Patent application title: RE-ENGINEERING OF MYCORRHIZAL SYMBIOSIS IN PLANTS
Inventors:
IPC8 Class: AC12N1582FI
USPC Class:
1 1
Class name:
Publication date: 2020-06-25
Patent application number: 20200199614
Abstract:
The invention relates to methods and compositions for modifying naturally
non-mycorrhizal plants to produce modified plants that can be colonized
by a mycorrhizal fungus having increased nitrogen and phosphorus uptake,
increased drought tolerance/resistance, increased resistance to fungal
and/or bacterial pathogens, and/or increased growth rate, yield and/or
biomass production of a naturally non-mycorrhizal plant. The invention
further relates to plants, plant parts, and/or plant cells produced by
the methods of the invention as well as harvested and processed products
from the plants, plant parts, and/or plant cells.Claims:
1. A modified naturally non-mycorrhizal plant, comprising in its genome a
heterologous polynucleotide encoding an IPD3 (Interacting Protein of
DMI3) polypeptide or a heterologous polynucleotide encoding an IPD3
phosphomimic polypeptide.
2. The modified plant of claim 1, further comprising in its genome a heterologous polynucleotide encoding a DMI3 (Doesn't Make Infections 3) polypeptide or a heterologous polynucleotide encoding a DMI3 phosphomimic polypeptide.
3. The modified plant of claim 1 or claim 2, further comprising in its genome a heterologous polynucleotide encoding an isoflavone synthase (IFS) polypeptide.
4. The modified plant of any one of claims 1 to 3, further comprising in its genome a heterologous polynucleotide encoding a flavone synthase 1 (FS1) polypeptide and/or a heterologous polynucleotide encoding a flavone synthase 2 (FS2) polypeptide.
5. The modified plant of any one of claims 1 to 4, wherein the plant has increased drought tolerance/resistance, increased nitrogen uptake, increased phosphorus uptake, increased resistance to fungal and/or bacterial pathogens, and/or increased growth rate, yield and/or biomass production.
6. The modified plant of any one of claims 1 to 5, wherein the naturally non-mycorrhizal plant is a Brassicaceae plant or an Amaranthaceae plant.
7. The modified plant of claim 6, wherein the Brassicaceae plant is a canola plant, a broccoli plant, a brussels sprout plant, a cabbage plant, a Camelina plant, or an Arabidopsis plant, and/or the Amaranthaceae plant is a quinoa plant, an amaranth plant, a sugar beet plant, or a spinach plant.
8. The modified plant of any one of claims 1 to 7, wherein the heterologous polynucleotide encoding an IPD3 comprises a nucleotide sequence having at least about 70% identity to any one of SEQ ID NOs:1-5 and/or a nucleotide sequence having at least about 70% identity to a polynucleotide encoding an amino acid sequence of any one of SEQ ID NOs:10-14.
9. The modified plant of any one of claims 1 to 8, wherein the heterologous polynucleotide encoding an IPD3 phosphomimic comprises a nucleotide sequence having at least about 70% identity to any one of SEQ ID NOs:6-9, and/or a nucleotide sequence having at least about 70% identity to a polynucleotide encoding an amino acid sequence of any one of SEQ ID NOs:15-18.
10. The modified plant of any one of claims 2 to 9, wherein the heterologous polynucleotide encoding an DMI3 comprises a nucleotide sequence having at least about 70% identity to any one of SEQ ID NOs:19-25 and/or a nucleotide sequence having at least about 70% identity to a polynucleotide encoding an amino acid sequence of any one of SEQ ID NOs:28-34.
11. The modified plant of any one of claims 2 to 10, wherein the heterologous polynucleotide encoding an DMI3 phosphomimic comprises a nucleotide sequence having at least about 70% identity to SEQ ID NO:26 or SEQ ID NO:27, and/or a nucleotide sequence having at least about 70% identity to a polynucleotide encoding an amino acid sequence of SEQ ID NO: 35 or SEQ ID NO:36.
12. The modified plant of any one of claims 3 to 11, wherein the heterologous polynucleotide encoding an IFS comprises a nucleotide sequence having at least about 70% identity to a nucleotide sequence of any one of SEQ ID NOs:37-45 and/or a nucleotide sequence having at least about 70% identity to a polynucleotide encoding an amino acid sequence of any one of SEQ ID NOs: 46-54.
13. The modified plant of any one of claims 4 to 12, wherein the heterologous polynucleotide encoding an FS1 comprises a nucleotide sequence having at least about 70% identity to a nucleotide sequence of any one of SEQ ID NOs:55-61 and/or having at least about 70% identity to a polynucleotide encoding an amino acid sequence of any one of SEQ ID NOs:62-68 and/or the heterologous polynucleotide encoding an FS2 comprises a nucleotide sequence having at least about 70% identity to a nucleotide sequence of any one of SEQ ID NOs:69-79 and/or having at least about 70% identity to a polynucleotide encoding an amino acid sequence of any one of SEQ ID NOs:80-90.
14. The modified plant of any one of claims 1-13 colonized by a mycorrhizal fungus.
15. A method of modifying a naturally non-mycorrhizal plant to produce a modified plant that is colonized by a mycorrhizal fungus when in contact with the mycorrhizal fungus, comprising: introducing into a naturally non-mycorrhizal plant, plant part or plant cell a heterologous polynucleotide encoding an IPD3 (Interacting Protein of DMI3) polypeptide or a heterologous polynucleotide encoding an IPD3 phosphomimic polypeptide, thereby producing a modified plant that is colonized by the mycorrhizal fungus when in contact with the mycorrhizal fungus.
16. A method of producing a modified naturally non-mycorrhizal plant having increased nitrogen uptake, comprising: introducing into a naturally non-mycorrhizal plant, or plant part or plant cell thereof, a heterologous polynucleotide encoding an IPD3 (Interacting Protein of DMI3) polypeptide or a heterologous polynucleotide encoding an IPD3 phosphomimic polypeptide to produce the modified naturally non-mycorrhizal plant, and contacting the modified naturally non-mycorrhizal plant with a mycorrhizal fungus, thereby producing the modified naturally non-mycorrhizal plant having increased nitrogen uptake.
17. A method of producing a modified naturally non-mycorrhizal plant having increased phosphorus uptake, comprising: introducing into a naturally non-mycorrhizal plant, or plant part or plant cell thereof, a heterologous polynucleotide encoding an IPD3 (Interacting Protein of DMI3) polypeptide or a heterologous polynucleotide encoding an IPD3 phosphomimic polypeptide to produce the modified naturally non-mycorrhizal plant, and contacting the modified naturally non-mycorrhizal plant with a mycorrhizal fungus, thereby producing the modified naturally non-mycorrhizal plant having increased phosphorus uptake.
18. A method of producing a modified naturally non-mycorrhizal plant having increased drought tolerance/resistance, comprising: introducing into a naturally non-mycorrhizal plant, or plant part or plant cell thereof, a heterologous polynucleotide encoding an IPD3 (Interacting Protein of DMI3) polypeptide or a heterologous polynucleotide encoding an IPD3 phosphomimic polypeptide to produce the modified naturally non-mycorrhizal plant, and contacting the modified naturally non-mycorrhizal plant with a mycorrhizal fungus, thereby producing the modified naturally non-mycorrhizal plant having increased drought tolerance/resistance.
19. A method of producing a modified naturally non-mycorrhizal plant having increased resistance to fungal and/or bacterial pathogens, comprising: introducing into a naturally non-mycorrhizal plant, or plant part or plant cell thereof, a heterologous polynucleotide encoding an IPD3 (Interacting Protein of DMI3) polypeptide or a heterologous polynucleotide encoding an IPD3 phosphomimic polypeptide to produce the modified naturally non-mycorrhizal plant, and contacting the modified naturally non-mycorrhizal plant with a mycorrhizal fungus, thereby producing the modified naturally non-mycorrhizal plant having increased resistance to fungal and/or bacterial pathogens.
20. A method of producing a modified naturally non-mycorrhizal plant having an increased growth rate, yield and/or biomass production, comprising: introducing into a naturally non-mycorrhizal plant, or plant part or plant cell thereof, a heterologous polynucleotide encoding an IPD3 (Interacting Protein of DMI3) polypeptide or a heterologous polynucleotide encoding an IPD3 phosphomimic polypeptide to produce the modified naturally non-mycorrhizal plant, and contacting the modified naturally non-mycorrhizal plant with a mycorrhizal fungus, thereby producing the modified naturally non-mycorrhizal plant having increased growth rate, yield and/or biomass production.
21. A method of increasing nitrogen uptake, phosphorus uptake, drought tolerance/resistance, resistance to fungal and/or bacterial pathogens, and/or growth rate, yield and/or biomass production of a naturally non-mycorrhizal plant, comprising: introducing into a naturally non-mycorrhizal plant, or plant part or plant cell thereof, a heterologous polynucleotide encoding an IPD3 (Interacting Protein of DMI3) polypeptide or a heterologous polynucleotide encoding an IPD3 phosphomimic polypeptide to produce the modified naturally non-mycorrhizal plant, and contacting the modified naturally non-mycorrhizal plant with a mycorrhizal fungus, wherein the modified naturally non-mycorrhizal plant has increased nitrogen uptake, phosphorus uptake, drought tolerance/resistance, resistance to fungal and/or bacterial pathogens, and/or growth rate, yield and/or biomass production.
22. The method of any one of claims 15 to 21, further comprising: introducing into the naturally non-mycorrhizal plant, or plant part or plant cell thereof, a heterologous polynucleotide encoding an DMI3 (Doesn't Make Infections 3) polypeptide or a heterologous polynucleotide encoding a DMI3 phosphomimic polypeptide.
23. The method of any one of claims 15 to 22, further comprising introducing into the naturally non-mycorrhizal plant, or plant part or plant cell thereof, a heterologous polynucleotide encoding an isoflavone synthase (IFS) polypeptide.
24. The method of any one of claims 15 to 23, further comprising introducing into the naturally non-mycorrhizal plant, or plant part or plant cell thereof, a heterologous polynucleotide encoding a flavone synthase 1 (FS1) polypeptide and/or a heterologous polynucleotide encoding a flavone synthase 2 (FS2) polypeptide.
25. The method of any one of claims 15 to 24, comprising: regenerating a plant from the plant cell or the plant part into which the heterologous polynucleotide was introduced.
26. The method of any one of claims 15 to 25, wherein the naturally non-mycorrhizal plant is a Brassicaceae plant or an Amaranthaceae plant.
27. The method of claim 26 wherein the Brassicaceae plant is a canola plant, a broccoli plant, a brussels sprout plant, a cabbage plant, a Camelina plant, or an Arabidopsis plant and/or the Amaranthaceae plant is quinoa, amaranth, sugar beet, or spinach.
28. The method of any one of claims 15 to 27, wherein the heterologous polynucleotide encoding an IPD3 comprises a nucleotide sequence having at least about 70% identity to any one of SEQ ID NOs:1-5 and/or a nucleotide sequence having at least about 70% identity to a polynucleotide encoding an amino acid sequence of any one of SEQ ID NOs:10-14.
29. The method of any one of claims 15 to 28, wherein the heterologous polynucleotide encoding an IPD3 phosphomimic comprises a nucleotide sequence of any one of SEQ ID NOs:6-9, and/or a polynucleotide encoding an amino acid sequence of any one of SEQ ID NOs:15-18.
30. The method of any one of claims 15 to 29, wherein the heterologous polynucleotide encoding an DMI3 comprises a nucleotide sequence having at least about 70% identity to any one of SEQ ID NOs:19-25 and/or a nucleotide sequence having at least about 70% identity to a polynucleotide encoding an amino acid sequence of any one of SEQ ID NOs:28-34.
31. The method of any one of claims 15 to 30, wherein the heterologous polynucleotide encoding an DMI3 phosphomimic comprises a nucleotide sequence of SEQ ID NO:26 or SEQ ID NO:27, and/or a polynucleotide encoding an amino acid sequence of SEQ ID NO: 35 or SEQ ID NO:36.
32. The method of any one of claims 15 to 31, wherein the heterologous polynucleotide encoding an IFS comprises a nucleotide sequence having at least about 70% identity to a nucleotide sequence of any one of SEQ ID NOs:37-45 and/or a nucleotide sequence having at least about 70% identity to a polynucleotide encoding an amino acid sequence of any one of SEQ ID NOs: 46-54.
33. The method of any one of claims 15 to 32, wherein the heterologous polynucleotide encoding an FS1 comprises a nucleotide sequence having at least about 70% identity to a nucleotide sequence of any one of SEQ ID NOs:55-61 and/or having at least about 70% identity to a polynucleotide encoding an amino acid sequence of any one of SEQ ID NOs:62-68 and/or the heterologous polynucleotide encoding an FS2 comprises a nucleotide sequence having at least about 70% identity to a nucleotide sequence of any one of SEQ ID NOs:69-79 and/or having at least about 70% identity to a polynucleotide encoding an amino acid sequence of any one of SEQ ID NOs:80-90.
34. A plant produced by the method of any one of claims 15 to 33.
35. A recombinant nucleic acid molecule comprising at least one polynucleotide selected from the group of polynucleotides consisting of: (a) a polynucleotide encoding an IPD3 (DMI3-interacting protein IPD3/CYCLOPS) having a nucleotide sequence of any one of SEQ ID NOs:1-5; (b) a polynucleotide encoding an IPD3 phosphomimic having a nucleotide sequence of any one of SEQ ID NOs:6-9; (c) a polynucleotide encoding a DMI3 (Doesn't Make Infections 3) polypeptide having a nucleotide sequence of any one of SEQ ID NOs:19-25; (d) a polynucleotide encoding an DMI3 phosphomimic having a nucleotide sequence of SEQ ID NO:26, or SEQ ID NO:27; (e) a polynucleotide encoding an isoflavone synthase (IFS) having a nucleotide sequence of any one of SEQ ID NOs:37-45; (f) a polynucleotide encoding a flavone synthase 1 (FS1) having a nucleotide sequence of any one of SEQ ID NOs:55-61; and/or (g) a polynucleotide encoding a flavone synthase 2 (FS2) having a nucleotide sequence of any one of SEQ ID NOs:69-79; (h) a polynucleotide having at least 70% identity to any one of the polynucleotides of (a)-(g); (i) a polynucleotide that is complementary to any one of the polynucleotides of (a) to (h) above; (j) a polynucleotide that hybridizes to any one of the polynucleotides of (a) to (i) above under stringent hybridization conditions; (k) a functional fragment of any one of the polynucleotides of (a) to (j) above; or (l) any combination of the polynucleotides of (a) to (k) above.
36. A recombinant nucleic acid molecule comprising at least one polynucleotide selected from the group of polynucleotides consisting of: (a) a polynucleotide encoding an IPD3 (DMI3-interacting protein IPD3/CYCLOPS) having an amino acid sequence of any one of SEQ ID NOs:10-14; (b) a polynucleotide encoding an IPD3 phosphomimic having an amino acid sequence of SEQ ID NOs:15-18; (c) a polynucleotide encoding a DMI3 (Doesn't Make Infections 3) polypeptide having an amino acid sequence of any one of SEQ ID NOs:28-34; (d) a polynucleotide encoding an DMI3 phosphomimic having an amino acid sequence of SEQ ID NO:35 or SEQ ID NO:36; (e) a polynucleotide encoding an isoflavone synthase (IFS) having an amino acid sequence of any one of SEQ ID NOs:46-54; (f) a polynucleotide encoding a FS1 flavone synthase 1 having an amino acid sequence of any one of SEQ ID NO:62-68; and/or (g) a polynucleotide encoding a FS2 flavone synthase having an amino acid sequence of any one of SEQ ID NO:80-90; (h) a polynucleotide having at least 70% identity to any one of the polynucleotides of (a)-(g); (i) a polynucleotide that is complementary to any one of the polynucleotides of (a) to (h) above; (j) a polynucleotide that hybridizes to any one of the polynucleotides of (a) to (i) above under stringent hybridization conditions; (k) a functional fragment of any one of the polynucleotides of (a) to (j) above; or (l) any combination of the polynucleotides of (a) to (k) above.
37. The recombinant nucleic acid molecule of claim 35 or claim 36, wherein the polynucleotide is operably linked to a promoter functional in a plant.
38. The recombinant nucleic acid molecule of claim 37, wherein the promoter is a heterologous promoter.
39. The recombinant nucleic acid molecule of claim 37, wherein the promoter is a native promoter.
40. The recombinant nucleic acid molecule of any one of claims 37 to 39, wherein the promoter is a constitutive promoter, a tissue-specific promoter, a tissue-preferred promoter, a stress-inducible promoter, or a developmentally regulated promoter.
41. The recombinant nucleic acid molecule of any one of claims 37 to 40 wherein the promoter is a root-specific promoter and/or a root-preferred promoter.
42. The recombinant nucleic acid molecule of any one of claims 35 to 41, wherein the recombinant nucleic acid molecule is codon optimized.
43. An expression cassette comprising the recombinant nucleic acid molecule of any one of claims 35 to 42.
44. A vector comprising the recombinant nucleic acid molecule of any one of claims 35 to 42 or the expression cassette of claim 43.
45. A naturally non-mycorrhizal plant, plant part or plant cell comprising in its genome the recombinant nucleic acid molecule of any one of claims 35-41, the expression cassette of claim 43, and/or the vector of claim 44.
46. A seed from the plant of any one of claims 1 to 13, 34 or 45, wherein said seed comprises in its genome said recombinant nucleic acid molecule.
47. A plant grown from the seed of claim 46.
48. A crop comprising a plurality of the plant of any one of claims 1 to 13, 34, 45 or 47.
49. A product harvested from the plant of any one of claims 1 to 13, 34, 45 or 47, or a plant part thereof, or the crop of claim 48.
50. A processed product produced from the seed of claim 46 or the harvested product of claim 49.
Description:
STATEMENT OF PRIORITY
[0001] This application claims the benefit, under 35 U.S.C. .sctn. 119 (e), of U.S. Provisional Application No. 62/522,917 filed on Jun. 21, 2017, the entire contents of which is incorporated by reference herein.
STATEMENT REGARDING ELECTRONIC FILING OF A SEQUENCE LISTING
[0002] A Sequence Listing in ASCII text format, submitted under 37 C.F.R. .sctn. 1.821, entitled 5051-921WO_ST25.txt, 307,357 bytes in size, generated on Jun. 19, 2018 and filed via EFS-Web, is provided in lieu of a paper copy. This Sequence Listing is hereby incorporated herein by reference into the specification for its disclosures.
FIELD OF THE INVENTION
[0003] The invention relates to methods and compositions for modifying naturally non-mycorrhizal plants to produce modified plants comprising in their genome a heterologous polynucleotide encoding an IPD3 (Interacting Protein of DMI3) polypeptide, which can be colonized by a mycorrhizal fungus.
BACKGROUND OF THE INVENTION
[0004] Mycorrhizae are symbiotic interfaces between plant roots and soil fungi in which the fungus provides increased uptake of nitrogen, phosphorous, and water. This relationship is an integral part of the biology of most plants, being present in about 80-95% of all plant species. However, this symbiotic relationship is not found in many plants of economic importance, including plants in the Brassicaceae and the Amaranthaceae families.
SUMMARY OF THE INVENTION
[0005] One aspect of the invention provides a modified naturally non-mycorrhizal plant, comprising in its genome a heterologous polynucleotide encoding an IPD3 (Interacting Protein of DMI3) polypeptide or a heterologous polynucleotide encoding an IPD3 phosphomimic polypeptide.
[0006] A second aspect provides a method of modifying a naturally non-mycorrhizal plant to produce a modified plant that is colonized by a mycorrhizal fungus when in contact with the mycorrhizal fungus, comprising: introducing into a naturally non-mycorrhizal plant, plant part or plant cell a heterologous polynucleotide encoding an IPD3 (Interacting Protein of DMI3) polypeptide or a heterologous polynucleotide encoding an IPD3 phosphomimic polypeptide, thereby producing the modified naturally non-mycorrhizal plant that is colonized by the mycorrhizal fungus when in contact with the mycorrhizal fungus.
[0007] A third aspect provides a method of producing a modified plant that is colonized by a mycorrhizal fungus from a plant that is a naturally non-mycorrhizal plant, comprising: introducing into a naturally non-mycorrhizal plant, or plant part or plant cell thereof; a heterologous polynucleotide encoding an IPD3 (Interacting Protein of DMI3) polypeptide or a heterologous polynucleotide encoding an IPD3 phosphomimic polypeptide, thereby producing the modified naturally non-mycorrhizal plant that is colonized by the mycorrhizal fungus.
[0008] A fourth aspect provides a method of producing a modified naturally non-mycorrhizal plant having increased nitrogen uptake, comprising: introducing into a naturally non-mycorrhizal plant, or plant part or plant cell thereof, a heterologous polynucleotide encoding an IPD3 (Interacting Protein of DMI3) polypeptide or a heterologous polynucleotide encoding an IPD3 phosphomimic polypeptide to produce the modified naturally non-mycorrhizal plant, and contacting the modified naturally non-mycorrhizal plant with a mycorrhizal fungus, thereby producing the modified naturally non-mycorrhizal plant having increased nitrogen uptake.
[0009] A fifth aspect of the invention provides a method of producing a modified naturally non-mycorrhizal plant having increased phosphorus uptake, comprising: introducing into a naturally non-mycorrhizal plant, or plant part or plant cell thereof, a heterologous polynucleotide encoding an IPD3 (Interacting Protein of DMI3) polypeptide or a heterologous polynucleotide encoding an IPD3 phosphomimic polypeptide to produce the modified naturally non-mycorrhizal plant, and contacting the modified naturally non-mycorrhizal plant with a mycorrhizal fungus, thereby producing the modified naturally non-mycorrhizal plant having increased phosphorus uptake.
[0010] A sixth aspect provides a method of producing a modified naturally non-mycorrhizal plant having increased drought tolerance/resistance, comprising: introducing into a naturally non-mycorrhizal plant, or plant part or plant cell thereof, a heterologous polynucleotide encoding an IPD3 (Interacting Protein of DMI3) polypeptide or a heterologous polynucleotide encoding an IPD3 phosphomimic polypeptide to produce the modified naturally non-mycorrhizal plant, and contacting the modified naturally non-mycorrhizal plant with a mycorrhizal fungus, thereby producing the modified naturally non-mycorrhizal plant having increased drought tolerance/resistance.
[0011] A seventh aspect provides a method of producing a modified naturally non-mycorrhizal plant having increased resistance to fungal and/or bacterial pathogens, comprising: introducing into a naturally non-mycorrhizal plant, or plant part or plant cell thereof, a heterologous polynucleotide encoding an IPD3 (Interacting Protein of DMI3) polypeptide or a heterologous polynucleotide encoding an IPD3 phosphomimic polypeptide to produce the modified naturally non-mycorrhizal plant, and contacting the modified naturally non-mycorrhizal plant with a mycorrhizal fungus, thereby producing the modified naturally non-mycorrhizal plant having increased resistance to fungal and/or bacterial pathogens.
[0012] A eighth aspect of the invention provides a method of producing a modified naturally non-mycorrhizal plant having an increased growth rate, yield and/or biomass production, comprising: introducing into a naturally non-mycorrhizal plant, or plant part or plant cell thereof, a heterologous polynucleotide encoding an IPD3 (Interacting Protein of DMI3) polypeptide or a heterologous polynucleotide encoding an IPD3 phosphomimic polypeptide to produce the modified naturally non-mycorrhizal plant, and contacting the modified naturally non-mycorrhizal plant with a mycorrhizal fungus, thereby producing the modified naturally non-mycorrhizal plant having increased growth rate, yield and/or biomass production.
[0013] A ninth aspect of the invention provides a method of increasing nitrogen uptake, phosphorus uptake, drought tolerance/resistance, resistance to fungal and/or bacterial pathogens, and/or growth rate, yield and/or biomass production of a naturally non-mycorrhizal plant, comprising: introducing into a naturally non-mycorrhizal plant, or plant part or plant cell thereof, a heterologous polynucleotide encoding an IPD3 (Interacting Protein of DMI3) polypeptide or a heterologous polynucleotide encoding an IPD3 phosphomimic polypeptide to produce a modified naturally non-mycorrhizal plant, and contacting the modified naturally non-mycorrhizal plant with a mycorrhizal fungus, wherein the modified naturally non-mycorrhizal plant has increased nitrogen uptake, phosphorus uptake, drought tolerance/resistance, resistance to fungal and/or bacterial pathogens, and/or growth rate, yield and/or biomass production.
[0014] A tenth aspect of the invention provides a recombinant nucleic acid molecule comprising at least one polynucleotide selected from the group of polynucleotides consisting of:
[0015] (a) a polynucleotide encoding an IPD3 (DMI3-interacting protein IPD3/CYCLOPS) having a nucleotide sequence of any one of SEQ ID NOs:1-5;
[0016] (b) a polynucleotide encoding an IPD3 phosphomimic having a nucleotide sequence of any one of SEQ ID NOs:6-9;
[0017] (c) a polynucleotide encoding a DMI3 (Doesn't Make Infections 3) polypeptide having a nucleotide sequence of any one of SEQ ID NOs:19-25;
[0018] (d) a polynucleotide encoding an DMI3 phosphomimic having a nucleotide sequence of SEQ ID NO:26, or SEQ ID NO:27;
[0019] (e) a polynucleotide encoding an isoflavone synthase (IFS) having a nucleotide sequence of any one of SEQ ID NOs:37-45;
[0020] (f) a polynucleotide encoding a flavone synthase 1 (FS1) having a nucleotide sequence of any one of SEQ ID NOs:55-61; and/or
[0021] (g) a polynucleotide encoding a flavone synthase 2 (FS2) having a nucleotide sequence of any one of SEQ ID NOs:69-79;
[0022] (h) a polynucleotide having at least 70% identity to any one of the polynucleotides of (a)-(g);
[0023] (i) a polynucleotide that is complementary to any one of the polynucleotides of (a) to (h) above;
[0024] (j) a polynucleotide that hybridizes to any one of the polynucleotides of (a) to (i) above under stringent hybridization conditions;
[0025] (k) a functional fragment of any one of the polynucleotides of (a) to (j) above; or
[0026] (l) any combination of the polynucleotides of (a) to (k) above.
[0027] An eleventh aspect of the invention provides a recombinant nucleic acid molecule comprising at least one polynucleotide selected from the group of polynucleotides consisting of:
[0028] (a) a polynucleotide encoding an IPD3 (DMI3-interacting protein IPD3/CYCLOPS) having an amino acid sequence of any one of SEQ ID NOs:10-14;
[0029] (b) a polynucleotide encoding an IPD3 phosphomimic having an amino acid sequence of SEQ ID NOs:15-18;
[0030] (c) a polynucleotide encoding a DMI3 (Doesn't Make Infections 3) polypeptide having an amino acid sequence of any one of SEQ ID NOs:28-34;
[0031] (d) a polynucleotide encoding an DMI3 phosphomimic having an amino acid sequence of SEQ ID NO:35 or SEQ ID NO:36;
[0032] (e) a polynucleotide encoding an isoflavone synthase (IFS) having an amino acid sequence of any one of SEQ ID NOs:46-54;
[0033] (f) a polynucleotide encoding a FS1 flavone synthase 1 having an amino acid sequence of any one of SEQ ID NO:62-68; and/or
[0034] (g) a polynucleotide encoding a FS2 flavone synthase having an amino acid sequence of any one of SEQ ID NO:80-90;
[0035] (h) a polynucleotide having at least 70% identity to any one of the polynucleotides of (a)-(g);
[0036] (i) a polynucleotide that is complementary to any one of the polynucleotides of (a) to (h) above;
[0037] (j) a polynucleotide that hybridizes to any one of the polynucleotides of (a) to (i) above under stringent hybridization conditions;
[0038] (k) a functional fragment of any one of the polynucleotides of (a) to (j) above; or
[0039] (l) any combination of the polynucleotides of (a) to (k) above.
[0040] Further provided are expression cassettes and vectors comprising a recombinant nucleic acid molecule of the invention and plants, plant parts and plant cells comprising a recombinant nucleic acid molecule, expression cassette or vector of the invention as well as crops comprising the plants of the invention and harvested and processed products produced from plants and plant parts thereof of the invention.
[0041] These and other aspects of the invention are set forth in more detail in the description of the invention below.
BRIEF DESCRIPTION OF THE SEQUENCES IN THE SEQUENCE LISTING
[0042] SEQ ID NOs:1-5 are IPD3 cDNA sequences.
[0043] SEQ ID NOs:6-9 are synthetic IPD3 phosphomimic polynucleotides.
[0044] SEQ ID NOs:10-14 are IPD3 polypeptides encoded by the nucleotide sequences of SEQ ID NOs:1-5.
[0045] SEQ ID NOs:15-18 are IPD3 phosphomimic polypeptides encoded by the nucleotide sequences of SEQ ID NOs:6-9.
[0046] SEQ ID NOs:19-25 are DMI3 cDNA sequences.
[0047] SEQ ID NOs:26-27 are synthetic DMI3 phosphomimic polynucleotides.
[0048] SEQ ID NOs:28-34 are DMI3 polypeptides encoded by the nucleotide sequences of SEQ ID NOs:19-25.
[0049] SEQ ID NOs:35-36 are DMI3 phosphomimic polypeptides encoded by the nucleotide sequences of SEQ ID NOs:26-27.
[0050] SEQ ID NOs:37-45 are IFS cDNA sequences.
[0051] SEQ ID NOs:46-54 are IFS polypeptides encoded by the nucleotide sequences of SEQ ID NOs:37-45.
[0052] SEQ ID NOs:55-61 are FS1 cDNA sequences.
[0053] SEQ ID NOs:62-68 are FS1 polypeptides encoded by the nucleotide sequences of SEQ ID NOs:55-61.
[0054] SEQ ID NOs:69-79 are FS2 cDNA sequences.
[0055] SEQ ID NOs:80-90 are FS2 polypeptides encoded by the nucleotide sequences of SEQ ID NOs:69-79.
[0056] SEQ ID NO:91 is an IPD3 promoter sequence.
[0057] SEQ ID NO:92 is an IPD3 terminator sequence.
DETAILED DESCRIPTION
[0058] The present invention now will be described hereinafter with reference to the accompanying drawings and examples, in which embodiments of the invention are shown. This description is not intended to be a detailed catalog of all the different ways in which the invention may be implemented, or all the features that may be added to the instant invention. For example, features illustrated with respect to one embodiment may be incorporated into other embodiments, and features illustrated with respect to a particular embodiment may be deleted from that embodiment. Thus, the invention contemplates that in some embodiments of the invention, any feature or combination of features set forth herein can be excluded or omitted. In addition, numerous variations and additions to the various embodiments suggested herein will be apparent to those skilled in the art in light of the instant disclosure, which do not depart from the instant invention. Hence, the following descriptions are intended to illustrate some particular embodiments of the invention, and not to exhaustively specify all permutations, combinations and variations thereof.
[0059] Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. The terminology used in the description of the invention herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention.
[0060] All publications, patent applications, patents and other references cited herein are incorporated by reference in their entireties for the teachings relevant to the sentence and/or paragraph in which the reference is presented.
[0061] Unless the context indicates otherwise, it is specifically intended that the various features of the invention described herein can be used in any combination. Moreover, the present invention also contemplates that in some embodiments of the invention, any feature or combination of features set forth herein can be excluded or omitted. To illustrate, if the specification states that a composition comprises components A, B and C, it is specifically intended that any of A, B or C, or a combination thereof, can be omitted and disclaimed singularly or in any combination.
[0062] As used in the description of the invention and the appended claims, the singular forms "a," "an" and "the" are intended to include the plural forms as well, unless the context clearly indicates otherwise.
[0063] Also as used herein, "and/or" refers to and encompasses any and all possible combinations of one or more of the associated listed items, as well as the lack of combinations when interpreted in the alternative ("or").
[0064] The term "about," as used herein when referring to a measurable value such as an amount or concentration and the like, is meant to encompass variations of .+-.10%, 5%, .+-.1%, .+-.0.5%, or even .+-.0.1% of the specified value as well as the specified value. For example, "about X" where X is the measurable value, is meant to include X as well as variations of .+-.10%, .+-.5%, .+-.1%, .+-.0.5%, or even .+-.0.1% of X. A range provided herein for a measureable value may include any other range and/or individual value therein.
[0065] As used herein, phrases such as "between X and Y" and "between about X and Y" should be interpreted to include X and Y. As used herein, phrases such as "between about X and Y" mean "between about X and about Y" and phrases such as "from about X to Y" mean "from about X to about Y."
[0066] The term "comprise," "comprises" and "comprising" as used herein, specify the presence of the stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
[0067] As used herein, the transitional phrase "consisting essentially of" means that the scope of a claim is to be interpreted to encompass the specified materials or steps recited in the claim and those that do not materially affect the basic and novel characteristic(s) of the claimed invention. Thus, the term "consisting essentially of" when used in a claim of this invention is not intended to be interpreted to be equivalent to "comprising."
[0068] As used herein, the terms "increase," "increasing," "increased," "enhance," "enhanced," "enhancing," and "enhancement" (and grammatical variations thereof) describe an elevation of at least about 5%, 6%, 7%, 8%, 9%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 100%, 110%, 120%, 130%, 140%, 150%, 200%, 250%, 300%, 350%, 400%, 500% or more as compared to a control (e.g., the native or wild type non-mycorrhizal plant that is not transformed with the heterologous polynucleotides of the invention (e.g., heterologous polynucleotides encoding IPD3, IPD3 phosphomimic, DMI3, DMI3 phosphomimic, IFS, FS1, FS2 polypeptides) or that is transformed with an inactive or inactivated form of the heterologous polynucleotides of the invention).
[0069] As used herein, the terms "reduce," "reduced," "reducing," "reduction," "diminish," and "decrease" (and grammatical variations thereof), describe, for example, a decrease of at least about 5%, 10%, 15%, 20%, 25%, 35%, 50%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, 99%, or 100% as compared to a control (e.g., the native or wild type non-mycorrhizal plant that is not transformed with the heterologous polynucleotides of the invention (e.g., heterologous polynucleotides encoding IPD3, IPD3 phosphomimic, DMI3, DMI3 phosphomimic, IFS, FS1, FS2 polypeptides) or that is transformed with an inactive or inactivated form of the heterologous polynucleotides of the invention). In particular embodiments, the reduction can result in no or essentially no (i.e., an insignificant amount, e.g., less than about 10% or even 5%) detectable activity or amount.
[0070] As used herein, the terms "express," "expresses," "expressed" or "expression," and the like, with respect to a nucleotide sequence (e.g., RNA or DNA) indicates that the nucleotide sequence is transcribed and, optionally, translated. Thus, a nucleotide sequence may express a polypeptide of interest or a functional untranslated RNA. A "functional" RNA includes any untranslated RNA that has a biological function in a cell, e.g., regulation of gene expression. Such functional RNAs include but are not limited to RNAi (e.g., siRNA, shRNA), miRNA, antisense RNA, ribozymes, RNA aptamers, and the like.
[0071] The terms "contact" or "contacting" (or grammatical variations thereof) as used herein to refer to contacting a plant with a mycorrhizal fungus means any method by which mycorrhizal fungi may be delivered to or placed in proximity to a plant of the present invention so as to allow the plant and fungus to form mycorrhizae. Thus, this may occur in culture in a laboratory, a greenhouse, and/or growth chamber using any synthetic or naturally occurring media (e.g., culture media or soil) or it may occur naturally by planting the modified plants of the invention in soil in a field. Additionally, in some embodiments, mycorrhizal fungi may be delivered to a plant as a seed coating or by mixing a mycorrhizal fungal inoculum with seeds prior to planting. In some embodiments, mycorrhizal fungi may be delivered to a plant as a soil inoculum or amendment.
[0072] "Yield" as used herein, refers to the amount (as measured by weight or number) of tissue produced per plant. Plant tissues can include any plant part (e.g., leaves, stems, stalks, seeds, fruits, and the like) or the whole plant itself. An increase in yield can be an increase of about 5%, 6%, 7%, 8%, 9%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 100%, 110%, 120%, 130%, 140%, 150%, 200%, 250%, 300%, 350%, 400%, 500% or more as compared to a control (e.g., the native or wild type non-mycorrhizal plant that is not transformed with the heterologous polynucleotides of the invention (e.g., heterologous polynucleotides encoding IPD3, IPD3 phosphomimic, DMI3, DMI3 phosphomimic, IFS, FS1, FS2 polypeptides) or is transformed with an inactive or inactivated form of the heterologous polynucleotides of the invention).
[0073] Some proteins are activated or deactivated by phosphorylation. "Phosphomimic" proteins are modified polypeptides (or nucleic acids encoding the same) (non-naturally occurring polypeptides and polynucleotides) that have amino acid substitutions that carry a negative charge on their side chain and therefore mimic a phosphorylated protein, such that the modified polypeptide no longer requires phosphorylation for activation or deactivation. IPD3 and DMI3 each require phosphorylation for activity. However, an IPD3 phosphomimic and a DMI3 phosphomimic as provided herein are active without requiring phosphorylation. Substitutions for the phosphorylation site amino acid (typically serine or threonine) in the native sequence are typically glutamate (glutamic acid) or aspartate (aspartic acid). To create a dephospho-mimic plant, the same amino acids (typically serine or threonine) would be replaced by an amino acid with a neutral (e.g. alanine, valine) or positively charged amino acid (e.g. lysine, arginine or histidine) or synthetic amino acids.
[0074] "Increased biomass production" as used herein refers to a modified plant of the invention or plant part thereof having a greater dry weight over the entire plant or any organ of the plant (leaf, stem, roots, seeds, seed pods, flowers, etc), increased plant height, leaf number, and/or seed number or increased root volume compared to the native or wild type (e.g., a plant, plant part that is not transformed with the heterologous polynucleotides of the invention (e.g., heterologous polynucleotides encoding IPD3, IPD3 phosphomimic, DMI3, DMI3 phosphomimic, IFS, FS1, FS2 polypeptides). An increase in biomass production can be an increase of about 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 100%, 110%, 120%, 130%, 140%, 150%, 200%, 250%, 300%, 350%, 400%, 500% or more as compared to a control (e.g., the native or wild type non-mycorrhizal plant that is not transformed with the heterologous polynucleotides of the invention (e.g., heterologous polynucleotides encoding IPD3, IPD3 phosphomimic, DMI3, DMI3 phosphomimic, IFS, FS1, FS2 polypeptides) or that is transformed with an inactive or inactivated form of the heterologous polynucleotides of the invention. Such an inactive form could be a dephospho-mimic where the phosphorylation site is replaced by an amino acid with a site chain that is neutral (e.g. alanine, glycine, valine) or positively charged (e.g. arginine, histidine, lysine)).
[0075] A "native" or "wild type" nucleic acid, nucleotide sequence, polypeptide or amino acid sequence refers to a naturally occurring or endogenous nucleic acid, nucleotide sequence, polypeptide or amino acid sequence. Thus, for example, a "wild type mRNA" is an mRNA that is naturally occurring in or endogenous to the organism. A "homologous" nucleic acid is a nucleotide sequence that is naturally associated with a host cell into which it is introduced.
[0076] The term "plant part," as used herein, includes but is not limited to reproductive tissues (e.g., petals, sepals, stamens, pistils, receptacles, anthers, pollen, flowers, fruits, flower bud, ovules, seeds, embryos, nuts, kernels, ears, cobs and husks); vegetative tissues (e.g., petioles, stems, roots, root hairs, root tips, pith, coleoptiles, stalks, shoots, branches, bark, apical meristem, axillary bud, cotyledon, hypocotyls, and leaves); vascular tissues (e.g., phloem and xylem); specialized cells such as epidermal cells, parenchyma cells, chollenchyma cells, schlerenchyma cells, stomates, guard cells, cuticle, mesophyll cells; callus tissue; and cuttings. The term "plant part" also includes plant cells, including plant cells that are intact in plants and/or parts of plants, plant protoplasts, plant tissues, plant organs, plant cell tissue cultures, plant calli, plant clumps, and the like. As used herein, "shoot" refers to the above ground parts including the leaves and stems. As used herein, the term "tissue culture" encompasses cultures of tissue, cells, protoplasts and callus.
[0077] As used herein, "plant cell" refers to a structural and physiological unit of the plant, which typically comprise a cell wall but also includes protoplasts. A plant cell of the present invention can be in the form of an isolated single cell or can be a cultured cell or can be a part of a higher-organized unit such as, for example, a plant tissue (including callus) or a plant organ.
[0078] Also as used herein, the terms "nucleic acid," "nucleic acid molecule," "nucleic acid construct," "nucleotide sequence" and "polynucleotide" refer to RNA or DNA that is linear or branched, single or double stranded, or a hybrid thereof.
[0079] In some embodiments, the heterologous or recombinant nucleic acid constructs of the invention may be "synthetic." A "synthetic" nucleic acid molecule, a "synthetic" nucleotide sequence or a "synthetic" polypeptide is a nucleic acid molecule, nucleotide sequence or polypeptide that is not found in nature but is created by the hand of a human (including synthetic sequences generated by robots) and is therefore not a product of nature. Thus, for example, phosphomimic polypeptides or cDNAs as described herein are not found in nature but are made by the hand of a human and therefore are synthetic.
[0080] In some embodiments, the heterologous or recombinant nucleic acids molecules, nucleotide sequences and/or polypeptides of the invention are "isolated." An "isolated" nucleic acid molecule, an "isolated" nucleotide sequence or an "isolated" polypeptide is a nucleic acid molecule, nucleotide sequence or polypeptide that, by the hand of man, exists apart from its native environment and is therefore not a product of nature. An isolated nucleic acid molecule, nucleotide sequence or polypeptide may exist in a purified form that is at least partially separated from at least some of the other components of the naturally occurring organism or virus, for example, the cell or viral structural components or other polypeptides or nucleic acids commonly found associated with the polynucleotide. In some embodiments, an isolated nucleic acid molecule, an isolated nucleotide sequence and/or an isolated polypeptide may be at least about 1%, 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95% pure or more.
[0081] In other embodiments, an isolated nucleic acid molecule, nucleotide sequence or polypeptide may exist in a non-native environment such as, for example, a recombinant host cell. Thus, for example, with respect to nucleotide sequences, the term "isolated" means that it is separated from the chromosome and/or cell in which it naturally occurs. A polynucleotide is also isolated if it is separated from the chromosome and/or cell in which it naturally occurs in and is then inserted into a genetic context, a chromosome and/or a cell in which it does not naturally occur (e.g., a different host cell, different regulatory sequences, and/or different position in the genome than as found in nature). Accordingly, the heterologous nucleic acid constructs, nucleotide sequences and their encoded polypeptides are "isolated" in that, by the hand of a human, they exist apart from their native environment and therefore are not products of nature, however, in some embodiments, they can be introduced into and exist in a recombinant host cell.
[0082] As used herein, the term "gene" refers to a nucleic acid molecule capable of being used to produce mRNA, tRNA, rRNA, miRNA, anti-microRNA, regulatory RNA, and the like. Genes may or may not be capable of being used to produce a functional protein or gene product. Genes can include both coding and non-coding regions (e.g., introns, regulatory elements, promoters, enhancers, termination sequences and/or 5' and 3' untranslated regions). A gene may be "isolated" by which is meant a nucleic acid that is substantially or essentially free from components normally found in association with the nucleic acid in its natural state. Such components include other cellular material, culture medium from recombinant production, and/or various chemicals used in chemically synthesizing the nucleic acid.
[0083] The term "genome" as used herein includes an organism's chromosomal/nuclear genome as well as any mitochondrial, and/or plasmid genome.
[0084] As used herein, the term "polynucleotide" refers to a heteropolymer of nucleotides or the sequence of these nucleotides from the 5' to 3' end of a nucleic acid molecule and includes DNA or RNA molecules, including cDNA, a DNA fragment or portion, genomic DNA, synthetic (e.g., chemically synthesized) DNA, plasmid DNA, mRNA, and anti-sense RNA, any of which can be single stranded or double stranded. The terms "polynucleotide," "nucleotide sequence" "nucleic acid," "nucleic acid molecule," and "oligonucleotide" are also used interchangeably herein to refer to a heteropolymer of nucleotides. Except as otherwise indicated, nucleic acid molecules and/or polynucleotides provided herein are presented herein in the 5' to 3' direction, from left to right and are represented using the standard code for representing the nucleotide characters as set forth in the U.S. sequence rules, 37 CFR .sctn..sctn. 1.821-1.825 and the World Intellectual Property Organization (WIPO) Standard ST.25.
[0085] "Complement" as used herein can mean 100% complementarity or identity with the comparator nucleotide sequence or it can mean less than 100% complementarity (e.g., about 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, and the like, complementarity).
[0086] The terms "complementary" or "complementarity," as used herein, refer to the natural binding of polynucleotides under permissive salt and temperature conditions by base-pairing. For example, the sequence "A-G-T" (5' to 3') binds to the complementary sequence "T-C-A" (3' to 5'). Complementarity between two single-stranded molecules may be "partial," in which only some of the nucleotides bind, or it may be complete when total complementarity exists between the single stranded molecules. The degree of complementarity between nucleic acid strands has significant effects on the efficiency and strength of hybridization between nucleic acid strands.
[0087] A "fragment" or "portion" of a nucleotide sequence refers to a nucleotide sequence of reduced length relative (e.g., reduced by 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 or more nucleotides) to a reference nucleic acid or nucleotide sequence and comprising, consisting essentially of and/or consisting of a nucleotide sequence of contiguous nucleotides identical or almost identical (e.g., 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% identical) to the reference nucleic acid or nucleotide sequence. Such a nucleic acid fragment or portion according to the invention may be, where appropriate, included in a larger polynucleotide of which it is a constituent. In some embodiments, a fragment of a polynucleotide can be a functional fragment that encodes a polypeptide that retains its function (e.g., a fragment of an IPD3 polypeptide retains one or more of the activities of a native IPD3 polypeptide). In representative embodiments, the invention may comprise a functional fragment of an IPD3, DMI3, IFS, FS1 or FS2 polypeptide that is encoded by a fragment of an IPD3, DMI3, IFS, FS1 or FS2 polynucleotide, respectively.
[0088] Thus, as used herein, "fragment" means a portion of the reference polypeptide that retains the polypeptide activity of IPD3, IPD3 phosphomimic, DMI3, DMI3 phosphomimic, IFS, FS1, or FS2. A fragment also means a portion of a nucleic acid molecule encoding the reference polypeptide. An active fragment of the polypeptide can be prepared, for example, by isolating a portion of a polypeptide-encoding nucleic acid molecule that expresses the encoded fragment of the polypeptide (e.g., by recombinant expression in vitro), and assessing the activity of the fragment. Nucleic acid molecules encoding such fragments can be at least about 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 800, 900, 1,000, 1,100, 1,200, 1,300, 1,400, 1,500, 1,600, 1,700, 1,800, 1,900, or 2000 contiguous nucleotides, or up to the number of nucleotides present in a full-length polypeptide-encoding nucleic acid molecule. As such, polypeptide fragments can be at least about 100, 125, 150, 175, 200, 225, 250, 275, 300, 325, 350, 375, 400, 425, 450, 475, 500, or 525 contiguous amino acid residues, or up to the total number of amino acid residues present in the full-length polypeptide.
[0089] By "operably linked" or "operably associated," it is meant that the indicated elements are functionally related to each other, and are also generally physically related. Thus, the term "operably linked" or "operably associated" as used herein, refers to nucleotide sequences on a single nucleic acid molecule that are functionally associated. Therefore, a first nucleotide sequence that is operably linked to a second nucleotide sequence means a situation when the first nucleotide sequence is placed in a functional relationship with the second nucleotide sequence. For instance, a promoter is operably associated with a nucleotide sequence if the promoter effects the transcription or expression of said nucleotide sequence. Those skilled in the art will appreciate that the control sequences (e.g., promoter) need not be contiguous with the nucleotide sequence to which it is operably associated, as long as the control sequences function to direct the expression thereof. Thus, for example, intervening untranslated, yet transcribed, sequences can be present between a promoter and a nucleotide sequence, and the promoter can still be considered "operably linked" to the nucleotide sequence.
[0090] In some embodiments, a "heterologous" or a "recombinant" nucleotide sequence is a nucleotide sequence not naturally associated with a host cell into which it is introduced, including non-naturally occurring multiple copies of a naturally occurring nucleotide sequence. In some embodiments, "heterologous" may refer to a nucleic acid molecule or nucleotide sequence that either originates from another species or is from the same species or organism but is modified from either its original form or the form primarily expressed in the cell. Thus, a nucleotide sequence derived from an organism or species different from that of the cell into which the nucleotide sequence is introduced, is heterologous with respect to that cell and the cell's descendants. In addition, a heterologous nucleotide sequence may include a nucleotide sequence derived from and inserted into the same natural, original cell type, but which is present in a non-natural state, e.g. present in a different copy number, and/or under the control of different regulatory sequences than that found in the native state of the nucleic acid molecule.
[0091] Different nucleic acids or proteins having homology are referred to herein as "homologues." The term homologue includes homologous sequences from the same and other species and orthologous sequences from the same and other species. "Homology" refers to the level of similarity between two or more nucleic acid and/or amino acid sequences in terms of percent of positional identity (i.e., sequence similarity or identity). Homology also refers to the concept of similar functional properties among different nucleic acids or proteins. Thus, the compositions and methods of the invention further comprise homologues to the nucleotide sequences and polypeptide sequences of this invention. "Orthologous," as used herein, refers to homologous nucleotide sequences and/or amino acid sequences in different species that arose from a common ancestral gene during speciation. A homologue of a nucleotide sequence of this invention has a substantial sequence identity (e.g., at least about 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, and/or 100%) to said nucleotide sequence of the invention. Thus, in some embodiments, a homologue of an IPD3, IPD3 phosphomimic, DMI3, DMI3 phosphomimic, IFS, FS1, or FS2 polynucleotide of the invention can be about 70% identical or more to an IPD3, IPD3 phosphomimic, DMI3, DMI3 phosphomimic, IFS, FS1, or FS2 polynucleotide or polypeptide as set forth herein. In some embodiments, an amino acid homologue of an IPD3, IPD3 phosphomimic, DMI3, DMI3 phosphomimic, IFS, FS1, or FS2 useful with this invention can be encoded by a polynucleotide having about 50% or more similarity (e.g., at least about 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, and/or 100%) to an IPD3, IPD3 phosphomimic, DMI3, DMI3 phosphomimic, IFS, FS1, or FS2 polynucleotide as set forth herein.
[0092] As used herein, hybridization, hybridize, hybridizing, and grammatical variations thereof, refer to the binding of two fully complementary nucleotide sequences or substantially complementary sequences in which some mismatched base pairs may be present. The conditions for hybridization are well known in the art and vary based on the length of the nucleotide sequences and the degree of complementarity between the nucleotide sequences. In some embodiments, the conditions of hybridization can be high stringency, or they can be medium stringency or low stringency depending on the amount of complementarity and the length of the sequences to be hybridized. The conditions that constitute low, medium and high stringency for purposes of hybridization between nucleotide sequences are well known in the art (See, e.g., Gasiunas et al. (2012) Proc. Natl. Acad. Sci. 109:E2579-E2586; M. R. Green and J. Sambrook (2012) Molecular Cloning: A Laboratory Manual. 4th Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.).
[0093] As used herein "sequence identity" refers to the extent to which two optimally aligned polynucleotide or peptide sequences are invariant throughout a window of alignment of components, e.g., nucleotides or amino acids. "Identity" can be readily calculated by known methods including, but not limited to, those described in: Computational Molecular Biology (Lesk, A. M., ed.) Oxford University Press, New York (1988); Biocomputing: Informatics and Genome Projects (Smith, D. W., ed.) Academic Press, New York (1993); Computer Analysis of Sequence Data, Part I (Griffin, A. M., and Griffin, H. G., eds.) Humana Press, New Jersey (1994); Sequence Analysis in Molecular Biology (von Heinje, G., ed.) Academic Press (1987); and Sequence Analysis Primer (Gribskov, M. and Devereux, J., eds.) Stockton Press, New York (1991).
[0094] As used herein, the term "percent sequence identity" or "percent identity" refers to the percentage of identical nucleotides in a linear polynucleotide of a reference ("query") polynucleotide molecule (or its complementary strand) as compared to a test ("subject") polynucleotide molecule (or its complementary strand) when the two sequences are optimally aligned. In some embodiments, "percent identity" can refer to the percentage of identical amino acids in an amino acid sequence.
[0095] As used herein, the phrase "substantially identical," or "substantial identity" in the context of two nucleic acid molecules, nucleotide sequences or protein sequences, refers to two or more sequences or subsequences that have at least about 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, and/or 100% nucleotide or amino acid residue identity, when compared and aligned for maximum correspondence, as measured using one of the following sequence comparison algorithms or by visual inspection. In some embodiments of the invention, the substantial identity exists over a region of the sequences that is at least about 200 residues to about 500 residues in length. Thus, in some embodiments of the invention, the substantial identity (e.g., at least about 70% identity) exists over a region of the sequences that is at least about 200, about 250, about 300, about 350, about 400, about 450, about 500 or more residues in length, and any range therein. In some embodiments, sequences of the invention can be about 70% to about 100% identical over at least about 16 nucleotides to about 25 nucleotides. In some embodiments, sequences of the invention can be about 75% to about 100% identical over at least about 200 nucleotides to about 500 nucleotides. In further embodiments, sequences of the invention can be about 80% to about 100% identical over at least about 200 nucleotides to about 500 nucleotides. In some embodiments, the sequences may be substantially identical over the entire length of a coding region. Furthermore, a substantially identical nucleotide or polypeptide sequences perform substantially the same function.
[0096] As used herein, the phrase "substantially similar," or "substantial similarity" in the context of two amino acid sequences, refers to two or more sequences or subsequences that have at least about 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, and/or 100% nucleotide or amino acid residue identity, when compared and aligned for maximum correspondence, as measured using one of the following sequence comparison algorithms or by visual inspection.
[0097] For sequence comparison, typically one sequence acts as a reference sequence to which test sequences are compared. When using a sequence comparison algorithm, test and reference sequences are entered into a computer, subsequence coordinates are designated if necessary, and sequence algorithm program parameters are designated. The sequence comparison algorithm then calculates the percent sequence identity for the test sequence(s) relative to the reference sequence, based on the designated program parameters.
[0098] Optimal alignment of sequences for aligning a comparison window are well known to those skilled in the art and may be conducted by tools such as the local homology algorithm of Smith and Waterman, the homology alignment algorithm of Needleman and Wunsch, the search for similarity method of Pearson and Lipman, and optionally by computerized implementations of these algorithms such as GAP, BESTFIT, FASTA, and TFASTA available as part of the GCG.RTM. Wisconsin Package.RTM. (Accelrys Inc., San Diego, Calif.). An "identity fraction" for aligned segments of a test sequence and a reference sequence is the number of identical components which are shared by the two aligned sequences divided by the total number of components in the reference sequence segment, i.e., the entire reference sequence or a smaller defined part of the reference sequence. Percent sequence identity is represented as the identity fraction multiplied by 100. The comparison of one or more polynucleotide sequences may be to a full-length polynucleotide sequence or a portion thereof, or to a longer polynucleotide sequence. For purposes of this invention "percent identity" may also be determined using BLASTX version 2.0 for translated nucleotide sequences and BLASTN version 2.0 for polynucleotide sequences.
[0099] Software for performing BLAST analyses is publicly available through the National Center for Biotechnology Information. This algorithm involves first identifying high scoring sequence pairs (HSPs) by identifying short words of length W the query sequence, which either match or satisfy some positive-valued threshold score T when aligned with a word of the same length in a database sequence. T is referred to as the neighborhood word score threshold (Altschul et al., 1990). These initial neighborhood word hits act as seeds for initiating searches to find longer HSPs containing them. The word hits are then extended in both directions along each sequence for as far as the cumulative alignment score can be increased. Cumulative scores are calculated using, for nucleotide sequences, the parameters M (reward score for a pair of matching residues; always >0) and N (penalty score for mismatching residues; always <0). For amino acid sequences, a scoring matrix is used to calculate the cumulative score. Extension of the word hits in each direction are halted when the cumulative alignment score falls off by the quantity X from its maximum achieved value, the cumulative score goes to zero or below due to the accumulation of one or more negative-scoring residue alignments, or the end of either sequence is reached. The BLAST algorithm parameters W, T, and X determine the sensitivity and speed of the alignment. The BLASTN program (for nucleotide sequences) uses as defaults a wordlength (W) of 11, an expectation (E) of 10, a cutoff of 100, M=5, N=-4, and a comparison of both strands. For amino acid sequences, the BLASTP program uses as defaults a wordlength (W) of 3, an expectation (E) of 10, and the BLOSUM62 scoring matrix (see Henikoff & Henikoff, Proc. Natl. Acad. Sci. USA 89: 10915 (1989)).
[0100] In addition to calculating percent sequence identity, the BLAST algorithm also performs a statistical analysis of the similarity between two sequences (see, e.g., Karlin & Altschul, Proc. Nat'l. Acad. Sci. USA 90: 5873-5787 (1993)). One measure of similarity provided by the BLAST algorithm is the smallest sum probability (P(N)), which provides an indication of the probability by which a match between two nucleotide or amino acid sequences would occur by chance. For example, a test nucleic acid sequence is considered similar to a reference sequence if the smallest sum probability in a comparison of the test nucleotide sequence to the reference nucleotide sequence is less than about 0.1 to less than about 0.001. Thus, in some embodiments of the invention, the smallest sum probability in a comparison of the test nucleotide sequence to the reference nucleotide sequence is less than about 0.001.
[0101] Two nucleotide sequences can also be considered to be substantially complementary when the two sequences hybridize to each other under stringent conditions. In some representative embodiments, two nucleotide sequences considered to be substantially complementary hybridize to each other under highly stringent conditions.
[0102] "Stringent hybridization conditions" and "stringent hybridization wash conditions" in the context of nucleic acid hybridization experiments such as Southern and Northern hybridizations are sequence dependent, and are different under different environmental parameters. An extensive guide to the hybridization of nucleic acids is found in Tijssen Laboratory Techniques in Biochemistry and Molecular Biology--Hybridization with Nucleic Acid Probes part I chapter 2 "Overview of principles of hybridization and the strategy of nucleic acid probe assays" Elsevier, New York (1993). Generally, highly stringent hybridization and wash conditions are selected to be about 5.degree. C. lower than the thermal melting point (T.sub.m) for the specific sequence at a defined ionic strength and pH.
[0103] The T.sub.m is the temperature (under defined ionic strength and pH) at which 50% of the target sequence hybridizes to a perfectly matched probe. Very stringent conditions are selected to be equal to the T.sub.m for a particular probe. An example of stringent hybridization conditions for hybridization of complementary nucleotide sequences which have more than 100 complementary residues on a filter in a Southern or northern blot is 50% formamide with 1 mg of heparin at 42.degree. C., with the hybridization being carried out overnight. An example of highly stringent wash conditions is 0.1 5M NaCl at 72.degree. C. for about 15 minutes. An example of stringent wash conditions is a 0.2.times.SSC wash at 65.degree. C. for 15 minutes (see, Sambrook, infra, for a description of SSC buffer). Often, a high stringency wash is preceded by a low stringency wash to remove background probe signal. An example of a medium stringency wash for a duplex of, e.g., more than 100 nucleotides, is 1.times.SSC at 45.degree. C. for 15 minutes. An example of a low stringency wash for a duplex of, e.g., more than 100 nucleotides, is 4-6.times.SSC at 40.degree. C. for 15 minutes. For short probes (e.g., about 10 to 50 nucleotides), stringent conditions typically involve salt concentrations of less than about 1.0 M Na ion, typically about 0.01 to 1.0 M Na ion concentration (or other salts) at pH 7.0 to 8.3, and the temperature is typically at least about 30.degree. C. Stringent conditions can also be achieved with the addition of destabilizing agents such as formamide. In general, a signal to noise ratio of 2.times. (or higher) than that observed for an unrelated probe in the particular hybridization assay indicates detection of a specific hybridization. Nucleotide sequences that do not hybridize to each other under stringent conditions are still substantially identical if the proteins that they encode are substantially identical. This can occur, for example, when a copy of a nucleotide sequence is created using the maximum codon degeneracy permitted by the genetic code.
[0104] The following are examples of sets of hybridization/wash conditions that may be used to clone homologous nucleotide sequences that are substantially identical to reference nucleotide sequences of the invention. In one embodiment, a reference nucleotide sequence hybridizes to the "test" nucleotide sequence in 7% sodium dodecyl sulfate (SDS), 0.5 M NaPO.sub.4, 1 mM EDTA at 50.degree. C. with washing in 2.times.SSC, 0.1% SDS at 50.degree. C. In another embodiment, the reference nucleotide sequence hybridizes to the "test" nucleotide sequence in 7% sodium dodecyl sulfate (SDS), 0.5 M NaPO.sub.4, 1 mM EDTA at 50.degree. C. with washing in 1.times.SSC, 0.1% SDS at 50.degree. C. or in 7% sodium dodecyl sulfate (SDS), 0.5 M NaPO.sub.4, 1 mM EDTA at 50.degree. C. with washing in 0.5.times.SSC, 0.1% SDS at 50.degree. C. In still further embodiments, the reference nucleotide sequence hybridizes to the "test" nucleotide sequence in 7% sodium dodecyl sulfate (SDS), 0.5 M NaPO.sub.4, 1 mM EDTA at 50.degree. C. with washing in 0.1.times.SSC, 0.1% SDS at 50.degree. C., or in 7% sodium dodecyl sulfate (SDS), 0.5 M NaPO.sub.4, 1 mM EDTA at 50.degree. C. with washing in 0.1.times.SSC, 0.1% SDS at 65.degree. C.
[0105] Any nucleotide sequence to be transformed into a plant, plant part and/or plant cell can be modified for codon usage bias using species specific codon usage tables. The codon usage tables are generated based on a sequence analysis of the most highly expressed genes for the species of interest. When the nucleotide sequences are to be expressed in the nucleus, the codon usage tables are generated based on a sequence analysis of highly expressed nuclear genes for the species of interest. The modifications for the nucleotide sequences for selection are determined by comparing the species specific codon usage table with the codons present in the native polynucleotide sequences. In those embodiments in which each of codons in native polynucleotide sequence for selection are sufficiently used, then no modifications are needed (e.g., a frequency of more than 30% for a codon used for a specific amino acid in that species would indicate no need for modification). In other embodiments, wherein up to 3 nucleotides have to be modified in the polynucleotide sequence, site-directed mutagenesis can be used according to methods known in the art (Zheng et al. Nucleic Acids Res. 32:e115 (2004); Dammai, Meth. Mol. Biol 634:111-126 (2010); Davis and Vierstra. Plant Mol. Biol. 36(4): 521-528 (1998)). In still other embodiments, wherein more than three nucleotide changes are necessary, a synthetic nucleotide sequence can be generated using the same codon usage as the highly expressed genes that were used to develop the codon usage table. As is understood in the art, codon optimization of a nucleotide sequence results in a nucleotide sequence having less than 100% identity (e.g., 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, and the like) to the native nucleotide sequence but which still encodes a polypeptide having the same function as that encoded by the original, native nucleotide sequence. Thus, in some embodiments of the invention, a heterologous polynucleotide or recombinant nucleic acid molecule of this invention may be codon optimized for expression in the particular species of interest.
[0106] The great majority (about 80-95%) of known plant species form beneficial relationships with fungi in the soil, known as mycorrhizae. The fungi grow into or around the plant's roots and provide increased uptake of nitrogen, phosphorous and water in return for carbohydrate compounds. The minority of plant species that do lack mycorrhizae are of notable economic interest including those in the mustard (Brassicaceae) family whose members are used for food (e.g., canola, broccoli, cabbage), biofuels (e.g., Camelina) and research (e.g., Arabidopsis) as well as those in the Amaranthaceae, which now includes the former Chenopodiaceae (goosefoot) family (e.g., spinach, beet, chard, quinoa, and sugar beet). Extant sister groups to the Brassicaceae possess mycorrhizae, indicating that the ancestors of this group previously had the ability to form mycorrhizae. Most of the pathways and genes required for the establishment of arbuscular mycorrhizal (AM)- in plants have been researched in AM-forming crops and thus, these pathways and genes are fairly well known. A study of the evolutionary loss of the ability of Brassicaceae to form AM concluded that Brassicaceae have lost/lack at least eleven genes needed to establish symbiosis (Delaux et al., Plos Genetics 10(7) (2014)). Based on that analysis, it would not be feasible to engineer all eleven genes back into a mustard plant. However, the present inventors have surprisingly found that many known genetic components of the mycorrhizal phenotype are still present in Brassicaceae species making restoration of this important phenotype achievable in naturally non-mycorrhizal plants.
[0107] The first implicated pathway is the Common Symbiosis Pathway (CSP), which is so named because it mediates accommodation of both mycorrhizal and rhizobial symbionts, allows host plants to perceive the presence of symbiotic fungal or bacterial partners. The upstream end of the pathway is a protein kinase (e.g. NFP in Medicago truncatula) activated by binding of an extracellular domain to chitin oligomers shed by the fungus. Activation of the pathway ultimately leads to upregulation of cutin synthesis (e.g. via RAM2 in M. truncatula) and production of other proteins and metabolites (e.g. carbohydrates and CWI in Lotus japonicus) in cells of the root cortex. Cutin concentrations guide the symbiont toward the appropriate cells for formation of symbiotic structures, and may also affect the cell wall chemistry at the site of infection.
[0108] Historically, research has asserted (a) that almost all gene members of the CSP must be expressed for symbiosis to function and (b) that large swathes of the CSP are completely absent from the genome of Brassicaceae plants (Delaux et al., Plos Genetics 10(7) (2014); and Delaux et al., Trends in Plant Science 18(6):298-304 (2013)). However, more recent research using functional-genetic methods, rather than phylogenomics has contradicted this view. Knockout studies at the individual gene level reveal that while loss of most genes in the CSP alters mycorrhization, only a single gene (contrary to assertion (a)), IPD3, clearly destroys mycorrhizal function when knocked out. Bioinformatic re-analysis of `lost` CSP genes in Brassicaceae by the present inventors also reveals (contrary to assertion (b)) that putative orthologs of all but one `lost` CSP gene are in fact present in these species. The single gene that is unambiguously missing from Brassicaceae is once again IPD3.
[0109] A second pathway that may be involved is flavonoid synthesis. Flavonoids affect mycorrhizae in multiple ways. Most importantly, molecular subclasses known as flavones and isoflavones are secreted into soil by the plant, where they recruit fungal symbionts to grow into root tissue (Hassan and Mathesius. J. Exp. Bot. 63(9):3429-3444 (2012)). As with IPD3, a few genes of the flavonoid synthesis pathway are conspicuously absent from the Brassicaceae while the majority of the genes in this pathway remain in place. The three absent genes are isoflavone synthase (IFS, production of isoflavones) and flavone synthases 1 and 2 (FS1, FS2, production of flavones). The immediate upstream enzyme that produces the substrate for synthesis of both flavones and isoflavones by IFS, FS1 and/or FS2 is chalcone synthase (CHS). CHS is not only already present in the genome of Brassicaceae plants, and in Arabidopsis, it has been found to be most highly expressed in the root cortex cells where mycorrhizal colonization takes place.
[0110] Thus, the present invention is directed to the discovery of one CSP gene and three flavonoid genes having functional roles in AM-positive plants of which one or more of these genes may be introduced into naturally non-mycorrhizal plants for restoration of mycorrhizae in whole or in part.
[0111] Accordingly, the present invention is directed in part to compositions and methods for modifying plants that do not naturally form symbiotic relationships with mycorrhizal fungi (e.g. naturally non-mycorrhizal plants (e.g., plants in the Brassicaceae and Amaranthaceae families)), wherein the modified plants can be colonized by and form a symbiotic relationship with mycorrhizal fungi.
[0112] In some embodiments, the present invention provides a modified naturally non-mycorrhizal plant, comprising in its genome a heterologous polynucleotide encoding an IPD3 (Interacting Protein of DMI3) polypeptide or a heterologous polynucleotide encoding an IPD3 phosphomimic polypeptide. In some embodiments, the modified plant is colonized by mycorrhizal fungi.
[0113] A modified naturally non-mycorrhizal plant comprising in its genome a heterologous polynucleotide encoding an IPD3 (Interacting Protein of DMI3) polypeptide or a heterologous polynucleotide encoding an IPD3 phosphomimic polypeptide of the invention may comprise additional genetic modifications. In some embodiments, the modified naturally non-mycorrhizal plant may further comprise in its genome (a) a heterologous polynucleotide encoding a DMI3 (Doesn't Make Infections 3) polypeptide or a heterologous polynucleotide encoding a DMI3 phosphomimic polypeptide, (b) a heterologous polynucleotide encoding an isoflavone synthase (IFS) polypeptide, (c) a heterologous polynucleotide encoding a flavone synthase 1 (FS1) polypeptide and/or (d) a heterologous polynucleotide encoding a flavone synthase 2 (FS2) polypeptide, or any combination thereof of (a), (b), (c) or (d). In some embodiments, a modified plant of this invention is colonized by mycorrhizal fungi.
[0114] Thus, in some embodiments, a modified naturally non-mycorrhizal plant of the invention may comprise in its genome a heterologous polynucleotide encoding an IPD3 polypeptide or a heterologous polynucleotide encoding an IPD3 phosphomimic polypeptide.
[0115] In some embodiments, a modified naturally non-mycorrhizal plant of the invention comprising in its genome a heterologous polynucleotide encoding an IPD3 polypeptide or a heterologous polynucleotide encoding an IPD3 phosphomimic polypeptide may further comprise in its genome a heterologous polynucleotide encoding a DMI3 polypeptide or a DMI3 phosphomimic polypeptide.
[0116] In some embodiments, a modified naturally non-mycorrhizal plant of the invention comprising in its genome a heterologous polynucleotide encoding an IPD3 polypeptide or a heterologous polynucleotide encoding an IPD3 phosphomimic polypeptide may further comprise in its genome a heterologous polynucleotide encoding an IFS polypeptide.
[0117] In some embodiments, a modified naturally non-mycorrhizal plant of the invention comprising in its genome a heterologous polynucleotide encoding an IPD3 polypeptide or a heterologous polynucleotide encoding an IPD3 phosphomimic polypeptide may further comprise in its genome a heterologous polynucleotide encoding an FS1 polypeptide.
[0118] In some embodiments, a modified naturally non-mycorrhizal plant of the invention comprising in its genome a heterologous polynucleotide encoding an IPD3 polypeptide or a heterologous polynucleotide encoding an IPD3 phosphomimic polypeptide may further comprise in its genome a heterologous polynucleotide encoding an FS2 polypeptide.
[0119] In some embodiments, a modified naturally non-mycorrhizal plant of the invention comprising in its genome a heterologous polynucleotide encoding an IPD3 polypeptide or a heterologous polynucleotide encoding an IPD3 phosphomimic polypeptide may further comprise in its genome a heterologous polynucleotide encoding an FS1 polypeptide and a heterologous polynucleotide encoding an FS2 polypeptide.
[0120] In some embodiments, a modified naturally non-mycorrhizal plant of the invention comprising in its genome a heterologous polynucleotide encoding an IPD3 polypeptide or a heterologous polynucleotide encoding an IPD3 phosphomimic polypeptide may further comprise in its genome (a) a heterologous polynucleotide encoding an IFS polypeptide and (b) a heterologous polynucleotide encoding an FS1 polypeptide.
[0121] In some embodiments, a modified naturally non-mycorrhizal plant of the invention comprising in its genome a heterologous polynucleotide encoding an IPD3 polypeptide and/or a heterologous polynucleotide encoding an IPD3 phosphomimic polypeptide may further comprise in its genome (a) a heterologous polynucleotide encoding an IFS polypeptide and (b) a heterologous polynucleotide encoding an FS2 polypeptide.
[0122] In some embodiments, a modified naturally non-mycorrhizal plant of the invention comprising in its genome a heterologous polynucleotide encoding an IPD3 polypeptide or a heterologous polynucleotide encoding an IPD3 phosphomimic polypeptide may further comprise in its genome (a) a heterologous polynucleotide encoding an IFS polypeptide, (b) a heterologous polynucleotide encoding an FS1 polypeptide, and (c) a heterologous polynucleotide encoding an FS2 polypeptide.
[0123] In some embodiments, a modified naturally non-mycorrhizal plant of the invention comprising in its genome a heterologous polynucleotide encoding an IPD3 polypeptide or a heterologous polynucleotide encoding an IPD3 phosphomimic polypeptide, may further comprise in its genome (a) a heterologous polynucleotide encoding a DMI3 polypeptide or a DMI3 phosphomimic polypeptide, and (b) a heterologous polynucleotide encoding an IFS polypeptide.
[0124] In some embodiments, a modified naturally non-mycorrhizal plant of the invention comprising in its genome a heterologous polynucleotide encoding an IPD3 polypeptide or a heterologous polynucleotide encoding an IPD3 phosphomimic polypeptide may further comprise in its genome (a) a heterologous polynucleotide encoding a DMI3 polypeptide or an DMI3 phosphomimic polypeptide and (b) a heterologous polynucleotide encoding an FS1 polypeptide.
[0125] In some embodiments, a modified naturally non-mycorrhizal plant of the invention comprising in its genome a heterologous polynucleotide encoding an IPD3 polypeptide or a heterologous polynucleotide encoding an IPD3 phosphomimic polypeptide may further comprise in its genome (a) a heterologous polynucleotide encoding a DMI3 polypeptide or an DMI3 phosphomimic polypeptide and (b) a heterologous polynucleotide encoding an FS2 polypeptide.
[0126] In some embodiments, a modified naturally non-mycorrhizal plant of the invention comprising in its genome a heterologous polynucleotide encoding an IPD3 polypeptide or a heterologous polynucleotide encoding an IPD3 phosphomimic polypeptide may further comprise in its genome (a) a heterologous polynucleotide encoding a DMI3 polypeptide or an DMI3 phosphomimic polypeptide and (b) a heterologous polynucleotide encoding an FS1 polypeptide, and(c) a heterologous polynucleotide encoding an FS2 polypeptide.
[0127] In some embodiments, a modified naturally non-mycorrhizal plant of the invention comprising in its genome a heterologous polynucleotide encoding an IPD3 polypeptide or a heterologous polynucleotide encoding an IPD3 phosphomimic polypeptide may further comprise in its genome (a) a heterologous polynucleotide encoding a DMI3 polypeptide or an DMI3 phosphomimic polypeptide, (b) a heterologous polynucleotide encoding an IFS polypeptide, and (c) a heterologous polynucleotide encoding an FS1 polypeptide.
[0128] In some embodiments, a modified naturally non-mycorrhizal plant of the invention comprising in its genome a heterologous polynucleotide encoding an IPD3 polypeptide or a heterologous polynucleotide encoding an IPD3 phosphomimic polypeptide may further comprise in its genome (a) a heterologous polynucleotide encoding a DMI3 polypeptide or an DMI3 phosphomimic polypeptide, (b) a heterologous polynucleotide encoding an IFS polypeptide, and (c) a heterologous polynucleotide encoding an FS2 polypeptide.
[0129] In some embodiments, a modified naturally non-mycorrhizal plant of the invention comprising in its genome a heterologous polynucleotide encoding an IPD3 polypeptide or a heterologous polynucleotide encoding an IPD3 phosphomimic polypeptide may further comprise in its genome (a) a heterologous polynucleotide encoding a DMI3 polypeptide or an DMI3 phosphomimic polypeptide, (b) a heterologous polynucleotide encoding an IFS polypeptide, (c) a heterologous polynucleotide encoding an FS1 polypeptide and (d) a heterologous polynucleotide encoding an FS2 polypeptide.
[0130] In some embodiments, one or more (e.g., 1, 2, 3, 4, 5, 6, or more) heterologous polynucleotides that encode an IPD3 polypeptide, an IPD3 phosphomimic polypeptide, a DMI3 polypeptide, a DMI3 phosphomimic polypeptide, an IFS polypeptide, a FS1 polypeptide or a FS1 polypeptide may be introduced into the genome of a modified naturally non-mycorrhizal plant of the invention on one or more nucleic acid constructs (e.g., expression cassettes and/or vectors).
[0131] The introduction of a heterologous polynucleotide encoding an IPD3 or IPD3 phosphomimic into a naturally non-mycorrhizal plant as described herein (with or without the introduction of DMI3, DMI3 phosphomimic, IFS, and/or FS1 and/or FS2) not only provides modified naturally non-mycorrhizal plants that now may form symbiotic relationships with mycorrhizal fungi but as a consequence of forming mycorrhizal symbiotic relationships with mycorrhizal fungi, the plants of the present invention also have characteristics associated with plants in mycorrhizal symbiotic relationships including, but not limited to, increased drought tolerance/resistance, increased nitrogen uptake, increased phosphorus uptake, increased resistance to fungal and/or bacterial pathogens and/or increased growth rate, yield and/or biomass production.
[0132] Thus, in some embodiments, the present invention provides a method of modifying a naturally non-mycorrhizal plant to produce a plant that is colonized by a mycorrhizal fungus when in contact with the mycorrhizal fungus, comprising: introducing into the naturally non-mycorrhizal plant, plant part or plant cell a heterologous polynucleotide encoding an IPD3 (Interacting Protein of DMI3) polypeptide or a heterologous polynucleotide encoding an IPD3 phosphomimic polypeptide, thereby producing a modified naturally non-mycorrhizal plant that is colonized by the mycorrhizal fungus when in contact with the mycorrhizal fungus.
[0133] In some embodiments, the invention provides a method of producing a modified plant that is colonized by a mycorrhizal fungus from a plant that is a naturally non-mycorrhizal plant, comprising: introducing into a naturally non-mycorrhizal plant, or plant part or plant cell thereof, a heterologous polynucleotide encoding an IPD3 (Interacting Protein of DMI3) polypeptide or a heterologous polynucleotide encoding an IPD3 phosphomimic polypeptide, thereby producing the modified naturally non-mycorrhizal plant that is colonized by the mycorrhizal fungus when in contact with the mycorrhizal fungus.
[0134] In some embodiments, a method of producing a modified naturally non-mycorrhizal plant having increased nitrogen uptake and/or increased phosphorus uptake is provided, comprising: introducing into a naturally non-mycorrhizal plant, or plant part or plant cell thereof, a heterologous polynucleotide encoding an IPD3 (Interacting Protein of DMI3) polypeptide or a heterologous polynucleotide encoding an IPD3 phosphomimic polypeptide to produce the modified naturally non-mycorrhizal plant, and contacting the modified naturally non-mycorrhizal plant with a mycorrhizal fungus, thereby producing the modified naturally non-mycorrhizal plant having increased nitrogen uptake and/or increased phosphorus uptake.
[0135] In some embodiments, a method of producing a modified naturally non-mycorrhizal plant having increased drought tolerance/resistance is provided, comprising: introducing into a naturally non-mycorrhizal plant, or plant part or plant cell thereof, a heterologous polynucleotide encoding an IPD3 (Interacting Protein of DMI3) polypeptide or a heterologous polynucleotide encoding an IPD3 phosphomimic polypeptide to produce the modified naturally non-mycorrhizal plant, and contacting the modified naturally non-mycorrhizal plant with a mycorrhizal fungus, thereby producing the modified naturally non-mycorrhizal plant having increased drought tolerance/resistance.
[0136] In some embodiments, a method of producing a modified naturally non-mycorrhizal plant having increased resistance to fungal and/or bacterial pathogens is provided, comprising: introducing into a naturally non-mycorrhizal plant, or plant part or plant cell thereof, a heterologous polynucleotide encoding an IPD3 (Interacting Protein of DMI3) polypeptide or a heterologous polynucleotide encoding an IPD3 phosphomimic polypeptide to produce the modified naturally non-mycorrhizal plant, and contacting the modified naturally non-mycorrhizal plant with a mycorrhizal fungus, thereby producing the modified naturally non-mycorrhizal plant having increased resistance to fungal and/or bacterial pathogens.
[0137] A plant produced using the methods of the present invention may have increased resistance to any pathogenic fungus or bacterium. Example pathogenic fungi include, but are not limited to, the genera Phytophthora (e.g. P. brassicae, P. porri, P. infestans), Pythium (P. irregular, P. ultimum, P. aphanidermatum), Colletotrichum (e.g. C. higginsianum, C. dematium and other anthracnoses), Aphanomyces (e.g. A. raphani), Ganoderma (e.g. G. orbiforme and other pathogens causing `damping-off`), Fusarium (e.g. F. oxysporum), Cercospora (e.g. C. brassicicola), Plasmodiophora (e.g. P. brassicae), Thielaviopsis (e.g. T. basicola syn. Chalara elegans), and/or Rhizoctonia (e.g. R. solani). Example pathogenic bacteria include, but are not limited to, the genera Pseudomonas (e.g. P. syringae, P. marginalis), Xanthomonas (e.g. X. campestris campestris, and/or X. campestris raphani).
[0138] In some embodiments, a method of producing a modified naturally non-mycorrhizal plant having an increased growth rate, yield and/or biomass production is provided, comprising: introducing into a naturally non-mycorrhizal plant, or plant part or plant cell thereof, a heterologous polynucleotide encoding an IPD3 (Interacting Protein of DMI3) polypeptide or a heterologous polynucleotide encoding an IPD3 phosphomimic polypeptide to produce the modified naturally non-mycorrhizal plant, and contacting the modified naturally non-mycorrhizal plant with a mycorrhizal fungus, thereby producing the modified naturally non-mycorrhizal plant having increased growth rate, yield and/or biomass production.
[0139] In some embodiments, a method of producing a modified naturally non-mycorrhizal plant having an increased nitrogen uptake, increased phosphorus uptake, increased drought tolerance/resistance, increased resistance to fungal and/or bacterial pathogens, and/or increased growth rate, yield and/or biomass may further comprise introducing into the naturally non-mycorrhizal plant, or plant part or plant cell thereof one or more additional heterologous polypeptides including, but not limited to, (a) a heterologous polynucleotide encoding a DMI3 (Doesn't Make Infections 3) polypeptide or a heterologous polynucleotide encoding a DMI3 phosphomimic polypeptide, (b) a heterologous polynucleotide encoding an isoflavone synthase (IFS) polypeptide, (c) a heterologous polynucleotide encoding a flavone synthase 1 (FS1) polypeptide, and/or (d) a heterologous polynucleotide encoding a flavone synthase 2 (FS2) polypeptide, or any combination thereof.
[0140] In some embodiments, a method of increasing nitrogen uptake and/or phosphorus uptake, of a naturally non-mycorrhizal plant is provided, comprising: introducing into a naturally non-mycorrhizal plant, or plant part or plant cell thereof, a heterologous polynucleotide encoding an IPD3 (Interacting Protein of DMI3) polypeptide or a heterologous polynucleotide encoding an IPD3 phosphomimic polypeptide to produce a modified naturally non-mycorrhizal plant, and contacting the modified naturally non-mycorrhizal plant with a mycorrhizal fungus, wherein the modified naturally non-mycorrhizal plant has increased nitrogen uptake and/or phosphorus uptake.
[0141] In some embodiments, a method of increasing drought tolerance/resistance of a naturally non-mycorrhizal plant is provided, comprising: introducing into a naturally non-mycorrhizal plant, or plant part or plant cell thereof, a heterologous polynucleotide encoding an IPD3 (Interacting Protein of DMI3) polypeptide or a heterologous polynucleotide encoding an IPD3 phosphomimic polypeptide to produce a modified naturally non-mycorrhizal plant, and contacting the modified naturally non-mycorrhizal plant with a mycorrhizal fungus, wherein the modified naturally non-mycorrhizal plant has increased drought tolerance/resistance.
[0142] In some embodiments, a method of increasing resistance to fungal and/or bacterial pathogens of a naturally non-mycorrhizal plant, comprising: introducing into a naturally non-mycorrhizal plant, or plant part or plant cell thereof, a heterologous polynucleotide encoding an IPD3 (Interacting Protein of DMI3) polypeptide or a heterologous polynucleotide encoding an IPD3 phosphomimic polypeptide to produce a modified naturally non-mycorrhizal plant, and contacting the modified naturally non-mycorrhizal plant with a mycorrhizal fungus, wherein the modified naturally non-mycorrhizal plant has resistance to fungal and/or bacterial pathogens.
[0143] In some embodiments, a method of increasing growth rate, yield and/or biomass production of a naturally non-mycorrhizal plant, comprising: introducing into a naturally non-mycorrhizal plant, or plant part or plant cell thereof, a heterologous polynucleotide encoding an IPD3 (Interacting Protein of DMI3) polypeptide or a heterologous polynucleotide encoding an IPD3 phosphomimic polypeptide to produce a modified naturally non-mycorrhizal plant, and contacting the modified naturally non-mycorrhizal plant with a mycorrhizal fungus, wherein the naturally non-mycorrhizal plant has an increased growth rate, yield and/or biomass production.
[0144] In some embodiments, a method of increasing phosphorus uptake, increasing drought tolerance/resistance, increasing resistance to fungal and/or bacterial pathogens, and/or increasing growth rate, yield and/or biomass of a naturally non-mycorrhizal plant having an increased nitrogen uptake, increased may further comprise introducing into the naturally non-mycorrhizal plant, or plant part or plant cell thereof, one or more additional heterologous polypeptides including, but not limited to, (a) a heterologous polynucleotide encoding a DMI3 (Doesn't Make Infections 3) polypeptide or a heterologous polynucleotide encoding a DMI3 phosphomimic polypeptide, (b) a heterologous polynucleotide encoding an IFS polypeptide, (c) a heterologous polynucleotide encoding a FS1 polypeptide and/or (d) a heterologous polynucleotide encoding a FS2 polypeptide, in any combination thereof. When one or more heterologous polypeptides are introduced into a plant, they may be introduced in a single recombinant nucleic acid construct (e.g., a single expression cassette/vector) or in two or more nucleic acid constructs (e.g., 2, 3, 4, 5, 6, 7, or more expression cassettes/vectors). The additional heterologous polynucleotides may be introduced on the same or different nucleic acid constructs as the heterologous polynucleotide encoding an IPD3 polypeptide and/or the heterologous polynucleotide encoding an IPD3 phosphomimic polypeptide.
[0145] A heterologous polynucleotide encoding an IPD3 polypeptide, a DMI3 polypeptide, an IFS, a FS1 and/or a FS2 for introducing into a naturally non-mycorrhizal plant, or plant cell or plant part thereof, may be obtained from any naturally mycorrhizal or rhizobial host plant including, but not limited to, Medicago spp. (e.g., Medicago truncatula), Lotus spp. (e.g., Lotus japonicus), Zea spp. (e.g., Zea mays), Oryza spp. (e.g., Oryza sativa), Triticum spp. (e.g., Triticum aestivum), Lycopersicon spp. (e.g., Lycopersicon esculentum), Cucumis spp. (e.g., Cucumis sativus), Tropaeolum spp. (e.g., Tropaeolum majus), Carica spp. (e.g., Carica papaya), Moringa spp. (e.g., Moringa oleifera), Pisum spp. (e.g., Pisum sativum), Solanum spp. (e.g., Solanum lycopersicum), Diphasiastrum spp. (e.g., Diphasiastrum digitatum), Glycine spp. (e.g., Glycine max), Phaseolus spp. (e.g., Phaseolus vulgaris), Arachis spp. (e.g., Arachis hypogea), Petunia spp. (e.g., Petunia x hybrida), Sesbania spp. (e.g., Sesbania rostrate), Trifolium spp. (e.g., Trifolium pretense), Beta spp. (e.g., Beta vulgaris), Vicia spp. (e.g., Vicia villosa), Caragana spp. (e.g., Caragana arborescens), Vigna spp. (e.g., Vigna unguiculata, Petroselinum spp. (e.g., Petroselinum crispum), Cuminum spp. (e.g., Cuminum cyminum), Aethusa spp. (e.g., Aethusa cynapium), Angelica spp. (e.g., Angelica archangelica), Apium spp. (e.g., Apium graveolens), Conium spp. (e.g., Conium maculatum), Daucus spp. (e.g., Daucus carota, e.g., Daucus carota var. sativa), Perilla spp. (e.g., Perilla frutescens, e.g., Perilla frutescens var. crispa), Gerbera spp. (e.g., Gerbera x hybrida, e.g., cross between Gerbera jamesonii and Gerbera viridifolia), Gentiana spp. (e.g., Gentiana triflora), Antirrhinum spp. (e.g., Antirrhinum majus), Theobroma spp. (e.g., Theobroma cacao), Camellia spp. (e.g., Camellia sinensis), Plectranthus spp. (e.g., Plectranthus barbatus), and Lonicera spp. (e.g., Lonicera japonica). In some embodiments, a heterologous polynucleotide encoding an IPD3 polypeptide, a DMI3 polypeptide, an IFS, a FS1 and/or a FS2 useful with this invention may be obtained from, for example, Medicago spp., Lotus spp., and/or Glycine spp. In some embodiments, a heterologous polynucleotide encoding an IPD3 polypeptide, a DMI3 polypeptide, an IFS, a FS1 and/or a FS2 for introducing into a naturally non-mycorrhizal plant, or plant cell or plant part thereof, may also be obtained from a plant that naturally produces an IPD3 polypeptide, a DMI3 polypeptide, an IFS, a FS1 and/or a FS2 in the absence of a mycorrhizal or rhizobial phenotype (e.g., Beta vulgaris, Lupinus spp.). In some embodiments, an IPD3 phosphomimic polypeptide and/or a DMI3 phosphomimic polypeptide may be synthesized from any IPD3 and/or DMI3 polypeptide obtained from any naturally mycorrhizal or rhizobial host plant, including but not limited to the mycorrhizal or rhizobial host plants described above.
[0146] In some embodiments, a heterologous polynucleotide encoding an IPD3 may comprise a nucleotide sequence having at least about 70% identity to any one of SEQ ID NOs:1-5 and/or a nucleotide sequence having at least about 70% identity to a polynucleotide encoding an amino acid sequence of any one of SEQ ID NOs:10-14. In some embodiments, a heterologous polynucleotide encoding an IPD3 phosphomimic may comprise a nucleotide sequence having at least about 70% identity to any one of SEQ ID NOs:6-9, and/or a polynucleotide encoding an amino acid sequence having at least about 70% identity to any one of SEQ ID NOs:15-18. Thus, in some embodiments, the sequence of a homologue of a phosphomimic polypeptide may be less than 100% identical to a phosphomimic polypeptide of the invention while maintaining the phosphomimic site(s) in the polypeptide.
[0147] In some embodiments, a heterologous polynucleotide encoding an DMI3 may comprise a nucleotide sequence having at least about 70% identity to any one of SEQ ID NOs:19-25 and/or a nucleotide sequence having at least about 70% identity to a polynucleotide encoding an amino acid sequence of any one of SEQ ID NOs:28-34. In some embodiments, a heterologous polynucleotide encoding an DMI3 phosphomimic may comprise a nucleotide sequence having at least about 70% identity to the nucleotide sequence of SEQ ID NO:26 or SEQ ID NO:27, and/or a nucleotide sequence having at least about 70% identity to a polynucleotide encoding an amino acid sequence of SEQ ID NO 35 or SEQ ID NO:36.
[0148] Thus, in some embodiments, the polypeptide or polynucleotide sequence of a homologue of a phosphomimic polypeptide (e.g., an IPD3 or a DMI3 phsophomimic) may be less than 100% identical to a phosphomimic polypeptide or polynucleotide of the invention, while maintaining the phosphomimic site(s).
[0149] In some embodiments, a heterologous polynucleotide encoding an IFS may comprise a nucleotide sequence having at least about 70% identity to a nucleotide sequence of any one of SEQ ID NOs:37-45 and/or a nucleotide sequence having at least about 70% identity to a polynucleotide encoding an amino acid sequence of any one of SEQ ID NOs: 46-54.
[0150] In some embodiments, a heterologous polynucleotide encoding an FS1 may comprise a nucleotide sequence having at least about 70% identity to a nucleotide sequence of any one of SEQ ID NOs:55-61 and/or having at least about 70% identity to a polynucleotide encoding an amino acid sequence of any one of SEQ ID NOs:62-68.
[0151] In some embodiments, a heterologous polynucleotide encoding an FS2 may comprise a nucleotide sequence having at least about 70% identity to a nucleotide sequence of any one of SEQ ID NOs:69-79 and/or having at least about 70% identity to a polynucleotide encoding an amino acid sequence of any one of SEQ ID NOs:80-90.
[0152] Also provided herein are plants, plant parts, or plant cells produced by any of the methods of the present invention, plants derived from the plants, plant parts, or plant cells produced by this invention, seeds produced from plants of the invention, and crops comprising plants of the present invention, as well as products harvested from the plants or parts thereof, or crops, and processed products produced from the seeds and other harvested products.
[0153] As used herein, "a naturally non-mycorrhizal plant" may be any plant that lacks arbuscular mycorrhizae and does not naturally form a symbiotic relationship with an arbuscular mycorrhizal fungus. The term "naturally non-mycorrhizal plant" also includes plants having incidental or limited colonization by mycorrhizal fungi, plants that may be colonized by mycorrhizal fungi in a non-symbiotic role, and plants that may be colonized by fungi but that do not complete the fungal lifecycle or where the fungi do not colonize significant portions of the root system, form intraradical hyphae, vesicles, intracellular hyphae, and spores, and complete nutrient exchange with the host.
[0154] In some embodiments, a naturally non-mycorrhizal plant may be a species in the Brassicaceae plant family. Members of the family Brassicaceae do not undergo symbiosis and are not typically colonized by mycorrhizal fungi in other capacities. Example plants in the Brassicaceae family include, but are not limited to, Brassica napus (canola), Brassica oleraceae (e.g., broccoli, cabbage, cauliflower, kale, Brussels sprouts, collard), Brassica juncea (e.g., mustard, e.g., brown mustard, Chinese mustard, Indian mustard, leaf mustard, Oriental mustard and vegetable mustard), Camelina sativa, Brassica rapa (e.g., turnip, napa cabbage, bomdong, bok choy), Arabidopsis thaliana, Alliaria petiolata, Sinapis alba, Thlaspi arvense, Raphanus sativus (e.g., radish), or Cleome spinosa.
[0155] In some embodiments, a naturally non-mycorrhizal plant may be a species in the Amaranthaceae plant family. Members of the family Amaranthaceae are not known to undergo typical AM symbiosis but may be colonized at low levels, commensally, in limited circumstances, and/or without all anatomical or physiological features of the functional AM relationship, by mycorrhizal fungi. Example plants in the Amaranthaceae plant family include, but are not limited to, Beta vulgaris (e.g., beet, sugar beet), Amaranthus caudatus, Amaranthus tricolor, Hebanthe ariantha, Spinacia oleraceae (e.g., spinach), Haloxylon ammodendron, Kalidium gracile, Suaeda californica, or Chenopodium quinoa.
[0156] Members of families and genera with mixed species-level mycorrhizal status that may also be useful with this invention include those from any one of the plant families of Caryophyllaceae, Crassulaceae, Lupinus, Proteaceae, Cyperaceae, or Juncaceae. Thus, in some embodiments, a naturally non-mycorrhizal plant of the invention may be any naturally nonmycorrhizal species as defined herein that is in any one of the plant families of Caryophyllaceae, Crassulaceae, Lupinus, Proteaceae, Cyperaceae, or Juncaceae.
[0157] The modified plants produced by the methods of the present invention are expected to form relationships with any fungus otherwise capable of forming natural arbuscular-mycorrhizal relationships with a photosynthetic partner. Accordingly, in some embodiments, the modified plants of the present invention may be colonized by, and form a symbiotic mycorrhizal relationship with any member of the clade Glomeromycota. In some embodiments, the fungi that the modified plants of the present invention may be colonized by, and form a symbiotic mycorrhizal relationship include, but are not limited to, Rhizophagus irregularis (formerly Glomus intraradices), Glomus mosseae, Glomus clarum, Glomus clavisporum, Gigaspora margarita, Acaulospora dilatata, Pacispora scintillans, Diversispora spurca, Funneliformis mosseae, Claroideoglomus claroideum, Archaeospora gerdemannii, Ambispora appendicula, Geosiphon pyriformis, Diskagma buttonii, Paraglomus laccatum, any common model and or commercial strains thereof, or any combination thereof. If the clade Glomeromycota is reorganized by taxonomists, any former member and any fungus displaying a similar symbiotic lifestyle would still be included among those fungi that are capable of forming a symbiotic mycorrhizal relationship with the modified plants of the present invention.
[0158] Also provided herein are plants, plant parts, or plant cells produced by any of the methods of the present invention, plants derived from the plants, plant parts, or plant cells produced by this invention, seeds produced from plants of the invention, and crops comprising plants of the present invention, as well as products harvested from the plants or parts thereof, or crops, and processed products produced from the seeds and other harvested products.
[0159] In some embodiments, the present invention further provides a recombinant nucleic acid molecule comprising at least one of the following polynucleotides:
[0160] (a) a polynucleotide encoding an IPD3 (DMI3-interacting protein IPD3/CYCLOPS) having a nucleotide sequence of any one of SEQ ID NOs:1-5;
[0161] (b) a polynucleotide encoding an IPD3 phosphomimic having a nucleotide sequence of any one of SEQ ID NOs:6-9;
[0162] (c) a polynucleotide encoding a DMI3 (Doesn't Make Infections 3) polypeptide having a nucleotide sequence of any one of SEQ ID NOs:19-25;
[0163] (d) a polynucleotide encoding an DMI3 phosphomimic having a nucleotide sequence of SEQ ID NO:26, or SEQ ID NO:27;
[0164] (e) a polynucleotide encoding an isoflavone synthase (IFS) having a nucleotide sequence of any one of SEQ ID NOs:37-45;
[0165] (f) a polynucleotide encoding a flavone synthase 1 (FS1) having a nucleotide sequence of any one of SEQ ID NOs:55-61; and/or
[0166] (g) a polynucleotide encoding a flavone synthase 2 (FS2) having a nucleotide sequence of any one of SEQ ID NOs:69-79;
[0167] (h) a polynucleotide having at least 70% identity to any one of the polynucleotides of (a)-(g);
[0168] (i) a polynucleotide that is complementary to any one of the polynucleotides of (a) to (h) above;
[0169] (j) a polynucleotide that hybridizes to any one of the polynucleotides of (a) to (i) above under stringent hybridization conditions;
[0170] (k) a functional fragment of any one of the polynucleotides of (a) to (j) above; or
[0171] (l) any combination of the polynucleotides of (a) to (k) above.
[0172] In some embodiments, the present invention provides a recombinant nucleic acid molecule comprising at least one of the following polynucleotides:
[0173] (a) a polynucleotide encoding an IPD3 (DMI3-interacting protein IPD3/CYCLOPS) having an amino acid sequence of any one of SEQ ID NOs:10-14;
[0174] (b) a polynucleotide encoding an IPD3 phosphomimic having an amino acid sequence of SEQ ID NOs:15-18;
[0175] (c) a polynucleotide encoding a DMI3 (Doesn't Make Infections 3) polypeptide having an amino acid sequence of any one of SEQ ID NOs:28-34;
[0176] (d) a polynucleotide encoding an DMI3 phosphomimic having an amino acid sequence of SEQ ID NO:35 or SEQ ID NO:36;
[0177] (e) a polynucleotide encoding an isoflavone synthase (IFS) having an amino acid sequence of any one of SEQ ID NOs:46-54;
[0178] (f) a polynucleotide encoding a FS1 flavone synthase 1 having an amino acid sequence of any one of SEQ ID NO:62-68; and/or
[0179] (g) a polynucleotide encoding a FS2 flavone synthase having an amino acid sequence of any one of SEQ ID NO:80-90;
[0180] (h) a polynucleotide having at least 70% identity to any one of the polynucleotides of (a)-(g);
[0181] (i) a polynucleotide that is complementary to any one of the polynucleotides of (a) to (h) above;
[0182] (j) a polynucleotide that hybridizes to any one of the polynucleotides of (a) to (i) above under stringent hybridization conditions;
[0183] (k) a functional fragment of any one of the polynucleotides of (a) to (j) above; or
[0184] (l) any combination of the polynucleotides of (a) to (k) above.
[0185] A recombinant nucleic acid molecule of the invention may be comprised in an expression cassette. An expression cassette comprising a recombinant nucleic acid molecule may be chimeric, meaning that at least one of its components is heterologous with respect to at least one of its other components. An expression cassette may also be one that is naturally occurring but has been obtained in a recombinant form useful for heterologous expression.
[0186] In addition to expression cassettes, the nucleic acid molecules and nucleotide sequences described herein can be used in connection with vectors. The term "vector" refers to a composition for transferring, delivering or introducing a nucleic acid (or nucleic acids) into a cell. A vector comprises a nucleic acid molecule comprising the nucleotide sequence(s) to be transferred, delivered or introduced. Vectors for use in transformation of plants and other organisms are well known in the art. Non-limiting examples of general classes of vectors include, but are not limited to, a viral vector, a plasmid vector, a phage vector, a phagemid vector, a cosmid, a fosmid, a bacteriophage, or an artificial chromosome. The selection of a vector will depend upon the preferred transformation technique and the target species for transformation. Accordingly, in further embodiments, a recombinant nucleic acid molecule of the invention can be comprised within a recombinant vector. The size of a vector can vary considerably depending on whether the vector comprises one or multiple expression cassettes (e.g., for molecular stacking). Thus, a vector size can range from about 3 kb to about 30 kb. Thus, in some embodiments, a vector is about 3 kb, 4 kb, 5 kb, 6 kb, 7 kb, 8 kb, 9 kb, 10 kb, 11 kb, 12 kb, 13 kb, 14 kb, 15 kb, 16 kb, 17 kb, 18 kb, 19 kb, 20 kb, 21 kb, 22 kb, 23 kb, 24 kb, 25 kb, 26 kb, 27 kb, 28 kb, 29 kb, 30 kb, 40 kb, 50 kb, 60 kb, and the like or any range therein, in size. In some particular embodiments, a vector can be about 3 kb to about 10 kb in size.
[0187] Additionally, shuttle vectors are included, which are DNA vehicles capable, naturally or by design, of replication in two different host organisms, such as broad-host plasmids or shuttle vectors with multiple origins-of-replication. In some representative embodiments, the nucleic acid in the vector is under the control of, and operably linked to, an appropriate promoter or other regulatory elements for transcription in a host cell. The vector may be a bi-functional expression vector which functions in multiple hosts. In the case of genomic DNA, this may contain its own promoter or other regulatory elements and in the case of cDNA this may be under the control of an appropriate promoter or other regulatory elements for expression in the host cell. Accordingly, a polynucleotide of this invention and/or expression cassettes comprising polynucleotides of this invention can be comprised in vectors as described herein and as known in the art.
[0188] In some embodiments, heterologous polynucleotides encoding an IPD3, IPD3 phosphomimic, DMI3, DMI3 phosphomimic, IFS, FS1 and/or FS2 polypeptide can be comprised in a single expression cassette. The expression cassette can be operably linked to a promoter that drives expression of all of the polynucleotides comprised in the expression cassette and/or the expression cassette can comprise one or more promoters operably linked to one or more of the heterologous polynucleotides for driving the expression of said heterologous polynucleotides. In some embodiments, the heterologous polynucleotides encoding IPD3, IPD3 phosphomimic, DMI3, DMI3 phosphomimic, IFS, and/or FS1 and FS2 polypeptides can be comprised in one or more expression cassettes, in any combination.
[0189] When the heterologous polynucleotides are comprised within more than one expression cassette, said heterologous polynucleotides can be introduced into plants singly or more than one at a time using co-transformation methods as known in the art. In addition to transformation technology, traditional breeding methods as known in the art can be used to assist in introducing into a single plant each of the polynucleotides encoding the polypeptides of the invention as described herein and/or any other polynucleotides of interest to produce a plant, plant part, and/or plant cell comprising and expressing each of the introduced heterologous polynucleotides.
[0190] Any promoter useful for initiation of transcription in a cell of a plant can be used in the expression cassettes/vectors of the present invention. A "promoter," as used herein, is a nucleotide sequence that controls or regulates the transcription of a nucleotide sequence (i.e., a coding sequence) that is operably associated with the promoter. The coding sequence may encode a polypeptide and/or a functional RNA. Typically, a "promoter" refers to a nucleotide sequence that contains a binding site for RNA polymerase II and directs the initiation of transcription. In general, promoters are found 5', or upstream, relative to the start of the coding region of the corresponding coding sequence. The promoter region may comprise other elements that act as regulators of gene expression. These include a TATA box consensus sequence, and often a CAAT box consensus sequence (Breathnach and Chambon, (1981) Annu. Rev. Biochem. 50:349). In plants, the CAAT box may be substituted by the AGGA box (Messing et al., (1983) in Genetic Engineering of Plants, T. Kosuge, C. Meredith and A. Hollaender (eds.), Plenum Press, pp. 211-227).
[0191] Promoters can include, for example, constitutive, inducible, temporally regulated, developmentally regulated, chemically regulated, tissue-preferred and/or tissue-specific promoters for use in the preparation of a recombinant nucleic acid molecule of the invention, i.e., "chimeric genes" or "chimeric polynucleotides." A promoter can be identified in and isolated from an organism to be transformed and then inserted into the nucleic acid construct to be used in transformation of the organism.
[0192] The choice of promoter will vary depending on the temporal and spatial requirements for expression, and also depending on the host cell in which gene expression is desired. Promoters useful with the invention include, but are not limited to, those that drive expression of a nucleotide sequence constitutively, those that drive expression when induced, and those that drive expression in a tissue- or developmentally-specific manner. These various types of promoters are known in the art. Promoters can be identified in and isolated from the plant to be transformed and then inserted into the expression cassette to be used in transformation of the plant.
[0193] In any of the embodiments described herein, a heterologous polynucleotide and/or recombinant nucleic acid molecule of the invention can be operatively associated with a variety of promoters and other regulatory elements for expression in cells of various organisms. In embodiments described herein, one or more of the polynucleotides and nucleic acids of the invention may be operably associated with a promoter as well as a terminator, and/or other regulatory elements for expression in plant cell. Any promoter, terminator or other regulatory element that is functional in a plant cell may be used with the nucleic acids of this invention. In some embodiments, a regulatory element (e.g., promoter, terminator, and the like) that is useful with this invention may be a native or heterologous regulatory element. In some embodiments, a promoter may be a heterologous promoter or it may be a native promoter (e.g., native to the introduced nucleic acid, and/or native to the plant being transformed). Thus, in some embodiments, a promoter useful with this invention may be a native IPD3, DMI3, IFS, FS1 and/or FS2 promoter.
[0194] In some embodiments, a promoter may be from Medicago spp. (e.g., Medicago truncatula), Lotus spp. (e.g., Lotus japonicus), Zea spp. (e.g., Zea mays), Oryza spp. (e.g., Oryza sativa), Triticum spp. (e.g., Triticum aestivum), Lycopersicon spp. (e.g., Lycopersicon esculentum), Cucumis spp. (e.g., Cucumis sativus), Tropaeolum spp. (e.g., Tropaeolum majus), Carica spp. (e.g., Carica papaya), or Moringa spp. (e.g., Moringa oleifera). In some embodiments, a promoter useful with the invention may be a native IPD3, DMI3, IFS, FS1 and/or FS2 promoter from Medicago spp. (e.g., Medicago truncatula) (e.g., SEQ ID NO:91)), Lotus spp. (e.g., Lotus japonicus), Zea spp. (e.g., Zea mays), Oryza spp. (e.g., Oryza sativa), Triticum spp. (e.g., Triticum aestivum), Lycopersicon spp. (e.g., Lycopersicon esculentum), Cucumis spp. (e.g., Cucumis sativus), Tropaeolum spp. (e.g., Tropaeolum majus), Carica spp. (e.g., Carica papaya), or Moringa spp. (e.g., Moringa oleifera).
[0195] While expression of the heterologous polynucleotide encoding the polypeptides IPD3, IPD3 phosphomimic, DMI3, DMI3 phosphomimic, IFS, and/or FS1 and FS2 polypeptides as described herein may be designed to occur anywhere in a plant in an induced or developmentally regulated manner, it may be useful to express the polynucleotides in roots and root cortex cells and/or root epidermis cells where mycorrhizal colonization takes place using tissue-specific or tissue preferred promoter(s) (e.g., a root specific/preferred promoter(s)) Example root specific/root-preferred promoters include, but are not limited to, those described by de Framond (FEBS 290:103-106 (1991); EP 0 452 269 to Ciba-Geigy), the root hair-specific cis-elements (RHES) (Kim et al. The Plant Cell 18:2958-2970 (2006)), and the root-specific promoters RCc3 (Jeong et al. Plant Physiol. 153:185-197 (2010)) and RB7 (U.S. Pat. No. 5,459,252). In some embodiments, a root specific promoter useful with the invention may include, but is not limited to, a promoter from the Arabidopsis thaliana Pht1;2 gene(s), the Arabidopsis thaliana Pyk10 gene, the Sorghum bicolor RCc3 gene, the Avena strigose Sad1 gene or the Lotus japonicus Cbp1 gene.
[0196] An expression cassette of the invention may include a terminator sequence. In some embodiments, a terminator sequence useful with this invention may be a native or heterologous terminator sequence. In some embodiments, a terminator sequence may be a terminator sequence from a gene from Medicago spp. In some embodiments, a terminator sequence may include, but is not limited to, a terminator sequence from an IPD3 gene of Medicago trunculata (e.g., SEQ ID NO:92).
[0197] An expression cassette of the invention also can include a nucleotide sequence for a selectable marker, which can be used to select a transformed plant, plant part and/or plant cell. As used herein, "selectable marker" means a nucleotide sequence that when expressed imparts a distinct phenotype to a plant, plant part and/or plant cell expressing the marker and thus allows such a transformed plant, plant part, and/or plant cell to be distinguished from that which does not have the marker. Such a nucleotide sequence may encode either a selectable or screenable marker, depending on whether the marker confers a trait that can be selected for by chemical means, such as by using a selective agent (e.g., an antibiotic, herbicide, or the like), or whether the marker is simply a trait that one can identify through observation or testing, such as by screening. Of course, many examples of suitable selectable markers are known in the art and can be used in the expression cassettes described herein.
[0198] Examples of selectable markers include, but are not limited to, a nucleotide sequence encoding aadA (i.e., spectinomycin and streptomycin resistance), a nucleotide sequence encoding neo (i.e., kanamycin resistance), a nucleotide sequence encoding aphA6 (i.e., kanamycin resistance), a nucleotide sequence encoding nptII (i.e., kanamycin resistance), a nucleotide sequence encoding bar (i.e., phosphinothricin resistance), a nucleotide sequence encoding cat (i.e., chloramphenicol resistance), a nucleotide sequence encoding badh (i.e., betaine aldehyde resistance), a nucleotide sequence encoding egfp, (i.e., enhanced green fluorescence protein), a nucleotide sequence encoding gfp (i.e., green fluorescent protein), a nucleotide sequence encoding luc (i.e., luciferase), a nucleotide sequence encoding mCherry (i.e. a red fluorescent protein), a nucleotide sequence encoding ble (bleomycin resistance), a nucleotide sequence encoding ereA (erythromycin resistance), and any combination thereof.
[0199] Further examples of selectable markers useful with the invention include, but are not limited to, a nucleotide sequence encoding an altered 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase, which confers resistance to glyphosate (Hinchee et al. (1988) Biotech. 6:915-922); a nucleotide sequence encoding a nitrilase such as bxn from Klebsiella ozaenae that confers resistance to bromoxynil (Stalker et al. (1988) Science 242:419-423); a nucleotide sequence encoding an altered acetolactate synthase (ALS) that confers resistance to imidazolinone, sulfonylurea or other ALS-inhibiting chemicals (EP Patent Application No. 154204); a nucleotide sequence encoding a methotrexate-resistant dihydrofolate reductase (DHFR) (Thillet et al. (1988) J. Biol. Chem. 263:12500-12508); a nucleotide sequence encoding a dalapon dehalogenase that confers resistance to dalapon; a nucleotide sequence encoding a mannose-6-phosphate isomerase (also referred to as phosphomannose isomerase (PMI)) that confers an ability to metabolize mannose (U.S. Pat. Nos. 5,767,378 and 5,994,629); a nucleotide sequence encoding an altered anthranilate synthase that confers resistance to 5-methyl tryptophan; and/or a nucleotide sequence encoding hph that confers resistance to hygromycin.
[0200] Additional selectable markers include, but are not limited to, a nucleotide sequence encoding .beta.-glucuronidase or uidA (GUS) that encodes an enzyme for which various chromogenic substrates are known; an R-locus nucleotide sequence that encodes a product that regulates the production of anthocyanin pigments (red color) in plant tissues (Dellaporta et al., "Molecular cloning of the maize R-nj allele by transposon-tagging with Ac" 263-282 In: Chromosome Structure and Function: Impact of New Concepts, 18th Stadler Genetics Symposium (Gustafson & Appels eds., Plenum Press 1988)); a nucleotide sequence encoding .beta.-lactamase, an enzyme for which various chromogenic substrates are known (e.g., PADAC, a chromogenic cephalosporin) (Sutcliffe (1978) Proc. Natl. Acad. Sci. USA 75:3737-3741); a nucleotide sequence encoding xylE that encodes a catechol dioxygenase (Zukowsky et al. (1983) Proc. Natl. Acad. Sci. USA 80:1101-1105); a nucleotide sequence encoding tyrosinase, an enzyme capable of oxidizing tyrosine to DOPA and dopaquinone, which in turn condenses to form melanin (Katz et al. (1983) J. Gen. Microbiol. 129:2703-2714); a nucleotide sequence encoding .beta.-galactosidase, an enzyme for which there are chromogenic substrates; a nucleotide sequence encoding luciferase (lux) that allows for bioluminescence detection (Ow et al. (1986) Science 234:856-859); a nucleotide sequence encoding Bla that confers ampicillin resistance; or a nucleotide sequence encoding aequorin which may be employed in calcium-sensitive bioluminescence detection (Prasher et al. (1985) Biochem. Biophys. Res. Comm. 126:1259-1268), and/or any combination thereof. One of skill in the art is capable of choosing a suitable selectable marker for use in an expression cassette or recombinant nucleic acid construct of this invention.
[0201] The term "transformation" as used herein refers to the introduction of a heterologous polynucleotide into a cell. Transformation of a plant, plant part, plant cell, yeast cell and/or bacterial cell may be stable or transient.
[0202] "Transient transformation" in the context of a polynucleotide means that a polynucleotide is introduced into the cell and does not integrate into the genome of the cell.
[0203] By "stably introducing" or "stably introduced" in the context of a polynucleotide introduced into a cell it is intended that the introduced polynucleotide is stably incorporated into the genome of the cell, and thus the cell is stably transformed with the polynucleotide.
[0204] "Stable transformation" or "stably transformed" as used herein means that a nucleic acid molecule is introduced into a cell and integrates into the genome of the cell. As such, the integrated nucleic acid molecule is capable of being inherited by the progeny thereof, more particularly, by the progeny of multiple successive generations. "Genome" as used herein also includes the nuclear and the plastid genome, and therefore includes integration of the nucleic acid into, for example, the chloroplast genome. Stable transformation as used herein can also refer to a transgene that is maintained extrachromasomally, for example, as a minichromosome. The phrase "a stably transformed plant, plant part, and/or plant cell expressing said one or more polynucleotide sequences" and similar phrases used herein, means that the stably transformed plant, plant part, and/or plant cell comprises the one or more polynucleotide sequences and that said one or more polynucleotide sequences are functional in said stably transformed plant, plant part, and/or plant cell.
[0205] Transient transformation may be detected by, for example, an enzyme-linked immunosorbent assay (ELISA) or Western blot, which can detect the presence of a peptide or polypeptide encoded by one or more transgene introduced into an organism. Stable transformation of a cell can be detected by, for example, a Southern blot hybridization assay of genomic DNA of the cell with nucleic acid sequences which specifically hybridize with a nucleotide sequence of a transgene introduced into an organism (e.g., a plant). Stable transformation of a cell can be detected by, for example, a Northern blot hybridization assay of RNA of the cell with nucleic acid sequences which specifically hybridize with a nucleotide sequence of a transgene introduced into a plant or other organism. Stable transformation of a cell can also be detected by, e.g., a polymerase chain reaction (PCR) or other amplification reactions as are well known in the art, employing specific primer sequences that hybridize with target sequence(s) of a transgene, resulting in amplification of the transgene sequence, which can be detected according to standard methods. Transformation can also be detected by direct sequencing and/or hybridization protocols that are well known in the art.
[0206] A heterologous polynucleotide encoding an IPD3, IPD3 phosphomimic, DMI3, DMI3 phosphomimic, IFS, and/or FS1 and FS2 polypeptide can be introduced into a cell of a plant by any method known to those of skill in the art. In some embodiments of the invention, transformation of a cell comprises nuclear transformation.
[0207] Procedures for transforming plants are well known and routine in the art and are described throughout the literature. Non-limiting examples of transformation methods include transformation via bacterial-mediated nucleic acid delivery (e.g., via Agrobacteria) (including floral dip), viral-mediated nucleic acid delivery, silicon carbide or nucleic acid whisker-mediated nucleic acid delivery, liposome mediated nucleic acid delivery, microinjection, microparticle bombardment, calcium-phosphate-mediated transformation, cyclodextrin-mediated transformation, electroporation, nanoparticle-mediated transformation, sonication, infiltration, PEG-mediated nucleic acid uptake, as well as any other electrical, chemical, physical (mechanical) and/or biological mechanism that results in the introduction of nucleic acid into the plant cell, including any combination thereof. General guides to various plant transformation methods known in the art include Mild et al. ("Procedures for Introducing Foreign DNA into Plants" in Methods in Plant Molecular Biology and Biotechnology, Glick, B. R. and Thompson, J. E., Eds. (CRC Press, Inc., Boca Raton, 1993), pages 67-88) and Rakowoczy-Trojanowska (Cell. Mol. Biol. Lett. 7:849-858 (2002)). General guides to the transformation of yeast include Guthrie and Fink (1991) (Guide to yeast genetics and molecular biology. In Methods in Enzymology, (Academic Press, San Diego) 194:1-932) and guides to methods related to the transformation of bacteria include Aune and Aachmann (Appl. Microbiol Biotechnol 85:1301-1313 (2010)).
[0208] A polynucleotide therefore can be introduced into a plant, plant part, plant cell in any number of ways that are well known in the art. The methods of the invention do not depend on a particular method for introducing one or more nucleotide sequences into a plant, only that they gain access to the interior the cell. Where more than polynucleotide is to be introduced, they can be assembled as part of a single nucleic acid construct, or as separate nucleic acid constructs, and can be located on the same or different nucleic acid constructs. Accordingly, the polynucleotide can be introduced into the cell of interest in a single transformation event, or in separate transformation events, or, alternatively, a polynucleotide can be incorporated into a plant as part of a breeding protocol.
[0209] In some embodiments, when a plant part or plant cell is stably transformed, it can then be used to regenerate a stably transformed plant comprising one or more heterologous polynucleotides encoding an IPD3 polypeptide, IPD3 phosphomimic polypeptide, DMI3 polypeptide, DMI3 phosphomimic polypeptide, IFS polypeptide, FS1 polypeptide and/or FS2 polypeptide, or any combination thereof, and/or any other polynucleotides of interest as described herein in its genome. Means for regeneration can vary from plant species to plant species, but generally a suspension of transformed protoplasts or a petri plate containing transformed explants is first provided. Callus tissue is formed and shoots may be induced from callus and subsequently root. Alternatively, somatic embryo formation can be induced in the callus tissue. These somatic embryos germinate as natural embryos to form plants. The culture media will generally contain various amino acids and plant hormones, such as auxin and cytokinins Efficient regeneration will depend on the medium, on the genotype, and on the history of the culture. If these three variables are controlled, then regeneration is usually reproducible and repeatable.
[0210] The regenerated plants are transferred to standard soil conditions and cultivated in a conventional manner. The plants are grown and harvested using conventional procedures.
[0211] The particular conditions for transformation, selection and regeneration of a plant can be optimized by those of skill in the art. Factors that affect the efficiency of transformation include the species of plant, the target tissue or cell, composition of the culture media, selectable marker genes, kinds of vectors, and light/dark conditions. Therefore, these and other factors may be varied to determine an optimal transformation protocol for any particular plant species. It is recognized that not every species will react in the same manner to the transformation conditions and may require a slightly different modification of the protocols disclosed herein. However, by altering each of the variables, an optimum protocol can be derived for any plant species.
[0212] Further, the genetic properties engineered into the transgenic seeds and plants, plant parts, and/or plant cells of the present invention described herein can be passed on by sexual reproduction or vegetative growth and therefore can be maintained and propagated in progeny plants. Generally, maintenance and propagation make use of known agricultural methods developed to fit specific purposes such as harvesting, sowing or tilling.
[0213] The invention will now be described with reference to the following examples. It should be appreciated that these examples are not intended to limit the scope of the claims to the invention, but are rather intended to be exemplary of certain embodiments. Any variations in the exemplified methods that occur to the skilled artisan are intended to fall within the scope of the invention.
EXAMPLES
Example 1. Common Symbiosis Pathway
[0214] A common explanation for the lack of mycorrhizae, especially in the phylogenetic literature, is that functionally necessary CSP elements are genomically absent from the Brassicaceae. However, this account is contradicted by findings at the individual gene level that (1) mycorrhizal colonization proceeds in the face of knockouts of most CSP genes and (2) orthologs of genes that have been scored as absent in Brassicaceae by phylogenetic studies exist in Arabidopsis and are shown to retain their symbiotic function via rescue of M. truncatula knockouts.
[0215] In view of this apparent conflict in research findings, we revisited the bioinformatic analysis of 11 CSP genes identified by Delaux et al. (Plos Genetics 10(7) (2014)) as present in AM-positive plants but missing in AM-negative plants, using the now-available Camelina genome as well as Arabidopsis and Brassica napus. We also performed protein structure modeling with SWISS-MODEL and compared putative CSP orthologs in Arabidopsis/Camelina/Brassica to models of the template M. truncatula sequence using the RCSB PDF Protein Comparison Tool. Our results (shown in Table 1) indicate that consistent with the genetic rather than the phylogenetic literature, sequences are present in Brassicaceae genomes that may constitute functional orthologs of all but one of the CSP genes previously thought to be absent in this clade.
TABLE-US-00001 TABLE 1 Identification of proteins in Lotus japonicus, Arabidopsis thaliana and Camelina sativa with sequence and structure similarity to known AM symbiosis proteins of Medicago trunculata. E-values, % amino acid (aa) identity, and structure comparison Z-scores are shown for models of the highest scoring protein/translated nucleotide sequences identified through BLAST. Lotus japonicus serves as a positive control because it also establishes functional AM symbiosis. Lotus japonicus SPECIES e-value/aa Arabidopsis thaliana Camelina sativa Functional CSP GENE ident./Z e-value/aa ident./Z e-value/aa ident./Z Annotation NFP 0/71%/7.64 2e-65/32%/6.7 7e-70/28%/7.02 Receptor kinase DMI2 0/82%/7.34 1e-132/34%/7.34 7e-132/35%/7.34 Receptor kinase CASTOR 0/81%/8.4 0/64%/7.64 0/64%/8.12 Ca.sup.2+ channel DMI3 0/86%/7.34 9e-77/37%/7.64 1e-76/34%/7.44 Ca.sup.2+ dep. kinase IPD3 0/78%/NA no sequence no sequence Coiled coil RAM1 0/81%/7.93 8e-97/44%/7.74 2e-96/41%/7.64 GRAS-TF RAM2 0/89%/3.07 0/55%/3.5 0/54%/6.92 Cutin synthesis VAPYRIN 4e-17/33%/7.1 3e-19/32%/5.04 6e-21/29%/7.02 Ankyrin domain STR 0/87%/7.02 1e-94/49%/7.34 1e-96/56%/7.24 ABC transporter STR2 0/44%/7.24 1e-126 /37%/7.13 5e-126/36%/6.92 ABC transporter PT4 0/87%/6.81 0/62%/6.35 0/60%/7.34 P.sub.i transporter
[0216] The only protein listed in Table 1 that was confirmed to be conclusively missing from the Arabidopsis and Camelina genomes was IPD3. IPD3 is a nuclear membrane localized protein that is phosphorylated by DMI3, leading to upregulation of RAM1, a transcription factor for RAM2, as well as upregulation of other genes. IPD3 is also one of the few CSP genes found by mutagenesis studies to completely disable mycorrhizal formation when knocked out of AM-positive plants, suggesting that its absence may indeed be at the center of the lost AM signaling in Brassicaceae.
Example 2. Flavonoid Synthesis Pathway
[0217] Rhizosphere signaling is the other historical area of focus in studies of the mycorrhizal relationship, in which signals produced by the plant diffuse into soil to recruit the symbiont. Flavonoid metabolites, particularly flavones and isoflavones, are well-documented stimulants of mycorrhizal fungus germination and growth. These metabolites also induce production of chitin oligomers by the fungi that stimulate presymbiotic adaptation of the plant root, forming a positive feedback loop with the CSP. Arabidopsis and Camelina genomes are lacking isoflavone synthase (IFS), flavone synthase 1 (FS1) and flavone synthase 2 (FS2), the precise genes required for synthesis of these stimulatory metabolites, again suggesting that these missing genes may be part of the missing core of lost signaling in Brassicaceae.
[0218] While knockout experiments of flavonoid pathway genes in AM-positive plants mirror the pattern observed with most CSP genes in which symbiosis is not fully lost in the absence of these metabolites, in an AM-negative Brassica species, the addition of flavone and isoflavone molecules to plant roots apparently stimulated colonization by the fungus. In addition, tissue-specific transcriptomic research found that the immediate upstream enzyme in the flavonoid pathway, chalcone synthase (CHS) is highly expressed in the root cortex cells of Arabidopsis, indicating that the chemical substrate of IFS, FS1, and FS2 is already present in the right location. We therefore identify these three genes as possible additional candidates for insertion into naturally non-mycorrhizal plants such as those in the Brassicaceae family.
Example 3. Camelina and Arabidopsis
[0219] The five identified transgenes will be introduced individually into separate lines of Camelina and Arabidopsis with phenotypic and transcriptomic screening over two transgenic generations. Camelina and Arabidopsis are selected as the primary study organism because they are mustard crops with direct applications and/or sufficient tools available for analysis. Camelina is readily transformed by floral dip with Agrobacterium and has a relatively short generation time (3-4 months). Agrobacterium stocks carrying vectors with the desired transgenes generated for Camelina can also be applied to Arabidopsis, Brassica napus or other related plants without modification. Medicago truncatula, a model system for mycorrhizae, will be used as a source of transgenes and promoters for insertion. A non-limiting example of a mycorrhizal fungus for use as a fungal stimulus in functional phenotyping includes Rhizophagus irregularis (Glomus intraradices), a model AM symbiont.
1) Production of Five Transgenic Lines
[0220] For each of the five transgenes, primers will be designed using the published Medicago genome. A stock of Medicago truncatula A17 `Jemalong` template DNA is prepared. In order to confer expression patterns consistent with symbiosis, primers will amplify the native Medicago promoter and terminator sequences around the coding region. Coding regions or other portions or modified versions of the genes of interest may also be synthesized directly. Plasmids will be assembled with kanamycin resistance for bacterial selection and the fluorescent protein mCHERRY with a seed-specific promoter for plant selection. Plasmids amplified in E. coli will be transformed by electroporation into Agrobacterium tumefaciens GV3101. The helper plasmid pSOUP commonly used for this strain of Agrobacterium will be used to aid transformation. Successfully transformed Agrobacterium cultures will be used to transform Camelina germline cells via floral dip. Flowering stems of Camelina sativa `Calena` will be immersed in medium containing the appropriate Agrobacterium construct and infiltrated under vacuum. Plants will be allowed to set seed, and all mature seeds from the infiltrated stems will be collected for screening. We observe a high transformation rate of 10-80%, which allows to screen relatively small groups of progeny to obtain transformants. Five `T0` parent plants will be transformed for each transgene.
[0221] Seed gathered for each construct will be screened by fluorescence until 30 putative transformants are obtained. These seeds will be grown in the NC State greenhouse as the T1 generation of each line. DNA will be extracted from all plants in this generation and assayed by PCR to confirm the presence of the expected transgene. Seeds of T1 plants will be collected and planted for segregation as the T2 generation and for preliminary phenotyping.
2) Fungal Phenotyping of Transgenic Lines
[0222] Transgenic seedlings will be grown on sterile agarose plates, then challenged with inoculum plugs containing spores and mycelium of Rhizophagus. Rhizophagus cultures for inoculation will be maintained on hairy root cultures of carrot or aseptically grown M. truncatula. Seedlings of transgenic plants will be allowed to grow for one week after inoculation, then stained with trypan blue and individually examined for evidence of fungal mycelium and arbuscules within the roots.
3) Transcriptional Profiling of Transgenic Lines
[0223] T2 siblings will also be assessed by a qPCR screen to detect changes induced by transgene expression beyond the qualitative presence of fungus within the plant tissue. Roots of control and fungus-inoculated seedlings from each line will be frozen and used for mRNA extraction. Primers for cDNA of IPD3 plus the 10 putative Camelina orthologs of CSP genes will be used to screen the IPD3 insertion line for upregulation of those orthologs in response to fungal signals when the transgene is present. Such upregulation will be considered as evidence for conserved CSP function of a particular ortholog. Conversely, failure to respond predictably to the knock-in of IPD3 will be an indication that the Camelina genes do not retain a symbiotic role and are candidates for insertion of additional transgenes. cDNA primers for IFS, FS1 and FS2 along with the native upstream enzymes CHS, F3H and F3'H will be used to examine the respective lines for correlated expression changes in native elements of the phenylpropanoid (flavonoid) pathway.
[0224] The foregoing is illustrative of the present invention, and is not to be construed as limiting thereof. The invention is defined by the following claims, with equivalents of the claims to be included therein.
TABLE-US-00002 APPENDIX OF SEQUENCES Medicago truncatula IPD3 >XM_003612555.2 Medicago truncatula cyclops protein, putative mRNA TTTCTAACCTTTGAAGATTAATTTTTAACATCACAATCTTTTCTCTTTCATTGTACACAAgACAAATG AATGGTACATGGAATCTTTTGAGTATTTTTTTCACTCTTAGATGTCATAGCCACTGCTCTAATATTTAGT ATTTATTAATTCTATTGACAAAAACAAAAATCAGAAAAATATTTACTATTAGTAAATGCCAAGTTCTAAG ACAAAGTTTATTTATCTATATGCAAGATTTCTTTCAAGTTTCACGTGTAAATTGTTGTAGGAAGCTATTC CTTTAACTGTTTCATGTTAATTAGTTACTACATGCTTTTGGAATAAAACAGTTCATAAAGTCTTTCTTTC ATTTCCTTGGTTTTTGAGAAGAAAAAATAGTTGCTAGCTTAGGTTGAATTTTCATTGAGTATTCAAAATT CTCTCCCTTGGTTTTTGAGAAGGGTATTGTGATGAATAAAGAATTCAGCTGAAAATTCATTTATGAAACC TGAAAGATCTTAGCCAAAAACCTGTGTTGAAAATAAGTTCAAGCATCATTCAAGTGTTTCTTTATAATCA AGCATCTTTAAAGTGTTGAA[protein sequence starts from here.fwdarw.] ATGGAAGGGAGAGGATTTTCTGGTTTATACAAGAATTCAAGTGAGGAGTT ATTCTTGAAGACAGTGATGGAGAGTCCTATTGGTATGCCGGTACCTACCATGGAGATGTTAGGATTCAAG ACTGTTTCTCAAAGCTTTCGCACCGATAGTGAAGAGCTTTTCAAACGCTGGCTAACAAATGATCAAGAGG GATACAATTCATCAAGCATGGGACTTAACAGTCGTTTGTCGAAGAGAATATCAACTGAAATAGCTAATAT GTCTAATCAACAACACATTGGTGTGGCTTCAGAAGGAAGAAACAATGATAAATCATGCTTACAAAATAAC TTCTTGGCAAATGATGTTTCAAGTGATTTCAATTTTCCAATCAGAGATCCTGTTGATAGAGAATTGCAAT CTAGTAACTTGTTTCTGGCCAAGGCCTGGTTTATTACCGATCAACGAATGACAAGAAGCCGGTCTTCTGA ATTGCGGCGAAGGTATACTGAAATGCAAAATTCTCAAGCACCACAAGGATTGGATTCTATGTTCATGGTT CCTGAGCATGATACTAACACTATAAAAGAAGAACTTGCAAATTTTAATGGGTTTGATTACCTTTCCATGT GTGAGTTACCAAGCCAAAAGGGCACATTCATGTCTCCATCCAACTCATCTTCGTCTACCTTCAACACACA TCAATTGGTTGATGTAGATAAAGTTTCATCTTGTGTAAGTATGCTAAAAGGTACATTACAGCGCAAGAAA CTCGAATGCCAAGTCGAGAAAGAAGCTGCAGAAGATGGCTTGAATGAAATATTTTGCATTCGAGAACCTC TTTTCCAATCAGCTTTTAATGAAGAAGAAAGTTGGAATCAACAAAAGCTAGTAAACGTTCAAGGAGATTT TACCGATCAAGTTAACGATCCCGGAGTCATGCAAACCCTTGAAGGAACCACAAACTTTGTCTTAGATGGT TTTGCAAATCAGACGAACCAAATACAAGGCAGAACAGCTTCTGGAGAACCGTCTCAAAGTGAATCTTCTG CTGCTGCACCAGTAATCTCATCTGGCTTAGATGCATGTGAAGGTCCCAGCAATTCAAATCAAACTCTTGG TGATAGCTCATGGAAACAAGTGGGAGAAAGCACTCAAAATAAAGTCAGAGGTGTCAGAGAACAGATAATG GATAATCTGAAAGATGACAGAAAGAGGAAAAGTCTAGAAAGATATGGATCTGTAACATCAGCTGTTTCAG ATGGCAAGATGGATAACACAAAAAAGCGGAGGGTGGAGCGCTCAAGAAAAATGGCTGAAGCAAAGGAAAG AAATTTGACACCAACAATTCCCTCAGATATGCAAGCTATCTTGAAGCGATGCGAAAACCTTGAGAAGGAA GTTCGATCACTAAAGCTTAATTTGTCCTTCATGAATAGGAAGGATTCTGAACAAACAAAGCAGATAGAGG ACCTTCAGAAGCAGAATGAAGACTTGGCGGATGAAAAAGAGCGCCTCCTCGAAGAGATTGAAAGAATTCT ATCAGAAACTGGAAAGATTTGATGTTTTGTTTCGCTGTTATATCCTTATCCTCGTCAGAAACAATGTAGT ACTCAGACAAGCTAAAAATCTCACCACAGTTTACTTGTGGATGAAACAGCTTAGGTAAAAGTGAAAACAG TGATTAATAGTGAACCTATGGAGTCTATTAGCAAAATATAAATGCATGGAATCTGAGATATTAGTAATGA CATTATATATCTGGTAAAATCTAAGTGTTATTCAAAATTTGAGCCATATAAATGAATCCGGTAAATTTAA ACATGGTCAAGTGTACCCACCAACCTCAATCATATGTAACAAACAAATATCTTCAATTTGTTTATGC SEQ ID NO: 1 Lotus japonicus IPD3 >EF569221.1 Lotus japonicus CYCLOPS mRNA, complete cds TTGTTGCTCTGTTGCATGTTAATTTCTGTGCTATTTGGATAAAACAGTTCATGAACTGATAATAGTAAAG TCTTCTTTTCTTCTTTTTTTTATCAGGAATAATTGCTAGGTTGACATGATTAAAAAAATTGGGTTTTGGG GTTGATTTTTTAGAGTGATATATGGTTTTGAAGAAGGGTATTATGATGATGGATGACAGAGAATTTAGAT GAAAATTCTGTTCTGAAACCTGAAAGTGCTGTTGAGCCAAACTTGAGTTGAAAACAACAGCTTCAATTGG AAATGGAAGGGAGGGGGTTTTCTGGTTTATATAGAAACTCAAGTGAAGAATTGTTCCTGAAGACAGTGAT GGAGAGCCCTATTGGTATGCCAGTTCCTTCAATGGAGATGCTGGGTTTCAAGAATGTTTCTCAAGGCTTT CGCGCAGATAGCGAGGAGCTTTTCAAACGCTGGCTAACAAATGGAGAGGGATACAATTCATCAAGCATAG GGTTTAGCAGTCGATTATCAAAGAGGATATCCACTGAACTAGTTAATGGATCTAATCAGCTACAAGTTGG TGTAGCCTCAGATGGAAGAAACAATGACAAACCATTCATACAAAATAACCTTTTGGCAAATGATGTTTCA GGTGATTTCAATTTTCCAATCAGAGATCCTGTTGATAGAGAACTGCAACCTAGTAACTTGTTTCTAGCCA AGGCCTGGTTTCTCAGTGATCAACGAATGACAAGAAGCCGGTCCTCTGAATTGCGGCGGCGATATTCTGA AATGCAAAATGGTCTAGCCACACAAGGAATAGAATCCATTTGCATGGATCCTCAGCATGGTGCTGAGGCA ACAAAACAAGAAGTTGCAAATTTCAATGGTTACAATTATCTCTCTATGTGTGAGCTTCCAAGTCAAAAGG GTTCATTCATGTCTCCGTCCAACTCATGTTCATCTAACTTCAACACACCTCAATTTGGCGACATGGATAA AGTTTCATCTTGTGTAAGTATGCTGAAAGGGACATTACAACGCCGGAGACTCAGCAGTCAACTTGAGAAA GAAGCTGCAGAAGATGACTTAAATGGAATTTTTTATCCTCAAGAACCTCTTTTCCAAACTGGCTTTGATC AAGGACAAGAAAACTGGAGTAATCAAACGCCAGTAAATGTTCAAGTAGACTCTATTGGTGAAGTTAAGGA TCATGGAGTCCTGCAAACACTAGAAGGATCCACAAACCCTGTCGTTGATGGTTTTGCAAATCAGATAAAC CAAATCTATGTCGGAACAGCTTCTGGAGAACCTTCTCAAAGTGAATCCTCTAATGCTGCACCAGTAATCT CCTCTGGTTTAGACACATGCGAAGGTCCCATAAACTCGAATCAAACTCTCTGCGAAAGCTCATGGAAACA AGTAGGAGTGAGTAAAAGTTCAGAAAATACTCAAAATAGAGTCAAAGGTTTCAGAGAACAGATCATGGAT AATCTGAAAGATGATAAGAAGAGAAAAAGTCTAGAAAGATATGGATCTATAACATCAGCTGTTTCAGATG ACAAGGGAGACACCACTAAAAAGCGTAGGGTGGAACGCTCAAGGAAAATGGCTGAAGCTAAGGAAAGAAA TTCGACACCATCAGTTCCCTCAGATATGCAAGCTGTCTTGAAGCGGTGCGAAAACCTTGAGAAGGAAGTT CGATCGCTAAAACTCAACTTGTQCTTCATGAATAGAAAGGATTCTGAACAAACAAAGCAGATAGAAGACC TTCAGAAGCAGAATGAAGAGCTGGCAGATGAAAAAGAGCGCCTCCTCGAAGAGATTGAAAGAATTCTATC AGAAACTGAAAAAATGTAATGATATGAGAATCAATGTTGTGCTCAAACACGC SEQ ID NO: 2 Pisum sativum IPD3 >EF569222.1 Pisum sativum CYCLOPS mRNA, complete cds TTGAGCTGAAAATCGGTTCAAGAAGCTTTTGAGTGCTGGTTGAAATGGAAGGGAGAGGATTTTCTGGTTT ATACAAGAATTCAAGTGAAGAGTTGTTCTTGAAGACAGTGATGGAGAGTCCTATTGGTATGCCAGTACCT ACCATGGAGATGTTAGGATTCAAGACCGTTTCTCAAAGCTTTCGCGCCGATAGCGAGGAGCTTTTCAAGC GCTGGCTGACAAATGAAGAGGGATACAATTCAACGAGCATGGGACTTAACAGTCGATTATCGAAGAGAAT CTCCACTGAACTAGTTAATGTGTCTAATCAGCAACATGTTGGTGTGGCTTCAGAAGGAAGAAACAATGAT AAATCATGCTTACAAAATAGCTTTTTGACAAATGATGTTTCGGGCGATTTCAATTTTCCAATCAGAGAAC CTGTTGATAGAGAATTGCAATCTGGTAACTTGTTTCTGGCCAAGGCATGGTTTCTTACCGATCAAAGAAT GACAAGAAGCCGGTCTTCTGAATTGCGGCGAAGGTATACCGAAATGCAAAATACTCAAGCACCACAAGGA TTGGATTCAATGTTCATGGCTCCTAAGCATGATGCTAACATTATAAAAGAAGAACTTGCACATTTCAATG GTTTTGATTACCTTTCAATGTGCGAAATACCAAGTCAAAAGGGCTCATTCATGTCTCCATCGAACTCATC TTCGTCTACCTTCAACACACAACAATTGGTTGATGTAGATAAAGTTTCATCTTGCGTAAGTATGCTAAAA GGTACGTTACAACGCAAGAGACTCGAATGCCAAGTCGAGAAAGATGCTGCAGAAGACGGTTTAAACGAAA TTTTTGGTATTCGAGAGCCTCTTTTCCAATCTGGTTTTAATGAAGGACAAGAAAATTGGAATCATCAAAA GCTAGTAAATGTTCAAGGAGATTTTACCGATCAAGTTAAGGATACTGGAGTCATTGAAACACTTGAAGGA GCCGCAAACTTTGTCTTAGAGGGTTTTGCAAATCAAACGAGCCAAATACACGGTGGAACGGCTTCCGGTG AACCTTCTCAAAGTGAGTCTTCTGCTGCTGCACCAGTAATCTCATCTGGTTTAGATGCTTGTGAAGGACC TAGCAATTCAAGTCAAACTCTTTGTGATAGCTCATGGAAACAAGTAGGAGAAAGCACTCAAAATCGAGCC AAAGGTGTCAGAGAACAGATAATGGATAATCTGAAAGACGACAGGAAGAGGAAAAGACTAGAGAGATATG GATCAGTAACATCAGCTGTTTCAGATGACAAGGTGGACACAACAAAAAAGCGAAGGGTGGAACGATCAAG AAAAATGGCTGAGGCAAAGGAAAGAAATTTGACACCAACAATTCCCTCAGATATGCAAGCTGTCATGAAG CGATGCGAAAACCTTGAGAAGGAAGTTCGATCGCTAAAGCTTAATTTGTCCTTCATGAATAGGAAGGATT CTGAACAAACAAAGCAGATAGAGGATCTTCAGAAGCAGAATGAAGAGTTGGCAGATGAAAAAGAGCGCCT ACTCGAAGAGATCGAAAGACTTTTATCAGAAACTGGAAAGATTTAATGTTTTGTTGTTTTCTTATCATGT CC SEQ ID NO: 3 Solanum lycopersicum IPD3 >NM_001282316.1 Solanum lycopersicum CYCLOPS/IPD3-like protein (Rmc), mRNA ATGGAAATGGAGGGAAGAGGTTATTCAGATTTCTATAGAAACACAAGTGAAGAATTGTTCATAAGAACTA TGATGGACAACTCAGTAGGAGGAGTGCCAGTTCCTACAATGGAGATGTTAGGTTTTAGAAACATCCCTCA TTCTCTTCGAACCGACAGTGAGGAACTTTTCAAAAGCTGGCTCACAAGTGCAGAGAATAATGGCAGTGAT TCTACACCAATGGCTCGTGGTCGACAAGGATCACGAAGGATCTCCAGTGAACTTGCTGGTCTATCCAGTC AGCAAAATGAGGGGATTCAGAAAAGAAAAATGGCCGATACTCAACAGCCACAGAATACATGTACTGCCAT TGAATCATCTAGCAACCTTAATAAACATTCAACCAGGAACGCGACAGATAGGGAAATGCAAGCTAGTAAT CTGTTTTTAGCCAAGACCTGGTTCCATAGCTCTCAGCCCATGACGAGAAGTCGTTCATCTGAGTTAAGGA GGAGGTATGCAGCCATGCAAAACTCACAGTCTTCACTAGCTCGTGAATCCTTGCAAAATATACCTGGAAA TGCTGTTAATAGCTTCAAAGAAGAAGTTTCTCATCCCACTGGGTACACTGACATGTCAATGTGTGAAATG ACCAACCAACCTAATACTTTTATGTCTCCATCAAATTCTTCTTCATCAACTTTTGAAGCACAGCAAGTGG ATGGTGTGGATAATATTTCTTCTGTTGTAAGCATGCTAAAGGGGACCTTAGAGAGGAAGAAATTGACAAA CTATCATACTGCGAGGGAAGCCATTGAGGAGAATATGTTGGGGTGTTATGGTAATCAAGAAATCTTTTGT AACTCCGACATGAATCAACATCCAGGGAATCATATTTCTCTGAATCAAGGGACATATCAGGACACACCTG TTGTTCAAGTCAGAGATACGGGGATCCCACAAACAGTTCAAGGGTCATTAGATGCCGTCTTAGAAAGTAT TATGGCTCCCTCAAACCCAATCCAGATAGACATGGTAACACAGGAACCTTCTCAAAGTGGATCTTCTGTT GCAGCACCAATACTTTCAATTGATTTTGATGCATATGATGGCCTGAGCAATGCAAGTCAAGCTTTAAATA TGTACGAGGGCTGTAGAAATCAAGTCGGATATGGAAGGAGCTCAGAAAATGGTTCAACTGCTAGAGATAT TAGAGAACGAATATATGACAACGTGAAGGACAACCAAAAGAAAGAAGGTTTAGTTCGAAATGGATCTTTA ACATCTGTACAATCAGCGGAAAATGGAGATCCTAAGAAGAAGAGAAGGGTGGAGCGGTCTCGGAAAATGG CAGAAGCCAAAGAGAGAAATTTAACACCAGCAATTCCTTCAGATATGCAATCCCTTGTGAAGCGCTGTGA CAATCTGGAGAAGGAAGTTCGTTCACTTAAACTTAACCTGGCGTTTATGAACAGAAAGGATTCTGAACAG ACTACACAAATTGAAGAGCTGCAGAAGCAGAATGAGGATTTGGTCAAGGAAAAAGAGCGCCTTCTTGGAG AAATCGAGAGGATCATTTCAGAATCTGGAAAGTTTTAGATACTGTTACTCTTTAGCAGCTTCAGACGTGT TT SEQ ID NO: 4 Diphasiastrum digitatum IPD3 >FJ913194.1 Diphasiastrum digitatum voucher Qiu 08001 cyclops (IPD3) mRNA, complete cds ATGGTTGAGATTGCAGATAGGCGCATTACTAGAAGTGTGTCCTCCGAGCTTCAGGCCAGGCTTTCAACAC AGCCTCAGACACAAGAAGGTGTGGAGGAGATAAGAGCTGTATCGGGAGATATGGAGATATCGTGCTTTCA AAGGAATTCAAGTGAGGAGATATTTTTGAGGAGTTTTATGGATGGTGCAATGGCGCCTGCCACTGAGGGC ATGTCATTTTTGAGTCCGCCTCAGCCACCGCTTCGAGTAAACAGCGAGGAACTGTTTAACACTTGGCTCA GCAATACGGATGCCCCGGGGCTTCCGCCATTATCTGGAGACTATCGAACCCTTCAAAATTCTTGCAGAAT GTCAAGTGAACTTGCTGGTAATCTTGGACAAGGAGCTGTCTCTCAACCATTTGATATTCCTGGAGAGAAT GTGGCCCAAACAATTGGAGGACATCCTGATCCCAATGTCAGGGAAAGTAACATAGGGAAGCCAAGGAATC ATGCTCCAAGCAAGGGATTGCCATTTCAAGATCATGCGTCTTGGCAGATGATCAACTGGTTTCAACAATC TCAGCCGATGACACGAAGTCGCTCCTCTGAGCTTCGTCGTAAATACTTGGCAATGCAAGAAGGTCATAAA CCTCCTCCCTCAGCCAACACCTTGCAATGGTTTGCAACACAAGGAACTGATGAATTGAATCGTGCTGTGG CATCACTTGGGGCTTTCACACGTGCCCTTGCAAGCAAGAGACCAGATATATCCTCAACAGCATCTCCTCA ACTTTCTCCCACCCCCATGTCCCATGTTAGTAAACTATCTCCCCAGAGGAATGGTGACTCTGTATCTGCT GTTGTGAACATGCTTAAGGGAAGCTTAGAACGGAAGAAGCTTGCTGCAATGCAGCAACAGATGGATAAAC CTGTTTCACCACCATATTGGAGATCCTTGGGACAGGACAAAGAGGATCCTCATAAGCCGATGATCGACTC GCAACAGTGTATCTCTCCGCAAATTGAGTCTGAGCAACAACAAGAGAATCAAAAGGAAGCATTTTCGGCC AGTCTTCAGATTACAAATGAGCAGTTCCAGGCTGGAGTGGTCACTCCACATGCCTTATCACCCAGCGATT CATCTGGTAATGCACCTGGCCTGTCAGCTGGAGCAGCGACTAGTGAGGGGCCTTGCAACTCAAATCCTGC TGTTTCCACTCAGAACAATTTCATCAAATGCTCTGGTCAGGGCAACTGGGCTGTAGATGAAACATTTCAG CAAAACAACCTACCAAGCCCCACATCCAATGGGACAAGTAATGGAGAGATTCCTTACGAGGGTGTCTTGA ATACAGACTACCAAAAGAGACAAGGCTACCTATCTCGTGCAGGCTCACTAACCTCTTCTTGTCGATCAGA TCAAAGTATGCAAGTGTCTATTGGTGAGAGAACCCATAAGCTTGAAGGATCCACGGCAGATGCAGAAGAT TCTACGAAGAAACGTCGAGTTGAACGGAAACGAATGATGGCTGAGGCAAAGGGGAGAAGTTATGTTCCTA TGATGCCCTCTGATCTACAAGCAGCTACAAAACGATGTGATGCTTTGGAAAAGGAAGTAAGGTCCCTGAA GCTGAACTTGTCTTTCATGAACAGAAAGGACTCTGAGCAGACCAAGCGAATAGAAGATCTTGAAAAGCAG AATGAGGAGTTACTTGCAGAGAAAGATCGACTAGTGGAGGAGGTCAGACGTTTTACCTCAGGAAAAAACT TTGGTAGATCGTCTTAG SEQ ID NO: 5 nucleotide sequence of IPD3 phosphomimic 1 (modified from Medicago truncatula) ATGGAAGGGAGAGGATTTTCTGGTTTATACAAGAATTCAAGTGAGGAGTTATTCTTGAAGACAGTGATGGAGAG- T CCTATTGGTATGCCGGTACCTACCATGGAGATGTTAGGATTCAAGACTGTTTCTCAAAGCTTTCGCACCGAT[G- A T]GAAGAGCTTTTCAAACGCTGGCTAACAAATGATCAAGAGGGATACAATTCATCAAGCATGGGACTTAACAGT- C GTTTGTCGAAGAGAATATCAACTGAAATAGCTAATATGTCTAATCAACAACACATTGGTGTGGCTTCAGAAGGA- A GAAACAATGATAAATCATGCTTACAAAATAACTTCTTGGCAAATGATGTTTCAAGTGATTTCAATTTTCCAATC- A GAGATCCTGTTGATAGAGAATTGCAATCTAGTAACTTGTTTCTGGCCAAGGCCTGGTTTATTACCGATCAACGA- A TGACAAGAAGCCGGTCTTCTGAATTGCGGCGAAGGTATACTGAAATGCAAAATTCTCAAGCACCACAAGGATTG- G ATTCTATGTTCATGGTTCCTGAGCATGATACTAACACTATAAAAGAAGAACTTGCAAATTTTAATGGGTTTGAT- T ACCTTTCCATGTGTGAGTTACCAAGCCAAAAGGGCACATTCATGTCTCCATCCAACTCATCTTCGTCTACCTTC- A ACACACATCAATTGGTTGATGTAGATAAAGTTTCATCTTGTGTAAGTATGCTAAAAGGTACATTACAGCGCAAG- A AACTCGAATGCCAAGTCGAGAAAGAAGCTGCAGAAGATGGCTTGAATGAAATATTTTGCATTCGAGAACCTCTT- T TCCAATCAGCTTTTAATGAAGAAGAAAGTTGGAATCAACAAAAGCTAGTAAACGTTCAAGGAGATTTTACCGAT- C AAGTTAACGATCCCGGAGTCATGCAAACCCTTGAAGGAACCACAAACTTTGTCTTAGATGGTTTTGCAAATCAG- A CGAACCAAATACAAGGCAGAACAGCTTCTGGAGAACCGTCTCAAAGTGAATCTTCTGCTGCTGCACCAGTAATC- T CATCTGGCTTAGATGCATGTGAAGGTCCCAGCAATTCAAATCAAACTCTTGGTGATAGCTCATGGAAACAAGTG- G GAGAAAGCACTCAAAATAAAGTCAGAGGTGTCAGAGAACAGATAATGGATAATCTGAAAGATGACAGAAAGAGG- A AAAGTCTAGAAAGATATGGATCTGTAACATCAGCTGTTTCAGATGGCAAGATGGATAACACAAAAAAGCGGAGG- G TGGAGCGCTCAAGAAAAATGGCTGAAGCAAAGGAAAGAAATTTGACACCAACAATTCCCTCAGATATGCAAGCT- A TCTTGAAGCGATGCGAAAACCTTGAGAAGGAAGTTCGATCACTAAAGCTTAATTTGTCCTTCATGAATAGGAAG- G ATTCTGAACAAACAAAGCAGATAGAGGACCTTCAGAAGCAGAATGAAGACTTGGCGGATGAAAAAGAGCGCCTC- C TCGAAGAGATTGAAAGAATTCTATCAGAAACTGGAAAGATTTGATGTTTTGTTTCGCTGTTATATCCTTATCCT- C GTCAGAAACAATGTAGTACTCAGACAAGCTAAAAATCTCACCACAGTTTACTTGTGGATGAAACAGCTTAGGTA- A AAGTGAAAACAGTGATTAATAGTGAACCTATGGAGTCTATTAGCAAAATATAAATGCATGGAATCTGAGATATT- A GTAATGACATTATATATCTGGTAAAATCTAAGTGTTATTCAAAATTTGAGCCATATAAATGAATCCGGTAAATT- T AAACATGGTCAAGTGTACCCACCAACCTCAATCATATGTAACAAACAAATATCTTCAATTTGTTTATGC SEQ ID NO: 6 nucleotide sequence of IPD3 phosphomimic 2 (modified from Medicago truncatula) ATGGAAGGGAGAGGATTTTCTGGTTTATACAAGAATTCAAGTGAGGAGTTATTCTTGAAGACAGTGATGGAGAG- T CCTATTGGTATGCCGGTACCTACCATGGAGATGTTAGGATTCAAGACTGTT[GAG]CAAAGCTTTCGCACCGAT- A GTGAAGAGCTTTTCAAACGCTGGCTAACAAATGATCAAGAGGGATACAATTCATCAAGCATGGGACTTAACAGT- C GTTTGTCGAAGAGAATATCAACTGAAATAGCTAATATGTCTAATCAACAACACATTGGTGTGGCTTCAGAAGGA- A GAAACAATGATAAATCATGCTTACAAAATAACTTCTTGGCAAATGATGTTTCAAGTGATTTCAATTTTCCAATC- A GAGATCCTGTTGATAGAGAATTGCAATCTAGTAACTTGTTTCTGGCCAAGGCCTGGTTTATTACCGATCAACGA- A TGACAAGAAGCCGGTCTTCTGAATTGCGGCGAAGGTATACTGAAATGCAAAATTCTCAAGCACCACAAGGATTG- G ATTCTATGTTCATGGTTCCTGAGCATGATACTAACACTATAAAAGAAGAACTTGCAAATTTTAATGGGTTTGAT- T ACCTTTCCATGTGTGAGTTACCAAGCCAAAAGGGCACATTCATGTCTCCATCCAACTCATCTTCGTCTACCTTC- A ACACACATCAATTGGTTGATGTAGATAAAGTTTCATCTTGTGTAAGTATGCTAAAAGGTACATTACAGCGCAAG- A AACTCGAATGCCAAGTCGAGAAAGAAGCTGCAGAAGATGGCTTGAATGAAATATTTTGCATTCGAGAACCTCTT- T TCCAATCAGCTTTTAATGAAGAAGAAAGTTGGAATCAACAAAAGCTAGTAAACGTTCAAGGAGATTTTACCGAT- C AAGTTAACGATCCCGGAGTCATGCAAACCCTTGAAGGAACCACAAACTTTGTCTTAGATGGTTTTGCAAATCAG- A CGAACCAAATACAAGGCAGAACAGCTTCTGGAGAACCGTCTCAAAGTGAATCTTCTGCTGCTGCACCAGTAATC- T CATCTGGCTTAGATGCATGTGAAGGTCCCAGCAATTCAAATCAAACTCTTGGTGATAGCTCATGGAAACAAGTG- G GAGAAAGCACTCAAAATAAAGTCAGAGGTGTCAGAGAACAGATAATGGATAATCTGAAAGATGACAGAAAGAGG- A AAAGTCTAGAAAGATATGGATCTGTAACATCAGCTGTTTCAGATGGCAAGATGGATAACACAAAAAAGCGGAGG-
G TGGAGCGCTCAAGAAAAATGGCTGAAGCAAAGGAAAGAAATTTGACACCAACAATTCCCTCAGATATGCAAGCT- A TCTTGAAGCGATGCGAAAACCTTGAGAAGGAAGTTCGATCACTAAAGCTTAATTTGTCCTTCATGAATAGGAAG- G ATTCTGAACAAACAAAGCAGATAGAGGACCTTCAGAAGCAGAATGAAGACTTGGCGGATGAAAAAGAGCGCCTC- C TCGAAGAGATTGAAAGAATTCTATCAGAAACTGGAAAGATTTGATGTTTTGTTTCGCTGTTATATCCTTATCCT- C GTCAGAAACAATGTAGTACTCAGACAAGCTAAAAATCTCACCACAGTTTACTTGTGGATGAAACAGCTTAGGTA- A AAGTGAAAACAGTGATTAATAGTGAACCTATGGAGTCTATTAGCAAAATATAAATGCATGGAATCTGAGATATT- A GTAATGACATTATATATCTGGTAAAATCTAAGTGTTATTCAAAATTTGAGCCATATAAATGAATCCGGTAAATT- T AAACATGGTCAAGTGTACCCACCAACCTCAATCATATGTAACAAACAAATATCTTCAATTTGTTTATGC SEQ ID NO: 7 nucleotide sequence of IPD3 phosphomimic 3 (modified from Lotus japonicus) ATGGAAGGGAGGGGGTTTTCTGGTTTATATAGAAACTCAAGTGAAGAATTGTTCCTGAAGACAGTGATGGAGAG- C CCTATTGGTATGCCAGTTCCTTCAATGGAGATGCTGGGTTTCAAGAATGTTTCTCAAGGCTTTCGCGCAGATAG- C GAGGAGCTTTTCAAACGCTGGCTAACAAATGGAGAGGGATACAATTCATCAAGCATAGGGTTTAGCAGTCGATT- A TCAAAGAGGATATCCACTGAACTAGTTAATGGATCTAATCAGCTACAAGTTGGTGTAGCCTCAGATGGAAGAAA- C AATGACAAACCATTCATACAAAATAACCTTTTGGCAAATGATGTTTCAGGTGATTTCAATTTTCCAATCAGAGA- T CCTGTTGATAGAGAACTGCAACCTAGTAACTTGTTTCTAGCCAAGGCCTGGTTTCTCAGTGATCAACGAATGAC- A AGAAGCCGG [GAT]TCCTCTGAATTGCGGCGGCGATATTCTGAAATGCAAAATGGTCTAGCCACACAAGGAATAGAATCCATT- T GCATGGATCCTCAGCATGGTGCTGAGGCAACAAAACAAGAAGTTGCAAATTTCAATGGTTACAATTATCTCTCT- A TGTGTGAGCTTCCAAGTCAAAAGGGTTCATTCATGTCTCCGTCCAACTCATGTTCATCTAACTTCAACACACCT- C AATTTGGCGACATGGATAAAGTTTCATCTTGTGTAAGTATGCTGAAAGGGACATTACAACGCCGGAGACTCAGC- A GTCAACTTGAGAAAGAAGCTGCAGAAGATGACTTAAATGGAATTTTTTATCCTCAAGAACCTCTTTTCCAAACT- G GCTTTGATCAAGGACAAGAAAACTGGAGTAATCAAACGCCAGTAAATGTTCAAGTAGACTCTATTGGTGAAGTT- A AGGATCATGGAGTCCTGCAAACACTAGAAGGATCCACAAACCCTGTCGTTGATGGTTTTGCAAATCAGATAAAC- C AAATCTATGTCGGAACAGCTTCTGGAGAACCTTCTCAAAGTGAATCCTCTAATGCTGCACCAGTAATCTCCTCT- G GTTTAGACACATGCGAAGGTCCCATAAACTCGAATCAAACTCTCTGCGAAAGCTCATGGAAACAAGTAGGAGTG- A GTAAAAGTTCAGAAAATACTCAAAATAGAGTCAAAGGTTTCAGAGAACAGATCATGGATAATCTGAAAGATGAT- A AGAAGAGAAAAAGTCTAGAAAGATATGGATCTATAACATCAGCTGTTTCAGATGACAAGGGAGACACCACTAAA- A AGCGTAGGGTGGAACGCTCAAGGAAAATGGCTGAAGCTAAGGAAAGAAATTCGACACCATCAGTTCCCTCAGAT- A TGCAAGCTGTCTTGAAGCGGTGCGAAAACCTTGAGAAGGAAGTTCGATCGCTAAAACTCAACTTGTCCTTCATG- A ATAGAAAGGATTCTGAACAAACAAAGCAGATAGAAGACCTTCAGAAGCAGAATGAAGAGCTGGCAGATGAAAAA- G AGCGCCTCCTCGAAGAGATTGAAAGAATTCTATCAGAAACTGAAAAAATGTAATGATATGAGAATCAATGTTGT- G CTCAAACACGC SEQ ID NO: 8 DNA sequence of IPD3 double phosphomimic (modified from Medicago truncatula) ATGGAAGGGAGAGGATTTTCTGGTTTATACAAGAATTCAAGTGAGGAGTTATTCTTGAAGACAGTGATGGAGAG- T CCTATTGGTATGCCGGTACCTACCATGGAGATGTTAGGATTCAAGACTGTT[GAG]CAAAGCTTTCGCACCGAT- [ GAT]GAAGAGCTTTTCAAACGCTGGCTAACAAATGATCAAGAGGGATACAATTCATCAAGCATGGGACTTAACA- G TCGTTTGTCGAAGAGAATATCAACTGAAATAGCTAATATGTCTAATCAACAACACATTGGTGTGGCTTCAGAAG- G AAGAAACAATGATAAATCATGCTTACAAAATAACTTCTTGGCAAATGATGTTTCAAGTGATTTCAATTTTCCAA- T CAGAGATCCTGTTGATAGAGAATTGCAATCTAGTAACTTGTTTCTGGCCAAGGCCTGGTTTATTACCGATCAAC- G AATGACAAGAAGCCGGTCTTCTGAATTGCGGCGAAGGTATACTGAAATGCAAAATTCTCAAGCACCACAAGGAT- T GGATTCTATGTTCATGGTTCCTGAGCATGATACTAACACTATAAAAGAAGAACTTGCAAATTTTAATGGGTTTG- A TTACCTTTCCATGTGTGAGTTACCAAGCCAAAAGGGCACATTCATGTCTCCATCCAACTCATCTTCGTCTACCT- T CAACACACATCAATTGGTTGATGTAGATAAAGTTTCATCTTGTGTAAGTATGCTAAAAGGTACATTACAGCGCA- A GAAACTCGAATGCCAAGTCGAGAAAGAAGCTGCAGAAGATGGCTTGAATGAAATATTTTGCATTCGAGAACCTC- T TTTCCAATCAGCTTTTAATGAAGAAGAAAGTTGGAATCAACAAAAGCTAGTAAACGTTCAAGGAGATTTTACCG- A TCAAGTTAACGATCCCGGAGTCATGCAAACCCTTGAAGGAACCACAAACTTTGTCTTAGATGGTTTTGCAAATC- A GACGAACCAAATACAAGGCAGAACAGCTTCTGGAGAACCGTCTCAAAGTGAATCTTCTGCTGCTGCACCAGTAA- T CTCATCTGGCTTAGATGCATGTGAAGGTCCCAGCAATTCAAATCAAACTCTTGGTGATAGCTCATGGAAACAAG- T GGGAGAAAGCACTCAAAATAAAGTCAGAGGTGTCAGAGAACAGATAATGGATAATCTGAAAGATGACAGAAAGA- G GAAAAGTCTAGAAAGATATGGATCTGTAACATCAGCTGTTTCAGATGGCAAGATGGATAACACAAAAAAGCGGA- G GGTGGAGCGCTCAAGAAAAATGGCTGAAGCAAAGGAAAGAAATTTGACACCAACAATTCCCTCAGATATGCAAG- C TATCTTGAAGCGATGCGAAAACCTTGAGAAGGAAGTTCGATCACTAAAGCTTAATTTGTCCTTCATGAATAGGA- A GGATTCTGAACAAACAAAGCAGATAGAGGACCTTCAGAAGCAGAATGAAGACTTGGCGGATGAAAAAGAGCGCC- T CCTCGAAGAGATTGAAAGAATTCTATCAGAAACTGGAAAGATTTGATGTTTTGTTTCGCTGTTATATCCTTATC- C TCGTCAGAAACAATGTAGTACTCAGACAAGCTAAAAATCTCACCACAGTTTACTTGTGGATGAAACAGCTTAGG- T AAAAGTGAAAACAGTGATTAATAGTGAACCTATGGAGTCTATTAGCAAAATATAAATGCATGGAATCTGAGATA- T TAGTAATGACATTATATATCTGGTAAAATCTAAGTGTTATTCAAAATTTGAGCCATATAAATGAATCCGGTAAA- T TTAAACATGGTCAAGTGTACCCACCAACCTCAATCATATGTAACAAACAAATATCTTCAATTTGTTTATGC SEQ ID NO: 9 Medicago truncatula IPD3 >ABN45743.1 interacting protein of DMI3 [Medicago truncatula] MEGRGFSGLYKNSSEELFLKTVMESPIGMPVPTMEMLGFKTVSQSFRTDSEELFKRWLTNDQEGYNSSSM GLNSRLSKRISTEIANMSNQQHIGVASEGRNNDKSCLQNNFLANDVSSDFNFPIRDPVDRELQSSNLFLA KAWFITDQRMTRSRSSELRRRYTEMQNSQAPQGLDSMFMVPEHDTNTIKEELANENGFDYLSMCELPSQK GTFMSPSNSSSSTFNTHQLVDVDKVSSCVSMLKGTLQRKKLECQVEKEAAEDGLNEIFCIREPLFQSAFN EEESWNQQKLVNVQGDFTDQVNDPGVMQTLEGTTNFVLDGFANQTNQIQGRTASGEPSQSESSAAAPVIS SGLDACEGPSNSNQTLGDSSWKQVGESTQNKVRGVREQIMDNLKDDRKRKSLERYGSVTSAVSDGKMDNT KKRRVERSRKMAEAKERNLTPTIPSDMQAILKRCENLEKEVRSLKLNLSFMNRKDSEQTKQIEDLQKQNE DLADEKERLLEEIERILSETGKI SEQ ID NO: 10 Lotus japonicus IPD3 >ABU63668.1 CYCLOPS [Lotus japonicus] MEGRGFSGLYRNSSEELFLKTVMESPIGMPVPSMEMLGFKNVSQGFRADSEELFKRWLTNGEGYNSSSIG FSSRLSKRISTELVNGSNQLQVGVASDGRNNDKPFIQNNLLANDVSGDFNFPIRDPVDRELQPSNLFLAK AWFLSDQRMTRSRSSELRRRYSEMQNGLATQGIESICMDPQHGAEATKQEVANFNGYNYLSMCELPSQKG SFMSPSNSCSSNFNTPQFGDMDKVSSCVSMLKGTLQRRRLSSQLEKEAAEDDLNGIFYPQEPLFQTGFDQ GQENWSNQTPVNVQVDSIGEVKDHGVLQTLEGSTNPVVDGFANQINQIYVGTASGEPSQSESSNAAPVIS SGLDTCEGPINSNQTLCESSWKQVGVSKSSENTQNRVKGFREQIMDNLKDDKKRKSLERYGSITSAVSDD KGDTTKKRRVERSRKMAEAKERNSTPSVPSDMQAVLKRCENLEKEVRSLKLNLSFMNRKDSEQTKQIEDL QKQNEELADEKERLLEEIERILSETEKM SEQ ID NO: 11 Pisum sativum IPD3 >ABU63669.1 CYCLOPS [Pisum sativum] MEGRGFSGLYKNSSEELFLKTVMESPIGMPVPTMEMLGFKTVSQSFRADSEELFKRWLTNEEGYNSTSMG LNSRLSKRISTELVNVSNQQHVGVASEGRNNDKSCLQNSFLTNDVSGDFNFPIREPVDRELQSGNLFLAK AWFLTDQRMTRSRSSELRRRYTEMQNTQAPQGLDSMFMAPKHDANIIKEELAHFNGFDYLSMCEIPSQKG SFMSPSNSSSSTFNTQQLVDVDKVSSCVSMLKGTLQRKRLECQVEKDAAEDGLNEIFGIREPLFQSGFNE GQENWNHQKLVNVQGDFTDQVKDTGVIETLEGAANFVLEGFANQTSQIHGGTASGEPSQSESSAAAPVIS SGLDACEGPSNSSQTLCDSSWKQVGESTQNRAKGVREQIMDNLKDDRKRKRLERYGSVTSAVSDDKVDTT KKRRVERSRKMAEAKERNLTPTIPSDMQAVMKRCENLEKEVRSLKLNLSFMNRKDSEQTKQIEDLQKQNE ELADEKERLLEEIERLLSETGKI SEQ ID NO: 12 Solanum lycopersicum IPD3 >NP_001269245.1 CYCLOPS/IPD3-like protein [Solanum lycopersicum] MEMEGRGYSDFYRNTSEELFIRTMMDNSVGGVPVPTMEMLGFRNIPHSLRTDSEELFKSWLTSAENNGSD STPMARGRQGSRRISSELAGLSSQQNEGIQKRKMADTQQPQNTCTAIESSSNLNKHSTRNATDREMQASN LFLAKTWFHSSQPMTRSRSSELRRRYAAMQNSQSSLARESLQNIPGNAVNSFKEEVSHPTGYTDMSMCEM TNQPNTFMSPSNSSSSTFEAQQVDGVDNISSVVSMLKGTLERKKLTNYHTAREAIEENMLGCYGNQEIFC NSDMNQHPGNHISLNQGTYQDTPVVQVRDTGIPQTVQGSLDAVLESIMAPSNPIQIDMVTQEPSQSGSSV AAPILSIDFDAYDGLSNASQALNMYEGCRNQVGYGRSSENGSTARDIRERIYDNVKDNQKKEGLVRNGSL TSVQSAENGDPKKKRRVERSRKMAEAKERNLTPAIPSDMQSLVKRCDNLEKEVRSLKLNLAFMNRKDSEQ TTQIEELQKQNEDLVKEKERLLGEIERIISESGKF SEQ ID NO: 13 Diphasiastrum digitatum IPD3 >ADV78033.1 cyclops [Diphasiastrum digitatum] MVEIADRRITRSVSSELQARLSTQPQTQEGVEEIRAVSGDMEISCFQRNSSEEIFLRSFMDGAMAPATEG MSFLSPPQPPLRVNSEELFNTWLSNTDAPGLPPLSGDYRTLQNSCRMSSELAGNLGQGAVSQPFDIPGEN VAQTIGGHPDPNVRESNIGKPRNHAPSKGLPFQDHASWQMINWFQQSQPMTRSRSSELRRKYLAMQEGHK PPPSANTLQWFATQGTDELNRAVASLGAFTRALASKRPDISSTASPQLSPTPMSHVSKLSPQRNGDSVSA VVNMLKGSLERKKLAAMQQQMDKPVSPPYWRSLGQDKEDPHKPMIDSQQCISPQIESEQQQENQKEAFSA SLQITNEQFQAGVVTPHALSPSDSSGNAPGLSAGAATSEGPCNSNPAVSTQNNFIKCSGQGNWAVDETFQ QNNLPSPTSNGTSNGEIPYEGVLNTDYQKRQGYLSRAGSLTSSCRSDQSMQVSIGERTHKLEGSTADAED STKKRRVERKRMMAEAKGRSYVPMMPSDLQAATKRCDALEKEVRSLKLNLSFMNRKDSEQTKRIEDLEKQ NEELLAEKDRLVEEVRRFTSGKNFGRSS SEQ ID NO: 14 amino acid sequence of IPD3 phosphomimic 1 (modified from Medicago truncatula) MEGRGESGLYKNSSEELFLKTVMESPIGMPVPTMEMLGFKTVSQSFRTD[D]EELFKRWLTNDQEGYNSSSM GLNSRLSKRISTEIANMSNQQHIGVASEGRNNDKSCLQNNFLANDVSSDFNFPIRDPVDRELQSSNLFLA KAWFITDQRMTRSRSSELRRRYTEMQNSQAPQGLDSMFMVPEHDTNTIKEELANFNGFDYLSMCELPSQK GTFMSPSNSSSSTFNTHQLVDVDKVSSCVSMLKGTLQRKKLECQVEKEAAEDGLNEIFCIREPLFQSAFN EEESWNQQKLVNVQGDFTDQVNDPGVMQTLEGTTNFVLDGFANQTNQIQGRTASGEPSQSESSAAAPVIS SGLDACEGPSNSNQTLGDSSWKQVGESTQNKVRGVREQIMDNLKDDRKRKSLERYGSVTSAVSDGKMDNT KKRRVERSRKMAEAKERNLTPTIPSDMQAILKRCENLEKEVRSLKLNLSFMNRKDSEQTKQIEDLQKQNE DLADEKERLLEEIERILSETGKI SEQ ID NO: 15 amino acid sequence of IPD3 phosphomimic 2 (modified from Medicago truncatula) MEGRGFSGLYKNSSEELFLKTVMESPIGMPVPTMEMLGFKTV[E]QSFRTDSEELFKRWLTNDQEGYNSSSM GLNSRLSKRISTEIANMSNQQHIGVASEGRNNDKSCLQNNFLANDVSSDFNFPIRDPVDRELQSSNLFLA KAWFITDQRMTRSRSSELRRRYTEMQNSQAPQGLDSMFMVPEHDTNTIKEELANFNGFDYLSMCELPSQK GTFMSPSNSSSSTFNTHQLVDVDKVSSCVSMLKGTLQRKKLECQVEKEAAEDGLNEIFCIREPLFQSAFN EEESWNQQKLVNVQGDFTDQVNDPGVMQTLEGTTNFVLDGFANQTNQIQGRTASGEPSQSESSAAAPVIS SGLDACEGPSNSNQTLGDSSWKQVGESTQNKVRGVREQIMDNLKDDRKRKSLERYGSVTSAVSDGKMDNT KKRRVERSRKMAEAKERNLTPTIPSDMQAILKRCENLEKEVRSLKLNLSFMNRKDSEQTKQIEDLQKQNE DLADEKERLLEEIERILSETGKI SEQ ID NO: 16 amino acid sequence of IPD3 phosphomimic 3 (modified from Lotus japonicus) MEGRGFSGLYRNSSEELFLKTVMESPIGMPVPSMEMLGFKNVSQGFRADSEELFKRWLTNGEGYNSSSIG FSSRLSKRISTELVNGSNQLQVGVASDGRNNDKPFIQNNLLANDVSGDFNFPIRDPVDRELQPSNLFLAK AWFLSDQRMTRSR[D]SELRRRYSEMQNGLATQGIESICMDPQHGAEATKQEVANFNGYNYLSMCELPSQKG SFMSPSNSCSSNFNTPQFGDMDKVSSCVSMLKGTLQRRRLSSQLEKEAAEDDLNGIFYPQEPLFQTGFDQ GQENWSNQTPVNVQVDSIGEVKDHGVLQTLEGSTNPVVDGFANQINQIYVGTASGEPSQSESSNAAPVIS SGLDTCEGPINSNQTLCESSWKQVGVSKSSENTQNRVKGFREQIMDNLKDDKKRKSLERYGSITSAVSDD KGDTTKKRRVERSRKMAEAKERNSTPSVPSDMQAVLKRCENLEKEVRSLKLNLSFMNRKDSEQTKQIEDL QKQNEELADEKERLLEEIERILSETEKM SEQ ID NO: 17 amino acid sequence of IPD3 double phosphomimic (modified from Medicago truncatula) MEGRGFSGLYKNSSEELFLKTVMESPIGMPVPTMEMLGFKTV[E]QSFRTD[D]EELFKRWLTNDQEGYNSSSM GLNSRLSKRISTEIANMSNQQHIGVASEGRNNDKSCLQNNFLANDVSSDFNFPIRDPVDRELQSSNLFLA KAWFITDQRMTRSRSSELRRRYTEMQNSQAPQGLDSMFMVPEHDTNTIKEELANFNGFDYLSMCELPSQK GTFMSPSNSSSSTFNTHQLVDVDKVSSCVSMLKGTLQRKKLECQVEKEAAEDGLNEIFCIREPLFQSAFN EEESWNQQKLVNVQGDFTDQVNDPGVMQTLEGTTNFVLDGFANQTNQIQGRTASGEPSQSESSAAAPVIS SGLDACEGPSNSNQTLGDSSWKQVGESTQNKVRGVREQIMDNLKDDRKRKSLERYGSVTSAVSDGKMDNT KKRRVERSRKMAEAKERNLTPTIPSDMQAILKRCENLEKEVRSLKLNLSFMNRKDSEQTKQIEDLQKQNE DLADEKERLLEEIERILSETGKI SEQ ID NO: 18 Medicago truncatula DMI3 >AY496049.1 Medicago truncatula calcium-dependent protein kinase (DMI3) mRNA, DMI3-1 allele, complete cds ATGGGATATGGAACAAGAAAACTCTCAGATGAATATGAAGTTTCAGAAATTCTAGGTAGAGGTGGATTTT CTGTTGTTAGAAAAGGTACAAAAAAATCAAGCATTGAAGAAGAAAAATCACAATCACAAGTAGCAATCAA AACCCTAAGAAGGTTAGGTGCTTCAAATAACCCTAGTGGATTACCAAGAAAAAAAGATATTGGAGAAAAA AGCACAATAGGGTTCCCTACAATGAGACAAGTTTCAGTTTCAGATACATTACTAACAAATGAGATACTTG TAATGAGACGAATAGTCGAAAACGTTTCGCCACATCCAAATGTGATTGATCTTTATGATGTATATGAGGA CACAAATGGTGTTCATCTTGTTCTTGAGCTTTGTTCCGGTGGTGAACTTTTCGATAGGATTGTTGCACAA GATAAGTATAGTGAGACTGAAGCTGCAACTGTGGTTCATCAAATAGCTTCAGGGTTAGAAGCTGTTCATA GAGCTAATATAGTTCATAGAGATTTGAAACCTGAAAATTGTCTTTTTTTAGATGTTAGGAAAGATTCTCC TCTTAAGATTATGGATTTTGGGTTGAGTTCTGTTGAAGAGTTTACTGATCCTGTTGTTGGTTTGTTTGGA TCTATTGATTATGTTTCACCTGAGGCTCTTTCTCAAGGAAAGATTACTACTAAGAGTGATATGTGGTCTC TTGGGGTTATTCTATATATCTTACTTTCAGGGTATCCACCTTTCATTGCCCAAAATAATCGCCAAAAACA ACAAATGATAATGAATGGGAATTTTAGTTTTTATGAGAAGACTTGGAAGGGAATTTCACAACCAGCAAAG AATTTGATTTCAAGTCTTTTAACCGTTGATCCTAGCAAGAGACCTAGTGCTCTTGAGCTTCTAAGTGATC CATGGGTCAAAGGTGAGAAAGCCAAAGATGTTCAAATGGACCCTGAGATTGTCTCAAGGCTACAAAGCTT TAATGCAAGACGTAAACTTCGTGCAGCTGCAATTGCTAGTGTTTGGAGCTCCACAATCTTCCTTAGAACA AAAAAATTGAAATCATTGGTTGGATCCTATGATCTTAAAGAAGAGGAAATTGAAAATCTCAGGATGCATT TCAAGAAGATATGTGCAGATAGAGACAATGCAACTCTGTCAGAGTTTGAGGAGGTGTTAAAAGCAATGAA TATGTTATCATTGATCCCTTTTGCTTCTCGTATATTTGATTTGTTTGACAACAACCGTGATGGAACAGTT GACATGCGTGAGATACTTTGTGGATTTTCCAGTCTCAAGAATTCCAAAGGAGAGGATGCTCTTCGTTTGT GCTTCCAGATGTATGATACAGATAGATCAGGCTGCATCAGCAAAGAGGAAGTAGCATCCATGCTCAGGGC TTTGCCATATGATTGTCTTCCAACTGATATCACTGAACCTGGAAAATTGGATGAGATTTTTGACTTAATG GATGCTAATAATGATGGAAAAGTTACATTTGATGAATTCAAAGCTGCTATGCAAAGAGATAGCTCTCTTC AAGATGTAGTTCTCTCTTCTATTCGTCCATAA SEQ ID NO: 19 Lotus japonicus DMI3 >AM230793.1 Lotus japonicus mRNA for calcium calmodulin-dependent
protein kinase (ccamk gene), ecotype Gifu AAAGATTCCAATATTTTCAAACACTCTGCCATGGGATATGATCAAACCAGAAAGCTCTCTGATGAGTATG AGATTTCAGAGATTCTAGGAAGAGGTGGATTCTCTGTTGTCAGAAAAGGAACCAAAAAATCAGGCAATGA GAAAACCCAAGTAGCCATCAAAACACTCAGAAGGTTAGGTAGTTCTCCCTCTGGGACAGGTGGTGGACAG AAGAGCACAGCAACTGTGATGGGGTTCCCTTCTTTGAGACAGGTTTCAGTCTCAGATGCTTTGCTCACCA ATGAGATTCTTGTGATGAGGAGGATAGTGGAAAACGTTTCGCCACATCCAAACGTGATTGATCTCTATGA TGTGTGTGAGGACTCAAATGGGGTGCATCTTGTGCTGGAGCTTTGTTCTGGTGGGGAGCTGTTTGATAGG ATTGTTGCACAGGATAAGTATGCTGAGACGGAAGCTGCCGCGGTGGTTCGCCAGATTGCGGCGGGGCTAG AGGCGGTTCACAAGGCTGACATTGTTCACAGGGATTTGAAGCCTGAGAATTGCCTTTTCTTGGATTCCAG GAAGGACTCTCCTCTCAAGATCATGGACTTTGGGTTGAGCTCTGTTGAGGAGTTCACTGACCCTGTTGTT GGGTTGTTTGGATCCATTGATTATGTTTCACCAGAGGCTCTTTCTCAAGGGAAGATCACTGCCAAGAGTG ACATGTGGTCTCTGGGAGTGATTCTATATATCTTGCTCTCTGGGTATCCGCCTTTCATTGCACAAAATAA TCGCCAAAAACAACAAATGATAATCAATGGGAATTTCAGTTTCTATGAGAAGACTTGGAAGGGCATTACC CAATCAGCGAAGCAATTGATTTCAAGTCTTTTGACTGTTGATCCAAGTAAGAGGCCTAGTGCTCAAGAGC TCTTGAGTCATCCATGGGTCAGAGGTGACAAAGCCAAAGATGAGCAAATGGACCCTGAGATTGTCTCAAG GCTGCAGAGCTTTAATGCAAGACGCAAACTCCGCGCAGCTGCAATTGCTAGTGTTTGGAGCAGCACAATC TTCCTGAGAACCAAAAAGCTGAGATCCTTGGTAGGAACTTATGATCTCAAAGAAGAGGAAATTGAAAGTC TCAGGATACACTTTAAGAAGATATGTGGAAATGGAGACAATGCAACTCTGTCTGAGTTTGTGGAGGTGCT GAAAGCAATGAAGATGCCCTCATTGATCCCTCTAGCACCGCGTATATTTGACTTGTTTGACAACAACCGT GATGGAACAATTGACATGAGAGAGATACTATGTGGGTTTTCTAGCCTCAAGAACTCCAAAGGAGATGATG CTCTCCGTTTGTGCTTCCAGATGTATGACACAGATAGATCAGGGTGCATCACCAAGGAAGAAGTAGCATC CATGCTCTGTGCTTTGCCAGAGGAATGTCTTCCAGCTGATATCACTGAACCTGGGAAATTGGATGAGATA TTTGACTTAATGGATGCCAACAGTGATGGAAAAGTTACATTTGAAGAATTCAAAGCTGCTATGCAGAGAG ATAGCTCTCTCCAAGACATGCTCCTCTCTTCTCTTCGTCCATCATAGTTTTTTTTTTTTTCCATTCATGG TGTTATGGTCTTTCAAACTTTGATATTGACTACACCTTTTACGTTTCTTTTAATCTCTTTTGGGGCTATC CTTCTCTTTGAGGTATTCATACTACATGGAAAAAGGGTGGTAAAGAGGGTGAAATTGTGTCATCTAACTT TTGCTATGACAACTAGGAACTTTTGCAAAAAAA SEQ ID NO: 20 Glycine max DMI3 >XM_006597983.2 PREDICTED: Glycine max calcium and calcium/calmodulin- dependent serine/threonine-protein kinase (LOC732616), mRNA TATAATGCCAGCAGTTGACTCTCTCTTTGTCCCTTCCAGAACAGCTCCTACCAGCCATATTGTTTTTTCT CTTGTACCTATCCCAATTTGTTTCATATTTTATGTCATAAACTAATCCACAAACTCTTACAACAGGCTAA TGTCACTCTCAACCGTTTCAACACGCGTTTTGAAAGCCCCTATCATTGAATTAAAGTTAACATTTTTTTA CATACCAATTCCCTTCCCACTGCACATTTTCTGAGTCTTCAAGATTCCATAATTTCAAAGACTTTGTGTG CACCACACCACCATGGGGAATGAAACCAGAAAACTCTCAGATGAGTATGAAGTTTCAGAAGTCCTAGGAA GAGGTGGATTTTCTGTTGTCAGAAAAGGCACCAAAAAATCAAGCAGTGACACCAAAACACATGTAGCCAT CAAAACCCTGAGAAGGGTAGGCACTGCCTCAAACTCCAACAACCCTTCTGGATTTCCAAGACCAAAGGGT GGAGAGAAGAAGAGCACAGCAGCTATGATGGGATTCCCCACATGGAGACAAGTCTCAGTCTCAGATGCCT TGCTCACAAATGAGATTCTTGTGATGAGGAGAATAGTGGAAAATGTTTCACCACACCCTAATGTGATTGA CCTCTATGATGTGTATGAGGACTCAAATGGGGTGCACCTTGTGTTGGAGCTGTGTTCTGGTGGAGAACTG TTTGATAGGATTGTGGCACAAGATAGGTACTCAGAGACTGAAGCTGCAGGTGTGGTTCGCCAGATAGCTT CAGGATTAGAGGCTATTCATAGAGCTAACATTGTCCACAGAGATTTGAAGCCTGAGAATTGCCTTTTCTT GGATGTGAGGAGGGACTCTCCTCTTAAGATCATGGACTTTGGGTTGAGTTCTGTTGAGGAATTCACTGAC CCAGTTGTTGGTTTGTTTGGATCCATTGATTACGTTTCACCAGAGGCTCTTTCTCAAGGGAAGATAACTA CCAAGAGTGACATGTGGTCTCTGGGGGTGATTCTATATATCTTGCTCTCAGGGTATCCACCTTTCATTGC TCAAAATAATCGCCAGAAACAACAAATGATAATGAATGGGAATTTCAGTTTCTATGAGAAGACATGGAAG GGCATTACCCGTTCAGCGAAGCAACTGATTTCAGATCTTTTGATTGTTGATCCTAGTAGAAGACCTAGTG CTCAAGATCTTCTGAGTCATCCATGGGTGGTAGGTGACAAGGCCAAAGATGATGCAATGGACCCTGAGAT TGTCTCAAGATTGCAGAGCTTCAACGCTAGGCGCAAACTGCGTGCAGTTGCAATTGCAAGTATTTGGAGC ACCACAATCTTCCTCAGAACCAAAAAACTGAAATCCTTGGTGGGAACACATGATCTCACAGAAGAGGAAA TTGAAAATCTCAGGATGAGTTTTAAGAAGATATGTGTGAGTGGGGACAATGCCACTCTATCTGAGTTTGA GGAGGTGCTGAAAGCAATGAACATGCCATCACTGATCCCTCTAGCACCGCGAATATTTGACTTATTTGAC GACAACCGAGATGGAACAGTTGACATGAGAGAGATACTATGTGGTTTTTCCAGCTTCAAAAACTCCAAAG GGGATGATGCTCTCCGTTTGTGCTTCCAGATGTATGACACAGATCGATCCGGGTGCATCACCAAGGAAGA AGTAGCATCCATGCTCAGAGCTTTGCCAGAAGACTGTCTCCCAACTGACATCACTGAACCTGGCAAATTG GATGAGATATTTGACCTAATGGATGCCAACAGTGATGGAAAAGTTACCTTTGATGAATTCAAAGCTGCTA TGCAGAGAGATAGCTCTCTCCAAGACGTAGTTCTCTCTTCTCTTCGCCCACAATAGTTCTCCTAATTTTC ATTAATTTATTGTATTATTAACTATGGTATTTTAAAATGGAGTAGTACTAGTGTTGTCCTTTTCTTTTTC TTCTTCCTGGCCTGGGCCATTCTTTTTGCTGACTTATTGATACTATAGGAAGAAAAAGGATTGGATTACT ATATAGTGAATTTTTGCTTTTGACAGTTATCTATGAACTTCTGCGTTCTCATGTTGTTCGTCAA SEQ ID NO: 21 Phaseolus vulgaris DMI3 >XM_007133469.1 Phaseolus vulgaris hypothetical protein (PHAVU_011G186900g) mRNA, complete cds TCTCAACCGTTTCAACACGCGTTTTGAAGGCTCCTCCTATCATTTTTTTAACAAACAAATTCCTTTGTCC CTGCAAATTTTCTGAGTCTTCAAGATTCCTTAGTTTCCAAGACTCTGTGTGCAGCACACCACCATGGGGT ATGAAACCAGAATACTCTCAGATGAGTATGAAGTCTCAGAGGTTCTAGGAAGAGGTGGATTTTCTGTTGT CAGAAAAGGCACAAGAAAATCAAGTAGTGACACCAAAAGCCTTGTAGCCATCAAAACCCTGAGAAGGTCA GGAACTGCCTCAAGCCCCAGCTACCCTTCTGGGTTTCCAAGACCAAAGGGTGGAGAGAAGAGCACAGCAG CTATGATGGGGTTCCCCTCAGGGAGACAAGTCTCAGTCTCAGATGCCTTGCTCACCAATGAGATTCTTGT GATGAGGAGAATAGTGGAAAACGTTTCACCACACCCTAATGTGATTGACCTTTATGATGTGTATGAGGAC TCCAATGGAGTGCACCTTGTGTTGGAGCTGTGCTCTGGTGGGGAATTGTTTGATAGGATTGTAGCACAAG ATAGGTACTCAGAGACTGAAGCTGCAGGTGTGGTTCGCCAGATAGCTTCAGGATTAGAGGCTATTCATAG AGCTAACATTGTGCACAGGGACTTGAAGCCTGAGAATTGTCTTTTCTTGGATGTGAGGAGGGACTCCCCT CTTAAGATCATGGACTTTGGATTGAGTTCTGTTGAAGAATTCACTGACCCAGTTGTTGGTTTGTTTGGAT CCATTGATTATGTTTCACCAGAGGCTCTTTCTCAAGGGAAGATAACTACCAAGAGTGACATGTGGTCTCT TGGAGTGATTCTATACATCTTACTCTCTGGGTATCCACCTTTCATTGCTCAGACCAATCGCCAGAAACAA CAAATGATAATGAATGGGAATTTCAGTTTCTATGAGAAGACATGGAAGGGCATTACTCAATCAGCAAAAC AGCTAATTTCAGATCTTCTGACTATAGATCCTAGCAGGAGACCTAGTGCTCAAGATCTTCTGAGTCATCC ATGGGTGGTAGGTGACAAAGCCAAGGATGATGCAATGGACCCTGAGATTGTCTCAAGATTGCAGAGCTTC AACGCAAGACGCAAATTGCGTGCAGCTGCAATTGCTAGTGTTTGGAGCTCCACAATCTTCCTCAGAACCA AAAAGCTGAAATCCTTGGTGGGAACACATGATCTCACAGCAGAGGAAATTGAAAACCTCAGGATAAATTT TAAGAAAATATGTGTGAATGGAGACAATGCCACTCTCTCTGAGTTTGAAGAGGTGCTGAAAGCAATGAAT ATGCCATCACTGATCCCTCTAGCACCACGAATATTTGACTTGTTTGACAACAACCGTGATGGAACAGTTG ACATGAGAGAGATACTTTGTGGCTTTTCCAGCTTCAAAAACTCCAAAGGAGATGATGCTCTCCGTTTGTG CTTCCAGATGTATGACACAGATCGATCAGGGTGCATCACCAAGGAAGAAGTAGCATCCATGCTCAGAGCT TTACCAGAAGAGTGTCTACCTGCTGATATCACTGAACCTGGGAAACTGGATGAGATATTTGACAGAATGG ATGCCAACAGTGATGGAAAAGTTACCTTTGATGAATTCAAAGCTGCCATGCAGAGAGATAGCTCTTTGCA AGACCTTCTTCTCTCTTCTCTAAGACCACAATCTTAACTCTTCAAATTTCCATTGATCTATATGCTATTG TTATCAACCATGCACAACTATTTTTGTCCTTTTTGTCCCTTCACACTGTAGGAAAAAACACTATTCCAGG ACTATACACTGATGTTGTTCCATCTAACTTTTGCTTAGACTCATGTTAATTAAGTATG SEQ ID NO: 22 Arachis hypogea DMI3 >EU395429.1 Arachis hypogaea calcium calmodulin-dependent protein kinase (CCaMK) mRNA, partial cds ATGGGATATGAAACCAGAAAGCTCTCTGATGAGTATGAAGTTTCAGAAATTCTAGGAAGAGGTGGATTCT CTGTTGTCAGGAAAGGCATAAAAAAATCAAGCAGTGATGAGAAAACTCATGTTGCCATAAAGACACTAAG AAGAGTAAGTGTCTTCTCTACAACCCCTGGTTGTTTACCAAGAGAGAGGAGCAACATGGGGTTTCCCACA TGGAGACAGGTTTCAGTATCAGATGCTCTTCTCACCAATGAGATCCTTGTGATGAGGAAGATAGTCGAAA ATGTGTCGCCACATCCGAATGTGGTTGACCTCTATGATGTTTATGAGGACTCGAATGGTGTTCATCTTGT TTTGGAGCTGTGTTCTGGCGGTGAGCTGTTTGATCGCATTGTGGCACAGGATAGGTACTCAGAGACTGAG GCTGCGACAGTTATTCGCCAGATTGCGGCGGGCTTAGAGGCTATTCATAAAGCAAACATTGTCCATAGAG ACTTGAAGCCTGAGAATTGCTTGTTCTTGGACAAGAGGAAGGATTCTCCTCTAAAGATCATGGATTTCGG TTTGAGCTCTGTTGAAGAGTTTACTGATCCAGTTGTTGGTTTGTTTGGTTCCATTGATTATGTTTCACCG GAGGCTCTTTCTCAAGGAAAGATTACTACTAAGAGTGACATGTGGTCTCTAGGGGTAATTTTGTACATCT TATTATCTGGATATCCGCCTTTCATTGCTCAGTCTAATCGCCAAAAACAACAAATGATAATGAATGGGAA CTTCAGCTTCTATGAGAAGACATGGAAGGGCATTTCTCAATCAGCAAAGCAATTGATTTCGAGTCTTCTG ACAGTTGATCCTAGTAGGAGACCTAGTGCGCAGGAGCTCCTGAGTCATCCATGGGTCATAGGTGATGTAG CCAAAGATGTTCAAATGGACCCTGAGATTGTCTCAAGGTTGCAAAGCTTCAATGCTCGTCGCAAGCTCCG GGCAGCTGCAATTGCAAGCGTATGGAGCACCACAGTGTTCTTGAGAACCAAGAAACTGAAATCCTTGATA GGATCCTATGATCTTACAGAAGAGGAAATTGAAAGTCTCAGGATACACTTCAAGAAGATATGTGGAAATG GGGACAATGCCACGCTCTCTAAGTTTGAGGAGGTACTGAAAGCAATAAATATGCCATCACTAATTCCTCT AGCACCACGCATATTTGACTTGTTCGACAACAACCGTGATGGAACGGTTGACATGCGAGAGATTTTATGT GGGCTTTCCAGCCTCAAGAATTCCAAAGGAGATGATGCCCTCCGTTTGTGCTTCCAGATGTATGATGCAG ATCGATCCGGGTGTATCACAAAGGAAGAAGTAGCATCCATGCTTAGAGCTTTGCCGGATGACTGTCTTCC CGTTGATATCACGGAACCTGGCAAATTGGACGAGATTTTCGACAGAATGGATGCCAACAGTGATGGAAAA GTCACCTTTGAGGAATTCAAAGCTGCTATGCAAAGAGATAGCTCTCTCCAAGACGTAGTCCTCTCTTCTC TTCGTCCA SEQ ID NO: 23 Petunia .times. hybrida DMI3 >EF592572.1 Petunia .times. hybrida CCaMK mRNA, complete cds GCGGGGAGTGCTTTGATGGGACAAAAGGAAGATACAAGAAGTCTAAGTGATGAATATGAAGTAACAGACA TACTTGGAAGAGGTGGCTTTTCAGTAGTAAGGAGAGGAAGAACACGTAGCAGTGAAGAAGTTGCCATTAA GACACTCCGGCGATTCGGACCGCCGGAGAAGAAAGAATTTAGTAGGTCTACTACTCATGTTAATTCTCGA CCAGCTGCACAGGCTTTAATATCTGAAACTTTGTTGACAAATGAGCTGTTAGTTATGAGGAAGATTGTGG AAGATGTTTCACCTCATCCTAATGTTATACATCTGTATGACGTTTGTGAGGATTCTTCAGGTGTTCATCT CATCTTGGAGCTTTGTTGTGGTGGGGAGCTCTTTGATCGGATTGTTGGGCAAGCAAGGTATAACGAGGCA GGCGCAGCTGCAGTGGTGAGACAGATAGCTAAGGGTCTTGAGGCACTACATGGGGCAAGTATAGTTCATA GGGACTTGAAACCAGAGAACTGTCTATTCTTGAACAAGGATGAGAATTCACCACTGAAAATCATGGACTT TGGACTCAGCTCTATTGAGGATTTTGCCAATCCAGTGGTTGGTTTATTTGGTTCCATAGATTATGTTTCA CCAGAAGCACTTTCAAGGGGAAACATCACTAGCAAAAGTGATATTTGGTCACTTGGAGTAATCCTTTACA TTCTCCTATCCGGGTACCCACCTTTCTTCGCACCGTCCAATCGGCAAAAGCAACAAATGATATTAAACGG GGAGTTCAGTTTTGATGAGAAAACATGGAAAAATATTTCGTCATCCGCAAAACAGCTAATATCCAGTCTT TTGAAAGTTGATCCTAACATGAGACCTACTGCTCAAGAGATACTTGAACACCCATGGGTGACAGGAGACT TGGCAAAGCAAGAACAGATGGATGCCGAAATTGTATCTCGCCTGCAAAGCTTCAATGCTCGGCGCAAGTT CAGGGCGGCAGCTATGGCTAGTGTGTTAAGCAGTAGTTTCTCCTTGAGAACTAAGAAATTGAAGAAGTTG GTTGGTTCCTATGACCTCAAGCCTGAAGAATTGGAAAACCTCAGCCACAACTTCAAGAAAATATGCAAAA ATGGAGAAAATGCAACTTTATTGGAATTTGAAGAGGTCCTGAAAGCTATGGAAATGTCATCTTTAGTCCC TTTAGCTCCTCGGATATTCGATCTATTTGACAACAATCGTGATGGAACAGTAGATATGAGAGAGATCATA GGTGGCTTCTCTAGCCTCAAGTATTCCCAAGGGGATGATGCACTTCGTCTTTGTTTCCAGATGTATGATA CAGATCGGTCAGGCTGCATTAGCAAGGAAGAGGTCGCATCCATGTTAAGAGCACTTCCTGAAGACTGCCT TCCAATGGATATAACAGAACCTGGAAAACTTGATGAGATATTTGATTTAATGGATGCAAATAGTGATGGT AAAGTCACTTTTGATGAGTTCAGAGCTGCCATGCAAAGAGATAGCTCTCTTCAAGATGTAGTTCTCTCCT CTCTTCGTCCCACTTTAATTCCTTTATTATTTAATTTTCCTTTTAGCATACTAGTTGTATTAATCTCTAA CCTTCTATGACAATGATTTATTTTTTTATTCGCAACTGAGAAAAAGGGCATGGAATTAATTTGAAAGCTT TATCGAACGCT SEQ ID NO: 24 Sesbania rostrata DMI3 >EU622875.1 Sesbania rostrata Ca2+ and calmodulin-dependent protein kinase (CCaMK) mRNA, complete cds GGGAATTCAAAGACTTGATTTTTTTGTTTTGTTTTGTGCACCACCATGGGATATGAAACCAGAAGGCTCT CAGATGAGTATGAGGTTTCAGATGTTCTAGGAAGAGGTGGATTTTCTGTTGTCAGAAAAGGTACCAAAAA ATCAAGCAGTGAGAAAACCTTAGTAGCCATCAAAACACTGAGAAGGTTAGGTGCCTCTAATAACAACCCT TCTGGTTTACCAAAAACAAAAGGTGGAGAGAAAAGCATAGCAACTATGATGGGGTTCCCCACATGGAGAC AAGTTTCAGTCTCAGATGCCTTGTTGACCAATGAGATTCTTGTCATGAGGAGGATAGTGGAAAATGTTTC ACCTCACCCCAATGTGATTGACCTCTATGATGTGTATGAGGACTCAAATGGGGTTCATCTTGTGCTTGAG CTTTGTTCTGGTGGGGAATTGTTTGATAGGATTGTGGCACAAGATAGGTACTCAGAGACTGAAGCTGCAG CTGTGGTTCGCCAGATAGCAGCAGGATTAGAGGCTATTCATAAAGCTAACATTGTTCATAGGGACTTGAA GCCTGAGAATTGCCTTTTTTTGGATACCAGGAAGGACTCTCCTCTCAAGATCATGGACTTTGGGTTGAGT TCTGTTGAAGAATTTACTGACCCTGTTGTTGGTTTGTTTGGATCCATTGATTATGTTTCACCAGAGGCTC TTTCTCAAGGAAAGATAACTACTAAGAGTGACATGTGGTCTCTAGGAGTAATTCTATATATCTTACTCTC TGGGTATCCACCTTTCATTGCTCCGTCTAATCGCCAAAAACAACAAATGATAGTGAACGGGAATTTCAGT TTCTATGAGAAGACTTGGAAGGGCATTTCCCAATCAGCAAAGCAATTGATTTCAAGTCTTCTGACTGTTG ATCCTAGCAAGAGACCCAGTGCTCAACAGCTTCTGAGTCATCCATGGGTTATAGGTGAGAAAGCCAAAGA TGATCAAATGGACCCTGAAATTGTCTCAAGGCTGCAGAGCTTTAATGCAAGACGCAAACTGCGTGCAGCT GCAATTGCTAGTGTTTGGAGCTCCACAGTCTTCCTCAGAACCAAAAAACTGAGATCCTTGGTAGGAACCC ATGATCTCAAAGAAGAGGAAATTGAAAACCTCAGGATACATTTCAAGAAGATATGTGCAAATGGAGACAA TGCCACTCTCTCTGAGTTTGAGGAGGTGCTGAAAGCAATGAATATGCCATCATTGATCCCTCTAGCACCT CGTATATTTGACTTGTTTGACAACAACCGTGATGGAACAGTTGACATGCGAGAGATACTATGTGGGTTTT CTAGTCTCAAGAACTCCAAAGGAGATGATGCTCTCCGTTTGTGCTTCCAGATGTATGACACAGATCGATC CGGGTGCATCACAAAGGAAGAAGTAGCATCTATGCTGAGAGCTTTGCCAGATGATTGTCTTCCAGCTGAT ATCACTGAACCTGGCAAATTGGATGAGATATTTGATTTAATGGATGCAAATAGTGATGGAAAAGTTACCT TTGATGAATTCAAAGCTGCTATGCAGAGAGATAGCTCTCTTCAAGATGTAGTCCTCTCTTCTCTTCGCCC ATAATCCTTTTATTATGACATAATATTCACACTACAAGGAAAAGTGTAATGCAGTACTAAACAGGGTGAA ACTGTGCCATCTAACTTCTGCTATGACAATTAGGAACTTTTGCATTTTCATGTTATACAAGCTAGCTAGC TACCTACCTGAGTCTTGAAACTGCAATTGAGTAGCAGAAAGCTAACATGTTCATCTTGAATCGAACAAAT TCTTCCAAATTTAGTTTTTATTGCATC SEQ ID NO: 25 nucleotide sequence of DMI3 phosphomimic 1 ATGGGATATGGAACAAGAAAACTCTCAGATGAATATGAAGTTTCAGAAATTCTAGGTAGAGGTGGATTTT CTGTTGTTAGAAAAGGTACAAAAAAATCAAGCATTGAAGAAGAAAAATCACAATCACAAGTAGCAATCAA AACCCTAAGAAGGTTAGGTGCTTCAAATAACCCTAGTGGATTACCAAGAAAAAAAGATATTGGAGAAAAA AGCACAATAGGGTTCCCTACAATGAGACAAGTTTCAGTTTCAGATACATTACTAACAAATGAGATACTTG TAATGAGACGAATAGTCGAAAACGTTTCGCCACATCCAAATGTGATTGATCTTTATGATGTATATGAGGA CACAAATGGTGTTCATCTTGTTCTTGAGCTTTGTTCCGGTGGTGAACTTTTCGATAGGATTGTTGCACAA GATAAGTATAGTGAGACTGAAGCTGCAACTGTGGTTCATCAAATAGCTTCAGGGTTAGAAGCTGTTCATA GAGCTAATATAGTTCATAGAGATTTGAAACCTGAAAATTGTCTTTTTTTAGATGTTAGGAAAGATTCTCC TCTTAAGATTATGGATTTTGGGTTGAGTTCTGTTGAAGAGTTTACTGATCCTGTTGTTGGTTTGTTTGGA TCTATTGATTATGTTTCACCTGAGGCTCTTTCTCAAGGAAAGATTACTACTAAGAGTGATATGTGGTCTC TTGGGGTTATTCTATATATCTTACTTTCAGGGTATCCACCTTTCATTGCCCAAAATAATCGCCAAAAACA ACAAATGATAATGAATGGGAATTTTAGTTTTTATGAGAAG[GAT]TGGAAGGGAATTTCACAACCAGCAAAG AATTTGATTTCAAGTCTTTTAACCGTTGATCCTAGCAAGAGACCTAGTGCTCTTGAGCTTCTAAGTGATC CATGGGTCAAAGGTGAGAAAGCCAAAGATGTTCAAATGGACCCTGAGATTGTCTCAAGGCTACAAAGCTT TAATGCAAGACGTAAACTTCGTGCAGCTGCAATTGCTAGTGTTTGGAGCTCCACAATCTTCCTTAGAACA AAAAAATTGAAATCATTGGTTGGATCCTATGATCTTAAAGAAGAGGAAATTGAAAATCTCAGGATGCATT TCAAGAAGATATGTGCAGATAGAGACAATGCAACTCTGTCAGAGTTTGAGGAGGTGTTAAAAGCAATGAA TATGTTATCATTGATCCCTTTTGCTTCTCGTATATTTGATTTGTTTGACAACAACCGTGATGGAACAGTT GACATGCGTGAGATACTTTGTGGATTTTCCAGTCTCAAGAATTCCAAAGGAGAGGATGCTCTTCGTTTGT GCTTCCAGATGTATGATACAGATAGATCAGGCTGCATCAGCAAAGAGGAAGTAGCATCCATGCTCAGGGC TTTGCCATATGATTGTCTTCCAACTGATATCACTGAACCTGGAAAATTGGATGAGATTTTTGACTTAATG GATGCTAATAATGATGGAAAAGTTACATTTGATGAATTCAAAGCTGCTATGCAAAGAGATAGCTCTCTTC AAGATGTAGTTCTCTCTTCTATTCGTCCATAA SEQ ID NO: 26 nucleotide sequence of DMI3 phosphomimic 2 ATGGGATATGGAACAAGAAAACTCTCAGATGAATATGAAGTTTCAGAAATTCTAGGTAGAGGTGGATTTT CTGTTGTTAGAAAAGGTACAAAAAAATCAAGCATTGAAGAAGAAAAATCACAATCACAAGTAGCAATCAA AACCCTAAGAAGGTTAGGTGCTTCAAATAACCCTAGTGGATTACCAAGAAAAAAAGATATTGGAGAAAAA AGCACAATAGGGTTCCCTACAATGAGACAAGTTTCAGTTTCAGATACATTACTAACAAATGAGATACTTG TAATGAGACGAATAGTCGAAAACGTTTCGCCACATCCAAATGTGATTGATCTTTATGATGTATATGAGGA CACAAATGGTGTTCATCTTGTTCTTGAGCTTTGTTCCGGTGGTGAACTTTTCGATAGGATTGTTGCACAA GATAAGTATAGTGAGACTGAAGCTGCAACTGTGGTTCATCAAATAGCTTCAGGGTTAGAAGCTGTTCATA GAGCTAATATAGTTCATAGAGATTTGAAACCTGAAAATTGTCTTTTTTTAGATGTTAGGAAAGATTCTCC TCTTAAGATTATGGATTTTGGGTTGAGTTCTGTTGAAGAGTTTACTGATCCTGTTGTTGGTTTGTTTGGA TCTATTGATTATGTTTCACCTGAGGCTCTTTCTCAAGGAAAGATTACTACTAAGAGTGATATGTGGTCTC TTGGGGTTATTCTATATATCTTACTTTCAGGGTATCCACCTTTCATTGCCCAAAATAATCGCCAAAAACA ACAAATGATAATGAATGGGAATTTTAGTTTTTATGAGAAG[ATT]TGGAAGGGAATTTCACAACCAGCAAAG AATTTGATTTCAAGTCTTTTAACCGTTGATCCTAGCAAGAGACCTAGTGCTCTTGAGCTTCTAAGTGATC CATGGGTCAAAGGTGAGAAAGCCAAAGATGTTCAAATGGACCCTGAGATTGTCTCAAGGCTACAAAGCTT TAATGCAAGACGTAAACTTCGTGCAGCTGCAATTGCTAGTGTTTGGAGCTCCACAATCTTCCTTAGAACA AAAAAATTGAAATCATTGGTTGGATCCTATGATCTTAAAGAAGAGGAAATTGAAAATCTCAGGATGCATT TCAAGAAGATATGTGCAGATAGAGACAATGCAACTCTGTCAGAGTTTGAGGAGGTGTTAAAAGCAATGAA TATGTTATCATTGATCCCTTTTGCTTCTCGTATATTTGATTTGTTTGACAACAACCGTGATGGAACAGTT GACATGCGTGAGATACTTTGTGGATTTTCCAGTCTCAAGAATTCCAAAGGAGAGGATGCTCTTCGTTTGT GCTTCCAGATGTATGATACAGATAGATCAGGCTGCATCAGCAAAGAGGAAGTAGCATCCATGCTCAGGGC TTTGCCATATGATTGTCTTCCAACTGATATCACTGAACCTGGAAAATTGGATGAGATTTTTGACTTAATG GATGCTAATAATGATGGAAAAGTTACATTTGATGAATTCAAAGCTGCTATGCAAAGAGATAGCTCTCTTC AAGATGTAGTTCTCTCTTCTATTCGTCCATAA SEQ ID NO: 27 Medicago truncatula DMI3 >sp|Q6RET7.1|CCAMK_MEDTR RecName: Full = Calcium and calcium/calmodulin-dependent serine/threonine-protein kinase DMI-3; AltName: Full = CCaMK DMI3; AltName: Full = Does not make infections protein 3; AltName: Full = MtCCaMK MGYGTRKLSDEYEVSEILGRGGFSVVRKGTKKSSIEEEKSQSQVAIKTLRRLGASNNPSGLPRKKDIGEK STIGEPTMRQVSVSDTLLTNEILVMRRIVENVSPHPNVIDLYDVYEDTNGVHLVLELCSGGELFDRIVAQ DKYSETEAATVVHQIASGLEAVHRANIVHRDLKPENCLFLDVRKDSPLKIMDFGLSSVEEFTDPVVGLFG SIDYVSPEALSQGKITTKSDMWSLGVILYILLSGYPPFIAQNNRQKQQMIMNGNFSFYEKTWKGISQPAK NLISSLLTVDPSKRPSALELLSDPWVKGEKAKDVQMDPEIVSRLQSFNARRKLRAAAIASVWSSTIFLRT KKLKSLVGSYDLKEEEIENLRMHFKKICADRDNATLSEFEEVLKAMNMLSLIPFASRIFDLEDNNRDGTV DMREILCGFSSLKNSKGEDALRLCFQMYDTDRSGCISKEEVASMLRALPYDCLPTDITEPGKLDEIFDLM DANNDGKVTFDEFKAAMQRDSSLQDVVLSSIRP SEQ ID NO: 28 Lotus japonicus DMI3 >CAJ76700.1 calcium calmodulin-dependent protein kinase [Lotus
japonicus] MGYDQTRKLSDEYEISEILGRGGFSVVRKGTKKSGNEKTQVAIKTLRRLGSSPSGTGGGQKSTATVMGFP SLRQVSVSDALLTNEILVMRRIVENVSPHPNVIDLYDVCEDSNGVHLVLELCSGGELFDRIVAQDKYAET EAAAVVRQIAAGLEAVHKADIVHRDLKPENCLFLDSRKDSPLKIMDFGLSSVEEFTDPVVGLFGSIDYVS PEALSQGKITAKSDMWSLGVILYILLSGYPPFIAQNNRQKQQMIINGNFSFYEKTWKGITQSAKQLISSL LTVDPSKRPSAQELLSHPWVRGDKAKDEQMDPEIVSRLQSFNARRKLRAAAIASVWSSTIFLRTKKLRSL VGTYDLKEEEIESLRIHFKKICGNGDNATLSEFVEVLKAMKMPSLIPLAPRIFDLFDNNRDGTIDMREIL CGFSSLKNSKGDDALRLCFQMYDTDRSGCITKEEVASMLCALPEECLPADITEPGKLDEIFDLMDANSDG KVTFEEFKAAMQRDSSLQDMLLSSLRPS SEQ ID NO: 29 Glycine max DMI3 >XP_006598046.1 PREDICTED: calcium and calcium/calmodulin-dependent serine/threonine-protein kinase [Glycine max] MGNETRKLSDEYEVSEVLGRGGFSVVRKGTKKSSSDTKTHVAIKTLRRVGTASNSNNPSGFPRPKGGEKK STAAMMGFPTWRQVSVSDALLTNEILVMRRIVENVSPHPNVIDLYDVYEDSNGVHLVLELCSGGELFDRI VAQDRYSETEAAGVVRQIASGLEAIHRANIVHRDLKPENCLFLDVRRDSPLKIMDFGLSSVEEFTDPVVG LFGSIDYVSPEALSQGKITTKSDMWSLGVILYILLSGYPPFIAQNNRQKQQMIMNGNFSFYEKTWKGITR SAKQLISDLLIVDPSRRPSAQDLLSHPWVVGDKAKDDAMDPEIVSRLQSFNARRKLRAVAIASIWSTTIF LRTKKLKSLVGTHDLTEEEIENLRMSFKKICVSGDNATLSEFEEVLKAMNMPSLIPLAPRIFDLFDDNRD GTVDMREILCGFSSFKNSKGDDALRLCFQMYDTDRSGCITKEEVASMLRALPEDCLPTDITEPGKLDEIF DLMDANSDGKVTFDEFKAAMQRDSSLQDVVLSSLRPQ SEQ ID NO: 30 Phaseolus vulgaris DMI3 >XP_007133531.1 hypothetical protein PHAVU_011G186900g [Phaseolus vulgaris] MGYETRILSDEYEVSEVLGRGGFSVVRKGTRKSSSDTKSLVAYKTLRRSGTASSPSYPSGFPRPKGGEKS TAAMMGFPSGRQVSVSDALLTNEILVMRRIVENVSPHPNVIDLYDVYEDSNGVHLVLELCSGGELFDRIV AQDRYSETEAAGVVRQIASGLEAIHRANIVHRDLKPENCLFLDVRRDSPLKIMDFGLSSVEEFTDPVVGL FGSIDYVSPEALSQGKITTKSDMWSLGVILYILLSGYPPFIAQTNRQKQQMIMNGNFSFYEKTWKGITQS AKQLISDLLTIDPSRRPSAQDLLSHPWVVGDKAKDDAMDPEIVSRLQSFNARRKLRAAAIASVWSSTIFL RTKKLKSLVGTHDLTAEEIENLRINFKKICVNGDNATLSEFEEVLKAMNMPSLIPLAPRIFDLFDNNRDG TVDMREILCGFSSFKNSKGDDALRLCFQMYDTDRSGCITKEEVASMLRALPEECLPADITEPGKLDEIFD RMDANSDGKVTFDEFKAAMQRDSSLQDLLLSSLRPQS SEQ ID NO: 31 Arachis hypogea DMI3 >ACB46142.1 calcium calmodulin-dependent protein kinase, partial [Arachis hypogaea] MGYETRKLSDEYEVSEILGRGGFSVVRKGIKKSSSDEKTHVAIKTLRRVSVFSTTPGCLPRERSNMGFPT WRQVSVSDALLTNEILVMRKIVENVSPHPNVVDLYDVYEDSNGVHLVLELCSGGELFDRIVAQDRYSETE AATVIRQIAAGLEAIHKANIVHRDLKPENCLFLDKRKDSPLKIMDFGLSSVEEFTDPVVGLFGSIDYVSP EALSQGKITTKSDMWSLGVILYILLSGYPPFIAQSNRQKQQMIMNGNFSFYEKTWKGISQSAKQLISSLL TVDPSRRPSAQELLSHPWVIGDVAKDVQMDPEIVSRLQSFNARRKLRAAAIASVWSTTVFLRTKKLKSLI GSYDLTEEEIESLRIHFKKICGNGDNATLSKFEEVLKAINMPSLIPLAPRIFDLFDNNRDGTVDMREILC GLSSLKNSKGDDALRLCFQMYDADRSGCITKEEVASMLRALPDDCLPVDITEPGKLDEIFDRMDANSDGK VTFEEFKAAMQRDSSLQDVVLSSLRP SEQ ID NO: 32 Petunia .times. hybrida DMI3 >ABQ95545.1 CCaMK [Petunia .times. hybrida] MGQKEDTRSLSDEYEVTDILGRGGFSVVRRGRTRSSEEVAIKTLRRFGPPEKKEFSRSTTHVNSRPAAQA LISETLLTNELLVMRKIVEDVSPHPNVIHLYDVCEDSSGVHLILELCCGGELFDRIVGQARYNEAGAAAV VRQIAKGLEALHGASIVHRDLKPENCLFLNKDENSPLKIMDFGLSSIEDFANPVVGLFGSIDYVSPEALS RGNITSKSDIWSLGVILYILLSGYPPFFAPSNRQKQQMILNGEFSFDEKTWKNISSSAKQLISSLLKVDP NMRPTAQEILEHPWVTGDLAKQEQMDAEIVSRLQSFNARRKFRAAAMASVLSSSFSLRTKKLKKLVGSYD LKPEELENLSHNFKKICKNGENATLLEFEEVLKAMEMSSLVPLAPRIFDLFDNNRDGTVDMREIIGGFSS LKYSQGDDALRLCFQMYDTDRSGCISKEEVASMLRALPEDCLPMDITEPGKLDEIFDLMDANSDGKVTFD EFRAAMQRDSSLQDVVLSSLRPTLIPLLFNFPFSILVVLISNLL SEQ ID NO: 33 Sesbania rostrata DMI3 >ACC94267.1 Ca2+ and calmodulin-dependent protein kinase [Sesbania rostrata] MGYETRRLSDEYEVSDVLGRGGFSVVRKGTKKSSSEKTLVAIKTLRRLGASNNNPSGLPKTKGGEKSIAT MMGFPTWRQVSVSDALLTNEILVMRRIVENVSPHPNVIDLYDVYEDSNGVHLVLELCSGGELFDRIVAQD RYSETEAAAVVRQIAAGLEAIHKANIVHRDLKPENCLFLDTRKDSPLKIMDFGLSSVEEFTDPVVGLFGS IDYVSPEALSQGKITTKSDMWSLGVILYILLSGYPPFIAPSNRQKQQMIVNGNFSFYEKTWKGISQSAKQ LISSLLTVDPSKRPSAQQLLSHPWVIGEKAKDDQMDPEIVSRLQSFNARRKLRAAAIASVWSSTVFLRTK KLRSLVGTHDLKEEEIENLRIHFKKICANGDNATLSEFEEVLKAMNMPSLIPLAPRIFDLFDNNRDGTVD MREILCGFSSLKNSKGDDALRLCFQMYDTDRSGCITKEEVASMLRALPDDCLPADITEPGKLDEIFDLMD ANSDGKVTFDEFKAAMQRDSSLQDVVLSSLRP SEQ ID NO: 34 amino acid sequence of DMI3 phosphomimic 1 MGYGTRKLSDEYEVSEILGRGGFSVVRKGTKKSSIEEEKSQSQVAIKTLRRLGASNNPSGLPRKKDIGEK STIGFPTMRQVSVSDTLLTNEILVMRRIVENVSPHPNVIDLYDVYEDTNGVHLVLELCSGGELFDRIVAQ DKYSETEAATVVHQIASGLEAVHRANIVHRDLKPENCLFLDVRKDSPLKIMDFGLSSVEEFTDPVVGLFG SIDYVSPEALSQGKITIKSDMWSLGVILYILLSGYPPFIAQNNRQKQQMIMNGNFSFYEK[D]WKGISQPAK NLISSLLTVDPSKRPSALELLSDPWVKGEKAKDVQMDPEIVSRLQSFNARRKLRAAAIASVWSSTIFLRT KKLKSLVGSYDLKEEEIENLRMHFKKICADRDNATLSEFEEVLKAMNMLSLIPFASRIFDLFDNNRDGTV DMREILCGFSSLKNSKGEDALRLCFQMYDTDRSGCISKEEVASMLRALPYDCLPTDITEPGKLDEIFDLM DANNDGKVTFDEFKAAMQRDSSLQDVVLSSIRP SEQ ID NO: 35 amino acid sequence of DMI3 phosphomimic 2 MGYGTRKLSDEYEVSEILGRGGFSVVRKGTKKSSIEEEKSQSQVAIKTLRRLGASNNPSGLPRKKDIGEK STIGFPTMRQVSVSDTLLTNEILVMRRIVENVSPHPNVIDLYDVYEDTNGVHLVLELCSGGELFDRIVAQ DKYSETEAATVVHQIASGLEAVHRANIVHRDLKPENCLFLDVRKDSPLKIMDFGLSSVEEFTDPVVGLFG SIDYVSPEALSQGKITTKSDMWSLGVILYILLSGYPPFIAQNNRQKQQMIMNGNFSFYEK[I]WKGISQPAK NLISSLLTVDPSKRPSALELLSDPWVKGEKAKDVQMDPEIVSRLQSFNARRKLRAAAIASVWSSTIFLRT KKLKSLVGSYDLKEEEIENLRMHFKKICADRDNATLSEFEEVLKAMNMLSLIPFASRIFDLFDNNRDGTV DMREILCGFSSLKNSKGEDALRLCFQMYDTDRSGCISKEEVASMLRALPYDCLPTDITEPGKLDEIFDLM DANNDGKVTFDEFKAAMQRDSSLQDVVLSSIRP SEQ ID NO: 36 Medicago truncatula IFS >AY939826.1 Medicago truncatula isoflavone synthase 1 mRNA, complete cds ATGTTGGTGGAACTTGCAGTTACTCTATTGCTCATTGCTCTCTTCTTACACTTGCGTCCAACACCTACTG CAAAATCAAAGGCTCTTCGCCACCTTCCAAATCCACCAAGCCCTAAACCACGTCTTCCATTCATAGGTCA TCTTCACCTTTTGGATAACCCACTTCTTCACCACACTCTTATCAAGTTAGGAAAGCGTTATGGCCCTTTG TACACTCTTTACTTTGGTTCCATGCCTACCGTTGTTGCATCCACTCCTGACTTGTTTAAACTTTTCCTTC AAACCCATGAAGCTACTTCCTTTAACACAAGATTCCAAACCTCTGCTATTAGTCGTCTTACCTATGACAA CTCTGTTGCTATGGTTCCATTTGCACCTTATTGGAAGTTTATTAGAAAGCTTATCATGAACGACTTGCTC AACGCCACCACTGTTAACAAATTGAGGCCATTGAGGAGCCGAGAAATCCTTAAGGTTCTTAAGGTCATGG CTAATAGTGCTGAAACTCAACAGCCACTTGATGTCACTGAGGAGCTTCTCAAGTGGACAAACAGCACAAT CTCTACCATGATGTTGGGTGAGGCCGAAGAGGTTAGAGATATTGCTCGTGATGTTCTTAAGATCTTTGGA GAATATAGTGTTACAAACTTTATTTGGCCTTTGAACAAGTTTAAGTTTGGAAACTATGATAAGAGAACTG AGGAGATTTTCAATAAGTATGATCCTATCATTGAAAAGGTTATCAAGAAACGACAAGAGATTGTGAACAA AAGAAAAAATGGAGAAATCGTAGAAGGCGAGCAGAATGTTGTTTTTCTTGACACTTTGCTTGAATTTGCA CAAGATGAGACCATGGAGATCAAAATTACAAAGGAACAAATCAAGGGTCTTGTTGTGGATTTTTTCTCTG CAGGAACAGACTCCACCGCCGTGTCTACAGAATGGACTTTATCAGAGCTCATCAATAATCCTAGAGTGTT GAAGAAAGCTCGAGAGGAGATTGACTCTGTTGTGGGAAAAGATAGACTGGTTGATGAATCAGATGTTCAG AATCTTCCTTACATTAAAGCCATCGTAAAAGAAGCATTTCGCTTGCACCCACCACTACCTGTAGTCAAAA GAAAATGTACACAAGAATGTGAGATCGACGGGTATGTGGTTCCAGAAGGAGCACTAATACTTTTCAATGT CTGGGCAGTGGGAAGAGACCCAAAATATTGGGTAAAGCCATTGGAATTTCGTCCAGAGAGGTTCATAGAA AATGTTGGTGAAGGTGAAGCAGCTTCAATTGATCTTAGGGGTCAACATTTCACACTTCTACCATTTGGGT CTGGAAGAAGGATGTGTCCTGGAGTCAATTTGGCTACTGCAGGAATGGCCACAATGATTGCATCTATTAT CCAATGCTTCGATCTCCAAGTACCTGGTCAACATGGAGAAATATTGAATGGTGATTATGCTAAGGTTAGC ATGGAAGAGAGACCTGGTCTCACAGTTCCAAGGGCACATAATCTCATGTGTGTTCCTCTTGCAAGAGCTG GTGTCGCAGATAAACTTCTTTCCTCCTAA SEQ ID NO: 37 Lotus japonicus IFS >AB279984.1 Lotus japonicus IFS2 mRNA for 2-hydroxyisoflavanone synthase, complete cds ATGTTGGTGGAACTTGCATTAGCATTACTGGCCATAGCTCTGTTCTTACATTTACGTCCCACACCAACTG CCAAATCCAAGGCCCTTCGTCACCTTCCAAACCCTCCAAGTCCCAAGCCTCGTCTTCCATTCGTTGGACA CCTTCACCTTTTGGACCAACCACTTCTCCACCACTCCCTCATCAAACTCGGCGAGCGATATGGGCCTTTG TACTCTCTCTATTTTGGATCCATGCCCACCGTTGTTGCCTCAACCCCTGAACTCTTCAAACTCTTCCTTC AGACCCATGAGGCCTCTTCCTTCAACACAAGGTTCCAAACCTCTGCCATTAGGCGCCTCACCTATGACAA CTCTGTTGCCATGGTCCCTTTTGCTCCTTATTGGAAGTTCATCAGGAAGATCATCATGAACGACCTCCTC AACGCCACCACCGTCAACAAGTTGAGGCCTTTGAGGAGCCAAGAGATTCGTAAGGTTCTGAAGGCTATGG CACATAGTGCGGAATCTCAACAACCCCTTAATGTCACTGAGGAGCTTCTCAAGTGGACAAACAACACCAT CTCTCGAATGATGTTGGGGGAGGCTGAAGAGGTCAGAGATATTGCTCGTGAGGTGCTTAAGATCTTCGGG GAATATAGTCTCACAGACTTCATTTGGCCATTGAAGAAGCTCAAGGTTGGACAGTATGAAAAGAGAATAG ATGAGATATTTAACAAATTCGACCCCGTCATTGAGAAGGTCATCAAGAAACGCCAAGAGATAATAAAGAG GAGAAAAGAGAGAGATGGAGAACTTGAGGAGGGTGAGCAAAGTGTAGTTTTCCTCGATACTTTGCTTGAA TTTGCTGAAGATGAGACCATGGAAATCAAAATCACAAAGGAACAAATTAAGGGTCTTGTAGTGGATTTCT TCTCTGCAGGGACAGATTCGACAGCTGTGGCAACAGACTGGGCTCTATCAGAGCTCATCAACAACCCGAG GGTGCTGAAGAAAGCAAGAGAGGAAGTTGAAAGTGTTGTTGGAAAAGATAGACTTGTTGATGAAGCAGAT ATTCAAAATCTTCCATACATTAGAGCCATCGTGAAGGAGACATTCCGCATGCATCCTCCACTCCCTGTTG TTAAGAGAAAGTGTGTACAAGAATGTGAGCTCAACGGTTACGTGATCCCAGAGGGAGCACTGATACTCTT CAACGTGTGGGCCGTGCAAAGAGATCCCAAATACTGGGAGGGCCCATCCGAATTCCGTCCTGAGAGGTTT TTAACTGCTGAAGGGGGAGCAACCTCCATTGATCTTAGAGGCCAGAATTTCGAGCTTCTCCCATTTGGGT CTGGAAGGAGGATGTGTCCAGGTGTGAATTTGGCAACTGCAGGAATGGCCACATTGCTTGCATCTGTTAT CCAATGCTTTGATTTACAGGTTGTGGGTCAAAAGGGCAAATTATTGAAAGGAAGTGATGCCAAAGTTAGC ATGGAAGAGAGTCCTGGTCTCACTGTTCCAAGGGCACATAATCTGATGTGCGTTCCACTTGCAAGAACCA ACGTCACATCTGAACTCCTTTCCTCATAA SEQ ID NO: 38 Glycine max IFS >EU391490.1 Glycine max isolate C_HC24IFS1 isoflavone synthase 1 (ifs1) gene, complete cds ATGTGTTTCTGGGGTTATTGCCTCTTGAGTTCAATTGCAACTTGTTAAGCAAATCAGCCGGCTTAAGACC TAAGCAACACAAGCAAGGGCTTTAGGTTTCAAAAAAAGGTTTCAATTTTTTTTAATATTAATATATCTCA AAAAAATTATTGTAAAATTATATTTGAAAATAAGTTTTAATTAAAATATTATAACTAACCGTTAATCTTT TTATTGGTATTATAAATAATAATCAATGAGCAACAATTCTTCACCGACATCATATCTTTGTTTTAAAAAA ATAATAATTTTAATAAATTATTTGATGAATAAATAAAAGATTTTATTCTTAAATTTATTTTAAATCTCTT TGCGTCCTTGAAAAGTCCATGATACAGGATGAGATATTTGACTATTTGACTAGAAACGTAGTAGGTGATA TATGGACATTTCCTGGTTTATTTTATATTCTTAAAAAATAACAATTCAATCGAATGTAGTTGCCAAATTT TAATAAATAAATAAAAAGAAGCATTCATCGAATTCTTCGTCTTTTATGAGTGTAAAACAAAACATTGAAT TAGGAACAATTATTATCACGTTACTTAAAATAAAATATACTAAAACCGTTGAATGAAATCTTCATATTTG ATAAGTGTAGGTAGACCCACAACACAAACATTGAATAGAATAAATTTCCCCGTACAGTGTCGTCCACTAT GTGGCTATAAAATGGAAGCATTGAAGGTTGTTTCCTCAGGCCAAGATCTTGGATAGTAATTAACCTCACT CAAACTCGGGATCACAGAAACCAACAACAGTTCTTGCACTGAGGTTTCACGATGTTGCTGGAACTTGCAC TTGGTTTGTTTGTGTTAGCTTTGTTTCTGCACTTGCGTCCCACACCAAGTGCAAAATCAAAAGCACTTCG CCACCTCCCAAACCCTCCAAGCCCAAAGCCTCGTCTTCCCTTCATTGGCCACCTTCACCTCTTAAAAGAT AAACTTCTCCACTATGCACTCATCGATCTCTCCAAAAAGCATGGCCCCTTATTCTCTCTCTCCTTCGGCT CCATGCCAACCGTCGTTGCCTCCACCCCTGAGTTGTTCAAGCTCTTCCTCCAAACCCACGAGGCAACTTC CTTCAACACAAGGTTCCAAACCTCTGCCATAAGACGCCTCACTTACGACAACTCTGTGGCCATGGTTCCA TTCGGACCTTACTGGAAGTTCGTGAGGAAGCTCATCATGAACGACCTTCTCAACGCCACCACCGTCAACA AGCTCAGGCCTTTGAGGACCCAACAGATCCGCAAGTTCCTTAGGGTTATGGCCCAAAGCGCAGAGGCCCA GAAGCCCCTTGACGTCACCGAGGAGCTTCTCAAATGGACCAACAGCACCATCTCCATGATGATGCTCGGC GAGGCTGAGGAGATCAGAGACATCGCTCGCGAGGTTCTTAAGATCTTCGGCGAATACAGCCTCACTGACT TCATCTGGCCTTTGAAGTATCTCAAGGTTGGAAAGTATGAGAAGAGGATTGATGACATCTTGAACAAGTT CGACCCTGTCGTTGAAAGGGTCATCAAGAAGCGCCGTGAGATCGTCAGAAGGAGAAAGAACGGAGAAGTT GTTGAGGGCGAGGCCAGCGGCGTCTTCCTCGACACTTTGCTTGAATTCGCTGAGGACGAGACCATGGAGA TCAAAATTACCAAGGAGCAAATCAAGGGCCTTGTTGTCGTAAGTTTCCTTCTTCTCTCCTACTTTATTAC TTTCTTTCATTCATCATATGTATTGGCATTAAATAGTATACTATATGAGAAAATATGTTACGCACTCACG GTGTAAAGATATGTGGTGTTTTTTTAAAAAGAGATACAGAAGTTGCTTTTATGCATGTATGTTAACGTAT ATTTACTCAAGTGGAAACTAATTAATTCTCAATTTTGGGTATGTAGGACTTTTTCTCTGCAGGGACAGAT TCCACTGCGGTGGCAACAGAGTGGGCATTGGCAGAGCTCATCAACAATCCCAGGGTGTTGCAAAAGGCTC GTGAGGAGGTCTACAGTGTTGTGGGCAAAGATAGACTCGTTGACGAAGTTGACACTCAAAACCTTCCTTA CATTAGGGCCATTGTGAAGGAGACATTCCGAATGCACCCACCACTCCCAGTGGTCAAAAGAAAGTGCACA GAAGAGTGTGAGATTAATGGGTATGTGATCCCAGAGGGAGCATTGGTTCTTTTCAATGTTTGGCAAGTAG GAAGGGACCCCAAATACTGGGACAGACCATCAGAATTCCGTCCCGAGAGGTTCTTAGAAACTGGTGCTGA AGGGGAAGCAGGGCCTCTTGATCTTAGGGGCCAGCATTTCCAACTCCTCCCATTTGGGTCTGGGAGGAGA ATGTGCCCTGGTGTCAATTTGGCTACTTCAGGAATGGCAACACTTCTTGCATCTCTTATCCAATGCTTTG ACCTGCAAGTGCTGGGCCCTCAAGGACAAATATTGAAAGGTGATGATGCCAAAGTTAGCATGGAAGAGAG AGCTGGCCTCACGGTTCCAAGGGCACATAGTCTCGTTTGTGTTCCACTTGCAAGGATCGGCGTTGCATCT AAACTCCTTTCTTAATTAAGATAATCATCATATACAATAGTAGTGTCTTGCCATCGCAGTTGCTTTTTAT GTATTCATAATCATCATTTCAATAAGGTGTGACTGGTACTTAATCAAGTAATTAAGGTTACAT SEQ ID NO: 39 Trifolium pratense IFS >AF195811.1 Trifolium pratense isoflavone synthase 2 (ifs2) mRNA, complete cds ATGTTGCTGGAACTTGCACTTGGTTTATTGGTTTTGGCTCTGTTTCTGCACTTGCGTCCCACACCCACTG CAAAATCAAAAGCACTTCGCCATCTCCCAAACCCACCAAGCCCAAAGCCTCGTCTTCCCTTCATAGGACA CCTTCATCTCTTAAAAGACAAACTTCTCCACTACGCACTCATCGACCTCTCCAAAAAACATGGTCCCTTA TTCTCTCTCTACTTTGGCTCCATGCCAACCGTTGTTGCCTCCACACCAGAATTGTTCAAGCTCTTCCTCC AAACGCACGAGGCAACTTCCTTCAACACAAGGTTCCAAACCTCAGCCATAAGACGCCTCACCTATGATAG CTCAGTGGCCATGGTTCCCTTCGGACCTTACTGGAAGTTCGTGAGGAAGCTCATCATGAACGACCTTCTC AACGCCACCACTGTAAACAAGTTGAGGCCTTTGAGGACCCAACAGATCCGCAAGTTCCTTAGGGTTATGG CCCAAGGCGCAGAGGCACAGAAGCCCCTTGACTTGACCGAGGAGCTTCTGAAATGGACCAACAGCACCAT CTCCATGATGATGCTCGGCGAGGCTGAGGAGATCAGAGACATCGCTCGCGAGGTTCTTAAGATCTTTGGC GAATACAGCCTCACTGACTTCATCTGGCCATTGAAGCATCTCAAGGTTGGAAAGTATGAGAAGAGGATCG ACGACATCTTGAACAAGTTCGACCCTGTCGTTGAAAGAGTCATCAAGAAGCGCCGTGAGATCGTGAGGAG GAGAAAGAACGGAGAGGTTGTTGAGGGTGAGGTCAGCGGGGTTTTCCTTGACACTTTGCTTGAATTCGCT GAGGATGAGACCACGGAGATCAAAATCACCAAGGACCACATCAAGGGTCTTGTTGTCGACTTTTTCTCGG CAGGAACAGACTCCACAGCGGTGGCAACAGAGTGGGCATTGGCAGAACTCATCAACAATCCTAAGGTGTT GGAAAAGGCTCGTGAGGAGGTCTACAGTGTTGTGGGAAAGGACAGACTTGTGGACGAAGTTGACACTCAA AACCTTCCTTACATTAGAGCAATCGTGAAGGAGACATTCCGCATGCACCCGCCACTCCCAGTGGTCAAAA GAAAGTGCACAGAAGAGTGTGAGATTAATGGATATGTGATCCCAGAGGGAGCATTGATTCTCTTCAATGT ATGGCAAGTAGGAAGAGACCCCAAATACTGGGACAGACCATCGGAGTTCCGTCCTGAGAGGTTCCTAGAG ACAGGGGCTGAAGGGGAAGCAAGGCCTCTTGATCTTAGGGGACAACATTTTCAACTTCTCCCATTTGGGT CTGGGAGGAGAATGTGCCCTGGAGTCAATCTGGCTACTTCGGGAATGGCAACACTTCTTGCATCTCTTAT TCAGTGCTTTGACTTGCAAGTGCTGGGTCCACAAGGACAGATATTGAAGGGTGGTGACGCCAAAGTTAGC ATGGAAGAGAGGGCCGGCCTCACTGTTCCAAGGGCACATAGTCTTGTCTGTGTTCCACTTGCAAGGATCG GCGTTGCATCTAAACTCCTTTCTTAA SEQ ID NO: 40 Pisum sativum IFS >AF195812.1 Pisum sativum isoflavone synthase 1 (ifs1) mRNA, partial cds ATGTTGCTGGAACTTGCACTTGGTTTGTTTGTGTTAGCTTTGTTTCTGCACTTGCGTCCCACACCAAGCG CAAAATCAAAAGCACTTCGCCACCTCCCAAACCCTCCAAGCCCAAAGCCTCGTCTTCCCTTCATTGGCCA CCTTCACCTCTTAAAAGATAAACTTCTCCACTATGCACTCATCGATCTCTCCAAAAAGCATGGCCCCTTA TTCTCTCTCTCCTTCGGCTCCATGCCAACCGTCGTTGCCTCCACCCCTGAGTTGTTCAAGCTCTTCCTCC AAGCCCACGAGGCAACTTCCTTCAGCACAAGGTTCCAAACCTCTGCCGTAAGACGCCTCACTTACGACAA CTCTGTGGCCATGGTTCCATTCGGACCTTACTGGAAGTTCGTGAGGAAGCTCATCATGAACGACCTTCTC AACGCCACCACCGTCAACGAGCTCAGGCCTTTGAGGACCCAACAGATCCGCAAGTTCCTTAGGGTTATGG CCCAAAGCGCAGAGGCCCAGAAGCCCCTTGACGTCACCGAGGAGCTTCTCAAATGGACCAACAGCACCAT CTCCATGATGATGCTCGGCGAGGCTGAGGAGATCAGAGACATCGCTCGCGAGGTCCTTAAGATCTTCGGC GAATACAGCCTCACTGACTTCATCTGGCCTTTGAAGTATCTCAAGGTTGGAAAGTATGAGAAGAGGATTG ATGACATCTTGAACAAGTTCGACCCTGTCGTTGAAAGGGTCATCAAGAAGCGCCGTGAGATCGTCAGAAG GAGAAAGAACGGAGAAGTTGTTGAGGGCGAGGCCAGCGGCGTCTTCCTCGACACTTTGCTTGAATTCGCT GAGGACGAGACCATGGAGATCAAAATTACCAAGGAGCAAATCAAGGGCCTTGTTGTCGACTTTTTCTCTG CAGGGACAGATTCCACAGCGGTGGCAACAGAGTGGGCATTGGCAGAGCTCATCAACAATCCCAGGGTGTT GCAAAAGGCTCGTGAGGAGGTCTACAGTGTTGTGGGCAAAGATAGACTCGTTGACGAAGTCGACACTCAA AACCTTCCTTACATTAGGGCCATTGTGAAGGAGACATTCCGAATGCACCCACCACTCCCAGTGGTCAAAA GAAAGTGCACAGAAGAGTGTGAGATTAATGGGTATGTGATCCCAGAGGGAGCATTGGTTCTTTTCAATGT TTGGCAAGTAGGAAAGGACCCCAAATACTGGGACAGACCATCAGAATTCCGTCCCGAGAGGTTCTTAGAA ACTGGCGCTGAAGGGGAAGCAGGGCCTCTTGATCTTAGGGGCCAGCATTTCCAACTCCTCCCATTTGGGT CTGGGAGGAGAATGTGCCCTGGTGTCAATTTGGCTACTTCAGGAATGGCAACACTTCTTGCATCTCTTAT CCAATGCTTTGACCTGCAAGTGCTGGGCCCTCAAGGACAAATATTGAAAGGTGACGATGCCAAAGTTAGC ATGGAAGAGAGAGCTGGCCTCACCGTTCCAAGGGCACATAGTCTCGTTTGTGTTCCACTTGCAAGGATCG GCGTTGCATCTAAACTCCTTTCT SEQ ID NO: 41 Beta vulgaris IFS >AF195816.1 Beta vulgaris isoflavone synthase 1 (ifs1) mRNA, partial cds TCTGCACTTGCGTCCCACACCCACTGCAAAATCAAAAGCACTTCGCCATCTCCCAAACCCACCAAGCCCA AAGCCTCGTCTTCCCTTCATAGGACACCTTCATCTCTTAAAAGACAAACTTCTCCACTACGCACTCATCG ACCTCTCCAAAAAACATGGTCCCTTATTCTCTCACTACTTTGGCTCCATGCCAACCGTTGTTGCCTCCAC
ACCAGAATTGTTCAAGCTCTTCCTCCAAACGAACGAGGCAACTTCCTTCAACACAAGGTTCCAAACCTCA GCCATAAGACGCCTCACCTATGATAGCTCAGTGGCCATGGTTCCCTTCGGACCTTACTGGAAGTTCGTGA GGAAGCTCATCATGAACGACCTTCTCAACGCCACCACTGTAAACAAGTTGAGGCCTTTGAGGACCCAACA GATCCGCAAGTTCCTTAGGGCTATGGCCCAAGGCGCAGAGGCACGGAAGCCCCTTGACTTGACCGAGGAG CTTCTGAAATGGGCCAACAGCACCATCTCCATGATGATGCTCGGCGAGGCTGAGGAGATCAGAGACATCG CTCGCGAGGTTCTTAAGATCTTTGGCGAATACAGCCTCACTGACTTCATCTGGCCATTGAAGCATCTCAA GGTTGGAAAGTATGAGAAGAGGATCGACGACATCTTGAACAAGTTCGACCCTGTCGTTGAAAGAGTCATC AAGAAGCGCCGTGAGATCGTGAGGAGGAGAAAGAACGGAGAGGTTGTTGAGGGTGAGGTCAGCGGGGTTT TCCTTGACACTTTGCTTGAATTCGCTGAGGATGAGACCATGGAGATCAAAATCACCAAGGACCACACCAA GGGTCTTGTTGTCGACTTCTTCTCGGCAGGAACAGACTCCACAGCGGTGGCAACAGAGTGGGCATTGGCA GAACTCATCAACAATCCTAAGGTGTTGGAAAAGGCTCGTGAGGAGGTCTACAGTGTTGTGGGAAAGGACA GACTTGTGGACGAAGTTGACACTCAAAACCTTCCTTACATTAGAGCAATCGTGAAGGAGACATTCCGCAT GCACCCGCCACTCCCAGTGGTCAAAAGAAAGTGCACAGAAGAGTGTGAGATTAATGGATATGTGATCCCA GAGGGAGCATTGATTCCCTTCAATGTATGGCAAGTAGGAAGAGACCCCAAATACTGGGACAGACCATCGG AGTTCCGTCCTGAGAGGTTCCTAGAGACAGGGGCTGAAGGGGAAGCAAGGCCTCTTGATCTTAGGGGACA ACATTTTCAACTTCTCCCATTTGGGTCTGGGAGGAGAATGTGCCCTGGAGTCAATCTGGCTACTTCGGGA ACGGCAACACTTCTTGCATCTCTTATTCAGTGCTTTGACTTGCAAGTGCTGGGTCCACAGGGACAGATAT TGAAGGGTGGTGACGCCAAAGTTAGCATGGAAGAGAGAGCCGGCCTCACTGTTCCAAGGGCACATAGTCT TGTCTGTGTTCCACTTGCAAGGATCGG SEQ ID NO: 42 Vicia villosa IFS >AF195803.1 Vicia villosa isoflavone synthase 1 (ifs1) mRNA, partial cds TGTTTCTGCACTTGCGTCCCACACCCACTGCAAAATCAAAAGCACTTCGCCATCTCCCAAACCCACCAAG CCCAAAGCCTCGTCTTCCCTTCATAGGACACCTTCATCTCTTAAAAGACAAACTTCTCCACTACGCACTC ATCGACCTCTCCAAAAAACATGGTCCCTTATTCTCTCTCTACTTTGGCTCCATGCCAACCGTTGTTGCCT CCACACCAGAATTGTTCAAGCTCTTCCTCCAAACGCACGAGGCAACTTCCTTCAACACAAGGTTCCAAAC CTCAGCCATAAGACGCCTCACCTATGATAGCTTAGTGGCCATGGTTCCCTTCGGACCTTACTGGAAGTTC GTGAGGAAGCTCATCATGAACGACCTTCTCAACGCCACCACTGTAAACAAGTTGAGGCCTTTGAGGACCC AACAGATCCGCAAGTTCCTTAGGGTTATGGCCCAAGGCGCAGAGGCACAGAAGCCCCTTGACTTGACCGA GGAGCTTCTGAAATGGACCAACAGCACCATCTCTATGATGATGCTCGGCGAGGCTGAGGAGATCAGAGAC ATCGCTCGCGAGGTTCTTAAGATCTATGGCGAATACAGCCTCACTGACTTCATCTGGCCATTGAAGCATC TCAAGGTTGGAAAGTATGAGAAGAGGATCGACGACATCTTGAACAAGTTCGACCCTGTCGTTGAAAGAGT CATCAAGAAGCGCCGTGAGATCGTGAGGAGGAGAAAGAACGGAGAGGTTGTTGAGGGTGAGGTCAGCGGG GTTTTCCTTGACACTTTGCTTGAATTCGCTGAGGATGAGACCACGGAGATCAAAATCACCAAGGACCACA TCAAGGGTCTTGTTGTCGACTTTTTCTCGGCAGGAATAGACTCCACAGCGGTGGCAACAGAGTGGGCATT GGCAGAACTCATCAACAATCCTAAGGTGTTGGAAAAGGCTCGTGAGGAGGTCTACAGTGTTGTGGGAAAG GACAGACTTGTGGACGAAGTTGACACTCAAAACCTTCCTTACATTAGAGCAATCGTGAAGGAGACATTCC GCATGCACCCGCCACTCCCAGTGGTCAAAAGAAAGTGCACAGAAGAGTGTGAGATTAATGGATATGTGAT CCCAGAGGGAGCATTGATTCTCTTCAATGTATGGCAAGTAGGAAGGGACCCCAAATACTGGGACAGACCA TCGGAGTTCCGTCCTGAGAGGTTCCTAGAGACAGGGGCTGAAGGGGAAGCAAGGCCTCTTGATCTTAGGG GACAACATTTTCAACTTCTCCCATTTGGGTCTGGGAGGGGAATGTGCCCTGGAGTCAATCTGGCTACTTC GGGAATGGCAACACTTCTTGCATCTCTTATTCAGTGCTTTGACTTGCAAGTGCTGGGTCCACAAGGACAG ATATTGAAGGGTGGTGACGCCAAAGTTAGCATGGAAGAGAGGGCCGGCCTCACTGTTCCAAGGGCACATA GTCTTGTCTGTGTTCCACTTGCAAGGATCGG SEQ ID NO: 43 Caragana arborescens IFS >JF912331.1 Caragana arborescens isoflavone synthase (IFS) mRNA, complete cds AAGATCAAAGAAACACAAAACAAACACCATGTTGGTGGAACTAGCAATTACTCTATTAGTGATAGCTCTG TTCCTACACCTTCGTCCCACACCTTCTGCAAAATCAAAAGCCCTTCGCCACCTTCCAAACCCACCGAGTC CAAAACCTCGTCTTCCTTTCATAGGTCACCTTCACCTTTTAGACAAACCTCTTCTCCACCAGTCCCTCAT CCGTCTCAGCGAACGCTATGGCCCCTTATACTCTCTCTACTTTGGTTCCATGCCTACCGTTGTTGCCTCC ACCCCTGAATTGTTCAAACTCTTCCTTCAAACCCACGAGGCTTCTTCCTTCAACACCAGGTTCCAAACCT CTGCCATCAGACGCCTTACCTACGATAACTCCGTTGCCATGGTTCCCTTTGGACCTTACTGGAAGTTCAT CAGAAAGCTCATCATGAACGACCTTCTAAACGCCACAACCGTCAACAAGTTGAGACCCTTGAGGAGCCAG GAAATCCGTAAGCTTCTTAAGGTGATGGCACAGAGCGCGGAAACTCAACAGCCACTTAATGTCACCGAGG AGCTTCTCAAGTGGACCAACAGCACCATCTCTAGGATGATGTTGGGTGAGGCTGAAGAGATTAGAGACAT TGCTCGTGATGTGCTTAAGATCTTTGGAGAGTATAGTCTTACGGATTTCATTTGGCCATTGAAGAAACTC AAGGTTGGACAGTATGAGAAGAGAATAGATGATATTTTCAACAGGTTTGACCCTGTCATTGAAAAGGTCA TCAAGAAACGCCAGGAGATTAGGAAGAGAAGAAAGGAGAGAAATGGTGAACTTGAAGAGGGTGAGCAGAG TGTTGTTTTTCTTGATACTTTGCTTGATTTTGCTGAGGAYGAGACCATGGAGATCAAAATTACCAAGGAA CAAATCAAGGGTCTTATTGTGGATTTCTTCTCAGCAGGGACAGATTCAACGGCAGTGGCAACAGACTATG CTTTGTCAGAGCTAATCAACAACCCCAGGGTGTTGCAAAAAGCGCGAGAGGAAGTCGATAGTGTTGTGGG AAAAGATAGACTGGTTGACGAATCAGATGTTCAAAACCTTCCTTTCATTAGAGCAATCGTGAAGGAGACA TTCCGTATGCACCCGCCACTACCCGTTGTGAAAAGAAAATGTACACAAGAGTGTGAGATAGACGGTTTTG TGATCCCAGAGGGAGCATTGATACTTTTCAATGTTTGGGCTGTTGGAAGAGACCCAAAGTACTGGGAAAG GCCCTCGGAATTTCGTCCTGAGAGGTTCTTACAAAATGCTGGTGAAGGGGAAGTAGGTTCAATTGATCTT AGGGGCCAACATTTCCAACTTTTGCCATTTGGGTCTGGTAGGAGAATGTGCCCTGGAGTCAATTTGGCTA CTGCAGGAATGGCTACACTTCTTGCATCTGTTATTCAGTGCTTTGACCTGCAAGTACCGGGCCCACAAGG AGAACTATTGAAAGGTGATGATGCCAAGGTTAGCATGGAAGAGAGACCTGGTCTTACAGTTCCAAGGGCG AATAATCTCATGTGTGTTCCTCTTGCTAGAGCAGGTGTTGCAGCTAAACTTCTTTCCTCCTAAAAACACA GTACAACACAGCACAACCACAAGAATGTTGCTATGGATGGTGTTTTTTTATATTTGTAGTAATAATCATT TTCAATAAGGTATCATTGAGAGACAATGAGTCCAAGTTCCCCCGGCACATGGGCTGCTGGAAGAGTCACA TATATATTTATCGTCTCAATTAAACTCTCTTTGATGTAATTTTCATCTTTGTTTTTTCTTTTTCCTTTTT GTCACCGAAGAAGTGTTGTACTTGTAACAGCTTATATCTATAATTTTTACGAAAAAAAAAAAAAAAAAAA AAAAAAAAA SEQ ID NO: 44 Vigna unguiculata IFS >EU616499.1 Vigna unguiculata isoflavone synthase 1 mRNA, complete cds AGGCCAAAATCTTGGTGTCACATAGCCTCAAGCTCGGGATCTCACAAAAACAAAGGTCAAGCAAACACAT ACACAACCATGTTGCTCGAAATTACAATTGGTTTGTTGGTGCTGGCTTTGTTTTTGCACTTGCGTCCCAC ACCCACTGCTAAATCAAAGGCCCTTCGCCACCTTCCAAACCCTCCTAGTCCAAAACCTCGTCTTCCATTC ATTGGTCACCTTCACCTTCTAAAAGACAAACTTCTCCACTATGCCCTCATAGATTTATCCAAAACCTATG GCCCTTTGTACTCTCTCTACTTTGGGTCTATGCCAACCGTTGTTGCCTCCTCCCCTGAGTTGTTCAAACT CTTCCTTCAAACCCACGAGGCTGCTTCCTTCAACACAAGGTTCCAAACCTCTGCCATTAGGCGCCTCACT TATGACAACTCAGTGGCCATGGTTCCCTTTGGACCTTACTGGAAGTTCATCAGGAAGCTCATCATGAACG ACCTCCTCAACGCCACCACCGTCAACAAGTTGAGGCCCCTCAGGACCCAACAGATCCGCAAGTTCCTCAA GGTCATGGCCCAAAGCGCACAGGCTCAGCAGCCCCTTAACGTCACCGAGGAGCTTCTCAAGTGGACCAAC AGCACTATCTCCATGATGATGTTGGGTGAGGCTGAAGAGATTAGAGATATCGCTCGTGAGGTGCTTAAGA TTTTCGGGGAGTACAGTCTCACTGACTTCATCTGGCCCTTGAAGAAGCTTAAGTTTGGACAGTACGAGAA GAGGATCGATGAAATATTCAACAAGTTCGACCCTGTCATCGAGAGGGTTATTAAGAAGCGCCGAGAGATC ATGAGAAGGAGAAAGAACGGAGAAGCCGTTGAGGAAGAGCAGAGCGGAGTCTTCCTCGACACTTTGCTTC AATTCGCTGAGGACGAGACCATGGAGATCAAAATTACCAAGGAGCAGATCAAGGGTCTTGTTGTCGACTT CTTCTCAGCAGGAACAGATTCCACAGCCGTGGCAACTGAGTGGGCTTTGGCAGAGCTGATCAACAACCCT AGGGTGTTGCAGAAGGCTCGGGAGGAGGTGTACAGTGTTGTGGGGAAAGATAGACTGGTTGATGAAGTTG ATACTCAAAACCTTCCTTACATCAGGGCGATTGTGAAGGAGACATTCCGCATGCACCCACCACTCCCAGT GGTGAAGAGAAAGTGTGTGGAGGAGTGTGAGATTGAGGGGTATGTGATCCCAGAGGGAGCATTGATACTT TTCAATGTGTGGGCTGTAGGAAGAGACCCTAAATACTGGGACAGACCATTGGAGTTTCGTCCTGAGAGAT TCCTAGAAACTGGAGCTGAAGGAGAAGCTGGGCCTCTTGATCTTAGGGGCCAACATTTCACTCTTCTCCC ATTTGGGTCAGGTAGAAGAATGTGCCCTGGAGTGAATTTGGCTACTTCAGGTATGGCAACACTTCTTGCA TCTGTTATCCAGTGCTTTGACCTTCAAGTGGTGGGCCCACAAGGACAAATATTGAAAGGCAATGACGCCA AAGTGAGCATGGAAGAGAGAGCTGGACTCACGGTTCCGAGGGCACATAATCTGGAGTGTGTTCCAGTTGC AAGGACAAGCGTTGCAGCTAAACTCCTTTCCTAGTTCACAACATATATACAACAACAGTGTCTTGCCACT CATGCTTTTGCTTTTGTGTGTTAATAATAATCGTTTCAATAAGGTGTCTTTGATAACGAAGTCAGACACA TTCACATGTAAAAAAAAAAA SEQ ID NO: 45 Medicago truncatula IFS >AAY18206.1 isoflavone synthase 1 [Medicago truncatula] MLVELAVTLLLIALFLHLRPTPTAKSKALRHLPNPPSPKPRLPFIGHLHLLDNPLLHHTLIKLGKRYGPL YTLYFGSMPTVVASTPDLFKLFLQTHEATSFNTRFQTSAISRLTYDNSVAMVPFAPYWKFIRKLIMNDLL NATTVNKLRPLRSREILKVLKVMANSAETQQPLDVTEELLKWTNSTISTMMLGEAEEVRDIARDVLKIFG EYSVTNFIWPLNKFKFGNYDKRTEEIFNKYDPIIEKVIKKRQEIVNKRKNGEIVEGEQNVVFLDTLLEFA QDETMEIKITKEQIKGLVVDFFSAGTDSTAVSTEWTLSELINNPRVLKKAREEIDSVVGKDRLVDESDVQ NLPYIKAIVKEAFRLHPPLPVVKRKCTQECEIDGYVVPEGALILFNVWAVGRDPKYWVKPLEFRPERFIE NVGEGEAASIDLRGQHFTLLPFGSGRRMCPGVNLATAGMATMIASITQCFDLQVPGQHGEILNGDYAKVS MEERPGLTVPRAHNLMCVPLARAGVADKLLSS SEQ ID NO: 46 Lotus japonicus IFS >BAF64284.1 2-hydroxyisoflavanone synthase [Lotus japonicus] MLVELALALLAIALFLHLRPTPTAKSKALRHLPNPPSPKPRLPFVGHLHLLDQPLLHHSLIKLGERYGPL YSLYFGSMPTVVASTPELFKLFLQTHEASSENTRFQTSAIRRLTYDNSVAMVPFAPYWKFIRKIIMNDLL NATTVNKLRPLRSQEIRKVLKAMAHSAESQQPLNVTEELLKWTNNTISRMMLGEAEEVRDIAREVLKIFG EYSLTDFIWPLKKLKVGQYEKRIDEIFNKFDPVIEKVIKKRQEIIKRRKERDGELEEGEQSVVFLDTLLE FAEDETMEIKITKEQIKGLVVDFFSAGTDSTAVATDWALSELINNPRVLKKAREEVESVVGKDRLVDEAD IQNLPYIRAIVKETFRMHPPLPVVKRKCVQECELNGYVIPEGALILFNVWAVQRDPKYWEGPSEFRPERF LTAEGGATSIDLRGQNFELLPFGSGRRMCPGVNLATAGMATLLASVIQCFDLQVVGQKGKLLKGSDAKVS MEESPGLTVPRAHNLMCVPLARTNVTSELLSS SEQ ID NO: 47 Glycine max IFS >ACA81489.1 isoflavone synthase 1 [Glycine max] MLLELALGLFVLALFLHLRPTPSAKSKALRHLPNPPSPKPRLPFIGHLHLLKDKLLHYALIDLSKKHGPL FSLSFGSMPTVVASTPELFKLFLQTHEATSFNTRFQTSAIRRLTYDNSVAMVPFGPYWKFVRKLIMNDLL NATTVNKLRPLRTQQIRKFLRVMAQSAEAQKPLDVTEELLKWTNSTISMMMLGEAEEIRDIAREVLKIFG EYSLTDFIWPLKYLKVGKYEKRIDDILNKFDPVVERVIKKRREIVRRRKNGEVVEGEASGVFLDTLLEFA EDETMEIKITKEQIKGLVVDFFSAGTDSTAVATEWALAELINNPRVLQKAREEVYSVVGKDRLVDEVDTQ NLPYIRAIVKETFRMHPPLPVVKRKCTEECEINGYVIPEGALVLFNVWQVGRDPKYWDRPSEFRPERFLE TGAEGEAGPLDLRGQHFQLLPFGSGRRMCPGVNLATSGMATLLASLIQCFDLQVLGPQGQILKGDDAKVS MEERAGLTVPRAHSLVCVPLARIGVASKLLS SEQ ID NO: 48 Trifolium pratense IFS >AAF34532.1 isoflavone synthase 2 [Trifolium pratense] MLLELALGLLVLALFLHLRPTPTAKSKALRHLPNPPSPKPRLPFIGHLHLLKDKLLHYALIDLSKKHGPL FSLYFGSMPTVVASTPELFKLFLQTHEATSFNTRFQTSAIRRLTYDSSVAMVPFGPYWKFVRKLIMNDLL NATTVNKLRPLRTQQIRKFLRVMAQGAEAQKPLDLTEELLKWTNSTISMMMLGEAEEIRDIAREVLKIFG EYSLTDFIWPLKHLKVGKYEKRIDDILNKFDPVVERVIKKRREIVRRRKNGEVVEGEVSGVFLDTLLEFA EDETTEIKITKDHIKGLVVDFFSAGTDSTAVATEWALAELINNPKVLEKAREEVYSVVGKDRLVDEVDTQ NLPYIRAIVKETFRMHPPLPVVKRKCTEECEINGYVIPEGALILFNVWQVGRDPKYWDRPSEFRPERFLE TGAEGEARPLDLRGQHFQLLPFGSGRRMCPGVNLATSGMATLLASLIQCFDLQVLGPQGQILKGGDAKVS MEERAGLTVPRAHSLVCVPLARIGVASKLLS SEQ ID NO: 49 Pisum sativum IFS >AAF34533.1 isoflavone synthase 1, partial [Pisum sativum] MLLELALGLFVLALFLHLRPTPSAKSKALRHLPNPPSPKPRLPFIGHLHLLKDKLLHYALIDLSKKHGPL FSLSFGSMPTVVASTPELFKLFLQAHEATSFSTRFQTSAVRRLTYDNSVAMVPFGPYWKFVRKLIMNDLL NATTVNELRPLRTQQIRKFLRVMAQSAEAQKPLDVTEELLKWTNSTISMMMLGEAEEIRDIAREVLKIFG EYSLTDFIWPLKYLKVGKYEKRIDDILNKFDPVVERVIKKRREIVRRRKNGEVVEGEASGVFLDTLLEFA EDETMEIKITKEQIKGLVVDFFSAGTDSTAVATEWALAELINNPRVLQKAREEVYSVVGKDRLVDEVDTQ NLPYIRAIVKETFRMHPPLPVVKRKCTEECEINGYVIPEGALVLFNVWQVGKDPKYWDRPSEFRPERFLE TGAEGEAGPLDLRGQHFQLLPFGSGRRMCPGVNLATSGMATLLASLIQCFDLQVLGPQGQILKGDDAKVS MEERAGLTVPRAHSLVCVPLARIGVASKLLS SEQ ID NO: 50 Beta vulgaris IFS >AAF34537.1 isoflavone synthase 1, partial [Beta vulgaris] LHLRPTPTAKSKALRHLPNPPSPKPRLPFIGHLHLLKDKLLHYALIDLSKKHGPLFSHYFGSMPTVVAST PELFKLFLQTNEATSFNTRFQTSAIRRLTYDSSVAMVPFGPYWKFVRKLIMNDLLNATTVNKLRPLRTQQ IRKFLRAMAQGAEARKPLDLTEELLKWANSTISMMMLGEAEEIRDIAREVLKIFGEYSLTDFIWPLKHLK VGKYEKRIDDILNKFDPVVERVIKKRREIVRRRKNGEVVEGEVSGVFLDTLLEFAEDETMEIKITKDHTK GLVVDFFSAGTDSTAVATEWALAELINNPKVLEKAREEVYSVVGKDRLVDEVDTQNLPYIRAIVKETFRM HPPLPVVKRKCTEECEINGYVIPEGALIPFNVWQVGRDPKYWDRPSEFRPERFLETGAEGEARPLDLRGQ HFQLLPFGSGRRMCPGVNLATSGTATLLASLIQCFDLQVLGPQGQILKGGDAKVSMEERAGLTVPRAHSL VCVPLARIG SEQ ID NO: 51 Vicia villosa IFS >AAF34524.1 isoflavone synthase 1, partial [Vicia villosa] FLHLRPTPTAKSKALRHLPNPPSPKPRLPFIGHLHLLKDKLLHYALIDLSKKHGPLFSLYFGSMPTVVAS TPELFKLFLQTHEATSFNTRFQTSAIRRLTYDSLVAMVPFGPYWKFVRKLIMNDLLNATTVNKLRPLRTQ QIRKFLRVMAQGAEAQKPLDLTEELLKWTNSTISMMMLGEAEEIRDIAREVLKIYGEYSLTDFIWPLKHL KVGKYEKRIDDILNKFDPVVERVIKKRREIVRRRKNGEVVEGEVSGVFLDTLLEFAEDETTEIKITKDHI KGLVVDFFSAGIDSTAVATEWALAELINNPKVLEKAREEVYSVVGKDRLVDEVDTQNLPYIRAIVKETFR MHPPLPVVKRKCTEECEINGYVIPEGALILFNVWQVGRDPKYWDRPSEFRPERFLETGAEGEARPLDLRG QHFQLLPFGSGRGMCPGVNLATSGMATLLASLIQCFDLQVLGPQGQILKGGDAKVSMEERAGLTVPRAHS LVCVPLARIG SEQ ID NO: 52 Caragana arborescens IFS >AEQ39026.1 isoflavone synthase [Caragana arborescens] MLVELAITLLVIALFLHLRPTPSAKSKALRHLPNPPSPKPRLPFIGHLHLLDKPLLHQSLIRLSERYGPL YSLYFGSMPTVVASTPELFKLFLQTHEASSFNTRFQTSAIRRLTYDNSVAMVPFGPYWKFIRKLIMNDLL NATTVNKLRPLRSQEIRKVLKVMAQSAETQQPLNVTEELLKWTNSTISRMMLGEAEEIRDIARDVLKIFG EYSLTDFIWPLKKLKVGQYEKRIDDIFNRFDPVIEKVIKKRQEIRKRRKERNGELEEGEQSVVFLDTLLD FAEDETMEIKITKEQIKGLIVDFFSAGTDSTAVATDYALSELINNPRVLQKAREEVDSVVGKDRLVDESD VQNLPFIRAIVKETFRMHPPLPVVKRKCTQECEIDGFVIPEGALILFNVWAVGRDPKYWERPSEFRPERF LQNAGEGEVGSIDLRGQHFQLLPFGSGRRMCPGVNLATAGMATLLASVIQCFDLQVPGPQGELLKGDDAK VSMEERPGLTVPRANNLMCVPLARAGVAAKLLSS SEQ ID NO: 53 Vigna unguiculata IFS >ACC77196.1 isoflavone synthase 1 [Vigna unguiculata] MLLEITIGLLVLALFLHLRPTPTAKSKALRHLPNPPSPKPRLPFIGHLHLLKDKLLHYALIDLSKTYGPL YSLYFGSMPTVVASSPELFKLFLQTHEAASFNTRFQTSAIRRLTYDNSVAMVPFGPYWKFIRKLIMNDLL NATTVNKLRPLRTQQIRKFLKVMAQSAQAQQPLNVTEELLKWTNSTISMMMLGEAEEIRDIAREVLKIFG EYSLTDFIWPLKKLKFGQYEKRIDEIFNKFDPVIERVIKKRREIMRRRKNGEAVEEEQSGVFLDTLLQFA EDETMEIKITKEQIKGLVVDFFSAGTDSTAVATEWALAELINNPRVLQKAREEVYSVVGKDRLVDEVDTQ NLPYIRAIVKETFRMHPPLPVVKRKCVEECEIEGYVIPEGALILFNVWAVGRDPKYWDRPLEFRPERFLE TGAEGEAGPLDLRGQHFTLLPFGSGRRMCPGVNLATSGMATLLASVIQCFDLQVVGPQGQILKGNDAKVS MEERAGLTVPRAHNLECVPVARTSVAAKLLS SEQ ID NO: 54 Petroselinum crispum FS1 >AY230247.1 Petroselinum crispum flavone synthase I mRNA, complete cds CTCGCCCTTCAATGGCTCCTACAACAATAACCGCATTAGCCAAGGAGAAAACACTAAACTTGGACTTTGT GAGGGATGAAGACGAGCGTCCCAAAGTTGCTTACAATCAATTCAGCAATGAAATTCCCATTATTTCTTTA GCCGGTTTGGATGACGATTCTGATGGCAGGAGACCCGAGATATGTCGCAAAATAGTTAAGGCTTGTGAAG ACTGGGGAATTTTCCAAGTGGTTGATCATGGTATTGACAGCGGCTTGATTTCCGAGATGACTCGTCTTTC TCGTGAATTCTTTGCTTTGCCTGCTGAGGAAAAACTTGAGTATGATACAACTGGGGGAAAGAGAGGCGGC TTTACTATATCCACTGTTCTTCAGGGTGACGACGCTATGGATTGGCGTGAGTTCGTTACTTACTTTTCGT ACCCAATCAATGCTCGGGACTACTCAAGATGGCCTAAAAAGCCCGAAGGATGGAGATCAACCACGGAGGT TTATAGCGAGAAGTTAATGGTGCTAGGTGCCAAGTTACTGGAAGTGTTATCAGAGGCCATGGGGCTTGAG AAAGGGGATCTTACTAAGGCTTGTGTGGATATGGAACAGAAAGTGTTAATTAATTACTATCCCACGTGCC CCCAACCCGACTTGACACTTGGAGTCAGAAGGCATACGGATCCAGGTACTATTACCATTCTACTTCAGGA CATGGTTGGTGGGTTACAAGCCACCAGGGACGGTGGCAAAACTTGGATTACTGTTCAGCCTGTGGAGGGA GCTTTTGTTGTCAATTTGGGCGATCATGGTCATTATTTGAGCAATGGAAGGTTCAGGAATGCTGACCACC AAGCAGTAGTGAATTCAACCTCTAGGAGATTGTCAATTGCAACTTTCCAGAACCCGGCTCAGAATGCGAT AGTATATCCATTAAAGATCAGGGAGGGAGAGAAGGCAATTCTGGATGAGGCCATCACCTACGCTGAAATG TATAAGAAATGCATGACTAAACATATTGAGGTGGCTACTCGGAAGAAATTGGCCAAGGAGAAAAGGTTGC AAGACGAGAAAGCCAAGCTGGAGATGAAATCCAAGAGTGCAGATGAAAATTTAGCTTAGGCTTTGTGCAC TCTACCATCTACATTATGTTTTGCGAGTTTGTGCTCCCTGCATTAGTGAATGATGTCATTTGCGAGTTTG TGCTCTCTGCATTAGTGAATAATGTCATTGTTCAATTCCATGTCTAAACGCTGAATACTATGGAGTCATG GTACTCTTTGGTTAGAAATTCTTACAATGTCGTTCTTTTAGAGTCCTTAATAATAATAATTCTCGGAGTG TTTAATTATGTTTATTATGTGCTATAATCAATGGTGTGTGTTATTGGCAGAAG SEQ ID NO: 55 Cuminum cyminum FS1 >DQ683349.1 Cuminum cyminum flavone synthase I mRNA, complete cds ATGGCTCCAACAACAATTACTGCATTGGCCCAAGAGAAAACACTTAACTCTGATTTTGTCCGGGATGAAG ATGAGCGCCCCAAAGTTGCCTACAATCAGTTCAGCACTGAGATTCCCATCATTTCTTTAGCTGGCATCGA TGATGATTCCAAAGGCAGGAGGCCTGAGGTGTGTAGAAAAATAGTTGAGGCCTTTGAAGACTGGGGCATT TTTCAGGTGGTTGATCACGGTGTTGACAGCGCTTTGATCTCCGAAATGTCTCGTCTGTCTCGTGAATTCT TCGCTTTGCCTGCTGAGGAAAAACTCCGGTATGATACCACTGGTGGAAAGAGAGGCGGCTTCACTATCTC CACTCATCAACAGGGTGACGACGTGCGGGACTGGCGTGAGTTTGTTACTTATTTTTCGTACCCAGTGGAT GCTCGGGACTACTCAAGATGGCCTGAGAAGCCAGAGGGATGGAGGTCAGTTACAGAGGTTTATAGTGAGA AGTTGATGGTTCTAGGTGCCAAGTTACTGGAAGTGTTATCAGAGGCCATGGGGCTTGACAAAGGGGCTCT TACAAAGGCTTGTGTGAATATGGAACAGAAAGTGCTAATTAATTACTATCCCACATGCCCCGAGCCAGAC TTGACACTTGGAGTCAGAAGGCATACGGATCCAGGTACTATTACCATTTTGCTTCAGGACATGGTTGGTG GGTTACAGGCCACGAGGGATGGCGGCAAAACCTGGATCACTGTTCAGCCTGTGGAGGGAGTTTTTGTCGT CAATTTGGGTGATCATGGTCATTATTTGAGCAATGGGAGGTTCAAGAACGCGGACCACCAGGCAGTAGTG AATTCAACCTCAAGCAGATTGTCAATCGCAACTTTCCAGAACCCGGCTCAGAACGCTATAGTGTATCCAT TAAAGATCAGGGAGGGTGAGAAGCCAATTCTGGAGGAGGCCATCACGTACGCGGAGATGTATAAGAAAAA CATGACTAAACATATTGAGGTGGCTACACAGAAGAAATTGGCCAAGGAGAAAAGATTGCAAGAAGAGAAG GCCAAGCTGGAGACGAAAACCAAGAGCGCAGATGGAATTTTAGCTTAG SEQ ID NO: 56 Aethusa cynapium FS1 >DQ683350.1 Aethusa cynapium flavone synthase I mRNA, complete cds
ATGGCTCCTACAACCATAACTGCATTATCCCAGGAGAAATCACTAAACTTAGACTTTGTCAGGGATGAAG ACGAGCGTCCCAAAGTTGCTTACAATCAGTTCAGCAATGAAATTCCCATCATTTCTCTAGCTGGTATGGA TGATGATTCTAATGGCAGGAGACCCGAGATATGTCGTAAAATAGTCGAGGCATTCGAAGACTGGGGAATT TTCCAGGTGGTTGATCACGGTATTGACAAAGGTTTGATTTCTCAGATGTCTCGTCTCTCTCGTGAATTCT TTGCTTTGCCTGCTGAGGAAAAACTCCGGTATGATACAACTGGTGGAAAGAGAGGTGGCTTTACTATCTC CACTCATCTTCAGGGTGACGATGTTAAGGATTGGCGTGAGTTCGTTACTTACTTTTCGTACCCAATCGAA GATCGGGACTACTCAAGATGGCCTGAAAAGCCAGAGGGATGGAGGTCAACCACTGAGGTTTATAGTGAGA AGTTAATGGTGCTAGGTGCCAAGTTACTGGAAGTGTTGTCAGAGGCCATGGGGCTTGAGAAAGAGGCTCT TACAAAGGCTTGTGTGAATATGGAACAGAAAGTGTTAATCAATTACTATCCCACATGCCCCGAACCCGAC TTGACACTTGGAGTCAGAAGGCATACGGATCCAGGTACTATTACCATTCTGCTTCAGGACATGGTTGGTG GATTACAGGCTACTAGGGATGGCGGCAAAACATGGATCACTGTTCAGCCTGTGGAGGGAGCTTTTGTGGT CAATTTGGGTGACCATGGTCATTATTTGAGCAATGGAAGGTTCAAGAATGCTGACCACCAAGCAGTAGTG AATTCAACTTCTAGCAGATTGTCTATTGCAACTTTCCAGAACCCGGCCCAGAATGCGATAGTGTATCCCT TAAAAATCAGGGAGGGAGAAAAGGCAATTCTTGATGAGGCCATCACCTACGCTGAAATGTATAAGAAAAA CATGACTAAACATATTGAGGTGGCTGCCCTGAAGAAATTGGCCAAGGAGAAAAGGCTGCAAGATGAGAAG GCCAAGCTGGAGATGTAATCCAAGAGTGCAGATGAAAATTTAGCTTAG SEQ ID NO: 57 Angelica archangelica FS1 >DQ683352.1 Angelica archangelica flavone synthase I mRNA, complete cds ATGGCTCCAACAACTATAACTGCATTAGCCCAGGAGAAAACACTAAATTTAGCCTTTGTCAGGGATGAAG ACGAGCGTCCCAAAGTTGCCTACAATCAGTTCAGCAATGAAATTCCCATCATTTCTTTAGCTGGTATGGA TGACGATACTGGCAGGAGACCCCAGATATGTCGTAAAATAGTTGAGGCATTTGAAGACTGGGGAATTTTC CAGGTGGTTGATCACGGCATTGACGGCACTTTGATTTCTGAGATGACTCGTCTTTCTCGTGAATTCTTTG CTTTGCCTGCTGAGGAAAAACTTCGGTATGATACAACTGGTGGAAAGAGAGGCGGCTTTACCATCTCCAC TCATCTTCAGGGTGACGATGTTAAGGATTGGCGTGAGTTCGTTACTTACTTTTCGTACCCAATCGATGAT CGGGACTACTCAAGATGGCCTGATAAGCCCCAGGGATGGAGGTCAACCACGGAGGTTTATAGTGAGAAGT TAATGGTGCTAGGTGCCAAGTTACTTGAAGTGTTATCAGAGGCCATGGGGCTTGAGAAAGAGGCTCTTAC AAAGGCTTGTGTGAATATGGAACAAAAAGTGTTAATCAATTACTATCCCACGTGCCCCGAACCGGACTTG ACACTTGGAGTCAGAAGGCATACGGATCCAGGTACTATTACCATTCTGCTTCAGGACATGGTTGGTGGGT TACAGGCTACTAGGGATGGTGGCAAAACTTGGATTACTGTTCAGCCTGTGGAGGGAGCTTTTGTGGTCAA TTTGGGTGACCATGGTCATTATTTGAGCAATGGGAGGTTCAAGAATGCTGACCACCAAGCAGTAGTGAAT TCAACCTCTAGCAGATTGTCTATTGCAACTTTCCAGAACCCGGCCCAGAATGCGATAGTGTATCCCTTGA GGATCAGGGAGGGAGAGAAGGCAGTTCTTGATGAGGCCATCACCTACGCTGAAATGTATAAGAAAAACAT GACTAAACATATTGAGGTGGCTACCCTGAAGAAATTGGCCAAGGAGAAAAGGTTGCAAGAGGAAAAGGCC AAGCTGGAGACGGAATCCAAGAGTGCAGATGGAATTTCAGCTTAG SEQ ID NO: 58 Apium graveolens FS1 >AY817676.1 Apium graveolens flavone synthase I mRNA, complete cds AAAAATGGCTCCATCAACTATAACTGCACTGTCTCAAGAGAAGACACTGAACTTAGACTTTGTGAGGGAT GAAGATGAGCGTCCCAAAGTTGCTTACAATCAATTCAGCAATGAAGTTCCCATCATTTCTTTAGCTGGTT TGGATGACGATTCTAATGGCAGGAGAGCTGAGATATGTCGTAAAATAGTTGAGGCTTTCGAAGAATGGGG AATTTTCCAAGTTGTTGATCACGGTATTGATAGCGGTTTGATTTCTGAGATGAGTCGTCTTTCTCGTGAA TTCTTCGCTTTGCCTGCTGAGGAAAAACTTGTGTATGATACCACTGGTGAAAAGAAAGGCGGCTTTACTA TCTCCACTCATCTTCAGGGAGATGATGTTCGGGATTGGCGTGAGTTTGTTACTTACTTTTCGTATCCAAT CAGTGCTCGGGACTACTCAAGATGGCCTAAAAAGCCCGAGGGGTGGAGATCAACCACGGAGGTTTATAGT GAGAAGTTAATGGTGCTAGGTGCCAAGTTACTGGAGGTGTTATCCGAGGCAATGGGGCTTGAGAAAGAGG CTCTTACAAAGGCTTGTGTGGAAATGGAACAGAAAGTGTTAATTAATTACTATCCCACATGCCCCGAACC CGACTTGACGCTAGGTGTCAGAAGGCATACGGATCCAGGTACTATTACCATTCTGCTTCAGGACATGGTT GGTGGTTTACAGGCTACTAGGGATGGCGGCAAAACTTGGATTACTGTTCAGCCTGTGGAGGGAGCTTTTG TTGTCAATTTGGGTGATCATGGTCATTATTTGAGCAATGCAACCTTCAGGAATGCTGACCATCAAGCAGT AGTGAATTCAACTTCCACCAGATTGTCAATTGCAACTTTCCAGAACCCGGCTCAGAATGCGATAGTATAT CCGTTAAAGATCAGGGAGGGAGAGAAGGCAATTCTGGATGAGGCCATCACCTACGCTGAAATGTATAAGA AAAACATGACTAAACATATTGCGGTGGCTACCCAGAAGAAATTGGCCAAGGAGAAAAGGTTGCAAGATGA GAAGGCCAAGATGAAGATATGATCGGAGATTGCCAGGGCAGGTGGAATTTAAGCTCAGCCTTTGTCCACC ATACCATCTATGTTTCACGAAGTTTGTGCTCGCTGCGTTAGTGAACTATTGGGCCGTTGGTCAATTTCCA TGTCTAAATGTCATGGTCTCTTTTGGTCAGAAATTCGAAATGTCGTCTTTTTAGGGACTTTATAATAATT CTAAGTTTGGGAGGGGTC SEQ ID NO: 59 Conium maculatum FS1 >AY817677.1 Conium maculatum flavone synthase I mRNA, complete cds AAATGGCTCCTACAACTATAACCGCATTAGCCCAGGAGAAAACACTAAACTTAGCCTTTGTGAGGGATGA AGACGAGCGTCCCAAAGTTGCCTACAATGAATTCAGCAATGAAATTCCCATAATTTCTCTAGCTGGTTTG GAAAATGACTCTGATGGGAGGAGACCCGAGATATGTCGTAAAATAGTCGAGGCTTTTGAAAACTGGGGAA TTTTCCAAGTGGCTGATCATGGTATTGACAGTGCTTTGATTTCTGAGATGTCTCGTCTTTCTCGTGAATT CTTTGCTTTGCCTGCTGAGGAAAAACTTCGGTATGATACCACTGGTGGAAAGAGAGGCGGCTTTACTATC TCCACTCATCTTCAGGGTGATGACGTTCGGGATTGGCGTGAATTCGTTACTTACTTTTCGTACCCAATAG ATGCTCGGGACTGCTCGAGATGGCCTGATAAGCCCGAGGGATGGAGGTCAATCACGGAGGTTTACAGTGA GAGGTTAATGGTGCTAGGTGCCAAGTTACTGGAAGTGTTATCAGAGGCCATGGGGCTTGAGAAAGAGGCT CTTACAAAGGCTTGTGTGAATATGGAACAGAAAGTGTTAATTAATTACTATCCCACGTGCCCCGAGCCCG ACTTGACACTTGGAGTCAGAAGGCATACGGATCCAGGTACTATTACTGTTCTGCTTCAGGACATGGTTGG TGGGTTACAGGCTACTAGGGATGGTGGCAAAACTTGGATTACTGTTCAGCCTGTGGAGGGAGCTTTTGTT GTCAATTTGGGTGATCATGGTCATTATCTGAGCAATGGAAGGTTCAAGAATGCTGACCACCAAGCGGTAG TAAATTCAAGCTCTAGCAGATTGTCAATTGCGACATTCCAGAACCCGGCTCAGAATGCGATAGTTTATCC ATTAAAGATCAGGGAGGGAGAGAAGGCAATTCTTGATGAGGCCATCACCTACGCCGAAATGTATAAGAAA AACATGACTAAACATATTGAGGTGGCTACCCTCAAGAAATTGGCCAAGGAGAAAAGGTTGCAAGATGAGA AGGCCAACATGGAGAAGAAATCCAAGAGTGCACATGGAATTTCAGCTTAGGTGCATGATGGCATCTAAAT AATGTTTCTGGATTTTGTAGGTGAATAATATCATTGTTAAATTCTGTCCAAACGCTGCGTACGATGTAGT CATGGCCCTCTTTGGCCGGAAAATCGGACAGTCTCAATCTTTCTGAGTACTCAATAACAGTAATTCTAAA ATTTTGAAGTGTTTGATG SEQ ID NO: 60 Daucus carota sativa FS1 >AY817675.1 Daucus carota flavone synthase I mRNA, complete cds GGACTTAAAATGGCTCCAACAACTATTACTGCATTGGCCAAGGAAAAAACACTTAACTCTGATTTTGTCC GGGATGAGGATGAGCGTCCCAAAGTTGCCTACAATCAATTCAGCACTGAAATTCCCATTATTTCTTTAGC TGGTATCGATGATGATTCCAATGGCAGGAGACCTGAGGTGTGTCGTAAAATAGTGGAGGCCTTCGAAGAC TGGGGGATTTTCCAGGTAGTTGATCACGGTATTGACAGCGGTTTGATCGCGGAAATGTCTCGTCTGTCTC GTGAATTCTTTGCTTTGCCTGCCGAGGAGAAACTTCGGTATGATACTACTGGTGGAAAGAGAGGCGGCTT CACTATCTCCACTCATCTTCAGGGTGACGATGTGAAGGATTGGCGTGAGTTTGTTGTTTATTTTTCGTAC CCAGTCGATGCTCGGGACTACTCGAGATGCCCTGATAAGCCCGAGGGATGGAGGTCAGTTACAGAGGTTT ATAGTGAGAAGTTGATGGCGCTAGGTGCCAAGTTACTGGAAGTGCTATCAGAGGCCATGGGGCTTGAAAA AGAGGCTCTTACAGAGGCTTGTGTGAATATGGAACAGAAAGTGTTGATCAATTACTATCCTACATGTCCC CAACCGGACTTGACACTTGGAGTCAGAAGGCACACGGATCCGGGTACGATTACCATTTTGCTTCAGGACA TGGTTGGGGGGTTACAGGCTACCAGGGATGGCGGCAAAACTTGGATTACTGTTCAGCCTGTCGAGGGAGC TTTTGTCGTCAATTTGGGTGATCATGGTCATTATTTGAGCAATGGAAGGTTCAAGAATGCCGATCACCAA GCAGTAGTGAATTCAACCTCTAGCAGATTGTCCATCGCAACTTTCCAGAACCCAGCTCAGAATGCTATAG TGTATCCTTTAAAGATCAGGGAGGGCGAGAAGCCAATTCTTGAGGAGGCCATGACATACGCCGAGATGTA TAAGAAAAACATGACTAAACATATTGAGGTGGCTACTCAGAAGAAATTGGCCAAGGAGAAAAGATTGCAG AACGAGAAGGCCAAGCTGGAGACGAAATTTTAGCTTAGGCTTTGTCCATTATAGTATCTATATTATGTTT TCCGAGTTTGTGTTATCTACAATAATACAGTAGTKAATWAGGCCATTTTTGTTAATGTCTAAATKCTGCG TACTGTGGTCAGAGTWCTGTKTTAAGAAATTCATACAATATCGTTCTTAATCCTAAACTTTCGTGTGTTT GATTTTGTTCATTCTATACAATAATTTAATAGTTCATTCTATTACAGTTATGCGAAAWAAAAAAAAAA SEQ ID NO: 61 Petroselinum crispum FS1 >Q7XZQ8.1 RecName: Full = Flavone synthase; AltName: Full = Flavone synthase I MAPTTITALAKEKTLNLDFVRDEDERPKVAYNQFSNEIPIISLAGLDDDSDGRRPEICRKIVKACEDWGI FQVVDHGIDSGLISEMTRLSREFFALPAEEKLEYDTTGGKRGGFTISTVLQGDDAMDWREFVTYFSYPIN ARDYSRWPKKPEGWRSTTEVYSEKLMVLGAKLLEVLSEAMGLEKGDLTKACVDMEQKVLINYYPTCPQPD LTLGVRRHTDPGTITILLQDMVGGLQATRDGGKTWITVQPVEGAFVVNLGDHGHYLSNGRFRNADHQAVV NSTSSRLSIATFQNPAQNAIVYPLKIREGEKAILDEAITYAEMYKKCMTKHIEVATRKKLAKEKRLQDEK AKLEMKSKSADENLA SEQ ID NO: 62 Cuminum cyminum FS1 >ABG78790.1 flavone synthase I [Cuminum cyminum] MAPTTITALAQEKTLNSDFVRDEDERPKVAYNQFSTEIPIISLAGIDDDSKGRRPEVCRKIVEAFEDWGI FQVVDHGVDSALISEMSRLSREFFALPAEEKLRYDTTGGKRGGFTISTHQQGDDVRDWREFVTYFSYPVD ARDYSRWPEKPEGWRSVTEVYSEKLMVLGAKLLEVLSEAMGLDKGALTKACVNMEQKVLINYYPTCPEPD LTLGVRRHTDPGTITILLQDMVGGLQATRDGGKTWITVQPVEGVFVVNLGDHGHYLSNGRFKNADHQAVV NSTSSRLSIATFQNPAQNAIVYPLKIREGEKPILEEAITYAEMYKKNMTKHIEVATQKKLAKEKRLQEEK AKLETKTKSADGILA SEQ ID NO: 63 Aethusa cynapium FS1 >ABG78791.1 flavone synthase I [Aethusa cynapium] MAPTTITALSQEKSLNLDFVRDEDERPKVAYNQFSNEIPIISLAGMDDDSNGRRPEICRKIVEAFEDWGI FQVVDHGIDKGLISQMSRLSREFFALPAEEKLRYDTTGGKRGGFTISTHLQGDDVKDWREFVTYFSYPIE DRDYSRWPEKPEGWRSTTEVYSEKLMVLGAKLLEVLSEAMGLEKEALTKACVNMEQKVLINYYPTCPEPD LTLGVRRHTDPGTITILLQDMVGGLQATRDGGKTWITVQPVEGAFVVNLGDHGHYLSNGRFKNADHQAVV NSTSSRLSIATFQNPAQNAIVYPLKIREGEKAILDEAITYAEMYKKNMTKHIEVAALKKLAKEKRLQDEK AKLEM SEQ ID NO: 64 Angelica archangelica FS1 >ABG78793.1 flavone synthase I [Angelica archangelica] MAPTTITALAQEKTLNLAFVRDEDERPKVAYNQFSNEIPIISLAGMDDDTGRRPQICRKIVEAFEDWGIF QVVDHGIDGTLISEMTRLSREFFALPAEEKLRYDTTGGKRGGFTISTHLQGDDVKDWREFVTYFSYPIDD RDYSRWPDKPQGWRSTTEVYSEKLMVLGAKLLEVLSEAMGLEKEALTKACVNMEQKVLINYYPTCPEPDL TLGVRRHTDPGTITILLQDMVGGLQATRDGGKTWITVQPVEGAFVVNLGDHGHYLSNGRFKNADHQAVVN STSSRLSIATFQNPAQNAIVYPLRIREGEKAVLDEAITYAEMYKKNMTKHIEVATLKKLAKEKRLQEEKA KLETESKSADGISA SEQ ID NO: 65 Apium graveolens FS1 >AAX21537.1 flavone synthase I [Apium graveolens] MAPSTITALSQEKTLNLDFVRDEDERPKVAYNQFSNEVPIISLAGLDDDSNGRRAEICRKIVEAFEEWGI FQVVDHGIDSGLISEMSRLSREFFALPAEEKLVYDTTGEKKGGFTISTHLQGDDVRDWREFVTYFSYPIS ARDYSRWPKKPEGWRSTTEVYSEKLMVLGAKLLEVLSEAMGLEKEALTKACVEMEQKVLINYYPTCPEPD LTLGVRRHTDPGTITILLQDMVGGLQATRDGGKTWITVQPVEGAFVVNLGDHGHYLSNGRERNADHQAVV NSTSTRLSIATFQNPAQNAIVYPLKIREGEKAILDEAITYAEMYKKNMTKHIAVATQKKLAKEKRLQDEK AKMKI SEQ ID NO: 66 Conium maculatum FS1 >AAX21538.1 flavone synthase I [Conium maculatum] MAPTTITALAQEKTLNLAFVRDEDERPKVAYNEFSNEIPIISLAGLENDSDGRRPEICRKIVEAFENWGI FQVADHGIDSALISEMSRLSREFFALPAEEKLRYDTTGGKRGGFTISTHLQGDDVRDWREFVTYFSYPID ARDCSRWPDKPEGWRSITEVYSERLMVLGAKLLEVLSEAMGLEKEALTKACVNMEQKVLINYYPTCPEPD LTLGVRRHTDPGTITVLLQDMVGGLQATRDGGKTWITVQPVEGAFVVNLGDHGHYLSNGRFKNADHQAVV NSSSSRLSIATFQNPAQNAIVYPLKIREGEKAILDEAITYAEMYKKNMTKHIEVATLKKLAKEKRLQDEK ANMEKKSKSAHGISA SEQ ID NO: 67 Daucus carota sativa FS1 >AAX21536.1 flavone synthase I [Daucus carota subsp. sativus] MAPTTITALAKEKTLNSDFVRDEDERPKVAYNQFSTEIPIISLAGIDDDSNGRRPEVCRKIVEAFEDWGI FQVVDHGIDSGLIAEMSRLSREFFALPAEEKLRYDTTGGKRGGFTISTHLQGDDVKDWREFVVYFSYPVD ARDYSRCPDKPEGWRSVTEVYSEKLMALGAKLLEVLSEAMGLEKEALTEACVNMEQKVLINYYPTCPQPD LTLGVRRHTDPGTITILLQDMVGGLQATRDGGKTWITVQPVEGAFVVNLGDHGHYLSNGRFKNADHQAVV NSTSSRLSIATFQNPAQNAIVYPLKIREGEKPILEEAMTYAEMYKKNMTKHIEVATQKKLAKEKRLQNEK AKLETKF SEQ ID NO: 68 Medicago truncatula FS2 >XM_013600611.1 Medicago truncatula cytochrome P450 family flavone synthase mRNA CTCTAGAGATGGTTTCATTAGTGTAACGTATACACTATAAAATGCTCAAGGAGGTAATCCAAATCCCACA ATCATTTCTCAACTATTCTCATGAGTTTTCATTTCCAATATAAAGACAATAACCAAGATGATTTCTCAGC CAATCTTATTAGCTTTGATTCTATTCCTCCTCTTCCTTCTCCAACTCTTTTTGTTTAAGAGAAACAACAG AGCAAAGGAGCACTTACCTTACCCTCCAAGTCCACTAGCAATACCAATAATTGGTCATCTTCATCTCCTC AAACCCCTCGTTCATCAAGCCTTTCGCGACCTCTCTGATCGATATGGACCCCTTATATCCCTTCGACTTG GTTCTGTTCCATTTATCGTTGTTAGTTCCCCATCACTCGCAAAAGAGTTTCTCAAAACAAACGAGCTTGT TTATTCTTCCCGTAAAATGAACATTGCCATCAACACAGTTGTCTACGATGATGCTACTTTTGCTTTTGCC CCTTATGGGGCATATTGGAAATTCATCAAAAAGCTTAGTACCTTTGAGCTCTTAGGCAACCGGACTATTG GACAATTCTTACCAATTCGAACTCGAGAACTCAACGAGTTCATTCAAACTTTGGAAAATAAATCCAAGGT TGAAGAAAGCGTGAACCTCACTCAAGCTTTGTTGAAGCTTTCCAACAACATAATATCACGGATGATGTTG AGCATTGAGAGCTCAGGAACGGATAGTCAGGCTGAACAGGCGAGGACGTTGGTTCGAGATGTGACCCAAA TTTTCGGGGAATTTAACATTTCGGATTTTATAGGATTTTGCAAGAACTTGGACTTTCAAGGTCTCAAAAA GAGGGCATTGGATATACATAAGAGGTATGATGCTTTTCTGGAGAAGTTAATTTGTGATCGTGAGGAATCA CGAAGGAAAGCCAAGGTTGAGGGTGGTTGTGAGGATAGAGACGAAAAAGTGAAGGATTTTCTTGATATGT TGCTTGATGTTTTCGAGGCCAAAGAATGTGAGGTCGACTTTACTAGGAACCATATCAAATCGTTGATCTT GGATTACTTCACAGCAGCTACAGATACAACTGCCATTTCATTGGAATGGACAATAGCAGAACTGTTCAAC AATCCAATAGTACTGAAGAAAGCACAAGAAGAGGTGGAGAGAATAATAGGGAAGGAAAGACTAGTATGTG AAGCAGACATTCCAAACCTTCCTTATATACAAGCCATTATAAAAGAAACATTGAGGCTTCACCCACCACT ACCGATGATTGCTAGGAAAGGAACAAAAGATTGTGTGGTCGATGGGAAAATGATCAAAAAAGGCTCAATA GTTTGTGTGAACATTTGGGCTATTGGAAGGGACTCAAAGACTTGGAAAAACCCACTAGAGTTTAGGCCTG AAAGGTTTTTAGAATCTGGAAAAGAGAGTGAGATAGATATCAAAGGGCATGACTTTGAGTTGTTGCCATT TGGTTCTGGAAGGAGAGGTTGCCCGGGGATGCCTTTGGCCATGCGCGAATTGCCGACTGTGATTGGAGCT TTAGTACAATGCTTTGAGTGGAAGATGCTTGACTCTGAAGGTAAATTATTAGATCAAGGCAAAACAATCG ATATGGATGAACGGCCTGGATTGACTGCTCCTAGAGCCAATGATCTTTTTTGCATTCCAGTTGCAAGATT GAATTTGATTCCTTTGGTTCAATTGTAGTGTAAAGCAATTGCGATAAGGTATTATGAAAATTTCTTTCAA ATTGTTTTTCTGGGCCAAGGGCCTAATATAAGATAACTTTATTTATTGTATGTTTATTTTAATTTAATAC TCACTCCGTCCCAAATTGTACGACGTTTTGAGCATTTAACATATATTAAGAAATATAATTAATA SEQ ID NO: 69 Lotus japonicus FS2 >AB279984.1 Lotus japonicus IFS2 mRNA for 2-hydroxyisoflavanone synthase, complete cds ATGTTGGTGGAACTTGCATTAGCATTACTGGCCATAGCTCTGTTCTTACATTTACGTCCCACACCAACTG CCAAATCCAAGGCCCTTCGTCACCTTCCAAACCCTCCAAGTCCCAAGCCTCGTCTTCCATTCGTTGGACA CCTTCACCTTTTGGACCAACCACTTCTCCACCACTCCCTCATCAAACTCGGCGAGCGATATGGGCCTTTG TACTCTCTCTATTTTGGATCCATGCCCACCGTTGTTGCCTCAACCCCTGAACTCTTCAAACTCTTCCTTC AGACCCATGAGGCCTCTTCCTTCAACACAAGGTTCCAAACCTCTGCCATTAGGCGCCTCACCTATGACAA CTCTGTTGCCATGGTCCCTTTTGCTCCTTATTGGAAGTTCATCAGGAAGATCATCATGAACGACCTCCTC AACGCCACCACCGTCAACAAGTTGAGGCCTTTGAGGAGCCAAGAGATTCGTAAGGTTCTGAAGGCTATGG CACATAGTGCGGAATCTCAACAACCCCTTAATGTCACTGAGGAGCTTCTCAAGTGGACAAACAACACCAT CTCTCGAATGATGTTGGGGGAGGCTGAAGAGGTCAGAGATATTGCTCGTGAGGTGCTTAAGATCTTCGGG GAATATAGTCTCACAGACTTCATTTGGCCATTGAAGAAGCTCAAGGTTGGACAGTATGAAAAGAGAATAG ATGAGATATTTAACAAATTCGACCCCGTCATTGAGAAGGTCATCAAGAAACGCCAAGAGATAATAAAGAG GAGAAAAGAGAGAGATGGAGAACTTGAGGAGGGTGAGCAAAGTGTAGTTTTCCTCGATACTTTGCTTGAA TTTGCTGAAGATGAGACCATGGAAATCAAAATCACAAAGGAACAAATTAAGGGTCTTGTAGTGGATTTCT TCTCTGCAGGGACAGATTCGACAGCTGTGGCAACAGACTGGGCTCTATCAGAGCTCATCAACAACCCGAG GGTGCTGAAGAAAGCAAGAGAGGAAGTTGAAAGTGTTGTTGGAAAAGATAGACTTGTTGATGAAGCAGAT ATTCAAAATCTTCCATACATTAGAGCCATCGTGAAGGAGACATTCCGCATGCATCCTCCACTCCCTGTTG TTAAGAGAAAGTGTGTACAAGAATGTGAGCTCAACGGTTACGTGATCCCAGAGGGAGCACTGATACTCTT CAACGTGTGGGCCGTGCAAAGAGATCCCAAATACTGGGAGGGCCCATCCGAATTCCGTCCTGAGAGGTTT TTAACTGCTGAAGGGGGAGCAACCTCCATTGATCTTAGAGGCCAGAATTTCGAGCTTCTCCCATTTGGGT CTGGAAGGAGGATGTGTCCAGGTGTGAATTTGGCAACTGCAGGAATGGCCACATTGCTTGCATCTGTTAT CCAATGCTTTGATTTACAGGTTGTGGGTCAAAAGGGCAAATTATTGAAAGGAAGTGATGCCAAAGTTAGC ATGGAAGAGAGTCCTGGTCTCACTGTTCCAAGGGCACATAATCTGATGTGCGTTCCACTTGCAAGAACCA ACGTCACATCTGAACTCCTTTCCTCATAA SEQ ID NO: 70 Glycine max FS2 >FJ767774.1 Glycine max cultivar Harosoy 63 flavone synthase II (CYP93B16) mRNA, complete cds GATGGTCATTTTCCTAATTAATCAAACCAACCACCAACAAGATGATTTCTGAGTCCCTCTTGGTAGTATT CCTCATTGTCTTCATTTCTGCTTCCCTTCTCAAACTCTTGTTTGTGAGAGAAAACAAACCAAAGGCCCAC TTGAAGAACCCACCAAGCCCACCTGCAATACCCATAATAGGTCATCTCCACCTCCTTAAACCCCTCATCC ATCACTCATTCCGAGACCTCTCTCTCCGATATGGGCCCCTCCTAAGCCTTCGAATTGGTTCCGTTAAGTT CATAGTTGCAAGCACCCCATCACTCGCCCAAGAGTTTCTCAAGACCAACGAGCTCACATACTCTTCCCGC AAAATGAACATGGCCATCAACATGGTCACTTACCACAACGCCACGTTTGCGTTTGCACCTTACGACACTT ACTGGAAGTTCATGAAAAAACTAAGCACCACTGAGCTCTTGGGAAACAAAACCCTCGGACACTTCCTACC TATTCGGACGAGGGAAGTTCATGACATCATTCAATTTTTGTTCCATAAATCAAAGGCCCAAGAGAGCGTG AACCTCACCGAAGCGCTTTTGAGTCTTTCCAACAACGTAATATCGCAGATGATGTTGAGCATTAAGAGCT CCGGTACAGACAGCCAGGCAGAGCAGGCACGGACTTTGGTTCGTGAAGTGACGCAGATTTTCGGGGAGTT TAACGTGTCGGATTTCTTAGGTTTCTGCAAAAACTTGGACTTGCAAGGTTTCAGGAAGAGGGCATTGGAC ATACATAAGAGGTACGATGCTCTGCTAGAGAAGATCATCTCTGATCGTGAGGAGTTGAGAAGGAAATCAA AGGTAGACGGCTGCGAAGATGGAGATGATGAGAAAGTGAAGGATTTTCTTGACATTTTGTTGGATGTTGC TGAGCAGAAAGAATGCGAGGTCCAGTTAACTCGGAACCATGTCAAATCATTGATCTTGGATTATTTTACG GCAGCTACTGACACAACTGCCATATCAGTGGAATGGACAATAGCAGAACTATTTAACAATCCAAAGGTGT TAAAGAAAGCGCAAGAGGAAGTTGATAGAGTCACCGGAAACACGCAATTAGTGTGTGAAGCAGACATTCC AAACCTTCCTTATATTCATGCCATCATAAAAGAAACAATGAGACTTCACCCGCCAATACCAATGATTATG
AGGAAAGGAATCGAAGACTGCGTGGTTAATGGAAACATGATTCCAAAAGGTTCAATAGTTTGTGTAAACA TTTGGGCTATGGGAAGGGACCCAAATATCTGGAAGAACCCTTTAGAATTCAAGCCAGAGAGGTTTCTAGA AGGTGAAGGAAGTGCTATAGATACCAAAGGGCATCATTTTGAGTTGTTGCCATTTGGCAGTGGAAGGAGA GGGTGTCCTGGAATGCCTTTGGCCATGCGTGAATTGCCCACCATCATTGGAGCACTCATACAATGCTTTG AGTGGAAGATGTTAGGTTCACAAGGTGAAATCTTAGATCATGGAAGAAGCTTAATCAGTATGGATGAACG GCCAGGATTGACTGCCCCAAGGGCCAATGATCTTATTGGCATTCCTGTTGCACGATTGAATCCCACTCCT TTTCGTCAAATGTAGTTTATTGTCAAGGGAATTTGTGACAACAAAGAGTTATACGTGCCAACTAATAAGT ATTTCCATGAAAAAATAGAGTCAGTATTATTTCCATGATAAACTCATGCAGTTTGATATTATGGTAGGTG TATGAGTTGAAAAATGTTCTTTCAAATCGTATTTGTGGTGTAATATATCTAAGATATTATGATTATGATG AGTGTAGGAGCTGGAAAATGTTCCTTCTATGTATTTTTTTAATTCAAATAAAGACGAAATTGAATAAAAA TTATCTTGTTGCAAAAAAAAAAAAAAAAA SEQ ID NO: 71 Perilla frutescens crispa FS2 >AB045592.1 Perilla frutescens var. crispa PFSII3 mRNA for flavone synthase II, complete cds TGTCGACGGAGCAAGTGGAAATGGCACTGTACGCCGCCCTCTTCCTCCTGTCCGCCGCCGTGGTCCGCTC CGTTCTGGATCGAAAACGCGGGCGGCCGCCCTACCCTCCCGGGCCGTTCCCTCTTCCCATCATCGGCCAC TTACACCTCCTCGGGCCGAGACTCCACCAAACCTTCCACGATCTGTCCCAACGGTACGGGCCCTTAATGC AGCTCCGCCTCGGGTCCATCCGCTGCGTCATTGCTGCCTCGCCGGAGCTCGCCAAGGAATGCCTCAAGAC ACACGAGCTCGTCTTCTCCTCCCGCAAACACTCCACCGCCATTGATATCGTCACCTACGATTCATCCTTC GCTTTCTCTCCCTACGGGCCTTACTGGAAATTCATCAAGAAATTATGCACCTACGAGCTGCTCGGGGCCC GAAATCTCGCCCACTTTCAGCCCATCAGGACTCTCGAAGTCAAGTCTTTCCTCCAAATTCTTATGCGCAA GGGTGAATCGGGGGAGAGCTTCAACGTGACTGAGGAGCTCGTGAAGCTGACGAGCAACGTCATATCGCAT ATGATGCTGAGCATACGGTGTTCAGAGACGGAGTCGGAGGCGGAGGCGGCGAGGACGGTGATTCGGGAGG TCACGCAGATATTTGGGGAGTTCGACGTCTCCGACATCATATGGCTTTGTAAGAACTTCGATTTCCAAGG TATAAGGAAGCGGTCCGAGGATATCCAGAGGAGATATGATGCTCTGCTGGAGAAGATCATCACCGACAGA GAGAAGCAGAGGCGGACCCACGGCGGCGGTGGCGGCGGCGGGGAAGCCAAGGATTTTCTTGACATGTTCC TCGACATAATGGAGAGCGGGAAAGCCGAAGTTAAATTCACGAGGGAGCATCTCAAAGCTTTGATTCTGGA TTTCTTCACCGCCGGCACCGACACGACGGCGATCGTGTGTGAATGGGCGATAGCAGAAGTGATCAACAAT CCAAATGTGTTGAAGAAAGCTCAAGAAGAGATTGCCAACATCGTCGGATTCGACAGAATTCTGCAAGAAT CCGACGCCCCAAATCTGCCCTACCTTCAAGCCCTCATCAAAGAAACATTCCGGCTCCACCCTCCAATCCC AATGCTGGCGAGGAAATCGATCTCCGACTGCGTCATCGACGGCTACATGATTCCGGCCAACACGCTGCTC TTCGTCAACCTCTGGTCCATGGGGCGGAACCCTAAAATCTGGGACTACCCGACGGCGTTCCAGCCGGAGA GGTTTCTGGAGAAGGAAAAGGCCGCCATCGATGTTAAAGGGCAGCATTTTGAGCTGCTACCGTTCGGAAC GGGCAGGAGAGGCTGCCCAGGGATGCTTTTAGCCATTCAGGAGGTGGTCATCATAATTGGGACGATGATT CAATGCTTCGATTGGAAGCTGCCCGACGGCTCCGGCCATGTTGATATGGCAGAACGGCCAGGGCTCACGG CACCGCGAGAGACCGATTTGTTTTGCCGTGTGGTGCCGCGAGTTGATCCGTTGGTTGTTTCCACCCAGTG ATCACCCCCTTTAAATTTATTAATGATATATTTTTATTTTGAGAAAAAATAAAAATGCTAATTGTTTTGT TTCATGATGTAATTGTTAATTAGTTTCTATTGTGCGCTGTCGCGTGTCGCGTGGCTTAAGATAAGATTGT ATCATTGGTACCTAGGATGTATTTTCATTTTCAATAAATTATTTTGTGCTGTGTATATTAAAAAAAAAAA AGAAAAAAAAAAAAAAAAAA SEQ ID NO: 72 Gerbera .times. hybrida FS2 >AF156976.1 Gerbera hybrida flavone synthase II (CYP93B2) mRNA, complete cds ATGTCCTAACACAACCCAACACCATGAATACACTCCAACTCATCTTCCTCCTCTTCTTCTTCCCAACCTT ACTCTTCCTCTACTGTCTCCCCTACAAAAGAAACCAAAACCACCGCCGTCTTCCGCCGTCCCCGCCATCT TTTCCGATCATCGGCCACCTCCACCATCTCGGCCCACTCATCCACCAATCCTTCCACGCTCTCTCCACTC GCTACGGCTCTCTAATCCACCTCCGTCTCGGCTCAGTCCCATGCGTCGTCGTTTCAACCCCAGACCTCGC CAAAGACTTCCTCAAAACAAACGAACTCGCGTTCTCATCAAGAAAACACTCCTTAGCCATCGACCACATC ACCTATGGCGTAGCATTTGCATTCGCACCATATGGAACTTACTGGAAGTTCATCAAGAAACTCTTCACAG TGGAGCTTTTGGGCACCCAGAATCTCAGCCATTTCCTACCCATTCGAACCCATGAAATTCGCGAGCTTCT TCGAACGTTAATGGTGAAATCTAGGGCAAAGGAGAGAGTAAACTTGACGGAAGAGTTGTTGAAGTTGACC AACAATGTGATAAGTCAAATGATGATGAGCATTAGGTGTTCGGGGACGAATAGTGAGGCTGATGAAGCAA AGAATCTTGTTCGGGAAGTGACCAAAATTTTTGGACAGTTTAATGTTTCAGATTTCATATGGTTTTGTAA GAACATAGATTTGCAAGGGTTTAAGAAGAGGTACGAGGGTACACATAGAAGATATGATGCTTTGCTTGAA AGGATTATAATGGGGAGGGAAGAAAATAGAAGAAGAGGGAAGATAAAAGATGGTGAAGGGAAAGATTTTC TTGATATGTTACTTGATGTTTTGGAGGATGGTAAGGCAGAGATTAAAATTACTAGAGACCACATCAAAGC CTTGATTTTGGACTTTCTTACAGCTGGGACGGATACCACCGCGATTGCAATTGAATGGGCACTAGTCGAA TTGATAAACAACCCGAACGCTCTCGAGAAAGCAAGACAAGAGATTGATCAGGTCATCGGTGATGAGAGGC TAGTTCAAGAATCAGACACGCCTAACCTCCCTTATATCCAAGCTATCATAAAGGAAGCCCTACGACTTCA CCCACCAATCCCAATGTTGATTCGCAAGTCAACAGAAAATGTAATTGTTCAGGGGTATGACATCCCAGCC GGCACCTTGTTGTTTGTCAATATTTGGTCCATTGGAAGAAACCCTCAATGTTGGGAAACCCCTTTAGAGT TCAAGCCTCATCGGTTTTTGGATGGTGGTGACCTTAAAAGCTCTTTAGATATTAAAGGCCACAATTTTCA ACTATTGCCTTTTGGGACGGGGAGGAGAGGGTGTCCTGGTGTTAATTTGGCCATGAGAGAACTCTCAGTG GTGATTGCAAACCTCATACAATGCTTTGATTGGGATGTTGTAGGTGAACGACTATTGAATACAGATGAAC GTGCTGGATTGACGGCTCCAAGGGCGGTAGATTTTGTGTGTGTTCCATTGGAACGAGGAAACACTTTGAA GATTCTTGGTTCAAACTAAATTTATTTGTTGTTGCTTTCTTGATGGCAGTCGGTCTATCTATAGGTCATA ATACCTTGGGACTCACGTGTTTGAATCTTAATACGCTTTTAGTACATTGCTTATCGTATATCTTGGGTAT GCATGAAAAAAAAAAAA SEQ ID NO: 73 Gentiana triflora FS2 >AB193314.1 Gentiana triflora GtFSII mRNA for flavone synthase II, complete cds ACCTCACAGTATATCATAATGATGCTTCTTGACTTTTTTTACTCTGCTTCCATTTTCGTCCTCTCAATCC TCCTCTTCCGTGCAATCTACACCACCAAAAACCGCCGTCTCCGCCTCCCGCCGAGCCCATTCGGGTTACC AATCATCGGCCATCTCCACCTCCTCGGCCCCAAAATCCACCATTCTTTCCACAACCTCTACAAACGCTAC GGCCCAATATTCCATCTTCGTCTCGGATCTAATCGTTGTATTGTAGTCTCCACCCCTGAACTAGCTAAAG AATTCCTCAAAACCCATGAACTCGATTTCGCTTACCGGAAAAACAGCTCCGCCATTAGTCTTTTAACTTA CCATGTTTCTTTCGCTTTTGCACCTTATGGTCCCTACTGGAAATACATCAAGAAAATCACTACTTACCAG CTACTGGGTAACCGGAATCTCACCCATTTCGAACCAATTCGAAGACTGGAAACGAATCGGGTTCTTTACG ATTTGATGGTGAGTTCTAAACATGGCAAATCAGTGAATTTAACAGAGGAGATGATAAAATTGACGAGCAA CATCATTTCACAGATGATGTTAAGTATCCGATGTTCAGATACAGAGTCCGGAGCTACGAATGTACGGAAC GTTATCCGGGATGTGACTGAACTGTTCGGAGAGTTCGATGTTTCGGATATAATATGGTTTTGTAAGAACA CTGATTTGCAAGGGATTAAAAAGAGGGCTAACGGTATACATGAAAGGTACGATGCTTTGTTGGAGAAGAT CATTTCGGACAGAGAAAGAACCAGAATTGTTGAGAAGAAGAACAGCGGTGCTGGCGGTGGAAGCGGCGAC GGTGAGAGGAATGATTTTCTTGATATTCTGATGGATGCAATGGAAGATGACACGTCGGAAGTCAAGTTAT CCAGAAATCATATCAAAGCTATAATCTTGGACTTCCTAACAGCTGCAACAGATACAACAGCCATATCACT AGAATGGGCATTGTCTGAGCTCATTAACAATCCAAGGGTCCTAAAGAAAGCACAAGAAGAAATCAACAAT GTGGTTGGAAATCAACGGCTAGTAAAAGAGTTAGACACTCCTAATTTCCCCTACATTAAGGCAATAATTA AAGAAACATTTCGTCTTCACCCACCCATCCCGATGGTCATTCGAAAATCAGCTAACGACATCCAAGTGGC TGGATATGACGTACCAAAAAATACGATGCTTTTCGTGAACATTTGGTCTATTGGAAGGAATCCCAGTTAC TGGGAGAAGGCGTCGGAGTTTTCCCCGGAGAGATTTTTGGCTGATACAGATGGTGGCGGTTTGAGTCACA TGGATATAAACGGGCAGTATTTCGAGCTTATGCCGTTTGGTACTGGAAGGAGAGGTTGTCCTGGGATGCC GTTAGCCATGCAAGAATTACCAACTGTTCTTTCGCTTATGATACAATGTTTCGATTATATTCCGCTTGAT TTCAAGGGAGAAAAGGCTGAAAGGGTTATGGACATGAGTGAACGGCCAGGACTGACTGCTCCGAGGGCGA ATGAGTTGATGTGTTTGCTTAAACCGCGAATTGATCTTCCAAATCTCCTTGGTAATGTAAAGGGTGAGTA GATGACATTTGTGAGGATGTGTTTTTAACTAGTCGATAATTATTTATCGACTAATAATGTGATTTAAGAG AAGTATGGGGACCAACTTTTAGTTGTTTCAATTTGTCCAAGGGTGTGAATGTAATAAGATATAAGTTGCA TGTTCATCTTTCTTGTATCCGAGTTATTTTGATCTTAATGAATTCTCTATTTAATTATAAAAAPAAAPd AAAAAAAAAAAAAAAA SEQ ID NO: 74 Antirrhinum majus FS2 >AB028151.1 Antirrhinum majus AFNS2 mRNA for cytochrome P450, complete cds GCTTTACACACACACACACACACACACACACAAACAAAAATGTCTACACTTGTCTACAGCACACTCTTCA TCCTCTCAACCCTCCTCCTCACCCTCCTAACCCGCACCCGCCGCAAGACCCGCCCGCCCGGCCCATTAGC CCTCCCCTTAATAGGCCACTTACACCTCCTCGGCCCAAAGCTCCACCACACCTTCCACCAATTCTCCCAA CGCTACGGCCCGCTCATCCAGCTCTACCTCGGCTCCGTCCCATGCGTCGTCGCTTCCACGCCCGAACTCG CCCGCGAATTCCTCAAGACGCACGAACTCGACTTCTCGTCCCGCAAGCACTCCACCGCCATCGACATCGT CACGTACGACTCCTCGTTCGCCTTCGCGCCGTACGGGCCGTACTGGAAATTCATCAAGAAATTATGTACT TACGAGCTACTGGGTGCCCGGAACTTGAGCCATTTCCAGCCCATTAGAGCTTTGGAGGTCAACAGTTTCT TGAGAATTTTGTACGAGAAAACAGAGCAGAAACAGAGTGTTAATGTGACTGAGGAGCTTGTGAAGCTGAC GAGTAATGTGATCAGTAACATGATGTTGGGGATCAGGTGTTCGGGGACGGAAGGGGAGGCGGAGGTGGCG AGGACGGTGATAAGGGAGGTGACGCAGATATTTGGGGAGTTTGATGTGTCGGAGATTGTTTGGTTTTGTA AGAATTTGGATCTGCAGGGGATTAGGAAGAGGTCGGAGGATATTAGGAGGAGGTATGATGCTTTGTTGGA GAAGATTATTAGTGATAGGGAGAGGTTGAGGTTGAGGGGGGGTGGTGGTGGAGGGGGTGGAGAGGTGAAG GATTTTTTGGATATGTTGTTGGATGTGATGGAGAGTGAGAAATCGGAGGTGGAGTTTACGAGGGAGCATC TCAAAGCTTTGATTCTGGATTTCTTCACTGCCGGTACAGACACAACAGCAATCACAACAGAATGGGCAAT AGCAGAACTCATTAGCAATCCAAATGTACTCAAAAAAGCTCAAGAAGAGATGGACAAAGTCATAGGATCA CAAAGGTTGTTGCAAGAATCCGACGCCCCTAACTTGCCTTACCTCAACGCGATCATAAAAGAAACGTTCC GTCTCCACCCTCCAATCCCCATGCTCACTAGAAAATCAATTTCTGACGTTGTGGTCAACGGGTACACGAT CCCTGCCAAAACGCTATTGTTTGTCAACCTTTGGTCCATGGGAAGGAATCCTAACTACTGGGAAAATCCG ATGGAGTTCCGACCCGAGAGGTTTCTCGAGAAAGGGACCGGGTCGATAGACGTTAAAGGGCAGCATTTCG AGTTGCTGCCGTTTGGCACGGGCAGGCGGGGCTGCCCGGGGATGTTGTTAGGCATGCAGGAGTTGTTTAG TATTATCGGGGCTATGGTGCAGTGCTTCGATTGGAAACTGCCCGATGGTGTGAAGTCGGTCGACATGACC GAGCGGCCCGGGTTGACGGCTCCACGTGCCAATGATTTGGTGTGCCAATTGGTGCCACGGATTGACCCGG TCGTTGTCTCCGGACCGTGAACCTTAAGGTAGTATCGATAATCTGTTTAATTAAATTGTTATTTGTTGTG AGGATTTGATTTTTGTTATGTATGATTATGCGTGGATTAAGATAAGCCTGCAAGGACAAATTCCCTTTCT TTGATTGATGTCAATGAGTTTGTGTC SEQ ID NO: 75 Theobroma cacao FS2 >XM_007020125.2 PREDICTED: Theobroma cacao licodione synthase (LOC18593084), mRNA AATCCTGTGGGTTGAGAAAATTTGTCACCAAAACTCTCTCTTTCAGTCTGAGTTGAGGTAGCCATGTTGC TTCAACTCCTGTCGTATTCCACCCTCTACATTGCTTCGTTTTTTCTTGTGAAAACAATATTAATCTCCAT CAACAACCGTCCCAAGCTTCCCCCAGGCCCCATTGCCTTACCAGTCATCGGCCACCTCCACCTCCTTGGC CCCTTCATTCATCAAACTTTCCACAAGTTCTCCTCCCGCTATGGTCCCTTAATGTATCTCCGTCTTGGCT CTATTGGGTGCGTCGTGGCCTCTAACCCAGAGCTTGCAAAAGAGCTTCTCAAAACTTACGAGCTGGCATT CGCCGCCCGCATGCACACCGCTGCCATTACCCACCTTACATACGACTCTTCCTTTGCCTTTGCACCCTAC GGACCTTACTGGAAATTCATAAAAAAGTTTAGCACCTATGAGCTCCTAGGTAACCGAACTCTTAGCCAGT TTCTTCCCGTTCGGACCAAGGAATTGCACTGTTTCATTAAGTTTCTTCTTGACAGGTCTAAAGCAGGCGA AAGCGTGAATGTAACTCAAGAGCTGTTGAAATTAACCAACAACACAATATCACAGATGATGCTGAGCATG AGGTGCTCGGGGAGTGGAAACCCCGCCGATGGGGTTCGAGCTCTAGTGAGGGAGGTGACTGAGATCTTCG GAGAGTTCAACATCTCAGACAGTATATGGTTTTGCAAAAACTGGGATCTGCAGGGATTCCGAAGGAGATT TGAGGACATACATAGAAGGTATGACGCTTTGTTGGAGAGAATCATAAGAGATCGCGAGGAAGTAAGAAAA AGCAAGAAAGAGTGTGACCAACGAGACAATGGAAATGAGGTCAAGGATTTTCTGGACATGATGCTTGATG TATTGGAAAATGATAACTCGGAGATCCAATTAACCAGAAATCACATTAAGGCCTTGGTTTTGGATTTCTT GACAGCCGGTACGGATACAACAGCAATTGTACTTGAATGGGCACTGGCAGAGCTCATCAACAACCCGGAA GTGCTAAAACTAGCTCAAAAAGAGATTGATCAAGTTGTGGGAACAAGCAGGTTGGTAGAAGAATCGGACA GTCCTCGTCTCCAATACATCCAAGCCATCATTAAGGAAACTTTTCGGCTCCACCCACCGGTCCCGATGAT CAGCAGAAAATCAATCCAATCATGCAAAATTAAGGGATACACCATCCCTGCCGACTGTTTGGTGTTCGTA AACATTTGGGCTATAGGAAGGGATCCCACGGTCTGGGCAGATCCATTGAGGTTTCAGCCTGAGAGGTTCC TGAAATCCTATGAGGGAGATCATAGTTCAGGGCCTATAGATGTTAGAGGCCTCCATTATCAGCTGTTGCC TTTCGGTACAGGGAGGAGGGGCTGCCCTGGTGCTTCTTTAGCAATGCAGGAGCTGCCCACCACTCTGGCA GCCATGATTCAGTGCTTTGACTGGAAGCCTGCGGCTACTTCAAAGACTGGAGATGGTGTTGACATGTCTG AACGGCCTGGACTTACGGCTCCCAGGGCAAAGGATCTGGAGTGTGTTCCAGTTGCACGCTTCACACCCAG TCTTTGCAACTTAAGCAGGTGACCACTTACGTATGATGTGATGAGCAATCGAGCATCAGTCTCCCCCGTT CTCCCGATTTCCTAGGCTCTGTGTCTTTAGCGTGTTACGAGTGATGTGACTGTGATGGCATGCATTTAGG TAGAAATAAATGCAATTATATTGCATATTTGCTTGCCAAAAACAAAATAAAAAAAATGTATTAATAGTTT ATGAATTTTTCTGTTTGGTTTATTTC SEQ ID NO: 76 Camellia sinensis FS2 >KF750635.1 Camellia sinensis flavone synthase II (FNSII) mRNA, complete cds TTTTCCTTTCCTAGTTTCTATTTAAAGCAACATATAATTTCTCGAATGCATAATTTCTCTTGAAATCAAG CCAAGATGTTTGACTTAATCTCCATTGCCACCTTATTCTTTGTTATTATCTCCACCACCATCCTCCTCCT CTCCATAAACCACTTCAAAAAACCACCACATCTCCGCCGCCGTCTCAGCCTCCCACCAACCCCCTTCGCC CTGCCAATCATCGGCCACCTCCACCTCCTCGGCCCCATCATCCACCGCTCCTTCCATGACCTCTCCTCCC GCTACGGCCCCTTGTTTCACCTCCGCCTCGGCTCAGTCCCATGCTTCGTGGTCTCCACTCCAGAGCTCGC AAAAGAGTTCCTCTTGACACATGAGCTCAAGTTCTCATCTCGCAGGGATTCCATCGCCATCCAACGCCTC ACCTATGACTCTGCATTCGCCTTCGCCCCTTACGGTCCCTACTGGAAATTCCTAAAGAAGCTTTGTACTT GTGATCTTCTCGGCGCTCGTAGTATCAATCATTTTCTTCCCACACGGACCCGTGAACTACACTGCTTTGT TCGACTTCTCATCGACAAGGCCGTGGCTTGTGAACCTGTCAACATCACTAAAGAGCTTTCAACGCTCGCC AACAATATCATCTCTCAAATGATGATTGGTGTAAGGTGTTCGGGGACGACAGGAGAGGCTGAGGAGGCTA CAACTCTTGCCCGCGAGGTGACGAAGATATTCGGAGAGTTTAATGTGTCGGATTTTATGTGGGTTATCAG GAACTTTGATTTGCAGGGGTTTAGGAAGAGAGTTGAGGATATATACACAAGGTATGATGCGTTGCTGGAA AGGATTATCACAAACAGGGAAGAAGTCAGAGAAAAGAACGTACAAGAAAGAAAATTGGGTGTTGGAGAAG GTCATCACGTCAAGGATTTTCTTGATCTATTGCTTGATGTTTTGGAAGAGGACCATTCGGAGATTAACTT CAGTAGAGATAACATTAAGGGCTTGATTTTGGATTTCTTCACCGCAGGAACAGATACATCATCTATTGCA ATTGAATGGGCATTAGCAGAGCTGATCAACAATCCAAGAGTGCTCCAAAAAGCACAAGAGGAGATTGATA ATGTGGTTGGGAAACATCGGTTAGTAAGCGAATCACACGGTCCAAATCTTCCATACATCCAAGCCATCAT AAGGGAAGCACTTCGGCTTCACCCTCCAGTCCCCTTGATCACAAGAAAATCAATAGAGGACTGCATGATC CAAGGATACAACATCCCAGCCAACTCCATGCTATTTGTGAATGTTTGGTCTCTTGCTAGAAATCCCAAGT ATTGGGATAGCCCACTGGACTTCTTGCCTGAGCGATTCTTAAGGCCCGAAAAGGGTGGCCCAGTGGGCCC AACAGATGTTAAGGGCCAACATTTCCAGCTATTACCCTTTGGTACTGGGAGGAGAGGCTGCCCTGGTACT TCTTTGGCCATGCAAGAGCTGCCTGCTATGCTAGCAGCAATGATTCAGTGTTTCGAGTGGAAGGTTGTGA ATCAGAGTGGGGATGTGATGAACGGTGATGGAGCGCTTGATATGACTGAACAACCCGGGATGACAGCTCC GAGGGCCCATGATCTTGTGTGCATGCCGATACCACGAATCGATCAACTTTATGCCCTTCTTGATCCATAG TTTATGCTAAGGCAAGGATTCTCAGTAGTTAAAATTTTTGTGCCCAATAAATTTCTAATCGCATGATTTT GTCGTCAATAAAAGTTGTGAAATACAATCATACGATTAAGAAGGCAATATGAATAAGGGATAAAGATTTT GGAATAGAGGATCTGTACCTTTGTGCTATGATTTGCCCAATATTGCTCTCTTTAACCTATTTTTAGAAAA AAAAAAAAAAAAAAAAA SEQ ID NO: 77 Plectranthus barbatus FS2 >KF606861.1 Plectranthus barbatus voucher RRLH: 22176 clone 2L flavone synthase (FNS) mRNA, complete cds ATGGACCATGTCGAAGCCGCTCTCTTCGCCGCCATCTTCCTCCTCTCCGCCGCCCTCCTCAACCACCTTC TCACCGGAAAACGCCGCCAGAACGCTTACCCTCCCGGCCCGTTCCCTCTTCCCATCATCGGCCACTTACA CCTTCTCGGGCCGAGACTCCACCACACCTTCCACGATCTGACCCAACGGTATGGGCCCTTGATGCAGGTC CGCCTCGGCTCCATCCGCTGTGTCATCGCCGCCACGCCGGAGCTGGCAAAGGAATTCCTCAAGACGAGCG AGCTCGTCTTCTCCGCTCGGAAGCACTCAACCGCCATTGATATCGTCACCTACGAATCCTCCTTCGCTTT CTCCCCCTACGGCCCCTACTGGAAATACATCAAGAAATTATGCACCTACGAGCTGCTCGGGGCCAGGAAT CTCAACCACTTTCTCCCGATTCGAACGATTGAAGTCAAGACTTTCTTAGAAGCTCTCATGCAAAAGGGTA AAACGGGGGAGAGGTTGAACGTGACGGAGGAGCTGGTGAAGCTGACGAGCAACGTGATATCGCAGATGAT GCTGAGCATACGGTGCTCGGGGACGGAGGGGGAGACGGAGGCGGTGAGGACTGTGATTCGGGAGGTGACG CAGATATTTGGGGAGTTCGACGTTGCAGACATTATTTGGTTTTGCAAGAACTTCGATTTCCAAGGGATAA GGAAGAGGTCGGAGGATATACAGAGGAGGTATGATGCTTTGCTGGAGAAGATCATCACCGACCGGGAGAA GCAGCGGCGGACGCAGCACGGCGGCGAGGCCAAGGATTTTCTGGACATGTTTCTGGATATAATGAAGAGT GGGAAAGCTGAAGTCAATTTCACCAGGGACCATCTCAAGGCTCTCATTCTGGATTTCTTCACCGCCGGCA CCGACACTACGGCCATTGTCGTCGGATGGGCGATAGCAGAGCTCATCAACAACCCTAATGTGCTGAAGAA AGCTCAAGCCGAGATCGATAAAGTCGTCGGACTCCACAGAATCCTGCAAGAATCCGACGGTCCAAATCTG CCCTACCTTAACGCCGTCATCAAAGAAACATTCCGGCTTCATCCTCCCATCCCCATGCTGTCGAGGAAAT CAATCTCCGACTGCGTGATCGACGGCTACACGATACCGGCCAACACACTGCTGTTCGTCAACATCTGGTC CATGGGGCGGAACCCTAAAATCTGGGACAACCCGATGGCGTTCCGGCCGGAGAGGTTTCTGGAGAAGGAA AAAACCGGCATCGACATTAAAGGGCAGCATTTCGAGCTTCTGCCGTTTGGCACGGGCAGGAGGGGCTGCC CCGGGATGCTGCTCGCCATTCGGGAGGTGGTCGTTATAATTGGGACCGTGATTCAGTGCTTTGACTGGAA GCTTCCCGTCGACGATGTCTCCGGCCTTGTGGACATGACGGAGCGGCCGGGGCTCACGGCGCCGAGAGCT GACGATTTGATTTGTCGTGTGGTGCCGCGAGTTGATCCTTTGGTTGTTTCCGGCCATTGA SEQ ID NO: 78 Lonicera japonica FS2 >KU127576.1 Lonicera japonica flavone synthase II (FNSII-1.1) mRNA, complete cds ATGTGGATCTTTGACCTCACAATCTCGTTCACCACACTCCTCTTCCTCATCTTCACCACCGCCCTCCTAC TCCTCCTCAAGGTTTTCAAGAAAAACCACAAACTCCGACCGCCGCCTAGCCCCTTCACCCTACCGATAAT CGGCCACCTCCACCTCCTCGGCCCCCTCATCCACCAGTCCTTCCATCGCCTCTCCACCCTCTATGGCCCC TTAATCCAGCTCAAAATCGGCTACATCCCATGCGTTGTTGCCTCAACTCCCGAGCTAGCAAAAGAATTTT TAAAAACACACGAACTCGCGTTCTCCTCGCGTAAACACTCCGCTGCCATTAAACTCCTCACCTACGATGT ATCATTTGCTTTTTCACCCTACGGTCCCTATTGGAAATTCATCAAAAAAACATGCACCTTTGAACTTTTG GGCACACGTAACATGAACCACTTTCTCCCCATTAGGACCAACGAGATTCGTCGTTTCTTACAAGTGATGT TAGAAAAAGCCAAGGCTAGTGAGGGGGTGAACGTGACTGAAGAGTTGATCAAGCTCACGAACAACGTTAT CTCTCAAATGATGTTTAGTACTCGGAGCTCGGGGACCGAGGGGGAGGCGGAGGAGATGAGGACATTGGTA CGTGAGGTGACTCAAATATTCGGAGAATTTAATGTTTCGGATTTTATAAAGTTGTGTAAGAACATTGATA TTGGAGGGTTTAAGAAGAGAAGTAAGGATATACAAAAAAGGTATGATGCTTTGTTGGAGAAGATAATAAG TGAGAGGGAGAGTGAAAGAGCAAGAAGGGGTAAAAATAGAGAGACTTTAGGGGAGGAAGGAGGGAAAGAT TTTCTTGATATGATGCTTGATACTATGGAGGATGGCAAGTGTGAAGTTGAGATAACAAGAGATCACATTA AGGCCTTGGTTTTGGATTTCTTAACTGCGGCCACGGATACAACTGCGATTGCTGTTGAATGGACATTAGC CGAGCTTATCAGCAACCCGGAAGTGTTCGATAAAGCTCGAGAGGAGATCGATAAAGTCGTAGGGAAGCAC AGGCTAGTCACAGAATTGGACACGCCAAATCTTCCCTACATCCACGCGATCATAAAGGAAAGTTTTCGGC TTCACCCGCCAATTCCTCTGCTCATAAGAAAATCAGTCCAAGATTGCACGGTAGGTGGCTACCACATCTC GGCTAACACCATACTTTTTGTCAATATTTGGGCCATCGGGCGAAATCCCAAGTATTGGGAAAGCCCAATG AAGTTCTGGCCCGAAAGATTTCTTGAATCCAATGGGCCAGGTCCAGTGGGCTCTATGGATATTAAGGGCC ATCATTATGAGCTTTTGCCTTTTGGGAGTGGGAGAAGGGGTTGCCCCGGGATGGCTTTAGCCATGCAAGA ACTGCCCGTGGTGCTCGCCGCCATGATACAATGCTTTAATTGGAAGCCGGTGACATTGGACGGAGAGGAA CTGGATATGAGTGAGCGGCCTGGTCTAACTGCTCCAAGAGCCCACGATCTTGTATGCGTTCCCTCCGCTC GAATTAATTCTTTCGATAATTTTTAA SEQ ID NO: 79
Medicago truncatula FS2 >XP_013456065.1 cytochrome P450 family flavone synthase [Medicago truncatula] MISQPILLALILFLLFLLQLFLFKRNNRAKEHLPYPPSPLAIPIIGHLHLLKPLVHQAFRDLSDRYGPLI SLRLGSVPFIVVSSPSLAKEFLKTNELVYSSRKMNIAINTVVYDDATFAFAPYGAYWKFIKKLSTFELLG NRTIGQFLPIRTRELNEFIQTLENKSKVEESVNLTQALLKLSNNIISRMMLSIESSGTDSQAEQARTLVR DVTQIFGEFNISDFIGFCKNLDFQGLKKRALDIHKRYDAFLEKLICDREESRRKAKVEGGCEDRDEKVKD FLDMLLDVFEAKECEVDFTRNHIKSLILDYFTAATDTTAISLEWTIAELFNNPIVLKKAQEEVERIIGKE RLVCEADIPNLPYIQAIIKETLRLHPPLPMIARKGTKDCVVDGKMIKKGSIVCVNIWAIGRDSKTWKNPL EFRPERFLESGKESEIDIKGHDFELLPFGSGRRGCPGMPLAMRELPTVIGALVQCFEWKMLDSEGKLLDQ GKTIDMDERPGLTAPRANDLFCIPVARLNLIPLVQL SEQ ID NO: 80 Lotus japonicus FS2 >BAF64284.1 2-hydroxyisoflavanone synthase [Lotus japonicus] MLVELALALLAIALFLHLRPTPTAKSKALRHLPNPPSPKPRLPFVGHLHLLDQPLLHHSLIKLGERYGPL YSLYFGSMPTVVASTPELFKLFLQTHEASSFNTRFQTSAIRRLTYDNSVAMVPFAPYWKFIRKIIMNDLL NATTVNKLRPLRSQEIRKVLKAMAHSAESQQPLNVTEELLKWTNNTISRMMLGEAEEVRDIAREVLKIFG EYSLTDFIWPLKKLKVGQYEKRIDEIFNKFDPVIEKVIKKRQEIIKRRKERDGELEEGEQSVVFLDTLLE FAEDETMEIKITKEQIKGLVVDFFSAGTDSTAVATDWALSELINNPRVLKKAREEVESVVGKDRLVDEAD IQNLPYIRAIVKETFRMHPPLPVVKRKCVQECELNGYVIPEGALILFNVWAVQRDPKYWEGPSEFRPERF LTAEGGATSIDLRGQNFELLPFGSGRRMCPGVNLATAGMATLLASVIQCFDLQVVGQKGKLLKGSDAKVS MEESPGLTVPRAHNLMCVPLARTNVTSELLSS SEQ ID NO: 81 Glycine max FS2 >ACV65037.1 flavone synthase II [Glycine max] MISESLLVVFLIVFISASLLKLLFVRENKPKAHLKNPPSPPAIPIIGHLHLLKPLIHRSFRDLSLRYGPL LSLRIGSVKFIVASTPSLAQEFLKTNELTYSSRKMNMAINMVTYHNATFAFAPYDTYWKFMKKLSTTELL GNKTLGHFLPIRTREVHDIIQFLFHKSKAQESVNLTEALLSLSNNVISQMMLSIKSSGTDSQAEQARTLV REVTQIFGEFNVSDFLGFCKNLDLQGFRKRALDIHKRYDALLEKIISDREELRRKSKVDGCEDGDDEKVK DFLDILLDVAEQKECEVQLTRNHVKSLILDYFTAATDTTAISVEWTIAELFNNPKVLKKAQEEVDRVTGN TQLVCEADIPNLPYIHAIIKETMRLHPPIPMIMRKGIEDCVVNGNMIPKGSIVCVNIWAMGRDPNIWKNP LEFKPERFLEGEGSAIDTKGHHFELLPFGSGRRGCPGMPLAMRELPTIIGALIQCFEWKMLGSQGEILDH GRSLISMDERPGLTAPRANDLIGIPVARLNPTPFRQM SEQ ID NO: 82 Perilla frutescens crispa FS2 >BAB59004.1 flavone synthase II [Perilla frutescens var. crispa] MALYAALFLLSAAVVRSVLDRKRGRPPYPPGPFPLPIIGHLHLLGPRLHQTFHDLSQRYGPLMQLRLGSI RCVIAASPELAKECLKTHELVFSSRKHSTAIDIVTYDSSFAFSPYGPYWKFIKKLCTYELLGARNLAHFQ PIRTLEVKSFLQILMRKGESGESFNVTEELVKLTSNVISHMMLSIRCSETESEAEAARTVIREVTQIFGE FDVSDIIWLCKNFDFQGIRKRSEDIQRRYDALLEKIITDREKQRRTHGGGGGGGEAKDFLDMFLDIMESG KAEVKFTREHLKALILDFFTAGTDTTAIVCEWAIAEVINNPNVLKKAQEEIANIVGFDRILQESDAPNLP YLQALIKETFRLEPPIPMLARKSISDCVIDGYMIPANTLLFVNLWSMGRNPKIWDYPTAFQPERFLEKEK AAIDVKGQHFELLPFGTGRRGCPGMLLAIQEVVIIIGTMIQCFDWKLPDGSGHVDMAERPGLTAPRETDL FCRVVPRVDPLVVSTQ SEQ ID NO: 83 Gerbera .times. hybrida FS2 >AAD39549.1 flavone synthase II [Gerbera hybrid cultivar] MNTLQLIFLLFFFPTLLFLYCLPYKRNQNHRRLPPSPPSFPIIGHLHHLGPLIHQSFHALSTRYGSLIHL RLGSVPCVVVSTPDLAKDFLKTNELAFSSRKHSLAIDHITYGVAFAFAPYGTYWKFIKKLFTVELLGTQN LSHFLPIRTHEIRELLRTLMVKSRAKERVNLTEELLKLTNNVISQMMMSIRCSGTNSEADEAKNLVREVT KIFGQFNVSDFIWFCKNIDLQGFKKRYEGTHRRYDALLERIIMGREENRRRGKIKDGEGKDFLDMLLDVL EDGKAEIKITRDHIKALILDFLTAGTDTTAIAIEWALVELINNPNALEKARQEIDQVIGDERLVQESDTP NLPYIQAIIKEALRLHPPIPMLIRKSTENVIVQGYDIPAGTLLFVNIWSIGRNPQCWETPLEFKPHRFLD GGDLKSSLDIKGHNFQLLPFGTGRRGCPGVNLAMRELSVVIANLIQCFDWDVVGERLLNTDERAGLTAPR AVDFVCVPLERGNTLKILGSN SEQ ID NO: 84 Gentiana triflora FS2 >BAD91809.1 flavone synthase II [Gentiana triflora] MMLLDFFYSASIFVLSILLFRAIYTTKNRRLRLPPSPFGLPIIGHLHLLGPKIHHSFHNLYKRYGPIFHL RLGSNRCIVVSTPELAKEFLKTHELDFAYRKNSSAISLLTYHVSFAFAPYGPYWKYIKKITTYQLLGNRN LTHFEPIRRLETNRVLYDLMVSSKHGKSVNLTEEMIKLTSNIISQMMLSIRCSDTESGATNVRNVIRDVT ELFGEFDVSDIIWFCKNIDLQGIKKRANGIHERYDALLEKIISDRERTRIVEKKNSGAGGGSGDGERNDF LDILMDAMEDDTSEVKLSRNHIKAIILDFLTAAIDTTAISLEWALSELINNPRVLKKAQEEINNVVGNQR LVKELDTPNFPYIKAIIKETFRLHPPIPMVIRKSANDIQVAGYDVPKNTMLFVNIWSIGRNPSYWEKASE FSPERFLADTDGGGLSHMDINGQYFELMPFGTGRRGCPGMPLAMQELPTVLSLMIQCFDYIPLDFKGEKA ERVMDMSERPGLTAPRANELMCLLKPRIDLPNLLGNVKGE SEQ ID NO: 85 Antirrhinum majus FS2 >BAA84071.1 cytochrome P450 [Antirrhinum majus] MSTLVYSTLFILSTLLLTLLTRTRRKTRPPGPLALPLIGHLHLLGPKLHHTFHQFSQRYGPLIQLYLGSV PCVVASTPELAREFLKTHELDFSSRKHSTAIDIVTYDSSFAFAPYGPYWKFIKKLCTYELLGARNLSHFQ PIRALEVNSFLRILYEKTEQKQSVNVTEELVKLISNVISNMMLGIRCSGTEGEAEVARTVIREVTQIFGE FDVSEIVWFCKNLDLQGIRKRSEDIRRRYDALLEKIISDRERLRLRGGGGGGGGEVKDFLDMLLDVMESE KSEVEFTREHLKALILDFFTAGTDTTAITTEWAIAELISNPNVLKKAQEEMDKVIGSQRLLQESDAPNLP YLNAIIKETFRLHPPIPMLIRKSISDVVVNGYTIPAKTLLFVNLWSMGRNPNYWENPMEFRPERFLEKGT GSIDVKGQHFELLPFGTGRRGCPGMLLGMQELFSIIGAMVQCFDWKLPDGVKSVDMTERPGLTAPRANDL VCQLVPRIDPVVVSGP SEQ ID NO: 86 Theobroma cacao FS2 >EOY17412.1 Flavone synthase II, putative [Theobroma cacao] MMLQLLSYSTLYIASFFLVKTILISINNRPKLPPGPIALPVIGHLHLLGPFIHQTFHKFSSRYGPLMYLR LGSIGCVVASNPELAKELLKTYELAFAARMHTAAITHLTYDSSFAFAPYGPYWKFIKKFSTYELLGNRTL SQFLPVRTKELHRFIKFLLDRSKAGESVNVTQELLKLINNTISQMMLSMRCSGSGNPADGVRALVREVTE IFGEFNISDSIWFCKSWDLQGFRRRFEDIHRRYDALLERIIRDREEVRKSKKECDQRDNGNEVKDFLDMM LDVLENDNSEMQLTRNHIKALVLDFLTAGTDTTAIVLEWALAELINNPEVLKLAQKEIDQVVGTSRLVEE SDSPRLQYIQAIIKETFRLHPPVPMISRKSIQSCKIKGYTIPADCLVFVNIWAIGRDPTVWADPLRFQPE RFLKSYEGDHSSGPIDVRGLHYQLLPFGTGRRGCPGASLAMQELPTTLAAMIQCFDWKPAATSKTGDGVD MSERPGLTAPRAKDLECVPVARFTPTVFAT SEQ ID NO: 87 Camellia sinensis FS2 >AHB32110.1 flavone synthase II [Camellia sinensis] MFDLISIATLFFVIISTTILLLSINHFKKPPHLRRRLSLPPTPFALPIIGHLHLLGPIIHRSFHDLSSRY GPLFHLRLGSVPCFVVSTPELAKEFLLTHELKFSSRRDSIAIQRLTYDSAFAFAPYGPYWKFLKKLCTCD LLGARSINHFLPTRTRELHCFVRLLIDKAVACEPVNITKELSTLANNIISQMMIGVRCSGTTGEAEEATT LAREVIKIFGEFNVSDFMWVIRNFDLQGFRKRVEDIYTRYDALLERIITNREEVREKNVQERKLGVGEGH HVKDFLDLLLDVLEEDHSEINFSRDNIKGLILDFFTAGTDTSSIAIEWALAELINNPRVLQKAQEEIDNV VGKHRLVSESHGPNLPYIQAIIREALRLHPPVPLITRKSIEDCMIQGYNIPANSMLFVNVWSLARNPKYW DSPLDFLPERFLRPEKGGPVGPTDVKGQHFQLLPFGTGRRGCPGTSLAMQELPAMLAAMIQCFEWKVVNQ SGDVMNGDGALDMTEQPGMTAPRAHDLVCMPIPRIDQLYALLDP SEQ ID NO: 88 Plectranthus barbatus FS2 >AHJ89438.1 flavone synthase [Plectranthus barbatus] MDHVEAALFAAIFLLSAALLNHLLTGKRRQNAYPPGPFPLPIIGHLHLLGPRLHHTFHDLTQRYGPLMQV RLGSIRCVIAATPELAKEFLKTSELVFSARKHSTAIDIVTYESSFAFSPYGPYWKYIKKLCTYELLGARN LNHFLPIRTIEVKTFLEALMQKGKTGERLNVTEELVKLTSNVISQMMLSIRCSGTEGETEAVRTVIREVT QIFGEFDVADIIWFCKNFDFQGIRKRSEDIQRRYDALLEKIITDREKQRRIQHGGEAKDFLDMFLDIMKS GKAEVNFTRDHLKALILDFFTAGTDTTAIVVGWAIAELINNPNVLKKAQAEIDKVVGLHRILQESDGPNL PYLNAVIKETFRLHPPIPMLSRKSISDCVIDGYTIPANTLLFVNIWSMGRNPKIWDNPMAFRPERFLEKE KTGIDIKGQHFELLPFGTGRRGCPGMLLAIREVVVIIGTVIQCFDWKLPVDDVSGLVDMTERPGLTAPRA DDLICRVVPRVDPLVVSGH SEQ ID NO: 89 Lonicera japonica FS2 >AMQ91109.1 flavone synthase II [Lonicera japonica] MWIFDLTISFTTLLFLIFTTALLLLLKVFKKNHKLRPPPSPFTLPIIGHLHLLGPLIHQSFHRLSTLYGP LIQEKIGYIPCVVASTPELAKEFLKTHELAFSSRKHSAAIKLLTYDVSFAFSPYGPYWKFIKKICTFELL GTRNMNHFLPIRTNEIRRFLQVMLEKAKASEGVNVTEELIKLTNNVISQMMFSTRSSGTEGEAEEMRTLV REVTQIFGEFNVSDFIKLCKNIDIGGFKKRSKDIQKRYDALLEKIISERESERARRGKNRETLGEEGGKD FLDMMLDTMEDGKCEVEITRDHIKALVLDFLTAATDTTAIAVEWTLAELISNPEVFDKAREEIDKVVGKH RLVTELDTPNLPYIHAIIKESFRLHPPIPLLIRKSVQDCTVGGYHISANTILFVNIWAIGRNPKYWESPM KFWPERFLESNGPGPVGSMDIKGHHYELLPFGSGRRGCPGMALAMQELPVVLAAMIQCFNWKPVTLDGEE LDMSERPGLTAPRAHDLVCVPSARINSFDNF SEQ ID NO: 90 Promoter sequence for Medicago truncatula IPD3 CCTTTAATGACGGATAGTGGTACGGTATATCATTGAATACTTAAGATTCATCCCCTTGCGGGGCTTGCAGTATA CTGCATTTTAGGCAAAAAAAAAATGATGTTGTAACAAACTCTGAAAATTTCAGGCTTATTGTGTGTAGGATGC CGCGGCATTTTTATTTGTCTTTCAACTGTGATCCAGTAACGGAGAAATTTGTTGATTATTGTTATATTGATTGT- T CCTTTCTTATGTCTTAACTACTACAGAGTCTTTTTTTTAGTCGCACGACATTTAGAACCTCAACTTTTCCAAGT- A GAGCCTGGTGTATCTGTATTAGGGGCATTACAATTGTCTTAGGATACGTTTGGATTGGTGGAGTGAAAAGTCG CAAAAGCTGTGAAGTTTGACATGATGTCATAGCACCTATTGAGGAGTTAAACATCTCGAATTAAGTTGTGCCG TCGGAAAACGCTCTTAGCGCAATATCTTCATTTCACTGTGAATGCACTAGCAGGTCGGAAAACGCTCTTAGCG CAATATCTTCATTTCACTGTGAATGCACTAGCAGATGGCACGATGAACAACCTCTCATGAAGTCTCTGTTGGG ATCTACTCATTGGGTAGAAATTCGAAATCAAAGCCATTGCTATAGTCCAGCAGAAACATATCAAATAGAGTTT AAATAAGCTTAAAGATTCTGAGTGCATTTTGTTTCAGCTTTAAAAAAAATAGATTTTGAGTTAAAAAATCTCTA GAGATTTTAAAAAAAATCTAAAGCTATTTCTATTTGTTTACTATCATAAAAAATCATTTTTCTAAGATTTAAAG CTCTTACACTTGAGTTCTTTATGTTTAGAAAAAAAATAGATTTTGGAAAAGCTACTTGAAATAGCTTTTCATTT TAAAGCTAAAAATGATTTTTTTAATAAAATGGATTTTTTTAAAATCTAAAACAAATACTAAAAAAATAAAAAA AGTGATTTTTTTAGATCAAAAATAGATTTTTTTCAAAAAAATCCAAAACAATCGGGCCCTCTATGAAAACATG AGAATTTAAGCTAACCAGAACTTAAACTTCGTTTAAAATTGTTGAAAATACTGATTATAAAAGAGATAAGGGA TATAAATATTACACACAATAATTTATGTCCTCACCCCTATATTATTAAACATAAAATGTCAATAATGATAGGCA CTGTTTTGTAGGTCAATCTTTGACTTGTCACCAAGAAATGAAATGCTGCCGACTCATCAAAGAAGGAGCCTTT AATTTATTTGTTTTTTACTATAATATTGGGACACTACCGCTTAATAGTAGTAACTAATCTTAGTTGGAGAATTT GAAAAACAAATAAGATGTGCTCTTCAATTTCAACCAAAAATTTTCTATATGCATGAGACAGAAATTAAAACTC CGACCATATGTTTAAAAAGCCTAAATCTCTTGTCTGTTCAACCAATATATTTTTGATGGAGCCTCTAATTACTA ATTAGTGATTAATCAAATATTAATTTTGAAACTCAACTCTCAGCCTATGTCACAGTGTGAAAAAAGCTAAAAA GAGTAGCCTTGTCTTTTTTGTTGAAAATTTGGGAAACTTATTGCCGGATGAACCGAATATACCCTTTGAATGAT AACGCCATTTCATGTTTTGACTCTAATATTCAAAACTCAAAAGTCCAAACTAATACATGTATTTTTTTATTAAA AAAATAATATTAGCAATCAAAGTCTATTTCTTGTACTCCCTCCGGTCATATTTATAATCAAAAAATAATTTTTT AGATACATTGAATAATTAACTAATGTATCTAACATATAAATGTGACCGGAAATATTAATTATTCGATGAACTT AAAAAATTATTTTTTACTTATAAATGTGACCAGAATGTGTACTAATTATGCCTGCAATGATGCACATGTGAAG ACATTATTATTAATGCTACTACTACTATTGTCATGATTTTTGAAAATATTATCTACAATCGTAGATGACCATTA GCTTAAATAAATAAAGGTCCAGTTTATTTAGACTGGATTTTGTATGAGTTTTTTTTTTATCTAATAATTAGCCT- A ATTCTTTACTTCTAAAAATATTCTTATAAATATTTACAGGGAAATTAAAAATTAAATTAATCTTTTTTATGAAA GAAAATTAAATTAATCATAAAATTCAAAATATGTAGATTAATTTTGATTTACGCTAAAACCATTATATAAAGA TACATAATCATTTCAAGTAAAAAAAGATACATAATCATATGGAGATTATCTTAATCATTTTTTTAAATACTTTT CACCTCTACCTCAACGAGCAGCAGTTAAAACAGGGAAACTACTAATAAACTATCGTAATGATGTGACATGCAA GATTTGTTTTAGCTGTTGGTTCAACTAGAAGCCAAGCCTTAAAATCTTTTTTGCTTATTTAAATGCTACCTTAT- T GTAATTGATATTAAAGGATACAAGTAGTTTTTATTTTTATTTTTTAAATATCATATCATTCACTTCAAAGTTAA- A AATTATTCTTTTGAAATATGAAGATCCGTTTAAAAAGCTAACATTTCTCAACAGACGCTCTTTCATATGTACCA ACTCGATTAGATATCATACTTGTATAGTTACGAGATATAGTTATTTATAAACCGTATCGTGTCATATTATATTG GTAGATGAAATAATATAATATACTGTATAATTTGTCTAACAAGACTAGTTGCATGATTAGGAGACGTGCCTAA TCATGTCCTTATCTTTTTGTCCTTAAAGTAACCAAAAATAGAGTTGCAAAGGTGTTATATCTACTTGTTTTAAT- A TGTTTAATTCTGCAAATGATACATCACAAATTATATATATATAATAGATTAAGTGTGTAGGTACATGTATCTTC TATAGCAACCATAGACTCATTTAGAGGATCACTTTAATATCTACACTGTAATCACACTAACTAGTTGAATAAGT TGCATTGTCAAGAAAAAATAATTAGTTCAATAGGTTAAACCAATGTGATTATAATTAGATCAGATCAGCTTTTT GAATCGGAATAGGGGTCTGATCTGGCTCATGCAGTCCATGAGAAACTACCATAATGTGATTATTTACTCGATG GCATATTAACCAATTTGATTCTAAGACTTTCACCCAAAACATTGCTCTCAATTCAAGTAGATTGTGATATGTAA TGGCCGGAGTTTGAACTCTAAATTTCTTATGCGTTTGATTTGTTAAAAAATAAGGATAGGATATGACAACTTCA ATTGTAAGGTGTTTAATTTGTAAAATTGTTTTTGGAACATGACAAACTAGAGGTCAGAGATTGGACGAAAACT GAAATTCTTGACCCTCACTAAGCCACGACACAACTTTTTGTCTCACGTACACGTTGTCTAAAATATCAAAAAGT TTTTTGTCCATAAAAATTTGTATAATACCAAAATAGTTTTTTTTTCATAAAAAGTTGTCATGTGTTGTTCTGCT- T TGTGTTATGATGTTATGTTCAATACTTTTGGTTTAACATATCAAACGCACCCTTAAAGATGAATTTCTAGTAAT TATGTTACGTGACCGGAAAAAAAAAACTTTCACCCAAAATATTGCTATCAATTCATATGTTGATTATAGATTAT GTCAGGTTCTTAATTAGTATACGTTTTTTGAGAGGAGGTTGTTGATATTTTTTTTTTGAAAGACTTGTATATAA- A TACGACTCACTTAACATTATGATTGTGCGCATTGAAGAAGAAAATGCAAAAATCCTCTCTTAATTATTAATTAA AAGGACATTAATGATAATTTTACAATCTTTTTTTTTTTTTGAGAGCAATGATAATTTTACAATCATCTTCAATG- T GATTTCAATTATGTTCCTGAGGTTACAAAGTCGAACTCTTAATACCGAGATAACACCTCATCAACGTATACTTT CAATTTTTTTCACTAGTTTGATTATTTTCATTAATAATTTGAGCTAACTTTATCATATCATGTGAATGGAGTGA- G ATTAACAAAATAAGATTCACTTAAGAACAAATGGATCTGGATTATTCGAATATGAGTCATTACCAACTTTACT TGACCTCTTTTCACTAAAAAAGATGGTTAAGACATAAAAATAAAGTTTAGAAAATATCATAAAACTGTTTGAA AAAGATCAATTTATTATTCATAATTAAAGAGTAAATAAGATAGGTTAGACACCTTCATCCGAATTCAAACCCA AGACCTTGTAGTATGTGAGTTCTTTTACATAATTTTTTTACCTTTACAAAAAAGGTAAAAAAAAATAGTATAAA AAAAAAAAAGATACATAAATTTTTTTATACATGTCTAATGATACTTCTTTTATTGATCAAAACATCATTTAAAC AAAATCTTTAAAAGAACTAATTTCAGTAATCATAAAATCTTTAAATCTAAAATTCATCTTGTAGGGCTTCTTTT TGGTAACTTTCATTTTCATTTCTTTTTTGGTTTTAGACTTTTAGAAGTATTTGCCCCATTCTTTCCCAACACCT- CT ACTTCTTCGAGATTTCCACATATCCGTGTGATTATGTTAAGAAAGTCAACTCTTATGTCACCTTAAAAGTTGAT TCTAATACAGTTTTGTCATCTATGACCACAATAAGACACTATATAATTAATATCAATGATCAATAAGGTGACA AATATTGGGATATAAGATTAGGTGTACTTCCTCTAAAAAAAATTAGGTCCTTAGTTAGTTTGTAAAATAGTATT AGAGATTTAGTGTATATTGTTGTAATATAAGTATATAACCACCTCATTATAGAGGCACTCTTTATGATTTGTAA CATACTTAAGGTTAAATATGTTTTTGGTCCCTGTAAATATGTCAACTTTTCGTTTTAGTTTCTCTAAAATTTCC- T TTCAACTTTTAGTCCCTCAAAAAAATTTCATCTTCACTTTTGGTCCCTCCTTTAAAATAAACTCATATGTAGAA- T TCATATATTTGAATAAAATTTTGCAGAAAAATTCTTAATATTATAAGAATCTCTCCCAAAAAAATTTAGAATTT TTTAACAAAACATGAATTTAATATGAATTTTTATATTTTTGTGGTTAAAAATTTATATTAAATTTATGMTGTT AAAAAATTCTAATTTTTTTTTTGGAAAATATTTTTACAATATTCTACACATTTCTGCACAATTTCATTAAAAAA- A AAAATACTAAAATTAACTTTAAAATAGGAACCAAAAGTAGTGATTGAAAATTTTATAGGGACTAAAAGTTGA AGGAAAATTTTAGAGGGACTAAAATGAAAAGATAATTAGGGACCAAAAACATATTTAACCCTACTTATTAATT ACCATCAATACAACAATTATATTCTTCTTTCACTAAGTGGAGTCAAAAGAAATAGTTTATATGAAATAATAAT ATCACAAGTCACCTACACATATAAATATTTGTATAAAGTGATGGAACACACATAAATTTCATTAGATAAAAAA ACGAATAACACTTGTACGTAACTAATAATTTATACGACATGACTAGACTTTAATGTTTTACATAACAGAATAA ATTTTCACAGTCCTATAAAGAATTTATGGACGTGAGGTGAACAAACATTGCTGAAACATGCTTAGCAAACAAT GAAAGCACCACCTTAACAGCTTCCTATTTTAATACAAAAAACAACCAATCAATGTTCCACAATATCCCTTTCAT AACACCATCATCTAATTGCATCACCTACGGCATTTTATTTATTTAATAATATCAAAAGGTGACCAAAATTGTCA TTAAATTAATCAAAATGACCCTCTTTGCTTGATTCAAAAGCTACAAATTTTTTTCATTTTTAAACCTGTCCATT-
A AATTTCCACACACGGTTTTCTAACCTTTGAAGATTAATTTTTAACATCACAATCTTTTCTCTTTCATTGTACAC- A AGAGACAAATGAATGGTACATGGAATCTTTTGAGTATTTTTTTCACTCTTAGATGTCATAGCCACTGCTCTAAT ATTTAGTATTTATTAATTCTATTGACAAAAACAAAAATCAGAAAAATATTTACTATTAGTAAATGCCAAGTTCT AAGACAAAGTTTATTTATCTATATGCAAGATTTCTTTCAAGTTTCACGTGTAAATTGTTGTAGGAAGCTATTCC TTTAACTGTTTCATGTTAATTAGTTACTACATGCTTTTGGAATAAAACAGTTCATAAAGTCTTTCTTTCATTTC- C TTGGTTTTTGAGAAGAAAAAATAGTTGCTAGCTTAGGTTGAATTTTCATTGAGTATTCAAAATTCTCTCCCTTG GTTTTTGAGAAGGGTATTGTGATGAATAAAGAATTCAGCTGAAAATTCATTTATGAAACCTGAAAGATCTTAG CCAAAAACCTGTGTTGAAAATAAGTTCAAGCATCATTCAAGTGTTTCTTTATAATCAAGCATCTTTAAAGTGTT GAA SEQ ID NO: 91 terminator sequence for Medicago truncatula IPD3 TCACAACATTTTTATTTCTATAATAATAAATTTGTTATTTTCAGAATATTTTTTATTTAATAAAAATAACCAAA- CATTTTTTC ATCATTACAACAGGTATCTTATCTATTCATTCAATTTAACTTTTACTATTTTTTGTTTTCATTATACTTAATAA- TCCTCAACA TCAATTACTAAAACATCCTAAAAACTGAATTTTTTAATAAAAAAGGAATTTCACCCCTATGAAAGGATACTATC- CTTTGAGCA TGTGTGTGAAAAGATGGCTTTTCCTTTATAATGTTAACAATAACCTTCACACAAAATAATAATAATAAATCCTC- TTAAGACAA AGTTTAGTGATAATTTGTCACATCTAAGTTTATTATGAGCAAGTCAAAGATAACTATAACTTCATAAACATTTC- TGTTGTGAC ATCGTGCAACCATCACAAAGCTACGCCGTATGATGGGAGGTGGTCAACCACAGAAATAAAAATGAGCTTAATTA- GACTCTGAT AGAGTACACGTTTCTACTAAAATCATTCCATCAATCCAAACACGACCACAATGGCTTTTACAAAACTGTTAATT- AAAGTGTGT TTGTGACTCGTCATCGTTTGTAACGGGAACTTAGAGACATATTTGATGTAAGACAACTATGTAAACCACTATTA- ATGAACATA ATATTTTAACCAAAAGATTGCATTTTTTTTTTCTGAAGTAACAACAAGAACTCAGTAACTATTAGTACATTTTT- CATTTTCAC TCGAACTATACACGACTTCCTTATTGGTGTAGATGGGACAATAG SEQ ID NO: 92
Sequence CWU
1
1
9212445DNAMedicago truncatula 1tttctaacct ttgaagatta atttttaaca tcacaatctt
ttctctttca ttgtacacaa 60gacaaatgaa tggtacatgg aatcttttga gtattttttt
cactcttaga tgtcatagcc 120actgctctaa tatttagtat ttattaattc tattgacaaa
aacaaaaatc agaaaaatat 180ttactattag taaatgccaa gttctaagac aaagtttatt
tatctatatg caagatttct 240ttcaagtttc acgtgtaaat tgttgtagga agctattcct
ttaactgttt catgttaatt 300agttactaca tgcttttgga ataaaacagt tcataaagtc
tttctttcat ttccttggtt 360tttgagaaga aaaaatagtt gctagcttag gttgaatttt
cattgagtat tcaaaattct 420ctcccttggt ttttgagaag ggtattgtga tgaataaaga
attcagctga aaattcattt 480atgaaacctg aaagatctta gccaaaaacc tgtgttgaaa
ataagttcaa gcatcattca 540agtgtttctt tataatcaag catctttaaa gtgttgaaat
ggaagggaga ggattttctg 600gtttatacaa gaattcaagt gaggagttat tcttgaagac
agtgatggag agtcctattg 660gtatgccggt acctaccatg gagatgttag gattcaagac
tgtttctcaa agctttcgca 720ccgatagtga agagcttttc aaacgctggc taacaaatga
tcaagaggga tacaattcat 780caagcatggg acttaacagt cgtttgtcga agagaatatc
aactgaaata gctaatatgt 840ctaatcaaca acacattggt gtggcttcag aaggaagaaa
caatgataaa tcatgcttac 900aaaataactt cttggcaaat gatgtttcaa gtgatttcaa
ttttccaatc agagatcctg 960ttgatagaga attgcaatct agtaacttgt ttctggccaa
ggcctggttt attaccgatc 1020aacgaatgac aagaagccgg tcttctgaat tgcggcgaag
gtatactgaa atgcaaaatt 1080ctcaagcacc acaaggattg gattctatgt tcatggttcc
tgagcatgat actaacacta 1140taaaagaaga acttgcaaat tttaatgggt ttgattacct
ttccatgtgt gagttaccaa 1200gccaaaaggg cacattcatg tctccatcca actcatcttc
gtctaccttc aacacacatc 1260aattggttga tgtagataaa gtttcatctt gtgtaagtat
gctaaaaggt acattacagc 1320gcaagaaact cgaatgccaa gtcgagaaag aagctgcaga
agatggcttg aatgaaatat 1380tttgcattcg agaacctctt ttccaatcag cttttaatga
agaagaaagt tggaatcaac 1440aaaagctagt aaacgttcaa ggagatttta ccgatcaagt
taacgatccc ggagtcatgc 1500aaacccttga aggaaccaca aactttgtct tagatggttt
tgcaaatcag acgaaccaaa 1560tacaaggcag aacagcttct ggagaaccgt ctcaaagtga
atcttctgct gctgcaccag 1620taatctcatc tggcttagat gcatgtgaag gtcccagcaa
ttcaaatcaa actcttggtg 1680atagctcatg gaaacaagtg ggagaaagca ctcaaaataa
agtcagaggt gtcagagaac 1740agataatgga taatctgaaa gatgacagaa agaggaaaag
tctagaaaga tatggatctg 1800taacatcagc tgtttcagat ggcaagatgg ataacacaaa
aaagcggagg gtggagcgct 1860caagaaaaat ggctgaagca aaggaaagaa atttgacacc
aacaattccc tcagatatgc 1920aagctatctt gaagcgatgc gaaaaccttg agaaggaagt
tcgatcacta aagcttaatt 1980tgtccttcat gaataggaag gattctgaac aaacaaagca
gatagaggac cttcagaagc 2040agaatgaaga cttggcggat gaaaaagagc gcctcctcga
agagattgaa agaattctat 2100cagaaactgg aaagatttga tgttttgttt cgctgttata
tccttatcct cgtcagaaac 2160aatgtagtac tcagacaagc taaaaatctc accacagttt
acttgtggat gaaacagctt 2220aggtaaaagt gaaaacagtg attaatagtg aacctatgga
gtctattagc aaaatataaa 2280tgcatggaat ctgagatatt agtaatgaca ttatatatct
ggtaaaatct aagtgttatt 2340caaaatttga gccatataaa tgaatccggt aaatttaaac
atggtcaagt gtacccacca 2400acctcaatca tatgtaacaa acaaatatct tcaatttgtt
tatgc 244521872DNALotus japonicus 2ttgttgctct
gttgcatgtt aatttctgtg ctatttggat aaaacagttc atgaactgat 60aatagtaaag
tcttcttttc ttcttttttt tatcaggaat aattgctagg ttgacatgat 120taaaaaaatt
gggttttggg gttgattttt tagagtgata tatggttttg aagaagggta 180ttatgatgat
ggatgacaga gaatttagat gaaaattctg ttctgaaacc tgaaagtgct 240gttgagccaa
acttgagttg aaaacaacag cttcaattgg aaatggaagg gagggggttt 300tctggtttat
atagaaactc aagtgaagaa ttgttcctga agacagtgat ggagagccct 360attggtatgc
cagttccttc aatggagatg ctgggtttca agaatgtttc tcaaggcttt 420cgcgcagata
gcgaggagct tttcaaacgc tggctaacaa atggagaggg atacaattca 480tcaagcatag
ggtttagcag tcgattatca aagaggatat ccactgaact agttaatgga 540tctaatcagc
tacaagttgg tgtagcctca gatggaagaa acaatgacaa accattcata 600caaaataacc
ttttggcaaa tgatgtttca ggtgatttca attttccaat cagagatcct 660gttgatagag
aactgcaacc tagtaacttg tttctagcca aggcctggtt tctcagtgat 720caacgaatga
caagaagccg gtcctctgaa ttgcggcggc gatattctga aatgcaaaat 780ggtctagcca
cacaaggaat agaatccatt tgcatggatc ctcagcatgg tgctgaggca 840acaaaacaag
aagttgcaaa tttcaatggt tacaattatc tctctatgtg tgagcttcca 900agtcaaaagg
gttcattcat gtctccgtcc aactcatgtt catctaactt caacacacct 960caatttggcg
acatggataa agtttcatct tgtgtaagta tgctgaaagg gacattacaa 1020cgccggagac
tcagcagtca acttgagaaa gaagctgcag aagatgactt aaatggaatt 1080ttttatcctc
aagaacctct tttccaaact ggctttgatc aaggacaaga aaactggagt 1140aatcaaacgc
cagtaaatgt tcaagtagac tctattggtg aagttaagga tcatggagtc 1200ctgcaaacac
tagaaggatc cacaaaccct gtcgttgatg gttttgcaaa tcagataaac 1260caaatctatg
tcggaacagc ttctggagaa ccttctcaaa gtgaatcctc taatgctgca 1320ccagtaatct
cctctggttt agacacatgc gaaggtccca taaactcgaa tcaaactctc 1380tgcgaaagct
catggaaaca agtaggagtg agtaaaagtt cagaaaatac tcaaaataga 1440gtcaaaggtt
tcagagaaca gatcatggat aatctgaaag atgataagaa gagaaaaagt 1500ctagaaagat
atggatctat aacatcagct gtttcagatg acaagggaga caccactaaa 1560aagcgtaggg
tggaacgctc aaggaaaatg gctgaagcta aggaaagaaa ttcgacacca 1620tcagttccct
cagatatgca agctgtcttg aagcggtgcg aaaaccttga gaaggaagtt 1680cgatcgctaa
aactcaactt gtccttcatg aatagaaagg attctgaaca aacaaagcag 1740atagaagacc
ttcagaagca gaatgaagag ctggcagatg aaaaagagcg cctcctcgaa 1800gagattgaaa
gaattctatc agaaactgaa aaaatgtaat gatatgagaa tcaatgttgt 1860gctcaaacac
gc
187231612DNAPisum sativum 3ttgagctgaa aatcggttca agaagctttt gagtgctggt
tgaaatggaa gggagaggat 60tttctggttt atacaagaat tcaagtgaag agttgttctt
gaagacagtg atggagagtc 120ctattggtat gccagtacct accatggaga tgttaggatt
caagaccgtt tctcaaagct 180ttcgcgccga tagcgaggag cttttcaagc gctggctgac
aaatgaagag ggatacaatt 240caacgagcat gggacttaac agtcgattat cgaagagaat
ctccactgaa ctagttaatg 300tgtctaatca gcaacatgtt ggtgtggctt cagaaggaag
aaacaatgat aaatcatgct 360tacaaaatag ctttttgaca aatgatgttt cgggcgattt
caattttcca atcagagaac 420ctgttgatag agaattgcaa tctggtaact tgtttctggc
caaggcatgg tttcttaccg 480atcaaagaat gacaagaagc cggtcttctg aattgcggcg
aaggtatacc gaaatgcaaa 540atactcaagc accacaagga ttggattcaa tgttcatggc
tcctaagcat gatgctaaca 600ttataaaaga agaacttgca catttcaatg gttttgatta
cctttcaatg tgcgaaatac 660caagtcaaaa gggctcattc atgtctccat cgaactcatc
ttcgtctacc ttcaacacac 720aacaattggt tgatgtagat aaagtttcat cttgcgtaag
tatgctaaaa ggtacgttac 780aacgcaagag actcgaatgc caagtcgaga aagatgctgc
agaagacggt ttaaacgaaa 840tttttggtat tcgagagcct cttttccaat ctggttttaa
tgaaggacaa gaaaattgga 900atcatcaaaa gctagtaaat gttcaaggag attttaccga
tcaagttaag gatactggag 960tcattgaaac acttgaagga gccgcaaact ttgtcttaga
gggttttgca aatcaaacga 1020gccaaataca cggtggaacg gcttccggtg aaccttctca
aagtgagtct tctgctgctg 1080caccagtaat ctcatctggt ttagatgctt gtgaaggacc
tagcaattca agtcaaactc 1140tttgtgatag ctcatggaaa caagtaggag aaagcactca
aaatcgagcc aaaggtgtca 1200gagaacagat aatggataat ctgaaagacg acaggaagag
gaaaagacta gagagatatg 1260gatcagtaac atcagctgtt tcagatgaca aggtggacac
aacaaaaaag cgaagggtgg 1320aacgatcaag aaaaatggct gaggcaaagg aaagaaattt
gacaccaaca attccctcag 1380atatgcaagc tgtcatgaag cgatgcgaaa accttgagaa
ggaagttcga tcgctaaagc 1440ttaatttgtc cttcatgaat aggaaggatt ctgaacaaac
aaagcagata gaggatcttc 1500agaagcagaa tgaagagttg gcagatgaaa aagagcgcct
actcgaagag atcgaaagac 1560ttttatcaga aactggaaag atttaatgtt ttgttgtttt
cttatcatgt cc 161241612DNASolanum lycopersicum 4atggaaatgg
agggaagagg ttattcagat ttctatagaa acacaagtga agaattgttc 60ataagaacta
tgatggacaa ctcagtagga ggagtgccag ttcctacaat ggagatgtta 120ggttttagaa
acatccctca ttctcttcga accgacagtg aggaactttt caaaagctgg 180ctcacaagtg
cagagaataa tggcagtgat tctacaccaa tggctcgtgg tcgacaagga 240tcacgaagga
tctccagtga acttgctggt ctatccagtc agcaaaatga ggggattcag 300aaaagaaaaa
tggccgatac tcaacagcca cagaatacat gtactgccat tgaatcatct 360agcaacctta
ataaacattc aaccaggaac gcgacagata gggaaatgca agctagtaat 420ctgtttttag
ccaagacctg gttccatagc tctcagccca tgacgagaag tcgttcatct 480gagttaagga
ggaggtatgc agccatgcaa aactcacagt cttcactagc tcgtgaatcc 540ttgcaaaata
tacctggaaa tgctgttaat agcttcaaag aagaagtttc tcatcccact 600gggtacactg
acatgtcaat gtgtgaaatg accaaccaac ctaatacttt tatgtctcca 660tcaaattctt
cttcatcaac ttttgaagca cagcaagtgg atggtgtgga taatatttct 720tctgttgtaa
gcatgctaaa ggggacctta gagaggaaga aattgacaaa ctatcatact 780gcgagggaag
ccattgagga gaatatgttg gggtgttatg gtaatcaaga aatcttttgt 840aactccgaca
tgaatcaaca tccagggaat catatttctc tgaatcaagg gacatatcag 900gacacacctg
ttgttcaagt cagagatacg gggatcccac aaacagttca agggtcatta 960gatgccgtct
tagaaagtat tatggctccc tcaaacccaa tccagataga catggtaaca 1020caggaacctt
ctcaaagtgg atcttctgtt gcagcaccaa tactttcaat tgattttgat 1080gcatatgatg
gcctgagcaa tgcaagtcaa gctttaaata tgtacgaggg ctgtagaaat 1140caagtcggat
atggaaggag ctcagaaaat ggttcaactg ctagagatat tagagaacga 1200atatatgaca
acgtgaagga caaccaaaag aaagaaggtt tagttcgaaa tggatcttta 1260acatctgtac
aatcagcgga aaatggagat cctaagaaga agagaagggt ggagcggtct 1320cggaaaatgg
cagaagccaa agagagaaat ttaacaccag caattccttc agatatgcaa 1380tcccttgtga
agcgctgtga caatctggag aaggaagttc gttcacttaa acttaacctg 1440gcgtttatga
acagaaagga ttctgaacag actacacaaa ttgaagagct gcagaagcag 1500aatgaggatt
tggtcaagga aaaagagcgc cttcttggag aaatcgagag gatcatttca 1560gaatctggaa
agttttagat actgttactc tttagcagct tcagacgtgt tt
161251767DNADiphasiastrum digitatum 5atggttgaga ttgcagatag gcgcattact
agaagtgtgt cctccgagct tcaggccagg 60ctttcaacac agcctcagac acaagaaggt
gtggaggaga taagagctgt atcgggagat 120atggagatat cgtgctttca aaggaattca
agtgaggaga tatttttgag gagttttatg 180gatggtgcaa tggcgcctgc cactgagggc
atgtcatttt tgagtccgcc tcagccaccg 240cttcgagtaa acagcgagga actgtttaac
acttggctca gcaatacgga tgccccgggg 300cttccgccat tatctggaga ctatcgaacc
cttcaaaatt cttgcagaat gtcaagtgaa 360cttgctggta atcttggaca aggagctgtc
tctcaaccat ttgatattcc tggagagaat 420gtggcccaaa caattggagg acatcctgat
cccaatgtca gggaaagtaa catagggaag 480ccaaggaatc atgctccaag caagggattg
ccatttcaag atcatgcgtc ttggcagatg 540atcaactggt ttcaacaatc tcagccgatg
acacgaagtc gctcctctga gcttcgtcgt 600aaatacttgg caatgcaaga aggtcataaa
cctcctccct cagccaacac cttgcaatgg 660tttgcaacac aaggaactga tgaattgaat
cgtgctgtgg catcacttgg ggctttcaca 720cgtgcccttg caagcaagag accagatata
tcctcaacag catctcctca actttctccc 780acccccatgt cccatgttag taaactatct
ccccagagga atggtgactc tgtatctgct 840gttgtgaaca tgcttaaggg aagcttagaa
cggaagaagc ttgctgcaat gcagcaacag 900atggataaac ctgtttcacc accatattgg
agatccttgg gacaggacaa agaggatcct 960cataagccga tgatcgactc gcaacagtgt
atctctccgc aaattgagtc tgagcaacaa 1020caagagaatc aaaaggaagc attttcggcc
agtcttcaga ttacaaatga gcagttccag 1080gctggagtgg tcactccaca tgccttatca
cccagcgatt catctggtaa tgcacctggc 1140ctgtcagctg gagcagcgac tagtgagggg
ccttgcaact caaatcctgc tgtttccact 1200cagaacaatt tcatcaaatg ctctggtcag
ggcaactggg ctgtagatga aacatttcag 1260caaaacaacc taccaagccc cacatccaat
gggacaagta atggagagat tccttacgag 1320ggtgtcttga atacagacta ccaaaagaga
caaggctacc tatctcgtgc aggctcacta 1380acctcttctt gtcgatcaga tcaaagtatg
caagtgtcta ttggtgagag aacccataag 1440cttgaaggat ccacggcaga tgcagaagat
tctacgaaga aacgtcgagt tgaacggaaa 1500cgaatgatgg ctgaggcaaa ggggagaagt
tatgttccta tgatgccctc tgatctacaa 1560gcagctacaa aacgatgtga tgctttggaa
aaggaagtaa ggtccctgaa gctgaacttg 1620tctttcatga acagaaagga ctctgagcag
accaagcgaa tagaagatct tgaaaagcag 1680aatgaggagt tacttgcaga gaaagatcga
ctagtggagg aggtcagacg ttttacctca 1740ggaaaaaact ttggtagatc gtcttag
176761867DNAArtificialModified IPD3
polynucleotide 6atggaaggga gaggattttc tggtttatac aagaattcaa gtgaggagtt
attcttgaag 60acagtgatgg agagtcctat tggtatgccg gtacctacca tggagatgtt
aggattcaag 120actgtttctc aaagctttcg caccgatgat gaagagcttt tcaaacgctg
gctaacaaat 180gatcaagagg gatacaattc atcaagcatg ggacttaaca gtcgtttgtc
gaagagaata 240tcaactgaaa tagctaatat gtctaatcaa caacacattg gtgtggcttc
agaaggaaga 300aacaatgata aatcatgctt acaaaataac ttcttggcaa atgatgtttc
aagtgatttc 360aattttccaa tcagagatcc tgttgataga gaattgcaat ctagtaactt
gtttctggcc 420aaggcctggt ttattaccga tcaacgaatg acaagaagcc ggtcttctga
attgcggcga 480aggtatactg aaatgcaaaa ttctcaagca ccacaaggat tggattctat
gttcatggtt 540cctgagcatg atactaacac tataaaagaa gaacttgcaa attttaatgg
gtttgattac 600ctttccatgt gtgagttacc aagccaaaag ggcacattca tgtctccatc
caactcatct 660tcgtctacct tcaacacaca tcaattggtt gatgtagata aagtttcatc
ttgtgtaagt 720atgctaaaag gtacattaca gcgcaagaaa ctcgaatgcc aagtcgagaa
agaagctgca 780gaagatggct tgaatgaaat attttgcatt cgagaacctc ttttccaatc
agcttttaat 840gaagaagaaa gttggaatca acaaaagcta gtaaacgttc aaggagattt
taccgatcaa 900gttaacgatc ccggagtcat gcaaaccctt gaaggaacca caaactttgt
cttagatggt 960tttgcaaatc agacgaacca aatacaaggc agaacagctt ctggagaacc
gtctcaaagt 1020gaatcttctg ctgctgcacc agtaatctca tctggcttag atgcatgtga
aggtcccagc 1080aattcaaatc aaactcttgg tgatagctca tggaaacaag tgggagaaag
cactcaaaat 1140aaagtcagag gtgtcagaga acagataatg gataatctga aagatgacag
aaagaggaaa 1200agtctagaaa gatatggatc tgtaacatca gctgtttcag atggcaagat
ggataacaca 1260aaaaagcgga gggtggagcg ctcaagaaaa atggctgaag caaaggaaag
aaatttgaca 1320ccaacaattc cctcagatat gcaagctatc ttgaagcgat gcgaaaacct
tgagaaggaa 1380gttcgatcac taaagcttaa tttgtccttc atgaatagga aggattctga
acaaacaaag 1440cagatagagg accttcagaa gcagaatgaa gacttggcgg atgaaaaaga
gcgcctcctc 1500gaagagattg aaagaattct atcagaaact ggaaagattt gatgttttgt
ttcgctgtta 1560tatccttatc ctcgtcagaa acaatgtagt actcagacaa gctaaaaatc
tcaccacagt 1620ttacttgtgg atgaaacagc ttaggtaaaa gtgaaaacag tgattaatag
tgaacctatg 1680gagtctatta gcaaaatata aatgcatgga atctgagata ttagtaatga
cattatatat 1740ctggtaaaat ctaagtgtta ttcaaaattt gagccatata aatgaatccg
gtaaatttaa 1800acatggtcaa gtgtacccac caacctcaat catatgtaac aaacaaatat
cttcaatttg 1860tttatgc
186771867DNAArtificialModified IPD3 polynucleotide 7atggaaggga
gaggattttc tggtttatac aagaattcaa gtgaggagtt attcttgaag 60acagtgatgg
agagtcctat tggtatgccg gtacctacca tggagatgtt aggattcaag 120actgttgagc
aaagctttcg caccgatagt gaagagcttt tcaaacgctg gctaacaaat 180gatcaagagg
gatacaattc atcaagcatg ggacttaaca gtcgtttgtc gaagagaata 240tcaactgaaa
tagctaatat gtctaatcaa caacacattg gtgtggcttc agaaggaaga 300aacaatgata
aatcatgctt acaaaataac ttcttggcaa atgatgtttc aagtgatttc 360aattttccaa
tcagagatcc tgttgataga gaattgcaat ctagtaactt gtttctggcc 420aaggcctggt
ttattaccga tcaacgaatg acaagaagcc ggtcttctga attgcggcga 480aggtatactg
aaatgcaaaa ttctcaagca ccacaaggat tggattctat gttcatggtt 540cctgagcatg
atactaacac tataaaagaa gaacttgcaa attttaatgg gtttgattac 600ctttccatgt
gtgagttacc aagccaaaag ggcacattca tgtctccatc caactcatct 660tcgtctacct
tcaacacaca tcaattggtt gatgtagata aagtttcatc ttgtgtaagt 720atgctaaaag
gtacattaca gcgcaagaaa ctcgaatgcc aagtcgagaa agaagctgca 780gaagatggct
tgaatgaaat attttgcatt cgagaacctc ttttccaatc agcttttaat 840gaagaagaaa
gttggaatca acaaaagcta gtaaacgttc aaggagattt taccgatcaa 900gttaacgatc
ccggagtcat gcaaaccctt gaaggaacca caaactttgt cttagatggt 960tttgcaaatc
agacgaacca aatacaaggc agaacagctt ctggagaacc gtctcaaagt 1020gaatcttctg
ctgctgcacc agtaatctca tctggcttag atgcatgtga aggtcccagc 1080aattcaaatc
aaactcttgg tgatagctca tggaaacaag tgggagaaag cactcaaaat 1140aaagtcagag
gtgtcagaga acagataatg gataatctga aagatgacag aaagaggaaa 1200agtctagaaa
gatatggatc tgtaacatca gctgtttcag atggcaagat ggataacaca 1260aaaaagcgga
gggtggagcg ctcaagaaaa atggctgaag caaaggaaag aaatttgaca 1320ccaacaattc
cctcagatat gcaagctatc ttgaagcgat gcgaaaacct tgagaaggaa 1380gttcgatcac
taaagcttaa tttgtccttc atgaatagga aggattctga acaaacaaag 1440cagatagagg
accttcagaa gcagaatgaa gacttggcgg atgaaaaaga gcgcctcctc 1500gaagagattg
aaagaattct atcagaaact ggaaagattt gatgttttgt ttcgctgtta 1560tatccttatc
ctcgtcagaa acaatgtagt actcagacaa gctaaaaatc tcaccacagt 1620ttacttgtgg
atgaaacagc ttaggtaaaa gtgaaaacag tgattaatag tgaacctatg 1680gagtctatta
gcaaaatata aatgcatgga atctgagata ttagtaatga cattatatat 1740ctggtaaaat
ctaagtgtta ttcaaaattt gagccatata aatgaatccg gtaaatttaa 1800acatggtcaa
gtgtacccac caacctcaat catatgtaac aaacaaatat cttcaatttg 1860tttatgc
186781593DNAArtificialModified IPD3 polynucleotide 8atggaaggga gggggttttc
tggtttatat agaaactcaa gtgaagaatt gttcctgaag 60acagtgatgg agagccctat
tggtatgcca gttccttcaa tggagatgct gggtttcaag 120aatgtttctc aaggctttcg
cgcagatagc gaggagcttt tcaaacgctg gctaacaaat 180ggagagggat acaattcatc
aagcataggg tttagcagtc gattatcaaa gaggatatcc 240actgaactag ttaatggatc
taatcagcta caagttggtg tagcctcaga tggaagaaac 300aatgacaaac cattcataca
aaataacctt ttggcaaatg atgtttcagg tgatttcaat 360tttccaatca gagatcctgt
tgatagagaa ctgcaaccta gtaacttgtt tctagccaag 420gcctggtttc tcagtgatca
acgaatgaca agaagccggg attcctctga attgcggcgg 480cgatattctg aaatgcaaaa
tggtctagcc acacaaggaa tagaatccat ttgcatggat 540cctcagcatg gtgctgaggc
aacaaaacaa gaagttgcaa atttcaatgg ttacaattat 600ctctctatgt gtgagcttcc
aagtcaaaag ggttcattca tgtctccgtc caactcatgt 660tcatctaact tcaacacacc
tcaatttggc gacatggata aagtttcatc ttgtgtaagt 720atgctgaaag ggacattaca
acgccggaga ctcagcagtc aacttgagaa agaagctgca 780gaagatgact taaatggaat
tttttatcct caagaacctc ttttccaaac tggctttgat 840caaggacaag aaaactggag
taatcaaacg ccagtaaatg ttcaagtaga ctctattggt 900gaagttaagg atcatggagt
cctgcaaaca ctagaaggat ccacaaaccc tgtcgttgat 960ggttttgcaa atcagataaa
ccaaatctat gtcggaacag cttctggaga accttctcaa 1020agtgaatcct ctaatgctgc
accagtaatc tcctctggtt tagacacatg cgaaggtccc 1080ataaactcga atcaaactct
ctgcgaaagc tcatggaaac aagtaggagt gagtaaaagt 1140tcagaaaata ctcaaaatag
agtcaaaggt ttcagagaac agatcatgga taatctgaaa 1200gatgataaga agagaaaaag
tctagaaaga tatggatcta taacatcagc tgtttcagat 1260gacaagggag acaccactaa
aaagcgtagg gtggaacgct caaggaaaat ggctgaagct 1320aaggaaagaa attcgacacc
atcagttccc tcagatatgc aagctgtctt gaagcggtgc 1380gaaaaccttg agaaggaagt
tcgatcgcta aaactcaact tgtccttcat gaatagaaag 1440gattctgaac aaacaaagca
gatagaagac cttcagaagc agaatgaaga gctggcagat 1500gaaaaagagc gcctcctcga
agagattgaa agaattctat cagaaactga aaaaatgtaa 1560tgatatgaga atcaatgttg
tgctcaaaca cgc
159391867DNAArtificialModified IPD3 polynucleotide 9atggaaggga gaggattttc
tggtttatac aagaattcaa gtgaggagtt attcttgaag 60acagtgatgg agagtcctat
tggtatgccg gtacctacca tggagatgtt aggattcaag 120actgttgagc aaagctttcg
caccgatgat gaagagcttt tcaaacgctg gctaacaaat 180gatcaagagg gatacaattc
atcaagcatg ggacttaaca gtcgtttgtc gaagagaata 240tcaactgaaa tagctaatat
gtctaatcaa caacacattg gtgtggcttc agaaggaaga 300aacaatgata aatcatgctt
acaaaataac ttcttggcaa atgatgtttc aagtgatttc 360aattttccaa tcagagatcc
tgttgataga gaattgcaat ctagtaactt gtttctggcc 420aaggcctggt ttattaccga
tcaacgaatg acaagaagcc ggtcttctga attgcggcga 480aggtatactg aaatgcaaaa
ttctcaagca ccacaaggat tggattctat gttcatggtt 540cctgagcatg atactaacac
tataaaagaa gaacttgcaa attttaatgg gtttgattac 600ctttccatgt gtgagttacc
aagccaaaag ggcacattca tgtctccatc caactcatct 660tcgtctacct tcaacacaca
tcaattggtt gatgtagata aagtttcatc ttgtgtaagt 720atgctaaaag gtacattaca
gcgcaagaaa ctcgaatgcc aagtcgagaa agaagctgca 780gaagatggct tgaatgaaat
attttgcatt cgagaacctc ttttccaatc agcttttaat 840gaagaagaaa gttggaatca
acaaaagcta gtaaacgttc aaggagattt taccgatcaa 900gttaacgatc ccggagtcat
gcaaaccctt gaaggaacca caaactttgt cttagatggt 960tttgcaaatc agacgaacca
aatacaaggc agaacagctt ctggagaacc gtctcaaagt 1020gaatcttctg ctgctgcacc
agtaatctca tctggcttag atgcatgtga aggtcccagc 1080aattcaaatc aaactcttgg
tgatagctca tggaaacaag tgggagaaag cactcaaaat 1140aaagtcagag gtgtcagaga
acagataatg gataatctga aagatgacag aaagaggaaa 1200agtctagaaa gatatggatc
tgtaacatca gctgtttcag atggcaagat ggataacaca 1260aaaaagcgga gggtggagcg
ctcaagaaaa atggctgaag caaaggaaag aaatttgaca 1320ccaacaattc cctcagatat
gcaagctatc ttgaagcgat gcgaaaacct tgagaaggaa 1380gttcgatcac taaagcttaa
tttgtccttc atgaatagga aggattctga acaaacaaag 1440cagatagagg accttcagaa
gcagaatgaa gacttggcgg atgaaaaaga gcgcctcctc 1500gaagagattg aaagaattct
atcagaaact ggaaagattt gatgttttgt ttcgctgtta 1560tatccttatc ctcgtcagaa
acaatgtagt actcagacaa gctaaaaatc tcaccacagt 1620ttacttgtgg atgaaacagc
ttaggtaaaa gtgaaaacag tgattaatag tgaacctatg 1680gagtctatta gcaaaatata
aatgcatgga atctgagata ttagtaatga cattatatat 1740ctggtaaaat ctaagtgtta
ttcaaaattt gagccatata aatgaatccg gtaaatttaa 1800acatggtcaa gtgtacccac
caacctcaat catatgtaac aaacaaatat cttcaatttg 1860tttatgc
186710513PRTMedicago
truncatula 10Met Glu Gly Arg Gly Phe Ser Gly Leu Tyr Lys Asn Ser Ser Glu
Glu1 5 10 15Leu Phe Leu
Lys Thr Val Met Glu Ser Pro Ile Gly Met Pro Val Pro 20
25 30Thr Met Glu Met Leu Gly Phe Lys Thr Val
Ser Gln Ser Phe Arg Thr 35 40
45Asp Ser Glu Glu Leu Phe Lys Arg Trp Leu Thr Asn Asp Gln Glu Gly 50
55 60Tyr Asn Ser Ser Ser Met Gly Leu Asn
Ser Arg Leu Ser Lys Arg Ile65 70 75
80Ser Thr Glu Ile Ala Asn Met Ser Asn Gln Gln His Ile Gly
Val Ala 85 90 95Ser Glu
Gly Arg Asn Asn Asp Lys Ser Cys Leu Gln Asn Asn Phe Leu 100
105 110Ala Asn Asp Val Ser Ser Asp Phe Asn
Phe Pro Ile Arg Asp Pro Val 115 120
125Asp Arg Glu Leu Gln Ser Ser Asn Leu Phe Leu Ala Lys Ala Trp Phe
130 135 140Ile Thr Asp Gln Arg Met Thr
Arg Ser Arg Ser Ser Glu Leu Arg Arg145 150
155 160Arg Tyr Thr Glu Met Gln Asn Ser Gln Ala Pro Gln
Gly Leu Asp Ser 165 170
175Met Phe Met Val Pro Glu His Asp Thr Asn Thr Ile Lys Glu Glu Leu
180 185 190Ala Asn Phe Asn Gly Phe
Asp Tyr Leu Ser Met Cys Glu Leu Pro Ser 195 200
205Gln Lys Gly Thr Phe Met Ser Pro Ser Asn Ser Ser Ser Ser
Thr Phe 210 215 220Asn Thr His Gln Leu
Val Asp Val Asp Lys Val Ser Ser Cys Val Ser225 230
235 240Met Leu Lys Gly Thr Leu Gln Arg Lys Lys
Leu Glu Cys Gln Val Glu 245 250
255Lys Glu Ala Ala Glu Asp Gly Leu Asn Glu Ile Phe Cys Ile Arg Glu
260 265 270Pro Leu Phe Gln Ser
Ala Phe Asn Glu Glu Glu Ser Trp Asn Gln Gln 275
280 285Lys Leu Val Asn Val Gln Gly Asp Phe Thr Asp Gln
Val Asn Asp Pro 290 295 300Gly Val Met
Gln Thr Leu Glu Gly Thr Thr Asn Phe Val Leu Asp Gly305
310 315 320Phe Ala Asn Gln Thr Asn Gln
Ile Gln Gly Arg Thr Ala Ser Gly Glu 325
330 335Pro Ser Gln Ser Glu Ser Ser Ala Ala Ala Pro Val
Ile Ser Ser Gly 340 345 350Leu
Asp Ala Cys Glu Gly Pro Ser Asn Ser Asn Gln Thr Leu Gly Asp 355
360 365Ser Ser Trp Lys Gln Val Gly Glu Ser
Thr Gln Asn Lys Val Arg Gly 370 375
380Val Arg Glu Gln Ile Met Asp Asn Leu Lys Asp Asp Arg Lys Arg Lys385
390 395 400Ser Leu Glu Arg
Tyr Gly Ser Val Thr Ser Ala Val Ser Asp Gly Lys 405
410 415Met Asp Asn Thr Lys Lys Arg Arg Val Glu
Arg Ser Arg Lys Met Ala 420 425
430Glu Ala Lys Glu Arg Asn Leu Thr Pro Thr Ile Pro Ser Asp Met Gln
435 440 445Ala Ile Leu Lys Arg Cys Glu
Asn Leu Glu Lys Glu Val Arg Ser Leu 450 455
460Lys Leu Asn Leu Ser Phe Met Asn Arg Lys Asp Ser Glu Gln Thr
Lys465 470 475 480Gln Ile
Glu Asp Leu Gln Lys Gln Asn Glu Asp Leu Ala Asp Glu Lys
485 490 495Glu Arg Leu Leu Glu Glu Ile
Glu Arg Ile Leu Ser Glu Thr Gly Lys 500 505
510Ile11518PRTLotus japonicus 11Met Glu Gly Arg Gly Phe Ser
Gly Leu Tyr Arg Asn Ser Ser Glu Glu1 5 10
15Leu Phe Leu Lys Thr Val Met Glu Ser Pro Ile Gly Met
Pro Val Pro 20 25 30Ser Met
Glu Met Leu Gly Phe Lys Asn Val Ser Gln Gly Phe Arg Ala 35
40 45Asp Ser Glu Glu Leu Phe Lys Arg Trp Leu
Thr Asn Gly Glu Gly Tyr 50 55 60Asn
Ser Ser Ser Ile Gly Phe Ser Ser Arg Leu Ser Lys Arg Ile Ser65
70 75 80Thr Glu Leu Val Asn Gly
Ser Asn Gln Leu Gln Val Gly Val Ala Ser 85
90 95Asp Gly Arg Asn Asn Asp Lys Pro Phe Ile Gln Asn
Asn Leu Leu Ala 100 105 110Asn
Asp Val Ser Gly Asp Phe Asn Phe Pro Ile Arg Asp Pro Val Asp 115
120 125Arg Glu Leu Gln Pro Ser Asn Leu Phe
Leu Ala Lys Ala Trp Phe Leu 130 135
140Ser Asp Gln Arg Met Thr Arg Ser Arg Ser Ser Glu Leu Arg Arg Arg145
150 155 160Tyr Ser Glu Met
Gln Asn Gly Leu Ala Thr Gln Gly Ile Glu Ser Ile 165
170 175Cys Met Asp Pro Gln His Gly Ala Glu Ala
Thr Lys Gln Glu Val Ala 180 185
190Asn Phe Asn Gly Tyr Asn Tyr Leu Ser Met Cys Glu Leu Pro Ser Gln
195 200 205Lys Gly Ser Phe Met Ser Pro
Ser Asn Ser Cys Ser Ser Asn Phe Asn 210 215
220Thr Pro Gln Phe Gly Asp Met Asp Lys Val Ser Ser Cys Val Ser
Met225 230 235 240Leu Lys
Gly Thr Leu Gln Arg Arg Arg Leu Ser Ser Gln Leu Glu Lys
245 250 255Glu Ala Ala Glu Asp Asp Leu
Asn Gly Ile Phe Tyr Pro Gln Glu Pro 260 265
270Leu Phe Gln Thr Gly Phe Asp Gln Gly Gln Glu Asn Trp Ser
Asn Gln 275 280 285Thr Pro Val Asn
Val Gln Val Asp Ser Ile Gly Glu Val Lys Asp His 290
295 300Gly Val Leu Gln Thr Leu Glu Gly Ser Thr Asn Pro
Val Val Asp Gly305 310 315
320Phe Ala Asn Gln Ile Asn Gln Ile Tyr Val Gly Thr Ala Ser Gly Glu
325 330 335Pro Ser Gln Ser Glu
Ser Ser Asn Ala Ala Pro Val Ile Ser Ser Gly 340
345 350Leu Asp Thr Cys Glu Gly Pro Ile Asn Ser Asn Gln
Thr Leu Cys Glu 355 360 365Ser Ser
Trp Lys Gln Val Gly Val Ser Lys Ser Ser Glu Asn Thr Gln 370
375 380Asn Arg Val Lys Gly Phe Arg Glu Gln Ile Met
Asp Asn Leu Lys Asp385 390 395
400Asp Lys Lys Arg Lys Ser Leu Glu Arg Tyr Gly Ser Ile Thr Ser Ala
405 410 415Val Ser Asp Asp
Lys Gly Asp Thr Thr Lys Lys Arg Arg Val Glu Arg 420
425 430Ser Arg Lys Met Ala Glu Ala Lys Glu Arg Asn
Ser Thr Pro Ser Val 435 440 445Pro
Ser Asp Met Gln Ala Val Leu Lys Arg Cys Glu Asn Leu Glu Lys 450
455 460Glu Val Arg Ser Leu Lys Leu Asn Leu Ser
Phe Met Asn Arg Lys Asp465 470 475
480Ser Glu Gln Thr Lys Gln Ile Glu Asp Leu Gln Lys Gln Asn Glu
Glu 485 490 495Leu Ala Asp
Glu Lys Glu Arg Leu Leu Glu Glu Ile Glu Arg Ile Leu 500
505 510Ser Glu Thr Glu Lys Met
51512513PRTPisum sativum 12Met Glu Gly Arg Gly Phe Ser Gly Leu Tyr Lys
Asn Ser Ser Glu Glu1 5 10
15Leu Phe Leu Lys Thr Val Met Glu Ser Pro Ile Gly Met Pro Val Pro
20 25 30Thr Met Glu Met Leu Gly Phe
Lys Thr Val Ser Gln Ser Phe Arg Ala 35 40
45Asp Ser Glu Glu Leu Phe Lys Arg Trp Leu Thr Asn Glu Glu Gly
Tyr 50 55 60Asn Ser Thr Ser Met Gly
Leu Asn Ser Arg Leu Ser Lys Arg Ile Ser65 70
75 80Thr Glu Leu Val Asn Val Ser Asn Gln Gln His
Val Gly Val Ala Ser 85 90
95Glu Gly Arg Asn Asn Asp Lys Ser Cys Leu Gln Asn Ser Phe Leu Thr
100 105 110Asn Asp Val Ser Gly Asp
Phe Asn Phe Pro Ile Arg Glu Pro Val Asp 115 120
125Arg Glu Leu Gln Ser Gly Asn Leu Phe Leu Ala Lys Ala Trp
Phe Leu 130 135 140Thr Asp Gln Arg Met
Thr Arg Ser Arg Ser Ser Glu Leu Arg Arg Arg145 150
155 160Tyr Thr Glu Met Gln Asn Thr Gln Ala Pro
Gln Gly Leu Asp Ser Met 165 170
175Phe Met Ala Pro Lys His Asp Ala Asn Ile Ile Lys Glu Glu Leu Ala
180 185 190His Phe Asn Gly Phe
Asp Tyr Leu Ser Met Cys Glu Ile Pro Ser Gln 195
200 205Lys Gly Ser Phe Met Ser Pro Ser Asn Ser Ser Ser
Ser Thr Phe Asn 210 215 220Thr Gln Gln
Leu Val Asp Val Asp Lys Val Ser Ser Cys Val Ser Met225
230 235 240Leu Lys Gly Thr Leu Gln Arg
Lys Arg Leu Glu Cys Gln Val Glu Lys 245
250 255Asp Ala Ala Glu Asp Gly Leu Asn Glu Ile Phe Gly
Ile Arg Glu Pro 260 265 270Leu
Phe Gln Ser Gly Phe Asn Glu Gly Gln Glu Asn Trp Asn His Gln 275
280 285Lys Leu Val Asn Val Gln Gly Asp Phe
Thr Asp Gln Val Lys Asp Thr 290 295
300Gly Val Ile Glu Thr Leu Glu Gly Ala Ala Asn Phe Val Leu Glu Gly305
310 315 320Phe Ala Asn Gln
Thr Ser Gln Ile His Gly Gly Thr Ala Ser Gly Glu 325
330 335Pro Ser Gln Ser Glu Ser Ser Ala Ala Ala
Pro Val Ile Ser Ser Gly 340 345
350Leu Asp Ala Cys Glu Gly Pro Ser Asn Ser Ser Gln Thr Leu Cys Asp
355 360 365Ser Ser Trp Lys Gln Val Gly
Glu Ser Thr Gln Asn Arg Ala Lys Gly 370 375
380Val Arg Glu Gln Ile Met Asp Asn Leu Lys Asp Asp Arg Lys Arg
Lys385 390 395 400Arg Leu
Glu Arg Tyr Gly Ser Val Thr Ser Ala Val Ser Asp Asp Lys
405 410 415Val Asp Thr Thr Lys Lys Arg
Arg Val Glu Arg Ser Arg Lys Met Ala 420 425
430Glu Ala Lys Glu Arg Asn Leu Thr Pro Thr Ile Pro Ser Asp
Met Gln 435 440 445Ala Val Met Lys
Arg Cys Glu Asn Leu Glu Lys Glu Val Arg Ser Leu 450
455 460Lys Leu Asn Leu Ser Phe Met Asn Arg Lys Asp Ser
Glu Gln Thr Lys465 470 475
480Gln Ile Glu Asp Leu Gln Lys Gln Asn Glu Glu Leu Ala Asp Glu Lys
485 490 495Glu Arg Leu Leu Glu
Glu Ile Glu Arg Leu Leu Ser Glu Thr Gly Lys 500
505 510Ile13525PRTSolanum lycopersicum 13Met Glu Met Glu
Gly Arg Gly Tyr Ser Asp Phe Tyr Arg Asn Thr Ser1 5
10 15Glu Glu Leu Phe Ile Arg Thr Met Met Asp
Asn Ser Val Gly Gly Val 20 25
30Pro Val Pro Thr Met Glu Met Leu Gly Phe Arg Asn Ile Pro His Ser
35 40 45Leu Arg Thr Asp Ser Glu Glu Leu
Phe Lys Ser Trp Leu Thr Ser Ala 50 55
60Glu Asn Asn Gly Ser Asp Ser Thr Pro Met Ala Arg Gly Arg Gln Gly65
70 75 80Ser Arg Arg Ile Ser
Ser Glu Leu Ala Gly Leu Ser Ser Gln Gln Asn 85
90 95Glu Gly Ile Gln Lys Arg Lys Met Ala Asp Thr
Gln Gln Pro Gln Asn 100 105
110Thr Cys Thr Ala Ile Glu Ser Ser Ser Asn Leu Asn Lys His Ser Thr
115 120 125Arg Asn Ala Thr Asp Arg Glu
Met Gln Ala Ser Asn Leu Phe Leu Ala 130 135
140Lys Thr Trp Phe His Ser Ser Gln Pro Met Thr Arg Ser Arg Ser
Ser145 150 155 160Glu Leu
Arg Arg Arg Tyr Ala Ala Met Gln Asn Ser Gln Ser Ser Leu
165 170 175Ala Arg Glu Ser Leu Gln Asn
Ile Pro Gly Asn Ala Val Asn Ser Phe 180 185
190Lys Glu Glu Val Ser His Pro Thr Gly Tyr Thr Asp Met Ser
Met Cys 195 200 205Glu Met Thr Asn
Gln Pro Asn Thr Phe Met Ser Pro Ser Asn Ser Ser 210
215 220Ser Ser Thr Phe Glu Ala Gln Gln Val Asp Gly Val
Asp Asn Ile Ser225 230 235
240Ser Val Val Ser Met Leu Lys Gly Thr Leu Glu Arg Lys Lys Leu Thr
245 250 255Asn Tyr His Thr Ala
Arg Glu Ala Ile Glu Glu Asn Met Leu Gly Cys 260
265 270Tyr Gly Asn Gln Glu Ile Phe Cys Asn Ser Asp Met
Asn Gln His Pro 275 280 285Gly Asn
His Ile Ser Leu Asn Gln Gly Thr Tyr Gln Asp Thr Pro Val 290
295 300Val Gln Val Arg Asp Thr Gly Ile Pro Gln Thr
Val Gln Gly Ser Leu305 310 315
320Asp Ala Val Leu Glu Ser Ile Met Ala Pro Ser Asn Pro Ile Gln Ile
325 330 335Asp Met Val Thr
Gln Glu Pro Ser Gln Ser Gly Ser Ser Val Ala Ala 340
345 350Pro Ile Leu Ser Ile Asp Phe Asp Ala Tyr Asp
Gly Leu Ser Asn Ala 355 360 365Ser
Gln Ala Leu Asn Met Tyr Glu Gly Cys Arg Asn Gln Val Gly Tyr 370
375 380Gly Arg Ser Ser Glu Asn Gly Ser Thr Ala
Arg Asp Ile Arg Glu Arg385 390 395
400Ile Tyr Asp Asn Val Lys Asp Asn Gln Lys Lys Glu Gly Leu Val
Arg 405 410 415Asn Gly Ser
Leu Thr Ser Val Gln Ser Ala Glu Asn Gly Asp Pro Lys 420
425 430Lys Lys Arg Arg Val Glu Arg Ser Arg Lys
Met Ala Glu Ala Lys Glu 435 440
445Arg Asn Leu Thr Pro Ala Ile Pro Ser Asp Met Gln Ser Leu Val Lys 450
455 460Arg Cys Asp Asn Leu Glu Lys Glu
Val Arg Ser Leu Lys Leu Asn Leu465 470
475 480Ala Phe Met Asn Arg Lys Asp Ser Glu Gln Thr Thr
Gln Ile Glu Glu 485 490
495Leu Gln Lys Gln Asn Glu Asp Leu Val Lys Glu Lys Glu Arg Leu Leu
500 505 510Gly Glu Ile Glu Arg Ile
Ile Ser Glu Ser Gly Lys Phe 515 520
52514588PRTDiphasiastrum digitatum 14Met Val Glu Ile Ala Asp Arg Arg Ile
Thr Arg Ser Val Ser Ser Glu1 5 10
15Leu Gln Ala Arg Leu Ser Thr Gln Pro Gln Thr Gln Glu Gly Val
Glu 20 25 30Glu Ile Arg Ala
Val Ser Gly Asp Met Glu Ile Ser Cys Phe Gln Arg 35
40 45Asn Ser Ser Glu Glu Ile Phe Leu Arg Ser Phe Met
Asp Gly Ala Met 50 55 60Ala Pro Ala
Thr Glu Gly Met Ser Phe Leu Ser Pro Pro Gln Pro Pro65 70
75 80Leu Arg Val Asn Ser Glu Glu Leu
Phe Asn Thr Trp Leu Ser Asn Thr 85 90
95Asp Ala Pro Gly Leu Pro Pro Leu Ser Gly Asp Tyr Arg Thr
Leu Gln 100 105 110Asn Ser Cys
Arg Met Ser Ser Glu Leu Ala Gly Asn Leu Gly Gln Gly 115
120 125Ala Val Ser Gln Pro Phe Asp Ile Pro Gly Glu
Asn Val Ala Gln Thr 130 135 140Ile Gly
Gly His Pro Asp Pro Asn Val Arg Glu Ser Asn Ile Gly Lys145
150 155 160Pro Arg Asn His Ala Pro Ser
Lys Gly Leu Pro Phe Gln Asp His Ala 165
170 175Ser Trp Gln Met Ile Asn Trp Phe Gln Gln Ser Gln
Pro Met Thr Arg 180 185 190Ser
Arg Ser Ser Glu Leu Arg Arg Lys Tyr Leu Ala Met Gln Glu Gly 195
200 205His Lys Pro Pro Pro Ser Ala Asn Thr
Leu Gln Trp Phe Ala Thr Gln 210 215
220Gly Thr Asp Glu Leu Asn Arg Ala Val Ala Ser Leu Gly Ala Phe Thr225
230 235 240Arg Ala Leu Ala
Ser Lys Arg Pro Asp Ile Ser Ser Thr Ala Ser Pro 245
250 255Gln Leu Ser Pro Thr Pro Met Ser His Val
Ser Lys Leu Ser Pro Gln 260 265
270Arg Asn Gly Asp Ser Val Ser Ala Val Val Asn Met Leu Lys Gly Ser
275 280 285Leu Glu Arg Lys Lys Leu Ala
Ala Met Gln Gln Gln Met Asp Lys Pro 290 295
300Val Ser Pro Pro Tyr Trp Arg Ser Leu Gly Gln Asp Lys Glu Asp
Pro305 310 315 320His Lys
Pro Met Ile Asp Ser Gln Gln Cys Ile Ser Pro Gln Ile Glu
325 330 335Ser Glu Gln Gln Gln Glu Asn
Gln Lys Glu Ala Phe Ser Ala Ser Leu 340 345
350Gln Ile Thr Asn Glu Gln Phe Gln Ala Gly Val Val Thr Pro
His Ala 355 360 365Leu Ser Pro Ser
Asp Ser Ser Gly Asn Ala Pro Gly Leu Ser Ala Gly 370
375 380Ala Ala Thr Ser Glu Gly Pro Cys Asn Ser Asn Pro
Ala Val Ser Thr385 390 395
400Gln Asn Asn Phe Ile Lys Cys Ser Gly Gln Gly Asn Trp Ala Val Asp
405 410 415Glu Thr Phe Gln Gln
Asn Asn Leu Pro Ser Pro Thr Ser Asn Gly Thr 420
425 430Ser Asn Gly Glu Ile Pro Tyr Glu Gly Val Leu Asn
Thr Asp Tyr Gln 435 440 445Lys Arg
Gln Gly Tyr Leu Ser Arg Ala Gly Ser Leu Thr Ser Ser Cys 450
455 460Arg Ser Asp Gln Ser Met Gln Val Ser Ile Gly
Glu Arg Thr His Lys465 470 475
480Leu Glu Gly Ser Thr Ala Asp Ala Glu Asp Ser Thr Lys Lys Arg Arg
485 490 495Val Glu Arg Lys
Arg Met Met Ala Glu Ala Lys Gly Arg Ser Tyr Val 500
505 510Pro Met Met Pro Ser Asp Leu Gln Ala Ala Thr
Lys Arg Cys Asp Ala 515 520 525Leu
Glu Lys Glu Val Arg Ser Leu Lys Leu Asn Leu Ser Phe Met Asn 530
535 540Arg Lys Asp Ser Glu Gln Thr Lys Arg Ile
Glu Asp Leu Glu Lys Gln545 550 555
560Asn Glu Glu Leu Leu Ala Glu Lys Asp Arg Leu Val Glu Glu Val
Arg 565 570 575Arg Phe Thr
Ser Gly Lys Asn Phe Gly Arg Ser Ser 580
58515513PRTArtificialModified IPD3 polypeptide 15Met Glu Gly Arg Gly Phe
Ser Gly Leu Tyr Lys Asn Ser Ser Glu Glu1 5
10 15Leu Phe Leu Lys Thr Val Met Glu Ser Pro Ile Gly
Met Pro Val Pro 20 25 30Thr
Met Glu Met Leu Gly Phe Lys Thr Val Ser Gln Ser Phe Arg Thr 35
40 45Asp Asp Glu Glu Leu Phe Lys Arg Trp
Leu Thr Asn Asp Gln Glu Gly 50 55
60Tyr Asn Ser Ser Ser Met Gly Leu Asn Ser Arg Leu Ser Lys Arg Ile65
70 75 80Ser Thr Glu Ile Ala
Asn Met Ser Asn Gln Gln His Ile Gly Val Ala 85
90 95Ser Glu Gly Arg Asn Asn Asp Lys Ser Cys Leu
Gln Asn Asn Phe Leu 100 105
110Ala Asn Asp Val Ser Ser Asp Phe Asn Phe Pro Ile Arg Asp Pro Val
115 120 125Asp Arg Glu Leu Gln Ser Ser
Asn Leu Phe Leu Ala Lys Ala Trp Phe 130 135
140Ile Thr Asp Gln Arg Met Thr Arg Ser Arg Ser Ser Glu Leu Arg
Arg145 150 155 160Arg Tyr
Thr Glu Met Gln Asn Ser Gln Ala Pro Gln Gly Leu Asp Ser
165 170 175Met Phe Met Val Pro Glu His
Asp Thr Asn Thr Ile Lys Glu Glu Leu 180 185
190Ala Asn Phe Asn Gly Phe Asp Tyr Leu Ser Met Cys Glu Leu
Pro Ser 195 200 205Gln Lys Gly Thr
Phe Met Ser Pro Ser Asn Ser Ser Ser Ser Thr Phe 210
215 220Asn Thr His Gln Leu Val Asp Val Asp Lys Val Ser
Ser Cys Val Ser225 230 235
240Met Leu Lys Gly Thr Leu Gln Arg Lys Lys Leu Glu Cys Gln Val Glu
245 250 255Lys Glu Ala Ala Glu
Asp Gly Leu Asn Glu Ile Phe Cys Ile Arg Glu 260
265 270Pro Leu Phe Gln Ser Ala Phe Asn Glu Glu Glu Ser
Trp Asn Gln Gln 275 280 285Lys Leu
Val Asn Val Gln Gly Asp Phe Thr Asp Gln Val Asn Asp Pro 290
295 300Gly Val Met Gln Thr Leu Glu Gly Thr Thr Asn
Phe Val Leu Asp Gly305 310 315
320Phe Ala Asn Gln Thr Asn Gln Ile Gln Gly Arg Thr Ala Ser Gly Glu
325 330 335Pro Ser Gln Ser
Glu Ser Ser Ala Ala Ala Pro Val Ile Ser Ser Gly 340
345 350Leu Asp Ala Cys Glu Gly Pro Ser Asn Ser Asn
Gln Thr Leu Gly Asp 355 360 365Ser
Ser Trp Lys Gln Val Gly Glu Ser Thr Gln Asn Lys Val Arg Gly 370
375 380Val Arg Glu Gln Ile Met Asp Asn Leu Lys
Asp Asp Arg Lys Arg Lys385 390 395
400Ser Leu Glu Arg Tyr Gly Ser Val Thr Ser Ala Val Ser Asp Gly
Lys 405 410 415Met Asp Asn
Thr Lys Lys Arg Arg Val Glu Arg Ser Arg Lys Met Ala 420
425 430Glu Ala Lys Glu Arg Asn Leu Thr Pro Thr
Ile Pro Ser Asp Met Gln 435 440
445Ala Ile Leu Lys Arg Cys Glu Asn Leu Glu Lys Glu Val Arg Ser Leu 450
455 460Lys Leu Asn Leu Ser Phe Met Asn
Arg Lys Asp Ser Glu Gln Thr Lys465 470
475 480Gln Ile Glu Asp Leu Gln Lys Gln Asn Glu Asp Leu
Ala Asp Glu Lys 485 490
495Glu Arg Leu Leu Glu Glu Ile Glu Arg Ile Leu Ser Glu Thr Gly Lys
500 505
510Ile16513PRTArtificialModified IPD3 polypeptide 16Met Glu Gly Arg Gly
Phe Ser Gly Leu Tyr Lys Asn Ser Ser Glu Glu1 5
10 15Leu Phe Leu Lys Thr Val Met Glu Ser Pro Ile
Gly Met Pro Val Pro 20 25
30Thr Met Glu Met Leu Gly Phe Lys Thr Val Glu Gln Ser Phe Arg Thr
35 40 45Asp Ser Glu Glu Leu Phe Lys Arg
Trp Leu Thr Asn Asp Gln Glu Gly 50 55
60Tyr Asn Ser Ser Ser Met Gly Leu Asn Ser Arg Leu Ser Lys Arg Ile65
70 75 80Ser Thr Glu Ile Ala
Asn Met Ser Asn Gln Gln His Ile Gly Val Ala 85
90 95Ser Glu Gly Arg Asn Asn Asp Lys Ser Cys Leu
Gln Asn Asn Phe Leu 100 105
110Ala Asn Asp Val Ser Ser Asp Phe Asn Phe Pro Ile Arg Asp Pro Val
115 120 125Asp Arg Glu Leu Gln Ser Ser
Asn Leu Phe Leu Ala Lys Ala Trp Phe 130 135
140Ile Thr Asp Gln Arg Met Thr Arg Ser Arg Ser Ser Glu Leu Arg
Arg145 150 155 160Arg Tyr
Thr Glu Met Gln Asn Ser Gln Ala Pro Gln Gly Leu Asp Ser
165 170 175Met Phe Met Val Pro Glu His
Asp Thr Asn Thr Ile Lys Glu Glu Leu 180 185
190Ala Asn Phe Asn Gly Phe Asp Tyr Leu Ser Met Cys Glu Leu
Pro Ser 195 200 205Gln Lys Gly Thr
Phe Met Ser Pro Ser Asn Ser Ser Ser Ser Thr Phe 210
215 220Asn Thr His Gln Leu Val Asp Val Asp Lys Val Ser
Ser Cys Val Ser225 230 235
240Met Leu Lys Gly Thr Leu Gln Arg Lys Lys Leu Glu Cys Gln Val Glu
245 250 255Lys Glu Ala Ala Glu
Asp Gly Leu Asn Glu Ile Phe Cys Ile Arg Glu 260
265 270Pro Leu Phe Gln Ser Ala Phe Asn Glu Glu Glu Ser
Trp Asn Gln Gln 275 280 285Lys Leu
Val Asn Val Gln Gly Asp Phe Thr Asp Gln Val Asn Asp Pro 290
295 300Gly Val Met Gln Thr Leu Glu Gly Thr Thr Asn
Phe Val Leu Asp Gly305 310 315
320Phe Ala Asn Gln Thr Asn Gln Ile Gln Gly Arg Thr Ala Ser Gly Glu
325 330 335Pro Ser Gln Ser
Glu Ser Ser Ala Ala Ala Pro Val Ile Ser Ser Gly 340
345 350Leu Asp Ala Cys Glu Gly Pro Ser Asn Ser Asn
Gln Thr Leu Gly Asp 355 360 365Ser
Ser Trp Lys Gln Val Gly Glu Ser Thr Gln Asn Lys Val Arg Gly 370
375 380Val Arg Glu Gln Ile Met Asp Asn Leu Lys
Asp Asp Arg Lys Arg Lys385 390 395
400Ser Leu Glu Arg Tyr Gly Ser Val Thr Ser Ala Val Ser Asp Gly
Lys 405 410 415Met Asp Asn
Thr Lys Lys Arg Arg Val Glu Arg Ser Arg Lys Met Ala 420
425 430Glu Ala Lys Glu Arg Asn Leu Thr Pro Thr
Ile Pro Ser Asp Met Gln 435 440
445Ala Ile Leu Lys Arg Cys Glu Asn Leu Glu Lys Glu Val Arg Ser Leu 450
455 460Lys Leu Asn Leu Ser Phe Met Asn
Arg Lys Asp Ser Glu Gln Thr Lys465 470
475 480Gln Ile Glu Asp Leu Gln Lys Gln Asn Glu Asp Leu
Ala Asp Glu Lys 485 490
495Glu Arg Leu Leu Glu Glu Ile Glu Arg Ile Leu Ser Glu Thr Gly Lys
500 505
510Ile17518PRTArtificialModified IPD3 polypeptide 17Met Glu Gly Arg Gly
Phe Ser Gly Leu Tyr Arg Asn Ser Ser Glu Glu1 5
10 15Leu Phe Leu Lys Thr Val Met Glu Ser Pro Ile
Gly Met Pro Val Pro 20 25
30Ser Met Glu Met Leu Gly Phe Lys Asn Val Ser Gln Gly Phe Arg Ala
35 40 45Asp Ser Glu Glu Leu Phe Lys Arg
Trp Leu Thr Asn Gly Glu Gly Tyr 50 55
60Asn Ser Ser Ser Ile Gly Phe Ser Ser Arg Leu Ser Lys Arg Ile Ser65
70 75 80Thr Glu Leu Val Asn
Gly Ser Asn Gln Leu Gln Val Gly Val Ala Ser 85
90 95Asp Gly Arg Asn Asn Asp Lys Pro Phe Ile Gln
Asn Asn Leu Leu Ala 100 105
110Asn Asp Val Ser Gly Asp Phe Asn Phe Pro Ile Arg Asp Pro Val Asp
115 120 125Arg Glu Leu Gln Pro Ser Asn
Leu Phe Leu Ala Lys Ala Trp Phe Leu 130 135
140Ser Asp Gln Arg Met Thr Arg Ser Arg Asp Ser Glu Leu Arg Arg
Arg145 150 155 160Tyr Ser
Glu Met Gln Asn Gly Leu Ala Thr Gln Gly Ile Glu Ser Ile
165 170 175Cys Met Asp Pro Gln His Gly
Ala Glu Ala Thr Lys Gln Glu Val Ala 180 185
190Asn Phe Asn Gly Tyr Asn Tyr Leu Ser Met Cys Glu Leu Pro
Ser Gln 195 200 205Lys Gly Ser Phe
Met Ser Pro Ser Asn Ser Cys Ser Ser Asn Phe Asn 210
215 220Thr Pro Gln Phe Gly Asp Met Asp Lys Val Ser Ser
Cys Val Ser Met225 230 235
240Leu Lys Gly Thr Leu Gln Arg Arg Arg Leu Ser Ser Gln Leu Glu Lys
245 250 255Glu Ala Ala Glu Asp
Asp Leu Asn Gly Ile Phe Tyr Pro Gln Glu Pro 260
265 270Leu Phe Gln Thr Gly Phe Asp Gln Gly Gln Glu Asn
Trp Ser Asn Gln 275 280 285Thr Pro
Val Asn Val Gln Val Asp Ser Ile Gly Glu Val Lys Asp His 290
295 300Gly Val Leu Gln Thr Leu Glu Gly Ser Thr Asn
Pro Val Val Asp Gly305 310 315
320Phe Ala Asn Gln Ile Asn Gln Ile Tyr Val Gly Thr Ala Ser Gly Glu
325 330 335Pro Ser Gln Ser
Glu Ser Ser Asn Ala Ala Pro Val Ile Ser Ser Gly 340
345 350Leu Asp Thr Cys Glu Gly Pro Ile Asn Ser Asn
Gln Thr Leu Cys Glu 355 360 365Ser
Ser Trp Lys Gln Val Gly Val Ser Lys Ser Ser Glu Asn Thr Gln 370
375 380Asn Arg Val Lys Gly Phe Arg Glu Gln Ile
Met Asp Asn Leu Lys Asp385 390 395
400Asp Lys Lys Arg Lys Ser Leu Glu Arg Tyr Gly Ser Ile Thr Ser
Ala 405 410 415Val Ser Asp
Asp Lys Gly Asp Thr Thr Lys Lys Arg Arg Val Glu Arg 420
425 430Ser Arg Lys Met Ala Glu Ala Lys Glu Arg
Asn Ser Thr Pro Ser Val 435 440
445Pro Ser Asp Met Gln Ala Val Leu Lys Arg Cys Glu Asn Leu Glu Lys 450
455 460Glu Val Arg Ser Leu Lys Leu Asn
Leu Ser Phe Met Asn Arg Lys Asp465 470
475 480Ser Glu Gln Thr Lys Gln Ile Glu Asp Leu Gln Lys
Gln Asn Glu Glu 485 490
495Leu Ala Asp Glu Lys Glu Arg Leu Leu Glu Glu Ile Glu Arg Ile Leu
500 505 510Ser Glu Thr Glu Lys Met
51518513PRTArtificialModified IPD3 polypeptide 18Met Glu Gly Arg Gly
Phe Ser Gly Leu Tyr Lys Asn Ser Ser Glu Glu1 5
10 15Leu Phe Leu Lys Thr Val Met Glu Ser Pro Ile
Gly Met Pro Val Pro 20 25
30Thr Met Glu Met Leu Gly Phe Lys Thr Val Glu Gln Ser Phe Arg Thr
35 40 45Asp Asp Glu Glu Leu Phe Lys Arg
Trp Leu Thr Asn Asp Gln Glu Gly 50 55
60Tyr Asn Ser Ser Ser Met Gly Leu Asn Ser Arg Leu Ser Lys Arg Ile65
70 75 80Ser Thr Glu Ile Ala
Asn Met Ser Asn Gln Gln His Ile Gly Val Ala 85
90 95Ser Glu Gly Arg Asn Asn Asp Lys Ser Cys Leu
Gln Asn Asn Phe Leu 100 105
110Ala Asn Asp Val Ser Ser Asp Phe Asn Phe Pro Ile Arg Asp Pro Val
115 120 125Asp Arg Glu Leu Gln Ser Ser
Asn Leu Phe Leu Ala Lys Ala Trp Phe 130 135
140Ile Thr Asp Gln Arg Met Thr Arg Ser Arg Ser Ser Glu Leu Arg
Arg145 150 155 160Arg Tyr
Thr Glu Met Gln Asn Ser Gln Ala Pro Gln Gly Leu Asp Ser
165 170 175Met Phe Met Val Pro Glu His
Asp Thr Asn Thr Ile Lys Glu Glu Leu 180 185
190Ala Asn Phe Asn Gly Phe Asp Tyr Leu Ser Met Cys Glu Leu
Pro Ser 195 200 205Gln Lys Gly Thr
Phe Met Ser Pro Ser Asn Ser Ser Ser Ser Thr Phe 210
215 220Asn Thr His Gln Leu Val Asp Val Asp Lys Val Ser
Ser Cys Val Ser225 230 235
240Met Leu Lys Gly Thr Leu Gln Arg Lys Lys Leu Glu Cys Gln Val Glu
245 250 255Lys Glu Ala Ala Glu
Asp Gly Leu Asn Glu Ile Phe Cys Ile Arg Glu 260
265 270Pro Leu Phe Gln Ser Ala Phe Asn Glu Glu Glu Ser
Trp Asn Gln Gln 275 280 285Lys Leu
Val Asn Val Gln Gly Asp Phe Thr Asp Gln Val Asn Asp Pro 290
295 300Gly Val Met Gln Thr Leu Glu Gly Thr Thr Asn
Phe Val Leu Asp Gly305 310 315
320Phe Ala Asn Gln Thr Asn Gln Ile Gln Gly Arg Thr Ala Ser Gly Glu
325 330 335Pro Ser Gln Ser
Glu Ser Ser Ala Ala Ala Pro Val Ile Ser Ser Gly 340
345 350Leu Asp Ala Cys Glu Gly Pro Ser Asn Ser Asn
Gln Thr Leu Gly Asp 355 360 365Ser
Ser Trp Lys Gln Val Gly Glu Ser Thr Gln Asn Lys Val Arg Gly 370
375 380Val Arg Glu Gln Ile Met Asp Asn Leu Lys
Asp Asp Arg Lys Arg Lys385 390 395
400Ser Leu Glu Arg Tyr Gly Ser Val Thr Ser Ala Val Ser Asp Gly
Lys 405 410 415Met Asp Asn
Thr Lys Lys Arg Arg Val Glu Arg Ser Arg Lys Met Ala 420
425 430Glu Ala Lys Glu Arg Asn Leu Thr Pro Thr
Ile Pro Ser Asp Met Gln 435 440
445Ala Ile Leu Lys Arg Cys Glu Asn Leu Glu Lys Glu Val Arg Ser Leu 450
455 460Lys Leu Asn Leu Ser Phe Met Asn
Arg Lys Asp Ser Glu Gln Thr Lys465 470
475 480Gln Ile Glu Asp Leu Gln Lys Gln Asn Glu Asp Leu
Ala Asp Glu Lys 485 490
495Glu Arg Leu Leu Glu Glu Ile Glu Arg Ile Leu Ser Glu Thr Gly Lys
500 505 510Ile191572DNAMedicago
truncatula 19atgggatatg gaacaagaaa actctcagat gaatatgaag tttcagaaat
tctaggtaga 60ggtggatttt ctgttgttag aaaaggtaca aaaaaatcaa gcattgaaga
agaaaaatca 120caatcacaag tagcaatcaa aaccctaaga aggttaggtg cttcaaataa
ccctagtgga 180ttaccaagaa aaaaagatat tggagaaaaa agcacaatag ggttccctac
aatgagacaa 240gtttcagttt cagatacatt actaacaaat gagatacttg taatgagacg
aatagtcgaa 300aacgtttcgc cacatccaaa tgtgattgat ctttatgatg tatatgagga
cacaaatggt 360gttcatcttg ttcttgagct ttgttccggt ggtgaacttt tcgataggat
tgttgcacaa 420gataagtata gtgagactga agctgcaact gtggttcatc aaatagcttc
agggttagaa 480gctgttcata gagctaatat agttcataga gatttgaaac ctgaaaattg
tcttttttta 540gatgttagga aagattctcc tcttaagatt atggattttg ggttgagttc
tgttgaagag 600tttactgatc ctgttgttgg tttgtttgga tctattgatt atgtttcacc
tgaggctctt 660tctcaaggaa agattactac taagagtgat atgtggtctc ttggggttat
tctatatatc 720ttactttcag ggtatccacc tttcattgcc caaaataatc gccaaaaaca
acaaatgata 780atgaatggga attttagttt ttatgagaag acttggaagg gaatttcaca
accagcaaag 840aatttgattt caagtctttt aaccgttgat cctagcaaga gacctagtgc
tcttgagctt 900ctaagtgatc catgggtcaa aggtgagaaa gccaaagatg ttcaaatgga
ccctgagatt 960gtctcaaggc tacaaagctt taatgcaaga cgtaaacttc gtgcagctgc
aattgctagt 1020gtttggagct ccacaatctt ccttagaaca aaaaaattga aatcattggt
tggatcctat 1080gatcttaaag aagaggaaat tgaaaatctc aggatgcatt tcaagaagat
atgtgcagat 1140agagacaatg caactctgtc agagtttgag gaggtgttaa aagcaatgaa
tatgttatca 1200ttgatccctt ttgcttctcg tatatttgat ttgtttgaca acaaccgtga
tggaacagtt 1260gacatgcgtg agatactttg tggattttcc agtctcaaga attccaaagg
agaggatgct 1320cttcgtttgt gcttccagat gtatgataca gatagatcag gctgcatcag
caaagaggaa 1380gtagcatcca tgctcagggc tttgccatat gattgtcttc caactgatat
cactgaacct 1440ggaaaattgg atgagatttt tgacttaatg gatgctaata atgatggaaa
agttacattt 1500gatgaattca aagctgctat gcaaagagat agctctcttc aagatgtagt
tctctcttct 1560attcgtccat aa
1572201783DNALotus japonicus 20aaagattcca atattttcaa
acactctgcc atgggatatg atcaaaccag aaagctctct 60gatgagtatg agatttcaga
gattctagga agaggtggat tctctgttgt cagaaaagga 120accaaaaaat caggcaatga
gaaaacccaa gtagccatca aaacactcag aaggttaggt 180agttctccct ctgggacagg
tggtggacag aagagcacag caactgtgat ggggttccct 240tctttgagac aggtttcagt
ctcagatgct ttgctcacca atgagattct tgtgatgagg 300aggatagtgg aaaacgtttc
gccacatcca aacgtgattg atctctatga tgtgtgtgag 360gactcaaatg gggtgcatct
tgtgctggag ctttgttctg gtggggagct gtttgatagg 420attgttgcac aggataagta
tgctgagacg gaagctgccg cggtggttcg ccagattgcg 480gcggggctag aggcggttca
caaggctgac attgttcaca gggatttgaa gcctgagaat 540tgccttttct tggattccag
gaaggactct cctctcaaga tcatggactt tgggttgagc 600tctgttgagg agttcactga
ccctgttgtt gggttgtttg gatccattga ttatgtttca 660ccagaggctc tttctcaagg
gaagatcact gccaagagtg acatgtggtc tctgggagtg 720attctatata tcttgctctc
tgggtatccg cctttcattg cacaaaataa tcgccaaaaa 780caacaaatga taatcaatgg
gaatttcagt ttctatgaga agacttggaa gggcattacc 840caatcagcga agcaattgat
ttcaagtctt ttgactgttg atccaagtaa gaggcctagt 900gctcaagagc tcttgagtca
tccatgggtc agaggtgaca aagccaaaga tgagcaaatg 960gaccctgaga ttgtctcaag
gctgcagagc tttaatgcaa gacgcaaact ccgcgcagct 1020gcaattgcta gtgtttggag
cagcacaatc ttcctgagaa ccaaaaagct gagatccttg 1080gtaggaactt atgatctcaa
agaagaggaa attgaaagtc tcaggataca ctttaagaag 1140atatgtggaa atggagacaa
tgcaactctg tctgagtttg tggaggtgct gaaagcaatg 1200aagatgccct cattgatccc
tctagcaccg cgtatatttg acttgtttga caacaaccgt 1260gatggaacaa ttgacatgag
agagatacta tgtgggtttt ctagcctcaa gaactccaaa 1320ggagatgatg ctctccgttt
gtgcttccag atgtatgaca cagatagatc agggtgcatc 1380accaaggaag aagtagcatc
catgctctgt gctttgccag aggaatgtct tccagctgat 1440atcactgaac ctgggaaatt
ggatgagata tttgacttaa tggatgccaa cagtgatgga 1500aaagttacat ttgaagaatt
caaagctgct atgcagagag atagctctct ccaagacatg 1560ctcctctctt ctcttcgtcc
atcatagttt tttttttttt ccattcatgg tgttatggtc 1620tttcaaactt tgatattgac
tacacctttt acgtttcttt taatctcttt tggggctatc 1680cttctctttg aggtattcat
actacatgga aaaagggtgg taaagagggt gaaattgtgt 1740catctaactt ttgctatgac
aactaggaac ttttgcaaaa aaa 1783212094DNAGlycine max
21tataatgcca gcagttgact ctctctttgt cccttccaga acagctccta ccagccatat
60tgttttttct cttgtaccta tcccaatttg tttcatattt tatgtcataa actaatccac
120aaactcttac aacaggctaa tgtcactctc aaccgtttca acacgcgttt tgaaagcccc
180tatcattgaa ttaaagttaa cattttttta cataccaatt cccttcccac tgcacatttt
240ctgagtcttc aagattccat aatttcaaag actttgtgtg caccacacca ccatggggaa
300tgaaaccaga aaactctcag atgagtatga agtttcagaa gtcctaggaa gaggtggatt
360ttctgttgtc agaaaaggca ccaaaaaatc aagcagtgac accaaaacac atgtagccat
420caaaaccctg agaagggtag gcactgcctc aaactccaac aacccttctg gatttccaag
480accaaagggt ggagagaaga agagcacagc agctatgatg ggattcccca catggagaca
540agtctcagtc tcagatgcct tgctcacaaa tgagattctt gtgatgagga gaatagtgga
600aaatgtttca ccacacccta atgtgattga cctctatgat gtgtatgagg actcaaatgg
660ggtgcacctt gtgttggagc tgtgttctgg tggagaactg tttgatagga ttgtggcaca
720agataggtac tcagagactg aagctgcagg tgtggttcgc cagatagctt caggattaga
780ggctattcat agagctaaca ttgtccacag agatttgaag cctgagaatt gccttttctt
840ggatgtgagg agggactctc ctcttaagat catggacttt gggttgagtt ctgttgagga
900attcactgac ccagttgttg gtttgtttgg atccattgat tacgtttcac cagaggctct
960ttctcaaggg aagataacta ccaagagtga catgtggtct ctgggggtga ttctatatat
1020cttgctctca gggtatccac ctttcattgc tcaaaataat cgccagaaac aacaaatgat
1080aatgaatggg aatttcagtt tctatgagaa gacatggaag ggcattaccc gttcagcgaa
1140gcaactgatt tcagatcttt tgattgttga tcctagtaga agacctagtg ctcaagatct
1200tctgagtcat ccatgggtgg taggtgacaa ggccaaagat gatgcaatgg accctgagat
1260tgtctcaaga ttgcagagct tcaacgctag gcgcaaactg cgtgcagttg caattgcaag
1320tatttggagc accacaatct tcctcagaac caaaaaactg aaatccttgg tgggaacaca
1380tgatctcaca gaagaggaaa ttgaaaatct caggatgagt tttaagaaga tatgtgtgag
1440tggggacaat gccactctat ctgagtttga ggaggtgctg aaagcaatga acatgccatc
1500actgatccct ctagcaccgc gaatatttga cttatttgac gacaaccgag atggaacagt
1560tgacatgaga gagatactat gtggtttttc cagcttcaaa aactccaaag gggatgatgc
1620tctccgtttg tgcttccaga tgtatgacac agatcgatcc gggtgcatca ccaaggaaga
1680agtagcatcc atgctcagag ctttgccaga agactgtctc ccaactgaca tcactgaacc
1740tggcaaattg gatgagatat ttgacctaat ggatgccaac agtgatggaa aagttacctt
1800tgatgaattc aaagctgcta tgcagagaga tagctctctc caagacgtag ttctctcttc
1860tcttcgccca caatagttct cctaattttc attaatttat tgtattatta actatggtat
1920tttaaaatgg agtagtacta gtgttgtcct tttctttttc ttcttcctgg cctgggccat
1980tctttttgct gacttattga tactatagga agaaaaagga ttggattact atatagtgaa
2040tttttgcttt tgacagttat ctatgaactt ctgcgttctc atgttgttcg tcaa
2094221878DNAPhaseolus vulgaris 22tctcaaccgt ttcaacacgc gttttgaagg
ctcctcctat cattttttta acaaacaaat 60tcctttgtcc ctgcaaattt tctgagtctt
caagattcct tagtttccaa gactctgtgt 120gcagcacacc accatggggt atgaaaccag
aatactctca gatgagtatg aagtctcaga 180ggttctagga agaggtggat tttctgttgt
cagaaaaggc acaagaaaat caagtagtga 240caccaaaagc cttgtagcca tcaaaaccct
gagaaggtca ggaactgcct caagccccag 300ctacccttct gggtttccaa gaccaaaggg
tggagagaag agcacagcag ctatgatggg 360gttcccctca gggagacaag tctcagtctc
agatgccttg ctcaccaatg agattcttgt 420gatgaggaga atagtggaaa acgtttcacc
acaccctaat gtgattgacc tttatgatgt 480gtatgaggac tccaatggag tgcaccttgt
gttggagctg tgctctggtg gggaattgtt 540tgataggatt gtagcacaag ataggtactc
agagactgaa gctgcaggtg tggttcgcca 600gatagcttca ggattagagg ctattcatag
agctaacatt gtgcacaggg acttgaagcc 660tgagaattgt cttttcttgg atgtgaggag
ggactcccct cttaagatca tggactttgg 720attgagttct gttgaagaat tcactgaccc
agttgttggt ttgtttggat ccattgatta 780tgtttcacca gaggctcttt ctcaagggaa
gataactacc aagagtgaca tgtggtctct 840tggagtgatt ctatacatct tactctctgg
gtatccacct ttcattgctc agaccaatcg 900ccagaaacaa caaatgataa tgaatgggaa
tttcagtttc tatgagaaga catggaaggg 960cattactcaa tcagcaaaac agctaatttc
agatcttctg actatagatc ctagcaggag 1020acctagtgct caagatcttc tgagtcatcc
atgggtggta ggtgacaaag ccaaggatga 1080tgcaatggac cctgagattg tctcaagatt
gcagagcttc aacgcaagac gcaaattgcg 1140tgcagctgca attgctagtg tttggagctc
cacaatcttc ctcagaacca aaaagctgaa 1200atccttggtg ggaacacatg atctcacagc
agaggaaatt gaaaacctca ggataaattt 1260taagaaaata tgtgtgaatg gagacaatgc
cactctctct gagtttgaag aggtgctgaa 1320agcaatgaat atgccatcac tgatccctct
agcaccacga atatttgact tgtttgacaa 1380caaccgtgat ggaacagttg acatgagaga
gatactttgt ggcttttcca gcttcaaaaa 1440ctccaaagga gatgatgctc tccgtttgtg
cttccagatg tatgacacag atcgatcagg 1500gtgcatcacc aaggaagaag tagcatccat
gctcagagct ttaccagaag agtgtctacc 1560tgctgatatc actgaacctg ggaaactgga
tgagatattt gacagaatgg atgccaacag 1620tgatggaaaa gttacctttg atgaattcaa
agctgccatg cagagagata gctctttgca 1680agaccttctt ctctcttctc taagaccaca
atcttaactc ttcaaatttc cattgatcta 1740tatgctattg ttatcaacca tgcacaacta
tttttgtcct ttttgtccct tcacactgta 1800ggaaaaaaca ctattccagg actatacact
gatgttgttc catctaactt ttgcttagac 1860tcatgttaat taagtatg
1878231548DNAArachis hypogaea
23atgggatatg aaaccagaaa gctctctgat gagtatgaag tttcagaaat tctaggaaga
60ggtggattct ctgttgtcag gaaaggcata aaaaaatcaa gcagtgatga gaaaactcat
120gttgccataa agacactaag aagagtaagt gtcttctcta caacccctgg ttgtttacca
180agagagagga gcaacatggg gtttcccaca tggagacagg tttcagtatc agatgctctt
240ctcaccaatg agatccttgt gatgaggaag atagtcgaaa atgtgtcgcc acatccgaat
300gtggttgacc tctatgatgt ttatgaggac tcgaatggtg ttcatcttgt tttggagctg
360tgttctggcg gtgagctgtt tgatcgcatt gtggcacagg ataggtactc agagactgag
420gctgcgacag ttattcgcca gattgcggcg ggcttagagg ctattcataa agcaaacatt
480gtccatagag acttgaagcc tgagaattgc ttgttcttgg acaagaggaa ggattctcct
540ctaaagatca tggatttcgg tttgagctct gttgaagagt ttactgatcc agttgttggt
600ttgtttggtt ccattgatta tgtttcaccg gaggctcttt ctcaaggaaa gattactact
660aagagtgaca tgtggtctct aggggtaatt ttgtacatct tattatctgg atatccgcct
720ttcattgctc agtctaatcg ccaaaaacaa caaatgataa tgaatgggaa cttcagcttc
780tatgagaaga catggaaggg catttctcaa tcagcaaagc aattgatttc gagtcttctg
840acagttgatc ctagtaggag acctagtgcg caggagctcc tgagtcatcc atgggtcata
900ggtgatgtag ccaaagatgt tcaaatggac cctgagattg tctcaaggtt gcaaagcttc
960aatgctcgtc gcaagctccg ggcagctgca attgcaagcg tatggagcac cacagtgttc
1020ttgagaacca agaaactgaa atccttgata ggatcctatg atcttacaga agaggaaatt
1080gaaagtctca ggatacactt caagaagata tgtggaaatg gggacaatgc cacgctctct
1140aagtttgagg aggtactgaa agcaataaat atgccatcac taattcctct agcaccacgc
1200atatttgact tgttcgacaa caaccgtgat ggaacggttg acatgcgaga gattttatgt
1260gggctttcca gcctcaagaa ttccaaagga gatgatgccc tccgtttgtg cttccagatg
1320tatgatgcag atcgatccgg gtgtatcaca aaggaagaag tagcatccat gcttagagct
1380ttgccggatg actgtcttcc cgttgatatc acggaacctg gcaaattgga cgagattttc
1440gacagaatgg atgccaacag tgatggaaaa gtcacctttg aggaattcaa agctgctatg
1500caaagagata gctctctcca agacgtagtc ctctcttctc ttcgtcca
1548241716DNAPetunia x hybrida 24gcggggagtg ctttgatggg acaaaaggaa
gatacaagaa gtctaagtga tgaatatgaa 60gtaacagaca tacttggaag aggtggcttt
tcagtagtaa ggagaggaag aacacgtagc 120agtgaagaag ttgccattaa gacactccgg
cgattcggac cgccggagaa gaaagaattt 180agtaggtcta ctactcatgt taattctcga
ccagctgcac aggctttaat atctgaaact 240ttgttgacaa atgagctgtt agttatgagg
aagattgtgg aagatgtttc acctcatcct 300aatgttatac atctgtatga cgtttgtgag
gattcttcag gtgttcatct catcttggag 360ctttgttgtg gtggggagct ctttgatcgg
attgttgggc aagcaaggta taacgaggca 420ggcgcagctg cagtggtgag acagatagct
aagggtcttg aggcactaca tggggcaagt 480atagttcata gggacttgaa accagagaac
tgtctattct tgaacaagga tgagaattca 540ccactgaaaa tcatggactt tggactcagc
tctattgagg attttgccaa tccagtggtt 600ggtttatttg gttccataga ttatgtttca
ccagaagcac tttcaagggg aaacatcact 660agcaaaagtg atatttggtc acttggagta
atcctttaca ttctcctatc cgggtaccca 720cctttcttcg caccgtccaa tcggcaaaag
caacaaatga tattaaacgg ggagttcagt 780tttgatgaga aaacatggaa aaatatttcg
tcatccgcaa aacagctaat atccagtctt 840ttgaaagttg atcctaacat gagacctact
gctcaagaga tacttgaaca cccatgggtg 900acaggagact tggcaaagca agaacagatg
gatgccgaaa ttgtatctcg cctgcaaagc 960ttcaatgctc ggcgcaagtt cagggcggca
gctatggcta gtgtgttaag cagtagtttc 1020tccttgagaa ctaagaaatt gaagaagttg
gttggttcct atgacctcaa gcctgaagaa 1080ttggaaaacc tcagccacaa cttcaagaaa
atatgcaaaa atggagaaaa tgcaacttta 1140ttggaatttg aagaggtcct gaaagctatg
gaaatgtcat ctttagtccc tttagctcct 1200cggatattcg atctatttga caacaatcgt
gatggaacag tagatatgag agagatcata 1260ggtggcttct ctagcctcaa gtattcccaa
ggggatgatg cacttcgtct ttgtttccag 1320atgtatgata cagatcggtc aggctgcatt
agcaaggaag aggtcgcatc catgttaaga 1380gcacttcctg aagactgcct tccaatggat
ataacagaac ctggaaaact tgatgagata 1440tttgatttaa tggatgcaaa tagtgatggt
aaagtcactt ttgatgagtt cagagctgcc 1500atgcaaagag atagctctct tcaagatgta
gttctctcct ctcttcgtcc cactttaatt 1560cctttattat ttaattttcc ttttagcata
ctagttgtat taatctctaa ccttctatga 1620caatgattta tttttttatt cgcaactgag
aaaaagggca tggaattaat ttgaaagctt 1680tatcgaacgc taaaaaaaaa aaaaaaaaaa
aaaaaa 1716251847DNASesbania rostrata
25gggaattcaa agacttgatt tttttgtttt gttttgtgca ccaccatggg atatgaaacc
60agaaggctct cagatgagta tgaggtttca gatgttctag gaagaggtgg attttctgtt
120gtcagaaaag gtaccaaaaa atcaagcagt gagaaaacct tagtagccat caaaacactg
180agaaggttag gtgcctctaa taacaaccct tctggtttac caaaaacaaa aggtggagag
240aaaagcatag caactatgat ggggttcccc acatggagac aagtttcagt ctcagatgcc
300ttgttgacca atgagattct tgtcatgagg aggatagtgg aaaatgtttc acctcacccc
360aatgtgattg acctctatga tgtgtatgag gactcaaatg gggttcatct tgtgcttgag
420ctttgttctg gtggggaatt gtttgatagg attgtggcac aagataggta ctcagagact
480gaagctgcag ctgtggttcg ccagatagca gcaggattag aggctattca taaagctaac
540attgttcata gggacttgaa gcctgagaat tgcctttttt tggataccag gaaggactct
600cctctcaaga tcatggactt tgggttgagt tctgttgaag aatttactga ccctgttgtt
660ggtttgtttg gatccattga ttatgtttca ccagaggctc tttctcaagg aaagataact
720actaagagtg acatgtggtc tctaggagta attctatata tcttactctc tgggtatcca
780cctttcattg ctccgtctaa tcgccaaaaa caacaaatga tagtgaacgg gaatttcagt
840ttctatgaga agacttggaa gggcatttcc caatcagcaa agcaattgat ttcaagtctt
900ctgactgttg atcctagcaa gagacccagt gctcaacagc ttctgagtca tccatgggtt
960ataggtgaga aagccaaaga tgatcaaatg gaccctgaaa ttgtctcaag gctgcagagc
1020tttaatgcaa gacgcaaact gcgtgcagct gcaattgcta gtgtttggag ctccacagtc
1080ttcctcagaa ccaaaaaact gagatccttg gtaggaaccc atgatctcaa agaagaggaa
1140attgaaaacc tcaggataca tttcaagaag atatgtgcaa atggagacaa tgccactctc
1200tctgagtttg aggaggtgct gaaagcaatg aatatgccat cattgatccc tctagcacct
1260cgtatatttg acttgtttga caacaaccgt gatggaacag ttgacatgcg agagatacta
1320tgtgggtttt ctagtctcaa gaactccaaa ggagatgatg ctctccgttt gtgcttccag
1380atgtatgaca cagatcgatc cgggtgcatc acaaaggaag aagtagcatc tatgctgaga
1440gctttgccag atgattgtct tccagctgat atcactgaac ctggcaaatt ggatgagata
1500tttgatttaa tggatgcaaa tagtgatgga aaagttacct ttgatgaatt caaagctgct
1560atgcagagag atagctctct tcaagatgta gtcctctctt ctcttcgccc ataatccttt
1620tattatgaca taatattcac actacaagga aaagtgtaat gcagtactaa acagggtgaa
1680actgtgccat ctaacttctg ctatgacaat taggaacttt tgcattttca tgttatacaa
1740gctagctagc tacctacctg agtcttgaaa ctgcaattga gtagcagaaa gctaacatgt
1800tcatcttgaa tcgaacaaat tcttccaaat ttagttttta ttgcatc
1847261572DNAArtificialModified DMI3 polynucleotide 26atgggatatg
gaacaagaaa actctcagat gaatatgaag tttcagaaat tctaggtaga 60ggtggatttt
ctgttgttag aaaaggtaca aaaaaatcaa gcattgaaga agaaaaatca 120caatcacaag
tagcaatcaa aaccctaaga aggttaggtg cttcaaataa ccctagtgga 180ttaccaagaa
aaaaagatat tggagaaaaa agcacaatag ggttccctac aatgagacaa 240gtttcagttt
cagatacatt actaacaaat gagatacttg taatgagacg aatagtcgaa 300aacgtttcgc
cacatccaaa tgtgattgat ctttatgatg tatatgagga cacaaatggt 360gttcatcttg
ttcttgagct ttgttccggt ggtgaacttt tcgataggat tgttgcacaa 420gataagtata
gtgagactga agctgcaact gtggttcatc aaatagcttc agggttagaa 480gctgttcata
gagctaatat agttcataga gatttgaaac ctgaaaattg tcttttttta 540gatgttagga
aagattctcc tcttaagatt atggattttg ggttgagttc tgttgaagag 600tttactgatc
ctgttgttgg tttgtttgga tctattgatt atgtttcacc tgaggctctt 660tctcaaggaa
agattactac taagagtgat atgtggtctc ttggggttat tctatatatc 720ttactttcag
ggtatccacc tttcattgcc caaaataatc gccaaaaaca acaaatgata 780atgaatggga
attttagttt ttatgagaag gattggaagg gaatttcaca accagcaaag 840aatttgattt
caagtctttt aaccgttgat cctagcaaga gacctagtgc tcttgagctt 900ctaagtgatc
catgggtcaa aggtgagaaa gccaaagatg ttcaaatgga ccctgagatt 960gtctcaaggc
tacaaagctt taatgcaaga cgtaaacttc gtgcagctgc aattgctagt 1020gtttggagct
ccacaatctt ccttagaaca aaaaaattga aatcattggt tggatcctat 1080gatcttaaag
aagaggaaat tgaaaatctc aggatgcatt tcaagaagat atgtgcagat 1140agagacaatg
caactctgtc agagtttgag gaggtgttaa aagcaatgaa tatgttatca 1200ttgatccctt
ttgcttctcg tatatttgat ttgtttgaca acaaccgtga tggaacagtt 1260gacatgcgtg
agatactttg tggattttcc agtctcaaga attccaaagg agaggatgct 1320cttcgtttgt
gcttccagat gtatgataca gatagatcag gctgcatcag caaagaggaa 1380gtagcatcca
tgctcagggc tttgccatat gattgtcttc caactgatat cactgaacct 1440ggaaaattgg
atgagatttt tgacttaatg gatgctaata atgatggaaa agttacattt 1500gatgaattca
aagctgctat gcaaagagat agctctcttc aagatgtagt tctctcttct 1560attcgtccat
aa
1572271572DNAArtificialModified DMI3 polynucleotide 27atgggatatg
gaacaagaaa actctcagat gaatatgaag tttcagaaat tctaggtaga 60ggtggatttt
ctgttgttag aaaaggtaca aaaaaatcaa gcattgaaga agaaaaatca 120caatcacaag
tagcaatcaa aaccctaaga aggttaggtg cttcaaataa ccctagtgga 180ttaccaagaa
aaaaagatat tggagaaaaa agcacaatag ggttccctac aatgagacaa 240gtttcagttt
cagatacatt actaacaaat gagatacttg taatgagacg aatagtcgaa 300aacgtttcgc
cacatccaaa tgtgattgat ctttatgatg tatatgagga cacaaatggt 360gttcatcttg
ttcttgagct ttgttccggt ggtgaacttt tcgataggat tgttgcacaa 420gataagtata
gtgagactga agctgcaact gtggttcatc aaatagcttc agggttagaa 480gctgttcata
gagctaatat agttcataga gatttgaaac ctgaaaattg tcttttttta 540gatgttagga
aagattctcc tcttaagatt atggattttg ggttgagttc tgttgaagag 600tttactgatc
ctgttgttgg tttgtttgga tctattgatt atgtttcacc tgaggctctt 660tctcaaggaa
agattactac taagagtgat atgtggtctc ttggggttat tctatatatc 720ttactttcag
ggtatccacc tttcattgcc caaaataatc gccaaaaaca acaaatgata 780atgaatggga
attttagttt ttatgagaag atttggaagg gaatttcaca accagcaaag 840aatttgattt
caagtctttt aaccgttgat cctagcaaga gacctagtgc tcttgagctt 900ctaagtgatc
catgggtcaa aggtgagaaa gccaaagatg ttcaaatgga ccctgagatt 960gtctcaaggc
tacaaagctt taatgcaaga cgtaaacttc gtgcagctgc aattgctagt 1020gtttggagct
ccacaatctt ccttagaaca aaaaaattga aatcattggt tggatcctat 1080gatcttaaag
aagaggaaat tgaaaatctc aggatgcatt tcaagaagat atgtgcagat 1140agagacaatg
caactctgtc agagtttgag gaggtgttaa aagcaatgaa tatgttatca 1200ttgatccctt
ttgcttctcg tatatttgat ttgtttgaca acaaccgtga tggaacagtt 1260gacatgcgtg
agatactttg tggattttcc agtctcaaga attccaaagg agaggatgct 1320cttcgtttgt
gcttccagat gtatgataca gatagatcag gctgcatcag caaagaggaa 1380gtagcatcca
tgctcagggc tttgccatat gattgtcttc caactgatat cactgaacct 1440ggaaaattgg
atgagatttt tgacttaatg gatgctaata atgatggaaa agttacattt 1500gatgaattca
aagctgctat gcaaagagat agctctcttc aagatgtagt tctctcttct 1560attcgtccat
aa
157228523PRTMedicago truncatula 28Met Gly Tyr Gly Thr Arg Lys Leu Ser Asp
Glu Tyr Glu Val Ser Glu1 5 10
15Ile Leu Gly Arg Gly Gly Phe Ser Val Val Arg Lys Gly Thr Lys Lys
20 25 30Ser Ser Ile Glu Glu Glu
Lys Ser Gln Ser Gln Val Ala Ile Lys Thr 35 40
45Leu Arg Arg Leu Gly Ala Ser Asn Asn Pro Ser Gly Leu Pro
Arg Lys 50 55 60Lys Asp Ile Gly Glu
Lys Ser Thr Ile Gly Phe Pro Thr Met Arg Gln65 70
75 80Val Ser Val Ser Asp Thr Leu Leu Thr Asn
Glu Ile Leu Val Met Arg 85 90
95Arg Ile Val Glu Asn Val Ser Pro His Pro Asn Val Ile Asp Leu Tyr
100 105 110Asp Val Tyr Glu Asp
Thr Asn Gly Val His Leu Val Leu Glu Leu Cys 115
120 125Ser Gly Gly Glu Leu Phe Asp Arg Ile Val Ala Gln
Asp Lys Tyr Ser 130 135 140Glu Thr Glu
Ala Ala Thr Val Val His Gln Ile Ala Ser Gly Leu Glu145
150 155 160Ala Val His Arg Ala Asn Ile
Val His Arg Asp Leu Lys Pro Glu Asn 165
170 175Cys Leu Phe Leu Asp Val Arg Lys Asp Ser Pro Leu
Lys Ile Met Asp 180 185 190Phe
Gly Leu Ser Ser Val Glu Glu Phe Thr Asp Pro Val Val Gly Leu 195
200 205Phe Gly Ser Ile Asp Tyr Val Ser Pro
Glu Ala Leu Ser Gln Gly Lys 210 215
220Ile Thr Thr Lys Ser Asp Met Trp Ser Leu Gly Val Ile Leu Tyr Ile225
230 235 240Leu Leu Ser Gly
Tyr Pro Pro Phe Ile Ala Gln Asn Asn Arg Gln Lys 245
250 255Gln Gln Met Ile Met Asn Gly Asn Phe Ser
Phe Tyr Glu Lys Thr Trp 260 265
270Lys Gly Ile Ser Gln Pro Ala Lys Asn Leu Ile Ser Ser Leu Leu Thr
275 280 285Val Asp Pro Ser Lys Arg Pro
Ser Ala Leu Glu Leu Leu Ser Asp Pro 290 295
300Trp Val Lys Gly Glu Lys Ala Lys Asp Val Gln Met Asp Pro Glu
Ile305 310 315 320Val Ser
Arg Leu Gln Ser Phe Asn Ala Arg Arg Lys Leu Arg Ala Ala
325 330 335Ala Ile Ala Ser Val Trp Ser
Ser Thr Ile Phe Leu Arg Thr Lys Lys 340 345
350Leu Lys Ser Leu Val Gly Ser Tyr Asp Leu Lys Glu Glu Glu
Ile Glu 355 360 365Asn Leu Arg Met
His Phe Lys Lys Ile Cys Ala Asp Arg Asp Asn Ala 370
375 380Thr Leu Ser Glu Phe Glu Glu Val Leu Lys Ala Met
Asn Met Leu Ser385 390 395
400Leu Ile Pro Phe Ala Ser Arg Ile Phe Asp Leu Phe Asp Asn Asn Arg
405 410 415Asp Gly Thr Val Asp
Met Arg Glu Ile Leu Cys Gly Phe Ser Ser Leu 420
425 430Lys Asn Ser Lys Gly Glu Asp Ala Leu Arg Leu Cys
Phe Gln Met Tyr 435 440 445Asp Thr
Asp Arg Ser Gly Cys Ile Ser Lys Glu Glu Val Ala Ser Met 450
455 460Leu Arg Ala Leu Pro Tyr Asp Cys Leu Pro Thr
Asp Ile Thr Glu Pro465 470 475
480Gly Lys Leu Asp Glu Ile Phe Asp Leu Met Asp Ala Asn Asn Asp Gly
485 490 495Lys Val Thr Phe
Asp Glu Phe Lys Ala Ala Met Gln Arg Asp Ser Ser 500
505 510Leu Gln Asp Val Val Leu Ser Ser Ile Arg Pro
515 52029518PRTLotus japonicus 29Met Gly Tyr Asp Gln
Thr Arg Lys Leu Ser Asp Glu Tyr Glu Ile Ser1 5
10 15Glu Ile Leu Gly Arg Gly Gly Phe Ser Val Val
Arg Lys Gly Thr Lys 20 25
30Lys Ser Gly Asn Glu Lys Thr Gln Val Ala Ile Lys Thr Leu Arg Arg
35 40 45Leu Gly Ser Ser Pro Ser Gly Thr
Gly Gly Gly Gln Lys Ser Thr Ala 50 55
60Thr Val Met Gly Phe Pro Ser Leu Arg Gln Val Ser Val Ser Asp Ala65
70 75 80Leu Leu Thr Asn Glu
Ile Leu Val Met Arg Arg Ile Val Glu Asn Val 85
90 95Ser Pro His Pro Asn Val Ile Asp Leu Tyr Asp
Val Cys Glu Asp Ser 100 105
110Asn Gly Val His Leu Val Leu Glu Leu Cys Ser Gly Gly Glu Leu Phe
115 120 125Asp Arg Ile Val Ala Gln Asp
Lys Tyr Ala Glu Thr Glu Ala Ala Ala 130 135
140Val Val Arg Gln Ile Ala Ala Gly Leu Glu Ala Val His Lys Ala
Asp145 150 155 160Ile Val
His Arg Asp Leu Lys Pro Glu Asn Cys Leu Phe Leu Asp Ser
165 170 175Arg Lys Asp Ser Pro Leu Lys
Ile Met Asp Phe Gly Leu Ser Ser Val 180 185
190Glu Glu Phe Thr Asp Pro Val Val Gly Leu Phe Gly Ser Ile
Asp Tyr 195 200 205Val Ser Pro Glu
Ala Leu Ser Gln Gly Lys Ile Thr Ala Lys Ser Asp 210
215 220Met Trp Ser Leu Gly Val Ile Leu Tyr Ile Leu Leu
Ser Gly Tyr Pro225 230 235
240Pro Phe Ile Ala Gln Asn Asn Arg Gln Lys Gln Gln Met Ile Ile Asn
245 250 255Gly Asn Phe Ser Phe
Tyr Glu Lys Thr Trp Lys Gly Ile Thr Gln Ser 260
265 270Ala Lys Gln Leu Ile Ser Ser Leu Leu Thr Val Asp
Pro Ser Lys Arg 275 280 285Pro Ser
Ala Gln Glu Leu Leu Ser His Pro Trp Val Arg Gly Asp Lys 290
295 300Ala Lys Asp Glu Gln Met Asp Pro Glu Ile Val
Ser Arg Leu Gln Ser305 310 315
320Phe Asn Ala Arg Arg Lys Leu Arg Ala Ala Ala Ile Ala Ser Val Trp
325 330 335Ser Ser Thr Ile
Phe Leu Arg Thr Lys Lys Leu Arg Ser Leu Val Gly 340
345 350Thr Tyr Asp Leu Lys Glu Glu Glu Ile Glu Ser
Leu Arg Ile His Phe 355 360 365Lys
Lys Ile Cys Gly Asn Gly Asp Asn Ala Thr Leu Ser Glu Phe Val 370
375 380Glu Val Leu Lys Ala Met Lys Met Pro Ser
Leu Ile Pro Leu Ala Pro385 390 395
400Arg Ile Phe Asp Leu Phe Asp Asn Asn Arg Asp Gly Thr Ile Asp
Met 405 410 415Arg Glu Ile
Leu Cys Gly Phe Ser Ser Leu Lys Asn Ser Lys Gly Asp 420
425 430Asp Ala Leu Arg Leu Cys Phe Gln Met Tyr
Asp Thr Asp Arg Ser Gly 435 440
445Cys Ile Thr Lys Glu Glu Val Ala Ser Met Leu Cys Ala Leu Pro Glu 450
455 460Glu Cys Leu Pro Ala Asp Ile Thr
Glu Pro Gly Lys Leu Asp Glu Ile465 470
475 480Phe Asp Leu Met Asp Ala Asn Ser Asp Gly Lys Val
Thr Phe Glu Glu 485 490
495Phe Lys Ala Ala Met Gln Arg Asp Ser Ser Leu Gln Asp Met Leu Leu
500 505 510Ser Ser Leu Arg Pro Ser
51530527PRTGlycine max 30Met Gly Asn Glu Thr Arg Lys Leu Ser Asp Glu
Tyr Glu Val Ser Glu1 5 10
15Val Leu Gly Arg Gly Gly Phe Ser Val Val Arg Lys Gly Thr Lys Lys
20 25 30Ser Ser Ser Asp Thr Lys Thr
His Val Ala Ile Lys Thr Leu Arg Arg 35 40
45Val Gly Thr Ala Ser Asn Ser Asn Asn Pro Ser Gly Phe Pro Arg
Pro 50 55 60Lys Gly Gly Glu Lys Lys
Ser Thr Ala Ala Met Met Gly Phe Pro Thr65 70
75 80Trp Arg Gln Val Ser Val Ser Asp Ala Leu Leu
Thr Asn Glu Ile Leu 85 90
95Val Met Arg Arg Ile Val Glu Asn Val Ser Pro His Pro Asn Val Ile
100 105 110Asp Leu Tyr Asp Val Tyr
Glu Asp Ser Asn Gly Val His Leu Val Leu 115 120
125Glu Leu Cys Ser Gly Gly Glu Leu Phe Asp Arg Ile Val Ala
Gln Asp 130 135 140Arg Tyr Ser Glu Thr
Glu Ala Ala Gly Val Val Arg Gln Ile Ala Ser145 150
155 160Gly Leu Glu Ala Ile His Arg Ala Asn Ile
Val His Arg Asp Leu Lys 165 170
175Pro Glu Asn Cys Leu Phe Leu Asp Val Arg Arg Asp Ser Pro Leu Lys
180 185 190Ile Met Asp Phe Gly
Leu Ser Ser Val Glu Glu Phe Thr Asp Pro Val 195
200 205Val Gly Leu Phe Gly Ser Ile Asp Tyr Val Ser Pro
Glu Ala Leu Ser 210 215 220Gln Gly Lys
Ile Thr Thr Lys Ser Asp Met Trp Ser Leu Gly Val Ile225
230 235 240Leu Tyr Ile Leu Leu Ser Gly
Tyr Pro Pro Phe Ile Ala Gln Asn Asn 245
250 255Arg Gln Lys Gln Gln Met Ile Met Asn Gly Asn Phe
Ser Phe Tyr Glu 260 265 270Lys
Thr Trp Lys Gly Ile Thr Arg Ser Ala Lys Gln Leu Ile Ser Asp 275
280 285Leu Leu Ile Val Asp Pro Ser Arg Arg
Pro Ser Ala Gln Asp Leu Leu 290 295
300Ser His Pro Trp Val Val Gly Asp Lys Ala Lys Asp Asp Ala Met Asp305
310 315 320Pro Glu Ile Val
Ser Arg Leu Gln Ser Phe Asn Ala Arg Arg Lys Leu 325
330 335Arg Ala Val Ala Ile Ala Ser Ile Trp Ser
Thr Thr Ile Phe Leu Arg 340 345
350Thr Lys Lys Leu Lys Ser Leu Val Gly Thr His Asp Leu Thr Glu Glu
355 360 365Glu Ile Glu Asn Leu Arg Met
Ser Phe Lys Lys Ile Cys Val Ser Gly 370 375
380Asp Asn Ala Thr Leu Ser Glu Phe Glu Glu Val Leu Lys Ala Met
Asn385 390 395 400Met Pro
Ser Leu Ile Pro Leu Ala Pro Arg Ile Phe Asp Leu Phe Asp
405 410 415Asp Asn Arg Asp Gly Thr Val
Asp Met Arg Glu Ile Leu Cys Gly Phe 420 425
430Ser Ser Phe Lys Asn Ser Lys Gly Asp Asp Ala Leu Arg Leu
Cys Phe 435 440 445Gln Met Tyr Asp
Thr Asp Arg Ser Gly Cys Ile Thr Lys Glu Glu Val 450
455 460Ala Ser Met Leu Arg Ala Leu Pro Glu Asp Cys Leu
Pro Thr Asp Ile465 470 475
480Thr Glu Pro Gly Lys Leu Asp Glu Ile Phe Asp Leu Met Asp Ala Asn
485 490 495Ser Asp Gly Lys Val
Thr Phe Asp Glu Phe Lys Ala Ala Met Gln Arg 500
505 510Asp Ser Ser Leu Gln Asp Val Val Leu Ser Ser Leu
Arg Pro Gln 515 520
52531527PRTPhaseolus vulgaris 31Met Gly Tyr Glu Thr Arg Ile Leu Ser Asp
Glu Tyr Glu Val Ser Glu1 5 10
15Val Leu Gly Arg Gly Gly Phe Ser Val Val Arg Lys Gly Thr Arg Lys
20 25 30Ser Ser Ser Asp Thr Lys
Ser Leu Val Ala Ile Lys Thr Leu Arg Arg 35 40
45Ser Gly Thr Ala Ser Ser Pro Ser Tyr Pro Ser Gly Phe Pro
Arg Pro 50 55 60Lys Gly Gly Glu Lys
Ser Thr Ala Ala Met Met Gly Phe Pro Ser Gly65 70
75 80Arg Gln Val Ser Val Ser Asp Ala Leu Leu
Thr Asn Glu Ile Leu Val 85 90
95Met Arg Arg Ile Val Glu Asn Val Ser Pro His Pro Asn Val Ile Asp
100 105 110Leu Tyr Asp Val Tyr
Glu Asp Ser Asn Gly Val His Leu Val Leu Glu 115
120 125Leu Cys Ser Gly Gly Glu Leu Phe Asp Arg Ile Val
Ala Gln Asp Arg 130 135 140Tyr Ser Glu
Thr Glu Ala Ala Gly Val Val Arg Gln Ile Ala Ser Gly145
150 155 160Leu Glu Ala Ile His Arg Ala
Asn Ile Val His Arg Asp Leu Lys Pro 165
170 175Glu Asn Cys Leu Phe Leu Asp Val Arg Arg Asp Ser
Pro Leu Lys Ile 180 185 190Met
Asp Phe Gly Leu Ser Ser Val Glu Glu Phe Thr Asp Pro Val Val 195
200 205Gly Leu Phe Gly Ser Ile Asp Tyr Val
Ser Pro Glu Ala Leu Ser Gln 210 215
220Gly Lys Ile Thr Thr Lys Ser Asp Met Trp Ser Leu Gly Val Ile Leu225
230 235 240Tyr Ile Leu Leu
Ser Gly Tyr Pro Pro Phe Ile Ala Gln Thr Asn Arg 245
250 255Gln Lys Gln Gln Met Ile Met Asn Gly Asn
Phe Ser Phe Tyr Glu Lys 260 265
270Thr Trp Lys Gly Ile Thr Gln Ser Ala Lys Gln Leu Ile Ser Asp Leu
275 280 285Leu Thr Ile Asp Pro Ser Arg
Arg Pro Ser Ala Gln Asp Leu Leu Ser 290 295
300His Pro Trp Val Val Gly Asp Lys Ala Lys Asp Asp Ala Met Asp
Pro305 310 315 320Glu Ile
Val Ser Arg Leu Gln Ser Phe Asn Ala Arg Arg Lys Leu Arg
325 330 335Ala Ala Ala Ile Ala Ser Val
Trp Ser Ser Thr Ile Phe Leu Arg Thr 340 345
350Lys Lys Leu Lys Ser Leu Val Gly Thr His Asp Leu Thr Ala
Glu Glu 355 360 365Ile Glu Asn Leu
Arg Ile Asn Phe Lys Lys Ile Cys Val Asn Gly Asp 370
375 380Asn Ala Thr Leu Ser Glu Phe Glu Glu Val Leu Lys
Ala Met Asn Met385 390 395
400Pro Ser Leu Ile Pro Leu Ala Pro Arg Ile Phe Asp Leu Phe Asp Asn
405 410 415Asn Arg Asp Gly Thr
Val Asp Met Arg Glu Ile Leu Cys Gly Phe Ser 420
425 430Ser Phe Lys Asn Ser Lys Gly Asp Asp Ala Leu Arg
Leu Cys Phe Gln 435 440 445Met Tyr
Asp Thr Asp Arg Ser Gly Cys Ile Thr Lys Glu Glu Val Ala 450
455 460Ser Met Leu Arg Ala Leu Pro Glu Glu Cys Leu
Pro Ala Asp Ile Thr465 470 475
480Glu Pro Gly Lys Leu Asp Glu Ile Phe Asp Arg Met Asp Ala Asn Ser
485 490 495Asp Gly Lys Val
Thr Phe Asp Glu Phe Lys Ala Ala Met Gln Arg Asp 500
505 510Ser Ser Leu Gln Asp Leu Leu Leu Ser Ser Leu
Arg Pro Gln Ser 515 520
52532516PRTArachis hypogaea 32Met Gly Tyr Glu Thr Arg Lys Leu Ser Asp Glu
Tyr Glu Val Ser Glu1 5 10
15Ile Leu Gly Arg Gly Gly Phe Ser Val Val Arg Lys Gly Ile Lys Lys
20 25 30Ser Ser Ser Asp Glu Lys Thr
His Val Ala Ile Lys Thr Leu Arg Arg 35 40
45Val Ser Val Phe Ser Thr Thr Pro Gly Cys Leu Pro Arg Glu Arg
Ser 50 55 60Asn Met Gly Phe Pro Thr
Trp Arg Gln Val Ser Val Ser Asp Ala Leu65 70
75 80Leu Thr Asn Glu Ile Leu Val Met Arg Lys Ile
Val Glu Asn Val Ser 85 90
95Pro His Pro Asn Val Val Asp Leu Tyr Asp Val Tyr Glu Asp Ser Asn
100 105 110Gly Val His Leu Val Leu
Glu Leu Cys Ser Gly Gly Glu Leu Phe Asp 115 120
125Arg Ile Val Ala Gln Asp Arg Tyr Ser Glu Thr Glu Ala Ala
Thr Val 130 135 140Ile Arg Gln Ile Ala
Ala Gly Leu Glu Ala Ile His Lys Ala Asn Ile145 150
155 160Val His Arg Asp Leu Lys Pro Glu Asn Cys
Leu Phe Leu Asp Lys Arg 165 170
175Lys Asp Ser Pro Leu Lys Ile Met Asp Phe Gly Leu Ser Ser Val Glu
180 185 190Glu Phe Thr Asp Pro
Val Val Gly Leu Phe Gly Ser Ile Asp Tyr Val 195
200 205Ser Pro Glu Ala Leu Ser Gln Gly Lys Ile Thr Thr
Lys Ser Asp Met 210 215 220Trp Ser Leu
Gly Val Ile Leu Tyr Ile Leu Leu Ser Gly Tyr Pro Pro225
230 235 240Phe Ile Ala Gln Ser Asn Arg
Gln Lys Gln Gln Met Ile Met Asn Gly 245
250 255Asn Phe Ser Phe Tyr Glu Lys Thr Trp Lys Gly Ile
Ser Gln Ser Ala 260 265 270Lys
Gln Leu Ile Ser Ser Leu Leu Thr Val Asp Pro Ser Arg Arg Pro 275
280 285Ser Ala Gln Glu Leu Leu Ser His Pro
Trp Val Ile Gly Asp Val Ala 290 295
300Lys Asp Val Gln Met Asp Pro Glu Ile Val Ser Arg Leu Gln Ser Phe305
310 315 320Asn Ala Arg Arg
Lys Leu Arg Ala Ala Ala Ile Ala Ser Val Trp Ser 325
330 335Thr Thr Val Phe Leu Arg Thr Lys Lys Leu
Lys Ser Leu Ile Gly Ser 340 345
350Tyr Asp Leu Thr Glu Glu Glu Ile Glu Ser Leu Arg Ile His Phe Lys
355 360 365Lys Ile Cys Gly Asn Gly Asp
Asn Ala Thr Leu Ser Lys Phe Glu Glu 370 375
380Val Leu Lys Ala Ile Asn Met Pro Ser Leu Ile Pro Leu Ala Pro
Arg385 390 395 400Ile Phe
Asp Leu Phe Asp Asn Asn Arg Asp Gly Thr Val Asp Met Arg
405 410 415Glu Ile Leu Cys Gly Leu Ser
Ser Leu Lys Asn Ser Lys Gly Asp Asp 420 425
430Ala Leu Arg Leu Cys Phe Gln Met Tyr Asp Ala Asp Arg Ser
Gly Cys 435 440 445Ile Thr Lys Glu
Glu Val Ala Ser Met Leu Arg Ala Leu Pro Asp Asp 450
455 460Cys Leu Pro Val Asp Ile Thr Glu Pro Gly Lys Leu
Asp Glu Ile Phe465 470 475
480Asp Arg Met Asp Ala Asn Ser Asp Gly Lys Val Thr Phe Glu Glu Phe
485 490 495Lys Ala Ala Met Gln
Arg Asp Ser Ser Leu Gln Asp Val Val Leu Ser 500
505 510Ser Leu Arg Pro 51533534PRTPetunia x
hybrida 33Met Gly Gln Lys Glu Asp Thr Arg Ser Leu Ser Asp Glu Tyr Glu
Val1 5 10 15Thr Asp Ile
Leu Gly Arg Gly Gly Phe Ser Val Val Arg Arg Gly Arg 20
25 30Thr Arg Ser Ser Glu Glu Val Ala Ile Lys
Thr Leu Arg Arg Phe Gly 35 40
45Pro Pro Glu Lys Lys Glu Phe Ser Arg Ser Thr Thr His Val Asn Ser 50
55 60Arg Pro Ala Ala Gln Ala Leu Ile Ser
Glu Thr Leu Leu Thr Asn Glu65 70 75
80Leu Leu Val Met Arg Lys Ile Val Glu Asp Val Ser Pro His
Pro Asn 85 90 95Val Ile
His Leu Tyr Asp Val Cys Glu Asp Ser Ser Gly Val His Leu 100
105 110Ile Leu Glu Leu Cys Cys Gly Gly Glu
Leu Phe Asp Arg Ile Val Gly 115 120
125Gln Ala Arg Tyr Asn Glu Ala Gly Ala Ala Ala Val Val Arg Gln Ile
130 135 140Ala Lys Gly Leu Glu Ala Leu
His Gly Ala Ser Ile Val His Arg Asp145 150
155 160Leu Lys Pro Glu Asn Cys Leu Phe Leu Asn Lys Asp
Glu Asn Ser Pro 165 170
175Leu Lys Ile Met Asp Phe Gly Leu Ser Ser Ile Glu Asp Phe Ala Asn
180 185 190Pro Val Val Gly Leu Phe
Gly Ser Ile Asp Tyr Val Ser Pro Glu Ala 195 200
205Leu Ser Arg Gly Asn Ile Thr Ser Lys Ser Asp Ile Trp Ser
Leu Gly 210 215 220Val Ile Leu Tyr Ile
Leu Leu Ser Gly Tyr Pro Pro Phe Phe Ala Pro225 230
235 240Ser Asn Arg Gln Lys Gln Gln Met Ile Leu
Asn Gly Glu Phe Ser Phe 245 250
255Asp Glu Lys Thr Trp Lys Asn Ile Ser Ser Ser Ala Lys Gln Leu Ile
260 265 270Ser Ser Leu Leu Lys
Val Asp Pro Asn Met Arg Pro Thr Ala Gln Glu 275
280 285Ile Leu Glu His Pro Trp Val Thr Gly Asp Leu Ala
Lys Gln Glu Gln 290 295 300Met Asp Ala
Glu Ile Val Ser Arg Leu Gln Ser Phe Asn Ala Arg Arg305
310 315 320Lys Phe Arg Ala Ala Ala Met
Ala Ser Val Leu Ser Ser Ser Phe Ser 325
330 335Leu Arg Thr Lys Lys Leu Lys Lys Leu Val Gly Ser
Tyr Asp Leu Lys 340 345 350Pro
Glu Glu Leu Glu Asn Leu Ser His Asn Phe Lys Lys Ile Cys Lys 355
360 365Asn Gly Glu Asn Ala Thr Leu Leu Glu
Phe Glu Glu Val Leu Lys Ala 370 375
380Met Glu Met Ser Ser Leu Val Pro Leu Ala Pro Arg Ile Phe Asp Leu385
390 395 400Phe Asp Asn Asn
Arg Asp Gly Thr Val Asp Met Arg Glu Ile Ile Gly 405
410 415Gly Phe Ser Ser Leu Lys Tyr Ser Gln Gly
Asp Asp Ala Leu Arg Leu 420 425
430Cys Phe Gln Met Tyr Asp Thr Asp Arg Ser Gly Cys Ile Ser Lys Glu
435 440 445Glu Val Ala Ser Met Leu Arg
Ala Leu Pro Glu Asp Cys Leu Pro Met 450 455
460Asp Ile Thr Glu Pro Gly Lys Leu Asp Glu Ile Phe Asp Leu Met
Asp465 470 475 480Ala Asn
Ser Asp Gly Lys Val Thr Phe Asp Glu Phe Arg Ala Ala Met
485 490 495Gln Arg Asp Ser Ser Leu Gln
Asp Val Val Leu Ser Ser Leu Arg Pro 500 505
510Thr Leu Ile Pro Leu Leu Phe Asn Phe Pro Phe Ser Ile Leu
Val Val 515 520 525Leu Ile Ser Asn
Leu Leu 53034522PRTSesbania rostrata 34Met Gly Tyr Glu Thr Arg Arg Leu
Ser Asp Glu Tyr Glu Val Ser Asp1 5 10
15Val Leu Gly Arg Gly Gly Phe Ser Val Val Arg Lys Gly Thr
Lys Lys 20 25 30Ser Ser Ser
Glu Lys Thr Leu Val Ala Ile Lys Thr Leu Arg Arg Leu 35
40 45Gly Ala Ser Asn Asn Asn Pro Ser Gly Leu Pro
Lys Thr Lys Gly Gly 50 55 60Glu Lys
Ser Ile Ala Thr Met Met Gly Phe Pro Thr Trp Arg Gln Val65
70 75 80Ser Val Ser Asp Ala Leu Leu
Thr Asn Glu Ile Leu Val Met Arg Arg 85 90
95Ile Val Glu Asn Val Ser Pro His Pro Asn Val Ile Asp
Leu Tyr Asp 100 105 110Val Tyr
Glu Asp Ser Asn Gly Val His Leu Val Leu Glu Leu Cys Ser 115
120 125Gly Gly Glu Leu Phe Asp Arg Ile Val Ala
Gln Asp Arg Tyr Ser Glu 130 135 140Thr
Glu Ala Ala Ala Val Val Arg Gln Ile Ala Ala Gly Leu Glu Ala145
150 155 160Ile His Lys Ala Asn Ile
Val His Arg Asp Leu Lys Pro Glu Asn Cys 165
170 175Leu Phe Leu Asp Thr Arg Lys Asp Ser Pro Leu Lys
Ile Met Asp Phe 180 185 190Gly
Leu Ser Ser Val Glu Glu Phe Thr Asp Pro Val Val Gly Leu Phe 195
200 205Gly Ser Ile Asp Tyr Val Ser Pro Glu
Ala Leu Ser Gln Gly Lys Ile 210 215
220Thr Thr Lys Ser Asp Met Trp Ser Leu Gly Val Ile Leu Tyr Ile Leu225
230 235 240Leu Ser Gly Tyr
Pro Pro Phe Ile Ala Pro Ser Asn Arg Gln Lys Gln 245
250 255Gln Met Ile Val Asn Gly Asn Phe Ser Phe
Tyr Glu Lys Thr Trp Lys 260 265
270Gly Ile Ser Gln Ser Ala Lys Gln Leu Ile Ser Ser Leu Leu Thr Val
275 280 285Asp Pro Ser Lys Arg Pro Ser
Ala Gln Gln Leu Leu Ser His Pro Trp 290 295
300Val Ile Gly Glu Lys Ala Lys Asp Asp Gln Met Asp Pro Glu Ile
Val305 310 315 320Ser Arg
Leu Gln Ser Phe Asn Ala Arg Arg Lys Leu Arg Ala Ala Ala
325 330 335Ile Ala Ser Val Trp Ser Ser
Thr Val Phe Leu Arg Thr Lys Lys Leu 340 345
350Arg Ser Leu Val Gly Thr His Asp Leu Lys Glu Glu Glu Ile
Glu Asn 355 360 365Leu Arg Ile His
Phe Lys Lys Ile Cys Ala Asn Gly Asp Asn Ala Thr 370
375 380Leu Ser Glu Phe Glu Glu Val Leu Lys Ala Met Asn
Met Pro Ser Leu385 390 395
400Ile Pro Leu Ala Pro Arg Ile Phe Asp Leu Phe Asp Asn Asn Arg Asp
405 410 415Gly Thr Val Asp Met
Arg Glu Ile Leu Cys Gly Phe Ser Ser Leu Lys 420
425 430Asn Ser Lys Gly Asp Asp Ala Leu Arg Leu Cys Phe
Gln Met Tyr Asp 435 440 445Thr Asp
Arg Ser Gly Cys Ile Thr Lys Glu Glu Val Ala Ser Met Leu 450
455 460Arg Ala Leu Pro Asp Asp Cys Leu Pro Ala Asp
Ile Thr Glu Pro Gly465 470 475
480Lys Leu Asp Glu Ile Phe Asp Leu Met Asp Ala Asn Ser Asp Gly Lys
485 490 495Val Thr Phe Asp
Glu Phe Lys Ala Ala Met Gln Arg Asp Ser Ser Leu 500
505 510Gln Asp Val Val Leu Ser Ser Leu Arg Pro
515 52035523PRTArtificialModified DMI3 polypeptide 35Met
Gly Tyr Gly Thr Arg Lys Leu Ser Asp Glu Tyr Glu Val Ser Glu1
5 10 15Ile Leu Gly Arg Gly Gly Phe
Ser Val Val Arg Lys Gly Thr Lys Lys 20 25
30Ser Ser Ile Glu Glu Glu Lys Ser Gln Ser Gln Val Ala Ile
Lys Thr 35 40 45Leu Arg Arg Leu
Gly Ala Ser Asn Asn Pro Ser Gly Leu Pro Arg Lys 50 55
60Lys Asp Ile Gly Glu Lys Ser Thr Ile Gly Phe Pro Thr
Met Arg Gln65 70 75
80Val Ser Val Ser Asp Thr Leu Leu Thr Asn Glu Ile Leu Val Met Arg
85 90 95Arg Ile Val Glu Asn Val
Ser Pro His Pro Asn Val Ile Asp Leu Tyr 100
105 110Asp Val Tyr Glu Asp Thr Asn Gly Val His Leu Val
Leu Glu Leu Cys 115 120 125Ser Gly
Gly Glu Leu Phe Asp Arg Ile Val Ala Gln Asp Lys Tyr Ser 130
135 140Glu Thr Glu Ala Ala Thr Val Val His Gln Ile
Ala Ser Gly Leu Glu145 150 155
160Ala Val His Arg Ala Asn Ile Val His Arg Asp Leu Lys Pro Glu Asn
165 170 175Cys Leu Phe Leu
Asp Val Arg Lys Asp Ser Pro Leu Lys Ile Met Asp 180
185 190Phe Gly Leu Ser Ser Val Glu Glu Phe Thr Asp
Pro Val Val Gly Leu 195 200 205Phe
Gly Ser Ile Asp Tyr Val Ser Pro Glu Ala Leu Ser Gln Gly Lys 210
215 220Ile Thr Thr Lys Ser Asp Met Trp Ser Leu
Gly Val Ile Leu Tyr Ile225 230 235
240Leu Leu Ser Gly Tyr Pro Pro Phe Ile Ala Gln Asn Asn Arg Gln
Lys 245 250 255Gln Gln Met
Ile Met Asn Gly Asn Phe Ser Phe Tyr Glu Lys Asp Trp 260
265 270Lys Gly Ile Ser Gln Pro Ala Lys Asn Leu
Ile Ser Ser Leu Leu Thr 275 280
285Val Asp Pro Ser Lys Arg Pro Ser Ala Leu Glu Leu Leu Ser Asp Pro 290
295 300Trp Val Lys Gly Glu Lys Ala Lys
Asp Val Gln Met Asp Pro Glu Ile305 310
315 320Val Ser Arg Leu Gln Ser Phe Asn Ala Arg Arg Lys
Leu Arg Ala Ala 325 330
335Ala Ile Ala Ser Val Trp Ser Ser Thr Ile Phe Leu Arg Thr Lys Lys
340 345 350Leu Lys Ser Leu Val Gly
Ser Tyr Asp Leu Lys Glu Glu Glu Ile Glu 355 360
365Asn Leu Arg Met His Phe Lys Lys Ile Cys Ala Asp Arg Asp
Asn Ala 370 375 380Thr Leu Ser Glu Phe
Glu Glu Val Leu Lys Ala Met Asn Met Leu Ser385 390
395 400Leu Ile Pro Phe Ala Ser Arg Ile Phe Asp
Leu Phe Asp Asn Asn Arg 405 410
415Asp Gly Thr Val Asp Met Arg Glu Ile Leu Cys Gly Phe Ser Ser Leu
420 425 430Lys Asn Ser Lys Gly
Glu Asp Ala Leu Arg Leu Cys Phe Gln Met Tyr 435
440 445Asp Thr Asp Arg Ser Gly Cys Ile Ser Lys Glu Glu
Val Ala Ser Met 450 455 460Leu Arg Ala
Leu Pro Tyr Asp Cys Leu Pro Thr Asp Ile Thr Glu Pro465
470 475 480Gly Lys Leu Asp Glu Ile Phe
Asp Leu Met Asp Ala Asn Asn Asp Gly 485
490 495Lys Val Thr Phe Asp Glu Phe Lys Ala Ala Met Gln
Arg Asp Ser Ser 500 505 510Leu
Gln Asp Val Val Leu Ser Ser Ile Arg Pro 515
52036523PRTArtificialModified DMI3 polypeptide 36Met Gly Tyr Gly Thr Arg
Lys Leu Ser Asp Glu Tyr Glu Val Ser Glu1 5
10 15Ile Leu Gly Arg Gly Gly Phe Ser Val Val Arg Lys
Gly Thr Lys Lys 20 25 30Ser
Ser Ile Glu Glu Glu Lys Ser Gln Ser Gln Val Ala Ile Lys Thr 35
40 45Leu Arg Arg Leu Gly Ala Ser Asn Asn
Pro Ser Gly Leu Pro Arg Lys 50 55
60Lys Asp Ile Gly Glu Lys Ser Thr Ile Gly Phe Pro Thr Met Arg Gln65
70 75 80Val Ser Val Ser Asp
Thr Leu Leu Thr Asn Glu Ile Leu Val Met Arg 85
90 95Arg Ile Val Glu Asn Val Ser Pro His Pro Asn
Val Ile Asp Leu Tyr 100 105
110Asp Val Tyr Glu Asp Thr Asn Gly Val His Leu Val Leu Glu Leu Cys
115 120 125Ser Gly Gly Glu Leu Phe Asp
Arg Ile Val Ala Gln Asp Lys Tyr Ser 130 135
140Glu Thr Glu Ala Ala Thr Val Val His Gln Ile Ala Ser Gly Leu
Glu145 150 155 160Ala Val
His Arg Ala Asn Ile Val His Arg Asp Leu Lys Pro Glu Asn
165 170 175Cys Leu Phe Leu Asp Val Arg
Lys Asp Ser Pro Leu Lys Ile Met Asp 180 185
190Phe Gly Leu Ser Ser Val Glu Glu Phe Thr Asp Pro Val Val
Gly Leu 195 200 205Phe Gly Ser Ile
Asp Tyr Val Ser Pro Glu Ala Leu Ser Gln Gly Lys 210
215 220Ile Thr Thr Lys Ser Asp Met Trp Ser Leu Gly Val
Ile Leu Tyr Ile225 230 235
240Leu Leu Ser Gly Tyr Pro Pro Phe Ile Ala Gln Asn Asn Arg Gln Lys
245 250 255Gln Gln Met Ile Met
Asn Gly Asn Phe Ser Phe Tyr Glu Lys Ile Trp 260
265 270Lys Gly Ile Ser Gln Pro Ala Lys Asn Leu Ile Ser
Ser Leu Leu Thr 275 280 285Val Asp
Pro Ser Lys Arg Pro Ser Ala Leu Glu Leu Leu Ser Asp Pro 290
295 300Trp Val Lys Gly Glu Lys Ala Lys Asp Val Gln
Met Asp Pro Glu Ile305 310 315
320Val Ser Arg Leu Gln Ser Phe Asn Ala Arg Arg Lys Leu Arg Ala Ala
325 330 335Ala Ile Ala Ser
Val Trp Ser Ser Thr Ile Phe Leu Arg Thr Lys Lys 340
345 350Leu Lys Ser Leu Val Gly Ser Tyr Asp Leu Lys
Glu Glu Glu Ile Glu 355 360 365Asn
Leu Arg Met His Phe Lys Lys Ile Cys Ala Asp Arg Asp Asn Ala 370
375 380Thr Leu Ser Glu Phe Glu Glu Val Leu Lys
Ala Met Asn Met Leu Ser385 390 395
400Leu Ile Pro Phe Ala Ser Arg Ile Phe Asp Leu Phe Asp Asn Asn
Arg 405 410 415Asp Gly Thr
Val Asp Met Arg Glu Ile Leu Cys Gly Phe Ser Ser Leu 420
425 430Lys Asn Ser Lys Gly Glu Asp Ala Leu Arg
Leu Cys Phe Gln Met Tyr 435 440
445Asp Thr Asp Arg Ser Gly Cys Ile Ser Lys Glu Glu Val Ala Ser Met 450
455 460Leu Arg Ala Leu Pro Tyr Asp Cys
Leu Pro Thr Asp Ile Thr Glu Pro465 470
475 480Gly Lys Leu Asp Glu Ile Phe Asp Leu Met Asp Ala
Asn Asn Asp Gly 485 490
495Lys Val Thr Phe Asp Glu Phe Lys Ala Ala Met Gln Arg Asp Ser Ser
500 505 510Leu Gln Asp Val Val Leu
Ser Ser Ile Arg Pro 515 520371569DNAMedicago
truncatula 37atgttggtgg aacttgcagt tactctattg ctcattgctc tcttcttaca
cttgcgtcca 60acacctactg caaaatcaaa ggctcttcgc caccttccaa atccaccaag
ccctaaacca 120cgtcttccat tcataggtca tcttcacctt ttggataacc cacttcttca
ccacactctt 180atcaagttag gaaagcgtta tggccctttg tacactcttt actttggttc
catgcctacc 240gttgttgcat ccactcctga cttgtttaaa cttttccttc aaacccatga
agctacttcc 300tttaacacaa gattccaaac ctctgctatt agtcgtctta cctatgacaa
ctctgttgct 360atggttccat ttgcacctta ttggaagttt attagaaagc ttatcatgaa
cgacttgctc 420aacgccacca ctgttaacaa attgaggcca ttgaggagcc gagaaatcct
taaggttctt 480aaggtcatgg ctaatagtgc tgaaactcaa cagccacttg atgtcactga
ggagcttctc 540aagtggacaa acagcacaat ctctaccatg atgttgggtg aggccgaaga
ggttagagat 600attgctcgtg atgttcttaa gatctttgga gaatatagtg ttacaaactt
tatttggcct 660ttgaacaagt ttaagtttgg aaactatgat aagagaactg aggagatttt
caataagtat 720gatcctatca ttgaaaaggt tatcaagaaa cgacaagaga ttgtgaacaa
aagaaaaaat 780ggagaaatcg tagaaggcga gcagaatgtt gtttttcttg acactttgct
tgaatttgca 840caagatgaga ccatggagat caaaattaca aaggaacaaa tcaagggtct
tgttgtggat 900tttttctctg caggaacaga ctccaccgcc gtgtctacag aatggacttt
atcagagctc 960atcaataatc ctagagtgtt gaagaaagct cgagaggaga ttgactctgt
tgtgggaaaa 1020gatagactgg ttgatgaatc agatgttcag aatcttcctt acattaaagc
catcgtaaaa 1080gaagcatttc gcttgcaccc accactacct gtagtcaaaa gaaaatgtac
acaagaatgt 1140gagatcgacg ggtatgtggt tccagaagga gcactaatac ttttcaatgt
ctgggcagtg 1200ggaagagacc caaaatattg ggtaaagcca ttggaatttc gtccagagag
gttcatagaa 1260aatgttggtg aaggtgaagc agcttcaatt gatcttaggg gtcaacattt
cacacttcta 1320ccatttgggt ctggaagaag gatgtgtcct ggagtcaatt tggctactgc
aggaatggcc 1380acaatgattg catctattat ccaatgcttc gatctccaag tacctggtca
acatggagaa 1440atattgaatg gtgattatgc taaggttagc atggaagaga gacctggtct
cacagttcca 1500agggcacata atctcatgtg tgttcctctt gcaagagctg gtgtcgcaga
taaacttctt 1560tcctcctaa
1569381569DNALotus japonicus 38atgttggtgg aacttgcatt
agcattactg gccatagctc tgttcttaca tttacgtccc 60acaccaactg ccaaatccaa
ggcccttcgt caccttccaa accctccaag tcccaagcct 120cgtcttccat tcgttggaca
ccttcacctt ttggaccaac cacttctcca ccactccctc 180atcaaactcg gcgagcgata
tgggcctttg tactctctct attttggatc catgcccacc 240gttgttgcct caacccctga
actcttcaaa ctcttccttc agacccatga ggcctcttcc 300ttcaacacaa ggttccaaac
ctctgccatt aggcgcctca cctatgacaa ctctgttgcc 360atggtccctt ttgctcctta
ttggaagttc atcaggaaga tcatcatgaa cgacctcctc 420aacgccacca ccgtcaacaa
gttgaggcct ttgaggagcc aagagattcg taaggttctg 480aaggctatgg cacatagtgc
ggaatctcaa caacccctta atgtcactga ggagcttctc 540aagtggacaa acaacaccat
ctctcgaatg atgttggggg aggctgaaga ggtcagagat 600attgctcgtg aggtgcttaa
gatcttcggg gaatatagtc tcacagactt catttggcca 660ttgaagaagc tcaaggttgg
acagtatgaa aagagaatag atgagatatt taacaaattc 720gaccccgtca ttgagaaggt
catcaagaaa cgccaagaga taataaagag gagaaaagag 780agagatggag aacttgagga
gggtgagcaa agtgtagttt tcctcgatac tttgcttgaa 840tttgctgaag atgagaccat
ggaaatcaaa atcacaaagg aacaaattaa gggtcttgta 900gtggatttct tctctgcagg
gacagattcg acagctgtgg caacagactg ggctctatca 960gagctcatca acaacccgag
ggtgctgaag aaagcaagag aggaagttga aagtgttgtt 1020ggaaaagata gacttgttga
tgaagcagat attcaaaatc ttccatacat tagagccatc 1080gtgaaggaga cattccgcat
gcatcctcca ctccctgttg ttaagagaaa gtgtgtacaa 1140gaatgtgagc tcaacggtta
cgtgatccca gagggagcac tgatactctt caacgtgtgg 1200gccgtgcaaa gagatcccaa
atactgggag ggcccatccg aattccgtcc tgagaggttt 1260ttaactgctg aagggggagc
aacctccatt gatcttagag gccagaattt cgagcttctc 1320ccatttgggt ctggaaggag
gatgtgtcca ggtgtgaatt tggcaactgc aggaatggcc 1380acattgcttg catctgttat
ccaatgcttt gatttacagg ttgtgggtca aaagggcaaa 1440ttattgaaag gaagtgatgc
caaagttagc atggaagaga gtcctggtct cactgttcca 1500agggcacata atctgatgtg
cgttccactt gcaagaacca acgtcacatc tgaactcctt 1560tcctcataa
1569392723DNAGlycine max
39atgtgtttct ggggttattg cctcttgagt tcaattgcaa cttgttaagc aaatcagccg
60gcttaagacc taagcaacac aagcaagggc tttaggtttc aaaaaaaggt ttcaattttt
120tttaatatta atatatctca aaaaaattat tgtaaaatta tatttgaaaa taagttttaa
180ttaaaatatt ataactaacc gttaatcttt ttattggtat tataaataat aatcaatgag
240caacaattct tcaccgacat catatctttg ttttaaaaaa ataataattt taataaatta
300tttgatgaat aaataaaaga ttttattctt aaatttattt taaatctctt tgcgtccttg
360aaaagtccat gatacaggat gagatatttg actatttgac tagaaacgta gtaggtgata
420tatggacatt tcctggttta ttttatattc ttaaaaaata acaattcaat cgaatgtagt
480tgccaaattt taataaataa ataaaaagaa gcattcatcg aattcttcgt cttttatgag
540tgtaaaacaa aacattgaat taggaacaat tattatcacg ttacttaaaa taaaatatac
600taaaaccgtt gaatgaaatc ttcatatttg ataagtgtag gtagacccac aacacaaaca
660ttgaatagaa taaatttccc cgtacagtgt cgtccactat gtggctataa aatggaagca
720ttgaaggttg tttcctcagg ccaagatctt ggatagtaat taacctcact caaactcggg
780atcacagaaa ccaacaacag ttcttgcact gaggtttcac gatgttgctg gaacttgcac
840ttggtttgtt tgtgttagct ttgtttctgc acttgcgtcc cacaccaagt gcaaaatcaa
900aagcacttcg ccacctccca aaccctccaa gcccaaagcc tcgtcttccc ttcattggcc
960accttcacct cttaaaagat aaacttctcc actatgcact catcgatctc tccaaaaagc
1020atggcccctt attctctctc tccttcggct ccatgccaac cgtcgttgcc tccacccctg
1080agttgttcaa gctcttcctc caaacccacg aggcaacttc cttcaacaca aggttccaaa
1140cctctgccat aagacgcctc acttacgaca actctgtggc catggttcca ttcggacctt
1200actggaagtt cgtgaggaag ctcatcatga acgaccttct caacgccacc accgtcaaca
1260agctcaggcc tttgaggacc caacagatcc gcaagttcct tagggttatg gcccaaagcg
1320cagaggccca gaagcccctt gacgtcaccg aggagcttct caaatggacc aacagcacca
1380tctccatgat gatgctcggc gaggctgagg agatcagaga catcgctcgc gaggttctta
1440agatcttcgg cgaatacagc ctcactgact tcatctggcc tttgaagtat ctcaaggttg
1500gaaagtatga gaagaggatt gatgacatct tgaacaagtt cgaccctgtc gttgaaaggg
1560tcatcaagaa gcgccgtgag atcgtcagaa ggagaaagaa cggagaagtt gttgagggcg
1620aggccagcgg cgtcttcctc gacactttgc ttgaattcgc tgaggacgag accatggaga
1680tcaaaattac caaggagcaa atcaagggcc ttgttgtcgt aagtttcctt cttctctcct
1740actttattac tttctttcat tcatcatatg tattggcatt aaatagtata ctatatgaga
1800aaatatgtta cgcactcacg gtgtaaagat atgtggtgtt tttttaaaaa gagatacaga
1860agttgctttt atgcatgtat gttaacgtat atttactcaa gtggaaacta attaattctc
1920aattttgggt atgtaggact ttttctctgc agggacagat tccactgcgg tggcaacaga
1980gtgggcattg gcagagctca tcaacaatcc cagggtgttg caaaaggctc gtgaggaggt
2040ctacagtgtt gtgggcaaag atagactcgt tgacgaagtt gacactcaaa accttcctta
2100cattagggcc attgtgaagg agacattccg aatgcaccca ccactcccag tggtcaaaag
2160aaagtgcaca gaagagtgtg agattaatgg gtatgtgatc ccagagggag cattggttct
2220tttcaatgtt tggcaagtag gaagggaccc caaatactgg gacagaccat cagaattccg
2280tcccgagagg ttcttagaaa ctggtgctga aggggaagca gggcctcttg atcttagggg
2340ccagcatttc caactcctcc catttgggtc tgggaggaga atgtgccctg gtgtcaattt
2400ggctacttca ggaatggcaa cacttcttgc atctcttatc caatgctttg acctgcaagt
2460gctgggccct caaggacaaa tattgaaagg tgatgatgcc aaagttagca tggaagagag
2520agctggcctc acggttccaa gggcacatag tctcgtttgt gttccacttg caaggatcgg
2580cgttgcatct aaactccttt cttaattaag ataatcatca tatacaatag tagtgtcttg
2640ccatcgcagt tgctttttat gtattcataa tcatcatttc aataaggtgt gactggtact
2700taatcaagta attaaggtta cat
2723401566DNATrifolium pratense 40atgttgctgg aacttgcact tggtttattg
gttttggctc tgtttctgca cttgcgtccc 60acacccactg caaaatcaaa agcacttcgc
catctcccaa acccaccaag cccaaagcct 120cgtcttccct tcataggaca ccttcatctc
ttaaaagaca aacttctcca ctacgcactc 180atcgacctct ccaaaaaaca tggtccctta
ttctctctct actttggctc catgccaacc 240gttgttgcct ccacaccaga attgttcaag
ctcttcctcc aaacgcacga ggcaacttcc 300ttcaacacaa ggttccaaac ctcagccata
agacgcctca cctatgatag ctcagtggcc 360atggttccct tcggacctta ctggaagttc
gtgaggaagc tcatcatgaa cgaccttctc 420aacgccacca ctgtaaacaa gttgaggcct
ttgaggaccc aacagatccg caagttcctt 480agggttatgg cccaaggcgc agaggcacag
aagccccttg acttgaccga ggagcttctg 540aaatggacca acagcaccat ctccatgatg
atgctcggcg aggctgagga gatcagagac 600atcgctcgcg aggttcttaa gatctttggc
gaatacagcc tcactgactt catctggcca 660ttgaagcatc tcaaggttgg aaagtatgag
aagaggatcg acgacatctt gaacaagttc 720gaccctgtcg ttgaaagagt catcaagaag
cgccgtgaga tcgtgaggag gagaaagaac 780ggagaggttg ttgagggtga ggtcagcggg
gttttccttg acactttgct tgaattcgct 840gaggatgaga ccacggagat caaaatcacc
aaggaccaca tcaagggtct tgttgtcgac 900tttttctcgg caggaacaga ctccacagcg
gtggcaacag agtgggcatt ggcagaactc 960atcaacaatc ctaaggtgtt ggaaaaggct
cgtgaggagg tctacagtgt tgtgggaaag 1020gacagacttg tggacgaagt tgacactcaa
aaccttcctt acattagagc aatcgtgaag 1080gagacattcc gcatgcaccc gccactccca
gtggtcaaaa gaaagtgcac agaagagtgt 1140gagattaatg gatatgtgat cccagaggga
gcattgattc tcttcaatgt atggcaagta 1200ggaagagacc ccaaatactg ggacagacca
tcggagttcc gtcctgagag gttcctagag 1260acaggggctg aaggggaagc aaggcctctt
gatcttaggg gacaacattt tcaacttctc 1320ccatttgggt ctgggaggag aatgtgccct
ggagtcaatc tggctacttc gggaatggca 1380acacttcttg catctcttat tcagtgcttt
gacttgcaag tgctgggtcc acaaggacag 1440atattgaagg gtggtgacgc caaagttagc
atggaagaga gggccggcct cactgttcca 1500agggcacata gtcttgtctg tgttccactt
gcaaggatcg gcgttgcatc taaactcctt 1560tcttaa
1566411563DNAPisum sativum 41atgttgctgg
aacttgcact tggtttgttt gtgttagctt tgtttctgca cttgcgtccc 60acaccaagcg
caaaatcaaa agcacttcgc cacctcccaa accctccaag cccaaagcct 120cgtcttccct
tcattggcca ccttcacctc ttaaaagata aacttctcca ctatgcactc 180atcgatctct
ccaaaaagca tggcccctta ttctctctct ccttcggctc catgccaacc 240gtcgttgcct
ccacccctga gttgttcaag ctcttcctcc aagcccacga ggcaacttcc 300ttcagcacaa
ggttccaaac ctctgccgta agacgcctca cttacgacaa ctctgtggcc 360atggttccat
tcggacctta ctggaagttc gtgaggaagc tcatcatgaa cgaccttctc 420aacgccacca
ccgtcaacga gctcaggcct ttgaggaccc aacagatccg caagttcctt 480agggttatgg
cccaaagcgc agaggcccag aagccccttg acgtcaccga ggagcttctc 540aaatggacca
acagcaccat ctccatgatg atgctcggcg aggctgagga gatcagagac 600atcgctcgcg
aggtccttaa gatcttcggc gaatacagcc tcactgactt catctggcct 660ttgaagtatc
tcaaggttgg aaagtatgag aagaggattg atgacatctt gaacaagttc 720gaccctgtcg
ttgaaagggt catcaagaag cgccgtgaga tcgtcagaag gagaaagaac 780ggagaagttg
ttgagggcga ggccagcggc gtcttcctcg acactttgct tgaattcgct 840gaggacgaga
ccatggagat caaaattacc aaggagcaaa tcaagggcct tgttgtcgac 900tttttctctg
cagggacaga ttccacagcg gtggcaacag agtgggcatt ggcagagctc 960atcaacaatc
ccagggtgtt gcaaaaggct cgtgaggagg tctacagtgt tgtgggcaaa 1020gatagactcg
ttgacgaagt cgacactcaa aaccttcctt acattagggc cattgtgaag 1080gagacattcc
gaatgcaccc accactccca gtggtcaaaa gaaagtgcac agaagagtgt 1140gagattaatg
ggtatgtgat cccagaggga gcattggttc ttttcaatgt ttggcaagta 1200ggaaaggacc
ccaaatactg ggacagacca tcagaattcc gtcccgagag gttcttagaa 1260actggcgctg
aaggggaagc agggcctctt gatcttaggg gccagcattt ccaactcctc 1320ccatttgggt
ctgggaggag aatgtgccct ggtgtcaatt tggctacttc aggaatggca 1380acacttcttg
catctcttat ccaatgcttt gacctgcaag tgctgggccc tcaaggacaa 1440atattgaaag
gtgacgatgc caaagttagc atggaagaga gagctggcct caccgttcca 1500agggcacata
gtctcgtttg tgttccactt gcaaggatcg gcgttgcatc taaactcctt 1560tct
1563421497DNABeta
vulgaris 42tctgcacttg cgtcccacac ccactgcaaa atcaaaagca cttcgccatc
tcccaaaccc 60accaagccca aagcctcgtc ttcccttcat aggacacctt catctcttaa
aagacaaact 120tctccactac gcactcatcg acctctccaa aaaacatggt cccttattct
ctcactactt 180tggctccatg ccaaccgttg ttgcctccac accagaattg ttcaagctct
tcctccaaac 240gaacgaggca acttccttca acacaaggtt ccaaacctca gccataagac
gcctcaccta 300tgatagctca gtggccatgg ttcccttcgg accttactgg aagttcgtga
ggaagctcat 360catgaacgac cttctcaacg ccaccactgt aaacaagttg aggcctttga
ggacccaaca 420gatccgcaag ttccttaggg ctatggccca aggcgcagag gcacggaagc
cccttgactt 480gaccgaggag cttctgaaat gggccaacag caccatctcc atgatgatgc
tcggcgaggc 540tgaggagatc agagacatcg ctcgcgaggt tcttaagatc tttggcgaat
acagcctcac 600tgacttcatc tggccattga agcatctcaa ggttggaaag tatgagaaga
ggatcgacga 660catcttgaac aagttcgacc ctgtcgttga aagagtcatc aagaagcgcc
gtgagatcgt 720gaggaggaga aagaacggag aggttgttga gggtgaggtc agcggggttt
tccttgacac 780tttgcttgaa ttcgctgagg atgagaccat ggagatcaaa atcaccaagg
accacaccaa 840gggtcttgtt gtcgacttct tctcggcagg aacagactcc acagcggtgg
caacagagtg 900ggcattggca gaactcatca acaatcctaa ggtgttggaa aaggctcgtg
aggaggtcta 960cagtgttgtg ggaaaggaca gacttgtgga cgaagttgac actcaaaacc
ttccttacat 1020tagagcaatc gtgaaggaga cattccgcat gcacccgcca ctcccagtgg
tcaaaagaaa 1080gtgcacagaa gagtgtgaga ttaatggata tgtgatccca gagggagcat
tgattccctt 1140caatgtatgg caagtaggaa gagaccccaa atactgggac agaccatcgg
agttccgtcc 1200tgagaggttc ctagagacag gggctgaagg ggaagcaagg cctcttgatc
ttaggggaca 1260acattttcaa cttctcccat ttgggtctgg gaggagaatg tgccctggag
tcaatctggc 1320tacttcggga acggcaacac ttcttgcatc tcttattcag tgctttgact
tgcaagtgct 1380gggtccacag ggacagatat tgaagggtgg tgacgccaaa gttagcatgg
aagagagagc 1440cggcctcact gttccaaggg cacatagtct tgtctgtgtt ccacttgcaa
ggatcgg 1497431501DNAVicia villosa 43tgtttctgca cttgcgtccc
acacccactg caaaatcaaa agcacttcgc catctcccaa 60acccaccaag cccaaagcct
cgtcttccct tcataggaca ccttcatctc ttaaaagaca 120aacttctcca ctacgcactc
atcgacctct ccaaaaaaca tggtccctta ttctctctct 180actttggctc catgccaacc
gttgttgcct ccacaccaga attgttcaag ctcttcctcc 240aaacgcacga ggcaacttcc
ttcaacacaa ggttccaaac ctcagccata agacgcctca 300cctatgatag cttagtggcc
atggttccct tcggacctta ctggaagttc gtgaggaagc 360tcatcatgaa cgaccttctc
aacgccacca ctgtaaacaa gttgaggcct ttgaggaccc 420aacagatccg caagttcctt
agggttatgg cccaaggcgc agaggcacag aagccccttg 480acttgaccga ggagcttctg
aaatggacca acagcaccat ctctatgatg atgctcggcg 540aggctgagga gatcagagac
atcgctcgcg aggttcttaa gatctatggc gaatacagcc 600tcactgactt catctggcca
ttgaagcatc tcaaggttgg aaagtatgag aagaggatcg 660acgacatctt gaacaagttc
gaccctgtcg ttgaaagagt catcaagaag cgccgtgaga 720tcgtgaggag gagaaagaac
ggagaggttg ttgagggtga ggtcagcggg gttttccttg 780acactttgct tgaattcgct
gaggatgaga ccacggagat caaaatcacc aaggaccaca 840tcaagggtct tgttgtcgac
tttttctcgg caggaataga ctccacagcg gtggcaacag 900agtgggcatt ggcagaactc
atcaacaatc ctaaggtgtt ggaaaaggct cgtgaggagg 960tctacagtgt tgtgggaaag
gacagacttg tggacgaagt tgacactcaa aaccttcctt 1020acattagagc aatcgtgaag
gagacattcc gcatgcaccc gccactccca gtggtcaaaa 1080gaaagtgcac agaagagtgt
gagattaatg gatatgtgat cccagaggga gcattgattc 1140tcttcaatgt atggcaagta
ggaagggacc ccaaatactg ggacagacca tcggagttcc 1200gtcctgagag gttcctagag
acaggggctg aaggggaagc aaggcctctt gatcttaggg 1260gacaacattt tcaacttctc
ccatttgggt ctgggagggg aatgtgccct ggagtcaatc 1320tggctacttc gggaatggca
acacttcttg catctcttat tcagtgcttt gacttgcaag 1380tgctgggtcc acaaggacag
atattgaagg gtggtgacgc caaagttagc atggaagaga 1440gggccggcct cactgttcca
agggcacata gtcttgtctg tgttccactt gcaaggatcg 1500g
1501441899DNACaragana
arborescens 44aagatcaaag aaacacaaaa caaacaccat gttggtggaa ctagcaatta
ctctattagt 60gatagctctg ttcctacacc ttcgtcccac accttctgca aaatcaaaag
cccttcgcca 120ccttccaaac ccaccgagtc caaaacctcg tcttcctttc ataggtcacc
ttcacctttt 180agacaaacct cttctccacc agtccctcat ccgtctcagc gaacgctatg
gccccttata 240ctctctctac tttggttcca tgcctaccgt tgttgcctcc acccctgaat
tgttcaaact 300cttccttcaa acccacgagg cttcttcctt caacaccagg ttccaaacct
ctgccatcag 360acgccttacc tacgataact ccgttgccat ggttcccttt ggaccttact
ggaagttcat 420cagaaagctc atcatgaacg accttctaaa cgccacaacc gtcaacaagt
tgagaccctt 480gaggagccag gaaatccgta aggttcttaa ggtgatggca cagagcgcgg
aaactcaaca 540gccacttaat gtcaccgagg agcttctcaa gtggaccaac agcaccatct
ctaggatgat 600gttgggtgag gctgaagaga ttagagacat tgctcgtgat gtgcttaaga
tctttggaga 660gtatagtctt acggatttca tttggccatt gaagaaactc aaggttggac
agtatgagaa 720gagaatagat gatattttca acaggtttga ccctgtcatt gaaaaggtca
tcaagaaacg 780ccaggagatt aggaagagaa gaaaggagag aaatggtgaa cttgaagagg
gtgagcagag 840tgttgttttt cttgatactt tgcttgattt tgctgaggay gagaccatgg
agatcaaaat 900taccaaggaa caaatcaagg gtcttattgt ggatttcttc tcagcaggga
cagattcaac 960ggcagtggca acagactatg ctttgtcaga gctaatcaac aaccccaggg
tgttgcaaaa 1020agcgcgagag gaagtcgata gtgttgtggg aaaagataga ctggttgacg
aatcagatgt 1080tcaaaacctt cctttcatta gagcaatcgt gaaggagaca ttccgtatgc
acccgccact 1140acccgttgtg aaaagaaaat gtacacaaga gtgtgagata gacggttttg
tgatcccaga 1200gggagcattg atacttttca atgtttgggc tgttggaaga gacccaaagt
actgggaaag 1260gccctcggaa tttcgtcctg agaggttctt acaaaatgct ggtgaagggg
aagtaggttc 1320aattgatctt aggggccaac atttccaact tttgccattt gggtctggta
ggagaatgtg 1380ccctggagtc aatttggcta ctgcaggaat ggctacactt cttgcatctg
ttattcagtg 1440ctttgacctg caagtaccgg gcccacaagg agaactattg aaaggtgatg
atgccaaggt 1500tagcatggaa gagagacctg gtcttacagt tccaagggcg aataatctca
tgtgtgttcc 1560tcttgctaga gcaggtgttg cagctaaact tctttcctcc taaaaacaca
gtacaacaca 1620gcacaaccac aagaatgttg ctatggatgg tgttttttta tatttgtagt
aataatcatt 1680ttcaataagg tatcattgag agacaatgag tccaagttcc cccggcacat
gggctgctgg 1740aagagtcaca tatatattta tcgtctcaat taaactctct ttgatgtaat
tttcatcttt 1800gttttttctt tttccttttt gtcaccgaag aagtgttgta cttgtaacag
cttatatcta 1860taatttttac gaaaaaaaaa aaaaaaaaaa aaaaaaaaa
1899451770DNAVigna unguiculata 45aggccaaaat cttggtgtca
catagcctca agctcgggat ctcacaaaaa caaaggtcaa 60gcaaacacat acacaaccat
gttgctcgaa attacaattg gtttgttggt gctggctttg 120tttttgcact tgcgtcccac
acccactgct aaatcaaagg cccttcgcca ccttccaaac 180cctcctagtc caaaacctcg
tcttccattc attggtcacc ttcaccttct aaaagacaaa 240cttctccact atgccctcat
agatttatcc aaaacctatg gccctttgta ctctctctac 300tttgggtcta tgccaaccgt
tgttgcctcc tcccctgagt tgttcaaact cttccttcaa 360acccacgagg ctgcttcctt
caacacaagg ttccaaacct ctgccattag gcgcctcact 420tatgacaact cagtggccat
ggttcccttt ggaccttact ggaagttcat caggaagctc 480atcatgaacg acctcctcaa
cgccaccacc gtcaacaagt tgaggcccct caggacccaa 540cagatccgca agttcctcaa
ggtcatggcc caaagcgcac aggctcagca gccccttaac 600gtcaccgagg agcttctcaa
gtggaccaac agcactatct ccatgatgat gttgggtgag 660gctgaagaga ttagagatat
cgctcgtgag gtgcttaaga ttttcgggga gtacagtctc 720actgacttca tctggccctt
gaagaagctt aagtttggac agtacgagaa gaggatcgat 780gaaatattca acaagttcga
ccctgtcatc gagagggtta ttaagaagcg ccgagagatc 840atgagaagga gaaagaacgg
agaagccgtt gaggaagagc agagcggagt cttcctcgac 900actttgcttc aattcgctga
ggacgagacc atggagatca aaattaccaa ggagcagatc 960aagggtcttg ttgtcgactt
cttctcagca ggaacagatt ccacagccgt ggcaactgag 1020tgggctttgg cagagctgat
caacaaccct agggtgttgc agaaggctcg ggaggaggtg 1080tacagtgttg tggggaaaga
tagactggtt gatgaagttg atactcaaaa ccttccttac 1140atcagggcga ttgtgaagga
gacattccgc atgcacccac cactcccagt ggtgaagaga 1200aagtgtgtgg aggagtgtga
gattgagggg tatgtgatcc cagagggagc attgatactt 1260ttcaatgtgt gggctgtagg
aagagaccct aaatactggg acagaccatt ggagtttcgt 1320cctgagagat tcctagaaac
tggagctgaa ggagaagctg ggcctcttga tcttaggggc 1380caacatttca ctcttctccc
atttgggtca ggtagaagaa tgtgccctgg agtgaatttg 1440gctacttcag gtatggcaac
acttcttgca tctgttatcc agtgctttga ccttcaagtg 1500gtgggcccac aaggacaaat
attgaaaggc aatgacgcca aagtgagcat ggaagagaga 1560gctggactca cggttccgag
ggcacataat ctggagtgtg ttccagttgc aaggacaagc 1620gttgcagcta aactcctttc
ctagttcaca acatatatac aacaacagtg tcttgccact 1680catgcttttg cttttgtgtg
ttaataataa tcgtttcaat aaggtgtctt tgataacgaa 1740gtcagacaca ttcacatgta
aaaaaaaaaa 177046522PRTMedicago
truncatula 46Met Leu Val Glu Leu Ala Val Thr Leu Leu Leu Ile Ala Leu Phe
Leu1 5 10 15His Leu Arg
Pro Thr Pro Thr Ala Lys Ser Lys Ala Leu Arg His Leu 20
25 30Pro Asn Pro Pro Ser Pro Lys Pro Arg Leu
Pro Phe Ile Gly His Leu 35 40
45His Leu Leu Asp Asn Pro Leu Leu His His Thr Leu Ile Lys Leu Gly 50
55 60Lys Arg Tyr Gly Pro Leu Tyr Thr Leu
Tyr Phe Gly Ser Met Pro Thr65 70 75
80Val Val Ala Ser Thr Pro Asp Leu Phe Lys Leu Phe Leu Gln
Thr His 85 90 95Glu Ala
Thr Ser Phe Asn Thr Arg Phe Gln Thr Ser Ala Ile Ser Arg 100
105 110Leu Thr Tyr Asp Asn Ser Val Ala Met
Val Pro Phe Ala Pro Tyr Trp 115 120
125Lys Phe Ile Arg Lys Leu Ile Met Asn Asp Leu Leu Asn Ala Thr Thr
130 135 140Val Asn Lys Leu Arg Pro Leu
Arg Ser Arg Glu Ile Leu Lys Val Leu145 150
155 160Lys Val Met Ala Asn Ser Ala Glu Thr Gln Gln Pro
Leu Asp Val Thr 165 170
175Glu Glu Leu Leu Lys Trp Thr Asn Ser Thr Ile Ser Thr Met Met Leu
180 185 190Gly Glu Ala Glu Glu Val
Arg Asp Ile Ala Arg Asp Val Leu Lys Ile 195 200
205Phe Gly Glu Tyr Ser Val Thr Asn Phe Ile Trp Pro Leu Asn
Lys Phe 210 215 220Lys Phe Gly Asn Tyr
Asp Lys Arg Thr Glu Glu Ile Phe Asn Lys Tyr225 230
235 240Asp Pro Ile Ile Glu Lys Val Ile Lys Lys
Arg Gln Glu Ile Val Asn 245 250
255Lys Arg Lys Asn Gly Glu Ile Val Glu Gly Glu Gln Asn Val Val Phe
260 265 270Leu Asp Thr Leu Leu
Glu Phe Ala Gln Asp Glu Thr Met Glu Ile Lys 275
280 285Ile Thr Lys Glu Gln Ile Lys Gly Leu Val Val Asp
Phe Phe Ser Ala 290 295 300Gly Thr Asp
Ser Thr Ala Val Ser Thr Glu Trp Thr Leu Ser Glu Leu305
310 315 320Ile Asn Asn Pro Arg Val Leu
Lys Lys Ala Arg Glu Glu Ile Asp Ser 325
330 335Val Val Gly Lys Asp Arg Leu Val Asp Glu Ser Asp
Val Gln Asn Leu 340 345 350Pro
Tyr Ile Lys Ala Ile Val Lys Glu Ala Phe Arg Leu His Pro Pro 355
360 365Leu Pro Val Val Lys Arg Lys Cys Thr
Gln Glu Cys Glu Ile Asp Gly 370 375
380Tyr Val Val Pro Glu Gly Ala Leu Ile Leu Phe Asn Val Trp Ala Val385
390 395 400Gly Arg Asp Pro
Lys Tyr Trp Val Lys Pro Leu Glu Phe Arg Pro Glu 405
410 415Arg Phe Ile Glu Asn Val Gly Glu Gly Glu
Ala Ala Ser Ile Asp Leu 420 425
430Arg Gly Gln His Phe Thr Leu Leu Pro Phe Gly Ser Gly Arg Arg Met
435 440 445Cys Pro Gly Val Asn Leu Ala
Thr Ala Gly Met Ala Thr Met Ile Ala 450 455
460Ser Ile Ile Gln Cys Phe Asp Leu Gln Val Pro Gly Gln His Gly
Glu465 470 475 480Ile Leu
Asn Gly Asp Tyr Ala Lys Val Ser Met Glu Glu Arg Pro Gly
485 490 495Leu Thr Val Pro Arg Ala His
Asn Leu Met Cys Val Pro Leu Ala Arg 500 505
510Ala Gly Val Ala Asp Lys Leu Leu Ser Ser 515
52047522PRTLotus japonicus 47Met Leu Val Glu Leu Ala Leu Ala Leu
Leu Ala Ile Ala Leu Phe Leu1 5 10
15His Leu Arg Pro Thr Pro Thr Ala Lys Ser Lys Ala Leu Arg His
Leu 20 25 30Pro Asn Pro Pro
Ser Pro Lys Pro Arg Leu Pro Phe Val Gly His Leu 35
40 45His Leu Leu Asp Gln Pro Leu Leu His His Ser Leu
Ile Lys Leu Gly 50 55 60Glu Arg Tyr
Gly Pro Leu Tyr Ser Leu Tyr Phe Gly Ser Met Pro Thr65 70
75 80Val Val Ala Ser Thr Pro Glu Leu
Phe Lys Leu Phe Leu Gln Thr His 85 90
95Glu Ala Ser Ser Phe Asn Thr Arg Phe Gln Thr Ser Ala Ile
Arg Arg 100 105 110Leu Thr Tyr
Asp Asn Ser Val Ala Met Val Pro Phe Ala Pro Tyr Trp 115
120 125Lys Phe Ile Arg Lys Ile Ile Met Asn Asp Leu
Leu Asn Ala Thr Thr 130 135 140Val Asn
Lys Leu Arg Pro Leu Arg Ser Gln Glu Ile Arg Lys Val Leu145
150 155 160Lys Ala Met Ala His Ser Ala
Glu Ser Gln Gln Pro Leu Asn Val Thr 165
170 175Glu Glu Leu Leu Lys Trp Thr Asn Asn Thr Ile Ser
Arg Met Met Leu 180 185 190Gly
Glu Ala Glu Glu Val Arg Asp Ile Ala Arg Glu Val Leu Lys Ile 195
200 205Phe Gly Glu Tyr Ser Leu Thr Asp Phe
Ile Trp Pro Leu Lys Lys Leu 210 215
220Lys Val Gly Gln Tyr Glu Lys Arg Ile Asp Glu Ile Phe Asn Lys Phe225
230 235 240Asp Pro Val Ile
Glu Lys Val Ile Lys Lys Arg Gln Glu Ile Ile Lys 245
250 255Arg Arg Lys Glu Arg Asp Gly Glu Leu Glu
Glu Gly Glu Gln Ser Val 260 265
270Val Phe Leu Asp Thr Leu Leu Glu Phe Ala Glu Asp Glu Thr Met Glu
275 280 285Ile Lys Ile Thr Lys Glu Gln
Ile Lys Gly Leu Val Val Asp Phe Phe 290 295
300Ser Ala Gly Thr Asp Ser Thr Ala Val Ala Thr Asp Trp Ala Leu
Ser305 310 315 320Glu Leu
Ile Asn Asn Pro Arg Val Leu Lys Lys Ala Arg Glu Glu Val
325 330 335Glu Ser Val Val Gly Lys Asp
Arg Leu Val Asp Glu Ala Asp Ile Gln 340 345
350Asn Leu Pro Tyr Ile Arg Ala Ile Val Lys Glu Thr Phe Arg
Met His 355 360 365Pro Pro Leu Pro
Val Val Lys Arg Lys Cys Val Gln Glu Cys Glu Leu 370
375 380Asn Gly Tyr Val Ile Pro Glu Gly Ala Leu Ile Leu
Phe Asn Val Trp385 390 395
400Ala Val Gln Arg Asp Pro Lys Tyr Trp Glu Gly Pro Ser Glu Phe Arg
405 410 415Pro Glu Arg Phe Leu
Thr Ala Glu Gly Gly Ala Thr Ser Ile Asp Leu 420
425 430Arg Gly Gln Asn Phe Glu Leu Leu Pro Phe Gly Ser
Gly Arg Arg Met 435 440 445Cys Pro
Gly Val Asn Leu Ala Thr Ala Gly Met Ala Thr Leu Leu Ala 450
455 460Ser Val Ile Gln Cys Phe Asp Leu Gln Val Val
Gly Gln Lys Gly Lys465 470 475
480Leu Leu Lys Gly Ser Asp Ala Lys Val Ser Met Glu Glu Ser Pro Gly
485 490 495Leu Thr Val Pro
Arg Ala His Asn Leu Met Cys Val Pro Leu Ala Arg 500
505 510Thr Asn Val Thr Ser Glu Leu Leu Ser Ser
515 52048521PRTGlycine max 48Met Leu Leu Glu Leu Ala Leu
Gly Leu Phe Val Leu Ala Leu Phe Leu1 5 10
15His Leu Arg Pro Thr Pro Ser Ala Lys Ser Lys Ala Leu
Arg His Leu 20 25 30Pro Asn
Pro Pro Ser Pro Lys Pro Arg Leu Pro Phe Ile Gly His Leu 35
40 45His Leu Leu Lys Asp Lys Leu Leu His Tyr
Ala Leu Ile Asp Leu Ser 50 55 60Lys
Lys His Gly Pro Leu Phe Ser Leu Ser Phe Gly Ser Met Pro Thr65
70 75 80Val Val Ala Ser Thr Pro
Glu Leu Phe Lys Leu Phe Leu Gln Thr His 85
90 95Glu Ala Thr Ser Phe Asn Thr Arg Phe Gln Thr Ser
Ala Ile Arg Arg 100 105 110Leu
Thr Tyr Asp Asn Ser Val Ala Met Val Pro Phe Gly Pro Tyr Trp 115
120 125Lys Phe Val Arg Lys Leu Ile Met Asn
Asp Leu Leu Asn Ala Thr Thr 130 135
140Val Asn Lys Leu Arg Pro Leu Arg Thr Gln Gln Ile Arg Lys Phe Leu145
150 155 160Arg Val Met Ala
Gln Ser Ala Glu Ala Gln Lys Pro Leu Asp Val Thr 165
170 175Glu Glu Leu Leu Lys Trp Thr Asn Ser Thr
Ile Ser Met Met Met Leu 180 185
190Gly Glu Ala Glu Glu Ile Arg Asp Ile Ala Arg Glu Val Leu Lys Ile
195 200 205Phe Gly Glu Tyr Ser Leu Thr
Asp Phe Ile Trp Pro Leu Lys Tyr Leu 210 215
220Lys Val Gly Lys Tyr Glu Lys Arg Ile Asp Asp Ile Leu Asn Lys
Phe225 230 235 240Asp Pro
Val Val Glu Arg Val Ile Lys Lys Arg Arg Glu Ile Val Arg
245 250 255Arg Arg Lys Asn Gly Glu Val
Val Glu Gly Glu Ala Ser Gly Val Phe 260 265
270Leu Asp Thr Leu Leu Glu Phe Ala Glu Asp Glu Thr Met Glu
Ile Lys 275 280 285Ile Thr Lys Glu
Gln Ile Lys Gly Leu Val Val Asp Phe Phe Ser Ala 290
295 300Gly Thr Asp Ser Thr Ala Val Ala Thr Glu Trp Ala
Leu Ala Glu Leu305 310 315
320Ile Asn Asn Pro Arg Val Leu Gln Lys Ala Arg Glu Glu Val Tyr Ser
325 330 335Val Val Gly Lys Asp
Arg Leu Val Asp Glu Val Asp Thr Gln Asn Leu 340
345 350Pro Tyr Ile Arg Ala Ile Val Lys Glu Thr Phe Arg
Met His Pro Pro 355 360 365Leu Pro
Val Val Lys Arg Lys Cys Thr Glu Glu Cys Glu Ile Asn Gly 370
375 380Tyr Val Ile Pro Glu Gly Ala Leu Val Leu Phe
Asn Val Trp Gln Val385 390 395
400Gly Arg Asp Pro Lys Tyr Trp Asp Arg Pro Ser Glu Phe Arg Pro Glu
405 410 415Arg Phe Leu Glu
Thr Gly Ala Glu Gly Glu Ala Gly Pro Leu Asp Leu 420
425 430Arg Gly Gln His Phe Gln Leu Leu Pro Phe Gly
Ser Gly Arg Arg Met 435 440 445Cys
Pro Gly Val Asn Leu Ala Thr Ser Gly Met Ala Thr Leu Leu Ala 450
455 460Ser Leu Ile Gln Cys Phe Asp Leu Gln Val
Leu Gly Pro Gln Gly Gln465 470 475
480Ile Leu Lys Gly Asp Asp Ala Lys Val Ser Met Glu Glu Arg Ala
Gly 485 490 495Leu Thr Val
Pro Arg Ala His Ser Leu Val Cys Val Pro Leu Ala Arg 500
505 510Ile Gly Val Ala Ser Lys Leu Leu Ser
515 52049521PRTTrifolium pratense 49Met Leu Leu Glu Leu
Ala Leu Gly Leu Leu Val Leu Ala Leu Phe Leu1 5
10 15His Leu Arg Pro Thr Pro Thr Ala Lys Ser Lys
Ala Leu Arg His Leu 20 25
30Pro Asn Pro Pro Ser Pro Lys Pro Arg Leu Pro Phe Ile Gly His Leu
35 40 45His Leu Leu Lys Asp Lys Leu Leu
His Tyr Ala Leu Ile Asp Leu Ser 50 55
60Lys Lys His Gly Pro Leu Phe Ser Leu Tyr Phe Gly Ser Met Pro Thr65
70 75 80Val Val Ala Ser Thr
Pro Glu Leu Phe Lys Leu Phe Leu Gln Thr His 85
90 95Glu Ala Thr Ser Phe Asn Thr Arg Phe Gln Thr
Ser Ala Ile Arg Arg 100 105
110Leu Thr Tyr Asp Ser Ser Val Ala Met Val Pro Phe Gly Pro Tyr Trp
115 120 125Lys Phe Val Arg Lys Leu Ile
Met Asn Asp Leu Leu Asn Ala Thr Thr 130 135
140Val Asn Lys Leu Arg Pro Leu Arg Thr Gln Gln Ile Arg Lys Phe
Leu145 150 155 160Arg Val
Met Ala Gln Gly Ala Glu Ala Gln Lys Pro Leu Asp Leu Thr
165 170 175Glu Glu Leu Leu Lys Trp Thr
Asn Ser Thr Ile Ser Met Met Met Leu 180 185
190Gly Glu Ala Glu Glu Ile Arg Asp Ile Ala Arg Glu Val Leu
Lys Ile 195 200 205Phe Gly Glu Tyr
Ser Leu Thr Asp Phe Ile Trp Pro Leu Lys His Leu 210
215 220Lys Val Gly Lys Tyr Glu Lys Arg Ile Asp Asp Ile
Leu Asn Lys Phe225 230 235
240Asp Pro Val Val Glu Arg Val Ile Lys Lys Arg Arg Glu Ile Val Arg
245 250 255Arg Arg Lys Asn Gly
Glu Val Val Glu Gly Glu Val Ser Gly Val Phe 260
265 270Leu Asp Thr Leu Leu Glu Phe Ala Glu Asp Glu Thr
Thr Glu Ile Lys 275 280 285Ile Thr
Lys Asp His Ile Lys Gly Leu Val Val Asp Phe Phe Ser Ala 290
295 300Gly Thr Asp Ser Thr Ala Val Ala Thr Glu Trp
Ala Leu Ala Glu Leu305 310 315
320Ile Asn Asn Pro Lys Val Leu Glu Lys Ala Arg Glu Glu Val Tyr Ser
325 330 335Val Val Gly Lys
Asp Arg Leu Val Asp Glu Val Asp Thr Gln Asn Leu 340
345 350Pro Tyr Ile Arg Ala Ile Val Lys Glu Thr Phe
Arg Met His Pro Pro 355 360 365Leu
Pro Val Val Lys Arg Lys Cys Thr Glu Glu Cys Glu Ile Asn Gly 370
375 380Tyr Val Ile Pro Glu Gly Ala Leu Ile Leu
Phe Asn Val Trp Gln Val385 390 395
400Gly Arg Asp Pro Lys Tyr Trp Asp Arg Pro Ser Glu Phe Arg Pro
Glu 405 410 415Arg Phe Leu
Glu Thr Gly Ala Glu Gly Glu Ala Arg Pro Leu Asp Leu 420
425 430Arg Gly Gln His Phe Gln Leu Leu Pro Phe
Gly Ser Gly Arg Arg Met 435 440
445Cys Pro Gly Val Asn Leu Ala Thr Ser Gly Met Ala Thr Leu Leu Ala 450
455 460Ser Leu Ile Gln Cys Phe Asp Leu
Gln Val Leu Gly Pro Gln Gly Gln465 470
475 480Ile Leu Lys Gly Gly Asp Ala Lys Val Ser Met Glu
Glu Arg Ala Gly 485 490
495Leu Thr Val Pro Arg Ala His Ser Leu Val Cys Val Pro Leu Ala Arg
500 505 510Ile Gly Val Ala Ser Lys
Leu Leu Ser 515 52050521PRTPisum sativum 50Met Leu
Leu Glu Leu Ala Leu Gly Leu Phe Val Leu Ala Leu Phe Leu1 5
10 15His Leu Arg Pro Thr Pro Ser Ala
Lys Ser Lys Ala Leu Arg His Leu 20 25
30Pro Asn Pro Pro Ser Pro Lys Pro Arg Leu Pro Phe Ile Gly His
Leu 35 40 45His Leu Leu Lys Asp
Lys Leu Leu His Tyr Ala Leu Ile Asp Leu Ser 50 55
60Lys Lys His Gly Pro Leu Phe Ser Leu Ser Phe Gly Ser Met
Pro Thr65 70 75 80Val
Val Ala Ser Thr Pro Glu Leu Phe Lys Leu Phe Leu Gln Ala His
85 90 95Glu Ala Thr Ser Phe Ser Thr
Arg Phe Gln Thr Ser Ala Val Arg Arg 100 105
110Leu Thr Tyr Asp Asn Ser Val Ala Met Val Pro Phe Gly Pro
Tyr Trp 115 120 125Lys Phe Val Arg
Lys Leu Ile Met Asn Asp Leu Leu Asn Ala Thr Thr 130
135 140Val Asn Glu Leu Arg Pro Leu Arg Thr Gln Gln Ile
Arg Lys Phe Leu145 150 155
160Arg Val Met Ala Gln Ser Ala Glu Ala Gln Lys Pro Leu Asp Val Thr
165 170 175Glu Glu Leu Leu Lys
Trp Thr Asn Ser Thr Ile Ser Met Met Met Leu 180
185 190Gly Glu Ala Glu Glu Ile Arg Asp Ile Ala Arg Glu
Val Leu Lys Ile 195 200 205Phe Gly
Glu Tyr Ser Leu Thr Asp Phe Ile Trp Pro Leu Lys Tyr Leu 210
215 220Lys Val Gly Lys Tyr Glu Lys Arg Ile Asp Asp
Ile Leu Asn Lys Phe225 230 235
240Asp Pro Val Val Glu Arg Val Ile Lys Lys Arg Arg Glu Ile Val Arg
245 250 255Arg Arg Lys Asn
Gly Glu Val Val Glu Gly Glu Ala Ser Gly Val Phe 260
265 270Leu Asp Thr Leu Leu Glu Phe Ala Glu Asp Glu
Thr Met Glu Ile Lys 275 280 285Ile
Thr Lys Glu Gln Ile Lys Gly Leu Val Val Asp Phe Phe Ser Ala 290
295 300Gly Thr Asp Ser Thr Ala Val Ala Thr Glu
Trp Ala Leu Ala Glu Leu305 310 315
320Ile Asn Asn Pro Arg Val Leu Gln Lys Ala Arg Glu Glu Val Tyr
Ser 325 330 335Val Val Gly
Lys Asp Arg Leu Val Asp Glu Val Asp Thr Gln Asn Leu 340
345 350Pro Tyr Ile Arg Ala Ile Val Lys Glu Thr
Phe Arg Met His Pro Pro 355 360
365Leu Pro Val Val Lys Arg Lys Cys Thr Glu Glu Cys Glu Ile Asn Gly 370
375 380Tyr Val Ile Pro Glu Gly Ala Leu
Val Leu Phe Asn Val Trp Gln Val385 390
395 400Gly Lys Asp Pro Lys Tyr Trp Asp Arg Pro Ser Glu
Phe Arg Pro Glu 405 410
415Arg Phe Leu Glu Thr Gly Ala Glu Gly Glu Ala Gly Pro Leu Asp Leu
420 425 430Arg Gly Gln His Phe Gln
Leu Leu Pro Phe Gly Ser Gly Arg Arg Met 435 440
445Cys Pro Gly Val Asn Leu Ala Thr Ser Gly Met Ala Thr Leu
Leu Ala 450 455 460Ser Leu Ile Gln Cys
Phe Asp Leu Gln Val Leu Gly Pro Gln Gly Gln465 470
475 480Ile Leu Lys Gly Asp Asp Ala Lys Val Ser
Met Glu Glu Arg Ala Gly 485 490
495Leu Thr Val Pro Arg Ala His Ser Leu Val Cys Val Pro Leu Ala Arg
500 505 510Ile Gly Val Ala Ser
Lys Leu Leu Ser 515 52051499PRTBeta vulgaris 51Leu
His Leu Arg Pro Thr Pro Thr Ala Lys Ser Lys Ala Leu Arg His1
5 10 15Leu Pro Asn Pro Pro Ser Pro
Lys Pro Arg Leu Pro Phe Ile Gly His 20 25
30Leu His Leu Leu Lys Asp Lys Leu Leu His Tyr Ala Leu Ile
Asp Leu 35 40 45Ser Lys Lys His
Gly Pro Leu Phe Ser His Tyr Phe Gly Ser Met Pro 50 55
60Thr Val Val Ala Ser Thr Pro Glu Leu Phe Lys Leu Phe
Leu Gln Thr65 70 75
80Asn Glu Ala Thr Ser Phe Asn Thr Arg Phe Gln Thr Ser Ala Ile Arg
85 90 95Arg Leu Thr Tyr Asp Ser
Ser Val Ala Met Val Pro Phe Gly Pro Tyr 100
105 110Trp Lys Phe Val Arg Lys Leu Ile Met Asn Asp Leu
Leu Asn Ala Thr 115 120 125Thr Val
Asn Lys Leu Arg Pro Leu Arg Thr Gln Gln Ile Arg Lys Phe 130
135 140Leu Arg Ala Met Ala Gln Gly Ala Glu Ala Arg
Lys Pro Leu Asp Leu145 150 155
160Thr Glu Glu Leu Leu Lys Trp Ala Asn Ser Thr Ile Ser Met Met Met
165 170 175Leu Gly Glu Ala
Glu Glu Ile Arg Asp Ile Ala Arg Glu Val Leu Lys 180
185 190Ile Phe Gly Glu Tyr Ser Leu Thr Asp Phe Ile
Trp Pro Leu Lys His 195 200 205Leu
Lys Val Gly Lys Tyr Glu Lys Arg Ile Asp Asp Ile Leu Asn Lys 210
215 220Phe Asp Pro Val Val Glu Arg Val Ile Lys
Lys Arg Arg Glu Ile Val225 230 235
240Arg Arg Arg Lys Asn Gly Glu Val Val Glu Gly Glu Val Ser Gly
Val 245 250 255Phe Leu Asp
Thr Leu Leu Glu Phe Ala Glu Asp Glu Thr Met Glu Ile 260
265 270Lys Ile Thr Lys Asp His Thr Lys Gly Leu
Val Val Asp Phe Phe Ser 275 280
285Ala Gly Thr Asp Ser Thr Ala Val Ala Thr Glu Trp Ala Leu Ala Glu 290
295 300Leu Ile Asn Asn Pro Lys Val Leu
Glu Lys Ala Arg Glu Glu Val Tyr305 310
315 320Ser Val Val Gly Lys Asp Arg Leu Val Asp Glu Val
Asp Thr Gln Asn 325 330
335Leu Pro Tyr Ile Arg Ala Ile Val Lys Glu Thr Phe Arg Met His Pro
340 345 350Pro Leu Pro Val Val Lys
Arg Lys Cys Thr Glu Glu Cys Glu Ile Asn 355 360
365Gly Tyr Val Ile Pro Glu Gly Ala Leu Ile Pro Phe Asn Val
Trp Gln 370 375 380Val Gly Arg Asp Pro
Lys Tyr Trp Asp Arg Pro Ser Glu Phe Arg Pro385 390
395 400Glu Arg Phe Leu Glu Thr Gly Ala Glu Gly
Glu Ala Arg Pro Leu Asp 405 410
415Leu Arg Gly Gln His Phe Gln Leu Leu Pro Phe Gly Ser Gly Arg Arg
420 425 430Met Cys Pro Gly Val
Asn Leu Ala Thr Ser Gly Thr Ala Thr Leu Leu 435
440 445Ala Ser Leu Ile Gln Cys Phe Asp Leu Gln Val Leu
Gly Pro Gln Gly 450 455 460Gln Ile Leu
Lys Gly Gly Asp Ala Lys Val Ser Met Glu Glu Arg Ala465
470 475 480Gly Leu Thr Val Pro Arg Ala
His Ser Leu Val Cys Val Pro Leu Ala 485
490 495Arg Ile Gly52500PRTVicia villosa 52Phe Leu His Leu
Arg Pro Thr Pro Thr Ala Lys Ser Lys Ala Leu Arg1 5
10 15His Leu Pro Asn Pro Pro Ser Pro Lys Pro
Arg Leu Pro Phe Ile Gly 20 25
30His Leu His Leu Leu Lys Asp Lys Leu Leu His Tyr Ala Leu Ile Asp
35 40 45Leu Ser Lys Lys His Gly Pro Leu
Phe Ser Leu Tyr Phe Gly Ser Met 50 55
60Pro Thr Val Val Ala Ser Thr Pro Glu Leu Phe Lys Leu Phe Leu Gln65
70 75 80Thr His Glu Ala Thr
Ser Phe Asn Thr Arg Phe Gln Thr Ser Ala Ile 85
90 95Arg Arg Leu Thr Tyr Asp Ser Leu Val Ala Met
Val Pro Phe Gly Pro 100 105
110Tyr Trp Lys Phe Val Arg Lys Leu Ile Met Asn Asp Leu Leu Asn Ala
115 120 125Thr Thr Val Asn Lys Leu Arg
Pro Leu Arg Thr Gln Gln Ile Arg Lys 130 135
140Phe Leu Arg Val Met Ala Gln Gly Ala Glu Ala Gln Lys Pro Leu
Asp145 150 155 160Leu Thr
Glu Glu Leu Leu Lys Trp Thr Asn Ser Thr Ile Ser Met Met
165 170 175Met Leu Gly Glu Ala Glu Glu
Ile Arg Asp Ile Ala Arg Glu Val Leu 180 185
190Lys Ile Tyr Gly Glu Tyr Ser Leu Thr Asp Phe Ile Trp Pro
Leu Lys 195 200 205His Leu Lys Val
Gly Lys Tyr Glu Lys Arg Ile Asp Asp Ile Leu Asn 210
215 220Lys Phe Asp Pro Val Val Glu Arg Val Ile Lys Lys
Arg Arg Glu Ile225 230 235
240Val Arg Arg Arg Lys Asn Gly Glu Val Val Glu Gly Glu Val Ser Gly
245 250 255Val Phe Leu Asp Thr
Leu Leu Glu Phe Ala Glu Asp Glu Thr Thr Glu 260
265 270Ile Lys Ile Thr Lys Asp His Ile Lys Gly Leu Val
Val Asp Phe Phe 275 280 285Ser Ala
Gly Ile Asp Ser Thr Ala Val Ala Thr Glu Trp Ala Leu Ala 290
295 300Glu Leu Ile Asn Asn Pro Lys Val Leu Glu Lys
Ala Arg Glu Glu Val305 310 315
320Tyr Ser Val Val Gly Lys Asp Arg Leu Val Asp Glu Val Asp Thr Gln
325 330 335Asn Leu Pro Tyr
Ile Arg Ala Ile Val Lys Glu Thr Phe Arg Met His 340
345 350Pro Pro Leu Pro Val Val Lys Arg Lys Cys Thr
Glu Glu Cys Glu Ile 355 360 365Asn
Gly Tyr Val Ile Pro Glu Gly Ala Leu Ile Leu Phe Asn Val Trp 370
375 380Gln Val Gly Arg Asp Pro Lys Tyr Trp Asp
Arg Pro Ser Glu Phe Arg385 390 395
400Pro Glu Arg Phe Leu Glu Thr Gly Ala Glu Gly Glu Ala Arg Pro
Leu 405 410 415Asp Leu Arg
Gly Gln His Phe Gln Leu Leu Pro Phe Gly Ser Gly Arg 420
425 430Gly Met Cys Pro Gly Val Asn Leu Ala Thr
Ser Gly Met Ala Thr Leu 435 440
445Leu Ala Ser Leu Ile Gln Cys Phe Asp Leu Gln Val Leu Gly Pro Gln 450
455 460Gly Gln Ile Leu Lys Gly Gly Asp
Ala Lys Val Ser Met Glu Glu Arg465 470
475 480Ala Gly Leu Thr Val Pro Arg Ala His Ser Leu Val
Cys Val Pro Leu 485 490
495Ala Arg Ile Gly 50053524PRTCaragana arborescens 53Met Leu
Val Glu Leu Ala Ile Thr Leu Leu Val Ile Ala Leu Phe Leu1 5
10 15His Leu Arg Pro Thr Pro Ser Ala
Lys Ser Lys Ala Leu Arg His Leu 20 25
30Pro Asn Pro Pro Ser Pro Lys Pro Arg Leu Pro Phe Ile Gly His
Leu 35 40 45His Leu Leu Asp Lys
Pro Leu Leu His Gln Ser Leu Ile Arg Leu Ser 50 55
60Glu Arg Tyr Gly Pro Leu Tyr Ser Leu Tyr Phe Gly Ser Met
Pro Thr65 70 75 80Val
Val Ala Ser Thr Pro Glu Leu Phe Lys Leu Phe Leu Gln Thr His
85 90 95Glu Ala Ser Ser Phe Asn Thr
Arg Phe Gln Thr Ser Ala Ile Arg Arg 100 105
110Leu Thr Tyr Asp Asn Ser Val Ala Met Val Pro Phe Gly Pro
Tyr Trp 115 120 125Lys Phe Ile Arg
Lys Leu Ile Met Asn Asp Leu Leu Asn Ala Thr Thr 130
135 140Val Asn Lys Leu Arg Pro Leu Arg Ser Gln Glu Ile
Arg Lys Val Leu145 150 155
160Lys Val Met Ala Gln Ser Ala Glu Thr Gln Gln Pro Leu Asn Val Thr
165 170 175Glu Glu Leu Leu Lys
Trp Thr Asn Ser Thr Ile Ser Arg Met Met Leu 180
185 190Gly Glu Ala Glu Glu Ile Arg Asp Ile Ala Arg Asp
Val Leu Lys Ile 195 200 205Phe Gly
Glu Tyr Ser Leu Thr Asp Phe Ile Trp Pro Leu Lys Lys Leu 210
215 220Lys Val Gly Gln Tyr Glu Lys Arg Ile Asp Asp
Ile Phe Asn Arg Phe225 230 235
240Asp Pro Val Ile Glu Lys Val Ile Lys Lys Arg Gln Glu Ile Arg Lys
245 250 255Arg Arg Lys Glu
Arg Asn Gly Glu Leu Glu Glu Gly Glu Gln Ser Val 260
265 270Val Phe Leu Asp Thr Leu Leu Asp Phe Ala Glu
Asp Glu Thr Met Glu 275 280 285Ile
Lys Ile Thr Lys Glu Gln Ile Lys Gly Leu Ile Val Asp Phe Phe 290
295 300Ser Ala Gly Thr Asp Ser Thr Ala Val Ala
Thr Asp Tyr Ala Leu Ser305 310 315
320Glu Leu Ile Asn Asn Pro Arg Val Leu Gln Lys Ala Arg Glu Glu
Val 325 330 335Asp Ser Val
Val Gly Lys Asp Arg Leu Val Asp Glu Ser Asp Val Gln 340
345 350Asn Leu Pro Phe Ile Arg Ala Ile Val Lys
Glu Thr Phe Arg Met His 355 360
365Pro Pro Leu Pro Val Val Lys Arg Lys Cys Thr Gln Glu Cys Glu Ile 370
375 380Asp Gly Phe Val Ile Pro Glu Gly
Ala Leu Ile Leu Phe Asn Val Trp385 390
395 400Ala Val Gly Arg Asp Pro Lys Tyr Trp Glu Arg Pro
Ser Glu Phe Arg 405 410
415Pro Glu Arg Phe Leu Gln Asn Ala Gly Glu Gly Glu Val Gly Ser Ile
420 425 430Asp Leu Arg Gly Gln His
Phe Gln Leu Leu Pro Phe Gly Ser Gly Arg 435 440
445Arg Met Cys Pro Gly Val Asn Leu Ala Thr Ala Gly Met Ala
Thr Leu 450 455 460Leu Ala Ser Val Ile
Gln Cys Phe Asp Leu Gln Val Pro Gly Pro Gln465 470
475 480Gly Glu Leu Leu Lys Gly Asp Asp Ala Lys
Val Ser Met Glu Glu Arg 485 490
495Pro Gly Leu Thr Val Pro Arg Ala Asn Asn Leu Met Cys Val Pro Leu
500 505 510Ala Arg Ala Gly Val
Ala Ala Lys Leu Leu Ser Ser 515 52054521PRTVigna
unguiculata 54Met Leu Leu Glu Ile Thr Ile Gly Leu Leu Val Leu Ala Leu Phe
Leu1 5 10 15His Leu Arg
Pro Thr Pro Thr Ala Lys Ser Lys Ala Leu Arg His Leu 20
25 30Pro Asn Pro Pro Ser Pro Lys Pro Arg Leu
Pro Phe Ile Gly His Leu 35 40
45His Leu Leu Lys Asp Lys Leu Leu His Tyr Ala Leu Ile Asp Leu Ser 50
55 60Lys Thr Tyr Gly Pro Leu Tyr Ser Leu
Tyr Phe Gly Ser Met Pro Thr65 70 75
80Val Val Ala Ser Ser Pro Glu Leu Phe Lys Leu Phe Leu Gln
Thr His 85 90 95Glu Ala
Ala Ser Phe Asn Thr Arg Phe Gln Thr Ser Ala Ile Arg Arg 100
105 110Leu Thr Tyr Asp Asn Ser Val Ala Met
Val Pro Phe Gly Pro Tyr Trp 115 120
125Lys Phe Ile Arg Lys Leu Ile Met Asn Asp Leu Leu Asn Ala Thr Thr
130 135 140Val Asn Lys Leu Arg Pro Leu
Arg Thr Gln Gln Ile Arg Lys Phe Leu145 150
155 160Lys Val Met Ala Gln Ser Ala Gln Ala Gln Gln Pro
Leu Asn Val Thr 165 170
175Glu Glu Leu Leu Lys Trp Thr Asn Ser Thr Ile Ser Met Met Met Leu
180 185 190Gly Glu Ala Glu Glu Ile
Arg Asp Ile Ala Arg Glu Val Leu Lys Ile 195 200
205Phe Gly Glu Tyr Ser Leu Thr Asp Phe Ile Trp Pro Leu Lys
Lys Leu 210 215 220Lys Phe Gly Gln Tyr
Glu Lys Arg Ile Asp Glu Ile Phe Asn Lys Phe225 230
235 240Asp Pro Val Ile Glu Arg Val Ile Lys Lys
Arg Arg Glu Ile Met Arg 245 250
255Arg Arg Lys Asn Gly Glu Ala Val Glu Glu Glu Gln Ser Gly Val Phe
260 265 270Leu Asp Thr Leu Leu
Gln Phe Ala Glu Asp Glu Thr Met Glu Ile Lys 275
280 285Ile Thr Lys Glu Gln Ile Lys Gly Leu Val Val Asp
Phe Phe Ser Ala 290 295 300Gly Thr Asp
Ser Thr Ala Val Ala Thr Glu Trp Ala Leu Ala Glu Leu305
310 315 320Ile Asn Asn Pro Arg Val Leu
Gln Lys Ala Arg Glu Glu Val Tyr Ser 325
330 335Val Val Gly Lys Asp Arg Leu Val Asp Glu Val Asp
Thr Gln Asn Leu 340 345 350Pro
Tyr Ile Arg Ala Ile Val Lys Glu Thr Phe Arg Met His Pro Pro 355
360 365Leu Pro Val Val Lys Arg Lys Cys Val
Glu Glu Cys Glu Ile Glu Gly 370 375
380Tyr Val Ile Pro Glu Gly Ala Leu Ile Leu Phe Asn Val Trp Ala Val385
390 395 400Gly Arg Asp Pro
Lys Tyr Trp Asp Arg Pro Leu Glu Phe Arg Pro Glu 405
410 415Arg Phe Leu Glu Thr Gly Ala Glu Gly Glu
Ala Gly Pro Leu Asp Leu 420 425
430Arg Gly Gln His Phe Thr Leu Leu Pro Phe Gly Ser Gly Arg Arg Met
435 440 445Cys Pro Gly Val Asn Leu Ala
Thr Ser Gly Met Ala Thr Leu Leu Ala 450 455
460Ser Val Ile Gln Cys Phe Asp Leu Gln Val Val Gly Pro Gln Gly
Gln465 470 475 480Ile Leu
Lys Gly Asn Asp Ala Lys Val Ser Met Glu Glu Arg Ala Gly
485 490 495Leu Thr Val Pro Arg Ala His
Asn Leu Glu Cys Val Pro Val Ala Arg 500 505
510Thr Ser Val Ala Ala Lys Leu Leu Ser 515
520551383DNAPetroselinum crispum 55ctcgcccttc aatggctcct acaacaataa
ccgcattagc caaggagaaa acactaaact 60tggactttgt gagggatgaa gacgagcgtc
ccaaagttgc ttacaatcaa ttcagcaatg 120aaattcccat tatttcttta gccggtttgg
atgacgattc tgatggcagg agacccgaga 180tatgtcgcaa aatagttaag gcttgtgaag
actggggaat tttccaagtg gttgatcatg 240gtattgacag cggcttgatt tccgagatga
ctcgtctttc tcgtgaattc tttgctttgc 300ctgctgagga aaaacttgag tatgatacaa
ctgggggaaa gagaggcggc tttactatat 360ccactgttct tcagggtgac gacgctatgg
attggcgtga gttcgttact tacttttcgt 420acccaatcaa tgctcgggac tactcaagat
ggcctaaaaa gcccgaagga tggagatcaa 480ccacggaggt ttatagcgag aagttaatgg
tgctaggtgc caagttactg gaagtgttat 540cagaggccat ggggcttgag aaaggggatc
ttactaaggc ttgtgtggat atggaacaga 600aagtgttaat taattactat cccacgtgcc
cccaacccga cttgacactt ggagtcagaa 660ggcatacgga tccaggtact attaccattc
tacttcagga catggttggt gggttacaag 720ccaccaggga cggtggcaaa acttggatta
ctgttcagcc tgtggaggga gcttttgttg 780tcaatttggg cgatcatggt cattatttga
gcaatggaag gttcaggaat gctgaccacc 840aagcagtagt gaattcaacc tctagcagat
tgtcaattgc aactttccag aacccggctc 900agaatgcgat agtatatcca ttaaagatca
gggagggaga gaaggcaatt ctggatgagg 960ccatcaccta cgctgaaatg tataagaaat
gcatgactaa acatattgag gtggctactc 1020ggaagaaatt ggccaaggag aaaaggttgc
aagacgagaa agccaagctg gagatgaaat 1080ccaagagtgc agatgaaaat ttagcttagg
ctttgtgcac tctaccatct acattatgtt 1140ttgcgagttt gtgctccctg cattagtgaa
tgatgtcatt tgcgagtttg tgctctctgc 1200attagtgaat aatgtcattg ttcaattcca
tgtctaaacg ctgaatacta tggagtcatg 1260gtactctttg gttagaaatt cttacaatgt
cgttctttta gagtccttaa taataataat 1320tctcggagtg tttaattatg tttattatgt
gctataatca atggtgtgtg ttattggcag 1380aag
1383561098DNACuminum cyminum
56atggctccaa caacaattac tgcattggcc caagagaaaa cacttaactc tgattttgtc
60cgggatgaag atgagcgccc caaagttgcc tacaatcagt tcagcactga gattcccatc
120atttctttag ctggcatcga tgatgattcc aaaggcagga ggcctgaggt gtgtagaaaa
180atagttgagg cctttgaaga ctggggcatt tttcaggtgg ttgatcacgg tgttgacagc
240gctttgatct ccgaaatgtc tcgtctgtct cgtgaattct tcgctttgcc tgctgaggaa
300aaactccggt atgataccac tggtggaaag agaggcggct tcactatctc cactcatcaa
360cagggtgacg acgtgcggga ctggcgtgag tttgttactt atttttcgta cccagtggat
420gctcgggact actcaagatg gcctgagaag ccagagggat ggaggtcagt tacagaggtt
480tatagtgaga agttgatggt tctaggtgcc aagttactgg aagtgttatc agaggccatg
540gggcttgaca aaggggctct tacaaaggct tgtgtgaata tggaacagaa agtgctaatt
600aattactatc ccacatgccc cgagccagac ttgacacttg gagtcagaag gcatacggat
660ccaggtacta ttaccatttt gcttcaggac atggttggtg ggttacaggc cacgagggat
720ggcggcaaaa cctggatcac tgttcagcct gtggagggag tttttgtcgt caatttgggt
780gatcatggtc attatttgag caatgggagg ttcaagaacg cggaccacca ggcagtagtg
840aattcaacct caagcagatt gtcaatcgca actttccaga acccggctca gaacgctata
900gtgtatccat taaagatcag ggagggtgag aagccaattc tggaggaggc catcacgtac
960gcggagatgt ataagaaaaa catgactaaa catattgagg tggctacaca gaagaaattg
1020gccaaggaga aaagattgca agaagagaag gccaagctgg agacgaaaac caagagcgca
1080gatggaattt tagcttag
1098571098DNAAethusa cynapium 57atggctccta caaccataac tgcattatcc
caggagaaat cactaaactt agactttgtc 60agggatgaag acgagcgtcc caaagttgct
tacaatcagt tcagcaatga aattcccatc 120atttctctag ctggtatgga tgatgattct
aatggcagga gacccgagat atgtcgtaaa 180atagtcgagg cattcgaaga ctggggaatt
ttccaggtgg ttgatcacgg tattgacaaa 240ggtttgattt ctcagatgtc tcgtctctct
cgtgaattct ttgctttgcc tgctgaggaa 300aaactccggt atgatacaac tggtggaaag
agaggtggct ttactatctc cactcatctt 360cagggtgacg atgttaagga ttggcgtgag
ttcgttactt acttttcgta cccaatcgaa 420gatcgggact actcaagatg gcctgaaaag
ccagagggat ggaggtcaac cactgaggtt 480tatagtgaga agttaatggt gctaggtgcc
aagttactgg aagtgttgtc agaggccatg 540gggcttgaga aagaggctct tacaaaggct
tgtgtgaata tggaacagaa agtgttaatc 600aattactatc ccacatgccc cgaacccgac
ttgacacttg gagtcagaag gcatacggat 660ccaggtacta ttaccattct gcttcaggac
atggttggtg gattacaggc tactagggat 720ggcggcaaaa catggatcac tgttcagcct
gtggagggag cttttgtggt caatttgggt 780gaccatggtc attatttgag caatggaagg
ttcaagaatg ctgaccacca agcagtagtg 840aattcaactt ctagcagatt gtctattgca
actttccaga acccggccca gaatgcgata 900gtgtatccct taaaaatcag ggagggagaa
aaggcaattc ttgatgaggc catcacctac 960gctgaaatgt ataagaaaaa catgactaaa
catattgagg tggctgccct gaagaaattg 1020gccaaggaga aaaggctgca agatgagaag
gccaagctgg agatgtaatc caagagtgca 1080gatgaaaatt tagcttag
1098581095DNAAngelica archangelica
58atggctccaa caactataac tgcattagcc caggagaaaa cactaaattt agcctttgtc
60agggatgaag acgagcgtcc caaagttgcc tacaatcagt tcagcaatga aattcccatc
120atttctttag ctggtatgga tgacgatact ggcaggagac cccagatatg tcgtaaaata
180gttgaggcat ttgaagactg gggaattttc caggtggttg atcacggcat tgacggcact
240ttgatttctg agatgactcg tctttctcgt gaattctttg ctttgcctgc tgaggaaaaa
300cttcggtatg atacaactgg tggaaagaga ggcggcttta ccatctccac tcatcttcag
360ggtgacgatg ttaaggattg gcgtgagttc gttacttact tttcgtaccc aatcgatgat
420cgggactact caagatggcc tgataagccc cagggatgga ggtcaaccac ggaggtttat
480agtgagaagt taatggtgct aggtgccaag ttacttgaag tgttatcaga ggccatgggg
540cttgagaaag aggctcttac aaaggcttgt gtgaatatgg aacaaaaagt gttaatcaat
600tactatccca cgtgccccga accggacttg acacttggag tcagaaggca tacggatcca
660ggtactatta ccattctgct tcaggacatg gttggtgggt tacaggctac tagggatggt
720ggcaaaactt ggattactgt tcagcctgtg gagggagctt ttgtggtcaa tttgggtgac
780catggtcatt atttgagcaa tgggaggttc aagaatgctg accaccaagc agtagtgaat
840tcaacctcta gcagattgtc tattgcaact ttccagaacc cggcccagaa tgcgatagtg
900tatcccttga ggatcaggga gggagagaag gcagttcttg atgaggccat cacctacgct
960gaaatgtata agaaaaacat gactaaacat attgaggtgg ctaccctgaa gaaattggcc
1020aaggagaaaa ggttgcaaga ggaaaaggcc aagctggaga cggaatccaa gagtgcagat
1080ggaatttcag cttag
1095591294DNAApium graveolens 59aaaaatggct ccatcaacta taactgcact
gtctcaagag aagacactga acttagactt 60tgtgagggat gaagatgagc gtcccaaagt
tgcttacaat caattcagca atgaagttcc 120catcatttct ttagctggtt tggatgacga
ttctaatggc aggagagctg agatatgtcg 180taaaatagtt gaggctttcg aagaatgggg
aattttccaa gttgttgatc acggtattga 240tagcggtttg atttctgaga tgagtcgtct
ttctcgtgaa ttcttcgctt tgcctgctga 300ggaaaaactt gtgtatgata ccactggtga
aaagaaaggc ggctttacta tctccactca 360tcttcaggga gatgatgttc gggattggcg
tgagtttgtt acttactttt cgtatccaat 420cagtgctcgg gactactcaa gatggcctaa
aaagcccgag gggtggagat caaccacgga 480ggtttatagt gagaagttaa tggtgctagg
tgccaagtta ctggaggtgt tatccgaggc 540aatggggctt gagaaagagg ctcttacaaa
ggcttgtgtg gaaatggaac agaaagtgtt 600aattaattac tatcccacat gccccgaacc
cgacttgacg ctaggtgtca gaaggcatac 660ggatccaggt actattacca ttctgcttca
ggacatggtt ggtggtttac aggctactag 720ggatggcggc aaaacttgga ttactgttca
gcctgtggag ggagcttttg ttgtcaattt 780gggtgatcat ggtcattatt tgagcaatgg
aaggttcagg aatgctgacc atcaagcagt 840agtgaattca acttccacca gattgtcaat
tgcaactttc cagaacccgg ctcagaatgc 900gatagtatat ccgttaaaga tcagggaggg
agagaaggca attctggatg aggccatcac 960ctacgctgaa atgtataaga aaaacatgac
taaacatatt gcggtggcta cccagaagaa 1020attggccaag gagaaaaggt tgcaagatga
gaaggccaag atgaagatat gatcggagat 1080tgccagggca ggtggaattt aagctcagcc
tttgtccacc ataccatcta tgtttcacga 1140agtttgtgct cgctgcgtta gtgaactatt
gggccgttgg tcaatttcca tgtctaaatg 1200tcatggtctc ttttggtcag aaattcgaaa
tgtcgtcttt ttagggactt tataataatt 1260ctaagtttgg gaggggtcaa aaaaaaaaaa
aaaa 1294601290DNAConium maculatum
60aaatggctcc tacaactata accgcattag cccaggagaa aacactaaac ttagcctttg
60tgagggatga agacgagcgt cccaaagttg cctacaatga attcagcaat gaaattccca
120taatttctct agctggtttg gaaaatgact ctgatgggag gagacccgag atatgtcgta
180aaatagtcga ggcttttgaa aactggggaa ttttccaagt ggctgatcat ggtattgaca
240gtgctttgat ttctgagatg tctcgtcttt ctcgtgaatt ctttgctttg cctgctgagg
300aaaaacttcg gtatgatacc actggtggaa agagaggcgg ctttactatc tccactcatc
360ttcagggtga tgacgttcgg gattggcgtg aattcgttac ttacttttcg tacccaatag
420atgctcggga ctgctcgaga tggcctgata agcccgaggg atggaggtca atcacggagg
480tttacagtga gaggttaatg gtgctaggtg ccaagttact ggaagtgtta tcagaggcca
540tggggcttga gaaagaggct cttacaaagg cttgtgtgaa tatggaacag aaagtgttaa
600ttaattacta tcccacgtgc cccgagcccg acttgacact tggagtcaga aggcatacgg
660atccaggtac tattactgtt ctgcttcagg acatggttgg tgggttacag gctactaggg
720atggtggcaa aacttggatt actgttcagc ctgtggaggg agcttttgtt gtcaatttgg
780gtgatcatgg tcattatctg agcaatggaa ggttcaagaa tgctgaccac caagcggtag
840taaattcaag ctctagcaga ttgtcaattg cgacattcca gaacccggct cagaatgcga
900tagtttatcc attaaagatc agggagggag agaaggcaat tcttgatgag gccatcacct
960acgccgaaat gtataagaaa aacatgacta aacatattga ggtggctacc ctcaagaaat
1020tggccaagga gaaaaggttg caagatgaga aggccaacat ggagaagaaa tccaagagtg
1080cacatggaat ttcagcttag gtgcatgatg gcatctaaat aatgtttctg gattttgtag
1140gtgaataata tcattgttaa attctgtcca aacgctgcgt acgatgtagt catggccctc
1200tttggccgga aaatcggaca gtctcaatct ttctgagtac tcaataacag taattctaaa
1260attttgaagt gtttgatgaa aaaaaaaaaa
1290611328DNADaucus carota 61ggacttaaaa tggctccaac aactattact gcattggcca
aggaaaaaac acttaactct 60gattttgtcc gggatgagga tgagcgtccc aaagttgcct
acaatcaatt cagcactgaa 120attcccatta tttctttagc tggtatcgat gatgattcca
atggcaggag acctgaggtg 180tgtcgtaaaa tagtggaggc cttcgaagac tgggggattt
tccaggtagt tgatcacggt 240attgacagcg gtttgatcgc ggaaatgtct cgtctgtctc
gtgaattctt tgctttgcct 300gccgaggaga aacttcggta tgatactact ggtggaaaga
gaggcggctt cactatctcc 360actcatcttc agggtgacga tgtgaaggat tggcgtgagt
ttgttgttta tttttcgtac 420ccagtcgatg ctcgggacta ctcgagatgc cctgataagc
ccgagggatg gaggtcagtt 480acagaggttt atagtgagaa gttgatggcg ctaggtgcca
agttactgga agtgctatca 540gaggccatgg ggcttgaaaa agaggctctt acagaggctt
gtgtgaatat ggaacagaaa 600gtgttgatca attactatcc tacatgtccc caaccggact
tgacacttgg agtcagaagg 660cacacggatc cgggtacgat taccattttg cttcaggaca
tggttggggg gttacaggct 720accagggatg gcggcaaaac ttggattact gttcagcctg
tcgagggagc ttttgtcgtc 780aatttgggtg atcatggtca ttatttgagc aatggaaggt
tcaagaatgc cgatcaccaa 840gcagtagtga attcaacctc tagcagattg tccatcgcaa
ctttccagaa cccagctcag 900aatgctatag tgtatccttt aaagatcagg gagggcgaga
agccaattct tgaggaggcc 960atgacatacg ccgagatgta taagaaaaac atgactaaac
atattgaggt ggctactcag 1020aagaaattgg ccaaggagaa aagattgcag aacgagaagg
ccaagctgga gacgaaattt 1080tagcttaggc tttgtccatt atagtatcta tattatgttt
tccgagtttg tgttatctac 1140aataatacag tagtkaatwa ggccattttt gttaatgtct
aaatkctgcg tactgtggtc 1200agagtwctgt kttaagaaat tcatacaata tcgttcttaa
tcctaaactt tcgtgtgttt 1260gattttgttc attctataca ataatttaat agttcattct
attacagtta tgcgaaawaa 1320aaaaaaaa
132862365PRTPetroselinum crispum 62Met Ala Pro Thr
Thr Ile Thr Ala Leu Ala Lys Glu Lys Thr Leu Asn1 5
10 15Leu Asp Phe Val Arg Asp Glu Asp Glu Arg
Pro Lys Val Ala Tyr Asn 20 25
30Gln Phe Ser Asn Glu Ile Pro Ile Ile Ser Leu Ala Gly Leu Asp Asp
35 40 45Asp Ser Asp Gly Arg Arg Pro Glu
Ile Cys Arg Lys Ile Val Lys Ala 50 55
60Cys Glu Asp Trp Gly Ile Phe Gln Val Val Asp His Gly Ile Asp Ser65
70 75 80Gly Leu Ile Ser Glu
Met Thr Arg Leu Ser Arg Glu Phe Phe Ala Leu 85
90 95Pro Ala Glu Glu Lys Leu Glu Tyr Asp Thr Thr
Gly Gly Lys Arg Gly 100 105
110Gly Phe Thr Ile Ser Thr Val Leu Gln Gly Asp Asp Ala Met Asp Trp
115 120 125Arg Glu Phe Val Thr Tyr Phe
Ser Tyr Pro Ile Asn Ala Arg Asp Tyr 130 135
140Ser Arg Trp Pro Lys Lys Pro Glu Gly Trp Arg Ser Thr Thr Glu
Val145 150 155 160Tyr Ser
Glu Lys Leu Met Val Leu Gly Ala Lys Leu Leu Glu Val Leu
165 170 175Ser Glu Ala Met Gly Leu Glu
Lys Gly Asp Leu Thr Lys Ala Cys Val 180 185
190Asp Met Glu Gln Lys Val Leu Ile Asn Tyr Tyr Pro Thr Cys
Pro Gln 195 200 205Pro Asp Leu Thr
Leu Gly Val Arg Arg His Thr Asp Pro Gly Thr Ile 210
215 220Thr Ile Leu Leu Gln Asp Met Val Gly Gly Leu Gln
Ala Thr Arg Asp225 230 235
240Gly Gly Lys Thr Trp Ile Thr Val Gln Pro Val Glu Gly Ala Phe Val
245 250 255Val Asn Leu Gly Asp
His Gly His Tyr Leu Ser Asn Gly Arg Phe Arg 260
265 270Asn Ala Asp His Gln Ala Val Val Asn Ser Thr Ser
Ser Arg Leu Ser 275 280 285Ile Ala
Thr Phe Gln Asn Pro Ala Gln Asn Ala Ile Val Tyr Pro Leu 290
295 300Lys Ile Arg Glu Gly Glu Lys Ala Ile Leu Asp
Glu Ala Ile Thr Tyr305 310 315
320Ala Glu Met Tyr Lys Lys Cys Met Thr Lys His Ile Glu Val Ala Thr
325 330 335Arg Lys Lys Leu
Ala Lys Glu Lys Arg Leu Gln Asp Glu Lys Ala Lys 340
345 350Leu Glu Met Lys Ser Lys Ser Ala Asp Glu Asn
Leu Ala 355 360 36563365PRTCuminum
cyminum 63Met Ala Pro Thr Thr Ile Thr Ala Leu Ala Gln Glu Lys Thr Leu
Asn1 5 10 15Ser Asp Phe
Val Arg Asp Glu Asp Glu Arg Pro Lys Val Ala Tyr Asn 20
25 30Gln Phe Ser Thr Glu Ile Pro Ile Ile Ser
Leu Ala Gly Ile Asp Asp 35 40
45Asp Ser Lys Gly Arg Arg Pro Glu Val Cys Arg Lys Ile Val Glu Ala 50
55 60Phe Glu Asp Trp Gly Ile Phe Gln Val
Val Asp His Gly Val Asp Ser65 70 75
80Ala Leu Ile Ser Glu Met Ser Arg Leu Ser Arg Glu Phe Phe
Ala Leu 85 90 95Pro Ala
Glu Glu Lys Leu Arg Tyr Asp Thr Thr Gly Gly Lys Arg Gly 100
105 110Gly Phe Thr Ile Ser Thr His Gln Gln
Gly Asp Asp Val Arg Asp Trp 115 120
125Arg Glu Phe Val Thr Tyr Phe Ser Tyr Pro Val Asp Ala Arg Asp Tyr
130 135 140Ser Arg Trp Pro Glu Lys Pro
Glu Gly Trp Arg Ser Val Thr Glu Val145 150
155 160Tyr Ser Glu Lys Leu Met Val Leu Gly Ala Lys Leu
Leu Glu Val Leu 165 170
175Ser Glu Ala Met Gly Leu Asp Lys Gly Ala Leu Thr Lys Ala Cys Val
180 185 190Asn Met Glu Gln Lys Val
Leu Ile Asn Tyr Tyr Pro Thr Cys Pro Glu 195 200
205Pro Asp Leu Thr Leu Gly Val Arg Arg His Thr Asp Pro Gly
Thr Ile 210 215 220Thr Ile Leu Leu Gln
Asp Met Val Gly Gly Leu Gln Ala Thr Arg Asp225 230
235 240Gly Gly Lys Thr Trp Ile Thr Val Gln Pro
Val Glu Gly Val Phe Val 245 250
255Val Asn Leu Gly Asp His Gly His Tyr Leu Ser Asn Gly Arg Phe Lys
260 265 270Asn Ala Asp His Gln
Ala Val Val Asn Ser Thr Ser Ser Arg Leu Ser 275
280 285Ile Ala Thr Phe Gln Asn Pro Ala Gln Asn Ala Ile
Val Tyr Pro Leu 290 295 300Lys Ile Arg
Glu Gly Glu Lys Pro Ile Leu Glu Glu Ala Ile Thr Tyr305
310 315 320Ala Glu Met Tyr Lys Lys Asn
Met Thr Lys His Ile Glu Val Ala Thr 325
330 335Gln Lys Lys Leu Ala Lys Glu Lys Arg Leu Gln Glu
Glu Lys Ala Lys 340 345 350Leu
Glu Thr Lys Thr Lys Ser Ala Asp Gly Ile Leu Ala 355
360 36564355PRTAethusa cynapium 64Met Ala Pro Thr Thr
Ile Thr Ala Leu Ser Gln Glu Lys Ser Leu Asn1 5
10 15Leu Asp Phe Val Arg Asp Glu Asp Glu Arg Pro
Lys Val Ala Tyr Asn 20 25
30Gln Phe Ser Asn Glu Ile Pro Ile Ile Ser Leu Ala Gly Met Asp Asp
35 40 45Asp Ser Asn Gly Arg Arg Pro Glu
Ile Cys Arg Lys Ile Val Glu Ala 50 55
60Phe Glu Asp Trp Gly Ile Phe Gln Val Val Asp His Gly Ile Asp Lys65
70 75 80Gly Leu Ile Ser Gln
Met Ser Arg Leu Ser Arg Glu Phe Phe Ala Leu 85
90 95Pro Ala Glu Glu Lys Leu Arg Tyr Asp Thr Thr
Gly Gly Lys Arg Gly 100 105
110Gly Phe Thr Ile Ser Thr His Leu Gln Gly Asp Asp Val Lys Asp Trp
115 120 125Arg Glu Phe Val Thr Tyr Phe
Ser Tyr Pro Ile Glu Asp Arg Asp Tyr 130 135
140Ser Arg Trp Pro Glu Lys Pro Glu Gly Trp Arg Ser Thr Thr Glu
Val145 150 155 160Tyr Ser
Glu Lys Leu Met Val Leu Gly Ala Lys Leu Leu Glu Val Leu
165 170 175Ser Glu Ala Met Gly Leu Glu
Lys Glu Ala Leu Thr Lys Ala Cys Val 180 185
190Asn Met Glu Gln Lys Val Leu Ile Asn Tyr Tyr Pro Thr Cys
Pro Glu 195 200 205Pro Asp Leu Thr
Leu Gly Val Arg Arg His Thr Asp Pro Gly Thr Ile 210
215 220Thr Ile Leu Leu Gln Asp Met Val Gly Gly Leu Gln
Ala Thr Arg Asp225 230 235
240Gly Gly Lys Thr Trp Ile Thr Val Gln Pro Val Glu Gly Ala Phe Val
245 250 255Val Asn Leu Gly Asp
His Gly His Tyr Leu Ser Asn Gly Arg Phe Lys 260
265 270Asn Ala Asp His Gln Ala Val Val Asn Ser Thr Ser
Ser Arg Leu Ser 275 280 285Ile Ala
Thr Phe Gln Asn Pro Ala Gln Asn Ala Ile Val Tyr Pro Leu 290
295 300Lys Ile Arg Glu Gly Glu Lys Ala Ile Leu Asp
Glu Ala Ile Thr Tyr305 310 315
320Ala Glu Met Tyr Lys Lys Asn Met Thr Lys His Ile Glu Val Ala Ala
325 330 335Leu Lys Lys Leu
Ala Lys Glu Lys Arg Leu Gln Asp Glu Lys Ala Lys 340
345 350Leu Glu Met 35565364PRTAngelica
archangelica 65Met Ala Pro Thr Thr Ile Thr Ala Leu Ala Gln Glu Lys Thr
Leu Asn1 5 10 15Leu Ala
Phe Val Arg Asp Glu Asp Glu Arg Pro Lys Val Ala Tyr Asn 20
25 30Gln Phe Ser Asn Glu Ile Pro Ile Ile
Ser Leu Ala Gly Met Asp Asp 35 40
45Asp Thr Gly Arg Arg Pro Gln Ile Cys Arg Lys Ile Val Glu Ala Phe 50
55 60Glu Asp Trp Gly Ile Phe Gln Val Val
Asp His Gly Ile Asp Gly Thr65 70 75
80Leu Ile Ser Glu Met Thr Arg Leu Ser Arg Glu Phe Phe Ala
Leu Pro 85 90 95Ala Glu
Glu Lys Leu Arg Tyr Asp Thr Thr Gly Gly Lys Arg Gly Gly 100
105 110Phe Thr Ile Ser Thr His Leu Gln Gly
Asp Asp Val Lys Asp Trp Arg 115 120
125Glu Phe Val Thr Tyr Phe Ser Tyr Pro Ile Asp Asp Arg Asp Tyr Ser
130 135 140Arg Trp Pro Asp Lys Pro Gln
Gly Trp Arg Ser Thr Thr Glu Val Tyr145 150
155 160Ser Glu Lys Leu Met Val Leu Gly Ala Lys Leu Leu
Glu Val Leu Ser 165 170
175Glu Ala Met Gly Leu Glu Lys Glu Ala Leu Thr Lys Ala Cys Val Asn
180 185 190Met Glu Gln Lys Val Leu
Ile Asn Tyr Tyr Pro Thr Cys Pro Glu Pro 195 200
205Asp Leu Thr Leu Gly Val Arg Arg His Thr Asp Pro Gly Thr
Ile Thr 210 215 220Ile Leu Leu Gln Asp
Met Val Gly Gly Leu Gln Ala Thr Arg Asp Gly225 230
235 240Gly Lys Thr Trp Ile Thr Val Gln Pro Val
Glu Gly Ala Phe Val Val 245 250
255Asn Leu Gly Asp His Gly His Tyr Leu Ser Asn Gly Arg Phe Lys Asn
260 265 270Ala Asp His Gln Ala
Val Val Asn Ser Thr Ser Ser Arg Leu Ser Ile 275
280 285Ala Thr Phe Gln Asn Pro Ala Gln Asn Ala Ile Val
Tyr Pro Leu Arg 290 295 300Ile Arg Glu
Gly Glu Lys Ala Val Leu Asp Glu Ala Ile Thr Tyr Ala305
310 315 320Glu Met Tyr Lys Lys Asn Met
Thr Lys His Ile Glu Val Ala Thr Leu 325
330 335Lys Lys Leu Ala Lys Glu Lys Arg Leu Gln Glu Glu
Lys Ala Lys Leu 340 345 350Glu
Thr Glu Ser Lys Ser Ala Asp Gly Ile Ser Ala 355
36066355PRTApium graveolens 66Met Ala Pro Ser Thr Ile Thr Ala Leu Ser Gln
Glu Lys Thr Leu Asn1 5 10
15Leu Asp Phe Val Arg Asp Glu Asp Glu Arg Pro Lys Val Ala Tyr Asn
20 25 30Gln Phe Ser Asn Glu Val Pro
Ile Ile Ser Leu Ala Gly Leu Asp Asp 35 40
45Asp Ser Asn Gly Arg Arg Ala Glu Ile Cys Arg Lys Ile Val Glu
Ala 50 55 60Phe Glu Glu Trp Gly Ile
Phe Gln Val Val Asp His Gly Ile Asp Ser65 70
75 80Gly Leu Ile Ser Glu Met Ser Arg Leu Ser Arg
Glu Phe Phe Ala Leu 85 90
95Pro Ala Glu Glu Lys Leu Val Tyr Asp Thr Thr Gly Glu Lys Lys Gly
100 105 110Gly Phe Thr Ile Ser Thr
His Leu Gln Gly Asp Asp Val Arg Asp Trp 115 120
125Arg Glu Phe Val Thr Tyr Phe Ser Tyr Pro Ile Ser Ala Arg
Asp Tyr 130 135 140Ser Arg Trp Pro Lys
Lys Pro Glu Gly Trp Arg Ser Thr Thr Glu Val145 150
155 160Tyr Ser Glu Lys Leu Met Val Leu Gly Ala
Lys Leu Leu Glu Val Leu 165 170
175Ser Glu Ala Met Gly Leu Glu Lys Glu Ala Leu Thr Lys Ala Cys Val
180 185 190Glu Met Glu Gln Lys
Val Leu Ile Asn Tyr Tyr Pro Thr Cys Pro Glu 195
200 205Pro Asp Leu Thr Leu Gly Val Arg Arg His Thr Asp
Pro Gly Thr Ile 210 215 220Thr Ile Leu
Leu Gln Asp Met Val Gly Gly Leu Gln Ala Thr Arg Asp225
230 235 240Gly Gly Lys Thr Trp Ile Thr
Val Gln Pro Val Glu Gly Ala Phe Val 245
250 255Val Asn Leu Gly Asp His Gly His Tyr Leu Ser Asn
Gly Arg Phe Arg 260 265 270Asn
Ala Asp His Gln Ala Val Val Asn Ser Thr Ser Thr Arg Leu Ser 275
280 285Ile Ala Thr Phe Gln Asn Pro Ala Gln
Asn Ala Ile Val Tyr Pro Leu 290 295
300Lys Ile Arg Glu Gly Glu Lys Ala Ile Leu Asp Glu Ala Ile Thr Tyr305
310 315 320Ala Glu Met Tyr
Lys Lys Asn Met Thr Lys His Ile Ala Val Ala Thr 325
330 335Gln Lys Lys Leu Ala Lys Glu Lys Arg Leu
Gln Asp Glu Lys Ala Lys 340 345
350Met Lys Ile 35567365PRTConium maculatum 67Met Ala Pro Thr Thr
Ile Thr Ala Leu Ala Gln Glu Lys Thr Leu Asn1 5
10 15Leu Ala Phe Val Arg Asp Glu Asp Glu Arg Pro
Lys Val Ala Tyr Asn 20 25
30Glu Phe Ser Asn Glu Ile Pro Ile Ile Ser Leu Ala Gly Leu Glu Asn
35 40 45Asp Ser Asp Gly Arg Arg Pro Glu
Ile Cys Arg Lys Ile Val Glu Ala 50 55
60Phe Glu Asn Trp Gly Ile Phe Gln Val Ala Asp His Gly Ile Asp Ser65
70 75 80Ala Leu Ile Ser Glu
Met Ser Arg Leu Ser Arg Glu Phe Phe Ala Leu 85
90 95Pro Ala Glu Glu Lys Leu Arg Tyr Asp Thr Thr
Gly Gly Lys Arg Gly 100 105
110Gly Phe Thr Ile Ser Thr His Leu Gln Gly Asp Asp Val Arg Asp Trp
115 120 125Arg Glu Phe Val Thr Tyr Phe
Ser Tyr Pro Ile Asp Ala Arg Asp Cys 130 135
140Ser Arg Trp Pro Asp Lys Pro Glu Gly Trp Arg Ser Ile Thr Glu
Val145 150 155 160Tyr Ser
Glu Arg Leu Met Val Leu Gly Ala Lys Leu Leu Glu Val Leu
165 170 175Ser Glu Ala Met Gly Leu Glu
Lys Glu Ala Leu Thr Lys Ala Cys Val 180 185
190Asn Met Glu Gln Lys Val Leu Ile Asn Tyr Tyr Pro Thr Cys
Pro Glu 195 200 205Pro Asp Leu Thr
Leu Gly Val Arg Arg His Thr Asp Pro Gly Thr Ile 210
215 220Thr Val Leu Leu Gln Asp Met Val Gly Gly Leu Gln
Ala Thr Arg Asp225 230 235
240Gly Gly Lys Thr Trp Ile Thr Val Gln Pro Val Glu Gly Ala Phe Val
245 250 255Val Asn Leu Gly Asp
His Gly His Tyr Leu Ser Asn Gly Arg Phe Lys 260
265 270Asn Ala Asp His Gln Ala Val Val Asn Ser Ser Ser
Ser Arg Leu Ser 275 280 285Ile Ala
Thr Phe Gln Asn Pro Ala Gln Asn Ala Ile Val Tyr Pro Leu 290
295 300Lys Ile Arg Glu Gly Glu Lys Ala Ile Leu Asp
Glu Ala Ile Thr Tyr305 310 315
320Ala Glu Met Tyr Lys Lys Asn Met Thr Lys His Ile Glu Val Ala Thr
325 330 335Leu Lys Lys Leu
Ala Lys Glu Lys Arg Leu Gln Asp Glu Lys Ala Asn 340
345 350Met Glu Lys Lys Ser Lys Ser Ala His Gly Ile
Ser Ala 355 360 36568357PRTDaucus
carota 68Met Ala Pro Thr Thr Ile Thr Ala Leu Ala Lys Glu Lys Thr Leu Asn1
5 10 15Ser Asp Phe Val
Arg Asp Glu Asp Glu Arg Pro Lys Val Ala Tyr Asn 20
25 30Gln Phe Ser Thr Glu Ile Pro Ile Ile Ser Leu
Ala Gly Ile Asp Asp 35 40 45Asp
Ser Asn Gly Arg Arg Pro Glu Val Cys Arg Lys Ile Val Glu Ala 50
55 60Phe Glu Asp Trp Gly Ile Phe Gln Val Val
Asp His Gly Ile Asp Ser65 70 75
80Gly Leu Ile Ala Glu Met Ser Arg Leu Ser Arg Glu Phe Phe Ala
Leu 85 90 95Pro Ala Glu
Glu Lys Leu Arg Tyr Asp Thr Thr Gly Gly Lys Arg Gly 100
105 110Gly Phe Thr Ile Ser Thr His Leu Gln Gly
Asp Asp Val Lys Asp Trp 115 120
125Arg Glu Phe Val Val Tyr Phe Ser Tyr Pro Val Asp Ala Arg Asp Tyr 130
135 140Ser Arg Cys Pro Asp Lys Pro Glu
Gly Trp Arg Ser Val Thr Glu Val145 150
155 160Tyr Ser Glu Lys Leu Met Ala Leu Gly Ala Lys Leu
Leu Glu Val Leu 165 170
175Ser Glu Ala Met Gly Leu Glu Lys Glu Ala Leu Thr Glu Ala Cys Val
180 185 190Asn Met Glu Gln Lys Val
Leu Ile Asn Tyr Tyr Pro Thr Cys Pro Gln 195 200
205Pro Asp Leu Thr Leu Gly Val Arg Arg His Thr Asp Pro Gly
Thr Ile 210 215 220Thr Ile Leu Leu Gln
Asp Met Val Gly Gly Leu Gln Ala Thr Arg Asp225 230
235 240Gly Gly Lys Thr Trp Ile Thr Val Gln Pro
Val Glu Gly Ala Phe Val 245 250
255Val Asn Leu Gly Asp His Gly His Tyr Leu Ser Asn Gly Arg Phe Lys
260 265 270Asn Ala Asp His Gln
Ala Val Val Asn Ser Thr Ser Ser Arg Leu Ser 275
280 285Ile Ala Thr Phe Gln Asn Pro Ala Gln Asn Ala Ile
Val Tyr Pro Leu 290 295 300Lys Ile Arg
Glu Gly Glu Lys Pro Ile Leu Glu Glu Ala Met Thr Tyr305
310 315 320Ala Glu Met Tyr Lys Lys Asn
Met Thr Lys His Ile Glu Val Ala Thr 325
330 335Gln Lys Lys Leu Ala Lys Glu Lys Arg Leu Gln Asn
Glu Lys Ala Lys 340 345 350Leu
Glu Thr Lys Phe 355691884DNAMedicago truncatula 69ctctagagat
ggtttcatta gtgtaacgta tacactataa aatgctcaag gaggtaatcc 60aaatcccaca
atcatttctc aactattctc atgagttttc atttccaata taaagacaat 120aaccaagatg
atttctcagc caatcttatt agctttgatt ctattcctcc tcttccttct 180ccaactcttt
ttgtttaaga gaaacaacag agcaaaggag cacttacctt accctccaag 240tccactagca
ataccaataa ttggtcatct tcatctcctc aaacccctcg ttcatcaagc 300ctttcgcgac
ctctctgatc gatatggacc ccttatatcc cttcgacttg gttctgttcc 360atttatcgtt
gttagttccc catcactcgc aaaagagttt ctcaaaacaa acgagcttgt 420ttattcttcc
cgtaaaatga acattgccat caacacagtt gtctacgatg atgctacttt 480tgcttttgcc
ccttatgggg catattggaa attcatcaaa aagcttagta cctttgagct 540cttaggcaac
cggactattg gacaattctt accaattcga actcgagaac tcaacgagtt 600cattcaaact
ttggaaaata aatccaaggt tgaagaaagc gtgaacctca ctcaagcttt 660gttgaagctt
tccaacaaca taatatcacg gatgatgttg agcattgaga gctcaggaac 720ggatagtcag
gctgaacagg cgaggacgtt ggttcgagat gtgacccaaa ttttcgggga 780atttaacatt
tcggatttta taggattttg caagaacttg gactttcaag gtctcaaaaa 840gagggcattg
gatatacata agaggtatga tgcttttctg gagaagttaa tttgtgatcg 900tgaggaatca
cgaaggaaag ccaaggttga gggtggttgt gaggatagag acgaaaaagt 960gaaggatttt
cttgatatgt tgcttgatgt tttcgaggcc aaagaatgtg aggtcgactt 1020tactaggaac
catatcaaat cgttgatctt ggattacttc acagcagcta cagatacaac 1080tgccatttca
ttggaatgga caatagcaga actgttcaac aatccaatag tactgaagaa 1140agcacaagaa
gaggtggaga gaataatagg gaaggaaaga ctagtatgtg aagcagacat 1200tccaaacctt
ccttatatac aagccattat aaaagaaaca ttgaggcttc acccaccact 1260accgatgatt
gctaggaaag gaacaaaaga ttgtgtggtc gatgggaaaa tgatcaaaaa 1320aggctcaata
gtttgtgtga acatttgggc tattggaagg gactcaaaga cttggaaaaa 1380cccactagag
tttaggcctg aaaggttttt agaatctgga aaagagagtg agatagatat 1440caaagggcat
gactttgagt tgttgccatt tggttctgga aggagaggtt gcccggggat 1500gcctttggcc
atgcgcgaat tgccgactgt gattggagct ttagtacaat gctttgagtg 1560gaagatgctt
gactctgaag gtaaattatt agatcaaggc aaaacaatcg atatggatga 1620acggcctgga
ttgactgctc ctagagccaa tgatcttttt tgcattccag ttgcaagatt 1680gaatttgatt
cctttggttc aattgtagtg taaagcaatt gcgataaggt attatgaaaa 1740tttctttcaa
attgtttttc tgggccaagg gcctaatata agataacttt atttattgta 1800tgtttatttt
aatttaatac tcactccgtc ccaaattgta cgacgttttg agcatttaac 1860atatattaag
aaatataatt aata
1884701569DNALotus japonicus 70atgttggtgg aacttgcatt agcattactg
gccatagctc tgttcttaca tttacgtccc 60acaccaactg ccaaatccaa ggcccttcgt
caccttccaa accctccaag tcccaagcct 120cgtcttccat tcgttggaca ccttcacctt
ttggaccaac cacttctcca ccactccctc 180atcaaactcg gcgagcgata tgggcctttg
tactctctct attttggatc catgcccacc 240gttgttgcct caacccctga actcttcaaa
ctcttccttc agacccatga ggcctcttcc 300ttcaacacaa ggttccaaac ctctgccatt
aggcgcctca cctatgacaa ctctgttgcc 360atggtccctt ttgctcctta ttggaagttc
atcaggaaga tcatcatgaa cgacctcctc 420aacgccacca ccgtcaacaa gttgaggcct
ttgaggagcc aagagattcg taaggttctg 480aaggctatgg cacatagtgc ggaatctcaa
caacccctta atgtcactga ggagcttctc 540aagtggacaa acaacaccat ctctcgaatg
atgttggggg aggctgaaga ggtcagagat 600attgctcgtg aggtgcttaa gatcttcggg
gaatatagtc tcacagactt catttggcca 660ttgaagaagc tcaaggttgg acagtatgaa
aagagaatag atgagatatt taacaaattc 720gaccccgtca ttgagaaggt catcaagaaa
cgccaagaga taataaagag gagaaaagag 780agagatggag aacttgagga gggtgagcaa
agtgtagttt tcctcgatac tttgcttgaa 840tttgctgaag atgagaccat ggaaatcaaa
atcacaaagg aacaaattaa gggtcttgta 900gtggatttct tctctgcagg gacagattcg
acagctgtgg caacagactg ggctctatca 960gagctcatca acaacccgag ggtgctgaag
aaagcaagag aggaagttga aagtgttgtt 1020ggaaaagata gacttgttga tgaagcagat
attcaaaatc ttccatacat tagagccatc 1080gtgaaggaga cattccgcat gcatcctcca
ctccctgttg ttaagagaaa gtgtgtacaa 1140gaatgtgagc tcaacggtta cgtgatccca
gagggagcac tgatactctt caacgtgtgg 1200gccgtgcaaa gagatcccaa atactgggag
ggcccatccg aattccgtcc tgagaggttt 1260ttaactgctg aagggggagc aacctccatt
gatcttagag gccagaattt cgagcttctc 1320ccatttgggt ctggaaggag gatgtgtcca
ggtgtgaatt tggcaactgc aggaatggcc 1380acattgcttg catctgttat ccaatgcttt
gatttacagg ttgtgggtca aaagggcaaa 1440ttattgaaag gaagtgatgc caaagttagc
atggaagaga gtcctggtct cactgttcca 1500agggcacata atctgatgtg cgttccactt
gcaagaacca acgtcacatc tgaactcctt 1560tcctcataa
1569711919DNAGlycine max 71gatggtcatt
ttcctaatta atcaaaccaa ccaccaacaa gatgatttct gagtccctct 60tggtagtatt
cctcattgtc ttcatttctg cttcccttct caaactcttg tttgtgagag 120aaaacaaacc
aaaggcccac ttgaagaacc caccaagccc acctgcaata cccataatag 180gtcatctcca
cctccttaaa cccctcatcc atcactcatt ccgagacctc tctctccgat 240atgggcccct
cctaagcctt cgaattggtt ccgttaagtt catagttgca agcaccccat 300cactcgccca
agagtttctc aagaccaacg agctcacata ctcttcccgc aaaatgaaca 360tggccatcaa
catggtcact taccacaacg ccacgtttgc gtttgcacct tacgacactt 420actggaagtt
catgaaaaaa ctaagcacca ctgagctctt gggaaacaaa accctcggac 480acttcctacc
tattcggacg agggaagttc atgacatcat tcaatttttg ttccataaat 540caaaggccca
agagagcgtg aacctcaccg aagcgctttt gagtctttcc aacaacgtaa 600tatcgcagat
gatgttgagc attaagagct ccggtacaga cagccaggca gagcaggcac 660ggactttggt
tcgtgaagtg acgcagattt tcggggagtt taacgtgtcg gatttcttag 720gtttctgcaa
aaacttggac ttgcaaggtt tcaggaagag ggcattggac atacataaga 780ggtacgatgc
tctgctagag aagatcatct ctgatcgtga ggagttgaga aggaaatcaa 840aggtagacgg
ctgcgaagat ggagatgatg agaaagtgaa ggattttctt gacattttgt 900tggatgttgc
tgagcagaaa gaatgcgagg tccagttaac tcggaaccat gtcaaatcat 960tgatcttgga
ttattttacg gcagctactg acacaactgc catatcagtg gaatggacaa 1020tagcagaact
atttaacaat ccaaaggtgt taaagaaagc gcaagaggaa gttgatagag 1080tcaccggaaa
cacgcaatta gtgtgtgaag cagacattcc aaaccttcct tatattcatg 1140ccatcataaa
agaaacaatg agacttcacc cgccaatacc aatgattatg aggaaaggaa 1200tcgaagactg
cgtggttaat ggaaacatga ttccaaaagg ttcaatagtt tgtgtaaaca 1260tttgggctat
gggaagggac ccaaatatct ggaagaaccc tttagaattc aagccagaga 1320ggtttctaga
aggtgaagga agtgctatag ataccaaagg gcatcatttt gagttgttgc 1380catttggcag
tggaaggaga gggtgtcctg gaatgccttt ggccatgcgt gaattgccca 1440ccatcattgg
agcactcata caatgctttg agtggaagat gttaggttca caaggtgaaa 1500tcttagatca
tggaagaagc ttaatcagta tggatgaacg gccaggattg actgccccaa 1560gggccaatga
tcttattggc attcctgttg cacgattgaa tcccactcct tttcgtcaaa 1620tgtagtttat
tgtcaaggga atttgtgaca acaaagagtt atacgtgcca actaataagt 1680atttccatga
aaaaatagag tcagtattat ttccatgata aactcatgca gtttgatatt 1740atggtaggtg
tatgagttga aaaatgttct ttcaaatcgt atttgtggtg taatatatct 1800aagatattat
gattatgatg agtgtaggag ctggaaaatg ttccttctat gtattttttt 1860aattcaaata
aagacgaaat tgaataaaaa ttatcttgtt gcaaaaaaaa aaaaaaaaa
1919721770DNAPerilla frutescens crispa 72tgtcgacgga gcaagtggaa atggcactgt
acgccgccct cttcctcctg tccgccgccg 60tggtccgctc cgttctggat cgaaaacgcg
ggcggccgcc ctaccctccc gggccgttcc 120ctcttcccat catcggccac ttacacctcc
tcgggccgag actccaccaa accttccacg 180atctgtccca acggtacggg cccttaatgc
agctccgcct cgggtccatc cgctgcgtca 240ttgctgcctc gccggagctc gccaaggaat
gcctcaagac acacgagctc gtcttctcct 300cccgcaaaca ctccaccgcc attgatatcg
tcacctacga ttcatccttc gctttctctc 360cctacgggcc ttactggaaa ttcatcaaga
aattatgcac ctacgagctg ctcggggccc 420gaaatctcgc ccactttcag cccatcagga
ctctcgaagt caagtctttc ctccaaattc 480ttatgcgcaa gggtgaatcg ggggagagct
tcaacgtgac tgaggagctc gtgaagctga 540cgagcaacgt catatcgcat atgatgctga
gcatacggtg ttcagagacg gagtcggagg 600cggaggcggc gaggacggtg attcgggagg
tcacgcagat atttggggag ttcgacgtct 660ccgacatcat atggctttgt aagaacttcg
atttccaagg tataaggaag cggtccgagg 720atatccagag gagatatgat gctctgctgg
agaagatcat caccgacaga gagaagcaga 780ggcggaccca cggcggcggt ggcggcggcg
gggaagccaa ggattttctt gacatgttcc 840tcgacataat ggagagcggg aaagccgaag
ttaaattcac gagggagcat ctcaaagctt 900tgattctgga tttcttcacc gccggcaccg
acacgacggc gatcgtgtgt gaatgggcga 960tagcagaagt gatcaacaat ccaaatgtgt
tgaagaaagc tcaagaagag attgccaaca 1020tcgtcggatt cgacagaatt ctgcaagaat
ccgacgcccc aaatctgccc taccttcaag 1080ccctcatcaa agaaacattc cggctccacc
ctccaatccc aatgctggcg aggaaatcga 1140tctccgactg cgtcatcgac ggctacatga
ttccggccaa cacgctgctc ttcgtcaacc 1200tctggtccat ggggcggaac cctaaaatct
gggactaccc gacggcgttc cagccggaga 1260ggtttctgga gaaggaaaag gccgccatcg
atgttaaagg gcagcatttt gagctgctac 1320cgttcggaac gggcaggaga ggctgcccag
ggatgctttt agccattcag gaggtggtca 1380tcataattgg gacgatgatt caatgcttcg
attggaagct gcccgacggc tccggccatg 1440ttgatatggc agaacggcca gggctcacgg
caccgcgaga gaccgatttg ttttgccgtg 1500tggtgccgcg agttgatccg ttggttgttt
ccacccagtg atcaccccct ttaaatttat 1560taatgatata tttttatttt gagaaaaaat
aaaaatgcta attgttttgt ttcatgatgt 1620aattgttaat tagtttctat tgtgcgctgt
cgcgtgtcgc gtggcttaag ataagattgt 1680atcattggta cctaggatgt attttcattt
tcaataaatt attttgtgct gtgtatatta 1740aaaaaaaaaa agaaaaaaaa aaaaaaaaaa
1770731697DNAGerbera x hybrida
73atgtcctaac acaacccaac accatgaata cactccaact catcttcctc ctcttcttct
60tcccaacctt actcttcctc tactgtctcc cctacaaaag aaaccaaaac caccgccgtc
120ttccgccgtc cccgccatct tttccgatca tcggccacct ccaccatctc ggcccactca
180tccaccaatc cttccacgct ctctccactc gctacggctc tctaatccac ctccgtctcg
240gctcagtccc atgcgtcgtc gtttcaaccc cagacctcgc caaagacttc ctcaaaacaa
300acgaactcgc gttctcatca agaaaacact ccttagccat cgaccacatc acctatggcg
360tagcatttgc attcgcacca tatggaactt actggaagtt catcaagaaa ctcttcacag
420tggagctttt gggcacccag aatctcagcc atttcctacc cattcgaacc catgaaattc
480gcgagcttct tcgaacgtta atggtgaaat ctagggcaaa ggagagagta aacttgacgg
540aagagttgtt gaagttgacc aacaatgtga taagtcaaat gatgatgagc attaggtgtt
600cggggacgaa tagtgaggct gatgaagcaa agaatcttgt tcgggaagtg accaaaattt
660ttggacagtt taatgtttca gatttcatat ggttttgtaa gaacatagat ttgcaagggt
720ttaagaagag gtacgagggt acacatagaa gatatgatgc tttgcttgaa aggattataa
780tggggaggga agaaaataga agaagaggga agataaaaga tggtgaaggg aaagattttc
840ttgatatgtt acttgatgtt ttggaggatg gtaaggcaga gattaaaatt actagagacc
900acatcaaagc cttgattttg gactttctta cagctgggac ggataccacc gcgattgcaa
960ttgaatgggc actagtcgaa ttgataaaca acccgaacgc tctcgagaaa gcaagacaag
1020agattgatca ggtcatcggt gatgagaggc tagttcaaga atcagacacg cctaacctcc
1080cttatatcca agctatcata aaggaagccc tacgacttca cccaccaatc ccaatgttga
1140ttcgcaagtc aacagaaaat gtaattgttc aggggtatga catcccagcc ggcaccttgt
1200tgtttgtcaa tatttggtcc attggaagaa accctcaatg ttgggaaacc cctttagagt
1260tcaagcctca tcggtttttg gatggtggtg accttaaaag ctctttagat attaaaggcc
1320acaattttca actattgcct tttgggacgg ggaggagagg gtgtcctggt gttaatttgg
1380ccatgagaga actctcagtg gtgattgcaa acctcataca atgctttgat tgggatgttg
1440taggtgaacg actattgaat acagatgaac gtgctggatt gacggctcca agggcggtag
1500attttgtgtg tgttccattg gaacgaggaa acactttgaa gattcttggt tcaaactaaa
1560tttatttgtt gttgctttct tgatggcagt cggtctatct ataggtcata ataccttggg
1620actcacgtgt ttgaatctta atacgctttt agtacattgc ttatcgtata tcttgggtat
1680gcatgaaaaa aaaaaaa
1697741836DNAGentiana triflora 74acctcacagt atatcataat gatgcttctt
gacttttttt actctgcttc cattttcgtc 60ctctcaatcc tcctcttccg tgcaatctac
accaccaaaa accgccgtct ccgcctcccg 120ccgagcccat tcgggttacc aatcatcggc
catctccacc tcctcggccc caaaatccac 180cattctttcc acaacctcta caaacgctac
ggcccaatat tccatcttcg tctcggatct 240aatcgttgta ttgtagtctc cacccctgaa
ctagctaaag aattcctcaa aacccatgaa 300ctcgatttcg cttaccggaa aaacagctcc
gccattagtc ttttaactta ccatgtttct 360ttcgcttttg caccttatgg tccctactgg
aaatacatca agaaaatcac tacttaccag 420ctactgggta accggaatct cacccatttc
gaaccaattc gaagactgga aacgaatcgg 480gttctttacg atttgatggt gagttctaaa
catggcaaat cagtgaattt aacagaggag 540atgataaaat tgacgagcaa catcatttca
cagatgatgt taagtatccg atgttcagat 600acagagtccg gagctacgaa tgtacggaac
gttatccggg atgtgactga actgttcgga 660gagttcgatg tttcggatat aatatggttt
tgtaagaaca ctgatttgca agggattaaa 720aagagggcta acggtataca tgaaaggtac
gatgctttgt tggagaagat catttcggac 780agagaaagaa ccagaattgt tgagaagaag
aacagcggtg ctggcggtgg aagcggcgac 840ggtgagagga atgattttct tgatattctg
atggatgcaa tggaagatga cacgtcggaa 900gtcaagttat ccagaaatca tatcaaagct
ataatcttgg acttcctaac agctgcaaca 960gatacaacag ccatatcact agaatgggca
ttgtctgagc tcattaacaa tccaagggtc 1020ctaaagaaag cacaagaaga aatcaacaat
gtggttggaa atcaacggct agtaaaagag 1080ttagacactc ctaatttccc ctacattaag
gcaataatta aagaaacatt tcgtcttcac 1140ccacccatcc cgatggtcat tcgaaaatca
gctaacgaca tccaagtggc tggatatgac 1200gtaccaaaaa atacgatgct tttcgtgaac
atttggtcta ttggaaggaa tcccagttac 1260tgggagaagg cgtcggagtt ttccccggag
agatttttgg ctgatacaga tggtggcggt 1320ttgagtcaca tggatataaa cgggcagtat
ttcgagctta tgccgtttgg tactggaagg 1380agaggttgtc ctgggatgcc gttagccatg
caagaattac caactgttct ttcgcttatg 1440atacaatgtt tcgattatat tccgcttgat
ttcaagggag aaaaggctga aagggttatg 1500gacatgagtg aacggccagg actgactgct
ccgagggcga atgagttgat gtgtttgctt 1560aaaccgcgaa ttgatcttcc aaatctcctt
ggtaatgtaa agggtgagta gatgacattt 1620gtgaggatgt gtttttaact agtcgataat
tatttatcga ctaataatgt gatttaagag 1680aagtatgggg accaactttt agttgtttca
atttgtccaa gggtgtgaat gtaataagat 1740ataagttgca tgttcatctt tcttgtatcc
gagttatttt gatcttaatg aattctctat 1800ttaattataa aaaaaaaaaa aaaaaaaaaa
aaaaaa 1836751706DNAAntirrhinum majus
75gctttacaca cacacacaca cacacacaca caaacaaaaa tgtctacact tgtctacagc
60acactcttca tcctctcaac cctcctcctc accctcctaa cccgcacccg ccgcaagacc
120cgcccgcccg gcccattagc cctcccctta ataggccact tacacctcct cggcccaaag
180ctccaccaca ccttccacca attctcccaa cgctacggcc cgctcatcca gctctacctc
240ggctccgtcc catgcgtcgt cgcttccacg cccgaactcg cccgcgaatt cctcaagacg
300cacgaactcg acttctcgtc ccgcaagcac tccaccgcca tcgacatcgt cacgtacgac
360tcctcgttcg ccttcgcgcc gtacgggccg tactggaaat tcatcaagaa attatgtact
420tacgagctac tgggtgcccg gaacttgagc catttccagc ccattagagc tttggaggtc
480aacagtttct tgagaatttt gtacgagaaa acagagcaga aacagagtgt taatgtgact
540gaggagcttg tgaagctgac gagtaatgtg atcagtaaca tgatgttggg gatcaggtgt
600tcggggacgg aaggggaggc ggaggtggcg aggacggtga taagggaggt gacgcagata
660tttggggagt ttgatgtgtc ggagattgtt tggttttgta agaatttgga tctgcagggg
720attaggaaga ggtcggagga tattaggagg aggtatgatg ctttgttgga gaagattatt
780agtgataggg agaggttgag gttgaggggg ggtggtggtg gagggggtgg agaggtgaag
840gattttttgg atatgttgtt ggatgtgatg gagagtgaga aatcggaggt ggagtttacg
900agggagcatc tcaaagcttt gattctggat ttcttcactg ccggtacaga cacaacagca
960atcacaacag aatgggcaat agcagaactc attagcaatc caaatgtact caaaaaagct
1020caagaagaga tggacaaagt cataggatca caaaggttgt tgcaagaatc cgacgcccct
1080aacttgcctt acctcaacgc gatcataaaa gaaacgttcc gtctccaccc tccaatcccc
1140atgctcacta gaaaatcaat ttctgacgtt gtggtcaacg ggtacacgat ccctgccaaa
1200acgctattgt ttgtcaacct ttggtccatg ggaaggaatc ctaactactg ggaaaatccg
1260atggagttcc gacccgagag gtttctcgag aaagggaccg ggtcgataga cgttaaaggg
1320cagcatttcg agttgctgcc gtttggcacg ggcaggcggg gctgcccggg gatgttgtta
1380ggcatgcagg agttgtttag tattatcggg gctatggtgc agtgcttcga ttggaaactg
1440cccgatggtg tgaagtcggt cgacatgacc gagcggcccg ggttgacggc tccacgtgcc
1500aatgatttgg tgtgccaatt ggtgccacgg attgacccgg tcgttgtctc cggaccgtga
1560accttaaggt agtatcgata atctgtttaa ttaaattgtt atttgttgtg aggatttgat
1620ttttgttatg tatgattatg cgtggattaa gataagcctg caaggacaaa ttccctttct
1680ttgattgatg tcaatgagtt tgtgtc
1706761846DNATheobroma cacao 76aatcctgtgg gttgagaaaa tttgtcacca
aaactctctc tttcagtctg agttgaggta 60gccatgttgc ttcaactcct gtcgtattcc
accctctaca ttgcttcgtt ttttcttgtg 120aaaacaatat taatctccat caacaaccgt
cccaagcttc ccccaggccc cattgcctta 180ccagtcatcg gccacctcca cctccttggc
cccttcattc atcaaacttt ccacaagttc 240tcctcccgct atggtccctt aatgtatctc
cgtcttggct ctattgggtg cgtcgtggcc 300tctaacccag agcttgcaaa agagcttctc
aaaacttacg agctggcatt cgccgcccgc 360atgcacaccg ctgccattac ccaccttaca
tacgactctt cctttgcctt tgcaccctac 420ggaccttact ggaaattcat aaaaaagttt
agcacctatg agctcctagg taaccgaact 480cttagccagt ttcttcccgt tcggaccaag
gaattgcact gtttcattaa gtttcttctt 540gacaggtcta aagcaggcga aagcgtgaat
gtaactcaag agctgttgaa attaaccaac 600aacacaatat cacagatgat gctgagcatg
aggtgctcgg ggagtggaaa ccccgccgat 660ggggttcgag ctctagtgag ggaggtgact
gagatcttcg gagagttcaa catctcagac 720agtatatggt tttgcaaaaa ctgggatctg
cagggattcc gaaggagatt tgaggacata 780catagaaggt atgacgcttt gttggagaga
atcataagag atcgcgagga agtaagaaaa 840agcaagaaag agtgtgacca acgagacaat
ggaaatgagg tcaaggattt tctggacatg 900atgcttgatg tattggaaaa tgataactcg
gagatccaat taaccagaaa tcacattaag 960gccttggttt tggatttctt gacagccggt
acggatacaa cagcaattgt acttgaatgg 1020gcactggcag agctcatcaa caacccggaa
gtgctaaaac tagctcaaaa agagattgat 1080caagttgtgg gaacaagcag gttggtagaa
gaatcggaca gtcctcgtct ccaatacatc 1140caagccatca ttaaggaaac ttttcggctc
cacccaccgg tcccgatgat cagcagaaaa 1200tcaatccaat catgcaaaat taagggatac
accatccctg ccgactgttt ggtgttcgta 1260aacatttggg ctataggaag ggatcccacg
gtctgggcag atccattgag gtttcagcct 1320gagaggttcc tgaaatccta tgagggagat
catagttcag ggcctataga tgttagaggc 1380ctccattatc agctgttgcc tttcggtaca
gggaggaggg gctgccctgg tgcttcttta 1440gcaatgcagg agctgcccac cactctggca
gccatgattc agtgctttga ctggaagcct 1500gcggctactt caaagactgg agatggtgtt
gacatgtctg aacggcctgg acttacggct 1560cccagggcaa aggatctgga gtgtgttcca
gttgcacgct tcacacccag tctttgcaac 1620ttaagcaggt gaccacttac gtatgatgtg
atgagcaatc gagcatcagt ctcccccgtt 1680ctcccgattt cctaggctct gtgtctttag
cgtgttacga gtgatgtgac tgtgatggca 1740tgcatttagg tagaaataaa tgcaattata
ttgcatattt gcttgccaaa aacaaaataa 1800aaaaaatgta ttaatagttt atgaattttt
ctgtttggtt tatttc 1846771907DNACamellia sinensis
77ttttcctttc ctagtttcta tttaaagcaa catataattt ctcgaatgca taatttctct
60tgaaatcaag ccaagatgtt tgacttaatc tccattgcca ccttattctt tgttattatc
120tccaccacca tcctcctcct ctccataaac cacttcaaaa aaccaccaca tctccgccgc
180cgtctcagcc tcccaccaac ccccttcgcc ctgccaatca tcggccacct ccacctcctc
240ggccccatca tccaccgctc cttccatgac ctctcctccc gctacggccc cttgtttcac
300ctccgcctcg gctcagtccc atgcttcgtg gtctccactc cagagctcgc aaaagagttc
360ctcttgacac atgagctcaa gttctcatct cgcagggatt ccatcgccat ccaacgcctc
420acctatgact ctgcattcgc cttcgcccct tacggtccct actggaaatt cctaaagaag
480ctttgtactt gtgatcttct cggcgctcgt agtatcaatc attttcttcc cacacggacc
540cgtgaactac actgctttgt tcgacttctc atcgacaagg ccgtggcttg tgaacctgtc
600aacatcacta aagagctttc aacgctcgcc aacaatatca tctctcaaat gatgattggt
660gtaaggtgtt cggggacgac aggagaggct gaggaggcta caactcttgc ccgcgaggtg
720acgaagatat tcggagagtt taatgtgtcg gattttatgt gggttatcag gaactttgat
780ttgcaggggt ttaggaagag agttgaggat atatacacaa ggtatgatgc gttgctggaa
840aggattatca caaacaggga agaagtcaga gaaaagaacg tacaagaaag aaaattgggt
900gttggagaag gtcatcacgt caaggatttt cttgatctat tgcttgatgt tttggaagag
960gaccattcgg agattaactt cagtagagat aacattaagg gcttgatttt ggatttcttc
1020accgcaggaa cagatacatc atctattgca attgaatggg cattagcaga gctgatcaac
1080aatccaagag tgctccaaaa agcacaagag gagattgata atgtggttgg gaaacatcgg
1140ttagtaagcg aatcacacgg tccaaatctt ccatacatcc aagccatcat aagggaagca
1200cttcggcttc accctccagt ccccttgatc acaagaaaat caatagagga ctgcatgatc
1260caaggataca acatcccagc caactccatg ctatttgtga atgtttggtc tcttgctaga
1320aatcccaagt attgggatag cccactggac ttcttgcctg agcgattctt aaggcccgaa
1380aagggtggcc cagtgggccc aacagatgtt aagggccaac atttccagct attacccttt
1440ggtactggga ggagaggctg ccctggtact tctttggcca tgcaagagct gcctgctatg
1500ctagcagcaa tgattcagtg tttcgagtgg aaggttgtga atcagagtgg ggatgtgatg
1560aacggtgatg gagcgcttga tatgactgaa caacccggga tgacagctcc gagggcccat
1620gatcttgtgt gcatgccgat accacgaatc gatcaacttt atgcccttct tgatccatag
1680tttatgctaa ggcaaggatt ctcagtagtt aaaatttttg tgcccaataa atttctaatc
1740gcatgatttt gtcgtcaata aaagttgtga aatacaatca tacgattaag aaggcaatat
1800gaataaggga taaagatttt ggaatagagg atctgtacct ttgtgctatg atttgcccaa
1860tattgctctc tttaacctat ttttagaaaa aaaaaaaaaa aaaaaaa
1907781530DNAPlectranthus barbatus 78atggaccatg tcgaagccgc tctcttcgcc
gccatcttcc tcctctccgc cgccctcctc 60aaccaccttc tcaccggaaa acgccgccag
aacgcttacc ctcccggccc gttccctctt 120cccatcatcg gccacttaca ccttctcggg
ccgagactcc accacacctt ccacgatctg 180acccaacggt atgggccctt gatgcaggtc
cgcctcggct ccatccgctg tgtcatcgcc 240gccacgccgg agctggcaaa ggaattcctc
aagacgagcg agctcgtctt ctccgctcgg 300aagcactcaa ccgccattga tatcgtcacc
tacgaatcct ccttcgcttt ctccccctac 360ggcccctact ggaaatacat caagaaatta
tgcacctacg agctgctcgg ggccaggaat 420ctcaaccact ttctcccgat tcgaacgatt
gaagtcaaga ctttcttaga agctctcatg 480caaaagggta aaacggggga gaggttgaac
gtgacggagg agctggtgaa gctgacgagc 540aacgtgatat cgcagatgat gctgagcata
cggtgctcgg ggacggaggg ggagacggag 600gcggtgagga ctgtgattcg ggaggtgacg
cagatatttg gggagttcga cgttgcagac 660attatttggt tttgcaagaa cttcgatttc
caagggataa ggaagaggtc ggaggatata 720cagaggaggt atgatgcttt gctggagaag
atcatcaccg accgggagaa gcagcggcgg 780acgcagcacg gcggcgaggc caaggatttt
ctggacatgt ttctggatat aatgaagagt 840gggaaagctg aagtcaattt caccagggac
catctcaagg ctctcattct ggatttcttc 900accgccggca ccgacactac ggccattgtc
gtcggatggg cgatagcaga gctcatcaac 960aaccctaatg tgctgaagaa agctcaagcc
gagatcgata aagtcgtcgg actccacaga 1020atcctgcaag aatccgacgg tccaaatctg
ccctacctta acgccgtcat caaagaaaca 1080ttccggcttc atcctcccat ccccatgctg
tcgaggaaat caatctccga ctgcgtgatc 1140gacggctaca cgataccggc caacacactg
ctgttcgtca acatctggtc catggggcgg 1200aaccctaaaa tctgggacaa cccgatggcg
ttccggccgg agaggtttct ggagaaggaa 1260aaaaccggca tcgacattaa agggcagcat
ttcgagcttc tgccgtttgg cacgggcagg 1320aggggctgcc ccgggatgct gctcgccatt
cgggaggtgg tcgttataat tgggaccgtg 1380attcagtgct ttgactggaa gcttcccgtc
gacgatgtct ccggccttgt ggacatgacg 1440gagcggccgg ggctcacggc gccgagagct
gacgatttga tttgtcgtgt ggtgccgcga 1500gttgatcctt tggttgtttc cggccattga
1530791566DNALonicera japonica
79atgtggatct ttgacctcac aatctcgttc accacactcc tcttcctcat cttcaccacc
60gccctcctac tcctcctcaa ggttttcaag aaaaaccaca aactccgacc gccgcctagc
120cccttcaccc taccgataat cggccacctc cacctcctcg gccccctcat ccaccagtcc
180ttccatcgcc tctccaccct ctatggcccc ttaatccagc tcaaaatcgg ctacatccca
240tgcgttgttg cctcaactcc cgagctagca aaagaatttt taaaaacaca cgaactcgcg
300ttctcctcgc gtaaacactc cgctgccatt aaactcctca cctacgatgt atcatttgct
360ttttcaccct acggtcccta ttggaaattc atcaaaaaaa catgcacctt tgaacttttg
420ggcacacgta acatgaacca ctttctcccc attaggacca acgagattcg tcgtttctta
480caagtgatgt tagaaaaagc caaggctagt gagggggtga acgtgactga agagttgatc
540aagctcacga acaacgttat ctctcaaatg atgtttagta ctcggagctc ggggaccgag
600ggggaggcgg aggagatgag gacattggta cgtgaggtga ctcaaatatt cggagaattt
660aatgtttcgg attttataaa gttgtgtaag aacattgata ttggagggtt taagaagaga
720agtaaggata tacaaaaaag gtatgatgct ttgttggaga agataataag tgagagggag
780agtgaaagag caagaagggg taaaaataga gagactttag gggaggaagg agggaaagat
840tttcttgata tgatgcttga tactatggag gatggcaagt gtgaagttga gataacaaga
900gatcacatta aggccttggt tttggatttc ttaactgcgg ccacggatac aactgcgatt
960gctgttgaat ggacattagc cgagcttatc agcaacccgg aagtgttcga taaagctcga
1020gaggagatcg ataaagtcgt agggaagcac aggctagtca cagaattgga cacgccaaat
1080cttccctaca tccacgcgat cataaaggaa agttttcggc ttcacccgcc aattcctctg
1140ctcataagaa aatcagtcca agattgcacg gtaggtggct accacatctc ggctaacacc
1200atactttttg tcaatatttg ggccatcggg cgaaatccca agtattggga aagcccaatg
1260aagttctggc ccgaaagatt tcttgaatcc aatgggccag gtccagtggg ctctatggat
1320attaagggcc atcattatga gcttttgcct tttgggagtg ggagaagggg ttgccccggg
1380atggctttag ccatgcaaga actgcccgtg gtgctcgccg ccatgataca atgctttaat
1440tggaagccgg tgacattgga cggagaggaa ctggatatga gtgagcggcc tggtctaact
1500gctccaagag cccacgatct tgtatgcgtt ccctccgctc gaattaattc tttcgataat
1560ttttaa
156680526PRTMedicago truncatula 80Met Ile Ser Gln Pro Ile Leu Leu Ala Leu
Ile Leu Phe Leu Leu Phe1 5 10
15Leu Leu Gln Leu Phe Leu Phe Lys Arg Asn Asn Arg Ala Lys Glu His
20 25 30Leu Pro Tyr Pro Pro Ser
Pro Leu Ala Ile Pro Ile Ile Gly His Leu 35 40
45His Leu Leu Lys Pro Leu Val His Gln Ala Phe Arg Asp Leu
Ser Asp 50 55 60Arg Tyr Gly Pro Leu
Ile Ser Leu Arg Leu Gly Ser Val Pro Phe Ile65 70
75 80Val Val Ser Ser Pro Ser Leu Ala Lys Glu
Phe Leu Lys Thr Asn Glu 85 90
95Leu Val Tyr Ser Ser Arg Lys Met Asn Ile Ala Ile Asn Thr Val Val
100 105 110Tyr Asp Asp Ala Thr
Phe Ala Phe Ala Pro Tyr Gly Ala Tyr Trp Lys 115
120 125Phe Ile Lys Lys Leu Ser Thr Phe Glu Leu Leu Gly
Asn Arg Thr Ile 130 135 140Gly Gln Phe
Leu Pro Ile Arg Thr Arg Glu Leu Asn Glu Phe Ile Gln145
150 155 160Thr Leu Glu Asn Lys Ser Lys
Val Glu Glu Ser Val Asn Leu Thr Gln 165
170 175Ala Leu Leu Lys Leu Ser Asn Asn Ile Ile Ser Arg
Met Met Leu Ser 180 185 190Ile
Glu Ser Ser Gly Thr Asp Ser Gln Ala Glu Gln Ala Arg Thr Leu 195
200 205Val Arg Asp Val Thr Gln Ile Phe Gly
Glu Phe Asn Ile Ser Asp Phe 210 215
220Ile Gly Phe Cys Lys Asn Leu Asp Phe Gln Gly Leu Lys Lys Arg Ala225
230 235 240Leu Asp Ile His
Lys Arg Tyr Asp Ala Phe Leu Glu Lys Leu Ile Cys 245
250 255Asp Arg Glu Glu Ser Arg Arg Lys Ala Lys
Val Glu Gly Gly Cys Glu 260 265
270Asp Arg Asp Glu Lys Val Lys Asp Phe Leu Asp Met Leu Leu Asp Val
275 280 285Phe Glu Ala Lys Glu Cys Glu
Val Asp Phe Thr Arg Asn His Ile Lys 290 295
300Ser Leu Ile Leu Asp Tyr Phe Thr Ala Ala Thr Asp Thr Thr Ala
Ile305 310 315 320Ser Leu
Glu Trp Thr Ile Ala Glu Leu Phe Asn Asn Pro Ile Val Leu
325 330 335Lys Lys Ala Gln Glu Glu Val
Glu Arg Ile Ile Gly Lys Glu Arg Leu 340 345
350Val Cys Glu Ala Asp Ile Pro Asn Leu Pro Tyr Ile Gln Ala
Ile Ile 355 360 365Lys Glu Thr Leu
Arg Leu His Pro Pro Leu Pro Met Ile Ala Arg Lys 370
375 380Gly Thr Lys Asp Cys Val Val Asp Gly Lys Met Ile
Lys Lys Gly Ser385 390 395
400Ile Val Cys Val Asn Ile Trp Ala Ile Gly Arg Asp Ser Lys Thr Trp
405 410 415Lys Asn Pro Leu Glu
Phe Arg Pro Glu Arg Phe Leu Glu Ser Gly Lys 420
425 430Glu Ser Glu Ile Asp Ile Lys Gly His Asp Phe Glu
Leu Leu Pro Phe 435 440 445Gly Ser
Gly Arg Arg Gly Cys Pro Gly Met Pro Leu Ala Met Arg Glu 450
455 460Leu Pro Thr Val Ile Gly Ala Leu Val Gln Cys
Phe Glu Trp Lys Met465 470 475
480Leu Asp Ser Glu Gly Lys Leu Leu Asp Gln Gly Lys Thr Ile Asp Met
485 490 495Asp Glu Arg Pro
Gly Leu Thr Ala Pro Arg Ala Asn Asp Leu Phe Cys 500
505 510Ile Pro Val Ala Arg Leu Asn Leu Ile Pro Leu
Val Gln Leu 515 520
52581522PRTLotus japonicus 81Met Leu Val Glu Leu Ala Leu Ala Leu Leu Ala
Ile Ala Leu Phe Leu1 5 10
15His Leu Arg Pro Thr Pro Thr Ala Lys Ser Lys Ala Leu Arg His Leu
20 25 30Pro Asn Pro Pro Ser Pro Lys
Pro Arg Leu Pro Phe Val Gly His Leu 35 40
45His Leu Leu Asp Gln Pro Leu Leu His His Ser Leu Ile Lys Leu
Gly 50 55 60Glu Arg Tyr Gly Pro Leu
Tyr Ser Leu Tyr Phe Gly Ser Met Pro Thr65 70
75 80Val Val Ala Ser Thr Pro Glu Leu Phe Lys Leu
Phe Leu Gln Thr His 85 90
95Glu Ala Ser Ser Phe Asn Thr Arg Phe Gln Thr Ser Ala Ile Arg Arg
100 105 110Leu Thr Tyr Asp Asn Ser
Val Ala Met Val Pro Phe Ala Pro Tyr Trp 115 120
125Lys Phe Ile Arg Lys Ile Ile Met Asn Asp Leu Leu Asn Ala
Thr Thr 130 135 140Val Asn Lys Leu Arg
Pro Leu Arg Ser Gln Glu Ile Arg Lys Val Leu145 150
155 160Lys Ala Met Ala His Ser Ala Glu Ser Gln
Gln Pro Leu Asn Val Thr 165 170
175Glu Glu Leu Leu Lys Trp Thr Asn Asn Thr Ile Ser Arg Met Met Leu
180 185 190Gly Glu Ala Glu Glu
Val Arg Asp Ile Ala Arg Glu Val Leu Lys Ile 195
200 205Phe Gly Glu Tyr Ser Leu Thr Asp Phe Ile Trp Pro
Leu Lys Lys Leu 210 215 220Lys Val Gly
Gln Tyr Glu Lys Arg Ile Asp Glu Ile Phe Asn Lys Phe225
230 235 240Asp Pro Val Ile Glu Lys Val
Ile Lys Lys Arg Gln Glu Ile Ile Lys 245
250 255Arg Arg Lys Glu Arg Asp Gly Glu Leu Glu Glu Gly
Glu Gln Ser Val 260 265 270Val
Phe Leu Asp Thr Leu Leu Glu Phe Ala Glu Asp Glu Thr Met Glu 275
280 285Ile Lys Ile Thr Lys Glu Gln Ile Lys
Gly Leu Val Val Asp Phe Phe 290 295
300Ser Ala Gly Thr Asp Ser Thr Ala Val Ala Thr Asp Trp Ala Leu Ser305
310 315 320Glu Leu Ile Asn
Asn Pro Arg Val Leu Lys Lys Ala Arg Glu Glu Val 325
330 335Glu Ser Val Val Gly Lys Asp Arg Leu Val
Asp Glu Ala Asp Ile Gln 340 345
350Asn Leu Pro Tyr Ile Arg Ala Ile Val Lys Glu Thr Phe Arg Met His
355 360 365Pro Pro Leu Pro Val Val Lys
Arg Lys Cys Val Gln Glu Cys Glu Leu 370 375
380Asn Gly Tyr Val Ile Pro Glu Gly Ala Leu Ile Leu Phe Asn Val
Trp385 390 395 400Ala Val
Gln Arg Asp Pro Lys Tyr Trp Glu Gly Pro Ser Glu Phe Arg
405 410 415Pro Glu Arg Phe Leu Thr Ala
Glu Gly Gly Ala Thr Ser Ile Asp Leu 420 425
430Arg Gly Gln Asn Phe Glu Leu Leu Pro Phe Gly Ser Gly Arg
Arg Met 435 440 445Cys Pro Gly Val
Asn Leu Ala Thr Ala Gly Met Ala Thr Leu Leu Ala 450
455 460Ser Val Ile Gln Cys Phe Asp Leu Gln Val Val Gly
Gln Lys Gly Lys465 470 475
480Leu Leu Lys Gly Ser Asp Ala Lys Val Ser Met Glu Glu Ser Pro Gly
485 490 495Leu Thr Val Pro Arg
Ala His Asn Leu Met Cys Val Pro Leu Ala Arg 500
505 510Thr Asn Val Thr Ser Glu Leu Leu Ser Ser
515 52082527PRTGlycine max 82Met Ile Ser Glu Ser Leu Leu
Val Val Phe Leu Ile Val Phe Ile Ser1 5 10
15Ala Ser Leu Leu Lys Leu Leu Phe Val Arg Glu Asn Lys
Pro Lys Ala 20 25 30His Leu
Lys Asn Pro Pro Ser Pro Pro Ala Ile Pro Ile Ile Gly His 35
40 45Leu His Leu Leu Lys Pro Leu Ile His His
Ser Phe Arg Asp Leu Ser 50 55 60Leu
Arg Tyr Gly Pro Leu Leu Ser Leu Arg Ile Gly Ser Val Lys Phe65
70 75 80Ile Val Ala Ser Thr Pro
Ser Leu Ala Gln Glu Phe Leu Lys Thr Asn 85
90 95Glu Leu Thr Tyr Ser Ser Arg Lys Met Asn Met Ala
Ile Asn Met Val 100 105 110Thr
Tyr His Asn Ala Thr Phe Ala Phe Ala Pro Tyr Asp Thr Tyr Trp 115
120 125Lys Phe Met Lys Lys Leu Ser Thr Thr
Glu Leu Leu Gly Asn Lys Thr 130 135
140Leu Gly His Phe Leu Pro Ile Arg Thr Arg Glu Val His Asp Ile Ile145
150 155 160Gln Phe Leu Phe
His Lys Ser Lys Ala Gln Glu Ser Val Asn Leu Thr 165
170 175Glu Ala Leu Leu Ser Leu Ser Asn Asn Val
Ile Ser Gln Met Met Leu 180 185
190Ser Ile Lys Ser Ser Gly Thr Asp Ser Gln Ala Glu Gln Ala Arg Thr
195 200 205Leu Val Arg Glu Val Thr Gln
Ile Phe Gly Glu Phe Asn Val Ser Asp 210 215
220Phe Leu Gly Phe Cys Lys Asn Leu Asp Leu Gln Gly Phe Arg Lys
Arg225 230 235 240Ala Leu
Asp Ile His Lys Arg Tyr Asp Ala Leu Leu Glu Lys Ile Ile
245 250 255Ser Asp Arg Glu Glu Leu Arg
Arg Lys Ser Lys Val Asp Gly Cys Glu 260 265
270Asp Gly Asp Asp Glu Lys Val Lys Asp Phe Leu Asp Ile Leu
Leu Asp 275 280 285Val Ala Glu Gln
Lys Glu Cys Glu Val Gln Leu Thr Arg Asn His Val 290
295 300Lys Ser Leu Ile Leu Asp Tyr Phe Thr Ala Ala Thr
Asp Thr Thr Ala305 310 315
320Ile Ser Val Glu Trp Thr Ile Ala Glu Leu Phe Asn Asn Pro Lys Val
325 330 335Leu Lys Lys Ala Gln
Glu Glu Val Asp Arg Val Thr Gly Asn Thr Gln 340
345 350Leu Val Cys Glu Ala Asp Ile Pro Asn Leu Pro Tyr
Ile His Ala Ile 355 360 365Ile Lys
Glu Thr Met Arg Leu His Pro Pro Ile Pro Met Ile Met Arg 370
375 380Lys Gly Ile Glu Asp Cys Val Val Asn Gly Asn
Met Ile Pro Lys Gly385 390 395
400Ser Ile Val Cys Val Asn Ile Trp Ala Met Gly Arg Asp Pro Asn Ile
405 410 415Trp Lys Asn Pro
Leu Glu Phe Lys Pro Glu Arg Phe Leu Glu Gly Glu 420
425 430Gly Ser Ala Ile Asp Thr Lys Gly His His Phe
Glu Leu Leu Pro Phe 435 440 445Gly
Ser Gly Arg Arg Gly Cys Pro Gly Met Pro Leu Ala Met Arg Glu 450
455 460Leu Pro Thr Ile Ile Gly Ala Leu Ile Gln
Cys Phe Glu Trp Lys Met465 470 475
480Leu Gly Ser Gln Gly Glu Ile Leu Asp His Gly Arg Ser Leu Ile
Ser 485 490 495Met Asp Glu
Arg Pro Gly Leu Thr Ala Pro Arg Ala Asn Asp Leu Ile 500
505 510Gly Ile Pro Val Ala Arg Leu Asn Pro Thr
Pro Phe Arg Gln Met 515 520
52583506PRTPerilla frutescens crispa 83Met Ala Leu Tyr Ala Ala Leu Phe
Leu Leu Ser Ala Ala Val Val Arg1 5 10
15Ser Val Leu Asp Arg Lys Arg Gly Arg Pro Pro Tyr Pro Pro
Gly Pro 20 25 30Phe Pro Leu
Pro Ile Ile Gly His Leu His Leu Leu Gly Pro Arg Leu 35
40 45His Gln Thr Phe His Asp Leu Ser Gln Arg Tyr
Gly Pro Leu Met Gln 50 55 60Leu Arg
Leu Gly Ser Ile Arg Cys Val Ile Ala Ala Ser Pro Glu Leu65
70 75 80Ala Lys Glu Cys Leu Lys Thr
His Glu Leu Val Phe Ser Ser Arg Lys 85 90
95His Ser Thr Ala Ile Asp Ile Val Thr Tyr Asp Ser Ser
Phe Ala Phe 100 105 110Ser Pro
Tyr Gly Pro Tyr Trp Lys Phe Ile Lys Lys Leu Cys Thr Tyr 115
120 125Glu Leu Leu Gly Ala Arg Asn Leu Ala His
Phe Gln Pro Ile Arg Thr 130 135 140Leu
Glu Val Lys Ser Phe Leu Gln Ile Leu Met Arg Lys Gly Glu Ser145
150 155 160Gly Glu Ser Phe Asn Val
Thr Glu Glu Leu Val Lys Leu Thr Ser Asn 165
170 175Val Ile Ser His Met Met Leu Ser Ile Arg Cys Ser
Glu Thr Glu Ser 180 185 190Glu
Ala Glu Ala Ala Arg Thr Val Ile Arg Glu Val Thr Gln Ile Phe 195
200 205Gly Glu Phe Asp Val Ser Asp Ile Ile
Trp Leu Cys Lys Asn Phe Asp 210 215
220Phe Gln Gly Ile Arg Lys Arg Ser Glu Asp Ile Gln Arg Arg Tyr Asp225
230 235 240Ala Leu Leu Glu
Lys Ile Ile Thr Asp Arg Glu Lys Gln Arg Arg Thr 245
250 255His Gly Gly Gly Gly Gly Gly Gly Glu Ala
Lys Asp Phe Leu Asp Met 260 265
270Phe Leu Asp Ile Met Glu Ser Gly Lys Ala Glu Val Lys Phe Thr Arg
275 280 285Glu His Leu Lys Ala Leu Ile
Leu Asp Phe Phe Thr Ala Gly Thr Asp 290 295
300Thr Thr Ala Ile Val Cys Glu Trp Ala Ile Ala Glu Val Ile Asn
Asn305 310 315 320Pro Asn
Val Leu Lys Lys Ala Gln Glu Glu Ile Ala Asn Ile Val Gly
325 330 335Phe Asp Arg Ile Leu Gln Glu
Ser Asp Ala Pro Asn Leu Pro Tyr Leu 340 345
350Gln Ala Leu Ile Lys Glu Thr Phe Arg Leu His Pro Pro Ile
Pro Met 355 360 365Leu Ala Arg Lys
Ser Ile Ser Asp Cys Val Ile Asp Gly Tyr Met Ile 370
375 380Pro Ala Asn Thr Leu Leu Phe Val Asn Leu Trp Ser
Met Gly Arg Asn385 390 395
400Pro Lys Ile Trp Asp Tyr Pro Thr Ala Phe Gln Pro Glu Arg Phe Leu
405 410 415Glu Lys Glu Lys Ala
Ala Ile Asp Val Lys Gly Gln His Phe Glu Leu 420
425 430Leu Pro Phe Gly Thr Gly Arg Arg Gly Cys Pro Gly
Met Leu Leu Ala 435 440 445Ile Gln
Glu Val Val Ile Ile Ile Gly Thr Met Ile Gln Cys Phe Asp 450
455 460Trp Lys Leu Pro Asp Gly Ser Gly His Val Asp
Met Ala Glu Arg Pro465 470 475
480Gly Leu Thr Ala Pro Arg Glu Thr Asp Leu Phe Cys Arg Val Val Pro
485 490 495Arg Val Asp Pro
Leu Val Val Ser Thr Gln 500 50584511PRTGerbera
x hybrida 84Met Asn Thr Leu Gln Leu Ile Phe Leu Leu Phe Phe Phe Pro Thr
Leu1 5 10 15Leu Phe Leu
Tyr Cys Leu Pro Tyr Lys Arg Asn Gln Asn His Arg Arg 20
25 30Leu Pro Pro Ser Pro Pro Ser Phe Pro Ile
Ile Gly His Leu His His 35 40
45Leu Gly Pro Leu Ile His Gln Ser Phe His Ala Leu Ser Thr Arg Tyr 50
55 60Gly Ser Leu Ile His Leu Arg Leu Gly
Ser Val Pro Cys Val Val Val65 70 75
80Ser Thr Pro Asp Leu Ala Lys Asp Phe Leu Lys Thr Asn Glu
Leu Ala 85 90 95Phe Ser
Ser Arg Lys His Ser Leu Ala Ile Asp His Ile Thr Tyr Gly 100
105 110Val Ala Phe Ala Phe Ala Pro Tyr Gly
Thr Tyr Trp Lys Phe Ile Lys 115 120
125Lys Leu Phe Thr Val Glu Leu Leu Gly Thr Gln Asn Leu Ser His Phe
130 135 140Leu Pro Ile Arg Thr His Glu
Ile Arg Glu Leu Leu Arg Thr Leu Met145 150
155 160Val Lys Ser Arg Ala Lys Glu Arg Val Asn Leu Thr
Glu Glu Leu Leu 165 170
175Lys Leu Thr Asn Asn Val Ile Ser Gln Met Met Met Ser Ile Arg Cys
180 185 190Ser Gly Thr Asn Ser Glu
Ala Asp Glu Ala Lys Asn Leu Val Arg Glu 195 200
205Val Thr Lys Ile Phe Gly Gln Phe Asn Val Ser Asp Phe Ile
Trp Phe 210 215 220Cys Lys Asn Ile Asp
Leu Gln Gly Phe Lys Lys Arg Tyr Glu Gly Thr225 230
235 240His Arg Arg Tyr Asp Ala Leu Leu Glu Arg
Ile Ile Met Gly Arg Glu 245 250
255Glu Asn Arg Arg Arg Gly Lys Ile Lys Asp Gly Glu Gly Lys Asp Phe
260 265 270Leu Asp Met Leu Leu
Asp Val Leu Glu Asp Gly Lys Ala Glu Ile Lys 275
280 285Ile Thr Arg Asp His Ile Lys Ala Leu Ile Leu Asp
Phe Leu Thr Ala 290 295 300Gly Thr Asp
Thr Thr Ala Ile Ala Ile Glu Trp Ala Leu Val Glu Leu305
310 315 320Ile Asn Asn Pro Asn Ala Leu
Glu Lys Ala Arg Gln Glu Ile Asp Gln 325
330 335Val Ile Gly Asp Glu Arg Leu Val Gln Glu Ser Asp
Thr Pro Asn Leu 340 345 350Pro
Tyr Ile Gln Ala Ile Ile Lys Glu Ala Leu Arg Leu His Pro Pro 355
360 365Ile Pro Met Leu Ile Arg Lys Ser Thr
Glu Asn Val Ile Val Gln Gly 370 375
380Tyr Asp Ile Pro Ala Gly Thr Leu Leu Phe Val Asn Ile Trp Ser Ile385
390 395 400Gly Arg Asn Pro
Gln Cys Trp Glu Thr Pro Leu Glu Phe Lys Pro His 405
410 415Arg Phe Leu Asp Gly Gly Asp Leu Lys Ser
Ser Leu Asp Ile Lys Gly 420 425
430His Asn Phe Gln Leu Leu Pro Phe Gly Thr Gly Arg Arg Gly Cys Pro
435 440 445Gly Val Asn Leu Ala Met Arg
Glu Leu Ser Val Val Ile Ala Asn Leu 450 455
460Ile Gln Cys Phe Asp Trp Asp Val Val Gly Glu Arg Leu Leu Asn
Thr465 470 475 480Asp Glu
Arg Ala Gly Leu Thr Ala Pro Arg Ala Val Asp Phe Val Cys
485 490 495Val Pro Leu Glu Arg Gly Asn
Thr Leu Lys Ile Leu Gly Ser Asn 500 505
51085530PRTGentiana triflora 85Met Met Leu Leu Asp Phe Phe Tyr
Ser Ala Ser Ile Phe Val Leu Ser1 5 10
15Ile Leu Leu Phe Arg Ala Ile Tyr Thr Thr Lys Asn Arg Arg
Leu Arg 20 25 30Leu Pro Pro
Ser Pro Phe Gly Leu Pro Ile Ile Gly His Leu His Leu 35
40 45Leu Gly Pro Lys Ile His His Ser Phe His Asn
Leu Tyr Lys Arg Tyr 50 55 60Gly Pro
Ile Phe His Leu Arg Leu Gly Ser Asn Arg Cys Ile Val Val65
70 75 80Ser Thr Pro Glu Leu Ala Lys
Glu Phe Leu Lys Thr His Glu Leu Asp 85 90
95Phe Ala Tyr Arg Lys Asn Ser Ser Ala Ile Ser Leu Leu
Thr Tyr His 100 105 110Val Ser
Phe Ala Phe Ala Pro Tyr Gly Pro Tyr Trp Lys Tyr Ile Lys 115
120 125Lys Ile Thr Thr Tyr Gln Leu Leu Gly Asn
Arg Asn Leu Thr His Phe 130 135 140Glu
Pro Ile Arg Arg Leu Glu Thr Asn Arg Val Leu Tyr Asp Leu Met145
150 155 160Val Ser Ser Lys His Gly
Lys Ser Val Asn Leu Thr Glu Glu Met Ile 165
170 175Lys Leu Thr Ser Asn Ile Ile Ser Gln Met Met Leu
Ser Ile Arg Cys 180 185 190Ser
Asp Thr Glu Ser Gly Ala Thr Asn Val Arg Asn Val Ile Arg Asp 195
200 205Val Thr Glu Leu Phe Gly Glu Phe Asp
Val Ser Asp Ile Ile Trp Phe 210 215
220Cys Lys Asn Thr Asp Leu Gln Gly Ile Lys Lys Arg Ala Asn Gly Ile225
230 235 240His Glu Arg Tyr
Asp Ala Leu Leu Glu Lys Ile Ile Ser Asp Arg Glu 245
250 255Arg Thr Arg Ile Val Glu Lys Lys Asn Ser
Gly Ala Gly Gly Gly Ser 260 265
270Gly Asp Gly Glu Arg Asn Asp Phe Leu Asp Ile Leu Met Asp Ala Met
275 280 285Glu Asp Asp Thr Ser Glu Val
Lys Leu Ser Arg Asn His Ile Lys Ala 290 295
300Ile Ile Leu Asp Phe Leu Thr Ala Ala Thr Asp Thr Thr Ala Ile
Ser305 310 315 320Leu Glu
Trp Ala Leu Ser Glu Leu Ile Asn Asn Pro Arg Val Leu Lys
325 330 335Lys Ala Gln Glu Glu Ile Asn
Asn Val Val Gly Asn Gln Arg Leu Val 340 345
350Lys Glu Leu Asp Thr Pro Asn Phe Pro Tyr Ile Lys Ala Ile
Ile Lys 355 360 365Glu Thr Phe Arg
Leu His Pro Pro Ile Pro Met Val Ile Arg Lys Ser 370
375 380Ala Asn Asp Ile Gln Val Ala Gly Tyr Asp Val Pro
Lys Asn Thr Met385 390 395
400Leu Phe Val Asn Ile Trp Ser Ile Gly Arg Asn Pro Ser Tyr Trp Glu
405 410 415Lys Ala Ser Glu Phe
Ser Pro Glu Arg Phe Leu Ala Asp Thr Asp Gly 420
425 430Gly Gly Leu Ser His Met Asp Ile Asn Gly Gln Tyr
Phe Glu Leu Met 435 440 445Pro Phe
Gly Thr Gly Arg Arg Gly Cys Pro Gly Met Pro Leu Ala Met 450
455 460Gln Glu Leu Pro Thr Val Leu Ser Leu Met Ile
Gln Cys Phe Asp Tyr465 470 475
480Ile Pro Leu Asp Phe Lys Gly Glu Lys Ala Glu Arg Val Met Asp Met
485 490 495Ser Glu Arg Pro
Gly Leu Thr Ala Pro Arg Ala Asn Glu Leu Met Cys 500
505 510Leu Leu Lys Pro Arg Ile Asp Leu Pro Asn Leu
Leu Gly Asn Val Lys 515 520 525Gly
Glu 53086506PRTAntirrhinum majus 86Met Ser Thr Leu Val Tyr Ser Thr Leu
Phe Ile Leu Ser Thr Leu Leu1 5 10
15Leu Thr Leu Leu Thr Arg Thr Arg Arg Lys Thr Arg Pro Pro Gly
Pro 20 25 30Leu Ala Leu Pro
Leu Ile Gly His Leu His Leu Leu Gly Pro Lys Leu 35
40 45His His Thr Phe His Gln Phe Ser Gln Arg Tyr Gly
Pro Leu Ile Gln 50 55 60Leu Tyr Leu
Gly Ser Val Pro Cys Val Val Ala Ser Thr Pro Glu Leu65 70
75 80Ala Arg Glu Phe Leu Lys Thr His
Glu Leu Asp Phe Ser Ser Arg Lys 85 90
95His Ser Thr Ala Ile Asp Ile Val Thr Tyr Asp Ser Ser Phe
Ala Phe 100 105 110Ala Pro Tyr
Gly Pro Tyr Trp Lys Phe Ile Lys Lys Leu Cys Thr Tyr 115
120 125Glu Leu Leu Gly Ala Arg Asn Leu Ser His Phe
Gln Pro Ile Arg Ala 130 135 140Leu Glu
Val Asn Ser Phe Leu Arg Ile Leu Tyr Glu Lys Thr Glu Gln145
150 155 160Lys Gln Ser Val Asn Val Thr
Glu Glu Leu Val Lys Leu Thr Ser Asn 165
170 175Val Ile Ser Asn Met Met Leu Gly Ile Arg Cys Ser
Gly Thr Glu Gly 180 185 190Glu
Ala Glu Val Ala Arg Thr Val Ile Arg Glu Val Thr Gln Ile Phe 195
200 205Gly Glu Phe Asp Val Ser Glu Ile Val
Trp Phe Cys Lys Asn Leu Asp 210 215
220Leu Gln Gly Ile Arg Lys Arg Ser Glu Asp Ile Arg Arg Arg Tyr Asp225
230 235 240Ala Leu Leu Glu
Lys Ile Ile Ser Asp Arg Glu Arg Leu Arg Leu Arg 245
250 255Gly Gly Gly Gly Gly Gly Gly Gly Glu Val
Lys Asp Phe Leu Asp Met 260 265
270Leu Leu Asp Val Met Glu Ser Glu Lys Ser Glu Val Glu Phe Thr Arg
275 280 285Glu His Leu Lys Ala Leu Ile
Leu Asp Phe Phe Thr Ala Gly Thr Asp 290 295
300Thr Thr Ala Ile Thr Thr Glu Trp Ala Ile Ala Glu Leu Ile Ser
Asn305 310 315 320Pro Asn
Val Leu Lys Lys Ala Gln Glu Glu Met Asp Lys Val Ile Gly
325 330 335Ser Gln Arg Leu Leu Gln Glu
Ser Asp Ala Pro Asn Leu Pro Tyr Leu 340 345
350Asn Ala Ile Ile Lys Glu Thr Phe Arg Leu His Pro Pro Ile
Pro Met 355 360 365Leu Thr Arg Lys
Ser Ile Ser Asp Val Val Val Asn Gly Tyr Thr Ile 370
375 380Pro Ala Lys Thr Leu Leu Phe Val Asn Leu Trp Ser
Met Gly Arg Asn385 390 395
400Pro Asn Tyr Trp Glu Asn Pro Met Glu Phe Arg Pro Glu Arg Phe Leu
405 410 415Glu Lys Gly Thr Gly
Ser Ile Asp Val Lys Gly Gln His Phe Glu Leu 420
425 430Leu Pro Phe Gly Thr Gly Arg Arg Gly Cys Pro Gly
Met Leu Leu Gly 435 440 445Met Gln
Glu Leu Phe Ser Ile Ile Gly Ala Met Val Gln Cys Phe Asp 450
455 460Trp Lys Leu Pro Asp Gly Val Lys Ser Val Asp
Met Thr Glu Arg Pro465 470 475
480Gly Leu Thr Ala Pro Arg Ala Asn Asp Leu Val Cys Gln Leu Val Pro
485 490 495Arg Ile Asp Pro
Val Val Val Ser Gly Pro 500
50587520PRTTheobroma cacao 87Met Met Leu Gln Leu Leu Ser Tyr Ser Thr Leu
Tyr Ile Ala Ser Phe1 5 10
15Phe Leu Val Lys Thr Ile Leu Ile Ser Ile Asn Asn Arg Pro Lys Leu
20 25 30Pro Pro Gly Pro Ile Ala Leu
Pro Val Ile Gly His Leu His Leu Leu 35 40
45Gly Pro Phe Ile His Gln Thr Phe His Lys Phe Ser Ser Arg Tyr
Gly 50 55 60Pro Leu Met Tyr Leu Arg
Leu Gly Ser Ile Gly Cys Val Val Ala Ser65 70
75 80Asn Pro Glu Leu Ala Lys Glu Leu Leu Lys Thr
Tyr Glu Leu Ala Phe 85 90
95Ala Ala Arg Met His Thr Ala Ala Ile Thr His Leu Thr Tyr Asp Ser
100 105 110Ser Phe Ala Phe Ala Pro
Tyr Gly Pro Tyr Trp Lys Phe Ile Lys Lys 115 120
125Phe Ser Thr Tyr Glu Leu Leu Gly Asn Arg Thr Leu Ser Gln
Phe Leu 130 135 140Pro Val Arg Thr Lys
Glu Leu His Arg Phe Ile Lys Phe Leu Leu Asp145 150
155 160Arg Ser Lys Ala Gly Glu Ser Val Asn Val
Thr Gln Glu Leu Leu Lys 165 170
175Leu Thr Asn Asn Thr Ile Ser Gln Met Met Leu Ser Met Arg Cys Ser
180 185 190Gly Ser Gly Asn Pro
Ala Asp Gly Val Arg Ala Leu Val Arg Glu Val 195
200 205Thr Glu Ile Phe Gly Glu Phe Asn Ile Ser Asp Ser
Ile Trp Phe Cys 210 215 220Lys Ser Trp
Asp Leu Gln Gly Phe Arg Arg Arg Phe Glu Asp Ile His225
230 235 240Arg Arg Tyr Asp Ala Leu Leu
Glu Arg Ile Ile Arg Asp Arg Glu Glu 245
250 255Val Arg Lys Ser Lys Lys Glu Cys Asp Gln Arg Asp
Asn Gly Asn Glu 260 265 270Val
Lys Asp Phe Leu Asp Met Met Leu Asp Val Leu Glu Asn Asp Asn 275
280 285Ser Glu Met Gln Leu Thr Arg Asn His
Ile Lys Ala Leu Val Leu Asp 290 295
300Phe Leu Thr Ala Gly Thr Asp Thr Thr Ala Ile Val Leu Glu Trp Ala305
310 315 320Leu Ala Glu Leu
Ile Asn Asn Pro Glu Val Leu Lys Leu Ala Gln Lys 325
330 335Glu Ile Asp Gln Val Val Gly Thr Ser Arg
Leu Val Glu Glu Ser Asp 340 345
350Ser Pro Arg Leu Gln Tyr Ile Gln Ala Ile Ile Lys Glu Thr Phe Arg
355 360 365Leu His Pro Pro Val Pro Met
Ile Ser Arg Lys Ser Ile Gln Ser Cys 370 375
380Lys Ile Lys Gly Tyr Thr Ile Pro Ala Asp Cys Leu Val Phe Val
Asn385 390 395 400Ile Trp
Ala Ile Gly Arg Asp Pro Thr Val Trp Ala Asp Pro Leu Arg
405 410 415Phe Gln Pro Glu Arg Phe Leu
Lys Ser Tyr Glu Gly Asp His Ser Ser 420 425
430Gly Pro Ile Asp Val Arg Gly Leu His Tyr Gln Leu Leu Pro
Phe Gly 435 440 445Thr Gly Arg Arg
Gly Cys Pro Gly Ala Ser Leu Ala Met Gln Glu Leu 450
455 460Pro Thr Thr Leu Ala Ala Met Ile Gln Cys Phe Asp
Trp Lys Pro Ala465 470 475
480Ala Thr Ser Lys Thr Gly Asp Gly Val Asp Met Ser Glu Arg Pro Gly
485 490 495Leu Thr Ala Pro Arg
Ala Lys Asp Leu Glu Cys Val Pro Val Ala Arg 500
505 510Phe Thr Pro Thr Val Phe Ala Thr 515
52088534PRTCamellia sinensis 88Met Phe Asp Leu Ile Ser Ile Ala
Thr Leu Phe Phe Val Ile Ile Ser1 5 10
15Thr Thr Ile Leu Leu Leu Ser Ile Asn His Phe Lys Lys Pro
Pro His 20 25 30Leu Arg Arg
Arg Leu Ser Leu Pro Pro Thr Pro Phe Ala Leu Pro Ile 35
40 45Ile Gly His Leu His Leu Leu Gly Pro Ile Ile
His Arg Ser Phe His 50 55 60Asp Leu
Ser Ser Arg Tyr Gly Pro Leu Phe His Leu Arg Leu Gly Ser65
70 75 80Val Pro Cys Phe Val Val Ser
Thr Pro Glu Leu Ala Lys Glu Phe Leu 85 90
95Leu Thr His Glu Leu Lys Phe Ser Ser Arg Arg Asp Ser
Ile Ala Ile 100 105 110Gln Arg
Leu Thr Tyr Asp Ser Ala Phe Ala Phe Ala Pro Tyr Gly Pro 115
120 125Tyr Trp Lys Phe Leu Lys Lys Leu Cys Thr
Cys Asp Leu Leu Gly Ala 130 135 140Arg
Ser Ile Asn His Phe Leu Pro Thr Arg Thr Arg Glu Leu His Cys145
150 155 160Phe Val Arg Leu Leu Ile
Asp Lys Ala Val Ala Cys Glu Pro Val Asn 165
170 175Ile Thr Lys Glu Leu Ser Thr Leu Ala Asn Asn Ile
Ile Ser Gln Met 180 185 190Met
Ile Gly Val Arg Cys Ser Gly Thr Thr Gly Glu Ala Glu Glu Ala 195
200 205Thr Thr Leu Ala Arg Glu Val Thr Lys
Ile Phe Gly Glu Phe Asn Val 210 215
220Ser Asp Phe Met Trp Val Ile Arg Asn Phe Asp Leu Gln Gly Phe Arg225
230 235 240Lys Arg Val Glu
Asp Ile Tyr Thr Arg Tyr Asp Ala Leu Leu Glu Arg 245
250 255Ile Ile Thr Asn Arg Glu Glu Val Arg Glu
Lys Asn Val Gln Glu Arg 260 265
270Lys Leu Gly Val Gly Glu Gly His His Val Lys Asp Phe Leu Asp Leu
275 280 285Leu Leu Asp Val Leu Glu Glu
Asp His Ser Glu Ile Asn Phe Ser Arg 290 295
300Asp Asn Ile Lys Gly Leu Ile Leu Asp Phe Phe Thr Ala Gly Thr
Asp305 310 315 320Thr Ser
Ser Ile Ala Ile Glu Trp Ala Leu Ala Glu Leu Ile Asn Asn
325 330 335Pro Arg Val Leu Gln Lys Ala
Gln Glu Glu Ile Asp Asn Val Val Gly 340 345
350Lys His Arg Leu Val Ser Glu Ser His Gly Pro Asn Leu Pro
Tyr Ile 355 360 365Gln Ala Ile Ile
Arg Glu Ala Leu Arg Leu His Pro Pro Val Pro Leu 370
375 380Ile Thr Arg Lys Ser Ile Glu Asp Cys Met Ile Gln
Gly Tyr Asn Ile385 390 395
400Pro Ala Asn Ser Met Leu Phe Val Asn Val Trp Ser Leu Ala Arg Asn
405 410 415Pro Lys Tyr Trp Asp
Ser Pro Leu Asp Phe Leu Pro Glu Arg Phe Leu 420
425 430Arg Pro Glu Lys Gly Gly Pro Val Gly Pro Thr Asp
Val Lys Gly Gln 435 440 445His Phe
Gln Leu Leu Pro Phe Gly Thr Gly Arg Arg Gly Cys Pro Gly 450
455 460Thr Ser Leu Ala Met Gln Glu Leu Pro Ala Met
Leu Ala Ala Met Ile465 470 475
480Gln Cys Phe Glu Trp Lys Val Val Asn Gln Ser Gly Asp Val Met Asn
485 490 495Gly Asp Gly Ala
Leu Asp Met Thr Glu Gln Pro Gly Met Thr Ala Pro 500
505 510Arg Ala His Asp Leu Val Cys Met Pro Ile Pro
Arg Ile Asp Gln Leu 515 520 525Tyr
Ala Leu Leu Asp Pro 53089509PRTPlectranthus barbatus 89Met Asp His Val
Glu Ala Ala Leu Phe Ala Ala Ile Phe Leu Leu Ser1 5
10 15Ala Ala Leu Leu Asn His Leu Leu Thr Gly
Lys Arg Arg Gln Asn Ala 20 25
30Tyr Pro Pro Gly Pro Phe Pro Leu Pro Ile Ile Gly His Leu His Leu
35 40 45Leu Gly Pro Arg Leu His His Thr
Phe His Asp Leu Thr Gln Arg Tyr 50 55
60Gly Pro Leu Met Gln Val Arg Leu Gly Ser Ile Arg Cys Val Ile Ala65
70 75 80Ala Thr Pro Glu Leu
Ala Lys Glu Phe Leu Lys Thr Ser Glu Leu Val 85
90 95Phe Ser Ala Arg Lys His Ser Thr Ala Ile Asp
Ile Val Thr Tyr Glu 100 105
110Ser Ser Phe Ala Phe Ser Pro Tyr Gly Pro Tyr Trp Lys Tyr Ile Lys
115 120 125Lys Leu Cys Thr Tyr Glu Leu
Leu Gly Ala Arg Asn Leu Asn His Phe 130 135
140Leu Pro Ile Arg Thr Ile Glu Val Lys Thr Phe Leu Glu Ala Leu
Met145 150 155 160Gln Lys
Gly Lys Thr Gly Glu Arg Leu Asn Val Thr Glu Glu Leu Val
165 170 175Lys Leu Thr Ser Asn Val Ile
Ser Gln Met Met Leu Ser Ile Arg Cys 180 185
190Ser Gly Thr Glu Gly Glu Thr Glu Ala Val Arg Thr Val Ile
Arg Glu 195 200 205Val Thr Gln Ile
Phe Gly Glu Phe Asp Val Ala Asp Ile Ile Trp Phe 210
215 220Cys Lys Asn Phe Asp Phe Gln Gly Ile Arg Lys Arg
Ser Glu Asp Ile225 230 235
240Gln Arg Arg Tyr Asp Ala Leu Leu Glu Lys Ile Ile Thr Asp Arg Glu
245 250 255Lys Gln Arg Arg Thr
Gln His Gly Gly Glu Ala Lys Asp Phe Leu Asp 260
265 270Met Phe Leu Asp Ile Met Lys Ser Gly Lys Ala Glu
Val Asn Phe Thr 275 280 285Arg Asp
His Leu Lys Ala Leu Ile Leu Asp Phe Phe Thr Ala Gly Thr 290
295 300Asp Thr Thr Ala Ile Val Val Gly Trp Ala Ile
Ala Glu Leu Ile Asn305 310 315
320Asn Pro Asn Val Leu Lys Lys Ala Gln Ala Glu Ile Asp Lys Val Val
325 330 335Gly Leu His Arg
Ile Leu Gln Glu Ser Asp Gly Pro Asn Leu Pro Tyr 340
345 350Leu Asn Ala Val Ile Lys Glu Thr Phe Arg Leu
His Pro Pro Ile Pro 355 360 365Met
Leu Ser Arg Lys Ser Ile Ser Asp Cys Val Ile Asp Gly Tyr Thr 370
375 380Ile Pro Ala Asn Thr Leu Leu Phe Val Asn
Ile Trp Ser Met Gly Arg385 390 395
400Asn Pro Lys Ile Trp Asp Asn Pro Met Ala Phe Arg Pro Glu Arg
Phe 405 410 415Leu Glu Lys
Glu Lys Thr Gly Ile Asp Ile Lys Gly Gln His Phe Glu 420
425 430Leu Leu Pro Phe Gly Thr Gly Arg Arg Gly
Cys Pro Gly Met Leu Leu 435 440
445Ala Ile Arg Glu Val Val Val Ile Ile Gly Thr Val Ile Gln Cys Phe 450
455 460Asp Trp Lys Leu Pro Val Asp Asp
Val Ser Gly Leu Val Asp Met Thr465 470
475 480Glu Arg Pro Gly Leu Thr Ala Pro Arg Ala Asp Asp
Leu Ile Cys Arg 485 490
495Val Val Pro Arg Val Asp Pro Leu Val Val Ser Gly His 500
50590521PRTLonicera japonica 90Met Trp Ile Phe Asp Leu Thr
Ile Ser Phe Thr Thr Leu Leu Phe Leu1 5 10
15Ile Phe Thr Thr Ala Leu Leu Leu Leu Leu Lys Val Phe
Lys Lys Asn 20 25 30His Lys
Leu Arg Pro Pro Pro Ser Pro Phe Thr Leu Pro Ile Ile Gly 35
40 45His Leu His Leu Leu Gly Pro Leu Ile His
Gln Ser Phe His Arg Leu 50 55 60Ser
Thr Leu Tyr Gly Pro Leu Ile Gln Leu Lys Ile Gly Tyr Ile Pro65
70 75 80Cys Val Val Ala Ser Thr
Pro Glu Leu Ala Lys Glu Phe Leu Lys Thr 85
90 95His Glu Leu Ala Phe Ser Ser Arg Lys His Ser Ala
Ala Ile Lys Leu 100 105 110Leu
Thr Tyr Asp Val Ser Phe Ala Phe Ser Pro Tyr Gly Pro Tyr Trp 115
120 125Lys Phe Ile Lys Lys Thr Cys Thr Phe
Glu Leu Leu Gly Thr Arg Asn 130 135
140Met Asn His Phe Leu Pro Ile Arg Thr Asn Glu Ile Arg Arg Phe Leu145
150 155 160Gln Val Met Leu
Glu Lys Ala Lys Ala Ser Glu Gly Val Asn Val Thr 165
170 175Glu Glu Leu Ile Lys Leu Thr Asn Asn Val
Ile Ser Gln Met Met Phe 180 185
190Ser Thr Arg Ser Ser Gly Thr Glu Gly Glu Ala Glu Glu Met Arg Thr
195 200 205Leu Val Arg Glu Val Thr Gln
Ile Phe Gly Glu Phe Asn Val Ser Asp 210 215
220Phe Ile Lys Leu Cys Lys Asn Ile Asp Ile Gly Gly Phe Lys Lys
Arg225 230 235 240Ser Lys
Asp Ile Gln Lys Arg Tyr Asp Ala Leu Leu Glu Lys Ile Ile
245 250 255Ser Glu Arg Glu Ser Glu Arg
Ala Arg Arg Gly Lys Asn Arg Glu Thr 260 265
270Leu Gly Glu Glu Gly Gly Lys Asp Phe Leu Asp Met Met Leu
Asp Thr 275 280 285Met Glu Asp Gly
Lys Cys Glu Val Glu Ile Thr Arg Asp His Ile Lys 290
295 300Ala Leu Val Leu Asp Phe Leu Thr Ala Ala Thr Asp
Thr Thr Ala Ile305 310 315
320Ala Val Glu Trp Thr Leu Ala Glu Leu Ile Ser Asn Pro Glu Val Phe
325 330 335Asp Lys Ala Arg Glu
Glu Ile Asp Lys Val Val Gly Lys His Arg Leu 340
345 350Val Thr Glu Leu Asp Thr Pro Asn Leu Pro Tyr Ile
His Ala Ile Ile 355 360 365Lys Glu
Ser Phe Arg Leu His Pro Pro Ile Pro Leu Leu Ile Arg Lys 370
375 380Ser Val Gln Asp Cys Thr Val Gly Gly Tyr His
Ile Ser Ala Asn Thr385 390 395
400Ile Leu Phe Val Asn Ile Trp Ala Ile Gly Arg Asn Pro Lys Tyr Trp
405 410 415Glu Ser Pro Met
Lys Phe Trp Pro Glu Arg Phe Leu Glu Ser Asn Gly 420
425 430Pro Gly Pro Val Gly Ser Met Asp Ile Lys Gly
His His Tyr Glu Leu 435 440 445Leu
Pro Phe Gly Ser Gly Arg Arg Gly Cys Pro Gly Met Ala Leu Ala 450
455 460Met Gln Glu Leu Pro Val Val Leu Ala Ala
Met Ile Gln Cys Phe Asn465 470 475
480Trp Lys Pro Val Thr Leu Asp Gly Glu Glu Leu Asp Met Ser Glu
Arg 485 490 495Pro Gly Leu
Thr Ala Pro Arg Ala His Asp Leu Val Cys Val Pro Ser 500
505 510Ala Arg Ile Asn Ser Phe Asp Asn Phe
515 520916429DNAMedicago truncatula 91cctttaatga
cggatagtgg tacggtatat cattgaatac ttaagattca tccccttgcg 60gggcttgcag
tatactgcat tttaggcaaa aaaaaaatga tgttgtaaca aactctgaaa 120atttcaggct
tattgtgtgt aggatgccgc ggcattttta tttgtctttc aactgtgatc 180cagtaacgga
gaaatttgtt gattattgtt atattgattg ttcctttctt atgtcttaac 240tactacagag
tctttttttt agtcgcacga catttagaac ctcaactttt ccaagtagag 300cctggtgtat
ctgtattagg ggcattacaa ttgtcttagg atacgtttgg attggtggag 360tgaaaagtcg
caaaagctgt gaagtttgac atgatgtcat agcacctatt gaggagttaa 420acatctcgaa
ttaagttgtg ccgtcggaaa acgctcttag cgcaatatct tcatttcact 480gtgaatgcac
tagcaggtcg gaaaacgctc ttagcgcaat atcttcattt cactgtgaat 540gcactagcag
atggcacgat gaacaacctc tcatgaagtc tctgttggga tctactcatt 600gggtagaaat
tcgaaatcaa agccattgct atagtccagc agaaacatat caaatagagt 660ttaaataagc
ttaaagattc tgagtgcatt ttgtttcagc tttaaaaaaa atagattttg 720agttaaaaaa
tctctagaga ttttaaaaaa aatctaaagc tatttctatt tgtttactat 780cataaaaaat
catttttcta agatttaaag ctcttacact tgagttcttt atgtttagaa 840aaaaaataga
ttttggaaaa gctacttgaa atagcttttc attttaaagc taaaaatgat 900ttttttaata
aaatggattt ttttaaaatc taaaacaaat actaaaaaaa taaaaaaagt 960gattttttta
gatcaaaaat agattttttt caaaaaaatc caaaacaatc gggccctcta 1020tgaaaacatg
agaatttaag ctaaccagaa cttaaacttc gtttaaaatt gttgaaaata 1080ctgattataa
aagagataag ggatataaat attacacaca ataatttatg tcctcacccc 1140tatattatta
aacataaaat gtcaataatg ataggcactg ttttgtaggt caatctttga 1200cttgtcacca
agaaatgaaa tgctgccgac tcatcaaaga aggagccttt aatttatttg 1260ttttttacta
taatattggg acactaccgc ttaatagtag taactaatct tagttggaga 1320atttgaaaaa
caaataagat gtgctcttca atttcaacca aaaattttct atatgcatga 1380gacagaaatt
aaaactccga ccatatgttt aaaaagccta aatctcttgt ctgttcaacc 1440aatatatttt
tgatggagcc tctaattact aattagtgat taatcaaata ttaattttga 1500aactcaactc
tcagcctatg tcacagtgtg aaaaaagcta aaaagagtag ccttgtcttt 1560tttgttgaaa
atttgggaaa cttattgccg gatgaaccga atataccctt tgaatgataa 1620cgccatttca
tgttttgact ctaatattca aaactcaaaa gtccaaacta atacatgtat 1680ttttttatta
aaaaaataat attagcaatc aaagtctatt tcttgtactc cctccggtca 1740tatttataat
caaaaaataa ttttttagat acattgaata attaactaat gtatctaaca 1800tataaatgtg
accggaaata ttaattattc gatgaactta aaaaattatt ttttacttat 1860aaatgtgacc
agaatgtgta ctaattatgc ctgcaatgat gcacatgtga agacattatt 1920attaatgcta
ctactactat tgtcatgatt tttgaaaata ttatctacaa tcgtagatga 1980ccattagctt
aaataaataa aggtccagtt tatttagact ggattttgta tgagtttttt 2040ttttatctaa
taattagcct aattctttac ttctaaaaat attcttataa atatttacag 2100ggaaattaaa
aattaaatta atctttttta tgaaagaaaa ttaaattaat cataaaattc 2160aaaatatgta
gattaatttt gatttacgct aaaaccatta tataaagata cataatcatt 2220tcaagtaaaa
aaagatacat aatcatatgg agattatctt aatcattttt ttaaatactt 2280ttcacctcta
cctcaacgag cagcagttaa aacagggaaa ctactaataa actatcgtaa 2340tgatgtgaca
tgcaagattt gttttagctg ttggttcaac tagaagccaa gccttaaaat 2400cttttttgct
tatttaaatg ctaccttatt gtaattgata ttaaaggata caagtagttt 2460ttatttttat
tttttaaata tcatatcatt cacttcaaag ttaaaaatta ttcttttgaa 2520atatgaagat
ccgtttaaaa agctaacatt tctcaacaga cgctctttca tatgtaccaa 2580ctcgattaga
tatcatactt gtatagttac gagatatagt tatttataaa ccgtatcgtg 2640tcatattata
ttggtagatg aaataatata atatactgta taatttgtct aacaagacta 2700gttgcatgat
taggagacgt gcctaatcat gtccttatct ttttgtcctt aaagtaacca 2760aaaatagagt
tgcaaaggtg ttatatctac ttgttttaat atgtttaatt ctgcaaatga 2820tacatcacaa
attatatata tataatagat taagtgtgta ggtacatgta tcttctatag 2880caaccataga
ctcatttaga ggatcacttt aatatctaca ctgtaatcac actaactagt 2940tgaataagtt
gcattgtcaa gaaaaaataa ttagttcaat aggttaaacc aatgtgatta 3000taattagatc
agatcagctt tttgaatcgg aataggggtc tgatctggct catgcagtcc 3060atgagaaact
accataatgt gattatttac tcgatggcat attaaccaat ttgattctaa 3120gactttcacc
caaaacattg ctctcaattc aagtagattg tgatatgtaa tggccggagt 3180ttgaactcta
aatttcttat gcgtttgatt tgttaaaaaa taaggatagg atatgacaac 3240ttcaattgta
aggtgtttaa tttgtaaaat tgtttttgga acatgacaaa ctagaggtca 3300gagattggac
gaaaactgaa attcttgacc ctcactaagc cacgacacaa ctttttgtct 3360cacgtacacg
ttgtctaaaa tatcaaaaag ttttttgtcc ataaaaattt gtataatacc 3420aaaatagttt
ttttttcata aaaagttgtc atgtgttgtt ctgctttgtg ttatgatgtt 3480atgttcaata
cttttggttt aacatatcaa acgcaccctt aaagatgaat ttctagtaat 3540tatgttacgt
gaccggaaaa aaaaaacttt cacccaaaat attgctatca attcatatgt 3600tgattataga
ttatgtcagg ttcttaatta gtatacgttt tttgagagga ggttgttgat 3660attttttttt
tgaaagactt gtatataaat acgactcact taacattatg attgtgcgca 3720ttgaagaaga
aaatgcaaaa atcctctctt aattattaat taaaaggaca ttaatgataa 3780ttttacaatc
tttttttttt tttgagagca atgataattt tacaatcatc ttcaatgtga 3840tttcaattat
gttcctgagg ttacaaagtc gaactcttaa taccgagata acacctcatc 3900aacgtatact
ttcaattttt ttcactagtt tgattatttt cattaataat ttgagctaac 3960tttatcatat
catgtgaatg gagtgagatt aacaaaataa gattcactta agaacaaatg 4020gatctggatt
attcgaatat gagtcattac caactttact tgacctcttt tcactaaaaa 4080agatggttaa
gacataaaaa taaagtttag aaaatatcat aaaactgttt gaaaaagatc 4140aatttattat
tcataattaa agagtaaata agataggtta gacaccttca tccgaattca 4200aacccaagac
cttgtagtat gtgagttctt ttacataatt tttttacctt tacaaaaaag 4260gtaaaaaaaa
atagtataaa aaaaaaaaag atacataaat ttttttatac atgtctaatg 4320atacttcttt
tattgatcaa aacatcattt aaacaaaatc tttaaaagaa ctaatttcag 4380taatcataaa
atctttaaat ctaaaattca tcttgtaggg cttctttttg gtaactttca 4440ttttcatttc
ttttttggtt ttagactttt agaagtattt gccccattct ttcccaacac 4500ctctacttct
tcgagatttc cacatatccg tgtgattatg ttaagaaagt caactcttat 4560gtcaccttaa
aagttgattc taatacagtt ttgtcatcta tgaccacaat aagacactat 4620ataattaata
tcaatgatca ataaggtgac aaatattggg atataagatt aggtgtactt 4680cctctaaaaa
aaattaggtc cttagttagt ttgtaaaata gtattagaga tttagtgtat 4740attgttgtaa
tataagtata taaccacctc attatagagg cactctttat gatttgtaac 4800atacttaagg
ttaaatatgt ttttggtccc tgtaaatatg tcaacttttc gttttagttt 4860ctctaaaatt
tcctttcaac ttttagtccc tcaaaaaaat ttcatcttca cttttggtcc 4920ctcctttaaa
ataaactcat atgtagaatt catatatttg aataaaattt tgcagaaaaa 4980ttcttaatat
tataagaatc tctcccaaaa aaatttagaa ttttttaaca aaacatgaat 5040ttaatatgaa
tttttatatt tttgtggtta aaaatttata ttaaatttat gttttgttaa 5100aaaattctaa
tttttttttt ggaaaatatt tttacaatat tctacacatt tctgcacaat 5160ttcattaaaa
aaaaaaatac taaaattaac tttaaaatag gaaccaaaag tagtgattga 5220aaattttata
gggactaaaa gttgaaggaa aattttagag ggactaaaat gaaaagataa 5280ttagggacca
aaaacatatt taaccctact tattaattac catcaataca acaattatat 5340tcttctttca
ctaagtggag tcaaaagaaa tagtttatat gaaataataa tatcacaagt 5400cacctacaca
tataaatatt tgtataaagt gatggaacac acataaattt cattagataa 5460aaaaacgaat
aacacttgta cgtaactaat aatttatacg acatgactag actttaatgt 5520tttacataac
agaataaatt ttcacagtcc tataaagaat ttatggacgt gaggtgaaca 5580aacattgctg
aaacatgctt agcaaacaat gaaagcacca ccttaacagc ttcctatttt 5640aatacaaaaa
acaaccaatc aatgttccac aatatccctt tcataacacc atcatctaat 5700tgcatcacct
acggcatttt atttatttaa taatatcaaa aggtgaccaa aattgtcatt 5760aaattaatca
aaatgaccct ctttgcttga ttcaaaagct acaaattttt ttcattttta 5820aacctgtcca
ttaaatttcc acacacggtt ttctaacctt tgaagattaa tttttaacat 5880cacaatcttt
tctctttcat tgtacacaag agacaaatga atggtacatg gaatcttttg 5940agtatttttt
tcactcttag atgtcatagc cactgctcta atatttagta tttattaatt 6000ctattgacaa
aaacaaaaat cagaaaaata tttactatta gtaaatgcca agttctaaga 6060caaagtttat
ttatctatat gcaagatttc tttcaagttt cacgtgtaaa ttgttgtagg 6120aagctattcc
tttaactgtt tcatgttaat tagttactac atgcttttgg aataaaacag 6180ttcataaagt
ctttctttca tttccttggt ttttgagaag aaaaaatagt tgctagctta 6240ggttgaattt
tcattgagta ttcaaaattc tctcccttgg tttttgagaa gggtattgtg 6300atgaataaag
aattcagctg aaaattcatt tatgaaacct gaaagatctt agccaaaaac 6360ctgtgttgaa
aataagttca agcatcattc aagtgtttct ttataatcaa gcatctttaa 6420agtgttgaa
642992791DNAMedicago truncatula 92tcacaacatt tttatttcta taataataaa
tttgttattt tcagaatatt ttttatttaa 60taaaaataac caaacatttt ttcatcatta
caacaggtat cttatctatt cattcaattt 120aacttttact attttttgtt ttcattatac
ttaataatcc tcaacatcaa ttactaaaac 180atcctaaaaa ctgaattttt taataaaaaa
ggaatttcac ccctatgaaa ggatactatc 240ctttgagcat gtgtgtgaaa agatggcttt
tcctttataa tgttaacaat aaccttcaca 300caaaataata ataataaatc ctcttaagac
aaagtttagt gataatttgt cacatctaag 360tttattatga gcaagtcaaa gataactata
acttcataaa catttctgtt gtgacatcgt 420gcaaccatca caaagctacg ccgtatgatg
ggaggtggtc aaccacagaa ataaaaatga 480gcttaattag actctgatag agtacacgtt
tctactaaaa tcattccatc aatccaaaca 540cgaccacaat ggcttttaca aaactgttaa
ttaaagtgtg tttgtgactc gtcatcgttt 600gtaacgggaa cttagagaca tatttgatgt
aagacaacta tgtaaaccac tattaatgaa 660cataatattt taaccaaaag attgcatttt
ttttttctga agtaacaaca agaactcagt 720aactattagt acatttttca ttttcactcg
aactatacac gacttcctta ttggtgtaga 780tgggacaata g
791
User Contributions:
Comment about this patent or add new information about this topic: