Patent application title: METHODS OF CONTROLLING SEED SIZE IN PLANTS
Inventors:
IPC8 Class: AC12N1582FI
USPC Class:
1 1
Class name:
Publication date: 2020-12-10
Patent application number: 20200385750
Abstract:
This invention relates to the identification of a regulator protein
(termed CYP78A6, or EOD3) which controls the size of plant seeds and
organs in Arabidopsis and other plants. Manipulation of CYP78A protein
expression may useful, for example, in improving crop yield and
increasing plant biomass.Claims:
1. A method of modulating seed size in a plant comprising reducing or
abolishing expression of a CYP78A polypeptide within cells of said plant,
wherein said reduced or abolished expression reduces seed size in said
plant.
2. A method according to claim 1 comprising expressing a heterologous nucleic encoding an RNA molecule which suppresses expression of a CYP78A polypeptide within cells of said plant.
3. A method according to claim 2 comprising mutating a nucleic acid coding sequence encoding a CYP78A polypeptide within cells of said plant or a nucleic acid which regulates the expression of said nucleic acid coding sequence.
4. A method according to claim 3 comprising mutating a nucleic acid which regulates the expression of said nucleic acid coding sequence.
5. A method of producing a plant with an altered seed size comprising: incorporating a heterologous nucleic acid which alters the expression of a CYP78A polypeptide into a plant cell by means of transformation, and; regenerating the plant from one or more transformed cells.
6. A method according to claim 5 wherein the heterologous nucleic acid inactivates an element which represses expression of a CYP78A6 polypeptide.
7. A method according to claim 5 wherein the heterologous nucleic acid reduces expression of the CYP78A polypeptide and the seed size of the plant is reduced.
8. A method according to claim 7 wherein the heterologous nucleic acid encodes an RNA molecule which suppresses a CYP78A polypeptide.
9. A method according to claim 7 wherein the heterologous nucleic acid inactivates the expression of a CYP78A polypeptide.
10. A method according to claim 1 further comprising incorporating a heterologous nucleic acid which expresses a suppressor nucleic acid which reduces expression of a DA polypeptide into said plant cell by means of transformation or expressing a heterologous nucleic acid which encodes suppressor nucleic acid which reduces expression of a DA polypeptide in said plant.
Description:
CROSS-REFERENCE TO RELATED APPLICATIONS
[0001] This is a divisional application of U.S. Ser. No. 16/628,101, filed Jun. 20, 2017, which is a divisional application of U.S. Ser. No. 14/372,582 filed Jul. 16, 2014, which is a National Phase application claiming priority to PCT/GB2013/050072 filed Jan. 15, 2013, which claims priority to GB 1202258.8 filed Feb. 9, 2012 and U.S. Provisional Application Ser. No. 61/588,792 filed Jan. 20, 2012, all of which are herein incorporated by reference in their entirety.
FIELD OF INVENTION
[0002] This invention relates to the control of the size of the seeds which are produced by plants.
BACKGROUND OF THE INVENTIONS
[0003] Seed size is a key determinant of evolutionary fitness in plants and is also an important agronomic trait during crop domestication (Orsi and Tanksley, 2009). Several studies suggest that seedlings of large-seeded plants are better able to tolerate many of the stresses encountered during seedling establishment, whereas small-seeded plants are considered to have superior colonization abilities because they produce large numbers of seeds (Westoby et al., 2002; Moles et al., 2005). At the same time, seed size is negatively associated with the number of seeds produced by a plant due to the limited resources of the mother plant (Harper et al., 1970). Scientific interest in seed size relates not only to its importance in plant fitness, but also to crop domestication. Crops domesticated for consumption of their seeds (e.g. rice and wheat) often produce seeds significantly larger than their wild ancestors (Fan et al., 2006; Song et al., 2007; Gegas et al., 2010).
[0004] A seed consists of three major components; the embryo, the endosperm and the seed coat, that originate from different cells of the ovule and possess different complements of maternal and paternal genomes. In angiosperms, seed development involves a double fertilization process in which one sperm nucleus fuses with the egg to produce the diploid embryo, while the other sperm nucleus fuses with two polar nuclei to form the triploid endosperm (Lopes and Larkins, 1993). The seed coat differentiates after fertilization from maternally derived integuments. The embryo is surrounded by the endosperm, which, in turn, is enclosed within the maternal seed coat. Therefore, the size of a seed is determined by the coordinated growth of maternal sporophytic and zygotic tissues.
[0005] The size of seeds is influenced by a variety of cellular processes. Seed size is known to be influenced by parent-of-origin effects. The cross between a diploid female parent and tetraploid male parent produces larger F.sub.1 seeds, whereas the reciprocal cross generates smaller F.sub.1 seeds, suggesting that maternal or paternal excess of genome has a dramatic effect on seed size (Scott et al., 1998). Similar to interploidy crosses, crosses between wild type and met1 mutant with hypomethylated genomes show that larger F.sub.1 seeds are generated when the maternal parent is met1, while smaller F.sub.1 seeds are produced when the paternal parent is met1 (Xiao et al., 2006), suggesting that parent-of-origin effects may involve DNA methylation. In addition, the size of seeds is affected by the maternal and/or zygotic tissues. Several factors that influence seed size by the zygotic tissues have been recently identified in Arabidopsis. haiku (iku) and miniseed3 (mini3) mutants form small seeds due to the reduced growth and early cellularization of the endosperm (Garcia et al., 2003; Luo et al., 2005). IKU1, IKU2 and MINI3 function in the same pathway to promote endosperm growth in Arabidopsis (Garcia et al., 2003; Luo et al., 2005; Wang et al., 2010). SHORT HYPOCOTYL UNDER BLUE1 (SHB1) associates with both MINI3 and IKU2 promoters in vivo and may act with other proteins that bind to MINI3 and IKU2 promoters to promote endosperm growth in the early phase of seed development (Zhou et al., 2009). Seed size is also influenced by maternal tissues. Several factors that act in maternal tissues to influence seed size have been isolated. Arabidopsis TRANSPARENT TESTA GLABRA 2 (TTG2) promotes seed growth by increasing cell expansion in the integuments (Garcia et al., 2005; Ohto et al., 2009). APETALA2 (AP2) may restrict seed growth by limiting cell expansion in the integuments (Jofuku et al., 2005; Ohto et al., 2005; Ohto et al., 2009). By contrast, AUXIN RESPONSE FACTOR 2 (ARF2) and the predicted ubiquitin receptor CYP78A61 limit seed size by restricting cell proliferation in the integuments (Schruff et al., 2006; Li et al., 2008). However, CYP78A5/KLU promotes seed growth by increasing cell proliferation in the integuments of ovules (Adamski et al., 2009). Therefore, the integument or seed coat plays a key role in maternal control of seed size. In addition, many quantitative trait loci (QTLs) for seed size have been mapped in Arabidopsis and crops (Alonso-Blanco et al., 1999; Li et al., 2004; Fan et al., 2006; Song et al., 2007; Shomura et al., 2008; Weng et al., 2008). Three grain size QTLs have been recently cloned in rice, including GS3, GW2 and qSW5/GW5 (Fan et al., 2006; Song et al., 2007; Shomura et al., 2008; Weng et al., 2008). However, it is not clear whether these three factors act in maternal and/or zygotic tissues in rice.
[0006] Despite the importance of seed size, relatively little is known about the genetic and molecular mechanisms that control seed size.
[0007] Identification of factors that control the final size of seeds will not only advance understanding of the mechanisms of size control in plants, but may also have substantial practical applications for example in improving crop yield.
SUMMARY OF INVENTION
[0008] The present inventors have identified and characterized a genetic factor which alters seed size in plants. This may be useful, for example, in modulating seed size and improving yields in crop plants.
[0009] An aspect of the invention provides a method of modulating seed size in a plant which comprises;
[0010] altering the expression of a CYP78A polypeptide within cells of said plant.
[0011] Another aspect of the invention provides a method of producing a plant with an altered seed size comprising:
[0012] incorporating a heterologous nucleic acid which alters the expression of a CYP78A polypeptide into a plant cell by means of transformation, and;
[0013] regenerating the plant from one or more transformed cells.
[0014] Other aspects of the invention relate to plant cells with altered expression of a CYP78A polypeptide relative to controls, for example plant cells produced by a method described above; plants comprising such cells, and the seeds and progeny of such plants.
[0015] The CYP78A polypeptide may be a CYP78A6 polypeptide.
[0016] The expression of two or more CYP78A polypeptides may be altered in the plant cells.
[0017] The expression of one or more other growth factors, such as DA or BB may additionally be altered in the plant cells.
BRIEF DESCRIPTION OF DRAWINGS
[0018] FIG. 1 shows the isolation of an enhancer of da1-1 (eod3-1D). FIG. 1(A) shows seeds from wild-type, da1-1 and eod3-1D da1-1 plants (from left to right). FIG. 1(B) shows mature embryos of wild type, da1-1 and eod3-1D da1-1 (from left to right). FIG. 1(C) shows 10-d-old-seedlings of wild type, da1-1 and eod3-1D da1-1 (from left to right). FIG. 1(D) shows projective area of wild-type, da1-1 and eod3-1D da1-1 seeds. FIG. 1(E) shows seed weight of wild type, da1-1 and eod3-1D da1-1. FIG. 1(F) shows cotyledon area of 10-d-old wild-type, da1-1 and eod3-1D da1-1 seedlings. Values (D-F) are given as mean.+-.SE relative to the respective wild-type values, set at 100%. Bars: A, B, 0.5 mm; C, 5 mm.
[0019] FIG. 2 shows seed and organ size in the eod3-1D mutant. 2(A-D) show seeds (A), flowers (B), stamens and carpels (C), and siliques (D) of wild type (left) and eod3-1D (right). 2(E) shows projective area of wild-type and eod3-1D seeds. 2(F) shows seed weight of wild type and eod3-1D. 2(G) shows projective area of Col-0.times.Col-0 F.sub.1, CS4002.times.Col-0 F.sub.1 and eod3-1D.times.eod3-1D F.sub.1 seeds. Values (E-G) are given as mean.+-.SE relative to the respective wild-type values, set at 100%. Bars: A, B, C, D, 1 mm.
[0020] FIG. 3 shows the cloning of the EOD3 gene. 3(A) shows the structure of T-DNA insertion in the eod3-1D mutant. 3(B) shows expression levels of At2g46660 (EOD3) and At2g46670 in da1-1 and eod3-1D da1-1 seedlings. 3(C) shows projective area of wild-type, 35S::EOD3#7, 35S::EOD3#9 and eod3-1D seeds. 3(D) shows expression levels of EOD3 in wild-type, 35S::EOD3#7, 35S::EOD3#9 and eod3-1D seedlings. 3(E) shows phylogenetic tree of the CYP78A family members in Arabidopsis thaliana. Values (C and D) are given as mean.+-.SE relative to the wild-type value, set at 100%. **, P<0.01 compared with the wild type (Student's t-test).
[0021] FIG. 4 shows that EOD3 acts redundantly with CYP78A9 to influence seed size. 4(A) shows EOD3 gene structure. The start codon (ATG) and the stop codon (TAA) are indicated. Closed boxes indicate the coding sequence, and the line between boxes indicates intron. T-DNA insertion sites (eod3-ko1 and eod3-ko2) in the EOD3 gene were shown. 4(B) shows CYP78A9 gene structure. The start codon (ATG) and the stop codon (TAA) are indicated. Closed boxes indicate the coding sequence, and the line between boxes indicates intron. The T-DNA insertion site (cyp78a9-ko1) in the CYP78A9 gene was shown. 4(C) shows seeds from wild-type, eod3-ko1 cyp78a9-ko1 and eod3-ko2 cyp78a9-ko1 plants (from top to bottom). 4(D) Siliques from wild-type, eod3-ko1, eod3-ko2, cyp78a9-ko1, eod3-ko1 cyp78a9-ko1 and eod3-ko2 cyp78a9-ko1 plants (from left to right). 4(E) shows opened siliques from wild-type and eod3-ko1 cyp78a9-ko1 plants (from left to right). 4(F) shows projective area of wild-type, eod3-ko1, eod3-ko2, cyp78a9-ko1, eod3-ko1 cyp78a9-ko1 and eod3-ko2 cyp78a9-ko1 seeds. 4(G) shows seed weight of wild type, eod3-ko1, eod3-ko2, cyp78a9-ko1, eod3-ko1 cyp78a9-ko1 and eod3-ko2 cyp78a9-ko1. 4(H) shows silique length of wild type, eod3-ko1, eod3-ko2, cyp78a9-ko1, eod3-ko1 cyp78a9-ko1 and eod3-ko2 cyp78a9-ko1. 4(I and J) show seed length (I) and seed width (J) of wild type, eod3-ko1, cyp78a9-ko1 and eod3-ko1 cyp78a9-ko1. Values (F-J) are given as mean.+-.SE relative to the respective wild-type values, set at 100%. **, P<0.01 and *, P<0.05 compared with the wild type (Student's t-test). Bars: C, D, E, 1 mm.
[0022] FIG. 5 shows EOD3 acts maternally to control seed size. 5(A) shows projective area of Col-0.times.Col-0 F.sub.1, Col-0.times.eod3-ko1 cyp78a9-ko1(d) F eod3-ko1 cyp78a9-ko1(d).times.eod3-ko1 cyp78a9-ko1(d) F.sub.1 and eod3-ko1 cyp78a9-ko1(d).times.Col-0 F.sub.1 seeds. 5(B) shows projective area of Col-0.times.Col-0 F.sub.1, Col-0.times.eod3-1D F.sub.1, eod3-1D/+.times.eod3-1D/+(e/e) F.sub.1, eod3-1D/+.times.Col-0 (e/c) F.sub.1 seeds. Values (A and B) are given as mean.+-.SE relative to the respective wild-type values, set at 100%.
[0023] FIG. 6 shows cell size and cell number in the integuments of wild-type, eod3-ko1 cyp78a9-ko1 and eod3-1D developing seeds. 6(A) shows mature ovule perimeter. 6(B) shows the outer integument length at specific times after pollination, as measured from the insertion point at the funiculus to the tip at the micropyle. 6(C) shows the number of cells in the outer integument at 6DAP. 6(D) shows the average length of cells in the outer integument at 6DAP calculated from the outer integument length and cell number for individual seeds. Values (A-D) are given as mean.+-.SE. **, P<0.01 compared with the wild type (Student's t-test).
[0024] FIG. 7 shows cell size and cell number in cotyledons of mature wild-type, eod3-ko1 cyp78a9-ko1 and eod3-1D embryos. 7(A) shows mature embryos of wild type, eod3-ko1 cyp78a9-ko1 and eod3-1D. 7(B) shows cotyledon area of wild-type, eod3-ko1 cyp78a9-ko1 and eod3-1D embryos. 7(C) Average area of palisade cells in cotyledons of wild-type, eod3-ko1 cyp78a9-ko1 and eod3-1D embryos. Values (B and C) are given as mean.+-.SE relative to the respective wild-type values, set at 100%. **, P<0.01 compared with the wild type (Student's t-test). Bar: A, 0.25 mm.
[0025] FIG. 8 shows the expression pattern of EOD3. 8(A) shows RT-PCR analysis of the EOD3 gene expression. Total RNA was isolated from stems, roots, 10-d-old seedlings, leaves and inflorescences. 8(B-L) show EOD3 expression activity monitored by pEOD3::GUS transgene expression. Three GUS-expressing lines were observed and all showed a similar pattern, although they differed slightly in the intensity of the staining. Histochemical analysis of GUS activity in a 14-d-old seedling (B), a sepal (C), a petal (D), a stamen (E), a carpel (F), an inflorescence (G), the valve of a silique (H) and embryos (I-L). No GUS activity was detected in developing seeds. 8(M and N) show results of in situ hybridization with EOD3 antisense probe. Cross-section of the carpel of a stage 8 flower (M). Cross-section of the carpel of a stage 12 flower (N). The blue arrow indicates the central region of the septum, and the red arrow shows the funiculus. Bars: B, 2 mm; G, 1 mm; C, E, F, I, J, K, L, 100 .mu.m; D, M, N, 50 .mu.m. H, 200 .mu.m.
[0026] FIG. 9 shows genetic interactions of eod3 with da1-1 and ttg2-3 mutants. 9(A) shows the projective area of wild-type, eod3-1D, da1-1 and da1-1 eod3-1D seeds. 9(B) shows projective area of wild-type, ttg2-3, eod3-ko1 and ttg2-3 eod3-ko1 seeds. Values (A-B) are given as mean.+-.SE relative to the respective wild-type values, set at 100%.
[0027] FIG. 10 shows eod3-1D enhances the organ size phenotype of da1-1. 10A shows flowers of wild type, da1-1 and eod3-1D da1-1. 10(b) shows area of the fifth leaves in wild type, da1-1 and eod3-1D da1-1. Values (B) are given as mean.+-.SE relative to the respective wild-type values, set at 100%. Bar: A, 1 mm.
[0028] FIG. 11 shows organ size and reproductive development in eod3-1D. 11(A) shows sepal length (SL), petal length (PL), petal width (PW), petal area (PA), stamen length (STL) and carpel length (CL) of wild-type (left) and eod3-1D (right) flowers. 11(B and C) show the earliest-arising flowers on the primary inflorescences of wild type (B) and eod3-1D (C). 11(D and E) show pollens from the earliest-arising flowers were stained by using Alexander staining buffer. Values (A) are given as mean.+-.SE relative to the respective wild-type values, set at 100%. Bars: B, C, 1 mm; D,E, 100 .mu.m.
[0029] FIG. 12 shows phenotypes of wild-type, eod3-1D and 35S::EOD3 plants. 12A shows 56-d-old wild-type, eod3-1D, 35S::EOD3#7 and 35S::EOD3#9 plants. 12B shows primary inflorescence stems of wild-type, eod3-1D, 35S::EOD3#7 and 35S::EOD3#9 plants. 12C shows percent of fertile siliques on the primary inflorescence. Values (C) are given as mean.+-.SE. Bars: A, B, 1 cm.
[0030] FIG. 13 shows identification of eod3-ko1, eod3-ko2 and cyp78a9-ko1 mutants. 13(A-C) show PCR identification of T-DNA insertions in eod3-ko1 (A), eod3-ko2 (B), cyp78a9-ko1 (C) mutants with T-DNA specific primers and flanking primers.
[0031] FIG. 14 shows EOD3 acts maternally to influence seed size. Projective area of individual seeds from eod3-1D/+ plants fertilized with wild-type pollen was measured. These seeds were further genotyped for the eod3-1D mutation. The data shows that the eod3-1D mutation is not associated with variation in the size of these seeds (P>0.05, Student's t-test).
[0032] FIG. 15 shows mature ovules from Col-0, eod3-ko1 cyp78a9-ko1 and eod3-1D plants. Bars: A, B, C, 50 .mu.m.
[0033] FIG. 16 shows EOD3 and CYP78A9 expression in developing seeds. 16(A and B) show results of in situ hybridization with EOD3 antisense probe. 16(C and D) show results of in situ hybridization with EOD3 sense probe. 16(E and F) show results of in situ hybridization with CYP78A9 antisense probe. 16(G and H) show results of in situ hybridization with CYP78A9 sense probe. Bars: A, B, C, D, E, F, G, H, 50 .mu.m.
[0034] FIG. 17 shows expression of EOD3 in developing seeds using RT-PCR analysis of the EOD3 gene expression. Total RNA was isolated from developing seeds within elongated siliques.
[0035] FIG. 18 shows phylogenic analysis of Arabidopsis CYP78A6 and its orthologues.
[0036] FIG. 19 shows the Gateway Binary Vector pIPKb002 containing the Zm-ubiqutin promoter used to expresss EOD3 in Oryza sativa.
[0037] FIG. 20 shows seed size in TO transgenic Oryza sativa overexpressing EOD3. * represents p<0.01 in t-test with the smallest seed line (11-5).
[0038] Table 1 shows phenotypes of wild-type, eod3-ko1, cyp78a9-ko1, eod3-ko1 cyp78a9-ko1 and eod3-1D plants.
[0039] Table 2 shows developmental stages of embryogenesis.
[0040] Table 3 shows primers.
DETAILED DESCRIPTION OF EMBODIMENTS OF THE INVENTION
[0041] In various aspects, the invention provides methods which relate to the modulation of CYP78A expression in plant cells. This modulation may be useful in altering, for example increasing or decreasing, seed size in plants.
[0042] CYP78A polypeptides are a sub-family of cytochrome p450 (CYP) dependent monooxygenases which are found only in plants. CYP78A polypeptides may be defined by phylogenetic analysis on the basis of overall identity and sequence conservation within domains (Chapple Annu. Rev. Plant Physiol. Plant Mol. Biol. (1998) 49:311-43)
[0043] A CYP78A polypeptide may comprise an amino acid sequence which is shown in FIG. 18 or an amino acid sequence which is selected from the group consisting of SEQ ID NOS:
[0044] 42 to 83 or an amino acid sequence which is a variant or fragment of one of these sequences which retains CYP78A activity.
[0045] Other CYP78A polypeptide sequences which include the characteristic features set out above may be identified using standard sequence analysis tools.
[0046] In some preferred embodiments, the CYP78A polypeptide may be a member of the phylogenetic grouping of CYP78A polypeptides which comprises CYP78A6, CYP78A8 and CYP78A9 and excludes CYP78A7, CYP78A5 and CYP78A10, as shown in FIG. 3E (i.e. a CYP78A6-clade polypeptide).
[0047] For example, a CYP78A6-clade polypeptide may comprise 1, 2, 3, 4, 5, 6 or all 7 of the amino acid sequence motifs of SEQ ID NOS: 84 to 90;
[0048] GGAWGKYX.sub.1R (SEQ ID NO: 84), wherein X.sub.1 is any amino acid, preferably G, H or T, most preferably G.
[0049] X.sub.2G X.sub.3GVGSMSX.sub.4 X.sub.5S X.sub.6X.sub.7AHR (SEQ ID NO: 85), wherein X.sub.2 is any amino acid, preferably V or N, most preferably V; wherein X.sub.3 is any amino acid, preferably K or R, most preferably K; wherein X.sub.4 is absent or any amino acid, preferably absent or R, most preferably absent; wherein X.sub.5 is any amino acid, preferably M or S, most preferably M; wherein X.sub.6 is any amino acid, preferably S, N or H, most preferably S; and wherein X.sub.7 is any amino acid, preferably T or V, most preferably T.
[0050] MASGX.sub.8X.sub.9X.sub.10X.sub.11VVTCX.sub.12X.sub.13VAKNX.sub.14S- VADRV (SEQ ID NO: 86), wherein X.sub.8 is any amino acid, preferably T or D, most preferably T; wherein X.sub.9 is any amino acid, preferably T or R, most preferably R; wherein X.sub.10 is absent or any amino acid, preferably absent or K, most preferably absent; wherein X.sub.11 is absent or any amino acid, preferably absent or V, most preferably absent; wherein X.sub.12 is any amino acid, preferably N or H, most preferably N; wherein X.sub.13 is any amino acid, preferably D or A, most preferably D; wherein X.sub.14 is absent or any amino acid, preferably absent or S, most preferably absent.
TABLE-US-00001 (SEQ ID NO: 87) VGYDGTNWTDHW (SEQ ID NO: 88) AVWMRGTDVA (SEQ ID NO: 89) KVRHGSWARX.sub.15TDT,
wherein X.sub.15 is any amino acid, preferably A or S, most preferably A.
[0051] VAGTTAMVNMWAX.sub.16X.sub.17X.sub.18DHVWX.sub.19X.sub.20KRVAKGX.sub- .21SVGSDRAGSGX.sub.22RX.sub.23CG KNGTTV (SEQ ID NO: 90); wherein independently, X.sub.16 is any amino acid, preferably A or V, most preferably V; X.sub.17 is absent or any amino acid, preferably absent or S, most preferably S; X.sub.18 is any amino acid, preferably H or R, most preferably H; X.sub.19 is any amino acid, preferably V, N or D, most preferably V; X.sub.20 is absent or any amino acid, preferably absent or D, most preferably D; X.sub.21 is any amino acid, preferably A or V, most preferably V; X.sub.22 is any amino acid, preferably R or K, most preferably R; and X.sub.23 is absent or any amino acid, preferably absent or V, most preferably absent.
[0052] For example, a CYP78A6-clade polypeptide may comprise SEQ NO:84 in combination with any 1, 2, 3, 4, 5 or all 6 of SEQ ID NOS: 85 to 90; a CYP78A6-clade polypeptide may comprise SEQ NO:85 in combination with any 1, 2, 3, 4, 5 or all 6 of SEQ ID NOS: 84 and 86 to 90; a CYP78A6-clade polypeptide may comprise SEQ NO:86 in combination with any 1, 2, 3, 4, 5 or all 6 of SEQ ID NOS: 84, 85 and 87 to 90; a CYP78A6-clade polypeptide may comprise SEQ NO:87 in combination with any 1, 2, 3, 4, 5 or all 6 of SEQ ID NOS: 84 to 86 and 88 to 90; a CYP78A6-clade polypeptide may comprise SEQ NO:88 in combination with any 1, 2, 3, 4, 5 or all 6 of SEQ ID NOS: 84 to 87, 89 or 90; a CYP78A6-clade polypeptide may comprise SEQ NO:89 in combination with any 1, 2, 3, 4, 5 or all 6 of SEQ ID NOS: 84 to 88 and 90; or a CYP78A6-clade polypeptide may comprise SEQ NO:90 in combination with any 1, 2, 3, 4, 5 or all 6 of SEQ ID NOS: 84 to 89.
[0053] In some preferred embodiments, a CYP78A6-clade polypeptide may comprise an amino acid sequence selected from the group consisting of SEQ ID NOS:42 to 44, or may be variant or a fragment of one of these sequences which retains CYP78A activity.
[0054] Preferably, the CYP78A6-clade polypeptide is a CYP78A6 polypeptide or a functional homologue thereof, as described herein. A CYP78A6 polypeptide may comprise 1, 2, 3, 4, 5, 6 or all 7 of the amino acid sequence motifs of SEQ ID NOS: 87, 88 and 91 to 95;
TABLE-US-00002 (SEQ ID NO: 91) GGAWGKYGRSGSYKTGN (SEQ ID NO: 92) VGKGVGSMSMSSTAHR (SEQ ID NO: 93) MASGTRVVTCNDVAKNSVADRV (SEQ ID NO: 94) KVRHGSWARATDT (SEQ ID NO: 95) VAGTTAMVNMWAVSHDHVWVDKRVAKGVSVGSDRAGSGRRCGKNGTTV.
[0055] For example, a CYP78A6 polypeptide may comprise the amino acid sequence of A. thaliana CYP78A6 (At2g46660) (SEQ ID NO: 42) or may be a fragment or variant of this sequence which retains CYP78A activity. Other CYP78A6 polypeptides may comprise the amino acid sequence of any one of SEQ ID NOS: 42 to 83 or may be a fragment or variant of the sequence which retains CYP78A activity.
[0056] A CYP78A polypeptide which is a variant of a reference CYP78A sequence, such as any one of SEQ ID NOS: 42 to 83, preferably SEQ ID NOS: 42 to 44, most preferably SEQ ID NO:42, may comprise an amino acid sequence having at least 20%, at least 30%, at least 40%, at least 50%, at least 55%, at least 60%, at least 70%, at least 80%, at least 90%, at least 95%, or at least 98% sequence identity to the reference sequence.
[0057] Particular amino acid sequence variants may differ from the reference CYP78A sequence, such as any one of SEQ ID NOS: 42 to 83, by insertion, addition, substitution or deletion of 1 amino acid, 2, 3, 4, 5-10, 10-20 20-30, 30-50, or more than 50 amino acids.
[0058] Sequence similarity and identity are commonly defined with reference to the algorithm GAP (Wisconsin Package, Accelerys, San Diego USA). GAP uses the Needleman and Wunsch algorithm to align two complete sequences that maximizes the number of matches and minimizes the number of gaps. Generally, default parameters are used, with a gap creation penalty=12 and gap extension penalty=4.
[0059] Use of GAP may be preferred but other algorithms may be used, e.g. BLAST (which uses the method of Altschul et al. (1990) J Mol. Biol. 215: 405-410), FASTA (which uses the method of Pearson and Lipman (1988) PNAS USA 85: 2444-2448), or the Smith-Waterman algorithm (Smith and Waterman (1981) J Mol Biol. 147: 195-197), or the TBLASTN program, of Altschul et al. (1990) supra, generally employing default parameters. In particular, the psi-Blast algorithm (Nucl. Acids Res. (1997) 25 3389-3402) may be used.
[0060] Sequence comparison may be made over the full-length of the relevant sequence described herein.
[0061] A CYP78A polypeptide which is a fragment of a reference CYP78A sequence, such as any one of SEQ ID NOS: 42 to 83, may consist of fewer amino acid residues than the full-length sequence. A CYP78A polypeptide fragment retains CYP78A activity and may, for example, comprise 100 or more, 150 or more, 200 or more or 250 or more amino acids.
[0062] Methods of increasing seed size in plants as described herein may comprise increasing expression of a CYP78A polypeptide in one or more cells of the plant relative to controls.
[0063] CYP78A expression may be increased by mutation. For example, a nucleic acid sequence which represses expression of a CYP78A coding sequence may be mutated. Suitable mutation methods, such as insertional activation using a heterologous nucleic acid, are well known in the art.
[0064] Alternatively, CYP78A expression may be increased by over-expression of a CYP78A coding sequence. For example, a heterologous nucleic acid encoding the CYP78A polypeptide may be expressed within the cells of a plant or a heterologous nucleic acid which promotes or increases expression of an endogenous CYP78A coding sequence may be inserted into the cells of a plant.
[0065] In some preferred embodiments, a nucleic acid encoding a CYP78A polypeptide may comprise the nucleotide sequence of SEQ ID NO: 1 or any one of SEQ ID NOS: 2 to 41 or may be a variant or fragment of this sequence which encodes a polypeptide which retains CYP78A activity.
[0066] Other nucleic acid sequences which encode CYP78A polypeptides are available on public databases.
[0067] A variant sequence may be a mutant, homologue, or allele of a reference CYP78A nucleotide sequence, such as any one of SEQ ID NOS: 1 to 41, or a reference BB sequence, such as SEQ ID NO: 96 and may differ from the reference CYP78A or BB sequence by one or more of addition, insertion, deletion or substitution of one or more nucleotides in the nucleic acid, leading to the addition, insertion, deletion or substitution of one or more amino acids in the encoded polypeptide. Of course, changes to the nucleic acid that make no difference to the encoded amino acid sequence are included. A nucleic acid encoding a CYP78A polypeptide may comprise a sequence having at least 20% or at least 30% sequence identity with the reference CYP78A nucleic acid sequence, preferably at least 40%, at least 50%, at least 60%, at least 65%, at least 70%, at least 80%, at least 90%, at least 95% or at least 98%. A nucleic acid encoding a BB polypeptide may comprise a sequence having at least 20% or at least 30% sequence identity with the reference BB nucleic acid sequence, preferably at least 40%, at least 50%, at least 60%, at least 65%, at least 70%, at least 80%, at least 90%, at least 95% or at least 98%. Sequence identity is described above.
[0068] A fragment or variant may comprise a sequence which encodes a functional CYP78A polypeptide i.e. a polypeptide which retains one or more functional characteristics of the polypeptide encoded by the wild-type CYP78A gene, for example, cytochrome p450 monooxygenase activity.
[0069] A nucleic acid comprising a nucleotide sequence which is a variant of a reference CYP78A6 nucleic acid sequence, such as any one of SEQ ID NOS: 1 to 41, may selectively hybridise under stringent conditions with this nucleic acid sequence or the complement thereof.
[0070] Stringent conditions include, e.g. for hybridization of sequences that are about 80 to 90% identical, hybridization overnight at 42.degree. C. in 0.25M Na.sub.2HPO.sub.4, pH 7.2, 6.5% SDS, 10% dextran sulfate and a final wash at 55.degree. C. in 0.1.times.SSC, 0.1% SDS. For detection of sequences that are greater than about 90% identical, suitable conditions include hybridization overnight at 65.degree. C. in 0.25M Na.sub.2HPO.sub.4, pH 7.2, 6.5% SDS, 10% dextran sulfate and a final wash at 60.degree. C. in 0.1.times.SSC, 0.1% SDS.
[0071] An alternative, which may be particularly appropriate with plant nucleic acid preparations, is a solution of 5.times.SSPE (final 0.9 M NaCl, 0.05M sodium phosphate, 0.005M EDTA pH 7.7), 5.times.Denhardt's solution, 0.5% SDS, at 50.degree. C. or 65.degree. C. overnight. Washes may be performed in 0.2.times.SSC/0.1% SDS at 65.degree. C. or at 50-60.degree. C. in 1.times.SSC/0.1% SDS, as required.
[0072] Nucleic acids as described herein may be wholly or partially synthetic. In particular, they may be recombinant in that nucleic acid sequences which are not found together in nature (do not run contiguously) have been ligated or otherwise combined artificially. Alternatively, they may have been synthesised directly e.g. using an automated synthesiser.
[0073] The nucleic acid may of course be double- or single-stranded, cDNA or genomic DNA, or RNA. The nucleic acid may be wholly or partially synthetic, depending on design. Naturally, the skilled person will understand that where the nucleic acid includes RNA, reference to the sequence shown should be construed as reference to the RNA equivalent, with U substituted for T.
[0074] Nucleic acid encoding a CYP78A polypeptide may be expressed in the same plant species or variety from which it was originally isolated or in a different plant species or variety (i.e. a heterologous plant).
[0075] "Heterologous" indicates that the gene/sequence of nucleotides in question or a sequence regulating the gene/sequence in question, has been introduced into said cells of the plant or an ancestor thereof, using genetic engineering or recombinant means, i.e. by human intervention. Nucleotide sequences which are heterologous to a plant cell may be non-naturally occurring in cells of that type, variety or species (i.e. exogenous or foreign) or may be sequences which are non-naturally occurring in that sub-cellular or genomic environment of the cells or may be sequences which are non-naturally regulated in the cells i.e. operably linked to a non-natural regulatory element. "Isolated" indicates that the isolated molecule (e.g. polypeptide or nucleic acid) exists in an environment which is distinct from the environment in which it occurs in nature. For example, an isolated nucleic acid may be substantially isolated with respect to the genomic environment in which it naturally occurs. An isolated nucleic acid may exist in an environment other than the environment in which it occurs in nature.
[0076] Methods of reducing seed size in plants as described herein may comprise reducing or abolishing expression of a CYP78A polypeptide in one or more cells of the plant relative to controls.
[0077] CYP78A expression may be reduced or abolished by mutation. For example, nucleic acid sequence encoding a CYP78A polypeptide within cells of said plant may be mutated, for example by insertion of a heterologous nucleic acid, within the plant cells. Alternatively, nucleic acid which regulates the expression of a CYP78A coding sequence within cells of said plant, such as a promoter or enhancer sequence, may be mutated, for example by insertion of a heterologous nucleic acid, within the plant cells.
[0078] The expression of CYP78A polypeptide may be reduced or abolished by mutating the nucleic acid sequences in the plant cell which encode the active protein and regenerating a plant from the mutated cell. The nucleic acids may be mutated by insertion or deletion of one or more nucleotides. Techniques for the inactivation or knockout of target genes are well-known in the art.
[0079] CYP78A expression may be reduced or abolished by suppression. For example, a heterologous nucleic encoding a suppressor nucleic acid which suppresses expression of a CYP78A polypeptide may be expressed within the plant cells.
[0080] The suppression of the expression of target polypeptides in plant cells is well-known in the art. Suitable suppressor nucleic acids may be copies of all or part of the target CYP78A gene inserted in antisense or sense orientation or both relative to the CYP78A gene, to achieve reduction in expression of the CYP78A gene. See, for example, van der Krol et al., (1990) The Plant Cell 2, 291-299; Napoli et al., (1990) The Plant Cell 2, 279-289; Zhang et al., (1992) The Plant Cell 4, 1575-1588, and U.S. Pat. No. 5,231,020. Further refinements of this approach may be found in WO95/34668 (Biosource); Angell & Baulcombe (1997) The EMBO Journal 16, 12:3675-3684; and Voinnet & Baulcombe (1997) Nature 389: pg 553.
[0081] In some embodiments, the suppressor nucleic acids may be sense suppressors of expression of active CYP78A protein.
[0082] A suitable sense suppressor nucleic acid may be a double stranded RNA (Fire A. et al Nature, Vol 391, (1998)). dsRNA mediated silencing is gene specific and is often termed RNA interference (RNAi). RNAi is a two step process. First, dsRNA is cleaved within the cell to yield short interfering RNAs (siRNAs) of about 21-23 nt length with 5' terminal phosphate and 3' short overhangs (.about.2 nt). The siRNAs target the corresponding mRNA sequence specifically for destruction (Zamore P. D. Nature Structural Biology, 8, 9, 746-750, (2001)
[0083] siRNAs (sometimes called microRNAs) down-regulate gene expression by binding to complementary RNAs and either triggering mRNA elimination (RNAi) or arresting mRNA translation into protein. siRNA may be derived by processing of long double stranded RNAs and when found in nature are typically of exogenous origin. Micro-interfering RNAs (miRNA) are endogenously encoded small non-coding RNAs, derived by processing of short hairpins. Both siRNA and miRNA can inhibit the translation of mRNAs bearing partially complementary target sequences without RNA cleavage and degrade mRNAs bearing fully complementary sequences.
[0084] Accordingly, the present invention provides the use of RNAi sequences based on the CYP78A nucleic acid sequence for suppression of the expression of the CYP78A polypeptide. For example, an RNAi sequence may correspond to a fragment of any one of SEQ ID NOS: 1 to 41 or other CYP78A nucleic acid sequence referred to above, or a variant thereof.
[0085] siRNA molecules are typically double stranded and, in order to optimise the effectiveness of RNA mediated down-regulation of the function of a target gene, it is preferred that the length and sequence of the siRNA molecule is chosen to ensure correct recognition of the siRNA by the RISC complex that mediates the recognition by the siRNA of the mRNA target and so that the siRNA is short enough to reduce a host response.
[0086] miRNA ligands are typically single stranded and have regions that are partially complementary enabling the ligands to form a hairpin. miRNAs are RNA sequences which are transcribed from DNA, but are not translated into protein. A DNA sequence that codes for a miRNA is longer than the miRNA. This DNA sequence includes the miRNA sequence and an approximate reverse complement. When this DNA sequence is transcribed into a single-stranded RNA molecule, the miRNA sequence and its reverse-complement base pair to form a partially double stranded RNA segment. The design of microRNA sequences is discussed on John et al, PLoS Biology, 11(2), 1862-1879, 2004.
[0087] Typically, the RNA molecules intended to mimic the effects of siRNA or miRNA have between 10 and 40 ribonucleotides (or synthetic analogues thereof), more preferably between 17 and 30 ribonucleotides, more preferably between 19 and 25 ribonucleotides and most preferably between 21 and 23 ribonucleotides. In some embodiments of the invention employing double-stranded siRNA, the molecule may have symmetric 3' overhangs, e.g. of one or two (ribo)nucleotides, typically a UU of dTdT 3' overhang. Based on the disclosure provided herein, the skilled person can readily design suitable siRNA and miRNA sequences, for example using one of the numerous publically available on-line siRNA finders, such as GenScript siRNA Target Finder, GenScript USA Inc. siRNA and miRNA sequences can be synthetically produced and added exogenously to cause gene downregulation or produced using expression systems (e.g. vectors). In a preferred embodiment, the siRNA is synthesized synthetically.
[0088] Longer double stranded RNAs may be processed in the cell to produce siRNAs (see for example Myers (2003) Nature Biotechnology 21:324-328). The longer dsRNA molecule may have symmetric 3' or 5' overhangs, e.g. of one or two (ribo) nucleotides, or may have blunt ends. The longer dsRNA molecules may be 25 nucleotides or longer. Preferably, the longer dsRNA molecules are between 25 and 30 nucleotides long. More preferably, the longer dsRNA molecules are between 25 and 27 nucleotides long. Most preferably, the longer dsRNA molecules are 27 nucleotides in length. dsRNAs 30 nucleotides or more in length may be expressed using the vector pDECAP (Shinagawa et al., Genes and Dev., 17, 1340-5, 2003).
[0089] Another alternative is the expression of a short hairpin RNA molecule (shRNA) in the cell. shRNAs are more stable than synthetic siRNAs. A shRNA consists of short inverted repeats separated by a small loop sequence. One inverted repeat is complementary to the gene target. In the cell the shRNA is processed by DICER into a siRNA which degrades the target gene mRNA and suppresses expression. In a preferred embodiment the shRNA is produced endogenously (within a cell) by transcription from a vector. shRNAs may be produced within a cell by transfecting the cell with a vector encoding the shRNA sequence under control of a RNA polymerase III promoter such as the human H1 or 7SK promoter or a RNA polymerase II promoter. Alternatively, the shRNA may be synthesised exogenously (in vitro) by transcription from a vector. The shRNA may then be introduced directly into the cell. Preferably, the shRNA molecule comprises a partial sequence of SHR. For example, the shRNA sequence is between 40 and 100 bases in length, more preferably between 40 and 70 bases in length. The stem of the hairpin is preferably between 19 and 30 base pairs in length. The stem may contain G-U pairings to stabilise the hairpin structure.
[0090] siRNA molecules, longer dsRNA molecules or miRNA molecules may be made recombinantly by transcription of a nucleic acid sequence, preferably contained within a vector. Preferably, the siRNA molecule, longer dsRNA molecule or miRNA molecule comprises a partial sequence of any one of SEQ ID NOS: 1 to 41 or a variant thereof, preferably any one of SEQ ID NOS: 1, 2, or 3 or a variant thereof, most preferably SEQ ID NO: 1 or a variant thereof.
[0091] In other embodiments, the suppressor nucleic acid may be an anti-sense suppressor of expression of a CYP78A6 polypeptide. In using anti-sense sequences to down-regulate gene expression, a nucleotide sequence is placed under the control of a promoter in a "reverse orientation" such that transcription yields RNA which is complementary to normal mRNA transcribed from the "sense" strand of the target gene. See, for example, Rothstein et al, 1987; Smith et al, (1988) Nature 334, 724-726; Zhang et al, (1992) The Plant Cell 4, 1575-1588, English et al., (1996) The Plant Cell 8, 179-188. Antisense technology is also reviewed in Bourque, (1995), Plant Science 105, 125-149, and Flavell (1994) PNAS USA 91, 3490-3496.
[0092] An anti-sense suppressor nucleic acid may comprise an anti-sense sequence of at least 10 nucleotides from a nucleotide sequence is a fragment of any one of SEQ ID NOS: 1 to 41 or other CYP78A sequence referred to above, or a variant thereof.
[0093] It may be preferable that there is complete sequence identity in the sequence used for down-regulation of expression of a target sequence, and the target sequence, although total complementarity or similarity of sequence is not essential. One or more nucleotides may differ in the sequence used from the target gene. Thus, a sequence employed in a down-regulation of gene expression in accordance with the present invention may be a wild-type sequence (e.g. gene) selected from those available, or a variant of such a sequence.
[0094] The sequence need not include an open reading frame or specify an RNA that would be translatable. It may be preferred for there to be sufficient homology for the respective anti-sense and sense RNA molecules to hybridise. There may be down regulation of gene expression even where there is about 5%, 10%, 15% or 20% or more mismatch between the sequence used and the target gene. Effectively, the homology should be sufficient for the down-regulation of gene expression to take place.
[0095] A nucleic acid encoding a CYP78A polypeptide or a CYP78A suppressor as described herein may be operably linked to a heterologous regulatory sequence, such as a promoter, for example a constitutive, inducible, tissue-specific or developmental specific promoter.
[0096] Many suitable regulatory sequences are known in the art and may be used in accordance with the invention. Examples of suitable regulatory sequences may be derived from a plant virus, for example the Cauliflower Mosaic Virus 35S (CaMV 35S) gene promoter that is expressed at a high level in virtually all plant tissues (Benfey et al, (1990) EMBO J 9: 1677-1684). Other suitable constitutive regulatory elements include the cauliflower mosaic virus 19S promoter; the Figwort mosaic virus promoter; and the nopaline synthase (nos) gene promoter (Singer et al., Plant Mol. Biol. 14:433 (1990); An, Plant Physiol. 81:86 (1986)).
[0097] Constructs for expression of the CYP78A genes or CYP78A suppressors under the control of a strong constitutive promoter (the 35S promoter) are exemplified below but those skilled in the art will appreciate that a wide variety of other promoters may be employed to advantage in particular contexts.
[0098] A tissue-specific promoter may be employed to express the CYP78A polypeptide or CYP78A suppressor in a specific tissue or organ.
[0099] For example, a seed-, seed-coat- or integument-specific promoter may be used to express the CYP78A polypeptide or CYP78A suppressor in seeds. Suitable promoters include, for example Phaseolus vulgaris phas promoter, Vicia faba leB4-, usp- or sbp-promoters, Soybean .beta.-conglycinin .alpha.-subunit promoter, Brassica FAE1 promoter and At4g12960 promoter (AtGILTpro) (Wu et al Plant Cell Rep (2011) 30:75-80).
[0100] Alternatively, or in addition, one might select an inducible promoter. In this way, for example, the CYP78A polypeptide or suppressor may be expressed at specific times or places in order to obtain desired changes in organ growth. Inducible promoters include the alcohol inducible AlcA gene-expression system (Roslan et al., Plant Journal; 2001 Oct; 28(2):225-35) may be employed.
[0101] The nucleic acid encoding the CYP78A polypeptide or CYP78A suppressor may be contained on a nucleic acid construct or vector. The construct or vector is preferably suitable for transformation into and/or expression within a plant cell. A vector is, inter alia, any plasmid, cosmid, phage or Agrobacterium binary vector in double or single stranded linear or circular form, which may or may not be self transmissible or mobilizable, and which can transform prokaryotic or eukaryotic host, in particular a plant host, either by integration into the cellular genome or exist extrachromasomally (e.g. autonomous replicating plasmid with an origin of replication).
[0102] Specifically included are shuttle vectors by which is meant a DNA vehicle capable, naturally or by design, of replication in two different organisms, which may be selected from Actinomyces and related species, bacteria and eukaryotic (e.g. higher plant, mammalia, yeast or fungal) cells.
[0103] A construct or vector comprising nucleic acid as described above need not include a promoter or other regulatory sequence, particularly if the vector is to be used to introduce the nucleic acid into cells for recombination into the genome.
[0104] Constructs and vectors may further comprise selectable genetic markers consisting of genes that confer selectable phenotypes such as resistance to antibiotics such as kanamycin, hygromycin, phosphinotricin, chlorsulfuron, methotrexate, gentamycin, spectinomycin, imidazolinones, glyphosate and d-amino acids.
[0105] Those skilled in the art can construct vectors and design protocols for recombinant gene expression, for example in a microbial or plant cell. Suitable vectors can be chosen or constructed, containing appropriate regulatory sequences, including promoter sequences, terminator fragments, polyadenylation sequences, enhancer sequences, marker genes and other sequences as appropriate. For further details see, for example, Molecular Cloning: a Laboratory Manual: 3rd edition, Sambrook et al, 2001, Cold Spring Harbor Laboratory Press and Protocols in Molecular Biology, Second Edition, Ausubel et al. eds. John Wiley & Sons, 1992. Specific procedures and vectors previously used with wide success upon plants are described by Bevan, Nucl. Acids Res. (1984) 12, 8711-8721), and Guerineau and Mullineaux, (1993) Plant transformation and expression vectors. In: Plant Molecular Biology Labfax (Croy RRD ed) Oxford, BIOS Scientific Publishers, pp 121-148.
[0106] When introducing a chosen nucleic acid construct into a cell, certain considerations must be taken into account, well known to those skilled in the art. The nucleic acid to be inserted should be assembled within a construct that contains effective regulatory elements that will drive transcription. There must be available a method of transporting the construct into the cell. Once the construct is within the cell membrane, integration into the endogenous chromosomal material either will or will not occur. Finally, the target cell type is preferably such that cells can be regenerated into whole plants.
[0107] Those skilled in the art will also appreciate that in producing constructs for achieving expression of the genes according to this invention, it is desirable to use a construct and transformation method which enhances expression of the nucleic acid encoding the CYP78A polypeptide or CYP78A suppressor. Integration of a single copy of the gene into the genome of the plant cell may be beneficial to minimize gene silencing effects. Likewise, control of the complexity of integration may be beneficial in this regard. Of particular interest in this regard is transformation of plant cells utilizing a minimal gene expression construct according to, for example, EP1407000B1, herein incorporated by reference for this purpose.
[0108] Techniques well known to those skilled in the art may be used to introduce nucleic acid constructs and vectors into plant cells to produce transgenic plants with the properties described herein.
[0109] Agrobacterium transformation is one method widely used by those skilled in the art to transform plant species. Production of stable, fertile transgenic plants is now routine in the art (see for example Toriyama, et al. (1988) Bio/Technology 6, 1072-1074; Zhang, et al. (1988) Plant Cell Rep. 7, 379-384; Zhang, et al. (1988) Theor Appl Genet 76, 835-840; Shimamoto, et al. (1989) Nature 338, 274-276; CYP78A6tta, et al. (1990) Bio/Technology 8, 736-740; Christou, et al. (1991) Bio/Technology 9, 957-962; Peng, et al. (1991) International Rice Research Institute, Manila, Philippines 563-574; Cao, et al. (1992) Plant Cell Rep. 11, 585-591; Li, et al. (1993) Plant Cell Rep. 12, 250-255; Rathore, et al. (1993) Plant Molecular Biology 21, 871-884; Fromm, et al. (1990) Bio/Technology 8, 833-839; Gordon-Kamm, et al. (1990) Plant Cell 2, 603-618; D'Halluin, et al. (1992) Plant Cell 4, 1495-1505; Walters, et al. (1992) Plant Molecular Biology 18, 189-200; Koziel, et al. (1993) Biotechnology 11, 194-200; Vasil, I. K. (1994) Plant Molecular Biology 25, 925-937; Weeks, et al. (1993) Plant Physiology 102, 1077-1084; Somers, et al. (1992) Bio/Technology 10, 1589-1594; WO92/14828; Nilsson, O. et al (1992) Transgenic Research 1, 209-220).
[0110] Other methods, such as microprojectile or particle bombardment (U.S. Pat. No. 5,100,792, EP-A-444882, EP-A-434616), electroporation (EP 290395, WO 8706614), microinjection (WO 92/09696, WO 94/00583, EP 331083, EP 175966, Green et al. (1987) Plant Tissue and Cell Culture, Academic Press), direct DNA uptake (DE 4005152, WO 9012096, U.S. Pat. No. 4,684,611), liposome mediated DNA uptake (e.g. Freeman et al. Plant Cell Physiol. 29: 1353 (1984)) or the vortexing method (e.g. Kindle, PNAS U.S.A. 87: 1228 (1990d)) may be preferred where Agrobacterium transformation is inefficient or ineffective, for example in some gymnosperm species.
[0111] Physical methods for the transformation of plant cells are reviewed in Oard, 1991, Biotech. Adv. 9: 1-11.
[0112] Alternatively, a combination of different techniques may be employed to enhance the efficiency of the transformation process, e.g. bombardment with Agrobacterium coated microparticles (EP-A-486234) or microprojectile bombardment to induce wounding followed by co-cultivation with Agrobacterium (EP-A-486233).
[0113] Following transformation, a plant may be regenerated, e.g. from single cells, callus tissue or leaf discs, as is standard in the art. Almost any plant can be entirely regenerated from cells, tissues and organs of the plant. Available techniques are reviewed in Vasil et al., Cell Culture and Somatic Cell Genetics of Plants, Vol I, II and III, Laboratory Procedures and Their Applications, Academic Press, 1984, and Weissbach and Weissbach, Methods for Plant Molecular Biology, Academic Press, 1989.
[0114] The particular choice of a transformation technology will be determined by its efficiency to transform certain plant species as well as the experience and preference of the person practising the invention with a particular methodology of choice. It will be apparent to the skilled person that the particular choice of a transformation system to introduce nucleic acid into plant cells is not essential to or a limitation of the invention, nor is the choice of technique for plant regeneration.
[0115] In some embodiments, the plant cell may further comprise altered expression of a DA protein, such as DA-1, and/or EOD1/BB protein. For example, expression of a DA and/or EOD1/BB protein may be reduced or abolished in plant cells in which CYP78A expression is increased, or dominant negative forms of DA and/or EOD1/BB proteins may be expressed. Expression of a DA and/or EOD1/BB protein may be increased in plant cells in which CYP78A expression is reduced.
[0116] DA proteins possess a characteristic domain structure comprising
a LIM domain, a UIM1 domain and a UIM2 domain (Li et al Genes & Dev, 2008. 22: 1331-1336; WO2009/04752). ADA polypeptide may comprise the amino acid sequence of SEQ ID NO: 42 (AT1G19270; NP_173361.1 GI: 15221983) or may be a fragment or variant of this sequence which retains DA activity.
[0117] Big Brother (EOD1/BB) is an E3 ubiquitin ligase which is known to repress plant organ growth (Disch Curr Biol 16 272-279 (2006)). A BB protein may comprise the amino acid sequence of At3g63530 NP_001030922.1 GI: 79316205 (SEQ ID NO: 97), or may be a fragment or variant which retains BB activity or is capable of interfering with the function of BB.
[0118] A BB protein or DA protein which is a variant of a reference BB or DA sequence described above may comprise an amino acid sequence having at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 95%, or at least 98% sequence identity to the reference sequence. Sequence identity is described in more detail above.
[0119] DA proteins and EOD1/BB proteins, which may include AtDA1 (At1G19270) and AtBB (At3g63530), respectively, and variants thereof, are described and defined in detail in WO2009/04752, which is incorporated herein by reference for all purposes.
[0120] Particular amino acid sequence variants may differ from the DA polypeptide of SEQ ID NO: 42 or the BB polypeptide of SEQ ID NO: 97 (At3g63530) by insertion, addition, substitution or deletion of 1 amino acid, 2, 3, 4, 5-10, 10-20 20-30, 30-50, or more than 50 amino acids.
[0121] Plant as described herein having altered CYP78A expression in one or more cells therein, for example abolished, reduced, or increased CYP78A expression relative to controls, may be sexually or asexually propagated or off-spring or descendants may be grown.
[0122] Another aspect of the invention provides a method of producing a plant with an altered seed size comprising:
[0123] incorporating a heterologous nucleic acid which alters the expression of a CYP78A polypeptide into a plant cell by means of transformation, and;
[0124] regenerating the plant from one or more transformed cells.
[0125] As described above, the heterologous nucleic acid may encode a CYP78A polypeptide or a CYP78A suppressor molecule or may inactivate the endogenous CYP78A coding sequence of the plant or a regulatory sequence thereof, for example a repressor or enhancer.
[0126] The altered phenotype of the plant produced by the method is described in more detail above. The method may be useful, for example, in producing plants having increased yields, for example, crop plants having improved grain yield, relative to control plants.
[0127] In some embodiments, a method may further comprise reducing or abolishing the expression or activity of a DA polypeptide and/or EOD1/BB protein in the plant cell or plant.
[0128] This may be carried out before, at the same time or after the incorporation of the nucleic acid which encodes the CYP78A polypeptide. For example, in some embodiments, the expression or activity of a DA polypeptide and/or EOD1/BB protein may be abolished or reduced in one or more plant cells which already incorporate the nucleic acid encoding the CYP78A polypeptide. In other embodiments, the nucleic acid encoding the CYP78A polypeptide may be incorporated into one or more plant cells which have abolished or reduced expression of a DA polypeptide and/or EOD1/BB protein.
[0129] A plant thus produced may comprise a heterologous nucleic acid which encodes a CYP78A polypeptide and may possess abolished or reduced expression or activity of a DA polypeptide and/or EOD1/BB protein in one or more of its plant cells.
[0130] The expression or activity of a DA polypeptide and/or EOD1/BB protein may be reduced or abolished as described above. For example, a method may comprise incorporating a heterologous nucleic acid into a plant cell by means of transformation, wherein the nucleic acid encodes a suppressor nucleic acid, such as a siRNA or shRNA, which reduces the expression of a DA polypeptide and/or EOD1/BB protein.
[0131] The heterologous nucleic acids encoding the CYP78A polypeptide and Da and/or EOD1/BB suppressor nucleic acid may be on the same or different expression vectors and may be incorporated into the plant cell by conventional techniques.
[0132] CYP78A6 polypeptides and CYP78A suppressor nucleic acids are described in more detail above.
[0133] In some embodiments, the expression or activity of two or more CYP78A polypeptides, such as CYP78A6 and CYP78A9, may be abolished or reduced to produce a plant having reduced seed size.
[0134] A plant produced as described above may be sexually or asexually propagated or grown to produce off-spring or descendants. Off-spring or descendants of the plant regenerated from the one or more cells may be sexually or asexually propagated or grown. The plant or its off-spring or descendents may be crossed with other plants or with itself.
[0135] A plant suitable for use in the present methods is preferably a higher plant, for example an agricultural plant selected from the group consisting of Lithospermum erythrorhizon, Taxus spp, tobacco, cucurbits, carrot, vegetable brassica, melons, capsicums, grape vines, lettuce, strawberry, oilseed brassica, sugar beet, wheat, barley, maize, rice, soyabeans, peas, sorghum, sunflower, tomato, potato, pepper, chrysanthemum, carnation, linseed, hemp and rye.
[0136] In some embodiments, the plant may be a flowering plant (angiosperm). Flowering plants may include monocotyledons or dicotyledons, such as eudicots, in particular members of the Rosid clade, including Brasicaceae, such as broccoli, horseradish, cabbage, and cauliflower. In some embodiments, a plant may be other than Arabidopsis thaliana.
[0137] Another aspect of the invention provides a plant which comprises a heterologous nucleic acid which alters expression of a CYP78A polypeptide, as described above, and optionally has reduced or abolished expression of a DA polypeptide and/or EOD1/BB polypeptide.
[0138] The plant may display an altered seed size phenotype relative to controls (e.g. non-transgenic plants of the same species). For example, a plant which displays increased expression of a CYP78A polypeptide may display increased seed size relative to controls.
[0139] A plant which displays increased expression of the CYP78A6 polypeptide may also display one or more of; increased flower and leaf size, increased stem thickness, and increased height relative to control plants (e.g. identical plants which do not display increased expression of the CYP78A6 polypeptide).
[0140] A plant which displays reduced expression of a CYP78A polypeptide may display reduced seed size relative to controls.
[0141] A suitable plant with altered expression of a CYP78A polypeptide may be produced by a method described herein
[0142] In some embodiments, the plant may have normal fertility relative to control plants.
[0143] In some embodiments, a plant may not display increased organ size relative to controls.
[0144] In addition to a plant comprising a heterologous nucleic acid which alters CYP78A expression, for example a nucleic acid which encodes a CYP78A polypeptide or CYP78A suppressor molecule, as described herein, the invention encompasses any clone of such a plant, seed, selfed or hybrid progeny and descendants, and any part or propagule of any of these, such as cuttings and seed, which may be used in reproduction or propagation, sexual or asexual. Also encompassed by the invention is a plant which is a sexually or asexually propagated off-spring, clone or descendant of such a plant, or any part or propagule of said plant, off-spring, clone or descendant.
[0145] "and/or" where used herein is to be taken as specific disclosure of each of the two specified features or components with or without the other. For example "A and/or B" is to be taken as specific disclosure of each of (i) A, (ii) B and (iii) A and B, just as if each is set out individually herein.
[0146] Unless context dictates otherwise, the descriptions and definitions of the features set out above are not limited to any particular aspect or embodiment of the invention and apply equally to all aspects and embodiments which are described.
[0147] Having generally described the invention above, certain aspects and embodiments of the invention will now be illustrated by way of example to extend the written description and enablement of the invention, and to ensure adequate disclosure of the best mode of practicing the invention. Those skilled in the art will appreciate, however, that the scope of this invention should not be interpreted as being limited by the specifics of these examples. Rather, variations, extensions, modifications and equivalents of these specifics and generic extensions of these details may be made without departing from the scope of the invention comprehended by this disclosure. Therefore, for an appreciation of the scope of this invention and the exclusive rights claimed herein, reference should be had to the claims appended to this disclosure, including equivalents thereof.
[0148] All documents mentioned in this specification are incorporated herein by reference in their entirety for all purposes.
[0149] The contents of all database entries mentioned in this specification are also incorporated herein by reference in their entirety. This includes the versions of any sequences which are current at the filing date of this application.
Examples
[0150] Methods
[0151] Activation Tagging Screening
[0152] The Agrobacterium tumefaciens strain GV3101 was transformed with the activation tagging vector pJFAT260 (Fan et al., 2009), and the resulting strain was used for floral dip transformation of Arabidopsis da1-1 mutant plants (Li et al., 2008). T.sub.1 plants were selected by using the herbicide Basta. Seeds produced from T.sub.1 plants were passed through a fine wire sieve (425 .mu.m) (Fisher Scientific). Seeds retained by the sieve were kept for further characterization.
[0153] Plant Materials and Growth Conditions
[0154] Arabidopsis thaliana Columbia (Col-0) was the wild type line used. All mutants were in the Col-0 background. Plant materials and growth conditions are available in the Supporting Information.
[0155] Morphological and Cellular Analysis
[0156] Area measurements of fully expanded cotyledons, petals (stage 14), and leaves were made by flattening the organs, scanning to produce a digital image, and then calculating area by using Image J software. Embryo cell sizes were measured on the adaxial side of cotyledons from DIC images.
[0157] For analysis of whole-mount seeds, seeds were dissected from siliques and placed in a drop of clearing solution [30 ml H.sub.2O, 80 g Chloral hydrate (Sigma, C8383), 10 ml 100% Glycerol (Sigma, G6279)]. Samples were photographed under a Leica microscope (LEICA DM2500) with differential interference contrast optics using a SPOT FLEX Cooled CCD Digital Imaging System.
[0158] Seed Size and Seed Mass Analysis
[0159] Average seed mass was determined by weighing mature dry seeds in batches of 500 using an electronic analytical balance (METTLER TOLEDO AL104, China). The weights of five sample batches were measured for each seed lot. The wild-type and mutant seeds were photographed under a Leica microscope (LEICA S8APO) using Leica CCD (DFC420). The length, width and projective area of wild-type and mutant seeds were measured by using Image J software.
[0160] Cloning of the EOD3 Gene
[0161] The flanking region of the T-DNA insertion of the eod3-JD mutant was isolated by the thermal asymmetric interlaced PCR (TAIL-PCR) (Liu et al., 1995). Detailed protocols are described in the Supporting Information.
[0162] Constructs and Transformation
[0163] The EOD3 CDS was subcloned into the PstI site of the binary vector 35S::pGreen to generate the transformation plasmid 35S::EOD3. The specific primers for the EOD3 CDS are EOD3CDS-F and EOD3CDS-R.
[0164] The 1878 bp EOD3 promoter was subcloned into SacI and NcoI sites of the binary vector pGreen-GUS to generate the transformation plasmid pEOD3::GUS. The specific primers for the EOD3 promoter are EOD3PROM-F and EOD3PROM-R.
[0165] GUS Staining
[0166] Samples (pEOD3::GUS) were stained in a solution of 1 mM X-gluc, 50 mM NaPO.sub.4 buffer, 0.4 mM each K.sub.3Fe(CN).sub.6/K.sub.4Fe(CN).sub.6, 0.1% (v/v) Triton X-100 and incubated at 37.degree. C. for 8 hrs. After GUS staining chlorophyll was removed using 70% ethanol.
[0167] RT-PCR, Quantitative Real-Time RT-PCR, and RNA In Situ Hybridization
[0168] Total RNA was extracted from Arabidopsis seedlings using an RNAprep pure Plant kit (TIANGEN). Reverse transcription (RT)-PCR was performed as described (Li et al., 2006). cDNA samples were standardized on actin transcript amount using the primers ACTIN7-F and ACTIN7-R. Quantitative real-time RT-PCR analysis was performed with a Lightcycler 480 machine (Roche) using the Lightcycler 480 SYBR Green I Master (Roche). ACTIN2 mRNA was used as an internal control, and relative amounts of mRNA were calculated using the comparative threshold cycle method. RNA in situ hybridization method is described in the Supporting Information. The primers used for RT-PCR, quantitative real-time RT-PCR, and RNA in situ hybridization are described herein.
[0169] Plant Materials and Growth Conditions
[0170] Arabidopsis thaliana Columbia (Col-0) was the wild type line used. All mutants were in the Col-0 background. eod3-1D was identified as an enhancer of da1-1 by using T-DNA activation tagging method. The eod3-ko1 (CS833552), eod3-ko2 (CS806696), cyp78a9-ko1 (SALK 121278) and ttg2-3 (SALK 148838) were identified in AtIDB (Arabidopsis Thaliana Integrated Database) and obtained from Arabidopsis Stock Centre ABRC collection. The eod3-ko1, eod3-ko2, cyp78a9-ko1 and ttg2-3 mutants were backcrossed into Col-0 for three times. T-DNA insertions were confirmed by PCR and sequencing by using the primers described in Supplementary Table 3. Seeds were surface-sterilized with 100% isopropanol for 1 min and 10% (v/v) household bleach for 10 mins, washed at least five times with sterile water, stratified at 4.degree. C. for 2d in the dark, dispersed on Murashige and Skoog medium (Sigma) supplemented with 0.9% agar and 1% glucose, and then grown at 22.degree. C.
[0171] Cloning of the EOD3 Gene
[0172] The flanking region of the T-DNA insertion of the eod3-1D mutant was isolated by the thermal asymmetric interlaced PCR (TAIL-PCR) (Liu et al., 1995). Genomic DNA was prepared by using buffer containing 50 mM Tris-HCL (pH8.0), 25 mM EDTA, 250 mM NaCl and 0.5% SDS. Approximately 100 ng of the genomic DNA of the eod3-1D da1-1 mutant was used to perform TAIL-PCR analysis according to a previously reported method (Liu et al., 1995). Briefly, TAIL-PCR utilizes three nested specific primers (OJF22, OJF23 and OJF24) within the T-DNA region of the pJFAT260 vector together with a shorter arbitrary degenerate primer (AD1) so that the relative amplification efficiencies of specific and non-specific products can be thermally controlled. The specific primers OJF22, OJF23 and OJF24 and an arbitrary degenerate (AD1) primer are described in Table S3. TAIL-PCR products were sequenced by using the primer OJF24.
[0173] Cellular Analysis
[0174] For resin sections, siliques were cut transversely into four pieces and fixed in 4% paraformaldehyde. The tissues were embedded in Technovit 7100 resin (Heraeus Kulzer, Germany), sectioned at 5 .mu.m thickness and stained with 0.05% toluidine blue.
[0175] RNA In Situ Hybridization
[0176] In situ hybridization was performed as described (Li et al., 2003). DIG-labeled RNA transcripts were generated by transcription of EOD3 and CYP78A9 in sense or antisense orientation using SP6 or T7 RNA polymerase (Roche). After hybridization, washing and blocking, DIG-labeled RNA transcripts reacting with alkaline phosphatase-conjugated anti-DIG Fab fragment (1:3000 [v/v], Roche) were detected using 5-bromo-4-chloro-3-indolyl phosphate/nitroblue tetrazolium. The slides were observed with a microscope (LEICA DM2500) and photographed using a SPOT FLEX Cooled CCD Digital Imaging System.
[0177] Expression of Arabidopsis EOD3 in Oryza sativa
[0178] For overexpression of Arabidopsis EOD3 in Oryza sativa, the full length CDS of EOD3 was subcloned into pCR8/GW/TOPO TA cloning vector (Invitrogen) using TOPO enzyme and sequenced. The EOD3 CDS was then subcloned into Gateway Binary Vector pIPKb002 containing the Zm-ubiqutin promoter (FIG. 19). The construct was then introduced into callus of Oryza sativa L. japonica. cv. Nipponbare and selected on hygromycin-containing medium. The detailed methods were described in Hiei et al (1994) Plant J 6 271-282.
[0179] The areas of 24 seeds from each line of TO transgene plants were scanned to produce digital images, and then the average area per seed was calculated using Image J software as an indicator of seed size. The average area per seeds from each transgenic line was then determined.
[0180] Results
[0181] We previously characterized the Arabidopsis da1-1 mutant, which had larger seeds than wild type (Li et al., 2008). DA1, encoding a predicted ubiquitin receptor, sets final seed size by restricting cell proliferation (Li et al., 2008). To identify other components in the DA1 pathway or additional factors of seed size control, we initiated a T-DNA activation tagging screen in a da1-1 homozygous genetic background. Seeds produced from approximate 16,000 T.sub.1 plants were screened for mutations affecting the seed size phenotype of da1-1. A dominant enhancer of da1-1 (eod3-1D), which enhanced the seed size phenotype of da1-1, was identified (FIGS. 1A and D). Seeds of the eod3-1D da1-1 double mutant were dramatically larger and heavier than those of the da1-1 mutant (FIG. 1D an E). The embryo constitutes the major volume of a mature seed in Arabidopsis. The size of eod3-1D da1-1 embryos was substantially increased, compared with that of Col-0 and da1-1 embryos (FIG. 1B). The changes in seed size were also reflected in the size of seedlings (FIG. 1C). Cotyledons of eod3-1D da1-1 seedlings were significantly larger than those of Col-0 and da1-1 seedlings (FIGS. 1C and F). In addition, eod3-1D da1-1 double mutant had larger flowers and leaves than da1-1 (FIG. 10).
[0182] Eod3-1D Sets Large Seeds
[0183] To determine whether the single eod3-1D mutant has the altered seed size, we identified the eod3-1D mutant among F.sub.2 progeny derived from a cross between the eod3-1D da1-1 double mutant and wild type (Col-0). Seeds produced by eod3-1D were larger and heavier than the wild-type seeds (FIGS. 2A, E and F). In addition to the seed phenotype, eod3-1D plants showed larger flowers and leaves, thicker stems, and higher plants than wild type (FIG. 2B; FIG. 11A; Table 1). However, the number of rosette and cauline leaves was similar in wild type and eod3-1D, and the number of rosette and cauline branches in eod3-1D was also comparable with that in wild type (Table 1).
[0184] The eod3-1D mutation also caused defects in reproductive development. For example, eod3-1D mutant produced fewer elongated siliques than wild type (Table 1). First several flowers on the primary inflorescences of eod3-1D did not open normally (FIGS. 11B and C). Their stamens were much shorter than those of wild type (FIGS. 11B and C). The dehiscence of eod3-1D anthers was much delayed (FIG. 11C), but their pollens were functional (FIGS. 11D and E). The enlarged siliques were more frequently observed on the latest-arising flowers of old plants. In general, the enlarged siliques contained few seeds although the number of ovules per silique in eod3-1D was not reduced (Table 1). We observed that carpels of the late developing eod3-1D flowers were longer than those of wild-type flowers, whereas the length of stamens was similar to that of wild-type stamens (FIG. 2C; FIG. 11A), such that eod3-1D pollen is not able to directly reach stigmatic papillae; this could, in part, explain the decreased fertility. Fully elongated eod3-1D mutant siliques were longer and wider than wild-type siliques (FIG. 2D).
[0185] To determine whether the large seed size phenotype could result from allocation of extra resources to the few seeds produced, we hand-pollinated six flowers on primary inflorescences of wild-type plants, eod3-1D, and a male-sterile mutant (CS4002). For this set of experiments, flowers were pollinated with pollens of the same genotypes, with the exception of male-sterile plants for which wild-type pollens were used. Thus, each male-sterile plant produced only six siliques. The average seed size from male-sterile maternal plants was increased to 116% of that from wild-type maternal plants (FIG. 2G), indicating that seed size increased under condition of reduced fertility. By contrast, the average seed size from the eod3-1D mutant were approximate 170% of that from wild type (FIG. 2G), indicating that the effect of eod3-1D on seed size is not primarily due to its effect on fertility.
[0186] EOD3 Encodes a Cytochrome P450 Monooxygenase
[0187] To test whether this T-DNA insertion might cause the eod3-1D phenotypes, we analyzed the genetic linkage of the mutant phenotype with Basta resistance, which is conferred by the selectable marker of the activation tagging vector (Fan et al., 2009). All 101 plants with eod3-1D da1-1 phenotypes in T.sub.2 population were resistant, whereas the 36 plants with da1-1 phenotypes were sensitive, indicating that the insertion is responsible for the eod3-1D mutation. To identify the EOD3 gene, the DNA flanking the T-DNA insertion was isolated by thermal asymmetric interlaced PCR (Liu et al., 1995). Sequence analysis indicated that the insertion was in an intergenic region on chromosome II between the genes At2g46660 and At2g46670. The T-DNA had inserted approximately 3.2 kb upstream of the At2g46660 gene and about 6.5 kb downstream of the At2g46670 gene (FIG. 3A). The mRNA levels of these two genes were determined by reverse transcription-polymerase chain reaction (RT-PCR). Expression levels of the At2g46670 gene were similar in da1-1 and eod3-1D da1-1 plants (FIG. 3B), indicating that At2g46670 was unlikely to be the EOD3 gene. The mRNA of At2g46660 accumulated at a higher level in eod3-1D da1-1 than in da1-1 (FIG. 3B), strongly indicating that At2g46660 is likely to be the EOD3 gene. To demonstrate that this gene corresponded to EOD3, we overexpressed the At2g46660 gene in Col-0 wild-type plants and isolated 41 transgenic plants. Most transgenic plants showed large seeds and increased plant height (FIGS. 3C and D; FIG. 12A), as had been seen in the eod3-1D single mutant, confirming At2g46660 is the EOD3 gene. Importantly, the 35S::EOD3#7 transgenic plants exhibited normal growth and fertility, but produced significantly large seeds compared with wild type (FIG. 3 C; FIGS. 12B and C).
[0188] The EOD3 gene encodes the putative cytochrome P450 monooxygenase CYP78A6, one of six members of the CYP78A family in Arabidopsis. Genes in the CYP78A class belong to the group A cytochrome P450 in plants and seem to perform plant-specific functions (Zondlo and Irish, 1999; Ito and Meyerowitz, 2000; Anastasiou et al., 2007). EOD3/CYP78A6 exhibits the highest similarity to Arabidopsis CYP78A9 (FIG. 3E) (Ito and Meyerowitz, 2000).
[0189] EOD3/CYP78A6 Acts Redundantly with CYP78A9 to Control Seed Size
[0190] In order to further understand the function of EOD3, we isolated T-DNA inserted loss-of-function mutants for EOD3/CYP78A6 and CYP78A9, the most closely related family member. eod3-ko1 and eod3-ko2 were identified with T-DNA insertions in the first and second exons of the EOD3/CYP78A6 gene, respectively (FIG. 4A). cyp78a9-ko1 had T-DNA insertion in the second exon of CYP78A9 (FIG. 4B). The T-DNA insertion sites were confirmed by PCR using T-DNA specific and flanking primers and sequencing PCR products (FIG. 13). The eod3-ko1, eod3-ko2 and cyp78a9-ko1 mutants were further backcrossed into Col-0 for three times.
[0191] Seeds from eod3-ko1, eod3-ko2 and cyp78a9-ko1 mutants were smaller and lighter than seeds from wild-type plants (FIGS. 4F and G). Silique length in eod3-ko1, eod3-ko2 and cyp78a9-ko1 was reduced, compared with that in wild type (FIGS. 4D and H). By contrast, the size of leaves and petals, stem thickness and plant height in eod3-ko1 and cyp78a9-ko1 were comparable with those in wild type (Table 1). In addition, the number of rosette and cauline leaves, rosette and cauline branches, siliques per plant and ovules per silique in eod3-ko1 and cyp78a9-ko1 was similar to that in wild type (Table 1). As EOD3/CYP78A6 shows the highest similarity to the Arabidopsis CYP78A9, we postulated that EOD3 may act redundantly with CYP78A9 to control seed size. To test this, we generated the double knockout mutants, eod3-ko1 cyp78a9-ko1 and eod3-ko2 cyp78a9-ko1. The seed size and weight phenotype of eod3-ko mutants was synergistically enhanced by the disruption of CYP78A9 (FIGS. 4F and G), indicating that EOD3 functions redundantly with CYP78A9 to control seed growth. The eod3-ko cyp78a9-ko mutations also caused a significant change in seed shape (FIG. 4C). eod3-ko cyp78a9-ko seeds were shorter than wild-type seeds, whereas seed width was comparable with that of wild type (FIGS. 4C, I and J), indicating that eod3-ko cyp78a9-ko seeds are more round in shape than wild type. eod3-ko cyp78a9-ko produced fewer siliques per plant than wild type (Table 1). The length of siliques in eod3-ko cyp78a9-ko was dramatically reduced, compared with their parental lines (FIGS. 4D and H). Surprisingly, the number of ovules per silique in eod3-ko1 cyp78a9-ko1 was similar to that in wild type, resulting in a higher density of seeds within siliques (FIG. 4E; Table 1). In addition, the primary inflorescence stem of eod3-ko1 cyp78a9-ko1 was shorter than that of wild type, and the size of petals and leaves was slightly reduced compared with wild type (Table 1). However, the number of leaves and branches in eod3-ko1 cyp78a9-ko1 was comparable with that observed in wild type (Table 1).
[0192] EOD3 Acts Maternally to Influence Seed Size
[0193] To obtain clues about the genetic control of seed size, we asked whether EOD3 functions maternally or zygotically. Reciprocal cross experiments between wild type and eod3-ko1 cyp78a9-ko1 were performed. The effect of eod3-ko1 cyp78a9-ko1 on seed size was observed only when maternal plants are eod3-ko1 cyp78a9-ko1 mutant. Seeds produced by an eod3-ko1 cyp78a9-ko1 mother, regardless of the genotype of the pollen donor, were consistently smaller than those produced by maternal wild-type plants, and eod3-ko1 cyp78a9-ko1 mutant pollen in a wild-type mother produced seeds with wild-type size (FIG. 5A). This indicates that eod3-ko1 cyp78a9-ko1 can act maternally to control seed size. We further did reciprocal cross experiments between wild type and eod3-1D. Pollinating wild-type plants with eod3-1D pollen leads to the development of eod3-1D/+ embryos within a wild-type seed coat. However, the size of the resulting seeds was comparable with that of self-pollinated wild type seeds (FIG. 5B). In contrast, we could not observed the wild-type sized seeds from eod3-1D/+ plants fertilized with wild-type pollen, although half of them contained wild-type embryos. We further measured the size of individual seeds from eod3-1D/+ plants fertilized with wild-type pollen and genotyped the eod3-1D mutation. Our results show that the eod3-1D mutation is not associated with variation in the size of these seeds (FIG. 14). Together, these analyses indicate that the embryo and endosperm genotype for EOD3 do not influence seed size, and EOD3 is required in the sporophytic tissue of the mother plant to promote seed growth.
[0194] Eod3-Ko1 cyp78a9-Ko1 Reduces Cell Expansion in the Integuments of Developing Seeds
[0195] The reciprocal crosses indicate that EOD3 acts maternally to influence seed growth. The integuments surrounding the ovule form the seed coat after fertilization, which may physically restrict seed growth. The integument size of ovules is known to influence seed size (Garcia et al., 2005; Schruff et al., 2006). We therefore asked whether EOD3 functions through the maternal integument to affect seed size. To test this, we characterized mature ovules from wild type and eod3-ko1 cyp78a9-ko1 at 2 days after emasculation. Surprisingly, the size of eod3-ko1 cyp78a9-ko1 ovules was not significantly altered, compared with that of wild-type ovules (FIG. 6A and FIG. 15). We further investigated the outer integument length of wild-type and eod3-ko1 cyp78a9-ko1 seeds at specific times after pollination. The size of wild-type and eod3-ko1 cyp78a9-ko1 outer integuments showed a significant difference at 2 days after pollination (DAP) and subsequent time points (FIG. 6B). Previous study showed that the integument of a developing seed could completely stop cell division at 4 d after pollination (Garcia et al., 2005). To assess the contribution of cell proliferation and cell expansion in the integuments of developing seeds to eod3-ko1 cyp78a9-ko1, we measured outer integument cell number and cell size at 6 DAP. Outer integument cell number in eod3-ko1 cyp78a9-ko1 was similar to that in wild type (FIG. 6C), whereas cells in eod3-ko1 cyp78a9-ko1 outer integuments were significantly smaller than those in wild-type outer integuments (FIG. 6D). These results indicate that eod3-ko1 cyp78a9-ko1 restricts cell expansion in the integuments of developing seeds.
[0196] Eod3-1D Promotes Both Cell Proliferation and Cell Expansion in the Integuments
[0197] As the gain-of-function eod3-1D mutant had large seeds, we further asked whether eod3-1D mutant affects the integument size of ovules and developing seeds. The size of eod3-1D ovules was significantly larger than wild-type ovules (FIG. 6A and FIG. S6). eod3-1D also had dramatically larger outer integuments than wild type during the whole process of seed development (FIG. 6B). We further investigated outer integument cell number and cell size of developing seeds at 6 DAP and found that eod3-1D had more and larger outer integument cells than wild type (FIGS. 6 C and D).
[0198] Effects of Eod3-Ko1 cyp78a9-Ko1 and Eod3-1D Mutations on Embryo Development
[0199] eod3-ko1 cyp78a9-ko1 and eod3-1D had smaller and larger seed coats, respectively. The maternal integument or seed coat acts as a physical constraint on embryo growth. We therefore investigated whether eod3-ko1 cyp78a9-ko1 and eod3-1D integuments could indirectly influence embryo development. To test this, we manually pollinated wild-type, eod3-ko1 cyp78a9-ko1 and eod3-1D plants with their own pollen grains and examined developing embryos at specific times after pollination. In the siliques of wild-type plants, the majority of embryos reached the globular stage at 2DAP, the heart and torpedo stages at 4DAP, the bent-cotyledon stage at 6 DAP, and the stage of the fully filled seed cavity from 10 DAP onward (Table 2). Developmental progresses of eod3-ko1 cyp78a9-ko1 embryos were almost similar to those of wild type. However, morphological development of eod3-1D embryos was slightly slower than wild type at 4 DAP. At 6 DAP, most embryos reached the bent-cotyledon stage, as seen in wild-type plants (Table 2). This phenomenon of embryo development has also been observed in other Arabidopsis mutants (Schruff et al., 2006; Ohto et al., 2009; Zhou et al., 2009). Interestingly, the majority of wild-type embryos fully filled the seed cavity at 12 DAP, while most eod3-1D embryos completely filled the seed cavity at 14 DAP. It is plausible that eod3-1D forms a larger seed cavity than wild type; therefore eod3-1D embryos need to grow for a longer period of time to fill the large seed cavity than wild-type embryos.
[0200] Effects of Eod3-Ko1 cyp78a9-Ko1 and Eod3-1D Mutations on Embryo Cell Number and Cell Size
[0201] We isolated and visualized embryos from mature eod3-ko1 cyp78a9-ko1 and eod3-1D seeds. eod3-ko1 cyp78a9-ko1 embryos were significantly smaller than those of wild type, whereas eod3-1D produced large mature embryos compared with wild type (FIG. 7A). The average cotyledon area of eod3-ko1 cyp78a9-ko1 and eod3-1D embryos was about 72% and 196% that of wild-type embryos, respectively (FIG. 7B). The size of embryos is determined by both cell number and cell size. We measured palisade cells in the central regions of wild-type, eod3-ko1 cyp78a9-ko1 and eod3-1D cotyledons to learn which parameter is affected. The average size of eod3-ko1 cyp78a9-ko1 cotyledon cells was 79% that of wild-type cotyledon cells, while the average size of eod3-1D cotyledon cells was 1.36-fold that of the wild-type cotyledon cells (FIG. 7C). The magnitude of the changes in the areas of eod3-ko1 cyp78a9-ko1 and wild-type cotyledons (0.72 times) closely parallels the differences in the areas of cotyledon cells (0.79 times), indicating that eod3-ko1 cyp78a9-ko1 mainly affects embryo cell expansion. Given differences in the areas of eod3-1D and wild-type cotyledons (1.96 times) and cells (1.36 times), we conclude that eod3-1D had approximate 1.44 times more cells than wild type (1.96/1.36=1.44). These results indicate that eod3-ko1 cyp78a9-ko1 formed small embryos as a result of the reduced embryo cell expansion, and eod3-1D had large embryos due to increases in both embryo cell proliferation and cell expansion. Thus, EOD3 could act maternally to influence embryo cell proliferation and cell expansion because EOD3 is solely required in the sporophytic tissue of the mother plant to control seed growth (FIG. 5).
[0202] Expression Pattern of EOD3/CYP78A6
[0203] To examine the expression pattern of EOD3, RT-PCR were performed with total RNA from various tissues with EOD3-specific primers, including roots, stems, leaves, seedlings and inflorescences. EOD3 mRNA can be detected in all plant organs tested (FIG. 8A). To monitor EOD3 expression pattern during development, the pEOD3::GUS vector was constructed and transformed to wild-type plants. Tissues at different development stages were stained with GUS solution. In 14-d-old seedlings, GUS activity was detected in leaves. Relatively high GUS activity was observed in old leaves than in young ones (FIG. 8B). In flowers, GUS expression was detected in sepals, petals, stamens and carpels (FIG. 8C-H). Surprisingly, there was no EOD3 expression during the development of seeds (FIG. 8I-L; FIG. 17). We further performed in situ hybridization experiments to investigate expression of EOD3. EOD3 accumulated in the medial gynoecial domains at stage 8 (FIG. 8M). During stage 12, the EOD3 transcript was found within the central region of the septum (FIG. 8N). Expression was also seen in the funiculus (FIG. 8N). However, EOD3 expression was not detected in integuments, embryos, and endosperms during seed development (FIG. 16A-D), consistent with the GUS staining results. Similarly, CYP78A9 was also not observed in developing seeds (FIG. 16E-H). These analyses indicate that EOD3 is a temporally and spatially expressed gene.
[0204] EOD3 May Function Independently of DA1 and TTG2 to Influence Seed Size
[0205] da1-1 mutant had large seeds due to the increased cell proliferation in maternal integuments (Li et al., 2008), while eod3-ko mutants produced small seeds as a result of the reduced cell expansion in the integuments after fertilization, providing indication that EOD3 and DA1 might function in different pathways. However, the gain-of-function eod3-1D mutant promotes both cell proliferation and cell expansion in the integuments. We therefore asked whether there are any genetic interactions between eod3-1D and da1-1. To test this, we measured the size of seeds in wild-type, da1-1, eod3-1D and eod3-1D da1-1 plants. The genetic interaction between eod3-1D and da1-1 was essentially additive for seed size, compared with their parental lines (FIG. 9A), further indicating that EOD3 might function independently of DA1 to control seed size.
[0206] The TTG2 gene acts maternally to promote cell expansion in the integuments. ttg2 mutants produced small seeds as a result of the reduced cell elongation in the integuments (Garcia et al., 2005). To determine the genetic interaction between EOD3 and TTG2, we generated ttg2-3 eod3-ko1 double mutant. The genetic interaction between eod3-ko1 and ttg2-3 was additive for seed size, compared with their parental lines (FIG. 9B), providing indication that EOD3 functions to control seed growth separately from TTG2.
[0207] EOD3 Promotes Seed Growth by Increasing Maternal Integument Size
[0208] In this study, we identified the role of EOD3/CYP78A6 in seed size control. eod3-1D gain-of-function mutant formed larger seeds, while eod3-ko loss-of-function mutants exhibited smaller seeds. In addition, mutations in its most closely related family member CYP78A9 synergistically enhanced the seed size phenotype of eod3-ko mutants (FIGS. 4C, F and G), indicating that EOD3/CYP78A6 acts redundantly with CYP78A9 to influence seed growth. However, the eod3-1D mutant exhibited partial sterility although eod3-ko mutants had normal fertility. The tradeoff between seed number and size in many species (Harper et al., 1970), including Arabidopsis (Alonso-Blanco et al., 1999), has been observed. Our results show that the effect of eod3-1D on seed size is not primarily due to its effect on fertility. Similarly, recent studies show that apt and arf2 mutations increase seed size partly because of reduced fertility but also through a separate maternal effect on seed growth (Jofuku et al., 2005; Ohto et al., 2005; Schruff et al., 2006).
[0209] Reciprocal cross experiments show that EOD3 acts maternally to affect seed growth. The integuments surrounding the ovule are maternal tissues and form the seed coat after fertilization. Altered maternal integument size such as those seen in arf2, da1-1 and klu ovules is known to contribute to changes in seed size (Schruff et al., 2006; Li et al., 2008; Adamski et al., 2009). However, the size of mature eod3-ko1 cyp78a9-ko1 ovules was similar to that of wild-type ovules, indicating that the size difference between the wild-type and eod3-ko1 cyp78a9-ko1 seeds happens after fertilization. Consistent with this idea, eod3-ko1 cyp78a9-ko1 integuments were smaller than wild-type integuments from 2DAP onward (FIG. 6B). By contrast, eod3-1D formed large integuments in mature ovules and developing seeds (FIGS. 6A and B). Thus, a general theme emerging from these studies is that the control of maternal integument size is one of critical mechanisms for determining final seed size.
[0210] The size of the integument or seed coat is determined by cell proliferation and cell expansion. The cell number in the integuments of the mature ovule sets the growth potential of the seed coat after fertilization. For example, arf2 and da1-1 mutants had large ovules with more cells, resulting in large seeds (Schruff et al., 2006; Li et al., 2008), whereas klu mutants formed small ovules with less cells, leading to small seeds (Adamski et al., 2009). After fertilization, cells in integuments mainly undergo expansion. Our results indicate that eod3-ko1 cyp78a9-ko1 mutant formed normal-sized ovules, but smaller developing seeds as a result of the reduced cell expansion in the integuments after fertilization (FIG. 6). However, eod3-1D promoted both cell proliferation and cell elongation in the integuments of developing seeds, resulting in large volume of a seed cavity. Therefore, integument growth is driven by both cell proliferation and cell expansion; these two processes are assumed to be coordinated. In addition, our reciprocal cross experiments provide a demonstration of maternal sporophytic control of embryo growth (FIG. 5; FIG. 7; FIG. 14). The maternal integument or seed coat, which acts as a physical constraint on embryo and endosperm growth, may set an upper limit to final seed size.
[0211] The CYP78A Family Members have Overlapping and Distinct Functions in Seed Growth
[0212] EOD3 encodes a cytochrome P450 CYP78A6, one of the CYP78A family members. The other CYP78A subfamily member genes have been isolated as growth regulators. Overexpression of CYP78A9, which is most closely related to EOD3/CYP78A6, induced large and seedless silique in Arabidopsis (Ito and Meyerowitz, 2000). To a certain extent, plants overexpressing EOD3/CYP78A6 and CYP78A9 exhibited similar growth phenotypes, such as large siliques and short stamens (FIGS. 2C and D) (Ito and Meyerowitz, 2000), indicating that these two genes might affect the same or related metabolic network. In line with this idea, our genetic analyses demonstrate that the cyp78a9-ko1 mutation synergistically enhanced the seed size phenotype of eod3-ko mutants (FIGS. 4C and F). This provides indication that EOD3 and CYP78A9 may have overlapping functions in seed size control.
[0213] Another CYP78A subfamily member KLU/CYP78A5 also affects seed size by promoting cell proliferation in the integuments of ovules (Adamski et al., 2009). klu mutants produced smaller seeds than wild type due to small ovules with less cells (Adamski et al., 2009). By contrast, eod3-ko1 cyp78a9-ko1 mutants did not significantly affect the size of ovules, but restricted cell expansion in the integuments of developing seeds. These findings provide indication that KLU may act in the cell proliferation phase at the early stages of integument development, and EOD3 mainly functions in the cell expansion phase at the later stages of integument growth.
[0214] EOD3 and CYP78A9 May Control Seed Growth in a Non-Cell-Autonomous Manner
[0215] Another interesting feature of the CYP78A subfamily members is to generate mobile factors mediating organ growth (Miyoshi et al., 2004; Anastasiou et al., 2007). Rice PLA1/CYP78A11 affected cell division in the shoot apical meristem (SAM), but CYP78A11 expression was not detected in the shoot apical meristem, suggesting that CYP78A11 most likely acts through its non-cell-autonomous function (Miyoshi et al., 2004). Arabidopsis CYP78A5 has been proposed to be involved in generating a mobile signal distinct from the classical phytohormones (Anastasiou et al., 2007). However, mobile growth substances remain to be discovered. Interestingly, EOD3 and CYP78A9 were not detected in the maternal integuments of developing seeds (FIG. S7) (Ito and Meyerowitz, 2000), but eod3-ko, cyp78a9-ko and eod3-ko cyp78a9-ko mutants produced small seeds (FIGS. 4C and F). This suggests that EOD3 and CYP78A9 might control seed growth in a non-cell-autonomous manner, as proposed for other CYP78A subfamily members (Miyoshi et al., 2004; Anastasiou et al., 2007). However, EOD3 expression was detected in other organs, such as leaves and carpels (FIGS. 8B and F), providing indication that EOD3 might promote leaf and carpel growth in a cell-autonomous manner. Several Arabidopsis mutants with large organs also exhibited large seeds (Schruff et al., 2006; Li et al., 2008), suggesting a possible link between organ size and seed growth. By contrast, several other mutants with large organs produced normal-sized seeds (Szecsi et al., 2006; White, 2006), indicating that organ size is not always positively related to seed growth. 35S::EOD3#7 plants exhibited normal growth and fertility, but produced significantly larger seeds than wild type (FIGS. 3C and D; FIG. 12), providing indication that the effect of EOD3 on seed size might not be due to its effect on organ size. CYP78A9 has been suggested to be involved in producing an undiscovered plant growth substance (Ito and Meyerowitz, 2000). One of the functions of EOD3 might be production of a signal that promotes integument growth. Eventually, the elucidation of the biochemical function of these gene products may lead to the discovery of one or more new plant growth substances with use in control of seed size.
[0216] EOD3 Controls Seed Growth in Oryza sativa
[0217] The Arabidopsis EOD3 coding sequence was sub-cloned and overexpressed in Oryza sativa. The areas of the seeds from TO transgenic Oryza sativa plants were then determined.
[0218] The transgenic rice plant lines (To) showed a range of different average seed sizes (FIG. 20), as expected from variations in insertion site, expression levels and other factors. However, statistically significant differences in seed size were found between a number of the To lines and the smallest seed line (11-5) (FIG. 20; P<0.01). These statistically significant differences show that that Eod3 overexpression increases seed size in rice.
REFERENCES
[0219] Adamski, N. M. et al. (2009) Proc Natl Acad Sci USA, 106, 20115-20120
[0220] Alonso-Blanco, C. et al (1999) Proc Natl Acad Sci USA, 96, 4710-4717
[0221] Anastasiou, E. et al (2007) Dev Cell, 13, 843-856.
[0222] Fan, C. et al (2006) Theor Appl Genet, 112, 1164-1171.
[0223] Fan, J. et al (2009) Plant Physiol, 150, 1750-1761.
[0224] Garcia, D. et al 2003) Plant Physiol, 131, 1661-1670.
[0225] Garcia, D. et al (2005) Plant Cell, 17, 52-60.
[0226] Gegas, V. C. et al (2010). Plant Cell, 22, 1046-1056.
[0227] Harper, J. L. et al (1970) Annual Review of Ecology and Systematics, 1, 327-356
[0228] Ito, T. et al (2000) Plant Cell, 12, 1541-1550.
[0229] Jofuku, K. D. et al (2005). Proc Natl Acad Sci USA, 102, 3117-3122.
[0230] Li, J. et al (2004). Genetics, 168, 2187-2195.
[0231] Li, Y. et al (2006). Genome Res, 16, 414-427.
[0232] Li, Y., Zheng et al (2008) Genes Dev, 22, 1331-1336.
[0233] Li, Y. et al (2003). Plant Cell, 15, 2020-2031.
[0234] Liu, Y. G. et al (1995) Plant J, 8, 457-463.
[0235] Lopes, M. A et al (1993). Plant Cell, 5, 1383-1399.
[0236] Luo, M. et al (2005) Proc Natl Acad Sci USA, 102, 17531-17536.
[0237] Miyoshi, K. et al (2004) Proc Natl Acad Sci USA, 101, 875-880.
[0238] Moles, A. T. et al (2005) Science, 307, 576-580.
[0239] Ohto, M. A. et al (2005) Proc Natl Acad Sci USA, 102, 3123-3128.
[0240] Ohto, M. A. et al (2009) Sex Plant Reprod, 22, 277-289.
[0241] Orsi, C. H. et al (2009) PLoS Genet, 5, e1000347.
[0242] Schruff, M. C. et al (2006) 133, 251-261.
[0243] Scott, R. J. et al (1998). Development, 125, 3329-3341.
[0244] Shomura, A. et al (2008) Nat Genet, 40, 1023-1028.
[0245] Song, X. J. et al (2007) Nat Genet, 39, 623-630.
[0246] Szecsi, J. et al (2006) Embo J, 25, 3912-3920.
[0247] Wang, A. et al (2010) Plant J, 64, 670-679.
[0248] Weng, J. et al (2008) Cell Res, 18, 1199-1209.
[0249] Westoby, M. et al (2002) Annual Review of Ecology and Systematics, 33, 125-159.
[0250] White, D. W. (2006) Proc Natl Acad Sci USA, 103, 13238-13243.
[0251] Xiao, W. et al (2006) Plant Physiol, 142, 1160-1168.
[0252] Zhou, Y. et al. (2009) Plant Cell, 21, 106-117.
[0253] Zondlo, S. C. et al (1999) Plant J, 19, 259-268.
TABLE-US-00003
[0253] TABLE 1 Phenotypes of wild-type, eod3-ko1, eyp78a9-ko1, eod3-ko1 cyp78a9-ko1 and eod3-1D plants cyp78a9- eod3-ko1cyp78a9- Col-0 eod3-ko1 ko1 ko1 eod3-1D Petal area (mm.sup.2) 1.99 .+-. 0.11 1.99 .+-. 0.09 1.95 .+-. 0.10 1.86 .+-. 0.09** 2.48 .+-. 0.16** Petal length (mm) 3.08 .+-. 0.10 3.08 .+-. 0.09 3.05 .+-. 0.12 3.02 .+-. 0.08** 3.32 .+-. 0.11** Petal width (mm) 1.03 .+-. 0.04 1.03 .+-. 0.04 1.02 .+-. 0.04 1.01 .+-. 0.03** 1.18 .+-. 0.05** Leaf area (cm.sup.2) 1.02 .+-. 0.07 1.01 .+-. 0.07 0.99 .+-. 0.08 0.91 .+-. 0.08** 1.34 .+-. 0.11** Leaf length (cm) 1.29 .+-. 0.05 1.28 .+-. 0.04 1.27 .+-. 0.05 1.24 .+-. 0.07* 1.40 .+-. 0.09** Leaf width (cm) 1.01 .+-. 0.05 1.00 .+-. 0.04 0.99 .+-. 0.03 0.92 .+-. 0.04** 1.16 .+-. 0.05** Plant height (cm) 36.8 .+-. 1.9 36.7 .+-. 1.7 36.6 .+-. 1.5 33.5 .+-. 1.8** 64.8 .+-. 3.0** Stem thickness (mm) 0.88 .+-. 0.03 0.87 .+-. 0.03 0.87 .+-. 0.02 0.87 .+-. 0.04 0.99 .+-. 0.03** Number of RI 3.0 .+-. 0.7 3.0 .+-. 0.6 2.9 .+-. 0.6 2.9 .+-. 0.6 3.0 .+-. 0.6 Number of RII 4.0 .+-. 1.3 4.0 .+-. 0.9 3.9 .+-. 1.3 3.9 .+-. 1.1 4.0 .+-. 0.9 Number of CI 2.5 .+-. 0.5 2.5 .+-. 0.5 2.4 .+-. 0.5 2.4 .+-. 0.5 2.5 .+-. 0.5 Number of CII 5.0 .+-. 0.8 5.0 .+-. 1.0 4.9 .+-. 1.0 4.9 .+-. 1.1 5.0 .+-. 0.8 Leaf number 12.7 .+-. 0.8 12.6 .+-. 0.7 12.6 .+-. 0.7 12.6 .+-. 0.5 12.8 .+-. 0.7 Elongated siliques 328 .+-. 28 326 .+-. 32 324 .+-. 34 269 .+-. 22** 87 .+-. 18** % fertile siliques 99.1 .+-. 1.6 99.0 .+-. 1.5 98.9 .+-. 1.7 99.0 .+-. 1.8 21.1 .+-. 11.8** Ovule number per 53.9 .+-. 2.3 53.7 .+-. 2.6 53.4 .+-. 2.3 52.9 .+-. 2.1 53.1 .+-. 2.9 silique Silique fertility 98.4 .+-. 4.2% 98.2 .+-. 4.8% 98.2 .+-. 4.3% 98.1 .+-. 3.9% 51.8 .+-. 26.0%** Number of primary rosette branches (RI), second rosette branches (RII), primary cauline branches (CI), and second cauline branches (CII) were counted at 30 d after bolting. Primary rosette branches (RI) are axillary branches from rosette leaves, and second rosette branches (RII) are axillary branches from RI. Similarly, primary cauline branches (CI) are axillary branches from cauline leaves, and second cauline branches (CII) are axillary branches from CI. Opened flowers on the primary inflorescence were used to investigate ovules per silique. The elongated siliques on the primary inflorescence were used to investigate fertility. All values are given as mean .+-. SD. **P < 0.01 and *P < 0.05 compared with the wild type (Student's t-test).
TABLE-US-00004 TABLE 2 Developmental stages of embryogenesis The stage of the Quadrant or Bent fully filled DAP Genotype octant Dermatogen Globular Transition Heart Torpedo cotyledon seed cavity 2 Col-0 9 23 67 e3a9 8 21 65 eod3-1D 14 29 52 4 Col-0 5 36 72 e3a9 9 39 62 eod3-1D 17 28 40 13 6 Col-0 41 88 e3a9 29 97 eod3-1D 34 86 8 Col-0 7 70 e3a9 4 72 eod3-1D 18 80 10 Col-0 80 28 e3a9 77 13 eod3-1D 98 12 Col-0 10 90 e3a9 17 70 eod3-1D 89 14 Col-0 96 e3a9 124 eod3-1D 26 68 Siliques from the wild-type (Col-0), eod3-ko1cyp78a9-ko1 (e3a9) and eod3-1D plants were dissected. The number of embryos at each developmental stage was recorded.
TABLE-US-00005 TABLE 3 Name Primers Primers for verifying T-DNA eod3-1D-LP GGTCTAAGATTTCTCTCGTGTC (SEQ ID NO: 98) eod3-1D-RP CGTACGTCTTCTATTACTCCAC (SEQ ID NO: 99) CS833552LP AACTCCAAAGGATCAACCCAC (SEQ ID NO: 100) CS833552RP CCGGTTAAAGAATCGGCTTAC (SEQ ID NO: 101) CS806696LP GACTTGCAAAGATCGTTCACC (SEQ ID NO: 102) CS806696RP ACTCAATGTGACGTGTTGTGG (SEQ ID NO: 103) SALK121278LP TTTGATCGAGTGGATTCTTGC (SEQ ID NO: 104) SALK121278RP ATATTTGCTTGTAATCGGGGC (SEQ ID NO: 105) SALK148838LP(TTG2) TAAAACCAAACGACACCGTTC (SEQ ID NO: 106) SALK148838RP(TTG2) TCCAAGTTTGTTGACGATTCC (SEQ ID NO: 107) OJF22 CGAGTATCAATGGAAACTTAACCG (SEQ ID NO: 108) OJF23 AACGGAGAGTGGCTTGAGAT (SEQ ID NO: 109) OJF24 TGGCCCTTATGGTTTCTGCA (SEQ ID NO: 110) AD1 NTCGA(G/C)T(A/T)T(G/C)G(A/T)GTT (SEQ ID NO: 111) SALK_LBa1 TGGTTCACGTAGTGGGCCATCG (SEQ ID NO: 112) SAIL_LB2 GCTTCCTATTATATCTTCCCAAATTACCAATACA (SEQ ID NO: 113) Primers for constructs EOD3CDS-F CTGCAGATGGCTACGAAACTCGAAAGCTCC (SEQ ID NO: 114) EOD3CDS-R CTGCAGTTAACTGCGCCTACGGCGCAATTT (SEQ ID NO: 115) EOD3PROM-F GAGCTCTGTCTCGTGGATAAGTAG (SEQ ID NO: 116) EOD3PROM-R CCATGGGGCGGATCAAAGCAAAGTAAG (SEQ ID NO: 117) Primers for RT-PCR EOD3RT-F ACCAACCTTGCCTTCTCC (SEQ ID NO: 118) EOD3RT-R CGTCTCGGCTCTTCTGATT (SEQ ID NO: 119) AT2G46670RT-F ACAACGAGCAGCAACCA (SEQ ID NO: 120) AT2G46670RT-R TCTTCAACCGGAACTTCAT (SEQ ID NO: 121) ACTIN7-F ATCCTTCCTGATATCGAC (SEQ ID NO: 122) ACTIN7-R GAGAAGATGACTCAGATC (SEQ ID NO: 123) Primers for quantitative real-time RT-PCR EOD3QRT-F CCGGTTAAAGAATCGGCTTA (SEQ ID NO: 124) EOD3QRT-R TTGAGATCACTCGTCGTTGC (SEQ ID NO: 125) ACTIN2-F GAAATCACAGCACTTGCACC (SEQ ID NO: 126) ACTIN2-R AAGCCTTTGATCTTGAGAGC (SEQ ID NO: 127) Primers for in situ hybridization EOD3INSITU-F AAAGAAGCTCATATGAGAATTA (SEQ ID NO: 128) EOD3INSITU-R TGGTGTAAATATAAATTGAAACT (SEQ ID NO: 129) CYP78A9INSITU-F TTAGTGTATGATAAGGCTAAGGCT (SEQ ID NO: 130) CYP78A9INSITU-R GTATTAACTTTTCTTTGTGACA (SEQ ID NO: 131)
Sequence CWU
1
1
13111593DNAArabidopsis thaliana 1atggctacga aactcgaaag ctccttaatc
tttgcccttt tgtccaaatg cagcgttcta 60agccaaacca accttgcctt ctccctcctc
gccgtcacaa tcatctggct cgccatatct 120ctcttcttat ggacctatcc cggtggacct
gcttggggga aatacctctt cggccggtta 180atatccggtt catacaaaac cggaaacgtt
attcccggtc caaaaggctt ccctttggtt 240ggaagcatgt cactcatgtc aagcactcta
gctcaccgac gaatcgctga tgcagctgag 300aaattcggag ccaagaggct catggctttc
agcttaggag agactcgcgt gatcgtcacg 360tgcaatcccg acgtagcgaa agagattctg
aatagcccgg tttttgctga tcgaccggtt 420aaagaatcgg cttactcact gatgtttaac
agagcaattg gttttgcacc acacggtgtt 480tactggcgaa cgcttcgccg tatcgcttcg
aaccatctct ttagtacaaa acaaatcaga 540agagccgaga cgcaacgacg agtgatctca
agccagatgg ttgagtttct tgaaaaacag 600agtagtaacg aaccctgttt tgttcgtgag
ttgcttaaaa cggcgtcgct taacaacatg 660atgtgctctg tattcggaca agagtatgag
cttgaaaaaa accatgttga gttacgtgaa 720atggtcgaag aaggttatga tttgctcgga
acgttgaatt ggactgatca ccttccttgg 780ctatcggagt ttgatcctca aagactccgg
tctagatgtt ccacactcgt accaaaggta 840aaccggtttg tatcccggat tatatccgaa
caccgtaatc aaaccggtga tttgcctcgt 900gatttcgtcg acgttttgct ctccctccat
ggttcagata aattatccga cccggacata 960atcgccgttc tttgggagat gatattcaga
ggaacagaca cagttgcggt cttaatcgag 1020tggatcctcg ctaggatggt ccttcatcca
gatatgcaat caacggtaca aaacgagctg 1080gatcaagtag tcgggaaatc aagagcccta
gatgaatctg acttggcttc acttccatat 1140ctaacggctg tggtgaaaga agtattgagg
cttcatcctc caggcccact tctatcatgg 1200gcccgtttgg ccataacaga cacgatcgtt
gatggtcgtc ttgttccggc agggaccaca 1260gcaatggtga acatgtgggc cgtatcgcat
gatccacacg tgtgggttga tcctttggag 1320tttaaacctg agaggttcgt ggcaaaagaa
ggtgaggtgg agttttcggt tcttgggtcg 1380gatttgagac ttgcaccttt cgggtcgggt
cgtcggattt gccccgggaa gaatcttggt 1440tttactaccg ttatgttttg gacggcgatg
atgttacatg agtttgaatg gggaccgtcc 1500gatggtaacg gcgttgactt atctgagaaa
ctgaggcttt cttgcgagat ggctaatcct 1560cttcctgcta aattgcgccg taggcgcagt
taa 159321668DNAArabidopsis thaliana
2atggccacca agctcgacac cagtagctta cttttggccc tcttgtccaa atgtagcctc
60cttactcaaa ccaatcttgc tctctctctc ctcgtagcct ccctagcttc tctcgctctt
120tctctcttct tctggtctca tcccggagga cccgcatggg gaaagtactt cctccaccgc
180cgccgtcaaa ccaccgtgat acccgggcca agaggcttac cttttgtcgg aagcatgtct
240ctcatgtcaa acactctggc tcaccgttgc atagccgcaa ccgcagagaa atttagagcc
300gaacggttaa tggcgtttag tttgggagaa actcgcgtga tcgtcacgtg caatcctgat
360gtagctaaag agattctaaa cagtccggtt ttcgctgacc gcccggttaa ggaatcagct
420tattccctca tgtttaaccg tgctatcggt ttcgctcctt acggcgttta ctggcgaacc
480ttgagaaaaa tcgcgtctaa tcatcttttc agcccgaaac agattaaacg ttccgaaacg
540cagagaagcg tgatcgcgaa tcaaatcgtg aagtgtctca caaaacagag taacaccaaa
600ggtctctgtt tcgcacgtga cttgatcaaa acggcatcgc ttaataacat gatgtgctct
660gttttcggaa aagaatacga gcttgaggaa gagcatgaag aagtgagtga gctacgtgaa
720ttggtggaag aaggttatga tttactcggt acactgaatt ggaccgatca tctcccatgg
780ctctctgaat ttgatcctca aagaatccgg tctagatgct ctaatctcgt cccaaaagta
840aaccggtttg tgaaccggat tatctctgac caccgtgaac aaactcgtga ctcaccgagt
900gacttcgttg acgtattgct ctctctcgat ggtcctgata aattatccga ccctgatatc
960atcgccgttc tatgggaaat gatattcaga ggaactgaca cggtggctgt tttgatcgag
1020tggattcttg ctaggatggt ccttcatcca gatattcaat cgacggttca caatgagctt
1080gatcaaatcg tgggacgatc aagggctgtc gaagagtctg acgtggtgtc tctagtatat
1140ctaacggctg tggtgaaaga agtcttgagg cttcacccgc caggcccact actctcatgg
1200gcccgtttag caatcacaga cacgatcatc gacggtcgtc gtgttccggc ggggaccacc
1260gcaatggtga acatgtgggc tattgcacac gatccacacg tgtgggagaa tccgttggag
1320tttaaacccg aacgttttgt agccaaggaa ggtgaggttg agttctcggt tcttgggtct
1380gatttgaggc ttgcaccgtt cgggtccggt cgtcgggttt gccccgggaa gaatcttggt
1440ttgaccaccg tgacgttttg gactgcgacg cttttgcatg agtttgaatg gctgacgccg
1500tccgatgaga agaccgttga cttgtccgag aaactgaggc tctcgtgtga gatggctaat
1560cctcttgctg ctaaattacg ccccaggcgc agttttagtc aaaagaataa aataaagaac
1620aaagaaagta aaggaaacaa aaaaaaagaa tcatacaaaa aatactaa
166831608DNAArabidopsis thaliana 3atgagaaccg aaatagaaag tttgtgggta
tttgctcttg catcaaaatt caatatttac 60atgcaacaac attttgcttc ccttctcgtc
gccattgcta tcacttggtt taccataacc 120atcgtatttt ggtctactcc gggtggaccg
gcttggggaa aatacttctt cactcgccgg 180tttatttctc tcgattacaa ccgaaaatac
aagaatctca ttcccggtcc tagagggttt 240ccacttgtgg gaagcatgag ccttaggtca
agccacgtgg ctcatcagcg catagcgtct 300gtggctgaga tgagtaacgc caagcggctc
atggcgttta gcctcggtga tactaaggtg 360gtggtgacgt gtcatcctgc cgtggcaaag
gagatactaa acagttcggt ttttgctgac 420cgaccggttg acgaaaccgc ttacggtttg
atgtttaacc gagccatggg atttgctccc 480aatggtactt attggcgtac gctgcgtcgg
ttaggctcga accatctttt taacccgaag 540caaatcaaac aatcggagga tcagagacgg
gtgatagcga ctcagatggt gaatgcgttt 600gcacgtaacc ctaaatccgc gtgtgcagtg
cgtgatttgc tcaaaacagc gtcgttgtgt 660aacatgatgg gtttggtttt cgggagagag
tatgaattgg agtcaaataa caacttggaa 720tctgaatgct taaagggttt ggttgaagaa
gggtacgatc ttctaggtac gttaaattgg 780accgaccatc ttccttggtt agccggttta
gatttccaac aaatccggtt taggtgctcg 840cagctcgtac cgaaagtaaa tctgttattg
agccgtatca tacatgaaca acgtgctgcc 900acgggtaact ttcttgacat gttactttct
cttcaaggtt cagaaaaatt atcagaatcc 960gacatggttg ctgttctttg ggaaatgata
tttaggggaa cggacactgt tgcggttttg 1020gtcgagtggg tgctagcgag gattgtgatg
catcccaaag ttcaattaac ggtccacgat 1080gagcttgacc gagtcgttgg cagatcaaga
accgtggatg agtcagacct tccatcactc 1140acgtatctaa cggctatgat caaagaagtg
ttgaggctgc atccaccagg tccactgctt 1200tcttgggcac gactgtctat aacagacact
tccgtagatg gatatcacgt gccggctggg 1260accaccgcga tggtcaacat gtgggctata
gcacgtgacc cacacgtgtg ggaggatcct 1320ttagagttta agcctgagag gttcgtggct
aaagagggtg aagctgagtt ctctgttttc 1380gggtcggatc tgaggttggc accgttcggg
tcgggtaaga gggtttgccc tggaaagaat 1440ttgggactta caacggtgtc gttttgggtt
gcaacgctct tgcatgagtt tgagtggctt 1500cctagcgtcg aagctaaccc tccagatctc
tcggaggttt tgaggctctc gtgtgagatg 1560gcttgtccac tcatcgttaa cgtaagctca
aggcgtaaga taatgtaa 160841611DNAArabidopsis thaliana
4atggagttga tgaatttggc ttcaaaagaa acaagctatt ggatgattgc actgcctgcc
60ggttttggat cccaaaacct acatgatgtt tccaccctag gctatctatt ccttgccgtc
120gtttttctct ctatagtcac gtgggctctc gccggaggcg gtggtgtcgc ttggaagaac
180ggccgtaacc ggttgggtcg tgtcgcgatc cctggtcctc gtggcatacc agtattcggc
240agtcttttca ctctcagccg aggcttggct catcggacgt tagcagccat ggcttggagc
300cgagccaaca ctgagattat ggcttttagc cttggttcaa cgccggttat cgtggcttct
360gaaccaaaca tagctcgtga gattctgatg tcgcctcact tcgcggaccg gccggttaag
420cagtctgcta agagcctcat gttcagccga gccataggtt tcgccccaaa cgggacttac
480tggcgcatgt taagaaggat cgcatcgact cacctatttg ctcctcggcg tatcttagca
540cacgaagctg ggcgccagct agactgcgct gaaatggtga aagctgtgtc agtggagcaa
600aacggcgctg gatcagtcgt tttaaggaaa cacttacaac tagccgcctt gaacaacatc
660atgggaagtg tttttgggag aagatacgat cctctggctc agaaagagga tcttgatgag
720cttacatcaa tggttaggga agggttcgag cttttgggtg cttttaattg gtctgattat
780cttccatggc tcggttattt ctacgactca attcgtttaa accaacgttg ctcagatctc
840gtccctcgaa ttagaaccct cgtcaagaaa atcatcgacg aacatcgagt tagtaactct
900gagaagaaaa gagacattgg agattttgtt gatgtcttat tgtctttaga cggtgatgag
960aaacttcaag aagatgacat gatcgccgtt ttatgggaga tgatttttcg agggacagat
1020acaacggcgt tattaacgga gtggaccatg gccgagctag tactgaaccc taacgtgcaa
1080accaagttac gagacgagat tttaactgct gtgggcgacg gcgccgacgg agacgtggca
1140gatgctgacc tggcaaaact cccgtaccta aacgcagtgg tgaaggaaac tctaaggctg
1200catcctcctg gaccactgct ttcatgggct cgtctttcca cgtcagacgt ccagctcagc
1260aatggcatgg tgattccaaa gggaactaca gcgatggtca acatgtgggc tataacccac
1320gaccagactg tatggtccga cccgctaaag tttgacccgg agagattcac tgggaatgct
1380gacatggata ttcgtggtgg ggatctaagg cttgcaccgt ttggagccgg taggagagtg
1440tgtccgggga agaacatggg gctagctact gtgactcggt gggtggctga gttggtacga
1500cggttcgagt ggggtcagga tcagaccgag ccagttgatc ttggtgaggt cttgaagctt
1560tcttgtgaga tggagcatcc gttacgtgcc gttgtaacgg aaatatttta a
161151554DNAArabidopsis thaliana 5atgtctccgg aagcttacgt tctgttcttt
aacagtttta acctcgtaac cttcgaagcc 60tttgcttcag tctcacttat catagccaca
gttgctttct tgctctcacc aggtgggctc 120gcatgggcct ggaccgggtc atccaagagt
cgggtttcga ttccaggacc atctggttct 180ctttccgtct tctccggctc caatccccac
cgtgttctcg ccgctcttgc taaacgcttc 240aaggcctctc cgttgatggc gttctcagtt
gggttttcgc gtttcgttat ctctagtgaa 300ccggagacgg ctaaagagat tttgagcagc
tctgcttttg ctgaccggcc ggttaaggag 360tcagcttacg agcttttgtt tcaccgtgcc
atgggattcg caccgtatgg tgagtattgg 420aggaatctga ggagaatctc ctccactcat
cttttcagtc caagaagaat cgcgagtttt 480gagggtgtta gagttggcat cggtatgaag
atggtcaaga agattaaaag ccttgttacg 540tctgatgctt gtggtgaagt tgaagtgaaa
aagatcgttc actttggttc tttgaataat 600gtaatgacga cagtgtttgg tgaaagctac
gattttgatg aagttaatgg aaaagggtgt 660tttttggaga ggctggtgag tgaaggctac
gagttgcttg ggatttttaa ctggagtgat 720cacttttggt ttcttcgttg gtttgacttc
caaggagtga ggaagaggtg tagagctttg 780gtctctgaag tcaacacttt tgtcggcgga
ataattgaga aacacaagat gaagaagggt 840aataatctca atggagagga aaatgacttc
gttgatgtct tgcttggctt gcaaaaggat 900gaaaagttgt ctgattctga catgattgct
gttctttggg aaatgatatt tagagggaca 960gatacagttg cgattctagt ggaatgggtg
cttgcaagaa tggttttgca tcaagacatc 1020caagataaac tctacagaga gatagcttct
gctacaagta acaatattag atccttgtct 1080gattccgaca tcccaaaact gccgtacctt
caagctattg tcaaagaaac cctaaggctc 1140cacccccctg gtccacttct ctcttgggct
cgtctcgcta tccatgacgt ccacgtaggt 1200cctaaccttg tccctgctgg aaccatagct
atggtcaaca tgtggtccat cacacacaac 1260gctaaaatct ggaccgaccc tgaagcgttt
atgcctgaaa ggttcattag tgaggatgtg 1320agcatcatgg gctcggatct tagattggct
ccattcggat ccggtcgtcg ggtttgtccc 1380ggtaaagcaa tgggtctagc tactgttcat
ctctggattg gtcaactaat tcagaatttt 1440gaatgggtga agggttcttg tgatgttgag
ctcgctgagg ttctgaagct gtctatggag 1500atgaagaatc cgttgaagtg caaggctgtt
ccaaggaatg ttggtttcgc ttga 155461614DNAArabidopsis thaliana
6atgactattg atatgtatct ttccttcgct tctcgttctg gatcttctcc atttccaagt
60ctcgagcttt gtctcagcat tttcctcttc atctcccttt tcgttttctg gttgactcca
120ggtggctttg cttgggcact ctacaaagct cgtttccata cccgacctga gtccaaaacc
180ggacctgcca ttcccggccc gtctggtctc cccatctttg gcctcctctt ggcttttgtc
240aacaacgcct taacacacag aatcctcgcc aatattgctg acacttgcaa agcaaaagct
300ctcatggcgt tctccgtagg gtcaacccgg tttgttataa ccagcgaacc agagaccgcg
360aaagagcttc taaacagctc tgcttttgca gaccggccag tgaaagagtc tgcttacgag
420ctgctctttg atagagccat ggggtttgct ccctttggtg attactggag agagttgagg
480agaatctctt ctacccatct cttcagccct aagaggatct tcagttctgg cgagtcccgc
540cgaaaaatcg ggcaaaacat ggtaggagag atcaagaacg caatggagtg ttatggagaa
600gtgcatataa aaaagatctt gcatttcgga tcactcaaca acgtgatgtc tagcgttttc
660ggtaaaacat acaacttcaa cgaaggtatt gtctactcga aagagagcaa tgagttggag
720catttggtgt ctgaaggcta tgagctgctc ggaatcttca actggagtga tcatttccct
780ggaatgagat ggttagattt acaaggtgtg aggagaagat gtcgtagttt ggtcggtaga
840gtgaatgtgt tcgtcggtaa gataatcaat gaccacaaat caaagaggtc acttcgtgat
900aatcctgaag agagcactta tgatgatgac tttgtagatg tcttacttgg catgcacggc
960aacagcaaac tttctgactc cgatatgatc gcagtccttt gggaaatgat ttttagggga
1020acagacacgg tggcgattct cttggaatgg atccttgcga ggatggttct tcaccctgac
1080attcaagcca aggcgcaggc cgagatcgat tgtatcgtgg gtgactcggg acgtcaagtc
1140acagactcag acctccccaa gctcccatac gttcgtgcca ttgtcaagga aaccctaagg
1200atgcacccac ctggtcctct cctctcatgg gctcgtctct ccattcacga tactcagatc
1260gggactcact ttatacccgc aggaaccact gcgatggtta acatgtgggc tataacccac
1320gatgaaaagg tctggccgga agctcatgag tataaaccag agaggtttct tggtgcgcaa
1380gaaagtaata acttccccat catgggatct gatctgaggc ttgctccctt cggtgctgga
1440cgtagggtct gtcccggcaa gtcaatgggt ctagccaccg tggagctatg gctagctcag
1500ttgctaggaa gctataagtg ggtctcatgt ggtgaagtgg atttgagtga gactttgaag
1560ctatctttgg agatgaagaa cactcttgtc tgcaaggcaa tccctagggg ttaa
161471668DNAOryza sativa 7atggcaatgg ccaccgccac cgcctcctcc tgcgtcgacg
ccacgtggtg ggcgtacgcc 60ctcccggcgc tcctcggcgc cgacaccctc tgcgcccacc
cggcgctgct cgccggcgcc 120gtcctcctgg ccttcgccac cgccgcggtg ctcgcctggg
ccgcgtcccc cggcgggccg 180gcgtgggcgc acggccgcgg ccgcctcggc gcgacgccca
tcgaggggcc ccgggggctc 240cccgtgttcg gcagcatctt cgcgctctcc cggggcctcc
cgcaccgcgc gctcgacgcg 300atgtcgcgcg acgcggcggc gccacgggcg agggagctca
tggcgttctc cgtcggggag 360acgccggcgg tggtgtcgtc gtgcccggcg acggcgaggg
aggtgctcgc gcacccgtcg 420ttcgccgacc gcccgctgaa gcgctcggcg cgggagctgc
tgttcgcgcg cgccatcggg 480ttcgccccca gcggcgagta ctggcgcctc ctccgccgca
tcgcctccac ccacctcttc 540tcccctcgcc gcgtcgccgc gcacgagccg gggcgccagg
ccgacgccac ggcgatgctg 600tccgccatgg ccgccgagca gtccgccacc ggcgccgtcg
tgctccgccc ccacctccag 660gccgccgcgc tcaacaacat catgggcagc gtgttcggcc
ggcgctacga cgtctcctcc 720tcctccggcg ccgccgccga cgaggccgag cagctcaaga
gcatggtgcg cgaggggttc 780gagctcctcg gcgcgttcaa ctggtccgac cacctcccat
ggctcgccca cctctacgac 840cccaaccacg tcgcccgccg ctgcgccgcg ctcgtccccc
gcgtccaggc gttcgtccgc 900ggcgtcatcc gcgaccaccg cctccgccgc gactcctcct
ccaccgccgc cgacaatgcc 960gacttcgtcg acgtcctcct ctccctcgag gcccacgaga
acctcgccga ggacgacatg 1020gtcgccgtcc tctgggagat gatatttcgt gggacggaca
cgacggcgtt ggtgacggag 1080tggtgcatgg cggaggtggt gaggaacccg gcggtgcagg
cgaggctgag ggcggaggtg 1140gacgcggcgg tgggcggcga cgggtgtccc agcgacggcg
acgtggcgcg gatgccgtac 1200ctgcaggcgg tggtgaagga gacgctgagg gcgcacccgc
cggggccgct gctgagctgg 1260gcgcggctgg ccaccgccga cgtggggctc gccaacggca
tggtggtgcc ggcgggcacg 1320acggcgatgg tgaacatgtg ggccatcacc cacgacggcg
aggtgtgggc cgacccggag 1380gcgttcgcgc cggagcggtt catcccgtcg gagggcggcg
ccgacgtcga cgtccgcgac 1440ggcgacctcc gcctggcgcc gttcggcgcc gggcgccgcg
tctgccccgg caagaacctc 1500ggcctcgcca ccgtctccct ctgggtcgcc cgcctcgtcc
acgccttcga ctggttcctc 1560cccgacggct cgccgccggt gtccctcgac gaggtcctca
agctctccct cgagatgaag 1620acccctctcg ccgccgccgc caccccccgc cgccgccgcg
ccgcctga 166882133DNAZea mays 8acccattcac tcactcatct
caaggcctag gtagcaccgt agcagctact agaagcagct 60agccagaaca actcgtccat
ggcgatggcc tccgcggctt gctcatgcac ggacggcacg 120tggtgggtgt acgcgctccc
ggcgctgctc ggctccgaca ccctgtgcgc ccacccggcc 180ctcctggctg gcctgatctt
tctggccacc gtctcggtgg ctctgctggc gtgggccacg 240tcgccgggcg gtccggcgtg
gacgaacggc cgcggccgcc tcggcgtcac tcctatcgtg 300ggaccccgtg gtctgcccgt
gttcggcagc atcttcgcgc tgtcccgcgg gctgccgcac 360cgcgccctcg ccgagatggc
ccgcgccgca gggccccggg ccaaggagct catggcgttc 420tccgtcggtg acacgcccgc
ggtcgtgtcg tcctgcccgg ccacggcacg tgaggtgctc 480gcgcacccgt cattcgccga
ccgccctgtg aagcggtcgg cccgggagct catgttcgcg 540cgtgccatcg ggttcgcgcc
caacggcgag tactggcgcc gcctccgccg cgtcgcgtcc 600acgcacctct tttccccgcg
ccgggtcgcc tcgcacgagc cgggacgcca aggtgacgcg 660gaggccatgc tccgctccat
cgccgccgag cagtcggcct ctggcgccgt cgccctccgc 720ccgcacctcc aggccgccgc
tctcaacaac atcatgggca gcgtcttcgg cacgcggtac 780gacgtcacat caggcgccgg
cgccgcggag gccgagcatc tcaagagcat ggtgcgcgag 840gggttcgagc tcctcggcgc
cttcaactgg tccgaccacc tcccctggct cgcccacctg 900tacgacccaa gcaacgtcac
ccgccggtgc gccgcgctcg tgccgcgcgt ccagaccttc 960gtccgtggcg tcatcgacga
gcaccggcgc cgccgccaaa actccgccgc cctcaacgac 1020aatgctgact tcgtcgacgt
gctcctctcc ctcgagggtg acgagaagct cggcgacgac 1080gacatggtcg ccatcctctg
ggagatggtc ttccgcggta cggacacgac gacgcttctg 1140accgagtggt gcatggcgga
gctggtgcgc cacccggcgg tgcaggcgag ggtgcgcgcc 1200gaggtcgacg cggctgtcgg
tgccggaggt tgccccaccg acgccgacgt ggcgcgcatg 1260ccgtacctgc aggcggttgt
gaaggagacg ctgcgcgccc acccgcctgg cccgctgctg 1320agctgggctc gcctcgccac
cgccgacgtg ccactctgca acggcatggt ggtcccggct 1380ggcaccacgg cgatggtgaa
tatgtgggcc ataacccacg atgccgccgt gtgggccgac 1440ccggacgcgt tcgcgccgga
gcggttcctg ccctccgggg gcggcgccga cgtggacgtc 1500cgcggcgtcg acctccgcct
ggccccgttc ggcgccgggc gtcgcgtctg ccccggcaag 1560aacctgggcc tcaccaccgt
gggcctctgg gttgcccgcc tcgtgcacgc cttccagtgg 1620gccctgcctg acggcgcggc
ggccgtttgc ctcgacgagg tcctcaagct ctccctggag 1680atgaagacgc cgctcgtcgc
cgcagccatc ccccgcaccg cctgatccgt cctgccgccg 1740acgcgtcacg tcacgcgttg
tttgcatgga tgatggtatc tttgtctgtc tgtgtggtct 1800tcgctaaagt ttgcttcttc
tcgatcgtcg gttcgttcgt gcctccacct tagcctaggg 1860tttggtttct tgcaaggtag
tgagtgtgtc ttagtctcac catcaccggg gctccaattt 1920tggaaagctg cgtgttagga
gttaacccct agacatgttt gcgtcttgat cgccaccacc 1980catcagtatc agcgcagaaa
ctacatatag atcagtgttt gtcgaccagt catggaagtc 2040gtgtgctctc aagtctgatg
tattatatac atatatatgt attgtaatgt gattatcaag 2100aaccgtgcta tttacaaaaa
aaaaaaaaaa aaa 213391799DNAPhalaenopsis
sp. SM9108 9cggcaccact cctctctgtt cctctaatat ctggttaaaa atgacaatgt
catccatgga 60ttcatcttca ataatattaa cttatctctc cccaacactt tctccagcta
tcgccgcttc 120tatcatcatc atctcagctc tactactctt tcccggcggt ctggcgtggg
ccctttccct 180caagcgccca acattctccg ggcccaccgg aattgttttt gctctcgcca
gctctgctgc 240tcataagtca cttgccgccc tagctcgctc cgttcgacgc cctccgcctc
atggctttct 300cggtcggcct cactcgcttc atcgtttcaa gccacccgaa aaccgcaaaa
gagattcttt 360caagcccagc cttcgctgat cggcccatta aagaatcagc atacgaactt
ctgtttaatc 420gcgctatggg ttttgcccca tttggggatt actggagaaa cctgagaagg
atttcgtcca 480catatctttt cagtccgcgg cgagtttcat cgttcgagaa gcaacggagt
gagattggcg 540aaggaatggt gcgggatatg aaaagaatga tggagagaaa tggagttgta
gaagtgagga 600gaatgttgca ctacgggtct ttgaataaca tcatgttgac tgtttttggg
aaaaagtttg 660attttgcaaa ggatgagggg ttggagcttg agttgatcct taaggaagga
tatgagttac 720ttgggatctt caactggggt gatcatttgc ctcttttggg atggttagat
ttgcaaggtg 780tgaggagaag atgcagaaca cttgtggcta aggtcaatgt atttgtgaag
aagatcatag 840acgagcataa gaggagagcc aacggcgtag ggattgatga gggtgaaggt
gaagattttg 900ttgatgtgct tcttggtttg gaggagaaag atagactctc agaatctgat
atggtcgcag 960ttctttggga aatgatcttt agaggaactg atactgttgc catcctattg
gaatggacgt 1020tggctagaat ggttcttcat cctgatattc aatcgaaggc acaagttgag
attgattctg 1080tcgttgactc ttcaaggcca gtattggatt ctgatatcca acgacttcct
tatctccaat 1140ctatagtaaa agaaaccctt cgaatgcatc ctcctgggcc tctattgtca
tgggctcgcc 1200tagctatcca tgacgttcct gttgatggtc acatgattcc tgctgggacg
actgcaatgg 1260tgaacatgtg ggcaataaca catgacgaat gcaactgggc tgagcctaac
aaattcaatc 1320ctgatcgatt catcgatgaa gatgtcaata ttcttggttc cgatttaagg
ttggcaccct 1380ttggctccgg taaaagagtt tgccctggca aaacgatggc attggctgca
gttcatcttt 1440ggttggctca gttgctgaaa agcttcaaat tgcttccttc gagaaatggt
gtagatttgt 1500ctgagtgcct aaagatgtct ctcgagatga agaatccttt ggtatgtgtg
gctgttccaa 1560ggttcgagta gtcctgctaa gatgacgtct agttataaga aatttgttct
ttgcaaattg 1620tggccaacat aaatgatttc gtaagctagc aacttatgga taatgtcggt
acatgttcgt 1680ttaaagtgtc aactttgttt ggttgaattt taaaatttga cattgtaata
aagattctct 1740ggttctatgt aaatattgta attcagctta taatataaga aagaaatgaa
tttgttgct 1799101611DNAGlycine max 10aagcactatc cctcccacca tgacaagcca
cattgacgac aacctctgga taatagccct 60gacctcgaaa tgcacccaag aaaaccttgc
atgggtcctt ttgatcatgg gctcactctg 120gttaaccatg actttctatt actggtcaca
ccccggtggt cctgcctggg gcaagtacta 180cacctactct cccccccttt caatcattcc
cggtcccaaa ggcttccctc ttattggaag 240catgggcctc atgacttccc tggcccatca
ccgtatcgca gccgcggccg ccacatgcag 300agccaagcgc ctcatggcct ttagtctcgg
cgacacacgt gtcatcgtca cgtgccaccc 360cgacgtggcc aaggagattc tcaacagctc
cgtcttcgcc gatcgtcccg tcaaagaatc 420cgcatacagc ctcatgttta accgcgccat
cggcttcgcc tcttacggag tttactggcg 480aagcctcagg agaatcgcct ctaatcacct
cttctgcccc cgccagataa aagcctctga 540gctccaacgc tctcaaatcg ccgcccaaat
ggttcacatc ctaaataaca agcgccaccg 600cagcttacgt gttcgccaag tgctgaaaaa
ggcttcgctc agtaacatga tgtgctccgt 660gtttggacaa gagtataagc tgcacgaccc
aaacagcgga atggaagacc ttggaatatt 720agtggaccaa ggttatgacc tgttgggcct
gtttaattgg gccgaccacc ttccttttct 780tgcacatttc gacgcccaaa atatccggtt
caggtgctcc aacctcgtcc ccatggtgaa 840ccgtttcgtc ggcacaatca tcgctgaaca
ccgagctagt aaaaccgaaa ccaatcgtga 900ttttgttgac gtcttgctct ctctcccgga
acctgatcaa ttatcagact ccgacatgat 960cgctgtactt tgggaaatga tattcagagg
aacggacacg gtagcggttt tgatagagtg 1020gatactcgcg aggatggcgc ttcatcctca
tgtgcagtcc aaagttcaag aggagctaga 1080tgcagttgtc ggaaaagcac gcgccgtcgc
agaggatgac gtggcagtga tgacgtacct 1140accagcggtg gtgaaggagg tgctgcggct
gcacccgccg ggcccacttc tatcatgggc 1200ccgcttgtcc atcaatgata cgaccattga
tgggtatcac gtacctgcgg ggaccactgc 1260tatggtcaac acgtgggcta tttgcaggga
cccacacgtg tggaaggacc cactcgaatt 1320tatgcccgag aggtttgtca ctgcgggtgg
agatgccgaa ttttcgatac tcgggtcgga 1380tccaagactt gctccatttg ggtcgggtag
gagagcgtgc ccagggaaga ctcttggatg 1440ggctacggtg aacttttggg tggcgtcgct
cttgcatgag ttcgaatggg taccgtctga 1500tgagaagggt gttgatctga cggaggtgct
gaagctctct agtgaaatgg ctaaccctct 1560caccgtcaaa gtgcgcccca ggcgtggata
agagagagtt gaagctttta t 1611111885DNAGlycine max 11ggcactcact
gaagcactat ccctcccacc atgacaagcc acattgacga caacctctgg 60ataatagccc
tgacctcgaa atgcacccaa gaaaaccttg catgggtcct tttgatcatg 120ggctcactct
ggttaaccat gactttctat tactggtcac accccggtgg tcctgcctgg 180ggcaagtact
acacctactc tccccccctt tcaatcattc ccggtcccaa aggcttccct 240cttattggaa
gcatgggcct catgatttcc ctggcccatc accgtatcgc agccgcggcc 300gccacatgca
gagccaagcg cctcatggcc tttagtctcg gcgacacacg tgtcatcgtc 360acgtgccacc
ccgacgtggc caaggagatt ctcaacagct ccgtcttcgc cgatcgtccc 420gtcaaagaat
ccgcatacag cctcatgttt aaccgcgcca tcggcttcgc ctcttacgga 480gtttactggc
gaagcctcag gagaatcgcc tctaatcact tcttctgccc ccgccagata 540aaagcctctg
agctccaacg ctctcaaatc gccgcccaaa tggttcacat cctaaataac 600aagcgccacc
gcagcttacg tgttcgccaa gtgctgaaaa aggcttcgct cagtaacatg 660atgtgctccg
tgtttggaca agagtataag ctgcacgacc caaacagcgg aatggaagac 720cttggaatat
tagtggacca aggttatgac ctgttgggcc tgtttaattg ggccgaccac 780cttccttttc
ttgcacattt cgacgcccaa aatatccggt tcaggtgctc caacctcgtc 840cccatggtga
accgtttcgt cggcacaatc atcgctgaac accgagctag taaaaccgaa 900accaatcgtg
attttgttga cgtcttgctc tctctcccgg aacctgatca attatcagac 960tccgacatga
tcgctgtact ttgggaaatg atattcagag gaacggacac ggtagcggtt 1020ttgatagagt
ggatactcgc gaggatggcg cttcatcctc atgtgcagtc caaagttcaa 1080gaggagctag
atgcagttgt cggaaaagca cgcgccgtcg cagaggatga cgtggcagtg 1140atgacgtacc
taccagcggt ggtgaaggag gtgctgcggc tgcacccgcc gggcccactt 1200ctatcatggg
cccgcttgtc catcaatgat acgaccattg atgggtatca cgtacctgcg 1260gggaccactg
ctatggtcaa catgtgggct atttgcaggg acccacacgt gtggaaggac 1320ccactcgaat
ttatgcccga gaggtttgtc actgcgggtg gagatgccga attttcgata 1380ctcgggtcgg
atccaagact tgctccattt gggtcgggta ggagagcgtg cccagggaag 1440actcttggat
gggctacggt gaacttttgg gtggcgtcgc tcttgcatga gttcgaatgg 1500gtaccgtctg
atgagaaggg tgttgatctg acggaggtgc tgaagctctc tagtgaaatg 1560gctaaccctc
tcaccgtcaa agtgcgcccc aggcgtggat aagagagagt tgaagctttt 1620attaaaaagg
gaacaagaaa aaaagaaaat gaaatatata gaaataaaac agacaagaaa 1680gtaaagtaaa
gattatgcat gttgctgcat gtaggttggt ggttggtggc aggtgtgcag 1740ccacacaatg
gtaatatggt ggaagggatg ggttaggctc tctttttttt ttttagtggt 1800caagtattaa
gtcttctcag cttgtcttct tattacaaaa aaagtactgt tgccagtgta 1860aataaactta
atacgttttt agttg
1885121686DNAGlycine max 12atgtcaaccc acattgaaag cctgtgggtg ttggccttag
cctcaaaatg cattcaagag 60aacattgcat ggtcactctt gatcatcatg gtcactctct
ggctcaccat gaccttcttc 120tactggtctc accctggtgg tcctgcttgg ggcaaatact
actactttaa ttactggaaa 180aaaaccacct caaccaacac aaacatcaac cttaaaatga
ttatccctgg tcctagaggc 240taccctttca ttgggagtat gagtctcatg acatccctcg
cacaccaccg tattgctgcg 300gcgggggaag catgcaacgc caccaggctc atggcttttt
ccatgggtga cacacgcgcc 360atagtaacgt gcaaccccga tgtcgctaaa gagattctca
atagttccac ttttgctgat 420cgtcccataa aggaatcagc ttacagcctc atgttcaacc
gcgccatcgg cttcgcccct 480tacggcgtct actggcgtac cctccgccgc atcgccgcca
cgcacctctt ctgccccaaa 540caaatcaaag cctccgagct ccagcgcgct gaaatcgccg
cccaaatgac aaactcattc 600cgaaatcacc gttgcagcgg cggtttcgga atccgcagcg
tgctcaagag agcgtcactg 660aacaacatga tgtggtcggt gtttggacaa aagtacaacc
ttgacgagat aaacaccgca 720atggacgagc tatccatgtt ggtggaacaa ggctatgact
tgttgggcac ccttaattgg 780ggagaccata tccctttcct gaaagacttt gacctacaga
aaatccggtt cacctgctcc 840aaattagtcc ctcaagtgaa ccggttcgtt ggttcaatca
tcgccgacca ccaggccgac 900acaacccaaa ccaaccgcga tttcgttcat gttttgctct
ctctccaagg tcccgataaa 960ttgtctcact ccgacatgat tgctgtcctc tgggaaatga
tatttagggg gaccgacacg 1020gtggcggttt tgattgagtg gatactggcg aggatggtgc
ttcatccgga ggtgcaaagg 1080aaggtacaag aggagttgga cgcggtggtt aggggtggcg
ctttgacgga ggaggtcgtg 1140gcggcgacgg cgtatcttgc ggcggtggtg aaagaggttc
tgaggctgca cccgccgggc 1200ccgcttctct cgtgggcccg cttggccatc actgatacga
ccattgatgg gtatcacgtg 1260cctgcgggga ccaccgctat ggttaatatg tgggccatag
caagggaccc ggaggtgtgg 1320ctggacccac ttgagttcaa gcccgagagg ttcatgggtc
tggaaaacga gttttctgtt 1380ttcgggtcgg atctgagact cgctccattc ggttcgggtc
ggagaacatg ccccgggaag 1440actttgggtt tgagcaccgt aaccttctgg gtggcttggc
ttttgcatga gtttgaatgg 1500ctaccgtctg atgaagccaa ggttgatcta acggaggtgc
tgaggctctc gtgtgaaatg 1560gctaacccac tcattgttaa agttcgccct aggcatggat
taagcactta atgataatat 1620aattaagcct atctacgtta ttaacttgaa atgttttaat
gggaaggaaa aaaaaaaaaa 1680agagag
1686132100DNAOryza sativa 13aactcaaact gcacttccct
tttcagctct tctccaacct caatttcacc ccatttttcc 60atatcctctc tgcacacgta
cgtacaggta aacgtgcctg atcatggaca tggactcgtc 120gccgtcgaca caggactgtg
gcggctggct gctgtacgtc tccctcgctg ccaaatgcgg 180cggcgaccct tgccgcgtcg
tcggcttcgt cgccgttgcc gtcgtcgcct tcgccgtcac 240gtcgctcctg cactggctgt
cgcccggtgg cccggcgtgg gggaggtatt ggtggaacag 300gaggggtggt ctgggcattg
ctgccgccat tcctgggccc cgtgggttgc ccgtgctcgg 360cagcatgtcg ctcatggcgg
gactcgcgca ccggaagctc gccgcggcgg cggggggctc 420gccggcgagg cggcgcctca
tggcgctgtc tctcggggag acacgggtgg tggtcaccgc 480cgaccccggc gtcgcgcggg
agctcctcgc cagcgcggcg ttcgccgacc ggccggtgaa 540ggagtccgcg tacgggatgc
tgttccaccg cgccatcggg ttcgcgccct acggcacgta 600ctggcgcgcg ctccgccgcg
tcgcgtccac gcacctcttc tcgccgaggc aggtgtccgc 660ctccgccgcg cagcgcgcgg
tgatcgcgcg ccagatggtg gaggccatga ggtccgccgc 720cgccgccgcc gccggtggcg
gcgtggcggc gaggccgttc ctgaagcgcg cgtcgctgca 780caacgtgatg tggtcggtgt
tcgggaggaa gtacgagctg gcggcgccgg agagcgagga 840gacggcggag ctgaggagca
tggtggacga aggctacgac ctcctcggcc agctcaactg 900gtccgaccac ctcccatggc
tcgcaccctt tgacctcaag aagacgcggt caaggtgctc 960gtcccttgtc ccccgcgtca
accgcttcgt cacccgcatc atcgacgagc accgtgctcg 1020cctcagcctc gccgtcgacg
ccgccgtcga cttcaccgac gtccttctct ccctccacgg 1080cggcgacaag ctctccgacg
ccgacatggt cgccgtcctc tgggagatga tctttcgagg 1140gacggacacg gtggcggtcc
tgatcgagtg ggtggcggcg aggctggtgc tgcaccagga 1200cgtgcaggcc agggtccatg
acgagctgga ccgagtggtc gggtcggacc gggcagtgac 1260cgagtcggac gcgtccaagc
tggtctacct ccaagcggtg atcaaagagg tcctgcgcct 1320ccacccgccg ggcccactgc
tctcgtgggc acgcctcgcc acgtcggatg tacacgtcgg 1380cgggttcctc ataccctctg
ggaccaccgc catggtgaac atgtgggcca taacccatga 1440ccctgccgtt tggcccgacc
cgaacgagtt caaaccagag aggttcgtcg cagggccctc 1500gtcggaccag gccacggagt
ttccgataat ggggtcggat ctcaggctcg cgccgttcgg 1560gtcaggaagg cgaagctgcc
ccggcaagtc gctcgccatc gccactgtcg gattctgggt 1620tgccacgttg ctacacgagt
tcgattggct tcccttgtca gataagtcgc gcggcgtcga 1680tctgtcggag gtgctgaagc
tgtcgtgcga gatggcaacc ccgctggagg caaggctaag 1740gccgcgacgc aaggtgtgat
gacgtgtcac caccgtcacg tgggactaag acgaggagag 1800ggaagccgac ttccacttcc
ttctagtgct tgttgagatg tgtaaatgtc cctaaatgta 1860aagtgttacg ctttgagtag
aaatgcccct acgttgtagt gcgtagtatt gtacacttgt 1920agtatgtaat gcttgtattt
ttgtgtgttt tgcacgtcct aagtagtgga gtagtagctg 1980ataatagtta gttaattact
ctgctattta gtcatagtta actacctacc tgcaggtgat 2040gagagtgaca gttttttttt
gtttaattaa ctgcaggtga tgagtgtaga atagctcggt 2100141861DNABrachypodium
distachyon 14atggcgaccc ctgaggactg tggcagctgg ttgctgtacc tgtcgctggc
cgccaaatgc 60ggcggcgacg gcgaccaccc gcgccgcctg gccgggctcc ttgccgtctg
cgccgccgct 120ttcctcgtca cctgcctcct gcactggtgc ttccccggcg ggccggcgtg
gggccgctgg 180tggtggacgc ggcggggcct gggccgcggg cccgtcgtcc ctgggccgag
gggcctgccg 240gtgatcggca gcatgtggct catgactggc ctcgcccacc gcaagctcgc
cgcggaggct 300gcccgcctgc gaggcggcgg gcgccggctg atggccttct ccctcggcga
gacgcgcgtg 360gtcgtggcgg gccatcccga cgtggcccgg gagatcctga ccagcccggc
cttcgccgac 420cggcccgtca aggagtccgc ctacgggctc atgttccacc gcgccatcgg
cttcgcgcgc 480cacggcgcct actggcgcgc gctccgccgc gttgcttcca cgcacctctt
ctcgccctgg 540caggtcgccg cgtccggcgc ccagcgcgcg gtgatcgcgc gccagatggt
ggccgccctc 600gccgggggcg ccgaggtccg gcgcgtcctg cgtcgcgcgt cgctgcacaa
cgtgatgtgg 660tcggtgttcg gccgccgcta cgacctggag ctggaccctg gcaaggaggt
ccgcgagctg 720ggccagctcg tggacgaagg ctacgacctg ctgggccagc tcaactggtc
cgaccacctc 780ccctggctcg cccgcttcga cctgcagggc acccgggccc ggtgcgccag
cctagtgccc 840cgcgtgaacc gcttcgtcgg cggcatcatc gatgaccacc gggtcaaagc
tccgtccgcc 900gtcaaggact tcacggacgt cctgctgggc ctgcaaggcg gcgacaggct
cgccgactcc 960gacatggtcg cggtgctctg ggagatggtg ttccgtggca cggacacggt
ggccgtgctg 1020atggagtggg tgctggcccg gctcgtgctg caccaggacg tgcaggcccg
ggtgcacgag 1080gagctggacc gcgtcgtcgg gcgcgaccgg gccgtggccg agtccgacgc
ggcctcgctc 1140gcctacctcc acgccgtggt caaggaggtc ctgcgcctcc acccgccagg
cccgctgctg 1200tcctgggccc gcctggccac gtcggacgtg cacgtggacg ggttcctcat
ccccgctggc 1260accaccgcca tggtgaacat gtgggccatc acccacgacg gcgacgtctg
ggccgagccc 1320atggagttcc ggcccgagcg gttcgtcggg ccgggggctg aggagttctc
cgtcatgggc 1380tctgatctcc ggctggcgcc gtttggggcc ggccggagga gctgccccgg
gaagagcctg 1440gccatggcga ccgtggcgtt ctggctcgcc acgctgctcc acgagttcga
cctgcttcct 1500tcctccgacc cggcacgtgg cgtgcaactg tcggagaccc tgaggctgtc
gtgcgagatg 1560gccaccccgc tggccctgac gccgagggct cgtcgacgcc cggcggtttg
aatttgaatt 1620gatgacgtat catgcctacg ccaccactgg ctagctagct agaaccctag
tattgttgct 1680gctttgtttt tgagacgttg tcgcctaccg gtcggccgcc ggctcgctac
cacgcacgca 1740cgtacgggca taacgctggc ttatctcgtc cagagctagc aaatgaatcg
tttggacttt 1800tatatatcga gacgtgccag ctgatgacag cgatgttttt tgccttcttg
ttcccccggt 1860c
1861151755DNAGlycine max 15atgacaaccc acattgataa cctgtgggtg
ttggccttgg tctcaaaatg cacacaagag 60aacattgcat ggtcactctt gaccatcatg
gtcactctct ggctctccat gaccttcttc 120tgctggtctc atcccggtgg tcctgcttgg
ggcaagtact actcctttca ttactggaaa 180aaaacaacca caaccacaac ctcaacctca
aacaacacaa actccaacaa ccttaaaatg 240attcccggtc ccaaaggcta tcctttcatt
ggaagcatga gcctcatgac atcccttgca 300caccaccgta ttgctgccgc tgctcaagca
tgcaaagcca ccaggctcat ggccttctcc 360atgggtgaca cgcgtgtcat cgtcacgtgc
cacccccacg tggccaagga gattcttaac 420agctccgtct tcgccgatcg tcccataaag
gaatcagcct acagcctcat gttcaaccgc 480gccatcggct ttgcccctta cggcgtttac
tggcgcaccc tccgccgcat cgccgccacg 540cacctcttct gccccaaaca aatcaaggcc
tcggagctcc agcgcgccga aatcgccgcc 600cagatgaccc actcgttccg aaaccgccgc
ggcggtttcg gaatccgcag cgttctcaag 660agagcgtcgc tcaacaacat gatgtggtcg
gtgtttggac aaagatatga ccttgacgag 720acaaacactt cagtggacga gttatcccgg
ttagtggaac aaggctatga cttgttgggt 780acccttaatt ggggagacca tatccctttt
ctgaaagact ttgaccttca aaaaatccgg 840tttacctgct ccaaactcgt cccccaagtg
aaccggttcg taggttcaat catcgccgac 900caccaaaccg acacaaccca aaccaaccgc
gatttcgttc atgttttgct ctctctccaa 960ggtcccgata aattgtctca ctccgacatg
attgctgtcc tctgggaaat gatatttagg 1020gggaccgaca cggtggcggt tttgattgag
tggattatgg caaggatggt gcttcatccg 1080gaggtacaaa ggagggtgca agaggagctg
gacgcggtgg ttggaggtgg tgcgcgcgct 1140ttgaaggagg aggacgtggc ggcgacggcg
tatcttctgg cggtggtgaa ggaggttctg 1200aggctgcacc ctccaggccc gcttctctcg
tgggcccgct tggccatcac cgatacgacc 1260attgatgggt ataacgtgcc cgcgggaacc
accgccatgg ttaatatgtg ggccatagga 1320agggacccgg aggtgtggct ggacccactt
gatttcaagc ccgagaggtt catgggcctg 1380gaggcggagt tttctgttct cgggtcggat
ctgaggctgg ctccattcgg gtcgggtaga 1440agaacctgcc ccggaaagac tttgggtttg
agcaccgtga ctttctgggt ggcgaggctt 1500ttgcacgagt ttgaatggct accatctgat
gaggggaagg ttgatctaac ggaggtgctg 1560aggctctcgt gtgaaatggc taacccgctc
tatgttaaag ttcgccctag gcgtggatta 1620agtacttaat aataataata ataataataa
taataataat aataatgtta agtagcaggt 1680gcatggccct ttggagccac taaatgttaa
gtgaatccat gaatcaaggt agaaagtttg 1740agttggctct gtctc
1755161662DNAOryza sativa 16atggcgactc
cggaggacac tggcagctgg ctgctctacc tctccttggc ggctaaatgc 60tccggcgatg
gcgacggcca gcctcaccgg cttcttgggt tcgtcgtggt ttgcgccgtc 120gctggtctgg
ttacatgtct gctgcactgg tccttccccg gagggccggc gtgggggagg 180tggtggtgga
cgcggcggcg gcgtcggggg tcgccgtgcg gtgtggcggc tgttcctggg 240ctgagggggc
tgccggtgat cggcagcatg tggctcatga ccgggctggc gcaccggaag 300ctcgccgcgg
cggcggaggc ggcgggggcg gggcggctga tggcgctgtc gctcggggag 360acgcgggtgg
tcgtggcggc gcacccggac gtggcgaggg agatcctgca cggcgcggcg 420ttcgccgacc
gccccgtgaa ggagtccgcg tacgggctgc tgttccaccg cgccatcggg 480ttcgcgcccc
acggcgcgta ctggcgcgcg ctgcggcggg tggcgtccac gcacctcttc 540tccccgtggc
aggtcgcggc gtccgcgccc cagcgcgcgg tcatcgcgcg ccagatggtc 600cgcgccatca
agctgcagca gcggagccgg agcggcgatt ccgccgccgg cgccgccgtc 660gaggtccgcc
gcgtcctgcg ccgcgcgtcg ctccacaacg tgatgtggtc ggtgttcggc 720cggcggtacg
agctgcagct ggaccccggc aaggagagcg acgaggtccg ggagctgagg 780gccctcgtcg
acgaaggcta cgacctgctc ggccagctca actggtccga ccacctccca 840tggctcgccc
gcttcgacct gcagagcacc cgcgcccgct gctcccgcct cgtcccccgc 900gtcaaccgct
tcgtcacccg catcatcgac gagcatcgct catctgctcc cgtcgcagcc 960gccatcgact
tcaccgacgt cttgctctcc ctgcagggca gcgacaagct cgccgactcc 1020gacatggtcg
ccgttctctg ggagatggtg tttcgcggga cggacacggt ggccgtgctg 1080atcgagtggg
tcttagcccg gctcgtgctg cagcaggacg tgcaggctcg ggtgcacgac 1140gagctgggcc
gggtggttgg gctggaccgg gacgtgaccg agtccgacac ggcctcactc 1200gtctacctcc
acgccgtcat caaggagacg ctgaggctgc acccaccggg cccactcctc 1260tcatgggccc
gcctggccac gtcggacgta cacgtggacg ggtacctgat ccccgctggc 1320accaccgcga
tggtgaacat gtgggccata gcacacgacc ccgacgtgtg ggccgagccg 1380atggagtttc
ggcccgagcg gttcatcggg aaggcggcgg agttcagtgt aatgggttcg 1440gatctcaggc
tcgcgccgtt cggatcgggt cggcggagct gccccgggaa gagcctcgcc 1500atggccacgg
tggcattctg gcttgccacg ctgttgcacg agttcgccct cctcccctcg 1560cccgacccgg
cacacggcgt cgacttgtcg gaggtgctaa ggctgtcgtg cgagatggcc 1620accccgctgg
cggtgacagc gtggcctcgg cgtgtggtgt ga
1662171672DNAGlycine max 17acaccatcca ctactcttct tagttccagc acaacaagct
cttcatttct cccacacttt 60cttttctttc accaaaaatg tcaccagatt tcacactttt
gttcttcccg gaactcatgc 120agtcccctat gatcactttc caagccaccc tctgcgtcct
tctcttcacc ctcatgttca 180cgctgctctt cactcctggt gggcttcctt gggcctgggc
ccggcccaga cccatcatcc 240ctggcccagt aactgccctg ttagggatct ttactggctc
cacgcctcac cgtgctttat 300ccaaactcgc ccgtaattac cacgcggaaa aactcatggc
tttctccatc ggtttaaccc 360gtttcgtcat ctccagcgaa ccggagaccg ctaaggagat
tctcggcagc cccagtttcg 420ctgataggcc ggtgaaggaa tccgcctatg agcttctctt
ccaccgcgca atgggttttg 480caccgtatgg ggagtactgg aggaatttga ggagaatctc
agccctacat ctcttctccc 540cgaagagaat caccggctct gaatccttca ggagcgaggt
tggattaaaa atggttgaac 600aagttaagaa aaccatgagt gagaaccaac atgttgaggt
taagaaaatt ctacacttta 660gttcgttgaa caatgtgatg atgacggtgt ttggtaagtc
ttatgagttt tacgagggtg 720agggtttgga gcttgagggt ttggtgagtg aagggtatga
gttgttgggt gtttttaact 780ggagtgacca ttttccggtt ttggggtggt tggatttgca
gggtgtgagg aagaggtgta 840ggtgtttggt tgaaaaggtt aatgtttttg ttggaggggt
tattaaggag catagggtga 900agagggagag gggtgagtgt gtgaaggatg aaggaactgg
ggattttgtt gatgttttgc 960ttgatttgga gaaggaaaac aggctcagtg aagctgacat
gatcgctgtt ctttgggaaa 1020tgatatttag gggaactgac acggtggcaa ttctgctaga
gtggactctg gctcggatgg 1080ttctccaccc tgaaatccaa gcaaaggcac agcgcgaaat
agacttcgtt tgcggatcct 1140ccaggcccgt atccgaagca gacattccga acctgcgcta
ccttcagtgc atagtaaaag 1200aaacccttcg tgtgcaccca ccaggcccgc tactctcgtg
ggctcgcctt gctgtgcacg 1260acgttaccgt gggcggcaag cacgtgattc ccaagggcac
caccgcgatg gtgaacatgt 1320gggccataac ccacgacgag agggtgtggg ccgagcccga
gaagtttagg cccgagcggt 1380ttgtggagga ggatgtgagc ataatggggt ctgatttgag
gttggcacct ttcgggtctg 1440gaagaagagt gtgccctggg aaggcccttg gtttggcctc
ggttcatctt tggctcgctc 1500agttgcttca aaattttcat tgggtttcat ctgatggtgt
ttctgtggag ttggatgagt 1560ttcttaagct ttctatggag atgaagaagc cactgtcttg
caaggctgtg cctagggttt 1620ctgtttaggt ttatgtgtgt tgttgggttg agttggtttg
gtttgtctgc tt 1672181635DNAGlycine max 18tcagcacaac ctcttcatct
ctcccaggct ttcttttctt tgcaacaaca ctaccaaaaa 60tgtcaccaga tttcacactt
ttgttctccc cggaactcat gcagtcccct atcatcactt 120tccaagccac tttctgtgtc
cttctcttca ccctcatgtt cacgccgttc ttcactcctg 180gtgggcttcc ttgggcctgg
gcccggccca gaaccatcat ccctggccca gtaactgccc 240tgctcggggt cttcacgggt
tccacacctc acagcgcttt atccaaactg gcccgcactt 300atcacgcgga aaagctcatg
gctttctcca tcggtttaac ccggttcgtt atctccagcg 360aaccggaaac cgcaaaggag
attctcggca gccccggttt tgcggacagg ccggtgaagg 420aatccgccta tgagcttctc
ttccaccgtg caatgggttt cgcaccgtac ggagagtact 480ggagaaacct gaggagaatc
tcagccctac atctcttctc cccgaagaga atcaccagct 540ctgagtcctt caggagcaag
gttgggttaa aaatggttga acaagttaag aaaaccatga 600gtgagaacca acacgtcgag
gttaagaaaa ttctacactt tagttcgttg aacaatgtga 660tgatgacggt gtttggtaag
tgttatgagt tttacgaggg tgagggtttg gagcttgagg 720gtttggtgag tgaagggtat
gagttgttgg gtgtttttaa ctggagtgac cattttccgg 780ttttggggtg gttggatttg
cagggggtga ggaagaggtg taggtgtttg gttgaaaagg 840ttaatgtttt tgttggaggg
gttattaagg agcatagggt gaagagggag aggggtgact 900gtgtgaagga tgaaggagct
gaggattttg ttgatgtttt gcttgatttg gagaaggaaa 960acaggctcag tgaagctgac
atgattgctg ttctttggga aatgatattc aggggaactg 1020acacggtagc aattctgcta
gagtggattc tggctcgcat ggttctccac cctgaaatcc 1080aagcaaaggc acagcgcgaa
atagacttcg tttgcggatc ctccaggctc gtatccgaag 1140cagacattcc gaacctgcgc
taccttcagt gcatagtaaa agaaaccctc cgtgtgcacc 1200caccaggccc gctactctcg
tgggctcgcc ttgctgtgca cgacgttacg gttggcggca 1260agcacgtgat tcccaagggc
accaccgcga tggtgaacat gtgggccata acccacgacg 1320agagggtgtg ggccgagccc
gagaagttta ggcccgagcg gtttgtggaa gaggatgtga 1380gcataatggg gtctgatttg
aggttggcac ctttcgggtc tggaagaaga gtgtgtcctg 1440ggaaggccct tggtttggcc
tcggttcatc tttggctcgc tcagttgctt caaaattttc 1500attgggtttc atctgatggt
gtttctgtgg aattggatga gtttctcaag ctttctatgg 1560agatgaagaa gccactgtct
tgcaaggctg tgcctagggt ttctgtttag gtttatgtgt 1620gttgttgggt tgagg
1635192158DNAZea mays
19cccgaatcgg gagtagtagt agtagtgcat ccaatcgaca cacacacaaa aaaaaaggtt
60agttagccat ggcgccgcca acagaggact gcggctggct gctgtacctt tccctggccg
120ccaaatgcgg cgaccctcag cgcctgctcg gcttcgccgc ggtcttcgtc gcggcctgcg
180tagtcacgtc gctcctgcac tgggcgtccc cgggcggccc cgcctggggg tggtactggt
240ggaccaggcg ggccgggctg ggcatcgtcc gtgccgccat cccgggaccc cggggcctgc
300cggtggtcgg cagcatgggc ctgatgaccg gcctggcgca ccgcaagctc tcggcggcgg
360ccgagagaca ggccagcagg cgccgcctca tggcgttctc gcttggcgag acccgggtgg
420tggtcaccgc cgaccccgac gtcgcgcggg agctgctcgc cagcgccgcc ttcgccgacc
480gccccgtcaa ggagtccgcg tacgggctcc tgttccaccg cgccatcggc tttgccccgc
540acggcgccta ctggcgcgcg ctccggcgcg tcgcgtccgc gcacctcttc tcgccgcgcc
600agatcgcggc ctccgcggcg cagcgcgcgg ccatcgcgcg ccagatggtg gacgccacga
660cgaccgccgc ggcccacgcc cccgtcgtcg tggcgcgccg gttcctgaag cgcgcgtcgc
720tgcacaacgt catgtggtcg gtgttcggcc gcaggtacga cctgatggcg gacagccggg
780aggccgagga gctcaaggcc ctggtagacg aaggctacga cctgcttggg cagctcaact
840ggtccgacca cctcccgtgg ctcgcccgct tcgacctgca gaagacccgg gccaggtgct
900gcgcgctcgt cccgcgggtg aaccgcttcg ttggcaacat catcggcgag caccgtgccc
960gcctcggccg cggcgtcgac accgccgtca tggacttcac ggacgtcctg ctctccctcc
1020agggcgacga caagctctcc gacgccgaca tgatcgccgt tctgtgggag atgatcttcc
1080gaggcacgga cacggtggca gtcctgatcg agtgggtgct ggcccgtctg gtgctgcacc
1140aggacgtgca gagcaaggtc caggaggagc tggaccgggt ggtcgggctg ggccaggccg
1200tgacggagtc ggacacggcc tcgctgccct acctccaggc ggtcatcaag gaagtgctac
1260gcctgcaccc gccaggccca ctgctctcct gggcgcgcct cgccacctca gacgtgcacg
1320taggcgggta ccttgtgccc gcgggcacca ccgccatggt gaacatgtgg gccataaccc
1380atgaccccag cctgtggcct gagccaatgg agttcaggcc cgagaggttc atgggccctg
1440ccgccgagga cgtcccgata atgggttcgg atctccggct cgcgcctttc gggtccggca
1500ggcggagctg ccccggcaag tcactcgcgg tggctaccgt cggattctgg gtcgccaccc
1560tgctgtacga gttcaaatgg ctgccgccgt ccgacgagcc acgcggcggc ggcgtcgacc
1620tatccgaagt gctgaggctg tcgtgtgaga tggctgcacc gctggaggcg agggtggtgc
1680cacgtcacgc ggtgtgctga gggggctgag acacgtggcc tgcaggggtg gggatcagag
1740gaggaaagct cgaccgatcg tcttctagct tctactacta cgtaatacct taccttgtag
1800cagaacgtaa cgtggtcgat atgagatgtg taaagaaaga aaaaaaaaga acgcccagtt
1860gcaccatgca tgctagctgc tggtgtggag tcagtacgta gtagcagcac ccggtttgat
1920cgatgcttat gtgtgtaatg taatacctac ctgcagttgc aagtaaatgt gtgcctgtta
1980ttagtctagc taggtagtgt agtgtagtgt accggatggt gagcgagcgt gacagttacc
2040tttccttttc agtactgcct agctagctag acctagatgt attattatat attgtgtact
2100cccttcttac gtacgtgcgt tccataataa atgtattctg tagttgtctt tttctact
2158202176DNASorghum bicolor 20cactcaaccc gagcgccact tctccaaagc
atcagcgaac gagcgagctg agggagcgag 60agagagaaaa ggatagtgaa acacgagaga
gctaggagcc atggcggtgg cggcgacccc 120cgatgactgc ggcagctggt tgctgtacct
gtccctagcc gccaaatgcg ccggcggcga 180ccagcctcac cgcctggccg gtttcctggc
ggtctgcgcc gtggccttcg tcgtcacttg 240cctcctccac tggtgcttcc ctggaggtcc
ggcgtgggga aggtggtggt ggacgacgca 300ggcgcggcgg gtcgcggcgg ccgccgttcc
ggggccgagg ggcctgcccg tggtcgggag 360catgtggctc atgacgggcc tggcgcaccg
caagctggcg gcggcggcgg acagcctccg 420cgccaggcgc ctgatggcgt tctccctcgg
cggcacgcgg gtggtggtgg ccgcgcaccc 480ggacgtggcg cgggagatcc tcaacagccc
ggcgttcgcg gaccgtccca tcaaggagtc 540cgcgtacggg ctcctgttcc accgcgccat
cggcttcgcg ccctacggcg cctactggcg 600cgcgctccgc cgcgtggcgt ccacgcacct
cttctccccg tggcaggtcg ccgcctccgc 660cgcgcagcgc gccgtcatcg cgcgccagat
ggtcgccgcc atgaagcagg agctgtcgtc 720gtcgtcgtcg gcctcggccg gcttcgaggt
ccgccgcgtc ctgcgccgcg ggtccctgca 780caacgtgatg tggtcggtgt tcggccggcg
gtacgacctg gagctggacc cggccaagga 840gagccccgag acgcgggagc tgaggagcct
cgtggacgaa ggctacgacc tgctgggcca 900gctcaactgg tccgaccacc tcccctggct
cgcgcgcttc gacctgcaga gcaccaggtc 960caggtgcgac cgcctcgtcc cgctcgtgaa
ccgcttcgtc ggcggcatca tcgacgcgca 1020ccgcgcccgg aacgacctcc gctccgctcc
accacacgcc gtcatggact tcaccgacgt 1080gctcctctcg ctgccggccg acgacaggct
caccgactct gacatgatcg ccgtcctctg 1140ggaaatggtg ttccgtggaa ctgacaccgt
tgccgtgctg atcgagtggg tgctggcgag 1200gctcgtgctg caccctgacg tgcaggcccg
tgtccacgac gagctggacc gcgtggtcgg 1260gcgtgaccgg gccgtgaccg agtccgactc
ggggtcactg gtctacctgc acgccgtgat 1320caaggaggtg ctcaggatgc acccgccggg
cccactgctg tcgtgggcgc gcctggccac 1380gtcggacgtg caggtggacg ggcacctcat
ccccgccggc accaccgcca tggtgaacat 1440gtgggccata acgcacgacc cggacgtgtg
ggcggagccg gcggagttcc agccggagag 1500gttcatggga tccaccaccg gcggcgagtt
cccgataatg gggtcggacc tgaggctcgc 1560gccgttcggg gcgggccggc gcagctgccc
cgggaagagc ctcgccatgg ccaccgtggc 1620tctctggctc gcgacgctgc tgcacgagtt
cgagctgctc ccggcgcgcg gcgtctacct 1680gtcggaggtg ctcaagctgt cgtgcgagat
ggccgtcccg ctggccgtga cggcgaggcc 1740ccggcaagcg gtgtgatgac gcgtcacggc
ggctgggacg acggagcagg caggcaggca 1800gtcagttggg gtatcagtct cactgtgagc
attataccac aactactagt agtactacta 1860ctgtacacgg aatggaaaag cgcttgtgct
tttgggagac gttgctaccg gtcacagctt 1920gcaagttgct actactgggt cgacatgggg
tatatgcttt tcatgttact atcttcgata 1980tgtatcgaga tcaggttgcc gaatgtgata
ctttggcttg tactgttagc ttttgtctgg 2040gtgctctttt attgcttttt ttttaagtag
taatcgctgt aagactcgta aaatgtatat 2100gctggtttgg atggttttgg attgtagctc
acaaactagt attacgcagt tcaatgcctt 2160aatatgctat ctgttc
2176211587DNAGlycine max 21atgtcatcat
cggaactctc ctctttcttt cttctccgtc tatcagacat actcagtttc 60gatgttttgc
tcggagttat gtttctagtt gccgtgttcg gctactggct ggttcccggc 120ggtcttgctt
gggctttttc caagttcaag cccgcgattc ccgggccttc cggttacccg 180gtggtgggtc
tggtttgggc tttcataggg cctcttactc acagggtcct tgctaagttg 240gctgaaacct
ttgatgcaaa gcccttgatg gcgttctctg tggggttcac tcgtttcatc 300atctcttctc
accccgacac cgccaaagag atcttgaaca gttccgcttt cgcggatcgt 360cccgttaagg
aatctgctta tgaacttctc tttcaccgtg cgatggggtt tgcaccctac 420ggtgagtact
ggaggaacct gaggaggatc tccgcaactc acatgttctc tccgaggaga 480atcgcagccc
aaggagtgtt tcgggcccgg attggagccc aaatggtgag agacatcgtg 540ggcctgatgg
ggagggacgg tgtggtggag gtgaggaagg tgttgcattt tgggtcgttg 600aataacgtga
tgaagagcgt gtttgggagg agttatgtgt ttggtgaggg gggtgatggg 660tgtgagctcg
aggggttggt gagcgagggg tatcatttgc ttggggtgtt taactggagt 720gaccactttc
cactcttggg ttggttggat ttgcaaggtg tgaggaagag ctgtaggagt 780ttggttgata
gagtgaatgt ttatgttggg aaaatcattt tggagcatag agtgaagagg 840gttgctcaag
gtgaggataa taaggccatt gatactgata gttctggtga ctttgttgat 900gtgctgctgg
atttggagaa agagaatagg ctaaaccact ctgatatggt tgctgttttg 960tgggaaatga
tatttagagg gactgatacg gtagctatcc ttctagagtg gattctagca 1020agaatggttc
ttcatccaga aatacaagca aaggcacaat ctgaaataga ctctgtggtt 1080gggtctgggc
gtagtgtgag tgatgatgac cttccaaacc ttccttacgt tcgagccata 1140gtgaaggaaa
ccttaaggat gcacccacca ggccctcttc tttcatgggc cagactttct 1200attcatgaca
cacaaattgg caatcacttt gttccagctg gcaccactgc tatggtaaac 1260atgtgggcca
taactcacga ccaagaagtg tggtatgagc caaaacagtt caagccggag 1320cgttttttga
aggacgagga cgtgccaatc atgggatctg atcttaggtt ggcacctttt 1380ggctctggga
ggagagtgtg ccctggaaaa gccatgggct tggccactgt tgagctttgg 1440cttgctatgt
tcttacaaaa attcaaatgg atgccctgtg atgattctgg tgttgacttg 1500tctgagtgtt
tgaagctctc catggagatg aaacactctc tcaaaaccaa agttgttgca 1560aggcctgtag
tttctcttgc aatgtaa 1587222074DNAZea
mays 22aaagacttga accacgcaac cctctctggt ctctggtcgt cctactttct tccacagcag
60aaggaaactt gagtcgtgag cgcagtggtg catccaatcc acaaagagct gaggttagtc
120agccatggcg gcaccgccga ccgaggactg cggctggctg ctgtacctct ccctggccgc
180caaatgcggc gaccctagcc gcctgctcgg cttggcggcg gtcttcgtcg gcgcctgcgt
240cgtaacgtcg ctcctgcact gggcgtgccc gggcggcccc gcctgggggc ggtactggtg
300gaccaggcga ggcgggctgg gcatcgtccg cgccgccatc ccgggacccc ggggcctgcc
360agtggtcggc agcatggggc tgatgaccgg cctggcgcac cgcaagctcg cggcggcggc
420ggcggcggcc gggggtcagg gcagcagcag gcgccgccgt ctcatggcgc tctccctcgg
480cgagacccgg gcggtggtga ccggcgaccc ggacgtcgcg agggagctgc tcggcagcgc
540cgccttcgcc gaccgccccg tcaaggagtc cgcgtacggg ctcctcttcc accgcgccat
600cggcttcgcc ccgcacggcg cctactggcg cgcgctccgc cgcgtggcgt cggcgcacct
660cttctcgccg cgccaggtcg cggcctcctc cgcgcagcgc gcggtcatcg cgcgccagat
720ggtggacgcc gtgaccacgg ccgcccccgc ccccgccccc gccgtcgtgg tggcgcgccg
780gttcctgaag cgcgcgtcgc tgcacaacgt catgtggtcg gtgttcgggc gcaggtacga
840cctgctgctg ctggcggcgg acggcgagga gctgaaggcg ctggtggacg aaggctacga
900cctcctcggg cagctgaact ggtccgacca cctcccgtgg ctggcccgct tcgacctgca
960gaggacccgg gccaggtgct ccgcgctcgt cccgcgggtg aaccgcttcg ttggcaacat
1020catcgacgag caccgtgcgc gcctcggcct cggcgacacc ggcggcgtca cggacttcac
1080cgacgtcctg ctctccctcc agggcgtcga caagctctcc gacgccgaca tggtcgccgt
1140tctctgggag atgatcttcc gaggcacgga cacggtggcc gtcctaatgg agtgggtgct
1200ggcgcgtctc gtgctgcacc aggacgtgca gagcaaggtc caggaggagc tggaccgggt
1260ggtggggcca ccgggccagg ccgcatccgt gacggagtcg gacaccgcct cgctcgtcta
1320cctccaggcg gtcatcaagg aagtgctgcg cctgcacccg ccaggcccgc tgctctcctg
1380ggcgcgcctg gccacgtcgg acgcgcgcgt aggcgggtac cacgtgcccg cgggcaccac
1440cgccatggtg aacatgtggg ccataacgca tgaccccagc gtgtgggccg agccgacgga
1500gttcaggccc gagaggttcg tgggcgcctc tgctggtgct ggtgctggtg ctggtgccga
1560ggacgttccg atgataatgg gctcggatct ccggctcgcg cccttcgggt ccggcaggcg
1620gagctgcccc ggcaagtcgc tcgcgctggc taccgtcggg ttctgggtgg ccaccctgct
1680ccacgagttc aaatggttgc cgccgtgccg cggcgtcgac ctgtccgagg tgctgaggct
1740gtcgtgtgag atggctgcac cgctggaggc gagggtggtt ccacgtcacg cggtgtgaga
1800tgacgaggat gagacacgtg gcctggggat aggagaagtt gcccgatcgt ctgtctagat
1860tgtactgtac tatatatctt atcttagctt tccttacctt gtagcagaga acgtaacgtg
1920gcccggcggc gatggatgat gagaatgaga tgtgtaaaag aagaaaaaga gcatgcccga
1980gtgccatatg ctttagagtg gactgtgtat atatgatgat gctattgcta aaaaaaaaaa
2040aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaa
2074232061DNABrachypodium distachyon 23atggcgccgg cgacttctgc ttccgaggac
tgcgcggggt ggctgctgta cgcgtccctg 60gccgcgagat gcaacgacgg cggtgaggcc
taccgggccg ccgtcttcgc catggccctg 120ctggccacca gtttcatcct cacctcgctc
ctccactggg cctccacccc cggcggcccg 180gcctggggac gctaccgctg gacttccacc
acctctcggg ccgccattag cactagccct 240cgcatccccg gcccgcgcgg gctgccggtg
gtcggcagca tgggcctcat gacgggcctg 300gcccaccgca agctcgccgc ggctgtcgcc
gccgggggag acgacgaaga ggagaggtcc 360cagcggaggc ggctgatggc gttctcgatg
ggcgagacgc gggccgtggt gagctcggac 420ccggccgtgg cccgcgagct gctgtcgagc
ccggcgttcg cggaccggcc cgtcaaggag 480tccgcctacg ggctcctctt ccaccgcgcc
atcggcttcg cgccccacgg cgcctactgg 540cgctccctcc gccgcgtcgc ctcggcgcac
ctcttctcgc cgcgccaggt cgccgcctcc 600gccgcccacc gcgccgccat cgcccgcagc
atggttggct ccgtctccgc catcgccatg 660ggctccggcg aggtcgaggt ccgccggttc
ctgaagcggg cggcgctgca cggggtcatg 720tggtccgtgt tcggccggag gtacgacggc
acggcggcgc cggagctggg gaagaaggag 780gaggaagagc tgaggagcat ggtggaagaa
ggatacgagc tcctcggcaa gctcaactgg 840gccgaccacc tgccatggct ggcccgcttc
gacctccagg ggatacgggc ccggtgcgcc 900gccctcgtgc cacgcgtcaa ccgcttcgtc
ggcaagatcg tcgacgacca ccgcgccgct 960gctgccgccg acgccggcga tcgtgtcgtg
gacttcaccg acgttctgct atcccttcaa 1020ggcgccgaca agctctccga cgccgacatg
atcgcggttc tctgggagat ggtgttccgt 1080ggcacggaca cgatggcggt ggtgatggag
tgggtgctgg cccggctggt gatgcaccag 1140gacgtgcagg ccagggtcca ggaggagctg
gaccgggtgg tcgggccggg ccaagccgtc 1200tccgaatcgg acgcggcccg gctcgtctac
ctccaggccg ttattaagga gacgatgcgg 1260ctgcacccgc caggccccct gctctcatgg
gcccggctcg ccacatcgga cgttcatgtg 1320ggcgggttcc tcgtgccagc tggcaccacc
gccatggtta acatgtgggc catcacccat 1380gacccgaccg tgtgggcgga tccgctggag
ttcaaccccg acaggttcat tgtcggagcc 1440gttccgttgt cggaaggtca tcataatgcc
gttccgggcg ctgagttctc cataatgggc 1500tcggatctca ggctcgcgcc attcggatcg
ggcaggcgga tctgccccgg gaagccactg 1560gcgatggcca gcatcgggtt ttgggtcgcg
acgctcctcc atgagttcaa gtggacctcg 1620gcgccacgtg gtgacgtcga cctgtcggag
gtgctgaggc tgtcatgcga gatggccgcc 1680ccgctcaagg cgaggctcac accaaggcgc
cctgtgtgat gatatgccgg agccaccgac 1740cacttcttca ccggactagt cctgtctatc
ttctttgctt attttctctc taccgatgcc 1800tgtagtgaaa aaaaagaagt aatgtcccgg
tttggaaacg tgcctgctgc tataataggt 1860ccggtcctgg tcgtacttct ctagtccttt
tgctgtactt agcttagcta aaagagatgc 1920taaattaggt acttatgaac tactagtatt
ataaggaaat gagtgtgaca gttttcttgt 1980gtgttttccc tttgctgcct agctagaggt
ttctatgcat gtaaatacct ttatatttcc 2040caatgcaagc ctttgtttgc t
2061241716DNAGlycine max 24acaccacagt
ttcaaagccc ttctaaaacg ccttactctg tatcttcttt catcatccaa 60aaaaaaccat
tcacacaaag aaaacctttg ggtttcccaa gatgtcatca tcggaactct 120cttctttctt
tctcctgccc ctatcagcca tactcagttt cgatgctttg ctcggagtta 180tgtttctagt
ggccgtgttc ggctactggc tggttcccgg tggtcttgct tgggctttgt 240ccaaattcaa
gcctgcgatt cccgggcctt gcggttaccc ggtggtgggc ctggtttggg 300ctttcatagg
gcctcttact cacagggtcc ttgcaaagtt ggctgaaacc ttcgatgcaa 360agcccctgat
ggcattctcg gtagggttta ctcgctttat catctcttct caccccgaca 420ctgccaaaga
gatcttgaac agttctgctt ttgcggatcg tcctgttaag gaatccgctt 480atgagcttct
ctttcaccgc gcaatggggt tcgcacccta cggtgagtac tggaggaatc 540tgaggaggat
ttcagcgact cacatgttct ctccgaagag aattgcggcc caaggagtgt 600tccgggcccg
ggttggggcc caaatggtga gagaaatcgt gggcctgatg gggaagaatg 660atgtcgtgga
ggtgagaaag gtgttgcatt ttggatcgtt gaataacgtg atgaagagtg 720tgtttgggag
gagctatgtg tttggtgagg ggggtgatgg gtgtgagctt gaggagttgg 780tgagtgaggg
gtatgatttg cttgggctgt ttaactggag tgaccacttt cctctcttgg 840gttggttgga
ttttcaagga gtgaggaaga ggtgcaggag tctggtggat agagtgaatg 900tttttgttgg
gaaaatcatt atggagcata gagtgaagag ggatgctgaa agtggtgact 960ttgttgatgt
gctgttggat ttggagaaag aggataggct aaaccactct gatatggttg 1020ctgttttgtg
ggaaatgata tttaggggga ctgatacagt ggcaattctt ctagagtgga 1080ttctagcaag
gatggtactg catccagaaa tacaagcaaa ggctcagtgt gaaatagact 1140ctgtggttgg
gtctgggtgc agtgtgactg atgatgacct tcctaacctc ccttacgtgc 1200gagctatagt
gaaggaaacc cttaggatgc acccaccggg ccctcttctt tcatgggcca 1260ggctttccat
tcacgagaca caaattggca accactttgt tccagctggc acaactgcta 1320tggtcaactt
gtgggccatc actcatgacc aacaagtgtg gtccgagcca gaacaattca 1380agcccgagcg
gtttctgaag gacgaggacg tgccaatcat ggggtctgat cttaggttgg 1440caccttttgg
cgctggtagg agagtgtgcc ctggaaaagc catgggcttg gccactgttg 1500agctttggct
tgctgtgttc cttcaaaagt tcaaatggat gccttgtgat gattctggtg 1560tggacttgtc
tgagtgcttg aagctctcca tggagatgaa acactccctc atcaccaaag 1620ctgttgcaag
gcctacatct tctcttgcaa tgtaatgggt tggagtatcc catcatttta 1680ctccccttaa
taataatatt tctttccttt taaaaa
1716251578DNAOryza sativa 25atggcgctct cctccatggc cgcggcgcaa gagagctccc
tcctcctctt cctcctcccg 60acgtcggccg cctccgtgtt cccgccgctc atctccgtgg
tcgtcctcgc cgcgctcctc 120ctgtggctct cgccgggtgg ccccgcgtgg gcgctgtccc
gttgccgtgg cacgccgccg 180ccgccgggcg tggcgggggg cgcggccagc gcgctgtccg
gccctgccgc gcaccgcgtg 240ctcgccggga tttcgcgcgc cgtcgagggc ggcgcggcgg
tgatgtcgct ctccgtcggc 300ctcacccgcc tcgtcgtggc gagccggccg gagacggcga
gggagatcct cgtcagcccg 360gcgttcggcg accgccccgt gaaggacgcg gcgaggcagc
tgctgttcca ccgcgccatg 420gggttcgccc cgtcgggcga cgcgcactgg cgcgggctcc
gccgcgcctc cgcggcgcac 480ctcttcggcc cgcgccgcgt ggccgggtcc gcgcccgagc
gcgaggccat cggcgcccgc 540atagtcggcg acgtcgcctc cctcatgtcc cgccgcggcg
aggtccccct ccgccgcgtc 600cttcacgccg cgtcgctcgg ccacgtcatg gcgaccgtct
tcggcaagcg gcacggcgac 660atctcgatcc aggacggcga gctcctggag gagatggtca
ccgaagggta cgacctcctc 720ggcaagttca actgggccga ccacctgcca ttgctcaggt
ggctcgacct ccagggcatc 780cgccgccggt gcaacaggct agtccagaag gtggaggtgt
tcgtcggaaa gatcatacag 840gagcacaagg cgaagcgagc tgccggaggc gtcgccgtcg
ccgacggcgt cttgggcgac 900ttcgtcgacg tcctcctcga cctccaggga gaggagaaga
tgtcagactc cgacatgatc 960gctgttcttt gggagatgat ctttagaggg acggacacgg
tggcgatctt gatggagtgg 1020gtgatggcga ggatggtgat gcacccggag atccaggcga
aggcgcaggc ggaggtggac 1080gccgccgtgg ggggacgccg cggccgcgtc gccgacggcg
acgtggcgag cctcccctac 1140atccagtcca tcgtgaagga gacgctgcgc atgcacccgc
cgggcccgct cctgtcgtgg 1200gcgcgcctcg ccgtgcacga cgcgcgcgtc ggtggccacg
ccgtccccgc cgggacgacg 1260gcgatggtga acatgtgggc gatcgcccac gacgccgccg
tctggccgga gccggatgcg 1320ttccgcccgg agcgcttctc ggagggggag gacgtcggcg
tgctcggcgg cgacctccgc 1380ctcgcgccgt tcggcgccgg ccgccgcgtc tgccctggca
ggatgctggc gctcgccacc 1440gcccacctct ggctcgccca gctgctgcac gccttcgact
ggtcccccac cgccgccggc 1500gtcgacctgt ccgagcgcct cggcatgtcg ctggagatgg
cggcgccgct cgtgtgcaag 1560gccgtggcta gggcctga
1578261611DNAGlycine max 26atgtcaccag attttacact
cttgttcttc ccggaactca tccaaccccc tatcgtcacc 60ctccaagccg ccctatgcat
ccttctctta accttcctcc tcacgttttt cctcactcca 120ggcgggcttg cgtgggcctg
ggccaccaag tcctcgaccc ggcccatcat tccgggccca 180gtaatggccc tgctcagcgt
cttcaccggc tccaccccgc accgcaggtt atccatgctc 240gcccgctctt accacgcaga
aaagctcatg gctttttcaa tcggtctgac ccggttcgtc 300atctcgagtg aaccggaaac
cgcaaaggag attctcggca gccccggttt tgctgacaga 360ccagtgaagg aatcggccta
ccagcttctc ttccaccgcg caatggggtt tgcaccatac 420ggagaatact ggagaaacct
gaggagaatc tccgcccttc atctcttctc tcccaagaga 480atcaccggct cggaagcctt
taggaacgag gtggggttga aaatggtaga tgaagttaag 540aaggttatga aggataaccg
acacgtggag gttaagagga ttttgcacta cgggtcgttg 600aacaatgtga tgatgacggt
gttcggtaag tgttatgagt tctacgaggg tgagggtgtt 660gagcttgagg ctttggtgag
cgaagggtat gagctgttgg gtgtttttaa ctggagcgac 720cattttccgg ttctggggtg
gttggatttg cagggtgtga ggaagaggtg taggtgtttg 780gttgaaaagg ttaatgcgtt
tgttgggggt gttattgagg agcatagagt gaagagggtg 840agaggtgggt gtgtgaagga
tgaagggact ggggattttg ttgatgtttt gcttgatttg 900gagaacgaga acaagcttag
tgaggctgac atgatcgctg ttctttggga aatgatattt 960aggggaactg acacggtggc
aattctgctg gagtggatct tggctcggat ggttctccac 1020cccgacatcc aagccaaagc
acagcgcgaa atagactccg tctgcggacc ctacaggctc 1080gtatccgaag cagacatgcc
gaacctgcgc taccttcagg gcatagtaaa agaaactctc 1140cgcgtgcacc ctccaggccc
gctactctcg tgggctcgcc tggcggtgca cgacgttacc 1200gtgggcggca agcacgtgat
tcccaagggc accaccgcga tggtgaacat gtgggccata 1260acgcacgacg agaggttttg
ggccgagccc gagaggttca ggcccgagcg gtttgtggag 1320gaggaggatg tgaacataat
ggggtctgat ttgaggttgg cacctttcgg gtctgggaga 1380agagtgtgcc ctgggaaggc
cttgggcttg gcctcggttc atctttggct cgctcagttg 1440ctacaaaatt ttcattgggt
tcaatttgat ggtgtctctg ttgagttgga tgagtgtctt 1500aagctttcta tggagatgaa
gaagccactt gcttgcaagg ctgtgcctag ggttgctgtt 1560tagtttatgg gtgttgttgg
gttacttggg tgggtttggg ttatttgcta a 1611271603DNASorghum
bicolor 27ccttctcacc tccctccccc acgccgtcgc catggacgcc accacccagg
actccctcct 60cttcctcttc ccggccgccg ccaccttcct ctccccgctc ctcgccgtgc
tcctcgtagc 120gctctcgctg ctctggctcg tcccaggcgg gcccgcgtgg gcgctcatct
ccacctccag 180gtcccgcgcg accccgccgc cgggcgcgcc gggcgtggtc accgcgctct
cgggccccgc 240agcgcaccgc gccctggcgt ccctgtcgcg gtcgcttccc ggcggcgccg
cgctgtcggc 300gttctccgtc ggactcacgc gcctcgtcgt tgccagccag ccggacacgg
cgcgggagct 360cctggccagc gccgccttcg ccgaccgccc cgtcaaggac gcggcccggg
ggctcctctt 420ccaccgcgcc atgggcttcg caccctccgg cgactactgg cgcgcgctgt
gccgcatcag 480ctccgcctac ctcttcagcc cgcgcagcga gtccgccacg gcaccccgac
gcgtcaccat 540cggcgagcgc atgctgcgtg acctctccga cgccatcggc cgcctgaggc
ggagcctggt 600gagcagggtg aacgtgttcg tggcgaggat catcgaagag cacaggcaga
agaagaagga 660cgacgtcgcc aacaatggcg agtcggccgc cggagacttc gtcgacgtct
tgctcggact 720ggagggcgag gagaagctgt cggactccga catgatcgct gtcctctggg
agatgatctt 780tcgagggacc gacacggtgg cgatcctgct ggagtgggtg atggcgcgga
tggtgctgca 840cccggggatc cagtccaagg cgcaggcgga gctggacgcc gtcgtgggcc
gcggcggcgc 900cgtctccgac gccgacgtgt cccggctgcc ctacctgcag cgcgtcgtga
aggagacgct 960ccgcgtgcac ccgccgggcc cgctgctgtc gtgggcgcgc ctcgccgtgc
acgacgcggt 1020ggtcggcggc cacctcgtcc cggcgggcac cacggccatg gtcaacatgt
gggccatcgc 1080gcgcgacccc gcggtgtggg cggaccccac cgcgttccgg cccgagcggt
tcgaggagga 1140ggacgtgagc gtgctgggcg gggacctccg gctcgcgccg ttcggcgccg
ggcggcgcgt 1200gtgccccggc aagacgctgg cgctcgccac cgtccacctc tggctcgcgc
agctgctgca 1260ccgcttccag tgggcgccgg cagacggcgg cgtcgacctg gcggagcgcc
tcggcatgtc 1320gctggagatg gagaagccgc tcgtgtgcaa gcccacgccg aggtggtgat
ccctgaaagc 1380acaaccgagt tccaatgcat gatcatgtta ctattactag cgtttcatta
cgccgcataa 1440tttgtttctt ctgagtcgag tggatcggtg ttcaatctgc ataagtggtt
ttgtctatgt 1500tattgtttct gtttgtgatt gatgggatta ggtgaagagt gttcacagtg
ctccatttgt 1560taggagtacc agaaatatgt gaaaaacgcc tgatgagaaa cta
1603281647DNAOryza sativa 28atggatgcca ctctcggcgc ctccactacc
catggctacc tcctcctcct cccggccaac 60tccaccacct tcttctcccc gctcctcgct
gccctcctcg ccgtcacctc gctgctctgg 120ctcgtcccgg gcggccccgc gtgggcgctc
tcccgctgcc gccggccccc gcccggcgcg 180ccgggcgcgc tcgccgcgct cgccggcccc
gccgcgcacc gcgcgctcgc ggccatgtcg 240aggtccgtgc ctggcggcgc cgccctggcg
tccttctccg tcggcctcac gcgtttcgtc 300gtggccagcc gccccgacac ggcgcgggag
ctcctgtcca gcgccgcgtt cgccgaccgc 360cccgtgaagg acgcggcgcg gggtttgctc
ttccaccgcg ccatggggtt cgcgccctcc 420ggcgactact ggcgcgcgct ccgccgcgtc
agcgccaacc acctcttcac ccctcgccgc 480gtcgccgcct cggccccgcg acgcctcgcc
atcggcgagc gcatgctaga ccgcctgtcc 540gccctcgccg gcggcgagat cggcatgagg
cgcgtgctcc acgcggcgtc cctggaccac 600gtcatggaca ccgtcttcgg gacgcgctac
gacggcgaca gccaggaggg cgccgagctc 660gaggccatgg tgaaggaagg gtacgacctc
ctcgggatgt tcaactgggg agaccacctg 720ccgctgctca aatggctcga cctgcaaggc
gtgaggagga ggtgcaggac gctggtgcaa 780cgagtcgacg tgttcgtccg aagcatcatc
gacgagcaca ggcagaggaa gcgccgcacc 840ggcggcaatg gcggaggcga ggagctcccc
ggcgacttcg tcgacgtgtt gctcgggttg 900cagggggagg agaagatgac ggagtccgac
atggtcgccg ttctctgggt aaccaaggat 960ccatctgaca tgcatgcatc tattcgatcg
atcttgtgca ttgcgatcaa cggattcatg 1020gatatatttg atcttgcgcg cgtgcaggag
atgatctttc gggggacgga cacggtggcg 1080attctgctgg aatggatcat ggcgaggatg
gtgctgcacc cggacatcca ggcgaaggcg 1140caggcggagc tcgacgccgt cgtcggccgc
gggcgcgccg tgtcggacgg cgacgtcgcc 1200ggcctgcgct acctccagtg cgtcgtgaag
gaggcgctcc gcgtgcaccc gccgggcccg 1260ctcctgtcgt gggcgcgcct cgccgtgcgc
gacgcgcacg tcggcggcca cgtggtcccc 1320gcgggcacca cggccatggt caacatgtgg
gccatcgcgc acgacccgga gctctggccg 1380gagcccgacg agttccggcc ggagcggttc
gcggaggagg acgtcagcgt gctcggcggc 1440gacctccgcc tcgcgccgtt cggcgcgggg
cggcgcgcct gcccgggcaa gacgctcgcg 1500ctcgccaccg tccacctctg gctcgcgcag
ctgctgcacc gcttcgagtg ggcaccggtc 1560ggcggcggcg tccacttgtt ggagcgcctg
aacatgtcgc tggagatgga gaagcctctc 1620gtgtgcaagg ctaaacctag gtggtga
1647291905DNAGlycine max 29cattagtatc
atcttccctc gtatacttcc cctcctcaac tttgttttgt ttttcatgta 60cgctttttga
atcatcttac gtgctcctaa tcatgattcc aacacttgtt tgtattggca 120caacaatatt
ccaaagcacc ctctcttctt actcattgtc tttcatctct ctttttctct 180ccacgtcact
cgcccttctt gctatttccc tcaactattg gcttgtcccc ggaggttttg 240catggaggaa
atatcacagt cgttacaaag gccatgcaaa agtctctggc ccaatgggct 300ggcccatatt
gggaacttta cctgcgatgg gccctctagc ccacaggaaa cttgctgcca 360tggccacttc
accaaaagca aaaaagctca tgacattgag tctaggaaca aatccagttg 420ttatcagcag
tcacccagaa accgcaagag aaattctttg tgggtcgaac ttcgctgacc 480gacccgttaa
agaatcggcc cgaatgctca tgtttgagcg tgccattgga tttgctccat 540atgggactta
ttggcgccac ctacgtaaag tggcaatcac ccacatgttc tctccaagga 600ggatttctga
cttggagagt ctccgacaac atgtggttgg tgaaatggtg atgaggatat 660ggaaggagat
gggggacaaa ggggtggtag aggttcgagg catattgtat gaagggtctt 720tgagccacat
gttggagtgt gtgtttggta ttaataattc tctaggatca caaacaaagg 780aggcgttggg
tgatatggtt gaggaagggt atgacttgat tgccaagttt aattgggcag 840actattttcc
tttcgggttt ttggactttc acggggtcaa gagaaggtgt cacaaattgg 900caactaaggt
caatagtgtg gtgggtaaaa ttgtggaaga aagaaaaaat tcagggaagt 960acgttggaca
aaatgatttt cttagtgcct tgttattgtt gcctaaagag gaaagcatag 1020gtgattcaga
tgtagtggct atcttatggg aaatgatatt tcggggaaca gacacaattg 1080ctatactttt
agaatggatc atggccatga tggttttaca ccaagacgta caaatgaaag 1140ctcgtcaaga
gatcgactca tgcatcaagc aaaacggtta catgcgagac tcagacattc 1200caaacctccc
ttacctccag gccatagtga aggaggttct ccgattgcac ccaccaggcc 1260cattactttc
ctgggctcgc ctcgcaatcc atgatgtcca cgtggacaag gtcatcgtgc 1320cagctggcac
aactgcaatg gttaacatgt gggctatatc acatgactca tccatttggg 1380aggacccgtg
ggcctttaag cccgaaagat tcatgaaaga agatgtgtcg atcatggggt 1440cggacatgag
acttgcacca tttggtgcag gacgtagggt gtgcccagga aaaacattag 1500gcttagccac
agttcatcta tggcttgcac aacttcttca ccatttcata tggattccag 1560tgcaacccgt
ggatctttca gaatgcctaa agctctcgct cgaaatgaaa aagcctttac 1620gatgccaagt
gattcgcagg ttcaacacca taagctcttg aactcaacaa gataaattaa 1680tgcacaataa
aggatatcat tatcgatgta actgttgtga taaaaaaaaa ttaaagtctt 1740tgatttgggt
ggaagttatg taatgttgta aaaatatatc aagtatgtag tatgcgttga 1800gctcaagata
gtccaagaaa tgggctaatg aatggattga tactatctct ctttgaaagt 1860acaccacgta
caatattgga tctaataaag tcgcatggtt tttgt 1905301894DNAZea
mays 30ggagagatca gctgagagct ggtgggtgct tcccatgacc ttgataccgg ccatctccgg
60cgagcaacac ggtaacatgg caaccgtagc cactagcttc gcctacctcg ccatcttcgc
120atgcctcgca tgggtgggcg cgtccctgct ctactgggct cacccaggcg gccctgcgtg
180gggcaagtac tggagggcga gggggaagaa gccgtcggcg gcgatcccgg ggcctaaggg
240gctcccggtg gtcggcagcc tcggcctcat gtccgggctg gcgcaccgct cgctggccga
300cgaggcgtcg cgccgcccgg gggccaagcg gctcatggcg ctgtcgctcg gccccgtccg
360cgcggtcgtc acgtcccacc cggacgtggc caaggagatc cttgatagcc cggcgttcgc
420cgcccgcccc ctgaaccacg ccgcgtacgg cctcatgttc caccgctcca tcggcttcgc
480cgagcacggc ccgtactggc gcgcgctccg gcgcgtcgcc gcgggccacc tgttcggccc
540gaggcaggtc gaagccttcg cgccgtaccg cgcggccgtc gccgagggca tcgtcgcggc
600cctgctgcgc gccggctccg gcggcgccgt cgtccaggtg cgcggcctcc tgcggcgggc
660gtcgctctac tacatcatgc ggttcgtgtt cggcaaggag tacgacgtgt cacgcgtggt
720gccgccgtcc ggcggggagg aggtggagga gctgctcgag atggtgcacg aggggtacga
780gctcctgggc atggagaacc tgtgcgacta cttcccgggg ctcgccgccc tcgacccgca
840gggcgtgggc gcacgatgcg ccgagctcat gccgcgggtg aaccggttcg tgcacggcgt
900catccaggag caccgtgcca aggcggtcgc cggtggagac gcgcgtgact tcgtcgacat
960cttgctctcc ctgcaggaga gtgaggggct cgccgacgcc gacatagcct ctgtgctctg
1020ggagatgatc ttcagaggaa cggacgccat ggcggtgctc atggagtgga ccctagctcg
1080cctcgtcctc caccgcgacg tccaagccaa ggcgcaccgt gagctcgaca aggtcgtcgg
1140cgcggacagc cagaccaccg agtccgcggc gccgtacctg caggcgttgc taaaggaggc
1200tctccggatg cacccgccgg ggcccctcct gtcgtggcgc cacagggcca tatccgacac
1260gtacgtcgac ggccacctcg tcccggcggg caccacggcc atggtgaacc agtgggccat
1320cagccgcgac cccgaggtgt gggacgcgcc gctcgagttc cggcccgagc ggttcctccc
1380cggcggcgag ggccaggacg tgtccgtgct cggcgccgac ggccgcctcg tgccgttcgg
1440gtccggcagg aggagctgcc ccggaaagtc cctggccatg accaccgtga cctcctggat
1500ggccacgctg ctgcacgagt tcgagtggct gccagcgtca gacgacacag gcgacgtcga
1560cctctcggag gtgctccgtc tgtcctgcga gatggcagtg ccgctggagg tccgcgtgcg
1620cccgaggagc agcgtgtgaa tgaagtgctg cctgccgata gccatgacac acccccattg
1680tgcaatgtgt agcagtgagc ctaagcgttc tgttagtgaa ctgtgaataa gcagctggtg
1740aggactgtgc acaccagctc agctcagcct ttggttcagg gtttcaactt gcccgtgtat
1800atcgtatatt tagtgtgacc gtgagtatta agttatccgc aaaaggtgta caaatcacaa
1860aagctatcga atgaagattg tgtgaagtgg tgtc
1894311914DNAGlycine max 31tttcgataaa caccattttt tctcttcctc ttttgaccaa
acatgaaacc cacggcaaca 60ttcttctttc tcctatccac aacaacactc cttgtttgtc
tttgcctcgg aacaacaacg 120ttccaaacca ctctctttat aaccttcttc actatttccc
ttaactactg gcttgtccct 180ggaggctttg catggagaaa ctatcactct tatcacacca
acgaaaaacc aaacaaaaaa 240cttactgggc ctatgggctg gcccatactt gggtctctgc
ctctcatggg ctctttagcc 300caccaaaaac tcgctgcctt agccgcgacg ttaaacgcga
agaggttaat ggcactgagt 360ctgggaccca ctcccgttgt tataagcagc caccccgaga
ccgccagaga aatcttactc 420ggttcctcgt tttcggatcg tccgataaaa gaatccgcac
gcgctctcat gttcgagcgt 480gccattggct tcgctccatc cggaacctac tggcgacacc
tacgtaggat cgcggcgttc 540cacatgttct ctccgaggag gattcagggc ctggagggtc
tccgacagcg cgtgggtgac 600gacatggtga agagcgcgtg gaaggagatg gagatgaaag
gcgtggtgga ggttcgcggt 660gtgtttcagg aagggtctct ttgtaatatt ctggaaagtg
tttttgggag taatgataag 720agtgaggagt tgggggatat ggttagggaa gggtacgagc
tgattgcgat gttgaacttg 780gaggattatt ttcctttgaa gtttttggac tttcatgggg
tgaagagaag gtgccacaag 840ttggcggcta aggttggtag cgtggtgggg caaattgtgg
aggatcgaaa aagagaaggg 900agttttgttg tcaagaatga ttttcttagc actttgctat
ccttgcccaa agaagaaagg 960ttggctgatt cagatatggc ggctattttg tgggaaatgg
tgtttcgagg aacagacaca 1020gttgcaatac tccttgaatg ggtcatggcc aggatggttt
tacaccaaga cgtacaaaag 1080aaagcccgcg aagaaatcga cacgtgcatc ggccaaaaca
gtcacgtgcg agactcggat 1140attgcaaatc tcccatacct ccaggctata gtaaaagaag
ttctccggct gcacccaccc 1200ggcccactcc tatcatgggc ccgtcttgca gtcaatgatg
tccacgttga caaagttctt 1260gtgccagctg gtacaacagc aatggttaac atgtgggcca
tatcacatga ctcatccatc 1320tgggaagacc catgggcttt caagcccgag aggttcctca
aagaagatgt ttctatcatg 1380ggatcggact tgaggcttgc acccttcggg gctggacgta
gggtgtgtcc gggccgggcc 1440ttgggtttgg ccacgaccca tctctggctc gcgcaacttc
ttcgccactt catatggctt 1500cccgcgcaac ccgtggatct ttcggagtgt cttaggcttt
ccatggaaat gaagacacct 1560ctgcgatgtc tagttgttcg tagataaaaa atataataac
gtaagccttt tagctgaact 1620atgtttgatg tgcaattata gaatgatcga gcttgtatct
gatgtttgat gttaaagatg 1680gtactcaaat atttagtgaa atatttagag atgagttatc
gtataattat ggaacttatc 1740tctaagcttt atttcacttt atttttaagg gtatcaaatt
attaaaataa atatctagtg 1800ccaggactag aggtggatgt aagaaaagat tggatcgatt
aagaaggttt tatgtctctt 1860taaatcgtaa aatgtaaatt gctgtaatgt aatgaagttg
cttccgtacg tatg 1914321310DNASorghum bicolor 32atggacttca
ccgacgtcct gctctccctc aacggcgacg acaagctctc cgacgccgac 60atgatcgccg
tcctctggga gatgatcttc cgaggcacgg acacggtggc ggtgctgatc 120gagtgggtgc
tggcacgtct ggtgctgcac caggacgtgc agcgcaaggt gcacgacgag 180ctggaccggg
tggtcgggcc gggcgaggcc gtgacggagt cggacaccgc ctcactggtg 240tacctgcagg
cggtcatcaa ggaagtgctg cgcctgcacc cgccgggccc actgctgtcc 300tgggcgcggc
tggccacgtc ggacgtgaac gtcggcgggc acctggtccc cgcgggcacc 360accgccatgg
tgaacatgtg ggccataacc cacgacgcca gcgtgtggcc tgagccgacg 420gagttcaggc
ccgagaggtt cgtcgccgcc gccggcggcg aggacgtcgt cccgataatg 480ggttcggacc
tccggctcgc gccgttcggg tccggcaggc ggagctgccc cgggaagtcg 540ctcgcggtgg
ccaccgtcgg gttctgggtc gccaccctgc tgcacgagtt cgaatggttg 600ccgtgcggcg
gcggcggcgg cgtggacctg tccgaagtgc tgaggctgtc gtgtgagatg 660gccgcgccgc
tggaggcgag ggtggtgcca cgtcgtcacg cggtgtgatg atgacgaggc 720agctgagaca
cacgtggacg tggctgggga gaggggacgg agtggctagc ttcttctact 780actactacct
taccaccttc tagcagaacg taacgtacgt ggccccggac gacgatcgat 840gagcgagatg
cgtaaaaaaa aaatcgccca agtgccatgc tttagagctg atgctggtgt 900ggacttccag
taatttcctg tgtatgatgg taggtgctgg tggaaggact acgtagtaac 960caccagccgg
tttgatgctt aattatgtgt gtgtgtgtgt gtgtgtgtgt gtgtgtgtgt 1020gtgtgtgtgt
gtgtgtgtgt gtgtgtgtgt gtgtgtgtgt gtgtgtgtgt gtgtgtgtgt 1080gtgtgtaatg
taacttacta gctgctgctg ctgcatgtaa tatctgcctg ctgttagtcg 1140actactaggt
agtgtagtgt accagatgat gagtgtgaca gttatctttt ccttttcagt 1200aatgcgtagc
tagctagagc tagatgtgta ttattgtgta ataataatcc tatgtgtgta 1260tatatctctc
tatagtttct atcctaatgc aagcgtgcgt gtgtgtacgt
1310331852DNAGlycine max 33atgaaaccca cggcaacatt cttctttctc cttccttcaa
caacactcgt tgtttgtctt 60tgccttggaa ttggaacaac caccctcttt ataaccctcc
tcgcaatttc ccttaactac 120tggcttgtcc ctggaggctt tgcatggaga aactatgact
attatcaaac caaaaaaaaa 180cttactgggc ctatgggctg gcccatactc gggactctgc
ctctcatggg ctctttagct 240caccaaaaac ttgcggcttt agccacttcg ctgaacgcaa
agaggttaat ggcgctgagt 300ctgggcccca ctcccgttgt tataagcagc caccccgaga
ccgctagaga aatcttgttg 360ggttcatcgt tttcggatcg tccgataaaa gaatcggcac
gcgctctcat gttcgagcgt 420gccattggtt tcgctcattc aggaacctac tggcggcacc
tacgtaggat cgcggcgttt 480catatgttct ctccgaggag gattcatggc ttggagggtc
tccgacaacg cgtaggtgac 540gacatggtga agagcgcgtg gagggagatg ggggagaagg
gggtggtgga ggttcggagg 600gtatttcagg aagggtcact ttgtaatatt ttggagagtg
tttttggaag taacgataag 660agtgaggagt tgagggatat ggttagggaa gggtacgagt
tgattgcgat gtttaacttg 720gaggattatt ttcccttcaa gtttttggat tttcatgggg
tgaagagaag gtgccacaag 780ttggcggcta aggttggtag tgtggtgggc caaattgtgg
aggaacgaaa aagagatggt 840ggttttgttg ggaagaatga ttttcttagc actttgctat
ccttgcccaa agaagaaaga 900ttggctgatt cagatctggt ggctattctg tgggaaatgg
tatttcgagg aacagacaca 960gttgcaatac tccttgaatg ggttatggca aggatggttt
tacaccaaga cttacaaaag 1020aaagcccgcg aagaaatcga cacgtgcgtc ggccaaaaca
gtcacgtgcg agactcggat 1080attgcgaatc tcccttacct ccaggccata gtgaaagaag
ttctccggct gcacccacca 1140ggcccgctac tatcatgggc tcgccttgcg gtccatgatg
tccatgcgga caaagtcctc 1200gtgccagctg gcacaacagc aatggttaac atgtgggcca
tttcgcatga ctcgtccatc 1260tgggaagacc catgggcttt caagcccgag aggttcctca
aagaagatgt ttccatcatg 1320ggatcggact tgaggcttgc acccttcggg gctggacgta
gggtgtgtcc gggccgggcc 1380ttgggcttgg ccacggccca tctctggctc gcgcaacttc
ttcgccactt catatggctt 1440cccgcacaaa ccgtggatct ttccgaatgc cttaggcttt
ccatggaaat gaagacacct 1500ctgcgatgcc tagtggttcg tagataaata aataaaaaat
cgtaagccct tgaaccgaac 1560catgtttaat gtgcaattag gatgatcgag ctttgtatct
gttgtttgat gttaaatttg 1620gtactcaaat atctagtgaa atatttagag atgagtttat
cgtataatta gggagcttat 1680ctctaagttt tatttcactt tatttttaaa gggtatcaaa
ttattaaaat aaatatctag 1740tgccagttga ctagaggtgg gtgtaagaag agagtggctt
aagaaggctt tatgtatctt 1800taaattgtaa aatgtaaatt actgtaatgt aatgcatgca
tttttcttct tg 1852341554DNASorghum bicolor 34atggtgctca
ccatggccac cggccaagag gactccctcc tcctgctcct cctccccacc 60acctccccac
tcccgcccct catggccgtg ttcatcctag ccgccgtcct cctgtggctc 120tcccccggtg
gtcctgcgtg ggcgctctcc cgctgccgcc gcccgccgtc cggcccaacg 180ggcgtggtca
ccgcgctctc aagccccgtg gcgcaccgca ccctggcggc gctgtcccac 240gccgtagacg
gcggcaaagc actgatggcc ttctcggtcg ggctcacccg cctcgtcgtg 300tcgagccagc
ccgacacggc gcgagagatc ctcgtcaacc ccgcgttcag cgaccgcccc 360atcaaggacg
cggctcgcca cctgctcttc caccgcgcca tgggcttcgc gccctccgga 420gacgcgcact
ggcgcgggct ccgccgcctc gccgccaacc acctgttcgg cccgcgccgc 480gtggcggcgg
ccgcgcacca ccgcgtctcc atcggcgagg ccatggtcgc cgacgtcgcc 540gctgccatgg
cccgccacgg cgaggtctcc ctgaagcgcg tgctgcatat cgcgtctctc 600aaccacatca
tggccaccgt cttcggcaag cactacgaca tggacagcca agagggcgtc 660cttctggaag
agatggtcac cgagggctac gacctcctgg gcacgttcaa ctgggctgac 720cacctgccgt
tgatcaagca tctcgacctc cagggcgtgc gccgccggtg caacaggtta 780gtccaaaagg
ttgaagtgtt cgttggaaag atcatccagg agcacagggc gaggcgcgcg 840aatggaggag
tcgacgatga gtacatgggt gacttcgtcg acgtccttct tgacctcgag 900ggagaggaga
agctgtccga atccgacatg atcgctgttc tttgggagat gatcttcaga 960ggcgccgaca
ctgtggcgat cttgatggag tggatcatgg cgaggatggc gctgcaccct 1020gaaatccagt
ccaaggccca ggcggagctg gacggcgtcg tcgtgggcgg cgtggcggac 1080gccgacgtgg
gcaacctccc ctacatccag tgcatcgtga aggagacgct gcggatgcac 1140cctccgggcc
cgctcctgtc gtgggcgcgc ctcgccatcc acgacgcgca cgtcggcggc 1200cacctggtcc
ccgccggcac cacggccatg gtgaacatgt ggtccatcgc gcatgacccc 1260gccatctggg
cagagccgga gaagttccgc cccgagcgct tccaggagga ggacgtgagc 1320gtcctcggga
gcgacctccg cctggccccg ttcggcgccg gacgccgcgt ctgccccggc 1380aagatgctgg
ccctcgccac cacacacctc tggatcgccc agctgctgca cgagttcgag 1440tgggcacccg
cggccgccaa cggcggcgtc gacctgtccg agcgcctcaa catgtcgctg 1500gagatggcca
cgccgctggt gtgcaaggcc gtccccaggg cccagctggc ctaa
1554351882DNASorghum bicolor 35cgcaacgcaa cagctagcag caagctctga
aagtcgcaat ggagagctca gttgagagct 60ggtgggtgct tcccatgacc ttgatcccgg
ccatctccgg ccagcagcac gagaacatgg 120ccaccatagc cactagcttc gtctacctcg
ccatcttcgc atgccttgca tgggcaggcg 180cgtccctgct ctactgggct cacccaggcg
gccctgcgtg gggcaagtac tggagggcga 240aggggaagcc gtcgtcgacg atcccggggc
ccaaggggct cccggtcgtc ggcagcctcg 300gcctcatgtc cgggctggcg cactgctcgc
tggccgacga ggcgtcgcgc cggccggggg 360ccaagcggct catggcgctg tcgctcggcc
ccgtccgcgc ggtggtcacg tcccacccgg 420acgtggccaa ggagatcctc gacaacccgg
cgttcgccga ccgccccctc aaccacgccg 480cgtacggcct catgttccac cgctccatcg
gcttcgccga gcacggcccg tactggcgcg 540cgctccggcg cgtcgccgcg ggacacctgt
tcggcccgag gcaggtcgag gccttcgcgc 600cgtaccgtgc cgccgtcggg gaagggatcg
tcgcggccct gcacggcgcc ggcggcggcg 660tcgtccaggt gcgcggcctc ctgcgccgag
cttcgctcta ctacatcatg cggttcgtgt 720tcggcaagga gtacgacgtg tcgcgcgccg
tgccggcgtc cgggaaggag gaggtggagg 780agctgctcga gatggtgcac gaggggtacg
agctcctggg catggagaac tggtgcgact 840acttcccggg gctcgccgcc ctcgacccgc
agggcgtcgg agcacggtgc gccgagctca 900tgccacgggt gaaccggttc gtgcatggca
tcatccagga gcgccgtgcc aaggcgatcg 960ccggaggaga cgcgcgtgac ttcgttgaca
tcttgctctc cctgcaggag agcgagaggc 1020tcgccgacgc cgacatagcc gctgtgctct
gggagatgat cttcagagga acggacgcca 1080tggccgtgct catggagtgg accctagctc
gcctcgtcct ccaccgtgac gtccaagcca 1140aggcgcaccg tgagctcgac gaggtcgtcg
gcgggaacag ccaggtcgtc accgagtcgg 1200cagcggcgcc gtcgctgcct tacctgcagg
cgttgctaaa ggaggctctc cggatgcacc 1260cgccggggcc cctcctgtcg tggcgccaca
gggcgatatc cgacacgtac gtcgacgggc 1320acctcgtccc ggcaggcacc accgccatgg
tgaaccagtg ggcaatcagc cgcgaccccg 1380aggtgtggga cgcgccgctc gagttccggc
ccgagcggtt cctccctggc ggcgagggcc 1440aggacgtgtc cgtgctcggc gccgacggcc
gcctcgtgcc gttcgggtcc ggtcggagga 1500gctgccccgg caagtccctg gctatgacca
ccgtgaccac ctggatggcc accctgctga 1560acgagttcga gtggctgccg gcgtcagacg
atacaggcgg cgacgtcgac ctctcggagg 1620tgctccgtct gtcctgcgag atggctgtgc
cgctggaggt ccgcgtgcgc ccgaggagcg 1680gcatgtgaat gaagtatctg ccgatagcca
tggcaccccc attgtgcaat gtgtagcagt 1740aaccctaagc gttgtgttag taaactgtga
ataagcagca gctggtgagg actgtgcata 1800ccagctcagc tcagttcagt atttggttca
gggtttcaac ttgcctatgt atcatatata 1860tagtgtgacc gtgagtacaa gt
1882362085DNASorghum bicolor
36gtgcccactt cttccaactt ataatccaag caaccaacta tagctcaaca catctctcct
60tgtgttctca tctatagcca tctaagtagc aattgcatta gcaaccatag tagcacctgc
120tatgcactag tcagtaatca gtaccacaca tagtttacac acacacaaca cacacaaacg
180cacacacaaa aaagacttta cacacttagg ttaactatac atatagccat gaagactgaa
240gtaatcacca ccatgatctc cttggtcttc ctcgtgcatt tcgctatcac catcagccct
300aacgcacaac cttcatggct cttctctctc atgtctctct cccttgccgt ggtggcggtc
360atagtgccat tagtagtcac caccacttgc catgcacgta agaataccga cgctaccacc
420accatcccgg ggccacgagg gtggccgctg gtaggctccc tgctggtcgt gtcgggccca
480ctcatgcacc gtcgcctagc cgcgctggcc gacgcgcata gcgcacgtcg cctcatgtcg
540ctcaccctcg gtgccacccc cgtggtgatc agcagccacc cagaaacggc gcgagacatc
600ctctcaggtg ccgccttcgt ggaccgcccg cctaaggccg cagcccggga actcatgttt
660tgccgtgcca tcgggtttgc ccccactggg gagtattggc gtcgcctccg tcgcatcacg
720ggcgctggca tgctctcccc gcgtcgcatg gccatgctca ggggtcttcg ctgccgtgtt
780gccgacagca tgatccagcg tgtcgcggac cagatggaga ggtccgggga ggtggccatg
840agagccttgc tccaaagggc ctccctagag agcatggtgg gtagcgtgct aggcctcgag
900ggtgacgctg tttgtgagga gctgggtgag atggtgaggg aagggtatga gctcgtgggc
960atgttcaacc tagaagacca ctactacaag acatcatggg gcccgttgat ggacctttgg
1020ggggtgaggc ccatgtgcag ggagctggct gctatggtta gagggtattt tgggaagatc
1080attcaggaga ggaggctggc aggggactgc cacgagaggg ccgacttgct tagctatatg
1140ctttcacttc cagaggagga gaagttggag gactctgatg tgattgctgt gctgtgggag
1200atgattttcc gtggcgtgga cgtcgtggcg attctcctgg agtgggccat ggcccgcatg
1260tcactgcacc cagacatcca atccaaggcc caggaggaga tggacgcagc ggtgggcgtc
1320cgtcgtcgtc gtgccatcac cgactccgac gtccccaacc ttgccttcct ccaatggatc
1380ctcaaggaga cgctccggat gcacccgccg ggcccgctgc tctcctgggc gcgcctggcg
1440gtgcaggacg cgcgggtggg caagcacgtg gtgccggcgg ggacgacggc catggtgaac
1500atgtgggcca tctcgcacga cgaggccatc tggggagacc cctgggtgtt ccggccggag
1560aggttcgcgg cggcggcggc cggggaggag gtgagcgtgc tcgggtccga cctcaggctg
1620gcgccgttcg ggtccggccg gagggtgtgc cctggcagga tgatgggcct cgccaccgcg
1680cagctctggc tcggacgcct cctgcaggag taccggtggc tgccgccgcc ggccaataag
1740cccgtcgagc tcgccgagtg cctccgcctg tccatggaga tgaagacgcc cctcgtctgc
1800cgcgcggttc ctcgtcgtcg cggaggacgg cctcctgctg cagcttgatg ggccactgtg
1860atgatgagct ccttcggtgc tgtggccact gttgggcacc agtgtaaaat taaatccttg
1920tgtgtttgcc tactactcgt ttacagtgtt gtttgtacgt acaatcaaag attattgtat
1980gtatgtgatg tgatgtgatg tatctgtgcc cggccggcct atagctacgt ggctagacac
2040atgagtatag tttgcactac tctgatatat atatatgtgt tatac
2085371500DNAOryza sativa 37atggcggtcg tcgccttgcc gccgcttctt gcgaaacgcc
atggacatgc acgccgggtt 60aatggcggcg gcgctgccat tcccgggccg cgggggtggc
cgctgctggg gtcgctcccg 120gtggtgtccg gtccgctcat gcaccgccgc ctcgccgcgc
tggccgacgc gcacggcggc 180ggcgcgcggc gcctgatgtc gctgacgctc ggcgcgacgc
ccgtggtggt gagcagccac 240ccggacacgg tgcgggagat cctcgccggc gccgcgttcc
gcgaccgtcc cgccagggcc 300gcggcgcggg agctcatgtt cctccgcgcc gtcggcttcg
ccccggcctc cggagacgac 360ggcggcgcct actggcgccg cctccgccgc gccgcgggcg
cgggcatgct ctccccgcgc 420cgcgccgccg cgctcgccgc gctgcgcgcc cgcgtcgcgc
gccgcacgtc cgaggccgtg 480tcccgcggca tggccgtgcc gcccggccgc gtcgccatgc
gcgccctcct ccacgccgcc 540tccctcgaca acatggttgg cagcgtgcta gggctcgaac
accatgacca ccatggcggc 600gtcatcagcg acatgggtga catggtgagg gaagggtacg
agctggttgg caagttcaac 660ctaggagact actacagtac tacacagtac cagtgcctgt
gggggttgct ggatttccat 720ggggtggggc ccaggtgtca gaggctggca gctagggtta
gggagcagtt tgggagggtg 780atggaggaga ggaggaaggt gagtgacctg cacaagaggg
atgatcttct tagctacatg 840ctctccatgc cacaggagga gaggattgag gactctgatg
tcattgctgt cctctgggag 900atgatctttc gtgggacaga tgtagttgca atactcctgg
aatgggccat ggcccggatg 960gtactccacc cagacatcca gtccaaggtg caagaagaac
tagatagggc ggtgggccac 1020cggcccatga ccgactcgga catccccaac cttcgcttcc
tccattgtgt catcaaggaa 1080accctccgca tgcacccgcc tggcccactt ctctcatggg
cccgcttggc ggtgcatgat 1140acctatgtgg gcaagcacct agtacccgca gggactacgg
caatggtgaa tatgtgggcc 1200atatcccatg atgagacgat atggggtgac ccatgggtgt
ttcgacccga aaggtttatg 1260gaagaggata tcaatgtgtt gggatcagat ttaaggttgg
caccgtttgg atcaggtcgt 1320cgggtgtgcc ctggacggat gatgggtctc tccactgcct
atctatggtt tggccggatg 1380ttgcaagagt ataagtgggc agcggctcag ccggttaaac
ttacggagtg cctccgtctt 1440tctatggaga tgaagaaacc tttggtttgt catgcagttc
ctcgtagcaa aactggctaa 1500381668DNAOryza sativa 38atggcaatgg ccaccgccac
cgcctcctcc tgcgtcgacg ccacgtggtg ggcgtacgcc 60ctcccggcgc tcctcggcgc
cgacaccctc tgcgcccacc cggcgctgct cgccggcgcc 120gtcctcctgg ccttcgccac
cgccgcggtg ctcgcctggg ccgcgtcccc cggcgggccg 180gcgtgggcgc acggccgcgg
ccgcctcggc gcgacgccca tcgaggggcc ccgggggctc 240cccgtgttcg gcagcatctt
cgcgctctcc cggggcctcc cgcaccgcgc gctcgacgcg 300atgtcgcgcg acgcggcggc
gccacgggcg agggagctca tggcgttctc cgtcggggag 360acgccggcgg tggtgtcgtc
gtgcccggcg acggcgaggg aggtgctcgc gcacccgtcg 420ttcgccgacc gcccgctgaa
gcgctcggcg cgggagctgc tgttcgcgcg cgccatcggg 480ttcgccccca gcggcgagta
ctggcgcctc ctccgccgca tcgcctccac ccacctcttc 540tcccctcgcc gcgtcgccgc
gcacgagccg gggcgccagg ccgacgccac ggcgatgctg 600tccgccatgg ccgccgagca
gtccgccacc ggcgccgtcg tgctccgccc ccacctccag 660gccgccgcgc tcaacaacat
catgggcagc gtgttcggcc ggcgctacga cgtctcctcc 720tcctccggcg ccgccgccga
cgaggccgag cagctcaaga gcatggtgcg cgaggggttc 780gagctcctcg gcgcgttcaa
ctggtccgac cacctcccat ggctcgccca cctctacgac 840cccaaccacg tcgcccgccg
ctgcgccgcg ctcgtccccc gcgtccaggc gttcgtccgc 900ggcgtcatcc gcgaccaccg
cctccgccgc gactcctcct ccaccgccgc cgacaatgcc 960gacttcgtcg acgtcctcct
ctccctcgag gcccacgaga acctcgccga ggacgacatg 1020gtcgccgtcc tctgggagat
gatatttcgt gggacggaca cgacggcgtt ggtgacggag 1080tggtgcatgg cggaggtggt
gaggaacccg gcggtgcagg cgaggctgag ggcggaggtg 1140gacgcggcgg tgggcggcga
cgggtgtccc agcgacggcg acgtggcgcg gatgccgtac 1200ctgcaggcgg tggtgaagga
gacgctgagg gcgcacccgc cggggccgct gctgagctgg 1260gcgcggctgg ccaccgccga
cgtggggctc gccaacggca tggtggtgcc ggcgggcacg 1320acggcgatgg tgaacatgtg
ggccatcacc cacgacggcg aggtgtgggc cgacccggag 1380gcgttcgcgc cggagcggtt
catcccgtcg gagggcggcg ccgacgtcga cgtccgcggc 1440ggcgacctcc gcctggcgcc
gttcggcgcc gggcgccgcg tctgccccgg caagaacctc 1500ggcctcgcca ccgtcaccct
ctgggtcgcc cgcctcgtcc acgccttcga ctggttcctc 1560cccgacggct cgccgccggt
gtccctcgac gaggtcctca agctctccct cgagatgaag 1620acccctctcg ccgccgccgc
caccccccgc cgccgccgcg ccgcctga 166839525DNASorghum bicolor
39cgtgacggac gccgacgtgg cgaacctccc ctacgtgcag agcgtcgtga aggagacgct
60gcgcatgcac ccgccagggc ccgctgctgt cgtgggcgcg cctggccatc cacgacgcgc
120acgtcggcgg ccaccctggt ccccgccggc accacggcca tggtgaacat gtgggcgatc
180gcgcacgacc ccgccatctg ggcggagccg gaggagttcc gccccgagcg gttccaggag
240gaggaggagg acgtgagcgt cctcggcggc gacctccgcc tggccccctt cggtgccggc
300cgccgcgtat gccccgacaa gatgctcgcc ctcgccacca cccacctctg ggtcgcccag
360ctgctgcacc ggttcgagtg ggcccctgcg ggcgccgcca gcagcggcgg cggcggcgtc
420gacctgtcgg agcgcctcaa catgtcgctg gagatggcca cgccgctggt gtgcaaggcc
480gtgcccaggt cagcccccca gctgcatgca ggcctagcta gctaa
525402076DNASorghum bicolor 40atggcgatgg cctccgcagt ttcgtcgtgc acggacagca
cgtggtgggt gtacgcgctc 60ccgacgctgc tcggctcgga caccctgtgc gcccacccgg
ccctcctggc cggcctgctc 120ttcctgacca ccgtcacggc ggctctgctg gcgtgggccg
cgtcgccggg agggcctgcg 180tgggcgcacg gccgcggccg cctcggcgcc actcctatcg
tgggtccccg gggtctcccc 240gtgttcggca gcatcttcgc gctctcccgc ggtctgccgc
accgtaccct cgccgcgatg 300gcccgcgcgg cggggccccg ggccaaggag ctcatggcgt
tctccgtcgg ggacacgccg 360gcggtcgtgt cgtcgtgccc ggccacggcg cgtgaggtgc
tcgcgcaccc gtccttcgcc 420gaccgccccg tgaagcggtc ggcgcgggag ctcatgttcg
cgcgcgccat cgggttcgcg 480cccaacggcg agtactggcg ccgcctccgc cgcgtcgcgt
ccacgcacct cttctccccg 540cgccgcgtcg ccgcgcacga gccgggacgc cagggcgacg
cggaggccat gctccgctcc 600gtcgccgccg agcagtccgc ctcgggcacc gtcgtcctcc
gcccgcacct ccaggccgcc 660gctctcaaca acatcatggg cagcgtcttc ggcacgcgat
acgacgtcac atccggcgcc 720accgccggcg ccgcggaggc cgagcagctc aagagcatgg
tgcgcgaggg gttcgagctc 780ctcggcgcct tcaactggtc cgaccacctc ccctggctcg
cccacctgta cgaccccagc 840aacgtcaccc gccgctgcgc cgcgctcgtc ccgcgcgtcc
agaccttcgt ccgtggcgtc 900atcgacgagc accggcgccg ccgccaaaac tccgccgccc
tcgacctcaa cgacaatgct 960gacttcgtct acgtgctcct ctccctcgac ggcgacgaga
agctccgcga cgacgacatg 1020gtcgccatcc tctgggagat gatcttccgc ggtacggaca
cgacggcgct tctgacggag 1080tggtgcatgg cggagctggt gcgccacccg gcggtgcagg
cgaggctgcg ggccgaggtg 1140gacgcagctg tcggcgccgg cggtcgcccc accgacgccg
acgtggcgcg catgccgtac 1200ctgcaggcgg tcgtgaagga gacgctgcga gcgcacccgc
ctggcccgct gctgagctgg 1260gcgcgcctcg ccaccgccga cgtgcccctc tccaacggca
tggtggtccc ggccggcacc 1320acggcgatgg tgaacatgtg ggccatcacc cacgacgccg
gcgtgtgggc cgacccggac 1380gcgttcgcgc cggagcggtt cctgccctcc gagggcggcg
ccgacgtgga cgtccgcggc 1440gtcgacctcc gcctggcacc gttcggcgcc gggcgccgcg
tctgccccgg caagaacctg 1500gggctcacca ccgtgggcct ctgggtcgcc cgcctcgtgc
acgccttcga gtgggcgctg 1560cctgatggcg cgccgcccgt ctgcctcgac gaggtcctca
agctctccct ggagatgaag 1620acgccgctcg ccgccgcggc catcccgcgc accgcatgat
ccatcctgcc gctgccgccg 1680acgcgtgcaa caagaaccga ttatgctttg tcacgtcacg
tcacgcgttc tttgtctgtg 1740tgtgtgtggt tctaagctag tgtgcttctt cttgtcgatc
gtcggttcgt tctcgtgcct 1800gcctttgcct agggtttcgt ttcttgcaaa gtagtgacag
tgtctccctt agagtcatca 1860acggggctcc aattttggaa aggtgcgtgt taggagttaa
cccctagaca tgtctgcgtc 1920tcgatcacca cctactatgt cattatcagc gcagcaccta
tatatagatc agtgtctgtc 1980gatcagtcat ggaagtcgat cgtgtgctca agtctgctgt
attatatata atgtattgta 2040atgtgattat caagaaccgt gctatctata tgttgc
2076411937DNABrachypodium distachyon 41atggagagct
cagtcgagag cagctggtgg gtgctgcccc tgaccttgat tcctgccatc 60tccggccagc
agcagcagca cgatcaaagc acggccgccg ccatagccac cagcttcgtc 120tacctcgcca
tcctcgcctg cctcgcctgg gcggccaagt ccctgctcta ctgggctcac 180ccgggcgggc
ctgcatgggg ccggcggtac tggacgagcc cgtgcgcgaa gacggctccg 240gctccggcgc
cgatccccgg gccgagaggg ctcccggtgg tgggcagcct gggcctgatg 300tccggactag
cccacagcac gctggccgcc gaggcggcaa ggacgccggg cgcgaagcgg 360ctcatggcgc
tgtctctcgg cccagtcccc gccgtcgtca cggcccaccc ggacgtggcc 420aaggagatcc
tcgacaaccc ggcgttcgcg gaccggcccg tgaaccacgc cgcctacggc 480ctcatgttcc
accgctccat cggcttcgcg gagcacggcc cctactggcg cgcgctccgg 540cgcgtggcat
cggcgcacct gttcgcgccc aggcaggtcg acgccttcgc cccttaccgc 600gcgcgcgtcg
gggaagacgt cgtggccgcg ctccgccatg ccgggggcgg cgtcgtgaac 660gtgcgcggcg
tgctccggcg cgcgtcgctc tactacatca tgcgcttcgt gttcgggaaa 720gagtacgacg
tgtcgtcgga ctcggggaag aaggatcagg gggaagtgga ggagctgctg 780gagatggtgc
atgagggtta tgagctgctg gggaaggaga actggtgcga ctacttcccg 840gggctggcgg
ggttcgaccc gcagggcgtc ggggcgcggt gcgccgagct catgccgcgg 900gtgaaccgct
tcgtgcacgg catcatcgat gagcaccgcg gcaaggcgat gatagccgga 960ggagaaggag
aggcgcagcc gctggacttt gtggacatac tgctttcgtt gcaggagagc 1020gaggggctcg
ccgacgccga catcgccgcc gtgctctggg agatgatctt cagaggaaca 1080gacgccatgg
cggtgctgat ggagtggacc atggcacgcc tcgtcctgca ccccggcgtc 1140caagccaacg
tgcacaagga gctggacgag gtggtcggca agagcagcca cgtcaccgag 1200tcagccgtgc
tctcactgcc ttacctgcag gcgctgctca aggaggcgct ccgcgtgcac 1260ccgccggggc
cgctgctgtc gtggcgccac agggccatgt gggacaccta cgtggacggc 1320cacctggtcc
cggcgggcac cacggccatg gtgaaccagt gggccatgag ccgggacccg 1380gaggtttggg
ccgagccgct cgagttccgg cccgaacggt tcctcccggg cggcgaggcc 1440ggcccgggag
tctccgtgct cggctcggac ggccggctcg tgccgttcgg gtctggacgg 1500aggagctgcc
ccgggaagaa cctggccatg accaccgtca cggcgtggat ggccacgctg 1560atgcacgagt
tcgagtggat gccggccaag accggcgccc ccgtcgacat gtcggaggtg 1620ctccgcctgt
catgcgagat ggcgacgccg ctccaggtcc gggtgcgccc caggcgcggc 1680gtttgaaagt
ctgaggctgc tttcgacggc catatatgac ttcaccgtgt agtttctttc 1740ttactagccg
tgaccctggg ttgtgcttcc tgtttgtgaa taagctggct gggatgaaca 1800aaagtgtgca
ccggctcagc ttcagtgttt ggttcagagt tttctttttg aacttcgtca 1860gaagtatcat
caggtgtgag cttgaggttc cacgttggtg tacagattgc aagaagaaaa 1920tctataaagg
attgtgc
193742530PRTArabidopsis thaliana 42Met Ala Thr Lys Leu Glu Ser Ser Leu
Ile Phe Ala Leu Leu Ser Lys1 5 10
15Cys Ser Val Leu Ser Gln Thr Asn Leu Ala Phe Ser Leu Leu Ala
Val 20 25 30Thr Ile Ile Trp
Leu Ala Ile Ser Leu Phe Leu Trp Thr Tyr Pro Gly 35
40 45Gly Pro Ala Trp Gly Lys Tyr Leu Phe Gly Arg Leu
Ile Ser Gly Ser 50 55 60Tyr Lys Thr
Gly Asn Val Ile Pro Gly Pro Lys Gly Phe Pro Leu Val65 70
75 80Gly Ser Met Ser Leu Met Ser Ser
Thr Leu Ala His Arg Arg Ile Ala 85 90
95Asp Ala Ala Glu Lys Phe Gly Ala Lys Arg Leu Met Ala Phe
Ser Leu 100 105 110Gly Glu Thr
Arg Val Ile Val Thr Cys Asn Pro Asp Val Ala Lys Glu 115
120 125Ile Leu Asn Ser Pro Val Phe Ala Asp Arg Pro
Val Lys Glu Ser Ala 130 135 140Tyr Ser
Leu Met Phe Asn Arg Ala Ile Gly Phe Ala Pro His Gly Val145
150 155 160Tyr Trp Arg Thr Leu Arg Arg
Ile Ala Ser Asn His Leu Phe Ser Thr 165
170 175Lys Gln Ile Arg Arg Ala Glu Thr Gln Arg Arg Val
Ile Ser Ser Gln 180 185 190Met
Val Glu Phe Leu Glu Lys Gln Ser Ser Asn Glu Pro Cys Phe Val 195
200 205Arg Glu Leu Leu Lys Thr Ala Ser Leu
Asn Asn Met Met Cys Ser Val 210 215
220Phe Gly Gln Glu Tyr Glu Leu Glu Lys Asn His Val Glu Leu Arg Glu225
230 235 240Met Val Glu Glu
Gly Tyr Asp Leu Leu Gly Thr Leu Asn Trp Thr Asp 245
250 255His Leu Pro Trp Leu Ser Glu Phe Asp Pro
Gln Arg Leu Arg Ser Arg 260 265
270Cys Ser Thr Leu Val Pro Lys Val Asn Arg Phe Val Ser Arg Ile Ile
275 280 285Ser Glu His Arg Asn Gln Thr
Gly Asp Leu Pro Arg Asp Phe Val Asp 290 295
300Val Leu Leu Ser Leu His Gly Ser Asp Lys Leu Ser Asp Pro Asp
Ile305 310 315 320Ile Ala
Val Leu Trp Glu Met Ile Phe Arg Gly Thr Asp Thr Val Ala
325 330 335Val Leu Ile Glu Trp Ile Leu
Ala Arg Met Val Leu His Pro Asp Met 340 345
350Gln Ser Thr Val Gln Asn Glu Leu Asp Gln Val Val Gly Lys
Ser Arg 355 360 365Ala Leu Asp Glu
Ser Asp Leu Ala Ser Leu Pro Tyr Leu Thr Ala Val 370
375 380Val Lys Glu Val Leu Arg Leu His Pro Pro Gly Pro
Leu Leu Ser Trp385 390 395
400Ala Arg Leu Ala Ile Thr Asp Thr Ile Val Asp Gly Arg Leu Val Pro
405 410 415Ala Gly Thr Thr Ala
Met Val Asn Met Trp Ala Val Ser His Asp Pro 420
425 430His Val Trp Val Asp Pro Leu Glu Phe Lys Pro Glu
Arg Phe Val Ala 435 440 445Lys Glu
Gly Glu Val Glu Phe Ser Val Leu Gly Ser Asp Leu Arg Leu 450
455 460Ala Pro Phe Gly Ser Gly Arg Arg Ile Cys Pro
Gly Lys Asn Leu Gly465 470 475
480Phe Thr Thr Val Met Phe Trp Thr Ala Met Met Leu His Glu Phe Glu
485 490 495Trp Gly Pro Ser
Asp Gly Asn Gly Val Asp Leu Ser Glu Lys Leu Arg 500
505 510Leu Ser Cys Glu Met Ala Asn Pro Leu Pro Ala
Lys Leu Arg Arg Arg 515 520 525Arg
Ser 53043534PRTArabidopsis thaliana 43Met Ala Thr Lys Leu Asp Thr Ser
Ser Leu Leu Leu Ala Leu Leu Ser1 5 10
15Lys Cys Ser Leu Leu Thr Gln Thr Asn Leu Ala Leu Ser Leu
Leu Val 20 25 30Ala Ser Leu
Ala Ser Leu Ala Leu Ser Leu Phe Phe Trp Ser His Pro 35
40 45Gly Gly Pro Ala Trp Gly Lys Tyr Phe Leu His
Arg Arg Arg Gln Thr 50 55 60Thr Val
Ile Pro Gly Pro Arg Gly Leu Pro Phe Val Gly Ser Met Ser65
70 75 80Leu Met Ser Asn Thr Leu Ala
His Arg Cys Ile Ala Ala Thr Ala Glu 85 90
95Lys Phe Arg Ala Glu Arg Leu Met Ala Phe Ser Leu Gly
Glu Thr Arg 100 105 110Val Ile
Val Thr Cys Asn Pro Asp Val Ala Lys Glu Ile Leu Asn Ser 115
120 125Pro Val Phe Ala Asp Arg Pro Val Lys Glu
Ser Ala Tyr Ser Leu Met 130 135 140Phe
Asn Arg Ala Ile Gly Phe Ala Pro Tyr Gly Val Tyr Trp Arg Thr145
150 155 160Leu Arg Lys Ile Ala Ser
Asn His Leu Phe Ser Pro Lys Gln Ile Lys 165
170 175Arg Ser Glu Thr Gln Arg Ser Val Ile Ala Asn Gln
Ile Val Lys Cys 180 185 190Leu
Thr Lys Gln Ser Asn Thr Lys Gly Leu Cys Phe Ala Arg Asp Leu 195
200 205Ile Lys Thr Ala Ser Leu Asn Asn Met
Met Cys Ser Val Phe Gly Lys 210 215
220Glu Tyr Glu Leu Glu Glu Glu His Glu Glu Val Ser Glu Leu Arg Glu225
230 235 240Leu Val Glu Glu
Gly Tyr Asp Leu Leu Gly Thr Leu Asn Trp Thr Asp 245
250 255His Leu Pro Trp Leu Ser Glu Phe Asp Pro
Gln Arg Ile Arg Ser Arg 260 265
270Cys Ser Asn Leu Val Pro Lys Val Asn Arg Phe Val Asn Arg Ile Ile
275 280 285Ser Asp His Arg Glu Gln Thr
Arg Asp Ser Pro Ser Asp Phe Val Asp 290 295
300Val Leu Leu Ser Leu Asp Gly Pro Asp Lys Leu Ser Asp Pro Asp
Ile305 310 315 320Ile Ala
Val Leu Trp Glu Met Ile Phe Arg Gly Thr Asp Thr Val Ala
325 330 335Val Leu Ile Glu Trp Ile Leu
Ala Arg Met Val Leu His Pro Asp Ile 340 345
350Gln Ser Thr Val His Asn Glu Leu Asp Gln Ile Val Gly Arg
Ser Arg 355 360 365Ala Val Glu Glu
Ser Asp Val Val Ser Leu Val Tyr Leu Thr Ala Val 370
375 380Val Lys Glu Val Leu Arg Leu His Pro Pro Gly Pro
Leu Leu Ser Trp385 390 395
400Ala Arg Leu Ala Ile Thr Asp Thr Ile Ile Asp Gly Arg Arg Val Pro
405 410 415Ala Gly Thr Thr Ala
Met Val Asn Met Trp Ala Ile Ala His Asp Pro 420
425 430His Val Trp Glu Asn Pro Leu Glu Phe Lys Pro Glu
Arg Phe Val Ala 435 440 445Lys Glu
Gly Glu Val Glu Phe Ser Val Leu Gly Ser Asp Leu Arg Leu 450
455 460Ala Pro Phe Gly Ser Gly Arg Arg Val Cys Pro
Gly Lys Asn Leu Gly465 470 475
480Leu Thr Thr Val Thr Phe Trp Thr Ala Thr Leu Leu His Glu Phe Glu
485 490 495Trp Leu Thr Pro
Ser Asp Glu Lys Thr Val Asp Leu Ser Glu Lys Leu 500
505 510Arg Leu Ser Cys Glu Met Ala Asn Pro Leu Ala
Ala Lys Leu Arg Pro 515 520 525Arg
Arg Ser Phe Ser Val 53044535PRTArabidopsis thaliana 44Met Arg Thr Glu
Ile Glu Ser Leu Trp Val Phe Ala Leu Ala Ser Lys1 5
10 15Phe Asn Ile Tyr Met Gln Gln His Phe Ala
Ser Leu Leu Val Ala Ile 20 25
30Ala Ile Thr Trp Phe Thr Ile Thr Ile Val Phe Trp Ser Thr Pro Gly
35 40 45Gly Pro Ala Trp Gly Lys Tyr Phe
Phe Thr Arg Arg Phe Ile Ser Leu 50 55
60Asp Tyr Asn Arg Lys Tyr Lys Asn Leu Ile Pro Gly Pro Arg Gly Phe65
70 75 80Pro Leu Val Gly Ser
Met Ser Leu Arg Ser Ser His Val Ala His Gln 85
90 95Arg Ile Ala Ser Val Ala Glu Met Ser Asn Ala
Lys Arg Leu Met Ala 100 105
110Phe Ser Leu Gly Asp Thr Lys Val Val Val Thr Cys His Pro Ala Val
115 120 125Ala Lys Glu Ile Leu Asn Ser
Ser Val Phe Ala Asp Arg Pro Val Asp 130 135
140Glu Thr Ala Tyr Gly Leu Met Phe Asn Arg Ala Met Gly Phe Ala
Pro145 150 155 160Asn Gly
Thr Tyr Trp Arg Thr Leu Arg Arg Leu Gly Ser Asn His Leu
165 170 175Phe Asn Pro Lys Gln Ile Lys
Gln Ser Glu Asp Gln Arg Arg Val Ile 180 185
190Ala Thr Gln Met Val Asn Ala Phe Ala Arg Asn Pro Lys Ser
Ala Cys 195 200 205Ala Val Arg Asp
Leu Leu Lys Thr Ala Ser Leu Cys Asn Met Met Gly 210
215 220Leu Val Phe Gly Arg Glu Tyr Glu Leu Glu Ser Asn
Asn Asn Leu Glu225 230 235
240Ser Glu Cys Leu Lys Gly Leu Val Glu Glu Gly Tyr Asp Leu Leu Gly
245 250 255Thr Leu Asn Trp Thr
Asp His Leu Pro Trp Leu Ala Gly Leu Asp Phe 260
265 270Gln Gln Ile Arg Phe Arg Cys Ser Gln Leu Val Pro
Lys Val Asn Leu 275 280 285Leu Leu
Ser Arg Ile Ile His Glu Gln Arg Ala Ala Thr Gly Asn Phe 290
295 300Leu Asp Met Leu Leu Ser Leu Gln Gly Ser Glu
Lys Leu Ser Glu Ser305 310 315
320Asp Met Val Ala Val Leu Trp Glu Met Ile Phe Arg Gly Thr Asp Thr
325 330 335Val Ala Val Leu
Val Glu Trp Val Leu Ala Arg Ile Val Met His Pro 340
345 350Lys Val Gln Leu Thr Val His Asp Glu Leu Asp
Arg Val Val Gly Arg 355 360 365Ser
Arg Thr Val Asp Glu Ser Asp Leu Pro Ser Leu Thr Tyr Leu Thr 370
375 380Ala Met Ile Lys Glu Val Leu Arg Leu His
Pro Pro Gly Pro Leu Leu385 390 395
400Ser Trp Ala Arg Leu Ser Ile Thr Asp Thr Ser Val Asp Gly Tyr
His 405 410 415Val Pro Ala
Gly Thr Thr Ala Met Val Asn Met Trp Ala Ile Ala Arg 420
425 430Asp Pro His Val Trp Glu Asp Pro Leu Glu
Phe Lys Pro Glu Arg Phe 435 440
445Val Ala Lys Glu Gly Glu Ala Glu Phe Ser Val Phe Gly Ser Asp Leu 450
455 460Arg Leu Ala Pro Phe Gly Ser Gly
Lys Arg Val Cys Pro Gly Lys Asn465 470
475 480Leu Gly Leu Thr Thr Val Ser Phe Trp Val Ala Thr
Leu Leu His Glu 485 490
495Phe Glu Trp Leu Pro Ser Val Glu Ala Asn Pro Pro Asp Leu Ser Glu
500 505 510Val Leu Arg Leu Ser Cys
Glu Met Ala Cys Pro Leu Ile Val Asn Val 515 520
525Ser Ser Arg Arg Lys Ile Met 530
53545536PRTArabidopsis thaliana 45Met Glu Leu Met Asn Leu Ala Ser Lys Glu
Thr Ser Tyr Trp Met Ile1 5 10
15Ala Leu Pro Ala Gly Phe Gly Ser Gln Asn Leu His Asp Val Ser Thr
20 25 30Leu Gly Tyr Leu Phe Leu
Ala Val Val Phe Leu Ser Ile Val Thr Trp 35 40
45Ala Leu Ala Gly Gly Gly Gly Val Ala Trp Lys Asn Gly Arg
Asn Arg 50 55 60Leu Gly Arg Val Ala
Ile Pro Gly Pro Arg Gly Ile Pro Val Phe Gly65 70
75 80Ser Leu Phe Thr Leu Ser Arg Gly Leu Ala
His Arg Thr Leu Ala Ala 85 90
95Met Ala Trp Ser Arg Ala Asn Thr Glu Ile Met Ala Phe Ser Leu Gly
100 105 110Ser Thr Pro Val Ile
Val Ala Ser Glu Pro Asn Ile Ala Arg Glu Ile 115
120 125Leu Met Ser Pro His Phe Ala Asp Arg Pro Val Lys
Gln Ser Ala Lys 130 135 140Ser Leu Met
Phe Ser Arg Ala Ile Gly Phe Ala Pro Asn Gly Thr Tyr145
150 155 160Trp Arg Met Leu Arg Arg Ile
Ala Ser Thr His Leu Phe Ala Pro Arg 165
170 175Arg Ile Leu Ala His Glu Ala Gly Arg Gln Leu Asp
Cys Ala Glu Met 180 185 190Val
Lys Ala Val Ser Val Glu Gln Asn Gly Ala Gly Ser Val Val Leu 195
200 205Arg Lys His Leu Gln Leu Ala Ala Leu
Asn Asn Ile Met Gly Ser Val 210 215
220Phe Gly Arg Arg Tyr Asp Pro Leu Ala Gln Lys Glu Asp Leu Asp Glu225
230 235 240Leu Thr Ser Met
Val Arg Glu Gly Phe Glu Leu Leu Gly Ala Phe Asn 245
250 255Trp Ser Asp Tyr Leu Pro Trp Leu Gly Tyr
Phe Tyr Asp Ser Ile Arg 260 265
270Leu Asn Gln Arg Cys Ser Asp Leu Val Pro Arg Ile Arg Thr Leu Val
275 280 285Lys Lys Ile Ile Asp Glu His
Arg Val Ser Asn Ser Glu Lys Lys Arg 290 295
300Asp Ile Gly Asp Phe Val Asp Val Leu Leu Ser Leu Asp Gly Asp
Glu305 310 315 320Lys Leu
Gln Glu Asp Asp Met Ile Ala Val Leu Trp Glu Met Ile Phe
325 330 335Arg Gly Thr Asp Thr Thr Ala
Leu Leu Thr Glu Trp Thr Met Ala Glu 340 345
350Leu Val Leu Asn Pro Asn Val Gln Thr Lys Leu Arg Asp Glu
Ile Leu 355 360 365Thr Ala Val Gly
Asp Gly Ala Asp Gly Asp Val Ala Asp Ala Asp Leu 370
375 380Ala Lys Leu Pro Tyr Leu Asn Ala Val Val Lys Glu
Thr Leu Arg Leu385 390 395
400His Pro Pro Gly Pro Leu Leu Ser Trp Ala Arg Leu Ser Thr Ser Asp
405 410 415Val Gln Leu Ser Asn
Gly Met Val Ile Pro Lys Gly Thr Thr Ala Met 420
425 430Val Asn Met Trp Ala Ile Thr His Asp Gln Thr Val
Trp Ser Asp Pro 435 440 445Leu Lys
Phe Asp Pro Glu Arg Phe Thr Gly Asn Ala Asp Met Asp Ile 450
455 460Arg Gly Gly Asp Leu Arg Leu Ala Pro Phe Gly
Ala Gly Arg Arg Val465 470 475
480Cys Pro Gly Lys Asn Met Gly Leu Ala Thr Val Thr Arg Trp Val Ala
485 490 495Glu Leu Val Arg
Arg Phe Glu Trp Gly Gln Asp Gln Thr Glu Pro Val 500
505 510Asp Leu Gly Glu Val Leu Lys Leu Ser Cys Glu
Met Glu His Pro Leu 515 520 525Arg
Ala Val Val Thr Glu Ile Phe 530 53546517PRTArabidopsis
thaliana 46Met Ser Pro Glu Ala Tyr Val Leu Phe Phe Asn Ser Phe Asn Leu
Val1 5 10 15Thr Phe Glu
Ala Phe Ala Ser Val Ser Leu Ile Ile Ala Thr Val Ala 20
25 30Phe Leu Leu Ser Pro Gly Gly Leu Ala Trp
Ala Trp Thr Gly Ser Ser 35 40
45Lys Ser Arg Val Ser Ile Pro Gly Pro Ser Gly Ser Leu Ser Val Phe 50
55 60Ser Gly Ser Asn Pro His Arg Val Leu
Ala Ala Leu Ala Lys Arg Phe65 70 75
80Lys Ala Ser Pro Leu Met Ala Phe Ser Val Gly Phe Ser Arg
Phe Val 85 90 95Ile Ser
Ser Glu Pro Glu Thr Ala Lys Glu Ile Leu Ser Ser Ser Ala 100
105 110Phe Ala Asp Arg Pro Val Lys Glu Ser
Ala Tyr Glu Leu Leu Phe His 115 120
125Arg Ala Met Gly Phe Ala Pro Tyr Gly Glu Tyr Trp Arg Asn Leu Arg
130 135 140Arg Ile Ser Ser Thr His Leu
Phe Ser Pro Arg Arg Ile Ala Ser Phe145 150
155 160Glu Gly Val Arg Val Gly Ile Gly Met Lys Met Val
Lys Lys Ile Lys 165 170
175Ser Leu Val Thr Ser Asp Ala Cys Gly Glu Val Glu Val Lys Lys Ile
180 185 190Val His Phe Gly Ser Leu
Asn Asn Val Met Thr Thr Val Phe Gly Glu 195 200
205Ser Tyr Asp Phe Asp Glu Val Asn Gly Lys Gly Cys Phe Leu
Glu Arg 210 215 220Leu Val Ser Glu Gly
Tyr Glu Leu Leu Gly Ile Phe Asn Trp Ser Asp225 230
235 240His Phe Trp Phe Leu Arg Trp Phe Asp Phe
Gln Gly Val Arg Lys Arg 245 250
255Cys Arg Ala Leu Val Ser Glu Val Asn Thr Phe Val Gly Gly Ile Ile
260 265 270Glu Lys His Lys Met
Lys Lys Gly Asn Asn Leu Asn Gly Glu Glu Asn 275
280 285Asp Phe Val Asp Val Leu Leu Gly Leu Gln Lys Asp
Glu Lys Leu Ser 290 295 300Asp Ser Asp
Met Ile Ala Val Leu Trp Glu Met Ile Phe Arg Gly Thr305
310 315 320Asp Thr Val Ala Ile Leu Val
Glu Trp Val Leu Ala Arg Met Val Leu 325
330 335His Gln Asp Ile Gln Asp Lys Leu Tyr Arg Glu Ile
Ala Ser Ala Thr 340 345 350Ser
Asn Asn Ile Arg Ser Leu Ser Asp Ser Asp Ile Pro Lys Leu Pro 355
360 365Tyr Leu Gln Ala Ile Val Lys Glu Thr
Leu Arg Leu His Pro Pro Gly 370 375
380Pro Leu Leu Ser Trp Ala Arg Leu Ala Ile His Asp Val His Val Gly385
390 395 400Pro Asn Leu Val
Pro Ala Gly Thr Ile Ala Met Val Asn Met Trp Ser 405
410 415Ile Thr His Asn Ala Lys Ile Trp Thr Asp
Pro Glu Ala Phe Met Pro 420 425
430Glu Arg Phe Ile Ser Glu Asp Val Ser Ile Met Gly Ser Asp Leu Arg
435 440 445Leu Ala Pro Phe Gly Ser Gly
Arg Arg Val Cys Pro Gly Lys Ala Met 450 455
460Gly Leu Ala Thr Val His Leu Trp Ile Gly Gln Leu Ile Gln Asn
Phe465 470 475 480Glu Trp
Val Lys Gly Ser Cys Asp Val Glu Leu Ala Glu Val Leu Lys
485 490 495Leu Ser Met Glu Met Lys Asn
Pro Leu Lys Cys Lys Ala Val Pro Arg 500 505
510Asn Val Gly Phe Ala 51547537PRTArabidopsis
thaliana 47Met Thr Ile Asp Met Tyr Leu Ser Phe Ala Ser Arg Ser Gly Ser
Ser1 5 10 15Pro Phe Pro
Ser Leu Glu Leu Cys Leu Ser Ile Phe Leu Phe Ile Ser 20
25 30Leu Phe Val Phe Trp Leu Thr Pro Gly Gly
Phe Ala Trp Ala Leu Tyr 35 40
45Lys Ala Arg Phe His Thr Arg Pro Glu Ser Lys Thr Gly Pro Ala Ile 50
55 60Pro Gly Pro Ser Gly Leu Pro Ile Phe
Gly Leu Leu Leu Ala Phe Val65 70 75
80Asn Asn Ala Leu Thr His Arg Ile Leu Ala Asn Ile Ala Asp
Thr Cys 85 90 95Lys Ala
Lys Ala Leu Met Ala Phe Ser Val Gly Ser Thr Arg Phe Val 100
105 110Ile Thr Ser Glu Pro Glu Thr Ala Lys
Glu Leu Leu Asn Ser Ser Ala 115 120
125Phe Ala Asp Arg Pro Val Lys Glu Ser Ala Tyr Glu Leu Leu Phe Asp
130 135 140Arg Ala Met Gly Phe Ala Pro
Phe Gly Asp Tyr Trp Arg Glu Leu Arg145 150
155 160Arg Ile Ser Ser Thr His Leu Phe Ser Pro Lys Arg
Ile Phe Ser Ser 165 170
175Gly Glu Ser Arg Arg Lys Ile Gly Gln Asn Met Val Gly Glu Ile Lys
180 185 190Asn Ala Met Glu Cys Tyr
Gly Glu Val His Ile Lys Lys Ile Leu His 195 200
205Phe Gly Ser Leu Asn Asn Val Met Ser Ser Val Phe Gly Lys
Thr Tyr 210 215 220Asn Phe Asn Glu Gly
Ile Val Tyr Ser Lys Glu Ser Asn Glu Leu Glu225 230
235 240His Leu Val Ser Glu Gly Tyr Glu Leu Leu
Gly Ile Phe Asn Trp Ser 245 250
255Asp His Phe Pro Gly Met Arg Trp Leu Asp Leu Gln Gly Val Arg Arg
260 265 270Arg Cys Arg Ser Leu
Val Gly Arg Val Asn Val Phe Val Gly Lys Ile 275
280 285Ile Asn Asp His Lys Ser Lys Arg Ser Leu Arg Asp
Asn Pro Glu Glu 290 295 300Ser Thr Tyr
Asp Asp Asp Phe Val Asp Val Leu Leu Gly Met His Gly305
310 315 320Asn Ser Lys Leu Ser Asp Ser
Asp Met Ile Ala Val Leu Trp Glu Met 325
330 335Ile Phe Arg Gly Thr Asp Thr Val Ala Ile Leu Leu
Glu Trp Ile Leu 340 345 350Ala
Arg Met Val Leu His Pro Asp Ile Gln Ala Lys Ala Gln Ala Glu 355
360 365Ile Asp Cys Ile Val Gly Asp Ser Gly
Arg Gln Val Thr Asp Ser Asp 370 375
380Leu Pro Lys Leu Pro Tyr Val Arg Ala Ile Val Lys Glu Thr Leu Arg385
390 395 400Met His Pro Pro
Gly Pro Leu Leu Ser Trp Ala Arg Leu Ser Ile His 405
410 415Asp Thr Gln Ile Gly Thr His Phe Ile Pro
Ala Gly Thr Thr Ala Met 420 425
430Val Asn Met Trp Ala Ile Thr His Asp Glu Lys Val Trp Pro Glu Ala
435 440 445His Glu Tyr Lys Pro Glu Arg
Phe Leu Gly Ala Gln Glu Ser Asn Asn 450 455
460Phe Pro Ile Met Gly Ser Asp Leu Arg Leu Ala Pro Phe Gly Ala
Gly465 470 475 480Arg Arg
Val Cys Pro Gly Lys Ser Met Gly Leu Ala Thr Val Glu Leu
485 490 495Trp Leu Ala Gln Leu Leu Gly
Ser Tyr Lys Trp Val Ser Cys Gly Glu 500 505
510Val Asp Leu Ser Glu Thr Leu Lys Leu Ser Leu Glu Met Lys
Asn Thr 515 520 525Leu Val Cys Lys
Ala Ile Pro Arg Gly 530 53548555PRTOryza sativa 48Met
Ala Met Ala Thr Ala Thr Ala Ser Ser Cys Val Asp Ala Thr Trp1
5 10 15Trp Ala Tyr Ala Leu Pro Ala
Leu Leu Gly Ala Asp Thr Leu Cys Ala 20 25
30His Pro Ala Leu Leu Ala Gly Ala Val Leu Leu Ala Phe Ala
Thr Ala 35 40 45Ala Val Leu Ala
Trp Ala Ala Ser Pro Gly Gly Pro Ala Trp Ala His 50 55
60Gly Arg Gly Arg Leu Gly Ala Thr Pro Ile Glu Gly Pro
Arg Gly Leu65 70 75
80Pro Val Phe Gly Ser Ile Phe Ala Leu Ser Arg Gly Leu Pro His Arg
85 90 95Ala Leu Asp Ala Met Ser
Arg Asp Ala Ala Ala Pro Arg Ala Arg Glu 100
105 110Leu Met Ala Phe Ser Val Gly Glu Thr Pro Ala Val
Val Ser Ser Cys 115 120 125Pro Ala
Thr Ala Arg Glu Val Leu Ala His Pro Ser Phe Ala Asp Arg 130
135 140Pro Leu Lys Arg Ser Ala Arg Glu Leu Leu Phe
Ala Arg Ala Ile Gly145 150 155
160Phe Ala Pro Ser Gly Glu Tyr Trp Arg Leu Leu Arg Arg Ile Ala Ser
165 170 175Thr His Leu Phe
Ser Pro Arg Arg Val Ala Ala His Glu Pro Gly Arg 180
185 190Gln Ala Asp Ala Thr Ala Met Leu Ser Ala Met
Ala Ala Glu Gln Ser 195 200 205Ala
Thr Gly Ala Val Val Leu Arg Pro His Leu Gln Ala Ala Ala Leu 210
215 220Asn Asn Ile Met Gly Ser Val Phe Gly Arg
Arg Tyr Asp Val Ser Ser225 230 235
240Ser Ser Gly Ala Ala Ala Asp Glu Ala Glu Gln Leu Lys Ser Met
Val 245 250 255Arg Glu Gly
Phe Glu Leu Leu Gly Ala Phe Asn Trp Ser Asp His Leu 260
265 270Pro Trp Leu Ala His Leu Tyr Asp Pro Asn
His Val Ala Arg Arg Cys 275 280
285Ala Ala Leu Val Pro Arg Val Gln Ala Phe Val Arg Gly Val Ile Arg 290
295 300Asp His Arg Leu Arg Arg Asp Ser
Ser Ser Thr Ala Ala Asp Asn Ala305 310
315 320Asp Phe Val Asp Val Leu Leu Ser Leu Glu Ala His
Glu Asn Leu Ala 325 330
335Glu Asp Asp Met Val Ala Val Leu Trp Glu Met Ile Phe Arg Gly Thr
340 345 350Asp Thr Thr Ala Leu Val
Thr Glu Trp Cys Met Ala Glu Val Val Arg 355 360
365Asn Pro Ala Val Gln Ala Arg Leu Arg Ala Glu Val Asp Ala
Ala Val 370 375 380Gly Gly Asp Gly Cys
Pro Ser Asp Gly Asp Val Ala Arg Met Pro Tyr385 390
395 400Leu Gln Ala Val Val Lys Glu Thr Leu Arg
Ala His Pro Pro Gly Pro 405 410
415Leu Leu Ser Trp Ala Arg Leu Ala Thr Ala Asp Val Gly Leu Ala Asn
420 425 430Gly Met Val Val Pro
Ala Gly Thr Thr Ala Met Val Asn Met Trp Ala 435
440 445Ile Thr His Asp Gly Glu Val Trp Ala Asp Pro Glu
Ala Phe Ala Pro 450 455 460Glu Arg Phe
Ile Pro Ser Glu Gly Gly Ala Asp Val Asp Val Arg Asp465
470 475 480Gly Asp Leu Arg Leu Ala Pro
Phe Gly Ala Gly Arg Arg Val Cys Pro 485
490 495Gly Lys Asn Leu Gly Leu Ala Thr Val Ser Leu Trp
Val Ala Arg Leu 500 505 510Val
His Ala Phe Asp Trp Phe Leu Pro Asp Gly Ser Pro Pro Val Ser 515
520 525Leu Asp Glu Val Leu Lys Leu Ser Leu
Glu Met Lys Thr Pro Leu Ala 530 535
540Ala Ala Ala Thr Pro Arg Arg Arg Arg Ala Ala545 550
55549547PRTZea mays 49Met Ala Met Ala Ser Ala Ala Cys Ser Cys
Thr Asp Gly Thr Trp Trp1 5 10
15Val Tyr Ala Leu Pro Ala Leu Leu Gly Ser Asp Thr Leu Cys Ala His
20 25 30Pro Ala Leu Leu Ala Gly
Leu Ile Phe Leu Ala Thr Val Ser Val Ala 35 40
45Leu Leu Ala Trp Ala Thr Ser Pro Gly Gly Pro Ala Trp Thr
Asn Gly 50 55 60Arg Gly Ala Ser Ala
Ser Leu Leu Ser Trp Asp Pro Val Val Cys Pro65 70
75 80Cys Ser Ala Ala Ser Ser Arg Cys Pro Gly
Ala Ala Ala Pro Arg Pro 85 90
95Arg Arg Asp Gly Pro Arg Arg Arg Pro Arg Ala Lys Glu Leu Met Ala
100 105 110Phe Ser Val Gly Asp
Thr Pro Ala Val Val Ser Ser Cys Pro Ala Thr 115
120 125Ala Arg Glu Val Leu Ala His Pro Ser Phe Ala Asp
Arg Pro Val Lys 130 135 140Arg Ser Ala
Arg Glu Leu Met Phe Ala Arg Ala Ile Gly Phe Ala Pro145
150 155 160Asn Gly Glu Tyr Trp Arg Arg
Leu Arg Arg Val Ala Ser Thr His Leu 165
170 175Phe Ser Pro Arg Arg Val Ala Ser His Glu Pro Gly
Arg Gln Gly Asp 180 185 190Ala
Glu Ala Met Leu Arg Ser Ile Ala Ala Glu Gln Ser Ala Ser Gly 195
200 205Ala Val Ala Leu Arg Pro His Leu Gln
Ala Ala Ala Leu Asn Asn Ile 210 215
220Met Gly Ser Val Phe Gly Thr Arg Tyr Asp Val Thr Ser Gly Ala Gly225
230 235 240Ala Ala Glu Ala
Glu His Leu Lys Ser Met Val Arg Glu Gly Phe Glu 245
250 255Leu Leu Gly Ala Phe Asn Trp Ser Asp His
Leu Pro Trp Leu Ala His 260 265
270Leu Tyr Asp Pro Ser Asn Val Thr Arg Arg Cys Ala Ala Leu Val Pro
275 280 285Arg Val Gln Thr Phe Val Arg
Gly Val Ile Asp Glu His Arg Arg Arg 290 295
300Arg Gln Asn Ser Ala Ala Leu Asn Asp Asn Ala Asp Phe Val Asp
Val305 310 315 320Leu Leu
Ser Leu Glu Gly Asp Glu Lys Leu Gly Asp Asp Asp Met Val
325 330 335Ala Ile Leu Trp Glu Met Val
Phe Arg Gly Thr Asp Thr Thr Ala Leu 340 345
350Leu Thr Glu Trp Cys Met Ala Glu Leu Val Arg His Pro Ala
Val Gln 355 360 365Ala Arg Val Arg
Ala Glu Val Asp Ala Ala Val Gly Ala Gly Gly Cys 370
375 380Pro Thr Asp Ala Asp Val Ala Arg Met Pro Tyr Leu
Gln Ala Val Val385 390 395
400Lys Glu Thr Leu Arg Ala His Pro Pro Gly Pro Leu Leu Ser Trp Ala
405 410 415Arg Leu Ala Thr Ala
Asp Val Pro Leu Cys Asn Gly Met Val Val Pro 420
425 430Ala Gly Thr Thr Ala Met Val Asn Met Trp Ala Ile
Thr His Asp Ala 435 440 445Ala Val
Trp Ala Asp Pro Asp Ala Phe Ala Pro Glu Arg Phe Leu Pro 450
455 460Ser Glu Gly Gly Ala Asp Val Asp Val Arg Gly
Val Asp Leu Arg Leu465 470 475
480Ala Pro Phe Gly Ala Gly Arg Arg Val Cys Pro Gly Lys Asn Leu Gly
485 490 495Leu Thr Thr Val
Gly Leu Trp Val Ala Arg Leu Val His Ala Phe Gln 500
505 510Trp Ala Leu Pro Asp Gly Ala Ala Ala Val Cys
Leu Asp Glu Val Leu 515 520 525Lys
Leu Ser Leu Glu Met Lys Thr Pro Leu Val Ala Ala Ala Ile Pro 530
535 540Arg Thr Ala54550426PRTPhalaenopsis sp.
SM9108 50Met Ala Phe Ser Val Gly Leu Thr Arg Phe Ile Val Ser Ser His Pro1
5 10 15Lys Thr Ala Lys
Glu Ile Leu Ser Ser Pro Ala Phe Ala Asp Arg Pro 20
25 30Ile Lys Glu Ser Ala Tyr Glu Leu Leu Phe Asn
Arg Ala Met Gly Phe 35 40 45Ala
Pro Phe Gly Asp Tyr Trp Arg Asn Leu Arg Arg Ile Ser Ser Thr 50
55 60Tyr Leu Phe Ser Pro Arg Arg Val Ser Ser
Phe Glu Lys Gln Arg Ser65 70 75
80Glu Ile Gly Glu Gly Met Val Arg Asp Met Lys Arg Met Met Glu
Arg 85 90 95Asn Gly Val
Val Glu Val Arg Arg Met Leu His Tyr Gly Ser Leu Asn 100
105 110Asn Ile Met Leu Thr Val Phe Gly Lys Lys
Phe Asp Phe Ala Lys Asp 115 120
125Glu Gly Leu Glu Leu Glu Leu Ile Leu Lys Glu Gly Tyr Glu Leu Leu 130
135 140Gly Ile Phe Asn Trp Gly Asp His
Leu Pro Leu Leu Gly Trp Leu Asp145 150
155 160Leu Gln Gly Val Arg Arg Arg Cys Arg Thr Leu Val
Ala Lys Val Asn 165 170
175Val Phe Val Lys Lys Ile Ile Asp Glu His Lys Arg Arg Ala Asn Gly
180 185 190Val Gly Ile Asp Glu Gly
Glu Gly Glu Asp Phe Val Asp Val Leu Leu 195 200
205Gly Leu Glu Glu Lys Asp Arg Leu Ser Glu Ser Asp Met Val
Ala Val 210 215 220Leu Trp Glu Met Ile
Phe Arg Gly Thr Asp Thr Val Ala Ile Leu Leu225 230
235 240Glu Trp Thr Leu Ala Arg Met Val Leu His
Pro Asp Ile Gln Ser Lys 245 250
255Ala Gln Val Glu Ile Asp Ser Val Val Asp Ser Ser Arg Pro Val Leu
260 265 270Asp Ser Asp Ile Gln
Arg Leu Pro Tyr Leu Gln Ser Ile Val Lys Glu 275
280 285Thr Leu Arg Met His Pro Pro Gly Pro Leu Leu Ser
Trp Ala Arg Leu 290 295 300Ala Ile His
Asp Val Pro Val Asp Gly His Met Ile Pro Ala Gly Thr305
310 315 320Thr Ala Met Val Asn Met Trp
Ala Ile Thr His Asp Glu Cys Asn Trp 325
330 335Ala Glu Pro Asn Lys Phe Asn Pro Asp Arg Phe Ile
Asp Glu Asp Val 340 345 350Asn
Ile Leu Gly Ser Asp Leu Arg Leu Ala Pro Phe Gly Ser Gly Lys 355
360 365Arg Val Cys Pro Gly Lys Thr Met Ala
Leu Ala Ala Val His Leu Trp 370 375
380Leu Ala Gln Leu Leu Lys Ser Phe Lys Leu Leu Pro Ser Arg Asn Gly385
390 395 400Val Asp Leu Ser
Glu Cys Leu Lys Met Ser Leu Glu Met Lys Asn Pro 405
410 415Leu Val Cys Val Ala Val Pro Arg Phe Glu
420 42551523PRTGlycine max 51Met Thr Ser His Ile
Asp Asp Asn Leu Trp Ile Ile Ala Leu Thr Ser1 5
10 15Lys Cys Thr Gln Glu Asn Leu Ala Trp Val Leu
Leu Ile Met Gly Ser 20 25
30Leu Trp Leu Thr Met Thr Phe Tyr Tyr Trp Ser His Pro Gly Gly Pro
35 40 45Ala Trp Gly Lys Tyr Tyr Thr Tyr
Ser Pro Pro Leu Ser Ile Ile Pro 50 55
60Gly Pro Lys Gly Phe Pro Leu Ile Gly Ser Met Gly Leu Met Thr Ser65
70 75 80Leu Ala His His Arg
Ile Ala Ala Ala Ala Ala Thr Cys Arg Ala Lys 85
90 95Arg Leu Met Ala Phe Ser Leu Gly Asp Thr Arg
Val Ile Val Thr Cys 100 105
110His Pro Asp Val Ala Lys Glu Ile Leu Asn Ser Ser Val Phe Ala Asp
115 120 125Arg Pro Val Lys Glu Ser Ala
Tyr Ser Leu Met Phe Asn Arg Ala Ile 130 135
140Gly Phe Ala Ser Tyr Gly Val Tyr Trp Arg Ser Leu Arg Arg Ile
Ala145 150 155 160Ser Asn
His Leu Phe Cys Pro Arg Gln Ile Lys Ala Ser Glu Leu Gln
165 170 175Arg Ser Gln Ile Ala Ala Gln
Met Val His Ile Leu Asn Asn Lys Arg 180 185
190His Arg Ser Leu Arg Val Arg Gln Val Leu Lys Lys Ala Ser
Leu Ser 195 200 205Asn Met Met Cys
Ser Val Phe Gly Gln Glu Tyr Lys Leu His Asp Pro 210
215 220Asn Ser Gly Met Glu Asp Leu Gly Ile Leu Val Asp
Gln Gly Tyr Asp225 230 235
240Leu Leu Gly Leu Phe Asn Trp Ala Asp His Leu Pro Phe Leu Ala His
245 250 255Phe Asp Ala Gln Asn
Ile Arg Phe Arg Cys Ser Asn Leu Val Pro Met 260
265 270Val Asn Arg Phe Val Gly Thr Ile Ile Ala Glu His
Arg Ala Ser Lys 275 280 285Thr Glu
Thr Asn Arg Asp Phe Val Asp Val Leu Leu Ser Leu Pro Glu 290
295 300Pro Asp Gln Leu Ser Asp Ser Asp Met Ile Ala
Val Leu Trp Glu Met305 310 315
320Ile Phe Arg Gly Thr Asp Thr Val Ala Val Leu Ile Glu Trp Ile Leu
325 330 335Ala Arg Met Ala
Leu His Pro His Val Gln Ser Lys Val Gln Glu Glu 340
345 350Leu Asp Ala Val Val Gly Lys Ala Arg Ala Val
Ala Glu Asp Asp Val 355 360 365Ala
Val Met Thr Tyr Leu Pro Ala Val Val Lys Glu Val Leu Arg Leu 370
375 380His Pro Pro Gly Pro Leu Leu Ser Trp Ala
Arg Leu Ser Ile Asn Asp385 390 395
400Thr Thr Ile Asp Gly Tyr His Val Pro Ala Gly Thr Thr Ala Met
Val 405 410 415Asn Thr Trp
Ala Ile Cys Arg Asp Pro His Val Trp Lys Asp Pro Leu 420
425 430Glu Phe Met Pro Glu Arg Phe Val Thr Ala
Gly Gly Asp Ala Glu Phe 435 440
445Ser Ile Leu Gly Ser Asp Pro Arg Leu Ala Pro Phe Gly Ser Gly Arg 450
455 460Arg Ala Cys Pro Gly Lys Thr Leu
Gly Trp Ala Thr Val Asn Phe Trp465 470
475 480Val Ala Ser Leu Leu His Glu Phe Glu Trp Val Pro
Ser Asp Glu Lys 485 490
495Gly Val Asp Leu Thr Glu Val Leu Lys Leu Ser Ser Glu Met Ala Asn
500 505 510Pro Leu Thr Val Lys Val
Arg Pro Arg Arg Gly 515 52052553PRTPinus radiata
52Met Glu Asn Arg Arg Ser Ser Gly Gly Ser Gly Trp Trp Val Cys Val1
5 10 15Leu Pro Leu Phe Thr Lys
Asp Gly Pro Ala Tyr Phe Leu His Ser Ser 20 25
30Ser Asp Asp Val Ser Ala Trp Arg Gln Trp Pro Leu Tyr
Ile Ala Leu 35 40 45Leu Ile Val
Ala Val Cys Ala Val Leu Val Ser Trp Leu Ser Pro Gly 50
55 60Gly Cys Ala Trp Ala Gly Arg His Lys Arg Gly Arg
Val Ala Ile Pro65 70 75
80Gly Pro Lys Gly Trp Pro Ile Ile Gly Ser Leu Met Asp Met Ser Val
85 90 95Gly Leu Pro His Arg Lys
Leu Glu Ser Leu Ala Arg Leu His Gly Ala 100
105 110Lys Gln Leu Met Ser Phe Ser Leu Gly Cys Thr Pro
Ala Val Ile Thr 115 120 125Ser Asp
Pro Glu Val Ala Arg Glu Leu Leu Thr Ser Pro His Phe Ala 130
135 140Asn Arg Pro Leu Lys Gln Ser Ala Gln Gln Leu
Leu Phe Gly Arg Ala145 150 155
160Ile Gly Phe Ala Pro Asn Gly Gly Tyr Trp Arg Leu Leu Arg Arg Ile
165 170 175Ala Ser Ala His
Leu Phe Ala Pro Arg Arg Ile Ala Ala His Glu Ala 180
185 190Gly Arg Gln Ala Asp Val Val Ala Met Leu Asp
Asp Ile Gln Lys Glu 195 200 205Tyr
His Ser Lys Gly Val Val Arg Val Arg Arg His Leu Gln Gly Ala 210
215 220Ala Leu Asn Asn Ile Met Gly Ser Val Phe
Gly Arg Arg Phe Asp Met225 230 235
240Ser His Glu Asn Glu Glu Val Lys Lys Leu Arg Glu Met Val Asp
Glu 245 250 255Gly Phe Gln
Leu Leu Gly Ala Phe Asn Trp Ala Asp His Leu Pro Trp 260
265 270Leu Arg Pro Leu Asp Pro Leu Arg Ile His
Ala Arg Cys Ala Arg Leu 275 280
285Val Pro Arg Val Thr Thr Phe Val Ser Asn Ile Ile Glu Gln His Arg 290
295 300Arg Glu Glu Gln Arg Arg Glu Ser
Gly Asp Gln Cys Asp Phe Val Asp305 310
315 320Val Leu Leu Ser Leu Gln Gly Glu Asp Lys Leu Asp
Glu Glu Asp Met 325 330
335Ile Ala Val Leu Trp Glu Met Ile Phe Arg Gly Thr Asp Thr Thr Ala
340 345 350Leu Leu Thr Glu Trp Thr
Met Ala Glu Leu Val Leu His Pro Glu Ala 355 360
365Gln Lys Lys Ala Gln Ala Glu Leu Asp Ala Val Val Gly His
Asp Arg 370 375 380Ser Val Lys Asp Ser
Asp Ile Pro Lys Leu Pro Tyr Ile Gln Ala Val385 390
395 400Val Lys Glu Ala Leu Arg Met His Pro Pro
Gly Pro Leu Leu Ser Trp 405 410
415Ala Arg Leu Ser Thr Glu Asp Val Asn Met Gly Asp Gly Met Cys Val
420 425 430Pro Ala Gly Thr Thr
Ala Met Val Asn Met Trp Ser Ile Thr His Asp 435
440 445Pro Asn Ile Trp Glu Ser Pro Tyr Glu Phe Arg Pro
Glu Arg Phe Val 450 455 460Val Phe Glu
Gly Gly Glu Glu Val Asp Val Arg Gly Asn Asp Leu Arg465
470 475 480Leu Ala Pro Phe Gly Ala Gly
Arg Arg Val Cys Pro Gly Lys Ala Leu 485
490 495Gly Leu Ala Thr Val Asn Leu Trp Val Ala Lys Leu
Leu His His Phe 500 505 510Glu
Trp Leu Pro His Ala Glu His Pro Val Asp Leu Ser Glu Val Leu 515
520 525Lys Leu Ser Cys Glu Met Ala Arg Pro
Leu His Cys Val Pro Val Thr 530 535
540Arg Val Pro Phe Ala Lys Phe Ser Asp545
55053523PRTGlycine max 53Met Thr Ser His Ile Asp Asp Asn Leu Trp Ile Ile
Ala Leu Thr Ser1 5 10
15Lys Cys Thr Gln Glu Asn Leu Ala Trp Val Leu Leu Ile Met Gly Ser
20 25 30Leu Trp Leu Thr Met Thr Phe
Tyr Tyr Trp Ser His Pro Gly Gly Pro 35 40
45Ala Trp Gly Lys Tyr Tyr Thr Tyr Ser Pro Pro Leu Ser Ile Ile
Pro 50 55 60Gly Pro Lys Gly Phe Pro
Leu Ile Gly Ser Met Gly Leu Met Ile Ser65 70
75 80Leu Ala His His Arg Ile Ala Ala Ala Ala Ala
Thr Cys Arg Ala Lys 85 90
95Arg Leu Met Ala Phe Ser Leu Gly Asp Thr Arg Val Ile Val Thr Cys
100 105 110His Pro Asp Val Ala Lys
Glu Ile Leu Asn Ser Ser Val Phe Ala Asp 115 120
125Arg Pro Val Lys Glu Ser Ala Tyr Ser Leu Met Phe Asn Arg
Ala Ile 130 135 140Gly Phe Ala Ser Tyr
Gly Val Tyr Trp Arg Ser Leu Arg Arg Ile Ala145 150
155 160Ser Asn His Phe Phe Cys Pro Arg Gln Ile
Lys Ala Ser Glu Leu Gln 165 170
175Arg Ser Gln Ile Ala Ala Gln Met Val His Ile Leu Asn Asn Lys Arg
180 185 190His Arg Ser Leu Arg
Val Arg Gln Val Leu Lys Lys Ala Ser Leu Ser 195
200 205Asn Met Met Cys Ser Val Phe Gly Gln Glu Tyr Lys
Leu His Asp Pro 210 215 220Asn Ser Gly
Met Glu Asp Leu Gly Ile Leu Val Asp Gln Gly Tyr Asp225
230 235 240Leu Leu Gly Leu Phe Asn Trp
Ala Asp His Leu Pro Phe Leu Ala His 245
250 255Phe Asp Ala Gln Asn Ile Arg Phe Arg Cys Ser Asn
Leu Val Pro Met 260 265 270Val
Asn Arg Phe Val Gly Thr Ile Ile Ala Glu His Arg Ala Ser Lys 275
280 285Thr Glu Thr Asn Arg Asp Phe Val Asp
Val Leu Leu Ser Leu Pro Glu 290 295
300Pro Asp Gln Leu Ser Asp Ser Asp Met Ile Ala Val Leu Trp Glu Met305
310 315 320Ile Phe Arg Gly
Thr Asp Thr Val Ala Val Leu Ile Glu Trp Ile Leu 325
330 335Ala Arg Met Ala Leu His Pro His Val Gln
Ser Lys Val Gln Glu Glu 340 345
350Leu Asp Ala Val Val Gly Lys Ala Arg Ala Val Ala Glu Asp Asp Val
355 360 365Ala Val Met Thr Tyr Leu Pro
Ala Val Val Lys Glu Val Leu Arg Leu 370 375
380His Pro Pro Gly Pro Leu Leu Ser Trp Ala Arg Leu Ser Ile Asn
Asp385 390 395 400Thr Thr
Ile Asp Gly Tyr His Val Pro Ala Gly Thr Thr Ala Met Val
405 410 415Asn Met Trp Ala Ile Cys Arg
Asp Pro His Val Trp Lys Asp Pro Leu 420 425
430Glu Phe Met Pro Glu Arg Phe Val Thr Ala Gly Gly Asp Ala
Glu Phe 435 440 445Ser Ile Leu Gly
Ser Asp Pro Arg Leu Ala Pro Phe Gly Ser Gly Arg 450
455 460Arg Ala Cys Pro Gly Lys Thr Leu Gly Trp Ala Thr
Val Asn Phe Trp465 470 475
480Val Ala Ser Leu Leu His Glu Phe Glu Trp Val Pro Ser Asp Glu Lys
485 490 495Gly Val Asp Leu Thr
Glu Val Leu Lys Leu Ser Ser Glu Met Ala Asn 500
505 510Pro Leu Thr Val Lys Val Arg Pro Arg Arg Gly
515 52054536PRTGlycine max 54Met Ser Thr His Ile Glu Ser
Leu Trp Val Leu Ala Leu Ala Ser Lys1 5 10
15Cys Ile Gln Glu Asn Ile Ala Trp Ser Leu Leu Ile Ile
Met Val Thr 20 25 30Leu Trp
Leu Thr Met Thr Phe Phe Tyr Trp Ser His Pro Gly Gly Pro 35
40 45Ala Trp Gly Lys Tyr Tyr Tyr Phe Asn Tyr
Trp Lys Lys Thr Thr Ser 50 55 60Thr
Asn Thr Asn Ile Asn Leu Lys Met Ile Ile Pro Gly Pro Arg Gly65
70 75 80Tyr Pro Phe Ile Gly Ser
Met Ser Leu Met Thr Ser Leu Ala His His 85
90 95Arg Ile Ala Ala Ala Gly Glu Ala Cys Asn Ala Thr
Arg Leu Met Ala 100 105 110Phe
Ser Met Gly Asp Thr Arg Ala Ile Val Thr Cys Asn Pro Asp Val 115
120 125Ala Lys Glu Ile Leu Asn Ser Ser Thr
Phe Ala Asp Arg Pro Ile Lys 130 135
140Glu Ser Ala Tyr Ser Leu Met Phe Asn Arg Ala Ile Gly Phe Ala Pro145
150 155 160Tyr Gly Val Tyr
Trp Arg Thr Leu Arg Arg Ile Ala Ala Thr His Leu 165
170 175Phe Cys Pro Lys Gln Ile Lys Ala Ser Glu
Leu Gln Arg Ala Glu Ile 180 185
190Ala Ala Gln Met Thr Asn Ser Phe Arg Asn His Arg Cys Ser Gly Gly
195 200 205Phe Gly Ile Arg Ser Val Leu
Lys Arg Ala Ser Leu Asn Asn Met Met 210 215
220Trp Ser Val Phe Gly Gln Lys Tyr Asn Leu Asp Glu Ile Asn Thr
Ala225 230 235 240Met Asp
Glu Leu Ser Met Leu Val Glu Gln Gly Tyr Asp Leu Leu Gly
245 250 255Thr Leu Asn Trp Gly Asp His
Ile Pro Phe Leu Lys Asp Phe Asp Leu 260 265
270Gln Lys Ile Arg Phe Thr Cys Ser Lys Leu Val Pro Gln Val
Asn Arg 275 280 285Phe Val Gly Ser
Ile Ile Ala Asp His Gln Ala Asp Thr Thr Gln Thr 290
295 300Asn Arg Asp Phe Val His Val Leu Leu Ser Leu Gln
Gly Pro Asp Lys305 310 315
320Leu Ser His Ser Asp Met Ile Ala Val Leu Trp Glu Met Ile Phe Arg
325 330 335Gly Thr Asp Thr Val
Ala Val Leu Ile Glu Trp Ile Leu Ala Arg Met 340
345 350Val Leu His Pro Glu Val Gln Arg Lys Val Gln Glu
Glu Leu Asp Ala 355 360 365Val Val
Arg Gly Gly Ala Leu Thr Glu Glu Val Val Ala Ala Thr Ala 370
375 380Tyr Leu Ala Ala Val Val Lys Glu Val Leu Arg
Leu His Pro Pro Gly385 390 395
400Pro Leu Leu Ser Trp Ala Arg Leu Ala Ile Thr Asp Thr Thr Ile Asp
405 410 415Gly Tyr His Val
Pro Ala Gly Thr Thr Ala Met Val Asn Met Trp Ala 420
425 430Ile Ala Arg Asp Pro Glu Val Trp Leu Asp Pro
Leu Glu Phe Lys Pro 435 440 445Glu
Arg Phe Met Gly Leu Glu Asn Glu Phe Ser Val Phe Gly Ser Asp 450
455 460Leu Arg Leu Ala Pro Phe Gly Ser Gly Arg
Arg Thr Cys Pro Gly Lys465 470 475
480Thr Leu Gly Leu Ser Thr Val Thr Phe Trp Val Ala Trp Leu Leu
His 485 490 495Glu Phe Glu
Trp Leu Pro Ser Asp Glu Ala Lys Val Asp Leu Thr Glu 500
505 510Val Leu Arg Leu Ser Cys Glu Met Ala Asn
Pro Leu Ile Val Lys Val 515 520
525Arg Pro Arg His Gly Leu Ser Thr 530
53555551PRTOryza sativa 55Met Asp Met Asp Ser Ser Pro Ser Thr Gln Asp Cys
Gly Gly Trp Leu1 5 10
15Leu Tyr Val Ser Leu Ala Ala Lys Cys Gly Gly Asp Pro Cys Arg Val
20 25 30Val Gly Phe Val Ala Val Ala
Val Val Ala Phe Ala Val Thr Ser Leu 35 40
45Leu His Trp Leu Ser Pro Gly Gly Pro Ala Trp Gly Arg Tyr Trp
Trp 50 55 60Asn Arg Arg Gly Gly Leu
Gly Ile Ala Ala Ala Ile Pro Gly Pro Arg65 70
75 80Gly Leu Pro Val Leu Gly Ser Met Ser Leu Met
Ala Gly Leu Ala His 85 90
95Arg Lys Leu Ala Ala Ala Ala Gly Gly Ser Pro Ala Arg Arg Arg Leu
100 105 110Met Ala Leu Ser Leu Gly
Glu Thr Arg Val Val Val Thr Ala Asp Pro 115 120
125Gly Val Ala Arg Glu Leu Leu Ala Ser Ala Ala Phe Ala Asp
Arg Pro 130 135 140Val Lys Glu Ser Ala
Tyr Gly Met Leu Phe His Arg Ala Ile Gly Phe145 150
155 160Ala Pro Tyr Gly Thr Tyr Trp Arg Ala Leu
Arg Arg Val Ala Ser Thr 165 170
175His Leu Phe Ser Pro Arg Gln Val Ser Ala Ser Ala Ala Gln Arg Ala
180 185 190Val Ile Ala Arg Gln
Met Val Glu Ala Met Arg Ser Ala Ala Ala Ala 195
200 205Ala Ala Gly Gly Gly Val Ala Ala Arg Pro Phe Leu
Lys Arg Ala Ser 210 215 220Leu His Asn
Val Met Trp Ser Val Phe Gly Arg Lys Tyr Glu Leu Ala225
230 235 240Ala Pro Glu Ser Glu Glu Thr
Ala Glu Leu Arg Ser Met Val Asp Glu 245
250 255Gly Tyr Asp Leu Leu Gly Gln Leu Asn Trp Ser Asp
His Leu Pro Trp 260 265 270Leu
Ala Pro Phe Asp Leu Lys Lys Thr Arg Ser Arg Cys Ser Ser Leu 275
280 285Val Pro Arg Val Asn Arg Phe Val Thr
Arg Ile Ile Asp Glu His Arg 290 295
300Ala Arg Leu Ser Leu Ala Val Asp Ala Ala Val Asp Phe Thr Asp Val305
310 315 320Leu Leu Ser Leu
His Gly Gly Asp Lys Leu Ser Asp Ala Asp Met Val 325
330 335Ala Val Leu Trp Glu Met Ile Phe Arg Gly
Thr Asp Thr Val Ala Val 340 345
350Leu Ile Glu Trp Val Ala Ala Arg Leu Val Leu His Gln Asp Val Gln
355 360 365Ala Arg Val His Asp Glu Leu
Asp Arg Val Val Gly Ser Asp Arg Ala 370 375
380Val Thr Glu Ser Asp Ala Ser Lys Leu Val Tyr Leu Gln Ala Val
Ile385 390 395 400Lys Glu
Val Leu Arg Leu His Pro Pro Gly Pro Leu Leu Ser Trp Ala
405 410 415Arg Leu Ala Thr Ser Asp Val
His Val Gly Gly Phe Leu Ile Pro Ser 420 425
430Gly Thr Thr Ala Met Val Asn Met Trp Ala Ile Thr His Asp
Pro Ala 435 440 445Val Trp Pro Asp
Pro Asn Glu Phe Lys Pro Glu Arg Phe Val Ala Gly 450
455 460Pro Ser Ser Asp Gln Ala Thr Glu Phe Pro Ile Met
Gly Ser Asp Leu465 470 475
480Arg Leu Ala Pro Phe Gly Ser Gly Arg Arg Ser Cys Pro Gly Lys Ser
485 490 495Leu Ala Ile Ala Thr
Val Gly Phe Trp Val Ala Thr Leu Leu His Glu 500
505 510Phe Asp Trp Leu Pro Leu Ser Asp Lys Ser Arg Gly
Val Asp Leu Ser 515 520 525Glu Val
Leu Lys Leu Ser Cys Glu Met Ala Thr Pro Leu Glu Ala Arg 530
535 540Leu Arg Pro Arg Arg Lys Val545
55056536PRTBrachypodium distachyon 56Met Ala Thr Pro Glu Asp Cys Gly Ser
Trp Leu Leu Tyr Leu Ser Leu1 5 10
15Ala Ala Lys Cys Gly Gly Asp Gly Asp His Pro Arg Arg Leu Ala
Gly 20 25 30Leu Leu Ala Val
Cys Ala Ala Ala Phe Leu Val Thr Cys Leu Leu His 35
40 45Trp Cys Phe Pro Gly Gly Pro Ala Trp Gly Arg Trp
Trp Trp Thr Arg 50 55 60Arg Gly Leu
Gly Arg Gly Pro Val Val Pro Gly Pro Arg Gly Leu Pro65 70
75 80Val Ile Gly Ser Met Trp Leu Met
Thr Gly Leu Ala His Arg Lys Leu 85 90
95Ala Ala Glu Ala Ala Arg Leu Arg Gly Gly Gly Arg Arg Leu
Met Ala 100 105 110Phe Ser Leu
Gly Glu Thr Arg Val Val Val Ala Gly His Pro Asp Val 115
120 125Ala Arg Glu Ile Leu Thr Ser Pro Ala Phe Ala
Asp Arg Pro Val Lys 130 135 140Glu Ser
Ala Tyr Gly Leu Met Phe His Arg Ala Ile Gly Phe Ala Arg145
150 155 160His Gly Ala Tyr Trp Arg Ala
Leu Arg Arg Val Ala Ser Thr His Leu 165
170 175Phe Ser Pro Trp Gln Val Ala Ala Ser Gly Ala Gln
Arg Ala Val Ile 180 185 190Ala
Arg Gln Met Val Ala Ala Leu Ala Gly Gly Ala Glu Val Arg Arg 195
200 205Val Leu Arg Arg Ala Ser Leu His Asn
Val Met Trp Ser Val Phe Gly 210 215
220Arg Arg Tyr Asp Leu Glu Leu Asp Pro Gly Lys Glu Val Arg Glu Leu225
230 235 240Gly Gln Leu Val
Asp Glu Gly Tyr Asp Leu Leu Gly Gln Leu Asn Trp 245
250 255Ser Asp His Leu Pro Trp Leu Ala Arg Phe
Asp Leu Gln Gly Thr Arg 260 265
270Ala Arg Cys Ala Ser Leu Val Pro Arg Val Asn Arg Phe Val Gly Gly
275 280 285Ile Ile Asp Asp His Arg Val
Lys Ala Pro Ser Ala Val Lys Asp Phe 290 295
300Thr Asp Val Leu Leu Gly Leu Gln Gly Gly Asp Arg Leu Ala Asp
Ser305 310 315 320Asp Met
Val Ala Val Leu Trp Glu Met Val Phe Arg Gly Thr Asp Thr
325 330 335Val Ala Val Leu Met Glu Trp
Val Leu Ala Arg Leu Val Leu His Gln 340 345
350Asp Val Gln Ala Arg Val His Glu Glu Leu Asp Arg Val Val
Gly Arg 355 360 365Asp Arg Ala Val
Ala Glu Ser Asp Ala Ala Ser Leu Ala Tyr Leu His 370
375 380Ala Val Val Lys Glu Val Leu Arg Leu His Pro Pro
Gly Pro Leu Leu385 390 395
400Ser Trp Ala Arg Leu Ala Thr Ser Asp Val His Val Asp Gly Phe Leu
405 410 415Ile Pro Ala Gly Thr
Thr Ala Met Val Asn Met Trp Ala Ile Thr His 420
425 430Asp Gly Asp Val Trp Ala Glu Pro Met Glu Phe Arg
Pro Glu Arg Phe 435 440 445Val Gly
Pro Gly Ala Glu Glu Phe Ser Val Met Gly Ser Asp Leu Arg 450
455 460Leu Ala Pro Phe Gly Ala Gly Arg Arg Ser Cys
Pro Gly Lys Ser Leu465 470 475
480Ala Met Ala Thr Val Ala Phe Trp Leu Ala Thr Leu Leu His Glu Phe
485 490 495Asp Leu Leu Pro
Ser Ser Asp Pro Ala Arg Gly Val Gln Leu Ser Glu 500
505 510Thr Leu Arg Leu Ser Cys Glu Met Ala Thr Pro
Leu Ala Leu Thr Pro 515 520 525Arg
Ala Arg Arg Arg Pro Ala Val 530 53557542PRTGlycine max
57Met Thr Thr His Ile Asp Asn Leu Trp Val Leu Ala Leu Val Ser Lys1
5 10 15Cys Thr Gln Glu Asn Ile
Ala Trp Ser Leu Leu Thr Ile Met Val Thr 20 25
30Leu Trp Leu Ser Met Thr Phe Phe Cys Trp Ser His Pro
Gly Gly Pro 35 40 45Ala Trp Gly
Lys Tyr Tyr Ser Phe His Tyr Trp Lys Lys Thr Thr Thr 50
55 60Thr Thr Thr Ser Thr Ser Asn Asn Thr Asn Ser Asn
Asn Leu Lys Met65 70 75
80Ile Pro Gly Pro Lys Gly Tyr Pro Phe Ile Gly Ser Met Ser Leu Met
85 90 95Thr Ser Leu Ala His His
Arg Ile Ala Ala Ala Ala Gln Ala Cys Lys 100
105 110Ala Thr Arg Leu Met Ala Phe Ser Met Gly Asp Thr
Arg Val Ile Val 115 120 125Thr Cys
His Pro His Val Ala Lys Glu Ile Leu Asn Ser Ser Val Phe 130
135 140Ala Asp Arg Pro Ile Lys Glu Ser Ala Tyr Ser
Leu Met Phe Asn Arg145 150 155
160Ala Ile Gly Phe Ala Pro Tyr Gly Val Tyr Trp Arg Thr Leu Arg Arg
165 170 175Ile Ala Ala Thr
His Leu Phe Cys Pro Lys Gln Ile Lys Ala Ser Glu 180
185 190Leu Gln Arg Ala Glu Ile Ala Ala Gln Met Thr
His Ser Phe Arg Asn 195 200 205Arg
Arg Gly Gly Phe Gly Ile Arg Ser Val Leu Lys Arg Ala Ser Leu 210
215 220Asn Asn Met Met Trp Ser Val Phe Gly Gln
Arg Tyr Asp Leu Asp Glu225 230 235
240Thr Asn Thr Ser Val Asp Glu Leu Ser Arg Leu Val Glu Gln Gly
Tyr 245 250 255Asp Leu Leu
Gly Thr Leu Asn Trp Gly Asp His Ile Pro Phe Leu Lys 260
265 270Asp Phe Asp Leu Gln Lys Ile Arg Phe Thr
Cys Ser Lys Leu Val Pro 275 280
285Gln Val Asn Arg Phe Val Gly Ser Ile Ile Ala Asp His Gln Thr Asp 290
295 300Thr Thr Gln Thr Asn Arg Asp Phe
Val His Val Leu Leu Ser Leu Gln305 310
315 320Gly Pro Asp Lys Leu Ser His Ser Asp Met Ile Ala
Val Leu Trp Glu 325 330
335Met Ile Phe Arg Gly Thr Asp Thr Val Ala Val Leu Ile Glu Trp Ile
340 345 350Met Ala Arg Met Val Leu
His Pro Glu Val Gln Arg Arg Val Gln Glu 355 360
365Glu Leu Asp Ala Val Val Gly Gly Gly Ala Arg Ala Leu Lys
Glu Glu 370 375 380Asp Val Ala Ala Thr
Ala Tyr Leu Leu Ala Val Val Lys Glu Val Leu385 390
395 400Arg Leu His Pro Pro Gly Pro Leu Leu Ser
Trp Ala Arg Leu Ala Ile 405 410
415Thr Asp Thr Thr Ile Asp Gly Tyr Asn Val Pro Ala Gly Thr Thr Ala
420 425 430Met Val Asn Met Trp
Ala Ile Gly Arg Asp Pro Glu Val Trp Leu Asp 435
440 445Pro Leu Asp Phe Lys Pro Glu Arg Phe Met Gly Leu
Glu Ala Glu Phe 450 455 460Ser Val Leu
Gly Ser Asp Leu Arg Leu Ala Pro Phe Gly Ser Gly Arg465
470 475 480Arg Thr Cys Pro Gly Lys Thr
Leu Gly Leu Ser Thr Val Thr Phe Trp 485
490 495Val Ala Arg Leu Leu His Glu Phe Glu Trp Leu Pro
Ser Asp Glu Gly 500 505 510Lys
Val Asp Leu Thr Glu Val Leu Arg Leu Ser Cys Glu Met Ala Asn 515
520 525Pro Leu Tyr Val Lys Val Arg Pro Arg
Arg Gly Leu Ser Thr 530 535
54058553PRTOryza sativa 58Met Ala Thr Pro Glu Asp Thr Gly Ser Trp Leu Leu
Tyr Leu Ser Leu1 5 10
15Ala Ala Lys Cys Ser Gly Asp Gly Asp Gly Gln Pro His Arg Leu Leu
20 25 30Gly Phe Val Val Val Cys Ala
Val Ala Gly Leu Val Thr Cys Leu Leu 35 40
45His Trp Ser Phe Pro Gly Gly Pro Ala Trp Gly Arg Trp Trp Trp
Thr 50 55 60Arg Arg Arg Arg Arg Gly
Ser Pro Cys Gly Val Ala Ala Val Pro Gly65 70
75 80Leu Arg Gly Leu Pro Val Ile Gly Ser Met Trp
Leu Met Thr Gly Leu 85 90
95Ala His Arg Lys Leu Ala Ala Ala Ala Glu Ala Ala Gly Ala Gly Arg
100 105 110Leu Met Ala Leu Ser Leu
Gly Glu Thr Arg Val Val Val Ala Ala His 115 120
125Pro Asp Val Ala Arg Glu Ile Leu His Gly Ala Ala Phe Ala
Asp Arg 130 135 140Pro Val Lys Glu Ser
Ala Tyr Gly Leu Leu Phe His Arg Ala Ile Gly145 150
155 160Phe Ala Pro His Gly Ala Tyr Trp Arg Ala
Leu Arg Arg Val Ala Ser 165 170
175Thr His Leu Phe Ser Pro Trp Gln Val Ala Ala Ser Ala Pro Gln Arg
180 185 190Ala Val Ile Ala Arg
Gln Met Val Arg Ala Ile Lys Leu Gln Gln Arg 195
200 205Ser Arg Ser Gly Asp Ser Ala Ala Gly Ala Ala Val
Glu Val Arg Arg 210 215 220Val Leu Arg
Arg Ala Ser Leu His Asn Val Met Trp Ser Val Phe Gly225
230 235 240Arg Arg Tyr Glu Leu Gln Leu
Asp Pro Gly Lys Glu Ser Asp Glu Val 245
250 255Arg Glu Leu Arg Ala Leu Val Asp Glu Gly Tyr Asp
Leu Leu Gly Gln 260 265 270Leu
Asn Trp Ser Asp His Leu Pro Trp Leu Ala Arg Phe Asp Leu Gln 275
280 285Ser Thr Arg Ala Arg Cys Ser Arg Leu
Val Pro Arg Val Asn Arg Phe 290 295
300Val Thr Arg Ile Ile Asp Glu His Arg Ser Ser Ala Pro Val Ala Ala305
310 315 320Ala Ile Asp Phe
Thr Asp Val Leu Leu Ser Leu Gln Gly Ser Asp Lys 325
330 335Leu Ala Asp Ser Asp Met Val Ala Val Leu
Trp Glu Met Val Phe Arg 340 345
350Gly Thr Asp Thr Val Ala Val Leu Ile Glu Trp Val Leu Ala Arg Leu
355 360 365Val Leu Gln Gln Asp Val Gln
Ala Arg Val His Asp Glu Leu Gly Arg 370 375
380Val Val Gly Leu Asp Arg Asp Val Thr Glu Ser Asp Thr Ala Ser
Leu385 390 395 400Val Tyr
Leu His Ala Val Ile Lys Glu Thr Leu Arg Leu His Pro Pro
405 410 415Gly Pro Leu Leu Ser Trp Ala
Arg Leu Ala Thr Ser Asp Val His Val 420 425
430Asp Gly Tyr Leu Ile Pro Ala Gly Thr Thr Ala Met Val Asn
Met Trp 435 440 445Ala Ile Ala His
Asp Pro Asp Val Trp Ala Glu Pro Met Glu Phe Arg 450
455 460Pro Glu Arg Phe Ile Gly Lys Ala Ala Glu Phe Ser
Val Met Gly Ser465 470 475
480Asp Leu Arg Leu Ala Pro Phe Gly Ser Gly Arg Arg Ser Cys Pro Gly
485 490 495Lys Ser Leu Ala Met
Ala Thr Val Ala Phe Trp Leu Ala Thr Leu Leu 500
505 510His Glu Phe Ala Leu Leu Pro Ser Pro Asp Pro Ala
His Gly Val Asp 515 520 525Leu Ser
Glu Val Leu Arg Leu Ser Cys Glu Met Ala Thr Pro Leu Ala 530
535 540Val Thr Ala Trp Pro Arg Arg Val Val545
55059516PRTGlycine max 59Met Ser Pro Asp Phe Thr Leu Leu Phe Phe
Pro Glu Leu Met Gln Ser1 5 10
15Pro Met Ile Thr Phe Gln Ala Thr Leu Cys Val Leu Leu Phe Thr Leu
20 25 30Met Phe Thr Leu Leu Phe
Thr Pro Gly Gly Leu Pro Trp Ala Trp Ala 35 40
45Arg Pro Arg Pro Ile Ile Pro Gly Pro Val Thr Ala Leu Leu
Gly Ile 50 55 60Phe Thr Gly Ser Thr
Pro His Arg Ala Leu Ser Lys Leu Ala Arg Asn65 70
75 80Tyr His Ala Glu Lys Leu Met Ala Phe Ser
Ile Gly Leu Thr Arg Phe 85 90
95Val Ile Ser Ser Glu Pro Glu Thr Ala Lys Glu Ile Leu Gly Ser Pro
100 105 110Ser Phe Ala Asp Arg
Pro Val Lys Glu Ser Ala Tyr Glu Leu Leu Phe 115
120 125His Arg Ala Met Gly Phe Ala Pro Tyr Gly Glu Tyr
Trp Arg Asn Leu 130 135 140Arg Arg Ile
Ser Ala Leu His Leu Phe Ser Pro Lys Arg Ile Thr Gly145
150 155 160Ser Glu Ser Phe Arg Ser Glu
Val Gly Leu Lys Met Val Glu Gln Val 165
170 175Lys Lys Thr Met Ser Glu Asn Gln His Val Glu Val
Lys Lys Ile Leu 180 185 190His
Phe Ser Ser Leu Asn Asn Val Met Met Thr Val Phe Gly Lys Ser 195
200 205Tyr Glu Phe Tyr Glu Gly Glu Gly Leu
Glu Leu Glu Gly Leu Val Ser 210 215
220Glu Gly Tyr Glu Leu Leu Gly Val Phe Asn Trp Ser Asp His Phe Pro225
230 235 240Val Leu Gly Trp
Leu Asp Leu Gln Gly Val Arg Lys Arg Cys Arg Cys 245
250 255Leu Val Glu Lys Val Asn Val Phe Val Gly
Gly Val Ile Lys Glu His 260 265
270Arg Val Lys Arg Glu Arg Gly Glu Cys Val Lys Asp Glu Gly Thr Gly
275 280 285Asp Phe Val Asp Val Leu Leu
Asp Leu Glu Lys Glu Asn Arg Leu Ser 290 295
300Glu Ala Asp Met Ile Ala Val Leu Trp Glu Met Ile Phe Arg Gly
Thr305 310 315 320Asp Thr
Val Ala Ile Leu Leu Glu Trp Thr Leu Ala Arg Met Val Leu
325 330 335His Pro Glu Ile Gln Ala Lys
Ala Gln Arg Glu Ile Asp Phe Val Cys 340 345
350Gly Ser Ser Arg Pro Val Ser Glu Ala Asp Ile Pro Asn Leu
Arg Tyr 355 360 365Leu Gln Cys Ile
Val Lys Glu Thr Leu Arg Val His Pro Pro Gly Pro 370
375 380Leu Leu Ser Trp Ala Arg Leu Ala Val His Asp Val
Thr Val Gly Gly385 390 395
400Lys His Val Ile Pro Lys Gly Thr Thr Ala Met Val Asn Met Trp Ala
405 410 415Ile Thr His Asp Glu
Arg Val Trp Ala Glu Pro Glu Lys Phe Arg Pro 420
425 430Glu Arg Phe Val Glu Glu Asp Val Ser Ile Met Gly
Ser Asp Leu Arg 435 440 445Leu Ala
Pro Phe Gly Ser Gly Arg Arg Val Cys Pro Gly Lys Ala Leu 450
455 460Gly Leu Ala Ser Val His Leu Trp Leu Ala Gln
Leu Leu Gln Asn Phe465 470 475
480His Trp Val Ser Ser Asp Gly Val Ser Val Glu Leu Asp Glu Phe Leu
485 490 495Lys Leu Ser Met
Glu Met Lys Lys Pro Leu Ser Cys Lys Ala Val Pro 500
505 510Arg Val Ser Val 51560516PRTGlycine max
60Met Ser Pro Asp Phe Thr Leu Leu Phe Ser Pro Glu Leu Met Gln Ser1
5 10 15Pro Ile Ile Thr Phe Gln
Ala Thr Phe Cys Val Leu Leu Phe Thr Leu 20 25
30Met Phe Thr Pro Phe Phe Thr Pro Gly Gly Leu Pro Trp
Ala Trp Ala 35 40 45Arg Pro Arg
Thr Ile Ile Pro Gly Pro Val Thr Ala Leu Leu Gly Val 50
55 60Phe Thr Gly Ser Thr Pro His Ser Ala Leu Ser Lys
Leu Ala Arg Thr65 70 75
80Tyr His Ala Glu Lys Leu Met Ala Phe Ser Ile Gly Leu Thr Arg Phe
85 90 95Val Ile Ser Ser Glu Pro
Glu Thr Ala Lys Glu Ile Leu Gly Ser Pro 100
105 110Gly Phe Ala Asp Arg Pro Val Lys Glu Ser Ala Tyr
Glu Leu Leu Phe 115 120 125His Arg
Ala Met Gly Phe Ala Pro Tyr Gly Glu Tyr Trp Arg Asn Leu 130
135 140Arg Arg Ile Ser Ala Leu His Leu Phe Ser Pro
Lys Arg Ile Thr Ser145 150 155
160Ser Glu Ser Phe Arg Ser Lys Val Gly Leu Lys Met Val Glu Gln Val
165 170 175Lys Lys Thr Met
Ser Glu Asn Gln His Val Glu Val Lys Lys Ile Leu 180
185 190His Phe Ser Ser Leu Asn Asn Val Met Met Thr
Val Phe Gly Lys Cys 195 200 205Tyr
Glu Phe Tyr Glu Gly Glu Gly Leu Glu Leu Glu Gly Leu Val Ser 210
215 220Glu Gly Tyr Glu Leu Leu Gly Val Phe Asn
Trp Ser Asp His Phe Pro225 230 235
240Val Leu Gly Trp Leu Asp Leu Gln Gly Val Arg Lys Arg Cys Arg
Cys 245 250 255Leu Val Glu
Lys Val Asn Val Phe Val Gly Gly Val Ile Lys Glu His 260
265 270Arg Val Lys Arg Glu Arg Gly Asp Cys Val
Lys Asp Glu Gly Ala Glu 275 280
285Asp Phe Val Asp Val Leu Leu Asp Leu Glu Lys Glu Asn Arg Leu Ser 290
295 300Glu Ala Asp Met Ile Ala Val Leu
Trp Glu Met Ile Phe Arg Gly Thr305 310
315 320Asp Thr Val Ala Ile Leu Leu Glu Trp Ile Leu Ala
Arg Met Val Leu 325 330
335His Pro Glu Ile Gln Ala Lys Ala Gln Arg Glu Ile Asp Phe Val Cys
340 345 350Gly Ser Ser Arg Leu Val
Ser Glu Ala Asp Ile Pro Asn Leu Arg Tyr 355 360
365Leu Gln Cys Ile Val Lys Glu Thr Leu Arg Val His Pro Pro
Gly Pro 370 375 380Leu Leu Ser Trp Ala
Arg Leu Ala Val His Asp Val Thr Val Gly Gly385 390
395 400Lys His Val Ile Pro Lys Gly Thr Thr Ala
Met Val Asn Met Trp Ala 405 410
415Ile Thr His Asp Glu Arg Val Trp Ala Glu Pro Glu Lys Phe Arg Pro
420 425 430Glu Arg Phe Val Glu
Glu Asp Val Ser Ile Met Gly Ser Asp Leu Arg 435
440 445Leu Ala Pro Phe Gly Ser Gly Arg Arg Val Cys Pro
Gly Lys Ala Leu 450 455 460Gly Leu Ala
Ser Val His Leu Trp Leu Ala Gln Leu Leu Gln Asn Phe465
470 475 480His Trp Val Ser Ser Asp Gly
Val Ser Val Glu Leu Asp Glu Phe Leu 485
490 495Lys Leu Ser Met Glu Met Lys Lys Pro Leu Ser Cys
Lys Ala Val Pro 500 505 510Arg
Val Ser Val 51561543PRTZea mays 61Met Ala Pro Pro Thr Glu Asp Cys
Gly Trp Leu Leu Tyr Leu Ser Leu1 5 10
15Ala Ala Lys Cys Gly Asp Pro Gln Arg Leu Leu Gly Phe Ala
Ala Val 20 25 30Phe Val Ala
Ala Cys Val Val Thr Ser Leu Leu His Trp Ala Ser Pro 35
40 45Gly Gly Pro Ala Trp Gly Trp Tyr Trp Trp Thr
Arg Arg Ala Gly Leu 50 55 60Gly Ile
Val Arg Ala Ala Ile Pro Gly Pro Arg Gly Leu Pro Val Val65
70 75 80Gly Ser Met Gly Leu Met Thr
Gly Leu Ala His Arg Lys Leu Ser Ala 85 90
95Ala Ala Glu Arg Gln Ala Ser Arg Arg Arg Leu Met Ala
Phe Ser Leu 100 105 110Gly Glu
Thr Arg Val Val Val Thr Ala Asp Pro Asp Val Ala Arg Glu 115
120 125Leu Leu Ala Ser Ala Ala Phe Ala Asp Arg
Pro Val Lys Glu Ser Ala 130 135 140Tyr
Gly Leu Leu Phe His Arg Ala Ile Gly Phe Ala Pro His Gly Ala145
150 155 160Tyr Trp Arg Ala Leu Arg
Arg Val Ala Ser Ala His Leu Phe Ser Pro 165
170 175Arg Gln Ile Ala Ala Ser Ala Ala Gln Arg Ala Ala
Ile Ala Arg Gln 180 185 190Met
Val Asp Ala Thr Thr Thr Ala Ala Ala His Ala Pro Val Val Val 195
200 205Ala Arg Arg Phe Leu Lys Arg Ala Ser
Leu His Asn Val Met Trp Ser 210 215
220Val Phe Gly Arg Arg Tyr Asp Leu Met Ala Asp Ser Arg Glu Ala Glu225
230 235 240Glu Leu Lys Ala
Leu Val Asp Glu Gly Tyr Asp Leu Leu Gly Gln Leu 245
250 255Asn Trp Ser Asp His Leu Pro Trp Leu Ala
Arg Phe Asp Leu Gln Lys 260 265
270Thr Arg Ala Arg Cys Cys Ala Leu Val Pro Arg Val Asn Arg Phe Val
275 280 285Gly Asn Ile Ile Gly Glu His
Arg Ala Arg Leu Gly Arg Gly Val Asp 290 295
300Thr Ala Val Met Asp Phe Thr Asp Val Leu Leu Ser Leu Gln Gly
Asp305 310 315 320Asp Lys
Leu Ser Asp Ala Asp Met Ile Ala Val Leu Trp Glu Met Ile
325 330 335Phe Arg Gly Thr Asp Thr Val
Ala Val Leu Ile Glu Trp Val Leu Ala 340 345
350Arg Leu Val Leu His Gln Asp Val Gln Ser Lys Val Gln Glu
Glu Leu 355 360 365Asp Arg Val Val
Gly Leu Gly Gln Ala Val Thr Glu Ser Asp Thr Ala 370
375 380Ser Leu Pro Tyr Leu Gln Ala Val Ile Lys Glu Val
Leu Arg Leu His385 390 395
400Pro Pro Gly Pro Leu Leu Ser Trp Ala Arg Leu Ala Thr Ser Asp Val
405 410 415His Val Gly Gly Tyr
Leu Val Pro Ala Gly Thr Thr Ala Met Val Asn 420
425 430Met Trp Ala Ile Thr His Asp Pro Ser Leu Trp Pro
Glu Pro Met Glu 435 440 445Phe Arg
Pro Glu Arg Phe Met Gly Pro Ala Ala Glu Asp Val Pro Ile 450
455 460Met Gly Ser Asp Leu Arg Leu Ala Pro Phe Gly
Ser Gly Arg Arg Ser465 470 475
480Cys Pro Gly Lys Ser Leu Ala Val Ala Thr Val Gly Phe Trp Val Ala
485 490 495Thr Leu Leu Tyr
Glu Phe Lys Trp Leu Pro Pro Ser Asp Glu Pro Arg 500
505 510Gly Gly Gly Val Asp Leu Ser Glu Val Leu Arg
Leu Ser Cys Glu Met 515 520 525Ala
Ala Pro Leu Glu Ala Arg Val Val Pro Arg His Ala Val Cys 530
535 54062551PRTSorghum bicolor 62Met Ala Val Ala Ala
Thr Pro Asp Asp Cys Gly Ser Trp Leu Leu Tyr1 5
10 15Leu Ser Leu Ala Ala Lys Cys Ala Gly Gly Asp
Gln Pro His Arg Leu 20 25
30Ala Gly Phe Leu Ala Val Cys Ala Val Ala Phe Val Val Thr Cys Leu
35 40 45Leu His Trp Cys Phe Pro Gly Gly
Pro Ala Trp Gly Arg Trp Trp Trp 50 55
60Thr Thr Gln Ala Arg Arg Val Ala Ala Ala Ala Val Pro Gly Pro Arg65
70 75 80Gly Leu Pro Val Val
Gly Ser Met Trp Leu Met Thr Gly Leu Ala His 85
90 95Arg Lys Leu Ala Ala Ala Ala Asp Ser Leu Arg
Ala Arg Arg Leu Met 100 105
110Ala Phe Ser Leu Gly Gly Thr Arg Val Val Val Ala Ala His Pro Asp
115 120 125Val Ala Arg Glu Ile Leu Asn
Ser Pro Ala Phe Ala Asp Arg Pro Ile 130 135
140Lys Glu Ser Ala Tyr Gly Leu Leu Phe His Arg Ala Ile Gly Phe
Ala145 150 155 160Pro Tyr
Gly Ala Tyr Trp Arg Ala Leu Arg Arg Val Ala Ser Thr His
165 170 175Leu Phe Ser Pro Trp Gln Val
Ala Ala Ser Ala Ala Gln Arg Ala Val 180 185
190Ile Ala Arg Gln Met Val Ala Ala Met Lys Gln Glu Leu Ser
Ser Ser 195 200 205Ser Ser Ala Ser
Ala Gly Phe Glu Val Arg Arg Val Leu Arg Arg Gly 210
215 220Ser Leu His Asn Val Met Trp Ser Val Phe Gly Arg
Arg Tyr Asp Leu225 230 235
240Glu Leu Asp Pro Ala Lys Glu Ser Pro Glu Thr Arg Glu Leu Arg Ser
245 250 255Leu Val Asp Glu Gly
Tyr Asp Leu Leu Gly Gln Leu Asn Trp Ser Asp 260
265 270His Leu Pro Trp Leu Ala Arg Phe Asp Leu Gln Ser
Thr Arg Ser Arg 275 280 285Cys Asp
Arg Leu Val Pro Leu Val Asn Arg Phe Val Gly Gly Ile Ile 290
295 300Asp Ala His Arg Ala Arg Asn Asp Leu Arg Ser
Ala Pro Pro His Ala305 310 315
320Val Met Asp Phe Thr Asp Val Leu Leu Ser Leu Pro Ala Asp Asp Arg
325 330 335Leu Thr Asp Ser
Asp Met Ile Ala Val Leu Trp Glu Met Val Phe Arg 340
345 350Gly Thr Asp Thr Val Ala Val Leu Ile Glu Trp
Val Leu Ala Arg Leu 355 360 365Val
Leu His Pro Asp Val Gln Ala Arg Val His Asp Glu Leu Asp Arg 370
375 380Val Val Gly Arg Asp Arg Ala Val Thr Glu
Ser Asp Ser Gly Ser Leu385 390 395
400Val Tyr Leu His Ala Val Ile Lys Glu Val Leu Arg Met His Pro
Pro 405 410 415Gly Pro Leu
Leu Ser Trp Ala Arg Leu Ala Thr Ser Asp Val Gln Val 420
425 430Asp Gly His Leu Ile Pro Ala Gly Thr Thr
Ala Met Val Asn Met Trp 435 440
445Ala Ile Thr His Asp Pro Asp Val Trp Ala Glu Pro Ala Glu Phe Gln 450
455 460Pro Glu Arg Phe Met Gly Ser Thr
Thr Gly Gly Glu Phe Pro Ile Met465 470
475 480Gly Ser Asp Leu Arg Leu Ala Pro Phe Gly Ala Gly
Arg Arg Ser Cys 485 490
495Pro Gly Lys Ser Leu Ala Met Ala Thr Val Ala Leu Trp Leu Ala Thr
500 505 510Leu Leu His Glu Phe Glu
Leu Leu Pro Ala Arg Gly Val Tyr Leu Ser 515 520
525Glu Val Leu Lys Leu Ser Cys Glu Met Ala Val Pro Leu Ala
Val Thr 530 535 540Ala Arg Pro Arg Gln
Ala Val545 55063528PRTGlycine max 63Met Ser Ser Ser Glu
Leu Ser Ser Phe Phe Leu Leu Arg Leu Ser Asp1 5
10 15Ile Leu Ser Phe Asp Val Leu Leu Gly Val Met
Phe Leu Val Ala Val 20 25
30Phe Gly Tyr Trp Leu Val Pro Gly Gly Leu Ala Trp Ala Phe Ser Lys
35 40 45Phe Lys Pro Ala Ile Pro Gly Pro
Ser Gly Tyr Pro Val Val Gly Leu 50 55
60Val Trp Ala Phe Ile Gly Pro Leu Thr His Arg Val Leu Ala Lys Leu65
70 75 80Ala Glu Thr Phe Asp
Ala Lys Pro Leu Met Ala Phe Ser Val Gly Phe 85
90 95Thr Arg Phe Ile Ile Ser Ser His Pro Asp Thr
Ala Lys Glu Ile Leu 100 105
110Asn Ser Ser Ala Phe Ala Asp Arg Pro Val Lys Glu Ser Ala Tyr Glu
115 120 125Leu Leu Phe His Arg Ala Met
Gly Phe Ala Pro Tyr Gly Glu Tyr Trp 130 135
140Arg Asn Leu Arg Arg Ile Ser Ala Thr His Met Phe Ser Pro Arg
Arg145 150 155 160Ile Ala
Ala Gln Gly Val Phe Arg Ala Arg Ile Gly Ala Gln Met Val
165 170 175Arg Asp Ile Val Gly Leu Met
Gly Arg Asp Gly Val Val Glu Val Arg 180 185
190Lys Val Leu His Phe Gly Ser Leu Asn Asn Val Met Lys Ser
Val Phe 195 200 205Gly Arg Ser Tyr
Val Phe Gly Glu Gly Gly Asp Gly Cys Glu Leu Glu 210
215 220Gly Leu Val Ser Glu Gly Tyr His Leu Leu Gly Val
Phe Asn Trp Ser225 230 235
240Asp His Phe Pro Leu Leu Gly Trp Leu Asp Leu Gln Gly Val Arg Lys
245 250 255Ser Cys Arg Ser Leu
Val Asp Arg Val Asn Val Tyr Val Gly Lys Ile 260
265 270Ile Leu Glu His Arg Val Lys Arg Val Ala Gln Gly
Glu Asp Asn Lys 275 280 285Ala Ile
Asp Thr Asp Ser Ser Gly Asp Phe Val Asp Val Leu Leu Asp 290
295 300Leu Glu Lys Glu Asn Arg Leu Asn His Ser Asp
Met Val Ala Val Leu305 310 315
320Trp Glu Met Ile Phe Arg Gly Thr Asp Thr Val Ala Ile Leu Leu Glu
325 330 335Trp Ile Leu Ala
Arg Met Val Leu His Pro Glu Ile Gln Ala Lys Ala 340
345 350Gln Ser Glu Ile Asp Ser Val Val Gly Ser Gly
Arg Ser Val Ser Asp 355 360 365Asp
Asp Leu Pro Asn Leu Pro Tyr Val Arg Ala Ile Val Lys Glu Thr 370
375 380Leu Arg Met His Pro Pro Gly Pro Leu Leu
Ser Trp Ala Arg Leu Ser385 390 395
400Ile His Asp Thr Gln Ile Gly Asn His Phe Val Pro Ala Gly Thr
Thr 405 410 415Ala Met Val
Asn Met Trp Ala Ile Thr His Asp Gln Glu Val Trp Tyr 420
425 430Glu Pro Lys Gln Phe Lys Pro Glu Arg Phe
Leu Lys Asp Glu Asp Val 435 440
445Pro Ile Met Gly Ser Asp Leu Arg Leu Ala Pro Phe Gly Ser Gly Arg 450
455 460Arg Val Cys Pro Gly Lys Ala Met
Gly Leu Ala Thr Val Glu Leu Trp465 470
475 480Leu Ala Met Phe Leu Gln Lys Phe Lys Trp Met Pro
Cys Asp Asp Ser 485 490
495Gly Val Asp Leu Ser Glu Cys Leu Lys Leu Ser Met Glu Met Lys His
500 505 510Ser Leu Lys Thr Lys Val
Val Ala Arg Pro Val Val Ser Leu Ala Met 515 520
52564557PRTZea mays 64Met Ala Ala Pro Pro Thr Glu Asp Cys
Gly Trp Leu Leu Tyr Leu Ser1 5 10
15Leu Ala Ala Lys Cys Gly Asp Pro Ser Arg Leu Leu Gly Leu Ala
Ala 20 25 30Val Phe Val Gly
Ala Cys Val Val Thr Ser Leu Leu His Trp Ala Cys 35
40 45Pro Gly Gly Pro Ala Trp Gly Arg Tyr Trp Trp Thr
Arg Arg Gly Gly 50 55 60Leu Gly Ile
Val Arg Ala Ala Ile Pro Gly Pro Arg Gly Leu Pro Val65 70
75 80Val Gly Ser Met Gly Leu Met Thr
Gly Leu Ala His Arg Lys Leu Ala 85 90
95Ala Ala Ala Ala Ala Ala Gly Gly Gln Gly Ser Ser Arg Arg
Arg Arg 100 105 110Leu Met Ala
Leu Ser Leu Gly Glu Thr Arg Ala Val Val Thr Gly Asp 115
120 125Pro Asp Val Ala Arg Glu Leu Leu Gly Ser Ala
Ala Phe Ala Asp Arg 130 135 140Pro Val
Lys Glu Ser Ala Tyr Gly Leu Leu Phe His Arg Ala Ile Gly145
150 155 160Phe Ala Pro His Gly Ala Tyr
Trp Arg Ala Leu Arg Arg Val Ala Ser 165
170 175Ala His Leu Phe Ser Pro Arg Gln Val Ala Ala Ser
Ser Ala Gln Arg 180 185 190Ala
Val Ile Ala Arg Gln Met Val Asp Ala Val Thr Thr Ala Ala Pro 195
200 205Ala Pro Ala Pro Ala Val Val Val Ala
Arg Arg Phe Leu Lys Arg Ala 210 215
220Ser Leu His Asn Val Met Trp Ser Val Phe Gly Arg Arg Tyr Asp Leu225
230 235 240Leu Leu Leu Ala
Ala Asp Gly Glu Glu Leu Lys Ala Leu Val Asp Glu 245
250 255Gly Tyr Asp Leu Leu Gly Gln Leu Asn Trp
Ser Asp His Leu Pro Trp 260 265
270Leu Ala Arg Phe Asp Leu Gln Arg Thr Arg Ala Arg Cys Ser Ala Leu
275 280 285Val Pro Arg Val Asn Arg Phe
Val Gly Asn Ile Ile Asp Glu His Arg 290 295
300Ala Arg Leu Gly Leu Gly Asp Thr Gly Gly Val Thr Asp Phe Thr
Asp305 310 315 320Val Leu
Leu Ser Leu Gln Gly Val Asp Lys Leu Ser Asp Ala Asp Met
325 330 335Val Ala Val Leu Trp Glu Met
Ile Phe Arg Gly Thr Asp Thr Val Ala 340 345
350Val Leu Met Glu Trp Val Leu Ala Arg Leu Val Leu His Gln
Asp Val 355 360 365Gln Ser Lys Val
Gln Glu Glu Leu Asp Arg Val Val Gly Pro Pro Gly 370
375 380Gln Ala Ala Ser Val Thr Glu Ser Asp Thr Ala Ser
Leu Val Tyr Leu385 390 395
400Gln Ala Val Ile Lys Glu Val Leu Arg Leu His Pro Pro Gly Pro Leu
405 410 415Leu Ser Trp Ala Arg
Leu Ala Thr Ser Asp Ala Arg Val Gly Gly Tyr 420
425 430His Val Pro Ala Gly Thr Thr Ala Met Val Asn Met
Trp Ala Ile Thr 435 440 445His Asp
Pro Ser Val Trp Ala Glu Pro Thr Glu Phe Arg Pro Glu Arg 450
455 460Phe Val Gly Ala Ser Ala Gly Ala Gly Ala Gly
Ala Gly Ala Glu Asp465 470 475
480Val Pro Met Ile Met Gly Ser Asp Leu Arg Leu Ala Pro Phe Gly Ser
485 490 495Gly Arg Arg Ser
Cys Pro Gly Lys Ser Leu Ala Leu Ala Thr Val Gly 500
505 510Phe Trp Val Ala Thr Leu Leu His Glu Phe Lys
Trp Leu Pro Pro Cys 515 520 525Arg
Gly Val Asp Leu Ser Glu Val Leu Arg Leu Ser Cys Glu Met Ala 530
535 540Ala Pro Leu Glu Ala Arg Val Val Pro Arg
His Ala Val545 550
55565572PRTBrachypodium distachyon 65Met Ala Pro Ala Thr Ser Ala Ser Glu
Asp Cys Ala Gly Trp Leu Leu1 5 10
15Tyr Ala Ser Leu Ala Ala Arg Cys Asn Asp Gly Gly Glu Ala Tyr
Arg 20 25 30Ala Ala Val Phe
Ala Met Ala Leu Leu Ala Thr Ser Phe Ile Leu Thr 35
40 45Ser Leu Leu His Trp Ala Ser Thr Pro Gly Gly Pro
Ala Trp Gly Arg 50 55 60Tyr Arg Trp
Thr Ser Thr Thr Ser Arg Ala Ala Ile Ser Thr Ser Pro65 70
75 80Arg Ile Pro Gly Pro Arg Gly Leu
Pro Val Val Gly Ser Met Gly Leu 85 90
95Met Thr Gly Leu Ala His Arg Lys Leu Ala Ala Ala Val Ala
Ala Gly 100 105 110Gly Asp Asp
Glu Glu Glu Arg Ser Gln Arg Arg Arg Leu Met Ala Phe 115
120 125Ser Met Gly Glu Thr Arg Ala Val Val Ser Ser
Asp Pro Ala Val Ala 130 135 140Arg Glu
Leu Leu Ser Ser Pro Ala Phe Ala Asp Arg Pro Val Lys Glu145
150 155 160Ser Ala Tyr Gly Leu Leu Phe
His Arg Ala Ile Gly Phe Ala Pro His 165
170 175Gly Ala Tyr Trp Arg Ser Leu Arg Arg Val Ala Ser
Ala His Leu Phe 180 185 190Ser
Pro Arg Gln Val Ala Ala Ser Ala Ala His Arg Ala Ala Ile Ala 195
200 205Arg Ser Met Val Gly Ser Val Ser Ala
Ile Ala Met Gly Ser Gly Glu 210 215
220Val Glu Val Arg Arg Phe Leu Lys Arg Ala Ala Leu His Gly Val Met225
230 235 240Trp Ser Val Phe
Gly Arg Arg Tyr Asp Gly Thr Ala Ala Pro Glu Leu 245
250 255Gly Lys Lys Glu Glu Glu Glu Leu Arg Ser
Met Val Glu Glu Gly Tyr 260 265
270Glu Leu Leu Gly Lys Leu Asn Trp Ala Asp His Leu Pro Trp Leu Ala
275 280 285Arg Phe Asp Leu Gln Gly Ile
Arg Ala Arg Cys Ala Ala Leu Val Pro 290 295
300Arg Val Asn Arg Phe Val Gly Lys Ile Val Asp Asp His Arg Ala
Ala305 310 315 320Ala Ala
Ala Asp Ala Gly Asp Arg Val Val Asp Phe Thr Asp Val Leu
325 330 335Leu Ser Leu Gln Gly Ala Asp
Lys Leu Ser Asp Ala Asp Met Ile Ala 340 345
350Val Leu Trp Glu Met Val Phe Arg Gly Thr Asp Thr Met Ala
Val Val 355 360 365Met Glu Trp Val
Leu Ala Arg Leu Val Met His Gln Asp Val Gln Ala 370
375 380Arg Val Gln Glu Glu Leu Asp Arg Val Val Gly Pro
Gly Gln Ala Val385 390 395
400Ser Glu Ser Asp Ala Ala Arg Leu Val Tyr Leu Gln Ala Val Ile Lys
405 410 415Glu Thr Met Arg Leu
His Pro Pro Gly Pro Leu Leu Ser Trp Ala Arg 420
425 430Leu Ala Thr Ser Asp Val His Val Gly Gly Phe Leu
Val Pro Ala Gly 435 440 445Thr Thr
Ala Met Val Asn Met Trp Ala Ile Thr His Asp Pro Thr Val 450
455 460Trp Ala Asp Pro Leu Glu Phe Asn Pro Asp Arg
Phe Ile Val Gly Ala465 470 475
480Val Pro Leu Ser Glu Gly His His Asn Ala Val Pro Gly Ala Glu Phe
485 490 495Ser Ile Met Gly
Ser Asp Leu Arg Leu Ala Pro Phe Gly Ser Gly Arg 500
505 510Arg Ile Cys Pro Gly Lys Pro Leu Ala Met Ala
Ser Ile Gly Phe Trp 515 520 525Val
Ala Thr Leu Leu His Glu Phe Lys Trp Thr Ser Ala Pro Arg Gly 530
535 540Asp Val Asp Leu Ser Glu Val Leu Arg Leu
Ser Cys Glu Met Ala Ala545 550 555
560Pro Leu Lys Ala Arg Leu Thr Pro Arg Arg Pro Val
565 57066517PRTGlycine max 66Met Ser Ser Ser Glu Leu Ser
Ser Phe Phe Leu Leu Pro Leu Ser Ala1 5 10
15Ile Leu Ser Phe Asp Ala Leu Leu Gly Val Met Phe Leu
Val Ala Val 20 25 30Phe Gly
Tyr Trp Leu Val Pro Gly Gly Leu Ala Trp Ala Leu Ser Lys 35
40 45Phe Lys Pro Ala Ile Pro Gly Pro Cys Gly
Tyr Pro Val Val Gly Leu 50 55 60Val
Trp Ala Phe Ile Gly Pro Leu Thr His Arg Val Leu Ala Lys Leu65
70 75 80Ala Glu Thr Phe Asp Ala
Lys Pro Leu Met Ala Phe Ser Val Gly Phe 85
90 95Thr Arg Phe Ile Ile Ser Ser His Pro Asp Thr Ala
Lys Glu Ile Leu 100 105 110Asn
Ser Ser Ala Phe Ala Asp Arg Pro Val Lys Glu Ser Ala Tyr Glu 115
120 125Leu Leu Phe His Arg Ala Met Gly Phe
Ala Pro Tyr Gly Glu Tyr Trp 130 135
140Arg Asn Leu Arg Arg Ile Ser Ala Thr His Met Phe Ser Pro Lys Arg145
150 155 160Ile Ala Ala Gln
Gly Val Phe Arg Ala Arg Val Gly Ala Gln Met Val 165
170 175Arg Glu Ile Val Gly Leu Met Gly Lys Asn
Asp Val Val Glu Val Arg 180 185
190Lys Val Leu His Phe Gly Ser Leu Asn Asn Val Met Lys Ser Val Phe
195 200 205Gly Arg Ser Tyr Val Phe Gly
Glu Gly Gly Asp Gly Cys Glu Leu Glu 210 215
220Glu Leu Val Ser Glu Gly Tyr Asp Leu Leu Gly Leu Phe Asn Trp
Ser225 230 235 240Asp His
Phe Pro Leu Leu Gly Trp Leu Asp Phe Gln Gly Val Arg Lys
245 250 255Arg Cys Arg Ser Leu Val Asp
Arg Val Asn Val Phe Val Gly Lys Ile 260 265
270Ile Met Glu His Arg Val Lys Arg Asp Ala Glu Ser Gly Asp
Phe Val 275 280 285Asp Val Leu Leu
Asp Leu Glu Lys Glu Asp Arg Leu Asn His Ser Asp 290
295 300Met Val Ala Val Leu Trp Glu Met Ile Phe Arg Gly
Thr Asp Thr Val305 310 315
320Ala Ile Leu Leu Glu Trp Ile Leu Ala Arg Met Val Leu His Pro Glu
325 330 335Ile Gln Ala Lys Ala
Gln Cys Glu Ile Asp Ser Val Val Gly Ser Gly 340
345 350Cys Ser Val Thr Asp Asp Asp Leu Pro Asn Leu Pro
Tyr Val Arg Ala 355 360 365Ile Val
Lys Glu Thr Leu Arg Met His Pro Pro Gly Pro Leu Leu Ser 370
375 380Trp Ala Arg Leu Ser Ile His Glu Thr Gln Ile
Gly Asn His Phe Val385 390 395
400Pro Ala Gly Thr Thr Ala Met Val Asn Leu Trp Ala Ile Thr His Asp
405 410 415Gln Gln Val Trp
Ser Glu Pro Glu Gln Phe Lys Pro Glu Arg Phe Leu 420
425 430Lys Asp Glu Asp Val Pro Ile Met Gly Ser Asp
Leu Arg Leu Ala Pro 435 440 445Phe
Gly Ala Gly Arg Arg Val Cys Pro Gly Lys Ala Met Gly Leu Ala 450
455 460Thr Val Glu Leu Trp Leu Ala Val Phe Leu
Gln Lys Phe Lys Trp Met465 470 475
480Pro Cys Asp Asp Ser Gly Val Asp Leu Ser Glu Cys Leu Lys Leu
Ser 485 490 495Met Glu Met
Lys His Ser Leu Ile Thr Lys Ala Val Ala Arg Pro Thr 500
505 510Ser Ser Leu Ala Met
51567525PRTOryza sativa 67Met Ala Leu Ser Ser Met Ala Ala Ala Gln Glu Ser
Ser Leu Leu Leu1 5 10
15Phe Leu Leu Pro Thr Ser Ala Ala Ser Val Phe Pro Pro Leu Ile Ser
20 25 30Val Val Val Leu Ala Ala Leu
Leu Leu Trp Leu Ser Pro Gly Gly Pro 35 40
45Ala Trp Ala Leu Ser Arg Cys Arg Gly Thr Pro Pro Pro Pro Gly
Val 50 55 60Ala Gly Gly Ala Ala Ser
Ala Leu Ser Gly Pro Ala Ala His Arg Val65 70
75 80Leu Ala Gly Ile Ser Arg Ala Val Glu Gly Gly
Ala Ala Val Met Ser 85 90
95Leu Ser Val Gly Leu Thr Arg Leu Val Val Ala Ser Arg Pro Glu Thr
100 105 110Ala Arg Glu Ile Leu Val
Ser Pro Ala Phe Gly Asp Arg Pro Val Lys 115 120
125Asp Ala Ala Arg Gln Leu Leu Phe His Arg Ala Met Gly Phe
Ala Pro 130 135 140Ser Gly Asp Ala His
Trp Arg Gly Leu Arg Arg Ala Ser Ala Ala His145 150
155 160Leu Phe Gly Pro Arg Arg Val Ala Gly Ser
Ala Pro Glu Arg Glu Ala 165 170
175Ile Gly Ala Arg Ile Val Gly Asp Val Ala Ser Leu Met Ser Arg Arg
180 185 190Gly Glu Val Pro Leu
Arg Arg Val Leu His Ala Ala Ser Leu Gly His 195
200 205Val Met Ala Thr Val Phe Gly Lys Arg His Gly Asp
Ile Ser Ile Gln 210 215 220Asp Gly Glu
Leu Leu Glu Glu Met Val Thr Glu Gly Tyr Asp Leu Leu225
230 235 240Gly Lys Phe Asn Trp Ala Asp
His Leu Pro Leu Leu Arg Trp Leu Asp 245
250 255Leu Gln Gly Ile Arg Arg Arg Cys Asn Arg Leu Val
Gln Lys Val Glu 260 265 270Val
Phe Val Gly Lys Ile Ile Gln Glu His Lys Ala Lys Arg Ala Ala 275
280 285Gly Gly Val Ala Val Ala Asp Gly Val
Leu Gly Asp Phe Val Asp Val 290 295
300Leu Leu Asp Leu Gln Gly Glu Glu Lys Met Ser Asp Ser Asp Met Ile305
310 315 320Ala Val Leu Trp
Glu Met Ile Phe Arg Gly Thr Asp Thr Val Ala Ile 325
330 335Leu Met Glu Trp Val Met Ala Arg Met Val
Met His Pro Glu Ile Gln 340 345
350Ala Lys Ala Gln Ala Glu Val Asp Ala Ala Val Gly Gly Arg Arg Gly
355 360 365Arg Val Ala Asp Gly Asp Val
Ala Ser Leu Pro Tyr Ile Gln Ser Ile 370 375
380Val Lys Glu Thr Leu Arg Met His Pro Pro Gly Pro Leu Leu Ser
Trp385 390 395 400Ala Arg
Leu Ala Val His Asp Ala Arg Val Gly Gly His Ala Val Pro
405 410 415Ala Gly Thr Thr Ala Met Val
Asn Met Trp Ala Ile Ala His Asp Ala 420 425
430Ala Val Trp Pro Glu Pro Asp Ala Phe Arg Pro Glu Arg Phe
Ser Glu 435 440 445Gly Glu Asp Val
Gly Val Leu Gly Gly Asp Leu Arg Leu Ala Pro Phe 450
455 460Gly Ala Gly Arg Arg Val Cys Pro Gly Arg Met Leu
Ala Leu Ala Thr465 470 475
480Ala His Leu Trp Leu Ala Gln Leu Leu His Ala Phe Asp Trp Ser Pro
485 490 495Thr Ala Ala Gly Val
Asp Leu Ser Glu Arg Leu Gly Met Ser Leu Glu 500
505 510Met Ala Ala Pro Leu Val Cys Lys Ala Val Ala Arg
Ala 515 520 52568520PRTGlycine max
68Met Ser Pro Asp Phe Thr Leu Leu Phe Phe Pro Glu Leu Ile Gln Pro1
5 10 15Pro Ile Val Thr Leu Gln
Ala Ala Leu Cys Ile Leu Leu Leu Thr Phe 20 25
30Leu Leu Thr Phe Phe Leu Thr Pro Gly Gly Leu Ala Trp
Ala Trp Ala 35 40 45Thr Lys Ser
Ser Thr Arg Pro Ile Ile Pro Gly Pro Val Met Ala Leu 50
55 60Leu Ser Val Phe Thr Gly Ser Thr Pro His Arg Arg
Leu Ser Met Leu65 70 75
80Ala Arg Ser Tyr His Ala Glu Lys Leu Met Ala Phe Ser Ile Gly Leu
85 90 95Thr Arg Phe Val Ile Ser
Ser Glu Pro Glu Thr Ala Lys Glu Ile Leu 100
105 110Gly Ser Pro Gly Phe Ala Asp Arg Pro Val Lys Glu
Ser Ala Tyr Gln 115 120 125Leu Leu
Phe His Arg Ala Met Gly Phe Ala Pro Tyr Gly Glu Tyr Trp 130
135 140Arg Asn Leu Arg Arg Ile Ser Ala Leu His Leu
Phe Ser Pro Lys Arg145 150 155
160Ile Thr Gly Ser Glu Ala Phe Arg Asn Glu Val Gly Leu Lys Met Val
165 170 175Asp Glu Val Lys
Lys Val Met Lys Asp Asn Arg His Val Glu Val Lys 180
185 190Arg Ile Leu His Tyr Gly Ser Leu Asn Asn Val
Met Met Thr Val Phe 195 200 205Gly
Lys Cys Tyr Glu Phe Tyr Glu Gly Glu Gly Val Glu Leu Glu Ala 210
215 220Leu Val Ser Glu Gly Tyr Glu Leu Leu Gly
Val Phe Asn Trp Ser Asp225 230 235
240His Phe Pro Val Leu Gly Trp Leu Asp Leu Gln Gly Val Arg Lys
Arg 245 250 255Cys Arg Cys
Leu Val Glu Lys Val Asn Ala Phe Val Gly Gly Val Ile 260
265 270Glu Glu His Arg Val Lys Arg Val Arg Gly
Gly Cys Val Lys Asp Glu 275 280
285Gly Thr Gly Asp Phe Val Asp Val Leu Leu Asp Leu Glu Asn Glu Asn 290
295 300Lys Leu Ser Glu Ala Asp Met Ile
Ala Val Leu Trp Glu Met Ile Phe305 310
315 320Arg Gly Thr Asp Thr Val Ala Ile Leu Leu Glu Trp
Ile Leu Ala Arg 325 330
335Met Val Leu His Pro Asp Ile Gln Ala Lys Ala Gln Arg Glu Ile Asp
340 345 350Ser Val Cys Gly Pro Tyr
Arg Leu Val Ser Glu Ala Asp Met Pro Asn 355 360
365Leu Arg Tyr Leu Gln Gly Ile Val Lys Glu Thr Leu Arg Val
His Pro 370 375 380Pro Gly Pro Leu Leu
Ser Trp Ala Arg Leu Ala Val His Asp Val Thr385 390
395 400Val Gly Gly Lys His Val Ile Pro Lys Gly
Thr Thr Ala Met Val Asn 405 410
415Met Trp Ala Ile Thr His Asp Glu Arg Phe Trp Ala Glu Pro Glu Arg
420 425 430Phe Arg Pro Glu Arg
Phe Val Glu Glu Glu Asp Val Asn Ile Met Gly 435
440 445Ser Asp Leu Arg Leu Ala Pro Phe Gly Ser Gly Arg
Arg Val Cys Pro 450 455 460Gly Lys Ala
Leu Gly Leu Ala Ser Val His Leu Trp Leu Ala Gln Leu465
470 475 480Leu Gln Asn Phe His Trp Val
Gln Phe Asp Gly Val Ser Val Glu Leu 485
490 495Asp Glu Cys Leu Lys Leu Ser Met Glu Met Lys Lys
Pro Leu Ala Cys 500 505 510Lys
Ala Val Pro Arg Val Ala Val 515 52069445PRTSorghum
bicolor 69Met Asp Ala Thr Thr Gln Asp Ser Leu Leu Phe Leu Phe Pro Ala
Ala1 5 10 15Ala Thr Phe
Leu Ser Pro Leu Leu Ala Val Leu Leu Val Ala Leu Ser 20
25 30Leu Leu Trp Leu Val Pro Gly Gly Pro Ala
Trp Ala Leu Ile Ser Thr 35 40
45Ser Arg Ser Arg Ala Thr Pro Pro Pro Gly Ala Pro Gly Val Val Thr 50
55 60Ala Leu Ser Gly Pro Ala Ala His Arg
Ala Leu Ala Ser Leu Ser Arg65 70 75
80Ser Leu Pro Gly Gly Ala Ala Leu Ser Ala Phe Ser Val Gly
Leu Thr 85 90 95Arg Leu
Val Val Ala Ser Gln Pro Asp Thr Ala Arg Glu Leu Leu Ala 100
105 110Ser Ala Ala Phe Ala Asp Arg Pro Val
Lys Asp Ala Ala Arg Gly Leu 115 120
125Leu Phe His Arg Ala Met Gly Phe Ala Pro Ser Gly Asp Tyr Trp Arg
130 135 140Ala Leu Cys Arg Ile Ser Ser
Ala Tyr Leu Phe Ser Pro Arg Ser Glu145 150
155 160Ser Ala Thr Ala Pro Arg Arg Val Thr Ile Gly Glu
Arg Met Leu Arg 165 170
175Asp Leu Ser Asp Ala Ile Gly Arg Leu Arg Arg Ser Leu Val Ser Arg
180 185 190Val Asn Val Phe Val Ala
Arg Ile Ile Glu Glu His Arg Gln Lys Lys 195 200
205Lys Asp Asp Val Ala Asn Asn Gly Glu Ser Ala Ala Gly Asp
Phe Val 210 215 220Asp Val Leu Leu Gly
Leu Glu Gly Glu Glu Lys Leu Ser Asp Ser Asp225 230
235 240Met Ile Ala Val Leu Trp Glu Met Ile Phe
Arg Gly Thr Asp Thr Val 245 250
255Ala Ile Leu Leu Glu Trp Val Met Ala Arg Met Val Leu His Pro Gly
260 265 270Ile Gln Ser Lys Ala
Gln Ala Glu Leu Asp Ala Val Val Gly Arg Gly 275
280 285Gly Ala Val Ser Asp Ala Asp Val Ser Arg Leu Pro
Tyr Leu Gln Arg 290 295 300Val Val Lys
Glu Thr Leu Arg Val His Pro Pro Gly Pro Leu Leu Ser305
310 315 320Trp Ala Arg Leu Ala Val His
Asp Ala Val Val Gly Gly His Leu Val 325
330 335Pro Ala Gly Thr Thr Ala Met Val Asn Met Trp Ala
Ile Ala Arg Asp 340 345 350Pro
Ala Val Trp Ala Asp Pro Thr Ala Phe Arg Pro Glu Arg Phe Glu 355
360 365Glu Glu Asp Val Ser Val Leu Gly Gly
Asp Leu Arg Leu Ala Pro Phe 370 375
380Gly Ala Gly Arg Arg Val Cys Pro Gly Lys Thr Leu Ala Leu Ala Thr385
390 395 400Val His Leu Trp
Leu Ala Gln Leu Leu His Arg Phe Gln Trp Ala Pro 405
410 415Ala Asp Gly Gly Val Asp Leu Ala Glu Arg
Leu Gly Met Ser Leu Glu 420 425
430Met Glu Lys Pro Leu Val Cys Lys Pro Thr Pro Arg Trp 435
440 44570548PRTOryza sativa 70Met Asp Ala Thr
Leu Gly Ala Ser Thr Thr His Gly Tyr Leu Leu Leu1 5
10 15Leu Pro Ala Asn Ser Thr Thr Phe Phe Ser
Pro Leu Leu Ala Ala Leu 20 25
30Leu Ala Val Thr Ser Leu Leu Trp Leu Val Pro Gly Gly Pro Ala Trp
35 40 45Ala Leu Ser Arg Cys Arg Arg Pro
Pro Pro Gly Ala Pro Gly Ala Leu 50 55
60Ala Ala Leu Ala Gly Pro Ala Ala His Arg Ala Leu Ala Ala Met Ser65
70 75 80Arg Ser Val Pro Gly
Gly Ala Ala Leu Ala Ser Phe Ser Val Gly Leu 85
90 95Thr Arg Phe Val Val Ala Ser Arg Pro Asp Thr
Ala Arg Glu Leu Leu 100 105
110Ser Ser Ala Ala Phe Ala Asp Arg Pro Val Lys Asp Ala Ala Arg Gly
115 120 125Leu Leu Phe His Arg Ala Met
Gly Phe Ala Pro Ser Gly Asp Tyr Trp 130 135
140Arg Ala Leu Arg Arg Val Ser Ala Asn His Leu Phe Thr Pro Arg
Arg145 150 155 160Val Ala
Ala Ser Ala Pro Arg Arg Leu Ala Ile Gly Glu Arg Met Leu
165 170 175Asp Arg Leu Ser Ala Leu Ala
Gly Gly Glu Ile Gly Met Arg Arg Val 180 185
190Leu His Ala Ala Ser Leu Asp His Val Met Asp Thr Val Phe
Gly Thr 195 200 205Arg Tyr Asp Gly
Asp Ser Gln Glu Gly Ala Glu Leu Glu Ala Met Val 210
215 220Lys Glu Gly Tyr Asp Leu Leu Gly Met Phe Asn Trp
Gly Asp His Leu225 230 235
240Pro Leu Leu Lys Trp Leu Asp Leu Gln Gly Val Arg Arg Arg Cys Arg
245 250 255Thr Leu Val Gln Arg
Val Asp Val Phe Val Arg Ser Ile Ile Asp Glu 260
265 270His Arg Gln Arg Lys Arg Arg Thr Gly Gly Asn Gly
Gly Gly Glu Glu 275 280 285Leu Pro
Gly Asp Phe Val Asp Val Leu Leu Gly Leu Gln Gly Glu Glu 290
295 300Lys Met Thr Glu Ser Asp Met Val Ala Val Leu
Trp Val Thr Lys Asp305 310 315
320Pro Ser Asp Met His Ala Ser Ile Arg Ser Ile Leu Cys Ile Ala Ile
325 330 335Asn Gly Phe Met
Asp Ile Phe Asp Leu Ala Arg Val Gln Glu Met Ile 340
345 350Phe Arg Gly Thr Asp Thr Val Ala Ile Leu Leu
Glu Trp Ile Met Ala 355 360 365Arg
Met Val Leu His Pro Asp Ile Gln Ala Lys Ala Gln Ala Glu Leu 370
375 380Asp Ala Val Val Gly Arg Gly Arg Ala Val
Ser Asp Gly Asp Val Ala385 390 395
400Gly Leu Arg Tyr Leu Gln Cys Val Val Lys Glu Ala Leu Arg Val
His 405 410 415Pro Pro Gly
Pro Leu Leu Ser Trp Ala Arg Leu Ala Val Arg Asp Ala 420
425 430His Val Gly Gly His Val Val Pro Ala Gly
Thr Thr Ala Met Val Asn 435 440
445Met Trp Ala Ile Ala His Asp Pro Glu Leu Trp Pro Glu Pro Asp Glu 450
455 460Phe Arg Pro Glu Arg Phe Ala Glu
Glu Asp Val Ser Val Leu Gly Gly465 470
475 480Asp Leu Arg Leu Ala Pro Phe Gly Ala Gly Arg Arg
Ala Cys Pro Gly 485 490
495Lys Thr Leu Ala Leu Ala Thr Val His Leu Trp Leu Ala Gln Leu Leu
500 505 510His Arg Phe Glu Trp Ala
Pro Val Gly Gly Gly Val His Leu Leu Glu 515 520
525Arg Leu Asn Met Ser Leu Glu Met Glu Lys Pro Leu Val Cys
Lys Ala 530 535 540Lys Pro Arg
Trp54571522PRTGlycine max 71Met Ile Pro Thr Leu Val Cys Ile Gly Thr Thr
Ile Phe Gln Ser Thr1 5 10
15Leu Ser Ser Tyr Ser Leu Ser Phe Ile Ser Leu Phe Leu Ser Thr Ser
20 25 30Leu Ala Leu Leu Ala Ile Ser
Leu Asn Tyr Trp Leu Val Pro Gly Gly 35 40
45Phe Ala Trp Arg Lys Tyr His Ser Arg Tyr Lys Gly His Ala Lys
Val 50 55 60Ser Gly Pro Met Gly Trp
Pro Ile Leu Gly Thr Leu Pro Ala Met Gly65 70
75 80Pro Leu Ala His Arg Lys Leu Ala Ala Met Ala
Thr Ser Pro Lys Ala 85 90
95Lys Lys Leu Met Thr Leu Ser Leu Gly Thr Asn Pro Val Val Ile Ser
100 105 110Ser His Pro Glu Thr Ala
Arg Glu Ile Leu Cys Gly Ser Asn Phe Ala 115 120
125Asp Arg Pro Val Lys Glu Ser Ala Arg Met Leu Met Phe Glu
Arg Ala 130 135 140Ile Gly Phe Ala Pro
Tyr Gly Thr Tyr Trp Arg His Leu Arg Lys Val145 150
155 160Ala Ile Thr His Met Phe Ser Pro Arg Arg
Ile Ser Asp Leu Glu Ser 165 170
175Leu Arg Gln His Val Val Gly Glu Met Val Met Arg Ile Trp Lys Glu
180 185 190Met Gly Asp Lys Gly
Val Val Glu Val Arg Gly Ile Leu Tyr Glu Gly 195
200 205Ser Leu Ser His Met Leu Glu Cys Val Phe Gly Ile
Asn Asn Ser Leu 210 215 220Gly Ser Gln
Thr Lys Glu Ala Leu Gly Asp Met Val Glu Glu Gly Tyr225
230 235 240Asp Leu Ile Ala Lys Phe Asn
Trp Ala Asp Tyr Phe Pro Phe Gly Phe 245
250 255Leu Asp Phe His Gly Val Lys Arg Arg Cys His Lys
Leu Ala Thr Lys 260 265 270Val
Asn Ser Val Val Gly Lys Ile Val Glu Glu Arg Lys Asn Ser Gly 275
280 285Lys Tyr Val Gly Gln Asn Asp Phe Leu
Ser Ala Leu Leu Leu Leu Pro 290 295
300Lys Glu Glu Ser Ile Gly Asp Ser Asp Val Val Ala Ile Leu Trp Glu305
310 315 320Met Ile Phe Arg
Gly Thr Asp Thr Ile Ala Ile Leu Leu Glu Trp Ile 325
330 335Met Ala Met Met Val Leu His Gln Asp Val
Gln Met Lys Ala Arg Gln 340 345
350Glu Ile Asp Ser Cys Ile Lys Gln Asn Gly Tyr Met Arg Asp Ser Asp
355 360 365Ile Pro Asn Leu Pro Tyr Leu
Gln Ala Ile Val Lys Glu Val Leu Arg 370 375
380Leu His Pro Pro Gly Pro Leu Leu Ser Trp Ala Arg Leu Ala Ile
His385 390 395 400Asp Val
His Val Asp Lys Val Ile Val Pro Ala Gly Thr Thr Ala Met
405 410 415Val Asn Met Trp Ala Ile Ser
His Asp Ser Ser Ile Trp Glu Asp Pro 420 425
430Trp Ala Phe Lys Pro Glu Arg Phe Met Lys Glu Asp Val Ser
Ile Met 435 440 445Gly Ser Asp Met
Arg Leu Ala Pro Phe Gly Ala Gly Arg Arg Val Cys 450
455 460Pro Gly Lys Thr Leu Gly Leu Ala Thr Val His Leu
Trp Leu Ala Gln465 470 475
480Leu Leu His His Phe Ile Trp Ile Pro Val Gln Pro Val Asp Leu Ser
485 490 495Glu Cys Leu Lys Leu
Ser Leu Glu Met Lys Lys Pro Leu Arg Cys Gln 500
505 510Val Ile Arg Arg Phe Asn Thr Ile Ser Ser
515 52072534PRTZea mays 72Met Thr Leu Ile Pro Ala Ile Ser
Gly Glu Gln His Gly Asn Met Ala1 5 10
15Thr Val Ala Thr Ser Phe Ala Tyr Leu Ala Ile Phe Ala Cys
Leu Ala 20 25 30Trp Val Gly
Ala Ser Leu Leu Tyr Trp Ala His Pro Gly Gly Pro Ala 35
40 45Trp Gly Lys Tyr Trp Arg Ala Arg Gly Lys Lys
Pro Ser Ala Ala Ile 50 55 60Pro Gly
Pro Lys Gly Leu Pro Val Val Gly Ser Leu Gly Leu Met Ser65
70 75 80Gly Leu Ala His Arg Ser Leu
Ala Asp Glu Ala Ser Arg Arg Pro Gly 85 90
95Ala Lys Arg Leu Met Ala Leu Ser Leu Gly Pro Val Arg
Ala Val Val 100 105 110Thr Ser
His Pro Asp Val Ala Lys Glu Ile Leu Asp Ser Pro Ala Phe 115
120 125Ala Ala Arg Pro Leu Asn His Ala Ala Tyr
Gly Leu Met Phe His Arg 130 135 140Ser
Ile Gly Phe Ala Glu His Gly Pro Tyr Trp Arg Ala Leu Arg Arg145
150 155 160Val Ala Ala Gly His Leu
Phe Gly Pro Arg Gln Val Glu Ala Phe Ala 165
170 175Pro Tyr Arg Ala Ala Val Ala Glu Gly Ile Val Ala
Ala Leu Leu Arg 180 185 190Ala
Gly Ser Gly Gly Ala Val Val Gln Val Arg Gly Leu Leu Arg Arg 195
200 205Ala Ser Leu Tyr Tyr Ile Met Arg Phe
Val Phe Gly Lys Glu Tyr Asp 210 215
220Val Ser Arg Val Val Pro Pro Ser Gly Gly Glu Glu Val Glu Glu Leu225
230 235 240Leu Glu Met Val
His Glu Gly Tyr Glu Leu Leu Gly Met Glu Asn Leu 245
250 255Cys Asp Tyr Phe Pro Gly Leu Ala Ala Leu
Asp Pro Gln Gly Val Gly 260 265
270Ala Arg Cys Ala Glu Leu Met Pro Arg Val Asn Arg Phe Val His Gly
275 280 285Val Ile Gln Glu His Arg Ala
Lys Ala Val Ala Gly Gly Asp Ala Arg 290 295
300Asp Phe Val Asp Ile Leu Leu Ser Leu Gln Glu Ser Glu Gly Leu
Ala305 310 315 320Asp Ala
Asp Ile Ala Ser Val Leu Trp Glu Met Ile Phe Arg Gly Thr
325 330 335Asp Ala Met Ala Val Leu Met
Glu Trp Thr Leu Ala Arg Leu Val Leu 340 345
350His Arg Asp Val Gln Ala Lys Ala His Arg Glu Leu Asp Lys
Val Val 355 360 365Gly Ala Asp Ser
Gln Thr Thr Glu Ser Ala Ala Pro Tyr Leu Gln Ala 370
375 380Leu Leu Lys Glu Ala Leu Arg Met His Pro Pro Gly
Pro Leu Leu Ser385 390 395
400Trp Arg His Arg Ala Ile Ser Asp Thr Tyr Val Asp Gly His Leu Val
405 410 415Pro Ala Gly Thr Thr
Ala Met Val Asn Gln Trp Ala Ile Ser Arg Asp 420
425 430Pro Glu Val Trp Asp Ala Pro Leu Glu Phe Arg Pro
Glu Arg Phe Leu 435 440 445Pro Gly
Gly Glu Gly Gln Asp Val Ser Val Leu Gly Ala Asp Gly Arg 450
455 460Leu Val Pro Phe Gly Ser Gly Arg Arg Ser Cys
Pro Gly Lys Ser Leu465 470 475
480Ala Met Thr Thr Val Thr Ser Trp Met Ala Thr Leu Leu His Glu Phe
485 490 495Glu Trp Leu Pro
Ala Ser Asp Asp Thr Gly Asp Val Asp Leu Ser Glu 500
505 510Val Leu Arg Leu Ser Cys Glu Met Ala Val Pro
Leu Glu Val Arg Val 515 520 525Arg
Pro Arg Ser Ser Val 53073514PRTGlycine max 73Met Lys Pro Thr Ala Thr
Phe Phe Phe Leu Leu Ser Thr Thr Thr Leu1 5
10 15Leu Val Cys Leu Cys Leu Gly Thr Thr Thr Phe Gln
Thr Thr Leu Phe 20 25 30Ile
Thr Phe Phe Thr Ile Ser Leu Asn Tyr Trp Leu Val Pro Gly Gly 35
40 45Phe Ala Trp Arg Asn Tyr His Ser Tyr
His Thr Asn Glu Lys Pro Asn 50 55
60Lys Lys Leu Thr Gly Pro Met Gly Trp Pro Ile Leu Gly Ser Leu Pro65
70 75 80Leu Met Gly Ser Leu
Ala His Gln Lys Leu Ala Ala Leu Ala Ala Thr 85
90 95Leu Asn Ala Lys Arg Leu Met Ala Leu Ser Leu
Gly Pro Thr Pro Val 100 105
110Val Ile Ser Ser His Pro Glu Thr Ala Arg Glu Ile Leu Leu Gly Ser
115 120 125Ser Phe Ser Asp Arg Pro Ile
Lys Glu Ser Ala Arg Ala Leu Met Phe 130 135
140Glu Arg Ala Ile Gly Phe Ala Pro Ser Gly Thr Tyr Trp Arg His
Leu145 150 155 160Arg Arg
Ile Ala Ala Phe His Met Phe Ser Pro Arg Arg Ile Gln Gly
165 170 175Leu Glu Gly Leu Arg Gln Arg
Val Gly Asp Asp Met Val Lys Ser Ala 180 185
190Trp Lys Glu Met Glu Met Lys Gly Val Val Glu Val Arg Gly
Val Phe 195 200 205Gln Glu Gly Ser
Leu Cys Asn Ile Leu Glu Ser Val Phe Gly Ser Asn 210
215 220Asp Lys Ser Glu Glu Leu Gly Asp Met Val Arg Glu
Gly Tyr Glu Leu225 230 235
240Ile Ala Met Leu Asn Leu Glu Asp Tyr Phe Pro Leu Lys Phe Leu Asp
245 250 255Phe His Gly Val Lys
Arg Arg Cys His Lys Leu Ala Ala Lys Val Gly 260
265 270Ser Val Val Gly Gln Ile Val Glu Asp Arg Lys Arg
Glu Gly Ser Phe 275 280 285Val Val
Lys Asn Asp Phe Leu Ser Thr Leu Leu Ser Leu Pro Lys Glu 290
295 300Glu Arg Leu Ala Asp Ser Asp Met Ala Ala Ile
Leu Trp Glu Met Val305 310 315
320Phe Arg Gly Thr Asp Thr Val Ala Ile Leu Leu Glu Trp Val Met Ala
325 330 335Arg Met Val Leu
His Gln Asp Val Gln Lys Lys Ala Arg Glu Glu Ile 340
345 350Asp Thr Cys Ile Gly Gln Asn Ser His Val Arg
Asp Ser Asp Ile Ala 355 360 365Asn
Leu Pro Tyr Leu Gln Ala Ile Val Lys Glu Val Leu Arg Leu His 370
375 380Pro Pro Gly Pro Leu Leu Ser Trp Ala Arg
Leu Ala Val Asn Asp Val385 390 395
400His Val Asp Lys Val Leu Val Pro Ala Gly Thr Thr Ala Met Val
Asn 405 410 415Met Trp Ala
Ile Ser His Asp Ser Ser Ile Trp Glu Asp Pro Trp Ala 420
425 430Phe Lys Pro Glu Arg Phe Leu Lys Glu Asp
Val Ser Ile Met Gly Ser 435 440
445Asp Leu Arg Leu Ala Pro Phe Gly Ala Gly Arg Arg Val Cys Pro Gly 450
455 460Arg Ala Leu Gly Leu Ala Thr Thr
His Leu Trp Leu Ala Gln Leu Leu465 470
475 480Arg His Phe Ile Trp Leu Pro Ala Gln Pro Val Asp
Leu Ser Glu Cys 485 490
495Leu Arg Leu Ser Met Glu Met Lys Thr Pro Leu Arg Cys Leu Val Val
500 505 510Arg Arg74235PRTSorghum
bicolor 74Met Asp Phe Thr Asp Val Leu Leu Ser Leu Asn Gly Asp Asp Lys
Leu1 5 10 15Ser Asp Ala
Asp Met Ile Ala Val Leu Trp Glu Met Ile Phe Arg Gly 20
25 30Thr Asp Thr Val Ala Val Leu Ile Glu Trp
Val Leu Ala Arg Leu Val 35 40
45Leu His Gln Asp Val Gln Arg Lys Val His Asp Glu Leu Asp Arg Val 50
55 60Val Gly Pro Gly Glu Ala Val Thr Glu
Ser Asp Thr Ala Ser Leu Val65 70 75
80Tyr Leu Gln Ala Val Ile Lys Glu Val Leu Arg Leu His Pro
Pro Gly 85 90 95Pro Leu
Leu Ser Trp Ala Arg Leu Ala Thr Ser Asp Val Asn Val Gly 100
105 110Gly His Leu Val Pro Ala Gly Thr Thr
Ala Met Val Asn Met Trp Ala 115 120
125Ile Thr His Asp Ala Ser Val Trp Pro Glu Pro Thr Glu Phe Arg Pro
130 135 140Glu Arg Phe Val Ala Ala Ala
Gly Gly Glu Asp Val Val Pro Ile Met145 150
155 160Gly Ser Asp Leu Arg Leu Ala Pro Phe Gly Ser Gly
Arg Arg Ser Cys 165 170
175Pro Gly Lys Ser Leu Ala Val Ala Thr Val Gly Phe Trp Val Ala Thr
180 185 190Leu Leu His Glu Phe Glu
Trp Leu Pro Cys Gly Gly Gly Gly Gly Val 195 200
205Asp Leu Ser Glu Val Leu Arg Leu Ser Cys Glu Met Ala Ala
Pro Leu 210 215 220Glu Ala Arg Val Val
Pro Arg Arg His Ala Val225 230
23575508PRTGlycine max 75Met Lys Pro Thr Ala Thr Phe Phe Phe Leu Leu Pro
Ser Thr Thr Leu1 5 10
15Val Val Cys Leu Cys Leu Gly Ile Gly Thr Thr Thr Leu Phe Ile Thr
20 25 30Leu Leu Ala Ile Ser Leu Asn
Tyr Trp Leu Val Pro Gly Gly Phe Ala 35 40
45Trp Arg Asn Tyr Asp Tyr Tyr Gln Thr Lys Lys Lys Leu Thr Gly
Pro 50 55 60Met Gly Trp Pro Ile Leu
Gly Thr Leu Pro Leu Met Gly Ser Leu Ala65 70
75 80His Gln Lys Leu Ala Ala Leu Ala Thr Ser Leu
Asn Ala Lys Arg Leu 85 90
95Met Ala Leu Ser Leu Gly Pro Thr Pro Val Val Ile Ser Ser His Pro
100 105 110Glu Thr Ala Arg Glu Ile
Leu Leu Gly Ser Ser Phe Ser Asp Arg Pro 115 120
125Ile Lys Glu Ser Ala Arg Ala Leu Met Phe Glu Arg Ala Ile
Gly Phe 130 135 140Ala His Ser Gly Thr
Tyr Trp Arg His Leu Arg Arg Ile Ala Ala Phe145 150
155 160His Met Phe Ser Pro Arg Arg Ile His Gly
Leu Glu Gly Leu Arg Gln 165 170
175Arg Val Gly Asp Asp Met Val Lys Ser Ala Trp Arg Glu Met Gly Glu
180 185 190Lys Gly Val Val Glu
Val Arg Arg Val Phe Gln Glu Gly Ser Leu Cys 195
200 205Asn Ile Leu Glu Ser Val Phe Gly Ser Asn Asp Lys
Ser Glu Glu Leu 210 215 220Arg Asp Met
Val Arg Glu Gly Tyr Glu Leu Ile Ala Met Phe Asn Leu225
230 235 240Glu Asp Tyr Phe Pro Phe Lys
Phe Leu Asp Phe His Gly Val Lys Arg 245
250 255Arg Cys His Lys Leu Ala Ala Lys Val Gly Ser Val
Val Gly Gln Ile 260 265 270Val
Glu Glu Arg Lys Arg Asp Gly Gly Phe Val Gly Lys Asn Asp Phe 275
280 285Leu Ser Thr Leu Leu Ser Leu Pro Lys
Glu Glu Arg Leu Ala Asp Ser 290 295
300Asp Leu Val Ala Ile Leu Trp Glu Met Val Phe Arg Gly Thr Asp Thr305
310 315 320Val Ala Ile Leu
Leu Glu Trp Val Met Ala Arg Met Val Leu His Gln 325
330 335Asp Leu Gln Lys Lys Ala Arg Glu Glu Ile
Asp Thr Cys Val Gly Gln 340 345
350Asn Ser His Val Arg Asp Ser Asp Ile Ala Asn Leu Pro Tyr Leu Gln
355 360 365Ala Ile Val Lys Glu Val Leu
Arg Leu His Pro Pro Gly Pro Leu Leu 370 375
380Ser Trp Ala Arg Leu Ala Val His Asp Val His Ala Asp Lys Val
Leu385 390 395 400Val Pro
Ala Gly Thr Thr Ala Met Val Asn Met Trp Ala Ile Ser His
405 410 415Asp Ser Ser Ile Trp Glu Asp
Pro Trp Ala Phe Lys Pro Glu Arg Phe 420 425
430Leu Lys Glu Asp Val Ser Ile Met Gly Ser Asp Leu Arg Leu
Ala Pro 435 440 445Phe Gly Ala Gly
Arg Arg Val Cys Pro Gly Arg Ala Leu Gly Leu Ala 450
455 460Thr Ala His Leu Trp Leu Ala Gln Leu Leu Arg His
Phe Ile Trp Leu465 470 475
480Pro Ala Gln Thr Val Asp Leu Ser Glu Cys Leu Arg Leu Ser Met Glu
485 490 495Met Lys Thr Pro Leu
Arg Cys Leu Val Val Arg Arg 500
50576517PRTSorghum bicolor 76Met Val Leu Thr Met Ala Thr Gly Gln Glu Asp
Ser Leu Leu Leu Leu1 5 10
15Leu Leu Pro Thr Thr Ser Pro Leu Pro Pro Leu Met Ala Val Phe Ile
20 25 30Leu Ala Ala Val Leu Leu Trp
Leu Ser Pro Gly Gly Pro Ala Trp Ala 35 40
45Leu Ser Arg Cys Arg Arg Pro Pro Ser Gly Pro Thr Gly Val Val
Thr 50 55 60Ala Leu Ser Ser Pro Val
Ala His Arg Thr Leu Ala Ala Leu Ser His65 70
75 80Ala Val Asp Gly Gly Lys Ala Leu Met Ala Phe
Ser Val Gly Leu Thr 85 90
95Arg Leu Val Val Ser Ser Gln Pro Asp Thr Ala Arg Glu Ile Leu Val
100 105 110Asn Pro Ala Phe Ser Asp
Arg Pro Ile Lys Asp Ala Ala Arg His Leu 115 120
125Leu Phe His Arg Ala Met Gly Phe Ala Pro Ser Gly Asp Ala
His Trp 130 135 140Arg Gly Leu Arg Arg
Leu Ala Ala Asn His Leu Phe Gly Pro Arg Arg145 150
155 160Val Ala Ala Ala Ala His His Arg Val Ser
Ile Gly Glu Ala Met Val 165 170
175Ala Asp Val Ala Ala Ala Met Ala Arg His Gly Glu Val Ser Leu Lys
180 185 190Arg Val Leu His Ile
Ala Ser Leu Asn His Ile Met Ala Thr Val Phe 195
200 205Gly Lys His Tyr Asp Met Asp Ser Gln Glu Gly Val
Leu Leu Glu Glu 210 215 220Met Val Thr
Glu Gly Tyr Asp Leu Leu Gly Thr Phe Asn Trp Ala Asp225
230 235 240His Leu Pro Leu Ile Lys His
Leu Asp Leu Gln Gly Val Arg Arg Arg 245
250 255Cys Asn Arg Leu Val Gln Lys Val Glu Val Phe Val
Gly Lys Ile Ile 260 265 270Gln
Glu His Arg Ala Arg Arg Ala Asn Gly Gly Val Asp Asp Glu Tyr 275
280 285Met Gly Asp Phe Val Asp Val Leu Leu
Asp Leu Glu Gly Glu Glu Lys 290 295
300Leu Ser Glu Ser Asp Met Ile Ala Val Leu Trp Glu Met Ile Phe Arg305
310 315 320Gly Ala Asp Thr
Val Ala Ile Leu Met Glu Trp Ile Met Ala Arg Met 325
330 335Ala Leu His Pro Glu Ile Gln Ser Lys Ala
Gln Ala Glu Leu Asp Gly 340 345
350Val Val Val Gly Gly Val Ala Asp Ala Asp Val Gly Asn Leu Pro Tyr
355 360 365Ile Gln Cys Ile Val Lys Glu
Thr Leu Arg Met His Pro Pro Gly Pro 370 375
380Leu Leu Ser Trp Ala Arg Leu Ala Ile His Asp Ala His Val Gly
Gly385 390 395 400His Leu
Val Pro Ala Gly Thr Thr Ala Met Val Asn Met Trp Ser Ile
405 410 415Ala His Asp Pro Ala Ile Trp
Ala Glu Pro Glu Lys Phe Arg Pro Glu 420 425
430Arg Phe Gln Glu Glu Asp Val Ser Val Leu Gly Ser Asp Leu
Arg Leu 435 440 445Ala Pro Phe Gly
Ala Gly Arg Arg Val Cys Pro Gly Lys Met Leu Ala 450
455 460Leu Ala Thr Thr His Leu Trp Ile Ala Gln Leu Leu
His Glu Phe Glu465 470 475
480Trp Ala Pro Ala Ala Ala Asn Gly Gly Val Asp Leu Ser Glu Arg Leu
485 490 495Asn Met Ser Leu Glu
Met Ala Thr Pro Leu Val Cys Lys Ala Val Pro 500
505 510Arg Ala Gln Leu Ala 51577549PRTSorghum
bicolor 77Met Glu Ser Ser Val Glu Ser Trp Trp Val Leu Pro Met Thr Leu
Ile1 5 10 15Pro Ala Ile
Ser Gly Gln Gln His Glu Asn Met Ala Thr Ile Ala Thr 20
25 30Ser Phe Val Tyr Leu Ala Ile Phe Ala Cys
Leu Ala Trp Ala Gly Ala 35 40
45Ser Leu Leu Tyr Trp Ala His Pro Gly Gly Pro Ala Trp Gly Lys Tyr 50
55 60Trp Arg Ala Lys Gly Lys Pro Ser Ser
Thr Ile Pro Gly Pro Lys Gly65 70 75
80Leu Pro Val Val Gly Ser Leu Gly Leu Met Ser Gly Leu Ala
His Cys 85 90 95Ser Leu
Ala Asp Glu Ala Ser Arg Arg Pro Gly Ala Lys Arg Leu Met 100
105 110Ala Leu Ser Leu Gly Pro Val Arg Ala
Val Val Thr Ser His Pro Asp 115 120
125Val Ala Lys Glu Ile Leu Asp Asn Pro Ala Phe Ala Asp Arg Pro Leu
130 135 140Asn His Ala Ala Tyr Gly Leu
Met Phe His Arg Ser Ile Gly Phe Ala145 150
155 160Glu His Gly Pro Tyr Trp Arg Ala Leu Arg Arg Val
Ala Ala Gly His 165 170
175Leu Phe Gly Pro Arg Gln Val Glu Ala Phe Ala Pro Tyr Arg Ala Ala
180 185 190Val Gly Glu Gly Ile Val
Ala Ala Leu His Gly Ala Gly Gly Gly Val 195 200
205Val Gln Val Arg Gly Leu Leu Arg Arg Ala Ser Leu Tyr Tyr
Ile Met 210 215 220Arg Phe Val Phe Gly
Lys Glu Tyr Asp Val Ser Arg Ala Val Pro Ala225 230
235 240Ser Gly Lys Glu Glu Val Glu Glu Leu Leu
Glu Met Val His Glu Gly 245 250
255Tyr Glu Leu Leu Gly Met Glu Asn Trp Cys Asp Tyr Phe Pro Gly Leu
260 265 270Ala Ala Leu Asp Pro
Gln Gly Val Gly Ala Arg Cys Ala Glu Leu Met 275
280 285Pro Arg Val Asn Arg Phe Val His Gly Ile Ile Gln
Glu Arg Arg Ala 290 295 300Lys Ala Ile
Ala Gly Gly Asp Ala Arg Asp Phe Val Asp Ile Leu Leu305
310 315 320Ser Leu Gln Glu Ser Glu Arg
Leu Ala Asp Ala Asp Ile Ala Ala Val 325
330 335Leu Trp Glu Met Ile Phe Arg Gly Thr Asp Ala Met
Ala Val Leu Met 340 345 350Glu
Trp Thr Leu Ala Arg Leu Val Leu His Arg Asp Val Gln Ala Lys 355
360 365Ala His Arg Glu Leu Asp Glu Val Val
Gly Gly Asn Ser Gln Val Val 370 375
380Thr Glu Ser Ala Ala Ala Pro Ser Leu Pro Tyr Leu Gln Ala Leu Leu385
390 395 400Lys Glu Ala Leu
Arg Met His Pro Pro Gly Pro Leu Leu Ser Trp Arg 405
410 415His Arg Ala Ile Ser Asp Thr Tyr Val Asp
Gly His Leu Val Pro Ala 420 425
430Gly Thr Thr Ala Met Val Asn Gln Trp Ala Ile Ser Arg Asp Pro Glu
435 440 445Val Trp Asp Ala Pro Leu Glu
Phe Arg Pro Glu Arg Phe Leu Pro Gly 450 455
460Gly Glu Gly Gln Asp Val Ser Val Leu Gly Ala Asp Gly Arg Leu
Val465 470 475 480Pro Phe
Gly Ser Gly Arg Arg Ser Cys Pro Gly Lys Ser Leu Ala Met
485 490 495Thr Thr Val Thr Thr Trp Met
Ala Thr Leu Leu Asn Glu Phe Glu Trp 500 505
510Leu Pro Ala Ser Asp Asp Thr Gly Gly Asp Val Asp Leu Ser
Glu Val 515 520 525Leu Arg Leu Ser
Cys Glu Met Ala Val Pro Leu Glu Val Arg Val Arg 530
535 540Pro Arg Ser Gly Met54578539PRTSorghum bicolor
78Met Lys Thr Glu Val Ile Thr Thr Met Ile Ser Leu Val Phe Leu Val1
5 10 15His Phe Ala Ile Thr Ile
Ser Pro Asn Ala Gln Pro Ser Trp Leu Phe 20 25
30Ser Leu Met Ser Leu Ser Leu Ala Val Val Ala Val Ile
Val Pro Leu 35 40 45Val Val Thr
Thr Thr Cys His Ala Arg Lys Asn Thr Asp Ala Thr Thr 50
55 60Thr Ile Pro Gly Pro Arg Gly Trp Pro Leu Val Gly
Ser Leu Leu Val65 70 75
80Val Ser Gly Pro Leu Met His Arg Arg Leu Ala Ala Leu Ala Asp Ala
85 90 95His Ser Ala Arg Arg Leu
Met Ser Leu Thr Leu Gly Ala Thr Pro Val 100
105 110Val Ile Ser Ser His Pro Glu Thr Ala Arg Asp Ile
Leu Ser Gly Ala 115 120 125Ala Phe
Val Asp Arg Pro Pro Lys Ala Ala Ala Arg Glu Leu Met Phe 130
135 140Cys Arg Ala Ile Gly Phe Ala Pro Thr Gly Glu
Tyr Trp Arg Arg Leu145 150 155
160Arg Arg Ile Thr Gly Ala Gly Met Leu Ser Pro Arg Arg Met Ala Met
165 170 175Leu Arg Gly Leu
Arg Cys Arg Val Ala Asp Ser Met Ile Gln Arg Val 180
185 190Ala Asp Gln Met Glu Arg Ser Gly Glu Val Ala
Met Arg Ala Leu Leu 195 200 205Gln
Arg Ala Ser Leu Glu Ser Met Val Gly Ser Val Leu Gly Leu Glu 210
215 220Gly Asp Ala Val Cys Glu Glu Leu Gly Glu
Met Val Arg Glu Gly Tyr225 230 235
240Glu Leu Val Gly Met Phe Asn Leu Glu Asp His Tyr Tyr Lys Thr
Ser 245 250 255Trp Gly Pro
Leu Met Asp Leu Trp Gly Val Arg Pro Met Cys Arg Glu 260
265 270Leu Ala Ala Met Val Arg Gly Tyr Phe Gly
Lys Ile Ile Gln Glu Arg 275 280
285Arg Leu Ala Gly Asp Cys His Glu Arg Ala Asp Leu Leu Ser Tyr Met 290
295 300Leu Ser Leu Pro Glu Glu Glu Lys
Leu Glu Asp Ser Asp Val Ile Ala305 310
315 320Val Leu Trp Glu Met Ile Phe Arg Gly Val Asp Val
Val Ala Ile Leu 325 330
335Leu Glu Trp Ala Met Ala Arg Met Ser Leu His Pro Asp Ile Gln Ser
340 345 350Lys Ala Gln Glu Glu Met
Asp Ala Ala Val Gly Val Arg Arg Arg Arg 355 360
365Ala Ile Thr Asp Ser Asp Val Pro Asn Leu Ala Phe Leu Gln
Trp Ile 370 375 380Leu Lys Glu Thr Leu
Arg Met His Pro Pro Gly Pro Leu Leu Ser Trp385 390
395 400Ala Arg Leu Ala Val Gln Asp Ala Arg Val
Gly Lys His Val Val Pro 405 410
415Ala Gly Thr Thr Ala Met Val Asn Met Trp Ala Ile Ser His Asp Glu
420 425 430Ala Ile Trp Gly Asp
Pro Trp Val Phe Arg Pro Glu Arg Phe Ala Ala 435
440 445Ala Ala Ala Gly Glu Glu Val Ser Val Leu Gly Ser
Asp Leu Arg Leu 450 455 460Ala Pro Phe
Gly Ser Gly Arg Arg Val Cys Pro Gly Arg Met Met Gly465
470 475 480Leu Ala Thr Ala Gln Leu Trp
Leu Gly Arg Leu Leu Gln Glu Tyr Arg 485
490 495Trp Leu Pro Pro Pro Ala Asn Lys Pro Val Glu Leu
Ala Glu Cys Leu 500 505 510Arg
Leu Ser Met Glu Met Lys Thr Pro Leu Val Cys Arg Ala Val Pro 515
520 525Arg Arg Arg Gly Gly Arg Pro Pro Ala
Ala Ala 530 53579499PRTOryza sativa 79Met Ala Val Val
Ala Leu Pro Pro Leu Leu Ala Lys Arg His Gly His1 5
10 15Ala Arg Arg Val Asn Gly Gly Gly Ala Ala
Ile Pro Gly Pro Arg Gly 20 25
30Trp Pro Leu Leu Gly Ser Leu Pro Val Val Ser Gly Pro Leu Met His
35 40 45Arg Arg Leu Ala Ala Leu Ala Asp
Ala His Gly Gly Gly Ala Arg Arg 50 55
60Leu Met Ser Leu Thr Leu Gly Ala Thr Pro Val Val Val Ser Ser His65
70 75 80Pro Asp Thr Val Arg
Glu Ile Leu Ala Gly Ala Ala Phe Arg Asp Arg 85
90 95Pro Ala Arg Ala Ala Ala Arg Glu Leu Met Phe
Leu Arg Ala Val Gly 100 105
110Phe Ala Pro Ala Ser Gly Asp Asp Gly Gly Ala Tyr Trp Arg Arg Leu
115 120 125Arg Arg Ala Ala Gly Ala Gly
Met Leu Ser Pro Arg Arg Ala Ala Ala 130 135
140Leu Ala Ala Leu Arg Ala Arg Val Ala Arg Arg Thr Ser Glu Ala
Val145 150 155 160Ser Arg
Gly Met Ala Val Pro Pro Gly Arg Val Ala Met Arg Ala Leu
165 170 175Leu His Ala Ala Ser Leu Asp
Asn Met Val Gly Ser Val Leu Gly Leu 180 185
190Glu His His Asp His His Gly Gly Val Ile Ser Asp Met Gly
Asp Met 195 200 205Val Arg Glu Gly
Tyr Glu Leu Val Gly Lys Phe Asn Leu Gly Asp Tyr 210
215 220Tyr Ser Thr Thr Gln Tyr Gln Cys Leu Trp Gly Leu
Leu Asp Phe His225 230 235
240Gly Val Gly Pro Arg Cys Gln Arg Leu Ala Ala Arg Val Arg Glu Gln
245 250 255Phe Gly Arg Val Met
Glu Glu Arg Arg Lys Val Ser Asp Leu His Lys 260
265 270Arg Asp Asp Leu Leu Ser Tyr Met Leu Ser Met Pro
Gln Glu Glu Arg 275 280 285Ile Glu
Asp Ser Asp Val Ile Ala Val Leu Trp Glu Met Ile Phe Arg 290
295 300Gly Thr Asp Val Val Ala Ile Leu Leu Glu Trp
Ala Met Ala Arg Met305 310 315
320Val Leu His Pro Asp Ile Gln Ser Lys Val Gln Glu Glu Leu Asp Arg
325 330 335Ala Val Gly His
Arg Pro Met Thr Asp Ser Asp Ile Pro Asn Leu Arg 340
345 350Phe Leu His Cys Val Ile Lys Glu Thr Leu Arg
Met His Pro Pro Gly 355 360 365Pro
Leu Leu Ser Trp Ala Arg Leu Ala Val His Asp Thr Tyr Val Gly 370
375 380Lys His Leu Val Pro Ala Gly Thr Thr Ala
Met Val Asn Met Trp Ala385 390 395
400Ile Ser His Asp Glu Thr Ile Trp Gly Asp Pro Trp Val Phe Arg
Pro 405 410 415Glu Arg Phe
Met Glu Glu Asp Ile Asn Val Leu Gly Ser Asp Leu Arg 420
425 430Leu Ala Pro Phe Gly Ser Gly Arg Arg Val
Cys Pro Gly Arg Met Met 435 440
445Gly Leu Ser Thr Ala Tyr Leu Trp Phe Gly Arg Met Leu Gln Glu Tyr 450
455 460Lys Trp Ala Ala Ala Gln Pro Val
Lys Leu Thr Glu Cys Leu Arg Leu465 470
475 480Ser Met Glu Met Lys Lys Pro Leu Val Cys His Ala
Val Pro Arg Ser 485 490
495Lys Thr Gly80555PRTOryza sativa 80Met Ala Met Ala Thr Ala Thr Ala Ser
Ser Cys Val Asp Ala Thr Trp1 5 10
15Trp Ala Tyr Ala Leu Pro Ala Leu Leu Gly Ala Asp Thr Leu Cys
Ala 20 25 30His Pro Ala Leu
Leu Ala Gly Ala Val Leu Leu Ala Phe Ala Thr Ala 35
40 45Ala Val Leu Ala Trp Ala Ala Ser Pro Gly Gly Pro
Ala Trp Ala His 50 55 60Gly Arg Gly
Arg Leu Gly Ala Thr Pro Ile Glu Gly Pro Arg Gly Leu65 70
75 80Pro Val Phe Gly Ser Ile Phe Ala
Leu Ser Arg Gly Leu Pro His Arg 85 90
95Ala Leu Asp Ala Met Ser Arg Asp Ala Ala Ala Pro Arg Ala
Arg Glu 100 105 110Leu Met Ala
Phe Ser Val Gly Glu Thr Pro Ala Val Val Ser Ser Cys 115
120 125Pro Ala Thr Ala Arg Glu Val Leu Ala His Pro
Ser Phe Ala Asp Arg 130 135 140Pro Leu
Lys Arg Ser Ala Arg Glu Leu Leu Phe Ala Arg Ala Ile Gly145
150 155 160Phe Ala Pro Ser Gly Glu Tyr
Trp Arg Leu Leu Arg Arg Ile Ala Ser 165
170 175Thr His Leu Phe Ser Pro Arg Arg Val Ala Ala His
Glu Pro Gly Arg 180 185 190Gln
Ala Asp Ala Thr Ala Met Leu Ser Ala Met Ala Ala Glu Gln Ser 195
200 205Ala Thr Gly Ala Val Val Leu Arg Pro
His Leu Gln Ala Ala Ala Leu 210 215
220Asn Asn Ile Met Gly Ser Val Phe Gly Arg Arg Tyr Asp Val Ser Ser225
230 235 240Ser Ser Gly Ala
Ala Ala Asp Glu Ala Glu Gln Leu Lys Ser Met Val 245
250 255Arg Glu Gly Phe Glu Leu Leu Gly Ala Phe
Asn Trp Ser Asp His Leu 260 265
270Pro Trp Leu Ala His Leu Tyr Asp Pro Asn His Val Ala Arg Arg Cys
275 280 285Ala Ala Leu Val Pro Arg Val
Gln Ala Phe Val Arg Gly Val Ile Arg 290 295
300Asp His Arg Leu Arg Arg Asp Ser Ser Ser Thr Ala Ala Asp Asn
Ala305 310 315 320Asp Phe
Val Asp Val Leu Leu Ser Leu Glu Ala His Glu Asn Leu Ala
325 330 335Glu Asp Asp Met Val Ala Val
Leu Trp Glu Met Ile Phe Arg Gly Thr 340 345
350Asp Thr Thr Ala Leu Val Thr Glu Trp Cys Met Ala Glu Val
Val Arg 355 360 365Asn Pro Ala Val
Gln Ala Arg Leu Arg Ala Glu Val Asp Ala Ala Val 370
375 380Gly Gly Asp Gly Cys Pro Ser Asp Gly Asp Val Ala
Arg Met Pro Tyr385 390 395
400Leu Gln Ala Val Val Lys Glu Thr Leu Arg Ala His Pro Pro Gly Pro
405 410 415Leu Leu Ser Trp Ala
Arg Leu Ala Thr Ala Asp Val Gly Leu Ala Asn 420
425 430Gly Met Val Val Pro Ala Gly Thr Thr Ala Met Val
Asn Met Trp Ala 435 440 445Ile Thr
His Asp Gly Glu Val Trp Ala Asp Pro Glu Ala Phe Ala Pro 450
455 460Glu Arg Phe Ile Pro Ser Glu Gly Gly Ala Asp
Val Asp Val Arg Gly465 470 475
480Gly Asp Leu Arg Leu Ala Pro Phe Gly Ala Gly Arg Arg Val Cys Pro
485 490 495Gly Lys Asn Leu
Gly Leu Ala Thr Val Thr Leu Trp Val Ala Arg Leu 500
505 510Val His Ala Phe Asp Trp Phe Leu Pro Asp Gly
Ser Pro Pro Val Ser 515 520 525Leu
Asp Glu Val Leu Lys Leu Ser Leu Glu Met Lys Thr Pro Leu Ala 530
535 540Ala Ala Ala Thr Pro Arg Arg Arg Arg Ala
Ala545 550 55581174PRTSorghum bicolor
81Arg Asp Gly Arg Arg Arg Gly Glu Pro Pro Leu Arg Ala Glu Arg Arg1
5 10 15Glu Gly Asp Ala Ala His
Ala Pro Ala Arg Ala Arg Cys Cys Arg Gly 20 25
30Arg Ala Trp Pro Ser Thr Thr Arg Thr Ser Ala Ala Thr
Leu Val Pro 35 40 45Ala Gly Thr
Thr Ala Met Val Asn Met Trp Ala Ile Ala His Asp Pro 50
55 60Ala Ile Trp Ala Glu Pro Glu Glu Phe Arg Pro Glu
Arg Phe Gln Glu65 70 75
80Glu Glu Glu Asp Val Ser Val Leu Gly Gly Asp Leu Arg Leu Ala Pro
85 90 95Phe Gly Ala Gly Arg Arg
Val Cys Pro Asp Lys Met Leu Ala Leu Ala 100
105 110Thr Thr His Leu Trp Val Ala Gln Leu Leu His Arg
Phe Glu Trp Ala 115 120 125Pro Ala
Gly Ala Ala Ser Ser Gly Gly Gly Gly Val Asp Leu Ser Glu 130
135 140Arg Leu Asn Met Ser Leu Glu Met Ala Thr Pro
Leu Val Cys Lys Ala145 150 155
160Val Pro Arg Ser Ala Pro Gln Leu His Ala Gly Leu Ala Ser
165 17082552PRTSorghum bicolor 82Met Ala Met Ala Ser
Ala Val Ser Ser Cys Thr Asp Ser Thr Trp Trp1 5
10 15Val Tyr Ala Leu Pro Thr Leu Leu Gly Ser Asp
Thr Leu Cys Ala His 20 25
30Pro Ala Leu Leu Ala Gly Leu Leu Phe Leu Thr Thr Val Thr Ala Ala
35 40 45Leu Leu Ala Trp Ala Ala Ser Pro
Gly Gly Pro Ala Trp Ala His Gly 50 55
60Arg Gly Arg Leu Gly Ala Thr Pro Ile Val Gly Pro Arg Gly Leu Pro65
70 75 80Val Phe Gly Ser Ile
Phe Ala Leu Ser Arg Gly Leu Pro His Arg Thr 85
90 95Leu Ala Ala Met Ala Arg Ala Ala Gly Pro Arg
Ala Lys Glu Leu Met 100 105
110Ala Phe Ser Val Gly Asp Thr Pro Ala Val Val Ser Ser Cys Pro Ala
115 120 125Thr Ala Arg Glu Val Leu Ala
His Pro Ser Phe Ala Asp Arg Pro Val 130 135
140Lys Arg Ser Ala Arg Glu Leu Met Phe Ala Arg Ala Ile Gly Phe
Ala145 150 155 160Pro Asn
Gly Glu Tyr Trp Arg Arg Leu Arg Arg Val Ala Ser Thr His
165 170 175Leu Phe Ser Pro Arg Arg Val
Ala Ala His Glu Pro Gly Arg Gln Gly 180 185
190Asp Ala Glu Ala Met Leu Arg Ser Val Ala Ala Glu Gln Ser
Ala Ser 195 200 205Gly Thr Val Val
Leu Arg Pro His Leu Gln Ala Ala Ala Leu Asn Asn 210
215 220Ile Met Gly Ser Val Phe Gly Thr Arg Tyr Asp Val
Thr Ser Gly Ala225 230 235
240Thr Ala Gly Ala Ala Glu Ala Glu Gln Leu Lys Ser Met Val Arg Glu
245 250 255Gly Phe Glu Leu Leu
Gly Ala Phe Asn Trp Ser Asp His Leu Pro Trp 260
265 270Leu Ala His Leu Tyr Asp Pro Ser Asn Val Thr Arg
Arg Cys Ala Ala 275 280 285Leu Val
Pro Arg Val Gln Thr Phe Val Arg Gly Val Ile Asp Glu His 290
295 300Arg Arg Arg Arg Gln Asn Ser Ala Ala Leu Asp
Leu Asn Asp Asn Ala305 310 315
320Asp Phe Val Tyr Val Leu Leu Ser Leu Asp Gly Asp Glu Lys Leu Arg
325 330 335Asp Asp Asp Met
Val Ala Ile Leu Trp Glu Met Ile Phe Arg Gly Thr 340
345 350Asp Thr Thr Ala Leu Leu Thr Glu Trp Cys Met
Ala Glu Leu Val Arg 355 360 365His
Pro Ala Val Gln Ala Arg Leu Arg Ala Glu Val Asp Ala Ala Val 370
375 380Gly Ala Gly Gly Arg Pro Thr Asp Ala Asp
Val Ala Arg Met Pro Tyr385 390 395
400Leu Gln Ala Val Val Lys Glu Thr Leu Arg Ala His Pro Pro Gly
Pro 405 410 415Leu Leu Ser
Trp Ala Arg Leu Ala Thr Ala Asp Val Pro Leu Ser Asn 420
425 430Gly Met Val Val Pro Ala Gly Thr Thr Ala
Met Val Asn Met Trp Ala 435 440
445Ile Thr His Asp Ala Gly Val Trp Ala Asp Pro Asp Ala Phe Ala Pro 450
455 460Glu Arg Phe Leu Pro Ser Glu Gly
Gly Ala Asp Val Asp Val Arg Gly465 470
475 480Val Asp Leu Arg Leu Ala Pro Phe Gly Ala Gly Arg
Arg Val Cys Pro 485 490
495Gly Lys Asn Leu Gly Leu Thr Thr Val Gly Leu Trp Val Ala Arg Leu
500 505 510Val His Ala Phe Glu Trp
Ala Leu Pro Asp Gly Ala Pro Pro Val Cys 515 520
525Leu Asp Glu Val Leu Lys Leu Ser Leu Glu Met Lys Thr Pro
Leu Ala 530 535 540Ala Ala Ala Ile Pro
Arg Thr Ala545 55083561PRTBrachypodium distachyon 83Met
Glu Ser Ser Val Glu Ser Ser Trp Trp Val Leu Pro Leu Thr Leu1
5 10 15Ile Pro Ala Ile Ser Gly Gln
Gln Gln Gln His Asp Gln Ser Thr Ala 20 25
30Ala Ala Ile Ala Thr Ser Phe Val Tyr Leu Ala Ile Leu Ala
Cys Leu 35 40 45Ala Trp Ala Ala
Lys Ser Leu Leu Tyr Trp Ala His Pro Gly Gly Pro 50 55
60Ala Trp Gly Arg Arg Tyr Trp Thr Ser Pro Cys Ala Lys
Thr Ala Pro65 70 75
80Ala Pro Ala Pro Ile Pro Gly Pro Arg Gly Leu Pro Val Val Gly Ser
85 90 95Leu Gly Leu Met Ser Gly
Leu Ala His Ser Thr Leu Ala Ala Glu Ala 100
105 110Ala Arg Thr Pro Gly Ala Lys Arg Leu Met Ala Leu
Ser Leu Gly Pro 115 120 125Val Pro
Ala Val Val Thr Ala His Pro Asp Val Ala Lys Glu Ile Leu 130
135 140Asp Asn Pro Ala Phe Ala Asp Arg Pro Val Asn
His Ala Ala Tyr Gly145 150 155
160Leu Met Phe His Arg Ser Ile Gly Phe Ala Glu His Gly Pro Tyr Trp
165 170 175Arg Ala Leu Arg
Arg Val Ala Ser Ala His Leu Phe Ala Pro Arg Gln 180
185 190Val Asp Ala Phe Ala Pro Tyr Arg Ala Arg Val
Gly Glu Asp Val Val 195 200 205Ala
Ala Leu Arg His Ala Gly Gly Gly Val Val Asn Val Arg Gly Val 210
215 220Leu Arg Arg Ala Ser Leu Tyr Tyr Ile Met
Arg Phe Val Phe Gly Lys225 230 235
240Glu Tyr Asp Val Ser Ser Asp Ser Gly Lys Lys Asp Gln Gly Glu
Val 245 250 255Glu Glu Leu
Leu Glu Met Val His Glu Gly Tyr Glu Leu Leu Gly Lys 260
265 270Glu Asn Trp Cys Asp Tyr Phe Pro Gly Leu
Ala Gly Phe Asp Pro Gln 275 280
285Gly Val Gly Ala Arg Cys Ala Glu Leu Met Pro Arg Val Asn Arg Phe 290
295 300Val His Gly Ile Ile Asp Glu His
Arg Gly Lys Ala Met Ile Ala Gly305 310
315 320Gly Glu Gly Glu Ala Gln Pro Leu Asp Phe Val Asp
Ile Leu Leu Ser 325 330
335Leu Gln Glu Ser Glu Gly Leu Ala Asp Ala Asp Ile Ala Ala Val Leu
340 345 350Trp Glu Met Ile Phe Arg
Gly Thr Asp Ala Met Ala Val Leu Met Glu 355 360
365Trp Thr Met Ala Arg Leu Val Leu His Pro Gly Val Gln Ala
Asn Val 370 375 380His Lys Glu Leu Asp
Glu Val Val Gly Lys Ser Ser His Val Thr Glu385 390
395 400Ser Ala Val Leu Ser Leu Pro Tyr Leu Gln
Ala Leu Leu Lys Glu Ala 405 410
415Leu Arg Val His Pro Pro Gly Pro Leu Leu Ser Trp Arg His Arg Ala
420 425 430Met Trp Asp Thr Tyr
Val Asp Gly His Leu Val Pro Ala Gly Thr Thr 435
440 445Ala Met Val Asn Gln Trp Ala Met Ser Arg Asp Pro
Glu Val Trp Ala 450 455 460Glu Pro Leu
Glu Phe Arg Pro Glu Arg Phe Leu Pro Gly Gly Glu Ala465
470 475 480Gly Pro Gly Val Ser Val Leu
Gly Ser Asp Gly Arg Leu Val Pro Phe 485
490 495Gly Ser Gly Arg Arg Ser Cys Pro Gly Lys Asn Leu
Ala Met Thr Thr 500 505 510Val
Thr Ala Trp Met Ala Thr Leu Met His Glu Phe Glu Trp Met Pro 515
520 525Ala Lys Thr Gly Ala Pro Val Asp Met
Ser Glu Val Leu Arg Leu Ser 530 535
540Cys Glu Met Ala Thr Pro Leu Gln Val Arg Val Arg Pro Arg Arg Gly545
550 555
560Val849PRTArtificial sequenceSynthetic sequence CYP78A6-clade
polypeptide amino acid sequence motifVARIANT(8)..(8)Xaa is any amino
acid, preferably Gly, His or Thr 84Gly Gly Ala Trp Gly Lys Tyr Xaa
Arg1 58517PRTArtificial sequenceSynthetic sequence
CYP78A6-clade polypeptide amino acid sequence
motifVARIANT(1)..(1)Xaa is any amino acid, preferably Val or
AsnVARIANT(3)..(3)Xaa is any amino acid, preferably Lys or
ArgVARIANT(10)..(10)Xaa may be present or absent. If present, Xaa is
any amino acid, preferably ArgVARIANT(11)..(11)Xaa is any amino acid,
preferably Met or SerVARIANT(13)..(13)Xaa is any amino acid, preferably
Ser, Asn or HisVARIANT(14)..(14)Xaa is any amino acid, preferably
Thr or Val 85Xaa Gly Xaa Gly Val Gly Ser Met Ser Xaa Xaa Ser Xaa Xaa Ala
His1 5 10
15Arg8625PRTArtificial sequenceSynthetic sequence CYP78A6-clade
polypeptide amino acid sequence motifVARIANT(5)..(5)Xaa is any amino
acid, preferably Thr or AspVARIANT(6)..(6)Xaa is any amino acid,
preferably Thr or ArgVARIANT(7)..(7)Xaa may be present or absent. If
present, Xaa is any amino acid, preferably LysVARIANT(8)..(8)Xaa may
be present or absent. If present, Xaa is any amino acid, preferably
ValVARIANT(13)..(13)Xaa is any amino acid, preferably Asn or
HisVARIANT(14)..(14)Xaa is any amino acid, preferably Asp or
AlaVARIANT(19)..(19)Xaa may be present or absent. If present, Xaa is
any amino acid, preferably Ser 86Met Ala Ser Gly Xaa Xaa Xaa Xaa Val Val
Thr Cys Xaa Xaa Val Ala1 5 10
15Lys Asn Xaa Ser Val Ala Asp Arg Val 20
258712PRTArtificial sequenceSynthetic sequence CYP78A6-clade polypeptide
amino acid sequence motif 87Val Gly Tyr Asp Gly Thr Asn Trp Thr Asp
His Trp1 5 108810PRTArtificial
sequenceSynthetic sequence CYP78A6-clade polypeptide amino acid
sequence motif 88Ala Val Trp Met Arg Gly Thr Asp Val Ala1 5
108913PRTArtificial sequenceSynthetic sequence
CYP78A6-clade polypeptide amino acid sequence
motifVARIANT(10)..(10)Xaa is any amino acid, preferably Ala or Ser 89Lys
Val Arg His Gly Ser Trp Ala Arg Xaa Thr Asp Thr1 5
109049PRTArtificial sequenceSynthetic sequence CYP78A6-clade
polypeptide amino acid sequence motifVARIANT(13)..(13)Xaa is any
amino acid, preferably Ala or ValVARIANT(14)..(14)Xaa may be present or
absent. If present, Xaa is any amino acid, preferably
SerVARIANT(15)..(15)Xaa is any amino acid, preferably His or
ArgVARIANT(20)..(20)Xaa is any amino acid, preferably Val, Asn or
AspVARIANT(21)..(21)Xaa may be present or absent. If present, Xaa is
any amino acid, preferably AspVARIANT(28)..(28)Xaa is any amino acid,
preferably Ala or ValVARIANT(39)..(39)Xaa is any amino acid, preferably
Arg or LysVARIANT(41)..(41)Xaa may be present or absent. If present, Xaa
is any amino acid, preferably Val 90Val Ala Gly Thr Thr Ala Met Val
Asn Met Trp Ala Xaa Xaa Xaa Asp1 5 10
15His Val Trp Xaa Xaa Lys Arg Val Ala Lys Gly Xaa Ser Val
Gly Ser 20 25 30Asp Arg Ala
Gly Ser Gly Xaa Arg Xaa Cys Gly Lys Asn Gly Thr Thr 35
40 45Val9117PRTArabidopsis thaliana 91Gly Gly Ala
Trp Gly Lys Tyr Gly Arg Ser Gly Ser Tyr Lys Thr Gly1 5
10 15Asn9216PRTArabidopsis thaliana 92Val
Gly Lys Gly Val Gly Ser Met Ser Met Ser Ser Thr Ala His Arg1
5 10 159322PRTArabidopsis thaliana
93Met Ala Ser Gly Thr Arg Val Val Thr Cys Asn Asp Val Ala Lys Asn1
5 10 15Ser Val Ala Asp Arg Val
209413PRTArabidopsis thaliana 94Lys Val Arg His Gly Ser Trp Ala
Arg Ala Thr Asp Thr1 5
109548PRTArabidopsis thaliana 95Val Ala Gly Thr Thr Ala Met Val Asn Met
Trp Ala Val Ser His Asp1 5 10
15His Val Trp Val Asp Lys Arg Val Ala Lys Gly Val Ser Val Gly Ser
20 25 30Asp Arg Ala Gly Ser Gly
Arg Arg Cys Gly Lys Asn Gly Thr Thr Val 35 40
45961229DNAArabidopsis thaliana 96acactctttc ctctctcttt
cttctctctt tcttttctct ctctctcctc tgctcctccg 60tctctcgtct acagtgccct
ccgcatcacc tttttccttg tcctatgaat ttggtcgaaa 120tgcccttctc ctcctcctcc
ttccactaat ctcaaaagat atatccttcg agactctccc 180ttgccgtctc caattgccac
tcaccgctcc aactctcttc gaattagctg aaatgaatgg 240agataataga ccagtggaag
atgctcatta cacggagaca ggtttccctt atgctgctac 300tggaagttac atggactttt
atggtggtgc ggctcagggg cctcttaact acgatcatgc 360cgcaactatg catcctcagg
acaatctgta ctggaccatg aataccaatg catacaagtt 420tgggttttca ggatcagata
atgcttcttt ctatggttca tatgacatga acgatcattt 480atcgaggatg tccataggga
gaacaaattg ggactatcat cccatggtga acgttgctga 540tgatcctgaa aacacagttg
cacgttccgt ccaaatcgga gacacagatg agcactctga 600agctgaagaa tgcattgcaa
atgagcatga tcccgacagt cctcaggtat cctggcaaga 660tgacattgat cctgatacaa
tgacctatga ggaattagta gagctggggg aagcagtagg 720aacagaaagc agggggttgt
ctcaggaact catagaaacg cttcccacta aaaagtataa 780gtttgggagc atcttctcca
ggaaaagagc tggggagagg tgtgtgatat gccagctcaa 840gtacaagata ggggagaggc
aaatgaatct gccgtgcaag catgtgtatc attctgaatg 900catttccaaa tggctaagca
tcaacaaggt ttgcccggtg tgtaacagcg aggtctttgg 960ggagcccagc attcattgat
cggcacaagg ggctcctcct cttcttttct ttttggcttt 1020ttatatcgag gctcatcaag
taattgtttt agtgtagtga aaaccccaaa aaatagtcta 1080aaagatgtcc acactatact
ctctcatgtt cagtccttct ctgtacatgt aatttttctt 1140ctagttccat tttcgcttgt
gtgtgcttta agtttaacag tcactcgtat tgtatactaa 1200atgctaagtc aaaaacgctg
aatccatat 122997248PRTArabidopsis
thaliana 97Met Asn Gly Asp Asn Arg Pro Val Glu Asp Ala His Tyr Thr Glu
Thr1 5 10 15Gly Phe Pro
Tyr Ala Ala Thr Gly Ser Tyr Met Asp Phe Tyr Gly Gly 20
25 30Ala Ala Gln Gly Pro Leu Asn Tyr Asp His
Ala Ala Thr Met His Pro 35 40
45Gln Asp Asn Leu Tyr Trp Thr Met Asn Thr Asn Ala Tyr Lys Phe Gly 50
55 60Phe Ser Gly Ser Asp Asn Ala Ser Phe
Tyr Gly Ser Tyr Asp Met Asn65 70 75
80Asp His Leu Ser Arg Met Ser Ile Gly Arg Thr Asn Trp Asp
Tyr His 85 90 95Pro Met
Val Asn Val Ala Asp Asp Pro Glu Asn Thr Val Ala Arg Ser 100
105 110Val Gln Ile Gly Asp Thr Asp Glu His
Ser Glu Ala Glu Glu Cys Ile 115 120
125Ala Asn Glu His Asp Pro Asp Ser Pro Gln Val Ser Trp Gln Asp Asp
130 135 140Ile Asp Pro Asp Thr Met Thr
Tyr Glu Glu Leu Val Glu Leu Gly Glu145 150
155 160Ala Val Gly Thr Glu Ser Arg Gly Leu Ser Gln Glu
Leu Ile Glu Thr 165 170
175Leu Pro Thr Lys Lys Tyr Lys Phe Gly Ser Ile Phe Ser Arg Lys Arg
180 185 190Ala Gly Glu Arg Cys Val
Ile Cys Gln Leu Lys Tyr Lys Ile Gly Glu 195 200
205Arg Gln Met Asn Leu Pro Cys Lys His Val Tyr His Ser Glu
Cys Ile 210 215 220Ser Lys Trp Leu Ser
Ile Asn Lys Val Cys Pro Val Cys Asn Ser Glu225 230
235 240Val Phe Gly Glu Pro Ser Ile His
2459822DNAArtificial sequenceSynthetic sequence Primer for verifying
T-DNA 98ggtctaagat ttctctcgtg tc
229922DNAArtificial sequenceSynthetic sequence Primer for verifying
T-DNA 99cgtacgtctt ctattactcc ac
2210021DNAArtificial sequenceSynthetic sequence Primer for verifying
T-DNA 100aactccaaag gatcaaccca c
2110121DNAArtificial sequenceSynthetic sequence Primer for verifying
T-DNA 101ccggttaaag aatcggctta c
2110221DNAArtificial sequenceSynthetic sequence Primer for verifying
T-DNA 102gacttgcaaa gatcgttcac c
2110321DNAArtificial sequenceSynthetic sequence Primer for verifying
T-DNA 103actcaatgtg acgtgttgtg g
2110421DNAArtificial sequenceSynthetic sequence Primer for verifying
T-DNA 104tttgatcgag tggattcttg c
2110521DNAArtificial sequenceSynthetic sequence Primer for verifying
T-DNA 105atatttgctt gtaatcgggg c
2110621DNAArtificial sequenceSynthetic sequence Primer for verifying
T-DNA 106taaaaccaaa cgacaccgtt c
2110721DNAArtificial sequenceSynthetic sequence Primer for verifying
T-DNA 107tccaagtttg ttgacgattc c
2110824DNAArtificial sequenceSynthetic sequence Primer for verifying
T-DNA 108cgagtatcaa tggaaactta accg
2410920DNAArtificial sequenceSynthetic sequence Primer for verifying
T-DNA 109aacggagagt ggcttgagat
2011020DNAArtificial sequenceSynthetic sequence Primer for verifying
T-DNA 110tggcccttat ggtttctgca
2011115DNAArtificial sequenceSynthetic sequence Primer for verifying
T-DNAmisc_feature(1)..(1)n is a or g or c or t 111ntcgastwts gwgtt
1511222DNAArtificial
sequenceSynthetic sequence Primer for verifying T-DNA 112tggttcacgt
agtgggccat cg
2211334DNAArtificial sequenceSynthetic sequence Primer for verifying
T-DNA 113gcttcctatt atatcttccc aaattaccaa taca
3411430DNAArtificial sequenceSynthetic sequence Primer for
constructs 114ctgcagatgg ctacgaaact cgaaagctcc
3011530DNAArtificial sequenceSynthetic sequence Primer for
constructs 115ctgcagttaa ctgcgcctac ggcgcaattt
3011624DNAArtificial sequenceSynthetic sequence Primer for
constructs 116gagctctgtc tcgtggataa gtag
2411727DNAArtificial sequenceSynthetic sequence Primer for
constructs 117ccatggggcg gatcaaagca aagtaag
2711818DNAArtificial sequenceSynthetic sequence Primer for
RT-PCR 118accaaccttg ccttctcc
1811919DNAArtificial sequenceSynthetic sequence Primer for RT-PCR
119cgtctcggct cttctgatt
1912017DNAArtificial sequenceSynthetic sequence Primer for RT-PCR
120acaacgagca gcaacca
1712119DNAArtificial sequenceSynthetic sequence Primer for RT-PCR
121tcttcaaccg gaacttcat
1912218DNAArtificial sequenceSynthetic sequence Primer for RT-PCR
122atccttcctg atatcgac
1812318DNAArtificial sequenceSynthetic sequence Primer for RT-PCR
123gagaagatga ctcagatc
1812420DNAArtificial sequenceSynthetic sequence Primer for quantitative
real-time RT-PCR 124ccggttaaag aatcggctta
2012520DNAArtificial sequenceSynthetic sequence Primer
for quantitative real-time RT-PCR 125ttgagatcac tcgtcgttgc
2012620DNAArtificial
sequenceSynthetic sequence Primer for quantitative real-time RT-PCR
126gaaatcacag cacttgcacc
2012720DNAArtificial sequenceSynthetic sequence Primer for quantitative
real-time RT-PCR 127aagcctttga tcttgagagc
2012822DNAArtificial sequenceSynthetic sequence Primer
for in situ hybridization 128aaagaagctc atatgagaat ta
2212923DNAArtificial sequenceSynthetic
sequence Primer for in situ hybridization 129tggtgtaaat ataaattgaa
act 2313024DNAArtificial
sequenceSynthetic sequence Primer for in situ hybridization
130ttagtgtatg ataaggctaa ggct
2413122DNAArtificial sequenceSynthetic sequence Primer for in situ
hybridization 131gtattaactt ttctttgtga ca
22
User Contributions:
Comment about this patent or add new information about this topic: