400Gln Glu Gly Leu Tyr Asn Glu Leu Gln Lys Asp Lys Met Ala Glu
Ala 405 410 415Tyr Ser Glu
Ile Gly Met Lys Gly Glu Arg Arg Arg Gly Lys Gly His 420
425 430Asp Gly Leu Tyr Gln Gly Leu Ser Thr Ala
Thr Lys Asp Thr Tyr Asp 435 440
445Ala Leu His Met Gln Ala Leu Pro Pro Arg Arg Ala Glu Gly Arg Gly 450
455 460Ser Leu Leu Thr Cys Gly Asp Val
Glu Glu Asn Pro Gly Pro Met Glu465 470
475 480Thr Asp Thr Leu Leu Leu Trp Val Leu Leu Leu Trp
Val Pro Gly Ser 485 490
495Thr Gly Gln Val Lys Leu Gln Gln Ser Gly Gly Gly Leu Val Lys Pro
500 505 510Gly Ala Ser Leu Lys Leu
Ser Cys Val Thr Ser Gly Phe Thr Phe Arg 515 520
525Lys Phe Gly Met Ser Trp Val Arg Gln Thr Ser Asp Lys Arg
Leu Glu 530 535 540Trp Val Ala Ser Ile
Ser Thr Gly Gly Tyr Asn Thr Tyr Tyr Ser Asp545 550
555 560Asn Val Lys Gly Arg Phe Thr Ile Ser Arg
Glu Asn Ala Lys Asn Thr 565 570
575Leu Tyr Leu Gln Met Ser Ser Leu Lys Ser Glu Asp Thr Ala Leu Tyr
580 585 590Tyr Cys Thr Arg Gly
Tyr Ser Ser Thr Ser Tyr Ala Met Asp Tyr Trp 595
600 605Gly Gln Gly Thr Thr Val Thr Val Ser Ser Gly Gly
Gly Gly Ser Gly 610 615 620Gly Gly Gly
Ser Gly Gly Gly Gly Ser Asp Ile Glu Leu Thr Gln Ser625
630 635 640Pro Ala Ser Leu Ser Val Ala
Thr Gly Glu Lys Val Thr Ile Arg Cys 645
650 655Met Thr Ser Thr Asp Ile Asp Asp Asp Met Asn Trp
Tyr Gln Gln Lys 660 665 670Pro
Gly Glu Pro Pro Lys Phe Leu Ile Ser Glu Gly Asn Thr Leu Arg 675
680 685Pro Gly Val Pro Ser Arg Phe Ser Ser
Ser Gly Thr Gly Thr Asp Phe 690 695
700Val Phe Thr Ile Glu Asn Thr Leu Ser Glu Asp Val Gly Asp Tyr Tyr705
710 715 720Cys Leu Gln Ser
Phe Asn Val Pro Leu Thr Phe Gly Asp Gly Thr Lys 725
730 735Leu Glu Ile Lys Arg Ser Asp Pro Ala Glu
Pro Lys Ser Pro Asp Lys 740 745
750Thr His Thr Cys Pro Pro Cys Pro Ala Pro Pro Val Ala Gly Pro Ser
755 760 765Val Phe Leu Phe Pro Pro Lys
Pro Lys Asp Thr Leu Met Ile Ala Arg 770 775
780Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu Asp
Pro785 790 795 800Glu Val
Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala
805 810 815Lys Thr Lys Pro Arg Glu Glu
Gln Tyr Asn Ser Thr Tyr Arg Val Val 820 825
830Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys
Glu Tyr 835 840 845Lys Cys Lys Val
Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr 850
855 860Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln
Val Tyr Thr Leu865 870 875
880Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser Leu Thr Cys
885 890 895Leu Val Lys Gly Phe
Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser 900
905 910Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro
Pro Val Leu Asp 915 920 925Ser Asp
Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser 930
935 940Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser
Val Met His Glu Ala945 950 955
960Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys
965 970 975Lys Asp Pro Lys
Ala Val Phe Gly Cys Ile Phe Gly Ala Leu Val Ile 980
985 990Val Thr Val Gly Gly Phe Ile Phe Trp Arg Lys
Lys Arg Lys Asp Ala 995 1000
1005Lys Asn Asn Glu Val Ser Phe Ser Gln Ile Lys Pro Lys Lys Ser
1010 1015 1020Lys Leu Ile Arg Val Glu
Asn Phe Glu Ala Tyr Phe Lys Lys Gln 1025 1030
1035Gln Ala Asp Ser Asn Cys Gly Phe Ala Glu Glu Tyr Glu Asp
Leu 1040 1045 1050Lys Leu Val Gly Ile
Ser Gln Pro Lys Tyr Ala Ala Glu Leu Ala 1055 1060
1065Glu Asn Arg Gly Lys Asn Arg Tyr Asn Asn Val Leu Pro
Tyr Asp 1070 1075 1080Ile Ser Arg Val
Lys Leu Ser Val Gln Thr His Ser Thr Asp Asp 1085
1090 1095Tyr Ile Asn Ala Asn Tyr Met Pro Gly Tyr His
Ser Lys Lys Asp 1100 1105 1110Phe Ile
Ala Thr Gln Gly Pro Leu Pro Asn Thr Leu Lys Asp Phe 1115
1120 1125Trp Arg Met Val Trp Glu Lys Asn Val Tyr
Ala Ile Ile Met Leu 1130 1135 1140Thr
Lys Cys Val Glu Gln Gly Arg Thr Lys Cys Glu Glu Tyr Trp 1145
1150 1155Pro Ser Lys Gln Ala Gln Asp Tyr Gly
Asp Ile Thr Val Ala Met 1160 1165
1170Thr Ser Glu Ile Val Leu Pro Glu Trp Thr Ile Arg Asp Phe Thr
1175 1180 1185Val Lys Asn Ile Gln Thr
Ser Glu Ser His Pro Leu Arg Gln Phe 1190 1195
1200His Phe Thr Ser Trp Pro Asp His Gly Val Pro Asp Thr Thr
Asp 1205 1210 1215Leu Leu Ile Asn Phe
Arg Tyr Leu Val Arg Asp Tyr Met Lys Gln 1220 1225
1230Ser Pro Pro Glu Ser Pro Ile Leu Val His Cys Ser Ala
Gly Val 1235 1240 1245Gly Arg Thr Gly
Thr Phe Ile Ala Ile Asp Arg Leu Ile Tyr Gln 1250
1255 1260Ile Glu Asn Glu Asn Thr Val Asp Val Tyr Gly
Ile Val Tyr Asp 1265 1270 1275Leu Arg
Met His Arg Pro Leu Met Val Gln Thr Glu Asp Gln Tyr 1280
1285 1290Val Phe Leu Asn Gln Cys Val Leu Asp Ile
Val Arg Ser Gln Lys 1295 1300 1305Asp
Ser Lys Val Asp Leu Ile Tyr Gln Asn Thr Thr Ala Met Thr 1310
1315 1320Ile Tyr Glu Asn Leu Ala Pro Val Thr
Thr Phe Gly Lys Thr Asn 1325 1330
1335Gly Tyr Ile Ala 1340464029DNAArtificial SequenceSingle-chain
variable fragment (scFv)
SFG.aCD19-CD8STK-CD28tmZ-2A-aEGFRvIII-HCH2CH3pvaa-dCD148 46atgagcctgc
ccgtgaccgc cctgctgctg cccctggccc tgctgctgca cgccgccaga 60ccagacatcc
agatgaccca gaccaccagc agcctgagcg ccagcctggg cgaccgggtg 120accatcagct
gcagagccag ccaggacatc agcaagtacc tgaactggta ccagcagaag 180cccgacggca
ccgtgaagct gctgatctac cacaccagcc ggctgcacag cggcgtgccc 240agccggttca
gcggcagcgg cagcggcacc gactacagcc tgaccatcag caacctggag 300caggaggaca
tcgccaccta cttctgccag cagggcaaca ccctgcccta caccttcgga 360ggcggcacca
agctggagat caccaaggcc ggaggcggag gctctggcgg aggcggctct 420ggcggaggcg
gctctggcgg aggcggcagc gaggtgaagc tgcaggagtc tggcccaggc 480ctggtggccc
caagccagag cctgagcgtg acctgcaccg tgagcggcgt gagcctgccc 540gactacggcg
tgagctggat caggcagccc ccacggaagg gcctggagtg gctgggcgtg 600atctggggca
gcgagaccac ctactacaac agcgccctga agagccggct gaccatcatc 660aaggacaaca
gcaagagcca ggtgttcctg aagatgaaca gcctgcagac cgacgacacc 720gccatctact
actgcgccaa gcactactac tatggcggca gctacgctat ggactactgg 780ggccagggca
ccagcgtgac cgtgagctca gatcccacca cgacgccagc gccgcgacca 840ccaacaccgg
cgcccaccat cgcgtcgcag cccctgtccc tgcgcccaga ggcgtgccgg 900ccagcggcgg
ggggcgcagt gcacacgagg gggctggact tcgcctgtga tatcttttgg 960gtgctggtgg
tggttggtgg agtcctggct tgctatagct tgctagtaac agtggccttt 1020attattttct
gggtgaggag agtgaagttc agcaggagcg cagacgcccc cgcgtaccag 1080cagggccaga
accagctcta taacgagctc aatctaggac gaagagagga gtacgatgtt 1140ttggacaaga
gacgtggccg ggaccctgag atggggggaa agccgagaag gaagaaccct 1200caggaaggcc
tgtacaatga actgcagaaa gataagatgg cggaggccta cagtgagatt 1260gggatgaaag
gcgagcgccg gaggggcaag gggcacgatg gcctttacca gggtctcagt 1320acagccacca
aggacaccta cgacgccctt cacatgcagg ccctgcctcc tcgcagagcc 1380gagggcaggg
gaagtcttct aacatgcggg gacgtggagg aaaatcccgg gcccatggag 1440accgacaccc
tgctgctgtg ggtgctgctg ctgtgggtgc ccggcagcac cggccaggtg 1500aagctgcagc
agagcggcgg aggcctggtg aagcccggcg ccagcctgaa gctgagctgc 1560gtgaccagcg
gcttcacctt ccggaagttc ggcatgagct gggtgcggca gaccagcgac 1620aagcggctgg
agtgggtggc cagcatcagc accggcggct acaacaccta ctacagcgac 1680aacgtgaagg
gccggttcac catcagccgg gagaacgcca agaacaccct gtacctgcag 1740atgagcagcc
tgaagagcga ggacaccgcc ctgtactact gcacccgggg ctacagcagc 1800accagctacg
ctatggacta ctggggccag ggcaccaccg tgacagtgag cagcggcgga 1860ggaggcagtg
gtgggggtgg atctggcgga ggtggcagcg acatcgagct gacccagagc 1920cccgccagcc
tgagcgtggc caccggcgag aaggtgacca tccggtgcat gaccagcacc 1980gacatcgacg
acgacatgaa ctggtaccag cagaagcccg gcgagccccc aaagttcctg 2040atcagcgagg
gcaacaccct gcggcccggc gtgcccagcc ggttcagcag cagcggcacc 2100ggcaccgact
tcgtgttcac catcgagaac accctgagcg aggacgtggg cgactactac 2160tgcctgcaga
gcttcaacgt gcccctgacc ttcggcgacg gcaccaagct ggagatcaag 2220cggtcggatc
ccgccgagcc caaatctcct gacaaaactc acacatgccc accgtgccca 2280gcacctcccg
tggccggccc gtcagtcttc ctcttccccc caaaacccaa ggacaccctc 2340atgatcgccc
ggacccctga ggtcacatgc gtggtggtgg acgtgagcca cgaagaccct 2400gaggtcaagt
tcaactggta cgtggacggc gtggaggtgc ataatgccaa gacaaagccg 2460cgggaggagc
agtacaacag cacgtaccgt gtggtcagcg tcctcaccgt cctgcaccag 2520gactggctga
atggcaagga gtacaagtgc aaggtctcca acaaagccct cccagccccc 2580atcgagaaaa
ccatctccaa agccaaaggg cagccccgag aaccacaggt gtacaccctg 2640cccccatccc
gggatgagct gaccaagaac caggtcagcc tgacctgcct ggtcaaaggc 2700ttctatccca
gcgacatcgc cgtggagtgg gagagcaatg ggcaaccgga gaacaactac 2760aagaccacgc
ctcccgtgct ggactccgac ggctccttct tcctctacag caagctcacc 2820gtggacaaga
gcaggtggca gcaggggaac gtcttctcat gctccgtgat gcatgaggcc 2880ctgcacaatc
actataccca gaaatctctg agtctgagcc caggcaagaa ggaccccaag 2940gcggtttttg
gctgtatctt tggtgccctg gttattgtga ctgtgggagg cttcatcttc 3000tggagaaaga
agaggaaaga tgcaaagaat aatgaagtgt ccttttctca aattaaacct 3060aaaaaatcta
agttaatcag agtggagaat tttgaggcct acttcaagaa gcagcaagct 3120gactccaact
gtgggttcgc agaggaatac gaagatctga agcttgttgg aattagtcaa 3180cctaaatatg
cagcagaact ggctgagaat agaggaaaga atcgctataa taatgttctg 3240ccctatgata
tttcccgtgt caaactttcg gtccagaccc attcaacgga tgactacatc 3300aatgccaact
acatgcctgg ctaccactcc aagaaagatt ttattgccac acaaggacct 3360ttaccgaaca
ctttgaaaga tttttggcgt atggtttggg agaaaaatgt atatgccatc 3420attatgttga
ctaaatgtgt tgaacaggga agaaccaaat gtgaggagta ttggccctcc 3480aagcaggctc
aggactatgg agacataact gtggcaatga catcagaaat tgttcttccg 3540gaatggacca
tcagagattt cacagtgaaa aatatccaga caagtgagag tcaccctctg 3600agacagttcc
atttcacctc ctggccagac cacggtgttc ccgacaccac tgacctgctc 3660atcaacttcc
ggtacctcgt tcgtgactac atgaagcaga gtcctcccga atcgccgatt 3720ctggtgcatt
gcagtgctgg ggtcggaagg acgggcactt tcattgccat tgatcgtctc 3780atctaccaga
tagagaatga gaacaccgtg gatgtgtatg ggattgtgta tgaccttcga 3840atgcataggc
ctttaatggt gcagacagag gaccagtatg ttttcctcaa tcagtgtgtt 3900ttggatattg
tcagatccca gaaagactca aaagtagatc ttatctacca gaacacaact 3960gcaatgacaa
tctatgaaaa ccttgcgccc gtgaccacat ttggaaagac caatggttac 4020atcgcctaa
4029476PRTArtificial SequenceImmunoreceptor tyrosine-based inhibition
motif (ITIM)MISC_FEATURE(1)..(1)Xaa may be Ser, Ile, Val or
Leumisc_feature(2)..(2)Xaa can be any naturally occurring amino
acidmisc_feature(4)..(5)Xaa can be any naturally occurring amino
acidMISC_FEATURE(6)..(6)Xaa may be Ile, Val or Leu 47Xaa Xaa Tyr Xaa Xaa
Xaa1 5481114PRTArtificial SequenceAmino acid sequence of a
AND NOT gate
(16076.SFG.aCD19fmc63-CD8STK-CD28tmZ-2A-aCD33glx-muCD8STK-tm-dPTP
N6) 48Met Ser Leu Pro Val Thr Ala Leu Leu Leu Pro Leu Ala Leu Leu Leu1
5 10 15His Ala Ala Arg Pro
Asp Ile Gln Met Thr Gln Thr Thr Ser Ser Leu 20
25 30Ser Ala Ser Leu Gly Asp Arg Val Thr Ile Ser Cys
Arg Ala Ser Gln 35 40 45Asp Ile
Ser Lys Tyr Leu Asn Trp Tyr Gln Gln Lys Pro Asp Gly Thr 50
55 60Val Lys Leu Leu Ile Tyr His Thr Ser Arg Leu
His Ser Gly Val Pro65 70 75
80Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Tyr Ser Leu Thr Ile
85 90 95Ser Asn Leu Glu Gln
Glu Asp Ile Ala Thr Tyr Phe Cys Gln Gln Gly 100
105 110Asn Thr Leu Pro Tyr Thr Phe Gly Gly Gly Thr Lys
Leu Glu Ile Thr 115 120 125Lys Ala
Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly 130
135 140Ser Gly Gly Gly Gly Ser Glu Val Lys Leu Gln
Glu Ser Gly Pro Gly145 150 155
160Leu Val Ala Pro Ser Gln Ser Leu Ser Val Thr Cys Thr Val Ser Gly
165 170 175Val Ser Leu Pro
Asp Tyr Gly Val Ser Trp Ile Arg Gln Pro Pro Arg 180
185 190Lys Gly Leu Glu Trp Leu Gly Val Ile Trp Gly
Ser Glu Thr Thr Tyr 195 200 205Tyr
Asn Ser Ala Leu Lys Ser Arg Leu Thr Ile Ile Lys Asp Asn Ser 210
215 220Lys Ser Gln Val Phe Leu Lys Met Asn Ser
Leu Gln Thr Asp Asp Thr225 230 235
240Ala Ile Tyr Tyr Cys Ala Lys His Tyr Tyr Tyr Gly Gly Ser Tyr
Ala 245 250 255Met Asp Tyr
Trp Gly Gln Gly Thr Ser Val Thr Val Ser Ser Asp Pro 260
265 270Thr Thr Thr Pro Ala Pro Arg Pro Pro Thr
Pro Ala Pro Thr Ile Ala 275 280
285Ser Gln Pro Leu Ser Leu Arg Pro Glu Ala Cys Arg Pro Ala Ala Gly 290
295 300Gly Ala Val His Thr Arg Gly Leu
Asp Phe Ala Cys Asp Ile Phe Trp305 310
315 320Val Leu Val Val Val Gly Gly Val Leu Ala Cys Tyr
Ser Leu Leu Val 325 330
335Thr Val Ala Phe Ile Ile Phe Trp Val Arg Arg Val Lys Phe Ser Arg
340 345 350Ser Ala Asp Ala Pro Ala
Tyr Gln Gln Gly Gln Asn Gln Leu Tyr Asn 355 360
365Glu Leu Asn Leu Gly Arg Arg Glu Glu Tyr Asp Val Leu Asp
Lys Arg 370 375 380Arg Gly Arg Asp Pro
Glu Met Gly Gly Lys Pro Arg Arg Lys Asn Pro385 390
395 400Gln Glu Gly Leu Tyr Asn Glu Leu Gln Lys
Asp Lys Met Ala Glu Ala 405 410
415Tyr Ser Glu Ile Gly Met Lys Gly Glu Arg Arg Arg Gly Lys Gly His
420 425 430Asp Gly Leu Tyr Gln
Gly Leu Ser Thr Ala Thr Lys Asp Thr Tyr Asp 435
440 445Ala Leu His Met Gln Ala Leu Pro Pro Arg Arg Ala
Glu Gly Arg Gly 450 455 460Ser Leu Leu
Thr Cys Gly Asp Val Glu Glu Asn Pro Gly Pro Met Ala465
470 475 480Val Pro Thr Gln Val Leu Gly
Leu Leu Leu Leu Trp Leu Thr Asp Ala 485
490 495Arg Cys Asp Ile Gln Met Thr Gln Ser Pro Ser Ser
Leu Ser Ala Ser 500 505 510Val
Gly Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Glu Asp Ile Tyr 515
520 525Phe Asn Leu Val Trp Tyr Gln Gln Lys
Pro Gly Lys Ala Pro Lys Leu 530 535
540Leu Ile Tyr Asp Thr Asn Arg Leu Ala Asp Gly Val Pro Ser Arg Phe545
550 555 560Ser Gly Ser Gly
Ser Gly Thr Gln Tyr Thr Leu Thr Ile Ser Ser Leu 565
570 575Gln Pro Glu Asp Phe Ala Thr Tyr Tyr Cys
Gln His Tyr Lys Asn Tyr 580 585
590Pro Leu Thr Phe Gly Gln Gly Thr Lys Leu Glu Ile Lys Arg Ser Gly
595 600 605Gly Gly Gly Ser Gly Gly Gly
Gly Ser Gly Gly Gly Gly Ser Gly Gly 610 615
620Gly Gly Ser Arg Ser Glu Val Gln Leu Val Glu Ser Gly Gly Gly
Leu625 630 635 640Val Gln
Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe
645 650 655Thr Leu Ser Asn Tyr Gly Met
His Trp Ile Arg Gln Ala Pro Gly Lys 660 665
670Gly Leu Glu Trp Val Ser Ser Ile Ser Leu Asn Gly Gly Ser
Thr Tyr 675 680 685Tyr Arg Asp Ser
Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala 690
695 700Lys Ser Thr Leu Tyr Leu Gln Met Asn Ser Leu Arg
Ala Glu Asp Thr705 710 715
720Ala Val Tyr Tyr Cys Ala Ala Gln Asp Ala Tyr Thr Gly Gly Tyr Phe
725 730 735Asp Tyr Trp Gly Gln
Gly Thr Leu Val Thr Val Ser Ser Met Asp Pro 740
745 750Ala Thr Thr Thr Lys Pro Val Leu Arg Thr Pro Ser
Pro Val His Pro 755 760 765Thr Gly
Thr Ser Gln Pro Gln Arg Pro Glu Asp Cys Arg Pro Arg Gly 770
775 780Ser Val Lys Gly Thr Gly Leu Asp Phe Ala Cys
Asp Ile Tyr Trp Ala785 790 795
800Pro Leu Ala Gly Ile Cys Val Ala Leu Leu Leu Ser Leu Ile Ile Thr
805 810 815Leu Ile Cys Tyr
His Arg Ser Arg Lys Arg Val Cys Lys Ser Gly Gly 820
825 830Gly Ser Phe Trp Glu Glu Phe Glu Ser Leu Gln
Lys Gln Glu Val Lys 835 840 845Asn
Leu His Gln Arg Leu Glu Gly Gln Arg Pro Glu Asn Lys Gly Lys 850
855 860Asn Arg Tyr Lys Asn Ile Leu Pro Phe Asp
His Ser Arg Val Ile Leu865 870 875
880Gln Gly Arg Asp Ser Asn Ile Pro Gly Ser Asp Tyr Ile Asn Ala
Asn 885 890 895Tyr Ile Lys
Asn Gln Leu Leu Gly Pro Asp Glu Asn Ala Lys Thr Tyr 900
905 910Ile Ala Ser Gln Gly Cys Leu Glu Ala Thr
Val Asn Asp Phe Trp Gln 915 920
925Met Ala Trp Gln Glu Asn Ser Arg Val Ile Val Met Thr Thr Arg Glu 930
935 940Val Glu Lys Gly Arg Asn Lys Cys
Val Pro Tyr Trp Pro Glu Val Gly945 950
955 960Met Gln Arg Ala Tyr Gly Pro Tyr Ser Val Thr Asn
Cys Gly Glu His 965 970
975Asp Thr Thr Glu Tyr Lys Leu Arg Thr Leu Gln Val Ser Pro Leu Asp
980 985 990Asn Gly Asp Leu Ile Arg
Glu Ile Trp His Tyr Gln Tyr Leu Ser Trp 995 1000
1005Pro Asp His Gly Val Pro Ser Glu Pro Gly Gly Val
Leu Ser Phe 1010 1015 1020Leu Asp Gln
Ile Asn Gln Arg Gln Glu Ser Leu Pro His Ala Gly 1025
1030 1035Pro Ile Ile Val His Cys Ser Ala Gly Ile Gly
Arg Thr Gly Thr 1040 1045 1050Ile Ile
Val Ile Asp Met Leu Met Glu Asn Ile Ser Thr Lys Gly 1055
1060 1065Leu Asp Cys Asp Ile Asp Ile Gln Lys Thr
Ile Gln Met Val Arg 1070 1075 1080Ala
Gln Arg Ser Gly Met Val Gln Thr Glu Ala Gln Tyr Lys Phe 1085
1090 1095Ile Tyr Val Ala Ile Ala Gln Phe Ile
Glu Thr Thr Lys Lys Lys 1100 1105
1110Leu49918PRTArtificial SequenceAmino acid sequence of a AND NOT gate
(MP16091.SFG.aCD19fmc63-CD8STK-CD28tmZ-2A-aCD33glx-muCD8STK-LAIR1
tm-endo) 49Met Ser Leu Pro Val Thr Ala Leu Leu Leu Pro Leu Ala Leu Leu
Leu1 5 10 15His Ala Ala
Arg Pro Asp Ile Gln Met Thr Gln Thr Thr Ser Ser Leu 20
25 30Ser Ala Ser Leu Gly Asp Arg Val Thr Ile
Ser Cys Arg Ala Ser Gln 35 40
45Asp Ile Ser Lys Tyr Leu Asn Trp Tyr Gln Gln Lys Pro Asp Gly Thr 50
55 60Val Lys Leu Leu Ile Tyr His Thr Ser
Arg Leu His Ser Gly Val Pro65 70 75
80Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Tyr Ser Leu
Thr Ile 85 90 95Ser Asn
Leu Glu Gln Glu Asp Ile Ala Thr Tyr Phe Cys Gln Gln Gly 100
105 110Asn Thr Leu Pro Tyr Thr Phe Gly Gly
Gly Thr Lys Leu Glu Ile Thr 115 120
125Lys Ala Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly
130 135 140Ser Gly Gly Gly Gly Ser Glu
Val Lys Leu Gln Glu Ser Gly Pro Gly145 150
155 160Leu Val Ala Pro Ser Gln Ser Leu Ser Val Thr Cys
Thr Val Ser Gly 165 170
175Val Ser Leu Pro Asp Tyr Gly Val Ser Trp Ile Arg Gln Pro Pro Arg
180 185 190Lys Gly Leu Glu Trp Leu
Gly Val Ile Trp Gly Ser Glu Thr Thr Tyr 195 200
205Tyr Asn Ser Ala Leu Lys Ser Arg Leu Thr Ile Ile Lys Asp
Asn Ser 210 215 220Lys Ser Gln Val Phe
Leu Lys Met Asn Ser Leu Gln Thr Asp Asp Thr225 230
235 240Ala Ile Tyr Tyr Cys Ala Lys His Tyr Tyr
Tyr Gly Gly Ser Tyr Ala 245 250
255Met Asp Tyr Trp Gly Gln Gly Thr Ser Val Thr Val Ser Ser Asp Pro
260 265 270Thr Thr Thr Pro Ala
Pro Arg Pro Pro Thr Pro Ala Pro Thr Ile Ala 275
280 285Ser Gln Pro Leu Ser Leu Arg Pro Glu Ala Cys Arg
Pro Ala Ala Gly 290 295 300Gly Ala Val
His Thr Arg Gly Leu Asp Phe Ala Cys Asp Ile Phe Trp305
310 315 320Val Leu Val Val Val Gly Gly
Val Leu Ala Cys Tyr Ser Leu Leu Val 325
330 335Thr Val Ala Phe Ile Ile Phe Trp Val Arg Arg Val
Lys Phe Ser Arg 340 345 350Ser
Ala Asp Ala Pro Ala Tyr Gln Gln Gly Gln Asn Gln Leu Tyr Asn 355
360 365Glu Leu Asn Leu Gly Arg Arg Glu Glu
Tyr Asp Val Leu Asp Lys Arg 370 375
380Arg Gly Arg Asp Pro Glu Met Gly Gly Lys Pro Arg Arg Lys Asn Pro385
390 395 400Gln Glu Gly Leu
Tyr Asn Glu Leu Gln Lys Asp Lys Met Ala Glu Ala 405
410 415Tyr Ser Glu Ile Gly Met Lys Gly Glu Arg
Arg Arg Gly Lys Gly His 420 425
430Asp Gly Leu Tyr Gln Gly Leu Ser Thr Ala Thr Lys Asp Thr Tyr Asp
435 440 445Ala Leu His Met Gln Ala Leu
Pro Pro Arg Arg Ala Glu Gly Arg Gly 450 455
460Ser Leu Leu Thr Cys Gly Asp Val Glu Glu Asn Pro Gly Pro Met
Ala465 470 475 480Val Pro
Thr Gln Val Leu Gly Leu Leu Leu Leu Trp Leu Thr Asp Ala
485 490 495Arg Cys Asp Ile Gln Met Thr
Gln Ser Pro Ser Ser Leu Ser Ala Ser 500 505
510Val Gly Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Glu Asp
Ile Tyr 515 520 525Phe Asn Leu Val
Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu 530
535 540Leu Ile Tyr Asp Thr Asn Arg Leu Ala Asp Gly Val
Pro Ser Arg Phe545 550 555
560Ser Gly Ser Gly Ser Gly Thr Gln Tyr Thr Leu Thr Ile Ser Ser Leu
565 570 575Gln Pro Glu Asp Phe
Ala Thr Tyr Tyr Cys Gln His Tyr Lys Asn Tyr 580
585 590Pro Leu Thr Phe Gly Gln Gly Thr Lys Leu Glu Ile
Lys Arg Ser Gly 595 600 605Gly Gly
Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly 610
615 620Gly Gly Ser Arg Ser Glu Val Gln Leu Val Glu
Ser Gly Gly Gly Leu625 630 635
640Val Gln Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe
645 650 655Thr Leu Ser Asn
Tyr Gly Met His Trp Ile Arg Gln Ala Pro Gly Lys 660
665 670Gly Leu Glu Trp Val Ser Ser Ile Ser Leu Asn
Gly Gly Ser Thr Tyr 675 680 685Tyr
Arg Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala 690
695 700Lys Ser Thr Leu Tyr Leu Gln Met Asn Ser
Leu Arg Ala Glu Asp Thr705 710 715
720Ala Val Tyr Tyr Cys Ala Ala Gln Asp Ala Tyr Thr Gly Gly Tyr
Phe 725 730 735Asp Tyr Trp
Gly Gln Gly Thr Leu Val Thr Val Ser Ser Met Asp Pro 740
745 750Ala Thr Thr Thr Lys Pro Val Leu Arg Thr
Pro Ser Pro Val His Pro 755 760
765Thr Gly Thr Ser Gln Pro Gln Arg Pro Glu Asp Cys Arg Pro Arg Gly 770
775 780Ser Val Lys Gly Thr Gly Leu Asp
Phe Ala Cys Asp Ile Leu Ile Gly785 790
795 800Val Ser Val Val Phe Leu Phe Cys Leu Leu Leu Leu
Val Leu Phe Cys 805 810
815Leu His Arg Gln Asn Gln Ile Lys Gln Gly Pro Pro Arg Ser Lys Asp
820 825 830Glu Glu Gln Lys Pro Gln
Gln Arg Pro Asp Leu Ala Val Asp Val Leu 835 840
845Glu Arg Thr Ala Asp Lys Ala Thr Val Asn Gly Leu Pro Glu
Lys Asp 850 855 860Arg Glu Thr Asp Thr
Ser Ala Leu Ala Ala Gly Ser Ser Gln Glu Val865 870
875 880Thr Tyr Ala Gln Leu Asp His Trp Ala Leu
Thr Gln Arg Thr Ala Arg 885 890
895Ala Val Ser Pro Gln Ser Thr Lys Pro Met Ala Glu Ser Ile Thr Tyr
900 905 910Ala Ala Val Ala Arg
His 915501362PRTArtificial SequenceAmino acid sequence of a AND
NOT gate
(MP16092.SFG.aCD19fmc63-CD8STK-CD28tmZ-2A-aCD33glx-muCD8STK-LAIR1
tm-endo-2A-PTPN6_SH2-dCD148) 50Met Ser Leu Pro Val Thr Ala Leu Leu Leu
Pro Leu Ala Leu Leu Leu1 5 10
15His Ala Ala Arg Pro Asp Ile Gln Met Thr Gln Thr Thr Ser Ser Leu
20 25 30Ser Ala Ser Leu Gly Asp
Arg Val Thr Ile Ser Cys Arg Ala Ser Gln 35 40
45Asp Ile Ser Lys Tyr Leu Asn Trp Tyr Gln Gln Lys Pro Asp
Gly Thr 50 55 60Val Lys Leu Leu Ile
Tyr His Thr Ser Arg Leu His Ser Gly Val Pro65 70
75 80Ser Arg Phe Ser Gly Ser Gly Ser Gly Thr
Asp Tyr Ser Leu Thr Ile 85 90
95Ser Asn Leu Glu Gln Glu Asp Ile Ala Thr Tyr Phe Cys Gln Gln Gly
100 105 110Asn Thr Leu Pro Tyr
Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Thr 115
120 125Lys Ala Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser
Gly Gly Gly Gly 130 135 140Ser Gly Gly
Gly Gly Ser Glu Val Lys Leu Gln Glu Ser Gly Pro Gly145
150 155 160Leu Val Ala Pro Ser Gln Ser
Leu Ser Val Thr Cys Thr Val Ser Gly 165
170 175Val Ser Leu Pro Asp Tyr Gly Val Ser Trp Ile Arg
Gln Pro Pro Arg 180 185 190Lys
Gly Leu Glu Trp Leu Gly Val Ile Trp Gly Ser Glu Thr Thr Tyr 195
200 205Tyr Asn Ser Ala Leu Lys Ser Arg Leu
Thr Ile Ile Lys Asp Asn Ser 210 215
220Lys Ser Gln Val Phe Leu Lys Met Asn Ser Leu Gln Thr Asp Asp Thr225
230 235 240Ala Ile Tyr Tyr
Cys Ala Lys His Tyr Tyr Tyr Gly Gly Ser Tyr Ala 245
250 255Met Asp Tyr Trp Gly Gln Gly Thr Ser Val
Thr Val Ser Ser Asp Pro 260 265
270Thr Thr Thr Pro Ala Pro Arg Pro Pro Thr Pro Ala Pro Thr Ile Ala
275 280 285Ser Gln Pro Leu Ser Leu Arg
Pro Glu Ala Cys Arg Pro Ala Ala Gly 290 295
300Gly Ala Val His Thr Arg Gly Leu Asp Phe Ala Cys Asp Ile Phe
Trp305 310 315 320Val Leu
Val Val Val Gly Gly Val Leu Ala Cys Tyr Ser Leu Leu Val
325 330 335Thr Val Ala Phe Ile Ile Phe
Trp Val Arg Arg Val Lys Phe Ser Arg 340 345
350Ser Ala Asp Ala Pro Ala Tyr Gln Gln Gly Gln Asn Gln Leu
Tyr Asn 355 360 365Glu Leu Asn Leu
Gly Arg Arg Glu Glu Tyr Asp Val Leu Asp Lys Arg 370
375 380Arg Gly Arg Asp Pro Glu Met Gly Gly Lys Pro Arg
Arg Lys Asn Pro385 390 395
400Gln Glu Gly Leu Tyr Asn Glu Leu Gln Lys Asp Lys Met Ala Glu Ala
405 410 415Tyr Ser Glu Ile Gly
Met Lys Gly Glu Arg Arg Arg Gly Lys Gly His 420
425 430Asp Gly Leu Tyr Gln Gly Leu Ser Thr Ala Thr Lys
Asp Thr Tyr Asp 435 440 445Ala Leu
His Met Gln Ala Leu Pro Pro Arg Arg Ala Glu Gly Arg Gly 450
455 460Ser Leu Leu Thr Cys Gly Asp Val Glu Glu Asn
Pro Gly Pro Met Ala465 470 475
480Val Pro Thr Gln Val Leu Gly Leu Leu Leu Leu Trp Leu Thr Asp Ala
485 490 495Arg Cys Asp Ile
Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser 500
505 510Val Gly Asp Arg Val Thr Ile Thr Cys Arg Ala
Ser Glu Asp Ile Tyr 515 520 525Phe
Asn Leu Val Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu 530
535 540Leu Ile Tyr Asp Thr Asn Arg Leu Ala Asp
Gly Val Pro Ser Arg Phe545 550 555
560Ser Gly Ser Gly Ser Gly Thr Gln Tyr Thr Leu Thr Ile Ser Ser
Leu 565 570 575Gln Pro Glu
Asp Phe Ala Thr Tyr Tyr Cys Gln His Tyr Lys Asn Tyr 580
585 590Pro Leu Thr Phe Gly Gln Gly Thr Lys Leu
Glu Ile Lys Arg Ser Gly 595 600
605Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly 610
615 620Gly Gly Ser Arg Ser Glu Val Gln
Leu Val Glu Ser Gly Gly Gly Leu625 630
635 640Val Gln Pro Gly Gly Ser Leu Arg Leu Ser Cys Ala
Ala Ser Gly Phe 645 650
655Thr Leu Ser Asn Tyr Gly Met His Trp Ile Arg Gln Ala Pro Gly Lys
660 665 670Gly Leu Glu Trp Val Ser
Ser Ile Ser Leu Asn Gly Gly Ser Thr Tyr 675 680
685Tyr Arg Asp Ser Val Lys Gly Arg Phe Thr Ile Ser Arg Asp
Asn Ala 690 695 700Lys Ser Thr Leu Tyr
Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr705 710
715 720Ala Val Tyr Tyr Cys Ala Ala Gln Asp Ala
Tyr Thr Gly Gly Tyr Phe 725 730
735Asp Tyr Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser Met Asp Pro
740 745 750Thr Thr Thr Lys Pro
Val Leu Arg Thr Pro Ser Pro Val His Pro Thr 755
760 765Gly Thr Ser Gln Pro Gln Arg Pro Glu Asp Cys Arg
Pro Arg Gly Ser 770 775 780Val Lys Gly
Thr Gly Leu Asp Phe Ala Cys Asp Ile Leu Ile Gly Val785
790 795 800Ser Val Val Phe Leu Phe Cys
Leu Leu Leu Leu Val Leu Phe Cys Leu 805
810 815His Arg Gln Asn Gln Ile Lys Gln Gly Pro Pro Arg
Ser Lys Asp Glu 820 825 830Glu
Gln Lys Pro Gln Gln Arg Pro Asp Leu Ala Val Asp Val Leu Glu 835
840 845Arg Thr Ala Asp Lys Ala Thr Val Asn
Gly Leu Pro Glu Lys Asp Arg 850 855
860Glu Thr Asp Thr Ser Ala Leu Ala Ala Gly Ser Ser Gln Glu Val Thr865
870 875 880Tyr Ala Gln Leu
Asp His Trp Ala Leu Thr Gln Arg Thr Ala Arg Ala 885
890 895Val Ser Pro Gln Ser Thr Lys Pro Met Ala
Glu Ser Ile Thr Tyr Ala 900 905
910Ala Val Ala Arg His Arg Ala Glu Gly Arg Gly Ser Leu Leu Thr Cys
915 920 925Gly Asp Val Glu Glu Asn Pro
Gly Pro Trp Tyr His Gly His Met Ser 930 935
940Gly Gly Gln Ala Glu Thr Leu Leu Gln Ala Lys Gly Glu Pro Trp
Thr945 950 955 960Phe Leu
Val Arg Glu Ser Leu Ser Gln Pro Gly Asp Phe Val Leu Ser
965 970 975Val Leu Ser Asp Gln Pro Lys
Ala Gly Pro Gly Ser Pro Leu Arg Val 980 985
990Thr His Ile Lys Val Met Cys Glu Gly Gly Arg Tyr Thr Val
Gly Gly 995 1000 1005Leu Glu Thr
Phe Asp Ser Leu Thr Asp Leu Val Glu His Phe Lys 1010
1015 1020Lys Thr Gly Ile Glu Glu Ala Ser Gly Ala Phe
Val Tyr Leu Arg 1025 1030 1035Gln Pro
Tyr Ser Gly Gly Gly Gly Ser Phe Glu Ala Tyr Phe Lys 1040
1045 1050Lys Gln Gln Ala Asp Ser Asn Cys Gly Phe
Ala Glu Glu Tyr Glu 1055 1060 1065Asp
Leu Lys Leu Val Gly Ile Ser Gln Pro Lys Tyr Ala Ala Glu 1070
1075 1080Leu Ala Glu Asn Arg Gly Lys Asn Arg
Tyr Asn Asn Val Leu Pro 1085 1090
1095Tyr Asp Ile Ser Arg Val Lys Leu Ser Val Gln Thr His Ser Thr
1100 1105 1110Asp Asp Tyr Ile Asn Ala
Asn Tyr Met Pro Gly Tyr His Ser Lys 1115 1120
1125Lys Asp Phe Ile Ala Thr Gln Gly Pro Leu Pro Asn Thr Leu
Lys 1130 1135 1140Asp Phe Trp Arg Met
Val Trp Glu Lys Asn Val Tyr Ala Ile Ile 1145 1150
1155Met Leu Thr Lys Cys Val Glu Gln Gly Arg Thr Lys Cys
Glu Glu 1160 1165 1170Tyr Trp Pro Ser
Lys Gln Ala Gln Asp Tyr Gly Asp Ile Thr Val 1175
1180 1185Ala Met Thr Ser Glu Ile Val Leu Pro Glu Trp
Thr Ile Arg Asp 1190 1195 1200Phe Thr
Val Lys Asn Ile Gln Thr Ser Glu Ser His Pro Leu Arg 1205
1210 1215Gln Phe His Phe Thr Ser Trp Pro Asp His
Gly Val Pro Asp Thr 1220 1225 1230Thr
Asp Leu Leu Ile Asn Phe Arg Tyr Leu Val Arg Asp Tyr Met 1235
1240 1245Lys Gln Ser Pro Pro Glu Ser Pro Ile
Leu Val His Cys Ser Ala 1250 1255
1260Gly Val Gly Arg Thr Gly Thr Phe Ile Ala Ile Asp Arg Leu Ile
1265 1270 1275Tyr Gln Ile Glu Asn Glu
Asn Thr Val Asp Val Tyr Gly Ile Val 1280 1285
1290Tyr Asp Leu Arg Met His Arg Pro Leu Met Val Gln Thr Glu
Asp 1295 1300 1305Gln Tyr Val Phe Leu
Asn Gln Cys Val Leu Asp Ile Val Arg Ser 1310 1315
1320Gln Lys Asp Ser Lys Val Asp Leu Ile Tyr Gln Asn Thr
Thr Ala 1325 1330 1335Met Thr Ile Tyr
Glu Asn Leu Ala Pro Val Thr Thr Phe Gly Lys 1340
1345 1350Thr Asn Gly Tyr Ile Ala Ser Gly Ser 1355
136051424PRTArtificial SequenceAPRIL-based (A
proliferation-inducing ligand-based) CAR, CD8 stalk APRIL CAR 51Met
Glu Thr Asp Thr Leu Leu Leu Trp Val Leu Leu Leu Trp Val Pro1
5 10 15Gly Ser Thr Gly Ser Val Leu
His Leu Val Pro Ile Asn Ala Thr Ser 20 25
30Lys Asp Asp Ser Asp Val Thr Glu Val Met Trp Gln Pro Ala
Leu Arg 35 40 45Arg Gly Arg Gly
Leu Gln Ala Gln Gly Tyr Gly Val Arg Ile Gln Asp 50 55
60Ala Gly Val Tyr Leu Leu Tyr Ser Gln Val Leu Phe Gln
Asp Val Thr65 70 75
80Phe Thr Met Gly Gln Val Val Ser Arg Glu Gly Gln Gly Arg Gln Glu
85 90 95Thr Leu Phe Arg Cys Ile
Arg Ser Met Pro Ser His Pro Asp Arg Ala 100
105 110Tyr Asn Ser Cys Tyr Ser Ala Gly Val Phe His Leu
His Gln Gly Asp 115 120 125Ile Leu
Ser Val Ile Ile Pro Arg Ala Arg Ala Lys Leu Asn Leu Ser 130
135 140Pro His Gly Thr Phe Leu Gly Phe Val Lys Leu
Ser Gly Gly Gly Ser145 150 155
160Asp Pro Thr Thr Thr Pro Ala Pro Arg Pro Pro Thr Pro Ala Pro Thr
165 170 175Ile Ala Ser Gln
Pro Leu Ser Leu Arg Pro Glu Ala Cys Arg Pro Ala 180
185 190Ala Gly Gly Ala Val His Thr Arg Gly Leu Asp
Phe Ala Cys Asp Ile 195 200 205Phe
Trp Val Leu Val Val Val Gly Gly Val Leu Ala Cys Tyr Ser Leu 210
215 220Leu Val Thr Val Ala Phe Ile Ile Phe Trp
Val Arg Ser Lys Arg Ser225 230 235
240Arg Leu Leu His Ser Asp Tyr Met Asn Met Thr Pro Arg Arg Pro
Gly 245 250 255Pro Thr Arg
Lys His Tyr Gln Pro Tyr Ala Pro Pro Arg Asp Phe Ala 260
265 270Ala Tyr Arg Ser Arg Asp Gln Arg Leu Pro
Pro Asp Ala His Lys Pro 275 280
285Pro Gly Gly Gly Ser Phe Arg Thr Pro Ile Gln Glu Glu Gln Ala Asp 290
295 300Ala His Ser Thr Leu Ala Lys Ile
Arg Val Lys Phe Ser Arg Ser Ala305 310
315 320Asp Ala Pro Ala Tyr Gln Gln Gly Gln Asn Gln Leu
Tyr Asn Glu Leu 325 330
335Asn Leu Gly Arg Arg Glu Glu Tyr Asp Val Leu Asp Lys Arg Arg Gly
340 345 350Arg Asp Pro Glu Met Gly
Gly Lys Pro Arg Arg Lys Asn Pro Gln Glu 355 360
365Gly Leu Tyr Asn Glu Leu Gln Lys Asp Lys Met Ala Glu Ala
Tyr Ser 370 375 380Glu Ile Gly Met Lys
Gly Glu Arg Arg Arg Gly Lys Gly His Asp Gly385 390
395 400Leu Tyr Gln Gly Leu Ser Thr Ala Thr Lys
Asp Thr Tyr Asp Ala Leu 405 410
415His Met Gln Ala Leu Pro Pro Arg 42052398PRTArtificial
SequenceAPRIL-based (A proliferation-inducing ligand-based) CAR,
APRIL IgG1 hinge based CAR 52Met Glu Thr Asp Thr Leu Leu Leu Trp Val Leu
Leu Leu Trp Val Pro1 5 10
15Gly Ser Thr Gly Ser Val Leu His Leu Val Pro Ile Asn Ala Thr Ser
20 25 30Lys Asp Asp Ser Asp Val Thr
Glu Val Met Trp Gln Pro Ala Leu Arg 35 40
45Arg Gly Arg Gly Leu Gln Ala Gln Gly Tyr Gly Val Arg Ile Gln
Asp 50 55 60Ala Gly Val Tyr Leu Leu
Tyr Ser Gln Val Leu Phe Gln Asp Val Thr65 70
75 80Phe Thr Met Gly Gln Val Val Ser Arg Glu Gly
Gln Gly Arg Gln Glu 85 90
95Thr Leu Phe Arg Cys Ile Arg Ser Met Pro Ser His Pro Asp Arg Ala
100 105 110Tyr Asn Ser Cys Tyr Ser
Ala Gly Val Phe His Leu His Gln Gly Asp 115 120
125Ile Leu Ser Val Ile Ile Pro Arg Ala Arg Ala Lys Leu Asn
Leu Ser 130 135 140Pro His Gly Thr Phe
Leu Gly Phe Val Lys Leu Ser Gly Gly Gly Ser145 150
155 160Asp Pro Ala Glu Pro Lys Ser Pro Asp Lys
Thr His Thr Cys Pro Pro 165 170
175Cys Pro Lys Asp Pro Lys Phe Trp Val Leu Val Val Val Gly Gly Val
180 185 190Leu Ala Cys Tyr Ser
Leu Leu Val Thr Val Ala Phe Ile Ile Phe Trp 195
200 205Val Arg Ser Lys Arg Ser Arg Leu Leu His Ser Asp
Tyr Met Asn Met 210 215 220Thr Pro Arg
Arg Pro Gly Pro Thr Arg Lys His Tyr Gln Pro Tyr Ala225
230 235 240Pro Pro Arg Asp Phe Ala Ala
Tyr Arg Ser Arg Asp Gln Arg Leu Pro 245
250 255Pro Asp Ala His Lys Pro Pro Gly Gly Gly Ser Phe
Arg Thr Pro Ile 260 265 270Gln
Glu Glu Gln Ala Asp Ala His Ser Thr Leu Ala Lys Ile Arg Val 275
280 285Lys Phe Ser Arg Ser Ala Asp Ala Pro
Ala Tyr Gln Gln Gly Gln Asn 290 295
300Gln Leu Tyr Asn Glu Leu Asn Leu Gly Arg Arg Glu Glu Tyr Asp Val305
310 315 320Leu Asp Lys Arg
Arg Gly Arg Asp Pro Glu Met Gly Gly Lys Pro Arg 325
330 335Arg Lys Asn Pro Gln Glu Gly Leu Tyr Asn
Glu Leu Gln Lys Asp Lys 340 345
350Met Ala Glu Ala Tyr Ser Glu Ile Gly Met Lys Gly Glu Arg Arg Arg
355 360 365Gly Lys Gly His Asp Gly Leu
Tyr Gln Gly Leu Ser Thr Ala Thr Lys 370 375
380Asp Thr Tyr Asp Ala Leu His Met Gln Ala Leu Pro Pro Arg385
390 39553614PRTArtificial SequenceAPRIL-based (A
proliferation-inducing ligand-based) CAR, APRIL Fc-pvaa based CAR
53Met Glu Thr Asp Thr Leu Leu Leu Trp Val Leu Leu Leu Trp Val Pro1
5 10 15Gly Ser Thr Gly Ser Val
Leu His Leu Val Pro Ile Asn Ala Thr Ser 20 25
30Lys Asp Asp Ser Asp Val Thr Glu Val Met Trp Gln Pro
Ala Leu Arg 35 40 45Arg Gly Arg
Gly Leu Gln Ala Gln Gly Tyr Gly Val Arg Ile Gln Asp 50
55 60Ala Gly Val Tyr Leu Leu Tyr Ser Gln Val Leu Phe
Gln Asp Val Thr65 70 75
80Phe Thr Met Gly Gln Val Val Ser Arg Glu Gly Gln Gly Arg Gln Glu
85 90 95Thr Leu Phe Arg Cys Ile
Arg Ser Met Pro Ser His Pro Asp Arg Ala 100
105 110Tyr Asn Ser Cys Tyr Ser Ala Gly Val Phe His Leu
His Gln Gly Asp 115 120 125Ile Leu
Ser Val Ile Ile Pro Arg Ala Arg Ala Lys Leu Asn Leu Ser 130
135 140Pro His Gly Thr Phe Leu Gly Phe Val Lys Leu
Ser Gly Gly Gly Ser145 150 155
160Asp Pro Ala Glu Pro Lys Ser Pro Asp Lys Thr His Thr Cys Pro Pro
165 170 175Cys Pro Ala Pro
Pro Val Ala Gly Pro Ser Val Phe Leu Phe Pro Pro 180
185 190Lys Pro Lys Asp Thr Leu Met Ile Ala Arg Thr
Pro Glu Val Thr Cys 195 200 205Val
Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp 210
215 220Tyr Val Asp Gly Val Glu Val His Asn Ala
Lys Thr Lys Pro Arg Glu225 230 235
240Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val
Leu 245 250 255His Gln Asp
Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn 260
265 270Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr
Ile Ser Lys Ala Lys Gly 275 280
285Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu 290
295 300Leu Thr Lys Asn Gln Val Ser Leu
Thr Cys Leu Val Lys Gly Phe Tyr305 310
315 320Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly
Gln Pro Glu Asn 325 330
335Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe
340 345 350Leu Tyr Ser Lys Leu Thr
Val Asp Lys Ser Arg Trp Gln Gln Gly Asn 355 360
365Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His
Tyr Thr 370 375 380Gln Lys Ser Leu Ser
Leu Ser Pro Gly Lys Lys Asp Pro Lys Phe Trp385 390
395 400Val Leu Val Val Val Gly Gly Val Leu Ala
Cys Tyr Ser Leu Leu Val 405 410
415Thr Val Ala Phe Ile Ile Phe Trp Val Arg Ser Lys Arg Ser Arg Leu
420 425 430Leu His Ser Asp Tyr
Met Asn Met Thr Pro Arg Arg Pro Gly Pro Thr 435
440 445Arg Lys His Tyr Gln Pro Tyr Ala Pro Pro Arg Asp
Phe Ala Ala Tyr 450 455 460Arg Ser Arg
Asp Gln Arg Leu Pro Pro Asp Ala His Lys Pro Pro Gly465
470 475 480Gly Gly Ser Phe Arg Thr Pro
Ile Gln Glu Glu Gln Ala Asp Ala His 485
490 495Ser Thr Leu Ala Lys Ile Arg Val Lys Phe Ser Arg
Ser Ala Asp Ala 500 505 510Pro
Ala Tyr Gln Gln Gly Gln Asn Gln Leu Tyr Asn Glu Leu Asn Leu 515
520 525Gly Arg Arg Glu Glu Tyr Asp Val Leu
Asp Lys Arg Arg Gly Arg Asp 530 535
540Pro Glu Met Gly Gly Lys Pro Arg Arg Lys Asn Pro Gln Glu Gly Leu545
550 555 560Tyr Asn Glu Leu
Gln Lys Asp Lys Met Ala Glu Ala Tyr Ser Glu Ile 565
570 575Gly Met Lys Gly Glu Arg Arg Arg Gly Lys
Gly His Asp Gly Leu Tyr 580 585
590Gln Gly Leu Ser Thr Ala Thr Lys Asp Thr Tyr Asp Ala Leu His Met
595 600 605Gln Ala Leu Pro Pro Arg
61054420DNAArtificial SequenceAntiCD19 CD28TM-TCRz 54ttttgggtgc
tggtggtggt tggtggagtc ctggcttgct atagcttgct agtaacagtg 60gcctttatta
ttttctgggt gaggagagtg aagttcagca ggagcgcaga cgcccccgcg 120taccagcagg
gccagaacca gctctataac gagctcaatc taggacgaag agaggagtac 180gatgttttgg
acaagagacg tggccgggac cctgagatgg ggggaaagcc gagaaggaag 240aaccctcagg
aaggcctgta caatgaactg cagaaagata agatggcgga ggcctacagt 300gagattggga
tgaaaggcga gcgccggagg ggcaaggggc acgatggcct ttaccagggt 360ctcagtacag
ccaccaagga cacctacgac gcccttcaca tgcaggccct gcctcctcgc
42055420DNAArtificial SequenceAntiCD33 CD28TM-TCRz 55ttctgggtcc
tggtggtggt gggaggcgtg ctggcctgtt actctctcct ggtgaccgtg 60gccttcatca
tcttttgggt gcgccgggtg aagttttctc gctctgccga tgccccagcc 120tatcagcagg
gccagaatca gctgtacaat gaactgaacc tgggcaggcg ggaggagtac 180gacgtgctgg
ataagcggag aggcagagac cccgagatgg gcggcaaacc acggcgcaaa 240aatccccagg
agggactcta taacgagctg cagaaggaca aaatggccga ggcctattcc 300gagatcggca
tgaagggaga gagaagacgc ggaaagggcc acgacggcct gtatcaggga 360ttgtccaccg
ctacaaaaga tacatatgat gccctgcaca tgcaggccct gccacccaga
42056298DNAArtificial SequenceAntiCD19 CD28TM-TCRz vs. AntiCD33
CD28TM-TCRz Consensus sequence 56tttgggtctg gtggtggtgg gggtctggct
gtatctgtac gtggccttat attttgggtg 60gggtgaagtt ggcgagcccc gctacagcag
ggccagaaca gcttaaagac taactggggg 120aggagtacga gttggaaagg gggcggaccc
gagatggggg aaccggaaaa cccaggaggc 180ttaaagactg cagaagaaaa tggcgaggcc
tagagatgga tgaagggagg ggggaagggc 240acgaggcctt acagggtacg cacaagaact
agagccctca catgcaggcc ctgccccg 298
User Contributions:
Comment about this patent or add new information about this topic: