Patent application title: TARGETED AUGMENTATION OF NUCLEAR GENE OUTPUT
Inventors:
IPC8 Class: AC12N15113FI
USPC Class:
1 1
Class name:
Publication date: 2021-04-15
Patent application number: 20210108208
Abstract:
Provided herein are methods and compositions for increasing production of
a target protein or functional RNA by a cell.Claims:
1.-71. (canceled)
72. A method of treating a disease or condition in a subject in need thereof, wherein the subject has a deficient amount or activity of a first protein or a first functional RNA; wherein the deficient amount or activity of the first protein or the first functional RNA is caused by haploinsufficiency of the first protein or the first functional RNA, the method comprising: administering a pharmaceutical composition to the subject, wherein the pharmaceutical composition comprises (i) an antisense oligomer (ASO) or a vector encoding the ASO and (ii) a pharmaceutically acceptable excipient; wherein the ASO binds to targeted region of a retained-intron-containing pre-mRNA (MC pre-mRNA) that comprises a retained intron, an exon flanking a 5' splice site of the retained intron, and an exon flanking a 3' splice site of the retained intron, and wherein the RIC pre-mRNA encodes a target protein or a target functional RNA; wherein the first protein is different from the target protein and the first functional RNA is different from the target functional RNA; wherein the ASO increases splicing efficiency of the RIC pre-mRNA by modulating splicing of the retained intron from the RIC pre-mRNA in a cell of the subject as compared to a cell of a subject with the disease or condition that has not been administered the pharmaceutical composition.
73. The method of claim 72, wherein the target protein or the target functional RNA is a compensating protein or a compensating functional RNA that functionally augments or replaces the first protein, or the first functional RNA.
74. The method of claim 72, wherein expression of the target protein or the target functional RNA is increased in a cell of the subject as compared to a cell of a subject with the disease or condition that has not been administered the pharmaceutical composition.
75. The method of claim 72, wherein administration of the pharmaceutical composition promotes constitutive splicing of the retained intron from the RIC pre-mRNA.
76. The method of claim 72, wherein the haploinsufficiency is caused by a mutation.
77. The method of claim 72, wherein cells of the subject produce the target protein or the target functional RNA in a form that is fully functional compared to a corresponding wild-type protein or wild-type functional RNA.
78. The method of claim 72, wherein a total amount of an mRNA encoding the target protein or the target functional RNA produced in the cell of the subject is increased by at least about 1.1-fold compared to a total amount of an mRNA encoding the target protein or the target functional RNA produced in a cell of a subject with the disease or condition that has not been administered the pharmaceutical composition.
79. The method of claim 72, wherein the targeted region of the RIC pre-mRNA is within a region +6 relative to the 5' splice site of the retained intron to -16 relative to the 3' splice site of the retained intron.
80. The method of claim 72, wherein the ASO comprises a backbone modification comprising a phosphorothioate linkage or a phosphorodiamidate linkage.
81. The method of claim 72, wherein the ASO comprises a phosphorodiamidate morpholino, a locked nucleic acid, a peptide nucleic acid, a 2'-O-methyl moiety, a 2'-Fluoro moiety, or a 2'-O-methoxyethyl moiety.
82. The method of claim 72, wherein the ASO comprises a modified sugar moiety.
83. The method of claim 72, wherein the ASO consists of from 8 to 50 nucleobases.
84. The method of claim 83, wherein the disease or condition is selected from the group consisting of thrombotic thrombocytopenic purpura, tuberous sclerosis complex, polycystic kidney disease, familial dysautonomia, retinitis pigmentosa type 10, retinitis pigmentosa type 11, cystic fibrosis, retinoblastoma, beta thalassemia, and sickle cell disease.
85. The method of claim 72, wherein the subject is a human.
86. The method of claim 72, wherein the subject is a non-human animal.
87. The method of claim 72, wherein the pharmaceutical composition is administered to the subject by intravitreal injection, intrathecal injection, intraperitoneal injection, subcutaneous injection, intravenous injection, subretinal injection, intracerebroventricular injection, intramuscular injection, topical application, or implantation.
88. The method of claim 72, wherein the ASO is encoded by a viral vector.
89. The method of claim 88, where the viral vector is a adenovirus vector.
90. The method of claim 72, wherein the ASO does not increase the amount of the target protein or the target functional RNA by modulating aberrant splicing resulting from mutation of a gene encoding the target protein or the target functional RNA.
91. A method for identifying from among a set of antisense oligomers (ASOs) an ASO that increases an amount of mRNA encoding a target protein or a target functional RNA by inducing constitutive splicing of a retained intron from a retained-intron-containing pre-mRNA (RIC pre-mRNA) that comprises at least one retained intron and that encodes the target protein or the target functional RNA, wherein the ASOs in the set are tiled every 1 to 5 nucleotides, and wherein each ASO in the set of ASOs hybridizes to a target region of the RIC pre-mRNA that is about 100 nucleotides upstream of the 5' splice site of the at least one retained intron to about 100 nucleotides downstream of the 5' splice site of the at least one retained intron; or about 100 nucleotides upstream of the 3' splice site of the at least one retained intron to about 100 nucleotides downstream of the 3' splice site of the at least one retained intron; the method comprising: (a) delivering a first ASO in the set of ASOs to a cell comprising the RIC pre-mRNA; (b) measuring an amount of the RIC pre-mRNA and measuring an amount of mRNA encoding the target protein or the target functional RNA in the cell to which the first ASO was delivered; (c) measuring an amount of the RIC pre-mRNA and measuring an amount of mRNA encoding a target protein or a target functional RNA in a control cell; and (d) comparing the amounts of the RIC pre-mRNA and the mRNA measured in (b) and (c); wherein the first ASO is identified as an ASO that increases an amount of mRNA encoding the target protein or the target functional RNA by inducing constitutive splicing of the at least one retained intron from the RIC pre-mRNA based on an observed decrease in the amount of the RIC pre-mRNA and an observed increase in the amount of mRNA encoding the target protein or the target functional RNA in the cell to which the first ASO was delivered compared to a control cell; and repeating steps (a) through (d) with additional ASOs in the set of ASOs as needed to identify an ASO that increases an amount of mRNA from a gene in a cell by inducing constitutive splicing of a retained intron from the RIC pre-mRNA.
92. A pharmaceutical composition to comprising (i) an antisense oligomer (ASO) or a vector encoding the ASO and (ii) a pharmaceutically acceptable excipient; wherein the ASO comprises a sequence that hybridizes to a targeted region of a retained-intron-containing pre-mRNA (RIC pre-mRNA), wherein the RIC pre-mRNA comprises a retained intron, an exon flanking a 5' splice site of the retained intron, and an exon flanking a 3' splice site of the retained intron, and wherein the RIC pre-mRNA encodes a target protein or a target functional RNA; wherein the ASO promotes splicing of the RIC pre-mRNA by modulating splicing of the retained intron from the RIC pre-mRNA.
Description:
CROSS-REFERENCE
[0001] This application is a continuation of U.S. patent application Ser. No. 15/949,902 filed Apr. 10, 2018 which is a continuation of U.S. patent application Ser. No. 14/874,420 filed Oct. 3, 2015, now U.S. Pat. No. 9,976,143 issued May 22, 2018 which claims the benefit of U.S. Provisional Application No. 62/059,847, filed Oct. 3, 2014, which application is incorporated herein by reference.
BACKGROUND
[0003] Some genetic diseases are caused by haploinsufficiency, in which there is only one functional copy of a gene and that single copy does not produce enough of the gene product. For example, this can be caused by hemizygous deletions, in which one copy of the gene is lost. Other genetic diseases are caused by mutations which alter the gene product, so that it possesses only partial function.
SEQUENCE LISTING
[0004] The instant application contains a Sequence Listing which has been submitted electronically in ASCII format and is hereby incorporated by reference in its entirety. Said ASCII copy, created on May 19, 2020, is named 47991_701_302_SL.txt and is 179,290 bytes in size.
SUMMARY
[0005] As described herein, antisense oligomers (ASOs) can be used to increase production of proteins, or functional RNAs in the case of non-protein coding genes, by promoting constitutive splicing (employing the wild-type sequence) at an intron splice site of an intron-containing gene to increase expression of the gene product. The ASOs described for use in these methods promote constitutive splicing and do not correct aberrant splicing resulting from mutation, or promote constitutive splicing and do not modulate alternative splicing. The methods described herein may therefore be used to treat a condition resulting from reduced expression or insufficient activity of a gene product.
[0006] Described here are methods of increasing expression in cells of a target protein encoded by a pre-mRNA that comprises at least one retained intron (an RIC pre-mRNA); a retained intron is one that remains present when one or more of the other introns have been spliced out (removed). Expression of the target protein depends on complete splicing (removal) of all introns in the pre-mRNA in the nucleus to generate mature mRNA that is subsequently exported to the cytoplasm and translated into the target protein. Inefficient splicing (removal) of an intron results in a retained intron-containing (RIC) pre-mRNA that accumulates primarily in the nucleus, and if exported to the cytoplasm is degraded, such that RIC pre-mRNA is not translated into the target protein. Treatment with an antisense oligomer (ASO) described by the method herein can promote the splicing of a retained intron from pre-mRNA transcripts (pre-mRNA species comprising one or more introns) and result in an increase in mRNA, which is translated to provide higher levels of target protein.
[0007] In embodiments, the method is a method of increasing expression of a target protein or functional RNA by cells having a retained-intron-containing pre-mRNA (RIC pre-mRNA), the RIC pre-mRNA comprising a retained intron, an exon flanking the 5' splice site of the retained intron, an exon flanking the 3' splice site of the retained intron, and wherein the RIC pre-mRNA encodes the target protein or functional RNA. In embodiments, the method comprises contacting the cells with an ASO complementary to a targeted portion of the RIC pre-mRNA encoding the target protein or functional RNA, whereby the retained intron is constitutively spliced from the RIC pre-mRNA encoding the target protein or functional RNA, thereby increasing the level of mRNA encoding the target protein or functional RNA, and increasing the expression of target protein or functional RNA in the cells. In embodiments, the cells are in or are from a subject, and the method is a method of treating the subject to increase expression of the target protein or functional RNA in the subject's cells. In embodiments, the cells are in or are from a subject having a condition caused by a deficient amount or activity of the target protein or a deficient amount or activity of the functional RNA. In embodiments, the target protein or the functional RNA is a compensating protein or a compensating functional RNA that functionally augments or replaces a target protein or functional RNA that is deficient in amount or activity in the subject.
[0008] In embodiments, the condition caused by a deficient amount or activity of the target protein or a deficient amount or activity of the functional RNA is not a condition caused by alternative or aberrant splicing of the retained intron to which the ASO is targeted. In embodiments, the condition caused by a deficient amount or activity of the target protein or a deficient amount or activity of the functional RNA is not a condition caused by alternative or aberrant splicing of any retained intron in a RIC pre-mRNA encoding the target protein or functional RNA.
[0009] In embodiments, the deficient amount of the target protein is caused by haploinsufficiency of the target protein, wherein the subject has a first allele encoding a functional target protein, and a second allele from which the target protein is not produced, or a second allele encoding a nonfunctional target protein, and wherein the antisense oligomer binds to a targeted portion of a RIC pre-mRNA transcribed from the first allele.
[0010] In other embodiments, the subject has a condition caused by an autosomal recessive disorder resulting from a deficiency in the amount or function of the target protein, wherein the subject has a) a first mutant allele from which i) the target protein is produced at a reduced level compared to production from a wild-type allele, ii) the target protein is produced in a form having reduced function compared to an equivalent wild-type protein, or iii) the target protein is not produced, and b) a second mutant allele from which i) the target protein is produced at a reduced level compared to production from a wild-type allele, ii) the target protein is produced in a form having reduced function compared to an equivalent wild-type protein, or iii) the target protein is not produced, and wherein the RIC pre-mRNA is transcribed from the first allele and/or the second allele. In embodiments, the target protein is produced both at a reduced level and in a form having reduced function compared to an equivalent wild-type protein.
[0011] In embodiments, the target protein is produced in a form having reduced function compared to the equivalent wild-type protein. In other embodiments, the target protein is produced in a form that is fully-functional compared to the equivalent wild-type protein.
[0012] In embodiments, the deficient amount of the functional RNA is caused by haploinsufficiency of the functional RNA, wherein the subject has a first allele encoding a functional RNA that is functional, and a second allele from which the functional RNA is not produced, or a second allele encoding a functional RNA that is nonfunctional, and wherein the antisense oligomer binds to a targeted portion of a RIC pre-mRNA transcribed from the first allele.
[0013] In other embodiments, the subject has a condition caused by an autosomal recessive disorder resulting from a deficiency in the amount or function of the functional RNA, wherein the subject has a) a first mutant allele from which i) the functional RNA is produced at a reduced level compared to production from a wild-type allele, ii) the functional RNA is produced in a form having reduced function compared to an equivalent wild-type protein, or iii) the functional RNA is not produced, and b) a second mutant allele from which i) the functional RNA is produced at a reduced level compared to production from a wild-type allele, ii) the functional RNA is produced in a form having reduced function compared to an equivalent wild-type protein, or iii) the functional RNA is not produced, and wherein the RIC pre-mRNA is transcribed from the first allele and/or the second allele. In embodiments, the functional RNA is produced both at a reduced level and in a form having reduced function compared to an equivalent wild-type functional RNA.
[0014] In embodiments, the functional RNA is produced in a form having reduced function compared to the equivalent wild-type protein. In other embodiments, the functional RNA is produced in a form that is fully-functional compared to the equivalent wild-type protein.
[0015] In embodiments, the targeted portion of the RIC pre-mRNA is in the retained intron within the region +6 relative to the 5' splice site of the retained intron to the region -16 relative to the 3' splice site of the retained intron. In embodiments, the targeted portion of the RIC pre-mRNA is in the retained intron within the region +6 to +100 relative to the 5' splice site of the retained intron; or the region -16 to -100 relative to the 3' splice site of the retained intron. In embodiments, the targeted portion of the RIC pre-mRNA is within the region +2e to -4e in the exon flanking the 5' splice site of the retained intron; or the region +2e to -4e in the exon flanking the 3' splice site of the retained intron.
[0016] In embodiments, the antisense oligomer does not increase the amount of the target protein or the functional RNA by modulating alternative splicing of pre-mRNA transcribed from a gene encoding the functional RNA or target protein. In embodiments, the antisense oligomer does not increase the amount of the target protein or the functional RNA by modulating aberrant splicing resulting from mutation of the gene encoding the target protein or the functional RNA.
[0017] In embodiments, the RIC pre-mRNA was produced by partial splicing of a full-length pre-mRNA or partial splicing of a wild-type pre-mRNA. In embodiments, the mRNA encoding the target protein or functional RNA is a full-length mature mRNA, or a wild-type mature mRNA. In embodiments, the target protein produced is full-length protein, or wild-type protein. In embodiments, the functional RNA produced is full-length functional RNA, or wild-type functional RNA.
[0018] In embodiments, the total amount of the mRNA, or the total amount of mature mRNA, encoding the target protein or functional RNA produced in the cell contacted with the antisense oligomer is increased about 1.1 to about 10-fold, about 1.5 to about 10-fold, about 2 to about 10-fold, about 3 to about 10-fold, about 4 to about 10-fold, about 1.1 to about 5-fold, about 1.1 to about 6-fold, about 1.1 to about 7-fold, about 1.1 to about 8-fold, about 1.1 to about 9-fold, about 2 to about 5-fold, about 2 to about 6-fold, about 2 to about 7-fold, about 2 to about 8-fold, about 2 to about 9-fold, about 3 to about 6-fold, about 3 to about 7-fold, about 3 to about 8-fold, about 3 to about 9-fold, about 4 to about 7-fold, about 4 to about 8-fold, about 4 to about 9-fold, at least about 1.1-fold, at least about 1.5-fold, at least about 2-fold, at least about 2.5-fold, at least about 3-fold, at least about 3.5-fold, at least about 4-fold, at least about 5-fold, or at least about 10-fold, compared to the total amount of the mRNA, or the total amount of mature mRNA, encoding the target protein or functional RNA produced in a control cell.
[0019] In embodiments, the total amount of the mRNA encoding the target protein or functional RNA produced in the cell contacted with the antisense oligomer is increased about 1.1 to about 10-fold, about 1.5 to about 10-fold, about 2 to about 10-fold, about 3 to about 10-fold, about 4 to about 10-fold, about 1.1 to about 5-fold, about 1.1 to about 6-fold, about 1.1 to about 7-fold, about 1.1 to about 8-fold, about 1.1 to about 9-fold, about 2 to about 5-fold, about 2 to about 6-fold, about 2 to about 7-fold, about 2 to about 8-fold, about 2 to about 9-fold, about 3 to about 6-fold, about 3 to about 7-fold, about 3 to about 8-fold, about 3 to about 9-fold, about 4 to about 7-fold, about 4 to about 8-fold, about 4 to about 9-fold, at least about 1.1-fold, at least about 1.5-fold, at least about 2-fold, at least about 2.5-fold, at least about 3-fold, at least about 3.5-fold, at least about 4-fold, at least about 5-fold, or at least about 10-fold, compared to the total amount of the mRNA encoding the target protein or functional RNA produced in a control cell.
[0020] In embodiments, the total amount of mature mRNA encoding the target protein or functional RNA produced in the cell contacted with the antisense oligomer is increased about 1.1 to about 10-fold, about 1.5 to about 10-fold, about 2 to about 10-fold, about 3 to about 10-fold, about 4 to about 10-fold, about 1.1 to about 5-fold, about 1.1 to about 6-fold, about 1.1 to about 7-fold, about 1.1 to about 8-fold, about 1.1 to about 9-fold, about 2 to about 5-fold, about 2 to about 6-fold, about 2 to about 7-fold, about 2 to about 8-fold, about 2 to about 9-fold, about 3 to about 6-fold, about 3 to about 7-fold, about 3 to about 8-fold, about 3 to about 9-fold, about 4 to about 7-fold, about 4 to about 8-fold, about 4 to about 9-fold, at least about 1.1-fold, at least about 1.5-fold, at least about 2-fold, at least about 2.5-fold, at least about 3-fold, at least about 3.5-fold, at least about 4-fold, at least about 5-fold, or at least about 10-fold, compared to the total amount of the mature mRNA, encoding the target protein or functional RNA produced in a control cell.
[0021] In embodiments, the total amount of the target protein or functional RNA produced by the cell contacted with the antisense oligomer is increased about 1.1 to about 10-fold, about 1.5 to about 10-fold, about 2 to about 10-fold, about 3 to about 10-fold, about 4 to about 10-fold, about 1.1 to about 5-fold, about 1.1 to about 6-fold, about 1.1 to about 7-fold, about 1.1 to about 8-fold, about 1.1 to about 9-fold, about 2 to about 5-fold, about 2 to about 6-fold, about 2 to about 7-fold, about 2 to about 8-fold, about 2 to about 9-fold, about 3 to about 6-fold, about 3 to about 7-fold, about 3 to about 8-fold, about 3 to about 9-fold, about 4 to about 7-fold, about 4 to about 8-fold, about 4 to about 9-fold, at least about 1.1-fold, at least about 1.5-fold, at least about 2-fold, at least about 2.5-fold, at least about 3-fold, at least about 3.5-fold, at least about 4-fold, at least about 5-fold, or at least about 10-fold, compared to the amount of the target protein or functional RNA produced by a control cell.
[0022] In embodiments, the methods comprise contacting the cells having the RIC pre-mRNA with an antisense oligomer comprising a backbone modification comprising a phosphorothioate linkage or a phosphorodiamidate linkage. In embodiments, the antisense oligomer comprises a phosphorodiamidate morpholino (PMO), a locked nucleic acid (LNA), a peptide nucleic acid (PNA), a 2'-O-methyl, a 2'-Fluoro, or a 2'-O-methoxyethyl moiety. In embodiments, the antisense oligomer comprises at least one modified sugar moiety. In related embodiments, each sugar moiety is a modified sugar moiety.
[0023] In embodiments, the antisense oligomer consists of from 8 to 50 nucleobases. In embodiments, the antisense oligomer consists of from 8 to 40 nucleobases, 8 to 35 nucleobases, 8 to 30 nucleobases, 8 to 25 nucleobases, 8 to 20 nucleobases, 8 to 15 nucleobases, 9 to 50 nucleobases, 9 to 40 nucleobases, 9 to 35 nucleobases, 9 to 30 nucleobases, 9 to 25 nucleobases, 9 to 20 nucleobases, 9 to 15 nucleobases, 10 to 50 nucleobases, 10 to 40 nucleobases, 10 to 35 nucleobases, 10 to 30 nucleobases, 10 to 25 nucleobases, 10 to 20 nucleobases, 10 to 15 nucleobases, 11 to 50 nucleobases, 11 to 40 nucleobases, 11 to 35 nucleobases, 11 to 30 nucleobases, 11 to 25 nucleobases, 11 to 20 nucleobases, 11 to 15 nucleobases, 12 to 50 nucleobases, 12 to 40 nucleobases, 12 to 35 nucleobases, 12 to 30 nucleobases, 12 to 25 nucleobases, 12 to 20 nucleobases, or 12 to 15 nucleobases. In embodiments, the antisense oligomer is at least 80%, at least 85%, at least 90%, at least 95%, at least 98%, at least 99%, or 100%, complementary to the targeted portion of the RIC pre-mRNA encoding the protein.
[0024] In any of the preceding methods, the cell can comprise a population of RIC pre-mRNAs transcribed from the gene encoding the target protein or functional RNA, wherein the population of RIC pre-mRNAs comprises two or more retained introns, and wherein the antisense oligomer binds to the most abundant retained intron in the population of RIC pre-mRNAs. In these embodiments, the binding of the antisense oligomer to the most abundant retained intron can induce splicing out of the two or more retained introns from the population of RIC pre-mRNAs to produce mRNA encoding the target protein or functional RNA.
[0025] In other embodiments, the cell comprises a population of RIC pre-mRNAs transcribed from the gene encoding the target protein or functional RNA, wherein the population of RIC pre-mRNAs comprises two or more retained introns, and wherein the antisense oligomer binds to the second most abundant retained intron in the population of RIC pre-mRNAs. In these embodiments, the binding of the antisense oligomer to the second most abundant retained intron can induce splicing out of the two or more retained introns from the population of RIC pre-mRNAs to produce mRNA encoding the target protein or functional RNA.
[0026] In the preceding methods, the condition can be a disease or disorder. In these embodiments, the disease or disorder can be selected from: thrombotic thrombocytopenic purpura, tuberous sclerosis complex, polycystic kidney disease, familial dysautonomia, retinitis pigmentosa type 10, retinitis pigmentosa type 11, cystic fibrosis, retinoblastoma, familial adenomatous polyposis, protein S deficiency, beta thalassemia, and sickle cell disease. In related embodiments, the target protein and the RIC pre-mRNA are encoded by a gene selected from: ADAMTS13, TSC1, PKD1, IKBKAP, IMPDH1, PRPF31, CFTR, RB1, APC, PROS1, NEDD4L, HBG1, HBG2, and HBB. In embodiments, the antisense oligomer can bind to a portion of an RIC pre-mRNA selected from SEQ ID NOS: 1-102 and 375-384.
[0027] In embodiments, any of the preceding methods further comprises assessing protein expression.
[0028] In some embodiments, the subject is a human. In other embodiments, the subject is a non-human animal. In embodiments, the antisense oligomer is administered by intravitreal injection, intrathecal injection, intraperitoneal injection, subcutaneous injection, or intravenous injection of the subject. In embodiments, the cells are ex vivo.
[0029] In embodiments, the 9 nucleotides at -3e to -1e of the exon flanking the 5' splice site and +1 to +6 of the retained intron, are identical to the corresponding wild-type sequence. In embodiments, the 16 nucleotides at -15 to -1 of the retained intron and +1e of the exon flanking the 3' splice site are identical to the corresponding wild-type sequence.
[0030] Described herein are compositions comprising an antisense oligomer for use in a method as described herein. Also described is a pharmaceutical composition comprising the antisense oligomer, and an excipient. In embodiments, the composition comprising the antisense oligomer is intended for use in a method of increasing expression of a target protein or a functional RNA by cells to treat a condition in a subject associated with a deficient protein or deficient functional RNA, wherein the deficient protein or deficient functional RNA is deficient in amount or activity in the subject, wherein the antisense oligomer enhances constitutive splicing of a retained intron-containing pre-mRNA (RIC pre-mRNA) encoding the target protein or the functional RNA, wherein the target protein is: (a) the deficient protein; or (b) a compensating protein which functionally augments or replaces the deficient protein or in the subject; and wherein the functional RNA is: (a) the deficient RNA; or (b) a compensating functional RNA which functionally augments or replaces the deficient functional RNA in the subject; wherein the RIC pre-mRNA comprises a retained intron, an exon flanking the 5' splice site and an exon flanking the 3' splice site, and wherein the retained intron is spliced from the RIC pre-mRNA encoding the target protein or the functional RNA, thereby increasing production or activity of the target protein or the functional RNA in the subject.
[0031] In embodiments, the composition comprising the antisense oligomer is intended for use in a method of treating a disease or disorder associated with a target protein or functional RNA in a subject, the method comprising the step of increasing expression of the target protein or functional RNA by cells of the subject, wherein the cells have a retained-intron-containing pre-mRNA (RIC pre-mRNA) comprising a retained intron, an exon flanking the 5' splice site of the retained intron, an exon flanking the 3' splice site of the retained intron, and wherein the RIC pre-mRNA encodes the target protein or functional RNA, the method comprising contacting the cells with the antisense oligomer, whereby the retained intron is constitutively spliced from the RIC pre-mRNA transcripts encoding the target protein or functional RNA, thereby increasing the level of mRNA encoding the target protein or functional RNA, and increasing the expression of the target protein or functional RNA, in the cells of the subject.
[0032] In embodiments, the composition comprising the antisense oligomer is intended for use in a method of treating a condition in the subject resulting from a deficiency in the amount or activity of the target protein or the functional RNA. In embodiments, the condition is a disease or disorder. In embodiments, the disease or disorder is selected from: thrombotic thrombocytopenic purpura, tuberous sclerosis complex, polycystic kidney disease, familial dysautonomia, retinitis pigmentosa type 10, retinitis pigmentosa type 11, cystic fibrosis, retinoblastoma, familial adenomatous polyposis, protein S deficiency, beta thalassemia, and sickle cell disease. In embodiments, the composition is intended for use in a method wherein the target protein and RIC pre-mRNA are encoded by a gene selected from: ADAMTS13, TSC1, PKD1, IKBKAP, IMPDH1, PRPF31, CFTR, RB1, APC, PROS1, NEDD4L, HBG1, HBG2, and HBB.
[0033] In embodiments, the antisense oligomer of the composition targets a portion of the RIC pre-mRNA that is in the retained intron within the region +6 relative to the 5' splice site of the retained intron to the region -16 relative to the 3' splice site of the retained intron. In embodiments, the antisense oligomer of the composition targets a portion of the RIC pre-mRNA that is in the retained intron within the region +6 to +100 relative to the 5' splice site of the retained intron; or the region -16 to -100 relative to the 3' splice site of the retained intron. In embodiments, the antisense oligomer targets a portion of the RIC pre-mRNA that is within the region about 100 nucleotides downstream of the 5' splice site of the at least one retained intron, to about 100 nucleotides upstream of the 3' splice site of the at least one retained intron. In embodiments, the targeted portion of the RIC pre-mRNA is within: the region +2e to -4e in the exon flanking the 5' splice site of the retained intron; or the region +2e to -4e in the exon flanking the 3' splice site of the retained intron.
[0034] In embodiments, the antisense oligomer of the composition or as used in the methods described herein does not increase the amount of target protein or functional RNA by modulating alternative splicing of the pre-mRNA transcribed from a gene encoding the target protein or functional RNA. In embodiments, the antisense oligomer of the composition or as used in the methods described herein does not increase the amount of target protein or functional RNA by modulating aberrant splicing resulting from mutation of the gene encoding the target protein or functional RNA.
[0035] In embodiments, the RIC pre-mRNA was produced by partial splicing from a full-length pre-mRNA or a wild-type pre-mRNA. In embodiments, the mRNA encoding the target protein or functional RNA is a full-length mature mRNA, or a wild-type mature mRNA. In embodiments, the target protein produced is full-length protein, or wild-type protein. In embodiments, the functional RNA produced is full-length functional RNA, or wild-type functional RNA.
[0036] In embodiments, the retained intron is a rate-limiting intron. In embodiments, the retained intron is the most abundant intron in said RIC pre-mRNA. In embodiments, the retained intron is the second most abundant intron in said RIC pre-mRNA.
[0037] In embodiments, the antisense oligomer of the composition or as used in the methods described herein, comprises a backbone modification comprising a phosphorothioate linkage or a phosphorodiamidate linkage. In embodiments, the antisense oligomer is an antisense oligonucleotide.
[0038] In embodiments, the antisense oligomer comprises a phosphorodiamidate morpholino, a locked nucleic acid, a peptide nucleic acid, a 2'-O-methyl, a 2'-Fluoro, or a 2'-O-methoxyethyl moiety. In embodiments, the antisense oligomer comprises at least one modified sugar moiety. In related embodiments, each sugar moiety is a modified sugar moiety.
[0039] The antisense oligomer can consist of from 8 to 50 nucleobases. In embodiments, antisense oligomer consists of 8 to 40 nucleobases, 8 to 35 nucleobases, 8 to 30 nucleobases, 8 to 25 nucleobases, 8 to 20 nucleobases, 8 to 15 nucleobases, 9 to 50 nucleobases, 9 to 40 nucleobases, 9 to 35 nucleobases, 9 to 30 nucleobases, 9 to 25 nucleobases, 9 to 20 nucleobases, 9 to 15 nucleobases, 10 to 50 nucleobases, 10 to 40 nucleobases, 10 to 35 nucleobases, 10 to 30 nucleobases, 10 to 25 nucleobases, 10 to 20 nucleobases, 10 to 15 nucleobases, 11 to 50 nucleobases, 11 to 40 nucleobases, 11 to 35 nucleobases, 11 to 30 nucleobases, 11 to 25 nucleobases, 11 to 20 nucleobases, 11 to 15 nucleobases, 12 to 50 nucleobases, 12 to 40 nucleobases, 12 to 35 nucleobases, 12 to 30 nucleobases, 12 to 25 nucleobases, 12 to 20 nucleobases, or 12 to 15 nucleobases.
[0040] In embodiments, the antisense oligomer is at least 80%, at least 85%, at least 90%, at least 95%, at least 98%, at least 99%, or is 100% complementary to the targeted portion of the RIC pre-mRNA encoding the protein. In embodiments, the antisense oligomer binds to a portion of an RIC pre-mRNA selected from SEQ ID NOS: 1-102 and 375-384.
[0041] In embodiments, the antisense oligomer is comprised in a pharmaceutical composition comprising an excipient.
[0042] Described herein are methods for identifying an antisense oligomer that increases the amount of mRNA encoding a target protein or functional RNA by inducing constitutive splicing of a retained intron from a RIC pre-mRNA encoding the target protein or functional RNA, from among a set of antisense oligomers that each hybridize to a target region of the RIC pre-mRNA, wherein the RIC pre-mRNA comprises at least one retained intron, wherein the antisense oligomers in the set are tiled every 1 to 5 nucleotides, and wherein the antisense oligomers in the set hybridize to the RIC pre-mRNA within the sequence that is: about 100 nucleotides upstream of the 5' splice site of the at least one retained intron, to about 100 nucleotides downstream of the 5' splice site of the at least one retained intron; or about 100 nucleotides upstream of the 3' splice site of the at least one retained intron, to about 100 nucleotides downstream of the 3' splice site of the at least one retained intron; the method comprising: a) delivering a first antisense oligomer in the set to a cell comprising the RIC pre-mRNA; b) measuring the amount of the RIC pre-mRNA and measuring the amount of mRNA encoding the target protein or functional RNA in the cell to which the first antisense oligomer was delivered; c) measuring the amount of the RIC pre-mRNA and measuring the amount of mRNA encoding a target protein or functional RNA in a control cell; and d) comparing the amounts of RIC pre-mRNA and mRNA encoding a target protein or functional RNA measured in b and c; wherein the first antisense oligomer is identified as an antisense oligomer that increases the amount of mRNA encoding the target protein or functional RNA by inducing constitutive splicing of the at least one retained intron from the RIC pre-mRNA based on an observed decrease in the amount of the RIC pre-mRNA and an observed increase in the amount of mRNA encoding the target protein or functional RNA in the cell to which the first antisense oligomer was delivered compared to a control cell; and repeating steps a through d with additional antisense oligomers in the set of antisense oligomers as needed to identify an antisense oligomer that increases the amount of mRNA from a gene in a cell by inducing constitutive splicing of a retained intron from the RIC pre-mRNA.
[0043] Also described herein are methods for identifying an antisense oligomer (ASO) for treating a condition, wherein the condition results from insufficient production of a gene product, the method comprising: identifying the presence of at least one RIC pre-mRNA in the nucleus of a cell from a subject having the condition, wherein the RIC pre-mRNA comprises at least one retained intron and is transcribed from a gene encoding the gene product, and wherein the identified RIC pre-mRNA when fully spliced to mature mRNA encodes the gene product in a form that is fully-functional or partially-functional; a) preparing a set of ASOs that each hybridize to a target region of the at least one RIC pre-mRNA, wherein the antisense oligomers in the set are tiled every 1 to 5 nucleotides, and wherein the antisense oligomers in the set hybridize to the at least one RIC pre-mRNA within the sequence that is: about 100 nucleotides upstream of the 5' splice site of the at least one retained intron, to about 100 nucleotides downstream of the 5' splice site of the at least one retained intron; or about 100 nucleotides upstream of the 3' splice site of the at least one retained intron, to about 100 nucleotides downstream of the 3' splice site of the at least one retained intron; b) delivering a first ASO in the set of ASOs to a cell comprising the at least one RIC pre-mRNA; c) measuring the amount of RIC pre-mRNA and measuring the amount of mRNA encoding the gene product in the cell to which the first antisense oligomer was delivered; d) measuring the amount of RIC pre-mRNA and measuring the amount of mRNA encoding the gene product in a control cell; and e) comparing the values obtained in steps c and d; wherein the first antisense oligomer is identified as an antisense oligomer that increases the amount of mRNA encoding the gene product by inducing constitutive splicing of the at least one retained intron from the RIC pre-mRNA based on an observed decrease in the amount of RIC pre-mRNA and an observed increase in the amount of mRNA encoding the gene product in the cell to which the first antisense oligomer was delivered compared to a control cell; and repeating steps a through e with additional antisense oligomers in the set of antisense oligomers as needed to identify an antisense oligomer that increases the amount of a mRNA encoding the gene product from a gene in a cell by inducing constitutive splicing of a retained intron from a RIC pre-mRNA; and further testing such antisense oligomers that increase the amount of a mRNA encoding the gene product in a cell by inducing constitutive splicing of a retained intron from a RIC pre-mRNA for the ability to increase the amount of the gene product produced by a cell.
INCORPORATION BY REFERENCE
[0044] All publications, patents, and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication, patent, or patent application was specifically and individually indicated to be incorporated by reference.
BRIEF DESCRIPTION OF THE DRAWINGS
[0045] The accompanying drawings are not intended to be drawn to scale. The figures are illustrative only and are not required for enablement of the disclosure. For purposes of clarity, not every component may be labeled in every drawing. In the drawings:
[0046] FIG. 1 shows a schematic representation of an exemplary retained-intron-containing (RIC) pre-mRNA transcript. The 5' splice site consensus sequence is indicated with underlined letters (letters are nucleotides; upper case: exonic portion and lower case: intronic portion) from -3e to -1e and +1 to +6 (numbers labeled "e" are exonic and unlabeled numbers are intronic). The 3' splice site consensus sequence is indicated with underlined letters (letters are nucleotides; upper case: exonic portion and lower case: intronic portion) from -15 to -1 and +1e (numbers labeled "e" are exonic and unlabeled numbers are intronic). Intronic target regions for ASO screening comprise nucleotides +6 relative to the 5' splice site of the retained intron (arrow at left) to -16 relative to the 3' splice site of the retained intron (arrow at right). In embodiments, intronic target regions for ASO screening comprise nucleotides +6 to +100 relative to the 5' splice site of the retained intron and -16 to -100 relative to the 3' splice site of the retained intron. Exonic target regions comprise nucleotides +2e to -4e in the exon flanking the 5' splice site of the retained intron and +2e to -4e in the exon flanking the 3' splice site of the retained intron. "n" or "N" denote any nucleotide, "y" denotes pyrimidine. The sequences shown represent consensus sequences for mammalian splice sites and individual introns and exons need not match the consensus sequences at every position.
[0047] FIG. 2A-2B show schematic representations of the Targeted Augmentation of Nuclear Gene Output (TANGO) approach. FIG. 2A shows a cell divided into nuclear and cytoplasmic compartments. In the nucleus, a pre-mRNA transcript of a target gene consisting of exons (rectangles) and introns (connecting lines) undergoes splicing to generate an mRNA, and this mRNA is exported to the cytoplasm and translated into target protein. For this target gene, the splicing of intron 1 is inefficient and a retained intron-containing (RIC) pre-mRNA accumulates primarily in the nucleus, and if exported to the cytoplasm, is degraded, leading to no target protein production. FIG. 2B shows an example of the same cell divided into nuclear and cytoplasmic compartments. Treatment with an antisense oligomer (ASO) promotes the splicing of intron 1 and results in an increase in mRNA, which is in turn translated into higher levels of target protein.
[0048] FIG. 3 shows a schematic representation of an example of screening for intron retention using RT-PCR, as described in Example 1, of a 7-exon/6-intron gene. Numbered rectangles denote exons connected by lines denoting introns. Arched arrows indicate splicing events. Short horizontal bars denote primer pairs used to assess intron retention. Forward primer are indicated with "F" and reverse primers are indicated with "R," i.e., pairs F1 and R1, F2 and R2, F3 and R3, F4 and R4, F5 and R5, and F6 and R6. An intron is identified as a retained intron when such an intron is present and an adjacent intron is observed to be spliced out (removed).
[0049] FIG. 4 shows a schematic representation of an example of screening to confirm intron retention using RT-PCR, as described in Example 2, of a 7-exon/6-intron gene. Numbered rectangles denote exons connected by lines denoting introns. Arched arrows indicate splicing events. Short horizontal bars denote primer pairs used to assess intron retention. The forward primer is labeled with an "F" and reverse primers are labeled with "R1," "R2," or "R3." Introns are confirmed as retained introns when such intron is present and one or more adjacent introns is observed to be spliced out (removed).
[0050] FIG. 5 shows a schematic representation of an exemplary RNase protection assay (RPA) to determine intron-removal efficiency.
[0051] FIGS. 6A-6E show the identification of intron-retention events in the PRPF31 and RB1 genes, as described in Example 1. FIG. 6A shows a schematic representation of the PRPF31 gene with numbered rectangles denoting exons and intervening lines denoting introns. Forward ("F") and reverse ("R") primers are indicated by short lines. Below are representative gels showing RT-PCR products corresponding to intron-retention events in PRPF31. The products were separated in a 1.5% ethidium-bromide-stained agarose gel. The top gel corresponds to products from nuclear fraction of HeLa cells, and the bottom gel corresponds to products from nuclear fractions from 293T cells. Asterisks indicate correct products (by size) for intron-retention events. FIG. 6B shows a schematic representation of the RB1 gene with numbered rectangles denoting exons and intervening lines denoting introns. Below are representative gels showing RT-PCR products from HeLa nuclear extracts corresponding to intron-retention events in RB1. The RT-PCR products were separated in a 1.5% ethidium-bromide-stained agarose gel. FIG. 6C shows representative gels of RT-PCR products from 293T cell nuclear extracts corresponding to intron-retention events in RB1. FIG. 6D shows representative gels of RT-PCR products from ARPE-19 cell nuclear extracts corresponding to intron-retention events in PRPF31 and RB1. RT-PCR products were separated in a 1.5% ethidium-bromide-stained agarose gel. FIG. 6E shows representative gels of RT-PCR products from ARPE-19 cell cytoplasmic extracts corresponding to intron-retention events in PRPF31 and RB1. IVS: intervening sequence (intron).
[0052] FIGS. 7A-7B show the identification of intron-retention events in the PRPF31 and RB1 genes, as described in Example 2. FIG. 7A shows representative gels of RT-PCR products corresponding to intron-retention events in PRPF31. The RT-PCR products from Arpe-19 cell nuclear extracts were separated in a 1.5% ethidium-bromide-stained agarose gel. FIG. 7B shows representative gels of RT-PCR products corresponding to intron-retention events in RB1. The RT-PCR products from Arpe-19 cell nuclear extracts were separated in a 1.5% ethidium-bromide-stained agarose gel. Asterisks indicate correct products (by size) for intron-retention events using the indicated primer pairs. IVS: intervening sequence (intron).
[0053] FIGS. 8A-8C show increased gene expression by promoting splicing efficiency via mutagenesis of splice sites, as described in Example 3. FIG. 8A shows a schematic representation of the HBB reporter gene including numbered rectangles denoting exons. Actual HBB splice site sequences are drawn marking the intron-exon boundaries. The nucleotides within the splice site sequences that are indicated with asterisks show the locations of nucleotide substitutions introduced by site directed mutagenesis to bring the splice site sequences to the consensus sequence (sequences directly below the HBB splice sites). The sequences are set forth in the sequence listing as SEQ ID NOS 387-390, respectively, in order of appearance. A: IVS1 5' splice site mutant, B: IVS1 3' splice site mutant, C: IVS2 5' splice site mutant, D: IVS2 3' splice site mutant. AB, CD, AC and BD: combination mutants. FIG. 8B shows a representative gel of radioactive RT-PCR products of wild-type (WT) and mutant HBB reporters. The RT-PCR products were separated in a 5% polyacrylamide gel. FIG. 8C shows a bar graph of the intensities of bands corresponding to HBB transcripts normalized to GFP. Fold change was plotted relative to the WT HBB product. The black line indicates a ratio of 1, no change.
[0054] FIGS. 9A-9C show that ASOs targeting sequences immediately downstream of HBB IVS1 5' splice site increase HBB mRNA, as described in Example 3. FIG. 9A shows a schematic representation of the HBB reporter gene. The numbered rectangles denote exons, and intervening lines denote introns. Orange line indicates the IVS1+6 ASO ("+6"), grey line indicates IVS1+7 ASO ("+7"). Black lines indicate forward ("F") and reverse ("R") primers used in PCR amplification of the HBB transcript. FIG. 9B presents a representative gel of radioactive RT-PCR products of wild-type HBB reporters untreated (-), mock-treated (RiM, RNAiMAX or EP, EndoPorter) or treated with non-targeting (NT), or IVS1+7 2'-O-Me (left portion of the gel) or PMO (right portion of the gel) ASOs at the indicated concentrations. The RT-PCR products were separated in a 5% polyacrylamide gel. FIG. 9C shows a bar graph of the intensities of bands corresponding to HBB transcripts normalized to GFP. Fold change was plotted relative to the product from mock-treated cells. Green bars correspond to treatment with the IVS+7 2'-O-Me ASO and orange bars correspond to treatment with the IVS+7 PMO ASO. The black line indicates a ratio of 1, no change.
[0055] FIGS. 10A-10C show that IVS1+7 2'-O-Me ASO targeting sequences immediately downstream of the HBB IVS1 5' splice site increase GFP-HBB-T7 protein levels, as described in Example 4. FIG. 10A shows a schematic representation of the GFP-HBB-T7 reporter gene that has been integrated in the genome of U2OS cells. The rectangle labeled "GFP" denotes the open reading frame of GFP, numbered rectangles denote HBB exons, intervening lines denote introns and the rectangle labeled "T7" denotes the sequence coding for the T7 tag. The line labeled "+7" indicates the IVS1+7 ASO. FIG. 10B presents a representative gel of protein products of wild-type GFP-HBB-T7 reporters mock-treated (RiM, RNAiMAX) or treated with IVS1+7 2'-O-Me ASO at a concentration of 50 nM. The protein products were separated on a 4-20% SDS-polyacrylamide gel. Antibodies against GFP and Beta tubulin were used to detect the protein products. FIG. 10C shows a bar graph of the intensity of bands corresponding to GFP-HBB-T7 protein normalized to Beta tubulin from two biological replicates. Fold change was plotted relative to the product from mock-treated cells. The black line indicates a ratio of 1, no change.
[0056] FIG. 11 shows the identification of intron-retention events in the ADAMTS13 gene using RNA sequencing (RNAseq), visualized in the UCSC Genome Browser, as described in Example 5. The top panel shows the read density corresponding to the ADAMTS13 transcript expressed in THLE-3 (human liver epithelial) cells and localized in either the cytoplasmic (top) or nuclear fraction (bottom). At the bottom of this panel, a graphic representation of all the refseq. isoforms of the ADAMTS13 gene is shown to scale. The read density is shown as peaks. The highest read density corresponds to exons (black boxes), while no reads are observed for the majority of the introns (lines with arrow heads) in neither cellular fraction. Higher read density is detected for introns 25 and 27 (pointed by the arrows) in the nuclear fraction compared to the cytoplasmic fraction indicating that splicing efficiency of introns 25 and 27 is low, resulting in intron retention. The retained-intron containing pre-mRNA transcripts are retained in the nucleus and are not exported out to the cytoplasm. The read density for intron 25 in THLE-3 cells is shown in detail in the bottom picture.
[0057] FIG. 12 shows the validation of the bioinformatic analysis via radioactive-RT-PCR as described in Example 6. A schematic representation of the radioactive RT-PCR assay to validate the bioinformatic prediction shown in FIG. 11 is depicted in FIG. 12. The numbered rectangles denote exons, and intervening lines denote introns. Black lines indicate forward ("F1") and reverse ("R1") primers used in the PCR amplification of the ADAMTS-13 transcript resulting in two products, the intron-25-retained (652 bp) and the correctly spliced (187 bp) products. Below are representative gels showing radioactive RT-PCR products from nuclear and cytoplasmic fractions of A172 (glioblastoma, left) and HepG2 (hepatocellular carcinoma, right) cells separated in a 5% polyacrylamide gel. Asterisks indicate correct products (by size). Results show a band corresponding to the intron-25 retained product in the nuclear fractions of both cell lines that is absent from both cytoplasmic fractions. A summary of the quantification on ADAMTS13 intron-25 retention calculated as percent intron retention (PIR) from radioactive RT-PCR and RNAseq experiments is shown on the table on the right.
[0058] FIG. 13 shows a graphic representation of the ASO walk performed for ADAMTS13 IVS 25 targeting sequences immediately downstream of the 5' splice site or upstream of the 3' splice site using 2'-O-Me ASOs, PS backbone, as described in Example 7. ASOs were designed to cover these regions by shifting 5 nucleotides at a time. Exons 24 to 29 and the intronic sequences to are drawn to scale. The figure discloses SEQ ID NOS 391 and 392, respectively, in order of appearance.
[0059] FIG. 14 depicts the results of the ASO-walk targeting intron 25 as described in Example 8. At the top, a representative gel shows radioactive RT-PCR products of ADAMTS13 mock-treated (-, RNAiMAX only), SMN-control ASO treated, or treated with a 2'-O-Me ASO targeting intron 25 as described in FIG. 13, at 60 nM concentration in HepG2 cells. Quantification of the bands corresponding to ADAMTS13 products normalized to Beta actin from 3 independent experiments is plotted in the bar graph below as fold change with respect to the SMN-control-ASO treated products. The black line indicates a ratio of 1, no change. Asterisks indicate ASOs that lead to the highest increase in mRNA levels.
[0060] FIG. 15 shows dose-response curves for ADAM-IVS25+21, ADAM-IVS25+26, the two best targeting ASOs, and ADAM-IVS-46, an ASO that resulted in a reduction of ADAMTS13 transcript, as described in Example 9. In the top panel a representative gel shows radioactive RT-PCR ADAMTS13 products from HepG2 cells mock-, SMN-control-, ADAM-IVS25+21-, ADAM-IVS25+26-, or ADAM-IVS-46-treated at the indicated concentrations. The RT-PCR products were separated in a 5% polyacrylamide gel. Quantification of the bands corresponding to ADAMTS13 products normalized to Beta actin is plotted in the bar graph below as fold change relative to the mock-treated products. The black line indicates a ratio of 1, no change.
[0061] FIG. 16 illustrates an increase in ADAMTS13 protein resulting from the treatment of HepG2 cells with ADAM-IVS25+21 and ADAM-IVS25+26 ASOs, as described in Example 10. In the top panel a representative gel shows ADAMTS13 protein products from HepG2 cells mock-, ADAM-IVS25+21-, or ADAM-IVS25+26-treated at the indicated concentrations. The protein products were separated on an 8% SDS-polyacrylamide gel. Antibodies against ADAMTS-13 and alpha tubulin were used to detect the protein products. The bar graph below shows the quantifications of the intensity of bands corresponding to ADAMTS-13 protein levels from ADAM-IVS25+21-treated cells, normalized to alpha tubulin. Fold change was plotted relative to the product from mock-treated cells. The black line indicates a ratio of 1, no change. ADAM-IVS25+21 increases ADAMTS13 protein product in a dose-dependent manner.
[0062] FIG. 17 shows a graphic representation of the ASO microwalk performed for ADAMTS13 IVS 25 targeting sequences in the region of ADAM-IVS25+21 and ADAM-IVS25+26 ASOs using 2'-O-Me, 5'-Me-Cytosine ASOs, as described in Example 11. ASOs were designed to cover the region by shifting 1 nucleotide at a time. Exons 24 to 29 and the intronic sequences are drawn to scale. The figure discloses SEQ ID NO: 391.
[0063] FIG. 18 depicts the results of the ASO-microwalk targeting the ADAM-IVS25+21 and ADAM-IVS25+26 region in intron 25, as described in Example 12. At the top, a representative gel shows radioactive RT-PCR products of ADAMTS13 mock-treated (-), SMN-control ASO treated, or treated with a 2'-O-Me, 5'-Me-Cytosine ASOs (described in FIG. 17) at 60 nM concentration in HepG2. Quantification of the bands corresponding to ADAMTS13 products normalized to Beta actin from 2 independent experiments is plotted in the bar graph below as fold change relative to the mock-treated products. The black line indicates a ratio of 1, no change. The two light-grey bars indicate IVS25 2'-O-Me ASOs ADAM-IVS25+21 and ADAM-IVS25+26 described in FIGS. 14 and 15.
[0064] FIG. 19 shows the identification of intron-retention events in the TSC1 gene using RNA sequencing (RNAseq), visualized in the UCSC genome browser as described in Example 13. The top panel shows the read density corresponding to the TSC1 transcript expressed in HCN (primary human cortical neuron) cells and localized in either the cytoplasmic (top) or nuclear fraction (bottom). At the bottom of this panel, a graphic representation of all the refseq. isoforms of the TSC1 gene is shown to scale. The read density is shown as peaks. The highest read density corresponds to exons (black boxes), while no reads are observed for the majority of the introns (lines with arrow heads) in neither cellular fraction. Higher read density is detected for introns 5, 10, and 11 (pointed by the arrows) in the nuclear fraction compared to the cytoplasmic fraction indicating that splicing efficiency of introns 5, 10 and 11 is low, resulting in intron retention. The retained-intron containing pre-mRNA transcripts are retained in the nucleus and are not exported out to the cytoplasm. The read density for intron 10 is shown in detail in the bottom picture for HCN cells and AST (primary human astrocyte) cells.
[0065] FIG. 20 shows a schematic representation of the radioactive RT-PCR assay to validate the bioinformatic prediction shown in FIG. 19, as described in Example 14. The numbered rectangles denote exons, and intervening lines denote introns. Black lines indicate forward ("F1") and reverse ("R1") primers used in the PCR amplification of the TSC1 transcript resulting in two products, the intron-10-retained (617 bp) and the correctly spliced (278 bp) products. Below are representative gels showing radioactive RT-PCR products from nuclear and cytoplasmic fractions of A172 (glioblastoma) cells separated in a 5% polyacrylamide gel. Results show a band corresponding to the intron-10 retained product in the nuclear fractions of A172 cells that is significantly reduced in the cytoplasmic fraction. Quantification of the bands indicated that approximately 36% of TSC1 transcripts contain intron 10 and that this product is retained in the nucleus. Moreover, as shown for ADAMTS13, the radioactive RT-PCR results validated the bioinformatic predictions. A summary of the quantification on TSC1 intron-10 retention calculated as percent intron retention (PIR) from radioactive RT-PCR and RNAseq experiments is shown on the table on the right.
[0066] FIG. 21 shows a graphic representation of the ASO walk performed for TSC1 IVS 10 targeting sequences immediately downstream of the 5' splice site or upstream of the 3' splice site using 2'-O-Me ASOs, PS backbone, as described in Example 15. ASOs were designed to cover these regions by shifting 5 nucleotides at a time. TSC1 exon-intron structure is drawn to scale. The figure discloses SEQ ID NOS 393 and 394, respectively, in order of appearance.
[0067] FIG. 22 depicts the results of the ASO-walk targeting intron 10, as described in Example 16. At the top, a representative gel shows radioactive RT-PCR products of TSC1 mock-treated (-), SMN-control ASO treated, or treated with a 2'-O-Me ASO targeting intron 10 as described in FIG. 21, at 60 nM concentration in A172 cells. Quantification of the bands corresponding to TSC1 products normalized to Beta actin from 2 independent experiments is plotted in the bar graph below as fold change with respect to the mock-treated products. The black line indicates a ratio of 1, no change. Asterisks indicate ASOs that lead to an increase in TSC1 mRNA levels.
[0068] FIG. 23 shows a dose-response curve for TSC1-IVS10+31 ASO, as described in Example 17. In the top panel a representative gel shows radioactive RT-PCR TSC1 products from A172 cells mock-, SMN-control-, or TSC1-IVS10+31-treated at the indicated concentrations. The RT-PCR products were separated in a 5% polyacrylamide gel. Quantification of the bands corresponding to TSC1 products normalized to Beta actin is plotted in the bar graph on the left below as fold change relative to the mock-treated products. RT-qPCR results of the same experiment are plotted relative to mock-treated products on the right bar graph confirming the radioactive RT-PCR results. The black line indicates a ratio of 1, no change.
[0069] FIG. 24 illustrates an increase in TSC1 protein resulting from the treatment of A172 cells with TSC1-IVS10+31 ASO, as described in Example 18. In the top panel a representative gel shows TSC1 protein products from A172 cells mock-, SMN-control-, or TSC1-IVS10+31 ASO-treated at the indicated concentrations. The protein products were separated on a 10% SDS-polyacrylamide gel. Antibodies against TSC1 and alpha tubulin were used to detect the protein products. The bar graph below shows the quantifications of the intensity of bands corresponding to TSC1 protein levels from TSC1-IVS10+31-treated cells, normalized to alpha tubulin. Fold change was plotted relative to the product from mock-treated cells. The black line indicates a ratio of 1, no change. TSC1-IVS10+31 increases TSC1 protein product.
[0070] FIG. 25 shows the identification of intron-retention events in the IMPDH1 gene using RNA sequencing (RNAseq), visualized in the UCSC genome browser as described in Example 19. The top panel shows the read density corresponding to the IMPDH1 transcript expressed in ARPE19 (human retinal epithelial) cells and localized in either the cytoplasmic (top) or nuclear fraction (bottom). At the bottom of this panel, a graphic representation of all the refseq. isoforms of the IMPDH1 gene is shown to scale. The read density is shown as peaks. The highest read density corresponds to exons (black boxes), while no reads are observed for the majority of the introns (lines with arrow heads) in either cellular fraction. Higher read density is detected for intron 14 (pointed by the arrow) in the nuclear fraction compared to the cytoplasmic fraction indicating that splicing efficiency of intron 14 is low, resulting in intron retention. The retained-intron containing pre-mRNA transcripts are retained in the nucleus and are not exported out to the cytoplasm. The read density for intron 14 is shown in detail in the bottom picture for ARPE19 cells.
[0071] FIG. 26 shows a graphic representation of the ASO walk performed for IMPDH1 IVS 14 targeting sequences immediately downstream of the 5' splice site or upstream of the 3' splice site using 2'-O-Me ASOs, as described in Example 20, PS backbone. ASOs were designed to cover these regions by shifting 5 nucleotides at a time, unless a stretch of four guanines is present in the ASOs. IMPDH1 exon-intron structure is drawn to scale. The figure discloses SEQ ID NOS 395 and 396, respectively, in order of appearance.
[0072] FIG. 27 depicts the results of the ASO-walk targeting intron 14, as described in Example 21. At the top, a representative gel shows radioactive RT-PCR products of IMPDH1 mock-treated (-), SMN-control ASO-treated, or treated with a 2'-O-Me ASO targeting intron 14 as described in FIG. 21, at 60 nM concentration in ARPE19 cells. Quantification of the bands corresponding to IMPDH1 products normalized to Beta actin from 2 independent experiments is plotted in the bar graph below as fold change relative to the mock-treated products. The black line indicates a ratio of 1, no change. Asterisks indicate the ASO that lead to the highest increase in IMPDH1 mRNA levels.
[0073] FIG. 28 shows an increase in IMPDH1 gene expression levels in a dose-dependent manner resulting from the treatment of ARPE19 cells with IMP-IVS14+48 ASO at the indicated concentrations, as described in Example 22. Radioactive RT-PCR products of IMPDH1 (intron-14 retained and correctly spliced) and Beta actin from ARPE-19 cells were separated on a 5% polyacrylamide gel. The bar graph on the left demonstrates a dose-dependent reduction in percent intron retention (PIR) calculated relative to the total transcript (intron-14 retained and correctly spliced) from IMP-IVS14+48 ASO-treated cells compared to mock-treated cells (two independent experiments). Fold change of correctly spliced transcript level from two independent experiments was plotted relative to the mock-treated cells in the middle graph showing a dose-dependent increase in IMPDH1 transcript level. RT-qPCR (right bar graph) was performed and the resulting values were normalized to Beta actin. Fold change of four biological replicates was plotted relative mock-treated IMPDH1 products, confirming the radioactive RT-PCR results.
[0074] FIG. 29 shows an increase in IMPDH1 protein levels achieved via IMP-IVS14+48 ASO targeting at the indicated concentrations in ARPE19 cells, as described in Example 23. Protein lysates from ARPE-19 cells were separated on a 4-20% SDS-polyacrylamide gel. Antibodies against IMPDH1, Beta actin and Beta catenin were used to detect protein products. The intensity of the IMPDH1 protein bands was normalized to the intensity of the Beta actin bands and the fold change was computed relative to the mock-treated products from four biological replicates, and plotted in the bar graph below.
[0075] FIG. 30 shows a graphic representation of the ASO microwalk performed for IMPDH1 IVS14 targeting sequences in the region of IMP-IVS14+48 ASO using 2'-O-Me, 5'-Me-Cytosine ASOs, as described in Example 24. ASOs were designed to cover the region by shifting 1 nucleotide at a time. IMPDH1 exon-intron structure is drawn to scale. The figure discloses SEQ ID NO: 397.
[0076] FIG. 31 shows an increase in MPDH1 expression levels resulting from a microwalk as shown in FIG. 30, as described in Example 25. RT-qPCR was performed on total RNA extracted from ARPE-19 cells, which were treated at an ASO concentration of 60 nM. Ct values of the IMPDH1 gene were normalized to the ct values Beta Actin (left) and RPL32 (right) house keeping genes, and the fold change was plotted relative to the products from mock-treated cells in the bar graphs. The microwalk identified two additional ASOs that further increase IMPDH1 transcript levels.
[0077] FIG. 32 shows the identification of intron-retention events in the PKD1 gene using RNA sequencing (RNAseq), visualized in the UCSC genome browser as described in Example 26. The top panel shows the read density corresponding to the PKD1 transcript expressed in primary human renal epithelial cells (REN) and localized in either the cytoplasmic (top) or nuclear fraction (bottom). At the bottom of this panel, a graphic representation of the refseq. isoform of the PKD1 gene is shown to scale. The read density is shown as peaks. The highest read density corresponds to exons (black boxes), while no reads are observed for the majority of the introns (lines with arrow heads) in neither cellular fraction. Higher read density is detected for introns 32, 33, 37, and 38 (pointed by the arrows) in the nuclear fraction compared to the cytoplasmic fraction indicating that splicing efficiency of these introns is low, resulting in intron retention. The retained-intron containing pre-mRNA transcripts are retained in the nucleus and are not exported out to the cytoplasm. The read density for intron 37 is shown in detail in the bottom picture for REN cells.
[0078] FIG. 33 shows a graphic representation of the ASO walk performed for PKD1 IVS 37 targeting sequences immediately downstream of the 5' splice site or upstream of the 3' splice site using 2'-O-Me ASOs, PS backbone, as described in Example 27. ASOs were designed to cover these regions by shifting 5 nucleotides at a time, unless a stretch of four guanines is present in the ASOs. PKD1 exon-intron structure is drawn to scale. The figure discloses SEQ ID NOS 398 and 399, respectively, in order of appearance.
[0079] FIG. 34 depicts the results of the ASO-walk targeting intron 37, as described in Example 28. At the top, a representative gel shows radioactive RT-PCR products of PKD1 mock-treated (C), SMN-control ASO-treated, or treated with a 2'-O-Me ASO targeting intron 37 as described in FIG. 33, at 60 nM concentration in HEK293 (human embryonic kidney epithelial) cells. Quantification of the bands corresponding to PKD1 products normalized to Beta actin from 2 independent experiments is plotted in the bar graph below as fold change relative to the mock-treated products. The black line indicates a ratio of 1, no change. Asterisks indicate the ASO that lead to the highest increase in PKD1 mRNA levels.
[0080] FIG. 35 shows an increase in PKD1 gene expression levels in a dose-dependent manner resulting from the treatment of HEK293 cells with PKD1-IVS37+29 ASO at the indicated concentrations, as described in Example 29. Radioactive RT-PCR products of PKD1 (intron-37 retained and correctly spliced) and Beta actin from HEK293 cells were separated on a 5% polyacrylamide gel. The bar graph on the left demonstrates a dose-dependent reduction in percent intron retention (PIR) calculated relative to the total transcript (intron-37 retained and correctly spliced) from PKD1-IVS37+29 ASO-treated cells compared to mock-treated cells (two independent experiments). Fold change of correctly spliced transcript level from two independent experiments was plotted relative to the mock-treated cells in the middle graph showing an increase in PKD1 transcript level. RT-qPCR (right bar graph) was performed and the resulting values were normalized to Beta actin. Fold change of four biological replicates was plotted relative mock-treated PKD1 products, confirming the radioactive RT-PCR results and showing a dose-dependent increase in PKD1 transcript level.
[0081] FIG. 36 shows an increase in PKD1 protein levels achieved via PKD1-IVS37+29 ASO targeting at the indicated concentrations in HEK293 cells, as described in Example 30. HEK293 were fixed and permeabilized and treated with an antibodies against PKD1, or an IgG isotype control. Flow-cytometry analysis was performed for 10,000 treated cells in each condition and the fluorescence intensity was plotted. The fold change was computed relative to the mock-treated (untransfected) products and plotted in the bar graph below indicating an increase in PKD1 level upon treatment with PKD1-IVS37+29 ASO.
[0082] FIG. 37 shows the identification of intron-retention events in the IKBKAP gene using RNA sequencing (RNAseq), visualized in the UCSC genome browser as described in Example 31. The top panel shows the read density corresponding to the PKD1 transcript expressed in ARPE19, AST, primary human bronchial epithelial cells (BRON), HCN, REN, and THLE3 cells and localized in either the cytoplasmic (top for each cell line) or nuclear fractions (bottom for each cell line). At the bottom of this panel, a graphic representation of the refseq. isoform of the IKBKAP gene is shown to scale. The read density is shown as peaks. The highest read density corresponds to exons (black boxes), while no reads are observed for the majority of the introns (lines with arrow heads) in neither cellular fraction. Higher read density is detected for introns 7 and 8 (pointed by the arrows) in the nuclear fraction compared to the cytoplasmic fraction indicating that splicing efficiency of these introns is low, resulting in intron retention. The retained-intron containing pre-mRNA transcripts are retained in the nucleus and are not exported out to the cytoplasm. The read densities for introns 7 and 8 are shown in detail in the bottom picture for all the analyzed cells.
[0083] FIG. 38 shows IKBKAP intron 7 retention levels in ARPE-19, HeLa and U2OS cell lines respectively, as described in Example 32. Nuclear and cytoplasmic RNA fractions were extracted from ARPE-19, Hela and U2OS cells and their corresponding radioactive RT-PCR products were separated on a 5% polyacrylamide gel. The numbered rectangles denote exons, and intervening lines denote introns. Results show a band corresponding to the intron-7 retained product in the nuclear fractions of the three cell lines that is absent from the corresponding cytoplasmic fractions. Quantification of the bands indicated that approximately 35% of IKBKAP transcripts contain intron 7 and that this product is retained in the nucleus. Once again, the radioactive RT-PCR results validated the bioinformatic predictions. A summary of the quantification of IKBKAP intron-7 retention calculated as percent intron retention (PIR) relative to the total transcript (intron-7 retained and correctly spliced) from radioactive RT-PCR, as well as RNAseq experiment results is shown on the table on the right.
[0084] FIG. 39 shows a graphic representation of the ASO walks performed for IKBKAP IVS7 (top) and IVS8 (bottom) targeting sequences immediately downstream of the 5' splice site or upstream of the 3' splice site using 2'-O-Me ASOs, PS backbone, as described in Example 33. ASOs were designed to cover these regions by shifting 5 nucleotides at a time. IKBKAP exon-intron structure is drawn to scale. The figure discloses SEQ ID NOS 400-403, respectively, in order of appearance.
[0085] FIG. 40 demonstrates an increase in IKBKAP gene expression level achieved via specific ASO targeting of introns 7 (top) and 8 (bottom) as shown in FIG. 39, as described in Example 34. Cytoplasmic RNA was extracted from ARPE-19 cells mock-treated, SMN-control ASO-treated or treated with each ASOs at a concentration of 60 nM. RT-qPCR was performed to measure IKBKAP expression levels and ct values from IKBKAP were normalized to the corresponding ct values of the Beta actin product. Fold change was plotted relative to mock-treated products.
[0086] FIG. 41 indicates an increase in IKBKAP transcript level in a dose-dependent manner in cells treated with IKB-IVS7+26 or IKB-IVS8-16 ASOs at the indicated concentrations or a combination of both ASOs at 45 nM each (total 90 nM), as described in Example 35. Radioactive RT-PCR products corresponding to exons 6-8 (IKB-IVS7+26, top) or exons 8-10 (IKB-IVS8-16, bottom) using cytoplasmic RNA from ARPE-19 cells were separated on a 5% polyacrylamide gel. The expression of IKBKAP was quantified by measuring the band intensity and the values were normalized to that of Beta-actin. Fold changes from two biological replicates were plotted relative to the product of mock-treated cells and shown in the bar graphs to the right of each representative gel.
[0087] FIG. 42 shows a dose-dependent increase in IKAP protein levels in in ARPE19 cells treated with IKB-IVS7+26 or IKB-IVS8-16 ASOs at the indicated concentrations or a combination of both ASOs at 45 nM each (total 90 nM), as described in Example 36. Protein lysates from ARPE-19 cells were extracted and separated on a 4-20% SDS-polyacrylamide gel. Antibodies against IKAP and Beta catenin were used to detect the separated protein products. The intensity of the IKAP protein bands was normalized to the intensity of the Beta catenin bands, and the fold change for two biological replicates was computed relative to the mock-treated cells and plotted in the bar graph below.
SEQUENCES
[0088] This application includes nucleotide sequences SEQ ID NOs: 1-403. SEQ ID NOS: 1-384, are listed in Tables 2 to 8 and Tables 11 to 20 before the claims. The nucleotide sequences set forth as SEQ ID NOS: 1-102 and 375-384 in Tables 11 to 20 are examples of sequences that can be targeted by antisense oligomers by the methods described herein. The nucleotide sequences set forth as SEQ ID NOS 103-374 in Tables 2-8 are examples of antisense oligomers useful in the methods described herein. In all tables, upper case letters represent exon sequence and lower case represents intron sequence.
DETAILED DESCRIPTION OF THE INVENTION
[0089] Eighty-five percent (85%) of human protein-coding genes have at least one intron; eight is the average number of introns per gene and the number of introns can range from 1 to 316. Individual introns are spliced from the primary transcript with different efficiencies and in most cases only the fully spliced mRNA is exported through nuclear pores for subsequent translation in the cytoplasm. Unspliced and partially spliced transcripts are detectable in the nucleus. It is generally thought that nuclear retention of transcripts that are not fully spliced is a mechanism to prevent the accumulation of potentially deleterious mRNAs in the cytoplasm that may be translated to protein. For some genes, splicing of the least efficient intron is a rate-limiting post-transcriptional step in gene expression, prior to translation in the cytoplasm. If splicing of an intron that is rate-limiting for the nuclear stages of gene expression can be made more efficient, steady-state production of fully-spliced, mature mRNA and translation of the corresponding protein can be augmented. Such methods would also aid in upregulating expression of target genes, which has innumerable clinical and research applications. Increasing the output of a gene (the normal and/or mutant allele) can be useful to compensate for any mutation that reduces the amount of activity of its gene product, e.g., a protein or functional RNA. Many genetic diseases and disorders are the result of reduced protein production or the production a protein that is only partially functional.
[0090] As used herein, the term "comprise" or variations thereof such as "comprises" or "comprising" are to be read to indicate the inclusion of any recited feature (e.g. in the case of an antisense oligomer, a defined nucleobase sequence) but not the exclusion of any other features. Thus, as used herein, the term "comprising" is inclusive and does not exclude additional, unrecited features (e.g. in the case of an antisense oligomer, the presence of additional, unrecited nucleobases).
[0091] In embodiments of any of the compositions and methods provided herein, "comprising" may be replaced with "consisting essentially of" or "consisting of" The phrase "consisting essentially of" is used herein to require the specified feature(s) (e.g. nucleobase sequence) as well as those which do not materially affect the character or function of the claimed invention. As used herein, the term "consisting" is used to indicate the presence of the recited feature (e.g. nucleobase sequence) alone (so that in the case of an antisense oligomer consisting of a specified nucleobase sequence, the presence of additional, unrecited nucleobases is excluded).
Targeted Augmentation of Nuclear Gene Output
[0092] Described herein are methods of increasing expression of a target protein referred to as Targeted Augmentation of Nuclear Gene Output (TANGO). The method involves contacting cells having (comprising) a retained-intron-containing pre-mRNA (RIC pre-mRNA) that comprises a retained intron, an exon flanking the 5' splice site, an exon flanking the 3' splice site, and encodes the target protein with antisense oligomers (ASO) complementary to a targeted portion of a RIC pre-mRNA. Hybridization of the ASOs to the portion of the RIC pre-mRNA results in enhanced splicing at the splice site (5' splice site or 3' splice site) of the retained intron and subsequently increases target protein production.
[0093] The terms "pre-mRNA," and "pre-mRNA transcript" may be used interchangeably and refer to any pre-mRNA species that contains at least one intron. Pre-mRNA or pre-mRNA transcripts may comprise a 5'-7-methylguanosine cap and/or a poly-A tail. In some embodiments, the pre-mRNA transcript does not comprise a 5'-7-methylguanosine cap and/or a poly-A tail. A pre-mRNA transcript is a non-productive messenger RNA (mRNA) molecule if it is not translated into a protein (or transported into the cytoplasm from the nucleus).
[0094] As used herein, a "retained-intron-containing pre-mRNA" ("RIC pre-mRNA") is a pre-mRNA transcript that contains at least one retained intron. The RIC pre-mRNA contains a retained intron, an exon flanking the 5' splice site of the retained intron, an exon flanking the 3' splice site of the retained intron, and encodes the target protein. An "RIC pre-mRNA encoding a target protein" is understood to encode the target protein when fully spliced. A "retained intron" is any intron that is present in a pre-mRNA transcript when one or more other introns, such as an adjacent intron, encoded by the same gene have been spliced out of the same pre-mRNA transcript. In some embodiments, the retained intron is the most abundant intron in RIC pre-mRNA encoding the target protein. In embodiments, the retained intron is the most abundant intron in a population of RIC pre-mRNAs transcribed from the gene encoding the target protein in a cell, wherein the population of RIC pre-mRNAs comprises two or more retained introns. In embodiments, an antisense oligomer targeted to the most abundant intron in the population of RIC pre-mRNAs encoding the target protein induces splicing out of two or more retained introns in the population, including the retained intron to which the antisense oligomer is targeted or binds. In embodiments, a mature mRNA encoding the target protein is thereby produced. The terms "mature mRNA," and "fully-spliced mRNA," are used interchangeably herein to describe a fully processed mRNA encoding a target protein (e.g., mRNA that is exported from the nucleus into the cytoplasm and translated into target protein) or a fully processed functional RNA. The term "productive mRNA," also can be used to describe a fully processed mRNA encoding a target protein.
[0095] In some embodiments, the targeted region is in a retained intron that is the second most abundant intron in RIC pre-mRNA encoding the target protein. For example, the second most abundant retained intron may be targeted rather than the most abundant retained intron due to the uniqueness of the nucleotide sequence of the second most abundant retained intron, ease of ASO design to target a particular nucleotide sequence, and/or amount of increase in protein production resulting from targeting the intron with an ASO. In embodiments, the retained intron is the second most abundant intron in a population of RIC pre-mRNAs transcribed from the gene encoding the target protein in a cell, wherein the population of RIC pre-mRNAs comprises two or more retained introns. In embodiments, an antisense oligomer targeted to the second most abundant intron in the population of RIC pre-mRNAs encoding the target protein induces splicing out of two or more retained introns in the population, including the retained intron to which the antisense oligomer is targeted or binds. In embodiments, fully-spliced (mature) RNA encoding the target protein is thereby produced.
[0096] In embodiments, an antisense oligomer is complementary to a targeted region that is within a non-retained intron in a RIC pre-mRNA. In embodiments, the targeted portion of the RIC pre-mRNA is within: the region +6 to +100 relative to the 5' splice site of the non-retained intron; or the region -16 to -100 relative to the 3' splice site of the non-retained intron. In embodiments, the targeted portion of the RIC pre-mRNA is within the region +100 relative to the 5' splice site of the non-retained intron to -100 relative to the 3' splice site of the non-retained intron. As used to identify the location of a region or sequence, "within" is understood to include the residues at the positions recited. For example, a region +6 to +100 includes the residues at positions +6 and +100. In embodiments, fully-spliced (mature) RNA encoding the target protein is thereby produced.
[0097] In some embodiments, the retained intron of the RIC pre-mRNA is an inefficiently spliced intron. As used herein, "inefficiently spliced" may refer to a relatively low frequency of splicing at a splice site adjacent to the retained intron (5' splice site or 3' splice site) as compared to the frequency of splicing at another splice site in the RIC pre-mRNA. The term "inefficiently spliced" may also refer to the relative rate or kinetics of splicing at a splice site, in which an "inefficiently spliced" intron may be spliced or removed at a slower rate as compared to another intron in a RIC pre-mRNA.
[0098] In some embodiments, the 9-nucleotide sequence at -3e to -1e of the exon flanking the 5' splice site and +1 to +6 of the retained intron is identical to the corresponding wild-type sequence. In some embodiments, the 16 nucleotide sequence at -15 to -1 of the retained intron and +1e of the exon flanking the 3' splice site is identical to the corresponding wild-type sequence. As used herein, the "wild-type sequence" refers to the nucleotide sequence for a target gene in the published reference genome deposited in the NCBI repository of biological and scientific information (operated by National Center for Biotechnology Information, National Library of Medicine, 8600 Rockville Pike, Bethesda, Md. USA 20894). Also used herein, a nucleotide position denoted with an "e" indicates the nucleotide is present in the sequence of an exon (e.g., the exon flanking the 5' splice site or the exon flanking the 3' splice site).
[0099] The methods involve contacting cells with an ASO that is complementary to a portion of a pre-mRNA encoding a target protein or functional RNA, resulting in increased expression of a target protein or a functional RNA. As used herein, "contacting" or administering to cells refers to any method of providing an ASO in immediate proximity with the cells such that the ASO and the cells interact. A cell that is contacted with an ASO will take up or transport the ASO into the cell. The method involves contacting a condition or disease-associated or condition or disease-relevant cell with any of the ASOs described herein. In some embodiments, the ASO may be further modified or attached (e.g., covalently attached) to another molecule to target the ASO to a cell type, enhance contact between the ASO and the condition or disease-associated or condition or disease-relevant cell, or enhance uptake of the ASO.
[0100] As demonstrated in FIG. 2A, in the nucleus of a cell, a pre-mRNA transcript consisting of exons and introns undergoes splicing to generate an mRNA that can be exported from the nucleus into the cytoplasm of the cell where it is translated into protein. In the instance of a pre-mRNA transcript that contains at least one inefficiently spliced intron (a retained intron), a RIC pre-mRNA occurs, which is maintained in the nucleus, and if it is exported to the cytoplasm it is not translated into protein but is degraded. Without wishing to be bound by any particular theory, in the presence of an ASO that is complementary to a targeted portion of the pre-mRNA transcript, splicing of the retained intron is enhanced thereby increasing the amount of mRNA that can be exported and translated into protein is also increased (FIG. 2B).
[0101] As used herein, the term "increasing protein production" or "increasing expression of a target protein" means enhancing the amount of protein (e.g., a target protein) that is translated from an mRNA in a cell. A "target protein" may be any protein for which increased expression/production is desired. In some embodiments, the target protein is a disease-associated protein, such as any of the proteins presented in Table 1. For example, contacting a cell that expresses a RIC pre-mRNA with an ASO that is complementary to a targeted portion of the RIC pre-mRNA transcript results in a measurable increase in the amount of the protein (e.g., a target protein) encoded by the pre-mRNA. Methods of measuring or detecting production of a protein will be evident to one of skill in the art and include, for example, Western blotting, flow cytometry, immunofluorescence microscopy, and ELISA.
[0102] In some embodiments, contacting cells with an ASO that is complementary to a targeted portion of a RIC pre-mRNA transcript results in an increase in the amount of protein (e.g., target protein) produced by at least 10, 20, 30, 40, 50, 60, 80, 100, 200, 300, 400, 500, or 1000%, compared to the amount of the protein produced by a cell in the absence of the ASO/absence of treatment. In embodiments, the total amount of target protein produced by the cell to which the antisense oligomer was contacted is increased about 1.1 to about 10-fold, about 1.5 to about 10-fold, about 2 to about 10-fold, about 3 to about 10-fold, about 4 to about 10-fold, about 1.1 to about 5-fold, about 1.1 to about 6-fold, about 1.1 to about 7-fold, about 1.1 to about 8-fold, about 1.1 to about 9-fold, about 2 to about 5-fold, about 2 to about 6-fold, about 2 to about 7-fold, about 2 to about 8-fold, about 2 to about 9-fold, about 3 to about 6-fold, about 3 to about 7-fold, about 3 to about 8-fold, about 3 to about 9-fold, about 4 to about 7-fold, about 4 to about 8-fold, about 4 to about 9-fold, at least about 1.1-fold, at least about 1.5-fold, at least about 2-fold, at least about 2.5-fold, at least about 3-fold, at least about 3.5-fold, at least about 4-fold, at least about 5-fold, or at least about 10-fold, compared to the amount of target protein produced by an control compound. A control compound can be, for example, an oligonucleotide that is not complementary to the targeted portion of the RIC pre-mRNA.
[0103] In some embodiments, contacting cells with an ASO that is complementary to a targeted portion of a RIC pre-mRNA transcript results in an increase in the amount of mRNA encoding the target protein or functional RNA, including the mature mRNA encoding the target protein or functional RNA. In some embodiments, the amount of mRNA encoding the target protein or functional RNA, or the mature mRNA encoding the target protein or functional RNA, is increased by at least 10, 20, 30, 40, 50, 60, 80, 100, 200, 300, 400, 500, or 1000%, compared to the amount of the protein produced by a cell in the absence of the ASO/absence of treatment. In embodiments, the total amount of the mRNA encoding the target protein or functional RNA, or the mature mRNA encoding the target protein or functional RNA produced in the cell to which the antisense oligomer was contacted is increased about 1.1 to about 10-fold, about 1.5 to about 10-fold, about 2 to about 10-fold, about 3 to about 10-fold, about 4 to about 10-fold, about 1.1 to about 5-fold, about 1.1 to about 6-fold, about 1.1 to about 7-fold, about 1.1 to about 8-fold, about 1.1 to about 9-fold, about 2 to about 5-fold, about 2 to about 6-fold, about 2 to about 7-fold, about 2 to about 8-fold, about 2 to about 9-fold, about 3 to about 6-fold, about 3 to about 7-fold, about 3 to about 8-fold, about 3 to about 9-fold, about 4 to about 7-fold, about 4 to about 8-fold, about 4 to about 9-fold, at least about 1.1-fold, at least about 1.5-fold, at least about 2-fold, at least about 2.5-fold, at least about 3-fold, at least about 3.5-fold, at least about 4-fold, at least about 5-fold, or at least about 10-fold compared to the amount of mature RNA produced in an untreated cell, e.g., an untreated cell or a cell treated with a control compound. A control compound can be, for example, an oligonucleotide that is not complementary to the targeted portion of the RIC pre-mRNA.
[0104] In embodiments, contacting cells with an ASO that is complementary to a targeted portion of a RIC pre-mRNA transcript results in an increase in the amount of a functional RNA. In some embodiments, the amount of the functional RNA is increased by at least 10, 20, 30, 40, 50, 60, 80, 100, 200, 300, 400, 500, or 1000%, compared to the amount of the functional RNA produced by the cell in the absence of the ASO/absence of treatment. In embodiments, the total amount of the functional RNA produced in the cell to which the antisense oligomer was contacted is increased about 1.1 to about 10-fold, about 1.5 to about 10-fold, about 2 to about 10-fold, about 3 to about 10-fold, about 4 to about 10-fold, about 1.1 to about 5-fold, about 1.1 to about 6-fold, about 1.1 to about 7-fold, about 1.1 to about 8-fold, about 1.1 to about 9-fold, about 2 to about 5-fold, about 2 to about 6-fold, about 2 to about 7-fold, about 2 to about 8-fold, about 2 to about 9-fold, about 3 to about 6-fold, about 3 to about 7-fold, about 3 to about 8-fold, about 3 to about 9-fold, about 4 to about 7-fold, about 4 to about 8-fold, about 4 to about 9-fold, at least about 1.1-fold, at least about 1.5-fold, at least about 2-fold, at least about 2.5-fold, at least about 3-fold, at least about 3.5-fold, at least about 4-fold, at least about 5-fold, or at least about 10-fold compared to the amount of the functional RNA produced in an untreated cell, e.g., an untreated cell or a cell treated with a control compound. A control compound can be, for example, an oligonucleotide that is not complementary to the targeted portion of the RIC pre-mRNA. Any of the methods provided herein may be used to increase production of a functional RNA, e.g., an mRNA that does not encode a protein, such as a non-protein-coding RNA. In some embodiments, the functional RNA or non-protein-coding RNA is associated with a condition, e.g., a disease or disorder.
Constitutive Splicing of a Retained Intron from a RIC Pre-mRNA
[0105] The methods and antisense oligonucleotide compositions provided herein are useful for increasing the expression of a target protein or functional RNA in cells, for example, in a subject having a condition caused by a deficiency in the amount or activity of the target protein or functional RNA, by increasing the level of mRNA encoding the target protein or functional RNA, or the mature mRNA encoding the target protein or functional RNA. In particular, the methods and compositions as described herein induce the constitutive splicing of a retained intron from a RIC pre-mRNA transcript encoding the target protein or functional RNA, thereby increasing the level of mRNA encoding the target protein or functional RNA, or the mature mRNA encoding the target protein or functional RNA and increasing the expression of the target protein or functional RNA.
[0106] Constitutive splicing of a retained intron from a RIC pre-mRNA correctly removes the retained intron from the RIC pre-mRNA, wherein the retained intron has wild-type splice sequences. Constitutive splicing, as used herein, does not encompass splicing of a retained intron from a RIC pre-mRNA transcribed from a gene or allele having a mutation that causes alternative splicing or aberrant splicing of a pre-mRNA transcribed from the gene or allele. For example, constitutive splicing of a retained intron, as induced using the methods and antisense oligonucleotides provided herein, does not correct aberrant splicing in or influence alternative splicing of a pre-mRNA to result in an increased expression of a target protein or functional RNA.
[0107] In embodiments, constitutive splicing correctly removes a retained intron from a RIC pre-mRNA, wherein the RIC pre-mRNA is transcribed from a wild-type gene or allele, or a polymorphic gene or allele, that encodes a fully-functional target protein or functional RNA, and wherein the gene or allele does not have a mutation that causes alternative splicing or aberrant splicing of the retained intron.
[0108] In some embodiments, constitutive splicing of a retained intron from a RIC pre-mRNA encoding the target protein or functional RNA correctly removes a retained intron from a RIC pre-mRNA encoding the target protein or functional RNA, wherein the RIC pre-mRNA is transcribed from a gene or allele from which the target gene or functional RNA is produced at a reduced level compared to production from a wild-type allele, and wherein the gene or allele does not have a mutation that causes alternative splicing or aberrant splicing of the retained intron. In these embodiments, the correct removal of the constitutively spliced retained intron results in production of target protein or functional RNA that is functional when compared to an equivalent wild-type protein or functional RNA.
[0109] In other embodiments, constitutive splicing correctly removes a retained intron from a RIC pre-mRNA, wherein the RIC pre-mRNA is transcribed from a gene or allele that encodes a target protein or functional RNA produced in a form having reduced function compared to an equivalent wild-type protein or functional RNA, and wherein the gene or allele does not have a mutation that causes alternative splicing or aberrant splicing of the retained intron. In these embodiments, the correct removal of the constitutively spliced retained intron results in production of partially functional target protein, or functional RNA that is partially functional when compared to an equivalent wild-type protein or functional RNA.
[0110] "Correct removal" of the retained intron by constitutive splicing refers to removal of the entire intron, without removal of any part of an exon.
[0111] In embodiments, an antisense oligomer as described herein or used in any method described herein does not increase the amount of mRNA encoding the target protein or functional RNA, the amount of the target protein, or the amount of the functional RNA, by modulating alternative splicing or aberrant splicing of a pre-mRNA transcribed from a gene encoding the functional RNA or target protein. Modulation of alternative splicing or aberrant splicing can be measured using any known method for analyzing the sequence and length of RNA species, e.g., by RT-PCR and using methods described elsewhere herein and in the literature. In embodiments, modulation of alternative or aberrant splicing is determined based on an increase or decrease in the amount of the spliced species of interest of at least 10% or 1.1-fold. In embodiments, modulation is determined based on an increase or decrease at a level that is at least 10% to 100% or 1.1 to 10-fold, as described herein regarding determining an increase in mRNA encoding the target protein or functional RNA in the methods of the invention.
[0112] In embodiments, the method is a method wherein the RIC pre-mRNA was produced by partial splicing of a wild-type pre-mRNA. In embodiments, the method is a method wherein the RIC pre-mRNA was produced by partial splicing of a wild-type pre-mRNA. In embodiments, the RIC pre-mRNA that was produced by partial splicing of a full-length pre-mRNA. In these embodiments, a full-length pre-mRNA may have a polymorphism in a splice site of the retained intron that does not impair correct splicing of the retained intron as compared to splicing of the retained intron having the wild-type splice site sequence.
[0113] In embodiments, the mRNA encoding the target protein or functional RNA is a full-length mature mRNA, or a wild-type mature mRNA. In these embodiments, a full-length mature mRNA may have a polymorphism that does not affect the activity of the target protein or the functional RNA encoded by the mature mRNA, as compared to the activity of the target protein or functional RNA encoded by the wild-type mature mRNA.
Antisense Oligomers
[0114] One aspect of the present disclosure is a composition comprising antisense oligomers that enhances splicing by binding to a targeted portion of a RIC pre-mRNA. As used herein, the terms "ASO" and "antisense oligomer" are used interchangeably and refer to an oligomer such as a polynucleotide, comprising nucleobases, that hybridizes to a target nucleic acid (e.g., a RIC pre-mRNA) sequence by Watson-Crick base pairing or wobble base pairing (G-U). The ASO may have exact sequence complementary to the target sequence or near complementarity (e.g., sufficient complementarity to bind the target sequence and enhancing splicing at a splice site). ASOs are designed so that they bind (hybridize) to a target nucleic acid (e.g., a targeted portion of a pre-mRNA transcript) and remain hybridized under physiological conditions. Typically, if they hybridize to a site other than the intended (targeted) nucleic acid sequence, they hybridize to a limited number of sequences that are not a target nucleic acid (to a few sites other than a target nucleic acid). Design of an ASO can take into consideration the occurrence of the nucleic acid sequence of the targeted portion of the pre-mRNA transcript or a sufficiently similar nucleic acid sequence in other locations in the genome or cellular pre-mRNA or transcriptome, such that the likelihood the ASO will bind other sites and cause "off-target" effects is limited. Any antisense oligomers known in the art, for example in PCT Application No. PCT/US2014/054151, published as WO 2015/035091, titled "Reducing Nonsense-Mediated mRNA Decay," can be used to practice the methods described herein.
[0115] In some embodiments, ASOs "specifically hybridize" to or are "specific" to a target nucleic acid or a targeted portion of a RIC pre-mRNA. Typically such hybridization occurs with a Tm substantially greater than 37.degree. C., preferably at least 50.degree. C., and typically between 60.degree. C. to approximately 90.degree. C. Such hybridization preferably corresponds to stringent hybridization conditions. At a given ionic strength and pH, the Tm is the temperature at which 50% of a target sequence hybridizes to a complementary oligonucleotide.
[0116] Oligomers, such as oligonucleotides, are "complementary" to one another when hybridization occurs in an antiparallel configuration between two single-stranded polynucleotides. A double-stranded polynucleotide can be "complementary" to another polynucleotide, if hybridization can occur between one of the strands of the first polynucleotide and the second. Complementarity (the degree to which one polynucleotide is complementary with another) is quantifiable in terms of the proportion (e.g., the percentage) of bases in opposing strands that are expected to form hydrogen bonds with each other, according to generally accepted base-pairing rules. The sequence of an antisense oligomer (ASO) need not be 100% complementary to that of its target nucleic acid to hybridize. In certain embodiments, ASOs can comprise at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence complementarity to a target region within the target nucleic acid sequence to which they are targeted. For example, an ASO in which 18 of 20 nucleobases of the oligomeric compound are complementary to a target region, and would therefore specifically hybridize, would represent 90 percent complementarity. In this example, the remaining noncomplementary nucleobases may be clustered together or interspersed with complementary nucleobases and need not be contiguous to each other or to complementary nucleobases. Percent complementarity of an ASO with a region of a target nucleic acid can be determined routinely using BLAST programs (basic local alignment search tools) and PowerBLAST programs known in the art (Altschul et al., J. Mol. Biol., 1990, 215, 403-410; Zhang and Madden, Genome Res., 1997, 7, 649-656).
[0117] An ASO need not hybridize to all nucleobases in a target sequence and the nucleobases to which it does hybridize may be contiguous or noncontiguous. ASOs may hybridize over one or more segments of a pre-mRNA transcript, such that intervening or adjacent segments are not involved in the hybridization event (e.g., a loop structure or hairpin structure may be formed). In certain embodiments, an ASO hybridizes to noncontiguous nucleobases in a target pre-mRNA transcript. For example, an ASO can hybridize to nucleobases in a pre-mRNA transcript that are separated by one or more nucleobase(s) to which the ASO does not hybridize.
[0118] The ASOs described herein comprise nucleobases that are complementary to nucleobases present in a target portion of a RIC pre-mRNA. The term ASO embodies oligonucleotides and any other oligomeric molecule that comprises nucleobases capable of hybridizing to a complementary nucleobase on a target mRNA but does not comprise a sugar moiety, such as a peptide nucleic acid (PNA). The ASOs may comprise naturally-occurring nucleotides, nucleotide analogs, modified nucleotides, or any combination of two or three of the preceding. The term "naturally occurring nucleotides" includes deoxyribonucleotides and ribonucleotides. The term "modified nucleotides" includes nucleotides with modified or substituted sugar groups and/or having a modified backbone. In some embodiments, all of the nucleotides of the ASO are modified nucleotides. Chemical modifications of ASOs or components of ASOs that are compatible with the methods and compositions described herein will be evident to one of skill in the art and can be found, for example, in U.S. Pat. No. 8,258,109 B2, U.S. Pat. No. 5,656,612, U.S. Patent Publication No. 2012/0190728, and Dias and Stein, Mol. Cancer Ther. 2002, 1, 347-355, herein incorporated by reference in their entirety.
[0119] The nucleobase of an ASO may be any naturally occurring, unmodified nucleobase such as adenine, guanine, cytosine, thymine and uracil, or any synthetic or modified nucleobase that is sufficiently similar to an unmodified nucleobase such that it is capable of hydrogen bonding with a nucleobase present on a target pre-mRNA. Examples of modified nucleobases include, without limitation, hypoxanthine, xanthine, 7-methylguanine, 5,6-dihydrouracil, 5-methylcytosine, and 5-hydroxymethoylcytosine.
[0120] The ASOs described herein also comprise a backbone structure that connects the components of an oligomer. The term "backbone structure" and "oligomer linkages" may be used interchangeably and refer to the connection between monomers of the ASO. In naturally occurring oligonucleotides, the backbone comprises a 3'-5' phosphodiester linkage connecting sugar moieties of the oligomer. The backbone structure or oligomer linkages of the ASOs described herein may include (but are not limited to) phosphorothioate, phosphorodithioate, phosphoroselenoate, phosphorodiselenoate, phosphoroanilothioate, phosphoraniladate, phosphoramidate, and the like. See e.g., LaPlanche et al. Nucleic Acids Res. 14:9081 (1986); Stec et al. J. Am. Chem. Soc. 106:6077 (1984), Stein et al. Nucleic Acids Res. 16:3209 (1988), Zon et al. Anti Cancer Drug Design 6:539 (1991); Zon et al. Oligonucleotides and Analogues: A Practical Approach, pp. 87-108 (F. Eckstein, Ed., Oxford University Press, Oxford England (1991)); Stec et al. U.S. Pat. No. 5,151,510; Uhlmann and Peyman Chemical Reviews 90:543 (1990). In some embodiments, the backbone structure of the ASO does not contain phosphorous but rather contains peptide bonds, for example in a peptide nucleic acid (PNA), or linking groups including carbamate, amides, and linear and cyclic hydrocarbon groups. In some embodiments, the backbone modification is a phosphothioate linkage. In some embodiments, the backbone modification is a phosphoramidate linkage.
[0121] Any of the ASOs described herein may contain a sugar moiety that comprises ribose or deoxyribose, as present in naturally occurring nucleotides, or a modified sugar moiety or sugar analog, including a morpholine ring. Non-limiting examples of modified sugar moieties include 2' substitutions such as 2'-O-methyl (2'-O-Me), 2'-O-methoxyethyl (2'MOE), 2'-O-aminoethyl, 2'F; N3'->P5' phosphoramidate, 2'dimethylaminooxyethoxy, 2'dimethylaminoethoxyethoxy, 2'-guanidinidium, 2'-O-guanidinium ethyl, carbamate modified sugars, and bicyclic modified sugars. In some embodiments, the sugar moiety modification is selected from 2'-O-Me, 2'F, and 2'MOE. In some embodiments, the sugar moiety modification is an extra bridge bond, such as in a locked nucleic acid (LNA). In some embodiments the sugar analog contains a morpholine ring, such as phosphorodiamidate morpholino (PMO). In some embodiments, the sugar moiety comprises a ribofuransyl or 2'deoxyribofuransyl modification. In some embodiments, the sugar moiety comprises 2'4'-constrained 2'O-methyloxyethyl (cMOE) modifications. In some embodiments, the sugar moiety comprises cEt 2', 4' constrained 2'-O ethyl BNA modifications. In some embodiments, the sugar moiety comprises tricycloDNA (tcDNA) modifications. In some embodiments, the sugar moiety comprises ethylene nucleic acid (ENA) modifications. In some embodiments, the sugar moiety comprises MCE modifications. Modifications are known in the art and described in the literature, e.g., by Jarver, et al., 2014, "A Chemical View of Oligonucleotides for Exon Skipping and Related Drug Applications," Nucleic Acid Therapeutics 24(1): 37-47, incorporated by reference for this purpose herein.
[0122] In some examples, each monomer of the ASO is modified in the same way, for example each linkage of the backbone of the ASO comprises a phosphorothioate linkage or each ribose sugar moiety comprises a 2'O-methyl modification. Such modifications that are present on each of the monomer components of an ASO are referred to as "uniform modifications." In some examples, a combination of different modifications may be desired, for example, an ASO may comprise a combination of phosphorodiamidate linkages and sugar moieties comprising morpholine rings (morpholinos). Combinations of different modifications to an ASO are referred to as "mixed modifications" or "mixed chemistries."
[0123] In some embodiments, the ASO comprises one or more backbone modification. In some embodiments, the ASO comprises one or more sugar moiety modification. In some embodiments, the ASO comprises one or more backbone modification and one or more sugar moiety modification. In some embodiments, the ASO comprises 2'MOE modifications and a phosphorothioate backbone. In some embodiments, the ASO comprises a phosphorodiamidate morpholino (PMO). In some embodiments, the ASO comprises a peptide nucleic acid (PNA). Any of the ASOs or any component of an ASO (e.g., a nucleobase, sugar moiety, backbone) described herein may be modified in order to achieve desired properties or activities of the ASO or reduce undesired properties or activities of the ASO. For example, an ASO or one or more component of any ASO may be modified to enhance binding affinity to a target sequence on a pre-mRNA transcript; reduce binding to any non-target sequence; reduce degradation by cellular nucleases (i.e., RNase H); improve uptake of the ASO into a cell and/or into the nucleus of a cell; alter the pharmacokinetics or pharmacodynamics of the ASO; and modulate the half-life of the ASO.
[0124] In some embodiments, the ASOs are comprised of 2'-O-(2-methoxyethyl) (MOE) phosphorothioate-modified nucleotides. ASOs comprised of such nucleotides are especially well-suited to the methods disclosed herein; oligomers having such modifications have been shown to have significantly enhanced resistance to nuclease degradation and increased bioavailability, making them suitable, for example, for oral delivery in some embodiments described herein. See e.g., Geary et al., J Pharmacol Exp Ther. 2001; 296(3):890-7; Geary et al., J Pharmacol Exp Ther. 2001; 296(3):898-904.
[0125] Methods of synthesizing ASOs will be known to one of skill in the art. Alternatively or in addition, ASOs may be obtained from a commercial source.
[0126] Unless specified otherwise, the left-hand end of single-stranded nucleic acid (e.g., pre-mRNA transcript, oligonucleotide, ASO, etc.) sequences is the 5' end and the left-hand direction of single or double-stranded nucleic acid sequences is referred to as the 5' direction. Similarly, the right-hand end or direction of a nucleic acid sequence (single or double stranded) is the 3' end or direction. Generally, a region or sequence that is 5' to a reference point in a nucleic acid is referred to as "upstream," and a region or sequence that is 3' to a reference point in a nucleic acid is referred to as "downstream." Generally, the 5' direction or end of an mRNA is where the initiation or start codon is located, while the 3' end or direction is where the termination codon is located. In some aspects, nucleotides that are upstream of a reference point in a nucleic acid may be designated by a negative number, while nucleotides that are downstream of a reference point may be designated by a positive number. For example, a reference point (e.g., an exon-exon junction in mRNA) may be designated as the "zero" site, and a nucleotide that is directly adjacent and upstream of the reference point is designated "minus one," e.g., "-1," while a nucleotide that is directly adjacent and downstream of the reference point is designated "plus one," e.g., "+1."
[0127] In other embodiments, the ASOs are complementary to (and bind to) a targeted portion of a RIC pre-mRNA that is downstream (in the 3' direction) of the 5' splice site of the retained intron in a RIC pre-mRNA (e.g., the direction designated by positive numbers relative to the 5' splice site) (FIG. 1). In some embodiments, the ASOs are complementary to a targeted portion of the RIC pre-mRNA that is within the region +6 to +100 relative to the 5' splice site of the retained intron. In some embodiments, the ASO is not complementary to nucleotides +1 to +5 relative to the 5' splice site (the first five nucleotides located downstream of the 5' splice site). In some embodiments, the ASOs may be complementary to a targeted portion of a RIC pre-mRNA that is within the region between nucleotides +6 and +50 relative to the 5' splice site of the retained intron. In some aspects, the ASOs are complementary to a targeted portion that is within the region +6 to +90, +6 to +80, +6 to +70, +6 to +60, +6 to +50, +6 to +40, +6 to +30, or +6 to +20 relative to 5' splice site of the retained intron.
[0128] In some embodiments, the ASOs are complementary to a targeted region of a RIC pre-mRNA that is upstream (5' relative) of the 3' splice site of the retained intron in a RIC pre-mRNA (e.g., in the direction designated by negative numbers) (FIG. 1). In some embodiments, the ASOs are complementary to a targeted portion of the RIC pre-mRNA that is within the region -16 to -100 relative to the 3' splice site of the retained intron. In some embodiments, the ASO is not complementary to nucleotides -1 to -15 relative to the 3' splice site (the first 15 nucleotides located upstream of the 3' splice site). In some embodiments, the ASOs are complementary to a targeted portion of the RIC pre-mRNA that is within the region -16 to -50 relative to the 3' splice site of the retained intron. In some aspects, the ASOs are complementary to a targeted portion that is within the region -16 to -90, -16 to -80, -16 to -70, -16 to -60, -16 to -50, -16 to -40, or -16 to -30 relative to 3' splice site of the retained intron.
[0129] In embodiments, the targeted portion of the RIC pre-mRNA is within the region +100 relative to the 5' splice site of the retained intron to -100 relative to the 3' splice site of the retained intron.
[0130] In some embodiments, the ASOs are complementary to a targeted portion of a RIC pre-mRNA that is within the exon flanking the 5' splice site (upstream) of the retained intron (FIG. 1). In some embodiments, the ASOs are complementary to a targeted portion of the RIC pre-mRNA that is within the region +2e to -4e in the exon flanking the 5' splice site of the retained intron. In some embodiments, the ASOs are not complementary to nucleotides -1e to -3e relative to the 5' splice site of the retained intron. In some embodiments, the ASOs are complementary to a targeted portion of the RIC pre-mRNA that is within the region -4e to -100e, -4e to -90e, -4e to -80e, -4e to -70e, -4e to -60e, -4e to -50e, -4 to -40e, -4e to -30e, or -4e to -20e relative to the 5' splice site of the retained intron.
[0131] In some embodiments, the ASOs are complementary to a targeted portion of a RIC pre-mRNA that is within the exon flanking the 3' splice site (downstream) of the retained intron (FIG. 1). In some embodiments, the ASOs are complementary to a targeted portion to the RIC pre-mRNA that is within the region +2e to -4e in the exon flanking the 3' splice site of the retained intron. In some embodiments, the ASOs are not complementary to nucleotide +1e relative to the 3' splice site of the retained intron. In some embodiments, the ASOs are complementary to a targeted portion of the RIC pre-mRNA that is within the region +2e to +100e, +2e to +90e, +2e to +80e, +2e to +70e, +2e to +60e, +2e to +50e, +2e to +40e, +2e to +30e, or +2 to +20e relative to the 3' splice site of the retained intron. The ASOs may be of any length suitable for specific binding and effective enhancement of splicing. In some embodiments, the ASOs consist of 8 to 50 nucleobases. For example, the ASO may be 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 40, 45, or 50 nucleobases in length. In some embodiments, the ASOs consist of more than 50 nucleobases. In some embodiments, the ASO is from 8 to 50 nucleobases, 8 to 40 nucleobases, 8 to 35 nucleobases, 8 to 30 nucleobases, 8 to 25 nucleobases, 8 to 20 nucleobases, 8 to 15 nucleobases, 9 to 50 nucleobases, 9 to 40 nucleobases, 9 to 35 nucleobases, 9 to 30 nucleobases, 9 to 25 nucleobases, 9 to 20 nucleobases, 9 to 15 nucleobases, 10 to 50 nucleobases, 10 to 40 nucleobases, 10 to 35 nucleobases, 10 to 30 nucleobases, 10 to 25 nucleobases, 10 to 20 nucleobases, 10 to 15 nucleobases, 11 to 50 nucleobases, 11 to 40 nucleobases, 11 to 35 nucleobases, 11 to 30 nucleobases, 11 to 25 nucleobases, 11 to 20 nucleobases, 11 to 15 nucleobases, 12 to 50 nucleobases, 12 to 40 nucleobases, 12 to 35 nucleobases, 12 to 30 nucleobases, 12 to 25 nucleobases, 12 to 20 nucleobases, 12 to 15 nucleobases, 13 to 50 nucleobases, 13 to 40 nucleobases, 13 to 35 nucleobases, 13 to 30 nucleobases, 13 to 25 nucleobases, 13 to 20 nucleobases, 14 to 50 nucleobases, 14 to 40 nucleobases, 14 to 35 nucleobases, 14 to 30 nucleobases, 14 to 25 nucleobases, 14 to 20 nucleobases, 15 to 50 nucleobases, 15 to 40 nucleobases, 15 to 35 nucleobases, 15 to 30 nucleobases, 15 to 25 nucleobases, 15 to 20 nucleobases, 20 to 50 nucleobases, 20 to 40 nucleobases, 20 to 35 nucleobases, 20 to 30 nucleobases, 20 to 25 nucleobases, 25 to 50 nucleobases, 25 to 40 nucleobases, 25 to 35 nucleobases, or 25 to 30 nucleobases in length. In some embodiments, the ASOs are 18 nucleotides in length. In some embodiments, the ASOs are 15 nucleotides in length. In some embodiments, the ASOs are 25 nucleotides in length.
[0132] In some embodiments, two or more ASOs with different chemistries but complementary to the same targeted portion of the RIC pre-mRNA are used. In some embodiments, two or more ASOs that are complementary to different targeted portions of the RIC pre-mRNA are used.
[0133] In embodiments, the antisense oligonucleotides of the invention are chemically linked to one or more moieties or conjugates, e.g., a targeting moiety or other conjugate that enhances the activity or cellular uptake of the oligonucleotide. Such moieties include, but are not limited to, a lipid moiety, e.g., as a cholesterol moiety, a cholesteryl moiety, an aliphatic chain, e.g., dodecandiol or undecyl residues, a polyamine or a polyethylene glycol chain, or adamantane acetic acid. Oligonucleotides comprising lipophilic moieties, and preparation methods have been described in the published literature. In embodiments, the antisense oligonucleotide is conjugated with a moiety including, but not limited to, an abasic nucleotide, a polyether, a polyamine, a polyamide, a peptides, a carbohydrate, e.g., N-acetylgalactosamine (GalNAc), N-Ac-Glucosamine (GluNAc), or mannose (e.g., mannose-6-phosphate), a lipid, or a polyhydrocarbon compound. Conjugates can be linked to one or more of any nucleotides comprising the antisense oligonucleotide at any of several positions on the sugar, base or phosphate group, as understood in the art and described in the literature, e.g., using a linker. Linkers can include a bivalent or trivalent branched linker. In embodiments, the conjugate is attached to the 3' end of the antisense oligonucleotide. Methods of preparing oligonucleotide conjugates are described, e.g., in U.S. Pat. No. 8,450,467, "Carbohydrate conjugates as delivery agents for oligonucleotides," incorporated by reference herein.
[0134] In some embodiments, the nucleic acid to be targeted by an ASO is a RIC pre-mRNA expressed in a cell, such as a eukaryotic cell. In some embodiments, the term "cell" may refer to a population of cells. In some embodiments, the cell is in a subject. In some embodiments, the cell is isolated from a subject. In some embodiments, the cell is ex vivo. In some embodiments, the cell is a condition or disease-relevant cell or a cell line. In some embodiments, the cell is in vitro (e.g., in cell culture).
Pharmaceutical Compositions
[0135] Pharmaceutical compositions or formulations comprising the antisense oligonucleotide of the described compositions and for use in any of the described methods can be prepared according to conventional techniques well known in the pharmaceutical industry and described in the published literature. In embodiments, a pharmaceutical composition or formulation for treating a subject comprises an effective amount of any anti sense oligomer as described above, or a pharmaceutically acceptable salt, solvate, hydrate or ester thereof, and a pharmaceutically acceptable diluent. The antisense oligomer of a pharmaceutical formulation may further comprise a pharmaceutically acceptable excipient, diluent or carrier.
[0136] Pharmaceutically acceptable salts are suitable for use in contact with the tissues of humans and lower animals without undue toxicity, irritation, allergic response, etc., and are commensurate with a reasonable benefit/risk ratio. (See, e.g., S. M. Berge, et al., J. Pharmaceutical Sciences, 66: 1-19 (1977), incorporated herein by reference for this purpose. The salts can be prepared in situ during the final isolation and purification of the compounds, or separately by reacting the free base function with a suitable organic acid. Examples of pharmaceutically acceptable, nontoxic acid addition salts are salts of an amino group formed with inorganic acids such as hydrochloric acid, hydrobromic acid, phosphoric acid, sulfuric acid and perchloric acid or with organic acids such as acetic acid, oxalic acid, maleic acid, tartaric acid, citric acid, succinic acid or malonic acid or by using other documented methodologies such as ion exchange. Other pharmaceutically acceptable salts include adipate, alginate, ascorbate, aspartate, benzenesulfonate, benzoate, bisulfate, borate, butyrate, camphorate, camphorsulfonate, citrate, cyclopentanepropionate, digluconate, dodecylsulfate, ethanesulfonate, formate, fumarate, glucoheptonate, glycerophosphate, gluconate, hemisulfate, heptanoate, hexanoate, hydroiodide, 2-hydroxy-ethanesulfonate, lactobionate, lactate, laurate, lauryl sulfate, malate, maleate, malonate, methanesulfonate, 2-naphthalenesulfonate, nicotinate, nitrate, oleate, oxalate, palmitate, pamoate, pectinate, persulfate, 3-phenylpropionate, phosphate, picrate, pivalate, propionate, stearate, succinate, sulfate, tartrate, thiocyanate, p-toluenesulfonate, undecanoate, valerate salts, and the like. Representative alkali or alkaline earth metal salts include sodium, lithium, potassium, calcium, magnesium, and the like. Further pharmaceutically acceptable salts include, when appropriate, nontoxic ammonium, quaternary ammonium, and amine cations formed using counterions such as halide, hydroxide, carboxylate, sulfate, phosphate, nitrate, loweralkyl sulfonate and aryl sulfonate.
[0137] In embodiments, the compositions are formulated into any of many possible dosage forms such as, but not limited to, tablets, capsules, gel capsules, liquid syrups, soft gels, suppositories, and enemas. In embodiments, the compositions are formulated as suspensions in aqueous, non-aqueous or mixed media. Aqueous suspensions may further contain substances that increase the viscosity of the suspension including, for example, sodium carboxymethylcellulose, sorbitol and/or dextran. The suspension may also contain stabilizers. In embodiments, a pharmaceutical formulation or composition of the present invention includes, but is not limited to, a solution, emulsion, microemulsion, foam or liposome-containing formulation (e.g., cationic or noncationic liposomes).
[0138] The pharmaceutical composition or formulation of the present invention may comprise one or more penetration enhancer, carrier, excipients or other active or inactive ingredients as appropriate and well known to those of skill in the art or described in the published literature. In embodiments, liposomes also include sterically stabilized liposomes, e.g., liposomes comprising one or more specialized lipids. These specialized lipids result in liposomes with enhanced circulation lifetimes. In embodiments, a sterically stabilized liposome comprises one or more glycolipids or is derivatized with one or more hydrophilic polymers, such as a polyethylene glycol (PEG) moiety. In embodiments, a surfactant is included in the pharmaceutical formulation or compositions. The use of surfactants in drug products, formulations and emulsions is well known in the art. In embodiments, the present invention employs a penetration enhancer to effect the efficient delivery of the antisense oligonucleotide, e.g., to aid diffusion across cell membranes and/or enhance the permeability of a lipophilic drug. In embodiments, the penetration enhancers is a surfactant, fatty acid, bile salt, chelating agent, or non-chelating nonsurfactant.
[0139] In embodiments, the pharmaceutical formulation comprises multiple antisense oligonucleotides. In embodiments, the antisense oligonucleotide is administered in combination with another drug or therapeutic agent. In embodiments, the antisense oligonucleotide is administered with one or more agents capable of promoting penetration of the subject antisense oligonucleotide across the blood-brain barrier by any method known in the art. For example, delivery of agents by administration of an adenovirus vector to motor neurons in muscle tissue is described in U.S. Pat. No. 6,632,427, "Adenoviral-vector-mediated gene transfer into medullary motor neurons," incorporated herein by reference. Delivery of vectors directly to the brain, e.g., the striatum, the thalamus, the hippocampus, or the substantia nigra, is described, e.g., in U.S. Pat. No. 6,756,523, "Adenovirus vectors for the transfer of foreign genes into cells of the central nervous system particularly in brain," incorporated herein by reference.
[0140] In embodiments, the antisense oligonucleotides are linked or conjugated with agents that provide desirable pharmaceutical or pharmacodynamic properties. In embodiments, the antisense oligonucleotide is coupled to a substance, known in the art to promote penetration or transport across the blood-brain barrier, e.g., an antibody to the transferrin receptor. In embodiments, the antisense oligonucleotide is linked with a viral vector, e.g., to render the antisense compound more effective or increase transport across the blood-brain barrier. In embodiments, osmotic blood brain barrier disruption is assisted by infusion of sugars, e.g., meso erythritol, xylitol, D(+) galactose, D(+) lactose, D(+) xylose, dulcitol, myo-inositol, L(-) fructose, D(-) mannitol, D(+) glucose, D(+) arabinose, D(-) arabinose, cellobiose, D(+) maltose, D(+) raffinose, L(+) rhamnose, D(+) melibiose, D(-) ribose, adonitol, D(+) arabitol, L(-) arabitol, D(+) fucose, L(-) fucose, D(-) lyxose, L(+) lyxose, and L(-) lyxose, or amino acids, e.g., glutamine, lysine, arginine, asparagine, aspartic acid, cysteine, glutamic acid, glycine, histidine, leucine, methionine, phenylalanine, proline, serine, threonine, tyrosine, valine, and taurine. Methods and materials for enhancing blood brain barrier penetration are described, e.g., in U.S. Pat. No. 4,866,042, "Method for the delivery of genetic material across the blood brain barrier," U.S. Pat. No. 6,294,520, "Material for passage through the blood-brain barrier," and U.S. Pat. No. 6,936,589, "Parenteral delivery systems," each incorporated herein by reference.
[0141] In embodiments, the antisense oligonucleotides of the invention are chemically linked to one or more moieties or conjugates, e.g., a targeting moiety or other conjugate that enhances the activity or cellular uptake of the oligonucleotide. Such moieties include, but are not limited to, a lipid moiety, e.g., as a cholesterol moiety, a cholesteryl moiety, an aliphatic chain, e.g., dodecandiol or undecyl residues, a polyamine or a polyethylene glycol chain, or adamantane acetic acid. Oligonucleotides comprising lipophilic moieties, and preparation methods have been described in the published literature. In embodiments, the antisense oligonucleotide is conjugated with a moiety including, but not limited to, an abasic nucleotide, a polyether, a polyamine, a polyamide, a peptides, a carbohydrate, e.g., N-acetylgalactosamine (GalNAc), N--Ac-Glucosamine (GluNAc), or mannose (e.g., mannose-6-phosphate), a lipid, or a polyhydrocarbon compound. Conjugates can be linked to one or more of any nucleotides comprising the antisense oligonucleotide at any of several positions on the sugar, base or phosphate group, as understood in the art and described in the literature, e.g., using a linker. Linkers can include a bivalent or trivalent branched linker. In embodiments, the conjugate is attached to the 3' end of the antisense oligonucleotide. Methods of preparing oligonucleotide conjugates are described, e.g., in U.S. Pat. No. 8,450,467, "Carbohydrate conjugates as delivery agents for oligonucleotides," incorporated by reference herein.
Diseases and Disorders
[0142] Any condition, e.g., disease or disorder, that is associated with reduced production or activity of a protein or functional RNA encoded by a pre-mRNA that comprises at least one intron (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more introns) can be treated by the methods and compositions provided herein. The disease or disorder to be treated may be a result of haploinsufficiency in which one allele of a gene encodes a functional (wild-type) protein and one allele of the gene is mutated and encodes a nonfunctional protein or a protein with reduced/partial function. Other diseases or disorders may be due to hemizygous deletions in which one allele of a gene is lost and the amount of protein produced by the other allele of the gene is not sufficient. Yet other diseases or disorder maybe due to hypomorphic mutations in which the gene encoding a protein is mutated resulting in production of a protein with partial function.
[0143] In some embodiments, the methods described herein are used to increase the production of a functional protein. As used herein, the term "functional" refers to the amount of activity or function of a protein that is necessary to eliminate any one or more symptoms of a disease. In some embodiments, the methods are used to increase the production of a partially functional protein or RNA. As used herein, the term "partially functional" refers to any amount of activity or function of a protein or RNA that is less than the amount of activity or function that is necessary to eliminate or prevent any one or more symptoms of a disease. In some embodiments, a partially functional protein or RNA will have at least 10%, at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 75%, at least 80%, 85%, at least 90%, or at least 95% less activity relative to the fully functional protein or RNA.
[0144] In embodiments, the method is a method of increasing the expression of a target protein or functional RNA by cells of a subject having a RIC pre-mRNA encoding the target protein or functional RNA, wherein the subject has a condition caused by a deficient amount of activity of the target protein or functional RNA, and wherein the deficient amount of the target protein or functional RNA is caused by haploinsufficiency of the target protein or functional RNA. In such an embodiment, the subject has a first allele encoding a functional target protein or functional functional RNA, and a second allele from which the target protein or functional RNA is not produced. In another such embodiment, the subject has a first allele encoding a functional target protein or functional functional RNA, and a second allele encoding a nonfunctional target protein or nonfunctional functional RNA. In either of these embodiments, the antisense oligomer binds to a targeted portion of the RIC pre-mRNA transcribed from the first allele (encoding functional target protein), thereby inducing constitutive splicing of the retained intron from the RIC pre-mRNA, and causing an increase in the level of mRNA encoding the target protein or functional RNA, and an increase in the expression of the target protein or functional RNA in the cells of the subject.
[0145] In related embodiments, the method is a method of increasing the expression of a target protein or functional RNA by cells of a subject having a RIC pre-mRNA encoding the target protein or functional RNA, wherein the subject has a condition caused by an autosomal recessive disorder resulting from a deficiency in the amount or function of the target protein or functional RNA. In these embodiments, the subject has:
[0146] a. a first mutant allele from which
[0147] i) the target protein or functional RNA is produced at a reduced level compared to production from a wild-type allele,
[0148] ii) the target protein or functional RNA is produced in a form having reduced function compared to an equivalent wild-type protein, or
[0149] iii) the target protein or functional RNA is not produced; and
[0150] b. a second mutant allele from which
[0151] i) the target protein or functional RNA is produced at a reduced level compared to production from a wild-type allele,
[0152] ii) the target protein or functional RNA is produced in a form having reduced function compared to an equivalent wild-type protein, or
[0153] iii) the target protein or functional RNA is not produced, and
[0154] wherein the RIC pre-mRNA is transcribed from the first allele and/or the second allele. In these embodiments, the antisense oligomer binds to a targeted portion of the RIC pre-mRNA transcribed from the first allele or the second allele, thereby inducing constitutive splicing of the retained intron from the RIC pre-mRNA, and causing an increase in the level of mRNA encoding the target protein or functional RNA and an increase in the expression of the target protein or functional RNA in the cells of the subject. In these embodiments, the target protein or functional RNA having an increase in expression level resulting from the constitutive splicing of the retained intron from the RIC pre-mRNA is either in a form having reduced function compared to the equivalent wild-type protein (partially-functional), or having full function compared to the equivalent wild-type protein (fully-functional).
[0155] In embodiments, the level of mRNA encoding the target protein, the target protein or the functional RNA is increased 1.1 to 10-fold, as set forth elsewhere herein, when compared to the amount of mRNA encoding the target protein, the target protein or the functional RNA produced in a control cell, e.g., one that is not treated with the antisense oligomer or one that is treated with an antisense oligomer that does not bind to the targeted portion of the RIC pre-mRNA.
[0156] In embodiments, the condition caused by a deficient amount or activity of the target protein or a deficient amount or activity of the functional RNA is not a condition caused by alternative or aberrant splicing of the retained intron to which the ASO is targeted. In embodiments, the condition caused by a deficient amount or activity of the target protein or a deficient amount or activity of the functional RNA is not a condition caused by alternative or aberrant splicing of any retained intron in a RIC pre-mRNA encoding the target protein or functional RNA.
[0157] Table 1 provides examples of diseases and target genes associated with each disease that may be treatable using the methods and compositions provided herein.
TABLE-US-00001 TABLE 1 NUMBER OF POTENTIAL TARGET INTRON DISEASE GENE TARGETS Retinitis pigmentosa type 11 PRPF31 2 Retinoblastoma RB1 1 Beta thalassemia (BTI) HBB 1 Beta thalassemia HBG1/2 2 Sickle cell disease HBG1/2 2 Cystic fibrosis CFTR 26 Thrombotic ADAMTS13 2 thrombocytopenic purpura Tuberous sclerosis complex TSC1 3 Retinitis pigmentosa 10 IMPDH1 1 Polycystic kidney disease PKD1 4 Familial dysautonomia IKBKAP 2
[0158] In some embodiments, the pre-mRNA transcript that encodes the protein that is causative of the disease is targeted by the ASOs described herein. In some embodiments, a pre-mRNA transcript that encodes a protein is not causative of the disease is targeted by the ASOs. For example, a disease that is the result of a mutation or deficiency of a first protein in a particular pathway may be ameliorated by targeting a pre-mRNA that encodes a second protein, thereby increasing production of the second protein. In some embodiments, the function of the second protein is able to compensate for the mutation or deficiency of the first protein.
[0159] Any of the compositions provided herein may be administered to an individual. "Individual" maybe used interchangeably with "subject" or "patient." An individual may be a mammal, for example a human or animal such as a non-human primate, a rodent, a rabbit, a rat, a mouse, a horse, a donkey, a goat, a cat, a dog, a cow, a pig, or a sheep. In some embodiments, the individual is a human. In other embodiments, the individual may be another eukaryotic organism, such as a plant. In some embodiments, the compositions provided herein are administered to a cell ex vivo.
[0160] In some embodiments, the compositions provided herein are administered to an individual as a method of treating a disease or disorder. In some embodiments, the individual has a genetic disease, such as any of the diseases described herein. In some embodiments, the individual is at risk of having the disease, such as any of the diseases described herein. In some embodiments, the individual is at increased risk of having a disease or disorder caused by insufficient amount of a protein or insufficient activity of a protein. If an individual is "at an increased risk" of having a disease or disorder caused insufficient amount of a protein or insufficient activity of a protein, the method involves preventative or prophylactic treatment. For example, an individual may be at an increased risk of having such a disease or disorder because of family history of the disease. Typically, individuals at an increased risk of having such a disease or disorder benefit from prophylactic treatment (e.g., by preventing or delaying the onset or progression of the disease or disorder).
[0161] Table 2 provides a non-limiting list of sequences of ASOs for increasing production of a protein encoded by the HBB gene by targeting a region of a RIC pre-mRNA transcribed from the HBB gene.
TABLE-US-00002 TABLE 2 List of ASOs targeting the HBB gene ASO Sequence SEQ ID NO Non-targeting CCAGTGGTATTGCTTACC 103 HBBIVS1+6 ctgtcttgtaaccttgat 104 HBBIVS1+7 cctgtcttgtaaccttga 105 HBBIVS1+8 acctgtcttgtaaccttg 106 HBBIVS1+9 aacctgtcttgtaacctt 107 HBBIVS1+10 aaacctgtcttgtaacct 108 HBBIVS1+11 taaacctgtcttgtaacc 109 HBBIVS1+12 ttaaacctgtcttgtaac 110 HBBIVS1+13 cttaaacctgtcttgtaa 111 HBBIVS1+14 ccttaaacctgtcttgta 112 HBBIVS1+15 tccttaaacctgtcttgt 113 HBBIVS1+16 ctccttaaacctgtcttg 114 HBBIVS1+17 tctccttaaacctgtctt 115 HBBIVS1+18 gtctccttaaacctgtct 116 HBBIVS1+19 ggtctccttaaacctgtc 117 HBBIVS1+20 tggtctccttaaacctgt 118 HBBIVS1+21 ttggtctccttaaacctg 119 HBBIVS1+22 attggtctccttaaacct 120 HBBIVS1+23 tattggtctccttaaacc 121 HBBIVS1+24 ctattggtctccttaaac 122 HBBIVS1+25 tctattggtctccttaaa 123 HBBIVS1+26 ttctattggtctccttaa 124 HBBIVS1+27 tttctattggtctcctta 125 HBBIVS1+28 gtttctattggtctcctt 126
[0162] Table 3 provides a non-limiting list of sequences of ASOs for increasing production of a protein encoded by the PRPF31 gene by targeting a region of a RIC pre-mRNA transcribed from the PRPF31 gene.
TABLE-US-00003 TABLE 3 List of ASOs targeting the PRPF31 gene ASO Sequence SEQ ID NO P31-IVS10+6 accggacccccagggccc 127 P31-IVS10+11 tgcctaccggacccccag 128 P31-IVS10+16 ccccatgcctaccggacc 129 P31-IVS10+21 atgacccccatgcctacc 130 P31-IVS10+26 cctccatgacccccatgc 131 P31-IVS10+31 tctcccctccatgacccc 132 P31-IVS10-41 gaggaggacgccggcttc 133 P31-IVS10-36 gctgggaggaggacgccg 134 P31-IVS10-31 agtcggctgggaggagga 135 P31-IVS10-26 cagggagtcggctgggag 136 P31-IVS10-21 ggcgccagggagtcggct 137 P31-IVS10-16 tgggcggcgccagggagt 138 P31-IVS12+6 ccccacctgggtctggcc 139 P31-IVS12+11 cccagccccacctgggtc 140 P31-IVS12+16 cggtccccagccccacct 141 P31-IVS12+21 tccctcggtccccagccc 142 P31-IVS12-16 ggaggctgcgatctgggc 143 P31-IVS12-21 ctgcgatctgggctcccc 144 P31-IVS12-26 atctgggctccccccacc 145 P31-IVS12-31 ggctccccccaccttgtg 146 P31-IVS12+26 ttgtgtccctcggtcccc 147 P31-IVS12+31 ccaccttgtgtccctcgg 148 P31-IVS12+36 tccccccaccttgtgtcc 149
[0163] Table 4 provides a non-limiting list of sequences of ASOs for increasing production of a protein encoded by the ADAMTS13 gene by targeting a region of a RIC pre-mRNA transcribed from the ADAMTS13 gene.
TABLE-US-00004 TABLE 4 List of ASOs targeting the ADAMTS13 gene ASO Sequence SEQ ID NO ADAM-IVS25+6 caggaaggaggacaggac 150 ADAM-IVS25+11 ccugacaggaaggaggac 151 ADAM-IVS25+16 agcugccugacaggaagg 152 ADAM-IVS25+21 gcagcagcugccugacag 153 ADAM-IVS25+26 cuccugcagcagcugccu 154 ADAM-IVS25+31 caccccuccugcagcagc 155 ADAM-IVS25+36 uugcccaccccuccugca 156 ADAM-IVS25+41 ugccuuugcccaccccuc 157 ADAM-IVS25+46 gaagaugccuuugcccac 158 ADAM-IVS25-16 gagacagguaagcagugc 159 ADAM-IVS25-21 agguaagcagugcuuccc 160 ADAM-IVS25-26 agcagugcuuccccgauu 161 ADAM-IVS25-31 ugcuuccccgauucccag 162 ADAM-IVS25-36 ccccgauucccagcaggg 163 ADAM-IVS25-41 auucccagcagggcaggc 164 ADAM-IVS25-46 cagcagggcaggcuccgg 165 ADAM-IVS25-47 agcagggcaggcuccggg 166 ADAM-IVS25-62 gggcuuccaagcugagga 167 ADAM-IVS27+6 agguggagaaggccuggc 168 ADAM-IVS27+11 aagggagguggagaaggc 169 ADAM-IVS27+16 cacccaagggagguggag 170 ADAM-IVS27+21 uggagcacccaagggagg 171 ADAM-IVS27+26 aggacuggagcacccaag 172 ADAM-IVS27+31 cugccaggacuggagcac 173 ADAM-IVS27+36 ccucccugccaggacugg 174 ADAM-IVS27+41 cccagccucccugccagg 175 ADAM-IVS27-16 agggacauaggaacccag 176 ADAM-IVS27-21 cauaggaacccagacaga 177 ADAM-IVS27-26 gaacccagacagaccggu 178 ADAM-IVS27-31 cagacagaccgguggugc 179 ADAM-IVS27-36 agaccgguggugccagag 180 ADAM-IVS27-41 gguggugccagaggccag 181 ADAM-IVS27-46 ugccagaggccaggacaa 182 ADAM-IVS27-51 gaggccaggacaacucac 183 ADAM-IVS25+17 cagcugccugacaggaag 184 ADAM-IVS25+18 gcagcugccugacaggaa 185 ADAM-IVS25+19 agcagcugccugacagga 186 ADAM-IVS25+20 cagcagcugccugacagg 187 ADAM-IVS25+2la gcagcagcugccugacag 188 ADAM-IVS25+22 ugcagcagcugccugaca 189 ADAM-IVS25+23 cugcagcagcugccugac 190 ADAM-IVS25+24 ccugcagcagcugccuga 191 ADAM-IVS25+25 uccugcagcagcugccug 192 ADAM-IVS25+26a cuccugcagcagcugccu 193 ADAM-IVS25+27 ccuccugcagcagcugcc 194 ADAM-IVS25+28 cccuccugcagcagcugc 195 ADAM-IVS25+29 ccccuccugcagcagcug 196 ADAM-IVS25+30 accccuccugcagcagcu 197
[0164] Table 5 provides a non-limiting list of sequences of ASOs for increasing production of a protein encoded by the TSC1 gene by targeting a region of a RIC pre-mRNA transcribed from the TSC1 gene.
TABLE-US-00005 TABLE 5 List of ASOs targeting the TSC1 gene ASO Sequence SEQ ID NO TSC1-IVS5+6 ucaaauccuuacaaacau 198 TSC1-IVS5+11 uucauucaaauccuuaca 199 TSC1-IVS5+16 accauuucauucaaaucc 200 TSC1-IVS5+21 auaaaaccauuucauuca 201 TSC1-IVS5+26 uacucauaaaaccauuuc 202 TSC1-IVS5+31 aacuauacucauaaaacc 203 TSC1-IVS5+36 ucagaaacuauacucaua 204 TSC1-IVS5+41 aaauuucagaaacuauac 205 TSC1-IVS5-16 ucaaacaggaaacgucug 206 TSC1-IVS5-21 caggaaacgucugucagg 207 TSC1-IVS5-26 aacgucugucaggcacug 208 TSC1-IVS5-31 cugucaggcacuggcacc 209 TSC1-IVS5-36 aggcacuggcaccaggau 210 TSC1-IVS5-41 cuggcaccaggaucggca 211 TSC1-IVS5-46 accaggaucggcauugua 212 TSC1-IVS5-51 gaucggcauuguacagua 213 TSC1-IVS10+6 aggcacacuaguugacac 214 TSC1-IVS10+11 agagcaggcacacuaguu 215 TSC1-IVS10+16 aggagagagcaggcacac 216 TSC1-IVS10+21 agcagaggagagagcagg 217 TSC1-IVS10+26 cagaaagcagaggagaga 218 TSC1-IVS10+31 uucaccagaaagcagagg 219 TSC1-IVS10+36 ucagcuucaccagaaagc 220 TSC1-IVS10+41 aagggucagcuucaccag 221 TSC1-IVS10-16 aguacaucagcaguggca 222 TSC1-IVS10-21 aucagcaguggcaaagga 223 TSC1-IVS10-26 caguggcaaaggaaugcu 224 TSC1-IVS10-31 gcaaaggaaugcuaaguc 225 TSC1-IVS10-36 ggaaugcuaagucaucca 226 TSC1-IVS10-41 gcuaagucauccacgagg 227 TSC1-IVS10-46 gucauccacgagguuuau 228 TSC1-IVS10-51 ccacgagguuuauaucca 229 TSC1-IVS11+6 aauccaaccuaagacaua 230 TSC1-IVS11+11 aaucaaauccaaccuaag 231 TSC1-IVS11+16 caacuaaucaaauccaac 232 TSC1-IVS11+21 aaaaccaacuaaucaaau 233 TSC1-IVS11+26 aggccaaaaccaacuaau 234 TSC1-IVS11+31 aaggcaggccaaaaccaa 235 TSC1-IVS11+36 cauuaaaggcaggccaaa 236 TSC1-IVS11+41 ccugccauuaaaggcagg 237 TSC1-IVS11-16 agaacauauaugaacacu 238 TSC1-IVS11-21 auauaugaacacugagcc 239 TSC1-IVS11-26 ugaacacugagcccaacu 240 TSC1-IVS11-31 acugagcccaacuauuag 241 TSC1-IVS11-36 gcccaacuauuagaaaaa 242 TSC1-IVS11-41 acuauuagaaaaacugcc 243 TSC1-IVS11-46 uagaaaaacugccgauuu 244 TSC1-IVS11-51 aaacugccgauuuuuuuu 245
[0165] Table 6 provides a non-limiting list of sequences of ASOs for increasing production of a protein encoded by the IMPDH1 gene by targeting a region of a RIC pre-mRNA transcribed from the IMPDH1 gene.
TABLE-US-00006 TABLE 6 List of ASOs targeting the IMPDH1 gene ASO Sequence SEQ ID NO IMP-IVS14+6 gggcccagggucag 246 IMP-IVS14+18 cugaucugcccagguggg 247 IMP-IVS14+23 gugggcugaucugcccag 248 IMP-IVS14+28 ggguugugggcugaucug 249 IMP-IVS14+33 cugaaggguugugggcug 250 IMP-IVS14+38 gggcccugaaggguugug 251 IMP-IVS14+43 ugagcgggcccugaaggg 252 IMP-IVS14+48 uggcaugagcgggcccug 253 IMP-IVS14-16 aagacugagcccagcagc 254 IMP-IVS14-21 ugagcccagcagcuugaa 255 IMP-IVS14-26 ccagcagcuugaagcuca 256 IMP-IVS14-31 agcuugaagcucagagga 257 IMP-IVS14-36 gaagcucagaggacccca 258 IMP-IVS14-41 ucagaggaccccacccca 259 IMP-IVS14-46 ggaccccaccccaccucu 260 IMP-IVS14-51 ccaccccaccucuuaagg 261 IMP-IVS14+44 augagcgggcccugaagg 262 IMP-IVS14+45 caugagcgggcccugaag 263 IMP-IVS14+46 gcaugagcgggcccugaa 264 IMP-IVS14+47 ggcaugagcgggcccuga 265 IMP-IVS14+48a uggcaugagcgggcccug 266 IMP-IVS14+49 guggcaugagcgggcccu 267 IMP-IVS14+50 gguggcaugagcgggccc 268 IMP-IVS14+51 cgguggcaugagcgggcc 269 IMP-IVS14+52 ucgguggcaugagcgggc 270 IMP-IVS14+53 gucgguggcaugagcggg 271
[0166] Table 7 provides a non-limiting list of sequences of ASOs for increasing production of a protein encoded by the PKD1 gene by targeting a region of a RIC pre-mRNA transcribed from the PKD1 gene.
TABLE-US-00007 TABLE 7 List of ASOs targeting the PKD1 gene ASO Sequence SEQ ID NO PKD1-IVS32+6 cgagguuucucuagggaa 272 PKD1-IVS32+11 gggcucgagguuucucua 273 PKD1-IVS32+16 caccagggcucgagguuu 274 PKD1-IVS32+21 accugcaccagggcucga 275 PKD1-IVS32+26 cagugaccugcaccaggg 276 PKD1-IVS32+31 agacacagugaccugcac 277 PKD1-IVS32+36 accccagacacagugacc 278 PKD1-IVS32+41 ccggcaccccagacacag 279 PKD1-IVS32-16 gucagcaagguaccaggg 280 PKD1-IVS32-32 gggaugugucacacacac 281 PKD1-IVS32-37 gugucacacacacagccc 282 PKD1-IVS32-42 acacacacagcccacccc 283 PKD1-IVS32-47 cacagcccacccccgucc 284 PKD1-IVS32-52 cccacccccguccaguca 285 PKD1-IVS32-57 ccccguccagucacgcac 286 PKD1-IVS32-62 uccagucacgcacggaca 287 PKD1-IVS33+6 ccccuccucucaccccag 288 PKD1-IVS33+11 agagcccccuccucucac 289 PKD1-IVS33+16 gcuucagagcccccuccu 290 PKD1-IVS33+21 ggugagcuucagagcccc 291 PKD1-IVS33+26 gcaagggugagcuucaga 292 PKD1-IVS33-31 cagcugcaagggugagcu 293 PKD1-IVS33-26 gggcccagcugcaagggu 294 PKD1-IVS33-21 agggugggcccagcugca 295 PKD1-IVS33-16 gcauagggugggcccagc 296 PKD1-IVS37+6 gcacaggccgcacccagg 297 PKD1-IVS37+8 gggcacaggccgcaccca 298 PKD1-IVS37+24 gagacggagguggcaggg 299 PKD1-IVS37+29 gacaagagacggaggugg 300 PKD1-IVS37+34 ugggagacaagagacgga 301 PKD1-IVS37+39 ggaggugggagacaagag 302 PKD1-IVS37+44 gggugggaggugggagac 303 PKD1-IVS37+49 ugcaugggugggaggugg 304 PKD1-IVS37-16 gcccuguggucagccugg 305 PKD1-IVS37-21 guggucagccuggcccca 306 PKD1-IVS37-26 cagccuggccccagccca 307 PKD1-IVS37-31 uggccccagcccacagug 308 PKD1-IVS37-36 ccagcccacagugacagc 309 PKD1-IVS37-41 ccacagugacagcagggc 310 PKD1-IVS37-46 gugacagcagggcuuugg 311 PKD1-IVS37-51 agcagggcuuuggcaacg 312 PKD1-IVS38+6 accagugcaccggaugcc 313 PKD1-IVS38+11 gacagaccagugcaccgg 314 PKD1-IVS38+16 cagaagacagaccagugc 315 PKD1-IVS38+21 aagcccagaagacagacc 316 PKD1-IVS38+26 aacuaaagcccagaagac 317 PKD1-IVS38+31 ggcaaaacuaaagcccag 318 PKD1-IVS38+36 cuaaaggcaaaacuaaag 319 PKD1-IVS38+41 cuggacuaaaggcaaaac 320 PKD1-IVS38-16 ucacacgcuccagccccu 321 PKD1-IVS38-21 cgcuccagccccuacugc 322 PKD1-IVS38-26 cagccccuacugccccau 323 PKD1-IVS38-31 ccuacugccccaugcccg 324 PKD1-IVS38-36 ugccccaugcccgccucg 325 PKD1-IVS38-41 caugcccgccucgaguga 326 PKD1-IVS38-46 ccgccucgagugagcggc 327 PKD1-IVS38-51 ucgagugagcggccacca 328
[0167] Table 8 provides a non-limiting list of sequences of ASOs for increasing production of a protein encoded by the IKBKAP gene by targeting a region of a RIC pre-mRNA transcribed from the IKBKAP gene.
TABLE-US-00008 TABLE 8 List of ASOs targeting the IKBKAP gene ASO Sequence SEQ ID NO IKB-IVS7+6 uuaacugcaauauauuuc 329 IKB-IVS7+11 guuguuuaacugcaauau 330 IKB-IVS7+16 uuauuguuguuuaacugc 331 IKB-IVS7+21 auuuuuuauuguuguuua 332 IKB-IVS7+26 uaaaaauuuuuuauuguu 333 IKB-IVS7+31 uaagauaaaaauuuuuua 334 IKB-IVS7+36 uuuaauaagauaaaaauu 335 IKB-IVS7+41 uuaauuuuaauaagauaa 336 IKB-IVS7-16 gucaaacacacauacaca 337 IKB-IVS7-21 acacacauacacacuuaa 338 IKB-IVS7-26 cauacacacuuaaaacau 339 IKB-IVS7-31 acacuuaaaacauuauga 340 IKB-IVS7-36 uaaaacauuaugauaaaa 341 IKB-IVS7-41 cauuaugauaaaaguugu 342 IKB-IVS7-46 ugauaaaaguugucaauu 343 IKB-IVS7-51 aaaguugucaauucagaa 344 IKB-IVS8+6 cuaagguuucuucuccca 345 IKB-IVS8+11 uuucucuaagguuucuuc 346 IKB-IVS8+16 aagaauuucucuaagguu 347 IKB-IVS8+21 guuccaagaauuucucua 348 IKB-IVS8+26 cucugguuccaagaauuu 349 IKB-IVS8+31 cucuacucugguuccaag 350 IKB-IVS8+36 accaccucuacucugguu 351 IKB-IVS8+41 guaccaccaccucuacuc 352 IKB-IVS8-16 gaguguuacaauaucgaa 353 IKB-IVS8-21 uuacaauaucgaaagcuc 354 IKB-IVS8-26 auaucgaaagcucaccua 355 IKB-IVS8-31 gaaagcucaccuaacuaa 356 IKB-IVS8-36 cucaccuaacuaaagaau 357 IKB-IVS8-41 cuaacuaaagaauagaua 358 IKB-IVS8-46 uaaagaauagauaaaauc 359 IKB-IVS8-51 aauagauaaaauccagaa 360 IKB-IVS7+22M aauuuuuuauuguuguuu 361 IKB-IVS7+23M aaauuuuuuauuguuguu 362 IKB-IVS7+24M aaaauuuuuuauuguugu 363 IKB-IVS7+25M aaaaauuuuuuauuguug 364 IKB-IVS7+26M uaaaaauuuuuuauuguu 365 IKB-IVS7+27M auaaaaauuuuuuauugu 366 IKB-IVS7+28M gauaaaaauuuuuuauug 367 IKB-IVS7+29M agauaaaaauuuuuuauu 368 IKB-IVS7+30M aagauaaaaauuuuuuau 369 IKB-IVS8-16M gaguguuacaauaucgaa 370 IKB-IVS8-17M aguguuacaauaucgaaa 371 IKB-IVS8-18M guguuacaauaucgaaag 372 IKB-IVS8-19M uguuacaauaucgaaagc 373 IKB-IVS8-20M guuacaauaucgaaagcu 374
Methods of Identifying a Retained Intron
[0168] Also within the scope of the present disclosure are methods of identifying (determining) a retained intron in a pre-mRNA transcript while an adjacent (upstream or downstream) intron is spliced out of the pre-mRNA in a cell. In one example, the extent of splicing and joining of the exons and removal of each intron from a target gene can be measured by the following method. It will be appreciated by one of skill in the art that any method may be used to determine whether an intron is retained in a pre-mRNA transcript relative to an adjacent intron that is spliced out of the pre-mRNA transcript and whether a target intron is retained to greater extent relative to one or more other introns within the pre-mRNA encoded by the same gene.
[0169] I. Screening for Retained Introns
[0170] A first round of screening for intron retention can be performed using nuclear RNA isolated from cells or tissues (e.g., disease-relevant cells) and analyzed by reverse transcriptase-PCR (RT-PCR), for example, investigating a pre-RNA encoded by a target gene. A target gene may be any gene that contains at least one intron and encodes a protein or a functional RNA that is associated with a disease or disorder or suspected of being associated or causative of a disease or disorder. For RT-PCR analysis, each intron is assessed for retention in the pre-mRNA encoded by a gene by designing a series of primer pairs in which one of the primers of the pair is specific to a region of an intron of the target pre-mRNA and the other primer of the pair is specific to a region of an exon that is two exons upstream or downstream of the intron (FIG. 3). In some embodiments, the upstream or forward primer may be complementary and hybridize to a region within an intron, for example the intron between exons 1 and 2 in FIG. 3; and the downstream or reverse primer may be complementary and hybridize to a region within an exon that is located two exons away from the intron that is being assess, for example within exon 3 as shown in FIG. 3. Alternatively, the upstream or forward primer may be complementary and hybridize to a region within an exon, for example in exon 2 in FIG. 3; and the downstream or reverse primer may be complementary and hybridize to a region within an intron that is two exons away from the forward primer, for example within the intron between exons 3 and 4 as shown in FIG. 3. Design of primer pairs may be repeated for each of the introns encoded by the gene.
[0171] Following RT-PCR using each of the primer pairs, the RT-PCR products are analyzed by any method known in the art, for example, separation and visualization in an agarose gel. The approximate size of the RT-PCR product that is expected if the target intron is present may be estimated based on the nucleic acid sequence of the gene and/or pre-mRNA. The absence of a product from the RT-PCR analysis indicates that the target intron was not present and was removed/spliced from the pre-mRNA, and therefore under the conditions tested, is not a retained intron. The presence of a product from the RT-PCR reaction that is of approximately the size of the estimated product indicates that the target intron is present in the pre-mRNA and was not removed/spliced from the pre-mRNA under the conditions tested, such introns are referred to as "retained introns."
[0172] In examples in which analysis is desired for many pre-RNAs or on a transcriptome-wide level, the screening for intron retention can be analyzed by RNA-seq or any other high-throughput transcriptional analysis method. RNA-seq analysis is carried out using appropriate mapping of deep sequencing reads and statistical methods to determine intron-retention events across the entire transcriptome.
[0173] II. Confirmation of Intron Retention Events
[0174] A second round of screening of introns within a pre-mRNA may be performed to confirm intron-retention events using methods such as RT-PCR. Each of the introns that were identified to be retained introns on the first round of screening described above can be assessed again. For RT-PCR analysis, each retained intron is assessed for retention in the pre-mRNA encoded by gene by designing primer pairs in which one of the primers of the pair is specific to a region of an intron of the target pre-mRNA and the other primer of the pair is specific to a region of an exon that is three, four, or five exons upstream or downstream of the intron (FIG. 4). In the schematic presented in FIG. 4, the retained intron to be assessed is located between exons 1 and 2. The upstream or forward primer is specific to a region and hybridizes within the retained intron and a downstream or reverse primer is designed to hybridize to a region in exon 4, exon 5, and exon 6, exons which are 3, 4, and 5 exons away from the retained intron, respectively. RT-PCR reactions are performed using the forward primer and each of the reverse primers.
[0175] Following RT-PCR, the RT-PCR products are analyzed by any method known in the art, for example, separation and visualization in an agarose gel. Based on the molecular size of RT-PCR products from each reaction, it can be determined whether each of the introns (e.g., the intron between exons 2 and 3, 3 and 4, and 4 and 5) is retained in addition to the intron being tested (the retained intron identified above). Retained introns that are found to be retained when one or more adjacent introns have been removed/spliced may be referred to as a an "inefficiently spliced intron."
[0176] III. Determining Intron Splicing Efficiency
[0177] Any introns in pre-mRNA encoded by a target gene that are identified as persistent introns or inefficiently spliced introns relative to other introns in the same pre-mRNA that are removed/spliced, may be further assessed to determine the proportion or efficiency of intron retention.
[0178] An intron may be assessed to determine the efficiency of intron retention by performing an assay such as an RNase protection assay (FIG. 5). A pair of RNA probes (e.g., radioactively-labeled RNA probes) are designed in which each of the probes is specific to a region spanning the end of the retained intron and the adjacent exon. For example, an RNA probe is designed that hybridizes to the region spanning the 5' end of the retained intron and 3' end of the exon that is upstream of the retained intron; and a second RNA probe is designed that hybridizes to the region spanning the 3' end of the retained intron and the 5' end of the exon that is downstream of the retained intron. In some embodiments, the portion of the probe that hybridizes to the intron is at least 100 nucleotides in length and the portion of the probe that hybridizes to the exon is at least 50 nucleotides in length (FIG. 5). Nuclear RNA extracted from disease-relevant cells, tissues or cell lines is incubated with the pair of RNA probes under conditions in which the probes hybridize to the regions of the pre-mRNA forming regions of double-stranded RNA. The mixture of pre-mRNA and RNA probes digested with RNases that degrade single-stranded RNA, such as RNaseA and/or RNase T1. Double-stranded RNA is protected from degradation.
[0179] The RNase digestion reactions are analyzed by any method known in the art, for example, separation and visualization in an agarose gel. The quantity of an RNA molecule that corresponds to the full-length of the RNA probe (e.g., 150 nucleotides) indicates that amount of the retained intron present in the pre-mRNA. The quantity of RNA molecules that corresponds to digested RNA probes (e.g., RNA molecules of approximately 50 nucleotides in length) represented the amount of spliced RNA as the intron to which the RNA probe hybridizes is not present in the pre-mRNA (e.g., was spliced out). The ratio of intron retention (amount of full-length RNA probe, e.g., 100 nucleotide RNA molecules) over spliced RNA (amount of degraded RNA probe, e.g., 50 nucleotide RNA molecules) indicates the efficiency of splicing of the intron. The intron of a pre-mRNA having the highest ratio relative to other introns of the same pre-mRNA indicates the intron is the least efficiently spliced intron or the most highly retained intron of the pre-mRNA encoded by the target gene.
Methods of Identifying an ASO that Enhances Splicing
[0180] Also within the scope of the present invention are methods for identifying (determining) ASOs that enhance splicing of a target pre-mRNA, specifically at the target intron. ASOs that specifically hybridize to different nucleotides within the target region of the pre-mRNA may be screened to identify (determine) ASOs that improve the rate and/or extent of splicing of the target intron. In some embodiments, the ASO may block or interfere with the binding site(s) of a splicing repressor(s)/silencer. Any method known in the art may be used to identify (determine) an ASO that when hybridized to the target region of the intron results in the desired effect (e.g., enhanced splicing, protein or functional RNA production). These methods also can be used for identifying ASOs that enhance splicing of the retained intron by binding to a targeted region in an exon flanking the retained intron, or in a non-retained intron. An example of a method that may be used is provided below.
[0181] A round of screening, referred to as an ASO "walk" may be performed using ASOs that have been designed to hybridize to a target region of a pre-mRNA. For example, the ASOs used in the ASO walk can be tiled every 5 nucleotides from approximately 100 nucleotides upstream of the 5' splice site of the retained intron (e.g., a portion of sequence of the exon located upstream of the target/retained intron) to approximately 100 nucleotides downstream of the 5' splice site of the target/retained intron and/or from approximately 100 nucleotides upstream of the 3' splice site of the retained intron to approximately 100 nucleotides downstream of the 3' splice site of the target/retained intron (e.g., a portion of sequence of the exon located downstream of the target/retained intron). For example, a first ASO of 15 nucleotides in length may be designed to specifically hybridize to nucleotides +6 to +20 relative to the 5' splice site of the target/retained intron. A second ASO is designed to specifically hybridize to nucleotides +11 to +25 relative to the 5' splice site of the target/retained intron. ASOs are designed as such spanning the target region of the pre-mRNA. In embodiments, the ASOs can be tiled more closely, e.g., every 1, 2, 3, or 4 nucleotides. Further, the ASOs can be tiled from 100 nucleotides downstream of the 5' splice site, to 100 nucleotides upstream of the 3' splice site.
[0182] One or more ASOs, or a control ASO (an ASO with a scrambled sequence, sequence that is not expected to hybridize to the target region) are delivered, for example by transfection, into a disease-relevant cell line that expresses the target pre-mRNA (e.g., the RIC pre-mRNA described elsewhere herein). The splicing-inducing effects of each of the ASOs may be assessed by any method known in the art, for example by reverse transcriptase (RT)-PCR using primers that span the splice junction, as described herein (see "Identification of intron-retention events"). A reduction or absence of the RT-PCR product produced using the primers spanning the splice junction in ASO-treated cells as compared to in control ASO-treated cells indicates that splicing of the target intron has been enhanced. In some embodiments, the splicing efficiency, the ratio of spliced to unspliced pre-mRNA, the rate of splicing, or the extent of splicing may be improved using the ASOs described herein. The amount of protein or functional RNA that is encoded by the target pre-mRNA can also be assessed to determine whether each ASO achieved the desired effect (e.g., enhanced protein production). Any method known in the art for assessing and/or quantifying protein production, such as Western blotting, flow cytometry, immunofluorescence microscopy, and ELISA, can be used.
[0183] A second round of screening, referred to as an ASO "micro-walk" may be performed using ASOs that have been designed to hybridize to a target region of a pre-mRNA. The ASOs used in the ASO micro-walk are tiled every 1 nucleotide to further refine the nucleotide acid sequence of the pre-mRNA that when hybridized with an ASO results in enhanced splicing.
[0184] Regions defined by ASOs that promote splicing of the target intron are explored in greater detail by means of an ASO "micro-walk", involving ASOs spaced in 1-nt steps, as well as longer ASOs, typically 18-25 nt.
[0185] As described for the ASO walk above, the ASO micro-walk is performed by delivering one or more ASOs, or a control ASO (an ASO with a scrambled sequence, sequence that is not expected to hybridize to the target region), for example by transfection, into a disease-relevant cell line that expresses the target pre-mRNA. The splicing-inducing effects of each of the ASOs may be assessed by any method known in the art, for example by reverse transcriptase (RT)-PCR using primers that span the splice junction, as described herein (see "Identification of intron-retention events"). A reduction or absence of the RT-PCR product produced using the primers spanning the splice junction in ASO-treated cells as compared to in control ASO-treated cells indicates that splicing of the target intron has been enhanced. In some embodiments, the splicing efficiency, the ratio of spliced to unspliced pre-mRNA, the rate of splicing, or the extent of splicing may be improved using the ASOs described herein. The amount of protein or functional RNA that is encoded by the target pre-mRNA can also be assessed to determine whether each ASO achieved the desired effect (e.g., enhanced protein production). Any method known in the art for assessing and/or quantifying protein production, such as Western blotting, flow cytometry, immunofluorescence microscopy, and ELISA, can be used.
[0186] ASOs that when hybridized to a region of a pre-mRNA result in enhanced splicing and increased protein production may be tested in vivo using animal models, for example transgenic mouse models in which the full-length human gene has been knocked-in or in humanized mouse models of disease. Suitable routes for administration of ASOs may vary depending on the disease and/or the cell types to which delivery of the ASOs is desired. ASOs may be administered, for example, by intravitreal injection, intrathecal injection, intraperitoneal injection, subcutaneous injection, or intravenous injection. Following administration, the cells, tissues, and/or organs of the model animals may be assessed to determine the effect of the ASO treatment by for example evaluating splicing (efficiency, rate, extent) and protein production by methods known in the art and described herein. The animal models may also be any phenotypic or behavioral indication of the disease or disease severity.
EXAMPLES
[0187] The present invention will be more specifically illustrated by the following Examples. However, it should be understood that the present invention is not limited by these examples in any manner.
Example 1: Intron-Retention Events are Intrinsic to Genes and are Non-Productive
[0188] A first round of screening was performed for intron-retention events in the PRPF31 (retinitis pigmentosa type 11) and RB1 (retinoblastoma) genes using the methods described herein (FIG. 3). Briefly, RNA extracts were isolated from nuclear fractions of HeLa (human epithelial cervical adenocarcinoma) and 293T (human embryonic kidney epithelial) cells, and nuclear and cytoplasmic fractions of ARPE-19 (human retina) cells. Reverse transcriptase PCR (RT-PCR) was performed using the RNA extracts from each of the cell types. In brief, cDNA synthesis was carried out with oligo dT to generate a DNA copy of Poly-A RNA (fully transcribed RNA) only, and PCR was performed to assess for intron retention in PRPF31 and RB1 transcripts. The PCR products were separated on a 1.5% ethidium-bromide-stained agarose gel (FIGS. 6A-6D). Results show several intron-retention events (marked by black asterisk) for both genes (PRPF31 and RB1) in the nucleus of each of the three cell lines tested (FIGS. 6A-6D).
[0189] Tables 9 and 10 list all intron-retention events that occur in the three cell-lines tested for PRPF31 and RB1, respectively. The events (presence or absence of intron retention) that occur across all three cell-lines are indicated with an asterisk. The tables show that there is a very high concordance across the three cell lines indicating that the intron-retention events are intrinsic to the genes and are not affected by different cellular environments.
[0190] To address whether these events are non-productive (i.e. able to result in protein production), RT-PCR was performed using the cytoplasmic fraction of ARPE-19 cells (FIG. 6E). Results show that the majority of the observed intron-retention events are not present in the cytoplasm of ARPE-19 cells (FIG. 6E, asterisks mark where the bands should be) indicating, as expected, that the intron-retention events are result in the transcript being either retained in the nucleus or degraded by nonsense-mediated mRNA decay in the cytoplasm, and are therefore non-productive transcripts.
TABLE-US-00009 TABLE 9 Summary of results for intron-retention events in the PRPF31 gene. PRPF31 293T Retina HeLa Intron Yes Yes Yes 1* No No No 2* Yes Yes Yes 3* Yes Yes Yes 4* No Yes No 5 No No No 6* No No No 7* No No No 8* ? Yes ? 9 ? Yes ? 10 No No No 11* Yes Yes Yes 12* No No No 14* "Yes" indicates the presence of intron retention; "no" indicates the absence of intron retention; and "?" indicates non-conclusive results. Cases in which there is concordance between the three cell lines are labeled with an asterisk.
TABLE-US-00010 TABLE 10 Summary of results for intron-retention events in the RB1 gene. RB1 293T Retina HeLa Intron No No No 1* No No No 2* Yes Yes No 3 No No No 4* Yes Yes Yes 5* Yes Yes Yes 6* Yes Yes No 7 No Yes Yes 8 Yes Yes Yes 9* No Yes No 10 No No No 11* Yes No Yes 12 No No No 13* Yes Yes Yes 14* No No No 15* No Yes No 16 No Yes No 17 No Yes Yes 18 No Yes Yes 19 Yes No No 20 No No Yes 21 Yes Yes Yes 22* Yes Yes Yes 23* No No No 24* Yes Yes Yes 25* "Yes" indicates the presence of intron retention; "no" indicates the absence of intron retention. Cases in which there is concordance between the three cell lines are labeled with an asterisk.
Example 2: Confirmation of Intron Retention Events
[0191] A second round of screening was performed for intron-retention events in the PRPF31 (retinitis pigmentosa type 11) and RB1 (retinoblastoma) genes using the methods described herein (FIG. 4). Briefly, nuclear RNA extracts from ARPE-19 (human retina) cells were used to perform reverse transcriptase PCR (RT-PCR) as described in Example 1. In this example, intron retention was assessed in the scenario in which more than one intron has been spliced out (removed) from the pre-mRNA. Results show fewer intron-retention events (marked by black asterisk) for both genes (PRPF31 and RB1) (FIGS. 7A-7B) compared to results in FIGS. 6A-D) narrowing down the number of candidate intron retention events.
Example 3: Improved Splicing Efficiency Via Mutagenesis or ASO Targeting of Intronic Regions Increases Gene Expression
[0192] We aimed to improve the splicing efficiency of each of the two introns of the HBB (human beta globin) gene, which is involved in beta thalassemia, and assess whether this would result in increased transcript level. The entire HBB open reading frame was cloned in a minigene reporter. Mutations were introduced into the 5' and 3' splice sites of both introns in order to bring them to perfect consensus sequences. FIG. 8A shows a schematic representation of the HBB gene and the mutations introduced at the splice sites. Minigene reporters carrying mutations in each splice site as well as combinations of these mutations were transfected into HEK293 (human embryonic kidney epithelial) cells, independently, for 24 hrs using Fugene transfection reagent. Radioactive RT-PCR results show that mutations improving only the 5' splice site of intron 1 (IVS1) increase HBB transcript level (FIG. 8B). Quantification of the intensity of the bands corresponding to HBB PCR products of mutant minigenes were normalized to that of GFP and plotted in relation to wild type HBB. The bars indicate an increase of more than 2-fold in the expression level of HBB when the splicing efficiency of intron 1 is improved (FIG. 8C). We have previously observed that that HBB intron 1 is inefficiently spliced and is the rate limiting intron in the gene (data not shown). Here we show that by improving splicing efficiency of an inefficiently spliced intron, a significant increase in gene expression can be achieved.
[0193] To determine whether we can also achieve an increase in HBB-reporter gene (minigene) expression by improving splicing efficiency of HBB intron 1 using ASOs. To this end an 18-mer 2'-O-Me ASO was generated to target intron 1 starting at positions +7 and two 18-mer PMO-ASOs were generated to target intron 1 starting at positions +6 and +7, respectively, relative to the 5' splice junction (FIG. 9A; Table 2, SEQ ID NO: 104 and 105, respectively). HEK293 cells were first co-transfected with wild-type HBB minigene reporter and GFP (as a transfection control) using Fugene transfection reagent. Four hours later, cells were either untransfected, mock-transfected, or transfected with each of the targeting ASOs or a non-targeting ASO control, independently, using RNAiMAX (RiM) (Invitrogen) or EndoPorter (EP) (GeneTools) delivery reagents. Experiments were performed using increasing concentrations of the ASOs as indicated in FIG. 9B) for 48 hrs. Radioactive RT-PCR results show that the +7 targeting ASO with both chemistries increase HBB transcript level compared to the mock-transfected or non-targeting ASO (FIG. 9B). Similar results were obtained for the +6 PMO-ASO (data not shown). Intensities of the bands corresponding to the HBB PCR products from targeting-ASO-transfected cells were normalized to GFP and plotted relative to the normalized HBB PCR product from mock-treated cells. Results of this analysis indicate that both targeting ASOs (+6 and +7) increase HBB transcript level by nearly 50% (FIG. 9C). These results indicate that improving the splicing efficiency of the rate limiting intron in the HBB gene using ASOs leads to an increase in gene expression.
Example 4: Improved Splicing Efficiency Via ASO Targeting an Intronic Region Increases Protein Production
[0194] In order to detect an increase in protein production upon targeting HBB intron 1 with the +7 2'-O-Me ASO, we generated a reporter construct consisting of the HBB minigene flanked upstream by the GFP open reading frame and downstream by a sequence coding the T7 tag (FIG. 10A). This reporter was integrated in the genome of U2OS cells mimicking an endogenous gene. U2OS cells expressing the GFP-HBB-T7 reporter were mock-transfected or transfected with the +7 2'-O-Me ASO and protein extracts were analyzed by western blot. Briefly, protein extracts from two independent biological replicates were run on a 4-20% SDS-polyacrylamide gel, transferred to a nitrocellulose membrane. To evidence an increase in protein production, an anti-GFP antibody was used to detect a protein product from the GFP-HBB-T7 reporter and an anti-Beta tubulin antibody was used to detect Beta tubulin as a loading control. FIG. 10B shows western blots results indicating that GFP-HBB-T7 protein (bottom band) is increased upon treatment with the +7 2'-O-Me ASO. Intensities of the bands corresponding to the GFP-HBB-T7 protein from targeting-ASO-transfected cells were normalized to endogenous Beta tubulin and plotted relative to the normalized GFP-HBB-T7 protein band from mock-treated cells.
[0195] Results of this analysis indicate that the targeting ASO (+7) increase GFP-HBB-T7 protein level by more than 2.5 fold (FIG. 10C). These results demonstrate that promoting splicing efficiency by using an ASO targeted to a region downstream of the 5' splice site of the rate-limiting intron leads to an increase in target protein production as depicted in FIG. 2.
Example 5: Identification of Intron Retention Events in ADAMTS13 Transcripts by RNAseq Using Next Generation Sequencing
[0196] We performed whole transcriptome shotgun sequencing using next generation sequencing to reveal a snapshot of transcripts produced by the ADAMTS13 gene to identify intron-retention events. For this purpose, we isolated polyA+RNA from nuclear and cytoplasmic fractions of THLE-3 (human liver epithelial) cells and constructed cDNA libraries using Illumina's TruSeq Stranded mRNA library Prep Kit. The libraries were pair-end sequenced resulting in 100-nucleotide reads that were mapped to the human genome (February 2009, GRCh37/hg19 assembly). The sequencing results for ADAMTS13 are shown in FIG. 11. Briefly, FIG. 11 shows the mapped reads visualized using the UCSC genome browser, operated by the UCSC Genome Informatics Group (Center for Biomolecular Science & Engineering, University of California, Santa Cruz, 1156 High Street, Santa Cruz, Calif. 95064) and described by, e.g., Rosenbloom, et al., 2015, "The UCSC Genome Browser database: 2015 update," Nucleic Acids Research 43, Database Issue (doi: 10.1093/nar/gku1177) and the coverage and number of reads can be inferred by the peak signals. The height of the peaks indicates the level of expression given by the density of the reads in a particular region. A schematic representation of all ADAMTS13 isoforms (drawn to scale) is provided by the UCSC genome browser (below the read signals) so that peaks can be matched to ADAMTS13 exonic and intronic regions. Based on this display, we identified two introns (25 and 27, indicated by arrows) that have high read density in the nuclear fraction of THLE-3 cells, but have very low to no reads in the cytoplasmic fraction of these cells (as shown for intron 25 in the bottom diagram of FIG. 11). This indicates that both introns are retained and that the intron-25 and intron-27 containing transcripts remain in the nucleus. This suggests that these retained intron-containing (RIC) ADAMTS13 pre-mRNAs are non-productive, as they are not exported out to the cytoplasm.
Example 6: Validation of Intron Retention Events Identified by RNAseq Analysis of ADAMTS13
[0197] Validation of the intron 25-retention event in the ADAMTS13 (thrombotic thrombocytopenic purpura) gene was performed using the methods described herein (FIG. 12). Briefly, nuclear and cytoplasmic RNA extracts from A172 (human glioblastoma) and HepG2 (human hepatocellular carcinoma) cells were used to perform radioactive reverse transcriptase PCR (RT-PCR) as described in Example 1. In this example, intron retention was assessed using primers positioned in exon 25 and exon 27 leading to the amplification of both intron-25 containing transcript and correctly spliced transcript. The products were run in a 5% polyacrylamide gel and visualized by phosphorimaging. Intron 25 retention levels were calculated as percent intron retention (PIR) of the intensity of the band corresponding to the intron-25 containing product over total transcript (intron-containing plus correctly spliced). Quantification of the bands indicated that approximately 80% of ADAMTS13 transcripts contain intron 25 and that this product is retained in the nucleus. Moreover, the radioactive RT-PCR results validated the bioinformatic predictions demonstrating that the bioinformatic analysis of the RNAseq results is a powerful tool to identify intron-retention events.
Example 7: Design of ASO-Walk Targeting Intron 25 of ADAMTS13
[0198] An ASO walk was designed to target intron 25 using the method described herein (FIG. 13). A region immediately downstream of intron 25 5' splice site spanning nucleotides +6 to +58 and a region immediately upstream of intron 25 3' splice site spanning nucleotides -16 to -79 of the intron were targeted with 2'-O-Me RNA, PS backbone, 18-mer ASOs shifted by 5-nucleotide intervals (with the exception of 1 ASO, ADAM-IVS25-47, to avoid a stretch of four guanines) (FIG. 13; Table 4, SEQ ID NO:150 to 167). These target regions were selected based on the knowledge that intronic regulatory elements concentrate in sequences adjacent to splice sites.
Example 8: Improved Splicing Efficiency Via ASO-Targeting of ADAMTS13 Intron 25 Increases Transcript Levels
[0199] To determine whether we can achieve an increase in ADAMTS13 expression by improving splicing efficiency of ADAMTS13 intron 25 using ASOs we used the method described herein (FIG. 14). To this end, HepG2 cells were mock-transfected, or transfected with each of the targeting ASOs described in FIG. 13 and Table 4, SEQ ID NO:150 to 167, or a non-targeting SMN-ASO control, independently, using RNAiMAX (RiM) (Invitrogen) delivery reagents. Experiments were performed using 60 nM ASOs (as indicated in FIG. 14) for 48 hrs. Radioactive RT-PCR results show that the +21 and +26 targeting ASOs increase ADAMTS13 transcript level compared to the mock-transfected or non-targeting ASO (FIG. 14). Intensities of the bands corresponding to the ADAMTS13 PCR products from targeting-ASO-transfected cells were normalized to Beta actin and plotted relative to the normalized ADAMTS13 PCR product from control ASO-treated cells. Results of this analysis indicate that both targeting ASOs (+21 and +26) increase ADAMTS13 transcript level nearly 2.5 fold (FIG. 14). These results indicate that improving the splicing efficiency of a rate limiting intron in the ADAMTS13 gene using ASOs leads to an increase in gene expression.
Example 9: Dose Response Effect of ASOs Targeting ADAMTS13 Intron 25
[0200] To determine a dose-response effect of the +21 and +26 ASOs, as well as the -46 ASOs that showed the opposite effect (FIG. 14), we used the method described herein (FIG. 15). HepG2 cells were mock-transfected, or transfected with each of the three ASOs, or a non-targeting SMN-ASO control, independently, using RNAiMAX (RiM) (Invitrogen) delivery reagents at increasing concentrations as indicated in FIG. 15 for 48 hrs. Radioactive RT-PCR results show that the +21 and +26 targeting ASOs increase ADAMTS13 transcript level compared to the mock-transfected or non-targeting ASO whereas the -46 ASO decreases ADAMTS13 transcript level compared to the mock-transfected or non-targeting ASO (FIG. 15). Intensities of the bands corresponding to the ADAMTS13 PCR products from targeting-ASO-transfected cells were normalized to Beta actin and plotted relative to the normalized ADAMTS13 PCR product from control ASO-treated cells. Results of this analysis indicate that both targeting ASOs (+21 and +26) increase ADAMTS13 transcript level nearly 2.5 fold (FIG. 15). These results confirm that improving the splicing efficiency of a rate limiting intron in the ADAMTS13 gene using ASOs leads to an increase in gene expression.
Example 10: Improved Splicing Efficiency Via ASO-Targeting of ADAMTS13 Intron 25 Increases Protein Levels
[0201] In order to detect an increase in protein production upon targeting ADAMTS13 intron 25 with the +21 or +26 ASOs, we used the method described herein (FIG. 16). HepG2 cells were mock-transfected, or transfected with each of the three ASOs, or a non-targeting SMN-ASO control, independently, using RNAiMAX (RiM) (Invitrogen) delivery reagents at increasing concentrations as indicated in FIG. 16 for 48 hrs. Briefly, protein extracts from HepG2 treated cells were run on an 8% SDS-polyacrylamide gel, and transferred to a nitrocellulose membrane. To evidence an increase in protein production, an anti-ADAMTS13 antibody or anti-Alpha tubulin antibody was used to detect ADAMTS13 and Alpha tubulin as a loading control, respectively. FIG. 16 shows western blot results indicating that ADAMTS13 (top panel) is increased in a dose dependent manner upon treatment with the +21 or +26 ASO. Intensities of the bands corresponding to the ADAMTS13 protein from targeting-ASO-transfected cells were normalized to endogenous Alpha tubulin and plotted relative to the normalized ADAMTS13 protein band from mock-treated cells. Results of this analysis indicate that the targeting ASOs (+21 and +26) increase ADAMTS13 protein level more than 3 fold (FIG. 16). These results demonstrate that promoting splicing efficiency by using an ASO targeted to a region downstream of the 5' splice site of ADAMTS13 intron 25, a rate-limiting intron, leads to an increase in target protein production as depicted in FIG. 2.
Example 11: Design of ASO-microwalk Targeting the +21 to +26 Region of ADAMTS13 Intron 25
[0202] An ASO microwalk was designed to target intron 25+21 to +26 region using the method described herein (FIG. 17). A region downstream of intron 25 5' splice site spanning +17 to +46 were targeted with 2'-O-Me, 5'-Me-Cytosine RNA, PS backbone, 18-mer ASOs shifted by 1-nucleotide interval (FIG. 17; Table 4, SEQ ID NO:184 to 197). This target region was selected based on the observed effect of ASOs +21 and +26 (FIG. 16).
Example 12: Improved Splicing Efficiency Via ASO Microwalk Targeting of ADAMTS13 Intron 25 +21 to +26 Region Increases Transcript Levels
[0203] To determine whether we can achieve an increase in ADAMTS13 expression by improving splicing efficiency of ADAMTS13 intron 25 using microwalk ASOs, we employed the method described herein (FIG. 18). To this end, HepG2 cells were mock-transfected, or transfected with each of the targeting ASOs described in FIG. 17 and Table 4 SEQ ID NO:184 to 197, or a non-targeting SMN-ASO control, independently, using RNAiMAX (RiM) (Invitrogen) delivery reagents. Experiments were performed using 60 nM ASOs (as indicated in FIG. 18) for 48 hrs. Radioactive RT-PCR results show that the +21 with 5'-Me-Cytosines and +25 targeting ASOs further increase ADAMTS13 transcript level compared to the mock-transfected or non-targeting ASO, as well as the two original +21 and +26 ASOs (light grey bars, FIG. 18). Intensities of the bands corresponding to the ADAMTS13 PCR products from targeting-ASO-transfected cells were normalized to Beta actin and plotted relative to the normalized ADAMTS13 PCR product from control ASO-treated cells. Results of this analysis indicate that both targeting ASOs (+21 and +25) increase ADAMTS13 transcript level by nearly 2.0 fold (FIG. 18). These results indicate that improving the splicing efficiency of a rate limiting intron in the ADAMTS13 gene using ASOs leads to an increase in gene expression, and the refinement of the target region by a microwalk can lead to the identification of more efficient ASOs.
Example 13: Identification of Intron Retention Events in TSC1 Transcripts by RNAseq Using Next Generation Sequencing
[0204] We performed whole transcriptome shotgun sequencing using next generation sequencing to reveal a snapshot of transcripts produced by the TSC1 gene to identify intron-retention events. For this purpose, we isolated polyA+RNA from nuclear and cytoplasmic fractions of primary human astrocytes (AST) and primary human cortical neuron (HCN) cells and constructed cDNA libraries using Illumina's TruSeq Stranded mRNA library Prep Kit. The libraries were pair-end sequenced resulting in 100-nucleotide reads that were mapped to the human genome (February 2009, GRCh37/hg19 assembly). The sequencing results for TSC1 are shown in FIG. 19. Briefly, FIG. 19 shows the mapped reads visualized using the UCSC genome browser and the coverage and number of reads can be inferred by the peak signals. The height of the peaks indicates the level of expression given by the density of the reads in a particular region. A schematic representation of all TSC1 isoforms (drawn to scale) is provided by the UCSC genome browser (below the read signals) so that peaks can be matched to TSC1 exonic and intronic regions. Based on this display, we identified three introns (5, 10 and 11, indicated by arrows) that have high read density in the nuclear fraction of AST and HCN cells, but have very low to no reads in the cytoplasmic fraction of these cells (as shown for intron 10 in the bottom diagram of FIG. 19). This indicates that both introns are retained and that the intron-5, intron-10, and intron-11 containing transcripts remain in the nucleus. This suggests that these retained intron-containing (RIC) TSC1 pre-mRNAs are non-productive, as they are not exported out to the cytoplasm.
Example 14: Validation of Intron Retention Events Identified by RNAseq Analysis of TSC1
[0205] Validation of the intron 10-retention event in the TSC1 (tuberous sclerosis complex 1) gene was performed using the methods described herein (FIG. 20). Briefly, nuclear and cytoplasmic RNA extracts from A172 (human glioblastoma) cells were used to perform radioactive reverse transcriptase PCR (RT-PCR) as described in Example 1. In this example, intron retention was assessed using primers positioned in exon 9 and exon 11 leading to the amplification of both intron-10 containing transcript and correctly spliced transcript. The products were run in a 5% polyacrylamide gel and visualized by phosphorimaging. Intron 10 retention levels were calculated as percent intron retention (PIR) of the intensity of the band corresponding to the intron-10 containing product over total transcript (intron-containing plus correctly spliced). Quantification of the bands indicated that approximately 36% of TSC1 transcripts contain intron 10 and that this product is retained in the nucleus. Moreover, the radioactive RT-PCR results validated the bioinformatic predictions demonstrating that the bioinformatic analysis of the RNAseq results is a powerful tool to identify intron-retention events.
Example 15: Design of ASO-Walk Targeting Intron 10 of TSC1
[0206] An ASO walk was designed to target intron 10 using the method described herein (FIG. 21). A region immediately downstream of intron 10 5' splice site spanning nucleotides +6 to +58 and a region immediately upstream of intron 10 3' splice site spanning nucleotides -16 to -68 of the intron were targeted with 2'-O-Me RNA, PS backbone, 18-mer ASOs shifted by 5-nucleotide intervals (FIG. 21; Table 5, SEQ ID NOS: 214 to 229). These target regions were selected based on the knowledge that intronic regulatory elements concentrate in sequences adjacent to splice sites.
Example 16: Improved Splicing Efficiency Via ASO-Targeting of TSC1 Intron 10 Increases Transcript Levels
[0207] To determine whether we can achieve an increase in TSC1 expression by improving splicing efficiency of TSC1 intron 10 using ASOs, we used the method described herein (FIG. 22). To this end, A172 cells were mock-transfected, or transfected with each of the targeting ASOs described in FIG. 21 and Table 5, SEQ ID NOS: 214 to 229, or a non-targeting SMN-ASO control, independently, using RNAiMAX (RiM) (Invitrogen) delivery reagents. Experiments were performed using 60 nM ASOs (as indicated in FIG. 22) for 48 hrs. Radioactive RT-PCR results show that the +31 targeting ASO increases TSC1 transcript level compared to the mock-transfected or non-targeting ASO (FIG. 22). Intensities of the bands corresponding to the TSC1 PCR products from targeting-ASO-transfected cells were normalized to Beta actin and plotted relative to the normalized TSC1 PCR product from mock-treated cells. Results of this analysis indicate that several ASOs (including +31) increase TSC1 transcript level nearly 1.5 fold (FIG. 22). These results indicate that improving the splicing efficiency of a rate limiting intron in the TSC1 gene using ASOs leads to an increase in gene expression.
Example 17: Dose Response Effect of ASOs Targeting TSC1 Intron 10
[0208] To determine a dose-response effect of the +31 ASO, we used the method described herein (FIG. 23). A172 cells were mock-transfected, or transfected with the +31 ASO, or a non-targeting SMN-ASO control, independently, using RNAiMAX (RiM) (Invitrogen) delivery reagents at increasing concentrations as indicated in FIG. 23 for 72 hrs. Radioactive RT-PCR results show that the +31 targeting ASO increases TSC1 transcript level compared to the mock-transfected or non-targeting ASO (FIG. 23). Intensities of the bands corresponding to the TSC1 PCR products from targeting-ASO-transfected cells were normalized to Beta actin and plotted relative to the normalized TSC1 PCR product from mock-treated cells. Results of this analysis indicate the +31 targeting ASO increases TSC1 transcript level in a dose-dependent manner nearly 2.0 fold (FIG. 23). These results were confirmed by RTqPCR using primers elsewhere in the TSC1 transcript, showing a 3-fold increase, and a dose-dependent response to the ASO treatment. These results confirm that improving the splicing efficiency of a rate limiting intron in the TSC1 gene using ASOs leads to an increase in gene expression.
Example 18: Improved Splicing Efficiency Via ASO-Targeting of TSC1 Intron 10 Increases Protein Levels
[0209] In order to detect an increase in protein production upon targeting TSC1 intron 10 with the +31 ASO, we used the method described herein (FIG. 24). A172 cells were mock-transfected, or transfected with the +31 ASO, or a non-targeting SMN-ASO control, independently, using RNAiMAX (RiM) (Invitrogen) delivery reagents at increasing concentrations as indicated in FIG. 24 for 72 hrs. Briefly, protein extracts from A172 treated cells were run on a 10% SDS-polyacrylamide gel, and transferred to a nitrocellulose membrane. To evidence an increase in protein production, an anti-TSC1 antibody or anti-Alpha tubulin antibody was used to detect TSC1 and Alpha tubulin as a loading control, respectively. FIG. 24 shows western blot results indicating that TSC1 (top panel) is increased in a dose dependent manner upon treatment with the +31 ASO at 30 and 60 nM. Intensities of the bands corresponding to the TSC1 protein from targeting-ASO-transfected cells were normalized to endogenous Alpha tubulin and plotted relative to the normalized TSC1 protein band from mock-treated cells. Results of this analysis indicate that the targeting ASO (+31) increases TSC1 protein level more than 2 fold (FIG. 24). These results demonstrate that promoting splicing efficiency by using an ASO targeted to a region downstream of the 5' splice site of TSC1 intron 10, a rate-limiting intron, leads to an increase in target protein production as depicted in FIG. 2.
Example 19: Identification of Intron Retention Events in IMPDH1 Transcripts by RNAseq Using Next Generation Sequencing
[0210] We performed whole transcriptome shotgun sequencing using next generation sequencing to reveal a snapshot of transcripts produced by the IMPDH1 gene (retinitis pigmentosa 10) to identify intron-retention events. For this purpose, we isolated polyA+RNA from nuclear and cytoplasmic fractions of ARPE-19 (human retina epithelial) cells and constructed cDNA libraries using Illumina's TruSeq Stranded mRNA library Prep Kit. The libraries were pair-end sequenced resulting in 100-nucleotide reads that were mapped to the human genome (February 2009, GRCh37/hg19 assembly). The sequencing results for IMPDH1 are shown in FIG. 25. Briefly, FIG. 25 shows the mapped reads visualized using the UCSC genome browser and the coverage and number of reads can be inferred by the peak signals. The height of the peaks indicates the level of expression given by the density of the reads in a particular region. A schematic representation of all IMPDH1 isoforms (drawn to scale) is provided by the UCSC genome browser (below the read signals), so that peaks can be matched to IMPDH1 exonic and intronic regions. Based on this display, we identified one intron (14, indicated by arrow) that has high read density in the nuclear fraction of ARPE-19 cells, but has no reads in the cytoplasmic fraction of these cells (as shown for intron 14 in the bottom diagram of FIG. 25). This indicates that intron 14 is retained and that the intron-14 containing transcript remains in the nucleus. This suggests that the retained intron-containing (RIC) IMPDH1 pre-mRNAs is non-productive, as it is not exported out to the cytoplasm.
Example 20: Design of ASO-Walk Targeting Intron 14 of IMPDH1
[0211] An ASO walk was designed to target intron 14 using the method described herein (FIG. 26). A region immediately downstream of intron 14 5' splice site spanning nucleotides +6 to +65 and a region immediately upstream of intron 14 3' splice site spanning nucleotides -16 to -68 of the intron were targeted with 2'-O-Me RNA, PS backbone, 18-mer ASOs shifted by 5-nucleotide intervals (with the exception of 1 ASO, IMP-IVS14+18, to avoid a stretch of four guanines) (FIG. 26; Table 6, SEQ ID NOS: 246 to 261). These target regions were selected based on the knowledge that intronic regulatory elements concentrate in sequences adjacent to splice sites.
Example 21: Improved Splicing Efficiency Via ASO-Targeting of IMPDH1 Intron 14 Increases Transcript Levels
[0212] To determine whether we can achieve an increase in IMPDH1 expression by improving splicing efficiency of IMPDH1 intron 14 using ASOs, we used the method described herein (FIG. 27). To this end, ARPE-19 cells were mock-transfected, or transfected with each of the targeting ASOs described in FIG. 26 and Table 6, SEQ ID NOS: 246 to 261, or a non-targeting SMN-ASO control, independently, using RNAiMAX (RiM) (Invitrogen) delivery reagents. Experiments were performed using 60 nM ASOs (as indicated in FIG. 27) for 48 hrs. Radioactive RT-PCR results show that the +48 targeting ASO increases IMPDH1 transcript level compared to the mock-transfected or non-targeting ASO (FIG. 27). Intensities of the bands corresponding to the IMPDH1 PCR products from targeting-ASO-transfected cells were normalized to Beta actin and plotted relative to the normalized IMPDH1 PCR product from control ASO-treated cells. Results of this analysis indicate that the targeting ASO (+48) increases IMPDH1 transcript level 4.0 fold (FIG. 27). These results indicate that improving the splicing efficiency of a rate limiting intron in the IMPDH1 gene using ASOs leads to an increase in gene expression.
Example 22: Dose Response Effect of ASO +48 Targeting IMPDH1 Intron 14
[0213] To determine a dose-response effect of the +48 ASO, we used the method described herein (FIG. 28). ARPE-19 cells were mock-transfected, or transfected with the +48 ASO, or a non-targeting SMN-ASO control, independently, using RNAiMAX (RiM) (Invitrogen) delivery reagents at increasing concentrations as indicated in FIG. 28 for 72 hrs. Radioactive RT-PCR results show that the +48 targeting ASO increases IMPDH1 transcript level compared to the mock-transfected or non-targeting ASO in a dose-dependent manner (FIG. 28). Intensities of the bands corresponding to the IMPDH1 PCR products from targeting-ASO-transfected cells were normalized to Beta actin and plotted relative to the normalized IMPDH1 PCR product from mock-treated cells. Results of this analysis indicate that the targeting ASO (+48) increases IMPDH1 transcript level nearly 1.5 fold (FIG. 28, middle graph). These results were confirmed by RTqPCR using primers elsewhere in the IMPDH1 transcript, showing a 2.5-fold increase, and a dose-dependent response to the ASO treatment (FIG. 28, right graph). In addition PIR was calculated (as described in Example 6) for intron 14 retention and the values were plotted indicating that as the ASO concentration and the correctly spliced transcript increases, a reduction in intron 14 retention is observed (FIG. 28, left graph). These results confirm that improving the splicing efficiency of a rate limiting intron in the IMPDH1 gene using ASOs leads to an increase in gene expression.
Example 23: Improved Splicing Efficiency Via ASO-Targeting of IMPDH1 Intron 14 Increases Protein Levels
[0214] In order to detect an increase in protein production upon targeting IMPDH1 intron 14 with the +48 ASO, we used the method described herein (FIG. 29). ARPE-19 cells were mock-transfected, or transfected with the +48 ASO, or a non-targeting SMN-ASO control, independently, using RNAiMAX (RiM) (Invitrogen) delivery reagents at increasing concentrations as indicated in FIG. 29 for 72 hrs. Briefly, protein extracts from ARPE-19 treated cells were run on an 4-20% SDS-polyacrylamide gel, and transferred to a nitrocellulose membrane. To evidence an increase in protein production, an anti-IMPDH1 antibody, anti-Beta catenin antibody, or Beta actin was used to detect IMPDH1, and Beta catenin or Beta actin as loading controls, respectively. FIG. 29 shows western blot results indicating that IMPDH1 is increased in a dose dependent manner upon treatment with the +48 ASO. Intensities of the bands corresponding to the IMPDH1 protein from targeting-ASO-transfected cells were normalized to endogenous Beta actin and plotted relative to the normalized IMPDH1 protein band from mock-treated cells. Results of this analysis indicate that the targeting ASO (+48) increase IMPDH1 protein level nearly 2.5 fold (FIG. 29). These results demonstrate that promoting splicing efficiency using an ASO targeted to a region downstream of the 5' splice site of IMPDH1 intron 14, a rate-limiting intron, leads to an increase in target protein production as depicted in FIG. 2.
Example 24: Design of ASO-Microwalk Targeting the +48 Region of IMPDH1 Intron 14
[0215] An ASO microwalk was designed to target intron 14+44 to +70 region using the method described herein (FIG. 30). A region downstream of intron 14 5' splice site spanning +44 to +70 were targeted with 2'-O-Me, 5'-Me-Cytosine RNA, PS backbone, 18-mer ASOs shifted by 1-nucleotide interval (FIG. 30; Table 6, SEQ ID NOS: 262 to 271). This target region was selected based on the observed effect of ASO +48 (FIG. 29).
Example 25: Improved Splicing Efficiency Via ASO Microwalk Targeting of IMPDH1 Intron 14+48 Region Increases Transcript Levels
[0216] To determine whether we can achieve an increase in IMPDH1 expression by improving splicing efficiency of IMPDH1 intron 14 using microwalk ASOs, we employed the method described herein (FIG. 31). To this end, ARPE-19 cells were mock-transfected, or transfected with each of the targeting ASOs described in FIG. 30 and Table 6, SEQ ID NOS: 262 to 271, or a non-targeting SMN-ASO control, independently, using RNAiMAX (RiM) (Invitrogen) delivery reagents. Experiments were performed using 60 nM ASOs (as indicated in FIG. 31) for 48 hrs. RT-qPCR results show that the +46 and +47 targeting ASOs further increase IMPDH1 transcript level compared to the mock-transfected or non-targeting ASO, as well as the original +48 ASO (FIG. 31). Results of this analysis indicate that both targeting ASOs (+46 and +47) increase IMPDH1 transcript level more than 3.0 fold (FIG. 31). These results indicate that improving the splicing efficiency of a rate limiting intron in the IMPDH1 gene using ASOs leads to an increase in gene expression, and the refinement of the target region by a microwalk can lead to the identification of more efficient ASOs.
Example 26: Identification of Intron Retention Events in PKD1 Transcripts by RNAseq Using Next Generation Sequencing
[0217] We performed whole transcriptome shotgun sequencing using next generation sequencing to reveal a snapshot of transcripts produced by the PKD1 gene (polycystic kidney disease) to identify intron-retention events. For this purpose, we isolated polyA+RNA from nuclear and cytoplasmic fractions of primary human renal epithelial (REN) cells and constructed cDNA libraries using Illumina's TruSeq Stranded mRNA library Prep Kit. The libraries were pair-end sequenced resulting in 100-nucleotide reads that were mapped to the human genome (February 2009, GRCh37/hg19 assembly). The sequencing results for PKD1 are shown in FIG. 32. Briefly, FIG. 32 shows the mapped reads visualized using the UCSC genome browser and the coverage and number of reads can be inferred by the peak signals. The height of the peaks indicates the level of expression given by the density of the reads in a particular region. A schematic representation of all PKD1 isoforms (drawn to scale) is provided by the UCSC genome browser (below the read signals) so that peaks can be matched to PKD1 exonic and intronic regions. Based on this display, we identified four introns (32, 33, 37 and 38, indicated by arrows) that have high read density in the nuclear fraction of REN cells, but have very low to no reads in the cytoplasmic fraction of these cells (as shown for intron 37 in the bottom diagram of FIG. 32). This indicates that the four introns are retained and that the intron-32, intron-33, intron-37, and intron-38 containing transcripts remain in the nucleus. This suggests that these retained intron-containing (RIC) PKD1 pre-mRNAs are non-productive, as they are not exported out to the cytoplasm.
Example 27: Design of ASO-Walk Targeting Intron 37 of PKD1
[0218] An ASO walk was designed to target intron 37 using the method described herein (FIG. 33). A region immediately downstream of intron 37 5' splice site spanning nucleotides +6 to +66 and a region immediately upstream of intron 37 3' splice site spanning nucleotides -16 to -51 of the intron were targeted with 2'-O-Me RNA, PS backbone, 18-mer ASOs shifted by 5-nucleotide intervals (with the exception of 2 ASOs, PKD1-IVS37+8 and +24, to avoid a stretch of four guanines) (FIG. 33; Table 7, SEQ ID NOS: 297 to 312). These target regions were selected based on the knowledge that intronic regulatory elements concentrate in sequences adjacent to splice sites.
Example 28: Improved Splicing Efficiency Via ASO-Targeting of PKD1 Intron 37 Increases Transcript Levels
[0219] To determine whether we can achieve an increase in PKD1 expression by improving splicing efficiency of PKD1 intron 37 using ASOs, we used the method described herein (FIG. 34). To this end, HEK293 cells were mock-transfected, or transfected with each of the targeting ASOs described in FIG. 33 and Table 7, SEQ ID NOS: 297 to 312, or a non-targeting SMN-ASO control, independently, using RNAiMAX (RiM) (Invitrogen) delivery reagents. Experiments were performed using 60 nM ASOs (as indicated in FIG. 34) for 48 hrs. Radioactive RT-PCR results show that the +29 targeting ASO increases PKD1 transcript level compared to the mock-transfected or non-targeting ASO (FIG. 34). Intensities of the bands corresponding to the PKD1 PCR products from targeting-ASO-transfected cells were normalized to Beta actin and plotted relative to the normalized PKD1 PCR product from mock-treated cells. Results from this analysis indicate that the +29 ASO increases PKD1 transcript level 1.8 fold (FIG. 34). These results indicate that improving the splicing efficiency of a rate limiting intron in the PKD1 gene using ASOs leads to an increase in gene expression.
Example 29: Dose Response Effect of ASOs Targeting PKD1 Intron 37
[0220] To determine a dose-response effect of the +29 ASO, we used the method described herein (FIG. 35). HEK293 cells were mock-transfected, or transfected with the +29 ASO, or a non-targeting SMN-ASO control, independently, using RNAiMAX (RiM) (Invitrogen) delivery reagents at increasing concentrations as indicated in FIG. 35 for 48 hrs. Radioactive RT-PCR results show that the +29 targeting ASO increases PKD1 transcript level compared to the mock-transfected or non-targeting ASO (FIG. 35). Intensities of the bands corresponding to the PKD1 PCR products from targeting-ASO-transfected cells were normalized to Beta actin and plotted relative to the normalized PKD1 PCR product from mock-treated cells. Results of this analysis indicate the +29 targeting ASO increases PKD1 transcript level in a dose-dependent manner more than 2.0 fold (FIG. 35, middle graph). These results were confirmed by RTqPCR using primers elsewhere in the PKD1 transcript, showing more than 2-fold increase, and a dose-dependent response to the ASO treatment (FIG. 35, right graph). In addition, PIR was calculated (as described in Example 6) for intron 37 retention and the values were plotted indicating that as the ASO concentration and the correctly spliced transcript increases, a reduction in intron 37 retention is observed (FIG. 35, left graph). These results confirm that improving the splicing efficiency of a rate limiting intron in the PKD1 gene using ASOs leads to an increase in gene expression.
Example 30: Improved Splicing Efficiency Via ASO-Targeting of PKD1 Intron 37 Increases Protein Levels
[0221] In order to detect an increase in protein production upon targeting PKD1 intron 37 with the +29 ASO, we used the method described herein (FIG. 36). HEK293 cells were mock-transfected, or transfected with the +29 ASO, or a non-targeting SMN-ASO control, independently, using RNAiMAX (RiM) (Invitrogen) delivery reagents at increasing concentrations as indicated in FIG. 36 for 72 hrs. Briefly, cells were fixed and permeabilized and treated with an anti-PKD1 antibody or IgG isotype control antibody. Cells were analyzed by flow cytometry by counting 10,000 cells. FIG. 36 shows a plot of the fluorescence intensity/per cell count indicating that a higher ASO concentrations cell have a stronger PKD1 signal compared to mock-treated (untreated) cells. Fold change of the fluorescence intensity corresponding to the +29 ASO-treated cells relative to the fluorescence intensity corresponding to the mock-treated cells was plotted. Results of this analysis indicate that the targeting ASO (+29) increases PKD1 protein level nearly 1.5 fold (FIG. 36). These results demonstrate that promoting splicing efficiency by using an ASO targeted to a region downstream of the 5' splice site of PKD1 intron 37, a rate-limiting intron, leads to an increase in target protein production as depicted in FIG. 2.
Example 31: Identification of Intron Retention Events in IKBKAP Transcripts by RNAseq Using Next Generation Sequencing
[0222] We performed whole transcriptome shotgun sequencing using next generation sequencing to reveal a snapshot of transcripts produced by the IKBKAP gene to identify intron-retention events. For this purpose, we isolated polyA+RNA from nuclear and cytoplasmic fractions of ARPE-19, AST, human bronchial epithelial (BRON), HCN, REN, and THLE-3 cells and constructed cDNA libraries using Illumina's TruSeq Stranded mRNA library Prep Kit. The libraries were pair-end sequenced resulting in 100-nucleotide reads that were mapped to the human genome (February 2009, GRCh37/hg19 assembly). The sequencing results for IKBKAP are shown in FIG. 37. Briefly, FIG. 37 shows the mapped reads visualized using the UCSC genome browser and the coverage and number of reads can be inferred by the peak signals. The height of the peaks indicates the level of expression given by the density of the reads in a particular region. A schematic representation of all IKBKAP isoforms (drawn to scale) is provided by the UCSC genome browser (below the read signals), so that peaks can be matched to IKBKAP exonic and intronic regions. Based on this display, we identified 2 introns (7 and 8, indicated by arrows) that have high read density in the nuclear fraction of all cells sequenced, but has no reads in the cytoplasmic fraction of these cells (as shown for both introns in the bottom diagram of FIG. 37). This indicates that introns 7 and 8 are retained and that the intron-7 and intron-8 containing transcript remain in the nucleus. This suggests that the retained intron-containing (RIC) IKBKAP pre-mRNAs are non-productive, as they are not exported out to the cytoplasm.
Example 32: Validation of Intron Retention Events Identified by RNAseq Analysis of IKBKAP
[0223] Validation of the intron 7-retention event in the IKBKAP (familial dysautonomia) gene was performed using the methods described herein (FIG. 38). Briefly, nuclear and cytoplasmic RNA extracts from ARPE-19, HeLa, and U2OS cells were used to perform radioactive reverse transcriptase PCR (RT-PCR) as described in Example 1. In this example, intron retention was assessed using primers positioned in exon 6 and exon 8 leading to the amplification of both intron-7 containing transcript and correctly spliced transcript. The products were run in a 5% polyacrylamide gel and visualized by phosphorimaging. Intron 7 retention levels were calculated as percent intron retention (PIR) of the intensity of the band corresponding to the intron-7 containing product over total transcript (intron-containing plus correctly spliced). Quantification of the bands indicated that approximately 35% of IKBKAP transcripts contain intron 7 and that this product is retained in the nucleus. Moreover, the radioactive RT-PCR results validated the bioinformatic predictions demonstrating that the bioinformatic analysis of the RNAseq results is a powerful tool to identify intron-retention events.
Example 33: Design of ASO-Walk Targeting Intron 7 and 8 of IKBKAP
[0224] An ASO walk was designed to target intron 7 (top panel) or intron 8 (bottom panel) using the method described herein (FIG. 39). A region immediately downstream of intron 7 or 8 5' splice site spanning nucleotides +6 to +58 and a region immediately upstream of intron 7 or 8 3' splice site spanning nucleotides -16 to -68 of the intron were targeted with 2'-O-Me RNA, PS backbone, 18-mer ASOs shifted by 5-nucleotide intervals (FIG. 39; Table 8, SEQ ID NOS: 329 to 360). These target regions were selected based on the knowledge that intronic regulatory elements concentrate in sequences adjacent to splice sites.
Example 34: Improved Splicing Efficiency Via ASO-Targeting of IKBKAP Intron 7 and 8 Increases Transcript Levels
[0225] To determine whether we can achieve an increase in IKBKAP expression by improving splicing efficiency of IKBKAP introns 7 or 8 using ASOs, we used the method described herein (FIG. 40). To this end, ARPE-19 cells were mock-transfected, or transfected with each of the targeting ASOs described in FIG. 39 and Table 8, SEQ ID NOS: 329 to 360, or a non-targeting SMN-ASO control, independently, using RNAiMAX (RiM) (Invitrogen) delivery reagents. Experiments were performed using 60 nM ASOs (as indicated in FIG. 40) for 48 hrs. RT-qPCR results plotted relative to normalized IKBKAP PCR product from mock-treated cells show that the IVS7+26 targeting ASO (top graph) and the IVS8+26 and -16 (bottom graph) targeting ASOs increase IKBKAP transcript level compared to the mock-transfected or non-targeting ASO (FIG. 40). This analysis indicates that these ASOs increase IKBKAP transcript level nearly 1.2-1.6 fold (FIG. 40). These results indicate that improving the splicing efficiency of rate limiting introns in the IKBKAP gene using ASOs leads to an increase in gene expression.
Example 35: Dose Response Effect of ASOs Targeting IKBKAP Introns 7 and 8
[0226] To determine a dose-response effect of the IVS7+26 and IVS8-16 ASOs, we used the method described herein (FIG. 41). ARPE-19 cells were mock-transfected, or transfected with the IVS7+26 or IVS8-16 ASOs, or a non-targeting SMN-ASO control, independently, at increasing concentrations, or a combination of both ASOs at 45 nM each (total 90 nM) using RNAiMAX (RiM) (Invitrogen) delivery reagents for 72 hrs (FIG. 41). Radioactive RT-PCR results show that the IVS7+26 or the IVS8-16 targeting ASOs increase IKBKAP transcript level compared to the mock-transfected or non-targeting ASO in a dose-dependent manner (FIG. 41). Intensities of the bands corresponding to the IKBKAP PCR products from targeting-ASO-transfected cells were normalized to Beta actin and plotted relative to the normalized IKBKAP PCR product from mock-treated cells. Results of this analysis indicate the IVS7+26 and the IVS8-16 targeting ASOs, and their combination, increase IKBKAP transcript level in a dose-dependent manner 2.0-2.5 fold (FIG. 40). These results confirm that improving the splicing efficiency of rate limiting introns in the IKBKAP gene using ASOs leads to an increase in gene expression.
Example 36: Improved Splicing Efficiency Via ASO-Targeting of IKBKAP Introns 7 or 8 Increases Protein Levels
[0227] In order to detect an increase in protein production upon targeting IKBKAP intron 7 or 8 with the IVS7+26 ASO or the IVS8-16 ASO, respectively, we used the method described herein (FIG. 42). ARPE-19 cells were mock-transfected, or transfected with the IVS7+26 ASO or the IVS8-16 ASO, or a non-targeting SMN-ASO control, independently, at increasing concentrations, or a combination of both ASOs at 45 nM each (total 90 nM) using RNAiMAX (RiM) (Invitrogen) delivery reagents for 72 hrs (FIG. 42). Briefly, protein extracts from ARPE-19 treated cells were run on a 4-20% SDS-polyacrylamide gel, and transferred to a nitrocellulose membrane. To evidence an increase in protein production, an anti-IKAP antibody or anti-Beta catenin antibody was used to detect IKAP and Beta catenin as a loading control, respectively. FIG. 42 shows western blot results indicating that IKAP is increased in a dose dependent manner upon treatment with the IVS7+26 ASO or the IVS8-16 ASO, or a combination of both ASOs. Intensities of the bands corresponding to the IKAP protein from targeting-ASO-transfected cells were normalized to endogenous Beta catenin and plotted relative to the normalized IKAP protein band from mock-treated cells. Results of this analysis indicate that the targeting ASOs IVS7+26 and IVS8-16 increase IKAP protein level approximately 3 fold (FIG. 42). These results demonstrate that promoting splicing efficiency by using ASOs targeted to a region downstream of the 5' splice site of IKBKAP intron 7 or a region upstream of the 3' splice site of IKBKAP intron 8, leads to an increase in target protein production as depicted in FIG. 2.
TABLE-US-00011 TABLE 11 PRPF31 Target Sequences SEQ ID NO REGION TARGET SEQUENCE 1 exon 10 UGGGCUACGAACUGAAGGAUGAGAUCGAGCGCAAAUUCGACAAGUGGCA GGAGCCGCCGCCUGUGAAGCAGGUGAAGCCGCUGCCUGCGCCCCUGGAU GGACAGCGGAAGAAGCGAGGCGGCCG 2 intron 10 gggcccuggggguccgguaggcaugggggucauggaggggagaagccgg cguccuccucccagccgacucccuggcgccgccca 3 exon 11 UACCGCAAGAUGAAGGAGCGGCUGGGGCUGACGGAGAUCCGGAAGCAGG CCAACCGUAUGAGCUUCGGA 4 exon 12 UCGAGGAGGACGCCUACCAGGAGGACCUGGGAUUCAGCCUGGGCCACCU GGGCAAGUCGGGCAGUGGGCGUGUGCGGCAGACACAGGUAAACGAGGCC ACCAAGGCCAGGAUCUCCAAGACGCUG 5 intron 12 ggccagacccagguggggcuggggaccgagggacacaagguggggggag cccagaucgcagccucc 6 exon 13 GGACCCUGCAGAAGCAGAGCGUCGUAUAUGGCGGGAAGUCCACCAUCCG CGACCGCUCCUCGGGCACGGCCUCCAGCGUGGCCUUCACCCCACUC
TABLE-US-00012 TABLE 12 RB1 Target Sequences SEQ ID NO REGION TARGET SEQUENCE 7 exon 24 AUCUUAGUAUCAAUUGGUGAAUCAUUC 8 intron 24 tattttctttctatgaaatataatagtatgcattgtaagtataaaagaa attaaagctttctataatttgaatttccaaatgcagttattcaaacacc tcatccaggcatattgcatagaattttatgagatatatatatctcagat ttactttcaaatcaagtttaatctcaaatcatactcctaattggtgaac ttcaaaacttttctaaatatccacttgagattatataatacatatatac atttgtgtatatacatacatatatacgtgagctgtttttgctcacaaca tttctatcaccaaatgtgtgagatttttttctcacccaaatctattctt caactctctggtgttctacaattcaattcaattctgacactaattaccc agagtcagcatcagactccacaggttcaagggctcagtcccacaaaaat ggtctcactgcagacaccagtcacaagtgtcaggtccccaggctacacc acacttccgtctgacttgaatacgaagttggggggttccgatagtgcct cttccttacagtttgatccactgccagaactactcacaaaactctggaa aatattctacttactattatcagttcatcataaaagatacaaatgaaca gccagatgaagaaatattatatagggtgaggtccagaagagtccctagc acaggggcttctgtccctggggagttggggtgcaccaccttcctagcac ttagacatgtttaccaactccaaagatctcccaaccttattgttgaggg gtttttatgggggtttcattatataggcataattgattaactcaatttc caaccccctcccctccctggatagagggtggggctgaaagttccaagct tctactcaagacttggtctttctggcaaccagcttccatcctaaattag ctaggtacccaccaagtatcacctcattagaacaaaagatggtcccatc acccttatcacacatgaaattcgaagggttttaggagctctgtcccagg aaccagggacaaagaccaaatatctttcaatgataccatgtatgtatgt acataacctcacaggaatctttataaaacaattttgaaattcactcatt atgagtgtgatttgaaatgagatactccaaaatgtaagcccgatatcca aatgtcaccagcctgtccctgcctactggtctccttccatacatatgca ctttttgcttgtccttcctctcagacttctaggatattctttttctggt acactgattaggaattgtttgcatgagatcctgcctcagtgaaagtggc agagcttcattctaggagatccaagggaaagctttgctttgaaacattt attctaggctgcaaatccacaaccctagttggccttccattaaagtcac taattcagcagtcccatattcaatatgcattactgttaatatgttgcac catctccattcccctgagagcttatatttttaatttttaaatttttatt tttagagacagtgtctcactctgtcacctacttattataacctcaaact cctcggcccaagcagtcctctcaccttagcctcccaagttgccaggact acaggcatgcaccaccatgtccagctaatttttaaattttttgtagaga cagggttttctatgttggccagattggtattgaactcctggcttccacg ataccccgtctcagcctcccaaagaactgggattacagatgtgagccac tgcacctggccagagagcttatattcttataggaatgggaagactgcct atgttatgtgttgctacataatacattacccccaaacttagtgacttaa aacaaacgcttattatctccatttctgtgggtcaataatctaggcatga cttagctgggccagagtttctccaaagtctgtgatcaaggtgtcagttg ggctgggcctgcagtcatctcaaggctccactagaggagcattcactgg cagacttattcaaatggctgttggctgatcctcgatggctattggcccc tctattggtttcttgcccttgggcccctccatagtactgcttgctattc acaacatggcagcttgctttgcccagagcagggactctgagggaggcag ggaaataaagagcaagagagaggtcacagtcttattgtaatctaattct ggaaatgacagcccattacttttggcatattattttggttagaagcaag acaacagtagatctagcccacacacgaggggaggaggatcacacaagga ggtgaataccaggaggtggggtcattgggagccatctgagaggctgccc accacactgcctcaagtaactagggagaggtaaaagtttatatgccaga tgaccaaatattaaaatgtgtgttacaaatagttcacgatgggctcagc tgtcagactttacaaaggagctatgggaccttataaggacagttggaac tggctaggtatcacatagtggtcttcaaacatttttgcttgccataacc tctaaaataattgggaaaaagttgaatgtacttccatatcttaaagctg ataatttaaaatattatacatttaatagcagcacgggatttagtttttg ttaaattgtatatgtgctccaaatagatttaccatcaaaacctgttttg aatttaatattgggagaattcgctagtttaatttttggaaaataaagta taattggcaaagctaatcctcactgttgaatctatccgtcaaatcagat ataatttctatcagaaagtctatatgacttgtcaacataatacccataa agtgaatcaaaaattattattcattgaacacatcatctcttatcaaatt cttgtgaccttccttctggttgtataatagcctaaaaaacaaaaaaagg acaaaagcaagtttccagaaagctgttctgacttgcctacttctgaaaa gtagtcctgtatggtgggttctgaaaatgaggaaccaggacttgcagag taggcagttgctggaggaagaatgtgagctgcatgggaaaagacaggag gatttacaaagagtgggtgtttaattggggatggaattaggtagttatt ctgatttttagatttttcatatcttttatttggtccaatgaagcagaaa atttaaatgaagttattacctttgcctgatttttgacacacctcaaact ataacttgaggttgctaactatgaaacactggcatttaatgatttaaag taaagaa 9 exon 25 CUUCUGAGAAGUUCCAGAAAAUAAAUCAGAUGGUAUGUAACAGCGACCG UGUGCUCAAAAGAAGUGCUGAAGGAAGCAACCCUCCUAAACCACUGAAA AAACUACGCUUUGAUAUUGAAGGAUCAGAUGAAGCAGAUGG
TABLE-US-00013 TABLE 13 HBB Target Sequences SEQ ID NO REGION TARGET SEQUENCE 10 exon 1 AUGGUGCAUCUGACUCCUGAGGAGAAGUCUGCCGUUACUGCCCUGUGGG GCAAGGUGAACGUGGAUGAAGUUGGUGGUGAGGCCCUGGG 11 intron 1 tatcaaggttacaagacaggtttaaggagaccaatagaaactgggcatg tggagacagagaagactcttgggtttctgataggcactgactctctctg cctattggtcta 12 exon 2 CUGCUGGUGGUCUACCCUUGGACCCAGAGGUUCUUUGAGUCCUUUGGGG AUCUGUCCACUCCUGAUGCUGUUAUGGGCAACCCUAAGGUGAAGGCUCA UGGCAAGAAAGUGCUCGGUGCCUUUAGUGAUGGCCUGGCUCACCUGGAC AACCUCAAGGGCACCUUUGCCACACUGAGUGAGCUGCACUGUGACAAGC UGCACGUGGAUCCUGAGAACUUC
TABLE-US-00014 TABLE 14 HBG1/HBG2 Target Sequences SEQ ID NO REGION TARGET SEQUENCE 13 exon 1 ACACUCGCUUCUGGAACGUCUGAGGUUAUCAAUAAGCUCCUAGUCCAGA CGCCAUGGGUCAUUUCACAGAGGAGGACAAGGCUACUAUCACAAGCCUG UGGGGCAAGGUGAAUGUGGAAGAUGCUGGAGGAGAAACCCUGGG 14 intron 1-5' ctctggtgaccaggacaagggagggaaggaaggaccctgtgcctggcaa aagtccaggtcgcttctcaggatttgtggcaccttctgactgtcaaact gttc 15 exon 2 CUCCUGGUUGUCUACCCAUGGACCCAGAGGUUCUUUGACAGCUUUGGCA ACCUGUCCUCUGCCUCUGCCAUCAUGGGCAACCCCAAAGUCAAGGCACA UGGCAAGAAGGUGCUGACUUCCUUGGGAGAUGCCACAAAGCACCUGGAU GAUCUCAAGGGCACCUUUGCCCAGCUGAGUGAACUGCACUGUGACAAGC UGCAUGUGGAUCCUGAGAACUUC 16 intron 2 tccaggagatgtttcagccctgttgcctttagtctcgaggcaacttaga caacggagtattgatctgagcacagcagggtgtgagctgtttgaagata ctggggttgggggtgaagaaactgcagaggactaactgggctgagaccc agtggtaatgttttagggcctaaggagtgcctctaaaaatctagatgga caattttgactttgagaaaagagaggtggaaatgaggaaaatgactttt ctttattagattccagtagaaagaactttcatctttccctcatttttgt tgttttaaaacatctatctggaggcaggacaagtatggtcgttaaaaag atgcaggcagaaggcatatattggctcagtcaaagtggggaactttggt ggccaaacatacattgctaaggctattcctatatcagctggacacatat aaaatgctgctaatgcttcattacaaacttatatcctttaattccagat gggggcaaagtatgtccaggggtgaggaacaattgaaacatttgggctg gagtagattttgaaagtcagctctgtgtgtgtgtgtgtgtgtgcgcgcg cgcgtgtgtgtgtgtgtgtcagcgtgtgtttcttttaacgtcttcagcc tacaacatacagggttcatggtggcaagaagatagcaagatttaaatta tggccagtgactagtgcttgaaggggaacaactacctgcatttaatggg aaggcaaaatctcaggctttgagggaagttaacataggcttgattctgg gtggaagcttggtgtgtagttatctggaggccaggctggagctctcagc tcactatgggttcatctttattgtctc 17 exon 3 UCCUGGGAAAUGUGCUGGUGACCGUUUUGGCAAUCCAUUUCGGCAAAGA AUUCACCCCUGAGGUGCAGGCUUCCUGGCAGAAGAUGGUGACUGCAGUG GCCAGUGCCCUGUCCUCCAGAUACCAC
TABLE-US-00015 TABLE 15 CFTR Target Sequences SEQ ID NO REGION TARGET SEQUENCE 18 exon 1 AAUUGGAAGCAAAUGACAUCACAGCAGGUCAGAGAAAAAGGGUUGAGCG GCAGGCACCCAGAGUAGUAGGUCUUUGGCAUUAGGAGCUUGAGCCCAGA CGGCCCUAGCAGGGACCCCAGCGCCCGAGAGACCAUGCAGAGGUCGCCU CUGGAAAAGGCCAGCGUUGUCUCCAAACUUUUUUU 19 intron 1 aaggtggccaaccgagcttcggaaagacacgtgcccacgaaagaggagg gcgtgtgtatgggttgggtttggggtaaaggaataagcagtttttaaaa agatgcgctatcattcattgttttgaaagaaaatgtgggtattgtagaa taaaacagaaagcattaagaagagatggaagaatgaactgaagctgatt gaatagagagccacatctacttgcaactgaaaagttagaatctcaagac tcaagtacgctactatgcacttgttttatttcatttttctaagaaacta aaaatacttgttaataagtacctaagtatggtttattggttttccccct tcatgccttggacacttgattgtcttcttggcacatacaggtgccatgc ctgcatatagtaagtgctcagaaaacatttcttgactgaattcagccaa caaaaattttggggtaggtagaaaatatatgcttaaagtatttattgtt atgagactggatatatctagtatttgtcacaggtaaatgattcttcaaa aattgaaagcaaatttgttgaaatatttattttgaaaaaagttacttca caagctataaattttaaaagccataggaatagataccgaagttatatcc aactgacatttaataaattgtattcatagcctaatgtgatgagccacag aagcttgcaaactttaatgagattttttaaaatagcatctaagttcgga atcttaggcaaagtgttgttagatgtagcacttcatatttgaagtgttc tttggatattgcatctactttgttcctgttattatactggtgtgaatga atgaataggtactgctctctcttgggacattacttgacacataattacc caatgaataagcatactgaggtatcaaaaaagtcaaatatgttataaat agctcatatatgtgtgtaggggggaaggaatttagctttcacatctctc ttatgtttagttctctgcat........ccaaataaggtctgaatgaca caaattttagaactctccagagaaaagaaagatgctgagggaaaaagca taggtttgggactcactaaatcccagttcaattcctttctttaataaat atattcaattttacctgagaaagctctcgtgctctcgaattttatttag aaatttctctttgtacatgattgatttcacaatccttcttctgcctcct cttctactttcttctttctagattttcctatctttatgaagattattct gccttatcctcaacagttagaaacaatatttttgaaaatcactacggta tcctgcatagtgatttcccatgccaactttactaatttccattataaat tattatttattgatgcctagagggcagatgagtgtagctgctatggagt gaggagacaaaacataagaaagttatgatcctaccctcaggtaatgatt cagacatgataattaagtcaacaaattgatagaaactaatcactaactc tctggctatagtcattctttcaatgaatagctcattactgagtatgcat gctacagtaacaaaattatataaggctgttgattaaatgttgattaagt gcatgtcttattcagagtttttttatatttgaaatggaagaggctggac ttcagtaatttgctataaactgctagtatatgattatttgggggcagtt attttttaaagaataatttaaatatggaatgtttagcagtttgtttttt ccctgggaaaaaccatactattattccctcccaatccctttgacaaagt gacagtcacattagttcagagatattgatgttttatacaggtgtagcct gtaagagatgaagcctggtatttatagaaattgacttattttattctca tatttacatgtgcataattttccatatgccagaaaagttgaatagtatc agattccaaatctgtatggagaccaaatcaagtgaatatctgttcctc 20 exon 2 UGGACCAGACCAAUUUUGAGGAAAGGAUACAGACAGCGCCUGGAAUUGU CAGACAUAUACCAAAUCCCUUCUGUUGAUUCUGCUGACAAUCUAUCUGA AAAAUUGGA 21 intron 2 ttcatgtacattgtttagttgaagagagaaattcatattattaattatt tagagaagagaaagcaaacatattataagtttaattcttatatttaaaa ataggagccaagtatggtggctaatgcctgtaatcccaactatttggga ggccaagatgagaggattgcttgagaccaggagtttgataccagcctgg gcaacatagcaagatgttatctctacacaaaataaaaaagttagctggg aatggtagtgcatgcttgtattcccagctactcaggaggctgaagcagg agggttacttgagcccaggagtttgaggttgcagtgagctatgattgtg ccactgcactccagcttgggtgacacagcaaaaccctctctctctaaaa aaaaaaaaaaaaaggaacatctcattttcacactgaaatgttgactgaa atcattaaacaataaaatcataaaagaaaaataatcagtttcctaagaa atgattttttttcctgaaaaatacacatttggtttcagagaatttgtct tattagagaccatgagatggattttgtgaaaactaaagtaacaccatta tgaagtaaatcgtgtatatttgctttcaaaacctttatatttgaataca aatgtactccctgggaagtcttaaggtaatggctactggttatcaaaca aatgtaaaaattgtatatttttgagtacctgttacatgccaggtagaat atctcctctcagccactctgagtggaaagcatcattatctctattttac agaaaagcaaactgaggctcagagagataatatactttgccagttaatg aatgatggagccatgattccagctgaggtctgtattgccttgctctcta ggaatggtagtcccccccataaagaatctctcagtttcctttccaatca aaaggttaggatccttttgattgccagtgacagaaacccaatttactag cttaagtaaataaaaggaac......gcccgccttggcctcccaaagtg ttgggattagtggcgtgagccactgccccggcctattactcctttagag tgatttagagccatgtttacttatggtaacttgacagtaatgggaataa ccactgatgaaacgtaaagcctttgtctaattgtttacctagttcttcc ttgtggttcatgaaatttttcatctctgtacagtttgaaaattaagatg ataatatttagagatattttattcctttgtgaagagaaaaaaggctttc attaacagaaatcagtggcaataacttaataaatacaatcagctggtgt tcctatagtatttaaaagaaaacagaaagtttactagatttcagccagt tttcagactatttaatgtctattcttactataatagaaaatatataatt tgatcttgttctcatttttcaaagacctttaatacatgattttagtagt tgaaaatgaagtttaatgatagtttatgcctctacttttaaaaacaaag tctaacagatttttctcatgttaaatcacagaaaaagccacctgacatt ttaacttgtttttgatttgacagtgaaatcttataaatctgccacagtt ctaaaccaataaagatcaaggtataagggaaaaatgtagaatgtttgtg tgtttattttttccaccttgttctaagcacagcaatgagcattcgtaaa agccttactttatttgtccacccttttcattgttttttagaagcccaac acttttctttaacacatacaatgtggccttttcatgaaatcaattccct gcacagtgatatatggcagagcattgaattctgccaaatatctggctga gtgtttggtgttgtatggtctccatgagattttgtctctataatacttg ggttaatctccttggatatacttgtgtgaatcaaactatgttaagggaa ataggacaactaaaatatttgcacatgcaacttattggtcccactt 22 exon 3 GAAUGGGAUAGAGAGCUGGCUUCAAAGAAAAAUCCUAAACUCAUUAAUG CCCUUCGGCGAUGUUUUUUCUGGAGAUUUAUGUUCUAUGGAAUCUUUUU AUAUUUA 23 intron 3 gatctcatttgtacattcattatgtatcacataactatattcatttttg tgattatgaaaagactacgaaatctggtgaataggtgtaaaaatataaa ggatgaatccaactccaaacactaagaaaccacctaaaactctagtaag gataagtaaaaatcctttggaactaaaatgtcctggaacacgggtggca atttacaatctcaatgggctcagcaaaataaattgcttgcttaaaaaat tattttctgttatgattccaaatcacattatcttactagtacatgagat tactggtgcctttattttgctgtattcaacaggagagtgtcaggagaca atgtcagcagaattaggtcaaatgcagctaattacatatatgaatgttt gtaatattttgaaatcatatctgcatggtgaattgtttcaaagaaaaac actaaaaatttaaagtatagcagctttaaatactaaataaataatacta aaaatttaaagttctcttgcaatatattttcttaatatcttacatctca tcagtgtgaaaagttgcacatctgaaaatccaggctttgtggtgtttaa gtgccttgtatgttccccagttgctgtccaatgtgactctgatttatta ttttctacatcatgaaagcattatttgaatccttggttgtaacctataa aaggagacagattcaagacttgtttaatcttcttgttaaagctgtgcac aatatttgctttggggcgtttacttatcatatggattgacttgtgttta tattggtctttatgcctcagggagttaaacagtgtctcccagagaaatg ccatttgtgttacattgcttgaaaaatttcagttcatacacccccatga aaaatacatttaaaacttatcttaacaaagatgagtacacttaggccca gaatgttctctaatgctcttgataatttcctagaagaaatttttctgac ttttgaaataatagatccat.....atttcctctcagggttaccctctg atccctattttactaaatcgttataaaacaaaatgaggaattatgtgtc cttcccttttgaagccaatgtaacaagatgggtaagaattagacctcct gagttcaaaatccctggattcagatctattcctgtatattcaggagaag tggtaataaattcgatggacaatttggtttagtagtcgattgaggaccc tgatgaggtatatttgggaaaacataacttccgctctctctcattgact cacgggcctttgaggagtccaggagtcattggaatctggcctgaggttg aggctgctggcaaaactccttccccaaagtccattcctattgctgactg agaagggactagcattggaagtggctgattttaaataccgctagtgctg gtgtgctcctccctcccattcccagctctgctttgtgtagttgccttga gaagctaagttcattctgaaaataatgccattgcacaaaacacttttga aagttctagtttgaaattacatcaggtcacttggtctgtgtggcctcag tttcttcatctgccatgtgaaaataataatgcctactctgtagcaaaga aagtctctatagtaaacaaaaaaaaagcctactctgatactgaaagttg ttatgaaaaataaaaaagggaaatgctttagaaactgttaagtgctatg tagatgttactaattaacaaaccatttcagaaactatactttttatttt atggccactattcactgtttaacttaaaatacctcatatgtaaacttgt ctcccactgttgctataacaaatcccaagtcttatttcaaagtaccaag atattgaaaatagtgctaagagtttcacatatggtatgaccctctatat aaactcattttaagtctcctctaaagatgaaaagtcttgtgttgaaatt ctcagggtattttatgagaaataaatgaaatttaatttctctgtt 24 exon 4 AAGUCACCAAAGCAGUACAGCCUCUCUUACUGGGAAGAAUCAUAGCUUC CUAUGACCCGGAUAACAAGGAGGAACGCUCUAUCGCGAUUUAUCUAGGC AUAGGCUUAUGCCUUCUCUUUAUUGUGAGGACACUGCUCCUACACCCAG CCAUUUUUGGCCUUCAUCACAUUGGAAUGCAGAUGAGAAUAGCUAUGUU UAGUUUGAUUUAUAAG 25 intron 4-5' acttccttgcacaggccccatggcacatatattctgtatcgtacatgtt ttaatgtcataaattaggtagtgagctggtacaagtaagggataaatgc tgaaattaatttaatatgcctattaaataaatggcaggaataattaatg ctcttaattatccttgataatttaattgacttaaactgataattattga gtatcttctgtaaactgcctctgttgtagttttttttttctcctaatca tgttatcatttttttggaatccatggtttcctgttaagatgactcacac agcctacataaaagtaattgacaaaatatcatcttatagtaaaatgcca catatctttatgttcagcaagaagagtataatatatgattgttaatgat aacccaaacaacaaaagatttcaccttaactggttgtcataagtagtag tatccaccgccttattttgagttggatttttatcatcctatgagcccta caaatttaaagtttttggaacagcacgtgcattgaacccataagaacct actctgcttttctgcatgtattgtccagacaagagaccaaattgccgag gcatcatttaggtgaattctaattaacatttagctaccttacaaccaca attcaaggttgtttcaaaggcatgtgcttgcatcatcctgattcactac catgtgttactaacttggatctgcaaagtcattataaaaagctgttttg atggacttatttggatattgctttacccttcttctctcttttcttttat caatgtaaaaacattatatgttaaatacttggcttttaagagcatagat ctgaaatctgcctctagcaaataacccataacacttctaagatatacct gcaaggtcaattgtgttgtaaaaccttgataaccatactttattgttca aaaaagccttttatgaaggcagaagttaaaaaaaaaaaacaaaaaaaac agagtccacagttatcacctcagctacaatctcatcagttcacaagtac cagcaaaacatgtgataagtcaacaaatgttttatttcaatctgaacat tttacgtaagtgaagactttgttagatatcatttggaatgtggaatcta cacagttggcatatcagagaaggttgaattcagtttaataaatgtttat agaaagtgcttgttatcataatgataatagctcaggatgtgcatgacaa gcttttaagcgattgggtacactatctcatttgatcttctgcacaacta ttaatggtaggtactattatccctatcttatggataagtaaactaagat ttaaaaagtacagaacatggtgtgaacactgcttcaaaatttctaaaat aggtaaatcacgatctctaaactggagggttgtccaaccactagggaca atagagtactgatatttagtggtcagactgtaatgcgggaagagacagg catgggctaaacgggtgtagagatcaaataaggggcaggttagtttgta aacatgtccatatgtaacatttagcacaaatacaggatataggtgcttt cagacccagctgcattgataaaaagttaggtggtattgtatctgtcttc ctttctcaatgttgcatatctgtgttcttgcccagtttgcttcatctct ctagccacacttattggcctacaatggcatcatcaccaaagaaggcaat cccatctccgtgtggctttggtttgctccctaaagtaaaccttgtgttt acttttcccaggtctcatgctttcccatatctgacctgttttgtcctca tggccaggatatgtgggacctttcctacaatgttccaaagtttgtaata gagctcttctctgctttgttccaaattctgcaacattttactttaaata atgaatttaaatacaaacaaacttgagctttgcctatacttttcaagaa tgcagagataactaaattaataaaaatattcattgagtccttactgtgc acacagctctatgttaagccttgtgcagaactcaaagtcactcgagatt aagcctgttactaagttatgtgcaatttagctcagtggatttcccccac ttcatattgctctgataatgttttggaattaactgccttgattccttct tttctctgcttgtctatacactatttattattctacaccatctcaaatt ctaactcctcaagaaaatccttccagatgatttttctaaccaggagttt taacttccttttaactaccctattactttctacttccttaactcatcta tcatattatatttagttatttatatactaggtcgccttgaagaagggat tgtgttttcataaatcttaataatccctgaggcatcaagtacagtgatt tgcatttactaaatgctcaacaaatatgtgagggattcacttgaaacta atattagataattcccagtcaaagtgatctaatagcaaatcaattcttc agttttataggcaaagtatgactctggttttccataatcataattaatt tgtcaactttataattttaattaagtaaatttaattggtagataaataa gtagataaaaaataatttacctgcttaactacgtttcatatagcattgc atttttctttgtaaaatttaagaattttgtattaataaacttttttaca aaagtattaattattcagttattcatcatatacttttattgacttaaaa gtaattttattcaaaagagttagtataggactacatgaaaaattcaagg ccaaggcttaatttcaaatttcactgcctttggctctatcttttaaaac aaaacaaaaaactcccgcacaatatcaatgggtatttaagtataatatc attctcattgtgaggagaaaaaataattatttctgcctagatgctggga aataaaacaactagaagcatgccagtataatattgactgttgaaagaaa catttatgaacctgagaagatagtaagctagatgaatagaatataattt tcattacctttacttaataatgaatgcataataactgaattagtcatat tataattttacttataatatatttgtattttgtttgttgaaattatcta acttt 26 exon 5 CUUUAAAGCUGUCAAGCCGUGUUCUAGAUAAAAUAAGUAUUGGACAACU UGUUAGUCUCCUUUCCAACAACCUGAACAAAUUUGAU 27 intron 5 tacctattgatttaatcttttaggcactattgttataaattatacaact ggaaaggcggagttttcctgggtcagataatagtaattagtggttaagt cttgctcagctctagcttccctattctggaaactaagaaaggtcaattg tatagcagagcaccattctggggtctggtagaaccacccaactcaaagg caccttagcctgttgttaataagatttttcaaaacttaattcttatcag accttgcttctttttaaaactttaaatctgttatgtactttggccagat atgatacctgagcaattcttgttctgggttgtcttatgtgaaaaataaa ttcaaggtccttgggacagataatgtgttttatttatctttgcatatcc attacttaaaacagcattggacccacagctggtacaaaattaattactg ttgaattgagcaaatatttattctaaatgtctctgtcaaatgacagagt gtggttgtgtggattaagtccctggagagagttctttgttctctcatgt tctatgctgtggttcttgctttatgcaaaaagaagtaagttacttaaaa cctggacatgatacttaagatgtccaatcttgattccactgaataaaaa tatgcttaaaaatgcactgacttgaaatttgttttttgggaaaaccgat tctatgtgtagaatgtttaagcacattgctatgtgctccatgtaatgat tacctagattttagtgtgctcagaaccacgaagtgtttgatcatataag ctccttttacttgctttctttcatatatgattgttagtttctaggggtg gaagatacaatgacacctgtttttgctgt 28 exon 6 GACUUGCAUUGGCACAUUUCGUGUGGAUCGCUCCUUUGCAAGUGGCACU CCUCAUGGGGCUAAUCUGGGAGUUGUUACAGGCGUCUGCCUUCUGUGGA CUUGGUUUCCUGAUAGUCCUUGCCCUUUUUCAGGCUGGGCUAGGGAGAA UGAUGAUGAAGUA 29 intron 6 aacctattttcataacttgaaagttttaaaaattatgttttcaaaaagc ccactttagtaaaaccaggactgctctatgcatagaacagtgatcttca gtgtcattaaattttttttttttttttttttttgagacagagtctagat ctgtcacccaggctggagtgcagtggcacgatcttggctcactgcactg caacttctgcctcccaggctcaagcaattctcctgcctcagcctccgga
gtagctgggattagaggcgcatgccaccacacccagctaatttttgtat tttagtagagacagggtttcaccaggttgcccaggctggtctcgaatgc ctgacctcaggtgatccgcccacctcggcctcccaaagtactgatatta caggcatgagctaccgcgcccggcctaaaaaatactttttaagatggtg taaatattactttctgtatcaatggtacattttttacttgtcagtctct agaatttctttataaatatgttgattcagttcatttttgtagattataa aacaggtaaaaaaggataaaacatttatgtgaattaaagggaataccta atttttgtgtagagtttattagcttttactactctggtttatggatcat cacaccagagccttagttactttgtgttacagaataactaatatgagtg aatgaatgacttacacaagtcactgcttaggataaagggcttgagtttg tcagctagagtatgacagaaagtatctaagttttggagtcaaatagcac tttgtttgaatcccagattgcatgcttactagttatgtgaccttagtca agccacttcacctcactgagtctttgcttttttcatctctaaaatagag atacccaccgctcataggctgtcataagggatagagatagcatatggaa tgagtctgtacagcgtctggcacataggaggcatttaccaaacagtagt tattatttttgttaccatctatttgataataaaataatgcccatctgtt gaataaaagaaatatgacttaaaaccttgagcagttcttaatagataat ttgacttgtttttactattagattgattgattgattga 30 exon 7 GAUCAGAGAGCUGGGAAGAUCAGUGAAAGACUUGUGAUUACCUCAGAAA UGAUUGAAAAUAUCCAAUCUGUUAAGGCAUACUGCUGGGAAGAAGCAAU GGAAAAAAUGAUUGAAAACUUAAG 31 intron 7 ttgttccaataatttcaatattgttagtaattctgtccttaatttttta aaaatatgtttatcatggtagacttccacctcatatttgatgtttgtga caatcaaatgattgcatttaagttctgtcaatattcatgcattagttgc acaaattcactttcatgggctgtagttttatgtagttggtccagggtgt tattttatgctgcaagtatattatactgatacgttattaaagaatttcc tacatatgttcactgctgctcaatacatttatttcgttaaaacaattat caagatactgaaggctgattggtaactcacatggaactgggagagtata caattctgaaccaaatagatgattctctattattatatcttaatttatg tgttatggtatattaaacatgaaaaaaattgtatttggttagaatatgt ttgctcttccttaactcgggaatgacatagggtaatattcacagattgg gttcctataaatcctccacttgaagtgaagtcagttcaagtaatgaaag ctacctcctgagatagaatcagtacttggcacctatctctagtgttctt tcacctcatataacctttcactgattagtaaagattatatccaacaaag aaagtacagcacagactgagatatgattactgagataaatttgggcaaa atataaactacagcatttctgtagcaatgagaccatttttcttcagttg agctccatgttctacaaacttcaatcaaaaaaggttctaggagactcag tgaaagttgatacactgttcaaggaacaaataatttcagcacatgggaa tttcacagggaaaaatatactaaaaagagaggtaccattttggatggtg tcaatatgggttatgaggaattcaggctgctgagtccagtgtacaatgg aaactgagctgcaggtgtgtgattgtaacaacaaaagaaatgctgaaat attaagtcctttgccatgtaaatagaaaaagagtatttatttcccaaac attattgctcacctgtttttgttatgcctttcaagataaatccaggaaa ggaattgcattttctttccagaaaacaagttcttgggggaattgttcaa ttggtagatgttgtttttctcattaacaagtgagtgctccatcacactt gctgagtgctccatcacacttgctctctgcattactcctctgcctgcaa acacatatatagcaagggtgatgacaaggatatcagagggtctggtttt ctcaaactcatgataaactcatggctgggtcattcttggtgctgatttt actttgttttttgttgttattgttccctcttcctcaaaagatgaaatct atccctcttacttggaatttctctttgatatatagcgaatgtttggttg taacctgtataatctggcatgaaattgtcactcgaaaaggctagaagtg ttgacataaatatgggacagcaagagttgctcctactcaagagagcaaa tataatgttctggaagagattggcagaattcacatcaaaggagtgatta cttcagcctgggccactgttgtactggtcaaaaggctgtgcaaagctct ctgaaaatccactcttttattgctctttagtaataaagtcactttcaat tttaaaaataacaaactgatatatttttatgactcataaaatgttagca attatattatggagaatctactttctgggtgattcttacaaatgttctt ggatctatttttttttcttatagtacctattcttcccatttttctcagc tctagttaatatatttcaacaacagttcaacaaatttaacatttttata aaaagtgtttcctatcattttataaataccagcctagtccatgttattc cttttcttgttgaggagaaaggacacacattgtaaattcaaatatagac ctctactgtgctatttaatcttggtaacaactccacaaaggagatgaca tgttttccttctatagaggtagattctgtaaagttagagggaagagtga cttgcttaagatggcataagctgtaactggcagaaccaggattcaaagc caggtgggatgccaaaatcataatctgtcttcagtgtcaagttactgaa attggtaaacattagacctaaatagacggaattgcaatccgggttgggc acattaaactccattttcttcatcaatgtgctcagattacattttactt ttcaggctaaaaatggaaaaaaagagtccctcttagttctgcacttgag aatgagaatagcttttctgaattatacaaggaagaagaactaatgccca aatgccaggtacccacatgcactatgccatggcacagctgttgccccct ttcaccagagccctctctctgtatcctggttgacctttccttgggcaag agctgggtggggaggatcacaagtgactccaatttggatggcttcggga agactgggaccgagctgaaggcagtgttgtcctctgcactccctgtttt ctgtctgctggagcactgaagcctcacatatgtattaaaaaaataattt ccatttgcatttcagactagaagattgaacgtatagtgtaatgtgattg caaataattatattgaaatgagacagagaggatgtagtatctactgtca taatttttcaaaacccacctgcaacttgaattaaaagaaccacttgggt ttttttttttgtttcaaacgcaaatcctggaaacctactgagactcatt cagtcagtatctctaagaggcaagcttgagactgtatatttaaaaagca tctcaggtgatttttacacatgctaaggcttaagaaccacttctctgta gcttatatgttattttcaatgttcctcaaagccaagttagaatttccaa agtgttaagaatccattagacaatcacagaattgtctttttcctttata aatcttgcaatgttgttctcatttccatacttaattacttaaaacacca accaaccaacaagcaaaaaatgattagtctaactaatattacaagttaa taatgaagtaaaggtttaaaaataatgtcataataatgttaataacaaa ttattaattataatttaaaaataatatttataatttaaaaataatattt acaagtactacaagcaaaacactggtactttcattgttatcttttcata taaggtaactgaggcccagagagattaaataacatgcccaaggtcacac aggtcatatgatgtggagccaggttaaaaatataggcagaaagactcta gagaccatgctcagatcttccattccaagatccctgatatttgaaaaat aaaataacatcctgaattttattgt 32 exon 8 ACAGAACUGAAACUGACUCGGAAGGCAGCCUAUGUGAGAUACUUCAAUA GCUCAGCCUUCUUCUUCUCAGGGUUCUUUGUGGUGUUUUUAUCUGUGCU UCCCUAUGCACUAAUCAAAGGAAUCAUCCUCCGGAAAAUAUUCACCACC AUCUCAUUCUGCAUUGUUCUGCGCAUGGCGGUCACUCGGCAAUUUCCCU GGGCUGUACAAACAUGGUAUGACUCUCUUGGAGCAAUAAACAAAAUA 33 intron 8 gtaccataatgctgcattatatactatgatttaaataatcagtcaatag atcagttctaatgaactttgcaaaaatgtgcgaaaagatagaaaaagaa atttccttcactaggaagttataaaagttgccagctaatactaggaatg ttcaccttaaacttttcctagcatttctctggacagtatgatggatgag agtggcattttatgccaaattaccttaaaatcccaataatactgatgta gctagcagctttgagaaattctaaagttttcaagtgataagactcaatt tatacaaagctaattggataaacttgtatatgattaagaagcaaataaa tacttattatgcttttttgctgtttatttaaatatttaacccagaaaat aagtcactgtgacagaaataaaaatgagagagaagggtgagccactctt aggtagttctggcattatttaatctaggccagaggttgcaaatggtgtc ccatagaactaattttggctcctagacctgtcttatttaacctttcatt taaaaaatttgtattggttgccagcaattaaaaattgggagatgtctca cacacacacacacataaacacacacactcatgtgtgcagcctcttttga agaattggaataactagtcaactgcgtcctccttttccacaagctgtga cagctccctgctcacagagcacctgccctctcctgttcatcatgctctc ttctcagtcccattccttcattatatcacctatttggtcctgagactaa gtgagtttgagatctgtgatttagacaaagtggtgaatctagctctgaa tcatagtaagtagctctgggaatcatcttgtcttctgttagcccattga gagagaaatagagagagagagagagagaaagaaagaagaagaaacagat ctggggagagtcactgaatgggagcatagagacagagaaacagatctag aaaaccaaactgggagaaaatgagagaaaccaaaagagaggtagagagg agcagagaagaaaatgaagaagcaaggcaaggaccaggctttttcatta tttcttatggccaagacttcagtatgcgtggacttaattcttccttatg ctcctaccttccctagggaaactgatttggagtctctaatagagccctt cttttagaatcacagtttgatgccttaaaactagttatataccttcaca tgcttccttaacccacagaagtgatgctaatgaggcccttaataaggag cgtgctattaagatgaagacattcattttttttctccgtccaatgttgg attaaggcacattagtgggtaattcagggttgctttgtaaattcatcac taaggttagcatgtaatagtacaaggaagaatcagttgtatgttaaatc taatgtataaaaagttttataaaatatcatatgtttagagagtatattt caaatatgatgaatcctagtgcttggcaaattaactttagaacactaat aaaattattttattaagaaataattactatttcattattaaaattcata tataagatgtagcacaatgagagtataaagtagatgtaataatgcatta atgctattctgattctataatatgtttttgct 34 exon 9 AUUUCUUACAAAAGCAAGAAUAUAAGACAUUGGAAUAUAACUUAACGAC UACAGAAGUAGUGAUGGAGAAUGUAACAGCCUUCUGGGAG 35 intron 9-5' aatttttaaaaaattgtttgctctaaacacctaactgttttcttctttg tgaatatggatttcatcctaatggcgaataaaattagaatgatgatata actggtagaactggaaggaggatcactcacttattttctagattaagaa gtagaggaatggccaggtgctcatggttgtaatcccagcactttgggag accaaggcgggtggatcacctgaggtcaggagttcaagaccagcctggc caacatggtaaaacccggtctctactaaaaatacaaaaaattaactggg catggtggcagatgctgtagtcccagctgctcgggaggctgaggcagga gaatcacttgaacctgggaggcggaggttgcagtgagctaagatcacgc cactgcactccagcctgggcaacaaggcgagactctgtctgaaaaagaa aaaaaaataaaaataaaaataaaaagaagtggaggaatattaaatgcaa tataaaagctttttttatttttaagtcatacaatttgtttcacataaca gatcaggaaataatacagagatcataagttttggagctgggtttgaatc ctggctctgccatttactttctgtgtaatctaagtcaagttactgaact ttgtgggccctctggctctccatgtgtaaaatggagaatattaatattt accttgcaagtttgttgtgaagactgaaggagagaatttaggtaaaaca ttcatcagagtaccatgcacacagttgttcctcaataaacattagcttc tctgattgcaagttccagtctaaagtgctttatatataccagccaataa aaggatgcgagagagatataccagtgtattgttttctaccattttaaac ctattttcatccactgttacaaattctatcatactgctccacataaaaa atattatcaatgatttttagtctctgaagtgcaatatttgattattgag cacacctgttgaagttttagtttcttctcacttacatgggttgtgtaaa ggtaggaggtataaaaccagtgtcctaggtctaaatctttcttaatgtc atactttggattcattgatataagtaacttgagcaccagcgcttcattt tacttcattttttaaagatatagtaagagtaattcccatctgcctagca aaattgttttgtagaaaagtttgtggatcagatttattttactttgatt ttaggaatttcaagtgtcttcgtcggcatgaaggaaaaatatgcagttt gacattttctactactttcaggtcattattttcctactctggtgcaaaa accctcaattcctgtctcactccatctaatcaaataggtagcatgcttg agcccttactatgtgccaggcactaggataagcactttatatgttttgt cccaattaattctcacagcatttctatgacctaaataaaattaatattt tcatttcaccaataataaaatggaggcttcaaaaagtttagggacttgg ctcagctcacacaactggcaaggactgaaaatggattttagtcccaaat gtcataggctagagccctttcactaaactgttgtcttccatctggtggc atcctcttcctccagtctttgtcacctaaactctgggcaccccttgatg gcatttacttatgatggtgatgcttgttaaacttcctgtttgcgacttc aacgtccatataaatgagtcttccaatactgtacttagaacttatattt tgtagtgacttctttaaaagctttctctcttagtcatatcctgagtttt gttagcacctggacttaccttactttggaaatgttgcactctgaaatct ctttctcagcttggaatttcctaatcttccaactgtttgagtcttttaa ttctacatttactgcctttccatttcatcaggatttctagtctctttaa ttcttccttttgaactcctcctgatttaacctctgcttattcgaagaac aataattttattctctcagctgcactctcaattcccttttccttttggt gatttttctttttcctacagaacacttactttatcagttttggagaagg aagtgctatctgggtaacagtagtgctatctgttgactctagtcaactg taagttttatacatttattgtttaaaccttatatgggtctataatcctt cttgggaaatcctttcatttgtctttaatttcctttaccatttccctaa aggctattccagatttttatcacattcacaaaattcccgtcttttctca ggatctgttcacccccagtagatagccttgtctcccacaatacatggag aaaatagaggccaccgtcatatttgaatgtttccaacttctctcttcac ctttggaattatctttttcttcttttgtgtctaagagaaagatgtatac ttcttcttacccttgtctgaactactctattttgcttcatcttctcaga acaggggaccagcaattattcttcctccagaagcttcaacatcttttgt caactgactccttctcatgtttaaatattttcaagttaaacaatttctt tcctgactttcgctcacgcaacctcatgcccaaaaccttatcactcttc ttccctttgctgtcaaggctgttctcacttcttcactttttgtggactt ctccccactacaacatagattctgctatcaccaatctattaaaactgtt atactcttgtggaatttatcatttaatttagcttcagtgaaccgttctt tccagattattttggcctcagaccatgacttctaagtctgccgtgcttg ccacttaagtgatgatgggccagtgggtccccacctaggcctctgtgtt agtctgttttcatgttgctgataaagacatacccaagaatgggcaattt acagaagaaaggggtttgagggactcacagttccatgtgactggggagg cctcacaatcatggtggatgatgaaaggcatgtctcacatggaggcaga taagagcatagaacttgtgcagggaaacttccctttattaaaccaccag gtcttgtgagacttcttcactatcacgagaataggatgggcaagaccct cccccatgattcaattatctcccactgggtccctcccacaacacatggg aattatgggagctataattcaagatgagatttgggtgaggacatagcca aaccatatcagcctccttctggctttttatgttctccgtgggtgacctc tctcaggctcaagtgataaccaatgtgctgatgactctcaaatgcgcat ctctggcttcagtttcttccttgaacttcatacatatgtttccaaattt cctgcgtgtacctcaaggttcttgttcatcacttcccaagcttcataaa cgcactcattttagtgtattctctgtctcctttgatagcatccctgaga ggcaagtccctggtgagttatatacaactcctcccttgctccaaacctg agagtaagtaacattcctattaacatattaggaagctgaggcttagaca gtttaagtaactcaagcatggttacacaactagctagggcagagctaaa atgtcaggctaggcttctgtgactccaaagccctttctcacttagcata tcatcacttatttttttttttaatcacatatatgatttttttttcttta agagatagaatcttgctctatcacgtgggctggagtgcagtggcacaat catagctcactgtaaccttgaacttgggctcaagtgatcctcctgcctt agcctactgagtagctagggctacagacacacaccaccatgcctagcta attttattttattttattttattttttgagacagagtctcactctgtca cccaggctggagtgcagtggtgcgatcttggctcactggaacctctgct gcccgggttcaagcgattctcctgcctcagcctcctgagtagctgggat tacaggtgcctgccactgtgcccagctaatttttgtatttttagtagag acggggtttcaccatcttggccaggcttgtcttgaactcctgacctcgt gatccactcgcctcggcctcccaaagtgctgggattacaggtgtgagcc accacgcctggccacctacctaatttttaatttttttgtagagacaggg tctcactacgttgcccaggctggtcttgaactcctgttctcaaacaatc ctcctgcctcggacaccccaagtgcagggattacaggcatgagtcattg cagctgacctgtatatatgatttttagtatatgtaaatatacatattta ttaaatgtaaatataaatataaatgtgtggagtgatatccattgaaatg ttaaacatagttctcagtggtacaactacaggtgatttctcttttctta tttctggttttctgtgttttccaaatttcttgaaatgtgtcttctgtaa tcagaaataaaagttattagtaacaacagtcttccactggtacaagtgc ttattggataaaagtcccacttctaagcatgatactcacaacttttagg ttaatagcctttgtcaccttgccatatacatctgatccagccactcaca ccattcctgagatatattttgttcctttgtgcctaaatcattgtgcatg cagatccatcttcctggaacacctataaccatttcttagtcctgtgaaa tcctacttacatccttcatagcctagcatgtatgtcatttatttggtca agggtgagttggttgttctcttgaatgtactgccatatgacgtggtgtg atttcaattgtagcaccaagctcattgcaatattaattcgtttgtcatt ctcccatgtaggatgtttgaagtagtttctaacacagagattatactca ataaatatttattagataaataaatgaataagggaataacaaatgcctt tgtctcattttaaaatactttcattgttagctacccatataataaaaaa ctaaaagcagtagttttcaagcatgattgtttatgtatgccttaaaaga attttgaaaacctatgtacccctgacacacttttaagttaacttataaa tttttcaacatagttttaagtggtggcaaatgatgtagtttcttgtgta ttttaaactgcttaagtatgctatacatggatttcttcaaaaccctgaa gctgcagtttcagtgcattcaatttatggaaaagaaattaatttataaa attggttcttattgtcaagtcaatcagctaaatataacttgctttctgt caggaaaagtctgactttaaaatacagataagtaataactattattaat taattaaattattaaaattaaaataattaaataatttgttaattaaaat gccttattcccctacttatttctgcaatttgactctaagaatagatagg acatgtagattgccttaggtttgaaatctgggtgaaataagatactgcc
tccttcagtatttctgcctttgcttttatgggagcctctttcaagaaaa agtcattctctcatggtccctttgtttgagtcccagaggttttcctact ccagaaagtgcaacgtagtgagactagtactatactcccttgcatggta agtgagaaggctgtctgtataaaatgagggaaggactcatgagagggaa gtaggtcaggagaaatgataggttctcaggcaggttaattttaggaaag agtgaatagagtcccttaaaacaaggtgcatctgcttcctcctgatcaa tctttaggactgtttactttgatttgaagaccactatgctaaagcttcc cacgggggcaatagtgaggcaaggaatttttaaaagggaattacttctt cgtagctacttttgtgaaatgaattcatttgaattatctggcaatctct tcatatttatattcaacaataattacttaaagaaatgctttgagcttct cagaggagggtgctaccagtgtgatggagtagaattcagatttgggtag tgactttaaagctgtgtgactttagtcatttaactgctgagtcacagtc tacagctttgaaagaggaggattataaaatctatctcatgttaatgctg aagattaaataatagtgtttatgtaccccgcttataggagaagagggtg tgtgtgtgtgtgtgtgtgtgtgtgtgtgtatgtgtatgtatacatgtat gtattcagtctttactgaaattaaaaaatctttaacttgataatgggca aatatcttagttttagatcatgtcctctagaaaccgtatgctatataat tatgtactataaagtaataatgtatacagtgtaatggatcatgggccat gtgcttttcaaactaattgtacataaaacaagcatctattgaaaatatc tgacaaactcatcttttatttttgatgtgtgtgtgtgtgtgtgt 36 exon 10 GAUUUGGGGAAUUAUUUGAGAAAGCAAAACAAAACAAUAACAAUAGAAA AACUUCUAAUGGUGAUGACAGCCUCUUCUUCAGUAAUUUCUCACUUCUU GGUACUCCUGUCCUGAAAGAUAUUAAUUUCAAGAUAGAAAGAGGACAGU UGUUGGCGGUUGCUGGAUCCACUGGAGCAGGC 37 intron 10 tcttttgttcttcactattaagaacttaatttggtgtccatgtctcttt ttttttctagtttgtagtgctggaaggtatttttggagaaattcttaca tgagcattaggagaatgtatgggtgtagtgtcttgtataatagaaattg ttccactgataatttactctagttttttatttcctcatattattttcag tggctttttcttccacatctttatattttgcaccacattcaacactgta tcttgcacatggcgagcattcaataactttattgaataaacaaatcatc cattttatccattcttaaccagaacagacattttttcagagctggtcca ggaaaatcatgacttacattttgccttagtaaccacataaacaaaaggt ctccatttttgttaacattacaattttcagaatagatttagatttgctt atgatatattataaggaaaaattatttagtgggatagttttttgaggaa atacataggaatgttaatttattcagtggtcatcctcttctccatatcc caccctaagaacaacttaacctggcatatttggagatacatctgaaaaa atagtagattagaaagaaaaaacagcaaaaggaccaaaactttattgtc aggagaagactttgtagtgatcttcaagaatataacccattgtgtagat aatggtaaaaacttgctctcttttaactattgaggaaataaatttaaag acatgaaagaatcaaattagagatgagaaagagctttctagtattagaa tgggctaaagggcaataggtatttgcttcagaagtctataaaatggttc cttgttcccatttgattgtcattttagctgtggtactttgtagaaatgt gagaaaaagtttagtggtctcttgaagcttttcaaaatactttctagaa ttataccgaataatctaagacaaacagaaaaagaaagagaggaaggaag aaagaaggaaatgaggaaga.....gaggctgaggcaggagaatggcgt gaacccaggaggcagaacttgcagtgagccgagatcgcgccactgcact ctagcctgggtgacagagtgagactctgtctctaaataaataaataaat aaataaataaataaataaaatcagtgctttttcttcctctgctacctcc tttccttctactcagttttagtcagtagtattatcttttttcagattta tctttgtattgttaaatctgcttatgcttctattactttatttattagc tttaaatgataccttttgactttcagcttttcttaataaagcaatcagc aaatttcctttacactccacacttataccccatttcctttgtttgttta tttggtttttacttctaacttttcttattgtcaggacatataacatatt taaactttgtttttcaactcgaattctgccattagttttaatttttgtt cacagttatataaatctttgttcactgatagtccttttgtactatcatc tcttaaatgactttatactccaagaaaggctcatgggaacaatattacc tgaatatgtctctattacttaatctgtacctaataatatgaaggtaatc tactttgtaggatttctgtgaagattaaataaattaatatagttaaagc acatagaacagcactcgacacagagtgagcacttggcaactgttagctg ttactaacctttcccattcttcctccaaacctattccaactatctgaat catgtgccccttctctgtgaacctctatcataatacttgtcacactgta ttgtaattgtctcttttactttcccttgtatcttttgtgcatagcagag tacctgaaacaggaagtattttaaatattttgaatcaaatgagttaata gaatctttacaaataagaatatacacttctgcttaggatgataattgga ggcaagtgaatcctgagcgtgatttgataatgacctaataatgat 38 exon 11 CUUCACUUCUAAUGGUGAUUAUGGGAGAACUGGAGCCUUCAGAGGGUAA AAUUAAGCACAGUGGAAGAAUUUCAUUCUGUUCUCAGUUUUCCUGGAUU AUGCCUGGCACCAUUAAAGAAAAUAUCAUCUUUGGUGUUUCCUAUGAUG AAUAUAGAUACAGAAGCGUCAUCAAAGCAUGCCAACUAGAA 39 intron 11 aaactatgtgaaaactttttgattatgcatatgaacccttcacactacc caaattatatatttggctccatattcaatcggttagtctacatatattt atgtttcctctatgggtaagctactgtgaatggatcaattaataaaaca catgacctatgctttaagaagcttgcaaacacatgaaataaatgcaatt tattttttaaataatgggttcatttgatcacaataaatgcattttatga aatggtgagaattttgttcactcattagtgagacaaacgtcctcaatgg ttatttatatggcatgcatataagtgatatgtggtatctttttaaaaga taccacaaaatatgcatctttaaaaatatactccaaaaattattaagat tattttaataattttaataatactatagcctaatggaatgagcattgat ctgccagcagagaattagaggggtaaaattgtgaagatattgtatccct ggctttgaacaaataccatataacttctagtgactgcaattctttgatg cagaggcaaaatgaagatgatgtcattactcatttcacaacaatattgg agaatgagctaattatctgaaaattacatgaagtattccaagagaaacc agtatatggatcttgtgctgttcactatgtaaattgtgtgatggtgggt tcagtagttattgctgtaaatgttagggcagggaatatgttactatgaa gtttattgacagtatactccaaatagtgtttgtgattcaaaagcaatat ctttgatagttggcatttgcaattcctttatataatcttttatgaaaaa aattgcagagaaagtaaaatgtagcttaaaatacagtatccaaaaaaat ggaaaagggcaaaccgtggattagatagaaatggcaattcttataaaaa gggttgcatgcttacatgaatggctttccatgtatatactcagtcattc aacagttttttttttagagc.....gaggaggtggaaacgaatgtacaa ggatgggaggagaaaagggagagagacttttttttttttaaggcgagag tttactacctatctaactcttcgcattcttgaagtctcagaccaaatcc catcggtttgaaagcctctagggtattctatctattgtatacttctgtt atgtacaaaattaatttgccaattaattgtgaactgttttataaactat cttaaaatggttagttaaatctttgggatagtatttagctttctccagg attatgacttaccttctaaattagacatacaatgcctaggagtcaagga ctattttgcataaattccagtcttcttttacaatgcctagaatgattgt taccacagaaatattcattacctgggagaaaggatgacaggaggggcag aatgaatggagagaggtcgtgagaatgaggtgctgaggatggacgagga agaaagctgttttagttgggaggataggtgacagaagcatggaaaggaa ttgccttggacccatggaagcccagtgaagatacttagatcctgcaggg gtgtgaataatgttcttttagtttctcttcttaggaggtttgttcattt tgggagatttcttttgaaaagagtgaacttaaattggagaaaagtacat tttagtatgttgataacatttgaatttgtaaaatggacctatggatgat ctacacatatttatatacccataaatatacacatattttaatttttggt attttataattattatttaatgatcattcatgacattttaaaaattaca gaaaaatttacatctaaaatttcagcaatgttgtttttgaccaactaaa taaattgcatttgaaataatggagatgcaatgttcaaaatttcaactgt ggttaaagcaatagtgtgatatatgattacattagaaggaagatgtgcc tttcaaattcagattgagcatactaaaagtgactctctaattttc 40 exon 12 ACAUCUCCAAGUUUGCAGAGAAAGACAAUAUAGUUCUUGGAGAAGGUGG AAUCACACUGAGUGGAGGUCAACGAGCAAGAAUUUCUUUAGC 41 intron 12-5' taactaattattggtctagcaagcatttgctgtaaatgtcattcatgta aaaaaattacagacatttctctattgctttatattctgtttctggaatt gaaaaaatcctggggttttatggctagtgggttaagaatcacatttaag aactataaataatggtatagtatccagatttggtagagattatggttac tcagaatctgtgcccgtatcttggtgtcagtgtatttgtttgcctcata gtatagtttactacaaatggaaaactctaggattctgcataatactgga cagagaagatgtaaatatctgttagttccatcatagaccctgccactcc aatgtacacaccagctttaggcttcttggtatagataaacatacatttt caaaatttttcatcataattttcataacaaaataggaaggcaaatgatg tcacttggcttaaaatctataatatttaaaataaacaggacaaatgcat taacattgttgggggaggaggtcccttagtagaaacactcttggtccaa gcattttaaagctgtcaaagagatgtaaatatagataatgtatgtcaag gagagagctttgtggttaaactgtaactttcagtttaaacaattattgg tgactctgatgtcaaatgtttctcaagctttatctgaacaaaattcttc tcactttgttgccaaagtcgttaacaagaaatcacattgactcattgat gttttggctcctttcccttactttctgttgctttccaaaagctgagaca ggaaactaaccctaactgagcacctgcaattgcctggtagtattctagt catgtgtgtacttttgtgtgtatgtaatccccttacagctctgcaaagt aagaattgttctccctgctttacagaagagatcataagataattgaggc tgttagatgttaacttgccaaaagccatacaggaaaatggtagagtcac agtttgaaccaggtccttttgattctttacattaaaccatgctttgatc ttggaaatacactgtaaggcaataaatcaatagatacggataattcaca ggcttctaaataaatggaagttgattgtttttatctgtgagccaaagta agacttattctaagaattccacaaatttagataagatagagtatatggc ttctagacatccaacatagaactgagtttgtgttatcagtttaagattt ggttttgctgtaaggtgcacacactttgaggaactaaaaataattgtct gttcttattctgatcagaatgtgtaatgtgttgtccagttttggatgat gaatttcttatttctaatctcataagaaacttgtcatagatgtgaggga gagaattaagaacagagtgtggggaagaaactgtgtacattttgatggg atccattatgtagctcttgcatactgtcttcaaaaataagttacactat aaaggttgttttagacttttaaagttttgccattggtttttaaaaaaat ttttaaattggctttaaaaatttcttaattgtgtgctgaatacaatttt ctttattacagaagtaccaacaattacatgtataaacagagaatcctat gtacttgagatataagtaaggttactatcaatcacacctgaaaaattta aatgttatgaagaaattatctcatttctattaatatgggaactgtgtct tcatctttattactgttctaaggtcaactcaatgtagattttacttgct tatggtttcatattttagctaaatagtaaaataatatggatatacattt tgttgtgacttactcatactttccttatttggaacttttatgaatatga tatagagactgaaactacaaggaacaaaatgcaatatcaattatacagt tgtggcagcactgctatcaatttgttgatagtggttaacacttagaaaa acattttaaaaataatttcacataagtaatgtaatttattagctgtctc tgacattttacagtttggaatagtttattttctttttggtgtcctcacc aaaacccaacatcttcaagggcaggaactgtataatttttgccattgta ttttgagcacatagcatggtacttgcctctaaatagatactattgttaa aatattttttaaggtaatattttaaagtgtatgctatggtacagttcag tttgtgacttttgctagtttatgccacttacagttagcaaaatcacttc agcagttcttggaatgttgtgaaaagtgataaaaatcttctgcaactta ttcctttattcctcatttaaaataatctaccatagtaaaaacatgtata aaagtgctacttctgcaccacttttgagaatagtgttatttcagtgaat cgatgtggtgaccatattgtaatgcatgtagtgaactgtttaaggcaaa tcatctacactagatgaccaggaaatagagaggaaatgtaatttaattt 42 exon 13 GCAGUAUACAAAGAUGCUGAUUUGUAUUUAUUAGACUCUCCUUUUGGAU ACCUAGAUGUUUUAACAGAAAAAGAAAUAUUUGA 43 intron 13 ttctttgaataccttacttataatgctcatgctaaaataaaagaaagac agactgtcccatcatagattgcattttacctcttgagaaatatgttcac cattgttggtatggcagaatgtagcatggtattaactcaaatctgatct gccctactgggccaggattcaagattacttccattaaaaccttttctca ccgcctcatgctaaaccagtttctctcattgctatactgttatagcaat tgctatctatgtagtttttgcagtatcattgccttgtgatatatattac tttaattattattatacttaacatttttatttactttttgtgttagtat tttattctgtcttctccttagatagtaaccttcttaagaaaatatatat gctaagtgttttactggtttaatatgcttagactactcatctacctcaa tacttccttggagatctcctcctcagtcacacagagctcaggacttata tttccttggaactcctgttagggtccaatgtacatgaaattccctagac agacagacagtcagttatatggcttgatttcaaagtttcaaaatgattt aatggactatcaagtagtttattaggagaacagttattatactcttcta aaaataaagactttaagcaataaagatgtatatgtatataaaatggctg ggttattcctagaagtacctttcttagaatttagttaaatttaatatcc aagatactatcttttcaaccctgagattgtgaaaagtaacttctatcaa tataaactttactacatttgtattgtgttagtgtgttacagtataatct agaacaatgtgtctttctatatgatatatgacattttaatgcctaaaaa aactgatatgtcttagatgattctagtcaggatttacttctagaataga ttaaaattctatttgaggagagtcaaattaattatcgaattctcagttg ttattattgctgttttatttttagtgaaacagattagtcttaatgtaaa cacttgagaaataaattgatggtcaacctaaaatgtaaaaaagaaatta atagaaaatttaaagagcaacaaagctctgacatttaaaagaaatgaag tacaaatctctagggaccttaaagatcatctaataatttcctcattttc tagataaataaactgagagaccccgaggataaatgatttgctcaaagtc aaatatctacttaatataggaaatttaatttcattctcagtctgttaac atgcaacttttcaatatagcatgttatttcatgctatcagaattcacaa ggtaccaatttaattactacagagtacttatagaatcatttaaaatata ataaaattgtatgatagagattatatgcaataaaacattaacaaaatgc taaaatacgagacatattgcaataaagtatttataaaattgatatttat atgt 44 exon 14 UGUGUCUGUAAACUGAUGGCUAACAAAACUAGGAUUUUGGUCACUUCUA AAAUGGAACAUUUAAAGAAAGCUGACAAAAUAUUAAUUUUGCAUGAAGG UAGCAGCUAUUUUUAUGGGACAUUUUCAGAACUCCAAAAUCUACAGCCA GACUUUAGCUCAAAACUCAUGGGAUGUGAUUCUUUCGACCAAUUUAGUG CAGAAAGAAGAAAUUCAAUCCUAACUGAGACCUUACACCGUUUCUCAUU AGAAGGAGAUGCUCCUGUCUCCUGGACAGAAACAAAAAAACAAUCUUUU AAACAGACUGGAGAGUUUGGGGAAAAAAGGAAGAAUUCUAUUCUCAAUC CAAUCAACUCUAUACGAAAAUUUUCCAUUGUGCAAAAGACUCCCUUACA AAUGAAUGGCAUCGAAGAGGAUUCUGAUGAGCCUUUAGAGAGAAGGCUG UCCUUAGUACCAGAUUCUGAGCAGGGAGAGGCGAUACUGCCUCGCAUCA GCGUGAUCAGCACUGGCCCCACGCUUCAGGCACGAAGGAGGCAGUCUGU CCUGAACCUGAUGACACACUCAGUUAACCAAGGUCAGAACAUUCACCGA AAGACAACAGCAUCCACACGAAAAGUGUCACUGGCCCCUCAGGCAAACU UGACUGAACUGGAUAUAUAUUCAAGAAGGUUAUCUCAAGAAACUGGCUU GGAAAUAAGUGAAGAAAUUAACGAAGAAGACUUA 45 intron 14 tatacatcgcttgggggtatttcaccccacagaatgcaattgagtagaa tgcaatatgtagcatgtaacaaaatttactaaaatcataggattaggat aaggtgtatcttaaaactcagaaagtatgaagttcattaattatacaag caacgttaaaatgtaaaataacaaatgatttctttttgcaatggacata tctcttcccataaaatgggaaaggatttagtttttggtcctctactaag ccagtgataactgtgactataagttagaaagcatttgctttattaccat cttgaaccctctgtgggaagaggtgcagtataaataactgtataaataa atagtagctttcattatttatagctcgcaaaataatctgtatggaagta gcatatataaggtatataaacatttagcctcttgataggactaactcac attctggtttgtatatcagtcttgcctgaatttagctagtgtgggcttt tttttatcttgtgagtttgctttatacattgggtttctgaaaagatttc ttttagagaatgtatataagcttaacatgtactagtgccaatcttcaga cagaaattttgttctattaggttttaagaataaaagcattttattttta aaacaggaaataatataaaaaggagagtttttgttgttttagtagaaaa cttaatgccttggatgaaatgagccatgggcagggttgtaatgaattga tatgtttaatagtatagatcatttgtgaataatatgacctttgacaaga cacaagccattaacatctgtaggcagaagtttccttctttgtaaaatga gggaataaaatagatccctaaagtgtgtaattttagtatttctaaactt tatgaaggtttcctaaatgataattcatctatatagtgtttttttgtgt gtttgtttgtttgtttgtttgagatggagtctcgctctgtcacctaggc tggagtgcaatggtgcaacctcggctcactgcaacctctgcctcctggg ttcaagctaatctcctgcctcagcctcctgagtagctgagattacaggc atgcaccaccatgccgagctaatttttgtatttttagtagagaaggggt ttcatcatgttgaccaggctggtcttgaactcctgaccttgtgatccac ccacctcagcctcccaaagtgctggtattacaggcgtgtgccaccacgt ccagcctgagccactgcgcccagcccatctatatagtttaatatcaatc taaatgaatttctcagtcctgagcctaaaaatttagttgtaaagaatga tatccttgactaataatagtttctattaatggattgcatctagtgctag gtggcatatatttagtccccacaactaccctggaaggtatttaaaattt ttcacatttgcagataaggaaactaaagttcagagttcggcaacatgct
tgaattcaagcagctcctaggatgttaatggtggaggttgggttcaaat ccagatctgtctgactcaaaaaatgcatactcctaaccagtgcactata tcccaattccataggagcccttctttgtgattcatagcactttcccatg agttttgttgattttgtgagaaacaaaactctttttcctttggactgtc tggaatctctctttttcaaatttttgaaatgtatttctatgccaaaaga caaagatttctagaggaatatgcctaggatgagaattatgtaatttaaa tcacagctggaaagagagaaagtcctaagttactaagaaatgttcaaac acaaatgagctttcagtctattggaagacctttatagctagaagtatac tgaactgtacttgtccatggacccctgaagaaacaggttaaatcaaaga gagttctgggaaacttcatttagatggtatcattcatttgataaaaggt atgccactgttaagcctttaatggtaaaattgtccaataataatacagt tatataatcagtgatacatttttagaattttgaaaaattacgatgtttc tcatttttaataaagctgtgttgctccagtagacattattctggctata gaatgacatcatacatggcatttataatgatttatatttgttaaaatac acttagattcaagtaatactattcttttattttcatatattaaaaataa aaccacaatggtggcatgaaactgtactgtcttattgtaatagccat 46 exon 15 AGUGCUUUUUUGAUGAUAUGGAGAGCAUACCAGCAGUGACUACAUGGAA CACAUACCUUCGAUAUAUUACUGUCCACAAGAGCUUAAUUUUUGUGCUA AUUUGGUGCUUAGUAAUUUUUCUGGCA 47 intron 15 aatgttctattgtaaagtattactggatttaaagttaaattaagatagt ttggggatgtatacatatatatgcacacacataaatatgtatatataca catgtatacatgtataagtatgcatatatacacacatatatcactatat gtatatatgtatatattacatatatttgtgattttacagtatataatgg tatagattcatatagttcttagcttctgaaaaatcaacaagtagaacca ctactgatattttattatttcatattacatataaaatatatttaaatac aaatataagaagagtttttaatagatttttaataataaaggttaagaga ttcgaaagctcaaagtagaaggcttttatttggattgaaattaaacaat tagaatcactgttgatattttattatttcatattacatataaaatatat ttaaatataaagataagagtttttaatagattttataataaatgttaag agattaaaaaactgaaaatagaaggcttttatttggattgaaattaaag gccaggcatggtggttcatgcctgtaatcccagaattttaggagactga gtggggaggattgcttgagcccaggggtcaagaccagcctgggcaacac agtgagacaccgtatctacaaaataattaaaaaattagctgggcatggt ggtgtgtgcctgtatgctaccattaactaaggaggctgaggtgggagaa tcgcttgagcctgggaggtcaaggctgccctgaactgtgattgtgccat tgcattccagcctgggtgccagagagagaccctatctctaaataaataa ataagtaaataaataaacagcaacaacaaaaacactcaaagcaaatctg tactaaattttgaattcattctgagaggtgacagcatgctggcagtcct ggcagccctcgctcactctcagggcctccttgaccttgacgcccactct ggctgtgcgtgaggagccct.....tagaacagagcacagatgatctaa atataaaaagaactacaaaaatcacagttgtttaaaaaggttttttgtt tgtttatatatggtgcagaacatttgttccttagccaaatgtttccacc ttgagaaagctatagagattctatgtagtcctagtaccaataatatgtt ttaacctgaatgtaccttatctttattcataaactgtgactttttacac tgctgaaacttttttttttaagacaatctcactctgtcgtccagtctgg agtgcagcagtggtgtgatcttggctcactgcaacctctaccttctgtg ttcaagcaattctggtgcctcggccacctgagtagttgggatcacaggt gtacaccaccaggcctggctaatagtttttgatatttctagtagagatg agttttgccacattggccaggctggcctgaaactcctggcctcaagtga tctgcctgccttggcctcccaaagtgttggtattacaagtgtgagccac tgtgcctggcctgaaactcataattcatttccattaatattaatctcac cttttccaataattaattgatttcacaagtattagtcccctataatcat tgaatggctaataaaattatttatagcaaacagattaattatctgccag cagtctgagattagtttctttaaaaaatgtttattatttaaaacattca gctgtgatcttggctttcttgtgaggttcaatagtttctattgagtaaa ggagagaaatggcagagaatttacttcagtgaaatttgaattccattaa cttaatgtggtctcatcacaaataatagtacttagaacacctagtacag ctgctggacccaggaacacaaagcaaaggaagatgaaattgtgtgtacc ttgatattggtacacacatcaaatggtgtgatgtgaatttagatgtggg catgggaggaataggtgaagatgttagaaaaaaaatcaactgtgt 48 exon 16 UGGCUGCUUCUUUGGUUGUGCUGUGGCUCCUUGG 49 intron 16 tattccatgtcctattgtgtagattgtgttttatttctgttgattaaat attgtaatccactatgtttgtatgtattgtaatccactttgtttcattt ctcccaagcattatggtagtggaaagataaggttttttgtttaaatgat gaccattagttgggtgaggtgacacattcctgtagtcctagctcctcca caggctgacgcaggaggatcacttgagcccaggagttcagggctgtagt gttgtatcattgtgagtagccaccgcactccagcctggacaatatagtg agatcctatatctaaaataaaataaaataaaatgaataaattgtgagca tgtgcagctcctgcagtttctaaagaatatagttctgttcagtttctgt gaaacacaataaaaatatttgaaataacattacatatttagggttttct tcaaattttttaatttaataaagaacaactcaatctctatcaatagtga gaaaacatatctattttcttgcaataatagtatgattttgaggttaagg gtgcatgctcttctaatgcaaaatattgtatttatttagactcaagttt agttccatttacatgtattggaaattcagtaagtaactttggctgccaa ataacgatttc 50 exon 17 ACUCCUCUUCAAGACAAAGGGAAUAGUACUCAUAGUAGAAAUAACAGCU AUGCAGUGAUUAUCACCAGCACCAGUUCGUAUUAUGUGUUUUACAUUUA CGUGGGAGUAGCCGACACUUUGCUUGCUAUGGGAUUCUUCAGAGGUCUA CCACUGGUGCAUACUCUAAUCACAGUGUCGAAAAUUUUACACCACAAAA UGUUACAUUCUGUUCUUCAAGCACCUAUGUCAACCCUCAACACGUUGAA AG 51 intron 17 ttactaggtctaagaaatgaaactgctgatccaccatcaatagggcctg tggttttgttggttttctaatggcagtgctggcttttgcacagaggcat gtgccctttgttgaacctccatttgactggcatgcacatgtctcagata ttataggttatcatatattgttgctcctaatatttctgtgttagataat tagagtagcttggtttgtaagaatgtgatgttggtgggactgtagcaga acaagaaggcccttatgggtcagtcatacctctcttttcaaatatttgg tctagctctcttctgggcatcttgttgccaatatatagtattgctcaaa agggcaggagatttgaagtgatcaaggaaaatatattttttctattgat taagtcttttgatggggtagaataatctaatttcatgtaactgctcaaa gttatatggtagggggatcccaaatgtattttaaaactatttttatatc atcatatttgaagtaatagaaagtcagagtagcagaataaaggtactaa aaattttaaaaactaataaggtactttgaaagaaatcaattatgttgat tcctcattaaacaaatttgcacttaaagactgaggttaataaggatttc cccaagttttttcatagcaacctgtgagcactttctctgttgaggcatt tatggtatgaaaagatgagtaaggcacagttcttgccctggagaaggtc acaggtgagaggaggagttgacacagaaacatttgatataaagcaagga ataaattccaagactaaaattttcagaaatctaaaaaactcaagataag aaaaacccattatattttctgggtaacaaaatttcagtgttattaacat gtaggaagatcttgatatttattctgaagcccatgtgtgttgctgaaat attgccgcatttgcatatactcatcaccatcctctgttttggagctaag aattttagactcaagatgtctaattaagttgatccattgattttatttt ttatggaaatctgagacccacagaaggcaggggatttgcccacatttct agaagagtcagacatgagcgatgaggcacagtggaaagaacatgagcat tgcctgagctctgagttggcgctataagagcagtgatcatgggcaagtg actcttctgagccttggcctcctcacctgttaagtgaagaaaagaatat ttcagaagatctttgtgagaatgaaacaaggcaatttacttgcctgcta catagccaatgggaaatcaatataagttccccgtggttcccttctgtgg ggttttgttcccacagagggtgcactggccattccacttcttcttttcc aagctcctcattccctttaacgctgttcatagttggttccaaaccattt gaaatataataagcaccaggatggttttttctttccaccaaagcaaatt tcattttctaaacactgtttataaatatcaatggctattttttcaattt ttgattatcatgaaaatatacaaatatgtttaattaaatatgctaaaga atgtattaataaatatgtattaaataattcctacatataaggccttttt gcttggggtatgggtgatacaaaataaatgtggcatgaacccactgacc tctagcaatttataacctagaaaaagagttatgatatgtttataagttc ctgtgatataagacatgcatatagtcattataacagaggtgcaaacaag atgtatcaagtatgtccagaggaggaagagattaatcccagctggagga aacactgatgctttcttgcagcaggggcatttgagttgagaaagggagg aaacatagattttgacaatgagagctgaggggaaaggggtttcaggtgg agggaaccgcatgtggaaagcagggaggtaggaaagtgtagagtgtgtt taaagaatagaccagtttggctgaaacaggatatttgagcagaggaagc ttgtactaggtaggtgggttgaggccaaattatgcaaggcattaaatat taaactaggaattttggactttatcctgcagtttatggggggtaaatga taagattcaatatcactttatttgtacagtattatgttacattttatct aattgtttgtttaattcctgtctagacaatgaattcctcaagggcaagg agcatggcttattcacctcagtaatttcagtgcctagcattgtgcctgg tacaaagtggacacttgtatataaccttttttaattgaagcaacaagtt gtcaaccttacaaatgtgaatccgtgattcagatgacaggttgaaatgt agattgtctgcgaagagggcagaaagagagtatgacaaaggaggacaag acagtggggcaggcagggagagagagcagccagggtttcggtagaggta tgtcaaaaaggtatggaagtcagaggagaaggagacccctatgttatag aatacaaatggaagggaaatgatgacaacagtaagttgtcattaaatgc aaggttgcaaaagtaagattgtaaagcaggatgagtacccacctattcc tgacataatttatagtaaaagctatttcagagaaattggtcgttacttg aatcttacaagaatctgaaacttttaaaaaggtttaaaagtaaaagaca ataacttgaacacataattatttagaatgtttggaaagaaacaaaaatt tctaagtctatctgattctatttgctaattcttatttgggttctgaatg cgtctactgtgatccaaacttagtattgaatatattgatatatctttaa aaaattagtgttttttgaggaatttgtca 52 exon 18 UGGGAUUCUUAAUAGAUUCUCCAAAGAUAUAGCAAUUUUGGAUGACCUU CUGCCUCUUACCAUAUUUGACUUCAUC 53 intron 18 taaaaataagtaccgttaagtatgtctgtattattaaaaaaacaataac aaaagcaaatgtgattttgttttcattttttatttgattgagggttgaa gtcctgtctattgcattaattttgtaattatccaaagccttcaaaatag acataagtttagtaaattcaataataagtcagaactgcttacctggccc aaacctgaggcaatcccacatttagatgtaatagctgtctacttgggag tgatttgagaggcacaaaggaccatctttcccaaaatcactggccacaa agtgtgacattttggcattggcatcactatttgatggaagccaacctcc ccccaaaaggcctgtattagaatgaagatggattccctgggtgggttac acttgaaactagcctcacccatgaacactttggcacagattagctagcc cattcccccacagtaaggaccataaggaagggacagaagcaaagataag ttttagaacaaaagagaggggaaagaaaaaatctagggttttatgaggg ctgtccctgagtgatagatgtgaataggcctccagggcaggctggctca gaggctgactctttgggttggggtgactgattggtggtgaggatggaga agaaaaggggagtggaggaggtgaaagtgaccttgggacattaggtctc cataagtgacaggatttaaggagtgttgtaagctgtggttgttggacca ggtttaagcacagcttcctgagcttcctgactggtttaggtcaagctcc agagagcaaatgccacagtctcagtgatctccttggagaaacagttgga ataggatgttgcccatgttgggatgagtcattgtccgctcttgctcttt ccctacccctgcaaaataataatactgtatttgattgaacatataaaac aaaagaaggattatcacataagtatgtatatataaccaacattggcagg tgcagaaaaaccagactgtcagtttgcctcatctgaaatgattgacaca aacaaatatatttactgtcccaagtgaactttggcattttggatatcct tcagttgttctgtttaaagatataacttagaagcagctgatggaatatt taaatccatgcgttgaattcatgcattcaaagaaacatgtcctgagtca ctaaatgctgacatttgtttttcatgttaagagtgtaaataactggtcc caaatataatattattacatcagataaaaactggaatgtgaacctctta acttgattgtgaaagtatttgccaatggtgcctcttgataattatttga ggctcacttcagaactcctctggaagggttaatttttaaatagtcattt tataaattaacatttttgacatatgtgatggctctcaaattttttcttt tatgccagtttgaatcatttctgctcaatttttttttttaattgggatg gagtctcactctgttgcccaggctggagtgcagtgatgcaatcttggct gactgcaacctccacctcctcggttcaagcgattctctcgcatcagcct ccagagtagctgggattacaggcgcgcaccaccatgcctggataatttt tgtattattactagagatggggtttcaccacgttggccaggctggtctt gaactcctgaactcctgacctcaagtgatccacctgcctcagcctctta aagagctggaattataggtgtgagccactgcaccaggccctgttcaact tttaatgctaagattcatttgttgttgtttcacaagtgattaggcagag gtcttttatattaatttacccattttatttgtaagagagtctcatatta aggaagcataatatatgacaatccaaatacagtacaaatttggttaatt ttgattttgttaaataattaatcacaggggtccttcaaattgtgagctc ctctggttatacttatgttttacctctggttatacttaatttcaaacaa atgaaatttcattctattcatgatatttcagaagcagatctgttgcaca aaataaagcatacctataaattttctttttttaaaaaaaagtctctgtt cactctattttctattatttttctctttttaaaatttgaattttattgt ggcaagtccacttaacatgagatttaccctcttaacagatttttatgtg taaaatacaatattgttcaccatgggtaaatgttgcacagcagatctct ggaacttattcattttgcactactgaaattttatacctgttgattagta tctccccatttccctctctcccctgtcctgttacccatggttctgttct ttgcttctttgagtttgagtattttgatacctcatgtaatcttcattct attttctaactttgacaatgttctgacaaatttgctttccggattggag cactgtatagtgaaaattgaaaatcttggttattttctacagattccca ctattttaccttgagcagacacttatcttgaagggtctcagatttgtca cttgtagaatggggaatataaacctgataatggtccctttcagttctaa agttatatcagttgaaaatacatgtgtcacttatggtaacgggtagaga actggctcactgaacagcatatggatattataaagtggttttttttaat cctttctgcagacagttactttatactttattcaaatggattattgtga agtacatgttagcggactttgtaccttttaaaaatgtatgtatttggtg taatgtagaaatatagaaatttattaagtatgatttatttcaatgttaa gcatgagaaaatatgctccgaaaggttagatagcttgcctaaatgacaa gcttgtatttcaagcagaactttctgaatcaaaagactccaagacgaat gcccagctttcaaaaactgtctaaccaaaataaatcctaagattcacct tcatactaaaattatttaaaaatagtttattttaaattaatattcactt aaaatgtatttatcatgcaatactttaaagtgtctgggaaatgaaaata tccaaagatcaaagaacaccatgttttcaaacttcaaaaatgttatcag tgacctaaacaatttttaaaattttcatagagcctatgaaaaatgtact tgcaaatggctactttctgactaggaatagaatggggagagtatttagt ccaacaatgatagactggattaagaaaatgtggcacatatacaccatgg aacactatgcagccataaaaaatgatgagttcatgtcctttgtagggac atggatgaaattggaaaacatcattctcagtaaactatcgcaagaacaa aaaaccaaacaccgcatattctcactcataggtgggaattgaacaatga gatcacatggacacaggaaggggaatatcacactctggggactgttgtg gggtggggggaggggggagggatagcactgggagatatacctaatgcta gatgacgagttagtgggtgcagtgcaccagcatggcacatgtatacata tgtaactaacctgcacaatgtgcacatgtaccctaaaacttaaagtata ataaaaaaaataaaaaaaagtttgaggtgtttaaagtatgcaaaaaaaa aaaaagaaataaatcactgacacactttgtccactttgcaatgtgaaaa tgtttactcaccaacatgttt 54 exon 19 UGUUAUUAAUUGUGAUUGGAGCUAUAGCAGUUGUCGCAGUUUUACAACC CUACAUCUUUGUUGCAACAGUGCCAGUGAUAGUGGCUUUUAUUAUGUUG AGAGCAUAUUUCCUCCAAACCUCACAGCAACUCAAACAACUGGAAUCUG 55 intron 19 acagtgaatgtgcgatactcatcttgtaaaaaagctataagagctattt gagattctttattgttaatctacttaaaaaaaattctgcttttaaactt ttacatcatataacaataatttttttctacatgcatgtgtatataaaag gaaactatattacaaagtacacatggattttttttcttaattaatgacc atgtgacttcattttggttttaaaataggtatatagaatcttaccacag ttggtgtacaggacattcatttataataaacttatatcagtcaaattaa acaaggatagtgctgctattactaaaggtttctctgggttcccaaatga tacttgaccaaatttgtccctttggcttgttgtcttcagacaccctttc ttcatgtgttggagctgccatttcgtgtgcccccaaactctacttgagc tgttagggaatcacattttgcagtgacagccttagtgtgggtgcatttt caggcaatactttttcagtatatttctgctttgtagattattagctaaa tcaagtcacataaacttccttaatttagatacttgaaaaaattgtctta aaagaaaatttttttagtaagaattaatttagaattagccagaaaactc ccagtggtagccaagaaagaggaataaatattggtggtaattttttaag ttcccatctctggtagccaagtaaaaaaagagggtaactcattaataaa ataacaaatcatatctattcaaagaatggcaccagtgtgaaaaaaagct ttttaaccaatgacatttgtgatatgattattctaatttagtctttttc aggtacaagatattatgaaattacattttgtgtttatgttatttgcaat gttttctat
56 exon 20 CAGGAGUCCAAUUUUCACUCAUCUUGUUACAAGCUUAAAAGGACUAUGG ACACUUCGUGCCUUCGGACGGCAGCCUUACUUUGAAACUCUGUUCCACA AAGCUCUGAAUUUACAUACUGCCAACUGGUUCUUGUACCUGUCAACACU GCGCUGGUUCCAAAUGAGAAUAGAAAUGAUUUUUGUCAUCUUCUUCAUU GCUGUUACCUUCAUUUCCAUUUUAACAA 57 intron 20 atgaactcattaactttagctaagcatttaagtaaaaaattttcaatga ataaaatgctgcattctataggttatcaatttttgatatctttagagtt tagtaattaacaaatttgttggtttattattgaacaagtgatttctttg aatttccattgttttattgttaaacaaataatttccttgaaatcggata tatatatatatatgtatatatatatatatatatatatatatatacatat atatatatagtattatccctgttttcacagttttaaaaaccgatgcaca cagattgtcagatagcaattctgtgattgaaggggaaatatgtcacctc ttcatactcatattggtgaagggtcctagcttcaaaattaatagattcc taaagaggggaaatgaaacatccgcatttacacacacacacacacacac acacacagagttcctcttgtcggtaagttttgttttttttaaatctcta ctagataaaatttgttatctaattgtgagttttacacaaagaaaaactg tcacagaaaagaaagacagtgtcacatttttcaaaagaaaaagaagaaa agaaagtgccatgtttttcaaatacaaatgttctggattgattttagga tctttagtgaaaaacaaagtatttcataataagtaaaataaaaatctat gtaggtaaatttgtttctctaatttaagaatttgaatttctgagtattt atgataagtgttgaaataacttcttatatgtgacagtgaatactggcag agcaaatgccaaatcaatgccaaatctgtaggatcatttgattgtagga acagaattctactcaaaccgaaagcaggcatttgctggagttacagaaa ggcctcatggaacaccgagaaggtggtgccattcgactcttaaagaagc tgcaacaggcacaagagagtcagctgcagctcttcttcttgagtctata tctgtcctgggtccattcctttttgtggttgcttcattcctttctctct ctgaagactggtttttctggtctaccagggctatgccacattgacttta tgtagtgtctccattctggcctcctgaatttacaggagagttcctctgt acaaactcaaagtcctggagagaacagaaaacagcttccttttggctca ggggtccaactgcagtctactctgctgctatgaggatagtgggttcacc acctttgttgttctctcagctagggcagtgggaaatgactctatgaaag gaatatacatgggcaggcaaatgtactaatcctcatcagtactgtaatt ttaagcaactttaaaaaattcttttaagttatttgaaaataagatcaaa gaaggctgaattacataaatgaagatttgttaacaattaattcaaacca atataacacatgctataacatggttgagtgtgattgagtcttgatttat taggggcaataatcaaaacatttaacaatcattatagtacagaacttac caatcaaatcagatgctcagccggagtggatgttggccacccagctatt attatccctggctcaattggtcttcagctgtgttaacttgcaaacatta attaactatctaagcccctcattttcctcaagtgtaaatagacacaata atattacctattccataggtgtggggtgaatagtaaatgtaataatttg tccaaaacacttagtatagtgcctggtccatggtaaatactaaataaat gttatctgacttattattaaaattttatcttctcagcttaaccttcaga acagtaatatattggggtctagataaatcttgcctatatgaaaataatt taatactacatgcagatatatgctgtgtatattatgccttctgttagag gaattgcagaaacaaaaatttcaattaataataagatgaattatttctc ccaattgtagaatcttttgacaattttatcatgcattacagatgtaaga actcttgattgggacttgatagtctaactttataataatttaagaacat tcctcttagagaatttctatggccataatactgaacacatgaattttaa ttagctgtcctctttagccctaaaaaaaaaattactgtaatttaacact taagtgttgttcttcccaggtacagtaatcttttttttttttttttttt ttttttgcatagagggtaatcttttctctttccaaatggcagaactgtt agttttctgactgtccggtgaaattctaagtccacttacttcccaatag catgcaattagcaaaggtcctccttgcaaaggcacagaacacacctaaa catcttgcagatgctgtttggacactcttcccctgcttttggtctcttt gtaaagcagctcatctggatacaggatctcttttccccattgcccattc taatatatgttaccgttattacttatagaataatagtagaagagacaaa tatggtacctacccattaccaacaacacctccaataccagtaacatttt ttaaaaagggcaacactttcctaatattcaatcgctctttgatttaaaa tcctggttgaatacttactatatgcagagcattattctattagtagatg ctgtgatgaactgagatttaaaaattgttaaaattagcataaaattgaa atgtaaatttaatgtgatatgtgccctaggagaagtgtgaataaagtcg ttcacagaagagagaaataacatgaggttcatttacgtct 58 exon 21 AGAAGGAGAAGGAAGAGUUGGUAUUAUCCUGACUUUAGCCAUGAAUAUC AUGAGUACAUUGCAGUGGGCUGUAAACUCCAGCAUAGAUGUGGAUAGC 59 intron 21 tcttatcatctttttaacttttatgaaaaaaattcagacaagtaacaaa gtatgagtaatagcatgaggaagaactatataccgtatattgagcttaa gaaataaaacattacagataaattgagggtcactgtgtatctgtcatta aatccttatctcttctttccttctcatagatagccactatgaagatcta atactgcagtgagcattctttcacctgtttccttattcaggattttcta ggagaaatacctaggggttgtattgctgggtcataggattcacccatgc ttaactgagtggtgccaaattgtcctcaagtctgttgtactgatatata tccccatcaagagagtacaagaattctcatagctatgtatcttcaacaa cacttggtgtctggtagatgtgaagtgattactaaaaatatagggaagc tgcatacataattattggcttttgctgttctcttacattaatttcttat tcatgttgattactcatttgtcacctagttttttcttccttaattaaat tgtaggaatttatgaattatggattgatcatcagctctatacatttcaa acataatccctcagtcagtggcttggcttatagagtcttttgatgaaaa gaagcttttaagtttaataaagttcaatttattgtcttttcctttatgt tttgtgcttttggtatcttgattaagaactccttccttatattgggttc tcaaatttagcagcataacattttcatactattatttaaatttttttca cattatttagtgatagcacctttcttattcctaaagtgtttatcattgc cttctgtctttctgcttgataaatattgccacacatttgtatactttat tagtgtgtacaaagaccacattttagttgtgttatttctcttgttttgg ttttctagaatgcagagccattaatattatagtaatgcttatgtgctaa taccatatcaggggcacaaa.....aaataagagcagtaaaattgtgtc taatcagctactaatatctgggaaggattgagccacaggatcaaagatg gtatcttttaaaaatagaagttgagtgaattcggtcttcaaattctttc tttttattcatttatatttatttactcattagtatattcattcctttat tcatgtattgttcaaatatatattgggtacttattatatgccaagttgt ttttaaaatcacattccaaattcccgtaagtcataattattcagagatg tatgttttttttaaaaaaaattgaacacctttaaaaattatcaagtcct tttatttctgtatgcattaaagataaactttactaaatgttacatgaat agatttataaagcagataaatatttaatttcaaatataacccttatatg caattatattttccttagcactaaaaatgaatatttaagtaatttatat taaaagtgtaattatttaactgcagatgtatgccaatgacttaaattgt ttaaagattatagcaaagttgtttaaaattgtctaatcatgaagagttc acttaaccacctggttgacacataaaattatagttagttactaaggtag ttcgagagaaagagaagaatcttcagtagtggttttgaggtgtggtaca ttttattataatataccggttatacagcattgtgcagtgctgctcatag tagaaataaattttctctttgatgtcatctattcccttgtgtggcttac ataactgagaattaggtgatcacaaaaataaacaggcctatacagagcc catttatataagtcctggttatttctcttcagttaaacttttaattata tccaattatttcctgttagttcattgaaaagcccgacaaataaccaagt gacaaatagcaagtgttgcattttacaagttattttttaggaagcatca aactaattgtgaaattgtctgccattcttaaaaacaaaaatgttg 60 exon 22 UGCGAUCUGUGAGCCGAGUCUUUAAGUUCAUUGACAUGCCAACAGAAGG UAAACCUACCAAGUCAACCAAACCAUACAAGAAUGGCCAACUCUCGAAA GUUAUGAUUAUUGAGAAUUCACACGUGAAGAAAGAUGACAUCUGGCCCU CAGGGGGCCAAAUGACUGUCAAAGAUCUCACAGCAAAAUACACAGAAGG UGGAAAUGCCAUAUUAGAGAACAUUUCCUUCUCAAUAAGUCCUGGCCAG 61 intron 22 atttgaacactgcttgctttgttagactgtgttcagtaagtgaatccca gtagcctgaagcaatgtgttagcagaatctatttgtaacattattattg tacagtagaatcaatattaaacacacatgttttattatatggagtcatt atttttaatatgaaatttaatttgcagagtcctgaacctatataatggg tttattttaaatgtgattgtacttgcagaatatctaattaattgctagg ttaataactaaagaagccattaaataaatcaaaattgtaacatgtttta gatttcccatcttgaaaatgtcttccaaaaatatcttattgctgactcc atctattgtcttaaattttatctaagttccattctgccaaacaagtgat actttttttctagcttttttcagtttgtttgttttgtttttctttgaag ttttaattcagacatagattattttttcccagttatttactatatttat taagcatgagtaattgacattattttgaaatccttcttatggatcccag cactgggctgaacacatagaaggaacttaatatatactgatttctggaa ttgattcttggagacagggatggtcattatccatatacttcaggctcca taaacatatttcttaattgccttcaaatccctattctggactgctctat aaatctagacaagagtattatatattttgattgatattttttagataaa ataaaagggagctgaaaactgaattgcaaactgaattttaaaactttat ctctctgtggttaattgcaaacacagatacaaaaatatagagagagata cagttagtaaagatgttaggtcaccgttactaacactgacatagaaaca gttttgctcatgagtttcagaatatatgagtttgattttgcccatggat tttagaatatttgataaacatttaatgcattgtacaaattctgtgaaaa catatatataggatgtgcga.....aacaaaactgtccttcactacaga ttgaaaagcattatactaaaagaccatttgctcagttatagtatataaa ggccaaatgacttaaaaacaaattatgtaaggagaaggaaacaaccatt tattcagtgccactaactgtcagccagttttttcagtggtcagttaatg actgcagtagtgttctaccttgctcaaagcaccctcctcaagttctggc atctaagctgacatcagaacacagagttggggctctctgtgggtcacct ctagcacttgatctcctcatgcagtgcatggtgctctcacgtctatgct atgttcttatggtctttaggtaacaagaataattttctttcttttcctt actatacattttgctttctgaaattcccttctcgccaatccaggtgaat gtcagaatgtgatttgacaactgtccaaagtactcattcactgaggagt ggtaaggccttcgcccaacctgccttctctgggaatatactgctgcctg aacatatcattgtttattgccaggcttgaacttcaccaaattaatttat tagggtcaacatctaaatattagaactatttcagattaatttttaagtc gtatccactttgggtactagatcaaattgcaggtctctgcttctggctt gagcctatgtttagagatgatgtgcatgaagacactctttgcttttcct ttatgcaaaatgggcattttcaatctttttgtcattagtaaaggtcagt gataaaggaagtctgcatcaggggtccaattccttatggccagtttctc tattctgttccaaggttgtttgtctccatatatcaacattggtcaggat tgaaagtgtgcaacaaggtttgaatgaataagtgaaaatcttccactgg tgacaggataaaatattccaatggtttttattgaagtacaatactgaat tatgtttatggcatggtacctatatgtcacagaagtgatcccatc 62 exon 23 UGGGCCUCUUGGGAAGAACUGGAUCAGGGAAGAGUACUUUGUUAUCAGC UUUUUUGAGACUACUGAACACUGAAGGAGAAAUCCAGAUCGAUGGUGUG UCUUGGGAUUCAAUAACUUUGCAACAGUGGAGGAAAGCCUUUGGAGUGA UACCA 63 intron 23 caaaaggacttagccagaaaaaaggcaactaaattatattttttactgc tatttgatacttgtactcaagaaattcatattactctgcaaaatatatt tgttatgcattgctgtcttttttctccagtgcagttttctcataggcag aaaagatgtctctaaaagtttggaattctcaaattctggttattgaaat gttcatagctttgatagtgtttttcagaagaccaaatttacagtgggag ccttgggcttttgttttttaacagctcttttttgttcctgcttcagtgg cctgacctccaagttagcaatcgccaggttgagaaatgctttgcgagac ataacagatgctcctgaaataacaaacacttggaatcatgaggtagtgg aattgaaaatagaaagtgtagtgattgttttttgttatttggatgggat gaacaatgtcagattagtctgtaactatttttttttaatgtcactctga tttggtcacaaaggatctctagtctcattgccttagtatcattctacga attagaatgtgttactgtgtaagagcacttcttgtatatgagagaaata gcaacagttccagtttaaagtgatataaatggaaaccaagaaatgtctt tactgggaccaaatctggacagcatttactgtatttttgctggtatttt ctctagtctttccgggtatattcacatttaatgatcacttttctccctt tgtgctaatggacactgaatccattccactaccatagttcttgctaata ctactctactttttacacaaaattaaaatgccaggagcacctccaggta gactgactataaatctagactgaaaaaaaagcttgtatttcttaacaga ttaccttgtggaacatttgctcctttcaactaatgaggcactaaatatt gtaactgctcaactggtgcttttaatttatttgtctagactttgtcatg ttgccagaagctttatcctg.....ttgacttgacttgtgtggttcctt gtggaccagatggccactaaatattctcatttcaaggcaattggtaaaa actacacttcaagaaatttcattcttaattccccttagtggatgttatt aaccaaaggcaaaagaaaaaaagggtaaaaaaaatattctaaatgttaa tatcaaaaatattattttcaattcaccccaggcacagagaactaagtat tattattgctattgcaccggcattccccaatgagacagtgattttcttt taagacatttttaaataatataggcagaattaagtagacggtgatctgg taagtagatgtttcagggtaacagctgtgcaatgctccatgcagggaat tagattgtcattttattccttaccaggaacatacattcagttaaacaat tatttgacttctgctcttccactgatttctaagttgaggctctctcttg tgcctgtctgatcagataagtagagttgtgccttggtttatagatgaga taaatgtgtatttgaataagcataagttaaagaaattttaaaatccctt aggaagctaggcttatcagagaaatccaaggaaatacattaacaaacta ggaatttgttctaacaggttaattataactcataaacttattgggtttt tttaccttttaattttatattacatttgcttataataaggaatattgct aggaataaaattttttaatattctacaattaacaattatctcaatttct ttattctaaagacattgggattagaaaaatgttcacaagggactccaaa tattgctgtagtatttgtttcttaaaagaatgatacaaagcagacatga taaaatattaaaatttgagagaacttgatggtaagtacatgggtgtttc ttattttaaaataatttttctacttgaaatattttacaatacaataagg gaaaaataaaaagttatttaagttattcatactttcttcttcttt 64 exon 24 AAGUAUUUAUUUUUUCUGGAACAUUUAGAAAAAACUUGGAUCCCUAUGA ACAGUGGAGUGAUCAAGAAAUAUGGAAAGUUGCAGAU 65 intron 24 gctgctaactgaaatgattttgaaaggggtaactcataccaacacaaat ggctgatatagctgacatcattctacacactttgtgtgcatgtatgtgt gtgcacaactttaaaatggagtaccctaacatacctggagcaacaggta cttttgactggacctacccctaactgaaatgattttgaaagaggtaact cataccaacacaaatggttgatatggctaagatcattctacacactttg tgtgcatgtatttctgtgcacaacttcaaaatggagtaccctaaaatac ctggcgcgacaagtacttttgactgagcctacttctctcctcactggta tggctccaaccatcaggccctatcttggtccatttaggctgctaaaata aaataccaaagactgagctgcttataagcaatctttggaggctgagaag tcaaagatcaaggtgccagcaggtttgctgtctcgtgagagcatacttc ctggttcattgatggtgctttcttgctgtgtcctcacataatggaaagg gcaagacctctctggtgtctcttttacaatggcactaatcccatcatga gggctttgttctcatgacctaatcacctcccacatgtcctacattctaa tactatcaccttgggggttaggattttaacatatgaatttgaggaggtg gcgggggggacacaaatatttagaccatagcatttcactcctgacctcc aaagttcatgtcttcttcacatgcaaaatacattcattccatcccaata gcccccaaagtcttaacttgttccagcatcaacttacaaggctaaagtc caaggtttcatctaaatatcagctaaatcagcacaaacagctaaatcag gtagagtgggacttaaggtgtgattcctctttaggcagattgctctcca actatgaaattgtgaaatcaaacctattatgtactttcaaaataaaatg gtgaaacaggcacaggctag.....ataagattctttctgagccattat ctcattctatattacagtcaggtggagcccatcttacctcctcatacta aattctagacttctcaagggcaggagacaatcatctgtatatctctttg gccttcatacactcaggagtacttgccaaaaataaacatttaatgcaca tttatttgaataattgataagatccaatacttcaataactttgtcatat ttttatagaatgggtttctatatctcatttgcattttcaaactttactt ttactgtctagctttaaaaaaaaagcctttgactctaatacagccctca tattctaccccaatatctaagaggctttatatctcctagtgttgtacca ctattttaactccagtattttttacttcatagttttacctatttgttac agttagtttttatgaattcaagagatgaatagcaattttccatatgtaa tttaaaaaaccccacagttgactattttatgctatcttttgtcctcagt catgacagagtagaagatgggaggtagcaccaaggatgatgtcatacct ccatcctttatgctacattctatcttctgtctacataagatgtcatact agagggcatatctgcaatgtatacatattatcttttccagcatgcattc agttgtgttggaataatttatgtacacctttataaacgctgagcctcac aagagccatgtgccacgtattgttttcttactactttttgggatacctg gcacgtaatagacactcattgaaagtttcctaatgaatgaagtacaaag ataaaacaagttatagactgattcttttgagctgtcaaggttgtaaata gacttttgctcaatcaattcaaatggtggcaggtagtgggggtagaggg attggtatgaaaaacataagctttcagaactcctgtgtttatttttaga atgtcaactgcttgagtgtttttaactctgtggtatctgaactat 66 exon 25 UUGGGCUCAGAUCUGUGAUAGAACAGUUUCCUGGGAAGCUUGACUUUGU
CCUUGUGGAUGGGGGCUGUGUCCUAAGCCAUGGCCACAAGCAGUUGAUG UGCUUGGCUAGAUCUGUUCUCAGUAAGGCGAAGAUCUUGCUGCUUGAUG AACCCAGUGCUCAUUUGGAUCC 67 intron 25 tttcagatgttctgttacttaatagcacagtgggaacagaatcattatg cctgcttcatggtgacacatatttctattaggctgtcatgtctgcgtgt gggggtctcccccaagatatgaaataattgcccagtggaaatgagcata aatgcatatttccttgctaagagtcttgtgttttcttccgaagatagtt tttagtttcatacaaactcttcccccttgtcaacacatgatgaagcttt taaatacatgggcctaatctgatccttatgatttgcctttgtatcccat ttataccataagcatgtttatagccccaaataaagaagtactggtgatt ctacataatgaaaaatgtactcatttattaaagtttctttgaaatattt gtcctgtttatttatggatacttagagtctaccccatggttgaaaagct gattgtggctaacgctatatcaacattatgtgaaaagaacttaaagaaa taagtaatttaaagagataatagaacaatagacatattatcaaggtaaa tacagatcattactgttctgtgatattatgtgtggtatt 68 exon 26 ACAUACCAAAUAAUUAGAAGAACUCUAAAACAAGCAUUUGCUGAUUGCA CAGUAAUUCUCUGUGAACACAGGAUAGAAGCAAUGCUGGAAUGCCAACA AUUU 69 intron 26 tctttataactttacttaagatctcattgcccttgtaattcttgataac aatctcacatgtgatagttcctgcaaattgcaacaatgtacaagttctt ttcaaaaatatgtatcatacagccatccagctttactcaaaatagctgc acaagtttttcactttgatctgagccatgtggtgaggttgaaatatagt aaatctaaaatggcagcatattactaagttatgtttataaataggatat atatactttttgagccctttatttggggaccaagtcatacaaaatactc tactgtttaagattttaaaaaaggtccctgtgattctttcaataactaa atgtcccatggatgtggtctgggacaggcctagttgtcttacagtctga tttatggtattaatgacaaagttgagaggcacatttcatttttctagcc atgatttgggttcaggtagtacctttctcaaccaccttctcactgttct taaaaaaactgtcacatggccaggcacagtggcttacatctgtaatccc aatactttgggaggctgaggtggggggattacttgaggccaggaattca agaccagcccaggcaacatagtgaggccccatctgtctttattaaaaca aaacaaaactgtcacagcttctttcaagtgatgtttacaaattccctat ggtttagtcacaaggaagttctgaggatgatgtatcacgtcatttctgt tcaggcttttgagcctcctggaggtaaatggtttccttactgaaggctt gttattaccatgattatcactaagcttgaagtaacaaattaggggggca gactcacaacctcttgccctgccatggacaagttcaagaatctaagtaa agtcctctattgtctgatcttggatttgctcaacctgaacaagccaagg aggtgtattaaactcaggcacatcctgaccaatttggaattcttaagct tcagatcactgtggaagaggctcaactctttatggtgctgtagacttac gctcattttctaggtaatttataagggacctaatattttgttttcaaag caacttcagttctactaaacctccctgaagaatcttccagctgctgagt agaaaatcacaactaatttcacagatggtagaacctccttagagcaaaa ggacacagcagttaaatgtgacatacctgattgttcaaaatgcaaggct ctggacattgcattctttgacttttattttcctttgagcctgtgccagt ttctgtccctgctctggtctgacctgccttctgtcccagatctcactaa 70 exon 27 UCAUAGAAGAGAACAAAGUGCGGCAGUACGAUUCCAUCCAGAAACUGCU GAACGAGAGGAGCCUCUUCCGGCAAGCCAUCAGCCCCUCCGACAGGGUG AAGCUCUUUCCCCACCGGAACUCAAGCAAGUGCAAGUCUAAGCCCCAGA UUGCUGCUCUGAAAGAGGAGACAGAAGAAGAGGUGCAAGAUACAAGGCU U
TABLE-US-00016 TABLE 16 ADAMTS13 Target Sequences SEQ ID NO REGION TARGET SEQUENCE 71 exon 25 GCUCUGUUUCCUGUGGGGAUGGCAUCCAGCGCCGGCGUGACACCUGCCU CGGACCCCAGGCCCAGGCGCCUGUGCCAGCUGAUUUCUGCCAGCACUUG CCCAAGCCGGUGACUGUGCGUGGCUGCUGGGCUGGGCCCUGUGUGGGAC AGGGUACGCCCAGCCUGGUGCCCCACGAAGAAGCCGCUGCUCCAGGACG GACCACAGCCACCCCUGCUGGUGCCUCCCUGGAGUGGUCCCAGGCCCGG GGCCUGCUCUUCUCCCCGGCUCCCCAGCCUCGGCGGCUCCUGCCCGGGC CCCAGGAAAACUCAGUGCAGU 72 intron 25 guccuguccuccuuccugucaggcagcugcugcaggaggggugggcaaa ggcaucuuccucugggaaggacuggcacaagcacuuggucccuggguug ugugccugggaggccgggaucagggcuggcccucuuucucccuggcaaa gcaaaaccucccuuuuacuacuaucaaggggaaguaacuugaagguagg aacccagcuugugagcccccuagccucugggcugcucugcaugugcccc cucuugcuggaucaucugguagcagcccugugcccugagggugaugcuc ugaccuaugcagccccccucccuguccugagaaggcuuccagcugggcc uuggaggacaggguccaccccuaccuccuggucuccuuccucagcuugg aagccccggagccugcccugcugggaaucggggaagcacugcuuaccug ucuc 73 exon 26 UGCCUGUGGCAGGCAGCACCUUGAGCCAACAGGAACCAUUGACAUGCGA GGCCCAGGGCAGGCAGACUGUGCAGUGGCCAUUGGGCGGCCCCUCGGGG AGGUGGUGACCCUCCGCGUCCUUGAGAGUUCUCUCAACUGCAGUG 74 exon 27 GGACAUGUUGCUGCUUUGGGGCCGGCUCACCUGGAGGAAGAUGUGCAGG AAGCUGUUGGACAUGACUUUCAGCUCCAAGACCAACACGCUGGUGGUGA GGCAGCGCUGCGGGCGGCCAGGAGGUGGGGUGCUGCUGCGGUAUGGGAG CCAGCUUGCUCCUGAAACCUUCUACA 75 intron 27 gccaggccuucuccaccucccuugggugcuccaguccuggcagggaggc ugggugggugcugcuggggauggggccagucccaguggggcagugggaa gauacggagggaacugacugagauggaaggaacugggguuggccagugu cagucugcacgugccagggaggggucacaggaugaaugcuauaucccuc cuuuuugggaccgugcagcaagauggacggaugugggacaugguccaca uccucagucagucccucaggccucugccccacacccaccugccccgccc ccaccccuccagccuuucaagggcuuuuaggguuuuguggaagccacug ucccucagcccuguuucagugcacugguguaagcagacaugcuuguaca ugcaugugcacccacaagcacaccucaggcagaggaugccaccucaggg acuccagccuugcccguggcccccucgauauccucugauagcccucucg guuguccuggggggcuugcccucucccaacagcccgagcuggccgaagu uggcuucccuagcugguuccagagguuccucggcucccccaggugucug gggcuuaguggcaacaggggcuuagccucugcagagaccuagugcgccg ccuccuugccccagaccugcccgggcagagagccguguaugugucccag ugcacaggcgcugcugggcccugccaaaaggccacaagcccacugucac cguucacauugcuucucgcuucccggcccagccccgcccacacaggcau cugccuugaaagaggugcaggagguacaggcaggugggggcuccaguga gcucugaggaacagcaguggccgccauggguggagccuaucuuuguugc caguuucaguguuaaacacucuugcacgugugacaucauugaguccuaa agaccacucugcucagugcaugccauuguuuccuucaguuacagaggag ggaaccagagcccagaacauuuagccuuugccuaaagucacugggccag gaagugguagaggugggguucagcaggauuugccugggaaccccaauau ugaccacagugccaugcugcccugcacggcucccuggcugugaguuguc cuggccucuggcaccaccggucugucuggguuccuaugucccu 76 exon 28 AUGUGACAUGCAGCUCUUUGGGCCCUGGGGUGAAAUCGUGAGCCCCUCG CUGAGUCCAGCCACGAGUAAUGCAGGGGGCUGCCGGCUCUUCAUUAAUG UGGCUCCGCACGCACGGAUUGCCAUCCAUGCCCUGGCCACCAACAUGGG CGCUGGGACCGAGGGAGCCAAUGCCAGCUACAUC
TABLE-US-00017 TABLE 17 TSC1 Target Sequences SEQ ID NO REGION TARGET SEQUENCE 77 exon 5 ACCUCUUGGACAGGAUUAACGAAUAUGUGGGCAAAGCCGCCACUCGUUU AUCCAUCCUCUCGUUACUGGGUCAUGUCAUAAGACUGCAGCCAUCUUGG AAGCAUAAGCUCUCUCAAGCACCUCUUUUGCCUUCUUUACUAAAAUGUC UC 78 intron 5 auguuuguaaggauuugaaugaaaugguuuuaugaguauaguuucugaa auuuuaggcaacuuaaagcaaggaagcuagauuuuaacuuuuagaguuu aaaaccuucuaggcauuuggcuuuucucaaauagaauguuguccagagu ugguacuuaguaaguucucaaauacaucacuaugacuauugaauaccuu guccaugcaaguauggaaaaauuucgaucagauggguucaauguuacau uauuccaaaccucuugauuucgucaucguuuagccuucccucauuuaaa aacauccuggauuaucuuuugggaaucccuguuucuaaauuaucuuuua gcuaauagaaaaauggcuuaaaguuucuguuaaccauuuaggaguaugg ucugguugcagcuauaauuaagacuuuguugauguaaauucuacuaagu ugcauucuauuuuuugcacuaaauuuagugcauuuuucuauauagggag ucaaaaucuaaauagaacuuuaugguuuuaguuuuaacaguggcgugca gccauacucaggguuauuuguuuaaucuguuuuaguuccuggacuuguu uucuaucuauaaaauaagaaaaugugguuaauauuaacugccuguaccu cacagagacaugaaaauauccaauaguauuuguuccaggauggcaguac cauuggauucaucugcuacagcaccaugcaaauugauuuuugugucugc caagaaggguaacucuuuuauuaucccuagaggugggucccaaggaguc acauuggcaggguauuauaaaaacaugcauuuaauucagaaaaaauagg aacaguuuuaacaacuuaauguuuuuuaaacaaauggauugaugagaau auaaucuaauuaauggauuggugagaauauaaucuaaauggauugauga gaauauaaucuaaauggauuggugagaauauaaucuaaauggauugaug agaauauaaucuaauuuugaggcacaucauuuaguucagauugcaaaac acuuaucuuuuccaaaagaguacguuuuguuaaucauggauaagucuuc aguuagacuguuaggaaaaugaaaucagggcuaguucuuucugcugaga aucauuauauagucucauauauucucaauucuccuaccaauauauuauu cuuacuggauaucuuccguaaugaaaggcuugaugcuugauguaaaaau caaaauauauuuaaaacuuuauucccagacucauagauuccuauucuaa uaggaauaauggaugucuuaaccuacauaguagucuuuugauuaauauc uuguuucauaaaucugaauuucaucuaccuggcaaacauucaugauuua auuaugggucaggugagcugcuguagcuagcuagucagagcugauugag uauccauuggguguuaagugucuucaguuagccugaaguuauuuauuug acuuaauauuuaaacuguaggcgugcugaaagguuuccauauauauaua uuuuaauuuacuggucucuaaauacugcuuugaagugagccuuuaaguu gacuuguuagugcuauaugaauuucuccuucaauuauacuucuguugua guucuuuaaaaaauaguaaguuacuugucaaugugcaguuuuuuuuuuu uuuaauuaacaaaaaguaaguaucuuaggauuugguugaaugaaugaaa cagagcagugcuccuguguuuuguugaaaagcagcuccuuuuguuuuca uccaacugcuaucaauagggcauccuaaggcugcaggacuugggugucc ccaagucaaguuugaacucgucucccggaugccuuugcauagguguguu guaaaugguccucacugacucauuacaguagaguuggggcucaguguuc uguugagucuguuugaauguuaucccuucaguaauccuuagggauaggg aaaugaguacgugagucaacuugugauuugugauucucucaguguuuag agccucuucauguacuguacaaugccgauccuggugccagugccugaca gacguuuccuguuuga 79 exon 6 UGGACACUGACGUCGUUGUCCUCACAACAGGCGUCUUGGUGUUGAUAAC CAUGCUACCAAUGAUUCCACAGUCUGGGAAACAGCAUCUUCUUGAUUUC UUUGACAUUUUUGGCCGUCUGUCAUCAUGGUGCCUGAAGAAAC 80 exon 10 GUGUGCUACUUCUACCCCUUACUCCACGUCUCGGCUGAUGUUGUUAAAU AUGCCAGGGCAGCUACCUCAGACUCUGAGUUCCCCAUCGACACGGCUGA UAACUGAACCACCA 81 intron 10 gugucaacuagugugccugcucucuccucugcuuucuggugaagcugac ccuuugggucagauuuaguaugugguugggaaaauuucacacugcucau uucaggagucacuuuuaaggauccaugauauuagcaaagaaaguuacug uugccucuuagauucaucuugaagucuugauuuacaaaaugcaacuugu uucuugauacgcuuuuaauaagaugccuuuuucuagaugaaaaagcuaa auuuaagcugaacacuggccauggauauaaaccucguggaugacuuagc auuccuuugccacugcugauguacu 82 exon 11 CUACUCUUUGGAGCCCAUCUAUGGUUUGUGGUAUGACCACUCCUCCAAC UUCUCCUGGAAAUGUCCCACCUGAUCUGUCACACCCUUACAGUAAAGUC UUUGGUACAA 83 intron 11 uaugucuuagguuggauuugauuaguugguuuuggccugccuuuaaugg caggaggagcucucuuuuagaucuaagggaccacuugcuguuguaaacu uguuuuugacacuuauugcaaaucccuggggcuuucagaauguguaaag ugaaccuaaaaacaaaaaagagagagacugaucuagauccccagaaagu uaacucuagcagcuuuauuuauaguaauaguuauaggcugaaaaaaaau cggcaguuuuucuaauaguugggcucaguguucauauauguucu 84 exon 12 AGGUGGAAAAGGAACUCCUCUGGGAACCCCAGCAACCUCUCCUCCUCCA GCCCCACUCUGUCAUUCGGAUGACUACGUGCACAUUUCACUCCCCCAGG CCACAGUCACACCCCCCAGG
TABLE-US-00018 TABLE 18 IMPDH1 Target Sequences SEQ ID NO REGION TARGET SEQUENCE 85 exon 14 GAUGAUGGGCUCCCUGCUGGCCGCCACUACGGAGGCCCCUGGCGAGUAC UUCUUCUCAGACGGGGUGCGGCUCAAGAAGUACCGGGGCAUGGGCUCAC UGGAUGCCAUGGAGAAGAGCAGCAGCAGCCAGAAACGAUACUU 86 intron 14 cugacccugggccccaccugggcagaucagcccacaacccuucagggcc cgcucaugccaccgacuuccccagauggcagccaguccccauauggugg uucuggaaacugaggcacagggcuuaaguagcagacccaggaucugucc cugggccaucugacucagcccagugagggguggccugggggaccuuccu gggcgguaucccguuuuugcccuuaagagguggggugggguccucugag cuucaagcugcugggcucagucuu 87 exon 15 GAGGGGGAUAAAGUGAAGAUCGCGCAGGGUGUCUCGGGCUCCAUCCAGG ACAAAGGAUCCAUUCAGAAGUUCGUGCCCUACCUCAUAGCAGGCAUCCA ACACGGCUGCCAGGAUAUCGGGGCCCGCAGCCUGUCUGUCCU
TABLE-US-00019 TABLE 19 PKD1 Target Sequences SEQ ID NO REGION TARGET SEQUENCE 88 exon 32 AGGCCUUUGUUGGACAGAUGAAGAGUGACUUGUUUCUGGAUGAUUCUAA 89 intron 32 uucccuagagaaaccucgagcccuggugcaggucacugugucuggggug ccgggggugugcgggcugcguguccuugcugggugucuguggcuccaug uggucacaccacccgggagcagguuugcucggaagcccaggguguccgu gcgugacuggacgggggugggcugugugugugacacauccccugguacc uugcugac 90 exon 33 CUGGUGUGCUGGCCCUCCGGCGAGGGAACGCUCAGUUGGCCGGACCUGC UCAGUGACCCGUCCAUUGUGGGUAGCAAUCUGCGGCAGCUGGCACGGGG CCAGGCGGGCCAUGGGCUGGGCCCAGAGGAGGACGGCUUCUCCCUGGCC AGCCCCUACUCGCCUGCCAAAUCCUUCUCAGCAU 91 intron 33 cuggggugagaggagggggcucugaagcucacccuugcagcugggccca cccuaugc 92 exon 34 UGAAGACCUGAUCCAGCAGGUCCUUGCCGAGGGGGUCAGCAGCCCAGCC CCUACCCAAGACACCCACAUGGAAACGGACCUGCUCAGCAG 93 exon 37 UCUUGCUGGAAGCCCUGUACUUCUCACUGGUGGCCAAGCGGCUGCACCC GGAUGAAGAUGACACCCUGGUAGAGAGCCCGGCUGUGACGCCUGUGAGC GCACGUGUGCCCCGCGUACGGCCACCCCACGGCUUUGCACUCUUCCUGG CCAAGGAAGAAGCCCGCAAGGUCAAGAGGCUACAUGGCAUGCUG 94 intron 37 ccugggugcggccugugccccugccaccuccgucucuugucucccaccu cccacccaugcacgcaggacacuccugucccccuuuccucaccucagaa ggcccuuagggguucaaugcucugcagccuuugcccggucucccuccua ccccacgccccccacuugcugccccagucccugccagggcccagcucca augcccacuccugccuggcccugaaggccccuaagcaccacugcagugg ccugugugucugcccccaggugggguuccgggcagggugugugcugcca uuacccuggccagguagagucuuggggcgcccccugccagcucaccuuc cugcagccacaccugccgcagccauggcuccagccguugccaaagcccu gcugucacugugggcuggggccaggcugaccacagggc 95 exon 38 GCCUCCUGGUGUACAUGCUUUUUCUGCUGGUGACCCUGCUGGCCAGCUA UGGGGAUGCCUCAUGCCAUGGGCACGCCUACCGUCUGCAAAGCGCCAUC AAGCAGGAGCUGCACAGCCGGGCCUUCCUGGCCAUCAC 96 intron 38 ggcauccggugcacuggucugucuucugggcuuuaguuuugccuuuagu ccagccagacccuaggggacauguggacauguguagauaccuuuguggc ugcuagaacuggagguaggugcugcuggcaucaguaggcagaggggagg gacacagguccgugucuugcagugcacaggacgggcccaugacagacaa cugucugccccagaacauccccaggauaaggcugagaagcccaggucua gccguggccagcagggcagugggagccauguucccugggucucuggugg ccgcucacucgaggcgggcauggggcaguaggggcuggagcguguga 97 exon 39 UCUGAGGAGCUCUGGCCAUGGAUGGCCCACGUGCUGCUGCCCUACGUCC ACGGGAACCAGUCCAGCCCAGAGCUGGGGCCCCCACGGCUGCGGCAGGU GCGGCUGCAGG
TABLE-US-00020 TABLE 20 IKBKAP Target Sequences SEQ ID NO REGION TARGET SEQUENCE 98 exon 7 AUGAGUCUGCUUUGCCCUGGGAUGACCAUAGACCACAAGUUACCUGGCG GGGGGAUGGACAGUUUUUUGCUGUGAGUGUUGUUUGCCCAGAAA 99 intron 7 gaaauauauugcaguuaaacaacaauaaaaaauuuuuaucuuauuaaaa uuaaggaaaauuuucuuucuuuugcuuugaguaggguauuaauuauaca uaugaggcaaggaugugcugcuuuaaaugugaaaugagguuagaguuaa gaauuagaagaguccuuugaggccauuugguccauccuccuaccuggug gacacaaauuuguaacaaaauuaaucuaauuggcuauguaaaaccaugg caguuuuuauuuguaaggaagguguuugaauaguucugaauugacaacu uuuaucauaauguuuuaaguguguauguguguuugac 100 exon 8 GGCUCGGAAGGUCAGAGUGUGGAACCGAGAGUUUGCUUUGCAGUCAACC AGUGAGCCUGUGGCAGGACUGGGACCAGCCCUGGCUUG 101 intron 8 ugggagaagaaaccuuagagaaauucuuggaaccagaguagagguggug guacacauggauacagaugauacagauguuuguguaacacaaaaggauu uuuacguuucuucauuugguuauaaggcuguaucuaucuuuguuucuuc uuuuuuuuuuuucuuauucccugaagucugaauucaacucgaauaguag auuuuacgcuucuucacagauuucauuguuccaaggccgcauauauuuu gcauuccuaacucuuaaaaggcugugguuuuaaggcaggguauauauga agccauuguacagagcagaaaaugguguuuagaagggaaggcccaguuu gcaaggcucuguggggcaaauggugcuuuuguggaaauuagggaaagag ccuccuuccuuggcacaaaauuccuacagcagaggaucugcuugccaag gagcaugcaggcuggauucagacccugcucuuuccuuccauucuccucc uuggcccaguacccuugugcagguuacaauuugccugucauauguggcu gccugauuuuagauagaagauguaucuccucuguuucggugauaucugu uguauguagaccucuuguuucccaccaguaucugaaugguauuauauga uagagcagaagagaaauguauuugaauuaaaacccuagagacaaauaug aauaagaugaggcaauuaagauguuuucaacauuuggugaagucuuaaa aaagaccuacuggagcauagaauauuugcugaaguuguauaauggaagg agaaauagauuuugauuuuuaggacauuauaccuggaaugguuuagaua acuuauuauuuuuaaagucauccaaaugcaauguaaauauguaagguuu ugugggcaaauggagccucuguguaaaacaggaaaaggcacucuuuccu cugggcaaguacagucccacagugggaugaaccgcucgccgagagacaa gggacacaugggauuuaaaacuuccuuggauaaagauauucauuaauuc guucauucauucauucauguuugcuggaaaaaaaacucuucuggauuuu aucuauucuuuaguuaggugagcuuucgauauuguaacacuc 102 exon 9 CCCUCAGGCAGUUUGAUUGCAUCUACACAAGAUAAACCCAACCAGCAGG AUAUUGUGUUUUUUGAGAAAAAUGGACUCCUUCAUGGACACUUUACACU UCCCUUCCUUAAAGAUGAGGUU
Sequence CWU
1
1
4031124RNAHomo sapiens 1ugggcuacga acugaaggau gagaucgagc gcaaauucga
caaguggcag gagccgccgc 60cugugaagca ggugaagccg cugccugcgc cccuggaugg
acagcggaag aagcgaggcg 120gccg
124284RNAHomo sapiens 2gggcccuggg gguccgguag
gcaugggggu cauggagggg agaagccggc guccuccucc 60cagccgacuc ccuggcgccg
ccca 84369RNAHomo sapiens
3uaccgcaaga ugaaggagcg gcuggggcug acggagaucc ggaagcaggc caaccguaug
60agcuucgga
694125RNAHomo sapiens 4ucgaggagga cgccuaccag gaggaccugg gauucagccu
gggccaccug ggcaagucgg 60gcagugggcg ugugcggcag acacagguaa acgaggccac
caaggccagg aucuccaaga 120cgcug
125566RNAHomo sapiens 5ggccagaccc agguggggcu
ggggaccgag ggacacaagg uggggggagc ccagaucgca 60gccucc
66695RNAHomo sapiens
6ggacccugca gaagcagagc gucguauaug gcgggaaguc caccauccgc gaccgcuccu
60cgggcacggc cuccagcgug gccuucaccc cacuc
95727RNAHomo sapiens 7aucuuaguau caauugguga aucauuc
2783290DNAHomo sapiens 8tattttcttt ctatgaaata
taatagtatg cattgtaagt ataaaagaaa ttaaagcttt 60ctataatttg aatttccaaa
tgcagttatt caaacacctc atccaggcat attgcataga 120attttatgag atatatatat
ctcagattta ctttcaaatc aagtttaatc tcaaatcata 180ctcctaattg gtgaacttca
aaacttttct aaatatccac ttgagattat ataatacata 240tatacatttg tgtatataca
tacatatata cgtgagctgt ttttgctcac aacatttcta 300tcaccaaatg tgtgagattt
ttttctcacc caaatctatt cttcaactct ctggtgttct 360acaattcaat tcaattctga
cactaattac ccagagtcag catcagactc cacaggttca 420agggctcagt cccacaaaaa
tggtctcact gcagacacca gtcacaagtg tcaggtcccc 480aggctacacc acacttccgt
ctgacttgaa tacgaagttg gggggttccg atagtgcctc 540ttccttacag tttgatccac
tgccagaact actcacaaaa ctctggaaaa tattctactt 600actattatca gttcatcata
aaagatacaa atgaacagcc agatgaagaa atattatata 660gggtgaggtc cagaagagtc
cctagcacag gggcttctgt ccctggggag ttggggtgca 720ccaccttcct agcacttaga
catgtttacc aactccaaag atctcccaac cttattgttg 780aggggttttt atgggggttt
cattatatag gcataattga ttaactcaat ttccaacccc 840ctcccctccc tggatagagg
gtggggctga aagttccaag cttctactca agacttggtc 900tttctggcaa ccagcttcca
tcctaaatta gctaggtacc caccaagtat cacctcatta 960gaacaaaaga tggtcccatc
acccttatca cacatgaaat tcgaagggtt ttaggagctc 1020tgtcccagga accagggaca
aagaccaaat atctttcaat gataccatgt atgtatgtac 1080ataacctcac aggaatcttt
ataaaacaat tttgaaattc actcattatg agtgtgattt 1140gaaatgagat actccaaaat
gtaagcccga tatccaaatg tcaccagcct gtccctgcct 1200actggtctcc ttccatacat
atgcactttt tgcttgtcct tcctctcaga cttctaggat 1260attctttttc tggtacactg
attaggaatt gtttgcatga gatcctgcct cagtgaaagt 1320ggcagagctt cattctagga
gatccaaggg aaagctttgc tttgaaacat ttattctagg 1380ctgcaaatcc acaaccctag
ttggccttcc attaaagtca ctaattcagc agtcccatat 1440tcaatatgca ttactgttaa
tatgttgcac catctccatt cccctgagag cttatatttt 1500taatttttaa atttttattt
ttagagacag tgtctcactc tgtcacctac ttattataac 1560ctcaaactcc tcggcccaag
cagtcctctc accttagcct cccaagttgc caggactaca 1620ggcatgcacc accatgtcca
gctaattttt aaattttttg tagagacagg gttttctatg 1680ttggccagat tggtattgaa
ctcctggctt ccacgatacc ccgtctcagc ctcccaaaga 1740actgggatta cagatgtgag
ccactgcacc tggccagaga gcttatattc ttataggaat 1800gggaagactg cctatgttat
gtgttgctac ataatacatt acccccaaac ttagtgactt 1860aaaacaaacg cttattatct
ccatttctgt gggtcaataa tctaggcatg acttagctgg 1920gccagagttt ctccaaagtc
tgtgatcaag gtgtcagttg ggctgggcct gcagtcatct 1980caaggctcca ctagaggagc
attcactggc agacttattc aaatggctgt tggctgatcc 2040tcgatggcta ttggcccctc
tattggtttc ttgcccttgg gcccctccat agtactgctt 2100gctattcaca acatggcagc
ttgctttgcc cagagcaggg actctgaggg aggcagggaa 2160ataaagagca agagagaggt
cacagtctta ttgtaatcta attctggaaa tgacagccca 2220ttacttttgg catattattt
tggttagaag caagacaaca gtagatctag cccacacacg 2280aggggaggag gatcacacaa
ggaggtgaat accaggaggt ggggtcattg ggagccatct 2340gagaggctgc ccaccacact
gcctcaagta actagggaga ggtaaaagtt tatatgccag 2400atgaccaaat attaaaatgt
gtgttacaaa tagttcacga tgggctcagc tgtcagactt 2460tacaaaggag ctatgggacc
ttataaggac agttggaact ggctaggtat cacatagtgg 2520tcttcaaaca tttttgcttg
ccataacctc taaaataatt gggaaaaagt tgaatgtact 2580tccatatctt aaagctgata
atttaaaata ttatacattt aatagcagca cgggatttag 2640tttttgttaa attgtatatg
tgctccaaat agatttacca tcaaaacctg ttttgaattt 2700aatattggga gaattcgcta
gtttaatttt tggaaaataa agtataattg gcaaagctaa 2760tcctcactgt tgaatctatc
cgtcaaatca gatataattt ctatcagaaa gtctatatga 2820cttgtcaaca taatacccat
aaagtgaatc aaaaattatt attcattgaa cacatcatct 2880cttatcaaat tcttgtgacc
ttccttctgg ttgtataata gcctaaaaaa caaaaaaagg 2940acaaaagcaa gtttccagaa
agctgttctg acttgcctac ttctgaaaag tagtcctgta 3000tggtgggttc tgaaaatgag
gaaccaggac ttgcagagta ggcagttgct ggaggaagaa 3060tgtgagctgc atgggaaaag
acaggaggat ttacaaagag tgggtgttta attggggatg 3120gaattaggta gttattctga
tttttagatt tttcatatct tttatttggt ccaatgaagc 3180agaaaattta aatgaagtta
ttacctttgc ctgatttttg acacacctca aactataact 3240tgaggttgct aactatgaaa
cactggcatt taatgattta aagtaaagaa 32909139RNAHomo sapiens
9cuucugagaa guuccagaaa auaaaucaga ugguauguaa cagcgaccgu gugcucaaaa
60gaagugcuga aggaagcaac ccuccuaaac cacugaaaaa acuacgcuuu gauauugaag
120gaucagauga agcagaugg
1391089RNAHomo sapiens 10auggugcauc ugacuccuga ggagaagucu gccguuacug
cccugugggg caaggugaac 60guggaugaag uuggugguga ggcccuggg
8911110DNAHomo sapiens 11tatcaaggtt acaagacagg
tttaaggaga ccaatagaaa ctgggcatgt ggagacagag 60aagactcttg ggtttctgat
aggcactgac tctctctgcc tattggtcta 11012219RNAHomo sapiens
12cugcuggugg ucuacccuug gacccagagg uucuuugagu ccuuugggga ucuguccacu
60ccugaugcug uuaugggcaa cccuaaggug aaggcucaug gcaagaaagu gcucggugcc
120uuuagugaug gccuggcuca ccuggacaac cucaagggca ccuuugccac acugagugag
180cugcacugug acaagcugca cguggauccu gagaacuuc
21913142RNAHomo sapiens 13acacucgcuu cuggaacguc ugagguuauc aauaagcucc
uaguccagac gccauggguc 60auuucacaga ggaggacaag gcuacuauca caagccugug
gggcaaggug aauguggaag 120augcuggagg agaaacccug gg
14214102DNAHomo sapiens 14ctctggtgac caggacaagg
gagggaagga aggaccctgt gcctggcaaa agtccaggtc 60gcttctcagg atttgtggca
ccttctgact gtcaaactgt tc 10215219RNAHomo sapiens
15cuccugguug ucuacccaug gacccagagg uucuuugaca gcuuuggcaa ccuguccucu
60gccucugcca ucaugggcaa ccccaaaguc aaggcacaug gcaagaaggu gcugacuucc
120uugggagaug ccacaaagca ccuggaugau cucaagggca ccuuugccca gcugagugaa
180cugcacugug acaagcugca uguggauccu gagaacuuc
21916860DNAHomo sapiens 16tccaggagat gtttcagccc tgttgccttt agtctcgagg
caacttagac aacggagtat 60tgatctgagc acagcagggt gtgagctgtt tgaagatact
ggggttgggg gtgaagaaac 120tgcagaggac taactgggct gagacccagt ggtaatgttt
tagggcctaa ggagtgcctc 180taaaaatcta gatggacaat tttgactttg agaaaagaga
ggtggaaatg aggaaaatga 240cttttcttta ttagattcca gtagaaagaa ctttcatctt
tccctcattt ttgttgtttt 300aaaacatcta tctggaggca ggacaagtat ggtcgttaaa
aagatgcagg cagaaggcat 360atattggctc agtcaaagtg gggaactttg gtggccaaac
atacattgct aaggctattc 420ctatatcagc tggacacata taaaatgctg ctaatgcttc
attacaaact tatatccttt 480aattccagat gggggcaaag tatgtccagg ggtgaggaac
aattgaaaca tttgggctgg 540agtagatttt gaaagtcagc tctgtgtgtg tgtgtgtgtg
tgcgcgcgcg cgtgtgtgtg 600tgtgtgtcag cgtgtgtttc ttttaacgtc ttcagcctac
aacatacagg gttcatggtg 660gcaagaagat agcaagattt aaattatggc cagtgactag
tgcttgaagg ggaacaacta 720cctgcattta atgggaaggc aaaatctcag gctttgaggg
aagttaacat aggcttgatt 780ctgggtggaa gcttggtgtg tagttatctg gaggccaggc
tggagctctc agctcactat 840gggttcatct ttattgtctc
86017125RNAHomo sapiens 17uccugggaaa ugugcuggug
accguuuugg caauccauuu cggcaaagaa uucaccccug 60aggugcaggc uuccuggcag
aagaugguga cugcaguggc cagugcccug uccuccagau 120accac
12518182RNAHomo sapiens
18aauuggaagc aaaugacauc acagcagguc agagaaaaag gguugagcgg caggcaccca
60gaguaguagg ucuuuggcau uaggagcuug agcccagacg gcccuagcag ggaccccagc
120gcccgagaga ccaugcagag gucgccucug gaaaaggcca gcguugucuc caaacuuuuu
180uu
182191000DNAHomo sapiens 19aaggtggcca accgagcttc ggaaagacac gtgcccacga
aagaggaggg cgtgtgtatg 60ggttgggttt ggggtaaagg aataagcagt ttttaaaaag
atgcgctatc attcattgtt 120ttgaaagaaa atgtgggtat tgtagaataa aacagaaagc
attaagaaga gatggaagaa 180tgaactgaag ctgattgaat agagagccac atctacttgc
aactgaaaag ttagaatctc 240aagactcaag tacgctacta tgcacttgtt ttatttcatt
tttctaagaa actaaaaata 300cttgttaata agtacctaag tatggtttat tggttttccc
ccttcatgcc ttggacactt 360gattgtcttc ttggcacata caggtgccat gcctgcatat
agtaagtgct cagaaaacat 420ttcttgactg aattcagcca acaaaaattt tggggtaggt
agaaaatata tgcttaaagt 480atttattgtt atgagactgg atatatctag tatttgtcac
aggtaaatga ttcttcaaaa 540attgaaagca aatttgttga aatatttatt ttgaaaaaag
ttacttcaca agctataaat 600tttaaaagcc ataggaatag ataccgaagt tatatccaac
tgacatttaa taaattgtat 660tcatagccta atgtgatgag ccacagaagc ttgcaaactt
taatgagatt ttttaaaata 720gcatctaagt tcggaatctt aggcaaagtg ttgttagatg
tagcacttca tatttgaagt 780gttctttgga tattgcatct actttgttcc tgttattata
ctggtgtgaa tgaatgaata 840ggtactgctc tctcttggga cattacttga cacataatta
cccaatgaat aagcatactg 900aggtatcaaa aaagtcaaat atgttataaa tagctcatat
atgtgtgtag gggggaagga 960atttagcttt cacatctctc ttatgtttag ttctctgcat
100020107RNAHomo sapiens 20uggaccagac caauuuugag
gaaaggauac agacagcgcc uggaauuguc agacauauac 60caaaucccuu cuguugauuc
ugcugacaau cuaucugaaa aauugga 107211000DNAHomo sapiens
21ttcatgtaca ttgtttagtt gaagagagaa attcatatta ttaattattt agagaagaga
60aagcaaacat attataagtt taattcttat atttaaaaat aggagccaag tatggtggct
120aatgcctgta atcccaacta tttgggaggc caagatgaga ggattgcttg agaccaggag
180tttgatacca gcctgggcaa catagcaaga tgttatctct acacaaaata aaaaagttag
240ctgggaatgg tagtgcatgc ttgtattccc agctactcag gaggctgaag caggagggtt
300acttgagccc aggagtttga ggttgcagtg agctatgatt gtgccactgc actccagctt
360gggtgacaca gcaaaaccct ctctctctaa aaaaaaaaaa aaaaaggaac atctcatttt
420cacactgaaa tgttgactga aatcattaaa caataaaatc ataaaagaaa aataatcagt
480ttcctaagaa atgatttttt ttcctgaaaa atacacattt ggtttcagag aatttgtctt
540attagagacc atgagatgga ttttgtgaaa actaaagtaa caccattatg aagtaaatcg
600tgtatatttg ctttcaaaac ctttatattt gaatacaaat gtactccctg ggaagtctta
660aggtaatggc tactggttat caaacaaatg taaaaattgt atatttttga gtacctgtta
720catgccaggt agaatatctc ctctcagcca ctctgagtgg aaagcatcat tatctctatt
780ttacagaaaa gcaaactgag gctcagagag ataatatact ttgccagtta atgaatgatg
840gagccatgat tccagctgag gtctgtattg ccttgctctc taggaatggt agtccccccc
900ataaagaatc tctcagtttc ctttccaatc aaaaggttag gatccttttg attgccagtg
960acagaaaccc aatttactag cttaagtaaa taaaaggaac
100022105RNAHomo sapiens 22gaaugggaua gagagcuggc uucaaagaaa aauccuaaac
ucauuaaugc ccuucggcga 60uguuuuuucu ggagauuuau guucuaugga aucuuuuuau
auuua 105231000DNAHomo sapiens 23gatctcattt gtacattcat
tatgtatcac ataactatat tcatttttgt gattatgaaa 60agactacgaa atctggtgaa
taggtgtaaa aatataaagg atgaatccaa ctccaaacac 120taagaaacca cctaaaactc
tagtaaggat aagtaaaaat cctttggaac taaaatgtcc 180tggaacacgg gtggcaattt
acaatctcaa tgggctcagc aaaataaatt gcttgcttaa 240aaaattattt tctgttatga
ttccaaatca cattatctta ctagtacatg agattactgg 300tgcctttatt ttgctgtatt
caacaggaga gtgtcaggag acaatgtcag cagaattagg 360tcaaatgcag ctaattacat
atatgaatgt ttgtaatatt ttgaaatcat atctgcatgg 420tgaattgttt caaagaaaaa
cactaaaaat ttaaagtata gcagctttaa atactaaata 480aataatacta aaaatttaaa
gttctcttgc aatatatttt cttaatatct tacatctcat 540cagtgtgaaa agttgcacat
ctgaaaatcc aggctttgtg gtgtttaagt gccttgtatg 600ttccccagtt gctgtccaat
gtgactctga tttattattt tctacatcat gaaagcatta 660tttgaatcct tggttgtaac
ctataaaagg agacagattc aagacttgtt taatcttctt 720gttaaagctg tgcacaatat
ttgctttggg gcgtttactt atcatatgga ttgacttgtg 780tttatattgg tctttatgcc
tcagggagtt aaacagtgtc tcccagagaa atgccatttg 840tgttacattg cttgaaaaat
ttcagttcat acacccccat gaaaaataca tttaaaactt 900atcttaacaa agatgagtac
acttaggccc agaatgttct ctaatgctct tgataatttc 960ctagaagaaa tttttctgac
ttttgaaata atagatccat 100024212RNAHomo sapiens
24aagucaccaa agcaguacag ccucucuuac ugggaagaau cauagcuucc uaugacccgg
60auaacaagga ggaacgcucu aucgcgauuu aucuaggcau aggcuuaugc cuucucuuua
120uugugaggac acugcuccua cacccagcca uuuuuggccu ucaucacauu ggaaugcaga
180ugagaauagc uauguuuagu uugauuuaua ag
212253141DNAHomo sapiens 25acttccttgc acaggcccca tggcacatat attctgtatc
gtacatgttt taatgtcata 60aattaggtag tgagctggta caagtaaggg ataaatgctg
aaattaattt aatatgccta 120ttaaataaat ggcaggaata attaatgctc ttaattatcc
ttgataattt aattgactta 180aactgataat tattgagtat cttctgtaaa ctgcctctgt
tgtagttttt tttttctcct 240aatcatgtta tcattttttt ggaatccatg gtttcctgtt
aagatgactc acacagccta 300cataaaagta attgacaaaa tatcatctta tagtaaaatg
ccacatatct ttatgttcag 360caagaagagt ataatatatg attgttaatg ataacccaaa
caacaaaaga tttcacctta 420actggttgtc ataagtagta gtatccaccg ccttattttg
agttggattt ttatcatcct 480atgagcccta caaatttaaa gtttttggaa cagcacgtgc
attgaaccca taagaaccta 540ctctgctttt ctgcatgtat tgtccagaca agagaccaaa
ttgccgaggc atcatttagg 600tgaattctaa ttaacattta gctaccttac aaccacaatt
caaggttgtt tcaaaggcat 660gtgcttgcat catcctgatt cactaccatg tgttactaac
ttggatctgc aaagtcatta 720taaaaagctg ttttgatgga cttatttgga tattgcttta
cccttcttct ctcttttctt 780ttatcaatgt aaaaacatta tatgttaaat acttggcttt
taagagcata gatctgaaat 840ctgcctctag caaataaccc ataacacttc taagatatac
ctgcaaggtc aattgtgttg 900taaaaccttg ataaccatac tttattgttc aaaaaagcct
tttatgaagg cagaagttaa 960aaaaaaaaaa caaaaaaaac agagtccaca gttatcacct
cagctacaat ctcatcagtt 1020cacaagtacc agcaaaacat gtgataagtc aacaaatgtt
ttatttcaat ctgaacattt 1080tacgtaagtg aagactttgt tagatatcat ttggaatgtg
gaatctacac agttggcata 1140tcagagaagg ttgaattcag tttaataaat gtttatagaa
agtgcttgtt atcataatga 1200taatagctca ggatgtgcat gacaagcttt taagcgattg
ggtacactat ctcatttgat 1260cttctgcaca actattaatg gtaggtacta ttatccctat
cttatggata agtaaactaa 1320gatttaaaaa gtacagaaca tggtgtgaac actgcttcaa
aatttctaaa ataggtaaat 1380cacgatctct aaactggagg gttgtccaac cactagggac
aatagagtac tgatatttag 1440tggtcagact gtaatgcggg aagagacagg catgggctaa
acgggtgtag agatcaaata 1500aggggcaggt tagtttgtaa acatgtccat atgtaacatt
tagcacaaat acaggatata 1560ggtgctttca gacccagctg cattgataaa aagttaggtg
gtattgtatc tgtcttcctt 1620tctcaatgtt gcatatctgt gttcttgccc agtttgcttc
atctctctag ccacacttat 1680tggcctacaa tggcatcatc accaaagaag gcaatcccat
ctccgtgtgg ctttggtttg 1740ctccctaaag taaaccttgt gtttactttt cccaggtctc
atgctttccc atatctgacc 1800tgttttgtcc tcatggccag gatatgtggg acctttccta
caatgttcca aagtttgtaa 1860tagagctctt ctctgctttg ttccaaattc tgcaacattt
tactttaaat aatgaattta 1920aatacaaaca aacttgagct ttgcctatac ttttcaagaa
tgcagagata actaaattaa 1980taaaaatatt cattgagtcc ttactgtgca cacagctcta
tgttaagcct tgtgcagaac 2040tcaaagtcac tcgagattaa gcctgttact aagttatgtg
caatttagct cagtggattt 2100cccccacttc atattgctct gataatgttt tggaattaac
tgccttgatt ccttcttttc 2160tctgcttgtc tatacactat ttattattct acaccatctc
aaattctaac tcctcaagaa 2220aatccttcca gatgattttt ctaaccagga gttttaactt
ccttttaact accctattac 2280tttctacttc cttaactcat ctatcatatt atatttagtt
atttatatac taggtcgcct 2340tgaagaaggg attgtgtttt cataaatctt aataatccct
gaggcatcaa gtacagtgat 2400ttgcatttac taaatgctca acaaatatgt gagggattca
cttgaaacta atattagata 2460attcccagtc aaagtgatct aatagcaaat caattcttca
gttttatagg caaagtatga 2520ctctggtttt ccataatcat aattaatttg tcaactttat
aattttaatt aagtaaattt 2580aattggtaga taaataagta gataaaaaat aatttacctg
cttaactacg tttcatatag 2640cattgcattt ttctttgtaa aatttaagaa ttttgtatta
ataaactttt ttacaaaagt 2700attaattatt cagttattca tcatatactt ttattgactt
aaaagtaatt ttattcaaaa 2760gagttagtat aggactacat gaaaaattca aggccaaggc
ttaatttcaa atttcactgc 2820ctttggctct atcttttaaa acaaaacaaa aaactcccgc
acaatatcaa tgggtattta 2880agtataatat cattctcatt gtgaggagaa aaaataatta
tttctgccta gatgctggga 2940aataaaacaa ctagaagcat gccagtataa tattgactgt
tgaaagaaac atttatgaac 3000ctgagaagat agtaagctag atgaatagaa tataattttc
attaccttta cttaataatg 3060aatgcataat aactgaatta gtcatattat aattttactt
ataatatatt tgtattttgt 3120ttgttgaaat tatctaactt t
31412686RNAHomo sapiens 26cuuuaaagcu gucaagccgu
guucuagaua aaauaaguau uggacaacuu guuagucucc 60uuuccaacaa ccugaacaaa
uuugau 8627862DNAHomo sapiens
27tacctattga tttaatcttt taggcactat tgttataaat tatacaactg gaaaggcgga
60gttttcctgg gtcagataat agtaattagt ggttaagtct tgctcagctc tagcttccct
120attctggaaa ctaagaaagg tcaattgtat agcagagcac cattctgggg tctggtagaa
180ccacccaact caaaggcacc ttagcctgtt gttaataaga tttttcaaaa cttaattctt
240atcagacctt gcttcttttt aaaactttaa atctgttatg tactttggcc agatatgata
300cctgagcaat tcttgttctg ggttgtctta tgtgaaaaat aaattcaagg tccttgggac
360agataatgtg ttttatttat ctttgcatat ccattactta aaacagcatt ggacccacag
420ctggtacaaa attaattact gttgaattga gcaaatattt attctaaatg tctctgtcaa
480atgacagagt gtggttgtgt ggattaagtc cctggagaga gttctttgtt ctctcatgtt
540ctatgctgtg gttcttgctt tatgcaaaaa gaagtaagtt acttaaaacc tggacatgat
600acttaagatg tccaatcttg attccactga ataaaaatat gcttaaaaat gcactgactt
660gaaatttgtt ttttgggaaa accgattcta tgtgtagaat gtttaagcac attgctatgt
720gctccatgta atgattacct agattttagt gtgctcagaa ccacgaagtg tttgatcata
780taagctcctt ttacttgctt tctttcatat atgattgtta gtttctaggg gtggaagata
840caatgacacc tgtttttgct gt
86228160RNAHomo sapiens 28gacuugcauu ggcacauuuc guguggaucg cuccuuugca
aguggcacuc cucauggggc 60uaaucuggga guuguuacag gcgucugccu ucuguggacu
ugguuuccug auaguccuug 120cccuuuuuca ggcugggcua gggagaauga ugaugaagua
160291116DNAHomo sapiens 29aacctatttt cataacttga
aagttttaaa aattatgttt tcaaaaagcc cactttagta 60aaaccaggac tgctctatgc
atagaacagt gatcttcagt gtcattaaat tttttttttt 120tttttttttt tgagacagag
tctagatctg tcacccaggc tggagtgcag tggcacgatc 180ttggctcact gcactgcaac
ttctgcctcc caggctcaag caattctcct gcctcagcct 240ccggagtagc tgggattaga
ggcgcatgcc accacaccca gctaattttt gtattttagt 300agagacaggg tttcaccagg
ttgcccaggc tggtctcgaa tgcctgacct caggtgatcc 360gcccacctcg gcctcccaaa
gtactgatat tacaggcatg agctaccgcg cccggcctaa 420aaaatacttt ttaagatggt
gtaaatatta ctttctgtat caatggtaca ttttttactt 480gtcagtctct agaatttctt
tataaatatg ttgattcagt tcatttttgt agattataaa 540acaggtaaaa aaggataaaa
catttatgtg aattaaaggg aatacctaat ttttgtgtag 600agtttattag cttttactac
tctggtttat ggatcatcac accagagcct tagttacttt 660gtgttacaga ataactaata
tgagtgaatg aatgacttac acaagtcact gcttaggata 720aagggcttga gtttgtcagc
tagagtatga cagaaagtat ctaagttttg gagtcaaata 780gcactttgtt tgaatcccag
attgcatgct tactagttat gtgaccttag tcaagccact 840tcacctcact gagtctttgc
ttttttcatc tctaaaatag agatacccac cgctcatagg 900ctgtcataag ggatagagat
agcatatgga atgagtctgt acagcgtctg gcacatagga 960ggcatttacc aaacagtagt
tattattttt gttaccatct atttgataat aaaataatgc 1020ccatctgttg aataaaagaa
atatgactta aaaccttgag cagttcttaa tagataattt 1080gacttgtttt tactattaga
ttgattgatt gattga 111630122RNAHomo sapiens
30gaucagagag cugggaagau cagugaaaga cuugugauua ccucagaaau gauugaaaau
60auccaaucug uuaaggcaua cugcugggaa gaagcaaugg aaaaaaugau ugaaaacuua
120ag
122313406DNAHomo sapiens 31ttgttccaat aatttcaata ttgttagtaa ttctgtcctt
aattttttaa aaatatgttt 60atcatggtag acttccacct catatttgat gtttgtgaca
atcaaatgat tgcatttaag 120ttctgtcaat attcatgcat tagttgcaca aattcacttt
catgggctgt agttttatgt 180agttggtcca gggtgttatt ttatgctgca agtatattat
actgatacgt tattaaagaa 240tttcctacat atgttcactg ctgctcaata catttatttc
gttaaaacaa ttatcaagat 300actgaaggct gattggtaac tcacatggaa ctgggagagt
atacaattct gaaccaaata 360gatgattctc tattattata tcttaattta tgtgttatgg
tatattaaac atgaaaaaaa 420ttgtatttgg ttagaatatg tttgctcttc cttaactcgg
gaatgacata gggtaatatt 480cacagattgg gttcctataa atcctccact tgaagtgaag
tcagttcaag taatgaaagc 540tacctcctga gatagaatca gtacttggca cctatctcta
gtgttctttc acctcatata 600acctttcact gattagtaaa gattatatcc aacaaagaaa
gtacagcaca gactgagata 660tgattactga gataaatttg ggcaaaatat aaactacagc
atttctgtag caatgagacc 720atttttcttc agttgagctc catgttctac aaacttcaat
caaaaaaggt tctaggagac 780tcagtgaaag ttgatacact gttcaaggaa caaataattt
cagcacatgg gaatttcaca 840gggaaaaata tactaaaaag agaggtacca ttttggatgg
tgtcaatatg ggttatgagg 900aattcaggct gctgagtcca gtgtacaatg gaaactgagc
tgcaggtgtg tgattgtaac 960aacaaaagaa atgctgaaat attaagtcct ttgccatgta
aatagaaaaa gagtatttat 1020ttcccaaaca ttattgctca cctgtttttg ttatgccttt
caagataaat ccaggaaagg 1080aattgcattt tctttccaga aaacaagttc ttgggggaat
tgttcaattg gtagatgttg 1140tttttctcat taacaagtga gtgctccatc acacttgctg
agtgctccat cacacttgct 1200ctctgcatta ctcctctgcc tgcaaacaca tatatagcaa
gggtgatgac aaggatatca 1260gagggtctgg ttttctcaaa ctcatgataa actcatggct
gggtcattct tggtgctgat 1320tttactttgt tttttgttgt tattgttccc tcttcctcaa
aagatgaaat ctatccctct 1380tacttggaat ttctctttga tatatagcga atgtttggtt
gtaacctgta taatctggca 1440tgaaattgtc actcgaaaag gctagaagtg ttgacataaa
tatgggacag caagagttgc 1500tcctactcaa gagagcaaat ataatgttct ggaagagatt
ggcagaattc acatcaaagg 1560agtgattact tcagcctggg ccactgttgt actggtcaaa
aggctgtgca aagctctctg 1620aaaatccact cttttattgc tctttagtaa taaagtcact
ttcaatttta aaaataacaa 1680actgatatat ttttatgact cataaaatgt tagcaattat
attatggaga atctactttc 1740tgggtgattc ttacaaatgt tcttggatct attttttttt
cttatagtac ctattcttcc 1800catttttctc agctctagtt aatatatttc aacaacagtt
caacaaattt aacattttta 1860taaaaagtgt ttcctatcat tttataaata ccagcctagt
ccatgttatt ccttttcttg 1920ttgaggagaa aggacacaca ttgtaaattc aaatatagac
ctctactgtg ctatttaatc 1980ttggtaacaa ctccacaaag gagatgacat gttttccttc
tatagaggta gattctgtaa 2040agttagaggg aagagtgact tgcttaagat ggcataagct
gtaactggca gaaccaggat 2100tcaaagccag gtgggatgcc aaaatcataa tctgtcttca
gtgtcaagtt actgaaattg 2160gtaaacatta gacctaaata gacggaattg caatccgggt
tgggcacatt aaactccatt 2220ttcttcatca atgtgctcag attacatttt acttttcagg
ctaaaaatgg aaaaaaagag 2280tccctcttag ttctgcactt gagaatgaga atagcttttc
tgaattatac aaggaagaag 2340aactaatgcc caaatgccag gtacccacat gcactatgcc
atggcacagc tgttgccccc 2400tttcaccaga gccctctctc tgtatcctgg ttgacctttc
cttgggcaag agctgggtgg 2460ggaggatcac aagtgactcc aatttggatg gcttcgggaa
gactgggacc gagctgaagg 2520cagtgttgtc ctctgcactc cctgttttct gtctgctgga
gcactgaagc ctcacatatg 2580tattaaaaaa ataatttcca tttgcatttc agactagaag
attgaacgta tagtgtaatg 2640tgattgcaaa taattatatt gaaatgagac agagaggatg
tagtatctac tgtcataatt 2700tttcaaaacc cacctgcaac ttgaattaaa agaaccactt
gggttttttt ttttgtttca 2760aacgcaaatc ctggaaacct actgagactc attcagtcag
tatctctaag aggcaagctt 2820gagactgtat atttaaaaag catctcaggt gatttttaca
catgctaagg cttaagaacc 2880acttctctgt agcttatatg ttattttcaa tgttcctcaa
agccaagtta gaatttccaa 2940agtgttaaga atccattaga caatcacaga attgtctttt
tcctttataa atcttgcaat 3000gttgttctca tttccatact taattactta aaacaccaac
caaccaacaa gcaaaaaatg 3060attagtctaa ctaatattac aagttaataa tgaagtaaag
gtttaaaaat aatgtcataa 3120taatgttaat aacaaattat taattataat ttaaaaataa
tatttataat ttaaaaataa 3180tatttacaag tactacaagc aaaacactgg tactttcatt
gttatctttt catataaggt 3240aactgaggcc cagagagatt aaataacatg cccaaggtca
cacaggtcat atgatgtgga 3300gccaggttaa aaatataggc agaaagactc tagagaccat
gctcagatct tccattccaa 3360gatccctgat atttgaaaaa taaaataaca tcctgaattt
tattgt 340632243RNAHomo sapiens 32acagaacuga aacugacucg
gaaggcagcc uaugugagau acuucaauag cucagccuuc 60uucuucucag gguucuuugu
gguguuuuua ucugugcuuc ccuaugcacu aaucaaagga 120aucauccucc ggaaaauauu
caccaccauc ucauucugca uuguucugcg cauggcgguc 180acucggcaau uucccugggc
uguacaaaca ugguaugacu cucuuggagc aauaaacaaa 240aua
243331649DNAHomo sapiens
33gtaccataat gctgcattat atactatgat ttaaataatc agtcaataga tcagttctaa
60tgaactttgc aaaaatgtgc gaaaagatag aaaaagaaat ttccttcact aggaagttat
120aaaagttgcc agctaatact aggaatgttc accttaaact tttcctagca tttctctgga
180cagtatgatg gatgagagtg gcattttatg ccaaattacc ttaaaatccc aataatactg
240atgtagctag cagctttgag aaattctaaa gttttcaagt gataagactc aatttataca
300aagctaattg gataaacttg tatatgatta agaagcaaat aaatacttat tatgcttttt
360tgctgtttat ttaaatattt aacccagaaa ataagtcact gtgacagaaa taaaaatgag
420agagaagggt gagccactct taggtagttc tggcattatt taatctaggc cagaggttgc
480aaatggtgtc ccatagaact aattttggct cctagacctg tcttatttaa cctttcattt
540aaaaaatttg tattggttgc cagcaattaa aaattgggag atgtctcaca cacacacaca
600cataaacaca cacactcatg tgtgcagcct cttttgaaga attggaataa ctagtcaact
660gcgtcctcct tttccacaag ctgtgacagc tccctgctca cagagcacct gccctctcct
720gttcatcatg ctctcttctc agtcccattc cttcattata tcacctattt ggtcctgaga
780ctaagtgagt ttgagatctg tgatttagac aaagtggtga atctagctct gaatcatagt
840aagtagctct gggaatcatc ttgtcttctg ttagcccatt gagagagaaa tagagagaga
900gagagagaga aagaaagaag aagaaacaga tctggggaga gtcactgaat gggagcatag
960agacagagaa acagatctag aaaaccaaac tgggagaaaa tgagagaaac caaaagagag
1020gtagagagga gcagagaaga aaatgaagaa gcaaggcaag gaccaggctt tttcattatt
1080tcttatggcc aagacttcag tatgcgtgga cttaattctt ccttatgctc ctaccttccc
1140tagggaaact gatttggagt ctctaataga gcccttcttt tagaatcaca gtttgatgcc
1200ttaaaactag ttatatacct tcacatgctt ccttaaccca cagaagtgat gctaatgagg
1260cccttaataa ggagcgtgct attaagatga agacattcat tttttttctc cgtccaatgt
1320tggattaagg cacattagtg ggtaattcag ggttgctttg taaattcatc actaaggtta
1380gcatgtaata gtacaaggaa gaatcagttg tatgttaaat ctaatgtata aaaagtttta
1440taaaatatca tatgtttaga gagtatattt caaatatgat gaatcctagt gcttggcaaa
1500ttaactttag aacactaata aaattatttt attaagaaat aattactatt tcattattaa
1560aattcatata taagatgtag cacaatgaga gtataaagta gatgtaataa tgcattaatg
1620ctattctgat tctataatat gtttttgct
16493489RNAHomo sapiens 34auuucuuaca aaagcaagaa uauaagacau uggaauauaa
cuuaacgacu acagaaguag 60ugauggagaa uguaacagcc uucugggag
89356512DNAHomo sapiens 35aatttttaaa aaattgtttg
ctctaaacac ctaactgttt tcttctttgt gaatatggat 60ttcatcctaa tggcgaataa
aattagaatg atgatataac tggtagaact ggaaggagga 120tcactcactt attttctaga
ttaagaagta gaggaatggc caggtgctca tggttgtaat 180cccagcactt tgggagacca
aggcgggtgg atcacctgag gtcaggagtt caagaccagc 240ctggccaaca tggtaaaacc
cggtctctac taaaaataca aaaaattaac tgggcatggt 300ggcagatgct gtagtcccag
ctgctcggga ggctgaggca ggagaatcac ttgaacctgg 360gaggcggagg ttgcagtgag
ctaagatcac gccactgcac tccagcctgg gcaacaaggc 420gagactctgt ctgaaaaaga
aaaaaaaata aaaataaaaa taaaaagaag tggaggaata 480ttaaatgcaa tataaaagct
ttttttattt ttaagtcata caatttgttt cacataacag 540atcaggaaat aatacagaga
tcataagttt tggagctggg tttgaatcct ggctctgcca 600tttactttct gtgtaatcta
agtcaagtta ctgaactttg tgggccctct ggctctccat 660gtgtaaaatg gagaatatta
atatttacct tgcaagtttg ttgtgaagac tgaaggagag 720aatttaggta aaacattcat
cagagtacca tgcacacagt tgttcctcaa taaacattag 780cttctctgat tgcaagttcc
agtctaaagt gctttatata taccagccaa taaaaggatg 840cgagagagat ataccagtgt
attgttttct accattttaa acctattttc atccactgtt 900acaaattcta tcatactgct
ccacataaaa aatattatca atgattttta gtctctgaag 960tgcaatattt gattattgag
cacacctgtt gaagttttag tttcttctca cttacatggg 1020ttgtgtaaag gtaggaggta
taaaaccagt gtcctaggtc taaatctttc ttaatgtcat 1080actttggatt cattgatata
agtaacttga gcaccagcgc ttcattttac ttcatttttt 1140aaagatatag taagagtaat
tcccatctgc ctagcaaaat tgttttgtag aaaagtttgt 1200ggatcagatt tattttactt
tgattttagg aatttcaagt gtcttcgtcg gcatgaagga 1260aaaatatgca gtttgacatt
ttctactact ttcaggtcat tattttccta ctctggtgca 1320aaaaccctca attcctgtct
cactccatct aatcaaatag gtagcatgct tgagccctta 1380ctatgtgcca ggcactagga
taagcacttt atatgttttg tcccaattaa ttctcacagc 1440atttctatga cctaaataaa
attaatattt tcatttcacc aataataaaa tggaggcttc 1500aaaaagttta gggacttggc
tcagctcaca caactggcaa ggactgaaaa tggattttag 1560tcccaaatgt cataggctag
agccctttca ctaaactgtt gtcttccatc tggtggcatc 1620ctcttcctcc agtctttgtc
acctaaactc tgggcacccc ttgatggcat ttacttatga 1680tggtgatgct tgttaaactt
cctgtttgcg acttcaacgt ccatataaat gagtcttcca 1740atactgtact tagaacttat
attttgtagt gacttcttta aaagctttct ctcttagtca 1800tatcctgagt tttgttagca
cctggactta ccttactttg gaaatgttgc actctgaaat 1860ctctttctca gcttggaatt
tcctaatctt ccaactgttt gagtctttta attctacatt 1920tactgccttt ccatttcatc
aggatttcta gtctctttaa ttcttccttt tgaactcctc 1980ctgatttaac ctctgcttat
tcgaagaaca ataattttat tctctcagct gcactctcaa 2040ttcccttttc cttttggtga
tttttctttt tcctacagaa cacttacttt atcagttttg 2100gagaaggaag tgctatctgg
gtaacagtag tgctatctgt tgactctagt caactgtaag 2160ttttatacat ttattgttta
aaccttatat gggtctataa tccttcttgg gaaatccttt 2220catttgtctt taatttcctt
taccatttcc ctaaaggcta ttccagattt ttatcacatt 2280cacaaaattc ccgtcttttc
tcaggatctg ttcaccccca gtagatagcc ttgtctccca 2340caatacatgg agaaaataga
ggccaccgtc atatttgaat gtttccaact tctctcttca 2400cctttggaat tatctttttc
ttcttttgtg tctaagagaa agatgtatac ttcttcttac 2460ccttgtctga actactctat
tttgcttcat cttctcagaa caggggacca gcaattattc 2520ttcctccaga agcttcaaca
tcttttgtca actgactcct tctcatgttt aaatattttc 2580aagttaaaca atttctttcc
tgactttcgc tcacgcaacc tcatgcccaa aaccttatca 2640ctcttcttcc ctttgctgtc
aaggctgttc tcacttcttc actttttgtg gacttctccc 2700cactacaaca tagattctgc
tatcaccaat ctattaaaac tgttatactc ttgtggaatt 2760tatcatttaa tttagcttca
gtgaaccgtt ctttccagat tattttggcc tcagaccatg 2820acttctaagt ctgccgtgct
tgccacttaa gtgatgatgg gccagtgggt ccccacctag 2880gcctctgtgt tagtctgttt
tcatgttgct gataaagaca tacccaagaa tgggcaattt 2940acagaagaaa ggggtttgag
ggactcacag ttccatgtga ctggggaggc ctcacaatca 3000tggtggatga tgaaaggcat
gtctcacatg gaggcagata agagcataga acttgtgcag 3060ggaaacttcc ctttattaaa
ccaccaggtc ttgtgagact tcttcactat cacgagaata 3120ggatgggcaa gaccctcccc
catgattcaa ttatctccca ctgggtccct cccacaacac 3180atgggaatta tgggagctat
aattcaagat gagatttggg tgaggacata gccaaaccat 3240atcagcctcc ttctggcttt
ttatgttctc cgtgggtgac ctctctcagg ctcaagtgat 3300aaccaatgtg ctgatgactc
tcaaatgcgc atctctggct tcagtttctt ccttgaactt 3360catacatatg tttccaaatt
tcctgcgtgt acctcaaggt tcttgttcat cacttcccaa 3420gcttcataaa cgcactcatt
ttagtgtatt ctctgtctcc tttgatagca tccctgagag 3480gcaagtccct ggtgagttat
atacaactcc tcccttgctc caaacctgag agtaagtaac 3540attcctatta acatattagg
aagctgaggc ttagacagtt taagtaactc aagcatggtt 3600acacaactag ctagggcaga
gctaaaatgt caggctaggc ttctgtgact ccaaagccct 3660ttctcactta gcatatcatc
acttattttt ttttttaatc acatatatga tttttttttc 3720tttaagagat agaatcttgc
tctatcacgt gggctggagt gcagtggcac aatcatagct 3780cactgtaacc ttgaacttgg
gctcaagtga tcctcctgcc ttagcctact gagtagctag 3840ggctacagac acacaccacc
atgcctagct aattttattt tattttattt tattttttga 3900gacagagtct cactctgtca
cccaggctgg agtgcagtgg tgcgatcttg gctcactgga 3960acctctgctg cccgggttca
agcgattctc ctgcctcagc ctcctgagta gctgggatta 4020caggtgcctg ccactgtgcc
cagctaattt ttgtattttt agtagagacg gggtttcacc 4080atcttggcca ggcttgtctt
gaactcctga cctcgtgatc cactcgcctc ggcctcccaa 4140agtgctggga ttacaggtgt
gagccaccac gcctggccac ctacctaatt tttaattttt 4200ttgtagagac agggtctcac
tacgttgccc aggctggtct tgaactcctg ttctcaaaca 4260atcctcctgc ctcggacacc
ccaagtgcag ggattacagg catgagtcat tgcagctgac 4320ctgtatatat gatttttagt
atatgtaaat atacatattt attaaatgta aatataaata 4380taaatgtgtg gagtgatatc
cattgaaatg ttaaacatag ttctcagtgg tacaactaca 4440ggtgatttct cttttcttat
ttctggtttt ctgtgttttc caaatttctt gaaatgtgtc 4500ttctgtaatc agaaataaaa
gttattagta acaacagtct tccactggta caagtgctta 4560ttggataaaa gtcccacttc
taagcatgat actcacaact tttaggttaa tagcctttgt 4620caccttgcca tatacatctg
atccagccac tcacaccatt cctgagatat attttgttcc 4680tttgtgccta aatcattgtg
catgcagatc catcttcctg gaacacctat aaccatttct 4740tagtcctgtg aaatcctact
tacatccttc atagcctagc atgtatgtca tttatttggt 4800caagggtgag ttggttgttc
tcttgaatgt actgccatat gacgtggtgt gatttcaatt 4860gtagcaccaa gctcattgca
atattaattc gtttgtcatt ctcccatgta ggatgtttga 4920agtagtttct aacacagaga
ttatactcaa taaatattta ttagataaat aaatgaataa 4980gggaataaca aatgcctttg
tctcatttta aaatactttc attgttagct acccatataa 5040taaaaaacta aaagcagtag
ttttcaagca tgattgttta tgtatgcctt aaaagaattt 5100tgaaaaccta tgtacccctg
acacactttt aagttaactt ataaattttt caacatagtt 5160ttaagtggtg gcaaatgatg
tagtttcttg tgtattttaa actgcttaag tatgctatac 5220atggatttct tcaaaaccct
gaagctgcag tttcagtgca ttcaatttat ggaaaagaaa 5280ttaatttata aaattggttc
ttattgtcaa gtcaatcagc taaatataac ttgctttctg 5340tcaggaaaag tctgacttta
aaatacagat aagtaataac tattattaat taattaaatt 5400attaaaatta aaataattaa
ataatttgtt aattaaaatg ccttattccc ctacttattt 5460ctgcaatttg actctaagaa
tagataggac atgtagattg ccttaggttt gaaatctggg 5520tgaaataaga tactgcctcc
ttcagtattt ctgcctttgc ttttatggga gcctctttca 5580agaaaaagtc attctctcat
ggtccctttg tttgagtccc agaggttttc ctactccaga 5640aagtgcaacg tagtgagact
agtactatac tcccttgcat ggtaagtgag aaggctgtct 5700gtataaaatg agggaaggac
tcatgagagg gaagtaggtc aggagaaatg ataggttctc 5760aggcaggtta attttaggaa
agagtgaata gagtccctta aaacaaggtg catctgcttc 5820ctcctgatca atctttagga
ctgtttactt tgatttgaag accactatgc taaagcttcc 5880cacgggggca atagtgaggc
aaggaatttt taaaagggaa ttacttcttc gtagctactt 5940ttgtgaaatg aattcatttg
aattatctgg caatctcttc atatttatat tcaacaataa 6000ttacttaaag aaatgctttg
agcttctcag aggagggtgc taccagtgtg atggagtaga 6060attcagattt gggtagtgac
tttaaagctg tgtgacttta gtcatttaac tgctgagtca 6120cagtctacag ctttgaaaga
ggaggattat aaaatctatc tcatgttaat gctgaagatt 6180aaataatagt gtttatgtac
cccgcttata ggagaagagg gtgtgtgtgt gtgtgtgtgt 6240gtgtgtgtgt gtatgtgtat
gtatacatgt atgtattcag tctttactga aattaaaaaa 6300tctttaactt gataatgggc
aaatatctta gttttagatc atgtcctcta gaaaccgtat 6360gctatataat tatgtactat
aaagtaataa tgtatacagt gtaatggatc atgggccatg 6420tgcttttcaa actaattgta
cataaaacaa gcatctattg aaaatatctg acaaactcat 6480cttttatttt tgatgtgtgt
gtgtgtgtgt gt 651236179RNAHomo sapiens
36gauuugggga auuauuugag aaagcaaaac aaaacaauaa caauagaaaa acuucuaaug
60gugaugacag ccucuucuuc aguaauuucu cacuucuugg uacuccuguc cugaaagaua
120uuaauuucaa gauagaaaga ggacaguugu uggcgguugc uggauccacu ggagcaggc
179371000DNAHomo sapiens 37tcttttgttc ttcactatta agaacttaat ttggtgtcca
tgtctctttt tttttctagt 60ttgtagtgct ggaaggtatt tttggagaaa ttcttacatg
agcattagga gaatgtatgg 120gtgtagtgtc ttgtataata gaaattgttc cactgataat
ttactctagt tttttatttc 180ctcatattat tttcagtggc tttttcttcc acatctttat
attttgcacc acattcaaca 240ctgtatcttg cacatggcga gcattcaata actttattga
ataaacaaat catccatttt 300atccattctt aaccagaaca gacatttttt cagagctggt
ccaggaaaat catgacttac 360attttgcctt agtaaccaca taaacaaaag gtctccattt
ttgttaacat tacaattttc 420agaatagatt tagatttgct tatgatatat tataaggaaa
aattatttag tgggatagtt 480ttttgaggaa atacatagga atgttaattt attcagtggt
catcctcttc tccatatccc 540accctaagaa caacttaacc tggcatattt ggagatacat
ctgaaaaaat agtagattag 600aaagaaaaaa cagcaaaagg accaaaactt tattgtcagg
agaagacttt gtagtgatct 660tcaagaatat aacccattgt gtagataatg gtaaaaactt
gctctctttt aactattgag 720gaaataaatt taaagacatg aaagaatcaa attagagatg
agaaagagct ttctagtatt 780agaatgggct aaagggcaat aggtatttgc ttcagaagtc
tataaaatgg ttccttgttc 840ccatttgatt gtcattttag ctgtggtact ttgtagaaat
gtgagaaaaa gtttagtggt 900ctcttgaagc ttttcaaaat actttctaga attataccga
ataatctaag acaaacagaa 960aaagaaagag aggaaggaag aaagaaggaa atgaggaaga
100038188RNAHomo sapiens 38cuucacuucu aauggugauu
augggagaac uggagccuuc agaggguaaa auuaagcaca 60guggaagaau uucauucugu
ucucaguuuu ccuggauuau gccuggcacc auuaaagaaa 120auaucaucuu ugguguuucc
uaugaugaau auagauacag aagcgucauc aaagcaugcc 180aacuagaa
188391000DNAHomo sapiens
39aaactatgtg aaaacttttt gattatgcat atgaaccctt cacactaccc aaattatata
60tttggctcca tattcaatcg gttagtctac atatatttat gtttcctcta tgggtaagct
120actgtgaatg gatcaattaa taaaacacat gacctatgct ttaagaagct tgcaaacaca
180tgaaataaat gcaatttatt ttttaaataa tgggttcatt tgatcacaat aaatgcattt
240tatgaaatgg tgagaatttt gttcactcat tagtgagaca aacgtcctca atggttattt
300atatggcatg catataagtg atatgtggta tctttttaaa agataccaca aaatatgcat
360ctttaaaaat atactccaaa aattattaag attattttaa taattttaat aatactatag
420cctaatggaa tgagcattga tctgccagca gagaattaga ggggtaaaat tgtgaagata
480ttgtatccct ggctttgaac aaataccata taacttctag tgactgcaat tctttgatgc
540agaggcaaaa tgaagatgat gtcattactc atttcacaac aatattggag aatgagctaa
600ttatctgaaa attacatgaa gtattccaag agaaaccagt atatggatct tgtgctgttc
660actatgtaaa ttgtgtgatg gtgggttcag tagttattgc tgtaaatgtt agggcaggga
720atatgttact atgaagttta ttgacagtat actccaaata gtgtttgtga ttcaaaagca
780atatctttga tagttggcat ttgcaattcc tttatataat cttttatgaa aaaaattgca
840gagaaagtaa aatgtagctt aaaatacagt atccaaaaaa atggaaaagg gcaaaccgtg
900gattagatag aaatggcaat tcttataaaa agggttgcat gcttacatga atggctttcc
960atgtatatac tcagtcattc aacagttttt tttttagagc
10004091RNAHomo sapiens 40acaucuccaa guuugcagag aaagacaaua uaguucuugg
agaaggugga aucacacuga 60guggagguca acgagcaaga auuucuuuag c
91412499DNAHomo sapiens 41taactaatta ttggtctagc
aagcatttgc tgtaaatgtc attcatgtaa aaaaattaca 60gacatttctc tattgcttta
tattctgttt ctggaattga aaaaatcctg gggttttatg 120gctagtgggt taagaatcac
atttaagaac tataaataat ggtatagtat ccagatttgg 180tagagattat ggttactcag
aatctgtgcc cgtatcttgg tgtcagtgta tttgtttgcc 240tcatagtata gtttactaca
aatggaaaac tctaggattc tgcataatac tggacagaga 300agatgtaaat atctgttagt
tccatcatag accctgccac tccaatgtac acaccagctt 360taggcttctt ggtatagata
aacatacatt ttcaaaattt ttcatcataa ttttcataac 420aaaataggaa ggcaaatgat
gtcacttggc ttaaaatcta taatatttaa aataaacagg 480acaaatgcat taacattgtt
gggggaggag gtcccttagt agaaacactc ttggtccaag 540cattttaaag ctgtcaaaga
gatgtaaata tagataatgt atgtcaagga gagagctttg 600tggttaaact gtaactttca
gtttaaacaa ttattggtga ctctgatgtc aaatgtttct 660caagctttat ctgaacaaaa
ttcttctcac tttgttgcca aagtcgttaa caagaaatca 720cattgactca ttgatgtttt
ggctcctttc ccttactttc tgttgctttc caaaagctga 780gacaggaaac taaccctaac
tgagcacctg caattgcctg gtagtattct agtcatgtgt 840gtacttttgt gtgtatgtaa
tccccttaca gctctgcaaa gtaagaattg ttctccctgc 900tttacagaag agatcataag
ataattgagg ctgttagatg ttaacttgcc aaaagccata 960caggaaaatg gtagagtcac
agtttgaacc aggtcctttt gattctttac attaaaccat 1020gctttgatct tggaaataca
ctgtaaggca ataaatcaat agatacggat aattcacagg 1080cttctaaata aatggaagtt
gattgttttt atctgtgagc caaagtaaga cttattctaa 1140gaattccaca aatttagata
agatagagta tatggcttct agacatccaa catagaactg 1200agtttgtgtt atcagtttaa
gatttggttt tgctgtaagg tgcacacact ttgaggaact 1260aaaaataatt gtctgttctt
attctgatca gaatgtgtaa tgtgttgtcc agttttggat 1320gatgaatttc ttatttctaa
tctcataaga aacttgtcat agatgtgagg gagagaatta 1380agaacagagt gtggggaaga
aactgtgtac attttgatgg gatccattat gtagctcttg 1440catactgtct tcaaaaataa
gttacactat aaaggttgtt ttagactttt aaagttttgc 1500cattggtttt taaaaaaatt
tttaaattgg ctttaaaaat ttcttaattg tgtgctgaat 1560acaattttct ttattacaga
agtaccaaca attacatgta taaacagaga atcctatgta 1620cttgagatat aagtaaggtt
actatcaatc acacctgaaa aatttaaatg ttatgaagaa 1680attatctcat ttctattaat
atgggaactg tgtcttcatc tttattactg ttctaaggtc 1740aactcaatgt agattttact
tgcttatggt ttcatatttt agctaaatag taaaataata 1800tggatataca ttttgttgtg
acttactcat actttcctta tttggaactt ttatgaatat 1860gatatagaga ctgaaactac
aaggaacaaa atgcaatatc aattatacag ttgtggcagc 1920actgctatca atttgttgat
agtggttaac acttagaaaa acattttaaa aataatttca 1980cataagtaat gtaatttatt
agctgtctct gacattttac agtttggaat agtttatttt 2040ctttttggtg tcctcaccaa
aacccaacat cttcaagggc aggaactgta taatttttgc 2100cattgtattt tgagcacata
gcatggtact tgcctctaaa tagatactat tgttaaaata 2160ttttttaagg taatatttta
aagtgtatgc tatggtacag ttcagtttgt gacttttgct 2220agtttatgcc acttacagtt
agcaaaatca cttcagcagt tcttggaatg ttgtgaaaag 2280tgataaaaat cttctgcaac
ttattccttt attcctcatt taaaataatc taccatagta 2340aaaacatgta taaaagtgct
acttctgcac cacttttgag aatagtgtta tttcagtgaa 2400tcgatgtggt gaccatattg
taatgcatgt agtgaactgt ttaaggcaaa tcatctacac 2460tagatgacca ggaaatagag
aggaaatgta atttaattt 24994283RNAHomo sapiens
42gcaguauaca aagaugcuga uuuguauuua uuagacucuc cuuuuggaua ccuagauguu
60uuaacagaaa aagaaauauu uga
83431474DNAHomo sapiens 43ttctttgaat accttactta taatgctcat gctaaaataa
aagaaagaca gactgtccca 60tcatagattg cattttacct cttgagaaat atgttcacca
ttgttggtat ggcagaatgt 120agcatggtat taactcaaat ctgatctgcc ctactgggcc
aggattcaag attacttcca 180ttaaaacctt ttctcaccgc ctcatgctaa accagtttct
ctcattgcta tactgttata 240gcaattgcta tctatgtagt ttttgcagta tcattgcctt
gtgatatata ttactttaat 300tattattata cttaacattt ttatttactt tttgtgttag
tattttattc tgtcttctcc 360ttagatagta accttcttaa gaaaatatat atgctaagtg
ttttactggt ttaatatgct 420tagactactc atctacctca atacttcctt ggagatctcc
tcctcagtca cacagagctc 480aggacttata tttccttgga actcctgtta gggtccaatg
tacatgaaat tccctagaca 540gacagacagt cagttatatg gcttgatttc aaagtttcaa
aatgatttaa tggactatca 600agtagtttat taggagaaca gttattatac tcttctaaaa
ataaagactt taagcaataa 660agatgtatat gtatataaaa tggctgggtt attcctagaa
gtacctttct tagaatttag 720ttaaatttaa tatccaagat actatctttt caaccctgag
attgtgaaaa gtaacttcta 780tcaatataaa ctttactaca tttgtattgt gttagtgtgt
tacagtataa tctagaacaa 840tgtgtctttc tatatgatat atgacatttt aatgcctaaa
aaaactgata tgtcttagat 900gattctagtc aggatttact tctagaatag attaaaattc
tatttgagga gagtcaaatt 960aattatcgaa ttctcagttg ttattattgc tgttttattt
ttagtgaaac agattagtct 1020taatgtaaac acttgagaaa taaattgatg gtcaacctaa
aatgtaaaaa agaaattaat 1080agaaaattta aagagcaaca aagctctgac atttaaaaga
aatgaagtac aaatctctag 1140ggaccttaaa gatcatctaa taatttcctc attttctaga
taaataaact gagagacccc 1200gaggataaat gatttgctca aagtcaaata tctacttaat
ataggaaatt taatttcatt 1260ctcagtctgt taacatgcaa cttttcaata tagcatgtta
tttcatgcta tcagaattca 1320caaggtacca atttaattac tacagagtac ttatagaatc
atttaaaata taataaaatt 1380gtatgataga gattatatgc aataaaacat taacaaaatg
ctaaaatacg agacatattg 1440caataaagta tttataaaat tgatatttat atgt
147444720RNAHomo sapiens 44ugugucugua aacugauggc
uaacaaaacu aggauuuugg ucacuucuaa aauggaacau 60uuaaagaaag cugacaaaau
auuaauuuug caugaaggua gcagcuauuu uuaugggaca 120uuuucagaac uccaaaaucu
acagccagac uuuagcucaa aacucauggg augugauucu 180uucgaccaau uuagugcaga
aagaagaaau ucaauccuaa cugagaccuu acaccguuuc 240ucauuagaag gagaugcucc
ugucuccugg acagaaacaa aaaaacaauc uuuuaaacag 300acuggagagu uuggggaaaa
aaggaagaau ucuauucuca auccaaucaa cucuauacga 360aaauuuucca uugugcaaaa
gacucccuua caaaugaaug gcaucgaaga ggauucugau 420gagccuuuag agagaaggcu
guccuuagua ccagauucug agcagggaga ggcgauacug 480ccucgcauca gcgugaucag
cacuggcccc acgcuucagg cacgaaggag gcagucuguc 540cugaaccuga ugacacacuc
aguuaaccaa ggucagaaca uucaccgaaa gacaacagca 600uccacacgaa aagugucacu
ggccccucag gcaaacuuga cugaacugga uauauauuca 660agaagguuau cucaagaaac
uggcuuggaa auaagugaag aaauuaacga agaagacuua 720452252DNAHomo sapiens
45tatacatcgc ttgggggtat ttcaccccac agaatgcaat tgagtagaat gcaatatgta
60gcatgtaaca aaatttacta aaatcatagg attaggataa ggtgtatctt aaaactcaga
120aagtatgaag ttcattaatt atacaagcaa cgttaaaatg taaaataaca aatgatttct
180ttttgcaatg gacatatctc ttcccataaa atgggaaagg atttagtttt tggtcctcta
240ctaagccagt gataactgtg actataagtt agaaagcatt tgctttatta ccatcttgaa
300ccctctgtgg gaagaggtgc agtataaata actgtataaa taaatagtag ctttcattat
360ttatagctcg caaaataatc tgtatggaag tagcatatat aaggtatata aacatttagc
420ctcttgatag gactaactca cattctggtt tgtatatcag tcttgcctga atttagctag
480tgtgggcttt tttttatctt gtgagtttgc tttatacatt gggtttctga aaagatttct
540tttagagaat gtatataagc ttaacatgta ctagtgccaa tcttcagaca gaaattttgt
600tctattaggt tttaagaata aaagcatttt atttttaaaa caggaaataa tataaaaagg
660agagtttttg ttgttttagt agaaaactta atgccttgga tgaaatgagc catgggcagg
720gttgtaatga attgatatgt ttaatagtat agatcatttg tgaataatat gacctttgac
780aagacacaag ccattaacat ctgtaggcag aagtttcctt ctttgtaaaa tgagggaata
840aaatagatcc ctaaagtgtg taattttagt atttctaaac tttatgaagg tttcctaaat
900gataattcat ctatatagtg tttttttgtg tgtttgtttg tttgtttgtt tgagatggag
960tctcgctctg tcacctaggc tggagtgcaa tggtgcaacc tcggctcact gcaacctctg
1020cctcctgggt tcaagctaat ctcctgcctc agcctcctga gtagctgaga ttacaggcat
1080gcaccaccat gccgagctaa tttttgtatt tttagtagag aaggggtttc atcatgttga
1140ccaggctggt cttgaactcc tgaccttgtg atccacccac ctcagcctcc caaagtgctg
1200gtattacagg cgtgtgccac cacgtccagc ctgagccact gcgcccagcc catctatata
1260gtttaatatc aatctaaatg aatttctcag tcctgagcct aaaaatttag ttgtaaagaa
1320tgatatcctt gactaataat agtttctatt aatggattgc atctagtgct aggtggcata
1380tatttagtcc ccacaactac cctggaaggt atttaaaatt tttcacattt gcagataagg
1440aaactaaagt tcagagttcg gcaacatgct tgaattcaag cagctcctag gatgttaatg
1500gtggaggttg ggttcaaatc cagatctgtc tgactcaaaa aatgcatact cctaaccagt
1560gcactatatc ccaattccat aggagccctt ctttgtgatt catagcactt tcccatgagt
1620tttgttgatt ttgtgagaaa caaaactctt tttcctttgg actgtctgga atctctcttt
1680ttcaaatttt tgaaatgtat ttctatgcca aaagacaaag atttctagag gaatatgcct
1740aggatgagaa ttatgtaatt taaatcacag ctggaaagag agaaagtcct aagttactaa
1800gaaatgttca aacacaaatg agctttcagt ctattggaag acctttatag ctagaagtat
1860actgaactgt acttgtccat ggacccctga agaaacaggt taaatcaaag agagttctgg
1920gaaacttcat ttagatggta tcattcattt gataaaaggt atgccactgt taagccttta
1980atggtaaaat tgtccaataa taatacagtt atataatcag tgatacattt ttagaatttt
2040gaaaaattac gatgtttctc atttttaata aagctgtgtt gctccagtag acattattct
2100ggctatagaa tgacatcata catggcattt ataatgattt atatttgtta aaatacactt
2160agattcaagt aatactattc ttttattttc atatattaaa aataaaacca caatggtggc
2220atgaaactgt actgtcttat tgtaatagcc at
225246125RNAHomo sapiens 46agugcuuuuu ugaugauaug gagagcauac cagcagugac
uacauggaac acauaccuuc 60gauauauuac uguccacaag agcuuaauuu uugugcuaau
uuggugcuua guaauuuuuc 120uggca
125471000DNAHomo sapiens 47aatgttctat tgtaaagtat
tactggattt aaagttaaat taagatagtt tggggatgta 60tacatatata tgcacacaca
taaatatgta tatatacaca tgtatacatg tataagtatg 120catatataca cacatatatc
actatatgta tatatgtata tattacatat atttgtgatt 180ttacagtata taatggtata
gattcatata gttcttagct tctgaaaaat caacaagtag 240aaccactact gatattttat
tatttcatat tacatataaa atatatttaa atacaaatat 300aagaagagtt tttaatagat
ttttaataat aaaggttaag agattcgaaa gctcaaagta 360gaaggctttt atttggattg
aaattaaaca attagaatca ctgttgatat tttattattt 420catattacat ataaaatata
tttaaatata aagataagag tttttaatag attttataat 480aaatgttaag agattaaaaa
actgaaaata gaaggctttt atttggattg aaattaaagg 540ccaggcatgg tggttcatgc
ctgtaatccc agaattttag gagactgagt ggggaggatt 600gcttgagccc aggggtcaag
accagcctgg gcaacacagt gagacaccgt atctacaaaa 660taattaaaaa attagctggg
catggtggtg tgtgcctgta tgctaccatt aactaaggag 720gctgaggtgg gagaatcgct
tgagcctggg aggtcaaggc tgccctgaac tgtgattgtg 780ccattgcatt ccagcctggg
tgccagagag agaccctatc tctaaataaa taaataagta 840aataaataaa cagcaacaac
aaaaacactc aaagcaaatc tgtactaaat tttgaattca 900ttctgagagg tgacagcatg
ctggcagtcc tggcagccct cgctcactct cagggcctcc 960ttgaccttga cgcccactct
ggctgtgcgt gaggagccct 10004834RNAHomo sapiens
48uggcugcuuc uuugguugug cuguggcucc uugg
3449648DNAHomo sapiens 49tattccatgt cctattgtgt agattgtgtt ttatttctgt
tgattaaata ttgtaatcca 60ctatgtttgt atgtattgta atccactttg tttcatttct
cccaagcatt atggtagtgg 120aaagataagg ttttttgttt aaatgatgac cattagttgg
gtgaggtgac acattcctgt 180agtcctagct cctccacagg ctgacgcagg aggatcactt
gagcccagga gttcagggct 240gtagtgttgt atcattgtga gtagccaccg cactccagcc
tggacaatat agtgagatcc 300tatatctaaa ataaaataaa ataaaatgaa taaattgtga
gcatgtgcag ctcctgcagt 360ttctaaagaa tatagttctg ttcagtttct gtgaaacaca
ataaaaatat ttgaaataac 420attacatatt tagggttttc ttcaaatttt ttaatttaat
aaagaacaac tcaatctcta 480tcaatagtga gaaaacatat ctattttctt gcaataatag
tatgattttg aggttaaggg 540tgcatgctct tctaatgcaa aatattgtat ttatttagac
tcaagtttag ttccatttac 600atgtattgga aattcagtaa gtaactttgg ctgccaaata
acgatttc 64850247RNAHomo sapiens 50acuccucuuc aagacaaagg
gaauaguacu cauaguagaa auaacagcua ugcagugauu 60aucaccagca ccaguucgua
uuauguguuu uacauuuacg ugggaguagc cgacacuuug 120cuugcuaugg gauucuucag
aggucuacca cuggugcaua cucuaaucac agugucgaaa 180auuuuacacc acaaaauguu
acauucuguu cuucaagcac cuaugucaac ccucaacacg 240uugaaag
247512871DNAHomo sapiens
51ttactaggtc taagaaatga aactgctgat ccaccatcaa tagggcctgt ggttttgttg
60gttttctaat ggcagtgctg gcttttgcac agaggcatgt gccctttgtt gaacctccat
120ttgactggca tgcacatgtc tcagatatta taggttatca tatattgttg ctcctaatat
180ttctgtgtta gataattaga gtagcttggt ttgtaagaat gtgatgttgg tgggactgta
240gcagaacaag aaggccctta tgggtcagtc atacctctct tttcaaatat ttggtctagc
300tctcttctgg gcatcttgtt gccaatatat agtattgctc aaaagggcag gagatttgaa
360gtgatcaagg aaaatatatt ttttctattg attaagtctt ttgatggggt agaataatct
420aatttcatgt aactgctcaa agttatatgg tagggggatc ccaaatgtat tttaaaacta
480tttttatatc atcatatttg aagtaataga aagtcagagt agcagaataa aggtactaaa
540aattttaaaa actaataagg tactttgaaa gaaatcaatt atgttgattc ctcattaaac
600aaatttgcac ttaaagactg aggttaataa ggatttcccc aagttttttc atagcaacct
660gtgagcactt tctctgttga ggcatttatg gtatgaaaag atgagtaagg cacagttctt
720gccctggaga aggtcacagg tgagaggagg agttgacaca gaaacatttg atataaagca
780aggaataaat tccaagacta aaattttcag aaatctaaaa aactcaagat aagaaaaacc
840cattatattt tctgggtaac aaaatttcag tgttattaac atgtaggaag atcttgatat
900ttattctgaa gcccatgtgt gttgctgaaa tattgccgca tttgcatata ctcatcacca
960tcctctgttt tggagctaag aattttagac tcaagatgtc taattaagtt gatccattga
1020ttttattttt tatggaaatc tgagacccac agaaggcagg ggatttgccc acatttctag
1080aagagtcaga catgagcgat gaggcacagt ggaaagaaca tgagcattgc ctgagctctg
1140agttggcgct ataagagcag tgatcatggg caagtgactc ttctgagcct tggcctcctc
1200acctgttaag tgaagaaaag aatatttcag aagatctttg tgagaatgaa acaaggcaat
1260ttacttgcct gctacatagc caatgggaaa tcaatataag ttccccgtgg ttcccttctg
1320tggggttttg ttcccacaga gggtgcactg gccattccac ttcttctttt ccaagctcct
1380cattcccttt aacgctgttc atagttggtt ccaaaccatt tgaaatataa taagcaccag
1440gatggttttt tctttccacc aaagcaaatt tcattttcta aacactgttt ataaatatca
1500atggctattt tttcaatttt tgattatcat gaaaatatac aaatatgttt aattaaatat
1560gctaaagaat gtattaataa atatgtatta aataattcct acatataagg cctttttgct
1620tggggtatgg gtgatacaaa ataaatgtgg catgaaccca ctgacctcta gcaatttata
1680acctagaaaa agagttatga tatgtttata agttcctgtg atataagaca tgcatatagt
1740cattataaca gaggtgcaaa caagatgtat caagtatgtc cagaggagga agagattaat
1800cccagctgga ggaaacactg atgctttctt gcagcagggg catttgagtt gagaaaggga
1860ggaaacatag attttgacaa tgagagctga ggggaaaggg gtttcaggtg gagggaaccg
1920catgtggaaa gcagggaggt aggaaagtgt agagtgtgtt taaagaatag accagtttgg
1980ctgaaacagg atatttgagc agaggaagct tgtactaggt aggtgggttg aggccaaatt
2040atgcaaggca ttaaatatta aactaggaat tttggacttt atcctgcagt ttatgggggg
2100taaatgataa gattcaatat cactttattt gtacagtatt atgttacatt ttatctaatt
2160gtttgtttaa ttcctgtcta gacaatgaat tcctcaaggg caaggagcat ggcttattca
2220cctcagtaat ttcagtgcct agcattgtgc ctggtacaaa gtggacactt gtatataacc
2280ttttttaatt gaagcaacaa gttgtcaacc ttacaaatgt gaatccgtga ttcagatgac
2340aggttgaaat gtagattgtc tgcgaagagg gcagaaagag agtatgacaa aggaggacaa
2400gacagtgggg caggcaggga gagagagcag ccagggtttc ggtagaggta tgtcaaaaag
2460gtatggaagt cagaggagaa ggagacccct atgttataga atacaaatgg aagggaaatg
2520atgacaacag taagttgtca ttaaatgcaa ggttgcaaaa gtaagattgt aaagcaggat
2580gagtacccac ctattcctga cataatttat agtaaaagct atttcagaga aattggtcgt
2640tacttgaatc ttacaagaat ctgaaacttt taaaaaggtt taaaagtaaa agacaataac
2700ttgaacacat aattatttag aatgtttgga aagaaacaaa aatttctaag tctatctgat
2760tctatttgct aattcttatt tgggttctga atgcgtctac tgtgatccaa acttagtatt
2820gaatatattg atatatcttt aaaaaattag tgttttttga ggaatttgtc a
28715276RNAHomo sapiens 52ugggauucuu aauagauucu ccaaagauau agcaauuuug
gaugaccuuc ugccucuuac 60cauauuugac uucauc
76533745DNAHomo sapiens 53taaaaataag taccgttaag
tatgtctgta ttattaaaaa aacaataaca aaagcaaatg 60tgattttgtt ttcatttttt
atttgattga gggttgaagt cctgtctatt gcattaattt 120tgtaattatc caaagccttc
aaaatagaca taagtttagt aaattcaata ataagtcaga 180actgcttacc tggcccaaac
ctgaggcaat cccacattta gatgtaatag ctgtctactt 240gggagtgatt tgagaggcac
aaaggaccat ctttcccaaa atcactggcc acaaagtgtg 300acattttggc attggcatca
ctatttgatg gaagccaacc tccccccaaa aggcctgtat 360tagaatgaag atggattccc
tgggtgggtt acacttgaaa ctagcctcac ccatgaacac 420tttggcacag attagctagc
ccattccccc acagtaagga ccataaggaa gggacagaag 480caaagataag ttttagaaca
aaagagaggg gaaagaaaaa atctagggtt ttatgagggc 540tgtccctgag tgatagatgt
gaataggcct ccagggcagg ctggctcaga ggctgactct 600ttgggttggg gtgactgatt
ggtggtgagg atggagaaga aaaggggagt ggaggaggtg 660aaagtgacct tgggacatta
ggtctccata agtgacagga tttaaggagt gttgtaagct 720gtggttgttg gaccaggttt
aagcacagct tcctgagctt cctgactggt ttaggtcaag 780ctccagagag caaatgccac
agtctcagtg atctccttgg agaaacagtt ggaataggat 840gttgcccatg ttgggatgag
tcattgtccg ctcttgctct ttccctaccc ctgcaaaata 900ataatactgt atttgattga
acatataaaa caaaagaagg attatcacat aagtatgtat 960atataaccaa cattggcagg
tgcagaaaaa ccagactgtc agtttgcctc atctgaaatg 1020attgacacaa acaaatatat
ttactgtccc aagtgaactt tggcattttg gatatccttc 1080agttgttctg tttaaagata
taacttagaa gcagctgatg gaatatttaa atccatgcgt 1140tgaattcatg cattcaaaga
aacatgtcct gagtcactaa atgctgacat ttgtttttca 1200tgttaagagt gtaaataact
ggtcccaaat ataatattat tacatcagat aaaaactgga 1260atgtgaacct cttaacttga
ttgtgaaagt atttgccaat ggtgcctctt gataattatt 1320tgaggctcac ttcagaactc
ctctggaagg gttaattttt aaatagtcat tttataaatt 1380aacatttttg acatatgtga
tggctctcaa attttttctt ttatgccagt ttgaatcatt 1440tctgctcaat tttttttttt
aattgggatg gagtctcact ctgttgccca ggctggagtg 1500cagtgatgca atcttggctg
actgcaacct ccacctcctc ggttcaagcg attctctcgc 1560atcagcctcc agagtagctg
ggattacagg cgcgcaccac catgcctgga taatttttgt 1620attattacta gagatggggt
ttcaccacgt tggccaggct ggtcttgaac tcctgaactc 1680ctgacctcaa gtgatccacc
tgcctcagcc tcttaaagag ctggaattat aggtgtgagc 1740cactgcacca ggccctgttc
aacttttaat gctaagattc atttgttgtt gtttcacaag 1800tgattaggca gaggtctttt
atattaattt acccatttta tttgtaagag agtctcatat 1860taaggaagca taatatatga
caatccaaat acagtacaaa tttggttaat tttgattttg 1920ttaaataatt aatcacaggg
gtccttcaaa ttgtgagctc ctctggttat acttatgttt 1980tacctctggt tatacttaat
ttcaaacaaa tgaaatttca ttctattcat gatatttcag 2040aagcagatct gttgcacaaa
ataaagcata cctataaatt ttcttttttt aaaaaaaagt 2100ctctgttcac tctattttct
attatttttc tctttttaaa atttgaattt tattgtggca 2160agtccactta acatgagatt
taccctctta acagattttt atgtgtaaaa tacaatattg 2220ttcaccatgg gtaaatgttg
cacagcagat ctctggaact tattcatttt gcactactga 2280aattttatac ctgttgatta
gtatctcccc atttccctct ctcccctgtc ctgttaccca 2340tggttctgtt ctttgcttct
ttgagtttga gtattttgat acctcatgta atcttcattc 2400tattttctaa ctttgacaat
gttctgacaa atttgctttc cggattggag cactgtatag 2460tgaaaattga aaatcttggt
tattttctac agattcccac tattttacct tgagcagaca 2520cttatcttga agggtctcag
atttgtcact tgtagaatgg ggaatataaa cctgataatg 2580gtccctttca gttctaaagt
tatatcagtt gaaaatacat gtgtcactta tggtaacggg 2640tagagaactg gctcactgaa
cagcatatgg atattataaa gtggtttttt ttaatccttt 2700ctgcagacag ttactttata
ctttattcaa atggattatt gtgaagtaca tgttagcgga 2760ctttgtacct tttaaaaatg
tatgtatttg gtgtaatgta gaaatataga aatttattaa 2820gtatgattta tttcaatgtt
aagcatgaga aaatatgctc cgaaaggtta gatagcttgc 2880ctaaatgaca agcttgtatt
tcaagcagaa ctttctgaat caaaagactc caagacgaat 2940gcccagcttt caaaaactgt
ctaaccaaaa taaatcctaa gattcacctt catactaaaa 3000ttatttaaaa atagtttatt
ttaaattaat attcacttaa aatgtattta tcatgcaata 3060ctttaaagtg tctgggaaat
gaaaatatcc aaagatcaaa gaacaccatg ttttcaaact 3120tcaaaaatgt tatcagtgac
ctaaacaatt tttaaaattt tcatagagcc tatgaaaaat 3180gtacttgcaa atggctactt
tctgactagg aatagaatgg ggagagtatt tagtccaaca 3240atgatagact ggattaagaa
aatgtggcac atatacacca tggaacacta tgcagccata 3300aaaaatgatg agttcatgtc
ctttgtaggg acatggatga aattggaaaa catcattctc 3360agtaaactat cgcaagaaca
aaaaaccaaa caccgcatat tctcactcat aggtgggaat 3420tgaacaatga gatcacatgg
acacaggaag gggaatatca cactctgggg actgttgtgg 3480ggtgggggga ggggggaggg
atagcactgg gagatatacc taatgctaga tgacgagtta 3540gtgggtgcag tgcaccagca
tggcacatgt atacatatgt aactaacctg cacaatgtgc 3600acatgtaccc taaaacttaa
agtataataa aaaaaataaa aaaaagtttg aggtgtttaa 3660agtatgcaaa aaaaaaaaaa
gaaataaatc actgacacac tttgtccact ttgcaatgtg 3720aaaatgttta ctcaccaaca
tgttt 374554147RNAHomo sapiens
54uguuauuaau ugugauugga gcuauagcag uugucgcagu uuuacaaccc uacaucuuug
60uugcaacagu gccagugaua guggcuuuua uuauguugag agcauauuuc cuccaaaccu
120cacagcaacu caaacaacug gaaucug
14755891DNAHomo sapiens 55acagtgaatg tgcgatactc atcttgtaaa aaagctataa
gagctatttg agattcttta 60ttgttaatct acttaaaaaa aattctgctt ttaaactttt
acatcatata acaataattt 120ttttctacat gcatgtgtat ataaaaggaa actatattac
aaagtacaca tggatttttt 180ttcttaatta atgaccatgt gacttcattt tggttttaaa
ataggtatat agaatcttac 240cacagttggt gtacaggaca ttcatttata ataaacttat
atcagtcaaa ttaaacaagg 300atagtgctgc tattactaaa ggtttctctg ggttcccaaa
tgatacttga ccaaatttgt 360ccctttggct tgttgtcttc agacaccctt tcttcatgtg
ttggagctgc catttcgtgt 420gcccccaaac tctacttgag ctgttaggga atcacatttt
gcagtgacag ccttagtgtg 480ggtgcatttt caggcaatac tttttcagta tatttctgct
ttgtagatta ttagctaaat 540caagtcacat aaacttcctt aatttagata cttgaaaaaa
ttgtcttaaa agaaaatttt 600tttagtaaga attaatttag aattagccag aaaactccca
gtggtagcca agaaagagga 660ataaatattg gtggtaattt tttaagttcc catctctggt
agccaagtaa aaaaagaggg 720taactcatta ataaaataac aaatcatatc tattcaaaga
atggcaccag tgtgaaaaaa 780agctttttaa ccaatgacat ttgtgatatg attattctaa
tttagtcttt ttcaggtaca 840agatattatg aaattacatt ttgtgtttat gttatttgca
atgttttcta t 89156224RNAHomo sapiens 56caggagucca auuuucacuc
aucuuguuac aagcuuaaaa ggacuaugga cacuucgugc 60cuucggacgg cagccuuacu
uugaaacucu guuccacaaa gcucugaauu uacauacugc 120caacugguuc uuguaccugu
caacacugcg cugguuccaa augagaauag aaaugauuuu 180ugucaucuuc uucauugcug
uuaccuucau uuccauuuua acaa 224572784DNAHomo sapiens
57atgaactcat taactttagc taagcattta agtaaaaaat tttcaatgaa taaaatgctg
60cattctatag gttatcaatt tttgatatct ttagagttta gtaattaaca aatttgttgg
120tttattattg aacaagtgat ttctttgaat ttccattgtt ttattgttaa acaaataatt
180tccttgaaat cggatatata tatatatatg tatatatata tatatatata tatatatata
240catatatata tatagtatta tccctgtttt cacagtttta aaaaccgatg cacacagatt
300gtcagatagc aattctgtga ttgaagggga aatatgtcac ctcttcatac tcatattggt
360gaagggtcct agcttcaaaa ttaatagatt cctaaagagg ggaaatgaaa catccgcatt
420tacacacaca cacacacaca cacacacaga gttcctcttg tcggtaagtt ttgttttttt
480taaatctcta ctagataaaa tttgttatct aattgtgagt tttacacaaa gaaaaactgt
540cacagaaaag aaagacagtg tcacattttt caaaagaaaa agaagaaaag aaagtgccat
600gtttttcaaa tacaaatgtt ctggattgat tttaggatct ttagtgaaaa acaaagtatt
660tcataataag taaaataaaa atctatgtag gtaaatttgt ttctctaatt taagaatttg
720aatttctgag tatttatgat aagtgttgaa ataacttctt atatgtgaca gtgaatactg
780gcagagcaaa tgccaaatca atgccaaatc tgtaggatca tttgattgta ggaacagaat
840tctactcaaa ccgaaagcag gcatttgctg gagttacaga aaggcctcat ggaacaccga
900gaaggtggtg ccattcgact cttaaagaag ctgcaacagg cacaagagag tcagctgcag
960ctcttcttct tgagtctata tctgtcctgg gtccattcct ttttgtggtt gcttcattcc
1020tttctctctc tgaagactgg tttttctggt ctaccagggc tatgccacat tgactttatg
1080tagtgtctcc attctggcct cctgaattta caggagagtt cctctgtaca aactcaaagt
1140cctggagaga acagaaaaca gcttcctttt ggctcagggg tccaactgca gtctactctg
1200ctgctatgag gatagtgggt tcaccacctt tgttgttctc tcagctaggg cagtgggaaa
1260tgactctatg aaaggaatat acatgggcag gcaaatgtac taatcctcat cagtactgta
1320attttaagca actttaaaaa attcttttaa gttatttgaa aataagatca aagaaggctg
1380aattacataa atgaagattt gttaacaatt aattcaaacc aatataacac atgctataac
1440atggttgagt gtgattgagt cttgatttat taggggcaat aatcaaaaca tttaacaatc
1500attatagtac agaacttacc aatcaaatca gatgctcagc cggagtggat gttggccacc
1560cagctattat tatccctggc tcaattggtc ttcagctgtg ttaacttgca aacattaatt
1620aactatctaa gcccctcatt ttcctcaagt gtaaatagac acaataatat tacctattcc
1680ataggtgtgg ggtgaatagt aaatgtaata atttgtccaa aacacttagt atagtgcctg
1740gtccatggta aatactaaat aaatgttatc tgacttatta ttaaaatttt atcttctcag
1800cttaaccttc agaacagtaa tatattgggg tctagataaa tcttgcctat atgaaaataa
1860tttaatacta catgcagata tatgctgtgt atattatgcc ttctgttaga ggaattgcag
1920aaacaaaaat ttcaattaat aataagatga attatttctc ccaattgtag aatcttttga
1980caattttatc atgcattaca gatgtaagaa ctcttgattg ggacttgata gtctaacttt
2040ataataattt aagaacattc ctcttagaga atttctatgg ccataatact gaacacatga
2100attttaatta gctgtcctct ttagccctaa aaaaaaaatt actgtaattt aacacttaag
2160tgttgttctt cccaggtaca gtaatctttt tttttttttt tttttttttt tgcatagagg
2220gtaatctttt ctctttccaa atggcagaac tgttagtttt ctgactgtcc ggtgaaattc
2280taagtccact tacttcccaa tagcatgcaa ttagcaaagg tcctccttgc aaaggcacag
2340aacacaccta aacatcttgc agatgctgtt tggacactct tcccctgctt ttggtctctt
2400tgtaaagcag ctcatctgga tacaggatct cttttcccca ttgcccattc taatatatgt
2460taccgttatt acttatagaa taatagtaga agagacaaat atggtaccta cccattacca
2520acaacacctc caataccagt aacatttttt aaaaagggca acactttcct aatattcaat
2580cgctctttga tttaaaatcc tggttgaata cttactatat gcagagcatt attctattag
2640tagatgctgt gatgaactga gatttaaaaa ttgttaaaat tagcataaaa ttgaaatgta
2700aatttaatgt gatatgtgcc ctaggagaag tgtgaataaa gtcgttcaca gaagagagaa
2760ataacatgag gttcatttac gtct
27845897RNAHomo sapiens 58agaaggagaa ggaagaguug guauuauccu gacuuuagcc
augaauauca ugaguacauu 60gcagugggcu guaaacucca gcauagaugu ggauagc
97591000DNAHomo sapiens 59tcttatcatc tttttaactt
ttatgaaaaa aattcagaca agtaacaaag tatgagtaat 60agcatgagga agaactatat
accgtatatt gagcttaaga aataaaacat tacagataaa 120ttgagggtca ctgtgtatct
gtcattaaat ccttatctct tctttccttc tcatagatag 180ccactatgaa gatctaatac
tgcagtgagc attctttcac ctgtttcctt attcaggatt 240ttctaggaga aatacctagg
ggttgtattg ctgggtcata ggattcaccc atgcttaact 300gagtggtgcc aaattgtcct
caagtctgtt gtactgatat atatccccat caagagagta 360caagaattct catagctatg
tatcttcaac aacacttggt gtctggtaga tgtgaagtga 420ttactaaaaa tatagggaag
ctgcatacat aattattggc ttttgctgtt ctcttacatt 480aatttcttat tcatgttgat
tactcatttg tcacctagtt ttttcttcct taattaaatt 540gtaggaattt atgaattatg
gattgatcat cagctctata catttcaaac ataatccctc 600agtcagtggc ttggcttata
gagtcttttg atgaaaagaa gcttttaagt ttaataaagt 660tcaatttatt gtcttttcct
ttatgttttg tgcttttggt atcttgatta agaactcctt 720ccttatattg ggttctcaaa
tttagcagca taacattttc atactattat ttaaattttt 780ttcacattat ttagtgatag
cacctttctt attcctaaag tgtttatcat tgccttctgt 840ctttctgctt gataaatatt
gccacacatt tgtatacttt attagtgtgt acaaagacca 900cattttagtt gtgttatttc
tcttgttttg gttttctaga atgcagagcc attaatatta 960tagtaatgct tatgtgctaa
taccatatca ggggcacaaa 100060245RNAHomo sapiens
60ugcgaucugu gagccgaguc uuuaaguuca uugacaugcc aacagaaggu aaaccuacca
60agucaaccaa accauacaag aauggccaac ucucgaaagu uaugauuauu gagaauucac
120acgugaagaa agaugacauc uggcccucag ggggccaaau gacugucaaa gaucucacag
180caaaauacac agaaggugga aaugccauau uagagaacau uuccuucuca auaaguccug
240gccag
245611000DNAHomo sapiens 61atttgaacac tgcttgcttt gttagactgt gttcagtaag
tgaatcccag tagcctgaag 60caatgtgtta gcagaatcta tttgtaacat tattattgta
cagtagaatc aatattaaac 120acacatgttt tattatatgg agtcattatt tttaatatga
aatttaattt gcagagtcct 180gaacctatat aatgggttta ttttaaatgt gattgtactt
gcagaatatc taattaattg 240ctaggttaat aactaaagaa gccattaaat aaatcaaaat
tgtaacatgt tttagatttc 300ccatcttgaa aatgtcttcc aaaaatatct tattgctgac
tccatctatt gtcttaaatt 360ttatctaagt tccattctgc caaacaagtg atactttttt
tctagctttt ttcagtttgt 420ttgttttgtt tttctttgaa gttttaattc agacatagat
tattttttcc cagttattta 480ctatatttat taagcatgag taattgacat tattttgaaa
tccttcttat ggatcccagc 540actgggctga acacatagaa ggaacttaat atatactgat
ttctggaatt gattcttgga 600gacagggatg gtcattatcc atatacttca ggctccataa
acatatttct taattgcctt 660caaatcccta ttctggactg ctctataaat ctagacaaga
gtattatata ttttgattga 720tattttttag ataaaataaa agggagctga aaactgaatt
gcaaactgaa ttttaaaact 780ttatctctct gtggttaatt gcaaacacag atacaaaaat
atagagagag atacagttag 840taaagatgtt aggtcaccgt tactaacact gacatagaaa
cagttttgct catgagtttc 900agaatatatg agtttgattt tgcccatgga ttttagaata
tttgataaac atttaatgca 960ttgtacaaat tctgtgaaaa catatatata ggatgtgcga
100062152RNAHomo sapiens 62ugggccucuu gggaagaacu
ggaucaggga agaguacuuu guuaucagcu uuuuugagac 60uacugaacac ugaaggagaa
auccagaucg augguguguc uugggauuca auaacuuugc 120aacaguggag gaaagccuuu
ggagugauac ca 152631000DNAHomo sapiens
63caaaaggact tagccagaaa aaaggcaact aaattatatt ttttactgct atttgatact
60tgtactcaag aaattcatat tactctgcaa aatatatttg ttatgcattg ctgtcttttt
120tctccagtgc agttttctca taggcagaaa agatgtctct aaaagtttgg aattctcaaa
180ttctggttat tgaaatgttc atagctttga tagtgttttt cagaagacca aatttacagt
240gggagccttg ggcttttgtt ttttaacagc tcttttttgt tcctgcttca gtggcctgac
300ctccaagtta gcaatcgcca ggttgagaaa tgctttgcga gacataacag atgctcctga
360aataacaaac acttggaatc atgaggtagt ggaattgaaa atagaaagtg tagtgattgt
420tttttgttat ttggatggga tgaacaatgt cagattagtc tgtaactatt tttttttaat
480gtcactctga tttggtcaca aaggatctct agtctcattg ccttagtatc attctacgaa
540ttagaatgtg ttactgtgta agagcacttc ttgtatatga gagaaatagc aacagttcca
600gtttaaagtg atataaatgg aaaccaagaa atgtctttac tgggaccaaa tctggacagc
660atttactgta tttttgctgg tattttctct agtctttccg ggtatattca catttaatga
720tcacttttct ccctttgtgc taatggacac tgaatccatt ccactaccat agttcttgct
780aatactactc tactttttac acaaaattaa aatgccagga gcacctccag gtagactgac
840tataaatcta gactgaaaaa aaagcttgta tttcttaaca gattaccttg tggaacattt
900gctcctttca actaatgagg cactaaatat tgtaactgct caactggtgc ttttaattta
960tttgtctaga ctttgtcatg ttgccagaag ctttatcctg
10006486RNAHomo sapiens 64aaguauuuau uuuuucugga acauuuagaa aaaacuugga
ucccuaugaa caguggagug 60aucaagaaau auggaaaguu gcagau
86651000DNAHomo sapiens 65gctgctaact gaaatgattt
tgaaaggggt aactcatacc aacacaaatg gctgatatag 60ctgacatcat tctacacact
ttgtgtgcat gtatgtgtgt gcacaacttt aaaatggagt 120accctaacat acctggagca
acaggtactt ttgactggac ctacccctaa ctgaaatgat 180tttgaaagag gtaactcata
ccaacacaaa tggttgatat ggctaagatc attctacaca 240ctttgtgtgc atgtatttct
gtgcacaact tcaaaatgga gtaccctaaa atacctggcg 300cgacaagtac ttttgactga
gcctacttct ctcctcactg gtatggctcc aaccatcagg 360ccctatcttg gtccatttag
gctgctaaaa taaaatacca aagactgagc tgcttataag 420caatctttgg aggctgagaa
gtcaaagatc aaggtgccag caggtttgct gtctcgtgag 480agcatacttc ctggttcatt
gatggtgctt tcttgctgtg tcctcacata atggaaaggg 540caagacctct ctggtgtctc
ttttacaatg gcactaatcc catcatgagg gctttgttct 600catgacctaa tcacctccca
catgtcctac attctaatac tatcaccttg ggggttagga 660ttttaacata tgaatttgag
gaggtggcgg gggggacaca aatatttaga ccatagcatt 720tcactcctga cctccaaagt
tcatgtcttc ttcacatgca aaatacattc attccatccc 780aatagccccc aaagtcttaa
cttgttccag catcaactta caaggctaaa gtccaaggtt 840tcatctaaat atcagctaaa
tcagcacaaa cagctaaatc aggtagagtg ggacttaagg 900tgtgattcct ctttaggcag
attgctctcc aactatgaaa ttgtgaaatc aaacctatta 960tgtactttca aaataaaatg
gtgaaacagg cacaggctag 100066169RNAHomo sapiens
66uugggcucag aucugugaua gaacaguuuc cugggaagcu ugacuuuguc cuuguggaug
60ggggcugugu ccuaagccau ggccacaagc aguugaugug cuuggcuaga ucuguucuca
120guaaggcgaa gaucuugcug cuugaugaac ccagugcuca uuuggaucc
16967578DNAHomo sapiens 67tttcagatgt tctgttactt aatagcacag tgggaacaga
atcattatgc ctgcttcatg 60gtgacacata tttctattag gctgtcatgt ctgcgtgtgg
gggtctcccc caagatatga 120aataattgcc cagtggaaat gagcataaat gcatatttcc
ttgctaagag tcttgtgttt 180tcttccgaag atagttttta gtttcataca aactcttccc
ccttgtcaac acatgatgaa 240gcttttaaat acatgggcct aatctgatcc ttatgatttg
cctttgtatc ccatttatac 300cataagcatg tttatagccc caaataaaga agtactggtg
attctacata atgaaaaatg 360tactcattta ttaaagtttc tttgaaatat ttgtcctgtt
tatttatgga tacttagagt 420ctaccccatg gttgaaaagc tgattgtggc taacgctata
tcaacattat gtgaaaagaa 480cttaaagaaa taagtaattt aaagagataa tagaacaata
gacatattat caaggtaaat 540acagatcatt actgttctgt gatattatgt gtggtatt
57868102RNAHomo sapiens 68acauaccaaa uaauuagaag
aacucuaaaa caagcauuug cugauugcac aguaauucuc 60ugugaacaca ggauagaagc
aaugcuggaa ugccaacaau uu 102691323DNAHomo sapiens
69tctttataac tttacttaag atctcattgc ccttgtaatt cttgataaca atctcacatg
60tgatagttcc tgcaaattgc aacaatgtac aagttctttt caaaaatatg tatcatacag
120ccatccagct ttactcaaaa tagctgcaca agtttttcac tttgatctga gccatgtggt
180gaggttgaaa tatagtaaat ctaaaatggc agcatattac taagttatgt ttataaatag
240gatatatata ctttttgagc cctttatttg gggaccaagt catacaaaat actctactgt
300ttaagatttt aaaaaaggtc cctgtgattc tttcaataac taaatgtccc atggatgtgg
360tctgggacag gcctagttgt cttacagtct gatttatggt attaatgaca aagttgagag
420gcacatttca tttttctagc catgatttgg gttcaggtag tacctttctc aaccaccttc
480tcactgttct taaaaaaact gtcacatggc caggcacagt ggcttacatc tgtaatccca
540atactttggg aggctgaggt ggggggatta cttgaggcca ggaattcaag accagcccag
600gcaacatagt gaggccccat ctgtctttat taaaacaaaa caaaactgtc acagcttctt
660tcaagtgatg tttacaaatt ccctatggtt tagtcacaag gaagttctga ggatgatgta
720tcacgtcatt tctgttcagg cttttgagcc tcctggaggt aaatggtttc cttactgaag
780gcttgttatt accatgatta tcactaagct tgaagtaaca aattaggggg gcagactcac
840aacctcttgc cctgccatgg acaagttcaa gaatctaagt aaagtcctct attgtctgat
900cttggatttg ctcaacctga acaagccaag gaggtgtatt aaactcaggc acatcctgac
960caatttggaa ttcttaagct tcagatcact gtggaagagg ctcaactctt tatggtgctg
1020tagacttacg ctcattttct aggtaattta taagggacct aatattttgt tttcaaagca
1080acttcagttc tactaaacct ccctgaagaa tcttccagct gctgagtaga aaatcacaac
1140taatttcaca gatggtagaa cctccttaga gcaaaaggac acagcagtta aatgtgacat
1200acctgattgt tcaaaatgca aggctctgga cattgcattc tttgactttt attttccttt
1260gagcctgtgc cagtttctgt ccctgctctg gtctgacctg ccttctgtcc cagatctcac
1320taa
132370197RNAHomo sapiens 70ucauagaaga gaacaaagug cggcaguacg auuccaucca
gaaacugcug aacgagagga 60gccucuuccg gcaagccauc agccccuccg acagggugaa
gcucuuuccc caccggaacu 120caagcaagug caagucuaag ccccagauug cugcucugaa
agaggagaca gaagaagagg 180ugcaagauac aaggcuu
19771315RNAHomo sapiens 71gcucuguuuc cuguggggau
ggcauccagc gccggcguga caccugccuc ggaccccagg 60cccaggcgcc ugugccagcu
gauuucugcc agcacuugcc caagccggug acugugcgug 120gcugcugggc ugggcccugu
gugggacagg guacgcccag ccuggugccc cacgaagaag 180ccgcugcucc aggacggacc
acagccaccc cugcuggugc cucccuggag uggucccagg 240cccggggccu gcucuucucc
ccggcucccc agccucggcg gcuccugccc gggccccagg 300aaaacucagu gcagu
31572445RNAHomo sapiens
72guccuguccu ccuuccuguc aggcagcugc ugcaggaggg gugggcaaag gcaucuuccu
60cugggaagga cuggcacaag cacuuggucc cuggguugug ugccugggag gccgggauca
120gggcuggccc ucuuucuccc uggcaaagca aaaccucccu uuuacuacua ucaaggggaa
180guaacuugaa gguaggaacc cagcuuguga gcccccuagc cucugggcug cucugcaugu
240gcccccucuu gcuggaucau cugguagcag cccugugccc ugagggugau gcucugaccu
300augcagcccc ccucccuguc cugagaaggc uuccagcugg gccuuggagg acagggucca
360ccccuaccuc cuggucuccu uccucagcuu ggaagccccg gagccugccc ugcugggaau
420cggggaagca cugcuuaccu gucuc
44573143RNAHomo sapiens 73ugccuguggc aggcagcacc uugagccaac aggaaccauu
gacaugcgag gcccagggca 60ggcagacugu gcaguggcca uugggcggcc ccucggggag
guggugaccc uccgcguccu 120ugagaguucu cucaacugca gug
14374173RNAHomo sapiens 74ggacauguug cugcuuuggg
gccggcucac cuggaggaag augugcagga agcuguugga 60caugacuuuc agcuccaaga
ccaacacgcu gguggugagg cagcgcugcg ggcggccagg 120agguggggug cugcugcggu
augggagcca gcuugcuccu gaaaccuucu aca 173751170RNAHomo sapiens
75gccaggccuu cuccaccucc cuugggugcu ccaguccugg cagggaggcu gggugggugc
60ugcuggggau ggggccaguc ccaguggggc agugggaaga uacggaggga acugacugag
120auggaaggaa cugggguugg ccagugucag ucugcacgug ccagggaggg gucacaggau
180gaaugcuaua ucccuccuuu uugggaccgu gcagcaagau ggacggaugu gggacauggu
240ccacauccuc agucaguccc ucaggccucu gccccacacc caccugcccc gcccccaccc
300cuccagccuu ucaagggcuu uuaggguuuu guggaagcca cugucccuca gcccuguuuc
360agugcacugg uguaagcaga caugcuugua caugcaugug cacccacaag cacaccucag
420gcagaggaug ccaccucagg gacuccagcc uugcccgugg cccccucgau auccucugau
480agcccucucg guuguccugg ggggcuugcc cucucccaac agcccgagcu ggccgaaguu
540ggcuucccua gcugguucca gagguuccuc ggcuccccca ggugucuggg gcuuaguggc
600aacaggggcu uagccucugc agagaccuag ugcgccgccu ccuugcccca gaccugcccg
660ggcagagagc cguguaugug ucccagugca caggcgcugc ugggcccugc caaaaggcca
720caagcccacu gucaccguuc acauugcuuc ucgcuucccg gcccagcccc gcccacacag
780gcaucugccu ugaaagaggu gcaggaggua caggcaggug ggggcuccag ugagcucuga
840ggaacagcag uggccgccau ggguggagcc uaucuuuguu gccaguuuca guguuaaaca
900cucuugcacg ugugacauca uugaguccua aagaccacuc ugcucagugc augccauugu
960uuccuucagu uacagaggag ggaaccagag cccagaacau uuagccuuug ccuaaaguca
1020cugggccagg aagugguaga ggugggguuc agcaggauuu gccugggaac cccaauauug
1080accacagugc caugcugccc ugcacggcuc ccuggcugug aguuguccug gccucuggca
1140ccaccggucu gucuggguuc cuaugucccu
117076181RNAHomo sapiens 76augugacaug cagcucuuug ggcccugggg ugaaaucgug
agccccucgc ugaguccagc 60cacgaguaau gcagggggcu gccggcucuu cauuaaugug
gcuccgcacg cacggauugc 120cauccaugcc cuggccacca acaugggcgc ugggaccgag
ggagccaaug ccagcuacau 180c
18177149RNAHomo sapiens 77accucuugga caggauuaac
gaauaugugg gcaaagccgc cacucguuua uccauccucu 60cguuacuggg ucaugucaua
agacugcagc caucuuggaa gcauaagcuc ucucaagcac 120cucuuuugcc uucuuuacua
aaaugucuc 149782074RNAHomo sapiens
78auguuuguaa ggauuugaau gaaaugguuu uaugaguaua guuucugaaa uuuuaggcaa
60cuuaaagcaa ggaagcuaga uuuuaacuuu uagaguuuaa aaccuucuag gcauuuggcu
120uuucucaaau agaauguugu ccagaguugg uacuuaguaa guucucaaau acaucacuau
180gacuauugaa uaccuugucc augcaaguau ggaaaaauuu cgaucagaug gguucaaugu
240uacauuauuc caaaccucuu gauuucguca ucguuuagcc uucccucauu uaaaaacauc
300cuggauuauc uuuugggaau cccuguuucu aaauuaucuu uuagcuaaua gaaaaauggc
360uuaaaguuuc uguuaaccau uuaggaguau ggucugguug cagcuauaau uaagacuuug
420uugauguaaa uucuacuaag uugcauucua uuuuuugcac uaaauuuagu gcauuuuucu
480auauagggag ucaaaaucua aauagaacuu uaugguuuua guuuuaacag uggcgugcag
540ccauacucag gguuauuugu uuaaucuguu uuaguuccug gacuuguuuu cuaucuauaa
600aauaagaaaa ugugguuaau auuaacugcc uguaccucac agagacauga aaauauccaa
660uaguauuugu uccaggaugg caguaccauu ggauucaucu gcuacagcac caugcaaauu
720gauuuuugug ucugccaaga aggguaacuc uuuuauuauc ccuagaggug ggucccaagg
780agucacauug gcaggguauu auaaaaacau gcauuuaauu cagaaaaaau aggaacaguu
840uuaacaacuu aauguuuuuu aaacaaaugg auugaugaga auauaaucua auuaauggau
900uggugagaau auaaucuaaa uggauugaug agaauauaau cuaaauggau uggugagaau
960auaaucuaaa uggauugaug agaauauaau cuaauuuuga ggcacaucau uuaguucaga
1020uugcaaaaca cuuaucuuuu ccaaaagagu acguuuuguu aaucauggau aagucuucag
1080uuagacuguu aggaaaauga aaucagggcu aguucuuucu gcugagaauc auuauauagu
1140cucauauauu cucaauucuc cuaccaauau auuauucuua cuggauaucu uccguaauga
1200aaggcuugau gcuugaugua aaaaucaaaa uauauuuaaa acuuuauucc cagacucaua
1260gauuccuauu cuaauaggaa uaauggaugu cuuaaccuac auaguagucu uuugauuaau
1320aucuuguuuc auaaaucuga auuucaucua ccuggcaaac auucaugauu uaauuauggg
1380ucaggugagc ugcuguagcu agcuagucag agcugauuga guauccauug gguguuaagu
1440gucuucaguu agccugaagu uauuuauuug acuuaauauu uaaacuguag gcgugcugaa
1500agguuuccau auauauauau uuuaauuuac uggucucuaa auacugcuuu gaagugagcc
1560uuuaaguuga cuuguuagug cuauaugaau uucuccuuca auuauacuuc uguuguaguu
1620cuuuaaaaaa uaguaaguua cuugucaaug ugcaguuuuu uuuuuuuuua auuaacaaaa
1680aguaaguauc uuaggauuug guugaaugaa ugaaacagag cagugcuccu guguuuuguu
1740gaaaagcagc uccuuuuguu uucauccaac ugcuaucaau agggcauccu aaggcugcag
1800gacuugggug uccccaaguc aaguuugaac ucgucucccg gaugccuuug cauaggugug
1860uuguaaaugg uccucacuga cucauuacag uagaguuggg gcucaguguu cuguugaguc
1920uguuugaaug uuaucccuuc aguaauccuu agggauaggg aaaugaguac gugagucaac
1980uugugauuug ugauucucuc aguguuuaga gccucuucau guacuguaca augccgaucc
2040uggugccagu gccugacaga cguuuccugu uuga
207479141RNAHomo sapiens 79uggacacuga cgucguuguc cucacaacag gcgucuuggu
guugauaacc augcuaccaa 60ugauuccaca gucugggaaa cagcaucuuc uugauuucuu
ugacauuuuu ggccgucugu 120caucauggug ccugaagaaa c
14180112RNAHomo sapiens 80gugugcuacu ucuaccccuu
acuccacguc ucggcugaug uuguuaaaua ugccagggca 60gcuaccucag acucugaguu
ccccaucgac acggcugaua acugaaccac ca 11281319RNAHomo sapiens
81gugucaacua gugugccugc ucucuccucu gcuuucuggu gaagcugacc cuuuggguca
60gauuuaguau gugguuggga aaauuucaca cugcucauuu caggagucac uuuuaaggau
120ccaugauauu agcaaagaaa guuacuguug ccucuuagau ucaucuugaa gucuugauuu
180acaaaaugca acuuguuucu ugauacgcuu uuaauaagau gccuuuuucu agaugaaaaa
240gcuaaauuua agcugaacac uggccaugga uauaaaccuc guggaugacu uagcauuccu
300uugccacugc ugauguacu
31982108RNAHomo sapiens 82cuacucuuug gagcccaucu augguuugug guaugaccac
uccuccaacu ucuccuggaa 60augucccacc ugaucuguca cacccuuaca guaaagucuu
ugguacaa 10883289RNAHomo sapiens 83uaugucuuag guuggauuug
auuaguuggu uuuggccugc cuuuaauggc aggaggagcu 60cucuuuuaga ucuaagggac
cacuugcugu uguaaacuug uuuuugacac uuauugcaaa 120ucccuggggc uuucagaaug
uguaaaguga accuaaaaac aaaaaagaga gagacugauc 180uagaucccca gaaaguuaac
ucuagcagcu uuauuuauag uaauaguuau aggcugaaaa 240aaaaucggca guuuuucuaa
uaguugggcu caguguucau auauguucu 28984118RNAHomo sapiens
84agguggaaaa ggaacuccuc ugggaacccc agcaaccucu ccuccuccag ccccacucug
60ucauucggau gacuacgugc acauuucacu cccccaggcc acagucacac cccccagg
11885141RNAHomo sapiens 85gaugaugggc ucccugcugg ccgccacuac ggaggccccu
ggcgaguacu ucuucucaga 60cggggugcgg cucaagaagu accggggcau gggcucacug
gaugccaugg agaagagcag 120cagcagccag aaacgauacu u
14186269RNAHomo sapiens 86cugacccugg gccccaccug
ggcagaucag cccacaaccc uucagggccc gcucaugcca 60ccgacuuccc cagauggcag
ccagucccca uauggugguu cuggaaacug aggcacaggg 120cuuaaguagc agacccagga
ucugucccug ggccaucuga cucagcccag ugaggggugg 180ccugggggac cuuccugggc
gguaucccgu uuuugcccuu aagagguggg gugggguccu 240cugagcuuca agcugcuggg
cucagucuu 26987140RNAHomo sapiens
87gagggggaua aagugaagau cgcgcagggu gucucgggcu ccauccagga caaaggaucc
60auucagaagu ucgugcccua ccucauagca ggcauccaac acggcugcca ggauaucggg
120gcccgcagcc ugucuguccu
1408849RNAHomo sapiens 88aggccuuugu uggacagaug aagagugacu uguuucugga
ugauucuaa 4989204RNAHomo sapiens 89uucccuagag aaaccucgag
cccuggugca ggucacugug ucuggggugc cgggggugug 60cgggcugcgu guccuugcug
ggugucugug gcuccaugug gucacaccac ccgggagcag 120guuugcucgg aagcccaggg
uguccgugcg ugacuggacg ggggugggcu guguguguga 180cacauccccu gguaccuugc
ugac 20490181RNAHomo sapiens
90cuggugugcu ggcccuccgg cgagggaacg cucaguuggc cggaccugcu cagugacccg
60uccauugugg guagcaaucu gcggcagcug gcacggggcc aggcgggcca ugggcugggc
120ccagaggagg acggcuucuc ccuggccagc cccuacucgc cugccaaauc cuucucagca
180u
1819157RNAHomo sapiens 91cuggggugag aggagggggc ucugaagcuc acccuugcag
cugggcccac ccuaugc 579290RNAHomo sapiens 92ugaagaccug auccagcagg
uccuugccga gggggucagc agcccagccc cuacccaaga 60cacccacaug gaaacggacc
ugcucagcag 9093191RNAHomo sapiens
93ucuugcugga agcccuguac uucucacugg uggccaagcg gcugcacccg gaugaagaug
60acacccuggu agagagcccg gcugugacgc cugugagcgc acgugugccc cgcguacggc
120caccccacgg cuuugcacuc uuccuggcca aggaagaagc ccgcaagguc aagaggcuac
180auggcaugcu g
19194430RNAHomo sapiens 94ccugggugcg gccugugccc cugccaccuc cgucucuugu
cucccaccuc ccacccaugc 60acgcaggaca cuccuguccc ccuuuccuca ccucagaagg
cccuuagggg uucaaugcuc 120ugcagccuuu gcccggucuc ccuccuaccc cacgcccccc
acuugcugcc ccagucccug 180ccagggccca gcuccaaugc ccacuccugc cuggcccuga
aggccccuaa gcaccacugc 240aguggccugu gugucugccc ccaggugggg uuccgggcag
ggugugugcu gccauuaccc 300uggccaggua gagucuuggg gcgcccccug ccagcucacc
uuccugcagc cacaccugcc 360gcagccaugg cuccagccgu ugccaaagcc cugcugucac
ugugggcugg ggccaggcug 420accacagggc
43095136RNAHomo sapiens 95gccuccuggu guacaugcuu
uuucugcugg ugacccugcu ggccagcuau ggggaugccu 60caugccaugg gcacgccuac
cgucugcaaa gcgccaucaa gcaggagcug cacagccggg 120ccuuccuggc caucac
13696341RNAHomo sapiens
96ggcauccggu gcacuggucu gucuucuggg cuuuaguuuu gccuuuaguc cagccagacc
60cuaggggaca uguggacaug uguagauacc uuuguggcug cuagaacugg agguaggugc
120ugcuggcauc aguaggcaga ggggagggac acagguccgu gucuugcagu gcacaggacg
180ggcccaugac agacaacugu cugccccaga acauccccag gauaaggcug agaagcccag
240gucuagccgu ggccagcagg gcagugggag ccauguuccc ugggucucug guggccgcuc
300acucgaggcg ggcauggggc aguaggggcu ggagcgugug a
34197109RNAHomo sapiens 97ucugaggagc ucuggccaug gauggcccac gugcugcugc
ccuacgucca cgggaaccag 60uccagcccag agcuggggcc cccacggcug cggcaggugc
ggcugcagg 1099893RNAHomo sapiens 98augagucugc uuugcccugg
gaugaccaua gaccacaagu uaccuggcgg ggggauggac 60aguuuuuugc ugugaguguu
guuugcccag aaa 9399331RNAHomo sapiens
99gaaauauauu gcaguuaaac aacaauaaaa aauuuuuauc uuauuaaaau uaaggaaaau
60uuucuuucuu uugcuuugag uaggguauua auuauacaua ugaggcaagg augugcugcu
120uuaaauguga aaugagguua gaguuaagaa uuagaagagu ccuuugaggc cauuuggucc
180auccuccuac cugguggaca caaauuugua acaaaauuaa ucuaauuggc uauguaaaac
240cauggcaguu uuuauuugua aggaaggugu uugaauaguu cugaauugac aacuuuuauc
300auaauguuuu aaguguguau guguguuuga c
33110087RNAHomo sapiens 100ggcucggaag gucagagugu ggaaccgaga guuugcuuug
cagucaacca gugagccugu 60ggcaggacug ggaccagccc uggcuug
871011120RNAHomo sapiens 101ugggagaaga aaccuuagag
aaauucuugg aaccagagua gagguggugg uacacaugga 60uacagaugau acagauguuu
guguaacaca aaaggauuuu uacguuucuu cauuugguua 120uaaggcugua ucuaucuuug
uuucuucuuu uuuuuuuuuc uuauucccug aagucugaau 180ucaacucgaa uaguagauuu
uacgcuucuu cacagauuuc auuguuccaa ggccgcauau 240auuuugcauu ccuaacucuu
aaaaggcugu gguuuuaagg caggguauau augaagccau 300uguacagagc agaaaauggu
guuuagaagg gaaggcccag uuugcaaggc ucuguggggc 360aaauggugcu uuuguggaaa
uuagggaaag agccuccuuc cuuggcacaa aauuccuaca 420gcagaggauc ugcuugccaa
ggagcaugca ggcuggauuc agacccugcu cuuuccuucc 480auucuccucc uuggcccagu
acccuugugc agguuacaau uugccuguca uauguggcug 540ccugauuuua gauagaagau
guaucuccuc uguuucggug auaucuguug uauguagacc 600ucuuguuucc caccaguauc
ugaaugguau uauaugauag agcagaagag aaauguauuu 660gaauuaaaac ccuagagaca
aauaugaaua agaugaggca auuaagaugu uuucaacauu 720uggugaaguc uuaaaaaaga
ccuacuggag cauagaauau uugcugaagu uguauaaugg 780aaggagaaau agauuuugau
uuuuaggaca uuauaccugg aaugguuuag auaacuuauu 840auuuuuaaag ucauccaaau
gcaauguaaa uauguaaggu uuugugggca aauggagccu 900cuguguaaaa caggaaaagg
cacucuuucc ucugggcaag uacaguccca cagugggaug 960aaccgcucgc cgagagacaa
gggacacaug ggauuuaaaa cuuccuugga uaaagauauu 1020cauuaauucg uucauucauu
cauucauguu ugcuggaaaa aaaacucuuc uggauuuuau 1080cuauucuuua guuaggugag
cuuucgauau uguaacacuc 1120102120RNAHomo sapiens
102cccucaggca guuugauugc aucuacacaa gauaaaccca accagcagga uauuguguuu
60uuugagaaaa auggacuccu ucauggacac uuuacacuuc ccuuccuuaa agaugagguu
12010318DNAArtificial SequenceDescription of Artificial Sequence
Synthetic oligonucleotide 103ccagtggtat tgcttacc
1810418DNAArtificial SequenceDescription of
Artificial Sequence Synthetic oligonucleotide 104ctgtcttgta accttgat
1810518DNAArtificial
SequenceDescription of Artificial Sequence Synthetic oligonucleotide
105cctgtcttgt aaccttga
1810618DNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 106acctgtcttg taaccttg
1810718DNAArtificial SequenceDescription of
Artificial Sequence Synthetic oligonucleotide 107aacctgtctt gtaacctt
1810818DNAArtificial
SequenceDescription of Artificial Sequence Synthetic oligonucleotide
108aaacctgtct tgtaacct
1810918DNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 109taaacctgtc ttgtaacc
1811018DNAArtificial SequenceDescription of
Artificial Sequence Synthetic oligonucleotide 110ttaaacctgt cttgtaac
1811118DNAArtificial
SequenceDescription of Artificial Sequence Synthetic oligonucleotide
111cttaaacctg tcttgtaa
1811218DNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 112ccttaaacct gtcttgta
1811318DNAArtificial SequenceDescription of
Artificial Sequence Synthetic oligonucleotide 113tccttaaacc tgtcttgt
1811418DNAArtificial
SequenceDescription of Artificial Sequence Synthetic oligonucleotide
114ctccttaaac ctgtcttg
1811518DNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 115tctccttaaa cctgtctt
1811618DNAArtificial SequenceDescription of
Artificial Sequence Synthetic oligonucleotide 116gtctccttaa acctgtct
1811718DNAArtificial
SequenceDescription of Artificial Sequence Synthetic oligonucleotide
117ggtctcctta aacctgtc
1811818DNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 118tggtctcctt aaacctgt
1811918DNAArtificial SequenceDescription of
Artificial Sequence Synthetic oligonucleotide 119ttggtctcct taaacctg
1812018DNAArtificial
SequenceDescription of Artificial Sequence Synthetic oligonucleotide
120attggtctcc ttaaacct
1812118DNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 121tattggtctc cttaaacc
1812218DNAArtificial SequenceDescription of
Artificial Sequence Synthetic oligonucleotide 122ctattggtct ccttaaac
1812318DNAArtificial
SequenceDescription of Artificial Sequence Synthetic oligonucleotide
123tctattggtc tccttaaa
1812418DNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 124ttctattggt ctccttaa
1812518DNAArtificial SequenceDescription of
Artificial Sequence Synthetic oligonucleotide 125tttctattgg tctcctta
1812618DNAArtificial
SequenceDescription of Artificial Sequence Synthetic oligonucleotide
126gtttctattg gtctcctt
1812718DNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 127accggacccc cagggccc
1812818DNAArtificial SequenceDescription of
Artificial Sequence Synthetic oligonucleotide 128tgcctaccgg acccccag
1812918DNAArtificial
SequenceDescription of Artificial Sequence Synthetic oligonucleotide
129ccccatgcct accggacc
1813018DNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 130atgaccccca tgcctacc
1813118DNAArtificial SequenceDescription of
Artificial Sequence Synthetic oligonucleotide 131cctccatgac ccccatgc
1813218DNAArtificial
SequenceDescription of Artificial Sequence Synthetic oligonucleotide
132tctcccctcc atgacccc
1813318DNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 133gaggaggacg ccggcttc
1813418DNAArtificial SequenceDescription of
Artificial Sequence Synthetic oligonucleotide 134gctgggagga ggacgccg
1813518DNAArtificial
SequenceDescription of Artificial Sequence Synthetic oligonucleotide
135agtcggctgg gaggagga
1813618DNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 136cagggagtcg gctgggag
1813718DNAArtificial SequenceDescription of
Artificial Sequence Synthetic oligonucleotide 137ggcgccaggg agtcggct
1813818DNAArtificial
SequenceDescription of Artificial Sequence Synthetic oligonucleotide
138tgggcggcgc cagggagt
1813918DNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 139ccccacctgg gtctggcc
1814018DNAArtificial SequenceDescription of
Artificial Sequence Synthetic oligonucleotide 140cccagcccca cctgggtc
1814118DNAArtificial
SequenceDescription of Artificial Sequence Synthetic oligonucleotide
141cggtccccag ccccacct
1814218DNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 142tccctcggtc cccagccc
1814318DNAArtificial SequenceDescription of
Artificial Sequence Synthetic oligonucleotide 143ggaggctgcg atctgggc
1814418DNAArtificial
SequenceDescription of Artificial Sequence Synthetic oligonucleotide
144ctgcgatctg ggctcccc
1814518DNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 145atctgggctc cccccacc
1814618DNAArtificial SequenceDescription of
Artificial Sequence Synthetic oligonucleotide 146ggctcccccc accttgtg
1814718DNAArtificial
SequenceDescription of Artificial Sequence Synthetic oligonucleotide
147ttgtgtccct cggtcccc
1814818DNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 148ccaccttgtg tccctcgg
1814918DNAArtificial SequenceDescription of
Artificial Sequence Synthetic oligonucleotide 149tccccccacc ttgtgtcc
1815018RNAArtificial
SequenceDescription of Artificial Sequence Synthetic oligonucleotide
150caggaaggag gacaggac
1815118RNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 151ccugacagga aggaggac
1815218RNAArtificial SequenceDescription of
Artificial Sequence Synthetic oligonucleotide 152agcugccuga caggaagg
1815318RNAArtificial
SequenceDescription of Artificial Sequence Synthetic oligonucleotide
153gcagcagcug ccugacag
1815418RNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 154cuccugcagc agcugccu
1815518RNAArtificial SequenceDescription of
Artificial Sequence Synthetic oligonucleotide 155caccccuccu gcagcagc
1815618RNAArtificial
SequenceDescription of Artificial Sequence Synthetic oligonucleotide
156uugcccaccc cuccugca
1815718RNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 157ugccuuugcc caccccuc
1815818RNAArtificial SequenceDescription of
Artificial Sequence Synthetic oligonucleotide 158gaagaugccu uugcccac
1815918RNAArtificial
SequenceDescription of Artificial Sequence Synthetic oligonucleotide
159gagacaggua agcagugc
1816018RNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 160agguaagcag ugcuuccc
1816118RNAArtificial SequenceDescription of
Artificial Sequence Synthetic oligonucleotide 161agcagugcuu ccccgauu
1816218RNAArtificial
SequenceDescription of Artificial Sequence Synthetic oligonucleotide
162ugcuuccccg auucccag
1816318RNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 163ccccgauucc cagcaggg
1816418RNAArtificial SequenceDescription of
Artificial Sequence Synthetic oligonucleotide 164auucccagca gggcaggc
1816518RNAArtificial
SequenceDescription of Artificial Sequence Synthetic oligonucleotide
165cagcagggca ggcuccgg
1816618RNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 166agcagggcag gcuccggg
1816718RNAArtificial SequenceDescription of
Artificial Sequence Synthetic oligonucleotide 167gggcuuccaa gcugagga
1816818RNAArtificial
SequenceDescription of Artificial Sequence Synthetic oligonucleotide
168agguggagaa ggccuggc
1816918RNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 169aagggaggug gagaaggc
1817018RNAArtificial SequenceDescription of
Artificial Sequence Synthetic oligonucleotide 170cacccaaggg agguggag
1817118RNAArtificial
SequenceDescription of Artificial Sequence Synthetic oligonucleotide
171uggagcaccc aagggagg
1817218RNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 172aggacuggag cacccaag
1817318RNAArtificial SequenceDescription of
Artificial Sequence Synthetic oligonucleotide 173cugccaggac uggagcac
1817418RNAArtificial
SequenceDescription of Artificial Sequence Synthetic oligonucleotide
174ccucccugcc aggacugg
1817518RNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 175cccagccucc cugccagg
1817618RNAArtificial SequenceDescription of
Artificial Sequence Synthetic oligonucleotide 176agggacauag gaacccag
1817718RNAArtificial
SequenceDescription of Artificial Sequence Synthetic oligonucleotide
177cauaggaacc cagacaga
1817818RNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 178gaacccagac agaccggu
1817918RNAArtificial SequenceDescription of
Artificial Sequence Synthetic oligonucleotide 179cagacagacc gguggugc
1818018RNAArtificial
SequenceDescription of Artificial Sequence Synthetic oligonucleotide
180agaccggugg ugccagag
1818118RNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 181gguggugcca gaggccag
1818218RNAArtificial SequenceDescription of
Artificial Sequence Synthetic oligonucleotide 182ugccagaggc caggacaa
1818318RNAArtificial
SequenceDescription of Artificial Sequence Synthetic oligonucleotide
183gaggccagga caacucac
1818418RNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 184cagcugccug acaggaag
1818518RNAArtificial SequenceDescription of
Artificial Sequence Synthetic oligonucleotide 185gcagcugccu gacaggaa
1818618RNAArtificial
SequenceDescription of Artificial Sequence Synthetic oligonucleotide
186agcagcugcc ugacagga
1818718RNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 187cagcagcugc cugacagg
1818818RNAArtificial SequenceDescription of
Artificial Sequence Synthetic oligonucleotide 188gcagcagcug ccugacag
1818918RNAArtificial
SequenceDescription of Artificial Sequence Synthetic oligonucleotide
189ugcagcagcu gccugaca
1819018RNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 190cugcagcagc ugccugac
1819118RNAArtificial SequenceDescription of
Artificial Sequence Synthetic oligonucleotide 191ccugcagcag cugccuga
1819218RNAArtificial
SequenceDescription of Artificial Sequence Synthetic oligonucleotide
192uccugcagca gcugccug
1819318RNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 193cuccugcagc agcugccu
1819418RNAArtificial SequenceDescription of
Artificial Sequence Synthetic oligonucleotide 194ccuccugcag cagcugcc
1819518RNAArtificial
SequenceDescription of Artificial Sequence Synthetic oligonucleotide
195cccuccugca gcagcugc
1819618RNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 196ccccuccugc agcagcug
1819718RNAArtificial SequenceDescription of
Artificial Sequence Synthetic oligonucleotide 197accccuccug cagcagcu
1819818RNAArtificial
SequenceDescription of Artificial Sequence Synthetic oligonucleotide
198ucaaauccuu acaaacau
1819918RNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 199uucauucaaa uccuuaca
1820018RNAArtificial SequenceDescription of
Artificial Sequence Synthetic oligonucleotide 200accauuucau ucaaaucc
1820118RNAArtificial
SequenceDescription of Artificial Sequence Synthetic oligonucleotide
201auaaaaccau uucauuca
1820218RNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 202uacucauaaa accauuuc
1820318RNAArtificial SequenceDescription of
Artificial Sequence Synthetic oligonucleotide 203aacuauacuc auaaaacc
1820418RNAArtificial
SequenceDescription of Artificial Sequence Synthetic oligonucleotide
204ucagaaacua uacucaua
1820518RNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 205aaauuucaga aacuauac
1820618RNAArtificial SequenceDescription of
Artificial Sequence Synthetic oligonucleotide 206ucaaacagga aacgucug
1820718RNAArtificial
SequenceDescription of Artificial Sequence Synthetic oligonucleotide
207caggaaacgu cugucagg
1820818RNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 208aacgucuguc aggcacug
1820918RNAArtificial SequenceDescription of
Artificial Sequence Synthetic oligonucleotide 209cugucaggca cuggcacc
1821018RNAArtificial
SequenceDescription of Artificial Sequence Synthetic oligonucleotide
210aggcacuggc accaggau
1821118RNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 211cuggcaccag gaucggca
1821218RNAArtificial SequenceDescription of
Artificial Sequence Synthetic oligonucleotide 212accaggaucg gcauugua
1821318RNAArtificial
SequenceDescription of Artificial Sequence Synthetic oligonucleotide
213gaucggcauu guacagua
1821418RNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 214aggcacacua guugacac
1821518RNAArtificial SequenceDescription of
Artificial Sequence Synthetic oligonucleotide 215agagcaggca cacuaguu
1821618RNAArtificial
SequenceDescription of Artificial Sequence Synthetic oligonucleotide
216aggagagagc aggcacac
1821718RNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 217agcagaggag agagcagg
1821818RNAArtificial SequenceDescription of
Artificial Sequence Synthetic oligonucleotide 218cagaaagcag aggagaga
1821918RNAArtificial
SequenceDescription of Artificial Sequence Synthetic oligonucleotide
219uucaccagaa agcagagg
1822018RNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 220ucagcuucac cagaaagc
1822118RNAArtificial SequenceDescription of
Artificial Sequence Synthetic oligonucleotide 221aagggucagc uucaccag
1822218RNAArtificial
SequenceDescription of Artificial Sequence Synthetic oligonucleotide
222aguacaucag caguggca
1822318RNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 223aucagcagug gcaaagga
1822418RNAArtificial SequenceDescription of
Artificial Sequence Synthetic oligonucleotide 224caguggcaaa ggaaugcu
1822518RNAArtificial
SequenceDescription of Artificial Sequence Synthetic oligonucleotide
225gcaaaggaau gcuaaguc
1822618RNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 226ggaaugcuaa gucaucca
1822718RNAArtificial SequenceDescription of
Artificial Sequence Synthetic oligonucleotide 227gcuaagucau ccacgagg
1822818RNAArtificial
SequenceDescription of Artificial Sequence Synthetic oligonucleotide
228gucauccacg agguuuau
1822918RNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 229ccacgagguu uauaucca
1823018RNAArtificial SequenceDescription of
Artificial Sequence Synthetic oligonucleotide 230aauccaaccu aagacaua
1823118RNAArtificial
SequenceDescription of Artificial Sequence Synthetic oligonucleotide
231aaucaaaucc aaccuaag
1823218RNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 232caacuaauca aauccaac
1823318RNAArtificial SequenceDescription of
Artificial Sequence Synthetic oligonucleotide 233aaaaccaacu aaucaaau
1823418RNAArtificial
SequenceDescription of Artificial Sequence Synthetic oligonucleotide
234aggccaaaac caacuaau
1823518RNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 235aaggcaggcc aaaaccaa
1823618RNAArtificial SequenceDescription of
Artificial Sequence Synthetic oligonucleotide 236cauuaaaggc aggccaaa
1823718RNAArtificial
SequenceDescription of Artificial Sequence Synthetic oligonucleotide
237ccugccauua aaggcagg
1823818RNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 238agaacauaua ugaacacu
1823918RNAArtificial SequenceDescription of
Artificial Sequence Synthetic oligonucleotide 239auauaugaac acugagcc
1824018RNAArtificial
SequenceDescription of Artificial Sequence Synthetic oligonucleotide
240ugaacacuga gcccaacu
1824118RNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 241acugagccca acuauuag
1824218RNAArtificial SequenceDescription of
Artificial Sequence Synthetic oligonucleotide 242gcccaacuau uagaaaaa
1824318RNAArtificial
SequenceDescription of Artificial Sequence Synthetic oligonucleotide
243acuauuagaa aaacugcc
1824418RNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 244uagaaaaacu gccgauuu
1824518RNAArtificial SequenceDescription of
Artificial Sequence Synthetic oligonucleotide 245aaacugccga uuuuuuuu
1824614RNAArtificial
SequenceDescription of Artificial Sequence Synthetic oligonucleotide
246gggcccaggg ucag
1424718RNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 247cugaucugcc cagguggg
1824818RNAArtificial SequenceDescription of
Artificial Sequence Synthetic oligonucleotide 248gugggcugau cugcccag
1824918RNAArtificial
SequenceDescription of Artificial Sequence Synthetic oligonucleotide
249ggguuguggg cugaucug
1825018RNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 250cugaaggguu gugggcug
1825118RNAArtificial SequenceDescription of
Artificial Sequence Synthetic oligonucleotide 251gggcccugaa ggguugug
1825218RNAArtificial
SequenceDescription of Artificial Sequence Synthetic oligonucleotide
252ugagcgggcc cugaaggg
1825318RNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 253uggcaugagc gggcccug
1825418RNAArtificial SequenceDescription of
Artificial Sequence Synthetic oligonucleotide 254aagacugagc ccagcagc
1825518RNAArtificial
SequenceDescription of Artificial Sequence Synthetic oligonucleotide
255ugagcccagc agcuugaa
1825618RNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 256ccagcagcuu gaagcuca
1825718RNAArtificial SequenceDescription of
Artificial Sequence Synthetic oligonucleotide 257agcuugaagc ucagagga
1825818RNAArtificial
SequenceDescription of Artificial Sequence Synthetic oligonucleotide
258gaagcucaga ggacccca
1825918RNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 259ucagaggacc ccacccca
1826018RNAArtificial SequenceDescription of
Artificial Sequence Synthetic oligonucleotide 260ggaccccacc ccaccucu
1826118RNAArtificial
SequenceDescription of Artificial Sequence Synthetic oligonucleotide
261ccaccccacc ucuuaagg
1826218RNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 262augagcgggc ccugaagg
1826318RNAArtificial SequenceDescription of
Artificial Sequence Synthetic oligonucleotide 263caugagcggg cccugaag
1826418RNAArtificial
SequenceDescription of Artificial Sequence Synthetic oligonucleotide
264gcaugagcgg gcccugaa
1826518RNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 265ggcaugagcg ggcccuga
1826618RNAArtificial SequenceDescription of
Artificial Sequence Synthetic oligonucleotide 266uggcaugagc gggcccug
1826718RNAArtificial
SequenceDescription of Artificial Sequence Synthetic oligonucleotide
267guggcaugag cgggcccu
1826818RNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 268gguggcauga gcgggccc
1826918RNAArtificial SequenceDescription of
Artificial Sequence Synthetic oligonucleotide 269cgguggcaug agcgggcc
1827018RNAArtificial
SequenceDescription of Artificial Sequence Synthetic oligonucleotide
270ucgguggcau gagcgggc
1827118RNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 271gucgguggca ugagcggg
1827218RNAArtificial SequenceDescription of
Artificial Sequence Synthetic oligonucleotide 272cgagguuucu cuagggaa
1827318RNAArtificial
SequenceDescription of Artificial Sequence Synthetic oligonucleotide
273gggcucgagg uuucucua
1827418RNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 274caccagggcu cgagguuu
1827518RNAArtificial SequenceDescription of
Artificial Sequence Synthetic oligonucleotide 275accugcacca gggcucga
1827618RNAArtificial
SequenceDescription of Artificial Sequence Synthetic oligonucleotide
276cagugaccug caccaggg
1827718RNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 277agacacagug accugcac
1827818RNAArtificial SequenceDescription of
Artificial Sequence Synthetic oligonucleotide 278accccagaca cagugacc
1827918RNAArtificial
SequenceDescription of Artificial Sequence Synthetic oligonucleotide
279ccggcacccc agacacag
1828018RNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 280gucagcaagg uaccaggg
1828118RNAArtificial SequenceDescription of
Artificial Sequence Synthetic oligonucleotide 281gggauguguc acacacac
1828218RNAArtificial
SequenceDescription of Artificial Sequence Synthetic oligonucleotide
282gugucacaca cacagccc
1828318RNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 283acacacacag cccacccc
1828418RNAArtificial SequenceDescription of
Artificial Sequence Synthetic oligonucleotide 284cacagcccac ccccgucc
1828518RNAArtificial
SequenceDescription of Artificial Sequence Synthetic oligonucleotide
285cccacccccg uccaguca
1828618RNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 286ccccguccag ucacgcac
1828718RNAArtificial SequenceDescription of
Artificial Sequence Synthetic oligonucleotide 287uccagucacg cacggaca
1828818RNAArtificial
SequenceDescription of Artificial Sequence Synthetic oligonucleotide
288ccccuccucu caccccag
1828918RNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 289agagcccccu ccucucac
1829018RNAArtificial SequenceDescription of
Artificial Sequence Synthetic oligonucleotide 290gcuucagagc ccccuccu
1829118RNAArtificial
SequenceDescription of Artificial Sequence Synthetic oligonucleotide
291ggugagcuuc agagcccc
1829218RNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 292gcaaggguga gcuucaga
1829318RNAArtificial SequenceDescription of
Artificial Sequence Synthetic oligonucleotide 293cagcugcaag ggugagcu
1829418RNAArtificial
SequenceDescription of Artificial Sequence Synthetic oligonucleotide
294gggcccagcu gcaagggu
1829518RNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 295agggugggcc cagcugca
1829618RNAArtificial SequenceDescription of
Artificial Sequence Synthetic oligonucleotide 296gcauagggug ggcccagc
1829718RNAArtificial
SequenceDescription of Artificial Sequence Synthetic oligonucleotide
297gcacaggccg cacccagg
1829818RNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 298gggcacaggc cgcaccca
1829918RNAArtificial SequenceDescription of
Artificial Sequence Synthetic oligonucleotide 299gagacggagg uggcaggg
1830018RNAArtificial
SequenceDescription of Artificial Sequence Synthetic oligonucleotide
300gacaagagac ggaggugg
1830118RNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 301ugggagacaa gagacgga
1830218RNAArtificial SequenceDescription of
Artificial Sequence Synthetic oligonucleotide 302ggagguggga gacaagag
1830318RNAArtificial
SequenceDescription of Artificial Sequence Synthetic oligonucleotide
303gggugggagg ugggagac
1830418RNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 304ugcaugggug ggaggugg
1830518RNAArtificial SequenceDescription of
Artificial Sequence Synthetic oligonucleotide 305gcccuguggu cagccugg
1830618RNAArtificial
SequenceDescription of Artificial Sequence Synthetic oligonucleotide
306guggucagcc uggcccca
1830718RNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 307cagccuggcc ccagccca
1830818RNAArtificial SequenceDescription of
Artificial Sequence Synthetic oligonucleotide 308uggccccagc ccacagug
1830918RNAArtificial
SequenceDescription of Artificial Sequence Synthetic oligonucleotide
309ccagcccaca gugacagc
1831018RNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 310ccacagugac agcagggc
1831118RNAArtificial SequenceDescription of
Artificial Sequence Synthetic oligonucleotide 311gugacagcag ggcuuugg
1831218RNAArtificial
SequenceDescription of Artificial Sequence Synthetic oligonucleotide
312agcagggcuu uggcaacg
1831318RNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 313accagugcac cggaugcc
1831418RNAArtificial SequenceDescription of
Artificial Sequence Synthetic oligonucleotide 314gacagaccag ugcaccgg
1831518RNAArtificial
SequenceDescription of Artificial Sequence Synthetic oligonucleotide
315cagaagacag accagugc
1831618RNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 316aagcccagaa gacagacc
1831718RNAArtificial SequenceDescription of
Artificial Sequence Synthetic oligonucleotide 317aacuaaagcc cagaagac
1831818RNAArtificial
SequenceDescription of Artificial Sequence Synthetic oligonucleotide
318ggcaaaacua aagcccag
1831918RNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 319cuaaaggcaa aacuaaag
1832018RNAArtificial SequenceDescription of
Artificial Sequence Synthetic oligonucleotide 320cuggacuaaa ggcaaaac
1832118RNAArtificial
SequenceDescription of Artificial Sequence Synthetic oligonucleotide
321ucacacgcuc cagccccu
1832218RNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 322cgcuccagcc ccuacugc
1832318RNAArtificial SequenceDescription of
Artificial Sequence Synthetic oligonucleotide 323cagccccuac ugccccau
1832418RNAArtificial
SequenceDescription of Artificial Sequence Synthetic oligonucleotide
324ccuacugccc caugcccg
1832518RNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 325ugccccaugc ccgccucg
1832618RNAArtificial SequenceDescription of
Artificial Sequence Synthetic oligonucleotide 326caugcccgcc ucgaguga
1832718RNAArtificial
SequenceDescription of Artificial Sequence Synthetic oligonucleotide
327ccgccucgag ugagcggc
1832818RNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 328ucgagugagc ggccacca
1832918RNAArtificial SequenceDescription of
Artificial Sequence Synthetic oligonucleotide 329uuaacugcaa uauauuuc
1833018RNAArtificial
SequenceDescription of Artificial Sequence Synthetic oligonucleotide
330guuguuuaac ugcaauau
1833118RNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 331uuauuguugu uuaacugc
1833218RNAArtificial SequenceDescription of
Artificial Sequence Synthetic oligonucleotide 332auuuuuuauu guuguuua
1833318RNAArtificial
SequenceDescription of Artificial Sequence Synthetic oligonucleotide
333uaaaaauuuu uuauuguu
1833418RNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 334uaagauaaaa auuuuuua
1833518RNAArtificial SequenceDescription of
Artificial Sequence Synthetic oligonucleotide 335uuuaauaaga uaaaaauu
1833618RNAArtificial
SequenceDescription of Artificial Sequence Synthetic oligonucleotide
336uuaauuuuaa uaagauaa
1833718RNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 337gucaaacaca cauacaca
1833818RNAArtificial SequenceDescription of
Artificial Sequence Synthetic oligonucleotide 338acacacauac acacuuaa
1833918RNAArtificial
SequenceDescription of Artificial Sequence Synthetic oligonucleotide
339cauacacacu uaaaacau
1834018RNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 340acacuuaaaa cauuauga
1834118RNAArtificial SequenceDescription of
Artificial Sequence Synthetic oligonucleotide 341uaaaacauua ugauaaaa
1834218RNAArtificial
SequenceDescription of Artificial Sequence Synthetic oligonucleotide
342cauuaugaua aaaguugu
1834318RNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 343ugauaaaagu ugucaauu
1834418RNAArtificial SequenceDescription of
Artificial Sequence Synthetic oligonucleotide 344aaaguuguca auucagaa
1834518RNAArtificial
SequenceDescription of Artificial Sequence Synthetic oligonucleotide
345cuaagguuuc uucuccca
1834618RNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 346uuucucuaag guuucuuc
1834718RNAArtificial SequenceDescription of
Artificial Sequence Synthetic oligonucleotide 347aagaauuucu cuaagguu
1834818RNAArtificial
SequenceDescription of Artificial Sequence Synthetic oligonucleotide
348guuccaagaa uuucucua
1834918RNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 349cucugguucc aagaauuu
1835018RNAArtificial SequenceDescription of
Artificial Sequence Synthetic oligonucleotide 350cucuacucug guuccaag
1835118RNAArtificial
SequenceDescription of Artificial Sequence Synthetic oligonucleotide
351accaccucua cucugguu
1835218RNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 352guaccaccac cucuacuc
1835318RNAArtificial SequenceDescription of
Artificial Sequence Synthetic oligonucleotide 353gaguguuaca auaucgaa
1835418RNAArtificial
SequenceDescription of Artificial Sequence Synthetic oligonucleotide
354uuacaauauc gaaagcuc
1835518RNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 355auaucgaaag cucaccua
1835618RNAArtificial SequenceDescription of
Artificial Sequence Synthetic oligonucleotide 356gaaagcucac cuaacuaa
1835718RNAArtificial
SequenceDescription of Artificial Sequence Synthetic oligonucleotide
357cucaccuaac uaaagaau
1835818RNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 358cuaacuaaag aauagaua
1835918RNAArtificial SequenceDescription of
Artificial Sequence Synthetic oligonucleotide 359uaaagaauag auaaaauc
1836018RNAArtificial
SequenceDescription of Artificial Sequence Synthetic oligonucleotide
360aauagauaaa auccagaa
1836118RNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 361aauuuuuuau uguuguuu
1836218RNAArtificial SequenceDescription of
Artificial Sequence Synthetic oligonucleotide 362aaauuuuuua uuguuguu
1836318RNAArtificial
SequenceDescription of Artificial Sequence Synthetic oligonucleotide
363aaaauuuuuu auuguugu
1836418RNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 364aaaaauuuuu uauuguug
1836518RNAArtificial SequenceDescription of
Artificial Sequence Synthetic oligonucleotide 365uaaaaauuuu uuauuguu
1836618RNAArtificial
SequenceDescription of Artificial Sequence Synthetic oligonucleotide
366auaaaaauuu uuuauugu
1836718RNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 367gauaaaaauu uuuuauug
1836818RNAArtificial SequenceDescription of
Artificial Sequence Synthetic oligonucleotide 368agauaaaaau uuuuuauu
1836918RNAArtificial
SequenceDescription of Artificial Sequence Synthetic oligonucleotide
369aagauaaaaa uuuuuuau
1837018RNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 370gaguguuaca auaucgaa
1837118RNAArtificial SequenceDescription of
Artificial Sequence Synthetic oligonucleotide 371aguguuacaa uaucgaaa
1837218RNAArtificial
SequenceDescription of Artificial Sequence Synthetic oligonucleotide
372guguuacaau aucgaaag
1837318RNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotide 373uguuacaaua ucgaaagc
1837418RNAArtificial SequenceDescription of
Artificial Sequence Synthetic oligonucleotide 374guuacaauau cgaaagcu
183751000DNAHomo
sapiens 375ccaaataagg tctgaatgac acaaatttta gaactctcca gagaaaagaa
agatgctgag 60ggaaaaagca taggtttggg actcactaaa tcccagttca attcctttct
ttaataaata 120tattcaattt tacctgagaa agctctcgtg ctctcgaatt ttatttagaa
atttctcttt 180gtacatgatt gatttcacaa tccttcttct gcctcctctt ctactttctt
ctttctagat 240tttcctatct ttatgaagat tattctgcct tatcctcaac agttagaaac
aatatttttg 300aaaatcacta cggtatcctg catagtgatt tcccatgcca actttactaa
tttccattat 360aaattattat ttattgatgc ctagagggca gatgagtgta gctgctatgg
agtgaggaga 420caaaacataa gaaagttatg atcctaccct caggtaatga ttcagacatg
ataattaagt 480caacaaattg atagaaacta atcactaact ctctggctat agtcattctt
tcaatgaata 540gctcattact gagtatgcat gctacagtaa caaaattata taaggctgtt
gattaaatgt 600tgattaagtg catgtcttat tcagagtttt tttatatttg aaatggaaga
ggctggactt 660cagtaatttg ctataaactg ctagtatatg attatttggg ggcagttatt
ttttaaagaa 720taatttaaat atggaatgtt tagcagtttg ttttttccct gggaaaaacc
atactattat 780tccctcccaa tccctttgac aaagtgacag tcacattagt tcagagatat
tgatgtttta 840tacaggtgta gcctgtaaga gatgaagcct ggtatttata gaaattgact
tattttattc 900tcatatttac atgtgcataa ttttccatat gccagaaaag ttgaatagta
tcagattcca 960aatctgtatg gagaccaaat caagtgaata tctgttcctc
10003761000DNAHomo sapiens 376gcccgccttg gcctcccaaa gtgttgggat
tagtggcgtg agccactgcc ccggcctatt 60actcctttag agtgatttag agccatgttt
acttatggta acttgacagt aatgggaata 120accactgatg aaacgtaaag cctttgtcta
attgtttacc tagttcttcc ttgtggttca 180tgaaattttt catctctgta cagtttgaaa
attaagatga taatatttag agatatttta 240ttcctttgtg aagagaaaaa aggctttcat
taacagaaat cagtggcaat aacttaataa 300atacaatcag ctggtgttcc tatagtattt
aaaagaaaac agaaagttta ctagatttca 360gccagttttc agactattta atgtctattc
ttactataat agaaaatata taatttgatc 420ttgttctcat ttttcaaaga cctttaatac
atgattttag tagttgaaaa tgaagtttaa 480tgatagttta tgcctctact tttaaaaaca
aagtctaaca gatttttctc atgttaaatc 540acagaaaaag ccacctgaca ttttaacttg
tttttgattt gacagtgaaa tcttataaat 600ctgccacagt tctaaaccaa taaagatcaa
ggtataaggg aaaaatgtag aatgtttgtg 660tgtttatttt ttccaccttg ttctaagcac
agcaatgagc attcgtaaaa gccttacttt 720atttgtccac ccttttcatt gttttttaga
agcccaacac ttttctttaa cacatacaat 780gtggcctttt catgaaatca attccctgca
cagtgatata tggcagagca ttgaattctg 840ccaaatatct ggctgagtgt ttggtgttgt
atggtctcca tgagattttg tctctataat 900acttgggtta atctccttgg atatacttgt
gtgaatcaaa ctatgttaag ggaaatagga 960caactaaaat atttgcacat gcaacttatt
ggtcccactt 10003771000DNAHomo sapiens
377atttcctctc agggttaccc tctgatccct attttactaa atcgttataa aacaaaatga
60ggaattatgt gtccttccct tttgaagcca atgtaacaag atgggtaaga attagacctc
120ctgagttcaa aatccctgga ttcagatcta ttcctgtata ttcaggagaa gtggtaataa
180attcgatgga caatttggtt tagtagtcga ttgaggaccc tgatgaggta tatttgggaa
240aacataactt ccgctctctc tcattgactc acgggccttt gaggagtcca ggagtcattg
300gaatctggcc tgaggttgag gctgctggca aaactccttc cccaaagtcc attcctattg
360ctgactgaga agggactagc attggaagtg gctgatttta aataccgcta gtgctggtgt
420gctcctccct cccattccca gctctgcttt gtgtagttgc cttgagaagc taagttcatt
480ctgaaaataa tgccattgca caaaacactt ttgaaagttc tagtttgaaa ttacatcagg
540tcacttggtc tgtgtggcct cagtttcttc atctgccatg tgaaaataat aatgcctact
600ctgtagcaaa gaaagtctct atagtaaaca aaaaaaaagc ctactctgat actgaaagtt
660gttatgaaaa ataaaaaagg gaaatgcttt agaaactgtt aagtgctatg tagatgttac
720taattaacaa accatttcag aaactatact ttttatttta tggccactat tcactgttta
780acttaaaata cctcatatgt aaacttgtct cccactgttg ctataacaaa tcccaagtct
840tatttcaaag taccaagata ttgaaaatag tgctaagagt ttcacatatg gtatgaccct
900ctatataaac tcattttaag tctcctctaa agatgaaaag tcttgtgttg aaattctcag
960ggtattttat gagaaataaa tgaaatttaa tttctctgtt
10003781000DNAHomo sapiens 378gaggctgagg caggagaatg gcgtgaaccc aggaggcaga
acttgcagtg agccgagatc 60gcgccactgc actctagcct gggtgacaga gtgagactct
gtctctaaat aaataaataa 120ataaataaat aaataaataa aatcagtgct ttttcttcct
ctgctacctc ctttccttct 180actcagtttt agtcagtagt attatctttt ttcagattta
tctttgtatt gttaaatctg 240cttatgcttc tattacttta tttattagct ttaaatgata
ccttttgact ttcagctttt 300cttaataaag caatcagcaa atttccttta cactccacac
ttatacccca tttcctttgt 360ttgtttattt ggtttttact tctaactttt cttattgtca
ggacatataa catatttaaa 420ctttgttttt caactcgaat tctgccatta gttttaattt
ttgttcacag ttatataaat 480ctttgttcac tgatagtcct tttgtactat catctcttaa
atgactttat actccaagaa 540aggctcatgg gaacaatatt acctgaatat gtctctatta
cttaatctgt acctaataat 600atgaaggtaa tctactttgt aggatttctg tgaagattaa
ataaattaat atagttaaag 660cacatagaac agcactcgac acagagtgag cacttggcaa
ctgttagctg ttactaacct 720ttcccattct tcctccaaac ctattccaac tatctgaatc
atgtgcccct tctctgtgaa 780cctctatcat aatacttgtc acactgtatt gtaattgtct
cttttacttt cccttgtatc 840ttttgtgcat agcagagtac ctgaaacagg aagtatttta
aatattttga atcaaatgag 900ttaatagaat ctttacaaat aagaatatac acttctgctt
aggatgataa ttggaggcaa 960gtgaatcctg agcgtgattt gataatgacc taataatgat
10003791000DNAHomo sapiens 379gaggaggtgg aaacgaatgt
acaaggatgg gaggagaaaa gggagagaga cttttttttt 60tttaaggcga gagtttacta
cctatctaac tcttcgcatt cttgaagtct cagaccaaat 120cccatcggtt tgaaagcctc
tagggtattc tatctattgt atacttctgt tatgtacaaa 180attaatttgc caattaattg
tgaactgttt tataaactat cttaaaatgg ttagttaaat 240ctttgggata gtatttagct
ttctccagga ttatgactta ccttctaaat tagacataca 300atgcctagga gtcaaggact
attttgcata aattccagtc ttcttttaca atgcctagaa 360tgattgttac cacagaaata
ttcattacct gggagaaagg atgacaggag gggcagaatg 420aatggagaga ggtcgtgaga
atgaggtgct gaggatggac gaggaagaaa gctgttttag 480ttgggaggat aggtgacaga
agcatggaaa ggaattgcct tggacccatg gaagcccagt 540gaagatactt agatcctgca
ggggtgtgaa taatgttctt ttagtttctc ttcttaggag 600gtttgttcat tttgggagat
ttcttttgaa aagagtgaac ttaaattgga gaaaagtaca 660ttttagtatg ttgataacat
ttgaatttgt aaaatggacc tatggatgat ctacacatat 720ttatataccc ataaatatac
acatatttta atttttggta ttttataatt attatttaat 780gatcattcat gacattttaa
aaattacaga aaaatttaca tctaaaattt cagcaatgtt 840gtttttgacc aactaaataa
attgcatttg aaataatgga gatgcaatgt tcaaaatttc 900aactgtggtt aaagcaatag
tgtgatatat gattacatta gaaggaagat gtgcctttca 960aattcagatt gagcatacta
aaagtgactc tctaattttc 10003801000DNAHomo sapiens
380tagaacagag cacagatgat ctaaatataa aaagaactac aaaaatcaca gttgtttaaa
60aaggtttttt gtttgtttat atatggtgca gaacatttgt tccttagcca aatgtttcca
120ccttgagaaa gctatagaga ttctatgtag tcctagtacc aataatatgt tttaacctga
180atgtacctta tctttattca taaactgtga ctttttacac tgctgaaact ttttttttta
240agacaatctc actctgtcgt ccagtctgga gtgcagcagt ggtgtgatct tggctcactg
300caacctctac cttctgtgtt caagcaattc tggtgcctcg gccacctgag tagttgggat
360cacaggtgta caccaccagg cctggctaat agtttttgat atttctagta gagatgagtt
420ttgccacatt ggccaggctg gcctgaaact cctggcctca agtgatctgc ctgccttggc
480ctcccaaagt gttggtatta caagtgtgag ccactgtgcc tggcctgaaa ctcataattc
540atttccatta atattaatct caccttttcc aataattaat tgatttcaca agtattagtc
600ccctataatc attgaatggc taataaaatt atttatagca aacagattaa ttatctgcca
660gcagtctgag attagtttct ttaaaaaatg tttattattt aaaacattca gctgtgatct
720tggctttctt gtgaggttca atagtttcta ttgagtaaag gagagaaatg gcagagaatt
780tacttcagtg aaatttgaat tccattaact taatgtggtc tcatcacaaa taatagtact
840tagaacacct agtacagctg ctggacccag gaacacaaag caaaggaaga tgaaattgtg
900tgtaccttga tattggtaca cacatcaaat ggtgtgatgt gaatttagat gtgggcatgg
960gaggaatagg tgaagatgtt agaaaaaaaa tcaactgtgt
10003811000DNAHomo sapiens 381aaataagagc agtaaaattg tgtctaatca gctactaata
tctgggaagg attgagccac 60aggatcaaag atggtatctt ttaaaaatag aagttgagtg
aattcggtct tcaaattctt 120tctttttatt catttatatt tatttactca ttagtatatt
cattccttta ttcatgtatt 180gttcaaatat atattgggta cttattatat gccaagttgt
ttttaaaatc acattccaaa 240ttcccgtaag tcataattat tcagagatgt atgttttttt
taaaaaaaat tgaacacctt 300taaaaattat caagtccttt tatttctgta tgcattaaag
ataaacttta ctaaatgtta 360catgaataga tttataaagc agataaatat ttaatttcaa
atataaccct tatatgcaat 420tatattttcc ttagcactaa aaatgaatat ttaagtaatt
tatattaaaa gtgtaattat 480ttaactgcag atgtatgcca atgacttaaa ttgtttaaag
attatagcaa agttgtttaa 540aattgtctaa tcatgaagag ttcacttaac cacctggttg
acacataaaa ttatagttag 600ttactaaggt agttcgagag aaagagaaga atcttcagta
gtggttttga ggtgtggtac 660attttattat aatataccgg ttatacagca ttgtgcagtg
ctgctcatag tagaaataaa 720ttttctcttt gatgtcatct attcccttgt gtggcttaca
taactgagaa ttaggtgatc 780acaaaaataa acaggcctat acagagccca tttatataag
tcctggttat ttctcttcag 840ttaaactttt aattatatcc aattatttcc tgttagttca
ttgaaaagcc cgacaaataa 900ccaagtgaca aatagcaagt gttgcatttt acaagttatt
ttttaggaag catcaaacta 960attgtgaaat tgtctgccat tcttaaaaac aaaaatgttg
10003821000DNAHomo sapiens 382aacaaaactg tccttcacta
cagattgaaa agcattatac taaaagacca tttgctcagt 60tatagtatat aaaggccaaa
tgacttaaaa acaaattatg taaggagaag gaaacaacca 120tttattcagt gccactaact
gtcagccagt tttttcagtg gtcagttaat gactgcagta 180gtgttctacc ttgctcaaag
caccctcctc aagttctggc atctaagctg acatcagaac 240acagagttgg ggctctctgt
gggtcacctc tagcacttga tctcctcatg cagtgcatgg 300tgctctcacg tctatgctat
gttcttatgg tctttaggta acaagaataa ttttctttct 360tttccttact atacattttg
ctttctgaaa ttcccttctc gccaatccag gtgaatgtca 420gaatgtgatt tgacaactgt
ccaaagtact cattcactga ggagtggtaa ggccttcgcc 480caacctgcct tctctgggaa
tatactgctg cctgaacata tcattgttta ttgccaggct 540tgaacttcac caaattaatt
tattagggtc aacatctaaa tattagaact atttcagatt 600aatttttaag tcgtatccac
tttgggtact agatcaaatt gcaggtctct gcttctggct 660tgagcctatg tttagagatg
atgtgcatga agacactctt tgcttttcct ttatgcaaaa 720tgggcatttt caatcttttt
gtcattagta aaggtcagtg ataaaggaag tctgcatcag 780gggtccaatt ccttatggcc
agtttctcta ttctgttcca aggttgtttg tctccatata 840tcaacattgg tcaggattga
aagtgtgcaa caaggtttga atgaataagt gaaaatcttc 900cactggtgac aggataaaat
attccaatgg tttttattga agtacaatac tgaattatgt 960ttatggcatg gtacctatat
gtcacagaag tgatcccatc 10003831000DNAHomo sapiens
383ttgacttgac ttgtgtggtt ccttgtggac cagatggcca ctaaatattc tcatttcaag
60gcaattggta aaaactacac ttcaagaaat ttcattctta attcccctta gtggatgtta
120ttaaccaaag gcaaaagaaa aaaagggtaa aaaaaatatt ctaaatgtta atatcaaaaa
180tattattttc aattcacccc aggcacagag aactaagtat tattattgct attgcaccgg
240cattccccaa tgagacagtg attttctttt aagacatttt taaataatat aggcagaatt
300aagtagacgg tgatctggta agtagatgtt tcagggtaac agctgtgcaa tgctccatgc
360agggaattag attgtcattt tattccttac caggaacata cattcagtta aacaattatt
420tgacttctgc tcttccactg atttctaagt tgaggctctc tcttgtgcct gtctgatcag
480ataagtagag ttgtgccttg gtttatagat gagataaatg tgtatttgaa taagcataag
540ttaaagaaat tttaaaatcc cttaggaagc taggcttatc agagaaatcc aaggaaatac
600attaacaaac taggaatttg ttctaacagg ttaattataa ctcataaact tattgggttt
660ttttaccttt taattttata ttacatttgc ttataataag gaatattgct aggaataaaa
720ttttttaata ttctacaatt aacaattatc tcaatttctt tattctaaag acattgggat
780tagaaaaatg ttcacaaggg actccaaata ttgctgtagt atttgtttct taaaagaatg
840atacaaagca gacatgataa aatattaaaa tttgagagaa cttgatggta agtacatggg
900tgtttcttat tttaaaataa tttttctact tgaaatattt tacaatacaa taagggaaaa
960ataaaaagtt atttaagtta ttcatacttt cttcttcttt
10003841000DNAHomo sapiens 384ataagattct ttctgagcca ttatctcatt ctatattaca
gtcaggtgga gcccatctta 60cctcctcata ctaaattcta gacttctcaa gggcaggaga
caatcatctg tatatctctt 120tggccttcat acactcagga gtacttgcca aaaataaaca
tttaatgcac atttatttga 180ataattgata agatccaata cttcaataac tttgtcatat
ttttatagaa tgggtttcta 240tatctcattt gcattttcaa actttacttt tactgtctag
ctttaaaaaa aaagcctttg 300actctaatac agccctcata ttctacccca atatctaaga
ggctttatat ctcctagtgt 360tgtaccacta ttttaactcc agtatttttt acttcatagt
tttacctatt tgttacagtt 420agtttttatg aattcaagag atgaatagca attttccata
tgtaatttaa aaaaccccac 480agttgactat tttatgctat cttttgtcct cagtcatgac
agagtagaag atgggaggta 540gcaccaagga tgatgtcata cctccatcct ttatgctaca
ttctatcttc tgtctacata 600agatgtcata ctagagggca tatctgcaat gtatacatat
tatcttttcc agcatgcatt 660cagttgtgtt ggaataattt atgtacacct ttataaacgc
tgagcctcac aagagccatg 720tgccacgtat tgttttctta ctactttttg ggatacctgg
cacgtaatag acactcattg 780aaagtttcct aatgaatgaa gtacaaagat aaaacaagtt
atagactgat tcttttgagc 840tgtcaaggtt gtaaatagac ttttgctcaa tcaattcaaa
tggtggcagg tagtgggggt 900agagggattg gtatgaaaaa cataagcttt cagaactcct
gtgtttattt ttagaatgtc 960aactgcttga gtgtttttaa ctctgtggta tctgaactat
100038532DNAArtificial SequenceDescription of
Artificial Sequence Synthetic
oligonucleotidemodified_base(10)..(32)a, c, t, g, unknown or other
385caggtaagtn nnnnnnnnnn nnnnnnnnnn nn
3238633DNAArtificial SequenceDescription of Artificial Sequence Synthetic
oligonucleotidemodified_base(1)..(17)a, c, t, g, unknown or
othermodified_base(30)..(30)a, c, t, g, unknown or other 386nnnnnnnnnn
nnnnnnnyyy yyyyyyyyyn agg 3338717RNAHomo
sapiens 387auuuucccac ccuuagg
1738817RNAHomo sapiens 388uaucuuccuc ccacagc
1738917RNAArtificial SequenceDescription of
Artificial Sequence Synthetic oligonucleotide 389uuuuucccuc ccuuagg
1739017RNAArtificial
SequenceDescription of Artificial Sequence Synthetic oligonucleotide
390uuucuuccuc ccccagc
1739163DNAHomo sapiens 391gttatgtcct gtcctccttc ctgtcaggca gctgctgcag
gaggggtggg caaaggcatc 60ttc
6339280DNAHomo sapiens 392tcctcagctt ggaagccccg
gagcctgccc tgctgggaat cggggaagca ctgcttacct 60gtctcctgct cccttttcag
8039358DNAHomo sapiens
393gtatggtgtc aactagtgtg cctgctctct cctctgcttt ctggtgaagc tgaccctt
5839468DNAHomo sapiens 394tggatataaa cctcgtggat gacttagcat tcctttgcca
ctgctgatgt actttattaa 60cttcccag
6839565DNAHomo sapiens 395gttccctgac cctgggcccc
acctgggcag atcagcccac aacccttcag ggcccgctca 60tgcca
6539668DNAHomo sapiens
396ccttaagagg tggggtgggg tcctctgagc ttcaagctgc tgggctcagt cttccaccct
60ccacgcag
6839770DNAHomo sapiens 397gttccctgac cctgggcccc acctgggcag atcagcccac
aacccttcag ggcccgctca 60tgccaccgac
7039866DNAHomo sapiens 398gtgagcctgg gtgcggcctg
tgcccctgcc acctccgtct cttgtctccc acctcccacc 60catgca
6639968DNAHomo sapiens
399cgttgccaaa gccctgctgt cactgtgggc tggggccagg ctgaccacag ggcccccccg
60tccaccag
6840058DNAHomo sapiens 400gtatggaaat atattgcagt taaacaacaa taaaaaattt
ttatcttatt aaaattaa 5840168DNAHomo sapiens 401ttctgaattg acaactttta
tcataatgtt ttaagtgtgt atgtgtgttt gactccactc 60ccgcacag
6840258DNAHomo sapiens
402gtgagtggga gaagaaacct tagagaaatt cttggaacca gagtagaggt ggtggtac
5840368DNAHomo sapiens 403ttctggattt tatctattct ttagttaggt gagctttcga
tattgtaaca ctctgagttt 60gctttaag
68
User Contributions:
Comment about this patent or add new information about this topic: