Patent application title: GENETIC TARGETING IN NON-CONVENTIONAL YEAST USING AN RNA-GUIDED ENDONUCLEASE
Inventors:
IPC8 Class: AC12N1590FI
USPC Class:
1 1
Class name:
Publication date: 2020-06-18
Patent application number: 20200190540
Abstract:
Non-conventional yeasts are disclosed herein comprising at least one
RNA-guided endonuclease (RGEN) comprising at least one RNA component that
does not have a 5'-cap. This uncapped RNA component comprises a sequence
complementary to a target site sequence in a chromosome or episome in the
yeast. The RGEN can bind to, and optionally cleave, one or both DNA
strands at the target site sequence. An example of an RGEN herein is a
complex of a Cas9 protein with a guide RNA. A ribozyme is used in certain
embodiments to provide an RNA component lacking a 5'-cap. Further
disclosed are methods of genetic targeting in non-conventional yeast.Claims:
1. A non-conventional yeast comprising at least one RNA-guided
endonuclease (RGEN) comprising at least one RNA component that does not
have a 5'-cap, wherein the RNA component comprises a sequence
complementary to a target site sequence on a chromosome or episome in the
yeast, wherein the RGEN can bind to the target site sequence.
2. The non-conventional yeast of claim 1, wherein the RGEN can bind to and cleave the target site sequence.
3. The non-conventional yeast of claim 1, wherein said yeast is a member of a genus selected from the group consisting of Yarrowia, Pichia, Schwanniomyces, Kluyveromyces, Arxula, Trichosporon, Candida, Ustilago, Torulopsis, Zygosaccharomyces, Trigonopsis, Cryptococcus, Rhodotorula, Phaffia, Sporobolomyces, and Pachysolen.
4. The non-conventional yeast of claim 1, wherein the RGEN comprises a CRISPR (clustered regularly interspaced short palindromic repeats)-associated (Cas) protein-9 (Cas9) amino acid sequence.
5. A non-conventional yeast comprising a Cas endonuclease and a polynucleotide sequence comprising a promoter operably linked to at least one nucleotide sequence, wherein said nucleotide sequence comprises a DNA sequence encoding a ribozyme upstream of a DNA sequence encoding an RNA component, wherein said RNA component comprises a variable targeting domain complementary to a target site sequence on a chromosome or episome in the yeast, wherein the RNA component and the Cas endonuclease can form a RNA-guided endonuclease (RGEN), wherein said RGEN can bind to the target site sequence.
6. The non-conventional yeast of claim 5, wherein the RGEN can bind to and cleave the target site sequence.
7. The non-conventional yeast of claim 5, wherein the RNA transcribed from the nucleotide sequence autocatalytically removes the ribozyme to yield said RNA component, wherein said RNA component does not have a 5' cap.
8. The non-conventional yeast of claim 7, wherein the ribozyme is a hammerhead ribozyme, hepatitis delta virus ribozyme, group I intron ribozyme, RnaseP ribozyme, or hairpin ribozyme.
9. The non-conventional yeast of claim 5, wherein the RNA transcribed from the nucleotide sequence does not autocatalytically removes the ribozyme to yield a ribozyme-RNA component fusion molecule without a 5' cap.
10. A method for modifying a target site on a chromosome or episome in a non-conventional yeast, the method comprising providing to a non-conventional yeast a first recombinant DNA construct comprising a DNA sequence encoding a Cas endonuclease, and a second recombinant DNA construct comprising a DNA sequence encoding a ribozyme upstream of an RNA component, wherein the RNA transcribed from the second recombinant DNA construct autocatalytically removes the ribozyme to yield said RNA component, wherein the Cas9 endonuclease introduces a single or double-strand break at said target site.
11. A method for modifying a target site on a chromosome or episome in a non-conventional yeast, the method comprising providing to a non-conventional yeast a first recombinant DNA construct comprising a DNA sequence encoding a Cas endonuclease, and a second recombinant DNA construct comprising a DNA sequence encoding a ribozyme-RNA component fusion molecule, wherein said ribozyme-RNA component fusion molecule and Cas9 endonuclease can form a RGEN that introduces a single or double-strand break at said target site.
12. The method of any of claims 10-11, further comprising identifying at least one non-conventional yeast cell that has a modification at said target, wherein the modification includes at least one deletion, addition or substitution of one or more nucleotides in said target site.
13. The method of any of claims 10-11, further comprising providing a donor DNA to said yeast, wherein said donor DNA comprises a polynucleotide of interest.
14. The method of claim 13, further comprising identifying at least one yeast cell comprising in its chromosome or episome the polynucleotide of interest integrated at said target site.
15. A method for editing a nucleotide sequence on a chromosome or episome in a non-conventional yeast, the method comprising providing to a non-conventional yeast a polynucleotide modification template DNA, a first recombinant DNA construct comprising a DNA sequence encoding a Cas endonuclease, and a second recombinant DNA construct comprising a DNA sequence encoding a ribozyme upstream of an RNA component, wherein the RNA transcribed from the second recombinant DNA construct autocatalytically removes the ribozyme to yield said RNA component, wherein the Cas9 endonuclease introduces a single or double-strand break at a target site in the chromosome or episome of said yeast, wherein said polynucleotide modification template DNA comprises at least one nucleotide modification of said nucleotide sequence.
16. A method for silencing a nucleotide sequence on a chromosome or episome in a non-conventional yeast, the method comprising providing to a non-conventional yeast, at least a first recombinant DNA construct comprising a DNA sequence encoding an inactivated Cas9 endonuclease, and at least a second recombinant DNA construct comprising a promoter operably linked to at least one polynucleotide, wherein said at least one polynucleotide encodes a ribozyme-RNA component fusion molecule, wherein said ribozyme-RNA component fusion molecule and the inactivated Cas9 endonuclease can form a RGEN that binds to said nucleotide sequence in the chromosome or episome of said yeast, thereby blocking transcription of said nucleotide sequence.
17. A high throughput method for the production of multiple guide RNAs for gene modification in non-conventional yeast, the method comprising: a) providing a recombinant DNA construct comprising a promoter operably linked to, in 5' to 3' order, a first DNA sequence encoding a ribozyme, a second DNA sequence encoding a counterselection agent, a third DNA sequence encoding a CER domain of a guide RNA, and a terminator sequence; b) providing at least one oligonucleotide duplex to the recombinant DNA construct of (a), wherein said oligonucleotide duplex is originated from combining a first single stranded oligonucleotide comprising a DNA sequence capable of encoding a variable targeting domain (VT) of a guide RNA target sequence with a second single stranded oligonucleotide comprising the complementary sequence to the DNA sequence encoding the variable targeting domain; c) exchanging the counterselection agent of (a) with the at least one oligoduplex of (b), thereby creating a library of recombinant DNA constructs each comprising a DNA sequence capable of encoding a variable targeting domain of a guide RNA; and, d) transcribing the library of recombinant DNA constructs of (c), thereby creating a library of ribozyme-guideRNA molecules.
18. The method of claim 17, further comprising inducing the library of ribozyme-guide RNA molecules such that said molecules autocatalitically remove the ribozyme and any RNA sequence upstream of the ribozyme to yield a library of guide RNA molecules that do not contain 5' cap.
19. The method of claim 17, further comprising inducing the library of ribozyme-guide RNA molecules such that said molecules cleaves any RNA sequence upstream of the ribozyme to yield a ribozyme-gRNA fusion molecules that do not contain 5' cap.
20. A recombinant DNA sequence comprising (i) a polymerase-II promoter operably linked to (ii) a nucleotide sequence encoding a ribozyme and a guide RNA, wherein said ribozyme is upstream of said guide RNA, wherein RNA transcribed from the nucleotide sequence of (ii) autocatalically removes the ribozyme to yield said guide RNA, and wherein said guide RNA can form a RGEN that can recognize, bind to, and optionally cleave a target site in the genome of a non-conventional yeast.
Description:
[0001] This application claims the benefit of U.S. Provisional Application
No. 62/036652, filed Aug. 13, 2014, which is incorporated herein in its
entirety by reference.
FIELD OF INVENTION
[0002] The invention is in the field of molecular biology. Specifically, this invention pertains to genetic targeting in non-conventional yeast using an RNA-guided endonuclease (RGEN).
REFERENCE TO SEQUENCE LISTING SUBMITTED ELECTRONICALLY
[0003] The official copy of the sequence listing is submitted electronically via EFS-Web as an ASCII formatted sequence listing with a file named 20150721_CL6272WOPCT_SequenceListing_ST25.txt created on Jul. 21, 2015 and having a size of 411 kilobytes and is filed concurrently with the specification. The sequence listing contained in this ASCII-formatted document is part of the specification and is herein incorporated by reference in its entirety.
BACKGROUND
[0004] A powerful way to understand the function of a gene within an organism is to inhibit its expression. Inhibition of gene expression can be accomplished, for example, by interrupting or deleting the DNA sequence of the gene, resulting in "knock-out" of the gene (Austin et al., Nat. Genetics 36:921-924). Gene knock-outs mostly have been carried out through homologous recombination (HR), a technique applicable across a wide array of organisms from bacteria to mammals. Another tool for studying gene function can be through genetic "knock-in", which is also usually performed by HR. HR for purposes of gene targeting (knock-out or knock-in) can use the presence of an exogenously supplied DNA having homology with the target site.
[0005] Although gene targeting by HR is a powerful tool, it can be a complex, labor-intensive procedure. Most studies using HR have generally been limited to knock-out of a single gene rather than multiple genes in a pathway, since HR is generally difficult to scale-up in a cost-effective manner. This difficulty is exacerbated in organisms in which HR is not efficient. Such low efficiency typically forces practitioners to rely on selectable phenotypes or exogenous markers to help identify cells in which a desired HR event occurred.
[0006] HR for gene targeting has been shown to be enhanced when the targeted DNA site contains a double-strand break (Rudin et al., Genetics 122:519-534; Smih et al., Nucl. Acids Res. 23:5012-5019). Strategies for introducing double-strand breaks to facilitate HR-mediated DNA targeting have therefore been developed. For example, zinc finger nucleases have been engineered to cleave specific DNA sites leading to enhanced levels of HR at the site when a donor DNA was present (Bibikova et al., Science 300:764; Bibikova et al., Mol. Cell. Biol. 21:289-297). Similarly, artificial meganucleases (homing endonucleases) and transcription activator-like effector (TALE) nucleases have also been developed for use in HR-mediated DNA targeting (Epinat et al., Nucleic Acids Res. 31: 2952-2962; Miller et al., Nat. Biotech. 29:143-148).
[0007] Loci encoding CRISPR (clustered regularly interspaced short palindromic repeats) DNA cleavage systems have been found exclusively in about 40% of bacterial genomes and most archaeal genomes (Horvath and Barrangou, Science 327:167-170; Karginov and Hannon, Mol. Cell 37:7-19). In particular, the CRISPR-associated (Cas) RNA-guided endonuclease (RGEN), Cas9, of the type II CRIPSR system has been developed as a means for introducing site-specific DNA strand breaks ((U.S. Patent Application US 2015-0082478 A1, published on Mar. 19, 2015 and US 2015-0059010 A1, published on Feb. 26, 2015, both are hereby incorporated in its entirety by reference). The sequence of the RNA component of Cas9 can be designed such that Cas9 recognizes and cleaves DNA containing (i) sequence complementary to a portion of the RNA component and (ii) a protospacer adjacent motif (PAM) sequence.
[0008] Native Cas9/RNA complexes comprise two RNA sequences, a CRISPR RNA (crRNA) and a trans-activating CRISPR RNA (tracrRNA). A crRNA contains, in the 5'-to-3' direction, a unique sequence complementary to a target DNA site and a portion of a sequence encoded by a repeat region of the CRISPR locus from which the crRNA was derived. A tracrRNA contains, in the 5'-to-3' direction, a sequence that anneals with the repeat region of crRNA and a stem loop-containing portion. Recent work has led to the development of guide RNAs (gRNA), which are chimeric sequences containing, in the 5'-to-3' direction, a crRNA linked to a tracrRNA (U.S. Provisional Appl. No. 61/868,706, filed Aug. 22, 2013).
[0009] A method of expressing RNA components such as gRNA in eukaryotic cells for performing Cas9-mediated DNA targeting has been to use RNA polymerase III (Pol III) promoters, which allow for transcription of RNA with precisely defined, unmodified, 5'- and 3'-ends (DiCarlo et al., Nucleic Acids Res. 41: 4336-4343; Ma et al., Mol. Ther. Nucleic Acids 3:e161). This strategy has been successfully applied in cells of several different species including maize and soybean (U.S. Provisional Appl. No. 61/868,706, filed Aug. 22, 2013), as well as humans, mouse, zebrafish, Trichoderma and Sacchromyces cerevisiae.
[0010] Nevertheless, as now disclosed in the instant application, performing Cas9-mediated DNA targeting in non-conventional yeast such as Yarrowia lipolytica using Pol III promoter-transcribed gRNA has proven to be difficult. Other means for producing RNA components for Cas9 are therefore of interest for providing Cas9-mediated DNA targeting in non-conventional yeast.
SUMMARY OF INVENTION
[0011] In one embodiment, the disclosure concerns a non-conventional yeast comprising at least one RNA-guided endonuclease (RGEN) comprising at least one RNA component that does not have a 5'-cap, wherein the RNA component comprises a sequence complementary to a target site sequence on a chromosome or episome in the yeast, wherein the RGEN can bind to the target site sequence. The RGEN can also bind to and cleave the target site.
[0012] In one embodiment, the non-conventional yeast is a member of a genus selected from the group consisting of Yarrowia, Pichia, Schwanniomyces, Kluyveromyces, Arxula, Trichosporon, Candida, Ustilago, Torulopsis, Zygosaccharomyces, Trigonopsis, Cryptococcus, Rhodotorula, Phaffia, Sporobolomyces, and Pachysolen.
[0013] In one embodiment, the RGEN comprises a CRISPR (clustered regularly interspaced short palindromic repeats)-associated (Cas) protein-9 (Cas9) amino acid sequence. The Cas9 protein can be a Streptococcus Cas9 protein whereas the RNA component can comprise a guide RNA (gRNA) comprising a CRISPR RNA (crRNA) operably linked to a trans-activating CRISPR RNA (tracrRNA). A PAM (protospacer-adjacent motif) sequence can be adjacent to the target site sequence. The RGEN can also bind to and cleave the target site. The RNA transcribed from the nucleotide sequence can autocatalytically remove the ribozyme to yield said RNA component, wherein said RNA component does not have a 5' cap. Such ribozyme can include a hammerhead ribozyme, hepatitis delta virus ribozyme, group I intron ribozyme, RnaseP ribozyme, or hairpin ribozyme. The RNA transcribed from the nucleotide sequence can be an RNA molecule that does not autocatalytically removes the ribozyme to yield a ribozyme-RNA component fusion molecule without a 5' cap.
[0014] In one embodiment, the disclosure concerns a non-conventional yeast comprising a Cas endonuclease and a polynucleotide sequence comprising a promoter operably linked to at least one nucleotide sequence, wherein said nucleotide sequence comprises a DNA sequence encoding a ribozyme upstream of a DNA sequence encoding an RNA component, wherein said RNA component comprises a variable targeting domain complementary to a target site sequence on a chromosome or episome in the yeast, wherein the RNA component can form a RNA-guided endonuclease (RGEN) with the Cas endonuclease, wherein said RGEN can bind to the target site sequence.
[0015] In one embodiment, the method described herein comprises a method for modifying a target site on a chromosome or episome in a non-conventional yeast, the method comprising providing to a non-conventional yeast a first recombinant DNA construct comprising a DNA sequence encoding a Cas endonuclease, and a second recombinant DNA construct comprising a DNA sequence encoding a ribozyme upstream of an RNA component, wherein the RNA transcribed from the second recombinant DNA construct autocatalytically removes the ribozyme to yield said RNA component, wherein the Cas9 endonuclease introduces a single or double-strand break at said target site.
[0016] In one embodiment, the method described herein comprises a method for modifying a target site on a chromosome or episome in a non-conventional yeast, the method comprising providing to a non-conventional yeast a first recombinant DNA construct comprising a DNA sequence encoding a Cas endonuclease, and a second recombinant DNA construct comprising a DNA sequence encoding a ribozyme-RNA component fusion molecule, wherein said ribozyme-RNA component fusion molecule and Cas9 endonuclease can form a RGEN that introduces a single or double-strand break at said target site.
[0017] The method can further comprise identifying at least one non-conventional yeast cell that has a modification at said target, wherein the modification includes at least one deletion or substitution of one or more nucleotides in said target site. The method can further comprise providing a donor DNA to said yeast, wherein said donor DNA comprises a polynucleotide of interest.
[0018] In one embodiment, the method described herein comprises a method for editing a nucleotide sequence on a chromosome or episome in a non-conventional yeast, the method comprising providing to a non-conventional yeast a polynucleotide modification template DNA, a first recombinant DNA construct comprising a DNA sequence encoding a Cas endonuclease, and a second recombinant DNA construct comprising a DNA sequence encoding a ribozyme upstream of an RNA component, wherein the RNA transcribed from the second recombinant DNA construct autocatalytically removes the ribozyme to yield said RNA component, wherein the Cas9 endonuclease introduces a single or double-strand break at a target site in the chromosome or episome of said yeast, wherein said polynucleotide modification template DNA comprises at least one nucleotide modification of said nucleotide sequence.
[0019] In one embodiment, the method described herein comprises a method for silencing a nucleotide sequence on a chromosome or episome in a non-conventional yeast, the method comprising providing to a non-conventional yeast, at least a first recombinant DNA construct comprising a DNA sequence encoding an inactivated Cas9 endonuclease, and at least a second recombinant DNA construct comprising a promoter operably linked to at least one polynucleotide, wherein said at least one polynucleotide encodes a ribozyme-RNA component fusion molecule, wherein said ribozyme-RNA component fusion molecule and the inactivated Cas9 endonuclease can form a RGEN that binds to said nucleotide sequence in the chromosome or episome of said yeast, thereby blocking transcription of said nucleotide sequence.
[0020] In one embodiment, the method described herein comprises a high throughput method for the production of multiple guide RNAs for gene modification in non-conventional yeast, the method comprising: a) providing a recombinant DNA construct comprising a promoter operably linked to, in 5' to 3' order, a first DNA sequence encoding a ribozyme, a second DNA sequence encoding a counterselection agent, a third DNA sequence encoding a CER domain of a guide RNA, and a terminator sequence; b) providing at least one oligonucleotide duplex to the recombinant DNA construct of (a), wherein said oligonucleotide duplex is originated from combining a first single stranded oligonucleotide comprising a DNA sequence capable of encoding a variable targeting domain (VT) of a guide RNA target sequence with a second single stranded oligonucleotide comprising the complementary sequence to the DNA sequence encoding the variable targeting domain; c) exchanging the counterselection agent of (a) with the at least one oligoduplex of (b), thereby creating a library of recombinant DNA constructs each comprising a DNA sequence capable of encoding a variable targeting domain of a guide RNA; and,
[0021] d) transcribing the library of recombinant DNA constructs of (c), thereby creating a library of ribozyme-guideRNA
BRIEF DESCRIPTION OF THE DRAWINGS AND SEQUENCES
[0022] FIG. 1: A structural model of a single guide polynucleotide such as a single guide RNA (sgRNA). A variable targeting (VT) domain is shown in gray. A Cas9 endonuclease recognition (CER) domain is shown in black.
[0023] FIG. 2A: Yarrowia codon-optimized Cas9 expression cassette. FBA1 promoter is shown in black, and an open reading frame encoding Cas9 with a C-terminal SV40 nuclear localization signal (NLS) is shown in light grey.
[0024] FIG. 2B: Yarrowia-optimized pre-sgRNA RGR expression cassette (RGR, ribozyme-sgRNA-ribozyme). FBA1 promoter is shown in black, hammerhead (HH) ribozyme is shown in dark grey, single guide RNA (sgRNA) is shown in light grey, and the HDV ribozyme is shown with vertical stripes.
[0025] FIG. 2C: Yarrowia-optimized pre-sgRNA RG expression cassette (RG, ribozyme-sgRNA). FBA1 promoter is shown in black, hammerhead (HH) ribozyme is shown in dark grey, single guide RNA (sgRNA) is shown in light grey, and the Sup4 terminator is shown with vertical stripes.
[0026] FIG. 3A: pZUFCas9 (SEQ ID NO: 14) plasmid contains the Yarrowia codon-optimized Cas9 expression cassette indicated in FIG. 2A. Origins of replication (ARS 18, f1 ori, ColE1) are in cross-hatch, and selectable markers (Ura3, Amp) are in grey.
[0027] FIG. 3B: pZUFCas9/PolIII-sgRNA plasmid contains the Yarrowia codon-optimized Cas9 expression cassette indicated in FIG. 2A, and the YI Snr52 (Pol III promoter, indicated as "YI52")-sgRNA expression cassette for targeting Leu2-3 in Yarrowia. Though not shown, the sgRNA cassette also contained a Saccharomyces cerevisiae Sup4 gene transcription terminator sequence. Origins of replication (ARS 18, f1 ori, ColE1) are in cross-hatch, and selectable markers (Ura3, Amp) are in grey.
[0028] FIG. 3C: pRF38 plasmid (SEQ ID NO:19) contains a Yarrowia-optimized pre-sgRNA expression cassette (FBA1 promoter in white, RGR pre-sgRNA in diagonal stripes) of SEQ ID NO:18 for targeting the CAN1 gene in Y. lipolytica. Origins of replication (ARS 18, f1 ori, ColE1) are in cross-hatch, and selectable markers (Ura3, Amp) are in grey.
[0029] FIG. 4: Transient targeting efficiency in Y. lipolytica cells transformed with (i) pZUFCas9 (SEQ ID NO:14) alone or (ii) pZUFCas9 and a linear DNA comprising the Yarrowia-optimized pre-sgRNA expression cassette of SEQ ID NO:18 (refer to Example 3). The y axis indicates the frequency of cells transformed with pZUFCas9 (i.e., Ura.sup.+ cells) that are also canavanine-resistant (Can.sup.R). Error bars indicate standard deviation.
[0030] FIG. 5: Sequence maps of Cas9/sgRNA cleavage sites in the CAN1 coding region of Y. lipolytica cells transformed with pZUFCas9 (SEQ ID NO:14) and a linear DNA comprising the Yarrowia-optimized pre-sgRNA expression cassette of SEQ ID NO:18 (refer to Example 3). With reference to the wild type (WT) CAN1 sequence, the Can1-1 target site sequence is shown in bold and the PAM sequence is underlined. The predicted cleavage site is immediately 5' of the third nucleotide upstream of the PAM. Inserted nucleotides are italicized. The number and frequency of each class of mutants (1-18) are represented on the right hand side. The sequences shown in this figure are included in the Sequence Listing as SEQ ID NOs:71-89, as numbered in the figure.
[0031] FIG. 6: Transient targeting efficiency in Y. lipolytica cells transformed with (i) pZUFCas9 (SEQ ID NO:14) alone, (ii) pZUFCas9 and a linear DNA comprising the Yarrowia-optimized pre-sgRNA expression cassette of SEQ ID NO:18 (RGR), or (iii) pZUFCas9 and a linear DNA comprising the Yarrowia-optimized pre-sgRNA expression cassette of SEQ ID NO:25 (RG) (refer to Example 4). The y axis indicates the frequency of cells transformed with pZUFCas9 (i.e., Ura.sup.+ cells) that are also canavanine-resistant (Can.sup.R). Error bars indicate standard deviation.
[0032] FIG. 7: Comparison of mutation frequency by HR and NHEJ DNA repair pathways. The total frequency of Cas9/sgRNA-mediated DNA double-strand break repair by HR (dark grey) and NHEJ (light grey), when polynucleotide modification template DNA sequences were provided in the transformation, was determined (refer to Example 5). Error bars indicate standard deviation.
[0033] FIG. 8: Frequency of HR at a Cas9/sgRNA-mediated DNA double-strand break site by type of polynucleotide modification template DNA sequence. HR frequency using the point mutation template DNA(dark grey), frameshift template DNA (light grey), and large deletion template DNA (white) are shown (refer to Example 5). Error bars indicate standard deviation.
[0034] FIG. 9: Mutation frequency at the CAN1 locus in Yarrowia (repair at the Can1-1 site cleaved by Cas9/sgRNA) is not affected by the presence of polynucleotide modification template DNA. Canavanine-resistance frequency of cells resulting from transformations not including polynucleotide modification template DNA(dark grey, no template DNA) or including polynucleotide modification template DNA(light grey, with template DNA) (both transformation groups included pZUFCas9 (SEQ ID NO:14) and the RGR expression cassette [SEQ ID NO:18]) (refer to Example 5). The y axis indicates the frequency of cells transformed with pZUFCas9 (i.e., Ura.sup.+ cells) that are also canavanine-resistant (Can.sup.R). Error bars indicate standard deviation.
[0035] FIG. 10A: pRF84 plasmid (SEQ ID NO:41) contains the Yarrowia codon-optimized Cas9 expression cassette indicated in FIG. 2A and the Yarrowia-optimized RGR pre-sgRNA cassette of SEQ ID NO:18 (RGR pre-sgRNA coding region ["Can1 RGR"] shown with diagonals lines). Origins of replication (ARS 18, f1 ori, ColE1) are in cross-hatch, and selectable markers (Ura3, Amp) are in grey.
[0036] FIG. 10B: pRF85 plasmid (SEQ ID NO:42) contains the Yarrowia codon-optimized Cas9 expression cassette indicated in FIG. 2A and the Yarrowia-optimized RG pre-sgRNA cassette of SEQ ID NO:25 (RG pre-sgRNA coding region ["Can1 RG"] shown with diagonals lines). Origins of replication (ARS 18, f1 ori, ColE1) are in cross-hatch, and selectable markers (Ura3, Amp) are in grey.
[0037] FIG. 11: Mutation frequency at the CAN1 locus in Yarrowia by expressing Cas9 alone (pZUFCas9, SEQ ID NO:14), or expressing (i) Cas9 and (ii) RGR pre-sgRNA (pRF84) or RG sgRNA (pRF85) (refer to Example 6). The y axis indicates the frequency of cells transformed with each respective vector (i.e., Ura.sup.+ cells) that are also canavanine-resistant (Can.sup.R). Error bars indicate standard deviation.
[0038] FIG. 12A-12B: Example of a high-throughput cloning cassette to construct HDV-sgRNA fusion expression cassettes. FIG. 12-A illustrates in a black box a promoter sequence, in a gray box a DNA sequence encoding a HDV ribozyme, in the horizontally hatched box is a counterselectable marker for the cloning strain flanked by Type IIs restriction sites, in the black dotted box is the CER domain of the sgRNA for interaction with Cas9, and in the diagonally hatched box is the transcriptional terminator. When a DNA duplex containing a DNA sequence encoding a variable targeting domain and the appropriate overhangs for the TypeIIs restriction sites (vertically hatched box VT) is mixed with a plasmid, DNA Ligase, and the TypeIIs enzyme, the DNA sequence encoding a variable targeting domain (VT) will replace the counterselectable marker, thereby creating the HDV-sgRNA expression cassette (Promoter-HDV-VT-CER-Terminator). When the HDV-sgRNA expression cassette is transcribed, it produces an RNA transcript (HDV-VT-CER transcript) of which the HDV ribozyme cleaves off any 5' sequences. FIG. 12-B shows an example of a duplex DNA molecule (oligoduplex of SEQ ID NO: 99 and SEQ ID NO: 100) containing a DNA sequence encoding the Can1-1 target site and the appropriate overhangs for cloning into plasmid pRF291.
[0039] FIG. 13A-13B: Example of a high-throughput cloning cassette to construct HH-sgRNA expression cassettes. FIG. 13-shows in a black box the promoter sequence; in the horizontally hatched box is a counterselectable marker for the cloning strain flanked by Type IIs restriction sites; in the black dotted box is the CER domain of the sgRNA for interaction with Cas9, in the diagonally hatched box is the transcriptional terminator. When a DNA duplex containing the target-site specific hammerhead ribozyme encoding DNA (Vertically hatched box HH, the targeting sequence and the appropriate overhangs for the TypeIIs sites (dotted box TS) is mixed with the plasmid, DNA Ligase and the Type-II enzyme, the HH-target site duplex replaces the counterselectable marker, creating the HH-sgRNA expression cassette. When the expression cassette is transcribed, it produces a transcript and the HH ribozyme cleaves off itself and any 5' sequences. FIG. 13B shows an example of a duplex DNA molecule (of SEQ ID NO: 162 and SEQ ID NO: 163) containing a variable targeting domain for targeting the ds-temp-1 target site (VT) and the sequence specific HH ribozyme encoding DNA (HH), and the appropriate overhangs for cloning into plasmid pRF291.
[0040] FIG. 14: Example of Gel electrophoresis of Can1 locus from cells transformed with pRF303 (SEQ ID NO: 103) and Can1 short editing template (SEQ ID NO: 157). Lane marked MW is the molecular weight marker. Lanes 1-16 represent individual colonies from streak purified transformants. The higher MW band is the correct size for the WT Can1 locus (SEQ ID NO: 160) or the Can1 locus with small indel mutations. The smaller molecular weight band is the correct size for the Can1 locus edited (SEQ ID NO: 161) with the short Can1 editing template (SEQ ID NO: 157).
[0041] FIG. 15 shows a representative sequencing result of the plasmid and genomic URA3 genes from colony PCR and their alignment. Dash and bold indicate deletions and insertions, respectively. PAM sequence is underlined.
[0042] FIG. 16-A shows relative positions of the targeting sequences for the RGR-URA3.1, RGR-URA3.2, and RGR-URA3.3 within the Yarrowia URA3 gene. FIG. 16-B shows the sequencing result and sequence alignment of the colony PCR of the pYRH222 transformants that were grown on SC medium containing 5-FOA. Bold indicates insertions. PAM sequence is underlined. The "N"s represent mixed sequences. FIG. 16-C shows the sequencing result and sequence alignment of the colony PCR of the pYRH282 transformants that were grown on SC medium containing 5-FOA. Dashed line indicates deletion. PAM sequence is underlined. The "N"s represent mixed sequences. FIG. 16-D shows the sequencing result and sequence alignment of the colony PCR of the pYRH283 transformants that were grown on SC medium containing 5-FOA. Dashed line indicates deletion. PAM sequence is underlined. The "N"s represent mixed sequences.
[0043] FIG. 17 shows different migration of PCR products from pYRH282 (colony ID. 23 and 24) and pYRH283 (colony ID. 27 and 36) transformants. DNA size from ladder is indicated on the right.
[0044] FIG. 18 shows a representative sequencing result of the Can1 target sequences. Dash indicates deletions, respectively. PAM sequence is indicated in bold.
TABLE-US-00001 TABLE 1 Summary of Nucleic Acid and Protein SEQ ID Numbers Nucleic acid Protein Description SEQ ID NO. SEQ ID NO. Cas9 endonuclease recognition (CER) 1 domain of a gRNA. (80 bases) Y. lipolytica Leu2-1 target site, or 2 alternatively, DNA encoding Leu2-1 (20 bases) variable targetdomain of a gRNA. Y. lipolytica Leu2-2 target site, or 3 alternatively, DNA encoding Leu2-2 (20 bases) variable target domain of a gRNA. Y. lipolytica Leu2-3 target site, or DNA 4 encoding Leu2-2 variable target domain of a gRNA. (20 bases) S. cerevisiae Snr52 promoter. 5 (300 bases) S. cerevisiae Rpr1 promoter. 6 (300 bases) Y. lipolytica Snr52 promoter. 7 (300 bases) S. cerevisiae Sup4 terminator. 8 (20 bases) Streptococcus pyogenes Cas9 open reading 9 frame codon-optimized for expression in Y. lipolytica. (4107 bases) Streptococcus pyogenes Cas9 including C-terminal 10 11 linker and SV40 NLS ("Cas9-NLS"); open reading (4140 bases) (1379 aa) frame codon-optimized for expression in Y. lipolytica. Y. lipolytica FBA1 promoter. 12 (543 bases) Cas9-NLS expression cassette (promoter and 13 Cas9-NLS open reading frame). (4683 bases) pZUFCas9 plasmid. 14 (10706 bases) Hammerhead (HH) ribozyme. 15 (43 bases) HDV ribozyme. 16 (68 bases) Y. lipolytica Can1-1 target site, or 17 alternatively, DNA encoding Can1-1 variable target (20 bases) domain of a gRNA. FBA1 promoter: HH-sgRNA-HDV (RGR) pre- 18 sgRNA expression cassette, or alternatively, "RGR" (760 bases) expression cassette. pRF38 plasmid. 19 (6793 bases) RGR forward PCR primer. 20 (19 bases) RGR reverse PCR primer. 21 (19 bases) CAN1 forward PCR primer. 22 (20 bases) CAN1 reverse PCR primer. 23 (21 bases) CAN1 sequencing primer. 24 (21 bases) FBA1 promoter: HH-sgRNA-Sup4 terminator (RG) 25 pre-sgRNA expression cassette, or alternatively, (709 bases) "RG" expression cassette. Poly-A. 26 (10 bases) Poly-T. 27 (10 bases) CAN1 frameshift template DNA. 28 (100 bases) CAN1 frameshift template DNA complement. 29 (100 bases) CAN1 point mutation template DNA. 30 (106 bases) CAN1 point mutation template DNA complement. 31 (106 bases) CAN1 upstream template arm. 32 (655 bases) Forward PCR primer for amplifying CAN1 33 upstream template arm. (29 bases) Reverse PCR primer for amplifying CAN1 34 upstream template arm. (37 bases) CAN1 downstream template arm. 35 (658 bases) Forward PCR primer for amplifying CAN1 36 downstream teamplate DNA arm. (37 bases) Reverse PCR primer for amplifying CAN1 37 downstream template DNA arm. (22 bases) CAN1 large deletion template DNA. 38 (1276 bases) RG/RGR forward PCR primer. 39 (31 bases) RG/RGR reverse PCR primer. 40 (29 bases) pRF84 plasmid. 41 (11568 bases) pRF85 plasmid. 42 (11507 bases) RNA loop-forming sequence (GAAA). 43 (4 bases) RNA loop-forming sequence (CAAA). 44 (4 bases) RNA loop-forming sequence (AAAG). 45 (4 bases) Example of a Cas9 target site: 46 PAM sequence. (23 bases) PAM sequence NGG. 47 (3 bases) PAM sequence NNAGAA. 48 (6 bases) PAM sequence NNAGAAW. 49 (7 bases) PAM sequence NGGNG. 50 (5 bases) PAM sequence NNNNGATT. 51 (8 bases) PAM sequence NAAAAC. 52 (6 bases) PAM sequence NG. 53 (2 bases) TracrRNA mate sequence example 1. 54 (22 bases) TracrRNA mate sequence example 2. 55 (15 bases) TracrRNA mate sequence example 3. 56 (12 bases) TracrRNA mate sequence example 4. 57 (13 bases) TracrRNA example 1. 58 (60 bases) TracrRNA example 2. 59 (45 bases) TracrRNA example 3. 60 (32 bases) TracrRNA example 4. 61 (85 bases) TracrRNA example 5. 62 (77 bases) TracrRNA example 6. 63 (65 bases) gRNA example 1. 64 (131 bases) gRNA example 2. 65 (117 bases) gRNA example 3. 66 (104 bases) gRNA example 4. 67 (99 bases) gRNA example 5. 68 (81 bases) gRNA example 6. 69 (68 bases) gRNA example 7. 70 (100 bases) WT sequence shown in FIG. 5. 71 Sequence 1 shown in FIG. 5. 72 Sequence 2 shown in FIG. 5. 73 Sequence 3 shown in FIG. 5. 74 Sequence 4 shown in FIG. 5. 75 Sequence 5 shown in FIG. 5. 76 Sequence 6 shown in FIG. 5. 77 Sequence 7 shown in FIG. 5. 78 Sequence 8 shown in FIG. 5. 79 Sequence 9 shown in FIG. 5. 80 Sequence 10 shown in FIG. 5. 81 Sequence 11 shown in FIG. 5. 82 Sequence 12 shown in FIG. 5. 83 Sequence 13 shown in FIG. 5. 84 Sequence 14 shown in FIG. 5. 85 Sequence 15 shown in FIG. 5. 86 Sequence 16 shown in FIG. 5. 87 Sequence 17 shown in FIG. 5. 88 Sequence 18 shown in FIG. 5. 89 Primer Aarl-removal-1 90 Primer Aarl-removal-2 91 Plasmid pRF109 92 modified Aar1- Cas9 gene 93 Plasmid pRF141 94 High throughput cloning cassette 95 yl52 promoter 96 Escherichia coli counterselection cassette rpsL 97 Plasmid pRF291 98 Oligonucleotide Can1-1F 99 Oligonucleotide Can1-1R 100 Can1-1 target site and PAM sequence 101 Recombinant HDV-sgRNA expression cassette for 102 targeting Can1-1 Plasmid pRF303 103 HDV ribozyme-guide RNA 104 Can1 gene from Yarrowia lipolytica 105 Can1-2 target site 106 Sou2-1 target site 107 Sou2-2 target site 108 Variable targeting domain of Can1-2 109 Variable targeting domain of Sou2-1 110 Variable targeting domain of Sou2-2 111 Tgl1-1 target site 112 Acos10-1 target site 113 Fat1-1 target site 114 Variable targeting domain of ura3-1 115 URa3-1 target site 116 Cas9-SV40 NLS D10A H840A 117 Primer D10AF 118 Primer D10AR 119 Yarrowia optimized Cas9 D10A gene 120 Plasmid pRF111 121 Primer H840A1 122 Primer H840A2 123 Yarrowia codon optimized inactivated Cas9 gene 124 PRF143 125 Yarrowia optimized dsREDexpress ORF 126 Yarrowia optimized dsREDexpress cloning 127 fragment FBA1-dsREDexpress expression cassette 128 pRF165 129 FBA1 Yarrowia dsREDexpress cassette 130 from pRF165 on Pmel Notl fragment p2PO69 integration vector 131 pRF201 132 Ascl/Sphl integration fragment from pRF201 133 HY026 134 HY027 135 PRF169 136 GPD Promoter 137 GPD promoter-counterselectable marker-CER- 138 terminator ds-temp-1 target site 139 ds-temp-2 target site 140 ds-nontemp-3 target site 141 Hammerhead ribozyme-VTD fusion 142 Hammerhead ribozyme-VTD fusion 143 ds-temp-1F 144 ds-temp-1R 145 ds-temp-2F 146 ds-temp-2R 147 ds-nontemp-1F 148 ds-nontemp-1R 149 PRF296 150 PRF298 151 PRF300 152 PRF339 153 pRF341 154 PRF343 155 pRF80 156 short Can1 deletion editing template 157 Primer 80F 158 Primer 80R 159 Can1 locus WT (wild type) 160 Can1 Loci deletion strains 161 Forward Oligonucleotide of FIG. 13-B 162 Reverse Oligonucleotide of FIG. 13-B 163 pre-sgRNA URA3.1 (RGR-URA3.1) 164 URA3.1 target sequence 165
pre-sgRNA URA3.2 (RGR-URA3.2 166 URA3.2 target sequence 167 FBA1L promoter 168 acetohydroxyacid synthase gene 169 primer RHO705 170 primer RHO719 171 primer RHO733 172 primer RHO734 173 primer RHO707 174 fragment of wild type URA3 sequence 175 fragment of Plasmid URA3 from colony 1 176 fragment of Plasmid URA3 from colony 2 177 fragment of Plasmid URA3 from colony 3 178 fragment of Plasmid URA3 from colony 5 179 fragment of Plasmid URA3 from colony 6 180 fragment of Genomic URA3 from colony 1 181 fragment of Genomic URA3 from colony 2 182 fragment of Genomic URA3 from colony 3 183 fragment of Genomic URA3 from colony 5 184 fragment of Genomic URA3 from colony 6 185 hygromycin antibiotic resistant selection marker 186 TDH1 orGPD promoter 187 primer RHO804 188 primer RHO805 189 TDH1 promoter-RGR-URA3.3 fusion 190 pre-sgRNA URA3.3 (RGR-URA3.3) 191 primer RHO610 192 primer RHO611 193 primer RHO704 194 fragment of Wild type URA3 sequence 195 Fragment of URA3 sequence from colony 3 196 Fragment of URA3 sequence from colony 4 197 Fragment of URA3 sequence from colony 5 198 Fragment of URA3 sequence from colony 6 199 Fragment of URA3 sequence from colony 9 200 Fragment of URA3 sequence from colony 10 201 fragment of wild type URA3 sequence 202 Fragment of URA3 sequence from colony 23 203 Fragment of URA3 sequence from colony 24 204 fragment of wild type URA3 sequence 205 Fragment of URA3 sequence from colony 27 206 Fragment of URA3 sequence from colony 36 207 ARS18 sequence 208 Yarrowia codon optimized P. aeruginosa Csy4 209 Yarrowia FBA1 promoter 210 TDH1: 28bp-gCAN1-28bp 211 Csy4 recognition sequence 212 Csy4 recognition sequence flanked sgRNA 213 CAN1 target sequence 214 fragment of wild type CAN1 sequence 215 fragment of CAN1 from colony 14 216 fragment of CAN1 from colony 16 217 fragment of CAN1 from colony 18 218 fragment of CAN1 from colony 19 219 fragment of CAN1 from colony 24 220 fragment of CAN1 from colony 25 221 sgRNA processed by Csy4 222 5'-flanking sequence after Csy4 cleavage 223 3'-flanking sequence after Csy4 cleavage 224
DETAILED DESCRIPTION OF THE INVENTION
[0045] The disclosures of all cited patent and non-patent literature are incorporated herein by reference in their entirety.
[0046] As used herein, the term "invention" or "disclosed invention" is not meant to be limiting, but applies generally to any of the inventions defined in the claims or described herein. These terms are used interchangeably herein.
[0047] The term "non-conventional yeast" herein refers to any yeast that is not a Saccharomyces (e.g., S. cerevisiae) or Schizosaccharomyces yeast species. Non-conventional yeast are described in Non-Conventional Yeasts in Genetics, Biochemistry and Biotechnology: Practical Protocols (K. Wolf, K. D. Breunig, G. Barth, Eds., Springer-Verlag, Berlin, Germany, 2003), which is incorporated herein by reference. Non-conventional yeast in certain embodiments may additionally (or alternatively) be yeast that favor non-homologous end-joining (NHEJ) DNA repair processes over repair processes mediated by homologous recombination (HR). Definition of a non-conventional yeast along these lines--preference of NHEJ over HR--is further disclosed by Chen et al. (PLoS ONE 8:e57952), which is incorporated herein by reference. Preferred non-conventional yeast herein are those of the genus Yarrowia (e.g., Yarrowia lipolytica). The term "yeast" herein refers to fungal species that predominantly exist in unicellular form. Yeast can alternative be referred to as "yeast cells" herein.
[0048] The term "RNA-guided endonuclease" (RGEN) herein refers to a complex comprising at least one CRISPR (clustered regularly interspaced short palindromic repeats)-associated (Cas) protein and at least one RNA component. Briefly, an RNA component of an RGEN contains sequence that is complementary to a DNA sequence in a target site sequence. Based on this complementarity, an RGEN can specifically recognize and cleave a particular DNA target site sequence. An RGEN herein can comprise Cas protein(s) and suitable RNA component(s) of any of the four known CRISPR systems (Horvath and Barrangou, Science 327:167-170) such as a type I, II, or III CRISPR system. An RGEN in preferred embodiments comprises a Cas9 endonuclease (CRISPR II system) and at least one RNA component (e.g., a crRNA and tracrRNA, or a gRNA).
[0049] The term "CRISPR" (clustered regularly interspaced short palindromic repeats) refers to certain genetic loci encoding factors of class I, II, or III DNA cleavage systems, for example, used by bacterial and archaeal cells to destroy foreign DNA (Horvath and Barrangou, Science 327:167-170). Components of CRISPR systems are taken advantage of herein for DNA targeting in non-conventional yeast cells.
[0050] The terms "type II CRISPR system" and "type II CRISPR-Cas system" are used interchangeably herein and refer to a DNA cleavage system utilizing a Cas9 endonuclease in complex with at least one RNA component. For example, a Cas9 can be in complex with a CRISPR RNA (crRNA) and a trans-activating CRISPR RNA (tracrRNA). In another example, a Cas9 can be in complex with a guide RNA. Thus, crRNA, tracrRNA, and guide RNA are non-limiting examples of RNA components herein.
[0051] The term CRISPR-associated ("Cas") endonuclease herein refers to a Cas protein encoded by a Cas gene. A Cas endonuclease, when in complex with a suitable RNA component, is capable of cleaving all or part of a specific DNA target sequence in certain embodiments. For example, it is can be capable of introducing a single- or double-strand break in a specific DNA target sequence; it can alternatively be characterized as being able to cleave one or both strands of a specific DNA target sequence. A Cas endonuclease unwinds the DNA duplex at the target sequence and cleaves at least one DNA strand, as mediated by recognition of the target sequence by a crRNA or guide RNA that is in complex with the Cas. Such recognition and cutting of a target sequence by a Cas endonuclease typically occurs if the correct protospacer-adjacent motif (PAM) is located at or adjacent to the 3' end of the DNA target sequence. Alternatively, a Cas protein herein may lack DNA cleavage or nicking activity, but can still specifically bind to a DNA target sequence when complexed with a suitable RNA component. A preferred Cas protein herein is Cas9.
[0052] "Cas9" (formerly referred to as Cas5, Csn1, or Csx12) herein refers to a Cas endonuclease of a type II CRISPR system that forms a complex with crRNA and tracrRNA, or with a guide RNA, for specifically recognizing and cleaving all or part of a DNA target sequence. Cas9 protein comprises an RuvC nuclease domain and an HNH (H--N--H) nuclease domain, each of which cleaves a single DNA strand at a target sequence (the concerted action of both domains leads to DNA double-strand cleavage, whereas activity of one domain leads to a nick). In general, the RuvC domain comprises subdomains I, II and III, where domain I is located near the N-terminus of Cas9 and subdomains II and III are located in the middle of the protein, flanking the HNH domain (Hsu et al, Cell 157:1262-1278). "Apo-Cas9" refers to Cas9 that is not complexed with an RNA component. Apo-Cas9 can bind DNA, but does so in a non-specific manner, and cannot cleave DNA (Sternberg et al., Nature 507:62-67).
[0053] In some embodiments, the Cas endonuclease can comprises a modified form of the Cas9 polypeptide. The modified form of the Cas9 polypeptide can include an amino acid change (e.g., deletion, insertion, or substitution) that reduces the naturally-occurring nuclease activity of the Cas9 protein. For example, in some instances, the modified form of the Cas9 protein has less than 50%, less than 40%, less than 30%, less than 20%, less than 10%, less than 5%, or less than 1% of the nuclease activity of the corresponding wild-type Cas9 polypeptide (US patent application US20140068797 A1, published on Mar. 6, 2014). In some cases, the modified form of the Cas9 polypeptide has no substantial nuclease activity and is referred to as catalytically "inactivated Cas9" or "deactivated cas9 (dCas9)." Catalytically inactivated Cas9 variants include Cas9 variants that contain mutations in the HNH and RuvC nuclease domains. These catalytically inactivated Cas9 variants are capable of interacting with sgRNA and binding to the target site in vivo but cannot cleave either strand of the target DNA. This mode of action, binding but not breaking the DNA can be used to transiently decrease the expression of specific loci in the chromosome without causing permanent genetic changes.
[0054] A catalytically inactive Cas9 can be fused to a heterologous sequence (US patent application US20140068797 A1, published on Mar. 6, 2014). Suitable fusion partners include, but are not limited to, a polypeptide that provides an activity that indirectly increases transcription by acting directly on the target DNA or on a polypeptide (e.g., a histone or other DNA-binding protein) associated with the target DNA. Additional suitable fusion partners include, but are not limited to, a polypeptide that provides for methyltransferase activity, demethylase activity, acetyltransferase activity, deacetylase activity, kinase activity, phosphatase activity, ubiquitin ligase activity, deubiquitinating activity, adenylation activity, deadenylation activity, SUMOylating activity, deSUMOylating activity, ribosylation activity, deribosylation activity, myristoylation activity, or demyristoylation activity. Further suitable fusion partners include, but are not limited to, a polypeptide that directly provides for increased transcription of the target nucleic acid (e.g., a transcription activator or a fragment thereof, a protein or fragment thereof that recruits a transcription activator, a small molecule/drug-responsive transcription regulator, etc.). A catalytically inactive Cas9 can also be fused to a FokI nuclease to generate double strand breaks (Guilinger et al. Nature biotechnology, volume 32, number 6, June 2014).
[0055] The term "RNA component" herein refers to an RNA component of an RGEN containing a ribonucleic acid sequence that is complementary to a strand of a DNA target sequence. This complementary sequence is referred to herein as a "guide sequence" or "variable targeting domain" sequence. Examples of suitable RNA components herein include crRNA and guide RNA. Also, an RNA component herein does not have a 5'-cap.
[0056] The term "CRISPR RNA" (crRNA) herein refers to an RNA sequence that can form a complex with one or more Cas proteins (e.g., Cas9) and provides DNA binding specificity to the complex. A crRNA provides DNA binding specificity since it contains "guide sequence" ("variable targeting domain" [VT]) that is complementary to a strand of a DNA target sequence. A crRNA further comprises a "repeat sequence" ("tracr RNA mate sequence") encoded by a repeat region of the CRISPR locus from which the crRNA was derived. A repeat sequence of a crRNA can anneal to sequence at the 5'-end of a tracrRNA. crRNA in native CRISPR systems is derived from a "pre-crRNA" transcribed from a CRISPR locus. A pre-crRNA comprises spacer regions and repeat regions; spacer regions contain unique sequence complementary to a DNA target site sequence. Pre-crRNA in native systems is processed to multiple different crRNAs, each with a guide sequence along with a portion of repeat sequence. CRISPR systems utilize crRNA, for example, for DNA targeting specificity.
[0057] The term "trans-activating CRISPR RNA" (tracrRNA) herein refers to a non-coding RNA used in type II CRISPR systems, and contains, in the 5'-to-3' direction, (i) a sequence that anneals with the repeat region of CRISPR type II crRNA and (ii) a stem loop-containing portion (Deltcheva et al., Nature 471:602-607).
[0058] The terms "guide RNA" (gRNA) and "single guide RNA" (sgRNA) are used interchangeably herein. A gRNA herein may refer to a chimeric sequence containing a crRNA operably linked to a tracrRNA. Alternatively, a gRNA can refer to a synthetic fusion of a crRNA and a tracrRNA, for example. Jinek et al. (Science 337:816-821) disclose some gRNA features. A gRNA can also be characterized in terms of having a guide sequence (variable targeting domain) followed by a Cas endonuclease recognition (CER) domain [WO2015026883, published on Feb. 26, 2015, U.S. Patent Application US 2015-0082478 A1, published on Mar. 19, 2015 and US 2015-0059010 A1, published on Feb. 26, 2015, all are hereby incorporated in its entirety by reference]. A CER domain comprises a tracrRNA mate sequence followed by a tracrRNA sequence.
[0059] The terms "target site sequence", "target site", "target sequence", "target DNA", "DNA target sequence", "target locus", "genomic target site", "genomic target sequence", "genomic target locus", and "protospacer" are used interchangeably herein. A target site sequence refers to a polynucleotide sequence on a chromosome, episome, or any other DNA molecule in the genome of a non-conventional yeast to which an RGEN herein can recognize, bind to, and optionally nick or cleave. A target site can be (i) an endogenous/native site in the yeast, (ii) heterologous to the yeast and therefore not be naturally occurring in the genome, or (iii) found in a heterologous genomic location compared to where it natively occurs.
[0060] A target site sequence herein is at least 13 nucleotides in length and has a strand with sufficient complementarity to a guide sequence (of a crRNA or gRNA) to be capable of hybridizing with the guide sequence and direct sequence-specific binding of a Cas protein or Cas protein complex to the target sequence (if a suitable PAM is adjacent to the target sequence in certain embodiments). A cleavage/nick site (applicable with a endonucleolytic or nicking Cas) can be within the target sequence (e.g., using a Cas9) or a cleavage/nick site could be outside of the target sequence (e.g., using a Cas9 fused to a heterologous endonuclease domain such as one derived from a FokI enzyme).
[0061] An "artificial target site" or "artificial target sequence" herein refers to a target sequence that has been introduced into the genome of a non-conventional yeast.
[0062] An artificial target sequence in some embodiments can be identical in sequence to a native target sequence in the genome of the yeast, but be located at a different position (a heterologous position) in the genome or it can different from the native target sequence if located at the same position in the genome of the yeast.
[0063] An "episome" herein refers to a DNA molecule that can exist in a yeast cell autonomously (can replicate and pass on to daughter cells) apart from the chromosomes of the yeast cell. Episomal DNA can be either native or heterologous to a yeast cell. Examples of native episomes herein include mitochondrial DNA (mtDNA). Examples of heterologous episomes herein include plasmids and yeast artificial chromosomes (YACs).
[0064] A "protospacer adjacent motif" (PAM) herein refers to a short sequence that is recognized by an RGEN herein. The sequence and length of a PAM herein can differ depending on the Cas protein or Cas protein complex used, but are typically 2, 3, 4, 5, 6, 7, or 8 nucleotides long, for example.
[0065] The terms "5'-cap" and "7-methylguanylate (m.sup.7G) cap" are used interchangeably herein. A 7-methylguanylate residue is located on the 5' terminus of messenger RNA (mRNA) in eukaryotes. RNA polymerase II (Pol II) transcribes mRNA in eukaryotes. Messenger RNA capping occurs generally as follows: The most terminal 5' phosphate group of the mRNA transcript is removed by RNA terminal phosphatase, leaving two terminal phosphates. A guanosine monophosphate (GMP) is added to the terminal phosphate of the transcript by a guanylyl transferase, leaving a 5'-5' triphosphate-linked guanine at the transcript terminus. Finally, the 7-nitrogen of this terminal guanine is methylated by a methyl transferase.
[0066] The terminology "not having a 5'-cap" herein is used to refer to RNA having, for example, a 5'-hydroxyl group instead of a 5'-cap. Such RNA can be referred to as "uncapped RNA", for example. Uncapped RNA can better accumulate in the nucleus following transcription, since 5'-capped RNA is subject to nuclear export. One or more RNA components herein are uncapped.
[0067] The terms "ribozyme" and "ribonucleic acid enzyme" are used interchangeably herein. A ribozyme refers to one or more RNA sequences that form secondary, tertiary, and/or quaternary structure(s) that can cleave RNA at a specific site. A ribozyme includes a "self-cleaving ribozyme" that is capable of cleaving RNA at a cis-site relative to the ribozyme sequence (i.e., auto-catalytic, or self-cleaving). The general nature of ribozyme nucleolytic activity has been described (e.g., Lilley, Biochem. Soc. Trans. 39:641-646). A "hammerhead ribozyme" (HHR) herein may comprise a small catalytic RNA motif made up of three base-paired stems and a core of highly conserved, non-complementary nucleotides that are involved in catalysis. Pley et al. (Nature 372:68-74) and Hammann et al. (RNA 18:871-885), which are incorporated herein by reference, disclose hammerhead ribozyme structure and activity. A hammerhead ribozyme herein may comprise a "minimal hammerhead" sequence as disclosed by Scott et al. (Cell 81:991-1002, incorporated herein by reference), for example.
[0068] In one embodiment of the disclosure, the method comprises a method of targeting an RNA-guided endonuclease (RGEN) to a target site sequence on a chromosome or episome in a non-conventional yeast, said method comprising providing to said yeast a first recombinant DNA construct comprising a DNA sequence encoding a Cas endonuclease, and at least a second recombinant DNA construct comprising a DNA sequence encoding a ribozyme upstream of an RNA component, wherein the RNA transcribed from the second recombinant DNA construct autocatalytically removes the ribozyme to yield said RNA component , wherein the RNA component and the Cas9 endonuclease can form an RGEN that can bind to all or part of the target site sequence.
[0069] In one embodiment of the disclosure the non-conventional yeast comprises a polynucleotide sequence comprising a promoter operably linked to at least one nucleotide sequence, wherein said nucleotide sequence comprises a DNA sequence encoding a ribozyme upstream of a DNA sequence encoding an RNA component, wherein said RNA component comprises a variable targeting domain complementary to a target site sequence on a chromosome or episome in the yeast, wherein the RNA component can form a RNA-guided endonuclease (RGEN), wherein said RGEN can bind to all or part of the target site sequence, wherein the RNA transcribed from the nucleotide sequence autocatalytically removes the ribozyme to yield said RNA component, wherein said RNA component does not have a 5' cap.
[0070] A ribozyme also includes a ribozyme that cleaves 5' of its own sequence removing any preceding transcript but leaving the ribozyme sequence intact.
[0071] In one embodiment of the disclosure the non-conventional yeast comprises a polynucleotide sequence comprising a promoter operably linked to at least one nucleotide sequence, wherein said nucleotide sequence comprises a DNA sequence encoding a ribozyme upstream of a DNA sequence encoding an RNA component, wherein said RNA component comprises a variable targeting domain complementary to a target site sequence on a chromosome or episome in the yeast, wherein the RNA component can form a RNA-guided endonuclease (RGEN), wherein said RGEN can bind to all or part of the target site sequence, wherein the RNA transcribed from the nucleotide sequence autocatalytically removes the ribozyme to yield said RNA component, wherein the RNA transcribed from the nucleotide sequence does not autocatalytically removes the ribozyme to yield a ribozyme-RNA component fusion molecule without a 5' cap.
[0072] The terms "targeting", "gene targeting", "DNA targeting", "editing", "gene editing" and "DNA editing" are used interchangeably herein. DNA targeting herein may be the specific introduction of an indel, knock-out, or knock-in at a particular DNA sequence, such as in a chromosome or episome of a non-conventional yeast. In general, DNA targeting can be performed herein by cleaving one or both strands at a specific DNA sequence in a non-conventional yeast with a Cas protein associated with a suitable RNA component. Such DNA cleavage, if a double-strand break (DSB), can prompt NHEJ processes which can lead to indel formation at the target site. Also, regardless of whether the cleavage is a single-strand break (SSB) or DSB, HR processes can be prompted if a suitable donor DNA polynucleotide is provided at the DNA nick or cleavage site. Such an HR process can be used to introduce a knock-out or knock-in at the target site, depending on the sequence of the donor DNA polynucleotide.
[0073] Alternatively, DNA targeting herein can refer to specific association of a Cas/RNA component complex herein to a target DNA sequence, where the Cas protein does or does not cut a DNA strand (depending on the status of the Cas protein's endonucleolytic domains).
[0074] The term "indel" herein refers to an insertion or deletion of nucleotide bases in a target DNA sequence in a chromosome or episome. Such an insertion or deletion may be of 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more bases, for example. An indel in certain embodiments can be even larger, at least about 20, 30, 40, 50, 60, 70 p, 80, 90, or 100 bases If an indel is introduced within an open reading frame (ORF) of a gene, oftentimes the indel disrupts wild type expression of protein encoded by the ORF by creating a frameshift mutation.
[0075] The terms "knock-out", "gene knock-out" and "genetic knock-out" are used interchangeably herein. A knock-out represents a DNA sequence of a non-conventional yeast herein that has been rendered partially or completely inoperative by targeting with a Cas protein; such a DNA sequence prior to knock-out could have encoded an amino acid sequence, or could have had a regulatory function (e.g., promoter), for example. A knock-out may be produced by an indel (by NHEJ), or by specific removal of sequence that reduces or completely destroys the function of sequence at or near the targeting site. A knocked out DNA polynucleotide sequence herein can alternatively be characterized as being partially or totally disrupted or downregulated, for example.
[0076] In one embodiment, the disclosure concerns a non-conventional yeast comprising a Cas9 endonuclease and a polynucleotide sequence comprising a promoter operably linked to at least one nucleotide sequence, wherein said nucleotide sequence comprises a DNA sequence encoding a ribozyme upstream of a DNA sequence encoding an RNA component, wherein said RNA component comprises a variable targeting domain complementary to a target site sequence on a chromosome or episome in the yeast, wherein the RNA component can form a RNA-guided endonuclease (RGEN) with the Cas endonuclease, wherein said RGEN can bind to the target site sequence. The Cas9 endonuclease can be introduced in the yeast as a protein or can be introduced via a recombinant DNA construct. The Cas9 endonuclease can be expressed in a stable or transient manner by any method known in the art.
[0077] The terms "knock-in", "gene knock-in" and "genetic knock-in" are used interchangeably herein. A knock-in represents the replacement or insertion of a DNA sequence at a specific DNA sequence in a non-conventional yeast by targeting with a Cas protein. Examples of knock-ins are a specific insertion of a heterologous amino acid coding sequence in a coding region of a gene, or a specific insertion of a transcriptional regulatory element in a genetic locus.
[0078] The terms "donor polynucleotide", "donor DNA", "targeting polynucleotide" and "targeting DNA" are used interchangeably herein. A donor polynucleotide refers to a DNA sequence that comprises at least one sequence that is homologous to a sequence at or near a DNA target site (e.g., a sequence specifically targeted by a Cas protein herein). A donor DNA polynucleotide that includes a polynucleotide that comprises at least one nucleotide modification when compared to the nucleotide sequence to be edited, is also referred to as a "polynucleotide modification template", "polynucleotide modification template DNA" or "template DNA". A nucleotide modification can be at least one nucleotide substitution, addition or deletion. Optionally, the polynucleotide modification template can further comprise homologous nucleotide sequences flanking the at least one nucleotide modification, wherein the flanking homologous nucleotide sequences provide sufficient homology to the desired nucleotide sequence to be edited.
[0079] A "homologous sequence" within a donor polynucleotide herein can comprise or consist of a sequence of at least about 25 nucleotides that have 100% identity with a sequence at or near a target site, or at least about 95%, 96%, 97%, 98%, or 99% identity with a sequence at or near a target site.
[0080] In certain embodiments, a donor DNA polynucleotide can have two homologous sequences separated by a sequence that is heterologous to sequence at a target site. These two homologous sequences of such a donor polynucleotide can be referred to as "homology arms", which flank the heterologous sequence. HR between a target site and a donor polynucleotide with two homology arms typically results in the replacement of a sequence at the target site with the heterologous sequence of the donor polynucleotide (target site sequence located between DNA sequences homologous to the homology arms of the donor polynucleotide is replaced by the heterologous sequence of the donor polynucleotide). In a donor polynucleotide with two homology arms, the arms can be separated by 1 or more nucleotides (i.e., the heterologous sequence in the donor polynucleotide can be at least 1 nucleotide in length). Various HR procedures that can be performed in a non-conventional yeast herein are disclosed, for example, in DNA Recombination: Methods and Protocols: 1st Edition (H. Tsubouchi, Ed., Springer-Verlag, New York, 2011), which is incorporated herein by reference.
[0081] In one embodiment, the donor DNA construct comprises a polynucleotide of
[0082] Interest to be inserted into the target site of a Cas endonuclease, wherein the donor DNA construct further comprises a first and a second region of homology that flank the polynucleotide of Interest. The first and second regions of homology of the donor DNA share homology to a first and a second genomic region, respectively, present in or flanking the target site of the plant genome.
[0083] The terms "percent by volume", "volume percent", "vol %" and "v/v %" are used interchangeably herein. The percent by volume of a solute in a solution can be determined using the formula: [(volume of solute)/(volume of solution)].times.100%.
[0084] The terms "percent by weight", "weight percentage (wt %)" and "weight-weight percentage (% w/w)" are used interchangeably herein. Percent by weight refers to the percentage of a material on a mass basis as it is comprised in a composition, mixture, or solution.
[0085] The terms "polynucleotide", "polynucleotide sequence", and "nucleic acid sequence" are used interchangeably herein. These terms encompass nucleotide sequences and the like. A polynucleotide may be a polymer of DNA or RNA that is single- or double-stranded, that optionally contains synthetic, non-natural or altered nucleotide bases. A polynucleotide may be comprised of one or more segments of cDNA, genomic DNA, synthetic DNA, or mixtures thereof. Nucleotides (ribonucleotides or deoxyribonucleotides) can be referred to by a single letter designation as follows: "A" for adenylate or deoxyadenylate (for RNA or DNA, respectively), "C" for cytidylate or deoxycytidylate (for RNA or DNA, respectively), "G" for guanylate or deoxyguanylate (for RNA or DNA, respectively), "U" for uridylate (for RNA), "T" for deoxythymidylate (for DNA), "R" for purines (A or G), "Y" for pyrimidines (C or T), "K" for G or T, "H" for A or C or T, "I" for inosine, "W" for A or T, and "N" for any nucleotide (e.g., N can be A, C, T, or G, if referring to a DNA sequence; N can be A, C, U, or G, if referring to an RNA sequence). Any RNA sequence (e.g., crRNA, tracrRNA, gRNA) disclosed herein may be encoded by a suitable DNA sequence.
[0086] The term "isolated" as used herein refers to a polynucleotide or polypeptide molecule that has been completely or partially purified from its native source. In some instances, the isolated polynucleotide or polypeptide molecule is part of a greater composition, buffer system or reagent mix. For example, the isolated polynucleotide or polypeptide molecule can be comprised within a cell or organism in a heterologous manner.
[0087] The term "gene" as used herein refers to a DNA polynucleotide sequence that expresses an RNA (RNA is transcribed from the DNA polynucleotide sequence) from a coding region, which RNA can be a messenger RNA (encoding a protein) or a non-protein-coding RNA (e.g., a crRNA, tracrRNA, or gRNA herein). A gene may refer to the coding region alone, or may include regulatory sequences upstream and/or downstream to the coding region (e.g., promoters, 5'-untranslated regions, 3'-transcription terminator regions). A coding region encoding a protein can alternatively be referred to herein as an "open reading frame" [ORF]. A gene that is "native" or "endogenous" refers to a gene as found in nature with its own regulatory sequences; such a gene is located in its natural location in the genome of a host cell. A "chimeric" gene refers to any gene that is not a native gene, comprising regulatory and coding sequences that are not found together in nature (i.e., the regulatory and coding regions are heterologous with each other). Accordingly, a chimeric gene may comprise regulatory sequences and coding sequences that are derived from different sources, or regulatory sequences and coding sequences derived from the same source, but arranged in a manner different than that found in nature. A "foreign" or "heterologous" gene refers to a gene that is introduced into the host organism by gene transfer. Foreign genes can comprise native genes inserted into a non-native organism, native genes introduced into a new location within the native host, or chimeric genes. The polynucleotide sequences in certain embodiments disclosed herein are heterologous. A "transgene" is a gene that has been introduced into the genome by a transformation procedure. A "codon-optimized" open reading frame has its frequency of codon usage designed to mimic the frequency of preferred codon usage of the host cell.
[0088] A native amino acid sequence or polynucleotide sequence is naturally occurring, whereas a non-native amino acid sequence or polynucleotide sequence does not occur in nature.
[0089] "Regulatory sequences" as used herein refer to nucleotide sequences located upstream of a gene's transcription start site (e.g., promoter), 5' untranslated regions, and 3' non-coding regions, and which may influence the transcription, processing or stability, or translation of an RNA transcribed from the gene. Regulatory sequences herein may include promoters, enhancers, silencers, 5' untranslated leader sequences, introns, polyadenylation recognition sequences, RNA processing sites, effector binding sites, stem-loop structures, and other elements involved in regulation of gene expression. One or more regulatory elements herein may be heterologous to a coding region herein.
[0090] A "promoter" as used herein refers to a DNA sequence capable of controlling the transcription of RNA from a gene. In general, a promoter sequence is upstream of the transcription start site of a gene. Promoters may be derived in their entirety from a native gene, or be composed of different elements derived from different promoters found in nature, or even comprise synthetic DNA segments. Promoters that cause a gene to be expressed in most cell types at most times are commonly referred to as "constitutive promoters". One or more promoters herein may be heterologous to a coding region herein.
[0091] A "strong promoter" as used herein refers to a promoter that can direct a relatively large number of productive initiations per unit time, and/or is a promoter driving a higher level of gene transcription than the average transcription level of the genes in the yeast.
[0092] The terms "3' non-coding sequence", "transcription terminator" and "terminator" as used herein refer to DNA sequences located downstream of a coding sequence. This includes polyadenylation recognition sequences and other sequences encoding regulatory signals capable of affecting mRNA processing or gene expression.
[0093] The term "cassette" as used herein refers to a promoter operably linked to a sequence encoding a protein or non-protein-coding RNA. A cassette may optionally be operably linked to a 3' non-coding sequence.
[0094] The terms "upstream" and "downstream" as used herein with respect to polynucleotides refer to "5' of" and "3' of", respectively.
[0095] The term "expression" as used herein refers to (i) transcription of RNA (e.g., mRNA or a non-protein coding RNA such as crRNA, tracrRNA or gRNA) from a coding region, or (ii) translation of a polypeptide from mRNA.
[0096] When used to describe the expression of a gene or polynucleotide sequence, the terms "down-regulation", "disruption", "inhibition", "inactivation", and "silencing" are used interchangeably herein to refer to instances when the transcription of the polynucleotide sequence is reduced or eliminated. This results in the reduction or elimination of RNA transcripts from the polynucleotide sequence, which results in a reduction or elimination of protein expression derived from the polynucleotide sequence (if the gene comprised an ORF). Alternatively, down-regulation can refer to instances where protein translation from transcripts produced by the polynucleotide sequence is reduced or eliminated. Alternatively still, down-regulation can refer to instances where a protein expressed by the polynucleotide sequence has reduced activity. The reduction in any of the above processes (transcription, translation, protein activity) in a cell can be by about 40%, 50%, 60%, 70%, 80%, 90%, 95%, or 100% relative to the transcription, translation, or protein activity of a suitable control cell. Down-regulation can be the result of a targeting event as disclosed herein (e.g., indel, knock-out), for example.
[0097] The terms "control cell" and "suitable control cell" are used interchangeably herein and may be referenced with respect to a cell in which a particular modification (e.g., over-expression of a polynucleotide, down-regulation of a polynucleotide) has been made (i.e., an "experimental cell"). A control cell may be any cell that does not have or does not express the particular modification of the experimental cell. Thus, a control cell may be an untransformed wild type cell or may be genetically transformed but does not express the genetic transformation. For example, a control cell may be a direct parent of the experimental cell, which direct parent cell does not have the particular modification that is in the experimental cell. Alternatively, a control cell may be a parent of the experimental cell that is removed by one or more generations. Alternatively still, a control cell may be a sibling of the experimental cell, which sibling does not comprise the particular modification that is present in the experimental cell.
[0098] The term "increased" as used herein may refer to a quantity or activity that is at least 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19% or 20% more than the quantity or activity for which the increased quantity or activity is being compared. The terms "increased", "greater than", and "improved" are used interchangeably herein. The term "increased" can be used to characterize the expression of a polynucleotide encoding a protein, for example, where "increased expression" can also mean "over-expression".
[0099] The term "operably linked" as used herein refers to the association of two or more nucleic acid sequences such that that the function of one is affected by the other. For example, a promoter is operably linked with a coding sequence when it is capable of affecting the expression of that coding sequence. That is, the coding sequence is under the transcriptional control of the promoter. Coding sequences can be operably linked to regulatory sequences, for example. Also, for example, a crRNA can be operably linked (fused to) a tracrRNA herein such that the tracrRNA mate sequence of the crRNA anneals with 5' sequence of the tracrRNA. Such operable linkage may comprise a suitable loop-forming sequence such as GAAA (SEQ ID NO:43), CAAA (SEQ ID NO:44), or AAAG (SEQ ID NO:45).
[0100] The term "recombinant" as used herein refers to an artificial combination of two otherwise separated segments of sequence, e.g., by chemical synthesis or by the manipulation of isolated segments of nucleic acids by genetic engineering techniques. The terms "recombinant", "transgenic", "transformed", "engineered" or "modified for exogenous gene expression" are used interchangeably herein.
[0101] Methods for preparing recombinant constructs/vectors herein (e.g., a DNA polynucleotide encoding a ribozyme-RNA component cassette herein, or a DNA polynucleotide encoding a Cas protein herein) can follow standard recombinant DNA and molecular cloning techniques as described by J. Sambrook and D. Russell (Molecular Cloning: A Laboratory Manual, 3rd Edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 2001); T. J. Silhavy et al. (Experiments with Gene Fusions, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1984); and F. M. Ausubel et al. (Short Protocols in Molecular Biology, 5th Ed. Current Protocols, John Wiley and Sons, Inc., NY, 2002).
[0102] The term "transformation" as used herein refers to the transfer of a nucleic acid molecule into a host organism or host cell. For example, the nucleic acid molecule may be one that replicates autonomously in a cell, or that integrates into the genome of the host organism/cell, or that exists transiently in a cell without replicating or integrating. Non-limiting examples of nucleic acid molecules suitable for transformation are disclosed herein, such as plasmids and linear DNA molecules. Host organisms/cells (e.g., non-conventional yeast herein) containing the transformed nucleic acid fragments can be referred to as "transgenic", "recombinant", "transformed", or as "transformants".
[0103] The terms "sequence identity" or "identity" as used herein with respect to polynucleotide or polypeptide sequences refer to the nucleic acid residues or amino acid residues in two sequences that are the same when aligned for maximum correspondence over a specified comparison window. Thus, "percentage of sequence identity" or "percent identity" refers to the value determined by comparing two optimally aligned sequences over a comparison window, wherein the portion of the polynucleotide or polypeptide sequence in the comparison window may comprise additions or deletions (i.e., gaps) as compared to the reference sequence (which does not comprise additions or deletions) for optimal alignment of the two sequences. The percentage is calculated by determining the number of positions at which the identical nucleic acid base or amino acid residue occurs in both sequences to yield the number of matched positions, dividing the number of matched positions by the total number of positions in the window of comparison and multiplying the results by 100 to yield the percentage of sequence identity. It would be understood that, when calculating sequence identity between a DNA sequence and an RNA sequence, T residues of the DNA sequence align with, and can be considered "identical" with, U residues of the RNA sequence. For purposes of determining percent complementarity of first and second polynucleotides, one can obtain this by determining (i) the percent identity between the first polynucleotide and the complement sequence of the second polynucleotide (or vice versa), for example, and/or (ii) the percentage of bases between the first and second polynucleotides that would create canonical Watson and Crick base pairs.
[0104] The Basic Local Alignment Search Tool (BLAST) algorithm, which is available online at the National Center for Biotechnology Information (NCBI) website, may be used, for example, to measure percent identity between or among two or more of the polynucleotide sequences (BLASTN algorithm) or polypeptide sequences (BLASTP algorithm) disclosed herein. Alternatively, percent identity between sequences may be performed using a Clustal algorithm (e.g., ClustalW or ClustalV). For multiple alignments using a Clustal method of alignment, the default values may correspond to GAP PENALTY=10 and GAP LENGTH PENALTY=10. Default parameters for pairwise alignments and calculation of percent identity of protein sequences using a Clustal method may be KTUPLE=1, GAP PENALTY=3, WINDOW=5 and DIAGONALS SAVED=5. For nucleic acids, these parameters may be KTUPLE=2, GAP PENALTY=5, WINDOW=4 and DIAGONALS SAVED=4. Alternatively still, percent identity between sequences may be performed using an EMBOSS algorithm (e.g., needle) with parameters such as GAP OPEN=10, GAP EXTEND=0.5, END GAP PENALTY=false, END GAP OPEN=10, END GAP EXTEND=0.5 using a BLOSUM matrix (e.g., BLOSUM62).
[0105] Herein, a first sequence that is "complementary" to a second sequence can alternatively be referred to as being in the "antisense" orientation with the second sequence.
[0106] Various polypeptide amino acid sequences and polynucleotide sequences are disclosed herein as features of certain embodiments of the disclosed invention. Variants of these sequences that are at least about 70-85%, 85-90%, or 90%-95% identical to the sequences disclosed herein can be used. Alternatively, a variant amino acid sequence or polynucleotide sequence can have at least 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identity with a sequence disclosed herein. The variant amino acid sequence or polynucleotide sequence has the same function/activity of the disclosed sequence, or at least about 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% of the function/activity of the disclosed sequence.
[0107] All the amino acid residues disclosed herein at each amino acid position of Cas9 proteins herein are examples. Given that certain amino acids share similar structural and/or charge features with each other (i.e., conserved), the amino acid at each position in a Cas9 can be as provided in the disclosed sequences or substituted with a conserved amino acid residue ("conservative amino acid substitution") as follows:
[0108] 1. The following small aliphatic, nonpolar or slightly polar residues can substitute for each other: Ala (A), Ser (S), Thr (T), Pro (P), Gly (G);
[0109] 2. The following polar, negatively charged residues and their amides can substitute for each other: Asp (D), Asn (N), Glu (E), Gln (Q);
[0110] 3. The following polar, positively charged residues can substitute for each other: His (H), Arg (R), Lys (K);
[0111] 4. The following aliphatic, nonpolar residues can substitute for each other: Ala (A), Leu (L), Ile (I), Val (V), Cys (C), Met (M); and
[0112] 5. The following large aromatic residues can substitute for each other: Phe (F), Tyr (Y), Trp (W).
[0113] As shown below in Example 1, performing Cas9-mediated DNA targeting in non-conventional yeast such as Yarrowia lipolytica using Pol III promoter-transcribed gRNA has proven to be difficult. Other means for producing RNA components for Cas9 are therefore of interest for providing Cas9-mediated DNA targeting in non-conventional yeast.
[0114] Embodiments of the disclosed invention concern a non-conventional yeast comprising at least one RNA-guided endonuclease (RGEN) comprising at least one RNA component that does not have a 5'-cap. This uncapped RNA component comprises a sequence complementary to a target site sequence in a chromosome or episome in the yeast. The RGEN can bind to, and optionally cleave, all or part of a target site sequence.
[0115] Significantly, RGEN-mediated DNA targeting occur in these non-conventional yeast, as manifested by indel formation or increased levels of homologous recombination (HR) between the RGEN target site sequence and exogenously supplied donor DNA sequence. Prior to the instant disclosure, non-conventional yeast were generally intractable to gene targeting by HR, typically relying on random, infrequent DNA breaks at a target site to prompt its HR with a donor DNA. This is due to non-conventional yeast having low HR activity and instead favoring non-homologous end-joining (NHEJ) activity. Thus, genetic targeting by HR in non-conventional yeast may now be just as feasible as it has been in conventional yeasts such as S. cerevisiae that favor HR over NHEJ processes. While not wishing to be bound to any theory, it is believed that providing at least one RNA component without a 5'-cap in a non-conventional yeast cell leads to better accumulation of the RNA component in the nucleus, where it can participate in RGEN-mediated DNA targeting.
[0116] RNA processing tools, such as a Csy4 (Cash)-based RNA processing tool have been described (Nissim et al. 2014.Molecular Cell 54:698-710). Csy4 binds pre-crRNA stem-loop repeats and specifically cleaves its cognate substrate to produce mature crRNA's that contain a spacer sequence flanked by fragments of the repeat (Sternberg et al. 2012. RNA,18(4):661-72). Disclosed herein (Example 12) is the use of a Csy4 to process a guide RNA such that it results in an RNA component (guide RNA) that does not have a 5'cap, wherein the RNA component can form an RGEN that is can bind to and cleave a target site in the genome of a non-conventional yeast.
[0117] A non-conventional yeast herein is not a "conventional" ("model") yeast such as a Saccharomyces (e.g., S. cerevisiae, which is also known as budding yeast, baker's yeast, and/or brewer's yeast) or Schizosaccharomyces (e.g., S. pombe, which is also known as fission yeast) species. Conventional yeasts in certain embodiments are yeast that favor HR DNA repair processes over repair processes mediated by NHEJ.
[0118] Non-conventional yeast in certain embodiments can be yeast that favor NHEJ DNA repair processes over repair processes mediated by HR. Conventional yeasts such as Saccharomyces cerevisiae and Schizosaccharomyces pombe typically exhibit specific integration of donor DNA with short flanking homology arms (30-50 bp) with efficiencies routinely over 70%, whereas non-conventional yeasts such as Pichia pastoris, Hansenula polymorpha, Yarrowia lipolytica, Pichia stipitis and Kluyveromyces lactis usually show specific integration with similarly structured donor DNA at efficiencies of less than 1% (Chen et al., PLoS ONE 8:e57952). Thus, a preference for HR processes can be gauged, for example, by transforming yeast with a suitable donor DNA and determining the degree to which it is specifically recombined with a genomic site predicted to be targeted by the donor DNA. A preference for NHEJ (or low preference for HR), for example, would be manifest if such an assay yielded a high degree of random integration of the donor DNA in the yeast genome. Assays for determining the rate of specific (HR-mediated) and/or random (NHEJ-mediated) integration of DNA in yeast are known in the art (e.g., Ferreira and Cooper, Genes Dev. 18:2249-2254; Corrigan et al., PLoS ONE 8:e69628; Weaver et al., Proc. Natl. Acad. Sci. U.S.A. 78:6354-6358; Keeney and Boeke, Genetics 136:849-856).
[0119] Given their low level of HR activity, non-conventional yeast herein can (i) exhibit a rate of specific targeting by a suitable donor DNA having 30-50 bp flanking homology arms of less than about 1%, 2%, 3%, 4%, 5%, 6%, 7%, or 8%, for example, and/or (ii) exhibit a rate of random integration of the foregoing donor DNA of more than about 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, or 75%, for example. These rates of (i) specific targeting and/or (ii) random integration of a suitable donor DNA can characterize a non-conventional yeast as it exists before being provided an RGEN as disclosed herein. An aim for providing an RGEN to a non-conventional yeast in certain embodiments is to create site-specific DNA single-strand breaks (SSB) or double-strand breaks (DSB) for biasing the yeast toward HR at the specific site. Thus, a non-conventional yeast comprising a suitable RGEN herein typically should exhibit an increased rate of HR with a particular donor DNA. Such an increased rate can be at least about 2-, 3-, 4-, 5-, 6-, 7-, 8-, 9-, or 10-fold higher than the rate of HR in a suitable control (e.g., same non-conventional yeast transformed with the same donor DNA, but lacking a suitable RGEN).
[0120] A non-conventional yeast in certain aspects herein can be one that reproduces asexually (anamorphic) or sexually (teleomorphic). While non-conventional yeast herein typically exist in unicellular form, certain types of these yeast may optionally be able to form pseudohyphae (strings of connected budding cells). In still further aspects, a non-conventional yeast may be haploid or diploid, and/or may have the ability to exist in either of these ploidy forms.
[0121] A non-conventional yeast herein can be cultivated following any means known in the art, such as described in Non-Conventional Yeasts in Genetics, Biochemistry and Biotechnology: Practical Protocols (K. Wolf, K. D. Breunig, G. Barth, Eds., Springer-Verlag, Berlin, Germany, 2003), Yeasts in Natural and Artificial Habitats (J. F. T. Spencer, D. M. Spencer, Eds., Springer-Verlag, Berlin, Germany, 1997), and/or Yeast Biotechnology: Diversity and Applications (T. Satyanarayana, G. Kunze, Eds., Springer, 2009), all of which are incorporated herein by reference.
[0122] Non-limiting examples of non-conventional yeast herein include yeasts of the following genera: Yarrowia, Pichia, Schwanniomyces, Kluyveromyces, Arxula, Trichosporon, Candida, Ustilago, Torulopsis, Zygosaccharomyces, Trigonopsis, Cryptococcus, Rhodotorula, Phaffia, Sporobolomyces, and Pachysolen. A suitable example of a Yarrowia species is Y. lipolytica. Suitable examples of Pichia species include P. pastoris, P. methanolica, P. stipitis, P. anomala and P. angusta. Suitable examples of Schwanniomyces species include S. casteffii, S. alluvius, S. hominis, S. occidentalis, S. capriottii, S. etchellsii, S. polymorphus, S. pseudopolymorphus, S. vanrijiae and S. yamadae. Suitable examples of Kluyveromyces species include K. lactis, K. marxianus, K. fragilis, K. drosophilarum, K. thermotolerans, K. phaseolosporus, K. vanudenii, K. waltii, K. africanus and K. polysporus. Suitable examples of Arxula species include A. adeninivorans and A. terrestre. Suitable examples of Trichosporon species include T. cutaneum, T. capitatum, T. inkin and T. beemeri. Suitable examples of Candida species include C. albicans, C. ascalaphidarum, C. amphixiae, C. antarctica, C. argentea, C. atlantica, C. atmosphaerica, C. blattae, C. bromeliacearum, C. carpophila, C. carvajalis, C. cerambycidarum, C. chauliodes, C. corydali, C. dosseyi, C. dubliniensis, C. ergatensis, C. fructus, C. glabrata, C. fermentati, C. guiffiermondii, C. haemulonii, C. insectamens, C. insectorum, C. intermedia, C. jeffresii, C. kefyr, C. keroseneae, C. krusei, C. lusitaniae, C. lyxosophila, C. maltosa, C. marina, C. membranifaciens, C. milleri, C. mogii, C. oleophila, C. oregonensis, C. parapsilosis, C. quercitrusa, C. rugosa, C. sake, C. shehatea, C. temnochilae, C. tenuis, C. theae, C. tolerans, C. tropicalis, C. tsuchiyae, C. sinolaborantium, C. sojae, C. subhashii, C. viswanathii, C. utilis, C. ubatubensis and C. zemplinina. Suitable examples of Ustilago species include U. avenae, U. esculenta, U. hordei, U. maydis, U. nuda and U. tritici. Suitable examples of Torulopsis species include T. geochares, T. azyma, T. glabrata and T. candida. Suitable examples of Zygosaccharomyces species include Z. bailii, Z. bisporus, Z. cidri, Z. fermentati, Z. florentinus, Z. kombuchaensis, Z. lentus, Z. meffis, Z. microellipsoides, Z. mrakii, Z. pseudorouxii and Z. rouxii. Suitable examples of Trigonopsis species include T. variabilis. Suitable examples of Cryptococcus species include C. laurentii, C. albidus, C. neoformans, C. gattii, C. uniguttulatus, C. adeliensis, C. aerius, C. albidosimilis, C. antarcticus, C. aquaticus, C. ater, C. bhutanensis, C. consortionis, C. curvatus, C. phenolicus, C. skinneri, C. terreus and C. vishniacci. Suitable examples of Rhodotorula species include R. acheniorum, R. tula, R. acuta, R. americana, R. araucariae, R. arctica, R. armeniaca, R. aurantiaca, R. auriculariae, R. bacarum, R. benthica, R. biourgei, R. bogoriensis, R. bronchialis, R. buffonii, R. calyptogenae, R. chungnamensis, R. cladiensis, R. coraffina, R. cresolica, R. crocea, R. cycloclastica, R. dairenensis, R. diffluens, R. evergladiensis, R. ferulica, R. foliorum, R. fragaria, R. fujisanensis, R. futronensis, R. gelatinosa, R. glacialis, R. glutinis, R. gracilis, R. graminis, R. grinbergsii, R. himalayensis, R. hinnulea, R. histolytica, R. hylophila, R. incarnata, R. ingeniosa, R. javanica, R. koishikawensis, R. lactosa, R. lameffibrachiae, R. laryngis, R. lignophila, R. lini, R. longissima, R. ludwigii, R. lysinophila, R. marina, R. martyniae-fragantis, R. matritensis, R. meli, R. minuta, R. mucilaginosa, R. nitens, R. nothofagi, R. oryzae, R. pacifica, R. paffida, R. peneaus, R. philyla, R. phylloplana, R. pilatii, R. pilimanae, R. pinicola, R. plicata, R. polymorpha, R. psychrophenolica, R. psychrophila, R. pustula, R. retinophila, R. rosacea, R. rosulata, R. rubefaciens, R. rubella, R. rubescens, R. rubra, R. rubrorugosa, R. rufula, R. rutila, R. sanguines, R. sanniei, R. sartoryi, R. silvestris, R. simplex, R. sinensis, R. slooffiae, R. sonckii, R. straminea, R. subericola, R. suganii, R. taiwanensis, R. taiwaniana, R. terpenoidalis, R. terrea, R. texensis, R. tokyoensis, R. ulzamae, R. vaniffica, R. vuilleminii, R. yarrowii, R. yunnanensis and R. zsoltii. Suitable examples of Phaffia species include P. rhodozyma. Suitable examples of Sporobolomyces species include S. alborubescens, S. bannaensis, S. beijingensis, S. bischofiae, S. clavatus, S. coprosmae, S. coprosmicola, S. corallinus, S. dimmenae, S. dracophylfi, S. elongatus, S. gracilis, S. inositophilus, S. johnsonii, S. koalae, S. magnisporus, S. novozealandicus, S. odorus, S. patagonicus, S. productus, S. roseus, S. sasicola, S. shibatanus, S. singularis, S. subbrunneus, S. symmetricus, S. syzygii, S. taupoensis, S. tsugae, S. xanthus and S. yunnanensis. Suitable examples of Pachysolen species include P. tannophilus.
[0123] Yarrowia lipolytica is preferred in certain embodiments disclosed herein. Examples of suitable Y. lipolytica include the following isolates available from the American Type Culture Collection (ATCC, Manassas, Va.): strain designations ATCC #20362, #8862, #8661, #8662, #9773, #15586, #16617, #16618, #18942, #18943, #18944, #18945, #20114, #20177, #20182, #20225, #20226, #20228, #20327, #20255, #20287, #20297, #20315, #20320, #20324, #20336, #20341, #20346, #20348, #20363, #20364, #20372, #20373, #20383, #20390, #20400, #20460, #20461, #20462, #20496, #20510, #20628, #20688, #20774, #20775, #20776, #20777, #20778, #20779, #20780, #20781, #20794, #20795, #20875, #20241, #20422, #20423, #32338, #32339, #32340, #32341, #34342, #32343, #32935, #34017, #34018, #34088, #34922, #34922, #38295, #42281, #44601, #46025, #46026, #46027, #46028, #46067, #46068, #46069, #46070, #46330, #46482, #46483, #46484, #46436, #60594, #62385, #64042, #74234, #76598, #76861, #76862, #76982, #90716, #90811, #90812, #90813, #90814, #90903, #90904, #90905, #96028, #201241, #201242, #201243, #201244, #201245, #201246, #201247, #201249, and/or #201847.
[0124] A Y. lipolytica, as well as any other non-conventional yeast herein, may be oleaginous (e.g., produce at least 25% of its dry cell weight as oil) and/or produce one or more polyunsaturated fatty acids (e.g., omega-6 or omega-3). Such oleaginy may be a result of the yeast being genetically engineered to produce an elevated amount of lipids compared to its wild type form. Examples of oleaginous Y. lipolytica strains are disclosed in U.S. Pat. Appl. Publ. Nos. 2009/0093543, 2010/0317072, 2012/0052537 and 2014/0186906, which are herein incorporated by reference.
[0125] Embodiments disclosed herein for non-conventional yeast can also be applied to other microorgansims such as fungi. Fungi in certain embodiments can be fungi that favor NHEJ DNA repair processes over repair processes mediated by HR. A fungus herein can be a Basidiomycetes, Zygomycetes, Chytridiomycetes, or Ascomycetes fungus. Examples of filamentous fungi herein include those of the genera Trichoderma, Chrysosporium, Thielavia, Neurospora (e.g., N. crassa, N. sitophila), Cryphonectria (e.g., C. parasitica), Aureobasidium (e.g., A. pullulans), Filibasidium, Piromyces, Cryplococcus, Acremonium, Tolypocladium, Scytalidium, Schizophyllum, Sporotrichum, Penicillium (e.g., P. bilaiae, P. camemberti, P. candidum, P. chrysogenum, P. expansum, P. funiculosum, P. glaucum, P. marneffei, P. roqueforti, P. verrucosum, P. viridicatum), Gibberella (e.g., G. acuminata, G. avenacea, G. baccata, G. circinata, G. cyanogena, G. fujikuroi, G. intricans, G. pulicaris, G. stilboides, G. tricincta, G. zeae), Myceliophthora, Mucor (e.g., M. rouxii, M. circinelloides), Aspergillus (e.g., A. niger, A. oryzae, A. nidulans, A. flavus, A. lentulus, A. terreus, A. clavatus, A. fumigatus), Fusarium (e.g., F. graminearum, F. oxysporum, F. bubigenum, F. solani, F. oxysporum, F. verticillioides, F. proliferatum, F. venenatum), and Humicola, and anamorphs and teleomorphs thereof. The genus and species of fungi herein can be defined, if desired, by morphology as disclosed in Barnett and Hunter (Illustrated Genera of Imperfect Fungi, 3rd Edition, Burgess Publishing Company, 1972). A fungus can optionally be characterized as a pest/pathogen, such as a pest/pathogen of an animal (e.g., human).
[0126] Trichoderma species in certain aspects herein include T. aggressivum, T. amazonicum, T. asperellum, T. atroviride, T. aureoviride, T. austrokoningii, T. brevicompactum, T. candidum, T. caribbaeum, T. catoptron, T. cremeum, T. ceramicum, T. cerinum, T. chlorosporum, T. chromospermum, T. cinnamomeum, T. citrinoviride, T. crassum, T. cremeum, T. dingleyeae, T. dorotheae, T. effusum, T. erinaceum, T. estonicum, T. fertile, T. gelatinosus, T. ghanense, T. hamatum, T. harzianum, T. helicum, T. intricatum, T. konilangbra, T. koningii, T. koningiopsis, T. longibrachiatum, T. longipile, T. minutisporum, T. oblongisporum, T. ovalisporum, T. petersenii, T. phyllostahydis, T. piluliferum, T. pleuroticola, T. pleurotum, T. polysporum, T. pseudokoningii, T. pubescens, T. reesei, T. rogersonii, T. rossicum, T. saturnisporum, T. sinensis, T. sinuosum, T. spirale, T. stramineum, T. strigosum, T. stromaticum, T. surrotundum, T. taiwanense, T. thailandicum, T. thelephoricolum, T. theobromicola, T. tomentosum, T. velutinum, T. virens, T. viride and T. viridescens. A Trichoderma species herein can be cultivated and/or manipulated as described in Trichoderma: Biology and Applications (P. K. Mukherjee et al., Eds., CABI, Oxfordshire, UK, 2013), for example, which is incorporated herein by reference.
[0127] A microbial cell in certain embodiments is an algal cell. For example, an algal cell can be from any of the following: Chlorophyta (green algae), Rhodophyta (red algae), Phaeophyceae (brown algae), Bacillariophycaeae (diatoms), and Dinoflagellata (dinoflagellates). An algal cell can be of a microalgae (e.g., phytoplankton, microphytes, or planktonic algae) or macroalgae (kelp, seaweed) in other aspects. As further examples, an algal cell herein can be a Porphyra (purple laver), Palmaria species such as P. palmata (dulse), Arthrospira species such as A. platensis (spirulina), Chlorella (e.g., C. protothecoides), a Chondrus species such as C. crispus (Irish moss), Aphanizomenon, Sargassum, Cochayuyo, Botryococcus (e.g., B. braunii), Dunaliella (e.g., D. tertiolecta), Gracilaria, Pleurochrysis (e.g., P. carterae), Ankistrodesmus, Cyclotella, Hantzschia, Nannochloris, Nannochloropsis, Nitzschia, Phaeodactylum (e.g., P. tricornutum), Scenedesmus, Stichococcus, Tetraselmis (e.g., T. suecica), Thalassiosira (e.g., T. pseudonana), Crypthecodinium (e.g., C. cohnii), Neochloris (e.g., N. oleoabundans), or Schiochytrium. An algal species herein can be cultivated and/or manipulated as described in Thompson (Algal Cell Culture. Encyclopedia of Life Support System (EOLSS), Biotechnology Vol 1, available at eolss.net/sample-chapters internet site), for example, which is incorporated herein by reference.
[0128] A non-conventional yeast herein comprising at least one RGEN comprising at least one RNA component that does not have a 5'-cap does not occur in nature. Without wishing to be held to any particular theory, it is believed that such yeast do not occur naturally since RGENs herein have only been found to occur in prokaryotes, for example. Also, it is believed that certain embodiments of yeast do not naturally occur by virtue of comprising an RGEN with an RNA component comprising a gRNA, which represents a heterologous linkage of a crRNA with a tracrRNA.
[0129] An RGEN herein refers to a complex comprising at least one Cas protein and at least one RNA component. Examples of suitable Cas proteins include one or more Cas endonucleases of type I, II, or III CRISPR systems (Bhaya et al., Annu. Rev. Genet. 45:273-297, incorporated herein by reference). A type I CRISPR Cas protein can be a Cas3 or Cas4 protein, for example. A type II CRISPR Cas protein can be a Cas9 protein, for example. A type III CRISPR Cas protein can be a Cas10 protein, for example. A Cas9 protein is used in preferred embodiments. A Cas protein in certain embodiments may be a bacterial or archaeal protein. Type I-III CRISPR Cas proteins herein are typically prokaryotic in origin; type I and III Cas proteins can be derived from bacterial or archaeal species, whereas type II Cas proteins (i.e., a Cas9) can be derived from bacterial species, for example. In other embodiments, suitable Cas proteins include one or more of Cas1, Cas1B, Cas2, Cas3, Cas4, Cas5, Cas6, Cas7, Cas8, Cas9, Cas10, Csy1, Csy2, Csy3, Cse1, Cse2, Csc1, Csc2, Csa5, Csn2, Csm2, Csm3, Csm4, Csm5, Csm6, Cmr1, Cmr3, Cmr4, Cmr5, Cmr6, Csb1, Csb2, Csb3, Csx17, Csx14, Csx10, Csx16, CsaX, Csx3, Csx1, Csx15, Csf1, Csf2, Csf3, Csf4, homologs thereof, or modified versions thereof.
[0130] In other aspects of the disclosed invention, a Cas protein herein can be from any of the following genera: Aeropyrum, Pyrobaculum, Sulfolobus, Archaeoglobus, Haloarcula, Methanobacteriumn, Methanococcus, Methanosarcina, Methanopyrus, Pyrococcus, Picrophilus, Thernioplasnia, Corynebacterium, Mycobacterium, Streptomyces, Aquifrx, Porphvromonas, Chlorobium, Thermus, Bacillus, Listeria, Staphylococcus, Clostridium, Thermoanaerobacter, Mycoplasma, Fusobacterium, Azarcus, Chromobacterium, Neisseria, Nitrosomonas, Desulfovibrio, Geobacter, Myrococcus, Campylobacter, Wolinella, Acinetobacter, Erwinia, Escherichia, Legionella, Methylococcus, Pasteurella, Photobacterium, Salmonella, Xanthomonas, Yersinia, Streptococcus, Treponema, Francisella, or Thermotoga. Alternatively, a Cas protein herein can be encoded, for example, by any of SEQ ID NOs:462-465, 467-472, 474-477, 479-487, 489-492, 494-497, 499-503, 505-508, 510-516, or 517-521 as disclosed in U.S. Appl. Publ. No. 2010/0093617, which is incorporated herein by reference.
[0131] An RGEN in certain embodiments comprises a Cas9 amino acid sequence. The amino acid sequence of a Cas9 protein herein, as well as certain other Cas proteins herein, may be derived from a Streptococcus (e.g., S. pyogenes, S. pneumoniae, S. thermophilus, S. agalactiae, S. parasanguinis, S. oralis, S. salivarius, S. macacae, S. dysgalactiae, S. anginosus, S. constellatus, S. pseudoporcinus, S. mutans), Listeria (e.g., L. innocua), Spiroplasma (e.g., S. apis, S. syrphidicola), Peptostreptococcaceae, Atopobium, Porphyromonas (e.g., P. catoniae), Prevotella (e.g., P. intermedia), Veillonella, Treponema (e.g., T. socranskii, T. denticola), Capnocytophaga, Finegoldia (e.g., F. magna), Coriobacteriaceae (e.g., C. bacterium), Olsenella (e.g., O. profusa), Haemophilus (e.g., H. sputorum, H. pittmaniae), Pasteurella (e.g., P. bettyae), Olivibacter (e.g., O. sitiensis), Epilithonimonas (e.g., E. tenax), Mesonia (e.g., M. mobilis), Lactobacillus (e.g., L. plantarum), Bacillus (e.g., B. cereus), Aquimarina (e.g., A. muelleri), Chryseobacterium (e.g., C. palustre), Bacteroides (e.g., B. graminisolvens), Neisseria (e.g., N. meningitidis), Francisella (e.g., F. novicida), or Flavobacterium (e.g., F. frigidarium, F. soli) species, for example. An S. pyogenes Cas9 is preferred in certain aspects herein. As another example, a Cas9 protein can be any of the Cas9 proteins disclosed in Chylinski et al. (RNA Biology 10:726-737), which is incorporated herein by reference.
[0132] Accordingly, the sequence of a Cas9 protein herein can comprise, for example, any of the Cas9 amino acid sequences disclosed in GenBank Accession Nos. G3ECR1 (S. thermophilus), WP_026709422, WP_027202655, WP_027318179, WP_027347504, WP_027376815, WP_027414302, WP_027821588, WP_027886314, WP_027963583, WP_028123848, WP_028298935, Q03JI6 (S. thermophilus), EGP66723, EGS38969, EGV05092, EHI65578 (S. pseudoporcinus), EIC75614 (S. oralis), EID22027 (S. constellatus), EIJ69711, EJP22331 (S. oralis), EJP26004 (S. anginosus), EJP30321, EPZ44001 (S. pyogenes), EPZ46028 (S. pyogenes), EQL78043 (S. pyogenes), EQL78548 (S. pyogenes), ERL10511, ERL12345, ERL19088 (S. pyogenes), ESA57807 (S. pyogenes), ESA59254 (S. pyogenes), ESU85303 (S. pyogenes), ETS96804, UC75522, EGR87316 (S. dysgalactiae), EGS33732, EGV01468 (S. oralis), EHJ52063 (S. macacae), EID26207 (S. oralis), EID33364, EIG27013 (S. parasanguinis), EJF37476, EJ019166 (Streptococcus sp. BS35b), EJU16049, EJU32481, YP_006298249, ERF61304, ERK04546, ETJ95568 (S. agalactiae), TS89875, ETS90967 (Streptococcus sp. SR4), ETS92439, EUB27844 (Streptococcus sp. BS21), AFJ08616, EUC82735 (Streptococcus sp. CM6), EWC92088, EWC94390, EJP25691, YP_008027038, YP_008868573, AGM26527, AHK22391, AHB36273, Q927P4, G3ECR1, or Q99ZW2 (S. pyogenes), which are incorporated by reference. A variant of any of these Cas9 protein sequences may be used, but should have specific binding activity, and optionally endonucleolytic activity, toward DNA when associated with an RNA component herein. Such a variant may comprise an amino acid sequence that is at least about 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to the amino acid sequence of the reference Cas9.
[0133] Alternatively, a Cas9 protein herein can be encoded by any of SEQ ID NOs:462 (S. thermophilus), 474 (S. thermophilus), 489 (S. agalactiae), 494 (S. agalactiae), 499 (S. mutans), 505 (S. pyogenes), or 518 (S. pyogenes) as disclosed in U.S. Appl. Publ. No. 2010/0093617 (incorporated herein by reference), for example. Alternatively still, a Cas9 protein herein can comprise the amino acid sequence of SEQ ID NO:11, or residues 1-1368 of SEQ ID NO:11, for example. Alternatively still, a Cas9 protein may comprise an amino acid sequence that is at least about 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to any of the foregoing amino acid sequences, for example. Such a variant Cas9 protein should have specific binding activity, and optionally cleavage or nicking activity, toward DNA when associated with an RNA component herein.
[0134] The origin of a Cas protein used herein (e.g., Cas9) may be from the same species from which the RNA component(s) is derived, or it can be from a different species. For example, an RGEN comprising a Cas9 protein derived from a Streptococcus species (e.g., S. pyogenes or S. thermophilus) may be complexed with at least one RNA component having a sequence (e.g., crRNA repeat sequence, tracrRNA sequence) derived from the same Streptococcus species. Alternatively, the origin of a Cas protein used herein (e.g., Cas9) may be from a different species from which the RNA component(s) is derived (the Cas protein and RNA component(s) may be heterologous to each other); such heterologous Cas/RNA component RGENs should have DNA targeting activity. Determining binding activity and/or endonucleolytic activity of a Cas protein herein toward a specific target DNA sequence may be assessed by any suitable assay known in the art, such as disclosed in U.S. Pat. No. 8,697,359, which is disclosed herein by reference. A determination can be made, for example, by expressing a Cas protein and suitable RNA component in a non-conventional yeast, and then examining the predicted DNA target site for the presence of an indel (a Cas protein in this particular assay would have complete endonucleolytic activity [double-strand cleaving activity]). Examining for the presence of an indel at the predicted target site could be done via a DNA sequencing method or by inferring indel formation by assaying for loss of function of the target sequence, for example. In another example, Cas protein activity can be determined by expressing a Cas protein and suitable RNA component in a non-conventional yeast that has been provided a donor DNA comprising a sequence homologous to a sequence in at or near the target site. The presence of donor DNA sequence at the target site (such as would be predicted by successful HR between the donor and target sequences) would indicate that targeting occurred.
[0135] A Cas protein herein such as a Cas9 typically further comprises a heterologous nuclear localization sequence (NLS). A heterologous NLS amino acid sequence herein may be of sufficient strength to drive accumulation of a Cas protein in a detectable amount in the nucleus of a yeast cell herein, for example. An NLS may comprise one (monopartite) or more (e.g., bipartite) short sequences (e.g., 2 to 20 residues) of basic, positively charged residues (e.g., lysine and/or arginine), and can be located anywhere in a Cas amino acid sequence but such that it is exposed on the protein surface. An NLS may be operably linked to the N-terminus or C-term inus of a Cas protein herein, for example. Two or more NLS sequences can be linked to a Cas protein, for example, such as on both the N- and C-termini of a Cas protein. Non-limiting examples of suitable NLS sequences herein include those disclosed in U.S. Pat. Nos. 6,660,830 and 7,309,576 (e.g., Table 1 therein), which are both incorporated herein by reference. Another example of an NLS useful herein includes amino acid residues 1373-1379 of SEQ ID NO:11.
[0136] In certain embodiments, a Cas protein and its respective RNA component (e.g., crRNA) that directs DNA-specific targeting by the Cas protein are heterologous to the disclosed non-conventional yeast. The heterologous nature of these RGEN components is due to the fact that Cas proteins and their respective RNA components are only known to exist in prokaryotes (bacteria and archaea).
[0137] A Cas protein herein can optionally be expressed in a non-conventional yeast cell using an open reading frame (ORF) that is codon-optimized for expression in the yeast cell. A "codon-optimized" sequence herein is an ORF having its frequency of codon usage designed to mimic the frequency of preferred codon usage of the host cell. In aspects in which Y. lipolytica is the non-conventional yeast cell, codon optimization of an ORF can be performed following the Y. lipolytica codon usage profile as provided in U.S. Pat. No. 7,125,672, which is incorporated herein by reference.
[0138] In some embodiments, a Cas protein is part of a fusion protein comprising one or more heterologous protein domains (e.g., 1, 2, 3, or more domains in addition to the Cas protein). Such a fusion protein may comprise any additional protein sequence, and optionally a linker sequence between any two domains, such as between Cas and a first heterologous domain. Examples of protein domains that may be fused to a Cas protein herein include, without limitation, epitope tags (e.g., histidine [His], V5, FLAG, influenza hemagglutinin [HA], myc, VSV-G, thioredoxin [Trx]), reporters (e.g., glutathione-5-transferase [GST], horseradish peroxidase [HRP], chloramphenicol acetyltransferase [CAT], beta-galactosidase, beta-glucuronidase [GUS], luciferase, green fluorescent protein [GFP], HcRed, DsRed, cyan fluorescent protein [CFP], yellow fluorescent protein [YFP], blue fluorescent protein [BFP]), and domains having one or more of the following activities: methylase activity, demethylase activity, transcription activation activity (e.g., VP16 or VP64), transcription repression activity, transcription release factor activity, histone modification activity, RNA cleavage activity and nucleic acid binding activity. A Cas protein in other embodiments may be in fusion with a protein that binds DNA molecules or other molecules, such as maltose binding protein (MBP), S-tag, Lex A DNA binding domain (DBD), GAL4A DNA binding domain, and herpes simplex virus (HSV) VP16. Additional domains that may be part of a fusion protein comprising a Cas protein herein are disclosed in U.S. Patent Appl. Publ. No. 2011/0059502, which is incorporated herein by reference. In certain embodiments in which a Cas protein is fused to a heterologous protein (e.g., a transcription factor), the Cas protein has DNA recognition and binding activity (when in complex with a suitable RNA component herein), but no DNA nicking or cleavage activity.
[0139] An RGEN herein can bind to, and optionally cleave, a DNA strand at a DNA target sequence. In certain embodiments, an RGEN can cleave one or both strands of a DNA target sequence. An RGEN can cleave both strands of a DNA target sequence, for example.
[0140] An RGEN herein that can cleave both strands of a DNA target sequence typically comprises a Cas protein that has all of its endonuclease domains in a functional state (e.g., wild type endonuclease domains or variants thereof retaining some or all activity in each endonuclease domain). Thus, a wild type Cas protein (e.g., a Cas9 protein disclosed herein), or a variant thereof retaining some or all activity in each endonuclease domain of the Cas protein, is a suitable example of an RGEN that can cleave both strands of a DNA target sequence. A Cas9 protein comprising functional RuvC and HNH nuclease domains is an example of a Cas protein that can cleave both strands of a DNA target sequence. An RGEN herein that can cleave both strands of a DNA target sequence typically cuts both strands at the same position such that blunt-ends (i.e., no nucleotide overhangs) are formed at the cut site.
[0141] An RGEN herein that can cleave one strand of a DNA target sequence can be characterized herein as having nickase activity (e.g., partial cleaving capability). A Cas nickase (e.g., Cas9 nickase) herein typically comprises one functional endonuclease domain that allows the Cas to cleave only one strand (i.e., make a nick) of a DNA target sequence. For example, a Cas9 nickase may comprise (i) a mutant, dysfunctional RuvC domain and (ii) a functional HNH domain (e.g., wild type HNH domain). As another example, a Cas9 nickase may comprise (i) a functional RuvC domain (e.g., wild type RuvC domain) and (ii) a mutant, dysfunctional HNH domain.
[0142] Non-limiting examples of Cas9 nickases suitable for use herein are disclosed by Gasiunas et al. (Proc. Natl. Acad. Sci. U.S.A. 109:E2579-E2586), Jinek et al. (Science 337:816-821), Sapranauskas et al. (Nucleic Acids Res. 39:9275-9282) and in U.S. Patent Appl. Publ. No. 2014/0189896, which are incorporated herein by reference. For example, a Cas9 nickase herein can comprise an S. thermophilus Cas9 having an Asp-31 substitution (e.g., Asp-31-Ala) (an example of a mutant RuvC domain), or a His-865 substitution (e.g., His-865-Ala), Asn-882 substitution (e.g., Asn-882-Ala), or Asn-891 substitution (e.g., Asn-891-Ala) (examples of mutant HNH domains). Also for example, a Cas9 nickase herein can comprise an S. pyogenes Cas9 having an Asp-10 substitution (e.g., Asp-10-Ala), Glu-762 substitution (e.g., Glu-762-Ala), or Asp-986 substitution (e.g., Asp-986-Ala) (examples of mutant RuvC domains), or a His-840 substitution (e.g., His-840-Ala), Asn-854 substitution (e.g., Asn-854-Ala), or Asn-863 substitution (e.g., Asn-863-Ala) (examples of mutant HNH domains). Regarding S. pyogenes Cas9, the three RuvC subdomains are generally located at amino acid residues 1-59, 718-769 and 909-1098, respectively, and the HNH domain is located at amino acid residues 775-908 (Nishimasu et al., Cell 156:935-949).
[0143] A Cas9 nickase herein can be used for various purposes in non-conventional yeast of the disclosed invention. For example, a Cas9 nickase can be used to stimulate HR at or near a DNA target site sequence with a suitable donor polynucleotide. Since nicked DNA is not a substrate for NHEJ processes, but is recognized by HR processes, nicking DNA at a specific target site should render the site more receptive to HR with a suitable donor polynucleotide.
[0144] As another example, a pair of Cas9 nickases can be used to increase the specificity of DNA targeting. In general, this can be done by providing two Cas9 nickases that, by virtue of being associated with RNA components with different guide sequences, target and nick nearby DNA sequences on opposite strands in the region for desired targeting. Such nearby cleavage of each DNA strand creates a DSB (i.e., a DSB with single-stranded overhangs), which is then recognized as a substrate for NHEJ (leading to indel formation) or HR (leading to recombination with a suitable donor polynucleotide, if provided). Each nick in these embodiments can be at least about 5, 10, 15, 20, 30, 40, 50, 60, 70, 80, 90, or 100 (or any integer between 5 and 100) bases apart from each other, for example. One or two Cas9 nickase proteins herein can be used in a Cas9 nickase pair as described above. For example, a Cas9 nickase with a mutant RuvC domain, but functioning HNH domain (i.e., Cas9 HNH.sup.+/RuvC.sup.-), could be used (e.g., S. pyogenes Cas9 HNH.sup.+/RuvC.sup.-). Each Cas9 nickase (e.g., Cas9 HNH.sup.+/RuvC.sup.-) would be directed to specific DNA sites nearby each other (up to 100 base pairs apart) by using suitable RNA components herein with guide RNA sequences targeting each nickase to each specific DNA site.
[0145] An RGEN in certain embodiments can bind to a DNA target site sequence, but does not cleave any strand at the target site sequence. Such an RGEN may comprise a Cas protein in which all of its nuclease domains are mutant, dysfunctional. For example, a Cas9 protein herein that can bind to a DNA target site sequence, but does not cleave any strand at the target site sequence, may comprise both a mutant, dysfunctional RuvC domain and a mutant, dysfunctional HNH domain. Non-limiting examples of such a Cas9 protein comprise any of the RuvC and HNH nuclease domain mutations disclosed above (e.g., an S. pyogenes Cas9 with an Asp-10 substitution such as Asp-10-Ala and a His-840 substitution such as His-840-Ala). A Cas protein herein that binds, but does not cleave, a target DNA sequence can be used to modulate gene expression, for example, in which case the Cas protein could be fused with a transcription factor (or portion thereof) (e.g., a repressor or activator, such as any of those disclosed herein). For example, a Cas9 comprising an S. pyogenes Cas9 with an Asp-10 substitution (e.g., Asp-10-Ala) and a His-840 substitution (e.g., His-840-Ala) can be fused to a VP16 or VP64 transcriptional activator domain. The guide sequence used in the RNA component of such an RGEN would be complementary to a DNA sequence in a gene promoter or other regulatory element (e.g., intron), for example.
[0146] A yeast in certain aspects may comprise (i) an RGEN that can cleave one or both DNA strands of a DNA target sequence and (ii) a donor polynucleotide comprising at least one sequence homologous to a sequence at or near a DNA target site sequence (a sequence specifically targeted by a Cas protein herein). A suitable donor polynucleotide is able to undergo HR with a sequence at or near a DNA target site if the target site contains a SSB or DSB (such as can be introduced using a Cas protein herein). A "homologous sequence" within a donor polynucleotide herein can comprise or consist of a sequence of at least about 25, 50, 75, 100, 150, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000 or 10000 nucleotides, or about 50-500, 50-550, 50-600, 50-650, or 50-700 nucleotides, that have 100% identity with a sequence at or near the target site sequence, or at least about 95%, 96%, 97%, 98%, or 99% identity with a sequence at or near the target site sequence, for example.
[0147] A donor polynucleotide herein can have two homologous sequences (homology arms), for example, separated by a sequence that is heterologous to sequence at or near a target site sequence. HR between such a donor polynucleotide and a target site sequence typically results in the replacement of a sequence at the target site with the heterologous sequence of the donor polynucleotide (target site sequence located between target site sequences homologous to the homology arms of the donor polynucleotide is replaced by the heterologous sequence of the donor polynucleotide). In a donor polynucleotide with two homology arms, the arms can be separated by at least about 1, 2, 3, 4, 5, 10, 20, 30, 40, 50, 75, 100, 250, 500, 1000, 2500, 5000, 10000, 15000, 20000, 25000, or 30000 nucleotides (i.e., the heterologous sequence in the donor polynucleotide is at least about 1, 2, 3, 4, 5, 10, 20, 30, 40, 50, 75, 100, 250, 500, 1000, 2500, 5000, 10000, 15000, 20000, 25000, or 30000 nucleotides in length), for example. The length (e.g., any of the lengths disclosed above for a homologous sequence) of each homology arm may be the same or different. The percent identity (e.g., any of the % identities disclosed above for a homologous sequence) of each arm with respective homologous sequences at or near the target site can be the same or different.
[0148] A DNA sequence at or near (alternatively, in the locality or proximity of) the target site sequence that is homologous to a corresponding homologous sequence in a donor polynucleotide can be within about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 150, 200, 250, 300, 450, 500, 750, 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000, 20000, 30000, 40000, 50000, or 60000 (or any integer between 1 and 60000) nucleotides (e.g., about 1-1000, 100-1000, 500-1000, 1-500, or 100-500 nucleotides), for example, from the predicted Cas protein cut site (DSB or nick) in the target sequence. These nucleotide distances can be marked from the cut site to the first nucleotide of the homologous sequence, going either in the upstream or downstream direction from the cut site. For example, a sequence near a target sequence that is homologous to a corresponding sequence in a donor polynucleotide can start at 500 nucleotide base pairs downstream the predicted Cas protein cut site in a target sequence. In embodiments herein employing a donor polynucleotide with two homology arms (e.g., first and second homology arms separated by a heterologous sequence), a homologous sequence (corresponding in homology with the first homology arm of a donor) can be upstream the predicted Cas cut site, and a homologous sequence (corresponding in homology with the second homology arm of a donor) can be downstream the predicted Cas cut site, for example. The nucleotide distances of each of these upstream and downstream homologous sequences from the predicted cut site can be the same or different, and can be any of the nucleotide distances disclosed above, for example. For instance, the 3' end of a homologous sequence (corresponding in homology with the first homology arm of a donor) may be located 600 nucleotide base pairs upstream a predicted Cas cut site, and the 5' end of a homologous sequence (corresponding in homology with the second homology arm of a donor) may be located 400 nucleotide base pairs downstream the predicted Cas cut site.
[0149] An RGEN herein can bind to, and optionally cleave a DNA strand at a target site sequence in a chromosome, episome, or any other DNA molecule in the genome of a non-conventional yeast. This recognition and binding of a target sequence is specific, given that an RNA component of the RGEN comprises a sequence (guide sequence) that is complementary to a strand of the target sequence. A target site in certain embodiments can be unique (i.e., there is a single occurrence of the target site sequence in the subject genome).
[0150] The length of a target sequence herein can be at least 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 nucleotides; between 13-30 nucleotides; between 17-25 nucleotides; or between 17-20 nucleotides, for example. This length can include or exclude a PAM sequence. Also, a strand of a target sequence herein has sufficient complementarity with a guide sequence (of a crRNA or gRNA) to hybridize with the guide sequence and direct sequence-specific binding of a Cas protein or Cas protein complex to the target sequence (if a suitable PAM is adjacent to the target sequence, see below). The degree of complementarity between a guide sequence and a strand of its corresponding DNA target sequence is at least about 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%, for example. A target site herein may be located in a sequence encoding a gene product (e.g., a protein or an RNA) or a non-coding sequence (e.g., a regulatory sequence or a "junk" sequence), for example.
[0151] A PAM (protospacer-adjacent motif) sequence may be adjacent to the target site sequence. A PAM sequence is a short DNA sequence recognized by an RGEN herein. The associated PAM and first 11 nucleotides of a DNA target sequence are likely important to Cas9/gRNA targeting and cleavage (Jiang et al., Nat. Biotech. 31:233-239). The length of a PAM sequence herein can vary depending on the Cas protein or Cas protein complex used, but is typically 2, 3, 4, 5, 6, 7, or 8 nucleotides long, for example. A PAM sequence is immediately downstream from, or within 2, or 3 nucleotides downstream of, a target site sequence that is complementary to the strand in the target site that is in turn complementary to an RNA component guide sequence, for example. In embodiments herein in which the RGEN is an endonucleolytically active Cas9 protein complexed with an RNA component, the Cas9 binds to the target sequence as directed by the RNA component and cleaves both strands immediately 5' of the third nucleotide position upstream of the PAM sequence. Consider the following example of a target site:PAM sequence:
TABLE-US-00002 (SEQ ID NO: 46) 5'-NNNNNNNNNNNNNNNNNNNNXGG-3'.
N can be A, C, T, or G, and X can be A, C, T, or G in this example sequence (X can also be referred to as N.sub.PAM). The PAM sequence in this example is XGG (underlined). A suitable Cas9/RNA component complex would cleave this target immediately 5' of the double-underlined N. The string of N's in SEQ ID NO:46 represents target sequence that is at least about 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% identical, for example, with a guide sequence in an RNA component herein (where any T's of the DNA target sequence would align with any U's of the RNA guide sequence). A guide sequence of an RNA component of a Cas9 complex, in recognizing and binding at this target sequence (which is representive of target sites herein), would anneal with the complement sequence of the string of N's; the percent complementarity between a guide sequence and the target site complement is at least about 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%, for example. If a Cas9 nickase is used to target SEQ ID NO:46 in a genome, the nickase would nick immediately 5' of the double-underlined N or at the same position of the complementary strand, depending on which endonuclease domain in the nickase is dysfunctional. If a Cas9 having no nucleolytic activity (both RuvC and HNH domains dysfuntional) is used to target SEQ ID NO:46 in a genome, it would recognize and bind the target sequence, but not make any cuts to the sequence.
[0152] A PAM herein is typically selected in view of the type of RGEN being employed. A PAM sequence herein may be one recognized by an RGEN comprising a Cas, such as Cas9, derived from any of the species disclosed herein from which a Cas can be derived, for example. In certain embodiments, the PAM sequence may be one recognized by an RGEN comprising a Cas9 derived from S. pyogenes, S. thermophilus, S. agalactiae, N. meningitidis, T. denticola, or F. novicida. For example, a suitable Cas9 derived from S. pyogenes could be used to target genomic sequences having a PAM sequence of NGG (SEQ ID NO:47; N can be A, C, T, or G). As other examples, a suitable Cas9 could be derived from any of the following species when targeting DNA sequences having the following PAM sequences: S. thermophilus (NNAGAA [SEQ ID NO:48]), S. agalactiae (NGG [SEQ ID NO:47]), NNAGAAW [SEQ ID NO:49, W is A or T], NGGNG [SEQ ID NO:50]), N. meningitidis (NNNNGATT [SEQ ID NO:51]), T. denticola (NAAAAC [SEQ ID NO:52]), or F. novicida (NG [SEQ ID NO:53]) (where N's in all these particular PAM sequences are A, C, T, or G). Other examples of Cas9/PAMs useful herein include those disclosed in Shah et al. (RNA Biology 10:891-899) and Esvelt et al. (Nature Methods 10:1116-1121), which are incorporated herein by reference. Examples of target sequences herein follow SEQ ID NO:46, but with the `XGG` PAM replaced by any one of the foregoing PAMs.
[0153] At least one RNA component that does not have a 5'-cap is comprised in an RGEN in embodiments herein. This uncapped RNA component comprises a sequence complementary to a target site sequence in a chromosome or episome in a non-conventional yeast. An RGEN specifically binds to, and optionally cleaves, a DNA strand at the target site based on this sequence complementary. Thus, the complementary sequence of an RNA component in embodiments of the disclosed invention can also be referred to as a guide sequence or variable targeting domain.
[0154] The guide sequence of an RNA component (e.g., crRNA or gRNA) herein can be at least 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 ribonucleotides in length; between 13-30 ribonucleotides in length; between 17-25 ribonucleotides in length; or between 17-20 ribonucleotides in length, for example. In general, a guide sequence herein has sufficient complementarity with a strand of a target DNA sequence to hybridize with the target sequence and direct sequence-specific binding of a Cas protein or Cas protein complex to the target sequence (if a suitable PAM is adjacent to the target sequence). The degree of complementarity between a guide sequence and its corresponding DNA target sequence is at least about 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100%, for example. The guide sequence can be engineered accordingly to target an RGEN to a DNA target sequence in a yeast cell.
[0155] An RNA component herein can comprise a crRNA, for example, which comprises a guide sequence and a repeat (tracrRNA mate) sequence. The guide sequence is typically located at or near (within 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more bases) the 5' end of the crRNA. Downstream the guide sequence of a crRNA is a "repeat" or "tracrRNA mate" sequence that is complementary to, and can hybridize with, sequence at the 5' end of a tracrRNA. Guide and tracrRNA mate sequences can be immediately adjacent, or separated by 1, 2, 3, 4 or more bases, for example. A tracrRNA mate sequence has, for example, at least 50%, 60%, 70%, 80%, 90%, 95%, 96%, 97%, 98%, or 99% A sequence complementarity to the 5' end of a tracrRNA. In general, degree of complementarity can be with reference to the optimal alignment of the tracrRNA mate sequence and tracrRNA sequence, along the length of the shorter of the two sequences. The length of a tracrRNA mate sequence herein can be at least 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, or 18 ribonucleotides in length, for example, and hybridizes with sequence of the same or similar length (e.g., plus or minus 1, 2, 3, 4, or 5 bases) at the 5' end of a tracrRNA. Suitable examples of tracrRNA mate sequences herein comprise SEQ ID NO:54 (guuuuuguacucucaagauuua), SEQ ID NO:55 (guuuuuguacucuca), SEQ ID NO:56 (guuuuagagcua, see Examples), or SEQ ID NO:57 (guuuuagagcuag), or variants thereof that (i) have at least about 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% sequence identity and (ii) can anneal with the 5'-end sequence of a tracrRNA. The length of a crRNA herein can be at least about 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, or 48 ribonucleotides; or about 18-48 ribonucleotides; or about 25-50 ribonucleotides, for example.
[0156] A tracrRNA should be included along with a crRNA in embodiments in which a Cas9 protein of a type II CRISPR system is comprised in the RGEN. A tracrRNA herein comprises in 5'-to-3' direction (i) a sequence that anneals with the repeat region (tracrRNA mate sequence) of crRNA and (ii) a stem loop-containing portion. The length of a sequence of (i) can be the same as, or similar with (e.g., plus or minus 1, 2, 3, 4, or 5 bases), any of the tracrRNA mate sequence lengths disclosed above, for example. The total length of a tracrRNA herein (i.e., sequence components [i] and [ii]) can be at least about 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, or 90 (or any integer between 30 and 90) ribonucleotides, for example. A tracrRNA may further include 1, 2, 3, 4, 5, or more uracil residues at the 3'-end, which may be present by virtue of expressing the tracrRNA with a transcription terminator sequence.
[0157] A tracrRNA herein can be derived from any of the bacterial species listed above from which a Cas9 sequence can be derived, for example. Examples of suitable tracrRNA sequences include those disclosed in U.S. Pat. No. 8,697,359 and Chylinski et al. (RNA Biology 10:726-737), which are incorporated herein by reference. A preferred tracrRNA herein can be derived from a Streptococcus species tracrRNA (e.g., S. pyogenes, S. thermophilus). Other suitable examples of tracrRNAs herein may comprise:
TABLE-US-00003 SEQ ID NO: 58: uagcaaguuaaaauaaggcuaguccguuaucaacuugaaaaaguggcacc gagucggugc (see Examples), SEQ ID NO: 59: uagcaaguuaaaauaaggcuaguccguuaucaacuugaaaaagug, or SEQ ID NO: 60: uagcaaguuaaaauaaggcuaguccguuauca,
which are derived from S. pyogenes tracrRNA. Other suitable examples of tracrRNAs herein may comprise:
TABLE-US-00004 SEQ ID NO: 61: uaaaucuugcagaagcuacaaagauaaggcuucaugccgaaaucaacacc cugucauuuuauggcaggguguuuucguuauuuaa, SEQ ID NO: 62: ugcagaagcuacaaagauaaggcuucaugccgaaaucaacacccugucau uuuauggcaggguguuuucguuauuua, or SEQ ID NO: 63: ugcagaagcuacaaagauaaggcuucaugccgaaaucaacacccugucau uuuauggcagggugu,
which are derived from S. thermophilus tracrRNA.
[0158] Still other examples of tracrRNAs herein are variants of these tracrRNA SEQ ID NOs that (i) have at least about 80%, 85%, 90, 91, 92, 93, 94, 95, 96, 97, 98, or 99% sequence identity therewith and (ii) can function as a tracrRNA (e.g., 5'-end sequence can anneal to tracrRNA mate sequence of a crRNA, sequence downstream from the 5'-end sequence can form one or more hairpins, variant tracrRNA can form complex with a Cas9 protein).
[0159] An RNA component of an RGEN disclosed herein can comprise, for example, a guide RNA (gRNA) comprising a crRNA operably linked to, or fused to, a tracrRNA. The crRNA component of a gRNA in certain preferred embodiments is upstream of the tracrRNA component (i.e., such a gRNA comprises, in 5'-to-3' direction, a crRNA operably linked to a tracrRNA). Any crRNA and/or tracrRNA (and/or portion thereof, such as a crRNA repeat sequence, tracrRNA mate sequence, or tracrRNA 5'-end sequence) as disclosed herein (e.g., above embodiments) can be comprised in a gRNA, for example.
[0160] The tracrRNA mate sequence of the crRNA component of a gRNA herein should be able to anneal with the 5'-end of the tracrRNA component, thereby forming a hairpin structure. Any of the above disclosures regarding lengths of, and percent complementarity between, tracrRNA mate sequences (of crRNA component) and 5'-end sequences (of tracrRNA component) can characterize the crRNA and tracrRNA components of a gRNA, for example. To facilitate this annealing, the operable linkage or fusion of the crRNA and tracrRNA components preferably comprises a suitable loop-forming ribonucleotide sequence (i.e., a loop-forming sequence may link the crRNA and tracrRNA components together, forming the gRNA). Suitable examples of RNA loop-forming sequences include GAAA (SEQ ID NO:43, see Examples), CAAA (SEQ ID NO:44) and AAAG (SEQ ID NO:45). However, longer or shorter loop sequences may be used, as may alternative loop sequences. A loop sequence preferably comprises a ribonucleotide triplet (e.g., AAA) and an additional ribonucleotide (e.g., C or G) at either end of the triplet.
[0161] A gRNA herein forms a hairpin ("first hairpin") with annealing of its tracrRNA mate sequence (of the crRNA component) and tracrRNA 5'-end sequence portions. One or more (e.g., 1, 2, 3, or 4) additional hairpin structures can form downstream from this first hairpin, depending on the sequence of the tracrRNA component of the gRNA. A gRNA may therefore have up to five hairpin structures, for example. A gRNA may further include 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, or more residues following the end of the gRNA sequence, which may be present by virtue of expressing the gRNA with a transcription terminator sequence, for example. These additional residues can be all U residues, or at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% U residues, for example, depending on the choice of terminator sequence.
[0162] Non-limiting examples of suitable gRNAs useful in the disclosed invention may comprise:
TABLE-US-00005 SEQ ID NO: 64: NNNNNNNNNNNNNNNNNNNNguuuuuguacucucaagauuuaGAAAuaaa ucuugcagaagcuacaaagauaaggcuucaugccgaaaucaacacccugu cauuuuauggcaggguguuuucguuauuuaa, SEQ ID NO: 65: NNNNNNNNNNNNNNNNNNNNguuuuuguacucucaGAAAugcagaagcua caaagauaaggcuucaugccgaaaucaacacccugucauuuuauggcagg guguuuucguuauuuaa, SEQ ID NO: 66: NNNNNNNNNNNNNNNNNNNNguuuuuguacucucaGAAAugcagaagcua caaagauaaggcuucaugccgaaaucaacacccugucauuuuauggcagg gugu, SEQ ID NO: 67: NNNNNNNNNNNNNNNNNNNNguuuuuguacucucaGAAAuagcaaguuaa aauaaggcuaguccguuaucaacuugaaaaaguggcaccgagucggugc, SEQ ID NO: 68: NNNNNNNNNNNNNNNNNNNNguuuuagagcuaGAAAuagcaaguuaaaau aaggcuaguccguuaucaacuugaaaaagug, SEQ ID NO: 69: NNNNNNNNNNNNNNNNNNNNguuuuagagcuaGAAAuagcaaguuaaaau aaggcuaguccguuauca, or SEQ ID NO: 70: NNNNNNNNNNNNNNNNNNNNguuuuagagcuaGAAAuagcaaguuaaaau aaggcuaguccguuaucaacuugaaaaaguggcaccgagucggugcuuuu (see Examples).
[0163] In each of SEQ ID NOs:64-70, the single-underlined sequence represents a crRNA portion of the gRNA. Each "N" represents a ribonucleotide base (A, U, G, or C) of a suitable guide sequence. The first block of lower case letters represents tracrRNA mate sequence. The second block of lower case letters represents a tracrRNA portion of the gRNA. The double-underlined sequence approximates that portion of tracrRNA sequence that anneals with the tracrRNA mate sequence to form a first hairpin. A loop sequence (GAAA, SEQ ID NO:43) is shown in capital letters, which operably links the crRNA and tracrRNA portions of each gRNA. Other examples of gRNAs herein include variants of the foregoing gRNAs that (i) have at least about 80%, 85%, 90, 91, 92, 93, 94, 95, 96, 97, 98, or 99% sequence identity (excluding guide sequence in this calculation) with these sequences, and (ii) can function as a gRNA that specifically targets a Cas9 protein to bind with, and optionally nick or cleave, a target DNA sequence.
[0164] A gRNA herein can also be characterized in terms of having a guide sequence (VT domain) followed by a Cas endonuclease recognition (CER) domain. A CER domain comprises a tracrRNA mate sequence followed by a tracrRNA sequence. Examples of CER domains useful herein include those comprised in SEQ ID NOs:64-70 above (the CER domain in each is the sequence following the N's of the VT domain). Another suitable example of a CER domain is SEQ ID NO:1 (see Examples), which comprises in 5'-to-3' direction the tracrRNA mate sequence of SEQ ID NO:56, the loop-forming sequence of SEQ ID NO:43 (GAAA), and the tracrRNA sequence of SEQ ID NO:58.
[0165] An RNA component of an RGEN of the disclosed invention does not have a 5'-cap (7-methylguanylate [m.sup.7G] cap). Thus, an RNA component herein does not have a 7-methylguanylate (m.sup.7G) cap at its 5'-terminus. An RNA component herein can have, for example, a 5'-hydroxyl group instead of a 5'-cap. Alternatively, an RNA component herein can have, for example, a 5' phosphate instead of a 5'-cap. It is believed that the RNA component can better accumulate in the nucleus following transcription, since 5'-capped RNA (i.e., RNA having 5' m.sup.7G cap) is subject to nuclear export. Preferred examples of uncapped RNA components herein include suitable gRNAs, crRNAs, and/or tracrRNAs. In certain embodiments, an RNA component herein lacks a 5'-cap, and optionally has a 5'-hydroxyl group instead, by virtue of RNA autoprocessing by a ribozyme sequence at the 5'-end of a precursor of the RNA component (i.e., a precursor RNA comprising a ribozyme sequence upstream of an RNA component such as a gRNA undergoes ribozyme-mediated autoprocessing to remove the ribozyme sequence, thereby leaving the downstream RNA component without a 5'-cap). In certain other embodiments, an RNA component herein is not produced by transcription from an RNA polymerase III (Pol III) promoter.
[0166] A yeast in certain embodiments further comprises a DNA polynucleotide sequence comprising (i) a promoter operably linked to (ii) a nucleotide sequence encoding an RNA component. This polynucleotide sequence is used by the yeast to express an RNA component that complexes with an Cas protein to form an RGEN. Such a polynucleotide sequence can be in the form of a plasmid, yeast artificial chromosome (YAC), cosmid, phagemid, bacterial artificial chromosome (BAC), virus, or linear DNA (e.g., linear PCR product), for example, or any other type of vector or construct useful for transferring a polynucleotide sequence into a non-conventional yeast cell. This polynucleotide sequence can exist transiently (i.e., not integrated into the genome) or stably (i.e., integrated into the genome) in a yeast cell herein. Also, this polynucleotide sequence can comprise, or lack, one or more suitable marker sequences (e.g., selection or phenotype marker).
[0167] A suitable promoter comprised in a polynucleotide sequence for expressing an RNA component herein is operable in a non-conventional yeast cell, and can be constitutive or inducible, for example. A promoter in certain aspects can comprise a strong promoter, which is a promoter that can direct a relatively large number of productive initiations per unit time, and/or is a promoter driving a higher transcription level than the average transcription level of the genes in the yeast comprising the yeast.
[0168] Examples of strong promoters useful herein include those disclosed in U.S. Patent Appl. Publ. Nos. 2012/0252079 (DGAT2), 2012/0252093 (EL1), 2013/0089910 (ALK2), 2013/0089911 (SPS19), 2006/0019297 (GPD and GPM), 2011/0059496 (GPD and GPM), 2005/0130280 (FBA, FBAIN, FBAINm), 2006/0057690 (GPAT) and 2010/0068789 (YAT1), which are incorporated herein by reference. Other examples of suitable strong promoters include those listed in Table 2.
TABLE-US-00006 TABLE 2 Strong Promoters Promoter Name Native Gene Reference.sup.a XPR2 alkaline extracellular protease U.S. Pat. No. 4,937,189; EP220864 TEF translation elongation factor U.S. Pat. No. EF1-.alpha. (tef) 6,265,185 GPD, glyceraldehyde-3-phosphate- U.S. Pat. Nos. GPM dehydrogenase (gpd), 7,259,255 phosphoglycerate mutase (gpm) and 7,459,546 GPDIN glyceraldehyde-3-phosphate- U.S. Pat. No. dehydrogenase (gpd) 7,459,546 GPM/ chimeric phosphoglycerate mutase U.S. Pat. No. FBAIN (gpm)/fructose-bisphosphate 7,202,356 aldolase (fba1) FBA, fructose-bisphosphate aldolase U.S. Pat. No. FBAIN, (fba1) 7,202,356 FBAINm GPAT glycerol-3-phosphate U.S. Pat. No. O-acyltransferase (gpat) 7,264,949 YAT1 ammonium transporter enzyme U.S. Pat. Application (yat1) Pub. No. 2006/0094102 EXP1 export protein U.S. Pat. No. 7,932,077 .sup.aEach reference in this table is incorporated herein by reference.
[0169] Though the above-listed strong promoters are from Yarrowia lipolytica, it is believed that corresponding promoters (e.g., homologs) thereof from any of the non-conventional yeast disclosed herein, for example, could serve as a strong promoter. Thus, a strong promoter may comprise an XPR2, TEF, GPD, GPM, GPDIN, FBA, FBAIN, FBAINm, GPAT, YAT1, EXP1, DGAT2, EL1, ALK2, or SPS19 promoter, for example. Alternatively, a strong promoter such as any corresponding to any of the foregoing can be from other types of yeast (e.g., S. cerevisiae, S. pombe) (e.g., any of the strong promoters disclosed in U.S. Patent Appl. Publ. No. 2010/0150871, which is incorporated herein by reference). Other examples of strong promoters useful herein include PGK1, ADH1, TDH3, TEF1, PHO5, LEU2, and GAL1 promoters, as well as strong yeast promoters disclosed in Velculescu et al. (Cell 88:243-251), which is incorporated herein by reference. Still another example of a strong promoter useful herein can comprise SEQ ID NO:12 (a Yarrowia FBA1 promoter sequence).
[0170] A promoter herein can comprise an RNA polymerase II (Pol II) promoter in certain embodiments. It is believed that all the above-listed strong promoters are examples of suitable Pol II promoters. Transcription from a Pol II promoter may involve formation of an RNA polymerase II complex of at least about 12 proteins (e.g., RPB1-RPN12 proteins), for example. RNA transcribed from a Pol II promoter herein typically is 5'-capped (e.g., contains an m.sup.7G group at the 5'-end). Since an RNA component herein does not have a 5'-cap, a means for removing the 5'-cap from an RNA component should be employed if it is expressed from a Pol II promoter herein. Suitable means for effectively removing a 5'-cap from a Pol II-transcribed RNA component herein include appropriate use of one or more ribozymes (see below), group 1 self-splicing introns, and group 2 self-splicing introns, for example.
[0171] A nucleotide sequence herein encoding an RNA component may further encode a ribozyme that is upstream of the sequence encoding the RNA component, for example. Thus, a yeast in certain embodiments further comprises a DNA polynucleotide sequence comprising (i) a promoter operably linked to (ii) a nucleotide sequence encoding, in 5'-to-3' direction, a ribozyme and an RNA component. Transcripts expressed from such a polynucleotide sequence autocatalytically remove the ribozyme sequence to yield an RNA that does not have a 5'-cap but which comprises the RNA component sequence. This "autoprocessed" RNA can comprise a crRNA or gRNA, for example, and can complex with a Cas protein such as a Cas9, thereby forming an RGEN.
[0172] A ribozyme herein can be a hammerhead (HH) ribozyme, hepatitis delta virus (HDV) ribozyme, group I intron ribozyme, RnaseP ribozyme, or hairpin ribozyme, for example. Other non-limiting examples of ribozymes herein include Varkud satellite (VS) ribozymes, glucosamine-6-phosphate activated ribozymes (glmS), and CPEB3 ribozymes. Lilley (Biochem. Soc. Trans. 39:641-646) discloses information pertaining to ribozyme structure and activity. Examples of ribozymes that should be suitable for use herein include ribozymes disclosed in EP0707638 and U.S. Pat. Nos. 6,063,566, 5,580,967, 5,616,459, and 5,688,670, which are incorporated herein by reference.
[0173] A hammerhead ribozyme is used in certain preferred embodiments. This type of ribozyme may be a type I, type II, or type III hammerhead ribozyme, for example, as disclosed in Hammann et al. (RNA 18:871-885), which is incorporated herein by reference. Multiple means for identifying DNA encoding a hammerhead ribozyme are disclosed in Hammann et al., which can be utilized accordingly herein. A hammerhead ribozyme herein may be derived from a virus, viroid, plant virus satellite RNA, prokaryote (e.g., Archaea, cyanobacteria, acidobacteria), or eukaryote such as a plant (e.g., Arabidopsis thaliana, carnation), protist (e.g., amoeba, euglenoid), fungus (e.g., Aspergillus, Y. lipolytica), amphibian (e.g., newt, frog), schistosome, insect (e.g., cricket), mollusc, mammal (e.g., mouse, human), or nematode, for example.
[0174] A hammerhead ribozyme herein typically comprises three base-paired helices, each respectively referred to as helix I, H and III, separated by short linkers of conserved sequences. The three types of hammerhead ribozymes (I-III) are generally based on which helix the 5' and 3' ends of the ribozyme are comprised in. For example, if the 5' and 3' ends of a hammerhead ribozyme sequence contribute to stem I, then it can be referred to as a type I hammerhead ribozyme. Of the three possible topological types, type I can be found in the genomes of prokaryotes, eukaryotes and RNA plant pathogens, whereas type II hammerhead ribozymes have only been described in prokaryotes, and type III hammerhead ribozymes are mostly found in plants, plant pathogens and prokaryotes. A hammerhead ribozyme in certain embodiments is a type I hammerhead ribozyme.
[0175] In certain embodiments, the sequence encoding a hammerhead ribozyme can comprise at least about 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, or 150 (or any integer between 40 and 150) nucleotides, 40-100 nucleotides, or 40-60 nucleotides.
[0176] The sequence encoding a hammerhead ribozyme is upstream of the sequence encoding an RNA component. The sequence encoding a hammerhead ribozyme herein may be, for example, immediately 5' of, or at least 2, 3, 4, 5, 6, 7, 8, 9, or 10 nucleotides 5' of, sequence encoding a guide sequence of an RNA component (e.g., the guide sequence may be that of a crRNA or gRNA). The first 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15 ribonucleotides of the hammerhead ribozyme typically should be complementary to the first same number, respectively, of ribonucleotides of the sequence immediately downstream the hammerhead ribozyme sequence. For example, if a polynucleotide sequence herein encodes an RNA comprising a hammerhead ribozyme sequence that is immediately upstream of the guide sequence of an RNA component, the first 6 ribonucleotides, for instance, of the ribozyme could be complementary to the first 6 ribonucleotides of the guide sequence. In this example, the hammerhead ribozyme would cleave the RNA transcript immediately upstream of the first position of the guide sequence (or stated another way, the hammerhead ribozyme would cleave the RNA transcript immediately downstream the ribozyme sequence). This logic similarly applies to the other foregoing example embodiments. For example, if a polynucleotide sequence herein encodes an RNA comprising a hammerhead ribozyme sequence that is 8 residues upstream of the guide sequence of an RNA component (e.g., there is an 8-residue spacer sequence), the first 6 ribonucleotides, for instance, of the ribozyme could be complementary to the 6 ribonucleotides immediately 3' of the ribozyme sequence. In this example, the hammerhead ribozyme would cleave the RNA transcript immediately downstream the ribozyme sequence. As yet another example, if a polynucleotide sequence herein encodes an RNA comprising a hammerhead ribozyme sequence that is immediately upstream of the guide sequence of an RNA component, the first 10 ribonucleotides, for instance, of the ribozyme could be complementary to the first 10 ribonucleotides of the guide sequence. In this example, the hammerhead ribozyme would cleave the RNA transcript immediately upstream of the first position of the guide sequence (or stated another way, the hammerhead ribozyme would cleave the RNA transcript immediately downstream the ribozyme sequence).
[0177] An example of a hammerhead ribozyme sequence can be presented as follows: NNNNNNcugaugaguccgugaggacgaaacgaguaagcucguc (SEQ ID NO:15, N can be A, U, C, or G; see Examples). The first 6 residues of SEQ ID NO:15 can be designed to complement (anneal to) the first 6 residues (e.g., of a guide sequence of a crRNA or gRNA disclosed herein) immediately following SEQ ID NO:15 in an RNA transcript expressed from a DNA polynucleotide herein. The ribozyme would cleave the transcript immediately following SEQ ID NO:15. Although SEQ ID NO:15 is shown with 6 residues ("N") for annealing with sequence residues immediately following SEQ ID NO:15, there can be 5 to 15 "N" residues at the beginning of this ribozyme for this purpose. It is noted that, with an RNA transcript comprising SEQ ID NO:15, (i) helix I of the hammerhead ribozyme would be formed by the annealing of the N residues with the first 6 residues immediately following SEQ ID NO:15 in a transcript, (ii) helix II would be formed by the annealing of the complementary sequences indicated with single-underlining, and (iii) helix III would be formed by the annealing of the complementary sequences indicated with double-underlining. Thus, a hammerhead ribozyme in certain embodiments can be a variant of SEQ ID NO:15 having (i) at least about 80%, 85%, 90, 91, 92, 93, 94, 95, 96, 97, 98, or 99% sequence identity (excluding "N" sequence in this calculation) with SEQ ID NO:15, and (ii) regions aligning with the single-underlined and double-underlined regions of SEQ ID NO:15 that anneal to each other to form helices II and III (helix I is formed be appropriate selection of the "N" residues).
[0178] Examples of sequences that can be linked to SEQ ID NO:15 and various embodiments thereof (above) include gRNAs comprising one of SEQ ID NOs:64-70.
[0179] A DNA polynucleotide herein encoding an RNA sequence comprising a 5' hammerhead ribozyme linked to an RNA component (a "ribozyme-RNA component cassette" herein) may be designed to drive transcription of a transcript with a 5'-end beginning immediately with the hammerhead ribozyme sequence (i.e., ribozyme sequence starts at transcription start site). Alternatively, a DNA polynucleotide may be designed to drive transcription of a transcript having non-ribozyme sequence upstream from the ribozyme-RNA component cassette. Such 5' non-ribozyme transcript sequence can be as short as a few nucleotides (1-10) long, up to as long as 5000-20000 nucleotides, for example (this sequence 5' of the ribozyme is removed from the RNA component when the ribozyme cleaves itself from the RNA component).
[0180] In certain embodiments, a DNA polynucleotide comprising a ribozyme-RNA component cassette could comprise a suitable transcription termination sequence downstream of the RNA component sequence. Examples of transcription termination sequences useful herein are disclosed in U.S. Pat. Appl. Publ. No. 2014/0186906, which is herein incorporated by reference. For example, an S. cerevisiae Sup4 gene transcription terminator sequence (e.g., SEQ ID NO:8) can be used. Such embodiments typically do not comprise a ribozyme sequence located downstream from a ribozyme-RNA component cassette. Also, such embodiments typically comprise 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, or more residues following the end of the RNA component sequence, depending on the choice of terminator sequence. These additional residues can be all U residues, or at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% A U residues, for example, depending on the choice of terminator sequence. Alternatively, a ribozyme sequence (e.g., hammerhead or HDV ribozyme) can be 3' of (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more nucleotides) the RNA component sequence; the RNA component sequence in such embodiments is flanked by upstream and downstream ribozymes. A 3' ribozyme sequence can be positioned accordingly such that it cleaves itself from the RNA component sequence; such cleavage would render a transcript ending exactly at the end of the RNA component sequence, or with 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, or more residues following the end of the RNA component sequence, for example.
[0181] In certain embodiments, a DNA polynucleotide can comprise (i) a promoter operably linked to (ii) a sequence comprising more than one ribozyme-RNA component cassettes (i.e., tandem cassettes). A transcript expressed from such a DNA polynucleotide can have, for example, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more ribozyme-RNA component cassettes. A 3' ribozyme sequence can optionally be included (e.g., as above) following each RNA component sequence to allow cleavage and separation of the RNA component from downstream transcript sequence. Each RNA component in such embodiments typically is designed to guide an RGEN herein to a unique DNA target site. Thus, such a DNA polynucleotide can be used in a non-conventional yeast accordingly to target multiple different target sites at the same time, for example; such use can optionally be characterized as a multiplexing method. A 5' hammerhead ribozyme that is linked to an RNA component that is linked to a 3' ribozyme can be referred to as a "ribozyme-RNA component-ribozyme cassette" herein. A DNA polynucleotide herein for expressing a transcript comprising tandem ribozyme-RNA component-ribozyme cassettes can be designed such that there are about 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, or more nucleotides between each cassette (e.g., non-coding spacer sequence). The distances between each cassette may be the same or different.
[0182] Though certain of the above embodiments have been described in terms of hammerhead ribozyme sequences, such embodiments can also be characterized in terms of any other ribozyme sequence herein (e.g., HDV ribozyme), accordingly, instead of a hammerhead ribozyme sequence. One of ordinary skill in the art would understand how to position such other ribozyme sequence to cleave at a particular site.
[0183] A yeast in certain embodiments further comprises a DNA polynucleotide sequence comprising (i) a promoter operably linked to (ii) a nucleotide sequence encoding a Cas protein (e.g., Cas9). This polynucleotide sequence is used by the yeast to express a Cas protein that complexes with an RNA component to form an RGEN. Such a polynucleotide sequence can be in the form of a plasmid, YAC, cosmid, phagemid, BAC, virus, or linear DNA (e.g., linear PCR product), for example, or any other type of vector or construct useful for transferring a polynucleotide sequence into a non-conventional yeast cell. Any Pol II promoter disclosed herein may be used, for example. Any of the features disclosed above regarding a DNA polynucleotide sequence for expressing an RNA component may be applied, accordingly, to a DNA polynucleotide sequence for expressing a Cas protein. This polynucleotide sequence can exist transiently (i.e., not integrated into the genome) or stably (i.e., integrated into the genome) in a yeast cell herein. A yeast in other aspects can have, in addition to a DNA polynucleotide for expressing a Cas protein, a DNA polynucleotide for expressing an RNA component (e.g., as described above). Both these DNA polynucleotides may be stable or transient to the yeast; alternatively, a DNA polynucleotide for expressing a Cas protein can be stable and the DNA polynucleotide for expressing an RNA component can be transient (or vice versa).
[0184] A DNA polynucleotide sequence can alternatively be one for expressing both a Cas protein and a suitable RNA component for providing an RGEN in a yeast cell. Such a DNA polynucleotide can comprise, for example, (i) a promoter operably linked to a nucleotide sequence encoding an RNA component (of an RGEN) (an RNA component cassette), and (ii) a promoter operably linked to a nucleotide sequence encoding a Cas protein (e.g., Cas9) (a Cas cassette). Any of the above-described features regarding DNA polynucleotides for expressing a Cas protein or an RNA component can be applied, for example, to a DNA polynucleotide sequence for expressing both a Cas protein and a suitable RNA component in a non-conventional yeast cell. Also, any of the Cas proteins and RNA components (e.g., crRNA or gRNA) disclosed herein may be expressed from this DNA polynucleotide sequence. One or more RNA components and/or Cas cassettes may be comprised within a DNA polynucleotide sequence in certain embodiments. In other aspects, one or more RNA components may be expressed in tandem as described above. Promoters used in a Cas cassette and an RNA cassette may be the same or different. It is contemplated that such a DNA polynucleotide sequence would be useful for expressing an RGEN in both non-conventional yeast and conventional yeast.
[0185] The disclosed invention also concerns a method of targeting an RNA-guided endonuclease (RGEN) to a target site sequence in a chromosome or episome in a non-conventional yeast. This method comprises providing to the nucleus of the yeast an RGEN comprising at least one RNA component that does not have a 5'-cap, wherein the RNA component comprises a sequence complementary to the target site sequence, and wherein the RGEN binds to, and optionally cleaves, all or part of the target site sequence.
[0186] This targeting method can be practiced using any of the above-disclosed embodiments or below Examples regarding each of the method features (e.g., yeast type, RGEN, RNA component, etc.), for example. Thus, any of the features disclosed above or in the Examples, or any combination of these features, can be used appropriately to characterize embodiments of a targeting method herein. The following targeting method features are examples.
[0187] A non-conventional yeast in certain embodiments of a targeting method herein can be a member of any of the following genera: Yarrowia, Pichia, Schwanniomyces, Kluyveromyces, Arxula, Trichosporon, Candida, Ustilago, Torulopsis, Zygosaccharomyces, Trigonopsis, Cryptococcus, Rhodotorula, Phaffia, Sporobolomyces, and Pachysolen. Y. lipolytica is a suitable Yarrowia yeast herein. Other non-limiting examples of non-conventional yeast useful in a targeting method are disclosed herein.
[0188] An RGEN suitable for use in a targeting method herein can comprise a Cas protein of a type I, II, or III CRISPR system. A Cas9 protein can be used in certain embodiments, such as a Streptococcus Cas9. Examples of Streptococcus Cas9 proteins suitable for use in a targeting method include Cas9 proteins comprising amino acid sequences derived from an S. pyogenes, S. thermophilus, S. pneumoniae, S. agalactiae, S. parasanguinis, S. oralis, S. salivarius, S. macacae, S. dysgalactiae, S. anginosus, S. constellatus, S. pseudoporcinus, or S. mutans Cas9 protein. Other non-limiting examples of RGENs and Cas9 proteins useful in a targeting method herein are disclosed herein. For example, an RGEN that can cleave one or both strands at a DNA target sequence may be used.
[0189] An RNA component of an RGEN for use in a targeting method herein can comprise, for example, a gRNA comprising a crRNA operably linked to, or fused to, a tracrRNA. Any crRNA and/or tracrRNA (and/or portion thereof, such as a tracrRNA mate sequence, or tracrRNA 5'-end sequence) as disclosed herein can be comprised in a gRNA, for example. Also, any gRNA disclosed herein can be used in the targeting method, for example.
[0190] A PAM (protospacer-adjacent motif) sequence may be adjacent to the target site sequence, for example. In certain embodiments of a targeting method herein, a PAM sequence is immediately downstream from, or within 2, or 3 nucleotides downstream of, a target site sequence that is complementary to the strand in the target site that is in turn complementary to an RNA component guide sequence. In embodiments herein in which the RGEN is an endonucleolytically active Cas9 protein complexed with an RNA component, the Cas9 binds to the target sequence as directed by the RNA component and cleaves both strands immediately 5' of the third nucleotide position upstream of the PAM sequence. Examples of suitable PAM sequences include S. pyogenes (NGG [SEQ ID NO:47]) and S. thermophilus (NNAGAA [SEQ ID NO:48]) PAM sequences, which can be used for targeting with Cas9 proteins derived from each species, respectively. Also, any PAM sequence as disclosed herein can be used in the targeting method, for example.
[0191] A yeast in certain embodiments of a targeting method herein further comprises a DNA polynucleotide sequence comprising (i) a promoter operably linked to (ii) a nucleotide sequence encoding an RNA component. It is with such a DNA polynucleotide that an RNA component of an RGEN can be provided to the nucleus of a yeast, since the RNA component is transcribed from the DNA polynucleotide. Examples of suitable DNA polynucleotide sequences for expressing an RNA component (of an RGEN) in a yeast nucleus are disclosed herein. Any of the promoters as disclosed herein can be used in such a DNA polynucleotide sequence, for example, such as a strong promoter and/or one that comprises a Pol II promoter sequence. In certain embodiments, a DNA polynucleotide encoding an RNA component can be used to provide an RNA component in a yeast that has already been engineered to express a Cas protein (e.g., stable Cas expression).
[0192] A nucleotide sequence herein encoding an RNA component may further encode a ribozyme that is upstream of the sequence encoding the RNA component, for example. Thus, a yeast in certain embodiments of a targeting method herein may comprise a DNA polynucleotide sequence comprising (i) a promoter operably linked to (ii) a nucleotide sequence encoding, in 5'-to-3' direction, a ribozyme and an RNA component. It is with such a DNA polynucleotide that an RNA component of an RGEN can be provided to the nucleus of a yeast, since the RNA component is transcribed from the DNA polynucleotide. A ribozyme herein can be a hammerhead ribozyme, hepatitis delta virus (HDV) ribozyme, group I intron ribozyme, RnaseP ribozyme, or hairpin ribozyme, for example. Any ribozyme as disclosed herein, as well as any polynucleotide sequence as disclosed herein encoding a ribozyme linked to an RNA component, can be used in the targeting method, for example.
[0193] A yeast in certain embodiments of a targeting method herein may further comprise a DNA polynucleotide sequence comprising (i) a promoter operably linked to (ii) a nucleotide sequence encoding a Cas protein (e.g., Cas9). It is with such a DNA polynucleotide that a Cas protein component of an RGEN can be provided in the yeast. Examples of suitable DNA polynucleotide sequences for expressing a Cas protein component (of an RGEN) in a yeast are disclosed herein. Any of the promoters as disclosed herein can be used in such a DNA polynucleotide sequence, for example, such as a strong promoter.
[0194] A donor polynucleotide comprising at least one sequence homologous to a sequence at or near a DNA target site sequence can also be provided to the yeast in certain embodiments of a targeting method (along with providing an RGEN that nicks or cuts at the target site sequence). Suitable examples include donor polynucleotides with homology arms. Any donor polynucleotide as disclosed herein can be used in a targeting method, for example. Such embodiments of this method typically involve HR between the donor polynucleotide and the target sequence (after RGEN-mediated nicking or cleavage of the target sequence); thus, these this method can optionally also be referred to as a method of performing HR in a non-conventional yeast. Examples of HR strategies that can be performed by this method are disclosed herein. A suitable amount of a donor DNA polynucleotide for targeting in a yeast cell can be at least about 300, 400, 500, 600, 700, or 800 molecules of the donor DNA per yeast cell.
[0195] Any constructs or vectors comprising a DNA polynucleotide described herein for expressing RGEN components may be introduced into a non-conventional yeast cell by any standard technique. These techniques include transformation (e.g., lithium acetate transformation (Methods in Enzymology, 194:186-187), biolistic impact, electroporation, and microinjection, for example. As examples, U.S. Pat. Nos. 4,880,741 and 5,071,764, and Chen et al. (Appl. Microbiol. Biotechnol. 48:232-235), which are incorporated herein by reference, describe DNA transfer techniques for Y. lipolytica.
[0196] A targeting method herein can be performed for the purpose of creating an indel in a non-conventional yeast. Such a method can be performed as disclosed above, but without further providing a donor DNA polynucleotide that could undergo HR at or near the target DNA site (i.e., NHEJ is induced in this method). Examples of indels that can be created are disclosed herein. The size of an indel may be 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or more bases, for example. An indel in certain embodiments can be even larger such as at least about 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, or 150 bases. In still other embodiments, insertions or deletions can be at least about 500, 750, 1000, or 1500 bases. When attempting to create an indel in certain embodiments, a single base substitution may instead be formed in a target site sequence. Thus, a targeting method herein can be performed for the purpose of creating single base substitution, for example.
[0197] In certain embodiments of a targeting method herein aimed at indel formation, the frequency of indel formation in a non-conventional yeast (e.g., Y. lipolytica) is significantly higher than what would be observed using the same or similar targeting strategy in a conventional yeast such as S. cerevisiae. For example, while the frequency of indel formation in a conventional yeast may be about 0.0001 to 0.001 (DiCarlo et al., Nucleic Acids Res. 41:4336-4343), the frequency in a non-conventional yeast herein may be at least about 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50, 0.55, 0.60, 0.65, 0.70, 0.75, or 0.80. Thus, the frequency of indel formation in a non-conventional yeast herein may be at least about 50, 100, 250, 500, 750, 1000, 2000, 4000, or 8000 times higher, for example, than what would be observed using the same or similar Cas-mediated targeting strategy in a conventional yeast. Certain aspects of these embodiments can be with regard to a targeting method that does not include a donor DNA, and/or in which RGEN components (a Cas and a suitable RNA component) are expressed from the same vector/construct.
[0198] A targeting method herein can be performed in such a way that 2 or more DNA target sites are targeted in the method, for example. Such a method can comprise providing to a yeast a DNA polynucleotide that expresses a transcript comprising tandem ribozyme-RNA component cassettes (e.g., tandem ribozyme-RNA component-ribozyme cassettes) as disclosed herein. This method can target DNA sites very close to the same sequence (e.g., a promoter or open reading frame, and/or sites that are distant from each other (e.g., in different genes and/or chromosomes). Such a method can be performed with (for HR) or without (for NHEJ leading to indel and/or base substitution) suitable donor DNA polynucleotides, depending on the desired outcome of the targeting.
[0199] A targeting method in certain embodiments can be performed to disrupt one or more DNA polynucleotide sequences encoding a protein or a non-coding RNA. An example of such a sequence that can be targeted for disruption is one encoding a marker (i.e., a marker gene). Non-limiting examples of markers herein include screenable markers and selectable markers. A screenable marker herein can be one that renders a yeast visually different under appropriate conditions. Examples of screenable markers include polynucleotides encoding beta-glucuronidase (GUS), beta-galactosidase (lacZ), and fluorescent proteins (e.g., GFP, RFP, YFP, BFP). A selectable marker herein can be one that renders a yeast resistant to a selective agent or selective environment. Examples of selectable markers are auxotrophic markers such as HIS3, LEU2, TRP1, MET15, or URA3, which allow a yeast to survive in the absence of exogenously provided histidine, leucine, tryptophan, methionine, or uracil, respectively. Other examples of selectable markers are antibiotic (antifungal)-resistance markers such as those rendering a yeast resistance to hygromycin B, nourseothricin, phleomycin, puromycin, or neomycin (e.g., G418).
[0200] At least one purpose for disrupting a marker in certain embodiments can be for marker recycling. Marker recycling is a process, for example, comprising (i) transforming a yeast with a marker and heterologous DNA sequence, (ii) selecting a transformed yeast comprising the marker and the heterologous DNA sequence (where marker-selectable yeast typically have a higher chance of containing the heterologous DNA sequence), (iii) disrupting the marker, and then repeating steps (i)-(iii) as many times as necessary (using the same marker, but each cycle using a different heterologous DNA sequence) to transform the yeast with multiple heterologous DNA sequences. One or more heterologous sequences in this process may comprise the marker itself in the form of a donor polynucleotide(e.g., marker flanked by homology arms for targeting a particular locus). Examples of marker recycling processes herein include those using URA3 as a marker in non-conventional yeast such as Y. lipolytica.
Non-Limiting Examples of Compositions and Methods Disclosed Herein are as Follows:
[0201] 1. A non-conventional yeast comprising at least one RNA-guided endonuclease (RGEN) comprising at least one RNA component that does not have a 5'-cap, wherein the RNA component comprises a sequence complementary to a target site sequence on a chromosome or episome in the yeast, wherein the RGEN can bind to all or part of the target site sequence.
[0202] 2. The non-conventional yeast of embodiment 1, wherein the RGEN can bind to and cleave all or part of the target site sequence.
[0203] 3. The yeast of embodiment 1, wherein said yeast is a member of a genus selected from the group consisting of Yarrowia, Pichia, Schwanniomyces, Kluyveromyces, Arxula, Trichosporon, Candida, Ustilago, Torulopsis, Zygosaccharomyces, Trigonopsis, Cryptococcus, Rhodotorula, Phaffia, Sporobolomyces, and Pachysolen.
[0204] 4. The yeast of embodiment 1, wherein the RGEN comprises a CRISPR (clustered regularly interspaced short palindromic repeats)-associated (Cas) protein-9 (Cas9) amino acid sequence.
[0205] 5. The yeast of embodiment 4, wherein the Cas9 protein is a Streptococcus Cas9 protein.
[0206] 6. The yeast of embodiment 4, wherein the RNA component comprises a guide RNA (gRNA) comprising a CRISPR RNA (crRNA) operably linked to a trans-activating CRISPR RNA (tracrRNA).
[0207] 7. The yeast of embodiment 4, wherein a PAM (protospacer-adjacent motif) sequence is adjacent to the target site sequence.
[0208] 8. A non-conventional yeast comprising a polynucleotide sequence comprising a promoter operably linked to at least one nucleotide sequence, wherein said nucleotide sequence comprises a DNA sequence encoding a ribozyme upstream of a DNA sequence encoding an RNA component, wherein said RNA component comprises a variable targeting domain complementary to a target site sequence on a chromosome or episome in the yeast, wherein the RNA component can form a RNA-guided endonuclease (RGEN), wherein said RGEN can bind to all or part of the target site sequence.
[0209] 9. The non-conventional yeast of embodiment 8, wherein the RGEN can bind to and cleave all or part of the target site sequence.
[0210] 10. The non-conventional yeast of embodiment 8, wherein the RNA transcribed from the nucleotide sequence autocatalytically removes the ribozyme to yield said RNA component, wherein said RNA component does not have a 5' cap.
[0211] 11. The non-conventional yeast of embodiment 10, wherein the ribozyme is a hammerhead ribozyme, hepatitis delta virus ribozyme, group I intron ribozyme, RnaseP ribozyme, or hairpin ribozyme.
[0212] 12. The non-conventional yeast of embodiment 8, wherein the RNA transcribed from the nucleotide sequence does not autocatalytically removes the ribozyme to yield a ribozyme-RNA component fusion molecule without a 5' cap.
[0213] 13. The non-conventional yeast of embodiment 12, wherein the ribozyme is a HDV ribozyme.
[0214] 14. The non-conventional yeast of embodiment 8, wherein the promoter is a strong promoter.
[0215] 15. The non-conventional yeast of embodiment 8, wherein the promoter comprises a Pol II promoter sequence.
[0216] 16. A method of targeting an RNA-guided endonuclease (RGEN) to a target site sequence on a chromosome or episome in a non-conventional yeast, said method comprising providing to said yeast an RGEN comprising at least one RNA component that does not have a 5'-cap, wherein the RNA component comprises a sequence complementary to the target site sequence, wherein the RGEN binds to all or part of the target site sequence.
[0217] 17. The method of embodiment 16, wherein the RGEN can bind to and cleave all or part of the target site sequence.
[0218] 18. A method of targeting an RNA-guided endonuclease (RGEN) to a target site sequence on a chromosome or episome in a non-conventional yeast, said method comprising providing to said yeast an RGEN comprising at least one ribozyme-RNA component fusion molecule, wherein the RNA component comprises a sequence complementary to the target site sequence, wherein the RGEN binds to all or part of the target site sequence.
[0219] 19. The method of embodiment 18, wherein the RGEN can bind to and cleave all or part of the target site sequence.
[0220] 20. A method of targeting an RNA-guided endonuclease (RGEN) to a target site sequence on a chromosome or episome in a non-conventional yeast, said method comprising providing to said yeast a first recombinant DNA construct comprising a DNA sequence encoding a Cas endonuclease, and at least a second recombinant DNA construct comprising a DNA sequence encoding a ribozyme upstream of an RNA component, wherein the RNA transcribed from the second recombinant DNA construct autocatalytically removes the ribozyme to yield said RNA component , wherein the RNA component and the Cas9 endonuclease can form an RGEN that can bind to all or part of the target site sequence.
[0221] 21. The method of embodiment 20, wherein the RGEN can bind to and cleave all or part of the target site sequence.
[0222] 22. A method of targeting an RNA-guided endonuclease (RGEN) to a target site sequence on a chromosome or episome in a non-conventional yeast, said method comprising providing to said yeast a first recombinant DNA construct comprising a DNA sequence encoding a Cas endonuclease, and at least a second recombinant DNA construct comprising a DNA sequence encoding a ribozyme-RNA component fusion molecule, wherein said ribozyme-RNA component fusion molecule and the Cas9 endonuclease can form an RGEN that can bind to, and optionally cleave, all or part of the target site sequence.
[0223] 23. The method of embodiment 22, wherein the RGEN can bind to and cleave all or part of the target site sequence.
[0224] 24. A method for modifying a target site on a chromosome or episome in a non-conventional yeast, the method comprising providing to a non-conventional yeast a first recombinant DNA construct comprising a DNA sequence encoding a Cas endonuclease, and a second recombinant DNA construct comprising a DNA sequence encoding a ribozyme upstream of an RNA component, wherein the RNA transcribed from the second recombinant DNA construct autocatalytically removes the ribozyme to yield said RNA component that does not have a 5' cap, wherein the Cas9 endonuclease introduces a single or double-strand break at said target site.
[0225] 25. A method for modifying a target site on a chromosome or episome in a non-conventional yeast, the method comprising providing to a non-conventional yeast a first recombinant DNA construct comprising a DNA sequence encoding a Cas endonuclease, and a second recombinant DNA construct comprising a DNA sequence encoding a ribozyme-RNA component fusion molecule that does not have a 5'cap, wherein said ribozyme-RNA component fusion molecule and the Cas9 endonuclease can form a RGEN that introduces a single or double-strand break at said target site.
[0226] 26. A method for modifying multiple target sites on a chromosome or episome in a non-conventional yeast, the method comprising providing to a non-conventional yeast at least a first recombinant DNA construct comprising a DNA sequence encoding a Cas endonuclease, and at least a second recombinant DNA construct comprising a promoter operably linked to at least one polynucleotide, wherein said at least one polynucleotide encodes an RNA molecule comprising a ribozyme upstream of an RNA component, wherein said RNA molecule autocatalytically removes the ribozyme to yield said RNA component , wherein the Cas9 endonuclease introduces a single or double-strand break at said target site.
[0227] 27. A method for modifying multiple target sites on a chromosome or episome in a non-conventional yeast, the method comprising providing to a non-conventional yeast at least a first recombinant DNA construct comprising a DNA sequence encoding a Cas endonuclease, and at least a second recombinant DNA construct comprising a promoter operably linked to at least one polynucleotide, wherein said at least one polynucleotide encodes a ribozyme-RNA component fusion molecule, wherein said ribozyme-RNA component fusion molecule and the Cas9 endonuclease can form a RGEN that introduces a single or double-strand break at said target site.
[0228] 28. The method of any of embodiments 22-25, further comprising identifying at least one non-conventional yeast cell that has a modification at said target, wherein the modification includes at least one deletion, addition or substitution of one or more nucleotides in said target site.
[0229] 29. The method of any of embodiments 24-28, further comprising providing a donor DNA to said yeast, wherein said donor DNA comprises a polynucleotide of interest.
[0230] 30. The method of embodiment 29, further comprising identifying at least one yeast cell comprising in its chromosome or episome the polynucleotide of interest integrated at said target site.
[0231] 31. A method for editing a nucleotide sequence on a chromosome or episome in a non-conventional yeast, the method comprising providing to a non-conventional yeast a polynucleotide modification template DNA, a first recombinant DNA construct comprising a DNA sequence encoding a Cas endonuclease, and a second recombinant DNA construct comprising a DNA sequence encoding a ribozyme upstream of an RNA component, wherein the RNA transcribed from the second recombinant DNA construct autocatalytically removes the ribozyme to yield said RNA component that does not have a 5'cap, wherein the Cas9 endonuclease introduces a single or double-strand break at a target site in the chromosome or episome of said yeast, wherein said a polynucleotide modification template DNA comprises at least one nucleotide modification of said nucleotide sequence.
[0232] 32. A method for editing a nucleotide sequence on a chromosome or episome in a non-conventional yeast, the method comprising providing to a non-conventional yeast a polynucleotide modification template DNA, a first recombinant DNA construct comprising a DNA sequence encoding a Cas endonuclease, and a second recombinant DNA construct comprising a DNA sequence encoding a ribozyme-RNA component fusion molecule that does not have a 5'cap, wherein said ribozyme-RNA component fusion molecule and the Cas9 endonuclease can form a RGEN that introduces a single or double-strand break at a target site in the chromosome or episome of said yeast, wherein said a polynucleotide modification template DNA comprises at least one nucleotide modification of said nucleotide sequence.
[0233] 33. A method for editing a nucleotide sequences on a chromosome or episome in a non-conventional yeast, the method comprising providing to a non-conventional yeast at least one a polynucleotide modification template DNA, at least a first recombinant DNA construct comprising a DNA sequence encoding a Cas endonuclease, and at least a second recombinant DNA construct comprising a promoter operably linked to at least one polynucleotide, wherein said at least one polynucleotide encodes an RNA molecule comprising a ribozyme upstream of an RNA component, wherein said RNA molecule autocatalytically removes the ribozyme to yield said RNA component that does not have a 5'cap , wherein the Cas9 endonuclease introduces a single or double-strand break at a target site in the chromosome or episome of said yeast, wherein said polynucleotide modification template DNA comprises at least one nucleotide modification of said nucleotide sequence.
[0234] 34. A method for editing a nucleotide sequence on a chromosome or episome in a non-conventional yeast, the method comprising providing to a non-conventional yeast at least one a polynucleotide modification template DNA, at least a first recombinant DNA construct comprising a DNA sequence encoding a Cas endonuclease, and at least a second recombinant DNA construct comprising a promoter operably linked to at least one polynucleotide, wherein said at least one polynucleotide encodes a ribozyme-RNA component fusion molecule that does not have a 5'cap, wherein said ribozyme-RNA component fusion molecule and the Cas9 endonuclease can form a RGEN that introduces a single or double-strand break at a target site in the chromosome or episome of said yeast, wherein said a polynucleotide modification template DNA comprises at least one nucleotide modification of said nucleotide sequence.
[0235] 35. The method of any of embodiments 24-34 wherein the first recombinant DNA and the second recombinant DNA are located on the same plasmid.
[0236] 36. The method of any of embodiments 24-34 wherein the first recombinant DNA and the second recombinant DNA are located on separate plasmid.
[0237] 37. A method for silencing a nucleotide sequence on a chromosome or episome in a non-conventional yeast, the method comprising providing to a non-conventional yeast, at least a first recombinant DNA construct comprising a DNA sequence encoding an inactivated Cas9 endonuclease, and at least a second recombinant DNA construct comprising a promoter operably linked to at least one polynucleotide, wherein said at least one polynucleotide encodes a ribozyme-RNA component fusion molecule that does not have 5'cap, wherein said ribozyme-RNA component fusion molecule and the inactivated Cas9 endonuclease can form a RGEN that binds to said nucleotide sequence in the chromosome or episome of said yeast, thereby blocking transcription of said nucleotide sequence.
[0238] 38. A high throughput method for the production of multiple guide RNAs for gene modification in non-conventional yeast, the method comprising:
[0239] a) providing a recombinant DNA construct comprising a promoter operably linked to, in 5' to 3' order, a first DNA sequence encoding a ribozyme, a second DNA sequence encoding a counterselection agent, a third DNA sequence encoding a CER domain of a guide RNA, and a terminator sequence;
[0240] b) providing at least one oligonucleotide duplex to the recombinant DNA construct of (a), wherein said oligonucleotide duplex is originated from combining a first single stranded oligonucleotide comprising a DNA sequence capable of encoding a variable targeting domain (VT) of a guide RNA target sequence with a second single stranded oligonucleotide comprising the complementary sequence to the DNA sequence encoding the variable targeting domain;
[0241] c) exchanging the counterselection agent of (a) with the at least one oligoduplex of (b), thereby creating a library of recombinant DNA constructs each comprising a DNA sequence capable of encoding a variable targeting domain of a guide RNA; and,
[0242] d) transcribing the library of recombinant DNA constructs of (c), thereby creating a library of ribozyme-guideRNA molecules.
[0243] 39. The method of embodiment 38, further comprising inducing the library of ribozyme-guide RNA molecules such that said molecules autocatalitically remove the ribozyme and any RNA sequence upstream of the ribozyme to yield a library of guide RNA molecules that do not contain 5' cap.
[0244] 40. The method of embodiment 38, further comprising inducing the library of ribozyme-guide RNA molecules such that said molecules cleaves any RNA sequence upstream of the ribozyme TO yield a ribozyme-gRNA fusion molecules that do not contain 5
' cap.
[0245] 41. A recombinant DNA sequence comprising (i) a polymerase-II promoter operably linked to (ii) a nucleotide sequence encoding a ribozyme and a guide RNA, wherein said ribozyme is upstream of said guide RNA, wherein RNA transcribed from the nucleotide sequence of (ii) autocatalically removes the ribozyme to yield said guide RNA, and wherein said guide RNA can form a RGEN that can recognize, bind to, and optionally cleave a target site in the genome of a non-conventional yeast.
[0246] 42. A recombinant RNA sequence comprising a ribozyme and a guide RNA, wherein said ribozyme is upstream of said guide RNA, wherein said ribozyme can be autocatalically removed to yield said guide RNA, and wherein said guide RNA can form a RGEN that can recognize, bind to, and optionally cleave a target site in the genome of a non-conventional yeast.
[0247] 43. A recombinant DNA sequence comprising (i) a polymerase-II promoter operably linked to (ii) a nucleotide sequence encoding a ribozyme and a guide RNA, wherein said ribozyme is upstream of said guide RNA, wherein RNA transcribed from the nucleotide sequence of (ii) yields a ribozyme-guide RNA fusion molecule, and wherein said ribozyme-guide fusion molecule can form a RGEN that can recognize, bind to, and optionally cleave a target site in the genome of a non-conventional yeast.
[0248] 44. A recombinant RNA sequence comprising a ribozyme-guide RNA fusion molecule, wherein said ribozyme-guide RNA fusion molecule can form a RGEN that can recognize, bind to, and optionally cleave a target site in the genome of a non-conventional yeast.
EXAMPLES
[0249] The disclosed invention is further defined in the following Examples. It should be understood that these Examples, while indicating certain preferred aspects of the invention, are given by way of illustration only. From the above discussion and these Examples, one skilled in the art can ascertain the essential characteristics of this invention, and without departing from the spirit and scope thereof, can make various changes and modifications of the invention to adapt it to various uses and conditions.
Example 1
sgRNA Expressed from a Pol III Promoter in Yarrowia Does Not Guide Cas9 to Target Sites and Mediate DNA Cleavage
[0250] This example discloses vectors and cassettes designed to express sgRNAs and Cas9 protein in Yarrowia lipolytica targeting the Leu2 locus. If sgRNAs and Cas9 produced in this yeast can interact, find and cleave target sites, mutations should be generated via error-prone non-homologous end-joining (NHEJ) at the target sites.
[0251] FIG. 1 illustrates a sgRNA molecule, which is a single RNA molecule containing two regions, a variable targeting domain (VT) (guide sequence) and Cas endonuclease recognition domain (CER). The VT region can be a 20mer of RNA polynucleotide that has identity to a targeted nucleic acid molecule. The VT domain specifies a target site for cleavage in the target site that lies 5' of a PAM motif (e.g., NGG, SEQ ID NO:47). The CER domain interacts with Cas9 protein and allows the VT domain to interact and direct the Cas9 protein cleavage (Jinek et al., Science 337:816-821). Both VT and CER domains are required for the function of an sgRNA.
[0252] DNA sequences encoding VT domains that target Cas9 to three individual target sites (Leu2-1, Leu2-2, Leu2-3) in the coding region of the LEU2 locus of Yarrowia are listed in Table 3. Table 3 also lists a DNA sequence encoding a VT domain targeting the coding region of the Yarrowia CAN1 locus.
TABLE-US-00007 TABLE 3 DNA Sequences Encoding sgRNA VT domains for Targeting the LEU2 or CAN1 Locus in Yarrowia with Cas9 Leu2-1.sup.a (SEQ ID NO: 2) TCCAAGAAGATTGTTCTTCT Leu2-2.sup.a (SEQ ID NO: 3) CTCCGTCATCCCCGGTTCTC Leu2-3.sup.a (SEQ ID NO: 4) CGGCGACTTCTGTGGCCCCG Can1-1.sup.b (SEQ ID NO: 17) TCAAACGATTACCCACCCTC .sup.aThe LEU2 gene sites targeted by Leu2-1, Leu2-2, and Leu2-3 have a CGG, TGG, or AGG, respectively, as a PAM site. .sup.bThe CAN1 gene site targeted by Can1-1 has a CGG as a PAM site.
Each of the LEU2-targeting DNA sequences in Table 3 was individually fused to a DNA sequence encoding a CER domain (SEQ ID NO:1) that interacts with Streptococcus pyogenes Cas9 protein, thereby creating DNA sequences encoding complete sgRNAs having both a CER domain and VT domain (note that SEQ ID NO:1 comprises in the 5'-to-3' direction the tracrRNA mate sequence of SEQ ID NO:56, the loop-forming sequence of SEQ ID NO:43 (GAAA), and the tracrRNA sequence of SEQ ID NO:58. In order to express these sgRNAs in the nucleus of the cell and evade nuclear export and 5' modification systems, DNA sequences encoding the sgRNAs were put under control of RNA Pol III promoters from Saccharomyces cerevisiae (Snr52 [SEQ ID NO:5] or Rpr1 [SEQ ID NO:6]) or Yarrowia lipolytica (Snr52 [SEQ ID NO:7]). Specifically, Sc Snr52 was fused to Leu2-1, Sc Rpr1 was fused to Leu2-2, and YI Snr52 was fused to Leu2-3. The 3' end of the DNA sequence encoding each sgRNA was fused to a strong terminator from the Sup4 gene of Saccharomyces cerevisiae (SEQ ID NO:8). Thus, three different Pol III-driven sgRNA cassettes were prepared.
[0253] The open reading frame of the Cas9 gene from Streptococcus pyogenes M1 GAS (SF370) was codon-optimized for expression in Yarrowia per standard techniques, yielding SEQ ID NO:9. DNA sequence encoding a simian virus 40 (SV40) monopartite nuclear localization signal (NLS) plus a short linker (4 amino acids) was incorporated after the last sense codon of SEQ ID NO:9 to render SEQ ID NO:10. SEQ ID NO:10 encodes the amino acid sequence shown in SEQ ID NO:11. The last seven amino acids of SEQ ID NO:11 encode the added NLS, whereas residues at positions 1369-1372 of SEQ ID NO:11 encode the added linker. The Yarrowia codon-optimized Cas9-NLS sequence (SEQ ID NO:10) was fused to a Yarrowia constitutive promoter, FBA1 (SEQ ID NO:12), by standard molecular biology techniques. An example of a Yarrowia codon-optimized Cas9 expression cassette (SEQ ID NO:13) is illustrated in FIG. 2A containing the constitutive FBA1 promoter, Yarrowia codon-optimized Cas9, and the SV40 NLS. This Cas9 expression cassette (SEQ ID NO:13) was cloned into the plasmid pZUF rendering construct pZUFCas9 (FIG. 3A, SEQ ID NO:14).
[0254] Each of the sgRNA expression cassettes (above) were individually cloned into the PacI/ClaI site of pZUFCas9 (SEQ ID NO:14) to render a pZUFCas9/sgRNA construct that could be used to co-transform yeast cells with the Yarrowia codon-optimized Cas9 expression cassette and a Pol III-driven sgRNA expression cassette. An example of such a construct is pZUFCas9/PolIII-sgRNA (FIG. 3B), which contains the YI Snr52 -sgRNA expression cassette for targeting Leu2-3 in Yarrowia.
[0255] Uracil auxotrophic Y. lipolytica cells were transformed with 200 ng of plasmids pZUFCas9 (SEQ ID NO:14) or a particular pZUFCas9/sgRNA (e.g., pZUFCas9/PolIII-sgRNA, FIG. 3B) and selected for uracil prototrophy on complete minimal plates lacking uracil (CM-ura). Colonies arising on the CM-ura plates were screened for leucine auxotrophy on complete minimal plates lacking leucine (CM-leu). None of the uracil prototroph transformants displayed leucine auxotrophy. These results suggest that the Yarrowia codon-optimized Cas9 and Pol III promoter-driven sgRNA were not expressed, were not produced, did not interact, did not target DNA, and/or did not cleave DNA. If this experiment had produced leucine auxotrophs, such results would likely have indicated that a Cas9/sgRNA complex targeted and cleaved the Leu2 coding region leading to error-prone NHEJ and consequent indel formation, creating frameshift mutations.
[0256] Thus, it appears that Pol III-driven expression of sgRNA might not be useful for providing a functional Cas9-sgRNA complex in Yarrowia.
Example 2
Yarrowia-Optimized sgRNA Expression Cassettes Comprising 5'- and 3'-Ribozymes Driven by DNA Polymerase II Promoters
[0257] This example discloses sgRNAs optimized for expression and Cas9-mediated targeting in Yarrowia. Each cassette used for such expression comprised a Pol II promoter for driving transcription of an sgRNA fused to a 5'-ribozyme and 3'-ribozyme (ribozyme-sgRNA-ribozyme, or RGR). The 5' and 3' ribozymes were provided to remove Pol II promoter-related transcript modifications from the sgRNA such as 5' cap structures, leaving just the sgRNA sequence. These expression cassettes allow a broader promoter choice for sgRNA expression. Also, sgRNAs transcribed from these cassettes are not subject to nuclear export since they lack a 5'-cap structure. These features allow robust expression of sgRNA in Yarrowia cells so they might guide Cas9 endonuclease to targeted regions of the genome in vivo.
[0258] The addition of 5' HammerHead (HH) and 3' Hepatitis Delta Virus (HDV) ribozymes to a sgRNA sequence allows expression of the sgRNA from any promoter without consideration for post-transcriptional modifications that occur at promoters transcribed by some RNA polymerases (e.g. Pol II) and circumvents the current limited selection of promoters for sgRNA expression. When such sgRNA is expressed, the ribozymes present in the pre-sgRNA transcript autocleave, thereby separating from the transcript leaving an unmodified sgRNA.
[0259] For each sgRNA tested, DNA sequence encoding the sgRNA was fused (i) at its 5'-end to a sequence encoding a 5' HH ribozyme (SEQ ID NO:15) and (ii) at its 3'-end to a sequence encoding a 3' HDV ribozyme (SEQ ID NO:16). The 5'-linkage of the HH ribozyme was such that the first 6 nucleotides of the HH ribozyme were the reverse compliment of the first 6 nucleotides of the VT region (guide sequence) of the sgRNA. Each ribozyme-flanked pre-sgRNA (RGR) was fused to the FBA1 promoter (SEQ ID NO:12) using standard molecular biology techniques to yield a Yarrowia-optimized sgRNA expression cassette (final cassette depicted in FIG. 2B). An example sequence of such a cassette is shown in SEQ ID NO:18, which comprises an FBA1 promoter (SEQ ID NO:12) operably linked to a sequence encoding an RGR (HH-sgRNA-HDV) in which the sgRNA comprises a VT domain encoded by SEQ ID NO:17 (Can1-1) and SEQ ID NO:1 as its CER domain (note that each of the CER domain-coding regions of SEQ ID NO:18, pRF38 (SEQ ID NO:19) and pRF84 (SEQ ID NO:41) have an added `TGG`, where such `TGG` is between residue positions corresponding to positions 73-74 of SEQ ID NO:1 (CER domain)). This VT domain targets a site in the coding region of the Yarrowia CAN1 gene open reading frame (GenBank Accession No. NC_006068, YALI0B19338g, .about.bp 2557513-2559231 of chromosome B). The first 6 residues of the encoded HH ribozyme are complementary to the first 6 residues of the sgRNA (i.e., first 6 residues of the VT domain). Note that there are three residues (ATG) immediately following SEQ ID NO:12 (FBA1 promoter) in SEQ ID NO:18 which are not believed to affect expression and ribozyme-mediated autocatalysis of the pre-sgRNA. SEQ ID NO:18 was cloned into a construct termed pRF38 (FIG. 3C, SEQ ID NO:19).
[0260] Thus, DNA cassettes for expressing sgRNA without 5' and 3' pol II promoter-related transcript modifications were prepared. These type of cassettes were used in Example 3 for Cas9 gene targeting in Yarrowia.
Example 3
Yarrowia-Optimized sgRNA Can be Used in an sgRNA/Cas9 Endonuclease System to Cleave Chromosomal DNA
[0261] This example discloses using Yarrowia-optimized sgRNA expression cassettes as described in Example 2 to express sgRNA that can function with Cas9 to recognize and cleave chromosomal DNA in Yarrowia. Such cleavage was manifested by the occurrence of mutations in the region of the predicted DNA cleavage site due to error-prone NHEJ DNA repair at the cleavage site.
[0262] The CAN1 gene of Y. lipolytica was targeted for cleavage. Successful targeting of CAN1 in Yarrowia transformants was examined by phenotype (canavanine resistance) and sequencing for mutation frequency and spectra, respectively.
[0263] Ura.sup.- Y. lipolytica cells (strain Y2224, a uracil auxotroph derived directly from strain ATCC 20362, is disclosed in U.S. Patent Appl. Publ. No. 2010/0062502, which is incorporated herein by reference) were co-transformed by lithium ion-mediated transformation (Ito et al., J. Bacteriology 153:163-168) with pZUFCas9 (FIG. 3A, SEQ ID NO:14) and a linear PCR product amplified from pRF38 (FIG. 3C, SEQ ID NO:19) containing the Yarrowia-optimized RGR pre-sgRNA cassette (comprised in SEQ ID NO:18) for targeting the CAN1 locus. The primers used for this PCR amplification were SEQ ID NO:20 (Forward) and SEQ ID NO:21 (Reverse). Ura.sup.- Y. lipolytica cells (Y2224) cells transformed with pZUFCas9 (SEQ ID NO:14) alone served as a negative control. Cells transformed with pZUFCas9 (SEQ ID NO:14) and the RGR pre-sgRNA expression cassettes were selected on CM-ura medium as uracil prototrophs. Cells containing loss-of-function mutations in the CAN1 gene were screened by replica-plating the CM-ura plates onto complete minimal medium lacking uracil, lacking arginine, and supplemented with 60 .mu.g/ml of the toxic arginine analog, canavanine (CM+can). Cells with a functional CAN1 gene can transport canavanine into the cells causing cell death. Cells with a loss-of-function allele in the CAN1 gene do not transport canavanine and are able to grow on the CM+can plates.
[0264] The frequency of loss-of-function mutants recovered by the phenotypic screen of canavanine resistance was zero for cells transformed with Cas9 alone (FIG. 4). However, when Cas9 was co-transformed with the RGR pre-sgRNA expression cassette, the frequency of canavanine-resistant transformants was increased to ten percent (FIG. 4).
[0265] The CAN1 locus of canavanine-resistant colonies was amplified using forward (SEQ ID NO:22) and reverse (SEQ ID NO:23) PCR primers. PCR products were purified using Zymoclean.TM. and concentrator columns (Zymo Research, Irvine, CA). The PCR products were sequenced (Sanger method) using sequencing primer SEQ ID NO:24. Sequences were aligned with wild-type (WT) Yarrowia CAN1 coding sequence containing the target site (FIG. 5). The primary loss-of-function mutation (73% of sequenced isolates) at the CAN1 locus in cells expressing both Cas9 and the sgRNA was a -1 frameshift mutation at the Cas9 cleavage site (FIG. 5). A smaller number of other deletions and insertions made up the remainder of the mutations at the CAN1 locus. In all, 90% of the mutations were small deletions or insertions (FIG. 5). Rarely, other events occurred such as the insertion of small amounts of sequence from another chromosome (4%), insertion of the Yarrowia-optimized sgRNA expression cassette at the cleavage site (1.5%), or larger deletions (1%). 3.5% of the canavanine-resistant colonies screened had complex rearrangements at the CAN1 locus which were not determined by sequencing. Altogether, the mutations observed at the CAN1 target site indicate that error-prone NHEJ was used in the cells to repair the cleavage made by the Cas9/sgRNA complex.
[0266] Both (i) the increased frequency of canavanine-resistant colonies in cells transformed to express a CAN1-specific Cas9 endonuclease, and (ii) the sequencing data indicating that the canavanine-resistance mutations were due to error-prone NHEJ events at the predicted Cas9 cleavage site, confirm that the Yarrowia-optimized Cas9 and RGR pre-sgRNA expression cassettes described in Example 2 cleave Yarrowia chromosomal DNA and generate mutations.
[0267] Thus, expressing an RNA component (e.g., sgRNA) of an RGEN (e.g., Cas9) not having a 5'-cap, where the 5' cap of the RNA component is autocatalytically removed by a ribozyme, allows RGEN-mediated targeting of DNA sequences in a non-conventional yeast.
Example 4
Yarrowia-Optimized sgRNA Expressed with a 5'-Ribozyme, But without a 3' Ribozyme), Is Useful in an sgRNA/Cas9 Endonuclease System for Cleaving Chromosomal DNA
[0268] In this example, the functionality of sgRNA produced from a Yarrowia-optimized cassette containing only a 5' HH ribozyme, but no 3' ribozyme, was evaluated to determine if the sgRNA could interact with Cas9, recognize a DNA target sequence, induce DNA cleavage by Cas9, and lead to mutation by error-prone NHEJ.
[0269] RNAs transcribed from Pol II promoters are heavily processed and modified at both their 5' and 3' ends, suggesting that, to produce a functional sgRNA from a Pol II promoter, the 5' and 3' ends must be cleaved off. It has previously been shown that sgRNAs produced in vitro with flanking regions are (i) non-functional if a 5'-flanking region exists, and (ii) significantly functionally impaired if a 3' flanking region exists (Gao et al., J. Integr. Plant Biol. 56:343-349). If pre-sgRNA containing a 5' ribozyme and also a 3' flanking region was expressed Saccharomyces cerevisiae along with Cas9, the sgRNA did not function to direct Cas9 to a target site for cleavage (Gao et al., ibid).
[0270] To test if a 5' ribozyme-flanked sgRNA (lacking a 3'-located ribozyme) could function in non-conventional yeast, a Yarrowia-optimized sgRNA expression cassette (SEQ ID NO:25) was constructed containing, in a 5'-to-3' direction, an FBA1 promoter (SEQ ID NO:12) fused to a HH ribozyme (SEQ ID NO:15) fused to a sequence encoding an sgRNA (an example of SEQ ID NO:70) targeting the Can1-1 target site (SEQ ID NO:17) fused to a strong transcriptional terminator from the S. cerevisiae Sup4 gene (SEQ ID NO:8) (this cassette can be characterized as expressing an RG [ribozyme-sgRNA] RNA). The sgRNA encoded in the RG expression cassette comprises a VT domain corresponding to SEQ ID NO:17, linked to a CER domain (SEQ ID NO:1). The first 6 residues of the encoded HH ribozyme are complementary to the first 6 residues of the sgRNA (i.e., first 6 residues of the VT domain). Note that there are three residues (ATG) immediately following SEQ ID NO:12 (FBA1 promoter) in SEQ ID NO:25 which are not believed to affect expression and ribozyme-mediated autocatalysis of the pre-sgRNA. This Yarrowia-optimized RG expression cassette (SEQ ID NO:25) is illustrated in FIG. 2C.
[0271] To test the ability of the Yarrowia-optimized RG cassette to express an sgRNA that can interact with Cas9, direct Cas9 to a DNA target sequence for cleavage by Cas9, PCR product containing either the RG construct (SEQ ID NO:25) or the RGR construct (SEQ ID NO:18, Example 2) was co-transformed with pZUFCas9 (SEQ ID NO:14) into Ura.sup.- Y. lipolytica cells (Y2224) by lithium ion-mediated transformation (Ito et al., ibid). Ura.sup.+ transformants were replica-plated onto CM+can plates to screen for canavanine-resistant cells (as in Example 3) in which the sgRNA produced from the RG or RGR pre-sgRNA functioned in guiding Cas9 to cleave the CAN1 target sequence resulting in error-prone repair via NHEJ. The frequencies at which the Yarrowia-optimized RG or RGR cassettes directed Cas9 mediated cleavage to the target site were the same (FIG. 6), indicating that contrary to results of Gao et al. (J. Integr. Plant Biol. 56:343-349) using S. cerevisiae, a 3' ribozyme was not necessary for efficient Cas9/sgRNA target cleavage and mutation in Yarrowia.
[0272] This example demonstrates that, in non-conventional yeast such as Yarrowia, only a 5'-flanking ribozyme appears to be necessary to produce a functional sgRNA from Pol II promoters when using a ribozyme strategy. This result contrasts with what has been observed in S. cerevisiae, a conventional yeast, in which both 5' and 3' ribozymes were required for efficient cleavage and mutation of a target sequence by Cas9 (Gao et al., ibid).
[0273] Thus, this example further demonstrates that expressing an RNA component (e.g., sgRNA) of an RGEN (e.g., Cas9) not having a 5'-cap, where the 5' cap of the RNA component is autocatalytically removed by a ribozyme, allows RGEN-mediated targeting of DNA sequences in a non-conventional yeast.
Example 5
Use of Linear Polynucleotide Modification templates to Facilitate Homologous Recombination (HR) Repair of Cas9/sgRNA-Induced DNA Double-Strand Breaks
[0274] This example discloses testing for the ability of the HR machinery in Yarrowia to use linear polynucleotide modification template DNA sequences to repair double-strand breaks (DSBs) generated by expressing Yarrowia-optimized Cas9 and pre-sgRNA expression cassettes. Three different linear template sequences were produced, each having 5'- and 3'-arm sequences that were homologous to regions outside a Cas9/sgRNA targeting site in chromosomal DNA.
[0275] The first two types of polynucleotide modification template sequences were generated from synthesized oligonucleotides that were complimentary. The complimentary oligonucleotides were annealed and then purified by ethanol precipitation.
[0276] The first polynucleotide modification template was generated using complementary oligonucleotides (SEQ ID NOs:28 and 29) and was designed to delete the 20-nucleotide Can1-1 target site (SEQ ID NO:17), the 3-nucleotide PAM domain and the two nucleotides immediately upstream of the Can1-1 target site, thereby deleting 8 codons and 1 base pair resulting in a -1 bp frameshift in the CAN1 gene. The first polynucleotide modification template was assembled by annealing SEQ ID NO:28 and its reverse compliment, SEQ ID NO:29. The homology arms (each about 50-bp) of the first donor DNA are directly next to each other; there is no heterologous sequence between them.
[0277] The second polynucleotide modification template generated using complementary oligonucleotides (SEQ ID NOs:30 and 31) and was designed to generate two in-frame translational stop codons (i.e., nonsense mutations) in the CAN1 open reading frame. It was also designed to disrupt the PAM sequence downstream the Can1-1 target site (replacing CGG with ATG) and the first nucleotide of the seed sequence (i.e., last residue of the Can1-1 target sequence of SEQ ID NO:17) (replacing C with G). This polynucleotide modification template was created by annealing SEQ ID NO:30 and its reverse compliment, SEQ ID NO:31. As can be gleaned from above, the homology arms (each about 50-bp) of the second donor DNA are separated by a few base pairs of heterologous sequence.
[0278] A third polynucleotide modification template was generated in part by producing two PCR products. In one of the PCR products (SEQ ID NO:32, amplified from Y. lipolytica ATCC 20362 genomic DNA using primers SEQ ID NO:33 [forward] and SEQ ID NO:34 [reverse]), position 638 of SEQ ID NO:32 corresponds to the nucleotide 3 bp upstream of the CAN1 open reading frame start codon. The reverse primer (SEQ ID NO:34) adds 17 nucleotides complementary to sequence lying 37 bp downstream the CAN1 open reading frame. The second PCR product (SEQ ID NO:35, amplified from Y. lipolytica ATCC 20362 genomic DNA using primers SEQ ID NO:36 [forward] and SEQ ID NO:37 [reverse]), comprises 637 base pairs starting 14 base pairs downstream the stop codon of the CAN1 open reading frame. The forward primer (SEQ ID NO:36) adds 20 nucleotides complementary to the region ending 2 base pairs upstream the CAN1 open reading frame. Both the upstream (SEQ ID NO:32) and downstream PCR products (SEQ ID NO:35) were purified using Zymoclean.TM. and concentrator columns. These PCR products (10 ng each) were mixed in a new PCR reaction. The 3'-most 37 nucleotides of the upstream product are identical to the 5'-most 37 nucleotides of the downstream product. The upstream and downstream fragments were used to prime each other creating a single product (SEQ ID NO:38) by synthesis from overlapping ends containing both the upstream and downstream sequences (technique described by Horton et al., Biotechniques 54:129-133). The homology arms (each over 600-bp) of the SEQ ID NO:38 donor DNA are directly next to each other; there is no heterologous sequence between them. This polynucleotide modification template can enable a large deletion encompassing the entire CAN1 open reading frame in the region of a Cas9/sgRNA-mediated double-strand break in the Can1-1 target site.
[0279] Ura.sup.- Y. lipolytica cells (Y2224) were transformed using the above lithium ion transformation method with (i) pZUFCas9 (SEQ ID NO:14), (ii) 1 .mu.g of the Yarrowia-optimized RGR pre-sgRNA expression cassette (SEQ ID NO:18), and (iii) 1 nmol of the "frameshift template" DNA (SEQ ID NO:28), 1 nmol of the "point mutation template" DNA (SEQ ID NO:30), or 1 .mu.g of the "large deletion template" DNA (SEQ ID NO:38). Transformed cells were recovered as prototrophs for uracil on CM-ura plates. The prototrophic colonies were screened by replica-plating to CM+can to identify canavanine-resistant cells, which have CAN1 mutations. The CAN1 locus of Can.sup.R colonies from each transformation were screened via PCR amplification using forward (SEQ ID NO:22) and reverse primers (SEQ ID NO:23). Each PCR product was purified using ExoSAP-IT.RTM. (Affymetrix, Santa Clara, Calif.) and sequenced (Sanger method) using sequencing primer SEQ ID NO:24. The frequency of colonies exhibiting the predicted homologous recombination event out (in view of which particular template DNA was used in the transformation) of the total number of Can.sup.R colonies was about 15% (FIG. 7).
[0280] The three different polynucleotide modification template DNA sequences had slightly different efficiencies of HR repair (FIG. 8). Specifically, HR frequencies with each of these templates was roughly between 11% (large deletion and frameshift donors) and 22% (point mutation template) (FIG. 8), indicating that some of the Cas9/sgRNA-generated cleavage events at the Can1-1 target site were repaired using the HR pathway in a high-fidelity manner when polynucleotide modification template DNA was provided.
[0281] Use of the two major pathways of DNA repair, NHEJ or HR, demonstrates a clear bias for NHEJ in Yarrowia (FIG. 7), which is different from what has been observed in studies of repair at Cas9/sgRNA-mediated cleavage events in conventional yeast. For example, DiCarlo et al. (Nucleic Acids Res. 41:4336-4343) showed that almost all S. cerevisiae mutants obtained when a donor DNA was provided for repair of a Cas9/sgRNA-mediated DNA cleavage were generated via HR, while the frequency fell by 4 to 5 orders of magnitude when donor DNA was not provided, indicating a clear bias toward HR. In contrast, the total mutation frequency in Yarrowia at a Cas9/sgRNA (sgRNA expressed from the RGR cassette) cleavage site did not vary between transformants that received or did not receive polynucleotide modification template DNA (FIG. 9, showing -15% mutation rates for both types of transformants), and HR only accounts for about 15 percent of the mutant transformants generated when donor DNA is provided (FIG. 7). Thus, the frequency of HR with a polynucleotide modification template DNA sequence in Yarrowia as observed above was only about 2.25%, which is in stark contrast to the near 100% HR-mediated mutation rate observed with donor DNA in a conventional yeast (DiCarlo et al., ibid).
[0282] Thus, this example further demonstrates that expressing an RNA component (e.g., sgRNA) of an RGEN (e.g., Cas9) not having a 5'-cap, where the 5' cap of the RNA component is autocatalytically removed by a ribozyme, allows RGEN-mediated targeting of DNA sequences in a non-conventional yeast. This example also demonstrates that RGEN-mediated cleavages in a non-conventional yeast can be repaired by HR at a certain rate if a suitable donor DNA (polynucleotide modification template) is provided.
Example 6
Expression of Cas9 and Yarrowia-Optimized RGR or RG Pre-sgRNA from a Single Stable Vector Provides Cas9/sgRNA-Mediated Target DNA Cleavage
[0283] In this example, Yarrowia-optimized RGR or RG pre-sgRNA expression cassettes were each individually moved into the same stable expression plasmid as a Yarrowia-optimized Cas9 expression cassette. Specifically, SEQ ID NO:18 (for RGR expression) or SEQ ID NO:25 (for RG expression) were each individually cloned into pZUFCas9 (FIG. 3A, SEQ ID NO:14). This allowed for single-component transformation to express both Cas9 endonuclease and the RG or RGR pre-sgRNA in cells, thereby providing Cas9/sgRNA-mediated target site cleavage followed by error prone NHEJ repair.
[0284] Yarrowia-optimized RGR (SEQ ID NO:18) or RG (SEQ ID NO:25) sgRNA expression cassettes were amplified by PCR using forward (SEQ ID NO:39) and reverse (SEQ ID NO:40) primers. Each product was individually cloned into plasmid pZUFCas9 (SEQ ID NO:14) at PacI/ClaI restriction sites to generate two new plasmids each carrying respective cassettes for Cas9 expression and expression of either the optimized RGR pre-sgRNA (pRF84, SEQ ID NO:41, FIG. 10A) or the optimized RG pre-sgRNA (pRF85, SEQ ID NO:42, FIG. 10B).
[0285] To test the ability of the pRF84 (SEQ ID NO:41) and pRF85 (SEQ ID NO:42) plasmid constructs to each effectively express Cas9 and sgRNA to provide Cas9/sgRNA-mediated target site (Can1-1) cleavage, Ura.sup.- Y. lipolytica cells (Y2224) were transformed using the above lithium ion transformation method with 200 ng of pRF84 (SEQ ID NO:41), pRF85 (SEQ ID NO:42), or pZUFCas9 (SEQ ID NO:14). Cells transformed with each plasmid were selected as uracil prototrophs on CM-ura medium. Uracil prototrophs from each transformation were screened for CAN1 mutants by replica-plating on CM+can. The number of colonies that grew on the CM+can plates were used to generate a CAN1 mutation frequency (FIG. 11) for the cells transformed with pZUFCas9 (expressing Cas9 alone), pRF84 (expressing Cas9 and RGR pre-sgRNA), or pRF85 (expressing Cas9 and RG pre-sgRNA). Yarrowia cells transformed with pZUFCas9 (SEQ ID NO:14) had a 0 frequency of Cas9/sgRNA-mediated mutation at the CAN1 locus, whereas cells expressing (i) Cas9 and (ii) RGR pre-sgRNA (pRF84) or RG sgRNA (pRF85) had similar CAN1 mutation frequencies (.about.69%) as indicated by canavanine-resistance (FIG. 11).
[0286] These results indicate that expressing Cas9 and pre-sgRNA from the same vector lead to significantly higher rates of Cas9/sgRNA-mediated cleavage and consequently NHEJ-mediated mutation at the predicted cleavage site. While Yarrowia cells transformed with separate sequences encoding Cas9 and pre-sgRNA (RGR or RG pre-sgRNA) exhibited a targeted mutation frequency of about 5% (Example 4, FIG. 6), placing both Cas9 and sgRNA coding sequences on the same vector used for transformation resulted in a targeted mutation frequency of about 69% (FIG. 11).
[0287] Thus, expressing a Cas protein and its corresponding RNA component from the same construct used to transform a non-conventional yeast results in a higher rate of Cas-mediated DNA targeting in the yeast compared to using separate constructs to express the RGEN protein and RNA components.
Example 7
High-Efficiency Gene Targeting Using a HDV Ribozyme-sgRNA Fusion in Yarrowia lipolytica
[0288] This example discusses the use of single guide RNAs (sgRNAs that are flanked on the 5' end by a HDV ribozyme (Ribozyme-single guide RNA fusion). When expressed, the HDV ribozyme cleaves 5' of its own sequence removing any preceding transcript but leaving the HDV sequence fused to the 5' end of the sgRNA.
[0289] Plasmid pZuf-Cas9 (SEQ ID NO: 14) was mutagenized using Agilent QuickChange and the following primers AarI-removal-1 (AGAAGTATCCTACCATCTACcatctccGAAAGAAACTCGTCGATTCC, SEQ ID NO: 90) and AarI-removal-2 (GGAATCGACGAGTTTCTTTCggagatgGTAGATGGTAGGATACTTCT, SEQ ID NO:91) to remove the endogenous AarI site present in the Cas9 gene (SEQ ID NO: 10) on pZuf-Cas9 (SEQ ID NO: 14) and generate pRF109 (SEQ ID NO: 92). The modified Aar1-Cas9 gene (SEQ ID NO: 93) was cloned as a NcoI/NotI fragment from pRF109 into the NcoI/NotI site of pZufCas9 replacing the existing Cas9 gene (SEQ ID NO: 10) with the Aar1-Cas9 gene to generate pRF141 (SEQ ID NO: 94).
[0290] The high throughput cloning cassette (FIG. 12A, SEQ ID NO: 95) is composed of the yl52 promoter (SEQ ID NO: 96), the HDV ribozyme (SEQ ID NO: 16), the Escherichia coli counterselection cassette rpsL (SEQ ID NO: 97), the DNA encoding the guide RNA CER domain (SEQ ID NO: 1) and the S. cerevisiae Sup4 terminator (SEQ ID NO: 8). Flanking the ends of the high-throughput cloning cassette (SEQ ID NO: 95) are PacI and ClaI restriction enzyme recognition sites. The high-throughput cloning cassette was cloned into the PacI/ClaI sites of pRF141 (SEQ ID NO: 94) to generate pRF291 (SEQ ID NO: 98). The rpsL counterselection cassette (SEQ ID NO: 97) contains a WT copy of the E. coli gene rpsL encoding the S12 ribosomal protein subunit (Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, 1987, First ed. American Society of Microbiology, Washington, D.C.). Some mutations in the S12 subunit cause resistance to the antibiotic streptomycin (Ozaki M, Mizushima S, Nomura M. 1969. Identification and functional characterization of the protein controlled by the streptomycin-resistant locus in E. coli. Nature 222:333-339) in a recessive manner (Lederberg J. 1951. Streptomycin resistance; a genetically recessive mutation. Journal of bacteriology 61:549-550) such that if a wild-type copy of the rpsL gene is present the strain is phenotypically sensitive to streptomycin. Common cloning strains such as Top10 (Life technologies) have a mutated copy of rpsL on their chromosome such that the cells are resistant to streptomycin.
[0291] Cloning a DNA fragment encoding a variable targeting domain of a guide RNA into a plasmid (such as pRF291) requires two partially complimentary oligonucleotides that when annealed they contain the DNA fragment encoding the variable targeting domain, as well as the correct overhangs for cloning into the two AarI sites present in the high-throughput cloning cassette. Two oligonucleotides Can1-1F (AATGGGACtcaaacgattacccaccctcGTTT, SEQ ID NO: 99) and Can1-1R (TCTAAAACgagggtgggtaatcgtttgaGTCC , SEQ ID NO: 100) were resuspended in duplex buffer (30 mM HEPES pH 7.5, 100 mM Sodium Acetate) at 100 .mu.M. Can1-1F (SEQ ID NO: 99) and Can1-1R (SEQ ID NO: 100) were mixed at a final concentration of 50 .mu.M each in a single tube, heated to 95.degree. C. for 5 minutes and cooled to 25.degree. C. at 0.1.degree. C./min to anneal the two oligonucleotides to form a small duplex DNA molecule (FIG. 12B) containing the DNA fragment encoding the variable targeting domain of a guide RNA capable of targeting the Can1-1 target site (shown as SEQ ID NO: 101 which include the PAM sequence CGG). A single tube digestion/ligation reaction was created containing 50 ng of pRF291, 2.5 .mu.M of the small duplex DNA composed of Can1-1F and Can1-1R 1.times. T4 ligase buffer (50 mM Tris-HCl, 10 mM MgCl.sub.2, 1 mM ATP, 10 mM DTT pH 7.5), 0.5 .mu.M AarI oligonucleotide, 2 units AarI, 40 units T4 DNA ligase in a 20 .mu.l final volume. A second control reaction lacking the duplexed Can1-1F and Can1-1R duplex was also assembled. The reactions were incubated at 37.degree. C. for 30 minutes. 10 .mu.l of each reaction was transformed into Top10 E. coli cells as previously described (Green M R, Sambrook J. 2012. Molecular Cloning: A Laboratory Manual, Fourth Edition ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.). In order to select for the presence of pRF291 where the duplex of Can1-1F and Can1-1R had replaced the rpsL counterselection marker flanked by AarI restriction sites (FIG. 12A) cells were plated on lysogeny Broth solidified with 1.5% (w/v) Bacto agar containing 100 .mu.g/ml Ampicillin and 50 .mu.g/ml Streptomycin. The presence of pRF291 containing the high-throughput cloning cassette yielded colonies phenotypically resistant to the antibiotic ampicillin but sensitive to the antibiotic streptomycin due to the presence of the counterselection cassette on the plasmid. However, in cases where the counterselection cassette was removed via the AarI enzyme and the Can1-1 duplex DNA was ligated into the site (removing the recognition sequences for AarI) the cells transformed with the plasmid had an ampicillin resistant, streptomycin resistant phenotype (FIG. 12A). pRF291 containing the DNA fragment encoding the Can1-1 variable targeting domain targeting (replacing the counterselection cassette) created a recombinant HDV-sgRNA expression cassette (SEQ ID NO: 102) containing the yl52 promoter fused to the DNA encoding the HDV ribozyme (SEQ ID NO: 16) fused to the DNA encoding the Can1-1 variable targeting domain (SEQ ID NO: 17) fused to the DNA encoding the guide CER domain (SEQ ID NO: 1) fused to the sup4 terminator (SEQ ID NO: 8). The plasmid containing this construct, pRF303 (SEQ ID NO: 103) was used to encode a HDV ribozyme-guide RNA (SEQ ID NO: 104) that was capable (when in complex with a Cas9 endonuclease) to target the Can1 gene (SEQ ID NO: 21) of Yarrowia lipolytica for mutagenesis.
[0292] Yarrowia lipolytica was transformed (as described in Richard M, Quijano R R, Bezzate S, Bordon-Pallier F, Gaillardin C. 2001. Journal of bacteriology 183:3098-3107) with either no plasmid or 100 ng of plasmid carrying no sgRNA expression cassette (pRF291, SEQ ID NO: 98), pRF84 plasmid carrying an RGR expression cassette (SEQ ID NO: 41), pRF85 plasmid carrying the RG cassette where the 5' ribozyme removed itself from the sgRNA (SEQ ID NO: 42), or pRF303 (SEQ ID NO: 103) carrying the HDV-sgRNA fusion expression cassette (SEQ ID NO: 102) targeting the Can1-1 target site in Yarrowia. Transformants were selected for uracil prototrophy and scored for mutations in the Can1 gene by phenotypic resistance to the arginine analog canavanine. The plasmid expressing the HDV-sgRNA fusion caused loss of function mutations in the Can1 gene at the same frequency of the plasmid that expressed either of the sgRNAs that were liberated from the ribozyme suggesting that a 5' fusion of the HDV ribozyme to the sgRNA targeting Can1-1 did not affect sgRNA function (Table 4).
TABLE-US-00008 TABLE 4 Mutation frequency of Can1-1 target sequence via different sgRNA variants. Plasmid sgRNA variant Can.sup.R Frequency .+-. SD pRF291 No sgRNA 0 .+-. 0 pRF84 RGR that yields sgRNA 0.70 .+-. 0.04 pRF85 RG that yields sgRNA 0.73 .+-. 0.11 pRF303 HDV-sgRNA fusion 0.81 .+-. 0.15
[0293] A number of additional DNA fragments encoding variable targeting domains targeting a number of additional target sites (Table 5) were cloned into the pRF291 (SEQ ID NO: 98) plasmid using the same strategy as described above and illustrated in FIG. 12A. Including a DNA fragment encoding a variable targeting domain targeting a second target site targeting within the Can1 gene (SEQ ID NO: 105), the can1-2 target site (SEQ ID NO: 106) and other target sites such as sou2-1 (SEQ ID NO: 107), Sou2-2 (SEQ ID NO: 108), Tgl1-1 (SEQ ID NO: 112), Acos10-1 (SEQ ID NO: 113), Fat1-1 (SEQ ID NO: 114) and Ura3-1 (SEQ ID NO: 116).
TABLE-US-00009 TABLE 5 DNA Sequences Encoding sgRNA VT domains for Targeting different Loci in Yarrowia with Cas9 DNA encoding Variable Yarrowia target sites + PAM Targeting domain of sgRNA sequence (bold) Can1-2 Base 1-20 of SEQ ID NO: 106 GGCCCACTCGGATGACTCAGAGG (SEQ ID NO: 106) Sou2-1 Base 1-24 of SEQ ID NO: 107 GTCTGGACCTTCCACCCTCGCCA CGGG (SEQ ID NO: 107) Sou2-2 Base 1-22 of SEQ ID NO: 108 GCAGTCCCGTGGCGAGGGTGGA AGG (SEQ ID NO: 108) TGL1-1 Base 1-20 of SEQ ID NO: 112 CAGCTCGAGACGTCCTAGAACGG (SEQ ID NO: 112) TTCCTCTGTCACAGACGTTTCGG Acos10-1 Base 1-20 of SEQ ID NO: 113 (SEQ ID NO: 113) GAAAAGTGCGTTTTGATTCTCGG Fat1-1 Base 1-20 of SEQ ID NO: 114 (SEQ ID NO: 114) GCCGCTCGAGTGCTCAAGCTCG ura3-1 Base 1-20 of SEQ ID NO: 116 (SEQ ID NO: 116)
[0294] The mutation frequency of the target sites indicated that all HDV-sgRNA fusions were capable of making a complex with the Cas9 endonuclease which in turn generated cleavage at the respective target site that led to mutations via NHEJ (Table 6).
TABLE-US-00010 TABLE 6 Mutation frequency at various target sites in Yarrowia lipolytica using HDV-sqRNA fusions. Target site Mutation frequency .+-. SD Can1-2 0.76 .+-. 0.15 Sou2-1 0.19 Sou2-2 0.30 TGL1-1 0.88 Acos10-1 0.36 Fat1-1 0.50 ura3-1 0.92
Example 8
Gene Silencing Using Inactivated-Cas9 and HDV-sgRNA Fusions
[0295] Catalytically inactivated Cas9 variants containing mutations in the HNH and RuvC nuclease domains (SEQ ID NO: 117) are capable of interacting with sgRNA and binding to the target site in vivo but cannot cleave either strand of the target DNA. This mode of action, binding but not breaking the DNA can be used to transiently decrease the expression of specific loci in the chromosome without causing permanent genetic changes.
[0296] In order to generate catalytically inactivated Cas9 expression cassettes for Yarrowia lipolytica the D10A mutation was introduced to the plasmid pZufCas9 (SEQ ID NO: 14) using quickchange site-directed mutagenesis (Stratagene) as described with the primers D10AF (GAAATACTCCATCGGCCTGGCCATTGGAACCAACTCTGTCG, SEQ ID NO: 118) and D10AR (CGACAGAGTTGGTTCCAATGGCCAGGCCGATGGAGTATTTC, SEQ ID NO: 119). This generated a Yarrowia codon optimized Cas9 gene with the D10A mutation inactivating the RuvC nuclease (SEQ ID NO: 120) and the corresponding plasmid containing the construct, pRF111 (SEQ ID NO: 121). In order to inactivate the second nuclease domain (HNH) an additional round of quickchange mutagenesis (Stratagene) was performed using primer H840A1 (TCAGCGACTACGATGTGGACGCCATTGTCCCTCAATCCTTTCT, SEQ ID NO: 122 and H840A2 (AGAAAGGATTGAGGGACAATGGCGTCCACATCGTAGTCGCTGA, SEQ ID NO: 123) introducing the H840A mutation into the Yarrowia codon optimized D10A gene creating a Yarrowia codon optimized Cas9 inactivated gene (SEQ ID NO: 124) and the plasmid carrying the gene for expression in Yarrowia, pRF143 (SEQ ID NO: 125).
[0297] In order to assess gene silencing in Yarrowia lipolytica a Yarrowia codon optimized dsREDexpress open reading frame (SEQ ID NO: 126) was generated as a cloning fragment with a 5' NcoI restriction site and a 3' NotI restriction site (SEQ ID NO: 127). The cloning fragment (SEQ ID NO: 127) was cloned into the NcoI/NotI sites of pZufCas9 to create an FBA1 promoter (SEQ ID NO: 12) fused to a Yarrowia optimized dsREDexpress cloning fragment (SEQ ID NO: 127) creating a FAB1-dsRED fusion cassette (SEQ ID NO: 128) which was contained on plasmid pRF165 (SEQ ID NO: 129). In order to integrate the FBA1-dsREDexpress cassette (SEQ ID NO: 128) into the chromosome, the PmeI-NotI fragment containing the cassette (SEQ ID NO: 130) was ligated into the PmeI/NotI sites of integration plasmid p2P069 (SEQ ID NO: 131) to generate an integration vector carrying the FBA1-dsREDexpress expression cassette, pRF201 (SEQ ID NO: 132). A SphI/AscI fragment of pRF201 carrying the FBA1-dsREDexpress fusion and a copy of the Leu2 gene (SEQ ID NO: 133) was integrated into the chromosome of Yarrowia by selecting for Leucine prototrophy using standard techniques (Richard M, Quijano R R, Bezzate S, Bordon-Pallier F, Gaillardin C. 2001. Tagging morphogenetic genes by insertional mutagenesis in the yeast Yarrowia lipolytica. Journal of bacteriology 183:3098-3107). The presence of the FBA1-dsREDexpress expression cassette was confirmed in the Yarrowia genome using standard PCR techniques and primers HY026 (GCGCGTTTAAACCATCATCTAAGGGCCTCAAAACTACC, SEQ ID NO: 134) and HY027 (GAGAGCGGCCGCTTAAAGAAACAGATGGTGTCTTCCCT, SEQ ID NO: 135). Two independent strains containing the FBA1-dsREDexpress cassette (SEQ ID NO: 128) were chosen for further use, YRF41 and YRF42.
[0298] To create sgRNAs for targeting the Yarrowia optimized dsREDexpress expression cassette (SEQ ID NO: 128) a strategy similar to Example 12 was used. A plasmid construct, pRF169 (SEQ ID NO: 136) contained the GPD promoter from Yarrowia (SEQ ID NO: 137) counterselectable marker, the DNA encoding the guide RNA CER domain (SEQ ID NO: 1) and a Sup4 terminator (SEQ ID NO: 8) cassette (SEQ ID NO: 138), as illustrated in FIG. 13A. DNA encoding the variable targeting domain of a sgRNA, targeting target sites in Yarrowia, linked to a DNA fragment encoding the HH ribozyme were cloned into pRF169 (SEQ ID NO: 136) as described in Example 12 except that the DNA fragments encoding the HH ribozyme were such that the first 6 nucleotides of the hammerhead ribozyme were the reverse compliment of the first 6 nucleotides of the variable targeting domain, as shown in FIG. 13B. When the duplexed oligonucleotides with the correct overhangs replace the counterselection cassettes between the AarI sites a ribozyme-guideRNA (RG) expression cassette was created (FIG. 13-A). When transcribed, the HH ribozyme removes the 5' transcript and itself from the ribozyme-guide RNA molecule, leaving an intact sgRNA in the cell. Three guide RNA's targeting the dsREDexpress open reading frame (SEQ ID NO: 126) were generated; two targeting the template strand, ds-temp-1 (SEQ ID NO: 139), ds-temp-2 (SEQ ID NO: 140), and one targeting the non-template strand ds-nontemp-1 (SEQ ID NO: 141).
[0299] For each target site two oligonucleotides were designed containing the DNA sequence encoding the target specific hammerhead ribozyme, the variable targeting domain (VTD) and the correct overlapping ends for cloning into the AarI sites of pRF169. The oligonucleotides for each site; ds-temp-1F (SEQ ID NO: 144) ds-temp-1R (SEQ ID NO: 145), ds-temp-2F (SEQ ID NO: 146), ds-temp-2R (SEQ ID NO: 147), ds-nontemp-1F (SEQ ID NO: 148), and ds-nontemp-1R (SEQ ID NO: 149) were duplexed to form double stranded DNA molecules with the correct overhangs for cloning into the AarI overhangs left in the high throughput cassette (FIGS. 13A and 13B) of pRF169 and was performed as described in Example 12 for cloning into pRF291. Insertion of the DNA fragment encoding the variable targeting domain of the sgRNA, replacing the counterselection cassette, generated a new plasmid for each target site carrying a GPD promoter fused to the hammerhead ribozyme-target site duplex DNA fused to DNA encoding the guide RNA CER domain fused to the Sup4 terminator FIG. 13A. The plasmids containing these duplexes are pRF296 (ds-temp-1, SEQ ID NO: 150), pRF298 (ds-temp-2, SEQ ID NO: 151), pRF300 (ds-nontemp-1, SEQ ID NO: 152).
[0300] In order to create constructs for gene silencing, the inactivated Cas9 from pRF143 (SEQ ID NO: 125) was cloned into pRF296, pRF298 and pRF300 as a NcoI/NotI fragment using standard techniques and replacing the functional Cas9 (SEQ ID NO: 93) that resided in the NcoI/NotI sites of those plasmids to create plasmids pRF339 (SEQ ID NO: 153), pRF341 (SEQ ID NO: 154), and pRF342 (SEQ ID NO: 155) respectively.
[0301] Strains YRF41 and YRF42 were transformed with pRF339, pRF341, and pRF343 using standard techniques to uracil prototrophy (Richard M, Quijano R R, Bezzate S, Bordon-Pallier F, Gaillardin C. 2001. Tagging morphogenetic genes by insertional mutagenesis in the yeast Yarrowia lipolytica. Journal of bacteriology 183:3098-3107)). For each transformation 12 transformants were streak purified on plates lacking uracil to maintain the plasmid. Each isolate was used to inoculate 2 ml of CM-ura broth (Teknova) and was grown at 30.degree. C., 250 RPM overnight. 2-5 .mu.l of each overnight was diluted into 200 .mu.l of ddH.sub.2O and analyzed in the dsREDexpress channel of an Accuri flow cytometer to assess the amount of dsREDexpress protein within each cell. Between 7,151 and 10,000 cells were analyzed from each culture. The mean fluorescence of Yarrowia cells without a dsREDexpress expression cassette were subtracted from the mean fluorescence of each of the cultures analyzed to obtain a corrected mean fluorescence within each strain/plasmid combination these were averaged and the standard deviation was determined (Table 7). Inactivated Cas9 combined with a ribozyme-sgRBA (RG) expressed via an expression vector, targeting a gene of interest, silenced the expression of the gene between 2 and 10 fold. The fold silencing varied depended on the location and strandedness of the target site and/or the ability of a ribozyme flanked sgRNA to be expressed from a DNA polymerase promoter in a functional form in a Yarrowia cell (Table 7).
TABLE-US-00011 TABLE 7 Gene silencing by three target sites in two FBA-dsREDexpress integrated strains. Mean Fold of No Strain Plasmid Target Site fluorescence .+-. SD Target YRF41 None None 540.6 .+-. 2.9 1 YRF41 pRF339 ds-temp-1 299.2 .+-. 138.7 0.55 .+-. 0.26 (SEQ ID NO: 69) YRF41 PRF341 ds-temp-2 257.9 .+-. 139.3 0.48 .+-. 0.26 (SEQ ID NO: 70) YRF41 pRF343 ds-nontemp-1 169.4 .+-. 45.3 0.31 .+-. 0.08 (SEQ ID NO: 71) YRF42 None None 871.2 .+-. 36.9 1 YRF42 pRF339 ds-temp-1 194.3 .+-. 121.1 0.22 .+-. 0.14 (SEQ ID NO: 69) YRF42 pRF341 ds-temp-2 168.7 .+-. 191.6 0.19 .+-. 0.22 (SEQ ID NO: 70) YRF42 pRF343 ds-nontemp-1 94.9 .+-. 109.6 0.11 .+-. 0.13 (SEQ ID NO: 71)
Example 9
Precise Gene Editing Using Cas9 and a HDV Ribozyme-sgRNA Fusion (RG) Expressed from a Single Plasmid
[0302] In this example we demonstrate that the stable expression of Cas9 and an HDV-sgRNA fusion expressed from the same stable vector can create DNA double-strand breaks in target sites of Yarrowia that can be substrate for precise gene editing via homologous recombination.
[0303] The Can1 deletion polynucleotide modification template DNA described in Example 4 (SEQ ID NO: 38) was digested with HinDIII and cloned into the HinDIII site of pUC18 using standard techniques to create pRF80 (SEQ ID NO: 156). A shorter Can1 deletion editing template (SEQ ID NO: 157) was amplified from pRF80 using standard PCR techniques and primers 80F (AGCTTGCTACGTTAGGAGAA, SEQ ID NO: 158) and 80R (TATGAGCTTATCCTGTATCG, SEQ ID NO: 159) to create large quantities of the editing template.
[0304] Ura auxotrophic Yarrowia cells were transformed using standard techniques (Richard M, Quijano R R, Bezzate S, Bordon-Pallier F, Gaillardin C. 2001. Tagging morphogenetic genes by insertional mutagenesis in the yeast Yarrowia lipolytica. Journal of bacteriology 183:3098-3107) with 100 ng of plasmid pRF291 carrying a copy of the Cas9 gene but no sgRNA and pRF303 carrying a copy of the Cas9 gene and the Can1-1 target site HDV-sgRNA expression cassette along with either no editing template DNA or 1000 ng of the short Can1 deletion editing template (SEQ ID NO: 157). Transformants were selected on CM-ura medium (Teknova). For each transformation 20 individual colonies were streak purified on CM-ura medium (Teknova). From each of the streak purified colonies 4 individual colonies (80 total per transformation) were patched onto CM-arg plates containing 60 .mu.g/ml of L-canavanine to screen for colonies containing a loss of function allele in the Can1 gene. Patches that demonstrated resistance to Canavanine were scored and frequencies of gene inactivation were scored (Table 8). In order to determine which colonies had lost Can1 function due to homologous recombination and which had lost Can1 function due to NHEJ the Can1 locus (SEQ ID NO: 160) was amplified using Can1-PCRF (GGAAGGCACATATGGCAAGG, SEQ ID NO: 22) and Can1-PCRR (GTAAGAGTGGTTTGCTCCAGG, SEQ ID NO: 23). In cells with small indels as described in previous examples the PCR product should be very similar to the WT Can1 loci (SEQ ID NO: 160) in size (2125 bp) in the strains containing a deletion by homologous recombination with the Can1 deletion editing template the PCR fragment (SEQ ID NO: 161) with Can1-PCRF (SEQ ID NO: 22) and Can1-PCRR (SEQ ID NO: 23) will be smaller (392 bp). 2 .mu.l of the PCR product were resolved via electrophoresis and imaged using standard techniques (FIG. 14). The percentage of the original 20 streaked colonies that yielded 1 or more colonies upon streak purification that had the short band corresponding to recombination with the editing template (SEQ ID NO: 161) were used to determine the frequency of HR (Table 8). In cells that received pRF303 (SEQ ID NO: 103) the frequency of Canavanine resistant colonies was similar whether the cells received an editing template (Table 8). In cells receiving both pRF303 (SEQ ID NO: 103) and Can1 short editing template (SEQ ID NO: 157) in the total population of transformed cells about 1/10.sup.th contained precise editing (Table 8) of the Can1 locus from the editing template (SEQ ID NO: 157).
TABLE-US-00012 TABLE 8 Canavanine resistance frequency and frequency of precise editing. Can.sup.R HR Editing Frequency .+-. Frequency .+-. Plasmid sgRNA Template SD SD pRF291 None None 0 .+-. 0 Not (SEQ ID Determined NO: 98) pRF291 None Can1 short 0 .+-. 0 Not (SEQ ID (SEQ ID Determined NO: 98) NO: 157) pRF303 HDV-Can1- None 0.80 .+-. 0.10 Not (SEQ ID 1sgRNA Determined NO: 103) pRF303 HDV-Can1- Can1 short 0.72 .+-. 0.12 0.09 .+-. 0.05 (SEQ ID 1sgRNA (SEQ ID NO: 103) NO: 157)
Example 10
URA3 Gene Inactivation in Yarrowia
[0305] The present Example describes the construction and use of the plasmids expressing single guide RNA (sgRNA) and Cas9 endonuclease separately or together for URA3 gene inactivation in Yarrowia. pYRH235 and pYRH236 expressed a ribozyme flanked pre-sgRNA (RGR-URA3.1; SEQ ID NO: 164) targeting the URA3.1 target sequence (5'-ctgttcagagacagtttcct-3; SEQ ID NO:165) and a ribozyme flanked pre-sgRNA (RGR-URA3.2; SEQ ID NO: 166) targeting the URA3.2 target sequence (5'-taacatccagagaagcacac-3'; SEQ ID NO:167) respectively. A NcoI-NotI restriction digest fragment of the DNA fragment encoding the RGR-URA3.1 and a BspHI-NotI restriction digest fragment encoding the RGR-URA3.2 were fused to the FBA1L promoter (SEQ ID NO: 168) to yield pYRH235 and pYRH236, respectively. The pYRH235 and pYRH236 plasmids contained a marker gene of a native acetohydroxyacid synthase (AHAS or acetolactate synthase; E.C. 4.1.3.18; SEQ ID NO:169) that had a single amino acid change (W497L) that confers sulfonyl urea resistance.
[0306] A Ura-minus derivative (Y2224) of Yarrowia strain ATCC20362 was first transformed with linearized pZufCas9 (SEQ ID NO: 14) by SphI-BsiWI restriction digest, and transformants were selected on complete minimal (CM) plates lacking uracil. The linearized Cas9 expression cassette was randomly integrated into Yarrowia genome, and therefore the transformants contained at least two copies of URA3 gene. Subsequently, pYRH235 or pYRH236 expressing sgRNA was transformed into the Cas9 expressing Yarrowia strains, and the transformants were selected on CM plates containing 600 mg/L sulfonylurea. 50 transformants were patched on CM-ura plates and SC plates with 5-FOA to find the frequency of URA3 gene inactivation by Cas9 and sgRNA for URA3. 94% and 100% of the pYRH235 and pYRH236 transformants, respectively, became uracil auxotrophs.
[0307] Sequencing confirmation of mutation at target sites URA3.1 or URA3.2 was performed. 20 transformants of pZufCas9 and pYRH235 were randomly chosen for sequencing analysis, and each colony was analyzed for mutation of the URA3 gene of plasmid pZufCas9 and from native genomic URA3. To sequence the URA3 gene from plasmid pZufCas9, primers RHO705 (SEQ ID NO: 170) for URA3 and RHO719 (SEQ ID NO: 171) for FBA1 promoter sequences were used for PCR amplification of the region, and primers RHO733 (SEQ ID NO: 172) or RHO734 (SEQ ID NO: 173) were used for sequencing with the PCR amplification product as template. To sequence the URA3 gene of native genomic origin, primers RHO705 (SEQ ID NO: 170) and RHO707 (SEQ ID NO: 174) were used for PCR amplification, and primers RHO733 (SEQ ID NO: 172) and RHO734 (SEQ ID NO: 173) were used for sequencing with the PCR amplification product as template. All 20 colonies contained mutation at both plasmid and genomic originated URA3 genes (FIG. 15). A fragment alignment of the sequencing results for both plasmid and genomic originated URA3 genes of 5 representative colonies (Colony 1, 2, 3, 5 and 6; SEQ ID NOs: 176, 177, 178, 179 and 180 and SEQ ID NOs: 181, 182, 183,184 and 185, respectively) and wild type URA3.1 (SEQ ID NO: 175) are shown in FIG. 15. These results show that multiple copies of a gene in the same cell were targeted and mutated by sgRNA/Cas9 endonuclease systems in Yarrowia.
Example 11
URA3 Gene Mutation or Deletion in Yarrowia
[0308] The present Example describes the construction and use of the plasmids expressing two sgRNAs and Cas9 endonuclease on the same vector system for URA3 gene mutation or deletion in Yarrowia for use in marker recycling.
[0309] pYRH222 expresses a Cas9 endonuclease (SEQ ID NO: 10) under a FBA1 promoter (SEQ ID NO: 12) and a FBA1L promoter driven DNA fragment encoding the ribozyme flanked pre-sgRNA (RGR-URA3.2; SEQ ID NO: 166) targeting the URA3.2 target sequence (SEQ ID NO:167), illustrated in FIG. 16A. The pYRH222 vector contained a hygromycin antibiotic resistant selection marker (SEQ ID NO:186) expressed under TDH1 (also referred as GPD) promoter (SEQ ID NO:187), as well as autonomously replicating sequence (ARS18; SEQ ID NO:208) which accomodates extrachromosomal replication of a plasmid (PNAS, Fournier, P. et al., 1993, 90:4912-4916). The presence of ARS18 rendered cells to lose plasmid when there was no selection pressure.
[0310] pYRH282 was derived from pYRH222. The FBA1L promoter (SEQ ID NO: 168) fused to a DNA fragment encoding the RGR-URA3.1 (SEQ ID NO: 164) from pYRH235 was PCR amplified using primers RHO804 (SEQ ID NO: 188) and RHO805 (SEQ ID NO: 189). The PCR product was then digested with BsiWI and cloned into pYRH222. Orientation and sequence identity of the cloned gene was confirmed by sequencing, and the construct was named pYRH282.
[0311] pYRH283 was derived from pYRH222. A synthetic DNA fragment flanked by BsiWI sites (SEQ ID NO: 190) composed of the TDH1 promoter (SEQ ID NO: 187) fusion to the DNA encoding the RGR-URA3.3 (SEQ ID NO: 191) was synthesized by IDT (Coralville, Iowa) and cloned into pYRH222 at BsiWI site. Orientation and sequence identity of the cloned gene was confirmed by sequencing, and the construct was named pYRH283.
[0312] A progeny of Yarrowia strain ATCC20362 was transformed with pYRH222, pYRH282, and pYRH283, and the transformants were selected on YPD plates containing 300 mg/L hygromycin. Relatively high background growth was observed on no DNA control plate (Table 9). 30 transformants of each construct were randomly selected, and streaked onto SC plates with 5-FOA to counter-select for uracil auxotriophs. No growth was observed with colonies from no DNA control plate. 4 to 11 patches showed growth with pYRH222, pYRH282, and pYRH283 transformants. Colony PCR was performed with primers RHO610 (SEQ ID NO: 192) and RHO611 (SEQ ID NO: 193) to amplify the DNA region containing the sgRNA targeting sites, and PCR amplified products showed different migration on a agarose gel (FIG. 17). Sequencing was performed with the PCR products as template and a sequencing primer RHO704 (SEQ ID NO: 194).
[0313] In case of pYRH222 transformants, 6 out of 11 sequencing worked successfully and all of them were mutated at the URA3.2 target site (FIG. 16B; SEQ ID NOs: 195-201). In case of pYRH282, all of the successfully sequencing showed mutations at target site(s), and 2 out of them showed deletion between the two target sites (FIG. 16C; SEQ ID NOs: 202-204). For pYRH283, 7 out of 8 successful sequencing showed mutations at target site(s), and 2 out of them showed deletion between the two target sites (FIG. 16D; SEQ ID NOs: 205-207), creating almost complete deletion of the URA3 gene.
[0314] This example shows that two guide RNAs were expressed on the same plasmids to make a targeted deletion between two target sites using a sgRNA/Cas9 endonuclease system in Yarrowia, wherein the identification was performed by running a gel or by sequencing. The presence of ARS18 (SEQ ID NO:208) on these plasmids rendered cells to lose plasmid when there was no selection pressure, so that the plasmids could be used repeatedly for URA3 marker recycling.
TABLE-US-00013 TABLE 9 Analysis of pYRH222, pYRH282, and pYRH283 transformants. Number of transformants was recorded for each transformation plate including no DNA control. Colonies Targeted on Hyg Patched Growth mutation/ plate on 5-FOA on 5-FOA sequenced No DNA control 131 30 0 -- pYRH222 352 30 11 6/6 (URA3.2) pYRH282 244 30 4 4/4 (URA3.2 + URA3.1) (2 deletions) pYRH283 178 30 10 7/8 (URA3.2 + 3.3) (2 deletions)
Example 12
Use of Csy4 (Cas6) in Yarrowia for Gene Inactivation
[0315] The present Example describes the use of Csy4 (also referred to as Cas6) to create a guide RNA with no 5' cap that is capable of forming a RGEN complex that can target DNA sequences (such as, but not limiting to, CAN1) in non-conventional yeast.
[0316] The gene encoding Csy4 (also known as Cas6) was introduced on a Cas9 expression plasmid together with DNA encoding the CAN1 targeting sgRNA flanked by 28 bp Csy4 recognition sites, for CAN1 gene inactivation in Yarrowia.
[0317] pYRH290 expressed a Cas9 endonuclease (SEQ ID NO: 10) under a FBA1 promoter (SEQ ID NO: 12) and a Yarrowia lipolytica codon-optimized gene for Csy4 expression (SEQ ID NO: 209) under FBA1 promoter (SEQ ID NO: 210). pYRH290 also contained a DNA fragment (TDH1:28 bp-gCAN1-28 bp; SEQ ID NO: 211) encoding the 28 bp Csy4 endonuclease recognition sequences (SEQ ID:212) flanked pre-sgRNA (SEQ ID NO:213) targeting a CAN1 target sequence (SEQ ID NO:214). After processing by Csy4, the resulting sgRNA (SEQ ID NO: 222) contained an 8-nucleotide 5'-flanking sequence (SEQ ID NO: 223) and a 20-nucleotide 3'-flanking sequence (SEQ ID NO: 224).
[0318] A Ura-minus derivative (Y2224) of Yarrowia strain ATCC20362 was transformed with pYRH290, and transformants were selected on CM plates lacking uracil. 86 transformants were replica-plated to CM plates containing canavanine to select for can1 mutants. 40 out of 86 transformants conferred growth on CM plates containing canavanine. 16 out of 40 canavanine resistant colonies were sequenced to confirm mutations at CAN1 target sites (SEQ ID NO: 214), and 14 colonies were confirmed to have mutations at CAN1 target site. FIG. 18 shows an alignment of a fragment of the wild type CAN1 gene comprising the CAN1 target site (SEQ ID NO: 215) and mutations at the CAN1 target sequence in colonies 14, 16, 18, 19, 24 and 25 , SEQ IDS NOs: 216-221, respectively).
Sequence CWU
1
1
224180RNAartificial sequenceCas9 endonuclease recognition (CER) domain
1guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc cguuaucaac uugaaaaagu
60ggcaccgagu cggugcuuuu
80220DNAYarrowia lipolytica 2tccaagaaga ttgttcttct
20320DNAYarrowia lipolytica 3ctccgtcatc
cccggttctc
20420DNAYarrowia lipolytica 4cggcgacttc tgtggccccg
205300DNASaccharomyces cerevisiae 5aacaattatc
tcaaaattca cccactcttc atctttgaaa agataatgta tgattatgct 60ttcactcata
tttatacaga aacttgatgt tttctttcga gtatatacaa ggtgattaca 120tgtacgtttg
aagtacaact ctagattttg tagtgccctc ttgggctagc ggtaaaggtg 180cgcatttttt
cacaccctac aatgttctgt tcaaaagatt ttggtcaaac gctgtagaag 240tgaaagttgg
tgcgcatgtt tcggcgttcg aaacttctcc gcagtgaaag ataaatgatc
3006300DNASaccharomyces cerevisiae 6taaaaatcaa tcaatcatcg tgtgttttat
atgtctctta tctaagtata agaatatcca 60tagttaatat tcacttacgc taccttttaa
cctgtaatca ttgtcaacag gatatgttaa 120cgacccacat tgataaacgc tagtatttct
ttttcctctt cttattggcc ggctgtctct 180atactcccct atagtctgtt tcttttcgtt
tcgattgttt tacgtttgag gcctcgtggc 240gcacatggta cgctgtggtg ctcgcggctg
ggaacgaaac tctgggagct gcgattggca 3007300DNAYarrowia lipolytica
7attttttttg attttctttt ttgaccccgt cttcaattac acttcccaac tgggaacacc
60cctctttatc gacccatttt aggtaattta ccctagccca ttgtctccat aaggaatatt
120accctaaccc acagtccagg gtgcccaggt ccttctttgg ccaaatttta acttcggtcc
180tatggcacag cggtagcgcg tgagattgca aatcttaagg tcccgagttc gaatctcggt
240gggacctagt tatttttgat agataatttc gtgatgatta gaaacttaac gcaaaataat
300820DNASaccharomyces cerevisiae 8tttttttgtt ttttatgtct
2094107DNAartificial sequenceS. pyogenes
Cas9 9atggacaaga aatactccat cggcctggac attggaacca actctgtcgg ctgggctgtc
60atcaccgacg agtacaaggt gccctccaag aaattcaagg tcctcggaaa caccgatcga
120cactccatca agaaaaacct cattggtgcc ctgttgttcg attctggcga gactgccgaa
180gctaccagac tcaagcgaac tgctcggcga cgttacaccc gacggaagaa ccgaatctgc
240tacctgcagg agatcttttc caacgagatg gccaaggtgg acgattcgtt ctttcatcga
300ctggaggaat ccttcctcgt cgaggaagac aagaaacacg agcgtcatcc catctttggc
360aacattgtgg acgaggttgc ttaccacgag aagtatccta ccatctacca cctgcgaaag
420aaactcgtcg attccaccga caaggcggat ctcagactta tctacctcgc tctggcacac
480atgatcaagt ttcgaggtca tttcctcatc gagggcgatc tcaatcccga caacagcgat
540gtggacaagc tgttcattca gctcgttcag acctacaacc agctgttcga ggaaaacccc
600atcaatgcct ccggagtcga tgcaaaggcc atcttgtctg ctcgactctc gaagagcaga
660cgactggaga acctcattgc ccaacttcct ggcgagaaaa agaacggact gtttggcaac
720ctcattgccc tttctcttgg tctcacaccc aacttcaagt ccaacttcga tctggcggag
780gacgccaagc tccagctgtc caaggacacc tacgacgatg acctcgacaa cctgcttgca
840cagattggcg atcagtacgc cgacctgttt ctcgctgcca agaacctttc ggatgctatt
900ctcttgtctg acattctgcg agtcaacacc gagatcacaa aggctcccct ttctgcctcc
960atgatcaagc gatacgacga gcaccatcag gatctcacac tgctcaaggc tcttgtccga
1020cagcaactgc ccgagaagta caaggagatc tttttcgatc agtcgaagaa cggctacgct
1080ggatacatcg acggcggagc ctctcaggaa gagttctaca agttcatcaa gccaattctc
1140gagaagatgg acggaaccga ggaactgctt gtcaagctca atcgagagga tctgcttcgg
1200aagcaacgaa ccttcgacaa cggcagcatt cctcatcaga tccacctcgg tgagctgcac
1260gccattcttc gacgtcagga agacttctac ccctttctca aggacaaccg agagaagatc
1320gagaagattc ttacctttcg aatcccctac tatgttggtc ctcttgccag aggaaactct
1380cgatttgctt ggatgactcg aaagtccgag gaaaccatca ctccctggaa cttcgaggaa
1440gtcgtggaca agggtgcctc tgcacagtcc ttcatcgagc gaatgaccaa cttcgacaag
1500aatctgccca acgagaaggt tcttcccaag cattcgctgc tctacgagta ctttacagtc
1560tacaacgaac tcaccaaagt caagtacgtt accgagggaa tgcgaaagcc tgccttcttg
1620tctggcgaac agaagaaagc cattgtcgat ctcctgttca agaccaaccg aaaggtcact
1680gttaagcagc tcaaggagga ctacttcaag aaaatcgagt gtttcgacag cgtcgagatt
1740tccggagttg aggaccgatt caacgcctct ttgggcacct atcacgatct gctcaagatt
1800atcaaggaca aggattttct cgacaacgag gaaaacgagg acattctgga ggacatcgtg
1860ctcactctta ccctgttcga agatcgggag atgatcgagg aacgactcaa gacatacgct
1920cacctgttcg acgacaaggt catgaaacaa ctcaagcgac gtagatacac cggctgggga
1980agactttcgc gaaagctcat caacggcatc agagacaagc agtccggaaa gaccattctg
2040gactttctca agtccgatgg ctttgccaac cgaaacttca tgcagctcat tcacgacgat
2100tctcttacct tcaaggagga catccagaag gcacaagtgt ccggtcaggg cgacagcttg
2160cacgaacata ttgccaacct ggctggttcg ccagccatca agaaaggcat tctccagact
2220gtcaaggttg tcgacgagct ggtgaaggtc atgggacgtc acaagcccga gaacattgtg
2280atcgagatgg ccagagagaa ccagacaact caaaagggtc agaaaaactc gcgagagcgg
2340atgaagcgaa tcgaggaagg catcaaggag ctgggatccc agattctcaa ggagcatccc
2400gtcgagaaca ctcaactgca gaacgagaag ctgtatctct actatctgca gaatggtcga
2460gacatgtacg tggatcagga actggacatc aatcgtctca gcgactacga tgtggaccac
2520attgtccctc aatcctttct caaggacgat tctatcgaca acaaggtcct tacacgatcc
2580gacaagaaca gaggcaagtc ggacaacgtt cccagcgaag aggtggtcaa aaagatgaag
2640aactactggc gacagctgct caacgccaag ctcattaccc agcgaaagtt cgacaatctt
2700accaaggccg agcgaggcgg tctgtccgag ctcgacaagg ctggcttcat caagcgtcaa
2760ctcgtcgaga ccagacagat cacaaagcac gtcgcacaga ttctcgattc tcggatgaac
2820accaagtacg acgagaacga caagctcatc cgagaggtca aggtgattac tctcaagtcc
2880aaactggtct ccgatttccg aaaggacttt cagttctaca aggtgcgaga gatcaacaat
2940taccaccatg cccacgatgc ttacctcaac gccgtcgttg gcactgcgct catcaagaaa
3000taccccaagc tcgaaagcga gttcgtttac ggcgattaca aggtctacga cgttcgaaag
3060atgattgcca agtccgaaca ggagattggc aaggctactg ccaagtactt cttttactcc
3120aacatcatga actttttcaa gaccgagatc accttggcca acggagagat tcgaaagaga
3180ccacttatcg agaccaacgg cgaaactgga gagatcgtgt gggacaaggg tcgagacttt
3240gcaaccgtgc gaaaggttct gtcgatgcct caggtcaaca tcgtcaagaa aaccgaggtt
3300cagactggcg gattctccaa ggagtcgatt ctgcccaagc gaaactccga caagctcatc
3360gctcgaaaga aagactggga tcccaagaaa tacggtggct tcgattctcc taccgtcgcc
3420tattccgtgc ttgtcgttgc gaaggtcgag aagggcaagt ccaaaaagct caagtccgtc
3480aaggagctgc tcggaattac catcatggag cgatcgagct tcgagaagaa tcccatcgac
3540ttcttggaag ccaagggtta caaggaggtc aagaaagacc tcattatcaa gctgcccaag
3600tactctctgt tcgaactgga gaacggtcga aagcgtatgc tcgcctccgc tggcgagctg
3660cagaagggaa acgagcttgc cttgccttcg aagtacgtca actttctcta tctggcttct
3720cactacgaga agctcaaggg ttctcccgag gacaacgaac agaagcaact cttcgttgag
3780cagcacaaac attacctcga cgagattatc gagcagattt ccgagttttc gaagcgagtc
3840atcctggctg atgccaactt ggacaaggtg ctctctgcct acaacaagca tcgggacaaa
3900cccattcgag aacaggcgga gaacatcatt cacctgttta ctcttaccaa cctgggtgct
3960cctgcagctt tcaagtactt cgataccact atcgaccgaa agcggtacac atccaccaag
4020gaggttctcg atgccaccct gattcaccag tccatcactg gcctgtacga gacccgaatc
4080gacctgtctc agcttggtgg cgactaa
4107104140DNAartificial sequenceS. pyogenes Cas9 with NLS 10atggacaaga
aatactccat cggcctggac attggaacca actctgtcgg ctgggctgtc 60atcaccgacg
agtacaaggt gccctccaag aaattcaagg tcctcggaaa caccgatcga 120cactccatca
agaaaaacct cattggtgcc ctgttgttcg attctggcga gactgccgaa 180gctaccagac
tcaagcgaac tgctcggcga cgttacaccc gacggaagaa ccgaatctgc 240tacctgcagg
agatcttttc caacgagatg gccaaggtgg acgattcgtt ctttcatcga 300ctggaggaat
ccttcctcgt cgaggaagac aagaaacacg agcgtcatcc catctttggc 360aacattgtgg
acgaggttgc ttaccacgag aagtatccta ccatctacca cctgcgaaag 420aaactcgtcg
attccaccga caaggcggat ctcagactta tctacctcgc tctggcacac 480atgatcaagt
ttcgaggtca tttcctcatc gagggcgatc tcaatcccga caacagcgat 540gtggacaagc
tgttcattca gctcgttcag acctacaacc agctgttcga ggaaaacccc 600atcaatgcct
ccggagtcga tgcaaaggcc atcttgtctg ctcgactctc gaagagcaga 660cgactggaga
acctcattgc ccaacttcct ggcgagaaaa agaacggact gtttggcaac 720ctcattgccc
tttctcttgg tctcacaccc aacttcaagt ccaacttcga tctggcggag 780gacgccaagc
tccagctgtc caaggacacc tacgacgatg acctcgacaa cctgcttgca 840cagattggcg
atcagtacgc cgacctgttt ctcgctgcca agaacctttc ggatgctatt 900ctcttgtctg
acattctgcg agtcaacacc gagatcacaa aggctcccct ttctgcctcc 960atgatcaagc
gatacgacga gcaccatcag gatctcacac tgctcaaggc tcttgtccga 1020cagcaactgc
ccgagaagta caaggagatc tttttcgatc agtcgaagaa cggctacgct 1080ggatacatcg
acggcggagc ctctcaggaa gagttctaca agttcatcaa gccaattctc 1140gagaagatgg
acggaaccga ggaactgctt gtcaagctca atcgagagga tctgcttcgg 1200aagcaacgaa
ccttcgacaa cggcagcatt cctcatcaga tccacctcgg tgagctgcac 1260gccattcttc
gacgtcagga agacttctac ccctttctca aggacaaccg agagaagatc 1320gagaagattc
ttacctttcg aatcccctac tatgttggtc ctcttgccag aggaaactct 1380cgatttgctt
ggatgactcg aaagtccgag gaaaccatca ctccctggaa cttcgaggaa 1440gtcgtggaca
agggtgcctc tgcacagtcc ttcatcgagc gaatgaccaa cttcgacaag 1500aatctgccca
acgagaaggt tcttcccaag cattcgctgc tctacgagta ctttacagtc 1560tacaacgaac
tcaccaaagt caagtacgtt accgagggaa tgcgaaagcc tgccttcttg 1620tctggcgaac
agaagaaagc cattgtcgat ctcctgttca agaccaaccg aaaggtcact 1680gttaagcagc
tcaaggagga ctacttcaag aaaatcgagt gtttcgacag cgtcgagatt 1740tccggagttg
aggaccgatt caacgcctct ttgggcacct atcacgatct gctcaagatt 1800atcaaggaca
aggattttct cgacaacgag gaaaacgagg acattctgga ggacatcgtg 1860ctcactctta
ccctgttcga agatcgggag atgatcgagg aacgactcaa gacatacgct 1920cacctgttcg
acgacaaggt catgaaacaa ctcaagcgac gtagatacac cggctgggga 1980agactttcgc
gaaagctcat caacggcatc agagacaagc agtccggaaa gaccattctg 2040gactttctca
agtccgatgg ctttgccaac cgaaacttca tgcagctcat tcacgacgat 2100tctcttacct
tcaaggagga catccagaag gcacaagtgt ccggtcaggg cgacagcttg 2160cacgaacata
ttgccaacct ggctggttcg ccagccatca agaaaggcat tctccagact 2220gtcaaggttg
tcgacgagct ggtgaaggtc atgggacgtc acaagcccga gaacattgtg 2280atcgagatgg
ccagagagaa ccagacaact caaaagggtc agaaaaactc gcgagagcgg 2340atgaagcgaa
tcgaggaagg catcaaggag ctgggatccc agattctcaa ggagcatccc 2400gtcgagaaca
ctcaactgca gaacgagaag ctgtatctct actatctgca gaatggtcga 2460gacatgtacg
tggatcagga actggacatc aatcgtctca gcgactacga tgtggaccac 2520attgtccctc
aatcctttct caaggacgat tctatcgaca acaaggtcct tacacgatcc 2580gacaagaaca
gaggcaagtc ggacaacgtt cccagcgaag aggtggtcaa aaagatgaag 2640aactactggc
gacagctgct caacgccaag ctcattaccc agcgaaagtt cgacaatctt 2700accaaggccg
agcgaggcgg tctgtccgag ctcgacaagg ctggcttcat caagcgtcaa 2760ctcgtcgaga
ccagacagat cacaaagcac gtcgcacaga ttctcgattc tcggatgaac 2820accaagtacg
acgagaacga caagctcatc cgagaggtca aggtgattac tctcaagtcc 2880aaactggtct
ccgatttccg aaaggacttt cagttctaca aggtgcgaga gatcaacaat 2940taccaccatg
cccacgatgc ttacctcaac gccgtcgttg gcactgcgct catcaagaaa 3000taccccaagc
tcgaaagcga gttcgtttac ggcgattaca aggtctacga cgttcgaaag 3060atgattgcca
agtccgaaca ggagattggc aaggctactg ccaagtactt cttttactcc 3120aacatcatga
actttttcaa gaccgagatc accttggcca acggagagat tcgaaagaga 3180ccacttatcg
agaccaacgg cgaaactgga gagatcgtgt gggacaaggg tcgagacttt 3240gcaaccgtgc
gaaaggttct gtcgatgcct caggtcaaca tcgtcaagaa aaccgaggtt 3300cagactggcg
gattctccaa ggagtcgatt ctgcccaagc gaaactccga caagctcatc 3360gctcgaaaga
aagactggga tcccaagaaa tacggtggct tcgattctcc taccgtcgcc 3420tattccgtgc
ttgtcgttgc gaaggtcgag aagggcaagt ccaaaaagct caagtccgtc 3480aaggagctgc
tcggaattac catcatggag cgatcgagct tcgagaagaa tcccatcgac 3540ttcttggaag
ccaagggtta caaggaggtc aagaaagacc tcattatcaa gctgcccaag 3600tactctctgt
tcgaactgga gaacggtcga aagcgtatgc tcgcctccgc tggcgagctg 3660cagaagggaa
acgagcttgc cttgccttcg aagtacgtca actttctcta tctggcttct 3720cactacgaga
agctcaaggg ttctcccgag gacaacgaac agaagcaact cttcgttgag 3780cagcacaaac
attacctcga cgagattatc gagcagattt ccgagttttc gaagcgagtc 3840atcctggctg
atgccaactt ggacaaggtg ctctctgcct acaacaagca tcgggacaaa 3900cccattcgag
aacaggcgga gaacatcatt cacctgttta ctcttaccaa cctgggtgct 3960cctgcagctt
tcaagtactt cgataccact atcgaccgaa agcggtacac atccaccaag 4020gaggttctcg
atgccaccct gattcaccag tccatcactg gcctgtacga gacccgaatc 4080gacctgtctc
agcttggtgg cgactccaga gccgatccca agaaaaagcg aaaggtctaa
4140111379PRTartificial sequenceS. pyogenes Cas9 with NLS 11Met Asp Lys
Lys Tyr Ser Ile Gly Leu Asp Ile Gly Thr Asn Ser Val1 5
10 15Gly Trp Ala Val Ile Thr Asp Glu Tyr
Lys Val Pro Ser Lys Lys Phe 20 25
30Lys Val Leu Gly Asn Thr Asp Arg His Ser Ile Lys Lys Asn Leu Ile
35 40 45Gly Ala Leu Leu Phe Asp Ser
Gly Glu Thr Ala Glu Ala Thr Arg Leu 50 55
60Lys Arg Thr Ala Arg Arg Arg Tyr Thr Arg Arg Lys Asn Arg Ile Cys65
70 75 80Tyr Leu Gln Glu
Ile Phe Ser Asn Glu Met Ala Lys Val Asp Asp Ser 85
90 95Phe Phe His Arg Leu Glu Glu Ser Phe Leu
Val Glu Glu Asp Lys Lys 100 105
110His Glu Arg His Pro Ile Phe Gly Asn Ile Val Asp Glu Val Ala Tyr
115 120 125His Glu Lys Tyr Pro Thr Ile
Tyr His Leu Arg Lys Lys Leu Val Asp 130 135
140Ser Thr Asp Lys Ala Asp Leu Arg Leu Ile Tyr Leu Ala Leu Ala
His145 150 155 160Met Ile
Lys Phe Arg Gly His Phe Leu Ile Glu Gly Asp Leu Asn Pro
165 170 175Asp Asn Ser Asp Val Asp Lys
Leu Phe Ile Gln Leu Val Gln Thr Tyr 180 185
190Asn Gln Leu Phe Glu Glu Asn Pro Ile Asn Ala Ser Gly Val
Asp Ala 195 200 205Lys Ala Ile Leu
Ser Ala Arg Leu Ser Lys Ser Arg Arg Leu Glu Asn 210
215 220Leu Ile Ala Gln Leu Pro Gly Glu Lys Lys Asn Gly
Leu Phe Gly Asn225 230 235
240Leu Ile Ala Leu Ser Leu Gly Leu Thr Pro Asn Phe Lys Ser Asn Phe
245 250 255Asp Leu Ala Glu Asp
Ala Lys Leu Gln Leu Ser Lys Asp Thr Tyr Asp 260
265 270Asp Asp Leu Asp Asn Leu Leu Ala Gln Ile Gly Asp
Gln Tyr Ala Asp 275 280 285Leu Phe
Leu Ala Ala Lys Asn Leu Ser Asp Ala Ile Leu Leu Ser Asp 290
295 300Ile Leu Arg Val Asn Thr Glu Ile Thr Lys Ala
Pro Leu Ser Ala Ser305 310 315
320Met Ile Lys Arg Tyr Asp Glu His His Gln Asp Leu Thr Leu Leu Lys
325 330 335Ala Leu Val Arg
Gln Gln Leu Pro Glu Lys Tyr Lys Glu Ile Phe Phe 340
345 350Asp Gln Ser Lys Asn Gly Tyr Ala Gly Tyr Ile
Asp Gly Gly Ala Ser 355 360 365Gln
Glu Glu Phe Tyr Lys Phe Ile Lys Pro Ile Leu Glu Lys Met Asp 370
375 380Gly Thr Glu Glu Leu Leu Val Lys Leu Asn
Arg Glu Asp Leu Leu Arg385 390 395
400Lys Gln Arg Thr Phe Asp Asn Gly Ser Ile Pro His Gln Ile His
Leu 405 410 415Gly Glu Leu
His Ala Ile Leu Arg Arg Gln Glu Asp Phe Tyr Pro Phe 420
425 430Leu Lys Asp Asn Arg Glu Lys Ile Glu Lys
Ile Leu Thr Phe Arg Ile 435 440
445Pro Tyr Tyr Val Gly Pro Leu Ala Arg Gly Asn Ser Arg Phe Ala Trp 450
455 460Met Thr Arg Lys Ser Glu Glu Thr
Ile Thr Pro Trp Asn Phe Glu Glu465 470
475 480Val Val Asp Lys Gly Ala Ser Ala Gln Ser Phe Ile
Glu Arg Met Thr 485 490
495Asn Phe Asp Lys Asn Leu Pro Asn Glu Lys Val Leu Pro Lys His Ser
500 505 510Leu Leu Tyr Glu Tyr Phe
Thr Val Tyr Asn Glu Leu Thr Lys Val Lys 515 520
525Tyr Val Thr Glu Gly Met Arg Lys Pro Ala Phe Leu Ser Gly
Glu Gln 530 535 540Lys Lys Ala Ile Val
Asp Leu Leu Phe Lys Thr Asn Arg Lys Val Thr545 550
555 560Val Lys Gln Leu Lys Glu Asp Tyr Phe Lys
Lys Ile Glu Cys Phe Asp 565 570
575Ser Val Glu Ile Ser Gly Val Glu Asp Arg Phe Asn Ala Ser Leu Gly
580 585 590Thr Tyr His Asp Leu
Leu Lys Ile Ile Lys Asp Lys Asp Phe Leu Asp 595
600 605Asn Glu Glu Asn Glu Asp Ile Leu Glu Asp Ile Val
Leu Thr Leu Thr 610 615 620Leu Phe Glu
Asp Arg Glu Met Ile Glu Glu Arg Leu Lys Thr Tyr Ala625
630 635 640His Leu Phe Asp Asp Lys Val
Met Lys Gln Leu Lys Arg Arg Arg Tyr 645
650 655Thr Gly Trp Gly Arg Leu Ser Arg Lys Leu Ile Asn
Gly Ile Arg Asp 660 665 670Lys
Gln Ser Gly Lys Thr Ile Leu Asp Phe Leu Lys Ser Asp Gly Phe 675
680 685Ala Asn Arg Asn Phe Met Gln Leu Ile
His Asp Asp Ser Leu Thr Phe 690 695
700Lys Glu Asp Ile Gln Lys Ala Gln Val Ser Gly Gln Gly Asp Ser Leu705
710 715 720His Glu His Ile
Ala Asn Leu Ala Gly Ser Pro Ala Ile Lys Lys Gly 725
730 735Ile Leu Gln Thr Val Lys Val Val Asp Glu
Leu Val Lys Val Met Gly 740 745
750Arg His Lys Pro Glu Asn Ile Val Ile Glu Met Ala Arg Glu Asn Gln
755 760 765Thr Thr Gln Lys Gly Gln Lys
Asn Ser Arg Glu Arg Met Lys Arg Ile 770 775
780Glu Glu Gly Ile Lys Glu Leu Gly Ser Gln Ile Leu Lys Glu His
Pro785 790 795 800Val Glu
Asn Thr Gln Leu Gln Asn Glu Lys Leu Tyr Leu Tyr Tyr Leu
805 810 815Gln Asn Gly Arg Asp Met Tyr
Val Asp Gln Glu Leu Asp Ile Asn Arg 820 825
830Leu Ser Asp Tyr Asp Val Asp His Ile Val Pro Gln Ser Phe
Leu Lys 835 840 845Asp Asp Ser Ile
Asp Asn Lys Val Leu Thr Arg Ser Asp Lys Asn Arg 850
855 860Gly Lys Ser Asp Asn Val Pro Ser Glu Glu Val Val
Lys Lys Met Lys865 870 875
880Asn Tyr Trp Arg Gln Leu Leu Asn Ala Lys Leu Ile Thr Gln Arg Lys
885 890 895Phe Asp Asn Leu Thr
Lys Ala Glu Arg Gly Gly Leu Ser Glu Leu Asp 900
905 910Lys Ala Gly Phe Ile Lys Arg Gln Leu Val Glu Thr
Arg Gln Ile Thr 915 920 925Lys His
Val Ala Gln Ile Leu Asp Ser Arg Met Asn Thr Lys Tyr Asp 930
935 940Glu Asn Asp Lys Leu Ile Arg Glu Val Lys Val
Ile Thr Leu Lys Ser945 950 955
960Lys Leu Val Ser Asp Phe Arg Lys Asp Phe Gln Phe Tyr Lys Val Arg
965 970 975Glu Ile Asn Asn
Tyr His His Ala His Asp Ala Tyr Leu Asn Ala Val 980
985 990Val Gly Thr Ala Leu Ile Lys Lys Tyr Pro Lys
Leu Glu Ser Glu Phe 995 1000
1005Val Tyr Gly Asp Tyr Lys Val Tyr Asp Val Arg Lys Met Ile Ala
1010 1015 1020Lys Ser Glu Gln Glu Ile
Gly Lys Ala Thr Ala Lys Tyr Phe Phe 1025 1030
1035Tyr Ser Asn Ile Met Asn Phe Phe Lys Thr Glu Ile Thr Leu
Ala 1040 1045 1050Asn Gly Glu Ile Arg
Lys Arg Pro Leu Ile Glu Thr Asn Gly Glu 1055 1060
1065Thr Gly Glu Ile Val Trp Asp Lys Gly Arg Asp Phe Ala
Thr Val 1070 1075 1080Arg Lys Val Leu
Ser Met Pro Gln Val Asn Ile Val Lys Lys Thr 1085
1090 1095Glu Val Gln Thr Gly Gly Phe Ser Lys Glu Ser
Ile Leu Pro Lys 1100 1105 1110Arg Asn
Ser Asp Lys Leu Ile Ala Arg Lys Lys Asp Trp Asp Pro 1115
1120 1125Lys Lys Tyr Gly Gly Phe Asp Ser Pro Thr
Val Ala Tyr Ser Val 1130 1135 1140Leu
Val Val Ala Lys Val Glu Lys Gly Lys Ser Lys Lys Leu Lys 1145
1150 1155Ser Val Lys Glu Leu Leu Gly Ile Thr
Ile Met Glu Arg Ser Ser 1160 1165
1170Phe Glu Lys Asn Pro Ile Asp Phe Leu Glu Ala Lys Gly Tyr Lys
1175 1180 1185Glu Val Lys Lys Asp Leu
Ile Ile Lys Leu Pro Lys Tyr Ser Leu 1190 1195
1200Phe Glu Leu Glu Asn Gly Arg Lys Arg Met Leu Ala Ser Ala
Gly 1205 1210 1215Glu Leu Gln Lys Gly
Asn Glu Leu Ala Leu Pro Ser Lys Tyr Val 1220 1225
1230Asn Phe Leu Tyr Leu Ala Ser His Tyr Glu Lys Leu Lys
Gly Ser 1235 1240 1245Pro Glu Asp Asn
Glu Gln Lys Gln Leu Phe Val Glu Gln His Lys 1250
1255 1260His Tyr Leu Asp Glu Ile Ile Glu Gln Ile Ser
Glu Phe Ser Lys 1265 1270 1275Arg Val
Ile Leu Ala Asp Ala Asn Leu Asp Lys Val Leu Ser Ala 1280
1285 1290Tyr Asn Lys His Arg Asp Lys Pro Ile Arg
Glu Gln Ala Glu Asn 1295 1300 1305Ile
Ile His Leu Phe Thr Leu Thr Asn Leu Gly Ala Pro Ala Ala 1310
1315 1320Phe Lys Tyr Phe Asp Thr Thr Ile Asp
Arg Lys Arg Tyr Thr Ser 1325 1330
1335Thr Lys Glu Val Leu Asp Ala Thr Leu Ile His Gln Ser Ile Thr
1340 1345 1350Gly Leu Tyr Glu Thr Arg
Ile Asp Leu Ser Gln Leu Gly Gly Asp 1355 1360
1365Ser Arg Ala Asp Pro Lys Lys Lys Arg Lys Val 1370
137512543DNAYarrowia lipolytica 12tcgacgttta aaccatcatc
taagggcctc aaaactacct cggaactgct gcgctgatct 60ggacaccaca gaggttccga
gcactttagg ttgcaccaaa tgtcccacca ggtgcaggca 120gaaaacgctg gaacagcgtg
tacagtttgt cttaacaaaa agtgagggcg ctgaggtcga 180gcagggtggt gtgacttgtt
atagccttta gagctgcgaa agcgcgtatg gatttggctc 240atcaggccag attgagggtc
tgtggacaca tgtcatgtta gtgtacttca atcgccccct 300ggatatagcc ccgacaatag
gccgtggcct catttttttg ccttccgcac atttccattg 360ctcggtaccc acaccttgct
tctcctgcac ttgccaacct taatactggt ttacattgac 420caacatctta caagcggggg
gcttgtctag ggtatatata aacagtggct ctcccaatcg 480gttgccagtc tcttttttcc
tttctttccc cacagattcg aaatctaaac tacacatcac 540acc
543134683DNAartificial
sequenceCas9-NLS expression cassette 13tcgacgttta aaccatcatc taagggcctc
aaaactacct cggaactgct gcgctgatct 60ggacaccaca gaggttccga gcactttagg
ttgcaccaaa tgtcccacca ggtgcaggca 120gaaaacgctg gaacagcgtg tacagtttgt
cttaacaaaa agtgagggcg ctgaggtcga 180gcagggtggt gtgacttgtt atagccttta
gagctgcgaa agcgcgtatg gatttggctc 240atcaggccag attgagggtc tgtggacaca
tgtcatgtta gtgtacttca atcgccccct 300ggatatagcc ccgacaatag gccgtggcct
catttttttg ccttccgcac atttccattg 360ctcggtaccc acaccttgct tctcctgcac
ttgccaacct taatactggt ttacattgac 420caacatctta caagcggggg gcttgtctag
ggtatatata aacagtggct ctcccaatcg 480gttgccagtc tcttttttcc tttctttccc
cacagattcg aaatctaaac tacacatcac 540accatggaca agaaatactc catcggcctg
gacattggaa ccaactctgt cggctgggct 600gtcatcaccg acgagtacaa ggtgccctcc
aagaaattca aggtcctcgg aaacaccgat 660cgacactcca tcaagaaaaa cctcattggt
gccctgttgt tcgattctgg cgagactgcc 720gaagctacca gactcaagcg aactgctcgg
cgacgttaca cccgacggaa gaaccgaatc 780tgctacctgc aggagatctt ttccaacgag
atggccaagg tggacgattc gttctttcat 840cgactggagg aatccttcct cgtcgaggaa
gacaagaaac acgagcgtca tcccatcttt 900ggcaacattg tggacgaggt tgcttaccac
gagaagtatc ctaccatcta ccacctgcga 960aagaaactcg tcgattccac cgacaaggcg
gatctcagac ttatctacct cgctctggca 1020cacatgatca agtttcgagg tcatttcctc
atcgagggcg atctcaatcc cgacaacagc 1080gatgtggaca agctgttcat tcagctcgtt
cagacctaca accagctgtt cgaggaaaac 1140cccatcaatg cctccggagt cgatgcaaag
gccatcttgt ctgctcgact ctcgaagagc 1200agacgactgg agaacctcat tgcccaactt
cctggcgaga aaaagaacgg actgtttggc 1260aacctcattg ccctttctct tggtctcaca
cccaacttca agtccaactt cgatctggcg 1320gaggacgcca agctccagct gtccaaggac
acctacgacg atgacctcga caacctgctt 1380gcacagattg gcgatcagta cgccgacctg
tttctcgctg ccaagaacct ttcggatgct 1440attctcttgt ctgacattct gcgagtcaac
accgagatca caaaggctcc cctttctgcc 1500tccatgatca agcgatacga cgagcaccat
caggatctca cactgctcaa ggctcttgtc 1560cgacagcaac tgcccgagaa gtacaaggag
atctttttcg atcagtcgaa gaacggctac 1620gctggataca tcgacggcgg agcctctcag
gaagagttct acaagttcat caagccaatt 1680ctcgagaaga tggacggaac cgaggaactg
cttgtcaagc tcaatcgaga ggatctgctt 1740cggaagcaac gaaccttcga caacggcagc
attcctcatc agatccacct cggtgagctg 1800cacgccattc ttcgacgtca ggaagacttc
tacccctttc tcaaggacaa ccgagagaag 1860atcgagaaga ttcttacctt tcgaatcccc
tactatgttg gtcctcttgc cagaggaaac 1920tctcgatttg cttggatgac tcgaaagtcc
gaggaaacca tcactccctg gaacttcgag 1980gaagtcgtgg acaagggtgc ctctgcacag
tccttcatcg agcgaatgac caacttcgac 2040aagaatctgc ccaacgagaa ggttcttccc
aagcattcgc tgctctacga gtactttaca 2100gtctacaacg aactcaccaa agtcaagtac
gttaccgagg gaatgcgaaa gcctgccttc 2160ttgtctggcg aacagaagaa agccattgtc
gatctcctgt tcaagaccaa ccgaaaggtc 2220actgttaagc agctcaagga ggactacttc
aagaaaatcg agtgtttcga cagcgtcgag 2280atttccggag ttgaggaccg attcaacgcc
tctttgggca cctatcacga tctgctcaag 2340attatcaagg acaaggattt tctcgacaac
gaggaaaacg aggacattct ggaggacatc 2400gtgctcactc ttaccctgtt cgaagatcgg
gagatgatcg aggaacgact caagacatac 2460gctcacctgt tcgacgacaa ggtcatgaaa
caactcaagc gacgtagata caccggctgg 2520ggaagacttt cgcgaaagct catcaacggc
atcagagaca agcagtccgg aaagaccatt 2580ctggactttc tcaagtccga tggctttgcc
aaccgaaact tcatgcagct cattcacgac 2640gattctctta ccttcaagga ggacatccag
aaggcacaag tgtccggtca gggcgacagc 2700ttgcacgaac atattgccaa cctggctggt
tcgccagcca tcaagaaagg cattctccag 2760actgtcaagg ttgtcgacga gctggtgaag
gtcatgggac gtcacaagcc cgagaacatt 2820gtgatcgaga tggccagaga gaaccagaca
actcaaaagg gtcagaaaaa ctcgcgagag 2880cggatgaagc gaatcgagga aggcatcaag
gagctgggat cccagattct caaggagcat 2940cccgtcgaga acactcaact gcagaacgag
aagctgtatc tctactatct gcagaatggt 3000cgagacatgt acgtggatca ggaactggac
atcaatcgtc tcagcgacta cgatgtggac 3060cacattgtcc ctcaatcctt tctcaaggac
gattctatcg acaacaaggt ccttacacga 3120tccgacaaga acagaggcaa gtcggacaac
gttcccagcg aagaggtggt caaaaagatg 3180aagaactact ggcgacagct gctcaacgcc
aagctcatta cccagcgaaa gttcgacaat 3240cttaccaagg ccgagcgagg cggtctgtcc
gagctcgaca aggctggctt catcaagcgt 3300caactcgtcg agaccagaca gatcacaaag
cacgtcgcac agattctcga ttctcggatg 3360aacaccaagt acgacgagaa cgacaagctc
atccgagagg tcaaggtgat tactctcaag 3420tccaaactgg tctccgattt ccgaaaggac
tttcagttct acaaggtgcg agagatcaac 3480aattaccacc atgcccacga tgcttacctc
aacgccgtcg ttggcactgc gctcatcaag 3540aaatacccca agctcgaaag cgagttcgtt
tacggcgatt acaaggtcta cgacgttcga 3600aagatgattg ccaagtccga acaggagatt
ggcaaggcta ctgccaagta cttcttttac 3660tccaacatca tgaacttttt caagaccgag
atcaccttgg ccaacggaga gattcgaaag 3720agaccactta tcgagaccaa cggcgaaact
ggagagatcg tgtgggacaa gggtcgagac 3780tttgcaaccg tgcgaaaggt tctgtcgatg
cctcaggtca acatcgtcaa gaaaaccgag 3840gttcagactg gcggattctc caaggagtcg
attctgccca agcgaaactc cgacaagctc 3900atcgctcgaa agaaagactg ggatcccaag
aaatacggtg gcttcgattc tcctaccgtc 3960gcctattccg tgcttgtcgt tgcgaaggtc
gagaagggca agtccaaaaa gctcaagtcc 4020gtcaaggagc tgctcggaat taccatcatg
gagcgatcga gcttcgagaa gaatcccatc 4080gacttcttgg aagccaaggg ttacaaggag
gtcaagaaag acctcattat caagctgccc 4140aagtactctc tgttcgaact ggagaacggt
cgaaagcgta tgctcgcctc cgctggcgag 4200ctgcagaagg gaaacgagct tgccttgcct
tcgaagtacg tcaactttct ctatctggct 4260tctcactacg agaagctcaa gggttctccc
gaggacaacg aacagaagca actcttcgtt 4320gagcagcaca aacattacct cgacgagatt
atcgagcaga tttccgagtt ttcgaagcga 4380gtcatcctgg ctgatgccaa cttggacaag
gtgctctctg cctacaacaa gcatcgggac 4440aaacccattc gagaacaggc ggagaacatc
attcacctgt ttactcttac caacctgggt 4500gctcctgcag ctttcaagta cttcgatacc
actatcgacc gaaagcggta cacatccacc 4560aaggaggttc tcgatgccac cctgattcac
cagtccatca ctggcctgta cgagacccga 4620atcgacctgt ctcagcttgg tggcgactcc
agagccgatc ccaagaaaaa gcgaaaggtc 4680taa
46831410706DNAartificial
sequencepZUFCas9 plasmid 14catggacaag aaatactcca tcggcctgga cattggaacc
aactctgtcg gctgggctgt 60catcaccgac gagtacaagg tgccctccaa gaaattcaag
gtcctcggaa acaccgatcg 120acactccatc aagaaaaacc tcattggtgc cctgttgttc
gattctggcg agactgccga 180agctaccaga ctcaagcgaa ctgctcggcg acgttacacc
cgacggaaga accgaatctg 240ctacctgcag gagatctttt ccaacgagat ggccaaggtg
gacgattcgt tctttcatcg 300actggaggaa tccttcctcg tcgaggaaga caagaaacac
gagcgtcatc ccatctttgg 360caacattgtg gacgaggttg cttaccacga gaagtatcct
accatctacc acctgcgaaa 420gaaactcgtc gattccaccg acaaggcgga tctcagactt
atctacctcg ctctggcaca 480catgatcaag tttcgaggtc atttcctcat cgagggcgat
ctcaatcccg acaacagcga 540tgtggacaag ctgttcattc agctcgttca gacctacaac
cagctgttcg aggaaaaccc 600catcaatgcc tccggagtcg atgcaaaggc catcttgtct
gctcgactct cgaagagcag 660acgactggag aacctcattg cccaacttcc tggcgagaaa
aagaacggac tgtttggcaa 720cctcattgcc ctttctcttg gtctcacacc caacttcaag
tccaacttcg atctggcgga 780ggacgccaag ctccagctgt ccaaggacac ctacgacgat
gacctcgaca acctgcttgc 840acagattggc gatcagtacg ccgacctgtt tctcgctgcc
aagaaccttt cggatgctat 900tctcttgtct gacattctgc gagtcaacac cgagatcaca
aaggctcccc tttctgcctc 960catgatcaag cgatacgacg agcaccatca ggatctcaca
ctgctcaagg ctcttgtccg 1020acagcaactg cccgagaagt acaaggagat ctttttcgat
cagtcgaaga acggctacgc 1080tggatacatc gacggcggag cctctcagga agagttctac
aagttcatca agccaattct 1140cgagaagatg gacggaaccg aggaactgct tgtcaagctc
aatcgagagg atctgcttcg 1200gaagcaacga accttcgaca acggcagcat tcctcatcag
atccacctcg gtgagctgca 1260cgccattctt cgacgtcagg aagacttcta cccctttctc
aaggacaacc gagagaagat 1320cgagaagatt cttacctttc gaatccccta ctatgttggt
cctcttgcca gaggaaactc 1380tcgatttgct tggatgactc gaaagtccga ggaaaccatc
actccctgga acttcgagga 1440agtcgtggac aagggtgcct ctgcacagtc cttcatcgag
cgaatgacca acttcgacaa 1500gaatctgccc aacgagaagg ttcttcccaa gcattcgctg
ctctacgagt actttacagt 1560ctacaacgaa ctcaccaaag tcaagtacgt taccgaggga
atgcgaaagc ctgccttctt 1620gtctggcgaa cagaagaaag ccattgtcga tctcctgttc
aagaccaacc gaaaggtcac 1680tgttaagcag ctcaaggagg actacttcaa gaaaatcgag
tgtttcgaca gcgtcgagat 1740ttccggagtt gaggaccgat tcaacgcctc tttgggcacc
tatcacgatc tgctcaagat 1800tatcaaggac aaggattttc tcgacaacga ggaaaacgag
gacattctgg aggacatcgt 1860gctcactctt accctgttcg aagatcggga gatgatcgag
gaacgactca agacatacgc 1920tcacctgttc gacgacaagg tcatgaaaca actcaagcga
cgtagataca ccggctgggg 1980aagactttcg cgaaagctca tcaacggcat cagagacaag
cagtccggaa agaccattct 2040ggactttctc aagtccgatg gctttgccaa ccgaaacttc
atgcagctca ttcacgacga 2100ttctcttacc ttcaaggagg acatccagaa ggcacaagtg
tccggtcagg gcgacagctt 2160gcacgaacat attgccaacc tggctggttc gccagccatc
aagaaaggca ttctccagac 2220tgtcaaggtt gtcgacgagc tggtgaaggt catgggacgt
cacaagcccg agaacattgt 2280gatcgagatg gccagagaga accagacaac tcaaaagggt
cagaaaaact cgcgagagcg 2340gatgaagcga atcgaggaag gcatcaagga gctgggatcc
cagattctca aggagcatcc 2400cgtcgagaac actcaactgc agaacgagaa gctgtatctc
tactatctgc agaatggtcg 2460agacatgtac gtggatcagg aactggacat caatcgtctc
agcgactacg atgtggacca 2520cattgtccct caatcctttc tcaaggacga ttctatcgac
aacaaggtcc ttacacgatc 2580cgacaagaac agaggcaagt cggacaacgt tcccagcgaa
gaggtggtca aaaagatgaa 2640gaactactgg cgacagctgc tcaacgccaa gctcattacc
cagcgaaagt tcgacaatct 2700taccaaggcc gagcgaggcg gtctgtccga gctcgacaag
gctggcttca tcaagcgtca 2760actcgtcgag accagacaga tcacaaagca cgtcgcacag
attctcgatt ctcggatgaa 2820caccaagtac gacgagaacg acaagctcat ccgagaggtc
aaggtgatta ctctcaagtc 2880caaactggtc tccgatttcc gaaaggactt tcagttctac
aaggtgcgag agatcaacaa 2940ttaccaccat gcccacgatg cttacctcaa cgccgtcgtt
ggcactgcgc tcatcaagaa 3000ataccccaag ctcgaaagcg agttcgttta cggcgattac
aaggtctacg acgttcgaaa 3060gatgattgcc aagtccgaac aggagattgg caaggctact
gccaagtact tcttttactc 3120caacatcatg aactttttca agaccgagat caccttggcc
aacggagaga ttcgaaagag 3180accacttatc gagaccaacg gcgaaactgg agagatcgtg
tgggacaagg gtcgagactt 3240tgcaaccgtg cgaaaggttc tgtcgatgcc tcaggtcaac
atcgtcaaga aaaccgaggt 3300tcagactggc ggattctcca aggagtcgat tctgcccaag
cgaaactccg acaagctcat 3360cgctcgaaag aaagactggg atcccaagaa atacggtggc
ttcgattctc ctaccgtcgc 3420ctattccgtg cttgtcgttg cgaaggtcga gaagggcaag
tccaaaaagc tcaagtccgt 3480caaggagctg ctcggaatta ccatcatgga gcgatcgagc
ttcgagaaga atcccatcga 3540cttcttggaa gccaagggtt acaaggaggt caagaaagac
ctcattatca agctgcccaa 3600gtactctctg ttcgaactgg agaacggtcg aaagcgtatg
ctcgcctccg ctggcgagct 3660gcagaaggga aacgagcttg ccttgccttc gaagtacgtc
aactttctct atctggcttc 3720tcactacgag aagctcaagg gttctcccga ggacaacgaa
cagaagcaac tcttcgttga 3780gcagcacaaa cattacctcg acgagattat cgagcagatt
tccgagtttt cgaagcgagt 3840catcctggct gatgccaact tggacaaggt gctctctgcc
tacaacaagc atcgggacaa 3900acccattcga gaacaggcgg agaacatcat tcacctgttt
actcttacca acctgggtgc 3960tcctgcagct ttcaagtact tcgataccac tatcgaccga
aagcggtaca catccaccaa 4020ggaggttctc gatgccaccc tgattcacca gtccatcact
ggcctgtacg agacccgaat 4080cgacctgtct cagcttggtg gcgactccag agccgatccc
aagaaaaagc gaaaggtcta 4140agcggccgca agtgtggatg gggaagtgag tgcccggttc
tgtgtgcaca attggcaatc 4200caagatggat ggattcaaca cagggatata gcgagctacg
tggtggtgcg aggatatagc 4260aacggatatt tatgtttgac acttgagaat gtacgataca
agcactgtcc aagtacaata 4320ctaaacatac tgtacatact catactcgta cccgggcaac
ggtttcactt gagtgcagtg 4380gctagtgctc ttactcgtac agtgtgcaat actgcgtatc
atagtctttg atgtatatcg 4440tattcattca tgttagttgc gtacgagccg gaagcataaa
gtgtaaagcc tggggtgcct 4500aatgagtgag ctaactcaca ttaattgcgt tgcgctcact
gcccgctttc cagtcgggaa 4560acctgtcgtg ccagctgcat taatgaatcg gccaacgcgc
ggggagaggc ggtttgcgta 4620ttgggcgctc ttccgcttcc tcgctcactg actcgctgcg
ctcggtcgtt cggctgcggc 4680gagcggtatc agctcactca aaggcggtaa tacggttatc
cacagaatca ggggataacg 4740caggaaagaa catgtgagca aaaggccagc aaaaggccag
gaaccgtaaa aaggccgcgt 4800tgctggcgtt tttccatagg ctccgccccc ctgacgagca
tcacaaaaat cgacgctcaa 4860gtcagaggtg gcgaaacccg acaggactat aaagatacca
ggcgtttccc cctggaagct 4920ccctcgtgcg ctctcctgtt ccgaccctgc cgcttaccgg
atacctgtcc gcctttctcc 4980cttcgggaag cgtggcgctt tctcatagct cacgctgtag
gtatctcagt tcggtgtagg 5040tcgttcgctc caagctgggc tgtgtgcacg aaccccccgt
tcagcccgac cgctgcgcct 5100tatccggtaa ctatcgtctt gagtccaacc cggtaagaca
cgacttatcg ccactggcag 5160cagccactgg taacaggatt agcagagcga ggtatgtagg
cggtgctaca gagttcttga 5220agtggtggcc taactacggc tacactagaa ggacagtatt
tggtatctgc gctctgctga 5280agccagttac cttcggaaaa agagttggta gctcttgatc
cggcaaacaa accaccgctg 5340gtagcggtgg tttttttgtt tgcaagcagc agattacgcg
cagaaaaaaa ggatctcaag 5400aagatccttt gatcttttct acggggtctg acgctcagtg
gaacgaaaac tcacgttaag 5460ggattttggt catgagatta tcaaaaagga tcttcaccta
gatcctttta aattaaaaat 5520gaagttttaa atcaatctaa agtatatatg agtaaacttg
gtctgacagt taccaatgct 5580taatcagtga ggcacctatc tcagcgatct gtctatttcg
ttcatccata gttgcctgac 5640tccccgtcgt gtagataact acgatacggg agggcttacc
atctggcccc agtgctgcaa 5700tgataccgcg agacccacgc tcaccggctc cagatttatc
agcaataaac cagccagccg 5760gaagggccga gcgcagaagt ggtcctgcaa ctttatccgc
ctccatccag tctattaatt 5820gttgccggga agctagagta agtagttcgc cagttaatag
tttgcgcaac gttgttgcca 5880ttgctacagg catcgtggtg tcacgctcgt cgtttggtat
ggcttcattc agctccggtt 5940cccaacgatc aaggcgagtt acatgatccc ccatgttgtg
caaaaaagcg gttagctcct 6000tcggtcctcc gatcgttgtc agaagtaagt tggccgcagt
gttatcactc atggttatgg 6060cagcactgca taattctctt actgtcatgc catccgtaag
atgcttttct gtgactggtg 6120agtactcaac caagtcattc tgagaatagt gtatgcggcg
accgagttgc tcttgcccgg 6180cgtcaatacg ggataatacc gcgccacata gcagaacttt
aaaagtgctc atcattggaa 6240aacgttcttc ggggcgaaaa ctctcaagga tcttaccgct
gttgagatcc agttcgatgt 6300aacccactcg tgcacccaac tgatcttcag catcttttac
tttcaccagc gtttctgggt 6360gagcaaaaac aggaaggcaa aatgccgcaa aaaagggaat
aagggcgaca cggaaatgtt 6420gaatactcat actcttcctt tttcaatatt attgaagcat
ttatcagggt tattgtctca 6480tgagcggata catatttgaa tgtatttaga aaaataaaca
aataggggtt ccgcgcacat 6540ttccccgaaa agtgccacct gacgcgccct gtagcggcgc
attaagcgcg gcgggtgtgg 6600tggttacgcg cagcgtgacc gctacacttg ccagcgccct
agcgcccgct cctttcgctt 6660tcttcccttc ctttctcgcc acgttcgccg gctttccccg
tcaagctcta aatcgggggc 6720tccctttagg gttccgattt agtgctttac ggcacctcga
ccccaaaaaa cttgattagg 6780gtgatggttc acgtagtggg ccatcgccct gatagacggt
ttttcgccct ttgacgttgg 6840agtccacgtt ctttaatagt ggactcttgt tccaaactgg
aacaacactc aaccctatct 6900cggtctattc ttttgattta taagggattt tgccgatttc
ggcctattgg ttaaaaaatg 6960agctgattta acaaaaattt aacgcgaatt ttaacaaaat
attaacgctt acaatttcca 7020ttcgccattc aggctgcgca actgttggga agggcgatcg
gtgcgggcct cttcgctatt 7080acgccagctg gcgaaagggg gatgtgctgc aaggcgatta
agttgggtaa cgccagggtt 7140ttcccagtca cgacgttgta aaacgacggc cagtgaattg
taatacgact cactataggg 7200cgaattgggt accgggcccc ccctcgaggt cgatggtgtc
gataagcttg atatcgaatt 7260catgtcacac aaaccgatct tcgcctcaag gaaacctaat
tctacatccg agagactgcc 7320gagatccagt ctacactgat taattttcgg gccaataatt
taaaaaaatc gtgttatata 7380atattatatg tattatatat atacatcatg atgatactga
cagtcatgtc ccattgctaa 7440atagacagac tccatctgcc gcctccaact gatgttctca
atatttaagg ggtcatctcg 7500cattgtttaa taataaacag actccatcta ccgcctccaa
atgatgttct caaaatatat 7560tgtatgaact tatttttatt acttagtatt attagacaac
ttacttgctt tatgaaaaac 7620acttcctatt taggaaacaa tttataatgg cagttcgttc
atttaacaat ttatgtagaa 7680taaatgttat aaatgcgtat gggaaatctt aaatatggat
agcataaatg atatctgcat 7740tgcctaattc gaaatcaaca gcaacgaaaa aaatcccttg
tacaacataa atagtcatcg 7800agaaatatca actatcaaag aacagctatt cacacgttac
tattgagatt attattggac 7860gagaatcaca cactcaactg tctttctctc ttctagaaat
acaggtacaa gtatgtacta 7920ttctcattgt tcatacttct agtcatttca tcccacatat
tccttggatt tctctccaat 7980gaatgacatt ctatcttgca aattcaacaa ttataataag
atataccaaa gtagcggtat 8040agtggcaatc aaaaagcttc tctggtgtgc ttctcgtatt
tatttttatt ctaatgatcc 8100attaaaggta tatatttatt tcttgttata taatcctttt
gtttattaca tgggctggat 8160acataaaggt attttgattt aattttttgc ttaaattcaa
tcccccctcg ttcagtgtca 8220actgtaatgg taggaaatta ccatactttt gaagaagcaa
aaaaaatgaa agaaaaaaaa 8280aatcgtattt ccaggttaga cgttccgcag aatctagaat
gcggtatgcg gtacattgtt 8340cttcgaacgt aaaagttgcg ctccctgaga tattgtacat
ttttgctttt acaagtacaa 8400gtacatcgta caactatgta ctactgttga tgcatccaca
acagtttgtt ttgttttttt 8460ttgttttttt tttttctaat gattcattac cgctatgtat
acctacttgt acttgtagta 8520agccgggtta ttggcgttca attaatcata gacttatgaa
tctgcacggt gtgcgctgcg 8580agttactttt agcttatgca tgctacttgg gtgtaatatt
gggatctgtt cggaaatcaa 8640cggatgctca atcgatttcg acagtaatta attaagtcat
acacaagtca gctttcttcg 8700agcctcatat aagtataagt agttcaacgt attagcactg
tacccagcat ctccgtatcg 8760agaaacacaa caacatgccc cattggacag atcatgcgga
tacacaggtt gtgcagtatc 8820atacatactc gatcagacag gtcgtctgac catcatacaa
gctgaacaag cgctccatac 8880ttgcacgctc tctatataca cagttaaatt acatatccat
agtctaacct ctaacagtta 8940atcttctggt aagcctccca gccagccttc tggtatcgct
tggcctcctc aataggatct 9000cggttctggc cgtacagacc tcggccgaca attatgatat
ccgttccggt agacatgaca 9060tcctcaacag ttcggtactg ctgtccgaga gcgtctccct
tgtcgtcaag acccaccccg 9120ggggtcagaa taagccagtc ctcagagtcg cccttaggtc
ggttctgggc aatgaagcca 9180accacaaact cggggtcgga tcgggcaagc tcaatggtct
gcttggagta ctcgccagtg 9240gccagagagc ccttgcaaga cagctcggcc agcatgagca
gacctctggc cagcttctcg 9300ttgggagagg ggactaggaa ctccttgtac tgggagttct
cgtagtcaga gacgtcctcc 9360ttcttctgtt cagagacagt ttcctcggca ccagctcgca
ggccagcaat gattccggtt 9420ccgggtacac cgtgggcgtt ggtgatatcg gaccactcgg
cgattcggtg acaccggtac 9480tggtgcttga cagtgttgcc aatatctgcg aactttctgt
cctcgaacag gaagaaaccg 9540tgcttaagag caagttcctt gagggggagc acagtgccgg
cgtaggtgaa gtcgtcaatg 9600atgtcgatat gggttttgat catgcacaca taaggtccga
ccttatcggc aagctcaatg 9660agctccttgg tggtggtaac atccagagaa gcacacaggt
tggttttctt ggctgccacg 9720agcttgagca ctcgagcggc aaaggcggac ttgtggacgt
tagctcgagc ttcgtaggag 9780ggcattttgg tggtgaagag gagactgaaa taaatttagt
ctgcagaact ttttatcgga 9840accttatctg gggcagtgaa gtatatgtta tggtaatagt
tacgagttag ttgaacttat 9900agatagactg gactatacgg ctatcggtcc aaattagaaa
gaacgtcaat ggctctctgg 9960gcgtcgcctt tgccgacaaa aatgtgatca tgatgaaagc
cagcaatgac gttgcagctg 10020atattgttgt cggccaaccg cgccgaaaac gcagctgtca
gacccacagc ctccaacgaa 10080gaatgtatcg tcaaagtgat ccaagcacac tcatagttgg
agtcgtactc caaaggcggc 10140aatgacgagt cagacagata ctcgtcgacg tttaaaccat
catctaaggg cctcaaaact 10200acctcggaac tgctgcgctg atctggacac cacagaggtt
ccgagcactt taggttgcac 10260caaatgtccc accaggtgca ggcagaaaac gctggaacag
cgtgtacagt ttgtcttaac 10320aaaaagtgag ggcgctgagg tcgagcaggg tggtgtgact
tgttatagcc tttagagctg 10380cgaaagcgcg tatggatttg gctcatcagg ccagattgag
ggtctgtgga cacatgtcat 10440gttagtgtac ttcaatcgcc ccctggatat agccccgaca
ataggccgtg gcctcatttt 10500tttgccttcc gcacatttcc attgctcggt acccacacct
tgcttctcct gcacttgcca 10560accttaatac tggtttacat tgaccaacat cttacaagcg
gggggcttgt ctagggtata 10620tataaacagt ggctctccca atcggttgcc agtctctttt
ttcctttctt tccccacaga 10680ttcgaaatct aaactacaca tcacac
107061543RNAartificial sequenceHammerhead (HH)
ribozymemisc_feature(1)..(6)n = A, C, U, or G 15nnnnnncuga ugaguccgug
aggacgaaac gaguaagcuc guc 431668RNAhepatitis delta
virus 16ggccggcaug gucccagccu ccucgcuggc gccggcuggg caacaugcuu cggcauggcg
60aaugggac
681720DNAYarrowia lipolytica 17tcaaacgatt acccaccctc
2018760DNAartificial sequenceRGR expression
cassette 18tcgacgttta aaccatcatc taagggcctc aaaactacct cggaactgct
gcgctgatct 60ggacaccaca gaggttccga gcactttagg ttgcaccaaa tgtcccacca
ggtgcaggca 120gaaaacgctg gaacagcgtg tacagtttgt cttaacaaaa agtgagggcg
ctgaggtcga 180gcagggtggt gtgacttgtt atagccttta gagctgcgaa agcgcgtatg
gatttggctc 240atcaggccag attgagggtc tgtggacaca tgtcatgtta gtgtacttca
atcgccccct 300ggatatagcc ccgacaatag gccgtggcct catttttttg ccttccgcac
atttccattg 360ctcggtaccc acaccttgct tctcctgcac ttgccaacct taatactggt
ttacattgac 420caacatctta caagcggggg gcttgtctag ggtatatata aacagtggct
ctcccaatcg 480gttgccagtc tcttttttcc tttctttccc cacagattcg aaatctaaac
tacacatcac 540accatggttt gactgatgag tccgtgagga cgaaacgagt aagctcgtct
caaacgatta 600cccaccctcg ttttagagct agaaatagca agttaaaata aggctagtcc
gttatcaact 660tgaaaaagtg gcaccgagtc ggtggtgctt ttggccggca tggtcccagc
ctcctcgctg 720gcgccggctg ggcaacatgc ttcggcatgg cgaatgggac
760196793DNAartificial sequencepRF38 plasmid 19catggtttga
ctgatgagtc cgtgaggacg aaacgagtaa gctcgtctca aacgattacc 60caccctcgtt
ttagagctag aaatagcaag ttaaaataag gctagtccgt tatcaacttg 120aaaaagtggc
accgagtcgg tggtgctttt ggccggcatg gtcccagcct cctcgctggc 180gccggctggg
caacatgctt cggcatggcg aatgggacaa gcttgggggc ggccgcaagt 240gtggatgggg
aagtgagtgc ccggttctgt gtgcacaatt ggcaatccaa gatggatgga 300ttcaacacag
ggatatagcg agctacgtgg tggtgcgagg atatagcaac ggatatttat 360gtttgacact
tgagaatgta cgatacaagc actgtccaag tacaatacta aacatactgt 420acatactcat
actcgtaccc gggcaacggt ttcacttgag tgcagtggct agtgctctta 480ctcgtacagt
gtgcaatact gcgtatcata gtctttgatg tatatcgtat tcattcatgt 540tagttgcgta
cgagccggaa gcataaagtg taaagcctgg ggtgcctaat gagtgagcta 600actcacatta
attgcgttgc gctcactgcc cgctttccag tcgggaaacc tgtcgtgcca 660gctgcattaa
tgaatcggcc aacgcgcggg gagaggcggt ttgcgtattg ggcgctcttc 720cgcttcctcg
ctcactgact cgctgcgctc ggtcgttcgg ctgcggcgag cggtatcagc 780tcactcaaag
gcggtaatac ggttatccac agaatcaggg gataacgcag gaaagaacat 840gtgagcaaaa
ggccagcaaa aggccaggaa ccgtaaaaag gccgcgttgc tggcgttttt 900ccataggctc
cgcccccctg acgagcatca caaaaatcga cgctcaagtc agaggtggcg 960aaacccgaca
ggactataaa gataccaggc gtttccccct ggaagctccc tcgtgcgctc 1020tcctgttccg
accctgccgc ttaccggata cctgtccgcc tttctccctt cgggaagcgt 1080ggcgctttct
catagctcac gctgtaggta tctcagttcg gtgtaggtcg ttcgctccaa 1140gctgggctgt
gtgcacgaac cccccgttca gcccgaccgc tgcgccttat ccggtaacta 1200tcgtcttgag
tccaacccgg taagacacga cttatcgcca ctggcagcag ccactggtaa 1260caggattagc
agagcgaggt atgtaggcgg tgctacagag ttcttgaagt ggtggcctaa 1320ctacggctac
actagaagga cagtatttgg tatctgcgct ctgctgaagc cagttacctt 1380cggaaaaaga
gttggtagct cttgatccgg caaacaaacc accgctggta gcggtggttt 1440ttttgtttgc
aagcagcaga ttacgcgcag aaaaaaagga tctcaagaag atcctttgat 1500cttttctacg
gggtctgacg ctcagtggaa cgaaaactca cgttaaggga ttttggtcat 1560gagattatca
aaaaggatct tcacctagat ccttttaaat taaaaatgaa gttttaaatc 1620aatctaaagt
atatatgagt aaacttggtc tgacagttac caatgcttaa tcagtgaggc 1680acctatctca
gcgatctgtc tatttcgttc atccatagtt gcctgactcc ccgtcgtgta 1740gataactacg
atacgggagg gcttaccatc tggccccagt gctgcaatga taccgcgaga 1800cccacgctca
ccggctccag atttatcagc aataaaccag ccagccggaa gggccgagcg 1860cagaagtggt
cctgcaactt tatccgcctc catccagtct attaattgtt gccgggaagc 1920tagagtaagt
agttcgccag ttaatagttt gcgcaacgtt gttgccattg ctacaggcat 1980cgtggtgtca
cgctcgtcgt ttggtatggc ttcattcagc tccggttccc aacgatcaag 2040gcgagttaca
tgatccccca tgttgtgcaa aaaagcggtt agctccttcg gtcctccgat 2100cgttgtcaga
agtaagttgg ccgcagtgtt atcactcatg gttatggcag cactgcataa 2160ttctcttact
gtcatgccat ccgtaagatg cttttctgtg actggtgagt actcaaccaa 2220gtcattctga
gaatagtgta tgcggcgacc gagttgctct tgcccggcgt caatacggga 2280taataccgcg
ccacatagca gaactttaaa agtgctcatc attggaaaac gttcttcggg 2340gcgaaaactc
tcaaggatct taccgctgtt gagatccagt tcgatgtaac ccactcgtgc 2400acccaactga
tcttcagcat cttttacttt caccagcgtt tctgggtgag caaaaacagg 2460aaggcaaaat
gccgcaaaaa agggaataag ggcgacacgg aaatgttgaa tactcatact 2520cttccttttt
caatattatt gaagcattta tcagggttat tgtctcatga gcggatacat 2580atttgaatgt
atttagaaaa ataaacaaat aggggttccg cgcacatttc cccgaaaagt 2640gccacctgac
gcgccctgta gcggcgcatt aagcgcggcg ggtgtggtgg ttacgcgcag 2700cgtgaccgct
acacttgcca gcgccctagc gcccgctcct ttcgctttct tcccttcctt 2760tctcgccacg
ttcgccggct ttccccgtca agctctaaat cgggggctcc ctttagggtt 2820ccgatttagt
gctttacggc acctcgaccc caaaaaactt gattagggtg atggttcacg 2880tagtgggcca
tcgccctgat agacggtttt tcgccctttg acgttggagt ccacgttctt 2940taatagtgga
ctcttgttcc aaactggaac aacactcaac cctatctcgg tctattcttt 3000tgatttataa
gggattttgc cgatttcggc ctattggtta aaaaatgagc tgatttaaca 3060aaaatttaac
gcgaatttta acaaaatatt aacgcttaca atttccattc gccattcagg 3120ctgcgcaact
gttgggaagg gcgatcggtg cgggcctctt cgctattacg ccagctggcg 3180aaagggggat
gtgctgcaag gcgattaagt tgggtaacgc cagggttttc ccagtcacga 3240cgttgtaaaa
cgacggccag tgaattgtaa tacgactcac tatagggcga attgggtacc 3300gggccccccc
tcgaggtcga tggtgtcgat aagcttgata tcgaattcat gtcacacaaa 3360ccgatcttcg
cctcaaggaa acctaattct acatccgaga gactgccgag atccagtcta 3420cactgattaa
ttttcgggcc aataatttaa aaaaatcgtg ttatataata ttatatgtat 3480tatatatata
catcatgatg atactgacag tcatgtccca ttgctaaata gacagactcc 3540atctgccgcc
tccaactgat gttctcaata tttaaggggt catctcgcat tgtttaataa 3600taaacagact
ccatctaccg cctccaaatg atgttctcaa aatatattgt atgaacttat 3660ttttattact
tagtattatt agacaactta cttgctttat gaaaaacact tcctatttag 3720gaaacaattt
ataatggcag ttcgttcatt taacaattta tgtagaataa atgttataaa 3780tgcgtatggg
aaatcttaaa tatggatagc ataaatgata tctgcattgc ctaattcgaa 3840atcaacagca
acgaaaaaaa tcccttgtac aacataaata gtcatcgaga aatatcaact 3900atcaaagaac
agctattcac acgttactat tgagattatt attggacgag aatcacacac 3960tcaactgtct
ttctctcttc tagaaataca ggtacaagta tgtactattc tcattgttca 4020tacttctagt
catttcatcc cacatattcc ttggatttct ctccaatgaa tgacattcta 4080tcttgcaaat
tcaacaatta taataagata taccaaagta gcggtatagt ggcaatcaaa 4140aagcttctct
ggtgtgcttc tcgtatttat ttttattcta atgatccatt aaaggtatat 4200atttatttct
tgttatataa tccttttgtt tattacatgg gctggataca taaaggtatt 4260ttgatttaat
tttttgctta aattcaatcc cccctcgttc agtgtcaact gtaatggtag 4320gaaattacca
tacttttgaa gaagcaaaaa aaatgaaaga aaaaaaaaat cgtatttcca 4380ggttagacgt
tccgcagaat ctagaatgcg gtatgcggta cattgttctt cgaacgtaaa 4440agttgcgctc
cctgagatat tgtacatttt tgcttttaca agtacaagta catcgtacaa 4500ctatgtacta
ctgttgatgc atccacaaca gtttgttttg tttttttttg tttttttttt 4560ttctaatgat
tcattaccgc tatgtatacc tacttgtact tgtagtaagc cgggttattg 4620gcgttcaatt
aatcatagac ttatgaatct gcacggtgtg cgctgcgagt tacttttagc 4680ttatgcatgc
tacttgggtg taatattggg atctgttcgg aaatcaacgg atgctcaatc 4740gatttcgaca
gtaattaatt aagtcataca caagtcagct ttcttcgagc ctcatataag 4800tataagtagt
tcaacgtatt agcactgtac ccagcatctc cgtatcgaga aacacaacaa 4860catgccccat
tggacagatc atgcggatac acaggttgtg cagtatcata catactcgat 4920cagacaggtc
gtctgaccat catacaagct gaacaagcgc tccatacttg cacgctctct 4980atatacacag
ttaaattaca tatccatagt ctaacctcta acagttaatc ttctggtaag 5040cctcccagcc
agccttctgg tatcgcttgg cctcctcaat aggatctcgg ttctggccgt 5100acagacctcg
gccgacaatt atgatatccg ttccggtaga catgacatcc tcaacagttc 5160ggtactgctg
tccgagagcg tctcccttgt cgtcaagacc caccccgggg gtcagaataa 5220gccagtcctc
agagtcgccc ttaggtcggt tctgggcaat gaagccaacc acaaactcgg 5280ggtcggatcg
ggcaagctca atggtctgct tggagtactc gccagtggcc agagagccct 5340tgcaagacag
ctcggccagc atgagcagac ctctggccag cttctcgttg ggagagggga 5400ctaggaactc
cttgtactgg gagttctcgt agtcagagac gtcctccttc ttctgttcag 5460agacagtttc
ctcggcacca gctcgcaggc cagcaatgat tccggttccg ggtacaccgt 5520gggcgttggt
gatatcggac cactcggcga ttcggtgaca ccggtactgg tgcttgacag 5580tgttgccaat
atctgcgaac tttctgtcct cgaacaggaa gaaaccgtgc ttaagagcaa 5640gttccttgag
ggggagcaca gtgccggcgt aggtgaagtc gtcaatgatg tcgatatggg 5700ttttgatcat
gcacacataa ggtccgacct tatcggcaag ctcaatgagc tccttggtgg 5760tggtaacatc
cagagaagca cacaggttgg ttttcttggc tgccacgagc ttgagcactc 5820gagcggcaaa
ggcggacttg tggacgttag ctcgagcttc gtaggagggc attttggtgg 5880tgaagaggag
actgaaataa atttagtctg cagaactttt tatcggaacc ttatctgggg 5940cagtgaagta
tatgttatgg taatagttac gagttagttg aacttataga tagactggac 6000tatacggcta
tcggtccaaa ttagaaagaa cgtcaatggc tctctgggcg tcgcctttgc 6060cgacaaaaat
gtgatcatga tgaaagccag caatgacgtt gcagctgata ttgttgtcgg 6120ccaaccgcgc
cgaaaacgca gctgtcagac ccacagcctc caacgaagaa tgtatcgtca 6180aagtgatcca
agcacactca tagttggagt cgtactccaa aggcggcaat gacgagtcag 6240acagatactc
gtcgacgttt aaaccatcat ctaagggcct caaaactacc tcggaactgc 6300tgcgctgatc
tggacaccac agaggttccg agcactttag gttgcaccaa atgtcccacc 6360aggtgcaggc
agaaaacgct ggaacagcgt gtacagtttg tcttaacaaa aagtgagggc 6420gctgaggtcg
agcagggtgg tgtgacttgt tatagccttt agagctgcga aagcgcgtat 6480ggatttggct
catcaggcca gattgagggt ctgtggacac atgtcatgtt agtgtacttc 6540aatcgccccc
tggatatagc cccgacaata ggccgtggcc tcattttttt gccttccgca 6600catttccatt
gctcggtacc cacaccttgc ttctcctgca cttgccaacc ttaatactgg 6660tttacattga
ccaacatctt acaagcgggg ggcttgtcta gggtatatat aaacagtggc 6720tctcccaatc
ggttgccagt ctcttttttc ctttctttcc ccacagattc gaaatctaaa 6780ctacacatca
cac
67932019DNAartificial sequenceRGR forward PCR primer 20cgagtcagac
agatactcg
192119DNAartificial sequenceRGR reverse PCR primer 21ccctgtgttg aatccatcc
192220DNAYarrowia
lipolytica 22ggaaggcaca tatggcaagg
202321DNAYarrowia lipolytica 23gtaagagtgg tttgctccag g
212421DNAYarrowia lipolytica
24gcacaggtat ttctgccctt c
2125709DNAartificial sequenceRG expression cassette 25tcgacgttta
aaccatcatc taagggcctc aaaactacct cggaactgct gcgctgatct 60ggacaccaca
gaggttccga gcactttagg ttgcaccaaa tgtcccacca ggtgcaggca 120gaaaacgctg
gaacagcgtg tacagtttgt cttaacaaaa agtgagggcg ctgaggtcga 180gcagggtggt
gtgacttgtt atagccttta gagctgcgaa agcgcgtatg gatttggctc 240atcaggccag
attgagggtc tgtggacaca tgtcatgtta gtgtacttca atcgccccct 300ggatatagcc
ccgacaatag gccgtggcct catttttttg ccttccgcac atttccattg 360ctcggtaccc
acaccttgct tctcctgcac ttgccaacct taatactggt ttacattgac 420caacatctta
caagcggggg gcttgtctag ggtatatata aacagtggct ctcccaatcg 480gttgccagtc
tcttttttcc tttctttccc cacagattcg aaatctaaac tacacatcac 540accatggttt
gactgatgag tccgtgagga cgaaacgagt aagctcgtct caaacgatta 600cccaccctcg
ttttagagct agaaatagca agttaaaata aggctagtcc gttatcaact 660tgaaaaagtg
gcaccgagtc ggtgcttttt ttttttgttt tttatgtct
7092610DNAunknownpoly-A 26aaaaaaaaaa
102710DNAunknownpoly-T 27tttttttttt
1028100DNAartificial
sequenceCAN1 frameshift donor 28ccttaacgac cctgccgtct ccatccatcc
gaccacaatg gaaaagacat gactgaggcc 60cacatccaca tcaaccacac ggcccactcg
gatgactcag 10029100DNAartificial sequenceCAN1
frameshift donor complement 29ctgagtcatc cgagtgggcc gtgtggttga tgtggatgtg
ggcctcagtc atgtcttttc 60cattgtggtc ggatggatgg agacggcagg gtcgttaagg
10030106DNAartificial sequenceCAN1 point mutation
donor 30ccatccatcc gaccacaatg gaaaagacat tttcaaacga ttacccaccc tgatgaactg
60aggcccacat ccacatcaac cacacggccc actcggatga ctcaga
10631106DNAartificial sequenceCAN1 point mutation donor complement
31tctgagtcat ccgagtgggc cgtgtggttg atgtggatgt gggcctcagt tcatcagggt
60gggtaatcgt ttgaaaatgt cttttccatt gtggtcggat ggatgg
10632655DNAartificial sequenceCAN1 upstream donor arm 32gggaagcctt
gctacgttag gagaagacgc acggcgatga tacgggtacc cctcatgaca 60tcaatatccg
ctgcccctct tgccagcaag gcgtcagcag gtgctttttt cgctattttc 120accagaccac
agcctttttc cttgtgtctc atcttggatt ccttcaaagg caactcaccg 180cacctccgag
tcgtgtgaac aatgtaataa taggctattg acttttttcc cacctgttta 240gcgccaaacc
caaagcgctt ttcgccccca ctgcagcccg atggaaggca catatggcaa 300gggaaaagtc
ttcaggtaat acatgcctgc tgcaactata tgtactctga ctcattccct 360cagacgtggg
tcatagacag ctgttttaaa ccgggcaaat caatctctgt cgcacaggta 420tttctgccct
tcaaaaccag gttgccacat cagattccat caaagttttt cagactaact 480tcaatcttaa
acggcatctc acaacaagcg aattggacgg aaaaaaagcg tctatcatta 540ccggcaccta
tccacactaa gacagtacta aaggacgacg ctccccacga aacgacgttt 600cgaccttaac
gaccctgccg tctccatcca tccgaccact cccgacgctc tctcc
6553329DNAartificial sequenceForward PCR primer for amplifying CAN1
upstream donor arm 33gggaagcttg ctacgttagg agaagacgc
293437DNAartificial sequenceReverse PCR primer for
amplifying CAN1 upstream donor arm 34ggagagagcg tcgggagtgg
tcggatggat ggagacg 3735658DNAartificial
sequenceCAN1 downstream donor arm 35cgtctccatc catccgacca ctcccgacgc
tctctcctgg agcaaaccac tcttaccaag 60catatagcat atataataac gtattgaatt
tattaactga ttgaattgag agtaaagcca 120gtagcgttgt acggctgtag ctttttagaa
aagtggcaga tgagcgatgg tggatatgaa 180agtaccttta cggcatgtag cgacacaaga
tcgcttccaa gaactcgaca ttcaagccca 240gctcgtacaa gaaaatgaac tagccaatca
tatgaactag cacattgaag tcaccgcatc 300atctctgttg gaaacgacgc gcatgtactc
gtgcgtagta aatccgtatc tgtacactcg 360aaagattaca gtatgtagta gtagcatgac
taacgatgta acgtccaaat aacgctctgt 420gcctactcct gtagatgcat tagaccacct
gctaacgtct acacgttatg tccgttagct 480ccaagattgc acttttccct caaagactct
gctgggttac gtcatggtct ctttcgggtc 540tctggtccgt tctctgcccg cccatatccg
cccaggctgc tacgatacag gataagctca 600taagcttaga ttatttttcc ggaatgacat
cacgatgcag tggtggaagg atgtatgg 6583637DNAartificial sequenceForward
PCR primer for amplifying CAN1 downstream donor arm 36cgtctccatc
catccgacca ctcccgacgc tctctcc
373722DNAartificial sequenceReverse PCR primer for amplifying CAN1
downstream donor arm 37ccatacatcc ttccaccact gc
22381276DNAartificial sequenceCAN1 large deletion
donor 38gggaagcctt gctacgttag gagaagacgc acggcgatga tacgggtacc cctcatgaca
60tcaatatccg ctgcccctct tgccagcaag gcgtcagcag gtgctttttt cgctattttc
120accagaccac agcctttttc cttgtgtctc atcttggatt ccttcaaagg caactcaccg
180cacctccgag tcgtgtgaac aatgtaataa taggctattg acttttttcc cacctgttta
240gcgccaaacc caaagcgctt ttcgccccca ctgcagcccg atggaaggca catatggcaa
300gggaaaagtc ttcaggtaat acatgcctgc tgcaactata tgtactctga ctcattccct
360cagacgtggg tcatagacag ctgttttaaa ccgggcaaat caatctctgt cgcacaggta
420tttctgccct tcaaaaccag gttgccacat cagattccat caaagttttt cagactaact
480tcaatcttaa acggcatctc acaacaagcg aattggacgg aaaaaaagcg tctatcatta
540ccggcaccta tccacactaa gacagtacta aaggacgacg ctccccacga aacgacgttt
600cgaccttaac gaccctgccg tctccatcca tccgaccact cccgacgctc tctcctggag
660caaaccactc ttaccaagca tatagcatat ataataacgt attgaattta ttaactgatt
720gaattgagag taaagccagt agcgttgtac ggctgtagct ttttagaaaa gtggcagatg
780agcgatggtg gatatgaaag tacctttacg gcatgtagcg acacaagatc gcttccaaga
840actcgacatt caagcccagc tcgtacaaga aaatgaacta gccaatcata tgaactagca
900cattgaagtc accgcatcat ctctgttgga aacgacgcgc atgtactcgt gcgtagtaaa
960tccgtatctg tacactcgaa agattacagt atgtagtagt agcatgacta acgatgtaac
1020gtccaaataa cgctctgtgc ctactcctgt agatgcatta gaccacctgc taacgtctac
1080acgttatgtc cgttagctcc aagattgcac ttttccctca aagactctgc tgggttacgt
1140catggtctct ttcgggtctc tggtccgttc tctgcccgcc catatccgcc caggctgcta
1200cgatacagga taagctcata agcttagatt atttttccgg aatgacatca cgatgcagtg
1260gtggaaggat gtatgg
12763931DNAartificial sequenceRG/RGR forward PCR primer 39ggggttaatt
aacgagtcag acagatactc g
314029DNAartificial sequenceRG/RGR reverse PCR primer 40ggggatcgat
ccctgtgttg aatccatcc
294111568DNAartificial sequencepRF84 plasmid 41cgatccctgt gttgaatcca
tccatcttgg attgccaatt gtgcacacag aaccgggcac 60tcacttcccc atccacactt
gcggccgccc ccaagcttgt cccattcgcc atgccgaagc 120atgttgccca gccggcgcca
gcgaggaggc tgggaccatg ccggccaaaa gcaccaccga 180ctcggtgcca ctttttcaag
ttgataacgg actagcctta ttttaacttg ctatttctag 240ctctaaaacg agggtgggta
atcgtttgag acgagcttac tcgtttcgtc ctcacggact 300catcagtcaa accatggtgt
gatgtgtagt ttagatttcg aatctgtggg gaaagaaagg 360aaaaaagaga ctggcaaccg
attgggagag ccactgttta tatataccct agacaagccc 420cccgcttgta agatgttggt
caatgtaaac cagtattaag gttggcaagt gcaggagaag 480caaggtgtgg gtaccgagca
atggaaatgt gcggaaggca aaaaaatgag gccacggcct 540attgtcgggg ctatatccag
ggggcgattg aagtacacta acatgacatg tgtccacaga 600ccctcaatct ggcctgatga
gccaaatcca tacgcgcttt cgcagctcta aaggctataa 660caagtcacac caccctgctc
gacctcagcg ccctcacttt ttgttaagac aaactgtaca 720cgctgttcca gcgttttctg
cctgcacctg gtgggacatt tggtgcaacc taaagtgctc 780ggaacctctg tggtgtccag
atcagcgcag cagttccgag gtagttttga ggcccttaga 840tgatggttta aacgtcgacg
agtatctgtc tgactcgtta attaagtcat acacaagtca 900gctttcttcg agcctcatat
aagtataagt agttcaacgt attagcactg tacccagcat 960ctccgtatcg agaaacacaa
caacatgccc cattggacag atcatgcgga tacacaggtt 1020gtgcagtatc atacatactc
gatcagacag gtcgtctgac catcatacaa gctgaacaag 1080cgctccatac ttgcacgctc
tctatataca cagttaaatt acatatccat agtctaacct 1140ctaacagtta atcttctggt
aagcctccca gccagccttc tggtatcgct tggcctcctc 1200aataggatct cggttctggc
cgtacagacc tcggccgaca attatgatat ccgttccggt 1260agacatgaca tcctcaacag
ttcggtactg ctgtccgaga gcgtctccct tgtcgtcaag 1320acccaccccg ggggtcagaa
taagccagtc ctcagagtcg cccttaggtc ggttctgggc 1380aatgaagcca accacaaact
cggggtcgga tcgggcaagc tcaatggtct gcttggagta 1440ctcgccagtg gccagagagc
ccttgcaaga cagctcggcc agcatgagca gacctctggc 1500cagcttctcg ttgggagagg
ggactaggaa ctccttgtac tgggagttct cgtagtcaga 1560gacgtcctcc ttcttctgtt
cagagacagt ttcctcggca ccagctcgca ggccagcaat 1620gattccggtt ccgggtacac
cgtgggcgtt ggtgatatcg gaccactcgg cgattcggtg 1680acaccggtac tggtgcttga
cagtgttgcc aatatctgcg aactttctgt cctcgaacag 1740gaagaaaccg tgcttaagag
caagttcctt gagggggagc acagtgccgg cgtaggtgaa 1800gtcgtcaatg atgtcgatat
gggttttgat catgcacaca taaggtccga ccttatcggc 1860aagctcaatg agctccttgg
tggtggtaac atccagagaa gcacacaggt tggttttctt 1920ggctgccacg agcttgagca
ctcgagcggc aaaggcggac ttgtggacgt tagctcgagc 1980ttcgtaggag ggcattttgg
tggtgaagag gagactgaaa taaatttagt ctgcagaact 2040ttttatcgga accttatctg
gggcagtgaa gtatatgtta tggtaatagt tacgagttag 2100ttgaacttat agatagactg
gactatacgg ctatcggtcc aaattagaaa gaacgtcaat 2160ggctctctgg gcgtcgcctt
tgccgacaaa aatgtgatca tgatgaaagc cagcaatgac 2220gttgcagctg atattgttgt
cggccaaccg cgccgaaaac gcagctgtca gacccacagc 2280ctccaacgaa gaatgtatcg
tcaaagtgat ccaagcacac tcatagttgg agtcgtactc 2340caaaggcggc aatgacgagt
cagacagata ctcgtcgacg tttaaaccat catctaaggg 2400cctcaaaact acctcggaac
tgctgcgctg atctggacac cacagaggtt ccgagcactt 2460taggttgcac caaatgtccc
accaggtgca ggcagaaaac gctggaacag cgtgtacagt 2520ttgtcttaac aaaaagtgag
ggcgctgagg tcgagcaggg tggtgtgact tgttatagcc 2580tttagagctg cgaaagcgcg
tatggatttg gctcatcagg ccagattgag ggtctgtgga 2640cacatgtcat gttagtgtac
ttcaatcgcc ccctggatat agccccgaca ataggccgtg 2700gcctcatttt tttgccttcc
gcacatttcc attgctcggt acccacacct tgcttctcct 2760gcacttgcca accttaatac
tggtttacat tgaccaacat cttacaagcg gggggcttgt 2820ctagggtata tataaacagt
ggctctccca atcggttgcc agtctctttt ttcctttctt 2880tccccacaga ttcgaaatct
aaactacaca tcacaccatg gacaagaaat actccatcgg 2940cctggacatt ggaaccaact
ctgtcggctg ggctgtcatc accgacgagt acaaggtgcc 3000ctccaagaaa ttcaaggtcc
tcggaaacac cgatcgacac tccatcaaga aaaacctcat 3060tggtgccctg ttgttcgatt
ctggcgagac tgccgaagct accagactca agcgaactgc 3120tcggcgacgt tacacccgac
ggaagaaccg aatctgctac ctgcaggaga tcttttccaa 3180cgagatggcc aaggtggacg
attcgttctt tcatcgactg gaggaatcct tcctcgtcga 3240ggaagacaag aaacacgagc
gtcatcccat ctttggcaac attgtggacg aggttgctta 3300ccacgagaag tatcctacca
tctaccacct gcgaaagaaa ctcgtcgatt ccaccgacaa 3360ggcggatctc agacttatct
acctcgctct ggcacacatg atcaagtttc gaggtcattt 3420cctcatcgag ggcgatctca
atcccgacaa cagcgatgtg gacaagctgt tcattcagct 3480cgttcagacc tacaaccagc
tgttcgagga aaaccccatc aatgcctccg gagtcgatgc 3540aaaggccatc ttgtctgctc
gactctcgaa gagcagacga ctggagaacc tcattgccca 3600acttcctggc gagaaaaaga
acggactgtt tggcaacctc attgcccttt ctcttggtct 3660cacacccaac ttcaagtcca
acttcgatct ggcggaggac gccaagctcc agctgtccaa 3720ggacacctac gacgatgacc
tcgacaacct gcttgcacag attggcgatc agtacgccga 3780cctgtttctc gctgccaaga
acctttcgga tgctattctc ttgtctgaca ttctgcgagt 3840caacaccgag atcacaaagg
ctcccctttc tgcctccatg atcaagcgat acgacgagca 3900ccatcaggat ctcacactgc
tcaaggctct tgtccgacag caactgcccg agaagtacaa 3960ggagatcttt ttcgatcagt
cgaagaacgg ctacgctgga tacatcgacg gcggagcctc 4020tcaggaagag ttctacaagt
tcatcaagcc aattctcgag aagatggacg gaaccgagga 4080actgcttgtc aagctcaatc
gagaggatct gcttcggaag caacgaacct tcgacaacgg 4140cagcattcct catcagatcc
acctcggtga gctgcacgcc attcttcgac gtcaggaaga 4200cttctacccc tttctcaagg
acaaccgaga gaagatcgag aagattctta cctttcgaat 4260cccctactat gttggtcctc
ttgccagagg aaactctcga tttgcttgga tgactcgaaa 4320gtccgaggaa accatcactc
cctggaactt cgaggaagtc gtggacaagg gtgcctctgc 4380acagtccttc atcgagcgaa
tgaccaactt cgacaagaat ctgcccaacg agaaggttct 4440tcccaagcat tcgctgctct
acgagtactt tacagtctac aacgaactca ccaaagtcaa 4500gtacgttacc gagggaatgc
gaaagcctgc cttcttgtct ggcgaacaga agaaagccat 4560tgtcgatctc ctgttcaaga
ccaaccgaaa ggtcactgtt aagcagctca aggaggacta 4620cttcaagaaa atcgagtgtt
tcgacagcgt cgagatttcc ggagttgagg accgattcaa 4680cgcctctttg ggcacctatc
acgatctgct caagattatc aaggacaagg attttctcga 4740caacgaggaa aacgaggaca
ttctggagga catcgtgctc actcttaccc tgttcgaaga 4800tcgggagatg atcgaggaac
gactcaagac atacgctcac ctgttcgacg acaaggtcat 4860gaaacaactc aagcgacgta
gatacaccgg ctggggaaga ctttcgcgaa agctcatcaa 4920cggcatcaga gacaagcagt
ccggaaagac cattctggac tttctcaagt ccgatggctt 4980tgccaaccga aacttcatgc
agctcattca cgacgattct cttaccttca aggaggacat 5040ccagaaggca caagtgtccg
gtcagggcga cagcttgcac gaacatattg ccaacctggc 5100tggttcgcca gccatcaaga
aaggcattct ccagactgtc aaggttgtcg acgagctggt 5160gaaggtcatg ggacgtcaca
agcccgagaa cattgtgatc gagatggcca gagagaacca 5220gacaactcaa aagggtcaga
aaaactcgcg agagcggatg aagcgaatcg aggaaggcat 5280caaggagctg ggatcccaga
ttctcaagga gcatcccgtc gagaacactc aactgcagaa 5340cgagaagctg tatctctact
atctgcagaa tggtcgagac atgtacgtgg atcaggaact 5400ggacatcaat cgtctcagcg
actacgatgt ggaccacatt gtccctcaat cctttctcaa 5460ggacgattct atcgacaaca
aggtccttac acgatccgac aagaacagag gcaagtcgga 5520caacgttccc agcgaagagg
tggtcaaaaa gatgaagaac tactggcgac agctgctcaa 5580cgccaagctc attacccagc
gaaagttcga caatcttacc aaggccgagc gaggcggtct 5640gtccgagctc gacaaggctg
gcttcatcaa gcgtcaactc gtcgagacca gacagatcac 5700aaagcacgtc gcacagattc
tcgattctcg gatgaacacc aagtacgacg agaacgacaa 5760gctcatccga gaggtcaagg
tgattactct caagtccaaa ctggtctccg atttccgaaa 5820ggactttcag ttctacaagg
tgcgagagat caacaattac caccatgccc acgatgctta 5880cctcaacgcc gtcgttggca
ctgcgctcat caagaaatac cccaagctcg aaagcgagtt 5940cgtttacggc gattacaagg
tctacgacgt tcgaaagatg attgccaagt ccgaacagga 6000gattggcaag gctactgcca
agtacttctt ttactccaac atcatgaact ttttcaagac 6060cgagatcacc ttggccaacg
gagagattcg aaagagacca cttatcgaga ccaacggcga 6120aactggagag atcgtgtggg
acaagggtcg agactttgca accgtgcgaa aggttctgtc 6180gatgcctcag gtcaacatcg
tcaagaaaac cgaggttcag actggcggat tctccaagga 6240gtcgattctg cccaagcgaa
actccgacaa gctcatcgct cgaaagaaag actgggatcc 6300caagaaatac ggtggcttcg
attctcctac cgtcgcctat tccgtgcttg tcgttgcgaa 6360ggtcgagaag ggcaagtcca
aaaagctcaa gtccgtcaag gagctgctcg gaattaccat 6420catggagcga tcgagcttcg
agaagaatcc catcgacttc ttggaagcca agggttacaa 6480ggaggtcaag aaagacctca
ttatcaagct gcccaagtac tctctgttcg aactggagaa 6540cggtcgaaag cgtatgctcg
cctccgctgg cgagctgcag aagggaaacg agcttgcctt 6600gccttcgaag tacgtcaact
ttctctatct ggcttctcac tacgagaagc tcaagggttc 6660tcccgaggac aacgaacaga
agcaactctt cgttgagcag cacaaacatt acctcgacga 6720gattatcgag cagatttccg
agttttcgaa gcgagtcatc ctggctgatg ccaacttgga 6780caaggtgctc tctgcctaca
acaagcatcg ggacaaaccc attcgagaac aggcggagaa 6840catcattcac ctgtttactc
ttaccaacct gggtgctcct gcagctttca agtacttcga 6900taccactatc gaccgaaagc
ggtacacatc caccaaggag gttctcgatg ccaccctgat 6960tcaccagtcc atcactggcc
tgtacgagac ccgaatcgac ctgtctcagc ttggtggcga 7020ctccagagcc gatcccaaga
aaaagcgaaa ggtctaagcg gccgcaagtg tggatgggga 7080agtgagtgcc cggttctgtg
tgcacaattg gcaatccaag atggatggat tcaacacagg 7140gatatagcga gctacgtggt
ggtgcgagga tatagcaacg gatatttatg tttgacactt 7200gagaatgtac gatacaagca
ctgtccaagt acaatactaa acatactgta catactcata 7260ctcgtacccg ggcaacggtt
tcacttgagt gcagtggcta gtgctcttac tcgtacagtg 7320tgcaatactg cgtatcatag
tctttgatgt atatcgtatt cattcatgtt agttgcgtac 7380gagccggaag cataaagtgt
aaagcctggg gtgcctaatg agtgagctaa ctcacattaa 7440ttgcgttgcg ctcactgccc
gctttccagt cgggaaacct gtcgtgccag ctgcattaat 7500gaatcggcca acgcgcgggg
agaggcggtt tgcgtattgg gcgctcttcc gcttcctcgc 7560tcactgactc gctgcgctcg
gtcgttcggc tgcggcgagc ggtatcagct cactcaaagg 7620cggtaatacg gttatccaca
gaatcagggg ataacgcagg aaagaacatg tgagcaaaag 7680gccagcaaaa ggccaggaac
cgtaaaaagg ccgcgttgct ggcgtttttc cataggctcc 7740gcccccctga cgagcatcac
aaaaatcgac gctcaagtca gaggtggcga aacccgacag 7800gactataaag ataccaggcg
tttccccctg gaagctccct cgtgcgctct cctgttccga 7860ccctgccgct taccggatac
ctgtccgcct ttctcccttc gggaagcgtg gcgctttctc 7920atagctcacg ctgtaggtat
ctcagttcgg tgtaggtcgt tcgctccaag ctgggctgtg 7980tgcacgaacc ccccgttcag
cccgaccgct gcgccttatc cggtaactat cgtcttgagt 8040ccaacccggt aagacacgac
ttatcgccac tggcagcagc cactggtaac aggattagca 8100gagcgaggta tgtaggcggt
gctacagagt tcttgaagtg gtggcctaac tacggctaca 8160ctagaaggac agtatttggt
atctgcgctc tgctgaagcc agttaccttc ggaaaaagag 8220ttggtagctc ttgatccggc
aaacaaacca ccgctggtag cggtggtttt tttgtttgca 8280agcagcagat tacgcgcaga
aaaaaaggat ctcaagaaga tcctttgatc ttttctacgg 8340ggtctgacgc tcagtggaac
gaaaactcac gttaagggat tttggtcatg agattatcaa 8400aaaggatctt cacctagatc
cttttaaatt aaaaatgaag ttttaaatca atctaaagta 8460tatatgagta aacttggtct
gacagttacc aatgcttaat cagtgaggca cctatctcag 8520cgatctgtct atttcgttca
tccatagttg cctgactccc cgtcgtgtag ataactacga 8580tacgggaggg cttaccatct
ggccccagtg ctgcaatgat accgcgagac ccacgctcac 8640cggctccaga tttatcagca
ataaaccagc cagccggaag ggccgagcgc agaagtggtc 8700ctgcaacttt atccgcctcc
atccagtcta ttaattgttg ccgggaagct agagtaagta 8760gttcgccagt taatagtttg
cgcaacgttg ttgccattgc tacaggcatc gtggtgtcac 8820gctcgtcgtt tggtatggct
tcattcagct ccggttccca acgatcaagg cgagttacat 8880gatcccccat gttgtgcaaa
aaagcggtta gctccttcgg tcctccgatc gttgtcagaa 8940gtaagttggc cgcagtgtta
tcactcatgg ttatggcagc actgcataat tctcttactg 9000tcatgccatc cgtaagatgc
ttttctgtga ctggtgagta ctcaaccaag tcattctgag 9060aatagtgtat gcggcgaccg
agttgctctt gcccggcgtc aatacgggat aataccgcgc 9120cacatagcag aactttaaaa
gtgctcatca ttggaaaacg ttcttcgggg cgaaaactct 9180caaggatctt accgctgttg
agatccagtt cgatgtaacc cactcgtgca cccaactgat 9240cttcagcatc ttttactttc
accagcgttt ctgggtgagc aaaaacagga aggcaaaatg 9300ccgcaaaaaa gggaataagg
gcgacacgga aatgttgaat actcatactc ttcctttttc 9360aatattattg aagcatttat
cagggttatt gtctcatgag cggatacata tttgaatgta 9420tttagaaaaa taaacaaata
ggggttccgc gcacatttcc ccgaaaagtg ccacctgacg 9480cgccctgtag cggcgcatta
agcgcggcgg gtgtggtggt tacgcgcagc gtgaccgcta 9540cacttgccag cgccctagcg
cccgctcctt tcgctttctt cccttccttt ctcgccacgt 9600tcgccggctt tccccgtcaa
gctctaaatc gggggctccc tttagggttc cgatttagtg 9660ctttacggca cctcgacccc
aaaaaacttg attagggtga tggttcacgt agtgggccat 9720cgccctgata gacggttttt
cgccctttga cgttggagtc cacgttcttt aatagtggac 9780tcttgttcca aactggaaca
acactcaacc ctatctcggt ctattctttt gatttataag 9840ggattttgcc gatttcggcc
tattggttaa aaaatgagct gatttaacaa aaatttaacg 9900cgaattttaa caaaatatta
acgcttacaa tttccattcg ccattcaggc tgcgcaactg 9960ttgggaaggg cgatcggtgc
gggcctcttc gctattacgc cagctggcga aagggggatg 10020tgctgcaagg cgattaagtt
gggtaacgcc agggttttcc cagtcacgac gttgtaaaac 10080gacggccagt gaattgtaat
acgactcact atagggcgaa ttgggtaccg ggccccccct 10140cgaggtcgat ggtgtcgata
agcttgatat cgaattcatg tcacacaaac cgatcttcgc 10200ctcaaggaaa cctaattcta
catccgagag actgccgaga tccagtctac actgattaat 10260tttcgggcca ataatttaaa
aaaatcgtgt tatataatat tatatgtatt atatatatac 10320atcatgatga tactgacagt
catgtcccat tgctaaatag acagactcca tctgccgcct 10380ccaactgatg ttctcaatat
ttaaggggtc atctcgcatt gtttaataat aaacagactc 10440catctaccgc ctccaaatga
tgttctcaaa atatattgta tgaacttatt tttattactt 10500agtattatta gacaacttac
ttgctttatg aaaaacactt cctatttagg aaacaattta 10560taatggcagt tcgttcattt
aacaatttat gtagaataaa tgttataaat gcgtatggga 10620aatcttaaat atggatagca
taaatgatat ctgcattgcc taattcgaaa tcaacagcaa 10680cgaaaaaaat cccttgtaca
acataaatag tcatcgagaa atatcaacta tcaaagaaca 10740gctattcaca cgttactatt
gagattatta ttggacgaga atcacacact caactgtctt 10800tctctcttct agaaatacag
gtacaagtat gtactattct cattgttcat acttctagtc 10860atttcatccc acatattcct
tggatttctc tccaatgaat gacattctat cttgcaaatt 10920caacaattat aataagatat
accaaagtag cggtatagtg gcaatcaaaa agcttctctg 10980gtgtgcttct cgtatttatt
tttattctaa tgatccatta aaggtatata tttatttctt 11040gttatataat ccttttgttt
attacatggg ctggatacat aaaggtattt tgatttaatt 11100ttttgcttaa attcaatccc
ccctcgttca gtgtcaactg taatggtagg aaattaccat 11160acttttgaag aagcaaaaaa
aatgaaagaa aaaaaaaatc gtatttccag gttagacgtt 11220ccgcagaatc tagaatgcgg
tatgcggtac attgttcttc gaacgtaaaa gttgcgctcc 11280ctgagatatt gtacattttt
gcttttacaa gtacaagtac atcgtacaac tatgtactac 11340tgttgatgca tccacaacag
tttgttttgt ttttttttgt tttttttttt tctaatgatt 11400cattaccgct atgtatacct
acttgtactt gtagtaagcc gggttattgg cgttcaatta 11460atcatagact tatgaatctg
cacggtgtgc gctgcgagtt acttttagct tatgcatgct 11520acttgggtgt aatattggga
tctgttcgga aatcaacgga tgctcaat 115684211507DNAartificial
sequencepRF85 plasmid 42cgatccctgt gttgaatcca tccatcttgg attgccaatt
gtgcacacag aaccgggcac 60tcacttcccc atccacactt gcggccgcag acataaaaaa
caaaaaaaaa aagcaccgac 120tcggtgccac tttttcaagt tgataacgga ctagccttat
tttaacttgc tatttctagc 180tctaaaacga gggtgggtaa tcgtttgaga cgagcttact
cgtttcgtcc tcacggactc 240atcagtcaaa ccatggtgtg atgtgtagtt tagatttcga
atctgtgggg aaagaaagga 300aaaaagagac tggcaaccga ttgggagagc cactgtttat
atatacccta gacaagcccc 360ccgcttgtaa gatgttggtc aatgtaaacc agtattaagg
ttggcaagtg caggagaagc 420aaggtgtggg taccgagcaa tggaaatgtg cggaaggcaa
aaaaatgagg ccacggccta 480ttgtcggggc tatatccagg gggcgattga agtacactaa
catgacatgt gtccacagac 540cctcaatctg gcctgatgag ccaaatccat acgcgctttc
gcagctctaa aggctataac 600aagtcacacc accctgctcg acctcagcgc cctcactttt
tgttaagaca aactgtacac 660gctgttccag cgttttctgc ctgcacctgg tgggacattt
ggtgcaacct aaagtgctcg 720gaacctctgt ggtgtccaga tcagcgcagc agttccgagg
tagttttgag gcccttagat 780gatggtttaa acgtcgacga gtatctgtct gactcgttaa
ttaagtcata cacaagtcag 840ctttcttcga gcctcatata agtataagta gttcaacgta
ttagcactgt acccagcatc 900tccgtatcga gaaacacaac aacatgcccc attggacaga
tcatgcggat acacaggttg 960tgcagtatca tacatactcg atcagacagg tcgtctgacc
atcatacaag ctgaacaagc 1020gctccatact tgcacgctct ctatatacac agttaaatta
catatccata gtctaacctc 1080taacagttaa tcttctggta agcctcccag ccagccttct
ggtatcgctt ggcctcctca 1140ataggatctc ggttctggcc gtacagacct cggccgacaa
ttatgatatc cgttccggta 1200gacatgacat cctcaacagt tcggtactgc tgtccgagag
cgtctccctt gtcgtcaaga 1260cccaccccgg gggtcagaat aagccagtcc tcagagtcgc
ccttaggtcg gttctgggca 1320atgaagccaa ccacaaactc ggggtcggat cgggcaagct
caatggtctg cttggagtac 1380tcgccagtgg ccagagagcc cttgcaagac agctcggcca
gcatgagcag acctctggcc 1440agcttctcgt tgggagaggg gactaggaac tccttgtact
gggagttctc gtagtcagag 1500acgtcctcct tcttctgttc agagacagtt tcctcggcac
cagctcgcag gccagcaatg 1560attccggttc cgggtacacc gtgggcgttg gtgatatcgg
accactcggc gattcggtga 1620caccggtact ggtgcttgac agtgttgcca atatctgcga
actttctgtc ctcgaacagg 1680aagaaaccgt gcttaagagc aagttccttg agggggagca
cagtgccggc gtaggtgaag 1740tcgtcaatga tgtcgatatg ggttttgatc atgcacacat
aaggtccgac cttatcggca 1800agctcaatga gctccttggt ggtggtaaca tccagagaag
cacacaggtt ggttttcttg 1860gctgccacga gcttgagcac tcgagcggca aaggcggact
tgtggacgtt agctcgagct 1920tcgtaggagg gcattttggt ggtgaagagg agactgaaat
aaatttagtc tgcagaactt 1980tttatcggaa ccttatctgg ggcagtgaag tatatgttat
ggtaatagtt acgagttagt 2040tgaacttata gatagactgg actatacggc tatcggtcca
aattagaaag aacgtcaatg 2100gctctctggg cgtcgccttt gccgacaaaa atgtgatcat
gatgaaagcc agcaatgacg 2160ttgcagctga tattgttgtc ggccaaccgc gccgaaaacg
cagctgtcag acccacagcc 2220tccaacgaag aatgtatcgt caaagtgatc caagcacact
catagttgga gtcgtactcc 2280aaaggcggca atgacgagtc agacagatac tcgtcgacgt
ttaaaccatc atctaagggc 2340ctcaaaacta cctcggaact gctgcgctga tctggacacc
acagaggttc cgagcacttt 2400aggttgcacc aaatgtccca ccaggtgcag gcagaaaacg
ctggaacagc gtgtacagtt 2460tgtcttaaca aaaagtgagg gcgctgaggt cgagcagggt
ggtgtgactt gttatagcct 2520ttagagctgc gaaagcgcgt atggatttgg ctcatcaggc
cagattgagg gtctgtggac 2580acatgtcatg ttagtgtact tcaatcgccc cctggatata
gccccgacaa taggccgtgg 2640cctcattttt ttgccttccg cacatttcca ttgctcggta
cccacacctt gcttctcctg 2700cacttgccaa ccttaatact ggtttacatt gaccaacatc
ttacaagcgg ggggcttgtc 2760tagggtatat ataaacagtg gctctcccaa tcggttgcca
gtctcttttt tcctttcttt 2820ccccacagat tcgaaatcta aactacacat cacaccatgg
acaagaaata ctccatcggc 2880ctggacattg gaaccaactc tgtcggctgg gctgtcatca
ccgacgagta caaggtgccc 2940tccaagaaat tcaaggtcct cggaaacacc gatcgacact
ccatcaagaa aaacctcatt 3000ggtgccctgt tgttcgattc tggcgagact gccgaagcta
ccagactcaa gcgaactgct 3060cggcgacgtt acacccgacg gaagaaccga atctgctacc
tgcaggagat cttttccaac 3120gagatggcca aggtggacga ttcgttcttt catcgactgg
aggaatcctt cctcgtcgag 3180gaagacaaga aacacgagcg tcatcccatc tttggcaaca
ttgtggacga ggttgcttac 3240cacgagaagt atcctaccat ctaccacctg cgaaagaaac
tcgtcgattc caccgacaag 3300gcggatctca gacttatcta cctcgctctg gcacacatga
tcaagtttcg aggtcatttc 3360ctcatcgagg gcgatctcaa tcccgacaac agcgatgtgg
acaagctgtt cattcagctc 3420gttcagacct acaaccagct gttcgaggaa aaccccatca
atgcctccgg agtcgatgca 3480aaggccatct tgtctgctcg actctcgaag agcagacgac
tggagaacct cattgcccaa 3540cttcctggcg agaaaaagaa cggactgttt ggcaacctca
ttgccctttc tcttggtctc 3600acacccaact tcaagtccaa cttcgatctg gcggaggacg
ccaagctcca gctgtccaag 3660gacacctacg acgatgacct cgacaacctg cttgcacaga
ttggcgatca gtacgccgac 3720ctgtttctcg ctgccaagaa cctttcggat gctattctct
tgtctgacat tctgcgagtc 3780aacaccgaga tcacaaaggc tcccctttct gcctccatga
tcaagcgata cgacgagcac 3840catcaggatc tcacactgct caaggctctt gtccgacagc
aactgcccga gaagtacaag 3900gagatctttt tcgatcagtc gaagaacggc tacgctggat
acatcgacgg cggagcctct 3960caggaagagt tctacaagtt catcaagcca attctcgaga
agatggacgg aaccgaggaa 4020ctgcttgtca agctcaatcg agaggatctg cttcggaagc
aacgaacctt cgacaacggc 4080agcattcctc atcagatcca cctcggtgag ctgcacgcca
ttcttcgacg tcaggaagac 4140ttctacccct ttctcaagga caaccgagag aagatcgaga
agattcttac ctttcgaatc 4200ccctactatg ttggtcctct tgccagagga aactctcgat
ttgcttggat gactcgaaag 4260tccgaggaaa ccatcactcc ctggaacttc gaggaagtcg
tggacaaggg tgcctctgca 4320cagtccttca tcgagcgaat gaccaacttc gacaagaatc
tgcccaacga gaaggttctt 4380cccaagcatt cgctgctcta cgagtacttt acagtctaca
acgaactcac caaagtcaag 4440tacgttaccg agggaatgcg aaagcctgcc ttcttgtctg
gcgaacagaa gaaagccatt 4500gtcgatctcc tgttcaagac caaccgaaag gtcactgtta
agcagctcaa ggaggactac 4560ttcaagaaaa tcgagtgttt cgacagcgtc gagatttccg
gagttgagga ccgattcaac 4620gcctctttgg gcacctatca cgatctgctc aagattatca
aggacaagga ttttctcgac 4680aacgaggaaa acgaggacat tctggaggac atcgtgctca
ctcttaccct gttcgaagat 4740cgggagatga tcgaggaacg actcaagaca tacgctcacc
tgttcgacga caaggtcatg 4800aaacaactca agcgacgtag atacaccggc tggggaagac
tttcgcgaaa gctcatcaac 4860ggcatcagag acaagcagtc cggaaagacc attctggact
ttctcaagtc cgatggcttt 4920gccaaccgaa acttcatgca gctcattcac gacgattctc
ttaccttcaa ggaggacatc 4980cagaaggcac aagtgtccgg tcagggcgac agcttgcacg
aacatattgc caacctggct 5040ggttcgccag ccatcaagaa aggcattctc cagactgtca
aggttgtcga cgagctggtg 5100aaggtcatgg gacgtcacaa gcccgagaac attgtgatcg
agatggccag agagaaccag 5160acaactcaaa agggtcagaa aaactcgcga gagcggatga
agcgaatcga ggaaggcatc 5220aaggagctgg gatcccagat tctcaaggag catcccgtcg
agaacactca actgcagaac 5280gagaagctgt atctctacta tctgcagaat ggtcgagaca
tgtacgtgga tcaggaactg 5340gacatcaatc gtctcagcga ctacgatgtg gaccacattg
tccctcaatc ctttctcaag 5400gacgattcta tcgacaacaa ggtccttaca cgatccgaca
agaacagagg caagtcggac 5460aacgttccca gcgaagaggt ggtcaaaaag atgaagaact
actggcgaca gctgctcaac 5520gccaagctca ttacccagcg aaagttcgac aatcttacca
aggccgagcg aggcggtctg 5580tccgagctcg acaaggctgg cttcatcaag cgtcaactcg
tcgagaccag acagatcaca 5640aagcacgtcg cacagattct cgattctcgg atgaacacca
agtacgacga gaacgacaag 5700ctcatccgag aggtcaaggt gattactctc aagtccaaac
tggtctccga tttccgaaag 5760gactttcagt tctacaaggt gcgagagatc aacaattacc
accatgccca cgatgcttac 5820ctcaacgccg tcgttggcac tgcgctcatc aagaaatacc
ccaagctcga aagcgagttc 5880gtttacggcg attacaaggt ctacgacgtt cgaaagatga
ttgccaagtc cgaacaggag 5940attggcaagg ctactgccaa gtacttcttt tactccaaca
tcatgaactt tttcaagacc 6000gagatcacct tggccaacgg agagattcga aagagaccac
ttatcgagac caacggcgaa 6060actggagaga tcgtgtggga caagggtcga gactttgcaa
ccgtgcgaaa ggttctgtcg 6120atgcctcagg tcaacatcgt caagaaaacc gaggttcaga
ctggcggatt ctccaaggag 6180tcgattctgc ccaagcgaaa ctccgacaag ctcatcgctc
gaaagaaaga ctgggatccc 6240aagaaatacg gtggcttcga ttctcctacc gtcgcctatt
ccgtgcttgt cgttgcgaag 6300gtcgagaagg gcaagtccaa aaagctcaag tccgtcaagg
agctgctcgg aattaccatc 6360atggagcgat cgagcttcga gaagaatccc atcgacttct
tggaagccaa gggttacaag 6420gaggtcaaga aagacctcat tatcaagctg cccaagtact
ctctgttcga actggagaac 6480ggtcgaaagc gtatgctcgc ctccgctggc gagctgcaga
agggaaacga gcttgccttg 6540ccttcgaagt acgtcaactt tctctatctg gcttctcact
acgagaagct caagggttct 6600cccgaggaca acgaacagaa gcaactcttc gttgagcagc
acaaacatta cctcgacgag 6660attatcgagc agatttccga gttttcgaag cgagtcatcc
tggctgatgc caacttggac 6720aaggtgctct ctgcctacaa caagcatcgg gacaaaccca
ttcgagaaca ggcggagaac 6780atcattcacc tgtttactct taccaacctg ggtgctcctg
cagctttcaa gtacttcgat 6840accactatcg accgaaagcg gtacacatcc accaaggagg
ttctcgatgc caccctgatt 6900caccagtcca tcactggcct gtacgagacc cgaatcgacc
tgtctcagct tggtggcgac 6960tccagagccg atcccaagaa aaagcgaaag gtctaagcgg
ccgcaagtgt ggatggggaa 7020gtgagtgccc ggttctgtgt gcacaattgg caatccaaga
tggatggatt caacacaggg 7080atatagcgag ctacgtggtg gtgcgaggat atagcaacgg
atatttatgt ttgacacttg 7140agaatgtacg atacaagcac tgtccaagta caatactaaa
catactgtac atactcatac 7200tcgtacccgg gcaacggttt cacttgagtg cagtggctag
tgctcttact cgtacagtgt 7260gcaatactgc gtatcatagt ctttgatgta tatcgtattc
attcatgtta gttgcgtacg 7320agccggaagc ataaagtgta aagcctgggg tgcctaatga
gtgagctaac tcacattaat 7380tgcgttgcgc tcactgcccg ctttccagtc gggaaacctg
tcgtgccagc tgcattaatg 7440aatcggccaa cgcgcgggga gaggcggttt gcgtattggg
cgctcttccg cttcctcgct 7500cactgactcg ctgcgctcgg tcgttcggct gcggcgagcg
gtatcagctc actcaaaggc 7560ggtaatacgg ttatccacag aatcagggga taacgcagga
aagaacatgt gagcaaaagg 7620ccagcaaaag gccaggaacc gtaaaaaggc cgcgttgctg
gcgtttttcc ataggctccg 7680cccccctgac gagcatcaca aaaatcgacg ctcaagtcag
aggtggcgaa acccgacagg 7740actataaaga taccaggcgt ttccccctgg aagctccctc
gtgcgctctc ctgttccgac 7800cctgccgctt accggatacc tgtccgcctt tctcccttcg
ggaagcgtgg cgctttctca 7860tagctcacgc tgtaggtatc tcagttcggt gtaggtcgtt
cgctccaagc tgggctgtgt 7920gcacgaaccc cccgttcagc ccgaccgctg cgccttatcc
ggtaactatc gtcttgagtc 7980caacccggta agacacgact tatcgccact ggcagcagcc
actggtaaca ggattagcag 8040agcgaggtat gtaggcggtg ctacagagtt cttgaagtgg
tggcctaact acggctacac 8100tagaaggaca gtatttggta tctgcgctct gctgaagcca
gttaccttcg gaaaaagagt 8160tggtagctct tgatccggca aacaaaccac cgctggtagc
ggtggttttt ttgtttgcaa 8220gcagcagatt acgcgcagaa aaaaaggatc tcaagaagat
cctttgatct tttctacggg 8280gtctgacgct cagtggaacg aaaactcacg ttaagggatt
ttggtcatga gattatcaaa 8340aaggatcttc acctagatcc ttttaaatta aaaatgaagt
tttaaatcaa tctaaagtat 8400atatgagtaa acttggtctg acagttacca atgcttaatc
agtgaggcac ctatctcagc 8460gatctgtcta tttcgttcat ccatagttgc ctgactcccc
gtcgtgtaga taactacgat 8520acgggagggc ttaccatctg gccccagtgc tgcaatgata
ccgcgagacc cacgctcacc 8580ggctccagat ttatcagcaa taaaccagcc agccggaagg
gccgagcgca gaagtggtcc 8640tgcaacttta tccgcctcca tccagtctat taattgttgc
cgggaagcta gagtaagtag 8700ttcgccagtt aatagtttgc gcaacgttgt tgccattgct
acaggcatcg tggtgtcacg 8760ctcgtcgttt ggtatggctt cattcagctc cggttcccaa
cgatcaaggc gagttacatg 8820atcccccatg ttgtgcaaaa aagcggttag ctccttcggt
cctccgatcg ttgtcagaag 8880taagttggcc gcagtgttat cactcatggt tatggcagca
ctgcataatt ctcttactgt 8940catgccatcc gtaagatgct tttctgtgac tggtgagtac
tcaaccaagt cattctgaga 9000atagtgtatg cggcgaccga gttgctcttg cccggcgtca
atacgggata ataccgcgcc 9060acatagcaga actttaaaag tgctcatcat tggaaaacgt
tcttcggggc gaaaactctc 9120aaggatctta ccgctgttga gatccagttc gatgtaaccc
actcgtgcac ccaactgatc 9180ttcagcatct tttactttca ccagcgtttc tgggtgagca
aaaacaggaa ggcaaaatgc 9240cgcaaaaaag ggaataaggg cgacacggaa atgttgaata
ctcatactct tcctttttca 9300atattattga agcatttatc agggttattg tctcatgagc
ggatacatat ttgaatgtat 9360ttagaaaaat aaacaaatag gggttccgcg cacatttccc
cgaaaagtgc cacctgacgc 9420gccctgtagc ggcgcattaa gcgcggcggg tgtggtggtt
acgcgcagcg tgaccgctac 9480acttgccagc gccctagcgc ccgctccttt cgctttcttc
ccttcctttc tcgccacgtt 9540cgccggcttt ccccgtcaag ctctaaatcg ggggctccct
ttagggttcc gatttagtgc 9600tttacggcac ctcgacccca aaaaacttga ttagggtgat
ggttcacgta gtgggccatc 9660gccctgatag acggtttttc gccctttgac gttggagtcc
acgttcttta atagtggact 9720cttgttccaa actggaacaa cactcaaccc tatctcggtc
tattcttttg atttataagg 9780gattttgccg atttcggcct attggttaaa aaatgagctg
atttaacaaa aatttaacgc 9840gaattttaac aaaatattaa cgcttacaat ttccattcgc
cattcaggct gcgcaactgt 9900tgggaagggc gatcggtgcg ggcctcttcg ctattacgcc
agctggcgaa agggggatgt 9960gctgcaaggc gattaagttg ggtaacgcca gggttttccc
agtcacgacg ttgtaaaacg 10020acggccagtg aattgtaata cgactcacta tagggcgaat
tgggtaccgg gccccccctc 10080gaggtcgatg gtgtcgataa gcttgatatc gaattcatgt
cacacaaacc gatcttcgcc 10140tcaaggaaac ctaattctac atccgagaga ctgccgagat
ccagtctaca ctgattaatt 10200ttcgggccaa taatttaaaa aaatcgtgtt atataatatt
atatgtatta tatatataca 10260tcatgatgat actgacagtc atgtcccatt gctaaataga
cagactccat ctgccgcctc 10320caactgatgt tctcaatatt taaggggtca tctcgcattg
tttaataata aacagactcc 10380atctaccgcc tccaaatgat gttctcaaaa tatattgtat
gaacttattt ttattactta 10440gtattattag acaacttact tgctttatga aaaacacttc
ctatttagga aacaatttat 10500aatggcagtt cgttcattta acaatttatg tagaataaat
gttataaatg cgtatgggaa 10560atcttaaata tggatagcat aaatgatatc tgcattgcct
aattcgaaat caacagcaac 10620gaaaaaaatc ccttgtacaa cataaatagt catcgagaaa
tatcaactat caaagaacag 10680ctattcacac gttactattg agattattat tggacgagaa
tcacacactc aactgtcttt 10740ctctcttcta gaaatacagg tacaagtatg tactattctc
attgttcata cttctagtca 10800tttcatccca catattcctt ggatttctct ccaatgaatg
acattctatc ttgcaaattc 10860aacaattata ataagatata ccaaagtagc ggtatagtgg
caatcaaaaa gcttctctgg 10920tgtgcttctc gtatttattt ttattctaat gatccattaa
aggtatatat ttatttcttg 10980ttatataatc cttttgttta ttacatgggc tggatacata
aaggtatttt gatttaattt 11040tttgcttaaa ttcaatcccc cctcgttcag tgtcaactgt
aatggtagga aattaccata 11100cttttgaaga agcaaaaaaa atgaaagaaa aaaaaaatcg
tatttccagg ttagacgttc 11160cgcagaatct agaatgcggt atgcggtaca ttgttcttcg
aacgtaaaag ttgcgctccc 11220tgagatattg tacatttttg cttttacaag tacaagtaca
tcgtacaact atgtactact 11280gttgatgcat ccacaacagt ttgttttgtt tttttttgtt
tttttttttt ctaatgattc 11340attaccgcta tgtataccta cttgtacttg tagtaagccg
ggttattggc gttcaattaa 11400tcatagactt atgaatctgc acggtgtgcg ctgcgagtta
cttttagctt atgcatgcta 11460cttgggtgta atattgggat ctgttcggaa atcaacggat
gctcaat 11507434RNAunknownRNA loop-forming sequence (GAAA)
43gaaa
4444RNAunknownRNA loop-forming sequence (CAAA) 44caaa
4454RNAunknownRNA
loop-forming sequence (AAAG) 45aaag
44623DNAunknownExample of a Cas9 target
sitePAM sequencemisc_feature(1)..(20)n = A, C, T, or
Gmisc_feature(21)..(21)n = A, C, T, or G (indicated as an "X" in
Specification) 46nnnnnnnnnn nnnnnnnnnn ngg
23473DNAunknownPAM sequence NGGmisc_feature(1)..(1)n = A, C,
T, or G 47ngg
3486DNAunknownPAM sequence NNAGAAmisc_feature(1)..(2)n = A, C, T,
or G 48nnagaa
6497DNAunknownPAM sequence NNAGAAWmisc_feature(1)..(2)n = A, C, T, or
Gmisc_feature(7)..(7)w = A or T 49nnagaaw
7505DNAunknownPAM sequence
NGGNGmisc_feature(1)..(1)n = A, C, T, or Gmisc_feature(4)..(4)n = A, C,
T, or G 50nggng
5518DNAunknownPAM sequence NNNNGATTmisc_feature(1)..(4)n = A, C,
T, or G 51nnnngatt
8526DNAunknownPAM sequence NAAAACmisc_feature(1)..(1)n = A, C, T,
or G 52naaaac
6532DNAunknownPAM sequence NGmisc_feature(1)..(1)n = A, C, T, or G
53ng
25422RNAunknownTracrRNA mate sequence example 1 54guuuuuguac ucucaagauu
ua 225515RNAunknownTracrRNA
mate sequence example 2 55guuuuuguac ucuca
155612RNAunknownTracrRNA mate sequence example 3
56guuuuagagc ua
125713RNAunknownTracrRNA mate sequence example 4 57guuuuagagc uag
135860RNAStreptococcus
pyogenes 58uagcaaguua aaauaaggcu aguccguuau caacuugaaa aaguggcacc
gagucggugc 605945RNAStreptococcus pyogenes 59uagcaaguua aaauaaggcu
aguccguuau caacuugaaa aagug 456032RNAStreptococcus
pyogenes 60uagcaaguua aaauaaggcu aguccguuau ca
326185RNAStreptococcus thermophilus 61uaaaucuugc agaagcuaca
aagauaaggc uucaugccga aaucaacacc cugucauuuu 60auggcagggu guuuucguua
uuuaa 856277RNAStreptococcus
thermophilus 62ugcagaagcu acaaagauaa ggcuucaugc cgaaaucaac acccugucau
uuuauggcag 60gguguuuucg uuauuua
776365RNAStreptococcus thermophilus 63ugcagaagcu acaaagauaa
ggcuucaugc cgaaaucaac acccugucau uuuauggcag 60ggugu
6564131RNAartificial
sequencegRNA example 1misc_feature(1)..(20)n = A, C, U, or G 64nnnnnnnnnn
nnnnnnnnnn guuuuuguac ucucaagauu uagaaauaaa ucuugcagaa 60gcuacaaaga
uaaggcuuca ugccgaaauc aacacccugu cauuuuaugg caggguguuu 120ucguuauuua a
13165117RNAartificial sequencegRNA example 2misc_feature(1)..(20)n = A,
C, U, or G 65nnnnnnnnnn nnnnnnnnnn guuuuuguac ucucagaaau gcagaagcua
caaagauaag 60gcuucaugcc gaaaucaaca cccugucauu uuauggcagg guguuuucgu
uauuuaa 11766104RNAartificial sequencegRNA example
3misc_feature(1)..(20)n = A, C, U, or G 66nnnnnnnnnn nnnnnnnnnn
guuuuuguac ucucagaaau gcagaagcua caaagauaag 60gcuucaugcc gaaaucaaca
cccugucauu uuauggcagg gugu 1046799RNAartificial
sequencegRNA example 4misc_feature(1)..(20)n = A, C, U, or G 67nnnnnnnnnn
nnnnnnnnnn guuuuuguac ucucagaaau agcaaguuaa aauaaggcua 60guccguuauc
aacuugaaaa aguggcaccg agucggugc
996881RNAartificial sequencegRNA example 5misc_feature(1)..(20)n = A, C,
U, or G 68nnnnnnnnnn nnnnnnnnnn guuuuagagc uagaaauagc aaguuaaaau
aaggcuaguc 60cguuaucaac uugaaaaagu g
816968RNAartificial sequencegRNA example
6misc_feature(1)..(20)n = A, C, U, or G 69nnnnnnnnnn nnnnnnnnnn
guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc 60cguuauca
6870100RNAartificial
sequencegRNA example 7misc_feature(1)..(20)n = A, C, U, or G 70nnnnnnnnnn
nnnnnnnnnn guuuuagagc uagaaauagc aaguuaaaau aaggcuaguc 60cguuaucaac
uugaaaaagu ggcaccgagu cggugcuuuu
1007153DNAYarrowia lipolytica 71caatggaaaa gacattttca aacgattacc
caccctccgg gactgaggcc cac 537252DNAartificial sequenceSequence
1 shown in Figure 5 72caatggaaaa gacattttca aacgattacc cacctccggg
actgaggccc ac 527351DNAartificial sequenceSequence 2 shown in
Figure 5 73caatggaaaa gacattttca aacgattacc cactccggga ctgaggccca c
517449DNAartificial sequenceSequence 3 shown in Figure 5
74caatggaaaa gacattttca aacgattacc caccgggact gaggcccac
497546DNAartificial sequenceSequence 4 shown in Figure 5 75caatggaaaa
gacattttca aacgattacc cgggactgag gcccac
467613DNAartificial sequenceSequence 5 shown in Figure 5 76cactgaggcc cac
137754DNAartificial sequenceSequence 6 shown in Figure 5 77caatggaaaa
gacattttca aacgattacc caccactccg ggactgaggc ccac
547848DNAartificial sequenceSequence 7 shown in Figure 5 78caatggaaaa
gacattttca aacgattacc tccgggactg aggcccac
487946DNAartificial sequenceSequence 8 shown in Figure 5 79caatggaaaa
gacattttca aacgattacc cgggactgag gcccac
468044DNAartificial sequenceSequence 9 shown in Figure 5 80caatggaaaa
gacattttca aacgattacc cacctgaggc ccac
448148DNAartificial sequenceSequence 10 shown in Figure 5 81caatggaaaa
gacattttca aacgattacc cacgggactg aggcccac
488240DNAartificial sequenceSequence 11 shown in Figure 5 82caatggaaaa
gacattttca aacgattaca cacggcccac
408337DNAartificial sequenceSequence 12 shown in Figure 5 83caatggaaaa
gacattttct ccgggactga ggcccac
378443DNAartificial sequenceSequence 13 shown in Figure 5 84caatggaaaa
gacattttca aacgctccgg gactgaggcc cac
438543DNAartificial sequenceSequence 14 shown in Figure 5 85caatggaaaa
gacattttca aacgatccgg gactgaggcc cac
438633DNAartificial sequenceSequence 15 shown in Figure 5 86caatggaaaa
gacattttca aacgataccc cac
338754DNAartificial sequenceSequence 16 shown in Figure 5 87caatggaaaa
gacattttca aacgattacc cacccctccg ggactgaggc ccac
548849DNAartificial sequenceSequence 17 shown in Figure 5 88caatggaaaa
gacattttca aacgattacc ctccgggact gaggcccac
498954DNAartificial sequenceSequence 18 shown in Figure 5 89caatggaaaa
gacattttca aacgattacc cacccctccg ggactgaggc ccac
549047DNAArtificial sequenceAarI-removal-1 90agaagtatcc taccatctac
catctccgaa agaaactcgt cgattcc 479147DNAArtificial
sequenceAarI-removal-2 91ggaatcgacg agtttctttc ggagatggta gatggtagga
tacttct 479210706DNAArtificial sequencepRF109
92catggacaag aaatactcca tcggcctgga cattggaacc aactctgtcg gctgggctgt
60catcaccgac gagtacaagg tgccctccaa gaaattcaag gtcctcggaa acaccgatcg
120acactccatc aagaaaaacc tcattggtgc cctgttgttc gattctggcg agactgccga
180agctaccaga ctcaagcgaa ctgctcggcg acgttacacc cgacggaaga accgaatctg
240ctacctgcag gagatctttt ccaacgagat ggccaaggtg gacgattcgt tctttcatcg
300actggaggaa tccttcctcg tcgaggaaga caagaaacac gagcgtcatc ccatctttgg
360caacattgtg gacgaggttg cttaccacga gaagtatcct accatctacc atctccgaaa
420gaaactcgtc gattccaccg acaaggcgga tctcagactt atctacctcg ctctggcaca
480catgatcaag tttcgaggtc atttcctcat cgagggcgat ctcaatcccg acaacagcga
540tgtggacaag ctgttcattc agctcgttca gacctacaac cagctgttcg aggaaaaccc
600catcaatgcc tccggagtcg atgcaaaggc catcttgtct gctcgactct cgaagagcag
660acgactggag aacctcattg cccaacttcc tggcgagaaa aagaacggac tgtttggcaa
720cctcattgcc ctttctcttg gtctcacacc caacttcaag tccaacttcg atctggcgga
780ggacgccaag ctccagctgt ccaaggacac ctacgacgat gacctcgaca acctgcttgc
840acagattggc gatcagtacg ccgacctgtt tctcgctgcc aagaaccttt cggatgctat
900tctcttgtct gacattctgc gagtcaacac cgagatcaca aaggctcccc tttctgcctc
960catgatcaag cgatacgacg agcaccatca ggatctcaca ctgctcaagg ctcttgtccg
1020acagcaactg cccgagaagt acaaggagat ctttttcgat cagtcgaaga acggctacgc
1080tggatacatc gacggcggag cctctcagga agagttctac aagttcatca agccaattct
1140cgagaagatg gacggaaccg aggaactgct tgtcaagctc aatcgagagg atctgcttcg
1200gaagcaacga accttcgaca acggcagcat tcctcatcag atccacctcg gtgagctgca
1260cgccattctt cgacgtcagg aagacttcta cccctttctc aaggacaacc gagagaagat
1320cgagaagatt cttacctttc gaatccccta ctatgttggt cctcttgcca gaggaaactc
1380tcgatttgct tggatgactc gaaagtccga ggaaaccatc actccctgga acttcgagga
1440agtcgtggac aagggtgcct ctgcacagtc cttcatcgag cgaatgacca acttcgacaa
1500gaatctgccc aacgagaagg ttcttcccaa gcattcgctg ctctacgagt actttacagt
1560ctacaacgaa ctcaccaaag tcaagtacgt taccgaggga atgcgaaagc ctgccttctt
1620gtctggcgaa cagaagaaag ccattgtcga tctcctgttc aagaccaacc gaaaggtcac
1680tgttaagcag ctcaaggagg actacttcaa gaaaatcgag tgtttcgaca gcgtcgagat
1740ttccggagtt gaggaccgat tcaacgcctc tttgggcacc tatcacgatc tgctcaagat
1800tatcaaggac aaggattttc tcgacaacga ggaaaacgag gacattctgg aggacatcgt
1860gctcactctt accctgttcg aagatcggga gatgatcgag gaacgactca agacatacgc
1920tcacctgttc gacgacaagg tcatgaaaca actcaagcga cgtagataca ccggctgggg
1980aagactttcg cgaaagctca tcaacggcat cagagacaag cagtccggaa agaccattct
2040ggactttctc aagtccgatg gctttgccaa ccgaaacttc atgcagctca ttcacgacga
2100ttctcttacc ttcaaggagg acatccagaa ggcacaagtg tccggtcagg gcgacagctt
2160gcacgaacat attgccaacc tggctggttc gccagccatc aagaaaggca ttctccagac
2220tgtcaaggtt gtcgacgagc tggtgaaggt catgggacgt cacaagcccg agaacattgt
2280gatcgagatg gccagagaga accagacaac tcaaaagggt cagaaaaact cgcgagagcg
2340gatgaagcga atcgaggaag gcatcaagga gctgggatcc cagattctca aggagcatcc
2400cgtcgagaac actcaactgc agaacgagaa gctgtatctc tactatctgc agaatggtcg
2460agacatgtac gtggatcagg aactggacat caatcgtctc agcgactacg atgtggacca
2520cattgtccct caatcctttc tcaaggacga ttctatcgac aacaaggtcc ttacacgatc
2580cgacaagaac agaggcaagt cggacaacgt tcccagcgaa gaggtggtca aaaagatgaa
2640gaactactgg cgacagctgc tcaacgccaa gctcattacc cagcgaaagt tcgacaatct
2700taccaaggcc gagcgaggcg gtctgtccga gctcgacaag gctggcttca tcaagcgtca
2760actcgtcgag accagacaga tcacaaagca cgtcgcacag attctcgatt ctcggatgaa
2820caccaagtac gacgagaacg acaagctcat ccgagaggtc aaggtgatta ctctcaagtc
2880caaactggtc tccgatttcc gaaaggactt tcagttctac aaggtgcgag agatcaacaa
2940ttaccaccat gcccacgatg cttacctcaa cgccgtcgtt ggcactgcgc tcatcaagaa
3000ataccccaag ctcgaaagcg agttcgttta cggcgattac aaggtctacg acgttcgaaa
3060gatgattgcc aagtccgaac aggagattgg caaggctact gccaagtact tcttttactc
3120caacatcatg aactttttca agaccgagat caccttggcc aacggagaga ttcgaaagag
3180accacttatc gagaccaacg gcgaaactgg agagatcgtg tgggacaagg gtcgagactt
3240tgcaaccgtg cgaaaggttc tgtcgatgcc tcaggtcaac atcgtcaaga aaaccgaggt
3300tcagactggc ggattctcca aggagtcgat tctgcccaag cgaaactccg acaagctcat
3360cgctcgaaag aaagactggg atcccaagaa atacggtggc ttcgattctc ctaccgtcgc
3420ctattccgtg cttgtcgttg cgaaggtcga gaagggcaag tccaaaaagc tcaagtccgt
3480caaggagctg ctcggaatta ccatcatgga gcgatcgagc ttcgagaaga atcccatcga
3540cttcttggaa gccaagggtt acaaggaggt caagaaagac ctcattatca agctgcccaa
3600gtactctctg ttcgaactgg agaacggtcg aaagcgtatg ctcgcctccg ctggcgagct
3660gcagaaggga aacgagcttg ccttgccttc gaagtacgtc aactttctct atctggcttc
3720tcactacgag aagctcaagg gttctcccga ggacaacgaa cagaagcaac tcttcgttga
3780gcagcacaaa cattacctcg acgagattat cgagcagatt tccgagtttt cgaagcgagt
3840catcctggct gatgccaact tggacaaggt gctctctgcc tacaacaagc atcgggacaa
3900acccattcga gaacaggcgg agaacatcat tcacctgttt actcttacca acctgggtgc
3960tcctgcagct ttcaagtact tcgataccac tatcgaccga aagcggtaca catccaccaa
4020ggaggttctc gatgccaccc tgattcacca gtccatcact ggcctgtacg agacccgaat
4080cgacctgtct cagcttggtg gcgactccag agccgatccc aagaaaaagc gaaaggtcta
4140agcggccgca agtgtggatg gggaagtgag tgcccggttc tgtgtgcaca attggcaatc
4200caagatggat ggattcaaca cagggatata gcgagctacg tggtggtgcg aggatatagc
4260aacggatatt tatgtttgac acttgagaat gtacgataca agcactgtcc aagtacaata
4320ctaaacatac tgtacatact catactcgta cccgggcaac ggtttcactt gagtgcagtg
4380gctagtgctc ttactcgtac agtgtgcaat actgcgtatc atagtctttg atgtatatcg
4440tattcattca tgttagttgc gtacgagccg gaagcataaa gtgtaaagcc tggggtgcct
4500aatgagtgag ctaactcaca ttaattgcgt tgcgctcact gcccgctttc cagtcgggaa
4560acctgtcgtg ccagctgcat taatgaatcg gccaacgcgc ggggagaggc ggtttgcgta
4620ttgggcgctc ttccgcttcc tcgctcactg actcgctgcg ctcggtcgtt cggctgcggc
4680gagcggtatc agctcactca aaggcggtaa tacggttatc cacagaatca ggggataacg
4740caggaaagaa catgtgagca aaaggccagc aaaaggccag gaaccgtaaa aaggccgcgt
4800tgctggcgtt tttccatagg ctccgccccc ctgacgagca tcacaaaaat cgacgctcaa
4860gtcagaggtg gcgaaacccg acaggactat aaagatacca ggcgtttccc cctggaagct
4920ccctcgtgcg ctctcctgtt ccgaccctgc cgcttaccgg atacctgtcc gcctttctcc
4980cttcgggaag cgtggcgctt tctcatagct cacgctgtag gtatctcagt tcggtgtagg
5040tcgttcgctc caagctgggc tgtgtgcacg aaccccccgt tcagcccgac cgctgcgcct
5100tatccggtaa ctatcgtctt gagtccaacc cggtaagaca cgacttatcg ccactggcag
5160cagccactgg taacaggatt agcagagcga ggtatgtagg cggtgctaca gagttcttga
5220agtggtggcc taactacggc tacactagaa ggacagtatt tggtatctgc gctctgctga
5280agccagttac cttcggaaaa agagttggta gctcttgatc cggcaaacaa accaccgctg
5340gtagcggtgg tttttttgtt tgcaagcagc agattacgcg cagaaaaaaa ggatctcaag
5400aagatccttt gatcttttct acggggtctg acgctcagtg gaacgaaaac tcacgttaag
5460ggattttggt catgagatta tcaaaaagga tcttcaccta gatcctttta aattaaaaat
5520gaagttttaa atcaatctaa agtatatatg agtaaacttg gtctgacagt taccaatgct
5580taatcagtga ggcacctatc tcagcgatct gtctatttcg ttcatccata gttgcctgac
5640tccccgtcgt gtagataact acgatacggg agggcttacc atctggcccc agtgctgcaa
5700tgataccgcg agacccacgc tcaccggctc cagatttatc agcaataaac cagccagccg
5760gaagggccga gcgcagaagt ggtcctgcaa ctttatccgc ctccatccag tctattaatt
5820gttgccggga agctagagta agtagttcgc cagttaatag tttgcgcaac gttgttgcca
5880ttgctacagg catcgtggtg tcacgctcgt cgtttggtat ggcttcattc agctccggtt
5940cccaacgatc aaggcgagtt acatgatccc ccatgttgtg caaaaaagcg gttagctcct
6000tcggtcctcc gatcgttgtc agaagtaagt tggccgcagt gttatcactc atggttatgg
6060cagcactgca taattctctt actgtcatgc catccgtaag atgcttttct gtgactggtg
6120agtactcaac caagtcattc tgagaatagt gtatgcggcg accgagttgc tcttgcccgg
6180cgtcaatacg ggataatacc gcgccacata gcagaacttt aaaagtgctc atcattggaa
6240aacgttcttc ggggcgaaaa ctctcaagga tcttaccgct gttgagatcc agttcgatgt
6300aacccactcg tgcacccaac tgatcttcag catcttttac tttcaccagc gtttctgggt
6360gagcaaaaac aggaaggcaa aatgccgcaa aaaagggaat aagggcgaca cggaaatgtt
6420gaatactcat actcttcctt tttcaatatt attgaagcat ttatcagggt tattgtctca
6480tgagcggata catatttgaa tgtatttaga aaaataaaca aataggggtt ccgcgcacat
6540ttccccgaaa agtgccacct gacgcgccct gtagcggcgc attaagcgcg gcgggtgtgg
6600tggttacgcg cagcgtgacc gctacacttg ccagcgccct agcgcccgct cctttcgctt
6660tcttcccttc ctttctcgcc acgttcgccg gctttccccg tcaagctcta aatcgggggc
6720tccctttagg gttccgattt agtgctttac ggcacctcga ccccaaaaaa cttgattagg
6780gtgatggttc acgtagtggg ccatcgccct gatagacggt ttttcgccct ttgacgttgg
6840agtccacgtt ctttaatagt ggactcttgt tccaaactgg aacaacactc aaccctatct
6900cggtctattc ttttgattta taagggattt tgccgatttc ggcctattgg ttaaaaaatg
6960agctgattta acaaaaattt aacgcgaatt ttaacaaaat attaacgctt acaatttcca
7020ttcgccattc aggctgcgca actgttggga agggcgatcg gtgcgggcct cttcgctatt
7080acgccagctg gcgaaagggg gatgtgctgc aaggcgatta agttgggtaa cgccagggtt
7140ttcccagtca cgacgttgta aaacgacggc cagtgaattg taatacgact cactataggg
7200cgaattgggt accgggcccc ccctcgaggt cgatggtgtc gataagcttg atatcgaatt
7260catgtcacac aaaccgatct tcgcctcaag gaaacctaat tctacatccg agagactgcc
7320gagatccagt ctacactgat taattttcgg gccaataatt taaaaaaatc gtgttatata
7380atattatatg tattatatat atacatcatg atgatactga cagtcatgtc ccattgctaa
7440atagacagac tccatctgcc gcctccaact gatgttctca atatttaagg ggtcatctcg
7500cattgtttaa taataaacag actccatcta ccgcctccaa atgatgttct caaaatatat
7560tgtatgaact tatttttatt acttagtatt attagacaac ttacttgctt tatgaaaaac
7620acttcctatt taggaaacaa tttataatgg cagttcgttc atttaacaat ttatgtagaa
7680taaatgttat aaatgcgtat gggaaatctt aaatatggat agcataaatg atatctgcat
7740tgcctaattc gaaatcaaca gcaacgaaaa aaatcccttg tacaacataa atagtcatcg
7800agaaatatca actatcaaag aacagctatt cacacgttac tattgagatt attattggac
7860gagaatcaca cactcaactg tctttctctc ttctagaaat acaggtacaa gtatgtacta
7920ttctcattgt tcatacttct agtcatttca tcccacatat tccttggatt tctctccaat
7980gaatgacatt ctatcttgca aattcaacaa ttataataag atataccaaa gtagcggtat
8040agtggcaatc aaaaagcttc tctggtgtgc ttctcgtatt tatttttatt ctaatgatcc
8100attaaaggta tatatttatt tcttgttata taatcctttt gtttattaca tgggctggat
8160acataaaggt attttgattt aattttttgc ttaaattcaa tcccccctcg ttcagtgtca
8220actgtaatgg taggaaatta ccatactttt gaagaagcaa aaaaaatgaa agaaaaaaaa
8280aatcgtattt ccaggttaga cgttccgcag aatctagaat gcggtatgcg gtacattgtt
8340cttcgaacgt aaaagttgcg ctccctgaga tattgtacat ttttgctttt acaagtacaa
8400gtacatcgta caactatgta ctactgttga tgcatccaca acagtttgtt ttgttttttt
8460ttgttttttt tttttctaat gattcattac cgctatgtat acctacttgt acttgtagta
8520agccgggtta ttggcgttca attaatcata gacttatgaa tctgcacggt gtgcgctgcg
8580agttactttt agcttatgca tgctacttgg gtgtaatatt gggatctgtt cggaaatcaa
8640cggatgctca atcgatttcg acagtaatta attaagtcat acacaagtca gctttcttcg
8700agcctcatat aagtataagt agttcaacgt attagcactg tacccagcat ctccgtatcg
8760agaaacacaa caacatgccc cattggacag atcatgcgga tacacaggtt gtgcagtatc
8820atacatactc gatcagacag gtcgtctgac catcatacaa gctgaacaag cgctccatac
8880ttgcacgctc tctatataca cagttaaatt acatatccat agtctaacct ctaacagtta
8940atcttctggt aagcctccca gccagccttc tggtatcgct tggcctcctc aataggatct
9000cggttctggc cgtacagacc tcggccgaca attatgatat ccgttccggt agacatgaca
9060tcctcaacag ttcggtactg ctgtccgaga gcgtctccct tgtcgtcaag acccaccccg
9120ggggtcagaa taagccagtc ctcagagtcg cccttaggtc ggttctgggc aatgaagcca
9180accacaaact cggggtcgga tcgggcaagc tcaatggtct gcttggagta ctcgccagtg
9240gccagagagc ccttgcaaga cagctcggcc agcatgagca gacctctggc cagcttctcg
9300ttgggagagg ggactaggaa ctccttgtac tgggagttct cgtagtcaga gacgtcctcc
9360ttcttctgtt cagagacagt ttcctcggca ccagctcgca ggccagcaat gattccggtt
9420ccgggtacac cgtgggcgtt ggtgatatcg gaccactcgg cgattcggtg acaccggtac
9480tggtgcttga cagtgttgcc aatatctgcg aactttctgt cctcgaacag gaagaaaccg
9540tgcttaagag caagttcctt gagggggagc acagtgccgg cgtaggtgaa gtcgtcaatg
9600atgtcgatat gggttttgat catgcacaca taaggtccga ccttatcggc aagctcaatg
9660agctccttgg tggtggtaac atccagagaa gcacacaggt tggttttctt ggctgccacg
9720agcttgagca ctcgagcggc aaaggcggac ttgtggacgt tagctcgagc ttcgtaggag
9780ggcattttgg tggtgaagag gagactgaaa taaatttagt ctgcagaact ttttatcgga
9840accttatctg gggcagtgaa gtatatgtta tggtaatagt tacgagttag ttgaacttat
9900agatagactg gactatacgg ctatcggtcc aaattagaaa gaacgtcaat ggctctctgg
9960gcgtcgcctt tgccgacaaa aatgtgatca tgatgaaagc cagcaatgac gttgcagctg
10020atattgttgt cggccaaccg cgccgaaaac gcagctgtca gacccacagc ctccaacgaa
10080gaatgtatcg tcaaagtgat ccaagcacac tcatagttgg agtcgtactc caaaggcggc
10140aatgacgagt cagacagata ctcgtcgacg tttaaaccat catctaaggg cctcaaaact
10200acctcggaac tgctgcgctg atctggacac cacagaggtt ccgagcactt taggttgcac
10260caaatgtccc accaggtgca ggcagaaaac gctggaacag cgtgtacagt ttgtcttaac
10320aaaaagtgag ggcgctgagg tcgagcaggg tggtgtgact tgttatagcc tttagagctg
10380cgaaagcgcg tatggatttg gctcatcagg ccagattgag ggtctgtgga cacatgtcat
10440gttagtgtac ttcaatcgcc ccctggatat agccccgaca ataggccgtg gcctcatttt
10500tttgccttcc gcacatttcc attgctcggt acccacacct tgcttctcct gcacttgcca
10560accttaatac tggtttacat tgaccaacat cttacaagcg gggggcttgt ctagggtata
10620tataaacagt ggctctccca atcggttgcc agtctctttt ttcctttctt tccccacaga
10680ttcgaaatct aaactacaca tcacac
10706934140DNAArtificial sequenceAar1- Cas9 gene 93atggacaaga aatactccat
cggcctggac attggaacca actctgtcgg ctgggctgtc 60atcaccgacg agtacaaggt
gccctccaag aaattcaagg tcctcggaaa caccgatcga 120cactccatca agaaaaacct
cattggtgcc ctgttgttcg attctggcga gactgccgaa 180gctaccagac tcaagcgaac
tgctcggcga cgttacaccc gacggaagaa ccgaatctgc 240tacctgcagg agatcttttc
caacgagatg gccaaggtgg acgattcgtt ctttcatcga 300ctggaggaat ccttcctcgt
cgaggaagac aagaaacacg agcgtcatcc catctttggc 360aacattgtgg acgaggttgc
ttaccacgag aagtatccta ccatctacca tctccgaaag 420aaactcgtcg attccaccga
caaggcggat ctcagactta tctacctcgc tctggcacac 480atgatcaagt ttcgaggtca
tttcctcatc gagggcgatc tcaatcccga caacagcgat 540gtggacaagc tgttcattca
gctcgttcag acctacaacc agctgttcga ggaaaacccc 600atcaatgcct ccggagtcga
tgcaaaggcc atcttgtctg ctcgactctc gaagagcaga 660cgactggaga acctcattgc
ccaacttcct ggcgagaaaa agaacggact gtttggcaac 720ctcattgccc tttctcttgg
tctcacaccc aacttcaagt ccaacttcga tctggcggag 780gacgccaagc tccagctgtc
caaggacacc tacgacgatg acctcgacaa cctgcttgca 840cagattggcg atcagtacgc
cgacctgttt ctcgctgcca agaacctttc ggatgctatt 900ctcttgtctg acattctgcg
agtcaacacc gagatcacaa aggctcccct ttctgcctcc 960atgatcaagc gatacgacga
gcaccatcag gatctcacac tgctcaaggc tcttgtccga 1020cagcaactgc ccgagaagta
caaggagatc tttttcgatc agtcgaagaa cggctacgct 1080ggatacatcg acggcggagc
ctctcaggaa gagttctaca agttcatcaa gccaattctc 1140gagaagatgg acggaaccga
ggaactgctt gtcaagctca atcgagagga tctgcttcgg 1200aagcaacgaa ccttcgacaa
cggcagcatt cctcatcaga tccacctcgg tgagctgcac 1260gccattcttc gacgtcagga
agacttctac ccctttctca aggacaaccg agagaagatc 1320gagaagattc ttacctttcg
aatcccctac tatgttggtc ctcttgccag aggaaactct 1380cgatttgctt ggatgactcg
aaagtccgag gaaaccatca ctccctggaa cttcgaggaa 1440gtcgtggaca agggtgcctc
tgcacagtcc ttcatcgagc gaatgaccaa cttcgacaag 1500aatctgccca acgagaaggt
tcttcccaag cattcgctgc tctacgagta ctttacagtc 1560tacaacgaac tcaccaaagt
caagtacgtt accgagggaa tgcgaaagcc tgccttcttg 1620tctggcgaac agaagaaagc
cattgtcgat ctcctgttca agaccaaccg aaaggtcact 1680gttaagcagc tcaaggagga
ctacttcaag aaaatcgagt gtttcgacag cgtcgagatt 1740tccggagttg aggaccgatt
caacgcctct ttgggcacct atcacgatct gctcaagatt 1800atcaaggaca aggattttct
cgacaacgag gaaaacgagg acattctgga ggacatcgtg 1860ctcactctta ccctgttcga
agatcgggag atgatcgagg aacgactcaa gacatacgct 1920cacctgttcg acgacaaggt
catgaaacaa ctcaagcgac gtagatacac cggctgggga 1980agactttcgc gaaagctcat
caacggcatc agagacaagc agtccggaaa gaccattctg 2040gactttctca agtccgatgg
ctttgccaac cgaaacttca tgcagctcat tcacgacgat 2100tctcttacct tcaaggagga
catccagaag gcacaagtgt ccggtcaggg cgacagcttg 2160cacgaacata ttgccaacct
ggctggttcg ccagccatca agaaaggcat tctccagact 2220gtcaaggttg tcgacgagct
ggtgaaggtc atgggacgtc acaagcccga gaacattgtg 2280atcgagatgg ccagagagaa
ccagacaact caaaagggtc agaaaaactc gcgagagcgg 2340atgaagcgaa tcgaggaagg
catcaaggag ctgggatccc agattctcaa ggagcatccc 2400gtcgagaaca ctcaactgca
gaacgagaag ctgtatctct actatctgca gaatggtcga 2460gacatgtacg tggatcagga
actggacatc aatcgtctca gcgactacga tgtggaccac 2520attgtccctc aatcctttct
caaggacgat tctatcgaca acaaggtcct tacacgatcc 2580gacaagaaca gaggcaagtc
ggacaacgtt cccagcgaag aggtggtcaa aaagatgaag 2640aactactggc gacagctgct
caacgccaag ctcattaccc agcgaaagtt cgacaatctt 2700accaaggccg agcgaggcgg
tctgtccgag ctcgacaagg ctggcttcat caagcgtcaa 2760ctcgtcgaga ccagacagat
cacaaagcac gtcgcacaga ttctcgattc tcggatgaac 2820accaagtacg acgagaacga
caagctcatc cgagaggtca aggtgattac tctcaagtcc 2880aaactggtct ccgatttccg
aaaggacttt cagttctaca aggtgcgaga gatcaacaat 2940taccaccatg cccacgatgc
ttacctcaac gccgtcgttg gcactgcgct catcaagaaa 3000taccccaagc tcgaaagcga
gttcgtttac ggcgattaca aggtctacga cgttcgaaag 3060atgattgcca agtccgaaca
ggagattggc aaggctactg ccaagtactt cttttactcc 3120aacatcatga actttttcaa
gaccgagatc accttggcca acggagagat tcgaaagaga 3180ccacttatcg agaccaacgg
cgaaactgga gagatcgtgt gggacaaggg tcgagacttt 3240gcaaccgtgc gaaaggttct
gtcgatgcct caggtcaaca tcgtcaagaa aaccgaggtt 3300cagactggcg gattctccaa
ggagtcgatt ctgcccaagc gaaactccga caagctcatc 3360gctcgaaaga aagactggga
tcccaagaaa tacggtggct tcgattctcc taccgtcgcc 3420tattccgtgc ttgtcgttgc
gaaggtcgag aagggcaagt ccaaaaagct caagtccgtc 3480aaggagctgc tcggaattac
catcatggag cgatcgagct tcgagaagaa tcccatcgac 3540ttcttggaag ccaagggtta
caaggaggtc aagaaagacc tcattatcaa gctgcccaag 3600tactctctgt tcgaactgga
gaacggtcga aagcgtatgc tcgcctccgc tggcgagctg 3660cagaagggaa acgagcttgc
cttgccttcg aagtacgtca actttctcta tctggcttct 3720cactacgaga agctcaaggg
ttctcccgag gacaacgaac agaagcaact cttcgttgag 3780cagcacaaac attacctcga
cgagattatc gagcagattt ccgagttttc gaagcgagtc 3840atcctggctg atgccaactt
ggacaaggtg ctctctgcct acaacaagca tcgggacaaa 3900cccattcgag aacaggcgga
gaacatcatt cacctgttta ctcttaccaa cctgggtgct 3960cctgcagctt tcaagtactt
cgataccact atcgaccgaa agcggtacac atccaccaag 4020gaggttctcg atgccaccct
gattcaccag tccatcactg gcctgtacga gacccgaatc 4080gacctgtctc agcttggtgg
cgactccaga gccgatccca agaaaaagcg aaaggtctaa 41409410706DNAARtificial
sequencepRF141 94catggacaag aaatactcca tcggcctgga cattggaacc aactctgtcg
gctgggctgt 60catcaccgac gagtacaagg tgccctccaa gaaattcaag gtcctcggaa
acaccgatcg 120acactccatc aagaaaaacc tcattggtgc cctgttgttc gattctggcg
agactgccga 180agctaccaga ctcaagcgaa ctgctcggcg acgttacacc cgacggaaga
accgaatctg 240ctacctgcag gagatctttt ccaacgagat ggccaaggtg gacgattcgt
tctttcatcg 300actggaggaa tccttcctcg tcgaggaaga caagaaacac gagcgtcatc
ccatctttgg 360caacattgtg gacgaggttg cttaccacga gaagtatcct accatctacc
atctccgaaa 420gaaactcgtc gattccaccg acaaggcgga tctcagactt atctacctcg
ctctggcaca 480catgatcaag tttcgaggtc atttcctcat cgagggcgat ctcaatcccg
acaacagcga 540tgtggacaag ctgttcattc agctcgttca gacctacaac cagctgttcg
aggaaaaccc 600catcaatgcc tccggagtcg atgcaaaggc catcttgtct gctcgactct
cgaagagcag 660acgactggag aacctcattg cccaacttcc tggcgagaaa aagaacggac
tgtttggcaa 720cctcattgcc ctttctcttg gtctcacacc caacttcaag tccaacttcg
atctggcgga 780ggacgccaag ctccagctgt ccaaggacac ctacgacgat gacctcgaca
acctgcttgc 840acagattggc gatcagtacg ccgacctgtt tctcgctgcc aagaaccttt
cggatgctat 900tctcttgtct gacattctgc gagtcaacac cgagatcaca aaggctcccc
tttctgcctc 960catgatcaag cgatacgacg agcaccatca ggatctcaca ctgctcaagg
ctcttgtccg 1020acagcaactg cccgagaagt acaaggagat ctttttcgat cagtcgaaga
acggctacgc 1080tggatacatc gacggcggag cctctcagga agagttctac aagttcatca
agccaattct 1140cgagaagatg gacggaaccg aggaactgct tgtcaagctc aatcgagagg
atctgcttcg 1200gaagcaacga accttcgaca acggcagcat tcctcatcag atccacctcg
gtgagctgca 1260cgccattctt cgacgtcagg aagacttcta cccctttctc aaggacaacc
gagagaagat 1320cgagaagatt cttacctttc gaatccccta ctatgttggt cctcttgcca
gaggaaactc 1380tcgatttgct tggatgactc gaaagtccga ggaaaccatc actccctgga
acttcgagga 1440agtcgtggac aagggtgcct ctgcacagtc cttcatcgag cgaatgacca
acttcgacaa 1500gaatctgccc aacgagaagg ttcttcccaa gcattcgctg ctctacgagt
actttacagt 1560ctacaacgaa ctcaccaaag tcaagtacgt taccgaggga atgcgaaagc
ctgccttctt 1620gtctggcgaa cagaagaaag ccattgtcga tctcctgttc aagaccaacc
gaaaggtcac 1680tgttaagcag ctcaaggagg actacttcaa gaaaatcgag tgtttcgaca
gcgtcgagat 1740ttccggagtt gaggaccgat tcaacgcctc tttgggcacc tatcacgatc
tgctcaagat 1800tatcaaggac aaggattttc tcgacaacga ggaaaacgag gacattctgg
aggacatcgt 1860gctcactctt accctgttcg aagatcggga gatgatcgag gaacgactca
agacatacgc 1920tcacctgttc gacgacaagg tcatgaaaca actcaagcga cgtagataca
ccggctgggg 1980aagactttcg cgaaagctca tcaacggcat cagagacaag cagtccggaa
agaccattct 2040ggactttctc aagtccgatg gctttgccaa ccgaaacttc atgcagctca
ttcacgacga 2100ttctcttacc ttcaaggagg acatccagaa ggcacaagtg tccggtcagg
gcgacagctt 2160gcacgaacat attgccaacc tggctggttc gccagccatc aagaaaggca
ttctccagac 2220tgtcaaggtt gtcgacgagc tggtgaaggt catgggacgt cacaagcccg
agaacattgt 2280gatcgagatg gccagagaga accagacaac tcaaaagggt cagaaaaact
cgcgagagcg 2340gatgaagcga atcgaggaag gcatcaagga gctgggatcc cagattctca
aggagcatcc 2400cgtcgagaac actcaactgc agaacgagaa gctgtatctc tactatctgc
agaatggtcg 2460agacatgtac gtggatcagg aactggacat caatcgtctc agcgactacg
atgtggacca 2520cattgtccct caatcctttc tcaaggacga ttctatcgac aacaaggtcc
ttacacgatc 2580cgacaagaac agaggcaagt cggacaacgt tcccagcgaa gaggtggtca
aaaagatgaa 2640gaactactgg cgacagctgc tcaacgccaa gctcattacc cagcgaaagt
tcgacaatct 2700taccaaggcc gagcgaggcg gtctgtccga gctcgacaag gctggcttca
tcaagcgtca 2760actcgtcgag accagacaga tcacaaagca cgtcgcacag attctcgatt
ctcggatgaa 2820caccaagtac gacgagaacg acaagctcat ccgagaggtc aaggtgatta
ctctcaagtc 2880caaactggtc tccgatttcc gaaaggactt tcagttctac aaggtgcgag
agatcaacaa 2940ttaccaccat gcccacgatg cttacctcaa cgccgtcgtt ggcactgcgc
tcatcaagaa 3000ataccccaag ctcgaaagcg agttcgttta cggcgattac aaggtctacg
acgttcgaaa 3060gatgattgcc aagtccgaac aggagattgg caaggctact gccaagtact
tcttttactc 3120caacatcatg aactttttca agaccgagat caccttggcc aacggagaga
ttcgaaagag 3180accacttatc gagaccaacg gcgaaactgg agagatcgtg tgggacaagg
gtcgagactt 3240tgcaaccgtg cgaaaggttc tgtcgatgcc tcaggtcaac atcgtcaaga
aaaccgaggt 3300tcagactggc ggattctcca aggagtcgat tctgcccaag cgaaactccg
acaagctcat 3360cgctcgaaag aaagactggg atcccaagaa atacggtggc ttcgattctc
ctaccgtcgc 3420ctattccgtg cttgtcgttg cgaaggtcga gaagggcaag tccaaaaagc
tcaagtccgt 3480caaggagctg ctcggaatta ccatcatgga gcgatcgagc ttcgagaaga
atcccatcga 3540cttcttggaa gccaagggtt acaaggaggt caagaaagac ctcattatca
agctgcccaa 3600gtactctctg ttcgaactgg agaacggtcg aaagcgtatg ctcgcctccg
ctggcgagct 3660gcagaaggga aacgagcttg ccttgccttc gaagtacgtc aactttctct
atctggcttc 3720tcactacgag aagctcaagg gttctcccga ggacaacgaa cagaagcaac
tcttcgttga 3780gcagcacaaa cattacctcg acgagattat cgagcagatt tccgagtttt
cgaagcgagt 3840catcctggct gatgccaact tggacaaggt gctctctgcc tacaacaagc
atcgggacaa 3900acccattcga gaacaggcgg agaacatcat tcacctgttt actcttacca
acctgggtgc 3960tcctgcagct ttcaagtact tcgataccac tatcgaccga aagcggtaca
catccaccaa 4020ggaggttctc gatgccaccc tgattcacca gtccatcact ggcctgtacg
agacccgaat 4080cgacctgtct cagcttggtg gcgactccag agccgatccc aagaaaaagc
gaaaggtcta 4140agcggccgca agtgtggatg gggaagtgag tgcccggttc tgtgtgcaca
attggcaatc 4200caagatggat ggattcaaca cagggatata gcgagctacg tggtggtgcg
aggatatagc 4260aacggatatt tatgtttgac acttgagaat gtacgataca agcactgtcc
aagtacaata 4320ctaaacatac tgtacatact catactcgta cccgggcaac ggtttcactt
gagtgcagtg 4380gctagtgctc ttactcgtac agtgtgcaat actgcgtatc atagtctttg
atgtatatcg 4440tattcattca tgttagttgc gtacgagccg gaagcataaa gtgtaaagcc
tggggtgcct 4500aatgagtgag ctaactcaca ttaattgcgt tgcgctcact gcccgctttc
cagtcgggaa 4560acctgtcgtg ccagctgcat taatgaatcg gccaacgcgc ggggagaggc
ggtttgcgta 4620ttgggcgctc ttccgcttcc tcgctcactg actcgctgcg ctcggtcgtt
cggctgcggc 4680gagcggtatc agctcactca aaggcggtaa tacggttatc cacagaatca
ggggataacg 4740caggaaagaa catgtgagca aaaggccagc aaaaggccag gaaccgtaaa
aaggccgcgt 4800tgctggcgtt tttccatagg ctccgccccc ctgacgagca tcacaaaaat
cgacgctcaa 4860gtcagaggtg gcgaaacccg acaggactat aaagatacca ggcgtttccc
cctggaagct 4920ccctcgtgcg ctctcctgtt ccgaccctgc cgcttaccgg atacctgtcc
gcctttctcc 4980cttcgggaag cgtggcgctt tctcatagct cacgctgtag gtatctcagt
tcggtgtagg 5040tcgttcgctc caagctgggc tgtgtgcacg aaccccccgt tcagcccgac
cgctgcgcct 5100tatccggtaa ctatcgtctt gagtccaacc cggtaagaca cgacttatcg
ccactggcag 5160cagccactgg taacaggatt agcagagcga ggtatgtagg cggtgctaca
gagttcttga 5220agtggtggcc taactacggc tacactagaa ggacagtatt tggtatctgc
gctctgctga 5280agccagttac cttcggaaaa agagttggta gctcttgatc cggcaaacaa
accaccgctg 5340gtagcggtgg tttttttgtt tgcaagcagc agattacgcg cagaaaaaaa
ggatctcaag 5400aagatccttt gatcttttct acggggtctg acgctcagtg gaacgaaaac
tcacgttaag 5460ggattttggt catgagatta tcaaaaagga tcttcaccta gatcctttta
aattaaaaat 5520gaagttttaa atcaatctaa agtatatatg agtaaacttg gtctgacagt
taccaatgct 5580taatcagtga ggcacctatc tcagcgatct gtctatttcg ttcatccata
gttgcctgac 5640tccccgtcgt gtagataact acgatacggg agggcttacc atctggcccc
agtgctgcaa 5700tgataccgcg agacccacgc tcaccggctc cagatttatc agcaataaac
cagccagccg 5760gaagggccga gcgcagaagt ggtcctgcaa ctttatccgc ctccatccag
tctattaatt 5820gttgccggga agctagagta agtagttcgc cagttaatag tttgcgcaac
gttgttgcca 5880ttgctacagg catcgtggtg tcacgctcgt cgtttggtat ggcttcattc
agctccggtt 5940cccaacgatc aaggcgagtt acatgatccc ccatgttgtg caaaaaagcg
gttagctcct 6000tcggtcctcc gatcgttgtc agaagtaagt tggccgcagt gttatcactc
atggttatgg 6060cagcactgca taattctctt actgtcatgc catccgtaag atgcttttct
gtgactggtg 6120agtactcaac caagtcattc tgagaatagt gtatgcggcg accgagttgc
tcttgcccgg 6180cgtcaatacg ggataatacc gcgccacata gcagaacttt aaaagtgctc
atcattggaa 6240aacgttcttc ggggcgaaaa ctctcaagga tcttaccgct gttgagatcc
agttcgatgt 6300aacccactcg tgcacccaac tgatcttcag catcttttac tttcaccagc
gtttctgggt 6360gagcaaaaac aggaaggcaa aatgccgcaa aaaagggaat aagggcgaca
cggaaatgtt 6420gaatactcat actcttcctt tttcaatatt attgaagcat ttatcagggt
tattgtctca 6480tgagcggata catatttgaa tgtatttaga aaaataaaca aataggggtt
ccgcgcacat 6540ttccccgaaa agtgccacct gacgcgccct gtagcggcgc attaagcgcg
gcgggtgtgg 6600tggttacgcg cagcgtgacc gctacacttg ccagcgccct agcgcccgct
cctttcgctt 6660tcttcccttc ctttctcgcc acgttcgccg gctttccccg tcaagctcta
aatcgggggc 6720tccctttagg gttccgattt agtgctttac ggcacctcga ccccaaaaaa
cttgattagg 6780gtgatggttc acgtagtggg ccatcgccct gatagacggt ttttcgccct
ttgacgttgg 6840agtccacgtt ctttaatagt ggactcttgt tccaaactgg aacaacactc
aaccctatct 6900cggtctattc ttttgattta taagggattt tgccgatttc ggcctattgg
ttaaaaaatg 6960agctgattta acaaaaattt aacgcgaatt ttaacaaaat attaacgctt
acaatttcca 7020ttcgccattc aggctgcgca actgttggga agggcgatcg gtgcgggcct
cttcgctatt 7080acgccagctg gcgaaagggg gatgtgctgc aaggcgatta agttgggtaa
cgccagggtt 7140ttcccagtca cgacgttgta aaacgacggc cagtgaattg taatacgact
cactataggg 7200cgaattgggt accgggcccc ccctcgaggt cgatggtgtc gataagcttg
atatcgaatt 7260catgtcacac aaaccgatct tcgcctcaag gaaacctaat tctacatccg
agagactgcc 7320gagatccagt ctacactgat taattttcgg gccaataatt taaaaaaatc
gtgttatata 7380atattatatg tattatatat atacatcatg atgatactga cagtcatgtc
ccattgctaa 7440atagacagac tccatctgcc gcctccaact gatgttctca atatttaagg
ggtcatctcg 7500cattgtttaa taataaacag actccatcta ccgcctccaa atgatgttct
caaaatatat 7560tgtatgaact tatttttatt acttagtatt attagacaac ttacttgctt
tatgaaaaac 7620acttcctatt taggaaacaa tttataatgg cagttcgttc atttaacaat
ttatgtagaa 7680taaatgttat aaatgcgtat gggaaatctt aaatatggat agcataaatg
atatctgcat 7740tgcctaattc gaaatcaaca gcaacgaaaa aaatcccttg tacaacataa
atagtcatcg 7800agaaatatca actatcaaag aacagctatt cacacgttac tattgagatt
attattggac 7860gagaatcaca cactcaactg tctttctctc ttctagaaat acaggtacaa
gtatgtacta 7920ttctcattgt tcatacttct agtcatttca tcccacatat tccttggatt
tctctccaat 7980gaatgacatt ctatcttgca aattcaacaa ttataataag atataccaaa
gtagcggtat 8040agtggcaatc aaaaagcttc tctggtgtgc ttctcgtatt tatttttatt
ctaatgatcc 8100attaaaggta tatatttatt tcttgttata taatcctttt gtttattaca
tgggctggat 8160acataaaggt attttgattt aattttttgc ttaaattcaa tcccccctcg
ttcagtgtca 8220actgtaatgg taggaaatta ccatactttt gaagaagcaa aaaaaatgaa
agaaaaaaaa 8280aatcgtattt ccaggttaga cgttccgcag aatctagaat gcggtatgcg
gtacattgtt 8340cttcgaacgt aaaagttgcg ctccctgaga tattgtacat ttttgctttt
acaagtacaa 8400gtacatcgta caactatgta ctactgttga tgcatccaca acagtttgtt
ttgttttttt 8460ttgttttttt tttttctaat gattcattac cgctatgtat acctacttgt
acttgtagta 8520agccgggtta ttggcgttca attaatcata gacttatgaa tctgcacggt
gtgcgctgcg 8580agttactttt agcttatgca tgctacttgg gtgtaatatt gggatctgtt
cggaaatcaa 8640cggatgctca atcgatttcg acagtaatta attaagtcat acacaagtca
gctttcttcg 8700agcctcatat aagtataagt agttcaacgt attagcactg tacccagcat
ctccgtatcg 8760agaaacacaa caacatgccc cattggacag atcatgcgga tacacaggtt
gtgcagtatc 8820atacatactc gatcagacag gtcgtctgac catcatacaa gctgaacaag
cgctccatac 8880ttgcacgctc tctatataca cagttaaatt acatatccat agtctaacct
ctaacagtta 8940atcttctggt aagcctccca gccagccttc tggtatcgct tggcctcctc
aataggatct 9000cggttctggc cgtacagacc tcggccgaca attatgatat ccgttccggt
agacatgaca 9060tcctcaacag ttcggtactg ctgtccgaga gcgtctccct tgtcgtcaag
acccaccccg 9120ggggtcagaa taagccagtc ctcagagtcg cccttaggtc ggttctgggc
aatgaagcca 9180accacaaact cggggtcgga tcgggcaagc tcaatggtct gcttggagta
ctcgccagtg 9240gccagagagc ccttgcaaga cagctcggcc agcatgagca gacctctggc
cagcttctcg 9300ttgggagagg ggactaggaa ctccttgtac tgggagttct cgtagtcaga
gacgtcctcc 9360ttcttctgtt cagagacagt ttcctcggca ccagctcgca ggccagcaat
gattccggtt 9420ccgggtacac cgtgggcgtt ggtgatatcg gaccactcgg cgattcggtg
acaccggtac 9480tggtgcttga cagtgttgcc aatatctgcg aactttctgt cctcgaacag
gaagaaaccg 9540tgcttaagag caagttcctt gagggggagc acagtgccgg cgtaggtgaa
gtcgtcaatg 9600atgtcgatat gggttttgat catgcacaca taaggtccga ccttatcggc
aagctcaatg 9660agctccttgg tggtggtaac atccagagaa gcacacaggt tggttttctt
ggctgccacg 9720agcttgagca ctcgagcggc aaaggcggac ttgtggacgt tagctcgagc
ttcgtaggag 9780ggcattttgg tggtgaagag gagactgaaa taaatttagt ctgcagaact
ttttatcgga 9840accttatctg gggcagtgaa gtatatgtta tggtaatagt tacgagttag
ttgaacttat 9900agatagactg gactatacgg ctatcggtcc aaattagaaa gaacgtcaat
ggctctctgg 9960gcgtcgcctt tgccgacaaa aatgtgatca tgatgaaagc cagcaatgac
gttgcagctg 10020atattgttgt cggccaaccg cgccgaaaac gcagctgtca gacccacagc
ctccaacgaa 10080gaatgtatcg tcaaagtgat ccaagcacac tcatagttgg agtcgtactc
caaaggcggc 10140aatgacgagt cagacagata ctcgtcgacg tttaaaccat catctaaggg
cctcaaaact 10200acctcggaac tgctgcgctg atctggacac cacagaggtt ccgagcactt
taggttgcac 10260caaatgtccc accaggtgca ggcagaaaac gctggaacag cgtgtacagt
ttgtcttaac 10320aaaaagtgag ggcgctgagg tcgagcaggg tggtgtgact tgttatagcc
tttagagctg 10380cgaaagcgcg tatggatttg gctcatcagg ccagattgag ggtctgtgga
cacatgtcat 10440gttagtgtac ttcaatcgcc ccctggatat agccccgaca ataggccgtg
gcctcatttt 10500tttgccttcc gcacatttcc attgctcggt acccacacct tgcttctcct
gcacttgcca 10560accttaatac tggtttacat tgaccaacat cttacaagcg gggggcttgt
ctagggtata 10620tataaacagt ggctctccca atcggttgcc agtctctttt ttcctttctt
tccccacaga 10680ttcgaaatct aaactacaca tcacac
10706951048DNAArtificial sequenceHigh-throughput cloning
cassette 95gcgcacgtta attaaatttt ttttgatttt cttttttgac cccgtcttca
attacacttc 60ccaactggga acacccctct ttatcgaccc attttaggta atttacccta
gcccattgtc 120tccataagga atattaccct aacccacagt ccagggtgcc caggtccttc
tttggccaaa 180ttttaacttc ggtcctatgg cacagcggta gcgcgtgaga ttgcaaatct
taaggtcccg 240agttcgaatc tcggtgggac ctagttattt ttgatagata atttcgtgat
gattagaaac 300ttaacgcaaa ataatggccg gcatggtccc agcctcctcg ctggcgccgg
ctgggcaaca 360tgcttcggca tggcgaatgg gacgcaggtg atggcgggat cgttgtatat
ttcttgacac 420cttttcggca tcgccctaaa ttcggcgtcc tcatattgtg tgaggacgtt
ttattacgtg 480tttacgaagc aaaagctaaa accaggagct atttaatggc aacagttaac
cagctggtac 540gcaaaccacg tgctcgcaaa gttgcgaaaa gcaacgtgcc tgcgctggaa
gcatgcccgc 600aaaaacgtgg cgtatgtact cgtgtatata ctaccactcc taaaaaaccg
aactccgcgc 660tgcgtaaagt atgccgtgtt cgtctgacta acggtttcga agtgacttcc
tacatcggtg 720gtgaaggtca caacctgcag gagcactccg tgatcctgat ccgtggcggt
cgtgttaaag 780acctcccggg tgttcgttac cacaccgtac gtggtgcgct tgactgctcc
ggcgttaaag 840accgtaagca ggctcgttcc aagtatggcg tgaagcgtcc taaggcttag
gttaataaca 900ggcctgctgg taatcgcagg cctttttatt tttacacctg cgttttagag
ctagaaatag 960caagttaaaa taaggctagt ccgttatcaa cttgaaaaag tggcaccgag
tcggtgcttt 1020tttttttgtt ttttatcgat gcgcgcac
104896300DNAYarrowia lipolytica 96attttttttg attttctttt
ttgaccccgt cttcaattac acttcccaac tgggaacacc 60cctctttatc gacccatttt
aggtaattta ccctagccca ttgtctccat aaggaatatt 120accctaaccc acagtccagg
gtgcccaggt ccttctttgg ccaaatttta acttcggtcc 180tatggcacag cggtagcgcg
tgagattgca aatcttaagg tcccgagttc gaatctcggt 240gggacctagt tatttttgat
agataatttc gtgatgatta gaaacttaac gcaaaataat 30097544DNAEscherichia
colimisc_feature(1)..(544)rpsL counterselection cassette 97atggcgggat
cgttgtatat ttcttgacac cttttcggca tcgccctaaa ttcggcgtcc 60tcatattgtg
tgaggacgtt ttattacgtg tttacgaagc aaaagctaaa accaggagct 120atttaatggc
aacagttaac cagctggtac gcaaaccacg tgctcgcaaa gttgcgaaaa 180gcaacgtgcc
tgcgctggaa gcatgcccgc aaaaacgtgg cgtatgtact cgtgtatata 240ctaccactcc
taaaaaaccg aactccgcgc tgcgtaaagt atgccgtgtt cgtctgacta 300acggtttcga
agtgacttcc tacatcggtg gtgaaggtca caacctgcag gagcactccg 360tgatcctgat
ccgtggcggt cgtgttaaag acctcccggg tgttcgttac cacaccgtac 420gtggtgcgct
tgactgctcc ggcgttaaag accgtaagca ggctcgttcc aagtatggcg 480tgaagcgtcc
taaggcttag gttaataaca ggcctgctgg taatcgcagg cctttttatt 540ttta
5449811714DNAArtificial SequencepRF291 98cgataaaaaa caaaaaaaaa agcaccgact
cggtgccact ttttcaagtt gataacggac 60tagccttatt ttaacttgct atttctagct
ctaaaacgca ggtgtaaaaa taaaaaggcc 120tgcgattacc agcaggcctg ttattaacct
aagccttagg acgcttcacg ccatacttgg 180aacgagcctg cttacggtct ttaacgccgg
agcagtcaag cgcaccacgt acggtgtggt 240aacgaacacc cgggaggtct ttaacacgac
cgccacggat caggatcacg gagtgctcct 300gcaggttgtg accttcacca ccgatgtagg
aagtcacttc gaaaccgtta gtcagacgaa 360cacggcatac tttacgcagc gcggagttcg
gttttttagg agtggtagta tatacacgag 420tacatacgcc acgtttttgc gggcatgctt
ccagcgcagg cacgttgctt ttcgcaactt 480tgcgagcacg tggtttgcgt accagctggt
taactgttgc cattaaatag ctcctggttt 540tagcttttgc ttcgtaaaca cgtaataaaa
cgtcctcaca caatatgagg acgccgaatt 600tagggcgatg ccgaaaaggt gtcaagaaat
atacaacgat cccgccatca cctgcgtccc 660attcgccatg ccgaagcatg ttgcccagcc
ggcgccagcg aggaggctgg gaccatgccg 720gccattattt tgcgttaagt ttctaatcat
cacgaaatta tctatcaaaa ataactaggt 780cccaccgaga ttcgaactcg ggaccttaag
atttgcaatc tcacgcgcta ccgctgtgcc 840ataggaccga agttaaaatt tggccaaaga
aggacctggg caccctggac tgtgggttag 900ggtaatattc cttatggaga caatgggcta
gggtaaatta cctaaaatgg gtcgataaag 960aggggtgttc ccagttggga agtgtaattg
aagacggggt caaaaaagaa aatcaaaaaa 1020aatttaatta agtcatacac aagtcagctt
tcttcgagcc tcatataagt ataagtagtt 1080caacgtatta gcactgtacc cagcatctcc
gtatcgagaa acacaacaac atgccccatt 1140ggacagatca tgcggataca caggttgtgc
agtatcatac atactcgatc agacaggtcg 1200tctgaccatc atacaagctg aacaagcgct
ccatacttgc acgctctcta tatacacagt 1260taaattacat atccatagtc taacctctaa
cagttaatct tctggtaagc ctcccagcca 1320gccttctggt atcgcttggc ctcctcaata
ggatctcggt tctggccgta cagacctcgg 1380ccgacaatta tgatatccgt tccggtagac
atgacatcct caacagttcg gtactgctgt 1440ccgagagcgt ctcccttgtc gtcaagaccc
accccggggg tcagaataag ccagtcctca 1500gagtcgccct taggtcggtt ctgggcaatg
aagccaacca caaactcggg gtcggatcgg 1560gcaagctcaa tggtctgctt ggagtactcg
ccagtggcca gagagccctt gcaagacagc 1620tcggccagca tgagcagacc tctggccagc
ttctcgttgg gagaggggac taggaactcc 1680ttgtactggg agttctcgta gtcagagacg
tcctccttct tctgttcaga gacagtttcc 1740tcggcaccag ctcgcaggcc agcaatgatt
ccggttccgg gtacaccgtg ggcgttggtg 1800atatcggacc actcggcgat tcggtgacac
cggtactggt gcttgacagt gttgccaata 1860tctgcgaact ttctgtcctc gaacaggaag
aaaccgtgct taagagcaag ttccttgagg 1920gggagcacag tgccggcgta ggtgaagtcg
tcaatgatgt cgatatgggt tttgatcatg 1980cacacataag gtccgacctt atcggcaagc
tcaatgagct ccttggtggt ggtaacatcc 2040agagaagcac acaggttggt tttcttggct
gccacgagct tgagcactcg agcggcaaag 2100gcggacttgt ggacgttagc tcgagcttcg
taggagggca ttttggtggt gaagaggaga 2160ctgaaataaa tttagtctgc agaacttttt
atcggaacct tatctggggc agtgaagtat 2220atgttatggt aatagttacg agttagttga
acttatagat agactggact atacggctat 2280cggtccaaat tagaaagaac gtcaatggct
ctctgggcgt cgcctttgcc gacaaaaatg 2340tgatcatgat gaaagccagc aatgacgttg
cagctgatat tgttgtcggc caaccgcgcc 2400gaaaacgcag ctgtcagacc cacagcctcc
aacgaagaat gtatcgtcaa agtgatccaa 2460gcacactcat agttggagtc gtactccaaa
ggcggcaatg acgagtcaga cagatactcg 2520tcgacgttta aaccatcatc taagggcctc
aaaactacct cggaactgct gcgctgatct 2580ggacaccaca gaggttccga gcactttagg
ttgcaccaaa tgtcccacca ggtgcaggca 2640gaaaacgctg gaacagcgtg tacagtttgt
cttaacaaaa agtgagggcg ctgaggtcga 2700gcagggtggt gtgacttgtt atagccttta
gagctgcgaa agcgcgtatg gatttggctc 2760atcaggccag attgagggtc tgtggacaca
tgtcatgtta gtgtacttca atcgccccct 2820ggatatagcc ccgacaatag gccgtggcct
catttttttg ccttccgcac atttccattg 2880ctcggtaccc acaccttgct tctcctgcac
ttgccaacct taatactggt ttacattgac 2940caacatctta caagcggggg gcttgtctag
ggtatatata aacagtggct ctcccaatcg 3000gttgccagtc tcttttttcc tttctttccc
cacagattcg aaatctaaac tacacatcac 3060accatggaca agaaatactc catcggcctg
gacattggaa ccaactctgt cggctgggct 3120gtcatcaccg acgagtacaa ggtgccctcc
aagaaattca aggtcctcgg aaacaccgat 3180cgacactcca tcaagaaaaa cctcattggt
gccctgttgt tcgattctgg cgagactgcc 3240gaagctacca gactcaagcg aactgctcgg
cgacgttaca cccgacggaa gaaccgaatc 3300tgctacctgc aggagatctt ttccaacgag
atggccaagg tggacgattc gttctttcat 3360cgactggagg aatccttcct cgtcgaggaa
gacaagaaac acgagcgtca tcccatcttt 3420ggcaacattg tggacgaggt tgcttaccac
gagaagtatc ctaccatcta ccatctccga 3480aagaaactcg tcgattccac cgacaaggcg
gatctcagac ttatctacct cgctctggca 3540cacatgatca agtttcgagg tcatttcctc
atcgagggcg atctcaatcc cgacaacagc 3600gatgtggaca agctgttcat tcagctcgtt
cagacctaca accagctgtt cgaggaaaac 3660cccatcaatg cctccggagt cgatgcaaag
gccatcttgt ctgctcgact ctcgaagagc 3720agacgactgg agaacctcat tgcccaactt
cctggcgaga aaaagaacgg actgtttggc 3780aacctcattg ccctttctct tggtctcaca
cccaacttca agtccaactt cgatctggcg 3840gaggacgcca agctccagct gtccaaggac
acctacgacg atgacctcga caacctgctt 3900gcacagattg gcgatcagta cgccgacctg
tttctcgctg ccaagaacct ttcggatgct 3960attctcttgt ctgacattct gcgagtcaac
accgagatca caaaggctcc cctttctgcc 4020tccatgatca agcgatacga cgagcaccat
caggatctca cactgctcaa ggctcttgtc 4080cgacagcaac tgcccgagaa gtacaaggag
atctttttcg atcagtcgaa gaacggctac 4140gctggataca tcgacggcgg agcctctcag
gaagagttct acaagttcat caagccaatt 4200ctcgagaaga tggacggaac cgaggaactg
cttgtcaagc tcaatcgaga ggatctgctt 4260cggaagcaac gaaccttcga caacggcagc
attcctcatc agatccacct cggtgagctg 4320cacgccattc ttcgacgtca ggaagacttc
tacccctttc tcaaggacaa ccgagagaag 4380atcgagaaga ttcttacctt tcgaatcccc
tactatgttg gtcctcttgc cagaggaaac 4440tctcgatttg cttggatgac tcgaaagtcc
gaggaaacca tcactccctg gaacttcgag 4500gaagtcgtgg acaagggtgc ctctgcacag
tccttcatcg agcgaatgac caacttcgac 4560aagaatctgc ccaacgagaa ggttcttccc
aagcattcgc tgctctacga gtactttaca 4620gtctacaacg aactcaccaa agtcaagtac
gttaccgagg gaatgcgaaa gcctgccttc 4680ttgtctggcg aacagaagaa agccattgtc
gatctcctgt tcaagaccaa ccgaaaggtc 4740actgttaagc agctcaagga ggactacttc
aagaaaatcg agtgtttcga cagcgtcgag 4800atttccggag ttgaggaccg attcaacgcc
tctttgggca cctatcacga tctgctcaag 4860attatcaagg acaaggattt tctcgacaac
gaggaaaacg aggacattct ggaggacatc 4920gtgctcactc ttaccctgtt cgaagatcgg
gagatgatcg aggaacgact caagacatac 4980gctcacctgt tcgacgacaa ggtcatgaaa
caactcaagc gacgtagata caccggctgg 5040ggaagacttt cgcgaaagct catcaacggc
atcagagaca agcagtccgg aaagaccatt 5100ctggactttc tcaagtccga tggctttgcc
aaccgaaact tcatgcagct cattcacgac 5160gattctctta ccttcaagga ggacatccag
aaggcacaag tgtccggtca gggcgacagc 5220ttgcacgaac atattgccaa cctggctggt
tcgccagcca tcaagaaagg cattctccag 5280actgtcaagg ttgtcgacga gctggtgaag
gtcatgggac gtcacaagcc cgagaacatt 5340gtgatcgaga tggccagaga gaaccagaca
actcaaaagg gtcagaaaaa ctcgcgagag 5400cggatgaagc gaatcgagga aggcatcaag
gagctgggat cccagattct caaggagcat 5460cccgtcgaga acactcaact gcagaacgag
aagctgtatc tctactatct gcagaatggt 5520cgagacatgt acgtggatca ggaactggac
atcaatcgtc tcagcgacta cgatgtggac 5580cacattgtcc ctcaatcctt tctcaaggac
gattctatcg acaacaaggt ccttacacga 5640tccgacaaga acagaggcaa gtcggacaac
gttcccagcg aagaggtggt caaaaagatg 5700aagaactact ggcgacagct gctcaacgcc
aagctcatta cccagcgaaa gttcgacaat 5760cttaccaagg ccgagcgagg cggtctgtcc
gagctcgaca aggctggctt catcaagcgt 5820caactcgtcg agaccagaca gatcacaaag
cacgtcgcac agattctcga ttctcggatg 5880aacaccaagt acgacgagaa cgacaagctc
atccgagagg tcaaggtgat tactctcaag 5940tccaaactgg tctccgattt ccgaaaggac
tttcagttct acaaggtgcg agagatcaac 6000aattaccacc atgcccacga tgcttacctc
aacgccgtcg ttggcactgc gctcatcaag 6060aaatacccca agctcgaaag cgagttcgtt
tacggcgatt acaaggtcta cgacgttcga 6120aagatgattg ccaagtccga acaggagatt
ggcaaggcta ctgccaagta cttcttttac 6180tccaacatca tgaacttttt caagaccgag
atcaccttgg ccaacggaga gattcgaaag 6240agaccactta tcgagaccaa cggcgaaact
ggagagatcg tgtgggacaa gggtcgagac 6300tttgcaaccg tgcgaaaggt tctgtcgatg
cctcaggtca acatcgtcaa gaaaaccgag 6360gttcagactg gcggattctc caaggagtcg
attctgccca agcgaaactc cgacaagctc 6420atcgctcgaa agaaagactg ggatcccaag
aaatacggtg gcttcgattc tcctaccgtc 6480gcctattccg tgcttgtcgt tgcgaaggtc
gagaagggca agtccaaaaa gctcaagtcc 6540gtcaaggagc tgctcggaat taccatcatg
gagcgatcga gcttcgagaa gaatcccatc 6600gacttcttgg aagccaaggg ttacaaggag
gtcaagaaag acctcattat caagctgccc 6660aagtactctc tgttcgaact ggagaacggt
cgaaagcgta tgctcgcctc cgctggcgag 6720ctgcagaagg gaaacgagct tgccttgcct
tcgaagtacg tcaactttct ctatctggct 6780tctcactacg agaagctcaa gggttctccc
gaggacaacg aacagaagca actcttcgtt 6840gagcagcaca aacattacct cgacgagatt
atcgagcaga tttccgagtt ttcgaagcga 6900gtcatcctgg ctgatgccaa cttggacaag
gtgctctctg cctacaacaa gcatcgggac 6960aaacccattc gagaacaggc ggagaacatc
attcacctgt ttactcttac caacctgggt 7020gctcctgcag ctttcaagta cttcgatacc
actatcgacc gaaagcggta cacatccacc 7080aaggaggttc tcgatgccac cctgattcac
cagtccatca ctggcctgta cgagacccga 7140atcgacctgt ctcagcttgg tggcgactcc
agagccgatc ccaagaaaaa gcgaaaggtc 7200taagcggccg caagtgtgga tggggaagtg
agtgcccggt tctgtgtgca caattggcaa 7260tccaagatgg atggattcaa cacagggata
tagcgagcta cgtggtggtg cgaggatata 7320gcaacggata tttatgtttg acacttgaga
atgtacgata caagcactgt ccaagtacaa 7380tactaaacat actgtacata ctcatactcg
tacccgggca acggtttcac ttgagtgcag 7440tggctagtgc tcttactcgt acagtgtgca
atactgcgta tcatagtctt tgatgtatat 7500cgtattcatt catgttagtt gcgtacgagc
cggaagcata aagtgtaaag cctggggtgc 7560ctaatgagtg agctaactca cattaattgc
gttgcgctca ctgcccgctt tccagtcggg 7620aaacctgtcg tgccagctgc attaatgaat
cggccaacgc gcggggagag gcggtttgcg 7680tattgggcgc tcttccgctt cctcgctcac
tgactcgctg cgctcggtcg ttcggctgcg 7740gcgagcggta tcagctcact caaaggcggt
aatacggtta tccacagaat caggggataa 7800cgcaggaaag aacatgtgag caaaaggcca
gcaaaaggcc aggaaccgta aaaaggccgc 7860gttgctggcg tttttccata ggctccgccc
ccctgacgag catcacaaaa atcgacgctc 7920aagtcagagg tggcgaaacc cgacaggact
ataaagatac caggcgtttc cccctggaag 7980ctccctcgtg cgctctcctg ttccgaccct
gccgcttacc ggatacctgt ccgcctttct 8040cccttcggga agcgtggcgc tttctcatag
ctcacgctgt aggtatctca gttcggtgta 8100ggtcgttcgc tccaagctgg gctgtgtgca
cgaacccccc gttcagcccg accgctgcgc 8160cttatccggt aactatcgtc ttgagtccaa
cccggtaaga cacgacttat cgccactggc 8220agcagccact ggtaacagga ttagcagagc
gaggtatgta ggcggtgcta cagagttctt 8280gaagtggtgg cctaactacg gctacactag
aaggacagta tttggtatct gcgctctgct 8340gaagccagtt accttcggaa aaagagttgg
tagctcttga tccggcaaac aaaccaccgc 8400tggtagcggt ggtttttttg tttgcaagca
gcagattacg cgcagaaaaa aaggatctca 8460agaagatcct ttgatctttt ctacggggtc
tgacgctcag tggaacgaaa actcacgtta 8520agggattttg gtcatgagat tatcaaaaag
gatcttcacc tagatccttt taaattaaaa 8580atgaagtttt aaatcaatct aaagtatata
tgagtaaact tggtctgaca gttaccaatg 8640cttaatcagt gaggcaccta tctcagcgat
ctgtctattt cgttcatcca tagttgcctg 8700actccccgtc gtgtagataa ctacgatacg
ggagggctta ccatctggcc ccagtgctgc 8760aatgataccg cgagacccac gctcaccggc
tccagattta tcagcaataa accagccagc 8820cggaagggcc gagcgcagaa gtggtcctgc
aactttatcc gcctccatcc agtctattaa 8880ttgttgccgg gaagctagag taagtagttc
gccagttaat agtttgcgca acgttgttgc 8940cattgctaca ggcatcgtgg tgtcacgctc
gtcgtttggt atggcttcat tcagctccgg 9000ttcccaacga tcaaggcgag ttacatgatc
ccccatgttg tgcaaaaaag cggttagctc 9060cttcggtcct ccgatcgttg tcagaagtaa
gttggccgca gtgttatcac tcatggttat 9120ggcagcactg cataattctc ttactgtcat
gccatccgta agatgctttt ctgtgactgg 9180tgagtactca accaagtcat tctgagaata
gtgtatgcgg cgaccgagtt gctcttgccc 9240ggcgtcaata cgggataata ccgcgccaca
tagcagaact ttaaaagtgc tcatcattgg 9300aaaacgttct tcggggcgaa aactctcaag
gatcttaccg ctgttgagat ccagttcgat 9360gtaacccact cgtgcaccca actgatcttc
agcatctttt actttcacca gcgtttctgg 9420gtgagcaaaa acaggaaggc aaaatgccgc
aaaaaaggga ataagggcga cacggaaatg 9480ttgaatactc atactcttcc tttttcaata
ttattgaagc atttatcagg gttattgtct 9540catgagcgga tacatatttg aatgtattta
gaaaaataaa caaatagggg ttccgcgcac 9600atttccccga aaagtgccac ctgacgcgcc
ctgtagcggc gcattaagcg cggcgggtgt 9660ggtggttacg cgcagcgtga ccgctacact
tgccagcgcc ctagcgcccg ctcctttcgc 9720tttcttccct tcctttctcg ccacgttcgc
cggctttccc cgtcaagctc taaatcgggg 9780gctcccttta gggttccgat ttagtgcttt
acggcacctc gaccccaaaa aacttgatta 9840gggtgatggt tcacgtagtg ggccatcgcc
ctgatagacg gtttttcgcc ctttgacgtt 9900ggagtccacg ttctttaata gtggactctt
gttccaaact ggaacaacac tcaaccctat 9960ctcggtctat tcttttgatt tataagggat
tttgccgatt tcggcctatt ggttaaaaaa 10020tgagctgatt taacaaaaat ttaacgcgaa
ttttaacaaa atattaacgc ttacaatttc 10080cattcgccat tcaggctgcg caactgttgg
gaagggcgat cggtgcgggc ctcttcgcta 10140ttacgccagc tggcgaaagg gggatgtgct
gcaaggcgat taagttgggt aacgccaggg 10200ttttcccagt cacgacgttg taaaacgacg
gccagtgaat tgtaatacga ctcactatag 10260ggcgaattgg gtaccgggcc ccccctcgag
gtcgatggtg tcgataagct tgatatcgaa 10320ttcatgtcac acaaaccgat cttcgcctca
aggaaaccta attctacatc cgagagactg 10380ccgagatcca gtctacactg attaattttc
gggccaataa tttaaaaaaa tcgtgttata 10440taatattata tgtattatat atatacatca
tgatgatact gacagtcatg tcccattgct 10500aaatagacag actccatctg ccgcctccaa
ctgatgttct caatatttaa ggggtcatct 10560cgcattgttt aataataaac agactccatc
taccgcctcc aaatgatgtt ctcaaaatat 10620attgtatgaa cttattttta ttacttagta
ttattagaca acttacttgc tttatgaaaa 10680acacttccta tttaggaaac aatttataat
ggcagttcgt tcatttaaca atttatgtag 10740aataaatgtt ataaatgcgt atgggaaatc
ttaaatatgg atagcataaa tgatatctgc 10800attgcctaat tcgaaatcaa cagcaacgaa
aaaaatccct tgtacaacat aaatagtcat 10860cgagaaatat caactatcaa agaacagcta
ttcacacgtt actattgaga ttattattgg 10920acgagaatca cacactcaac tgtctttctc
tcttctagaa atacaggtac aagtatgtac 10980tattctcatt gttcatactt ctagtcattt
catcccacat attccttgga tttctctcca 11040atgaatgaca ttctatcttg caaattcaac
aattataata agatatacca aagtagcggt 11100atagtggcaa tcaaaaagct tctctggtgt
gcttctcgta tttattttta ttctaatgat 11160ccattaaagg tatatattta tttcttgtta
tataatcctt ttgtttatta catgggctgg 11220atacataaag gtattttgat ttaatttttt
gcttaaattc aatcccccct cgttcagtgt 11280caactgtaat ggtaggaaat taccatactt
ttgaagaagc aaaaaaaatg aaagaaaaaa 11340aaaatcgtat ttccaggtta gacgttccgc
agaatctaga atgcggtatg cggtacattg 11400ttcttcgaac gtaaaagttg cgctccctga
gatattgtac atttttgctt ttacaagtac 11460aagtacatcg tacaactatg tactactgtt
gatgcatcca caacagtttg ttttgttttt 11520ttttgttttt tttttttcta atgattcatt
accgctatgt atacctactt gtacttgtag 11580taagccgggt tattggcgtt caattaatca
tagacttatg aatctgcacg gtgtgcgctg 11640cgagttactt ttagcttatg catgctactt
gggtgtaata ttgggatctg ttcggaaatc 11700aacggatgct caat
117149932DNAArtificial sequenceCan1-1F
99aatgggactc aaacgattac ccaccctcgt tt
3210032DNAArtificial sequenceCan1-1R 100tctaaaacga gggtgggtaa tcgtttgagt
cc 3210123DNAYarrowia
lipolyticamisc_feature(1)..(23)Can1-1 target site and PAM 101tcaaacgatt
acccaccctc cgg
23102480DNAArtificial sequenceCan1-1 gRNA expression cassette
102attttttttg attttctttt ttgaccccgt cttcaattac acttcccaac tgggaacacc
60cctctttatc gacccatttt aggtaattta ccctagccca ttgtctccat aaggaatatt
120accctaaccc acagtccagg gtgcccaggt ccttctttgg ccaaatttta acttcggtcc
180tatggcacag cggtagcgcg tgagattgca aatcttaagg tcccgagttc gaatctcggt
240gggacctagt tatttttgat agataatttc gtgatgatta gaaacttaac gcaaaataat
300ggccggcatg gtcccagcct cctcgctggc gccggctggg caacatgctt cggcatggcg
360aatgggactc aaacgattac ccaccctcgt tttagagcta gaaatagcaa ttaaaataag
420gctagtccgt tatcaacttg aaaaagtggc accgagtcgg tgcttttttt tttgtttttt
48010311176DNAArtificial sequencepRF303 103tctaaaacga gggtgggtaa
tcgtttgagt cccattcgcc atgccgaagc atgttgccca 60gccggcgcca gcgaggaggc
tgggaccatg ccggccatta ttttgcgtta agtttctaat 120catcacgaaa ttatctatca
aaaataacta ggtcccaccg agattcgaac tcgggacctt 180aagatttgca atctcacgcg
ctaccgctgt gccataggac cgaagttaaa atttggccaa 240agaaggacct gggcaccctg
gactgtgggt tagggtaata ttccttatgg agacaatggg 300ctagggtaaa ttacctaaaa
tgggtcgata aagaggggtg ttcccagttg ggaagtgtaa 360ttgaagacgg ggtcaaaaaa
gaaaatcaaa aaaaatttaa ttaagtcata cacaagtcag 420ctttcttcga gcctcatata
agtataagta gttcaacgta ttagcactgt acccagcatc 480tccgtatcga gaaacacaac
aacatgcccc attggacaga tcatgcggat acacaggttg 540tgcagtatca tacatactcg
atcagacagg tcgtctgacc atcatacaag ctgaacaagc 600gctccatact tgcacgctct
ctatatacac agttaaatta catatccata gtctaacctc 660taacagttaa tcttctggta
agcctcccag ccagccttct ggtatcgctt ggcctcctca 720ataggatctc ggttctggcc
gtacagacct cggccgacaa ttatgatatc cgttccggta 780gacatgacat cctcaacagt
tcggtactgc tgtccgagag cgtctccctt gtcgtcaaga 840cccaccccgg gggtcagaat
aagccagtcc tcagagtcgc ccttaggtcg gttctgggca 900atgaagccaa ccacaaactc
ggggtcggat cgggcaagct caatggtctg cttggagtac 960tcgccagtgg ccagagagcc
cttgcaagac agctcggcca gcatgagcag acctctggcc 1020agcttctcgt tgggagaggg
gactaggaac tccttgtact gggagttctc gtagtcagag 1080acgtcctcct tcttctgttc
agagacagtt tcctcggcac cagctcgcag gccagcaatg 1140attccggttc cgggtacacc
gtgggcgttg gtgatatcgg accactcggc gattcggtga 1200caccggtact ggtgcttgac
agtgttgcca atatctgcga actttctgtc ctcgaacagg 1260aagaaaccgt gcttaagagc
aagttccttg agggggagca cagtgccggc gtaggtgaag 1320tcgtcaatga tgtcgatatg
ggttttgatc atgcacacat aaggtccgac cttatcggca 1380agctcaatga gctccttggt
ggtggtaaca tccagagaag cacacaggtt ggttttcttg 1440gctgccacga gcttgagcac
tcgagcggca aaggcggact tgtggacgtt agctcgagct 1500tcgtaggagg gcattttggt
ggtgaagagg agactgaaat aaatttagtc tgcagaactt 1560tttatcggaa ccttatctgg
ggcagtgaag tatatgttat ggtaatagtt acgagttagt 1620tgaacttata gatagactgg
actatacggc tatcggtcca aattagaaag aacgtcaatg 1680gctctctggg cgtcgccttt
gccgacaaaa atgtgatcat gatgaaagcc agcaatgacg 1740ttgcagctga tattgttgtc
ggccaaccgc gccgaaaacg cagctgtcag acccacagcc 1800tccaacgaag aatgtatcgt
caaagtgatc caagcacact catagttgga gtcgtactcc 1860aaaggcggca atgacgagtc
agacagatac tcgtcgacgt ttaaaccatc atctaagggc 1920ctcaaaacta cctcggaact
gctgcgctga tctggacacc acagaggttc cgagcacttt 1980aggttgcacc aaatgtccca
ccaggtgcag gcagaaaacg ctggaacagc gtgtacagtt 2040tgtcttaaca aaaagtgagg
gcgctgaggt cgagcagggt ggtgtgactt gttatagcct 2100ttagagctgc gaaagcgcgt
atggatttgg ctcatcaggc cagattgagg gtctgtggac 2160acatgtcatg ttagtgtact
tcaatcgccc cctggatata gccccgacaa taggccgtgg 2220cctcattttt ttgccttccg
cacatttcca ttgctcggta cccacacctt gcttctcctg 2280cacttgccaa ccttaatact
ggtttacatt gaccaacatc ttacaagcgg ggggcttgtc 2340tagggtatat ataaacagtg
gctctcccaa tcggttgcca gtctcttttt tcctttcttt 2400ccccacagat tcgaaatcta
aactacacat cacaccatgg acaagaaata ctccatcggc 2460ctggacattg gaaccaactc
tgtcggctgg gctgtcatca ccgacgagta caaggtgccc 2520tccaagaaat tcaaggtcct
cggaaacacc gatcgacact ccatcaagaa aaacctcatt 2580ggtgccctgt tgttcgattc
tggcgagact gccgaagcta ccagactcaa gcgaactgct 2640cggcgacgtt acacccgacg
gaagaaccga atctgctacc tgcaggagat cttttccaac 2700gagatggcca aggtggacga
ttcgttcttt catcgactgg aggaatcctt cctcgtcgag 2760gaagacaaga aacacgagcg
tcatcccatc tttggcaaca ttgtggacga ggttgcttac 2820cacgagaagt atcctaccat
ctaccatctc cgaaagaaac tcgtcgattc caccgacaag 2880gcggatctca gacttatcta
cctcgctctg gcacacatga tcaagtttcg aggtcatttc 2940ctcatcgagg gcgatctcaa
tcccgacaac agcgatgtgg acaagctgtt cattcagctc 3000gttcagacct acaaccagct
gttcgaggaa aaccccatca atgcctccgg agtcgatgca 3060aaggccatct tgtctgctcg
actctcgaag agcagacgac tggagaacct cattgcccaa 3120cttcctggcg agaaaaagaa
cggactgttt ggcaacctca ttgccctttc tcttggtctc 3180acacccaact tcaagtccaa
cttcgatctg gcggaggacg ccaagctcca gctgtccaag 3240gacacctacg acgatgacct
cgacaacctg cttgcacaga ttggcgatca gtacgccgac 3300ctgtttctcg ctgccaagaa
cctttcggat gctattctct tgtctgacat tctgcgagtc 3360aacaccgaga tcacaaaggc
tcccctttct gcctccatga tcaagcgata cgacgagcac 3420catcaggatc tcacactgct
caaggctctt gtccgacagc aactgcccga gaagtacaag 3480gagatctttt tcgatcagtc
gaagaacggc tacgctggat acatcgacgg cggagcctct 3540caggaagagt tctacaagtt
catcaagcca attctcgaga agatggacgg aaccgaggaa 3600ctgcttgtca agctcaatcg
agaggatctg cttcggaagc aacgaacctt cgacaacggc 3660agcattcctc atcagatcca
cctcggtgag ctgcacgcca ttcttcgacg tcaggaagac 3720ttctacccct ttctcaagga
caaccgagag aagatcgaga agattcttac ctttcgaatc 3780ccctactatg ttggtcctct
tgccagagga aactctcgat ttgcttggat gactcgaaag 3840tccgaggaaa ccatcactcc
ctggaacttc gaggaagtcg tggacaaggg tgcctctgca 3900cagtccttca tcgagcgaat
gaccaacttc gacaagaatc tgcccaacga gaaggttctt 3960cccaagcatt cgctgctcta
cgagtacttt acagtctaca acgaactcac caaagtcaag 4020tacgttaccg agggaatgcg
aaagcctgcc ttcttgtctg gcgaacagaa gaaagccatt 4080gtcgatctcc tgttcaagac
caaccgaaag gtcactgtta agcagctcaa ggaggactac 4140ttcaagaaaa tcgagtgttt
cgacagcgtc gagatttccg gagttgagga ccgattcaac 4200gcctctttgg gcacctatca
cgatctgctc aagattatca aggacaagga ttttctcgac 4260aacgaggaaa acgaggacat
tctggaggac atcgtgctca ctcttaccct gttcgaagat 4320cgggagatga tcgaggaacg
actcaagaca tacgctcacc tgttcgacga caaggtcatg 4380aaacaactca agcgacgtag
atacaccggc tggggaagac tttcgcgaaa gctcatcaac 4440ggcatcagag acaagcagtc
cggaaagacc attctggact ttctcaagtc cgatggcttt 4500gccaaccgaa acttcatgca
gctcattcac gacgattctc ttaccttcaa ggaggacatc 4560cagaaggcac aagtgtccgg
tcagggcgac agcttgcacg aacatattgc caacctggct 4620ggttcgccag ccatcaagaa
aggcattctc cagactgtca aggttgtcga cgagctggtg 4680aaggtcatgg gacgtcacaa
gcccgagaac attgtgatcg agatggccag agagaaccag 4740acaactcaaa agggtcagaa
aaactcgcga gagcggatga agcgaatcga ggaaggcatc 4800aaggagctgg gatcccagat
tctcaaggag catcccgtcg agaacactca actgcagaac 4860gagaagctgt atctctacta
tctgcagaat ggtcgagaca tgtacgtgga tcaggaactg 4920gacatcaatc gtctcagcga
ctacgatgtg gaccacattg tccctcaatc ctttctcaag 4980gacgattcta tcgacaacaa
ggtccttaca cgatccgaca agaacagagg caagtcggac 5040aacgttccca gcgaagaggt
ggtcaaaaag atgaagaact actggcgaca gctgctcaac 5100gccaagctca ttacccagcg
aaagttcgac aatcttacca aggccgagcg aggcggtctg 5160tccgagctcg acaaggctgg
cttcatcaag cgtcaactcg tcgagaccag acagatcaca 5220aagcacgtcg cacagattct
cgattctcgg atgaacacca agtacgacga gaacgacaag 5280ctcatccgag aggtcaaggt
gattactctc aagtccaaac tggtctccga tttccgaaag 5340gactttcagt tctacaaggt
gcgagagatc aacaattacc accatgccca cgatgcttac 5400ctcaacgccg tcgttggcac
tgcgctcatc aagaaatacc ccaagctcga aagcgagttc 5460gtttacggcg attacaaggt
ctacgacgtt cgaaagatga ttgccaagtc cgaacaggag 5520attggcaagg ctactgccaa
gtacttcttt tactccaaca tcatgaactt tttcaagacc 5580gagatcacct tggccaacgg
agagattcga aagagaccac ttatcgagac caacggcgaa 5640actggagaga tcgtgtggga
caagggtcga gactttgcaa ccgtgcgaaa ggttctgtcg 5700atgcctcagg tcaacatcgt
caagaaaacc gaggttcaga ctggcggatt ctccaaggag 5760tcgattctgc ccaagcgaaa
ctccgacaag ctcatcgctc gaaagaaaga ctgggatccc 5820aagaaatacg gtggcttcga
ttctcctacc gtcgcctatt ccgtgcttgt cgttgcgaag 5880gtcgagaagg gcaagtccaa
aaagctcaag tccgtcaagg agctgctcgg aattaccatc 5940atggagcgat cgagcttcga
gaagaatccc atcgacttct tggaagccaa gggttacaag 6000gaggtcaaga aagacctcat
tatcaagctg cccaagtact ctctgttcga actggagaac 6060ggtcgaaagc gtatgctcgc
ctccgctggc gagctgcaga agggaaacga gcttgccttg 6120ccttcgaagt acgtcaactt
tctctatctg gcttctcact acgagaagct caagggttct 6180cccgaggaca acgaacagaa
gcaactcttc gttgagcagc acaaacatta cctcgacgag 6240attatcgagc agatttccga
gttttcgaag cgagtcatcc tggctgatgc caacttggac 6300aaggtgctct ctgcctacaa
caagcatcgg gacaaaccca ttcgagaaca ggcggagaac 6360atcattcacc tgtttactct
taccaacctg ggtgctcctg cagctttcaa gtacttcgat 6420accactatcg accgaaagcg
gtacacatcc accaaggagg ttctcgatgc caccctgatt 6480caccagtcca tcactggcct
gtacgagacc cgaatcgacc tgtctcagct tggtggcgac 6540tccagagccg atcccaagaa
aaagcgaaag gtctaagcgg ccgcaagtgt ggatggggaa 6600gtgagtgccc ggttctgtgt
gcacaattgg caatccaaga tggatggatt caacacaggg 6660atatagcgag ctacgtggtg
gtgcgaggat atagcaacgg atatttatgt ttgacacttg 6720agaatgtacg atacaagcac
tgtccaagta caatactaaa catactgtac atactcatac 6780tcgtacccgg gcaacggttt
cacttgagtg cagtggctag tgctcttact cgtacagtgt 6840gcaatactgc gtatcatagt
ctttgatgta tatcgtattc attcatgtta gttgcgtacg 6900agccggaagc ataaagtgta
aagcctgggg tgcctaatga gtgagctaac tcacattaat 6960tgcgttgcgc tcactgcccg
ctttccagtc gggaaacctg tcgtgccagc tgcattaatg 7020aatcggccaa cgcgcgggga
gaggcggttt gcgtattggg cgctcttccg cttcctcgct 7080cactgactcg ctgcgctcgg
tcgttcggct gcggcgagcg gtatcagctc actcaaaggc 7140ggtaatacgg ttatccacag
aatcagggga taacgcagga aagaacatgt gagcaaaagg 7200ccagcaaaag gccaggaacc
gtaaaaaggc cgcgttgctg gcgtttttcc ataggctccg 7260cccccctgac gagcatcaca
aaaatcgacg ctcaagtcag aggtggcgaa acccgacagg 7320actataaaga taccaggcgt
ttccccctgg aagctccctc gtgcgctctc ctgttccgac 7380cctgccgctt accggatacc
tgtccgcctt tctcccttcg ggaagcgtgg cgctttctca 7440tagctcacgc tgtaggtatc
tcagttcggt gtaggtcgtt cgctccaagc tgggctgtgt 7500gcacgaaccc cccgttcagc
ccgaccgctg cgccttatcc ggtaactatc gtcttgagtc 7560caacccggta agacacgact
tatcgccact ggcagcagcc actggtaaca ggattagcag 7620agcgaggtat gtaggcggtg
ctacagagtt cttgaagtgg tggcctaact acggctacac 7680tagaaggaca gtatttggta
tctgcgctct gctgaagcca gttaccttcg gaaaaagagt 7740tggtagctct tgatccggca
aacaaaccac cgctggtagc ggtggttttt ttgtttgcaa 7800gcagcagatt acgcgcagaa
aaaaaggatc tcaagaagat cctttgatct tttctacggg 7860gtctgacgct cagtggaacg
aaaactcacg ttaagggatt ttggtcatga gattatcaaa 7920aaggatcttc acctagatcc
ttttaaatta aaaatgaagt tttaaatcaa tctaaagtat 7980atatgagtaa acttggtctg
acagttacca atgcttaatc agtgaggcac ctatctcagc 8040gatctgtcta tttcgttcat
ccatagttgc ctgactcccc gtcgtgtaga taactacgat 8100acgggagggc ttaccatctg
gccccagtgc tgcaatgata ccgcgagacc cacgctcacc 8160ggctccagat ttatcagcaa
taaaccagcc agccggaagg gccgagcgca gaagtggtcc 8220tgcaacttta tccgcctcca
tccagtctat taattgttgc cgggaagcta gagtaagtag 8280ttcgccagtt aatagtttgc
gcaacgttgt tgccattgct acaggcatcg tggtgtcacg 8340ctcgtcgttt ggtatggctt
cattcagctc cggttcccaa cgatcaaggc gagttacatg 8400atcccccatg ttgtgcaaaa
aagcggttag ctccttcggt cctccgatcg ttgtcagaag 8460taagttggcc gcagtgttat
cactcatggt tatggcagca ctgcataatt ctcttactgt 8520catgccatcc gtaagatgct
tttctgtgac tggtgagtac tcaaccaagt cattctgaga 8580atagtgtatg cggcgaccga
gttgctcttg cccggcgtca atacgggata ataccgcgcc 8640acatagcaga actttaaaag
tgctcatcat tggaaaacgt tcttcggggc gaaaactctc 8700aaggatctta ccgctgttga
gatccagttc gatgtaaccc actcgtgcac ccaactgatc 8760ttcagcatct tttactttca
ccagcgtttc tgggtgagca aaaacaggaa ggcaaaatgc 8820cgcaaaaaag ggaataaggg
cgacacggaa atgttgaata ctcatactct tcctttttca 8880atattattga agcatttatc
agggttattg tctcatgagc ggatacatat ttgaatgtat 8940ttagaaaaat aaacaaatag
gggttccgcg cacatttccc cgaaaagtgc cacctgacgc 9000gccctgtagc ggcgcattaa
gcgcggcggg tgtggtggtt acgcgcagcg tgaccgctac 9060acttgccagc gccctagcgc
ccgctccttt cgctttcttc ccttcctttc tcgccacgtt 9120cgccggcttt ccccgtcaag
ctctaaatcg ggggctccct ttagggttcc gatttagtgc 9180tttacggcac ctcgacccca
aaaaacttga ttagggtgat ggttcacgta gtgggccatc 9240gccctgatag acggtttttc
gccctttgac gttggagtcc acgttcttta atagtggact 9300cttgttccaa actggaacaa
cactcaaccc tatctcggtc tattcttttg atttataagg 9360gattttgccg atttcggcct
attggttaaa aaatgagctg atttaacaaa aatttaacgc 9420gaattttaac aaaatattaa
cgcttacaat ttccattcgc cattcaggct gcgcaactgt 9480tgggaagggc gatcggtgcg
ggcctcttcg ctattacgcc agctggcgaa agggggatgt 9540gctgcaaggc gattaagttg
ggtaacgcca gggttttccc agtcacgacg ttgtaaaacg 9600acggccagtg aattgtaata
cgactcacta tagggcgaat tgggtaccgg gccccccctc 9660gaggtcgatg gtgtcgataa
gcttgatatc gaattcatgt cacacaaacc gatcttcgcc 9720tcaaggaaac ctaattctac
atccgagaga ctgccgagat ccagtctaca ctgattaatt 9780ttcgggccaa taatttaaaa
aaatcgtgtt atataatatt atatgtatta tatatataca 9840tcatgatgat actgacagtc
atgtcccatt gctaaataga cagactccat ctgccgcctc 9900caactgatgt tctcaatatt
taaggggtca tctcgcattg tttaataata aacagactcc 9960atctaccgcc tccaaatgat
gttctcaaaa tatattgtat gaacttattt ttattactta 10020gtattattag acaacttact
tgctttatga aaaacacttc ctatttagga aacaatttat 10080aatggcagtt cgttcattta
acaatttatg tagaataaat gttataaatg cgtatgggaa 10140atcttaaata tggatagcat
aaatgatatc tgcattgcct aattcgaaat caacagcaac 10200gaaaaaaatc ccttgtacaa
cataaatagt catcgagaaa tatcaactat caaagaacag 10260ctattcacac gttactattg
agattattat tggacgagaa tcacacactc aactgtcttt 10320ctctcttcta gaaatacagg
tacaagtatg tactattctc attgttcata cttctagtca 10380tttcatccca catattcctt
ggatttctct ccaatgaatg acattctatc ttgcaaattc 10440aacaattata ataagatata
ccaaagtagc ggtatagtgg caatcaaaaa gcttctctgg 10500tgtgcttctc gtatttattt
ttattctaat gatccattaa aggtatatat ttatttcttg 10560ttatataatc cttttgttta
ttacatgggc tggatacata aaggtatttt gatttaattt 10620tttgcttaaa ttcaatcccc
cctcgttcag tgtcaactgt aatggtagga aattaccata 10680cttttgaaga agcaaaaaaa
atgaaagaaa aaaaaaatcg tatttccagg ttagacgttc 10740cgcagaatct agaatgcggt
atgcggtaca ttgttcttcg aacgtaaaag ttgcgctccc 10800tgagatattg tacatttttg
cttttacaag tacaagtaca tcgtacaact atgtactact 10860gttgatgcat ccacaacagt
ttgttttgtt tttttttgtt tttttttttt ctaatgattc 10920attaccgcta tgtataccta
cttgtacttg tagtaagccg ggttattggc gttcaattaa 10980tcatagactt atgaatctgc
acggtgtgcg ctgcgagtta cttttagctt atgcatgcta 11040cttgggtgta atattgggat
ctgttcggaa atcaacggat gctcaatcga taaaaaacaa 11100aaaaaaaagc accgactcgg
tgccactttt tcaagttgat aacggactag ccttatttta 11160acttgctatt tctagc
11176104168RNAArtificial
sequenceribozyme-guide RNA of Cas1-1 104ggccggcaug gucccagccu ccucgcuggc
gccggcuggg caacaugcuu cggcauggcg 60aaugggacuc aaacgauuac ccacccucgu
uuuagagcua gaaauagcaa guuaaaauaa 120ggcuaguccg uuaucaacuu gaaaaagugg
caccgagucg gugcuuuu 1681051719DNAYarrowia
lipolyticamisc_feature(1)..(1719)Can1 gene 105atggaaaaga cattttcaaa
cgattaccca ccctccggga ctgaggccca catccacatc 60aaccacacgg cccactcgga
tgactcagag gaggtgccct cgcacaagga aaattacaac 120accagtggcc acgacctgga
ggagtccgac ccggataacc atgtcggtga gaccctcgag 180gtcaagcgag gtctcaagat
gcgacacatc tccatgatct cgcttggagg aaccattggt 240accggtctct tcattggtac
cggaggagct ctccagcagg ccggtccctg tggcgccctc 300gtcgcctacg tgttcatggc
caccattgtc tactctgttg ccgagtctct tggagaactg 360gctacgtaca ttcccatcac
cggctccttt gccgtcttta ctacccgata tctgtcacag 420tcgtttggtg cctccatggg
ctggctatac tggttctcgt gggcgatcac cttcgccatc 480gagctcaaca ccattggtcc
cgtgattgag tactggactg acgccgttcc tactgctgcc 540tggattgcca tcttcttcgt
catcctcact accatcaact tcttccccgt gggcttctat 600ggcgaagtcg agttctgggt
ggcctccgtg aaggtcattg ccatcattgg atggctcatc 660tacgcgctct gcatgacgtg
tggagcaggt gtaacaggtc ctgtgggatt cagatactgg 720aaccaccccg gacccatggg
agacggaatc tggaccgacg gcgtgcccat tgtgcgaaac 780gcgcccggtc gacgattcat
gggatggctc aattcgctcg ttaacgccgc cttcacctac 840cagggctgtg agctggtcgg
agtcactgcc ggtgaggccc agaaccccag aaagtccgtc 900cctcgagcca tcaaccgagt
ctttgctcga atttgcatct tctacattgg ctctatcttc 960ttcatgggca tgctcgtgcc
ctttaacgac cccaagctga ccgatgactc ctccgtcatc 1020gcctcctctc cttttgttat
tgccattatc aactctggca ccaaggtgct ccctcacatt 1080ttcaacgccg tcattctcat
caccctgatt tcggcaggaa actccaacgt ctacattggc 1140tcgcgagtgg tctacgccct
ggctgactcc ggaaccgcac caaagttctt caagcgaacc 1200accaagaagg gagtgccgta
cgtggcagtc tgcttcacct cggcgtttgg tctgctggcc 1260ttcatgtctg tgtccgagtc
gtcgtccact gtcttcgact ggttcatcaa catctccgct 1320gtggccggcc tcatctgttg
ggccttcatc tctgcctccc acatccgatt catgcaagtg 1380cttaagcaca gagggatctc
cagagatacg ctgcccttca aggcacgatg gcagccattc 1440tactcatggt acgcgctcgt
ctccatcatc ttcatcactc tcatccaggg cttcacgtcc 1500ttctggcact ttaccgccgc
caagttcatg actgcataca tctccgtcat tgtctgggtc 1560ggtttgtaca ttatcttcca
gtgtctgttc cgatgcaagt tccttatccc tattgaggat 1620gtggacattg acaccggccg
acgagagatt gacgacgatg tgtgggagga gaagatcccc 1680acaaagtggt acgagaagtt
ttggaatatt attgcataa 171910623DNAYarrowia
lipolyticamisc_feature(1)..(23)Can1-2 target site and PAM 106ggcccactcg
gatgactcag agg
2310727DNAYarrowia lipolyticamisc_feature(1)..(17)Sou2-1 target site and
PAM 107gtctggacct tccaccctcg ccacggg
2710825DNAYarrowia lipolyticamisc_feature(1)..(25)Sou2-2 target site
and PAM 108gcagtcccgt ggcgagggtg gaagg
2510920RNAArtificial sequenceVariable targeting domain of Can1-2
109ggcccacucg gaugacucag
2011024RNAartificial sequenceVariable targeting domain of Sou2-1
110gucuggaccu uccacccucg ccac
2411122RNAartificial sequenceVariable targeting domain of Sou2-2
111gcagucccgu ggcgagggug ga
2211223DNAYarrowia lipolytica 112cagctcgaga cgtcctagaa cgg
2311323DNAYarrowia lipolytica 113ttcctctgtc
acagacgttt cgg
2311423DNAYarrowia lipolytica 114gaaaagtgcg ttttgattct cgg
2311519RNAartificial sequenceVariable
targeting domain of ura3-1 115gccgcucgag ugcucaagc
1911622DNAYarrowia
lipolyticamisc_feature(1)..(22)URa3-1 target site and PAM 116gccgctcgag
tgctcaagct cg
221171379PRTArtificial sequenceCas9-SV40 NLS D10A H840A 117Met Asp Lys
Lys Tyr Ser Ile Gly Leu Ala Ile Gly Thr Asn Ser Val1 5
10 15Gly Trp Ala Val Ile Thr Asp Glu Tyr
Lys Val Pro Ser Lys Lys Phe 20 25
30Lys Val Leu Gly Asn Thr Asp Arg His Ser Ile Lys Lys Asn Leu Ile
35 40 45Gly Ala Leu Leu Phe Asp Ser
Gly Glu Thr Ala Glu Ala Thr Arg Leu 50 55
60Lys Arg Thr Ala Arg Arg Arg Tyr Thr Arg Arg Lys Asn Arg Ile Cys65
70 75 80Tyr Leu Gln Glu
Ile Phe Ser Asn Glu Met Ala Lys Val Asp Asp Ser 85
90 95Phe Phe His Arg Leu Glu Glu Ser Phe Leu
Val Glu Glu Asp Lys Lys 100 105
110His Glu Arg His Pro Ile Phe Gly Asn Ile Val Asp Glu Val Ala Tyr
115 120 125His Glu Lys Tyr Pro Thr Ile
Tyr His Leu Arg Lys Lys Leu Val Asp 130 135
140Ser Thr Asp Lys Ala Asp Leu Arg Leu Ile Tyr Leu Ala Leu Ala
His145 150 155 160Met Ile
Lys Phe Arg Gly His Phe Leu Ile Glu Gly Asp Leu Asn Pro
165 170 175Asp Asn Ser Asp Val Asp Lys
Leu Phe Ile Gln Leu Val Gln Thr Tyr 180 185
190Asn Gln Leu Phe Glu Glu Asn Pro Ile Asn Ala Ser Gly Val
Asp Ala 195 200 205Lys Ala Ile Leu
Ser Ala Arg Leu Ser Lys Ser Arg Arg Leu Glu Asn 210
215 220Leu Ile Ala Gln Leu Pro Gly Glu Lys Lys Asn Gly
Leu Phe Gly Asn225 230 235
240Leu Ile Ala Leu Ser Leu Gly Leu Thr Pro Asn Phe Lys Ser Asn Phe
245 250 255Asp Leu Ala Glu Asp
Ala Lys Leu Gln Leu Ser Lys Asp Thr Tyr Asp 260
265 270Asp Asp Leu Asp Asn Leu Leu Ala Gln Ile Gly Asp
Gln Tyr Ala Asp 275 280 285Leu Phe
Leu Ala Ala Lys Asn Leu Ser Asp Ala Ile Leu Leu Ser Asp 290
295 300Ile Leu Arg Val Asn Thr Glu Ile Thr Lys Ala
Pro Leu Ser Ala Ser305 310 315
320Met Ile Lys Arg Tyr Asp Glu His His Gln Asp Leu Thr Leu Leu Lys
325 330 335Ala Leu Val Arg
Gln Gln Leu Pro Glu Lys Tyr Lys Glu Ile Phe Phe 340
345 350Asp Gln Ser Lys Asn Gly Tyr Ala Gly Tyr Ile
Asp Gly Gly Ala Ser 355 360 365Gln
Glu Glu Phe Tyr Lys Phe Ile Lys Pro Ile Leu Glu Lys Met Asp 370
375 380Gly Thr Glu Glu Leu Leu Val Lys Leu Asn
Arg Glu Asp Leu Leu Arg385 390 395
400Lys Gln Arg Thr Phe Asp Asn Gly Ser Ile Pro His Gln Ile His
Leu 405 410 415Gly Glu Leu
His Ala Ile Leu Arg Arg Gln Glu Asp Phe Tyr Pro Phe 420
425 430Leu Lys Asp Asn Arg Glu Lys Ile Glu Lys
Ile Leu Thr Phe Arg Ile 435 440
445Pro Tyr Tyr Val Gly Pro Leu Ala Arg Gly Asn Ser Arg Phe Ala Trp 450
455 460Met Thr Arg Lys Ser Glu Glu Thr
Ile Thr Pro Trp Asn Phe Glu Glu465 470
475 480Val Val Asp Lys Gly Ala Ser Ala Gln Ser Phe Ile
Glu Arg Met Thr 485 490
495Asn Phe Asp Lys Asn Leu Pro Asn Glu Lys Val Leu Pro Lys His Ser
500 505 510Leu Leu Tyr Glu Tyr Phe
Thr Val Tyr Asn Glu Leu Thr Lys Val Lys 515 520
525Tyr Val Thr Glu Gly Met Arg Lys Pro Ala Phe Leu Ser Gly
Glu Gln 530 535 540Lys Lys Ala Ile Val
Asp Leu Leu Phe Lys Thr Asn Arg Lys Val Thr545 550
555 560Val Lys Gln Leu Lys Glu Asp Tyr Phe Lys
Lys Ile Glu Cys Phe Asp 565 570
575Ser Val Glu Ile Ser Gly Val Glu Asp Arg Phe Asn Ala Ser Leu Gly
580 585 590Thr Tyr His Asp Leu
Leu Lys Ile Ile Lys Asp Lys Asp Phe Leu Asp 595
600 605Asn Glu Glu Asn Glu Asp Ile Leu Glu Asp Ile Val
Leu Thr Leu Thr 610 615 620Leu Phe Glu
Asp Arg Glu Met Ile Glu Glu Arg Leu Lys Thr Tyr Ala625
630 635 640His Leu Phe Asp Asp Lys Val
Met Lys Gln Leu Lys Arg Arg Arg Tyr 645
650 655Thr Gly Trp Gly Arg Leu Ser Arg Lys Leu Ile Asn
Gly Ile Arg Asp 660 665 670Lys
Gln Ser Gly Lys Thr Ile Leu Asp Phe Leu Lys Ser Asp Gly Phe 675
680 685Ala Asn Arg Asn Phe Met Gln Leu Ile
His Asp Asp Ser Leu Thr Phe 690 695
700Lys Glu Asp Ile Gln Lys Ala Gln Val Ser Gly Gln Gly Asp Ser Leu705
710 715 720His Glu His Ile
Ala Asn Leu Ala Gly Ser Pro Ala Ile Lys Lys Gly 725
730 735Ile Leu Gln Thr Val Lys Val Val Asp Glu
Leu Val Lys Val Met Gly 740 745
750Arg His Lys Pro Glu Asn Ile Val Ile Glu Met Ala Arg Glu Asn Gln
755 760 765Thr Thr Gln Lys Gly Gln Lys
Asn Ser Arg Glu Arg Met Lys Arg Ile 770 775
780Glu Glu Gly Ile Lys Glu Leu Gly Ser Gln Ile Leu Lys Glu His
Pro785 790 795 800Val Glu
Asn Thr Gln Leu Gln Asn Glu Lys Leu Tyr Leu Tyr Tyr Leu
805 810 815Gln Asn Gly Arg Asp Met Tyr
Val Asp Gln Glu Leu Asp Ile Asn Arg 820 825
830Leu Ser Asp Tyr Asp Val Asp Ala Ile Val Pro Gln Ser Phe
Leu Lys 835 840 845Asp Asp Ser Ile
Asp Asn Lys Val Leu Thr Arg Ser Asp Lys Asn Arg 850
855 860Gly Lys Ser Asp Asn Val Pro Ser Glu Glu Val Val
Lys Lys Met Lys865 870 875
880Asn Tyr Trp Arg Gln Leu Leu Asn Ala Lys Leu Ile Thr Gln Arg Lys
885 890 895Phe Asp Asn Leu Thr
Lys Ala Glu Arg Gly Gly Leu Ser Glu Leu Asp 900
905 910Lys Ala Gly Phe Ile Lys Arg Gln Leu Val Glu Thr
Arg Gln Ile Thr 915 920 925Lys His
Val Ala Gln Ile Leu Asp Ser Arg Met Asn Thr Lys Tyr Asp 930
935 940Glu Asn Asp Lys Leu Ile Arg Glu Val Lys Val
Ile Thr Leu Lys Ser945 950 955
960Lys Leu Val Ser Asp Phe Arg Lys Asp Phe Gln Phe Tyr Lys Val Arg
965 970 975Glu Ile Asn Asn
Tyr His His Ala His Asp Ala Tyr Leu Asn Ala Val 980
985 990Val Gly Thr Ala Leu Ile Lys Lys Tyr Pro Lys
Leu Glu Ser Glu Phe 995 1000
1005Val Tyr Gly Asp Tyr Lys Val Tyr Asp Val Arg Lys Met Ile Ala
1010 1015 1020Lys Ser Glu Gln Glu Ile
Gly Lys Ala Thr Ala Lys Tyr Phe Phe 1025 1030
1035Tyr Ser Asn Ile Met Asn Phe Phe Lys Thr Glu Ile Thr Leu
Ala 1040 1045 1050Asn Gly Glu Ile Arg
Lys Arg Pro Leu Ile Glu Thr Asn Gly Glu 1055 1060
1065Thr Gly Glu Ile Val Trp Asp Lys Gly Arg Asp Phe Ala
Thr Val 1070 1075 1080Arg Lys Val Leu
Ser Met Pro Gln Val Asn Ile Val Lys Lys Thr 1085
1090 1095Glu Val Gln Thr Gly Gly Phe Ser Lys Glu Ser
Ile Leu Pro Lys 1100 1105 1110Arg Asn
Ser Asp Lys Leu Ile Ala Arg Lys Lys Asp Trp Asp Pro 1115
1120 1125Lys Lys Tyr Gly Gly Phe Asp Ser Pro Thr
Val Ala Tyr Ser Val 1130 1135 1140Leu
Val Val Ala Lys Val Glu Lys Gly Lys Ser Lys Lys Leu Lys 1145
1150 1155Ser Val Lys Glu Leu Leu Gly Ile Thr
Ile Met Glu Arg Ser Ser 1160 1165
1170Phe Glu Lys Asn Pro Ile Asp Phe Leu Glu Ala Lys Gly Tyr Lys
1175 1180 1185Glu Val Lys Lys Asp Leu
Ile Ile Lys Leu Pro Lys Tyr Ser Leu 1190 1195
1200Phe Glu Leu Glu Asn Gly Arg Lys Arg Met Leu Ala Ser Ala
Gly 1205 1210 1215Glu Leu Gln Lys Gly
Asn Glu Leu Ala Leu Pro Ser Lys Tyr Val 1220 1225
1230Asn Phe Leu Tyr Leu Ala Ser His Tyr Glu Lys Leu Lys
Gly Ser 1235 1240 1245Pro Glu Asp Asn
Glu Gln Lys Gln Leu Phe Val Glu Gln His Lys 1250
1255 1260His Tyr Leu Asp Glu Ile Ile Glu Gln Ile Ser
Glu Phe Ser Lys 1265 1270 1275Arg Val
Ile Leu Ala Asp Ala Asn Leu Asp Lys Val Leu Ser Ala 1280
1285 1290Tyr Asn Lys His Arg Asp Lys Pro Ile Arg
Glu Gln Ala Glu Asn 1295 1300 1305Ile
Ile His Leu Phe Thr Leu Thr Asn Leu Gly Ala Pro Ala Ala 1310
1315 1320Phe Lys Tyr Phe Asp Thr Thr Ile Asp
Arg Lys Arg Tyr Thr Ser 1325 1330
1335Thr Lys Glu Val Leu Asp Ala Thr Leu Ile His Gln Ser Ile Thr
1340 1345 1350Gly Leu Tyr Glu Thr Arg
Ile Asp Leu Ser Gln Leu Gly Gly Asp 1355 1360
1365Ser Arg Ala Asp Pro Lys Lys Lys Arg Lys Val 1370
137511841DNAArtificial sequenceD10AF 118gaaatactcc atcggcctgg
ccattggaac caactctgtc g 4111941DNAArtificial
SequenceD10AR 119cgacagagtt ggttccaatg gccaggccga tggagtattt c
411204140DNAArtificial SequenceYarrowia optimized Cas9 D10A
120atggacaaga aatactccat cggcctggcc attggaacca actctgtcgg ctgggctgtc
60atcaccgacg agtacaaggt gccctccaag aaattcaagg tcctcggaaa caccgatcga
120cactccatca agaaaaacct cattggtgcc ctgttgttcg attctggcga gactgccgaa
180gctaccagac tcaagcgaac tgctcggcga cgttacaccc gacggaagaa ccgaatctgc
240tacctgcagg agatcttttc caacgagatg gccaaggtgg acgattcgtt ctttcatcga
300ctggaggaat ccttcctcgt cgaggaagac aagaaacacg agcgtcatcc catctttggc
360aacattgtgg acgaggttgc ttaccacgag aagtatccta ccatctacca cctgcgaaag
420aaactcgtcg attccaccga caaggcggat ctcagactta tctacctcgc tctggcacac
480atgatcaagt ttcgaggtca tttcctcatc gagggcgatc tcaatcccga caacagcgat
540gtggacaagc tgttcattca gctcgttcag acctacaacc agctgttcga ggaaaacccc
600atcaatgcct ccggagtcga tgcaaaggcc atcttgtctg ctcgactctc gaagagcaga
660cgactggaga acctcattgc ccaacttcct ggcgagaaaa agaacggact gtttggcaac
720ctcattgccc tttctcttgg tctcacaccc aacttcaagt ccaacttcga tctggcggag
780gacgccaagc tccagctgtc caaggacacc tacgacgatg acctcgacaa cctgcttgca
840cagattggcg atcagtacgc cgacctgttt ctcgctgcca agaacctttc ggatgctatt
900ctcttgtctg acattctgcg agtcaacacc gagatcacaa aggctcccct ttctgcctcc
960atgatcaagc gatacgacga gcaccatcag gatctcacac tgctcaaggc tcttgtccga
1020cagcaactgc ccgagaagta caaggagatc tttttcgatc agtcgaagaa cggctacgct
1080ggatacatcg acggcggagc ctctcaggaa gagttctaca agttcatcaa gccaattctc
1140gagaagatgg acggaaccga ggaactgctt gtcaagctca atcgagagga tctgcttcgg
1200aagcaacgaa ccttcgacaa cggcagcatt cctcatcaga tccacctcgg tgagctgcac
1260gccattcttc gacgtcagga agacttctac ccctttctca aggacaaccg agagaagatc
1320gagaagattc ttacctttcg aatcccctac tatgttggtc ctcttgccag aggaaactct
1380cgatttgctt ggatgactcg aaagtccgag gaaaccatca ctccctggaa cttcgaggaa
1440gtcgtggaca agggtgcctc tgcacagtcc ttcatcgagc gaatgaccaa cttcgacaag
1500aatctgccca acgagaaggt tcttcccaag cattcgctgc tctacgagta ctttacagtc
1560tacaacgaac tcaccaaagt caagtacgtt accgagggaa tgcgaaagcc tgccttcttg
1620tctggcgaac agaagaaagc cattgtcgat ctcctgttca agaccaaccg aaaggtcact
1680gttaagcagc tcaaggagga ctacttcaag aaaatcgagt gtttcgacag cgtcgagatt
1740tccggagttg aggaccgatt caacgcctct ttgggcacct atcacgatct gctcaagatt
1800atcaaggaca aggattttct cgacaacgag gaaaacgagg acattctgga ggacatcgtg
1860ctcactctta ccctgttcga agatcgggag atgatcgagg aacgactcaa gacatacgct
1920cacctgttcg acgacaaggt catgaaacaa ctcaagcgac gtagatacac cggctgggga
1980agactttcgc gaaagctcat caacggcatc agagacaagc agtccggaaa gaccattctg
2040gactttctca agtccgatgg ctttgccaac cgaaacttca tgcagctcat tcacgacgat
2100tctcttacct tcaaggagga catccagaag gcacaagtgt ccggtcaggg cgacagcttg
2160cacgaacata ttgccaacct ggctggttcg ccagccatca agaaaggcat tctccagact
2220gtcaaggttg tcgacgagct ggtgaaggtc atgggacgtc acaagcccga gaacattgtg
2280atcgagatgg ccagagagaa ccagacaact caaaagggtc agaaaaactc gcgagagcgg
2340atgaagcgaa tcgaggaagg catcaaggag ctgggatccc agattctcaa ggagcatccc
2400gtcgagaaca ctcaactgca gaacgagaag ctgtatctct actatctgca gaatggtcga
2460gacatgtacg tggatcagga actggacatc aatcgtctca gcgactacga tgtggaccac
2520attgtccctc aatcctttct caaggacgat tctatcgaca acaaggtcct tacacgatcc
2580gacaagaaca gaggcaagtc ggacaacgtt cccagcgaag aggtggtcaa aaagatgaag
2640aactactggc gacagctgct caacgccaag ctcattaccc agcgaaagtt cgacaatctt
2700accaaggccg agcgaggcgg tctgtccgag ctcgacaagg ctggcttcat caagcgtcaa
2760ctcgtcgaga ccagacagat cacaaagcac gtcgcacaga ttctcgattc tcggatgaac
2820accaagtacg acgagaacga caagctcatc cgagaggtca aggtgattac tctcaagtcc
2880aaactggtct ccgatttccg aaaggacttt cagttctaca aggtgcgaga gatcaacaat
2940taccaccatg cccacgatgc ttacctcaac gccgtcgttg gcactgcgct catcaagaaa
3000taccccaagc tcgaaagcga gttcgtttac ggcgattaca aggtctacga cgttcgaaag
3060atgattgcca agtccgaaca ggagattggc aaggctactg ccaagtactt cttttactcc
3120aacatcatga actttttcaa gaccgagatc accttggcca acggagagat tcgaaagaga
3180ccacttatcg agaccaacgg cgaaactgga gagatcgtgt gggacaaggg tcgagacttt
3240gcaaccgtgc gaaaggttct gtcgatgcct caggtcaaca tcgtcaagaa aaccgaggtt
3300cagactggcg gattctccaa ggagtcgatt ctgcccaagc gaaactccga caagctcatc
3360gctcgaaaga aagactggga tcccaagaaa tacggtggct tcgattctcc taccgtcgcc
3420tattccgtgc ttgtcgttgc gaaggtcgag aagggcaagt ccaaaaagct caagtccgtc
3480aaggagctgc tcggaattac catcatggag cgatcgagct tcgagaagaa tcccatcgac
3540ttcttggaag ccaagggtta caaggaggtc aagaaagacc tcattatcaa gctgcccaag
3600tactctctgt tcgaactgga gaacggtcga aagcgtatgc tcgcctccgc tggcgagctg
3660cagaagggaa acgagcttgc cttgccttcg aagtacgtca actttctcta tctggcttct
3720cactacgaga agctcaaggg ttctcccgag gacaacgaac agaagcaact cttcgttgag
3780cagcacaaac attacctcga cgagattatc gagcagattt ccgagttttc gaagcgagtc
3840atcctggctg atgccaactt ggacaaggtg ctctctgcct acaacaagca tcgggacaaa
3900cccattcgag aacaggcgga gaacatcatt cacctgttta ctcttaccaa cctgggtgct
3960cctgcagctt tcaagtactt cgataccact atcgaccgaa agcggtacac atccaccaag
4020gaggttctcg atgccaccct gattcaccag tccatcactg gcctgtacga gacccgaatc
4080gacctgtctc agcttggtgg cgactccaga gccgatccca agaaaaagcg aaaggtctaa
414012110706DNAArtificial sequencepRF111 121catggacaag aaatactcca
tcggcctggc cattggaacc aactctgtcg gctgggctgt 60catcaccgac gagtacaagg
tgccctccaa gaaattcaag gtcctcggaa acaccgatcg 120acactccatc aagaaaaacc
tcattggtgc cctgttgttc gattctggcg agactgccga 180agctaccaga ctcaagcgaa
ctgctcggcg acgttacacc cgacggaaga accgaatctg 240ctacctgcag gagatctttt
ccaacgagat ggccaaggtg gacgattcgt tctttcatcg 300actggaggaa tccttcctcg
tcgaggaaga caagaaacac gagcgtcatc ccatctttgg 360caacattgtg gacgaggttg
cttaccacga gaagtatcct accatctacc acctgcgaaa 420gaaactcgtc gattccaccg
acaaggcgga tctcagactt atctacctcg ctctggcaca 480catgatcaag tttcgaggtc
atttcctcat cgagggcgat ctcaatcccg acaacagcga 540tgtggacaag ctgttcattc
agctcgttca gacctacaac cagctgttcg aggaaaaccc 600catcaatgcc tccggagtcg
atgcaaaggc catcttgtct gctcgactct cgaagagcag 660acgactggag aacctcattg
cccaacttcc tggcgagaaa aagaacggac tgtttggcaa 720cctcattgcc ctttctcttg
gtctcacacc caacttcaag tccaacttcg atctggcgga 780ggacgccaag ctccagctgt
ccaaggacac ctacgacgat gacctcgaca acctgcttgc 840acagattggc gatcagtacg
ccgacctgtt tctcgctgcc aagaaccttt cggatgctat 900tctcttgtct gacattctgc
gagtcaacac cgagatcaca aaggctcccc tttctgcctc 960catgatcaag cgatacgacg
agcaccatca ggatctcaca ctgctcaagg ctcttgtccg 1020acagcaactg cccgagaagt
acaaggagat ctttttcgat cagtcgaaga acggctacgc 1080tggatacatc gacggcggag
cctctcagga agagttctac aagttcatca agccaattct 1140cgagaagatg gacggaaccg
aggaactgct tgtcaagctc aatcgagagg atctgcttcg 1200gaagcaacga accttcgaca
acggcagcat tcctcatcag atccacctcg gtgagctgca 1260cgccattctt cgacgtcagg
aagacttcta cccctttctc aaggacaacc gagagaagat 1320cgagaagatt cttacctttc
gaatccccta ctatgttggt cctcttgcca gaggaaactc 1380tcgatttgct tggatgactc
gaaagtccga ggaaaccatc actccctgga acttcgagga 1440agtcgtggac aagggtgcct
ctgcacagtc cttcatcgag cgaatgacca acttcgacaa 1500gaatctgccc aacgagaagg
ttcttcccaa gcattcgctg ctctacgagt actttacagt 1560ctacaacgaa ctcaccaaag
tcaagtacgt taccgaggga atgcgaaagc ctgccttctt 1620gtctggcgaa cagaagaaag
ccattgtcga tctcctgttc aagaccaacc gaaaggtcac 1680tgttaagcag ctcaaggagg
actacttcaa gaaaatcgag tgtttcgaca gcgtcgagat 1740ttccggagtt gaggaccgat
tcaacgcctc tttgggcacc tatcacgatc tgctcaagat 1800tatcaaggac aaggattttc
tcgacaacga ggaaaacgag gacattctgg aggacatcgt 1860gctcactctt accctgttcg
aagatcggga gatgatcgag gaacgactca agacatacgc 1920tcacctgttc gacgacaagg
tcatgaaaca actcaagcga cgtagataca ccggctgggg 1980aagactttcg cgaaagctca
tcaacggcat cagagacaag cagtccggaa agaccattct 2040ggactttctc aagtccgatg
gctttgccaa ccgaaacttc atgcagctca ttcacgacga 2100ttctcttacc ttcaaggagg
acatccagaa ggcacaagtg tccggtcagg gcgacagctt 2160gcacgaacat attgccaacc
tggctggttc gccagccatc aagaaaggca ttctccagac 2220tgtcaaggtt gtcgacgagc
tggtgaaggt catgggacgt cacaagcccg agaacattgt 2280gatcgagatg gccagagaga
accagacaac tcaaaagggt cagaaaaact cgcgagagcg 2340gatgaagcga atcgaggaag
gcatcaagga gctgggatcc cagattctca aggagcatcc 2400cgtcgagaac actcaactgc
agaacgagaa gctgtatctc tactatctgc agaatggtcg 2460agacatgtac gtggatcagg
aactggacat caatcgtctc agcgactacg atgtggacca 2520cattgtccct caatcctttc
tcaaggacga ttctatcgac aacaaggtcc ttacacgatc 2580cgacaagaac agaggcaagt
cggacaacgt tcccagcgaa gaggtggtca aaaagatgaa 2640gaactactgg cgacagctgc
tcaacgccaa gctcattacc cagcgaaagt tcgacaatct 2700taccaaggcc gagcgaggcg
gtctgtccga gctcgacaag gctggcttca tcaagcgtca 2760actcgtcgag accagacaga
tcacaaagca cgtcgcacag attctcgatt ctcggatgaa 2820caccaagtac gacgagaacg
acaagctcat ccgagaggtc aaggtgatta ctctcaagtc 2880caaactggtc tccgatttcc
gaaaggactt tcagttctac aaggtgcgag agatcaacaa 2940ttaccaccat gcccacgatg
cttacctcaa cgccgtcgtt ggcactgcgc tcatcaagaa 3000ataccccaag ctcgaaagcg
agttcgttta cggcgattac aaggtctacg acgttcgaaa 3060gatgattgcc aagtccgaac
aggagattgg caaggctact gccaagtact tcttttactc 3120caacatcatg aactttttca
agaccgagat caccttggcc aacggagaga ttcgaaagag 3180accacttatc gagaccaacg
gcgaaactgg agagatcgtg tgggacaagg gtcgagactt 3240tgcaaccgtg cgaaaggttc
tgtcgatgcc tcaggtcaac atcgtcaaga aaaccgaggt 3300tcagactggc ggattctcca
aggagtcgat tctgcccaag cgaaactccg acaagctcat 3360cgctcgaaag aaagactggg
atcccaagaa atacggtggc ttcgattctc ctaccgtcgc 3420ctattccgtg cttgtcgttg
cgaaggtcga gaagggcaag tccaaaaagc tcaagtccgt 3480caaggagctg ctcggaatta
ccatcatgga gcgatcgagc ttcgagaaga atcccatcga 3540cttcttggaa gccaagggtt
acaaggaggt caagaaagac ctcattatca agctgcccaa 3600gtactctctg ttcgaactgg
agaacggtcg aaagcgtatg ctcgcctccg ctggcgagct 3660gcagaaggga aacgagcttg
ccttgccttc gaagtacgtc aactttctct atctggcttc 3720tcactacgag aagctcaagg
gttctcccga ggacaacgaa cagaagcaac tcttcgttga 3780gcagcacaaa cattacctcg
acgagattat cgagcagatt tccgagtttt cgaagcgagt 3840catcctggct gatgccaact
tggacaaggt gctctctgcc tacaacaagc atcgggacaa 3900acccattcga gaacaggcgg
agaacatcat tcacctgttt actcttacca acctgggtgc 3960tcctgcagct ttcaagtact
tcgataccac tatcgaccga aagcggtaca catccaccaa 4020ggaggttctc gatgccaccc
tgattcacca gtccatcact ggcctgtacg agacccgaat 4080cgacctgtct cagcttggtg
gcgactccag agccgatccc aagaaaaagc gaaaggtcta 4140agcggccgca agtgtggatg
gggaagtgag tgcccggttc tgtgtgcaca attggcaatc 4200caagatggat ggattcaaca
cagggatata gcgagctacg tggtggtgcg aggatatagc 4260aacggatatt tatgtttgac
acttgagaat gtacgataca agcactgtcc aagtacaata 4320ctaaacatac tgtacatact
catactcgta cccgggcaac ggtttcactt gagtgcagtg 4380gctagtgctc ttactcgtac
agtgtgcaat actgcgtatc atagtctttg atgtatatcg 4440tattcattca tgttagttgc
gtacgagccg gaagcataaa gtgtaaagcc tggggtgcct 4500aatgagtgag ctaactcaca
ttaattgcgt tgcgctcact gcccgctttc cagtcgggaa 4560acctgtcgtg ccagctgcat
taatgaatcg gccaacgcgc ggggagaggc ggtttgcgta 4620ttgggcgctc ttccgcttcc
tcgctcactg actcgctgcg ctcggtcgtt cggctgcggc 4680gagcggtatc agctcactca
aaggcggtaa tacggttatc cacagaatca ggggataacg 4740caggaaagaa catgtgagca
aaaggccagc aaaaggccag gaaccgtaaa aaggccgcgt 4800tgctggcgtt tttccatagg
ctccgccccc ctgacgagca tcacaaaaat cgacgctcaa 4860gtcagaggtg gcgaaacccg
acaggactat aaagatacca ggcgtttccc cctggaagct 4920ccctcgtgcg ctctcctgtt
ccgaccctgc cgcttaccgg atacctgtcc gcctttctcc 4980cttcgggaag cgtggcgctt
tctcatagct cacgctgtag gtatctcagt tcggtgtagg 5040tcgttcgctc caagctgggc
tgtgtgcacg aaccccccgt tcagcccgac cgctgcgcct 5100tatccggtaa ctatcgtctt
gagtccaacc cggtaagaca cgacttatcg ccactggcag 5160cagccactgg taacaggatt
agcagagcga ggtatgtagg cggtgctaca gagttcttga 5220agtggtggcc taactacggc
tacactagaa ggacagtatt tggtatctgc gctctgctga 5280agccagttac cttcggaaaa
agagttggta gctcttgatc cggcaaacaa accaccgctg 5340gtagcggtgg tttttttgtt
tgcaagcagc agattacgcg cagaaaaaaa ggatctcaag 5400aagatccttt gatcttttct
acggggtctg acgctcagtg gaacgaaaac tcacgttaag 5460ggattttggt catgagatta
tcaaaaagga tcttcaccta gatcctttta aattaaaaat 5520gaagttttaa atcaatctaa
agtatatatg agtaaacttg gtctgacagt taccaatgct 5580taatcagtga ggcacctatc
tcagcgatct gtctatttcg ttcatccata gttgcctgac 5640tccccgtcgt gtagataact
acgatacggg agggcttacc atctggcccc agtgctgcaa 5700tgataccgcg agacccacgc
tcaccggctc cagatttatc agcaataaac cagccagccg 5760gaagggccga gcgcagaagt
ggtcctgcaa ctttatccgc ctccatccag tctattaatt 5820gttgccggga agctagagta
agtagttcgc cagttaatag tttgcgcaac gttgttgcca 5880ttgctacagg catcgtggtg
tcacgctcgt cgtttggtat ggcttcattc agctccggtt 5940cccaacgatc aaggcgagtt
acatgatccc ccatgttgtg caaaaaagcg gttagctcct 6000tcggtcctcc gatcgttgtc
agaagtaagt tggccgcagt gttatcactc atggttatgg 6060cagcactgca taattctctt
actgtcatgc catccgtaag atgcttttct gtgactggtg 6120agtactcaac caagtcattc
tgagaatagt gtatgcggcg accgagttgc tcttgcccgg 6180cgtcaatacg ggataatacc
gcgccacata gcagaacttt aaaagtgctc atcattggaa 6240aacgttcttc ggggcgaaaa
ctctcaagga tcttaccgct gttgagatcc agttcgatgt 6300aacccactcg tgcacccaac
tgatcttcag catcttttac tttcaccagc gtttctgggt 6360gagcaaaaac aggaaggcaa
aatgccgcaa aaaagggaat aagggcgaca cggaaatgtt 6420gaatactcat actcttcctt
tttcaatatt attgaagcat ttatcagggt tattgtctca 6480tgagcggata catatttgaa
tgtatttaga aaaataaaca aataggggtt ccgcgcacat 6540ttccccgaaa agtgccacct
gacgcgccct gtagcggcgc attaagcgcg gcgggtgtgg 6600tggttacgcg cagcgtgacc
gctacacttg ccagcgccct agcgcccgct cctttcgctt 6660tcttcccttc ctttctcgcc
acgttcgccg gctttccccg tcaagctcta aatcgggggc 6720tccctttagg gttccgattt
agtgctttac ggcacctcga ccccaaaaaa cttgattagg 6780gtgatggttc acgtagtggg
ccatcgccct gatagacggt ttttcgccct ttgacgttgg 6840agtccacgtt ctttaatagt
ggactcttgt tccaaactgg aacaacactc aaccctatct 6900cggtctattc ttttgattta
taagggattt tgccgatttc ggcctattgg ttaaaaaatg 6960agctgattta acaaaaattt
aacgcgaatt ttaacaaaat attaacgctt acaatttcca 7020ttcgccattc aggctgcgca
actgttggga agggcgatcg gtgcgggcct cttcgctatt 7080acgccagctg gcgaaagggg
gatgtgctgc aaggcgatta agttgggtaa cgccagggtt 7140ttcccagtca cgacgttgta
aaacgacggc cagtgaattg taatacgact cactataggg 7200cgaattgggt accgggcccc
ccctcgaggt cgatggtgtc gataagcttg atatcgaatt 7260catgtcacac aaaccgatct
tcgcctcaag gaaacctaat tctacatccg agagactgcc 7320gagatccagt ctacactgat
taattttcgg gccaataatt taaaaaaatc gtgttatata 7380atattatatg tattatatat
atacatcatg atgatactga cagtcatgtc ccattgctaa 7440atagacagac tccatctgcc
gcctccaact gatgttctca atatttaagg ggtcatctcg 7500cattgtttaa taataaacag
actccatcta ccgcctccaa atgatgttct caaaatatat 7560tgtatgaact tatttttatt
acttagtatt attagacaac ttacttgctt tatgaaaaac 7620acttcctatt taggaaacaa
tttataatgg cagttcgttc atttaacaat ttatgtagaa 7680taaatgttat aaatgcgtat
gggaaatctt aaatatggat agcataaatg atatctgcat 7740tgcctaattc gaaatcaaca
gcaacgaaaa aaatcccttg tacaacataa atagtcatcg 7800agaaatatca actatcaaag
aacagctatt cacacgttac tattgagatt attattggac 7860gagaatcaca cactcaactg
tctttctctc ttctagaaat acaggtacaa gtatgtacta 7920ttctcattgt tcatacttct
agtcatttca tcccacatat tccttggatt tctctccaat 7980gaatgacatt ctatcttgca
aattcaacaa ttataataag atataccaaa gtagcggtat 8040agtggcaatc aaaaagcttc
tctggtgtgc ttctcgtatt tatttttatt ctaatgatcc 8100attaaaggta tatatttatt
tcttgttata taatcctttt gtttattaca tgggctggat 8160acataaaggt attttgattt
aattttttgc ttaaattcaa tcccccctcg ttcagtgtca 8220actgtaatgg taggaaatta
ccatactttt gaagaagcaa aaaaaatgaa agaaaaaaaa 8280aatcgtattt ccaggttaga
cgttccgcag aatctagaat gcggtatgcg gtacattgtt 8340cttcgaacgt aaaagttgcg
ctccctgaga tattgtacat ttttgctttt acaagtacaa 8400gtacatcgta caactatgta
ctactgttga tgcatccaca acagtttgtt ttgttttttt 8460ttgttttttt tttttctaat
gattcattac cgctatgtat acctacttgt acttgtagta 8520agccgggtta ttggcgttca
attaatcata gacttatgaa tctgcacggt gtgcgctgcg 8580agttactttt agcttatgca
tgctacttgg gtgtaatatt gggatctgtt cggaaatcaa 8640cggatgctca atcgatttcg
acagtaatta attaagtcat acacaagtca gctttcttcg 8700agcctcatat aagtataagt
agttcaacgt attagcactg tacccagcat ctccgtatcg 8760agaaacacaa caacatgccc
cattggacag atcatgcgga tacacaggtt gtgcagtatc 8820atacatactc gatcagacag
gtcgtctgac catcatacaa gctgaacaag cgctccatac 8880ttgcacgctc tctatataca
cagttaaatt acatatccat agtctaacct ctaacagtta 8940atcttctggt aagcctccca
gccagccttc tggtatcgct tggcctcctc aataggatct 9000cggttctggc cgtacagacc
tcggccgaca attatgatat ccgttccggt agacatgaca 9060tcctcaacag ttcggtactg
ctgtccgaga gcgtctccct tgtcgtcaag acccaccccg 9120ggggtcagaa taagccagtc
ctcagagtcg cccttaggtc ggttctgggc aatgaagcca 9180accacaaact cggggtcgga
tcgggcaagc tcaatggtct gcttggagta ctcgccagtg 9240gccagagagc ccttgcaaga
cagctcggcc agcatgagca gacctctggc cagcttctcg 9300ttgggagagg ggactaggaa
ctccttgtac tgggagttct cgtagtcaga gacgtcctcc 9360ttcttctgtt cagagacagt
ttcctcggca ccagctcgca ggccagcaat gattccggtt 9420ccgggtacac cgtgggcgtt
ggtgatatcg gaccactcgg cgattcggtg acaccggtac 9480tggtgcttga cagtgttgcc
aatatctgcg aactttctgt cctcgaacag gaagaaaccg 9540tgcttaagag caagttcctt
gagggggagc acagtgccgg cgtaggtgaa gtcgtcaatg 9600atgtcgatat gggttttgat
catgcacaca taaggtccga ccttatcggc aagctcaatg 9660agctccttgg tggtggtaac
atccagagaa gcacacaggt tggttttctt ggctgccacg 9720agcttgagca ctcgagcggc
aaaggcggac ttgtggacgt tagctcgagc ttcgtaggag 9780ggcattttgg tggtgaagag
gagactgaaa taaatttagt ctgcagaact ttttatcgga 9840accttatctg gggcagtgaa
gtatatgtta tggtaatagt tacgagttag ttgaacttat 9900agatagactg gactatacgg
ctatcggtcc aaattagaaa gaacgtcaat ggctctctgg 9960gcgtcgcctt tgccgacaaa
aatgtgatca tgatgaaagc cagcaatgac gttgcagctg 10020atattgttgt cggccaaccg
cgccgaaaac gcagctgtca gacccacagc ctccaacgaa 10080gaatgtatcg tcaaagtgat
ccaagcacac tcatagttgg agtcgtactc caaaggcggc 10140aatgacgagt cagacagata
ctcgtcgacg tttaaaccat catctaaggg cctcaaaact 10200acctcggaac tgctgcgctg
atctggacac cacagaggtt ccgagcactt taggttgcac 10260caaatgtccc accaggtgca
ggcagaaaac gctggaacag cgtgtacagt ttgtcttaac 10320aaaaagtgag ggcgctgagg
tcgagcaggg tggtgtgact tgttatagcc tttagagctg 10380cgaaagcgcg tatggatttg
gctcatcagg ccagattgag ggtctgtgga cacatgtcat 10440gttagtgtac ttcaatcgcc
ccctggatat agccccgaca ataggccgtg gcctcatttt 10500tttgccttcc gcacatttcc
attgctcggt acccacacct tgcttctcct gcacttgcca 10560accttaatac tggtttacat
tgaccaacat cttacaagcg gggggcttgt ctagggtata 10620tataaacagt ggctctccca
atcggttgcc agtctctttt ttcctttctt tccccacaga 10680ttcgaaatct aaactacaca
tcacac 1070612243DNAArtificial
sequenceH840A1 122tcagcgacta cgatgtggac gccattgtcc ctcaatcctt tct
4312343DNAArtificial sequenceH840A2 123agaaaggatt
gagggacaat ggcgtccaca tcgtagtcgc tga
431244140DNAArtificial SequenceYArrowia codon optimized inactivated Cas9
124atggacaaga aatactccat cggcctggcc attggaacca actctgtcgg ctgggctgtc
60atcaccgacg agtacaaggt gccctccaag aaattcaagg tcctcggaaa caccgatcga
120cactccatca agaaaaacct cattggtgcc ctgttgttcg attctggcga gactgccgaa
180gctaccagac tcaagcgaac tgctcggcga cgttacaccc gacggaagaa ccgaatctgc
240tacctgcagg agatcttttc caacgagatg gccaaggtgg acgattcgtt ctttcatcga
300ctggaggaat ccttcctcgt cgaggaagac aagaaacacg agcgtcatcc catctttggc
360aacattgtgg acgaggttgc ttaccacgag aagtatccta ccatctacca cctgcgaaag
420aaactcgtcg attccaccga caaggcggat ctcagactta tctacctcgc tctggcacac
480atgatcaagt ttcgaggtca tttcctcatc gagggcgatc tcaatcccga caacagcgat
540gtggacaagc tgttcattca gctcgttcag acctacaacc agctgttcga ggaaaacccc
600atcaatgcct ccggagtcga tgcaaaggcc atcttgtctg ctcgactctc gaagagcaga
660cgactggaga acctcattgc ccaacttcct ggcgagaaaa agaacggact gtttggcaac
720ctcattgccc tttctcttgg tctcacaccc aacttcaagt ccaacttcga tctggcggag
780gacgccaagc tccagctgtc caaggacacc tacgacgatg acctcgacaa cctgcttgca
840cagattggcg atcagtacgc cgacctgttt ctcgctgcca agaacctttc ggatgctatt
900ctcttgtctg acattctgcg agtcaacacc gagatcacaa aggctcccct ttctgcctcc
960atgatcaagc gatacgacga gcaccatcag gatctcacac tgctcaaggc tcttgtccga
1020cagcaactgc ccgagaagta caaggagatc tttttcgatc agtcgaagaa cggctacgct
1080ggatacatcg acggcggagc ctctcaggaa gagttctaca agttcatcaa gccaattctc
1140gagaagatgg acggaaccga ggaactgctt gtcaagctca atcgagagga tctgcttcgg
1200aagcaacgaa ccttcgacaa cggcagcatt cctcatcaga tccacctcgg tgagctgcac
1260gccattcttc gacgtcagga agacttctac ccctttctca aggacaaccg agagaagatc
1320gagaagattc ttacctttcg aatcccctac tatgttggtc ctcttgccag aggaaactct
1380cgatttgctt ggatgactcg aaagtccgag gaaaccatca ctccctggaa cttcgaggaa
1440gtcgtggaca agggtgcctc tgcacagtcc ttcatcgagc gaatgaccaa cttcgacaag
1500aatctgccca acgagaaggt tcttcccaag cattcgctgc tctacgagta ctttacagtc
1560tacaacgaac tcaccaaagt caagtacgtt accgagggaa tgcgaaagcc tgccttcttg
1620tctggcgaac agaagaaagc cattgtcgat ctcctgttca agaccaaccg aaaggtcact
1680gttaagcagc tcaaggagga ctacttcaag aaaatcgagt gtttcgacag cgtcgagatt
1740tccggagttg aggaccgatt caacgcctct ttgggcacct atcacgatct gctcaagatt
1800atcaaggaca aggattttct cgacaacgag gaaaacgagg acattctgga ggacatcgtg
1860ctcactctta ccctgttcga agatcgggag atgatcgagg aacgactcaa gacatacgct
1920cacctgttcg acgacaaggt catgaaacaa ctcaagcgac gtagatacac cggctgggga
1980agactttcgc gaaagctcat caacggcatc agagacaagc agtccggaaa gaccattctg
2040gactttctca agtccgatgg ctttgccaac cgaaacttca tgcagctcat tcacgacgat
2100tctcttacct tcaaggagga catccagaag gcacaagtgt ccggtcaggg cgacagcttg
2160cacgaacata ttgccaacct ggctggttcg ccagccatca agaaaggcat tctccagact
2220gtcaaggttg tcgacgagct ggtgaaggtc atgggacgtc acaagcccga gaacattgtg
2280atcgagatgg ccagagagaa ccagacaact caaaagggtc agaaaaactc gcgagagcgg
2340atgaagcgaa tcgaggaagg catcaaggag ctgggatccc agattctcaa ggagcatccc
2400gtcgagaaca ctcaactgca gaacgagaag ctgtatctct actatctgca gaatggtcga
2460gacatgtacg tggatcagga actggacatc aatcgtctca gcgactacga tgtggacgcc
2520attgtccctc aatcctttct caaggacgat tctatcgaca acaaggtcct tacacgatcc
2580gacaagaaca gaggcaagtc ggacaacgtt cccagcgaag aggtggtcaa aaagatgaag
2640aactactggc gacagctgct caacgccaag ctcattaccc agcgaaagtt cgacaatctt
2700accaaggccg agcgaggcgg tctgtccgag ctcgacaagg ctggcttcat caagcgtcaa
2760ctcgtcgaga ccagacagat cacaaagcac gtcgcacaga ttctcgattc tcggatgaac
2820accaagtacg acgagaacga caagctcatc cgagaggtca aggtgattac tctcaagtcc
2880aaactggtct ccgatttccg aaaggacttt cagttctaca aggtgcgaga gatcaacaat
2940taccaccatg cccacgatgc ttacctcaac gccgtcgttg gcactgcgct catcaagaaa
3000taccccaagc tcgaaagcga gttcgtttac ggcgattaca aggtctacga cgttcgaaag
3060atgattgcca agtccgaaca ggagattggc aaggctactg ccaagtactt cttttactcc
3120aacatcatga actttttcaa gaccgagatc accttggcca acggagagat tcgaaagaga
3180ccacttatcg agaccaacgg cgaaactgga gagatcgtgt gggacaaggg tcgagacttt
3240gcaaccgtgc gaaaggttct gtcgatgcct caggtcaaca tcgtcaagaa aaccgaggtt
3300cagactggcg gattctccaa ggagtcgatt ctgcccaagc gaaactccga caagctcatc
3360gctcgaaaga aagactggga tcccaagaaa tacggtggct tcgattctcc taccgtcgcc
3420tattccgtgc ttgtcgttgc gaaggtcgag aagggcaagt ccaaaaagct caagtccgtc
3480aaggagctgc tcggaattac catcatggag cgatcgagct tcgagaagaa tcccatcgac
3540ttcttggaag ccaagggtta caaggaggtc aagaaagacc tcattatcaa gctgcccaag
3600tactctctgt tcgaactgga gaacggtcga aagcgtatgc tcgcctccgc tggcgagctg
3660cagaagggaa acgagcttgc cttgccttcg aagtacgtca actttctcta tctggcttct
3720cactacgaga agctcaaggg ttctcccgag gacaacgaac agaagcaact cttcgttgag
3780cagcacaaac attacctcga cgagattatc gagcagattt ccgagttttc gaagcgagtc
3840atcctggctg atgccaactt ggacaaggtg ctctctgcct acaacaagca tcgggacaaa
3900cccattcgag aacaggcgga gaacatcatt cacctgttta ctcttaccaa cctgggtgct
3960cctgcagctt tcaagtactt cgataccact atcgaccgaa agcggtacac atccaccaag
4020gaggttctcg atgccaccct gattcaccag tccatcactg gcctgtacga gacccgaatc
4080gacctgtctc agcttggtgg cgactccaga gccgatccca agaaaaagcg aaaggtctaa
414012510706DNAArtificial sequencepRF143 125catggacaag aaatactcca
tcggcctggc cattggaacc aactctgtcg gctgggctgt 60catcaccgac gagtacaagg
tgccctccaa gaaattcaag gtcctcggaa acaccgatcg 120acactccatc aagaaaaacc
tcattggtgc cctgttgttc gattctggcg agactgccga 180agctaccaga ctcaagcgaa
ctgctcggcg acgttacacc cgacggaaga accgaatctg 240ctacctgcag gagatctttt
ccaacgagat ggccaaggtg gacgattcgt tctttcatcg 300actggaggaa tccttcctcg
tcgaggaaga caagaaacac gagcgtcatc ccatctttgg 360caacattgtg gacgaggttg
cttaccacga gaagtatcct accatctacc acctgcgaaa 420gaaactcgtc gattccaccg
acaaggcgga tctcagactt atctacctcg ctctggcaca 480catgatcaag tttcgaggtc
atttcctcat cgagggcgat ctcaatcccg acaacagcga 540tgtggacaag ctgttcattc
agctcgttca gacctacaac cagctgttcg aggaaaaccc 600catcaatgcc tccggagtcg
atgcaaaggc catcttgtct gctcgactct cgaagagcag 660acgactggag aacctcattg
cccaacttcc tggcgagaaa aagaacggac tgtttggcaa 720cctcattgcc ctttctcttg
gtctcacacc caacttcaag tccaacttcg atctggcgga 780ggacgccaag ctccagctgt
ccaaggacac ctacgacgat gacctcgaca acctgcttgc 840acagattggc gatcagtacg
ccgacctgtt tctcgctgcc aagaaccttt cggatgctat 900tctcttgtct gacattctgc
gagtcaacac cgagatcaca aaggctcccc tttctgcctc 960catgatcaag cgatacgacg
agcaccatca ggatctcaca ctgctcaagg ctcttgtccg 1020acagcaactg cccgagaagt
acaaggagat ctttttcgat cagtcgaaga acggctacgc 1080tggatacatc gacggcggag
cctctcagga agagttctac aagttcatca agccaattct 1140cgagaagatg gacggaaccg
aggaactgct tgtcaagctc aatcgagagg atctgcttcg 1200gaagcaacga accttcgaca
acggcagcat tcctcatcag atccacctcg gtgagctgca 1260cgccattctt cgacgtcagg
aagacttcta cccctttctc aaggacaacc gagagaagat 1320cgagaagatt cttacctttc
gaatccccta ctatgttggt cctcttgcca gaggaaactc 1380tcgatttgct tggatgactc
gaaagtccga ggaaaccatc actccctgga acttcgagga 1440agtcgtggac aagggtgcct
ctgcacagtc cttcatcgag cgaatgacca acttcgacaa 1500gaatctgccc aacgagaagg
ttcttcccaa gcattcgctg ctctacgagt actttacagt 1560ctacaacgaa ctcaccaaag
tcaagtacgt taccgaggga atgcgaaagc ctgccttctt 1620gtctggcgaa cagaagaaag
ccattgtcga tctcctgttc aagaccaacc gaaaggtcac 1680tgttaagcag ctcaaggagg
actacttcaa gaaaatcgag tgtttcgaca gcgtcgagat 1740ttccggagtt gaggaccgat
tcaacgcctc tttgggcacc tatcacgatc tgctcaagat 1800tatcaaggac aaggattttc
tcgacaacga ggaaaacgag gacattctgg aggacatcgt 1860gctcactctt accctgttcg
aagatcggga gatgatcgag gaacgactca agacatacgc 1920tcacctgttc gacgacaagg
tcatgaaaca actcaagcga cgtagataca ccggctgggg 1980aagactttcg cgaaagctca
tcaacggcat cagagacaag cagtccggaa agaccattct 2040ggactttctc aagtccgatg
gctttgccaa ccgaaacttc atgcagctca ttcacgacga 2100ttctcttacc ttcaaggagg
acatccagaa ggcacaagtg tccggtcagg gcgacagctt 2160gcacgaacat attgccaacc
tggctggttc gccagccatc aagaaaggca ttctccagac 2220tgtcaaggtt gtcgacgagc
tggtgaaggt catgggacgt cacaagcccg agaacattgt 2280gatcgagatg gccagagaga
accagacaac tcaaaagggt cagaaaaact cgcgagagcg 2340gatgaagcga atcgaggaag
gcatcaagga gctgggatcc cagattctca aggagcatcc 2400cgtcgagaac actcaactgc
agaacgagaa gctgtatctc tactatctgc agaatggtcg 2460agacatgtac gtggatcagg
aactggacat caatcgtctc agcgactacg atgtggacgc 2520cattgtccct caatcctttc
tcaaggacga ttctatcgac aacaaggtcc ttacacgatc 2580cgacaagaac agaggcaagt
cggacaacgt tcccagcgaa gaggtggtca aaaagatgaa 2640gaactactgg cgacagctgc
tcaacgccaa gctcattacc cagcgaaagt tcgacaatct 2700taccaaggcc gagcgaggcg
gtctgtccga gctcgacaag gctggcttca tcaagcgtca 2760actcgtcgag accagacaga
tcacaaagca cgtcgcacag attctcgatt ctcggatgaa 2820caccaagtac gacgagaacg
acaagctcat ccgagaggtc aaggtgatta ctctcaagtc 2880caaactggtc tccgatttcc
gaaaggactt tcagttctac aaggtgcgag agatcaacaa 2940ttaccaccat gcccacgatg
cttacctcaa cgccgtcgtt ggcactgcgc tcatcaagaa 3000ataccccaag ctcgaaagcg
agttcgttta cggcgattac aaggtctacg acgttcgaaa 3060gatgattgcc aagtccgaac
aggagattgg caaggctact gccaagtact tcttttactc 3120caacatcatg aactttttca
agaccgagat caccttggcc aacggagaga ttcgaaagag 3180accacttatc gagaccaacg
gcgaaactgg agagatcgtg tgggacaagg gtcgagactt 3240tgcaaccgtg cgaaaggttc
tgtcgatgcc tcaggtcaac atcgtcaaga aaaccgaggt 3300tcagactggc ggattctcca
aggagtcgat tctgcccaag cgaaactccg acaagctcat 3360cgctcgaaag aaagactggg
atcccaagaa atacggtggc ttcgattctc ctaccgtcgc 3420ctattccgtg cttgtcgttg
cgaaggtcga gaagggcaag tccaaaaagc tcaagtccgt 3480caaggagctg ctcggaatta
ccatcatgga gcgatcgagc ttcgagaaga atcccatcga 3540cttcttggaa gccaagggtt
acaaggaggt caagaaagac ctcattatca agctgcccaa 3600gtactctctg ttcgaactgg
agaacggtcg aaagcgtatg ctcgcctccg ctggcgagct 3660gcagaaggga aacgagcttg
ccttgccttc gaagtacgtc aactttctct atctggcttc 3720tcactacgag aagctcaagg
gttctcccga ggacaacgaa cagaagcaac tcttcgttga 3780gcagcacaaa cattacctcg
acgagattat cgagcagatt tccgagtttt cgaagcgagt 3840catcctggct gatgccaact
tggacaaggt gctctctgcc tacaacaagc atcgggacaa 3900acccattcga gaacaggcgg
agaacatcat tcacctgttt actcttacca acctgggtgc 3960tcctgcagct ttcaagtact
tcgataccac tatcgaccga aagcggtaca catccaccaa 4020ggaggttctc gatgccaccc
tgattcacca gtccatcact ggcctgtacg agacccgaat 4080cgacctgtct cagcttggtg
gcgactccag agccgatccc aagaaaaagc gaaaggtcta 4140agcggccgca agtgtggatg
gggaagtgag tgcccggttc tgtgtgcaca attggcaatc 4200caagatggat ggattcaaca
cagggatata gcgagctacg tggtggtgcg aggatatagc 4260aacggatatt tatgtttgac
acttgagaat gtacgataca agcactgtcc aagtacaata 4320ctaaacatac tgtacatact
catactcgta cccgggcaac ggtttcactt gagtgcagtg 4380gctagtgctc ttactcgtac
agtgtgcaat actgcgtatc atagtctttg atgtatatcg 4440tattcattca tgttagttgc
gtacgagccg gaagcataaa gtgtaaagcc tggggtgcct 4500aatgagtgag ctaactcaca
ttaattgcgt tgcgctcact gcccgctttc cagtcgggaa 4560acctgtcgtg ccagctgcat
taatgaatcg gccaacgcgc ggggagaggc ggtttgcgta 4620ttgggcgctc ttccgcttcc
tcgctcactg actcgctgcg ctcggtcgtt cggctgcggc 4680gagcggtatc agctcactca
aaggcggtaa tacggttatc cacagaatca ggggataacg 4740caggaaagaa catgtgagca
aaaggccagc aaaaggccag gaaccgtaaa aaggccgcgt 4800tgctggcgtt tttccatagg
ctccgccccc ctgacgagca tcacaaaaat cgacgctcaa 4860gtcagaggtg gcgaaacccg
acaggactat aaagatacca ggcgtttccc cctggaagct 4920ccctcgtgcg ctctcctgtt
ccgaccctgc cgcttaccgg atacctgtcc gcctttctcc 4980cttcgggaag cgtggcgctt
tctcatagct cacgctgtag gtatctcagt tcggtgtagg 5040tcgttcgctc caagctgggc
tgtgtgcacg aaccccccgt tcagcccgac cgctgcgcct 5100tatccggtaa ctatcgtctt
gagtccaacc cggtaagaca cgacttatcg ccactggcag 5160cagccactgg taacaggatt
agcagagcga ggtatgtagg cggtgctaca gagttcttga 5220agtggtggcc taactacggc
tacactagaa ggacagtatt tggtatctgc gctctgctga 5280agccagttac cttcggaaaa
agagttggta gctcttgatc cggcaaacaa accaccgctg 5340gtagcggtgg tttttttgtt
tgcaagcagc agattacgcg cagaaaaaaa ggatctcaag 5400aagatccttt gatcttttct
acggggtctg acgctcagtg gaacgaaaac tcacgttaag 5460ggattttggt catgagatta
tcaaaaagga tcttcaccta gatcctttta aattaaaaat 5520gaagttttaa atcaatctaa
agtatatatg agtaaacttg gtctgacagt taccaatgct 5580taatcagtga ggcacctatc
tcagcgatct gtctatttcg ttcatccata gttgcctgac 5640tccccgtcgt gtagataact
acgatacggg agggcttacc atctggcccc agtgctgcaa 5700tgataccgcg agacccacgc
tcaccggctc cagatttatc agcaataaac cagccagccg 5760gaagggccga gcgcagaagt
ggtcctgcaa ctttatccgc ctccatccag tctattaatt 5820gttgccggga agctagagta
agtagttcgc cagttaatag tttgcgcaac gttgttgcca 5880ttgctacagg catcgtggtg
tcacgctcgt cgtttggtat ggcttcattc agctccggtt 5940cccaacgatc aaggcgagtt
acatgatccc ccatgttgtg caaaaaagcg gttagctcct 6000tcggtcctcc gatcgttgtc
agaagtaagt tggccgcagt gttatcactc atggttatgg 6060cagcactgca taattctctt
actgtcatgc catccgtaag atgcttttct gtgactggtg 6120agtactcaac caagtcattc
tgagaatagt gtatgcggcg accgagttgc tcttgcccgg 6180cgtcaatacg ggataatacc
gcgccacata gcagaacttt aaaagtgctc atcattggaa 6240aacgttcttc ggggcgaaaa
ctctcaagga tcttaccgct gttgagatcc agttcgatgt 6300aacccactcg tgcacccaac
tgatcttcag catcttttac tttcaccagc gtttctgggt 6360gagcaaaaac aggaaggcaa
aatgccgcaa aaaagggaat aagggcgaca cggaaatgtt 6420gaatactcat actcttcctt
tttcaatatt attgaagcat ttatcagggt tattgtctca 6480tgagcggata catatttgaa
tgtatttaga aaaataaaca aataggggtt ccgcgcacat 6540ttccccgaaa agtgccacct
gacgcgccct gtagcggcgc attaagcgcg gcgggtgtgg 6600tggttacgcg cagcgtgacc
gctacacttg ccagcgccct agcgcccgct cctttcgctt 6660tcttcccttc ctttctcgcc
acgttcgccg gctttccccg tcaagctcta aatcgggggc 6720tccctttagg gttccgattt
agtgctttac ggcacctcga ccccaaaaaa cttgattagg 6780gtgatggttc acgtagtggg
ccatcgccct gatagacggt ttttcgccct ttgacgttgg 6840agtccacgtt ctttaatagt
ggactcttgt tccaaactgg aacaacactc aaccctatct 6900cggtctattc ttttgattta
taagggattt tgccgatttc ggcctattgg ttaaaaaatg 6960agctgattta acaaaaattt
aacgcgaatt ttaacaaaat attaacgctt acaatttcca 7020ttcgccattc aggctgcgca
actgttggga agggcgatcg gtgcgggcct cttcgctatt 7080acgccagctg gcgaaagggg
gatgtgctgc aaggcgatta agttgggtaa cgccagggtt 7140ttcccagtca cgacgttgta
aaacgacggc cagtgaattg taatacgact cactataggg 7200cgaattgggt accgggcccc
ccctcgaggt cgatggtgtc gataagcttg atatcgaatt 7260catgtcacac aaaccgatct
tcgcctcaag gaaacctaat tctacatccg agagactgcc 7320gagatccagt ctacactgat
taattttcgg gccaataatt taaaaaaatc gtgttatata 7380atattatatg tattatatat
atacatcatg atgatactga cagtcatgtc ccattgctaa 7440atagacagac tccatctgcc
gcctccaact gatgttctca atatttaagg ggtcatctcg 7500cattgtttaa taataaacag
actccatcta ccgcctccaa atgatgttct caaaatatat 7560tgtatgaact tatttttatt
acttagtatt attagacaac ttacttgctt tatgaaaaac 7620acttcctatt taggaaacaa
tttataatgg cagttcgttc atttaacaat ttatgtagaa 7680taaatgttat aaatgcgtat
gggaaatctt aaatatggat agcataaatg atatctgcat 7740tgcctaattc gaaatcaaca
gcaacgaaaa aaatcccttg tacaacataa atagtcatcg 7800agaaatatca actatcaaag
aacagctatt cacacgttac tattgagatt attattggac 7860gagaatcaca cactcaactg
tctttctctc ttctagaaat acaggtacaa gtatgtacta 7920ttctcattgt tcatacttct
agtcatttca tcccacatat tccttggatt tctctccaat 7980gaatgacatt ctatcttgca
aattcaacaa ttataataag atataccaaa gtagcggtat 8040agtggcaatc aaaaagcttc
tctggtgtgc ttctcgtatt tatttttatt ctaatgatcc 8100attaaaggta tatatttatt
tcttgttata taatcctttt gtttattaca tgggctggat 8160acataaaggt attttgattt
aattttttgc ttaaattcaa tcccccctcg ttcagtgtca 8220actgtaatgg taggaaatta
ccatactttt gaagaagcaa aaaaaatgaa agaaaaaaaa 8280aatcgtattt ccaggttaga
cgttccgcag aatctagaat gcggtatgcg gtacattgtt 8340cttcgaacgt aaaagttgcg
ctccctgaga tattgtacat ttttgctttt acaagtacaa 8400gtacatcgta caactatgta
ctactgttga tgcatccaca acagtttgtt ttgttttttt 8460ttgttttttt tttttctaat
gattcattac cgctatgtat acctacttgt acttgtagta 8520agccgggtta ttggcgttca
attaatcata gacttatgaa tctgcacggt gtgcgctgcg 8580agttactttt agcttatgca
tgctacttgg gtgtaatatt gggatctgtt cggaaatcaa 8640cggatgctca atcgatttcg
acagtaatta attaagtcat acacaagtca gctttcttcg 8700agcctcatat aagtataagt
agttcaacgt attagcactg tacccagcat ctccgtatcg 8760agaaacacaa caacatgccc
cattggacag atcatgcgga tacacaggtt gtgcagtatc 8820atacatactc gatcagacag
gtcgtctgac catcatacaa gctgaacaag cgctccatac 8880ttgcacgctc tctatataca
cagttaaatt acatatccat agtctaacct ctaacagtta 8940atcttctggt aagcctccca
gccagccttc tggtatcgct tggcctcctc aataggatct 9000cggttctggc cgtacagacc
tcggccgaca attatgatat ccgttccggt agacatgaca 9060tcctcaacag ttcggtactg
ctgtccgaga gcgtctccct tgtcgtcaag acccaccccg 9120ggggtcagaa taagccagtc
ctcagagtcg cccttaggtc ggttctgggc aatgaagcca 9180accacaaact cggggtcgga
tcgggcaagc tcaatggtct gcttggagta ctcgccagtg 9240gccagagagc ccttgcaaga
cagctcggcc agcatgagca gacctctggc cagcttctcg 9300ttgggagagg ggactaggaa
ctccttgtac tgggagttct cgtagtcaga gacgtcctcc 9360ttcttctgtt cagagacagt
ttcctcggca ccagctcgca ggccagcaat gattccggtt 9420ccgggtacac cgtgggcgtt
ggtgatatcg gaccactcgg cgattcggtg acaccggtac 9480tggtgcttga cagtgttgcc
aatatctgcg aactttctgt cctcgaacag gaagaaaccg 9540tgcttaagag caagttcctt
gagggggagc acagtgccgg cgtaggtgaa gtcgtcaatg 9600atgtcgatat gggttttgat
catgcacaca taaggtccga ccttatcggc aagctcaatg 9660agctccttgg tggtggtaac
atccagagaa gcacacaggt tggttttctt ggctgccacg 9720agcttgagca ctcgagcggc
aaaggcggac ttgtggacgt tagctcgagc ttcgtaggag 9780ggcattttgg tggtgaagag
gagactgaaa taaatttagt ctgcagaact ttttatcgga 9840accttatctg gggcagtgaa
gtatatgtta tggtaatagt tacgagttag ttgaacttat 9900agatagactg gactatacgg
ctatcggtcc aaattagaaa gaacgtcaat ggctctctgg 9960gcgtcgcctt tgccgacaaa
aatgtgatca tgatgaaagc cagcaatgac gttgcagctg 10020atattgttgt cggccaaccg
cgccgaaaac gcagctgtca gacccacagc ctccaacgaa 10080gaatgtatcg tcaaagtgat
ccaagcacac tcatagttgg agtcgtactc caaaggcggc 10140aatgacgagt cagacagata
ctcgtcgacg tttaaaccat catctaaggg cctcaaaact 10200acctcggaac tgctgcgctg
atctggacac cacagaggtt ccgagcactt taggttgcac 10260caaatgtccc accaggtgca
ggcagaaaac gctggaacag cgtgtacagt ttgtcttaac 10320aaaaagtgag ggcgctgagg
tcgagcaggg tggtgtgact tgttatagcc tttagagctg 10380cgaaagcgcg tatggatttg
gctcatcagg ccagattgag ggtctgtgga cacatgtcat 10440gttagtgtac ttcaatcgcc
ccctggatat agccccgaca ataggccgtg gcctcatttt 10500tttgccttcc gcacatttcc
attgctcggt acccacacct tgcttctcct gcacttgcca 10560accttaatac tggtttacat
tgaccaacat cttacaagcg gggggcttgt ctagggtata 10620tataaacagt ggctctccca
atcggttgcc agtctctttt ttcctttctt tccccacaga 10680ttcgaaatct aaactacaca
tcacac 10706126678DNAArtificial
sequenceYarrowia optimized dsREDexpress ORF 126atggcctcct cggaggacgt
catcaaggag ttcatgcgat tcaaggtccg aatggaaggc 60tccgtgaacg gtcacgagtt
tgagattgag ggagagggtg aaggccgacc ctacgaaggc 120acccagaccg cgaagctgaa
ggtgaccaag ggtggacccc tgcccttcgc ctgggacatt 180ctgtctcctc agtttcagta
cggttctaag gtgtacgtga agcaccctgc tgacattccc 240gactacaaga aactttcctt
tcccgagggc ttcaagtggg agcgagttat gaacttcgag 300gatggcggtg tcgttaccgt
tactcaggac tcctcgctcc aggacggctc gttcatctac 360aaggttaagt tcatcggtgt
caacttccct agcgatggac ccgtcatgca aaagaaaact 420atgggatggg aagcctctac
agagcggctg taccctcgag acggagtgtt gaagggcgag 480attcacaagg ccctgaagct
caaggacggt ggacactatc tcgttgagtt taagtctatc 540tacatggcaa agaaacccgt
gcagcttcca ggctactatt acgtcgattc caagctcgat 600atcaccagcc ataatgagga
ctacactatt gtcgaacagt acgagcgtgc tgagggaaga 660caccatctgt ttctttaa
678127696DNAArtificial
sequenceYarrowia optimized dsREDexpress cloning fragment
127ggggccatgg cctcctcgga ggacgtcatc aaggagttca tgcgattcaa ggtccgaatg
60gaaggctccg tgaacggtca cgagtttgag attgagggag agggtgaagg ccgaccctac
120gaaggcaccc agaccgcgaa gctgaaggtg accaagggtg gacccctgcc cttcgcctgg
180gacattctgt ctcctcagtt tcagtacggt tctaaggtgt acgtgaagca ccctgctgac
240attcccgact acaagaaact ttcctttccc gagggcttca agtgggagcg agttatgaac
300ttcgaggatg gcggtgtcgt taccgttact caggactcct cgctccagga cggctcgttc
360atctacaagg ttaagttcat cggtgtcaac ttccctagcg atggacccgt catgcaaaag
420aaaactatgg gatgggaagc ctctacagag cggctgtacc ctcgagacgg agtgttgaag
480ggcgagattc acaaggccct gaagctcaag gacggtggac actatctcgt tgagtttaag
540tctatctaca tggcaaagaa acccgtgcag cttccaggct actattacgt cgattccaag
600ctcgatatca ccagccataa tgaggactac actattgtcg aacagtacga gcgtgctgag
660ggaagacacc atctgtttct ttaagcggcc gcgggg
6961281212DNAArtificial SequenceFBA1-dsREDexpress expression cassette
128aaaccatcat ctaagggcct caaaactacc tcggaactgc tgcgctgatc tggacaccac
60agaggttccg agcactttag gttgcaccaa atgtcccacc aggtgcaggc agaaaacgct
120ggaacagcgt gtacagtttg tcttaacaaa aagtgagggc gctgaggtcg agcagggtgg
180tgtgacttgt tatagccttt agagctgcga aagcgcgtat ggatttggct catcaggcca
240gattgagggt ctgtggacac atgtcatgtt agtgtacttc aatcgccccc tggatatagc
300cccgacaata ggccgtggcc tcattttttt gccttccgca catttccatt gctcggtacc
360cacaccttgc ttctcctgca cttgccaacc ttaatactgg tttacattga ccaacatctt
420acaagcgggg ggcttgtcta gggtatatat aaacagtggc tctcccaatc ggttgccagt
480ctcttttttc ctttctttcc ccacagattc gaaatctaaa ctacacatca caccatggcc
540tcctcggagg acgtcatcaa ggagttcatg cgattcaagg tccgaatgga aggctccgtg
600aacggtcacg agtttgagat tgagggagag ggtgaaggcc gaccctacga aggcacccag
660accgcgaagc tgaaggtgac caagggtgga cccctgccct tcgcctggga cattctgtct
720cctcagtttc agtacggttc taaggtgtac gtgaagcacc ctgctgacat tcccgactac
780aagaaacttt cctttcccga gggcttcaag tgggagcgag ttatgaactt cgaggatggc
840ggtgtcgtta ccgttactca ggactcctcg ctccaggacg gctcgttcat ctacaaggtt
900aagttcatcg gtgtcaactt ccctagcgat ggacccgtca tgcaaaagaa aactatggga
960tgggaagcct ctacagagcg gctgtaccct cgagacggag tgttgaaggg cgagattcac
1020aaggccctga agctcaagga cggtggacac tatctcgttg agtttaagtc tatctacatg
1080gcaaagaaac ccgtgcagct tccaggctac tattacgtcg attccaagct cgatatcacc
1140agccataatg aggactacac tattgtcgaa cagtacgagc gtgctgaggg aagacaccat
1200ctgtttcttt aa
12121297244DNAArtificial SequencepRF165 129ggccgcaagt gtggatgggg
aagtgagtgc ccggttctgt gtgcacaatt ggcaatccaa 60gatggatgga ttcaacacag
ggatatagcg agctacgtgg tggtgcgagg atatagcaac 120ggatatttat gtttgacact
tgagaatgta cgatacaagc actgtccaag tacaatacta 180aacatactgt acatactcat
actcgtaccc gggcaacggt ttcacttgag tgcagtggct 240agtgctctta ctcgtacagt
gtgcaatact gcgtatcata gtctttgatg tatatcgtat 300tcattcatgt tagttgcgta
cgagccggaa gcataaagtg taaagcctgg ggtgcctaat 360gagtgagcta actcacatta
attgcgttgc gctcactgcc cgctttccag tcgggaaacc 420tgtcgtgcca gctgcattaa
tgaatcggcc aacgcgcggg gagaggcggt ttgcgtattg 480ggcgctcttc cgcttcctcg
ctcactgact cgctgcgctc ggtcgttcgg ctgcggcgag 540cggtatcagc tcactcaaag
gcggtaatac ggttatccac agaatcaggg gataacgcag 600gaaagaacat gtgagcaaaa
ggccagcaaa aggccaggaa ccgtaaaaag gccgcgttgc 660tggcgttttt ccataggctc
cgcccccctg acgagcatca caaaaatcga cgctcaagtc 720agaggtggcg aaacccgaca
ggactataaa gataccaggc gtttccccct ggaagctccc 780tcgtgcgctc tcctgttccg
accctgccgc ttaccggata cctgtccgcc tttctccctt 840cgggaagcgt ggcgctttct
catagctcac gctgtaggta tctcagttcg gtgtaggtcg 900ttcgctccaa gctgggctgt
gtgcacgaac cccccgttca gcccgaccgc tgcgccttat 960ccggtaacta tcgtcttgag
tccaacccgg taagacacga cttatcgcca ctggcagcag 1020ccactggtaa caggattagc
agagcgaggt atgtaggcgg tgctacagag ttcttgaagt 1080ggtggcctaa ctacggctac
actagaagga cagtatttgg tatctgcgct ctgctgaagc 1140cagttacctt cggaaaaaga
gttggtagct cttgatccgg caaacaaacc accgctggta 1200gcggtggttt ttttgtttgc
aagcagcaga ttacgcgcag aaaaaaagga tctcaagaag 1260atcctttgat cttttctacg
gggtctgacg ctcagtggaa cgaaaactca cgttaaggga 1320ttttggtcat gagattatca
aaaaggatct tcacctagat ccttttaaat taaaaatgaa 1380gttttaaatc aatctaaagt
atatatgagt aaacttggtc tgacagttac caatgcttaa 1440tcagtgaggc acctatctca
gcgatctgtc tatttcgttc atccatagtt gcctgactcc 1500ccgtcgtgta gataactacg
atacgggagg gcttaccatc tggccccagt gctgcaatga 1560taccgcgaga cccacgctca
ccggctccag atttatcagc aataaaccag ccagccggaa 1620gggccgagcg cagaagtggt
cctgcaactt tatccgcctc catccagtct attaattgtt 1680gccgggaagc tagagtaagt
agttcgccag ttaatagttt gcgcaacgtt gttgccattg 1740ctacaggcat cgtggtgtca
cgctcgtcgt ttggtatggc ttcattcagc tccggttccc 1800aacgatcaag gcgagttaca
tgatccccca tgttgtgcaa aaaagcggtt agctccttcg 1860gtcctccgat cgttgtcaga
agtaagttgg ccgcagtgtt atcactcatg gttatggcag 1920cactgcataa ttctcttact
gtcatgccat ccgtaagatg cttttctgtg actggtgagt 1980actcaaccaa gtcattctga
gaatagtgta tgcggcgacc gagttgctct tgcccggcgt 2040caatacggga taataccgcg
ccacatagca gaactttaaa agtgctcatc attggaaaac 2100gttcttcggg gcgaaaactc
tcaaggatct taccgctgtt gagatccagt tcgatgtaac 2160ccactcgtgc acccaactga
tcttcagcat cttttacttt caccagcgtt tctgggtgag 2220caaaaacagg aaggcaaaat
gccgcaaaaa agggaataag ggcgacacgg aaatgttgaa 2280tactcatact cttccttttt
caatattatt gaagcattta tcagggttat tgtctcatga 2340gcggatacat atttgaatgt
atttagaaaa ataaacaaat aggggttccg cgcacatttc 2400cccgaaaagt gccacctgac
gcgccctgta gcggcgcatt aagcgcggcg ggtgtggtgg 2460ttacgcgcag cgtgaccgct
acacttgcca gcgccctagc gcccgctcct ttcgctttct 2520tcccttcctt tctcgccacg
ttcgccggct ttccccgtca agctctaaat cgggggctcc 2580ctttagggtt ccgatttagt
gctttacggc acctcgaccc caaaaaactt gattagggtg 2640atggttcacg tagtgggcca
tcgccctgat agacggtttt tcgccctttg acgttggagt 2700ccacgttctt taatagtgga
ctcttgttcc aaactggaac aacactcaac cctatctcgg 2760tctattcttt tgatttataa
gggattttgc cgatttcggc ctattggtta aaaaatgagc 2820tgatttaaca aaaatttaac
gcgaatttta acaaaatatt aacgcttaca atttccattc 2880gccattcagg ctgcgcaact
gttgggaagg gcgatcggtg cgggcctctt cgctattacg 2940ccagctggcg aaagggggat
gtgctgcaag gcgattaagt tgggtaacgc cagggttttc 3000ccagtcacga cgttgtaaaa
cgacggccag tgaattgtaa tacgactcac tatagggcga 3060attgggtacc gggccccccc
tcgaggtcga tggtgtcgat aagcttgata tcgaattcat 3120gtcacacaaa ccgatcttcg
cctcaaggaa acctaattct acatccgaga gactgccgag 3180atccagtcta cactgattaa
ttttcgggcc aataatttaa aaaaatcgtg ttatataata 3240ttatatgtat tatatatata
catcatgatg atactgacag tcatgtccca ttgctaaata 3300gacagactcc atctgccgcc
tccaactgat gttctcaata tttaaggggt catctcgcat 3360tgtttaataa taaacagact
ccatctaccg cctccaaatg atgttctcaa aatatattgt 3420atgaacttat ttttattact
tagtattatt agacaactta cttgctttat gaaaaacact 3480tcctatttag gaaacaattt
ataatggcag ttcgttcatt taacaattta tgtagaataa 3540atgttataaa tgcgtatggg
aaatcttaaa tatggatagc ataaatgata tctgcattgc 3600ctaattcgaa atcaacagca
acgaaaaaaa tcccttgtac aacataaata gtcatcgaga 3660aatatcaact atcaaagaac
agctattcac acgttactat tgagattatt attggacgag 3720aatcacacac tcaactgtct
ttctctcttc tagaaataca ggtacaagta tgtactattc 3780tcattgttca tacttctagt
catttcatcc cacatattcc ttggatttct ctccaatgaa 3840tgacattcta tcttgcaaat
tcaacaatta taataagata taccaaagta gcggtatagt 3900ggcaatcaaa aagcttctct
ggtgtgcttc tcgtatttat ttttattcta atgatccatt 3960aaaggtatat atttatttct
tgttatataa tccttttgtt tattacatgg gctggataca 4020taaaggtatt ttgatttaat
tttttgctta aattcaatcc cccctcgttc agtgtcaact 4080gtaatggtag gaaattacca
tacttttgaa gaagcaaaaa aaatgaaaga aaaaaaaaat 4140cgtatttcca ggttagacgt
tccgcagaat ctagaatgcg gtatgcggta cattgttctt 4200cgaacgtaaa agttgcgctc
cctgagatat tgtacatttt tgcttttaca agtacaagta 4260catcgtacaa ctatgtacta
ctgttgatgc atccacaaca gtttgttttg tttttttttg 4320tttttttttt ttctaatgat
tcattaccgc tatgtatacc tacttgtact tgtagtaagc 4380cgggttattg gcgttcaatt
aatcatagac ttatgaatct gcacggtgtg cgctgcgagt 4440tacttttagc ttatgcatgc
tacttgggtg taatattggg atctgttcgg aaatcaacgg 4500atgctcaatc gatttcgaca
gtaattaatt aagtcataca caagtcagct ttcttcgagc 4560ctcatataag tataagtagt
tcaacgtatt agcactgtac ccagcatctc cgtatcgaga 4620aacacaacaa catgccccat
tggacagatc atgcggatac acaggttgtg cagtatcata 4680catactcgat cagacaggtc
gtctgaccat catacaagct gaacaagcgc tccatacttg 4740cacgctctct atatacacag
ttaaattaca tatccatagt ctaacctcta acagttaatc 4800ttctggtaag cctcccagcc
agccttctgg tatcgcttgg cctcctcaat aggatctcgg 4860ttctggccgt acagacctcg
gccgacaatt atgatatccg ttccggtaga catgacatcc 4920tcaacagttc ggtactgctg
tccgagagcg tctcccttgt cgtcaagacc caccccgggg 4980gtcagaataa gccagtcctc
agagtcgccc ttaggtcggt tctgggcaat gaagccaacc 5040acaaactcgg ggtcggatcg
ggcaagctca atggtctgct tggagtactc gccagtggcc 5100agagagccct tgcaagacag
ctcggccagc atgagcagac ctctggccag cttctcgttg 5160ggagagggga ctaggaactc
cttgtactgg gagttctcgt agtcagagac gtcctccttc 5220ttctgttcag agacagtttc
ctcggcacca gctcgcaggc cagcaatgat tccggttccg 5280ggtacaccgt gggcgttggt
gatatcggac cactcggcga ttcggtgaca ccggtactgg 5340tgcttgacag tgttgccaat
atctgcgaac tttctgtcct cgaacaggaa gaaaccgtgc 5400ttaagagcaa gttccttgag
ggggagcaca gtgccggcgt aggtgaagtc gtcaatgatg 5460tcgatatggg ttttgatcat
gcacacataa ggtccgacct tatcggcaag ctcaatgagc 5520tccttggtgg tggtaacatc
cagagaagca cacaggttgg ttttcttggc tgccacgagc 5580ttgagcactc gagcggcaaa
ggcggacttg tggacgttag ctcgagcttc gtaggagggc 5640attttggtgg tgaagaggag
actgaaataa atttagtctg cagaactttt tatcggaacc 5700ttatctgggg cagtgaagta
tatgttatgg taatagttac gagttagttg aacttataga 5760tagactggac tatacggcta
tcggtccaaa ttagaaagaa cgtcaatggc tctctgggcg 5820tcgcctttgc cgacaaaaat
gtgatcatga tgaaagccag caatgacgtt gcagctgata 5880ttgttgtcgg ccaaccgcgc
cgaaaacgca gctgtcagac ccacagcctc caacgaagaa 5940tgtatcgtca aagtgatcca
agcacactca tagttggagt cgtactccaa aggcggcaat 6000gacgagtcag acagatactc
gtcgacgttt aaaccatcat ctaagggcct caaaactacc 6060tcggaactgc tgcgctgatc
tggacaccac agaggttccg agcactttag gttgcaccaa 6120atgtcccacc aggtgcaggc
agaaaacgct ggaacagcgt gtacagtttg tcttaacaaa 6180aagtgagggc gctgaggtcg
agcagggtgg tgtgacttgt tatagccttt agagctgcga 6240aagcgcgtat ggatttggct
catcaggcca gattgagggt ctgtggacac atgtcatgtt 6300agtgtacttc aatcgccccc
tggatatagc cccgacaata ggccgtggcc tcattttttt 6360gccttccgca catttccatt
gctcggtacc cacaccttgc ttctcctgca cttgccaacc 6420ttaatactgg tttacattga
ccaacatctt acaagcgggg ggcttgtcta gggtatatat 6480aaacagtggc tctcccaatc
ggttgccagt ctcttttttc ctttctttcc ccacagattc 6540gaaatctaaa ctacacatca
caccatggcc tcctcggagg acgtcatcaa ggagttcatg 6600cgattcaagg tccgaatgga
aggctccgtg aacggtcacg agtttgagat tgagggagag 6660ggtgaaggcc gaccctacga
aggcacccag accgcgaagc tgaaggtgac caagggtgga 6720cccctgccct tcgcctggga
cattctgtct cctcagtttc agtacggttc taaggtgtac 6780gtgaagcacc ctgctgacat
tcccgactac aagaaacttt cctttcccga gggcttcaag 6840tgggagcgag ttatgaactt
cgaggatggc ggtgtcgtta ccgttactca ggactcctcg 6900ctccaggacg gctcgttcat
ctacaaggtt aagttcatcg gtgtcaactt ccctagcgat 6960ggacccgtca tgcaaaagaa
aactatggga tgggaagcct ctacagagcg gctgtaccct 7020cgagacggag tgttgaaggg
cgagattcac aaggccctga agctcaagga cggtggacac 7080tatctcgttg agtttaagtc
tatctacatg gcaaagaaac ccgtgcagct tccaggctac 7140tattacgtcg attccaagct
cgatatcacc agccataatg aggactacac tattgtcgaa 7200cagtacgagc gtgctgaggg
aagacaccat ctgtttcttt aagc 72441301214DNAArtificial
sequenceFBA1 Yarrowia dsREDexpress cassette from pRF165 on PmeI NotI
fragment 130aaaccatcat ctaagggcct caaaactacc tcggaactgc tgcgctgatc
tggacaccac 60agaggttccg agcactttag gttgcaccaa atgtcccacc aggtgcaggc
agaaaacgct 120ggaacagcgt gtacagtttg tcttaacaaa aagtgagggc gctgaggtcg
agcagggtgg 180tgtgacttgt tatagccttt agagctgcga aagcgcgtat ggatttggct
catcaggcca 240gattgagggt ctgtggacac atgtcatgtt agtgtacttc aatcgccccc
tggatatagc 300cccgacaata ggccgtggcc tcattttttt gccttccgca catttccatt
gctcggtacc 360cacaccttgc ttctcctgca cttgccaacc ttaatactgg tttacattga
ccaacatctt 420acaagcgggg ggcttgtcta gggtatatat aaacagtggc tctcccaatc
ggttgccagt 480ctcttttttc ctttctttcc ccacagattc gaaatctaaa ctacacatca
caccatggcc 540tcctcggagg acgtcatcaa ggagttcatg cgattcaagg tccgaatgga
aggctccgtg 600aacggtcacg agtttgagat tgagggagag ggtgaaggcc gaccctacga
aggcacccag 660accgcgaagc tgaaggtgac caagggtgga cccctgccct tcgcctggga
cattctgtct 720cctcagtttc agtacggttc taaggtgtac gtgaagcacc ctgctgacat
tcccgactac 780aagaaacttt cctttcccga gggcttcaag tgggagcgag ttatgaactt
cgaggatggc 840ggtgtcgtta ccgttactca ggactcctcg ctccaggacg gctcgttcat
ctacaaggtt 900aagttcatcg gtgtcaactt ccctagcgat ggacccgtca tgcaaaagaa
aactatggga 960tgggaagcct ctacagagcg gctgtaccct cgagacggag tgttgaaggg
cgagattcac 1020aaggccctga agctcaagga cggtggacac tatctcgttg agtttaagtc
tatctacatg 1080gcaaagaaac ccgtgcagct tccaggctac tattacgtcg attccaagct
cgatatcacc 1140agccataatg aggactacac tattgtcgaa cagtacgagc gtgctgaggg
aagacaccat 1200ctgtttcttt aagc
121413111526DNAArtificial sequencep2PO69 integration vector
131ggccgcaagt gtggatgggg aagtgagtgc ccggttctgt gtgcacaatt ggcaatccaa
60gatggatgga ttcaacacag ggatatagcg agctacgtgg tggtgcgagg atatagcaac
120ggatatttat gtttgacact tgagaatgta cgatacaagc actgtccaag tacaatacta
180aacatactgt acatactcat actcgtaccc gggcaacggt ttcacttgag tgcagtggct
240agtgctctta ctcgtacagt gtgcaatact gcgtatcata gtctttgatg tatatcgtat
300tcattcatgt tagttgcgta cgggcgtcgt tgcttgtgtg atttttgagg acccatccct
360ttggtatata agtatactct ggggttaagg ttgcccgtgt agtctaggtt atagttttca
420tgtgaaatac cgagagccga gggagaataa acgggggtat ttggacttgt ttttttcgcg
480gaaaagcgtc gaatcaaccc tgcgggcctt gcaccatgtc cacgacgtgt ttctcgcccc
540aattcgcccc ttgcacgtca aaattaggcc tccatctaga cccctccata acatgtgact
600gtggggaaaa gtataaggga aaccatgcaa ccatagacga cgtgaaagac ggggaggaac
660caatggaggc caaagaaatg gggtagcaac agtccaggag acagacaagg agacaaggag
720agggcgcccg aaagatcgga aaaacaaaca tgtccaattg gggcagtgac ggaaacgaca
780cggacacttc agtacaatgg accgaccatc tccaagccag ggttattccg gtatcacctt
840ggccgtaacc tcccgctggt acctgatatt gtacacgttc acattcaata tactttcagc
900tacaataaga gaggctgttt gtcgggcatg tgtgtccgtc gtatggggtg atgtccgagg
960gcgaaattcg ctacaagctt aactctggcg cttgtccagt atgaatagac aagtcaagac
1020cagtggtgcc atgattgaca gggaggtaca agacttcgat actcgagcat tactcggact
1080tgtggcgatt gaacagacgg gcgatcgctt ctcccccgta ttgccggcgc gccagctgca
1140ttaatgaatc ggccaacgcg cggggagagg cggtttgcgt attgggcgct cttccgcttc
1200ctcgctcact gactcgctgc gctcggtcgt tcggctgcgg cgagcggtat cagctcactc
1260aaaggcggta atacggttat ccacagaatc aggggataac gcaggaaaga acatgtgagc
1320aaaaggccag caaaaggcca ggaaccgtaa aaaggccgcg ttgctggcgt ttttccatag
1380gctccgcccc cctgacgagc atcacaaaaa tcgacgctca agtcagaggt ggcgaaaccc
1440gacaggacta taaagatacc aggcgtttcc ccctggaagc tccctcgtgc gctctcctgt
1500tccgaccctg ccgcttaccg gatacctgtc cgcctttctc ccttcgggaa gcgtggcgct
1560ttctcatagc tcacgctgta ggtatctcag ttcggtgtag gtcgttcgct ccaagctggg
1620ctgtgtgcac gaaccccccg ttcagcccga ccgctgcgcc ttatccggta actatcgtct
1680tgagtccaac ccggtaagac acgacttatc gccactggca gcagccactg gtaacaggat
1740tagcagagcg aggtatgtag gcggtgctac agagttcttg aagtggtggc ctaactacgg
1800ctacactaga agaacagtat ttggtatctg cgctctgctg aagccagtta ccttcggaaa
1860aagagttggt agctcttgat ccggcaaaca aaccaccgct ggtagcggtg gtttttttgt
1920ttgcaagcag cagattacgc gcagaaaaaa aggatctcaa gaagatcctt tgatcttttc
1980tacggggtct gacgctcagt ggaacgaaaa ctcacgttaa gggattttgg tcatgagatt
2040atcaaaaagg atcttcacct agatcctttt aaattaaaaa tgaagtttta aatcaatcta
2100aagtatatat gagtaaactt ggtctgacag ttaccaatgc ttaatcagtg aggcacctat
2160ctcagcgatc tgtctatttc gttcatccat agttgcctga ctccccgtcg tgtagataac
2220tacgatacgg gagggcttac catctggccc cagtgctgca atgataccgc gagacccacg
2280ctcaccggct ccagatttat cagcaataaa ccagccagcc ggaagggccg agcgcagaag
2340tggtcctgca actttatccg cctccatcca gtctattaat tgttgccggg aagctagagt
2400aagtagttcg ccagttaata gtttgcgcaa cgttgttgcc attgctacag gcatcgtggt
2460gtcacgctcg tcgtttggta tggcttcatt cagctccggt tcccaacgat caaggcgagt
2520tacatgatcc cccatgttgt gcaaaaaagc ggttagctcc ttcggtcctc cgatcgttgt
2580cagaagtaag ttggccgcag tgttatcact catggttatg gcagcactgc ataattctct
2640tactgtcatg ccatccgtaa gatgcttttc tgtgactggt gagtactcaa ccaagtcatt
2700ctgagaatag tgtatgcggc gaccgagttg ctcttgcccg gcgtcaatac gggataatac
2760cgcgccacat agcagaactt taaaagtgct catcattgga aaacgttctt cggggcgaaa
2820actctcaagg atcttaccgc tgttgagatc cagttcgatg taacccactc gtgcacccaa
2880ctgatcttca gcatctttta ctttcaccag cgtttctggg tgagcaaaaa caggaaggca
2940aaatgccgca aaaaagggaa taagggcgac acggaaatgt tgaatactca tactcttcct
3000ttttcaatat tattgaagca tttatcaggg ttattgtctc atgagcggat acatatttga
3060atgtatttag aaaaataaac aaataggggt tccgcgcaca tttccccgaa aagtgccacc
3120tgatgcggtg tgaaataccg cacagatgcg taaggagaaa ataccgcatc aggaaattgt
3180aagcgttaat attttgttaa aattcgcgtt aaatttttgt taaatcagct cattttttaa
3240ccaataggcc gaaatcggca aaatccctta taaatcaaaa gaatagaccg agatagggtt
3300gagtgttgtt ccagtttgga acaagagtcc actattaaag aacgtggact ccaacgtcaa
3360agggcgaaaa accgtctatc agggcgatgg cccactacgt gaaccatcac cctaatcaag
3420ttttttgggg tcgaggtgcc gtaaagcact aaatcggaac cctaaaggga gcccccgatt
3480tagagcttga cggggaaagc cggcgaacgt ggcgagaaag gaagggaaga aagcgaaagg
3540agcgggcgct agggcgctgg caagtgtagc ggtcacgctg cgcgtaacca ccacacccgc
3600cgcgcttaat gcgccgctac agggcgcgtc cattcgccat tcaggctgcg caactgttgg
3660gaagggcgat cggtgcgggc ctcttcgcta ttacgccagc tggcgaaagg gggatgtgct
3720gcaaggcgat taagttgggt aacgccaggg ttttcccagt cacgacgttg taaaacgacg
3780gccagtgaat tgtaatacga ctcactatag ggcgaattgg gcccgacgtc gcatgcgctg
3840atgacacttt ggtctgaaag agatgcattt tgaatcccaa acttgcagtg cccaagtgac
3900atacatctcc gcgttttgga aaatgttcag aaacagttga ttgtgttgga atggggaatg
3960gggaatggaa aaatgactca agtatcaatt ccaaaaactt ctctggctgg cagtacctac
4020tgtccatact actgcatttt ctccagtcag gccactctat actcgacgac acagtagtaa
4080aacccagata atttcgacat aaacaagaaa acagacccaa taatatttat atatagtcag
4140ccgtttgtcc agttcagact gtaatagccg aaaaaaaatc caaagtttct attctaggaa
4200aatatattcc aatattttta attcttaatc tcatttattt tattctagcg aaatacattt
4260cagctacttg agacatgtga tacccacaaa tcggattcgg actcggttgt tcagaagagc
4320atatggcatt cgtgctcgct tgttcacgta ttcttcctgt tccatctctt ggccgacaat
4380cacacaaaaa tggggttttt tttttaattc taatgattca ttacagcaaa attgagatat
4440agcagaccac gtattccata atcaccaagg aagttcttgg gcgtcttaat taagttgcga
4500cacatgtctt gatagtatct tggcttctct ctcttgagct tttccataac aagttcttct
4560gcctccagga agtccatggt gaatgattct tatactcaga aggaaatgct taacgatttc
4620gggtgtgagt tgacaaggag agagagaaaa gaagaggaaa ggtaattcgg ggacggtggt
4680cttttatacc cttggctaaa gtcccaacca caaagcaaaa aaattttcag tagtctattt
4740tgcgtccggc atgggttacc cggatggcca gacaaagaaa ctagtacaaa gtctgaacaa
4800gcgtagattc cagactgcag taccctacgc ccttaacggc aagtgtggga accgggggag
4860gtttgatatg tggggtgaag ggggctctcg ccggggttgg gcccgctact gggtcaattt
4920ggggtcaatt ggggcaattg gggctgtttt ttgggacaca aatacgccgc caacccggtc
4980tctcctgaat tctgcagatg ggctgcagga attccgtcgt cgcctgagtc gacatcattt
5040atttaccagt tggccacaaa cccttgacga tctcgtatgt cccctccgac atactcccgg
5100ccggctgggg tacgttcgat agcgctatcg gcatcgacaa ggtttgggtc cctagccgat
5160accgcactac ctgagtcaca atcttcggag gtttagtctt ccacatagca cgggcaaaag
5220tgcgtatata tacaagagcg tttgccagcc acagattttc actccacaca ccacatcaca
5280catacaacca cacacatcca caatggaacc cgaaactaag aagaccaaga ctgactccaa
5340gaagattgtt cttctcggcg gcgacttctg tggccccgag gtgattgccg aggccgtcaa
5400ggtgctcaag tctgttgctg aggcctccgg caccgagttt gtgtttgagg accgactcat
5460tggaggagct gccattgaga aggagggcga gcccatcacc gacgctactc tcgacatctg
5520ccgaaaggct gactctatta tgctcggtgc tgtcggaggc gctgccaaca ccgtatggac
5580cactcccgac ggacgaaccg acgtgcgacc cgagcagggt ctcctcaagc tgcgaaagga
5640cctgaacctg tacgccaacc tgcgaccctg ccagctgctg tcgcccaagc tcgccgatct
5700ctcccccatc cgaaacgttg agggcaccga cttcatcatt gtccgagagc tcgtcggagg
5760tatctacttt ggagagcgaa aggaggatga cggatctggc gtcgcttccg acaccgagac
5820ctactccgtt cctgaggttg agcgaattgc ccgaatggcc gccttcctgg cccttcagca
5880caacccccct cttcccgtgt ggtctcttga caaggccaac gtgctggcct cctctcgact
5940ttggcgaaag actgtcactc gagtcctcaa ggacgaattc ccccagctcg agctcaacca
6000ccagctgatc gactcggccg ccatgatcct catcaagcag ccctccaaga tgaatggtat
6060catcatcacc accaacatgt ttggcgatat catctccgac gaggcctccg tcatccccgg
6120ttctctgggt ctgctgccct ccgcctctct ggcttctctg cccgacacca acgaggcgtt
6180cggtctgtac gagccctgtc acggatctgc ccccgatctc ggcaagcaga aggtcaaccc
6240cattgccacc attctgtctg ccgccatgat gctcaagttc tctcttaaca tgaagcccgc
6300cggtgacgct gttgaggctg ccgtcaagga gtccgtcgag gctggtatca ctaccgccga
6360tatcggaggc tcttcctcca cctccgaggt cggagacttg ttgccaacaa ggtcaaggag
6420ctgctcaaga aggagtaagt cgtttctacg acgcattgat ggaaggagca aactgacgcg
6480cctgcgggtt ggtctaccgg cagggtccgc tagtgtataa gactctataa aaagggccct
6540gccctgctaa tgaaatgatg atttataatt taccggtgta gcaaccttga ctagaagaag
6600cagattgggt gtgtttgtag tggaggacag tggtacgttt tggaaacagt cttcttgaaa
6660gtgtcttgtc tacagtatat tcactcataa cctcaatagc caagggtgta gtcggtttat
6720taaaggaagg gagttgtggc tgatgtggat agatatcttt aagctggcga ctgcacccaa
6780cgagtgtggt ggtagcttgt tagatctgta tattcggtaa gatatatttt gtggggtttt
6840agtggtgttt aaaccatcat ctaagggcct caaaactacc tcggaactgc tgcgctgatc
6900tggacaccac agaggttccg agcactttag gttgcaccaa atgtcccacc aggtgcaggc
6960agaaaacgct ggaacagcgt gtacagtttg tcttaacaaa aagtgagggc gctgaggtcg
7020agcagggtgg tgtgacttgt tatagccttt agagctgcga aagcgcgtat ggatttggct
7080catcaggcca gattgagggt ctgtggacac atgtcatgtt agtgtacttc aatcgccccc
7140tggatatagc cccgacaata ggccgtggcc tcattttttt gccttccgca catttccatt
7200gctcggtacc cacaccttgc ttctcctgca cttgccaacc ttaatactgg tttacattga
7260ccaacatctt acaagcgggg ggcttgtcta gggtatatat aaacagtggc tctcccaatc
7320ggttgccagt ctcttttttc ctttctttcc ccacagattc gaaatctaaa ctacacatca
7380caccatggac aagaaatact ccatcggcct ggacattgga accaactctg tcggctgggc
7440tgtcatcacc gacgagtaca aggtgccctc caagaaattc aaggtcctcg gaaacaccga
7500tcgacactcc atcaagaaaa acctcattgg tgccctgttg ttcgattctg gcgagactgc
7560cgaagctacc agactcaagc gaactgctcg gcgacgttac acccgacgga agaaccgaat
7620ctgctacctg caggagatct tttccaacga gatggccaag gtggacgatt cgttctttca
7680tcgactggag gaatccttcc tcgtcgagga agacaagaaa cacgagcgtc atcccatctt
7740tggcaacatt gtggacgagg ttgcttacca cgagaagtat cctaccatct accacctgcg
7800aaagaaactc gtcgattcca ccgacaaggc ggatctcaga cttatctacc tcgctctggc
7860acacatgatc aagtttcgag gtcatttcct catcgagggc gatctcaatc ccgacaacag
7920cgatgtggac aagctgttca ttcagctcgt tcagacctac aaccagctgt tcgaggaaaa
7980ccccatcaat gcctccggag tcgatgcaaa ggccatcttg tctgctcgac tctcgaagag
8040cagacgactg gagaacctca ttgcccaact tcctggcgag aaaaagaacg gactgtttgg
8100caacctcatt gccctttctc ttggtctcac acccaacttc aagtccaact tcgatctggc
8160ggaggacgcc aagctccagc tgtccaagga cacctacgac gatgacctcg acaacctgct
8220tgcacagatt ggcgatcagt acgccgacct gtttctcgct gccaagaacc tttcggatgc
8280tattctcttg tctgacattc tgcgagtcaa caccgagatc acaaaggctc ccctttctgc
8340ctccatgatc aagcgatacg acgagcacca tcaggatctc acactgctca aggctcttgt
8400ccgacagcaa ctgcccgaga agtacaagga gatctttttc gatcagtcga agaacggcta
8460cgctggatac atcgacggcg gagcctctca ggaagagttc tacaagttca tcaagccaat
8520tctcgagaag atggacggaa ccgaggaact gcttgtcaag ctcaatcgag aggatctgct
8580tcggaagcaa cgaaccttcg acaacggcag cattcctcat cagatccacc tcggtgagct
8640gcacgccatt cttcgacgtc aggaagactt ctaccccttt ctcaaggaca accgagagaa
8700gatcgagaag attcttacct ttcgaatccc ctactatgtt ggtcctcttg ccagaggaaa
8760ctctcgattt gcttggatga ctcgaaagtc cgaggaaacc atcactccct ggaacttcga
8820ggaagtcgtg gacaagggtg cctctgcaca gtccttcatc gagcgaatga ccaacttcga
8880caagaatctg cccaacgaga aggttcttcc caagcattcg ctgctctacg agtactttac
8940agtctacaac gaactcacca aagtcaagta cgttaccgag ggaatgcgaa agcctgcctt
9000cttgtctggc gaacagaaga aagccattgt cgatctcctg ttcaagacca accgaaaggt
9060cactgttaag cagctcaagg aggactactt caagaaaatc gagtgtttcg acagcgtcga
9120gatttccgga gttgaggacc gattcaacgc ctctttgggc acctatcacg atctgctcaa
9180gattatcaag gacaaggatt ttctcgacaa cgaggaaaac gaggacattc tggaggacat
9240cgtgctcact cttaccctgt tcgaagatcg ggagatgatc gaggaacgac tcaagacata
9300cgctcacctg ttcgacgaca aggtcatgaa acaactcaag cgacgtagat acaccggctg
9360gggaagactt tcgcgaaagc tcatcaacgg catcagagac aagcagtccg gaaagaccat
9420tctggacttt ctcaagtccg atggctttgc caaccgaaac ttcatgcagc tcattcacga
9480cgattctctt accttcaagg aggacatcca gaaggcacaa gtgtccggtc agggcgacag
9540cttgcacgaa catattgcca acctggctgg ttcgccagcc atcaagaaag gcattctcca
9600gactgtcaag gttgtcgacg agctggtgaa ggtcatggga cgtcacaagc ccgagaacat
9660tgtgatcgag atggccagag agaaccagac aactcaaaag ggtcagaaaa actcgcgaga
9720gcggatgaag cgaatcgagg aaggcatcaa ggagctggga tcccagattc tcaaggagca
9780tcccgtcgag aacactcaac tgcagaacga gaagctgtat ctctactatc tgcagaatgg
9840tcgagacatg tacgtggatc aggaactgga catcaatcgt ctcagcgact acgatgtgga
9900ccacattgtc cctcaatcct ttctcaagga cgattctatc gacaacaagg tccttacacg
9960atccgacaag aacagaggca agtcggacaa cgttcccagc gaagaggtgg tcaaaaagat
10020gaagaactac tggcgacagc tgctcaacgc caagctcatt acccagcgaa agttcgacaa
10080tcttaccaag gccgagcgag gcggtctgtc cgagctcgac aaggctggct tcatcaagcg
10140tcaactcgtc gagaccagac agatcacaaa gcacgtcgca cagattctcg attctcggat
10200gaacaccaag tacgacgaga acgacaagct catccgagag gtcaaggtga ttactctcaa
10260gtccaaactg gtctccgatt tccgaaagga ctttcagttc tacaaggtgc gagagatcaa
10320caattaccac catgcccacg atgcttacct caacgccgtc gttggcactg cgctcatcaa
10380gaaatacccc aagctcgaaa gcgagttcgt ttacggcgat tacaaggtct acgacgttcg
10440aaagatgatt gccaagtccg aacaggagat tggcaaggct actgccaagt acttctttta
10500ctccaacatc atgaactttt tcaagaccga gatcaccttg gccaacggag agattcgaaa
10560gagaccactt atcgagacca acggcgaaac tggagagatc gtgtgggaca agggtcgaga
10620ctttgcaacc gtgcgaaagg ttctgtcgat gcctcaggtc aacatcgtca agaaaaccga
10680ggttcagact ggcggattct ccaaggagtc gattctgccc aagcgaaact ccgacaagct
10740catcgctcga aagaaagact gggatcccaa gaaatacggt ggcttcgatt ctcctaccgt
10800cgcctattcc gtgcttgtcg ttgcgaaggt cgagaagggc aagtccaaaa agctcaagtc
10860cgtcaaggag ctgctcggaa ttaccatcat ggagcgatcg agcttcgaga agaatcccat
10920cgacttcttg gaagccaagg gttacaagga ggtcaagaaa gacctcatta tcaagctgcc
10980caagtactct ctgttcgaac tggagaacgg tcgaaagcgt atgctcgcct ccgctggcga
11040gctgcagaag ggaaacgagc ttgccttgcc ttcgaagtac gtcaactttc tctatctggc
11100ttctcactac gagaagctca agggttctcc cgaggacaac gaacagaagc aactcttcgt
11160tgagcagcac aaacattacc tcgacgagat tatcgagcag atttccgagt tttcgaagcg
11220agtcatcctg gctgatgcca acttggacaa ggtgctctct gcctacaaca agcatcggga
11280caaacccatt cgagaacagg cggagaacat cattcacctg tttactctta ccaacctggg
11340tgctcctgca gctttcaagt acttcgatac cactatcgac cgaaagcggt acacatccac
11400caaggaggtt ctcgatgcca ccctgattca ccagtccatc actggcctgt acgagacccg
11460aatcgacctg tctcagcttg gtggcgactc cagagccgat cccaagaaaa agcgaaaggt
11520ctaagc
115261328064DNAartificial sequencepRF201 132aaaccatcat ctaagggcct
caaaactacc tcggaactgc tgcgctgatc tggacaccac 60agaggttccg agcactttag
gttgcaccaa atgtcccacc aggtgcaggc agaaaacgct 120ggaacagcgt gtacagtttg
tcttaacaaa aagtgagggc gctgaggtcg agcagggtgg 180tgtgacttgt tatagccttt
agagctgcga aagcgcgtat ggatttggct catcaggcca 240gattgagggt ctgtggacac
atgtcatgtt agtgtacttc aatcgccccc tggatatagc 300cccgacaata ggccgtggcc
tcattttttt gccttccgca catttccatt gctcggtacc 360cacaccttgc ttctcctgca
cttgccaacc ttaatactgg tttacattga ccaacatctt 420acaagcgggg ggcttgtcta
gggtatatat aaacagtggc tctcccaatc ggttgccagt 480ctcttttttc ctttctttcc
ccacagattc gaaatctaaa ctacacatca caccatggcc 540tcctcggagg acgtcatcaa
ggagttcatg cgattcaagg tccgaatgga aggctccgtg 600aacggtcacg agtttgagat
tgagggagag ggtgaaggcc gaccctacga aggcacccag 660accgcgaagc tgaaggtgac
caagggtgga cccctgccct tcgcctggga cattctgtct 720cctcagtttc agtacggttc
taaggtgtac gtgaagcacc ctgctgacat tcccgactac 780aagaaacttt cctttcccga
gggcttcaag tgggagcgag ttatgaactt cgaggatggc 840ggtgtcgtta ccgttactca
ggactcctcg ctccaggacg gctcgttcat ctacaaggtt 900aagttcatcg gtgtcaactt
ccctagcgat ggacccgtca tgcaaaagaa aactatggga 960tgggaagcct ctacagagcg
gctgtaccct cgagacggag tgttgaaggg cgagattcac 1020aaggccctga agctcaagga
cggtggacac tatctcgttg agtttaagtc tatctacatg 1080gcaaagaaac ccgtgcagct
tccaggctac tattacgtcg attccaagct cgatatcacc 1140agccataatg aggactacac
tattgtcgaa cagtacgagc gtgctgaggg aagacaccat 1200ctgtttcttt aagcggccgc
aagtgtggat ggggaagtga gtgcccggtt ctgtgtgcac 1260aattggcaat ccaagatgga
tggattcaac acagggatat agcgagctac gtggtggtgc 1320gaggatatag caacggatat
ttatgtttga cacttgagaa tgtacgatac aagcactgtc 1380caagtacaat actaaacata
ctgtacatac tcatactcgt acccgggcaa cggtttcact 1440tgagtgcagt ggctagtgct
cttactcgta cagtgtgcaa tactgcgtat catagtcttt 1500gatgtatatc gtattcattc
atgttagttg cgtacgggcg tcgttgcttg tgtgattttt 1560gaggacccat ccctttggta
tataagtata ctctggggtt aaggttgccc gtgtagtcta 1620ggttatagtt ttcatgtgaa
ataccgagag ccgagggaga ataaacgggg gtatttggac 1680ttgttttttt cgcggaaaag
cgtcgaatca accctgcggg ccttgcacca tgtccacgac 1740gtgtttctcg ccccaattcg
ccccttgcac gtcaaaatta ggcctccatc tagacccctc 1800cataacatgt gactgtgggg
aaaagtataa gggaaaccat gcaaccatag acgacgtgaa 1860agacggggag gaaccaatgg
aggccaaaga aatggggtag caacagtcca ggagacagac 1920aaggagacaa ggagagggcg
cccgaaagat cggaaaaaca aacatgtcca attggggcag 1980tgacggaaac gacacggaca
cttcagtaca atggaccgac catctccaag ccagggttat 2040tccggtatca ccttggccgt
aacctcccgc tggtacctga tattgtacac gttcacattc 2100aatatacttt cagctacaat
aagagaggct gtttgtcggg catgtgtgtc cgtcgtatgg 2160ggtgatgtcc gagggcgaaa
ttcgctacaa gcttaactct ggcgcttgtc cagtatgaat 2220agacaagtca agaccagtgg
tgccatgatt gacagggagg tacaagactt cgatactcga 2280gcattactcg gacttgtggc
gattgaacag acgggcgatc gcttctcccc cgtattgccg 2340gcgcgccagc tgcattaatg
aatcggccaa cgcgcgggga gaggcggttt gcgtattggg 2400cgctcttccg cttcctcgct
cactgactcg ctgcgctcgg tcgttcggct gcggcgagcg 2460gtatcagctc actcaaaggc
ggtaatacgg ttatccacag aatcagggga taacgcagga 2520aagaacatgt gagcaaaagg
ccagcaaaag gccaggaacc gtaaaaaggc cgcgttgctg 2580gcgtttttcc ataggctccg
cccccctgac gagcatcaca aaaatcgacg ctcaagtcag 2640aggtggcgaa acccgacagg
actataaaga taccaggcgt ttccccctgg aagctccctc 2700gtgcgctctc ctgttccgac
cctgccgctt accggatacc tgtccgcctt tctcccttcg 2760ggaagcgtgg cgctttctca
tagctcacgc tgtaggtatc tcagttcggt gtaggtcgtt 2820cgctccaagc tgggctgtgt
gcacgaaccc cccgttcagc ccgaccgctg cgccttatcc 2880ggtaactatc gtcttgagtc
caacccggta agacacgact tatcgccact ggcagcagcc 2940actggtaaca ggattagcag
agcgaggtat gtaggcggtg ctacagagtt cttgaagtgg 3000tggcctaact acggctacac
tagaagaaca gtatttggta tctgcgctct gctgaagcca 3060gttaccttcg gaaaaagagt
tggtagctct tgatccggca aacaaaccac cgctggtagc 3120ggtggttttt ttgtttgcaa
gcagcagatt acgcgcagaa aaaaaggatc tcaagaagat 3180cctttgatct tttctacggg
gtctgacgct cagtggaacg aaaactcacg ttaagggatt 3240ttggtcatga gattatcaaa
aaggatcttc acctagatcc ttttaaatta aaaatgaagt 3300tttaaatcaa tctaaagtat
atatgagtaa acttggtctg acagttacca atgcttaatc 3360agtgaggcac ctatctcagc
gatctgtcta tttcgttcat ccatagttgc ctgactcccc 3420gtcgtgtaga taactacgat
acgggagggc ttaccatctg gccccagtgc tgcaatgata 3480ccgcgagacc cacgctcacc
ggctccagat ttatcagcaa taaaccagcc agccggaagg 3540gccgagcgca gaagtggtcc
tgcaacttta tccgcctcca tccagtctat taattgttgc 3600cgggaagcta gagtaagtag
ttcgccagtt aatagtttgc gcaacgttgt tgccattgct 3660acaggcatcg tggtgtcacg
ctcgtcgttt ggtatggctt cattcagctc cggttcccaa 3720cgatcaaggc gagttacatg
atcccccatg ttgtgcaaaa aagcggttag ctccttcggt 3780cctccgatcg ttgtcagaag
taagttggcc gcagtgttat cactcatggt tatggcagca 3840ctgcataatt ctcttactgt
catgccatcc gtaagatgct tttctgtgac tggtgagtac 3900tcaaccaagt cattctgaga
atagtgtatg cggcgaccga gttgctcttg cccggcgtca 3960atacgggata ataccgcgcc
acatagcaga actttaaaag tgctcatcat tggaaaacgt 4020tcttcggggc gaaaactctc
aaggatctta ccgctgttga gatccagttc gatgtaaccc 4080actcgtgcac ccaactgatc
ttcagcatct tttactttca ccagcgtttc tgggtgagca 4140aaaacaggaa ggcaaaatgc
cgcaaaaaag ggaataaggg cgacacggaa atgttgaata 4200ctcatactct tcctttttca
atattattga agcatttatc agggttattg tctcatgagc 4260ggatacatat ttgaatgtat
ttagaaaaat aaacaaatag gggttccgcg cacatttccc 4320cgaaaagtgc cacctgatgc
ggtgtgaaat accgcacaga tgcgtaagga gaaaataccg 4380catcaggaaa ttgtaagcgt
taatattttg ttaaaattcg cgttaaattt ttgttaaatc 4440agctcatttt ttaaccaata
ggccgaaatc ggcaaaatcc cttataaatc aaaagaatag 4500accgagatag ggttgagtgt
tgttccagtt tggaacaaga gtccactatt aaagaacgtg 4560gactccaacg tcaaagggcg
aaaaaccgtc tatcagggcg atggcccact acgtgaacca 4620tcaccctaat caagtttttt
ggggtcgagg tgccgtaaag cactaaatcg gaaccctaaa 4680gggagccccc gatttagagc
ttgacgggga aagccggcga acgtggcgag aaaggaaggg 4740aagaaagcga aaggagcggg
cgctagggcg ctggcaagtg tagcggtcac gctgcgcgta 4800accaccacac ccgccgcgct
taatgcgccg ctacagggcg cgtccattcg ccattcaggc 4860tgcgcaactg ttgggaaggg
cgatcggtgc gggcctcttc gctattacgc cagctggcga 4920aagggggatg tgctgcaagg
cgattaagtt gggtaacgcc agggttttcc cagtcacgac 4980gttgtaaaac gacggccagt
gaattgtaat acgactcact atagggcgaa ttgggcccga 5040cgtcgcatgc gctgatgaca
ctttggtctg aaagagatgc attttgaatc ccaaacttgc 5100agtgcccaag tgacatacat
ctccgcgttt tggaaaatgt tcagaaacag ttgattgtgt 5160tggaatgggg aatggggaat
ggaaaaatga ctcaagtatc aattccaaaa acttctctgg 5220ctggcagtac ctactgtcca
tactactgca ttttctccag tcaggccact ctatactcga 5280cgacacagta gtaaaaccca
gataatttcg acataaacaa gaaaacagac ccaataatat 5340ttatatatag tcagccgttt
gtccagttca gactgtaata gccgaaaaaa aatccaaagt 5400ttctattcta ggaaaatata
ttccaatatt tttaattctt aatctcattt attttattct 5460agcgaaatac atttcagcta
cttgagacat gtgataccca caaatcggat tcggactcgg 5520ttgttcagaa gagcatatgg
cattcgtgct cgcttgttca cgtattcttc ctgttccatc 5580tcttggccga caatcacaca
aaaatggggt ttttttttta attctaatga ttcattacag 5640caaaattgag atatagcaga
ccacgtattc cataatcacc aaggaagttc ttgggcgtct 5700taattaagtt gcgacacatg
tcttgatagt atcttggctt ctctctcttg agcttttcca 5760taacaagttc ttctgcctcc
aggaagtcca tggtgaatga ttcttatact cagaaggaaa 5820tgcttaacga tttcgggtgt
gagttgacaa ggagagagag aaaagaagag gaaaggtaat 5880tcggggacgg tggtctttta
tacccttggc taaagtccca accacaaagc aaaaaaattt 5940tcagtagtct attttgcgtc
cggcatgggt tacccggatg gccagacaaa gaaactagta 6000caaagtctga acaagcgtag
attccagact gcagtaccct acgcccttaa cggcaagtgt 6060gggaaccggg ggaggtttga
tatgtggggt gaagggggct ctcgccgggg ttgggcccgc 6120tactgggtca atttggggtc
aattggggca attggggctg ttttttggga cacaaatacg 6180ccgccaaccc ggtctctcct
gaattctgca gatgggctgc aggaattccg tcgtcgcctg 6240agtcgacatc atttatttac
cagttggcca caaacccttg acgatctcgt atgtcccctc 6300cgacatactc ccggccggct
ggggtacgtt cgatagcgct atcggcatcg acaaggtttg 6360ggtccctagc cgataccgca
ctacctgagt cacaatcttc ggaggtttag tcttccacat 6420agcacgggca aaagtgcgta
tatatacaag agcgtttgcc agccacagat tttcactcca 6480cacaccacat cacacataca
accacacaca tccacaatgg aacccgaaac taagaagacc 6540aagactgact ccaagaagat
tgttcttctc ggcggcgact tctgtggccc cgaggtgatt 6600gccgaggccg tcaaggtgct
caagtctgtt gctgaggcct ccggcaccga gtttgtgttt 6660gaggaccgac tcattggagg
agctgccatt gagaaggagg gcgagcccat caccgacgct 6720actctcgaca tctgccgaaa
ggctgactct attatgctcg gtgctgtcgg aggcgctgcc 6780aacaccgtat ggaccactcc
cgacggacga accgacgtgc gacccgagca gggtctcctc 6840aagctgcgaa aggacctgaa
cctgtacgcc aacctgcgac cctgccagct gctgtcgccc 6900aagctcgccg atctctcccc
catccgaaac gttgagggca ccgacttcat cattgtccga 6960gagctcgtcg gaggtatcta
ctttggagag cgaaaggagg atgacggatc tggcgtcgct 7020tccgacaccg agacctactc
cgttcctgag gttgagcgaa ttgcccgaat ggccgccttc 7080ctggcccttc agcacaaccc
ccctcttccc gtgtggtctc ttgacaaggc caacgtgctg 7140gcctcctctc gactttggcg
aaagactgtc actcgagtcc tcaaggacga attcccccag 7200ctcgagctca accaccagct
gatcgactcg gccgccatga tcctcatcaa gcagccctcc 7260aagatgaatg gtatcatcat
caccaccaac atgtttggcg atatcatctc cgacgaggcc 7320tccgtcatcc ccggttctct
gggtctgctg ccctccgcct ctctggcttc tctgcccgac 7380accaacgagg cgttcggtct
gtacgagccc tgtcacggat ctgcccccga tctcggcaag 7440cagaaggtca accccattgc
caccattctg tctgccgcca tgatgctcaa gttctctctt 7500aacatgaagc ccgccggtga
cgctgttgag gctgccgtca aggagtccgt cgaggctggt 7560atcactaccg ccgatatcgg
aggctcttcc tccacctccg aggtcggaga cttgttgcca 7620acaaggtcaa ggagctgctc
aagaaggagt aagtcgtttc tacgacgcat tgatggaagg 7680agcaaactga cgcgcctgcg
ggttggtcta ccggcagggt ccgctagtgt ataagactct 7740ataaaaaggg ccctgccctg
ctaatgaaat gatgatttat aatttaccgg tgtagcaacc 7800ttgactagaa gaagcagatt
gggtgtgttt gtagtggagg acagtggtac gttttggaaa 7860cagtcttctt gaaagtgtct
tgtctacagt atattcactc ataacctcaa tagccaaggg 7920tgtagtcggt ttattaaagg
aagggagttg tggctgatgt ggatagatat ctttaagctg 7980gcgactgcac ccaacgagtg
tggtggtagc ttgttagatc tgtatattcg gtaagatata 8040ttttgtgggg ttttagtggt
gttt 80641335356DNAArtificial
seuqneceAscI/SphI integration fragment from pRF201 133cgctgatgac
actttggtct gaaagagatg cattttgaat cccaaacttg cagtgcccaa 60gtgacataca
tctccgcgtt ttggaaaatg ttcagaaaca gttgattgtg ttggaatggg 120gaatggggaa
tggaaaaatg actcaagtat caattccaaa aacttctctg gctggcagta 180cctactgtcc
atactactgc attttctcca gtcaggccac tctatactcg acgacacagt 240agtaaaaccc
agataatttc gacataaaca agaaaacaga cccaataata tttatatata 300gtcagccgtt
tgtccagttc agactgtaat agccgaaaaa aaatccaaag tttctattct 360aggaaaatat
attccaatat ttttaattct taatctcatt tattttattc tagcgaaata 420catttcagct
acttgagaca tgtgataccc acaaatcgga ttcggactcg gttgttcaga 480agagcatatg
gcattcgtgc tcgcttgttc acgtattctt cctgttccat ctcttggccg 540acaatcacac
aaaaatgggg tttttttttt aattctaatg attcattaca gcaaaattga 600gatatagcag
accacgtatt ccataatcac caaggaagtt cttgggcgtc ttaattaagt 660tgcgacacat
gtcttgatag tatcttggct tctctctctt gagcttttcc ataacaagtt 720cttctgcctc
caggaagtcc atggtgaatg attcttatac tcagaaggaa atgcttaacg 780atttcgggtg
tgagttgaca aggagagaga gaaaagaaga ggaaaggtaa ttcggggacg 840gtggtctttt
atacccttgg ctaaagtccc aaccacaaag caaaaaaatt ttcagtagtc 900tattttgcgt
ccggcatggg ttacccggat ggccagacaa agaaactagt acaaagtctg 960aacaagcgta
gattccagac tgcagtaccc tacgccctta acggcaagtg tgggaaccgg 1020gggaggtttg
atatgtgggg tgaagggggc tctcgccggg gttgggcccg ctactgggtc 1080aatttggggt
caattggggc aattggggct gttttttggg acacaaatac gccgccaacc 1140cggtctctcc
tgaattctgc agatgggctg caggaattcc gtcgtcgcct gagtcgacat 1200catttattta
ccagttggcc acaaaccctt gacgatctcg tatgtcccct ccgacatact 1260cccggccggc
tggggtacgt tcgatagcgc tatcggcatc gacaaggttt gggtccctag 1320ccgataccgc
actacctgag tcacaatctt cggaggttta gtcttccaca tagcacgggc 1380aaaagtgcgt
atatatacaa gagcgtttgc cagccacaga ttttcactcc acacaccaca 1440tcacacatac
aaccacacac atccacaatg gaacccgaaa ctaagaagac caagactgac 1500tccaagaaga
ttgttcttct cggcggcgac ttctgtggcc ccgaggtgat tgccgaggcc 1560gtcaaggtgc
tcaagtctgt tgctgaggcc tccggcaccg agtttgtgtt tgaggaccga 1620ctcattggag
gagctgccat tgagaaggag ggcgagccca tcaccgacgc tactctcgac 1680atctgccgaa
aggctgactc tattatgctc ggtgctgtcg gaggcgctgc caacaccgta 1740tggaccactc
ccgacggacg aaccgacgtg cgacccgagc agggtctcct caagctgcga 1800aaggacctga
acctgtacgc caacctgcga ccctgccagc tgctgtcgcc caagctcgcc 1860gatctctccc
ccatccgaaa cgttgagggc accgacttca tcattgtccg agagctcgtc 1920ggaggtatct
actttggaga gcgaaaggag gatgacggat ctggcgtcgc ttccgacacc 1980gagacctact
ccgttcctga ggttgagcga attgcccgaa tggccgcctt cctggccctt 2040cagcacaacc
cccctcttcc cgtgtggtct cttgacaagg ccaacgtgct ggcctcctct 2100cgactttggc
gaaagactgt cactcgagtc ctcaaggacg aattccccca gctcgagctc 2160aaccaccagc
tgatcgactc ggccgccatg atcctcatca agcagccctc caagatgaat 2220ggtatcatca
tcaccaccaa catgtttggc gatatcatct ccgacgaggc ctccgtcatc 2280cccggttctc
tgggtctgct gccctccgcc tctctggctt ctctgcccga caccaacgag 2340gcgttcggtc
tgtacgagcc ctgtcacgga tctgcccccg atctcggcaa gcagaaggtc 2400aaccccattg
ccaccattct gtctgccgcc atgatgctca agttctctct taacatgaag 2460cccgccggtg
acgctgttga ggctgccgtc aaggagtccg tcgaggctgg tatcactacc 2520gccgatatcg
gaggctcttc ctccacctcc gaggtcggag acttgttgcc aacaaggtca 2580aggagctgct
caagaaggag taagtcgttt ctacgacgca ttgatggaag gagcaaactg 2640acgcgcctgc
gggttggtct accggcaggg tccgctagtg tataagactc tataaaaagg 2700gccctgccct
gctaatgaaa tgatgattta taatttaccg gtgtagcaac cttgactaga 2760agaagcagat
tgggtgtgtt tgtagtggag gacagtggta cgttttggaa acagtcttct 2820tgaaagtgtc
ttgtctacag tatattcact cataacctca atagccaagg gtgtagtcgg 2880tttattaaag
gaagggagtt gtggctgatg tggatagata tctttaagct ggcgactgca 2940cccaacgagt
gtggtggtag cttgttagat ctgtatattc ggtaagatat attttgtggg 3000gttttagtgg
tgtttaaacc atcatctaag ggcctcaaaa ctacctcgga actgctgcgc 3060tgatctggac
accacagagg ttccgagcac tttaggttgc accaaatgtc ccaccaggtg 3120caggcagaaa
acgctggaac agcgtgtaca gtttgtctta acaaaaagtg agggcgctga 3180ggtcgagcag
ggtggtgtga cttgttatag cctttagagc tgcgaaagcg cgtatggatt 3240tggctcatca
ggccagattg agggtctgtg gacacatgtc atgttagtgt acttcaatcg 3300ccccctggat
atagccccga caataggccg tggcctcatt tttttgcctt ccgcacattt 3360ccattgctcg
gtacccacac cttgcttctc ctgcacttgc caaccttaat actggtttac 3420attgaccaac
atcttacaag cggggggctt gtctagggta tatataaaca gtggctctcc 3480caatcggttg
ccagtctctt ttttcctttc tttccccaca gattcgaaat ctaaactaca 3540catcacacca
tggcctcctc ggaggacgtc atcaaggagt tcatgcgatt caaggtccga 3600atggaaggct
ccgtgaacgg tcacgagttt gagattgagg gagagggtga aggccgaccc 3660tacgaaggca
cccagaccgc gaagctgaag gtgaccaagg gtggacccct gcccttcgcc 3720tgggacattc
tgtctcctca gtttcagtac ggttctaagg tgtacgtgaa gcaccctgct 3780gacattcccg
actacaagaa actttccttt cccgagggct tcaagtggga gcgagttatg 3840aacttcgagg
atggcggtgt cgttaccgtt actcaggact cctcgctcca ggacggctcg 3900ttcatctaca
aggttaagtt catcggtgtc aacttcccta gcgatggacc cgtcatgcaa 3960aagaaaacta
tgggatggga agcctctaca gagcggctgt accctcgaga cggagtgttg 4020aagggcgaga
ttcacaaggc cctgaagctc aaggacggtg gacactatct cgttgagttt 4080aagtctatct
acatggcaaa gaaacccgtg cagcttccag gctactatta cgtcgattcc 4140aagctcgata
tcaccagcca taatgaggac tacactattg tcgaacagta cgagcgtgct 4200gagggaagac
accatctgtt tctttaagcg gccgcaagtg tggatgggga agtgagtgcc 4260cggttctgtg
tgcacaattg gcaatccaag atggatggat tcaacacagg gatatagcga 4320gctacgtggt
ggtgcgagga tatagcaacg gatatttatg tttgacactt gagaatgtac 4380gatacaagca
ctgtccaagt acaatactaa acatactgta catactcata ctcgtacccg 4440ggcaacggtt
tcacttgagt gcagtggcta gtgctcttac tcgtacagtg tgcaatactg 4500cgtatcatag
tctttgatgt atatcgtatt cattcatgtt agttgcgtac gggcgtcgtt 4560gcttgtgtga
tttttgagga cccatccctt tggtatataa gtatactctg gggttaaggt 4620tgcccgtgta
gtctaggtta tagttttcat gtgaaatacc gagagccgag ggagaataaa 4680cgggggtatt
tggacttgtt tttttcgcgg aaaagcgtcg aatcaaccct gcgggccttg 4740caccatgtcc
acgacgtgtt tctcgcccca attcgcccct tgcacgtcaa aattaggcct 4800ccatctagac
ccctccataa catgtgactg tggggaaaag tataagggaa accatgcaac 4860catagacgac
gtgaaagacg gggaggaacc aatggaggcc aaagaaatgg ggtagcaaca 4920gtccaggaga
cagacaagga gacaaggaga gggcgcccga aagatcggaa aaacaaacat 4980gtccaattgg
ggcagtgacg gaaacgacac ggacacttca gtacaatgga ccgaccatct 5040ccaagccagg
gttattccgg tatcaccttg gccgtaacct cccgctggta cctgatattg 5100tacacgttca
cattcaatat actttcagct acaataagag aggctgtttg tcgggcatgt 5160gtgtccgtcg
tatggggtga tgtccgaggg cgaaattcgc tacaagctta actctggcgc 5220ttgtccagta
tgaatagaca agtcaagacc agtggtgcca tgattgacag ggaggtacaa 5280gacttcgata
ctcgagcatt actcggactt gtggcgattg aacagacggg cgatcgcttc 5340tcccccgtat
tgccgg
535613438DNAArtificial SequenceHY026 134gcgcgtttaa accatcatct aagggcctca
aaactacc 3813538DNAArtificial SequenceHY027
135gagagcggcc gcttaaagaa acagatggtg tcttccct
3813611952DNAArtificial SequencepRF169 136catggacaag aaatactcca
tcggcctgga cattggaacc aactctgtcg gctgggctgt 60catcaccgac gagtacaagg
tgccctccaa gaaattcaag gtcctcggaa acaccgatcg 120acactccatc aagaaaaacc
tcattggtgc cctgttgttc gattctggcg agactgccga 180agctaccaga ctcaagcgaa
ctgctcggcg acgttacacc cgacggaaga accgaatctg 240ctacctgcag gagatctttt
ccaacgagat ggccaaggtg gacgattcgt tctttcatcg 300actggaggaa tccttcctcg
tcgaggaaga caagaaacac gagcgtcatc ccatctttgg 360caacattgtg gacgaggttg
cttaccacga gaagtatcct accatctacc atctccgaaa 420gaaactcgtc gattccaccg
acaaggcgga tctcagactt atctacctcg ctctggcaca 480catgatcaag tttcgaggtc
atttcctcat cgagggcgat ctcaatcccg acaacagcga 540tgtggacaag ctgttcattc
agctcgttca gacctacaac cagctgttcg aggaaaaccc 600catcaatgcc tccggagtcg
atgcaaaggc catcttgtct gctcgactct cgaagagcag 660acgactggag aacctcattg
cccaacttcc tggcgagaaa aagaacggac tgtttggcaa 720cctcattgcc ctttctcttg
gtctcacacc caacttcaag tccaacttcg atctggcgga 780ggacgccaag ctccagctgt
ccaaggacac ctacgacgat gacctcgaca acctgcttgc 840acagattggc gatcagtacg
ccgacctgtt tctcgctgcc aagaaccttt cggatgctat 900tctcttgtct gacattctgc
gagtcaacac cgagatcaca aaggctcccc tttctgcctc 960catgatcaag cgatacgacg
agcaccatca ggatctcaca ctgctcaagg ctcttgtccg 1020acagcaactg cccgagaagt
acaaggagat ctttttcgat cagtcgaaga acggctacgc 1080tggatacatc gacggcggag
cctctcagga agagttctac aagttcatca agccaattct 1140cgagaagatg gacggaaccg
aggaactgct tgtcaagctc aatcgagagg atctgcttcg 1200gaagcaacga accttcgaca
acggcagcat tcctcatcag atccacctcg gtgagctgca 1260cgccattctt cgacgtcagg
aagacttcta cccctttctc aaggacaacc gagagaagat 1320cgagaagatt cttacctttc
gaatccccta ctatgttggt cctcttgcca gaggaaactc 1380tcgatttgct tggatgactc
gaaagtccga ggaaaccatc actccctgga acttcgagga 1440agtcgtggac aagggtgcct
ctgcacagtc cttcatcgag cgaatgacca acttcgacaa 1500gaatctgccc aacgagaagg
ttcttcccaa gcattcgctg ctctacgagt actttacagt 1560ctacaacgaa ctcaccaaag
tcaagtacgt taccgaggga atgcgaaagc ctgccttctt 1620gtctggcgaa cagaagaaag
ccattgtcga tctcctgttc aagaccaacc gaaaggtcac 1680tgttaagcag ctcaaggagg
actacttcaa gaaaatcgag tgtttcgaca gcgtcgagat 1740ttccggagtt gaggaccgat
tcaacgcctc tttgggcacc tatcacgatc tgctcaagat 1800tatcaaggac aaggattttc
tcgacaacga ggaaaacgag gacattctgg aggacatcgt 1860gctcactctt accctgttcg
aagatcggga gatgatcgag gaacgactca agacatacgc 1920tcacctgttc gacgacaagg
tcatgaaaca actcaagcga cgtagataca ccggctgggg 1980aagactttcg cgaaagctca
tcaacggcat cagagacaag cagtccggaa agaccattct 2040ggactttctc aagtccgatg
gctttgccaa ccgaaacttc atgcagctca ttcacgacga 2100ttctcttacc ttcaaggagg
acatccagaa ggcacaagtg tccggtcagg gcgacagctt 2160gcacgaacat attgccaacc
tggctggttc gccagccatc aagaaaggca ttctccagac 2220tgtcaaggtt gtcgacgagc
tggtgaaggt catgggacgt cacaagcccg agaacattgt 2280gatcgagatg gccagagaga
accagacaac tcaaaagggt cagaaaaact cgcgagagcg 2340gatgaagcga atcgaggaag
gcatcaagga gctgggatcc cagattctca aggagcatcc 2400cgtcgagaac actcaactgc
agaacgagaa gctgtatctc tactatctgc agaatggtcg 2460agacatgtac gtggatcagg
aactggacat caatcgtctc agcgactacg atgtggacca 2520cattgtccct caatcctttc
tcaaggacga ttctatcgac aacaaggtcc ttacacgatc 2580cgacaagaac agaggcaagt
cggacaacgt tcccagcgaa gaggtggtca aaaagatgaa 2640gaactactgg cgacagctgc
tcaacgccaa gctcattacc cagcgaaagt tcgacaatct 2700taccaaggcc gagcgaggcg
gtctgtccga gctcgacaag gctggcttca tcaagcgtca 2760actcgtcgag accagacaga
tcacaaagca cgtcgcacag attctcgatt ctcggatgaa 2820caccaagtac gacgagaacg
acaagctcat ccgagaggtc aaggtgatta ctctcaagtc 2880caaactggtc tccgatttcc
gaaaggactt tcagttctac aaggtgcgag agatcaacaa 2940ttaccaccat gcccacgatg
cttacctcaa cgccgtcgtt ggcactgcgc tcatcaagaa 3000ataccccaag ctcgaaagcg
agttcgttta cggcgattac aaggtctacg acgttcgaaa 3060gatgattgcc aagtccgaac
aggagattgg caaggctact gccaagtact tcttttactc 3120caacatcatg aactttttca
agaccgagat caccttggcc aacggagaga ttcgaaagag 3180accacttatc gagaccaacg
gcgaaactgg agagatcgtg tgggacaagg gtcgagactt 3240tgcaaccgtg cgaaaggttc
tgtcgatgcc tcaggtcaac atcgtcaaga aaaccgaggt 3300tcagactggc ggattctcca
aggagtcgat tctgcccaag cgaaactccg acaagctcat 3360cgctcgaaag aaagactggg
atcccaagaa atacggtggc ttcgattctc ctaccgtcgc 3420ctattccgtg cttgtcgttg
cgaaggtcga gaagggcaag tccaaaaagc tcaagtccgt 3480caaggagctg ctcggaatta
ccatcatgga gcgatcgagc ttcgagaaga atcccatcga 3540cttcttggaa gccaagggtt
acaaggaggt caagaaagac ctcattatca agctgcccaa 3600gtactctctg ttcgaactgg
agaacggtcg aaagcgtatg ctcgcctccg ctggcgagct 3660gcagaaggga aacgagcttg
ccttgccttc gaagtacgtc aactttctct atctggcttc 3720tcactacgag aagctcaagg
gttctcccga ggacaacgaa cagaagcaac tcttcgttga 3780gcagcacaaa cattacctcg
acgagattat cgagcagatt tccgagtttt cgaagcgagt 3840catcctggct gatgccaact
tggacaaggt gctctctgcc tacaacaagc atcgggacaa 3900acccattcga gaacaggcgg
agaacatcat tcacctgttt actcttacca acctgggtgc 3960tcctgcagct ttcaagtact
tcgataccac tatcgaccga aagcggtaca catccaccaa 4020ggaggttctc gatgccaccc
tgattcacca gtccatcact ggcctgtacg agacccgaat 4080cgacctgtct cagcttggtg
gcgactccag agccgatccc aagaaaaagc gaaaggtcta 4140agcggccgca agtgtggatg
gggaagtgag tgcccggttc tgtgtgcaca attggcaatc 4200caagatggat ggattcaaca
cagggatata gcgagctacg tggtggtgcg aggatatagc 4260aacggatatt tatgtttgac
acttgagaat gtacgataca agcactgtcc aagtacaata 4320ctaaacatac tgtacatact
catactcgta cccgggcaac ggtttcactt gagtgcagtg 4380gctagtgctc ttactcgtac
agtgtgcaat actgcgtatc atagtctttg atgtatatcg 4440tattcattca tgttagttgc
gtacgagccg gaagcataaa gtgtaaagcc tggggtgcct 4500aatgagtgag ctaactcaca
ttaattgcgt tgcgctcact gcccgctttc cagtcgggaa 4560acctgtcgtg ccagctgcat
taatgaatcg gccaacgcgc ggggagaggc ggtttgcgta 4620ttgggcgctc ttccgcttcc
tcgctcactg actcgctgcg ctcggtcgtt cggctgcggc 4680gagcggtatc agctcactca
aaggcggtaa tacggttatc cacagaatca ggggataacg 4740caggaaagaa catgtgagca
aaaggccagc aaaaggccag gaaccgtaaa aaggccgcgt 4800tgctggcgtt tttccatagg
ctccgccccc ctgacgagca tcacaaaaat cgacgctcaa 4860gtcagaggtg gcgaaacccg
acaggactat aaagatacca ggcgtttccc cctggaagct 4920ccctcgtgcg ctctcctgtt
ccgaccctgc cgcttaccgg atacctgtcc gcctttctcc 4980cttcgggaag cgtggcgctt
tctcatagct cacgctgtag gtatctcagt tcggtgtagg 5040tcgttcgctc caagctgggc
tgtgtgcacg aaccccccgt tcagcccgac cgctgcgcct 5100tatccggtaa ctatcgtctt
gagtccaacc cggtaagaca cgacttatcg ccactggcag 5160cagccactgg taacaggatt
agcagagcga ggtatgtagg cggtgctaca gagttcttga 5220agtggtggcc taactacggc
tacactagaa ggacagtatt tggtatctgc gctctgctga 5280agccagttac cttcggaaaa
agagttggta gctcttgatc cggcaaacaa accaccgctg 5340gtagcggtgg tttttttgtt
tgcaagcagc agattacgcg cagaaaaaaa ggatctcaag 5400aagatccttt gatcttttct
acggggtctg acgctcagtg gaacgaaaac tcacgttaag 5460ggattttggt catgagatta
tcaaaaagga tcttcaccta gatcctttta aattaaaaat 5520gaagttttaa atcaatctaa
agtatatatg agtaaacttg gtctgacagt taccaatgct 5580taatcagtga ggcacctatc
tcagcgatct gtctatttcg ttcatccata gttgcctgac 5640tccccgtcgt gtagataact
acgatacggg agggcttacc atctggcccc agtgctgcaa 5700tgataccgcg agacccacgc
tcaccggctc cagatttatc agcaataaac cagccagccg 5760gaagggccga gcgcagaagt
ggtcctgcaa ctttatccgc ctccatccag tctattaatt 5820gttgccggga agctagagta
agtagttcgc cagttaatag tttgcgcaac gttgttgcca 5880ttgctacagg catcgtggtg
tcacgctcgt cgtttggtat ggcttcattc agctccggtt 5940cccaacgatc aaggcgagtt
acatgatccc ccatgttgtg caaaaaagcg gttagctcct 6000tcggtcctcc gatcgttgtc
agaagtaagt tggccgcagt gttatcactc atggttatgg 6060cagcactgca taattctctt
actgtcatgc catccgtaag atgcttttct gtgactggtg 6120agtactcaac caagtcattc
tgagaatagt gtatgcggcg accgagttgc tcttgcccgg 6180cgtcaatacg ggataatacc
gcgccacata gcagaacttt aaaagtgctc atcattggaa 6240aacgttcttc ggggcgaaaa
ctctcaagga tcttaccgct gttgagatcc agttcgatgt 6300aacccactcg tgcacccaac
tgatcttcag catcttttac tttcaccagc gtttctgggt 6360gagcaaaaac aggaaggcaa
aatgccgcaa aaaagggaat aagggcgaca cggaaatgtt 6420gaatactcat actcttcctt
tttcaatatt attgaagcat ttatcagggt tattgtctca 6480tgagcggata catatttgaa
tgtatttaga aaaataaaca aataggggtt ccgcgcacat 6540ttccccgaaa agtgccacct
gacgcgccct gtagcggcgc attaagcgcg gcgggtgtgg 6600tggttacgcg cagcgtgacc
gctacacttg ccagcgccct agcgcccgct cctttcgctt 6660tcttcccttc ctttctcgcc
acgttcgccg gctttccccg tcaagctcta aatcgggggc 6720tccctttagg gttccgattt
agtgctttac ggcacctcga ccccaaaaaa cttgattagg 6780gtgatggttc acgtagtggg
ccatcgccct gatagacggt ttttcgccct ttgacgttgg 6840agtccacgtt ctttaatagt
ggactcttgt tccaaactgg aacaacactc aaccctatct 6900cggtctattc ttttgattta
taagggattt tgccgatttc ggcctattgg ttaaaaaatg 6960agctgattta acaaaaattt
aacgcgaatt ttaacaaaat attaacgctt acaatttcca 7020ttcgccattc aggctgcgca
actgttggga agggcgatcg gtgcgggcct cttcgctatt 7080acgccagctg gcgaaagggg
gatgtgctgc aaggcgatta agttgggtaa cgccagggtt 7140ttcccagtca cgacgttgta
aaacgacggc cagtgaattg taatacgact cactataggg 7200cgaattgggt accgggcccc
ccctcgaggt cgatggtgtc gataagcttg atatcgaatt 7260catgtcacac aaaccgatct
tcgcctcaag gaaacctaat tctacatccg agagactgcc 7320gagatccagt ctacactgat
taattttcgg gccaataatt taaaaaaatc gtgttatata 7380atattatatg tattatatat
atacatcatg atgatactga cagtcatgtc ccattgctaa 7440atagacagac tccatctgcc
gcctccaact gatgttctca atatttaagg ggtcatctcg 7500cattgtttaa taataaacag
actccatcta ccgcctccaa atgatgttct caaaatatat 7560tgtatgaact tatttttatt
acttagtatt attagacaac ttacttgctt tatgaaaaac 7620acttcctatt taggaaacaa
tttataatgg cagttcgttc atttaacaat ttatgtagaa 7680taaatgttat aaatgcgtat
gggaaatctt aaatatggat agcataaatg atatctgcat 7740tgcctaattc gaaatcaaca
gcaacgaaaa aaatcccttg tacaacataa atagtcatcg 7800agaaatatca actatcaaag
aacagctatt cacacgttac tattgagatt attattggac 7860gagaatcaca cactcaactg
tctttctctc ttctagaaat acaggtacaa gtatgtacta 7920ttctcattgt tcatacttct
agtcatttca tcccacatat tccttggatt tctctccaat 7980gaatgacatt ctatcttgca
aattcaacaa ttataataag atataccaaa gtagcggtat 8040agtggcaatc aaaaagcttc
tctggtgtgc ttctcgtatt tatttttatt ctaatgatcc 8100attaaaggta tatatttatt
tcttgttata taatcctttt gtttattaca tgggctggat 8160acataaaggt attttgattt
aattttttgc ttaaattcaa tcccccctcg ttcagtgtca 8220actgtaatgg taggaaatta
ccatactttt gaagaagcaa aaaaaatgaa agaaaaaaaa 8280aatcgtattt ccaggttaga
cgttccgcag aatctagaat gcggtatgcg gtacattgtt 8340cttcgaacgt aaaagttgcg
ctccctgaga tattgtacat ttttgctttt acaagtacaa 8400gtacatcgta caactatgta
ctactgttga tgcatccaca acagtttgtt ttgttttttt 8460ttgttttttt tttttctaat
gattcattac cgctatgtat acctacttgt acttgtagta 8520agccgggtta ttggcgttca
attaatcata gacttatgaa tctgcacggt gtgcgctgcg 8580agttactttt agcttatgca
tgctacttgg gtgtaatatt gggatctgtt cggaaatcaa 8640cggatgctca atcgatcgcc
agcaacgcgg ccttagacat aaaaaacaaa aaaaaaaagc 8700accgactcgg tgccactttt
tcaagttgat aacggactag ccttatttta acttgctatt 8760tctagctcta aaacgcaggt
gtaaaaataa aaaggcctgc gattaccagc aggcctgtta 8820ttaacctaag ccttaggacg
cttcacgcca tacttggaac gagcctgctt acggtcttta 8880acgccggagc agtcaagcgc
accacgtacg gtgtggtaac gaacacccgg gaggtcttta 8940acacgaccgc cacggatcag
gatcacggag tgctcctgca ggttgtgacc ttcaccaccg 9000atgtaggaag tcacttcgaa
accgttagtc agacgaacac ggcatacttt acgcagcgcg 9060gagttcggtt ttttaggagt
ggtagtatat acacgagtac atacgccacg tttttgcggg 9120catgcttcca gcgcaggcac
gttgcttttc gcaactttgc gagcacgtgg tttgcgtacc 9180agctggttaa ctgttgccat
taaatagctc ctggttttag cttttgcttc gtaaacacgt 9240aataaaacgt cctcacacaa
tatgaggacg ccgaatttag ggcgatgccg aaaaggtgtc 9300aagaaatata caacgatccc
gccatcggcg cgcccacctg ctacgcatgg ttgatgtgtg 9360tttaattcaa gaatgaatat
agagaagaga agaagaaaaa agattcaatt gagccggcga 9420tgcagaccct tatataaatg
ttgccttgga cagacggagc aagcccgccc aaacctacgt 9480tcggtataat atgttaagct
ttttaacaca aaggtttggc ttggggtaac ctgatgtggt 9540gcaaaagacc gggcgttggc
gagccattgc gcgggcgaat ggggtcgtga ctcgtctcaa 9600attcgagggc gtgcctcaat
tcgtgccccc gtggcttttt cccgccgttt ccgccccgtt 9660tgcaccactg cagccgcttc
tttggttcgg acaccttgct gcgagctagg tgccttgtgc 9720tacttaaaaa gtggcctccc
aacaccaaca tgacatgagt gcgtgggcca agacacgttg 9780gcggggtcgc agtcggctca
atggcccgga aaaaacgctg ctggagctgg ttcggacgca 9840gtccgccgcg gcgtatggat
atccgcaagg ttccatagcg ccattgccct ccgtcggcgt 9900ctatcccgca accttaatta
agtcatacac aagtcagctt tcttcgagcc tcatataagt 9960ataagtagtt caacgtatta
gcactgtacc cagcatctcc gtatcgagaa acacaacaac 10020atgccccatt ggacagatca
tgcggataca caggttgtgc agtatcatac atactcgatc 10080agacaggtcg tctgaccatc
atacaagctg aacaagcgct ccatacttgc acgctctcta 10140tatacacagt taaattacat
atccatagtc taacctctaa cagttaatct tctggtaagc 10200ctcccagcca gccttctggt
atcgcttggc ctcctcaata ggatctcggt tctggccgta 10260cagacctcgg ccgacaatta
tgatatccgt tccggtagac atgacatcct caacagttcg 10320gtactgctgt ccgagagcgt
ctcccttgtc gtcaagaccc accccggggg tcagaataag 10380ccagtcctca gagtcgccct
taggtcggtt ctgggcaatg aagccaacca caaactcggg 10440gtcggatcgg gcaagctcaa
tggtctgctt ggagtactcg ccagtggcca gagagccctt 10500gcaagacagc tcggccagca
tgagcagacc tctggccagc ttctcgttgg gagaggggac 10560taggaactcc ttgtactggg
agttctcgta gtcagagacg tcctccttct tctgttcaga 10620gacagtttcc tcggcaccag
ctcgcaggcc agcaatgatt ccggttccgg gtacaccgtg 10680ggcgttggtg atatcggacc
actcggcgat tcggtgacac cggtactggt gcttgacagt 10740gttgccaata tctgcgaact
ttctgtcctc gaacaggaag aaaccgtgct taagagcaag 10800ttccttgagg gggagcacag
tgccggcgta ggtgaagtcg tcaatgatgt cgatatgggt 10860tttgatcatg cacacataag
gtccgacctt atcggcaagc tcaatgagct ccttggtggt 10920ggtaacatcc agagaagcac
acaggttggt tttcttggct gccacgagct tgagcactcg 10980agcggcaaag gcggacttgt
ggacgttagc tcgagcttcg taggagggca ttttggtggt 11040gaagaggaga ctgaaataaa
tttagtctgc agaacttttt atcggaacct tatctggggc 11100agtgaagtat atgttatggt
aatagttacg agttagttga acttatagat agactggact 11160atacggctat cggtccaaat
tagaaagaac gtcaatggct ctctgggcgt cgcctttgcc 11220gacaaaaatg tgatcatgat
gaaagccagc aatgacgttg cagctgatat tgttgtcggc 11280caaccgcgcc gaaaacgcag
ctgtcagacc cacagcctcc aacgaagaat gtatcgtcaa 11340agtgatccaa gcacactcat
agttggagtc gtactccaaa ggcggcaatg acgagtcaga 11400cagatactcg tcgacgttta
aaccatcatc taagggcctc aaaactacct cggaactgct 11460gcgctgatct ggacaccaca
gaggttccga gcactttagg ttgcaccaaa tgtcccacca 11520ggtgcaggca gaaaacgctg
gaacagcgtg tacagtttgt cttaacaaaa agtgagggcg 11580ctgaggtcga gcagggtggt
gtgacttgtt atagccttta gagctgcgaa agcgcgtatg 11640gatttggctc atcaggccag
attgagggtc tgtggacaca tgtcatgtta gtgtacttca 11700atcgccccct ggatatagcc
ccgacaatag gccgtggcct catttttttg ccttccgcac 11760atttccattg ctcggtaccc
acaccttgct tctcctgcac ttgccaacct taatactggt 11820ttacattgac caacatctta
caagcggggg gcttgtctag ggtatatata aacagtggct 11880ctcccaatcg gttgccagtc
tcttttttcc tttctttccc cacagattcg aaatctaaac 11940tacacatcac ac
11952137564DNAYarrowia
lipolyticamisc_feature(1)..(564)GPD Promoter 137ggttgcggga tagacgccga
cggagggcaa tggcgctatg gaaccttgcg gatatccata 60cgccgcggcg gactgcgtcc
gaaccagctc cagcagcgtt ttttccgggc cattgagccg 120actgcgaccc cgccaacgtg
tcttggccca cgcactcatg tcatgttggt gttgggaggc 180cactttttaa gtagcacaag
gcacctagct cgcagcaagg tgtccgaacc aaagaagcgg 240ctgcagtggt gcaaacgggg
cggaaacggc gggaaaaagc cacgggggca cgaattgagg 300cacgccctcg aatttgagac
gagtcacgac cccattcgcc cgcgcaatgg ctcgccaacg 360cccggtcttt tgcaccacat
caggttaccc caagccaaac ctttgtgtta aaaagcttaa 420catattatac cgaacgtagg
tttgggcggg cttgctccgt ctgtccaagg caacatttat 480ataagggtct gcatcgccgg
ctcaattgaa tcttttttct tcttctcttc tctatattca 540ttcttgaatt aaacacacat
caac 5641381271DNAArtificial
sequenceGPD promoter-counterselectable marker-CER-terminator
138ttaattaagg ttgcgggata gacgccgacg gagggcaatg gcgctatgga accttgcgga
60tatccatacg ccgcggcgga ctgcgtccga accagctcca gcagcgtttt ttccgggcca
120ttgagccgac tgcgaccccg ccaacgtgtc ttggcccacg cactcatgtc atgttggtgt
180tgggaggcca ctttttaagt agcacaaggc acctagctcg cagcaaggtg tccgaaccaa
240agaagcggct gcagtggtgc aaacggggcg gaaacggcgg gaaaaagcca cgggggcacg
300aattgaggca cgccctcgaa tttgagacga gtcacgaccc cattcgcccg cgcaatggct
360cgccaacgcc cggtcttttg caccacatca ggttacccca agccaaacct ttgtgttaaa
420aagcttaaca tattataccg aacgtaggtt tgggcgggct tgctccgtct gtccaaggca
480acatttatat aagggtctgc atcgccggct caattgaatc ttttttcttc ttctcttctc
540tatattcatt cttgaattaa acacacatca accatgcgta gcaggtgggc gcgccgatgg
600cgggatcgtt gtatatttct tgacaccttt tcggcatcgc cctaaattcg gcgtcctcat
660attgtgtgag gacgttttat tacgtgttta cgaagcaaaa gctaaaacca ggagctattt
720aatggcaaca gttaaccagc tggtacgcaa accacgtgct cgcaaagttg cgaaaagcaa
780cgtgcctgcg ctggaagcat gcccgcaaaa acgtggcgta tgtactcgtg tatatactac
840cactcctaaa aaaccgaact ccgcgctgcg taaagtatgc cgtgttcgtc tgactaacgg
900tttcgaagtg acttcctaca tcggtggtga aggtcacaac ctgcaggagc actccgtgat
960cctgatccgt ggcggtcgtg ttaaagacct cccgggtgtt cgttaccaca ccgtacgtgg
1020tgcgcttgac tgctccggcg ttaaagaccg taagcaggct cgttccaagt atggcgtgaa
1080gcgtcctaag gcttaggtta ataacaggcc tgctggtaat cgcaggcctt tttattttta
1140cacctgcgtt ttagagctag aaatagcaag ttaaaataag gctagtccgt tatcaacttg
1200aaaaagtggc accgagtcgg tgcttttttt ttttgttttt tatgtctaag gccgcgttgc
1260tggcgatcga t
127113923DNAArtificial sequenceds-temp-1 target site 139tcagtttcag
tacggttcta agg
2314023DNAArtificial sequenceds-temp-2 target site 140cggtgtcgtt
accgttactc agg
2314123DNAArtificial sequenceds-nontemp-3 target site 141cttggtcacc
ttcagcttcg cgg
2314263DNAArtificial sequenceHammerhead ribozyme-VT
fusionmisc_feature(1)..(6)n is a, c, g, or tmisc_feature(44)..(63)n is a,
c, g, or t 142nnnnnnctga tgagtccgtg aggacgaaac gagtaagctc gtcnnnnnnn
nnnnnnnnnn 60nnn
6314363RNAArtificial sequenceHammerhead ribozyme-VT
fusionmisc_feature(1)..(6)n is a, c, g, or umisc_feature(44)..(63)n is a,
c, g, or u 143nnnnnncuga ugaguccgug aggacgaaac gaguaagcuc gucnnnnnnn
nnnnnnnnnn 60nnn
6314475DNAArtificial sequenceds-temp-1F 144catgcgtaaa
ctgactgatg agtccgtgag gacgaaacga gtaagctcgt ctcagtttca 60gtacggttct
agttt
7514575DNAArtificial sequence145 ds-temp-1R 145tctaaaacta gaaccgtact
gaaactgaga cgagcttact cgtttcgtcc tcacggactc 60atcagtcagt ttacg
7514675DNAArtificial
sequence146 ds-temp-2F 146catgcgtaac accgctgatg agtccgtgag gacgaaacga
gtaagctcgt ccggtgtcgt 60taccgttact cgttt
7514775DNAArtificial sequenceds-temp-2R
147tctaaaacga gtaacggtaa cgacaccgga cgagcttact cgtttcgtcc tcacggactc
60atcagcggtg ttacg
7514875DNAArtificial sequenceds-nontemp-1F 148catgcgtaac caggctgatg
agtccgtgag gacgaaacga gtaagctcgt ccttggtcac 60cttcagcttc ggttt
7514975DNAArtificial
sequenceds-nontemp-1R 149tctaaaaccg aagctgaagg tgaccaagga cgagcttact
cgtttcgtcc tcacggactc 60atcagcctgg ttacg
7515011448DNAArtificial sequencepRF296
150catggacaag aaatactcca tcggcctgga cattggaacc aactctgtcg gctgggctgt
60catcaccgac gagtacaagg tgccctccaa gaaattcaag gtcctcggaa acaccgatcg
120acactccatc aagaaaaacc tcattggtgc cctgttgttc gattctggcg agactgccga
180agctaccaga ctcaagcgaa ctgctcggcg acgttacacc cgacggaaga accgaatctg
240ctacctgcag gagatctttt ccaacgagat ggccaaggtg gacgattcgt tctttcatcg
300actggaggaa tccttcctcg tcgaggaaga caagaaacac gagcgtcatc ccatctttgg
360caacattgtg gacgaggttg cttaccacga gaagtatcct accatctacc atctccgaaa
420gaaactcgtc gattccaccg acaaggcgga tctcagactt atctacctcg ctctggcaca
480catgatcaag tttcgaggtc atttcctcat cgagggcgat ctcaatcccg acaacagcga
540tgtggacaag ctgttcattc agctcgttca gacctacaac cagctgttcg aggaaaaccc
600catcaatgcc tccggagtcg atgcaaaggc catcttgtct gctcgactct cgaagagcag
660acgactggag aacctcattg cccaacttcc tggcgagaaa aagaacggac tgtttggcaa
720cctcattgcc ctttctcttg gtctcacacc caacttcaag tccaacttcg atctggcgga
780ggacgccaag ctccagctgt ccaaggacac ctacgacgat gacctcgaca acctgcttgc
840acagattggc gatcagtacg ccgacctgtt tctcgctgcc aagaaccttt cggatgctat
900tctcttgtct gacattctgc gagtcaacac cgagatcaca aaggctcccc tttctgcctc
960catgatcaag cgatacgacg agcaccatca ggatctcaca ctgctcaagg ctcttgtccg
1020acagcaactg cccgagaagt acaaggagat ctttttcgat cagtcgaaga acggctacgc
1080tggatacatc gacggcggag cctctcagga agagttctac aagttcatca agccaattct
1140cgagaagatg gacggaaccg aggaactgct tgtcaagctc aatcgagagg atctgcttcg
1200gaagcaacga accttcgaca acggcagcat tcctcatcag atccacctcg gtgagctgca
1260cgccattctt cgacgtcagg aagacttcta cccctttctc aaggacaacc gagagaagat
1320cgagaagatt cttacctttc gaatccccta ctatgttggt cctcttgcca gaggaaactc
1380tcgatttgct tggatgactc gaaagtccga ggaaaccatc actccctgga acttcgagga
1440agtcgtggac aagggtgcct ctgcacagtc cttcatcgag cgaatgacca acttcgacaa
1500gaatctgccc aacgagaagg ttcttcccaa gcattcgctg ctctacgagt actttacagt
1560ctacaacgaa ctcaccaaag tcaagtacgt taccgaggga atgcgaaagc ctgccttctt
1620gtctggcgaa cagaagaaag ccattgtcga tctcctgttc aagaccaacc gaaaggtcac
1680tgttaagcag ctcaaggagg actacttcaa gaaaatcgag tgtttcgaca gcgtcgagat
1740ttccggagtt gaggaccgat tcaacgcctc tttgggcacc tatcacgatc tgctcaagat
1800tatcaaggac aaggattttc tcgacaacga ggaaaacgag gacattctgg aggacatcgt
1860gctcactctt accctgttcg aagatcggga gatgatcgag gaacgactca agacatacgc
1920tcacctgttc gacgacaagg tcatgaaaca actcaagcga cgtagataca ccggctgggg
1980aagactttcg cgaaagctca tcaacggcat cagagacaag cagtccggaa agaccattct
2040ggactttctc aagtccgatg gctttgccaa ccgaaacttc atgcagctca ttcacgacga
2100ttctcttacc ttcaaggagg acatccagaa ggcacaagtg tccggtcagg gcgacagctt
2160gcacgaacat attgccaacc tggctggttc gccagccatc aagaaaggca ttctccagac
2220tgtcaaggtt gtcgacgagc tggtgaaggt catgggacgt cacaagcccg agaacattgt
2280gatcgagatg gccagagaga accagacaac tcaaaagggt cagaaaaact cgcgagagcg
2340gatgaagcga atcgaggaag gcatcaagga gctgggatcc cagattctca aggagcatcc
2400cgtcgagaac actcaactgc agaacgagaa gctgtatctc tactatctgc agaatggtcg
2460agacatgtac gtggatcagg aactggacat caatcgtctc agcgactacg atgtggacca
2520cattgtccct caatcctttc tcaaggacga ttctatcgac aacaaggtcc ttacacgatc
2580cgacaagaac agaggcaagt cggacaacgt tcccagcgaa gaggtggtca aaaagatgaa
2640gaactactgg cgacagctgc tcaacgccaa gctcattacc cagcgaaagt tcgacaatct
2700taccaaggcc gagcgaggcg gtctgtccga gctcgacaag gctggcttca tcaagcgtca
2760actcgtcgag accagacaga tcacaaagca cgtcgcacag attctcgatt ctcggatgaa
2820caccaagtac gacgagaacg acaagctcat ccgagaggtc aaggtgatta ctctcaagtc
2880caaactggtc tccgatttcc gaaaggactt tcagttctac aaggtgcgag agatcaacaa
2940ttaccaccat gcccacgatg cttacctcaa cgccgtcgtt ggcactgcgc tcatcaagaa
3000ataccccaag ctcgaaagcg agttcgttta cggcgattac aaggtctacg acgttcgaaa
3060gatgattgcc aagtccgaac aggagattgg caaggctact gccaagtact tcttttactc
3120caacatcatg aactttttca agaccgagat caccttggcc aacggagaga ttcgaaagag
3180accacttatc gagaccaacg gcgaaactgg agagatcgtg tgggacaagg gtcgagactt
3240tgcaaccgtg cgaaaggttc tgtcgatgcc tcaggtcaac atcgtcaaga aaaccgaggt
3300tcagactggc ggattctcca aggagtcgat tctgcccaag cgaaactccg acaagctcat
3360cgctcgaaag aaagactggg atcccaagaa atacggtggc ttcgattctc ctaccgtcgc
3420ctattccgtg cttgtcgttg cgaaggtcga gaagggcaag tccaaaaagc tcaagtccgt
3480caaggagctg ctcggaatta ccatcatgga gcgatcgagc ttcgagaaga atcccatcga
3540cttcttggaa gccaagggtt acaaggaggt caagaaagac ctcattatca agctgcccaa
3600gtactctctg ttcgaactgg agaacggtcg aaagcgtatg ctcgcctccg ctggcgagct
3660gcagaaggga aacgagcttg ccttgccttc gaagtacgtc aactttctct atctggcttc
3720tcactacgag aagctcaagg gttctcccga ggacaacgaa cagaagcaac tcttcgttga
3780gcagcacaaa cattacctcg acgagattat cgagcagatt tccgagtttt cgaagcgagt
3840catcctggct gatgccaact tggacaaggt gctctctgcc tacaacaagc atcgggacaa
3900acccattcga gaacaggcgg agaacatcat tcacctgttt actcttacca acctgggtgc
3960tcctgcagct ttcaagtact tcgataccac tatcgaccga aagcggtaca catccaccaa
4020ggaggttctc gatgccaccc tgattcacca gtccatcact ggcctgtacg agacccgaat
4080cgacctgtct cagcttggtg gcgactccag agccgatccc aagaaaaagc gaaaggtcta
4140agcggccgca agtgtggatg gggaagtgag tgcccggttc tgtgtgcaca attggcaatc
4200caagatggat ggattcaaca cagggatata gcgagctacg tggtggtgcg aggatatagc
4260aacggatatt tatgtttgac acttgagaat gtacgataca agcactgtcc aagtacaata
4320ctaaacatac tgtacatact catactcgta cccgggcaac ggtttcactt gagtgcagtg
4380gctagtgctc ttactcgtac agtgtgcaat actgcgtatc atagtctttg atgtatatcg
4440tattcattca tgttagttgc gtacgagccg gaagcataaa gtgtaaagcc tggggtgcct
4500aatgagtgag ctaactcaca ttaattgcgt tgcgctcact gcccgctttc cagtcgggaa
4560acctgtcgtg ccagctgcat taatgaatcg gccaacgcgc ggggagaggc ggtttgcgta
4620ttgggcgctc ttccgcttcc tcgctcactg actcgctgcg ctcggtcgtt cggctgcggc
4680gagcggtatc agctcactca aaggcggtaa tacggttatc cacagaatca ggggataacg
4740caggaaagaa catgtgagca aaaggccagc aaaaggccag gaaccgtaaa aaggccgcgt
4800tgctggcgtt tttccatagg ctccgccccc ctgacgagca tcacaaaaat cgacgctcaa
4860gtcagaggtg gcgaaacccg acaggactat aaagatacca ggcgtttccc cctggaagct
4920ccctcgtgcg ctctcctgtt ccgaccctgc cgcttaccgg atacctgtcc gcctttctcc
4980cttcgggaag cgtggcgctt tctcatagct cacgctgtag gtatctcagt tcggtgtagg
5040tcgttcgctc caagctgggc tgtgtgcacg aaccccccgt tcagcccgac cgctgcgcct
5100tatccggtaa ctatcgtctt gagtccaacc cggtaagaca cgacttatcg ccactggcag
5160cagccactgg taacaggatt agcagagcga ggtatgtagg cggtgctaca gagttcttga
5220agtggtggcc taactacggc tacactagaa ggacagtatt tggtatctgc gctctgctga
5280agccagttac cttcggaaaa agagttggta gctcttgatc cggcaaacaa accaccgctg
5340gtagcggtgg tttttttgtt tgcaagcagc agattacgcg cagaaaaaaa ggatctcaag
5400aagatccttt gatcttttct acggggtctg acgctcagtg gaacgaaaac tcacgttaag
5460ggattttggt catgagatta tcaaaaagga tcttcaccta gatcctttta aattaaaaat
5520gaagttttaa atcaatctaa agtatatatg agtaaacttg gtctgacagt taccaatgct
5580taatcagtga ggcacctatc tcagcgatct gtctatttcg ttcatccata gttgcctgac
5640tccccgtcgt gtagataact acgatacggg agggcttacc atctggcccc agtgctgcaa
5700tgataccgcg agacccacgc tcaccggctc cagatttatc agcaataaac cagccagccg
5760gaagggccga gcgcagaagt ggtcctgcaa ctttatccgc ctccatccag tctattaatt
5820gttgccggga agctagagta agtagttcgc cagttaatag tttgcgcaac gttgttgcca
5880ttgctacagg catcgtggtg tcacgctcgt cgtttggtat ggcttcattc agctccggtt
5940cccaacgatc aaggcgagtt acatgatccc ccatgttgtg caaaaaagcg gttagctcct
6000tcggtcctcc gatcgttgtc agaagtaagt tggccgcagt gttatcactc atggttatgg
6060cagcactgca taattctctt actgtcatgc catccgtaag atgcttttct gtgactggtg
6120agtactcaac caagtcattc tgagaatagt gtatgcggcg accgagttgc tcttgcccgg
6180cgtcaatacg ggataatacc gcgccacata gcagaacttt aaaagtgctc atcattggaa
6240aacgttcttc ggggcgaaaa ctctcaagga tcttaccgct gttgagatcc agttcgatgt
6300aacccactcg tgcacccaac tgatcttcag catcttttac tttcaccagc gtttctgggt
6360gagcaaaaac aggaaggcaa aatgccgcaa aaaagggaat aagggcgaca cggaaatgtt
6420gaatactcat actcttcctt tttcaatatt attgaagcat ttatcagggt tattgtctca
6480tgagcggata catatttgaa tgtatttaga aaaataaaca aataggggtt ccgcgcacat
6540ttccccgaaa agtgccacct gacgcgccct gtagcggcgc attaagcgcg gcgggtgtgg
6600tggttacgcg cagcgtgacc gctacacttg ccagcgccct agcgcccgct cctttcgctt
6660tcttcccttc ctttctcgcc acgttcgccg gctttccccg tcaagctcta aatcgggggc
6720tccctttagg gttccgattt agtgctttac ggcacctcga ccccaaaaaa cttgattagg
6780gtgatggttc acgtagtggg ccatcgccct gatagacggt ttttcgccct ttgacgttgg
6840agtccacgtt ctttaatagt ggactcttgt tccaaactgg aacaacactc aaccctatct
6900cggtctattc ttttgattta taagggattt tgccgatttc ggcctattgg ttaaaaaatg
6960agctgattta acaaaaattt aacgcgaatt ttaacaaaat attaacgctt acaatttcca
7020ttcgccattc aggctgcgca actgttggga agggcgatcg gtgcgggcct cttcgctatt
7080acgccagctg gcgaaagggg gatgtgctgc aaggcgatta agttgggtaa cgccagggtt
7140ttcccagtca cgacgttgta aaacgacggc cagtgaattg taatacgact cactataggg
7200cgaattgggt accgggcccc ccctcgaggt cgatggtgtc gataagcttg atatcgaatt
7260catgtcacac aaaccgatct tcgcctcaag gaaacctaat tctacatccg agagactgcc
7320gagatccagt ctacactgat taattttcgg gccaataatt taaaaaaatc gtgttatata
7380atattatatg tattatatat atacatcatg atgatactga cagtcatgtc ccattgctaa
7440atagacagac tccatctgcc gcctccaact gatgttctca atatttaagg ggtcatctcg
7500cattgtttaa taataaacag actccatcta ccgcctccaa atgatgttct caaaatatat
7560tgtatgaact tatttttatt acttagtatt attagacaac ttacttgctt tatgaaaaac
7620acttcctatt taggaaacaa tttataatgg cagttcgttc atttaacaat ttatgtagaa
7680taaatgttat aaatgcgtat gggaaatctt aaatatggat agcataaatg atatctgcat
7740tgcctaattc gaaatcaaca gcaacgaaaa aaatcccttg tacaacataa atagtcatcg
7800agaaatatca actatcaaag aacagctatt cacacgttac tattgagatt attattggac
7860gagaatcaca cactcaactg tctttctctc ttctagaaat acaggtacaa gtatgtacta
7920ttctcattgt tcatacttct agtcatttca tcccacatat tccttggatt tctctccaat
7980gaatgacatt ctatcttgca aattcaacaa ttataataag atataccaaa gtagcggtat
8040agtggcaatc aaaaagcttc tctggtgtgc ttctcgtatt tatttttatt ctaatgatcc
8100attaaaggta tatatttatt tcttgttata taatcctttt gtttattaca tgggctggat
8160acataaaggt attttgattt aattttttgc ttaaattcaa tcccccctcg ttcagtgtca
8220actgtaatgg taggaaatta ccatactttt gaagaagcaa aaaaaatgaa agaaaaaaaa
8280aatcgtattt ccaggttaga cgttccgcag aatctagaat gcggtatgcg gtacattgtt
8340cttcgaacgt aaaagttgcg ctccctgaga tattgtacat ttttgctttt acaagtacaa
8400gtacatcgta caactatgta ctactgttga tgcatccaca acagtttgtt ttgttttttt
8460ttgttttttt tttttctaat gattcattac cgctatgtat acctacttgt acttgtagta
8520agccgggtta ttggcgttca attaatcata gacttatgaa tctgcacggt gtgcgctgcg
8580agttactttt agcttatgca tgctacttgg gtgtaatatt gggatctgtt cggaaatcaa
8640cggatgctca atcgatcgcc agcaacgcgg ccttagacat aaaaaacaaa aaaaaaaagc
8700accgactcgg tgccactttt tcaagttgat aacggactag ccttatttta acttgctatt
8760tctagctcta aaactagaac cgtactgaaa ctgagacgag cttactcgtt tcgtcctcac
8820ggactcatca gtcagtttac gcatggttga tgtgtgttta attcaagaat gaatatagag
8880aagagaagaa gaaaaaagat tcaattgagc cggcgatgca gacccttata taaatgttgc
8940cttggacaga cggagcaagc ccgcccaaac ctacgttcgg tataatatgt taagcttttt
9000aacacaaagg tttggcttgg ggtaacctga tgtggtgcaa aagaccgggc gttggcgagc
9060cattgcgcgg gcgaatgggg tcgtgactcg tctcaaattc gagggcgtgc ctcaattcgt
9120gcccccgtgg ctttttcccg ccgtttccgc cccgtttgca ccactgcagc cgcttctttg
9180gttcggacac cttgctgcga gctaggtgcc ttgtgctact taaaaagtgg cctcccaaca
9240ccaacatgac atgagtgcgt gggccaagac acgttggcgg ggtcgcagtc ggctcaatgg
9300cccggaaaaa acgctgctgg agctggttcg gacgcagtcc gccgcggcgt atggatatcc
9360gcaaggttcc atagcgccat tgccctccgt cggcgtctat cccgcaacct taattaagtc
9420atacacaagt cagctttctt cgagcctcat ataagtataa gtagttcaac gtattagcac
9480tgtacccagc atctccgtat cgagaaacac aacaacatgc cccattggac agatcatgcg
9540gatacacagg ttgtgcagta tcatacatac tcgatcagac aggtcgtctg accatcatac
9600aagctgaaca agcgctccat acttgcacgc tctctatata cacagttaaa ttacatatcc
9660atagtctaac ctctaacagt taatcttctg gtaagcctcc cagccagcct tctggtatcg
9720cttggcctcc tcaataggat ctcggttctg gccgtacaga cctcggccga caattatgat
9780atccgttccg gtagacatga catcctcaac agttcggtac tgctgtccga gagcgtctcc
9840cttgtcgtca agacccaccc cgggggtcag aataagccag tcctcagagt cgcccttagg
9900tcggttctgg gcaatgaagc caaccacaaa ctcggggtcg gatcgggcaa gctcaatggt
9960ctgcttggag tactcgccag tggccagaga gcccttgcaa gacagctcgg ccagcatgag
10020cagacctctg gccagcttct cgttgggaga ggggactagg aactccttgt actgggagtt
10080ctcgtagtca gagacgtcct ccttcttctg ttcagagaca gtttcctcgg caccagctcg
10140caggccagca atgattccgg ttccgggtac accgtgggcg ttggtgatat cggaccactc
10200ggcgattcgg tgacaccggt actggtgctt gacagtgttg ccaatatctg cgaactttct
10260gtcctcgaac aggaagaaac cgtgcttaag agcaagttcc ttgaggggga gcacagtgcc
10320ggcgtaggtg aagtcgtcaa tgatgtcgat atgggttttg atcatgcaca cataaggtcc
10380gaccttatcg gcaagctcaa tgagctcctt ggtggtggta acatccagag aagcacacag
10440gttggttttc ttggctgcca cgagcttgag cactcgagcg gcaaaggcgg acttgtggac
10500gttagctcga gcttcgtagg agggcatttt ggtggtgaag aggagactga aataaattta
10560gtctgcagaa ctttttatcg gaaccttatc tggggcagtg aagtatatgt tatggtaata
10620gttacgagtt agttgaactt atagatagac tggactatac ggctatcggt ccaaattaga
10680aagaacgtca atggctctct gggcgtcgcc tttgccgaca aaaatgtgat catgatgaaa
10740gccagcaatg acgttgcagc tgatattgtt gtcggccaac cgcgccgaaa acgcagctgt
10800cagacccaca gcctccaacg aagaatgtat cgtcaaagtg atccaagcac actcatagtt
10860ggagtcgtac tccaaaggcg gcaatgacga gtcagacaga tactcgtcga cgtttaaacc
10920atcatctaag ggcctcaaaa ctacctcgga actgctgcgc tgatctggac accacagagg
10980ttccgagcac tttaggttgc accaaatgtc ccaccaggtg caggcagaaa acgctggaac
11040agcgtgtaca gtttgtctta acaaaaagtg agggcgctga ggtcgagcag ggtggtgtga
11100cttgttatag cctttagagc tgcgaaagcg cgtatggatt tggctcatca ggccagattg
11160agggtctgtg gacacatgtc atgttagtgt acttcaatcg ccccctggat atagccccga
11220caataggccg tggcctcatt tttttgcctt ccgcacattt ccattgctcg gtacccacac
11280cttgcttctc ctgcacttgc caaccttaat actggtttac attgaccaac atcttacaag
11340cggggggctt gtctagggta tatataaaca gtggctctcc caatcggttg ccagtctctt
11400ttttcctttc tttccccaca gattcgaaat ctaaactaca catcacac
1144815111448DNAArtificial SequencepRF298 151catggacaag aaatactcca
tcggcctgga cattggaacc aactctgtcg gctgggctgt 60catcaccgac gagtacaagg
tgccctccaa gaaattcaag gtcctcggaa acaccgatcg 120acactccatc aagaaaaacc
tcattggtgc cctgttgttc gattctggcg agactgccga 180agctaccaga ctcaagcgaa
ctgctcggcg acgttacacc cgacggaaga accgaatctg 240ctacctgcag gagatctttt
ccaacgagat ggccaaggtg gacgattcgt tctttcatcg 300actggaggaa tccttcctcg
tcgaggaaga caagaaacac gagcgtcatc ccatctttgg 360caacattgtg gacgaggttg
cttaccacga gaagtatcct accatctacc atctccgaaa 420gaaactcgtc gattccaccg
acaaggcgga tctcagactt atctacctcg ctctggcaca 480catgatcaag tttcgaggtc
atttcctcat cgagggcgat ctcaatcccg acaacagcga 540tgtggacaag ctgttcattc
agctcgttca gacctacaac cagctgttcg aggaaaaccc 600catcaatgcc tccggagtcg
atgcaaaggc catcttgtct gctcgactct cgaagagcag 660acgactggag aacctcattg
cccaacttcc tggcgagaaa aagaacggac tgtttggcaa 720cctcattgcc ctttctcttg
gtctcacacc caacttcaag tccaacttcg atctggcgga 780ggacgccaag ctccagctgt
ccaaggacac ctacgacgat gacctcgaca acctgcttgc 840acagattggc gatcagtacg
ccgacctgtt tctcgctgcc aagaaccttt cggatgctat 900tctcttgtct gacattctgc
gagtcaacac cgagatcaca aaggctcccc tttctgcctc 960catgatcaag cgatacgacg
agcaccatca ggatctcaca ctgctcaagg ctcttgtccg 1020acagcaactg cccgagaagt
acaaggagat ctttttcgat cagtcgaaga acggctacgc 1080tggatacatc gacggcggag
cctctcagga agagttctac aagttcatca agccaattct 1140cgagaagatg gacggaaccg
aggaactgct tgtcaagctc aatcgagagg atctgcttcg 1200gaagcaacga accttcgaca
acggcagcat tcctcatcag atccacctcg gtgagctgca 1260cgccattctt cgacgtcagg
aagacttcta cccctttctc aaggacaacc gagagaagat 1320cgagaagatt cttacctttc
gaatccccta ctatgttggt cctcttgcca gaggaaactc 1380tcgatttgct tggatgactc
gaaagtccga ggaaaccatc actccctgga acttcgagga 1440agtcgtggac aagggtgcct
ctgcacagtc cttcatcgag cgaatgacca acttcgacaa 1500gaatctgccc aacgagaagg
ttcttcccaa gcattcgctg ctctacgagt actttacagt 1560ctacaacgaa ctcaccaaag
tcaagtacgt taccgaggga atgcgaaagc ctgccttctt 1620gtctggcgaa cagaagaaag
ccattgtcga tctcctgttc aagaccaacc gaaaggtcac 1680tgttaagcag ctcaaggagg
actacttcaa gaaaatcgag tgtttcgaca gcgtcgagat 1740ttccggagtt gaggaccgat
tcaacgcctc tttgggcacc tatcacgatc tgctcaagat 1800tatcaaggac aaggattttc
tcgacaacga ggaaaacgag gacattctgg aggacatcgt 1860gctcactctt accctgttcg
aagatcggga gatgatcgag gaacgactca agacatacgc 1920tcacctgttc gacgacaagg
tcatgaaaca actcaagcga cgtagataca ccggctgggg 1980aagactttcg cgaaagctca
tcaacggcat cagagacaag cagtccggaa agaccattct 2040ggactttctc aagtccgatg
gctttgccaa ccgaaacttc atgcagctca ttcacgacga 2100ttctcttacc ttcaaggagg
acatccagaa ggcacaagtg tccggtcagg gcgacagctt 2160gcacgaacat attgccaacc
tggctggttc gccagccatc aagaaaggca ttctccagac 2220tgtcaaggtt gtcgacgagc
tggtgaaggt catgggacgt cacaagcccg agaacattgt 2280gatcgagatg gccagagaga
accagacaac tcaaaagggt cagaaaaact cgcgagagcg 2340gatgaagcga atcgaggaag
gcatcaagga gctgggatcc cagattctca aggagcatcc 2400cgtcgagaac actcaactgc
agaacgagaa gctgtatctc tactatctgc agaatggtcg 2460agacatgtac gtggatcagg
aactggacat caatcgtctc agcgactacg atgtggacca 2520cattgtccct caatcctttc
tcaaggacga ttctatcgac aacaaggtcc ttacacgatc 2580cgacaagaac agaggcaagt
cggacaacgt tcccagcgaa gaggtggtca aaaagatgaa 2640gaactactgg cgacagctgc
tcaacgccaa gctcattacc cagcgaaagt tcgacaatct 2700taccaaggcc gagcgaggcg
gtctgtccga gctcgacaag gctggcttca tcaagcgtca 2760actcgtcgag accagacaga
tcacaaagca cgtcgcacag attctcgatt ctcggatgaa 2820caccaagtac gacgagaacg
acaagctcat ccgagaggtc aaggtgatta ctctcaagtc 2880caaactggtc tccgatttcc
gaaaggactt tcagttctac aaggtgcgag agatcaacaa 2940ttaccaccat gcccacgatg
cttacctcaa cgccgtcgtt ggcactgcgc tcatcaagaa 3000ataccccaag ctcgaaagcg
agttcgttta cggcgattac aaggtctacg acgttcgaaa 3060gatgattgcc aagtccgaac
aggagattgg caaggctact gccaagtact tcttttactc 3120caacatcatg aactttttca
agaccgagat caccttggcc aacggagaga ttcgaaagag 3180accacttatc gagaccaacg
gcgaaactgg agagatcgtg tgggacaagg gtcgagactt 3240tgcaaccgtg cgaaaggttc
tgtcgatgcc tcaggtcaac atcgtcaaga aaaccgaggt 3300tcagactggc ggattctcca
aggagtcgat tctgcccaag cgaaactccg acaagctcat 3360cgctcgaaag aaagactggg
atcccaagaa atacggtggc ttcgattctc ctaccgtcgc 3420ctattccgtg cttgtcgttg
cgaaggtcga gaagggcaag tccaaaaagc tcaagtccgt 3480caaggagctg ctcggaatta
ccatcatgga gcgatcgagc ttcgagaaga atcccatcga 3540cttcttggaa gccaagggtt
acaaggaggt caagaaagac ctcattatca agctgcccaa 3600gtactctctg ttcgaactgg
agaacggtcg aaagcgtatg ctcgcctccg ctggcgagct 3660gcagaaggga aacgagcttg
ccttgccttc gaagtacgtc aactttctct atctggcttc 3720tcactacgag aagctcaagg
gttctcccga ggacaacgaa cagaagcaac tcttcgttga 3780gcagcacaaa cattacctcg
acgagattat cgagcagatt tccgagtttt cgaagcgagt 3840catcctggct gatgccaact
tggacaaggt gctctctgcc tacaacaagc atcgggacaa 3900acccattcga gaacaggcgg
agaacatcat tcacctgttt actcttacca acctgggtgc 3960tcctgcagct ttcaagtact
tcgataccac tatcgaccga aagcggtaca catccaccaa 4020ggaggttctc gatgccaccc
tgattcacca gtccatcact ggcctgtacg agacccgaat 4080cgacctgtct cagcttggtg
gcgactccag agccgatccc aagaaaaagc gaaaggtcta 4140agcggccgca agtgtggatg
gggaagtgag tgcccggttc tgtgtgcaca attggcaatc 4200caagatggat ggattcaaca
cagggatata gcgagctacg tggtggtgcg aggatatagc 4260aacggatatt tatgtttgac
acttgagaat gtacgataca agcactgtcc aagtacaata 4320ctaaacatac tgtacatact
catactcgta cccgggcaac ggtttcactt gagtgcagtg 4380gctagtgctc ttactcgtac
agtgtgcaat actgcgtatc atagtctttg atgtatatcg 4440tattcattca tgttagttgc
gtacgagccg gaagcataaa gtgtaaagcc tggggtgcct 4500aatgagtgag ctaactcaca
ttaattgcgt tgcgctcact gcccgctttc cagtcgggaa 4560acctgtcgtg ccagctgcat
taatgaatcg gccaacgcgc ggggagaggc ggtttgcgta 4620ttgggcgctc ttccgcttcc
tcgctcactg actcgctgcg ctcggtcgtt cggctgcggc 4680gagcggtatc agctcactca
aaggcggtaa tacggttatc cacagaatca ggggataacg 4740caggaaagaa catgtgagca
aaaggccagc aaaaggccag gaaccgtaaa aaggccgcgt 4800tgctggcgtt tttccatagg
ctccgccccc ctgacgagca tcacaaaaat cgacgctcaa 4860gtcagaggtg gcgaaacccg
acaggactat aaagatacca ggcgtttccc cctggaagct 4920ccctcgtgcg ctctcctgtt
ccgaccctgc cgcttaccgg atacctgtcc gcctttctcc 4980cttcgggaag cgtggcgctt
tctcatagct cacgctgtag gtatctcagt tcggtgtagg 5040tcgttcgctc caagctgggc
tgtgtgcacg aaccccccgt tcagcccgac cgctgcgcct 5100tatccggtaa ctatcgtctt
gagtccaacc cggtaagaca cgacttatcg ccactggcag 5160cagccactgg taacaggatt
agcagagcga ggtatgtagg cggtgctaca gagttcttga 5220agtggtggcc taactacggc
tacactagaa ggacagtatt tggtatctgc gctctgctga 5280agccagttac cttcggaaaa
agagttggta gctcttgatc cggcaaacaa accaccgctg 5340gtagcggtgg tttttttgtt
tgcaagcagc agattacgcg cagaaaaaaa ggatctcaag 5400aagatccttt gatcttttct
acggggtctg acgctcagtg gaacgaaaac tcacgttaag 5460ggattttggt catgagatta
tcaaaaagga tcttcaccta gatcctttta aattaaaaat 5520gaagttttaa atcaatctaa
agtatatatg agtaaacttg gtctgacagt taccaatgct 5580taatcagtga ggcacctatc
tcagcgatct gtctatttcg ttcatccata gttgcctgac 5640tccccgtcgt gtagataact
acgatacggg agggcttacc atctggcccc agtgctgcaa 5700tgataccgcg agacccacgc
tcaccggctc cagatttatc agcaataaac cagccagccg 5760gaagggccga gcgcagaagt
ggtcctgcaa ctttatccgc ctccatccag tctattaatt 5820gttgccggga agctagagta
agtagttcgc cagttaatag tttgcgcaac gttgttgcca 5880ttgctacagg catcgtggtg
tcacgctcgt cgtttggtat ggcttcattc agctccggtt 5940cccaacgatc aaggcgagtt
acatgatccc ccatgttgtg caaaaaagcg gttagctcct 6000tcggtcctcc gatcgttgtc
agaagtaagt tggccgcagt gttatcactc atggttatgg 6060cagcactgca taattctctt
actgtcatgc catccgtaag atgcttttct gtgactggtg 6120agtactcaac caagtcattc
tgagaatagt gtatgcggcg accgagttgc tcttgcccgg 6180cgtcaatacg ggataatacc
gcgccacata gcagaacttt aaaagtgctc atcattggaa 6240aacgttcttc ggggcgaaaa
ctctcaagga tcttaccgct gttgagatcc agttcgatgt 6300aacccactcg tgcacccaac
tgatcttcag catcttttac tttcaccagc gtttctgggt 6360gagcaaaaac aggaaggcaa
aatgccgcaa aaaagggaat aagggcgaca cggaaatgtt 6420gaatactcat actcttcctt
tttcaatatt attgaagcat ttatcagggt tattgtctca 6480tgagcggata catatttgaa
tgtatttaga aaaataaaca aataggggtt ccgcgcacat 6540ttccccgaaa agtgccacct
gacgcgccct gtagcggcgc attaagcgcg gcgggtgtgg 6600tggttacgcg cagcgtgacc
gctacacttg ccagcgccct agcgcccgct cctttcgctt 6660tcttcccttc ctttctcgcc
acgttcgccg gctttccccg tcaagctcta aatcgggggc 6720tccctttagg gttccgattt
agtgctttac ggcacctcga ccccaaaaaa cttgattagg 6780gtgatggttc acgtagtggg
ccatcgccct gatagacggt ttttcgccct ttgacgttgg 6840agtccacgtt ctttaatagt
ggactcttgt tccaaactgg aacaacactc aaccctatct 6900cggtctattc ttttgattta
taagggattt tgccgatttc ggcctattgg ttaaaaaatg 6960agctgattta acaaaaattt
aacgcgaatt ttaacaaaat attaacgctt acaatttcca 7020ttcgccattc aggctgcgca
actgttggga agggcgatcg gtgcgggcct cttcgctatt 7080acgccagctg gcgaaagggg
gatgtgctgc aaggcgatta agttgggtaa cgccagggtt 7140ttcccagtca cgacgttgta
aaacgacggc cagtgaattg taatacgact cactataggg 7200cgaattgggt accgggcccc
ccctcgaggt cgatggtgtc gataagcttg atatcgaatt 7260catgtcacac aaaccgatct
tcgcctcaag gaaacctaat tctacatccg agagactgcc 7320gagatccagt ctacactgat
taattttcgg gccaataatt taaaaaaatc gtgttatata 7380atattatatg tattatatat
atacatcatg atgatactga cagtcatgtc ccattgctaa 7440atagacagac tccatctgcc
gcctccaact gatgttctca atatttaagg ggtcatctcg 7500cattgtttaa taataaacag
actccatcta ccgcctccaa atgatgttct caaaatatat 7560tgtatgaact tatttttatt
acttagtatt attagacaac ttacttgctt tatgaaaaac 7620acttcctatt taggaaacaa
tttataatgg cagttcgttc atttaacaat ttatgtagaa 7680taaatgttat aaatgcgtat
gggaaatctt aaatatggat agcataaatg atatctgcat 7740tgcctaattc gaaatcaaca
gcaacgaaaa aaatcccttg tacaacataa atagtcatcg 7800agaaatatca actatcaaag
aacagctatt cacacgttac tattgagatt attattggac 7860gagaatcaca cactcaactg
tctttctctc ttctagaaat acaggtacaa gtatgtacta 7920ttctcattgt tcatacttct
agtcatttca tcccacatat tccttggatt tctctccaat 7980gaatgacatt ctatcttgca
aattcaacaa ttataataag atataccaaa gtagcggtat 8040agtggcaatc aaaaagcttc
tctggtgtgc ttctcgtatt tatttttatt ctaatgatcc 8100attaaaggta tatatttatt
tcttgttata taatcctttt gtttattaca tgggctggat 8160acataaaggt attttgattt
aattttttgc ttaaattcaa tcccccctcg ttcagtgtca 8220actgtaatgg taggaaatta
ccatactttt gaagaagcaa aaaaaatgaa agaaaaaaaa 8280aatcgtattt ccaggttaga
cgttccgcag aatctagaat gcggtatgcg gtacattgtt 8340cttcgaacgt aaaagttgcg
ctccctgaga tattgtacat ttttgctttt acaagtacaa 8400gtacatcgta caactatgta
ctactgttga tgcatccaca acagtttgtt ttgttttttt 8460ttgttttttt tttttctaat
gattcattac cgctatgtat acctacttgt acttgtagta 8520agccgggtta ttggcgttca
attaatcata gacttatgaa tctgcacggt gtgcgctgcg 8580agttactttt agcttatgca
tgctacttgg gtgtaatatt gggatctgtt cggaaatcaa 8640cggatgctca atcgatcgcc
agcaacgcgg ccttagacat aaaaaacaaa aaaaaaaagc 8700accgactcgg tgccactttt
tcaagttgat aacggactag ccttatttta acttgctatt 8760tctagctcta aaacgagtaa
cggtaacgac accggacgag cttactcgtt tcgtcctcac 8820ggactcatca gcggtgttac
gcatggttga tgtgtgttta attcaagaat gaatatagag 8880aagagaagaa gaaaaaagat
tcaattgagc cggcgatgca gacccttata taaatgttgc 8940cttggacaga cggagcaagc
ccgcccaaac ctacgttcgg tataatatgt taagcttttt 9000aacacaaagg tttggcttgg
ggtaacctga tgtggtgcaa aagaccgggc gttggcgagc 9060cattgcgcgg gcgaatgggg
tcgtgactcg tctcaaattc gagggcgtgc ctcaattcgt 9120gcccccgtgg ctttttcccg
ccgtttccgc cccgtttgca ccactgcagc cgcttctttg 9180gttcggacac cttgctgcga
gctaggtgcc ttgtgctact taaaaagtgg cctcccaaca 9240ccaacatgac atgagtgcgt
gggccaagac acgttggcgg ggtcgcagtc ggctcaatgg 9300cccggaaaaa acgctgctgg
agctggttcg gacgcagtcc gccgcggcgt atggatatcc 9360gcaaggttcc atagcgccat
tgccctccgt cggcgtctat cccgcaacct taattaagtc 9420atacacaagt cagctttctt
cgagcctcat ataagtataa gtagttcaac gtattagcac 9480tgtacccagc atctccgtat
cgagaaacac aacaacatgc cccattggac agatcatgcg 9540gatacacagg ttgtgcagta
tcatacatac tcgatcagac aggtcgtctg accatcatac 9600aagctgaaca agcgctccat
acttgcacgc tctctatata cacagttaaa ttacatatcc 9660atagtctaac ctctaacagt
taatcttctg gtaagcctcc cagccagcct tctggtatcg 9720cttggcctcc tcaataggat
ctcggttctg gccgtacaga cctcggccga caattatgat 9780atccgttccg gtagacatga
catcctcaac agttcggtac tgctgtccga gagcgtctcc 9840cttgtcgtca agacccaccc
cgggggtcag aataagccag tcctcagagt cgcccttagg 9900tcggttctgg gcaatgaagc
caaccacaaa ctcggggtcg gatcgggcaa gctcaatggt 9960ctgcttggag tactcgccag
tggccagaga gcccttgcaa gacagctcgg ccagcatgag 10020cagacctctg gccagcttct
cgttgggaga ggggactagg aactccttgt actgggagtt 10080ctcgtagtca gagacgtcct
ccttcttctg ttcagagaca gtttcctcgg caccagctcg 10140caggccagca atgattccgg
ttccgggtac accgtgggcg ttggtgatat cggaccactc 10200ggcgattcgg tgacaccggt
actggtgctt gacagtgttg ccaatatctg cgaactttct 10260gtcctcgaac aggaagaaac
cgtgcttaag agcaagttcc ttgaggggga gcacagtgcc 10320ggcgtaggtg aagtcgtcaa
tgatgtcgat atgggttttg atcatgcaca cataaggtcc 10380gaccttatcg gcaagctcaa
tgagctcctt ggtggtggta acatccagag aagcacacag 10440gttggttttc ttggctgcca
cgagcttgag cactcgagcg gcaaaggcgg acttgtggac 10500gttagctcga gcttcgtagg
agggcatttt ggtggtgaag aggagactga aataaattta 10560gtctgcagaa ctttttatcg
gaaccttatc tggggcagtg aagtatatgt tatggtaata 10620gttacgagtt agttgaactt
atagatagac tggactatac ggctatcggt ccaaattaga 10680aagaacgtca atggctctct
gggcgtcgcc tttgccgaca aaaatgtgat catgatgaaa 10740gccagcaatg acgttgcagc
tgatattgtt gtcggccaac cgcgccgaaa acgcagctgt 10800cagacccaca gcctccaacg
aagaatgtat cgtcaaagtg atccaagcac actcatagtt 10860ggagtcgtac tccaaaggcg
gcaatgacga gtcagacaga tactcgtcga cgtttaaacc 10920atcatctaag ggcctcaaaa
ctacctcgga actgctgcgc tgatctggac accacagagg 10980ttccgagcac tttaggttgc
accaaatgtc ccaccaggtg caggcagaaa acgctggaac 11040agcgtgtaca gtttgtctta
acaaaaagtg agggcgctga ggtcgagcag ggtggtgtga 11100cttgttatag cctttagagc
tgcgaaagcg cgtatggatt tggctcatca ggccagattg 11160agggtctgtg gacacatgtc
atgttagtgt acttcaatcg ccccctggat atagccccga 11220caataggccg tggcctcatt
tttttgcctt ccgcacattt ccattgctcg gtacccacac 11280cttgcttctc ctgcacttgc
caaccttaat actggtttac attgaccaac atcttacaag 11340cggggggctt gtctagggta
tatataaaca gtggctctcc caatcggttg ccagtctctt 11400ttttcctttc tttccccaca
gattcgaaat ctaaactaca catcacac 1144815211448DNAArtificial
SequencepRF300 152catggacaag aaatactcca tcggcctgga cattggaacc aactctgtcg
gctgggctgt 60catcaccgac gagtacaagg tgccctccaa gaaattcaag gtcctcggaa
acaccgatcg 120acactccatc aagaaaaacc tcattggtgc cctgttgttc gattctggcg
agactgccga 180agctaccaga ctcaagcgaa ctgctcggcg acgttacacc cgacggaaga
accgaatctg 240ctacctgcag gagatctttt ccaacgagat ggccaaggtg gacgattcgt
tctttcatcg 300actggaggaa tccttcctcg tcgaggaaga caagaaacac gagcgtcatc
ccatctttgg 360caacattgtg gacgaggttg cttaccacga gaagtatcct accatctacc
atctccgaaa 420gaaactcgtc gattccaccg acaaggcgga tctcagactt atctacctcg
ctctggcaca 480catgatcaag tttcgaggtc atttcctcat cgagggcgat ctcaatcccg
acaacagcga 540tgtggacaag ctgttcattc agctcgttca gacctacaac cagctgttcg
aggaaaaccc 600catcaatgcc tccggagtcg atgcaaaggc catcttgtct gctcgactct
cgaagagcag 660acgactggag aacctcattg cccaacttcc tggcgagaaa aagaacggac
tgtttggcaa 720cctcattgcc ctttctcttg gtctcacacc caacttcaag tccaacttcg
atctggcgga 780ggacgccaag ctccagctgt ccaaggacac ctacgacgat gacctcgaca
acctgcttgc 840acagattggc gatcagtacg ccgacctgtt tctcgctgcc aagaaccttt
cggatgctat 900tctcttgtct gacattctgc gagtcaacac cgagatcaca aaggctcccc
tttctgcctc 960catgatcaag cgatacgacg agcaccatca ggatctcaca ctgctcaagg
ctcttgtccg 1020acagcaactg cccgagaagt acaaggagat ctttttcgat cagtcgaaga
acggctacgc 1080tggatacatc gacggcggag cctctcagga agagttctac aagttcatca
agccaattct 1140cgagaagatg gacggaaccg aggaactgct tgtcaagctc aatcgagagg
atctgcttcg 1200gaagcaacga accttcgaca acggcagcat tcctcatcag atccacctcg
gtgagctgca 1260cgccattctt cgacgtcagg aagacttcta cccctttctc aaggacaacc
gagagaagat 1320cgagaagatt cttacctttc gaatccccta ctatgttggt cctcttgcca
gaggaaactc 1380tcgatttgct tggatgactc gaaagtccga ggaaaccatc actccctgga
acttcgagga 1440agtcgtggac aagggtgcct ctgcacagtc cttcatcgag cgaatgacca
acttcgacaa 1500gaatctgccc aacgagaagg ttcttcccaa gcattcgctg ctctacgagt
actttacagt 1560ctacaacgaa ctcaccaaag tcaagtacgt taccgaggga atgcgaaagc
ctgccttctt 1620gtctggcgaa cagaagaaag ccattgtcga tctcctgttc aagaccaacc
gaaaggtcac 1680tgttaagcag ctcaaggagg actacttcaa gaaaatcgag tgtttcgaca
gcgtcgagat 1740ttccggagtt gaggaccgat tcaacgcctc tttgggcacc tatcacgatc
tgctcaagat 1800tatcaaggac aaggattttc tcgacaacga ggaaaacgag gacattctgg
aggacatcgt 1860gctcactctt accctgttcg aagatcggga gatgatcgag gaacgactca
agacatacgc 1920tcacctgttc gacgacaagg tcatgaaaca actcaagcga cgtagataca
ccggctgggg 1980aagactttcg cgaaagctca tcaacggcat cagagacaag cagtccggaa
agaccattct 2040ggactttctc aagtccgatg gctttgccaa ccgaaacttc atgcagctca
ttcacgacga 2100ttctcttacc ttcaaggagg acatccagaa ggcacaagtg tccggtcagg
gcgacagctt 2160gcacgaacat attgccaacc tggctggttc gccagccatc aagaaaggca
ttctccagac 2220tgtcaaggtt gtcgacgagc tggtgaaggt catgggacgt cacaagcccg
agaacattgt 2280gatcgagatg gccagagaga accagacaac tcaaaagggt cagaaaaact
cgcgagagcg 2340gatgaagcga atcgaggaag gcatcaagga gctgggatcc cagattctca
aggagcatcc 2400cgtcgagaac actcaactgc agaacgagaa gctgtatctc tactatctgc
agaatggtcg 2460agacatgtac gtggatcagg aactggacat caatcgtctc agcgactacg
atgtggacca 2520cattgtccct caatcctttc tcaaggacga ttctatcgac aacaaggtcc
ttacacgatc 2580cgacaagaac agaggcaagt cggacaacgt tcccagcgaa gaggtggtca
aaaagatgaa 2640gaactactgg cgacagctgc tcaacgccaa gctcattacc cagcgaaagt
tcgacaatct 2700taccaaggcc gagcgaggcg gtctgtccga gctcgacaag gctggcttca
tcaagcgtca 2760actcgtcgag accagacaga tcacaaagca cgtcgcacag attctcgatt
ctcggatgaa 2820caccaagtac gacgagaacg acaagctcat ccgagaggtc aaggtgatta
ctctcaagtc 2880caaactggtc tccgatttcc gaaaggactt tcagttctac aaggtgcgag
agatcaacaa 2940ttaccaccat gcccacgatg cttacctcaa cgccgtcgtt ggcactgcgc
tcatcaagaa 3000ataccccaag ctcgaaagcg agttcgttta cggcgattac aaggtctacg
acgttcgaaa 3060gatgattgcc aagtccgaac aggagattgg caaggctact gccaagtact
tcttttactc 3120caacatcatg aactttttca agaccgagat caccttggcc aacggagaga
ttcgaaagag 3180accacttatc gagaccaacg gcgaaactgg agagatcgtg tgggacaagg
gtcgagactt 3240tgcaaccgtg cgaaaggttc tgtcgatgcc tcaggtcaac atcgtcaaga
aaaccgaggt 3300tcagactggc ggattctcca aggagtcgat tctgcccaag cgaaactccg
acaagctcat 3360cgctcgaaag aaagactggg atcccaagaa atacggtggc ttcgattctc
ctaccgtcgc 3420ctattccgtg cttgtcgttg cgaaggtcga gaagggcaag tccaaaaagc
tcaagtccgt 3480caaggagctg ctcggaatta ccatcatgga gcgatcgagc ttcgagaaga
atcccatcga 3540cttcttggaa gccaagggtt acaaggaggt caagaaagac ctcattatca
agctgcccaa 3600gtactctctg ttcgaactgg agaacggtcg aaagcgtatg ctcgcctccg
ctggcgagct 3660gcagaaggga aacgagcttg ccttgccttc gaagtacgtc aactttctct
atctggcttc 3720tcactacgag aagctcaagg gttctcccga ggacaacgaa cagaagcaac
tcttcgttga 3780gcagcacaaa cattacctcg acgagattat cgagcagatt tccgagtttt
cgaagcgagt 3840catcctggct gatgccaact tggacaaggt gctctctgcc tacaacaagc
atcgggacaa 3900acccattcga gaacaggcgg agaacatcat tcacctgttt actcttacca
acctgggtgc 3960tcctgcagct ttcaagtact tcgataccac tatcgaccga aagcggtaca
catccaccaa 4020ggaggttctc gatgccaccc tgattcacca gtccatcact ggcctgtacg
agacccgaat 4080cgacctgtct cagcttggtg gcgactccag agccgatccc aagaaaaagc
gaaaggtcta 4140agcggccgca agtgtggatg gggaagtgag tgcccggttc tgtgtgcaca
attggcaatc 4200caagatggat ggattcaaca cagggatata gcgagctacg tggtggtgcg
aggatatagc 4260aacggatatt tatgtttgac acttgagaat gtacgataca agcactgtcc
aagtacaata 4320ctaaacatac tgtacatact catactcgta cccgggcaac ggtttcactt
gagtgcagtg 4380gctagtgctc ttactcgtac agtgtgcaat actgcgtatc atagtctttg
atgtatatcg 4440tattcattca tgttagttgc gtacgagccg gaagcataaa gtgtaaagcc
tggggtgcct 4500aatgagtgag ctaactcaca ttaattgcgt tgcgctcact gcccgctttc
cagtcgggaa 4560acctgtcgtg ccagctgcat taatgaatcg gccaacgcgc ggggagaggc
ggtttgcgta 4620ttgggcgctc ttccgcttcc tcgctcactg actcgctgcg ctcggtcgtt
cggctgcggc 4680gagcggtatc agctcactca aaggcggtaa tacggttatc cacagaatca
ggggataacg 4740caggaaagaa catgtgagca aaaggccagc aaaaggccag gaaccgtaaa
aaggccgcgt 4800tgctggcgtt tttccatagg ctccgccccc ctgacgagca tcacaaaaat
cgacgctcaa 4860gtcagaggtg gcgaaacccg acaggactat aaagatacca ggcgtttccc
cctggaagct 4920ccctcgtgcg ctctcctgtt ccgaccctgc cgcttaccgg atacctgtcc
gcctttctcc 4980cttcgggaag cgtggcgctt tctcatagct cacgctgtag gtatctcagt
tcggtgtagg 5040tcgttcgctc caagctgggc tgtgtgcacg aaccccccgt tcagcccgac
cgctgcgcct 5100tatccggtaa ctatcgtctt gagtccaacc cggtaagaca cgacttatcg
ccactggcag 5160cagccactgg taacaggatt agcagagcga ggtatgtagg cggtgctaca
gagttcttga 5220agtggtggcc taactacggc tacactagaa ggacagtatt tggtatctgc
gctctgctga 5280agccagttac cttcggaaaa agagttggta gctcttgatc cggcaaacaa
accaccgctg 5340gtagcggtgg tttttttgtt tgcaagcagc agattacgcg cagaaaaaaa
ggatctcaag 5400aagatccttt gatcttttct acggggtctg acgctcagtg gaacgaaaac
tcacgttaag 5460ggattttggt catgagatta tcaaaaagga tcttcaccta gatcctttta
aattaaaaat 5520gaagttttaa atcaatctaa agtatatatg agtaaacttg gtctgacagt
taccaatgct 5580taatcagtga ggcacctatc tcagcgatct gtctatttcg ttcatccata
gttgcctgac 5640tccccgtcgt gtagataact acgatacggg agggcttacc atctggcccc
agtgctgcaa 5700tgataccgcg agacccacgc tcaccggctc cagatttatc agcaataaac
cagccagccg 5760gaagggccga gcgcagaagt ggtcctgcaa ctttatccgc ctccatccag
tctattaatt 5820gttgccggga agctagagta agtagttcgc cagttaatag tttgcgcaac
gttgttgcca 5880ttgctacagg catcgtggtg tcacgctcgt cgtttggtat ggcttcattc
agctccggtt 5940cccaacgatc aaggcgagtt acatgatccc ccatgttgtg caaaaaagcg
gttagctcct 6000tcggtcctcc gatcgttgtc agaagtaagt tggccgcagt gttatcactc
atggttatgg 6060cagcactgca taattctctt actgtcatgc catccgtaag atgcttttct
gtgactggtg 6120agtactcaac caagtcattc tgagaatagt gtatgcggcg accgagttgc
tcttgcccgg 6180cgtcaatacg ggataatacc gcgccacata gcagaacttt aaaagtgctc
atcattggaa 6240aacgttcttc ggggcgaaaa ctctcaagga tcttaccgct gttgagatcc
agttcgatgt 6300aacccactcg tgcacccaac tgatcttcag catcttttac tttcaccagc
gtttctgggt 6360gagcaaaaac aggaaggcaa aatgccgcaa aaaagggaat aagggcgaca
cggaaatgtt 6420gaatactcat actcttcctt tttcaatatt attgaagcat ttatcagggt
tattgtctca 6480tgagcggata catatttgaa tgtatttaga aaaataaaca aataggggtt
ccgcgcacat 6540ttccccgaaa agtgccacct gacgcgccct gtagcggcgc attaagcgcg
gcgggtgtgg 6600tggttacgcg cagcgtgacc gctacacttg ccagcgccct agcgcccgct
cctttcgctt 6660tcttcccttc ctttctcgcc acgttcgccg gctttccccg tcaagctcta
aatcgggggc 6720tccctttagg gttccgattt agtgctttac ggcacctcga ccccaaaaaa
cttgattagg 6780gtgatggttc acgtagtggg ccatcgccct gatagacggt ttttcgccct
ttgacgttgg 6840agtccacgtt ctttaatagt ggactcttgt tccaaactgg aacaacactc
aaccctatct 6900cggtctattc ttttgattta taagggattt tgccgatttc ggcctattgg
ttaaaaaatg 6960agctgattta acaaaaattt aacgcgaatt ttaacaaaat attaacgctt
acaatttcca 7020ttcgccattc aggctgcgca actgttggga agggcgatcg gtgcgggcct
cttcgctatt 7080acgccagctg gcgaaagggg gatgtgctgc aaggcgatta agttgggtaa
cgccagggtt 7140ttcccagtca cgacgttgta aaacgacggc cagtgaattg taatacgact
cactataggg 7200cgaattgggt accgggcccc ccctcgaggt cgatggtgtc gataagcttg
atatcgaatt 7260catgtcacac aaaccgatct tcgcctcaag gaaacctaat tctacatccg
agagactgcc 7320gagatccagt ctacactgat taattttcgg gccaataatt taaaaaaatc
gtgttatata 7380atattatatg tattatatat atacatcatg atgatactga cagtcatgtc
ccattgctaa 7440atagacagac tccatctgcc gcctccaact gatgttctca atatttaagg
ggtcatctcg 7500cattgtttaa taataaacag actccatcta ccgcctccaa atgatgttct
caaaatatat 7560tgtatgaact tatttttatt acttagtatt attagacaac ttacttgctt
tatgaaaaac 7620acttcctatt taggaaacaa tttataatgg cagttcgttc atttaacaat
ttatgtagaa 7680taaatgttat aaatgcgtat gggaaatctt aaatatggat agcataaatg
atatctgcat 7740tgcctaattc gaaatcaaca gcaacgaaaa aaatcccttg tacaacataa
atagtcatcg 7800agaaatatca actatcaaag aacagctatt cacacgttac tattgagatt
attattggac 7860gagaatcaca cactcaactg tctttctctc ttctagaaat acaggtacaa
gtatgtacta 7920ttctcattgt tcatacttct agtcatttca tcccacatat tccttggatt
tctctccaat 7980gaatgacatt ctatcttgca aattcaacaa ttataataag atataccaaa
gtagcggtat 8040agtggcaatc aaaaagcttc tctggtgtgc ttctcgtatt tatttttatt
ctaatgatcc 8100attaaaggta tatatttatt tcttgttata taatcctttt gtttattaca
tgggctggat 8160acataaaggt attttgattt aattttttgc ttaaattcaa tcccccctcg
ttcagtgtca 8220actgtaatgg taggaaatta ccatactttt gaagaagcaa aaaaaatgaa
agaaaaaaaa 8280aatcgtattt ccaggttaga cgttccgcag aatctagaat gcggtatgcg
gtacattgtt 8340cttcgaacgt aaaagttgcg ctccctgaga tattgtacat ttttgctttt
acaagtacaa 8400gtacatcgta caactatgta ctactgttga tgcatccaca acagtttgtt
ttgttttttt 8460ttgttttttt tttttctaat gattcattac cgctatgtat acctacttgt
acttgtagta 8520agccgggtta ttggcgttca attaatcata gacttatgaa tctgcacggt
gtgcgctgcg 8580agttactttt agcttatgca tgctacttgg gtgtaatatt gggatctgtt
cggaaatcaa 8640cggatgctca atcgatcgcc agcaacgcgg ccttagacat aaaaaacaaa
aaaaaaaagc 8700accgactcgg tgccactttt tcaagttgat aacggactag ccttatttta
acttgctatt 8760tctagctcta aaaccgaagc tgaaggtgac caaggacgag cttactcgtt
tcgtcctcac 8820ggactcatca gcctggttac gcatggttga tgtgtgttta attcaagaat
gaatatagag 8880aagagaagaa gaaaaaagat tcaattgagc cggcgatgca gacccttata
taaatgttgc 8940cttggacaga cggagcaagc ccgcccaaac ctacgttcgg tataatatgt
taagcttttt 9000aacacaaagg tttggcttgg ggtaacctga tgtggtgcaa aagaccgggc
gttggcgagc 9060cattgcgcgg gcgaatgggg tcgtgactcg tctcaaattc gagggcgtgc
ctcaattcgt 9120gcccccgtgg ctttttcccg ccgtttccgc cccgtttgca ccactgcagc
cgcttctttg 9180gttcggacac cttgctgcga gctaggtgcc ttgtgctact taaaaagtgg
cctcccaaca 9240ccaacatgac atgagtgcgt gggccaagac acgttggcgg ggtcgcagtc
ggctcaatgg 9300cccggaaaaa acgctgctgg agctggttcg gacgcagtcc gccgcggcgt
atggatatcc 9360gcaaggttcc atagcgccat tgccctccgt cggcgtctat cccgcaacct
taattaagtc 9420atacacaagt cagctttctt cgagcctcat ataagtataa gtagttcaac
gtattagcac 9480tgtacccagc atctccgtat cgagaaacac aacaacatgc cccattggac
agatcatgcg 9540gatacacagg ttgtgcagta tcatacatac tcgatcagac aggtcgtctg
accatcatac 9600aagctgaaca agcgctccat acttgcacgc tctctatata cacagttaaa
ttacatatcc 9660atagtctaac ctctaacagt taatcttctg gtaagcctcc cagccagcct
tctggtatcg 9720cttggcctcc tcaataggat ctcggttctg gccgtacaga cctcggccga
caattatgat 9780atccgttccg gtagacatga catcctcaac agttcggtac tgctgtccga
gagcgtctcc 9840cttgtcgtca agacccaccc cgggggtcag aataagccag tcctcagagt
cgcccttagg 9900tcggttctgg gcaatgaagc caaccacaaa ctcggggtcg gatcgggcaa
gctcaatggt 9960ctgcttggag tactcgccag tggccagaga gcccttgcaa gacagctcgg
ccagcatgag 10020cagacctctg gccagcttct cgttgggaga ggggactagg aactccttgt
actgggagtt 10080ctcgtagtca gagacgtcct ccttcttctg ttcagagaca gtttcctcgg
caccagctcg 10140caggccagca atgattccgg ttccgggtac accgtgggcg ttggtgatat
cggaccactc 10200ggcgattcgg tgacaccggt actggtgctt gacagtgttg ccaatatctg
cgaactttct 10260gtcctcgaac aggaagaaac cgtgcttaag agcaagttcc ttgaggggga
gcacagtgcc 10320ggcgtaggtg aagtcgtcaa tgatgtcgat atgggttttg atcatgcaca
cataaggtcc 10380gaccttatcg gcaagctcaa tgagctcctt ggtggtggta acatccagag
aagcacacag 10440gttggttttc ttggctgcca cgagcttgag cactcgagcg gcaaaggcgg
acttgtggac 10500gttagctcga gcttcgtagg agggcatttt ggtggtgaag aggagactga
aataaattta 10560gtctgcagaa ctttttatcg gaaccttatc tggggcagtg aagtatatgt
tatggtaata 10620gttacgagtt agttgaactt atagatagac tggactatac ggctatcggt
ccaaattaga 10680aagaacgtca atggctctct gggcgtcgcc tttgccgaca aaaatgtgat
catgatgaaa 10740gccagcaatg acgttgcagc tgatattgtt gtcggccaac cgcgccgaaa
acgcagctgt 10800cagacccaca gcctccaacg aagaatgtat cgtcaaagtg atccaagcac
actcatagtt 10860ggagtcgtac tccaaaggcg gcaatgacga gtcagacaga tactcgtcga
cgtttaaacc 10920atcatctaag ggcctcaaaa ctacctcgga actgctgcgc tgatctggac
accacagagg 10980ttccgagcac tttaggttgc accaaatgtc ccaccaggtg caggcagaaa
acgctggaac 11040agcgtgtaca gtttgtctta acaaaaagtg agggcgctga ggtcgagcag
ggtggtgtga 11100cttgttatag cctttagagc tgcgaaagcg cgtatggatt tggctcatca
ggccagattg 11160agggtctgtg gacacatgtc atgttagtgt acttcaatcg ccccctggat
atagccccga 11220caataggccg tggcctcatt tttttgcctt ccgcacattt ccattgctcg
gtacccacac 11280cttgcttctc ctgcacttgc caaccttaat actggtttac attgaccaac
atcttacaag 11340cggggggctt gtctagggta tatataaaca gtggctctcc caatcggttg
ccagtctctt 11400ttttcctttc tttccccaca gattcgaaat ctaaactaca catcacac
1144815311448DNAArtificial sequencepRF339 153catggacaag
aaatactcca tcggcctggc cattggaacc aactctgtcg gctgggctgt 60catcaccgac
gagtacaagg tgccctccaa gaaattcaag gtcctcggaa acaccgatcg 120acactccatc
aagaaaaacc tcattggtgc cctgttgttc gattctggcg agactgccga 180agctaccaga
ctcaagcgaa ctgctcggcg acgttacacc cgacggaaga accgaatctg 240ctacctgcag
gagatctttt ccaacgagat ggccaaggtg gacgattcgt tctttcatcg 300actggaggaa
tccttcctcg tcgaggaaga caagaaacac gagcgtcatc ccatctttgg 360caacattgtg
gacgaggttg cttaccacga gaagtatcct accatctacc acctgcgaaa 420gaaactcgtc
gattccaccg acaaggcgga tctcagactt atctacctcg ctctggcaca 480catgatcaag
tttcgaggtc atttcctcat cgagggcgat ctcaatcccg acaacagcga 540tgtggacaag
ctgttcattc agctcgttca gacctacaac cagctgttcg aggaaaaccc 600catcaatgcc
tccggagtcg atgcaaaggc catcttgtct gctcgactct cgaagagcag 660acgactggag
aacctcattg cccaacttcc tggcgagaaa aagaacggac tgtttggcaa 720cctcattgcc
ctttctcttg gtctcacacc caacttcaag tccaacttcg atctggcgga 780ggacgccaag
ctccagctgt ccaaggacac ctacgacgat gacctcgaca acctgcttgc 840acagattggc
gatcagtacg ccgacctgtt tctcgctgcc aagaaccttt cggatgctat 900tctcttgtct
gacattctgc gagtcaacac cgagatcaca aaggctcccc tttctgcctc 960catgatcaag
cgatacgacg agcaccatca ggatctcaca ctgctcaagg ctcttgtccg 1020acagcaactg
cccgagaagt acaaggagat ctttttcgat cagtcgaaga acggctacgc 1080tggatacatc
gacggcggag cctctcagga agagttctac aagttcatca agccaattct 1140cgagaagatg
gacggaaccg aggaactgct tgtcaagctc aatcgagagg atctgcttcg 1200gaagcaacga
accttcgaca acggcagcat tcctcatcag atccacctcg gtgagctgca 1260cgccattctt
cgacgtcagg aagacttcta cccctttctc aaggacaacc gagagaagat 1320cgagaagatt
cttacctttc gaatccccta ctatgttggt cctcttgcca gaggaaactc 1380tcgatttgct
tggatgactc gaaagtccga ggaaaccatc actccctgga acttcgagga 1440agtcgtggac
aagggtgcct ctgcacagtc cttcatcgag cgaatgacca acttcgacaa 1500gaatctgccc
aacgagaagg ttcttcccaa gcattcgctg ctctacgagt actttacagt 1560ctacaacgaa
ctcaccaaag tcaagtacgt taccgaggga atgcgaaagc ctgccttctt 1620gtctggcgaa
cagaagaaag ccattgtcga tctcctgttc aagaccaacc gaaaggtcac 1680tgttaagcag
ctcaaggagg actacttcaa gaaaatcgag tgtttcgaca gcgtcgagat 1740ttccggagtt
gaggaccgat tcaacgcctc tttgggcacc tatcacgatc tgctcaagat 1800tatcaaggac
aaggattttc tcgacaacga ggaaaacgag gacattctgg aggacatcgt 1860gctcactctt
accctgttcg aagatcggga gatgatcgag gaacgactca agacatacgc 1920tcacctgttc
gacgacaagg tcatgaaaca actcaagcga cgtagataca ccggctgggg 1980aagactttcg
cgaaagctca tcaacggcat cagagacaag cagtccggaa agaccattct 2040ggactttctc
aagtccgatg gctttgccaa ccgaaacttc atgcagctca ttcacgacga 2100ttctcttacc
ttcaaggagg acatccagaa ggcacaagtg tccggtcagg gcgacagctt 2160gcacgaacat
attgccaacc tggctggttc gccagccatc aagaaaggca ttctccagac 2220tgtcaaggtt
gtcgacgagc tggtgaaggt catgggacgt cacaagcccg agaacattgt 2280gatcgagatg
gccagagaga accagacaac tcaaaagggt cagaaaaact cgcgagagcg 2340gatgaagcga
atcgaggaag gcatcaagga gctgggatcc cagattctca aggagcatcc 2400cgtcgagaac
actcaactgc agaacgagaa gctgtatctc tactatctgc agaatggtcg 2460agacatgtac
gtggatcagg aactggacat caatcgtctc agcgactacg atgtggacgc 2520cattgtccct
caatcctttc tcaaggacga ttctatcgac aacaaggtcc ttacacgatc 2580cgacaagaac
agaggcaagt cggacaacgt tcccagcgaa gaggtggtca aaaagatgaa 2640gaactactgg
cgacagctgc tcaacgccaa gctcattacc cagcgaaagt tcgacaatct 2700taccaaggcc
gagcgaggcg gtctgtccga gctcgacaag gctggcttca tcaagcgtca 2760actcgtcgag
accagacaga tcacaaagca cgtcgcacag attctcgatt ctcggatgaa 2820caccaagtac
gacgagaacg acaagctcat ccgagaggtc aaggtgatta ctctcaagtc 2880caaactggtc
tccgatttcc gaaaggactt tcagttctac aaggtgcgag agatcaacaa 2940ttaccaccat
gcccacgatg cttacctcaa cgccgtcgtt ggcactgcgc tcatcaagaa 3000ataccccaag
ctcgaaagcg agttcgttta cggcgattac aaggtctacg acgttcgaaa 3060gatgattgcc
aagtccgaac aggagattgg caaggctact gccaagtact tcttttactc 3120caacatcatg
aactttttca agaccgagat caccttggcc aacggagaga ttcgaaagag 3180accacttatc
gagaccaacg gcgaaactgg agagatcgtg tgggacaagg gtcgagactt 3240tgcaaccgtg
cgaaaggttc tgtcgatgcc tcaggtcaac atcgtcaaga aaaccgaggt 3300tcagactggc
ggattctcca aggagtcgat tctgcccaag cgaaactccg acaagctcat 3360cgctcgaaag
aaagactggg atcccaagaa atacggtggc ttcgattctc ctaccgtcgc 3420ctattccgtg
cttgtcgttg cgaaggtcga gaagggcaag tccaaaaagc tcaagtccgt 3480caaggagctg
ctcggaatta ccatcatgga gcgatcgagc ttcgagaaga atcccatcga 3540cttcttggaa
gccaagggtt acaaggaggt caagaaagac ctcattatca agctgcccaa 3600gtactctctg
ttcgaactgg agaacggtcg aaagcgtatg ctcgcctccg ctggcgagct 3660gcagaaggga
aacgagcttg ccttgccttc gaagtacgtc aactttctct atctggcttc 3720tcactacgag
aagctcaagg gttctcccga ggacaacgaa cagaagcaac tcttcgttga 3780gcagcacaaa
cattacctcg acgagattat cgagcagatt tccgagtttt cgaagcgagt 3840catcctggct
gatgccaact tggacaaggt gctctctgcc tacaacaagc atcgggacaa 3900acccattcga
gaacaggcgg agaacatcat tcacctgttt actcttacca acctgggtgc 3960tcctgcagct
ttcaagtact tcgataccac tatcgaccga aagcggtaca catccaccaa 4020ggaggttctc
gatgccaccc tgattcacca gtccatcact ggcctgtacg agacccgaat 4080cgacctgtct
cagcttggtg gcgactccag agccgatccc aagaaaaagc gaaaggtcta 4140agcggccgca
agtgtggatg gggaagtgag tgcccggttc tgtgtgcaca attggcaatc 4200caagatggat
ggattcaaca cagggatata gcgagctacg tggtggtgcg aggatatagc 4260aacggatatt
tatgtttgac acttgagaat gtacgataca agcactgtcc aagtacaata 4320ctaaacatac
tgtacatact catactcgta cccgggcaac ggtttcactt gagtgcagtg 4380gctagtgctc
ttactcgtac agtgtgcaat actgcgtatc atagtctttg atgtatatcg 4440tattcattca
tgttagttgc gtacgagccg gaagcataaa gtgtaaagcc tggggtgcct 4500aatgagtgag
ctaactcaca ttaattgcgt tgcgctcact gcccgctttc cagtcgggaa 4560acctgtcgtg
ccagctgcat taatgaatcg gccaacgcgc ggggagaggc ggtttgcgta 4620ttgggcgctc
ttccgcttcc tcgctcactg actcgctgcg ctcggtcgtt cggctgcggc 4680gagcggtatc
agctcactca aaggcggtaa tacggttatc cacagaatca ggggataacg 4740caggaaagaa
catgtgagca aaaggccagc aaaaggccag gaaccgtaaa aaggccgcgt 4800tgctggcgtt
tttccatagg ctccgccccc ctgacgagca tcacaaaaat cgacgctcaa 4860gtcagaggtg
gcgaaacccg acaggactat aaagatacca ggcgtttccc cctggaagct 4920ccctcgtgcg
ctctcctgtt ccgaccctgc cgcttaccgg atacctgtcc gcctttctcc 4980cttcgggaag
cgtggcgctt tctcatagct cacgctgtag gtatctcagt tcggtgtagg 5040tcgttcgctc
caagctgggc tgtgtgcacg aaccccccgt tcagcccgac cgctgcgcct 5100tatccggtaa
ctatcgtctt gagtccaacc cggtaagaca cgacttatcg ccactggcag 5160cagccactgg
taacaggatt agcagagcga ggtatgtagg cggtgctaca gagttcttga 5220agtggtggcc
taactacggc tacactagaa ggacagtatt tggtatctgc gctctgctga 5280agccagttac
cttcggaaaa agagttggta gctcttgatc cggcaaacaa accaccgctg 5340gtagcggtgg
tttttttgtt tgcaagcagc agattacgcg cagaaaaaaa ggatctcaag 5400aagatccttt
gatcttttct acggggtctg acgctcagtg gaacgaaaac tcacgttaag 5460ggattttggt
catgagatta tcaaaaagga tcttcaccta gatcctttta aattaaaaat 5520gaagttttaa
atcaatctaa agtatatatg agtaaacttg gtctgacagt taccaatgct 5580taatcagtga
ggcacctatc tcagcgatct gtctatttcg ttcatccata gttgcctgac 5640tccccgtcgt
gtagataact acgatacggg agggcttacc atctggcccc agtgctgcaa 5700tgataccgcg
agacccacgc tcaccggctc cagatttatc agcaataaac cagccagccg 5760gaagggccga
gcgcagaagt ggtcctgcaa ctttatccgc ctccatccag tctattaatt 5820gttgccggga
agctagagta agtagttcgc cagttaatag tttgcgcaac gttgttgcca 5880ttgctacagg
catcgtggtg tcacgctcgt cgtttggtat ggcttcattc agctccggtt 5940cccaacgatc
aaggcgagtt acatgatccc ccatgttgtg caaaaaagcg gttagctcct 6000tcggtcctcc
gatcgttgtc agaagtaagt tggccgcagt gttatcactc atggttatgg 6060cagcactgca
taattctctt actgtcatgc catccgtaag atgcttttct gtgactggtg 6120agtactcaac
caagtcattc tgagaatagt gtatgcggcg accgagttgc tcttgcccgg 6180cgtcaatacg
ggataatacc gcgccacata gcagaacttt aaaagtgctc atcattggaa 6240aacgttcttc
ggggcgaaaa ctctcaagga tcttaccgct gttgagatcc agttcgatgt 6300aacccactcg
tgcacccaac tgatcttcag catcttttac tttcaccagc gtttctgggt 6360gagcaaaaac
aggaaggcaa aatgccgcaa aaaagggaat aagggcgaca cggaaatgtt 6420gaatactcat
actcttcctt tttcaatatt attgaagcat ttatcagggt tattgtctca 6480tgagcggata
catatttgaa tgtatttaga aaaataaaca aataggggtt ccgcgcacat 6540ttccccgaaa
agtgccacct gacgcgccct gtagcggcgc attaagcgcg gcgggtgtgg 6600tggttacgcg
cagcgtgacc gctacacttg ccagcgccct agcgcccgct cctttcgctt 6660tcttcccttc
ctttctcgcc acgttcgccg gctttccccg tcaagctcta aatcgggggc 6720tccctttagg
gttccgattt agtgctttac ggcacctcga ccccaaaaaa cttgattagg 6780gtgatggttc
acgtagtggg ccatcgccct gatagacggt ttttcgccct ttgacgttgg 6840agtccacgtt
ctttaatagt ggactcttgt tccaaactgg aacaacactc aaccctatct 6900cggtctattc
ttttgattta taagggattt tgccgatttc ggcctattgg ttaaaaaatg 6960agctgattta
acaaaaattt aacgcgaatt ttaacaaaat attaacgctt acaatttcca 7020ttcgccattc
aggctgcgca actgttggga agggcgatcg gtgcgggcct cttcgctatt 7080acgccagctg
gcgaaagggg gatgtgctgc aaggcgatta agttgggtaa cgccagggtt 7140ttcccagtca
cgacgttgta aaacgacggc cagtgaattg taatacgact cactataggg 7200cgaattgggt
accgggcccc ccctcgaggt cgatggtgtc gataagcttg atatcgaatt 7260catgtcacac
aaaccgatct tcgcctcaag gaaacctaat tctacatccg agagactgcc 7320gagatccagt
ctacactgat taattttcgg gccaataatt taaaaaaatc gtgttatata 7380atattatatg
tattatatat atacatcatg atgatactga cagtcatgtc ccattgctaa 7440atagacagac
tccatctgcc gcctccaact gatgttctca atatttaagg ggtcatctcg 7500cattgtttaa
taataaacag actccatcta ccgcctccaa atgatgttct caaaatatat 7560tgtatgaact
tatttttatt acttagtatt attagacaac ttacttgctt tatgaaaaac 7620acttcctatt
taggaaacaa tttataatgg cagttcgttc atttaacaat ttatgtagaa 7680taaatgttat
aaatgcgtat gggaaatctt aaatatggat agcataaatg atatctgcat 7740tgcctaattc
gaaatcaaca gcaacgaaaa aaatcccttg tacaacataa atagtcatcg 7800agaaatatca
actatcaaag aacagctatt cacacgttac tattgagatt attattggac 7860gagaatcaca
cactcaactg tctttctctc ttctagaaat acaggtacaa gtatgtacta 7920ttctcattgt
tcatacttct agtcatttca tcccacatat tccttggatt tctctccaat 7980gaatgacatt
ctatcttgca aattcaacaa ttataataag atataccaaa gtagcggtat 8040agtggcaatc
aaaaagcttc tctggtgtgc ttctcgtatt tatttttatt ctaatgatcc 8100attaaaggta
tatatttatt tcttgttata taatcctttt gtttattaca tgggctggat 8160acataaaggt
attttgattt aattttttgc ttaaattcaa tcccccctcg ttcagtgtca 8220actgtaatgg
taggaaatta ccatactttt gaagaagcaa aaaaaatgaa agaaaaaaaa 8280aatcgtattt
ccaggttaga cgttccgcag aatctagaat gcggtatgcg gtacattgtt 8340cttcgaacgt
aaaagttgcg ctccctgaga tattgtacat ttttgctttt acaagtacaa 8400gtacatcgta
caactatgta ctactgttga tgcatccaca acagtttgtt ttgttttttt 8460ttgttttttt
tttttctaat gattcattac cgctatgtat acctacttgt acttgtagta 8520agccgggtta
ttggcgttca attaatcata gacttatgaa tctgcacggt gtgcgctgcg 8580agttactttt
agcttatgca tgctacttgg gtgtaatatt gggatctgtt cggaaatcaa 8640cggatgctca
atcgatcgcc agcaacgcgg ccttagacat aaaaaacaaa aaaaaaaagc 8700accgactcgg
tgccactttt tcaagttgat aacggactag ccttatttta acttgctatt 8760tctagctcta
aaactagaac cgtactgaaa ctgagacgag cttactcgtt tcgtcctcac 8820ggactcatca
gtcagtttac gcatggttga tgtgtgttta attcaagaat gaatatagag 8880aagagaagaa
gaaaaaagat tcaattgagc cggcgatgca gacccttata taaatgttgc 8940cttggacaga
cggagcaagc ccgcccaaac ctacgttcgg tataatatgt taagcttttt 9000aacacaaagg
tttggcttgg ggtaacctga tgtggtgcaa aagaccgggc gttggcgagc 9060cattgcgcgg
gcgaatgggg tcgtgactcg tctcaaattc gagggcgtgc ctcaattcgt 9120gcccccgtgg
ctttttcccg ccgtttccgc cccgtttgca ccactgcagc cgcttctttg 9180gttcggacac
cttgctgcga gctaggtgcc ttgtgctact taaaaagtgg cctcccaaca 9240ccaacatgac
atgagtgcgt gggccaagac acgttggcgg ggtcgcagtc ggctcaatgg 9300cccggaaaaa
acgctgctgg agctggttcg gacgcagtcc gccgcggcgt atggatatcc 9360gcaaggttcc
atagcgccat tgccctccgt cggcgtctat cccgcaacct taattaagtc 9420atacacaagt
cagctttctt cgagcctcat ataagtataa gtagttcaac gtattagcac 9480tgtacccagc
atctccgtat cgagaaacac aacaacatgc cccattggac agatcatgcg 9540gatacacagg
ttgtgcagta tcatacatac tcgatcagac aggtcgtctg accatcatac 9600aagctgaaca
agcgctccat acttgcacgc tctctatata cacagttaaa ttacatatcc 9660atagtctaac
ctctaacagt taatcttctg gtaagcctcc cagccagcct tctggtatcg 9720cttggcctcc
tcaataggat ctcggttctg gccgtacaga cctcggccga caattatgat 9780atccgttccg
gtagacatga catcctcaac agttcggtac tgctgtccga gagcgtctcc 9840cttgtcgtca
agacccaccc cgggggtcag aataagccag tcctcagagt cgcccttagg 9900tcggttctgg
gcaatgaagc caaccacaaa ctcggggtcg gatcgggcaa gctcaatggt 9960ctgcttggag
tactcgccag tggccagaga gcccttgcaa gacagctcgg ccagcatgag 10020cagacctctg
gccagcttct cgttgggaga ggggactagg aactccttgt actgggagtt 10080ctcgtagtca
gagacgtcct ccttcttctg ttcagagaca gtttcctcgg caccagctcg 10140caggccagca
atgattccgg ttccgggtac accgtgggcg ttggtgatat cggaccactc 10200ggcgattcgg
tgacaccggt actggtgctt gacagtgttg ccaatatctg cgaactttct 10260gtcctcgaac
aggaagaaac cgtgcttaag agcaagttcc ttgaggggga gcacagtgcc 10320ggcgtaggtg
aagtcgtcaa tgatgtcgat atgggttttg atcatgcaca cataaggtcc 10380gaccttatcg
gcaagctcaa tgagctcctt ggtggtggta acatccagag aagcacacag 10440gttggttttc
ttggctgcca cgagcttgag cactcgagcg gcaaaggcgg acttgtggac 10500gttagctcga
gcttcgtagg agggcatttt ggtggtgaag aggagactga aataaattta 10560gtctgcagaa
ctttttatcg gaaccttatc tggggcagtg aagtatatgt tatggtaata 10620gttacgagtt
agttgaactt atagatagac tggactatac ggctatcggt ccaaattaga 10680aagaacgtca
atggctctct gggcgtcgcc tttgccgaca aaaatgtgat catgatgaaa 10740gccagcaatg
acgttgcagc tgatattgtt gtcggccaac cgcgccgaaa acgcagctgt 10800cagacccaca
gcctccaacg aagaatgtat cgtcaaagtg atccaagcac actcatagtt 10860ggagtcgtac
tccaaaggcg gcaatgacga gtcagacaga tactcgtcga cgtttaaacc 10920atcatctaag
ggcctcaaaa ctacctcgga actgctgcgc tgatctggac accacagagg 10980ttccgagcac
tttaggttgc accaaatgtc ccaccaggtg caggcagaaa acgctggaac 11040agcgtgtaca
gtttgtctta acaaaaagtg agggcgctga ggtcgagcag ggtggtgtga 11100cttgttatag
cctttagagc tgcgaaagcg cgtatggatt tggctcatca ggccagattg 11160agggtctgtg
gacacatgtc atgttagtgt acttcaatcg ccccctggat atagccccga 11220caataggccg
tggcctcatt tttttgcctt ccgcacattt ccattgctcg gtacccacac 11280cttgcttctc
ctgcacttgc caaccttaat actggtttac attgaccaac atcttacaag 11340cggggggctt
gtctagggta tatataaaca gtggctctcc caatcggttg ccagtctctt 11400ttttcctttc
tttccccaca gattcgaaat ctaaactaca catcacac
1144815411448DNAArtificial SequencepRF341 154catggacaag aaatactcca
tcggcctggc cattggaacc aactctgtcg gctgggctgt 60catcaccgac gagtacaagg
tgccctccaa gaaattcaag gtcctcggaa acaccgatcg 120acactccatc aagaaaaacc
tcattggtgc cctgttgttc gattctggcg agactgccga 180agctaccaga ctcaagcgaa
ctgctcggcg acgttacacc cgacggaaga accgaatctg 240ctacctgcag gagatctttt
ccaacgagat ggccaaggtg gacgattcgt tctttcatcg 300actggaggaa tccttcctcg
tcgaggaaga caagaaacac gagcgtcatc ccatctttgg 360caacattgtg gacgaggttg
cttaccacga gaagtatcct accatctacc acctgcgaaa 420gaaactcgtc gattccaccg
acaaggcgga tctcagactt atctacctcg ctctggcaca 480catgatcaag tttcgaggtc
atttcctcat cgagggcgat ctcaatcccg acaacagcga 540tgtggacaag ctgttcattc
agctcgttca gacctacaac cagctgttcg aggaaaaccc 600catcaatgcc tccggagtcg
atgcaaaggc catcttgtct gctcgactct cgaagagcag 660acgactggag aacctcattg
cccaacttcc tggcgagaaa aagaacggac tgtttggcaa 720cctcattgcc ctttctcttg
gtctcacacc caacttcaag tccaacttcg atctggcgga 780ggacgccaag ctccagctgt
ccaaggacac ctacgacgat gacctcgaca acctgcttgc 840acagattggc gatcagtacg
ccgacctgtt tctcgctgcc aagaaccttt cggatgctat 900tctcttgtct gacattctgc
gagtcaacac cgagatcaca aaggctcccc tttctgcctc 960catgatcaag cgatacgacg
agcaccatca ggatctcaca ctgctcaagg ctcttgtccg 1020acagcaactg cccgagaagt
acaaggagat ctttttcgat cagtcgaaga acggctacgc 1080tggatacatc gacggcggag
cctctcagga agagttctac aagttcatca agccaattct 1140cgagaagatg gacggaaccg
aggaactgct tgtcaagctc aatcgagagg atctgcttcg 1200gaagcaacga accttcgaca
acggcagcat tcctcatcag atccacctcg gtgagctgca 1260cgccattctt cgacgtcagg
aagacttcta cccctttctc aaggacaacc gagagaagat 1320cgagaagatt cttacctttc
gaatccccta ctatgttggt cctcttgcca gaggaaactc 1380tcgatttgct tggatgactc
gaaagtccga ggaaaccatc actccctgga acttcgagga 1440agtcgtggac aagggtgcct
ctgcacagtc cttcatcgag cgaatgacca acttcgacaa 1500gaatctgccc aacgagaagg
ttcttcccaa gcattcgctg ctctacgagt actttacagt 1560ctacaacgaa ctcaccaaag
tcaagtacgt taccgaggga atgcgaaagc ctgccttctt 1620gtctggcgaa cagaagaaag
ccattgtcga tctcctgttc aagaccaacc gaaaggtcac 1680tgttaagcag ctcaaggagg
actacttcaa gaaaatcgag tgtttcgaca gcgtcgagat 1740ttccggagtt gaggaccgat
tcaacgcctc tttgggcacc tatcacgatc tgctcaagat 1800tatcaaggac aaggattttc
tcgacaacga ggaaaacgag gacattctgg aggacatcgt 1860gctcactctt accctgttcg
aagatcggga gatgatcgag gaacgactca agacatacgc 1920tcacctgttc gacgacaagg
tcatgaaaca actcaagcga cgtagataca ccggctgggg 1980aagactttcg cgaaagctca
tcaacggcat cagagacaag cagtccggaa agaccattct 2040ggactttctc aagtccgatg
gctttgccaa ccgaaacttc atgcagctca ttcacgacga 2100ttctcttacc ttcaaggagg
acatccagaa ggcacaagtg tccggtcagg gcgacagctt 2160gcacgaacat attgccaacc
tggctggttc gccagccatc aagaaaggca ttctccagac 2220tgtcaaggtt gtcgacgagc
tggtgaaggt catgggacgt cacaagcccg agaacattgt 2280gatcgagatg gccagagaga
accagacaac tcaaaagggt cagaaaaact cgcgagagcg 2340gatgaagcga atcgaggaag
gcatcaagga gctgggatcc cagattctca aggagcatcc 2400cgtcgagaac actcaactgc
agaacgagaa gctgtatctc tactatctgc agaatggtcg 2460agacatgtac gtggatcagg
aactggacat caatcgtctc agcgactacg atgtggacgc 2520cattgtccct caatcctttc
tcaaggacga ttctatcgac aacaaggtcc ttacacgatc 2580cgacaagaac agaggcaagt
cggacaacgt tcccagcgaa gaggtggtca aaaagatgaa 2640gaactactgg cgacagctgc
tcaacgccaa gctcattacc cagcgaaagt tcgacaatct 2700taccaaggcc gagcgaggcg
gtctgtccga gctcgacaag gctggcttca tcaagcgtca 2760actcgtcgag accagacaga
tcacaaagca cgtcgcacag attctcgatt ctcggatgaa 2820caccaagtac gacgagaacg
acaagctcat ccgagaggtc aaggtgatta ctctcaagtc 2880caaactggtc tccgatttcc
gaaaggactt tcagttctac aaggtgcgag agatcaacaa 2940ttaccaccat gcccacgatg
cttacctcaa cgccgtcgtt ggcactgcgc tcatcaagaa 3000ataccccaag ctcgaaagcg
agttcgttta cggcgattac aaggtctacg acgttcgaaa 3060gatgattgcc aagtccgaac
aggagattgg caaggctact gccaagtact tcttttactc 3120caacatcatg aactttttca
agaccgagat caccttggcc aacggagaga ttcgaaagag 3180accacttatc gagaccaacg
gcgaaactgg agagatcgtg tgggacaagg gtcgagactt 3240tgcaaccgtg cgaaaggttc
tgtcgatgcc tcaggtcaac atcgtcaaga aaaccgaggt 3300tcagactggc ggattctcca
aggagtcgat tctgcccaag cgaaactccg acaagctcat 3360cgctcgaaag aaagactggg
atcccaagaa atacggtggc ttcgattctc ctaccgtcgc 3420ctattccgtg cttgtcgttg
cgaaggtcga gaagggcaag tccaaaaagc tcaagtccgt 3480caaggagctg ctcggaatta
ccatcatgga gcgatcgagc ttcgagaaga atcccatcga 3540cttcttggaa gccaagggtt
acaaggaggt caagaaagac ctcattatca agctgcccaa 3600gtactctctg ttcgaactgg
agaacggtcg aaagcgtatg ctcgcctccg ctggcgagct 3660gcagaaggga aacgagcttg
ccttgccttc gaagtacgtc aactttctct atctggcttc 3720tcactacgag aagctcaagg
gttctcccga ggacaacgaa cagaagcaac tcttcgttga 3780gcagcacaaa cattacctcg
acgagattat cgagcagatt tccgagtttt cgaagcgagt 3840catcctggct gatgccaact
tggacaaggt gctctctgcc tacaacaagc atcgggacaa 3900acccattcga gaacaggcgg
agaacatcat tcacctgttt actcttacca acctgggtgc 3960tcctgcagct ttcaagtact
tcgataccac tatcgaccga aagcggtaca catccaccaa 4020ggaggttctc gatgccaccc
tgattcacca gtccatcact ggcctgtacg agacccgaat 4080cgacctgtct cagcttggtg
gcgactccag agccgatccc aagaaaaagc gaaaggtcta 4140agcggccgca agtgtggatg
gggaagtgag tgcccggttc tgtgtgcaca attggcaatc 4200caagatggat ggattcaaca
cagggatata gcgagctacg tggtggtgcg aggatatagc 4260aacggatatt tatgtttgac
acttgagaat gtacgataca agcactgtcc aagtacaata 4320ctaaacatac tgtacatact
catactcgta cccgggcaac ggtttcactt gagtgcagtg 4380gctagtgctc ttactcgtac
agtgtgcaat actgcgtatc atagtctttg atgtatatcg 4440tattcattca tgttagttgc
gtacgagccg gaagcataaa gtgtaaagcc tggggtgcct 4500aatgagtgag ctaactcaca
ttaattgcgt tgcgctcact gcccgctttc cagtcgggaa 4560acctgtcgtg ccagctgcat
taatgaatcg gccaacgcgc ggggagaggc ggtttgcgta 4620ttgggcgctc ttccgcttcc
tcgctcactg actcgctgcg ctcggtcgtt cggctgcggc 4680gagcggtatc agctcactca
aaggcggtaa tacggttatc cacagaatca ggggataacg 4740caggaaagaa catgtgagca
aaaggccagc aaaaggccag gaaccgtaaa aaggccgcgt 4800tgctggcgtt tttccatagg
ctccgccccc ctgacgagca tcacaaaaat cgacgctcaa 4860gtcagaggtg gcgaaacccg
acaggactat aaagatacca ggcgtttccc cctggaagct 4920ccctcgtgcg ctctcctgtt
ccgaccctgc cgcttaccgg atacctgtcc gcctttctcc 4980cttcgggaag cgtggcgctt
tctcatagct cacgctgtag gtatctcagt tcggtgtagg 5040tcgttcgctc caagctgggc
tgtgtgcacg aaccccccgt tcagcccgac cgctgcgcct 5100tatccggtaa ctatcgtctt
gagtccaacc cggtaagaca cgacttatcg ccactggcag 5160cagccactgg taacaggatt
agcagagcga ggtatgtagg cggtgctaca gagttcttga 5220agtggtggcc taactacggc
tacactagaa ggacagtatt tggtatctgc gctctgctga 5280agccagttac cttcggaaaa
agagttggta gctcttgatc cggcaaacaa accaccgctg 5340gtagcggtgg tttttttgtt
tgcaagcagc agattacgcg cagaaaaaaa ggatctcaag 5400aagatccttt gatcttttct
acggggtctg acgctcagtg gaacgaaaac tcacgttaag 5460ggattttggt catgagatta
tcaaaaagga tcttcaccta gatcctttta aattaaaaat 5520gaagttttaa atcaatctaa
agtatatatg agtaaacttg gtctgacagt taccaatgct 5580taatcagtga ggcacctatc
tcagcgatct gtctatttcg ttcatccata gttgcctgac 5640tccccgtcgt gtagataact
acgatacggg agggcttacc atctggcccc agtgctgcaa 5700tgataccgcg agacccacgc
tcaccggctc cagatttatc agcaataaac cagccagccg 5760gaagggccga gcgcagaagt
ggtcctgcaa ctttatccgc ctccatccag tctattaatt 5820gttgccggga agctagagta
agtagttcgc cagttaatag tttgcgcaac gttgttgcca 5880ttgctacagg catcgtggtg
tcacgctcgt cgtttggtat ggcttcattc agctccggtt 5940cccaacgatc aaggcgagtt
acatgatccc ccatgttgtg caaaaaagcg gttagctcct 6000tcggtcctcc gatcgttgtc
agaagtaagt tggccgcagt gttatcactc atggttatgg 6060cagcactgca taattctctt
actgtcatgc catccgtaag atgcttttct gtgactggtg 6120agtactcaac caagtcattc
tgagaatagt gtatgcggcg accgagttgc tcttgcccgg 6180cgtcaatacg ggataatacc
gcgccacata gcagaacttt aaaagtgctc atcattggaa 6240aacgttcttc ggggcgaaaa
ctctcaagga tcttaccgct gttgagatcc agttcgatgt 6300aacccactcg tgcacccaac
tgatcttcag catcttttac tttcaccagc gtttctgggt 6360gagcaaaaac aggaaggcaa
aatgccgcaa aaaagggaat aagggcgaca cggaaatgtt 6420gaatactcat actcttcctt
tttcaatatt attgaagcat ttatcagggt tattgtctca 6480tgagcggata catatttgaa
tgtatttaga aaaataaaca aataggggtt ccgcgcacat 6540ttccccgaaa agtgccacct
gacgcgccct gtagcggcgc attaagcgcg gcgggtgtgg 6600tggttacgcg cagcgtgacc
gctacacttg ccagcgccct agcgcccgct cctttcgctt 6660tcttcccttc ctttctcgcc
acgttcgccg gctttccccg tcaagctcta aatcgggggc 6720tccctttagg gttccgattt
agtgctttac ggcacctcga ccccaaaaaa cttgattagg 6780gtgatggttc acgtagtggg
ccatcgccct gatagacggt ttttcgccct ttgacgttgg 6840agtccacgtt ctttaatagt
ggactcttgt tccaaactgg aacaacactc aaccctatct 6900cggtctattc ttttgattta
taagggattt tgccgatttc ggcctattgg ttaaaaaatg 6960agctgattta acaaaaattt
aacgcgaatt ttaacaaaat attaacgctt acaatttcca 7020ttcgccattc aggctgcgca
actgttggga agggcgatcg gtgcgggcct cttcgctatt 7080acgccagctg gcgaaagggg
gatgtgctgc aaggcgatta agttgggtaa cgccagggtt 7140ttcccagtca cgacgttgta
aaacgacggc cagtgaattg taatacgact cactataggg 7200cgaattgggt accgggcccc
ccctcgaggt cgatggtgtc gataagcttg atatcgaatt 7260catgtcacac aaaccgatct
tcgcctcaag gaaacctaat tctacatccg agagactgcc 7320gagatccagt ctacactgat
taattttcgg gccaataatt taaaaaaatc gtgttatata 7380atattatatg tattatatat
atacatcatg atgatactga cagtcatgtc ccattgctaa 7440atagacagac tccatctgcc
gcctccaact gatgttctca atatttaagg ggtcatctcg 7500cattgtttaa taataaacag
actccatcta ccgcctccaa atgatgttct caaaatatat 7560tgtatgaact tatttttatt
acttagtatt attagacaac ttacttgctt tatgaaaaac 7620acttcctatt taggaaacaa
tttataatgg cagttcgttc atttaacaat ttatgtagaa 7680taaatgttat aaatgcgtat
gggaaatctt aaatatggat agcataaatg atatctgcat 7740tgcctaattc gaaatcaaca
gcaacgaaaa aaatcccttg tacaacataa atagtcatcg 7800agaaatatca actatcaaag
aacagctatt cacacgttac tattgagatt attattggac 7860gagaatcaca cactcaactg
tctttctctc ttctagaaat acaggtacaa gtatgtacta 7920ttctcattgt tcatacttct
agtcatttca tcccacatat tccttggatt tctctccaat 7980gaatgacatt ctatcttgca
aattcaacaa ttataataag atataccaaa gtagcggtat 8040agtggcaatc aaaaagcttc
tctggtgtgc ttctcgtatt tatttttatt ctaatgatcc 8100attaaaggta tatatttatt
tcttgttata taatcctttt gtttattaca tgggctggat 8160acataaaggt attttgattt
aattttttgc ttaaattcaa tcccccctcg ttcagtgtca 8220actgtaatgg taggaaatta
ccatactttt gaagaagcaa aaaaaatgaa agaaaaaaaa 8280aatcgtattt ccaggttaga
cgttccgcag aatctagaat gcggtatgcg gtacattgtt 8340cttcgaacgt aaaagttgcg
ctccctgaga tattgtacat ttttgctttt acaagtacaa 8400gtacatcgta caactatgta
ctactgttga tgcatccaca acagtttgtt ttgttttttt 8460ttgttttttt tttttctaat
gattcattac cgctatgtat acctacttgt acttgtagta 8520agccgggtta ttggcgttca
attaatcata gacttatgaa tctgcacggt gtgcgctgcg 8580agttactttt agcttatgca
tgctacttgg gtgtaatatt gggatctgtt cggaaatcaa 8640cggatgctca atcgatcgcc
agcaacgcgg ccttagacat aaaaaacaaa aaaaaaaagc 8700accgactcgg tgccactttt
tcaagttgat aacggactag ccttatttta acttgctatt 8760tctagctcta aaacgagtaa
cggtaacgac accggacgag cttactcgtt tcgtcctcac 8820ggactcatca gcggtgttac
gcatggttga tgtgtgttta attcaagaat gaatatagag 8880aagagaagaa gaaaaaagat
tcaattgagc cggcgatgca gacccttata taaatgttgc 8940cttggacaga cggagcaagc
ccgcccaaac ctacgttcgg tataatatgt taagcttttt 9000aacacaaagg tttggcttgg
ggtaacctga tgtggtgcaa aagaccgggc gttggcgagc 9060cattgcgcgg gcgaatgggg
tcgtgactcg tctcaaattc gagggcgtgc ctcaattcgt 9120gcccccgtgg ctttttcccg
ccgtttccgc cccgtttgca ccactgcagc cgcttctttg 9180gttcggacac cttgctgcga
gctaggtgcc ttgtgctact taaaaagtgg cctcccaaca 9240ccaacatgac atgagtgcgt
gggccaagac acgttggcgg ggtcgcagtc ggctcaatgg 9300cccggaaaaa acgctgctgg
agctggttcg gacgcagtcc gccgcggcgt atggatatcc 9360gcaaggttcc atagcgccat
tgccctccgt cggcgtctat cccgcaacct taattaagtc 9420atacacaagt cagctttctt
cgagcctcat ataagtataa gtagttcaac gtattagcac 9480tgtacccagc atctccgtat
cgagaaacac aacaacatgc cccattggac agatcatgcg 9540gatacacagg ttgtgcagta
tcatacatac tcgatcagac aggtcgtctg accatcatac 9600aagctgaaca agcgctccat
acttgcacgc tctctatata cacagttaaa ttacatatcc 9660atagtctaac ctctaacagt
taatcttctg gtaagcctcc cagccagcct tctggtatcg 9720cttggcctcc tcaataggat
ctcggttctg gccgtacaga cctcggccga caattatgat 9780atccgttccg gtagacatga
catcctcaac agttcggtac tgctgtccga gagcgtctcc 9840cttgtcgtca agacccaccc
cgggggtcag aataagccag tcctcagagt cgcccttagg 9900tcggttctgg gcaatgaagc
caaccacaaa ctcggggtcg gatcgggcaa gctcaatggt 9960ctgcttggag tactcgccag
tggccagaga gcccttgcaa gacagctcgg ccagcatgag 10020cagacctctg gccagcttct
cgttgggaga ggggactagg aactccttgt actgggagtt 10080ctcgtagtca gagacgtcct
ccttcttctg ttcagagaca gtttcctcgg caccagctcg 10140caggccagca atgattccgg
ttccgggtac accgtgggcg ttggtgatat cggaccactc 10200ggcgattcgg tgacaccggt
actggtgctt gacagtgttg ccaatatctg cgaactttct 10260gtcctcgaac aggaagaaac
cgtgcttaag agcaagttcc ttgaggggga gcacagtgcc 10320ggcgtaggtg aagtcgtcaa
tgatgtcgat atgggttttg atcatgcaca cataaggtcc 10380gaccttatcg gcaagctcaa
tgagctcctt ggtggtggta acatccagag aagcacacag 10440gttggttttc ttggctgcca
cgagcttgag cactcgagcg gcaaaggcgg acttgtggac 10500gttagctcga gcttcgtagg
agggcatttt ggtggtgaag aggagactga aataaattta 10560gtctgcagaa ctttttatcg
gaaccttatc tggggcagtg aagtatatgt tatggtaata 10620gttacgagtt agttgaactt
atagatagac tggactatac ggctatcggt ccaaattaga 10680aagaacgtca atggctctct
gggcgtcgcc tttgccgaca aaaatgtgat catgatgaaa 10740gccagcaatg acgttgcagc
tgatattgtt gtcggccaac cgcgccgaaa acgcagctgt 10800cagacccaca gcctccaacg
aagaatgtat cgtcaaagtg atccaagcac actcatagtt 10860ggagtcgtac tccaaaggcg
gcaatgacga gtcagacaga tactcgtcga cgtttaaacc 10920atcatctaag ggcctcaaaa
ctacctcgga actgctgcgc tgatctggac accacagagg 10980ttccgagcac tttaggttgc
accaaatgtc ccaccaggtg caggcagaaa acgctggaac 11040agcgtgtaca gtttgtctta
acaaaaagtg agggcgctga ggtcgagcag ggtggtgtga 11100cttgttatag cctttagagc
tgcgaaagcg cgtatggatt tggctcatca ggccagattg 11160agggtctgtg gacacatgtc
atgttagtgt acttcaatcg ccccctggat atagccccga 11220caataggccg tggcctcatt
tttttgcctt ccgcacattt ccattgctcg gtacccacac 11280cttgcttctc ctgcacttgc
caaccttaat actggtttac attgaccaac atcttacaag 11340cggggggctt gtctagggta
tatataaaca gtggctctcc caatcggttg ccagtctctt 11400ttttcctttc tttccccaca
gattcgaaat ctaaactaca catcacac 1144815511448DNAArtificial
sequencepRF343 155catggacaag aaatactcca tcggcctggc cattggaacc aactctgtcg
gctgggctgt 60catcaccgac gagtacaagg tgccctccaa gaaattcaag gtcctcggaa
acaccgatcg 120acactccatc aagaaaaacc tcattggtgc cctgttgttc gattctggcg
agactgccga 180agctaccaga ctcaagcgaa ctgctcggcg acgttacacc cgacggaaga
accgaatctg 240ctacctgcag gagatctttt ccaacgagat ggccaaggtg gacgattcgt
tctttcatcg 300actggaggaa tccttcctcg tcgaggaaga caagaaacac gagcgtcatc
ccatctttgg 360caacattgtg gacgaggttg cttaccacga gaagtatcct accatctacc
acctgcgaaa 420gaaactcgtc gattccaccg acaaggcgga tctcagactt atctacctcg
ctctggcaca 480catgatcaag tttcgaggtc atttcctcat cgagggcgat ctcaatcccg
acaacagcga 540tgtggacaag ctgttcattc agctcgttca gacctacaac cagctgttcg
aggaaaaccc 600catcaatgcc tccggagtcg atgcaaaggc catcttgtct gctcgactct
cgaagagcag 660acgactggag aacctcattg cccaacttcc tggcgagaaa aagaacggac
tgtttggcaa 720cctcattgcc ctttctcttg gtctcacacc caacttcaag tccaacttcg
atctggcgga 780ggacgccaag ctccagctgt ccaaggacac ctacgacgat gacctcgaca
acctgcttgc 840acagattggc gatcagtacg ccgacctgtt tctcgctgcc aagaaccttt
cggatgctat 900tctcttgtct gacattctgc gagtcaacac cgagatcaca aaggctcccc
tttctgcctc 960catgatcaag cgatacgacg agcaccatca ggatctcaca ctgctcaagg
ctcttgtccg 1020acagcaactg cccgagaagt acaaggagat ctttttcgat cagtcgaaga
acggctacgc 1080tggatacatc gacggcggag cctctcagga agagttctac aagttcatca
agccaattct 1140cgagaagatg gacggaaccg aggaactgct tgtcaagctc aatcgagagg
atctgcttcg 1200gaagcaacga accttcgaca acggcagcat tcctcatcag atccacctcg
gtgagctgca 1260cgccattctt cgacgtcagg aagacttcta cccctttctc aaggacaacc
gagagaagat 1320cgagaagatt cttacctttc gaatccccta ctatgttggt cctcttgcca
gaggaaactc 1380tcgatttgct tggatgactc gaaagtccga ggaaaccatc actccctgga
acttcgagga 1440agtcgtggac aagggtgcct ctgcacagtc cttcatcgag cgaatgacca
acttcgacaa 1500gaatctgccc aacgagaagg ttcttcccaa gcattcgctg ctctacgagt
actttacagt 1560ctacaacgaa ctcaccaaag tcaagtacgt taccgaggga atgcgaaagc
ctgccttctt 1620gtctggcgaa cagaagaaag ccattgtcga tctcctgttc aagaccaacc
gaaaggtcac 1680tgttaagcag ctcaaggagg actacttcaa gaaaatcgag tgtttcgaca
gcgtcgagat 1740ttccggagtt gaggaccgat tcaacgcctc tttgggcacc tatcacgatc
tgctcaagat 1800tatcaaggac aaggattttc tcgacaacga ggaaaacgag gacattctgg
aggacatcgt 1860gctcactctt accctgttcg aagatcggga gatgatcgag gaacgactca
agacatacgc 1920tcacctgttc gacgacaagg tcatgaaaca actcaagcga cgtagataca
ccggctgggg 1980aagactttcg cgaaagctca tcaacggcat cagagacaag cagtccggaa
agaccattct 2040ggactttctc aagtccgatg gctttgccaa ccgaaacttc atgcagctca
ttcacgacga 2100ttctcttacc ttcaaggagg acatccagaa ggcacaagtg tccggtcagg
gcgacagctt 2160gcacgaacat attgccaacc tggctggttc gccagccatc aagaaaggca
ttctccagac 2220tgtcaaggtt gtcgacgagc tggtgaaggt catgggacgt cacaagcccg
agaacattgt 2280gatcgagatg gccagagaga accagacaac tcaaaagggt cagaaaaact
cgcgagagcg 2340gatgaagcga atcgaggaag gcatcaagga gctgggatcc cagattctca
aggagcatcc 2400cgtcgagaac actcaactgc agaacgagaa gctgtatctc tactatctgc
agaatggtcg 2460agacatgtac gtggatcagg aactggacat caatcgtctc agcgactacg
atgtggacgc 2520cattgtccct caatcctttc tcaaggacga ttctatcgac aacaaggtcc
ttacacgatc 2580cgacaagaac agaggcaagt cggacaacgt tcccagcgaa gaggtggtca
aaaagatgaa 2640gaactactgg cgacagctgc tcaacgccaa gctcattacc cagcgaaagt
tcgacaatct 2700taccaaggcc gagcgaggcg gtctgtccga gctcgacaag gctggcttca
tcaagcgtca 2760actcgtcgag accagacaga tcacaaagca cgtcgcacag attctcgatt
ctcggatgaa 2820caccaagtac gacgagaacg acaagctcat ccgagaggtc aaggtgatta
ctctcaagtc 2880caaactggtc tccgatttcc gaaaggactt tcagttctac aaggtgcgag
agatcaacaa 2940ttaccaccat gcccacgatg cttacctcaa cgccgtcgtt ggcactgcgc
tcatcaagaa 3000ataccccaag ctcgaaagcg agttcgttta cggcgattac aaggtctacg
acgttcgaaa 3060gatgattgcc aagtccgaac aggagattgg caaggctact gccaagtact
tcttttactc 3120caacatcatg aactttttca agaccgagat caccttggcc aacggagaga
ttcgaaagag 3180accacttatc gagaccaacg gcgaaactgg agagatcgtg tgggacaagg
gtcgagactt 3240tgcaaccgtg cgaaaggttc tgtcgatgcc tcaggtcaac atcgtcaaga
aaaccgaggt 3300tcagactggc ggattctcca aggagtcgat tctgcccaag cgaaactccg
acaagctcat 3360cgctcgaaag aaagactggg atcccaagaa atacggtggc ttcgattctc
ctaccgtcgc 3420ctattccgtg cttgtcgttg cgaaggtcga gaagggcaag tccaaaaagc
tcaagtccgt 3480caaggagctg ctcggaatta ccatcatgga gcgatcgagc ttcgagaaga
atcccatcga 3540cttcttggaa gccaagggtt acaaggaggt caagaaagac ctcattatca
agctgcccaa 3600gtactctctg ttcgaactgg agaacggtcg aaagcgtatg ctcgcctccg
ctggcgagct 3660gcagaaggga aacgagcttg ccttgccttc gaagtacgtc aactttctct
atctggcttc 3720tcactacgag aagctcaagg gttctcccga ggacaacgaa cagaagcaac
tcttcgttga 3780gcagcacaaa cattacctcg acgagattat cgagcagatt tccgagtttt
cgaagcgagt 3840catcctggct gatgccaact tggacaaggt gctctctgcc tacaacaagc
atcgggacaa 3900acccattcga gaacaggcgg agaacatcat tcacctgttt actcttacca
acctgggtgc 3960tcctgcagct ttcaagtact tcgataccac tatcgaccga aagcggtaca
catccaccaa 4020ggaggttctc gatgccaccc tgattcacca gtccatcact ggcctgtacg
agacccgaat 4080cgacctgtct cagcttggtg gcgactccag agccgatccc aagaaaaagc
gaaaggtcta 4140agcggccgca agtgtggatg gggaagtgag tgcccggttc tgtgtgcaca
attggcaatc 4200caagatggat ggattcaaca cagggatata gcgagctacg tggtggtgcg
aggatatagc 4260aacggatatt tatgtttgac acttgagaat gtacgataca agcactgtcc
aagtacaata 4320ctaaacatac tgtacatact catactcgta cccgggcaac ggtttcactt
gagtgcagtg 4380gctagtgctc ttactcgtac agtgtgcaat actgcgtatc atagtctttg
atgtatatcg 4440tattcattca tgttagttgc gtacgagccg gaagcataaa gtgtaaagcc
tggggtgcct 4500aatgagtgag ctaactcaca ttaattgcgt tgcgctcact gcccgctttc
cagtcgggaa 4560acctgtcgtg ccagctgcat taatgaatcg gccaacgcgc ggggagaggc
ggtttgcgta 4620ttgggcgctc ttccgcttcc tcgctcactg actcgctgcg ctcggtcgtt
cggctgcggc 4680gagcggtatc agctcactca aaggcggtaa tacggttatc cacagaatca
ggggataacg 4740caggaaagaa catgtgagca aaaggccagc aaaaggccag gaaccgtaaa
aaggccgcgt 4800tgctggcgtt tttccatagg ctccgccccc ctgacgagca tcacaaaaat
cgacgctcaa 4860gtcagaggtg gcgaaacccg acaggactat aaagatacca ggcgtttccc
cctggaagct 4920ccctcgtgcg ctctcctgtt ccgaccctgc cgcttaccgg atacctgtcc
gcctttctcc 4980cttcgggaag cgtggcgctt tctcatagct cacgctgtag gtatctcagt
tcggtgtagg 5040tcgttcgctc caagctgggc tgtgtgcacg aaccccccgt tcagcccgac
cgctgcgcct 5100tatccggtaa ctatcgtctt gagtccaacc cggtaagaca cgacttatcg
ccactggcag 5160cagccactgg taacaggatt agcagagcga ggtatgtagg cggtgctaca
gagttcttga 5220agtggtggcc taactacggc tacactagaa ggacagtatt tggtatctgc
gctctgctga 5280agccagttac cttcggaaaa agagttggta gctcttgatc cggcaaacaa
accaccgctg 5340gtagcggtgg tttttttgtt tgcaagcagc agattacgcg cagaaaaaaa
ggatctcaag 5400aagatccttt gatcttttct acggggtctg acgctcagtg gaacgaaaac
tcacgttaag 5460ggattttggt catgagatta tcaaaaagga tcttcaccta gatcctttta
aattaaaaat 5520gaagttttaa atcaatctaa agtatatatg agtaaacttg gtctgacagt
taccaatgct 5580taatcagtga ggcacctatc tcagcgatct gtctatttcg ttcatccata
gttgcctgac 5640tccccgtcgt gtagataact acgatacggg agggcttacc atctggcccc
agtgctgcaa 5700tgataccgcg agacccacgc tcaccggctc cagatttatc agcaataaac
cagccagccg 5760gaagggccga gcgcagaagt ggtcctgcaa ctttatccgc ctccatccag
tctattaatt 5820gttgccggga agctagagta agtagttcgc cagttaatag tttgcgcaac
gttgttgcca 5880ttgctacagg catcgtggtg tcacgctcgt cgtttggtat ggcttcattc
agctccggtt 5940cccaacgatc aaggcgagtt acatgatccc ccatgttgtg caaaaaagcg
gttagctcct 6000tcggtcctcc gatcgttgtc agaagtaagt tggccgcagt gttatcactc
atggttatgg 6060cagcactgca taattctctt actgtcatgc catccgtaag atgcttttct
gtgactggtg 6120agtactcaac caagtcattc tgagaatagt gtatgcggcg accgagttgc
tcttgcccgg 6180cgtcaatacg ggataatacc gcgccacata gcagaacttt aaaagtgctc
atcattggaa 6240aacgttcttc ggggcgaaaa ctctcaagga tcttaccgct gttgagatcc
agttcgatgt 6300aacccactcg tgcacccaac tgatcttcag catcttttac tttcaccagc
gtttctgggt 6360gagcaaaaac aggaaggcaa aatgccgcaa aaaagggaat aagggcgaca
cggaaatgtt 6420gaatactcat actcttcctt tttcaatatt attgaagcat ttatcagggt
tattgtctca 6480tgagcggata catatttgaa tgtatttaga aaaataaaca aataggggtt
ccgcgcacat 6540ttccccgaaa agtgccacct gacgcgccct gtagcggcgc attaagcgcg
gcgggtgtgg 6600tggttacgcg cagcgtgacc gctacacttg ccagcgccct agcgcccgct
cctttcgctt 6660tcttcccttc ctttctcgcc acgttcgccg gctttccccg tcaagctcta
aatcgggggc 6720tccctttagg gttccgattt agtgctttac ggcacctcga ccccaaaaaa
cttgattagg 6780gtgatggttc acgtagtggg ccatcgccct gatagacggt ttttcgccct
ttgacgttgg 6840agtccacgtt ctttaatagt ggactcttgt tccaaactgg aacaacactc
aaccctatct 6900cggtctattc ttttgattta taagggattt tgccgatttc ggcctattgg
ttaaaaaatg 6960agctgattta acaaaaattt aacgcgaatt ttaacaaaat attaacgctt
acaatttcca 7020ttcgccattc aggctgcgca actgttggga agggcgatcg gtgcgggcct
cttcgctatt 7080acgccagctg gcgaaagggg gatgtgctgc aaggcgatta agttgggtaa
cgccagggtt 7140ttcccagtca cgacgttgta aaacgacggc cagtgaattg taatacgact
cactataggg 7200cgaattgggt accgggcccc ccctcgaggt cgatggtgtc gataagcttg
atatcgaatt 7260catgtcacac aaaccgatct tcgcctcaag gaaacctaat tctacatccg
agagactgcc 7320gagatccagt ctacactgat taattttcgg gccaataatt taaaaaaatc
gtgttatata 7380atattatatg tattatatat atacatcatg atgatactga cagtcatgtc
ccattgctaa 7440atagacagac tccatctgcc gcctccaact gatgttctca atatttaagg
ggtcatctcg 7500cattgtttaa taataaacag actccatcta ccgcctccaa atgatgttct
caaaatatat 7560tgtatgaact tatttttatt acttagtatt attagacaac ttacttgctt
tatgaaaaac 7620acttcctatt taggaaacaa tttataatgg cagttcgttc atttaacaat
ttatgtagaa 7680taaatgttat aaatgcgtat gggaaatctt aaatatggat agcataaatg
atatctgcat 7740tgcctaattc gaaatcaaca gcaacgaaaa aaatcccttg tacaacataa
atagtcatcg 7800agaaatatca actatcaaag aacagctatt cacacgttac tattgagatt
attattggac 7860gagaatcaca cactcaactg tctttctctc ttctagaaat acaggtacaa
gtatgtacta 7920ttctcattgt tcatacttct agtcatttca tcccacatat tccttggatt
tctctccaat 7980gaatgacatt ctatcttgca aattcaacaa ttataataag atataccaaa
gtagcggtat 8040agtggcaatc aaaaagcttc tctggtgtgc ttctcgtatt tatttttatt
ctaatgatcc 8100attaaaggta tatatttatt tcttgttata taatcctttt gtttattaca
tgggctggat 8160acataaaggt attttgattt aattttttgc ttaaattcaa tcccccctcg
ttcagtgtca 8220actgtaatgg taggaaatta ccatactttt gaagaagcaa aaaaaatgaa
agaaaaaaaa 8280aatcgtattt ccaggttaga cgttccgcag aatctagaat gcggtatgcg
gtacattgtt 8340cttcgaacgt aaaagttgcg ctccctgaga tattgtacat ttttgctttt
acaagtacaa 8400gtacatcgta caactatgta ctactgttga tgcatccaca acagtttgtt
ttgttttttt 8460ttgttttttt tttttctaat gattcattac cgctatgtat acctacttgt
acttgtagta 8520agccgggtta ttggcgttca attaatcata gacttatgaa tctgcacggt
gtgcgctgcg 8580agttactttt agcttatgca tgctacttgg gtgtaatatt gggatctgtt
cggaaatcaa 8640cggatgctca atcgatcgcc agcaacgcgg ccttagacat aaaaaacaaa
aaaaaaaagc 8700accgactcgg tgccactttt tcaagttgat aacggactag ccttatttta
acttgctatt 8760tctagctcta aaaccgaagc tgaaggtgac caaggacgag cttactcgtt
tcgtcctcac 8820ggactcatca gcctggttac gcatggttga tgtgtgttta attcaagaat
gaatatagag 8880aagagaagaa gaaaaaagat tcaattgagc cggcgatgca gacccttata
taaatgttgc 8940cttggacaga cggagcaagc ccgcccaaac ctacgttcgg tataatatgt
taagcttttt 9000aacacaaagg tttggcttgg ggtaacctga tgtggtgcaa aagaccgggc
gttggcgagc 9060cattgcgcgg gcgaatgggg tcgtgactcg tctcaaattc gagggcgtgc
ctcaattcgt 9120gcccccgtgg ctttttcccg ccgtttccgc cccgtttgca ccactgcagc
cgcttctttg 9180gttcggacac cttgctgcga gctaggtgcc ttgtgctact taaaaagtgg
cctcccaaca 9240ccaacatgac atgagtgcgt gggccaagac acgttggcgg ggtcgcagtc
ggctcaatgg 9300cccggaaaaa acgctgctgg agctggttcg gacgcagtcc gccgcggcgt
atggatatcc 9360gcaaggttcc atagcgccat tgccctccgt cggcgtctat cccgcaacct
taattaagtc 9420atacacaagt cagctttctt cgagcctcat ataagtataa gtagttcaac
gtattagcac 9480tgtacccagc atctccgtat cgagaaacac aacaacatgc cccattggac
agatcatgcg 9540gatacacagg ttgtgcagta tcatacatac tcgatcagac aggtcgtctg
accatcatac 9600aagctgaaca agcgctccat acttgcacgc tctctatata cacagttaaa
ttacatatcc 9660atagtctaac ctctaacagt taatcttctg gtaagcctcc cagccagcct
tctggtatcg 9720cttggcctcc tcaataggat ctcggttctg gccgtacaga cctcggccga
caattatgat 9780atccgttccg gtagacatga catcctcaac agttcggtac tgctgtccga
gagcgtctcc 9840cttgtcgtca agacccaccc cgggggtcag aataagccag tcctcagagt
cgcccttagg 9900tcggttctgg gcaatgaagc caaccacaaa ctcggggtcg gatcgggcaa
gctcaatggt 9960ctgcttggag tactcgccag tggccagaga gcccttgcaa gacagctcgg
ccagcatgag 10020cagacctctg gccagcttct cgttgggaga ggggactagg aactccttgt
actgggagtt 10080ctcgtagtca gagacgtcct ccttcttctg ttcagagaca gtttcctcgg
caccagctcg 10140caggccagca atgattccgg ttccgggtac accgtgggcg ttggtgatat
cggaccactc 10200ggcgattcgg tgacaccggt actggtgctt gacagtgttg ccaatatctg
cgaactttct 10260gtcctcgaac aggaagaaac cgtgcttaag agcaagttcc ttgaggggga
gcacagtgcc 10320ggcgtaggtg aagtcgtcaa tgatgtcgat atgggttttg atcatgcaca
cataaggtcc 10380gaccttatcg gcaagctcaa tgagctcctt ggtggtggta acatccagag
aagcacacag 10440gttggttttc ttggctgcca cgagcttgag cactcgagcg gcaaaggcgg
acttgtggac 10500gttagctcga gcttcgtagg agggcatttt ggtggtgaag aggagactga
aataaattta 10560gtctgcagaa ctttttatcg gaaccttatc tggggcagtg aagtatatgt
tatggtaata 10620gttacgagtt agttgaactt atagatagac tggactatac ggctatcggt
ccaaattaga 10680aagaacgtca atggctctct gggcgtcgcc tttgccgaca aaaatgtgat
catgatgaaa 10740gccagcaatg acgttgcagc tgatattgtt gtcggccaac cgcgccgaaa
acgcagctgt 10800cagacccaca gcctccaacg aagaatgtat cgtcaaagtg atccaagcac
actcatagtt 10860ggagtcgtac tccaaaggcg gcaatgacga gtcagacaga tactcgtcga
cgtttaaacc 10920atcatctaag ggcctcaaaa ctacctcgga actgctgcgc tgatctggac
accacagagg 10980ttccgagcac tttaggttgc accaaatgtc ccaccaggtg caggcagaaa
acgctggaac 11040agcgtgtaca gtttgtctta acaaaaagtg agggcgctga ggtcgagcag
ggtggtgtga 11100cttgttatag cctttagagc tgcgaaagcg cgtatggatt tggctcatca
ggccagattg 11160agggtctgtg gacacatgtc atgttagtgt acttcaatcg ccccctggat
atagccccga 11220caataggccg tggcctcatt tttttgcctt ccgcacattt ccattgctcg
gtacccacac 11280cttgcttctc ctgcacttgc caaccttaat actggtttac attgaccaac
atcttacaag 11340cggggggctt gtctagggta tatataaaca gtggctctcc caatcggttg
ccagtctctt 11400ttttcctttc tttccccaca gattcgaaat ctaaactaca catcacac
114481563901DNAArtificial sequencepRF80 156agcttgctac
gttaggagaa gacgcacggc gatgatacgg gtacccctca tgacatcaat 60atccgctgcc
cctcttgcca gcaaggcgtc agcaggtgct tttttcgcta ttttcaccag 120accacagcct
ttttccttgt gtctcatctt ggattccttc aaaggcaact caccgcacct 180ccgagtcgtg
tgaacaatgt aataataggc tattgacttt tttcccacct gtttagcgcc 240aaacccaaag
cgcttttcgc ccccactgca gcccgatgga aggcacatat ggcaagggaa 300aagtcttcag
gtaatacatg cctgctgcaa ctatatgtac tctgactcat tccctcagac 360gtgggtcata
gacagctgtt ttaaaccggg caaatcaatc tctgtcgcac aggtatttct 420gcccttcaaa
accaggttgc cacatcagat tccatcaaag tttttcagac taacttcaat 480cttaaacggc
atctcacaac aagcgaattg gacggaaaaa aagcgtctat cattaccggc 540acctatccac
actaagacag tactaaagga cgacgctccc cacgaaacga cgtttcgacc 600ttaacgaccc
tgccgtctcc atccatccga ccactcccga cgctctctcc tggagcaaac 660cactcttacc
aagcatatag catatataat aacgtattga atttattaac tgattgaatt 720gagagtaaag
ccagtagcgt tgtacggctg tagcttttta gaaaagtggc agatgagcga 780tggtggatat
gaaagtacct ttacggcatg tagcgacaca agatcgcttc caagaactcg 840acattcaagc
ccagctcgta caagaaaatg aactagccaa tcatatgaac tagcacattg 900aagtcaccgc
atcatctctg ttggaaacga cgcgcatgta ctcgtgcgta gtaaatccgt 960atctgtacac
tcgaaagatt acagtatgta gtagtagcat gactaacgat gtaacgtcca 1020aataacgctc
tgtgcctact cctgtagatg cattagacca cctgctaacg tctacacgtt 1080atgtccgtta
gctccaagat tgcacttttc cctcaaagac tctgctgggt tacgtcatgg 1140tctctttcgg
gtctctggtc cgttctctgc ccgcccatat ccgcccaggc tgctacgata 1200caggataagc
tcataagctt gcatgcctgc aggtcgactc tagaggatcc ccgggtaccg 1260agctcgaatt
cgtaatcatg gtcatagctg tttcctgtgt gaaattgtta tccgctcaca 1320attccacaca
acatacgagc cggaagcata aagtgtaaag cctggggtgc ctaatgagtg 1380agctaactca
cattaattgc gttgcgctca ctgcccgctt tccagtcggg aaacctgtcg 1440tgccagctgc
attaatgaat cggccaacgc gcggggagag gcggtttgcg tattgggcgc 1500tcttccgctt
cctcgctcac tgactcgctg cgctcggtcg ttcggctgcg gcgagcggta 1560tcagctcact
caaaggcggt aatacggtta tccacagaat caggggataa cgcaggaaag 1620aacatgtgag
caaaaggcca gcaaaaggcc aggaaccgta aaaaggccgc gttgctggcg 1680tttttccata
ggctccgccc ccctgacgag catcacaaaa atcgacgctc aagtcagagg 1740tggcgaaacc
cgacaggact ataaagatac caggcgtttc cccctggaag ctccctcgtg 1800cgctctcctg
ttccgaccct gccgcttacc ggatacctgt ccgcctttct cccttcggga 1860agcgtggcgc
tttctcatag ctcacgctgt aggtatctca gttcggtgta ggtcgttcgc 1920tccaagctgg
gctgtgtgca cgaacccccc gttcagcccg accgctgcgc cttatccggt 1980aactatcgtc
ttgagtccaa cccggtaaga cacgacttat cgccactggc agcagccact 2040ggtaacagga
ttagcagagc gaggtatgta ggcggtgcta cagagttctt gaagtggtgg 2100cctaactacg
gctacactag aaggacagta tttggtatct gcgctctgct gaagccagtt 2160accttcggaa
aaagagttgg tagctcttga tccggcaaac aaaccaccgc tggtagcggt 2220ggtttttttg
tttgcaagca gcagattacg cgcagaaaaa aaggatctca agaagatcct 2280ttgatctttt
ctacggggtc tgacgctcag tggaacgaaa actcacgtta agggattttg 2340gtcatgagat
tatcaaaaag gatcttcacc tagatccttt taaattaaaa atgaagtttt 2400aaatcaatct
aaagtatata tgagtaaact tggtctgaca gttaccaatg cttaatcagt 2460gaggcaccta
tctcagcgat ctgtctattt cgttcatcca tagttgcctg actccccgtc 2520gtgtagataa
ctacgatacg ggagggctta ccatctggcc ccagtgctgc aatgataccg 2580cgagacccac
gctcaccggc tccagattta tcagcaataa accagccagc cggaagggcc 2640gagcgcagaa
gtggtcctgc aactttatcc gcctccatcc agtctattaa ttgttgccgg 2700gaagctagag
taagtagttc gccagttaat agtttgcgca acgttgttgc cattgctaca 2760ggcatcgtgg
tgtcacgctc gtcgtttggt atggcttcat tcagctccgg ttcccaacga 2820tcaaggcgag
ttacatgatc ccccatgttg tgcaaaaaag cggttagctc cttcggtcct 2880ccgatcgttg
tcagaagtaa gttggccgca gtgttatcac tcatggttat ggcagcactg 2940cataattctc
ttactgtcat gccatccgta agatgctttt ctgtgactgg tgagtactca 3000accaagtcat
tctgagaata gtgtatgcgg cgaccgagtt gctcttgccc ggcgtcaata 3060cgggataata
ccgcgccaca tagcagaact ttaaaagtgc tcatcattgg aaaacgttct 3120tcggggcgaa
aactctcaag gatcttaccg ctgttgagat ccagttcgat gtaacccact 3180cgtgcaccca
actgatcttc agcatctttt actttcacca gcgtttctgg gtgagcaaaa 3240acaggaaggc
aaaatgccgc aaaaaaggga ataagggcga cacggaaatg ttgaatactc 3300atactcttcc
tttttcaata ttattgaagc atttatcagg gttattgtct catgagcgga 3360tacatatttg
aatgtattta gaaaaataaa caaatagggg ttccgcgcac atttccccga 3420aaagtgccac
ctgacgtcta agaaaccatt attatcatga cattaaccta taaaaatagg 3480cgtatcacga
ggccctttcg tctcgcgcgt ttcggtgatg acggtgaaaa cctctgacac 3540atgcagctcc
cggagacggt cacagcttgt ctgtaagcgg atgccgggag cagacaagcc 3600cgtcagggcg
cgtcagcggg tgttggcggg tgtcggggct ggcttaacta tgcggcatca 3660gagcagattg
tactgagagt gcaccatatg cggtgtgaaa taccgcacag atgcgtaagg 3720agaaaatacc
gcatcaggcg ccattcgcca ttcaggctgc gcaactgttg ggaagggcga 3780tcggtgcggg
cctcttcgct attacgccag ctggcgaaag ggggatgtgc tgcaaggcga 3840ttaagttggg
taacgccagg gttttcccag tcacgacgtt gtaaaacgac ggccagtgcc 3900a
39011571215DNAArtificial Sequenceshort Can1 deletion editing template
157agcttgctac gttaggagaa gacgcacggc gatgatacgg gtacccctca tgacatcaat
60atccgctgcc cctcttgcca gcaaggcgtc agcaggtgct tttttcgcta ttttcaccag
120accacagcct ttttccttgt gtctcatctt ggattccttc aaaggcaact caccgcacct
180ccgagtcgtg tgaacaatgt aataataggc tattgacttt tttcccacct gtttagcgcc
240aaacccaaag cgcttttcgc ccccactgca gcccgatgga aggcacatat ggcaagggaa
300aagtcttcag gtaatacatg cctgctgcaa ctatatgtac tctgactcat tccctcagac
360gtgggtcata gacagctgtt ttaaaccggg caaatcaatc tctgtcgcac aggtatttct
420gcccttcaaa accaggttgc cacatcagat tccatcaaag tttttcagac taacttcaat
480cttaaacggc atctcacaac aagcgaattg gacggaaaaa aagcgtctat cattaccggc
540acctatccac actaagacag tactaaagga cgacgctccc cacgaaacga cgtttcgacc
600ttaacgaccc tgccgtctcc atccatccga ccactcccga cgctctctcc tggagcaaac
660cactcttacc aagcatatag catatataat aacgtattga atttattaac tgattgaatt
720gagagtaaag ccagtagcgt tgtacggctg tagcttttta gaaaagtggc agatgagcga
780tggtggatat gaaagtacct ttacggcatg tagcgacaca agatcgcttc caagaactcg
840acattcaagc ccagctcgta caagaaaatg aactagccaa tcatatgaac tagcacattg
900aagtcaccgc atcatctctg ttggaaacga cgcgcatgta ctcgtgcgta gtaaatccgt
960atctgtacac tcgaaagatt acagtatgta gtagtagcat gactaacgat gtaacgtcca
1020aataacgctc tgtgcctact cctgtagatg cattagacca cctgctaacg tctacacgtt
1080atgtccgtta gctccaagat tgcacttttc cctcaaagac tctgctgggt tacgtcatgg
1140tctctttcgg gtctctggtc cgttctctgc ccgcccatat ccgcccaggc tgctacgata
1200caggataagc tcata
121515820DNAArtificial sequenceprimer 80F 158agcttgctac gttaggagaa
2015920DNAArtificial
sequenceprimer 80R 159tatgagctta tcctgtatcg
201602125DNAYarrowia
lipolyticamisc_feature(1)..(2125)Can1 locus WT (wild type) 160ggaaggcaca
tatggcaagg gaaaagtctt caggtaatac atgcctgctg caactatatg 60tactctgact
cattccctca gacgtgggtc atagacagct gttttaaacc gggcaaatca 120atctctgtcg
cacaggtatt tctgcccttc aaaaccaggt tgccacatca gattccatca 180aagtttttca
gactaacttc aatcttaaac ggcatctcac aacaagcgaa ttggacggaa 240aaaaagcgtc
tatcattacc ggcacctatc cacactaaga cagtactaaa ggacgacgct 300ccccacgaaa
cgacgtttcg accttaacga ccctgccgtc tccatccatc cgaccacaat 360ggaaaagaca
ttttcaaacg attacccacc ctccgggact gaggcccaca tccacatcaa 420ccacacggcc
cactcggatg actcagagga ggtgccctcg cacaaggaaa attacaacac 480cagtggccac
gacctggagg agtccgaccc ggataaccat gtcggtgaga ccctcgaggt 540caagcgaggt
ctcaagatgc gacacatctc catgatctcg cttggaggaa ccattggtac 600cggtctcttc
attggtaccg gaggagctct ccagcaggcc ggtccctgtg gcgccctcgt 660cgcctacgtg
ttcatggcca ccattgtcta ctctgttgcc gagtctcttg gagaactggc 720tacgtacatt
cccatcaccg gctcctttgc cgtctttact acccgatatc tgtcacagtc 780gtttggtgcc
tccatgggct ggctatactg gttctcgtgg gcgatcacct tcgccatcga 840gctcaacacc
attggtcccg tgattgagta ctggactgac gccgttccta ctgctgcctg 900gattgccatc
ttcttcgtca tcctcactac catcaacttc ttccccgtgg gcttctatgg 960cgaagtcgag
ttctgggtgg cctccgtgaa ggtcattgcc atcattggat ggctcatcta 1020cgcgctctgc
atgacgtgtg gagcaggtgt aacaggtcct gtgggattca gatactggaa 1080ccaccccgga
cccatgggag acggaatctg gaccgacggc gtgcccattg tgcgaaacgc 1140gcccggtcga
cgattcatgg gatggctcaa ttcgctcgtt aacgccgcct tcacctacca 1200gggctgtgag
ctggtcggag tcactgccgg tgaggcccag aaccccagaa agtccgtccc 1260tcgagccatc
aaccgagtct ttgctcgaat ttgcatcttc tacattggct ctatcttctt 1320catgggcatg
ctcgtgccct ttaacgaccc caagctgacc gatgactcct ccgtcatcgc 1380ctcctctcct
tttgttattg ccattatcaa ctctggcacc aaggtgctcc ctcacatttt 1440caacgccgtc
attctcatca ccctgatttc ggcaggaaac tccaacgtct acattggctc 1500gcgagtggtc
tacgccctgg ctgactccgg aaccgcacca aagttcttca agcgaaccac 1560caagaaggga
gtgccgtacg tggcagtctg cttcacctcg gcgtttggtc tgctggcctt 1620catgtctgtg
tccgagtcgt cgtccactgt cttcgactgg ttcatcaaca tctccgctgt 1680ggccggcctc
atctgttggg ccttcatctc tgcctcccac atccgattca tgcaagtgct 1740taagcacaga
gggatctcca gagatacgct gcccttcaag gcacgatggc agccattcta 1800ctcatggtac
gcgctcgtct ccatcatctt catcactctc atccagggct tcacgtcctt 1860ctggcacttt
accgccgcca agttcatgac tgcatacatc tccgtcattg tctgggtcgg 1920tttgtacatt
atcttccagt gtctgttccg atgcaagttc cttatcccta ttgaggatgt 1980ggacattgac
accggccgac gagagattga cgacgatgtg tgggaggaga agatccccac 2040aaagtggtac
gagaagtttt ggaatattat tgcataagaa gatcggggat tcccgacgct 2100ctctcctgga
gcaaaccact cttac
2125161392DNAArtificial sequenceCan1 Locus deletion strain 161ggaaggcaca
tatggcaagg gaaaagtctt caggtaatac atgcctgctg caactatatg 60tactctgact
cattccctca gacgtgggtc atagacagct gttttaaacc gggcaaatca 120atctctgtcg
cacaggtatt tctgcccttc aaaaccaggt tgccacatca gattccatca 180aagtttttca
gactaacttc aatcttaaac ggcatctcac aacaagcgaa ttggacggaa 240aaaaagcgtc
tatcattacc ggcacctatc cacactaaga cagtactaaa ggacgacgct 300ccccacgaaa
cgacgtttcg accttaacga ccctgccgtc tccatccatc cgaccactcc 360cgacgctctc
tcctggagca aaccactctt ac
39216273DNAArtificial sequenceForward Oligonucleotide of Figure 13-B
162catgcgtaaa ctgactgatg agtccgtgag gacgaaacga gtaagctcgt cagtttcagt
60acggttctag ttt
7316375DNAArtificial sequenceReverse Oligonucleotide of Figure 13-B
163tctaaaacta gaaccgtact gaaactgaga cgagcttact cgtttcgtcc tcacggactc
60atcagtcagt ttacg
75164211RNAArtificial Sequencepre-sgRNA URA3.1 (RGR-URA3.1) 164gaacagcuga
ugaguccgug aggacgaaac gaguaagcuc guccuguuca gagacaguuu 60ccuguuuuag
agcuagaaau agcaaguuaa aauaaggcua guccguuauc aacuugaaaa 120aguggcaccg
agucggugcu uuuggccggc auggucccag ccuccucgcu ggcgccggcu 180gggcaacaug
cuucggcaug gcgaauggga c
21116520DNAYarrowia lipolytica 165ctgttcagag acagtttcct
20166211RNAArtificial Sequencepre-sgRNA
URA3.2 (RGR-URA3.2 166auguuacuga ugaguccgug aggacgaaac gaguaagcuc
gucuaacauc cagagaagca 60cacguuuuag agcuagaaau agcaaguuaa aauaaggcua
guccguuauc aacuugaaaa 120aguggcaccg agucggugcu uuuggccggc auggucccag
ccuccucgcu ggcgccggcu 180gggcaacaug cuucggcaug gcgaauggga c
21116720DNAYarrowia lipolytica 167taacatccag
agaagcacac
20168838DNAArtificial SequenceFBA1L promoter 168gtttaaacag tgtacgcagt
actatagagg aacaattgcc ccggagaaga cggccaggcc 60gcctagatga caaattcaac
aactcacagc tgactttctg ccattgccac tagggggggg 120cctttttata tggccaagcc
aagctctcca cgtcggttgg gctgcaccca acaataaatg 180ggtagggttg caccaacaaa
gggatgggat ggggggtaga agatacgagg ataacggggc 240tcaatggcac aaataagaac
gaatactgcc attaagactc gtgatccagc gactgacacc 300attgcatcat ctaagggcct
caaaactacc tcggaactgc tgcgctgatc tggacaccac 360agaggttccg agcactttag
gttgcaccaa atgtcccacc aggtgcaggc agaaaacgct 420ggaacagcgt gtacagtttg
tcttaacaaa aagtgagggc gctgaggtcg agcagggtgg 480tgtgacttgt tatagccttt
agagctgcga aagcgcgtat ggatttggct catcaggcca 540gattgagggt ctgtggacac
atgtcatgtt agtgtacttc aatcgccccc tggatatagc 600cccgacaata ggccgtggcc
tcattttttt gccttccgca catttccatt gctcggtacc 660cacaccttgc ttctcctgca
cttgccaacc ttaatactgg tttacattga ccaacatctt 720acaagcgggg ggcttgtcta
gggtatatat aaacagtggc tctcccaatc ggttgccagt 780ctcttttttc ctttctttcc
ccacagattc gaaatctaaa ctacacatca caccatgg 8381691839DNAArtificial
Sequenceacetohydroxyacid synthase gene 169atggacgagt ccttcatcgg
aatgtctgga ggagagatct tccacgagat gatgctgcga 60cacaacgtcg acactgtctt
cggttacccc ggtggagcca ttctccccgt ctttgacgcc 120attcacaact ctgaatactt
caactttgtg ctccctcgac acgagcaggg tgccggccac 180atggccgagg gctacgctcg
agcctctggt aagcccggtg tcgttctcgt cacctctggc 240cccggtgcca ccaacgtcat
cacccccatg caggacgctc tttccgatgg tacccctatg 300gttgtcttca ccggtcaggt
cctgacctcc gttatcggca ctgacgcctt ccaggaggcc 360gatgttgtcg gcatctcccg
atcttgcacc aagtggaacg tcatggtcaa gaacgttgct 420gagctccccc gacgaatcaa
cgaggccttt gagattgcta cttccggccg acccggtccc 480gttctcgtcg atctgcccaa
ggatgttact gctgccatcc tgcgagagcc catccccacc 540aagtccacca ttccctcgca
ttctctgacc aacctcacct ctgccgccgc caccgagttc 600cagaagcagg ctatccagcg
agccgccaac ctcatcaacc agtccaagaa gcccgtcctt 660tacgtcggac agggtatcct
tggctccgag gagggtccta agctgcttaa ggagctggct 720gagaaggccg agattcccgt
caccactact ctgcagggtc ttggtgcctt tgacgagcga 780gaccccaagt ctctgcacat
gctcggtatg cacggttccg gctacgccaa catggccatg 840cagaacgctg actgtatcat
tgctctcggc gcccgatttg atgaccgagt taccggctcc 900atccccaagt ttgcccccga
ggctcgagcc gctgcccttg agggtcgagg tggtattgtt 960cactttgaga tccaggccaa
gaacatcaac aaggttgttc aggccaccga agccgttgag 1020ggagacgtta ccgagtctgt
ccgacagctc atccccctca tcaacaaggt ctctgccgct 1080gagcgagctc cctggactga
gactatccag tcctggaagc agcagttccc cttcctcttc 1140gaggctgaag gtgaggatgg
tgttatcaag ccccagtccg tcattgctct gctctctgac 1200ctgacagaga acaacaagga
caagaccatc atcaccaccg gtgttggtca gcatcagatg 1260tggactgccc agcatttccg
atggcgacac cctcgaacca tgatcacttc tggtggtctt 1320ggaactatgg gttacggcct
gcccgccgct atcggcgcca aggttgcccg acctgactgc 1380gacgtcattg acattgatgg
tgacgcttct ttcaacatga ctctgaccga gctgtccacc 1440gccgttcagt tcaacattgg
cgtcaaggct attgtcctca acaacgagga acagggtatg 1500gtcacccagc tgcagtctct
cttctacgag aaccgatact gccacactca tcagaagaac 1560cccgacttca tgaagctggc
cgagtcgatg ggcatgaagg gtatccgaat cactcacatt 1620gaccagctgg aggccggtct
caaggagatg ctcgcataca agggccctgt gctcgttgag 1680gttgttgtcg acaagaagat
ccccgttctt cctatggttc ccgctggtaa ggctttgcat 1740gagttccttg tctacgacgc
tgacgccgag gctgcttctc gacccgatcg actgaagaat 1800gcccccgccc ctcacgtcca
ccagaccacc tttgagaac 183917030DNAArtificial
SequenceRHO705 170gtacagacct cggccgacaa ttatgatatc
3017130DNAArtificial SequenceRHO719 171gttccgaggt
agttttgagg cccttagatg
3017230DNAArtificial SequenceRHO733 172gttgggagag gggactagga actccttgta
3017330DNAArtificial SequenceRHO734
173ctacgaagct cgagctaacg tccacaagtc
3017430DNAArtificial SequenceRHO707 174gtcggtggct acaatacgtg agtcagaagg
3017553DNAYarrowia lipolytica
175cgtcctcctt cttctgttca gagacagttt cctcggcacc agctcgcagg cca
5317652DNAArtificial Sequencefragment of Plasmid URA3 from colony 1
176cgtcctcctt cttctgttca gagacagttc ctcggcacca gctcgcaggc ca
5217751DNAArtificial Sequencefragment of Plasmid URA3 from colony 2
177cgtcctcctt cttctgttca gagacagtcc tcggcaccag ctcgcaggcc a
5117852DNAArtificial Sequencefragment of Plasmid URA3 from colony 3
178cgtcctcctt cttctgttca gagacagttc ctcggcacca gctcgcaggc ca
5217952DNAArtificial Sequencefragment of Plasmid URA3 from colony 5
179cgtcctcctt cttctgttca gagacagttc ctcggcacca gctcgcaggc ca
5218052DNAArtificial Sequencefragment of Plasmid URA3 from colony 6
180cgtcctcctt cttctgttca gagacagttc ctcggcacca gctcgcaggc ca
5218139DNAArtificial Sequencefragment of Genomic URA3 from colony
1misc_feature(29)..(29)n is a, c, g, or tmisc_feature(32)..(32)n is a, c,
g, or t 181cgtcctcctt cttctgttca gagacagtnc cncggcccc
3918254DNAArtificial Sequencefragment of Genomic URA3 from colony
2 182cgtcctcctt cttctgttca gagacagttt acctcggcac cagctcgcag gcca
5418344DNAArtificial Sequencefragment of Genomic URA3 from colony 3
183cgtcctcctt cttctgttca gagacagttt cagctcgcag gcca
4418449DNAArtificial Sequencefragment of Genomic URA3 from colony
5misc_feature(23)..(23)n is a, c, g, or tmisc_feature(38)..(38)n is a, c,
g, or t 184cgtcctcctt cttctgttca ganacagttt ggcaccanct cgcaggcca
4918554DNAArtificial Sequencefragment of Genomic URA3 from colony
6 185cgtcctcctt cttctgttca gagacagttt ccctcggcac cagctcgcag gcca
541861029DNAArtificial Sequencehygromycin antibiotic resistant selection
marker 186atggccaaaa agcctgaact caccgcgacg tctgtcgaga agtttctgat
cgaaaagttc 60gacagcgtct ccgacctgat gcagctctcg gagggcgaag aatctcgtgc
tttcagcttc 120gatgtaggag ggcgtggata tgtcctgcgg gtaaatagct gcgccgatgg
tttctacaaa 180gatcgttatg tttatcggca ctttgcatcg gccgcgctcc cgattccgga
agtgcttgac 240attggggagt tcagcgagag cctgacctat tgcatctccc gccgtgcaca
gggtgtcacg 300ttgcaagacc tgcctgaaac cgaactgccc gctgttctgc agccggtcgc
ggaggctatg 360gatgcgatcg ctgcggccga tcttagccag acgagcgggt tcggcccatt
cggaccgcaa 420ggaatcggtc aatacactac atggcgtgat ttcatatgcg cgattgctga
tccccatgtg 480tatcactggc aaactgtgat ggacgacacc gtcagtgcgt ccgtcgcgca
ggctctcgat 540gagctgatgc tttgggccga ggactgcccc gaagtccggc acctcgtgca
cgcggatttc 600ggctccaaca atgtcctgac ggacaatggc cgcataacag cggtcattga
ctggagcgag 660gcgatgttcg gggattccca atacgaggtc gccaacatct tcttctggag
gccgtggttg 720gcttgtatgg agcagcagac gcgctacttc gagcggaggc atccggagct
tgcaggatcg 780ccgcggctcc gggcgtatat gctccgcatt ggtcttgacc aactctatca
gagcttggtt 840gacggcaatt tcgatgatgc agcttgggcg cagggtcgat gcgacgcaat
cgtccgatcc 900ggagccggga ctgtcgggcg tacacaaatc gcccgcagaa gcgcggccgt
ctggaccgat 960ggctgtgtag aagtactcgc cgatagtgga aaccgacgcc ccagcactcg
tccgagggca 1020aaggaatag
1029187565DNAArtificial SequenceTDH1 or GPD promoter
187ggttgcggga tagacgccga cggagggcaa tggcgctatg gaaccttgcg gatatccata
60cgccgcggcg gactgcgtcc gaaccagctc cagcagcgtt ttttccgggc cattgagccg
120actgcgaccc cgccaacgtg tcttggccca cgcactcatg tcatgttggt gttgggaggc
180cactttttaa gtagcacaag gcacctagct cgcagcaagg tgtccgaacc aaagaagcgg
240ctgcagtggt gcaaacgggg cggaaacggc gggaaaaagc cacgggggca cgaattgagg
300cacgccctcg aatttgagac gagtcacggc cccattcgcc cgcgcaatgg ctcgccaacg
360cccggtcttt tgcaccacat caggttaccc caagccaaac ctttgtgtta aaaagcttaa
420catattatac cgaacgtagg tttgggcggg cttgctccgt ctgtccaagg caacatttat
480ataagggtct gcatcgccgg ctcaattgaa tcttttttct tcttctcttc tctatattca
540ttcttgaatt aaacacacat caacc
56518843DNAArtificial SequenceRHO804 188gatcaacgta cgagtgtacg cagtactata
gaggaacaat tgc 4318944DNAArtificial SequenceRHO805
189gatcaacgta cgccccaagc ttgtcccatt cgccatgccg aagc
44190746DNAArtificial SequenceTDH1 promoter-RGR-URA3.3 fusion
190gatcaacgta cgatacgccg cggcggactg cgtccgaacc agctccagca gcgttttttc
60cgggccattg agccgactgc gaccccgcca acgtgtcttg gcccacgcac tcatgtcatg
120ttggtgttgg gaggccactt tttaagtagc acaaggcacc tagctcgcag caaggtgtcc
180gaaccaaaga agcggctgca gtggtgcaaa cggggcggaa acggcgggaa aaagccacgg
240gggcacgaat tgaggcacgc cctcgaattt gagacgagtc acggccccat tcgcccgcgc
300aatggctcgc caacgcccgg tcttttgcac cacatcaggt taccccaagc caaacctttg
360tgttaaaaag cttaacatat tataccgaac gtaggtttgg gcgggcttgc tccgtctgtc
420caaggcaaca tttatataag ggtctgcatc gccggctcaa ttgaatcttt tttcttcttc
480tcttctctat attcattctt gaattaaaca cacatcaaca atgacagttc tgatgagtcc
540gtgaggacga aacgagtaag ctcgtcaact gttagaggtt agactagttt tagagctaga
600aatagcaagt taaaataagg ctagtccgtt atcaacttga aaaagtggca ccgagtcggt
660gcttttggcc ggcatggtcc cagcctcctc gctggcgccg gctgggcaac atgcttcggc
720atggcgaatg ggaccgtacg agtcag
746191211RNAArtificial Sequencepre-sgRNA URA3.3 (RGR-URA3.3)
191acaguucuga ugaguccgug aggacgaaac gaguaagcuc gucaacuguu agagguuaga
60cuaguuuuag agcuagaaau agcaaguuaa aauaaggcua guccguuauc aacuugaaaa
120aguggcaccg agucggugcu uuuggccggc auggucccag ccuccucgcu ggcgccggcu
180gggcaacaug cuucggcaug gcgaauggga c
21119243DNAArtificial SequenceRHO610 192ggcggcttaa ttaagttgcg acacatgtct
tgatagtatc ttg 4319344DNAArtificial SequenceRHO611
193ggcggcttaa ttaacgagta tctgtctgac tcgtcattgc cgcc
4419430DNAArtificial SequenceRHO704 194catatacttc actgccccag ataaggttcc
3019539DNAYarrowia lipolytica
195aaaccaacct gtgtgcttct ctggatgtta ccaccacca
3919624DNAArtificial SequenceFragment of URA3 sequence from colony
3misc_feature(17)..(17)n is a, c, g, or tmisc_feature(19)..(23)n is a, c,
g, or t 196aaaccaacct gtgttgntnn nnng
2419737DNAArtificial SequenceFragment of URA3 sequence from colony
4misc_feature(21)..(21)n is a, c, g, or tmisc_feature(24)..(25)n is a, c,
g, or tmisc_feature(27)..(29)n is a, c, g, or t 197aaaccaacct gtgtgtttct
nggnntnnnc ccccccc 3719839DNAArtificial
SequenceFragment of URA3 sequence from colony 5misc_feature(38)..(39)n is
a, c, g, or t 198aaaccaacct gtgtgtgtct ctggatgtta ccaccacnn
3919928DNAArtificial SequenceFragment of URA3 sequence from
colony 6misc_feature(21)..(22)n is a, c, g, or tmisc_feature(25)..(27)n
is a, c, g, or t 199aaaccaacct gtgtgttttc nnggnnnt
2820029DNAArtificial SequenceFragment of URA3 sequence
from colony 9 200aaaccaacct gtgttgcttc tctggatgt
2920139DNAArtificial SequenceFragment of URA3 sequence from
colony 10misc_feature(14)..(15)n is a, c, g, or tmisc_feature(19)..(22)n
is a, c, g, or tmisc_feature(24)..(27)n is a, c, g, or
tmisc_feature(29)..(29)n is a, c, g, or tmisc_feature(32)..(32)n is a, c,
g, or tmisc_feature(38)..(38)n is a, c, g, or t 201aaaccaacct gtgnnttcnn
nngnnnntnc cncccccna 39202351DNAYarrowia
lipolytica 202aaaccaacct gtgtgcttct ctggatgtta ccaccaccaa ggagctcatt
gagcttgccg 60ataaggtcgg accttatgtg tgcatgatca agacccatat cgacatcatt
gacgacttca 120cctacgccgg cactgtgctc cccctcaagg agcttgctct taagcacggt
ttcttcctgt 180tcgaggacag aaagttcgca gatattggca acactgtcaa gcaccagtac
aagaacggtg 240tctaccgaat cgccgagtgg tccgatatca ccaacgccca cggtgtaccc
ggagccggaa 300tcattgctgg cctgcgagct ggtgccgagg aaactgtctc tgaacagaag a
35120334DNAArtificial SequenceFragment of URA3 sequence from
colony 23 203aaaccaacct gtgaaactgt ctctgaacag aaga
3420434DNAArtificial SequenceFragment of URA3 sequence from
colony 24 204aaaccaacct gtgaaactgt ctctgaacag aaga
34205803DNAYarrowia lypolitica 205aaaccaacct gtgtgcttct
ctggatgtta ccaccaccaa ggagctcatt gagcttgccg 60ataaggtcgg accttatgtg
tgcatgatca agacccatat cgacatcatt gacgacttca 120cctacgccgg cactgtgctc
cccctcaagg agcttgctct taagcacggt ttcttcctgt 180tcgaggacag aaagttcgca
gatattggca acactgtcaa gcaccagtac aagaacggtg 240tctaccgaat cgccgagtgg
tccgatatca ccaacgccca cggtgtaccc ggagccggaa 300tcattgctgg cctgcgagct
ggtgccgagg aaactgtctc tgaacagaag aaggaggacg 360tctctgacta cgagaactcc
cagtacaagg agttcctggt cccctctccc aacgagaagc 420tggccagagg tctgctcatg
ctggccgagc tgtcttgcaa gggctctctg gccactggcg 480agtactccaa gcagaccatt
gagcttgccc gatccgaccc cgagtttgtg gttggcttca 540ttgcccagaa ccgacctaag
ggcgactctg aggactggct tattctgacc cccggggtgg 600gtcttgacga caagggagac
gctctcggac agcagtaccg aactgttgag gatgtcatgt 660ctaccggaac ggatatcata
attgtcggcc gaggtctgta cggccagaac cgagatccta 720ttgaggaggc caagcgatac
cagaaggctg gctgggaggc ttaccagaag attaactgtt 780agaggttaga ctatggatat
gta 80320627DNAArtificial
SequenceFragment of URA3 sequence from colony 27 206aaaccaacct gtgtctatgg
atatgta 2720721DNAArtificial
SequenceFragment of URA3 sequence from colony 36 207aaaccaacct gtggatatgt
a 212081346DNAArtificial
SequenceARS18 sequence 208aattcatgtc acacaaaccg atcttcgcct caaggaaacc
taattctaca tccgagagac 60tgccgagatc cagtctacac tgattaattt tcgggccaat
aatttaaaaa aatcgtgtta 120tataatatta tatgtattat atatatacat catgatgata
ctgacagtca tgtcccattg 180ctaaatagac agactccatc tgccgcctcc aactgatgtt
ctcaatattt aaggggtcat 240ctcgcattgt ttaataataa acagactcca tctaccgcct
ccaaatgatg ttctcaaaat 300atattgtatg aacttatttt tattacttag tattattaga
caacttactt gctttatgaa 360aaacacttcc tatttaggaa acaatttata atggcagttc
gttcatttaa caatttatgt 420agaataaatg ttataaatgc gtatgggaaa tcttaaatat
ggatagcata aatgatatct 480gcattgccta attcgaaatc aacagcaacg aaaaaaatcc
cttgtacaac ataaatagtc 540atcgagaaat atcaactatc aaagaacagc tattcacacg
ttactattga gattattatt 600ggacgagaat cacacactca actgtctttc tctcttctag
aaatacaggt acaagtatgt 660actattctca ttgttcatac ttctagtcat ttcatcccac
atattccttg gatttctctc 720caatgaatga cattctatct tgcaaattca acaattataa
taagatatac caaagtagcg 780gtatagtggc aatcaaaaag cttctctggt gtgcttctcg
tatttatttt tattctaatg 840atccattaaa ggtatatatt tatttcttgt tatataatcc
ttttgtttat tacatgggct 900ggatacataa aggtattttg atttaatttt ttgcttaaat
tcaatccccc ctcgttcagt 960gtcaactgta atggtaggaa attaccatac ttttgaagaa
gcaaaaaaaa tgaaagaaaa 1020aaaaaatcgt atttccaggt tagacgttcc gcagaatcta
gaatgcggta tgcggtacat 1080tgttcttcga acgtaaaagt tgcgctccct gagatattgt
acatttttgc ttttacaagt 1140acaagtacat cgtacaacta tgtactactg ttgatgcatc
cacaacagtt tgttttgttt 1200ttttttgttt tttttttttc taatgattca ttaccgctat
gtatacctac ttgtacttgt 1260agtaagccgg gttattggcg ttcaattaat catagactta
tgaatctgca cggtgtgcgc 1320tgcgagttac ttttagctta tgcatg
1346209564DNAArtificial SequenceYarrowia codon
optimized P. aeruginosa Csy4 209atggaccact acctggatat cagactccga
cccgacccag agttccctcc tgcccagctc 60atgtccgtct tgtttggcaa gctgcaccaa
gctctcgtgg cccagggtgg agaccgaatt 120ggcgtgtcgt tccccgattt ggacgagtcc
cgttctcgac ttggagaaag actccgtatt 180catgcttctg cagacgatct cagagctctg
cttgcccgac cctggctgga gggtctccga 240gatcatctgc agttcggcga gcctgccgtg
gttccccatc ctaccccata ccgacaggtg 300tctcgggttc aggccaaaag caaccccgag
cgactcagac ggcgtcttat gcgaagacac 360gacctgtccg aggaggaagc ccgaaagcgg
atccccgaca ccgttgctcg agcgttggac 420cttcctttcg tcacactgcg atctcaatcg
actggtcagc actttcgact gttcatcaga 480cacggacccc tgcaggtcac cgcagaggaa
ggcggtttta cttgctatgg actgtccaag 540ggtggctttg tcccctggtt ctaa
564210530DNAArtificial SequenceYarrowia
FBA1 promoter 210catcatctaa gggcctcaaa actacctcgg aactgctgcg ctgatctgga
caccacagag 60gttccgagca ctttaggttg caccaaatgt cccaccaggt gcaggcagaa
aacgctggaa 120cagcgtgtac agtttgtctt aacaaaaagt gagggcgctg aggtcgagca
gggtggtgtg 180acttgttata gcctttagag ctgcgaaagc gcgtatggat ttggctcatc
aggccagatt 240gagggtctgt ggacacatgt catgttagtg tacttcaatc gccccctgga
tatagccccg 300acaataggcc gtggcctcat ttttttgcct tccgcacatt tccattgctc
ggtacccaca 360ccttgcttct cctgcacttg ccaaccttaa tactggttta cattgaccaa
catcttacaa 420gcggggggct tgtctagggt atatataaac agtggctctc ccaatcggtt
gccagtctct 480tttttccttt ctttccccac agattcgaaa tctaaactac acatcacacc
530211659DNAArtificial SequenceTDH128bp-gCAN1-28bp
211cggcggactg cgtccgaacc agctccagca gcgttttttc cgggccattg agccgactgc
60gaccccgcca acgtgtcttg gcccacgcac tcatgtcatg ttggtgttgg gaggccactt
120tttaagtagc acaaggcacc tagctcgcag caaggtgtcc gaaccaaaga agcggctgca
180gtggtgcaaa cggggcggaa acggcgggaa aaagccacgg gggcacgaat tgaggcacgc
240cctcgaattt gagacgagtc acggccccat tcgcccgcgc aatggctcgc caacgcccgg
300tcttttgcac cacatcaggt taccccaagc caaacctttg tgttaaaaag cttaacatat
360tataccgaac gtaggtttgg gcgggcttgc tccgtctgtc caaggcaaca tttatataag
420ggtctgcatc gccggctcaa ttgaatcttt tttcttcttc tcttctctat attcattctt
480gaattaaaca cacatcaaca atggttcact gccgtatagg cagctaagaa atcaaacgat
540tacccaccct cgttttagag ctagaaatag caagttaaaa taaggctagt ccgttatcaa
600cttgaaaaag tggcaccgag tcggtgcttt tgttcactgc cgtataggca gctaagaaa
65921228RNAP. aeruginosa 212guucacugcc guauaggcag cuaagaaa
28213156RNAArtificial SequenceCsy4 recognition
sequence flanked sgRNA 213guucacugcc guauaggcag cuaagaaauc aaacgauuac
ccacccucgu uuuagagcua 60gaaauagcaa guuaaaauaa ggcuaguccg uuaucaacuu
gaaaaagugg caccgagucg 120gugcuuuugu ucacugccgu auaggcagcu aagaaa
15621423DNAYarrowia lipolytica 214tcaaacgatt
acccaccctc cgg
2321545DNAYarrowia lipolytica 215gaaaagacat tttcaaacga ttacccaccc
tccgggactg aggcc 4521644DNAArtificial
Sequencefragment of CAN1 from colony 14 216gaaaagacat tttcaaacga
ttacccacct ccgggactga ggcc 4421744DNAArtificial
Sequencefragment of CAN1 from colony 16 217gaaaagacat tttcaaacga
ttacccacct ccgggactga ggcc 4421844DNAArtificial
Sequencefragment of CAN1 from colony 18 218gaaaagacat tttcaaacga
ttacccacct ccgggactga ggcc 4421944DNAArtificial
Sequencefragment of CAN1 from colony 19 219gaaaagacat tttcaaacga
ttacccacct ccgggactga ggcc 4422044DNAArtificial
Sequencefragment of CAN1 from colony 24 220gaaaagacat tttcaaacga
ttacccacct ccgggactga ggcc 4422144DNAArtificial
Sequencefragment of CAN1 from colony 25 221gaaaagacat tttcaaacga
ttacccacct ccgggactga ggcc 44222128RNAArtificial
SequencegRNA processed by Csy4 222cuaagaaauc aaacgauuac ccacccucgu
uuuagagcua gaaauagcaa guuaaaauaa 60ggcuaguccg uuaucaacuu gaaaaagugg
caccgagucg gugcuuuugu ucacugccgu 120auaggcag
1282238RNAArtificial
Sequence5'-flanking sequence after Csy4 cleavage 223cuaagaaa
822420RNAArtificial
Sequence3'-flanking sequence after Csy4 cleavage 224guucacugcc guauaggcag
20
User Contributions:
Comment about this patent or add new information about this topic: