Patent application title: GROWTH DIFFERENTIATION FACTOR 15 FUSION PROTEINS
Inventors:
IPC8 Class: AC07K14495FI
USPC Class:
1 1
Class name:
Publication date: 2021-05-20
Patent application number: 20210147500
Abstract:
GDF15 molecules are provided herein. In some embodiments, the GDF15
molecule is a GDF15-Fc fusion, in which a GDF15 region is fused to an Fc
region. In some embodiments, the GDF15 region is fused to the Fc region
via a linker. Also, provided herein are methods for making and using
GDF15 molecules.Claims:
1.-18. (canceled)
19. A fusion protein comprising a GDF15 region joined to an Fc region via a linker, wherein the GDF15 region comprises the amino acid sequence of SEQ ID NO: 6, wherein the asparagine residue at position 3 of SEQ ID NO: 6 and the aspartate residue at position 5 of SEQ ID NO: 6 are each mutated, and wherein the linker is a (G4Q)n linker, wherein n is greater than 2.
20. The fusion protein of claim 19, wherein n is 3 or 4.
21. The fusion protein of claim 20, wherein n is 4.
22. The fusion protein of claim 19, wherein the asparagine at position 3 is substituted with glutamine.
23. The fusion protein of claim 19, wherein the aspartate at position 5 is substituted with glutamate.
24. The fusion protein of claim 19, wherein the GDF15 region comprises the amino acid sequence of SEQ ID NO: 18.
25. The fusion protein of claim 24, wherein the Fc region comprises a charged pair mutation.
26. The fusion protein of claim 24, wherein the Fc region comprises a truncated hinge region.
27. The fusion protein of claim 19, wherein the Fc region comprises the amino acid sequence of SEQ ID NO: 30.
28. A fusion protein comprising the amino acid sequence of SEQ ID NO: 50.
29. A dimer comprising a fusion protein comprising the amino acid sequence of SEQ ID NO: 50 and a protein comprising the amino acid sequence of SEQ ID NO: 36.
30. A tetramer comprising the dimer of claim 29.
Description:
RELATED APPLICATIONS
[0001] This application is a continuation of U.S. application Ser. No. 16/620,029, filed on Dec. 6, 2019, which is a U.S. national stage filing under 35 U.S.C. .sctn. 371 of PCT Application No. PCT/US2019/026369, filed on Apr. 8, 2019, which claims the benefit of U.S. Provisional Application No. 62/655,108, filed on Apr. 9, 2018, which are all hereby incorporated by reference in its entirety.
SEQUENCE LISTING
[0002] The present application is being filed along with a Sequence Listing in electronic format. The Sequence Listing is provided as a file entitled A-2239-US-CNT_SeqList.txt, created Jan. 8, 2021, which is 109 kb in size. The information in the electronic format of the Sequence Listing is incorporated herein by reference in its entirety.
FIELD OF THE INVENTION
[0003] The instant disclosure relates to GDF15 molecules, such as GDF15 fusion proteins, compositions thereof, and methods for making and using such proteins.
BACKGROUND
[0004] Growth differentiation factor 15 (GDF15), also referred to as macrophage inhibitory cytokine 1 (MIC1) (Bootcov M R, 1997, Proc Natl Acad Sci 94:11514-9), placental bone morphogenetic factor (PLAB) (Hromas R 1997, Biochim Biophys Acta. 1354:40-4), placental transforming growth factor beta (PTGFB) (Lawton L N 1997, Gene. 203:17-26), prostate derived factor (PDF) (Paralkar V M 1998, J Biol Chem. 273:13760-7), and nonsteroidal anti-inflammatory drug-activated gene (NAG-1) (Baek S J 2001, J Biol Chem. 276: 33384-92), is a secreted protein that circulates in plasma as an .about.25 kDa homodimer. GDF15 binds to GDNF family receptor .alpha.-like (GFRAL) with high affinity. GDF15-induced cell signaling is believed to require the interaction of GFRAL with the coreceptor RET.
[0005] GDF15 has been linked to multiple biological activities. Elevated GDF15 has been shown to be correlated with weight loss and administration of GDF15 has been shown to reduce food intake and body weight. Accordingly, there is a need for efficacious GDF15 molecules that can be administered as a therapeutic. The present disclosure provides GDF15 molecules that meets this need and provide related advantages.
SUMMARY
[0006] Provided herein are GDF15 molecules, methods of making the molecules and methods of using the molecules. In some embodiments, the GDF15 molecule is a GDF15-Fc fusion protein. The fusion protein can comprise a GDF15 region joined to an Fc region. In some embodiments, the GDF15 region is joined to the Fc via a linker.
[0007] In some embodiments, the GDF15 region comprises the amino acid sequence of SEQ ID NO: 6 and at least one mutation, such as a mutation of the asparagine at position 3 (N3), as a mutation of the aspartate at position 5 (D5), or mutations of the asparagine at position 3 and the aspartate at position 5. In some embodiments, the GDF15 region comprises a mutation of the aspartate at position 5 to glutamate (D5E). In some embodiments, the GDF15 region comprises the amino acid sequence of SEQ ID NO: 16. In some embodiments, the GDF15 region comprises a mutation of the asparagine at position 3 to glutamine (N3Q), for example, having an amino acid sequence SEQ ID NO: 14. In yet other embodiments, the GDF15 region comprises both N3Q and D5E mutations. In some embodiments, the GDF15 region comprises the amino acid sequence of SEQ ID NO: 18.
[0008] In some embodiments, the fusion protein has a linker that is a G4S (SEQ ID NO: 19) or G4Q (SEQ ID NO: 24) linker, such as a (G4S)n or (G4Q)n linker, wherein n is greater than 0. In some embodiments, the fusion protein has a linker that is a G4A (SEQ ID NO: 58) linker, such as a (G4A)n linker, wherein n is greater than 0. In some embodiments, n is 1 or 2. In some embodiments, n is greater than 2, such as 3, 4, 5, 6, 7, or 8. In some embodiments, the linker comprises the amino acid sequence of SEQ ID NO: 19, 20, 21, 22, 23, 24, 25, or 58.
[0009] In some embodiments, the fusion protein has an Fc region comprises a charged pair mutation. In some embodiments, the Fc region has a truncated hinge region. In some embodiments, the Fc region is selected from Table 3.
[0010] Also provided herein are dimers and tetramers comprising the fusion proteins disclosed herein. In one embodiment, the dimer comprises a GDF15-Fc fusion comprising the amino acid sequence of any one of SEQ ID NOs: 39-57. In some embodiments, a GDF15-Fc fusion comprising the amino acid sequence of SEQ ID NO: 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56 or 57 dimerizes with an Fc domain comprising the amino acid sequence of SEQ ID NO: 32, 33, 34, 35, 36, or 37, such as shown in Table 6. In some embodiments, the dimers form tetramers. Methods of producing and using the GDF15 molecules disclosed herein are also provided.
BRIEF DESCRIPTION OF THE DRAWINGS
[0011] FIG. 1 is a graph showing the effect on the body weight of cynomologus monkeys dosed with vehicle, 3 mg/kg of the positive control FGF21-Fc, 1.5 mg/kg of scFc-GDF15, or 1.5 mg/kg of the dimer Fc.DELTA.10(-)-(G4S)4-GDF15:Fc.DELTA.10(+,K) weekly for six weeks, followed by a five-week washout.
[0012] FIG. 2 is a plot showing the effect on the triglyceride levels of cynomologus monkeys dosed with vehicle, 3 mg/kg of the positive control FGF21-Fc, 1.5 mg/kg of scFc-GDF15, or 1.5 mg/kg of the dimer Fc.DELTA.10(-)-(G4S)4-GDF15:Fc.DELTA.10(+,K) weekly for six weeks, followed by a five-week washout.
[0013] FIG. 3 shows the profile of Fc.DELTA.10(-)-(G4S)4-GDF15 after cation exchange.
[0014] FIG. 4 is a peptide map of Fc.DELTA.10(+)-(G4)-GDF15.
[0015] FIG. 5 is a graph showing the effect on food intake in mice as a function of dose of the dimers Fc.DELTA.10(-)-GDF15(.DELTA.3):Fc.DELTA.10(+,K) (SEQ ID NOs: 41 and 32); Fc.DELTA.10(-)-GDF15(N3D):Fc.DELTA.10(+,K) (SEQ ID NOs: 42 and 32); Fc.DELTA.10(-,CC)-GDF15(.DELTA.3):Fc.DELTA.10(+,K,CC) (SEQ ID NOs: 43 and 34); Fc.DELTA.10(-,CC)-GDF15(N3D):Fc.DELTA.10(+,K,CC) (SEQ ID NOs: 44 and 34)) and Fc.DELTA.10(-)-(G45)4-GDF15:Fc.DELTA.10(+,K) (SEQ ID NOs:39 and 32).
[0016] FIG. 6 is a graph of the serum concentration of Fc.DELTA.10(-)-GDF15(.DELTA.3) (SEQ ID NO: 41); Fc.DELTA.10(-)-GDF15(N3D) (SEQ ID NO: 42); Fc.DELTA.10(-,CC)-GDF15(.DELTA.3) (SEQ ID NO: 43); and Fc.DELTA.10(-,CC)-GDF15(N3D) (SEQ ID NO: 44)) as a function of time in mice.
[0017] FIG. 7 is a graph showing the effect on the body weight of cynomologus monkeys dosed with vehicle, 3 mg/kg of the positive control FGF21-Fc, 0.5 mg/kg or 3.0 mg/kg of Fc.DELTA.16(-,CC)-GDF15(.DELTA.3/D5E):Fc.DELTA.16(+,K,CC) (SEQ ID NOs: 45 and 35), 0.5 mg/kg or 3.0 mg/kg of Fc.DELTA.16(-,CC)-GDF15(N3Q/D5E):Fc.DELTA.16(+,K,CC)) (SEQ ID NOs: 46 and 35) or 0.5 mg/kg or 3.0 mg/kg of Fc.DELTA.16(-)-GDF15(N3Q/D5E):Fc.DELTA.16(+,K) (SEQ ID NOs: 47 and 36) weekly for four weeks, followed by a four-week washout.
[0018] FIG. 8 is a graph showing the effect on the body weight of cynomologus monkeys dosed with vehicle, 1.5 mg/kg of Fc.DELTA.10(-)-(G45)4-GDF15:Fc.DELTA.10(+,K) (SEQ ID NOs: 39 and 32), 1.5 mg/kg of Fc.DELTA.16(-)-(G4Q)4-GDF15(N3Q):Fc.DELTA.16(+,K) (SEQ ID NOs: 49 and 36); 1.5 mg/kg of Fc.DELTA.16(-)-(G4Q)4-GDF15(N3Q/D5E):Fc.DELTA.16(+,K) (SEQ ID NOs: 50 and 36), 1.5 mg/kg of Fc.DELTA.16(-)-G4S-GDF15(N3Q/D5E):Fc.DELTA.16(+,K) (SEQ ID NOs: 54 and 36), or 1.5 mg/kg of Fc.DELTA.10(-,L234A/L235A)-(G4Q)4-GDF15(N3Q/D5E):Fc.DELTA.10(+,K,L234A/L2- 35A) (SEQ ID NOs: 57 and 37) weekly for two weeks.
[0019] FIG. 9 is a graph of food intake as a function of dose in ob/ob mice administered Fc.DELTA.16(-)-(G4Q)4-GDF15(N3Q/D5E):Fc.DELTA.16(+,K) (SEQ ID NOs: 50 and 36).
[0020] FIG. 10 is a graph of food intake as a function of dose in ob/ob mice administered Fc.DELTA.10(-,L234A/L235A)-(G4Q)4-GDF15(N3Q/D5E):Fc.DELTA.10(+,K,L234A/L2- 35A) (SEQ ID NOs: 57 and 37).
DETAILED DESCRIPTION
[0021] Provided herein are GDF15 molecules, methods of making the molecules and methods of using the molecules. In some embodiments, the GDF15 molecule is a GDF15-Fc fusion protein. The fusion protein can comprise a GDF15 region joined to an Fc region. In some embodiments, the GDF15 region is joined to the Fc via a linker.
[0022] In some embodiments, the GDF15 region comprises wild type GDF15. Both the human and murine GDF15 have a signal peptide and prodomain. The nucleotide sequence for full-length human GDF15 is:
TABLE-US-00001 (SEQ ID NO: 1) atgcccgggc aagaactcag gacggtgaat ggctctcaga tgctcctggt gttgctggtg ctctcgtggc tgccgcatgg gggcgccctg tctctggccg aggcgagccg cgcaagtttc ccgggaccct cagagttgca ctccgaagac tccagattcc gagagttgcg gaaacgctac gaggacctgc taaccaggct gcgggccaac cagagctggg aagattcgaa caccgacctc gtcccggccc ctgcagtccg gatactcacg ccagaagtgc ggctgggatc cggcggccac ctgcacctgc gtatctctcg ggccgccctt cccgaggggc tccccgaggc ctcccgcctt caccgggctc tgttccggct gtccccgacg gcgtcaaggt cgtgggacgt gacacgaccg ctgcggcgtc agctcagcct tgcaagaccc caggcgcccg cgctgcacct gcgactgtcg ccgccgccgt cgcagtcgga ccaactgctg gcagaatctt cgtccgcacg gccccagctg gagttgcact tgcggccgca agccgccagg gggcgccgca gagcgcgtgc gcgcaacggg gaccactgtc cgctcgggcc cgggcgttgc tgccgtctgc acacggtccg cgcgtcgctg gaagacctgg gctgggccga ttgggtgctg tcgccacggg aggtgcaagt gaccatgtgc atcggcgcgt gcccgagcca gttccgggcg gcaaacatgc acgcgcagat caagacgagc ctgcaccgcc tgaagcccga cacggtgcca gcgccctgct gcgtgcccgc cagctacaat cccatggtgc tcattcaaaa gaccgacacc ggggtgtcgc tccagaccta tgatgacttg ttagccaaag actgccactg catatga
[0023] The amino acid sequence for full-length human GDF15 (308 amino acids) is:
TABLE-US-00002 (SEQ ID NO: 2) MPGQELRTVNGSQMLLVLLVLSWLPHGGALSLAEASRASFPGPSELHSED SRFRELRKRYEDLLTRLRANQSWEDSNTDLVPAPAVRILTPEVRLGSGGH LHLRISRAALPEGLPEASRLHRALFRLSPTASRSWDVTRPLRRQLSLARP QAPALHLRLSPPPSQSDQLLAESSSARPQLELHLRPQAARGRRRARARNG DHCPLGPGRCCRLHTVRASLEDLGWADWVLSPREVQVTMCIGACPSQFRA ANMHAQIKTSLHRLKPDTVPAPCCVPASYNPMVLIQKTDTGVSLQTYDDL LAKDCHCI
[0024] The nucleotide sequence for human GDF15 without its signal sequence is:
TABLE-US-00003 (SEQ ID NO: 3) ctgtctctgg ccgaggcgag ccgcgcaagt ttcccgggac cctcagagtt gcactccgaa gactccagat tccgagagtt gcggaaacgc tacgaggacc tgctaaccag gctgcgggcc aaccagagct gggaagattc gaacaccgac ctcgtcccgg cccctgcagt ccggatactc acgccagaag tgcggctggg atccggcggc cacctgcacc tgcgtatctc tcgggccgcc cttcccgagg ggctccccga ggcctcccgc cttcaccggg ctctgttccg gctgtccccg acggcgtcaa ggtcgtggga cgtgacacga ccgctgcggc gtcagctcag ccttgcaaga ccccaggcgc ccgcgctgca cctgcgactg tcgccgccgc cgtcgcagtc ggaccaactg ctggcagaat cttcgtccgc acggccccag ctggagttgc acttgcggcc gcaagccgcc agggggcgcc gcagagcgcg tgcgcgcaac ggggaccact gtccgctcgg gcccgggcgt tgctgccgtc tgcacacggt ccgcgcgtcg ctggaagacc tgggctgggc cgattgggtg ctgtcgccac gggaggtgca agtgaccatg tgcatcggcg cgtgcccgag ccagttccgg gcggcaaaca tgcacgcgca gatcaagacg agcctgcacc gcctgaagcc cgacacggtg ccagcgccct gctgcgtgcc cgccagctac aatcccatgg tgctcattca aaagaccgac accggggtgt cgctccagac ctatgatgac ttgttagcca aagactgcca ctgcatatga
[0025] The amino acid sequence for human GDF15 without its 29 amino acid signal sequence (279 amino acids) is:
TABLE-US-00004 (SEQ ID NO: 4) LSLAEASRASFPGPSELHSEDSRFRELRKRYEDLLTRLRANQSWEDSNTD LVPAPAVRILTPEVRLGSGGHLHLRISRAALPEGLPEASRLHRALFRLSP TASRSWDVTRPLRRQLSLARPQAPALHLRLSPPPSQSDQLLAESSSARPQ LELHLRPQAARGRRRARARNGDHCPLGPGRCCRLHTVRASLEDLGWADWV LSPREVQVTMCIGACPSQFRAANMHAQIKTSLHRLKPDTVPAPCCVPASY NPMVLIQKTDTGVSLQTYDDLLAKDCHCI
[0026] The nucleotide sequence for human GDF15 without its signal peptide or prodomain is:
TABLE-US-00005 (SEQ ID NO: 5) gcgcgcaacggggaccactgtccgctcgggcccgggcgttgctgccgtct gcacacggtccgcgcgtcgctggaagacctgggctgggccgattgggtgc tgtcgccacgggaggtgcaagtgaccatgtgcatcggcgcgtgcccgagc cagttccgggcggcaaacatgcacgcgcagatcaagacgagcctgcaccg cctgaagcccgacacggtgccagcgccctgctgcgtgcccgccagctaca atcccatggtgctcattcaaaagaccgacaccggggtgtcgctccagacc tatgatgacttgttagccaaagactgccactgcatatga
[0027] The amino acid sequence for human GDF15 without its signal peptide or pro-domain (the active domain of GDF15 of 112 amino acids) is:
TABLE-US-00006 (SEQ ID NO: 6) ARNGDHCPLGPGRCCRLHTVRASLEDLGWADWVLSPREVQVTMCIGACPS QFRAANMHAQIKTSLHRLKPDTVPAPCCVPASYNPMVLIQKTDTGVSLQT YDDLLAKDCHCI
[0028] The nucleotide sequence for full-length murine GDF15 is:
TABLE-US-00007 (SEQ ID NO: 7) atggccccgc ccgcgctcca ggcccagcct ccaggcggct ctcaactgag gttcctgctg ttcctgctgc tgttgctgct gctgctgtca tggccatcgc agggggacgc cctggcaatg cctgaacagc gaccctccgg ccctgagtcc caactcaacg ccgacgagct acggggtcgc ttccaggacc tgctgagccg gctgcatgcc aaccagagcc gagaggactc gaactcagaa ccaagtcctg acccagctgt ccggatactc agtccagagg tgagattggg gtcccacggc cagctgctac tccgcgtcaa ccgggcgtcg ctgagtcagg gtctccccga agcctaccgc gtgcaccgag cgctgctcct gctgacgccg acggcccgcc cctgggacat cactaggccc ctgaagcgtg cgctcagcct ccggggaccc cgtgctcccg cattacgcct gcgcctgacg ccgcctccgg acctggctat gctgccctct ggcggcacgc agctggaact gcgcttacgg gtagccgccg gcagggggcg ccgaagcgcg catgcgcacc caagagactc gtgcccactg ggtccggggc gctgctgtca cttggagact gtgcaggcaa ctcttgaaga cttgggctgg agcgactggg tgctgtcccc gcgccagctg cagctgagca tgtgcgtggg cgagtgtccc cacctgtatc gctccgcgaa cacgcatgcg cagatcaaag cacgcctgca tggcctgcag cctgacaagg tgcctgcccc gtgctgtgtc ccctccagct acaccccggt ggttcttatg cacaggacag acagtggtgt gtcactgcag acttatgatg acctggtggc ccggggctgc cactgcgctt ga
[0029] The amino acid sequence for full-length murine GDF15 (303 amino acids) is:
TABLE-US-00008 (SEQ ID NO: 8) MAPPALQAQPPGGSQLRFLLFLLLLLLLLSWPSQGDALAMPEQRPSGPES QLNADELRGRFQDLLSRLHANQSREDSNSEPSPDPAVRILSPEVRLGSHG QLLLRVNRASLSQGLPEAYRVHRALLLLTPTARPWDITRPLKRALSLRGP RAPALRLRLTPPPDLAMLPSGGTQLELRLRVAAGRGRRSAHAHPRDSCPL GPGRCCHLETVQATLEDLGWSDWVLSPRQLQLSMCVGECPHLYRSANTHA QIKARLHGLQPDKVPAPCCVPSSYTPVVLMHRTDSGVSLQTYDDLVARGC HCA
[0030] The nucleotide sequence for murine GDF15 without its signal sequence is:
TABLE-US-00009 (SEQ ID NO: 9) tcgcagggggacgccctggcaatgcctgaacagcgaccctccggccctga gtcccaactcaacgccgacgagctacggggtcgcttccaggacctgctga gccggctgcatgccaaccagagccgagaggactcgaactcagaaccaagt cctgacccagctgtccggatactcagtccagaggtgagattggggtccca cggccagctgctactccgcgtcaaccgggcgtcgctgagtcagggtctcc ccgaagcctaccgcgtgcaccgagcgctgctcctgctgacgccgacggcc cgcccctgggacatcactaggcccctgaagcgtgcgctcagcctccgggg accccgtgctcccgcattacgcctgcgcctgacgccgcctccggacctgg ctatgctgccctctggcggcacgcagctggaactgcgcttacgggtagcc gccggcagggggcgccgaagcgcgcatgcgcacccaagagactcgtgccc actgggtccggggcgctgctgtcacttggagactgtgcaggcaactcttg aagacttgggctggagcgactgggtgctgtccccgcgccagctgcagctg agcatgtgcgtgggcgagtgtccccacctgtatcgctccgcgaacacgca tgcgcagatcaaagcacgcctgcatggcctgcagcctgacaaggtgcctg ccccgtgctgtgtcccctccagctacaccccggtggttcttatgcacagg acagacagtggtgtgtcactgcagacttatgatgacctggtggcccgggg ctgccactgcgcttga
[0031] The amino acid sequence for murine GDF15 without its 32 amino acid signal sequence (271 amino acids) is:
TABLE-US-00010 (SEQ ID NO: 10) SQGDALAMPEQRPSGPESQLNADELRGRFQDLLSRLHANQSREDSNSEPS PDPAVRILSPEVRLGSHGQLLLRVNRASLSQGLPEAYRVHRALLLLTPTA RPWDITRPLKRALSLRGPRAPALRLRLTPPPDLAMLPSGGTQLELRLRVA AGRGRRSAHAHPRDSCPLGPGRCCHLETVQATLEDLGWSDWVLSPRQLQL SMCVGECPHLYRSANTHAQIKARLHGLQPDKVPAPCCVPSSYTPVVLMHR TDSGVSLQTYDDLVARGCHCA
[0032] The nucleotide sequence for murine GDF15 without its signal sequence or pro-domain is:
TABLE-US-00011 (SEQ ID NO: 11) agcgcgcatgcgcacccaagagactcgtgcccactgggtccggggcgctg ctgtcacttggagactgtgcaggcaactcttgaagacttgggctggagcg actgggtgctgtccccgcgccagctgcagctgagcatgtgcgtgggcgag tgtccccacctgtatcgctccgcgaacacgcatgcgcagatcaaagcacg cctgcatggcctgcagcctgacaaggtgcctgccccgtgctgtgtcccct ccagctacaccccggtggttcttatgcacaggacagacagtggtgtgtca ctgcagacttatgatgacctggtggcccggggctgccactgcgcttga
[0033] The amino acid sequence for murine GDF15 without its signal peptide or prodomain (active domain of 115 amino acids) is:
TABLE-US-00012 (SEQ ID NO: 12) SAHAHPRDSCPLGPGRCCHLETVQATLEDLGWSDWVLSPRQLQLSMCVGE CPHLYRSANTHAQIKARLHGLQPDKVPAPCCVPSSYTPVVLMHRTDSGVS LQTYDDLVARGCHCA
[0034] In some embodiments, the GDF15 molecule comprises a GDF15 region comprising an active domain of GDF15, e.g., GDF15 without its signal peptide or pro-domain. In some embodiments, the GDF15 region comprises the amino acid sequence of SEQ ID NO: 6 or 12. In some embodiments, the GDF15 region comprises a GDF15 sequence with one or more mutations, such as at least one mutation in the active domain of GDF15. In particular embodiments, the mutation or mutations do not reduce or eliminate the activity of GDF15. In some embodiments, the GDF15 region comprises a mutation in the active domain of human GDF15. In one embodiment, the mutation is a deletion of the first three amino acids of the active domain, such as "GDF15(.DELTA.3)" which is an active domain of human GDF15 in which the first three amino acids removed (i.e., SEQ ID NO: 13).
[0035] In some embodiments, the GDF15 region comprises a mutation of the asparagine at position 3 (N3) of the active domain of human GDF15 (SEQ ID NO: 6). An N3 mutation can refer to the mutation of the asparagine residue at position 3 of SEQ ID NO: 6 or the mutation of an asparagine residue corresponding to the asparagine at position 3 of SEQ ID NO: 6 in a GDF15 amino acid sequence. In some embodiments, the asparagine at position 3 is mutated to glutamine (N3Q) or aspartate (N3D). Accordingly, in some embodiments, the GDF15 molecule comprises a GDF15 region of GDF15(N3Q), which has the amino acid sequence of SEQ ID NO: 14. In other embodiments, the GDF15 molecule comprises a GDF15 region of GDF15(N3D), which has the amino acid sequence of SEQ ID NO: 15. In some embodiments, the GDF15 region comprises a mutation of the aspartate at position 5 (D5) of the active domain of human GDF15 (SEQ ID NO: 6). A D5 mutation can refer to the mutation of the aspartate residue at position 5 of SEQ ID NO: 6 or the mutation of an aspartate residue corresponding to the aspartate at position 5 of SEQ ID NO: 6 in a GDF15 amino acid sequence. In one embodiment, the aspartate at position 5 is mutated to glutamate (D5E). Accordingly, in some embodiments, the GDF15 molecule comprises a GDF15 region of GDF15(D5E), which has the amino acid sequence of SEQ ID NO: 16.
[0036] In yet other embodiments, the GDF15 region comprises a combination of mutations, such as a combination of .DELTA.3 and D5 mutations, e.g., GDF15(.DELTA.3/D5E) (SEQ ID NO: 17) or a combination of N3 and D5 mutations, e.g., GDF15(N3D/D5E) or GDF15(N3Q/D5E). In, the GDF15 region comprises the amino acid sequence of SEQ ID NO: 18.
[0037] Table 1 provides examples of GDF15 regions that can be used in the GDF15 molecules.
TABLE-US-00013 TABLE 1 GDF15 Regions SEQ ID NO: Designation Sequence 6 GDF15 ARNGDHCPLGPGRCCRLHTVRASLEDLGWADWVLS PREVQVTMCIGACPSQFRAANMHAQIKTSLHRLKPD TVPAPCCVPASYNPMVLIQKTDTGVSLQTYDDLLAK DCHCI 13 GDF15(.DELTA.3) GDHCPLGPGRCCRLHTVRASLEDLGWADWVLSPRE VQVTMCIGACPSQFRAANMHAQIKTSLHRLKPDTVP APCCVPASYNPMVLIQKTDTGVSLQTYDDLLAKDC HCI First third amino acids at N-terminus of GDF15 sequence (SEQ ID NO: 6) is deleted in this GDF15 region. 14 GDF15(N3Q) ARQGDHCPLGPGRCCRLHTVRASLEDLGWADWVLS PREVQVTMCIGACPSQFRAANMHAQIKTSLHRLKPD TVPAPCCVPASYNPMVLIQKTDTGVSLQTYDDLLAK DCHCI Underlined and bolded residue is N3Q mutation. 15 GDF15(N3D) ARDGDHCPLGPGRCCRLHTVRASLEDLGWADWVLS PREVQVTMCIGACPSQFRAANMHAQIKTSLHRLKPD TVPAPCCVPASYNPMVLIQKTDTGVSLQTYDDLLAK DCHCI Underlined and bolded residue is N3D mutation. 16 GDF15(D5E) ARNGEHCPLGPGRCCRLHTVRASLEDLGWADWVLS PREVQVTMCIGACPSQFRAANMHAQIKTSLHRLKPD TVPAPCCVPASYNPMVLIQKTDTGVSLQTYDDLLAK DCHCI Underlined and bolded residue is D5E mutation. 17 GDF15(.DELTA.3/D5E) GEHCPLGPGRCCRLHTVRASLEDLGWADWVLSPRE VQVTMCIGACPSQFRAANMHAQIKTSLHRLKPDTVP APCCVPASYNPMVLIQKTDTGVSLQTYDDLLAKDC HCI First third amino acids at N-terminus of GDF15 sequence (SEQ ID NO: 6) is deleted in this GDF15 region; underlined and bolded residue is D5E mutation (position in reference to wild-type GDF15 sequence of SEQ ID NO: 6). 18 GDF15(N3Q/D5E) ARQGEHCPLGPGRCCRLHTVRASLEDLGWADWVLS PREVQVTMCIGACPSQFRAANMHAQIKTSLHRLKPD TVPAPCCVPASYNPMVLIQKTDTGVSLQTYDDLLAK DCHCI Underlined and bolded residues are N3Q and D5E mutations.
[0038] In some embodiments, the GDF15 molecule is fused to an Fc directly. In other embodiments, the Fc is fused to the GDF15 molecule via a linker. In some embodiments, the linker comprises a G4S (SEQ ID NO: 19) linker. In other embodiments, the linker comprises a G4Q (SEQ ID NO: 24) linker. In other embodiments, the linker comprises a G4A (SEQ ID NO: 58) linker. The linker can be a (G4S)n or (G4Q)n linker, wherein n is greater than 0. The linker can be a (G4A)n linker, wherein n is greater than 0. In some embodiments, n is 1 or 2. In some embodiments, n is greater than or equal to 2, such as 3, 4, 5, 6, 7, or 8. In some embodiments, the linker comprises the amino acid sequence of SEQ ID NO: 19, 20, 21, 22, 23, 24, 25, or 58 as shown in Table 2.
TABLE-US-00014 TABLE 2 Linkers SEQ ID NO: Designation Sequence 19 G4S GGGGS 20 (G4S)2 GGGGSGGGGS 21 (G4S)4 GGGGSGGGGSGGGGSGGGGS 22 (G4S)8 GGGGSGGGGSGGGGSGGGGSGGGGSGGGGSGGG GSGGGGS 23 G4 GGGG 24 G4Q GGGGQ 25 (G4Q)4 GGGGQGGGGQGGGGQGGGGQ 58 G4A GGGGA
[0039] In some embodiments, the GDF15 molecule comprises an Fc region. The Fc region can comprise or be derived from the Fc domain of a heavy chain of an antibody. In some embodiments, the Fc region may comprise an Fc domain with a mutation, such as a charged pair mutation, a mutation in a glycosylation site or the inclusion of an unnatural amino acid. The Fc region can be derived from a human IgG constant domain of IgG1, IgG2, IgG3 or IgG4. In some embodiments, the Fc region comprises the constant domain of an IgA, IgD, IgE, and IgM heavy chain.
[0040] In some embodiments, the Fc region comprises an Fc domain with a charged pair mutation. By introducing a mutation resulting in a charged Fc region, the GDF15 molecule can dimerize with a corresponding Fc molecule having the opposite charge. For example, an aspartate-to-lysine mutation (E356K, wherein 356 is the position using EU numbering, and corresponds to the positions as noted in Tables 3-5) and a glutamate-to-lysine mutation (D399K wherein 399 is the position using EU numbering, and corresponds to positions as noted in Tables 3-5) can be introduced into the Fc region that is joined to a GDF15 region, optionally via a linker, resulting in a positively charged Fc region for the GDF15 molecule. Lysine-to-aspartate mutations (K392D, K409D; wherein 392 and 409 are the positions using EU numbering and corresponds to the positions as noted in Tables 3-5) can be introduced into an Fc domain of a separate molecule, resulting in a negatively charged Fc molecule. The aspartate residues in the negatively charged Fc molecule can associate with the lysine residues of the positively charged Fc region of the GDF15 molecule through electrostatic force, facilitating formation of Fc heterodimers between the Fc region of the GDF15 molecule and the Fc molecule, while reducing or preventing formation of Fc homodimers between the Fc regions of the GDF15 molecules or between Fc molecules.
[0041] In some embodiments, one or more lysine-to-aspartate mutations (K392D, K409D) are introduced into the Fc region that is joined to a GDF15 region, optionally via a linker and an aspartate-to-lysine mutation (E356K) and a glutamate-to-lysine mutation (D399K) is introduced into the Fc domain of another molecule. The aspartate residues in the Fc region of the GDF15 molecule can associate with the lysine residues of the Fc molecule through electrostatic force, facilitating formation of Fc heterodimers between the Fc region of the GDF15 molecule and the Fc molecule, and reducing or preventing formation of Fc homodimers between the Fc regions of the GDF15 molecules or between Fc molecules.
[0042] In some embodiments, the GDF15 molecule comprises an Fc region comprising an Fc domain with a mutated hinge region. In some embodiments, the Fc domain comprises a deletion in the hinge. In some embodiments, ten amino acids from the hinge are deleted, e.g., Fc.DELTA.10. In other embodiments, sixteen amino acids from the hinge are deleted, e.g., Fc.DELTA.16. In some embodiments, the Fc domain comprises a hinge deletion (e.g., Fc.DELTA.10 or Fc.DELTA.16) and a charged pair mutation, such that the Fc domain is positively or negatively charged. For example, the Fc domain can comprise a ten-amino acid deletion in the hinge and lysine-to-aspartate mutations (K392D, K409D), such as Fc.DELTA.10(-). In another embodiment, the Fc domain can comprise a ten-amino acid deletion in the hinge and an aspartate-to-lysine mutation (E356K) and a glutamate-to-lysine mutation (D399K), such as an Fc.DELTA.10(+). In another embodiment, the Fc domain can comprise a sixteen-amino acid deletion in the hinge and lysine-to-aspartate mutations (K392D, K409D), such as Fc.DELTA.16(-). In another embodiment, the Fc domain can comprise a sixteen-amino acid deletion in the hinge and an aspartate-to-lysine mutation (E356K) and a glutamate-to-lysine mutation (D399K), such as an Fc.DELTA.16(+).
[0043] In some embodiments, an Fc molecule comprising a hinge deletion and a charged pair mutation heterodimerizes with such a GDF15 molecule. For example, the Fc molecule can have a hinge deletion and charged pair mutation that complements the hinge deletion and charged pair mutation of the Fc region of a GDF15 molecule. For example, an Fc molecule can comprise an Fc domain with a ten-amino acid deletion in the hinge and lysine-to-aspartate mutations (K392D, K409D), such as Fc.DELTA.10(-), which can optionally comprise a C-terminal lysine (e.g., Fc.DELTA.10(-, K)). The Fc molecule can heterodimerize with a GDF15 molecule that comprises an Fc.DELTA.10(+). In another embodiment, the Fc molecule can comprise a ten-amino acid deletion in the hinge and an aspartate-to-lysine mutation (E356K) and a glutamate-to-lysine mutation (D399K), such as an Fc.DELTA.10(+), which can optionally comprise a C-terminal lysine (e.g., Fc.DELTA.10(+, K)). The Fc molecule can heterodimerize with a GDF15 molecule that comprises an Fc.DELTA.10(-). In another embodiment, the Fc molecule can comprise a sixteen-amino acid deletion in the hinge and lysine-to-aspartate mutations (K392D, K409D), such as Fc.DELTA.16(-), which can optionally comprise a C-terminal lysine (e.g., Fc.DELTA.16(-, K)). The Fc molecule which can heterodimerize with a GDF15 molecule that comprises an Fc.DELTA.16(+). In another embodiment, the Fc molecule can comprise a sixteen-amino acid deletion in the hinge and an aspartate-to-lysine mutation (E356K) and a glutamate-to-lysine mutation (D399K), such as an Fc.DELTA.16(+), which can optionally comprise a C-terminal lysine (e.g., Fc.DELTA.16(-, K)). The Fc molecule can heterodimerize with a GDF15 molecule that comprises an Fc.DELTA.16(-).
[0044] In some embodiments, the Fc region or Fc molecule comprises an Fc domain with an L234A and/or L235A mutation, wherein 234 and 235 are the positions using EU numbering and corresponds to the positions as noted in Tables 3-5. The Fc domain can comprise an L234A mutation, an L235A mutation, a charged pair mutation, a hinge deletion, or any combination thereof. In some embodiments, the Fc domain comprises both an L234A mutation and an L235A mutation. In some embodiments, the Fc domain comprises a hinge deletion, an L234A mutation, an L235A mutation, and a charged pair mutation, such as Fc.DELTA.10(+, L234A/L235A), Fc.DELTA.10(-, L234A/L235A), Fc.DELTA.16(+, L234A/L235A), or Fc.DELTA.16(-, L234A/L235A). In some embodiments, the Fc domain comprises an optional C-terminal lysine, e.g., Fc.DELTA.10(+,K,L234A/L235A), Fc.DELTA.10(-,K,L234A/L235A), Fc.DELTA.16(+,K,L234A/L235A), or Fc.DELTA.16(-,K,L234A/L235A).
[0045] In some embodiments, the Fc region or Fc molecule comprises an Fc domain with a "cysteine clamp." A cysteine clamp mutation involves the introduction of a cysteine into the Fc domain at a specific location through mutation so that when incubated with another Fc domain that also has a cysteine introduced at a specific location through mutation, a disulfide bond (cysteine clamp) may be formed between the two Fc domains (e.g., between an Fc.DELTA.16 (+) domain having a "cysteine clamp" mutation and an Fc.DELTA.16(-) domain having a "cysteine clamp" mutation). The cysteine can be introduced into the CH3 domain of an Fc domain. In some embodiments, an Fc domain may contain one or more such cysteine clamp mutations. In one embodiment, a cysteine clamp is provided by introducing a serine to cysteine mutation (S354C, wherein 354 is the position using EU numbering, and corresponds to the position as noted in Tables 3-5) into a first Fc domain and a tyrosine to cysteine mutation (Y349C, wherein 349 is the position using EU numbering, and corresponds to the position as noted in Tables 3-5) into a second Fc domain. In one embodiment, a GDF15 molecule comprises an Fc region comprising an Fc domain with a cysteine clamp, a negatively charged pair mutation and a sixteen-amino acid hinge deletion (e.g., GDF15- Fc.DELTA.16(-,CC)), and an Fc molecule comprising an Fc domain comprising a cysteine clamp, a positively charged pair mutation and a sixteen-amino acid hinge deletion, and an optional C-terminal lysine (e.g., Fc.DELTA.16(+,K,CC)). The cysteine clamp may augment the heterodimerization of the GDF-Fc molecule with the Fc molecule.
[0046] Examples of Fc regions that can be used in a GDF15 molecule are shown in Table 3.
TABLE-US-00015 TABLE 3 Fc Regions SEQ ID NO: Designation Sequence 26 Fc.DELTA.10(-) APELLGGPSVFLFPPKPKDTLMISRTPEVTCVVV DVSHEDPEVKFNWYVDGVEVHNAKTKPREEQ YNSTYRVVSVLTVLHQDWLNGKEYKCKVSNK ALPAPIEKTISKAKGQPREPQVYTLPPSREEMTK NQVSLTCLVKGFYPSDIAVEWESNGQPENNYDT TPPVLDSDGSFFLYSDLTVDKSRWQQGNVFSCS VMHEALHNHYTQKSLSLSPG Underlined and bolded residues are K392D and K409D mutations. 27 Fc.DELTA.10(+) APELLGGPSVFLFPPKPKDTLMISRTPEVTCVVV DVSHEDPEVKFNWYVDGVEVHNAKTKPREEQ YNSTYRVVSVLTVLHQDWLNGKEYKCKVSNK ALPAPIEKTISKAKGQPREPQVYTLPPSRKEMTK NQVSLTCLVKGFYPSDIAVEWESNGQPENNYKT TPPVLKSDGSFFLYSKLTVDKSRWQQGNVFSCS VMHEALHNHYTQKSLSLSPG Underlined and bolded residues are E356K and D399K mutations. 28 Fc.DELTA.10(-, CC) APELLGGPSVFLFPPKPKDTLMISRTPEVTCVVV DVSHEDPEVKFNWYVDGVEVHNAKTKPREEQ YNSTYRVVSVLTVLHQDWLNGKEYKCKVSNK ALPAPIEKTISKAKGQPREPQVCTLPPSREEMTK NQVSLTCLVKGFYPSDIAVEWESNGQPENNYDT TPPVLDSDGSFFLYSDLTVDKSRWQQGNVFSCS VMHEALHNHYTQKSLSLSPG Underlined and italicized residue is Y349C mutation; underlined and bolded residues are K392D and K409D mutations. 29 Fc.DELTA.16(-, CC) GPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHED PEVKFNWYVDGVEVHNAKTKPREEQYNSTYRV VSVLTVLHQDWLNGKEYKCKVSNKALPAPIEK TISKAKGQPREPQVCTLPPSREEMTKNQVSLTCL VKGFYPSDIAVEWESNGQPENNYDTTPPVLDSD GSFFLYSDLTVDKSRWQQGNVFSCSVMHEALH NHYTQKSLSLSPG Underlined and italicized residue is Y349C mutation; underlined and bolded residues are K392D and K409D mutations. 30 Fc.DELTA.16(-) GPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHED PEVKFNWYVDGVEVHNAKTKPREEQYNSTYRV VSVLTVLHQDWLNGKEYKCKVSNKALPAPIEK TISKAKGQPREPQVYTLPPSREEMTKNQVSLTCL VKGFYPSDIAVEWESNGQPENNYDTTPPVLDSD GSFFLYSDLTVDKSRWQQGNVFSCSVMHEALH NHYTQKSLSLSPG Underlined and bolded residues are K392D and K409D mutations. 31 Fc.DELTA.10(-, L234A/L235A) APEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVV DVSHEDPEVKFNWYVDGVEVHNAKTKPREEQ YNSTYRVVSVLTVLHQDWLNGKEYKCKVSNK ALPAPIEKTISKAKGQPREPQVYTLPPSREEMTK NQVSLTCLVKGFYPSDIAVEWESNGQPENNYDT TPPVLDSDGSFFLYSDLTVDKSRWQQGNVFSCS VMHEALHNHYTQKSLSLSPG Underlined and italicized residues are L234A and L235A mutations; underlined and bolded residues are K392D and K409D mutations.
[0047] Examples of Fc molecules are shown in Table 4, in which the C-terminal lysine is optional.
TABLE-US-00016 TABLE 4 Fc Molecules SEQ ID NO: Designation Sequence 32 Fc.DELTA.10(+, K) APELLGGPSVFLFPPKPKDTLMISRTPEVTCV VVDVSHEDPEVKFNWYVDGVEVHNAKTKP REEQYNSTYRVVSVLTVLHQDWLNGKEYKC KVSNKALPAPIEKTISKAKGQPREPQVYTLPP SRKEMTKNQVSLTCLVKGFYPSDIAVEWESN GQPENNYKTTPPVLKSDGSFFLYSKLTVDKS RWQQGNVFSCSVMHEALHNHYTQKSLSLSP GK Underlined and bolded residues are E356K and D399K mutations. 33 Fc.DELTA.10(-, K) APELLGGPSVFLFPPKPKDTLMISRTPEVTCV VVDVSHEDPEVKFNWYVDGVEVHNAKTKP REEQYNSTYRVVSVLTVLHQDWLNGKEYKC KVSNKALPAPIEKTISKAKGQPREPQVYTLPP SREEMTKNQVSLTCLVKGFYPSDIAVEWESN GQPENNYDTTPPVLDSDGSFFLYSDLTVDKS RWQQGNVFSCSVMHEALHNHYTQKSLSLSP GK Underlined and bolded residues are K392D and K409D mutations. 34 Fc.DELTA.10(+, K, CC) APELLGGPSVFLFPPKPKDTLMISRTPEVTCV VVDVSHEDPEVKFNWYVDGVEVHNAKTKP REEQYNSTYRVVSVLTVLHQDWLNGKEYKC KVSNKALPAPIEKTISKAKGQPREPQVYTLPP CRKEMTKNQVSLTCLVKGFYPSDIAVEWESN GQPENNYKTTPPVLKSDGSFFLYSKLTVDKS RWQQGNVFSCSVMHEALHNHYTQKSLSLSP GK Underlined and italicized residue is S354C mutation; underlined and bolded residues are E356K and D399K mutations. 35 Fc.DELTA.16(+, K, CC) GPSVFLFPPKPKDTLMISRTPEVTCVVVDVSH EDPEVKFNWYVDGVEVHNAKTKPREEQYNS TYRVVSVLTVLHQDWLNGKEYKCKVSNKAL PAPIEKTISKAKGQPREPQVYTLPPCRKEMTK NQVSLTCLVKGFYPSDIAVEWESNGQPENNY KTTPPVLKSDGSFFLYSKLTVDKSRWQQGNV FSCSVMHEALHNHYTQKSLSLSPGK Underlined and italicized residue is S354C mutation; underlined and bolded residues are E356K and D399K mutations. 36 Fc.DELTA.16(+, K) GPSVFLFPPKPKDTLMISRTPEVTCVVVDVSH EDPEVKFNWYVDGVEVHNAKTKPREEQYNS TYRVVSVLTVLHQDWLNGKEYKCKVSNKAL PAPIEKTISKAKGQPREPQVYTLPPSRKEMTK NQVSLTCLVKGFYPSDIAVEWESNGQPENNY KTTPPVLKSDGSFFLYSKLTVDKSRWQQGNV FSCSVMHEALHNHYTQKSLSLSPGK Underlined and bolded residues are E356K and D399K mutations. 37 Fc.DELTA.10(+, K, L234A/L235A) APEAAGGPSVFLFPPKPKDTLMISRTPEVTCV VVDVSHEDPEVKFNWYVDGVEVHNAKTKP REEQYNSTYRVVSVLTVLHQDWLNGKEYKC KVSNKALPAPIEKTISKAKGQPREPQVYTLPP SRKEMTKNQVSLTCLVKGFYPSDIAVEWESN GQPENNYKTTPPVLKSDGSFFLYSKLTVDKS RWQQGNVFSCSVMHEALHNHYTQKSLSLSP GK Underlined and italicized residues are L234A and L235A mutations; underlined and bolded residues are E356K and D399K mutations.
[0048] The Fc molecules can be used to dimerize with a molecule comprising a complementary Fc domain. For example, an Fc molecule of Fc.DELTA.10(+,K) can dimerize with a molecule comprising an Fc region comprising a ten-amino acid hinge deletion and a negatively charged pair mutation such as Fc.DELTA.10(-) (e.g., a GDF15 molecule comprising an Fc region of Fc.DELTA.10(-)). An Fc molecule of Fc.DELTA.10(-,K) can dimerize with a molecule comprising an Fc region comprising a ten-amino acid hinge deletion and a negatively charged pair mutation such as Fc.DELTA.10(+) (e.g., a GDF15 molecule comprising an Fc region of Fc.DELTA.10(+)).
[0049] An Fc molecule of Fc.DELTA.10(+,K,CC) can dimerize with a molecule comprising an Fc region comprising a ten-amino acid hinge deletion and a negatively charged pair mutation such as Fc.DELTA.10(-,CC) (e.g., a GDF15 molecule comprising an Fc region of Fc.DELTA.10(-, CC)). An Fc molecule of Fc.DELTA.16(+,K,CC) can dimerize with a molecule comprising an Fc region comprising a ten-amino acid hinge deletion and a negatively charged pair mutation such as Fc.DELTA.16(-, CC) (e.g., a GDF15 molecule comprising an Fc region of Fc.DELTA.16(-, CC)). An Fc molecule of Fc.DELTA.16(+,K) can dimerize with a molecule comprising an Fc region comprising a ten-amino acid hinge deletion and a negatively charged pair mutation such as Fc.DELTA.16(-) (e.g., a GDF15 molecule comprising an Fc region of Fc.DELTA.16(+)). An Fc molecule of Fc.DELTA.10(+,K,L234A/L235A) can dimerize with a molecule comprising an Fc region comprising a ten-amino acid hinge deletion and a negatively charged pair mutation such as Fc.DELTA.10(-,L234A/L235A) (e.g., a GDF15 molecule comprising an Fc region of Fc.DELTA.10(-, L234A/L235A)).
[0050] Examples of GDF15 molecules that are GDF15-Fc fusion proteins are shown in Table 5.
TABLE-US-00017 TABLE 5 GDF15 Molecules GDF15-Fc Fusion Protein Components GDF15-Fc Fusion Protein SEQ ID NOs SEQ Fc GDF15 ID NO. Designation Sequence Region Linker Region 38 scFc7- GGGERKSSVECPPCPAPP -- -- -- GDF15 VAGPSVFLFPPKPKDTLMI SRTPEVTCVVVDVSHEDP EVQFNWYVDGVEVHNA KTKPREEQFNSTFRVVSV LTVVHQDWLNGKEYKCK VSNKGLPAPIEKTISKTKG QPREPQVYTLPPSREEMT KNQVSLTCLVKGFYPSDI AVEWESNGQPENNYKTT PPMLDSDGSFFLYSKLTV DKSRWQQGNVFSCSVMH EALHNHYTQKSLSLSPGG GGGSGGGGSGGGGSGGG GSGGGGSGGGGSGGGGS GGGGSERKSSVECPPCPA PPVAGPSVFLFPPKPKDTL MISRTPEVTCVVVDVSHE DPEVQFNWYVDGVEVHN AKTKPREEQFNSTFRVVS VLTVVHQDWLNGKEYKC KVSNKGLPAPIEKTISKTK GQPREPQVYTLPPSREEM TKNQVSLTCLVKGFYPSD IAVEWESNGQPENNYKTT PPMLDSDGSFFLYSKLTV DKSRWQQGNVFSCSVMH EALHNHYTQKSLSLSPGS GGGGSGGGGSGGGGSGG GGSARNGDHCPLGPGRC CRLHTVRASLEDLGWAD WVLSPREVQVTMCIGACP SQFRAANMHAQIKTSLHR LKPDTVPAPCCVPASYNP MVLIQKTDTGVSLQTYDD LLAKDCHCI 39 Fc.DELTA.10(-)- APELLGGPSVFLFPPKPKD 26 21 6 (G4S)4- TLMISRTPEVTCVVVDVS GDF15 HEDPEVKFNWYVDGVEV HNAKTKPREEQYNSTYR VVSVLTVLHQDWLNGKE YKCKVSNKALPAPIEKTIS KAKGQPREPQVYTLPPSR EEMTKNQVSLTCLVKGF YPSDIAVEWESNGQPENN YDTTPPVLDSDGSFFLYS DLTVDKSRWQQGNVFSC SVMHEALHNHYTQKSLS LSPGGGGGSGGGGSGGG GSGGGGSARNGDHCPLG PGRCCRLHTVRASLEDLG WADWVLSPREVQVTMCI GACPSQFRAANMHAQIKT SLHRLKPDTVPAPCCVPA SYNPMVLIQKTDTGVSLQ TYDDLLAKDCHCI Underlined and bolded residues are K392D and K409D mutations. 40 Fc.DELTA.10(+)- APELLGGPSVFLFPPKPKD 27 23 6 (G4)-GDF15 TLMISRTPEVTCVVVDVS HEDPEVKFNWYVDGVEV HNAKTKPREEQYNSTYR VVSVLTVLHQDWLNGKE YKCKVSNKALPAPIEKTIS KAKGQPREPQVYTLPPSR KEMTKNQVSLTCLVKGF YPSDIAVEWESNGQPENN YKTTPPVLKSDGSFFLYS KLTVDKSRWQQGNVFSC SVMHEALHNHYTQKSLS LSPGGGGGARNGDHCPL GPGRCCRLHTVRASLEDL GWADWVLSPREVQVTM CIGACPSQFRAANMHAQI KTSLHRLKPDTVPAPCCV PASYNPMVLIQKTDTGVS LQTYDDLLAKDCHCI Underlined and and bolded residues are E356K and D399K mutations. 41 Fc.DELTA.10(-)- APELLGGPSVFLFPPKPKD 26 -- 13 GDF15(43) TLMISRTPEVTCVVVDVS HEDPEVKFNWYVDGVEV HNAKTKPREEQYNSTYR VVSVLTVLHQDWLNGKE YKCKVSNKALPAPIEKTIS KAKGQPREPQVYTLPPSR EEMTKNQVSLTCLVKGF YPSDIAVEWESNGQPENN YDTTPPVLDSDGSFFLYS DLTVDKSRWQQGNVFSC SVMHEALHNHYTQKSLS LSPGGDHCPLGPGRCCRL HTVRASLEDLGWADWVL SPREVQVTMCIGACPSQF RAANMHAQIKTSLHRLKP DTVPAPCCVPASYNPMVL IQKTDTGVSLQTYDDLLA KDCHCI Underlined and bolded residues are K392D and K409D mutations. 42 Fc.DELTA.10(-)- APELLGGPSVFLFPPKPKD 26 -- 15 GDF15(N3D) TLMISRTPEVTCVVVDVS HEDPEVKFNWYVDGVEV HNAKTKPREEQYNSTYR VVSVLTVLHQDWLNGKE YKCKVSNKALPAPIEKTIS KAKGQPREPQVYTLPPSR EEMTKNQVSLTCLVKGF YPSDIAVEWESNGQPENN YDTTPPVLDSDGSFFLYS DLTVDKSRWQQGNVFSC SVMHEALHNHYTQKSLS LSPGARDGDHCPLGPGRC CRLHTVRASLEDLGWAD WVLSPREVQVTMCIGACP SQFRAANMHAQIKTSLHR LKPDTVPAPCCVPASYNP MVLIQKTDTGVSLQTYDD LLAKDCHCI Underlined and bolded residues are K392D and K409D mutations. 43 Fc.DELTA.10(-, CC)- APELLGGPSVFLFPPKPKD 28 -- 13 GDF15(.DELTA.3) TLMISRTPEVTCVVVDVS HEDPEVKFNWYVDGVEV HNAKTKPREEQYNSTYR VVSVLTVLHQDWLNGKE YKCKVSNKALPAPIEKTIS KAKGQPREPQVCTLPPSR EEMTKNQVSLTCLVKGF YPSDIAVEWESNGQPENN YDTTPPVLDSDGSFFLYS DLTVDKSRWQQGNVFSC SVMHEALHNHYTQKSLS LSPGGDHCPLGPGRCCRL HTVRASLEDLGWADWVL SPREVQVTMCIGACPSQF RAANMHAQIKTSLHRLKP DTVPAPCCVPASYNPMVL IQKTDTGVSLQTYDDLLA KDCHCI Underlined and italicized residue is Y349C mutation; underlined and bolded residues are K392D and K409D mutations. 44 Fc.DELTA.10(-, CC)- APELLGGPSVFLFPPKPKD 28 -- 15 GDF15(N3D) TLMISRTPEVTCVVVDVS HEDPEVKFNWYVDGVEV HNAKTKPREEQYNSTYR VVSVLTVLHQDWLNGKE YKCKVSNKALPAPIEKTIS KAKGQPREPQVCTLPPSR EEMTKNQVSLTCLVKGF YPSDIAVEWESNGQPENN YDTTPPVLDSDGSFFLYS DLTVDKSRWQQGNVFSC SVMHEALHNHYTQKSLS LSPGARDGDHCPLGPGRC CRLHTVRASLEDLGWAD WVLSPREVQVTMCIGACP SQFRAANMHAQIKTSLHR LKPDTVPAPCCVPASYNP MVLIQKTDTGVSLQTYDD LLAKDCHCI Underlined and italicized residue is Y349C mutation; underlined and bolded residues are K392D and K409D mutations. 45 Fc.DELTA.16(-, CC)- GPSVFLFPPKPKDTLMISR 29 -- 17 GDF15(.DELTA.3/D TPEVTCVVVDVSHEDPEV 5E) KFNWYVDGVEVHNAKT KPREEQYNSTYRVVSVLT VLHQDWLNGKEYKCKVS NKALPAPIEKTISKAKGQP REPQVCTLPPSREEMTKN QVSLTCLVKGFYPSDIAV EWESNGQPENNYDTTPPV LDSDGSFFLYSDLTVDKS RWQQGNVFSCSVMHEAL HNHYTQKSLSLSPGGEHC PLGPGRCCRLHTVRASLE DLGWADWVLSPREVQVT MCIGACPSQFRAANMHA QIKTSLHRLKPDTVPAPCC VPASYNPMVLIQKTDTGV SLQTYDDLLAKDCHCI Underlined and italicized residue is Y349C mutation; underlined and bolded residues are K392D and K409D mutations. 46 Fc.DELTA.16(-, CC)- GPSVFLFPPKPKDTLMISR 29 -- 18 GDF15(N3Q/ TPEVTCVVVDVSHEDPEV D5E) KFNWYVDGVEVHNAKT KPREEQYNSTYRVVSVLT VLHQDWLNGKEYKCKVS NKALPAPIEKTISKAKGQP REPQVCTLPPSREEMTKN QVSLTCLVKGFYPSDIAV EWESNGQPENNYDTTPPV LDSDGSFFLYSDLTVDKS RWQQGNVFSCSVMHEAL HNHYTQKSLSLSPGARQG EHCPLGPGRCCRLHTVRA SLEDLGWADWVLSPREV QVTMCIGACPSQFRAAN MHAQIKTSLHRLKPDTVP APCCVPASYNPMVLIQKT DTGVSLQTYDDLLAKDC HCI Underlined and italicized residue is Y349C mutation; underlined and bolded residues are K392D and K409D mutations. 47 Fc.DELTA.16(-)- GPSVFLFPPKPKDTLMISR 30 -- 18 GDF15(N3Q/ TPEVTCVVVDVSHEDPEV D5E) KFNWYVDGVEVHNAKT KPREEQYNSTYRVVSVLT VLHQDWLNGKEYKCKVS NKALPAPIEKTISKAKGQP REPQVYTLPPSREEMTKN QVSLTCLVKGFYPSDIAV EWESNGQPENNYDTTPPV LDSDGSFFLYSDLTVDKS RWQQGNVFSCSVMHEAL HNHYTQKSLSLSPGARQG
EHCPLGPGRCCRLHTVRA SLEDLGWADWVLSPREV QVTMCIGACPSQFRAAN MHAQIKTSLHRLKPDTVP APCCVPASYNPMVLIQKT DTGVSLQTYDDLLAKDC HCI Underlined and bolded residues are K392D and K409D mutations. 48 Fc.DELTA.16(-)- GPSVFLFPPKPKDTLMISR 30 25 6 (G4Q)4- TPEVTCVVVDVSHEDPEV GDF15 KFNWYVDGVEVHNAKT KPREEQYNSTYRVVSVLT VLHQDWLNGKEYKCKVS NKALPAPIEKTISKAKGQP REPQVYTLPPSREEMTKN QVSLTCLVKGFYPSDIAV EWESNGQPENNYDTTPPV LDSDGSFFLYSDLTVDKS RWQQGNVFSCSVMHEAL HNHYTQKSLSLSPGGGGG QGGGGQGGGGQGGGGQ ARNGDHCPLGPGRCCRL HTVRASLEDLGWADWVL SPREVQVTMCIGACPSQF RAANMHAQIKTSLHRLKP DTVPAPCCVPASYNPMVL IQKTDTGVSLQTYDDLLA KDCHCI Underlined and bolded residues are K392D and K409D mutations. 49 Fc.DELTA.16(-)- GPSVFLFPPKPKDTLMISR 30 25 14 (G4Q)4- TPEVTCVVVDVSHEDPEV GDF15(N3Q) KFNWYVDGVEVHNAKT KPREEQYNSTYRVVSVLT VLHQDWLNGKEYKCKVS NKALPAPIEKTISKAKGQP REPQVYTLPPSREEMTKN QVSLTCLVKGFYPSDIAV EWESNGQPENNYDTTPPV LDSDGSFFLYSDLTVDKS RWQQGNVFSCSVMHEAL HNHYTQKSLSLSPGGGGG QGGGGQGGGGQGGGGQ ARQGDHCPLGPGRCCRL HTVRASLEDLGWADWVL SPREVQVTMCIGACPSQF RAANMHAQIKTSLHRLKP DTVPAPCCVPASYNPMVL IQKTDTGVSLQTYDDLLA KDCHCI Underlined and bolded residues are K392D and K409D mutations. 50 Fc.DELTA.16(-)- GPSVFLFPPKPKDTLMISR 30 25 18 (G4Q)4- TPEVTCVVVDVSHEDPEV GDF15(N3Q/ KFNWYVDGVEVHNAKT D5E) KPREEQYNSTYRVVSVLT VLHQDWLNGKEYKCKVS NKALPAPIEKTISKAKGQP REPQVYTLPPSREEMTKN QVSLTCLVKGFYPSDIAV EWESNGQPENNYDTTPPV LDSDGSFFLYSDLTVDKS RWQQGNVFSCSVMHEAL HNHYTQKSLSLSPGGGGG QGGGGQGGGGQGGGGQ ARQGEHCPLGPGRCCRLH TVRASLEDLGWADWVLS PREVQVTMCIGACPSQFR AANMHAQIKTSLHRLKPD TVPAPCCVPASYNPMVLI QKTDTGVSLQTYDDLLA KDCHCI Underlined and bolded residues are K392D and K409D mutations. 51 Fc.DELTA.16(-)- GPSVFLFPPKPKDTLMISR 30 20 14 (G4S)2- TPEVTCVVVDVSHEDPEV GDF15(N3Q) KFNWYVDGVEVHNAKT KPREEQYNSTYRVVSVLT VLHQDWLNGKEYKCKVS NKALPAPIEKTISKAKGQP REPQVYTLPPSREEMTKN QVSLTCLVKGFYPSDIAV EWESNGQPENNYDTTPPV LDSDGSFFLYSDLTVDKS RWQQGNVFSCSVMHEAL HNHYTQKSLSLSPGGGGG SGGGGSARQGDHCPLGP GRCCRLHTVRASLEDLG WADWVLSPREVQVTMCI GACPSQFRAANMHAQIKT SLHRLKPDTVPAPCCVPA SYNPMVLIQKTDTGVSLQ TYDDLLAKDCHCI Underlined and bolded residues are K392D and K409D mutations. 52 Fc.DELTA.16(-)- GPSVFLFPPKPKDTLMISR 30 20 18 (G4S)2- TPEVTCVVVDVSHEDPEV GDF15(N3Q/ KFNWYVDGVEVHNAKT D5E) KPREEQYNSTYRVVSVLT VLHQDWLNGKEYKCKVS NKALPAPIEKTISKAKGQP REPQVYTLPPSREEMTKN QVSLTCLVKGFYPSDIAV EWESNGQPENNYDTTPPV LDSDGSFFLYSDLTVDKS RWQQGNVFSCSVMHEAL HNHYTQKSLSLSPGGGGG SGGGGSARQGEHCPLGPG RCCRLHTVRASLEDLGW ADWVLSPREVQVTMCIG ACPSQFRAANMHAQIKTS LHRLKPDTVPAPCCVPAS YNPMVLIQKTDTGVSLQT YDDLLAKDCHCI Underlined and bolded residues are K392D and K409D mutations. 53 Fc.DELTA.16(-)- GPSVFLFPPKPKDTLMISR 30 19 14 G4S- TPEVTCVVVDVSHEDPEV GDF15(N3Q) KFNWYVDGVEVHNAKT KPREEQYNSTYRVVSVLT VLHQDWLNGKEYKCKVS NKALPAPIEKTISKAKGQP REPQVYTLPPSREEMTKN QVSLTCLVKGFYPSDIAV EWESNGQPENNYDTTPPV LDSDGSFFLYSDLTVDKS RWQQGNVFSCSVMHEAL HNHYTQKSLSLSPGGGGG SARQGDHCPLGPGRCCRL HTVRASLEDLGWADWVL SPREVQVTMCIGACPSQF RAANMHAQIKTSLHRLKP DTVPAPCCVPASYNPMVL IQKTDTGVSLQTYDDLLA KDCHCI Underlined and bolded residues are K392D and K409D mutations. 54 Fc.DELTA.16(-)- GPSVFLFPPKPKDTLMISR 30 19 18 G4S- TPEVTCVVVDVSHEDPEV GDF15(N3Q/ KFNWYVDGVEVHNAKT D5E) KPREEQYNSTYRVVSVLT VLHQDWLNGKEYKCKVS NKALPAPIEKTISKAKGQP REPQVYTLPPSREEMTKN QVSLTCLVKGFYPSDIAV EWESNGQPENNYDTTPPV LDSDGSFFLYSDLTVDKS RWQQGNVFSCSVMHEAL HNHYTQKSLSLSPGGGGG SARQGEHCPLGPGRCCRL HTVRASLEDLGWADWVL SPREVQVTMCIGACPSQF RAANMHAQIKTSLHRLKP DTVPAPCCVPASYNPMVL IQKTDTGVSLQTYDDLLA KDCHCI Underlined and bolded residues are K392D and K409D mutations. 55 Fc.DELTA.16(-)- GPSVFLFPPKPKDTLMISR 30 -- 14 GDF15(N3Q) TPEVTCVVVDVSHEDPEV KFNWYVDGVEVHNAKT KPREEQYNSTYRVVSVLT VLHQDWLNGKEYKCKVS NKALPAPIEKTISKAKGQP REPQVYTLPPSREEMTKN QVSLTCLVKGFYPSDIAV EWESNGQPENNYDTTPPV LDSDGSFFLYSDLTVDKS RWQQGNVFSCSVMHEAL HNHYTQKSLSLSPGARQG DHCPLGPGRCCRLHTVRA SLEDLGWADWVLSPREV QVTMCIGACPSQFRAAN MHAQIKTSLHRLKPDTVP APCCVPASYNPMVLIQKT DTGVSLQTYDDLLAKDC HCI Underlined and bolded residues are K392D and K409D mutations. 56 Fc.DELTA.10(-, APEAAGGPSVFLFPPKPKD 31 25 14 L234A/L235 TLMISRTPEVTCVVVDVS A)-(G4Q)4- HEDPEVKFNWYVDGVEV GDF15(N3Q) HNAKTKPREEQYNSTYR VVSVLTVLHQDWLNGKE YKCKVSNKALPAPIEKTIS KAKGQPREPQVYTLPPSR EEMTKNQVSLTCLVKGF YPSDIAVEWESNGQPENN YDTTPPVLDSDGSFFLYS DLTVDKSRWQQGNVFSC SVMHEALHNHYTQKSLS LSPGGGGGQGGGGQGGG GQGGGGQARQGDHCPLG PGRCCRLHTVRASLEDLG WADWVLSPREVQVTMCI GACPSQFRAANMHAQIKT SLHRLKPDTVPAPCCVPA SYNPMVLIQKTDTGVSLQ TYDDLLAKDCHCI Underlined and italicized residues are L234A and L235A mutations; underlined and bolded residues are K392D and K409D mutations. 57 Fc.DELTA.10(-, APEAAGGPSVFLFPPKPKD 31 25 18 L234A/L235 TLMISRTPEVTCVVVDVS A)-(G4Q)4- HEDPEVKFNWYVDGVEV GDF15(N3Q/ HNAKTKPREEQYNSTYR D5E) VVSVLTVLHQDWLNGKE YKCKVSNKALPAPIEKTIS KAKGQPREPQVYTLPPSR EEMTKNQVSLTCLVKGF YPSDIAVEWESNGQPENN YDTTPPVLDSDGSFFLYS DLTVDKSRWQQGNVFSC SVMHEALHNHYTQKSLS LSPGGGGGQGGGGQGGG GQGGGGQARQGEHCPLG PGRCCRLHTVRASLEDLG WADWVLSPREVQVTMCI GACPSQFRAANMHAQIKT SLHRLKPDTVPAPCCVPA SYNPMVLIQKTDTGVSLQ TYDDLLAKDCHCI Underlined and italicized residues are L234A and L235A mutations; underlined and bolded residues are K392D and K409D mutations.
[0051] In some embodiments, the fusion protein is an scFc-GDF15 in which the GDF15 region is joined to two Fc regions. In some embodiments, the fusion protein comprises an amino acid sequence that has at least 85%, 90%, 95% or 99% sequence identity to SEQ ID NO: 38. In some embodiments, the fusion protein comprises an amino acid sequence of SEQ ID NO: 38. In calculating percent sequence identity, the sequences being compared are aligned in a way that gives the largest match between the sequences. A computer program that can be used to determine percent identity is the GCG program package, which includes GAP (Devereux et al., (1984) Nucl. Acid Res. 12:387; Genetics Computer Group, University of Wisconsin, Madison, Wis.). The computer algorithm GAP can be used to align the two polypeptides or polynucleotides for which the percent sequence identity is to be determined. The sequences are aligned for optimal matching of their respective amino acid or nucleotide (the "matched span", as determined by the algorithm). A gap opening penalty (which is calculated as 3.times. the average diagonal, wherein the "average diagonal" is the average of the diagonal of the comparison matrix being used; the "diagonal" is the score or number assigned to each perfect amino acid match by the particular comparison matrix) and a gap extension penalty (which is usually 1/10 times the gap opening penalty), as well as a comparison matrix such as PAM 250 or BLOSUM 62 are used in conjunction with the algorithm. In certain embodiments, a standard comparison matrix (see, Dayhoff et al., (1978) Atlas of Protein Sequence and Structure 5:345-352 for the PAM 250 comparison matrix; Henikoff et al., (1992) Proc. Natl. Acad. Sci. U.S.A. 9:10915-10919 for the BLOSUM 62 comparison matrix) is also used by the algorithm. Parameters that can be used for determining percent identity using the GAP program are the following:
Algorithm: Needleman et al., 1970, J. Mol. Biol. 48:443-453; Comparison matrix: BLOSUM 62 from Henikoff et al., 1992, supra; Gap Penalty: 12 (but with no penalty for end gaps)
Gap Length Penalty: 4
Threshold of Similarity: 0
[0052] Certain alignment schemes for aligning two amino acid sequences can result in matching of only a short region of the two sequences, and this small aligned region can have very high sequence identity even though there is no significant relationship between the two full-length sequences. Accordingly, the selected alignment method (e.g., the GAP program) can be adjusted if so desired to result in an alignment that spans at least 50 contiguous amino acids of the target polypeptide.
[0053] In some embodiments, the GDF15 molecule is Fc.DELTA.10(-)-(G4S)4-GDF15, Fc.DELTA.10(+)-(G4)-GDF15, Fc.DELTA.10(-)-GDF15(.DELTA.3), Fc.DELTA.10(-)-GDF15(N3D), Fc.DELTA.10(-,CC)-GDF15(.DELTA.3), Fc.DELTA.10(-,CC)-GDF15(N3D), Fc.DELTA.16(-,CC)-GDF15(.DELTA.3/D5E), Fc.DELTA.16(-,CC)-GDF15(N3Q/D5E), Fc.DELTA.16(-)-GDF15(N3Q/D5E), Fc.DELTA.16(-)-(G4Q)4-GDF15, Fc.DELTA.16(-)-(G4Q)4-GDF15(N3Q), Fc.DELTA.16(-)-(G4Q)4-GDF15(N3Q/D5E), Fc.DELTA.16(-)-(G4S)2-GDF15(N3Q), Fc.DELTA.16(-)-(G4S)2-GDF15(N3Q/D5E), Fc.DELTA.16(-)-G4S-GDF15(N3Q), Fc.DELTA.16(-) -G4S-GDF15(N3Q/D5E), Fc.DELTA.16(-)-GDF15(N3Q), Fc.DELTA.10(-,L234A/L235A)-(G4Q)4-GDF15(N3Q), or Fc.DELTA.10(-,L234A/L235A)-(G4Q)4-GDF15(N3Q/D5E).
[0054] In some embodiments, the GDF15 molecule comprises the amino acid sequence of SEQ ID NO: 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, or 57. In some embodiments, the GDF15 molecule comprises an amino acid sequence that has 80-99%, 85%-99%, 90-99%, or 95-99% sequence identity to SEQ ID NO: 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, or 57. In some embodiments, the GDF15 molecule comprises an amino acid sequence that has at least 85% sequence identity to SEQ ID NO: 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, or 57. In some embodiments, the GDF15 molecule comprises an amino acid sequence that has at least 90% sequence identity to SEQ ID NO: 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, or 57. In some embodiments, the GDF15 molecule comprises an amino acid sequence that has at least 95% sequence identity to SEQ ID NO: 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, or 57. In some embodiments, the GDF15 molecule comprises an amino acid sequence that has at least 99% sequence identity to SEQ ID NO: 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, or 57.
[0055] In some embodiments, the GDF15 molecule is a Fc.DELTA.10(-)-(G4S)4-GDF15, Fc.DELTA.10(+)-(G4)-GDF15, Fc.DELTA.10(-)-GDF15(.DELTA.3), Fc.DELTA.10(-)-GDF15(N3D), Fc.DELTA.10(-,CC)-GDF15(.DELTA.3), Fc.DELTA.10(-,CC)-GDF15(N3D), Fc.DELTA.16(-,CC)-GDF15(.DELTA.3/D5E), Fc.DELTA.16(-,CC)-GDF15(N3Q/D5E), Fc.DELTA.16(-)-GDF15(N3Q/D5E), Fc.DELTA.16(-)-(G4Q)4-GDF15, Fc.DELTA.16(-)-(G4Q)4-GDF15(N3Q), Fc.DELTA.16(-)-(G4Q)4-GDF15(N3Q/D5E), Fc.DELTA.16(-)-(G4S)2-GDF15(N3Q), Fc.DELTA.16(-)-(G4S)2-GDF15(N3Q/D5E), Fc.DELTA.16(-)-G4S-GDF15(N3Q), Fc.DELTA.16(-) -G4S-GDF15(N3Q/D5E), Fc.DELTA.16(-)-GDF15(N3Q), Fc.DELTA.10(-,L234A/L235A)-(G4Q)4-GDF15(N3Q), or Fc.DELTA.10(-,L234A/L235A)-(G4Q)4-GDF15(N3Q/D5E) molecule. In some embodiments, the GDF15 molecule is a Fc.DELTA.10(-)-(G4S)4-GDF15, Fc.DELTA.10(+)-(G4)-GDF15, Fc.DELTA.10(-)-GDF15(.DELTA.3), Fc.DELTA.10(-)-GDF15(N3D), Fc.DELTA.10(-,CC)-GDF15(.DELTA.3), Fc.DELTA.10(-,CC)-GDF15(N3D), Fc.DELTA.16(-,CC)-GDF15(.DELTA.3/D5E), Fc.DELTA.16(-,CC)-GDF15(N3Q/D5E), Fc.DELTA.16(-)-GDF15(N3Q/D5E), Fc.DELTA.16(-)-(G4Q)4-GDF15, Fc.DELTA.16(-)-(G4Q)4-GDF15(N3Q), Fc.DELTA.16(-)-(G4Q)4-GDF15(N3Q/D5E), Fc.DELTA.16(-)-(G4S)2-GDF15(N3Q), Fc.DELTA.16(-)-(G4S)2-GDF15(N3Q/D5E), Fc.DELTA.16(-)-G4S-GDF15(N3Q), Fc.DELTA.16(-)-G4S-GDF15(N3Q/D5E), Fc.DELTA.16(-)-GDF15(N3Q), Fc.DELTA.10(-,L234A/L235A)-(G4Q)4-GDF15(N3Q), or Fc.DELTA.10(-,L234A/L235A)-(G4Q)4-GDF15(N3Q/D5E) molecule that has 80-99%, 85%-99%, 90-99%, or 95-99% sequence identity to its Fc region and/or GDF15 region.
[0056] In some embodiments, the GDF15 molecule is a Fc.DELTA.10(-)-(G4S)4-GDF15, Fc.DELTA.10(+)-(G4)-GDF15, Fc.DELTA.10(-)-GDF15(.DELTA.3), Fc.DELTA.10(-)-GDF15(N3D), Fc.DELTA.10(-,CC)-GDF15(.DELTA.3), Fc.DELTA.10(-,CC)-GDF15(N3D), Fc.DELTA.16(-,CC)-GDF15(.DELTA.3/D5E), Fc.DELTA.16(-,CC)-GDF15(N3Q/D5E), Fc.DELTA.16(-)-GDF15(N3Q/D5E), Fc.DELTA.16(-)-(G4Q)4-GDF15, Fc.DELTA.16(-)-(G4Q)4-GDF15(N3Q), Fc.DELTA.16(-)-(G4Q)4-GDF15(N3Q/D5E), Fc.DELTA.16(-)-(G4S)2-GDF15(N3Q), Fc.DELTA.16(-)-(G4S)2-GDF15(N3Q/D5E), Fc.DELTA.16(-)-G4S-GDF15(N3Q), Fc.DELTA.16(-) -G4S-GDF15(N3Q/D5E), Fc.DELTA.16(-)-GDF15(N3Q), Fc.DELTA.10(-,L234A/L235A)-(G4Q)4-GDF15(N3Q), or Fc.DELTA.10(-,L234A/L235A)-(G4Q)4-GDF15(N3Q/D5E) molecule that has at least 85%, 90%, 95% or 99% sequence identity to its Fc region and/or GDF15 region. For example, a Fc.DELTA.10(-)-(G4S)4-GDF15 molecule with 80-99%, 85%-99%, 90-99%, or 95-99% sequence identity to its Fc region and/or GDF15 region, includes a GDF15 molecule with an Fc region that has a ten-amino acid deletion of the hinge region and a negatively charged pair mutation, and has 80-99%, 85%-99%, 90-99%, or 95-99% sequence identity to SEQ ID NO: 26 and/or a GDF15 region that has 80-99%, 85%-99%, 90-99%, or 95-99% sequence identity to SEQ ID NO: 6. For example, a Fc.DELTA.10(-)-(G4S)4-GDF15 molecule with at least 85%, 90%, 95% or 99% sequence identity to its Fc region and/or GDF15 region, includes a GDF15 molecule with an Fc region that has a ten-amino acid deletion of the hinge region and a negatively charged pair mutation, and has at least 85%, 90%, 95% or 99% sequence identity to SEQ ID NO: 26 and/or a GDF15 region that has at least 85%, 90%, 95% or 99% sequence identity to SEQ ID NO: 6.
[0057] In another example, a Fc.DELTA.16(-)-(G4Q)4-GDF15(N3Q/D5E) molecule with 80-99%, 85%-99%, 90-99%, or 95-99% sequence identity to its Fc region and/or a GDF15 region, includes a GDF15 molecule with an Fc region that has a sixteen-amino acid deletion of the hinge region and a negatively charged pair mutation that has 80-99%, 85%-99%, 90-99%, or 95-99% sequence identity to SEQ ID NO: 30 and/or a GDF15 region that has 80-99%, 85%-99%, 90-99%, or 95-99% sequence identity to SEQ ID NO: 18. In another example, a Fc.DELTA.16(-)-(G4Q)4-GDF15(N3Q/D5E) molecule with at least 85%, 90%, 95% or 99% sequence identity to its Fc region and/or a GDF15 region, includes a GDF15 molecule with an Fc region that has a sixteen-amino acid deletion of the hinge region and a negatively charged pair mutation that has at least 85%, 90%, 95% or 99% sequence identity to SEQ ID NO: 30 and/or a GDF15 region that has at least 85%, 90%, 95% or 99% sequence identity to SEQ ID NO: 18.
[0058] In yet another example, a Fc.DELTA.10(-,L234A/L235A)-(G4Q)4-GDF15(N3Q/D5E) molecule with 80-99%, 85%-99%, 90-99%, or 95-99% sequence identity to its Fc region and/or a GDF15 region, includes a GDF15 molecule with an Fc region that has a ten-amino acid deletion of the hinge region, a negatively charged pair mutation and leucine to alanine mutations at positions 234 and 235 and has 80-99%, 85%-99%, 90-99%, or 95-99% sequence identity to SEQ ID NO: 31 and/or a GDF15 region that has 80-99%, 85%-99%, 90-99%, or 95-99% sequence identity to SEQ ID NO: 18. In yet another example, a Fc.DELTA.10(-,L234A/L235A)-(G4Q)4-GDF15(N3Q/D5E) molecule with at least 85%, 90%, 95% or 99% sequence identity to its Fc region and/or a GDF15 region, includes a GDF15 molecule with an Fc region that has a ten-amino acid deletion of the hinge region, a negatively charged pair mutation and leucine to alanine mutations at positions 234 and 235 and has at least 85%, 90%, 95% or 99% sequence identity to SEQ ID NO: 31 and/or a GDF15 region that has at least 85%, 90%, 95% or 99% sequence identity to SEQ ID NO: 18.
[0059] Also provided herein are dimers and tetramers comprising a GDF15 molecule provided herein. In one embodiment, the dimer comprises a GDF15-Fc fusion comprising the amino acid sequence of any one of SEQ ID NOs: 39-57. In some embodiments, a GDF15-Fc fusion comprising the amino acid sequence of SEQ ID NO: 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56 or 57 dimerizes with an Fc molecule comprising the amino acid sequence of SEQ ID NO: 32, 33, 34, 35, 36, or 37 (in which the C-terminal lysine is optional), such as shown in Table 6. For example, in some embodiments, the dimer is Fc.DELTA.10(-)-(G4S)4-GDF15: Fc.DELTA.10(+,K). In another embodiment, the dimer is Fc.DELTA.10(-,L234A/L235A)-(G4Q)4-GDF15(N3Q): Fc.DELTA.10(+,K,L234A/L235A). In yet another embodiment, the dimer is Fc.DELTA.10(-,L234A/L235A)-(G4Q)4-GDF15(N3Q):Fc.DELTA.10(+,K,L234A/L235A)- .
TABLE-US-00018 TABLE 6 Dimers GDF15- Fc Fusion SEQ ID GDF15-Fc Fusion Fc Molecule SEQ Corresponding Fc Molecule NO. Designation ID NO. Designation 39 Fc.DELTA.10(-)-(G4S)4-GDF15 32 Fc.DELTA.10(+, K) 40 Fc.DELTA.10(+)-(G4)-GDF15 33 Fc.DELTA.10(-, K) 41 Fc.DELTA.10(-)-GDF15(.DELTA.3) 32 Fc.DELTA.10(+, K) 42 Fc.DELTA.10(-)-GDF15(N3D) 32 Fc.DELTA.10(+, K) 43 Fc.DELTA.10(-, CC)-GDF15(.DELTA.3) 34 Fc.DELTA.10(+, K, CC) 44 Fc.DELTA.10(-, CC)-GDF15(N3D) 34 Fc.DELTA.10(+, K, CC) 45 Fc.DELTA.16(-, CC)-GDF15(.DELTA.3/D5E) 35 Fc.DELTA.16(+, K, CC) 46 Fc.DELTA.16(-, CC)- 35 Fc.DELTA.16(+, K, CC) GDF15(N3Q/D5E) 47 Fc.DELTA.16(-)-GDF15(N3Q/D5E) 36 Fc.DELTA.16(+, K) 48 Fc.DELTA.16(-)-(G4Q)4-GDF15 36 Fc.DELTA.16(+, K) 49 Fc.DELTA.16(-)-(G4Q)4- 36 Fc.DELTA.16(+, K) GDF15(N3Q) 50 Fc.DELTA.16(-)-(G4Q)4- 36 Fc.DELTA.16(+, K) GDF15(N3Q/D5E) 51 Fc.DELTA.16(-)-(G4S)2- 36 Fc.DELTA.16(+, K) GDF15(N3Q) 52 Fc.DELTA.16(-)-(G4S)2- 36 Fc.DELTA.16(+, K) GDF15(N3Q/D5E) 53 Fc.DELTA.16(-)-G4S-GDF15(N3Q) 36 Fc.DELTA.16(+, K) 54 Fc.DELTA.16(-)-G4S- 36 Fc.DELTA.16(+, K) GDF15(N3Q/D5E) 55 Fc.DELTA.16(-)-GDF15(N3Q) 36 Fc.DELTA.16(+, K) 56 Fc.DELTA.10(-, L234A/L235A)- 37 Fc.DELTA.10(+, K, L234A/L235A) (G4Q)4-GDF15(N3Q) 57 Fc.DELTA.10(-, L234A/L235A)- 37 Fc.DELTA.10(+, K, L234A/L235A) (G4Q)4- GDF15(N3Q/D5E)
[0060] In one embodiment, a GDF15-Fc fusion comprising the amino acid sequence of SEQ ID NO: 39 dimerizes with an Fc molecule comprising SEQ ID NO: 32 (C-terminal lysine optional). In another embodiment, a GDF15-Fc fusion comprising the amino acid sequence of SEQ ID NO: 40 dimerizes with an Fc molecule comprising SEQ ID NO: 33 (C-terminal lysine optional). In another embodiment, a GDF15-Fc fusion comprising the amino acid sequence of SEQ ID NO: 41 dimerizes with an Fc molecule comprising SEQ ID NO: 32 (C-terminal lysine optional). In another embodiment, a GDF15-Fc fusion comprising the amino acid sequence of SEQ ID NO: 42 dimerizes with an Fc molecule comprising SEQ ID NO: 32 (C-terminal lysine optional). In another embodiment, a GDF15-Fc fusion comprising the amino acid sequence of SEQ ID NO: 43 dimerizes with an Fc molecule comprising SEQ ID NO: 34 (C-terminal lysine optional). In another embodiment, a GDF15-Fc fusion comprising the amino acid sequence of SEQ ID NO: 44 dimerizes with an Fc molecule comprising SEQ ID NO: 34 (C-terminal lysine optional). In another embodiment, a GDF15-Fc fusion comprising the amino acid sequence of SEQ ID NO: 44 dimerizes with an Fc molecule comprising SEQ ID NO: 34 (C-terminal lysine optional). In another embodiment, a GDF15-Fc fusion comprising the amino acid sequence of SEQ ID NO: 45 dimerizes with an Fc molecule comprising SEQ ID NO: 35 (C-terminal lysine optional). In another embodiment, a GDF15-Fc fusion comprising the amino acid sequence of SEQ ID NO: 46 dimerizes with an Fc molecule comprising SEQ ID NO: 35 (C-terminal lysine optional). In another embodiment, a GDF15-Fc fusion comprising the amino acid sequence of SEQ ID NO: 47 dimerizes with an Fc molecule comprising SEQ ID NO: 36 (C-terminal lysine optional). In another embodiment, a GDF15-Fc fusion comprising the amino acid sequence of SEQ ID NO: 48 dimerizes with an Fc molecule comprising SEQ ID NO: 36 (C-terminal lysine optional). In another embodiment, a GDF15-Fc fusion comprising the amino acid sequence of SEQ ID NO: 49 dimerizes with an Fc molecule comprising SEQ ID NO: 36 (C-terminal lysine optional). In another embodiment, a GDF15-Fc fusion comprising the amino acid sequence of SEQ ID NO: 50 dimerizes with an Fc molecule comprising SEQ ID NO: 36 (C-terminal lysine optional). In another embodiment, a GDF15-Fc fusion comprising the amino acid sequence of SEQ ID NO: 51 dimerizes with an Fc molecule comprising SEQ ID NO: 36 (C-terminal lysine optional). In another embodiment, a GDF15-Fc fusion comprising the amino acid sequence of SEQ ID NO: 52 dimerizes with an Fc molecule comprising SEQ ID NO: 36 (C-terminal lysine optional). In another embodiment, a GDF15-Fc fusion comprising the amino acid sequence of SEQ ID NO: 53 dimerizes with an Fc molecule comprising SEQ ID NO: 36 (C-terminal lysine optional). In another embodiment, a GDF15-Fc fusion comprising the amino acid sequence of SEQ ID NO: 54 dimerizes with an Fc molecule comprising SEQ ID NO: 36 (C-terminal lysine optional). In another embodiment, a GDF15-Fc fusion comprising the amino acid sequence of SEQ ID NO: 55 dimerizes with an Fc molecule comprising SEQ ID NO: 36 (C-terminal lysine optional). In another embodiment, a GDF15-Fc fusion comprising the amino acid sequence of SEQ ID NO: 56 dimerizes with an Fc molecule comprising SEQ ID NO: 37 (C-terminal lysine optional). In another embodiment, a GDF15-Fc fusion comprising the amino acid sequence of SEQ ID NO: 57 dimerizes with an Fc molecule comprising SEQ ID NO: 37 (C-terminal lysine optional).
[0061] In some embodiments, the dimers form tetramers. For example, the dimers in Table 6 can form tetramers. In some embodiments, the tetramers are formed from the same dimers. In some embodiments, two dimers of Fc.DELTA.10(-)-(G4S)4-GDF15:Fc.DELTA.10(+,K); Fc.DELTA.10(+)-(G4)-GDF15:Fc.DELTA.10(-,K); Fc.DELTA.10(-)-GDF15(.DELTA.3):Fc.DELTA.10(+,K); Fc.DELTA.10(-)-GDF15(N3D):Fc.DELTA.10(+,K); Fc.DELTA.10(-,CC)-GDF15(.DELTA.3):Fc.DELTA.10(+,K,CC); Fc.DELTA.10(-,CC)-GDF15(N3D):Fc.DELTA.10(+,K,CC); Fc.DELTA.16(-,CC)-GDF15(.DELTA.3/D5E):Fc.DELTA.16(+,K,CC); Fc.DELTA.16(-,CC)-GDF15(N3Q/D5E):Fc.DELTA.16(+,K,CC); Fc.DELTA.16(-)-GDF15(N3Q/D5E):Fc.DELTA.16(+,K); Fc.DELTA.16(-)-(G4Q)4-GDF15:Fc.DELTA.16(+,K); Fc.DELTA.16(-)-(G4Q)4-GDF15(N3Q):Fc.DELTA.16(+,K); Fc.DELTA.16(-)-(G4Q)4-GDF15(N3Q/D5E):Fc.DELTA.16(+,K); Fc.DELTA.16(-)-(G45)2-GDF15(N3Q):Fc.DELTA.16(+,K); Fc.DELTA.16(-)-(G4S)2-GDF15(N3Q/D5E):Fc.DELTA.16(+,K); Fc.DELTA.16(-)-G4S-GDF15(N3Q):Fc.DELTA.16(+,K); Fc.DELTA.16(-)-G4S-GDF15(N3Q/D5E): Fc.DELTA.16(+,K); Fc.DELTA.16(-)-GDF15(N3Q): Fc.DELTA.16(+,K); Fc.DELTA.10(-,L234A/L235A)-(G4Q)4-GDF15(N3Q):Fc.DELTA.10(+,K,L234A/L235A)- ; or Fc.DELTA.10(-,L234A/L235A)-(G4Q)4-GDF15(N3Q/D5E):Fc.DELTA.10(+,K,L234- A/L235A) form a tetramer, such as through the dimerization of the two GDF15 regions.
[0062] Also provided herein are host cells comprising the nucleic acids and vectors for producing the GDF15 and Fc molecules disclosed herein. In various embodiments, the vector or nucleic acid is integrated into the host cell genome, which in other embodiments the vector or nucleic acid is extra-chromosomal.
[0063] Recombinant cells, such as yeast, bacterial (e.g., E. coli), and mammalian cells (e.g., immortalized mammalian cells) comprising such a nucleic acid, vector, or combinations of either or both thereof are provided. In various embodiments, cells comprising a non-integrated nucleic acid, such as a plasmid, cosmid, phagemid, or linear expression element, which comprises a sequence coding for expression of a GDF15 molecule and/or an Fc molecule. In some embodiments, the cell comprises a nucleic acid for producing a GDF15 molecule and another cell comprises a nucleic acid for producing an Fc molecule for dimerization with the GDF15 molecule (e.g., a vector for encoding a GDF15 molecule in one cell and a second vector for encoding an Fc molecule in a second cell). In other embodiments, a host cell comprises a nucleic acid for producing a GDF15 molecule and an Fc molecule (e.g., a vector that encodes both molecules). In another embodiment, a host cell comprises a nucleic acid for producing a GDF15 molecule and another nucleic acid for producing an Fc molecule (e.g., two separate vectors, one that encodes a GDF15 molecule and one that encodes an Fc molecule, in a single host cell).
[0064] A vector comprising a nucleic acid sequence encoding a GDF15 molecule and/or an Fc molecule can be introduced into a host cell by transformation or by transfection, such as by methods known in the art.
[0065] A nucleic acid encoding a GDF15 molecule can be positioned in and/or delivered to a host cell or host animal via a viral vector. A viral vector can comprise any number of viral polynucleotides, alone or in combination with one or more viral proteins, which facilitate delivery, replication, and/or expression of the nucleic acid of the invention in a desired host cell. The viral vector can be a polynucleotide comprising all or part of a viral genome, a viral protein/nucleic acid conjugate, a virus-like particle (VLP), or an intact virus particle comprising viral nucleic acids and a nucleic acid encoding a polypeptide comprising a GDF15 region. A viral particle viral vector can comprise a wild-type viral particle or a modified viral particle. The viral vector can be a vector which requires the presence of another vector or wild-type virus for replication and/or expression (e.g., a viral vector can be a helper-dependent virus), such as an adenoviral vector amplicon. Suitable viral vector particles in this respect, include, for example, adenoviral vector particles (including any virus of or derived from a virus of the adenoviridae), adeno-associated viral vector particles (AAV vector particles) or other parvoviruses and parvoviral vector particles, papillomaviral vector particles, flaviviral vectors, alphaviral vectors, herpes viral vectors, pox virus vectors, retroviral vectors, including lentiviral vectors.
[0066] A GDF15 molecule can be isolated using standard protein purification methods. A polypeptide comprising a GDF15 region can be isolated from a cell that has been engineered to express a polypeptide comprising a GDF15 region, for example a cell that does not naturally express native GDF15. Protein purification methods known in the art can be employed to isolate GDF15 molecules, as well as associated materials and reagents. Methods of purifying a GDF15 molecule are also provided in the Examples herein. Additional purification methods that may be useful for isolating GDF15 molecules can be found in references such as Bootcov M R, 1997, Proc. Natl. Acad. Sci. USA 94:11514-9, Fairlie W D, 2000, Gene 254: 67-76.
[0067] Pharmaceutical compositions comprising a GDF15 molecule (and optionally, an Fc molecule, such as a dimer or tetramer disclosed herein) are also provided. Such polypeptide pharmaceutical compositions can comprise a therapeutically effective amount of a GDF15 molecule in admixture with a pharmaceutically or physiologically acceptable formulation agent or carrier selected for suitability with the mode of administration. The pharmaceutically or physiologically acceptable formulation agent can be one or more formulation agents suitable for accomplishing or enhancing the delivery of a GDF15 molecule into the body of a human or non-human subject. Pharmaceutically acceptable substances such as wetting or emulsifying agents, preservatives or buffers, which enhance the shelf life or effectiveness of the GDF15 molecule can also act as, or form a component of, a formulation carrier. Acceptable pharmaceutically acceptable carriers are preferably nontoxic to recipients at the dosages and concentrations employed. The pharmaceutical composition can contain formulation agent(s) for modifying, maintaining, or preserving, for example, the pH, osmolarity, viscosity, clarity, color, isotonicity, odor, sterility, stability, rate of dissolution or release, adsorption, or penetration of the composition.
[0068] The effective amount of pharmaceutical composition comprising a GDF15 molecule which is to be employed therapeutically will depend, for example, upon the therapeutic context and objectives. One skilled in the art will appreciate that the appropriate dosage levels for treatment will thus vary depending, in part, upon the molecule delivered, the indication for which a GDF15 molecule is being used, the route of administration, and the size (body weight, body surface, or organ size) and condition (the age and general health) of the subject. The frequency of dosing will depend upon the pharmacokinetic parameters of the GDF15 molecule in the formulation being used.
[0069] The route of administration of the pharmaceutical composition can be orally; through injection by intravenous, intraperitoneal, intracerebral (intraparenchymal), intracerebroventricular, intramuscular, intraocular, intraarterial, intraportal, or intralesional routes; by sustained release systems (which may also be injected); or by implantation devices. Where desired, the compositions can be administered by bolus injection or continuously by infusion, or by an implantation device. The composition can also be administered locally via implantation of a membrane, sponge, or other appropriate material onto which the desired molecule has been absorbed or encapsulated. Where an implantation device is used, the device can be implanted into any suitable tissue or organ, and delivery of the desired molecule can be via diffusion, timed-release bolus, or continuous administration.
[0070] A GDF15 molecule can be used to treat, diagnose or ameliorate, a metabolic condition or disorder. In one embodiment, the metabolic disorder is diabetes, e.g., type 2 diabetes. In another embodiment, the metabolic condition or disorder is obesity. In other embodiments, the metabolic condition or disorder is dyslipidemia, elevated glucose levels, elevated insulin levels or diabetic nephropathy. For example, a metabolic condition or disorder that can be treated or ameliorated using a GDF15 molecule includes a state in which a human subject has a fasting blood glucose level of 125 mg/dL or greater, for example 130, 135, 140, 145, 150, 155, 160, 165, 170, 175, 180, 185, 190, 195, 200 or greater than 200 mg/dL. Blood glucose levels can be determined in the fed or fasted state, or at random. The metabolic condition or disorder can also comprise a condition in which a subject is at increased risk of developing a metabolic condition. For a human subject, such conditions include a fasting blood glucose level of 100 mg/dL. Conditions that can be treated using a pharmaceutical composition comprising a GDF15 molecule can also be found in the American Diabetes Association Standards of Medical Care in Diabetes Care 2011, American Diabetes Association, Diabetes Care Vol. 34, No. Supplement 1, S11-S61, 2010.
[0071] The administration can be performed such as by intravenous (IV) injection, intraperitoneal (IP) injection, subcutaneous injection, intramuscular injection, or orally in the form of a tablet or liquid formation. A therapeutically effective dose of a GDF15 molecule will depend upon the administration schedule, the unit dose of agent administered, whether the GDF15 molecule is administered in combination with other therapeutic agents, the immune status and the health of the recipient. A therapeutically effective dose is an amount of a GDF15 molecule that elicits a biological or medicinal response in a tissue system, animal, or human being sought by a researcher, medical doctor, or other clinician, which includes alleviation or amelioration of the symptoms of the disease or disorder being treated, i.e., an amount of a GDF15 molecule that supports an observable level of one or more desired biological or medicinal response, for example, lowering blood glucose, insulin, triglyceride, or cholesterol levels; reducing body weight; improving glucose tolerance, energy expenditure, or insulin sensitivity; or reducing food intake. A therapeutically effective dose of a GDF15 molecule can also vary with the desired result.
[0072] Also provided herein is a method comprising measuring a baseline level of one or more metabolically-relevant compounds such as glucose, insulin, cholesterol, lipid in a subject, administering a pharmaceutical composition comprising a GDF15 molecule to the subject, and after a desired period of time, measure the level of the one or more metabolically-relevant compounds (e.g., blood glucose, insulin, cholesterol, lipid) in the subject. The two levels can then be compared to determine the relative change in the metabolically-relevant compound in the subject. Depending on the outcome of that comparison another dose of the pharmaceutical composition can be administered to achieve a desired level of one or more metabolically-relevant compound.
[0073] A pharmaceutical composition comprising a GDF15 molecule can be co-administered with another compound or therapeutic agent. A GDF15 molecule (and optionally, its corresponding Fc molecule) can be administered in combination with another therapeutic agent, such as an agent that lowers blood glucose, insulin, triglyceride, or cholesterol levels; lowers body weight; reduces food intake; improves glucose tolerance, energy expenditure, or insulin sensitivity; or any combination thereof (e.g., antidiabetic agent, hypolipidemic agent, anti-obesity agent, anti-hypertensive agent, or agonist of peroxisome proliferator-activator receptor). The identity and properties of a compound co-administered with the GDF15 molecule will depend on the nature of the condition to be treated or ameliorated. The agent administered with a GDF15 molecule disclosed herein can be a GLP-1R agonist, such as GLP-1 or an analog thereof; or an exendin, exendin analog, or exendin agonist. A non-limiting list of examples of compounds that can be administered in combination with the pharmaceutical composition include liraglutide, rosiglitizone, pioglitizone, repaglinide, nateglitinide, metformin, exenatide, stiagliptin, pramlintide, glipizide, glimeprirideacarbose, orlistat, lorcaserin, phenterminetopiramate, naltrexonebupropion, setmelanotide, semaglutide, efpeglenatide, canagliflozin, LIK-066, SAR-425899, Tt-401, FGFR4Rx, HDV-biotin and miglitol.
[0074] In one embodiment, a GDF15 molecule comprising the amino acid sequence of SEQ ID NO: 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56 or 57 is administered with another compound or therapeutic agent, such as liraglutide.
[0075] In another embodiment, a GDF15 molecule and corresponding Fc molecule comprising the amino acid sequences of SEQ ID NOs: 39 and 32 (C-terminal lysine optional), respectively; SEQ ID NOs: 40 and 33 (C-terminal lysine optional), SEQ ID NOs: 41 and 32 (C-terminal lysine optional) , respectively; SEQ ID NOs: 42 and 32 (C-terminal lysine optional) , respectively; SEQ ID NOs: 43 and 34 (C-terminal lysine optional) , respectively; SEQ ID NOs: 44 and 34 (C-terminal lysine optional), respectively; SEQ ID NOs: 45 and 35 (C-terminal lysine optional), respectively; SEQ ID NOs: 46 and 35 (C-terminal lysine optional), respectively; SEQ ID NOs: 47 and 36 (C-terminal lysine optional) respectively; SEQ ID NOs: 48 and 36 (C-terminal lysine optional), respectively; SEQ ID NOs: 49 and 36 (C-terminal lysine optional) respectively; SEQ ID NOs: 50 and 36 (C-terminal lysine optional), respectively; SEQ ID NOs: 51 and 36 (C-terminal lysine optional), respectively; SEQ ID NOs: 52 and 36 (C-terminal lysine optional), respectively; SEQ ID NOs: 53 and 36 (C-terminal lysine optional), respectively; SEQ ID NOs: 54 and 36 (C-terminal lysine optional), respectively; SEQ ID NOs: 55 and 36 (C-terminal lysine optional), respectively; SEQ ID NOs: 56 and 37 (C-terminal lysine optional), respectively; or SEQ ID NOs: 57 and 37 (C-terminal lysine optional), respectively; is administered with another compound or therapeutic agent, such as liraglutide.
[0076] In another embodiment, a GDF15 molecule and corresponding Fc molecule comprising the amino acid sequences of SEQ ID NOs: 50 and 36 (C-terminal lysine optional), respectively, is administered with another compound or therapeutic agent, such as liraglutide. In another embodiment, a GDF15 molecule and corresponding Fc molecule comprising the amino acid sequences of SEQ ID NOs: 57 and 37 (C-terminal lysine optional), respectively, is administered with another compound or therapeutic agent, such as liraglutide.
[0077] A GDF15 molecule administered with another therapeutic agent can include concurrent administration of a therapeutically effective amount of the GDF15 molecule (and optionally, its corresponding Fc molecule) and a therapeutically effective amount of the other therapeutic agent. A GDF15 molecule administered with another therapeutic agent can include subsequent administration of a therapeutically effective amount of the GDF15 molecule (and optionally, its corresponding Fc molecule) and a therapeutically effective amount of the other therapeutic agent, e.g., administration of a therapeutically effective amount of the GDF15 molecule (and optionally, its corresponding Fc molecule) followed by a therapeutically effective amount of the other therapeutic agent or administration of a therapeutically effective amount of the other therapeutic agent followed by administration of a therapeutically effective amount of the GDF15 molecule (and optionally, its corresponding Fc molecule). Administration of a therapeutically effective amount of the GDF15 molecule (and optionally, its corresponding Fc molecule) can be at least 1, 2, 3, 4, 5, 6, or 7 days after administration of a therapeutically effective amount of the other therapeutic agent. In another embodiment, administration of a therapeutically effective amount of a therapeutically effective amount of the other therapeutic agent can be at least 1, 2, 3, 4, 5, 6, or 7 days after at least 1, 2, 3, 4, 5, 6, or 7 days after administration of a therapeutically effective amount of the GDF15 molecule (and optionally, its corresponding Fc molecule).
[0078] A GDF15 molecule administered concurrently with another therapeutic agent can comprise administration of a composition comprising both the GDF15 molecule (and optionally its corresponding Fc molecule) and the other therapeutic agent, e.g., a therapeutically effective amount of the GDF15 molecule (and optionally its corresponding Fc molecule) is combined with a therapeutically effective amount of the other agent prior to administration. In another embodiment, concurrent administration of GDF15 molecule (and optionally its corresponding Fc molecule) and another therapeutic agent can comprise concurrent administration of a first composition comprising the GDF15 molecule and a second composition comprising the other therapeutic agent.
[0079] In some embodiments, administration of a GDF15 molecule with another therapeutic agent has a synergistic effect. In one embodiment, the effect is greater than the GDF15 molecule (and optionally its corresponding Fc molecule) alone or the other agent. In another embodiment, the effect is greater than an additive effect of both agents (the GDF15 molecule, and optionally its corresponding Fc molecule, plus the other agent). In one embodiment, combination therapy (i e , administration of a GDF15 molecule, optionally with its corresponding Fc molecule, with another therapeutic agent) has a greater than 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25,26, 27, 28, 29, or 30 fold effect than GDF15 monotherapy (administration of the GDF15 molecule, and optionally its corresponding Fc molecule). In another embodiment, combination therapy (i.e., administration of a GDF15 molecule, optionally with its corresponding Fc molecule, with another therapeutic agent) has a greater than 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 fold effect than monotherapy with the other agent. The effect can be the amount of body weight lost (e.g., the decrease in total mass or percent body change); the decrease in blood glucose, insulin, triglyceride, or cholesterol levels; the improvement in glucose tolerance, energy expenditure, or insulin sensitivity; or the reduction food intake. The synergistic effect can be about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 21, 28, 35, 42, 49, 56, 63, or 70 days after administration.
[0080] In one embodiment, a GDF15 molecule and corresponding Fc molecule comprising the amino acid sequences of SEQ ID NOs: 39 and 32 (C-terminal lysine optional), respectively; SEQ ID NOs: 40 and 33 (C-terminal lysine optional), SEQ ID NOs: 41 and 32 (C-terminal lysine optional) , respectively; SEQ ID NOs: 42 and 32 (C-terminal lysine optional) , respectively; SEQ ID NOs: 43 and 34 (C-terminal lysine optional) , respectively; SEQ ID NOs: 44 and 34 (C-terminal lysine optional), respectively; SEQ ID NOs: 45 and 35 (C-terminal lysine optional), respectively; SEQ ID NOs: 46 and 35 (C-terminal lysine optional), respectively; SEQ ID NOs: 47 and 36 (C-terminal lysine optional) respectively; SEQ ID NOs: 48 and 36 (C-terminal lysine optional), respectively; SEQ ID NOs: 49 and 36 (C-terminal lysine optional) respectively; SEQ ID NOs: 50 and 36 (C-terminal lysine optional), respectively; SEQ ID NOs: 51 and 36 (C-terminal lysine optional), respectively; SEQ ID NOs: 52 and 36 (C-terminal lysine optional), respectively; SEQ ID NOs: 53 and 36 (C-terminal lysine optional), respectively; SEQ ID NOs: 54 and 36 (C-terminal lysine optional), respectively; SEQ ID NOs: 55 and 36 (C-terminal lysine optional), respectively; SEQ ID NOs: 56 and 37 (C-terminal lysine optional), respectively; or SEQ ID NOs: 57 and 37 (C-terminal lysine optional), respectively; administered with a GLP-1R agonist (e.g., liraglutide or exendin, or an analog or agonist thereof) has a greater than 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25,26, 27, 28, 29, or 30 fold effect than GDF15 monotherapy; a greater than 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25,26, 27, 28, 29, or 30 fold effect than GLP-1R agonist monotherapy (i.e., administration of GLP-1R agonist alone); or both, about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 21, 28, 35, 42, 49, 56, 63, or 70 days after administration of the agent(s).
[0081] The detailed description and following examples illustrate the present invention and are not to be construed as limiting the present invention thereto. Various changes and modifications can be made by those skilled in the art on the basis of the description of the invention, and such changes and modifications are also included in the present invention.
EXAMPLES
[0082] The following examples, including the experiments conducted and results achieved, are provided for illustrative purposes only and are not to be construed as limiting the present invention.
Example 1: GDF15(WT)-Linker-Fc Molecules
[0083] The GDF15 molecules of scFc-GDF15 (SEQ ID NO: 38) and Fc.DELTA.10(-)-(G45)4-GDF15 (SEQ ID NO: 39) were produced and the activity of the molecules tested.
[0084] Fc.DELTA.10(-)-(G4S)4-GDF15 (SEQ ID NO: 39) was stably expressed in a serum free, suspension adapted CHO-K1 cell line. It was cloned into a stable expression vector containing puromycin resistance while the Fc chain for forming a heterodimer with Fc.DELTA.10(-)-(G4S)4-GDF15, Fc.DELTA.10(+,K) (SEQ ID NO: 32), was cloned into a hygromycin containing expression vector (Selexis, Inc.). The plasmids were transfected at a 1:1 ratio using lipofectamine LTX and cells were selected 2 days post transfection in a proprietary growth media containing 10 ug/mL puromycin and 600 ug/mL hygromycin. Media was exchanged 2 times per week during selection. When cells reached about 90% viability, they were scaled up for a batch production run. Cells were seeded at 2.times.10.sup.6/mL in production media. The conditioned medium (CM) produced by the cells was harvested on day 7 and clarified. Endpoint viabilities typically were above 90%.
[0085] Fc.DELTA.10(-)-(G4S)4-GDF15 (SEQ ID NO: 39) (and any paired Fc) were clarified. Conditioned media was purified using a two-step chromatography procedure. Approximately 5 L of the CM was applied directly to a GE Mab Select SuRe column that had previously been equilibrated with Dulbecco's Phosphate Buffered Saline (PBS). The bound protein underwent three wash steps: first, 3 column volumes (CV) of PBS; next, 1 CV of 20 mM Tris, 100 mM sodium chloride, pH 7.4; and finally, 3 CV of 500 mM L-arginine, pH 7.5. These wash steps remove unbound or lightly bound media components and host cell impurities. The column was then re-equilibrated with 5 CV of 20 mM Tris, 100 mM sodium chloride at pH 7.4 which brought the UV absorbance back to baseline. The desired protein was eluted with 100 mM acetic acid at pH 3.6 and collected in bulk. The protein pool was quickly titrated to within a pH range of 5.0 to 5.5 with 1 M Tris-HC1, pH 9.2. The pH adjusted protein pool was next loaded onto a GE SP Sepharose.RTM. HP column that had been previously equilibrated with 20 mM 2-ethanesulfonic acid (MES) at pH 6.0. The bound protein was then washed with 5 CV of equilibration buffer, and finally eluted over a 20 CV, 0 to 50% linear gradient from 0 to 400 mM sodium chloride in 20 mM MES at pH 6.0. Fractions were collected during the elution and analyzed by analytical size-exclusion chromatography (Superdex.RTM. 200) to determine the appropriate fractions to pool for a homogeneous product. The SP HP chromatography removes product-related impurities such as free Fc, clipped species, and Fc-GDF15 multimers. The SP HP pool was then buffer exchanged into 10 mM sodium acetate, 5% proline, pH 5.2 by dialysis. It was concentrated to approximately 15 mg/ml using the Sartorius Vivaspin.RTM. 20 ten kilo-dalton molecular weight cut-off centrifugal device. Finally, it was sterile filtered and the resulting solution containing the purified Fc-GDF15 molecules was stored at 5.degree. C. Final products were assessed for identity and purity using mass spectral analysis, sodium dodecyl sulfate polyacrylamide electrophoresis and size exclusion high performance liquid chromatography.
[0086] ScFc-GDF15 (SEQ ID NO: 38) was produced in a similar manner. This GDF15 molecule was stably expressed in a CHO/CS9 cell line. The molecules were cloned into a stable expression vector. The plasmids (linearized) were transfected at a 1:1 ratio using electroporation and cells were selected 2 days post transfection. Media was exchanged 3 times per week during selection. When cells reached about 90% viability, they were scaled up for a fed batch production run. Cells were seeded at 1.times.10.sup.6/mL in production media and fed once when the cell number reached to 4-5.times.10.sup.6/ml. The conditioned medium (CM) produced by the cells was harvested on day 10 and clarified. Endpoint viabilities typically were above 90%. ScFc-GDF15 was clarified and conditioned media was purified using a two-step coupled chromatography procedure. Conditioned media from multiple harvests were pooled and concentrated nearly 5 fold by ultrafiltration using a 1 sq ft Pellicon.RTM. 2 10 kD regenerated cellulose membrane (Millipore) by tangential flow filtration. Approximately 5 L of the concentrated CM was applied directly to a GE MabSelect SuRe column that had previously been equilibrated with Dulbecco's Phosphate Buffered Saline (PBS). The non-specifically bound protein was removed by a 12CV PBS wash step. The desired protein was eluted with 0.5% acetic acid at pH 3.5, 150 mM NaCl in 3 CV and collected in a storage loop. The collected protein pool was directly loaded onto a GE HiLoad 26/60 Superdex 200 Prep Grade sizing column that had been previously equilibrated with 30 mM acetate at pH 5.0, 150 mM NaCl. Peak fractions collected during the sizing run were analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis to determine the appropriate fractions to pool for a homogeneous product. The pH of the final sizing-pool was adjusted to pH 4.5, with the addition of 10% glacial acetic acid and then buffer exchanged into 10 mM sodium acetate, 9% (w/v) sucrose, pH 4.5 by dialysis. It was concentrated to above 15 mg/ml using a ten kilo-dalton molecular weight cut-off centrifugal device. Protein stability to freezing was tested by 3 cycles of freezing and thawing. Finally, the final lot was sterile filtered and the resulting solution containing the purified GDF15 molecules was stored at -80.degree. C. Final products were assessed for identity and purity using mass spectral analysis, n-terminal sequencing, sodium dodecyl sulfate polyacrylamide electrophoresis and size exclusion high performance liquid chromatography.
[0087] Activity of scFc-GDF15 and Fc.DELTA.10(-)-(G4S)4-GDF15 was then analyzed for in vivo activity. Cynomologus monkeys (n =10 per group) were administered vehicle, 3 mg/kg of the positive control FGF21-Fc, 1.5 mg/kg of scFc-GDF15, or 1.5 mg/kg of Fc.DELTA.10(-)-(G4S)4-GDF15:Fc.DELTA.10(+,K) weekly for six weeks, followed by a five-week washout. Body weight and triglyceride levels were determined. Naive male spontaneously obese cynomolgus monkeys were prescreened for health and had a body mass index >41. Monkeys were acclimated to single housing, experimental procedures and handling for 6 weeks prior to treatment. Monkeys were sorted into 4 groups receiving once weekly SC injection for 6 weeks (days 0, 7, 14, 21, 28, and 35) for each group to have similar baseline. Overnight fasting blood samples were collected at pre-dose days -24, -17 and -10, and on days 6, 13, 20, 27, 34, and 41 (6 days after each weekly dose) during the treatment phase. During the washout phase, blood samples were collected on days 48, 55, 62, 69 and 76. Body weight was measured once a week and food intake was monitored daily for each monkey throughout the study. Each monkey received unlimited feed for a limited amount of time (1 hour) at the morning and evening feeding, approximately 8 hours apart. A 150 g apple snack, for a limited amount of time (1 hour), was provided between meals. The remaining food or apple was removed and weighed after each meal or snack to calculate food intake.
[0088] GDF15-Fc fusion proteins reduced body weight (FIG. 1) and triglyceride levels (FIG. 2), similar to FGF21-Fc.
Example 2: GDF15(WT)-Linker-Fc Molecule Attributes
[0089] The Fc.DELTA.10(-)-(G4S)4-GDF15 (SEQ ID NO: 39) molecule as described in Example 1 and Fc.DELTA.10(+)-(G4)-GDF15 (SEQ ID NO: 40) were analyzed for attributes that may affect its stability and manufacturability (e.g., for commercial manufacturing). The GDF15 molecules (e.g., Fc.DELTA.10(-)-(G4S)4-GDF15 and Fc.DELTA.10(+)-(G4)-GDF15) were determined to be highly heterogeneous (e.g., analysis of an ion exchange column fraction of Fc.DELTA.10(-)-(G4S)4-GDF15 shows the molecule is highly heterogeneous, FIG. 3), an undesirable feature for manufacturability of a molecule. To determine the attributes of the GDF15 molecules that result in a highly heterogenous population, analysis of the molecules by size exclusion chromatography, SDS PAGE gel, and mass spectrometry was performed. A lack of difference in retention time by size exclusion chromatography indicated that aggregation or gross degradation are unlikely to be responsible for the heterogeneity. There was also a lack of difference on an SDS PAGE gel, which indicated that disulfide mispairing or gross degradation are also unlikely to be responsible for the heterogeneity.
[0090] MS analysis was also performed to evaluate the heterogeneity of Fc.DELTA.10(-)-(G4S)4-GDF15 (SEQ ID NO: 39). The GDF15 molecule was purified using mono S, 1 ml column and fraction number 25 (P1), fraction number 28 (P2), and fraction number 31 (P3) (FIG. 3) were collected and submitted for MS analysis. About 50 .mu.g of the fractions were dried down, resuspended in 25 .mu.L of 150 mM Tris, pH 7.5/8M urea/40 mM hydroxylamine/10 mM DTT, and then incubated for 1 hour at 37.degree. C. The samples were alkylated with 20 mM iodoacetamide (IAM) for 30 minutes at room temperature in the dark. The samples were then diluted to 100 .mu.L with water and 2 .mu.g of trypsin (1:25) and digested overnight at 37.degree. C. The digests were acidified, followed by injection onto a Waters (Milford, Mass.) NanoAcquity UPLC system. Samples were first loaded onto a 180 .mu.m.times.20 mm Symmetry C18 trapping column at 15 .mu.L/min, followed by peptide separation on an Agilent (Santa Clara, Calif.) Zorbax 0.5 mm.times.250 mm 300SB-C18column. Buffer A was 0.1% formic acid/ water, while buffer B was 0.1% formic acid/ 99.9% acetonitrile. The gradient consisted of initial conditions at 1% B, followed by an increase to 45% B over 85 minutes, to 97% B over 1 minute, isocratic at 97% B for 6 minutes, to 1% B over 3 minutes, and then isocratic at 1% B for 20 minutes. The UPLC column effluent was sprayed into a Thermo Fisher Scientific (San Jose, Calif.) Orbitrap Velos Pro mass spectrometer using the standard heated electrospray ionization II (HESI II) ionization source. The mass spectrometer method consisted of a full MS scan of m/z [300-2000] at 30K resolution, followed by MS/MS (CID activation) of the top 10 most abundant precursor ions. The following instrument parameters were used for the analysis: source voltage=3.5 kV; capillary temperature=275.degree. C.; S-lens RF level=50%; activation time=10 msec; normalized collision energy=35; isolation width=2.0 Da; and threshold=1.0E4. The Xtract component of the Thermo Xcalibur 2.1 software was used for deconvolution of high-resolution MS data. Averaged data from [300-2000] were deconvoluted using a S/N threshold of 1.2 and a resolution of 100,000 at m/z 400. Deconvoluted peptide masses (glycosylated and non-glycosylated) were displayed as monoisotopic [M+H].sup.+. The various glycosylated species were confirmed by the stepwise loss of glycan subunits and the presence of the unglycosylated precursor ion as the most intense fragment following CID activation.
[0091] The MS results showed that the varying degrees of deamidated species (e.g., 70% of P1, 47% of P2, and 24% of P3) and glycosylation distribution (mostly monosaccharide and trisaccharide) on the linker contributed to highly heterogeneous nature of the GDF15 molecule as shown in its CEX profile (FIG. 3). It was determined that the (G4S)4 linker (e.g., present in Fc.DELTA.10(-)-(G4S)4-GDF15) was highly glycosylated and phosphorylated, with varying degrees and types of glycosylation and/or phosphorylation, and the N-terminus of the active fragment of wildtype human GDF15 was highly susceptible to deamidation and isomerization (see e.g., FIG. 4, which shows certain masses extracted from the full mass spec data that correspond to the unmodified, deamidated, and isomerized species of the peptide that contains asparagine at position 3. The extracted masses were m/z [590.25-590.75] from the doubly charged versions of the peptide). The asparagine at position 3 (in reference to SEQ ID NO: 6, the amino acid sequence encoding the active fragment of hGDF15) was highly susceptible to deamidation and isomerization and the aspartate at position 5 (in reference to SEQ ID NO: 6, the amino acid sequence encoding the active fragment of hGDF15) was highly susceptible to isomerization.
[0092] Based on these attributes, manufacturing a generally homogenous population of a GDF15-Fc fusion protein having the active fragment of wild type human GDF15 with a linker to the Fc region (e.g., for commercial manufacturing) would be challenging.
Example 3: Activity of GDF15-Fc Fusion Proteins Without a Linker
[0093] To address the heterogeneity issues described in Example 2, new GDF15-Fc fusion proteins that 1) eliminated the linker between the GDF15 region and the Fc region and 2) eliminated or substituted the N-terminal residues of the active fragment of wild-type human GDF15 (e.g., GDF15(.DELTA.3) (SEQ ID NO: 13), where the first three amino acids of the active fragment of wild type human GDF15 is deleted, or GDF15(N3D) (SEQ ID NO: 16), in which the asparagine at position 3 of the active fragment of wild type human GDF15 is mutated to aspartate).
[0094] In addition to the charged pair mutation in the Fc region of the GDF15-Fc fusion protein and the Fc molecule for the non-covalent association of the Fc molecule to the Fc region of the GDF15-Fc fusion protein to form a heterodimer, some of the new molecules were designed to also include an interchain disulfide bond in the CH3 region, or "cysteine clamp" (molecules that include "CC" in their designation) to augment the heterodimerization of the GDF-Fc molecule with an Fc molecule.
[0095] Four new GDF15-Fc fusion proteins in which 1) the linker between the GDF15 region and the Fc region was deleted and 2) the N-terminal residues of GDF15 were eliminated or substituted were generated. In two of the four molecules, an interchain disulfide bond was also introduced into the CH3 domain of the Fc region of the GDF15-Fc fusion protein (as well as its corresponding Fc molecule for heterodimerization). The potency and pharmacokinetic (PK) properties of these molecules (Fc.DELTA.10(-)-GDF15(.DELTA.3) (SEQ ID NO: 41); Fc.DELTA.10(-)-GDF15(N3D) (SEQ ID NO: 42); Fc.DELTA.10(-,CC)-GDF15(.DELTA.3) (SEQ ID NO: 43); Fc.DELTA.10(-,CC)-GDF15(N3D) (SEQ ID NO: 44)) were compared to the earlier generation Fc.DELTA.10(-)-(G4S)4-GDF15 (SEQ ID NO: 39), in mice.
[0096] To determine the potency of the molecules, food intake was determined. Seven to eight-week old single-housed male ob/ob mice were sorted into different treatment groups with each group having comparable pretreatment body weight and food intake levels. Animals were treated with 0.32 ug/kg, 1.6 ug/kg, 8 ug/kg, 40 ug/kg, 0.2 mg/kg, 1 mg/kg, or 5 mg/kg of a GDF15-Fc fusion protein (a dimer of Fc.DELTA.10(-)-GDF15(.DELTA.3):Fc.DELTA.10(+,K) (SEQ ID NOs: 41 and 32); Fc.DELTA.10(-)-GDF15(N3D):Fc.DELTA.10(+,K) (SEQ ID NOs: 42 and 32); or Fc.DELTA.10(-,CC)-GDF15(.DELTA.3):Fc.DELTA.10(+,K,CC) (SEQ ID NOs: 39 and 32)) through subcutaneous injection, and overnight food intake was measured. Data presented is an average of 2-4 independent studies (FIG. 5). The four new molecules, Fc.DELTA.10(-)-GDF15(.DELTA.3) (SEQ ID NO: 41); Fc.DELTA.10(-)-GDF15(N3D) (SEQ ID NO: 42); Fc.DELTA.10(-,CC)-GDF15(.DELTA.3) (SEQ ID NO: 43); and Fc.DELTA.10(-,CC)-GDF15(N3D) (SEQ ID NO: 44), had comparable potency as the earlier generation GDF15-Fc fusion protein, Fc.DELTA.10(-)-(G4S)4-GDF15 (SEQ ID NO: 39).
[0097] To determine the pharmacokinetics of the molecules, 18-wk old male diet-induced obese C57B1/6 mice were dosed with 1 mg/kg protein subcutaneously, and serial sampling was performed at 1, 4, 8, 24, 72, 168, 240, and 336 hr post-dose. The four new molecules, Fc.DELTA.10(-)-GDF15(.DELTA.3) (SEQ ID NO: 41); Fc.DELTA.10(-)-GDF15(N3D) (SEQ ID NO: 42); Fc.DELTA.10(-,CC)-GDF15(.DELTA.3) (SEQ ID NO: 43); and Fc.DELTA.10(-,CC)-GDF15(N3D) (SEQ ID NO: 44), had comparable pharmacokinetic properties as the earlier generation GDF15-Fc fusion protein, Fc.DELTA.10(-)-(G45)4-GDF15 (SEQ ID NO: 39) (FIG. 6).
Example 4: Further Engineering of GDF15-Fc Fusion Proteins Without a Linker
[0098] As the newly designed molecules with improved manufacturability and stability attributes had similar potency and PK properties as the earlier generation molecule, the molecules were further engineered to reduce possible heterogeneity and reduce Fc effector function and increase potency.
[0099] To further reduce heterogeneity of the GDF15 region, instead of substituting the asparagine at position 3 with aspartate, the asparagine was substituted with glutamine. In addition, the molecules were engineered to have two changes introduced in the N-terminus of GDF15, e.g., GDF15(.DELTA.3/D5E) (SEQ ID NO: 17), GDF15(N3Q/D5E) (SEQ ID NO: 18) to eliminate the high rate of deamidation and isomerization of the native GDF15 protein. To reduce Fc effector function by and improve potency, the molecules were also engineered to have the hinge region of the Fc region deleted further by having an additional six amino acids deleted from the Fc hinge region (e.g., Fc.DELTA.16 instead of Fc.DELTA.10) to decrease binding to Fc.gamma.R. The same engineering of the hinge region was performed for the corresponding Fc molecules to which the GDF15-Fc fusion proteins heterodimerize with.
[0100] The activity of the further engineered GDF15-Fc fusion proteins, Fc.DELTA.16(-,CC)-GDF15(.DELTA.3/D5E) (SEQ ID NO: 45), Fc.DELTA.16(-,CC)-GDF15(N3Q/D5E) (SEQ ID NO: 46), and Fc.DELTA.16(-)-GDF15(N3Q/D5E) (SEQ ID NO: 47), were tested in cynomologus monkeys. Naive male spontaneously obese cynomolgus monkeys were acclimated/trained to procedural manipulations (e.g., blood collection, subcutaneous injection, body weight measurement, feeding schedule) for 10 weeks prior to treatment initiation. Eighty (80) monkeys were sorted into 8 treatment groups of n=10 monkeys each based on data collected during acclimation/training phase (blood chemistries and body weight). Each treatment group was administered vehicle, 3 mg/kg of the positive control FGF21-Fc, 0.5 mg/kg of Fc.DELTA.16(-,CC)-GDF15(.DELTA.3/D5E) (along with its heterodimerization partner, Fc.DELTA.16(+,K,CC) (SEQ ID NO: 35)), 3.0 mg/kg of Fc.DELTA.16(-,CC)-GDF15(.DELTA.3/D5E) (along with its heterodimerization partner, Fc.DELTA.16(+,K,CC) (SEQ ID NO: 35)), 0.5 mg/kg of Fc.DELTA.16(-,CC)-GDF15(N3Q/D5E) (along with its heterodimerization partner, Fc.DELTA.16(+,K,CC)), 3.0 mg/kg of Fc.DELTA.16(-,CC)-GDF15(N3Q/D5E) (along with its heterodimerization partner, Fc.DELTA.16(+,K,CC)), 0.5 mg/kg of Fc.DELTA.16(-)-GDF15(N3Q/D5E) (along with its heterodimerization partner, Fc.DELTA.16(+,K) (SEQ ID NO: 36)), or 3.0 mg/kg of Fc.DELTA.16(-)-GDF15(N3Q/D5E) (along with its heterodimerization partner, Fc.DELTA.16(+,K) (SEQ ID NO: 36)). Subcutaneous injections of each were given once a week for 4 weeks during the treatment phase followed by a 4-week washout phase; blood collection and body weight monitoring occurred weekly and food intake occurred daily during treatment and washout phases. The graph represents n=5-6/group and data are represented as group means.+-.SEM. Statistical analysis was performed by ANCOVA and statistical significance is denoted as *p<0.05, **p<0.01 and ***p<0.001 versus vehicle. Monkeys with rapid drug clearance were suspect of anti-drug antibodies (ADAs) and were excluded from analysis.
[0101] Unexpectedly, the newly engineered GDF15-Fc fusion proteins lost almost all potency (FIG. 7). None of the newly engineered GDF15-Fc fusion proteins reduced body weight to a similar degree as to FGF21-Fc, in contrast to the previously generated GDF15-Fc fusion proteins (see Example 1, FIG. 1)
Example 5: Restoration of GDF15-Fc Fusion Protein Activity in Cynomologus Monkeys
[0102] The GDF15-Fc fusion proteins in Example 4 as compared to the GDF15-Fc fusion protein in Example 1 had the following differences as shown in Table 7:
TABLE-US-00019 TABLE 7 Differences between GDF15-Fc Fusion Proteins in Examples 1 and 4 GDF15-Fc Molecules in GDF15-Fc Molecules in Example 1: Example 5: Efficacious in Not Efficacious in Cynomologus Monkeys Cynomologus Monkeys .DELTA.10 in Fc region .DELTA.16 in Fc region No cysteine clamp Cysteine clamp Has linker No linker Wild type GDF15 Two mutations in N-terminus of GDF15
[0103] To restore potency, different aspects of the molecules that were efficacious in the monkeys were re-introduced into new GDF15-Fc fusion proteins. The cysteine clamp (CH3 interchain disulfide bond) was eliminated and a linker reintroduced for Fc.DELTA.16(-)-(G4Q)4-GDF15(N3Q) (SEQ ID NO: 49); Fc.DELTA.16(-)-(G4Q)4-GDF15(N3Q/D5E) (SEQ ID NO: 50) and Fc.DELTA.16(-)-G4S-GDF15(N3Q/D5E) (SEQ ID NO: 54). However, the linker used in this Example cannot be glycosylated (e.g., G4Q) or was shorter (G4S instead of (G4S)4), to reduce glycosylation. Also, for Fc.DELTA.16(-)-(G4Q)4-GDF15(N3Q), the mutation at position 5 was eliminated. Lastly, for the new molecule Fc.DELTA.10(-,L234A/L235A)-(G4Q)4-GDF15(N3Q/D5E) (SEQ ID NO: 57), the smaller deletion of the hinge region of the Fc region was reintroduced, however with L234A/L235A mutations in the Fc region, which should eliminate Fc.gamma.R binding.
[0104] These new molecules were compared to Fc.DELTA.10(-)-(G4S)4-GDF15, which was shown to be efficacious in cynomologus monkeys in Example 1. Naive male spontaneously obese cynomolgus monkeys were acclimated/trained to procedural manipulations (e.g., blood collection, subcutaneous injection, body weight measurement, feeding schedule) for 2 weeks prior to treatment initiation. Forty-two (42) monkeys were sorted into 6 treatment groups of n=7 monkeys each based on data collected during acclimation/training phase (blood chemistries and body weight). Each treatment group was administered vehicle, 1.5 mg/kg of Fc.DELTA.10(-)-(G4S)4-GDF15 (along with its heterodimerization partner, Fc.DELTA.10(+,K)), 1.5 mg/kg of Fc.DELTA.16(-)-(G4Q)4-GDF15(N3Q) (along with its heterodimerization partner, Fc.DELTA.16(+,K)), 1.5 mg/kg of Fc.DELTA.16(-)-(G4Q)4-GDF15(N3Q/D5E) (along with its heterodimerization partner, Fc.DELTA.16(+,K)), 1.5 mg/kg of Fc.DELTA.16(-)-G4S-GDF15(N3Q/D5E) (along with its heterodimerization partner, Fc.DELTA.16(+,K)), or 1.5 mg/kg of Fc.DELTA.10(-,L234A/L235A)-(G4Q)4-GDF15(N3Q/D5E) (along with its heterodimerization partner, Fc.DELTA.10(+,K,L234A/L235A) (SEQ ID NO: 37). Subcutaneous injections were given once a week for 2 weeks during the treatment phase; blood collection and body weight monitoring occurred weekly and food intake was monitored daily during the treatment phase. The graph represents n=7/group and data is represented as group means.+-.SEM. Statistical analysis was performed by ANCOVA and statistical significance is denoted as *p<0.05, **p<0.01 and ***p<0.001 versus vehicle. The new molecules restored potency (FIG. 8).
[0105] Based on these results, the N3Q mutation was determined to not impact the GDF15 activity in the monkeys, and that the double mutation in GDF15 (N3Q/D5E) also did not impact GDF15 activity in the monkeys. The 16-amino acid Fc hinge deletion (.DELTA.16) was also shown to have a similar effect as the 10-amino acid Fc hinge deletion (.DELTA.10) in the monkeys. Lastly, the linker was shown to be a critical component for activity in the monkeys. Though whether the linker is a G4S or G4Q does not affect activity, the length of the linker is important for activity. The longer linkers (e.g., (G4S)4 and (G4Q)4 in FIG. 8) are more potent as compared to a shorter linker (e.g., G4S).
Example 6: Food Intake Assay in ob/ob Mice for Fc.DELTA.16(-)-(G4Q)4-GDF15(N3Q/D5E) and Fc.DELTA.10(-,L234A/L235A)-(G4Q)4-GDF15(N3Q/D5E)
[0106] A food intake assay was used to evaluate efficacy of two different GDF15-Fc fusion proteins. Seven to eight weeks-old single-housed male ob/ob mice were sorted into different treatment groups (n=5 per group) with each group having comparable pretreatment body weight and food intake levels. Animals were treated with 0.32 ug/kg, 1.6 ug/kg, 8 ug/kg, 40 ug/kg, 0.2 mg/kg, 1 mg/kg, or 5 mg/kg of the heterodimer Fc.DELTA.16(-)-(G4Q)4-GDF15(N3Q/D5E):Fc.DELTA.16(+,K) or Fc.DELTA.10(-,L234A/L235A)-(G4Q)4-GDF15(N3Q/D5E):Fc.DELTA.10(+,K,L234A/L2- 35A) through subcutaneous injection, and overnight food intake was measured. The results of a representative experiment for each GDF15-Fc fusion protein is shown in a dose response curve for Fc.DELTA.16(-)-(G4Q)4-GDF15(N3Q/D5E) (FIG. 9) and Fc.DELTA.10(-,L234A/L235A)-(G4Q)4-GDF15(N3Q/D5E) (FIG. 10). The results show both GDF15-Fc fusion proteins reduce food intake in acute ob/ob mice. The ED50 in this assay is shown in Table 8.
TABLE-US-00020 TABLE 8 ED50 in Food Intake Assay ED50 (mg/kg) Molecule n = 3-5 Fc.DELTA.16(-)-(G4Q)4-GDF15(N3Q/D5E) 7.4 .+-. 4.2 Fc.DELTA.10(-, L234A/L235A)-(G4Q)4-GDF15(N3Q/D5E) 5.8 .+-. 0.7
[0107] While the present invention has been described in terms of various embodiments, it is understood that variations and modifications will occur to those skilled in the art. Therefore, it is intended that the appended claims cover all such equivalent variations that come within the scope of the invention as claimed. In addition, the section headings used herein are for organizational purposes only and are not to be construed as limiting the subject matter described.
[0108] All references cited in this application are expressly incorporated by reference herein for any purpose.
Sequence CWU
1
1
581927DNAHomo sapiens 1atgcccgggc aagaactcag gacggtgaat ggctctcaga
tgctcctggt gttgctggtg 60ctctcgtggc tgccgcatgg gggcgccctg tctctggccg
aggcgagccg cgcaagtttc 120ccgggaccct cagagttgca ctccgaagac tccagattcc
gagagttgcg gaaacgctac 180gaggacctgc taaccaggct gcgggccaac cagagctggg
aagattcgaa caccgacctc 240gtcccggccc ctgcagtccg gatactcacg ccagaagtgc
ggctgggatc cggcggccac 300ctgcacctgc gtatctctcg ggccgccctt cccgaggggc
tccccgaggc ctcccgcctt 360caccgggctc tgttccggct gtccccgacg gcgtcaaggt
cgtgggacgt gacacgaccg 420ctgcggcgtc agctcagcct tgcaagaccc caggcgcccg
cgctgcacct gcgactgtcg 480ccgccgccgt cgcagtcgga ccaactgctg gcagaatctt
cgtccgcacg gccccagctg 540gagttgcact tgcggccgca agccgccagg gggcgccgca
gagcgcgtgc gcgcaacggg 600gaccactgtc cgctcgggcc cgggcgttgc tgccgtctgc
acacggtccg cgcgtcgctg 660gaagacctgg gctgggccga ttgggtgctg tcgccacggg
aggtgcaagt gaccatgtgc 720atcggcgcgt gcccgagcca gttccgggcg gcaaacatgc
acgcgcagat caagacgagc 780ctgcaccgcc tgaagcccga cacggtgcca gcgccctgct
gcgtgcccgc cagctacaat 840cccatggtgc tcattcaaaa gaccgacacc ggggtgtcgc
tccagaccta tgatgacttg 900ttagccaaag actgccactg catatga
9272308PRTHomo sapiens 2Met Pro Gly Gln Glu Leu
Arg Thr Val Asn Gly Ser Gln Met Leu Leu1 5
10 15Val Leu Leu Val Leu Ser Trp Leu Pro His Gly Gly
Ala Leu Ser Leu 20 25 30Ala
Glu Ala Ser Arg Ala Ser Phe Pro Gly Pro Ser Glu Leu His Ser 35
40 45Glu Asp Ser Arg Phe Arg Glu Leu Arg
Lys Arg Tyr Glu Asp Leu Leu 50 55
60Thr Arg Leu Arg Ala Asn Gln Ser Trp Glu Asp Ser Asn Thr Asp Leu65
70 75 80Val Pro Ala Pro Ala
Val Arg Ile Leu Thr Pro Glu Val Arg Leu Gly 85
90 95Ser Gly Gly His Leu His Leu Arg Ile Ser Arg
Ala Ala Leu Pro Glu 100 105
110Gly Leu Pro Glu Ala Ser Arg Leu His Arg Ala Leu Phe Arg Leu Ser
115 120 125Pro Thr Ala Ser Arg Ser Trp
Asp Val Thr Arg Pro Leu Arg Arg Gln 130 135
140Leu Ser Leu Ala Arg Pro Gln Ala Pro Ala Leu His Leu Arg Leu
Ser145 150 155 160Pro Pro
Pro Ser Gln Ser Asp Gln Leu Leu Ala Glu Ser Ser Ser Ala
165 170 175Arg Pro Gln Leu Glu Leu His
Leu Arg Pro Gln Ala Ala Arg Gly Arg 180 185
190Arg Arg Ala Arg Ala Arg Asn Gly Asp His Cys Pro Leu Gly
Pro Gly 195 200 205Arg Cys Cys Arg
Leu His Thr Val Arg Ala Ser Leu Glu Asp Leu Gly 210
215 220Trp Ala Asp Trp Val Leu Ser Pro Arg Glu Val Gln
Val Thr Met Cys225 230 235
240Ile Gly Ala Cys Pro Ser Gln Phe Arg Ala Ala Asn Met His Ala Gln
245 250 255Ile Lys Thr Ser Leu
His Arg Leu Lys Pro Asp Thr Val Pro Ala Pro 260
265 270Cys Cys Val Pro Ala Ser Tyr Asn Pro Met Val Leu
Ile Gln Lys Thr 275 280 285Asp Thr
Gly Val Ser Leu Gln Thr Tyr Asp Asp Leu Leu Ala Lys Asp 290
295 300Cys His Cys Ile3053840DNAHomo sapiens
3ctgtctctgg ccgaggcgag ccgcgcaagt ttcccgggac cctcagagtt gcactccgaa
60gactccagat tccgagagtt gcggaaacgc tacgaggacc tgctaaccag gctgcgggcc
120aaccagagct gggaagattc gaacaccgac ctcgtcccgg cccctgcagt ccggatactc
180acgccagaag tgcggctggg atccggcggc cacctgcacc tgcgtatctc tcgggccgcc
240cttcccgagg ggctccccga ggcctcccgc cttcaccggg ctctgttccg gctgtccccg
300acggcgtcaa ggtcgtggga cgtgacacga ccgctgcggc gtcagctcag ccttgcaaga
360ccccaggcgc ccgcgctgca cctgcgactg tcgccgccgc cgtcgcagtc ggaccaactg
420ctggcagaat cttcgtccgc acggccccag ctggagttgc acttgcggcc gcaagccgcc
480agggggcgcc gcagagcgcg tgcgcgcaac ggggaccact gtccgctcgg gcccgggcgt
540tgctgccgtc tgcacacggt ccgcgcgtcg ctggaagacc tgggctgggc cgattgggtg
600ctgtcgccac gggaggtgca agtgaccatg tgcatcggcg cgtgcccgag ccagttccgg
660gcggcaaaca tgcacgcgca gatcaagacg agcctgcacc gcctgaagcc cgacacggtg
720ccagcgccct gctgcgtgcc cgccagctac aatcccatgg tgctcattca aaagaccgac
780accggggtgt cgctccagac ctatgatgac ttgttagcca aagactgcca ctgcatatga
8404279PRTHomo sapiens 4Leu Ser Leu Ala Glu Ala Ser Arg Ala Ser Phe Pro
Gly Pro Ser Glu1 5 10
15Leu His Ser Glu Asp Ser Arg Phe Arg Glu Leu Arg Lys Arg Tyr Glu
20 25 30Asp Leu Leu Thr Arg Leu Arg
Ala Asn Gln Ser Trp Glu Asp Ser Asn 35 40
45Thr Asp Leu Val Pro Ala Pro Ala Val Arg Ile Leu Thr Pro Glu
Val 50 55 60Arg Leu Gly Ser Gly Gly
His Leu His Leu Arg Ile Ser Arg Ala Ala65 70
75 80Leu Pro Glu Gly Leu Pro Glu Ala Ser Arg Leu
His Arg Ala Leu Phe 85 90
95Arg Leu Ser Pro Thr Ala Ser Arg Ser Trp Asp Val Thr Arg Pro Leu
100 105 110Arg Arg Gln Leu Ser Leu
Ala Arg Pro Gln Ala Pro Ala Leu His Leu 115 120
125Arg Leu Ser Pro Pro Pro Ser Gln Ser Asp Gln Leu Leu Ala
Glu Ser 130 135 140Ser Ser Ala Arg Pro
Gln Leu Glu Leu His Leu Arg Pro Gln Ala Ala145 150
155 160Arg Gly Arg Arg Arg Ala Arg Ala Arg Asn
Gly Asp His Cys Pro Leu 165 170
175Gly Pro Gly Arg Cys Cys Arg Leu His Thr Val Arg Ala Ser Leu Glu
180 185 190Asp Leu Gly Trp Ala
Asp Trp Val Leu Ser Pro Arg Glu Val Gln Val 195
200 205Thr Met Cys Ile Gly Ala Cys Pro Ser Gln Phe Arg
Ala Ala Asn Met 210 215 220His Ala Gln
Ile Lys Thr Ser Leu His Arg Leu Lys Pro Asp Thr Val225
230 235 240Pro Ala Pro Cys Cys Val Pro
Ala Ser Tyr Asn Pro Met Val Leu Ile 245
250 255Gln Lys Thr Asp Thr Gly Val Ser Leu Gln Thr Tyr
Asp Asp Leu Leu 260 265 270Ala
Lys Asp Cys His Cys Ile 2755339DNAHomo sapiens 5gcgcgcaacg
gggaccactg tccgctcggg cccgggcgtt gctgccgtct gcacacggtc 60cgcgcgtcgc
tggaagacct gggctgggcc gattgggtgc tgtcgccacg ggaggtgcaa 120gtgaccatgt
gcatcggcgc gtgcccgagc cagttccggg cggcaaacat gcacgcgcag 180atcaagacga
gcctgcaccg cctgaagccc gacacggtgc cagcgccctg ctgcgtgccc 240gccagctaca
atcccatggt gctcattcaa aagaccgaca ccggggtgtc gctccagacc 300tatgatgact
tgttagccaa agactgccac tgcatatga 3396112PRTHomo
sapiens 6Ala Arg Asn Gly Asp His Cys Pro Leu Gly Pro Gly Arg Cys Cys Arg1
5 10 15Leu His Thr Val
Arg Ala Ser Leu Glu Asp Leu Gly Trp Ala Asp Trp 20
25 30Val Leu Ser Pro Arg Glu Val Gln Val Thr Met
Cys Ile Gly Ala Cys 35 40 45Pro
Ser Gln Phe Arg Ala Ala Asn Met His Ala Gln Ile Lys Thr Ser 50
55 60Leu His Arg Leu Lys Pro Asp Thr Val Pro
Ala Pro Cys Cys Val Pro65 70 75
80Ala Ser Tyr Asn Pro Met Val Leu Ile Gln Lys Thr Asp Thr Gly
Val 85 90 95Ser Leu Gln
Thr Tyr Asp Asp Leu Leu Ala Lys Asp Cys His Cys Ile 100
105 1107912DNAMus musculus 7atggccccgc
ccgcgctcca ggcccagcct ccaggcggct ctcaactgag gttcctgctg 60ttcctgctgc
tgttgctgct gctgctgtca tggccatcgc agggggacgc cctggcaatg 120cctgaacagc
gaccctccgg ccctgagtcc caactcaacg ccgacgagct acggggtcgc 180ttccaggacc
tgctgagccg gctgcatgcc aaccagagcc gagaggactc gaactcagaa 240ccaagtcctg
acccagctgt ccggatactc agtccagagg tgagattggg gtcccacggc 300cagctgctac
tccgcgtcaa ccgggcgtcg ctgagtcagg gtctccccga agcctaccgc 360gtgcaccgag
cgctgctcct gctgacgccg acggcccgcc cctgggacat cactaggccc 420ctgaagcgtg
cgctcagcct ccggggaccc cgtgctcccg cattacgcct gcgcctgacg 480ccgcctccgg
acctggctat gctgccctct ggcggcacgc agctggaact gcgcttacgg 540gtagccgccg
gcagggggcg ccgaagcgcg catgcgcacc caagagactc gtgcccactg 600ggtccggggc
gctgctgtca cttggagact gtgcaggcaa ctcttgaaga cttgggctgg 660agcgactggg
tgctgtcccc gcgccagctg cagctgagca tgtgcgtggg cgagtgtccc 720cacctgtatc
gctccgcgaa cacgcatgcg cagatcaaag cacgcctgca tggcctgcag 780cctgacaagg
tgcctgcccc gtgctgtgtc ccctccagct acaccccggt ggttcttatg 840cacaggacag
acagtggtgt gtcactgcag acttatgatg acctggtggc ccggggctgc 900cactgcgctt
ga 9128303PRTMus
musculus 8Met Ala Pro Pro Ala Leu Gln Ala Gln Pro Pro Gly Gly Ser Gln
Leu1 5 10 15Arg Phe Leu
Leu Phe Leu Leu Leu Leu Leu Leu Leu Leu Ser Trp Pro 20
25 30Ser Gln Gly Asp Ala Leu Ala Met Pro Glu
Gln Arg Pro Ser Gly Pro 35 40
45Glu Ser Gln Leu Asn Ala Asp Glu Leu Arg Gly Arg Phe Gln Asp Leu 50
55 60Leu Ser Arg Leu His Ala Asn Gln Ser
Arg Glu Asp Ser Asn Ser Glu65 70 75
80Pro Ser Pro Asp Pro Ala Val Arg Ile Leu Ser Pro Glu Val
Arg Leu 85 90 95Gly Ser
His Gly Gln Leu Leu Leu Arg Val Asn Arg Ala Ser Leu Ser 100
105 110Gln Gly Leu Pro Glu Ala Tyr Arg Val
His Arg Ala Leu Leu Leu Leu 115 120
125Thr Pro Thr Ala Arg Pro Trp Asp Ile Thr Arg Pro Leu Lys Arg Ala
130 135 140Leu Ser Leu Arg Gly Pro Arg
Ala Pro Ala Leu Arg Leu Arg Leu Thr145 150
155 160Pro Pro Pro Asp Leu Ala Met Leu Pro Ser Gly Gly
Thr Gln Leu Glu 165 170
175Leu Arg Leu Arg Val Ala Ala Gly Arg Gly Arg Arg Ser Ala His Ala
180 185 190His Pro Arg Asp Ser Cys
Pro Leu Gly Pro Gly Arg Cys Cys His Leu 195 200
205Glu Thr Val Gln Ala Thr Leu Glu Asp Leu Gly Trp Ser Asp
Trp Val 210 215 220Leu Ser Pro Arg Gln
Leu Gln Leu Ser Met Cys Val Gly Glu Cys Pro225 230
235 240His Leu Tyr Arg Ser Ala Asn Thr His Ala
Gln Ile Lys Ala Arg Leu 245 250
255His Gly Leu Gln Pro Asp Lys Val Pro Ala Pro Cys Cys Val Pro Ser
260 265 270Ser Tyr Thr Pro Val
Val Leu Met His Arg Thr Asp Ser Gly Val Ser 275
280 285Leu Gln Thr Tyr Asp Asp Leu Val Ala Arg Gly Cys
His Cys Ala 290 295 3009816DNAMus
musculus 9tcgcaggggg acgccctggc aatgcctgaa cagcgaccct ccggccctga
gtcccaactc 60aacgccgacg agctacgggg tcgcttccag gacctgctga gccggctgca
tgccaaccag 120agccgagagg actcgaactc agaaccaagt cctgacccag ctgtccggat
actcagtcca 180gaggtgagat tggggtccca cggccagctg ctactccgcg tcaaccgggc
gtcgctgagt 240cagggtctcc ccgaagccta ccgcgtgcac cgagcgctgc tcctgctgac
gccgacggcc 300cgcccctggg acatcactag gcccctgaag cgtgcgctca gcctccgggg
accccgtgct 360cccgcattac gcctgcgcct gacgccgcct ccggacctgg ctatgctgcc
ctctggcggc 420acgcagctgg aactgcgctt acgggtagcc gccggcaggg ggcgccgaag
cgcgcatgcg 480cacccaagag actcgtgccc actgggtccg gggcgctgct gtcacttgga
gactgtgcag 540gcaactcttg aagacttggg ctggagcgac tgggtgctgt ccccgcgcca
gctgcagctg 600agcatgtgcg tgggcgagtg tccccacctg tatcgctccg cgaacacgca
tgcgcagatc 660aaagcacgcc tgcatggcct gcagcctgac aaggtgcctg ccccgtgctg
tgtcccctcc 720agctacaccc cggtggttct tatgcacagg acagacagtg gtgtgtcact
gcagacttat 780gatgacctgg tggcccgggg ctgccactgc gcttga
81610271PRTMus musculus 10Ser Gln Gly Asp Ala Leu Ala Met Pro
Glu Gln Arg Pro Ser Gly Pro1 5 10
15Glu Ser Gln Leu Asn Ala Asp Glu Leu Arg Gly Arg Phe Gln Asp
Leu 20 25 30Leu Ser Arg Leu
His Ala Asn Gln Ser Arg Glu Asp Ser Asn Ser Glu 35
40 45Pro Ser Pro Asp Pro Ala Val Arg Ile Leu Ser Pro
Glu Val Arg Leu 50 55 60Gly Ser His
Gly Gln Leu Leu Leu Arg Val Asn Arg Ala Ser Leu Ser65 70
75 80Gln Gly Leu Pro Glu Ala Tyr Arg
Val His Arg Ala Leu Leu Leu Leu 85 90
95Thr Pro Thr Ala Arg Pro Trp Asp Ile Thr Arg Pro Leu Lys
Arg Ala 100 105 110Leu Ser Leu
Arg Gly Pro Arg Ala Pro Ala Leu Arg Leu Arg Leu Thr 115
120 125Pro Pro Pro Asp Leu Ala Met Leu Pro Ser Gly
Gly Thr Gln Leu Glu 130 135 140Leu Arg
Leu Arg Val Ala Ala Gly Arg Gly Arg Arg Ser Ala His Ala145
150 155 160His Pro Arg Asp Ser Cys Pro
Leu Gly Pro Gly Arg Cys Cys His Leu 165
170 175Glu Thr Val Gln Ala Thr Leu Glu Asp Leu Gly Trp
Ser Asp Trp Val 180 185 190Leu
Ser Pro Arg Gln Leu Gln Leu Ser Met Cys Val Gly Glu Cys Pro 195
200 205His Leu Tyr Arg Ser Ala Asn Thr His
Ala Gln Ile Lys Ala Arg Leu 210 215
220His Gly Leu Gln Pro Asp Lys Val Pro Ala Pro Cys Cys Val Pro Ser225
230 235 240Ser Tyr Thr Pro
Val Val Leu Met His Arg Thr Asp Ser Gly Val Ser 245
250 255Leu Gln Thr Tyr Asp Asp Leu Val Ala Arg
Gly Cys His Cys Ala 260 265
27011348DNAMus musculus 11agcgcgcatg cgcacccaag agactcgtgc ccactgggtc
cggggcgctg ctgtcacttg 60gagactgtgc aggcaactct tgaagacttg ggctggagcg
actgggtgct gtccccgcgc 120cagctgcagc tgagcatgtg cgtgggcgag tgtccccacc
tgtatcgctc cgcgaacacg 180catgcgcaga tcaaagcacg cctgcatggc ctgcagcctg
acaaggtgcc tgccccgtgc 240tgtgtcccct ccagctacac cccggtggtt cttatgcaca
ggacagacag tggtgtgtca 300ctgcagactt atgatgacct ggtggcccgg ggctgccact
gcgcttga 34812115PRTMus musculus 12Ser Ala His Ala His
Pro Arg Asp Ser Cys Pro Leu Gly Pro Gly Arg1 5
10 15Cys Cys His Leu Glu Thr Val Gln Ala Thr Leu
Glu Asp Leu Gly Trp 20 25
30Ser Asp Trp Val Leu Ser Pro Arg Gln Leu Gln Leu Ser Met Cys Val
35 40 45Gly Glu Cys Pro His Leu Tyr Arg
Ser Ala Asn Thr His Ala Gln Ile 50 55
60Lys Ala Arg Leu His Gly Leu Gln Pro Asp Lys Val Pro Ala Pro Cys65
70 75 80Cys Val Pro Ser Ser
Tyr Thr Pro Val Val Leu Met His Arg Thr Asp 85
90 95Ser Gly Val Ser Leu Gln Thr Tyr Asp Asp Leu
Val Ala Arg Gly Cys 100 105
110His Cys Ala 11513109PRTArtificial SequenceSynthetic Polypeptide
13Gly Asp His Cys Pro Leu Gly Pro Gly Arg Cys Cys Arg Leu His Thr1
5 10 15Val Arg Ala Ser Leu Glu
Asp Leu Gly Trp Ala Asp Trp Val Leu Ser 20 25
30Pro Arg Glu Val Gln Val Thr Met Cys Ile Gly Ala Cys
Pro Ser Gln 35 40 45Phe Arg Ala
Ala Asn Met His Ala Gln Ile Lys Thr Ser Leu His Arg 50
55 60Leu Lys Pro Asp Thr Val Pro Ala Pro Cys Cys Val
Pro Ala Ser Tyr65 70 75
80Asn Pro Met Val Leu Ile Gln Lys Thr Asp Thr Gly Val Ser Leu Gln
85 90 95Thr Tyr Asp Asp Leu Leu
Ala Lys Asp Cys His Cys Ile 100
10514112PRTArtificial SequenceSynthetic Polypeptide 14Ala Arg Gln Gly Asp
His Cys Pro Leu Gly Pro Gly Arg Cys Cys Arg1 5
10 15Leu His Thr Val Arg Ala Ser Leu Glu Asp Leu
Gly Trp Ala Asp Trp 20 25
30Val Leu Ser Pro Arg Glu Val Gln Val Thr Met Cys Ile Gly Ala Cys
35 40 45Pro Ser Gln Phe Arg Ala Ala Asn
Met His Ala Gln Ile Lys Thr Ser 50 55
60Leu His Arg Leu Lys Pro Asp Thr Val Pro Ala Pro Cys Cys Val Pro65
70 75 80Ala Ser Tyr Asn Pro
Met Val Leu Ile Gln Lys Thr Asp Thr Gly Val 85
90 95Ser Leu Gln Thr Tyr Asp Asp Leu Leu Ala Lys
Asp Cys His Cys Ile 100 105
11015112PRTArtificial SequenceSynthetic Polypeptide 15Ala Arg Asp Gly Asp
His Cys Pro Leu Gly Pro Gly Arg Cys Cys Arg1 5
10 15Leu His Thr Val Arg Ala Ser Leu Glu Asp Leu
Gly Trp Ala Asp Trp 20 25
30Val Leu Ser Pro Arg Glu Val Gln Val Thr Met Cys Ile Gly Ala Cys
35 40 45Pro Ser Gln Phe Arg Ala Ala Asn
Met His Ala Gln Ile Lys Thr Ser 50 55
60Leu His Arg Leu Lys Pro Asp Thr Val Pro Ala Pro Cys Cys Val Pro65
70 75 80Ala Ser Tyr Asn Pro
Met Val Leu Ile Gln Lys Thr Asp Thr Gly Val 85
90 95Ser Leu Gln Thr Tyr Asp Asp Leu Leu Ala Lys
Asp Cys His Cys Ile 100 105
11016112PRTArtificial SequenceSynthetic Polypeptide 16Ala Arg Asn Gly Glu
His Cys Pro Leu Gly Pro Gly Arg Cys Cys Arg1 5
10 15Leu His Thr Val Arg Ala Ser Leu Glu Asp Leu
Gly Trp Ala Asp Trp 20 25
30Val Leu Ser Pro Arg Glu Val Gln Val Thr Met Cys Ile Gly Ala Cys
35 40 45Pro Ser Gln Phe Arg Ala Ala Asn
Met His Ala Gln Ile Lys Thr Ser 50 55
60Leu His Arg Leu Lys Pro Asp Thr Val Pro Ala Pro Cys Cys Val Pro65
70 75 80Ala Ser Tyr Asn Pro
Met Val Leu Ile Gln Lys Thr Asp Thr Gly Val 85
90 95Ser Leu Gln Thr Tyr Asp Asp Leu Leu Ala Lys
Asp Cys His Cys Ile 100 105
11017109PRTArtificial SequenceSynthetic Polypeptide 17Gly Glu His Cys Pro
Leu Gly Pro Gly Arg Cys Cys Arg Leu His Thr1 5
10 15Val Arg Ala Ser Leu Glu Asp Leu Gly Trp Ala
Asp Trp Val Leu Ser 20 25
30Pro Arg Glu Val Gln Val Thr Met Cys Ile Gly Ala Cys Pro Ser Gln
35 40 45Phe Arg Ala Ala Asn Met His Ala
Gln Ile Lys Thr Ser Leu His Arg 50 55
60Leu Lys Pro Asp Thr Val Pro Ala Pro Cys Cys Val Pro Ala Ser Tyr65
70 75 80Asn Pro Met Val Leu
Ile Gln Lys Thr Asp Thr Gly Val Ser Leu Gln 85
90 95Thr Tyr Asp Asp Leu Leu Ala Lys Asp Cys His
Cys Ile 100 10518112PRTArtificial
SequenceSynthetic Polypeptide 18Ala Arg Gln Gly Glu His Cys Pro Leu Gly
Pro Gly Arg Cys Cys Arg1 5 10
15Leu His Thr Val Arg Ala Ser Leu Glu Asp Leu Gly Trp Ala Asp Trp
20 25 30Val Leu Ser Pro Arg Glu
Val Gln Val Thr Met Cys Ile Gly Ala Cys 35 40
45Pro Ser Gln Phe Arg Ala Ala Asn Met His Ala Gln Ile Lys
Thr Ser 50 55 60Leu His Arg Leu Lys
Pro Asp Thr Val Pro Ala Pro Cys Cys Val Pro65 70
75 80Ala Ser Tyr Asn Pro Met Val Leu Ile Gln
Lys Thr Asp Thr Gly Val 85 90
95Ser Leu Gln Thr Tyr Asp Asp Leu Leu Ala Lys Asp Cys His Cys Ile
100 105 110195PRTArtificial
SequenceSynthetic Polypeptide 19Gly Gly Gly Gly Ser1
52010PRTArtificial SequenceSynthetic Polypeptide 20Gly Gly Gly Gly Ser
Gly Gly Gly Gly Ser1 5
102120PRTArtificial SequenceSynthetic Polypeptide 21Gly Gly Gly Gly Ser
Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly1 5
10 15Gly Gly Gly Ser 202240PRTArtificial
SequenceSynthetic Polypeptide 22Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser
Gly Gly Gly Gly Ser Gly1 5 10
15Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly
20 25 30Gly Gly Ser Gly Gly Gly
Gly Ser 35 40234PRTArtificial SequenceSynthetic
Polypeptide 23Gly Gly Gly Gly1245PRTArtificial SequenceSynthetic
Polypeptide 24Gly Gly Gly Gly Gln1 52520PRTArtificial
SequenceSynthetic Polypeptide 25Gly Gly Gly Gly Gln Gly Gly Gly Gly Gln
Gly Gly Gly Gly Gln Gly1 5 10
15Gly Gly Gly Gln 2026216PRTArtificial SequenceSynthetic
Polypeptide 26Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro
Lys1 5 10 15Pro Lys Asp
Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val 20
25 30Val Val Asp Val Ser His Glu Asp Pro Glu
Val Lys Phe Asn Trp Tyr 35 40
45Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu 50
55 60Gln Tyr Asn Ser Thr Tyr Arg Val Val
Ser Val Leu Thr Val Leu His65 70 75
80Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser
Asn Lys 85 90 95Ala Leu
Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln 100
105 110Pro Arg Glu Pro Gln Val Tyr Thr Leu
Pro Pro Ser Arg Glu Glu Met 115 120
125Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro
130 135 140Ser Asp Ile Ala Val Glu Trp
Glu Ser Asn Gly Gln Pro Glu Asn Asn145 150
155 160Tyr Asp Thr Thr Pro Pro Val Leu Asp Ser Asp Gly
Ser Phe Phe Leu 165 170
175Tyr Ser Asp Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val
180 185 190Phe Ser Cys Ser Val Met
His Glu Ala Leu His Asn His Tyr Thr Gln 195 200
205Lys Ser Leu Ser Leu Ser Pro Gly 210
21527216PRTArtificial SequenceSynthetic Polypeptide 27Ala Pro Glu Leu Leu
Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys1 5
10 15Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro
Glu Val Thr Cys Val 20 25
30Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr
35 40 45Val Asp Gly Val Glu Val His Asn
Ala Lys Thr Lys Pro Arg Glu Glu 50 55
60Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His65
70 75 80Gln Asp Trp Leu Asn
Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys 85
90 95Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser
Lys Ala Lys Gly Gln 100 105
110Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Lys Glu Met
115 120 125Thr Lys Asn Gln Val Ser Leu
Thr Cys Leu Val Lys Gly Phe Tyr Pro 130 135
140Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn
Asn145 150 155 160Tyr Lys
Thr Thr Pro Pro Val Leu Lys Ser Asp Gly Ser Phe Phe Leu
165 170 175Tyr Ser Lys Leu Thr Val Asp
Lys Ser Arg Trp Gln Gln Gly Asn Val 180 185
190Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr
Thr Gln 195 200 205Lys Ser Leu Ser
Leu Ser Pro Gly 210 21528216PRTArtificial
SequenceSynthetic Polypeptide 28Ala Pro Glu Leu Leu Gly Gly Pro Ser Val
Phe Leu Phe Pro Pro Lys1 5 10
15Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val
20 25 30Val Val Asp Val Ser His
Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr 35 40
45Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg
Glu Glu 50 55 60Gln Tyr Asn Ser Thr
Tyr Arg Val Val Ser Val Leu Thr Val Leu His65 70
75 80Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys
Cys Lys Val Ser Asn Lys 85 90
95Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln
100 105 110Pro Arg Glu Pro Gln
Val Cys Thr Leu Pro Pro Ser Arg Glu Glu Met 115
120 125Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys
Gly Phe Tyr Pro 130 135 140Ser Asp Ile
Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn145
150 155 160Tyr Asp Thr Thr Pro Pro Val
Leu Asp Ser Asp Gly Ser Phe Phe Leu 165
170 175Tyr Ser Asp Leu Thr Val Asp Lys Ser Arg Trp Gln
Gln Gly Asn Val 180 185 190Phe
Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln 195
200 205Lys Ser Leu Ser Leu Ser Pro Gly
210 21529210PRTArtificial SequenceSynthetic Polypeptide
29Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met1
5 10 15Ile Ser Arg Thr Pro Glu
Val Thr Cys Val Val Val Asp Val Ser His 20 25
30Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly
Val Glu Val 35 40 45His Asn Ala
Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr 50
55 60Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp
Trp Leu Asn Gly65 70 75
80Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile
85 90 95Glu Lys Thr Ile Ser Lys
Ala Lys Gly Gln Pro Arg Glu Pro Gln Val 100
105 110Cys Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys
Asn Gln Val Ser 115 120 125Leu Thr
Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu 130
135 140Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr
Asp Thr Thr Pro Pro145 150 155
160Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Asp Leu Thr Val
165 170 175Asp Lys Ser Arg
Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met 180
185 190His Glu Ala Leu His Asn His Tyr Thr Gln Lys
Ser Leu Ser Leu Ser 195 200 205Pro
Gly 21030210PRTArtificial SequenceSynthetic Polypeptide 30Gly Pro Ser
Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met1 5
10 15Ile Ser Arg Thr Pro Glu Val Thr Cys
Val Val Val Asp Val Ser His 20 25
30Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val
35 40 45His Asn Ala Lys Thr Lys Pro
Arg Glu Glu Gln Tyr Asn Ser Thr Tyr 50 55
60Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly65
70 75 80Lys Glu Tyr Lys
Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile 85
90 95Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln
Pro Arg Glu Pro Gln Val 100 105
110Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys Asn Gln Val Ser
115 120 125Leu Thr Cys Leu Val Lys Gly
Phe Tyr Pro Ser Asp Ile Ala Val Glu 130 135
140Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Asp Thr Thr Pro
Pro145 150 155 160Val Leu
Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Asp Leu Thr Val
165 170 175Asp Lys Ser Arg Trp Gln Gln
Gly Asn Val Phe Ser Cys Ser Val Met 180 185
190His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser
Leu Ser 195 200 205Pro Gly
21031216PRTArtificial SequenceSynthetic Polypeptide 31Ala Pro Glu Ala Ala
Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys1 5
10 15Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro
Glu Val Thr Cys Val 20 25
30Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr
35 40 45Val Asp Gly Val Glu Val His Asn
Ala Lys Thr Lys Pro Arg Glu Glu 50 55
60Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His65
70 75 80Gln Asp Trp Leu Asn
Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys 85
90 95Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser
Lys Ala Lys Gly Gln 100 105
110Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met
115 120 125Thr Lys Asn Gln Val Ser Leu
Thr Cys Leu Val Lys Gly Phe Tyr Pro 130 135
140Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn
Asn145 150 155 160Tyr Asp
Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu
165 170 175Tyr Ser Asp Leu Thr Val Asp
Lys Ser Arg Trp Gln Gln Gly Asn Val 180 185
190Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr
Thr Gln 195 200 205Lys Ser Leu Ser
Leu Ser Pro Gly 210 21532217PRTArtificial
SequenceSynthetic Polypeptide 32Ala Pro Glu Leu Leu Gly Gly Pro Ser Val
Phe Leu Phe Pro Pro Lys1 5 10
15Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val
20 25 30Val Val Asp Val Ser His
Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr 35 40
45Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg
Glu Glu 50 55 60Gln Tyr Asn Ser Thr
Tyr Arg Val Val Ser Val Leu Thr Val Leu His65 70
75 80Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys
Cys Lys Val Ser Asn Lys 85 90
95Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln
100 105 110Pro Arg Glu Pro Gln
Val Tyr Thr Leu Pro Pro Ser Arg Lys Glu Met 115
120 125Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys
Gly Phe Tyr Pro 130 135 140Ser Asp Ile
Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn145
150 155 160Tyr Lys Thr Thr Pro Pro Val
Leu Lys Ser Asp Gly Ser Phe Phe Leu 165
170 175Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln
Gln Gly Asn Val 180 185 190Phe
Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln 195
200 205Lys Ser Leu Ser Leu Ser Pro Gly Lys
210 21533217PRTArtificial SequenceSynthetic Polypeptide
33Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys1
5 10 15Pro Lys Asp Thr Leu Met
Ile Ser Arg Thr Pro Glu Val Thr Cys Val 20 25
30Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe
Asn Trp Tyr 35 40 45Val Asp Gly
Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu 50
55 60Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu
Thr Val Leu His65 70 75
80Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys
85 90 95Ala Leu Pro Ala Pro Ile
Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln 100
105 110Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser
Arg Glu Glu Met 115 120 125Thr Lys
Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro 130
135 140Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly
Gln Pro Glu Asn Asn145 150 155
160Tyr Asp Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu
165 170 175Tyr Ser Asp Leu
Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val 180
185 190Phe Ser Cys Ser Val Met His Glu Ala Leu His
Asn His Tyr Thr Gln 195 200 205Lys
Ser Leu Ser Leu Ser Pro Gly Lys 210
21534217PRTArtificial SequenceSynthetic Polypeptide 34Ala Pro Glu Leu Leu
Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys1 5
10 15Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro
Glu Val Thr Cys Val 20 25
30Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr
35 40 45Val Asp Gly Val Glu Val His Asn
Ala Lys Thr Lys Pro Arg Glu Glu 50 55
60Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His65
70 75 80Gln Asp Trp Leu Asn
Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys 85
90 95Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser
Lys Ala Lys Gly Gln 100 105
110Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Cys Arg Lys Glu Met
115 120 125Thr Lys Asn Gln Val Ser Leu
Thr Cys Leu Val Lys Gly Phe Tyr Pro 130 135
140Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn
Asn145 150 155 160Tyr Lys
Thr Thr Pro Pro Val Leu Lys Ser Asp Gly Ser Phe Phe Leu
165 170 175Tyr Ser Lys Leu Thr Val Asp
Lys Ser Arg Trp Gln Gln Gly Asn Val 180 185
190Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr
Thr Gln 195 200 205Lys Ser Leu Ser
Leu Ser Pro Gly Lys 210 21535211PRTArtificial
SequenceSynthetic Polypeptide 35Gly Pro Ser Val Phe Leu Phe Pro Pro Lys
Pro Lys Asp Thr Leu Met1 5 10
15Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His
20 25 30Glu Asp Pro Glu Val Lys
Phe Asn Trp Tyr Val Asp Gly Val Glu Val 35 40
45His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser
Thr Tyr 50 55 60Arg Val Val Ser Val
Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly65 70
75 80Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys
Ala Leu Pro Ala Pro Ile 85 90
95Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val
100 105 110Tyr Thr Leu Pro Pro
Cys Arg Lys Glu Met Thr Lys Asn Gln Val Ser 115
120 125Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp
Ile Ala Val Glu 130 135 140Trp Glu Ser
Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro145
150 155 160Val Leu Lys Ser Asp Gly Ser
Phe Phe Leu Tyr Ser Lys Leu Thr Val 165
170 175Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser
Cys Ser Val Met 180 185 190His
Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser 195
200 205Pro Gly Lys 21036211PRTArtificial
SequenceSynthetic Polypeptide 36Gly Pro Ser Val Phe Leu Phe Pro Pro Lys
Pro Lys Asp Thr Leu Met1 5 10
15Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His
20 25 30Glu Asp Pro Glu Val Lys
Phe Asn Trp Tyr Val Asp Gly Val Glu Val 35 40
45His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser
Thr Tyr 50 55 60Arg Val Val Ser Val
Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly65 70
75 80Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys
Ala Leu Pro Ala Pro Ile 85 90
95Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val
100 105 110Tyr Thr Leu Pro Pro
Ser Arg Lys Glu Met Thr Lys Asn Gln Val Ser 115
120 125Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp
Ile Ala Val Glu 130 135 140Trp Glu Ser
Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro145
150 155 160Val Leu Lys Ser Asp Gly Ser
Phe Phe Leu Tyr Ser Lys Leu Thr Val 165
170 175Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser
Cys Ser Val Met 180 185 190His
Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser 195
200 205Pro Gly Lys 21037217PRTArtificial
SequenceSynthetic Polypeptide 37Ala Pro Glu Ala Ala Gly Gly Pro Ser Val
Phe Leu Phe Pro Pro Lys1 5 10
15Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val
20 25 30Val Val Asp Val Ser His
Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr 35 40
45Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg
Glu Glu 50 55 60Gln Tyr Asn Ser Thr
Tyr Arg Val Val Ser Val Leu Thr Val Leu His65 70
75 80Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys
Cys Lys Val Ser Asn Lys 85 90
95Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln
100 105 110Pro Arg Glu Pro Gln
Val Tyr Thr Leu Pro Pro Ser Arg Lys Glu Met 115
120 125Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys
Gly Phe Tyr Pro 130 135 140Ser Asp Ile
Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn145
150 155 160Tyr Lys Thr Thr Pro Pro Val
Leu Lys Ser Asp Gly Ser Phe Phe Leu 165
170 175Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln
Gln Gly Asn Val 180 185 190Phe
Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln 195
200 205Lys Ser Leu Ser Leu Ser Pro Gly Lys
210 21538630PRTArtificial SequenceFusion Protein 38Gly
Gly Gly Glu Arg Lys Ser Ser Val Glu Cys Pro Pro Cys Pro Ala1
5 10 15Pro Pro Val Ala Gly Pro Ser
Val Phe Leu Phe Pro Pro Lys Pro Lys 20 25
30Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val
Val Val 35 40 45Asp Val Ser His
Glu Asp Pro Glu Val Gln Phe Asn Trp Tyr Val Asp 50 55
60Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu
Glu Gln Phe65 70 75
80Asn Ser Thr Phe Arg Val Val Ser Val Leu Thr Val Val His Gln Asp
85 90 95Trp Leu Asn Gly Lys Glu
Tyr Lys Cys Lys Val Ser Asn Lys Gly Leu 100
105 110Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Thr Lys
Gly Gln Pro Arg 115 120 125Glu Pro
Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys 130
135 140Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly
Phe Tyr Pro Ser Asp145 150 155
160Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys
165 170 175Thr Thr Pro Pro
Met Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser 180
185 190Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln
Gly Asn Val Phe Ser 195 200 205Cys
Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser 210
215 220Leu Ser Leu Ser Pro Gly Gly Gly Gly Gly
Ser Gly Gly Gly Gly Ser225 230 235
240Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser
Gly 245 250 255Gly Gly Gly
Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser Glu Arg 260
265 270Lys Ser Ser Val Glu Cys Pro Pro Cys Pro
Ala Pro Pro Val Ala Gly 275 280
285Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile 290
295 300Ser Arg Thr Pro Glu Val Thr Cys
Val Val Val Asp Val Ser His Glu305 310
315 320Asp Pro Glu Val Gln Phe Asn Trp Tyr Val Asp Gly
Val Glu Val His 325 330
335Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr Phe Arg
340 345 350Val Val Ser Val Leu Thr
Val Val His Gln Asp Trp Leu Asn Gly Lys 355 360
365Glu Tyr Lys Cys Lys Val Ser Asn Lys Gly Leu Pro Ala Pro
Ile Glu 370 375 380Lys Thr Ile Ser Lys
Thr Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr385 390
395 400Thr Leu Pro Pro Ser Arg Glu Glu Met Thr
Lys Asn Gln Val Ser Leu 405 410
415Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp
420 425 430Glu Ser Asn Gly Gln
Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Met 435
440 445Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys
Leu Thr Val Asp 450 455 460Lys Ser Arg
Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His465
470 475 480Glu Ala Leu His Asn His Tyr
Thr Gln Lys Ser Leu Ser Leu Ser Pro 485
490 495Gly Ser Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser
Gly Gly Gly Gly 500 505 510Ser
Gly Gly Gly Gly Ser Ala Arg Asn Gly Asp His Cys Pro Leu Gly 515
520 525Pro Gly Arg Cys Cys Arg Leu His Thr
Val Arg Ala Ser Leu Glu Asp 530 535
540Leu Gly Trp Ala Asp Trp Val Leu Ser Pro Arg Glu Val Gln Val Thr545
550 555 560Met Cys Ile Gly
Ala Cys Pro Ser Gln Phe Arg Ala Ala Asn Met His 565
570 575Ala Gln Ile Lys Thr Ser Leu His Arg Leu
Lys Pro Asp Thr Val Pro 580 585
590Ala Pro Cys Cys Val Pro Ala Ser Tyr Asn Pro Met Val Leu Ile Gln
595 600 605Lys Thr Asp Thr Gly Val Ser
Leu Gln Thr Tyr Asp Asp Leu Leu Ala 610 615
620Lys Asp Cys His Cys Ile625 63039348PRTArtificial
SequenceFusion Protein 39Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu
Phe Pro Pro Lys1 5 10
15Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val
20 25 30Val Val Asp Val Ser His Glu
Asp Pro Glu Val Lys Phe Asn Trp Tyr 35 40
45Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu
Glu 50 55 60Gln Tyr Asn Ser Thr Tyr
Arg Val Val Ser Val Leu Thr Val Leu His65 70
75 80Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys
Lys Val Ser Asn Lys 85 90
95Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln
100 105 110Pro Arg Glu Pro Gln Val
Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met 115 120
125Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe
Tyr Pro 130 135 140Ser Asp Ile Ala Val
Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn145 150
155 160Tyr Asp Thr Thr Pro Pro Val Leu Asp Ser
Asp Gly Ser Phe Phe Leu 165 170
175Tyr Ser Asp Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val
180 185 190Phe Ser Cys Ser Val
Met His Glu Ala Leu His Asn His Tyr Thr Gln 195
200 205Lys Ser Leu Ser Leu Ser Pro Gly Gly Gly Gly Gly
Ser Gly Gly Gly 210 215 220Gly Ser Gly
Gly Gly Gly Ser Gly Gly Gly Gly Ser Ala Arg Asn Gly225
230 235 240Asp His Cys Pro Leu Gly Pro
Gly Arg Cys Cys Arg Leu His Thr Val 245
250 255Arg Ala Ser Leu Glu Asp Leu Gly Trp Ala Asp Trp
Val Leu Ser Pro 260 265 270Arg
Glu Val Gln Val Thr Met Cys Ile Gly Ala Cys Pro Ser Gln Phe 275
280 285Arg Ala Ala Asn Met His Ala Gln Ile
Lys Thr Ser Leu His Arg Leu 290 295
300Lys Pro Asp Thr Val Pro Ala Pro Cys Cys Val Pro Ala Ser Tyr Asn305
310 315 320Pro Met Val Leu
Ile Gln Lys Thr Asp Thr Gly Val Ser Leu Gln Thr 325
330 335Tyr Asp Asp Leu Leu Ala Lys Asp Cys His
Cys Ile 340 34540332PRTArtificial
SequenceFusion Protein 40Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu
Phe Pro Pro Lys1 5 10
15Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val
20 25 30Val Val Asp Val Ser His Glu
Asp Pro Glu Val Lys Phe Asn Trp Tyr 35 40
45Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu
Glu 50 55 60Gln Tyr Asn Ser Thr Tyr
Arg Val Val Ser Val Leu Thr Val Leu His65 70
75 80Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys
Lys Val Ser Asn Lys 85 90
95Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln
100 105 110Pro Arg Glu Pro Gln Val
Tyr Thr Leu Pro Pro Ser Arg Lys Glu Met 115 120
125Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe
Tyr Pro 130 135 140Ser Asp Ile Ala Val
Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn145 150
155 160Tyr Lys Thr Thr Pro Pro Val Leu Lys Ser
Asp Gly Ser Phe Phe Leu 165 170
175Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val
180 185 190Phe Ser Cys Ser Val
Met His Glu Ala Leu His Asn His Tyr Thr Gln 195
200 205Lys Ser Leu Ser Leu Ser Pro Gly Gly Gly Gly Gly
Ala Arg Asn Gly 210 215 220Asp His Cys
Pro Leu Gly Pro Gly Arg Cys Cys Arg Leu His Thr Val225
230 235 240Arg Ala Ser Leu Glu Asp Leu
Gly Trp Ala Asp Trp Val Leu Ser Pro 245
250 255Arg Glu Val Gln Val Thr Met Cys Ile Gly Ala Cys
Pro Ser Gln Phe 260 265 270Arg
Ala Ala Asn Met His Ala Gln Ile Lys Thr Ser Leu His Arg Leu 275
280 285Lys Pro Asp Thr Val Pro Ala Pro Cys
Cys Val Pro Ala Ser Tyr Asn 290 295
300Pro Met Val Leu Ile Gln Lys Thr Asp Thr Gly Val Ser Leu Gln Thr305
310 315 320Tyr Asp Asp Leu
Leu Ala Lys Asp Cys His Cys Ile 325
33041325PRTArtificial SequenceFusion Protein 41Ala Pro Glu Leu Leu Gly
Gly Pro Ser Val Phe Leu Phe Pro Pro Lys1 5
10 15Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu
Val Thr Cys Val 20 25 30Val
Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr 35
40 45Val Asp Gly Val Glu Val His Asn Ala
Lys Thr Lys Pro Arg Glu Glu 50 55
60Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His65
70 75 80Gln Asp Trp Leu Asn
Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys 85
90 95Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser
Lys Ala Lys Gly Gln 100 105
110Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met
115 120 125Thr Lys Asn Gln Val Ser Leu
Thr Cys Leu Val Lys Gly Phe Tyr Pro 130 135
140Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn
Asn145 150 155 160Tyr Asp
Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu
165 170 175Tyr Ser Asp Leu Thr Val Asp
Lys Ser Arg Trp Gln Gln Gly Asn Val 180 185
190Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr
Thr Gln 195 200 205Lys Ser Leu Ser
Leu Ser Pro Gly Gly Asp His Cys Pro Leu Gly Pro 210
215 220Gly Arg Cys Cys Arg Leu His Thr Val Arg Ala Ser
Leu Glu Asp Leu225 230 235
240Gly Trp Ala Asp Trp Val Leu Ser Pro Arg Glu Val Gln Val Thr Met
245 250 255Cys Ile Gly Ala Cys
Pro Ser Gln Phe Arg Ala Ala Asn Met His Ala 260
265 270Gln Ile Lys Thr Ser Leu His Arg Leu Lys Pro Asp
Thr Val Pro Ala 275 280 285Pro Cys
Cys Val Pro Ala Ser Tyr Asn Pro Met Val Leu Ile Gln Lys 290
295 300Thr Asp Thr Gly Val Ser Leu Gln Thr Tyr Asp
Asp Leu Leu Ala Lys305 310 315
320Asp Cys His Cys Ile 32542328PRTArtificial
SequenceFusion Protein 42Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu
Phe Pro Pro Lys1 5 10
15Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val
20 25 30Val Val Asp Val Ser His Glu
Asp Pro Glu Val Lys Phe Asn Trp Tyr 35 40
45Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu
Glu 50 55 60Gln Tyr Asn Ser Thr Tyr
Arg Val Val Ser Val Leu Thr Val Leu His65 70
75 80Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys
Lys Val Ser Asn Lys 85 90
95Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln
100 105 110Pro Arg Glu Pro Gln Val
Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met 115 120
125Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe
Tyr Pro 130 135 140Ser Asp Ile Ala Val
Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn145 150
155 160Tyr Asp Thr Thr Pro Pro Val Leu Asp Ser
Asp Gly Ser Phe Phe Leu 165 170
175Tyr Ser Asp Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val
180 185 190Phe Ser Cys Ser Val
Met His Glu Ala Leu His Asn His Tyr Thr Gln 195
200 205Lys Ser Leu Ser Leu Ser Pro Gly Ala Arg Asp Gly
Asp His Cys Pro 210 215 220Leu Gly Pro
Gly Arg Cys Cys Arg Leu His Thr Val Arg Ala Ser Leu225
230 235 240Glu Asp Leu Gly Trp Ala Asp
Trp Val Leu Ser Pro Arg Glu Val Gln 245
250 255Val Thr Met Cys Ile Gly Ala Cys Pro Ser Gln Phe
Arg Ala Ala Asn 260 265 270Met
His Ala Gln Ile Lys Thr Ser Leu His Arg Leu Lys Pro Asp Thr 275
280 285Val Pro Ala Pro Cys Cys Val Pro Ala
Ser Tyr Asn Pro Met Val Leu 290 295
300Ile Gln Lys Thr Asp Thr Gly Val Ser Leu Gln Thr Tyr Asp Asp Leu305
310 315 320Leu Ala Lys Asp
Cys His Cys Ile 32543325PRTArtificial SequenceFusion
Protein 43Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro
Lys1 5 10 15Pro Lys Asp
Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val 20
25 30Val Val Asp Val Ser His Glu Asp Pro Glu
Val Lys Phe Asn Trp Tyr 35 40
45Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu 50
55 60Gln Tyr Asn Ser Thr Tyr Arg Val Val
Ser Val Leu Thr Val Leu His65 70 75
80Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser
Asn Lys 85 90 95Ala Leu
Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln 100
105 110Pro Arg Glu Pro Gln Val Cys Thr Leu
Pro Pro Ser Arg Glu Glu Met 115 120
125Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro
130 135 140Ser Asp Ile Ala Val Glu Trp
Glu Ser Asn Gly Gln Pro Glu Asn Asn145 150
155 160Tyr Asp Thr Thr Pro Pro Val Leu Asp Ser Asp Gly
Ser Phe Phe Leu 165 170
175Tyr Ser Asp Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val
180 185 190Phe Ser Cys Ser Val Met
His Glu Ala Leu His Asn His Tyr Thr Gln 195 200
205Lys Ser Leu Ser Leu Ser Pro Gly Gly Asp His Cys Pro Leu
Gly Pro 210 215 220Gly Arg Cys Cys Arg
Leu His Thr Val Arg Ala Ser Leu Glu Asp Leu225 230
235 240Gly Trp Ala Asp Trp Val Leu Ser Pro Arg
Glu Val Gln Val Thr Met 245 250
255Cys Ile Gly Ala Cys Pro Ser Gln Phe Arg Ala Ala Asn Met His Ala
260 265 270Gln Ile Lys Thr Ser
Leu His Arg Leu Lys Pro Asp Thr Val Pro Ala 275
280 285Pro Cys Cys Val Pro Ala Ser Tyr Asn Pro Met Val
Leu Ile Gln Lys 290 295 300Thr Asp Thr
Gly Val Ser Leu Gln Thr Tyr Asp Asp Leu Leu Ala Lys305
310 315 320Asp Cys His Cys Ile
32544328PRTArtificial SequenceFusion Protein 44Ala Pro Glu Leu Leu
Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys1 5
10 15Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro
Glu Val Thr Cys Val 20 25
30Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr
35 40 45Val Asp Gly Val Glu Val His Asn
Ala Lys Thr Lys Pro Arg Glu Glu 50 55
60Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His65
70 75 80Gln Asp Trp Leu Asn
Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys 85
90 95Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser
Lys Ala Lys Gly Gln 100 105
110Pro Arg Glu Pro Gln Val Cys Thr Leu Pro Pro Ser Arg Glu Glu Met
115 120 125Thr Lys Asn Gln Val Ser Leu
Thr Cys Leu Val Lys Gly Phe Tyr Pro 130 135
140Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn
Asn145 150 155 160Tyr Asp
Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu
165 170 175Tyr Ser Asp Leu Thr Val Asp
Lys Ser Arg Trp Gln Gln Gly Asn Val 180 185
190Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr
Thr Gln 195 200 205Lys Ser Leu Ser
Leu Ser Pro Gly Ala Arg Asp Gly Asp His Cys Pro 210
215 220Leu Gly Pro Gly Arg Cys Cys Arg Leu His Thr Val
Arg Ala Ser Leu225 230 235
240Glu Asp Leu Gly Trp Ala Asp Trp Val Leu Ser Pro Arg Glu Val Gln
245 250 255Val Thr Met Cys Ile
Gly Ala Cys Pro Ser Gln Phe Arg Ala Ala Asn 260
265 270Met His Ala Gln Ile Lys Thr Ser Leu His Arg Leu
Lys Pro Asp Thr 275 280 285Val Pro
Ala Pro Cys Cys Val Pro Ala Ser Tyr Asn Pro Met Val Leu 290
295 300Ile Gln Lys Thr Asp Thr Gly Val Ser Leu Gln
Thr Tyr Asp Asp Leu305 310 315
320Leu Ala Lys Asp Cys His Cys Ile
32545319PRTArtificial SequenceFusion Protein 45Gly Pro Ser Val Phe Leu
Phe Pro Pro Lys Pro Lys Asp Thr Leu Met1 5
10 15Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val
Asp Val Ser His 20 25 30Glu
Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val 35
40 45His Asn Ala Lys Thr Lys Pro Arg Glu
Glu Gln Tyr Asn Ser Thr Tyr 50 55
60Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly65
70 75 80Lys Glu Tyr Lys Cys
Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile 85
90 95Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro
Arg Glu Pro Gln Val 100 105
110Cys Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys Asn Gln Val Ser
115 120 125Leu Thr Cys Leu Val Lys Gly
Phe Tyr Pro Ser Asp Ile Ala Val Glu 130 135
140Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Asp Thr Thr Pro
Pro145 150 155 160Val Leu
Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Asp Leu Thr Val
165 170 175Asp Lys Ser Arg Trp Gln Gln
Gly Asn Val Phe Ser Cys Ser Val Met 180 185
190His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser
Leu Ser 195 200 205Pro Gly Gly Glu
His Cys Pro Leu Gly Pro Gly Arg Cys Cys Arg Leu 210
215 220His Thr Val Arg Ala Ser Leu Glu Asp Leu Gly Trp
Ala Asp Trp Val225 230 235
240Leu Ser Pro Arg Glu Val Gln Val Thr Met Cys Ile Gly Ala Cys Pro
245 250 255Ser Gln Phe Arg Ala
Ala Asn Met His Ala Gln Ile Lys Thr Ser Leu 260
265 270His Arg Leu Lys Pro Asp Thr Val Pro Ala Pro Cys
Cys Val Pro Ala 275 280 285Ser Tyr
Asn Pro Met Val Leu Ile Gln Lys Thr Asp Thr Gly Val Ser 290
295 300Leu Gln Thr Tyr Asp Asp Leu Leu Ala Lys Asp
Cys His Cys Ile305 310
31546322PRTArtificial SequenceFusion Protein 46Gly Pro Ser Val Phe Leu
Phe Pro Pro Lys Pro Lys Asp Thr Leu Met1 5
10 15Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val
Asp Val Ser His 20 25 30Glu
Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val 35
40 45His Asn Ala Lys Thr Lys Pro Arg Glu
Glu Gln Tyr Asn Ser Thr Tyr 50 55
60Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly65
70 75 80Lys Glu Tyr Lys Cys
Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile 85
90 95Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro
Arg Glu Pro Gln Val 100 105
110Cys Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys Asn Gln Val Ser
115 120 125Leu Thr Cys Leu Val Lys Gly
Phe Tyr Pro Ser Asp Ile Ala Val Glu 130 135
140Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Asp Thr Thr Pro
Pro145 150 155 160Val Leu
Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Asp Leu Thr Val
165 170 175Asp Lys Ser Arg Trp Gln Gln
Gly Asn Val Phe Ser Cys Ser Val Met 180 185
190His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser
Leu Ser 195 200 205Pro Gly Ala Arg
Gln Gly Glu His Cys Pro Leu Gly Pro Gly Arg Cys 210
215 220Cys Arg Leu His Thr Val Arg Ala Ser Leu Glu Asp
Leu Gly Trp Ala225 230 235
240Asp Trp Val Leu Ser Pro Arg Glu Val Gln Val Thr Met Cys Ile Gly
245 250 255Ala Cys Pro Ser Gln
Phe Arg Ala Ala Asn Met His Ala Gln Ile Lys 260
265 270Thr Ser Leu His Arg Leu Lys Pro Asp Thr Val Pro
Ala Pro Cys Cys 275 280 285Val Pro
Ala Ser Tyr Asn Pro Met Val Leu Ile Gln Lys Thr Asp Thr 290
295 300Gly Val Ser Leu Gln Thr Tyr Asp Asp Leu Leu
Ala Lys Asp Cys His305 310 315
320Cys Ile47322PRTArtificial SequenceFusion Protein 47Gly Pro Ser
Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met1 5
10 15Ile Ser Arg Thr Pro Glu Val Thr Cys
Val Val Val Asp Val Ser His 20 25
30Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val
35 40 45His Asn Ala Lys Thr Lys Pro
Arg Glu Glu Gln Tyr Asn Ser Thr Tyr 50 55
60Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly65
70 75 80Lys Glu Tyr Lys
Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile 85
90 95Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln
Pro Arg Glu Pro Gln Val 100 105
110Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys Asn Gln Val Ser
115 120 125Leu Thr Cys Leu Val Lys Gly
Phe Tyr Pro Ser Asp Ile Ala Val Glu 130 135
140Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Asp Thr Thr Pro
Pro145 150 155 160Val Leu
Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Asp Leu Thr Val
165 170 175Asp Lys Ser Arg Trp Gln Gln
Gly Asn Val Phe Ser Cys Ser Val Met 180 185
190His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser
Leu Ser 195 200 205Pro Gly Ala Arg
Gln Gly Glu His Cys Pro Leu Gly Pro Gly Arg Cys 210
215 220Cys Arg Leu His Thr Val Arg Ala Ser Leu Glu Asp
Leu Gly Trp Ala225 230 235
240Asp Trp Val Leu Ser Pro Arg Glu Val Gln Val Thr Met Cys Ile Gly
245 250 255Ala Cys Pro Ser Gln
Phe Arg Ala Ala Asn Met His Ala Gln Ile Lys 260
265 270Thr Ser Leu His Arg Leu Lys Pro Asp Thr Val Pro
Ala Pro Cys Cys 275 280 285Val Pro
Ala Ser Tyr Asn Pro Met Val Leu Ile Gln Lys Thr Asp Thr 290
295 300Gly Val Ser Leu Gln Thr Tyr Asp Asp Leu Leu
Ala Lys Asp Cys His305 310 315
320Cys Ile48342PRTArtificial SequenceFusion Protein 48Gly Pro Ser
Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met1 5
10 15Ile Ser Arg Thr Pro Glu Val Thr Cys
Val Val Val Asp Val Ser His 20 25
30Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val
35 40 45His Asn Ala Lys Thr Lys Pro
Arg Glu Glu Gln Tyr Asn Ser Thr Tyr 50 55
60Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly65
70 75 80Lys Glu Tyr Lys
Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile 85
90 95Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln
Pro Arg Glu Pro Gln Val 100 105
110Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys Asn Gln Val Ser
115 120 125Leu Thr Cys Leu Val Lys Gly
Phe Tyr Pro Ser Asp Ile Ala Val Glu 130 135
140Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Asp Thr Thr Pro
Pro145 150 155 160Val Leu
Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Asp Leu Thr Val
165 170 175Asp Lys Ser Arg Trp Gln Gln
Gly Asn Val Phe Ser Cys Ser Val Met 180 185
190His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser
Leu Ser 195 200 205Pro Gly Gly Gly
Gly Gly Gln Gly Gly Gly Gly Gln Gly Gly Gly Gly 210
215 220Gln Gly Gly Gly Gly Gln Ala Arg Asn Gly Asp His
Cys Pro Leu Gly225 230 235
240Pro Gly Arg Cys Cys Arg Leu His Thr Val Arg Ala Ser Leu Glu Asp
245 250 255Leu Gly Trp Ala Asp
Trp Val Leu Ser Pro Arg Glu Val Gln Val Thr 260
265 270Met Cys Ile Gly Ala Cys Pro Ser Gln Phe Arg Ala
Ala Asn Met His 275 280 285Ala Gln
Ile Lys Thr Ser Leu His Arg Leu Lys Pro Asp Thr Val Pro 290
295 300Ala Pro Cys Cys Val Pro Ala Ser Tyr Asn Pro
Met Val Leu Ile Gln305 310 315
320Lys Thr Asp Thr Gly Val Ser Leu Gln Thr Tyr Asp Asp Leu Leu Ala
325 330 335Lys Asp Cys His
Cys Ile 34049342PRTArtificial SequenceFusion Protein 49Gly Pro
Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met1 5
10 15Ile Ser Arg Thr Pro Glu Val Thr
Cys Val Val Val Asp Val Ser His 20 25
30Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu
Val 35 40 45His Asn Ala Lys Thr
Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr 50 55
60Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu
Asn Gly65 70 75 80Lys
Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile
85 90 95Glu Lys Thr Ile Ser Lys Ala
Lys Gly Gln Pro Arg Glu Pro Gln Val 100 105
110Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys Asn Gln
Val Ser 115 120 125Leu Thr Cys Leu
Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu 130
135 140Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Asp
Thr Thr Pro Pro145 150 155
160Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Asp Leu Thr Val
165 170 175Asp Lys Ser Arg Trp
Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met 180
185 190His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser
Leu Ser Leu Ser 195 200 205Pro Gly
Gly Gly Gly Gly Gln Gly Gly Gly Gly Gln Gly Gly Gly Gly 210
215 220Gln Gly Gly Gly Gly Gln Ala Arg Gln Gly Asp
His Cys Pro Leu Gly225 230 235
240Pro Gly Arg Cys Cys Arg Leu His Thr Val Arg Ala Ser Leu Glu Asp
245 250 255Leu Gly Trp Ala
Asp Trp Val Leu Ser Pro Arg Glu Val Gln Val Thr 260
265 270Met Cys Ile Gly Ala Cys Pro Ser Gln Phe Arg
Ala Ala Asn Met His 275 280 285Ala
Gln Ile Lys Thr Ser Leu His Arg Leu Lys Pro Asp Thr Val Pro 290
295 300Ala Pro Cys Cys Val Pro Ala Ser Tyr Asn
Pro Met Val Leu Ile Gln305 310 315
320Lys Thr Asp Thr Gly Val Ser Leu Gln Thr Tyr Asp Asp Leu Leu
Ala 325 330 335Lys Asp Cys
His Cys Ile 34050342PRTArtificial SequenceFusion Protein 50Gly
Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met1
5 10 15Ile Ser Arg Thr Pro Glu Val
Thr Cys Val Val Val Asp Val Ser His 20 25
30Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val
Glu Val 35 40 45His Asn Ala Lys
Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr 50 55
60Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp
Leu Asn Gly65 70 75
80Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile
85 90 95Glu Lys Thr Ile Ser Lys
Ala Lys Gly Gln Pro Arg Glu Pro Gln Val 100
105 110Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys
Asn Gln Val Ser 115 120 125Leu Thr
Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu 130
135 140Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr
Asp Thr Thr Pro Pro145 150 155
160Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Asp Leu Thr Val
165 170 175Asp Lys Ser Arg
Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met 180
185 190His Glu Ala Leu His Asn His Tyr Thr Gln Lys
Ser Leu Ser Leu Ser 195 200 205Pro
Gly Gly Gly Gly Gly Gln Gly Gly Gly Gly Gln Gly Gly Gly Gly 210
215 220Gln Gly Gly Gly Gly Gln Ala Arg Gln Gly
Glu His Cys Pro Leu Gly225 230 235
240Pro Gly Arg Cys Cys Arg Leu His Thr Val Arg Ala Ser Leu Glu
Asp 245 250 255Leu Gly Trp
Ala Asp Trp Val Leu Ser Pro Arg Glu Val Gln Val Thr 260
265 270Met Cys Ile Gly Ala Cys Pro Ser Gln Phe
Arg Ala Ala Asn Met His 275 280
285Ala Gln Ile Lys Thr Ser Leu His Arg Leu Lys Pro Asp Thr Val Pro 290
295 300Ala Pro Cys Cys Val Pro Ala Ser
Tyr Asn Pro Met Val Leu Ile Gln305 310
315 320Lys Thr Asp Thr Gly Val Ser Leu Gln Thr Tyr Asp
Asp Leu Leu Ala 325 330
335Lys Asp Cys His Cys Ile 34051332PRTArtificial
SequenceFusion Protein 51Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys
Asp Thr Leu Met1 5 10
15Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His
20 25 30Glu Asp Pro Glu Val Lys Phe
Asn Trp Tyr Val Asp Gly Val Glu Val 35 40
45His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr
Tyr 50 55 60Arg Val Val Ser Val Leu
Thr Val Leu His Gln Asp Trp Leu Asn Gly65 70
75 80Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala
Leu Pro Ala Pro Ile 85 90
95Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val
100 105 110Tyr Thr Leu Pro Pro Ser
Arg Glu Glu Met Thr Lys Asn Gln Val Ser 115 120
125Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala
Val Glu 130 135 140Trp Glu Ser Asn Gly
Gln Pro Glu Asn Asn Tyr Asp Thr Thr Pro Pro145 150
155 160Val Leu Asp Ser Asp Gly Ser Phe Phe Leu
Tyr Ser Asp Leu Thr Val 165 170
175Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met
180 185 190His Glu Ala Leu His
Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser 195
200 205Pro Gly Gly Gly Gly Gly Ser Gly Gly Gly Gly Ser
Ala Arg Gln Gly 210 215 220Asp His Cys
Pro Leu Gly Pro Gly Arg Cys Cys Arg Leu His Thr Val225
230 235 240Arg Ala Ser Leu Glu Asp Leu
Gly Trp Ala Asp Trp Val Leu Ser Pro 245
250 255Arg Glu Val Gln Val Thr Met Cys Ile Gly Ala Cys
Pro Ser Gln Phe 260 265 270Arg
Ala Ala Asn Met His Ala Gln Ile Lys Thr Ser Leu His Arg Leu 275
280 285Lys Pro Asp Thr Val Pro Ala Pro Cys
Cys Val Pro Ala Ser Tyr Asn 290 295
300Pro Met Val Leu Ile Gln Lys Thr Asp Thr Gly Val Ser Leu Gln Thr305
310 315 320Tyr Asp Asp Leu
Leu Ala Lys Asp Cys His Cys Ile 325
33052332PRTArtificial SequenceFusion Protein 52Gly Pro Ser Val Phe Leu
Phe Pro Pro Lys Pro Lys Asp Thr Leu Met1 5
10 15Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val
Asp Val Ser His 20 25 30Glu
Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val 35
40 45His Asn Ala Lys Thr Lys Pro Arg Glu
Glu Gln Tyr Asn Ser Thr Tyr 50 55
60Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly65
70 75 80Lys Glu Tyr Lys Cys
Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile 85
90 95Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro
Arg Glu Pro Gln Val 100 105
110Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys Asn Gln Val Ser
115 120 125Leu Thr Cys Leu Val Lys Gly
Phe Tyr Pro Ser Asp Ile Ala Val Glu 130 135
140Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Asp Thr Thr Pro
Pro145 150 155 160Val Leu
Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Asp Leu Thr Val
165 170 175Asp Lys Ser Arg Trp Gln Gln
Gly Asn Val Phe Ser Cys Ser Val Met 180 185
190His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser
Leu Ser 195 200 205Pro Gly Gly Gly
Gly Gly Ser Gly Gly Gly Gly Ser Ala Arg Gln Gly 210
215 220Glu His Cys Pro Leu Gly Pro Gly Arg Cys Cys Arg
Leu His Thr Val225 230 235
240Arg Ala Ser Leu Glu Asp Leu Gly Trp Ala Asp Trp Val Leu Ser Pro
245 250 255Arg Glu Val Gln Val
Thr Met Cys Ile Gly Ala Cys Pro Ser Gln Phe 260
265 270Arg Ala Ala Asn Met His Ala Gln Ile Lys Thr Ser
Leu His Arg Leu 275 280 285Lys Pro
Asp Thr Val Pro Ala Pro Cys Cys Val Pro Ala Ser Tyr Asn 290
295 300Pro Met Val Leu Ile Gln Lys Thr Asp Thr Gly
Val Ser Leu Gln Thr305 310 315
320Tyr Asp Asp Leu Leu Ala Lys Asp Cys His Cys Ile
325 33053327PRTArtificial SequenceFusion Protein 53Gly
Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met1
5 10 15Ile Ser Arg Thr Pro Glu Val
Thr Cys Val Val Val Asp Val Ser His 20 25
30Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val
Glu Val 35 40 45His Asn Ala Lys
Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr 50 55
60Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp
Leu Asn Gly65 70 75
80Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile
85 90 95Glu Lys Thr Ile Ser Lys
Ala Lys Gly Gln Pro Arg Glu Pro Gln Val 100
105 110Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys
Asn Gln Val Ser 115 120 125Leu Thr
Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu 130
135 140Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr
Asp Thr Thr Pro Pro145 150 155
160Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Asp Leu Thr Val
165 170 175Asp Lys Ser Arg
Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met 180
185 190His Glu Ala Leu His Asn His Tyr Thr Gln Lys
Ser Leu Ser Leu Ser 195 200 205Pro
Gly Gly Gly Gly Gly Ser Ala Arg Gln Gly Asp His Cys Pro Leu 210
215 220Gly Pro Gly Arg Cys Cys Arg Leu His Thr
Val Arg Ala Ser Leu Glu225 230 235
240Asp Leu Gly Trp Ala Asp Trp Val Leu Ser Pro Arg Glu Val Gln
Val 245 250 255Thr Met Cys
Ile Gly Ala Cys Pro Ser Gln Phe Arg Ala Ala Asn Met 260
265 270His Ala Gln Ile Lys Thr Ser Leu His Arg
Leu Lys Pro Asp Thr Val 275 280
285Pro Ala Pro Cys Cys Val Pro Ala Ser Tyr Asn Pro Met Val Leu Ile 290
295 300Gln Lys Thr Asp Thr Gly Val Ser
Leu Gln Thr Tyr Asp Asp Leu Leu305 310
315 320Ala Lys Asp Cys His Cys Ile
32554327PRTArtificial SequenceFusion Protein 54Gly Pro Ser Val Phe Leu
Phe Pro Pro Lys Pro Lys Asp Thr Leu Met1 5
10 15Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val
Asp Val Ser His 20 25 30Glu
Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val 35
40 45His Asn Ala Lys Thr Lys Pro Arg Glu
Glu Gln Tyr Asn Ser Thr Tyr 50 55
60Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly65
70 75 80Lys Glu Tyr Lys Cys
Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile 85
90 95Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro
Arg Glu Pro Gln Val 100 105
110Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys Asn Gln Val Ser
115 120 125Leu Thr Cys Leu Val Lys Gly
Phe Tyr Pro Ser Asp Ile Ala Val Glu 130 135
140Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Asp Thr Thr Pro
Pro145 150 155 160Val Leu
Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Asp Leu Thr Val
165 170 175Asp Lys Ser Arg Trp Gln Gln
Gly Asn Val Phe Ser Cys Ser Val Met 180 185
190His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser
Leu Ser 195 200 205Pro Gly Gly Gly
Gly Gly Ser Ala Arg Gln Gly Glu His Cys Pro Leu 210
215 220Gly Pro Gly Arg Cys Cys Arg Leu His Thr Val Arg
Ala Ser Leu Glu225 230 235
240Asp Leu Gly Trp Ala Asp Trp Val Leu Ser Pro Arg Glu Val Gln Val
245 250 255Thr Met Cys Ile Gly
Ala Cys Pro Ser Gln Phe Arg Ala Ala Asn Met 260
265 270His Ala Gln Ile Lys Thr Ser Leu His Arg Leu Lys
Pro Asp Thr Val 275 280 285Pro Ala
Pro Cys Cys Val Pro Ala Ser Tyr Asn Pro Met Val Leu Ile 290
295 300Gln Lys Thr Asp Thr Gly Val Ser Leu Gln Thr
Tyr Asp Asp Leu Leu305 310 315
320Ala Lys Asp Cys His Cys Ile 32555322PRTArtificial
SequenceFusion Protein 55Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys
Asp Thr Leu Met1 5 10
15Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His
20 25 30Glu Asp Pro Glu Val Lys Phe
Asn Trp Tyr Val Asp Gly Val Glu Val 35 40
45His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr
Tyr 50 55 60Arg Val Val Ser Val Leu
Thr Val Leu His Gln Asp Trp Leu Asn Gly65 70
75 80Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala
Leu Pro Ala Pro Ile 85 90
95Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val
100 105 110Tyr Thr Leu Pro Pro Ser
Arg Glu Glu Met Thr Lys Asn Gln Val Ser 115 120
125Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala
Val Glu 130 135 140Trp Glu Ser Asn Gly
Gln Pro Glu Asn Asn Tyr Asp Thr Thr Pro Pro145 150
155 160Val Leu Asp Ser Asp Gly Ser Phe Phe Leu
Tyr Ser Asp Leu Thr Val 165 170
175Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met
180 185 190His Glu Ala Leu His
Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser 195
200 205Pro Gly Ala Arg Gln Gly Asp His Cys Pro Leu Gly
Pro Gly Arg Cys 210 215 220Cys Arg Leu
His Thr Val Arg Ala Ser Leu Glu Asp Leu Gly Trp Ala225
230 235 240Asp Trp Val Leu Ser Pro Arg
Glu Val Gln Val Thr Met Cys Ile Gly 245
250 255Ala Cys Pro Ser Gln Phe Arg Ala Ala Asn Met His
Ala Gln Ile Lys 260 265 270Thr
Ser Leu His Arg Leu Lys Pro Asp Thr Val Pro Ala Pro Cys Cys 275
280 285Val Pro Ala Ser Tyr Asn Pro Met Val
Leu Ile Gln Lys Thr Asp Thr 290 295
300Gly Val Ser Leu Gln Thr Tyr Asp Asp Leu Leu Ala Lys Asp Cys His305
310 315 320Cys
Ile56348PRTArtificial SequenceFusion Protein 56Ala Pro Glu Ala Ala Gly
Gly Pro Ser Val Phe Leu Phe Pro Pro Lys1 5
10 15Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu
Val Thr Cys Val 20 25 30Val
Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr 35
40 45Val Asp Gly Val Glu Val His Asn Ala
Lys Thr Lys Pro Arg Glu Glu 50 55
60Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His65
70 75 80Gln Asp Trp Leu Asn
Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys 85
90 95Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser
Lys Ala Lys Gly Gln 100 105
110Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met
115 120 125Thr Lys Asn Gln Val Ser Leu
Thr Cys Leu Val Lys Gly Phe Tyr Pro 130 135
140Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn
Asn145 150 155 160Tyr Asp
Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu
165 170 175Tyr Ser Asp Leu Thr Val Asp
Lys Ser Arg Trp Gln Gln Gly Asn Val 180 185
190Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr
Thr Gln 195 200 205Lys Ser Leu Ser
Leu Ser Pro Gly Gly Gly Gly Gly Gln Gly Gly Gly 210
215 220Gly Gln Gly Gly Gly Gly Gln Gly Gly Gly Gly Gln
Ala Arg Gln Gly225 230 235
240Asp His Cys Pro Leu Gly Pro Gly Arg Cys Cys Arg Leu His Thr Val
245 250 255Arg Ala Ser Leu Glu
Asp Leu Gly Trp Ala Asp Trp Val Leu Ser Pro 260
265 270Arg Glu Val Gln Val Thr Met Cys Ile Gly Ala Cys
Pro Ser Gln Phe 275 280 285Arg Ala
Ala Asn Met His Ala Gln Ile Lys Thr Ser Leu His Arg Leu 290
295 300Lys Pro Asp Thr Val Pro Ala Pro Cys Cys Val
Pro Ala Ser Tyr Asn305 310 315
320Pro Met Val Leu Ile Gln Lys Thr Asp Thr Gly Val Ser Leu Gln Thr
325 330 335Tyr Asp Asp Leu
Leu Ala Lys Asp Cys His Cys Ile 340
34557348PRTArtificial SequenceFusion Protein 57Ala Pro Glu Ala Ala Gly
Gly Pro Ser Val Phe Leu Phe Pro Pro Lys1 5
10 15Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu
Val Thr Cys Val 20 25 30Val
Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr 35
40 45Val Asp Gly Val Glu Val His Asn Ala
Lys Thr Lys Pro Arg Glu Glu 50 55
60Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His65
70 75 80Gln Asp Trp Leu Asn
Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys 85
90 95Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser
Lys Ala Lys Gly Gln 100 105
110Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Glu Glu Met
115 120 125Thr Lys Asn Gln Val Ser Leu
Thr Cys Leu Val Lys Gly Phe Tyr Pro 130 135
140Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn
Asn145 150 155 160Tyr Asp
Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu
165 170 175Tyr Ser Asp Leu Thr Val Asp
Lys Ser Arg Trp Gln Gln Gly Asn Val 180 185
190Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr
Thr Gln 195 200 205Lys Ser Leu Ser
Leu Ser Pro Gly Gly Gly Gly Gly Gln Gly Gly Gly 210
215 220Gly Gln Gly Gly Gly Gly Gln Gly Gly Gly Gly Gln
Ala Arg Gln Gly225 230 235
240Glu His Cys Pro Leu Gly Pro Gly Arg Cys Cys Arg Leu His Thr Val
245 250 255Arg Ala Ser Leu Glu
Asp Leu Gly Trp Ala Asp Trp Val Leu Ser Pro 260
265 270Arg Glu Val Gln Val Thr Met Cys Ile Gly Ala Cys
Pro Ser Gln Phe 275 280 285Arg Ala
Ala Asn Met His Ala Gln Ile Lys Thr Ser Leu His Arg Leu 290
295 300Lys Pro Asp Thr Val Pro Ala Pro Cys Cys Val
Pro Ala Ser Tyr Asn305 310 315
320Pro Met Val Leu Ile Gln Lys Thr Asp Thr Gly Val Ser Leu Gln Thr
325 330 335Tyr Asp Asp Leu
Leu Ala Lys Asp Cys His Cys Ile 340
345585PRTArtificial SequenceSynthetic Polypeptide 58Gly Gly Gly Gly Ala1
5
User Contributions:
Comment about this patent or add new information about this topic: