Patent application title: METHODS AND KITS FOR DETERMINING A PERSONALIZED TREATMENT REGIMEN FOR A SUBJECT SUFFERING FROM A PATHOLOGIC DISORDER
Inventors:
IPC8 Class: AC12Q16883FI
USPC Class:
1 1
Class name:
Publication date: 2021-03-18
Patent application number: 20210079475
Abstract:
The invention relates to methods and kits for determining and optimizing
a personalized treatment regimen for a subject suffering from a
pathologic disorder based on calculating the value of M, that indicates
the ability of said subject to eliminate said disorder. The invention
specifically relates to optimization of interferon treatment of viral
disorders.Claims:
1. A method for determining a personalized treatment regimen for a
subject suffering from a pathologic disorder, said method comprises the
step of: a. Calculating the value of M, wherein said value indicates the
ability of said subject to eliminate said disorder; b. Determining the
value of M1, said value indicates the minimal ability required for
eliminating said disorder; c. providing the dose A1 and number B1 of
administrations of said dose to obtain an amount C1 of said medicament
required for eliminating said disorder in subjects having a value of M
that is equal or above said M1 value, wherein A1*B1=C1; d. Calculating
the dose A and number B of administrations of said dose A to obtain an
amount C1 required for said subject having said M determined/calculated
in step (a), wherein said A=A1/(M1/M) and B=B1*(M1/M); thereby at least
one of determining and optimizing the treatment regimen for said subject.
2. The method according to claim 1, wherein calculating the value of M is performed by the steps of any one of: I. A static analysis comprising: Ia. determining the level of expression of at least one of ISG15, IFIT1, IFIT2, IFITM3, IFIT3, IFIT5, OAS1, OAS2, OAS3, OASL, HERC5, USP18, RSAD2, MX, IFI44L, DDX58, UBE1L, UBE2L6, IFI27, IFIH1, TLR7, IRF7, IFI6, STAT1, IFI44, EIF2AK2 and DHX58 genes in a biological sample of said subject, to obtain an expression value Ex.sub.samp in said sample; Ib. providing a standard curve of expression values of subjects suffering from the same pathologic disorder; Ic. Obtaining a maximal expression value Ex.sub.max and a minimal expression value Ex.sub.min from said standard curve of (Ib); and Id. Calculating the M value of said sample, wherein M=1-[(Ex.sub.samp-Ex.sub.min)/(Ex.sub.max-Ex.sub.min]; II. An induced dynamic analysis comprising: IIa. determining the level of expression of at least one of genes in a biological sample of said subject, to obtain an expression value in said sample; IIb. exposing or contacting said subject or at least one other sample obtained from said subject to or with an immuno-stimulant; IIc. determining the level of expression of at least one of ISG15, IFIT1, IFIT2, IFITM3, IFIT3, IFIT5, OAS1, OAS2, OAS3, OASL, HERC5, USP18, RSAD2, MX1, IFI44L, DDX58, UBE1L, UBE2L6, IFI27, IFIH1, TLR7, IRF7, IFI6, STAT1, IFI44, EIF2AK2 and DHX58 genes in said at least one other biological sample of said subject obtained in step IIb; and IId. calculating the rate of change (RC) between the expression value obtained in step (IIa), and the expression value obtained in step (IIc), thereby obtaining the rate of change in the sample RC.sub.samp; IIe. providing a standard curve of the rate of change in the expression of at least one of ISG15, IFIT1, IFIT2, IFITM3, IFIT3, IFIT5, OAS1, OAS2, OAS3, OASL, HERC5, USP18, RSAD2, MX1, IFI44L, DDX58, UBE1L, UBE2L6, IFI27, IFIH1, TLR7, IRF7, IFI6, STAT1, IFI44, EIF2AK2 and DHX58 genes in subjects treated with said immuno-stimulant; IIf. Obtaining a maximal rate of change value RC.sub.max and a minimal rate of change RC.sub.min value from said standard curve of (IIe); and IIg. Calculating the M value of said sample, wherein M=[(RC.sub.samp-RC.sub.min)/(RC.sub.max-RC.sub.min)], thereby obtaining an M value of said subject; or III. A dynamic analysis comprising: IIIa. determining the level of expression of at least one of ISG15, IFIT1, IFIT2, IFITM3, IFIT3, IFIT5, OAS1, OAS2, OAS3, OASL, HERC5, USP18, RSAD2, MX1, IFI44L, DDX58, UBE1L, UBE2L6, IFI27, IFIH1, TLR7, IRF7, IFI6, STAT1, IFI44, EIF2AK2 and DHX58 genes in a biological sample of said subject, to obtain an expression value in said sample, wherein said sample is obtained prior the initiation of said treatment with said medicament; IIIb. determining the level of expression of at least one ISG15, IFIT1, IFIT2, IFITM3, IFIT3, IFIT5, OAS1, OAS2, OAS3, OASL, HERC5, USP18, RSAD2, MX1, IFI44L, DDX58, UBE1L, UBE2L6, IFI27, IFIH1, TLR7, IRF7, IFI6, STAT1, IFI44, EIF2AK2 and DHX58 genes in at least one other biological sample of said subject, wherein said at least one other sample is obtained after the initiation of said treatment; IIIc. calculating the rate of change between the expression value obtained in step (IIIa), and the expression value obtained in step (IIIb), thereby obtaining the rate of change in the sample RC.sub.samp; IIId. providing a predetermined standard curve of the rate of change in the expression of at least one of ISG15, IFIT1, IFIT2, IFITM3, IFIT3, IFIT5, OAS1, OAS2, OAS3, OASL, HERC5, USP18, RSAD2, MX1, IFI44L, DDX58, UBE1L, UBE2L6, IFI27, IFIH1, TLR7, IRF7, IFI6, STAT1, IFI44, EIF2AK2 and DHX58 genes in subjects suffering from the same disorder that were treated with said medicament; IIIe. Obtaining a maximal rate of change value RC.sub.max and a minimal rate of change value RC.sub.min from said standard curve of (IId); and IIIf. Calculating the M value of said sample, wherein M=RC.sub.samp-RC.sub.min)/(RC.sub.max-RC.sub.min)], thereby obtaining an M value of said subject.
3. The method according to claim 2, wherein calculating the value of M1 is performed by the steps of any one of: I. Ia. Providing a K value for said disorder; Ib. calculating the M1, wherein M1.gtoreq.1-(1/k), thereby determining the M1 value; and II. IIa. Providing a standard M1 value calculated for a responder population.
4. The method according to claim 2, wherein in steps (a) and (b) the expression of OAS2, HERC5, UPS18, UBE216 and optionally of ISG15 genes is determined.
5. The method according to claim 1, wherein said method is for determining a personalized interferon treatment regimen for a subject suffering from a pathologic disorder.
6. The method according to claim 2, wherein determining the level of expression of at least one of said ISG15, IFIT1, IFIT2, IFITM3, IFIT3, IFIT5, OAS1, OAS2, OAS3, OASL, HERC5, USP18, RSAD2, MX1, IFI44L, DDX58, UBE1L, UBE2L6, IFI27, IFIH1, TLR7, IRF7, IFI6, STAT1, IFI44, EIF2AK2 and DHX58 genes in a biological sample of said subject is performed by the step of contacting detecting molecules specific for said genes with a biological sample of said subject, or with any nucleic acid or protein product obtained therefrom, and wherein said detecting molecules are selected from isolated detecting nucleic acid molecules and isolated detecting amino acid molecules.
7. The method according to claim 6, wherein said nucleic acid detecting molecule comprises isolated oligonucleotide/s, each oligonucleotide specifically hybridizes to a nucleic acid sequence of said at least one of ISG15, IFIT1, IFIT2, IFITM3, IFIT3, IFIT5, OAS1, OAS2, OAS3, OASL, HERC5, USP18, RSAD2, MX1, IFI44L, DDX58, UBE1L, UBE2L6, IFI27, IFIH1, TLR7, IRF7, IFI6, STAT1, IFI44, EIF2AK2 and DHX58 genes and optionally, to a control reference gene, and wherein said detecting molecule is at least one of a pair of primers, at least one primer, nucleotide probes or any combinations thereof.
8. The method according to claim 1, wherein said subject is suffering from an immune-related disorder, and wherein said immune-related disorder is any one of an infectious condition, an autoimmune disease, and a proliferative disorder.
9. The method according to claim 8, wherein said subject is suffering from an infectious condition caused by any one of (Hepatitis C virus) HCV, dengue virus, influenza, poliovirus, HIV (human immune deficiency virus) and West Nile virus (WNV) infection.
10. The method according to claim 8, wherein said subject is suffering from Multiple sclerosis (MS).
11. The method according to claim 8, wherein said subject is suffering from Rheumatoid Arthritis (RA), and wherein said genes are at least one of IFIT1, IFITM3, IFIT3, OAS1, OAS3, HERC5, RSAD2, MX1, IFI44L, IFI6, IFI44 and DDX58 genes.
12. The method according to claim 2, wherein said immuno-stimulant is any one of a synthetic double stranded RNA (poly ICLC), yellow fever (YF) vaccine 17D (YF17D).
13. A kit for determining and/or optimizing a personalized treatment regimen for a subject suffering from a pathologic disorder comprising: a. detecting molecules specific for determining the level of expression of at least one of ISG15, IFIT1, IFIT2, IFITM3, IFI44L, IFIT3, IFIT5, OAS1, OAS2, OAS3, OASL, HERC5, USP18, RSAD2, MX1, IFI44L, DDX58, UBE1L, UBE2L6, IFI27, IFIH1, TLR7, IRF7, IFI6, STAT1, IFI44, EIF2AK2 and DHX58 genes in a biological sample, wherein said detecting molecules are selected from isolated detecting nucleic acid molecules and isolated detecting amino acid molecules; b. means for calculating the M value of a tested subject, wherein said value indicates the ability of said subject to eliminate said disorder; c. means for calculating the value of M1 or a standard M1 value calculated for a responder population, said M1 value indicates the minimal ability required for eliminating said disorder; and d. means for calculating the dose A and number B of administrations of said dose A to obtain an amount C of said medicament required for said subject.
14. The kit according to claim 13, wherein means for calculating the value of M comprise at least one of: I. means for static analysis comprising: Ia. detecting molecules specific for determining the level of expression of ISG15, IFIT1, IFIT2, IFITM3, IFI44L, IFIT3, IFIT5, OAS1, OAS2, OAS3, OASL, HERC5, USP18, RSAD2, MX1, IFI44L, DDX58, UBE1L, UBE2L6, IFI27, IFIH1, TLR7, IRF7, IFI6, STAT1, IFI44, EIF2AK2 and DHX58 genes in a biological sample for determining an expression value Ex.sub.samp in said sample; Ib. a standard curve of expression values of subjects suffering from the same pathologic disorder or predetermined maximal expression value Ex.sub.max and a minimal expression value Ex.sub.min calculated from said standard curve; and Ic. a formula for calculating M value, wherein said formula is M=[(Ex.sub.samp-Ex.sub.min)/(Ex.sub.max-Ex.sub.min)]; II. means for an induced dynamic analysis comprising: IIa. detecting molecules specific for determining the level of expression of ISG15, IFIT1, IFIT2, IFITM3, IFI44L, IFIT3, IFIT5, OAS1, OAS2, OAS3, OASL, HERC5, USP18, RSAD2, MX1, IFI44L, DDX58, UBE1L, UBE2L6, IFI27, IFIH1, TLR7, IRF7, IFI6, STAT1, IFI44, EIF2AK2 and DHX58 genes in a biological sample for determining an expression value Ex.sub.samp in said sample before and after stimulation of said subject with an immuno-stimulant, and for calculating the rate of change RC.sub.samp in the expression value Ex.sub.samp of said sample before and after stimulation; IIb. an immuno-stimulant; IIc. a standard curve of the rate of change in the expression of at least one of ISG15, FIT1, IFIT2, IFITM3, IFI44L, IFIT3, IFIT5, OAS1, OAS2, OAS3, OASL, HERC5, USP18, RSAD2, MX1, IFI44L, DDX58, UBE1L, UBE2L6, IFI27, IFIH1, TLR7, IRF7, IFI6, STAT1, IFI44, EIF2AK2 and DHX58 genes in subjects treated with said immuno-stimulant, or predetermined maximal rate of change value RC.sub.max and a minimal rate of change RC.sub.min value calculated from said standard curve; and IId. a formula for calculating said M value, wherein said formula is M=[(RC.sub.samp-RC.sub.min)/(RC.sub.max-RC.sub.min)]; and III. means for a dynamic analysis comprising: IIIa. detecting molecules specific for determining the level of expression of ISG15, IFIT1, IFIT2, IFITM3, IFI44L, IFIT3, IFIT5, OAS1, OAS2, OAS3, OASL, HERC5, USP18, RSAD2, MX1, IFI44L, DDX58, UBE1L, UBE2L6, IFI27, IFIH1, TLR7, IRF7, IFI6, STAT1, IFI44, EIF2AK2 and DHX58 genes in a biological sample for determining an expression value Ex.sub.samp in said sample before and after treatment of said subject with said medicament, and for calculating the rate of change RC.sub.samp in the expression value Ex.sub.samp of said sample; IIIb. a predetermined standard curve of the rate of change in the expression of at least one of ISG15, IFIT1, IFIT2, IFITM3, IFI44L, IFIT3, IFIT5, OAS1, OAS2, OAS3, OASL, HERC5, USP18, RSAD2, MX1, IFI44L, DDX58, UBE1L, UBE2L6, IFI27, IFIH1, TLR7, IRF7, IFI6, STAT1, IFI44, EIF2AK2 and DHX58 genes in subjects suffering from the same disorder and treated with said medicament, or predetermined maximal rate of change value RC.sub.max and minimal rate of change value RC.sub.min calculated from said standard curve; and IIIc. a formula for calculating said M value, wherein said formula is M=[(RC.sub.samp-RC.sub.min)/(RC.sub.max-RC.sub.min)]; and wherein means for calculating the value of M1 comprise: a. a predetermined K value of said disorder; b. a formula for calculating said M1 value, wherein said formula is M1.gtoreq.1-(1/k).
15. The kit according to claim 13, wherein said nucleic acid detecting molecule comprises isolated oligonucleotides, each oligonucleotide specifically hybridizes to a nucleic acid sequence of said at least one of ISG15, IFIT1, IFIT2, IFITM3, IFI44L, IFIT3, IFIT5, OAS1, OAS2, OAS3, OASL, HERC5, USP18, RSAD2, MX1, IFI44L, DDX58, UBE1L, UBE2L6, IFI27, IFIH1, TLR7, IRF7, IFI6, STAT1, IFI44, EIF2AK2 and DHX58 genes and optionally, to a control reference gene, and wherein said detecting molecule is at least one of a pair of primers, at least one primer, nucleotide probes or any combinations thereof.
16. The kit according to claim 13, wherein said subject is suffering from an infectious condition caused by any one of HCV, dengue virus, influenza, poliovirus, HIV and WNV infection.
17. The kit according to claim 13, wherein said subject is suffering from Multiple sclerosis (MS).
18. The kit according to claim 13, wherein said subject is suffering from Rheumatoid Arthritis (RA) and wherein said kit comprises detecting molecules specific for determining the level of expression of at least one of IFIT1, IFITM3, IFIT3, OAS1, OAS3, HERC5, RSAD2, MX1, IFI44L, IFI6, IFI44 and DDX58 genes.
19. The kit according to claim 13, wherein said immuno-stimulant is any one of a synthetic double stranded RNA (poly ICLC), yellow fever (YF) vaccine 17D (YF17D).
20. A computer software product for determining and/or optimizing a personalized treatment regimen for a subject suffering from a pathologic disorder, the product comprising a computer readable medium in which program instructions are stored, which instructions, when read by a computer, cause the computer to a. Calculate and/or determine the value of M, wherein said value indicates the ability of said subject to eliminate said disorder; b. Determine the value of M1, said value indicates the minimal ability required for eliminating said disorder; c. calculate the dose A and number B of administrations of said dose A to obtain an amount C required for said subject having said M determined/calculated in step (a), from predetermined dose A1 and number B1 of administrations of said dose, using the formula of A=A/(M1/M) and B=B1*(M1/M).
Description:
CROSS REFERENCE TO RELATED APPLICATIONS
[0001] This application is a continuation of U.S. patent application Ser. No. 15/303,427, filed on Oct. 11, 2016, which is a National Phase of PCT Patent Application No. PCT/IL2015/050363 having International filing date of Apr. 2, 2015, which claims the benefit of priority under 35 U. S.C. .sctn. 119(e) of U.S. Provisional Patent Application No. 61/977,966, filed on Apr. 10, 2014. The contents of the above applications are all incorporated by reference as if fully set forth herein in their entirety.
FIELD OF THE INVENTION
[0002] The invention relates to personalized medicine. More specifically, the invention provides methods and kits for determining and optimizing a treatment regimen of a medicament, for a subject suffering from a pathologic disorder.
BACKGROUND REFERENCES
[0003] References considered to be relevant as background to the presently disclosed subject matter are listed below:
[0004] Chen Limin, et al., Gastroenterology 128:1437-1444 (2005).
[0005] Taylor, M W, et al., Journal of Virology 81:3391-3401 (2007).
[0006] van Baarsen L G, et al., PLoS ONE 3:e1927 (2008).
[0007] Zeremski M, et al., J. Acquir. Immune. Defic. Syndr. 45:262-268 (2007).
[0008] Tarantino G, et al., Digestive and Liver Disease 40:A1-A40 (2008).
[0009] US2009/157324
[0010] WO10/076788
[0011] Sadlet A J et al, Nature Reviews Immunology 8: 559 (2008)
[0012] Grinde B, et al, Virol J. 4: 24 (2007)
[0013] David Stifflerl J. et al., PLoS ONE 4(8) e6661 (2009)
[0014] Acknowledgement of the above references herein is not to be inferred as meaning that these are in any way relevant to the patentability of the presently disclosed subject matter.
BACKGROUND OF THE INVENTION
[0015] Determining treatment protocols that may be suitable for each individual or a subset of individuals is highly desirable. Clinical diagnosis and management has been long focused on clinical sign and symptoms of a patient in order to treat specific diseases. Recently along with the advances in genetic profiling, it became possible to understand the impact of genetic variability as measured in individuals or subsets of individuals on the disease progression.
[0016] Personalized medicine is therefore aimed at enabling decisions and practices to the individual patient by use for example of genetic information.
[0017] It has been recently shown that evaluating the differences in the genetic profile of the two or more groups of patients can provide valuable insight into resistant to treatment.
[0018] For example, interferon therapy is widely used in the treatment of a variety of diseases including for example, multiple sclerosis (MS), hepatitis B, hepatitis C, inflammatory diseases and many cancers types. However, not all subjects treated with interferon equally respond to this therapy and moreover, responsive subjects experience relapse of the disease after remission periods. In fact, in both MS and type 1 hepatitis C Virus (HCV) the success of treatment is only about 50%, namely about half of the patients administered with interferon will not benefit but rather experience only related side effects.
[0019] Chen et al. 2005, compared the gene expression levels in liver specimens taken before treatment from 15 non-responders and 16 responders to Pegylated interferon (IFN-alpha), identified 18 genes that have a significantly different expression between all responders and all non-responders and concluded that up-regulation of a specific set of interferon-responsive gens predict non response to exogenous treatment.
[0020] Taylor M., et al. 2007, found that the induced levels of known interferon-stimulated genes such as the OAS1, OAS2, MX1, IRF-7 and TLR-7 genes is lower in poor-response patients than in marked- or intermediate-response patients.
[0021] Van Baarsen et al., 2008 show that the expression level of interferon response genes in the peripheral blood of multiple sclerosis patients prior to treatment can serve a role as a biomarker for the differential clinical response to interferon beta.
[0022] Zeremaki M, et al., 2007 showed that PEG-interferon induced elevations in IP-10 are greater in responders than in non-responders after the first PEG-interferon dose.
[0023] Tarantino et al., 2008 described that serum levels of B-Lymphocyes stimulator (BLyS) have a potential role as a predictor of outcome in patients with acute hepatitis C.
[0024] The Inventor previous US Patent Application, US2009157324 describes a computational method for selecting a group of genes from a predetermined group of genes whose expression level is significantly different among a first group of individuals (being for example responders to a treatment) and comparing their expression in a second group of individuals (for example not responders). The statistical significance of each group of genes is determined in both up regulated genes or down regulated genes, namely their expression in the first group is higher or lower than in the second group, respectively. The genes in both groups (up regulated and down regulated) are ranked according to number of times each gene was ranked in the highest statistical significant score. A subset of genes having the highest score, either up regulated or down regulated are then selected as biomarkers.
[0025] In another application by the Inventor, International Patent Publication WO10076788, computational and experimental methods are provided for predicting the responsiveness of a subject to interferon therapy by measuring the expression level of various genes such as OAS3, IF16, ISG15, OAS2, IFIT1, KIR3DL3, KIR3DL2, KIR3DL1, KIR2DL1, KIR2DL2, KIR2DL3, KLRG1, KIR3DS1, CD160, HLA-A, HLA-B, HLA-C, HLA-F, HLA-G and IFI27. Specifically, the inventor has found that OAS3, IF16, ISG15, OAS2 and IFIT1 are up-regulated in patients that do not respond to interferon treatment as compared to patients that respond to interferon therapy or compared to healthy controls.
[0026] Thus, the correlations between genetic profiling and personalized medicine, namely treatment regimens, needs to be considered for predicting response to therapy, predicting treatment success and monitoring disease prognosis and pathogenesis, specifically chances for disease relapse.
SUMMARY OF THE INVENTION
[0027] A first aspect of the invention relates to a method for determining and optimizing a personalized treatment regimen for a subject suffering from a pathologic disorder. In certain embodiments, the method of the invention comprises the step of:
[0028] First step (a) involves calculating and determining the value of M. The value M indicates the ability, capability of a specific subject, in this case, the examined subject, to eliminate the specific disorder.
[0029] More specifically, the value of the individual's M reflects the efficiency of the specific tested subject in cellular elements that are required for challenging and eliminating a specific disorder. In certain embodiments the M value indicates the strength of the individual's innate immunity, and may be used for predicting it's ability to eliminate a specific disorder.
[0030] The next step (b), involves determining the value of M1 that indicates the minimal ability required for eliminating said disorder.
[0031] In the nest step (c), providing the dose A1 and number B1 of administrations of such dose to obtain an amount C1 of a specific medicament required for eliminating a specific disorder in subjects having a value of M that is equal or above the optimal M1 value, wherein A1*B1=C1.
[0032] The next step (d) involves calculating the dose A and number B of administrations of such specific dose A to obtain an amount C1 required for the examined subject having the specific M value determined and calculated in step (a). More specifically, the specific optimal dose required for a successful treatment for the tested subject would be A=A1/(M1/M). The specific number of administrations of such dose may be calculated using the formula B=B1*(M1/M); thereby determining and optimizing the treatment regimen for the specific tested subject.
[0033] A further aspect of the invention relates to a kit for determining and optimizing a personalized treatment regimen for a subject suffering from a pathologic disorder.
[0034] In certain embodiments, such kit may comprise elements required for performing any of the methods described above. More specifically, such kit may comprise:
[0035] (a) detecting molecules specific for determining the level of expression of at least one of ISG15, IFIT1, IFIT2, IFIT3, IFIT5, OAS1, OAS2, OAS3, OASL, HERC5, USP18, RSAD2, MX1, IFI44L, DDX58, UBE1L, UBE2L6, IFI27, IFIH1, TLR7, IRF7 and IFI6 genes in a biological sample. In certain embodiments the kits of the invention may further comprise detecting molecules for the STAT1, IFI44, EIF2AK2 and DHX58 genes and any combinations thereof with any of the marker genes of the invention.
[0036] The kit of the invention further comprises (b), means for calculating the M value of a tested subject. As noted above, the M value indicates the ability of said subject to eliminate said disorder. The kit of the invention further comprises (c) means for calculating the value of M1 or a standard M1 value calculated for a responder population. As indicated above, the M1 value indicates the minimal ability, or in other words, the optimal M1 value required for a successful elimination of the disorder. Finally, the kit of the invention comprises (d) means for calculating the dose A and number B of administrations of said dose A to obtain an amount C of said medicament required for said subject.
[0037] In yet a further aspect, the invention provides a computer software product for determining and optimizing a personalized treatment regimen for a subject suffering from a pathologic disorder. Such product comprising a computer readable medium in which program instructions are stored, which instructions, when read by a computer, cause the computer to: (a) calculate and determine the value of M that indicates the ability of said subject to eliminate said disorder; (b) determine the value of M1, that indicates the minimal ability required for eliminating said disorder. (c) calculate the dose A and number B of administrations of said dose A to obtain an amount C required for said subject having said M determined/calculated in step (a), from predetermined dose A1 and number B1 of administrations of said dose, using the formula of A=A1/(M1/M) and B=B1*(M1/M).
BRIEF DESCRIPTION OF THE DRAWINGS
[0038] In order to understand the disclosure and to see how it may be carried out in practice, embodiments will now be described, by way of non-limiting example only, with reference to the accompanying drawings, in which:
[0039] FIG. 1 shows a schematic representation at the cellular level of a cell infected with a virus that is multiplied by a rate K followed by the regulation of specific genes caused either by the immune system or by an external treatment that may lead to viral elimination by rate M. The virus or other viruses may penetrate other cells by a certain rate. As schematically illustrated here, the virus may be destroyed by the activity of a set of proteins encoded by a set of genes for example, ISG15, USP18, HERC5 and OAS, in the UPS (Ubiquitin Proteasome System).
[0040] FIG. 2 shows MATLAB simulation of the model with k=2 and p=0 as constant parameters and M being varied from 0 to 1. The lower line represents 0.1 of initial load and provides information whether the down regulation was more than one tenth of the initial virus load.
[0041] FIG. 3 shows MATLAB simulation of the model with k=3 and p=0 as constant parameters and M being varied from 0 to 1. The lower line represents 0.1 of initial load and provides information whether the down regulation was more than one tenth of the initial virus load.
[0042] FIG. 4 shows MATLAB simulation of the model including PI administration with k=2, p=0 and M=0.44 as constant parameters and M1 being varied from 0 to 0.44. As shown by the figure, the optimal M1 should be over 0.3 using the PI treatment.
[0043] FIG. 5 is a volcano plot showing the significant changes in the expression level of different genes in West Nile virus (WNV) infected retinal pigment epithelial (RPE). Expression data was obtained Gene Expression Omnibus Accession No. GSE30719. The "X"-axis represents log 2 of ratio between gene expression measured after 24 hours after infection and a baseline level of the same gene measured before infection, the points present to the right of the right vertical line (shown at a value of 1 on the x-axis), represent genes that were up regulated by more than 2 folds. The "Y" axis shows the p value assigned to each point. The horizontal line corresponds to p-value of 0.05, with points above this line correspond to a p values lower than 0.05 (namely, more significant).
[0044] FIG. 6 is a volcano plot showing the significant changes in the expression level of different genes in H1N1 (left) compare to H5N1 (right). Expression data was obtained from Gene Expression Omnibus Accession No. GSE18816. The "X"-axis represents log 2 of ratio between gene expression measured after 6 hours after infection and a baseline level of the same gene measured before infection, the points present to the right of the right vertical line (shown at a value of 1 on the x-axis), represent genes that were up regulated by more than 2 folds. The "Y" axis shows the p value assigned to each point. The horizontal line corresponds to p-value of 0.05, with points above this line correspond to a p values lower than 0.05 (namely, more significant).
[0045] FIG. 7 is a volcano plot showing the significant changes in the expression level of different genes in blood of children infected with dengue virus. Expression data was obtained from Gene Expression Omnibus Accession No. GSE13052. The "X"-axis represents log 2 of ratio between gene expression measured 4 days after infection in 9 acute dengue shock patients and a baseline level of the same gene measured in 9 acute uncomplicated dengue patients, the points present to the right of the right vertical line (shown at a value of 1 on the x-axis), represent genes that were up regulated by more than 2 folds. The "Y" axis shows the p value assigned to each point. The horizontal line corresponds to p-value of 0.05, with points above this line correspond to a p values lower than 0.05 (namely, more significant).
[0046] FIG. 8 is a volcano plot showing the significant changes in the expression level of different genes in liver biopsies of ten responders and ten non-responders HCV patients before treatment (left) and after one week of IFN and Rib treatment (right). Expression data was obtained from Gene Expression Omnibus Accession No. GSE17183. The "X"-axis represents log 2 of ratio between gene expression measured in responders vs. non-responders, the points present to the right of the right vertical line (shown at a value of 1 on the x-axis), represent genes that were up regulated by more than 2 folds whereas the points present to the left of the left vertical line (shown at a value of -0.75 on the x-axis), represent genes that were down regulated by more than 2 folds. The "Y" axis shows the p value assigned to each point. The horizontal line corresponds to p-value of 0.05, with points above this line correspond to a p values lower than 0.05 (namely, more significant).
[0047] FIG. 9 is a volcano plot showing the significant changes in the expression level of different genes in MS patients three months after treatment with IFN-.beta.. Expression data was obtained from Gene Expression Omnibus Accession No GSE16214. The "X"-axis represents log 2 of ratio between gene expression measured in after treatment, the points present to the right of the right vertical line (shown at a value of 1 on the x-axis), represent genes that were up regulated by more than 2 folds. The "Y" axis shows the p value assigned to each point. The horizontal line corresponds to p-value of 0.05, with points above this line correspond to a p values lower than 0.05 (namely, more significant).
[0048] FIGS. 10A and 10B are graphs showing the expression of IFI27, IFI44L, IFI6, MX1 and ISG15 genes measured in PBMCs of MS patients before (FIG. 10A) and three month after treatment with interferon alpha (IFN-.alpha.) (FIG. 10B). Expression data was downloaded from Gene Expression Omnibus Accession No GSE16214. The "X"-axis represents the subject number and the "Y" axis represents the normalized expression level of the genes.
[0049] FIG. 11 is a graph showing the sum of the expression of the USP18, IFI44, MX1, IFI44L, OAS3, HERC5 and RSAD2 genes (square) and the relapse rate (diamond) of 50 MS patients (patients are indicated in the X-axis.
[0050] FIG. 12 is a graph illustrating the differential expression as calculated from the sum of the common genes, MX1, IFITM3, IFI44L, HERC5, IFI44, IFI6, OAS1, OAS3, RSAD2, IFIT1, IFIT3 and DDX58 in RA patients that are responders and non-responders to infliximab (influx) treatment, and responders and non-responders to RTX treatment (Rituxi=Rituximab).
[0051] FIG. 13 is a graph showing the sum of expression of the IFI27, ISG15, IFIH1, IFI44L, OAS2, DDX58, IFIT1 and IFI6 genes in 44 HIV patients treated with HAART (squares) and the virus load (diamonds).
[0052] FIG. 14 is a graph showing the expression of the ISG15, HERC5, USP10 and UBE2L6 genes, in the ferret experimental groups as indicated therein.
[0053] FIG. 15 is a graph showing the clustering of genes measured for a population of 15 healthy individuals. Expression data was downloaded from Gene Expression Omnibus Accession No GSE838. The "X" axis denotes the tested individual and the "Y" axis represents the measured genes.
[0054] FIG. 16 is a graph showing the expression of IGS15, IFIT1, OAS2 and USP18 genes measured in healthy individuals. Expression data was downloaded from Gene Expression Omnibus Accession No GSE838 the "X"-axis represents the subject number (patients 1-15) and the "Y" axis represents the normalized expression level of the genes ranging from 0 to 1.
[0055] FIG. 17 is a graph showing the clustering of genes measured for a population of 145 healthy individuals. Expression data was downloaded from Gene Expression Omnibus Accession No GSE3649. The "X" axis denotes the tested individual and the "Y" axis represents the measured genes
[0056] FIG. 18 is a graph showing the expression IGS15 and IFIT1 gene measured in healthy individuals. Expression data was downloaded from Gene Expression Omnibus Accession No. GSE3649. The "X"-axis represents the subject number and the "Y" axis represents the normalized expression level of the genes ranging from 0 to 1.
[0057] FIG. 19 is a volcano plot showing the significant changes in the expression level of different genes in healthy individuals 24 hours following injection of poly ICLC. Expression data was obtained from Gene Expression Omnibus Accession No GSE32862. The "X"-axis represents log 2 of ratio between gene expression measured 24 hours as compared to base line level before administration, the points present to the right of the right vertical line (shown at a value of 1 on the x-axis), represent genes that were up regulated by more than 2 folds. The "Y" axis shows the p value assigned to each point. Abbreviations: val. (value); rat. (ratio).
[0058] FIG. 20 is a volcano plot showing the significant changes in the expression level of different genes in healthy individuals 24 hours following injection of poly ICLC. Expression data was obtained from Gene Expression Omnibus Accession No GSE32862. The "X"-axis represents log 2 of ratio between gene expression measured 24 hours as compared to base line level before administration, the points present to the right of the right vertical line (shown at a value of 1 on the x-axis), represent genes that were up regulated by more than 2 folds. The "Y" axis shows the p value assigned to each point. Abbreviations: val. (value); rat. (ratio). The genes ISG15, HERC5 and UBE2L6 are given in squares, IFI44 set (in triangle pointing right), IFIT set (in circles), OAS set (in triangles pointing left), triggers DDX58, TLR7, IFIH1, MYd88.
[0059] FIG. 21 is a graph showing principal component analysis (PCA) of the expression level of IFIT1, IFI44L, IFI6 and ISG15. The data was obtained from PBMC of healthy donors 24 hours after administration of poly ICLC as compared to baseline levels.
[0060] FIG. 22 are graphs showing timing of genes dynamics. Dashed lines correspond to non responders and full lines to responders. X-axis represents time and the Y-axis represents expression of the indicated genes.
[0061] FIG. 23 are graphs showing timing of genes dynamics for longer periods. Dashed lines correspond to non responders and full lines to responders. X-axis represents time and the Y-axis represents expression of the indicated genes.
[0062] FIG. 24 is a histogram graph showing the changes in genes expression after 24 hours following PolyC treatment in healthy donors divided by baseline level of the same gene.
[0063] FIG. 25 is a graph showing the calculation of M from the model equations.
[0064] FIGS. 26A-26B is a graph showing simulation of replication vs. immune defense, per different M. As can be seen for the same individual with an M value suitable for K=3, that is calculated as follows M=1-1/3=0.66 being infected by a variety of viruses with varying K (multiplication rate). FIG. 26A shows that at K rate higher than 3, the virus progresses. FIG. 26B shows situation where K smaller than M, attenuation of the virus is achieved. The X-axis represents time from initial infection different k values and the Y-axis represents the virus load per the different k values.
[0065] FIGS. 27A-27B is a graph showing simulation instructing how much PI is needed per each individuals M and virus K. The PI effectively increases the individuals M, FIG. 27A shows an individual with M=0.6, FIG. 27B shows an individual with M=0.8 both are affected by the same range of PI injections. The better M the quicker an individual to become a responder with the same PI.
[0066] FIG. 28 is a graph showing sum of the expression of the ubiquitin genes, ISG15, USP18, HERC5, UBE2L6, as measured in A549 cells at 2, 4, 6, 8 and 10 hours post infection with the three different influenza strains.
[0067] FIG. 29 is a graph showing the sum of the expression of the ubiquitin genes, ISG15, USP18, HERC5 and UBE2L6 in different time points up to 120 hr (X-axis) post infection of H3N2, in nine different individuals. Each individual is represented in one panel numbered 1 to 9.
[0068] FIG. 30 is a graph showing the simulation results, in the upper panel the virus load of a virus having replication rate of 1.93, the lower panel shows the sum of the expression of the 4 genes, in individual 6 as presented in FIG. 29.
[0069] FIG. 31 is a graph showing the simulation results, in the upper panel the virus load of a virus having replication rate of 1.94, the lower panel shows the sum of the expression of the 4 genes, in individual 6 as presented in FIG. 29.
[0070] FIG. 32 is a bar graph showing the normalized and scaled sum expression of the genes UBE2L6, USP18, HERC5, OAS2 and ISG15 in each one of the tested patients and the amount of reduction in virus load.
[0071] FIG. 33 is a bar graph showing the normalized and scaled (0-1) sum expression of the five genes UBE2L6, USP18, HERC5 and OAS2 in each one of the tested patients and the scaled M values of each patient as calculated using the simulation.
[0072] FIGS. 34A and 34B are bar graphs showing the sum expression of HERC5 and UBE2L6 genes (FIG. 34A) and the M value (FIG. 34B) in IFN responsive and non-responsive HCV patients. The data was obtained from PBMC of HCV patients.
[0073] FIG. 35 is a bar graph showing the expression of HERC5 and the viral load in responsive and non-responsive HCV patients. The data was obtained from PBMC of HCV patients.
[0074] FIG. 36 is a bar graph showing the normalized expression of HERC5 gene (open box) and normalized M value (black box) obtained from model simulation using viral load data in responsive and non-responsive HCV patients. The data was obtained from PBMC of HCV patients.
[0075] FIGS. 37A to 37C are graphs showing correlation between gene expression and M value, with FIG. 37A showing the sum of normalized and scaled expression of the five genes UBE2L6, USP18, HERC5, OAS2 and ISG15, FIG. 37B showing the M value calculated from the gene expression. The data was obtained from liver samples of HCV patients. FIG. 37C shows MATLAB simulation of the model with k=1.92 and p=0 as described herein.
[0076] FIG. 38 is a volcano plot showing the significant changes in the expression level of different genes in liver biopsies in responders and non-responders HCV patients before treatment (left) and after one week of IFN and Rib treatment (right). Expression data was obtained from Masao H. et al. The "X"-axis represents log 2 of ratio between gene expression measured in responders vs. non-responders, the points present to the right of the right vertical line (shown at a value of 1 on the x-axis), represent genes that were up regulated by more than 2 folds whereas the points present to the left of the left vertical line (shown at a value of -0.75 on the x-axis), represent genes that were down regulated by more than 2 folds. The "Y" axis shows the p value assigned to each point. The horizontal line corresponds to p-value of 0.05, with points above this line correspond to a p values lower than 0.05 (namely, more significant).
[0077] FIGS. 39A and 39B are graphs showing the expression of HERC5 gene expression before initiation of IFN and Rib treatment (FIG. 39A) and ratio between HERC5 gene expression measured after one week of treatment and a baseline level of the same gene measured before infection (FIG. 39B). The data was obtained from liver samples of HCV patients.
[0078] FIG. 40 is a graph showing normalized M value obtained from the model simulation for each one of the patients using the virus load data.
[0079] FIGS. 41A and 41B are model simulations predicting viral progression in a non responsive (FIG. 41A) and responsive (FIG. 41B) HCV patients.
[0080] FIG. 42 is a model simulation predicting treatment regimen in HCV patients having an M value of 0.82.
[0081] FIG. 43 is a model simulation predicting treatment regimen in HCV patient having an M value of 0.7995 (patient p18).
DETAILED DESCRIPTION OF THE INVENTION
[0082] The importance of adjusting suitable treatment protocols is highly valuable and clinically desired in view of the fact that a large number of treatment protocols are often associated with some extent of undesired side effects, and moreover, may be unsuccessful. Thus, optimizing a treatment protocol before and/or at early stages after initiation of treatment and/or throughout or after a treatment period may avoid inadequate treatments, reduce unnecessary side effects and improve chance of success. Interferon is widely clinically used for treatment of a variety of diseases including for example inflammatory diseases such as hepatitis C infections, autoimmune diseases such as multiple sclerosis and different types of proliferative disorders. Significant therapeutic advances were made in the treatment of interferon associated diseases however, it is still difficult to determine at the time of disease diagnosis and treatment adjustments, which patients will respond to treatment and which would eventually relapse. Surprisingly, although interferon is considered as a state of art therapy in treatment of these diseases, many of the treated patients do not respond to the therapy and even if they do, many of the patients experience a relapse of the disease.
[0083] Thus, there is a critical need for reliable tailor-made optimization methods that will provide gaudiness and identification of treatment success and failure, breakthrough point and predict inadequate treatments, providing efficient dosing regimens of interferon.
[0084] Thus, a first aspect of the invention relates to a method for determining and optimizing a personalized treatment regimen for a subject suffering from a pathologic disorder. In certain embodiments, the method of the invention comprises the step of:
[0085] First step (a) involves calculating and determining the value of M. It should be further noted that the value M indicates the ability of a specific subject, in this case, the examined subject, to eliminate the specific disorder. More specifically, the value of the individual's M reflects the efficiency of the specific tested subject in requiting cellular elements that are required for challenging and eliminating a specific disorder. In certain embodiments the M value indicates the strength of the individual's innate immunity, and may be used for predicting the individual's ability to eliminate a specific disorder.
[0086] The next step (b), involves determining the value of M1 that indicates the minimal ability required for eliminating the specific disorder. Moreover, the value M1 reflects the optimal threshold of the ability and efficiency of requiting elements required for eliminating a specific disorder. It should be noted that this value is calculated for populations of subjects that perform successful recovery in response to a certain treatment. In some embodiments, this group of subjects may be considered a "responders".
[0087] In the next step (c), providing the dose A1 and number B1 of administrations of such dose to obtain an amount C1 of a specific medicament required for eliminating a specific disorder in subjects having a value of M that is equal or above the optimal M1 value, wherein A1*B1=C1.
[0088] The next step (d) involves calculating the dose A and number B of administrations of such specific dose A to obtain an amount C1 required for the examined subject having the specific M value determined and calculated in step (a). More specifically, the specific optimal dose required for a successful treatment for the tested subject would be A=A1/(M1/M). The specific number of administrations of such dose may be calculated using the formula B=B1*(M1/M); thereby determining and optimizing the treatment regimen for the specific tested subject.
[0089] According to more specific embodiments of the method of the invention, calculating the value of M of the tested individual may be performed using different approaches. It should be noted that such determination may be performed using any of the approaches of the invention or any combination thereof.
[0090] More specifically, determination of the specific M value of the tested individual may be performed by (I) using a static analysis. More specifically, "static" analysis means that the M value may be calculated for a specific individual even before starting a treatment with the particular medicament, and would not reflect any change occurring in response to such treatment.
[0091] In some embodiments, such approach may comprise the steps of:
[0092] First (Ia), determining the level of expression of at least one of ISG15, IFIT1, IFIT2, IFIT3, IFIT5, OAS1, OAS2, OAS3, OASL, HERC5, USP18, RSAD2, MX1, IFI44L, DDX58, UBE1L, UBE2L6, IFI27, IFIH1, TLR7, IRF7 and IFI6 genes in a biological sample of the tested subject, to obtain an expression value Ex.sub.samp in the tested sample. In certain embodiments of the method of the invention the level of expression of at least one of STAT1, IFI44, EIF2AK2 and DHX58 genes may be also determined.
[0093] In the next step (Ib), providing a standard curve, specifically, predetermined standard curve of expression values of subjects suffering from the same pathologic disorder.
[0094] In the next step (Ic) Obtaining a maximal expression value Ex.sub.max and a minimal expression value Exon from the standard curve of (Ib), indicating the variance in the gene expression of a certain marker gene in a predetermined population; and finally, step (Id) Calculating the M value of the tested sample. Such calculation is based on using the following formula wherein M=1-[(Ex.sub.samp-Ex.sub.min)/(Ex.sub.max-Ex.sub.min)].
[0095] In yet another embodiment, as an approach for determining the individual's M value, an induced dynamic analysis (II) may be used. It should be appreciated that such approach is based on pre measurements of the M value for an individual, specifically, before such individual was affected by a certain pathologic disorder. More specifically, using such approach, the specific M value of a specific individual may be predetermined, providing information that may be used in the future in case such subject may be affected by any pathologic disorder. More specifically, such predetermined individual value may serve as valuable information that may be used for optimizing treatment regimen for such individual. Moreover, the method of the invention provides the use of such M value for specifically optimized treatment regimen suitable for a certain pathologic disorder.
[0096] In more specific embodiment, the induced dynamic analysis (II) comprises the steps of:
[0097] First (IIa), determining the level of expression of at least one of ISG15, IFIT1, IFIT2, IFIT3, IFIT5, OAS1, OAS2, OAS3, OASL, HERC5, USP18, RSAD2, MX1, IFI44L, DDX58, UBE1L, UBE2L6, IFI27, IFIH1, TLR7, IRF7 and IFI6 genes, and optionally of STAT1, IFI44, EIF2AK2 and DHX58 genes in a biological sample of said subject, to obtain an expression value in the tested sample.
[0098] In the second step (IIb) exposing the tested subject to an immuno-stimulant. Alternatively, this step may be performed in vitro, more specifically, a sample of the examined subject may be contacted with an immuno-stimulant.
[0099] The next step (IIc) involves determining the level of expression of at least one of ISG15, IFIT1, IFIT2, IFIT3, IFIT5, OAS1, OAS2, OAS3, OASL, HERC5, USP18, RSAD2, MX1, IFI44L, DDX58, UBE1L, UBE2L6, IFI27, IFIH1, TLR7, IRF7 and IFI6 genes, and optionally of STAT1, IFI44, EIF2AK2 and DHX58 genes in a sample of said individual that has been exposed to said immuno-stimulant. In case of the alternative in vitro analysis, determining the level of at least one of these marker genes in at least one other biological sample of the tested subject that has been contacted in vitro with the immuno-stimulant, as indicated in step (IIb).
[0100] In the next step (IId) calculating the rate of change between the expression value obtained in step (IIa), and the expression value obtained in step (IIc), thereby obtaining the rate of change in the sample RC.sub.samp, more specifically, the rate of change in the expression of at least one of the marker genes of the invention, in response to such immuno-stimulant. Such change of expression reflects the intrinsic ability of the tested subject in requiting elements that may be involved in eliminating of any disorder, and therefore reflects the specific ability a certain subject to challenge disorders.
[0101] In the next step (IIe), providing a standard curve, specifically, predetermined standard curve of the rate of change in the expression of at least one of ISG15, IFIT1, IFIT2, IFIT3, IFIT5, OAS1, OAS2, OAS3, OASL, HERC5, USP18, RSAD2, MX1, IFI44L, DDX58, UBE1L, UBE2L6, IFI27, IFIH1, TLR7, IRF7 and IFI6 genes, and optionally of STAT1, IFI44, EIF2AK2 and DHX58 genes or any combinations thereof in subjects treated with said immuno-stimulant. It should be noted that such predetermined standard curve is based on a population of healthy subjects (or non-diseased subjects) treated with the same immuno-stimulant.
[0102] In step (IIf) obtaining a maximal rate of change value RC.sub.max and a minimal rate of change RC.sub.min value from said standard curve of (IIe); and
[0103] In final step (IIg), calculating the M value of the tested sample using the formula: wherein M=[(RC.sub.samp-RC.sub.min)/(RC.sub.max-RC.sub.min)], thereby obtaining an M value of said subject.
[0104] In yet another alternative approach, were predetermined M values of an individual are not available, the invention provides a method for optimizing treatment regimen for a subject that has been already started a certain treatment, using a dynamic analysis (III) comprising:
[0105] In the first step (IIIa), determining the level of expression of at least one of ISG15, IFIT1, IFIT2, IFIT3, IFIT5, OAS1, OAS2, OAS3, OASL, HERC5, USP18, RSAD2, MX1, IFI44L, DDX58, UBE1L, UBE2L6, IFI27, IFIH1, TLR7, IRF7 and IFI6 genes, and optionally of STAT1, IFI44, EIF2AK2 and DHX58 genes in a biological sample of the tested subject, to obtain an expression value in the tested sample. It should be noted that such sample should be obtained prior the initiation of the specific treatment with said medicament.
[0106] In the next step (IIIb) determining the level of expression of at least one of ISG15, IFIT1, IFIT2, IFIT3, IFIT5, OAS1, OAS2, OAS3, OASL, HERC5, USP18, RSAD2, MX1, IFI44L, DDX58, UBE1L, UBE2L6, IFI27, IFIH1, TLR7, IRF7 and IFI6 genes, and optionally of STAT1, IFI44, EIF2AK2 and DHX58 genes in at least one other biological sample of the tested subject. Such at least one other sample should be obtained after the initiation of the specific treatment.
[0107] In step (IIIc) calculating the rate of change between the expression value obtained in step (IIIa), and the expression value obtained in step (IIIb), thereby obtaining the rate of change in the sample RC.sub.samp, in response to such treatment.
[0108] In the next step (IId) providing a standard curve, specifically, predetermined standard curve of the rate of change in the expression of at least one of ISG15, IFIT1, IFIT2, IFIT3, IFIT5, OAS1, OAS2, OAS3, OASL, HERC5, USP18, RSAD2, MX1, IFI44L, DDX58, UBE1L, UBE2L6, IFI27, IFIH1, TLR7, IRF7 and IFI6 genes, and optionally of STAT1, IFI44, EIF2AK2 and DHX58 genes in subjects suffering from the same disorder that were treated with the same medicament.
[0109] In step (IIe) obtaining a maximal rate of change value RC.sub.max and a minimal rate of change value RC.sub.min from the standard curve, specifically, predetermined standard curve of (IId); and
[0110] Finally in (IIf), calculating the M value of the tested sample using the following formula: wherein M=[(RC.sub.samp-RC.sub.min)/(RC.sub.max-RC.sub.min)], thereby obtaining an M value of said subject.
[0111] As indicated above, an essential step in the method of the invention is the determination of the expression level of several specific marker genes provided herein. In certain embodiments, these marker genes include at least one of ISG15, IFIT1, IFIT2, IFIT3, IFIT5, OAS1, OAS2, OAS3, OASL, HERC5, USP18, RSAD2, MX1, IFI44L, DDX58, UBE1L, UBE2L6, IFI27, IFIH1, TLR7, IRF7 and IFI6 or any combinations thereof.
[0112] In certain embodiments the methods of the invention may further use the STAT1, IFI44, EIF2AK2 and DHX58 genes and any combinations thereof with any of the marker genes of the invention.
[0113] It should be therefore appreciated that the method of the invention may use at least one, at least two, at least three, at least four, at least five, at least six, at least seven, at least eight, at least nine, at least ten, at least eleven, at least twelve, at least thirteen, at least fourteen, at least fifteen, at least sixteen, at least seventeen, at least eighteen, at least nineteen, at least twenty, at least twenty one, at least twenty two, at least twenty three, at least twenty four, at least twenty five or at least twenty six of said marker genes, specifically of any one of ISG15, IFIT1, IFIT2, IFIT3, IFIT5, OAS1, OAS2, OAS3, OASL, HERC5, USP18, RSAD2, MX1, IFI44L, DDX58, UBE1L, UBE2L6, IFI27, IFIH1, TLR7, IRF7, IFI6, STAT1, IFI44, EIF2AK2 and DHX58 genes and any combinations thereof. In yet some other embodiments the methods of the invention may use 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 and 26 or more or any combination of the marker genes of the invention. In yet further embodiments, the methods and kits of the invention may use any of the marker genes of the invention with any combination thereof with additional 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100 and more, specifically, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200 and more, specifically, 300, 350 or 400 further marker genes or control reference genes or any combinations thereof. In certain embodiments, such control reference gene (having an equal expression in samples of responsive and non-responsive subjects) may be a house keeping gene, for example, GAPDH or actin.
[0114] As mentioned above, the method and kits of the invention may use the marker genes provided herein, ISG15, IFIT1, IFIT2, IFIT3, IFIT5, OAS1, OAS2, OAS3, OASL, HERC5, USP18, RSAD2, MX1, IFI44L, DDX58, UBE1L, UBE2L6, IFI27, IFIH1, TLR7, IRF7, IFI6, STAT1, IFI44, EIF2AK2 and DHX58 genes and any combination thereof.
[0115] More specifically, ISG15 ubiquitin-like modifier (ISG15) gene (GenBank Accession No. NM_005101; SEQ ID NO: 1) encodes the ISG15 protein (GenBank Accession No. NP_005092.1; SEQ ID NO: 2). ISG15 is reported to be an ubiquitin-like protein that is conjugated to intracellular target proteins after IFN-alpha or IFN-beta stimulation. Its enzymatic pathway is partially distinct from that of ubiquitin, differing in substrate specificity and interaction with ligating enzymes. ISG15 conjugation pathway uses a dedicated E1 enzyme, but seems to converge with the ubiquitin conjugation pathway at the level of a specific E2 enzyme. Targets include STAT1, SERPINA3G/SPI2A, JAK1, MAPK3/ERK1, PLCG1, EIF2AK2/PKR, MX1/MxA, and RIG-1. It undergoes deconjugation by USP18/UBP43. It shows specific chemotactic activity towards neutrophils and activates them to induce release of eosinophil chemotactic factors. It was suggested to serve as a trans-acting binding factor directing the association of ligated target proteins to intermediate filaments.
[0116] Interferon-induced protein with tetratricopeptide repeats 1 (IFIT1) gene (GenBank Accession No. NM_001548; SEQ ID NO: 3) encodes the IRF1 protein (GenBank Accession No. NP_001539; SEQ ID NO: 4).
[0117] Interferon-induced protein with tetratricopeptide repeats 2 (IFIT2) gene (GenBank Accession No. NM_001547; SEQ ID NO: 5) encodes the IFIT2 protein (GenBank Accession No. NP_001538; SEQ ID NO: 6).
[0118] Interferon-induced protein with tetratricopeptide repeats 3 (IFIT3) gene (GenBank Accession Nos. NM_001031683; SEQ ID NO: 7, NM_001549; SEQ ID NO: 9) encodes the IFIT3 protein (GenBank Accession Nos. NP_001026853; SEQ ID NO: 8, NP_001540; SEQ ID NO: 10).
[0119] Interferon-induced protein with tetratricopeptide repeats 5 (IFIT5) gene (GenBank Accession No. NM_012420; SEQ ID NO: 11) encodes the IFIT5 protein (GenBank Accession No. NP_036552; SEQ ID NO: 12).
[0120] 2'-5'-oligoadenylate synthetase 1 (OAS1) gene (GenBank Accession No. NM_016816 SEQ ID NO:13, NM_002534 SEQ ID NO:15, NM_001032409 SEQ ID NO:17) encodes the OAS1 protein (GenBank Accession No. NP_058132 SEQ ID NO:14, NP_002525 SEQ ID NO:16, NP_001027581 SEQ ID NO:18). OAS1 encodes a member of the 2-5A synthetase family, essential proteins involved in the innate immune response to viral infection. The encoded protein is induced by interferons and uses adenosine triphosphate in 2'-specific nucleotidyl transfer reactions to synthesize 2', 5'-oligoadenylates (2-5As). These molecules activate latent RNase L, which results in viral RNA degradation and the inhibition of viral replication. The three known members of this gene family are located in a cluster on chromosome 12. Mutations in this gene have been associated with host susceptibility to viral infection. Alternatively spliced transcript variants encoding different isoforms have been described.
[0121] 2'-5'-oligoadenylate synthetase 2 (OAS2) gene (GenBank Accession No. NM_016817 SEQ ID NO:19, NM_002535 SEQ ID NO:21, NM_001032731 SEQ ID NO:23) encodes the OAS2 protein (GenBank Accession No. NP_058197 SEQ ID NO:20, NP_002526 SEQ ID NO:22, NP_001027903 SEQ ID NO:24).
[0122] 2'-5'-oligoadenylate synthetase 3 (OAS3) gene (GenBank Accession No. NM_006187 SEQ ID NO:25) encodes the OAS3 protein (GenBank Accession No. NP_006178.2 SEQ ID NO:26). OAS3 may play a role in mediating resistance to virus infection, control of cell growth, differentiation, and apoptosis. OAS3 synthesizes preferentially dimeric 2', 5'-oligoadenylate molecules. GTP can be an alternative substrate.
[0123] 2'-5'-oligoadenylate synthetase-like (OASL) gene (GenBank Accession Nos. NM_003733; SEQ ID NO: 27, NM_198213; SEQ ID NO: 29) encodes the OASL protein (GenBank Accession Nos. NP_003724; SEQ ID NO: 28, NP_937856; SEQ ID NO: 30).
[0124] HECT and RLD domain containing E3 ubiquitin protein ligase 5 (HERC5) gene (GenBank Accession No. NM_016323; SEQ ID NO: 31) encodes the HERC5 protein (GenBank Accession No. NP_057407 SEQ ID NO: 32). HERC5 gene is a member of the HERC family of ubiquitin ligases and encodes a protein with a HECT domain and five RCC1 repeats. Pro-inflammatory cytokines up regulate expression of this gene in endothelial cells. The HERC5 protein localizes to the cytoplasm and perinuclear region and functions as an interferon-induced E3 protein ligase that mediates ISGylation of protein targets. It is a major E3 ligase for ISG15 conjugation. HERC5 Acts as a positive regulator of innate antiviral response in cells induced by interferon. Makes part of the ISGylation machinery that recognizes target proteins in a broad and relatively non-specific manner.
[0125] Ubiquitin specific peptidase 18 (USP18) gene (GenBank Accession No. NM_017414; SEQ ID NO: 33) encodes the USP18 protein (GenBank Accession No. NP_059110 SEQ ID NO: 34). The protein encoded by this gene belongs to the ubiquitin-specific proteases (UBP) family of enzymes that cleave ubiquitin from ubiquitinated protein substrates. It is highly expressed in liver and thymus, and is localized to the nucleus. USP18 protein efficiently cleaves only ISG15 (a ubiquitin-like protein) fusions, and deletion of this gene in mice results in a massive increase of ISG15 conjugates in tissues, indicating that this protein is a major ISG15-specific protease. Mice lacking this gene are also hypersensitive to interferon, suggesting a function of this protein in downregulating interferon responses, independent of its isopeptidase activity towards ISG15. USP18 can efficiently cleave only ISG15 fusions including native ISG15 conjugates linked via isopeptide bonds. Necessary to maintain a critical cellular balance of ISG15-conjugated proteins in both healthy and stressed organisms.
[0126] Radical S-adenosyl methionine domain containing 2 (RSAD2) gene (GenBank Accession No. NM_080657; SEQ ID NO: 35) encodes the RSAD2 protein (GenBank Accession No. NP_542388; SEQ ID NO: 36). RSAD2 is reported to be involved in antiviral defense. It was suggested to impair virus budding by disrupting lipid rafts at the plasma membrane, a feature which is essential for the budding process of many viruses. In addition, it was reported to act through binding with and inactivating FPPS, an enzyme involved in synthesis of cholesterol, farnesylated and geranylated proteins, ubiquinones dolichol and heme. Moreover, it is considered to play a major role in the cell antiviral state induced by type I and type II interferon. Finally, it was reported to display antiviral effect against HIV-1 virus, hepatitis C virus, human cytomegalovirus, and aphaviruses, but not vesiculovirus.
[0127] Myxovirus (influenza virus) resistance 1 (MX) gene (GenBank Accession No. NM_002462 SEQ ID NO:37, NM_001178046 SEQ ID NO:39, NM_001144925 SEQ ID NO:41) encodes the MX1 protein (GenBank Accession No. NP_002453 SEQ ID NO:38, NP_001171517 SEQ ID NO:40, NP_001138397 SEQ ID NO:42). In mouse, the interferon-inducible Mx protein is responsible for a specific antiviral state against influenza virus infection. The protein encoded by this gene is similar to the mouse protein as determined by its antigenic relatedness, induction conditions, physicochemical properties, and amino acid analysis. This cytoplasmic protein is a member of both the dynamin family and the family of large GTPases. Two transcript variants encoding the same protein have been found for this gene. MX1 may regulate the calcium channel activity of TRPCs. Ring-like assemblies may induce membrane tabulation.
[0128] Interferon-inducedprotein 44-like (IFI44L) gene (GenBank Accession No. NM_006820.3; SEQ ID NO: 43) encodes the IFI44L protein (GenBank Accession No. NP_006811; SEQ ID NO: 44) that belongs to the IFI44 family of proteins is located in the cytoplasm and exhibits a low antiviral activity against hepatitis C. The expression of the protein is induced by type I interferon.
[0129] DEAD (Asp-Glu-Ala-Asp) boxpolypeptide 58 (DDX58) gene (GenBank Accession No. NM_014314; SEQ ID NO: 45) encodes the DDX58 protein (GenBank Accession No. NP_055129; SEQ ID NO: 46). DEAD box proteins, characterized by the conserved motif Asp-Glu-Ala-Asp (DEAD), are putative RNA helicases which are implicated in a number of cellular processes involving RNA binding and alteration of RNA secondary structure. This gene encodes a protein containing RNA helicase-DEAD box protein motifs and a caspase recruitment domain (CARD). It is involved in viral double-stranded (ds) RNA recognition and the regulation of immune response. It is an innate immune receptor which acts as a cytoplasmic sensor of viral nucleic acids and plays a major role in sensing viral infection and in the activation of a cascade of antiviral responses including the induction of type I interferons and pro-inflammatory cytokines. Upon ligand binding it associates with mitochondria antiviral signaling protein (MAVS/IPS1) which activates the IKK-related kinases: TBK1 and IKBKE which phosphorylate interferon regulatory factors: IRF3 and IRF7 which in turn activate transcription of antiviral immunological genes, including interferons (IFNs); IFN-alpha and IFN-beta. Detects both positive and negative strand RNA viruses including members of the families Paramyxoviridae: Human respiratory synctial virus and measles virus (MeV), Rhabdoviridae: vesicular stomatitis virus (VSV), Orthomyxoviridae: influenza A and B virus, Flaviviridae: Japanese encephalitis virus (JEV), hepatitis C virus (HCV), dengue virus (DENV) and west Nile virus (WNV).
[0130] E1-like ubiquitin-activating enzyme (UBE1L) gene (GenBank Accession No. AF294032; SEQ ID NO: 79) encodes the UBE1L protein (GenBank Accession No. AAG49557; SEQ ID NO: 80). UBE1L is the E1-like ubiquitin-activating enzyme for the IFN-stimulated gene, 15-kDa protein (ISG15).
[0131] Ubiquitin-conjugating enzyme E2L 6 (UBE2L6) gene (GenBank Accession No. NM_198183 SEQ ID NO: 81; GenBank Accession No. NM_004223 SEQ ID NO: 83) encodes the UBE2L6 protein (GenBank Accession No. NP_937826 SEQ ID NO: 82; GenBank Accession No. NP_004214 SEQ ID NO: 84). The UBE2L6 gene encodes a member of the E2 ubiquitin-conjugating enzyme family. This enzyme is highly similar in primary structure to the enzyme encoded by the UBE2L3 gene. UBE2L6 catalyzes the covalent attachment of ubiquitin or ISG15 to other proteins. UBE2L6 functions in the E6/E6-AP-induced ubiquitination of p53/TP53. It also promotes ubiquitination and subsequent proteasomal degradation of FLT3.
[0132] Interferon alpha-inducible protein 27 (IFI27) gene (GenBank Accession Nos. NM_001130080 and NM_005532; SEQ ID NOs: 85, 87, respectively) encodes the IFI27 protein (GenBank Accession Nos. NP_001123552 and NP_005523; SEQ ID NOs: 86, 88, respectively). The IFI27 protein was reported to promote cell death and mediate IFN-induced apoptosis characterized by a rapid and robust release of cytochrome C from the mitochondria and activation of BAX and caspases 2, 3, 6, 8 and 9.
[0133] Interferon induced with helicase C domain 1 (IFIH1) gene (GenBank Accession No. NM_022168 SEQ ID NO: 89) encodes the IFIH1 protein (GenBank Accession No. NP_071451 SEQ ID NO: 90). IFIH1 is an innate immune receptor which acts as a cytoplasmic sensor of viral nucleic acids and plays a major role in sensing viral infection and in the activation of a cascade of antiviral responses including the induction of type I interferons and proinflammatory cytokines. Its ligands include mRNA lacking 2'-O-methylation at their 5' cap and long-dsRNA (>1 kb in length). Upon ligand binding it associates with mitochondria antiviral signaling protein (MAVS/IPS1) which activates the IKK-related kinases.
[0134] Toll-like receptor 7 (TLR-7) gene (GenBank Accession No. NM_016562 SEQ ID NO: 91) encodes the TLR-7 protein (GenBank Accession No. NP_057646 SEQ ID NO: 92). The protein encoded by this gene is a member of the Toll-like receptor (TLR) family which plays a fundamental role in pathogen recognition and activation of innate immunity. TLRs are highly conserved from Drosophila to humans and share structural and functional similarities. They recognize pathogen-associated molecular patterns (PAMPs) that are expressed on infectious agents, and mediate the production of cytokines necessary for the development of effective immunity. The various TLRs exhibit different patterns of expression. This gene is predominantly expressed in lung, placenta, and spleen, and lies in close proximity to another family member, TLR8, on chromosome X.
[0135] Interferon regulatory factor 7 (IRF7) gene (GenBank Accession Nos. NM_001572 SEQ ID NO: 93; NM_004029 SEQ ID NO: 95) encodes the IRF7 protein (GenBank Accession Nos. NP_001563 SEQ ID NO: 94; NP_004020 SEQ ID NO: 96). IFR7 is reported to be a transcriptional activator. It binds to the interferon-stimulated response element (ISRE) in IFN promoters and in the Q promoter (Qp) of EBV nuclear antigen 1 (EBNA1). It is also reported to function as a molecular switch for antiviral activity. It is reported to be activated by phosphorylation in response to infection. The activation leads to nuclear retention, DNA binding, and depression of transactivation ability.
[0136] Interferon, alpha-inducible protein 6 (IFI6) gene (GenBank Accession Nos. NM_022873, SEQ ID NO:97; NM_022872, SEQ ID NO:99; NM_002038, SEQ ID NO:101) encodes the IFI6 protein (GenBank Accession Nos. NP_075011, SEQ ID NO:98; NP_075010, SEQ ID NO:100; NP_002029, SEQ ID NO:102). IFI6 gene was first identified as one of the many genes induced by interferon. The encoded IFI6 protein may play a critical role in the regulation of apoptosis.
[0137] In yet another embodiment, the methods, kits and compositions of the invention may further include detecting molecules for the STAT1 gene. Signal transducer and activator of transcription 1 (STAT) gene (GenBank Accession No. NM_007315 SEQ ID NO:103, NM_139266 SEQ ID NO:104) encodes the STAT1 protein (GenBank Accession No. NP_009330 SEQ ID NO:105, NP 644671 SEQ ID NO: 106). Signal transducer and transcription activator that mediates cellular responses to interferons (IFNs), cytokine KITLG/SCF and other cytokines and growth factors.
[0138] Interferon-induced protein 44 (IFI44) gene (GenBank Accession No. NM_006417; SEQ ID NO: 107) encodes the IFI44 protein (GenBank Accession No. NP_006408; SEQ ID NO: 108), that was reported to aggregate to form microtubular structures.
[0139] EIF2AK2 eukaryotic translation initiation factor 2-alpha kinase 2 (EIF2AK2) gene (GenBank Accession No. NM_002759.1; SEQ ID NO: 109) encodes the EIF2AK2 protein (GenBank Accession No. NC_000002.11; SEQ ID NO: 110). The protein encoded by this gene is a serine/threonine protein kinase that is activated by autophosphorylation after binding to dsRNA. The activated form of the encoded protein can phosphorylate translation initiation factor EIF2S1, which in turn inhibits protein synthesis. This protein is also activated by manganese ions and heparin. Three transcript variants encoding two different isoforms have been found for this gene.
[0140] DHX58 DHX58 (DEXH (Asp-Glu-X-His) box polypeptide 58), gene (GenBank Accession No. NM_024119; SEQ ID NO: 111) encodes the DHX58 protein (GenBank Accession No. NC_000017.10; SEQ ID NO: 112). DHX58 acts as a regulator of DDX58/RIG-I and IFIH1/MDA5 mediated antiviral signaling. Cannot initiateantiviral signaling as it lacks the CARD domain required for activating MAVS/IPS1-dependent signaling
[0141] The terms "level of expression" or "expression level" are used interchangeably and generally refer to a numerical representation of the amount (quantity) of a polynucleotide which encodes an amino acid product or protein in a biological sample.
[0142] "Expression" generally refers to the process by which gene-encoded information is converted into the structures present and operating in the cell. For example, biomarker gene expression values measured in Real-Time Polymerase Chain Reaction, sometimes also referred to as RT-PCR or quantitative PCR (qPCR), represent luminosity measured in a tested sample, where an intercalating fluorescent dye is integrated into double-stranded DNA products of the qPCR reaction performed on reverse-transcribed sample RNA, i.e., test sample RNA converted into DNA for the purpose of the assay. The luminosity is captured by a detector that converts the signal intensity into a numerical representation which is said expression value, in terms of miRNA. Therefore, according to the invention "expression" of a gene, specifically, a gene encoding the biomarker genes of the invention may refer to transcription into a polynucleotide. Fragments of the transcribed polynucleotide, the translated protein, or the post-translationally modified protein shall also be regarded as expressed whether they originate from a transcript generated by alternative splicing or a degraded transcript, or from a post-translational processing of the protein, e.g., by proteolysis. Methods for determining the level of expression of the biomarkers of the invention will be described in more detail herein after.
[0143] In certain and specific embodiments, the step of determining the level of expression to obtain an expression value by the method of the invention further comprises an additional and optional step of normalization. According to this embodiment, in addition to determination of the level of expression of the biomarkers of the invention, the level of expression of at least one suitable control reference gene (e.g., housekeeping genes) is being determined in the same sample. According to such embodiment, the expression level of the biomarkers of the invention obtained in step (a) is normalized according to the expression level of said at least one reference control gene obtained in the additional optional step in said test sample, thereby obtaining a normalized expression value. Optionally, similar normalization is performed also in at least one control sample or a representing standard when applicable.
[0144] The term "expression value" thus refers to the result of a calculation, that uses as an input the "level of expression" or "expression level" obtained experimentally and by normalizing the "level of expression" or "expression level" by at least one normalization step as detailed herein, the calculated value termed herein "expression value" is obtained.
[0145] More specifically, as used herein, "normalized values" are the quotient of raw expression values of marker genes, divided by the expression value of a control reference gene from the same sample, such as a stably-expressed housekeeping control gene. Any assayed sample may contain more or less biological material than is intended, due to human error and equipment failures. Importantly, the same error or deviation applies to both the marker genes of the invention and to the control reference gene, whose expression is essentially constant. Thus, division of the marker gene raw expression value by the control reference gene raw expression value yields a quotient which is essentially free from any technical failures or inaccuracies (except for major errors which destroy the sample for testing purposes) and constitutes a normalized expression value of said marker gene. This normalized expression value may then be compared with normalized cutoff values, i.e., cutoff values calculated from normalized expression values. In certain embodiments, the control reference gene may be a gene that maintains stable in all samples analyzed in the microarray analysis.
[0146] It should be noted that normalized biomarker genes expression level values that are higher (positive) or lower (negative) in comparison with a corresponding predetermined standard expression value or a cut-off value in a control sample predict to which population of patients the tested sample belongs.
[0147] It should be appreciated that in some embodiments an important step in determining the expression level is to examine whether the normalized expression value of any one of the biomarker genes of the tested sample is within the range of the expression value of a standard population or a cutoff value for such population.
[0148] More specifically, the specific expression values of the tested samples are compared to a predetermined cutoff value. As used herein the term "comparing" denotes any examination of the expression level and/or expression values obtained in the samples of the invention as detailed throughout in order to discover similarities or differences between at least two different samples. It should be noted that comparing according to the present invention encompasses the possibility to use a computer based approach.
[0149] As described hereinabove, the method of the invention refers to a predetermined cutoff value. It should be noted that a "cutoff value", sometimes referred to simply as "cutoff" herein, is a value that meets the requirements for both high diagnostic sensitivity (true positive rate) and high diagnostic specificity (true negative rate).
[0150] It should be noted that the terms "sensitivity" and "specificity" are used herein with respect to the ability of one or more markers, to correctly classify a sample as belonging to a pre-established population associated with responsiveness to treatment with a certain medicament.
[0151] In certain alternative embodiments, a control sample may be used (instead of, or in addition to, pre-determined cutoff values). Accordingly, the normalized expression values of the biomarker genes used by the invention in the test sample are compared to the expression values in the control sample. In certain embodiments, such control sample may be obtained from at least one of a healthy subject, a subject suffering from the same pathologic disorder, a subject that responds to treatment with said medicament and a non-responder subject.
[0152] The term "response" or "responsiveness" to a certain treatment refers to an improvement in at least one relevant clinical parameter as compared to an untreated subject diagnosed with the same pathology (e.g., the same type, stage, degree and/or classification of the pathology), or as compared to the clinical parameters of the same subject prior to interferon treatment with said medicament.
[0153] The term "non responder" to treatment with a specific medicament, refers to a patient not experiencing an improvement in at least one of the clinical parameter and is diagnosed with the same condition as an untreated subject diagnosed with the same pathology (e.g., the same type, stage, degree and/or classification of the pathology), or experiencing the clinical parameters of the same subject prior to treatment with the specific medicament.
[0154] In case the method of the invention uses the dynamic approaches for determining the M value of the tested individual, at least two samples may be obtained from the subjects. These samples should be obtained from different time points, before and after the treatment, and therefore may be considered as "temporally separated samples". As indicated above, in accordance with some embodiments of the invention, in order to asses response and determine the rate of change in the expression of the marker genes of the invention upon treatment with a specific medicament, at least two "temporally-separated" test samples must be collected from the treated patient and compared thereafter in order to obtain the rate of expression change in the biomarker genes. In practice, to detect a change in the biomarker genes expression, at least two "temporally-separated" test samples and preferably more must be collected from the patient.
[0155] The expression of at least one of the markers is then determined using the method of the invention, applied for each sample. As detailed above, the rate of change in marker expression is calculated by determining the ratio between the two expression values, obtained from the same patient in different time-points or time intervals.
[0156] This period of time, also referred to as "time interval", or the difference between time points (wherein each time point is the time when a specific sample was collected) may be any period deemed appropriate by medical staff and modified as needed according to the specific requirements of the patient and the clinical state he or she may be in. For example, this interval may be at least one day, at least three days, at least three days, at least one week, at least two weeks, at least three weeks, at least one month, at least two months, at least three months, at least four months, at least five months, at least one year, or even more.
[0157] More specifically, one sample should be obtained prior to treatment with the specific medicament. Prior as used herein is meant the first time point is at any time before initiation of treatment, ideally several minutes before initiation of treatment. However, it should be noted that any time point before initiation of the treatment, including hours, days, weeks, months or years, may be useful for this method and is therefore encompassed by the invention. The second time point is collected from the same patient after hours, days, weeks, months or even years after initiation of treatment. More specifically, at least 3 hours, at least 4 hours, at least 6 hours, at least 10 hours, at least 12 hours, at least 24 hours, at least 1 day, at least 2 days, at least 3 days, at least 4 days, at least 5 days, at least 6 days, at least 7 days, at least 8 days, at least 9 days, at least 10 days, at least 11 days, at least 12 days, at least 13 days, at least 14 days, at least 15 days, at least 16 days, at least 17 days, at least 18 days, at least 19 days, at least 20 days, at least 21 days, at least 22 days, at least 23 days, at least 24 days, at least 25 days, at least 26 days, at least 27 days, at least 28 days, at least 29 days, at least 30 days, at least 31 days, at least 32 days, at least 33 days, at least 40 days, at least 50 days, at least 60 days, at least 70 days, at least 78 days, at least 80, at least 90 days, at least 100 days, at least 110, at least 120 days, at least 130 days, at least 140 days or at least 150 days after initiation of treatment.
[0158] In some embodiments, the second time point is obtained between 1 hour to 24 month after initiation of the treatment. In some other embodiments, the second time point is between 1 hour to 6 hours after initiation of the treatment. In yet some other embodiments, the second time point is between 1 month to 3 month after initiation of the treatment.
[0159] In practice, for assessing response to a specific treatment, at least two test samples (before and after treatment) must be collected from the treated patient, and preferably more. The expression level of the genes is then determined using the method of the invention, applied for each sample. As detailed above, the expression value is obtained from the experimental expression level. The rate of change of each biomarker expression, namely at least one of the genes indicated by the invention, is then calculated and determined by dividing the two expression values obtained from the same patient in different time-points or time intervals one by the other.
[0160] It should be appreciated that in some embodiments, the term "before treatment" may also encompass samples that are obtained from a treated subject, between two treatments. More specifically, in cases wherein the interval between treatments is once a day, a week, a month, a year or every several days, months or years, "before treatment" may be obtained right before the next treatment. The second "after treatment" sample may be taken after several hours or days of the treatment as indicated above.
[0161] It should be noted that it is possible to divide the prior-treatment expression value by the after treatment expression value and vise versa. For the sake of clarity, as used herein, the rate of change is referred as the ratio obtained when dividing the expression value obtained at the later time point of the time interval by the expression value obtained at the earlier time point (for example before initiation of treatment).
[0162] For example, this interval may be at least one day, at least three days, at least three days, at least one week, at least two weeks, at least three weeks, at least one month, at least two months, at least three months, at least four months, at least five months, at least one year, or even more. Permeably the second point is obtained at the earlier time point that can provide valuable information regarding assessing response of the patient to interferon treatment or to treatment with any other drug, medicament or any other combination of drugs or medicaments.
[0163] The rate of change in the expression value of the different marker genes of the invention may reflect either reduction or elevation of expression. More specifically, "reduction" or "down-regulation" of the marker genes as a result of interferon treatment includes any "decrease", "inhibition", "moderation", "elimination" or "attenuation" in the expression of said genes and relate to the retardation, restraining or reduction of the biomarker genes expression or levels by any one of about 1% to 99.9%, specifically, about 1% to about 5%, about 5% to 10%, about 10% to 15%, about 15% to 20%, about 20% to 25%, about 25% to 30%, about 30% to 35%, about 35% to 40%, about 40% to 45%, about 45% to 50%, about 50% to 55%, about 55% to 60%, about 60% to 65%, about 65% to 70%, about 75% to 80%, about 80% to 85% about 85% to 90%, about 90% to 95%, about 95% to 99%, or about 99% to 99.9%.
[0164] Alternatively, "up-regulation" of any one of the biomarker genes as a result of interferon or any other drug treatment includes any "increase", "elevation", "enhancement" or "elevation" in the expression of said genes and relate to the enhancement and increase of at least one of the biomarker genes expression or levels by any one of about 1% to 99.9%, specifically, about 1% to about 5%, about 5% to 10%, about 10% to 15%, about 15% to 20%, about 20% to 25%, about 25% to 30%, about 30% to 35%, about 35% to 40%, about 40% to 45%, about 45% to 50%, about 50% to 55%, about 55% to 60%, about 60% to 65%, about 65% to 70%, about 75% to 80%, about 80% to 85% about 85% to 90%, about 90% to 95%, about 95% to 99%, or about 99% to 99.9%.
[0165] As appreciated, a predetermined rate of change calculated for a pre-established population as detailed above for example encompasses a range for the rate of change having a low value and a high value, as obtained from a population of individuals including healthy controls, responders and non-responders to said medicament. Thus a subgroup of responsive patients can be obtained from the entire tested population. In this pre-established responsive population, the low value may be characterized by a low response whereas the high value may be associated with a high response as indicated by regular clinical evaluation. Therefore, in addition to assessing responsiveness to treatment, the rate of change may provide insight into the degree of responsiveness. For example, a calculated rate of change that is closer in its value to the low value may be indicative of a low response and thus although the patient is considered responsive, increasing dosing or frequency of administration may be considered. Alternatively, a calculated rate of change that is closer in its value to the high value may be indicative of a high response, even at times leading to remission and thus lowering the administration dosage may be considered.
[0166] For clarity, when referring to a pre-established population associated with responsiveness, or the ability to eradicate pathogens, it is meant that a statistically-meaningful group of patients treated with a specific medicament was analyzed as disclosed herein, and the correlations between the biomarker gene/s expression values (and optionally other patient clinical parameters) and responsiveness to such treatment was calculated. The population may optionally be further divided into sub-populations according to other patient parameters, for example gender and age.
[0167] Another embodiment of the method of the invention defines the step of calculating the value of M1, the optimal threshold required for successful elimination of the pathologic disorder. In such embodiment, this optimal M1 value may be determined using two alternative approaches:
[0168] In one embodiment, determination of the M1 value may be performed by the steps of:
[0169] First (Ia) Providing a K value for the specific disorder. It should be noted that the K value reflects the severity of the disorder. For example, disorders caused by a viral infection, the K value may be the multiplicity rate of such virus, in other words, the pathogen growth rate. Methods for obtaining the multiplicity rate of a virus (the K value of the present application) are described for example in Ruy M. Ribeiro et al., PLOS Pathogens 8 (8):e1002881 (2012); Deborah Cromer et al., Journal of Virology 87: 3376-3381 (2013); Ying Fang et al., J. Virol. Methods. 173(2): 251-258 (2011) and Stiffler J D, et al. PLoS ONE 4(8): e6661. doi:10.1371/journal.pone.0006661 (2009).
[0170] In the next step (Ib) involves calculating the M1 using the formula, wherein M1>1-(1/k), thereby determining the M1 value.
[0171] Another alternative approach for determining the M1 value, may involve the use of standard curve, specifically, predetermined standard curve of a responder population thereby calculating for such curve, the optimal M1 value.
[0172] According to some embodiments, the method of the invention may be specifically practiced using 4 or 5 marker genes. More specifically, in some embodiments, the method of the invention may use the expression value of OAS2, HERC5, UPS18, UBE216 and optionally of ISG15 genes. In some embodiments, the method of the invention may use OAS2, HERC5, UPS18 and UBE216 as markers for calculating M. In yet further embodiments, the method of the invention may use OAS2, HERC5, UPS18, UBE216 and ISG15 genes.
[0173] According to certain embodiments, the method of the invention may be specifically suitable for determining and optimizing a personalized interferon treatment regimen for a subject suffering from a pathologic disorder.
[0174] More specifically, the methods of the invention described herein, relate to interferon treatment, specifically, to optimize interferon treatment regimen to a specific individual, as a personalized medicine approach. As used herein the term "interferon" or "IFN" which is interchangeably used herein, refers to a synthetic, recombinant or purified interferon, and encompasses interferon type I that binds to the cell surface receptor complex IFN-.alpha. receptor (IFNAR) consisting of IFNAR and IFNAR2 chains; interferon type II that binds to the IFNGR receptor; and interferon type III, that binds to a receptor complex consisting of IL10R2 (also called CRF2-4) and IFNLR1 (also called CRF2-12).
[0175] Interferon type I in human includes interferon alpha 1 (GenBank Accession No. NM_024013 and NP_076918; SEQ ID NOs: 47 and 48 respectively), interferon alpha 2 (GenBank Accession No. NM_000605 and NP_000596; SEQ ID NO: 49 and 50, respectively), Interferon alpha-4 (GenBank Accession No. NM_021068 and NP_066546; SEQ ID NO: 51 and 52, respectively), Interferon alpha-5 (GenBank Accession No. NM_002169 and NP_002160; SEQ ID NO: 53 and 54, respectively), Interferon alpha-6 (GenBank Accession No. NM_021002 and NP_066282; SEQ ID NO: 55 and 56, respectively), Interferon alpha-7 (GenBank Accession No. NM_021057 and NP_066401; SEQ ID NO: 57 and 58, respectively), Interferon alpha-8 (GenBank Accession No. NM_002170 and NP_002161; SEQ ID NO: 59 and 60, respectively), Interferon alpha-10 (GenBank Accession No. NM_002171 and NP_002162; SEQ ID NO: 61 and 62, respectively), Interferon alpha-1/13 (GenBank Accession No. NM_006900 and NP_008831; SEQ ID NO: 63 and 64, respectively), Interferon alpha-14 (GenBank Accession No. NM_002172 and NP_002163; SEQ ID NO: 65 and 66, respectively), Interferon alpha-16 (GenBank Accession No. NM_002173 and NP_002164; SEQ ID NO: 67 and 68, respectively), Interferon alpha-17 (GenBank Accession No. NM_021268 and NP_067091; SEQ ID NO: 69 and 70, respectively) and Interferon alpha-21 (GenBank Accession No. NM_002175 and NP_002166; SEQ ID NO: 71 and 72, respectively), Interferon, beta 1 (GenBank Accession No. NM_002176 and NP_002167; SEQ ID NO: 73 and 74, respectively), and Interferon omega-1 (GenBank Accession No. NM_002177 and NP_002168; SEQ ID NOs: 75 and 76 respectively)].
[0176] Interferon type II in humans is Interferon-gamma (GenBank Accession No. NM_000619 and NP_000610; SEQ ID NOs: 77 and 78 respectively).
[0177] As used herein the phrase "interferon treatment" refers to administration of interferon into a subject in need thereof. It should be noted that administration of interferon may comprise a single or multiple dosages, as well as a continuous administration, depending on the pathology to be treated and a clinical assessment of the subject receiving the treatment.
[0178] Various modes of interferon administration are known in the art. These include, but are not limited to, injection (e.g., using a subcutaneous, intramuscular, intravenous, or intradermal injection), intranasal administration and oral administration.
[0179] According to some embodiments of the invention, interferon treatment is provided to the subject in doses matching his weight, at a frequency of once a week, for a period of up to 48 weeks.
[0180] Non-limiting examples of interferon treatment and representative diseases includes the following interferon beta-la (multiple sclerosis), interferon beta-Ib (multiple sclerosis), recombinant IFN-.alpha.2b (various cancers).
[0181] As appreciated in the art, interferon alfa-2a treatment is known as Roferon. Interferon alpha 2b treatment is by Intron A or Reliferon or Uniferon. Interferon beta-1a is sold under the trade names Avonex and Rebif. CinnaGen is a biosimilar compound. Interferon beta-1b is sold under trade names Betaferon, Betaseron, Extavia and ZIFERON.
[0182] Interferon treatment may comprise PEGylated interferon i.e., conjugated to a polyethylene glycol (PEG) polymer. For example, PEGylated interferon alpha 2a is sold under the trade name Pegasys. PEGylated interferon alpha 2a in Egypt is sold under the trade name Reiferon Retard. PEGylated interferon alpha 2b is sold under the trade name PegIntron.
[0183] The interferon treatment can also comprise a combination of interferon and ribavirin. For example, PEGylated interferon alpha 2b plus ribavirin is sold under the trade name Pegetron.
[0184] In yet another specific embodiment, determining the level of expression of at least one of said ISG15, IFIT1-5, OAS1-3L, HERC5, USP18, IFIT2, RSAD2, ISIT1, MX1, IFIT3, IFI44L, OASL, OAS1, OAS2, OAS3, DIX5B, UBE1L, UBE2L6, IFI27, IFIH1, TLR7, IRF7 and IFI6 genes, and optionally of STAT1, IFI44, EIF2AK2 and DHX58 genes in a biological sample of the tested subject in order to calculate the specific M value of the individual as described herein above, may be performed by the step of contacting detecting molecules specific for said genes with a biological sample of said subject, or with any nucleic acid or protein product obtained therefrom.
[0185] The term "contacting" means to bring, put, incubate or mix together. As such, a first item is contacted with a second item when the two items are brought or put together, e.g., by touching them to each other or combining them. In the context of the present invention, the term "contacting" includes all measures or steps which allow interaction between the at least one of the detection molecules for the biomarker genes and optionally one suitable control reference gene and the nucleic acid or amino acid molecules of the tested sample. The contacting is performed in a manner so that the at least one of detecting molecule of the genes and at least one suitable control reference gene can interact with or bind to the nucleic acid molecules or alternatively, a protein product of the at least one biomarker gene, in the tested sample. The binding will preferably be non-covalent, reversible binding, e.g., binding via salt bridges, hydrogen bonds, hydrophobic interactions or a combination thereof.
[0186] In certain embodiments, the detection step further involves detecting a signal from the detecting molecules that correlates with the expression level of said genes or any product thereof in the sample from the subject, by a suitable means. According to some embodiments, the signal detected from the sample by any one of the experimental methods detailed herein below reflects the expression level of said genes or product thereof. Such signal-to-expression level data may be calculated and derived from a calibration curve. Thus, in certain embodiments, the method of the invention may optionally further involve the use of a calibration curve created by detecting a signal for each one of increasing pre-determined concentrations of said genes or product. Obtaining such a calibration curve may be indicative to evaluate the range at which the expression levels correlate linearly with the concentrations of said genes or product. It should be noted in this connection that at times when no change in expression level of genes or product is observed, the calibration curve should be evaluated in order to rule out the possibility that the measured expression level is not exhibiting a saturation type curve, namely a range at which increasing concentrations exhibit the same signal.
[0187] It must be appreciated that in certain embodiments such calibration curve as described above may by also part or component in any of the kits provided by the invention herein after.
[0188] In more specific embodiments, the detecting molecules used by the method of the invention for determining the expression level of the marker genes, may be selected from isolated detecting nucleic acid molecules and isolated detecting amino acid molecules.
[0189] According to certain embodiments, the method of the invention may use nucleic acid detecting molecules that may comprise isolated oligonucleotide/s, each oligonucleotide specifically hybridizes to a nucleic acid sequence of said at least one of ISG15, IFIT1, IFIT2, IFIT3, IFIT5, OAS1, OAS2, OAS3, OASL, HERC5, USP18, RSAD2, MX1, IFI44L, DDX58, UBE1L, UBE2L6, IFI27, IFIH1, TLR7, IRF7 and IFI6 genes (optionally further of STAT1, IFI44, EIF2AK2 and DHX58 genes) and optionally, to a control reference gene. More specifically, such detecting molecule may be at least one of, a pair of primers, at least one primer and/or nucleotide probe/s or any combination thereof. It should be noted that in some embodiments, each of said oligonucleotides is specifically directed against a specific marker gene or against a specific control gene (e.g., house keeping genes).
[0190] As used herein, "nucleic acid molecules" or "nucleic acid sequence" are interchangeable with the term "polynucleotide(s)" and it generally refers to any polyribonucleotide or poly-deoxyribonucleotide, which may be unmodified RNA or DNA or modified RNA or DNA or any combination thereof. "Nucleic acids" include, without limitation, single- and double-stranded nucleic acids. As used herein, the term "nucleic acid(s)" also includes DNAs or RNAs as described above that contain one or more modified bases. Thus, DNAs or RNAs with backbones modified for stability or for other reasons are "nucleic acids". The term "nucleic acids" as it is used herein embraces such chemically, enzymatically or metabolically modified forms of nucleic acids, as well as the chemical forms of DNA and RNA characteristic of viruses and cells, including for example, simple and complex cells. A "nucleic acid" or "nucleic acid sequence" may also include regions of single- or double-stranded RNA or DNA or any combinations.
[0191] As used herein, the term "oligonucleotide" is defined as a molecule comprised of two or more deoxyribonucleotides and/or ribonucleotides, and preferably more than three. Its exact size will depend upon many factors which in turn, depend upon the ultimate function and use of the oligonucleotide. The oligonucleotides may be from about 3 to about 1,000 nucleotides long. Although oligonucleotides of 5 to 100 nucleotides are useful in the invention, preferred oligonucleotides range from about 5 to about 15 bases in length, from about 5 to about 20 bases in length, from about 5 to about 25 bases in length, from about 5 to about 30 bases in length, from about 5 to about 40 bases in length or from about 5 to about 50 bases in length. More specifically, the detecting oligonucleotides molecule used by the composition of the invention may comprise any one of 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 35, 40, 45, 50 bases in length. It should be further noted that the term "oligonucleotide" refers to a single stranded or double stranded oligomer or polymer of ribonucleic acid (RNA) or deoxyribonucleic acid (DNA) or mimetics thereof. This term includes oligonucleotides composed of naturally-occurring bases, sugars and covalent internucleoside linkages (e.g., backbone) as well as oligonucleotides having non-naturally-occurring portions which function similarly.
[0192] As indicated throughout, in certain embodiments when the detecting molecules used are nucleic acid based molecules, specifically, oligonucleotides. It should be noted that the oligonucleotides used in here specifically hybridize to nucleic acid sequences of the biomarker genes of the invention. Optionally, where also the expression of at least one of the biomarker genes is being examined, the method of the invention may use as detecting molecules oligonucleotides that specifically hybridize to a nucleic acid sequence of said at least one of the genes. As used herein, the term "hybridize" refers to a process where two complementary nucleic acid strands anneal to each other under appropriately stringent conditions. Hybridizations are typically and preferably conducted with probe-length nucleic acid molecules, for example, 5-100 nucleotides in length, 5-50, 5-40, 5-30 or 5-20.
[0193] As used herein "selective or specific hybridization" in the context of this invention refers to a hybridization which occurs between a polynucleotide encompassed by the invention as detecting molecules, and the specific biomarker gene and/or any control reference gene, wherein the hybridization is such that the polynucleotide binds to the gene or any control reference gene preferentially to any other RNA in the tested sample. In a specific embodiment a polynucleotide which "selectively hybridizes" is one which hybridizes with a selectivity of greater than 60 percent, greater than 70 percent, greater than 80 percent, greater than 90 percent and most preferably on 100 percent (i.e. cross hybridization with other RNA species preferably occurs at less than 40 percent, less than 30 percent, less than 20 percent, less than 10 percent). As would be understood to a person skilled in the art, a detecting polynucleotide which "selectively hybridizes" to the biomarker genes or any control reference gene can be designed taking into account the length and composition.
[0194] The measuring of the expression of any one of the biomarker genes and any control reference gene or any combination thereof can be done by using those polynucleotides as detecting molecules, which are specific and/or selective for the biomarker genes of the invention to quantitate the expression of said biomarker genes or any control reference gene. In a specific embodiment of the invention, the polynucleotides which are specific and/or selective for said genes may be probes or a pair of primers.
[0195] It should be further appreciated that the methods, as well as the compositions and kits of the invention may comprise, as an oligonucleotide-based detection molecule, both primers and probes.
[0196] The term, "primer", as used herein refers to an oligonucleotide, whether occurring naturally as in a purified restriction digest, or produced synthetically, which is capable of acting as a point of initiation of synthesis when placed under conditions in which synthesis of a primer extension product, which is complementary to a nucleic acid strand, is induced, i.e., in the presence of nucleotides and an inducing agent such as a DNA polymerase and at a suitable temperature and pH. The primer may be single-stranded or double-stranded and must be sufficiently long to prime the synthesis of the desired extension product in the presence of the inducing agent. The exact length of the primer will depend upon many factors, including temperature, source of primer and the method used. For example, for diagnostic applications, depending on the complexity of the target sequence, the oligonucleotide primer typically contains 10-30 or more nucleotides, although it may contain fewer nucleotides. More specifically, the primer used by the methods, as well as the compositions and kits of the invention may comprise 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 or 30 nucleotides or more. In certain embodiments, such primers may comprise 30, 40, 50, 60, 70, 80, 90, 100 nucleotides or more. In specific embodiments, the primers used by the method of the invention may have a stem and loop structure. The factors involved in determining the appropriate length of primer are known to one of ordinary skill in the art and information regarding them is readily available.
[0197] As used herein, the term "probe" means oligonucleotides and analogs thereof and refers to a range of chemical species that recognize polynucleotide target sequences through hydrogen bonding interactions with the nucleotide bases of the target sequences. The probe or the target sequences may be single- or double-stranded RNA or single- or double-stranded DNA or a combination of DNA and RNA bases. A probe is at least 5 or preferably, 8 nucleotides in length. A probe may be 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 and up to 30 nucleotides in length as long as it is less than the full length of the target marker gene. Probes can include oligonucleotides modified so as to have a tag which is detectable by fluorescence, chemiluminescence and the like. The probe can also be modified so as to have both a detectable tag and a quencher molecule, for example TaqMan.RTM. and Molecular Beacon.RTM. probes, that will be described in detail below.
[0198] The oligonucleotides and analogs thereof may be RNA or DNA, or analogs of RNA or DNA, commonly referred to as antisense oligomers or antisense oligonucleotides. Such RNA or DNA analogs comprise, but are not limited to, 2-'0-alkyl sugar modifications, methylphosphonate, phosphorothiate, phosphorodithioate, formacetal, 3-thioformacetal, sulfone, sulfamate, and nitroxide backbone modifications, and analogs, for example, LNA analogs, wherein the base moieties have been modified. In addition, analogs of oligomers may be polymers in which the sugar moiety has been modified or replaced by another suitable moiety, resulting in polymers which include, but are not limited to, morpholino analogs and peptide nucleic acid (PNA) analogs. Probes may also be mixtures of any of the oligonucleotide analog types together or in combination with native DNA or RNA. At the same time, the oligonucleotides and analogs thereof may be used alone or in combination with one or more additional oligonucleotides or analogs thereof.
[0199] Thus, according to one embodiment, such oligonucleotides are any one of a pair of primers or nucleotide probes, and wherein the level of expression of at least one of the biomarker genes is determined using a nucleic acid amplification assay selected from the group consisting of: a Real-Time PCR, micro array, PCR, in situ hybridization and comparative genomic hybridization.
[0200] The term "amplification assay", with respect to nucleic acid sequences, refers to methods that increase the representation of a population of nucleic acid sequences in a sample. Nucleic acid amplification methods, such as PCR, isothermal methods, rolling circle methods, etc., are well known to the skilled artisan. More specifically, as used herein, the term "amplified", when applied to a nucleic acid sequence, refers to a process whereby one or more copies of a particular nucleic acid sequence is generated from a template nucleic acid, preferably by the method of polymerase chain reaction.
[0201] "Polymerase chain reaction" or "PCR" refers to an in vitro method for amplifying a specific nucleic acid template sequence. The PCR reaction involves a repetitive series of temperature cycles and is typically performed in a volume of 50-100 microliter. The reaction mix comprises dNTPs (each of the four deoxynucleotides dATP, dCTP, dGTP, and dTTP), primers, buffers, DNA polymerase, and nucleic acid template. The PCR reaction comprises providing a set of polynucleotide primers wherein a first primer contains a sequence complementary to a region in one strand of the nucleic acid template sequence and primes the synthesis of a complementary DNA strand, and a second primer contains a sequence complementary to a region in a second strand of the target nucleic acid sequence and primes the synthesis of a complementary DNA strand, and amplifying the nucleic acid template sequence employing a nucleic acid polymerase as a template-dependent polymerizing agent under conditions which are permissive for PCR cycling steps of (i) annealing of primers required for amplification to a target nucleic acid sequence contained within the template sequence, (ii) extending the primers wherein the nucleic acid polymerase synthesizes a primer extension product. "A set of polynucleotide primers", "a set of PCR primers" or "pair of primers" can comprise two, three, four or more primers.
[0202] Real time nucleic acid amplification and detection methods are efficient for sequence identification and quantification of a target since no pre-hybridization amplification is required. Amplification and hybridization are combined in a single step and can be performed in a fully automated, large-scale, closed-tube format.
[0203] Methods that use hybridization-triggered fluorescent probes for real time PCR are based either on a quench-release fluorescence of a probe digested by DNA Polymerase (e.g., methods using TaqMan.RTM., MGB-TaqMan.RTM.), or on a hybridization-triggered fluorescence of intact probes (e.g., molecular beacons, and linear probes). In general, the probes are designed to hybridize to an internal region of a PCR product during annealing stage (also referred to as amplicon). For those methods utilizing TaqMan.RTM. and MGB-TaqMan.RTM. the 5'-exonuclease activity of the approaching DNA Polymerase cleaves a probe between a fluorophore and a quencher, releasing fluorescence.
[0204] Thus, a "real time PCR" or "RT-PCT" assay provides dynamic fluorescence detection of amplified genes or any control reference gene produced in a PCR amplification reaction. During PCR, the amplified products created using suitable primers hybridize to probe nucleic acids (TaqMan.RTM. probe, for example), which may be labeled according to some embodiments with both a reporter dye and a quencher dye. When these two dyes are in close proximity, i.e. both are present in an intact probe oligonucleotide, the fluorescence of the reporter dye is suppressed. However, a polymerase, such as AmpliTaq Gold.TM., having 5'-3' nuclease activity can be provided in the PCR reaction. This enzyme cleaves the fluorogenic probe if it is bound specifically to the target nucleic acid sequences between the priming sites. The reporter dye and quencher dye are separated upon cleavage, permitting fluorescent detection of the reporter dye. Upon excitation by a laser provided, e.g., by a sequencing apparatus, the fluorescent signal produced by the reporter dye is detected and/or quantified. The increase in fluorescence is a direct consequence of amplification of target nucleic acids during PCR. The method and hybridization assays using self-quenching fluorescence probes with and/or without internal controls for detection of nucleic acid application products are known in the art, for example, U.S. Pat. Nos. 6,258,569; 6,030,787; 5,952,202; 5,876,930; 5,866,336; 5,736,333; 5,723,591; 5,691,146; and 5,538,848.
[0205] More particularly, QRT-PCR or "qPCR" (Quantitative RT-PCR), which is quantitative in nature, can also be performed to provide a quantitative measure of gene expression levels. In QRT-PCR reverse transcription and PCR can be performed in two steps, or reverse transcription combined with PCR can be performed. One of these techniques, for which there are commercially available kits such as TaqMan.RTM. (Perkin Elmer, Foster City, Calif.), is performed with a transcript-specific antisense probe.
[0206] This probe is specific for the PCR product (e.g. a nucleic acid fragment derived from a gene, or in this case, from a pre-miRNA) and is prepared with a quencher and fluorescent reporter probe attached to the 5' end of the oligonucleotide. Different fluorescent markers are attached to different reporters, allowing for measurement of at least two products in one reaction.
[0207] When Taq DNA polymerase is activated, it cleaves off the fluorescent reporters of the probe bound to the template by virtue of its 5-to-3' exonuclease activity. In the absence of the quenchers, the reporters now fluoresce. The color change in the reporters is proportional to the amount of each specific product and is measured by a fluorometer; therefore, the amount of each color is measured and the PCR product is quantified. The PCR reactions can be performed in any solid support, for example, slides, microplates, 96 well plates, 384 well plates and the like so that samples derived from many individuals are processed and measured simultaneously. The TaqMan.RTM. system has the additional advantage of not requiring gel electrophoresis and allows for quantification when used with a standard curve.
[0208] A second technique useful for detecting PCR products quantitatively without is to use an intercalating dye such as the commercially available QuantiTect SYBR Green PCR (Qiagen, Valencia Calif.).
[0209] RT-PCR is performed using SYBR green as a fluorescent label which is incorporated into the PCR product during the PCR stage and produces fluorescence proportional to the amount of PCR product.
[0210] Both TaqMan.RTM. and QuantiTect SYBR systems can be used subsequent to reverse transcription of RNA. Reverse transcription can either be performed in the same reaction mixture as the PCR step (one-step protocol) or reverse transcription can be performed first prior to amplification utilizing PCR (two-step protocol).
[0211] Additionally, other known systems to quantitatively measure mRNA expression products include Molecular Beacons.RTM. which uses a probe having a fluorescent molecule and a quencher molecule, the probe capable of forming a hairpin structure such that when in the hairpin form, the fluorescence molecule is quenched, and when hybridized, the fluorescence increases giving a quantitative measurement of gene expression.
[0212] According to this embodiment, the detecting molecule may be in the form of probe corresponding and thereby hybridizing to any region or part of the biomarker genes or any control reference gene. More particularly, it is important to choose regions which will permit hybridization to the target nucleic acids. Factors such as the Tm of the oligonucleotide, the percent GC content, the degree of secondary structure and the length of nucleic acid are important factors.
[0213] It should be further noted that a standard Northern blot assay can also be used to ascertain an RNA transcript size and the relative amounts of the biomarker genes or any control gene product, in accordance with conventional Northern hybridization techniques known to those persons of ordinary skill in the art.
[0214] The invention further contemplates the use of amino acid based molecules such as proteins or polypeptides as detecting molecules disclosed herein and would be known by a person skilled in the art to measure the protein products of the marker genes of the invention. Techniques known to persons skilled in the art (for example, techniques such as Western Blotting, Immunoprecipitation, ELISAs, protein microarray analysis, Flow cytometry and the like) can then be used to measure the level of protein products corresponding to the biomarker of the invention. As would be understood to a person skilled in the art, the measure of the level of expression of the protein products of the biomarker of the invention requires a protein, which specifically and/or selectively binds to the biomarker genes of the invention.
[0215] As indicated above, the detecting molecules of the invention may be amino acid based molecules that may be referred to as protein/s or polypeptide/s. As used herein, the terms "protein" and "polypeptide" are used interchangeably to refer to a chain of amino acids linked together by peptide bonds. In a specific embodiment, a protein is composed of less than 200, less than 175, less than 150, less than 125, less than 100, less than 50, less than 45, less than 40, less than 35, less than 30, less than 25, less than 20, less than 15, less than 10, or less than 5 amino acids linked together by peptide bonds. In another embodiment, a protein is composed of at least 200, at least 250, at least 300, at least 350, at least 400, at least 450, at least 500 or more amino acids linked together by peptide bonds. It should be noted that peptide bond as described herein is a covalent amid bond formed between two amino acid residues.
[0216] In specific embodiments, the detecting amino acid molecules are isolated antibodies, with specific binding selectively to the proteins encoded by the biomarker genes as detailed above. Using these antibodies, the level of expression of proteins encoded by the genes may be determined using an immunoassay which is selected from the group consisting of FACS, a Western blot, an ELISA, a RIA, a slot blot, a dot blot, immunohistochemical assay and a radio-imaging assay.
[0217] In yet other specific embodiments, the method of the invention may use any sample. In more specific embodiment, such sample may be any one of peripheral blood mononuclear cells and biopsies of organs or tissues.
[0218] It should be noted that any of the detecting molecules used by the methods, compositions and kits of the invention are isolated and purified. Still further, it must be understood that any of the detecting molecules (for example, primers and/or probes) or reagents used by the compositions, kits, arrays and in any step of the methods of the invention are non-naturally occurring products or compounds, As such, none of the detecting molecules of the invention are directed to naturally occurring compounds or products.
[0219] According to certain embodiments, the sample examined by the method of the invention may be any one of peripheral blood mononuclear cells and biopsies of organs or tissues.
[0220] Still further, according to certain embodiments, the method of the invention uses any appropriate biological sample. The term "biological sample" in the present specification and claims is meant to include samples obtained from a mammal subject.
[0221] It should be recognized that in certain embodiments a biological sample may be for example, bone marrow, lymph fluid, blood cells, blood, serum, plasma, urine, sputum, saliva, faeces, semen, spinal fluid or CSF, the external secretions of the skin, respiratory, intestinal, and genitourinary tracts, tears, milk, any human organ or tissue, any sample obtained by lavage, optionally of the breast ducal system, plural effusion, sample of in vitro or ex vivo cell culture and cell culture constituents. More specific embodiments, the sample may be any one of peripheral blood mononuclear cells and biopsies of organs or tissues.
[0222] According to an embodiment of the invention, the sample is a cell sample. More specifically, the cell is a blood cell (e.g., white blood cells, macrophages, B- and T-lymphocytes, monocytes, neutrophiles, eosinophiles, and basophiles) which can be obtained using a syringe needle from a vein of the subject. It should be noted that the cell may be isolated from the subject (e.g., for in vitro detection) or may optionally comprise a cell that has not been physically removed from the subject (e.g., in vivo detection).
[0223] According to a specific embodiment, the sample used by the method of the invention is a sample of peripheral blood mononuclear cells (PBMCs).
[0224] The phrase, "peripheral blood mononuclear cells (PBMCs)" as used herein, refers to a mixture of monocytes and lymphocytes. Several methods for isolating white blood cells are known in the art. For example, PBMCs can be isolated from whole blood samples using density gradient centrifugation procedures. Typically, anticoagulated whole blood is layered over the separating medium. At the end of the centrifugation step, the following layers are visually observed from top to bottom: plasma/platelets, PBMCs, separating medium and erythrocytes/granulocytes. The PBMC layer is then removed and washed to remove contaminants (e.g., red blood cells) prior to determining the expression level of the polynucleotide (s) bio-markers of the invention.
[0225] In yet another embodiment, the sample may be a biopsy of human organs or tissue, specifically, liver biopsy.
[0226] According to some embodiments, the sample may be biopsies of organs or tissues. The biopsies may be obtained by a surgical operation from an organ or tissue of interest, for example liver biopsy, cerebrospinal fluid (CSF), brain biopsy, skin biopsy.
[0227] The term biopsy used herein refers to a medical test commonly performed by a surgeon or an interventional radiologist involving sampling of cells or tissues for examination. It is the medical removal of tissue from a living subject to determine the presence or extent of a disease. The tissue is generally examined under a microscope by a pathologist, and can also be analyzed chemically. When an entire lump or suspicious area is removed, the procedure is called an excisional biopsy. When only a sample of tissue is removed with preservation of the histological architecture of the tissue's cells, the procedure is called an incisional biopsy or core biopsy. When a sample of tissue or fluid is removed with a needle in such a way that cells are removed without preserving the histological architecture of the tissue cells, the procedure is called a needle aspiration biopsy.
[0228] According to some embodiments of the invention, the cell is a liver cell.
[0229] It should be noted that liver cells (hepatic cell) can be obtained by a liver biopsy (e.g., using a surgical tool or a needle). It should be noted that certain embodiments of the invention contemplate the use of different biological samples.
[0230] According to certain embodiments, the method of the invention may be specifically suitable for optimizing personalized treatment regimen for a subject suffering from an immune-related disorder.
[0231] It should be noted that an "Immune-related disorder" is a condition that is associated with the immune system of a subject, either through activation or inhibition of the immune system, or that can be treated, prevented or diagnosed by targeting a certain component of the immune response in a subject, such as the adaptive or innate immune response.
[0232] In more specific embodiments, the immune-related disorder may be any one of an infectious condition, autoimmune disease and a proliferative disorder.
[0233] It should be appreciated that the method of the invention may be applicable for determining the appropriate treatment regimen for a specific individual affected with any disorder, for example, any disorder caused by any pathogenic agent. Pathogenic agents include prokaryotic microorganisms, lower eukaryotic microorganisms, complex eukaryotic organisms, viruses, fungi, prions, parasites, yeasts, toxins and venoms.
[0234] A prokaryotic microorganism includes bacteria such as Gram positive, Gram negative and Gram variable bacteria and intracellular bacteria. Examples of bacteria contemplated herein include the species of the genera Treponema sp., Borrelia sp., Neisseria sp., Legionella sp., Bordetella sp., Escherichia sp., Salmonella sp., Shigella sp., Klebsiella sp., Yersinia sp., Vibrio sp., Hemophilus sp., Rickettsia sp., Chlamydia sp., Mycoplasma sp., Staphylococcus sp., Streptococcus sp., Bacillus sp., Clostridium sp., Corynebacterium sp., Proprionibacterium sp., Mycobacterium sp., Ureaplasma sp. and Listeria sp.
[0235] Particular species include Treponema pallidum, Borrelia burgdorferi, Neisseria gonorrhea, Neisseria meningitidis, Legionella pneumophila, Bordetella pertussis, Escherichia coli, Salmonella typhi, Salmonella typhimurium, Shigella dysenteriae, Klebsiella pneumoniae, Yersinia pestis, Vibrio cholerae, Hemophilus influenzae, Rickettsia rickettsii, Chlamydia trachomatis, Mycoplasma pneumoniae, Staphylococcus aureus, Streptococcus pneumoniae, Streptococcus pyogenes, Bacillus anthracis, Clostridium botulinum, Clostridium tetani, Clostridium perfringens, Corynebacterium diphtheriae, Proprionibacterium acnes, Mycobacterium tuberculosis, Mycobacterium leprae and Listeria monocytogenes.
[0236] A lower eukaryotic organism includes a yeast or fungus such as but not limited to Pneumocystis carinii, Candida albicans, Aspergillus, Histoplasma capsulatum, Blastomyces dermatitidis, Cryptococcus neoformans, Trichophyton and Microsporum.
[0237] A complex eukaryotic organism includes worms, insects, arachnids, nematodes, aemobe, Entamoeba histolytica, Giardia lamblia, Trichomonas vaginalis, Trypanosoma brucei gambiense, Trypanosoma cruzi, Balantidium coli, Toxoplasma gondii, Cryptosporidium or Leishmania.
[0238] The term "fungi" includes for example, fungi that cause diseases such as ringworm, histoplasmosis, blastomycosis, aspergillosis, cryptococcosis, sporotrichosis, coccidioidomycosis, paracoccidio-idoinycosis, and candidiasis.
[0239] The term parasite includes, but not limited to, infections caused by somatic tapeworms, blood flukes, tissue roundworms, ameba, and Plasmodium, Trypanosoma, Leishmania, and Toxoplasma species.
[0240] The term "viruses" is used in its broadest sense to include viruses of the families adenoviruses, papovaviruses, herpesviruses: simplex, varicella-zoster, Epstein-Barr, CMV, pox viruses: smallpox, vaccinia, hepatitis B, rhinoviruses, hepatitis A, poliovirus, rubella virus, hepatitis C, arboviruses, rabies virus, influenza viruses A and B, flaviviruses, measles virus, mumps virus, HIV, HTLV I and II.
[0241] As shown by the following Examples, the method of the invention may be particularly useful for optimizing treatment for HCV infected subjects. Therefore, the method of the invention may be used for optimizing treatment in subjects suffering from viral infections, for example, Hepatitis C virus infection (type 1, 2, 3 or 4), or HCV or influenza infections.
[0242] According to a particular embodiment, the subject is suffering from an infectious condition caused by hepatitis C virus (HCV).
[0243] As used herein the term "HCV" refers to hepatitis C virus having genotype 1 (also known as HCV Type 1), genotype 2 (also known as HCV Type 2), genotype 3 (also known as HCV Type 3), genotype 4 (also known as HCV Type 4), genotype 5 (also known as HCV Type 5) or genotype 6 (also known as HCV Type 6).
[0244] The phrase "HCV infection" encompasses acute (refers to the first 6 months after infection) and chronic (refers to infection with hepatitis C virus which persists more than 6 month) infection with the hepatitis C virus. Thus, according to some embodiments of the invention, the subject is diagnosed with chronic HCV infection.
[0245] According to some embodiments of the invention, the subject is infected with HCV type 1. According to some embodiments of the invention, the subject is infected with HCV type 2, 3 or 4. More specifically, Hepatitis C virus (HCV or sometimes HVC) is a small (55-65 nm in size), enveloped, positive-sense single-stranded RNA virus of the family Flaviviridae and as indicated herein, is the cause of hepatitis C in humans. The hepatitis C virus particle consists of a core of RNA, surrounded by an icosahedral protective shell of protein, and further encased in a lipid (fatty) envelope of cellular origin. The Hepatitis C virus has a positive sense single-stranded RNA genome consisting of a single open reading frame that is 9600 nucleotide bases long.
[0246] Hepatitis C is an infectious disease affecting primarily the liver, is caused by the hepatitis C virus (HCV). The infection is often asymptomatic, but chronic infection can lead to scarring of the liver and ultimately to cirrhosis, which is generally apparent after many years. In some cases, those with cirrhosis will go on to develop liver failure, liver cancer, or life-threatening esophageal and gastric varices. The invention in some embodiments thereof provides methods, kits and compositions for predicting responsiveness of HCV patients to treatment, specifically, interferon.
[0247] Still further, in certain embodiments the method of the invention may be particularly suitable for optimizing treatment regimen for subjects suffering from an infectious condition caused by any one of HCV, dengue virus, influenza, poliovirus, HIV (human immuno deficiency virus), West Nile virus (WNV) infection and Middle East respiratory syndrome coronavirus (MERS-CoV).
[0248] According to some particular embodiments, the subject may be a subject suffering from an infectious condition caused by a CMV (cytomegalovirus). In more specific embodiments, the virus may be Human cytomegalovirus (HCMV). CMV belongs to the Herpesviridae family that may be also referred to herein as herpesviruses. HCMV may be also referred to as Human herpesvirus 5 (HHV-5). HCMV infections are frequently associated with the salivary glands. HCMV infection is typically unnoticed in healthy people, but can be life-threatening for the immunocompromised, such as HIV-infected persons, organ transplant recipients, or new born infants. It should be therefore appreciated that the method if the invention may be applicable for determining treatment regimen also for subjects infected by CMV.
[0249] A subset of immune-mediated diseases is known as autoimmune diseases. As used herein autoimmune diseases arise from an inappropriate immune response of the body against substances and tissues normally present in the body. In other words, the immune system mistakes some part of the body as a pathogen and attacks its own cells. This may be restricted to certain organs (e.g. in autoimmune thyroiditis) or involve a particular tissue in different places (e.g. Goodpasture's disease which may affect the basement membrane in both the lung and the kidney). Autoimmune disease are categorized by Witebsky's postulates (first formulated by Ernst Witebsky and colleagues in 1957) and include (i) direct evidence from transfer of pathogenic antibody or pathogenic T cells, (ii) indirect evidence based on reproduction of the autoimmune disease in experimental animals and (iii) circumstantial evidence from clinical clues. The treatment of autoimmune diseases is typically done by compounds that decrease the immune response.
[0250] Non-limiting examples for autoimmune disorders include Multiple Sclerosis (MS), inflammatory arthritis. rheumatoid arthritis (RA), Eaton-Lambert syndrome, Goodpasture's syndrome, Greave's disease, Guillain-Barr syndrome, autoimmune hemolytic anemia (AIHA), hepatitis, insulin-dependent diabetes mellitus (IDDM) and NIDDM, systemic lupus erythematosus (SLE), myasthenia gravis, plexus disorders e.g. acute brachial neuritis, polyglandular deficiency syndrome, primary biliary cirrhosis, rheumatoid arthritis, scleroderma, thrombocytopenia, thyroiditis e.g. Hashimoto's disease, Sjogren's syndrome, allergic purpura, psoriasis, mixed connective tissue disease, polymyositis, dermatomyositis, vasculitis, polyarteritis nodosa, arthritis, alopecia areata, polymyalgia rheumatica, Wegener's granulomatosis, Reiter's syndrome, Behget's syndrome, ankylosing spondylitis, pemphigus, bullous pemphigoid, dermatitis herpetiformis, inflammatory bowel disease, ulcerative colitis and Crohn's disease and fatty liver disease.
[0251] In yet another embodiment, the subject is suffering from Multiple sclerosis (MS).
[0252] Thus, in more specific embodiment, the method of the invention may be particularly useful for optimizing treatment, specifically, interferon treatment for a subject suffering from an autoimmune disorder, specifically, Multiple sclerosis (MS).
[0253] As used herein the phrase "multiple sclerosis" (abbreviated MS, formerly known as disseminated sclerosis or encephalomyelitis disseminata) is a chronic, inflammatory, demyelinating disease that affects the central nervous system (CNS). Disease onset usually occurs in young adults, is more common in women, and has a prevalence that ranges between 2 and 150 per 100,000 depending on the country or specific population.
[0254] MS is characterized by presence of at least two neurological attacks affecting the central nervous system (CNS) and accompanied by demyelinating lesions on brain magnetic resonance imaging (MRI). MS takes several forms, with new symptoms occurring either in discrete episodes (relapsing forms) or slowly accumulating over time (progressive forms). Most people are first diagnosed with relapsing-remitting MS (RRMS) but develop secondary-progressive MS (SPMS) after a number of years. Between episodes or attacks, symptoms may go away completely, but permanent neurological problems often persist, especially as the disease advances.
[0255] Relapsing-remitting multiple sclerosis (RRMS) occurring in 85 percent of the patients and a progressive multiple sclerosis occurring in 15 percent of the patients.
[0256] According to some embodiments of the invention, the method of the invention may be particularly applicable for subjects diagnosed with RRMS, where early diagnosis of relapse may improve the treatment.
[0257] In certain embodiments, the methods of the invention may be also useful for determining and optimizing treatment regimen for subjects suffering from Rehumatoid arthritis (RA). It should be appreciated that there are different forms of arthritis that may be generally grouped into two main categories, inflammatory arthritis, and degenerative arthritis, each with different causes. Therefore, according to one specific embodiments the method of the invention may be specifically applicable for inflammatory arthritis. It should be noted that inflammatory arthritis is characterized by synovitis, bone erosions, osteopenia, soft-tissue swelling, and uniform joint space narrowing. More specifically, the hallmarks of joint inflammation are synovitis and erosion of bone. The latter will initially appear as a focal discontinuity of the thin, white, subchondral bone plate. Normally, this subchondral bone plate can be seen even in cases of severe osteopenia, whereas its discontinuity indicates erosion. Still further, the method of the invention may be applicable for determining the most effective personally tailored treatment regimen for a subject suffering from a malignant disorder.
[0258] As used herein to describe the present invention, "cancer", "tumor" and "malignancy" all relate equivalently to a hyperplasia of a tissue or organ. If the tissue is a part of the lymphatic or immune systems, malignant cells may include non-solid tumors of circulating cells. Malignancies of other tissues or organs may produce solid tumors. In general, the methods of the present invention may be applicable for non-solid and solid tumors.
[0259] Malignancy, as contemplated in the present invention may be selected from the group consisting of carcinomas, melanomas, lymphomas and sarcomas. Malignancies that may find utility in the present invention can comprise but are not limited to hematological malignancies (including leukemia, lymphoma and myeloproliferative disorders), hypoplastic and aplastic anemia (both virally induced and idiopathic), myelodysplastic syndromes, all types of paraneoplastic syndromes (both immune mediated and idiopathic) and solid tumors (including lung, liver, breast, colon, prostate GI tract, pancreas and Karposi). More particularly, the malignant disorder may be hepaotcellular carcinoma, colon cancer, melanoma, myeloma, acute or chronic leukemia.
[0260] In certain embodiments, the methods of the invention may be also useful for determining and optimizing treatment regimen for subjects suffering from a proliferative disorder, specifically a cancer, even in cases the medicament is used only as an adjuvant treatment for cell therapy. More specifically, the methods and kits of the invention may be used for optimizing interferon treatment regimen in cases that interferon is being used as an adjuvant for cell therapy, for example in melanoma patients.
[0261] It should be noted that in certain embodiments, were the method of the invention uses an induced dynamic approach for determining the M value of the tested individual, an immuno-stimulant suitable for such method may be any one of a synthetic double stranded RNA (poly ICLC), yellow fever (YF) vaccine 17D (YF17D), TLR stimulants such as double-strand RNA or GC.
[0262] In some specific embodiments, Poly ICLC as used herein is an immunostimulant comprising a synthetic complex of carboxymethylcellulose, polyinosinic-polycytidylic acid, and poly-L-lysine double-stranded RNA. Poly ICLC may stimulate the release of cytotoxic cytokines and induce interferon-gamma production.
[0263] A further aspect of the invention relates to a kit for determining and optimizing a personalized treatment regimen for a subject suffering from a pathologic disorder.
[0264] In certain embodiments, such kit may comprise elements required for performing any of the methods described above. More specifically, such kit may comprise:
[0265] (a) detecting molecules specific for determining the level of expression of at least one of ISG15, IFIT1-5, OAS1-3L, HERC5, USP18, IFIT2, RSAD2, ISIT1, MX1, IFIT3, IFI44L, OASL, OAS1, OAS2, OAS3, DIX5B, UBE1L, UBE2L6, IFI27, IFIH1, TLR7, IRF7 and IFI6 genes in a biological sample.
[0266] The kit of the invention further comprises (b), means for calculating the M value of a tested subject. As noted above, the M value indicates the ability of said subject to eliminate said disorder.
[0267] The Kit of the invention further comprises (c) means for calculating the value of M1 or a standard M1 value calculated for a responder population. As indicated above, the M1 value indicates the minimal ability, or specifically, the optimal M1 value required for a successful elimination of the disorder.
[0268] Finally, the kit of the invention comprises (d) means for calculating the dose A and number B of administrations of said dose A to obtain an amount C of said medicament required for said subject.
[0269] According to some specific embodiments, means for calculating the value of M comprised within the kit of the invention should enable determination of the M value by any of the different approaches mentioned by the invention. More specifically, the kit of the invention may comprise at least one of:
[0270] (I) means for performing static analysis for measuring the individual's M value, comprising:
[0271] (Ia) detecting molecules specific for determining the level of expression of ISG15, IFIT1, IFIT2, IFIT3, IFIT5, OAS1, OAS2, OAS3, OASL, HERC5, USP18, RSAD2, MX1, IFI44L, DDX58, UBE1L, UBE2L6, IFI27, IFIH1, TLR7, IRF7 and IFI6 genes in a biological sample for determining an expression value Ex.sub.samp in said sample;
[0272] (Ib) a standard curve, specifically, a predetermined standard curve of expression values of subjects suffering from the same pathologic disorder. Alternatively, the kit of the invention may comprise predetermined values, specifically, maximal expression value Ex.sub.max and a minimal expression value Ex.sub.min calculated from such standard curve. In yet another embodiment, the kit of the invention may comprise control samples of at least one individual having a Ex.sub.max expression value and at least one individual having an Ex.sub.min expression value; and
[0273] (Ic) a formula for calculating M value, more specifically, such formula is M=[(Ex.sub.samp-Ex.sub.min)/(Ex.sub.max-Ex.sub.min]. It should be further noted that the kit of the invention may further comprise instructions for determining the expression of any one of the marker genes used by the invention. Moreover, the kit of the invention may further comprise instructions for calculating the required values from the standard curve as well as instructions for calculating the M value using the formula provided.
[0274] In yet another alternative or additional embodiment, the kit of the invention may comprise means for performing an induced dynamic analysis (II). It should be noted that such analysis should be performed on healthy individuals. In more specific embodiments, such means comprise:
[0275] (IIa) detecting molecules specific for determining the level of expression of ISG15, IFIT1, IFIT2, IFIT3, IFIT5, OAS1, OAS2, OAS3, OASL, HERC5, USP18, RSAD2, MX1, IFI44L, DDX58, UBE1L, UBE2L6, IFI27, IFIH1, TLR7, IRF7 and IFI6 genes in a biological sample for determining an expression value Ex.sub.samp in the tested sample before and after stimulation of the subject (or in case of in vitro stimulation of a sample of said subject) with an immuno-stimulant. The kit of the invention further comprises means for calculating the rate of change RC.sub.samp in the expression value Ex.sub.samp of the sample before and after stimulation;
[0276] (IIb) an immuno-stimulant;
[0277] (IIc) a standard curve, specifically, predetermined standard curve of the rate of change in the expression of at least one of ISG15, IFIT1, IFIT2, IFIT3, IFIT5, OAS1, OAS2, OAS3, OASL, HERC5, USP18, RSAD2, MX1, IFI44L, DDX58, UBE1L, UBE2L6, IFI27, IFIH1, TLR7, IRF7 and IFI6 genes (and optionally of STAT1, IFI44, EIF2AK2 and DHX58 genes) in subjects (specifically, healthy subjects) treated with said immuno-stimulant. Alternatively, the kit of the invention may comprise predetermined maximal rate of change value RC.sub.max and a minimal rate of change RC.sub.min value calculated from such standard curve; and
[0278] (IId) the kit further comprises a formula for calculating said M value. Such formula is M=[(RC.sub.samp-RC.sub.min)/(RC.sub.max-RC.sub.min>]. The kit of the invention further comprises instructions for determining the expression of any one of the marker genes used by the invention. Moreover, the kit of the invention may further comprise instructions for calculating the required values from the standard curve as well as instructions for calculating the M value using the formula provided.
[0279] In yet another embodiment, the kit of the invention may comprise means for a dynamic analysis (III) comprising:
[0280] (IIIa) detecting molecules specific for determining the level of expression of ISG15, IFIT1, IFIT2, IFIT3, IFIT5, OAS1, OAS2, OAS3, OASL, HERC5, USP18, RSAD2, MX1, IFI44L, DDX58, UBE1L, UBE2L6, IFI27, IFIH1, TLR7, IRF7 and IFI6 genes (and optionally of STAT1, IFI44, EIF2AK2 and DHX58 genes) in a biological sample for determining an expression value Ex.sub.samp in the examined sample before and after treatment of the tested subject with said specific medicament, and for calculating the rate of change RC.sub.samp in the expression value Ex.sub.samp of the tested sample.
[0281] The kit of the invention further comprises (IIb) a standard curve, specifically, predetermined standard curve of the rate of change in the expression of at least one of ISG15, IFIT1, IFIT2, IFIT3, IFIT5, OAS1, OAS2, OAS3, OASL, HERC5, USP18, RSAD2, MX1, IFI44L, DDX58, UBE1L, UBE2L6, IFI27, IFIH1, TLR7, IRF7 and IFI6 (and optionally of STAT1, IFI44, EIF2AK2 and DHX58 genes) genes in subjects suffering from the same disorder and treated with the same medicament. Alternatively, the kit of the invention may comprise predetermined maximal rate of change value RC.sub.max and minimal rate of change value RC.sub.min calculated from such standard curve; and
[0282] The kit of the invention further comprises (IIc) a formula for calculating the M value/More specifically, such formula is M=[(RC.sub.samp-RC.sub.min)/(RC.sub.max-RC.sub.min)].
[0283] It should be further noted that the kit of the invention may further comprise instructions for determining the expression of any one of the marker genes used by the invention. Moreover, the kit of the invention may further comprise instructions for calculating the required values from the standard curve as well as instructions for calculating the M value using the formula provided.
[0284] According to certain embodiments, means for calculating the value of M1 comprised within the kit of the invention may comprise:
[0285] (a) a standard curve, specifically, predetermined K value of the specific disorder;
[0286] (b) a formula for calculating said M1 value. More specifically, such formula is M1>1-(1/k).
[0287] In yet another embodiment, the kit of the invention comprises means for calculating the dose A and number B of administrations of said dose A to obtain an amount C of said medicament required for said subject. It should be note that these means include for example, a predetermined dose A1 and predetermined number B1 of administrations of said dose to obtain a predetermined amount C1 of said medicament required for eliminating said disorder in subjects having a value of M that is equal or above said M1 value. These means further comprise the formulas A=A1/(M1/M) and B=B1*(M1/M); that are required for calculating the dose required for the tested subject.
[0288] According to some embodiments, the kit of the invention may be specifically practiced using 4 or 5 marker genes. More specifically, in some embodiments, the kit of the invention may comprise detecting molecule specific for determining the expression value of OAS2, HERC5, UPS18, UBE216 and optionally of ISG15 genes. In some embodiments, the kit of the invention may comprise detecting molecules specific for OAS2, HERC5, UPS18 and UBE216. In yet further embodiments, the kit of the invention may comprise detecting molecules specific for OAS2, HERC5, UPS18, UBE216 and ISG15 genes.
[0289] According to one specific embodiment, the kit of the invention comprises detecting molecules that are isolated oligonucleotides, each oligonucleotide specifically hybridize to a nucleic acid sequence of at least one of genes and optionally, to a control reference gene. More specifically, such detecting molecules may be at least one of pair of primer/s at least one primer, and/or nucleotide probes.
[0290] According to specific embodiments, the kit of the invention may further comprise at least one reagent for conducting a nucleic acid amplification based assay selected from the group consisting of a Real-Time PCR, micro arrays, PCR, in situ Hybridization and Comparative Genomic Hybridization.
[0291] According to some specific embodiments, the kit of the invention may be specifically suitable for determining and optimizing a personalized interferon treatment regimen for a subject suffering from a pathologic disorder.
[0292] In more specific embodiments, the detecting molecules comprised within the kit of the invention are selected from isolated detecting nucleic acid molecules and isolated detecting amino acid molecules.
[0293] In more specific embodiments, such nucleic acid detecting molecule comprises isolated oligonucleotides, each oligonucleotide specifically hybridizes to a nucleic acid sequence of said at least one of ISG15, IFIT1, IFIT2, IFIT3, IFIT5, OAS1, OAS2, OAS3, OASL, HERC5, USP18, RSAD2, MX1, IFI44L, DDX58, UBE1L, UBE2L6, IFI27, IFIH1, TLR7, IRF7 and IFI6 genes (and optionally of STAT1, IFI44, EIF2AK2 and DHX58 genes) and optionally, to a control reference gene.
[0294] Still further, such detecting molecule may be at least one of a pair of primers or nucleotide probes.
[0295] In one embodiment, the polynucleotide-based detection molecules of the invention may be in the form of nucleic acid probes which can be spotted onto an array to measure RNA from the sample of a subject to be diagnosed.
[0296] As defined herein, a "nucleic acid array" refers to a plurality of nucleic acids (or "nucleic acid members"), optionally attached to a support where each of the nucleic acid members is attached to a support in a unique pre-selected and defined region. These nucleic acid sequences are used herein as detecting nucleic acid molecules. In one embodiment, the nucleic acid member attached to the surface of the support is DNA. In a preferred embodiment, the nucleic acid member attached to the surface of the support is either cDNA or oligonucleotides. In another embodiment, the nucleic acid member attached to the surface of the support is cDNA synthesized by polymerase chain reaction (PCR). In another embodiment, a "nucleic acid array" refers to a plurality of unique nucleic acid detecting molecules attached to nitrocellulose or other membranes used in Southern and/or Northern blotting techniques. For oligonucleotide-based arrays, the selection of oligonucleotides corresponding to the gene of interest which are useful as probes is well understood in the art.
[0297] As indicated above, assay based on micro array or RT-PCR may involve attaching or spotting of the probes in a solid support. As used herein, the terms "attaching" and "spotting" refer to a process of depositing a nucleic acid onto a substrate to form a nucleic acid array such that the nucleic acid is stably bound to the substrate via covalent bonds, hydrogen bonds or ionic interactions.
[0298] As used herein, "stably associated" or "stably bound" refers to a nucleic acid that is stably bound to a solid substrate to form an array via covalent bonds, hydrogen bonds or ionic interactions such that the nucleic acid retains its unique pre-selected position relative to all other nucleic acids that are stably associated with an array, or to all other pre-selected regions on the solid substrate under conditions in which an array is typically analyzed (i.e., during one or more steps of hybridization, washes, and/or scanning, etc.).
[0299] As used herein, "substrate" or "support" or "solid support", when referring to an array, refers to a material having a rigid or semi-rigid surface. The support may be biological, non-biological, organic, inorganic, or a combination of any of these, existing as particles, strands, precipitates, gels, sheets, tubing, spheres, beads, containers, capillaries, pads, slices, films, plates, slides, chips, etc. Often, the substrate is a silicon or glass surface, (poly)tetrafluoroethylene, (poly) vinylidendifmoride, polystyrene, polycarbonate, a charged membrane, such as nylon or nitrocellulose, or combinations thereof. Preferably, at least one surface of the substrate will be substantially flat. The support may optionally contain reactive groups, including, but not limited to, carboxyl, amino, hydroxyl, thiol, and the like. In one embodiment, the support may be optically transparent. As noted above, the solid support may include polymers, such as polystyrene, agarose, sepharose, cellulose, glass, glass beads and magnetizable particles of cellulose or other polymers. The solid-support can be in the form of large or small beads, chips or particles, tubes, plates, or other forms.
[0300] The method of the invention may be used for personalized medicine, namely adjusting and customizing healthcare with decisions and practices being suitable to the individual patient by use of genetic information and any additional information collected at different stages of the disease.
[0301] According to specific embodiments, the biological sample may be a blood sample. Specifically, the biological sample is a sample of peripheral blood mononuclear cells (PBMCs). The kit of the invention may therefore optionally comprise suitable mans for obtaining said sample. More specifically, for using the kit of the invention, one must first obtain samples from the tested subjects. To do so, means for obtaining such samples may be required. Such means for obtaining a sample from the mammalian subject can be by any means for obtaining a sample from the subject known in the art. Examples for obtaining e.g. blood or bone marrow samples are known in the art and could be any kind of finger or skin prick or lancet based device, which basically pierces the skin and results in a drop of blood being released from the skin. In addition, aspirating or biopsy needles may be also used for obtaining spleen lymph nodes tissue samples. Samples may of course be taken from any other living tissue, or body secretions comprising viable cells, such as biopsies, saliva or even urine.
[0302] The inventors consider the kit of the invention in compartmental form. It should be therefore noted that the detecting molecules used for detecting the expression levels of the biomarker genes may be provided in a kit attached to an array. As defined herein, a "detecting molecule array" refers to a plurality of detection molecules that may be nucleic acids based or protein based detecting molecules (specifically, probes, primers and antibodies), optionally attached to a support where each of the detecting molecules is attached to a support in a unique pre-selected and defined region.
[0303] For example, an array may contain different detecting molecules, such as specific antibodies or primers. As indicated herein before, in case a combined detection of the biomarker genes expression level, the different detecting molecules for each target may be spatially arranged in a predetermined and separated location in an array. For example, an array may be a plurality of vessels (test tubes), plates, micro-wells in a micro-plate, each containing different detecting molecules, specifically, probes, primers and antibodies, against polypeptides encoded by the marker genes used by the invention. An array may also be any solid support holding in distinct regions (dots, lines, columns) different and known, predetermined detecting molecules.
[0304] As used herein, "solid support" is defined as any surface to which molecules may be attached through either covalent or non-covalent bonds. Thus, useful solid supports include solid and semi-solid matrixes, such as aero gels and hydro gels, resins, beads, biochips (including thin film coated biochips), micro fluidic chip, a silicon chip, multi-well plates (also referred to as microtiter plates or microplates), membranes, filters, conducting and no conducting metals, glass (including microscope slides) and magnetic supports. More specific examples of useful solid supports include silica gels, polymeric membranes, particles, derivative plastic films, glass beads, cotton, plastic beads, alumina gels, polysaccharides such as Sepharose, nylon, latex bead, magnetic bead, paramagnetic bead, super paramagnetic bead, starch and the like. This also includes, but is not limited to, microsphere particles such as Lumavidin.TM.. Or LS-beads, magnetic beads, charged paper, Langmuir-Blodgett films, functionalized glass, germanium, silicon, PTFE, polystyrene, gallium arsenide, gold, and silver. Any other material known in the art that is capable of having functional groups such as amino, carboxyl, thiol or hydroxyl incorporated on its surface, is also contemplated. This includes surfaces with any topology, including, but not limited to, spherical surfaces and grooved surfaces.
[0305] It should be further appreciated that any of the reagents, substances or ingredients included in any of the methods and kits of the invention may be provided as reagents embedded, linked, connected, attached, placed or fused to any of the solid support materials described above.
[0306] According to other embodiments, the kit of the invention may be suitable for examining samples such as peripheral blood mononuclear cells and biopsies of organs or tissues.
[0307] According to some embodiments, the kit of the invention is specifically suitable for optimizing a treatment regimen for subjects suffering from an immune-related disorder.
[0308] In more specific embodiments, such immune-related disorder may be any one of an infectious condition, an autoimmune disease, and a proliferative disorder.
[0309] In certain embodiments, the kit of the invention is suitable for optimizing treatment regimen to a subject suffering from an infectious condition caused by any one of HCV, dengue virus, influenza, poliovirus, HIV (human immune-deficiency virus) and West Nile virus (WNV) infection.
[0310] In yet other embodiments, the kit of the invention may be suitable for optimizing treatment regimen for a subject suffering from Multiple sclerosis (MS).
[0311] In yet other embodiments, the kit of the invention may be suitable for optimizing treatment regimen for a subject suffering from Rheumatoid Arthritis (RA).
[0312] In more specific embodiments, were the kit of the invention comprises means for determining the M value using the induced dynamic approach, the kit of the invention may comprises at least one immuno-stimulant that may be any one of a synthetic double stranded RNA (poly ICLC), yellow fever (YF) vaccine 17D (YF17D).
[0313] In yet a further aspect, the invention provides a computer software product for determining and optimizing a personalized treatment regimen for a subject suffering from a pathologic disorder. Such product comprising a computer readable medium in which program instructions are stored, which instructions, when read by a computer, cause the computer to:
[0314] (a) calculate and determine the value of M that indicates the ability of said subject to eliminate said disorder;
[0315] (b) determine the value of M1, that indicates the minimal ability required for eliminating said disorder.
[0316] (c) calculate the dose A and number B of administrations of said dose A to obtain an amount C required for said subject having said M determined/calculated in step (a), from predetermined dose A1 and number B1 of administrations of said dose, using the formula of A=A1/(M1/M) and B=B1*(M1/M).
[0317] Still further, it must be understood that in certain embodiments, the invention further provides a prognostic composition comprising (a) detecting molecules specific for determining the level of expression of ISG15, IFIT1, IFIT2, IFIT3, IFIT5, OAS1, OAS2, OAS3, OASL, HERC5, USP18, RSAD2, MX1, IFI44L, DDX58, UBE1L, UBE2L6, IFI27, IFIH1, TLR7, IRF7 and IFI6 genes (and optionally of STAT1, IFI44, EIF2AK2 and DHX58 genes) and (b) a biological sample. In certain embodiments, the biological sample may be obtained from the subject that is to be prognosed. In some embodiments, the sample may be a control sample, as discussed herein before. In an optional embodiment, the detecting molecules may be attached to a solid support. As such, the composition of the invention may be specifically suitable for performing any of the prognostic methods disclosed by the invention.
[0318] As used herein, "disease", "disorder", "condition" and the like, as they relate to a subject's health, are used interchangeably and have meanings ascribed to each and all of such terms.
[0319] The present invention relates to the treatment of subjects, or patients, in need thereof. By "patient", "individual" or "subject in need" it is meant any organism who may be affected by the above-mentioned conditions, and to whom the treatment and diagnosis methods herein described is desired, including humans. More specifically, the composition of the invention is intended for mammals. By "mammalian subject" is meant any mammal for which the proposed therapy is desired, including human, equine, canine, and feline subjects, most specifically humans.
[0320] It should be noted that specifically in cases of non-human subjects, the method of the invention may be performed using administration via injection, drinking water, feed, spraying, oral gavages and directly into the digestive tract of subjects in need thereof.
[0321] The term "treatment or prevention" refers to the complete range of therapeutically positive effects of administrating to a subject including inhibition, reduction of, alleviation of, and relief from, a condition known to be treated with interferon, for example an immune-related disorder as detailed herein. More specifically, treatment or prevention of relapse or recurrence of the disease includes the prevention or postponement of development of the disease, prevention or postponement of development of symptoms and/or a reduction in the severity of such symptoms that will or are expected to develop. These further include ameliorating existing symptoms, preventing-additional symptoms and ameliorating or preventing the underlying metabolic causes of symptoms. It should be appreciated that the terms "inhibition", "moderation", "reduction" or "attenuation" as referred to herein, relate to the retardation, restraining or reduction of a process by any one of about 1% to 99.9%, specifically, about 1% to about 5%, about 5% to 10%, about 10% to 15%, about 15% to 20%, about 20% to 25%, about 25% to 30%, about 30% to 35%, about 35% to 40%, about 40% to 45%, about 45% to 50%, about 50% to 55%, about 55% to 60%, about 60% to 65%, about 65% to 70%, about 75% to 80%, about 80% to 85% about 85% to 90%, about 90% to 95%, about 95% to 99%, or about 99% to 99.9%.
[0322] With regards to the above, it is to be understood that, where provided, percentage values such as, for example, 10%, 50%, 120%, 500%, etc., are interchangeable with "fold change" values, i.e., 0.1, 0.5, 1.2, 5, etc., respectively.
[0323] All scientific and technical terms used herein have meanings commonly used in the art unless otherwise specified. The definitions provided herein are to facilitate understanding of certain terms used frequently herein and are not meant to limit the scope of the present disclosure.
[0324] As used herein the term "about" refers to 10% The terms "comprises", "comprising", "includes", "including", "having" and their conjugates mean "including but not limited to". The term "consisting essentially of" means that the composition, method or structure may include additional ingredients, steps and/or parts, but only if the additional ingredients, steps and/or parts do not materially alter the basic and novel characteristics of the claimed composition, method or structure.
[0325] The term "about" as used herein indicates values that may deviate up to 1%, more specifically 5%, more specifically 10%, more specifically 15%, and in some cases up to 20% higher or lower than the value referred to, the deviation range including integer values, and, if applicable, non-integer values as well, constituting a continuous range.
[0326] As used herein the term "about" refers to 10%. The terms "comprises", "comprising", "includes", "including", "having" and their conjugates mean "including but not limited to". This term encompasses the terms "consisting of" and "consisting essentially of". The phrase "consisting essentially of" means that the composition or method may include additional ingredients and/or steps, but only if the additional ingredients and/or steps do not materially alter the basic and novel characteristics of the claimed composition or method. Throughout this specification and the Examples and claims which follow, unless the context requires otherwise, the word "comprise", and variations such as "comprises" and "comprising", will be understood to imply the inclusion of a stated integer or step or group of integers or steps but not the exclusion of any other integer or step or group of integers or steps.
[0327] As used herein the term "method" refers to manners, means, techniques and procedures for accomplishing a given task including, but not limited to, those manners, means, techniques and procedures either known to, or readily developed from known manners, means, techniques and procedures by practitioners of the chemical, pharmacological, biological, biochemical and medical arts.
[0328] The term "about" as used herein indicates values that may deviate up to 1 percent, more specifically 5 percent, more specifically 10 percent, more specifically 15 percent, and in some cases up to 20 percent higher or lower than the value referred to, the deviation range including integer values, and, if applicable, non-integer values as well, constituting a continuous range.
[0329] It must be noted that, as used in this specification and the appended claims, the singular forms "a", "an" and "the" include plural referents unless the content clearly dictates otherwise.
EXAMPLES
Experimental Procedures
[0330] The expression levels of the genes of interest were obtained from publicly available data bases [http://www.ncbi.nlm.nih.gov/geo/] using the following Gene Expression Omnibus Accession Nos:
[0331] Gene Expression Omnibus Accession No. GSE30719 (described in Example 2A) describes genetic data from retinal pigment epithelial (RPE) infected with immunopathogenic West Nile virus (WNV). RNA was extracted after 24 hours and analyzed using Affymetrix arrays.
[0332] Gene Expression Omnibus Accession No. GSE18816 (described in Example 2B) describes peripheral-blood leucocytes that were separated from buffy coats of three healthy blood donors and were differentiated for 14 days before use. Differentiated macrophages infected with H1N1 and H5N1 viruses at a multiplicity of infection (MOD of two were analyzed. Total RNA was extracted from cells after 1, 3, and 6h post-infection, and the gene expression profiling was performed using an Affymetrix Human Gene 1.0 ST microarray platform.
[0333] Gene Expression Omnibus Accession No. GSE13052 (described in Example 2C) describes studies from whole blood transcriptional profiles of children infected 4 days with dengue virus with different clinical outcomes. The tested subjects included 9 acute dengue shock samples, 9 acute uncomplicated dengue samples, 6 autologous follow up dengue samples and 6 autologous follow up uncomplicated dengue patients. Microarray data was normalized using Gene spring GX7 software, statistical analysis was performed in Multiexperiment viewer software. Pathway analysis was performed using Ingenuity Pathway analysis online software.
[0334] Gene Expression Omnibus Accession No. GSE17183 (described in Example 3A) provides data from liver biopsy from 30 patients before and one week after starting combination therapy with IFN+Rib. Hepatocytes and liver-infiltrating lymphocytes (LILs) were obtained from 12 patients using laser capture micro dissection (LCM).
[0335] Gene Expression Omnibus Accession No. GSE16214 (described in Example 3B) provides data from PBMC samples that were collected from relapsing-remitting MS subjects and CIS subjects. The first time point was chosen for each subject with multiple measurements based on an at least three months of treatment criteria. We thereafter analyzed the data for each treatment category.
[0336] Gene Expression Omnibus Accession No. GSE 5549 (described in Example 3C) provides gene expression microarrays data obtained from embryonic fibroblast cell line was synchronously infected with poliovirus in the absence or presence of interferon-.alpha., or with vacciniavirus, a virus that is not inhibited by interferon. The cells were incubated for 1 h with either poliovirus or vacciniavirus, washed and incubated for another 4 to 16 h. Total RNA from three parallel cell cultures were used for each time point and compared with mock infected cells.
[0337] Gene Expression Omnibus Accession No. Gene Expression Omnibus Accession No. GSE15245 (described in Example 4)
[0338] Gene Expression Omnibus Accession No. GSE 37107 and GEO 42296, disclosed gene profiling of RA patients treated with RTX or infliximab, respectively (described in Example 5).
[0339] Gene Expression Omnibus Accession No. GSE18464 provides gene expression data of CD 14+ monocytes isolated from 55 subjects, 22 with HIV HVL, 22 with HIV LVL and 11 HIV seronegative controls (described in Example 6).
[0340] Gene Expression Omnibus Accession No. GSE27248 provides gene expression of Ferrets (3 ferrets in each group) immunized with different adjuvant human seasonal vaccines of CFA plus vaccine, CpG plus vaccine, pegylated IFN-alpha plus vaccine and vaccine alone (PBS plus vaccine) (described in Example 7).
[0341] Gene Expression Omnibus Accession No. GSE31518, GSE31471 and GSE31472 (described in Example 10) provide gene expression data obtained at 2, 4, 6, 8 and 10 hours post infection of three different host cell lines (A549, MDCK and CEF) with three different Influenza A virus strains, pH1N1 (A/Singapore/478/2009), H9N2 and H5N2.
[0342] Gene Expression Omnibus Accession No. GSE52428 (described in Example 10) provide gene expression data obtained from microarrays assay of peripheral blood at baseline and every 8 hours for 7 days following intranasal influenza A H1N1 or H3N2 inoculation in healthy volunteers.
[0343] Gene Expression Omnibus Accession No. GSE838 (described in Example 8A) provides gene expression data in peripheral blood leukocytes (PBL) from normal individuals sampled multiple times over periods ranging from several weeks up to 6 months.
[0344] Gene Expression Omnibus Accession No. GSE3649 (described in Example 8B) provides data of variation in gene expression patterns in the blood of healthy individuals, by using cDNA microarrays.
[0345] Gene Expression Omnibus Accession No. GSE32862 (described in Example 9) provides data from synthetic double stranded RNA that induces innate immunity similar to a live viral vaccine in humans.
[0346] The innate immune response in humans to synthetic double stranded RNA (poly ICLC), a ligand for TLR3 and MDA-5 cytosolic RNA helicase was studied. Transcriptional analysis of blood samples from eight volunteers, after subcutaneous administration of poly ICLC were obtained and analyzed.
[0347] Gene Expression Omnibus Accession No. GSE13699 (described in Example 9) provides data of the immune response to the yellow fever vaccine 17D.
[0348] The data was downloaded from the each one of these selected Gene Expression Omnibus Accession and was analyzed using custom programs written in MATLAB.
[0349] Specifically, after verifying normalization of data (such as RMA quantile on Affymetrix arrays) and averaging multiple probes per gene, MATLAB mattest is carried out with permutations to calculate pvals. In brief, mattest perform two-sample t-test to evaluate differential expression of genes from two experimental conditions or phenotypes.
Example 1
[0350] A Mathematical Model for Determining a Treatment Regimen
[0351] The model developed in here is based on a biological situation in which an animal cell is being infected with a virus having a multiplicity rate K. The cell may be subjected to additional viruses penetrating the cytoplasm by a rate P. The viral infection is reduced or terminated at a rate of M (A person's M is considered to be from 0 to 1. For example, a value of M=0.5 means half of existing viruses will be destroyed).
[0352] The viral infection may be terminated by the immune system of a subject that upon infection is induced and thus capable of destroying the virus by itself with no external therapy. Alternately, the viral infection may be terminated by injection of an appropriate treatment for example with IFN that leads to distraction of the virus. After the IFN effect is diminished, infection may occur again.
[0353] The following set of equations was designed generally to describe the above situation:
[0354] The period at which the cell is being infected with a virus starts at time X(N-1) and ends at time X(N), the virus load at both time points should be therefore described as follows:
X(N).dbd.X(N-1)*K+P*X(N-1);
[0355] The period at which the virus is destroyed either by the immune system, by administration of treatment for example interferon or combination of both starts at time (N) and ends at time (N+1). The virus load (X) at the start point X(N) and the end time point X(N+1) is described as follows:
X(N+1)=X(N)-M*X(N);
[0356] As shown above, the virus load at a certain time point depends on the ability of said individual to eliminate and reduce said virus, as reflected by the M value. The following equations were used in MATLAB for simulation purposes.
[0357] FIG. 1 [based on schematics from Sadler A J. et al. Nature Reviews Immunology 8:559-568 (July 2008)], shows a schematic representation of such a model at a cellular level and emphasizes the ongoing balance between invading virus that is multiplying in the cytoplasm at a rate K and the effect of defending genes that are participating and assisting to diminish the virus. As detailed above, these genes are regulated either by the immune response, external treatment or combination of the two.
[0358] FIG. 2 shows simulations of the above model equations by assuming the following: P=0 (namely, no additional virus from neighboring cells is penetrating to the cell) and K=2 (namely, the virus population doubles itself. The value of M was varied throughout the simulation from 0 to 1. The results in FIG. 2 show the virus amount (virus load) as a function of the rate of M during time. As can be seen at lower M values of 0.04 to 0.48, the virus is capable of multiplying and hence the disease is progressing, as the immune system is not succeeding in elimination thereof. The effect of M is observed as follows: upon increasing the value of M for example from 0.04 to 0.36, the amount of virus is reduced, indicating that that the viral load is reduced to some extend as a function of M. Increasing M to a value higher than 0.6 shows that the viral load is reduced, namely the disease is eliminated. This may indicate that the immune system is succeeding in stopping the virus.
[0359] The simulation shown in FIG. 2, shows that a person having at least an M value of 0.6 will reach this limit using 12 shots (3 month), or he can reach this limit with 4 shots if he has M greater than 0.8. On the x axis the peaks represent IFN cycles assuming they are given once a week.
[0360] The model clearly shows that X(0) the initial load, has no impact on response rate as setting the initial load of the virus to different values does not change the curves, namely there is a dependency only on the relations between M and K, specifically, the ability of the individual and the virulence of the pathogen.
[0361] FIG. 3 shown similar simulations, however, in this simulation the virus is simulated to multiply faster and k is set to 3. The results show that the response curves for the different M's in this new situation are different (FIG. 3). For example, the virus amount is reduced at a large M value of about 0.68. In other words, for eliminating more virulent viruses, a larger M is required.
[0362] The assumption for P=0 is based on virological consideration for example once the virus penetrates the cell penetrations of other viruses from the exterior are blocked.
[0363] These two simulation results can be interpreted as follows:
[0364] First--assuming that an individual is infected with a virus, initially the immune system responds to this infection in an attempt to destroy the virus. The virus is multiplied by a rate K and the immune system of the tested subject may be viewed as a component having the rate M. The "decision" or determination if a person will be able to fight the viral infection on its own depends on the interplay between M and K as shown in FIGS. 2 and 3. The simulation using different M values may be viewed as a heterogeneous population having varying immune system capabilities.
[0365] Second--assuming that an individual is infected with a virus and is being treated with an anti viral treatment directed to distraction of the virus. The virus is multiplied by a rate K and the antiviral treatment may be viewed as a component having the rate M. The interplay between M and K as shown in FIGS. 2 and 3 may be used for determining if a person will cure from the viral infection using the treatment. The simulation with different M values may be viewed as different treatments regimens (dosing and timing), or a heterogeneous population having varying response to treatment (possibly because of immune response) or combinations of the two. In such a situation, the time unit (X-axis) may be considered as the number of treatment administrations (for example injections) to be used.
[0366] The clinical implications of this model suggest that if an intrinsic M of an individual can be measured, it may be possible to precisely predict if an individual will be able to use its own immune system to fight, eradicate and/or eliminate a viral infection (assuming K is known). This model may be further used to predict if an individual is a responder or non responder to treatment with a specific therapeutic agent, for example, IFN treatment. This can be used to predict the outcome of the response, namely what will be the viral amount (viral load) at the end of the treatment and as such, may help in determining the required dosage regimen accordingly. Moreover, this model may be used for calculating and determining the rate of the elevation in the M value required for eliminating of a specific virus having a specific K rate in a specific viral load. Such elevation of M may be achieved by designing an appropriate treatment regimen.
[0367] For example, a person that is characterized by having a M value of 0.6 is being administered with IFN in order to treat a viral infection of a virus that has a K value of 2 (namely, doubles itself every week), will need 12 injections to reach one tenth of his initial load. The results may also serve for prediction of the interval time between treatments, namely, if the time between the injections is shortened from a week to 3 days, an individual may reach the targeted virus load in half the time.
[0368] As known in the art, occasionally infectious disease/s are also treated with a new generation of compounds known as Protease Inhibitors (PI), or with a combination of interferon with any "new generation" drug. Thus, the model incorporates a further possibility that after a subject is being infected with a virus, interferon is administered together with a Protease Inhibitor.
[0369] In such a case the virus is in fact affected by interferon and the protease inhibitors, reflected by M1. Accordingly, the equation
X(N+1)=X(N)-M*X(N);
is now represented as:
X(N+1)=X(N)-M*X(N)-M1*X(N);
[0370] FIG. 4 shows a simulation of a situation with K of 2, P of 0 and M is 0.44. In such case, the tuning should be M1 greater than 0.3 to shift an original non-responder person having a basic rate of M=0.44 to a responder. In fact, having a value of M1 of 0.14 seems to be sufficient to be considered as a responder.
[0371] Turning to FIG. 2, a person with M=0.44 being infected with a virus of k=2 and assume D p=0, seems not to recover from the infection. However, the use of the correct M1 value that may be achieved in this case using combined treatment with Protease Inhibitors might help as seen in FIG. 4.
[0372] M may be considered as a result of the amount of IFN genes that are released upon infection and/or upon treatment (such as for example ISG15, HERC5, USP18, OAS2, OAS 3, OASL, IFI44L). Thus, in case treatment includes PI, the M1 value is added to the value of M that may be now considered as a total amount required for eliminating existing viruses. Similarly, the methods of the invention provide any specific regimen of treatment, being personally adapted to achieve the required M1 value in a person having a particular M value that is required to achieve the desired result of virus elimination, or elimination of any of the disease symptoms.
[0373] The following examples provide results obtained from statistical analysis of data base information and are aimed at showing the importance of combining genetic data from different groups of individuals, and uses thereof in determining a suitable Taylor-made treatment for each individual. Specifically, the inventor has used data from healthy individuals, healthy individuals after stimulation of the immune system, individuals infected with different types of viruses (having different lethality potential) and patients treated with appropriate treatments. The complete data presented in the Examples below provide a comprehensive analysis and a unique understanding on a representative arsenal of genes and the degree to which each gene can be up regulated.
[0374] Moreover, the data presented herein clearly indicate that the value of M is an individual value for each subject and determination thereof (prior to the occurrence of any pathologic disorder), may reflect the ability of a given subject to overcome pathologic disorders, specifically, viral infections. Furthermore, predetermination of such characterizing M value for each individual enables determination, optimization and fine tuning of treatment regimen specifically suitable and effective for such individual.
Example 2
[0375] Gene Profiling after Viral Infections
[0376] The purpose of this example was to find a minimal representative set of genes that are regulated after infection and that measuring their expression will enable determination of the capability of an individual to overcome a viral infection. More specifically, a set of genes enabling the determination of the specific M value of a given individual.
Example 2A
[0377] Genes Expression in West Nile Virus (WNV) Infected RPE
[0378] FIG. 5 shows a representation of genes, each depicted by a different point, such that each point represents the ratio of the specific gene between its expression 24 hours after infection and its base line value. Each point corresponds to an average value of the ratio of the specific gene calculated for all the tested individuals. Each gene (point) is assigned with a value along the X axis that corresponds to the regulation fold (either up regulation or down regulation) and with a value along the Y axis corresponding to the significant of the regulation. Thus, this analysis provides a quantitative indication for the dominating genes that are regulated in infected individuals with respect to a baseline level determined before infection.
[0379] The analysis was obtained by averaging all probes per gene analyzed using volcano analysis on their RMA affymetrix normalized data, at 24h post infection.
[0380] The results indicate that in individuals who were infected with the virus, a high number of genes were up regulated. Specifically, IFIT1-5, OAS1-3L, ISG15, HERC5, USP18 and triggering genes like TLR3, IFIH1, DDX58(RIG-I)
Example 2B
[0381] Gene Expression in Macrophages Infected with H1N1 and H5N1 Viruses
[0382] As appreciated, human disease caused by highly pathogenic avian influenza (HPAI) H5N1 can lead to a rapidly progressive viral pneumonia leading to acute respiratory distress syndrome.
[0383] Table 1 shows a list of genes that were found to be up regulated 6 hours post infection in the more challenging H5N1 compare to H1N1. FIG. 6 is a volcano plot showing the genes that are up regulated six hours post infection with both viruses.
[0384] As shown in Table 1 and FIG. 6, the group of genes including the ISG15, HERC5, USP18, OAS, IFIT and IFI44 show an enhanced up regulation pattern after infection with H5N1.
[0385] As can be seen, the degree of up regulation for each gene is increased after infection with H5N1 compared to H1N1.
[0386] These results suggest that an increased immune response is provided by the host upon infection with H5N1 that is considered more lethal. This enhanced host response may be mediated for example by IFIH1 (MDA5) and DDX58 (RIG-I) gene products.
TABLE-US-00001 TABLE 1 IFN Genes up regulated in the more challenging H5N1 compare to H1N1 at 6 hours post infection. Gene Name Fold Change LAMP3 2.019927 OASL 1.740487 HERC5 1.66951 IFNA13///IFNA1 1.605767 RSAD2 1.257327 ISG15 1.22565 DDX58 1.22122 IFIT1 1.173913 IFIH1 1.141153 IFNA8 1.098233 IFIT2 0.884427 DHX58 0.843863 IFIT3 0.7848 IFI44 0.77259 OAS2 0.745073 USP41///USP18 0.739487 IFIT5 0.722987 MX1 0.65857
Example 2C
[0387] Gene expression in whole blood transcriptional profiles of children infected 4 days with dengue virus Genetic expression from blood obtained from children infected with dengue virus (dengue fever) that developed to dengue shock syndrome (DSS) was compared to well-matched patients with uncomplicated dengue.
[0388] FIG. 7 is a volcano plot showing the group of genes that are regulated for children presenting with dengue shock syndrome (DSS) and well-matched patients with uncomplicated dengue. The plot shows uncomplicated vs. DSS.
[0389] The genes include ISG15, HERC5, UBE2L6, USP18, OAS, IFIT, and IFI44. These results show that this set of genes is regulated to protect the host from the infection. Without being bound by any theory, the inventors suggest that this is mediated by IFIH1 (MDA5), DDX58 (RIG-I) and TLR7.
[0390] Taken together the results shown in all the individuals infected with different viruses having different lethality potential, that a representative set of genes that is being unregulated. The set of genes include for example IFIT2, RSAD2, ISIT1, HERC5, MX1, IFIT3, IFI44L, OASL, OAS1, OAS2, OAS3, DDX58, DHX58, ISG15, USP18, and UBE2L.
[0391] These genes that are involved in innate immunity may be used as an indicator for the ability of a specific individual to eliminate that pathologic disorder.
Example 3
[0392] Gene Profiling after Interferon Treatment
Example 3A
[0393] Gene Analysis in HCV Patients Treated with Interferon
[0394] The differential genetic expression in liver biopsies of responders and non-responders HCV patients after combined therapy is shown in FIG. 8. Specifically, the left hand side shows the ratio of expression level of genes in responders vs. non-responders at day 0 (namely, before treatment), whereas the right hand side shows the results obtained after one week following treatment of IFN and RBV. The results provide a representative set of genes having a low expression value before treatment in patients who are referred to as responders. One week after treatment, these genes were clearly up regulated in the responders group.
[0395] A non-limiting example is the results of ISG15 expression as specifically shown in Table 2. The initial ISG15 expression level in responders is low compared to non-responders. As shown by the Table, a week after treatment, a clear elevation in the expression of said gene appears in the responder group, whereas the non-responders show a clear reduction. Based on these results it may be suggested that the expression level of this gene in responders is close to its saturation level, and therefore interferon cannot induce elevation in the expression of these genes.
[0396] The same results were obtained for HERC5, USP18, OAS, IFIT and IFI44.
TABLE-US-00002 TABLE 2 Expression level of ISG15 in biopsies of ten responders and ten non-responders HCV patients before treatment and after one week of IFN and Rib treatment. non responders responders log2 expression before IFN 9.016884851 7.682601881 log2 change after 1 week of 0.399427605 2.694511557 treatment
[0397] The results obtained here are in accordance with previous results shown in International Patent Application WO10076788 that is a previous application by the inventor, which describes five signature genes that are up regulated before interferon treatment in patients that are considered non-responders to interferon treatment. Thus, based on the expression of the five signature genes before treatment, one can assess the probability to respond to treatment.
[0398] These finding were also repeated in additional data sets. Chen et al which gene expression from tissue taken from HCV patients before treatment in Gene Expression Omnibus Accession No. GSE 11190 provides data on tissue before and 4 hours after IFN injection. The same behavior as explained here was shown in these data sets.
Example 3B
[0399] MS Patients Treated with Interferon
[0400] Analysis of a cohort of 90 patients from PBMC samples of relapsing-remitting MS subjects and Clinically Isolated Demyelinating Syndrome (CIS) subjects.
[0401] Samples were selected at the first time point for each subject with multiple measurements based on an at least three months of treatment criteria Data was obtained Gene Expression Omnibus Accession No. GSE16214.
[0402] Both the volcano (FIG. 9) and the dynamic analysis disclosed in FIGS. 10A and 10B show the same observation of the determination of available dynamic range to predict the outcome of the treatment.
[0403] The volcano plot in FIG. 9 shows the genes are up regulated following treatment with IFN .beta. compared to not-treated patients.
[0404] FIGS. 10A and 10B show the level of genes expression in MS patients before and after three month of treatment, respectively. The expression level of the genes is lower in most patients before treatment. Specifically, about 70 patients show low levels of expression and only about 20 patients show higher levels of expression (FIG. 10A). After treatment, as shown in FIG. 10B, patients who had a low gene expression before treatment (namely patients 1 to 70), show an increased expression after treatment, whereas those patients who had a high gene expression before treatment (namely patients 71 to 90), show a reduced expression after treatment.
[0405] The patients exhibiting an increase in the expression level may be considered as responders whereas the patients showing a decrease in the expression level or lack of elevation, may be considered as non-responders.
Example 3C
[0406] Gene Analysis in Poliovirus Infected Cells and Treated with Interferon
[0407] A human embryonic fibroblast cell line was synchronously infected with poliovirus in the absence or presence of interferon-.alpha., or with vaccinia virus, a virus that is not inhibited by interferon. The samples were washed and incubated for another 4 to 16 h. Total RNA from three parallel cell cultures were used for each time point and compared with mock infected cells.
[0408] Interferon-alpha, at a concentration sufficient to inhibit poliovirus replication, was used to define genes that might be involved in viral defense.
[0409] Analysis of GSE 5549 database shows that the top genes of the Interferon are up regulated when Embryonic cells are injected with IFN (Table 3 shown 16h following injection), and Table 4, shows the elevation of gene expression at 16 hr after IFN was added to culture infected with polio virus (Table 4). Tables 3 and 4 show data from Grinde B, et al. (2007).
TABLE-US-00003 TABLE 3 HE cells, interferon, Name of gene 16 h Interferon. alpha-inducible protein (clone IFI-15K) 5.11 Interferon. alpha-inducible protein (clone IFI-6-16) 3.09 Major histocompatibility complex. class I. C 2.71 Interferon induced transmembrane protein 2 (1-8D) 2.63 H300000271 2.6 Lymphocyte antigen 6 complex. locus E 2.56 HLA class I histocompatibility antigen. A-3 alpha 2.55 chain precursor (MHC class I antigen A*3). [Source: Uniprot/SWISSPROT:Acc:P04439] Signal transducer and activator of transcription 2.483333 1. 91kDa Interferon-induced protein 44-like 2.45 Major histocompatibility complex. class I. B 2.4 Interferon-induced protein with tetratricopeptide 2.29 repeats 3 Tripartite motif-containing 22 2.2 HLA-G histocompatibility antigen. class I. G 2.145 Ubiquitin-conjugating enzyme E2L 6 2.14 HLA class I histocompatibility antigen. alpha 2.136667 chain G precursor (HLA G antigen). [Source: Uniprot/SWISSPROT:Acc:P17693] Major histocompatibility complex. class I. F 2.12 Beta-2-microglobulin 2.08 HLA class I histocompatibility antigen. B-7 alpha 2.05 chain precursor (MHC class I antigen B*7). [Source: Uniprot/SWISSPROT:Acc:P01889] Bone marrow stromal cell antigen 2 2.02 Epithelial stromal interaction 1 (breast) 2.01 2'.5'-oligoadenylate synthetase 1. 40/46kDa 1.98
TABLE-US-00004 TABLE 4 HE cells, interferon + poliovirus, Name of gene 16h Interferon, alpha-inducible protein (clone IFI-15K) 4.91 Interferon, alpha-inducible protein (clone IFI-6-16) 2.89 Major histocompatibility complex. class I. C 2.8 Major histocompatibility complex. class I. C 2.73 Interferon induced transmembrane protein 2 (1-8D) 2.71 Interferon-induced protein 44-like 2.7 Signal transducer and activator of transcription 2.6 1. 91kDa Major histocompatibility complex. class I. C 2.58 Major histocompatibility complex. class I. B 2.47 Signal transducer and activator of transcription 2.44 1. 91kDa Major histocompatibility complex. class I. A 2.43 H300000271 2.38 HLA class I histocompatibility antigen. B-7 alpha 2.37 chain precursor (MHC class I antigen B*7). [Source: Uniprot/SWISSPROT:Acc:P01889] major histocompatibility complex. class I. B 2.35 2'.5'-oligoadenylate synthetase 1. 40/46kDa 2.29 Interferon-induced protein with tetratricopeptide 2.28 repeats 3 Signal transducer and activator of transcription 1. 2.26 91kDa HLA class I histocompatibility antigen. A-3 alpha 2.25 chain precursor (MHC class I antigen A*3). [Source: Uniprot/SWISSPROT:Acc:P04439] HLA-G histocompatibility antigen. class I. G 2.19 Tripartite motif-containing 22 2.18 HLA-G histocompatibility antigen. class I. G 2.16 Beta-2-microglobulin 2.15 Ubiquitin-conjugating enzyme E2L 6 2.15
[0410] The results show that a set of genes can be detected in all the studied cases regardless of the viral origin, namely the set is reproducible and universal. In this connection, the M value, that reflects the ability of the specific individual to eliminate the disease symptoms (viral infection, for example), can be considered as a phenotype.
[0411] Taken together the results shown above suggest that there is a dynamic range for each gene that controls the extent to which a gene can be up regulated and down regulated. This dynamic range of a given gene is required and accordingly the protein encoded by said gene is recruited by the host for eliminating a variety of viral infections. For example, the more pathogenic virus H5N1 compared to H1N1, dengue virus in children and western Nile virus. This dynamic range varies between people as evident from the differences between responders and non responders and from the differences between people that mange to fight viral infection on their own and those who do not. The results presented herein clearly suggested that M as defined in the model above is a phenotypic properties of a specific individual.
Example 4
[0412] Inverse Correlation Between the Expression of the Genes of the Invention and Relapse in MS Patients
[0413] The inventors used gene expression data of Gene Expression Omnibus Accession No. GSE15245, to determine whether the expression of the genes of the invention, namely, USP18, IFI44, MX1, IFI44L, OAS3, HERC5 and RSAD2, can distinguish between MS patients experiencing relapse and patients that respond to interferon treatment and therefore do not experience relapse. As shown in FIG. 11, sum of the expression values of these genes was inversely correlated with relapse rate of fifty MS patients. More specifically, patients 27 to 50 that displayed low initial expression level of the genes of the invention, showed no relapse, whereas patients exhibiting high expression level of the genes of the invention showed enhanced relapse rate.
[0414] The inventors have further analyzed data obtained from GSE5574 that provides gene expression data of MS patients treated with Avonex (0-interferon once a week). The expression of the ISG15, UPS18, UBE2L6 and HERC5 genes of the invention was examined before and during treatment (6 points including 2 reading naive prior to treatment, 2 readings 24 hr following first treatment, 2 readings 6 month following treatment and a week after last IFNB Avonex treatment. The expression level was compared with the following clinical parameters, wherein nonresponsive patients experienced clinical exacerbations including optic neuritis and ataxia requiring steroid treatment, none of the other patients reported any progression of symptoms during the course of the study. The non-responsive patients could not elevate the expression of the genes of the invention (data not shown). Therefore, follow-up of the expression of the signatory genes of the invention during treatment reflects the responsiveness of the patient.
Example 5
[0415] Determination of Treatment Regimen in Rheumatoid Arthritis (RA) Patients
[0416] B cell depletion therapy, for example, by using Rituximab, a chimeric monoclonal antibody against the protein CD20 which is primarily found on the surface of immune system B cells, is efficacious in rheumatoid arthritis (RA) patients that do not respond to tumor necrosis factor (TNF) blocking agents. However, approximately 40% to 50% of rituximab (RTX) treated RA patients display a poor response. The inventors therefore next explored the possibility of using the method of the invention as a tool for determining an appropriate treatment regimen for RA patients. More specifically, the invention provides for any specific individual, a molecular tool to determine whether a RTX treatment is appropriate, or alternatively, treatment with TNF blockers, such as Infliximab (INN; trade name Remicade), that is a chimeric monoclonal antibody specific for tumor necrosis factor alpha (TNF-.alpha.), may be more appropriate. Therefore, the inventors analyzed gene expression data provided by GSE 37107 and GEO 42296 that disclosed gene profiling of RA patients treated with RTX or infliximab, respectively.
[0417] More specifically, Gene Expression Omnibus Accession No. GSE 37107 provides expression profiling data of on whole peripheral blood RNA obtained from 14 RA patients treated with RTX. Expression data of 6 non responders were compared to 8 responders. Responsiveness has been determined 6 months after treatment, using disease activity score (.DELTA.DAS28<1.2) and European League against Rheumatism (EULAR). The samples were obtained and examined prior to treatment.
[0418] Gene Expression Omnibus Accession No. GEO 42296 provides expression profiling data of whole peripheral blood RNA obtained from 29 individuals treated with infliximab and compares the gene expression profiling of 13 non-responders with 6 responders. The samples were obtained and examined prior to treatment.
[0419] The inventors have found that the genes presented in Table 5, are common to both groups and are differentially expressed in the RTX and the infliximab treatment. More specifically, the genes of Table 5, were found to be up-regulated in infliximab responders and down regulated in non-responders. In contrast, the very same genes were found to be down-regulated RTX responders, and up-regulated in RTX non-responders.
[0420] FIG. 12 illustrates the differential expression as calculated from the sum of the common genes, indicating that an individual displaying a high initial expression of these genes will benefit infliximab treatment, whereas an individual displaying a low initial level of expression of these genes will benefit RTX treatment.
TABLE-US-00005 TABLE 5 common signatory genes MXI IFITM3 IFI44L HERC5 IFI44 IFI6 OAS1 OAS3 RSAD2 IFIT1 IFIT3 DDX58
Example 6
[0421] Inverse Correlation Between the Expression of the Signatory Genes of the Invention and Responsiveness to HARRT Treatment of HIV Infected Patient
[0422] To examine whether the signatory genes of the invention may have a predictive value on further viral infections and treatment of patients with other therapeutic agents, The inventors next examined whether the signatory genes of the invention, namely, IFI27, ISG15, IFIH1, IFI44L, OAS2, DDX58, IFIT1 and IFI6, may correlate with responsiveness of HIV infected patients to HAART treatment. More specifically, HIV infected patients that were treated with highly active antiviral therapies (HAART) that is a combination of multiple drugs that act on different viral targets, as reflected by the reduction in virus load.
[0423] The inventors used gene expression data of Gene Expression Omnibus Accession No. GSE18464 that provides gene expression data of high-density cDNA microarrays was performed on CD 14+ monocytes isolated from 55 subjects, 22 with HIV HVL, 22 with HIV LVL and 11 HIV seronegative controls. The examined patients were evaluated for virus load. The categorization of high or low viral load was based on clinical criteria with LVL <10,000 RNA copies/ml and HVL as >10,000 RNA copies/ml. Subjects in the study were males between 30 and 66 years of age and the cohort was comprised of white (62%), black (19%), Hispanic (12%), Asian (4%) and other (3%) individuals. At the time of the study individuals in the LVL group were on highly active antiretroviral therapies (HAART), while subjects with HVL fell into one of three categories: on HAART (15); scheduled treatment interruption (6) or HAART naive (1).
[0424] FIG. 13 presents the correlation between reduced virus load of the HIV patients and the initial expression of the genes of the invention in all 44 examined patients. As shown by the figure, a low expression rate of the genes of the invention is associated with a low virus load that reflects responsiveness to HAART treatment in patients 22-44 (that are the LVL group).
Example 7
[0425] In Vivo Adjuvant Activity in Ferrets Vaccinated Against Influenza Virus
[0426] To examine whether the signatory genes of the invention may be applicable for prediction of responsiveness in other mammals, the gene expression profile of Ferrets vaccinated against influenza virus was next analyzed. The inventors used gene expression data of Gene Expression Omnibus Accession No. GSE27248 that provides gene expression of Ferrets (3 ferrets in each group) immunized with different adjuvant human seasonal vaccines of CFA plus vaccine, CpG plus vaccine, pegylated IFN-alpha plus vaccine and vaccine alone (PBS plus vaccine). The control group comprised 4 ferrets received PBS only. The whole blood was collected for RNA extraction and subsequent gene expression analysis was performed with Affymetrix GeneChip Canine Genome 2.0 Array. The inventors analyzed the expression of the genes of the invention ISG15, HERC5, USP18 and UBE2L6, in all experimental groups. As shown in FIG. 14, a clear correlation of elevated expression of the genes of the invention is exhibited in response to treatment with CpG adjuvant. It should be noted that CpG clearly enhanced activation and antibody production, indicating that dynamic analysis of the expression of the genes of the invention may serve as a tool for evaluating successful treatment.
Example 8
[0427] Genetic Data Obtained from Healthy Populations
[0428] The purpose of these examples was to study variations of gene expression in peripheral blood leukocytes of healthy individuals and thus to obtain an individual specific finger printing.
Example 8A
[0429] PBL Samples of Healthy Individuals
[0430] The data used herein was obtained from peripheral blood leukocytes (PBL) of normal individuals sampled multiple times over periods ranging from several weeks up to 6 months. The genetic data obtained after the first reading for each individual was clustered using k-mean clustering algorithm. FIG. 15 shows the clustering results of the tested individuals, as can be seen, the genes that are clustered within one group include for example ISG15, HERC5, USP18 OAS and IFIT and their triggering elements RIG-I and DDX60. The expression of these genes is correlated and changes together in healthy individuals between high and low levels of expression.
[0431] The close ties between these genes can be better appreciated by looking at Table 5 showing the measured correlation to each of these genes.
TABLE-US-00006 TABLE 6 correlation between ISG15 and all other genes p-value Column # Column ID r correlation Lower CI Upper CI N 3694 FLJ11354 0.930123 5.11E-07 0.79815 0.976917 15 8622 MX1 0.925057 7.95E-07 0.784585 0.9752 15 7251 KPTN 0.92249 9.83E-07 0.777762 0.974328 15 1522 cig5 0.919924 1.21E-06 0.770975 0.973454 15 5764 IFIT4 0.917704 1.43E-06 0.76513 0.972697 15 12247 TREX1 0.903768 3.83E-06 0.72901 0.967918 15 2307 DKFZp434J0310 0.893967 7.02E-06 0.704176 0.964529 15 12478 USP18 0.893168 7.36E-06 0.702173 0.964252 15 8030 LY6E 0.891366 8.17E-06 0.697663 0.963625 15 6185 KIAA0082 0.887221 1.03E-05 0.687348 0.962182 15 5763 IFIT1 0.884509 1.20E-05 0.680644 0.961236 15 924 BST2 0.883635 1.25E-05 0.67849 0.960931 15 12390 UBE2L6 0.882725 1.31E-05 0.67625 0.960612 15 9071 OAS1 0.871427 2.32E-05 0.648773 0.956645 15 7574 LOC51191 0.870744 2.40E-05 0.647129 0.956404 15 9942 PRKR 0.868662 2.65E-05 0.642136 0.955669 15 8572 MTAP44 0.86321 3.40E-05 0.629145 0.95374 15 5758 IFI27 0.860744 3.80E-05 0.623314 0.952865 15 4966 GS3686 0.855596 4.75E-05 0.611221 0.951032 15 5760 IF135 0.853527 5.18E-05 0.606395 0.950294 15 9158 OS4 0.852918 5.32E-05 0.604976 0.950076 15 9131 OR1F1 0.847821 6.55E-05 0.593175 0.948253 15 47 ABCC1 0.828275 0.000137 0.548906 0.941196 15 7728 LOC51667 0.827948 0.000138 0.548179 0.941077 15 10972 SCO2 0.813388 0.000226 0.516209 0.935754 15 2505 DKFZP586A0522 0.805792 0.000287 0.499852 0.932954 15 5654 HSXIAPAF1 0.800053 0.000342 0.487637 0.930829 15 10571 REC8 0.798916 0.000354 0.485231 0.930407 15 4554 G1P3 0.794898 0.000398 0.47677 0.928913 15 3532 FLJ10783 0.785073 0.000526 0.456321 0.92524 15 8997 NRGN 0.782342 0.000567 0.450698 0.924214 15 5961 IRF7 0.781768 0.000576 0.44952 0.923999 15 3907 FLJ20037 0.779139 0.000618 0.444136 0.923009 15 5509 HSPC018 0.767953 0.000827 0.421502 0.918777 15 9558 PIK3R2 0.765603 0.000878 0.416799 0.917883 15 3811 FLJ13102 0.758369 0.00105 0.402444 0.915123 15 4012 FLJ20281 0.755838 0.001116 0.397462 0.914154 15 6423 KIAA0456 0.75358 0.001177 0.393035 0.913288 15 5970 ISG20 0.749655 0.001291 0.385382 0.911779 15
[0432] FIG. 16 shows the same expression but specially demonstrates the expression of IGS15, IFIT1, OAS2 and USP18 in the tested healthy individuals.
[0433] Using the clustering data (FIG. 15) and the specific genes expression graph (FIG. 16), it may be concluded that individuals 2, 7, 8 and 14 who express high levels of the genes at base line namely healthy individuals, will not benefit from IFN treatment if required.
[0434] The other individuals that are characterized by a low expression level would probably respond to IFN and in addition may have a better immune-response.
Example 8B
[0435] A similar approach was used to analyze large cohort of 145 healthy individuals.
[0436] More specifically, large dataset of 145 individuals was used to observe variation in gene expression patterns in blood, by using cDNA microarrays. Again in this group the correlated pattern of the IFN genes reappears as shown by the gene expression correlation in Table 7.
TABLE-US-00007 TABLE 7 correlation of genes with ISG15. p-value Column # Column ID r (correlation) Lower CI Upper CI N 7036 OAS3 0.744385 7.40E-27 0.661661 0.809205 145 4648 IFIT1 0.72467 6.83E-25 0.636894 0.793899 145 8999 SERPING1 0.708683 2.03E-23 0.616943 0.781422 145 4647 IFI6 0.701859 8.06E-23 0.608461 0.776078 145 5868 LY6E 0.694095 3.69E-22 0.598839 0.769986 145 4646 IFI44L 0.693568 4.09E-22 0.598186 0.769572 145 7035 OAS2 0.688079 1.16E-21 0.591402 0.765256 145 2079 CMPK2 0.668012 4.39E-20 0.566711 0.749417 145 6487 MX2 0.640268 4.28E-18 0.532872 0.727364 145 6486 MX1 0.633634 1.20E-17 0.524832 0.722064 145 7202 PARP14 0.625737 3.93E-17 0.515285 0.715741 145 3839 GBP1 0.603309 9.68E-16 0.488322 0.697704 145 9739 STAT1 0.593401 3.68E-15 0.47648 0.689698 145 9204 SLC22A23 0.578805 2.43E-14 0.459111 0.67786 145 4649 IFIT2 0.575336 3.76E-14 0.454997 0.675039 145 7209 PARP9 0.560641 2.25E-13 0.437624 0.663056 145 6230 MLC1 0.536979 3.34E-12 0.409841 0.643649 145 8743 RTP4 0.526616 1.21E-11 0.397258 0.635454 144 3517 FCGR1A 0.520442 1.95E-11 0.390565 0.630006 145 3840 GBP2 0.50984 5.76E-11 0.378266 0.621222 145 10725 UBE2L6 0.503062 1.13E-10 0.370427 0.615592 145 4845 ISG20 0.500953 1.39E-10 0.367991 0.613838 145 4651 IFIT5 0.49784 1.88E-10 0.3644 0.611247 145 10495 TRIM22 0.497346 1.97E-10 0.363831 0.610836 145 4644 IFI35 0.494534 2.58E-10 0.360591 0.608492 145 1645 CCR1 0.493976 2.72E-10 0.359949 0.608028 145 4640 IFI16 0.492824 3.04E-10 0.358622 0.607066 145
[0437] Analysis of the data by clustering is shown in FIG. 17 demonstrating the genes clustering together in one group include for example LY6E, SLC22A23, IFI44L, ISG15, SERPING1, MX2, OAS3, IFIT1 and CMPK2.
[0438] FIG. 18 shows an expression graph showing the expression level of ISG15 and IFIT1, where the individuals were sorted by the ISG15 expression level and not by the individual numbering. It can be suggested that the individuals in the right hand side of the graph (provided in the rectangular) would be non responsive to IFN as the initiation level of the genes is high before any treatment or pathological infection.
Example 9
[0439] Dynamic Analysis of Stimulated Healthy Individuals
[0440] As noted above, changes in the expression levels of genes are observed between cohorts of populations (healthy, infected but not treated yet and treated individuals) and well as between individuals that are responsive or non-responsive. One of the challenges was to quantify the dynamic range of a gene, namely what is the possible expression level a gene can exhibit.
[0441] In fact, it can be suggested that understanding and measuring this dynamic range of a set of known genes may help in determine the capabilities of an individual to use its own immune system in response to infection and/or the predicting if an individual will respond to interferon treatment, namely should interferon be administered to a patients as part of any medical treatment.
[0442] The data provided in Gene Expression Omnibus Accession No. Gse32862 provides information on the innate immune response in humans in response to synthetic double stranded RNA (poly ICLC), a ligand for TLR3 and MDA-5 cytosolic RNA helicase. poly ICLC is an immuno-stimulant and may be considered to have the same effect as interferon.
[0443] The study included transcriptional analysis of blood samples obtained from eight volunteers at different time points, after subcutaneous administration of poly ICLC.
[0444] The data analysis showed a peak in gene expression 24 hr following injection of poly ICLC (FIG. 19). FIG. 20 is a magnified volcano showing ISG15, IFIT1, IFI44, OASL and the triggering of IFIH1 and DDX58.
[0445] Principal component analysis (PCA) was applied using the data for ISG15, IFIT, IFI44, IFIT6 in order to evaluate the importance of the genes in predicting behavior of individuals and is shown in FIG. 21. As can be seen, three groups were obtained, one group including the majority of the individuals and two additional groups each one including one individual. It was suggested that the group with the majority of the individuals corresponds to responders or to individuals that will be able to fight the viral infection on their own. The two individuals were suggested to be non-responders.
[0446] Further, the volcano analysis shows that the up regulation following the poly ICLC mimics exactly the model simulation seen in all previous cases.
[0447] FIG. 22 shows the dynamics of gene expression with time in responders and non-responders.
[0448] As can be seen in FIG. 22, the dynamics of the expression is different in responders and non-responders, specifically, the expression in the non responders (dashed line is high at the beginning (time "0"--healthy) and thus the magnitude of change in the expression is limited and narrow. The expression in the responders, on the other hand, is low at the beginning (time 0) and this enables a large change in their future expression. FIG. 23 shows the same results obtained in longer time intervals with the dashed line corresponding to data obtained from non responders.
[0449] FIG. 24 shows the average increase in each gene expression as measured 24 hours after poly ICLC administration compared to baseline.
[0450] The fold increases are shown in Table 8.
TABLE-US-00008 TABLE 8 fold increase of genes Individual IFIT1 ISG15 IF144L IFIT6 i302 5.23 4.54 4.78 4.68 i304 4.99 4.08 3.68 3.58 i305 4.84 4.55 4.42 4.51 i307 1.99 1.12 2.78 2.35 i308 1.30 1.69 4.41 0.86 i309 4.42 4.47 3.98 3.96 i310 3.49 4.06 3.45 3.53
[0451] Since the observed changes in the expression level of the genes are a result of stimulation of the immune system, the results obtained here may be used to assess the capability of an immune system to react for example to a viral infection. In addition, these results may be also used to obtain information on the magnitude of possible changes in genes expression following interferon administration. Thus, taken together the magnitude of change observed in the expression level of the genes provides a range of the M values in the tested population. Namely, an individual having the highest increase in the expression, for example i302 is characterized with an M value of 1 and is expected to be able to use the immune system and to respond to treatment. On the contrary, an individual having the lowest increase in the expression, for example i308 is characterized with an M value of 0.2 and is expected to fail in inducing the immune system and not to respond to treatment.
[0452] M may be calculated from the area under the curve from baseline to its peak (around 24 hr) and back to baseline should be calculated (FIG. 25). The area of the triangle represents added amount of the fighting gene used to combat the virus in the next cycle (.about.48 hr). Thus the maximal reached pick can represent M=1 and other M's can be derived from the ratio of the triangle area to this maximum triangle area.
[0453] Table 9 shows the change in gene expression obtained after administrating poly ICLC in vivo and in vitro. In vitro samples were obtained from PBMCs isolated from blood of healthy donors via density gradient centrifugation. In vivo samples were obtained from subjects randomized to either 1.6 mg poly ICLC or placebo (sterile saline) in a 2:1 ratio, administered s.c.
[0454] As can be seen, similar patterns are observed both in vivo and in vitro suggesting that in vitro data can be used to calculate M values.
TABLE-US-00009 TABLE 9 changes in gene expression after administrating poly ICLC in vivo and in vitro. logFC logFC Marker in vivo in vitro gene pICLC pIC IFIT3 4.473713385 4.741052 IFIT1 4.384596081 5.420633 IFI44L 4.171223257 4.799476 IFI6 4.016294707 2.691117 HERC5 3.871166452 3.248894 IFIT3 3.75211871 4.750157 ISG15 3.726288606 4.480175 IFIT2 3.702681715 4.218502 RSAD2 3.628919044 4.957172 MX1 3.440496672 2.968754 IFIT3 3.438007383 2.896002 OASL 3.437579624 3.757009 IFITM3 3.301297669 3.898404 EPSTI1 3.288106942 3.001505 IFI44 3.233595065 3.578491 OAS1 3.122394636 3.803166 LAMP3 2.958338552 1.798831 MT2A 2.951819567 1.502288 HES4 2.904583684 2.542752 GBP1 2.885817399 2.094531 IRF7 2.818183268 2.601032 FCGR1B 2.815964332 0.34899 OAS2 2.744736242 2.835379 TNFSF10 2.708541769 3.520021 GBP5 2.707972339 1.841636 MT1A 2.696990876 1.162177 CXCL10 2.673387432 4.427627 OAS1 2.669871256 3.51157 IFI35 2.653402642 2.562161 LAP3 2.647847669 1.792573 SERPING1 2.629612763 2.03007 XAF1 2.627899914 3.065335 IFI27 2.616810145 3.207039 LY6E 2.578162512 2.557162 ZBP1 2.572024498 1.786611 SAMD9L 2.559958622 2.829755 OASL 2.488510388 2.512218
[0455] An exact pattern is shown by Gaucher et al in Gene Expression Omnibus Accession No. GSE13699, who examined the signature of the immune response to the yellow fever (YF) vaccine 17D (YF17D) in a cohort of forty volunteers.
[0456] Table 10 shows the top ranking genes in two tested in vivo vaccination studies in two different locations (Montreal, Canada and Lausanne, Switzerland). Both groups received YF17D (ratio measured 1 week after administration) and the polyI CLC, averaged on all participants.
TABLE-US-00010 TABLE 10 Top ranked genes expressed in poly ICLC administered individuals and in individuals administered with yellow fever (YF) vaccine 17D (YF17D) in two tested groups. Group A Group B polyc (yf Canada) (yf Swiss) ratio 24 hr/ ratio 1 week/ ratio 1 week/ baseline baseline baseline RSAD2 IFI44L IFI44L IFI44L IFIT1 RSAD2 ISG15 ISG15 IFI44 IFI44 RSAD2 ISG15 OA53 HERC5 IFI27 HERC5 IFITM3 OAS3 LY6E IFI6 IFIT3 EPSTI1 IFIT3 EPSTI1 IFI27 LAMP3 HES4 IFITM3 IFI27 HERC5
[0457] Table 10 shows that there is a representative set of genes that is being regulated after administration of immune response stimulants. This suggests that the arsenal of observed genes may be regarded as the genes related to the M phenotype in a person.
[0458] Table 11 shows that among the cohort of individuals tested in Group A, a phenotype can be seen as provided in bold. The individuals that show a marked increase in the genes expression following stimulation of the immune response are suggested to correspond to individuals that will be able to use their immune system or to respond to therapy or both. The individuals that show a low increase in the genes expression are given in plain numbers and correspond to individuals that will not be able to use their own immune system, will not respond to treatment or both.
TABLE-US-00011 TABLE 11 Top ranking genes that are up regulated and extent of regulation. Marker gene diff diff diff diff diff diff diff diff diff diff diff avg IFI44L 1.9 3.25 5.7 3.2 4.1 5.5 3.7 5.2 4.7 0.8 3 3.73 RSAD2 1.9 3.47 5.6 3.4 4.2 4.5 3.9 5.4 3.9 1.2 3.5 3.72 IFI44 2.1 2.79 5.4 3.8 3.6 5.1 3.7 4.8 4 0.7 3 3.55 ISG15 1.8 3.16 4.6 2.5 3.5 4.2 3.3 4.4 3.2 1.3 2.7 3.16 IFI27 5 3.39 2.7 2.6 3.2 4.7 4.5 3.8 3.1 0 2.96 OAS3 1.2 2.22 4.6 2.2 3.2 3.5 2.8 4 2.5 0.4 2.4 2.64 IFIT3 2.3 2.61 3.7 2.6 2.6 2.9 2.8 3.5 2.1 0.8 1.8 2.52 EPSTI1 1.4 2.43 4 2.23 2.9 3.6 2.1 3.6 2.9 0.5 1.5 2.47 HES4 1.7 3.2 3.3 2.02 2.1 3.1 2.9 3.5 1.9 0.5 2.2 2.4 HERC5 0.9 2.03 3.7 1.53 2.7 3.2 2.4 3.4 1.6 1 2.4 2.26
[0459] FIG. 26 is a graph showing simulation of replication vs. immune defense, per different M. As can be seen for the same individual with an M value suitable for K=3, that is calculated as follows M=1-1/3=0.66 being infected by a variety of viruses with varying K (multiplication rate). FIG. 26A shows that at K rate higher than 3, the virus progresses. FIG. 26B shows situation where K smaller than M, attenuation of the virus is achieved.
[0460] FIGS. 27A-B is a graph showing simulation instructing how much PI is needed per each individuals M and virus K. The PI effectively increases the individuals M, FIG. 27A shows an individual with M=0.6, FIG. 27B shows an individual with M=0.8 both are affected by the same range of PI injections. The better M the quicker an individual to become a responder with the same PI. The results shown here suggest that if M is measured (as shown above) and K is known for each type of virus, a simulator may be used to guide any clinical decision on the frequency of treatment (by simulation that changes each point on the graph 2 days or 3 days instead of one week). In addition, such a simulator may also indicate if and how much further combined therapy, for example protease inhibitors (PI) is required.
Example 10
[0461] Correlation Between Virus Load and Induction of the Ubiquitin Genes Expression
[0462] As shown in Example 2B, infection of macrophages with influenza H1N1 and H5N1 strains, led to a significant elevation in the expression of the ubiquitin genes. The virulent strain, H5N1 showed a clear enhanced induction of the expression of said genes. To further establish the hypothesis that the virulence of the pathogen, as determined by measuring the increase in virus load, is correlated with the extent of the induced expression of the ubiquitin genes of the invention, specifically, ISG15, USP18, HERC5 and UBE2L6, the inventors have analyzed data of different host cells infected with three strains of influenza virus. Gene Expression Omnibus Accession No. GSE31518, GSE 31471 and GSE31472 provide gene expression data obtained at 2, 4, 6, 8 and 10 hours post infection of three different host cell lines (A549, MDCK and CEF) with three different Influenza A virus strains, pH1N1 (A/Singapore/478/2009), H9N2 and H5N2. Table 12, presents virus load (as indicated by measuring the vRNA copy number) of the three influenza strains 10 hr post infection of each of the three different host cell lines. FIG. 28 shows sum of the expression of the ubiquitin genes, ISG15, USP18, HERC5, UBE2L6, as measured in A549 cells at 2, 4, 6, 8 and 10 hours post infection with the three different influenza strains. A significant correlation between viral load in the infected A549 and the Ubiquitin genes sum expression is clearly observed.
[0463] The inventors have next examined the feasibility of using data of virus load and gene expression data to evaluate the ability of a specific individual (having a specific M value), to overcome an infection of a specific pathogen having a specific replication rate. Therefore, gene expression data of healthy human volunteers inoculated with intranasal influenza A H1N1 and H3N2 strains was analyzed by the inventors. Gene Expression Omnibus Accession No. GSE52428 provide gene expression data obtained from microarrays assay of peripheral blood at baseline and every 8 hours for 7 days following intranasal influenza A H1N1 or H3N2 inoculation in healthy volunteers.
[0464] FIG. 29 shows the sum of the expression of the 4 ubiquitin genes of the invention in different time points up to 120 hr post infection of H3N2 in all nine individuals (numbered as 1 to 9).
[0465] Simulation based on the model of the invention as described in Example 1 was performed using the data of all 9 infected individuals based on the calculated rate of induced expression of the ubiquitin genes, ISG15. USP18, HERC5 and UBE2L6.
[0466] FIGS. 30 and 31, present the result of such simulation using the data of individual 6. Assuming that individual I is infected with a virus having a replication rate of 1.93 every 6 hrs, as presented in FIG. 30, the sum of the expression of the 4 genes, is maximal between 12 to 18 hrs post infection, and reduced after 36 hrs, as shown in the lower panel of the figure. The rate of expression of these genes is correlated to the replication of the virus, that is maximal between 12 to 18 hrs post infection and is significantly reduced after 36 hrs, indicating that the specific individual may successfully reduce the virus load of a virus having replication rate of 1.93, and therefore overcome the infection. FIG. 31 presents simulation of the same individual infected with a virus having a little higher replication rate, of 1.94. As clearly shown in the figure, the same individual, when confronted with said virus, shows increase in the gene expression of the signatory genes of the invention (bottom panel), however, 24 hrs post infection, the replication rate of the virus increases with no corresponding increase in the expression of the signatory genes, indicating that said individual may experience failure of overcoming an infection of virus having a rate of replication of 1.94 each 6 hrs. It should be appreciated that M as it is measured for the whole range (min to max) or alternatively, as it is made of the segmented parts measured for the individual.
[0467] This example clearly demonstrates the correlation between the expression of the signatory genes of the invention and the ability of the virus to propagate in a specific individual having a specific ability of increasing expression of the signatory genes, or in other words, having a specific M value.
TABLE-US-00012 TABLE 12 Comparison of the M gene vRNA levels at 10 hpi in influenza virus-infected A549, MDCK and CEF vRNA (copy numbers) Virus A549 MDCK CEF H1N1 4.43 .+-. 0.07 5.74 .+-. 0.07 6.91 .+-. 0.05 H9N2 1.71 .+-. 0.04 3.42 .+-. 0.08 7.34 .+-. 0.07 H5N2(F118) 5.71 .+-. 0.04 4.91 .+-. 0.02 7.47 .+-. 0.10 H4N2(F189) 5.70 .+-. 0.08 5.01 .+-. 0.20 7.28 .+-. 0.06 H5N3 6.83 .+-. 0.04 5.93 .+-. 0.03 8.29 .+-. 0.06 pH1N1/276 1.92 .+-. 0.06 2.11 .+-. 0.26 5.10 .+-. 0.52 pH1N1/471 1.06 .+-. 0.09 2.69 .+-. 0.20 5.27 .+-. 0.11 pH1N1/478 1.67 .+-. 0.12 2.53 .+-. 0.20 4.92 .+-. 0.33 pH1N1/527 1.32 .+-. 0.11 2.46 .+-. 0.18 5.70 .+-. 0.21
Example 11
[0468] Prediction of Response to Treatment of IFN-.alpha. in Blood Samples and Liver Tissue of HCV Patients
[0469] To further establish the model of the invention, the inventors next evaluated the ability of calculating the M parameter of an individual (that reflects the ability of a specific individual to overcome a pathologic disorder), infected by HCV in this case, from the measured data of the expression of the signatory genes of the invention, namely, UBE2L6, USP18, HERC5, OAS2 and ISG15, and the reduction in virus load as measured 4 weeks after treatment with Interferon alpha. Therefore, RT-PCR analysis of the genetic profile in Peripheral Blood Mononucleated Cell (PBMC) and liver tissue of HCV patients was performed on samples obtained before initiation of IFN-.alpha. treatment, and one month after.
[0470] The expression levels of the following genes: UBE2L6, USP18, HERC5, OAS2 and ISG1 (using 3 probes) in each patient was measured by RT-PCR and normalized to a control gene GAPDH. In addition, in each one of the eight patients, the virus load was determined before treatment and 4 weeks after treatment with IFN-.alpha. using commercial kits.
[0471] Based on the sum expression of the five genes, an experimental M was calculated as follows:
M=1-[(Ex.sub.samp-Ex.sub.min)/(Ex.sub.max-Ex.sub.min)].
[0472] Wherein Ex.sub.max is a maximal measured sum expression value of the five genes and Ex.sub.min is a minimal measured sum expression value of the five genes within a population and Ex.sub.samp is the measured sum expression value of the five genes for a specific patient within this population, to whom the M is calculated.
[0473] Based on the results of the change in virus load measured before treatment and after 4 weeks of treatment, two populations of HCV patients were defined: responders and non-responders.
[0474] A responder was considered as a patient that the amount of viral load was reduced by more than 100 within 4 weeks, (2 in log 10). A non-responder was considered as a patient that the amount of viral load was reduced by less than 100 within 4 weeks, (2 in log 10).
[0475] Experiments were conducted on different populations of HCV patients from samples obtained from PBMC and from liver tissue samples.
[0476] Experiments on Blood Samples:
[0477] As can be seen in FIG. 32, the patients denoted as p2, p1, p3, p5, p4, and p8 experienced an amount of down regulation of virus load higher than 100 (observed as 2 in log 10 scale) and are thus considered responders to IFN-.alpha. treatment in line with the definition above.
[0478] In contrast, patients denoted as p6 and p7 experienced an amount of down regulation of virus load lower than 100 (observed as 2 in log 10 scale) and are thus considered non-responders to IFN-.alpha. treatment in line with the definition above.
[0479] The results in FIG. 32 demonstrated that the sum of normalized and scaled expression of the five genes UBE2L6, USP18, HERC5, OAS2 and ISG15 was significantly reduced in patients that were considered as responders (p2, p1, p3, p5, p4, and p8) compared to the expression in patients considered as non-responders (p6 and p7).
[0480] As indicated above, the virus load of these 8 HCV patients was recorded before and one month (4 injection cycles) after Pegylated Interferon-alpha Treatment. Gene signature of the UBE2L6, USP18, HERC5 and OAS2 genes expression was derived and scaled (0-1) before treatment. Simulation is carried out for different M values per 4 cycles of treatment.
[0481] Table 13 shows M values and their corresponding virus load decline in each of the 4 weeks of treatment with Peg Interferon as calculated by the model of the invention as described in Example 1.
TABLE-US-00013 TABLE 13 Simulation of calculated M values vs. reduction of virus load after treatment M value treatment_w1 treatment_w2 treatment_w3 treatment_w4 0.87 1 1.538461538 2.366863905 3.641329085 0.88 1 1.666666667 2.777777778 4.62962963 0.89 1 1.818181818 3.305785124 0.89 0.9 1 2 4 8 0.91 1 2.222222222 4.938271605 10.9739369 0.92 1 2.5 6.25 15.625 0.93 1 2.857142857 8.163265306 23.32361516 0.94 1 3.333333333 11.11111111 37.03703704 0.95 1 4 16 64 0.96 1 5 25 125 0.97 1 6.666666667 44.44444444 296.2962963 0.98 1 10 100 1000 0.985 1 13.33333333 177.7777778 2370.37037 0.998 1 100 10000 1000000 0.999 1 200 40000 8000000
[0482] As shown by the table, assuming that the initial measured virus load is 1 (treatment w1), different calculated M values indicated in the table, result in the indicated reduction (folds of reduction) in virus load.
[0483] The virus load and expression values of the UBE2L6, USP18, HERC5 and OAS2 genes obtained for 7 of the HCV patients analyzed above, were now calculated using the simulation values of Table 13, and are presented in Table 14.
[0484] More specifically, Table 14 shows the correlation between the measured fold of virus load reduction after 1 month of interferon treatment (second column from left), and the measured expression of the 4 genes of the invention (the third column from left presents sum of the expression values of all 4 genes, each value scaled between 0 to 1).
TABLE-US-00014 TABLE 14 Calculated M values vs. reduction of measured HCV virus load after IFN treatment fold decline in VL after 1 scaled_expression scaled simulation patient month simulation M scaled_expression (0-1) M (0_1) p2 14535.3 0.9918 0 0 0.950819672 p1 16760.7865 0.9921 0.96137233 0.251731718 0.953161593 p3 51955.95 0.9948 1.032753453 0.270422596 0.974238876 p4 20120.4 0.9928 1.144285694 0.299626892 0.958626073 p8 2061843.2 0.9981 2.057379621 0.538717093 1 p6 3.48570259 0.87 3.525351059 0.923099876 0 p7 52.4136592 0.948 3.81903535 1 0.608899297
[0485] As shown in the table, for patient p1, for example, the measured reduction in virus load was about 16,000 folds, going back to the simulation of reduction in virus load as a parameter of M value, as presented in Table 13, an M value of about 0.992 is correlated with reduction of about 15,625 folds in the measured virus load. This predicted M value (shown in the second column from left), is correlated to a scaled expression value of 0.25. In contrast, patient p6 that showed only 3.48 folds reduction in virus load, was correlated with a scaled expression of 0.9, and a low M value of 0.87 (in the simulation Table 13, reduction of about 3.6 folds is correlated with an M value of 0.87). The right column of Table 14 shows scaled M values, of between 0 to 1, were the lowest M value, 0.87, was considered as 0 (as shown for patient p6), and the higher M value in the simulation, 0.9981, is considered as 1 (as shown for patient p8). When correlating to the scaled expression values (sum of the expression values of the 4 signatory genes), it seems that patients having scaled expression value of below 0.5, efficiently reduce the virus load and are therefore considered as responsive to interferon treatment, whereas patients presenting an initial scaled expression value of above 0.5, and a low M value, show poor response that is reflected in low ability to reduce virus load.
[0486] FIG. 33 clearly shows that the four responders have M values between 0.95 to 1 while their expression value of the signatory genes is below 0.5. The two non responders (p6 and p7 having low M values and a corresponding high levels of initial expression of the signature genes, of above 0.9.
[0487] This example clearly demonstrate the feasibility of using the measured initial expression of the signatory genes of the invention, before starting any treatment, to evaluate the personal M value that distinguish between responders and non-responders and also indicate the extent of predicted responsiveness of a specific individual. The method of the invention thereby provides a powerful tool for personalized medicine.
[0488] Further analysis of the sum of the expression of two genes, HERC5 and UBE2L6 in HCV patients is shown in FIGS. 34A and 34B. In the analysis shown in these figures, patients denoted as p2, p1, p3, p4, p8, p11, p101 and p12 experienced clear reduction of virus load that is more than by 100 (observed as 2 in log 10 scale) and are thus considered responders to IFN-.alpha. treatment in line with the definition above, whereas patients denoted as p6 and p7 experienced reduction of virus load lower than by 100 (observed as 2 in log 10 scale) and are thus considered non-responders to IFN-.alpha. treatment in line with the definition above.
[0489] Patient p12 experienced a reduction in virus load of 2.02 and thus theoretically should be considered as responder. However, in the following analysis, this patient was not categorized to any one of the groups since the value of 2.02 is in the border between responders and non-responders.
[0490] Analysis of the gene as described above is shown in FIG. 34A. As shown in FIG. 34A, a strong correlation was observed between the sum expression of the five genes and the patient's response to IFN treatment. A lower expression value was measured in patients p2, p1, p3, p4, p8, p11, p101 and p12 who were found responsive to IFN treatment. On the other hand, a high expression value was measured in patients p6 and p7 who were found not responsive.
[0491] Based on the experimental data of the expression of the two genes detailed above, the M value was calculated for each one of the patients. FIG. 34B shows the experimental M value calculated for each one of the tested patients presented in FIG. 34A.
[0492] As can be seen, a correlation exists between the M value and the patient's responsiveness to treatment. Patients having a high M value were found to be responsive to IFN treatment, whereas patients having a lower M value were found to be not responsive to treatment.
[0493] The effect of HCV in liver tissue may be considered different than the effect in blood samples. In HCV liver the battle is occurring inside hepatocytes and the inventor assume k=5 based on previous publications [Ruy M. Ribeiro et al., (2012)]. In PBMC the specificity of the cells is not as clear and the inventors assume it's in a close range to the shaded amount transferred to the blood from the source hepatocytes.
[0494] The cutoff value may be calculated by using the following equation:
M.sub.cutoff=I1-/K
[0495] Thus for a virus characterized by a K value of 5, the theoretical M.sub.cutoff value is 0.8. As can be seen in FIG. 34B, the inventor assumes for this example the range of M to be between 7.9 to 8.9 and scaled M accordingly. Once more viral loads data points in time were received the final range for the group was narrower (0.815 to 0.862). It should be noted that there is an inverse correlation between the calculated M value and the sum of the genes expression.
[0496] The inventors have also performed an analysis using the expression of a single gene, HERC5 which is considered as a predictive gene. FIG. 35 shows the patients denoted as p208, p213, p102, p201, p211, p203, p204, p202 and p101 experienced a reduction of virus load by more than 100 (observed as 2 in log 10 scale) and are thus considered responders to IFN-.alpha. treatment in line with the definition above.
[0497] In contrast, patients denoted as p206 and p207 experienced reduction of virus load that is lower than by 100 (observed as 2 in log 10 scale) and are thus considered non-responders to IFN-.alpha. treatment in line with the definition above.
[0498] Patient denoted as p212 experienced reduction regulation of virus load of 2.02 and is thus considered on the boarder between responder and non-responder to IFN-.alpha. treatment in line with the definition above.
[0499] The results in FIG. 35 demonstrated that the expression of the gene HERC5 was significantly reduced in patients that were considered as responders compared to the expression in patients considered as non-responders. Interestingly, the expression of the gene HERC5 was significantly reduced also in patient denoted as p212, which experienced a reduction of virus load by about 100 (observed as 2 in log 10 scale).
[0500] The inventors have used the virus load measured or each patient at the beginning and at the end of the experiment and used these parameters for the model simulation to obtain a value of M for each patient, taking into account that K for HCV in blood samples is 5 [Ruy M. Ribeiro et al., (2012)].
TABLE-US-00015 TABLE 15 The expression of HERC5 gene (arbitrary units -2{circumflex over ( )}-dct rt-pcr_) and the calculated M for each one of the tested HCV patients. M calculated from Patient Expression of simulation # HERC5 assuming 4 weeks p202 0.00144 0.8635 p204 0.042563 0.863 p201 0.047145 0.862 p203 0.076972 0.867 p212 0.100299 0.836 p211 0.108098 0.872 p208 0.111671 0.883 p102 0.181633 0.8785 p213 0.188302 0.875 p101 0.28833 0.861 p207 1.801784 0.832 p206 3.157128 0.816
[0501] As shown in Table 15, the M values of all patients varied between 0.816 to 0.883.
[0502] The expression value of HERC5 and the M value obtained from the simulation were normalized with respect to the patient's population. FIG. 36, shows for each patient the normalized simulated M value (black box) and the normalized expression of HERC5 gene (open box). As can be seen, an inverse correlation is observed between the M value and the expression of HERC5 gene, with the patients being considered as responsive having considerably higher M value and the patients being considered as non-responsive having considerably lower M value.
[0503] Interestingly, the patient denoted as p212 that was considered on the boarder with respect to the virus load and responsive with respect to the HERC5 expression, has an intermediate M value. Simulation of the data of the patient denoted as p212 for a long time period of three month resulted in a M value correlating to responsiveness (data not shown).
[0504] Experiments on Tissue Samples
[0505] The data of liver tissue analysis of HCV patients is shown in FIGS. 37A and 37B. The patients denoted as p25, s12, p24, p26, s6, p22, s5 and s13 experienced reduction of virus load higher than by 100 (observed as 2 in log 10 scale) and are thus considered responders to IFN-.alpha. treatment in line with the definition above.
[0506] In contrast, patients denoted as p27, s20, p23, s18, s15, p21, s16, cts17 and sb11 experienced an amount of down regulation of virus load lower than 100 (observed as 2 in log 10 scale) and are thus considered non-responders to IFN-.alpha. treatment in line with the definition above.
[0507] The results presented in FIG. 37A demonstrate that the sum of normalized and scaled expression of the five genes UBE2L6, USP18, HERC5, OAS2 and ISG15 was significantly lower in patients that were considered as responders (patients p25, s12, p24, p26, s6, p22, s5 and s13) compared to the sum of the normalized expression in patients considered as non-responders (patients p25, s12, p24, p26, s6, p22, s5 and s13).
[0508] As indicated above, the M value was calculated for each patient using the experimental data obtained for the five genes. FIG. 37B shows the experimental M value for each one of the tested patients as in FIG. 37A.
[0509] As can be seen in FIG. 37B, there exists a strong correlation between the M value of a patient and the patient's response to treatment. The patients who were found to be responsive to IFN treatment (namely, patients p25, s12, p24, p26, s6, p22, s5 and s13) were characterized by a high M value (ranging between 0.86 to 0.88, whereas patients who were found to be non-responders to IFN treatment (namely, patients p25, s12, p24, p26, s6, p22, s5 and s13) were characterized by a low M value (ranges between 0.79 to 0.834).
[0510] As shown in FIG. 37B, the M value (that may be considered as a cut off to distinguish between responders and non-responders may range between 00.835 to 0.855. In this illustration example as in the PBMC case we assumed a distribution of M between 0.79 to 0.89.
[0511] A clear link between the experimental data obtained from tissue samples and the mathematical model described herein indicate that there is a strong correlation between the simulation of M and the experimental data. HCV in tissue samples is characterized by a doubling time of 5, namely K=5. As shown herein in FIG. 37C, a simulations of the above model equations by taking K as 4, showed that at lower M values of 0 to 0.72, namely in those patients being characterized by M values of up to 0.72, the virus is capable of multiplying and hence the disease is progressing, as the immune system or IFN treatment fail to eradicate the virus.
[0512] An M value that is higher than 0.72, clearly reduce virus load thereby eliminating the disease caused by a virus with k=4. This may indicate that either the immune system or IFN treatment regimen or both succeed in eliminating the virus.
[0513] Similarly, HCV patients characterized by M values of above 0.8 will most likely be able to reduce or eliminate the disease.
[0514] These results clearly indicate that there is the model simulation of the invention predicts with a high accuracy a patient's behavior for a particular virus. Namely, for a given virus an accurate cutoff value of M can be determined, and such M value distinguishes patients that will be able to "fight" the disease by responding to treatment, and those who will still suffer from the disease, namely, patients that are not responsive to treatment.
Example 12
[0515] Calculation of M Using Model Simulation in HCV Patients Treated with Combination Therapy of IFN-.alpha. and Ribavirin (Rib)
[0516] Data from the publication by Honda M. et al. [Journal of Hepatology 53: 817-826 (2010)] was used for correlation analysis with the mathematical model. Superficially, the inventors used virus load measured in thirty HCV patients before and after administration of IFN-.alpha. 2b at different time points. In accordance with the response to treatment, Honda M. et al. have defined treatment outcomes according to as follows: sustained viral response (SVR) --clearance of HCV viremia at 24 weeks after initiation of therapy; transient response (TR)--no detectable HCV viremia at 24 weeks but relapse during the follow-up period; and non-response (NR).
[0517] FIG. 38 shows a differential genetic expression obtained in liver biopsies of responders and non-responders HCV patients after combined therapy as described in Masao H. et al. Specifically, the left hand side shows the ratio of expression level of genes in responders vs. non-responders at day 0 (namely, before treatment), whereas the right hand side shows the results obtained after one week following treatment of IFN and RBV. The results provide a representative set of genes having a low expression value before treatment in patients who are referred to as responders. One week after treatment, these genes were clearly up regulated in the responders group.
[0518] Among the genes shown in the volcano plot, the inventors have used the expression of HERC5 for further analysis as this gene was the predominant gene and obtained the best p-value in the analysis. FIG. 39A shows the expression of HERC5 before treatment and FIG. 39B shows the expression of HERC5 after one week of treatment relative to the expression before treatment.
[0519] The results in FIG. 39A show that the initial HERC5 expression level in responders (including the patients defined as TR is low compared to non-responders. As shown in FIG. 39B, a week after treatment, a clear elevation in the expression of HERC5 gene appears in the responder group (and in the patients defined as TR), whereas the non-responders show a clear reduction. Based on these results it may be suggested that the expression level of this gene in responders is close to its saturation level, and therefore interferon cannot induce elevation in the expression of these genes.
[0520] The inventors of the present application then used the virus load data measured for each patient at different time points in a model simulation as described herein to obtain an M value for each one of the tested patients (assuming that k is 5).
[0521] FIG. 40 show normalized M value obtained from the model simulation for each one of the patients. The results indicate that the patients being considered as non-responsive have considerably lower M values, whereas the patients that show response (defined as SVR or TR) have considerably higher M values.
[0522] Interestingly, in two of the responsive patients that were characterized with the heights M values in FIG. 40 (0.97 and 0.99), no virus was detected after 48 hours of treatment. These results suggest that for patients characterized with higher M value, a short treatment period is sufficient to reduce/eliminate the virus and there is no need to treat these patients using long-term treatment.
[0523] The M values calculated from the model simulation described herein were correlated to normalized expression of HERC5 in order to obtain a "calibration data" of M values.
[0524] Table 16 shows for each patient, the normalized expression of HERC5 before treatment and the model calculated M value. Such calibration data may be further used for derivation of M. The patients category NR, SVR or TR is as defined above.
TABLE-US-00016 TABLE 16 The expression of HERC5 gene and the simulated M for each one of the tested HCV patients. Normalized Expression of Patient HERC5 Simulated category before treatment M value NR 0.480499 0.7995 NR 1 0.8002 NR 0.780031 0.8004 NR 0.533021 0.803 NR 0.704628 0.804 NR 0.689028 0.805 SVR 0.694228 0.81 SVR 0.161206 0.81 TR 0.460218 0.81 SVR 0.330213 0.82 TR 0 0.824 SVR 0.25741 0.85 SVR 0.0078 0.97 SVR 0.01014 0.99
Example 13
[0525] Determining Treatment Duration by Calculating M Using Genetic Expression in HCV Patients Treated with IFN-.alpha.
[0526] Seventeen HCV patients were examined in this study as also presented in Example 11 and FIGS. 37A and 37B. The expression of HERC5 was determined for each one of the patients before initiation of treatment using RT-PCR.
[0527] Based on the response to treatment, the patients were categorized into responders or non-responders as shown in FIG. 37.
[0528] Using the calibration curve prepared in Example 12, the inventors have determined for each one of the patients, an M value based on the experimental normalized value of expression of HERC5. It should be noted that the inventor considers treatment with every day using IFN plus ribavirin, as the best way for calculating an accurate M and therefore approximates the treatment with PegIFN during the week.
[0529] Table 17 shows the normalized expression of HERC5 as measured by RT-PCT and the M value determined using the calibration data described above.
TABLE-US-00017 TABLE 17 The expression of HERC5 gene and the derived M (from the calibration data) for each one of the tested HCV patients. Normalized Expression of Patient HERC5 derived category before treatment M value NR s18 0.40773 0.7995 NR p21 0.413093 0.7995 NR p23 0.448118 0.7995 NR p27 0.494851 0.7995 NR cts17 0.589386 0.803 NR s20 0.654809 0.805 NR s16 0.804371 0.8004 NR s15 0.873918 0.8004 NRsb11 1 0.8002 Responsive p25 0 0.95 Responsive p12 0.030833 0.95 Responsive p26 0.076105 0.95 Responsive p24 0.113371 0.84 Responsive s6 0.120362 0.84 Responsive p22 0.170882 0.84 Responsive p13 0.250061 0.85 Responsive s5 0.276657 0.85
[0530] These results show that the patients that were experimentally categorized as non-responders have lower M value compared with the patients that were experimentally categorized as responders. This suggest that measuring the expression of a single gene before treatment in a given patient and using this expression to obtain the corresponding M value for this patient, may predict if the patient will respond to treatment.
[0531] For prediction of treatment regimen, data from two patients were used denoted as s18 (non-responder) and p25 (responder). As shown in Table 17, using the initial virus load and the derived M for each one of these two patients, the viral load after 4 weeks was measured as presented in Table 18. The figure also discloses the normalized expression of HERC5 marker gene calculated for both patients.
TABLE-US-00018 TABLE 18 virus load and M values of HCV patients Baseline Virus load HERC5 Derived virus after Patient expression M load 4 weeks S18 0.40773 0.7995 79986/07 168,162 P25 0 0.95 4539 HCV Not detected
[0532] Based on the model described herein, FIGS. 41A and 41B show results of model simulation for s18 and p25, respectively providing calculated predicted virus load.
[0533] As shown in FIG. 41A, patient denoted as s18 having a measured initial virus load of 79986.07 (Table 18) and a calculated derived M value of 0.7995, exhibits an increase in virus load after a month up to a value of about 170,000. This simulation strongly correlates with the virus load measured in this patient after four weeks of treatment, which is about 168,162, as presented in Table 18.
[0534] In addition, as shown in FIG. 41B, patient denoted as p25 having an initial virus load of 4,539 and a derived M value of 0.95, exhibits a decrease in virus load after a month up to a value basically to baseline level. This strongly correlates with the fact that no virus load was measured in this patient after four weeks of treatment as presented in Table 18.
[0535] Thus, for a patient having an M value of 0.795 (p18), IFN treatment would not reduce viral load and therefore should be avoided. However, for a patient having an M value of about 0.95, eradication of the virus is achieved within several days (less than a week) of treatment. The data shown herein therefore also provide means to determine the treatment duration and also type of treatment.
Example 14
[0536] Predicting Treatment Regimen for Patient Suffering from HCV and HIV
[0537] Data from the publication of Murphya, Alison A. et al, AIDS 2011, 25:1179-1187 was used to study the ability of the model to predict treatment regimen. Specifically, the data of average virus load obtained from all patients at different time points was used in the simulation to obtain a M value of 0.82 (K was set at 5).
[0538] FIG. 42 shows the model simulation (right curve) of the data providing a M value of 0.82.
[0539] The simulated M value (of 0.82) was then used together with the initial average virus load in a further simulation that used different dosing regimen, twice a week instead of once weekly. As can be seen in the left curve of FIG. 42, treatment twice a week was more efficient.
[0540] Further, the patient denoted as s18 (non responder) was further used in a model simulation of treatment regimen. Using the M value of 0.7995 and the initial virus load, the treatment outcome was simulated. As shown in the right curve in FIG. 43, there was an increase in virus load indicating that the patient was not responsive to treatment. Interestingly, as shown in left curve of FIG. 43, increasing the dosing regimen from once a week to twice a week did not result in a response to treatment. This data suggest that even treating this patient with higher amount and/or different regimen is not efficient and new medications need to be used.
TABLE-US-00019 TABLE 19 List of Sequences SEQ ID NO: Details 1 DNA sequence of ISG15 ubiquitin-like modifier (ISG15) 2 Protein sequence of ISG15 ubiquitin-like modifier (ISG15) 3 DNA sequence of Interferon-induced protein with tetratricopeptide repeats 1 (IFIT1) 4 Protein sequence of Interferon-induced protein with tetratricopeptide repeats 1 (IFIT1) 5 DNA sequence of Interferon-induced protein with tetratricopeptide repeats 2 (IFIT2) 6 Protein sequence of Interferon-induced protein with tetratricopeptide repeats 2 (IFIT2) 7 DNA sequence of Interferon-induced protein with tetratricopeptide repeats 3 (IFIT3) 8 Protein sequence of Interferon-induced protein with tetratricopeptide repeats 3 (IFIT3) 9 DNA sequence of Interferon-induced protein with tetratricopeptide repeats 3 (IFIT3) 10 Protein sequence of Interferon-induced protein with tetratricopeptide repeats 3 (IFIT3) 11 DNA sequence of Interferon-induced protein with tetratricopeptide repeats 5 (IFIT5) 12 Protein sequence of Interferon-induced protein with tetratricopeptide repeats 5 (IFIT5) 13 DNA sequence of 2'-5'-oligoadenylate synthetase 1 (OAS1) 14 Protein sequence of 2'-5'-oligoadenylate synthetase 1 (OAS1) 15 DNA sequence of 2'-5'-oligoadenylate synthetase 1 (OAS1) 16 Protein sequence of 2'-5'-oligoadenylate synthetase 1 (OAS1) 17 DNA sequence of 2'-5'-oligoadenylate synthetase 1 (OAS1) 18 Protein sequence of 2'-5'-oligoadenylate synthetase 1 (OAS1) 19 DNA sequence of 2'-5'-oligoadenylate synthetase 2 (OAS2) 20 Protein sequence of 2'-5'-oligoadenylate synthetase 2 (OAS2) 21 DNA sequence of 2'-5'-oligoadenylate synthetase 2 (OAS2) 22 Protein sequence of 2'-5'-oligoadenylate synthetase 2 (OAS2) 23 DNA sequence of 2'-5'-oligoadenylate synthetase 2 (OAS2) 24 Protein sequence of 2'-5'-oligoadenylate synthetase 2 (OAS2) 25 DNA sequence of 2'-5'-oligoadenylate synthetase 3 (OAS3) 26 Protein sequence of 2'-5'-oligoadenylate synthetase 3 (OAS3) 27 DNA sequence of 2'-5'-oligoadenylate synthetase-like (OASL) 28 Protein sequence of 2'-5'-oligoadenylate synthetase-like (OASL) 29 DNA sequence of 2'-5'-oligoadenylate synthetase-like (OASL) 30 Protein sequence of 2'-5'-oligoadenylate synthetase-like (OASL) 31 DNA sequence of HECT and RLD domain containing E3 ubiquitin protein ligase 5 (HERC5) 32 Protein sequence of HECT and RLD domain containing E3 ubiquitin protein ligase 5 (HERC5) 33 DNA sequence of ubiquitin specific peptidase 18 (USP18) 34 Protein sequence of ubiquitin specific peptidase 18 (USP18) 35 DNA sequence of Radical S-adenosyl methionine domain containing 2 (RSAD2) 36 Protein sequence of Radical S-adenosyl methionine domain containing 2 (RSAD2) 37 DNA sequence of myxovirus (influenza virus) resistance 1 (MX1) 38 Protein sequence of myxovirus (influenza virus) resistance 1 (MX1) 39 DNA sequence of myxovirus (influenza virus) resistance 1 (MX1) 40 Protein sequence of myxovirus (influenza virus) resistance 1 (MX1) 41 DNA sequence of myxovirus (influenza virus) resistance 1 (MX1) 42 Protein sequence of myxovirus (influenza virus) resistance 1 (MX1) 43 DNA sequence of Interferon-induced protein 44-like (IFI44L) 44 Protein sequence of Interferon-induced protein 44-like (IFI44L) 45 DNA sequence of DEAD (Asp-Glu-Ala-Asp) box polypeptide 58 (DDX58) 46 Protein sequence of DEAD (Asp-Glu-Ala-Asp) box polypeptide 58 (DDX58) 47 DNA sequence of interferon alpha 1 48 Protein sequence interferon alpha 1 49 DNA sequence of interferon alpha 2 50 Protein sequence of interferon alpha 2 51 DNA sequence of Interferon alpha-4 52 Protein sequence of Interferon alpha-4 53 DNA sequence of Interferon alpha-5 54 Protein sequence of Interferon alpha-5 55 DNA sequence of Interferon alpha-6 56 Protein sequence of Interferon alpha-6 57 DNA sequence of Interferon alpha-7 58 Protein sequence of Interferon alpha-7 59 DNA sequence of Interferon alpha-8 60 Protein sequence of Interferon alpha-8 61 DNA sequence of Interferon alpha-10 62 Protein sequence of Interferon alpha-10 63 DNA sequence of Interferon alpha-1/13 64 Protein sequence of Interferon alpha-1/13 65 DNA sequence of Interferon alpha-14 66 Protein sequence of Interferon alpha-14 67 DNA sequence of Interferon alpha-16 68 Protein sequence of Interferon alpha-16 69 DNA sequence of Interferon alpha-17 70 Protein sequence of Interferon alpha-17 71 DNA sequence of Interferon alpha-21 72 Protein sequence of Interferon alpha-21 73 DNA sequence of Interferon, beta 1 74 Protein sequence of Interferon, beta 1 75 DNA sequence of Interferon omega-1 76 Protein sequence of Interferon omega-1 77 DNA sequence of Interferon-gamma 78 Protein sequence of Interferon-gamma 79 DNA sequence of E1-like ubiquitin-activating enzyme (UBElL) 80 Protein sequence of E1-like ubiquitin-activating enzyme (UBElL) 81 DNA sequence of Ubiquitin-conjugating enzyme E2L 6 (UBE2L6) 82 Protein sequence of Ubiquitin-conjugating enzyme E2L 6 (UBE2L6) 83 DNA sequence of Ubiquitin-conjugating enzyme E2L 6 (UBE2L6) 84 Protein sequence of Ubiquitin-conjugating enzyme E2L 6 (UBE2L6) 85 DNA sequence of Interferon alpha-inducible protein 27 (IFI27) 86 protein sequence of Interferon alpha-inducible protein 27 (IFI27) 87 DNA sequence of Interferon alpha-inducible protein 27 (IFI27) 88 Protein sequence of Interferon alpha-inducible protein 27 (IFI27) 89 DNA sequence of Interferon induced with helicase C domain 1 (IFIH1) 90 Protein sequence of Interferon induced with helicase C domain 1 (IFIH1) 91 DNA sequence of Toll-like receptor 7 (TLR-7) 92 Protein sequence of Toll-like receptor 7 (TLR-7) 93 DNA sequence of Interferon regulatory factor 7 (IRF7) 94 Protein sequence of Interferon regulatory factor 7 (IRF7) 95 DNA sequence of Interferon regulatory factor 7 (IRF7) 96 Protein sequence of Interferon regulatory factor 7 (IRF7) 97 DNA sequence of Interferon, alpha-inducible protein 6 (IFI6) 98 Protein sequence of Interferon, alpha-inducible protein 6 (IFI6) 99 DNA sequence of Interferon, alpha-inducible protein 6 (IFI6) 100 Protein sequence of Interferon, alpha-inducible protein 6 (IFI6) 101 DNA sequence of Interferon, alpha-inducible protein 6 (IFI6) 102 Protein sequence of Interferon, alpha-inducible protein 6 (IFI6) 103 DNA sequence of Signal transducer and activator of transcription 1 (STAT1) 104 DNA sequence of Signal transducer and activator of transcription 1 (STAT1) 105 Protein sequence of Signal transducer and activator of transcription 1 (STAT1) 106 Protein sequence of Signal transducer and activator of transcription 1 (STAT1) 107 DNA sequence of Interferon-induced protein 44 (IFI44) gene 108 Protein sequence of Interferon-induced protein 44 (IFI44) gene 109 DNA sequence of eukaryotic translation initiation factor 2-alpha kinase 2 (EIF2AK2) 110 Protein sequence of eukaryotic translation initiation factor 2-alpha kinase 2 (EIF2AK2) 111 DNA sequence of DEXH (Asp-Glu-X-His) box polypeptide 58 (DHX58) 112 Protein sequence of DEXH (Asp-Glu-X-His) box polypeptide 58 (DHX58)
Sequence CWU
1
1
1121685DNAHomo sapiens 1ataatagggc cggtgctgcc tgccgaagcc ggcggctgag
aggcagcgaa ctcatctttg 60ccagtacagg agcttgtgcc gtggcccaca gcccacagcc
cacagccatg ggctgggacc 120tgacggtgaa gatgctggcg ggcaacgaat tccaggtgtc
cctgagcagc tccatgtcgg 180tgtcagagct gaaggcgcag atcacccaga agatcggcgt
gcacgccttc cagcagcgtc 240tggctgtcca cccgagcggt gtggcgctgc aggacagggt
cccccttgcc agccagggcc 300tgggccccgg cagcacggtc ctgctggtgg tggacaaatg
cgacgaacct ctgagcatcc 360tggtgaggaa taacaagggc cgcagcagca cctacgaggt
acggctgacg cagaccgtgg 420cccacctgaa gcagcaagtg agcgggctgg agggtgtgca
ggacgacctg ttctggctga 480ccttcgaggg gaagcccctg gaggaccagc tcccgctggg
ggagtacggc ctcaagcccc 540tgagcaccgt gttcatgaat ctgcgcctgc ggggaggcgg
cacagagcct ggcgggcgga 600gctaagggcc tccaccagca tccgagcagg atcaagggcc
ggaaataaag gctgttgtaa 660agagaaaaaa aaaaaaaaaa aaaaa
6852165PRTHomo sapiens 2Met Gly Trp Asp Leu Thr
Val Lys Met Leu Ala Gly Asn Glu Phe Gln1 5
10 15Val Ser Leu Ser Ser Ser Met Ser Val Ser Glu Leu
Lys Ala Gln Ile 20 25 30Thr
Gln Lys Ile Gly Val His Ala Phe Gln Gln Arg Leu Ala Val His 35
40 45Pro Ser Gly Val Ala Leu Gln Asp Arg
Val Pro Leu Ala Ser Gln Gly 50 55
60Leu Gly Pro Gly Ser Thr Val Leu Leu Val Val Asp Lys Cys Asp Glu65
70 75 80Pro Leu Ser Ile Leu
Val Arg Asn Asn Lys Gly Arg Ser Ser Thr Tyr 85
90 95Glu Val Arg Leu Thr Gln Thr Val Ala His Leu
Lys Gln Gln Val Ser 100 105
110Gly Leu Glu Gly Val Gln Asp Asp Leu Phe Trp Leu Thr Phe Glu Gly
115 120 125Lys Pro Leu Glu Asp Gln Leu
Pro Leu Gly Glu Tyr Gly Leu Lys Pro 130 135
140Leu Ser Thr Val Phe Met Asn Leu Arg Leu Arg Gly Gly Gly Thr
Glu145 150 155 160Pro Gly
Gly Arg Ser 16534396DNAHomo sapiens 3gcaaggacac acccacagct
tacaccattg gctgctgttt agctccctta tataacactg 60tcttggggtt taaacgtaac
tgaaaatcca caagacagaa tagccagatc tcagaggagc 120ctggctaagc aaaaccctgc
agaacggctg cctaatttac agcaaccatg agtacaaatg 180gtgatgatca tcaggtcaag
gatagtctgg agcaattgag atgtcacttt acatgggagt 240tatccattga tgacgatgaa
atgcctgatt tagaaaacag agtcttggat cagattgaat 300tcctagacac caaatacagt
gtgggaatac acaacctact agcctatgtg aaacacctga 360aaggccagaa tgaggaagcc
ctgaagagct taaaagaagc tgaaaactta atgcaggaag 420aacatgacaa ccaagcaaat
gtgaggagtc tggtgacctg gggcaacttt gcctggatgt 480attaccacat gggcagactg
gcagaagccc agacttacct ggacaaggtg gagaacattt 540gcaagaagct ttcaaatccc
ttccgctata gaatggagtg tccagaaata gactgtgagg 600aaggatgggc cttgctgaag
tgtggaggaa aaaattatga acgggccaag gcctgctttg 660aaaaggtgct tgaagtggac
cctgaaaacc ctgaatccag cgctgggtat gcgatctctg 720cctatcgcct ggatggcttt
aaattagcca caaaaaatca caagccattt tctttgcttc 780ccctaaggca ggctgtccgc
ttaaatccag acaatggata tattaaggtt ctccttgccc 840tgaagcttca ggatgaagga
caggaagctg aaggagaaaa gtacattgaa gaagctctag 900ccaacatgtc ctcacagacc
tatgtctttc gatatgcagc caagttttac cgaagaaaag 960gctctgtgga taaagctctt
gagttattaa aaaaggcctt gcaggaaaca cccacttctg 1020tcttactgca tcaccagata
gggctttgct acaaggcaca aatgatccaa atcaaggagg 1080ctacaaaagg gcagcctaga
gggcagaaca gagaaaagct agacaaaatg ataagatcag 1140ccatatttca ttttgaatct
gcagtggaaa aaaagcccac atttgaggtg gctcatctag 1200acctggcaag aatgtatata
gaagcaggca atcacagaaa agctgaagag aattttcaaa 1260aattgttatg catgaaacca
gtggtagaag aaacaatgca agacatacat ttccactatg 1320gtcggtttca ggaatttcaa
aagaaatctg acgtcaatgc aattatccat tatttaaaag 1380ctataaaaat agaacaggca
tcattaacaa gggataaaag tatcaattct ttgaagaaat 1440tggttttaag gaaacttcgg
agaaaggcat tagatctgga aagcttgagc ctccttgggt 1500tcgtctacaa attggaagga
aatatgaatg aagccctgga gtactatgag cgggccctga 1560gactggctgc tgactttgag
aactctgtga gacaaggtcc ttaggcaccc agatatcagc 1620cactttcaca tttcatttca
ttttatgcta acatttacta atcatctttt ctgcttactg 1680ttttcagaaa cattataatt
cactgtaatg atgtaattct tgaataataa atctgacaaa 1740atattagttg tgttcaacaa
ttagtgaaac agaatgtgtg tatgcatgta agaaagagaa 1800atcatttgta tgagtgctat
gtagtagaga aaaaatgtta gttaactttg taggaaataa 1860aacattggac ttacactaaa
tgtttaattc attcatttta ttgtgaaata aaaataaaat 1920ccttagctcc tccaccaact
gaacagaccc tcttggccaa ggagacccca gaaaccttaa 1980aaactaagtt tcccaaccat
gacaagatga gagatcattc acacctcatt atattccctc 2040ccttgctaac tgccattgga
ctttttccac tgagttaaac agaaacccat ggaaaacaaa 2100gaacagaaga ctcactcctt
ggctgacttc acctagctca ctccacgtag cgccacagcc 2160agactcccct cccctcttgc
ggtttccaca tgacaactga tcagccttcc ctcctgataa 2220gtgaccactg cccacagact
ggttctggcc agtccatgga ggctgcacac agggtgcctc 2280tatgtccttt gtttcacctt
ttgatataga aaggctaatt ttgctgtatt ttaatgttaa 2340gtctccacca cagagtgaac
acagaatgca tgtgacatac atgtttacat accactattg 2400tgtgactgcc cctcatgaat
attcatagcc ccccataacc tgttaactat gtgtgtctag 2460ccaatccacc aaccataaaa
cttctgtaat accctccctt cctccaagag cctgcttttg 2520gttgctgtgg taggctctgc
ttcccaggct gcaggttgca ggagaggagg ctgcagtggc 2580tcacgcctgt aatctcagca
cttcgatggg acgaggcagg cagatcacct gaacccagga 2640gttcgagagc agccttggca
atggcaaaac caaccgtctc tacaaaaaat gcaaaaactt 2700agctgggtgt ggtggcatgc
acctgtagct tcagttccag ctactcagga ggctgaggtg 2760agtggactgc tggagccagg
gagttcgagg ctgcagtgtc gagatcttgc cactgcactc 2820cattctggat gatagaacga
gaccccatct caaaaaaaaa aaaagttctc tccaattgta 2880tatagcttgt gattttatgt
caacactatc aataaatagc tttcagtgca agaaaccaaa 2940aatactgtaa taaacaggca
catattcttc ccaaacctca tgcagtttac aatctagtga 3000gagacacaga tagcagtaca
gagtcaatta aaggttagtt ttcttcatga agatgtttta 3060attttaattc aatgtgaaag
ggttccaagg agtttatctt gttttatgcc attttatttg 3120aagcactact tactaagtca
tttgctgata ttaatctagt taaatcaaga aatattacat 3180gaaaatgttg ctaaatcaga
gatcatgggt aacaatcacc tttgattatg aataatcata 3240ttttattgaa aggcaaggca
caacaaataa taagaaggaa aaaataaata agcaatgtta 3300ttgatctttc attctgtata
tgttttgggg ggaatatact agtttctttt agtggctgta 3360acaaattacc acaaacttgg
tgacttaaaa tttcacagat ttactctttc ttacagttct 3420ggaggtcaga agtctgaaat
gggtttcaat gagccaaagt caaggtattg atgacgctac 3480actcctccgg aggctctagg
cagatagcct tttccagctt ccagaggctg cctgaattct 3540ttcatccatc ttaaaaacca
acagtgtagt agcctcaaat ctctctctct gcttccttct 3600tcacatctcc ttctctcctc
tgactctttt gcctctttct tctaaggacg caccaggtcc 3660acctgcataa tccagaataa
ttgccccatc cgcaaatcct taatttaata acatctgcaa 3720agtccctttt gctatgtaaa
gtagcatgtt cacaggttct ggagacttgg ccatggatac 3780gattgcgggg ggggcattat
tcttaccaca gagcacccca agaaaatctc caaattttgg 3840gcttccaatc cattttgctt
caattattta atatttttac tccttccagt agatactgat 3900ttcatccatt gcccttaaga
aggtaggaca gagattatgg cacatctcac attaaatgct 3960atattttcgt tggaaataca
ttttttgctt caacttttat tttaaattca agggtacatg 4020tgcaggatgt tcaggtttgt
tacacaggta aacgtgtgcc atggcggttt gctgaacaga 4080tcatcccatc accaacagat
catcccattg agaggtgaag ccggctgggc ttctgggttg 4140ggtggggact tggagaactt
ttctgtctag ctaaagtatt gtaaaatgga ccagtcaaca 4200ctctgtaaaa tggaccaatc
agctctctgt aaaatggacc aatcagcagg atgtgggtgg 4260ggccaagtaa gggaataaaa
gcaggccacc cgagctggca gcggcaaccc gctcgggtcc 4320ccttccatgc tgtggaagtt
ttgttctttc gctctttcaa taaatcttgc tgctgctcaa 4380aaaaaaaaaa aaaaaa
43964478PRTHomo sapiens 4Met
Ser Thr Asn Gly Asp Asp His Gln Val Lys Asp Ser Leu Glu Gln1
5 10 15Leu Arg Cys His Phe Thr Trp
Glu Leu Ser Ile Asp Asp Asp Glu Met 20 25
30Pro Asp Leu Glu Asn Arg Val Leu Asp Gln Ile Glu Phe Leu
Asp Thr 35 40 45Lys Tyr Ser Val
Gly Ile His Asn Leu Leu Ala Tyr Val Lys His Leu 50 55
60Lys Gly Gln Asn Glu Glu Ala Leu Lys Ser Leu Lys Glu
Ala Glu Asn65 70 75
80Leu Met Gln Glu Glu His Asp Asn Gln Ala Asn Val Arg Ser Leu Val
85 90 95Thr Trp Gly Asn Phe Ala
Trp Met Tyr Tyr His Met Gly Arg Leu Ala 100
105 110Glu Ala Gln Thr Tyr Leu Asp Lys Val Glu Asn Ile
Cys Lys Lys Leu 115 120 125Ser Asn
Pro Phe Arg Tyr Arg Met Glu Cys Pro Glu Ile Asp Cys Glu 130
135 140Glu Gly Trp Ala Leu Leu Lys Cys Gly Gly Lys
Asn Tyr Glu Arg Ala145 150 155
160Lys Ala Cys Phe Glu Lys Val Leu Glu Val Asp Pro Glu Asn Pro Glu
165 170 175Ser Ser Ala Gly
Tyr Ala Ile Ser Ala Tyr Arg Leu Asp Gly Phe Lys 180
185 190Leu Ala Thr Lys Asn His Lys Pro Phe Ser Leu
Leu Pro Leu Arg Gln 195 200 205Ala
Val Arg Leu Asn Pro Asp Asn Gly Tyr Ile Lys Val Leu Leu Ala 210
215 220Leu Lys Leu Gln Asp Glu Gly Gln Glu Ala
Glu Gly Glu Lys Tyr Ile225 230 235
240Glu Glu Ala Leu Ala Asn Met Ser Ser Gln Thr Tyr Val Phe Arg
Tyr 245 250 255Ala Ala Lys
Phe Tyr Arg Arg Lys Gly Ser Val Asp Lys Ala Leu Glu 260
265 270Leu Leu Lys Lys Ala Leu Gln Glu Thr Pro
Thr Ser Val Leu Leu His 275 280
285His Gln Ile Gly Leu Cys Tyr Lys Ala Gln Met Ile Gln Ile Lys Glu 290
295 300Ala Thr Lys Gly Gln Pro Arg Gly
Gln Asn Arg Glu Lys Leu Asp Lys305 310
315 320Met Ile Arg Ser Ala Ile Phe His Phe Glu Ser Ala
Val Glu Lys Lys 325 330
335Pro Thr Phe Glu Val Ala His Leu Asp Leu Ala Arg Met Tyr Ile Glu
340 345 350Ala Gly Asn His Arg Lys
Ala Glu Glu Asn Phe Gln Lys Leu Leu Cys 355 360
365Met Lys Pro Val Val Glu Glu Thr Met Gln Asp Ile His Phe
His Tyr 370 375 380Gly Arg Phe Gln Glu
Phe Gln Lys Lys Ser Asp Val Asn Ala Ile Ile385 390
395 400His Tyr Leu Lys Ala Ile Lys Ile Glu Gln
Ala Ser Leu Thr Arg Asp 405 410
415Lys Ser Ile Asn Ser Leu Lys Lys Leu Val Leu Arg Lys Leu Arg Arg
420 425 430Lys Ala Leu Asp Leu
Glu Ser Leu Ser Leu Leu Gly Phe Val Tyr Lys 435
440 445Leu Glu Gly Asn Met Asn Glu Ala Leu Glu Tyr Tyr
Glu Arg Ala Leu 450 455 460Arg Leu Ala
Ala Asp Phe Glu Asn Ser Val Arg Gln Gly Pro465 470
47553505DNAHomo sapiens 5agtttcactt tcccttttgt aacgtcagct
gaagggaaac aaacaaaaag gaaccagagg 60ccacttgtat atataggtct cttcagcatt
tattggtggc agaagaggaa gatttctgaa 120gagtgcagct gcctgaaccg agccctgccg
aacagctgag aattgcactg caaccatgag 180tgagaacaat aagaattcct tggagagcag
cctacggcaa ctaaaatgcc atttcacctg 240gaacttgatg gagggagaaa actccttgga
tgattttgaa gacaaagtat tttaccggac 300tgagtttcag aatcgtgaat tcaaagccac
aatgtgcaac ctactggcct atctaaagca 360cctcaaaggg caaaacgagg cagccctgga
atgcttacgt aaagctgaag agttaatcca 420gcaagagcat gctgaccagg cagaaatcag
aagtctggtc acctggggaa actatgcctg 480ggtctactat cacatgggcc gactctcaga
cgttcagatt tatgtagaca aggtgaaaca 540tgtctgtgag aagttttcca gtccctatag
aattgagagt ccagagcttg actgtgagga 600agggtggaca cggttaaagt gtggaggaaa
ccaaaatgaa agagcgaagg tgtgctttga 660gaaggctctg gaaaagaagc caaagaaccc
agaattcacc tctggactgg caatagcaag 720ctaccgtctg gacaactggc caccatctca
gaacgccatt gaccctctga ggcaagccat 780tcggctgaat cctgacaacc agtaccttaa
agtcctcctg gctctgaagc ttcataagat 840gcgtgaagaa ggtgaagagg aaggtgaagg
agagaagtta gttgaagaag ccttggagaa 900agccccaggt gtaacagatg ttcttcgcag
tgcagccaag ttttatcgaa gaaaagatga 960gccagacaaa gcgattgaac tgcttaaaaa
ggctttagaa tacataccaa acaatgccta 1020cctgcattgc caaattgggt gctgctatag
ggcaaaagtc ttccaagtaa tgaatctaag 1080agagaatgga atgtatggga aaagaaagtt
actggaacta ataggacacg ctgtggctca 1140tctgaagaaa gctgatgagg ccaatgataa
tctcttccgt gtctgttcca ttcttgccag 1200cctccatgct ctagcagatc agtatgaaga
cgcagagtat tacttccaaa aggaattcag 1260taaagagctt actcctgtag cgaaacaact
gctccatctg cggtatggca actttcagct 1320gtaccaaatg aagtgtgaag acaaggccat
ccaccacttt atagagggtg taaaaataaa 1380ccagaaatca agggagaaag aaaagatgaa
agacaaactg caaaaaattg ccaaaatgcg 1440actttctaaa aatggagcag attctgaggc
tttgcatgtc ttggcattcc ttcaggagct 1500gaatgaaaaa atgcaacaag cagatgaaga
ctctgagagg ggtttggagt ctggaagcct 1560catcccttca gcatcaagct ggaatgggga
atgaagaata gagatgtggt gcccactagg 1620ctactgctga aagggagctg aaattcctcc
accaagttgg tattcaaaat atgtaatgac 1680tggtatggca aaagattgga ctaagacact
ggccatacca ctggacaggg ttatgttaac 1740acctgaattg ctgggtcttg agagagccca
aggagttctg ggagagggac cagattgggg 1800ggtaggtcca cgggcttggt gatagaatta
tttctcgatt gacttcttga gtgcaatttg 1860aactgtaaca tttgcttagt cacctttagt
ggagtaatct actgggcttg tttctatatt 1920tatataaagc agccaaatcc ttcatgtaat
attgaagtcc atttttgcaa tgttgttcca 1980tacttggagt cattttgcat cccatagagg
ttagtcctgc atagccagta atgtgctaag 2040ttcatccaaa agctggcgga ccaaagtcta
aatagggctc agtatccccc atcgcttatc 2100tctgcctcct tcctcctcct tcccagtcta
tcatcaacct tgagtattct acacaatgtg 2160aattcaagtg cctgattaat tgaggtggca
acatagtttg agacgagggc agagaacagg 2220aagatacata gctagaagcg acgggtacaa
aaagcaatgt gtacaagaag actttcagca 2280agtatacaga gagttcacct ctactctgcc
ctcctcatag tcataatgta gcaagtaaag 2340aatgagaatg gattctgtac aatacactag
aaaccaacat aatgtatttc tttaaaacct 2400gtgtgaaaaa ataaatgttc caccagtagg
gataggggaa aagtaaccaa aagagagaaa 2460gagaaaggaa tgctggttta tctttgtaga
ttgtaatcga atggagaaat ttgcagtatt 2520ttagccacta ttaggaattt tttttttttg
taaaatgaag actgaactct gttcaaatgc 2580tttcatgaac ctggtttgag acggtaggaa
agcaacaaaa cgtgggaacc tggtgactaa 2640gggcctggtg caaggacttg ggaaatgtca
ttgataatag atggtggggt tttcccccct 2700ttagaaatgt tggatattaa gtgatataaa
cacttctttt aactccgaaa atcttctgag 2760aaatcacaaa attcacggta tgcttggaac
gattgagatt ttctaggtag atgctgaata 2820gcctagacat caaagttggt gtgaaccaaa
atagagtcag ctgacccagc atcagccaca 2880ctctgggttg gaaaatgttt gcctgttgga
attaatttaa gcttaagtat atatcaacat 2940tattttattg tgcaattaaa acaatacaaa
ttcatggttt tttaaagtta aaaattctaa 3000ccactgtaac aacagttttt gtgttatttt
ctgtattaaa catcttgttg cacgcatttg 3060aggtcatcag ggtgcaaaat ttgtattcct
gaaaatgtca tatattttca ttaataaata 3120acctaaatat gataaaacat aaagcagtgt
tctggttcat ctggaatttt gctgtacttt 3180aaatctttca gactcagcta ctgataaatg
aaacgttaca caggtgtgaa ccaaatccaa 3240ataacctcga ctggtctact atcataatca
cctgaacaga acaaaacttt ttcctcagct 3300ttaagagtcc agggcttcgg ataacagctg
ccatctgcca cctgctacca ttgacctacg 3360tgaacacaga cattctgtct ccaccttgat
ggtgggtggg ctgctcccct tttctttgtt 3420aaattttgtg ctttcatcac attttctcta
ttctgacctc tgttatgaga aataaaagtc 3480actgattcca ttttaaaaaa aaaaa
35056472PRTHomo sapiens 6Met Ser Glu Asn
Asn Lys Asn Ser Leu Glu Ser Ser Leu Arg Gln Leu1 5
10 15Lys Cys His Phe Thr Trp Asn Leu Met Glu
Gly Glu Asn Ser Leu Asp 20 25
30Asp Phe Glu Asp Lys Val Phe Tyr Arg Thr Glu Phe Gln Asn Arg Glu
35 40 45Phe Lys Ala Thr Met Cys Asn Leu
Leu Ala Tyr Leu Lys His Leu Lys 50 55
60Gly Gln Asn Glu Ala Ala Leu Glu Cys Leu Arg Lys Ala Glu Glu Leu65
70 75 80Ile Gln Gln Glu His
Ala Asp Gln Ala Glu Ile Arg Ser Leu Val Thr 85
90 95Trp Gly Asn Tyr Ala Trp Val Tyr Tyr His Met
Gly Arg Leu Ser Asp 100 105
110Val Gln Ile Tyr Val Asp Lys Val Lys His Val Cys Glu Lys Phe Ser
115 120 125Ser Pro Tyr Arg Ile Glu Ser
Pro Glu Leu Asp Cys Glu Glu Gly Trp 130 135
140Thr Arg Leu Lys Cys Gly Gly Asn Gln Asn Glu Arg Ala Lys Val
Cys145 150 155 160Phe Glu
Lys Ala Leu Glu Lys Lys Pro Lys Asn Pro Glu Phe Thr Ser
165 170 175Gly Leu Ala Ile Ala Ser Tyr
Arg Leu Asp Asn Trp Pro Pro Ser Gln 180 185
190Asn Ala Ile Asp Pro Leu Arg Gln Ala Ile Arg Leu Asn Pro
Asp Asn 195 200 205Gln Tyr Leu Lys
Val Leu Leu Ala Leu Lys Leu His Lys Met Arg Glu 210
215 220Glu Gly Glu Glu Glu Gly Glu Gly Glu Lys Leu Val
Glu Glu Ala Leu225 230 235
240Glu Lys Ala Pro Gly Val Thr Asp Val Leu Arg Ser Ala Ala Lys Phe
245 250 255Tyr Arg Arg Lys Asp
Glu Pro Asp Lys Ala Ile Glu Leu Leu Lys Lys 260
265 270Ala Leu Glu Tyr Ile Pro Asn Asn Ala Tyr Leu His
Cys Gln Ile Gly 275 280 285Cys Cys
Tyr Arg Ala Lys Val Phe Gln Val Met Asn Leu Arg Glu Asn 290
295 300Gly Met Tyr Gly Lys Arg Lys Leu Leu Glu Leu
Ile Gly His Ala Val305 310 315
320Ala His Leu Lys Lys Ala Asp Glu Ala Asn Asp Asn Leu Phe Arg Val
325 330 335Cys Ser Ile Leu
Ala Ser Leu His Ala Leu Ala Asp Gln Tyr Glu Asp 340
345 350Ala Glu Tyr Tyr Phe Gln Lys Glu Phe Ser Lys
Glu Leu Thr Pro Val 355 360 365Ala
Lys Gln Leu Leu His Leu Arg Tyr Gly Asn Phe Gln Leu Tyr Gln 370
375 380Met Lys Cys Glu Asp Lys Ala Ile His His
Phe Ile Glu Gly Val Lys385 390 395
400Ile Asn Gln Lys Ser Arg Glu Lys Glu Lys Met Lys Asp Lys Leu
Gln 405 410 415Lys Ile Ala
Lys Met Arg Leu Ser Lys Asn Gly Ala Asp Ser Glu Ala 420
425 430Leu His Val Leu Ala Phe Leu Gln Glu Leu
Asn Glu Lys Met Gln Gln 435 440
445Ala Asp Glu Asp Ser Glu Arg Gly Leu Glu Ser Gly Ser Leu Ile Pro 450
455 460Ser Ala Ser Ser Trp Asn Gly Glu465
47072464DNAHomo sapiens 7actttccttt cccctttcat aaaagcacag
acctaacagc accctgggtg gaaacctctt 60cagcatttgc ttggaatcag taagctaaaa
acaaaatcaa ccgggacccc agcttttcag 120aactgcaggg aaacagccat catgagtgag
gtcaccaaga attccctgga gaaaatcctt 180ccacagctga aatgccattt cacctggaac
ttattcaagg aagacagtgt ctcaagggat 240ctagaagata gagtgtgtaa ccagattgaa
tttttaaaca ctgagttcaa agctacaatg 300tacaacttgt tggcctacat aaaacaccta
gatggtaaca acgaggcagc cctggaatgc 360ttacggcaag ctgaagagtt aatccagcaa
gaacatgctg accaagcaga aatcagaagt 420ctagtcactt ggggaaacta cgcctgggtc
tactatcact tgggcagact ctcagatgct 480cagatttatg tagataaggt gaaacaaacc
tgcaagaaat tttcaaatcc atacagtatt 540gagtattctg aacttgactg tgaggaaggg
tggacacaac tgaagtgtgg aagaaatgaa 600agggcgaagg tgtgttttga gaaggctctg
gaagaaaagc ccaacaaccc agaattctcc 660tctggactgg caattgcgat gtaccatctg
gataatcacc cagagaaaca gttctctact 720gatgttttga agcaggccat tgagctgagt
cctgataacc aatacgtcaa ggttctcttg 780ggcctgaaac tgcagaagat gaataaagaa
gctgaaggag agcagtttgt tgaagaagcc 840ttggaaaagt ctccttgcca aacagatgtc
ctccgcagtg cagccaaatt ttacagaaga 900aaaggtgacc tagacaaagc tattgaactg
tttcaacggg tgttggaatc cacaccaaac 960aatggctacc tctatcacca gattgggtgc
tgctacaagg caaaagtaag acaaatgcag 1020aatacaggag aatctgaagc tagtggaaat
aaagagatga ttgaagcact aaagcaatat 1080gctatggact attcgaataa agctcttgag
aagggactga atcctctgaa tgcatactcc 1140gatctcgctg agttcctgga gacggaatgt
tatcagacac cattcaataa ggaagtccct 1200gatgctgaaa agcaacaatc ccatcagcgc
tactgcaacc ttcagaaata taatgggaag 1260tctgaagaca ctgctgtgca acatggttta
gagggtttgt ccataagcaa aaaatcaact 1320gacaaggaag agatcaaaga ccaaccacag
aatgtatctg aaaatctgct tccacaaaat 1380gcaccaaatt attggtatct tcaaggatta
attcataagc agaatggaga tctgctgcaa 1440gcagccaaat gttatgagaa ggaactgggc
cgcctgctaa gggatgcccc ttcaggcata 1500ggcagtattt tcctgtcagc atctgagctt
gaggatggta gtgaggaaat gggccagggc 1560gcagtcagct ccagtcccag agagctcctc
tctaactcag agcaactgaa ctgagacaga 1620ggaggaaaac agagcatcag aagcctgcag
tggtggttgt gacgggtagg acgataggaa 1680gacagggggc cccaacctgg gattgctgag
cagggaagct ttgcatgttg ctctaaggta 1740catttttaaa gagttgtttt ttggccgggc
gcagtggctc atgcctgtaa tcccagcact 1800ttgggaggcc gaggtgggcg gatcacgagg
tctggagttt gagaccatcc tggctaacac 1860agtgaaatcc cgtctctact aaaaatacaa
aaaattagcc aggcgtggtg gctggcacct 1920gtagtcccag ctacttggga ggctgaggca
ggagaatggc gtgaacctgg aaggaagagg 1980ttgcagtgag ccaagattgc gcccctgcac
tccagcctgg gcaacagagc aagactccat 2040ctcaaaaaaa aaaaaaaaaa aaaaaaagag
ttgttttctc atgttcatta tagttcatta 2100cagttacata gtccgaaggt cttacaacta
atcactggta gcaataaatg cttcaggccc 2160acatgatgct gattagttct cagttttcat
tcagttcaca atataaccac cattcctgcc 2220ctccctgcca agggtcataa atggtgactg
cctaacaaca aaatttgcag tctcatctca 2280ttttcatcca gacttctgga actcaaagat
taacttttga ctaaccctgg aatatctctt 2340atctcactta tagcttcagg catgtattta
tatgtattct tgatagcaat accataatca 2400atgtgtattc ctgatagtaa tgctacaata
aatccaaaca tttcaactct gttaaaaaaa 2460aaaa
24648490PRTHomo sapiens 8Met Ser Glu Val
Thr Lys Asn Ser Leu Glu Lys Ile Leu Pro Gln Leu1 5
10 15Lys Cys His Phe Thr Trp Asn Leu Phe Lys
Glu Asp Ser Val Ser Arg 20 25
30Asp Leu Glu Asp Arg Val Cys Asn Gln Ile Glu Phe Leu Asn Thr Glu
35 40 45Phe Lys Ala Thr Met Tyr Asn Leu
Leu Ala Tyr Ile Lys His Leu Asp 50 55
60Gly Asn Asn Glu Ala Ala Leu Glu Cys Leu Arg Gln Ala Glu Glu Leu65
70 75 80Ile Gln Gln Glu His
Ala Asp Gln Ala Glu Ile Arg Ser Leu Val Thr 85
90 95Trp Gly Asn Tyr Ala Trp Val Tyr Tyr His Leu
Gly Arg Leu Ser Asp 100 105
110Ala Gln Ile Tyr Val Asp Lys Val Lys Gln Thr Cys Lys Lys Phe Ser
115 120 125Asn Pro Tyr Ser Ile Glu Tyr
Ser Glu Leu Asp Cys Glu Glu Gly Trp 130 135
140Thr Gln Leu Lys Cys Gly Arg Asn Glu Arg Ala Lys Val Cys Phe
Glu145 150 155 160Lys Ala
Leu Glu Glu Lys Pro Asn Asn Pro Glu Phe Ser Ser Gly Leu
165 170 175Ala Ile Ala Met Tyr His Leu
Asp Asn His Pro Glu Lys Gln Phe Ser 180 185
190Thr Asp Val Leu Lys Gln Ala Ile Glu Leu Ser Pro Asp Asn
Gln Tyr 195 200 205Val Lys Val Leu
Leu Gly Leu Lys Leu Gln Lys Met Asn Lys Glu Ala 210
215 220Glu Gly Glu Gln Phe Val Glu Glu Ala Leu Glu Lys
Ser Pro Cys Gln225 230 235
240Thr Asp Val Leu Arg Ser Ala Ala Lys Phe Tyr Arg Arg Lys Gly Asp
245 250 255Leu Asp Lys Ala Ile
Glu Leu Phe Gln Arg Val Leu Glu Ser Thr Pro 260
265 270Asn Asn Gly Tyr Leu Tyr His Gln Ile Gly Cys Cys
Tyr Lys Ala Lys 275 280 285Val Arg
Gln Met Gln Asn Thr Gly Glu Ser Glu Ala Ser Gly Asn Lys 290
295 300Glu Met Ile Glu Ala Leu Lys Gln Tyr Ala Met
Asp Tyr Ser Asn Lys305 310 315
320Ala Leu Glu Lys Gly Leu Asn Pro Leu Asn Ala Tyr Ser Asp Leu Ala
325 330 335Glu Phe Leu Glu
Thr Glu Cys Tyr Gln Thr Pro Phe Asn Lys Glu Val 340
345 350Pro Asp Ala Glu Lys Gln Gln Ser His Gln Arg
Tyr Cys Asn Leu Gln 355 360 365Lys
Tyr Asn Gly Lys Ser Glu Asp Thr Ala Val Gln His Gly Leu Glu 370
375 380Gly Leu Ser Ile Ser Lys Lys Ser Thr Asp
Lys Glu Glu Ile Lys Asp385 390 395
400Gln Pro Gln Asn Val Ser Glu Asn Leu Leu Pro Gln Asn Ala Pro
Asn 405 410 415Tyr Trp Tyr
Leu Gln Gly Leu Ile His Lys Gln Asn Gly Asp Leu Leu 420
425 430Gln Ala Ala Lys Cys Tyr Glu Lys Glu Leu
Gly Arg Leu Leu Arg Asp 435 440
445Ala Pro Ser Gly Ile Gly Ser Ile Phe Leu Ser Ala Ser Glu Leu Glu 450
455 460Asp Gly Ser Glu Glu Met Gly Gln
Gly Ala Val Ser Ser Ser Pro Arg465 470
475 480Glu Leu Leu Ser Asn Ser Glu Gln Leu Asn
485 49092552DNAHomo sapiens 9attttcctcc tcccaacgat
tttaaattag tttcactttc cagtttcctc ttccttcccc 60taaaagcaat tactcaaaaa
cggagaaaac atcagctgat gcgtgcccta ctctcccacc 120cctttatata gttccttcag
tatttacttg aggcagacag gaagacttct gaagaacaaa 180tcagcctggt caccagcttt
tcggaacagc agagacacag agggcagtca tgagtgaggt 240caccaagaat tccctggaga
aaatccttcc acagctgaaa tgccatttca cctggaactt 300attcaaggaa gacagtgtct
caagggatct agaagataga gtgtgtaacc agattgaatt 360tttaaacact gagttcaaag
ctacaatgta caacttgttg gcctacataa aacacctaga 420tggtaacaac gaggcagccc
tggaatgctt acggcaagct gaagagttaa tccagcaaga 480acatgctgac caagcagaaa
tcagaagtct agtcacttgg ggaaactacg cctgggtcta 540ctatcacttg ggcagactct
cagatgctca gatttatgta gataaggtga aacaaacctg 600caagaaattt tcaaatccat
acagtattga gtattctgaa cttgactgtg aggaagggtg 660gacacaactg aagtgtggaa
gaaatgaaag ggcgaaggtg tgttttgaga aggctctgga 720agaaaagccc aacaacccag
aattctcctc tggactggca attgcgatgt accatctgga 780taatcaccca gagaaacagt
tctctactga tgttttgaag caggccattg agctgagtcc 840tgataaccaa tacgtcaagg
ttctcttggg cctgaaactg cagaagatga ataaagaagc 900tgaaggagag cagtttgttg
aagaagcctt ggaaaagtct ccttgccaaa cagatgtcct 960ccgcagtgca gccaaatttt
acagaagaaa aggtgaccta gacaaagcta ttgaactgtt 1020tcaacgggtg ttggaatcca
caccaaacaa tggctacctc tatcaccaga ttgggtgctg 1080ctacaaggca aaagtaagac
aaatgcagaa tacaggagaa tctgaagcta gtggaaataa 1140agagatgatt gaagcactaa
agcaatatgc tatggactat tcgaataaag ctcttgagaa 1200gggactgaat cctctgaatg
catactccga tctcgctgag ttcctggaga cggaatgtta 1260tcagacacca ttcaataagg
aagtccctga tgctgaaaag caacaatccc atcagcgcta 1320ctgcaacctt cagaaatata
atgggaagtc tgaagacact gctgtgcaac atggtttaga 1380gggtttgtcc ataagcaaaa
aatcaactga caaggaagag atcaaagacc aaccacagaa 1440tgtatctgaa aatctgcttc
cacaaaatgc accaaattat tggtatcttc aaggattaat 1500tcataagcag aatggagatc
tgctgcaagc agccaaatgt tatgagaagg aactgggccg 1560cctgctaagg gatgcccctt
caggcatagg cagtattttc ctgtcagcat ctgagcttga 1620ggatggtagt gaggaaatgg
gccagggcgc agtcagctcc agtcccagag agctcctctc 1680taactcagag caactgaact
gagacagagg aggaaaacag agcatcagaa gcctgcagtg 1740gtggttgtga cgggtaggac
gataggaaga cagggggccc caacctggga ttgctgagca 1800gggaagcttt gcatgttgct
ctaaggtaca tttttaaaga gttgtttttt ggccgggcgc 1860agtggctcat gcctgtaatc
ccagcacttt gggaggccga ggtgggcgga tcacgaggtc 1920tggagtttga gaccatcctg
gctaacacag tgaaatcccg tctctactaa aaatacaaaa 1980aattagccag gcgtggtggc
tggcacctgt agtcccagct acttgggagg ctgaggcagg 2040agaatggcgt gaacctggaa
ggaagaggtt gcagtgagcc aagattgcgc ccctgcactc 2100cagcctgggc aacagagcaa
gactccatct caaaaaaaaa aaaaaaaaaa aaaaagagtt 2160gttttctcat gttcattata
gttcattaca gttacatagt ccgaaggtct tacaactaat 2220cactggtagc aataaatgct
tcaggcccac atgatgctga ttagttctca gttttcattc 2280agttcacaat ataaccacca
ttcctgccct ccctgccaag ggtcataaat ggtgactgcc 2340taacaacaaa atttgcagtc
tcatctcatt ttcatccaga cttctggaac tcaaagatta 2400acttttgact aaccctggaa
tatctcttat ctcacttata gcttcaggca tgtatttata 2460tgtattcttg atagcaatac
cataatcaat gtgtattcct gatagtaatg ctacaataaa 2520tccaaacatt tcaactctgt
taaaaaaaaa aa 255210490PRTHomo sapiens
10Met Ser Glu Val Thr Lys Asn Ser Leu Glu Lys Ile Leu Pro Gln Leu1
5 10 15Lys Cys His Phe Thr Trp
Asn Leu Phe Lys Glu Asp Ser Val Ser Arg 20 25
30Asp Leu Glu Asp Arg Val Cys Asn Gln Ile Glu Phe Leu
Asn Thr Glu 35 40 45Phe Lys Ala
Thr Met Tyr Asn Leu Leu Ala Tyr Ile Lys His Leu Asp 50
55 60Gly Asn Asn Glu Ala Ala Leu Glu Cys Leu Arg Gln
Ala Glu Glu Leu65 70 75
80Ile Gln Gln Glu His Ala Asp Gln Ala Glu Ile Arg Ser Leu Val Thr
85 90 95Trp Gly Asn Tyr Ala Trp
Val Tyr Tyr His Leu Gly Arg Leu Ser Asp 100
105 110Ala Gln Ile Tyr Val Asp Lys Val Lys Gln Thr Cys
Lys Lys Phe Ser 115 120 125Asn Pro
Tyr Ser Ile Glu Tyr Ser Glu Leu Asp Cys Glu Glu Gly Trp 130
135 140Thr Gln Leu Lys Cys Gly Arg Asn Glu Arg Ala
Lys Val Cys Phe Glu145 150 155
160Lys Ala Leu Glu Glu Lys Pro Asn Asn Pro Glu Phe Ser Ser Gly Leu
165 170 175Ala Ile Ala Met
Tyr His Leu Asp Asn His Pro Glu Lys Gln Phe Ser 180
185 190Thr Asp Val Leu Lys Gln Ala Ile Glu Leu Ser
Pro Asp Asn Gln Tyr 195 200 205Val
Lys Val Leu Leu Gly Leu Lys Leu Gln Lys Met Asn Lys Glu Ala 210
215 220Glu Gly Glu Gln Phe Val Glu Glu Ala Leu
Glu Lys Ser Pro Cys Gln225 230 235
240Thr Asp Val Leu Arg Ser Ala Ala Lys Phe Tyr Arg Arg Lys Gly
Asp 245 250 255Leu Asp Lys
Ala Ile Glu Leu Phe Gln Arg Val Leu Glu Ser Thr Pro 260
265 270Asn Asn Gly Tyr Leu Tyr His Gln Ile Gly
Cys Cys Tyr Lys Ala Lys 275 280
285Val Arg Gln Met Gln Asn Thr Gly Glu Ser Glu Ala Ser Gly Asn Lys 290
295 300Glu Met Ile Glu Ala Leu Lys Gln
Tyr Ala Met Asp Tyr Ser Asn Lys305 310
315 320Ala Leu Glu Lys Gly Leu Asn Pro Leu Asn Ala Tyr
Ser Asp Leu Ala 325 330
335Glu Phe Leu Glu Thr Glu Cys Tyr Gln Thr Pro Phe Asn Lys Glu Val
340 345 350Pro Asp Ala Glu Lys Gln
Gln Ser His Gln Arg Tyr Cys Asn Leu Gln 355 360
365Lys Tyr Asn Gly Lys Ser Glu Asp Thr Ala Val Gln His Gly
Leu Glu 370 375 380Gly Leu Ser Ile Ser
Lys Lys Ser Thr Asp Lys Glu Glu Ile Lys Asp385 390
395 400Gln Pro Gln Asn Val Ser Glu Asn Leu Leu
Pro Gln Asn Ala Pro Asn 405 410
415Tyr Trp Tyr Leu Gln Gly Leu Ile His Lys Gln Asn Gly Asp Leu Leu
420 425 430Gln Ala Ala Lys Cys
Tyr Glu Lys Glu Leu Gly Arg Leu Leu Arg Asp 435
440 445Ala Pro Ser Gly Ile Gly Ser Ile Phe Leu Ser Ala
Ser Glu Leu Glu 450 455 460Asp Gly Ser
Glu Glu Met Gly Gln Gly Ala Val Ser Ser Ser Pro Arg465
470 475 480Glu Leu Leu Ser Asn Ser Glu
Gln Leu Asn 485 490114034DNAHomo sapiens
11agtttctgag cgctcggcat ctgattcaat ctccagtttc ctgttcttgc tggggctggg
60gtctctcctt taacaaagac acgccgcgcg gccgagtcca ggggctgcag aggcctggcg
120cgcgcacgcg cacgcgcacg cccaccgcgc ggcttcccgc ggtccccggt gctgaggaga
180gagcgatccg agggactgcg ccgcccggac ggcctgcaga gcgctgccat catgagtgaa
240attcgtaagg acaccttgaa ggccattctg ttggagttag aatgtcattt tacatggaat
300ttacttaagg aagacattga tctgtttgag gtagaagata caattgggca acagcttgaa
360tttcttacca caaaatctag acttgctctt tataacctat tggcctatgt gaaacaccta
420aaaggccaaa ataaagacgc ccttgagtgc ttggaacaag cagaagaaat aatccagcaa
480gaacactcag acaaagaaga agtacgaagc ctggtcactt ggggaaacta tgcctgggtg
540tattatcaca tggaccagct tgaagaagct cagaagtata caggtaagat agggaatgtc
600tgtaagaaat tgtccagtcc ttctaactac aagttggagt gtcctgagac tgactgtgag
660aaaggctggg cactcttgaa atttggagga aagtattatc aaaaggctaa agcggctttt
720gagaaggctc tggaagtgga gcctgacaat ccagaattta acatcggcta tgctatcaca
780gtgtatcggc tggatgattc tgatagagaa gggtctgtaa agagcttttc tctggggcct
840ttgagaaagg ctgttaccct gaacccagat aacagctata ttaaggtttt tctggcactg
900aagcttcaag atgtacatgc agaagctgaa ggggaaaagt atattgaaga aatcctggac
960caaatatcat cccagcctta cgtccttcgt tatgcagcca agttctatag gagaaaaaat
1020tcctggaaca aagctctcga acttttaaaa aaggccttgg aggtgacacc aacttcttct
1080ttcctgcatc accagatggg actttgctac agggcacaaa tgatccaaat caagaaggcc
1140acacacaaca gacctaaagg aaaggataaa ctaaaggttg atgagctgat ttcatctgct
1200atatttcatt tcaaagcagc catggaacga gactctatgt ttgcatttgc ctacacagac
1260ctggccaaca tgtacgctga aggaggccag tatagcaatg ctgaggacat tttccggaaa
1320gctcttcgtc tggagaacat aaccgatgat cacaaacatc agatccatta ccactatggc
1380cgctttcagg aatttcaccg taaatcagaa aatactgcca tccatcatta tttagaagcc
1440ttaaaggtca aagacagatc accccttcgc accaaactga caagtgctct gaagaaattg
1500tctaccaaga gactttgtca caatgcttta gatgtgcaga gtttaagtgc cctagggttt
1560gtttacaagc tggaaggaga aaagaggcaa gctgctgagt actatgagaa ggcacaaaag
1620atagatccag aaaatgcaga attcctgact gctctctgtg agctccgact ttccatttaa
1680atacatactc taggaaatta gctctaagtt tttcccttca ttttgggttc tcctgtttgt
1740ttttttttta ttattttaat cccttgttta ttatagagct aatatttatt gaatagttat
1800tgtgtaccaa gcattgtgct aaatacttta tatgcattat gatgaatctt gtgcggtttt
1860ctttcttttt ttctttttaa ttaaaatact ataatccatt gagaaatagc aatattctag
1920ctattgtaac ttctaaaaat ggtatggcca ttagatctgt gctttttatc tctgctcttt
1980gaatttctca tattatatag taaatatatt cctacgtaaa cctttgatac ctagatcagg
2040aatactcttc caggagtaca aaattacatt attgatagtt aagctcttaa ttgtgtagct
2100tgcaaaagac agcacttttt agttacagat gttttgactt tgatgaggat atttagctat
2160caatctaata gtcacctaaa atatcttttt tgttggaaaa aagtttataa taaaaaagtt
2220tgtcatctct agtgacttca ataaagaaaa aactagaaga ggagaaaaag gatttcctca
2280aattttaaat atgtaacttc agggattcaa tccccaaatg tttattaagt agctagaaat
2340aattatgtgg aaaaaaatga ataatggaaa atagtgagtc tcaaattgtt ctcttttttt
2400ttttaactaa aacaaatctg caatgaatct agatgcaatt aattttattc cttccaacta
2460aaattacaat atttttaggt taaaattatt gagatataaa gcagccattg ggaaattggg
2520agaaatgata aacaaatgga aaaagaagat gtccctaacc tacacccata gattaccaag
2580gtttcagtgt actagttttg aatctgttct gaatggagtt tttataccct caatttctgg
2640cctttggcta ttttagcatt tcaaagtgac ttctatgaag cttttttttt aatgtgaaat
2700tttcagaatg ttgttttttt catgtagata ctccaggaag agttaagcac tgctttcagt
2760tttaatatcc accttgaggg gtcgctgctt gagggctctt atcccagggg actttttaat
2820tcggatgtta cttaatgtgg cttctctaat gtagtttctt tgattaccga ctacacaatt
2880atgtaccatc acagtattag tggaaaagta ccatgtgatt taattctcca ttcctccaat
2940gtaactctta aaattattat gtatgtgtgt gtgttttact ttttgttttt tatcatcttt
3000aaaatttcta ttatggtttg attattataa aaataatgaa ttctcactgt aaatttcaaa
3060aaaaaattac aaaagtatgt gaatttaaaa atgagagcag tcctctcacc ctaccacagt
3120tccacaccct caaggtaaac ttataactta taatttgata tgtaaacttc cagatctttt
3180ttctatgcgt aatcagacat acatatatac tgcagtgtat ctcacgtatt aatttttaaa
3240aatcttttgt tttacttaat tctgttttta ttattattat tattttgttt gatctattaa
3300ggaagaacaa ggaagggaat gatctttact caagaatttc agaaagtcag cactgaagtc
3360ctgacctatc agtagacaca tttgtccctt tcagatattt taggatattc tagcaaagca
3420ggccatttct cccacctgaa agtacataac ttctatcact tgccacataa ttaaaagaac
3480tcacattaag cggttactca gacagttaat catagaaaag attatttgct tcatcagttc
3540atagaaaaga ttatttgctt catcagttaa cttgttttta taaatcaggg ctgtgttcat
3600acacagaagg ggcctgagat ttctgcactt taaacaagct cctcctaggt gaggatgctg
3660tggctgttct aattacattt tgagtagtaa ggtctacagc attgttcctc aaacttggct
3720acgtattgga atcacctaaa aagttaaaac aaaacatgga tgtctgggtc ccgccccata
3780gagaatgact taattggcat ggggtgcagt ccaggcatca tgatttttag atttcccagt
3840tggaacttgt gcagcaaagt ttgggagcta ctgatggaca tgtgaaaagt aagtataaat
3900ggaataaaat taattaggct aataggctta acccaggaaa tcctaagttc cttgaatatc
3960cagtttgcat ttggactcct catcatatac ttggtatata atactctaat aaaagctgcc
4020tgagttgaat tgta
403412482PRTHomo sapiens 12Met Ser Glu Ile Arg Lys Asp Thr Leu Lys Ala
Ile Leu Leu Glu Leu1 5 10
15Glu Cys His Phe Thr Trp Asn Leu Leu Lys Glu Asp Ile Asp Leu Phe
20 25 30Glu Val Glu Asp Thr Ile Gly
Gln Gln Leu Glu Phe Leu Thr Thr Lys 35 40
45Ser Arg Leu Ala Leu Tyr Asn Leu Leu Ala Tyr Val Lys His Leu
Lys 50 55 60Gly Gln Asn Lys Asp Ala
Leu Glu Cys Leu Glu Gln Ala Glu Glu Ile65 70
75 80Ile Gln Gln Glu His Ser Asp Lys Glu Glu Val
Arg Ser Leu Val Thr 85 90
95Trp Gly Asn Tyr Ala Trp Val Tyr Tyr His Met Asp Gln Leu Glu Glu
100 105 110Ala Gln Lys Tyr Thr Gly
Lys Ile Gly Asn Val Cys Lys Lys Leu Ser 115 120
125Ser Pro Ser Asn Tyr Lys Leu Glu Cys Pro Glu Thr Asp Cys
Glu Lys 130 135 140Gly Trp Ala Leu Leu
Lys Phe Gly Gly Lys Tyr Tyr Gln Lys Ala Lys145 150
155 160Ala Ala Phe Glu Lys Ala Leu Glu Val Glu
Pro Asp Asn Pro Glu Phe 165 170
175Asn Ile Gly Tyr Ala Ile Thr Val Tyr Arg Leu Asp Asp Ser Asp Arg
180 185 190Glu Gly Ser Val Lys
Ser Phe Ser Leu Gly Pro Leu Arg Lys Ala Val 195
200 205Thr Leu Asn Pro Asp Asn Ser Tyr Ile Lys Val Phe
Leu Ala Leu Lys 210 215 220Leu Gln Asp
Val His Ala Glu Ala Glu Gly Glu Lys Tyr Ile Glu Glu225
230 235 240Ile Leu Asp Gln Ile Ser Ser
Gln Pro Tyr Val Leu Arg Tyr Ala Ala 245
250 255Lys Phe Tyr Arg Arg Lys Asn Ser Trp Asn Lys Ala
Leu Glu Leu Leu 260 265 270Lys
Lys Ala Leu Glu Val Thr Pro Thr Ser Ser Phe Leu His His Gln 275
280 285Met Gly Leu Cys Tyr Arg Ala Gln Met
Ile Gln Ile Lys Lys Ala Thr 290 295
300His Asn Arg Pro Lys Gly Lys Asp Lys Leu Lys Val Asp Glu Leu Ile305
310 315 320Ser Ser Ala Ile
Phe His Phe Lys Ala Ala Met Glu Arg Asp Ser Met 325
330 335Phe Ala Phe Ala Tyr Thr Asp Leu Ala Asn
Met Tyr Ala Glu Gly Gly 340 345
350Gln Tyr Ser Asn Ala Glu Asp Ile Phe Arg Lys Ala Leu Arg Leu Glu
355 360 365Asn Ile Thr Asp Asp His Lys
His Gln Ile His Tyr His Tyr Gly Arg 370 375
380Phe Gln Glu Phe His Arg Lys Ser Glu Asn Thr Ala Ile His His
Tyr385 390 395 400Leu Glu
Ala Leu Lys Val Lys Asp Arg Ser Pro Leu Arg Thr Lys Leu
405 410 415Thr Ser Ala Leu Lys Lys Leu
Ser Thr Lys Arg Leu Cys His Asn Ala 420 425
430Leu Asp Val Gln Ser Leu Ser Ala Leu Gly Phe Val Tyr Lys
Leu Glu 435 440 445Gly Glu Lys Arg
Gln Ala Ala Glu Tyr Tyr Glu Lys Ala Gln Lys Ile 450
455 460Asp Pro Glu Asn Ala Glu Phe Leu Thr Ala Leu Cys
Glu Leu Arg Leu465 470 475
480Ser Ile131673DNAHomo sapiens 13tcccttctga ggaaacgaaa ccaacagcag
tccaagctca gtcagcagaa gagataaaag 60caaacaggtc tgggaggcag ttctgttgcc
actctctctc ctgtcaatga tggatctcag 120aaatacccca gccaaatctc tggacaagtt
cattgaagac tatctcttgc cagacacgtg 180tttccgcatg caaatcaacc atgccattga
catcatctgt gggttcctga aggaaaggtg 240cttccgaggt agctcctacc ctgtgtgtgt
gtccaaggtg gtaaagggtg gctcctcagg 300caagggcacc accctcagag gccgatctga
cgctgacctg gttgtcttcc tcagtcctct 360caccactttt caggatcagt taaatcgccg
gggagagttc atccaggaaa ttaggagaca 420gctggaagcc tgtcaaagag agagagcatt
ttccgtgaag tttgaggtcc aggctccacg 480ctggggcaac ccccgtgcgc tcagcttcgt
actgagttcg ctccagctcg gggagggggt 540ggagttcgat gtgctgcctg cctttgatgc
cctgggtcag ttgactggcg gctataaacc 600taacccccaa atctatgtca agctcatcga
ggagtgcacc gacctgcaga aagagggcga 660gttctccacc tgcttcacag aactacagag
agacttcctg aagcagcgcc ccaccaagct 720caagagcctc atccgcctag tcaagcactg
gtaccaaaat tgtaagaaga agcttgggaa 780gctgccacct cagtatgccc tggagctcct
gacggtctat gcttgggagc gagggagcat 840gaaaacacat ttcaacacag cccagggatt
tcggacggtc ttggaattag tcataaacta 900ccagcaactc tgcatctact ggacaaagta
ttatgacttt aaaaacccca ttattgaaaa 960gtacctgaga aggcagctca cgaaacccag
gcctgtgatc ctggacccgg cggaccctac 1020aggaaacttg ggtggtggag acccaaaggg
ttggaggcag ctggcacaag aggctgaggc 1080ctggctgaat tacccatgct ttaagaattg
ggatgggtcc ccagtgagct cctggattct 1140gctggctgaa agcaacagtg cagacgatga
gaccgacgat cccaggaggt atcagaaata 1200tggttacatt ggaacacatg agtaccctca
tttctctcat agacccagca cactccaggc 1260agcatccacc ccacaggcag aagaggactg
gacctgcacc atcctctgaa tgccagtgca 1320tcttggggga aagggctcca gtgttatctg
gaccagttcc ttcattttca ggtgggactc 1380ttgatccaga gaggacaaag ctcctcagtg
agctggtgta taatccagga cagaacccag 1440gtctcctgac tcctggcctt ctatgccctc
tatcctatca tagataacat tctccacagc 1500ctcacttcat tccacctatt ctctgaaaat
attccctgag agagaacaga gagatttaga 1560taagagaatg aaattccagc cttgactttc
ttctgtgcac ctgatgggag ggtaatgtct 1620aatgtattat caataacaat aaaaataaag
caaataccat ttaaaaaaaa aaa 167314400PRTHomo sapiens 14Met Met Asp
Leu Arg Asn Thr Pro Ala Lys Ser Leu Asp Lys Phe Ile1 5
10 15Glu Asp Tyr Leu Leu Pro Asp Thr Cys
Phe Arg Met Gln Ile Asn His 20 25
30Ala Ile Asp Ile Ile Cys Gly Phe Leu Lys Glu Arg Cys Phe Arg Gly
35 40 45Ser Ser Tyr Pro Val Cys Val
Ser Lys Val Val Lys Gly Gly Ser Ser 50 55
60Gly Lys Gly Thr Thr Leu Arg Gly Arg Ser Asp Ala Asp Leu Val Val65
70 75 80Phe Leu Ser Pro
Leu Thr Thr Phe Gln Asp Gln Leu Asn Arg Arg Gly 85
90 95Glu Phe Ile Gln Glu Ile Arg Arg Gln Leu
Glu Ala Cys Gln Arg Glu 100 105
110Arg Ala Phe Ser Val Lys Phe Glu Val Gln Ala Pro Arg Trp Gly Asn
115 120 125Pro Arg Ala Leu Ser Phe Val
Leu Ser Ser Leu Gln Leu Gly Glu Gly 130 135
140Val Glu Phe Asp Val Leu Pro Ala Phe Asp Ala Leu Gly Gln Leu
Thr145 150 155 160Gly Gly
Tyr Lys Pro Asn Pro Gln Ile Tyr Val Lys Leu Ile Glu Glu
165 170 175Cys Thr Asp Leu Gln Lys Glu
Gly Glu Phe Ser Thr Cys Phe Thr Glu 180 185
190Leu Gln Arg Asp Phe Leu Lys Gln Arg Pro Thr Lys Leu Lys
Ser Leu 195 200 205Ile Arg Leu Val
Lys His Trp Tyr Gln Asn Cys Lys Lys Lys Leu Gly 210
215 220Lys Leu Pro Pro Gln Tyr Ala Leu Glu Leu Leu Thr
Val Tyr Ala Trp225 230 235
240Glu Arg Gly Ser Met Lys Thr His Phe Asn Thr Ala Gln Gly Phe Arg
245 250 255Thr Val Leu Glu Leu
Val Ile Asn Tyr Gln Gln Leu Cys Ile Tyr Trp 260
265 270Thr Lys Tyr Tyr Asp Phe Lys Asn Pro Ile Ile Glu
Lys Tyr Leu Arg 275 280 285Arg Gln
Leu Thr Lys Pro Arg Pro Val Ile Leu Asp Pro Ala Asp Pro 290
295 300Thr Gly Asn Leu Gly Gly Gly Asp Pro Lys Gly
Trp Arg Gln Leu Ala305 310 315
320Gln Glu Ala Glu Ala Trp Leu Asn Tyr Pro Cys Phe Lys Asn Trp Asp
325 330 335Gly Ser Pro Val
Ser Ser Trp Ile Leu Leu Ala Glu Ser Asn Ser Ala 340
345 350Asp Asp Glu Thr Asp Asp Pro Arg Arg Tyr Gln
Lys Tyr Gly Tyr Ile 355 360 365Gly
Thr His Glu Tyr Pro His Phe Ser His Arg Pro Ser Thr Leu Gln 370
375 380Ala Ala Ser Thr Pro Gln Ala Glu Glu Asp
Trp Thr Cys Thr Ile Leu385 390 395
400151470DNAHomo sapiens 15tcccttctga ggaaacgaaa ccaacagcag
tccaagctca gtcagcagaa gagataaaag 60caaacaggtc tgggaggcag ttctgttgcc
actctctctc ctgtcaatga tggatctcag 120aaatacccca gccaaatctc tggacaagtt
cattgaagac tatctcttgc cagacacgtg 180tttccgcatg caaatcaacc atgccattga
catcatctgt gggttcctga aggaaaggtg 240cttccgaggt agctcctacc ctgtgtgtgt
gtccaaggtg gtaaagggtg gctcctcagg 300caagggcacc accctcagag gccgatctga
cgctgacctg gttgtcttcc tcagtcctct 360caccactttt caggatcagt taaatcgccg
gggagagttc atccaggaaa ttaggagaca 420gctggaagcc tgtcaaagag agagagcatt
ttccgtgaag tttgaggtcc aggctccacg 480ctggggcaac ccccgtgcgc tcagcttcgt
actgagttcg ctccagctcg gggagggggt 540ggagttcgat gtgctgcctg cctttgatgc
cctgggtcag ttgactggcg gctataaacc 600taacccccaa atctatgtca agctcatcga
ggagtgcacc gacctgcaga aagagggcga 660gttctccacc tgcttcacag aactacagag
agacttcctg aagcagcgcc ccaccaagct 720caagagcctc atccgcctag tcaagcactg
gtaccaaaat tgtaagaaga agcttgggaa 780gctgccacct cagtatgccc tggagctcct
gacggtctat gcttgggagc gagggagcat 840gaaaacacat ttcaacacag cccagggatt
tcggacggtc ttggaattag tcataaacta 900ccagcaactc tgcatctact ggacaaagta
ttatgacttt aaaaacccca ttattgaaaa 960gtacctgaga aggcagctca cgaaacccag
gcctgtgatc ctggacccgg cggaccctac 1020aggaaacttg ggtggtggag acccaaaggg
ttggaggcag ctggcacaag aggctgaggc 1080ctggctgaat tacccatgct ttaagaattg
ggatgggtcc ccagtgagct cctggattct 1140gctggtgaga cctcctgctt cctccctgcc
attcatccct gcccctctcc atgaagcttg 1200agacatatag ctggagacca ttctttccaa
agaacttacc tcttgccaaa ggccatttat 1260attcatatag tgacaggctg tgctccatat
tttacagtca ttttggtcac aatcgagggt 1320ttctggaatt ttcacatccc ttgtccagaa
ttcattcccc taagagtaat aataaataat 1380ctctaacacc atttattgac tgtctgcttc
gggctcaggt tctgtcctaa gccctttaat 1440atgcactctc tcattaaata gtcacaacaa
147016364PRTHomo sapiens 16Met Met Asp
Leu Arg Asn Thr Pro Ala Lys Ser Leu Asp Lys Phe Ile1 5
10 15Glu Asp Tyr Leu Leu Pro Asp Thr Cys
Phe Arg Met Gln Ile Asn His 20 25
30Ala Ile Asp Ile Ile Cys Gly Phe Leu Lys Glu Arg Cys Phe Arg Gly
35 40 45Ser Ser Tyr Pro Val Cys Val
Ser Lys Val Val Lys Gly Gly Ser Ser 50 55
60Gly Lys Gly Thr Thr Leu Arg Gly Arg Ser Asp Ala Asp Leu Val Val65
70 75 80Phe Leu Ser Pro
Leu Thr Thr Phe Gln Asp Gln Leu Asn Arg Arg Gly 85
90 95Glu Phe Ile Gln Glu Ile Arg Arg Gln Leu
Glu Ala Cys Gln Arg Glu 100 105
110Arg Ala Phe Ser Val Lys Phe Glu Val Gln Ala Pro Arg Trp Gly Asn
115 120 125Pro Arg Ala Leu Ser Phe Val
Leu Ser Ser Leu Gln Leu Gly Glu Gly 130 135
140Val Glu Phe Asp Val Leu Pro Ala Phe Asp Ala Leu Gly Gln Leu
Thr145 150 155 160Gly Gly
Tyr Lys Pro Asn Pro Gln Ile Tyr Val Lys Leu Ile Glu Glu
165 170 175Cys Thr Asp Leu Gln Lys Glu
Gly Glu Phe Ser Thr Cys Phe Thr Glu 180 185
190Leu Gln Arg Asp Phe Leu Lys Gln Arg Pro Thr Lys Leu Lys
Ser Leu 195 200 205Ile Arg Leu Val
Lys His Trp Tyr Gln Asn Cys Lys Lys Lys Leu Gly 210
215 220Lys Leu Pro Pro Gln Tyr Ala Leu Glu Leu Leu Thr
Val Tyr Ala Trp225 230 235
240Glu Arg Gly Ser Met Lys Thr His Phe Asn Thr Ala Gln Gly Phe Arg
245 250 255Thr Val Leu Glu Leu
Val Ile Asn Tyr Gln Gln Leu Cys Ile Tyr Trp 260
265 270Thr Lys Tyr Tyr Asp Phe Lys Asn Pro Ile Ile Glu
Lys Tyr Leu Arg 275 280 285Arg Gln
Leu Thr Lys Pro Arg Pro Val Ile Leu Asp Pro Ala Asp Pro 290
295 300Thr Gly Asn Leu Gly Gly Gly Asp Pro Lys Gly
Trp Arg Gln Leu Ala305 310 315
320Gln Glu Ala Glu Ala Trp Leu Asn Tyr Pro Cys Phe Lys Asn Trp Asp
325 330 335Gly Ser Pro Val
Ser Ser Trp Ile Leu Leu Val Arg Pro Pro Ala Ser 340
345 350Ser Leu Pro Phe Ile Pro Ala Pro Leu His Glu
Ala 355 360171575DNAHomo sapiens 17tcccttctga
ggaaacgaaa ccaacagcag tccaagctca gtcagcagaa gagataaaag 60caaacaggtc
tgggaggcag ttctgttgcc actctctctc ctgtcaatga tggatctcag 120aaatacccca
gccaaatctc tggacaagtt cattgaagac tatctcttgc cagacacgtg 180tttccgcatg
caaatcaacc atgccattga catcatctgt gggttcctga aggaaaggtg 240cttccgaggt
agctcctacc ctgtgtgtgt gtccaaggtg gtaaagggtg gctcctcagg 300caagggcacc
accctcagag gccgatctga cgctgacctg gttgtcttcc tcagtcctct 360caccactttt
caggatcagt taaatcgccg gggagagttc atccaggaaa ttaggagaca 420gctggaagcc
tgtcaaagag agagagcatt ttccgtgaag tttgaggtcc aggctccacg 480ctggggcaac
ccccgtgcgc tcagcttcgt actgagttcg ctccagctcg gggagggggt 540ggagttcgat
gtgctgcctg cctttgatgc cctgggtcag ttgactggcg gctataaacc 600taacccccaa
atctatgtca agctcatcga ggagtgcacc gacctgcaga aagagggcga 660gttctccacc
tgcttcacag aactacagag agacttcctg aagcagcgcc ccaccaagct 720caagagcctc
atccgcctag tcaagcactg gtaccaaaat tgtaagaaga agcttgggaa 780gctgccacct
cagtatgccc tggagctcct gacggtctat gcttgggagc gagggagcat 840gaaaacacat
ttcaacacag cccagggatt tcggacggtc ttggaattag tcataaacta 900ccagcaactc
tgcatctact ggacaaagta ttatgacttt aaaaacccca ttattgaaaa 960gtacctgaga
aggcagctca cgaaacccag gcctgtgatc ctggacccgg cggaccctac 1020aggaaacttg
ggtggtggag acccaaaggg ttggaggcag ctggcacaag aggctgaggc 1080ctggctgaat
tacccatgct ttaagaattg ggatgggtcc ccagtgagct cctggattct 1140gctgacccag
cacactccag gcagcatcca ccccacaggc agaagaggac tggacctgca 1200ccatcctctg
aatgccagtg catcttgggg gaaagggctc cagtgttatc tggaccagtt 1260ccttcatttt
caggtgggac tcttgatcca gagaggacaa agctcctcag tgagctggtg 1320tataatccag
gacagaaccc aggtctcctg actcctggcc ttctatgccc tctatcctat 1380catagataac
attctccaca gcctcacttc attccaccta ttctctgaaa atattccctg 1440agagagaaca
gagagattta gataagagaa tgaaattcca gccttgactt tcttctgtgc 1500acctgatggg
agggtaatgt ctaatgtatt atcaataaca ataaaaataa agcaaatacc 1560atttaaaaaa
aaaaa 157518414PRTHomo
sapiens 18Met Met Asp Leu Arg Asn Thr Pro Ala Lys Ser Leu Asp Lys Phe
Ile1 5 10 15Glu Asp Tyr
Leu Leu Pro Asp Thr Cys Phe Arg Met Gln Ile Asn His 20
25 30Ala Ile Asp Ile Ile Cys Gly Phe Leu Lys
Glu Arg Cys Phe Arg Gly 35 40
45Ser Ser Tyr Pro Val Cys Val Ser Lys Val Val Lys Gly Gly Ser Ser 50
55 60Gly Lys Gly Thr Thr Leu Arg Gly Arg
Ser Asp Ala Asp Leu Val Val65 70 75
80Phe Leu Ser Pro Leu Thr Thr Phe Gln Asp Gln Leu Asn Arg
Arg Gly 85 90 95Glu Phe
Ile Gln Glu Ile Arg Arg Gln Leu Glu Ala Cys Gln Arg Glu 100
105 110Arg Ala Phe Ser Val Lys Phe Glu Val
Gln Ala Pro Arg Trp Gly Asn 115 120
125Pro Arg Ala Leu Ser Phe Val Leu Ser Ser Leu Gln Leu Gly Glu Gly
130 135 140Val Glu Phe Asp Val Leu Pro
Ala Phe Asp Ala Leu Gly Gln Leu Thr145 150
155 160Gly Gly Tyr Lys Pro Asn Pro Gln Ile Tyr Val Lys
Leu Ile Glu Glu 165 170
175Cys Thr Asp Leu Gln Lys Glu Gly Glu Phe Ser Thr Cys Phe Thr Glu
180 185 190Leu Gln Arg Asp Phe Leu
Lys Gln Arg Pro Thr Lys Leu Lys Ser Leu 195 200
205Ile Arg Leu Val Lys His Trp Tyr Gln Asn Cys Lys Lys Lys
Leu Gly 210 215 220Lys Leu Pro Pro Gln
Tyr Ala Leu Glu Leu Leu Thr Val Tyr Ala Trp225 230
235 240Glu Arg Gly Ser Met Lys Thr His Phe Asn
Thr Ala Gln Gly Phe Arg 245 250
255Thr Val Leu Glu Leu Val Ile Asn Tyr Gln Gln Leu Cys Ile Tyr Trp
260 265 270Thr Lys Tyr Tyr Asp
Phe Lys Asn Pro Ile Ile Glu Lys Tyr Leu Arg 275
280 285Arg Gln Leu Thr Lys Pro Arg Pro Val Ile Leu Asp
Pro Ala Asp Pro 290 295 300Thr Gly Asn
Leu Gly Gly Gly Asp Pro Lys Gly Trp Arg Gln Leu Ala305
310 315 320Gln Glu Ala Glu Ala Trp Leu
Asn Tyr Pro Cys Phe Lys Asn Trp Asp 325
330 335Gly Ser Pro Val Ser Ser Trp Ile Leu Leu Thr Gln
His Thr Pro Gly 340 345 350Ser
Ile His Pro Thr Gly Arg Arg Gly Leu Asp Leu His His Pro Leu 355
360 365Asn Ala Ser Ala Ser Trp Gly Lys Gly
Leu Gln Cys Tyr Leu Asp Gln 370 375
380Phe Leu His Phe Gln Val Gly Leu Leu Ile Gln Arg Gly Gln Ser Ser385
390 395 400Ser Val Ser Trp
Cys Ile Ile Gln Asp Arg Thr Gln Val Ser 405
410193539DNAHomo sapiens 19caagagttgg taagctcgct gcagtgggtg gagagaggcc
tctagacttc agtttcagtt 60tcctggctct gggcagcagc aagaattcct ctgcctccca
tcctaccatt cactgtcttg 120ccggcagcca gctgagagca atgggaaatg gggagtccca
gctgtcctcg gtgcctgctc 180agaagctggg ttggtttatc caggaatacc tgaagcccta
cgaagaatgt cagacactga 240tcgacgagat ggtgaacacc atctgtgacg tcctgcagga
acccgaacag ttccccctgg 300tgcagggagt ggccataggt ggctcctatg gacggaaaac
agtcttaaga ggcaactccg 360atggtaccct tgtcctcttc ttcagtgact taaaacaatt
ccaggatcag aagagaagcc 420aacgtgacat cctcgataaa actggggata agctgaagtt
ctgtctgttc acgaagtggt 480tgaaaaacaa tttcgagatc cagaagtccc ttgatgggtt
caccatccag gtgttcacaa 540aaaatcagag aatctctttc gaggtgctgg ccgccttcaa
cgctctgagc ttaaatgata 600atcccagccc ctggatctat cgagagctca aaagatcctt
ggataagaca aatgccagtc 660ctggtgagtt tgcagtctgc ttcactgaac tccagcagaa
gttttttgac aaccgtcctg 720gaaaactaaa ggatttgatc ctcttgataa agcactggca
tcaacagtgc cagaaaaaaa 780tcaaggattt accctcgctg tctccgtatg ccctggagct
gcttacggtg tatgcctggg 840aacaggggtg cagaaaagac aactttgaca ttgctgaagg
cgtcagaacc gtactggagc 900tgatcaaatg ccaggagaag ctgtgtatct attggatggt
caactacaac tttgaagatg 960agaccatcag gaacatcctg ctgcaccagc tccaatcagc
gaggccagta atcttggatc 1020cagttgaccc aaccaataat gtgagtggag ataaaatatg
ctggcaatgg ctgaaaaaag 1080aagctcaaac ctggttgact tctcccaacc tggataatga
gttacctgca ccatcttgga 1140atgttctgcc tgcaccactc ttcacgaccc caggccacct
tctggataag ttcatcaagg 1200agtttctcca gcccaacaaa tgcttcctag agcagattga
cagtgctgtt aacatcatcc 1260gtacattcct taaagaaaac tgcttccgac aatcaacagc
caagatccag attgtccggg 1320gaggatcaac cgccaaaggc acagctctga agactggctc
tgatgccgat ctcgtcgtgt 1380tccataactc acttaaaagc tacacctccc aaaaaaacga
gcggcacaaa atcgtcaagg 1440aaatccatga acagctgaaa gccttttgga gggagaagga
ggaggagctt gaagtcagct 1500ttgagcctcc caagtggaag gctcccaggg tgctgagctt
ctctctgaaa tccaaagtcc 1560tcaacgaaag tgtcagcttt gatgtgcttc ctgcctttaa
tgcactgggt cagctgagtt 1620ctggctccac acccagcccc gaggtttatg cagggctcat
tgatctgtat aaatcctcgg 1680acctcccggg aggagagttt tctacctgtt tcacagtcct
gcagcgaaac ttcattcgct 1740cccggcccac caaactaaag gatttaattc gcctggtgaa
gcactggtac aaagagtgtg 1800aaaggaaact gaagccaaag gggtctttgc ccccaaagta
tgccttggag ctgctcacca 1860tctatgcctg ggagcagggg agtggagtgc cggattttga
cactgcagaa ggtttccgga 1920cagtcctgga gctggtcaca caatatcagc agctctgcat
cttctggaag gtcaattaca 1980actttgaaga tgagaccgtg aggaagtttc tactgagcca
gttgcagaaa accaggcctg 2040tgatcttgga cccagccgaa cccacaggtg acgtgggtgg
aggggaccgt tggtgttggc 2100atcttctggc aaaagaagca aaggaatggt tatcctctcc
ctgcttcaag gatgggactg 2160gaaacccaat accaccttgg aaagtgccga caatgcagac
accaggaagt tgtggagcta 2220ggatccatcc tattgtcaat gagatgttct catccagaag
ccatagaatc ctgaataata 2280attctaaaag aaacttctag agatcatctg gcaatcgctt
ttaaagactc ggctcaccgt 2340gagaaagagt cactcacatc cattcttccc ttgatggtcc
ctattcctcc ttcccttgct 2400tcttggactt cttgaaatca atcaagactg caaacccttt
cataaagtct tgccttgctg 2460aactccctct ctgcaggcag cctgccttta aaaatagttg
ctgtcatcca ctttatgtgc 2520atcttatttc tgtcaacttg tatttttttt cttgtatttt
tccaattagc tcctcctttt 2580tccttccagt ctaaaaaagg aatcctctgt gtcttcaaag
caaagctctt tactttcccc 2640ttggttctca taactctgtg atcttgctct cggtgcttcc
aactcatcca cgtcctgtct 2700gtttcctctg tatacaaaac cctttctgcc cctgctgaca
cagacatcct ctatgccagc 2760agccagccaa ccctttcatt agaacttcaa gctctccaaa
ggctcagatt ataactgttg 2820tcatatttat atgaggctgt tgtcttttcc ttctgagcct
gcctttctcc cccccaccca 2880ggagtatcct cttgccaaat caaaagactt tttccttggg
ctttagcctt aaagatactt 2940gaaggtctag gtgctttaac ctcacatacc ctcacttaaa
cttttatcac tgttgcatat 3000accagttgtg atacaataaa gaatgtatct ggattttgtg
cctagttcct agcacacagc 3060ttcaaaaatt ctagagtttc ctgataggag tgtcttttgt
attcataaca agcccttttc 3120acccatgcct gggtttatgc taacaaggtt acccatggtg
ggcccttagt ttcaaggaag 3180gagttggcca agccagaaag accaagcatg tggttaaagc
attggaattt tcagccccat 3240cccaccccca atctccaagg aggtgatggg gctggaaatt
gagttcaatt ttaacatggc 3300cagtgattta agcaatgctg cctatgtaaa gaaaccccaa
taaaaactct ggacagtgag 3360gcttggggag cttcctgatt ggcagacatt ccaatgtact
aggaaggtag cgcatcttga 3420ttccacaggg acaaaggctc ctgagctctg ggcccttcca
gtgcttgcca ccctacatac 3480tctttgtctg gctcttcatt tgtattcttt ataataaaat
ggtgattgta agtagagca 353920719PRTHomo sapiens 20Met Gly Asn Gly Glu
Ser Gln Leu Ser Ser Val Pro Ala Gln Lys Leu1 5
10 15Gly Trp Phe Ile Gln Glu Tyr Leu Lys Pro Tyr
Glu Glu Cys Gln Thr 20 25
30Leu Ile Asp Glu Met Val Asn Thr Ile Cys Asp Val Leu Gln Glu Pro
35 40 45Glu Gln Phe Pro Leu Val Gln Gly
Val Ala Ile Gly Gly Ser Tyr Gly 50 55
60Arg Lys Thr Val Leu Arg Gly Asn Ser Asp Gly Thr Leu Val Leu Phe65
70 75 80Phe Ser Asp Leu Lys
Gln Phe Gln Asp Gln Lys Arg Ser Gln Arg Asp 85
90 95Ile Leu Asp Lys Thr Gly Asp Lys Leu Lys Phe
Cys Leu Phe Thr Lys 100 105
110Trp Leu Lys Asn Asn Phe Glu Ile Gln Lys Ser Leu Asp Gly Phe Thr
115 120 125Ile Gln Val Phe Thr Lys Asn
Gln Arg Ile Ser Phe Glu Val Leu Ala 130 135
140Ala Phe Asn Ala Leu Ser Leu Asn Asp Asn Pro Ser Pro Trp Ile
Tyr145 150 155 160Arg Glu
Leu Lys Arg Ser Leu Asp Lys Thr Asn Ala Ser Pro Gly Glu
165 170 175Phe Ala Val Cys Phe Thr Glu
Leu Gln Gln Lys Phe Phe Asp Asn Arg 180 185
190Pro Gly Lys Leu Lys Asp Leu Ile Leu Leu Ile Lys His Trp
His Gln 195 200 205Gln Cys Gln Lys
Lys Ile Lys Asp Leu Pro Ser Leu Ser Pro Tyr Ala 210
215 220Leu Glu Leu Leu Thr Val Tyr Ala Trp Glu Gln Gly
Cys Arg Lys Asp225 230 235
240Asn Phe Asp Ile Ala Glu Gly Val Arg Thr Val Leu Glu Leu Ile Lys
245 250 255Cys Gln Glu Lys Leu
Cys Ile Tyr Trp Met Val Asn Tyr Asn Phe Glu 260
265 270Asp Glu Thr Ile Arg Asn Ile Leu Leu His Gln Leu
Gln Ser Ala Arg 275 280 285Pro Val
Ile Leu Asp Pro Val Asp Pro Thr Asn Asn Val Ser Gly Asp 290
295 300Lys Ile Cys Trp Gln Trp Leu Lys Lys Glu Ala
Gln Thr Trp Leu Thr305 310 315
320Ser Pro Asn Leu Asp Asn Glu Leu Pro Ala Pro Ser Trp Asn Val Leu
325 330 335Pro Ala Pro Leu
Phe Thr Thr Pro Gly His Leu Leu Asp Lys Phe Ile 340
345 350Lys Glu Phe Leu Gln Pro Asn Lys Cys Phe Leu
Glu Gln Ile Asp Ser 355 360 365Ala
Val Asn Ile Ile Arg Thr Phe Leu Lys Glu Asn Cys Phe Arg Gln 370
375 380Ser Thr Ala Lys Ile Gln Ile Val Arg Gly
Gly Ser Thr Ala Lys Gly385 390 395
400Thr Ala Leu Lys Thr Gly Ser Asp Ala Asp Leu Val Val Phe His
Asn 405 410 415Ser Leu Lys
Ser Tyr Thr Ser Gln Lys Asn Glu Arg His Lys Ile Val 420
425 430Lys Glu Ile His Glu Gln Leu Lys Ala Phe
Trp Arg Glu Lys Glu Glu 435 440
445Glu Leu Glu Val Ser Phe Glu Pro Pro Lys Trp Lys Ala Pro Arg Val 450
455 460Leu Ser Phe Ser Leu Lys Ser Lys
Val Leu Asn Glu Ser Val Ser Phe465 470
475 480Asp Val Leu Pro Ala Phe Asn Ala Leu Gly Gln Leu
Ser Ser Gly Ser 485 490
495Thr Pro Ser Pro Glu Val Tyr Ala Gly Leu Ile Asp Leu Tyr Lys Ser
500 505 510Ser Asp Leu Pro Gly Gly
Glu Phe Ser Thr Cys Phe Thr Val Leu Gln 515 520
525Arg Asn Phe Ile Arg Ser Arg Pro Thr Lys Leu Lys Asp Leu
Ile Arg 530 535 540Leu Val Lys His Trp
Tyr Lys Glu Cys Glu Arg Lys Leu Lys Pro Lys545 550
555 560Gly Ser Leu Pro Pro Lys Tyr Ala Leu Glu
Leu Leu Thr Ile Tyr Ala 565 570
575Trp Glu Gln Gly Ser Gly Val Pro Asp Phe Asp Thr Ala Glu Gly Phe
580 585 590Arg Thr Val Leu Glu
Leu Val Thr Gln Tyr Gln Gln Leu Cys Ile Phe 595
600 605Trp Lys Val Asn Tyr Asn Phe Glu Asp Glu Thr Val
Arg Lys Phe Leu 610 615 620Leu Ser Gln
Leu Gln Lys Thr Arg Pro Val Ile Leu Asp Pro Ala Glu625
630 635 640Pro Thr Gly Asp Val Gly Gly
Gly Asp Arg Trp Cys Trp His Leu Leu 645
650 655Ala Lys Glu Ala Lys Glu Trp Leu Ser Ser Pro Cys
Phe Lys Asp Gly 660 665 670Thr
Gly Asn Pro Ile Pro Pro Trp Lys Val Pro Thr Met Gln Thr Pro 675
680 685Gly Ser Cys Gly Ala Arg Ile His Pro
Ile Val Asn Glu Met Phe Ser 690 695
700Ser Arg Ser His Arg Ile Leu Asn Asn Asn Ser Lys Arg Asn Phe705
710 715213647DNAHomo sapiens 21caagagttgg
taagctcgct gcagtgggtg gagagaggcc tctagacttc agtttcagtt 60tcctggctct
gggcagcagc aagaattcct ctgcctccca tcctaccatt cactgtcttg 120ccggcagcca
gctgagagca atgggaaatg gggagtccca gctgtcctcg gtgcctgctc 180agaagctggg
ttggtttatc caggaatacc tgaagcccta cgaagaatgt cagacactga 240tcgacgagat
ggtgaacacc atctgtgacg tcctgcagga acccgaacag ttccccctgg 300tgcagggagt
ggccataggt ggctcctatg gacggaaaac agtcttaaga ggcaactccg 360atggtaccct
tgtcctcttc ttcagtgact taaaacaatt ccaggatcag aagagaagcc 420aacgtgacat
cctcgataaa actggggata agctgaagtt ctgtctgttc acgaagtggt 480tgaaaaacaa
tttcgagatc cagaagtccc ttgatgggtt caccatccag gtgttcacaa 540aaaatcagag
aatctctttc gaggtgctgg ccgccttcaa cgctctgagc ttaaatgata 600atcccagccc
ctggatctat cgagagctca aaagatcctt ggataagaca aatgccagtc 660ctggtgagtt
tgcagtctgc ttcactgaac tccagcagaa gttttttgac aaccgtcctg 720gaaaactaaa
ggatttgatc ctcttgataa agcactggca tcaacagtgc cagaaaaaaa 780tcaaggattt
accctcgctg tctccgtatg ccctggagct gcttacggtg tatgcctggg 840aacaggggtg
cagaaaagac aactttgaca ttgctgaagg cgtcagaacc gtactggagc 900tgatcaaatg
ccaggagaag ctgtgtatct attggatggt caactacaac tttgaagatg 960agaccatcag
gaacatcctg ctgcaccagc tccaatcagc gaggccagta atcttggatc 1020cagttgaccc
aaccaataat gtgagtggag ataaaatatg ctggcaatgg ctgaaaaaag 1080aagctcaaac
ctggttgact tctcccaacc tggataatga gttacctgca ccatcttgga 1140atgttctgcc
tgcaccactc ttcacgaccc caggccacct tctggataag ttcatcaagg 1200agtttctcca
gcccaacaaa tgcttcctag agcagattga cagtgctgtt aacatcatcc 1260gtacattcct
taaagaaaac tgcttccgac aatcaacagc caagatccag attgtccggg 1320gaggatcaac
cgccaaaggc acagctctga agactggctc tgatgccgat ctcgtcgtgt 1380tccataactc
acttaaaagc tacacctccc aaaaaaacga gcggcacaaa atcgtcaagg 1440aaatccatga
acagctgaaa gccttttgga gggagaagga ggaggagctt gaagtcagct 1500ttgagcctcc
caagtggaag gctcccaggg tgctgagctt ctctctgaaa tccaaagtcc 1560tcaacgaaag
tgtcagcttt gatgtgcttc ctgcctttaa tgcactgggt cagctgagtt 1620ctggctccac
acccagcccc gaggtttatg cagggctcat tgatctgtat aaatcctcgg 1680acctcccggg
aggagagttt tctacctgtt tcacagtcct gcagcgaaac ttcattcgct 1740cccggcccac
caaactaaag gatttaattc gcctggtgaa gcactggtac aaagagtgtg 1800aaaggaaact
gaagccaaag gggtctttgc ccccaaagta tgccttggag ctgctcacca 1860tctatgcctg
ggagcagggg agtggagtgc cggattttga cactgcagaa ggtttccgga 1920cagtcctgga
gctggtcaca caatatcagc agctctgcat cttctggaag gtcaattaca 1980actttgaaga
tgagaccgtg aggaagtttc tactgagcca gttgcagaaa accaggcctg 2040tgatcttgga
cccagccgaa cccacaggtg acgtgggtgg aggggaccgt tggtgttggc 2100atcttctggc
aaaagaagca aaggaatggt tatcctctcc ctgcttcaag gatgggactg 2160gaaacccaat
accaccttgg aaagtgccgg taaaagtcat ctaaaggagg cgttgtctgg 2220aaatagccct
gtaacaggct tgaatcaaag aacttctcct actgtagcaa cctgaaatta 2280actcagacac
aaataaagga aacccagctc acaggagctt aaacagctgg tcagccccct 2340aagcccccac
tacaagtgat cctcaggcag gtaaccccag attcatgcac tgtagggtgc 2400tgcgcagcat
ccctagtctc tacccagtag atgccactag ccctcctctc ccagtgacaa 2460ccaaaagtct
tcagacattg tcaaacgttc ccctgggttc acagatcttt ctgcctttgg 2520cttttggctc
caccctcttt agctgttaat ttgagtactt atggccctga aagcggccac 2580ggtgcctcca
gatggcaggt ttgcaatcca agcaggaaga aggaaaagat acccaaaggt 2640caagaacaca
gtgattttat tagaagtttc atccgcaaat tttcttccat ttcattgctc 2700agaaatgtca
tgtggctacc tgtaacttga aggtggctac aaagatgact gtggacgtgg 2760gttgcactgg
ccacccaagg atgtctgcca cacctctcca aagccctccc tacctaccaa 2820gatatacctg
atatattcca ccaggatatc ctccctccag atatacttgg ttctctccac 2880caggttcttt
ctttaaagca ggatttctca actttgatac ttactcacat ttggggctag 2940acagttcttt
gtttggaggc tctcttgtgc attgtaggat gttgagcagc atctctggcc 3000tgtacccagt
agatgccacc cagttgtgac aattaaaagt gtcttgagac tttatcatgt 3060gtcttctgcc
ctaggtgaga acccttgcac tagaggaacc ctacacccca accctggggg 3120gaatgtaggg
aagaggtggc caagccaacc gtggggttag ctctaattat taagatatgc 3180attataaata
aataccaaaa aattgtctct ggcaatagtt accttcccag atacaggtcc 3240cccctttttt
cccctaactc ttttaagcaa tgattgtaac tattaggaga cattgctctc 3300ccacgtatgt
ttttcttttt agacaatgca gacaccagga agttgtggag ctaggatcca 3360tcctattgtc
aatgagatgt tctcatccag aagccataga atcctgaata ataattctaa 3420aagaaacttc
tagagatcat ctggcaatcg cttttaaaga ctcggctcac cgtgagaaag 3480agtcactcac
atccattctt cccttgatgg tccctattcc tccttccctt gcttcttgga 3540cttcttgaaa
tcaatcaaga ctgcaaaccc tttcataaag tcttgccttg ctgaactccc 3600tctctgcagg
cagcctgcct ttaaaaatag ttgctgtcat ccacttt 364722687PRTHomo
sapiens 22Met Gly Asn Gly Glu Ser Gln Leu Ser Ser Val Pro Ala Gln Lys
Leu1 5 10 15Gly Trp Phe
Ile Gln Glu Tyr Leu Lys Pro Tyr Glu Glu Cys Gln Thr 20
25 30Leu Ile Asp Glu Met Val Asn Thr Ile Cys
Asp Val Leu Gln Glu Pro 35 40
45Glu Gln Phe Pro Leu Val Gln Gly Val Ala Ile Gly Gly Ser Tyr Gly 50
55 60Arg Lys Thr Val Leu Arg Gly Asn Ser
Asp Gly Thr Leu Val Leu Phe65 70 75
80Phe Ser Asp Leu Lys Gln Phe Gln Asp Gln Lys Arg Ser Gln
Arg Asp 85 90 95Ile Leu
Asp Lys Thr Gly Asp Lys Leu Lys Phe Cys Leu Phe Thr Lys 100
105 110Trp Leu Lys Asn Asn Phe Glu Ile Gln
Lys Ser Leu Asp Gly Phe Thr 115 120
125Ile Gln Val Phe Thr Lys Asn Gln Arg Ile Ser Phe Glu Val Leu Ala
130 135 140Ala Phe Asn Ala Leu Ser Leu
Asn Asp Asn Pro Ser Pro Trp Ile Tyr145 150
155 160Arg Glu Leu Lys Arg Ser Leu Asp Lys Thr Asn Ala
Ser Pro Gly Glu 165 170
175Phe Ala Val Cys Phe Thr Glu Leu Gln Gln Lys Phe Phe Asp Asn Arg
180 185 190Pro Gly Lys Leu Lys Asp
Leu Ile Leu Leu Ile Lys His Trp His Gln 195 200
205Gln Cys Gln Lys Lys Ile Lys Asp Leu Pro Ser Leu Ser Pro
Tyr Ala 210 215 220Leu Glu Leu Leu Thr
Val Tyr Ala Trp Glu Gln Gly Cys Arg Lys Asp225 230
235 240Asn Phe Asp Ile Ala Glu Gly Val Arg Thr
Val Leu Glu Leu Ile Lys 245 250
255Cys Gln Glu Lys Leu Cys Ile Tyr Trp Met Val Asn Tyr Asn Phe Glu
260 265 270Asp Glu Thr Ile Arg
Asn Ile Leu Leu His Gln Leu Gln Ser Ala Arg 275
280 285Pro Val Ile Leu Asp Pro Val Asp Pro Thr Asn Asn
Val Ser Gly Asp 290 295 300Lys Ile Cys
Trp Gln Trp Leu Lys Lys Glu Ala Gln Thr Trp Leu Thr305
310 315 320Ser Pro Asn Leu Asp Asn Glu
Leu Pro Ala Pro Ser Trp Asn Val Leu 325
330 335Pro Ala Pro Leu Phe Thr Thr Pro Gly His Leu Leu
Asp Lys Phe Ile 340 345 350Lys
Glu Phe Leu Gln Pro Asn Lys Cys Phe Leu Glu Gln Ile Asp Ser 355
360 365Ala Val Asn Ile Ile Arg Thr Phe Leu
Lys Glu Asn Cys Phe Arg Gln 370 375
380Ser Thr Ala Lys Ile Gln Ile Val Arg Gly Gly Ser Thr Ala Lys Gly385
390 395 400Thr Ala Leu Lys
Thr Gly Ser Asp Ala Asp Leu Val Val Phe His Asn 405
410 415Ser Leu Lys Ser Tyr Thr Ser Gln Lys Asn
Glu Arg His Lys Ile Val 420 425
430Lys Glu Ile His Glu Gln Leu Lys Ala Phe Trp Arg Glu Lys Glu Glu
435 440 445Glu Leu Glu Val Ser Phe Glu
Pro Pro Lys Trp Lys Ala Pro Arg Val 450 455
460Leu Ser Phe Ser Leu Lys Ser Lys Val Leu Asn Glu Ser Val Ser
Phe465 470 475 480Asp Val
Leu Pro Ala Phe Asn Ala Leu Gly Gln Leu Ser Ser Gly Ser
485 490 495Thr Pro Ser Pro Glu Val Tyr
Ala Gly Leu Ile Asp Leu Tyr Lys Ser 500 505
510Ser Asp Leu Pro Gly Gly Glu Phe Ser Thr Cys Phe Thr Val
Leu Gln 515 520 525Arg Asn Phe Ile
Arg Ser Arg Pro Thr Lys Leu Lys Asp Leu Ile Arg 530
535 540Leu Val Lys His Trp Tyr Lys Glu Cys Glu Arg Lys
Leu Lys Pro Lys545 550 555
560Gly Ser Leu Pro Pro Lys Tyr Ala Leu Glu Leu Leu Thr Ile Tyr Ala
565 570 575Trp Glu Gln Gly Ser
Gly Val Pro Asp Phe Asp Thr Ala Glu Gly Phe 580
585 590Arg Thr Val Leu Glu Leu Val Thr Gln Tyr Gln Gln
Leu Cys Ile Phe 595 600 605Trp Lys
Val Asn Tyr Asn Phe Glu Asp Glu Thr Val Arg Lys Phe Leu 610
615 620Leu Ser Gln Leu Gln Lys Thr Arg Pro Val Ile
Leu Asp Pro Ala Glu625 630 635
640Pro Thr Gly Asp Val Gly Gly Gly Asp Arg Trp Cys Trp His Leu Leu
645 650 655Ala Lys Glu Ala
Lys Glu Trp Leu Ser Ser Pro Cys Phe Lys Asp Gly 660
665 670Thr Gly Asn Pro Ile Pro Pro Trp Lys Val Pro
Val Lys Val Ile 675 680
685232123DNAHomo sapiens 23caagagttgg taagctcgct gcagtgggtg gagagaggcc
tctagacttc agtttcagtt 60tcctggctct gggcagcagc aagaattcct ctgcctccca
tcctaccatt cactgtcttg 120ccggcagcca gctgagagca atgggaaatg gggagtccca
gctgtcctcg gtgcctgctc 180agaagctggg ttggtttatc caggaatacc tgaagcccta
cgaagaatgt cagacactga 240tcgacgagat ggtgaacacc atctgtgacg tcctgcagga
acccgaacag ttccccctgg 300tgcagggagt ggccataggt ggctcctatg gacggaaaac
agtcttaaga ggcaactccg 360atggtaccct tgtcctcttc ttcagtgact taaaacaatt
ccaggatcag aagagaagcc 420aacgtgacat cctcgataaa actggggata agctgaagtt
ctgtctgttc acgaagtggt 480tgaaaaacaa tttcgagatc cagaagtccc ttgatgggtt
caccatccag gtgttcacaa 540aaaatcagag aatctctttc gaggtgctgg ccgccttcaa
cgctctgagt aagcattgct 600gggtgtcagg agagaaaagc caaagaagcg ggtgccagac
agctctgtgc aacctctagg 660ccatgagtgg gatagatacc actgctgctt taaaaaatgg
gagaccatag accctcagga 720gagaagaatc ccttctaccc tggactcgct ctcttctctg
gaactaactt ctcccccata 780ccctgattgt ctttggagaa aatgttctgg attctagaat
ctaaggcaga gccttttaag 840ccatactgta cacataaatc acctggaacc ttgttaaaat
gcagatcctg actcaggagg 900tctgagttag agcccaggat ttcatatttc tagccagctc
catgatgagc tgctggtccg 960cagatcatgc ttgcaggttt tgaccagagt cagtgttggt
tagagtaaga ggatgaggca 1020gacatctggg aaaagtccag ctggggcaag catttgaagt
ctgccttcct accaggtcaa 1080aatcaaggca acgaccttcc atagataact atcaaagctt
gagggggtgc cttgaaccca 1140actcctaaat ccctaagacc tgcccacctc ttgtgtctcc
tgtctcagca aacattccca 1200cactcttgca tattgttaaa gtaacctctg cttaccaggc
ttctggttta ataaaagatg 1260gctagagtga ctccatctta aagcaagtag ctaggcactc
aaaaggaacc tacaggctta 1320atacttgggt ctgaaaatag ccacagtcta agctgaccac
caattataat tgcagaatat 1380ttaaggccat acaaaacatc tcccactaag cctacaaaat
gtccaggtgt cctaaaagtt 1440cagcccactt aaaggcagca ttaatgagca ggtttaggtt
gaaggattaa tggtcatcaa 1500taccactgtt aagaagaaaa ttcttggcca aattgaattt
aatggagttt aactgagcag 1560acaattcaca aatctagaag cctcctgagc cagagtaggt
tcagagagtc ttgaacacag 1620ccacgtggtg gaagaagatt tatggacagg aaaaggaaaa
tgatgtactg aaaatgaaag 1680tgaggtacag aaacagccag actggttata gctcagcatt
ggccttattt gaacgagatt 1740tgaacagttg gccacctttg attggccgaa actcagtgat
tggcacaaga gtaggttgca 1800gtctgtttac acatcctttt aggttatagt tcaccatgta
cagagaaatt ttaggccaaa 1860cttaaaatat gtaaggaggc agctttaggc taaacttgat
ttaacagcac caataccccc 1920tacctttagt gagcacatct gcacattcca attttaatga
cagctcctta gaatttctta 1980tcaacgaaga cactaacaaa gaatggcgca ttcctccttc
tcctttctga ggatgcccta 2040ccctgtaaca aagtcgtttc taataaattt gcttctttca
ccataaaaaa aaaaaaaaaa 2100aaaaaaaaaa aaaaaaaaaa aaa
212324172PRTHomo sapiens 24Met Gly Asn Gly Glu Ser
Gln Leu Ser Ser Val Pro Ala Gln Lys Leu1 5
10 15Gly Trp Phe Ile Gln Glu Tyr Leu Lys Pro Tyr Glu
Glu Cys Gln Thr 20 25 30Leu
Ile Asp Glu Met Val Asn Thr Ile Cys Asp Val Leu Gln Glu Pro 35
40 45Glu Gln Phe Pro Leu Val Gln Gly Val
Ala Ile Gly Gly Ser Tyr Gly 50 55
60Arg Lys Thr Val Leu Arg Gly Asn Ser Asp Gly Thr Leu Val Leu Phe65
70 75 80Phe Ser Asp Leu Lys
Gln Phe Gln Asp Gln Lys Arg Ser Gln Arg Asp 85
90 95Ile Leu Asp Lys Thr Gly Asp Lys Leu Lys Phe
Cys Leu Phe Thr Lys 100 105
110Trp Leu Lys Asn Asn Phe Glu Ile Gln Lys Ser Leu Asp Gly Phe Thr
115 120 125Ile Gln Val Phe Thr Lys Asn
Gln Arg Ile Ser Phe Glu Val Leu Ala 130 135
140Ala Phe Asn Ala Leu Ser Lys His Cys Trp Val Ser Gly Glu Lys
Ser145 150 155 160Gln Arg
Ser Gly Cys Gln Thr Ala Leu Cys Asn Leu 165
170256646DNAHomo sapiens 25gttcggagag ccgggcggga aaacgaaacc agaaatccga
aggccgcgcc agagccctgc 60ttccccttgc acctgcgccg ggcggccatg gacttgtaca
gcaccccggc cgctgcgctg 120gacaggttcg tggccagaag gctgcagccg cggaaggagt
tcgtagagaa ggcgcggcgc 180gctctgggcg ccctggccgc tgccctgagg gagcgcgggg
gccgcctcgg tgctgctgcc 240ccgcgggtgc tgaaaactgt caagggaggc tcctcgggcc
ggggcacagc tctcaagggt 300ggctgtgatt ctgaacttgt catcttcctc gactgcttca
agagctatgt ggaccagagg 360gcccgccgtg cagagatcct cagtgagatg cgggcatcgc
tggaatcctg gtggcagaac 420ccagtccctg gtctgagact cacgtttcct gagcagagcg
tgcctggggc cctgcagttc 480cgcctgacat ccgtagatct tgaggactgg atggatgtta
gcctggtgcc tgccttcaat 540gtcctgggtc aggccggctc cggcgtcaaa cccaagccac
aagtctactc taccctcctc 600aacagtggct gccaaggggg cgagcatgcg gcctgcttca
cagagctgcg gaggaacttt 660gtgaacattc gcccagccaa gttgaagaac ctaatcttgc
tggtgaagca ctggtaccac 720caggtgtgcc tacaggggtt gtggaaggag acgctgcccc
cggtctatgc cctggaattg 780ctgaccatct tcgcctggga gcagggctgt aagaaggatg
ctttcagcct agccgaaggc 840ctccgaactg tcctgggcct gatccaacag catcagcacc
tgtgtgtttt ctggactgtc 900aactatggct tcgaggaccc tgcagttggg cagttcttgc
agcggcagct taagagaccc 960aggcctgtga tcctggaccc agctgacccc acatgggacc
tggggaatgg ggcagcctgg 1020cactgggatt tgctagccca ggaggcagca tcctgctatg
accacccatg ctttctgagg 1080gggatggggg acccagtgca gtcttggaag gggccgggcc
ttccacgtgc tggatgctca 1140ggtttgggcc accccatcca gctagaccct aaccagaaga
cccctgaaaa cagcaagagc 1200ctcaatgctg tgtacccaag agcagggagc aaacctccct
catgcccagc tcctggcccc 1260actggggcag ccagcatcgt cccctctgtg ccgggaatgg
ccttggacct gtctcagatc 1320cccaccaagg agctggaccg cttcatccag gaccacctga
agccgagccc ccagttccag 1380gagcaggtga aaaaggccat cgacatcatc ttgcgctgcc
tccatgagaa ctgtgttcac 1440aaggcctcaa gagtcagtaa agggggctca tttggccggg
gcacagacct aagggatggc 1500tgtgatgttg aactcatcat cttcctcaac tgcttcacgg
actacaagga ccaggggccc 1560cgccgcgcag agatccttga tgagatgcga gcgcagctag
aatcctggtg gcaggaccag 1620gtgcccagcc tgagccttca gtttcctgag cagaatgtgc
ctgaggctct gcagttccag 1680ctggtgtcca cagccctgaa gagctggacg gatgttagcc
tgctgcctgc cttcgatgct 1740gtggggcagc tcagttctgg caccaaacca aatccccagg
tctactcgag gctcctcacc 1800agtggctgcc aggagggcga gcataaggcc tgcttcgcag
agctgcggag gaacttcatg 1860aacattcgcc ctgtcaagct gaagaacctg attctgctgg
tgaagcactg gtaccgccag 1920gttgcggctc agaacaaagg aaaaggacca gcccctgcct
ctctgccccc agcctatgcc 1980ctggagctcc tcaccatctt tgcctgggag cagggctgca
ggcaggattg tttcaacatg 2040gcccaaggct tccggacggt gctggggctc gtgcaacagc
atcagcagct ctgtgtctac 2100tggacggtca actatagcac tgaggaccca gccatgagaa
tgcaccttct tggccagctt 2160cgaaaaccca gacccctggt cctggacccc gctgatccca
cctggaacgt gggccacggt 2220agctgggagc tgttggccca ggaagcagca gcgctgggga
tgcaggcctg ctttctgagt 2280agagacggga catctgtgca gccctgggat gtgatgccag
ccctccttta ccaaacccca 2340gctggggacc ttgacaagtt catcagtgaa tttctccagc
ccaaccgcca gttcctggcc 2400caggtgaaca aggccgttga taccatctgt tcatttttga
aggaaaactg cttccggaat 2460tctcccatca aagtgatcaa ggtggtcaag ggtggctctt
cagccaaagg cacagctctg 2520cgaggccgct cagatgccga cctcgtggtg ttcctcagct
gcttcagcca gttcactgag 2580cagggcaaca agcgggccga gatcatctcc gagatccgag
cccagctgga ggcatgtcaa 2640caggagcggc agttcgaggt caagtttgaa gtctccaaat
gggagaatcc ccgcgtgctg 2700agcttctcac tgacatccca gacgatgctg gaccagagtg
tggactttga tgtgctgcca 2760gcctttgacg ccctaggcca gctggtctct ggctccaggc
ccagctctca agtctacgtc 2820gacctcatcc acagctacag caatgcgggc gagtactcca
cctgcttcac agagctacaa 2880cgggacttca tcatctctcg ccctaccaag ctgaagagcc
tgatccggct ggtgaagcac 2940tggtaccagc agtgtaccaa gatctccaag gggagaggct
ccctaccccc acagcacggg 3000ctggaactcc tgactgtgta tgcctgggag cagggcggga
aggactccca gttcaacatg 3060gctgagggct tccgcacggt cctggagctg gtcacccagt
accgccagct ctgtatctac 3120tggaccatca actacaacgc caaggacaag actgttggag
acttcctgaa acagcagctt 3180cagaagccca ggcctatcat cctggatccg gctgacccga
caggcaacct gggccacaat 3240gcccgctggg acctgctggc caaggaagct gcagcctgca
catctgccct gtgctgcatg 3300ggacggaatg gcatccccat ccagccatgg ccagtgaagg
ctgctgtgtg aagttgagaa 3360aatcagcggt cctactggat gaagagaaga tggacaccag
ccctcagcat gaggaaattc 3420agggtcccct accagatgag agagattgtg tacatgtgtg
tgtgagcaca tgtgtgcatg 3480tgtgtgcaca cgtgtgcatg tgtgtgtttt agtgaatctg
ctctcccagc tcacacactc 3540ccctgcctcc catggcttac acactaggat ccagactcca
tggtttgaca ccagcctgcg 3600tttgcagctt ctctgtcact tccatgactc tatcctcata
ccaccactgc tgcttcccac 3660ccagctgaga atgccccctc ctccctgact cctctctgcc
catgcaaatt agctcacatc 3720tttcctcctg ctgcaatcca tcccttcctc ccattggcct
ctccttgcca aatctaaata 3780gtttatatag ggatggcaga gagttcccat ctcatctgtc
agccacagtc atttggtact 3840ggctacctgg agccttatct tctgaagggt tttaaagaat
ggccaattag ctgagaagaa 3900ttatctaatc aattagtgat gtctgccatg gatgcagtag
aggaaagtgg tggtacaagt 3960gccatgattg attagcaatg tctgcactgg atacggaaaa
aagaaggtgc ttgcaggttt 4020acagtgtata tgtgggctat tgaagagccc tctgagctcg
gttgctagca ggagagcatg 4080cccatattgg cttactttgt ctgccacaga cacagacaga
gggagttggg acatgcatgc 4140tatggggacc ctcttgttgg acacctaatt ggatgcctct
tcatgagagg cctccttttc 4200ttcacctttt atgctgcact cctcccctag tttacacatc
ttgatgctgt ggctcagttt 4260gccttcctga atttttattg ggtccctgtt ttctctccta
acatgctgag attctgcatc 4320cccacagcct aaactgagcc agtggccaaa caaccgtgct
cagcctgttt ctctctgccc 4380tctagagcaa ggcccaccag gtccatccag gaggctctcc
tgacctcaag tccaacaaca 4440gtgtccacac tagtcaaggt tcagcccaga aaacagaaag
cactctagga atcttaggca 4500gaaagggatt ttatctaaat cactggaaag gctggaggag
cagaaggcag aggccaccac 4560tggactattg gtttcaatat tagaccactg tagccgaatc
agaggccaga gagcagccac 4620tgctactgct aatgccacca ctacccctgc catcactgcc
ccacatggac aaaactggag 4680tcgagaccta ggttagattc ctgcaaccac aaacatccat
cagggatggc cagctgccag 4740agctgcggga agacggatcc cacctccctt tcttagcaga
atctaaatta cagccagacc 4800tctggctgca gaggagtctg agacatgtat gattgaatgg
gtgccaagtg ccagggggcg 4860gagtccccag cagatgcatc ctggccatct gttgcgtgga
tgagggagtg ggtctatctc 4920agaggaagga acaggaaaca aagaaaggaa gccactgaac
atcccttctc tgctccacag 4980gagtgcctta gacagcctga ctctccacaa accactgtta
aaacttacct gctaggaatg 5040ctagattgaa tgggatggga agagccttcc ctcattattg
tcattcttgg agagaggtga 5100gcaaccaagg gaagctcctc tgattcacct agaacctgtt
ctctgccgtc tttggctcag 5160cctacagaga ctagagtagg tgaagggaca gaggacaggg
cttctaatac ctgtgccata 5220ttgacagcct ccatccctgt cccccatctt ggtgctgaac
caacgctaag ggcaccttct 5280tagactcacc tcatcgatac tgcctggtaa tccaaagcta
gaactctcag gaccccaaac 5340tccacctctt ggattggccc tggctgctgc cacacacata
tccaagagct cagggccagt 5400tctggtgggc agcagagacc tgctctgcca agttgtccag
cagcagagtg gccctggcct 5460gggcatcaca agccagtgat gctcctggga agaccaggtg
gcaggtcgca gttgggtacc 5520ttccattccc accacacaga ctctgggcct ccccgcaaaa
tggctccaga attagagtaa 5580ttatgagatg gtgggaacca gagcaactca ggtgcatgat
acaaggagag gttgtcatct 5640gggtagggca gagaggaggg cttgctcatc tgaacagggg
tgtatttcat tccaggccct 5700cagtctttgg caatggccac cctggtgttg gcatattggc
cccactgtaa cttttggggg 5760cttcccggtc tagccacacc ctcggatgga aagacttgac
tgcataaaga tgtcagttct 5820ccctgagttg attgataggc ttaatggtca ccctaaaaac
acccacatat gcttttcgat 5880ggaaccaggt aagttgacgc taaagttctt atggaaaaat
acacacgcaa tagctaggaa 5940aacacaggga aagaagagtt ctgagcaggg cctagtctta
gccaatatta aaacatacta 6000tgaagcctct gatacttaaa cagcatggcg ctggtacgta
aatagaccaa tgcagttagg 6060tggctctttc caagactctg gggaaaaaag tagtaaaaag
ctaaatgcaa tcaatcagca 6120attgaaagct aagtgagaga gccagagggc ctccttggtg
gtaaaagagg gttgcatttc 6180ttgcagccag aaggcagaga aagtgaagac caagtccaga
actgaatcct aagaaatgca 6240ggactgcaaa gaaattggtg tgtgtgtgtg tgtgtgtgtg
tgtgtgtgtg tttaattttt 6300aaaaagtttt tattgagata caagtcaata ccataaagct
ctcacccttc taaagtgtac 6360aattcagtgg tgtgagtata ttcataagat ttatacttgg
tgtctattca taagacttat 6420atccagcata ttcataacta gagccatatc acagatgcat
tcatcataat aattccagac 6480attttcatca ccctaaaagg aaaccctgaa acccattagc
agtcattccc cattcctcca 6540acccattctc tccctaatcc ctagaaacca ccaatctgct
gtgtatttca tctattgcca 6600acatttcata taaatggcat catacaaaaa aaaaaaaaaa
aaaaaa 6646261087PRTHomo sapiens 26Met Asp Leu Tyr Ser
Thr Pro Ala Ala Ala Leu Asp Arg Phe Val Ala1 5
10 15Arg Arg Leu Gln Pro Arg Lys Glu Phe Val Glu
Lys Ala Arg Arg Ala 20 25
30Leu Gly Ala Leu Ala Ala Ala Leu Arg Glu Arg Gly Gly Arg Leu Gly
35 40 45Ala Ala Ala Pro Arg Val Leu Lys
Thr Val Lys Gly Gly Ser Ser Gly 50 55
60Arg Gly Thr Ala Leu Lys Gly Gly Cys Asp Ser Glu Leu Val Ile Phe65
70 75 80Leu Asp Cys Phe Lys
Ser Tyr Val Asp Gln Arg Ala Arg Arg Ala Glu 85
90 95Ile Leu Ser Glu Met Arg Ala Ser Leu Glu Ser
Trp Trp Gln Asn Pro 100 105
110Val Pro Gly Leu Arg Leu Thr Phe Pro Glu Gln Ser Val Pro Gly Ala
115 120 125Leu Gln Phe Arg Leu Thr Ser
Val Asp Leu Glu Asp Trp Met Asp Val 130 135
140Ser Leu Val Pro Ala Phe Asn Val Leu Gly Gln Ala Gly Ser Gly
Val145 150 155 160Lys Pro
Lys Pro Gln Val Tyr Ser Thr Leu Leu Asn Ser Gly Cys Gln
165 170 175Gly Gly Glu His Ala Ala Cys
Phe Thr Glu Leu Arg Arg Asn Phe Val 180 185
190Asn Ile Arg Pro Ala Lys Leu Lys Asn Leu Ile Leu Leu Val
Lys His 195 200 205Trp Tyr His Gln
Val Cys Leu Gln Gly Leu Trp Lys Glu Thr Leu Pro 210
215 220Pro Val Tyr Ala Leu Glu Leu Leu Thr Ile Phe Ala
Trp Glu Gln Gly225 230 235
240Cys Lys Lys Asp Ala Phe Ser Leu Ala Glu Gly Leu Arg Thr Val Leu
245 250 255Gly Leu Ile Gln Gln
His Gln His Leu Cys Val Phe Trp Thr Val Asn 260
265 270Tyr Gly Phe Glu Asp Pro Ala Val Gly Gln Phe Leu
Gln Arg Gln Leu 275 280 285Lys Arg
Pro Arg Pro Val Ile Leu Asp Pro Ala Asp Pro Thr Trp Asp 290
295 300Leu Gly Asn Gly Ala Ala Trp His Trp Asp Leu
Leu Ala Gln Glu Ala305 310 315
320Ala Ser Cys Tyr Asp His Pro Cys Phe Leu Arg Gly Met Gly Asp Pro
325 330 335Val Gln Ser Trp
Lys Gly Pro Gly Leu Pro Arg Ala Gly Cys Ser Gly 340
345 350Leu Gly His Pro Ile Gln Leu Asp Pro Asn Gln
Lys Thr Pro Glu Asn 355 360 365Ser
Lys Ser Leu Asn Ala Val Tyr Pro Arg Ala Gly Ser Lys Pro Pro 370
375 380Ser Cys Pro Ala Pro Gly Pro Thr Gly Ala
Ala Ser Ile Val Pro Ser385 390 395
400Val Pro Gly Met Ala Leu Asp Leu Ser Gln Ile Pro Thr Lys Glu
Leu 405 410 415Asp Arg Phe
Ile Gln Asp His Leu Lys Pro Ser Pro Gln Phe Gln Glu 420
425 430Gln Val Lys Lys Ala Ile Asp Ile Ile Leu
Arg Cys Leu His Glu Asn 435 440
445Cys Val His Lys Ala Ser Arg Val Ser Lys Gly Gly Ser Phe Gly Arg 450
455 460Gly Thr Asp Leu Arg Asp Gly Cys
Asp Val Glu Leu Ile Ile Phe Leu465 470
475 480Asn Cys Phe Thr Asp Tyr Lys Asp Gln Gly Pro Arg
Arg Ala Glu Ile 485 490
495Leu Asp Glu Met Arg Ala Gln Leu Glu Ser Trp Trp Gln Asp Gln Val
500 505 510Pro Ser Leu Ser Leu Gln
Phe Pro Glu Gln Asn Val Pro Glu Ala Leu 515 520
525Gln Phe Gln Leu Val Ser Thr Ala Leu Lys Ser Trp Thr Asp
Val Ser 530 535 540Leu Leu Pro Ala Phe
Asp Ala Val Gly Gln Leu Ser Ser Gly Thr Lys545 550
555 560Pro Asn Pro Gln Val Tyr Ser Arg Leu Leu
Thr Ser Gly Cys Gln Glu 565 570
575Gly Glu His Lys Ala Cys Phe Ala Glu Leu Arg Arg Asn Phe Met Asn
580 585 590Ile Arg Pro Val Lys
Leu Lys Asn Leu Ile Leu Leu Val Lys His Trp 595
600 605Tyr Arg Gln Val Ala Ala Gln Asn Lys Gly Lys Gly
Pro Ala Pro Ala 610 615 620Ser Leu Pro
Pro Ala Tyr Ala Leu Glu Leu Leu Thr Ile Phe Ala Trp625
630 635 640Glu Gln Gly Cys Arg Gln Asp
Cys Phe Asn Met Ala Gln Gly Phe Arg 645
650 655Thr Val Leu Gly Leu Val Gln Gln His Gln Gln Leu
Cys Val Tyr Trp 660 665 670Thr
Val Asn Tyr Ser Thr Glu Asp Pro Ala Met Arg Met His Leu Leu 675
680 685Gly Gln Leu Arg Lys Pro Arg Pro Leu
Val Leu Asp Pro Ala Asp Pro 690 695
700Thr Trp Asn Val Gly His Gly Ser Trp Glu Leu Leu Ala Gln Glu Ala705
710 715 720Ala Ala Leu Gly
Met Gln Ala Cys Phe Leu Ser Arg Asp Gly Thr Ser 725
730 735Val Gln Pro Trp Asp Val Met Pro Ala Leu
Leu Tyr Gln Thr Pro Ala 740 745
750Gly Asp Leu Asp Lys Phe Ile Ser Glu Phe Leu Gln Pro Asn Arg Gln
755 760 765Phe Leu Ala Gln Val Asn Lys
Ala Val Asp Thr Ile Cys Ser Phe Leu 770 775
780Lys Glu Asn Cys Phe Arg Asn Ser Pro Ile Lys Val Ile Lys Val
Val785 790 795 800Lys Gly
Gly Ser Ser Ala Lys Gly Thr Ala Leu Arg Gly Arg Ser Asp
805 810 815Ala Asp Leu Val Val Phe Leu
Ser Cys Phe Ser Gln Phe Thr Glu Gln 820 825
830Gly Asn Lys Arg Ala Glu Ile Ile Ser Glu Ile Arg Ala Gln
Leu Glu 835 840 845Ala Cys Gln Gln
Glu Arg Gln Phe Glu Val Lys Phe Glu Val Ser Lys 850
855 860Trp Glu Asn Pro Arg Val Leu Ser Phe Ser Leu Thr
Ser Gln Thr Met865 870 875
880Leu Asp Gln Ser Val Asp Phe Asp Val Leu Pro Ala Phe Asp Ala Leu
885 890 895Gly Gln Leu Val Ser
Gly Ser Arg Pro Ser Ser Gln Val Tyr Val Asp 900
905 910Leu Ile His Ser Tyr Ser Asn Ala Gly Glu Tyr Ser
Thr Cys Phe Thr 915 920 925Glu Leu
Gln Arg Asp Phe Ile Ile Ser Arg Pro Thr Lys Leu Lys Ser 930
935 940Leu Ile Arg Leu Val Lys His Trp Tyr Gln Gln
Cys Thr Lys Ile Ser945 950 955
960Lys Gly Arg Gly Ser Leu Pro Pro Gln His Gly Leu Glu Leu Leu Thr
965 970 975Val Tyr Ala Trp
Glu Gln Gly Gly Lys Asp Ser Gln Phe Asn Met Ala 980
985 990Glu Gly Phe Arg Thr Val Leu Glu Leu Val Thr
Gln Tyr Arg Gln Leu 995 1000
1005Cys Ile Tyr Trp Thr Ile Asn Tyr Asn Ala Lys Asp Lys Thr Val
1010 1015 1020Gly Asp Phe Leu Lys Gln
Gln Leu Gln Lys Pro Arg Pro Ile Ile 1025 1030
1035Leu Asp Pro Ala Asp Pro Thr Gly Asn Leu Gly His Asn Ala
Arg 1040 1045 1050Trp Asp Leu Leu Ala
Lys Glu Ala Ala Ala Cys Thr Ser Ala Leu 1055 1060
1065Cys Cys Met Gly Arg Asn Gly Ile Pro Ile Gln Pro Trp
Pro Val 1070 1075 1080Lys Ala Ala Val
1085272103DNAHomo sapiens 27tgactagacg gccagcctgt taaggtggcc
ccagatattc cagcctcagc ccagagtcct 60cctgtgcccc tactgcagca agggtgtctc
caagaagggg gacctggagt cagcccgtca 120cacctggttt cctctctgct agggtccctc
ctcccacaga gcactggagg gcagctgagg 180aggagctacc ttaaaaaagg aggtgtgtgc
cagggagctg ggtaggagcc tggctatata 240tctgcccagc agcggtactc tcgggacaga
gatggcactg atgcaggaac tgtatagcac 300accagcctcc aggctggact ccttcgtggc
tcagtggctg cagccccacc gggagtggaa 360ggaagaggtg ctagacgctg tgcggaccgt
ggaggagttt ctgaggcagg agcatttcca 420ggggaagcgt gggctggacc aggatgtgcg
ggtgctgaag gtagtcaagg tgggctcctt 480cgggaatggc acggttctca ggagcaccag
agaggtggag ctggtggcgt ttctgagctg 540tttccacagc ttccaggagg cagccaagca
tcacaaagat gttctgaggc tgatatggaa 600aaccatgtgg caaagccagg acctgctgga
cctcgggctc gaggacctga ggatggagca 660gagagtcccc gatgctctcg tcttcaccat
ccagaccagg gggactgcgg agcccatcac 720ggtcaccatt gtgcctgcct acagagccct
ggggccttct cttcccaact cccagccacc 780ccctgaggtc tatgtgagcc tgatcaaggc
ctgcggtggt cctggaaatt tctgcccatc 840cttcagcgag ctgcagagaa atttcgtgaa
acatcggcca actaagctga agagcctcct 900gcgcctggtg aaacactggt accagcagta
tgtgaaagcc aggtccccca gagccaatct 960gccccctctc tatgctcttg aacttctaac
catctatgcc tgggaaatgg gtactgaaga 1020agacgagaat ttcatgttgg acgaaggctt
caccactgtg atggacctgc tcctggagta 1080tgaagtcatc tgtatctact ggaccaagta
ctacacactc cacaatgcaa tcattgagga 1140ttgtgtcaga aaacagctca aaaaagagag
gcccatcatc ctggatccgg ccgaccccac 1200cctcaacgtg gcagaagggt acagatggga
catcgttgct cagagggcct cccagtgcct 1260gaaacaggac tgttgctatg acaacaggga
gaaccccatc tccagctgga acgtgaagag 1320ggcacgagac atccacttga cagtggagca
gaggggttac ccagatttca acctcatcgt 1380gaacccttat gagcccataa ggaaggttaa
agagaaaatc cggaggacca ggggctactc 1440tggcctgcag cgtctgtcct tccaggttcc
tggcagtgag aggcagcttc tcagcagcag 1500gtgctcctta gccaaatatg ggatcttctc
ccacactcac atctatctgc tggagaccat 1560cccctccgag atccaggtct tcgtgaagaa
tcctgatggt gggagctacg cctatgccat 1620caaccccaac agcttcatcc tgggtctgaa
gcagcagatt gaagaccagc aggggcttcc 1680taaaaagcag cagcagctgg aattccaagg
ccaagtcctg caggactggt tgggtctggg 1740gatctatggc atccaagaca gtgacactct
catcctctcg aagaagaaag gagaggctct 1800gtttccagcc agttagtttt ctctgggaga
cttctctgta catttctgcc atgtactcca 1860gaactcatcc tgtcaatcac tctgtcccat
tgtctactgg gaaggtccca ggtcttcacc 1920agttttacaa tgagttatcc caggccagac
gtggtagctc acacctgtaa tcccagaact 1980ttgggaggcc gaggtgggag gagcgcttga
gccgaggagt tcaagaccag cctgggtatc 2040acagggagac cccgtctcta caaaataaaa
aaataattca ctgggaaaaa aaaaaaaaaa 2100aaa
210328514PRTHomo sapiens 28Met Ala Leu
Met Gln Glu Leu Tyr Ser Thr Pro Ala Ser Arg Leu Asp1 5
10 15Ser Phe Val Ala Gln Trp Leu Gln Pro
His Arg Glu Trp Lys Glu Glu 20 25
30Val Leu Asp Ala Val Arg Thr Val Glu Glu Phe Leu Arg Gln Glu His
35 40 45Phe Gln Gly Lys Arg Gly Leu
Asp Gln Asp Val Arg Val Leu Lys Val 50 55
60Val Lys Val Gly Ser Phe Gly Asn Gly Thr Val Leu Arg Ser Thr Arg65
70 75 80Glu Val Glu Leu
Val Ala Phe Leu Ser Cys Phe His Ser Phe Gln Glu 85
90 95Ala Ala Lys His His Lys Asp Val Leu Arg
Leu Ile Trp Lys Thr Met 100 105
110Trp Gln Ser Gln Asp Leu Leu Asp Leu Gly Leu Glu Asp Leu Arg Met
115 120 125Glu Gln Arg Val Pro Asp Ala
Leu Val Phe Thr Ile Gln Thr Arg Gly 130 135
140Thr Ala Glu Pro Ile Thr Val Thr Ile Val Pro Ala Tyr Arg Ala
Leu145 150 155 160Gly Pro
Ser Leu Pro Asn Ser Gln Pro Pro Pro Glu Val Tyr Val Ser
165 170 175Leu Ile Lys Ala Cys Gly Gly
Pro Gly Asn Phe Cys Pro Ser Phe Ser 180 185
190Glu Leu Gln Arg Asn Phe Val Lys His Arg Pro Thr Lys Leu
Lys Ser 195 200 205Leu Leu Arg Leu
Val Lys His Trp Tyr Gln Gln Tyr Val Lys Ala Arg 210
215 220Ser Pro Arg Ala Asn Leu Pro Pro Leu Tyr Ala Leu
Glu Leu Leu Thr225 230 235
240Ile Tyr Ala Trp Glu Met Gly Thr Glu Glu Asp Glu Asn Phe Met Leu
245 250 255Asp Glu Gly Phe Thr
Thr Val Met Asp Leu Leu Leu Glu Tyr Glu Val 260
265 270Ile Cys Ile Tyr Trp Thr Lys Tyr Tyr Thr Leu His
Asn Ala Ile Ile 275 280 285Glu Asp
Cys Val Arg Lys Gln Leu Lys Lys Glu Arg Pro Ile Ile Leu 290
295 300Asp Pro Ala Asp Pro Thr Leu Asn Val Ala Glu
Gly Tyr Arg Trp Asp305 310 315
320Ile Val Ala Gln Arg Ala Ser Gln Cys Leu Lys Gln Asp Cys Cys Tyr
325 330 335Asp Asn Arg Glu
Asn Pro Ile Ser Ser Trp Asn Val Lys Arg Ala Arg 340
345 350Asp Ile His Leu Thr Val Glu Gln Arg Gly Tyr
Pro Asp Phe Asn Leu 355 360 365Ile
Val Asn Pro Tyr Glu Pro Ile Arg Lys Val Lys Glu Lys Ile Arg 370
375 380Arg Thr Arg Gly Tyr Ser Gly Leu Gln Arg
Leu Ser Phe Gln Val Pro385 390 395
400Gly Ser Glu Arg Gln Leu Leu Ser Ser Arg Cys Ser Leu Ala Lys
Tyr 405 410 415Gly Ile Phe
Ser His Thr His Ile Tyr Leu Leu Glu Thr Ile Pro Ser 420
425 430Glu Ile Gln Val Phe Val Lys Asn Pro Asp
Gly Gly Ser Tyr Ala Tyr 435 440
445Ala Ile Asn Pro Asn Ser Phe Ile Leu Gly Leu Lys Gln Gln Ile Glu 450
455 460Asp Gln Gln Gly Leu Pro Lys Lys
Gln Gln Gln Leu Glu Phe Gln Gly465 470
475 480Gln Val Leu Gln Asp Trp Leu Gly Leu Gly Ile Tyr
Gly Ile Gln Asp 485 490
495Ser Asp Thr Leu Ile Leu Ser Lys Lys Lys Gly Glu Ala Leu Phe Pro
500 505 510Ala Ser291861DNAHomo
sapiens 29tgactagacg gccagcctgt taaggtggcc ccagatattc cagcctcagc
ccagagtcct 60cctgtgcccc tactgcagca agggtgtctc caagaagggg gacctggagt
cagcccgtca 120cacctggttt cctctctgct agggtccctc ctcccacaga gcactggagg
gcagctgagg 180aggagctacc ttaaaaaagg aggtgtgtgc cagggagctg ggtaggagcc
tggctatata 240tctgcccagc agcggtactc tcgggacaga gatggcactg atgcaggaac
tgtatagcac 300accagcctcc aggctggact ccttcgtggc tcagtggctg cagccccacc
gggagtggaa 360ggaagaggtg ctagacgctg tgcggaccgt ggaggagttt ctgaggcagg
agcatttcca 420ggggaagcgt gggctggacc aggatgtgcg ggtgctgaag gtagtcaagg
tgggctcctt 480cgggaatggc acggttctca ggagcaccag agaggtggag ctggtggcgt
ttctgagctg 540tttccacagc ttccaggagg cagccaagca tcacaaagat gttctgaggc
tgatatggaa 600aaccatgtgg caaagccagg acctgctgga cctcgggctc gaggacctga
ggatggagca 660gagagtcccc gatgctctcg tcttcaccat ccagaccagg gggactgcgg
agcccatcac 720ggtcaccatt gtgcctgcct acagagccct ggggccttct cttcccaact
cccagccacc 780ccctgaggtc tatgtgagcc tgatcaaggc ctgcggtggt cctggaaatt
tctgcccatc 840cttcagcgag ctgcagagaa atttcgtgaa acatcggcca actaagctga
agagcctcct 900gcgcctggtg aaacactggt accagcaggc ccatcatcct ggatccggcc
gaccccaccc 960tcaacgtggc agaagggtac agatgggaca tcgttgctca gagggcctcc
cagtgcctga 1020aacaggactg ttgctatgac aacagggaga accccatctc cagctggaac
gtgaagaggg 1080cacgagacat ccacttgaca gtggagcaga ggggttaccc agatttcaac
ctcatcgtga 1140acccttatga gcccataagg aaggttaaag agaaaatccg gaggaccagg
ggctactctg 1200gcctgcagcg tctgtccttc caggttcctg gcagtgagag gcagcttctc
agcagcaggt 1260gctccttagc caaatatggg atcttctccc acactcacat ctatctgctg
gagaccatcc 1320cctccgagat ccaggtcttc gtgaagaatc ctgatggtgg gagctacgcc
tatgccatca 1380accccaacag cttcatcctg ggtctgaagc agcagattga agaccagcag
gggcttccta 1440aaaagcagca gcagctggaa ttccaaggcc aagtcctgca ggactggttg
ggtctgggga 1500tctatggcat ccaagacagt gacactctca tcctctcgaa gaagaaagga
gaggctctgt 1560ttccagccag ttagttttct ctgggagact tctctgtaca tttctgccat
gtactccaga 1620actcatcctg tcaatcactc tgtcccattg tctactggga aggtcccagg
tcttcaccag 1680ttttacaatg agttatccca ggccagacgt ggtagctcac acctgtaatc
ccagaacttt 1740gggaggccga ggtgggagga gcgcttgagc cgaggagttc aagaccagcc
tgggtatcac 1800agggagaccc cgtctctaca aaataaaaaa ataattcact gggaaaaaaa
aaaaaaaaaa 1860a
186130255PRTHomo sapiens 30Met Ala Leu Met Gln Glu Leu Tyr Ser
Thr Pro Ala Ser Arg Leu Asp1 5 10
15Ser Phe Val Ala Gln Trp Leu Gln Pro His Arg Glu Trp Lys Glu
Glu 20 25 30Val Leu Asp Ala
Val Arg Thr Val Glu Glu Phe Leu Arg Gln Glu His 35
40 45Phe Gln Gly Lys Arg Gly Leu Asp Gln Asp Val Arg
Val Leu Lys Val 50 55 60Val Lys Val
Gly Ser Phe Gly Asn Gly Thr Val Leu Arg Ser Thr Arg65 70
75 80Glu Val Glu Leu Val Ala Phe Leu
Ser Cys Phe His Ser Phe Gln Glu 85 90
95Ala Ala Lys His His Lys Asp Val Leu Arg Leu Ile Trp Lys
Thr Met 100 105 110Trp Gln Ser
Gln Asp Leu Leu Asp Leu Gly Leu Glu Asp Leu Arg Met 115
120 125Glu Gln Arg Val Pro Asp Ala Leu Val Phe Thr
Ile Gln Thr Arg Gly 130 135 140Thr Ala
Glu Pro Ile Thr Val Thr Ile Val Pro Ala Tyr Arg Ala Leu145
150 155 160Gly Pro Ser Leu Pro Asn Ser
Gln Pro Pro Pro Glu Val Tyr Val Ser 165
170 175Leu Ile Lys Ala Cys Gly Gly Pro Gly Asn Phe Cys
Pro Ser Phe Ser 180 185 190Glu
Leu Gln Arg Asn Phe Val Lys His Arg Pro Thr Lys Leu Lys Ser 195
200 205Leu Leu Arg Leu Val Lys His Trp Tyr
Gln Gln Ala His His Pro Gly 210 215
220Ser Gly Arg Pro His Pro Gln Arg Gly Arg Arg Val Gln Met Gly His225
230 235 240Arg Cys Ser Glu
Gly Leu Pro Val Pro Glu Thr Gly Leu Leu Leu 245
250 255311240DNAHomo sapiens 31ttatgggttt catttagtgg
agaaattggg tatgacctcg gaggagtcaa gaaagagttc 60ttctactgtc tgtttgcaga
gatgatccag ccggaatatg ggatgttcat gtatcctgaa 120ggggcttcct gcatgtggtt
tcctgtcaag cctaaatttg agaagaaaag atacttcttt 180tttggggttc tatgtggact
ttccctgttc aattgcaatg ttgccaacct tcctttccca 240ctggcactgt ttaagaaact
tttggaccaa atgccatcat tggaagactt gaaagaactc 300agtcctgatt tgggaaagaa
tttgcaaaca cttctggatg atgaaggtga taactttgag 360gaagtatttt acatccattt
taatgtgcac tgggacagaa acgacacaaa cttaattcct 420aatggaagta gcataactgt
caaccagact aacaagagag actatgtttc taagtatatc 480aattacattt tcaacgactc
tgtaaaggcg gtttatgaag aatttcggag aggattttat 540aaaatgtgcg acgaagacat
tatcaaatta ttccaccccg aagaactgaa ggatgtgatt 600gttggaaata cagattatga
ttggaaaaca tttgaaaaga atgcacgtta tgaaccagga 660tataacagtt cacatcccac
catagtgatg ttttggaagg ctttccacaa attgactctg 720gaagaaaaga aaaaattcct
tgtatttctt acaggaactg acagactaca aatgaaagat 780ttaaataata tgaaaataac
attttgctgt cctgaaagtt ggaatgaaag agaccctata 840agagcactga catgtttcag
tgtcctcttc ctccctaaat attctacaat ggaaacagtt 900gaagaagcgc ttcaagaagc
catcaacaac aacagaggat ttggctgacc agcttgcttg 960tccaacagcc ttattttgtt
gttgttatcg ttgttgttgt tgttgttgtt gttgtttctc 1020tactttgttt tgttttaggc
ttttagcagc ctgaagccat ggtttttcat ttctgtctct 1080agtgataagc aggaaagagg
gatgaagaag agggtttact ggccggttag aacccgtgac 1140tgtattctct cccttggata
cccctatgcc tacatcatat tccttacctc ttttgggaaa 1200tatttttcaa aaataaaata
accgaaaaat taacataaaa 1240321024PRTHomo sapiens
32Met Glu Arg Arg Ser Arg Arg Lys Ser Arg Arg Asn Gly Arg Ser Thr1
5 10 15Ala Gly Lys Ala Ala Ala
Thr Gln Pro Ala Lys Ser Pro Gly Ala Gln 20 25
30Leu Trp Leu Phe Pro Ser Ala Ala Gly Leu His Arg Ala
Leu Leu Arg 35 40 45Arg Val Glu
Val Thr Arg Gln Leu Cys Cys Ser Pro Gly Arg Leu Ala 50
55 60Val Leu Glu Arg Gly Gly Ala Gly Val Gln Val His
Gln Leu Leu Ala65 70 75
80Gly Ser Gly Gly Ala Arg Thr Pro Lys Cys Ile Lys Leu Gly Lys Asn
85 90 95Met Lys Ile His Ser Val
Asp Gln Gly Ala Glu His Met Leu Ile Leu 100
105 110Ser Ser Asp Gly Lys Pro Phe Glu Tyr Asp Asn Tyr
Ser Met Lys His 115 120 125Leu Arg
Phe Glu Ser Ile Leu Gln Glu Lys Lys Ile Ile Gln Ile Thr 130
135 140Cys Gly Asp Tyr His Ser Leu Ala Leu Ser Lys
Gly Gly Glu Leu Phe145 150 155
160Ala Trp Gly Gln Asn Leu His Gly Gln Leu Gly Val Gly Arg Lys Phe
165 170 175Pro Ser Thr Thr
Thr Pro Gln Ile Val Glu His Leu Ala Gly Val Pro 180
185 190Leu Ala Gln Ile Ser Ala Gly Glu Ala His Ser
Met Ala Leu Ser Met 195 200 205Ser
Gly Asn Ile Tyr Ser Trp Gly Lys Asn Glu Cys Gly Gln Leu Gly 210
215 220Leu Gly His Thr Glu Ser Lys Asp Asp Pro
Ser Leu Ile Glu Gly Leu225 230 235
240Asp Asn Gln Lys Val Glu Phe Val Ala Cys Gly Gly Ser His Ser
Ala 245 250 255Leu Leu Thr
Gln Asp Gly Leu Leu Phe Thr Phe Gly Ala Gly Lys His 260
265 270Gly Gln Leu Gly His Asn Ser Thr Gln Asn
Glu Leu Arg Pro Cys Leu 275 280
285Val Ala Glu Leu Val Gly Tyr Arg Val Thr Gln Ile Ala Cys Gly Arg 290
295 300Trp His Thr Leu Ala Tyr Val Ser
Asp Leu Gly Lys Val Phe Ser Phe305 310
315 320Gly Ser Gly Lys Asp Gly Gln Leu Gly Asn Gly Gly
Thr Arg Asp Gln 325 330
335Leu Met Pro Leu Pro Val Lys Val Ser Ser Ser Glu Glu Leu Lys Leu
340 345 350Glu Ser His Thr Ser Glu
Lys Glu Leu Ile Met Ile Ala Gly Gly Asn 355 360
365Gln Ser Ile Leu Leu Trp Ile Lys Lys Glu Asn Ser Tyr Val
Asn Leu 370 375 380Lys Arg Thr Ile Pro
Thr Leu Asn Glu Gly Thr Val Lys Arg Trp Ile385 390
395 400Ala Asp Val Glu Thr Lys Arg Trp Gln Ser
Thr Lys Arg Glu Ile Gln 405 410
415Glu Ile Phe Ser Ser Pro Ala Cys Leu Thr Gly Ser Phe Leu Arg Lys
420 425 430Arg Arg Thr Thr Glu
Met Met Pro Val Tyr Leu Asp Leu Asn Lys Ala 435
440 445Arg Asn Ile Phe Lys Glu Leu Thr Gln Lys Asp Trp
Ile Thr Asn Met 450 455 460Ile Thr Thr
Cys Leu Lys Asp Asn Leu Leu Lys Arg Leu Pro Phe His465
470 475 480Ser Pro Pro Gln Glu Ala Leu
Glu Ile Phe Phe Leu Leu Pro Glu Cys 485
490 495Pro Met Met His Ile Ser Asn Asn Trp Glu Ser Leu
Val Val Pro Phe 500 505 510Ala
Lys Val Val Cys Lys Met Ser Asp Gln Ser Ser Leu Val Leu Glu 515
520 525Glu Tyr Trp Ala Thr Leu Gln Glu Ser
Thr Phe Ser Lys Leu Val Gln 530 535
540Met Phe Lys Thr Ala Val Ile Cys Gln Leu Asp Tyr Trp Asp Glu Ser545
550 555 560Ala Glu Glu Asn
Gly Asn Val Gln Ala Leu Leu Glu Met Leu Lys Lys 565
570 575Leu His Arg Val Asn Gln Val Lys Cys Gln
Leu Pro Glu Ser Ile Phe 580 585
590Gln Val Asp Glu Leu Leu His Arg Leu Asn Phe Phe Val Glu Val Cys
595 600 605Arg Arg Tyr Leu Trp Lys Met
Thr Val Asp Ala Ser Glu Asn Val Gln 610 615
620Cys Cys Val Ile Phe Ser His Phe Pro Phe Ile Phe Asn Asn Leu
Ser625 630 635 640Lys Ile
Lys Leu Leu His Thr Asp Thr Leu Leu Lys Ile Glu Ser Lys
645 650 655Lys His Lys Ala Tyr Leu Arg
Ser Ala Ala Ile Glu Glu Glu Arg Glu 660 665
670Ser Glu Phe Ala Leu Arg Pro Thr Phe Asp Leu Thr Val Arg
Arg Asn 675 680 685His Leu Ile Glu
Asp Val Leu Asn Gln Leu Ser Gln Phe Glu Asn Glu 690
695 700Asp Leu Arg Lys Glu Leu Trp Val Ser Phe Ser Gly
Glu Ile Gly Tyr705 710 715
720Asp Leu Gly Gly Val Lys Lys Glu Phe Phe Tyr Cys Leu Phe Ala Glu
725 730 735Met Ile Gln Pro Glu
Tyr Gly Met Phe Met Tyr Pro Glu Gly Ala Ser 740
745 750Cys Met Trp Phe Pro Val Lys Pro Lys Phe Glu Lys
Lys Arg Tyr Phe 755 760 765Phe Phe
Gly Val Leu Cys Gly Leu Ser Leu Phe Asn Cys Asn Val Ala 770
775 780Asn Leu Pro Phe Pro Leu Ala Leu Phe Lys Lys
Leu Leu Asp Gln Met785 790 795
800Pro Ser Leu Glu Asp Leu Lys Glu Leu Ser Pro Asp Leu Gly Lys Asn
805 810 815Leu Gln Thr Leu
Leu Asp Asp Glu Gly Asp Asn Phe Glu Glu Val Phe 820
825 830Tyr Ile His Phe Asn Val His Trp Asp Arg Asn
Asp Thr Asn Leu Ile 835 840 845Pro
Asn Gly Ser Ser Ile Thr Val Asn Gln Thr Asn Lys Arg Asp Tyr 850
855 860Val Ser Lys Tyr Ile Asn Tyr Ile Phe Asn
Asp Ser Val Lys Ala Val865 870 875
880Tyr Glu Glu Phe Arg Arg Gly Phe Tyr Lys Met Cys Asp Glu Asp
Ile 885 890 895Ile Lys Leu
Phe His Pro Glu Glu Leu Lys Asp Val Ile Val Gly Asn 900
905 910Thr Asp Tyr Asp Trp Lys Thr Phe Glu Lys
Asn Ala Arg Tyr Glu Pro 915 920
925Gly Tyr Asn Ser Ser His Pro Thr Ile Val Met Phe Trp Lys Ala Phe 930
935 940His Lys Leu Thr Leu Glu Glu Lys
Lys Lys Phe Leu Val Phe Leu Thr945 950
955 960Gly Thr Asp Arg Leu Gln Met Lys Asp Leu Asn Asn
Met Lys Ile Thr 965 970
975Phe Cys Cys Pro Glu Ser Trp Asn Glu Arg Asp Pro Ile Arg Ala Leu
980 985 990Thr Cys Phe Ser Val Leu
Phe Leu Pro Lys Tyr Ser Thr Met Glu Thr 995 1000
1005Val Glu Glu Ala Leu Gln Glu Ala Ile Asn Asn Asn
Arg Gly Phe 1010 1015
1020Gly332037DNAHomo sapiens 33gggaagctcg ggccggcagg gtttccccgc
acgctggcgc ccagctcccg gcgcggaggc 60cgctgtaagt ttcgctttcc attcagtgga
aaacgaaagc tgggcggggt gccacgagcg 120cggggccaga ccaaggcggg cccggagcgg
aacttcggtc ccagctcggt ccccggctca 180gtcccgacgt ggaactcagc agcggaggct
ggacgcttgc atggcgcttg agagattcca 240tcgtgcctgg ctcacataag cgcttcctgg
aagtgaagtc gtgctgtcct gaacgcgggc 300caggcagctg cggcctgggg gttttggagt
gatcacgaat gagcaaggcg tttgggctcc 360tgaggcaaat ctgtcagtcc atcctggctg
agtcctcgca gtccccggca gatcttgaag 420aaaagaagga agaagacagc aacatgaaga
gagagcagcc cagagagcgt cccagggcct 480gggactaccc tcatggcctg gttggtttac
acaacattgg acagacctgc tgccttaact 540ccttgattca ggtgttcgta atgaatgtgg
acttcaccag gatattgaag aggatcacgg 600tgcccagggg agctgacgag cagaggagaa
gcgtcccttt ccagatgctt ctgctgctgg 660agaagatgca ggacagccgg cagaaagcag
tgcggcccct ggagctggcc tactgcctgc 720agaagtgcaa cgtgcccttg tttgtccaac
atgatgctgc ccaactgtac ctcaaactct 780ggaacctgat taaggaccag atcactgatg
tgcacttggt ggagagactg caggccctgt 840atacgatccg ggtgaaggac tccttgattt
gcgttgactg tgccatggag agtagcagaa 900acagcagcat gctcaccctc ccactttctc
tttttgatgt ggactcaaag cccctgaaga 960cactggagga cgccctgcac tgcttcttcc
agcccaggga gttatcaagc aaaagcaagt 1020gcttctgtga gaactgtggg aagaagaccc
gtgggaaaca ggtcttgaag ctgacccatt 1080tgccccagac cctgacaatc cacctcatgc
gattctccat caggaattca cagacgagaa 1140agatctgcca ctccctgtac ttcccccaga
gcttggattt cagccagatc cttccaatga 1200agcgagagtc ttgtgatgct gaggagcagt
ctggagggca gtatgagctt tttgctgtga 1260ttgcgcacgt gggaatggca gactccggtc
attactgtgt ctacatccgg aatgctgtgg 1320atggaaaatg gttctgcttc aatgactcca
atatttgctt ggtgtcctgg gaagacatcc 1380agtgtaccta cggaaatcct aactaccact
ggcaggaaac tgcatatctt ctggtttaca 1440tgaagatgga gtgctaatgg aaatgcccaa
aaccttcaga gattgacacg ctgtcatttt 1500ccatttccgt tcctggatct acggagtctt
ctaagagatt ttgcaatgag gagaagcatt 1560gttttcaaac tatataactg agccttattt
ataattaggg atattatcaa aatatgtaac 1620catgaggccc ctcaggtcct gatcagtcag
aatggatgct ttcaccagca gacccggcca 1680tgtggctgct cggtcctggg tgctcgctgc
tgtgcaagac attagccctt tagttatgag 1740cctgtgggaa cttcaggggt tcccagtggg
gagagcagtg gcagtgggag gcatctgggg 1800gccaaaggtc agtggcaggg ggtatttcag
tattatacaa ctgctgtgac cagacttgta 1860tactggctga atatcagtgc tgtttgtaat
ttttcacttt gagaaccaac attaattcca 1920tatgaatcaa gtgttttgta actgctattc
atttattcag caaatattta ttgatcatct 1980cttctccata agatagtgtg ataaacacag
tcatgaataa agttattttc cacaaaa 203734372PRTHomo sapiens 34Met Ser Lys
Ala Phe Gly Leu Leu Arg Gln Ile Cys Gln Ser Ile Leu1 5
10 15Ala Glu Ser Ser Gln Ser Pro Ala Asp
Leu Glu Glu Lys Lys Glu Glu 20 25
30Asp Ser Asn Met Lys Arg Glu Gln Pro Arg Glu Arg Pro Arg Ala Trp
35 40 45Asp Tyr Pro His Gly Leu Val
Gly Leu His Asn Ile Gly Gln Thr Cys 50 55
60Cys Leu Asn Ser Leu Ile Gln Val Phe Val Met Asn Val Asp Phe Thr65
70 75 80Arg Ile Leu Lys
Arg Ile Thr Val Pro Arg Gly Ala Asp Glu Gln Arg 85
90 95Arg Ser Val Pro Phe Gln Met Leu Leu Leu
Leu Glu Lys Met Gln Asp 100 105
110Ser Arg Gln Lys Ala Val Arg Pro Leu Glu Leu Ala Tyr Cys Leu Gln
115 120 125Lys Cys Asn Val Pro Leu Phe
Val Gln His Asp Ala Ala Gln Leu Tyr 130 135
140Leu Lys Leu Trp Asn Leu Ile Lys Asp Gln Ile Thr Asp Val His
Leu145 150 155 160Val Glu
Arg Leu Gln Ala Leu Tyr Thr Ile Arg Val Lys Asp Ser Leu
165 170 175Ile Cys Val Asp Cys Ala Met
Glu Ser Ser Arg Asn Ser Ser Met Leu 180 185
190Thr Leu Pro Leu Ser Leu Phe Asp Val Asp Ser Lys Pro Leu
Lys Thr 195 200 205Leu Glu Asp Ala
Leu His Cys Phe Phe Gln Pro Arg Glu Leu Ser Ser 210
215 220Lys Ser Lys Cys Phe Cys Glu Asn Cys Gly Lys Lys
Thr Arg Gly Lys225 230 235
240Gln Val Leu Lys Leu Thr His Leu Pro Gln Thr Leu Thr Ile His Leu
245 250 255Met Arg Phe Ser Ile
Arg Asn Ser Gln Thr Arg Lys Ile Cys His Ser 260
265 270Leu Tyr Phe Pro Gln Ser Leu Asp Phe Ser Gln Ile
Leu Pro Met Lys 275 280 285Arg Glu
Ser Cys Asp Ala Glu Glu Gln Ser Gly Gly Gln Tyr Glu Leu 290
295 300Phe Ala Val Ile Ala His Val Gly Met Ala Asp
Ser Gly His Tyr Cys305 310 315
320Val Tyr Ile Arg Asn Ala Val Asp Gly Lys Trp Phe Cys Phe Asn Asp
325 330 335Ser Asn Ile Cys
Leu Val Ser Trp Glu Asp Ile Gln Cys Thr Tyr Gly 340
345 350Asn Pro Asn Tyr His Trp Gln Glu Thr Ala Tyr
Leu Leu Val Tyr Met 355 360 365Lys
Met Glu Cys 370353512DNAHomo sapiens 35aactcagctg agtgttagtc
aaagaaggtg tgtcctgctc cccaatgaca ggttgctcag 60agactgctga tttccatccc
tatataaaga gagtccctgg catacagaga ctgctctgct 120ccaggcatct gccacaatgt
gggtgcttac acctgctgct tttgctggga agctcttgag 180tgtgttcagg caacctctga
gctctctgtg gaggagcctg gtcccgctgt tctgctggct 240gagggcaacc ttctggctgc
tagctaccaa gaggagaaag cagcagctgg tcctgagagg 300gccagatgag accaaagagg
aggaagagga ccctcctctg cccaccaccc caaccagcgt 360caactatcac ttcactcgcc
agtgcaacta caaatgcggc ttctgtttcc acacagccaa 420aacatccttt gtgctgcccc
ttgaggaagc aaagagagga ttgcttttgc ttaaggaagc 480tggtatggag aagatcaact
tttcaggtgg agagccattt cttcaagacc ggggagaata 540cctgggcaag ttggtgaggt
tctgcaaagt agagttgcgg ctgcccagcg tgagcatcgt 600gagcaatgga agcctgatcc
gggagaggtg gttccagaat tatggtgagt atttggacat 660tctcgctatc tcctgtgaca
gctttgacga ggaagtcaat gtccttattg gccgtggcca 720aggaaagaag aaccatgtgg
aaaaccttca aaagctgagg aggtggtgta gggattatag 780agtcgctttc aagataaatt
ctgtcattaa tcgtttcaac gtggaagagg acatgacgga 840acagatcaaa gcactaaacc
ctgtccgctg gaaagtgttc cagtgcctct taattgaggg 900tgagaattgt ggagaagatg
ctctaagaga agcagaaaga tttgttattg gtgatgaaga 960atttgaaaga ttcttggagc
gccacaaaga agtgtcctgc ttggtgcctg aatctaacca 1020gaagatgaaa gactcctacc
ttattctgga tgaatatatg cgctttctga actgtagaaa 1080gggacggaag gacccttcca
agtccatcct ggatgttggt gtagaagaag ctataaaatt 1140cagtggattt gatgaaaaga
tgtttctgaa gcgaggagga aaatacatat ggagtaaggc 1200tgatctgaag ctggattggt
agagcggaaa gtggaacgag acttcaacac accagtggga 1260aaactcctag agtaactgcc
attgtctgca atactatccc gttggtattt cccagtggct 1320gaaaacctga ttttctgctg
cacgtggcat ctgattacct gtggtcactg aacacacgaa 1380taacttggat agcaaatcct
gagacaatgg aaaaccatta actttacttc attggcttat 1440aaccttgttg ttattgaaac
agcacttctg tttttgagtt tgttttagct aaaaagaagg 1500aatacacaca ggaataatga
ccccaaaaat gcttagataa ggcccctata cacaggacct 1560gacatttagc tcaatgatgc
gtttgtaaga aataagctct agtgatatct gtgggggcaa 1620aatttaattt ggatttgatt
ttttaaaaca atgtttactg cgatttctat atttccattt 1680tgaaactatt tcttgttcca
ggtttgttca tttgacagag tcagtatttt ttgccaaata 1740tccagataac cagttttcac
atctgagaca ttacaaagta tctgcctcaa ttatttctgc 1800tggttataat gctttttttt
ttttgccttt atgccattgc agtcttgtac tttttactgt 1860gatgtacaga aatagtcaac
agatgtttcc aagaacatat gatatgataa tcctaccaat 1920tttcaagaag tctctagaaa
gagataacac atggaaagac ggtgtggtgc agcccagccc 1980acggtggctg ttccatgaat
gctggctacc tatgtgtgtg gtacctgttg tgtccctttc 2040tcttcaaaga tcctgagcaa
aacaaagata cgctttccat ttgatgatgg agttgacatg 2100gaggcagtgc ttgcattgct
ttgttcgcct atcatctggc cacatgaggc tgtcaagcaa 2160aagaatagga gtgtagttga
gtagctggtt ggccctacat ctctgagaag tgacggcaca 2220ctgggttggc ataagatatc
ctaaaatcac gctggaacct tgggcaagga agaatgtgag 2280caagagtaga gagagtgcct
ggatttcatg tcagtgaagc caagtcacca tatcatattt 2340ttgaatgaac tctgagtcag
ttgaaatagg gtaccatcta ggtcagttta agaagagtca 2400gctcagagaa agcaagcata
agggaaaatg tcacgtaaac tagatcaggg aacaaaatcc 2460tctccttgtg gaaatatccc
atgcagtttg ttgatacaac ttagtatctt attgcctaaa 2520aaaaaatttc ttatcattgt
ttcaaaaaag caaaatcatg gaaaattttt gttgtccagg 2580caaataaaag gtcattttaa
tttagctgca atttcagtgt tcctcactag gtggcattta 2640aatgtcgcct gatgtcatta
agcaccatcc aaaaagtctg cttcataatc tattttcaag 2700acttggtgat tctgaaagtt
ttggtttttg tgactttgtt tctcaggaaa aaaaatattc 2760ctacttaaat tttaagtcta
taattcaatt taaatatgtg tgtgtctcat ccaggatagg 2820ataggttgtc ttctattttc
cattttacct atttactttt tttgtaagaa aagagaaaaa 2880tgaattctaa agatgttccc
catgggtttt gattgtgtct aagctatgat gaccttcata 2940taatcagcat aaacataaaa
caaatttttt acttaacatg agtgcacttt actaatcctc 3000atggcacagt ggctcacgcc
tgtaatccca gcacttggga ggacaatgtg ggtggatcac 3060gaggtcagga gttcgagaac
agcctggcca acatggtgaa accccgtctc cactaaaaat 3120acaaaaatta gccaggcatg
gtggcgtaca cttgtaattc cagctactca agaggctgag 3180gcaggaggat tgcttgaacc
ctgaaggcag aggttacaga gccaagatag cgccactgca 3240ctccagcctg gatgacagag
caagactccg tctcaaaaaa aaaaaaaaaa aaaagcaaga 3300gagttcaact aagaaaggtc
acatatgtga aagcccaagg acactgtttg atatacagca 3360ggtattcaat cagtgttatt
tgaaaccaaa tctgaatttg aagtttgaat cttctgagtt 3420ggaatgaatt tttttctagc
tgagggaaac tgtatttttc tttccccaaa gaggaatgta 3480atgtaaagtg aaataaaact
ataagctatg tt 351236361PRTHomo sapiens
36Met Trp Val Leu Thr Pro Ala Ala Phe Ala Gly Lys Leu Leu Ser Val1
5 10 15Phe Arg Gln Pro Leu Ser
Ser Leu Trp Arg Ser Leu Val Pro Leu Phe 20 25
30Cys Trp Leu Arg Ala Thr Phe Trp Leu Leu Ala Thr Lys
Arg Arg Lys 35 40 45Gln Gln Leu
Val Leu Arg Gly Pro Asp Glu Thr Lys Glu Glu Glu Glu 50
55 60Asp Pro Pro Leu Pro Thr Thr Pro Thr Ser Val Asn
Tyr His Phe Thr65 70 75
80Arg Gln Cys Asn Tyr Lys Cys Gly Phe Cys Phe His Thr Ala Lys Thr
85 90 95Ser Phe Val Leu Pro Leu
Glu Glu Ala Lys Arg Gly Leu Leu Leu Leu 100
105 110Lys Glu Ala Gly Met Glu Lys Ile Asn Phe Ser Gly
Gly Glu Pro Phe 115 120 125Leu Gln
Asp Arg Gly Glu Tyr Leu Gly Lys Leu Val Arg Phe Cys Lys 130
135 140Val Glu Leu Arg Leu Pro Ser Val Ser Ile Val
Ser Asn Gly Ser Leu145 150 155
160Ile Arg Glu Arg Trp Phe Gln Asn Tyr Gly Glu Tyr Leu Asp Ile Leu
165 170 175Ala Ile Ser Cys
Asp Ser Phe Asp Glu Glu Val Asn Val Leu Ile Gly 180
185 190Arg Gly Gln Gly Lys Lys Asn His Val Glu Asn
Leu Gln Lys Leu Arg 195 200 205Arg
Trp Cys Arg Asp Tyr Arg Val Ala Phe Lys Ile Asn Ser Val Ile 210
215 220Asn Arg Phe Asn Val Glu Glu Asp Met Thr
Glu Gln Ile Lys Ala Leu225 230 235
240Asn Pro Val Arg Trp Lys Val Phe Gln Cys Leu Leu Ile Glu Gly
Glu 245 250 255Asn Cys Gly
Glu Asp Ala Leu Arg Glu Ala Glu Arg Phe Val Ile Gly 260
265 270Asp Glu Glu Phe Glu Arg Phe Leu Glu Arg
His Lys Glu Val Ser Cys 275 280
285Leu Val Pro Glu Ser Asn Gln Lys Met Lys Asp Ser Tyr Leu Ile Leu 290
295 300Asp Glu Tyr Met Arg Phe Leu Asn
Cys Arg Lys Gly Arg Lys Asp Pro305 310
315 320Ser Lys Ser Ile Leu Asp Val Gly Val Glu Glu Ala
Ile Lys Phe Ser 325 330
335Gly Phe Asp Glu Lys Met Phe Leu Lys Arg Gly Gly Lys Tyr Ile Trp
340 345 350Ser Lys Ala Asp Leu Lys
Leu Asp Trp 355 360372983DNAHomo sapiens
37gttcgggccc gagaacctgc gtctcccgcg agttcccgcg aggcaagtgc tgcaggtgcg
60gggccaggag ctaggtttcg tttctgcgcc cggagccgcc ctcagcacag ggtctgtgag
120tttcatttct tcgcggcgcg gggcggggct gggcgcgggg tgaaagaggc gaagcgagag
180cggaggccgc actccagcac tgcgcaggga ccgccttgga ccgcagttgc cggccaggaa
240tcccagtgtc acggtggaca cgcctccctc gcgcccttgc cgcccacctg ctcacccagc
300tcaggggctt tggaattctg tggccacact gcgaggagat cggttctggg tcggaggcta
360caggaagact cccactccct gaaatctgga gtgaagaacg ccgccatcca gccaccattc
420caaggaggtg caggagaaca gctctgtgat accatttaac ttgttgacat tacttttatt
480tgaaggaacg tatattagag cttactttgc aaagaaggaa gatggttgtt tccgaagtgg
540acatcgcaaa agctgatcca gctgctgcat cccaccctct attactgaat ggagatgcta
600ctgtggccca gaaaaatcca ggctcggtgg ctgagaacaa cctgtgcagc cagtatgagg
660agaaggtgcg cccctgcatc gacctcattg actccctgcg ggctctaggt gtggagcagg
720acctggccct gccagccatc gccgtcatcg gggaccagag ctcgggcaag agctccgtgt
780tggaggcact gtcaggagtt gcccttccca gaggcagcgg gatcgtgacc agatgcccgc
840tggtgctgaa actgaagaaa cttgtgaacg aagataagtg gagaggcaag gtcagttacc
900aggactacga gattgagatt tcggatgctt cagaggtaga aaaggaaatt aataaagccc
960agaatgccat cgccggggaa ggaatgggaa tcagtcatga gctaatcacc ctggagatca
1020gctcccgaga tgtcccggat ctgactctaa tagaccttcc tggcataacc agagtggctg
1080tgggcaatca gcctgctgac attgggtata agatcaagac actcatcaag aagtacatcc
1140agaggcagga gacaatcagc ctggtggtgg tccccagtaa tgtggacatc gccaccacag
1200aggctctcag catggcccag gaggtggacc ccgagggaga caggaccatc ggaatcttga
1260cgaagcctga tctggtggac aaaggaactg aagacaaggt tgtggacgtg gtgcggaacc
1320tcgtgttcca cctgaagaag ggttacatga ttgtcaagtg ccggggccag caggagatcc
1380aggaccagct gagcctgtcc gaagccctgc agagagagaa gatcttcttt gagaaccacc
1440catatttcag ggatctgctg gaggaaggaa aggccacggt tccctgcctg gcagaaaaac
1500ttaccagcga gctcatcaca catatctgta aatctctgcc cctgttagaa aatcaaatca
1560aggagactca ccagagaata acagaggagc tacaaaagta tggtgtcgac ataccggaag
1620acgaaaatga aaaaatgttc ttcctgatag ataaagttaa tgcctttaat caggacatca
1680ctgctctcat gcaaggagag gaaactgtag gggaggaaga cattcggctg tttaccagac
1740tccgacacga gttccacaaa tggagtacaa taattgaaaa caattttcaa gaaggccata
1800aaattttgag tagaaaaatc cagaaatttg aaaatcagta tcgtggtaga gagctgccag
1860gctttgtgaa ttacaggaca tttgagacaa tcgtgaaaca gcaaatcaag gcactggaag
1920agccggctgt ggatatgcta cacaccgtga cggatatggt ccggcttgct ttcacagatg
1980tttcgataaa aaattttgaa gagtttttta acctccacag aaccgccaag tccaaaattg
2040aagacattag agcagaacaa gagagagaag gtgagaagct gatccgcctc cacttccaga
2100tggaacagat tgtctactgc caggaccagg tatacagggg tgcattgcag aaggtcagag
2160agaaggagct ggaagaagaa aagaagaaga aatcctggga ttttggggct ttccagtcca
2220gctcggcaac agactcttcc atggaggaga tctttcagca cctgatggcc tatcaccagg
2280aggccagcaa gcgcatctcc agccacatcc ctttgatcat ccagttcttc atgctccaga
2340cgtacggcca gcagcttcag aaggccatgc tgcagctcct gcaggacaag gacacctaca
2400gctggctcct gaaggagcgg agcgacacca gcgacaagcg gaagttcctg aaggagcggc
2460ttgcacggct gacgcaggct cggcgccggc ttgcccagtt ccccggttaa ccacactctg
2520tccagccccg tagacgtgca cgcacactgt ctgcccccgt tcccgggtag ccactggact
2580gacgacttga gtgctcagta gtcagactgg atagtccgtc tctgcttatc cgttagccgt
2640ggtgatttag caggaagctg tgagagcagt ttggtttcta gcatgaagac agagccccac
2700cctcagatgc acatgagctg gcgggattga aggatgctgt cttcgtactg ggaaagggat
2760tttcagccct cagaatcgct ccaccttgca gctctcccct tctctgtatt cctagaaact
2820gacacatgct gaacatcaca gcttatttcc tcatttttat aatgtccctt cacaaaccca
2880gtgttttagg agcatgagtg ccgtgtgtgt gcgtcctgtc ggagccctgt ctcctctctc
2940tgtaataaac tcatttctag cagacaaaaa aaaaaaaaaa aaa
298338662PRTHomo sapiens 38Met Val Val Ser Glu Val Asp Ile Ala Lys Ala
Asp Pro Ala Ala Ala1 5 10
15Ser His Pro Leu Leu Leu Asn Gly Asp Ala Thr Val Ala Gln Lys Asn
20 25 30Pro Gly Ser Val Ala Glu Asn
Asn Leu Cys Ser Gln Tyr Glu Glu Lys 35 40
45Val Arg Pro Cys Ile Asp Leu Ile Asp Ser Leu Arg Ala Leu Gly
Val 50 55 60Glu Gln Asp Leu Ala Leu
Pro Ala Ile Ala Val Ile Gly Asp Gln Ser65 70
75 80Ser Gly Lys Ser Ser Val Leu Glu Ala Leu Ser
Gly Val Ala Leu Pro 85 90
95Arg Gly Ser Gly Ile Val Thr Arg Cys Pro Leu Val Leu Lys Leu Lys
100 105 110Lys Leu Val Asn Glu Asp
Lys Trp Arg Gly Lys Val Ser Tyr Gln Asp 115 120
125Tyr Glu Ile Glu Ile Ser Asp Ala Ser Glu Val Glu Lys Glu
Ile Asn 130 135 140Lys Ala Gln Asn Ala
Ile Ala Gly Glu Gly Met Gly Ile Ser His Glu145 150
155 160Leu Ile Thr Leu Glu Ile Ser Ser Arg Asp
Val Pro Asp Leu Thr Leu 165 170
175Ile Asp Leu Pro Gly Ile Thr Arg Val Ala Val Gly Asn Gln Pro Ala
180 185 190Asp Ile Gly Tyr Lys
Ile Lys Thr Leu Ile Lys Lys Tyr Ile Gln Arg 195
200 205Gln Glu Thr Ile Ser Leu Val Val Val Pro Ser Asn
Val Asp Ile Ala 210 215 220Thr Thr Glu
Ala Leu Ser Met Ala Gln Glu Val Asp Pro Glu Gly Asp225
230 235 240Arg Thr Ile Gly Ile Leu Thr
Lys Pro Asp Leu Val Asp Lys Gly Thr 245
250 255Glu Asp Lys Val Val Asp Val Val Arg Asn Leu Val
Phe His Leu Lys 260 265 270Lys
Gly Tyr Met Ile Val Lys Cys Arg Gly Gln Gln Glu Ile Gln Asp 275
280 285Gln Leu Ser Leu Ser Glu Ala Leu Gln
Arg Glu Lys Ile Phe Phe Glu 290 295
300Asn His Pro Tyr Phe Arg Asp Leu Leu Glu Glu Gly Lys Ala Thr Val305
310 315 320Pro Cys Leu Ala
Glu Lys Leu Thr Ser Glu Leu Ile Thr His Ile Cys 325
330 335Lys Ser Leu Pro Leu Leu Glu Asn Gln Ile
Lys Glu Thr His Gln Arg 340 345
350Ile Thr Glu Glu Leu Gln Lys Tyr Gly Val Asp Ile Pro Glu Asp Glu
355 360 365Asn Glu Lys Met Phe Phe Leu
Ile Asp Lys Val Asn Ala Phe Asn Gln 370 375
380Asp Ile Thr Ala Leu Met Gln Gly Glu Glu Thr Val Gly Glu Glu
Asp385 390 395 400Ile Arg
Leu Phe Thr Arg Leu Arg His Glu Phe His Lys Trp Ser Thr
405 410 415Ile Ile Glu Asn Asn Phe Gln
Glu Gly His Lys Ile Leu Ser Arg Lys 420 425
430Ile Gln Lys Phe Glu Asn Gln Tyr Arg Gly Arg Glu Leu Pro
Gly Phe 435 440 445Val Asn Tyr Arg
Thr Phe Glu Thr Ile Val Lys Gln Gln Ile Lys Ala 450
455 460Leu Glu Glu Pro Ala Val Asp Met Leu His Thr Val
Thr Asp Met Val465 470 475
480Arg Leu Ala Phe Thr Asp Val Ser Ile Lys Asn Phe Glu Glu Phe Phe
485 490 495Asn Leu His Arg Thr
Ala Lys Ser Lys Ile Glu Asp Ile Arg Ala Glu 500
505 510Gln Glu Arg Glu Gly Glu Lys Leu Ile Arg Leu His
Phe Gln Met Glu 515 520 525Gln Ile
Val Tyr Cys Gln Asp Gln Val Tyr Arg Gly Ala Leu Gln Lys 530
535 540Val Arg Glu Lys Glu Leu Glu Glu Glu Lys Lys
Lys Lys Ser Trp Asp545 550 555
560Phe Gly Ala Phe Gln Ser Ser Ser Ala Thr Asp Ser Ser Met Glu Glu
565 570 575Ile Phe Gln His
Leu Met Ala Tyr His Gln Glu Ala Ser Lys Arg Ile 580
585 590Ser Ser His Ile Pro Leu Ile Ile Gln Phe Phe
Met Leu Gln Thr Tyr 595 600 605Gly
Gln Gln Leu Gln Lys Ala Met Leu Gln Leu Leu Gln Asp Lys Asp 610
615 620Thr Tyr Ser Trp Leu Leu Lys Glu Arg Ser
Asp Thr Ser Asp Lys Arg625 630 635
640Lys Phe Leu Lys Glu Arg Leu Ala Arg Leu Thr Gln Ala Arg Arg
Arg 645 650 655Leu Ala Gln
Phe Pro Gly 660392683DNAHomo sapiens 39tttcttcgcg gcgcggggcg
gggctgggcg cggggtgaaa gaggcgaagc gagagcggag 60gccgcactcc agcactgcgc
agggaccgga attctgtggc cacactgcga ggagatcggt 120tctgggtcgg aggctacagg
aagactccca ctccctgaaa tctggagtga agaacgccgc 180catccagcca ccattccaag
cttactttgc aaagaaggaa gatggttgtt tccgaagtgg 240acatcgcaaa agctgatcca
gctgctgcat cccaccctct attactgaat ggagatgcta 300ctgtggccca gaaaaatcca
ggctcggtgg ctgagaacaa cctgtgcagc cagtatgagg 360agaaggtgcg cccctgcatc
gacctcattg actccctgcg ggctctaggt gtggagcagg 420acctggccct gccagccatc
gccgtcatcg gggaccagag ctcgggcaag agctccgtgt 480tggaggcact gtcaggagtt
gcccttccca gaggcagcgg gatcgtgacc agatgcccgc 540tggtgctgaa actgaagaaa
cttgtgaacg aagataagtg gagaggcaag gtcagttacc 600aggactacga gattgagatt
tcggatgctt cagaggtaga aaaggaaatt aataaagccc 660agaatgccat cgccggggaa
ggaatgggaa tcagtcatga gctaatcacc ctggagatca 720gctcccgaga tgtcccggat
ctgactctaa tagaccttcc tggcataacc agagtggctg 780tgggcaatca gcctgctgac
attgggtata agatcaagac actcatcaag aagtacatcc 840agaggcagga gacaatcagc
ctggtggtgg tccccagtaa tgtggacatc gccaccacag 900aggctctcag catggcccag
gaggtggacc ccgagggaga caggaccatc ggaatcttga 960cgaagcctga tctggtggac
aaaggaactg aagacaaggt tgtggacgtg gtgcggaacc 1020tcgtgttcca cctgaagaag
ggttacatga ttgtcaagtg ccggggccag caggagatcc 1080aggaccagct gagcctgtcc
gaagccctgc agagagagaa gatcttcttt gagaaccacc 1140catatttcag ggatctgctg
gaggaaggaa aggccacggt tccctgcctg gcagaaaaac 1200ttaccagcga gctcatcaca
catatctgta aatctctgcc cctgttagaa aatcaaatca 1260aggagactca ccagagaata
acagaggagc tacaaaagta tggtgtcgac ataccggaag 1320acgaaaatga aaaaatgttc
ttcctgatag ataaagttaa tgcctttaat caggacatca 1380ctgctctcat gcaaggagag
gaaactgtag gggaggaaga cattcggctg tttaccagac 1440tccgacacga gttccacaaa
tggagtacaa taattgaaaa caattttcaa gaaggccata 1500aaattttgag tagaaaaatc
cagaaatttg aaaatcagta tcgtggtaga gagctgccag 1560gctttgtgaa ttacaggaca
tttgagacaa tcgtgaaaca gcaaatcaag gcactggaag 1620agccggctgt ggatatgcta
cacaccgtga cggatatggt ccggcttgct ttcacagatg 1680tttcgataaa aaattttgaa
gagtttttta acctccacag aaccgccaag tccaaaattg 1740aagacattag agcagaacaa
gagagagaag gtgagaagct gatccgcctc cacttccaga 1800tggaacagat tgtctactgc
caggaccagg tatacagggg tgcattgcag aaggtcagag 1860agaaggagct ggaagaagaa
aagaagaaga aatcctggga ttttggggct ttccagtcca 1920gctcggcaac agactcttcc
atggaggaga tctttcagca cctgatggcc tatcaccagg 1980aggccagcaa gcgcatctcc
agccacatcc ctttgatcat ccagttcttc atgctccaga 2040cgtacggcca gcagcttcag
aaggccatgc tgcagctcct gcaggacaag gacacctaca 2100gctggctcct gaaggagcgg
agcgacacca gcgacaagcg gaagttcctg aaggagcggc 2160ttgcacggct gacgcaggct
cggcgccggc ttgcccagtt ccccggttaa ccacactctg 2220tccagccccg tagacgtgca
cgcacactgt ctgcccccgt tcccgggtag ccactggact 2280gacgacttga gtgctcagta
gtcagactgg atagtccgtc tctgcttatc cgttagccgt 2340ggtgatttag caggaagctg
tgagagcagt ttggtttcta gcatgaagac agagccccac 2400cctcagatgc acatgagctg
gcgggattga aggatgctgt cttcgtactg ggaaagggat 2460tttcagccct cagaatcgct
ccaccttgca gctctcccct tctctgtatt cctagaaact 2520gacacatgct gaacatcaca
gcttatttcc tcatttttat aatgtccctt cacaaaccca 2580gtgttttagg agcatgagtg
ccgtgtgtgt gcgtcctgtc ggagccctgt ctcctctctc 2640tgtaataaac tcatttctag
cagacaaaaa aaaaaaaaaa aaa 268340662PRTHomo sapiens
40Met Val Val Ser Glu Val Asp Ile Ala Lys Ala Asp Pro Ala Ala Ala1
5 10 15Ser His Pro Leu Leu Leu
Asn Gly Asp Ala Thr Val Ala Gln Lys Asn 20 25
30Pro Gly Ser Val Ala Glu Asn Asn Leu Cys Ser Gln Tyr
Glu Glu Lys 35 40 45Val Arg Pro
Cys Ile Asp Leu Ile Asp Ser Leu Arg Ala Leu Gly Val 50
55 60Glu Gln Asp Leu Ala Leu Pro Ala Ile Ala Val Ile
Gly Asp Gln Ser65 70 75
80Ser Gly Lys Ser Ser Val Leu Glu Ala Leu Ser Gly Val Ala Leu Pro
85 90 95Arg Gly Ser Gly Ile Val
Thr Arg Cys Pro Leu Val Leu Lys Leu Lys 100
105 110Lys Leu Val Asn Glu Asp Lys Trp Arg Gly Lys Val
Ser Tyr Gln Asp 115 120 125Tyr Glu
Ile Glu Ile Ser Asp Ala Ser Glu Val Glu Lys Glu Ile Asn 130
135 140Lys Ala Gln Asn Ala Ile Ala Gly Glu Gly Met
Gly Ile Ser His Glu145 150 155
160Leu Ile Thr Leu Glu Ile Ser Ser Arg Asp Val Pro Asp Leu Thr Leu
165 170 175Ile Asp Leu Pro
Gly Ile Thr Arg Val Ala Val Gly Asn Gln Pro Ala 180
185 190Asp Ile Gly Tyr Lys Ile Lys Thr Leu Ile Lys
Lys Tyr Ile Gln Arg 195 200 205Gln
Glu Thr Ile Ser Leu Val Val Val Pro Ser Asn Val Asp Ile Ala 210
215 220Thr Thr Glu Ala Leu Ser Met Ala Gln Glu
Val Asp Pro Glu Gly Asp225 230 235
240Arg Thr Ile Gly Ile Leu Thr Lys Pro Asp Leu Val Asp Lys Gly
Thr 245 250 255Glu Asp Lys
Val Val Asp Val Val Arg Asn Leu Val Phe His Leu Lys 260
265 270Lys Gly Tyr Met Ile Val Lys Cys Arg Gly
Gln Gln Glu Ile Gln Asp 275 280
285Gln Leu Ser Leu Ser Glu Ala Leu Gln Arg Glu Lys Ile Phe Phe Glu 290
295 300Asn His Pro Tyr Phe Arg Asp Leu
Leu Glu Glu Gly Lys Ala Thr Val305 310
315 320Pro Cys Leu Ala Glu Lys Leu Thr Ser Glu Leu Ile
Thr His Ile Cys 325 330
335Lys Ser Leu Pro Leu Leu Glu Asn Gln Ile Lys Glu Thr His Gln Arg
340 345 350Ile Thr Glu Glu Leu Gln
Lys Tyr Gly Val Asp Ile Pro Glu Asp Glu 355 360
365Asn Glu Lys Met Phe Phe Leu Ile Asp Lys Val Asn Ala Phe
Asn Gln 370 375 380Asp Ile Thr Ala Leu
Met Gln Gly Glu Glu Thr Val Gly Glu Glu Asp385 390
395 400Ile Arg Leu Phe Thr Arg Leu Arg His Glu
Phe His Lys Trp Ser Thr 405 410
415Ile Ile Glu Asn Asn Phe Gln Glu Gly His Lys Ile Leu Ser Arg Lys
420 425 430Ile Gln Lys Phe Glu
Asn Gln Tyr Arg Gly Arg Glu Leu Pro Gly Phe 435
440 445Val Asn Tyr Arg Thr Phe Glu Thr Ile Val Lys Gln
Gln Ile Lys Ala 450 455 460Leu Glu Glu
Pro Ala Val Asp Met Leu His Thr Val Thr Asp Met Val465
470 475 480Arg Leu Ala Phe Thr Asp Val
Ser Ile Lys Asn Phe Glu Glu Phe Phe 485
490 495Asn Leu His Arg Thr Ala Lys Ser Lys Ile Glu Asp
Ile Arg Ala Glu 500 505 510Gln
Glu Arg Glu Gly Glu Lys Leu Ile Arg Leu His Phe Gln Met Glu 515
520 525Gln Ile Val Tyr Cys Gln Asp Gln Val
Tyr Arg Gly Ala Leu Gln Lys 530 535
540Val Arg Glu Lys Glu Leu Glu Glu Glu Lys Lys Lys Lys Ser Trp Asp545
550 555 560Phe Gly Ala Phe
Gln Ser Ser Ser Ala Thr Asp Ser Ser Met Glu Glu 565
570 575Ile Phe Gln His Leu Met Ala Tyr His Gln
Glu Ala Ser Lys Arg Ile 580 585
590Ser Ser His Ile Pro Leu Ile Ile Gln Phe Phe Met Leu Gln Thr Tyr
595 600 605Gly Gln Gln Leu Gln Lys Ala
Met Leu Gln Leu Leu Gln Asp Lys Asp 610 615
620Thr Tyr Ser Trp Leu Leu Lys Glu Arg Ser Asp Thr Ser Asp Lys
Arg625 630 635 640Lys Phe
Leu Lys Glu Arg Leu Ala Arg Leu Thr Gln Ala Arg Arg Arg
645 650 655Leu Ala Gln Phe Pro Gly
660413409DNAHomo sapiens 41aaattcgcgg tgggggcgga gagcgcaggg
agaagtaagc ccagtgcagg atcctgaggc 60ccgtgtttgc aggaccaggg ccggccttcc
gattccccat tcattccaga agcaccgaac 120cacgctgtgc ccggatccca agtgcagcgg
cacccagcgt gggcctgggg ttgccggttg 180acccggtcct cagcctggta gcagaggcca
ggccagtgcc acaaggcacc taagtccacc 240tgggcctgga gcaggacagg ttgcaaaaga
aaatatctcg ggacccccaa actccttatg 300ctaagggaaa catcgagcct gggaactgag
ccatcaacgc tgccattctt tttcccaaac 360agaaccctgt tgtcagaggt acacccagag
caactccaca ccgggtgcat gccacagcaa 420ctccatctta aataggagct ggtaaaacga
ggctgatacc tactgggctg cattcccaga 480cggcatagcg aggaggtgct gaagagcgca
ggtttggaga atgatcacct ggattggaac 540catagctcta ccaatatgga acccagctcc
ttaggcctcg gtcttctcat ggagaacatg 600gtgtgataat cctactcctc tgggagggtg
gctgttaagc cttggaccgc agttgccggc 660caggaatccc agtgtcacgg tggacacgcc
tccctcgcgc ccttgccgcc cacctgctca 720cccagctcag gggctttgga attctgtggc
cacactgcga ggagatcggt tctgggtcgg 780aggctacagg aagactccca ctccctgaaa
tctggagtga agaacgccgc catccagcca 840ccattccaag gaggtgcagg agaacagctc
tgtgatacca tttaacttgt tgacattact 900tttatttgaa ggaacgtata ttagagctta
ctttgcaaag aaggaagatg gttgtttccg 960aagtggacat cgcaaaagct gatccagctg
ctgcatccca ccctctatta ctgaatggag 1020atgctactgt ggcccagaaa aatccaggct
cggtggctga gaacaacctg tgcagccagt 1080atgaggagaa ggtgcgcccc tgcatcgacc
tcattgactc cctgcgggct ctaggtgtgg 1140agcaggacct ggccctgcca gccatcgccg
tcatcgggga ccagagctcg ggcaagagct 1200ccgtgttgga ggcactgtca ggagttgccc
ttcccagagg cagcgggatc gtgaccagat 1260gcccgctggt gctgaaactg aagaaacttg
tgaacgaaga taagtggaga ggcaaggtca 1320gttaccagga ctacgagatt gagatttcgg
atgcttcaga ggtagaaaag gaaattaata 1380aagcccagaa tgccatcgcc ggggaaggaa
tgggaatcag tcatgagcta atcaccctgg 1440agatcagctc ccgagatgtc ccggatctga
ctctaataga ccttcctggc ataaccagag 1500tggctgtggg caatcagcct gctgacattg
ggtataagat caagacactc atcaagaagt 1560acatccagag gcaggagaca atcagcctgg
tggtggtccc cagtaatgtg gacatcgcca 1620ccacagaggc tctcagcatg gcccaggagg
tggaccccga gggagacagg accatcggaa 1680tcttgacgaa gcctgatctg gtggacaaag
gaactgaaga caaggttgtg gacgtggtgc 1740ggaacctcgt gttccacctg aagaagggtt
acatgattgt caagtgccgg ggccagcagg 1800agatccagga ccagctgagc ctgtccgaag
ccctgcagag agagaagatc ttctttgaga 1860accacccata tttcagggat ctgctggagg
aaggaaaggc cacggttccc tgcctggcag 1920aaaaacttac cagcgagctc atcacacata
tctgtaaatc tctgcccctg ttagaaaatc 1980aaatcaagga gactcaccag agaataacag
aggagctaca aaagtatggt gtcgacatac 2040cggaagacga aaatgaaaaa atgttcttcc
tgatagataa agttaatgcc tttaatcagg 2100acatcactgc tctcatgcaa ggagaggaaa
ctgtagggga ggaagacatt cggctgttta 2160ccagactccg acacgagttc cacaaatgga
gtacaataat tgaaaacaat tttcaagaag 2220gccataaaat tttgagtaga aaaatccaga
aatttgaaaa tcagtatcgt ggtagagagc 2280tgccaggctt tgtgaattac aggacatttg
agacaatcgt gaaacagcaa atcaaggcac 2340tggaagagcc ggctgtggat atgctacaca
ccgtgacgga tatggtccgg cttgctttca 2400cagatgtttc gataaaaaat tttgaagagt
tttttaacct ccacagaacc gccaagtcca 2460aaattgaaga cattagagca gaacaagaga
gagaaggtga gaagctgatc cgcctccact 2520tccagatgga acagattgtc tactgccagg
accaggtata caggggtgca ttgcagaagg 2580tcagagagaa ggagctggaa gaagaaaaga
agaagaaatc ctgggatttt ggggctttcc 2640agtccagctc ggcaacagac tcttccatgg
aggagatctt tcagcacctg atggcctatc 2700accaggaggc cagcaagcgc atctccagcc
acatcccttt gatcatccag ttcttcatgc 2760tccagacgta cggccagcag cttcagaagg
ccatgctgca gctcctgcag gacaaggaca 2820cctacagctg gctcctgaag gagcggagcg
acaccagcga caagcggaag ttcctgaagg 2880agcggcttgc acggctgacg caggctcggc
gccggcttgc ccagttcccc ggttaaccac 2940actctgtcca gccccgtaga cgtgcacgca
cactgtctgc ccccgttccc gggtagccac 3000tggactgacg acttgagtgc tcagtagtca
gactggatag tccgtctctg cttatccgtt 3060agccgtggtg atttagcagg aagctgtgag
agcagtttgg tttctagcat gaagacagag 3120ccccaccctc agatgcacat gagctggcgg
gattgaagga tgctgtcttc gtactgggaa 3180agggattttc agccctcaga atcgctccac
cttgcagctc tccccttctc tgtattccta 3240gaaactgaca catgctgaac atcacagctt
atttcctcat ttttataatg tcccttcaca 3300aacccagtgt tttaggagca tgagtgccgt
gtgtgtgcgt cctgtcggag ccctgtctcc 3360tctctctgta ataaactcat ttctagcaga
caaaaaaaaa aaaaaaaaa 340942662PRTHomo sapiens 42Met Val Val
Ser Glu Val Asp Ile Ala Lys Ala Asp Pro Ala Ala Ala1 5
10 15Ser His Pro Leu Leu Leu Asn Gly Asp
Ala Thr Val Ala Gln Lys Asn 20 25
30Pro Gly Ser Val Ala Glu Asn Asn Leu Cys Ser Gln Tyr Glu Glu Lys
35 40 45Val Arg Pro Cys Ile Asp Leu
Ile Asp Ser Leu Arg Ala Leu Gly Val 50 55
60Glu Gln Asp Leu Ala Leu Pro Ala Ile Ala Val Ile Gly Asp Gln Ser65
70 75 80Ser Gly Lys Ser
Ser Val Leu Glu Ala Leu Ser Gly Val Ala Leu Pro 85
90 95Arg Gly Ser Gly Ile Val Thr Arg Cys Pro
Leu Val Leu Lys Leu Lys 100 105
110Lys Leu Val Asn Glu Asp Lys Trp Arg Gly Lys Val Ser Tyr Gln Asp
115 120 125Tyr Glu Ile Glu Ile Ser Asp
Ala Ser Glu Val Glu Lys Glu Ile Asn 130 135
140Lys Ala Gln Asn Ala Ile Ala Gly Glu Gly Met Gly Ile Ser His
Glu145 150 155 160Leu Ile
Thr Leu Glu Ile Ser Ser Arg Asp Val Pro Asp Leu Thr Leu
165 170 175Ile Asp Leu Pro Gly Ile Thr
Arg Val Ala Val Gly Asn Gln Pro Ala 180 185
190Asp Ile Gly Tyr Lys Ile Lys Thr Leu Ile Lys Lys Tyr Ile
Gln Arg 195 200 205Gln Glu Thr Ile
Ser Leu Val Val Val Pro Ser Asn Val Asp Ile Ala 210
215 220Thr Thr Glu Ala Leu Ser Met Ala Gln Glu Val Asp
Pro Glu Gly Asp225 230 235
240Arg Thr Ile Gly Ile Leu Thr Lys Pro Asp Leu Val Asp Lys Gly Thr
245 250 255Glu Asp Lys Val Val
Asp Val Val Arg Asn Leu Val Phe His Leu Lys 260
265 270Lys Gly Tyr Met Ile Val Lys Cys Arg Gly Gln Gln
Glu Ile Gln Asp 275 280 285Gln Leu
Ser Leu Ser Glu Ala Leu Gln Arg Glu Lys Ile Phe Phe Glu 290
295 300Asn His Pro Tyr Phe Arg Asp Leu Leu Glu Glu
Gly Lys Ala Thr Val305 310 315
320Pro Cys Leu Ala Glu Lys Leu Thr Ser Glu Leu Ile Thr His Ile Cys
325 330 335Lys Ser Leu Pro
Leu Leu Glu Asn Gln Ile Lys Glu Thr His Gln Arg 340
345 350Ile Thr Glu Glu Leu Gln Lys Tyr Gly Val Asp
Ile Pro Glu Asp Glu 355 360 365Asn
Glu Lys Met Phe Phe Leu Ile Asp Lys Val Asn Ala Phe Asn Gln 370
375 380Asp Ile Thr Ala Leu Met Gln Gly Glu Glu
Thr Val Gly Glu Glu Asp385 390 395
400Ile Arg Leu Phe Thr Arg Leu Arg His Glu Phe His Lys Trp Ser
Thr 405 410 415Ile Ile Glu
Asn Asn Phe Gln Glu Gly His Lys Ile Leu Ser Arg Lys 420
425 430Ile Gln Lys Phe Glu Asn Gln Tyr Arg Gly
Arg Glu Leu Pro Gly Phe 435 440
445Val Asn Tyr Arg Thr Phe Glu Thr Ile Val Lys Gln Gln Ile Lys Ala 450
455 460Leu Glu Glu Pro Ala Val Asp Met
Leu His Thr Val Thr Asp Met Val465 470
475 480Arg Leu Ala Phe Thr Asp Val Ser Ile Lys Asn Phe
Glu Glu Phe Phe 485 490
495Asn Leu His Arg Thr Ala Lys Ser Lys Ile Glu Asp Ile Arg Ala Glu
500 505 510Gln Glu Arg Glu Gly Glu
Lys Leu Ile Arg Leu His Phe Gln Met Glu 515 520
525Gln Ile Val Tyr Cys Gln Asp Gln Val Tyr Arg Gly Ala Leu
Gln Lys 530 535 540Val Arg Glu Lys Glu
Leu Glu Glu Glu Lys Lys Lys Lys Ser Trp Asp545 550
555 560Phe Gly Ala Phe Gln Ser Ser Ser Ala Thr
Asp Ser Ser Met Glu Glu 565 570
575Ile Phe Gln His Leu Met Ala Tyr His Gln Glu Ala Ser Lys Arg Ile
580 585 590Ser Ser His Ile Pro
Leu Ile Ile Gln Phe Phe Met Leu Gln Thr Tyr 595
600 605Gly Gln Gln Leu Gln Lys Ala Met Leu Gln Leu Leu
Gln Asp Lys Asp 610 615 620Thr Tyr Ser
Trp Leu Leu Lys Glu Arg Ser Asp Thr Ser Asp Lys Arg625
630 635 640Lys Phe Leu Lys Glu Arg Leu
Ala Arg Leu Thr Gln Ala Arg Arg Arg 645
650 655Leu Ala Gln Phe Pro Gly
660435889DNAHomo sapiens 43gctgccagct gagttttttt gctgctttga gtctcagttt
tctttctttc ctagagtctc 60tgaagccaca gatctcttaa gaactttctg tctccaaacc
gtggctgctc gataaatcag 120acagaacagt taatcctcaa tttaagcctg atctaacccc
tagaaacaga tatagaacaa 180tggaagtgac aacaagattg acatggaatg atgaaaatca
tctgcgcaag ctgcttggaa 240atgtttcttt gagtcttctc tataagtcta gtgttcatgg
aggtagcatt gaagatatgg 300ttgaaagatg cagccgtcag ggatgtacta taacaatggc
ttacattgat tacaatatga 360ttgtagcctt tatgcttgga aattatatta atttacatga
aagttctaca gagccaaatg 420attccctatg gttttcactt caaaagaaaa atgacaccac
tgaaatagaa actttactct 480taaatacagc accaaaaatt attgatgagc aactggtgtg
tcgtttatcg aaaacggata 540ttttcattat atgtcgagat aataaaattt atctagataa
aatgataaca agaaacttga 600aactaaggtt ttatggccac cgtcagtatt tggaatgtga
agtttttcga gttgaaggaa 660ttaaggataa cctagacgac ataaagagga taattaaagc
cagagagcac agaaataggc 720ttctagcaga catcagagac tataggccct atgcagactt
ggtttcagaa attcgtattc 780ttttggtggg tccagttggg tctggaaagt ccagtttttt
caattcagtc aagtctattt 840ttcatggcca tgtgactggc caagccgtag tggggtctga
tatcaccagc ataaccgagc 900ggtataggat atattctgtt aaagatggaa aaaatggaaa
atctctgcca tttatgttgt 960gtgacactat ggggctagat ggggcagaag gagcaggact
gtgcatggat gacattcccc 1020acatcttaaa aggttgtatg ccagacagat atcagtttaa
ttcccgtaaa ccaattacac 1080ctgagcattc tacttttatc acctctccat ctctgaagga
caggattcac tgtgtggctt 1140atgtcttaga catcaactct attgacaatc tctactctaa
aatgttggca aaagtgaagc 1200aagttcacaa agaagtatta aactgtggta tagcatatgt
ggccttgctt actaaagtgg 1260atgattgcag tgaggttctt caagacaact ttttaaacat
gagtagatct atgacttctc 1320aaagccgggt catgaatgtc cataaaatgc taggcattcc
tatttccaat attttgatgg 1380ttggaaacta tgcttcagat ttggaactgg accccatgaa
ggatattctc atcctctctg 1440cactgaggca gatgctgcgg gctgcagatg attttttaga
agatttgcct cttgaggaaa 1500ctggtgcaat tgagagagcg ttacagccct gcatttgaga
taagttgcct tgattctgac 1560atttggccca gcctgtactg gtgtgccgca atgagagtca
atctctattg acagcctgct 1620tcagattttg cttttgttcg ttttgccttc tgtccttgga
acagtcatat ctcaagttca 1680aaggccaaaa cctgagaagc ggtgggctaa gataggtcct
actgcaaacc acccctccat 1740atttccgtac catttacaat tcagtttctg tgacatcttt
ttaaaccact ggaggaaaaa 1800tgagatattc tctaatttat tcttctataa cactctatat
agagctatgt gagtactaat 1860cacattgaat aatagttata aaattattgt atagacatct
gcttcttaaa cagattgtga 1920gttctttgag aaacagcgtg gattttactt atctgtgtat
tcacagagct tagcacagtg 1980cctggtaatg agcaagcata cttgccatta cttttccttc
ccactctctc caacatcaca 2040ttcactttaa atttttctgt atatagaaag gaaaactagc
ctgggcaaca tgatgaaacc 2100ccatctccac tgcaaaaaaa aaaaaaaaaa ataagaaaga
acaaaacaaa ccccacaaaa 2160attagctggg tatgatggca cgtgcctgta gtcccagtta
ctcaggatga ttgattgagc 2220cttggaggtg gaggctacag tgagctgaga ttgtgccact
gtactctagc cagggagaaa 2280gagtgagatc ctggctcaaa aaaaccaaat aaaacaaaac
aaacaaacga aaaacagaaa 2340ggaagactga aagagaatga aaagctgggg agaggaaata
aaaataaaga aggaagagtg 2400tttcatttat atctgaatga aaatatgaat gactctaagt
aattgaatta attaaaatga 2460gccaactttt ttttaacaat ttacatttta tttctatggg
aaaaaataaa tattcctctt 2520ctaacaaacc catgcttgat tttcattaat tgaattccaa
atcatcctag ccatgtgtcc 2580ttccatttag gttactgggg caaatcagta agaaagttct
tatatttatg ctccaaataa 2640ttctgaagtc ctcttactag ctgtgaaagc tagtactatt
aagaaagaaa acaaaattcc 2700caaaagatag ctttcacttt tttttttcct taaagacttc
ctaattctct tctccaaatt 2760cttagtcttc ttcaaaataa tatgctttgg ttcaatagtt
atccacattc tgacagtcta 2820atttagtttt aatcagaatt atactcatct tttgggtagt
catagatatt aagaaagcaa 2880gagtttctta tgtccagtta tggaatattt cctaaagcaa
ggctgcaggt gaagttgtgc 2940tcaagtgaat gttcaggaga cacaattcag tggaagaaat
taagtcttta aaaaagacct 3000aggaatagga gaaccatgga aattgaggag gtaggcctac
aagtagatat tgggaacaaa 3060attagagagg caaccagaaa aagttatttt aggctcacca
gagttgttct tattgcacag 3120taacacacca atataccaaa acagcaggta ttgcagtaga
gaaagagttt aataattgaa 3180tggcagaaaa atgaggaagg ttgaggaaac ctcaaatcta
cctccctgct gagtctaagt 3240ttaggatttt taagagaaag gcaggtaagg tgctgaaggt
ctggagctgc tgatttgttg 3300gggtataggg aatgaaatga aacatacaga gatgaaaact
ggaagttttt ttttgtttgt 3360tttgtttttt ttttgttgtt gttttttttt ttttttgttt
ttttgctgag tcaattcctt 3420ggagggggtc ttcagactga ctggtgtcag cagacccatg
ggattccaag atctggaaaa 3480ctttttagat agaaacttga tgtttcttaa cgttacatat
attatcttat agaaataact 3540aagggaagtt agtgccttgt gaccacatct atgtgacttt
taggcagtaa gaaactataa 3600ggaaaggagc taacagtcat gctgtaagta gctacaggga
attggcttaa agggcaagtt 3660ggttagtact tagctgtgtt tttattcaaa gtctacattt
tatgtagtgg ttaatgtttg 3720ctgttcatta ggatggtttc acagttacca tacaaatgta
gaagcaacag gtccaaaaag 3780tagggcatga ttttctccat gtaatccagg gagaaaacaa
gccatgacca ttgttggttg 3840ggagactgaa ggtgattgaa ggttcaccat catcctcacc
aacttttggg ccataattca 3900cccaaccctt tggtggagcc tgaaaaaaat ctgggcagaa
tgtaggactt ctttattttg 3960tttaaagggg taacacagag tgcccttatg aaggagttgg
agatcctgca aggaagagaa 4020ggagtgaagg agagatcaag agagagaaac aatgaggaac
atttcatttg acccaacatc 4080ctttaggagc ataaatgttg acactaagtt atcccttttg
tgctaaaatg gacagtattg 4140gcaaaatgat accacaactt cttattctct ggctctatat
tgctttggaa acacttaaac 4200atcaaatgga gttaaataca tatttgaaat ttaggttagg
aaatattggt gaggaggcct 4260caaaaagggg gaaacatctt ttgtctggga ggatattttc
cattttgtgg atttccctga 4320tctttttcta ccaccctgag gggtggtggg aattatcatt
ttgctacatt ttagaggtca 4380tccaggattt ttgaaacttt acattcttta cggttaagca
agatgtacag ctcagtcaaa 4440gacactaaat tcttcttaga aaaatagtgc taaggagtat
agcagatgac ctatatgtgt 4500gttggctggg agaatatcat cttaaagtga gagtgatgtt
gtggagacag ttgaaatgtc 4560aatgctagag cctctgtggt gtgaatgggc acgttaggtt
gttgcattag aaagtgactg 4620tttctgacag aaatttgtag ctttgtgcaa actcacccac
catctacctc aataaaatat 4680agagaaaaga aaaatagagc agtttgagtt ctatgaggta
tgcaggccca gagagacata 4740agtatgttcc tttagtcttg cttcctgtgt gccacactgc
ccctccacaa ccatagctgg 4800gggcaattgt ttaaagtcat tttgttcccg actagctgcc
ttgcacatta tcttcatttt 4860cctggaattt gatacagaga gcaatttata gccaattgat
agcttatgct gtttcaatgt 4920aaattcgtgg taaataactt aggaactgcc tcttcttttt
ctttgaaaac ctacttataa 4980ctgttgctaa taagaatgtg tattgttcag gacaacttgt
ctccatacag ttgggttgta 5040accctcatgc ttggcccaaa taaactctct acttatatca
gtttttccta cacttcttcc 5100ttttaggtca acaataccaa gaggggttac tgtgctgggt
aatgtgtaaa cttgtgtctt 5160gtttagaaag ataaatttaa agactatcac attgcttttt
cataaaacaa gacaggtcta 5220caattaattt attttgacgc aaattgatag gggggccaag
taagccccat atgcttaatg 5280atcagctgat gaataatcat ctcctagcaa cataactcaa
tctaatgcta aggtacccac 5340aagatggcaa ggctgatcaa agtcgtcatg gaatcctgca
accaaaagcc atgggaattt 5400ggaagccctc aaatcccatt cctaatctga tgagtctatg
gaccaatttg tggaggacag 5460tagattaaat agatctgatt tttgccatca atgtaaggag
gataaaaact tgcataccaa 5520ttgtacaccc ttgcaaaatc tttctctgat gttggagaaa
atgggccagt gagatcatgg 5580atatagaagt acagtcaatg ttcagctgta ccctcccaca
atcccacttc cttcctcaac 5640acaattcaaa caaatagact cagactgttt caggctccag
gacaggaagt gcagtgtagg 5700caaaattgca aaaattgagg gcacaggggt ggaggtgggg
gggttgaata acaagctgtg 5760ctaaataatt acgtgtaaat atattttttc atttttaaaa
attgatttct tttgcacatt 5820ccatgacaat atatgtcaca tttttaaaat aaatgcaaag
aagcatacat ccaaaaaaaa 5880aaaaaaaaa
588944452PRTHomo sapiens 44Met Glu Val Thr Thr Arg
Leu Thr Trp Asn Asp Glu Asn His Leu Arg1 5
10 15Lys Leu Leu Gly Asn Val Ser Leu Ser Leu Leu Tyr
Lys Ser Ser Val 20 25 30His
Gly Gly Ser Ile Glu Asp Met Val Glu Arg Cys Ser Arg Gln Gly 35
40 45Cys Thr Ile Thr Met Ala Tyr Ile Asp
Tyr Asn Met Ile Val Ala Phe 50 55
60Met Leu Gly Asn Tyr Ile Asn Leu His Glu Ser Ser Thr Glu Pro Asn65
70 75 80Asp Ser Leu Trp Phe
Ser Leu Gln Lys Lys Asn Asp Thr Thr Glu Ile 85
90 95Glu Thr Leu Leu Leu Asn Thr Ala Pro Lys Ile
Ile Asp Glu Gln Leu 100 105
110Val Cys Arg Leu Ser Lys Thr Asp Ile Phe Ile Ile Cys Arg Asp Asn
115 120 125Lys Ile Tyr Leu Asp Lys Met
Ile Thr Arg Asn Leu Lys Leu Arg Phe 130 135
140Tyr Gly His Arg Gln Tyr Leu Glu Cys Glu Val Phe Arg Val Glu
Gly145 150 155 160Ile Lys
Asp Asn Leu Asp Asp Ile Lys Arg Ile Ile Lys Ala Arg Glu
165 170 175His Arg Asn Arg Leu Leu Ala
Asp Ile Arg Asp Tyr Arg Pro Tyr Ala 180 185
190Asp Leu Val Ser Glu Ile Arg Ile Leu Leu Val Gly Pro Val
Gly Ser 195 200 205Gly Lys Ser Ser
Phe Phe Asn Ser Val Lys Ser Ile Phe His Gly His 210
215 220Val Thr Gly Gln Ala Val Val Gly Ser Asp Ile Thr
Ser Ile Thr Glu225 230 235
240Arg Tyr Arg Ile Tyr Ser Val Lys Asp Gly Lys Asn Gly Lys Ser Leu
245 250 255Pro Phe Met Leu Cys
Asp Thr Met Gly Leu Asp Gly Ala Glu Gly Ala 260
265 270Gly Leu Cys Met Asp Asp Ile Pro His Ile Leu Lys
Gly Cys Met Pro 275 280 285Asp Arg
Tyr Gln Phe Asn Ser Arg Lys Pro Ile Thr Pro Glu His Ser 290
295 300Thr Phe Ile Thr Ser Pro Ser Leu Lys Asp Arg
Ile His Cys Val Ala305 310 315
320Tyr Val Leu Asp Ile Asn Ser Ile Asp Asn Leu Tyr Ser Lys Met Leu
325 330 335Ala Lys Val Lys
Gln Val His Lys Glu Val Leu Asn Cys Gly Ile Ala 340
345 350Tyr Val Ala Leu Leu Thr Lys Val Asp Asp Cys
Ser Glu Val Leu Gln 355 360 365Asp
Asn Phe Leu Asn Met Ser Arg Ser Met Thr Ser Gln Ser Arg Val 370
375 380Met Asn Val His Lys Met Leu Gly Ile Pro
Ile Ser Asn Ile Leu Met385 390 395
400Val Gly Asn Tyr Ala Ser Asp Leu Glu Leu Asp Pro Met Lys Asp
Ile 405 410 415Leu Ile Leu
Ser Ala Leu Arg Gln Met Leu Arg Ala Ala Asp Asp Phe 420
425 430Leu Glu Asp Leu Pro Leu Glu Glu Thr Gly
Ala Ile Glu Arg Ala Leu 435 440
445Gln Pro Cys Ile 450454759DNAHomo sapiens 45tagttattaa agttcctatg
cagctccgcc tcgcgtccgg cctcatttcc tcggaaaatc 60cctgctttcc ccgctcgcca
cgccctcctc ctacccggct ttaaagctag tgaggcacag 120cctgcgggga acgtagctag
ctgcaagcag aggccggcat gaccaccgag cagcgacgca 180gcctgcaagc cttccaggat
tatatccgga agaccctgga ccctacctac atcctgagct 240acatggcccc ctggtttagg
gaggaagagg tgcagtatat tcaggctgag aaaaacaaca 300agggcccaat ggaggctgcc
acactttttc tcaagttcct gttggagctc caggaggaag 360gctggttccg tggctttttg
gatgccctag accatgcagg ttattctgga ctttatgaag 420ccattgaaag ttgggatttc
aaaaaaattg aaaagttgga ggagtataga ttacttttaa 480aacgtttaca accagaattt
aaaaccagaa ttatcccaac cgatatcatt tctgatctgt 540ctgaatgttt aattaatcag
gaatgtgaag aaattctaca gatttgctct actaagggga 600tgatggcagg tgcagagaaa
ttggtggaat gccttctcag atcagacaag gaaaactggc 660ccaaaacttt gaaacttgct
ttggagaaag aaaggaacaa gttcagtgaa ctgtggattg 720tagagaaagg tataaaagat
gttgaaacag aagatcttga ggataagatg gaaacttctg 780acatacagat tttctaccaa
gaagatccag aatgccagaa tcttagtgag aattcatgtc 840caccttcaga agtgtctgat
acaaacttgt acagcccatt taaaccaaga aattaccaat 900tagagcttgc tttgcctgct
atgaaaggaa aaaacacaat aatatgtgct cctacaggtt 960gtggaaaaac ctttgtttca
ctgcttatat gtgaacatca tcttaaaaaa ttcccacaag 1020gacaaaaggg gaaagttgtc
ttttttgcga atcagatccc agtgtatgaa cagcagaaat 1080ctgtattctc aaaatacttt
gaaagacatg ggtatagagt tacaggcatt tctggagcaa 1140cagctgagaa tgtcccagtg
gaacagattg ttgagaacaa tgacatcatc attttaactc 1200cacagattct tgtgaacaac
cttaaaaagg gaacgattcc atcactatcc atctttactt 1260tgatgatatt tgatgaatgc
cacaacacta gtaaacaaca cccgtacaat atgatcatgt 1320ttaattatct agatcagaaa
cttggaggat cttcaggccc actgccccag gtcattgggc 1380tgactgcctc ggttggtgtt
ggggatgcca aaaacacaga tgaagccttg gattatatct 1440gcaagctgtg tgcttctctt
gatgcgtcag tgatagcaac agtcaaacac aatctggagg 1500aactggagca agttgtttat
aagccccaga agtttttcag gaaagtggaa tcacggatta 1560gcgacaaatt taaatacatc
atagctcagc tgatgaggga cacagagagt ctggcaaaga 1620gaatctgcaa agacctcgaa
aacttatctc aaattcaaaa tagggaattt ggaacacaga 1680aatatgaaca atggattgtt
acagttcaga aagcatgcat ggtgttccag atgccagaca 1740aagatgaaga gagcaggatt
tgtaaagccc tgtttttata cacttcacat ttgcggaaat 1800ataatgatgc cctcattatc
agtgagcatg cacgaatgaa agatgctctg gattacttga 1860aagacttctt cagcaatgtc
cgagcagcag gattcgatga gattgagcaa gatcttactc 1920agagatttga agaaaagctg
caggaactag aaagtgtttc cagggatccc agcaatgaga 1980atcctaaact tgaagacctc
tgcttcatct tacaagaaga gtaccactta aacccagaga 2040caataacaat tctctttgtg
aaaaccagag cacttgtgga cgctttaaaa aattggattg 2100aaggaaatcc taaactcagt
tttctaaaac ctggcatatt gactggacgt ggcaaaacaa 2160atcagaacac aggaatgacc
ctcccggcac agaagtgtat attggatgca ttcaaagcca 2220gtggagatca caatattctg
attgccacct cagttgctga tgaaggcatt gacattgcac 2280agtgcaatct tgtcatcctt
tatgagtatg tgggcaatgt catcaaaatg atccaaacca 2340gaggcagagg aagagcaaga
ggtagcaagt gcttccttct gactagtaat gctggtgtaa 2400ttgaaaaaga acaaataaac
atgtacaaag aaaaaatgat gaatgactct attttacgcc 2460ttcagacatg ggacgaagca
gtatttaggg aaaagattct gcatatacag actcatgaaa 2520aattcatcag agatagtcaa
gaaaaaccaa aacctgtacc tgataaggaa aataaaaaac 2580tgctctgcag aaagtgcaaa
gccttggcat gttacacagc tgacgtaaga gtgatagagg 2640aatgccatta cactgtgctt
ggagatgctt ttaaggaatg ctttgtgagt agaccacatc 2700ccaagccaaa gcagttttca
agttttgaaa aaagagcaaa gatattctgt gcccgacaga 2760actgcagcca tgactgggga
atccatgtga agtacaagac atttgagatt ccagttataa 2820aaattgaaag ttttgtggtg
gaggatattg caactggagt tcagacactg tactcgaagt 2880ggaaggactt tcattttgag
aagataccat ttgatccagc agaaatgtcc aaatgatatc 2940aggtcctcaa tcttcagcta
cagggaatga gtaactttga gtggagaaga aacaaacata 3000gtgggtataa tcatggatcg
cttgtacccc tgtgaaaata tattttttaa aaatatcttt 3060agcagtttgt actatattat
atatgcaaag cacaaatgag tgaatcacag cactgagtat 3120tttgtaggcc aacagagctc
atagtacttg ggaaaaatta aaaagcctca tttctagcct 3180tctttttaga gtcaactgcc
aacaaacaca cagtaatcac tctgtacaca ctgggataga 3240tgaatgaatg gaatgttggg
aatttttatc tccctttgtc tccttaacct actgtaaact 3300ggcttttgcc cttaacaatc
tactgaaatt gttcttttga aggttaccag tgactctggt 3360tgccaaatcc actgggcact
tcttaacctt ctatttgacc tctgcgcatt tggccctgtt 3420gagcactctt cttgaagctc
tccctgggct tctctctctt ctagttctat tctagtcttt 3480ttttattgag tcctcctctt
tgctgatccc ttccaagggt tcaatatata tacatgtata 3540tactgtacat atgtatatgt
aactaatata catacataca ggtatgtata tgtaatggtt 3600atatgtactc atgttcctgg
tgtagcaacg tgtggtatgg ctacacagag aacatgagaa 3660cataaagcca tttttatgct
tactactaaa agctgtccac tgtagagttg ctgtatgtag 3720caatgtgtat ccactctaca
gtggtcagct tttagtagag agcataaaaa tgataaaata 3780cttcttgaaa acttagttta
ctatacatct tgccctatta atatgttctc ttaacgtgtg 3840ccattgttct ctttgaccat
tttcctataa tgatgttgat gttcaacacc tggactgaat 3900gtctgttctc agatcccttg
gatgttacag atgaggcagt ctgactgtcc tttctacttg 3960aaagattaga atatgtatcc
aaatggcatt cacgtgtcac ttagcaaggt ttgctgatgc 4020ttcaaagagc ttagtttgcg
gtttcctgga cgtggaaaca agtatctgag ttccctggag 4080atcaacggga tgaggtgtta
cagctgcctc cctcttcatg caatctggtg agcagtggtg 4140caggcgggga gccagagaaa
cttgccagtt atataacttc tctttggctt ttcttcatct 4200gtaaaacaag gataatactg
aactgtaagg gttagtggag agtttttaat taaaagaatg 4260tgtgaaaagt acatgacaca
gtagttgctt gataatagtt actagtagta gtattcttac 4320taagacccaa tacaaatgga
ttatttaaac caagtttatg agttggtttt ttttcatttt 4380ctatttgtat tttattaaga
gtgtcttttc ttatgtgatt ttttttaatt gctatttgat 4440atggtttggc tatatgtccc
cacccaaatc tcatcttgaa ttataatccc catgtgtcaa 4500gggagggacc tgacgggagg
tgattggatc acgggggcag ttgtccccat gctgttcttg 4560ggatagtgag ttagttctca
tgagatctga tggttttata agtgtttgac aattcctcct 4620ttacacacac tctctctctc
atctgctgcc atgtaagact tgcctgcttc cccttctgcc 4680atgattgtaa gtttcctgag
gcctcctcag ccatgtggaa ctgtgaatct attaagcctc 4740ttttctttat aaatgaaaa
475946925PRTHomo sapiens
46Met Thr Thr Glu Gln Arg Arg Ser Leu Gln Ala Phe Gln Asp Tyr Ile1
5 10 15Arg Lys Thr Leu Asp Pro
Thr Tyr Ile Leu Ser Tyr Met Ala Pro Trp 20 25
30Phe Arg Glu Glu Glu Val Gln Tyr Ile Gln Ala Glu Lys
Asn Asn Lys 35 40 45Gly Pro Met
Glu Ala Ala Thr Leu Phe Leu Lys Phe Leu Leu Glu Leu 50
55 60Gln Glu Glu Gly Trp Phe Arg Gly Phe Leu Asp Ala
Leu Asp His Ala65 70 75
80Gly Tyr Ser Gly Leu Tyr Glu Ala Ile Glu Ser Trp Asp Phe Lys Lys
85 90 95Ile Glu Lys Leu Glu Glu
Tyr Arg Leu Leu Leu Lys Arg Leu Gln Pro 100
105 110Glu Phe Lys Thr Arg Ile Ile Pro Thr Asp Ile Ile
Ser Asp Leu Ser 115 120 125Glu Cys
Leu Ile Asn Gln Glu Cys Glu Glu Ile Leu Gln Ile Cys Ser 130
135 140Thr Lys Gly Met Met Ala Gly Ala Glu Lys Leu
Val Glu Cys Leu Leu145 150 155
160Arg Ser Asp Lys Glu Asn Trp Pro Lys Thr Leu Lys Leu Ala Leu Glu
165 170 175Lys Glu Arg Asn
Lys Phe Ser Glu Leu Trp Ile Val Glu Lys Gly Ile 180
185 190Lys Asp Val Glu Thr Glu Asp Leu Glu Asp Lys
Met Glu Thr Ser Asp 195 200 205Ile
Gln Ile Phe Tyr Gln Glu Asp Pro Glu Cys Gln Asn Leu Ser Glu 210
215 220Asn Ser Cys Pro Pro Ser Glu Val Ser Asp
Thr Asn Leu Tyr Ser Pro225 230 235
240Phe Lys Pro Arg Asn Tyr Gln Leu Glu Leu Ala Leu Pro Ala Met
Lys 245 250 255Gly Lys Asn
Thr Ile Ile Cys Ala Pro Thr Gly Cys Gly Lys Thr Phe 260
265 270Val Ser Leu Leu Ile Cys Glu His His Leu
Lys Lys Phe Pro Gln Gly 275 280
285Gln Lys Gly Lys Val Val Phe Phe Ala Asn Gln Ile Pro Val Tyr Glu 290
295 300Gln Gln Lys Ser Val Phe Ser Lys
Tyr Phe Glu Arg His Gly Tyr Arg305 310
315 320Val Thr Gly Ile Ser Gly Ala Thr Ala Glu Asn Val
Pro Val Glu Gln 325 330
335Ile Val Glu Asn Asn Asp Ile Ile Ile Leu Thr Pro Gln Ile Leu Val
340 345 350Asn Asn Leu Lys Lys Gly
Thr Ile Pro Ser Leu Ser Ile Phe Thr Leu 355 360
365Met Ile Phe Asp Glu Cys His Asn Thr Ser Lys Gln His Pro
Tyr Asn 370 375 380Met Ile Met Phe Asn
Tyr Leu Asp Gln Lys Leu Gly Gly Ser Ser Gly385 390
395 400Pro Leu Pro Gln Val Ile Gly Leu Thr Ala
Ser Val Gly Val Gly Asp 405 410
415Ala Lys Asn Thr Asp Glu Ala Leu Asp Tyr Ile Cys Lys Leu Cys Ala
420 425 430Ser Leu Asp Ala Ser
Val Ile Ala Thr Val Lys His Asn Leu Glu Glu 435
440 445Leu Glu Gln Val Val Tyr Lys Pro Gln Lys Phe Phe
Arg Lys Val Glu 450 455 460Ser Arg Ile
Ser Asp Lys Phe Lys Tyr Ile Ile Ala Gln Leu Met Arg465
470 475 480Asp Thr Glu Ser Leu Ala Lys
Arg Ile Cys Lys Asp Leu Glu Asn Leu 485
490 495Ser Gln Ile Gln Asn Arg Glu Phe Gly Thr Gln Lys
Tyr Glu Gln Trp 500 505 510Ile
Val Thr Val Gln Lys Ala Cys Met Val Phe Gln Met Pro Asp Lys 515
520 525Asp Glu Glu Ser Arg Ile Cys Lys Ala
Leu Phe Leu Tyr Thr Ser His 530 535
540Leu Arg Lys Tyr Asn Asp Ala Leu Ile Ile Ser Glu His Ala Arg Met545
550 555 560Lys Asp Ala Leu
Asp Tyr Leu Lys Asp Phe Phe Ser Asn Val Arg Ala 565
570 575Ala Gly Phe Asp Glu Ile Glu Gln Asp Leu
Thr Gln Arg Phe Glu Glu 580 585
590Lys Leu Gln Glu Leu Glu Ser Val Ser Arg Asp Pro Ser Asn Glu Asn
595 600 605Pro Lys Leu Glu Asp Leu Cys
Phe Ile Leu Gln Glu Glu Tyr His Leu 610 615
620Asn Pro Glu Thr Ile Thr Ile Leu Phe Val Lys Thr Arg Ala Leu
Val625 630 635 640Asp Ala
Leu Lys Asn Trp Ile Glu Gly Asn Pro Lys Leu Ser Phe Leu
645 650 655Lys Pro Gly Ile Leu Thr Gly
Arg Gly Lys Thr Asn Gln Asn Thr Gly 660 665
670Met Thr Leu Pro Ala Gln Lys Cys Ile Leu Asp Ala Phe Lys
Ala Ser 675 680 685Gly Asp His Asn
Ile Leu Ile Ala Thr Ser Val Ala Asp Glu Gly Ile 690
695 700Asp Ile Ala Gln Cys Asn Leu Val Ile Leu Tyr Glu
Tyr Val Gly Asn705 710 715
720Val Ile Lys Met Ile Gln Thr Arg Gly Arg Gly Arg Ala Arg Gly Ser
725 730 735Lys Cys Phe Leu Leu
Thr Ser Asn Ala Gly Val Ile Glu Lys Glu Gln 740
745 750Ile Asn Met Tyr Lys Glu Lys Met Met Asn Asp Ser
Ile Leu Arg Leu 755 760 765Gln Thr
Trp Asp Glu Ala Val Phe Arg Glu Lys Ile Leu His Ile Gln 770
775 780Thr His Glu Lys Phe Ile Arg Asp Ser Gln Glu
Lys Pro Lys Pro Val785 790 795
800Pro Asp Lys Glu Asn Lys Lys Leu Leu Cys Arg Lys Cys Lys Ala Leu
805 810 815Ala Cys Tyr Thr
Ala Asp Val Arg Val Ile Glu Glu Cys His Tyr Thr 820
825 830Val Leu Gly Asp Ala Phe Lys Glu Cys Phe Val
Ser Arg Pro His Pro 835 840 845Lys
Pro Lys Gln Phe Ser Ser Phe Glu Lys Arg Ala Lys Ile Phe Cys 850
855 860Ala Arg Gln Asn Cys Ser His Asp Trp Gly
Ile His Val Lys Tyr Lys865 870 875
880Thr Phe Glu Ile Pro Val Ile Lys Ile Glu Ser Phe Val Val Glu
Asp 885 890 895Ile Ala Thr
Gly Val Gln Thr Leu Tyr Ser Lys Trp Lys Asp Phe His 900
905 910Phe Glu Lys Ile Pro Phe Asp Pro Ala Glu
Met Ser Lys 915 920
92547863DNAHomo sapiens 47caaggttcag agtcacccat ctcagcaagc ccagaagtat
ctgcaatatc tacgatggcc 60tcgccctttg ctttactgat ggtcctggtg gtgctcagct
gcaagtcaag ctgctctctg 120ggctgtgatc tccctgagac ccacagcctg gataacagga
ggaccttgat gctcctggca 180caaatgagca gaatctctcc ttcctcctgt ctgatggaca
gacatgactt tggatttccc 240caggaggagt ttgatggcaa ccagttccag aaggctccag
ccatctctgt cctccatgag 300ctgatccagc agatcttcaa cctctttacc acaaaagatt
catctgctgc ttgggatgag 360gacctcctag acaaattctg caccgaactc taccagcagc
tgaatgactt ggaagcctgt 420gtgatgcagg aggagagggt gggagaaact cccctgatga
atgcggactc catcttggct 480gtgaagaaat acttccgaag aatcactctc tatctgacag
agaagaaata cagcccttgt 540gcctgggagg ttgtcagagc agaaatcatg agatccctct
ctttatcaac aaacttgcaa 600gaaagattaa ggaggaagga ataacatctg gtccaacatg
aaaacaattc ttattgactc 660atacaccagg tcacgctttc atgaattctg tcatttcaaa
gactctcacc cctgctataa 720ctatgaccat gctgataaac tgatttatct atttaaatat
ttatttaact attcataaga 780tttaaattat ttttgttcat ataacgtcat gtgcaccttt
acactgtggt tagtgtaata 840aaacatgttc cttatattta ctc
86348189PRTHomo sapiens 48Met Ala Ser Pro Phe Ala
Leu Leu Met Val Leu Val Val Leu Ser Cys1 5
10 15Lys Ser Ser Cys Ser Leu Gly Cys Asp Leu Pro Glu
Thr His Ser Leu 20 25 30Asp
Asn Arg Arg Thr Leu Met Leu Leu Ala Gln Met Ser Arg Ile Ser 35
40 45Pro Ser Ser Cys Leu Met Asp Arg His
Asp Phe Gly Phe Pro Gln Glu 50 55
60Glu Phe Asp Gly Asn Gln Phe Gln Lys Ala Pro Ala Ile Ser Val Leu65
70 75 80His Glu Leu Ile Gln
Gln Ile Phe Asn Leu Phe Thr Thr Lys Asp Ser 85
90 95Ser Ala Ala Trp Asp Glu Asp Leu Leu Asp Lys
Phe Cys Thr Glu Leu 100 105
110Tyr Gln Gln Leu Asn Asp Leu Glu Ala Cys Val Met Gln Glu Glu Arg
115 120 125Val Gly Glu Thr Pro Leu Met
Asn Ala Asp Ser Ile Leu Ala Val Lys 130 135
140Lys Tyr Phe Arg Arg Ile Thr Leu Tyr Leu Thr Glu Lys Lys Tyr
Ser145 150 155 160Pro Cys
Ala Trp Glu Val Val Arg Ala Glu Ile Met Arg Ser Leu Ser
165 170 175Leu Ser Thr Asn Leu Gln Glu
Arg Leu Arg Arg Lys Glu 180 185491143DNAHomo
sapiens 49gagaacctgg agcctaaggt ttaggctcac ccatttcaac cagtctagca
gcatctgcaa 60catctacaat ggccttgacc tttgctttac tggtggccct cctggtgctc
agctgcaagt 120caagctgctc tgtgggctgt gatctgcctc aaacccacag cctgggtagc
aggaggacct 180tgatgctcct ggcacagatg aggagaatct ctcttttctc ctgcttgaag
gacagacatg 240actttggatt tccccaggag gagtttggca accagttcca aaaggctgaa
accatccctg 300tcctccatga gatgatccag cagatcttca atctcttcag cacaaaggac
tcatctgctg 360cttgggatga gaccctccta gacaaattct acactgaact ctaccagcag
ctgaatgacc 420tggaagcctg tgtgatacag ggggtggggg tgacagagac tcccctgatg
aaggaggact 480ccattctggc tgtgaggaaa tacttccaaa gaatcactct ctatctgaaa
gagaagaaat 540acagcccttg tgcctgggag gttgtcagag cagaaatcat gagatctttt
tctttgtcaa 600caaacttgca agaaagttta agaagtaagg aatgaaaact ggttcaacat
ggaaatgatt 660ttcattgatt cgtatgccag ctcacctttt tatgatctgc catttcaaag
actcatgttt 720ctgctatgac catgacacga tttaaatctt ttcaaatgtt tttaggagta
ttaatcaaca 780ttgtattcag ctcttaaggc actagtccct tacagaggac catgctgact
gatccattat 840ctatttaaat atttttaaaa tattatttat ttaactattt ataaaacaac
ttatttttgt 900tcatattatg tcatgtgcac ctttgcacag tggttaatgt aataaaatat
gttctttgta 960tttggtaaat ttattttgtg ttgttcattg aacttttgct atggaaactt
ttgtacttgt 1020ttattcttta aaatgaaatt ccaagcctaa ttgtgcaacc tgattacaga
ataactggta 1080cacttcattt atccatcaat attatattca agatataagt aaaaataaac
tttctgtaaa 1140cca
114350188PRTHomo sapiens 50Met Ala Leu Thr Phe Ala Leu Leu Val
Ala Leu Leu Val Leu Ser Cys1 5 10
15Lys Ser Ser Cys Ser Val Gly Cys Asp Leu Pro Gln Thr His Ser
Leu 20 25 30Gly Ser Arg Arg
Thr Leu Met Leu Leu Ala Gln Met Arg Arg Ile Ser 35
40 45Leu Phe Ser Cys Leu Lys Asp Arg His Asp Phe Gly
Phe Pro Gln Glu 50 55 60Glu Phe Gly
Asn Gln Phe Gln Lys Ala Glu Thr Ile Pro Val Leu His65 70
75 80Glu Met Ile Gln Gln Ile Phe Asn
Leu Phe Ser Thr Lys Asp Ser Ser 85 90
95Ala Ala Trp Asp Glu Thr Leu Leu Asp Lys Phe Tyr Thr Glu
Leu Tyr 100 105 110Gln Gln Leu
Asn Asp Leu Glu Ala Cys Val Ile Gln Gly Val Gly Val 115
120 125Thr Glu Thr Pro Leu Met Lys Glu Asp Ser Ile
Leu Ala Val Arg Lys 130 135 140Tyr Phe
Gln Arg Ile Thr Leu Tyr Leu Lys Glu Lys Lys Tyr Ser Pro145
150 155 160Cys Ala Trp Glu Val Val Arg
Ala Glu Ile Met Arg Ser Phe Ser Leu 165
170 175Ser Thr Asn Leu Gln Glu Ser Leu Arg Ser Lys Glu
180 18551982DNAHomo sapiens 51agaaaaccta
gaggccgaag ttcaaggtta tccatctcaa gtagcctagc aatatttgca 60acatcccaat
ggccctgtcc ttttctttac tgatggccgt gctggtgctc agctacaaat 120ccatctgttc
tctgggctgt gatctgcctc agacccacag cctgggtaat aggagggcct 180tgatactcct
ggcacaaatg ggaagaatct ctcatttctc ctgcctgaag gacagacatg 240atttcggatt
ccccgaggag gagtttgatg gccaccagtt ccagaaggct caagccatct 300ctgtcctcca
tgagatgatc cagcagacct tcaatctctt cagcacagag gactcatctg 360ctgcttggga
acagagcctc ctagaaaaat tttccactga actttaccag caactgaatg 420acctggaagc
atgtgtgata caggaggttg gggtggaaga gactcccctg atgaatgagg 480actccatcct
ggctgtgagg aaatacttcc aaagaatcac tctttatcta acagagaaga 540aatacagccc
ttgtgcctgg gaggttgtca gagcagaaat catgagatcc ctctcgtttt 600caacaaactt
gcaaaaaaga ttaaggagga aggattgaaa cctggttcaa catggaaatg 660atcctgattg
actaatacat tatctcacac tttcatgagt tcttccattt caaagactca 720cttctataac
caccacgagt tgaatcaaaa ttttcaaatg ttttcagcag tgtgaagaag 780cttggtgtat
acctgtgcag gcactagtcc tttacagatg acaatgctga tgtctctgtt 840catctattta
tttaaatatt tatttatttt taaaatttaa attatttttt atgtgatatc 900atgagtacct
ttacattgtg gtgaatgtaa caatatatgt tcttcatatt tagccaatat 960attaatttcc
tttttcatta aa 98252189PRTHomo
sapiens 52Met Ala Leu Ser Phe Ser Leu Leu Met Ala Val Leu Val Leu Ser
Tyr1 5 10 15Lys Ser Ile
Cys Ser Leu Gly Cys Asp Leu Pro Gln Thr His Ser Leu 20
25 30Gly Asn Arg Arg Ala Leu Ile Leu Leu Ala
Gln Met Gly Arg Ile Ser 35 40
45His Phe Ser Cys Leu Lys Asp Arg His Asp Phe Gly Phe Pro Glu Glu 50
55 60Glu Phe Asp Gly His Gln Phe Gln Lys
Ala Gln Ala Ile Ser Val Leu65 70 75
80His Glu Met Ile Gln Gln Thr Phe Asn Leu Phe Ser Thr Glu
Asp Ser 85 90 95Ser Ala
Ala Trp Glu Gln Ser Leu Leu Glu Lys Phe Ser Thr Glu Leu 100
105 110Tyr Gln Gln Leu Asn Asp Leu Glu Ala
Cys Val Ile Gln Glu Val Gly 115 120
125Val Glu Glu Thr Pro Leu Met Asn Glu Asp Ser Ile Leu Ala Val Arg
130 135 140Lys Tyr Phe Gln Arg Ile Thr
Leu Tyr Leu Thr Glu Lys Lys Tyr Ser145 150
155 160Pro Cys Ala Trp Glu Val Val Arg Ala Glu Ile Met
Arg Ser Leu Ser 165 170
175Phe Ser Thr Asn Leu Gln Lys Arg Leu Arg Arg Lys Asp 180
18553700DNAHomo sapiens 53gcccaaggtt cagggtcact caatctcaac
agcccagaag catctgcaac ctccccaatg 60gccttgccct ttgttttact gatggccctg
gtggtgctca actgcaagtc aatctgttct 120ctgggctgtg atctgcctca gacccacagc
ctgagtaaca ggaggacttt gatgataatg 180gcacaaatgg gaagaatctc tcctttctcc
tgcctgaagg acagacatga ctttggattt 240cctcaggagg agtttgatgg caaccagttc
cagaaggctc aagccatctc tgtcctccat 300gagatgatcc agcagacctt caatctcttc
agcacaaagg actcatctgc tacttgggat 360gagacacttc tagacaaatt ctacactgaa
ctttaccagc agctgaatga cctggaagcc 420tgtatgatgc aggaggttgg agtggaagac
actcctctga tgaatgtgga ctctatcctg 480actgtgagaa aatactttca aagaatcacc
ctctatctga cagagaagaa atacagccct 540tgtgcatggg aggttgtcag agcagaaatc
atgagatcct tctctttatc agcaaacttg 600caagaaagat taaggaggaa ggaatgaaaa
ctggttcaac atcgaaatga ttctcattga 660ctagtacacc atttcacact tcttgagttc
tgccgtttca 70054189PRTHomo sapiens 54Met Ala Leu
Pro Phe Val Leu Leu Met Ala Leu Val Val Leu Asn Cys1 5
10 15Lys Ser Ile Cys Ser Leu Gly Cys Asp
Leu Pro Gln Thr His Ser Leu 20 25
30Ser Asn Arg Arg Thr Leu Met Ile Met Ala Gln Met Gly Arg Ile Ser
35 40 45Pro Phe Ser Cys Leu Lys Asp
Arg His Asp Phe Gly Phe Pro Gln Glu 50 55
60Glu Phe Asp Gly Asn Gln Phe Gln Lys Ala Gln Ala Ile Ser Val Leu65
70 75 80His Glu Met Ile
Gln Gln Thr Phe Asn Leu Phe Ser Thr Lys Asp Ser 85
90 95Ser Ala Thr Trp Asp Glu Thr Leu Leu Asp
Lys Phe Tyr Thr Glu Leu 100 105
110Tyr Gln Gln Leu Asn Asp Leu Glu Ala Cys Met Met Gln Glu Val Gly
115 120 125Val Glu Asp Thr Pro Leu Met
Asn Val Asp Ser Ile Leu Thr Val Arg 130 135
140Lys Tyr Phe Gln Arg Ile Thr Leu Tyr Leu Thr Glu Lys Lys Tyr
Ser145 150 155 160Pro Cys
Ala Trp Glu Val Val Arg Ala Glu Ile Met Arg Ser Phe Ser
165 170 175Leu Ser Ala Asn Leu Gln Glu
Arg Leu Arg Arg Lys Glu 180 18555570DNAHomo
sapiens 55atggctttgc cttttgcttt actgatggcc ctggtggtgc tcagctgcaa
gtcaagctgc 60tctctggact gtgatctgcc tcagacccac agcctgggtc acaggaggac
catgatgctc 120ctggcacaaa tgaggagaat ctctcttttc tcctgtctga aggacagaca
tgacttcaga 180tttccccagg aggagtttga tggcaaccag ttccagaagg ctgaagccat
ctctgtcctc 240catgaggtga ttcagcagac cttcaacctc ttcagcacaa aggactcatc
tgttgcttgg 300gatgagaggc ttctagacaa actctatact gaactttacc agcagctgaa
tgacctggaa 360gcctgtgtga tgcaggaggt gtgggtggga gggactcccc tgatgaatga
ggactccatc 420ctggctgtga gaaaatactt ccaaagaatc actctctacc tgacagagaa
aaagtacagc 480ccttgtgcct gggaggttgt cagagcagaa atcatgagat ccttctcttc
atcaagaaac 540ttgcaagaaa ggttaaggag gaaggaataa
57056189PRTHomo sapiens 56Met Ala Leu Pro Phe Ala Leu Leu Met
Ala Leu Val Val Leu Ser Cys1 5 10
15Lys Ser Ser Cys Ser Leu Asp Cys Asp Leu Pro Gln Thr His Ser
Leu 20 25 30Gly His Arg Arg
Thr Met Met Leu Leu Ala Gln Met Arg Arg Ile Ser 35
40 45Leu Phe Ser Cys Leu Lys Asp Arg His Asp Phe Arg
Phe Pro Gln Glu 50 55 60Glu Phe Asp
Gly Asn Gln Phe Gln Lys Ala Glu Ala Ile Ser Val Leu65 70
75 80His Glu Val Ile Gln Gln Thr Phe
Asn Leu Phe Ser Thr Lys Asp Ser 85 90
95Ser Val Ala Trp Asp Glu Arg Leu Leu Asp Lys Leu Tyr Thr
Glu Leu 100 105 110Tyr Gln Gln
Leu Asn Asp Leu Glu Ala Cys Val Met Gln Glu Val Trp 115
120 125Val Gly Gly Thr Pro Leu Met Asn Glu Asp Ser
Ile Leu Ala Val Arg 130 135 140Lys Tyr
Phe Gln Arg Ile Thr Leu Tyr Leu Thr Glu Lys Lys Tyr Ser145
150 155 160Pro Cys Ala Trp Glu Val Val
Arg Ala Glu Ile Met Arg Ser Phe Ser 165
170 175Ser Ser Arg Asn Leu Gln Glu Arg Leu Arg Arg Lys
Glu 180 18557736DNAHomo sapiens 57tacccacctc
aggtagccta gtgatatttg caaaatccca atggcccggt ccttttcttt 60actgatggtc
gtgctggtac tcagctacaa atccatctgc tctctgggct gtgatctgcc 120tcagacccac
agcctgcgta ataggagggc cttgatactc ctggcacaaa tgggaagaat 180ctctcctttc
tcctgcttga aggacagaca tgaattcaga ttcccagagg aggagtttga 240tggccaccag
ttccagaaga ctcaagccat ctctgtcctc catgagatga tccagcagac 300cttcaatctc
ttcagcacag aggactcatc tgctgcttgg gaacagagcc tcctagaaaa 360attttccact
gaactttacc agcaactgaa tgacctggaa gcatgtgtga tacaggaggt 420tggggtggaa
gagactcccc tgatgaatga ggacttcatc ctggctgtga ggaaatactt 480ccaaagaatc
actctttatc taatggagaa gaaatacagc ccttgtgcct gggaggttgt 540cagagcagaa
atcatgagat ccttctcttt ttcaacaaac ttgaaaaaag gattaaggag 600gaaggattga
aaactggttc atcatggaaa tgattctcat tgactaatgc atcatctcac 660actttcatga
gttcttccat ttcaaagact cacttctata accaccacaa gttaatcaaa 720atttccaaat
gttttc 73658189PRTHomo
sapiens 58Met Ala Arg Ser Phe Ser Leu Leu Met Val Val Leu Val Leu Ser
Tyr1 5 10 15Lys Ser Ile
Cys Ser Leu Gly Cys Asp Leu Pro Gln Thr His Ser Leu 20
25 30Arg Asn Arg Arg Ala Leu Ile Leu Leu Ala
Gln Met Gly Arg Ile Ser 35 40
45Pro Phe Ser Cys Leu Lys Asp Arg His Glu Phe Arg Phe Pro Glu Glu 50
55 60Glu Phe Asp Gly His Gln Phe Gln Lys
Thr Gln Ala Ile Ser Val Leu65 70 75
80His Glu Met Ile Gln Gln Thr Phe Asn Leu Phe Ser Thr Glu
Asp Ser 85 90 95Ser Ala
Ala Trp Glu Gln Ser Leu Leu Glu Lys Phe Ser Thr Glu Leu 100
105 110Tyr Gln Gln Leu Asn Asp Leu Glu Ala
Cys Val Ile Gln Glu Val Gly 115 120
125Val Glu Glu Thr Pro Leu Met Asn Glu Asp Phe Ile Leu Ala Val Arg
130 135 140Lys Tyr Phe Gln Arg Ile Thr
Leu Tyr Leu Met Glu Lys Lys Tyr Ser145 150
155 160Pro Cys Ala Trp Glu Val Val Arg Ala Glu Ile Met
Arg Ser Phe Ser 165 170
175Phe Ser Thr Asn Leu Lys Lys Gly Leu Arg Arg Lys Asp 180
185591039DNAHomo sapiens 59accagctcag cagcatccac aacatctaca
atggccttga ctttttattt actggtggcc 60ctagtggtgc tcagctacaa gtcattcagc
tctctgggct gtgatctgcc tcagactcac 120agcctgggta acaggagggc cttgatactc
ctggcacaaa tgcgaagaat ctctcctttc 180tcctgcctga aggacagaca tgactttgaa
ttcccccagg aggagtttga tgataaacag 240ttccagaagg ctcaagccat ctctgtcctc
catgagatga tccagcagac cttcaacctc 300ttcagcacaa aggactcatc tgctgctttg
gatgagaccc ttctagatga attctacatc 360gaacttgacc agcagctgaa tgacctggag
tcctgtgtga tgcaggaagt gggggtgata 420gagtctcccc tgatgtacga ggactccatc
ctggctgtga ggaaatactt ccaaagaatc 480actctatatc tgacagagaa gaaatacagc
tcttgtgcct gggaggttgt cagagcagaa 540atcatgagat ccttctcttt atcaatcaac
ttgcaaaaaa gattgaagag taaggaatga 600gacctggtac aacacggaaa tgattcttat
agactaatac agcagctcac acttcgacaa 660gttgtgctct ttcaaagacc cttgtttctg
ccaaaaccat gctatgaatt gaatcaaatg 720tgtcaagtgt tttcaggagt gttaagcaac
atcctgttca gctgtatggg cactagtccc 780ttacagatga ccatgctgat ggatctattc
atctatttat ttaaatcttt atttagttaa 840ctatctatag ggcttaaatt agttttgttc
atattatatt atgtgaactt ttacattgtg 900aattgtgtaa caaaaacatg ttctttatat
ttattatttt gccttgttta ttaaattttt 960actatagaaa aattctttat ttattcttta
aaattgaact ccaaccctga ttgtgcaaac 1020tgattaaaga atggatggt
103960189PRTHomo sapiens 60Met Ala Leu
Thr Phe Tyr Leu Leu Val Ala Leu Val Val Leu Ser Tyr1 5
10 15Lys Ser Phe Ser Ser Leu Gly Cys Asp
Leu Pro Gln Thr His Ser Leu 20 25
30Gly Asn Arg Arg Ala Leu Ile Leu Leu Ala Gln Met Arg Arg Ile Ser
35 40 45Pro Phe Ser Cys Leu Lys Asp
Arg His Asp Phe Glu Phe Pro Gln Glu 50 55
60Glu Phe Asp Asp Lys Gln Phe Gln Lys Ala Gln Ala Ile Ser Val Leu65
70 75 80His Glu Met Ile
Gln Gln Thr Phe Asn Leu Phe Ser Thr Lys Asp Ser 85
90 95Ser Ala Ala Leu Asp Glu Thr Leu Leu Asp
Glu Phe Tyr Ile Glu Leu 100 105
110Asp Gln Gln Leu Asn Asp Leu Glu Ser Cys Val Met Gln Glu Val Gly
115 120 125Val Ile Glu Ser Pro Leu Met
Tyr Glu Asp Ser Ile Leu Ala Val Arg 130 135
140Lys Tyr Phe Gln Arg Ile Thr Leu Tyr Leu Thr Glu Lys Lys Tyr
Ser145 150 155 160Ser Cys
Ala Trp Glu Val Val Arg Ala Glu Ile Met Arg Ser Phe Ser
165 170 175Leu Ser Ile Asn Leu Gln Lys
Arg Leu Lys Ser Lys Glu 180 18561963DNAHomo
sapiens 61caaggttatc catctcaagt agcctagcaa tatttgcaac atcccaatgg
ccctgtcctt 60ttctttactt atggccgtgc tggtgctcag ctacaaatcc atctgttctc
tgggctgtga 120tctgcctcag acccacagcc tcggtaatag gagggccttg atactcctgg
gacaaatggg 180aagaatctct cctttctcct gcctgaagga cagacatgat ttccgaatcc
cccaggagga 240gtttgatggc aaccagttcc agaaggctca agccatctct gtcctccatg
agatgatcca 300gcagaccttc aatctcttca gcacagagga ctcatctgct gcttgggaac
agagcctcct 360agaaaaattt tccactgaac tttaccagca actgaatgac ctggaagcat
gtgtgataca 420ggaggttggg gtggaagaga ctcccctgat gaatgaggac tccatcctgg
ctgtgaggaa 480atacttccaa agaatcactc tttatctaat agagaggaaa tacagccctt
gtgcctggga 540ggttgtcaga gcagaaatca tgagatccct ctcgttttca acaaacttgc
aaaaaagatt 600aaggaggaag gattgaaaac tggttcaaca tggcaatgat cctgattgac
taatacatta 660tctcacactt tcatgagttc ttccatttca aagactcact tctataacca
cgacgcgttg 720aatcaaaatt ttcaaatgtt ttcagcagtg taaagaagtg tcgtgtatac
ctgtgcaggc 780actagtcctt tacagatgac cattctgatg tctctgttca tcttttgttt
aaatatttat 840ttaattattt ttaaaattta tgtaatatca tgagtcgctt tacattgtgg
ttaatgtaac 900aatatatgtt cttcatattt agccaatata ttaatttcct ttttcattaa
atttttacta 960tac
96362189PRTHomo sapiens 62Met Ala Leu Ser Phe Ser Leu Leu Met
Ala Val Leu Val Leu Ser Tyr1 5 10
15Lys Ser Ile Cys Ser Leu Gly Cys Asp Leu Pro Gln Thr His Ser
Leu 20 25 30Gly Asn Arg Arg
Ala Leu Ile Leu Leu Gly Gln Met Gly Arg Ile Ser 35
40 45Pro Phe Ser Cys Leu Lys Asp Arg His Asp Phe Arg
Ile Pro Gln Glu 50 55 60Glu Phe Asp
Gly Asn Gln Phe Gln Lys Ala Gln Ala Ile Ser Val Leu65 70
75 80His Glu Met Ile Gln Gln Thr Phe
Asn Leu Phe Ser Thr Glu Asp Ser 85 90
95Ser Ala Ala Trp Glu Gln Ser Leu Leu Glu Lys Phe Ser Thr
Glu Leu 100 105 110Tyr Gln Gln
Leu Asn Asp Leu Glu Ala Cys Val Ile Gln Glu Val Gly 115
120 125Val Glu Glu Thr Pro Leu Met Asn Glu Asp Ser
Ile Leu Ala Val Arg 130 135 140Lys Tyr
Phe Gln Arg Ile Thr Leu Tyr Leu Ile Glu Arg Lys Tyr Ser145
150 155 160Pro Cys Ala Trp Glu Val Val
Arg Ala Glu Ile Met Arg Ser Leu Ser 165
170 175Phe Ser Thr Asn Leu Gln Lys Arg Leu Arg Arg Lys
Asp 180 18563705DNAHomo sapiens 63agagaaccta
gagcccaagg ttcagagtca cccatctcag caagcccaga agcatctgca 60atatctatga
tggcctcgcc ctttgcttta ctgatggccc tggtggtgct cagctgcaag 120tcaagctgct
ctctgggctg tgatctccct gagacccaca gcctggataa caggaggacc 180ttgatgctcc
tggcacaaat gagcagaatc tctccttcct cctgtctgat ggacagacat 240gactttggat
ttccccagga ggagtttgat ggcaaccagt tccagaaggc tccagccatc 300tctgtcctcc
atgagctgat ccagcagatc ttcaacctct ttaccacaaa agattcatct 360gctgcttggg
atgaggacct cctagacaaa ttctgcaccg aactctacca gcagctgaat 420gacttggaag
cctgtgtgat gcaggaggag agggtgggag aaactcccct gatgaatgcg 480gactccatct
tggctgtgaa gaaatacttc cgaagaatca ctctctatct gacagagaag 540aaatacagcc
cttgtgcctg ggaggttgtc agagcagaaa tcatgagatc cctctcttta 600tcaacaaact
tgcaagaaag attaaggagg aaggaataac acctggtcca acatgaaaca 660attcttattg
actcatatac caggtcacgc tttcatgaat tctgc 70564190PRTHomo
sapiens 64Met Met Ala Ser Pro Phe Ala Leu Leu Met Ala Leu Val Val Leu
Ser1 5 10 15Cys Lys Ser
Ser Cys Ser Leu Gly Cys Asp Leu Pro Glu Thr His Ser 20
25 30Leu Asp Asn Arg Arg Thr Leu Met Leu Leu
Ala Gln Met Ser Arg Ile 35 40
45Ser Pro Ser Ser Cys Leu Met Asp Arg His Asp Phe Gly Phe Pro Gln 50
55 60Glu Glu Phe Asp Gly Asn Gln Phe Gln
Lys Ala Pro Ala Ile Ser Val65 70 75
80Leu His Glu Leu Ile Gln Gln Ile Phe Asn Leu Phe Thr Thr
Lys Asp 85 90 95Ser Ser
Ala Ala Trp Asp Glu Asp Leu Leu Asp Lys Phe Cys Thr Glu 100
105 110Leu Tyr Gln Gln Leu Asn Asp Leu Glu
Ala Cys Val Met Gln Glu Glu 115 120
125Arg Val Gly Glu Thr Pro Leu Met Asn Ala Asp Ser Ile Leu Ala Val
130 135 140Lys Lys Tyr Phe Arg Arg Ile
Thr Leu Tyr Leu Thr Glu Lys Lys Tyr145 150
155 160Ser Pro Cys Ala Trp Glu Val Val Arg Ala Glu Ile
Met Arg Ser Leu 165 170
175Ser Leu Ser Thr Asn Leu Gln Glu Arg Leu Arg Arg Lys Glu 180
185 19065778DNAHomo sapiens 65gttacccctc
atcaaccagc ccagcagcat cttcgggatt cccaatggca ttgccctttg 60ctttaatgat
ggccctggtg gtgctcagct gcaagtcaag ctgctctctg ggctgtaatc 120tgtctcaaac
ccacagcctg aataacagga ggactttgat gctcatggca caaatgagga 180gaatctctcc
tttctcctgc ctgaaggaca gacatgactt tgaatttccc caggaggaat 240ttgatggcaa
ccagttccag aaagctcaag ccatctctgt cctccatgag atgatgcagc 300agaccttcaa
tctcttcagc acaaagaact catctgctgc ttgggatgag accctcctag 360aaaaattcta
cattgaactt ttccagcaaa tgaatgacct ggaagcctgt gtgatacagg 420aggttggggt
ggaagagact cccctgatga atgaggactc catcctggct gtgaagaaat 480acttccaaag
aatcactctt tatctgatgg agaagaaata cagcccttgt gcctgggagg 540ttgtcagagc
agaaatcatg agatccctct ctttttcaac aaacttgcaa aaaagattaa 600ggaggaagga
ttgaaaactg gttcatcatg gaaatgattc tcattgacta atacatcatc 660tcacactttc
atgagttctt ccatttcaaa gactcacttc tcctataacc accacaagtt 720gaatcaaaat
tttcaaatgt tttcaggagt gtaaagaagc atcatgtata cctgtgca 77866189PRTHomo
sapiens 66Met Ala Leu Pro Phe Ala Leu Met Met Ala Leu Val Val Leu Ser
Cys1 5 10 15Lys Ser Ser
Cys Ser Leu Gly Cys Asn Leu Ser Gln Thr His Ser Leu 20
25 30Asn Asn Arg Arg Thr Leu Met Leu Met Ala
Gln Met Arg Arg Ile Ser 35 40
45Pro Phe Ser Cys Leu Lys Asp Arg His Asp Phe Glu Phe Pro Gln Glu 50
55 60Glu Phe Asp Gly Asn Gln Phe Gln Lys
Ala Gln Ala Ile Ser Val Leu65 70 75
80His Glu Met Met Gln Gln Thr Phe Asn Leu Phe Ser Thr Lys
Asn Ser 85 90 95Ser Ala
Ala Trp Asp Glu Thr Leu Leu Glu Lys Phe Tyr Ile Glu Leu 100
105 110Phe Gln Gln Met Asn Asp Leu Glu Ala
Cys Val Ile Gln Glu Val Gly 115 120
125Val Glu Glu Thr Pro Leu Met Asn Glu Asp Ser Ile Leu Ala Val Lys
130 135 140Lys Tyr Phe Gln Arg Ile Thr
Leu Tyr Leu Met Glu Lys Lys Tyr Ser145 150
155 160Pro Cys Ala Trp Glu Val Val Arg Ala Glu Ile Met
Arg Ser Leu Ser 165 170
175Phe Ser Thr Asn Leu Gln Lys Arg Leu Arg Arg Lys Asp 180
18567939DNAHomo sapiens 67atcccaatgg ccctgtcctt ttctttactg
atggccgtgc tggtgctcag ctacaaatcc 60atctgttctc tgggctgtga tctgcctcag
actcacagcc tgggtaatag gagggccttg 120atactcctgg cacaaatggg aagaatctct
catttctcct gcctgaagga cagatatgat 180ttcggattcc cccaggaggt gtttgatggc
aaccagttcc agaaggctca agccatctct 240gccttccatg agatgatcca gcagaccttc
aatctcttca gcacaaagga ttcatctgct 300gcttgggatg agaccctcct agacaaattc
tacattgaac ttttccagca actgaatgac 360ctagaagcct gtgtgacaca ggaggttggg
gtggaagaga ttgccctgat gaatgaggac 420tccatcctgg ctgtgaggaa atactttcaa
agaatcactc tttatctgat ggggaagaaa 480tacagccctt gtgcctggga ggttgtcaga
gcagaaatca tgagatcctt ctctttttca 540acaaacttgc aaaaaggatt aagaaggaag
gattgaaaac tcattcaaca tggaaatgat 600cctcattgat taatacatca tctcacactt
tcatgagttc ttccatttca aagactcact 660tctataacca ccacaagttg aatcaaaatt
tcaaaatgtt ttcaggagtg taaagaagca 720tcgtgtttac ctgtgcaggc actagtcctt
tacagatgac catgctgatg tctctattca 780tctatttatt taaatattta tttatttaac
tatttttaag gtttaaatca tgttttatgt 840aatatcatgt gtacctttac attttgctta
atgtaacaat atatgttctt catatttagt 900taatatatta acttcctttt cattaaattt
ttactatac 93968189PRTHomo sapiens 68Met Ala Leu
Ser Phe Ser Leu Leu Met Ala Val Leu Val Leu Ser Tyr1 5
10 15Lys Ser Ile Cys Ser Leu Gly Cys Asp
Leu Pro Gln Thr His Ser Leu 20 25
30Gly Asn Arg Arg Ala Leu Ile Leu Leu Ala Gln Met Gly Arg Ile Ser
35 40 45His Phe Ser Cys Leu Lys Asp
Arg Tyr Asp Phe Gly Phe Pro Gln Glu 50 55
60Val Phe Asp Gly Asn Gln Phe Gln Lys Ala Gln Ala Ile Ser Ala Phe65
70 75 80His Glu Met Ile
Gln Gln Thr Phe Asn Leu Phe Ser Thr Lys Asp Ser 85
90 95Ser Ala Ala Trp Asp Glu Thr Leu Leu Asp
Lys Phe Tyr Ile Glu Leu 100 105
110Phe Gln Gln Leu Asn Asp Leu Glu Ala Cys Val Thr Gln Glu Val Gly
115 120 125Val Glu Glu Ile Ala Leu Met
Asn Glu Asp Ser Ile Leu Ala Val Arg 130 135
140Lys Tyr Phe Gln Arg Ile Thr Leu Tyr Leu Met Gly Lys Lys Tyr
Ser145 150 155 160Pro Cys
Ala Trp Glu Val Val Arg Ala Glu Ile Met Arg Ser Phe Ser
165 170 175Phe Ser Thr Asn Leu Gln Lys
Gly Leu Arg Arg Lys Asp 180 18569980DNAHomo
sapiens 69gttcaaggtt acccatctca agtagcctag caacatttgc aacatcccaa
tggccctgtc 60cttttcttta ctgatggccg tgctggtgct cagctacaaa tccatctgtt
ctctaggctg 120tgatctgcct cagacccaca gcctgggtaa taggagggcc ttgatactcc
tggcacaaat 180gggaagaatc tctcctttct cctgcctgaa ggacagacat gactttggac
ttccccagga 240ggagtttgat ggcaaccagt tccagaagac tcaagccatc tctgtcctcc
atgagatgat 300ccagcagacc ttcaatctct tcagcacaga ggactcatct gctgcttggg
aacagagcct 360cctagaaaaa ttttccactg aactttacca gcaactgaat aacctggaag
catgtgtgat 420acaggaggtt gggatggaag agactcccct gatgaatgag gactccatcc
tggctgtgag 480gaaatacttc caaagaatca ctctttatct aacagagaag aaatacagcc
cttgtgcctg 540ggaggttgtc agagcagaaa tcatgagatc tctctctttt tcaacaaact
tgcaaaaaat 600attaaggagg aaggattgaa aactggttca acatggcaat gatcctgatt
gactaataca 660ttatctcaca ctttcatgag ttcctccatt tcaaagactc acttctataa
ccaccacgag 720ttgaatcaaa attttcaaat gttttcagca gtgtaaagaa gcgtcgtgta
tacctgtgca 780ggcactagta ctttacagat gaccatgctg atgtctctgt tcatctattt
atttaaatat 840ttatttaatt atttttaaga tttaaattat ttttttatgt aatatcatgt
gtacctttac 900attgtggtga atgtaacaat atatgttctt catatttagc caatatatta
atttcctttt 960tcattaaatt tttactatac
98070189PRTHomo sapiens 70Met Ala Leu Ser Phe Ser Leu Leu Met
Ala Val Leu Val Leu Ser Tyr1 5 10
15Lys Ser Ile Cys Ser Leu Gly Cys Asp Leu Pro Gln Thr His Ser
Leu 20 25 30Gly Asn Arg Arg
Ala Leu Ile Leu Leu Ala Gln Met Gly Arg Ile Ser 35
40 45Pro Phe Ser Cys Leu Lys Asp Arg His Asp Phe Gly
Leu Pro Gln Glu 50 55 60Glu Phe Asp
Gly Asn Gln Phe Gln Lys Thr Gln Ala Ile Ser Val Leu65 70
75 80His Glu Met Ile Gln Gln Thr Phe
Asn Leu Phe Ser Thr Glu Asp Ser 85 90
95Ser Ala Ala Trp Glu Gln Ser Leu Leu Glu Lys Phe Ser Thr
Glu Leu 100 105 110Tyr Gln Gln
Leu Asn Asn Leu Glu Ala Cys Val Ile Gln Glu Val Gly 115
120 125Met Glu Glu Thr Pro Leu Met Asn Glu Asp Ser
Ile Leu Ala Val Arg 130 135 140Lys Tyr
Phe Gln Arg Ile Thr Leu Tyr Leu Thr Glu Lys Lys Tyr Ser145
150 155 160Pro Cys Ala Trp Glu Val Val
Arg Ala Glu Ile Met Arg Ser Leu Ser 165
170 175Phe Ser Thr Asn Leu Gln Lys Ile Leu Arg Arg Lys
Asp 180 185711024DNAHomo sapiens 71ttcaaggtta
cccatctcaa gtagcctagc aatattggca acatcccaat ggccctgtcc 60ttttctttac
tgatggccgt gctggtgctc agctacaaat ccatctgttc tctgggctgt 120gatctgcctc
agacccacag cctgggtaat aggagggcct tgatactcct ggcacaaatg 180ggaagaatct
ctcctttctc ctgcctgaag gacagacatg actttggatt cccccaggag 240gagtttgatg
gcaaccagtt ccagaaggct caagccatct ctgtcctcca tgagatgatc 300cagcagacct
tcaatctctt cagcacaaag gactcatctg ctacttggga acagagcctc 360ctagaaaaat
tttccactga acttaaccag cagctgaatg acctggaagc ctgcgtgata 420caggaggttg
gggtggaaga gactcccctg atgaatgtgg actccatcct ggctgtgaag 480aaatacttcc
aaagaatcac tctttatctg acagagaaga aatacagccc ttgtgcctgg 540gaggttgtca
gagcagaaat catgagatcc ttctctttat caaaaatttt tcaagaaaga 600ttaaggagga
aggaatgaaa cctgtttcaa catggaaatg atctgtattg actaatacac 660cagtccacac
ttctatgact tctgccattt caaagactca tttctcctat aaccaccgca 720tgagttgaat
caaaattttc agatcttttc aggagtgtaa ggaaacatca tgtttacctg 780tgcaggcact
agtcctttac agatgaccat gctgatagat ctaattatct atctattgaa 840atatttattt
atttattaga tttaaattat ttttgtccat gtaatattat gtgtactttt 900acattgtgtt
atatcaaaat atgttattta tatttagtca atatattatt ttctttttat 960taatttttac
tattaaaact tcttatatta tttgtttatt ctttaataaa gaaataccaa 1020gccc
102472189PRTHomo
sapiens 72Met Ala Leu Ser Phe Ser Leu Leu Met Ala Val Leu Val Leu Ser
Tyr1 5 10 15Lys Ser Ile
Cys Ser Leu Gly Cys Asp Leu Pro Gln Thr His Ser Leu 20
25 30Gly Asn Arg Arg Ala Leu Ile Leu Leu Ala
Gln Met Gly Arg Ile Ser 35 40
45Pro Phe Ser Cys Leu Lys Asp Arg His Asp Phe Gly Phe Pro Gln Glu 50
55 60Glu Phe Asp Gly Asn Gln Phe Gln Lys
Ala Gln Ala Ile Ser Val Leu65 70 75
80His Glu Met Ile Gln Gln Thr Phe Asn Leu Phe Ser Thr Lys
Asp Ser 85 90 95Ser Ala
Thr Trp Glu Gln Ser Leu Leu Glu Lys Phe Ser Thr Glu Leu 100
105 110Asn Gln Gln Leu Asn Asp Leu Glu Ala
Cys Val Ile Gln Glu Val Gly 115 120
125Val Glu Glu Thr Pro Leu Met Asn Val Asp Ser Ile Leu Ala Val Lys
130 135 140Lys Tyr Phe Gln Arg Ile Thr
Leu Tyr Leu Thr Glu Lys Lys Tyr Ser145 150
155 160Pro Cys Ala Trp Glu Val Val Arg Ala Glu Ile Met
Arg Ser Phe Ser 165 170
175Leu Ser Lys Ile Phe Gln Glu Arg Leu Arg Arg Lys Glu 180
18573840DNAHomo sapiens 73acattctaac tgcaaccttt cgaagccttt
gctctggcac aacaggtagt aggcgacact 60gttcgtgttg tcaacatgac caacaagtgt
ctcctccaaa ttgctctcct gttgtgcttc 120tccactacag ctctttccat gagctacaac
ttgcttggat tcctacaaag aagcagcaat 180tttcagtgtc agaagctcct gtggcaattg
aatgggaggc ttgaatactg cctcaaggac 240aggatgaact ttgacatccc tgaggagatt
aagcagctgc agcagttcca gaaggaggac 300gccgcattga ccatctatga gatgctccag
aacatctttg ctattttcag acaagattca 360tctagcactg gctggaatga gactattgtt
gagaacctcc tggctaatgt ctatcatcag 420ataaaccatc tgaagacagt cctggaagaa
aaactggaga aagaagattt caccagggga 480aaactcatga gcagtctgca cctgaaaaga
tattatggga ggattctgca ttacctgaag 540gccaaggagt acagtcactg tgcctggacc
atagtcagag tggaaatcct aaggaacttt 600tacttcatta acagacttac aggttacctc
cgaaactgaa gatctcctag cctgtgcctc 660tgggactgga caattgcttc aagcattctt
caaccagcag atgctgttta agtgactgat 720ggctaatgta ctgcatatga aaggacacta
gaagattttg aaatttttat taaattatga 780gttattttta tttatttaaa ttttattttg
gaaaataaat tatttttggt gcaaaagtca 84074187PRTHomo sapiens 74Met Thr Asn
Lys Cys Leu Leu Gln Ile Ala Leu Leu Leu Cys Phe Ser1 5
10 15Thr Thr Ala Leu Ser Met Ser Tyr Asn
Leu Leu Gly Phe Leu Gln Arg 20 25
30Ser Ser Asn Phe Gln Cys Gln Lys Leu Leu Trp Gln Leu Asn Gly Arg
35 40 45Leu Glu Tyr Cys Leu Lys Asp
Arg Met Asn Phe Asp Ile Pro Glu Glu 50 55
60Ile Lys Gln Leu Gln Gln Phe Gln Lys Glu Asp Ala Ala Leu Thr Ile65
70 75 80Tyr Glu Met Leu
Gln Asn Ile Phe Ala Ile Phe Arg Gln Asp Ser Ser 85
90 95Ser Thr Gly Trp Asn Glu Thr Ile Val Glu
Asn Leu Leu Ala Asn Val 100 105
110Tyr His Gln Ile Asn His Leu Lys Thr Val Leu Glu Glu Lys Leu Glu
115 120 125Lys Glu Asp Phe Thr Arg Gly
Lys Leu Met Ser Ser Leu His Leu Lys 130 135
140Arg Tyr Tyr Gly Arg Ile Leu His Tyr Leu Lys Ala Lys Glu Tyr
Ser145 150 155 160His Cys
Ala Trp Thr Ile Val Arg Val Glu Ile Leu Arg Asn Phe Tyr
165 170 175Phe Ile Asn Arg Leu Thr Gly
Tyr Leu Arg Asn 180 185751514DNAHomo sapiens
75gatctggtaa acctgaagca aatatagaaa cctatagggc ctgacttcct acataaagta
60aggagggtaa aaatggaggc tagaataagg gttaaaattt tgcttctaga acagagaaaa
120tgattttttt catatatata tgaatatata ttatatatac acatatatac atatattcac
180tatagtgtgt atacataaat atataatata tatattgtta gtgtagtgtg tgtctgatta
240tttacatgca tatagtatat acacttatga ctttagtacc cagacgtttt tcatttgatt
300aagcattcat ttgtattgac acagctgaag tttactggag tttagctgaa gtctaatgca
360aaattaatag attgttgtca tcctcttaag gtcataggga gaacacacaa atgaaaacag
420taaaagaaac tgaaagtaca gagaaatgtt cagaaaatga aaaccatgtg tttcctatta
480aaagccatgc atacaagcaa tgtcttcaga aaacctaggg tccaaggtta agccatatcc
540cagctcagta aagccaggag catcctcatt tcccaatggc cctcctgttc cctctactgg
600cagccctagt gatgaccagc tatagccctg ttggatctct gggctgtgat ctgcctcaga
660accatggcct acttagcagg aacaccttgg tgcttctgca ccaaatgagg agaatctccc
720ctttcttgtg tctcaaggac agaagagact tcaggttccc ccaggagatg gtaaaaggga
780gccagttgca gaaggcccat gtcatgtctg tcctccatga gatgctgcag cagatcttca
840gcctcttcca cacagagcgc tcctctgctg cctggaacat gaccctccta gaccaactcc
900acactggact tcatcagcaa ctgcaacacc tggagacctg cttgctgcag gtagtgggag
960aaggagaatc tgctggggca attagcagcc ctgcactgac cttgaggagg tacttccagg
1020gaatccgtgt ctacctgaaa gagaagaaat acagcgactg tgcctgggaa gttgtcagaa
1080tggaaatcat gaaatccttg ttcttatcaa caaacatgca agaaagactg agaagtaaag
1140atagagacct gggctcatct tgaaatgatt ctcattgatt aatttgccat ataacacttg
1200cacatgtgac tctggtcaat tcaaaagact cttatttcgg ctttaatcac agaattgact
1260gaattagttc tgcaaatact ttgtcggtat attaagccag tatatgttaa aaagacttag
1320gttcaggggc atcagtccct aagatgttat ttatttttac tcatttattt attcttacat
1380tttatcatat ttatactatt tatattctta tataacaaat gtttgccttt acattgtatt
1440aagataacaa aacatgttca gctttccatt tggttaaata ttgtattttg ttatttatta
1500aattattttc aaac
151476195PRTHomo sapiens 76Met Ala Leu Leu Phe Pro Leu Leu Ala Ala Leu
Val Met Thr Ser Tyr1 5 10
15Ser Pro Val Gly Ser Leu Gly Cys Asp Leu Pro Gln Asn His Gly Leu
20 25 30Leu Ser Arg Asn Thr Leu Val
Leu Leu His Gln Met Arg Arg Ile Ser 35 40
45Pro Phe Leu Cys Leu Lys Asp Arg Arg Asp Phe Arg Phe Pro Gln
Glu 50 55 60Met Val Lys Gly Ser Gln
Leu Gln Lys Ala His Val Met Ser Val Leu65 70
75 80His Glu Met Leu Gln Gln Ile Phe Ser Leu Phe
His Thr Glu Arg Ser 85 90
95Ser Ala Ala Trp Asn Met Thr Leu Leu Asp Gln Leu His Thr Gly Leu
100 105 110His Gln Gln Leu Gln His
Leu Glu Thr Cys Leu Leu Gln Val Val Gly 115 120
125Glu Gly Glu Ser Ala Gly Ala Ile Ser Ser Pro Ala Leu Thr
Leu Arg 130 135 140Arg Tyr Phe Gln Gly
Ile Arg Val Tyr Leu Lys Glu Lys Lys Tyr Ser145 150
155 160Asp Cys Ala Trp Glu Val Val Arg Met Glu
Ile Met Lys Ser Leu Phe 165 170
175Leu Ser Thr Asn Met Gln Glu Arg Leu Arg Ser Lys Asp Arg Asp Leu
180 185 190Gly Ser Ser
195771240DNAHomo sapiens 77cacattgttc tgatcatctg aagatcagct attagaagag
aaagatcagt taagtccttt 60ggacctgatc agcttgatac aagaactact gatttcaact
tctttggctt aattctctcg 120gaaacgatga aatatacaag ttatatcttg gcttttcagc
tctgcatcgt tttgggttct 180cttggctgtt actgccagga cccatatgta aaagaagcag
aaaaccttaa gaaatatttt 240aatgcaggtc attcagatgt agcggataat ggaactcttt
tcttaggcat tttgaagaat 300tggaaagagg agagtgacag aaaaataatg cagagccaaa
ttgtctcctt ttacttcaaa 360ctttttaaaa actttaaaga tgaccagagc atccaaaaga
gtgtggagac catcaaggaa 420gacatgaatg tcaagttttt caatagcaac aaaaagaaac
gagatgactt cgaaaagctg 480actaattatt cggtaactga cttgaatgtc caacgcaaag
caatacatga actcatccaa 540gtgatggctg aactgtcgcc agcagctaaa acagggaagc
gaaaaaggag tcagatgctg 600tttcgaggtc gaagagcatc ccagtaatgg ttgtcctgcc
tgcaatattt gaattttaaa 660tctaaatcta tttattaata tttaacatta tttatatggg
gaatatattt ttagactcat 720caatcaaata agtatttata atagcaactt ttgtgtaatg
aaaatgaata tctattaata 780tatgtattat ttataattcc tatatcctgt gactgtctca
cttaatcctt tgttttctga 840ctaattaggc aaggctatgt gattacaagg ctttatctca
ggggccaact aggcagccaa 900cctaagcaag atcccatggg ttgtgtgttt atttcacttg
atgatacaat gaacacttat 960aagtgaagtg atactatcca gttactgccg gtttgaaaat
atgcctgcaa tctgagccag 1020tgctttaatg gcatgtcaga cagaacttga atgtgtcagg
tgaccctgat gaaaacatag 1080catctcagga gatttcatgc ctggtgcttc caaatattgt
tgacaactgt gactgtaccc 1140aaatggaaag taactcattt gttaaaatta tcaatatcta
atatatatga ataaagtgta 1200agttcacaac aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa
124078166PRTHomo sapiens 78Met Lys Tyr Thr Ser Tyr
Ile Leu Ala Phe Gln Leu Cys Ile Val Leu1 5
10 15Gly Ser Leu Gly Cys Tyr Cys Gln Asp Pro Tyr Val
Lys Glu Ala Glu 20 25 30Asn
Leu Lys Lys Tyr Phe Asn Ala Gly His Ser Asp Val Ala Asp Asn 35
40 45Gly Thr Leu Phe Leu Gly Ile Leu Lys
Asn Trp Lys Glu Glu Ser Asp 50 55
60Arg Lys Ile Met Gln Ser Gln Ile Val Ser Phe Tyr Phe Lys Leu Phe65
70 75 80Lys Asn Phe Lys Asp
Asp Gln Ser Ile Gln Lys Ser Val Glu Thr Ile 85
90 95Lys Glu Asp Met Asn Val Lys Phe Phe Asn Ser
Asn Lys Lys Lys Arg 100 105
110Asp Asp Phe Glu Lys Leu Thr Asn Tyr Ser Val Thr Asp Leu Asn Val
115 120 125Gln Arg Lys Ala Ile His Glu
Leu Ile Gln Val Met Ala Glu Leu Ser 130 135
140Pro Ala Ala Lys Thr Gly Lys Arg Lys Arg Ser Gln Met Leu Phe
Arg145 150 155 160Gly Arg
Arg Ala Ser Gln 1657912979DNAHomo
sapiensmisc_feature(5427)..(5427)n is a, c, g, or
tmisc_feature(5460)..(5461)n is a, c, g, or
tmisc_feature(12190)..(12190)n is a, c, g, or
tmisc_feature(12192)..(12192)n is a, c, g, or
tmisc_feature(12237)..(12240)n is a, c, g, or t 79gaattccttg agcccaggaa
gctgcagtga gccacgtttg taccattgca ctccagcttg 60ggagatagag tgagaccctg
tctcaaaaaa aaaaaaaaaa aaaaaaagaa aaatttattt 120ggcttacaga tgtctgggct
gtacaagaag tgtggcagca gcatctgctt ccagtgaagg 180cattaggctc cttctactca
gcagaagaca acatgcagct ggcatgtgca gagaccacat 240ggtaagagaa gaagccaatg
ggggaatgca atggggggac ggggagacac acactttttt 300tttttttttt gagatggagt
ctcgctctgt cacccaggct ggagtgcagt ggcgcgatct 360cggctcactg caagctctgc
ctcccgggtt cacgccattc tcctgcctca gccgcccgag 420tagctgggac tacaggtgcc
caccaccacg ccccgctgat tttttgtatt tttagtagag 480atggggtttc accatgttag
ccaggatggt ctcgatctcc tgacctcgtg atctgcctgc 540cttggcttcc caaagtgctg
ggattacagg catgagccac catgcctgtc cctttttttt 600tttttttttt tgagacaggg
gctgtcaccc aggctggagt gcactggcgt ggtcatggct 660cattgcacct ttcacctcag
gctcaagaga ccctcctacc tcagcctcct cagtagctgg 720gactaaggaa gtacaccacc
atgcccagct aattattttt tttaagatgc aatctcactc 780tgttgcccag gctgcactgc
agtggtacaa tctcagctca ctgcaacctc cgcctcctgg 840gttcaagcga ttctcttgct
tcagcctcct gagtagctgg gattacagat gcctgccacc 900aggcccggct aatttttgta
tttttagtag atacagggtt tcgccatgtt ggccaggctg 960gtctcgaact cctaacctaa
ggtgatccgc ccatctcggc ctcccaaagt gctgggatta 1020caggcatgag ccaccgtgcc
tggcccatgc ccagctaagt taaaaaaatt tttggctggg 1080caaggtgatt catacctgta
attccaacaa tttgggaagc taaggcaggc agatcccatt 1140tgagctcagg aattggagac
catcttggac aatatggcga aatcctgtct ctacaaaata 1200tacaaaaatt agctgggtgt
ggtggcgctg tgcctgtagt cccagctact ccagaggctg 1260aggtgggagg atggcttgag
cccgggaggc agaggttgca gtgagccaaa atggtgacat 1320tgcactccag cctgggcaac
agagccagac cctgtctcaa aaaaaaaaaa aaaaagctct 1380aaaaatagat agtggtgata
gttagttaca caacattgtg aatgtactta aatgtcactg 1440aattatacac ttaaatgttt
aaatggtaaa ttctatctta tgtatatttt accacaattt 1500aaaaatttta tctatttcta
ttttaatgag agttttaaaa agcaggaatg gatattgaat 1560ttccttaaat actctttgga
gtctattaaa gatagcattt tacttcaaaa tccagccctg 1620gtttctgtac ctagtacttc
tgtcacacca gtaaatgtta ttgaatgaaa acaaacaaaa 1680gaccataaag acatacctct
tcacgttcac taggattggt gtcatttttt taaaaaaagg 1740aaagaaaaat aaccagtatt
ggcaacagtg tggatatata gaaatttttg tatattgctg 1800gtaggaatat aaaataggga
aaacggtttg gtggttcctc aaaaagttca acataaaccc 1860aggcgcggtg gctcatgcct
gtaatcctag cactttggga ggctgaggtg ggagaactgt 1920ttgatcccag gagtttgaga
ccagcctagg caatatggtg agacctcatc tctacaaaaa 1980attagctagg catggtggcg
catgcctgta gtcccagcta cctgggaggc taagacagaa 2040agatcacttg agcctggaag
ggagtttgag gctgcagtga gcccagattg cgccactgca 2100ctccagcctg ggtgacagag
tgatatcctg tctcaaaata aataaataaa taataaacaa 2160acacagaatt accatatgac
ccagcaactc tactcctgtg tatatgccca aaaaagctga 2220aagcccaggc actgtggctt
acacctgtaa tcccagcact ttaggaggcc gaggcacttg 2280accccaggat tttgagacca
gcctgggcaa catagtactt gttcaagaat caggctgggc 2340atggtggctc acacctgtaa
tcccagcact ttgggagggc aaggtgggag gatcacttga 2400ggccaggcat tcgagaccag
cctgggcaag atagcaatac ccacccccaa tctctacaaa 2460agcaagtaat taattaggaa
attagccaaa gccaggtgcg gtggctcacg cctgtagtcc 2520cagcactttg ggaggctgag
gtgggcagat tgcttgagtc cagagattcg agaccagcct 2580aggcaacata tcaaaacccc
gtctctacta aaagtaaaaa aagaaaaatt gcactttggg 2640aggccaaggc ggggggatca
cctgatgtca ggagttcaag accagcctgg ccaacatggt 2700gaaaccccat ctctacaaaa
atacaaaagt tagccgggca tgatggcagt gtctgtaatc 2760ccagctactc aggaggctgg
gtcggaagaa tcatttgaat ccaggaggcg gaggttgcag 2820tgaaccaaga ttgtgccatt
gcattccagc ctgggtgaca gagcaagcct ccgtctcaaa 2880aaaaaaaaaa aaaagaaaaa
ttagccagat gtggtggtgc atgcctgtgg tcccagctac 2940tcaggaggct gtggtgggag
gattgcttga gcccaagaca ctgaggctgc agtgagccat 3000gatcacacca ctgcactcca
gcctaggcaa ccagagtgag accctgtctc aaaaacaaac 3060aaacaaacaa aaaccacttt
aacagggtat ggtggtgcac acctctagtc ccagctactt 3120gggaggttga ggcagccgga
tcacttgacc ccaggagatc gaggctgcag tccagcctgg 3180gcaaccgagt gagactgtct
caaaaagaaa aaaaaaaaaa aaaggacata gcagcactat 3240tcacaaatcc aaaagttaga
aataactcag atgtccatca acagatgaat ggataaacga 3300attgtggtat atacatataa
tggactatta ttcagccatt aaaaggaatg aaatattgat 3360acaggctata aactctatga
acattgaaaa cattctaagt gaaaggaaat agacataaga 3420ggtcacattt tgcaattctt
tttttttttt tttttttttt tgagactgag tctcactctg 3480ttgcccaggc tggagcgcag
tggctcgatc tcagctcact gcaacctcca tctcccgaat 3540tcaagcaatt cttctgcctc
agcctcccga gtagctggga ttacatgtag gcatgcacca 3600ccatgcctgg ctaatttttg
tacttttagt agagatgggg tttcaccatg ttggtcaggc 3660tggtcttgaa ctccagacct
caggtggtcc acccgccttg gcctcccaaa gtgctaggat 3720tacaggtgtg agccaccatg
cccggccaca tgtatggtaa ttattgaatg tgtttggtat 3780gttcgttgtg ggtgatgaaa
tattttggaa ctagatagac gtgatggttg aacaacactg 3840tggatgcact aaatgccact
gaattgtaca ctttaaaatt gttaacttta tgttacatga 3900atttcaccta aattaacaac
aacaacaaaa aagaacttaa gacagcactt ggtttggcta 3960ttacgtagtt tcgtgacaaa
cagtggtcca tctcccagag aactggcccc aggttcctaa 4020gaaggcaaaa ggagacacag
gacctctctg cactattttt tttgcaactt cttatgagtc 4080tataattatt tcaaaataaa
agtctaaaag gaaaataaga acatgtgtga atgtggctgc 4140cccatgcctc ccaccctcag
gtctgacact cagagactga tcacctcttg agagtcctgg 4200aactcatccc aggttttaga
ccctgaatgg cctgtctggg gctggcgtct ggaggcagga 4260tcaggagcca gctcagagca
tagtttaact ttcacttttc ttttctccag aggagccagg 4320aagagagctg tgaccagcag
cgtcccttat tcgcttggcc ttggttcctg tttgcactgg 4380ctacagcagg gcactggccc
ctactgtcac cgccacctac acaaagaccc tatctctgag 4440cgctgcagcc tactgttcag
ccccaggttt gaggatggat gccctggacg cttcgaagct 4500actggatgag gagctgtatt
caagacagct gtgaggcccg aggtgggggg tggagagtgg 4560gatggtcttc agaccttgat
ctacaactgc ttgccttctg cttcccatcc acaggtatgt 4620gctgggctca cctgccatgc
agaggattca gggagccagg gtcctggtgt caggcctgca 4680gggcctgggg gccgaggtgg
ccaagaactt ggttctgatg ggtgtgggca gcctcactct 4740gcatgatccc caccccacct
gctggtccga cctggctgcc caggtaagtg tcctggggct 4800atgggctgcc agaccaagtg
gggcacggcc caagaggagt gtctttgctc aggctgcact 4860ggctctctcc ctagtttctc
ctctcagagc aggacttgga aaggagcaga gccgaggcct 4920ctcaagagct cttggctcag
ctcaacagag ctgtccaggt cgtcgtgcac acgggtgaca 4980tcactgagga cctgctgttg
gacttccagg tcagctcagg cctgcagccc tcaagagcag 5040gaagggctgg gcaatggttt
tggccctgct gatcactgtg tccacccagg tggtggtgct 5100gactgctgca aagctggagg
agcagctgaa ggtgggcacc ttgtgtcata agcatggagt 5160ttgctttctg gcggctgaca
cccggggcct cgtggggtga gtaagactgc ctgcccagcc 5220taccatatta cagccagcaa
ctggcctcat gctgtcctca gctccaggct tgctccagtg 5280cccctccaac cagcctcagg
tctatcccag catgcctttc tgattctggt ccccagtcct 5340gccctctggt tcctccaacc
tagcctccag acctgctcca gtaaccctct caaattctag 5400ttcccaagcc tctccttgca
ttccttnccc aattctggcc ctctggccct gccctagtan 5460nccctatcct taagtacaat
ctgtaagcca cctcagtgac ccctaccacc ccatctcagg 5520cagttgttct gtgactttgg
tgaggacttc actgtgcagg accccacaga ggcagaaccc 5580ctgacagctg ccatccagca
catctcccag gtgggtgctg agctgtaggc attcacccgc 5640tgaccaagga gaggctgcca
gggcctgtgg aaggcaggtc caggcaaccc tgagccaagc 5700ctcctcctac ccagggctcc
cctggcattc tcactctgag gaaaggggcc aatacccact 5760acttccgtga tggagacttg
gtgactttct cgggaattga gggaatggtt gagctcaacg 5820actgtgatcc ccggtctatc
cacgtgcggg gtaagccaat cccattccaa ttccaggtgc 5880agggcccaag cctccactgg
aagtgagcac agcctggccc ttgggatggg tttttctccc 5940tccaccttct acaaggtgca
gcaaggtttg ggacacagat gcaagatagg atggggtgtg 6000ggaactactc aggctcaagg
atcattactg actagactgg aactccctca gaggatgggt 6060ccctggagat tggagacaca
acaactttct ctcggtactt gcgtggtggg gctatcactg 6120aagtcaagag acccaagact
gtgagacatg tgagtgcaag tccatctgag gtaggggagc 6180ttggtcgcct tgaggggccc
atagcattct ggactagacc ctgagccagg tgcccttgca 6240gaagtccctg gacacagccc
tgctccagcc ccatgtggtg gcccagagct cccaggaagt 6300tcaccatgcc cactgcctgc
atcaggcctt ctgtgcactg cacaagttcc agcacctcca 6360tggccggcca ccccagccct
gggatcctgt gagtagtcct gttgctccca cccccagcct 6420ctgtcattta ttggggtccc
acctgccaga ggcaacaatg accattcaca aatccaagtc 6480tgatctccca acactgcagc
ctttagagta gagactggtt ccatggaagt gccaggcaca 6540catcctgggg actcctgcta
caccccgacc cctcagatct gtgctggaag ctgcactcag 6600attagtgaag cctcctggac
tgctgtctgg tactgggcat cctctggtgg tgctgtgcag 6660gctggcagca gggccaggcc
ttcccaccca ggcttctgct tcctcttctg tggaacaggg 6720tggatggagg gtggctggaa
ggatttgagt caggagtaga gctcaggctg gggctactat 6780gcccacagag tcctaccaac
aggttgatgc agagactgtg gtgggcctgg cccgggacct 6840ggaaccactg aagcggacag
aggaagagcc actggaagag ccactggatg aggccctagt 6900gcggacagtc gccctaagca
gtgcaaggtg tcttgagcct atggtggcat gctgggtcag 6960tagctgccca ggaagtgctg
aaggtgggca gaggcatagg tgtggggggt actgggaaga 7020tgtggagatc agtgtgtgtg
tcagagggca cccagcgcta gagagcagcc ctggagcctt 7080caccaacctg ggtgaagcct
ccagccagga tctgaggggg gtcaggaggt ggcaggagtg 7140cccagcctga agtgctgccc
ctaggcaatc tccagaagtt catgcctctg gaccagtggc 7200tttactttga tgccctcgat
tgtcttccgg aagatgggga gctccttccc agtcctgagg 7260actgtgccct gagaggcagc
cgctatgatg ggcaaattgc agtgtttggg gctggttttc 7320aggagaaact gagacgccag
cactacctcc tggtgagctg tggggtgaga ctgggggtgc 7380ctttgggaga gccagcccag
cccctctggc taaggctgtt cctgccaaca ggtgggcgct 7440ggtgccattg gttgtgagct
gctcaaagtc tttgccctag tgggactggg ggccgggaac 7500agcgggggct tgactgttgt
tgacatggac cacatagagc gctccaatct cagccgtcag 7560ttcctcttca ggtcccagga
cgttggtgtg agtgctgacc cctctccaca ctcctgcatc 7620ccagaccgtc ctcccataca
gcttcccacc caacatcttc ctgccttctt cccagagacc 7680caaggcagag gtggctgcag
cagctgcccg gggcctgaac ccagacttac aggtgatccc 7740gctcacctac ccactggatc
ccaccacaga gcacatctat ggggataact ttttctcccg 7800tgtggatggt gtggctgctg
ccctggacag tttccaggcc cgtgagtgct tgacttcgga 7860ggtcagtccc ttgcccacag
ctgtgccagt cccacttctg acccactgct cccctgccag 7920ggcgctatgt ggctgctcgt
tgcacccact atctgaagcc actgctggag gcaggcacat 7980cgggcacctg gggcagtgct
acagtattca tgccacatgt gactgaggcc tacagagccc 8040ctgcctcagc tgcagcttct
gaggatgccc cctaccctgt ctgtaccgtg cggtacttcc 8100ctagcacagc cgagcacacc
ctgcaggtag gaagcaccct ggagactccc accccaccca 8160gctcagccct cagctgcaga
cctgttctcc acctgatacc tcattcttcc tccctcctcc 8220acagtgggcc cggcatgagt
ttgaagaact cttccgactg tctgcagaga ccatcaacca 8280ccaccaacag taaggccacc
aacagaggca gatgggagtc cagggctcca agcatgagtc 8340tgcaggactc agtctcacac
ttcctcctct ctctgcaggg cacacacctc cctggcagac 8400atggatgagc cacagacact
caccttactg aagccagtgc ttggggtcct gagagtgcgt 8460ccacagaact ggcaagactg
tgtggcgtgg gctcttggcc actggaaact ctgctttcat 8520tatggcatca aacagctgct
gaggcacttc ccacctaata aagtgtgtgg ctaggggttg 8580ggacgctggg ggctcagggg
gaccagactg agcccagcag cttctactta cctacctagg 8640tgcttgagga tggaactccc
ttctggtcag gtcccaaaca gtgtccccag cccttggagt 8700ttgacaccaa ccaagtgagt
gggattctgt agggagctcc aagatagaga tgtggcccct 8760cagagcagag gtaggcattt
ctgcattctg cagagatgca cagatgccca gagagagcca 8820tgcttgtgca tatatgggtg
tctacatgtg aggcaaaggc aggcactcaa acagatccac 8880aaatggacag tgaccccacc
catgcaccat gcctctctgt tctgctctct gctcttggtc 8940tggctgcagg acacacacct
cctctacgta ctggcagctg ccaacctgta tgcccagatg 9000catgggctgc ctggctcaca
ggactggact gcactcaggg agctgctgaa gctgctgcca 9060cagcctgacc cccaacagat
ggcccccatc tttgctagta atctagagct ggcttcggct 9120tctgctgagt ttggtgaggc
tcctggccct ggcccctcat gctgtctttc aaaggcctga 9180acctgtcctg tcctcagcct
gtgctgcaga aggaagatag ggcctagggg atctacagcc 9240aatttgctac ctctcaggcc
tcctaacctc actcctccat agtttcaggc ttatcctctg 9300gtccctcagt aggtcttctc
cctgctgcct accccacatc ccagttcttg tggcagattc 9360ttggcaaaat aaataagtaa
ataaataaag tccattggtt cctggggagt gtctagctat 9420ggcctgcagg tgaggacagg
gtcacagagg tcatgagcac acatgggtga agactggggc 9480ttctagaggg gagattgtag
cattaattaa gggggcttct tgatttgatc agggaatagt 9540aagtgacagg cttggcaaag
accaagaata ggcacagggc tccaagaaga gtgcaggaga 9600caggggctaa ggactgcctc
aacatcccct tccctgacag gccctgagca gcagaaggaa 9660ctgaacaaag ccctggaagt
ctggagtgtg ggccctcccc tgaagcctct gatgtttgag 9720aaggtgggtg cccaagtggc
agtgaggagt ggggctgggg agtttgtgga gaaaggtcag 9780gagctaataa ggtagttttg
gagccccttg gcctgaattc cacagctgca gtgttaacac 9840tactttgact tgggccttac
aggatgatga cagcaacttc catgtggact ttgtggtagc 9900ggcagctagc ctgagatgtc
agaactacgg gattccaccg gtcaaccgtg cccaggtaac 9960cccacccctt gaggcttggg
cctggaggtg gagggcaaac cctggcccta cgccttgggc 10020ccagaccaaa tctcttgtcc
ttggcagagc aagcgaattg tgggccagat tatcccagcc 10080attgccacca ctacagcagc
tgtggcaggc ctgttgggcc tggagctgta taaggtggtg 10140agtgggccac ggcctcgtag
tgcctttcgc cacagctacc tacatctggc tgaaaactac 10200ctcatccgct atatgccttt
tgccccagcc atccagacgg ttgagcccat gataccccac 10260ccttagccct actaggcctg
ggtttcccct gcacctgccc atacaggccc caatctagct 10320gccggctctc actgaaactc
agactgtgca gaagtcctga agactccctc cagccctctt 10380cctgctatga agccaggctg
ggacctgtca gacacaggaa gcagccgtca gccatcccca 10440cccccaatcc tccaaagccc
aggatctggg ggagctgcag ctttaactca ttagtggagc 10500cagacatccc ccacagtccc
ctccttcctt ggagtacccc tgagggtagg tagtggggag 10560gggaccaggg catcagccca
gaaagagtct agcttccccc tgcatggtac gggggccctg 10620gcctacctcc tacaagctga
gttaaaaggt aataggcttg ccactagagg tgtggggtct 10680gcagccctga gtgtatttgt
gtcacagttg tgagtgcaac tggggtctgg gcatccccgg 10740agtgtgggta tggaaggagc
aagtttgcac atctgtgcat cagatgggag tgcagggctc 10800ccatcttcct gtgtcctcaa
tgtgggcatg catggagatg catgtgggca cacatgtgtg 10860tgtttcctgg gcttgtgggc
atttgtgttc ctgtgactgc agcgctgtga atgcctccag 10920ccttgtgccc aggctctgca
gttggcattt ccttggggca aggatgaggg tagaaggaat 10980gccctcatga ggggagaggg
cagaggtcat gggccagcac tgggtttctg ctgagcagcc 11040tggggtccct ctggactagc
acacagagcc cctttgtgag gcaccctgcc tctaaccagc 11100atacaggctg cctttgtcca
cagagtgaag caggtgaagg agaagccccc atctcacctc 11160tagcctagtc tcagcttgac
cccagtgtgt tttctcaggg gctgataagc accccctgtc 11220ctggtctcta gatacctgcc
agccatcctt ctgtccttag ctctaggtcc cagaacccca 11280agactcttgg aaggaaggaa
gggacaggag gaggaagcct ctatgcattg tatccctgct 11340ggggtctctg ggacagtggg
gccctggtgg tcactgtgcc ctttgcccct gtgtcccaat 11400gagtagccca aggcactggc
agtacataca agattggggg acaggatgtg ccccccagct 11460cccagccttg tctttgagga
acaagcagct ttatcagagg ctgcaggggc cctgctctgg 11520gtttcctcag gaagcaccac
cgccgcatcc cccactctca caactggccc atgtgatgga 11580tcgtctgttt ccctgtgcgg
gccccatagc cccatttcct gtgctggccc cggcctggac 11640ggggaggggg ctgagactct
gggcccagat cccacctccc ccccaccccc caccccctgg 11700ctcctgtttc ctgctagtcc
agctcttccc ctaggaaagg ctgctggtaa ctgggatggg 11760ggttgggggg aggtaagaag
tctctgactc ctcctctacc tcatcccagt tccatcacct 11820gaagtggacc tcttgggacc
gtctgaaggt accagctggg cagcctgaga ggaccctgga 11880gtcgctgctg gctcatcttc
aggagcagca cgggttgagg gtgaggatcc tgctgcacgg 11940ctcagccctg ctctatgcgg
ccggatggtc acctgaaaag caggcccagc acctgcccct 12000caggtgagcc cacttgggct
ttagacaggc cccaccagtc cctggaggct ggggctaggg 12060accacactgc cttttgtctt
cccagcccca ttctgggccc ctcacacctt cccaagcatt 12120ctttccccaa atggagccag
caaacaggct ggaggtgggg tgagggccga gagctgagga 12180ggagtcttcn anggagctcg
tatttggcca gcccatggct cccacatgct gcacagnnnn 12240ttcacagcca ctcctaagga
cccatagctt cctgcctcct gcttggcctc atcagctgct 12300cctaaaatag tttcagatgt
ttcctgtctt gagcagctcc tgctcctggc ttgggctcct 12360gacggcctgc cagcaccctc
tctagtccat gccaggctgc cttctgcttg ccatggctca 12420cctctccaat ctcccctaaa
cccaccccta ccagggtgac agaactggtt cagcagctga 12480caggccaggc acctgctcct
gggcagcggg tgttggtgct agagctgagc tgtgagggtg 12540acgacgagga cactgccttc
ccacctctgc actatgagct gtgacaaggc agccaccctg 12600tcacctagct caatggagcc
ccggatccca agccctgcat tgtaagccca cagtaggcac 12660tcaataattg cttgttaaag
gaaggcattg cagagaggac ggacgataga aaacagtgca 12720ctaatgcaca cgggtgtgac
atgggcatga cagggacctt cacacagaga aaaaaagctc 12780ttcagaagat ttgtctccct
gggcagtgct cacagggctg gggctgcctc ttagtgcctc 12840aggggtatgg agccaggaca
gtctagaaaa aaggctttta ttgtcccagg ctggagggca 12900gggtcagagg tagctgacat
cattgcagat gatgggctgg cggctacgac agctcatgag 12960agctgcaaag ctgagacat
12979801011PRTHomo sapiens
80Met Asp Ala Leu Asp Ala Ser Lys Leu Leu Asp Glu Glu Leu Tyr Ser1
5 10 15Arg Gln Leu Tyr Val Leu
Gly Ser Pro Ala Met Gln Arg Ile Gln Gly 20 25
30Ala Arg Val Leu Val Ser Gly Leu Gln Gly Leu Gly Ala
Glu Val Ala 35 40 45Lys Asn Leu
Val Leu Met Gly Val Gly Ser Leu Thr Leu His Asp Pro 50
55 60His Pro Thr Cys Trp Ser Asp Leu Ala Ala Gln Phe
Leu Leu Ser Glu65 70 75
80Gln Asp Leu Glu Arg Ser Arg Ala Glu Ala Ser Gln Glu Leu Leu Ala
85 90 95Gln Leu Asn Arg Ala Val
Gln Val Val Val His Thr Gly Asp Ile Thr 100
105 110Glu Asp Leu Leu Leu Asp Phe Gln Val Val Val Leu
Thr Ala Ala Lys 115 120 125Leu Glu
Glu Gln Leu Lys Val Gly Thr Leu Cys His Lys His Gly Val 130
135 140Cys Phe Leu Ala Ala Asp Thr Arg Gly Leu Val
Gly Gln Leu Phe Cys145 150 155
160Asp Phe Gly Glu Asp Phe Thr Val Gln Asp Pro Thr Glu Ala Glu Pro
165 170 175Leu Thr Ala Ala
Ile Gln His Ile Ser Gln Gly Ser Pro Gly Ile Leu 180
185 190Thr Leu Arg Lys Gly Ala Asn Thr His Tyr Phe
Arg Asp Gly Asp Leu 195 200 205Val
Thr Phe Ser Gly Ile Glu Gly Met Val Glu Leu Asn Asp Cys Asp 210
215 220Pro Arg Ser Ile His Val Arg Glu Asp Gly
Ser Leu Glu Ile Gly Asp225 230 235
240Thr Thr Thr Phe Ser Arg Tyr Leu Arg Gly Gly Ala Ile Thr Glu
Val 245 250 255Lys Arg Pro
Lys Thr Val Arg His Lys Ser Leu Asp Thr Ala Leu Leu 260
265 270Gln Pro His Val Val Ala Gln Ser Ser Gln
Glu Val His His Ala His 275 280
285Cys Leu His Gln Ala Phe Cys Ala Leu His Lys Phe Gln His Leu His 290
295 300Gly Arg Pro Pro Gln Pro Trp Asp
Pro Val Asp Ala Glu Thr Val Val305 310
315 320Gly Leu Ala Arg Asp Leu Glu Pro Leu Lys Arg Thr
Glu Glu Glu Pro 325 330
335Leu Glu Glu Pro Leu Asp Glu Ala Leu Val Arg Thr Val Ala Leu Ser
340 345 350Ser Ala Arg Cys Leu Glu
Pro Met Val Ala Cys Trp Val Ser Ser Cys 355 360
365Pro Gly Ser Ala Glu Gly Asn Leu Gln Lys Phe Met Pro Leu
Asp Gln 370 375 380Trp Leu Tyr Phe Asp
Ala Leu Asp Cys Leu Pro Glu Asp Gly Glu Leu385 390
395 400Leu Pro Ser Pro Glu Asp Cys Ala Leu Arg
Gly Ser Arg Tyr Asp Gly 405 410
415Gln Ile Ala Val Phe Gly Ala Gly Phe Gln Glu Lys Leu Arg Arg Gln
420 425 430His Tyr Leu Leu Val
Gly Ala Gly Ala Ile Gly Cys Glu Leu Leu Lys 435
440 445Val Phe Ala Leu Val Gly Leu Gly Ala Gly Asn Ser
Gly Gly Leu Thr 450 455 460Val Val Asp
Met Asp His Ile Glu Arg Ser Asn Leu Ser Arg Gln Phe465
470 475 480Leu Phe Arg Ser Gln Asp Val
Gly Arg Pro Lys Ala Glu Val Ala Ala 485
490 495Ala Ala Ala Arg Gly Leu Asn Pro Asp Leu Gln Val
Ile Pro Leu Thr 500 505 510Tyr
Pro Leu Asp Pro Thr Thr Glu His Ile Tyr Gly Asp Asn Phe Phe 515
520 525Ser Arg Val Asp Gly Val Ala Ala Ala
Leu Asp Ser Phe Gln Ala Arg 530 535
540Arg Tyr Val Ala Ala Arg Cys Thr His Tyr Leu Lys Pro Leu Leu Glu545
550 555 560Ala Gly Thr Ser
Gly Thr Trp Gly Ser Ala Thr Val Phe Met Pro His 565
570 575Val Thr Glu Ala Tyr Arg Ala Pro Ala Ser
Ala Ala Ala Ser Glu Asp 580 585
590Ala Pro Tyr Pro Val Cys Thr Val Arg Tyr Phe Pro Ser Thr Ala Glu
595 600 605His Thr Leu Gln Trp Ala Arg
His Glu Phe Glu Glu Leu Phe Arg Leu 610 615
620Ser Ala Glu Thr Ile Asn His His Gln Gln Ala His Thr Ser Leu
Ala625 630 635 640Asp Met
Asp Glu Pro Gln Thr Leu Thr Leu Leu Lys Pro Val Leu Gly
645 650 655Val Leu Arg Val Arg Pro Gln
Asn Trp Gln Asp Cys Val Ala Trp Ala 660 665
670Leu Gly His Trp Lys Leu Cys Phe His Tyr Gly Ile Lys Gln
Leu Leu 675 680 685Arg His Phe Pro
Pro Asn Lys Val Leu Glu Asp Gly Thr Pro Phe Trp 690
695 700Ser Gly Pro Lys Gln Cys Pro Gln Pro Leu Glu Phe
Asp Thr Asn Gln705 710 715
720Asp Thr His Leu Leu Tyr Val Leu Ala Ala Ala Asn Leu Tyr Ala Gln
725 730 735Met His Gly Leu Pro
Gly Ser Gln Asp Trp Thr Ala Leu Arg Glu Leu 740
745 750Leu Lys Leu Leu Pro Gln Pro Asp Pro Gln Gln Met
Ala Pro Ile Phe 755 760 765Ala Ser
Asn Leu Glu Leu Ala Ser Ala Ser Ala Glu Phe Gly Pro Glu 770
775 780Gln Gln Lys Glu Leu Asn Lys Ala Leu Glu Val
Trp Ser Val Gly Pro785 790 795
800Pro Leu Lys Pro Leu Met Phe Glu Lys Asp Asp Asp Ser Asn Phe His
805 810 815Val Asp Phe Val
Val Ala Ala Ala Ser Leu Arg Cys Gln Asn Tyr Gly 820
825 830Ile Pro Pro Val Asn Arg Ala Gln Ser Lys Arg
Ile Val Gly Gln Ile 835 840 845Ile
Pro Ala Ile Ala Thr Thr Thr Ala Ala Val Ala Gly Leu Leu Gly 850
855 860Leu Glu Leu Tyr Lys Val Val Ser Gly Pro
Arg Pro Arg Ser Ala Phe865 870 875
880Arg His Ser Tyr Leu His Leu Ala Glu Asn Tyr Leu Ile Arg Tyr
Met 885 890 895Pro Phe Ala
Pro Ala Ile Gln Thr Phe His His Leu Lys Trp Thr Ser 900
905 910Trp Asp Arg Leu Lys Val Pro Ala Gly Gln
Pro Glu Arg Thr Leu Glu 915 920
925Ser Leu Leu Ala His Leu Gln Glu Gln His Gly Leu Arg Val Arg Ile 930
935 940Leu Leu His Gly Ser Ala Leu Leu
Tyr Ala Ala Gly Trp Ser Pro Glu945 950
955 960Lys Gln Ala Gln His Leu Pro Leu Arg Val Thr Glu
Leu Val Gln Gln 965 970
975Leu Thr Gly Gln Ala Pro Ala Pro Gly Gln Arg Val Leu Val Leu Glu
980 985 990Leu Ser Cys Glu Gly Asp
Asp Glu Asp Thr Ala Phe Pro Pro Leu His 995 1000
1005Tyr Glu Leu 1010811642DNAHomo sapiens
81aagccacggg gagaaacgtt gcagcccgcg ccgaacgccg ggcagcacaa aggatccccg
60actgccgggg agcggtgctc ggagggcaca ggtctacgcc atcccccacg cagtttcgga
120gatggagcgc tgggcccatg gagggaaggc ggcaggctcg gcggctccgg cagcttgctg
180gggcaggggc tcaaggcggc agtccgatag tggaggccgc tgagaactgt cacggagctg
240cgtctgtaca gcgagcatcc cttatttatt cagggcgagt gtgtatttgg ggcggcgtgc
300agggggctga caaagaccgg agagctcccg gtgcggccgc cggcggagcg aagactggaa
360cccgtatgag cgccccccag cgcccctgag cgctcgccgc cggtgcacgg cgcaccccgc
420gggaggcagg gatcagcaaa gccgtgcgcc ccgaggcccg cccccgtctc cgcacaaaga
480ccgagctgga ggatcttcag aagaagcctc ccccatacct gcggaacctg tccagcgatg
540atgccaatgt cctggtgtgg cacgctctcc tcctacccga ccaacctccc taccacctga
600aagccttcaa cctgcgcatc agcttcccgc cggagtatcc gttcaagcct cccatgatca
660aattcacaac caagatctac caccccaacg tggacgagaa cggacagatt tgcctgccca
720tcatcagcag tgagaactgg aagccttgca ccaagacttg ccaagtcctg gaggccctca
780atgtgctggt gaatagaccg aatatcaggg agcccctgcg gatggacctc gctgacctgc
840tgacacagaa tccggagctg ttcagaaaga atgccgaaga gttcaccctc cgattcggag
900tggaccggcc ctcctaactc atgttctgac cctctgtgca ctggatcctc ggcatagcgg
960acggacacac ctcatggact gaggccagag ccccctgtgg cccattcccc attcattttt
1020cccttcttag gttgttagtc attagtttgt gtgtgtgtgt ggtggaggga agggagctat
1080gagtgtgtgt gttgtgtatg gactcactcc caggttcacc tggccacagg tgcacccttc
1140ccacaccctt tacattcccc agagccaagg gagtttaagt ttgcagttac aggccagttc
1200tccagctctc catcttagag agacaggtca ccttgcaggc ctgcttgcag gaaatgaatc
1260cagcagccaa ctcgaatccc cctagggctc aggcactgag ggcctgggga cagtggagca
1320tatgggtggg agacagatgg agggtaccct atttacaact gagtcagcca agccactgat
1380gggaatatac agatttaggt gctaaaccat ttattttcca cggatgagtc acaatctgaa
1440gaatcaaact tccatcctga aaatctatat gtttcaaaac cacttgccat cctgttagat
1500tgccagttcc tgggaccagg cctcagactg tgaagtatat atcctccagc attcagtcca
1560gggggagcca cggaaaccat gttcttgctt aagccattaa agtcagagat gaattctgga
1620aaaaaaaaaa aaaaaaaaaa aa
16428287PRTHomo sapiens 82Met Ile Lys Phe Thr Thr Lys Ile Tyr His Pro Asn
Val Asp Glu Asn1 5 10
15Gly Gln Ile Cys Leu Pro Ile Ile Ser Ser Glu Asn Trp Lys Pro Cys
20 25 30Thr Lys Thr Cys Gln Val Leu
Glu Ala Leu Asn Val Leu Val Asn Arg 35 40
45Pro Asn Ile Arg Glu Pro Leu Arg Met Asp Leu Ala Asp Leu Leu
Thr 50 55 60Gln Asn Pro Glu Leu Phe
Arg Lys Asn Ala Glu Glu Phe Thr Leu Arg65 70
75 80Phe Gly Val Asp Arg Pro Ser
85831283DNAHomo sapiens 83gggggtgggg tccccggggc ggggcggggc gcgctgtgtc
gcgggtcgga gctcggtcct 60gctggaggcc acgggtgcca cacactcggt cccgacatga
tggcgagcat gcgagtggtg 120aaggagctgg aggatcttca gaagaagcct cccccatacc
tgcggaacct gtccagcgat 180gatgccaatg tcctggtgtg gcacgctctc ctcctacccg
accaacctcc ctaccacctg 240aaagccttca acctgcgcat cagcttcccg ccggagtatc
cgttcaagcc tcccatgatc 300aaattcacaa ccaagatcta ccaccccaac gtggacgaga
acggacagat ttgcctgccc 360atcatcagca gtgagaactg gaagccttgc accaagactt
gccaagtcct ggaggccctc 420aatgtgctgg tgaatagacc gaatatcagg gagcccctgc
ggatggacct cgctgacctg 480ctgacacaga atccggagct gttcagaaag aatgccgaag
agttcaccct ccgattcgga 540gtggaccggc cctcctaact catgttctga ccctctgtgc
actggatcct cggcatagcg 600gacggacaca cctcatggac tgaggccaga gccccctgtg
gcccattccc cattcatttt 660tcccttctta ggttgttagt cattagtttg tgtgtgtgtg
tggtggaggg aagggagcta 720tgagtgtgtg tgttgtgtat ggactcactc ccaggttcac
ctggccacag gtgcaccctt 780cccacaccct ttacattccc cagagccaag ggagtttaag
tttgcagtta caggccagtt 840ctccagctct ccatcttaga gagacaggtc accttgcagg
cctgcttgca ggaaatgaat 900ccagcagcca actcgaatcc ccctagggct caggcactga
gggcctgggg acagtggagc 960atatgggtgg gagacagatg gagggtaccc tatttacaac
tgagtcagcc aagccactga 1020tgggaatata cagatttagg tgctaaacca tttattttcc
acggatgagt cacaatctga 1080agaatcaaac ttccatcctg aaaatctata tgtttcaaaa
ccacttgcca tcctgttaga 1140ttgccagttc ctgggaccag gcctcagact gtgaagtata
tatcctccag cattcagtcc 1200agggggagcc acggaaacca tgttcttgct taagccatta
aagtcagaga tgaattctgg 1260aaaaaaaaaa aaaaaaaaaa aaa
128384153PRTHomo sapiens 84Met Met Ala Ser Met Arg
Val Val Lys Glu Leu Glu Asp Leu Gln Lys1 5
10 15Lys Pro Pro Pro Tyr Leu Arg Asn Leu Ser Ser Asp
Asp Ala Asn Val 20 25 30Leu
Val Trp His Ala Leu Leu Leu Pro Asp Gln Pro Pro Tyr His Leu 35
40 45Lys Ala Phe Asn Leu Arg Ile Ser Phe
Pro Pro Glu Tyr Pro Phe Lys 50 55
60Pro Pro Met Ile Lys Phe Thr Thr Lys Ile Tyr His Pro Asn Val Asp65
70 75 80Glu Asn Gly Gln Ile
Cys Leu Pro Ile Ile Ser Ser Glu Asn Trp Lys 85
90 95Pro Cys Thr Lys Thr Cys Gln Val Leu Glu Ala
Leu Asn Val Leu Val 100 105
110Asn Arg Pro Asn Ile Arg Glu Pro Leu Arg Met Asp Leu Ala Asp Leu
115 120 125Leu Thr Gln Asn Pro Glu Leu
Phe Arg Lys Asn Ala Glu Glu Phe Thr 130 135
140Leu Arg Phe Gly Val Asp Arg Pro Ser145
15085665DNAHomo sapiens 85gggaacacat ccaagcttaa gacggtgagg tcagcttcac
attctcagga actctccttc 60tttgggtctg gctgaagttg aggatctctt actctctagg
ccacggaatt aacccgagca 120ggcatggagg cctctgctct cacctcatca gcagtgacca
gtgtggccaa agtggtcagg 180gtggcctctg gctctgccgt agttttgccc ctggccagga
ttgctacagt tgtgattgga 240ggagttgtgg ccatggcggc tgtgcccatg gtgctcagtg
ccatgggctt cactgcggcg 300ggaatcgcct cgtcctccat agcagccaag atgatgtccg
cggcggccat tgccaatggg 360ggtggagttg cctcgggcag ccttgtggct actctgcagt
cactgggagc aactggactc 420tccggattga ccaagttcat cctgggctcc attgggtctg
ccattgcggc tgtcattgcg 480aggttctact agctccctgc ccctcgccct gcagagaaga
gaaccatgcc aggggagaag 540gcacccagcc atcctgaccc agcgaggagc caactatccc
aaatatacct ggggtgaaat 600ataccaaatt ctgcatctcc agaggaaaat aagaaataaa
gatgaattgt tgcaactctt 660caaaa
66586122PRTHomo sapiens 86Met Glu Ala Ser Ala Leu
Thr Ser Ser Ala Val Thr Ser Val Ala Lys1 5
10 15Val Val Arg Val Ala Ser Gly Ser Ala Val Val Leu
Pro Leu Ala Arg 20 25 30Ile
Ala Thr Val Val Ile Gly Gly Val Val Ala Met Ala Ala Val Pro 35
40 45Met Val Leu Ser Ala Met Gly Phe Thr
Ala Ala Gly Ile Ala Ser Ser 50 55
60Ser Ile Ala Ala Lys Met Met Ser Ala Ala Ala Ile Ala Asn Gly Gly65
70 75 80Gly Val Ala Ser Gly
Ser Leu Val Ala Thr Leu Gln Ser Leu Gly Ala 85
90 95Thr Gly Leu Ser Gly Leu Thr Lys Phe Ile Leu
Gly Ser Ile Gly Ser 100 105
110Ala Ile Ala Ala Val Ile Ala Arg Phe Tyr 115
12087656DNAHomo sapiens 87gggaacacat ccaagcttaa gacggtgagg tcagcttcac
attctcagga actctccttc 60tttgggtctg gctgaagttg aggatctctt actctctagg
ccacggaatt aacccgagca 120ggcatggagg cctctgctct cacctcatca gcagtgacca
gtgtggccaa agtggtcagg 180gtggcctctg gctctgccgt agttttgccc ctggccagga
ttgctacagt tgtgattgga 240ggagttgtgg ctgtgcccat ggtgctcagt gccatgggct
tcactgcggc gggaatcgcc 300tcgtcctcca tagcagccaa gatgatgtcc gcggcggcca
ttgccaatgg gggtggagtt 360gcctcgggca gccttgtggc tactctgcag tcactgggag
caactggact ctccggattg 420accaagttca tcctgggctc cattgggtct gccattgcgg
ctgtcattgc gaggttctac 480tagctccctg cccctcgccc tgcagagaag agaaccatgc
caggggagaa ggcacccagc 540catcctgacc cagcgaggag ccaactatcc caaatatacc
tggggtgaaa tataccaaat 600tctgcatctc cagaggaaaa taagaaataa agatgaattg
ttgcaactct tcaaaa 65688119PRTHomo sapiens 88Met Glu Ala Ser Ala
Leu Thr Ser Ser Ala Val Thr Ser Val Ala Lys1 5
10 15Val Val Arg Val Ala Ser Gly Ser Ala Val Val
Leu Pro Leu Ala Arg 20 25
30Ile Ala Thr Val Val Ile Gly Gly Val Val Ala Val Pro Met Val Leu
35 40 45Ser Ala Met Gly Phe Thr Ala Ala
Gly Ile Ala Ser Ser Ser Ile Ala 50 55
60Ala Lys Met Met Ser Ala Ala Ala Ile Ala Asn Gly Gly Gly Val Ala65
70 75 80Ser Gly Ser Leu Val
Ala Thr Leu Gln Ser Leu Gly Ala Thr Gly Leu 85
90 95Ser Gly Leu Thr Lys Phe Ile Leu Gly Ser Ile
Gly Ser Ala Ile Ala 100 105
110Ala Val Ile Ala Arg Phe Tyr 115893617DNAHomo sapiens
89atcgaaacag aaaccaaagt caggcaaact ctgtaagaac tgcctgacag aaagctggac
60tcaaagctcc tacccgagtg tgcagcagga tcgccccggt ccgggacccc aggcgcacac
120cgcagagtcc aaagtgccgc gcctgccggc cgcacctgcc tgccgcggcc ccgcgcgccg
180ccccgctgcc cacctgcccg cctgcccacc tgcccaggtg cgagtgcagc cccgcgcgcc
240ggcctgagag ccctgtggac aacctcgtca ttgtcaggca cagagcggta gaccctgctt
300ctctaagtgg gcagcggaca gcggcacgca catttcacct gtcccgcaga caacagcacc
360atctgcttgg gagaaccctc tcccttctct gagaaagaaa gatgtcgaat gggtattcca
420cagacgagaa tttccgctat ctcatctcgt gcttcagggc cagggtgaaa atgtacatcc
480aggtggagcc tgtgctggac tacctgacct ttctgcctgc agaggtgaag gagcagattc
540agaggacagt cgccacctcc gggaacatgc aggcagttga actgctgctg agcaccttgg
600agaagggagt ctggcacctt ggttggactc gggaattcgt ggaggccctc cggagaaccg
660gcagccctct ggccgcccgc tacatgaacc ctgagctcac ggacttgccc tctccatcgt
720ttgagaacgc tcatgatgaa tatctccaac tgctgaacct ccttcagccc actctggtgg
780acaagcttct agttagagac gtcttggata agtgcatgga ggaggaactg ttgacaattg
840aagacagaaa ccggattgct gctgcagaaa acaatggaaa tgaatcaggt gtaagagagc
900tactaaaaag gattgtgcag aaagaaaact ggttctctgc atttctgaat gttcttcgtc
960aaacaggaaa caatgaactt gtccaagagt taacaggctc tgattgctca gaaagcaatg
1020cagagattga gaatttatca caagttgatg gtcctcaagt ggaagagcaa cttctttcaa
1080ccacagttca gccaaatctg gagaaggagg tctggggcat ggagaataac tcatcagaat
1140catcttttgc agattcttct gtagtttcag aatcagacac aagtttggca gaaggaagtg
1200tcagctgctt agatgaaagt cttggacata acagcaacat gggcagtgat tcaggcacca
1260tgggaagtga ttcagatgaa gagaatgtgg cagcaagagc atccccggag ccagaactcc
1320agctcaggcc ttaccaaatg gaagttgccc agccagcctt ggaagggaag aatatcatca
1380tctgcctccc tacagggagt ggaaaaacca gagtggctgt ttacattgcc aaggatcact
1440tagacaagaa gaaaaaagca tctgagcctg gaaaagttat agttcttgtc aataaggtac
1500tgctagttga acagctcttc cgcaaggagt tccaaccatt tttgaagaaa tggtatcgtg
1560ttattggatt aagtggtgat acccaactga aaatatcatt tccagaagtt gtcaagtcct
1620gtgatattat tatcagtaca gctcaaatcc ttgaaaactc cctcttaaac ttggaaaatg
1680gagaagatgc tggtgttcaa ttgtcagact tttccctcat tatcattgat gaatgtcatc
1740acaccaacaa agaagcagtg tataataaca tcatgaggca ttatttgatg cagaagttga
1800aaaacaatag actcaagaaa gaaaacaaac cagtgattcc ccttcctcag atactgggac
1860taacagcttc acctggtgtt ggaggggcca cgaagcaagc caaagctgaa gaacacattt
1920taaaactatg tgccaatctt gatgcattta ctattaaaac tgttaaagaa aaccttgatc
1980aactgaaaaa ccaaatacag gagccatgca agaagtttgc cattgcagat gcaaccagag
2040aagatccatt taaagagaaa cttctagaaa taatgacaag gattcaaact tattgtcaaa
2100tgagtccaat gtcagatttt ggaactcaac cctatgaaca atgggccatt caaatggaaa
2160aaaaagctgc aaaagaagga aatcgcaaag aacgtgtttg tgcagaacat ttgaggaagt
2220acaatgaggc cctacaaatt aatgacacaa ttcgaatgat agatgcgtat actcatcttg
2280aaactttcta taatgaagag aaagataaga agtttgcagt catagaagat gatagtgatg
2340agggtggtga tgatgagtat tgtgatggtg atgaagatga ggatgattta aagaaacctt
2400tgaaactgga tgaaacagat agatttctca tgactttatt ttttgaaaac aataaaatgt
2460tgaaaaggct ggctgaaaac ccagaatatg aaaatgaaaa gctgaccaaa ttaagaaata
2520ccataatgga gcaatatact aggactgagg aatcagcacg aggaataatc tttacaaaaa
2580cacgacagag tgcatatgcg ctttcccagt ggattactga aaatgaaaaa tttgctgaag
2640taggagtcaa agcccaccat ctgattggag ctggacacag cagtgagttc aaacccatga
2700cacagaatga acaaaaagaa gtcattagta aatttcgcac tggaaaaata aatctgctta
2760tcgctaccac agtggcagaa gaaggtctgg atattaaaga atgtaacatt gttatccgtt
2820atggtctcgt caccaatgaa atagccatgg tccaggcccg tggtcgagcc agagctgatg
2880agagcaccta cgtcctggtt gctcacagtg gttcaggagt tatcgaacat gagacagtta
2940atgatttccg agagaagatg atgtataaag ctatacattg tgttcaaaat atgaaaccag
3000aggagtatgc tcataagatt ttggaattac agatgcaaag tataatggaa aagaaaatga
3060aaaccaagag aaatattgcc aagcattaca agaataaccc atcactaata actttccttt
3120gcaaaaactg cagtgtgcta gcctgttctg gggaagatat ccatgtaatt gagaaaatgc
3180atcacgtcaa tatgacccca gaattcaagg aactttacat tgtaagagaa aacaaagcac
3240tgcaaaagaa gtgtgccgac tatcaaataa atggtgaaat catctgcaaa tgtggccagg
3300cttggggaac aatgatggtg cacaaaggct tagatttgcc ttgtctcaaa ataaggaatt
3360ttgtagtggt tttcaaaaat aattcaacaa agaaacaata caaaaagtgg gtagaattac
3420ctatcacatt tcccaatctt gactattcag aatgctgttt atttagtgat gaggattagc
3480acttgattga agattctttt aaaatactat cagttaaaca tttaatatga ttatgattaa
3540tgtattcatt atgctacaga actgacataa gaatcaataa aatgattgtt ttactctgca
3600aaaaaaaaaa aaaaaaa
3617901025PRTHomo sapiens 90Met Ser Asn Gly Tyr Ser Thr Asp Glu Asn Phe
Arg Tyr Leu Ile Ser1 5 10
15Cys Phe Arg Ala Arg Val Lys Met Tyr Ile Gln Val Glu Pro Val Leu
20 25 30Asp Tyr Leu Thr Phe Leu Pro
Ala Glu Val Lys Glu Gln Ile Gln Arg 35 40
45Thr Val Ala Thr Ser Gly Asn Met Gln Ala Val Glu Leu Leu Leu
Ser 50 55 60Thr Leu Glu Lys Gly Val
Trp His Leu Gly Trp Thr Arg Glu Phe Val65 70
75 80Glu Ala Leu Arg Arg Thr Gly Ser Pro Leu Ala
Ala Arg Tyr Met Asn 85 90
95Pro Glu Leu Thr Asp Leu Pro Ser Pro Ser Phe Glu Asn Ala His Asp
100 105 110Glu Tyr Leu Gln Leu Leu
Asn Leu Leu Gln Pro Thr Leu Val Asp Lys 115 120
125Leu Leu Val Arg Asp Val Leu Asp Lys Cys Met Glu Glu Glu
Leu Leu 130 135 140Thr Ile Glu Asp Arg
Asn Arg Ile Ala Ala Ala Glu Asn Asn Gly Asn145 150
155 160Glu Ser Gly Val Arg Glu Leu Leu Lys Arg
Ile Val Gln Lys Glu Asn 165 170
175Trp Phe Ser Ala Phe Leu Asn Val Leu Arg Gln Thr Gly Asn Asn Glu
180 185 190Leu Val Gln Glu Leu
Thr Gly Ser Asp Cys Ser Glu Ser Asn Ala Glu 195
200 205Ile Glu Asn Leu Ser Gln Val Asp Gly Pro Gln Val
Glu Glu Gln Leu 210 215 220Leu Ser Thr
Thr Val Gln Pro Asn Leu Glu Lys Glu Val Trp Gly Met225
230 235 240Glu Asn Asn Ser Ser Glu Ser
Ser Phe Ala Asp Ser Ser Val Val Ser 245
250 255Glu Ser Asp Thr Ser Leu Ala Glu Gly Ser Val Ser
Cys Leu Asp Glu 260 265 270Ser
Leu Gly His Asn Ser Asn Met Gly Ser Asp Ser Gly Thr Met Gly 275
280 285Ser Asp Ser Asp Glu Glu Asn Val Ala
Ala Arg Ala Ser Pro Glu Pro 290 295
300Glu Leu Gln Leu Arg Pro Tyr Gln Met Glu Val Ala Gln Pro Ala Leu305
310 315 320Glu Gly Lys Asn
Ile Ile Ile Cys Leu Pro Thr Gly Ser Gly Lys Thr 325
330 335Arg Val Ala Val Tyr Ile Ala Lys Asp His
Leu Asp Lys Lys Lys Lys 340 345
350Ala Ser Glu Pro Gly Lys Val Ile Val Leu Val Asn Lys Val Leu Leu
355 360 365Val Glu Gln Leu Phe Arg Lys
Glu Phe Gln Pro Phe Leu Lys Lys Trp 370 375
380Tyr Arg Val Ile Gly Leu Ser Gly Asp Thr Gln Leu Lys Ile Ser
Phe385 390 395 400Pro Glu
Val Val Lys Ser Cys Asp Ile Ile Ile Ser Thr Ala Gln Ile
405 410 415Leu Glu Asn Ser Leu Leu Asn
Leu Glu Asn Gly Glu Asp Ala Gly Val 420 425
430Gln Leu Ser Asp Phe Ser Leu Ile Ile Ile Asp Glu Cys His
His Thr 435 440 445Asn Lys Glu Ala
Val Tyr Asn Asn Ile Met Arg His Tyr Leu Met Gln 450
455 460Lys Leu Lys Asn Asn Arg Leu Lys Lys Glu Asn Lys
Pro Val Ile Pro465 470 475
480Leu Pro Gln Ile Leu Gly Leu Thr Ala Ser Pro Gly Val Gly Gly Ala
485 490 495Thr Lys Gln Ala Lys
Ala Glu Glu His Ile Leu Lys Leu Cys Ala Asn 500
505 510Leu Asp Ala Phe Thr Ile Lys Thr Val Lys Glu Asn
Leu Asp Gln Leu 515 520 525Lys Asn
Gln Ile Gln Glu Pro Cys Lys Lys Phe Ala Ile Ala Asp Ala 530
535 540Thr Arg Glu Asp Pro Phe Lys Glu Lys Leu Leu
Glu Ile Met Thr Arg545 550 555
560Ile Gln Thr Tyr Cys Gln Met Ser Pro Met Ser Asp Phe Gly Thr Gln
565 570 575Pro Tyr Glu Gln
Trp Ala Ile Gln Met Glu Lys Lys Ala Ala Lys Glu 580
585 590Gly Asn Arg Lys Glu Arg Val Cys Ala Glu His
Leu Arg Lys Tyr Asn 595 600 605Glu
Ala Leu Gln Ile Asn Asp Thr Ile Arg Met Ile Asp Ala Tyr Thr 610
615 620His Leu Glu Thr Phe Tyr Asn Glu Glu Lys
Asp Lys Lys Phe Ala Val625 630 635
640Ile Glu Asp Asp Ser Asp Glu Gly Gly Asp Asp Glu Tyr Cys Asp
Gly 645 650 655Asp Glu Asp
Glu Asp Asp Leu Lys Lys Pro Leu Lys Leu Asp Glu Thr 660
665 670Asp Arg Phe Leu Met Thr Leu Phe Phe Glu
Asn Asn Lys Met Leu Lys 675 680
685Arg Leu Ala Glu Asn Pro Glu Tyr Glu Asn Glu Lys Leu Thr Lys Leu 690
695 700Arg Asn Thr Ile Met Glu Gln Tyr
Thr Arg Thr Glu Glu Ser Ala Arg705 710
715 720Gly Ile Ile Phe Thr Lys Thr Arg Gln Ser Ala Tyr
Ala Leu Ser Gln 725 730
735Trp Ile Thr Glu Asn Glu Lys Phe Ala Glu Val Gly Val Lys Ala His
740 745 750His Leu Ile Gly Ala Gly
His Ser Ser Glu Phe Lys Pro Met Thr Gln 755 760
765Asn Glu Gln Lys Glu Val Ile Ser Lys Phe Arg Thr Gly Lys
Ile Asn 770 775 780Leu Leu Ile Ala Thr
Thr Val Ala Glu Glu Gly Leu Asp Ile Lys Glu785 790
795 800Cys Asn Ile Val Ile Arg Tyr Gly Leu Val
Thr Asn Glu Ile Ala Met 805 810
815Val Gln Ala Arg Gly Arg Ala Arg Ala Asp Glu Ser Thr Tyr Val Leu
820 825 830Val Ala His Ser Gly
Ser Gly Val Ile Glu His Glu Thr Val Asn Asp 835
840 845Phe Arg Glu Lys Met Met Tyr Lys Ala Ile His Cys
Val Gln Asn Met 850 855 860Lys Pro Glu
Glu Tyr Ala His Lys Ile Leu Glu Leu Gln Met Gln Ser865
870 875 880Ile Met Glu Lys Lys Met Lys
Thr Lys Arg Asn Ile Ala Lys His Tyr 885
890 895Lys Asn Asn Pro Ser Leu Ile Thr Phe Leu Cys Lys
Asn Cys Ser Val 900 905 910Leu
Ala Cys Ser Gly Glu Asp Ile His Val Ile Glu Lys Met His His 915
920 925Val Asn Met Thr Pro Glu Phe Lys Glu
Leu Tyr Ile Val Arg Glu Asn 930 935
940Lys Ala Leu Gln Lys Lys Cys Ala Asp Tyr Gln Ile Asn Gly Glu Ile945
950 955 960Ile Cys Lys Cys
Gly Gln Ala Trp Gly Thr Met Met Val His Lys Gly 965
970 975Leu Asp Leu Pro Cys Leu Lys Ile Arg Asn
Phe Val Val Val Phe Lys 980 985
990Asn Asn Ser Thr Lys Lys Gln Tyr Lys Lys Trp Val Glu Leu Pro Ile
995 1000 1005Thr Phe Pro Asn Leu Asp
Tyr Ser Glu Cys Cys Leu Phe Ser Asp 1010 1015
1020Glu Asp1025914992DNAHomo sapiens 91gaagactcca gatataggat
cactccatgc catcaagaaa gttgatgcta ttgggcccat 60ctcaagctga tcttggcacc
tctcatgctc tgctctcttc aaccagacct ctacattcca 120ttttggaaga agactaaaaa
tggtgtttcc aatgtggaca ctgaagagac aaattcttat 180cctttttaac ataatcctaa
tttccaaact ccttggggct agatggtttc ctaaaactct 240gccctgtgat gtcactctgg
atgttccaaa gaaccatgtg atcgtggact gcacagacaa 300gcatttgaca gaaattcctg
gaggtattcc cacgaacacc acgaacctca ccctcaccat 360taaccacata ccagacatct
ccccagcgtc ctttcacaga ctggaccatc tggtagagat 420cgatttcaga tgcaactgtg
tacctattcc actggggtca aaaaacaaca tgtgcatcaa 480gaggctgcag attaaaccca
gaagctttag tggactcact tatttaaaat ccctttacct 540ggatggaaac cagctactag
agataccgca gggcctcccg cctagcttac agcttctcag 600ccttgaggcc aacaacatct
tttccatcag aaaagagaat ctaacagaac tggccaacat 660agaaatactc tacctgggcc
aaaactgtta ttatcgaaat ccttgttatg tttcatattc 720aatagagaaa gatgccttcc
taaacttgac aaagttaaaa gtgctctccc tgaaagataa 780caatgtcaca gccgtcccta
ctgttttgcc atctacttta acagaactat atctctacaa 840caacatgatt gcaaaaatcc
aagaagatga ttttaataac ctcaaccaat tacaaattct 900tgacctaagt ggaaattgcc
ctcgttgtta taatgcccca tttccttgtg cgccgtgtaa 960aaataattct cccctacaga
tccctgtaaa tgcttttgat gcgctgacag aattaaaagt 1020tttacgtcta cacagtaact
ctcttcagca tgtgccccca agatggttta agaacatcaa 1080caaactccag gaactggatc
tgtcccaaaa cttcttggcc aaagaaattg gggatgctaa 1140atttctgcat tttctcccca
gcctcatcca attggatctg tctttcaatt ttgaacttca 1200ggtctatcgt gcatctatga
atctatcaca agcattttct tcactgaaaa gcctgaaaat 1260tctgcggatc agaggatatg
tctttaaaga gttgaaaagc tttaacctct cgccattaca 1320taatcttcaa aatcttgaag
ttcttgatct tggcactaac tttataaaaa ttgctaacct 1380cagcatgttt aaacaattta
aaagactgaa agtcatagat ctttcagtga ataaaatatc 1440accttcagga gattcaagtg
aagttggctt ctgctcaaat gccagaactt ctgtagaaag 1500ttatgaaccc caggtcctgg
aacaattaca ttatttcaga tatgataagt atgcaaggag 1560ttgcagattc aaaaacaaag
aggcttcttt catgtctgtt aatgaaagct gctacaagta 1620tgggcagacc ttggatctaa
gtaaaaatag tatatttttt gtcaagtcct ctgattttca 1680gcatctttct ttcctcaaat
gcctgaatct gtcaggaaat ctcattagcc aaactcttaa 1740tggcagtgaa ttccaacctt
tagcagagct gagatatttg gacttctcca acaaccggct 1800tgatttactc cattcaacag
catttgaaga gcttcacaaa ctggaagttc tggatataag 1860cagtaatagc cattattttc
aatcagaagg aattactcat atgctaaact ttaccaagaa 1920cctaaaggtt ctgcagaaac
tgatgatgaa cgacaatgac atctcttcct ccaccagcag 1980gaccatggag agtgagtctc
ttagaactct ggaattcaga ggaaatcact tagatgtttt 2040atggagagaa ggtgataaca
gatacttaca attattcaag aatctgctaa aattagagga 2100attagacatc tctaaaaatt
ccctaagttt cttgccttct ggagtttttg atggtatgcc 2160tccaaatcta aagaatctct
ctttggccaa aaatgggctc aaatctttca gttggaagaa 2220actccagtgt ctaaagaacc
tggaaacttt ggacctcagc cacaaccaac tgaccactgt 2280ccctgagaga ttatccaact
gttccagaag cctcaagaat ctgattctta agaataatca 2340aatcaggagt ctgacgaagt
attttctaca agatgccttc cagttgcgat atctggatct 2400cagctcaaat aaaatccaga
tgatccaaaa gaccagcttc ccagaaaatg tcctcaacaa 2460tctgaagatg ttgcttttgc
atcataatcg gtttctgtgc acctgtgatg ctgtgtggtt 2520tgtctggtgg gttaaccata
cggaggtgac tattccttac ctggccacag atgtgacttg 2580tgtggggcca ggagcacaca
agggccaaag tgtgatctcc ctggatctgt acacctgtga 2640gttagatctg actaacctga
ttctgttctc actttccata tctgtatctc tctttctcat 2700ggtgatgatg acagcaagtc
acctctattt ctgggatgtg tggtatattt accatttctg 2760taaggccaag ataaaggggt
atcagcgtct aatatcacca gactgttgct atgatgcttt 2820tattgtgtat gacactaaag
acccagctgt gaccgagtgg gttttggctg agctggtggc 2880caaactggaa gacccaagag
agaaacattt taatttatgt ctcgaggaaa gggactggtt 2940accagggcag ccagttctgg
aaaacctttc ccagagcata cagcttagca aaaagacagt 3000gtttgtgatg acagacaagt
atgcaaagac tgaaaatttt aagatagcat tttacttgtc 3060ccatcagagg ctcatggatg
aaaaagttga tgtgattatc ttgatatttc ttgagaagcc 3120ctttcagaag tccaagttcc
tccagctccg gaaaaggctc tgtgggagtt ctgtccttga 3180gtggccaaca aacccgcaag
ctcacccata cttctggcag tgtctaaaga acgccctggc 3240cacagacaat catgtggcct
atagtcaggt gttcaaggaa acggtctagc ccttctttgc 3300aaaacacaac tgcctagttt
accaaggaga ggcctggctg tttaaattgt tttcatatat 3360atcacaccaa aagcgtgttt
tgaaattctt caagaaatga gattgcccat atttcagggg 3420agccaccaac gtctgtcaca
ggagttggaa agatggggtt tatataatgc atcaagtctt 3480ctttcttatc tctctgtgtc
tctatttgca cttgagtctc tcacctcagc tcctgtaaaa 3540gagtggcaag taaaaaacat
ggggctctga ttctcctgta attgtgataa ttaaatatac 3600acacaatcat gacattgaga
agaactgcat ttctaccctt aaaaagtact ggtatataca 3660gaaatagggt taaaaaaaac
tcaagctctc tctatatgag accaaaatgt actagagtta 3720gtttagtgaa ataaaaaacc
agtcagctgg ccgggcatgg tggctcatgc ttgtaatccc 3780agcactttgg gaggccgagg
caggtggatc acgaggtcag gagtttgaga ccagtctggc 3840caacatggtg aaaccccgtc
tgtactaaaa atacaaaaat tagctgggcg tggtggtggg 3900tgcctgtaat cccagctact
tgggaggctg aggcaggaga atcgcttgaa cccgggaggt 3960ggaggtggca gtgagccgag
atcacgccac tgcaatgcag cccgggcaac agagctagac 4020tgtctcaaaa gaacaaaaaa
aaaaaaacac aaaaaaactc agtcagcttc ttaaccaatt 4080gcttccgtgt catccagggc
cccattctgt gcagattgag tgtgggcacc acacaggtgg 4140ttgctgcttc agtgcttcct
gctctttttc cttgggcctg cttctgggtt ccatagggaa 4200acagtaagaa agaaagacac
atccttacca taaatgcata tggtccacct acaaatagaa 4260aaatatttaa atgatctgcc
tttatacaaa gtgatattct ctacctttga taatttacct 4320gcttaaatgt ttttatctgc
actgcaaagt actgtatcca aagtaaaatt tcctcatcca 4380atatctttca aactgttttg
ttaactaatg ccatatattt gtaagtatct gcacacttga 4440tacagcaacg ttagatggtt
ttgatggtaa accctaaagg aggactccaa gagtgtgtat 4500ttatttatag ttttatcaga
gatgacaatt atttgaatgc caattatatg gattcctttc 4560attttttgct ggaggatggg
agaagaaacc aaagtttata gaccttcaca ttgagaaagc 4620ttcagttttg aacttcagct
atcagattca aaaacaacag aaagaaccaa gacattctta 4680agatgcctgt actttcagct
gggtataaat tcatgagttc aaagattgaa acctgaccaa 4740tttgctttat ttcatggaag
aagtgatcta caaaggtgtt tgtgccattt ggaaaacagc 4800gtgcatgtgt tcaagcctta
gattggcgat gtcgtatttt cctcacgtgt ggcaatgcca 4860aaggctttac tttacctgtg
agtacacact atatgaatta tttccaacgt acatttaatc 4920aataagggtc acaaattccc
aaatcaatct ctggaataaa tagagaggta attaaattgc 4980tggagccaac ta
4992921049PRTHomo sapiens
92Met Val Phe Pro Met Trp Thr Leu Lys Arg Gln Ile Leu Ile Leu Phe1
5 10 15Asn Ile Ile Leu Ile Ser
Lys Leu Leu Gly Ala Arg Trp Phe Pro Lys 20 25
30Thr Leu Pro Cys Asp Val Thr Leu Asp Val Pro Lys Asn
His Val Ile 35 40 45Val Asp Cys
Thr Asp Lys His Leu Thr Glu Ile Pro Gly Gly Ile Pro 50
55 60Thr Asn Thr Thr Asn Leu Thr Leu Thr Ile Asn His
Ile Pro Asp Ile65 70 75
80Ser Pro Ala Ser Phe His Arg Leu Asp His Leu Val Glu Ile Asp Phe
85 90 95Arg Cys Asn Cys Val Pro
Ile Pro Leu Gly Ser Lys Asn Asn Met Cys 100
105 110Ile Lys Arg Leu Gln Ile Lys Pro Arg Ser Phe Ser
Gly Leu Thr Tyr 115 120 125Leu Lys
Ser Leu Tyr Leu Asp Gly Asn Gln Leu Leu Glu Ile Pro Gln 130
135 140Gly Leu Pro Pro Ser Leu Gln Leu Leu Ser Leu
Glu Ala Asn Asn Ile145 150 155
160Phe Ser Ile Arg Lys Glu Asn Leu Thr Glu Leu Ala Asn Ile Glu Ile
165 170 175Leu Tyr Leu Gly
Gln Asn Cys Tyr Tyr Arg Asn Pro Cys Tyr Val Ser 180
185 190Tyr Ser Ile Glu Lys Asp Ala Phe Leu Asn Leu
Thr Lys Leu Lys Val 195 200 205Leu
Ser Leu Lys Asp Asn Asn Val Thr Ala Val Pro Thr Val Leu Pro 210
215 220Ser Thr Leu Thr Glu Leu Tyr Leu Tyr Asn
Asn Met Ile Ala Lys Ile225 230 235
240Gln Glu Asp Asp Phe Asn Asn Leu Asn Gln Leu Gln Ile Leu Asp
Leu 245 250 255Ser Gly Asn
Cys Pro Arg Cys Tyr Asn Ala Pro Phe Pro Cys Ala Pro 260
265 270Cys Lys Asn Asn Ser Pro Leu Gln Ile Pro
Val Asn Ala Phe Asp Ala 275 280
285Leu Thr Glu Leu Lys Val Leu Arg Leu His Ser Asn Ser Leu Gln His 290
295 300Val Pro Pro Arg Trp Phe Lys Asn
Ile Asn Lys Leu Gln Glu Leu Asp305 310
315 320Leu Ser Gln Asn Phe Leu Ala Lys Glu Ile Gly Asp
Ala Lys Phe Leu 325 330
335His Phe Leu Pro Ser Leu Ile Gln Leu Asp Leu Ser Phe Asn Phe Glu
340 345 350Leu Gln Val Tyr Arg Ala
Ser Met Asn Leu Ser Gln Ala Phe Ser Ser 355 360
365Leu Lys Ser Leu Lys Ile Leu Arg Ile Arg Gly Tyr Val Phe
Lys Glu 370 375 380Leu Lys Ser Phe Asn
Leu Ser Pro Leu His Asn Leu Gln Asn Leu Glu385 390
395 400Val Leu Asp Leu Gly Thr Asn Phe Ile Lys
Ile Ala Asn Leu Ser Met 405 410
415Phe Lys Gln Phe Lys Arg Leu Lys Val Ile Asp Leu Ser Val Asn Lys
420 425 430Ile Ser Pro Ser Gly
Asp Ser Ser Glu Val Gly Phe Cys Ser Asn Ala 435
440 445Arg Thr Ser Val Glu Ser Tyr Glu Pro Gln Val Leu
Glu Gln Leu His 450 455 460Tyr Phe Arg
Tyr Asp Lys Tyr Ala Arg Ser Cys Arg Phe Lys Asn Lys465
470 475 480Glu Ala Ser Phe Met Ser Val
Asn Glu Ser Cys Tyr Lys Tyr Gly Gln 485
490 495Thr Leu Asp Leu Ser Lys Asn Ser Ile Phe Phe Val
Lys Ser Ser Asp 500 505 510Phe
Gln His Leu Ser Phe Leu Lys Cys Leu Asn Leu Ser Gly Asn Leu 515
520 525Ile Ser Gln Thr Leu Asn Gly Ser Glu
Phe Gln Pro Leu Ala Glu Leu 530 535
540Arg Tyr Leu Asp Phe Ser Asn Asn Arg Leu Asp Leu Leu His Ser Thr545
550 555 560Ala Phe Glu Glu
Leu His Lys Leu Glu Val Leu Asp Ile Ser Ser Asn 565
570 575Ser His Tyr Phe Gln Ser Glu Gly Ile Thr
His Met Leu Asn Phe Thr 580 585
590Lys Asn Leu Lys Val Leu Gln Lys Leu Met Met Asn Asp Asn Asp Ile
595 600 605Ser Ser Ser Thr Ser Arg Thr
Met Glu Ser Glu Ser Leu Arg Thr Leu 610 615
620Glu Phe Arg Gly Asn His Leu Asp Val Leu Trp Arg Glu Gly Asp
Asn625 630 635 640Arg Tyr
Leu Gln Leu Phe Lys Asn Leu Leu Lys Leu Glu Glu Leu Asp
645 650 655Ile Ser Lys Asn Ser Leu Ser
Phe Leu Pro Ser Gly Val Phe Asp Gly 660 665
670Met Pro Pro Asn Leu Lys Asn Leu Ser Leu Ala Lys Asn Gly
Leu Lys 675 680 685Ser Phe Ser Trp
Lys Lys Leu Gln Cys Leu Lys Asn Leu Glu Thr Leu 690
695 700Asp Leu Ser His Asn Gln Leu Thr Thr Val Pro Glu
Arg Leu Ser Asn705 710 715
720Cys Ser Arg Ser Leu Lys Asn Leu Ile Leu Lys Asn Asn Gln Ile Arg
725 730 735Ser Leu Thr Lys Tyr
Phe Leu Gln Asp Ala Phe Gln Leu Arg Tyr Leu 740
745 750Asp Leu Ser Ser Asn Lys Ile Gln Met Ile Gln Lys
Thr Ser Phe Pro 755 760 765Glu Asn
Val Leu Asn Asn Leu Lys Met Leu Leu Leu His His Asn Arg 770
775 780Phe Leu Cys Thr Cys Asp Ala Val Trp Phe Val
Trp Trp Val Asn His785 790 795
800Thr Glu Val Thr Ile Pro Tyr Leu Ala Thr Asp Val Thr Cys Val Gly
805 810 815Pro Gly Ala His
Lys Gly Gln Ser Val Ile Ser Leu Asp Leu Tyr Thr 820
825 830Cys Glu Leu Asp Leu Thr Asn Leu Ile Leu Phe
Ser Leu Ser Ile Ser 835 840 845Val
Ser Leu Phe Leu Met Val Met Met Thr Ala Ser His Leu Tyr Phe 850
855 860Trp Asp Val Trp Tyr Ile Tyr His Phe Cys
Lys Ala Lys Ile Lys Gly865 870 875
880Tyr Gln Arg Leu Ile Ser Pro Asp Cys Cys Tyr Asp Ala Phe Ile
Val 885 890 895Tyr Asp Thr
Lys Asp Pro Ala Val Thr Glu Trp Val Leu Ala Glu Leu 900
905 910Val Ala Lys Leu Glu Asp Pro Arg Glu Lys
His Phe Asn Leu Cys Leu 915 920
925Glu Glu Arg Asp Trp Leu Pro Gly Gln Pro Val Leu Glu Asn Leu Ser 930
935 940Gln Ser Ile Gln Leu Ser Lys Lys
Thr Val Phe Val Met Thr Asp Lys945 950
955 960Tyr Ala Lys Thr Glu Asn Phe Lys Ile Ala Phe Tyr
Leu Ser His Gln 965 970
975Arg Leu Met Asp Glu Lys Val Asp Val Ile Ile Leu Ile Phe Leu Glu
980 985 990Lys Pro Phe Gln Lys Ser
Lys Phe Leu Gln Leu Arg Lys Arg Leu Cys 995 1000
1005Gly Ser Ser Val Leu Glu Trp Pro Thr Asn Pro Gln
Ala His Pro 1010 1015 1020Tyr Phe Trp
Gln Cys Leu Lys Asn Ala Leu Ala Thr Asp Asn His 1025
1030 1035Val Ala Tyr Ser Gln Val Phe Lys Glu Thr Val
1040 1045931972DNAHomo sapiens 93gaaactcccg cctggccacc
ataaaagcgc cggccctccg cttccccgcg agacgaaact 60tcccgtcccg gcggctctgg
cacccagggt ccggcctgcg ccttcccgcc aggcctggac 120actggttcaa cacctgtgac
ttcatgtgtg cgcgccggcc acacctgcag tcacacctgt 180agccccctct gccaagagat
ccataccgag gcagcgtcgg tggctacaag ccctcagtcc 240acacctgtgg acacctgtga
cacctggcca cacgacctgt ggccgcggcc tggcgtctgc 300tgcgacagga gcccttacct
cccctgttat aacacctgac cgccacctaa ctgcccctgc 360agaaggagca atggccttgg
ctcctgagag ggcagcccca cgcgtgctgt tcggagagtg 420gctccttgga gagatcagca
gcggctgcta tgaggggctg cagtggctgg acgaggcccg 480cacctgtttc cgcgtgccct
ggaagcactt cgcgcgcaag gacctgagcg aggccgacgc 540gcgcatcttc aaggcctggg
ctgtggcccg cggcaggtgg ccgcctagca gcaggggagg 600tggcccgccc cccgaggctg
agactgcgga gcgcgccggc tggaaaacca acttccgctg 660cgcactgcgc agcacgcgtc
gcttcgtgat gctgcgggat aactcggggg acccggccga 720cccgcacaag gtgtacgcgc
tcagccggga gctgtgctgg cgagaaggcc caggcacgga 780ccagactgag gcagaggccc
ccgcagctgt cccaccacca cagggtgggc ccccagggcc 840attcctggca cacacacatg
ctggactcca agccccaggc cccctccctg ccccagctgg 900tgacaagggg gacctcctgc
tccaggcagt gcaacagagc tgcctggcag accatctgct 960gacagcgtca tggggggcag
atccagtccc aaccaaggct cctggagagg gacaagaagg 1020gcttcccctg actggggcct
gtgctggagg cccagggctc cctgctgggg agctgtacgg 1080gtgggcagta gagacgaccc
ccagccccgg gccccagccc gcggcactaa cgacaggcga 1140ggccgcggcc ccagagtccc
cgcaccaggc agagccgtac ctgtcaccct ccccaagcgc 1200ctgcaccgcg gtgcaagagc
ccagcccagg ggcgctggac gtgaccatca tgtacaaggg 1260ccgcacggtg ctgcagaagg
tggtgggaca cccgagctgc acgttcctat acggcccccc 1320agacccagct gtccgggcca
cagaccccca gcaggtagca ttccccagcc ctgccgagct 1380cccggaccag aagcagctgc
gctacacgga ggaactgctg cggcacgtgg cccctgggtt 1440gcacctggag cttcgggggc
cacagctgtg ggcccggcgc atgggcaagt gcaaggtgta 1500ctgggaggtg ggcggacccc
caggctccgc cagcccctcc accccagcct gcctgctgcc 1560tcggaactgt gacaccccca
tcttcgactt cagagtcttc ttccaagagc tggtggaatt 1620ccgggcacgg cagcgccgtg
gctccccacg ctataccatc tacctgggct tcgggcagga 1680cctgtcagct gggaggccca
aggagaagag cctggtcctg gtgaagctgg aaccctggct 1740gtgccgagtg cacctagagg
gcacgcagcg tgagggtgtg tcttccctgg atagcagcag 1800cctcagcctc tgcctgtcca
gcgccaacag cctctatgac gacatcgagt gcttccttat 1860ggagctggag cagcccgcct
agaacccagt ctaatgagaa ctccagaaag ctggagcagc 1920ccacctagag ctggccgcgg
ccgcccagtc taataaaaag aactccagaa ca 197294503PRTHomo sapiens
94Met Ala Leu Ala Pro Glu Arg Ala Ala Pro Arg Val Leu Phe Gly Glu1
5 10 15Trp Leu Leu Gly Glu Ile
Ser Ser Gly Cys Tyr Glu Gly Leu Gln Trp 20 25
30Leu Asp Glu Ala Arg Thr Cys Phe Arg Val Pro Trp Lys
His Phe Ala 35 40 45Arg Lys Asp
Leu Ser Glu Ala Asp Ala Arg Ile Phe Lys Ala Trp Ala 50
55 60Val Ala Arg Gly Arg Trp Pro Pro Ser Ser Arg Gly
Gly Gly Pro Pro65 70 75
80Pro Glu Ala Glu Thr Ala Glu Arg Ala Gly Trp Lys Thr Asn Phe Arg
85 90 95Cys Ala Leu Arg Ser Thr
Arg Arg Phe Val Met Leu Arg Asp Asn Ser 100
105 110Gly Asp Pro Ala Asp Pro His Lys Val Tyr Ala Leu
Ser Arg Glu Leu 115 120 125Cys Trp
Arg Glu Gly Pro Gly Thr Asp Gln Thr Glu Ala Glu Ala Pro 130
135 140Ala Ala Val Pro Pro Pro Gln Gly Gly Pro Pro
Gly Pro Phe Leu Ala145 150 155
160His Thr His Ala Gly Leu Gln Ala Pro Gly Pro Leu Pro Ala Pro Ala
165 170 175Gly Asp Lys Gly
Asp Leu Leu Leu Gln Ala Val Gln Gln Ser Cys Leu 180
185 190Ala Asp His Leu Leu Thr Ala Ser Trp Gly Ala
Asp Pro Val Pro Thr 195 200 205Lys
Ala Pro Gly Glu Gly Gln Glu Gly Leu Pro Leu Thr Gly Ala Cys 210
215 220Ala Gly Gly Pro Gly Leu Pro Ala Gly Glu
Leu Tyr Gly Trp Ala Val225 230 235
240Glu Thr Thr Pro Ser Pro Gly Pro Gln Pro Ala Ala Leu Thr Thr
Gly 245 250 255Glu Ala Ala
Ala Pro Glu Ser Pro His Gln Ala Glu Pro Tyr Leu Ser 260
265 270Pro Ser Pro Ser Ala Cys Thr Ala Val Gln
Glu Pro Ser Pro Gly Ala 275 280
285Leu Asp Val Thr Ile Met Tyr Lys Gly Arg Thr Val Leu Gln Lys Val 290
295 300Val Gly His Pro Ser Cys Thr Phe
Leu Tyr Gly Pro Pro Asp Pro Ala305 310
315 320Val Arg Ala Thr Asp Pro Gln Gln Val Ala Phe Pro
Ser Pro Ala Glu 325 330
335Leu Pro Asp Gln Lys Gln Leu Arg Tyr Thr Glu Glu Leu Leu Arg His
340 345 350Val Ala Pro Gly Leu His
Leu Glu Leu Arg Gly Pro Gln Leu Trp Ala 355 360
365Arg Arg Met Gly Lys Cys Lys Val Tyr Trp Glu Val Gly Gly
Pro Pro 370 375 380Gly Ser Ala Ser Pro
Ser Thr Pro Ala Cys Leu Leu Pro Arg Asn Cys385 390
395 400Asp Thr Pro Ile Phe Asp Phe Arg Val Phe
Phe Gln Glu Leu Val Glu 405 410
415Phe Arg Ala Arg Gln Arg Arg Gly Ser Pro Arg Tyr Thr Ile Tyr Leu
420 425 430Gly Phe Gly Gln Asp
Leu Ser Ala Gly Arg Pro Lys Glu Lys Ser Leu 435
440 445Val Leu Val Lys Leu Glu Pro Trp Leu Cys Arg Val
His Leu Glu Gly 450 455 460Thr Gln Arg
Glu Gly Val Ser Ser Leu Asp Ser Ser Ser Leu Ser Leu465
470 475 480Cys Leu Ser Ser Ala Asn Ser
Leu Tyr Asp Asp Ile Glu Cys Phe Leu 485
490 495Met Glu Leu Glu Gln Pro Ala
500951885DNAHomo sapiens 95gaaactcccg cctggccacc ataaaagcgc cggccctccg
cttccccgcg agacgaaact 60tcccgtcccg gcggctctgg cacccagggt ccggcctgcg
ccttcccgcc aggcctggac 120actggttcaa cacctgtgac ttcatgtgtg cgcgccggcc
acacctgcag tcacacctgt 180agccccctct gccaagagat ccataccgag gcagcgtcgg
tggctacaag ccctcagtcc 240acacctgtgg acacctgtga cacctggcca cacgacctgt
ggccgcggcc tggcgtctgc 300tgcgacagga gcccttacct cccctgttat aacacctgac
cgccacctaa ctgcccctgc 360agaaggagca atggccttgg ctcctgagag ggcagcccca
cgcgtgctgt tcggagagtg 420gctccttgga gagatcagca gcggctgcta tgaggggctg
cagtggctgg acgaggcccg 480cacctgtttc cgcgtgccct ggaagcactt cgcgcgcaag
gacctgagcg aggccgacgc 540gcgcatcttc aaggcctggg ctgtggcccg cggcaggtgg
ccgcctagca gcaggggagg 600tggcccgccc cccgaggctg agactgcgga gcgcgccggc
tggaaaacca acttccgctg 660cgcactgcgc agcacgcgtc gcttcgtgat gctgcgggat
aactcggggg acccggccga 720cccgcacaag gtgtacgcgc tcagccggga gctgtgctgg
cgagaaggcc caggcacgga 780ccagactgag gcagaggccc ccgcagctgt cccaccacca
cagggtgggc ccccagggcc 840attcctggca cacacacatg ctggactcca agccccaggc
cccctccctg ccccagctgg 900tgacaagggg gacctcctgc tccaggcagt gcaacagagc
tgcctggcag accatctgct 960gacagcgtca tggggggcag atccagtccc aaccaaggct
cctggagagg gacaagaagg 1020gcttcccctg actggggcct gtgctggagg cgaggccgcg
gccccagagt ccccgcacca 1080ggcagagccg tacctgtcac cctccccaag cgcctgcacc
gcggtgcaag agcccagccc 1140aggggcgctg gacgtgacca tcatgtacaa gggccgcacg
gtgctgcaga aggtggtggg 1200acacccgagc tgcacgttcc tatacggccc cccagaccca
gctgtccggg ccacagaccc 1260ccagcaggta gcattcccca gccctgccga gctcccggac
cagaagcagc tgcgctacac 1320ggaggaactg ctgcggcacg tggcccctgg gttgcacctg
gagcttcggg ggccacagct 1380gtgggcccgg cgcatgggca agtgcaaggt gtactgggag
gtgggcggac ccccaggctc 1440cgccagcccc tccaccccag cctgcctgct gcctcggaac
tgtgacaccc ccatcttcga 1500cttcagagtc ttcttccaag agctggtgga attccgggca
cggcagcgcc gtggctcccc 1560acgctatacc atctacctgg gcttcgggca ggacctgtca
gctgggaggc ccaaggagaa 1620gagcctggtc ctggtgaagc tggaaccctg gctgtgccga
gtgcacctag agggcacgca 1680gcgtgagggt gtgtcttccc tggatagcag cagcctcagc
ctctgcctgt ccagcgccaa 1740cagcctctat gacgacatcg agtgcttcct tatggagctg
gagcagcccg cctagaaccc 1800agtctaatga gaactccaga aagctggagc agcccaccta
gagctggccg cggccgccca 1860gtctaataaa aagaactcca gaaca
188596474PRTHomo sapiens 96Met Ala Leu Ala Pro Glu
Arg Ala Ala Pro Arg Val Leu Phe Gly Glu1 5
10 15Trp Leu Leu Gly Glu Ile Ser Ser Gly Cys Tyr Glu
Gly Leu Gln Trp 20 25 30Leu
Asp Glu Ala Arg Thr Cys Phe Arg Val Pro Trp Lys His Phe Ala 35
40 45Arg Lys Asp Leu Ser Glu Ala Asp Ala
Arg Ile Phe Lys Ala Trp Ala 50 55
60Val Ala Arg Gly Arg Trp Pro Pro Ser Ser Arg Gly Gly Gly Pro Pro65
70 75 80Pro Glu Ala Glu Thr
Ala Glu Arg Ala Gly Trp Lys Thr Asn Phe Arg 85
90 95Cys Ala Leu Arg Ser Thr Arg Arg Phe Val Met
Leu Arg Asp Asn Ser 100 105
110Gly Asp Pro Ala Asp Pro His Lys Val Tyr Ala Leu Ser Arg Glu Leu
115 120 125Cys Trp Arg Glu Gly Pro Gly
Thr Asp Gln Thr Glu Ala Glu Ala Pro 130 135
140Ala Ala Val Pro Pro Pro Gln Gly Gly Pro Pro Gly Pro Phe Leu
Ala145 150 155 160His Thr
His Ala Gly Leu Gln Ala Pro Gly Pro Leu Pro Ala Pro Ala
165 170 175Gly Asp Lys Gly Asp Leu Leu
Leu Gln Ala Val Gln Gln Ser Cys Leu 180 185
190Ala Asp His Leu Leu Thr Ala Ser Trp Gly Ala Asp Pro Val
Pro Thr 195 200 205Lys Ala Pro Gly
Glu Gly Gln Glu Gly Leu Pro Leu Thr Gly Ala Cys 210
215 220Ala Gly Gly Glu Ala Ala Ala Pro Glu Ser Pro His
Gln Ala Glu Pro225 230 235
240Tyr Leu Ser Pro Ser Pro Ser Ala Cys Thr Ala Val Gln Glu Pro Ser
245 250 255Pro Gly Ala Leu Asp
Val Thr Ile Met Tyr Lys Gly Arg Thr Val Leu 260
265 270Gln Lys Val Val Gly His Pro Ser Cys Thr Phe Leu
Tyr Gly Pro Pro 275 280 285Asp Pro
Ala Val Arg Ala Thr Asp Pro Gln Gln Val Ala Phe Pro Ser 290
295 300Pro Ala Glu Leu Pro Asp Gln Lys Gln Leu Arg
Tyr Thr Glu Glu Leu305 310 315
320Leu Arg His Val Ala Pro Gly Leu His Leu Glu Leu Arg Gly Pro Gln
325 330 335Leu Trp Ala Arg
Arg Met Gly Lys Cys Lys Val Tyr Trp Glu Val Gly 340
345 350Gly Pro Pro Gly Ser Ala Ser Pro Ser Thr Pro
Ala Cys Leu Leu Pro 355 360 365Arg
Asn Cys Asp Thr Pro Ile Phe Asp Phe Arg Val Phe Phe Gln Glu 370
375 380Leu Val Glu Phe Arg Ala Arg Gln Arg Arg
Gly Ser Pro Arg Tyr Thr385 390 395
400Ile Tyr Leu Gly Phe Gly Gln Asp Leu Ser Ala Gly Arg Pro Lys
Glu 405 410 415Lys Ser Leu
Val Leu Val Lys Leu Glu Pro Trp Leu Cys Arg Val His 420
425 430Leu Glu Gly Thr Gln Arg Glu Gly Val Ser
Ser Leu Asp Ser Ser Ser 435 440
445Leu Ser Leu Cys Leu Ser Ser Ala Asn Ser Leu Tyr Asp Asp Ile Glu 450
455 460Cys Phe Leu Met Glu Leu Glu Gln
Pro Ala465 47097860DNAHomo sapiens 97ccagccttca
gccggagaac cgtttactcg ctgctgtgcc catctatcag caggctccgg 60gctgaagatt
gcttctcttc tctcctccaa ggtctagtga cggagcccgc gcgcggcgcc 120accatgcggc
agaaggcggt atcgcttttc ttgtgctacc tgctgctctt cacttgcagt 180ggggtggagg
caggtgagaa tgcgggtaag gatgcaggta agaaaaagtg ctcggagagc 240tcggacagcg
gctccgggtt ctggaaggcc ctgaccttca tggccgtcgg aggaggactc 300gcagtcgccg
ggctgcccgc gctgggcttc accggcgccg gcatcgcggc caactcggtg 360gctgcctcgc
tgatgagctg gtctgcgatc ctgaatgggg gcggcgtgcc cgccgggggg 420ctagtggcca
cgctgcagag cctcggggct ggtggcagca gcgtcgtcat aggtaatatt 480ggtgccctga
tgggctacgc cacccacaag tatctcgata gtgaggagga tgaggagtag 540ccagcagctc
ccagaacctc ttcttccttc ttggcctaac tcttccagtt aggatctaga 600actttgcctt
tttttttttt tttttttttt tgagatgggt tctcactata ttgtccaggc 660tagagtgcag
tggctattca cagatgcgaa catagtacac tgcagcctcc aactcctagc 720ctcaagtgat
cctcctgtct caacctccca agtaggatta caagcatgcg ccgacgatgc 780ccagaatcca
gaactttgtc tatcactctc cccaacaacc tagatgtgaa aacagaataa 840acttcaccca
gaaaacactt 86098138PRTHomo
sapiens 98Met Arg Gln Lys Ala Val Ser Leu Phe Leu Cys Tyr Leu Leu Leu
Phe1 5 10 15Thr Cys Ser
Gly Val Glu Ala Gly Glu Asn Ala Gly Lys Asp Ala Gly 20
25 30Lys Lys Lys Cys Ser Glu Ser Ser Asp Ser
Gly Ser Gly Phe Trp Lys 35 40
45Ala Leu Thr Phe Met Ala Val Gly Gly Gly Leu Ala Val Ala Gly Leu 50
55 60Pro Ala Leu Gly Phe Thr Gly Ala Gly
Ile Ala Ala Asn Ser Val Ala65 70 75
80Ala Ser Leu Met Ser Trp Ser Ala Ile Leu Asn Gly Gly Gly
Val Pro 85 90 95Ala Gly
Gly Leu Val Ala Thr Leu Gln Ser Leu Gly Ala Gly Gly Ser 100
105 110Ser Val Val Ile Gly Asn Ile Gly Ala
Leu Met Gly Tyr Ala Thr His 115 120
125Lys Tyr Leu Asp Ser Glu Glu Asp Glu Glu 130
13599848DNAHomo sapiens 99ccagccttca gccggagaac cgtttactcg ctgctgtgcc
catctatcag caggctccgg 60gctgaagatt gcttctcttc tctcctccaa ggtctagtga
cggagcccgc gcgcggcgcc 120accatgcggc agaaggcggt atcgcttttc ttgtgctacc
tgctgctctt cacttgcagt 180ggggtggagg caggtgagaa tgcgggtaag aaaaagtgct
cggagagctc ggacagcggc 240tccgggttct ggaaggccct gaccttcatg gccgtcggag
gaggactcgc agtcgccggg 300ctgcccgcgc tgggcttcac cggcgccggc atcgcggcca
actcggtggc tgcctcgctg 360atgagctggt ctgcgatcct gaatgggggc ggcgtgcccg
ccggggggct agtggccacg 420ctgcagagcc tcggggctgg tggcagcagc gtcgtcatag
gtaatattgg tgccctgatg 480ggctacgcca cccacaagta tctcgatagt gaggaggatg
aggagtagcc agcagctccc 540agaacctctt cttccttctt ggcctaactc ttccagttag
gatctagaac tttgcctttt 600tttttttttt tttttttttg agatgggttc tcactatatt
gtccaggcta gagtgcagtg 660gctattcaca gatgcgaaca tagtacactg cagcctccaa
ctcctagcct caagtgatcc 720tcctgtctca acctcccaag taggattaca agcatgcgcc
gacgatgccc agaatccaga 780actttgtcta tcactctccc caacaaccta gatgtgaaaa
cagaataaac ttcacccaga 840aaacactt
848100134PRTHomo sapiens 100Met Arg Gln Lys Ala
Val Ser Leu Phe Leu Cys Tyr Leu Leu Leu Phe1 5
10 15Thr Cys Ser Gly Val Glu Ala Gly Glu Asn Ala
Gly Lys Lys Lys Cys 20 25
30Ser Glu Ser Ser Asp Ser Gly Ser Gly Phe Trp Lys Ala Leu Thr Phe
35 40 45Met Ala Val Gly Gly Gly Leu Ala
Val Ala Gly Leu Pro Ala Leu Gly 50 55
60Phe Thr Gly Ala Gly Ile Ala Ala Asn Ser Val Ala Ala Ser Leu Met65
70 75 80Ser Trp Ser Ala Ile
Leu Asn Gly Gly Gly Val Pro Ala Gly Gly Leu 85
90 95Val Ala Thr Leu Gln Ser Leu Gly Ala Gly Gly
Ser Ser Val Val Ile 100 105
110Gly Asn Ile Gly Ala Leu Met Gly Tyr Ala Thr His Lys Tyr Leu Asp
115 120 125Ser Glu Glu Asp Glu Glu
130101836DNAHomo sapiens 101ccagccttca gccggagaac cgtttactcg ctgctgtgcc
catctatcag caggctccgg 60gctgaagatt gcttctcttc tctcctccaa ggtctagtga
cggagcccgc gcgcggcgcc 120accatgcggc agaaggcggt atcgcttttc ttgtgctacc
tgctgctctt cacttgcagt 180ggggtggagg caggtaagaa aaagtgctcg gagagctcgg
acagcggctc cgggttctgg 240aaggccctga ccttcatggc cgtcggagga ggactcgcag
tcgccgggct gcccgcgctg 300ggcttcaccg gcgccggcat cgcggccaac tcggtggctg
cctcgctgat gagctggtct 360gcgatcctga atgggggcgg cgtgcccgcc ggggggctag
tggccacgct gcagagcctc 420ggggctggtg gcagcagcgt cgtcataggt aatattggtg
ccctgatggg ctacgccacc 480cacaagtatc tcgatagtga ggaggatgag gagtagccag
cagctcccag aacctcttct 540tccttcttgg cctaactctt ccagttagga tctagaactt
tgcctttttt tttttttttt 600tttttttgag atgggttctc actatattgt ccaggctaga
gtgcagtggc tattcacaga 660tgcgaacata gtacactgca gcctccaact cctagcctca
agtgatcctc ctgtctcaac 720ctcccaagta ggattacaag catgcgccga cgatgcccag
aatccagaac tttgtctatc 780actctcccca acaacctaga tgtgaaaaca gaataaactt
cacccagaaa acactt 836102130PRTHomo sapiens 102Met Arg Gln Lys Ala
Val Ser Leu Phe Leu Cys Tyr Leu Leu Leu Phe1 5
10 15Thr Cys Ser Gly Val Glu Ala Gly Lys Lys Lys
Cys Ser Glu Ser Ser 20 25
30Asp Ser Gly Ser Gly Phe Trp Lys Ala Leu Thr Phe Met Ala Val Gly
35 40 45Gly Gly Leu Ala Val Ala Gly Leu
Pro Ala Leu Gly Phe Thr Gly Ala 50 55
60Gly Ile Ala Ala Asn Ser Val Ala Ala Ser Leu Met Ser Trp Ser Ala65
70 75 80Ile Leu Asn Gly Gly
Gly Val Pro Ala Gly Gly Leu Val Ala Thr Leu 85
90 95Gln Ser Leu Gly Ala Gly Gly Ser Ser Val Val
Ile Gly Asn Ile Gly 100 105
110Ala Leu Met Gly Tyr Ala Thr His Lys Tyr Leu Asp Ser Glu Glu Asp
115 120 125Glu Glu 1301034326DNAHomo
sapiens 103gctgagcgcg gagccgcccg gtgattggtg ggggcggaag ggggccgggc
gccagcgctg 60ccttttctcc tgccgggtag tttcgctttc ctgcgcagag tctgcggagg
ggctcggctg 120caccgggggg atcgcgcctg gcagacccca gaccgagcag aggcgaccca
gcgcgctcgg 180gagaggctgc accgccgcgc ccccgcctag cccttccgga tcctgcgcgc
agaaaagttt 240catttgctgt atgccatcct cgagagctgt ctaggttaac gttcgcactc
tgtgtatata 300acctcgacag tcttggcacc taacgtgctg tgcgtagctg ctcctttggt
tgaatcccca 360ggcccttgtt ggggcacaag gtggcaggat gtctcagtgg tacgaacttc
agcagcttga 420ctcaaaattc ctggagcagg ttcaccagct ttatgatgac agttttccca
tggaaatcag 480acagtacctg gcacagtggt tagaaaagca agactgggag cacgctgcca
atgatgtttc 540atttgccacc atccgttttc atgacctcct gtcacagctg gatgatcaat
atagtcgctt 600ttctttggag aataacttct tgctacagca taacataagg aaaagcaagc
gtaatcttca 660ggataatttt caggaagacc caatccagat gtctatgatc atttacagct
gtctgaagga 720agaaaggaaa attctggaaa acgcccagag atttaatcag gctcagtcgg
ggaatattca 780gagcacagtg atgttagaca aacagaaaga gcttgacagt aaagtcagaa
atgtgaagga 840caaggttatg tgtatagagc atgaaatcaa gagcctggaa gatttacaag
atgaatatga 900cttcaaatgc aaaaccttgc agaacagaga acacgagacc aatggtgtgg
caaagagtga 960tcagaaacaa gaacagctgt tactcaagaa gatgtattta atgcttgaca
ataagagaaa 1020ggaagtagtt cacaaaataa tagagttgct gaatgtcact gaacttaccc
agaatgccct 1080gattaatgat gaactagtgg agtggaagcg gagacagcag agcgcctgta
ttggggggcc 1140gcccaatgct tgcttggatc agctgcagaa ctggttcact atagttgcgg
agagtctgca 1200gcaagttcgg cagcagctta aaaagttgga ggaattggaa cagaaataca
cctacgaaca 1260tgaccctatc acaaaaaaca aacaagtgtt atgggaccgc accttcagtc
ttttccagca 1320gctcattcag agctcgtttg tggtggaaag acagccctgc atgccaacgc
accctcagag 1380gccgctggtc ttgaagacag gggtccagtt cactgtgaag ttgagactgt
tggtgaaatt 1440gcaagagctg aattataatt tgaaagtcaa agtcttattt gataaagatg
tgaatgagag 1500aaatacagta aaaggattta ggaagttcaa cattttgggc acgcacacaa
aagtgatgaa 1560catggaggag tccaccaatg gcagtctggc ggctgaattt cggcacctgc
aattgaaaga 1620acagaaaaat gctggcacca gaacgaatga gggtcctctc atcgttactg
aagagcttca 1680ctcccttagt tttgaaaccc aattgtgcca gcctggtttg gtaattgacc
tcgagacgac 1740ctctctgccc gttgtggtga tctccaacgt cagccagctc ccgagcggtt
gggcctccat 1800cctttggtac aacatgctgg tggcggaacc caggaatctg tccttcttcc
tgactccacc 1860atgtgcacga tgggctcagc tttcagaagt gctgagttgg cagttttctt
ctgtcaccaa 1920aagaggtctc aatgtggacc agctgaacat gttgggagag aagcttcttg
gtcctaacgc 1980cagccccgat ggtctcattc cgtggacgag gttttgtaag gaaaatataa
atgataaaaa 2040ttttcccttc tggctttgga ttgaaagcat cctagaactc attaaaaaac
acctgctccc 2100tctctggaat gatgggtgca tcatgggctt catcagcaag gagcgagagc
gtgccctgtt 2160gaaggaccag cagccgggga ccttcctgct gcggttcagt gagagctccc
gggaaggggc 2220catcacattc acatgggtgg agcggtccca gaacggaggc gaacctgact
tccatgcggt 2280tgaaccctac acgaagaaag aactttctgc tgttactttc cctgacatca
ttcgcaatta 2340caaagtcatg gctgctgaga atattcctga gaatcccctg aagtatctgt
atccaaatat 2400tgacaaagac catgcctttg gaaagtatta ctccaggcca aaggaagcac
cagagccaat 2460ggaacttgat ggccctaaag gaactggata tatcaagact gagttgattt
ctgtgtctga 2520agttcaccct tctagacttc agaccacaga caacctgctc cccatgtctc
ctgaggagtt 2580tgacgaggtg tctcggatag tgggctctgt agaattcgac agtatgatga
acacagtata 2640gagcatgaat ttttttcatc ttctctggcg acagttttcc ttctcatctg
tgattccctc 2700ctgctactct gttccttcac atcctgtgtt tctagggaaa tgaaagaaag
gccagcaaat 2760tcgctgcaac ctgttgatag caagtgaatt tttctctaac tcagaaacat
cagttactct 2820gaagggcatc atgcatctta ctgaaggtaa aattgaaagg cattctctga
agagtgggtt 2880tcacaagtga aaaacatcca gatacaccca aagtatcagg acgagaatga
gggtcctttg 2940ggaaaggaga agttaagcaa catctagcaa atgttatgca taaagtcagt
gcccaactgt 3000tataggttgt tggataaatc agtggttatt tagggaactg cttgacgtag
gaacggtaaa 3060tttctgtggg agaattctta catgttttct ttgctttaag tgtaactggc
agttttccat 3120tggtttacct gtgaaatagt tcaaagccaa gtttatatac aattatatca
gtcctctttc 3180aaaggtagcc atcatggatc tggtaggggg aaaatgtgta ttttattaca
tctttcacat 3240tggctattta aagacaaaga caaattctgt ttcttgagaa gagaatatta
gctttactgt 3300ttgttatggc ttaatgacac tagctaatat caatagaagg atgtacattt
ccaaattcac 3360aagttgtgtt tgatatccaa agctgaatac attctgcttt catcttggtc
acatacaatt 3420atttttacag ttctcccaag ggagttaggc tattcacaac cactcattca
aaagttgaaa 3480ttaaccatag atgtagataa actcagaaat ttaattcatg tttcttaaat
gggctacttt 3540gtcctttttg ttattagggt ggtatttagt ctattagcca caaaattggg
aaaggagtag 3600aaaaagcagt aactgacaac ttgaataata caccagagat aatatgagaa
tcagatcatt 3660tcaaaactca tttcctatgt aactgcattg agaactgcat atgtttcgct
gatatatgtg 3720tttttcacat ttgcgaatgg ttccattctc tctcctgtac tttttccaga
cacttttttg 3780agtggatgat gtttcgtgaa gtatactgta tttttacctt tttccttcct
tatcactgac 3840acaaaaagta gattaagaga tgggtttgac aaggttcttc ccttttacat
actgctgtct 3900atgtggctgt atcttgtttt tccactactg ctaccacaac tatattatca
tgcaaatgct 3960gtattcttct ttggtggaga taaagatttc ttgagttttg ttttaaaatt
aaagctaaag 4020tatctgtatt gcattaaata taatatgcac acagtgcttt ccgtggcact
gcatacaatc 4080tgaggcctcc tctctcagtt tttatataga tggcgagaac ctaagtttca
gttgatttta 4140caattgaaat gactaaaaaa caaagaagac aacattaaaa caatattgtt
tctaattgct 4200gaggtttagc tgtcagttct ttttgccctt tgggaattcg gcatggtttc
attttactgc 4260actagccaag agactttact tttaagaagt attaaaattc taaaattcaa
aaaaaaaaaa 4320aaaaaa
43261042798DNAHomo sapiens 104gctgagcgcg gagccgcccg gtgattggtg
ggggcggaag ggggccgggc gccagcgctg 60ccttttctcc tgccgggtag tttcgctttc
ctgcgcagag tctgcggagg ggctcggctg 120caccgggggg atcgcgcctg gcagacccca
gaccgagcag aggcgaccca gcgcgctcgg 180gagaggctgc accgccgcgc ccccgcctag
cccttccgga tcctgcgcgc agaaaagttt 240catttgctgt atgccatcct cgagagctgt
ctaggttaac gttcgcactc tgtgtatata 300acctcgacag tcttggcacc taacgtgctg
tgcgtagctg ctcctttggt tgaatcccca 360ggcccttgtt ggggcacaag gtggcaggat
gtctcagtgg tacgaacttc agcagcttga 420ctcaaaattc ctggagcagg ttcaccagct
ttatgatgac agttttccca tggaaatcag 480acagtacctg gcacagtggt tagaaaagca
agactgggag cacgctgcca atgatgtttc 540atttgccacc atccgttttc atgacctcct
gtcacagctg gatgatcaat atagtcgctt 600ttctttggag aataacttct tgctacagca
taacataagg aaaagcaagc gtaatcttca 660ggataatttt caggaagacc caatccagat
gtctatgatc atttacagct gtctgaagga 720agaaaggaaa attctggaaa acgcccagag
atttaatcag gctcagtcgg ggaatattca 780gagcacagtg atgttagaca aacagaaaga
gcttgacagt aaagtcagaa atgtgaagga 840caaggttatg tgtatagagc atgaaatcaa
gagcctggaa gatttacaag atgaatatga 900cttcaaatgc aaaaccttgc agaacagaga
acacgagacc aatggtgtgg caaagagtga 960tcagaaacaa gaacagctgt tactcaagaa
gatgtattta atgcttgaca ataagagaaa 1020ggaagtagtt cacaaaataa tagagttgct
gaatgtcact gaacttaccc agaatgccct 1080gattaatgat gaactagtgg agtggaagcg
gagacagcag agcgcctgta ttggggggcc 1140gcccaatgct tgcttggatc agctgcagaa
ctggttcact atagttgcgg agagtctgca 1200gcaagttcgg cagcagctta aaaagttgga
ggaattggaa cagaaataca cctacgaaca 1260tgaccctatc acaaaaaaca aacaagtgtt
atgggaccgc accttcagtc ttttccagca 1320gctcattcag agctcgtttg tggtggaaag
acagccctgc atgccaacgc accctcagag 1380gccgctggtc ttgaagacag gggtccagtt
cactgtgaag ttgagactgt tggtgaaatt 1440gcaagagctg aattataatt tgaaagtcaa
agtcttattt gataaagatg tgaatgagag 1500aaatacagta aaaggattta ggaagttcaa
cattttgggc acgcacacaa aagtgatgaa 1560catggaggag tccaccaatg gcagtctggc
ggctgaattt cggcacctgc aattgaaaga 1620acagaaaaat gctggcacca gaacgaatga
gggtcctctc atcgttactg aagagcttca 1680ctcccttagt tttgaaaccc aattgtgcca
gcctggtttg gtaattgacc tcgagacgac 1740ctctctgccc gttgtggtga tctccaacgt
cagccagctc ccgagcggtt gggcctccat 1800cctttggtac aacatgctgg tggcggaacc
caggaatctg tccttcttcc tgactccacc 1860atgtgcacga tgggctcagc tttcagaagt
gctgagttgg cagttttctt ctgtcaccaa 1920aagaggtctc aatgtggacc agctgaacat
gttgggagag aagcttcttg gtcctaacgc 1980cagccccgat ggtctcattc cgtggacgag
gttttgtaag gaaaatataa atgataaaaa 2040ttttcccttc tggctttgga ttgaaagcat
cctagaactc attaaaaaac acctgctccc 2100tctctggaat gatgggtgca tcatgggctt
catcagcaag gagcgagagc gtgccctgtt 2160gaaggaccag cagccgggga ccttcctgct
gcggttcagt gagagctccc gggaaggggc 2220catcacattc acatgggtgg agcggtccca
gaacggaggc gaacctgact tccatgcggt 2280tgaaccctac acgaagaaag aactttctgc
tgttactttc cctgacatca ttcgcaatta 2340caaagtcatg gctgctgaga atattcctga
gaatcccctg aagtatctgt atccaaatat 2400tgacaaagac catgcctttg gaaagtatta
ctccaggcca aaggaagcac cagagccaat 2460ggaacttgat ggccctaaag gaactggata
tatcaagact gagttgattt ctgtgtctga 2520agtgtaagtg aacacagaag agtgacatgt
ttacaaacct caagccagcc ttgctcctgg 2580ctggggcctg ttgaagatgc ttgtatttta
cttttccatt gtaattgcta tcgccatcac 2640agctgaactt gttgagatcc ccgtgttact
gcctatcagc attttactac tttaaaaaaa 2700aaaaaaaagc caaaaaccaa atttgtattt
aaggtatata aattttccca aaactgatac 2760cctttgaaaa agtataaata aaatgagcaa
aagttgat 2798105750PRTHomo sapiens 105Met Ser
Gln Trp Tyr Glu Leu Gln Gln Leu Asp Ser Lys Phe Leu Glu1 5
10 15Gln Val His Gln Leu Tyr Asp Asp
Ser Phe Pro Met Glu Ile Arg Gln 20 25
30Tyr Leu Ala Gln Trp Leu Glu Lys Gln Asp Trp Glu His Ala Ala
Asn 35 40 45Asp Val Ser Phe Ala
Thr Ile Arg Phe His Asp Leu Leu Ser Gln Leu 50 55
60Asp Asp Gln Tyr Ser Arg Phe Ser Leu Glu Asn Asn Phe Leu
Leu Gln65 70 75 80His
Asn Ile Arg Lys Ser Lys Arg Asn Leu Gln Asp Asn Phe Gln Glu
85 90 95Asp Pro Ile Gln Met Ser Met
Ile Ile Tyr Ser Cys Leu Lys Glu Glu 100 105
110Arg Lys Ile Leu Glu Asn Ala Gln Arg Phe Asn Gln Ala Gln
Ser Gly 115 120 125Asn Ile Gln Ser
Thr Val Met Leu Asp Lys Gln Lys Glu Leu Asp Ser 130
135 140Lys Val Arg Asn Val Lys Asp Lys Val Met Cys Ile
Glu His Glu Ile145 150 155
160Lys Ser Leu Glu Asp Leu Gln Asp Glu Tyr Asp Phe Lys Cys Lys Thr
165 170 175Leu Gln Asn Arg Glu
His Glu Thr Asn Gly Val Ala Lys Ser Asp Gln 180
185 190Lys Gln Glu Gln Leu Leu Leu Lys Lys Met Tyr Leu
Met Leu Asp Asn 195 200 205Lys Arg
Lys Glu Val Val His Lys Ile Ile Glu Leu Leu Asn Val Thr 210
215 220Glu Leu Thr Gln Asn Ala Leu Ile Asn Asp Glu
Leu Val Glu Trp Lys225 230 235
240Arg Arg Gln Gln Ser Ala Cys Ile Gly Gly Pro Pro Asn Ala Cys Leu
245 250 255Asp Gln Leu Gln
Asn Trp Phe Thr Ile Val Ala Glu Ser Leu Gln Gln 260
265 270Val Arg Gln Gln Leu Lys Lys Leu Glu Glu Leu
Glu Gln Lys Tyr Thr 275 280 285Tyr
Glu His Asp Pro Ile Thr Lys Asn Lys Gln Val Leu Trp Asp Arg 290
295 300Thr Phe Ser Leu Phe Gln Gln Leu Ile Gln
Ser Ser Phe Val Val Glu305 310 315
320Arg Gln Pro Cys Met Pro Thr His Pro Gln Arg Pro Leu Val Leu
Lys 325 330 335Thr Gly Val
Gln Phe Thr Val Lys Leu Arg Leu Leu Val Lys Leu Gln 340
345 350Glu Leu Asn Tyr Asn Leu Lys Val Lys Val
Leu Phe Asp Lys Asp Val 355 360
365Asn Glu Arg Asn Thr Val Lys Gly Phe Arg Lys Phe Asn Ile Leu Gly 370
375 380Thr His Thr Lys Val Met Asn Met
Glu Glu Ser Thr Asn Gly Ser Leu385 390
395 400Ala Ala Glu Phe Arg His Leu Gln Leu Lys Glu Gln
Lys Asn Ala Gly 405 410
415Thr Arg Thr Asn Glu Gly Pro Leu Ile Val Thr Glu Glu Leu His Ser
420 425 430Leu Ser Phe Glu Thr Gln
Leu Cys Gln Pro Gly Leu Val Ile Asp Leu 435 440
445Glu Thr Thr Ser Leu Pro Val Val Val Ile Ser Asn Val Ser
Gln Leu 450 455 460Pro Ser Gly Trp Ala
Ser Ile Leu Trp Tyr Asn Met Leu Val Ala Glu465 470
475 480Pro Arg Asn Leu Ser Phe Phe Leu Thr Pro
Pro Cys Ala Arg Trp Ala 485 490
495Gln Leu Ser Glu Val Leu Ser Trp Gln Phe Ser Ser Val Thr Lys Arg
500 505 510Gly Leu Asn Val Asp
Gln Leu Asn Met Leu Gly Glu Lys Leu Leu Gly 515
520 525Pro Asn Ala Ser Pro Asp Gly Leu Ile Pro Trp Thr
Arg Phe Cys Lys 530 535 540Glu Asn Ile
Asn Asp Lys Asn Phe Pro Phe Trp Leu Trp Ile Glu Ser545
550 555 560Ile Leu Glu Leu Ile Lys Lys
His Leu Leu Pro Leu Trp Asn Asp Gly 565
570 575Cys Ile Met Gly Phe Ile Ser Lys Glu Arg Glu Arg
Ala Leu Leu Lys 580 585 590Asp
Gln Gln Pro Gly Thr Phe Leu Leu Arg Phe Ser Glu Ser Ser Arg 595
600 605Glu Gly Ala Ile Thr Phe Thr Trp Val
Glu Arg Ser Gln Asn Gly Gly 610 615
620Glu Pro Asp Phe His Ala Val Glu Pro Tyr Thr Lys Lys Glu Leu Ser625
630 635 640Ala Val Thr Phe
Pro Asp Ile Ile Arg Asn Tyr Lys Val Met Ala Ala 645
650 655Glu Asn Ile Pro Glu Asn Pro Leu Lys Tyr
Leu Tyr Pro Asn Ile Asp 660 665
670Lys Asp His Ala Phe Gly Lys Tyr Tyr Ser Arg Pro Lys Glu Ala Pro
675 680 685Glu Pro Met Glu Leu Asp Gly
Pro Lys Gly Thr Gly Tyr Ile Lys Thr 690 695
700Glu Leu Ile Ser Val Ser Glu Val His Pro Ser Arg Leu Gln Thr
Thr705 710 715 720Asp Asn
Leu Leu Pro Met Ser Pro Glu Glu Phe Asp Glu Val Ser Arg
725 730 735Ile Val Gly Ser Val Glu Phe
Asp Ser Met Met Asn Thr Val 740 745
750106712PRTHomo sapiens 106Met Ser Gln Trp Tyr Glu Leu Gln Gln Leu
Asp Ser Lys Phe Leu Glu1 5 10
15Gln Val His Gln Leu Tyr Asp Asp Ser Phe Pro Met Glu Ile Arg Gln
20 25 30Tyr Leu Ala Gln Trp Leu
Glu Lys Gln Asp Trp Glu His Ala Ala Asn 35 40
45Asp Val Ser Phe Ala Thr Ile Arg Phe His Asp Leu Leu Ser
Gln Leu 50 55 60Asp Asp Gln Tyr Ser
Arg Phe Ser Leu Glu Asn Asn Phe Leu Leu Gln65 70
75 80His Asn Ile Arg Lys Ser Lys Arg Asn Leu
Gln Asp Asn Phe Gln Glu 85 90
95Asp Pro Ile Gln Met Ser Met Ile Ile Tyr Ser Cys Leu Lys Glu Glu
100 105 110Arg Lys Ile Leu Glu
Asn Ala Gln Arg Phe Asn Gln Ala Gln Ser Gly 115
120 125Asn Ile Gln Ser Thr Val Met Leu Asp Lys Gln Lys
Glu Leu Asp Ser 130 135 140Lys Val Arg
Asn Val Lys Asp Lys Val Met Cys Ile Glu His Glu Ile145
150 155 160Lys Ser Leu Glu Asp Leu Gln
Asp Glu Tyr Asp Phe Lys Cys Lys Thr 165
170 175Leu Gln Asn Arg Glu His Glu Thr Asn Gly Val Ala
Lys Ser Asp Gln 180 185 190Lys
Gln Glu Gln Leu Leu Leu Lys Lys Met Tyr Leu Met Leu Asp Asn 195
200 205Lys Arg Lys Glu Val Val His Lys Ile
Ile Glu Leu Leu Asn Val Thr 210 215
220Glu Leu Thr Gln Asn Ala Leu Ile Asn Asp Glu Leu Val Glu Trp Lys225
230 235 240Arg Arg Gln Gln
Ser Ala Cys Ile Gly Gly Pro Pro Asn Ala Cys Leu 245
250 255Asp Gln Leu Gln Asn Trp Phe Thr Ile Val
Ala Glu Ser Leu Gln Gln 260 265
270Val Arg Gln Gln Leu Lys Lys Leu Glu Glu Leu Glu Gln Lys Tyr Thr
275 280 285Tyr Glu His Asp Pro Ile Thr
Lys Asn Lys Gln Val Leu Trp Asp Arg 290 295
300Thr Phe Ser Leu Phe Gln Gln Leu Ile Gln Ser Ser Phe Val Val
Glu305 310 315 320Arg Gln
Pro Cys Met Pro Thr His Pro Gln Arg Pro Leu Val Leu Lys
325 330 335Thr Gly Val Gln Phe Thr Val
Lys Leu Arg Leu Leu Val Lys Leu Gln 340 345
350Glu Leu Asn Tyr Asn Leu Lys Val Lys Val Leu Phe Asp Lys
Asp Val 355 360 365Asn Glu Arg Asn
Thr Val Lys Gly Phe Arg Lys Phe Asn Ile Leu Gly 370
375 380Thr His Thr Lys Val Met Asn Met Glu Glu Ser Thr
Asn Gly Ser Leu385 390 395
400Ala Ala Glu Phe Arg His Leu Gln Leu Lys Glu Gln Lys Asn Ala Gly
405 410 415Thr Arg Thr Asn Glu
Gly Pro Leu Ile Val Thr Glu Glu Leu His Ser 420
425 430Leu Ser Phe Glu Thr Gln Leu Cys Gln Pro Gly Leu
Val Ile Asp Leu 435 440 445Glu Thr
Thr Ser Leu Pro Val Val Val Ile Ser Asn Val Ser Gln Leu 450
455 460Pro Ser Gly Trp Ala Ser Ile Leu Trp Tyr Asn
Met Leu Val Ala Glu465 470 475
480Pro Arg Asn Leu Ser Phe Phe Leu Thr Pro Pro Cys Ala Arg Trp Ala
485 490 495Gln Leu Ser Glu
Val Leu Ser Trp Gln Phe Ser Ser Val Thr Lys Arg 500
505 510Gly Leu Asn Val Asp Gln Leu Asn Met Leu Gly
Glu Lys Leu Leu Gly 515 520 525Pro
Asn Ala Ser Pro Asp Gly Leu Ile Pro Trp Thr Arg Phe Cys Lys 530
535 540Glu Asn Ile Asn Asp Lys Asn Phe Pro Phe
Trp Leu Trp Ile Glu Ser545 550 555
560Ile Leu Glu Leu Ile Lys Lys His Leu Leu Pro Leu Trp Asn Asp
Gly 565 570 575Cys Ile Met
Gly Phe Ile Ser Lys Glu Arg Glu Arg Ala Leu Leu Lys 580
585 590Asp Gln Gln Pro Gly Thr Phe Leu Leu Arg
Phe Ser Glu Ser Ser Arg 595 600
605Glu Gly Ala Ile Thr Phe Thr Trp Val Glu Arg Ser Gln Asn Gly Gly 610
615 620Glu Pro Asp Phe His Ala Val Glu
Pro Tyr Thr Lys Lys Glu Leu Ser625 630
635 640Ala Val Thr Phe Pro Asp Ile Ile Arg Asn Tyr Lys
Val Met Ala Ala 645 650
655Glu Asn Ile Pro Glu Asn Pro Leu Lys Tyr Leu Tyr Pro Asn Ile Asp
660 665 670Lys Asp His Ala Phe Gly
Lys Tyr Tyr Ser Arg Pro Lys Glu Ala Pro 675 680
685Glu Pro Met Glu Leu Asp Gly Pro Lys Gly Thr Gly Tyr Ile
Lys Thr 690 695 700Glu Leu Ile Ser Val
Ser Glu Val705 7101071742DNAHomo sapiens 107tctttgaagc
ttcaaggctg ctgaataatt tccttctccc attttgtgcc tgcctagcta 60tccagacaga
gcagctaccc tcagctctag ctgatactac agacagtaca acagatcaag 120aagtatggca
gtgacaactc gtttgacatg gttgcacgaa aagatcctgc aaaatcattt 180tggagggaag
cggcttagcc ttctctataa gggtagtgtc catggattcc gtaatggagt 240tttgcttgac
agatgttgta atcaagggcc tactctaaca gtgatttata gtgaagatca 300tattattgga
gcatatgcag aagagagtta ccaggaagga aagtatgctt ccatcatcct 360ttttgcactt
caagatacta aaatttcaga atggaaacta ggactatgta caccagaaac 420actgttttgt
tgtgatgtta caaaatataa ctccccaact aatttccaga tagatggaag 480aaatagaaaa
gtgattatgg acttaaagac aatggaaaat cttggacttg ctcaaaattg 540tactatctct
attcaggatt atgaagtttt tcgatgcgaa gattcactgg atgaaagaaa 600gataaaaggg
gtcattgagc tcaggaagag cttactgtct gccttgagaa cttatgaacc 660atatggatcc
ctggttcaac aaatacgaat tctgctgctg ggtccaattg gagctgggaa 720gtccagcttt
ttcaactcag tgaggtctgt tttccaaggg catgtaacgc atcaggcttt 780ggtgggcact
aatacaactg ggatatctga gaagtatagg acatactcta ttagagacgg 840gaaagatggc
aaatacctgc cgtttattct gtgtgactca ctggggctga gtgagaaaga 900aggcggcctg
tgcagggatg acatattcta tatcttgaac ggtaacattc gtgatagata 960ccagtttaat
cccatggaat caatcaaatt aaatcatcat gactacattg attccccatc 1020gctgaaggac
agaattcatt gtgtggcatt tgtatttgat gccagctcta ttcaatactt 1080ctcctctcag
atgatagtaa agatcaaaag aattcgaagg gagttggtaa acgctggtgt 1140ggtacatgtg
gctttgctca ctcatgtgga tagcatggat ttgattacaa aaggtgacct 1200tatagaaata
gagagatgtg agcctgtgag gtccaagcta gaggaagtcc aaagaaaact 1260tggatttgct
ctttctgaca tctcggtggt tagcaattat tcctctgagt gggagctgga 1320ccctgtaaag
gatgttctaa ttctttctgc tctgagacga atgctatggg ctgcagatga 1380cttcttagag
gatttgcctt ttgagcaaat agggaatcta agggaggaaa ttatcaactg 1440tgcacaagga
aaaaaataga tatgtgaaag gttcacgtaa atttcctcac atcacagaag 1500attaaaattc
agaaaggaga aaacacagac caaagagaag tatctaagac caaagggatg 1560tgttttatta
atgtctagga tgaagaaatg catagaacat tgtagtactt gtaaataact 1620agaaataaca
tgatttagtc ataattgtga aaaataataa taatttttct tggatttatg 1680ttctgtatct
gtgaaaaaat aaatttctta taaaactcgg gtctaaaaaa aaaaaaaaaa 1740aa
1742108444PRTHomo
sapiens 108Met Ala Val Thr Thr Arg Leu Thr Trp Leu His Glu Lys Ile Leu
Gln1 5 10 15Asn His Phe
Gly Gly Lys Arg Leu Ser Leu Leu Tyr Lys Gly Ser Val 20
25 30His Gly Phe Arg Asn Gly Val Leu Leu Asp
Arg Cys Cys Asn Gln Gly 35 40
45Pro Thr Leu Thr Val Ile Tyr Ser Glu Asp His Ile Ile Gly Ala Tyr 50
55 60Ala Glu Glu Ser Tyr Gln Glu Gly Lys
Tyr Ala Ser Ile Ile Leu Phe65 70 75
80Ala Leu Gln Asp Thr Lys Ile Ser Glu Trp Lys Leu Gly Leu
Cys Thr 85 90 95Pro Glu
Thr Leu Phe Cys Cys Asp Val Thr Lys Tyr Asn Ser Pro Thr 100
105 110Asn Phe Gln Ile Asp Gly Arg Asn Arg
Lys Val Ile Met Asp Leu Lys 115 120
125Thr Met Glu Asn Leu Gly Leu Ala Gln Asn Cys Thr Ile Ser Ile Gln
130 135 140Asp Tyr Glu Val Phe Arg Cys
Glu Asp Ser Leu Asp Glu Arg Lys Ile145 150
155 160Lys Gly Val Ile Glu Leu Arg Lys Ser Leu Leu Ser
Ala Leu Arg Thr 165 170
175Tyr Glu Pro Tyr Gly Ser Leu Val Gln Gln Ile Arg Ile Leu Leu Leu
180 185 190Gly Pro Ile Gly Ala Gly
Lys Ser Ser Phe Phe Asn Ser Val Arg Ser 195 200
205Val Phe Gln Gly His Val Thr His Gln Ala Leu Val Gly Thr
Asn Thr 210 215 220Thr Gly Ile Ser Glu
Lys Tyr Arg Thr Tyr Ser Ile Arg Asp Gly Lys225 230
235 240Asp Gly Lys Tyr Leu Pro Phe Ile Leu Cys
Asp Ser Leu Gly Leu Ser 245 250
255Glu Lys Glu Gly Gly Leu Cys Arg Asp Asp Ile Phe Tyr Ile Leu Asn
260 265 270Gly Asn Ile Arg Asp
Arg Tyr Gln Phe Asn Pro Met Glu Ser Ile Lys 275
280 285Leu Asn His His Asp Tyr Ile Asp Ser Pro Ser Leu
Lys Asp Arg Ile 290 295 300His Cys Val
Ala Phe Val Phe Asp Ala Ser Ser Ile Gln Tyr Phe Ser305
310 315 320Ser Gln Met Ile Val Lys Ile
Lys Arg Ile Arg Arg Glu Leu Val Asn 325
330 335Ala Gly Val Val His Val Ala Leu Leu Thr His Val
Asp Ser Met Asp 340 345 350Leu
Ile Thr Lys Gly Asp Leu Ile Glu Ile Glu Arg Cys Glu Pro Val 355
360 365Arg Ser Lys Leu Glu Glu Val Gln Arg
Lys Leu Gly Phe Ala Leu Ser 370 375
380Asp Ile Ser Val Val Ser Asn Tyr Ser Ser Glu Trp Glu Leu Asp Pro385
390 395 400Val Lys Asp Val
Leu Ile Leu Ser Ala Leu Arg Arg Met Leu Trp Ala 405
410 415Ala Asp Asp Phe Leu Glu Asp Leu Pro Phe
Glu Gln Ile Gly Asn Leu 420 425
430Arg Glu Glu Ile Ile Asn Cys Ala Gln Gly Lys Lys 435
4401092808DNAHomo sapiens 109gcggcggcgg cggcgcagtt tgctcatact
ttgtgacttg cggtcacagt ggcattcagc 60tccacacttg gtagaaccac aggcacgaca
agcatagaaa catcctaaac aatcttcatc 120gaggcatcga ggtccatccc aataaaaatc
aggagaccct ggctatcata gaccttagtc 180ttcgctggta tactcgctgt ctgtcaacca
gcggttgact ttttttaagc cttctttttt 240ctcttttacc agtttctgga gcaaattcag
tttgccttcc tggatttgta aattgtaatg 300acctcaaaac tttagcagtt cttccatctg
actcaggttt gcttctctgg cggtcttcag 360aatcaacatc cacacttccg tgattatctg
cgtgcatttt ggacaaagct tccaaccagg 420atacgggaag aagaaatggc tggtgatctt
tcagcaggtt tcttcatgga ggaacttaat 480acataccgtc agaagcaggg agtagtactt
aaatatcaag aactgcctaa ttcaggacct 540ccacatgata ggaggtttac atttcaagtt
ataatagatg gaagagaatt tccagaaggt 600gaaggtagat caaagaagga agcaaaaaat
gccgcagcca aattagctgt tgagatactt 660aataaggaaa agaaggcagt tagtccttta
ttattgacaa caacgaattc ttcagaagga 720ttatccatgg ggaattacat aggccttatc
aatagaattg cccagaagaa aagactaact 780gtaaattatg aacagtgtgc atcgggggtg
catgggccag aaggatttca ttataaatgc 840aaaatgggac agaaagaata tagtattggt
acaggttcta ctaaacagga agcaaaacaa 900ttggccgcta aacttgcata tcttcagata
ttatcagaag aaacctcagt gaaatctgac 960tacctgtcct ctggttcttt tgctactacg
tgtgagtccc aaagcaactc tttagtgacc 1020agcacactcg cttctgaatc atcatctgaa
ggtgacttct cagcagatac atcagagata 1080aattctaaca gtgacagttt aaacagttct
tcgttgctta tgaatggtct cagaaataat 1140caaaggaagg caaaaagatc tttggcaccc
agatttgacc ttcctgacat gaaagaaaca 1200aagtatactg tggacaagag gtttggcatg
gattttaaag aaatagaatt aattggctca 1260ggtggatttg gccaagtttt caaagcaaaa
cacagaattg acggaaagac ttacgttatt 1320aaacgtgtta aatataataa cgagaaggcg
gagcgtgaag taaaagcatt ggcaaaactt 1380gatcatgtaa atattgttca ctacaatggc
tgttgggatg gatttgatta tgatcctgag 1440accagtgatg attctcttga gagcagtgat
tatgatcctg agaacagcaa aaatagttca 1500aggtcaaaga ctaagtgcct tttcatccaa
atggaattct gtgataaagg gaccttggaa 1560caatggattg aaaaaagaag aggcgagaaa
ctagacaaag ttttggcttt ggaactcttt 1620gaacaaataa caaaaggggt ggattatata
cattcaaaaa aattaattca tagagatctt 1680aagccaagta atatattctt agtagataca
aaacaagtaa agattggaga ctttggactt 1740gtaacatctc tgaaaaatga tggaaagcga
acaaggagta agggaacttt gcgatacatg 1800agcccagaac agatttcttc gcaagactat
ggaaaggaag tggacctcta cgctttgggg 1860ctaattcttg ctgaacttct tcatgtatgt
gacactgctt ttgaaacatc aaagtttttc 1920acagacctac gggatggcat catctcagat
atatttgata aaaaagaaaa aactcttcta 1980cagaaattac tctcaaagaa acctgaggat
cgacctaaca catctgaaat actaaggacc 2040ttgactgtgt ggaagaaaag cccagagaaa
aatgaacgac acacatgtta gagcccttct 2100gaaaaagtat cctgcttctg atatgcagtt
ttccttaaat tatctaaaat ctgctaggga 2160atatcaatag atatttacct tttattttaa
tgtttccttt aattttttac tatttttact 2220aatctttctg cagaaacaga aaggttttct
tctttttgct tcaaaaacat tcttacattt 2280tactttttcc tggctcatct ctttattctt
tttttttttt ttaaagacag agtctcgctc 2340tgttgcccag gctggagtgc aatgacacag
tcttggctca ctgcaacttc tgcctcttgg 2400gttcaagtga ttctcctgcc tcagcctcct
gagtagctgg attacaggca tgtgccaccc 2460acccaactaa tttttgtgtt tttaataaag
acagggtttc accatgttgg ccaggctggt 2520ctcaaactcc tgacctcaag taatccacct
gcctcggcct cccaaagtgc tgggattaca 2580gggatgagcc accgcgccca gcctcatctc
tttgttctaa agatggaaaa accaccccca 2640aattttcttt ttatactatt aatgaatcaa
tcaattcata tctatttatt aaatttctac 2700cgcttttagg ccaaaaaaat gtaagatcgt
tctctgcctc acatagctta caagccagct 2760ggagaaatat ggtactcatt aaaaaaaaaa
aaaaagtgat gtacaacc 2808110551PRTHomo sapiens 110Met Ala
Gly Asp Leu Ser Ala Gly Phe Phe Met Glu Glu Leu Asn Thr1 5
10 15Tyr Arg Gln Lys Gln Gly Val Val
Leu Lys Tyr Gln Glu Leu Pro Asn 20 25
30Ser Gly Pro Pro His Asp Arg Arg Phe Thr Phe Gln Val Ile Ile
Asp 35 40 45Gly Arg Glu Phe Pro
Glu Gly Glu Gly Arg Ser Lys Lys Glu Ala Lys 50 55
60Asn Ala Ala Ala Lys Leu Ala Val Glu Ile Leu Asn Lys Glu
Lys Lys65 70 75 80Ala
Val Ser Pro Leu Leu Leu Thr Thr Thr Asn Ser Ser Glu Gly Leu
85 90 95Ser Met Gly Asn Tyr Ile Gly
Leu Ile Asn Arg Ile Ala Gln Lys Lys 100 105
110Arg Leu Thr Val Asn Tyr Glu Gln Cys Ala Ser Gly Val His
Gly Pro 115 120 125Glu Gly Phe His
Tyr Lys Cys Lys Met Gly Gln Lys Glu Tyr Ser Ile 130
135 140Gly Thr Gly Ser Thr Lys Gln Glu Ala Lys Gln Leu
Ala Ala Lys Leu145 150 155
160Ala Tyr Leu Gln Ile Leu Ser Glu Glu Thr Ser Val Lys Ser Asp Tyr
165 170 175Leu Ser Ser Gly Ser
Phe Ala Thr Thr Cys Glu Ser Gln Ser Asn Ser 180
185 190Leu Val Thr Ser Thr Leu Ala Ser Glu Ser Ser Ser
Glu Gly Asp Phe 195 200 205Ser Ala
Asp Thr Ser Glu Ile Asn Ser Asn Ser Asp Ser Leu Asn Ser 210
215 220Ser Ser Leu Leu Met Asn Gly Leu Arg Asn Asn
Gln Arg Lys Ala Lys225 230 235
240Arg Ser Leu Ala Pro Arg Phe Asp Leu Pro Asp Met Lys Glu Thr Lys
245 250 255Tyr Thr Val Asp
Lys Arg Phe Gly Met Asp Phe Lys Glu Ile Glu Leu 260
265 270Ile Gly Ser Gly Gly Phe Gly Gln Val Phe Lys
Ala Lys His Arg Ile 275 280 285Asp
Gly Lys Thr Tyr Val Ile Lys Arg Val Lys Tyr Asn Asn Glu Lys 290
295 300Ala Glu Arg Glu Val Lys Ala Leu Ala Lys
Leu Asp His Val Asn Ile305 310 315
320Val His Tyr Asn Gly Cys Trp Asp Gly Phe Asp Tyr Asp Pro Glu
Thr 325 330 335Ser Asp Asp
Ser Leu Glu Ser Ser Asp Tyr Asp Pro Glu Asn Ser Lys 340
345 350Asn Ser Ser Arg Ser Lys Thr Lys Cys Leu
Phe Ile Gln Met Glu Phe 355 360
365Cys Asp Lys Gly Thr Leu Glu Gln Trp Ile Glu Lys Arg Arg Gly Glu 370
375 380Lys Leu Asp Lys Val Leu Ala Leu
Glu Leu Phe Glu Gln Ile Thr Lys385 390
395 400Gly Val Asp Tyr Ile His Ser Lys Lys Leu Ile His
Arg Asp Leu Lys 405 410
415Pro Ser Asn Ile Phe Leu Val Asp Thr Lys Gln Val Lys Ile Gly Asp
420 425 430Phe Gly Leu Val Thr Ser
Leu Lys Asn Asp Gly Lys Arg Thr Arg Ser 435 440
445Lys Gly Thr Leu Arg Tyr Met Ser Pro Glu Gln Ile Ser Ser
Gln Asp 450 455 460Tyr Gly Lys Glu Val
Asp Leu Tyr Ala Leu Gly Leu Ile Leu Ala Glu465 470
475 480Leu Leu His Val Cys Asp Thr Ala Phe Glu
Thr Ser Lys Phe Phe Thr 485 490
495Asp Leu Arg Asp Gly Ile Ile Ser Asp Ile Phe Asp Lys Lys Glu Lys
500 505 510Thr Leu Leu Gln Lys
Leu Leu Ser Lys Lys Pro Glu Asp Arg Pro Asn 515
520 525Thr Ser Glu Ile Leu Arg Thr Leu Thr Val Trp Lys
Lys Ser Pro Glu 530 535 540Lys Asn Glu
Arg His Thr Cys545 5501112613DNAHomo sapiens
111agtttcagtt tccatttctg atttctgctc tctgcgctga gcacagcggc accaggctga
60gctaagcagg gccgccttgg gcaggcctac gtggtggtgc aggcgagacc caggctgggc
120aaggcgcagt ttcagtttcc atcttgggtc tctgagctga gcagagtggc accaggctga
180gttaagtggg actgccctgg gcagacctac ctactagagc agaatggagc ttcggtccta
240ccaatgggag gtgatcatgc ctgccctgga gggcaagaat atcatcatct ggctgcccac
300gggtgccggg aagacccggg cggctgctta tgtggccaag cggcacctag agactgtgga
360tggagccaag gtggttgtat tggtcaacag ggtgcacctg gtgacccagc atggtgaaga
420gttcaggcgc atgctggatg gacgctggac cgtgacaacc ctgagtgggg acatgggacc
480acgtgctggc tttggccacc tggcccggtg ccatgacctg ctcatctgca cagcagagct
540tctgcagatg gcactgacca gccccgagga ggaggagcac gtggagctca ctgtcttctc
600cctgatcgtg gtggatgagt gccaccacac gcacaaggac accgtctaca acgtcatcat
660gagccagtac ctagaactta aactccagag ggcacagccg ctaccccagg tgctgggtct
720cacagcctcc ccaggcactg gcggggcctc caaactcgat ggggccatca accacgtcct
780gcagctctgt gccaacttgg acacgtggtg catcatgtca ccccagaact gctgccccca
840gctgcaggag cacagccaac agccttgcaa acagtacaac ctctgccaca ggcgcagcca
900ggatccgttt ggggacttgc tgaagaagct catggaccaa atccatgacc acctggagat
960gcctgagttg agccggaaat ttgggacgca aatgtatgag cagcaggtgg tgaagctgag
1020tgaggctgcg gctttggctg ggcttcagga gcaacgggtg tatgcgcttc acctgaggcg
1080ctacaatgac gcgctgctca tccatgacac cgtccgcgcc gtggatgcct tggctgcgct
1140gcaggatttc tatcacaggg agcacgtcac taaaacccag atcctgtgtg ccgagcgccg
1200gctgctggcc ctgttcgatg accgcaagaa tgagctggcc cacttggcaa ctcatggccc
1260agagaatcca aaactggaga tgctggaaaa gatcctgcaa aggcagttca gtagctctaa
1320cagccctcgg ggtatcatct tcacccgcac ccgccaaagc gcacactccc tcctgctctg
1380gctccagcag caacagggcc tgcagactgt ggacatccgg gcccagctac tgattggggc
1440tgggaacagc agccagagca cccacatgac ccagagggac cagcaagaag tgatccagaa
1500gttccaagat ggaaccctga accttctggt ggccacgagt gtggcggagg aggggctgga
1560catcccacat tgcaatgtgg tggtgcgtta tgggctcttg accaatgaaa tctccatggt
1620ccaggccagg ggccgtgcct gggccgatca gagtgtatac gcgtttgtag caactgaagg
1680tagccgggag ctgaagcggg agctgatcaa cgaggcgctg gagacgctaa tggagcaggc
1740agtggctgct gtgcagaaaa tggaccaggc cgagtaccag gccaagatcc gggatctgca
1800gcaggcagcc ttgaccaagc gggcggccca ggcagcccag cgggagaacc agcggcagca
1860gttcccagtg gagcacgtgc agctactctg catcaactgc atggtggctg tgggccatgg
1920cagcgacctg cggaaggtgg agggcaccca ccatgtcaat gtgaacccca acttctcgaa
1980ctactataat gtctccaggg atcctgtggt catcaacaaa gtcttcaagg actggaagcc
2040tgggggtgtc atcagctgca ggaactgtgg ggaggtctgg ggtctgcaga tgatctacaa
2100gtcagtgaag ctgccagtgc tcaaagtccg cagcatgctg ctggagaccc ctcaggggcg
2160gatccaggcc aaaaagtggt cccgcgtgcc cttctccgtg cctgactttg acttcctgca
2220gcattgtgcc gagaacttgt cggacctctc cctggactga ccacctcatt gctgcagtgc
2280ccggtttggg ctgtaggggg cgggagagtc tgcagcagac tccaggcccc tccttcctga
2340atcatcagct gtgggcatca ggcccaccag ccacacagga gtcctgggca ccctggctta
2400ggctcccgca atgggaaaac aaccggaggg ccagagctta gtccagacct accttgtacg
2460cacatagaca ttttcatatg cactggatgg agttagggaa actgaggcaa aagaatttgc
2520catactgtac tcagaatcac gacattcctt ccctaccaag gccacttcta ttttttgagg
2580ctcctcataa aaataaatga aaaaatggga tag
2613112678PRTHomo sapiens 112Met Glu Leu Arg Ser Tyr Gln Trp Glu Val Ile
Met Pro Ala Leu Glu1 5 10
15Gly Lys Asn Ile Ile Ile Trp Leu Pro Thr Gly Ala Gly Lys Thr Arg
20 25 30Ala Ala Ala Tyr Val Ala Lys
Arg His Leu Glu Thr Val Asp Gly Ala 35 40
45Lys Val Val Val Leu Val Asn Arg Val His Leu Val Thr Gln His
Gly 50 55 60Glu Glu Phe Arg Arg Met
Leu Asp Gly Arg Trp Thr Val Thr Thr Leu65 70
75 80Ser Gly Asp Met Gly Pro Arg Ala Gly Phe Gly
His Leu Ala Arg Cys 85 90
95His Asp Leu Leu Ile Cys Thr Ala Glu Leu Leu Gln Met Ala Leu Thr
100 105 110Ser Pro Glu Glu Glu Glu
His Val Glu Leu Thr Val Phe Ser Leu Ile 115 120
125Val Val Asp Glu Cys His His Thr His Lys Asp Thr Val Tyr
Asn Val 130 135 140Ile Met Ser Gln Tyr
Leu Glu Leu Lys Leu Gln Arg Ala Gln Pro Leu145 150
155 160Pro Gln Val Leu Gly Leu Thr Ala Ser Pro
Gly Thr Gly Gly Ala Ser 165 170
175Lys Leu Asp Gly Ala Ile Asn His Val Leu Gln Leu Cys Ala Asn Leu
180 185 190Asp Thr Trp Cys Ile
Met Ser Pro Gln Asn Cys Cys Pro Gln Leu Gln 195
200 205Glu His Ser Gln Gln Pro Cys Lys Gln Tyr Asn Leu
Cys His Arg Arg 210 215 220Ser Gln Asp
Pro Phe Gly Asp Leu Leu Lys Lys Leu Met Asp Gln Ile225
230 235 240His Asp His Leu Glu Met Pro
Glu Leu Ser Arg Lys Phe Gly Thr Gln 245
250 255Met Tyr Glu Gln Gln Val Val Lys Leu Ser Glu Ala
Ala Ala Leu Ala 260 265 270Gly
Leu Gln Glu Gln Arg Val Tyr Ala Leu His Leu Arg Arg Tyr Asn 275
280 285Asp Ala Leu Leu Ile His Asp Thr Val
Arg Ala Val Asp Ala Leu Ala 290 295
300Ala Leu Gln Asp Phe Tyr His Arg Glu His Val Thr Lys Thr Gln Ile305
310 315 320Leu Cys Ala Glu
Arg Arg Leu Leu Ala Leu Phe Asp Asp Arg Lys Asn 325
330 335Glu Leu Ala His Leu Ala Thr His Gly Pro
Glu Asn Pro Lys Leu Glu 340 345
350Met Leu Glu Lys Ile Leu Gln Arg Gln Phe Ser Ser Ser Asn Ser Pro
355 360 365Arg Gly Ile Ile Phe Thr Arg
Thr Arg Gln Ser Ala His Ser Leu Leu 370 375
380Leu Trp Leu Gln Gln Gln Gln Gly Leu Gln Thr Val Asp Ile Arg
Ala385 390 395 400Gln Leu
Leu Ile Gly Ala Gly Asn Ser Ser Gln Ser Thr His Met Thr
405 410 415Gln Arg Asp Gln Gln Glu Val
Ile Gln Lys Phe Gln Asp Gly Thr Leu 420 425
430Asn Leu Leu Val Ala Thr Ser Val Ala Glu Glu Gly Leu Asp
Ile Pro 435 440 445His Cys Asn Val
Val Val Arg Tyr Gly Leu Leu Thr Asn Glu Ile Ser 450
455 460Met Val Gln Ala Arg Gly Arg Ala Arg Ala Asp Gln
Ser Val Tyr Ala465 470 475
480Phe Val Ala Thr Glu Gly Ser Arg Glu Leu Lys Arg Glu Leu Ile Asn
485 490 495Glu Ala Leu Glu Thr
Leu Met Glu Gln Ala Val Ala Ala Val Gln Lys 500
505 510Met Asp Gln Ala Glu Tyr Gln Ala Lys Ile Arg Asp
Leu Gln Gln Ala 515 520 525Ala Leu
Thr Lys Arg Ala Ala Gln Ala Ala Gln Arg Glu Asn Gln Arg 530
535 540Gln Gln Phe Pro Val Glu His Val Gln Leu Leu
Cys Ile Asn Cys Met545 550 555
560Val Ala Val Gly His Gly Ser Asp Leu Arg Lys Val Glu Gly Thr His
565 570 575His Val Asn Val
Asn Pro Asn Phe Ser Asn Tyr Tyr Asn Val Ser Arg 580
585 590Asp Pro Val Val Ile Asn Lys Val Phe Lys Asp
Trp Lys Pro Gly Gly 595 600 605Val
Ile Ser Cys Arg Asn Cys Gly Glu Val Trp Gly Leu Gln Met Ile 610
615 620Tyr Lys Ser Val Lys Leu Pro Val Leu Lys
Val Arg Ser Met Leu Leu625 630 635
640Glu Thr Pro Gln Gly Arg Ile Gln Ala Lys Lys Trp Ser Arg Val
Pro 645 650 655Phe Ser Val
Pro Asp Phe Asp Phe Leu Gln His Cys Ala Glu Asn Leu 660
665 670Ser Asp Leu Ser Leu Asp 675
User Contributions:
Comment about this patent or add new information about this topic: