Patents - stay tuned to the technology

Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees

Patent application title: 11-ARYLCINNOLINO[2,3-f]PHENANTHRIDINIUM SALTS AND METHOD FOR PRODUCING THE SAME

Inventors:
IPC8 Class: AC07D47104FI
USPC Class: 1 1
Class name:
Publication date: 2021-03-04
Patent application number: 20210061799



Abstract:

The present invention provides 11-arylcinnolino[2,3-f]phenanthridinium salt compounds and method for producing the same by highly regioselective synthesis of 11-phenylimino[2,3-f]phenanthridin-9-ium salts from 2-azobiaryls and alkenes under catalysis of palladium, through double oxidative C--H coupling of alkenes, to give the polycyclic cinnolinophenanthridinium salts in moderate yields. The reaction mechanism involves ortho C--H olefination of 2-azobiaryls by alkenes, intramolecular aza-Michael addition, .beta.-hydride elimination, electrophilic palladation followed by intramolecular C--H activation and reductive elimination. The prepared quaternary ammonium salts are candidate materials for solution-processable OLED and bioimaging materials.

Claims:

1. A 11-arylcinnolino[2,3-f]phenanthridinium salt compound, having the structure of the following formula (1): ##STR00029## wherein R.sup.l is selected from hydrogen (H), deuterium (D), methyl (Me), isopropyl (.sup.iPr), phenyl (Ph), methoxy (OMe), oxytrifluoromethyl (OCF.sub.3), trifluoromethyl (CF.sub.3), fluorine (F), dimethylamino (NMe.sub.2), and cyano (CN); R.sup.2 is selected from hydrogen (H), deuterium (D), methyl (Me), isopropyl (.sup.iPr), phenyl (Ph), methoxy (OMe), oxytrifluoromethyl (OCF.sub.3), trifluoromethyl (CF.sub.3), fluorine (F), dimethylamino (NMe.sub.2), and cyano (CN); R is selected from the group consisting of ester (CO.sub.2R'), amide (CONR'.sub.2), keto (COR'), aryl (Ar), nitrile (CN), nitro (NO.sub.2), trifluoromethyl (CF.sub.3), phosphonate (P(.dbd.O)OR'.sub.2), phosphine oxide (P(.dbd.O)R'.sub.2), sulfonyl (SOR'), and sulfur oxide (SO.sub.2R'), and R' is selected from a group consisting of alkyl and aryl.

2. The 11-arylcinnolino[2,3-f]phenanthridinium salt compound according to claim 1, having the structure of the following formula (A): ##STR00030## wherein, R is selected from the group consisting of methoxycarbonyl (CO.sub.2Me), butoxycarbonyl (CO.sub.2Bu), ethoxycarbonyl (CO.sub.2Et), (benzyloxy)carbonyl (CO.sub.2Bn), (cyclohexyloxy)carbonyl (CO.sub.2cyhex), ((tetrahydrofuran-2-yl)methoxy)carbonyl (CO.sub.2furfuryl), phenoxycarbonyl (CO.sub.2Ph), and dimethylcarbamoyl (CONMe.sub.2).

3. The 11-arylcinnolino[2,3-f]phenanthridinium salt compound according to claim 1, having the structure of the following formula (A): ##STR00031## wherein, R is selected from the group consisting of acetyl (COMe) and phenyl (Ph).

4. The 11-arylcinnolino[2,3-f]phenanthridinium salt compound according to claim 1, having the structure of the following formula (B): ##STR00032## wherein, R is selected from the group consisting of ((tetrahydrofuran-2-yl)methoxy)carbonyl (CO.sub.2furfuryl) and dimethylcarbamoyl (CONMe.sub.2).

5. The 11-arylcinnolino[2,3-f]phenanthridinium salt compound according to claim 1, having the structure of the following formula (C): ##STR00033## wherein, R is ((tetrahydrofuran-2-yl)methoxy)carbonyl (CO.sub.2furfuryl).

6. The 11-arylcinnolino[2,3-f]phenanthridinium salt compound according to claim 1, having the structure of the following formula (D): ##STR00034## wherein, R is butoxycarbonyl (CO.sub.2Bu), and R.sup.2 is methyl (Me).

7. The 11-arylcinnolino[2,3-f]phenanthridinium salt compound according to claim 1, having the structure of the following formula (E): ##STR00035## wherein, R is ((tetrahydrofuran-2-yl)methoxy)carbonyl (CO.sub.2furfuryl), and R.sup.2 is fluorine.

8-9. (canceled)

10. A method for producing 11-arylcinnolino[2,3-f]phenanthridinium salt compound by the following equation, ##STR00036## wherein, the 11-arylcinnolino[2,3-f]phenanthridinium salt compounds have the structure of the following formula (1): ##STR00037## R.sup.1 is selected from hydrogen (H), deuterium (D), methyl (Me), isopropyl (.sup.iPr), phenyl (Ph), methoxy (OMe), oxytrifluoromethyl (OCF.sub.3), trifluoromethyl (CF.sub.3), fluorine (F), dimethylamino (NMe.sub.2), and cyano (CN); R.sup.2 is selected from hydrogen (H), deuterium (D), methyl (Me), isopropyl (.sup.iPr), phenyl (Ph), methoxy (OMe), oxytrifluoromethyl (OCF.sub.3), trifluoromethyl (CF.sub.3), fluorine (F), dimethylamino (NMe.sub.2), and cyano (CN); R is selected from the group consisting of ester (CO.sub.2R'), amide (CONR'.sub.2), keto (COR'), aryl (Ar), nitrile (CN), nitro (NO.sub.2), trifluoromethyl (CF.sub.3), phosphonate (P(.dbd.O)OR'.sub.2), phosphine oxide (P(.dbd.O)R'.sub.2), sulfonyl group (SOR'), and sulfur oxide (SO.sub.2R'), and R' is selected from a group consisting of alkyl and aryl.

11. The method for producing 11-arylcinnolino[2,3-f]phenanthridinium salt compound according to claim 10, wherein 2-azobiaryls are produced by the following equation, ##STR00038## wherein the 2-azobiaryls have the structure of formula (2a): ##STR00039##

Description:

BACKGROUND

Technical Field

[0001] The invention relates to 11-arylcinnolino[2,3-f]phenanthridinium salt compounds and method for producing the same.

Related Art

[0002] Cinnolinium salts are receiving increasing attention due to their applications in organic optoelectronic materials, and specifically high molecular weight cinnolinium salts with good solubility in organic solvents have high potential. Nevertheless, traditional methods for the synthesis of cinnolinium salts are inefficient and costly, so there is room for improvement.

SUMMARY

[0003] The main object of the invention is to provide a 11-arylcinnolino[2,3-f]phenanthridinium salt compounds in higher yield and lower manufacturing cost.

[0004] Another object of the invention is to provide a method for producing the 11-arylcinnolino[2,3-f]phenanthridinium salt compounds in higher yield and lower manufacturing cost.

[0005] The 11-arylcinnolino[2,3-f]phenanthridinium salt compounds of the invention have the structure of the following formula (1):

##STR00001##

[0006] wherein, R.sup.1 is selected from hydrogen (H), deuterium (D), methyl (Me), isopropyl (.sup.iPr), phenyl (Ph), methoxy (OMe), oxytrifluoromethyl (OCF.sub.3), trifluoromethyl (CF.sub.3), fluorine (F), dimethylamino (NMe.sub.2), and cyano (CN);

[0007] R.sup.2 is selected from hydrogen (H), deuterium (D), methyl (Me), isopropyl (.sup.iPr), phenyl (Ph), methoxy (OMe), oxytrifluoromethyl (OCF.sub.3), trifluoromethyl (CF.sub.3), fluorine (F), dimethylamino (NMe.sub.2), and cyano (CN);

[0008] R is selected from the group consisting of an ester (CO.sub.7R'), an amide (CONR'.sub.2), a ketone group (COR'), aryl (Ar), a nitrile (CN), a nitro group (NO.sub.2), trifluoromethyl (CF.sub.3), a phosphonate(P(.dbd.O)OR'.sub.2), a phosphine oxide (P(.dbd.O)R'.sub.2), a sulfonyl group (SOR'), and a sulfur oxide (SO.sub.2R'), and R' is selected from a group consisting of alkyl and aryl.

[0009] In an embodiment of the invention, the 11-arylcinnolino[2,3-f]phenanthridinium salt compounds have the structure of the following formula (A):

##STR00002##

[0010] wherein, R is selected from the group consisting of methoxycarbonvl (CO.sub.2Me). butoxycarbonyl (CO.sub.2Bu), ethoxycarbonyl (CO.sub.2Et), (benzyloxy)carbonyl (CO.sub.2Bn). (cyclohexyloxy)carbonyl (CO.sub.2cyhex), ((tetrahydrofuran-2-yl)methoxy)carbonyl (CO.sub.2furfuryl), phenoxycarbonyl (CO.sub.2Ph), and dimethylcarbamoyl (CONMe.sub.2).

[0011] In an embodiment of the invention, the 11-arylcinnolino[2,3-f]phenanthridinium salt compounds have the structure of the following formula (A):

##STR00003##

[0012] wherein, R is selected from the group consisting of acetyl (COMe) and phenyl (Ph).

[0013] In an embodiment of the invention, the 11-arylcinnolino[2,3-f]phenanthridinium salt compounds of claim 1 have the structure of the following formula (B):

##STR00004##

[0014] wherein, R is selected from the group consisting of ((tetrahydrofuran-2-yl) methoxy)carbonyl (CO.sub.2furfuryl) and dimethylcarbamoyl (CONMe.sub.2).

[0015] In an embodiment of the invention, the 11-arylcinnolino[2,3-f]phenanthridinium salt compounds include 15-(((tetrahydrofuran-2-yl)methoxy)carbonyl)-7,14-dimethyl-11-phenylcinno- lino[2,3-f]phenanthridin-9-ium tetrafluoroborate, and have the structure of the following formula (C):

##STR00005##

[0016] wherein, R includes ((tetrahydrofuran-2-yl)methoxy)carbonyl (CO.sub.2furfuryl).

[0017] In an embodiment of the invention, the 11-arylcinnolino[2,3-f]phenanthridinium salt compounds include 15-(butoxycarbonyl)-3-methyl-11-(m-tolyl)cinnolino[2,3-f] phenanthridin-9-ium tetrafluoroborate, and have the structure of the following formula (D):

##STR00006##

[0018] wherein, R includes butoxycarbonyl (CO.sub.2Bu), and R.sup.2 includes methyl (Me).

[0019] In an embodiment of the invention, the 11-arylcinnolino [2,3-f]phenanthridinium salt compounds include 3-fluoro-11-(3-fluorophenyl)-15-(((tetrahydrofuran-2-yl)methoxy) carbonyl)cinnolino[2,3-f]phenanthridin-9-ium tetrafluoroborate, and have the structure of the following formula (E):

##STR00007##

[0020] wherein, R includes ((tetrahydrofuran-2-yl)methoxy)carbonyl (CO.sub.2furfuryl), and R.sup.2 includes fluorine.

[0021] In an embodiment of the invention, the 11-arylcinnolino[2,3-f]phenanthridinium salt compounds of claim 1 include 15-(butoxycarbonyl)-4-chloro-11-(2-chlorophenyl) cinnolino[2,3-f]phenanthridin-9-ium tetrafluoroborate, and have the structure of the following formula (F):

##STR00008##

[0022] In an embodiment of the invention, the 11-arylcinnolino[2,3-f]phenanthridinium salt compounds include 14-(((tetrahydrofuran-2-yl)methoxy)carbonyl)-10-(thiophen-2-yl)thieno[3'.- 2':3.4]quinolino[1,2-b]cinnolin-8-ium tetrafluoroborate, and have the structure of the following formula (G):

##STR00009##

[0023] Provided is a method for producing the 11-arylcinnolino[2,3-f]phenanthridinium salt compounds of the invention by the following equation.

##STR00010##

[0024] wherein, the 11-arylcinnolino[2,3-f]phenanthridinium salt compounds have the structure of the following formula (1):

##STR00011##

[0025] R' is selected from hydrogen (H), deuterium (D), methyl (Me), isopropyl (.sup.1Pr), phenyl (Ph), methoxy (OMe), oxytrifluoromethyl (OCF.sub.3), trifluoromethyl (CF.sub.3), fluorine (F), dimethylamino (NMe.sub.2), and cyano (CN);

[0026] R.sup.2 is selected from hydrogen (H), deuterium (D), methyl (Me), isopropyl (.sup.1Pr), phenyl (Ph), methoxy (OMe), oxytrifluoromethyl (OCF.sub.3), trifluoromethyl (CF.sub.3), fluorine (F), dimethylamino (NMe.sub.2), and cyano (CN);

[0027] R is selected from the group consisting of an ester (CO.sub.2R'), an amide (CONR'.sub.2), a ketone group (COR'), aryl (Ar), a nitrile (CN), a nitro group (NO.sub.2), trifluoromethyl(CF.sub.3), a phosphonate (P(.dbd.O)OR'.sub.2), a phosphine oxide (P(.dbd.O)R'.sub.2), a sulfonyl group (SOR'), and a sulfur oxide (SO.sub.2R'), and R' is selected from a group consisting of alkyl and aryl.

[0028] In an embodiment, 2-azobiaryls are produced by the following equation.

##STR00012##

[0029] wherein the 2-azobiaryls have the structure of formula (2):

##STR00013##

BRIEF DESCRIPTION OF THE DRAWINGS

[0030] FIG. 1: Light absorption testing results.

[0031] FIG. 2: Fluorescence testing results.

DETAILED DESCRIPTION

[0032] The 11-arylcinnolino[2,3-f]phenanthridinium salt compounds of the invention have the structure of the following formula (1):

##STR00014##

[0033] wherein, R.sup.1 is selected from hydrogen (H), deuterium (D), methyl (Me), isopropyl (.sup.1Pr), phenyl (Ph), methoxy (OMe), oxytrifluoromethyl (OCF.sub.3), trifluoromethyl (CF.sub.3), fluorine (F), dimethylamino (NMe.sub.2), and cyano (CN);

[0034] R.sup.2 is selected from hydrogen (H), deuterium (D), methyl (Me), isopropyl (.sup.iPr), phenyl (Ph), methoxy (OMe), oxytrifluoromethyl (OCF.sub.3), trifluoromethyl (CF.sub.3), fluorine (F), dimethylamino (NMe.sub.2), and cyano (CN);

[0035] R is selected from the group consisting of an ester (CO.sub.2R'), an amide (CONR'2), a ketone group (COR'), aryl (Ar), a nitrile (CN), a nitro group (NO.sub.2), trifluoromethyl (CF.sub.3), a phosphonate (P(.circleincircle.O)OR'.sub.2), a phosphine oxide (P(.dbd.O)R'.sub.2), a sulfonyl group (SOR'), and a sulfur oxide (SO.sub.2R'), and R' is selected from a group consisting of alkyl and aryl.

[0036] In an embodiment, the 11-arylcinnolino[2,3-f]phenanthridinium salt compounds are produced by the following equation,

##STR00015##

[0037] wherein, the 11-arylcinnolino[2,3-f]phenanthridinium salt compounds have the structure of the following formula (1):

##STR00016##

[0038] R.sup.1 is selected from hydrogen (H), deuterium (D), methyl (Me), isopropyl (.sup.iPr), phenyl (Ph), methoxy (OMe), oxytrifluoromethyl (OCF.sub.3), trifluoromethyl (CF.sub.3), fluorine (F), dimethylamino (NMe.sub.2), and cyano (CN);

[0039] R.sup.2 is selected from hydrogen (H), deuterium (D), methyl (Me), isopropyl (.sup.iPr), phenyl (Ph), methoxy (OMe), oxytrifluoromethyl (OCF.sub.3), trifluoromethyl (CF.sub.3), fluorine (F), dimethylamino (NMe.sub.2), and cyano (CN);

[0040] R is selected from the group consisting of an ester (CO.sub.2R'), an amide (CONR'.sub.2), a ketone group (COR'), aryl (Ar), a nitrile (CN), a nitro group (NO.sub.2), trifluoromethyl (CF.sub.3), a phosphonate (P(.dbd.O)OR'.sub.2), a phosphine oxide (P(.dbd.O)R'.sub.2), a sulfonyl group (SOR'), and a sulfur oxide (SO.sub.2R'), and R' is selected from a group consisting of alkyl and aryl.

[0041] More specifically, in an embodiment, according to the following equation,

##STR00017##

[0042] Pd(OAc).sub.2 (0.01 mmol, 2.2 mg), Cu(OAc).sub.2 (0.3 mmol, 54.3 mg), and CuCl.sub.2 (0.3 mmol, 40.4 mg) were added to a sealed test tube containing 2-azo-biaryls (2a, 0.1 mmol). Then, triflouroethanol (TFE, 2.0 mL) and butyl acrylate (3b, 0.2 mmol) were syringed to the mixture in sequence in the atmosphere. The mixture was heated to 100-120 degrees centigrade for 12-16 hours. The product mixture of the reaction was cooled to room temperature, and diluted with CH.sub.2Cl.sub.2 (10 mL); then, the solution was subject to vacuum concentration, and the residue was purified by silica gel column chromatography (Pet ether; EtOAc/MeOH (.about.5%)) to serve as an intermediate complex. Then, the intermediate complex was treated with AgBF.sub.4 (2.5 eqiuv) in dichloromethane as a solvent, stirred at room temperature for 2-5 minutes, filtered by diatomaceous earth, and subjected to vacuum concentration to obtain a 15-(butoxycarbonyl)-11-phenylcinnolino[2,3-f] phenanthridin-9-ium tetrafluoroborate salt (4ab).

[0043] Wherein the property measurement results of the salt (4ab) are shown as follows: Red solid; m.p. 204-209.degree. C.; 1H NMR (700 MHz, CDCl.sub.3): .delta. 8.87 (d, J=8.4 Hz, 1H), 8.78 (d, J=8.4 Hz, 1H), 8.75 (d, J=7.7 Hz, 1H), 8.60 (d, J=8.4 Hz, 1H), 8.35-8.29 (m, 3H), 8.12 (t, J=7.7 Hz, 1H), 8.00 (t, J=7.7 Hz, 1H), 7.99-7.85 (m, 4H), 7.67-7.64 (m, 3H), 4.67 (t, J=11.2 Hz, 2H), 1.78-1.75 (m, 2H), 1.36-1.32 (m, 2H), 0.91 (t, J=7.7 Hz, 3H); .sup.13C NMR (175 MHz, CDCl.sub.3): .delta. 164.7, 145.8, 142.4, 138.8, 137.8, 136.7, 135.6, 135.3, 134.9, 134.7, 132.8, 132.0, 131.3, 130.1, 129.8, 129.6, 128.8, 128.4, 126.7, 126.0, 124.0 123.8, 123.2, 121.9, 121.5, 68.7, 29.9, 18.9, 13.5; .sup.11B NMR (191 MHz, CDCl.sub.3): .delta. -2.89; .sup.19F NMR (563 MHz, CDCl.sub.3): .delta. -153.52, -153.57 and secondary isotopic shift (.sup.10B, .sup.11B) of 0.05 ppm; HRMS (ESI.sup.+) calcd for C.sub.31H.sub.25N.sub.2O.sub.2.sup.+ 457.1911, found 457.1910; IR (KBr): 3085, 1675, 1581, 1056 (v.sub.B--F), 775 and 502 cm.sup.-1.

[0044] In an embodiment, 2-azobiaryls are produced by the following equation,

##STR00018##

[0045] wherein the 2-azobiaryls have the structure of formula (2):

##STR00019##

[0046] More specifically, the substituted 2-amino-biaryls (1a, 2.00 mmol) were dissolved in toluene (15 mL) in a round-bottom flask, and then meta-chloroperoxybenzoic acid (516 mg, 3.00 mmol) was added in portions under nitrogen at 0 degrees centigrade. The reaction mixture was stirred at room temperature for 12-18 hours. Then, the crude product was purified by flash column chromatography (2% EtOAc in petroleum ether) to obtain the desirable product (2a) as orange solid in yield of 70%.

[0047] In a different embodiment, according to the following equation,

##STR00020##

[0048] Pd(OAc).sub.2 (0.01 mmol, 2.2 mg), Cu(OAc).sub.2 (0.3 mmol, 54.3 mg), and PivOH (0.3 mmol, 40.4 mg) were added to a sealed test tube containing 2-azo-biaryls (2a, 0.1 mmol). Then, triflouroethanol (TFE, 2.0 mL) and butyl acrylate (3b, 0.2 mmol) were syringed to the mixture in sequence in the atmosphere. The mixture was heated to 100-120 degrees centigrade for 12-16 hours. The product mixture of the reaction was cooled to room temperature, and diluted with CH.sub.2Cl.sub.2 (10 mL); then, the solution was subject to vacuum concentration, and the residue was purified by silica gel column chromatography (Pet ether; EtOAc/MeOH (.about.5%)) to serve as an intermediate complex. Then, the intermediate complex was treated with AgBF.sub.4 (2.5 eqiuv) in dichloromethane as a solvent, stirred at room temperature for 2-5 minutes, filtered by diatomaceous earth, and subjected to vacuum concentration to obtain a 15-(butoxycarbonyl)-15-hydroxy-11-phenyl-15H-cinnolino[2,3-f] phenanthridin-9-ium-10 salt (5ab) with a required yield. Wherein the salt (5ab) was preferably stored in methanol at 5 degrees centigrade.

[0049] In other words, in a way similar to said equations, 2-azo-biaryls and butyl acrylate can react to form 11-arylcinnolino[2,3-f]phenanthridinium salts in the presence of Pd(OAc).sub.2 as a catalyst. Furthermore, a highly regioselective synthesis of 11-arylcinnolino[2,3-f]phenanthridin-9-ium salts from 2-azobiaryls and alkenes is catalyzed by palladium, through double oxidative C--H coupling of alkenes, giving polycyclic cinnolinium salts in moderate yields. The reaction mechanism involves ortho C--H olefination of 2-azobiaryls by alkenes, intramolecular aza-Michael addition. .beta.-hydride elimination, electrophilic palladation followed by intramolecular C--H activation and reductive elimination. On the other hand, the resulted 11-arylcinnolino[2,3-f]phenanthridinium salt compounds have a high molecular weight. and a good solubility greater than 20 mg/ml in various organic solvents, including toluene, dichloromethane, chloroform, dichlorobenzene, 1,4-dioxane and tetrahydrofuran. In addition, the salts have high potential for the solution processing of an orange-red OLED material and bioimaging application. Traditional fluorescent orange-red materials all depend on transition metal-containing luminous bodies, and the transition metal-containing luminous bodies usually have lower internal quantum yield and a broader spectrum. Because a metal-free luminous body has higher solubility and quantum yield, recent development gradually focuses on the design and synthesis of a metal-free organic material. The organic material, usually having a functional group capable of pushing and pulling electrons to lead to electron transfer, appears as a narrow bandwidth orange-red organic light-emitting diode. Therefore, the 11-arylcinnolino[2,3-f]phenanthridin-9-ium salts can have high potential to serve as a solution-processed orange-red OLED material.

[0050] More specifically, in an embodiment of the invention, 11-arylcinnolino[2,3-f]phenanthridinium salt compounds have the structure of the following formula (A):

##STR00021##

[0051] wherein, R is selected from the group consisting of methoxycarbonyl (CO.sub.2Me), butoxycarbonyl (CO.sub.2Bu), ethoxycarbonyl (CO.sub.2Et), (benzyloxy)carbonyl (CO.sub.2Bn), (cyclohexyloxy)carbonyl (CO.sub.2cyhex), ((tetrahydrofuran-2-yl)methoxy)carbonyl (CO.sub.2furfuryl), phenoxycarbonyl (CO.sub.7Ph), and dimethylcarbamoyl (CONMe.sub.2). Furthermore, the 11-arylcinnolino[2,3-f]phenanthridin-9-ium salts are included in Table 1 below.

TABLE-US-00001 TABLE 1 The names of 11-arylcinnolino[2,3-f]phenanthridinium No. salt compounds 4aa 15-(Methoxycarbonyl)-11-phenylcinnolino[2,3-f]phenanthridin-9- ium tetrafluoroborate 4ab 15-(Butoxycarbonyl)-11-phenylcinnolino[2,3-f]phenanthridin-9- ium tetrafluoroborate 4ac 15-(Ethoxycarbonyl)-11-phenylcinnolino[2,3-f]phenanthridin-9- ium tetrafluoroborate 4ad 15-((Benzyloxy)carbonyl)-11-phenylcinnolino[2,3-f]phenanthridin- 9-ium tetrafluoroborate 4ae 15-((Cyclohexyloxy)carbonyl)-11- phenylcinnolino[2,3-f]phenanthridin-9-ium tetrafluoroborate 4af 11-Phenyl-15-(((tetrahydrofuran-2- yl)methoxy)carbonyl)cinnolino[2,3-f]phenanthridin-9-ium tetrafluoroborate 4ag 15-(Phenoxycarbonyl)-11-phenylcinnolino[2,3-f]phenanthridin-9- ium tetrafluoroborate 4ah 15-(Dimethylcarbamoyl)-11-phenylcinnolino[2,3-f]phenanthridin- 9-ium tetrafluoroborate

[0052] In a different embodiment of the invention, the 11-arylcinnolino[2,3-f]phenanthridinium salt compounds have the structure of the following formula (A):

##STR00022##

[0053] wherein, R is selected from the group consisting of acetyl (COMe) and phenyl (Ph).

[0054] Furthermore, the 11-arylcinnolino[2,3-f]phenanthridin-9-ium salts are included in Table 2 below.

TABLE-US-00002 TABLE 2 The names of 11-arylcinnolino[2,3-f]phenanthridinium No. salt compounds 4ai 15-Acetyl-11-phenylcinnolino[2,3-f]phenanthridin-9-ium tetrafluoroborate 4aj 11,15-Diphenylcinnolino[2,3-f]phenanthridin-9-ium tetrafluoroborate

[0055] In a different embodiment, the 11-arylcinnolino[2,3-f]phenanthridinium salt compounds of claim 1 have the structure of the following formula (B):

##STR00023##

[0056] wherein, R is selected from the group consisting, of ((tetrahydrofuran-2-yl)methoxy)carbonyl (CO.sub.2furfuryl) and dimethylcarbamoyl (CONMe.sub.2).

[0057] Furthermore, the 11-arylcinnolino[2,3-f]phenanthridin-9-ium salts are included in Table 3 below.

TABLE-US-00003 TABLE 3 The names of 11-arylcinnolino[2,3-f]phenanthridinium No. salt compounds 4bf 7,14-Dimethyl-11-phenyl-15-(((tetrahydrofuran-2- yl)methoxy)carbonyl)cinnolino[2,3-f]phenanthridin-9-ium tetrafluoroborate 4bh 15-(Dimethylcarbamoyl)-7,14-dimethyl-11- phenylcinnolino[2,3-f]phenanthridin-9-ium tetrafluoroborate

[0058] In a different embodiment of the invention, the 11-arylcinnolino[2,3-f] phenanthridinium salt compounds include 15-(dimethylcarbamoyl)-7,14-dimethyl-11-phenylcinnolino[2,3-f]phenanthrid- in-9-ium tetrafluoroborate, and have the structure of the following formula (C):

##STR00024##

[0059] Furthermore, the 11-arylcinnolino[2,3-f]phenanthridin-9-ium salts are included in Table 4 below.

TABLE-US-00004 TABLE 4 The names of 11-arylcinnolino[2,3-f]phenanthridinium No. salt compounds 4cf 6,13-Dimethyl-11-phenyl-15-(((tetrahydrofuran-2- yl)methoxy)carbonyl)cinnolino[2,3-f]phenanthridin-9-ium tetrafluoroborate

[0060] In a different embodiment of the invention, the 11-arylcinnolino[2,3-f] phenanthridinium salt compounds include 15-(butoxycarbonyl)-3-methyl-11-(m-tolyl)cinnolino[2,3-f]phenanthridin-9-- ium tetrafluoroborate, and have the structure of the following formula (D):

##STR00025##

[0061] wherein, R includes butoxycarbonyl (CO.sub.2Bu), and R.sup.2 includes methyl (Me).

[0062] Furthermore, the 11-arylcinnolino[2,3-f]phenanthridin-9-ium salts are included in Table 5 below.

TABLE-US-00005 TABLE 5 The names of 11-arylcinnolino[2,3-f]phenanthridinium No. salt compounds 4db 15-(Butoxycarbonyl)-3-methyl-11-(m- tolyl)cinnolino[2,3-f]phenanthridin-9-ium tetrafluoroborate

[0063] In a different embodiment of the invention, the 11-arylcinnolino[2,3-]phenanthridinium salt compounds include 3-fluoro-11-(3-fluorophenyl)-15-(((tetrahydrofuran-2-yl)methoxy)carbonyl)- cinnolino[2,3-f] phenanthridin-9-ium tetrafluoroborate, and have the structure of the following formula (E):

##STR00026##

[0064] wherein, R includes ((tetrahydrofuran-2-yl)methoxy)carbonyl (CO.sub.2furfuryl), and R.sup.2 includes fluorine.

[0065] Furthermore, the 11-arylcinnolino[2,3-f]phenanthridinium salt compounds are included in Table 6 below.

TABLE-US-00006 TABLE 6 The names of 11-arylcinnolino[2,3-f]phenanthridinium No. salt compounds 4ef 3-fluoro-11-(3-fluorophenyl)-15-(((tetrahydrofuran-2- yl)methoxy)carbonyl)cinnolino[2,3-f]phenanthridin-9-ium tetrafluoroborate

[0066] In a different embodiment of the invention, the 11-arylcinnolino[2,3-f]phenanthridinium salt compounds of claim 1 include 15-(butoxycarbonyl)-4-chloro-11-(2-chlorophenyl)cinnolino[2,3-f]phenanthr- idin-9-ium tetrafluoroborate, and have the structure of the following formula (F):

##STR00027##

[0067] Furthermore, the 11-arylcinnolino[2,3-f]phenanthridinium salt compounds are included in Table 7 below.

TABLE-US-00007 TABLE 7 No. The names of 11-arylcinnolino[2,3-f]phenanthridinium salts 4fb 15-(butoxycarbonyl)-4-chloro-11-(2-chlorophenyl)cinnolino[2,3-f] phenanthridin-9-ium tetrafluoroborate

[0068] In a different embodiment of the invention, the 11-arylcinnolino[2,3-f]phenanthridinium salt compounds include 14-(((tetrahydrofuran-2-yl)methoxy)carbonyl)-10-(thiophen-2-yl)thieno[3',- 2':3,4]quinolino[1,2-b]cinnolin-8-ium tetrafluoroborate, and have the structure of the following formula (G):

##STR00028##

[0069] Furthermore, the 11-arylcinnolino[2,3-f]phenanthridinium salts are included in Table 8 below.

TABLE-US-00008 TABLE 8 No. The names of 11-arylcinnolino[2,3-f]phenanthridinium salts 4gf 14-(((tetrahydrofuran-2-yl)methoxy)carbonyl)-10-(thiophen-2- yl)thieno[3',2':3,4]quinolino[1,2-b]cinnolin-8-ium tetrafluoroborate

[0070] The absorption test and the fluorescence test (1.0.times.10.sup.-5 M, excitation wavelength: 360 nm, in dichloromethane) were performed on the compounds 2a, 4ab, 4ad, 4ah, 4aj, and 4bf, and the results were shown in FIGS. 1 and 2 respectively. According to FIGS. 1 and 2, the maximum absorption peak for the compound 2a appears at 275-400 nm, the maximum absorption peaks for the compounds 4ab, 4ad, 4ah, and 4aj appear at 340 nm, and the maximum absorption peak for the compound 4bf appears at 380 nm. If the compounds 2a, 4ab, 4ad, 4ah, 4aj, and 4bf were excited at the wavelengths of respective maximum absorption peaks, the compound 2a was not found to emit fluorescence, while the compounds 4ab, 4ad, 4ah, 4aj, and 4bf can emit orange-red fluorescence at 500-750 nm. These salts exhibit large Stokes shift orange-red fluorescence, which show possible application in IDLED and bioimaging.

[0071] Although said descriptions and figures have disclosed preferable embodiments of the invention, it must be understood that possible applications of various additions, many modifications and replacements in preferable embodiments of the invention do not depart from the spirit and scope of the present invention which are as claimed by the appended claims. A person having ordinary skill in the art can realize that the invention can be used in various modifications in structure, arrangements, ratios, material, elements, and components. Therefore, the disclosed embodiments should be regarded as explanations of instead of limitations on the invention. The scope of the invention should be claimed by the appended claims and cover their legal equivalents, and should not be limited to the prior descriptions.



User Contributions:

Comment about this patent or add new information about this topic:

CAPTCHA
New patent applications in this class:
DateTitle
2022-09-22Electronic device
2022-09-22Front-facing proximity detection using capacitive sensor
2022-09-22Touch-control panel and touch-control display apparatus
2022-09-22Sensing circuit with signal compensation
2022-09-22Reduced-size interfaces for managing alerts
Website © 2025 Advameg, Inc.