Patents - stay tuned to the technology

Inventors list

Assignees list

Classification tree browser

Top 100 Inventors

Top 100 Assignees

Patent application title: TREATMENT OF ASTHMA WITH ANTI-TSLP ANTIBODY

Inventors:
IPC8 Class: AA61K39395FI
USPC Class: 1 1
Class name:
Publication date: 2021-02-25
Patent application number: 20210052726



Abstract:

The present disclosure, relates, in general, to methods of treating asthma, including severe asthma and eosinophilic asthma, using an antibody specific for thymic stromal lymphopoietin (TSLP).

Claims:

1. (canceled)

2. A method for treating asthma in a subject comprising administering a therapeutically effective amount of an anti-TSLP antibody or antibody variant in a dose of 70 mg to 280 mg at an interval of every two weeks or 4 weeks, wherein both binding sites of the antibody have identical binding to TSLP, and the antibody comprises a. a light chain variable domain selected from the group consisting of: i. a sequence of amino acids at least 80% identical to SEQ ID NO:12; ii. a sequence of amino acids encoded by a polynucleotide sequence that is at least 80% identical to SEQ ID NO:11; iii. a sequence of amino acids encoded by a polynucleotide that hybridizes under moderately stringent conditions to the complement of a polynucleotide consisting of SEQ ID NO:11; and b. a heavy chain variable domain selected from the group consisting of: i. a sequence of amino acids that is at least 80% identical to SEQ ID NO:10; ii. a sequence of amino acids encoded by a polynucleotide sequence that is at least 80% identical to SEQ ID NO:9; iii. a sequence of amino acids encoded by a polynucleotide that hybridizes under moderately stringent conditions to the complement of a polynucleotide consisting of SEQ ID NO:9; or c. a light chain variable domain of (a) and a heavy chain variable domain of (b), wherein the antibody specifically binds to a TSLP polypeptide as set forth in amino acids 29-159 of SEQ ID NO:2.

3. The method of claim 47 wherein the antibody or antibody variant is administered every 4 weeks.

4. The method of claim 47 wherein the antibody or antibody variant is administered at a dose of 70 mg.

5. The method of claim 47 wherein the antibody or antibody variant is administered at a dose of 210 mg.

6. The method of claim 47 wherein the antibody or antibody variant is administered at a dose of 280 mg.

7-8. (canceled)

9. The method of claim 47, wherein the antibody or antibody variant is administered for a period of at least 4 months, 6 months, 9 months, 1 year or more.

10. The method of claim 47, wherein said anti-TSLP antibody or antibody variant thereof is bivalent and selected from the group consisting of a human antibody, a humanized antibody, a chimeric antibody, a monoclonal antibody, a recombinant antibody, an antigen-binding antibody fragment, a single chain antibody, a monomeric antibody, a diabody, a triabody, a tetrabody, a Fab fragment, an IgG1 antibody, an IgG2 antibody, an IgG3 antibody, and an IgG4 antibody.

11. The method of claim 8, wherein said anti-TSLP antibody variant is selected from the group consisting of a diabody, a triabody, a tetrabody, a Fab fragment, single domain antibody, scFv, wherein the dose is adjusted such that the binding sites to be equimolar to the those dosed by bivalent antibodies.

12. The method of claim 47, wherein the antibody is an IgG2 antibody.

13. The method of claim 47, wherein the antibody or antibody variant is a human antibody.

14. The method of claim 47 wherein, the antibody or antibody variant further comprises a pharmaceutically acceptable carrier or excipient.

15-17. (canceled)

18. The method of claim 47, wherein the subject is an adult.

19. (canceled)

20. The method of claim 47, wherein the administration decreases eosinophils in blood, sputum, broncheoalveolar fluid, or lungs of the subject.

21. The method of claim 47, wherein the administration shifts cell counts in the subject from a Th2 high population to a Th2 low population.

22-28. (canceled)

29. The method of claim 47 wherein the antibody is tezepelumab.

30. The method of claim 29 wherein the antibody is an IgG2 antibody, and has the full length heavy and light chain sequences set out in SEQ ID NOs: 105 and 106, respectively.

31-32. (canceled)

33. A method of reducing the frequency of asthma exacerbation in a subject comprising administering a therapeutically effective amount of an anti-TSLP antibody or antibody variant in a dose of 70 mg to 280 mg at an interval of every 2 weeks or every 4 weeks, wherein both binding sites of the antibody have identical binding to TSLP, and the antibody comprises a. a light chain variable domain selected from the group consisting of: i. a sequence of amino acids at least 80% identical to SEQ ID NO:12; ii. a sequence of amino acids encoded by a polynucleotide sequence that is at least 80% identical to SEQ ID NO:11; iii. a sequence of amino acids encoded by a polynucleotide that hybridizes under moderately stringent conditions to the complement of a polynucleotide consisting of SEQ ID NO:11; and b. a heavy chain variable domain selected from the group consisting of: i. a sequence of amino acids that is at least 80% identical to SEQ ID NO:10; ii. a sequence of amino acids encoded by a polynucleotide sequence that is at least 80% identical to SEQ ID NO:9; iii. a sequence of amino acids encoded by a polynucleotide that hybridizes under moderately stringent conditions to the complement of a polynucleotide consisting of SEQ ID NO:9; or c. a light chain variable domain of (a) and a heavy chain variable domain of (b).

34. The method of claim 33 wherein the antibody or antibody variant is administered every 4 weeks.

35. The method of claim 33 wherein the antibody or antibody variant is administered at a dose of 70 mg, 210 mg or 280 mg.

36-37. (canceled)

38. The method of claim 33 wherein the antibody or antibody variant is administered for a period of at least 4 months, 6 months, 9 months, 1 year or more.

39. The method of claim 33, wherein said anti-TSLP antibody or antibody variant is selected from the group consisting of a human antibody, a humanized antibody, a chimeric antibody, a monoclonal antibody, a recombinant antibody, an antigen-binding antibody fragment, a single chain antibody, a monomeric antibody, a diabody, a triabody, a tetrabody, a Fab fragment, an IgG1 antibody, an IgG2 antibody, an IgG3 antibody, and an IgG4 antibody.

40-42. (canceled)

43. The method of claim 33 wherein the administration delays the time to an asthma exacerbation compared to a subject not receiving the anti-TSLP antibody.

44. The method claim 33 wherein the administration reduces frequency of or levels of co-administered therapy in the subject.

45-46. (canceled)

47. A method of treating chronic obstructive pulmonary disease (COPD) comprising administering a therapeutically effective amount of an anti-TSLP antibody or antibody variant in a dose of 70 mg to 280 mg at an interval of every 2 weeks or every 4 weeks, wherein both binding sites of the antibody have identical binding to TSLP, and the antibody comprises a. alight chain variable domain comprising: i. a light chain CDR1 sequence comprising the amino acid sequence set forth in SEQ ID NO:3; ii. a light chain CDR2 sequence comprising the amino acid sequence set forth in SEQ ID NO:4; iii. alight chain CDR3 sequence comprising the amino acid sequence set forth in SEQ ID NO:5; and b. a heavy chain variable domain comprising: i. a heavy chain CDR1 sequence comprising the amino acid sequence set forth in SEQ ID NO:6; ii. a heavy chain CDR2 sequence comprising the amino acid sequence set forth in SEQ ID NO:7, and iii. a heavy chain CDR3 sequence comprising the amino acid sequence set forth in SEQ ID NO:8, wherein the antigen binding protein specifically binds to a TSLP polypeptide as set forth in amino acids 29-159 of SEQ ID NO:2.

48. A method of treating chronic obstructive pulmonary disease (COPD) in a subject comprising administering a therapeutically effective amount of an anti-TSLP antibody or antibody variant in a dose of 70 mg to 280 mg at an interval of every 2 weeks or every 4 weeks, wherein both binding sites of the antibody have identical binding to TSLP, and the antibody comprises a. a light chain variable domain selected from the group consisting of: i. a sequence of amino acids at least 80% identical to SEQ ID NO:12; ii. a sequence of amino acids encoded by a polynucleotide sequence that is at least 80% identical to SEQ ID NO:11; iii. a sequence of amino acids encoded by a polynucleotide that hybridizes under moderately stringent conditions to the complement of a polynucleotide consisting of SEQ ID NO:11; and b. a heavy chain variable domain selected from the group consisting of: i. a sequence of amino acids that is at least 80% identical to SEQ ID NO:10; ii. a sequence of amino acids encoded by a polynucleotide sequence that is at least 80% identical to SEQ ID NO:9; iii. a sequence of amino acids encoded by a polynucleotide that hybridizes under moderately stringent conditions to the complement of a polynucleotide consisting of SEQ ID NO:9; or c. a light chain variable domain of (a) and a heavy chain variable domain of (b).

49. The method of claim 47 wherein the administration is subcutaneous or intravenous.

50. A method for reducing ACQ-6 score in a subject comprising administering a therapeutically effective amount of an anti-TSLP antibody or antibody variant in a dose of 70 mg to 280 mg at an interval of every 4 weeks, wherein both binding sites of the antibody have identical binding to TSLP, and the antibody comprises a. alight chain variable domain comprising: i. a light chain CDR1 sequence comprising the amino acid sequence set forth in SEQ ID NO:3; ii. a light chain CDR2 sequence comprising the amino acid sequence set forth in SEQ ID NO:4; iii. alight chain CDR3 sequence comprising the amino acid sequence set forth in SEQ ID NO:5; and b. a heavy chain variable domain comprising: i. a heavy chain CDR1 sequence comprising the amino acid sequence set forth in SEQ ID NO:6; ii. a heavy chain CDR2 sequence comprising the amino acid sequence set forth in SEQ ID NO:7, and iii. a heavy chain CDR3 sequence comprising the amino acid sequence set forth in SEQ ID NO:8, wherein the antigen binding protein specifically binds to a TSLP polypeptide as set forth in amino acids 29-159 of SEQ ID NO:2.

51. A method for reducing ACQ-6 score in a subject comprising administering a therapeutically effective amount of an anti-TSLP antibody or antibody variant in a dose of 70 mg to 280 mg at an interval of every 4_2 weeks, wherein both binding sites of the antibody have identical binding to TSLP, and the antibody comprises a. a light chain variable domain selected from the group consisting of: i. a sequence of amino acids at least 80% identical to SEQ ID NO:12; ii. a sequence of amino acids encoded by a polynucleotide sequence that is at least 80% identical to SEQ ID NO:11; iii. a sequence of amino acids encoded by a polynucleotide that hybridizes under moderately stringent conditions to the complement of a polynucleotide consisting of SEQ ID NO:11; and b. a heavy chain variable domain selected from the group consisting of: i. a sequence of amino acids that is at least 80% identical to SEQ ID NO:10; ii. a sequence of amino acids encoded by a polynucleotide sequence that is at least 80% identical to SEQ ID NO:9; iii. a sequence of amino acids encoded by a polynucleotide that hybridizes under moderately stringent conditions to the complement of a polynucleotide consisting of SEQ ID NO:9; or c. a light chain variable domain of (a) and a heavy chain variable domain of (b).

52. The method of claim 50 wherein the administration is subcutaneous or intravenous.

53. (canceled)

55. The method of claim 33 wherein the anti-TSLP antibody is tezepelumab.

56. The method of claim 55 wherein the antibody is an IgG2 antibody, and has the full length heavy and light chain sequences set out in SEQ ID NOs: 105 and 106, respectively.

57. The method of claim 33 wherein the antibody variant has substantially similar pK characteristics as tezepelumab in humans.

58-76. (canceled)

Description:

CROSS REFERENCE TO RELATED APPLICATIONS

[0001] This Application is a Divisional of U.S. application Ser. No. 15/951,602 filed on Apr. 12, 2018, which claims the benefit of U.S. Provisional Application 62/553,477 filed on Sep. 1, 2017, U.S. Provisional Application 62/553,575 filed on Sep. 1, 2017, and U.S. Provisional Application 62/484,864 filed on Apr. 12, 2017, all of which are hereby incorporated by reference in their entirety.

FIELD OF THE INVENTION

[0002] The present disclosure relates, in general, to methods of treating asthma, including severe asthma, eosinophilic asthma and non/low eosoniphilic asthma, using an antibody specific for thymic stromal lymphopoietin (TSLP).

BACKGROUND

[0003] Asthma affects an estimated 315 million people worldwide..sup.1 Of these, approximately 10 to 15% have severe asthma.sup.2 and as many as 60% have inadequately controlled disease..sup.3 These patients are at risk for significantly impaired quality of life and recurrent severe exacerbations. Asthma therapies, including inhaled corticosteroids (ICS) combined with long-acting beta-2 agonists (LABA), may not provide adequate disease control, particularly in patients with severe disease..sup.2,4,5 The heterogeneous response to asthma treatment, in part, may be related to differences in patterns of airway inflammation and resistance to corticosteroids..sup.2,5,6 Alternative treatments that inhibit specific molecular targets, including immunoglobulin E (IgE), interleukin-4, interleukin-5, interleukin-13, and their respective receptors, have been shown to benefit some patients with asthma who are not fully controlled on optimal ICS/LABA therapy..sup.7-18

[0004] Thymic stromal lymphopoietin (TSLP), an epithelial cell-derived cytokine produced in response to environmental and pro-inflammatory stimuli, leads to the activation of multiple inflammatory cells and downstream pathways..sup.19,20 TSLP is increased in the airways of patients with asthma and correlates with Th2 cytokine and chemokine expression.sup.21 and disease severity..sup.22,23 While TSLP is central to the regulation of Th2 immunity, it may also play a key role in other pathways of inflammation and therefore be relevant to multiple asthma phenotypes.

[0005] Tezepelumab is an human immunoglobulin G2 (IgG2) monoclonal antibody (mAb) that binds to TSLP, preventing its interaction with the TSLP receptor complex. A proof-of-concept study in patients with mild, atopic asthma, demonstrated that tezepelumab inhibited the early and late asthmatic responses and suppressed biomarkers of Th2 inflammation following inhaled allergen challenge..sup.24

[0006] The present disclosure describes a randomized, placebo-controlled, dose-ranging trial of tezepelumab in patients whose disease was inadequately controlled with medium to high doses of ICS/LABA.

SUMMARY

[0007] The anti-TSLP antibody described herein addresses an unmet need in asthma patients in which other medications may not control moderate to severe asthma. For example, the antibody therapy may improve asthma in eosinophil (EOS)-low patients and may provide a more powerful exacerbation reduction in EOS-high patients.

[0008] The disclosure provides a method for treating asthma in a subject comprising administering a therapeutically effective amount of an anti-TSLP antibody or antibody variant in a dose of 70 mg to 280 mg at an interval of every 2 weeks, wherein both binding sites of the antibody have identical binding to TSLP, and the antibody comprises a. a light chain variable domain comprising: i. a light chain CDR1 sequence comprising the amino acid sequence set forth in SEQ ID NO:3; ii. a light chain CDR2 sequence comprising the amino acid sequence set forth in SEQ ID NO:4; iii. a light chain CDR3 sequence comprising the amino acid sequence set forth in SEQ ID NO:5; and b. a heavy chain variable domain comprising: i. a heavy chain CDR1 sequence comprising the amino acid sequence set forth in SEQ ID NO:6; ii. a heavy chain CDR2 sequence comprising the amino acid sequence set forth in SEQ ID NO:7, and iii. a heavy chain CDR3 sequence comprising the amino acid sequence set forth in SEQ ID NO:8, wherein the antibody specifically binds to a TSLP polypeptide as set forth in amino acids 29-159 of SEQ ID NO:2.

[0009] Also contemplated is a method for treating asthma in a subject comprising administering a therapeutically effective amount of an anti-TSLP antibody or antibody variant in a dose of 70 mg to 280 mg at an interval of every two weeks, wherein both binding sites of the antibody have identical binding to TSLP, and the antibody comprises a. a light chain variable domain selected from the group consisting of: i. a sequence of amino acids at least 80% identical to SEQ ID NO:12; ii. a sequence of amino acids encoded by a polynucleotide sequence that is at least 80% identical to SEQ ID NO:11; iii. a sequence of amino acids encoded by a polynucleotide that hybridizes under moderately stringent conditions to the complement of a polynucleotide consisting of SEQ ID NO:11; and b. a heavy chain variable domain selected from the group consisting of: i. a sequence of amino acids that is at least 80% identical to SEQ ID NO:10; ii. a sequence of amino acids encoded by a polynucleotide sequence that is at least 80% identical to SEQ ID NO:9; iii. a sequence of amino acids encoded by a polynucleotide that hybridizes under moderately stringent conditions to the complement of a polynucleotide consisting of SEQ ID NO:9; or c. a light chain variable domain of (a) and a heavy chain variable domain of (b), wherein the antibody specifically binds to a TSLP polypeptide as set forth in amino acids 29-159 of SEQ ID NO:2.

[0010] In various embodiments, the antibody or antibody variant is administered every 4 weeks.

[0011] In various embodiments, the antibody or antibody variant is administered at a dose of 70 mg, at a dose of 210 mg or at a dose of 280 mg every 2 weeks or every 4 weeks.

[0012] The disclosure also provides a method for treating asthma in a subject comprising administering a therapeutically effective amount of an anti-TSLP antibody or antibody variant in a dose of 210 mg at an interval of every 4 weeks, wherein both binding sites of the antibody have identical binding to TSLP, and the antibody comprises a. a light chain variable domain comprising: i. a light chain CDR1 sequence comprising the amino acid sequence set forth in SEQ ID NO:3; ii. a light chain CDR2 sequence comprising the amino acid sequence set forth in SEQ ID NO:4; iii. a light chain CDR3 sequence comprising the amino acid sequence set forth in SEQ ID NO:5; and b. a heavy chain variable domain comprising: i. a heavy chain CDR1 sequence comprising the amino acid sequence set forth in SEQ ID NO:6; ii. a heavy chain CDR2 sequence comprising the amino acid sequence set forth in SEQ ID NO:7, and iii. a heavy chain CDR3 sequence comprising the amino acid sequence set forth in SEQ ID NO:8, wherein the antibody specifically binds to a TSLP polypeptide as set forth in amino acids 29-159 of SEQ ID NO:2.

[0013] The disclosure further provides a method for treating asthma in a subject comprising administering a therapeutically effective amount of an anti-TSLP antibody or antibody variant in a dose of 210 mg at an interval of every 4 weeks, wherein both binding sites of the antibody have identical binding to TSLP, and the antibody comprises a. a light chain variable domain selected from the group consisting of: i. a sequence of amino acids at least 80% identical to SEQ ID NO:12; ii. a sequence of amino acids encoded by a polynucleotide sequence that is at least 80% identical to SEQ ID NO:11; iii. a sequence of amino acids encoded by a polynucleotide that hybridizes under moderately stringent conditions to the complement of a polynucleotide consisting of SEQ ID NO:11; and b. a heavy chain variable domain selected from the group consisting of: i. a sequence of amino acids that is at least 80% identical to SEQ ID NO:10; ii. a sequence of amino acids encoded by a polynucleotide sequence that is at least 80% identical to SEQ ID NO:9; iii. a sequence of amino acids encoded by a polynucleotide that hybridizes under moderately stringent conditions to the complement of a polynucleotide consisting of SEQ ID NO:9; or c. a light chain variable domain of (a) and a heavy chain variable domain of (b), wherein the antibody specifically binds to a TSLP polypeptide as set forth in amino acids 29-159 of SEQ ID NO:2.

[0014] In various embodiments, the anti-TSLP antibody variant has substantially similar pK characteristics as tezepelumab in humans.

[0015] In various embodiments, the antibody or antibody variant is administered for a period of at least 4 months, 6 months, 9 months, 1 year or more.

[0016] In various embodiments, the anti-TSLP antibody or antibody variant thereof is bivalent and selected from the group consisting of a human antibody, a humanized antibody, a chimeric antibody, a monoclonal antibody, a recombinant antibody, an antigen-binding antibody fragment, a single chain antibody, a monomeric antibody, a diabody, a triabody, a tetrabody, a Fab fragment, an IgG1 antibody, an IgG2 antibody, an IgG3 antibody, and an IgG4 antibody.

[0017] In one embodiment, the anti-TSLP antibody variant is selected from the group consisting of a diabody, a triabody, a tetrabody, a Fab fragment, a single domain antibody, an scFv, wherein the dose is adjusted such that the binding sites are equimolar to those dosed by bivalent antibodies.

[0018] In various embodiments, the antibody is an IgG2 antibody.

[0019] In one embodiment, the antibody or antibody variant is a human antibody.

[0020] In various embodiments, the antibody is tezepelumab. In various embodiments, the tezepelumab is an IgG2 antibody having the full length heavy and light chain amino acid sequences set out in SEQ ID NOs: 105 and 106, respectively.

[0021] In various embodiments, the antibody or antibody variant further comprises a pharmaceutically acceptable carrier or excipient.

[0022] In various embodiments, the asthma is severe asthma. It is further contemplated that the asthma is eosinophilic or non-eosinophilic asthma, optionally the asthma is low eosinophil asthma.

[0023] Data presented herein demonstrates an anti-TSLP antibody that substantially affects two important markers of inflammation of asthma: blood eosinophil counts and the fraction of exhaled nitric oxide. The data show that an anti-TSLP antibody reduces the level of both inflammatory markers, reduces the asthma exacerbation rate, improves lung function irrespective of asthma phenotype (eosinophilic (allergic and nonallergic) and noneosinophilic/low eosinophilic asthma), and blocks at least two important inflammatory pathways in asthma. The anti-TSLP antibody, therefore, is able to treat a patient having either asthma phenotype: eosinophilic (allergic and nonallergic) or noneosinophilic/low eosinophilic asthma. Accordingly, provided herein is a method of treating a patient having low eosinophil asthma comprising administering an anti-TSLP antibody as described herein. Also contemplated is a method for treating a subject having asthma characterized by a low Th2 profile comprising administering an anti-TSLP antibody. In various embodiments, the antibody is tezepelumab or another anti-TSLP antibody described in the art. Exemplary antibodies are described further in the Detailed Description.

[0024] In various embodiments, the subject is an adult. In various embodiments, the subject is a child or adolescent.

[0025] It is contemplated that administration of the anti-TSLP antibody or antibody variant decreases eosinophils in blood, sputum, broncheoalveolar fluid, or lungs of the subject.

[0026] It is further contemplated that administration of the anti-TSLP antibody or antibody variant shifts cell counts in the subject from a Th2 high population to a Th2 low population.

[0027] In various embodiments, administration of the anti-TSLP antibody or antibody variant improves one or more measures of asthma in a subject selected from the group consisting of forced expiratory volume (FEV), FEV.sub.1 reversibility, forced vital capacity (FVC), FeNO, Asthma Control Questionnaire-6 score and AQLQ(S)+12 score.

[0028] In one embodiment, the administration improves one or more symptoms of asthma as measured by an asthma symptom diary.

[0029] Further provided is a method for treating asthma in a subject comprising administering a therapeutically effective amount of an anti-TSLP antibody or antibody variant in a dose of 70 to 280 mg at an interval of every 2 weeks, wherein both binding sites of the antibody have identical binding to TSLP, and the antibody comprises a. a light chain variable domain comprising: i. a light chain CDR1 sequence comprising the amino acid sequence set forth in SEQ ID NO:3; ii. a light chain CDR2 sequence comprising the amino acid sequence set forth in SEQ ID NO:4; iii. a light chain CDR3 sequence comprising the amino acid sequence set forth in SEQ ID NO:5; and b. a heavy chain variable domain comprising: i. a heavy chain CDR1 sequence comprising the amino acid sequence set forth in SEQ ID NO:6; ii. a heavy chain CDR2 sequence comprising the amino acid sequence set forth in SEQ ID NO:7, and iii. a heavy chain CDR3 sequence comprising the amino acid sequence set forth in SEQ ID NO:8, wherein the antibody specifically binds to a TSLP polypeptide as set forth in amino acids 29-159 of SEQ ID NO:2, wherein the antibody is an IgG2 antibody.

[0030] In various embodiments, the IgG2 the antibody is administered every 2 weeks or every 4 weeks.

[0031] In various embodiments, the IgG2 antibody is administered at a dose of 70 mg, 210 mg or 280 mg every 2 weeks or every 4 weeks.

[0032] Also provided is a method of reducing the frequency of asthma exacerbation in a subject comprising administering a therapeutically effective amount of an anti-TSLP antibody or antibody variant in a dose of 70 mg to 280 mg at an interval of every 2 weeks, wherein both binding sites of the antibody have identical binding to TSLP, and the antibody comprises a. a light chain variable domain comprising: i. a light chain CDR1 sequence comprising the amino acid sequence set forth in SEQ ID NO:3; ii. a light chain CDR2 sequence comprising the amino acid sequence set forth in SEQ ID NO:4; iii. a light chain CDR3 sequence comprising the amino acid sequence set forth in SEQ ID NO:5; and b. a heavy chain variable domain comprising: i. a heavy chain CDR1 sequence comprising the amino acid sequence set forth in SEQ ID NO:6; ii. a heavy chain CDR2 sequence comprising the amino acid sequence set forth in SEQ ID NO:7, and iii. a heavy chain CDR3 sequence comprising the amino acid sequence set forth in SEQ ID NO:8, wherein the antigen binding protein specifically binds to a TSLP polypeptide as set forth in amino acids 29-159 of SEQ ID NO:2.

[0033] Further contemplated is a method of reducing the frequency of asthma exacerbation in a subject comprising administering a therapeutically effective amount of an anti-TSLP antibody or antibody variant in a dose of 70 mg to 280 mg at an interval of every 2 weeks, wherein both binding sites of the antibody have identical binding to TSLP, and the antibody comprises a. a light chain variable domain selected from the group consisting of: i. a sequence of amino acids at least 80% identical to SEQ ID NO:12; ii. a sequence of amino acids encoded by a polynucleotide sequence that is at least 80% identical to SEQ ID NO:11; iii. a sequence of amino acids encoded by a polynucleotide that hybridizes under moderately stringent conditions to the complement of a polynucleotide consisting of SEQ ID NO:11; and b. a heavy chain variable domain selected from the group consisting of: i. a sequence of amino acids that is at least 80% identical to SEQ ID NO:10; ii. a sequence of amino acids encoded by a polynucleotide sequence that is at least 80% identical to SEQ ID NO:9; iii. a sequence of amino acids encoded by a polynucleotide that hybridizes under moderately stringent conditions to the complement of a polynucleotide consisting of SEQ ID NO:9; or c. a light chain variable domain of (a) and a heavy chain variable domain of (b).

[0034] It is contemplated that the dosing and antibody and antibody variant types referenced above apply to each method contemplated herein.

[0035] In various embodiments, the antibody or antibody variant further comprises a pharmaceutically acceptable carrier or excipient.

[0036] In various embodiments, the administration delays the time to an asthma exacerbation compared to a subject not receiving the anti-TSLP antibody.

[0037] In various embodiments, the administration reduces frequency of or levels of co-administered therapy in the subject. Optionally, the co-administered therapy is inhaled corticosteroids (ICS), long-acting .beta.2 agonist (LABA), leukotriene receptor antagonists (LTRA), long-acting anti-muscarinics (LAMA), cromones, short-acting 62 agonist (SABA), and theophylline or oral corticosteroids.

[0038] In various embodiments, the administration eliminates the need for corticosteroid therapy.

[0039] In various embodiments, the administration is subcutaneous or intravenous.

[0040] Also provided herein is a method of treating chronic obstructive pulmonary disease (COPD) comprising administering a therapeutically effective amount of an anti-TSLP antibody or antibody variant in a dose of 70 mg to 280 mg at an interval of every 2 weeks, wherein both binding sites of the antibody have identical binding to TSLP, and the antibody comprises a. a light chain variable domain comprising: i. a light chain CDR1 sequence comprising the amino acid sequence set forth in SEQ ID NO:3; ii. a light chain CDR2 sequence comprising the amino acid sequence set forth in SEQ ID NO:4; iii. a light chain CDR3 sequence comprising the amino acid sequence set forth in SEQ ID NO:5; and b. a heavy chain variable domain comprising: i. a heavy chain CDR1 sequence comprising the amino acid sequence set forth in SEQ ID NO:6; ii. a heavy chain CDR2 sequence comprising the amino acid sequence set forth in SEQ ID NO:7, and iii. a heavy chain CDR3 sequence comprising the amino acid sequence set forth in SEQ ID NO:8, wherein the antigen binding protein specifically binds to a TSLP polypeptide as set forth in amino acids 29-159 of SEQ ID NO:2.

[0041] Also provided is a method of treating chronic obstructive pulmonary disease (COPD) in a subject comprising administering a therapeutically effective amount of an anti-TSLP antibody or antibody variant in a dose of 70 mg to 280 mg at an interval of every 2 weeks, wherein both binding sites of the antibody have identical binding to TSLP, and the antibody comprises a. a light chain variable domain selected from the group consisting of: i. a sequence of amino acids at least 80% identical to SEQ ID NO:12; ii. a sequence of amino acids encoded by a polynucleotide sequence that is at least 80% identical to SEQ ID NO:11; iii. a sequence of amino acids encoded by a polynucleotide that hybridizes under moderately stringent conditions to the complement of a polynucleotide consisting of SEQ ID NO:11; and b. a heavy chain variable domain selected from the group consisting of: i. a sequence of amino acids that is at least 80% identical to SEQ ID NO:10; ii. a sequence of amino acids encoded by a polynucleotide sequence that is at least 80% identical to SEQ ID NO:9; iii. a sequence of amino acids encoded by a polynucleotide that hybridizes under moderately stringent conditions to the complement of a polynucleotide consisting of SEQ ID NO:9; or c. a light chain variable domain of (a) and a heavy chain variable domain of (b).

[0042] Also provided herein is a method for reducing ACQ-6 score in a subject comprising administering a therapeutically effective amount of an anti-TSLP antibody or antibody variant in a dose of 70 mg to 280 mg at an interval of every 2 weeks, wherein both binding sites of the antibody have identical binding to TSLP, and the antibody comprises a. a light chain variable domain comprising: i. a light chain CDR1 sequence comprising the amino acid sequence set forth in SEQ ID NO:3; ii. a light chain CDR2 sequence comprising the amino acid sequence set forth in SEQ ID NO:4; iii. a light chain CDR3 sequence comprising the amino acid sequence set forth in SEQ ID NO:5; and b. a heavy chain variable domain comprising: i. a heavy chain CDR1 sequence comprising the amino acid sequence set forth in SEQ ID NO:6; ii. a heavy chain CDR2 sequence comprising the amino acid sequence set forth in SEQ ID NO:7, and iii. a heavy chain CDR3 sequence comprising the amino acid sequence set forth in SEQ ID NO:8, wherein the antigen binding protein specifically binds to a TSLP polypeptide as set forth in amino acids 29-159 of SEQ ID NO:2.

[0043] Further provided is a method for reducing ACQ-6 score in a subject comprising administering a therapeutically effective amount of an anti-TSLP antibody or antibody variant in a dose of 70 mg to 280 mg at an interval of every 2 weeks, wherein both binding sites of the antibody have identical binding to TSLP, and the antibody comprises a. a light chain variable domain selected from the group consisting of: i. a sequence of amino acids at least 80% identical to SEQ ID NO:12; ii. a sequence of amino acids encoded by a polynucleotide sequence that is at least 80% identical to SEQ ID NO:11; iii. a sequence of amino acids encoded by a polynucleotide that hybridizes under moderately stringent conditions to the complement of a polynucleotide consisting of SEQ ID NO:11; and b. a heavy chain variable domain selected from the group consisting of: i. a sequence of amino acids that is at least 80% identical to SEQ ID NO:10; ii. a sequence of amino acids encoded by a polynucleotide sequence that is at least 80% identical to SEQ ID NO:9; iii. a sequence of amino acids encoded by a polynucleotide that hybridizes under moderately stringent conditions to the complement of a polynucleotide consisting of SEQ ID NO:9; or c. a light chain variable domain of (a) and a heavy chain variable domain of (b).

[0044] Provided herein is a method for reducing ACQ-6 score in a subject having a low eosinophil profile comprising administering a therapeutically effective amount of an anti-TSLP antibody or antibody variant, wherein the antibody or antibody variant binding to TSLP inhibits TSLP activity. Also provided is a method for reducing ACQ-6 score in a subject having a Th2 low profile comprising administering a therapeutically effective amount of an anti-TSLP antibody or antibody variant, wherein the antibody or antibody variant binding to TSLP inhibits TSLP activity.

[0045] Also contemplated is a method for treating asthma in a subject, including severe asthma, eosinophilic or non-eosinophilic asthma and low eosinophil asthma comprising administering a therapeutically effective amount of an anti-TSLP antibody or antibody variant, wherein the antibody or antibody variant binding to TSLP inhibits TSLP activity.

[0046] In various embodiments, the subject has an eosinophil count less than 250 cells/4 at start of treatment.

[0047] Also provided is a method for treating asthma in a subject having a Th2 low profile comprising administering a therapeutically effective amount of an anti-TSLP antibody or antibody variant, wherein the antibody or antibody variant binding to TSLP inhibits TSLP activity.

[0048] In various embodiments, the subject has a Th2 profile of IgE less than or equal to 100 IU/ml or eosinophil count of less than 140 cells/4 at the time of diagnosis.

[0049] In various embodiments, the antibody is tezepelumab or another anti-TSLP antibody described in the art, e.g., in Table A. Exemplary antibodies are described further in the Detailed Description.

BRIEF DESCRIPTION OF THE DRAWINGS

[0050] FIGS. 1A-1D show the effects of antibody treatment at the different doses in various measures of asthma symptoms. FIG. 1A, asthma exacerbation rate; FIG. 1B, changes from baseline in the postbronchodilator FEV1; FIG. 10, change from baseline in ACQ-6; FIG. 1D, change from baseline in AQLQ score.

[0051] FIGS. 2A-2B show the effects of antibody treatment in patients receiving glucocorticoids. FIG. 2A: Lines within the squares represent the median, the diamond symbol represents the mean, the boxes represent the 25.sup.th to 75.sup.th percentile and the whiskers represent the range (highest and lowest value). FIG. 2B: Histogram of baseline inhaled glucocorticoid dose (fluticasone equivalents).

[0052] FIG. 3 shows a Kaplan-Meier Curve for Time to First Asthma Exacerbation through Week 52 in the Intention-to-Treat population. *P-values are nominal and without multiplicity adjustment

[0053] FIGS. 4A-4B show the change from baseline in peripheral blood eosinophils (cell/.mu.l) (FIG. 4A), and total IgE (IU/ml) (FIG. 4B), over time in the Intention-to-Treat population.

[0054] FIG. 5 shows the change from baseline in the fraction of exhaled nitric oxide (FENO) in treated subjects.

[0055] FIGS. 6A-6B show annualized rate of asthma exacerbations, according to Baseline Biomarker Status at Week 52 (FIG. 6A), and change from baseline in the fraction of exhaled nitric oxide (FENO) (FIG. 6B). In FIG. 6A, nominal two-sided P values of less than 0.05 for the comparison with the placebo group are shown. A clinically meaningful cutoff of 24 ppb was used for the FeNO subpopulation analysis. A high status with respect to type 2 helper T (Th2) cells was defined as an IgE level of more than 100 IU per milliliter and a blood eosinophil count of 140 cells or more per microliter; a low Th2 status was defined as an IgE level of 100 IU or less per milliliter or a blood eosinophil count of less than 140 cells per microliter.

[0056] FIG. 7 (Table 1A) describes subject inclusion and exclusion criteria.

[0057] FIG. 8 (Table 1B) describes baseline demographics and clinical characteristics in the Intention-To-Treat population.

[0058] FIG. 9 (Table 2) shows annualized asthma exacerbation rate reduction, and change from baseline in FEV1, ACQ and AQLQ in the eosinophil sub-populations <250 cells/.mu.l and 250 cells/.mu.l.

[0059] FIG. 10 (Table 3) shows change from baseline in ACQ-6 (week 50) and AQLQ(S)+12 (week 48) in the Intention-to-Treat population.

[0060] FIG. 11 (Table 4) shows the annualized asthma exacerbation rate reduction and change from baseline in FEV1 (week 52), ACQ-6 (week 50), and AQLQ(S)+12 (week 48) in patient sub-populations: Th2 status, serum periostin.

[0061] FIG. 12 (Table 5) shows the annualized asthma exacerbation rate reduction and change from baseline in FEV.sub.1 (week 52), ACQ-6 (week 50), and AQLQ(S)+12 (week 48) in patient sub-populations: FENO, allergic status, current post-BD reversibility.

[0062] FIG. 13 (Table 6) shows the change from baseline in post-BD FEV.sub.1 and pre- and post-BD forced vital capacity at week 52 in the Intention-To-Treat population.

[0063] FIG. 14 (Table 7) shows the annualized rate of severe asthma exacerbations, time to first asthma exacerbation/severe asthma exacerbation, and proportion of patients with one or more asthma exacerbation at week 52 in the Intention-To-Treat population.

[0064] FIG. 15 (Table 8) is a post-hoc analysis of annualized asthma exacerbation rate reduction stratified by blood eosinophil count <400 cells/.mu.l vs 400 cells/.mu.l through week 52.

[0065] FIG. 16 (Table 9) shows the annualized asthma exacerbation rate reduction stratified by Patients on a medium- or high-dose of inhaled glucocorticoid and by patients on maintenance oral glucocorticoids through week 52.

[0066] FIG. 17 (Table 10) shows annualized asthma exacerbation rate reduction stratified by number of prior asthma exacerbations and by smoking history* through week 52.

[0067] FIG. 18 (Table 11) shows the change from baseline in Medimmune ASMA score at week 52.

[0068] FIG. 19 (Table 12) shows all treatment-emergent serious adverse events in the as-treated population.

DETAILED DESCRIPTION

[0069] Use of an anti-TSLP antibody addresses an unmet need in asthma patients in which other medications may not control moderate to severe asthma. For example anti-TSLP antibody tezepelumab might reduce exacerbations in both in eosinophil (EOS)-low and high in EOS-high patients. It is further contemplated that treatment with tezepelumab could eliminate daily disease activity and make more patients steroid-free or reduce the need for use of steroids in the treatment of asthma.

Definitions

[0070] Unless otherwise stated, the following terms used in this application, including the specification and claims, have the definitions given below.

[0071] As used in the specification and the appended claims, the indefinite articles "a" and "an" and the definite article "the" include plural as well as singular referents unless the context clearly dictates otherwise.

[0072] Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which the present disclosure belongs. The following references provide one of skill with a general definition of many of the terms used in this disclosure include, but are not limited to: Singleton et al., DICTIONARY OF MICROBIOLOGY AND MOLECULAR BIOLOGY (2d Ed. 1994); THE CAMBRIDGE DICTIONARY OF SCIENCE AND TECHNOLOGY (Walker Ed., 1988); THE GLOSSARY OF GENETICS, 5th Ed., R. Rieger et al. (Eds.), Springer Verlag (1991); and Hale & Marham, THE HARPER COLLINS DICTIONARY OF BIOLOGY (1991).

[0073] The term "about" or "approximately" means an acceptable error for a particular value as determined by one of ordinary skill in the art, which depends in part on how the value is measured or determined. In certain embodiments, the term "about" or "approximately" means within 1, 2, 3, or 4 standard deviations. In certain embodiments, the term "about" or "approximately" means within 30%, 25%, 20%, 15%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, 0.5%, or 0.05% of a given value or range. Whenever the term "about" or "approximately" precedes the first numerical value in a series of two or more numerical values, it is understood that the term "about" or "approximately" applies to each one of the numerical values in that series.

[0074] The term "asthma" as used herein refers to allergic, non-allergic, eosinophilic, and non-eosinophillic asthma.

[0075] The term "allergic asthma" as used herein refers to asthma that is triggered by one or more inhaled allergens. Such patients have a positive IgE fluorescence enzyme immunoassay (FEIA) level to one or more allergens that trigger an asthmatic response.

[0076] Typically, most allergic asthma is associated with Th2-type inflammation.

[0077] The term "non-allergic asthma" refers to patients that have low eosinophil, low Th2, or low IgE at the time of diagnosis. A patient who has "non-allergic asthma" is typically negative in the IgE fluorescence enzyme immunoassay (FEIA) in response to a panel of allergens, including region-specific allergens. In addition to low IgE, those patients often have low or no eosinophil counts and low Th2 counts at the time of diagnosis.

[0078] The term "severe asthma" as used herein refers to asthma that requires high intensity treatment (e.g., GINA Step 4 and Step 5) to maintain good control, or where good control is not achieved despite high intensity treatment (GINA, Global Strategy for Asthma Management and Prevention. Global Initiative for Asthma (GINA) December 2012).

[0079] The term "eosinophilic asthma" as used herein refers to an asthma patient having a screening blood eosinophil count of .gtoreq.250 cells/.mu.L. "Low eosinophilic" asthma refers to asthma patients having less than 250 cells/uL blood or serum.

[0080] The term "Th2-type inflammation" as used herein refers to a subject having a screening blood eosinophil count 140 cells/.mu.L and a screening total serum IgE level of >100 IU/mL (Corren et al, N Engl J Med. 22; 365(12):1088-98, 2011). A "Th2 high" asthma population or profile refers to a subject having IgE>100 IU/mL and Blood Eosinophil Count .gtoreq.140 cells/.mu.L. A "Th2 low" asthma population refers to a subject having IgE<100 IU/mL and Blood Eosinophil Count.gtoreq.140 cells/.mu.L

[0081] An "elevated FeNO" (Fractional exhaled nitric oxide) as used herein refers to a baseline FeNO measurement greater than or equal to the median from all randomized subjects in the study. Elevated FeNO refers to FeNO levels of 24 or above.

[0082] The term "elevated serum periostin level" as used herein refers to a patient having a baseline serum periostin level greater than or equal to the median from all randomized subjects in the study. Periostin has been shown to be involved in certain aspects of allergic inflammation, including eosinophil recruitment, airway remodeling, and development of a Th2 phenotype (Li et al., Respir Res. 16(1):57, 2015).

[0083] The term "current post-bronchodilator (BD) forced expiratory volume in 1 second (FEV.sub.1) reversibility" as used herein refers to a post-BD change in FEV.sub.1 of .gtoreq.12% and .gtoreq.200 mL

[0084] The term "asthma exacerbation" as used herein refers to a worsening of asthma that leads to any of the following: Use of systemic corticosteroids for at least 3 days; a single depo-injectable dose of corticosteroids is considered equivalent to a 3-day course of systemic corticosteroids; for subjects receiving maintenance OCS, a temporary doubling of the maintenance dose for at least 3 days qualifies; an ED visit due to asthma that required systemic corticosteroids (as per above); an inpatient hospitalization due to asthma. Additional measures associated with asthma exacerbations are also being examined to determine effect. These include hospitalizations related to asthma exacerbations (i.e., severe asthma exacerbations), time to first asthma exacerbation, and the proportion of subjects with one or more asthma exacerbation/severe asthma exacerbation.

[0085] The term "worsening of asthma" refers to new or increased symptoms and/or signs (examination or lung function) that can be either concerning to the subject (subject-driven) or related to an Asthma Daily Diary alert (diary-driven) via the ePRO device. Asthma-worsening thresholds include: decrease in morning peak flow 30% on at least 2 of 3 successive days compared with baseline (last 7 days of run-in), and/or a 50% increase in rescue medication (minimum increase of 2 or more puffs, or one new or additional nebulized (32 agonist) on at least 2 of 3 successive days compared with the average use for the previous week, and/or nocturnal awakening due to asthma requiring rescue medication use for at least 2 of 3 successive nights, and/or an increase in total asthma symptom score (the sum of daytime [evening assessment] and nighttime [morning assessment]) of at least 2 units above the screening/run-in period average (last 10 days of screening/run-in), or the highest possible score (daily score of 6), on at least 2 of 3 successive days.

[0086] The term "cytokine" as used herein refers to one or more small (5-20 kD) proteins released by cells that have a specific effect on interactions and communications between cells or on the behavior of cells, such as immune cell proliferation and differentiation. Functions of cytokines in the immune system include, promoting influx of circulating leukocytes and lymphocytes into the site of immunological encounter; stimulating the development and proliferation of B cells, T cells, peripheral blood mononuclear cells (PBMCs) and other immune cells; and providing antimicrobial activity. Exemplary immune cytokines, include but are not limited to, IL-1, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-9, IL-10, IL-12, IL-13, IL-15, IL17A, IL-17F, IL-18, IL-21, IL-22, interferon (including IFN alpha, beta, and gamma), tumor necrosis factor (including TNF alpha, beta), transforming growth factor (including TGF alpha, beta), granulocyte colony stimulating factor (GCSF), granulocyte macrophage colony stimulating factor (GMCSF) and thymic stromal lymphopoietin (TSLP).

[0087] A "T helper (Th) 1 cytokine" or "Th1-specific cytokine" refers to cytokines that are expressed (intracellularly and/or secreted) by Th1 T cells, and include IFN-g, TNF-a, and IL-12. A "Th2 cytokine" or "Th2-specific cytokine" refers to cytokines that are expressed (intracellularly and/or secreted) by Th2 T cells, including IL-4, IL-5, IL-13, and IL-10. A "Th17 cytokine" or "Th17-specific cytokine" refers to cytokines that are expressed (intracellularly and/or secreted) by Th17 T cells, including IL-17A, IL-17F, IL-22 and IL-21. Certain populations of Th17 cells express IFN-g and/or IL-2 in addition to the Th17 cytokines listed herein. A polyfunctional CTL cytokine includes IFN-g, TNF-a, IL-2 and IL-17.

[0088] The term "specifically binds" is "antigen specific", is "specific for", "selective binding agent", "specific binding agent", "antigen target" or is "immunoreactive" with an antigen refers to an antibody or polypeptide that binds an target antigen with greater affinity than other antigens of similar sequence. It is contemplated herein that the agent specifically binds target proteins useful in identifying immune cell types, for example, a surface antigen (e.g., T cell receptor, CD3), a cytokine (e.g., TSLP, IL-4, IL-5, IL-13, IL-17, IFN-g, TNF-.alpha.) and the like. In various embodiments, the antibody specifically binds the target antigen, but can cross-react with an ortholog of a closely related species, e.g. an antibody may being human protein and also bind a closely related primate protein.

[0089] The term "antibody" or "immunoglobulin" refers to a tetrameric glycoprotein that consists of two heavy chains and two light chains, each comprising a variable region and a constant region. "Heavy Chains" and "Light Chains" refer to substantially full length canonical immunoglobulin light and heavy chains (see e.g., Immunobiology, 5th Edition (Janeway and Travers et al., Eds., 2001). Antigen-binding portions may be produced by recombinant DNA techniques or by enzymatic or chemical cleavage of intact antibodies. The term "antibody" includes monoclonal antibodies, polyclonal antibodies, chimeric antibodies, human antibodies, and humanized antibodies.

[0090] Antibody variants include antibody fragments and anti-body like proteins with changes to structure of canonical tetrameric antibodies. Typically antibody variants include V regions with a change to the constant regions, or, alternatively, adding V regions to constant regions, optionally in a non-canonical way. Examples include multispecific antibodies (e.g., bispecific antibodies with extra V regions), antibody fragments that can bind an antigen (e.g., Fab', F'(ab)2, Fv, single chain antibodies, diabodies), biparatopic and recombinant peptides comprising the forgoing as long as they exhibit the desired biological activity.

[0091] Antibody fragments include antigen-binding portions of the antibody including, inter alia, Fab, Fab', F(ab')2, Fv, domain antibody (dAb), complementarity determining region (CDR) fragments, CDR-grafted antibodies, single-chain antibodies (scFv), single chain antibody fragments, chimeric antibodies, diabodies, triabodies, tetrabodies, minibody, linear antibody; chelating recombinant antibody, a tribody or bibody, an intrabody, a nanobody, a small modular immunopharmaceutical (SMIP), an antigen-binding-domain immunoglobulin fusion protein, single domain antibodies (including camelized antibody), a VHH containing antibody, or a variant or a derivative thereof, and polypeptides that contain at least a portion of an immunoglobulin that is sufficient to confer specific antigen binding to the polypeptide, such as one, two, three, four, five or six CDR sequences, as long as the antibody retains the desired biological activity.

[0092] "Valency" refers to the number of antigen binding sites on each antibody or antibody fragment that targets an epitope. A typical full length IgG molecule, or F(ab).sub.2 is "bivalent" in that it has two identical target binding sites. A "monovalent' antibody fragment such as a F(ab)' or scFc with a single antigen binding site. Trivalent or tetravalent antigen binding proteins can also be engineered to be multivalent.

[0093] "Monoclonal antibody" refers to an antibody obtained from a population of substantially homogeneous antibodies, i.e., the individual antibodies comprising the population are identical except for possible naturally occurring mutations that may be present in minor amounts.

[0094] The term "inhibits TSLP activity" includes inhibiting any one or more of the following: binding of TSLP to its receptor; proliferation, activation, or differentiation of cells expressing TSLPR in the presence of TSLP; inhibition of Th2 cytokine production in a polarization assay in the presence of TSLP; dendritic cell activation or maturation in the presence of TSLP; and mast cell cytokine release in the presence of TSLP. See, e.g., U.S. Pat. No. 7,982,016 B2, column 6 and example 8 and US 2012/0020988 A1, examples 7-10.

[0095] The term "sample" or "biological sample" refers to a specimen obtained from a subject for use in the present methods, and includes urine, whole blood, plasma, serum, saliva, sputum, tissue biopsies, cerebrospinal fluid, peripheral blood mononuclear cells with in vitro stimulation, peripheral blood mononuclear cells without in vitro stimulation, gut lymphoid tissues with in vitro stimulation, gut lymphoid tissues without in vitro stimulation, gut lavage, bronchioalveolar lavage, nasal lavage, and induced sputum.

[0096] The terms "treat", "treating" and "treatment" refer to eliminating, reducing, suppressing or ameliorating, either temporarily or permanently, either partially or completely, a clinical symptom, manifestation or progression of an event, disease or condition associated with an inflammatory disorder described herein. As is recognized in the pertinent field, drugs employed as therapeutic agents may reduce the severity of a given disease state, but need not abolish every manifestation of the disease to be regarded as useful therapeutic agents. Similarly, a prophylactically administered treatment need not be completely effective in preventing the onset of a condition in order to constitute a viable prophylactic agent. Simply reducing the impact of a disease (for example, by reducing the number or severity of its symptoms, or by increasing the effectiveness of another treatment, or by producing another beneficial effect), or reducing the likelihood that the disease will occur or worsen in a subject, is sufficient. One embodiment of the invention is directed to a method for determining the efficacy of treatment comprising administering to a patient therapeutic agent in an amount and for a time sufficient to induce a sustained improvement over baseline of an indicator that reflects the severity of the particular disorder.

[0097] The term "therapeutically effective amount" refers to an amount of therapeutic agent that is effective to ameliorate or lessen symptoms or signs of disease associated with a disease or disorder.

Asthma

[0098] Asthma is a chronic inflammatory disorder of the airways. Each year, asthma accounts for an estimated 1.1 million outpatient visits, 1.6 million emergency room visits, 444,000 hospitalizations (Defrances et al, 2008) Available at: http://www.cdc.gov/nchs/data/nhsr005.pdf, and 3,500 deaths in the U.S. In susceptible individuals, asthmatic inflammation causes recurrent episodes of wheezing, breathlessness, chest tightness, and cough. The etiology of asthma is thought to be multi-factorial, influenced by both genetic environmental mechanisms,.sup.1,2 with environmental allergens an important cause..sup.2,3 The majority of cases arise when a person becomes hypersensitive to allergens (atopy). Atopy is characterized by an increase in Th2 cells and Th2 cytokine expression and IgE production. Approximately 10 million patients in the United States are thought to have allergy-induced asthma. Despite the available therapeutic options, asthma continues to be a major health problem. Worldwide, asthma currently affects approximately 300 million people; by 2020, asthma is expected to affect 400 million people (Partridge, Eur Resp Rev. 16:67-72, 2007).

[0099] Allergen inhalation by atopic asthmatics induces some of the manifestations of asthma, including reversible airflow obstruction, airway hyperresponsiveness, and eosinophilic and basophilic airway inflammation. Allergen inhalation challenge has become the predominant model of asthma in many species (Bates et al., Am J Physiol Lung Cell Mol Physiol. 297(3):L401-10, 2009; Diamant et al., J Allergy Clin Immunol. 132(5):1045-1055, 2013.)

[0100] Different asthma subtypes that are refractory to steroid treatment have been identified. Eosinophils are important inflammatory cells in allergic asthma that is characteristically mediated by Th2-type CD4+ T cells. Neutrophilic airway inflammation is associated with corticosteroid treatment in severe asthma and can be mediated by Th1- or Th17-type T cells (Mishra et al., Dis. Model. Mech. 6:877-888, 2013).

[0101] Measures of diagnosis and assessment of asthma include the following:

[0102] Airway inflammation evaluated using a standardized single-breath Fraction of Exhaled Nitric Oxide (FeNO)(American Thoracic Society; ATS, Am J Respir Crit Care Med. 171(8):912-30, 2005) test. For example, subjects inhale to total lung capacity through the NIOX MINOO Airway Inflammation Monitor and then exhale for 10 seconds at 50 mL/sec (assisted by visual and auditory cues).

[0103] Spirometry is performed according to ATS/European Respiratory Society (ERS) guidelines (Miller et al, Eur Respir J. 26(1):153-61, 2005). For example, multiple forced expiratory efforts (at least 3 but no more than 8) is performed at each spirometry session and the 2 best efforts that meet ATS/ERS acceptability and reproducibility criteria are recorded. The best efforts will be based on the highest FEV.sub.1. The maximum FEV.sub.1 of the 2 best efforts will be used for the analysis. Both the absolute measurement (for FEV.sub.1 and FVC) and the percentage of predicted normal value will be recorded using appropriate reference values. The highest FVC will also be reported regardless of the effort in which it occurred (even if the effort did not result in the highest FEV.sub.1).

[0104] Post-bronchodilator (Post-BD) spirometry testing is assessed after the subject has performed pre-BD spirometry. Maximal bronchodilation is induced using a SABA such as albuterol (90 .mu.g metered dose) or salbutamol (100 .mu.g metered dose) or equivalent with a spacer device for a maximum of 8 total puffs (Sorkness et al, J Appl Physiol. 104(2):394-403, 2008). The highest pre- and post-BD FEV.sub.1 obtained after 4, 6, or 8 puffs is used to determine reversibility and for analysis. Reversibility algorithm is as follows:

% Reversibility=(post-BD FEV1-pre-BD FEV1).times.100/pre-BD FEV1

[0105] Home peak flow testing for peak expiratory flow rate (PEFR) is performed twice daily, in the morning upon awakening and in the evening prior to bedtime using a peak flow meter from the morning of Visit 2 (Week -4) through Week 64. When possible, ambulatory lung function measurements should be taken at least 6 hours after the last dose of SABA rescue medication.

[0106] The Asthma Daily Diary includes the following daily assessments: asthma symptoms; inhalations of rescue medication; nighttime awakening due to asthma requiring rescue medication use, asthma-related activity limitations, asthma-related stress, and background medication compliance. The Asthma Daily Diary is completed each morning and evening. There will be triggers in the ePRO device to alert the subjects to signs of worsening of asthma.

[0107] The Asthma Control Questionnaire (ACQ) 6 is a patient-reported questionnaire assessing asthma symptoms (i.e., night-time waking, symptoms on waking, activity limitation, shortness of breath, wheezing) and daily rescue bronchodilator use and FEV.sub.1 (Juniper et al, October 1999). The ACQ-6 is a shortened version of the ACQ that omits the FEV.sub.1 measurement from the original ACQ score. Questions are weighted equally and scored from 0 (totally controlled) to 6 (severely uncontrolled). The mean ACQ score is the mean of the responses. Mean scores of s 0.75 indicate well-controlled asthma, scores between 0.75 and .ltoreq.1.5 indicate partly-controlled asthma, and a score>1.5 indicates uncontrolled asthma (Juniper et al, Respir Med. 100(4):616-21, 2006). Individual changes of at least 0.5 are considered to be clinically meaningful (Juniper et al, Respir Med. 99(5):553-8, 2005).

[0108] The Asthma Quality of Life Questionnaire, Standardized (AQLQ[S])+12 (AQLQ(S)+12) is a 32-item questionnaire that measures the HRQoL experienced by asthma patients (Juniper et al, Chest. 115(5):1265-70, May 1999). The questionnaire comprises 4 separate domains (symptoms, activity limitations, emotional function, and environmental stimuli). Subjects are asked to recall their experiences during the previous 2 weeks and to score each of the 32 questions on a 7-point scale ranging from 7 (no impairment) to 1 (severe impairment). The overall score is calculated as the mean response to all questions. The 4 individual domain scores (symptoms, activity limitations, emotional function, and environmental stimuli) are the means of the responses to the questions in each of the domains. Individual improvement in both the overall score and individual domain scores of 0.5 has been identified as a minimally important change, with score changes of 1.5 identified as large meaningful changes (Juniper et al, J Clin Epidemiol. 47(1):81-7, 1994).

TSLP

[0109] Thymic stromal lymphopoietin (TSLP) is an epithelial cell-derived cytokine that is produced in response to pro-inflammatory stimuli and drives allergic inflammatory responses primarily through its activity on dendritic cells (Gilliet, J Exp Med. 197:1059-1067, 2003; Soumelis, Nat Immunol. 3:673-680, 2002; Reche, J Immunol. 167:336-343, 2001), mast cells (Allakhverdi, J Exp Med. 204:253-258, 2007) and CD34+progenitor cells..sup.9 TSLP signals through a heterodimeric receptor consisting of the interleukin (IL)-7 receptor alpha (IL-7R.alpha.) chain and a common .gamma. chain-like receptor (TSLPR) (Pandey, Nat Immunol. 1:59-64, 2000; Park, J Exp Med. 192:659-669, 2000).

[0110] Human TSLP mRNA.sup.10,11 and protein levels.sup.11 are increased in the airways of asthmatic individuals compared to controls, and the magnitude of this expression correlates with disease severity..sup.10 Recent studies have demonstrated association of a single nucleotide polymorphism in the human TSLP locus with protection from asthma, atopic asthma and airway hyperresponsiveness, suggesting that differential regulation of TSLP gene expression might influence disease susceptibility..sup.1,12,13 These data suggest that targeting TSLP may inhibit multiple biological pathways involved in asthma.

[0111] Earlier non-clinical studies of TSLP suggested that after TSLP is released from airway epithelial cells or stromal cells, it activates mast cells, dendritic cells, and T cells to release Th2 cytokines (e.g., IL-4/13/5). Recently published human data demonstrated a good correlation between tissue TSLP gene and protein expression, a Th2 gene signature score, and tissue eosinophils in severe asthma. Therefore, an anti-TSLP target therapy may be effective in asthmatic patients with Th2-type inflammation (Shikotra et al, J Allergy Clin Immunol. 129(1):104-11, 2012).

[0112] Data from other studies suggest that TSLP may promote airway inflammation through Th2 independent pathways such as the crosstalk between airway smooth muscle and mast cells (Allakhverdi et al, J Allergy Clin Immunol. 123(4):958-60, 2009; Shikotra et al, supra). TSLP can also promote induction of T cells to differentiate into Th-17-cytokine producing cells with a resultant increase in neutrophilic inflammation commonly seen in more severe asthma (Tanaka et al, Clin Exp Allergy. 39(1):89-100, 2009). These data and other emerging evidence suggest that blocking TSLP may serve to suppress multiple biologic pathways including but not limited to those involving Th2 cytokines (IL-4/13/5).

Antibodies

[0113] It is contemplated that antibodies or antibody variants specific for TSLP are useful in the treatment of asthma, including severe asthma, eosinophlic asthma, no-eosinophilic/low-eosinophilic and other forms of asthma described herein.

[0114] Specific binding agents such as antibodies and antibody variants or fragments that bind to their target antigen, e.g., TSLP, are useful in the methods of the invention. In one embodiment, the specific binding agent is an antibody. The antibodies may be monoclonal (MAbs); recombinant; chimeric; humanized, such as complementarity-determining region (CDR)-grafted; human; antibody variants, including single chain; and/or bispecific; as well as fragments; variants; or derivatives thereof. Antibody fragments include those portions of the antibody that bind to an epitope on the polypeptide of interest. Examples of such fragments include Fab and F(ab') fragments generated by enzymatic cleavage of full-length antibodies. Other binding fragments include those generated by recombinant DNA techniques, such as the expression of recombinant plasmids containing nucleic acid sequences encoding antibody variable regions.

[0115] Monoclonal antibodies may be modified for use as therapeutics or diagnostics. One embodiment is a "chimeric" antibody in which a portion of the heavy (H) and/or light (L) chain is identical with or homologous to a corresponding sequence in antibodies derived from a particular species or belonging to a particular antibody class or subclass, while the remainder of the chain(s) is/are identical with or homologous to a corresponding sequence in antibodies derived from another species or belonging to another antibody class or subclass. Also included are fragments of such antibodies, so long as they exhibit the desired biological activity. See U.S. Pat. No. 4,816,567; Morrison et al., 1985, Proc. Natl. Acad. Sci. 81:6851-55.

[0116] In another embodiment, a monoclonal antibody is a "humanized" antibody.

[0117] Methods for humanizing non-human antibodies are well known in the art. See U.S. Pat. Nos. 5,585,089 and 5,693,762. Generally, a humanized antibody has one or more amino acid residues introduced into it from a source that is non-human. Humanization can be performed, for example, using methods described in the art (Jones et al., 1986, Nature 321:522-25; Riechmann et al., 1998, Nature 332:323-27; Verhoeyen et al., 1988, Science 239:1534-36), by substituting at least a portion of a rodent complementarity-determining region for the corresponding regions of a human antibody.

[0118] Also encompassed by the invention are human antibodies and antibody variants (including antibody fragments) that bind TSLP. Using transgenic animals (e.g., mice) that are capable of producing a repertoire of human antibodies in the absence of endogenous immunoglobulin production such antibodies are produced by immunization with a polypeptide antigen (i.e., having at least 6 contiguous amino acids), optionally conjugated to a carrier. See, e.g., Jakobovits et al., 1993, Proc. Natl. Acad. Sci. 90:2551-55; Jakobovits et al., 1993, Nature 362:255-58; Bruggermann et al., 1993, Year in Immuno. 7:33. See also PCT App. Nos. PCT/US96/05928 and PCT/US93/06926. Additional methods are described in U.S. Pat. No. 5,545,807, PCT App. Nos. PCT/US91/245 and PCT/GB89/01207, and in European Patent Nos. 546073B1 and 546073A1. Human antibodies can also be produced by the expression of recombinant DNA in host cells or by expression in hybridoma cells as described herein.

[0119] Chimeric, CDR grafted, and humanized antibodies and/or antibody variants are typically produced by recombinant methods. Nucleic acids encoding the antibodies are introduced into host cells and expressed using materials and procedures described herein. In a preferred embodiment, the antibodies are produced in mammalian host cells, such as CHO cells. Monoclonal (e.g., human) antibodies may be produced by the expression of recombinant DNA in host cells or by expression in hybridoma cells as described herein.

[0120] Antibodies and antibody variants (including antibody fragments) useful in the present methods comprise an anti-TSLP antibody comprising a. a light chain variable domain comprising: i. a light chain CDR1 sequence comprising the amino acid sequence set forth in SEQ ID NO:3; ii. a light chain CDR2 sequence comprising the amino acid sequence set forth in SEQ ID NO:4; iii. a light chain CDR3 sequence comprising the amino acid sequence set forth in SEQ ID NO:5; and

[0121] b. a heavy chain variable domain comprising: i. a heavy chain CDR1 sequence comprising the amino acid sequence set forth in SEQ ID NO:6; ii. a heavy chain CDR2 sequence comprising the amino acid sequence set forth in SEQ ID NO:7, and iii. a heavy chain CDR3 sequence comprising the amino acid sequence set forth in SEQ ID NO:8, wherein the antibody or antibody variant specifically binds to a TSLP polypeptide as set forth in amino acids 29-159 of SEQ ID NO:2.

[0122] Also contemplated is an antibody or antibody variant comprising a. a light chain variable domain selected from the group consisting of: i. a sequence of amino acids at least 80% identical to SEQ ID NO:12; ii. a sequence of amino acids encoded by a polynucleotide sequence that is at least 80% identical to SEQ ID NO:11; iii. a sequence of amino acids encoded by a polynucleotide that hybridizes under moderately stringent conditions to the complement of a polynucleotide consisting of SEQ ID NO:11; and

[0123] b. a heavy chain variable domain selected from the group consisting of: i. a sequence of amino acids that is at least 80% identical to SEQ ID NO:10; ii. a sequence of amino acids encoded by a polynucleotide sequence that is at least 80% identical to SEQ ID NO:9; iii. a sequence of amino acids encoded by a polynucleotide that hybridizes under moderately stringent conditions to the complement of a polynucleotide consisting of SEQ ID NO:9; or c. a light chain variable domain of (a) and a heavy chain variable domain of (b), wherein the antibody or antibody variant specifically binds to a TSLP polypeptide as set forth in amino acids 29-159 of SEQ ID NO:2.

[0124] Tezepelumab is an exemplary anti-TSLP antibody having: a. i. a light chain CDR1 sequence comprising the amino acid sequence set forth in SEQ ID NO:3; ii. a light chain CDR2 sequence comprising the amino acid sequence set forth in SEQ ID NO:4; iii. a light chain CDR3 sequence comprising the amino acid sequence set forth in SEQ ID NO:5; and b. a heavy chain variable domain comprising: i. a heavy chain CDR1 sequence comprising the amino acid sequence set forth in SEQ ID NO:6; ii. a heavy chain CDR2 sequence comprising the amino acid sequence set forth in SEQ ID NO:7, and iii. a heavy chain CDR3 sequence comprising the amino acid sequence set forth in SEQ ID NO:8;

[0125] Tezepelumab also comprises a light chain variable domain having the amino acid sequence set out in SEQ ID NO:12; encoded by a polynucleotide sequence set out in SEQ ID NO:11; and a heavy chain variable domain having the amino acid sequence set out in SEQ ID NO:10, encoded by a polynucleotide sequence set out in SEQ ID NO:9.

[0126] Tezepelumab is an IgG2 antibody. The sequence of the full length heavy chain and light chain of tezepelumab, including the IgG2 chain, is set out in SEQ ID NOs: 105 and 106, respectively.

[0127] In various embodiments, the anti-TSLP antibody or antibody variant thereof is bivalent and selected from the group consisting of a human antibody, a humanized antibody, a chimeric antibody, a monoclonal antibody, a recombinant antibody, an antigen-binding antibody fragment, a single chain antibody, a monomeric antibody, a diabody, a triabody, a tetrabody, a Fab fragment, an IgG1 antibody, an IgG2 antibody, an IgG3 antibody, and an IgG4 antibody.

[0128] In various embodiments, the anti-TSLP antibody variant is selected from the group consisting of a diabody, a triabody, a tetrabody, a Fab fragment, single domain antibody, scFv, wherein the dose is adjusted such that the binding sites to be equimolar to the those dosed by bivalent antibodies.

[0129] It is contemplated that the antibody or antibody variant is an IgG2 antibody. Exemplary sequences for a human IgG2 constant region are available from the Uniprot database as Uniprot number P01859, incorporated herein by reference. Information, including sequence information for other antibody heavy and light chain constant regions is also publicly available through the Uniprot database as well as other databases well-known to those in the field of antibody engineering and production.

[0130] In certain embodiments, derivatives of antibodies include tetrameric glycosylated antibodies wherein the number and/or type of glycosylation site has been altered compared to the amino acid sequences of a parent polypeptide. In certain embodiments, variants comprise a greater or a lesser number of N-linked glycosylation sites than the native protein. Alternatively, substitutions which eliminate this sequence will remove an existing N-linked carbohydrate chain. Also provided is a rearrangement of N-linked carbohydrate chains wherein one or more N-linked glycosylation sites (typically those that are naturally occurring) are eliminated and one or more new N-linked sites are created. Additional preferred antibody variants include cysteine variants wherein one or more cysteine residues are deleted from or substituted for another amino acid (e.g., serine) as compared to the parent amino acid sequence. Cysteine variants may be useful when antibodies must be refolded into a biologically active conformation such as after the isolation of insoluble inclusion bodies. Cysteine variants generally have fewer cysteine residues than the native protein, and typically have an even number to minimize interactions resulting from unpaired cysteines.

[0131] Desired amino acid substitutions (whether conservative or non-conservative) can be determined by those skilled in the art at the time such substitutions are desired. In certain embodiments, amino acid substitutions can be used to identify important residues of antibodies to human TSLP, or to increase or decrease the affinity of the antibodies to human TSLP described herein.

[0132] According to certain embodiments, preferred amino acid substitutions are those which: (1) reduce susceptibility to proteolysis, (2) reduce susceptibility to oxidation, (3) alter binding affinity for forming protein complexes, (4) alter binding affinities, and/or (4) confer or modify other physiochemical or functional properties on such polypeptides. According to certain embodiments, single or multiple amino acid substitutions (in certain embodiments, conservative amino acid substitutions) may be made in the naturally-occurring sequence (in certain embodiments, in the portion of the polypeptide outside the domain(s) forming intermolecular contacts). In certain embodiments, a conservative amino acid substitution typically may not substantially change the structural characteristics of the parent sequence (e.g., a replacement amino acid should not tend to break a helix that occurs in the parent sequence, or disrupt other types of secondary structure that characterizes the parent sequence). Examples of art-recognized polypeptide secondary and tertiary structures are described in Proteins, Structures and Molecular Principles (Creighton, Ed., W. H. Freeman and Company, New York (1984)); Introduction to Protein Structure (C. Branden and J. Tooze, eds., Garland Publishing, New York, N.Y. (1991)); and Thornton et al. Nature 354:105 (1991), which are each incorporated herein by reference.

[0133] Methods of Administration

[0134] In one aspect, methods of the present disclosure include a step of administering a therapeutic anti-TSLP antibody or antibody variant described herein, optionally in a pharmaceutically acceptable carrier or excipient. In certain embodiments, the pharmaceutical composition is a sterile composition.

[0135] Contemplated herein are methods method for treating asthma in a subject, including severe asthma, eosinophilic or non-eosinophilic asthma and low eosinophil asthma. Surprisingly, it was found herein that treatment with an anti-TSLP antibody is effective at reducing asthma symptoms in a no eosinophil/low eosinophil population as it is in a high eosinophil population. Also contemplated is a method of reducing the frequency of asthma exacerbation in a subject.

[0136] Also contemplated herein are methods of treating asthma in a subject having a Th2 high asthma profile or a Th2 low asthma profile. It is contemplated that a TSLP antagonist that inhibits binding of the TSLP protein to its receptor complex will effectively treat a low eosinophil asthma population as the antibody described herein. Similarly, it is contemplated that a TSLP antagonist that inhibits binding of TSLP to its receptor complex will be effective in treating Th2 low asthma populations.

[0137] Provided herein is a method of treating a patient having low eosinophil asthma comprising administering an anti-TSLP antibody. Also contemplated is a method for treating a subject having asthma characterized by alow Th2 profile comprising administering an anti-TSLP antibody. In various embodiments, the antibody is tezepelumab or another anti-TSLP antibody described in the art. Exemplary anti-TSLP antibodies include antibodies described in WO 2017/042701, WO 2016/142426, WO 2010/017468, US20170066823, US20120020988 and U.S. Pat. No. 8,637,019, incorporated herein by reference, some of which are described below in Table A. In exemplary aspects, the and-TSLP antibody is selected from an antibody of Table A.

TABLE-US-00001 TABLE A WO2017/042701 An anti-TSLP antibody comprising a heavy chain (HC) CDR1 comprising the sequence of SEQ ID NO: 13, a HC CDR2 comprising the sequence of SEQ ID NO: 14, and a HC CDR3 comprising the sequence of SEQ ID NO: 15; An anti-TSLP antibody comprising a light chain (LC) CDR1 comprising the sequence of SEQ ID NO: 16, a LC CDR2 comprising the sequence of SEQ ID NO: 17, a LC CDR3 comprising the sequence of SEQ ID NO: 18; An anti-TSLP antibody comprising a heavy chain (HC) CDR1 comprising the sequence of SEQ ID NO: 19, a HC CDR2 comprising the sequence of SEQ ID NO: 20, a HC CDR3 comprising the sequence of SEQ ID NO: 15; An anti-TSLP antibody comprising a light chain (LC) CDR1 comprising the sequence of SEQ ID NO: 21, a LC CDR2 comprising the sequence of SEQ ID NO: 22, a LC CDR3 comprising the sequence of SEQ ID NO: 23; An anti-TSLP antibody comprising a HC variable region comprising the sequence of SEQ ID NO: 26 and/or a LC variable region comprising the sequence of SEQ ID NO: 27; An anti-TSLP antibody comprising a HC variable region comprising the sequence of SEQ ID NO: 28 and/or a LC variable region comprising the sequence of SEQ ID NO: 29; An anti-TSLP antibody that comprises a paratope comprising at least one of the following residues: Thr28, Asp31, Tyr32, Trp33, Asp56, Glu101, Ile102, Tyr103, Tyr104, Tyr105 of a heavy chain sequence of SEQ ID NO: 26 or Gly28, Ser29, Lys30, Tyr31, Tyr48, Asp50, Asn51, Glu52, Asn65, and Trp92 of a light chain sequence of SEQ ID NO: 27; An anti-TSLP antibody that specifically binds an epitope in human TSLP, wherein the epitope comprises at least one of the following residues: Lys38, Ala41, Leu44, Ser45, Thr46, Ser48, Lys49, Ile52, Thr53, Ser56, Gly57, Thr58, Lys59, Lys101, Gln145, and Arg149 of SEQ ID NO: 30; WO2016/142426 An anti-TSLP antibody comprising the amino acid sequence of SEQ ID NO: 31; An anti-TSLP antibody comprising a CDR1 comprising the sequence of SEQ ID NO: 32; a CDR2 comprising the sequence of SEQ ID NO: 33, and a CDR3 comprising the sequence of SEQ ID NO: 34; An anti-TSLP antibody comprising a CDR1 comprising the sequence of SEQ ID NO: 32; a CDR2 comprising the sequence of SEQ ID NO: 35, and a CDR3 comprising the sequence of SEQ ID NO: 34; An anti-TSLP antibody comprising a variant of the CDR1 of SEQ ID NO: 31 wherein the residue corresponding to residue 28 in SEQ ID NO: 31 is Pro, the residue corresponding to residue 30 in SEQ ID NO: 31 is Arg, the residue corresponding to residue 31 in SEQ ID NO: 31 is Asn, the residue corresponding to residue 32 in SEQ ID NO: 31 is Trp and the residue corresponding to residue 34 in SEQ ID NO: 31 is Asp; An anti-TSLP antibody comprising a variant of the CDR2 of SEQ ID NO: 31 wherein the residue corresponding to residue 50 in SEQ ID NO: 31 is Gly, the residue corresponding to residue 53 in SEQ ID NO: 31 is His and the residue corresponding to residue 55 in SEQ ID NO: 31 is Gln; An anti-TSLP antibody comprising a variant of the CDR3 of SEQ ID NO: 31 wherein the residue corresponding to residue 91 in SEQ ID NO: 31 is He, Leu, Val or Phe, the residue corresponding to residue 92 in SEQ ID NO: 31 is Gly or Ala, the residue corresponding to residue 93 in SEQ ID NO: 31 is Glu, Phe, Asp or Ser and the residue corresponding to residue 94 in SEQ ID NO: 31 is Asp. WO2010/017468 An anti-TSLP antibody (9B7) comprising a HC CDR3 comprising the sequence of SEQ ID NO: 38, wherein the other CDRs of the HC and LC comprise the sequences of SEQ ID NOs: 36, 37, and 39-41; An anti-TSLP antibody (6C5) comprising a HC CDR3 comprising the sequence of SEQ ID NO: 44, wherein the other CDRs of the HC and LC comprise the sequences of SEQ ID NOs: 42, 43, and 45-47; An anti-TSLP antibody (6A3) comprising a HC CDR3 comprising the sequence of SEQ ID NO: 50, wherein the other CDRs of the HC and LC comprise the sequences of SEQ ID NOs: 48, 49, and 51-53; An anti-TSLP antibody (1A11) comprising a HC CDR3 comprising the sequence of SEQ ID NO: 56, wherein the other CDRs of the HC and LC comprise the sequences of SEQ ID NOs: 54, 55, and 57-59; An anti-TSLP antibody comprising (i) heavy chain variable region of SEQ ID NO: 60 and/or the light chain variable region of SEQ ID NO: 61; An anti-TSLP antibody comprising (i) heavy chain variable region of SEQ ID NO: 62 and/or the light chain variable region of SEQ ID NO: 63; An anti-TSLP antibody comprising (i) heavy chain variable region of SEQ ID NO: 64 and/or the light chain variable region of SEQ ID NO: 65; An anti-TSLP antibody comprising (i) heavy chain variable region of SEQ ID NO: 66 and/or the light chain variable region of SEQ ID NO: 67; An anti-TSLP antibody comprising (i) heavy chain variable region of SEQ ID NO: 68 and/or the light chain variable region of SEQ ID NO: 69; An anti-TSLP antibody comprising a HC CDR selected from the group consisting of SEQ ID NO: 38, SEQ ID NO: 44, SEQ ID NO: 50 and SEQ ID NO: 56, and analogs thereof; An anti-TSLP antibody comprising a heavy chain comprising the following CDRs or analogs thereof CDRH1: RYNVH (SEQ ID NO: 36), CDRH2: MIWDGGSTDYNSALKS (SEQ ID NO: 37), CDRH3: NRYESG (SEQ ID NO: 38), and a light chain comprising the following CDRs or analogs thereof CDRL1: KSSQSLLNSGNRKNYLT (SEQ ID NO: 39), CDRL2: WASTRES (SEQ ID NO: 40), and CDRL3: QNDYTYPFTFGS (SEQ ID NO: 41); or An anti-TSLP antibody comprising a heavy chain comprising the following CDRs or analogs thereof CRDH1: AYWMS (SEQ ID NO: 42), CDRH2: EINPDSSTINCTPSLKD (SEQ ID NO: 43), CDRH3: RLRPFWYFDVW (SEQ ID NO: 44), and a light chain comprising the following CDRs or analogs thereof CDRL1: RSSQSIVQSNGNTYLE (SEQ ID NO: 45), CDRL2: KVSNRFS (SEQ ID NQ: 46), and CDRL3: FQGSHVPRT (SEQ ID NO: 47); An anti-TSLP antibody comprising a heavy chain comprising the following CDRs or analogs thereof CRDH1: TDYAWN (SEQ ID NO: 48), CDRH2: YIFYSGSTTYTPSLKS (SEQ ID NO: 49), CDRH3: GGYDVNYF (SEQ ID NO: 50), and a light chain comprising the following CDRs or analogs thereof CDPL1: LASQTIGAWLA (SEQ ID NO: 51), CDRL2: AATRLAD (SEQ ID NQ: 52), and CDPL3: QQFFSTPWT (SEQ ID NQ: 53); An anti-TSLP antibody comprising a heavy chain comprising the following CDRs or analogs thereof CDRH1: GYTMN (SEQ ID NO: 54), CDRH2: LINPYNGVTSYNQKFK (SEQ ID NO: 55), CDRH3: GDGNYWYF (SEQ ID NO: 56), and a light chain comprising the following CDRs or analogs thereof CDRL1: SASSSVTYMHW (SEQ ID NO: 57), CDRL2: EISKLAS (SEQ ID NO: 58), and CDRL3: QEWNYPYTF (SEQ ID NO: 59); An anti-TSLP antibody comprising a HC CDR1 comprising the sequence of SEQ ID NO: 70; a CDR2 comprising the sequence of SEQ ID NO: 71, and a CDR3 comprising the sequence of SEQ ID NO: 72; An anti-TSLP antibody comprising a LC CDR1 comprising the sequence of SEQ ID NO: 73; a CDR2 comprising the sequence of SEQ ID NO: 74, and a CDR3 comprising the sequence of SEQ ID NO: 75; US2012/0020988 An anti-TSLP antibody comprising a heavy chain variable domain comprising a CDR1 region of SEQ ID NO: 76, a CDR2 region of SEQ ID NO: 77, and CDR3 region of SEQ ID NO: 78, and a light chain variable domain comprising a CDR1 region of SEQ ID NO: 79, a CDR2 region of SEQ ID NO: 80, and a CDR3 region of SEQ ID NO: 81. An anti-TSLP antibody comprising a heavy chain variable domain comprising SEQ ID NO: 82 and a light chain variable domain comprising SEQ ID NO: 83; An anti-TSLP antibody comprising a heavy chain variable domain comprising a CDR1 region of SEQ ID NO: 76 or 84, a CDR2 region of SEQ ID NO: 77 or 85, and CDR3 region of SEQ ID NO: 78, and a light chain variable domain comprising a CDR1 region of SEQ ID NO: 79 or 86, a CDR2 region of SEQ ID NO: 80, 87, or 88, and a CDR3 region of SEQ ID NO: 81. An anti-TSLP antibody comprising a heavy chain variable domain comprising a CDR1 region of SEQ ID NO: 76, a CDR2 region of SEQ ID NO: 85, and CDR3 region of SEQ ID NO: 78, and a light chain variable domain comprising a CDR1 region of SEQ ID NO: 86, a CDR2 region of SEQ ID NO: 87 and a CDR3 region of SEQ ID NO: 81; An anti-TSLP antibody comprising a heavy chain variable domain comprising a CDR1 region of SEQ ID NO: 76, a CDR2 region of SEQ ID NO: 85, and CDR3 region of SEQ ID NO: 78, and a light chain variable domain comprising a CDR1 region of SEQ ID NO: 86, a CDR2 region of SEQ ID NO: 88 and a CDR3 region of SEQ ID NO: 81; An anti-TSLP antibody comprising a heavy chain variable domain comprising a CDR1 region of SEQ ID NO: 84, a CDR2 region of SEQ ID NO: 85, and CDR3 region of SEQ ID NO: 78, and a light chain variable domain comprising a CDR1 region of SEQ ID NO: 86, a CDR2 region of SEQ ID NO: 88 and a CDR3 region of SEQ ID NO: 81; or An anti-TSLP antibody comprising a heavy chain variable domain comprising a CDR1 region of SEQ ID NO: 76, a CDR2 region of SEQ ID NO: 85, and CDR3 region of SEQ ID NO: 78, and a light chain variable domain comprising a CDR1 region of SEQ ID NO: 86, a CDR2 region of SEQ ID NO: 80 and a CDR3 region of SEQ ID NO: 81. An anti-TSLP antibody comprising a heavy chain variable domain comprises SEQ ID NO: 89 and a light chain variable domain comprises SEQ ID NO: 90; An anti-TSLP antibody comprising a heavy chain variable domain comprises SEQ ID NO: 89 and a light chain variable domain comprises SEQ ID NO: 91; An anti-TSLP antibody comprising a heavy chain variable domain comprises SEQ ID NO: 92 and a light chain variable domain comprises SEQ ID NO: 93; An anti-TSLP antibody comprising a heavy chain variable domain comprises SEQ ID NO: 89 and a light chain variable domain comprises SEQ ID NO: 94, U.S. Pat. No. An anti-TSLP antibody comprising heavy chain variable region comprising: 8,637,019 a CDR-H1 sequence comprising SEQ ID NO: 95, a CDR-H2 sequence comprising SEQ ID NO: 96, and a CDR-H3 sequence comprising SEQ ID NO: 97; and/or an antibody light chain variable region or a TSLP-binding fragment thereof, said light chain variable region comprising: a CDR-L1 sequence comprising SEQ ID NO: 98, a CDR-L2 sequence comprising SEQ ID NO: 99, and a CDR-L3 sequence comprising SEQ ID NO: 100. An anti-TSLP antibody comprising a heavy chain variable region comprises the amino acid sequence of SEQ ID NO: 101 and the light chain variable region comprises the amino acid sequence of SEQ ID NO: 102. An anti-TSLP antibody comprising SEQ ID NO: 103 and SEQ ID NO: 104.

[0138] Also contemplated are methods for treating chronic obstructive pulmonary disease (COPD) in a subject comprising administering an anti-TSLP antibody or antibody variant.

[0139] It is contemplated that the subject to be treated is human. The subject may be an adult, an adolescent or a child.

[0140] Therapeutic antibody (or antibody variant) compositions may be delivered to the patient at multiple sites. The multiple administrations may be rendered simultaneously or may be administered over a period of time. In certain cases it is beneficial to provide a continuous flow of the therapeutic composition. Additional therapy may be administered on a period basis, for example, hourly, daily, weekly, every 2 weeks, every 3 weeks, monthly, or at a longer interval.

[0141] In various embodiments, the amounts of therapeutic agent, such as a bivalent antibody having two TSLP binding sites, in a given dosage may vary according to the size of the individual to whom the therapy is being administered as well as the characteristics of the disorder being treated.

[0142] In exemplary treatments, the anti-TSLP antibody or antibody variant is administered in a dose range of about 70 mg to about 280 mg per daily dose. For example, the dose may be given in about 70 mg, 210 mg or 280 mg. In various embodiments, the anti-TSLP antibody or antibody variant may be administered at a dose of 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 10, 180, 190, 200, 210, 220, 230, 240, 250, 260, 270 or 280 mg per dose. These concentrations may be administered as a single dosage form or as multiple doses. The above doses are given every two weeks or every four weeks. In various embodiments, the anti-TSLP antibody or antibody variant is administered at a single dose of 70 mg every two weeks or every four weeks. In various embodiments, the anti-TSLP antibody or antibody variant is administered at a single dose of 210 mg every two weeks or every four weeks. In various embodiments, the anti-TSLP antibody or antibody variant is administered at a single dose of 280 mg every two weeks or every four weeks.

[0143] For antibody variants, the amount of antibody variant should be such that the number of TSLP binding sites that are in the dose have an equimolar number of TSLP binding sites to canonical bivalent antibody described above.

[0144] It is contemplated that the anti-TSLP antibody or antibody variant is administered every 2 weeks or every 4 weeks for a period of at least 4 months, 6 months, 9 months, 1 year or more. In various embodiments, the administration is subcutaneous or intravenous.

[0145] Treatment with the anti-TSLP antibody or antibody variant is contemplated to decrease eosinophils in blood, sputum, broncheoalveolar fluid, or lungs of the subject. It is also contemplated that the administration shifts cell counts in the subject from a Th2 high population to a Th2 low population. It is further contemplated that administration of the anti-TSLP antibody improves one or more measures of asthma in a subject selected from the group consisting of forced expiratory volume (FEV), FEV1 reversibility, forced vital capacity (FVC), FeNO, Asthma Control Questionnaire-6 score and AQLQ(S)+12 score.

[0146] Improvement in asthma may be measured as one or more of the following: reduction in AER (annualized exacerbation rate), reduction in hospitalizations/severe exacerbations for asthma, change from baseline (increase) in time to first asthma exacerbation (following onset of treatment with anti-TSLP antibody), decrease relative to placebo in proportion of subjects with one or more asthma exacerbations or severe exacerbations over the course of treatment, e.g., 52 weeks, change from baseline (increase) in FEV1 and FVC (pre-broncholdilator and post-bronchodilator), change from baseline (decrease) in blood or sputum eosinophils (or lung eosinophils if biopsy or BAL fluid obtained), change from baseline (decrease) in FeNO, change from baseline (decrease) in IgE, improvement in asthma symptoms and control as measured by PROs including ACQ and variants, AQLQ and variants, SGRQ, and asthma symptom diaries, change (decrease) in use of rescue medications, decrease in use of systemic corticosteroids, decrease in Th2/Th1 cell ratio in blood. Most/all these measures should be in total population and subpopulations including hi and low eosinophils (Greater than or equal to 250 is high; less than 250 is low), allergic and non-allergic, Th2 hi and low, Periostin hi and low (compared to median value), and FeNO hi and low (greater than or equal to 24 or less than 24).

[0147] The treatment also improves one or more symptoms of asthma as measured by an asthma symptom diary. Symptoms include, but are not limited to, daytime and nighttime symptom frequency and severity, activity avoidance and limitation, asthma-related stress and fatigue as well as rescue asthma medication use), and other measures of asthma control as measured by the Asthma Control Questionnaire omitting FEV.sub.1 (ACQ-6).

[0148] In various embodiments, treatment with the anti-TSLP antibody delays the time to an asthma exacerbation compared to a subject not receiving the anti-TSLP antibody.

[0149] Also contemplated in the present disclosure is the administration of multiple agents, such as an antibody composition in conjunction with a second agent as described herein, including but not limited to an anti-inflammatory agent or asthma therapy.

[0150] However, it is contemplated that, in various embodiments, the administration reduces frequency of or levels of co-administered therapy in the subject. Exemplary co-administered therapies include, but are not limited to, inhaled corticosteroids (ICS), long-acting 32 agonist (LABA), leukotriene receptor antagonists [LTRA], long-acting anti-muscarinics [LAMA], cromones, short-acting 32 agonist (SABA), and theophylline or oral corticosteroids. In various embodiments, the administration eliminates the need for corticosteroid therapy.

[0151] Formulations

[0152] In some embodiments, the disclosure contemplates use of pharmaceutical compositions comprising a therapeutically effective amount of an anti-TSLP antibody or antibody variant together with a pharmaceutically acceptable diluent, carrier, solubilizer, emulsifier, preservative, and/or adjuvant. In addition, the disclosure provides methods of treating a subject by administering such pharmaceutical composition.

[0153] In certain embodiments, acceptable formulation materials preferably are nontoxic to recipients at the dosages and concentrations employed. In certain embodiments, the pharmaceutical composition may contain formulation materials for modifying, maintaining or preserving, for example, the pH, osmolality, viscosity, clarity, color, isotonicity, odor, sterility, stability, rate of dissolution or release, adsorption or penetration of the composition. In such embodiments, suitable formulation materials include, but are not limited to, amino acids (such as glycine, glutamine, asparagine, arginine or lysine); antimicrobials; antioxidants (such as ascorbic acid, sodium sulfite or sodium hydrogen-sulfite); buffers (such as borate, bicarbonate, Tris-HCl, citrates, phosphates or other organic acids); bulking agents (such as mannitol or glycine); chelating agents (such as ethylenediamine tetraacetic acid (EDTA)); complexing agents (such as caffeine, polyvinylpyrrolidone, beta-cyclodextrin or hydroxypropyl-beta-cyclodextrin); fillers; monosaccharides; disaccharides; and other carbohydrates (such as glucose, sucrose, mannose or dextrins); proteins (such as serum albumin, gelatin or immunoglobulins); coloring, flavoring and diluting agents; emulsifying agents; hydrophilic polymers (such as polyvinylpyrrolidone); low molecular weight polypeptides; salt-forming counterions (such as sodium); preservatives (such as benzalkonium chloride, benzoic acid, salicylic acid, thimerosal, phenethyl alcohol, methylparaben, propylparaben, chlorhexidine, sorbic acid or hydrogen peroxide); solvents (such as glycerin, propylene glycol or polyethylene glycol); sugar alcohols (such as mannitol or sorbitol); suspending agents; surfactants or wetting agents (such as pluronics, PEG, sorbitan esters, polysorbates such as polysorbate 20, polysorbate, triton, tromethamine, lecithin, cholesterol, tyloxapal); stability enhancing agents (such as sucrose or sorbitol); tonicity enhancing agents (such as alkali metal halides, preferably sodium or potassium chloride, mannitol sorbitol); delivery vehicles; diluents; excipients and/or pharmaceutical adjuvants. See, REMINGTON'S PHARMACEUTICAL SCIENCES, 18" Edition, (A. R. Genrmo, ed.), 1990, Mack Publishing Company.

[0154] A suitable vehicle or carrier may be water for injection, physiological saline solution or artificial cerebrospinal fluid, possibly supplemented with other materials common in compositions for parenteral administration. Neutral buffered saline or saline mixed with serum albumin are further exemplary vehicles. In specific embodiments, pharmaceutical compositions comprise Tris buffer of about pH 7.0-8.5, or acetate buffer of about pH 4.0-5.5, and may further include sorbitol or a suitable substitute therefor.

[0155] The formulation components are present preferably in concentrations that are acceptable to the site of administration. In certain embodiments, buffers are used to maintain the composition at physiological pH or at a slightly lower pH, typically within a pH range of from about 5 to about 8. Including about 5.1, about 5.2, about 5.3, about 5.4, about 5.5, about 5.6, about 5.7, about 5.8, about 5.9, about 6.0, about 6.1, about 6.2, about 6.3, about 6.4, about 6.5, about 6.6, about 6.7, about 6.8, about 6.9, about 7.0, about 7.1, about 7.2, about 7.3, about 7.4, about 7.5, about 7.6, about 7.7, about 7.8, about 7.9, and about 8.0.

[0156] In various embodiments, the anti-TSLP antibody or antibody variant is in a formulation containing sodium acetate, and one or more of proline, sucrose, polysorbate 20 or polysorbate 80. In various embodiments, the formulation comprises 1-50 mM sodium acetate, 3-9% (w/v) sucrose, 0.015% (w/v).+-.0.005% (w/v) polysorbate 20 or polysorbate 80, at pH between 4.9 and 6.0. Optionally, the antibody or antibody fragment is at a concentration of 70 mg/ml. The formulation may be stored at -20.degree. to -70.degree. C.

[0157] When parenteral administration is contemplated, the therapeutic compositions for use may be provided in the form of a pyrogen-free, parenterally acceptable aqueous solution comprising the desired anti-TSLP antibody in a pharmaceutically acceptable vehicle. A particularly suitable vehicle for parenteral injection is sterile distilled water in which the antibody is formulated as a sterile, isotonic solution, properly preserved. In certain embodiments, the preparation can involve the formulation of the desired molecule with an agent, such as injectable microspheres, bio-erodible particles, polymeric compounds (such as polylactic acid or polyglycolic acid), beads or liposomes, that may provide controlled or sustained release of the product which can be delivered via depot injection. In certain embodiments, hyaluronic acid may also be used, having the effect of promoting sustained duration in the circulation. In certain embodiments, implantable drug delivery devices may be used to introduce the antibody.

Examples

[0158] The present anti-TSLP antibody is the first epithelium-targeting product with potential for disruptive efficacy in patients with both non-eosinophilic and eosinophilic asthma. EOS-high populations make up approximately 50-70% of severe asthma patients.

[0159] The present example describes a multicenter, placebo-controlled, parallel-group, double-blind phase 2 study conducted at 108 study sites across 12 countries. Eligible patients were current non-smokers (for .gtoreq.6 months and with a history of <10 pack-years) who were aged 18-75 years and who had asthma that was not well-controlled despite treatment LABAs combined with a medium dose (250 to 500 .mu.g per day of fluticasone administered by means of a dry-powder inhaler or equivalent) or high dose (>500 .mu.g per day of fluticasone administered by means of a dry-powder inhaler or equivalent) of inhaled glucocorticoids (as per GINA 2012 guidelines defining severe asthma.sup.24) at least 6 months prior to enrollment. Patients were also required to have a history of at least two asthma exacerbations that led to systemic glucocorticoid treatment, or one severe exacerbation that led to hospitalization, in the 12 months before trial entry. Additional eligibility criteria included pre-bronchodilator (forced expiratory volume in 1 second (FEV.sub.1) of at least 40% and no more than 80% of predicted, post-bronchodilator reversibility of at least 12% and at least 200 ml, and a score on the six-item Asthma Control Questionnaire (ACQ-6)25 score at least 1.5 during screening (range, 0 to 6, with lower scores indicating better disease control; minimal clinically important difference, 0.5)..sup.26 Exclusion criteria included any clinically important pulmonary disease other than asthma. A full list of the inclusion and exclusion criteria is provided in Table 1A.

[0160] Patients were randomly assigned (in a 1:1:1:1 ratio), according to a central interactive voice-response or Web-response system, to receive one of three different doses of subcutaneous (SC) tezepelumab, a bivalent antibody having identical binding sites to TSLP, or placebo. Randomization was stratified by location (Japan or rest of world), blood eosinophil count (.gtoreq.250 cells/.mu.l or <250 cells/.mu.l) as measured by a local laboratory, and dose level of inhaled glucocorticoids (medium or high, on the basis of GINA 2012 guidelines)..sup.26 Patients receiving a maintenance regimen of oral glucocorticoids were assigned to the high-dose inhaled glucocorticoid stratum. Tezepelumab and placebo were prepared by site staff who were aware of the trial-group assignments and were not involved in trial assessments. The trial agents were similar in appearance and administered by staff who were unaware of the trial-group assignments. Background asthma control medications were maintained at a stable dose throughout the treatment period.

[0161] Procedures

[0162] Patients were assigned to receive SC injections of tezepelumab 70 mg every 4 weeks (Q4W, low dose), 210 mg Q4W (medium dose), or 280 mg every 2 weeks (Q2W, high dose), or placebo Q2W for the duration of the trial. To maintain blinding, patients who were assigned to randomized to the Q4W dosing regimens received placebo at the intermediate visits.

[0163] Baseline measurements of pre-bronchodilator and post-brochodilator spirometric assessments of fractional exhaled nitric oxide (Fe.sub.NO), blood eosinophil counts, ACQ-6 score, and the score on the asthma quality of life questionnaire (standardized) for persons 12 tears of age or older (AQLQ[S]+12 [hereafter referred to as AQLQ])27 were obtained throughout the 5-week screening period. The ACQ-6 score, AQLQ score, and Asthma symptom score (reflecting daytime severity, daytime frequency, and nighttime severity; range 0 [no symptoms] to 4 [worst possible symptoms]) were recorded using an electronic device. Safety was monitored at each study site from enrollment through follow-up at week 64.

[0164] Endpoints and Assessments

[0165] The primary efficacy endpoint was the annualized asthma exacerbation rate (AER) at week 52. An asthma exacerbation was defined as a worsening of asthma symptoms that led to any of the following: 1) use of systemic glucocorticoids (oral or injectable) or, in the case of stable maintenance regimen of oral glucocorticoids, a doubling of the dose for three or more days; 2) an emergency department visit due to asthma that led to systemic glucocorticoid treatment; or 3) an inpatient hospitalization due to asthma. Worsening of asthma was defined as new or increased symptoms or signs that were either worrisome to the patient or related to an asthma diary driven alert.

[0166] Secondary endpoints included change from baseline in prebronchdilator and postbronchodilator FEV1 (an increase in values indicates improved lung function; minimal clinically important difference, 100 to 200 ml), ACQ-6 score, AQLQ score, asthma symptom score, forced vital capacity (FVC), as well as the annualized rate of severe asthma exacerbations at week 52; the time to the first asthma exacerbation, the time to the first severe asthma exacerbation; the percentage of patients with at least one asthma exacerbation, and the percentage of patients with at least one severe asthma exacerbation.

[0167] Primary and secondary end points (changes from baseline in prebronchodilator FEV1, ACQ-6 score, AQLQ score, and asthma symptom score) were also assessed in pre-specified subpopulations according to blood eosinophil count (.gtoreq.250 or <250 cells per microliter), Th2 status (high [IgE level>100 IU per milliliter and blood eosinophil count.gtoreq.140 cells per microliter] or low [IgE level.ltoreq.100 IU per milliliter or blood eosinophil count<140 cells per microliter]),.sup.30 FENO level (on the basis of median baseline levels and the clinically meaningful cutoff of 24 ppb),.sup.31 serum periostin level (high or low, on the basis of median baseline levels), current (demonstrated during the screening period) postbronchodilator FEV1 reversibility, and allergic status (defined by a positive or negative fluorescence enzyme immunoassay for IgE at baseline).

[0168] The primary end point was also stratified according to dose level of inhaled glucocorticoids (medium or high), use or nonuse of a maintenance regimen of oral glucocorticoids, and number of asthma exacerbations in the previous 12 months (pre-specified subgroup analyses). Post hoc analyses included stratification of the primary end point according to baseline blood eosinophil count (<400 or .gtoreq.400 cells per microliter) and patient smoking history.

[0169] Statistical Analysis

[0170] The efficacy analysis was based on the intent-to-treat (ITT) population, which consisted of patients who underwent randomization and received at least one dose of tezepelumab or placebo and analyzed according to the randomized trial group. The safety analyses were based on the as-treated population and included all the patients who received at least one dose of tezepelumab or placebo; patients were evaluated according to trial agent received.

[0171] For the primary efficacy endpoint, 138 patients per trial group were required for 80% power to detect a 40% lower annualized rate of asthma exacerbations in each tezepelumab dose group than in the placebo group, with a two sided alpha level of 0.1 and an expected 10% loss of information due to dropouts, under the assumption of an annualized asthma exacerbation rate of 0.7 events in the placebo group and a negative binomial dispersion parameter of 0.7.

[0172] The primary efficacy endpoint of annualized rate of asthma exacerbations was analyzed using a negative binomial model, with trial group, baseline blood eosinophil count (250 or <250 cells/.mu.l) and baseline dose level of glucocorticoids (medium or high) included in the model. Continuous secondary endpoints were analyzed using a mixed-effects model for repeated measures analysis. Time-to-first event variables were analyzed using a Cox proportional hazard model. The categorical variables were analyzed using a Pearson's chi-squared test.

[0173] The primary endpoint was tested sequentially to control overall type-I error rate at 0.1. The hierarchy was tezepelumab high dose tezepelumab (280 mg Q2W) versus placebo, medium dose tezepelu,mab (210 mg Q4W) versus placebo, and low dose tesepelumab (70 mg Q4W) versus placebo. No adjustments for multiplicity for the secondary endpoints was applied. Nominal P values are presented. All analyses were done using SAS version 9.3.

[0174] Results

[0175] Patients

[0176] Analysis A, primary analysis after database lock, all sites included: Overall, 918 subjects were screened and 584 patients underwent randomization: 145 were assigned to low dose tezepelumab (70 mg Q4W), 145 were assigned to medium dose tezepelumab (210 mg Q4W), 146 were assigned to high dose tezepelumab (280 mg Q2W) and 148 were assigned the placebo. Of the patients who received tezepelumab or placebo, and were included in the ITT population, 391 (89.7%) and 139 (93.9%) completed treatment, respectively. Baseline and clinical characteristics were similar across groups.

[0177] The dose range of inhaled glucocorticoids for patients at baseline is shown in FIGS. 2A and 2B. The median dose was 400 .mu.g per day of fluticasone administered by means of a dry-powder inhaler or equivalent in the medium-dose inhaled glucocorticoid stratum, with 73 patients in the placebo group, 71 in the low-dose tezepelumab group, 70 in the medium-dose group, and 72 in the high-dose group, and 1000 .mu.g per day of fluticasone administered by means of a dry-powder inhaler or equivalent in the high-dose inhaled glucocorticoid stratum, with 75, 74, 75, and 74 patients in the respective trial groups.

[0178] Primary Endpoint

[0179] Treatment with tezepelumab resulted in annualized rates of asthma exacerbations at week 52 of 0.25, 0.18, and 0.22 events in the low-dose, medium-dose, and high-dose groups, respectively, as compared with 0.67 events in the placebo group. Thus, exacerbation rates were lower in the tezepelumab groups than in the placebo group by 61% (90% confidence interval [Cl], 39 to 75; P<0.001), 72% (90% Cl, 54 to 83; P<0.001), and 66% (90% Cl, 46 to 79; P<0.001), respectively (Table 2, and FIG. 1A). The types of asthma exacerbations that were used for the primary analysis are described in Table 1B.

[0180] Secondary Endpoints

[0181] The annualized asthma exacerbation rate was lower in the tezepelumab groups than in the placebo group, irrespective of baseline eosinophil count or other assessed indicators of Th2 status (FIG. 2A; FIG. 6; Table 2; Table 4 and Tables 5, 7, 9 and 10). Among patients in the medium-dose inhaled glucocorticoid stratum, low-dose, medium-dose, and high-dose tezepelumab resulted in annualized asthma exacerbation rates at week 52 of 0.19, 0.14, and 0.20 events, respectively, as compared with 0.37 events with placebo. The rates in the tezepelumab groups were lower than the rate in the placebo group by 49% (95% C, -14 to 77; P=0.10), 62% (95% Cl, 8 to 84; P=0.03), and 47% (95% Cl, 41-20 to 76; P=0.13), respectively. Among patients in the high-dose inhaled glucocorticoid stratum, low-dose, medium-dose, and high-dose tezepelumab resulted in annualized asthma exacerbation rates at week 52 of 0.32, 0.23, and 0.24 events, respectively, as compared with 0.96 events with placebo. The rates in the tezepelumab groups were lower than the rate in the placebo group by 67% (95% C, 35 to 84; P=0.002), 76% (95% Cl, 49 to 89; P<0.001), and 75% (95% Cl, 47 to 88; P<0.001), respectively (Table 9). The annualized asthma exacerbation rate was lower in some, but not all, tezepelumab groups than in the placebo group when patients were stratified according to the number of asthma exacerbations in the previous 12 months and, in post hoc analyses, according to smoking history (Table 10).

[0182] Time to first asthma exacerbation was longer in the tezepelumab groups than in the placebo group. The risk of having any exacerbation was lower in the low dose, medium dose and high dose tezepelumab groups than in the placebo group by 35% (hazard ratio [HR] 0.65, 95% Cl 0.40, 1.04; P=0.07), 53% (HR 0.47, 95% Cl 0.28, 0.80; P=0.004), and 43% (HR 0.57, 95% Cl 0.35 to 0.93; P=0.02), respectively (FIG. 3 and Table 7)

[0183] In the overall population, the change from baseline at week 52 in the pre-BD FEV.sub.1 was greater in the low dose, medium dose and high dose tezepelumab groups than in the placebo group by 0.12 L (95% Cl 0.02 to 0.21, P=0.01), 0.111 L (95% Cl 0.02, to 0.21, P=0.02), and 0.15 L (95% Cl, 0.06, to 0.25, P=0.002), respectively (Table 2 and FIG. 1B).

[0184] Similar differences were observed when the pre-BD FEV1 was measured as the percent of the predicted value (Table 2). The treatment effect was observed as early as week 4 (the first time point assessed) and was sustained for the duration of the trial (FIG. 1B, Table 2).

[0185] The effects of tezepelumab on additional secondary end points--including the percentage of patients with at least one asthma exacerbation, the percentage of patients with at least one severe asthma exacerbation, the annualized rate of severe asthma exacerbations, the time to the first severe asthma exacerbation and changes from baseline in the postbronchodilator FEV1, FVC, ACQ-6 score, AQLQ score, and asthma symptom score--are presented in Table 2, and FIGS. 1C and 1D and Tables 3, 5, 6 and 12. The effects of tezepelumab on secondary end points according to subgroup (prebronchodilator FEV1, ACQ-6 score, AQLQ score, and asthma symptom score) are shown in Tables 2, 4, 5 and 12.

[0186] Biomarkers

[0187] Substantial and persistent decreases in blood eosinophils and FeNO were observed in all tezepelumab treatment groups, beginning at week 4 (first time point assessed) after treatment initiation, and maintained over time (FIG. 4, FIG. 5, FIG. 6). Progressive decreases were also observed in total serum IgE in all tezepelumab groups (FIG. 4A).

[0188] Safety and Tolerability

[0189] The overall subject incidence of AEs was similar across treatment groups (Table 3). In total, 62.2% of the patients in the placebo group, 65.5% of the patients in the low dose tezepelumab group, 64.1% of the patients in the medium dose tezepelumab group, and 61.6% of patients in the high dose tezepelumab group reported at least one adverse event, and 12.2%, 11.7%, 9.0%, and 12.3%, reported at least one serious adverse event, respectively. When asthma-related adverse events were removed from the above analysis, the overall incidence of adverse events was similar across the trial groups. A full list of serious adverse events is provided in Table 12.

[0190] Three serious adverse events to be related to the trial agent; two (pneumonia and stroke) occurred in the same patient in the low dose tezepelumab group and one (the Guillain-Barre syndrome) in the medium dose tezepelumab group. The rates of discontinuation due to adverse events were 1.1% among patients receiving tezepelumab (five patients, including two in the medium dose group and three in the high dose group) and [0.7% in the placebo group (one patient). One patient in the low dose tezepelumab group died 8 weeks after the treatment period ended from a treatment-related serious adverse event (stroke in the same patient described above).

[0191] Injection-site reactions after 1-mL injections occurred in 3.4% of the patients in the placebo group, 2.8% of the patients in the low-dose tezepelumab group, 2.8% of the patients in the medium-dose group, and 1.4% of the patients in the high-dose group. The rates after 1.5-mL injections were 2.7%, 2.1%, 2.8%, and 3.4% in the respective groups. No investigational product-related anaphylactic reactions were reported. After baseline, positive antidrug antibodies were noted in 13 of 148 patients (8.8%) in the placebo group, 7 of 144 patients (4.9%) in the low-dose tezepelumab group, 0 of 144 patients in the medium-dose group, and 3 of 143 patients (2.1%) in the high-dose group. No neutralizing antibodies were detected.

[0192] Analysis B: final analysis after database lock, includes all sites: For Analysis B, 145 patients were assigned to low dose tezepelumab (70 mg Q4W), 145 were assigned to medium dose tezepelumab (210 mg Q4W), 146 were assigned to high dose tezepelumab (280 mg Q2W) and 148 were assigned the placebo. Of the patients who received tezepelumab or placebo, and were included in the ITT population, 391 (89.7%) and 139 (93.9%) completed treatment, respectively. Baseline and clinical characteristics were similar across groups.

[0193] The dose range of inhaled glucocorticoids for patients at baseline for Analysis B is similar for Analysis A. The median dose was 400 .mu.g per day of fluticasone administered by means of a dry-powder inhaler or equivalent in the medium-dose inhaled glucocorticoid stratum, with 73 patients in the placebo group, 71 in the low-dose tezepelumab group, 70 in the medium-dose group, and 72 in the high-dose group; and 1000 .mu.g per day of fluticasone administered by means of a dry-powder inhaler or equivalent in the high-dose inhaled glucocorticoid stratum, with 75, 74, 75, and 74 patients in the respective trial groups.

[0194] Primary Endpoint

[0195] Treatment with tezepelumab resulted in annualized rates of asthma exacerbations at week 52 of 0.26, 0.19, and 0.22 events in the low-dose, medium-dose, and high-dose groups, respectively, as compared with 0.67 events in the placebo group. Thus, exacerbation rates were lower in the tezepelumab groups than in the placebo group by 61% (90% confidence interval [Cl], 39 to 75; P<0.001), 71% (90% Cl, 53 to 82; P<0.001), and 66% (90% CI, 47 to 79; P<0.001), respectively (Table 2, and FIG. 1A). The types of asthma exacerbations that were used for the primary analysis are described in Table 1B.

[0196] Secondary Endpoints

[0197] The annualized asthma exacerbation rate was lower in the tezepelumab groups than in the placebo group, irrespective of baseline eosinophil count or other assessed indicators of Th2 status (FIG. 2A; Table 2; Table 4 and Tables 5, 7, 9 and 10). Among patients in the medium-dose inhaled glucocorticoid stratum, low-dose, medium-dose, and high-dose tezepelumab resulted in annualized asthma exacerbation rates at week 52 of 0.19, 0.15, and 0.20 events, respectively, as compared with 0.38 events with placebo. The rates in the tezepelumab groups were lower than the rate in the placebo group by 51% (95% C, -8 to 78; P=0.08), 60% (95% Cl, 5 to 83; P=0.04), and 49% (95% Cl, -13 to 77; P=0.10), respectively. Among patients in the high-dose inhaled glucocorticoid stratum, low-dose, medium-dose, and high-dose tezepelumab resulted in annualized asthma exacerbation rates at week 52 of 0.33, 0.23, and 0.24 events, respectively, as compared with 0.96 events with placebo. The rates in the tezepelumab groups were lower than the rate in the placebo group by 66% (95% C, 33 to 83; P=0.002), 76% (95% Cl, 49 to 89; P<0.001), and 75% (95% Cl, 47 to 88; P<0.001), respectively (Table 9). The annualized asthma exacerbation rate was lower in some, but not all, tezepelumab groups than in the placebo group when patients were stratified according to the number of asthma exacerbations in the previous 12 months and, in post hoc analyses, according to smoking history (Table 10).

[0198] Time to first asthma exacerbation was longer in the tezepelumab groups than in the placebo group. The risk of having any exacerbation was lower in the low dose, medium dose and high dose tezepelumab groups than in the placebo group by 34% (hazard ratio [HR] 0.66, 95% Cl 0.41, 1.05; P=0.08), 54% (HR 0.46, 95% Cl 0.27, 0.78; P=0.003), and 45% (HR 0.55, 95% Cl 0.34 to 0.90; P=0.02), respectively (FIG. 3 and Table 7)

[0199] In the overall population, the change from baseline at week 52 in the pre-BD FEV1 was greater in the low dose, medium dose and high dose tezepelumab groups than in the placebo group by 0.12 L (95% Cl, 0.02 to 0.21, P=0.01), 0.11 L (95% Cl, 0.02, to 0.20, P=0.02), and 0.15 L (95% Cl, 0.06, to 0.25, P=0.002), respectively (Table 2 and FIG. 1B). Similar differences were observed when the pre-BD FEV1 was measured as the percent of the predicted value (Table 2). The treatment effect was observed as early as week 4 (the first time point assessed) and was sustained for the duration of the trial (FIG. 1B, Table 2).

[0200] The effects of tezepelumab on additional secondary end points--including the percentage of patients with at least one asthma exacerbation, the percentage of patients with at least one severe asthma exacerbation, the annualized rate of severe asthma exacerbations, the time to the first severe asthma exacerbation and changes from baseline in the postbronchodilator FEV1, FVC, ACQ-6 score, AQLQ score, and asthma symptom score for Analysis B are consistent with those of Analysis A discussed above, and results in Table 2, and FIGS. 1C and 1D and Tables 3, 5, 6 and 12. The effects of tezepelumab on secondary end points according to subgroup (prebronchodilator FEV1, ACQ-6 score, AQLQ score, and asthma symptom score) are shown in Tables 2, 4, 5 and 12.

[0201] Biomarkers

[0202] Substantial and persistent decreases in blood eosinophils and FeNO were observed in all tezepelumab treatment groups, beginning at week 4 (first time point assessed) after treatment initiation, and maintained over time (FIG. 2 and FIG. 4). Progressive decreases were also observed in total serum IgE in all tezepelumab groups (FIG. 2B).

[0203] Safety and Tolerability

[0204] The overall subject incidence of AEs in Analysis B was consistent with Analysis A and was similar across treatment groups (Table 3). In total, 62.2% of the patients in the placebo group, 66.2% of the patients in the low dose tezepelumab group, 64.8% of the patients in the medium dose tezepelumab group, and 61.6% of patients in the high dose tezepelumab group reported at least one adverse event, and 12.2%, 11.7%, 9.0%, and 12.3%, reported at least one serious adverse event, respectively. When asthma-related adverse events were removed from the above analysis, the overall incidence of adverse events was similar across the trial groups. A full list of serious adverse events is provided in Table 12.

[0205] Three serious adverse events to be related to the trial agent; two (pneumonia and stroke) occurred in the same patient in the low dose tezepelumab group and one (Guillain-Barre syndrome) in the medium dose tezepelumab group. The rates of discontinuation due to adverse events were 1.1% among patients receiving tezepelumab (five patients, including two in the medium dose group and three in the high dose group) and 0.7% in the placebo group (one patient). One patient in the low dose tezepelumab group died 8 weeks after the treatment period ended from a treatment-related serious advserse event (stroke in the same patient described above).

[0206] For Analysis B, Injection-site reactions after 1-mL injections occurred in 3.4% of the patients in the placebo group, 2.8% of the patients in the low-dose tezepelumab group, 2.8% of the patients in the medium-dose group, and 1.4% of the patients in the high-dose group. The rates after 1.5-mL injections were 2.7%, 2.1%, 2.8%, and 3.4% in the respective groups. No investigational product-related anaphylactic reactions were reported. After baseline, positive antidrug antibodies were noted in 13 of 148 patients (8.8%) in the placebo group, 7 of 144 patients (4.9%) in the low-dose tezepelumab group, 1 of 140 patients (0.7%) in the medium-dose group, and 3 of 142 patients (2.1%) in the high-dose group. No neutralizing antibodies were detected.

[0207] In summary, the overall results of Analysis A and Analysis B were consistent.

[0208] Analysis C, after data lock, single site results omitted. Based on the study sponsor's concerns about data integrity at one clinical site enrolled in the Phase 2 study, the data from Analysis B after data lock was re-analyzed with patients from this site omitted. For this second analysis, patients who received tezepelumab or placebo, and were included in the ITT population, 367 (89.1%) and 129 (93.5%) completed treatment, respectively. Baseline and clinical characteristics were similar across groups. Analysis C is consistent with the results of the previous analysis.

[0209] For Analysis C, 138 patients were assigned to low dose tezepelumab (70 mg Q4W), 137 were assigned to medium dose tezepelumab (210 mg Q4W), 137 were assigned to high dose tezepelumab (280 mg Q2W) and 138 were assigned the placebo. Of the patients who received tezepelumab or placebo, and were included in the ITT population (excluding patients from the omitted site), 367 (89.1%) and 129 (93.5%) completed treatment, respectively. Baseline and clinical characteristics were similar across groups

[0210] The dose range of inhaled glucocorticoids for patients at baseline for Analysis B is similar for Analysis A and B, as shown in FIGS. 2A and 2B. The median dose was 400 .mu.g per day of fluticasone administered by means of a dry-powder inhaler or equivalent in the medium-dose inhaled glucocorticoid stratum, with 73 patients in the placebo group, 67 in the low-dose tezepelumab group, 70 in the medium-dose group, and 71 in the high-dose group, and 1000 .mu.g per day of fluticasone administered by means of a dry-powder inhaler or equivalent in the high-dose inhaled glucocorticoid stratum, with 65, 71, 67 and 66 patients in the respective trial groups.

[0211] Primary Endpoint

[0212] Treatment with tezepelumab resulted in annualized rates of asthma exacerbations at week 52 of 0.27, 0.20, and 0.23 events in the low-dose, medium-dose, and high-dose groups, respectively, as compared with 0.72 events in the placebo group. Thus, exacerbation rates were lower in the tezepelumab groups than in the placebo group by 62% (90% confidence interval [Cl], 42 to 75; P<0.001), 71% (90% Cl, 54 to 82; P<0.001), and 66% (90% Cl, 47 to 79; P<0.001), respectively. The types of asthma exacerbations that were used for the primary analysis are described in Table 1B.

[0213] Secondary Endpoints

[0214] The annualized asthma exacerbation rate was lower in the tezepelumab groups than in the placebo group, irrespective of baseline eosinophil count or other assessed indicators of Th2 status. Among patients in the medium-dose inhaled glucocorticoid stratum, low-dose, medium-dose, and high-dose tezepelumab resulted in annualized asthma exacerbation rates at week 52 of 0.20, 0.15, and 0.20 events, respectively, as compared with 0.38 events with placebo. The rates in the tezepelumab groups were lower than the rate in the placebo group by 48% (95% C, -15 to 76; P=0.11), 60% (95% C, 5 to 83; P=0.04), and 48% (95% Cl, -14 to 76; P=0.10), respectively. Among patients in the high-dose inhaled glucocorticoid stratum, low-dose, medium-dose, and high-dose tezepelumab resulted in annualized asthma exacerbation rates at week 52 of 0.35, 0.26, and 0.27 events, respectively, as compared with 1.12 events with placebo. The rates in the tezepelumab groups were lower than the rate in the placebo group by 70% (95% C, 41 to 84; P=<0.001), 77% (95% Cl, 52 to 89; P<0.001), and 76% (95% CI, 50 to 88; P<0.001), respectively. The annualized asthma exacerbation rate was lower in some, but not all, tezepelumab groups than in the placebo group when patients were stratified according to the number of asthma exacerbations in the previous 12 months and, in post hoc analyses, according to smoking history.

[0215] Time to first asthma exacerbation was longer in the tezepelumab groups than in the placebo group. The risk of having any exacerbation was lower in the low dose, medium dose and high dose tezepelumab groups than in the placebo group by 38% (hazard ratio [HR] 0.62, 95% Cl 0.39, 0.99; P=0.04), 55% (HR 0.45, 95% Cl 0.26, 0.75; P=0.002), and 46% (HR 0.54, 95% Cl 0.33 to 0.88; P=0.01), respectively.

[0216] In the analyzed population, the change from baseline at week 52 in the pre-BD FEV1 was greater in the low dose, medium dose and high dose tezepelumab groups than in the placebo group by 0.12 L (95% Cl 0.02 to 0.22, P=0.02), 0.13 L (95% Cl 0.03, to 0.23, P=0.01), and 0.15 L (95% Cl, 0.05, to 0.25, P=0.002), respectively. Similar differences were observed when the pre-BD FEV1 was measured as the percent of the predicted value (Table 2). The treatment effect was observed as early as week 4 (the first time point assessed) and was sustained for the duration of the trial.

[0217] The effects of tezepelumab on additional secondary end points--including the percentage of patients with at least one asthma exacerbation, the percentage of patients with at least one severe asthma exacerbation, the annualized rate of severe asthma exacerbations, the time to the first severe asthma exacerbation and changes from baseline in the postbronchodilator FEV1, FVC, ACQ-6 score, AQLQ score, and asthma symptom score--for Analysis C are consistent with those of Analysis A and B discussed above. The effects of tezepelumab on secondary end points according to subgroup (prebronchodilator FEV1, ACQ-6 score, AQLQ score, and asthma symptom score) were also consistent with Analysis A and B above.

[0218] Biomarkers

[0219] Substantial and persistent decreases in blood eosinophils and FeNO were observed in all tezepelumab treatment groups, beginning at week 4 (first time point assessed) after treatment initiation, and maintained over time. Progressive decreases were also observed in total serum IgE in all tezepelumab groups.

[0220] Safety and Tolerability

[0221] The overall subject incidence of AEs in Analysis C was similar across treatment groups. In total, 65.9% of the patients in the placebo group, 67.4% of the patients in the low dose tezepelumab group, 65.7% of the patients in the medium dose tezepelumab group, and 65.0% of patients in the high dose tezepelumab group reported at least one adverse event, and 13.0%, 12.3%, 9.5%, and 13.1%, reported at least one serious adverse event, respectively. When asthma-related adverse events were removed from the above analysis, the overall incidence of adverse events was similar across the trial groups.

[0222] Three serious adverse events to be related to the trial agent; two (pneumonia and stroke) occurred in the same patient in the low dose tezepelumab group and one (the Guillain-Barre syndrome) in the medium dose tezepelumab group. The rates of discontinuation due to adverse events were 1.2% among patients receiving tezepelumab (five patients, including two in the medium dose group and three in the high dose group) and 0.7% in the placebo group (one patient). One patient in the low dose tezepelumab group died 8 weeks after the treatment period ended from a treatment-related serious adverse event (stroke in the same patient described above).

[0223] For Analysis C, injection-site reactions after 1-mL injections occurred in 3.6% of the patients in the placebo group, 2.9% of the patients in the low-dose tezepelumab group, 2.9% of the patients in the medium-dose group, and 1.5% of the patients in the high-dose group. The rates after 1.5-mL injections were 2.9%, 2.2%, 2.9%, and 3.6% in the respective groups. No investigational product-related anaphylactic reactions were reported. After baseline, positive antidrug antibodies were noted in 13 of 138 patients (9.4%) in the placebo group, 5 of 136 patients (3.7%) in the low-dose tezepelumab group, 1 of 131 patients (0.8%) in the medium-dose group, and 3 of 131 patients (2.3%) in the high-dose group. No neutralizing antibodies were detected.

[0224] In summary, the overall results of Analysis A, Analysis B and Analysis C were consistent.

[0225] Interestingly, a review of the effects of anti-TSLP treatment on the different high eosinophil and no eosinophil patients/low eosinophil patients showed that treatment with an anti-TSLP treatment was very effective in both high and low eosinophil patient populations, which would not have been expected in the low eosinophil population. Table 2 and FIG. 3 show that anti-TSLP treatment significantly reduced exacerbation rates in both eosinophil high and low populations.

[0226] Eosinophil cell levels in a subject are a marker for Th2 inflammation in a subject. In view of this association between eosinophils and Th2 levels, the study subjects were also divided into populations based on the relative Th2 levels at the start of treatment, e.g., Th2 high or low populations, and assayed for antibody efficacy. The results demonstrated that treatment with anti-TSLP was very effective in both Th2 high and Th2 low patient populations. Table 4 shows that anti-TSLP treatment significantly reduced exacerbation rates in both Th2 high and low populations, but to a greater extent in Th2 low patients.

[0227] Discussion

[0228] Treatment with tezepelumab resulted in significantly lower annualized rates of asthma exacerbations than the rate with placebo among patients whose asthma remained uncontrolled despite treatment with LABAs and medium- to high-doses of inhaled glucocorticoids. Some, but not all secondary outcomes were better with tezelpelumab than with placebo. Treatment effects were observed shortly after the initiation of treatment and were maintained throughout the trial. The incidence of adverse events was similar in the tezepelumab and placebo groups, with similar levels of discontinuations, regardless of asthma-related adverse events.

[0229] Tezepelumab reduced blood eosinophil counts, FeNO levels, and total serum IgE levels; changes in eosinophil counts and FeNO levels occurred rapidly from week 4 and concurrently with changes in clinical end points. These findings are consistent with the results from a previous allergen challenge study in patients with mild asthma, in which tezepelumab abrogated post-allergen challenge increases in sputum and blood eosinophils and FeNO..sup.24 These changes in biomarker levels demonstrate that TSLP is a key upstream regulator of Th2 activation and/or function, with effects on interleukin-4, interleukin-5, and interleukin-13 pathways, and indicate that inhibition of TSLP may have broader physiologic effects than individual Th2 cytokine inhibitors. Additionally, the epithelial-cell-derived cytokines interleukin-25 and interleukin-33 may work together with TSLP to initiate and amplify Th2 inflammation, although the interplay of these cytokines requires further investigation..sup.32,33

[0230] Tezepelumab was well-tolerated in all dose groups with no increase in reported infections compared with placebo.

[0231] The observed improvements in disease control following treatment with tezepelumab highlights the potential pathogenic role of TSLP across a range of asthma phenotypes. Non-allergic factors, including tobacco smoke, diesel particles and viruses, have been shown to trigger TSLP release and lead to activation of non-Th2 inflammatory responses in asthma.34-37 Cell types which are activated by TSLP and may participate in these pathways, include mast cells, basophils, natural killer T cells, group 2 innate lymphoid cells and possibly neutrophils and interleukin-17 cells..sup.20,36-39

[0232] The present data provides the first clinical evidence that inhibition of TSLP leads to a lower annualized rate of asthma exacerbations than no such inhibition, independent of baseline eosinophil count or other Th2 biomarkers and better results with respect to other clinical endpoints among patients with uncontrolled asthma who are receiving LABAs and medium-to-high doses of inhaled glucocorticoids. These findings highlight the potential advantages of targeting an upstream cytokine such as TSLP, which may affect disease activity more broadly than inhibition of a single downstream pathway.

[0233] Numerous modifications and variations of the invention as set forth in the above illustrative examples are expected to occur to those skilled in the art. Consequently only such limitations as appear in the appended claims should be placed on the invention.

REFERENCES



[0234] 1. To T, Stanojevic S, Moores G, et al. BMC Public Health 2012; 12:204.

[0235] 2. Chung K F, Wenzel S E, Brozek J L, et al. Eur Respir J 2014; 43:343-73.

[0236] 3. Pavord I D, et al., NPJ Prim Care Respir Med 2017; 27:17.

[0237] 4. Bateman E D, et al. Am J Respir Crit Care Med 2004; 170:836-44.

[0238] 5. GINA Report. Global strategy for asthma management and prevention. August 2014. http://www.ginaasthma.org2014.

[0239] 6. Woodruff P G, et al. Am J Respir Crit Care Med 2009; 180:388-95.

[0240] 7. Wenzel S E. Am J Respir Cell Mol Biol 2016; 55:1-4.

[0241] 8. Froidure A, et al., Eur Respir J 2016; 47:304-19.

[0242] 9. Swedin L, et al. Pharmacol Ther 2017; 169:13-34.

[0243] 10. Brightling C, Berry M, Amrani Y. J Allergy Clin Immunol 2008; 121:5-10; quiz 1-2.

[0244] 11. Ortega H G, Liu M C, Pavord I D, et al. N Engl J Med 2014; 371:1198-207.

[0245] 12. XOLAIR@ (omalizumab): Highlights of Prescribing Information 2016. (at https://www.gene.com/download/pdf/xolair_prescribing.pdf.)

[0246] 13. Bleecker E R, FitzGerald J M, Chanez P, et al. The Lancet 2016; 388:2115-27.

[0247] 14. FitzGerald J M, Bleecker E R, Nair P, et al. The Lancet 2016; 388:2128-41.

[0248] 15. Wenzel S, Castro M, Corren J, et al. Lancet 2016; 388:31-44.

[0249] 16. Castro M, et al. Lancet Respir Med 2015; Epub, doi: 10.1016/S2213-2600(15)00042-9.

[0250] 17. Brightling C E, Chanez P, Leigh R, et al. Lancet Respir Med 2015; 3:692-701.

[0251] 18. Bel E H, Wenzel S E, Thompson P J, et al. N Engl J Med 2014; 371:1189-97.

[0252] 19. Soumelis V, Reche P A, Kanzler H, et al. Nat Immunol 2002; 3:673-80.

[0253] 20. Allakhverdi Z, Comeau M R, Jessup H K, et alJ Exp Med 2007; 204:253-8.

[0254] 21. Shikotra A, Choy D F, Ohri C M, et al. J Allergy Clin Immunol 2012; 129:104-11 e1-9.

[0255] 22. Ying S, O'Connor B, Ratoff J, et al. J Immunol 2005; 174:8183-90.

[0256] 23. Ying S, O'Connor B, Ratoff J, et al. J Immunol 2008; 181:2790-8.

[0257] 24. Gauvreau G M, O'Byrne P M, Boulet L P, et al. N Engl J Med 2014; 370:2102-10.

[0258] 25. Juniper E F, O'Byrne P M, Guyatt G H, Ferrie P J, King D R. Eur Respir J 1999; 14:902-7.

[0259] 26. Global Stratgey for Asthma Management and Prevention 2012. 2012, at http://ginastma.org/)

[0260] 27. Juniper E F, Buist A S, Cox F M, Ferrie P J, King D R. Chest 1999; 115:1265-70.

[0261] 28. Corren J, Lemanske R F, Hanania N A, et al. N Engl J Med 2011; 365:1088-98.

[0262] 29. Dweik R A, Boggs P B, Erzurum S C, et al. Am J Respir Crit Care Med 2011; 184:602-15.

[0263] 30. Hanania N A, Wenzel S, Rosen K, et al. Am J Respir Crit Care Med 2013; 187:804-11.

[0264] 31. Tabrizi M, Bornstein G G, Suria H. AAPS J 2010; 12:33-43.

[0265] 32. Paul W E, Zhu J. Nat Rev Immunol 2010; 10:225-35.

[0266] 33. Gavala M L, Bashir H, Gern J E. Curr Allergy Asthma Rep 2013; 13:298-307.

[0267] 34. Nakamura Y, Miyata M, Ohba T, et al. J Allergy Clin Immunol 2008; 122:1208-14.

[0268] 35. Bleck B, et al., Journal of clinical immunology 2008; 28:147-56.

[0269] 36. Lee H C, Headley M B, Loo Y M, et al. J Allergy Clin Immunol 2012; 130:1187-96 e5.

[0270] 37. Calven J, Yudina Y, Hallgren O, et al. J Innate Immun 2012; 4:86-99.

[0271] 38. Nagata Y, et al., Int Arch Allergy Immunol 2007; 144:305-14.

[0272] 39. Kim B S, Siracusa M C, Saenz S A, et al. Sci Transl Med 2013; 5:170ra16.

Sequence CWU 1

1

1061743DNAHomo Sapiensmisc_featureTSLPCDS(200)..(676) 1gcagccagaa agctctggag catcagggag actccaactt aaggcaacag catgggtgaa 60taagggcttc ctgtggactg gcaatgagag gcaaaacctg gtgcttgagc actggcccct 120aaggcaggcc ttacagatct cttacactcg tggtgggaag agtttagtgt gaaactgggg 180tggaattggg tgtccacgt atg ttc cct ttt gcc tta cta tat gtt ctg tca 232 Met Phe Pro Phe Ala Leu Leu Tyr Val Leu Ser 1 5 10gtt tct ttc agg aaa atc ttc atc tta caa ctt gta ggg ctg gtg tta 280Val Ser Phe Arg Lys Ile Phe Ile Leu Gln Leu Val Gly Leu Val Leu 15 20 25act tac gac ttc act aac tgt gac ttt gag aag att aaa gca gcc tat 328Thr Tyr Asp Phe Thr Asn Cys Asp Phe Glu Lys Ile Lys Ala Ala Tyr 30 35 40ctc agt act att tct aaa gac ctg att aca tat atg agt ggg acc aaa 376Leu Ser Thr Ile Ser Lys Asp Leu Ile Thr Tyr Met Ser Gly Thr Lys 45 50 55agt acc gag ttc aac aac acc gtc tct tgt agc aat cgg cca cat tgc 424Ser Thr Glu Phe Asn Asn Thr Val Ser Cys Ser Asn Arg Pro His Cys60 65 70 75ctt act gaa atc cag agc cta acc ttc aat ccc acc gcc ggc tgc gcg 472Leu Thr Glu Ile Gln Ser Leu Thr Phe Asn Pro Thr Ala Gly Cys Ala 80 85 90tcg ctc gcc aaa gaa atg ttc gcc atg aaa act aag gct gcc tta gct 520Ser Leu Ala Lys Glu Met Phe Ala Met Lys Thr Lys Ala Ala Leu Ala 95 100 105atc tgg tgc cca ggc tat tcg gaa act cag ata aat gct act cag gca 568Ile Trp Cys Pro Gly Tyr Ser Glu Thr Gln Ile Asn Ala Thr Gln Ala 110 115 120atg aag aag agg aga aaa agg aaa gtc aca acc aat aaa tgt ctg gaa 616Met Lys Lys Arg Arg Lys Arg Lys Val Thr Thr Asn Lys Cys Leu Glu 125 130 135caa gtg tca caa tta caa gga ttg tgg cgt cgc ttc aat cga cct tta 664Gln Val Ser Gln Leu Gln Gly Leu Trp Arg Arg Phe Asn Arg Pro Leu140 145 150 155ctg aaa caa cag taaaccatct ttattatggt catatttcac agcccaaaat 716Leu Lys Gln Glnaaatcatctt tattaagtaa aaaaaaa 7432159PRTHomo Sapiens 2Met Phe Pro Phe Ala Leu Leu Tyr Val Leu Ser Val Ser Phe Arg Lys1 5 10 15Ile Phe Ile Leu Gln Leu Val Gly Leu Val Leu Thr Tyr Asp Phe Thr 20 25 30Asn Cys Asp Phe Glu Lys Ile Lys Ala Ala Tyr Leu Ser Thr Ile Ser 35 40 45Lys Asp Leu Ile Thr Tyr Met Ser Gly Thr Lys Ser Thr Glu Phe Asn 50 55 60Asn Thr Val Ser Cys Ser Asn Arg Pro His Cys Leu Thr Glu Ile Gln65 70 75 80Ser Leu Thr Phe Asn Pro Thr Ala Gly Cys Ala Ser Leu Ala Lys Glu 85 90 95Met Phe Ala Met Lys Thr Lys Ala Ala Leu Ala Ile Trp Cys Pro Gly 100 105 110Tyr Ser Glu Thr Gln Ile Asn Ala Thr Gln Ala Met Lys Lys Arg Arg 115 120 125Lys Arg Lys Val Thr Thr Asn Lys Cys Leu Glu Gln Val Ser Gln Leu 130 135 140Gln Gly Leu Trp Arg Arg Phe Asn Arg Pro Leu Leu Lys Gln Gln145 150 155311PRTHomo SapiensMISC_FEATURELCDR1 3Gly Gly Asn Asn Leu Gly Ser Lys Ser Val His1 5 1047PRTHomo SapiensMISC_FEATURELCDR2 4Asp Asp Ser Asp Arg Pro Ser1 5511PRTHomo SapiensMISC_FEATURELCDR3 5Gln Val Trp Asp Ser Ser Ser Asp His Val Val1 5 1065PRTHomo SapiensMISC_FEATUREHCDR1 6Thr Tyr Gly Met His1 5717PRTHomo SapiensMISC_FEATUREHCDR2 7Val Ile Trp Tyr Asp Gly Ser Asn Lys His Tyr Ala Asp Ser Val Lys1 5 10 15Gly813PRTHomo SapiensMISC_FEATUREHCDR3 8Ala Pro Gln Trp Glu Leu Val His Glu Ala Phe Asp Ile1 5 109366DNAHomo Sapiensmisc_featureHeavy Chain VH 9cagatgcagc tggtggagtc tgggggaggc gtggtccagc ctgggaggtc cctgagactc 60tcctgtgcag cgtctggatt caccttcaga acctatggca tgcactgggt ccgccaggct 120ccaggcaagg gactggagtg ggtggcagtt atatggtatg atggaagtaa taaacactat 180gcagactccg tgaagggccg attcaccatc accagagaca attccaagaa cactctgaat 240ctgcaaatga acagcctgag agccgaggac acggctgtgt attactgtgc gagagcccct 300cagtgggagc tagttcatga agcttttgat atctggggcc aagggacaat ggtcaccgtc 360tcttca 36610122PRTHomo SapiensMISC_FEATUREHeavy Chain VH 10Gln Met Gln Leu Val Glu Ser Gly Gly Gly Val Val Gln Pro Gly Arg1 5 10 15Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Arg Thr Tyr 20 25 30Gly Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45Ala Val Ile Trp Tyr Asp Gly Ser Asn Lys His Tyr Ala Asp Ser Val 50 55 60Lys Gly Arg Phe Thr Ile Thr Arg Asp Asn Ser Lys Asn Thr Leu Asn65 70 75 80Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95Ala Arg Ala Pro Gln Trp Glu Leu Val His Glu Ala Phe Asp Ile Trp 100 105 110Gly Gln Gly Thr Met Val Thr Val Ser Ser 115 12011325DNAHomo Sapiensmisc_featureLight Chain VL 11tcctatgtgc tgactcagcc accctcggtg tcagtggccc caggacagac ggccaggatt 60acctgtgggg gaaacaacct tggaagtaaa agtgtgcact ggtaccagca gaagccaggc 120caggcccctg tgctggtcgt ctatgatgat agcgaccggc cctcatggat ccctgagcga 180ttctctggct ccaactctgg gaacacggcc accctgacca tcagcagggg cgaagccggg 240gatgaggccg actattactg tcaggtgtgg gatagtagta gtgatcatgt ggtatttcgg 300cggagggacc aagctgaccg tccta 32512108PRTHomo SapiensMISC_FEATURELight Chain VL 12Ser Tyr Val Leu Thr Gln Pro Pro Ser Val Ser Val Ala Pro Gly Gln1 5 10 15Thr Ala Arg Ile Thr Cys Gly Gly Asn Asn Leu Gly Ser Lys Ser Val 20 25 30His Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Val Leu Val Val Tyr 35 40 45Asp Asp Ser Asp Arg Pro Ser Trp Ile Pro Glu Arg Phe Ser Gly Ser 50 55 60Asn Ser Gly Asn Thr Ala Thr Leu Thr Ile Ser Arg Gly Glu Ala Gly65 70 75 80Asp Glu Ala Asp Tyr Tyr Cys Gln Val Trp Asp Ser Ser Ser Asp His 85 90 95Val Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu 100 105135PRTArtificial SequenceSynthetic peptide 13Asp Tyr Trp Met His1 51419PRTArtificial SequenceSynthetic peptide 14His Ile Lys Ser Lys Thr Asp Ala Gly Thr Thr Asp Tyr Ala Ala Pro1 5 10 15Val Lys Gly159PRTArtificial SequenceSynthetic peptide 15Glu Ile Tyr Tyr Tyr Ala Phe Asp Ser1 51611PRTArtificial SequenceSynthetic peptide 16Ser Gly Asp Asn Ile Gly Ser Lys Tyr Val His1 5 10177PRTArtificial SequenceSynthetic peptide 17Gly Asp Asn Glu Arg Pro Ser1 51810PRTArtificial SequenceSynthetic peptide 18Gln Ala Ala Asp Trp Val Asp Phe Tyr Val1 5 10197PRTArtificial SequenceSynthetic peptide 19Gly Phe Thr Phe Ser Asp Tyr1 5208PRTArtificial SequenceSynthetic peptide 20Lys Ser Lys Thr Asp Ala Gly Thr1 5217PRTArtificial SequenceSynthetic peptide 21Asp Asn Ile Gly Ser Lys Tyr1 5223PRTArtificial SequenceSynthetic peptide 22Gly Asp Asn1237PRTArtificial SequenceSynthetic peptide 23Ala Asp Trp Val Asp Phe Tyr1 524120PRTArtificial SequenceSynthetic peptide 24Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Lys Pro Gly Gly1 5 10 15Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Asp Tyr 20 25 30Trp Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45Gly His Ile Lys Ser Lys Thr Asp Ala Gly Thr Thr Asp Tyr Ala Ala 50 55 60Pro Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asp Ser Lys Asn Thr65 70 75 80Leu Tyr Leu Gln Met Asn Ser Leu Lys Thr Glu Asp Thr Ala Val Tyr 85 90 95Tyr Cys Ala Arg Glu Ile Tyr Tyr Tyr Ala Phe Asp Ser Trp Gly Gln 100 105 110Gly Thr Leu Val Thr Val Ser Ser 115 12025107PRTArtificial SequenceSynthetic peptide 25Ser Tyr Glu Leu Thr Gln Pro Leu Ser Val Ser Val Ala Leu Gly Gln1 5 10 15Thr Ala Arg Ile Thr Cys Ser Gly Asp Asn Ile Gly Ser Lys Tyr Val 20 25 30His Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Val Leu Val Ile Tyr 35 40 45Gly Asp Asn Glu Arg Pro Ser Gly Ile Pro Glu Arg Phe Ser Gly Ser 50 55 60Asn Ser Gly Asn Thr Ala Thr Leu Thr Ile Ser Arg Ala Gln Ala Gly65 70 75 80Asp Glu Ala Asp Tyr Tyr Cys Gln Ala Ala Asp Trp Val Asp Phe Tyr 85 90 95Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu 100 10526223PRTArtificial SequenceSynthetic peptide 26Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Lys Pro Gly Gly1 5 10 15Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Asp Tyr 20 25 30Trp Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45Gly His Ile Lys Ser Lys Thr Asp Ala Gly Thr Thr Asp Tyr Ala Ala 50 55 60Pro Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asp Ser Lys Asn Thr65 70 75 80Leu Tyr Leu Gln Met Asn Ser Leu Lys Thr Glu Asp Thr Ala Val Tyr 85 90 95Tyr Cys Ala Arg Glu Ile Tyr Tyr Tyr Ala Phe Asp Ser Trp Gly Gln 100 105 110Gly Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val 115 120 125Phe Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala Ala 130 135 140Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser145 150 155 160Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val 165 170 175Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro 180 185 190Ser Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn His Lys 195 200 205Pro Ser Asn Thr Lys Val Asp Lys Arg Val Glu Pro Lys Ser Cys 210 215 22027213PRTArtificial SequenceSynthetic peptide 27Ser Tyr Glu Leu Thr Gln Pro Leu Ser Val Ser Val Ala Leu Gly Gln1 5 10 15Thr Ala Arg Ile Thr Cys Ser Gly Asp Asn Ile Gly Ser Lys Tyr Val 20 25 30His Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Val Leu Val Ile Tyr 35 40 45Gly Asp Asn Glu Arg Pro Ser Gly Ile Pro Glu Arg Phe Ser Gly Ser 50 55 60Asn Ser Gly Asn Thr Ala Thr Leu Thr Ile Ser Arg Ala Gln Ala Gly65 70 75 80Asp Glu Ala Asp Tyr Tyr Cys Gln Ala Ala Asp Trp Val Asp Phe Tyr 85 90 95Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly Gln Pro Lys Ala 100 105 110Ala Pro Ser Val Thr Leu Phe Pro Pro Ser Ser Glu Glu Leu Gln Ala 115 120 125Asn Lys Ala Thr Leu Val Cys Leu Ile Ser Asp Phe Tyr Pro Gly Ala 130 135 140Val Thr Val Ala Trp Lys Ala Asp Ser Ser Pro Val Lys Ala Gly Val145 150 155 160Glu Thr Thr Thr Pro Ser Lys Gln Ser Asn Asn Lys Tyr Ala Ala Ser 165 170 175Ser Tyr Leu Ser Leu Thr Pro Glu Gln Trp Lys Ser His Arg Ser Tyr 180 185 190Ser Cys Gln Val Thr His Glu Gly Ser Thr Val Glu Lys Thr Val Ala 195 200 205Pro Thr Glu Cys Ser 21028450PRTArtificial SequenceSynthetic peptide 28Glu Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Lys Pro Gly Gly1 5 10 15Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Asp Tyr 20 25 30Trp Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45Gly His Ile Lys Ser Lys Thr Asp Ala Gly Thr Thr Asp Tyr Ala Ala 50 55 60Pro Val Lys Gly Arg Phe Thr Ile Ser Arg Asp Asp Ser Lys Asn Thr65 70 75 80Leu Tyr Leu Gln Met Asn Ser Leu Lys Thr Glu Asp Thr Ala Val Tyr 85 90 95Tyr Cys Ala Arg Glu Ile Tyr Tyr Tyr Ala Phe Asp Ser Trp Gly Gln 100 105 110Gly Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val 115 120 125Phe Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala Ala 130 135 140Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser145 150 155 160Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val 165 170 175Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro 180 185 190Ser Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn His Lys 195 200 205Pro Ser Asn Thr Lys Val Asp Lys Arg Val Glu Pro Lys Ser Cys Asp 210 215 220Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly225 230 235 240Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile 245 250 255Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu 260 265 270Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His 275 280 285Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg 290 295 300Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys305 310 315 320Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu 325 330 335Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr 340 345 350Thr Leu Pro Pro Ser Arg Glu Glu Met Thr Lys Asn Gln Val Ser Leu 355 360 365Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp 370 375 380Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val385 390 395 400Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp 405 410 415Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His 420 425 430Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro 435 440 445Gly Lys 45029213PRTArtificial SequenceSynthetic peptide 29Ser Tyr Glu Leu Thr Gln Pro Leu Ser Val Ser Val Ala Leu Gly Gln1 5 10 15Thr Ala Arg Ile Thr Cys Ser Gly Asp Asn Ile Gly Ser Lys Tyr Val 20 25 30His Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Val Leu Val Ile Tyr 35 40 45Gly Asp Asn Glu Arg Pro Ser Gly Ile Pro Glu Arg Phe Ser Gly Ser 50 55 60Asn Ser Gly Asn Thr Ala Thr Leu Thr Ile Ser Arg Ala Gln Ala Gly65 70 75 80Asp Glu Ala Asp Tyr Tyr Cys Gln Ala Ala Asp Trp Val Asp Phe Tyr 85 90 95Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly Gln Pro Lys Ala 100 105 110Ala Pro Ser Val Thr Leu Phe Pro Pro Ser Ser Glu Glu Leu Gln Ala 115 120 125Asn Lys Ala Thr Leu Val Cys Leu Ile Ser Asp Phe Tyr Pro Gly Ala 130 135 140Val Thr Val Ala Trp Lys Ala Asp Ser Ser Pro Val Lys Ala Gly Val145 150 155 160Glu Thr Thr Thr Pro Ser Lys Gln Ser Asn Asn Lys Tyr Ala Ala Ser 165 170 175Ser Tyr Leu Ser Leu Thr Pro Glu Gln Trp Lys Ser His Arg Ser Tyr 180 185 190Ser Cys Gln Val Thr His Glu Gly Ser Thr Val Glu Lys Thr Val Ala 195 200 205Pro Thr Glu Cys

Ser 21030149PRTArtificial SequenceSynthetic peptide 30Met Gly Ser Ser His His His His His His Leu Glu Val Leu Phe Gln1 5 10 15Gly Pro Tyr Asp Phe Thr Asn Cys Asp Phe Glu Lys Ile Lys Ala Ala 20 25 30Tyr Leu Ser Thr Ile Ser Lys Asp Leu Ile Thr Tyr Met Ser Gly Thr 35 40 45Lys Ser Thr Glu Phe Asn Asn Thr Val Ser Cys Ser Asn Arg Pro His 50 55 60Cys Leu Thr Glu Ile Gln Ser Leu Thr Phe Asn Pro Thr Ala Gly Cys65 70 75 80Ala Ser Leu Ala Lys Glu Met Phe Ala Met Lys Thr Lys Ala Ala Leu 85 90 95Ala Ile Trp Cys Pro Gly Tyr Ser Glu Thr Gln Ile Asn Ala Thr Gln 100 105 110Ala Met Lys Lys Arg Arg Lys Arg Lys Val Thr Thr Asn Lys Cys Leu 115 120 125Glu Gln Val Ser Gln Leu Gln Gly Leu Trp Arg Arg Phe Asn Arg Pro 130 135 140Leu Leu Lys Gln Gln14531107PRTArtificialDom30h-440-81/86 amino acid sequence 31Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly1 5 10 15Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Arg Pro Ile Arg Asn Trp 20 25 30Leu Asp Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile 35 40 45Trp Gly Ala Ser His Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly 50 55 60Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro65 70 75 80Glu Asp Phe Ala Thr Tyr Tyr Cys Val Gln Ile Gly Glu Asp Pro Val 85 90 95Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys 100 1053211PRTArtificialCDRL1 of Dom30h-440-81/86, Dom30h-440-53, Dom30h-440-54, Dom30h-440-55, Dom30h-440-56, Dom30h-440-57, Dom30h-440-58, Dom30h-440-60, Dom30h-440-63, Dom30h-440-64 and Dom30h-440-65 (Kabat, Chothia and AbM CDR definition) 32Arg Ala Ser Arg Pro Ile Arg Asn Trp Leu Asp1 5 10337PRTArtificialCDRL2 of Dom30h-440-81/86, Dom30h-440-53, Dom30h-440-54, Dom30h-440-55, Dom30h-440-56, Dom30h-440-57, Dom30h-440-58, Dom30h-440-60, Dom30h-440-63, Dom30h-440-64 and Dom30h-440-65 (Kabat, Chothia, AbM CDR definition) 33Gly Ala Ser His Leu Gln Ser1 5349PRTArtificialCDRL3 of Dom30h-440-81/86 and Dom30h-440-55 (Kabat, Chothia, AbM CDR definition) 34Val Gln Ile Gly Glu Asp Pro Val Thr1 53510PRTArtificialCDRL2 of Dom30h-440-81/86 (Contact CDR definition) 35Leu Leu Ile Trp Gly Ala Ser His Leu Gln1 5 10365PRTMus musculus 36Arg Tyr Asn Val His1 53716PRTMus musculus 37Met Ile Trp Asp Gly Gly Ser Thr Asp Tyr Asn Ser Ala Leu Lys Ser1 5 10 15386PRTMus musculus 38Asn Arg Tyr Glu Ser Gly1 53917PRTMus musculus 39Lys Ser Ser Gln Ser Leu Leu Asn Ser Gly Asn Arg Lys Asn Tyr Leu1 5 10 15Thr407PRTMus musculus 40Trp Ala Ser Thr Arg Glu Ser1 54112PRTMus musculus 41Gln Asn Asp Tyr Thr Tyr Pro Phe Thr Phe Gly Ser1 5 10425PRTMus musculus 42Ala Tyr Trp Met Ser1 54317PRTMus musculus 43Glu Ile Asn Pro Asp Ser Ser Thr Ile Asn Cys Thr Pro Ser Leu Lys1 5 10 15Asp4411PRTMus musculus 44Arg Leu Arg Pro Phe Trp Tyr Phe Asp Val Trp1 5 104516PRTMus musculus 45Arg Ser Ser Gln Ser Ile Val Gln Ser Asn Gly Asn Thr Tyr Leu Glu1 5 10 15467PRTMus musculus 46Lys Val Ser Asn Arg Phe Ser1 5479PRTMus musculus 47Phe Gln Gly Ser His Val Pro Arg Thr1 5486PRTMus musculus 48Thr Asp Tyr Ala Trp Asn1 54916PRTMus musculus 49Tyr Ile Phe Tyr Ser Gly Ser Thr Thr Tyr Thr Pro Ser Leu Lys Ser1 5 10 15508PRTMus musculus 50Gly Gly Tyr Asp Val Asn Tyr Phe1 55111PRTMus musculus 51Leu Ala Ser Gln Thr Ile Gly Ala Trp Leu Ala1 5 10527PRTMus musculus 52Ala Ala Thr Arg Leu Ala Asp1 5539PRTMus musculus 53Gln Gln Phe Phe Ser Thr Pro Trp Thr1 5545PRTMus musculus 54Gly Tyr Thr Met Asn1 55516PRTMus musculus 55Leu Ile Asn Pro Tyr Asn Gly Val Thr Ser Tyr Asn Gln Lys Phe Lys1 5 10 15568PRTMus musculus 56Gly Asp Gly Asn Tyr Trp Tyr Phe1 55711PRTMus musculus 57Ser Ala Ser Ser Ser Val Thr Tyr Met His Trp1 5 10587PRTMus musculus 58Glu Ile Ser Lys Leu Ala Ser1 5599PRTMus musculus 59Gln Glu Trp Asn Tyr Pro Tyr Thr Phe1 560117PRTMus musculus 60Gln Val Gln Leu Gln Glu Ser Gly Pro Gly Leu Val Ala Pro Ser Gln1 5 10 15Ser Leu Ser Ile Thr Cys Thr Val Ser Gly Phe Ser Leu Ser Arg Tyr 20 25 30Asn Val His Trp Val Arg Gln Pro Pro Gly Lys Gly Leu Glu Trp Leu 35 40 45Gly Met Ile Trp Asp Gly Gly Ser Thr Asp Tyr Asn Ser Ala Leu Lys 50 55 60Ser Arg Leu Ser Ile Thr Lys Asp Asn Ser Lys Ser Gln Val Phe Leu65 70 75 80Lys Met Asn Ser Leu Gln Thr Asp Asp Thr Ala Met Tyr Tyr Cys Ala 85 90 95Arg Asn Arg Tyr Glu Ser Gly Met Asp Tyr Trp Gly Gln Gly Thr Thr 100 105 110Val Thr Val Ser Ser 11561114PRTMus musculus 61Asp Ile Val Met Thr Gln Thr Pro Ser Ser Leu Thr Val Thr Ala Gly1 5 10 15Glu Lys Val Thr Met Ser Cys Lys Ser Ser Gln Ser Leu Leu Asn Ser 20 25 30Gly Asn Arg Lys Asn Tyr Leu Thr Trp Tyr Gln Gln Lys Pro Gly Gln 35 40 45Ser Pro Lys Leu Leu Ile Tyr Trp Ala Ser Thr Arg Glu Ser Gly Val 50 55 60Pro Asp Arg Phe Thr Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Ile65 70 75 80Ile Ser Ser Val Gln Ala Glu Asp Leu Ala Val Tyr Tyr Cys Gln Asn 85 90 95Asp Tyr Thr Tyr Pro Phe Thr Phe Gly Ser Gly Thr Lys Leu Glu Ile 100 105 110Lys Arg62119PRTMus musculus 62Glu Val Lys Leu Leu Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly1 5 10 15Ser Leu Lys Leu Ser Cys Ala Ala Ser Gly Phe Ala Phe Ser Ala Tyr 20 25 30Trp Met Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Ile 35 40 45Gly Glu Ile Asn Pro Asp Ser Ser Thr Ile Asn Cys Thr Pro Ser Leu 50 55 60Lys Asp Lys Phe Ile Ile Ser Arg Asp Asn Ala Lys Asn Thr Leu Ser65 70 75 80Leu Gln Met Asn Lys Val Arg Ser Glu Asp Thr Ala Leu Tyr Tyr Cys 85 90 95Ala Arg Arg Leu Arg Pro Phe Trp Tyr Phe Asp Val Trp Gly Ala Gly 100 105 110Thr Thr Val Thr Val Ser Ser 11563112PRTMus musculus 63Asp Val Leu Met Thr Gln Thr Pro Leu Ser Leu Pro Val Ser Leu Gly1 5 10 15Asp Gln Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser Ile Val Gln Ser 20 25 30Asn Gly Asn Thr Tyr Leu Glu Trp Tyr Leu Gln Lys Pro Gly Gln Ser 35 40 45Pro Lys Leu Leu Ile Tyr Lys Val Ser Asn Arg Phe Ser Gly Val Pro 50 55 60Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys Ile65 70 75 80Ser Arg Val Glu Ala Glu Asp Leu Gly Val Tyr Tyr Cys Phe Gln Gly 85 90 95Ser His Val Pro Arg Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys 100 105 11064119PRTMus musculus 64Asp Val Gln Leu Gln Glu Ser Gly Pro Gly Leu Val Lys Pro Ser Gln1 5 10 15Ser Leu Ser Leu Thr Cys Thr Val Thr Gly Tyr Ser Ile Thr Thr Asp 20 25 30Tyr Ala Trp Asn Trp Ile Arg Gln Phe Pro Gly Asn Lys Leu Glu Trp 35 40 45Met Gly Tyr Ile Phe Tyr Ser Gly Ser Thr Thr Tyr Thr Pro Ser Leu 50 55 60Lys Ser Arg Ile Ser Ile Thr Arg Asp Thr Ser Lys Asn Gln Phe Phe65 70 75 80Leu Gln Leu Asn Ser Val Thr Thr Glu Asp Thr Ala Thr Tyr Tyr Cys 85 90 95Ala Arg Gly Gly Tyr Asp Val Asn Tyr Phe Asp Tyr Trp Gly Gln Gly 100 105 110Thr Thr Leu Thr Val Ser Ser 11565107PRTMus musculus 65Asp Ile Gln Met Thr Gln Ser Pro Ala Ser Gln Ser Ala Ser Leu Gly1 5 10 15Glu Ser Val Thr Ile Thr Cys Leu Ala Ser Gln Thr Ile Gly Ala Trp 20 25 30Leu Ala Trp Tyr Gln Gln Lys Pro Gly Lys Ser Pro Gln Leu Leu Ile 35 40 45Tyr Ala Ala Thr Arg Leu Ala Asp Gly Val Pro Ser Arg Phe Ser Gly 50 55 60Ser Gly Ser Gly Thr Lys Phe Ser Phe Lys Ile Ser Ser Leu Gln Ala65 70 75 80Glu Asp Phe Val Ser Tyr Tyr Cys Gln Gln Phe Phe Ser Thr Pro Trp 85 90 95Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys 100 10566119PRTMus musculus 66Glu Val Gln Leu Gln Gln Ser Gly Pro Glu Leu Leu Lys Pro Gly Ala1 5 10 15Ser Met Lys Ile Ser Cys Lys Ala Ser Gly Tyr Ser Phe Thr Gly Tyr 20 25 30Thr Met Asn Trp Val Lys Gln Ser His Gly Lys Asn Leu Glu Trp Ile 35 40 45Gly Leu Ile Asn Pro Tyr Asn Gly Val Thr Ser Tyr Asn Gln Lys Phe 50 55 60Lys Gly Lys Ala Thr Leu Thr Val Ala Lys Ser Ser Ser Thr Ala Tyr65 70 75 80Met Glu Leu Leu Ser Leu Thr Ser Glu Asp Ser Ala Val Tyr Tyr Cys 85 90 95Ala Arg Gly Asp Gly Asn Tyr Trp Tyr Phe Asp Val Trp Gly Ala Gly 100 105 110Thr Thr Val Thr Val Ser Ser 11567105PRTMus musculus 67Glu Ile Val Leu Thr Gln Ser Pro Ala Ile Thr Ala Ala Ser Leu Gly1 5 10 15Gln Lys Val Thr Ile Thr Cys Ser Ala Ser Ser Ser Val Thr Tyr Met 20 25 30His Trp Tyr Gln Gln Lys Ser Gly Thr Ser Pro Lys Pro Trp Ile Tyr 35 40 45Glu Ile Ser Lys Leu Ala Ser Gly Val Pro Val Arg Phe Ser Gly Ser 50 55 60Gly Ser Gly Thr Ser Tyr Ser Leu Thr Ile Ser Ser Met Glu Ala Glu65 70 75 80Asp Ala Ala Ile Tyr Tyr Cys Gln Glu Trp Asn Tyr Pro Tyr Thr Phe 85 90 95Gly Gly Gly Thr Lys Leu Glu Ile Lys 100 10568119PRTMus musculus 68Glu Val Gln Leu Gln Gln Ser Gly Pro Glu Leu Val Lys Pro Gly Ala1 5 10 15Ser Met Lys Ile Ser Cys Lys Ala Ser Gly Tyr Ser Phe Thr Gly Tyr 20 25 30Thr Met Asn Trp Val Lys Gln Ser His Gly Lys Asn Leu Glu Trp Ile 35 40 45Gly Leu Ile Asn Pro Tyr Ser Gly Ile Thr Ser Tyr Asn Gln Asn Phe 50 55 60Lys Gly Lys Ala Thr Leu Thr Val Asp Lys Ser Ser Ser Thr Ala Tyr65 70 75 80Met Glu Leu Leu Asn Leu Thr Ser Glu Asp Ser Ala Val Tyr Tyr Cys 85 90 95Ala Arg Gly Asp Gly Asn Tyr Trp Tyr Phe Asp Val Trp Gly Ala Gly 100 105 110Thr Thr Val Thr Val Ser Ser 11569105PRTMus musculus 69Glu Ile Ile Leu Thr Gln Ser Pro Ala Ile Thr Ala Ala Ser Leu Gly1 5 10 15Gln Lys Val Thr Ile Thr Cys Ser Ala Ser Ser Ser Val Ser Tyr Met 20 25 30His Trp Tyr Gln Gln Lys Ser Gly Thr Ser Pro Lys Pro Trp Ile Tyr 35 40 45Glu Ile Ser Lys Leu Ala Ser Gly Val Pro Ala Arg Phe Ser Gly Ser 50 55 60Gly Ser Gly Thr Ser Tyr Ser Leu Thr Ile Ser Ser Met Glu Ala Glu65 70 75 80Asp Ala Ala Ile Tyr Tyr Cys Gln Tyr Trp Asn Tyr Pro Tyr Thr Phe 85 90 95Gly Gly Gly Thr Lys Leu Glu Ile Lys 100 105705PRTMus musculus 70Gly Tyr Thr Met Asn1 57116PRTMus musculus 71Leu Ile Asn Pro Tyr Ser Gly Ile Thr Ser Tyr Asn Gln Asn Phe Lys1 5 10 15728PRTMus musculus 72Gly Asp Gly Asn Tyr Trp Tyr Phe1 57311PRTMus musculus 73Ser Ala Ser Ser Ser Val Ser Tyr Met His Trp1 5 10747PRTMus musculus 74Glu Ile Ser Lys Leu Ala Ser1 5759PRTMus musculus 75Gln Tyr Trp Asn Tyr Pro Tyr Thr Phe1 57612PRTCricetulus migratorius 76Gly Phe Ser Ile Thr Thr Ser Gly Tyr Tyr Trp Thr1 5 107716PRTCricetulus migratorius 77Tyr Ile Gly Tyr Asn Ser Lys Thr Tyr Tyr Asn Pro Ser Leu Lys Ser1 5 10 157812PRTCricetulus migratorius 78Ser Leu Tyr Gly Gly Tyr Lys Asp Ala Phe Asp Ser1 5 107911PRTCricetulus migratorius 79Lys Ala Ser Gln Ser Ile Gly Thr Ser Leu His1 5 10807PRTCricetulus migratorius 80Phe Ala Ser Arg Ser Ile Thr1 5819PRTCricetulus migratorius 81Gln Gln Ser Pro Gly Phe Pro Pro Thr1 582122PRTCricetulus migratorius 82Gln Ile Gln Leu Gln Glu Ser Gly Pro Gly Leu Val Lys Pro Ser Gln1 5 10 15Ser Leu Ser Leu Thr Cys Ser Val Thr Gly Phe Ser Ile Thr Thr Ser 20 25 30Gly Tyr Tyr Trp Thr Trp Ile Arg Gln Phe Pro Gly Lys Lys Leu Glu 35 40 45Trp Met Gly Tyr Ile Gly Tyr Asn Ser Lys Thr Tyr Tyr Asn Pro Ser 50 55 60Leu Lys Ser Arg Ile Ser Ile Thr Arg Asp Thr Ser Lys Asn Gln Phe65 70 75 80Leu Leu His Leu Asn Ser Val Thr Thr Glu Asp Thr Ala Thr Tyr Tyr 85 90 95Cys Ala Arg Ser Leu Tyr Gly Gly Tyr Lys Asp Ala Phe Asp Ser Trp 100 105 110Gly Gln Gly Thr Leu Val Thr Val Ser Ser 115 12083108PRTCricetulus migratorius 83Asp Val Val Leu Thr Gln Thr Pro Ala Thr Leu Ser Ala Ile Pro Gly1 5 10 15Glu Arg Val Thr Met Thr Cys Lys Ala Ser Gln Ser Ile Gly Thr Ser 20 25 30Leu His Trp Tyr Gln His Arg Pro Asn Glu Thr Pro Arg Leu Leu Ile 35 40 45Lys Phe Ala Ser Arg Ser Ile Thr Gly Ile Pro Ser Arg Phe Ser Gly 50 55 60Ser Gly Ser Gly Thr Asp Phe Thr Leu Gly Ile Asn Asn Leu Glu Ala65 70 75 80Glu Asp Phe Ala Ile Tyr Tyr Cys Gln Gln Ser Pro Gly Phe Pro Pro 85 90 95Thr Phe Gly Ser Gly Thr Lys Leu Glu Ile Asn Arg 100 1058412PRTArtificialhCDR1 TSLPR-012_166 84Gly Phe Ser Ile Thr Thr Ser Gly Tyr Tyr Trp Ser1 5 108516PRTArtificialhCDR2 TSLPR-012_141 85Tyr Ile Gly Tyr Asn Ser Lys Thr Tyr Tyr Asn Pro Ala Leu Lys Ser1 5 10 158611PRTArtificiallCDR1 TSLPR-012_141 86Arg Ala Ser Gln Ser Ile Gly Thr Ser Leu His1 5 10877PRTArtificiallCDR2 TSLPR-012_141 87Phe Ala Ser Arg Leu Gln Ser1 5887PRTArtificiallCDR2 TSLPR-012_75 88Phe Ala Ser Arg Ser Ile Ser1 589122PRTArtificialsequence TSLPR-012_141 (humanized) HC variable region 89Gln Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Lys Pro Gly Gly1 5 10 15Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Ser Ile Thr Thr Ser 20 25 30Gly Tyr Tyr Trp Thr Trp Ile Arg Gln Phe Pro Gly Lys Gly Leu Glu 35 40 45Trp Met Gly Tyr Ile Gly Tyr Asn Ser Lys Thr Tyr Tyr Asn Pro Ala 50 55 60Leu Lys Ser Arg Ile Thr Ile Ser Arg Asp Asn Ala Lys Asn Ser Leu65 70 75 80Tyr Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr 85 90 95Cys Ala Arg Ser Leu Tyr Gly Gly Tyr Lys Asp Ala Phe Asp Ser Trp 100 105 110Gly Gln Gly Thr Leu Val Thr Val Ser Ser 115 12090108PRTArtificialsequence TSLPR-012_141 (humanized) LC variable

region 90Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly1 5 10 15Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Ser Ile Gly Thr Ser 20 25 30Leu His Trp Tyr Gln Gln Lys Pro Gly Lys Ala Pro Lys Leu Leu Ile 35 40 45Lys Phe Ala Ser Arg Leu Gln Ser Gly Val Pro Ser Arg Phe Ser Gly 50 55 60Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro65 70 75 80Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Ser Pro Gly Phe Pro Pro 85 90 95Thr Phe Gly Gln Gly Thr Lys Leu Glu Ile Lys Arg 100 10591108PRTArtificialsequence TSLPR-012_75 (humanized) LC variable region 91Glu Ile Val Leu Thr Gln Ser Pro Asp Phe Gln Ser Val Thr Pro Lys1 5 10 15Glu Lys Val Thr Ile Thr Cys Arg Ala Ser Gln Ser Ile Gly Thr Ser 20 25 30Leu His Trp Tyr Gln Gln Lys Pro Asp Gln Ser Pro Lys Leu Leu Ile 35 40 45Lys Phe Ala Ser Arg Ser Ile Ser Gly Val Pro Ser Arg Phe Ser Gly 50 55 60Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Asn Ser Leu Glu Ala65 70 75 80Glu Asp Ala Ala Thr Tyr Tyr Cys Gln Gln Ser Pro Gly Phe Pro Pro 85 90 95Thr Phe Gly Gln Gly Thr Lys Leu Glu Ile Lys Arg 100 10592122PRTArtificialsequence TSLPR-012_166 (humanized) HC variable region 92Gln Val Gln Leu Gln Glu Ser Gly Pro Gly Leu Val Lys Pro Ser Gln1 5 10 15Thr Leu Ser Leu Thr Cys Thr Val Ser Gly Phe Ser Ile Thr Thr Ser 20 25 30Gly Tyr Tyr Trp Ser Trp Ile Arg Gln His Pro Gly Lys Gly Leu Glu 35 40 45Trp Ile Gly Tyr Ile Gly Tyr Asn Ser Lys Thr Tyr Tyr Ser Pro Ser 50 55 60Leu Lys Ser Arg Val Thr Ile Ser Arg Asp Thr Ser Lys Asn Gln Phe65 70 75 80Ser Leu Lys Leu Ser Ser Val Thr Ala Ala Asp Thr Ala Val Tyr Tyr 85 90 95Cys Ala Arg Ser Leu Tyr Gly Gly Tyr Lys Asp Ala Phe Asp Ser Trp 100 105 110Gly Gln Gly Thr Leu Val Thr Val Ser Ser 115 12093108PRTArtificialsequence TSLPR-012_166 (humanized) LC variable region 93Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly1 5 10 15Asp Arg Val Thr Ile Thr Cys Arg Ala Ser Gln Ser Ile Gly Thr Ser 20 25 30Leu His Trp Tyr Gln His Arg Pro Gly Glu Thr Pro Lys Leu Leu Ile 35 40 45Lys Phe Ala Ser Arg Ser Ile Ser Gly Val Pro Ser Arg Phe Ser Gly 50 55 60Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro65 70 75 80Glu Asp Phe Ala Thr Tyr Tyr Cys Gln Gln Ser Pro Gly Phe Pro Pro 85 90 95Thr Phe Gly Gln Gly Thr Lys Leu Glu Ile Lys Arg 100 10594108PRTArtificialsequence TSLPR-012_189 (humanized) LC variable region 94Glu Ile Val Met Thr Gln Ser Pro Ala Thr Leu Ser Val Ser Pro Gly1 5 10 15Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gln Ser Ile Gly Thr Ser 20 25 30Leu His Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Arg Leu Leu Ile 35 40 45Lys Phe Ala Ser Arg Ser Ile Thr Gly Ile Pro Ala Arg Phe Ser Gly 50 55 60Ser Gly Ser Gly Thr Glu Phe Thr Leu Thr Ile Ser Ser Leu Gln Ser65 70 75 80Glu Asp Phe Ala Val Tyr Tyr Cys Gln Gln Ser Pro Gly Phe Pro Pro 85 90 95Thr Phe Gly Gln Gly Thr Lys Leu Glu Ile Lys Arg 100 1059510PRTArtificial SequenceSynthetic peptide 95Gly Tyr Ile Phe Thr Asp Tyr Ala Met His1 5 109617PRTArtificial SequenceSynthetic peptide 96Thr Phe Ile Pro Leu Leu Asp Thr Ser Asp Tyr Ala Gln Lys Phe Gln1 5 10 15Gly9711PRTArtificial SequenceSynthetic peptide 97Met Gly Val Thr His Ser Tyr Val Met Asp Ala1 5 109811PRTArtificial SequenceSynthetic peptide 98Arg Ala Ser Gln Pro Ile Ser Ile Ser Val His1 5 10997PRTArtificial SequenceSynthetic peptide 99Phe Ala Ser Gln Ser Ile Ser1 51009PRTArtificial SequenceSynthetic peptide 100Gln Gln Thr Phe Ser Leu Pro Tyr Thr1 5101120PRTArtificial SequenceSynthetic peptide 101Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala1 5 10 15Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Ile Phe Thr Asp Tyr 20 25 30Ala Met His Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met 35 40 45Gly Thr Phe Ile Pro Leu Leu Asp Thr Ser Asp Tyr Ala Gln Lys Phe 50 55 60Gln Gly Arg Val Thr Met Thr Ala Asp Thr Ser Thr Ser Thr Ala Tyr65 70 75 80Met Glu Leu Arg Ser Leu Arg Ser Asp Asp Thr Ala Val Tyr Tyr Cys 85 90 95Ala Arg Met Gly Val Thr His Ser Tyr Val Met Asp Ala Trp Gly Gln 100 105 110Gly Thr Leu Val Thr Val Ser Ser 115 120102109PRTArtificial SequenceSynthetic peptide 102Glu Ile Val Leu Thr Gln Ser Pro Gly Thr Leu Ser Leu Ser Pro Gly1 5 10 15Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gln Pro Ile Ser Ile Ser 20 25 30Val His Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Arg Leu Leu Ile 35 40 45Tyr Phe Ala Ser Gln Ser Ile Ser Gly Ile Pro Asp Arg Phe Ser Gly 50 55 60Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Arg Leu Glu Pro65 70 75 80Glu Asp Phe Ala Val Tyr Tyr Cys Gln Gln Thr Phe Ser Leu Pro Tyr 85 90 95Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys Arg Thr 100 105103450PRTArtificial SequenceSynthetic peptide 103Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala1 5 10 15Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Ile Phe Thr Asp Tyr 20 25 30Ala Met His Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met 35 40 45Gly Thr Phe Ile Pro Leu Leu Asp Thr Ser Asp Tyr Ala Gln Lys Phe 50 55 60Gln Gly Arg Val Thr Met Thr Ala Asp Thr Ser Thr Ser Thr Ala Tyr65 70 75 80Met Glu Leu Arg Ser Leu Arg Ser Asp Asp Thr Ala Val Tyr Tyr Cys 85 90 95Ala Arg Met Gly Val Thr His Ser Tyr Val Met Asp Ala Trp Gly Gln 100 105 110Gly Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val 115 120 125Phe Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala Ala 130 135 140Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser145 150 155 160Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val 165 170 175Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro 180 185 190Ser Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn His Lys 195 200 205Pro Ser Asn Thr Lys Val Asp Lys Lys Val Glu Pro Lys Ser Cys Asp 210 215 220Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly225 230 235 240Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile 245 250 255Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu 260 265 270Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His 275 280 285Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg 290 295 300Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys305 310 315 320Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu 325 330 335Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr 340 345 350Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser Leu 355 360 365Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp 370 375 380Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val385 390 395 400Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp 405 410 415Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His 420 425 430Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro 435 440 445Gly Lys 450104214PRTArtificial SequenceSynthetic peptide 104Glu Ile Val Leu Thr Gln Ser Pro Gly Thr Leu Ser Leu Ser Pro Gly1 5 10 15Glu Arg Ala Thr Leu Ser Cys Arg Ala Ser Gln Pro Ile Ser Ile Ser 20 25 30Val His Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Arg Leu Leu Ile 35 40 45Tyr Phe Ala Ser Gln Ser Ile Ser Gly Ile Pro Asp Arg Phe Ser Gly 50 55 60Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Arg Leu Glu Pro65 70 75 80Glu Asp Phe Ala Val Tyr Tyr Cys Gln Gln Thr Phe Ser Leu Pro Tyr 85 90 95Thr Phe Gly Gln Gly Thr Lys Val Glu Ile Lys Arg Thr Val Ala Ala 100 105 110Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu Lys Ser Gly 115 120 125Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg Glu Ala 130 135 140Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly Asn Ser Gln145 150 155 160Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr Tyr Ser Leu Ser 165 170 175Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys His Lys Val Tyr 180 185 190Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro Val Thr Lys Ser 195 200 205Phe Asn Arg Gly Glu Cys 210105448PRTArtificial SequenceSynthetic PolypeptideMISC_FEATUREHeavy chain 105Gln Met Gln Leu Val Glu Ser Gly Gly Gly Val Val Gln Pro Gly Arg1 5 10 15Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Arg Thr Tyr 20 25 30Gly Met His Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45Ala Val Ile Trp Tyr Asp Gly Ser Asn Lys His Tyr Ala Asp Ser Val 50 55 60Lys Gly Arg Phe Thr Ile Thr Arg Asp Asn Ser Lys Asn Thr Leu Asn65 70 75 80Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95Ala Arg Ala Pro Gln Trp Glu Leu Val His Glu Ala Phe Asp Ile Trp 100 105 110Gly Gln Gly Thr Met Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro 115 120 125Ser Val Phe Pro Leu Ala Pro Cys Ser Arg Ser Thr Ser Glu Ser Thr 130 135 140Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr145 150 155 160Val Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro 165 170 175Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr 180 185 190Val Pro Ser Ser Asn Phe Gly Thr Gln Thr Tyr Thr Cys Asn Val Asp 195 200 205His Lys Pro Ser Asn Thr Lys Val Asp Lys Thr Val Glu Arg Lys Cys 210 215 220Cys Val Glu Cys Pro Pro Cys Pro Ala Pro Pro Val Ala Gly Pro Ser225 230 235 240Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg 245 250 255Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro 260 265 270Glu Val Gln Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala 275 280 285Lys Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr Phe Arg Val Val 290 295 300Ser Val Leu Thr Val Val His Gln Asp Trp Leu Asn Gly Lys Glu Tyr305 310 315 320Lys Cys Lys Val Ser Asn Lys Gly Leu Pro Ala Pro Ile Glu Lys Thr 325 330 335Ile Ser Lys Thr Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu 340 345 350Pro Pro Ser Arg Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys 355 360 365Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser 370 375 380Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Met Leu Asp385 390 395 400Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser 405 410 415Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala 420 425 430Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys 435 440 445106214PRTArtificial SequenceSynthetic PolypeptideMISC_FEATURELight Chain 106Ser Tyr Val Leu Thr Gln Pro Pro Ser Val Ser Val Ala Pro Gly Gln1 5 10 15Thr Ala Arg Ile Thr Cys Gly Gly Asn Asn Leu Gly Ser Lys Ser Val 20 25 30His Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Val Leu Val Val Tyr 35 40 45Asp Asp Ser Asp Arg Pro Ser Trp Ile Pro Glu Arg Phe Ser Gly Ser 50 55 60Asn Ser Gly Asn Thr Ala Thr Leu Thr Ile Ser Arg Gly Glu Ala Gly65 70 75 80Asp Glu Ala Asp Tyr Tyr Cys Gln Val Trp Asp Ser Ser Ser Asp His 85 90 95Val Val Phe Gly Gly Gly Thr Lys Leu Thr Val Leu Gly Gln Pro Lys 100 105 110Ala Ala Pro Ser Val Thr Leu Phe Pro Pro Ser Ser Glu Glu Leu Gln 115 120 125Ala Asn Lys Ala Thr Leu Val Cys Leu Ile Ser Asp Phe Tyr Pro Gly 130 135 140Ala Val Thr Val Ala Trp Lys Ala Asp Ser Ser Pro Val Lys Ala Gly145 150 155 160Val Glu Thr Thr Thr Pro Ser Lys Gln Ser Asn Asn Lys Tyr Ala Ala 165 170 175Ser Ser Tyr Leu Ser Leu Thr Pro Glu Gln Trp Lys Ser His Arg Ser 180 185 190Tyr Ser Cys Gln Val Thr His Glu Gly Ser Thr Val Glu Lys Thr Val 195 200 205Ala Pro Thr Glu Cys Ser 210



User Contributions:

Comment about this patent or add new information about this topic:

CAPTCHA
New patent applications in this class:
DateTitle
2022-09-22Electronic device
2022-09-22Front-facing proximity detection using capacitive sensor
2022-09-22Touch-control panel and touch-control display apparatus
2022-09-22Sensing circuit with signal compensation
2022-09-22Reduced-size interfaces for managing alerts
Website © 2025 Advameg, Inc.