Patent application title: IMPROVED MUCONIC ACID PRODUCTION FROM GENETICALLY ENGINEERED MICROORGANISMS
Inventors:
IPC8 Class: AC12P746FI
USPC Class:
1 1
Class name:
Publication date: 2020-06-11
Patent application number: 20200181658
Abstract:
The subject of this invention is improvements in the yield and titer of
biological production of muconic acid by fermentation. Increased activity
of one or more enzymes involved in the muconic acid pathway leads to
increased production of muconic acid.Claims:
1-30. (canceled)
31. A genetically engineered microorganism that produces muconic acid from a non-aromatic carbon source comprising at least one exogenous gene encoding for 3,4-dihydroxybenzoic acid decarboxylase and at least one gene that codes for a protein that increases the activity of said 3,4-dihydroxybenzoic acid decarboxylase.
32. The genetically engineered microorganism of claim 31, wherein said genetically engineered microorganism produces at least 60 g/L of muconic acid in 72 hours.
33. The genetically engineered microorganism of claim 31, wherein said genetically engineered microorganism is a bacterium.
34. The genetically engineered microorganism of claim 31, wherein said genetically engineered microorganism is Escherichia coli.
35. The genetically engineered microorganism of claim 31, wherein said protein that increases the activity of said 3,4-dihydroxybenzoic acid decarboxylase is a KpdB protein encoded by a kpdB gene or a homolog thereof, and wherein said KpdB protein or homolog thereof has at least 25% amino acid identity to said KpdB protein.
36. The genetically engineered microorganism of claim 31, wherein said protein that increases the activity of said 3,4-dihydroxybenzoic acid decarboxylase is a UbiX protein encoded by a ubiX gene or a homolog thereof, and wherein said UbiX protein or homolog thereof has at least 25% amino acid identity to said UbiX protein.
37. The genetically engineered microorganism of claim 31, further comprising one or more exogenous genes selected from the group consisting of aroZ, qa-4, asbF, quiC and catAX.
38. The genetically engineered microorganism of claim 31, further comprising one or more exogenous genes selected from the group consisting of aroB, aroD, aroF, aroG, aroH, tktA, talB, rpe, and rpi, wherein said one or more exogenous genes encode one or more proteins that function in a shikimic acid pathway.
39. The genetically engineered microorganism of claim 31, further comprising at least one exogenous gene encoding a pyruvate carboxylase and a mutation of the phosphoenol pyruvate carboxylase gene.
40. A genetically engineered Escherichia coli strain that produces muconic acid from a non-aromatic carbon source comprising at least one exogenous gene encoding for 3,4-dihydroxybenzoic acid decarboxylase and at least one gene that codes for a protein that increases the activity of said 3,4-dihydroxybenzoic acid decarboxylase, wherein said genetically engineered Escherichia coli strain produces at least 60 g/L of muconic acid in 72 hours.
41. A genetically engineered Escherichia coli strain that produces muconic acid from a non-aromatic carbon source comprising at least one exogenous gene encoding for 3,4-dihydroxybenzoic acid decarboxylase and at least one gene that codes for a protein that increases the activity of said 3,4-dihydroxybenzoic acid decarboxylase, wherein said genetically engineered Escherichia coli strain produces at least 80 g/L of muconic acid in 72 hours.
42. The genetically engineered Escherichia coli strain of claim 40, wherein said protein that increases the activity of said 3,4-dihydroxybenzoic acid decarboxylase is a KpdB protein encoded by a kpdB gene or a homolog thereof, and wherein said KpdB protein or homolog thereof has at least 25% amino acid identity to said KpdB protein.
43. The genetically engineered Escherichia coli strain of claim 40, wherein said protein that increases the activity of said 3,4-dihydroxybenzoic acid decarboxylase is a UbiX protein encoded by a ubiX gene or a homolog thereof, and wherein said UbiX protein or homolog thereof has at least 25% amino acid identity to said UbiX protein.
44. The genetically engineered Escherichia coli strain of claim 40, further comprising one or more exogenous genes selected from the group consisting of aroZ, qa-4, asbF, quiC and catAX.
45. The genetically engineered Escherichia coli strain of claim 40, further comprising at least one exogenous gene encoding a pyruvate carboxylase and a mutation of the phosphoenol pyruvate carboxylase gene.
Description:
CROSS-REFERENCE TO RELATED APPLICATIONS
[0001] This application is the U.S. national stage application of International Application No. PCT/US2017/020263 filed Mar. 1, 2017, which claims priority to U.S. Provisional Patent Application No. 62/302,558 filed Mar. 2, 2016.
REFERENCE TO SEQUENCE LISTING
[0002] This application contains a Sequence Listing which has been submitted electronically in ASCII format and is hereby incorporated by reference in its entirety. Said ASCII copy, created on Feb. 20, 2020, is named 524823US_ST25.txt and is 344 kb in size.
FIELD OF THE INVENTION
[0003] The present invention is in the field of producing renewable chemical feedstocks using biocatalysts that have been genetically engineered in the central aromatic biosynthetic pathway. More specifically, the present invention provides processes for improving the production of muconic acid :from renewable carbon resources using genetically modified biocatalysts.
BACKGROUND OF THE INVENTION
[0004] Adipic acid is a major commodity chemical and is used in the production of nylon 6,6 and polyurethanes. Adipic acid is currently derived from petrochemical feedstocks. Current synthesis of adipic acid is environmentally harmful releasing nitrous acid (Xie et al., 2014). Alternatively, adipic acid can be made from any of the three isomers of muconic acid (cis, cis; cis, trans; trans, trans isomers) by chemical hydrogenation. It would be desirable to produce muconic acid from renewable resources by fermentation with a microorganism, followed by hydrogenation process to yield adipic acid, since such a route to adipic acid would be more environmentally friendly than the traditional petrochemical route (Niu, Draths and Frost, 2002; Frost and Draths, 1997). Many other chemicals can be made by chemical conversion of one or more muconic acid isomers, including, but not limited to 1.6 hexane diol, 3-hexenedicarboxylic acid, 1,6-hexanediamine, and terephthalic acid.
[0005] The international patent application publication No. WO 2011/017560 claims biocatalysts having a muconate pathway and a method for producing muconic acid using these biocatalysts. In brief, this published patent application discloses four different pathways for producing muconic acid. The first pathway for muconic acid production starts with succinyl-CoA and acetyl-CoA. The second pathway for muconic acid production begins with pyruvate and malonate semialdehyde. The third pathway for muconic acid production starts with pyruvate and succinic semialdehyde. The fourth pathway for muconic acid production starts with lysine. All these pathways for muconic acid production proposed in this patent application are based on computer modeling and it is yet to be seen whether such biocatalysts can ever be created with commercially acceptable productivity and yield for muconic acid.
[0006] A fermentation route to produce cis, cis-muconic acid using a genetically engineered E. coli system has been described in the scientific literature (Niu et al., 2002; Frost and Draths, 1997) and in patent literature (U.S. Pat. Nos. 5,487,987; 5,616,496; WO 2011/085311 A1). However, the prior art process for muconic acid production suffered from significant drawbacks such as expensive medium components (aromatic amino acids and vitamins) and chemical inducers, as well as yields lower than required for industrial production. A recent United States Patent Application Publication No. US2015/0044755, which is incorporated herein by reference in its entirety, provides improved biocatalysts for muconic acid production involving constitutive expression of relevant gene, improved heterologous genes and novel "leaky" AroE enzymes. The present invention provides further improvements in the muconic acid biocatalysts described in the United States Patent Application Publication No. US2015/0044755.
SUMMARY OF THE INVENTION
[0007] This present invention provides genetically engineered microorganisms that produce cis, cis-muconic acid starting from non-aromatic carbon sources, such as sugars and carbohydrates including, but not limited to glucose, sucrose, glycerol and cellulosic hydrolysate.
[0008] In one embodiment of the present invention, the activity of a negative regulator of aromatic amino acid biosynthesis is genetically manipulated. In one aspect of the present invention, the activity of the negative regulator TyrR is substantially reduced by means of controlling the expression of the tyrR gene coding for the TyrR protein. In another aspect of the present invention, the activity of the negative regulator TyrR is totally eliminated by means of deleting or inactivating the tyrR gene in the chromosomal DNA of the microorganism.
[0009] In another embodiment of the present invention, the feedback inhibition of certain enzymes in the aromatic amino acid pathway by certain metabolites is overcome through genetic manipulations. In most wild type E. coli strains, deoxyarabino-heptulosonate 7-phosphate synthase ("DAHP synthase") functioning at the beginning of the aromatic amino acid pathway occurs as three different isozymes which are known to be encoded by three different genes namely aroG, aroF and aroH. The proteins encoded by each of these three genes are subjected to feedback inhibition by one or more metabolites of aromatic amino acid pathway. In one aspect of the present invention, the wild type aroG gene is replaced by a modified aroG gene which codes for an AroG protein that is resistant to feedback inhibition by one or more metabolites of the aromatic amino acid pathway within the microbial cell. Such a feedback resistant form of AroG protein is referred as "AroG.sup.FBR". In another aspect of the present invention, the wild type aroF gene is replaced by an aroF gene which codes for an AroF protein that is resistant to feedback inhibition by one or more metabolites of the aromatic amino acid pathway within the microbial cell (AroF.sup.FBR). In yet another aspect of the present invention, the wild type aroH gene is replaced by an aroH gene which codes for an AroH protein that is resistant to feedback inhibition by one or more metabolites of the aromatic amino acid pathway within the microbial cell (AroH.sup.FBR). In yet another aspect of the present invention the biocatalyst selected for the commercial production of cis, cis-muconic acid may have more than one feedback resistant isozyme for DAHP synthase.
[0010] In another embodiment of the present invention, the activity of one or more of the enzymes involved in the central aromatic biosynthetic pathway within the microbial cell is enhanced. In one aspect of the present invention, the enhancement of the activity of one or more enzymes involved in the operation of an aromatic pathway and/or a muconic acid pathway is accomplished through genetic manipulation. In a preferred aspect of the present invention, the expression of one or more of the genes coding for the proteins AroF, AroG, AroH, AroB, TktA, TalB, AroZ, QutC, Qa-4, AsbF, QuiC, AroY, Rpe, Rpi, Pps, CatA and CatX or their homologs or analogs are enhanced leading to the increased activity of said proteins. Rpe is a ribulose-5-phosphate epimerase, Rpi is a ribulose-5-phosphate isomerase, and Pps is a phosphoenol pyruvate synthetase (Neidhardt and Curtiss, 1996). If the host strain is yeast, for example Saccharomyces cerevisiae, or a filamentous fungus, for example, Neurospora crassa, several of the enzymes that catalyze reactions in the shikimate pathway can be combined into one large protein or polypeptide, called Aro1p, encoded by the ARO1 gene in the case of S. cerevisiae. Aro1p combines the functions of AroB, AroD, AroE, AroK (or AroL), and AroA). As such, for the purposes of this invention, Aro1p, and ARO1, or a portion thereof, can be used as a substitute, or in addition to, AroB, AroD, AroE, AroK, and/or AroA.
[0011] In yet another embodiment of the present invention, flux through erythrose-4-phosphate within the bacterial cell is enhanced by means of overexpressing enzymes in the operation of the pentose phosphate pathway. In one aspect of the present invention, the expression of transaldolase enzyme, for example one coded by the talB or talA gene is enhanced by genetic modification. In another aspect of the present invention, the expression of a gene encoding transketolase enzyme, for example, the tktA gene is enhanced by genetic manipulations. In yet another aspect of the present invention, the expression of the genes encoding either or both ribulose-5-phosphate epimerase and ribulose-5-phosphate isomerase are enhanced by genetic manipulations.
[0012] In another embodiment of the present invention, the pool of the phosphoenol pyruvate (PEP) necessary for the functioning of the aromatic amino acid pathway is increased through genetic manipulation. In one aspect of the present invention, competition for the use of PEP pool is decreased through elimination and/or complementation of a PEP-dependent phosphotransferase system (PTS) for glucose uptake with a PEP independent system for glucose uptake. In another aspect of the present invention, the GalP based sugar uptake system is inactivated for the purpose of conserving ATP within the microbial cells. In yet another aspect of the present invention, in the microbial cells defective in the functioning of both PTS system and GalP based sugar uptake system (.DELTA.PTS/.DELTA.galP), the sugar uptake is accomplished by means of introducing an exogenous gene encoding for Glf (protein facilitating the glucose diffusion), or exogenous genes encoding for both Glf and Glk (glucokinase) proteins. In yet another embodiment of the present invention, the availability of PEP is increased by increasing the expression of a gene that encodes a PEP synthetase, such as pps.
[0013] In yet another embodiment of the present invention, the activity of 3,4-dihydroxybenzoic acid decarboxylase (AroY) is enhanced. In one aspect of this embodiment, the expression of AroY is enhanced by genetic manipulation. In another aspect of the present invention, the expression of a protein acting as an accessory protein to AroY, selected from a group comprising UbiX, KpdB, Elw, Kox, Lpl and homologs thereof, is increased by genetic manipulation leading to an increase in 3,4-dihydroxybenzoic acid decarboxylase activity.
[0014] In another embodiment of the present invention, PEP availability is increased by the reduction or elimination of phosphoenolpyruvate carboxylase (Ppc) activity. In one aspect of the present invention, pyruvate carboxylase (Pyc) activity is increased and/or substituted for Ppc activity, particularly when Ppc activity is eliminated.
BRIEF DESCRIPTION OF THE DRAWINGS
[0015] FIG. 1. Pathway for aromatic amino acid biosynthesis in E. coli.
[0016] FIG. 2. Pathway for muconic acid biosynthesis in E. coil.
[0017] FIG. 3. Reaction steps in the conversion of 3-deoxy-arabino-heptulonate 7-phosphate (DHAP) to muconic acid.
[0018] FIG. 4. Chromatograph showing standards used for HPLC analysis of total muconic acid and biochemical intermediates.
[0019] FIG. 5. Chromatograph showing standards used for HPLC analysis of muconic acid isomers.
[0020] FIG. 6. Titer for the production of DHS in the E. coli strain MYR34 transformed with plasmids pCP32AMP, pCP14 and pCP54. MYR34 strain of E. coli has a deletion in aroE gene. The plasmid pCP32AMP expresses the aroG gene coding for DAHP synthase. The plasmid pCP14 expresses the aroB gene coding for DHQ synthase. The plasmid pCP54 expresses both the aroB and aroG genes.
[0021] FIG. 7. Titer for the production of DHS in the E. coil strains MYR34 and MYR170 transformed with plasmids pCP32AMP and pCP54. The MYR34 strain of E. coli has a deletion of the aroE gene. The MYR170 strain has a deletion of the aroE gene and a second copy of the aroB gene under the control of P.sub.15 promoter integrated at the ack locus of the host chromosomal DNA. The plasmid pCP32AMP expresses the aroG gene coding for DAHP synthase. The plasmid pCP54 expresses both aroB and aroG genes.
[0022] FIG. 8. Titer for the production of cis, cis-muconic acid in the E. coli strains MYR34 and MYR170 transformed with plasmid pMG37 alone or with both pMG37 and pCP32AMP plasmids. The MYR34 strain of E. coil has a deletion of the aroE gene. The MYR170 strain has a deletion of the aroE gene and a second copy of the aroB gene under the control of P.sub.15 promoter integrated at the ack locus of the host chromosomal DNA. The plasmid pCP32AMP expresses the aroG gene coding for DAHP synthase. The plasmid pMG37 expresses the aroZ, aroY, and catAX, genes coding for proteins functional in the muconic acid pathway.
[0023] FIG. 9. Titer for the production of DHS in MYR170 strain of E. coli transformed with a plasmid expressing aroG gene alone (pCP32AMP) or aroG and tktA genes simultaneously (pCP50). The MYR170 strain has a deletion of the aroE gene and a second copy of the aroB gene under the control of the P.sub.15 promoter integrated at the ack locus of the host chromosomal DNA.
[0024] FIG. 10. DHS yield from MYR34 and MYR170 stains of E. coli transformed with plasmids pCP32AMP and pCP50. DHS yield is calculated as grams of DHS produced per gram of glucose consumed. The plasmid pCP32AMP expresses the aroG gene while pCP50 expresses aroG and tktA. The bacterial strain MYR34 has a deletion in the aroE gene. The MYR170 strain of E. coil is derived from MYR34 and has an additional aroB gene integrated at the ack locus on the chromosomal DNA.
[0025] FIG. 11. DHS titer from MYR170 and MYR261 stains of E. coli transformed with plasmids pCP32AMP and pCP50. The plasmid pCP32AMP expresses the aroG gene while pCP50 expresses the aroB and tktA genes. The MYR170 strain has a deletion of the aroE gene and a second copy of the aroB gene under the control of P.sub.15 promoter integrated at the ack locus of the host chromosomal DNA. MYR261 strain of E. coli is derived from the MYR170 strain of E. coli. MYR261 strain of E. coli has a second copy of the tktA gene with its native promoter integrated at the poxB locus of the chromosomal DNA.
[0026] FIG. 12. Muconic acid and acetic acid production in the E. coli strains MYR170, MYR261 and MYR305 transformed with the plasmid pCP32AMP expressing aroG coding for DAHP synthase in the shikimic acid biosynthetic pathway and plasmid pMG37 expressing aroZ, aroY and catAX genes coding for proteins functional in the muconic acid pathway. MYR170 strain has a deletion in the aroE gene and an additional copy of aroB gene under the control of the P.sub.15 promoter inserted at ack locus in the host chromosomal DNA. MYR261 and MYR305 are derivatives of MYR170 strain. MYR261 has an additional copy of tktA gene integrated at poxB locus on the host chromosomal DNA while MYR305 has a deletion in the poxB locus on the host chromosomal DNA.
[0027] FIG. 13. Conversion of endogenous DHS produced by E. coli strain MYR34 into muconic acid. Strain MYR34 of E. coli has a deletion in the aroE gene coding of shikimate dehydrogenase. As a result there is an accumulation of DHS. When strain MYR34 is transformed with a plasmid expressing aroZ, aroY and catAX, genes coding for proteins functional in muconic acid pathway, there is conversion of DHS into muconic acid. However, no conversion of DHS into muconic acid occurs when MYR34 strain is transformed with the empty plasmid vector (pCL1921) without any exogenous genes.
[0028] FIG. 14. Comparison of aroZ analogs for their ability to divert DHS into the muconic acid pathway. Three different aroZ analogs, namely quiC from Acinetobacter sp. ADP1, asbF from Bacillus thuringiensis, and qa-4 from Neurospora crassa were cloned under the P.sub.26 promoter in a low-copy plasmid which also expressed catAX and aroY genes from the P.sub.15 and lambda P.sub.R promoters respectively. These three different plasmid constructs were expressed in MYR34 through transformation and the amount of muconic acid produced was measured.
[0029] FIG. 15. Single copies of catAX, aroY and quiC were chromosomally integrated into MYR170 strain of E. coil (.DELTA.aroE, .DELTA.ack::P.sub.15-aroB) resulting in MYR352 (SEQ ID No. 41). MYR170 was also transformed with low copy plasmid pMG37 carrying all genes necessary for the operation of muconic acid pathway leading to the MYR219 strain. Both MYR352 and MYR219 were transformed with YEp24 (medium-copy empty vector) or pCP32AMP (medium-copy aroG expressing plasmid) or pCP50 (medium-copy aroG and tktA expressing plasmid) and the amount of PCA, catechol and muconic acid produced were quantified using HPLC method.
[0030] FIG. 16. Removal of catechol accumulation in MYR352 by means of increasing the expression of catAX. MYR352 was transformed with a plasmid expressing aroY alone (pMG27) or a plasmid expressing quiC alone (pMG39) or a plasmid expressing all three muconic acid pathway genes namely catAX, aroY and quiC (pMG37) or a plasmid expressing only two genes in the muconic acid pathway namely catAX and aroY (pMG33). Over expression of catAX alone was sufficient to prevent accumulation of catechol.
[0031] FIG. 17. Growth of strains using different systems for importing glucose. Deletion of ptsHI and galP (MYR31) leads to lack of growth in minimal glucose medium, while installation of glf and glk genes (MYR217) brings back growth. Control strain MYR34 is .DELTA.aroE, but otherwise wild type. The three aromatic amino acids and three aromatic vitamins were added to the medium to allow growth of the auxotrophic strains.
[0032] FIG. 18. DHS production in MYR34 and MYR217 strains of E. coli. When transformed with plasmids that lead to production of DHS, MYR217, which utilizes glf-glk for glucose import, produced a higher titer of DHS than transformants of MYR34, which utilizes the phosphotransferase system (PTS).
[0033] FIG. 19. Production of muconic acid by the MYR428 strain of E. coli in a 7 Liter fermentor. The MYR261 strain of E. coli with a genotype of .DELTA.aroE .DELTA.ackA::P.sub.15-aroB .DELTA.poxB::tktA was transformed with the plasmids pCP32AMP and pMG37 to generate the MYR428 strain of E. coli.
[0034] FIG. 20. Muconic acid and PCA production in the E. coli strain MYR993 genetically engineered to produce muconic acid and two MYR993 derivatives MYR993.DELTA.ubiX and MYR993.DELTA.ubiD. The MYR993AubiX E. coil strain was derived from MYR993 strain by means of replacing the coding region for ubiX gene with a cassette coding for kanamycin resistance. The MYR993.DELTA.ubiD E. coli strain was similarly derived from MYR933 strain by means of replacing the coding region for ubiD gene with a cassette coding for kanamycin resistance.
[0035] FIG. 21. Measurement of relative activity of various homologs of UbiX. Measurement of activity of UbiX homologs was carried out from the decarboxylation of PCA as measured by a decrease in the absorbance at 290 nm (A290). Five different UbiX homologs namely KpdB, UbiX, Elw, Kok and Lpl were use in this study.
[0036] FIG. 22. Muconic acid and PCA production in E. coli strains having low or high level of kpdB gene expression. E. coli strain MYR1305 with no exogenous kpdB gene was used as the parent strain and was transformed with a low copy plasmid having the kpdB gene expressed either from the P26 promoter or the E. coli pgi promoter. The gene expression from the P26 promoter is expected to be at a relatively low level while the gene expression from the pgi promoter is expected to be at a relatively high level.
[0037] FIG. 23. Muconic acid production in the E. coli strain MYR1674 and its derivative MYR1772. MYR1772 was derived from MYR1674 by replacing the coding region and promoter of ppc with the P.sub.R-pyc gene. P.sub.R is an abbreviation for the strong rightward promoter from the coliphage lambda.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
[0038] All the patents, patent applications, publications, sequences, and other published materials are incorporated herein are incorporated by reference.
[0039] As used in this patent application, the phrase "for example" or "such as" is meant to indicate that there arc more than one method, approach, solution, or composition of matter for the subject at hand, and the example given is not meant to be limiting to that example.
[0040] The term "heterologous" refers to a gene or protein that is not naturally or natively found in an organism, but which can be introduced into an organism by genetic engineering, such as by transformation, mating, or transduction. A heterologous gene can be integrated (inserted) into a chromosome or contained on a plasmid. The term "exogenous" refers to a gene or protein that has been introduced into, or altered, in an organism for the purpose of increasing, decreasing, or eliminating an activity, by genetic engineering, such as by transformation, mating, transduction, or mutagenesis. An exogenous gene or protein can be heterologous, or it can be a gene or protein that is native to the host organism, but altered by one or more methods, for example, mutation, deletion, change of promoter, change of terminator, duplication, or insertion of one or more additional copies in the chromosome or in a plasmid. Thus, for example, if a second copy of the aroB gene is inserted at a site in the chromosome that is distinct from the native site, the second copy would be exogenous.
[0041] The term "microorganism" as used in this present invention includes bacteria, archaea, yeast, algae and filamentous fungi that can be used for the commercial production of cis, cis-muconic acid through a fermentation process. The term "genetically engineered microorganism" refers to microorganisms that are not present in the Nature but generated using one or other genetic modifications as described in this patent application.
[0042] For nomenclature, a gene or coding region is usually named with lower case letters in italics, for example "aroZ", while the enzyme or protein encoded by a gene can be named with the same letters, but with the first letter in upper case and without italics, for example "AroZ". The enzyme or protein can also be referred to by a more descriptive name, for example, AroZ can also be referred to as 3-dehydroshikimate dehydratase. A gene or coding region that encodes one example of an enzyme that possess a particular catalytic activity can have several different names because of historically different origins, or because the gene comes from different species. For example the gene that encodes 3-dehydroshikimate dehydratase from Bacillus anthracis can be named asbF instead of aroZ, the same gene from Aspergillus nidulans can be named qutC, the same gene from Neurospora crasser can be named qa-4, and the same gene from Acinetobacter baylyi can be named quiC.
[0043] A "plasmid" means a circular or linear DNA molecule that is substantially smaller than a chromosome, separate from the chromosome or chromosomes of a microorganism, and that replicates separately from the chromosome or chromosomes. A "plasmid" can be present in about one copy per cell or in more than one copy per cell. Maintenance of a plasmid within a microbial cell in general requires an antibiotic selection, but complementation of an auxotrophy can also be used.
[0044] The term "chromosome" or "chromosomal DNA" as used in this invention in the context of a bacterial cell is a circular DNA molecule that is substantially larger than a plasmid and does not require any antibiotics selection.
[0045] The term an "expression cassette" or a "cassette" means a DNA sequence that can be part of a chromosome or plasmid that contains at least a promoter and a gene or region that codes for an enzyme or other protein, such that the coding region is expressed by the promoter, and the enzyme or protein is produced by a host cell that contains the DNA sequence. An "expression cassette" can be at least partly synthetic, or constructed by genetic engineering methods, so that the coding region is expressed from a promoter that is not naturally associated with the coding region. Optionally, the "expression cassette" can contain a transcription terminator that may or may not be a terminator that is naturally associated with the coding region. An "expression cassette" can have coding regions for more than one protein, in which case it can be called an operon, or a synthetic operon.
[0046] The term "overexpression" of a gene or coding region means causing the enzyme or protein encoded by that gene or coding region to be produced in a host microorganism at a level that is higher than the level found in the wild type version of the host microorganism under the same or similar growth conditions. This can be accomplished by, for example, one or more of the following methods: 1) installing a stronger promoter, 2) installing a stronger ribosome binding site, such as a DNA sequence of 5'-AGGAGG, situated about four to ten bases upstream of the translation start codon, 3) installing a terminator or a stronger terminator, 4) improving the choice of codons at one or more sites in the coding region, 5) improving the mRNA stability, and 6) increasing the copy number of the gene, either by introducing multiple copies in the chromosome or placing the cassette on a multicopy plasmid. An enzyme or protein produced from a gene that is overexpressed is said to be "overproduced". A gene that is being "overexpressed" or a protein that is being "overproduced" can be one that is native to a host microorganism, or it can be one that has been transplanted by genetic engineering methods from a different organism into a host microorganism, in which case the enzyme or protein and the gene or coding region that encodes the enzyme or protein is called "foreign" or "heterologous". Foreign or heterologous genes and proteins are by definition overexpressed and overproduced, since they are not present in the unengineered host organism.
[0047] The term a "homolog" of a first gene, DNA sequence, or protein is a second gene, DNA sequence, or protein that performs a similar biological function to that of said first gene, DNA sequence or protein, and that has at least 25% sequence identity (when comparing protein sequences or comparing the protein sequence derived from gene sequences) with said first gene or protein, as determined by the BLAST computer program for sequence comparison (Altschul et al., 1990; Altschul et al., 1997), using default parameters and allowing for deletions and insertions. An example of a homolog of the E. coli aroG gene would be the aroG gene from Salmonella typhimurium.
[0048] Two enzymes or proteins that are very distantly related by homology can carry out the same biochemical function but be only relatively weakly homologous to each other. For example, the FurnA fumarase from E. coli K-12 (GenBank NP_416129) is about 26.9% homologous to a fumarase from Clostridium botulinum (GenBank GAE03909.1) over their region of overlap, and about 25.1% homologous to a fumarase beta subunit from Pyrococcus sp. ST04 (GenBank AKF23146.1) over their region of overlap. As another example, a Klebsiella AroZ and a Neurospora crassa Qa-4 enzyme that both function to convert DHS to PCA are 29.3% identical. Therefore, since for the genetic engineering of a metabolic pathway, the important feature of a heterologous enzyme or protein is the function or reaction carried out by that enzyme or protein, not the source organism or the precise amino acid sequence, we define "homologous" enzymes or proteins or "homologs" to comprise any pair of enzymes or proteins that are 25% or higher in the identity of their amino acid sequences, allowing for gaps, as shown for example by using the default parameters for alignment using the LaserGene 12 (DNAStar, Madison, Wis.) MegAlign program with the Lipman-Pearson method (Ktuple=2, Gap penalty=4, and Gap length penalty=12).
[0049] The term an "analog" of a first gene, DNA sequence, or protein is a second gene, DNA sequence, or protein that performs a similar biological function to that of said first gene, DNA sequence, or protein, but where there is less than 25% sequence identity (when comparing protein sequences or comparing the protein sequence derived from gene sequences) with said first gene, DNA sequence or protein, as determined by the BLAST computer program for sequence comparison (Altschul et al., 1990; Altschul et al., 1997), and allowing for deletions and insertions. An example of an analog of the Klebsiella pneumoniae AroZ protein would be the QutC protein from Aspergillus nidulans, since both proteins are enzymes that catalyze the 3-dehydroshikimate dehydratase reaction, but there is no significant sequence homology between the two enzymes or their respective genes. A scientist knowledgeable in the art will know that many enzymes and proteins that have a particular biological function, for example DAHP synthase or 3-dehydroshikimate dehydratase, can be found in many different organisms, either as homologs or analogs, and since members of such families of enzymes or proteins share the same function, although they may be slightly or substantially different in structure, different members of the same family can in many cases be used to perform the same biological function using current methods of genetic engineering. Thus, for example, the AroZ enzyme and the QutC enzyme catalyze the same reaction, DHS dehydratase, so either one will result in production of cis, cis-muconic acid in the proper context, and the choice of which one to use ultimately can be made by choosing the one that leads to a higher titer of cis, cis-muconic acid under similar fermentation conditions.
[0050] The terms a "non-aromatic carbon source" or a "non-aromatic compound" means a carbon-containing compound that can be used to feed a microorganism of the invention as a source of carbon and/or energy, in which the compound does not contain a six-membered ring related to benzene. Examples of non-aromatic carbon sources include glucose, xylose, lactose, glycerol, acetate, arabinose, galactose, mannose, maltose, or sucrose. An "aromatic compound" is a compound that contains one or more six-membered rings related to benzene. An example of an aromatic compound is catechol, or 1,2-dihydroxy benzene. A microorganism selected for producing muconic acid using glucose as a source of non-aromatic carbon source can further be engineered to use other types of non-aromatic carbon sources such as glycerol, sucrose and xylose using the genetic engineering techniques as provided in the patent documents U.S. Pat. No. 8,871,489 and US Patent Application Publication Nos. US2013/0337519A1 and US2014/0234923A.
[0051] The term a "strong constitutive promoter" means a DNA sequence that typically lies upstream (to the 5' side of a gene when depicted in the conventional 5' to 3' orientation), of a DNA sequence or a gene that is transcribed by an RNA polymerase, and that causes said DNA sequence or gene to be expressed by transcription by an RNA polymerase at a level that is easily detected directly or indirectly by any appropriate assay procedure. Examples of appropriate assay procedures include 1) quantitative reverse transcriptase plus PCR, 2) enzyme assay of an encoded enzyme, 3) Coomassie Blue-stained protein gel, or 4) measurable production of a metabolite that is produced indirectly as a result of said transcription, and such measurable transcription occurring regardless of the presence or absence of a protein that specifically regulates level of transcription, a metabolite, or inducer chemical. An example of a promoter that is nota "strong constitutive promoter" is the P.sub.lac promoter of E. coli, since it is repressed by a repressor in the absence of lactose or the inducer IPTG. By using well known methods in the art, a "strong constitutive promoter" can be used to replace a native promoter (a promoter that is otherwise naturally existing upstream from a DNA sequence or gene), resulting in an expression cassette that can be placed either in a plasmid or chromosome and that provides a level of expression of a desired DNA sequence or gene at a level that is higher than the level from the native promoter. A strong constitutive promoter can be specific for a species or genus, but often a strong constitutive promoter from a bacterium can function well in a distantly related bacterium. For example, a promoter from Bacillus subtilis or a phage that normally grows on B. subtilis can function well in E. coli. A "strong constitutive promoter" is substantially different from inducible promoters, such as P.sub.tac, which have been used in the prior art production of cis, cis-muconic acid and typically require an expensive chemical or other environmental change for the desired level of function (Niu et al., 2002), Examples of strong constitutive promoters are P.sub.15, P.sub.26, from Bacillus subtilis phage SP01, and coli phage lambda P.sub.R.
[0052] A "mutation" is any change in a DNA sequence that makes it different from a related wild type sequence. A "mutation" can comprise a single base change, a deletion, an insertion, a replacement, a frameshift, an inversion, a duplication, or any other type of change in a DNA sequence. Usually a "mutation" refers to a change that has a negative effect on function or reduce the activity of a gene or gene product, however, herein, the term "mutation" can also refer to a change that increases the activity of a gene or gene product. For example, a feedback resistant mutation in the aroG gene increases the activity of AroG in the presence of an inhibitor such as phenylalanine. Replacement of a promoter with a different, stronger promoter, also result in a mutation that can increase the activity of a gene or gene product. A "null mutation" is a mutation, such as a deletion of most or all of a gene, is a mutation that effectively eliminates the function of a gene. A "mutant" is a strain or isolate that comprises one or more mutations.
[0053] The biological production of cis, cis-muconic acid (herein referred to as simply "muconic acid") is based on the redirection of carbon from the aromatic amino acid pathway. Native production of aromatic amino acids and vitamins requires the metabolites erythrose-4-phosphate (E4P) and phosphoenolpyruvate (PEP). The first committed step in aromatic amino acid synthesis is catalyzed by the enzyme 3-deoxy-arabino-heptulonate 7-phosphate (DAHP) synthase. In E. coli, this step can be performed by three different isozymes, AroG, AroF, or AroH. Each of these enzymes is regulated at the transcriptional level by a repressor protein TyrR, as well as at the protein level by inhibition from terminal products of the pathway, phenylalanine, tyrosine, and tryptophan, respectively. The production of muconic acid proceeds from an intermediate in the aromatic amino acid pathway, dehydroshikimic acid (DHS) and requires the expression of three heterologous enzymes, dehydroshikimate dehydratase (AroZ), 3,4-dihydrobenzoate decarboxylase (AroY), and catechol 1,2-dioxygenase (CatA). This pathway is shown in FIGS. 1 and 2.
[0054] A "muconic pathway" or "muconic acid pathway" refers to a biochemical pathway from DHS to PCA to catechol to cis, cis-muconic acid, and a "muconic pathway gene" is a gene that encodes an enzymes that catalyzes a step in a muconic pathway, or encodes an auxiliary function that serves to enhance the activity of one of said enzymes, for example, aroZ, aroY, catA, catX, and qutC (FIG. 3). DHS is an abbreviation for 3-dehydroshikimate, and PCA is an abbreviation for protocatechuic acid. A "muconic plasmid" is a plasmid that contains one or more muconic pathway genes.
[0055] The genetic manipulations used in the present inventions are centered around the common pathway for aromatic amino acid and aromatic vitamin (or vitamin-like) biosynthesis present in many microbial cells as shown in FIG. 1. The common pathway for aromatic amino acid biosynthesis as depicted in FIG. 1 can be referred to as the "shikimic acid" or "shikimate" pathway, the "chorismic acid" or "chorismate" pathway, or the "central aromatic" or "central aromatic biosynthetic" pathway.
[0056] There is a substantial volume of published work on genetic engineering of microorganisms for the production of the aromatic amino acids, phenylalanine, tyrosine, and tryptophan (U.S. Pat. Nos. 4,681,852, 4,753,883, 6,180,373, European Patent Application 86300748.0). The approaches for the production of aromatic amino acids include using various combinations of feedback resistant enzymes (AroF, AroG, PheA, TyrA), deregulation of repression of transcription (tyrR.sup.-), increasing promoter strength (P.sub.tac, P.sub.lac) and increasing the copy number of one or more genes (tktA). Many specific combinations of the above mentioned genetic modifications can be followed to obtain a biocatalyst suitable for muconic acid production.
[0057] According to the disclosure in the International Patent Application Publication No. WO2013/116244, incorporated herein in its entirety by reference, the genetically engineered microorganisms do not need to contain any exogenous plasmids in order to produce muconic acid, although they have certain exogenous or heterologous genes necessary to achieve the desired phenotype. In the preferred embodiment of the present invention, the exogenous genes introduced into the microorganisms are stably integrated into the chromosomal DNA. As a result of this chromosomal DNA integration of the exogenous genes, the need for the use of antibiotics or other selective methods to maintain the plasmids carrying exogenous DNA is totally eliminated. In addition, strong promoters that do not require chemical inducers are used to express genes necessary for the operation of the pathway from carbon source, such as glucose, to cis, cis-muconic acid.
[0058] When an exogenous coding sequence is integrated into the chromosomal DNA, it is integrated at a locus, the deletion of which has been reported not to cause any adverse effects. For example, the coding region at the physical location 0039 in E. coli bacterium, also known as ydeM, is annotated as a lipoprotein and has been demonstrated to have no adverse effects upon deletion. Similarly, the coding region at the physical location 2160 in E. coli bacterium, also known as nlpA, is annotated as a radical SAM domain protein and has been demonstrated to have no adverse effects upon deletion. In the present invention, a copy of P.sub.R-catAX was inserted at the physical location 0039 in E. coli bacterium and a copy of P.sub.R-aroG.sup.FBR was inserted at the physical location 2160 in E. coil bacterium. In other examples described herein, an insertion is made in gene that is advantageous to knockout or deleted, such as a gene encoding for an unwanted function, for example a ptsI gene or a tyrR gene.
[0059] The aromatic amino acid biosynthetic pathway is well known for many microorganisms, especially for E. coil (Neidhart and Curtiss 1996). In a wild type cell, the pathway is tightly regulated by both feedback inhibition and repression of transcription. The first committed step is catalyzed by deoxy-arabino-heptulosonate 7-phosphate (DAHP) synthase, of which there are three isozymes encoded by aroF, aroG, and aroH. The three isozymes, AroF, AroG, and AroH, are feedback inhibited by the products of aromatic amino biosynthetic pathway namely by tyrosine, phenylalanine, and tryptophan. Feedback resistant mutants of AroF, AroG, and AroH are well known (Flu et al. 2003; Lutke-Eversloh and Stephanopoulos 2007). One aspect of the present invention involves use of feedback resistant alleles of aroF, aroG, and aroH genes in order to express AroF, AroG and AroH enzyme proteins that are resistant to feedback inhibition by the products of aromatic amino acid biosynthetic pathway. The AroF, AroG and AroH enzyme proteins that are resistant to feedback inhibition are referred as AroF.sup.FBR, AroG.sup.FBR, and AroH.sup.FBR.
[0060] Transcription of several of the operons involved in the aromatic pathway is regulated by either the repressor encoded by the tyrR gene or the repressor encoded by the trpR gene, or both (Neidhardt and Curtiss 1996). Of particular importance is the negative regulation of transcription of aroG and aroF by the TyrR protein when it is bound with one or more of the aromatic amino acids. One aspect of the present invention involves the removal of negative regulation by tyrR or trpR genes by means of eliminating these genes from the chromosome of the host bacterial strains.
[0061] The present invention teaches certain combinations of genetic elements in the biocatalysts suitable for muconic acid production, for example, but not limited to, various combinations of an overproduced feedback resistant AroG, an overproduced feedback resistant AroF, an overexpressed tktA, an overexpressed talA, chromosomally integrated cassettes for expressing an aroZ, aroY, and a catAX (or analogs or homologs thereof) from strong constitutive promoters, and a leaky aroE allele, which we define as a gene that encodes an AroE enzyme that confers prototrophy for the aromatic amino acids and vitamins, but without leading to significant secretion of unwanted aromatic compounds.
[0062] All specific examples of strain constructions disclosed herein are based on wild type Escherichia coli C strain (ATCC 8739), or Escherichia coli W strain (ATCC 9637). However, it should be realized at this point that the expression cassettes or appropriate analogs and homologs of the genetic elements disclosed herein can be assembled in any other suitable microorganism, such as any other suitable E. coil strains and other species of bacteria, archaea, yeast, algae, and filamentous fungi that can be used for the commercial production of muconic acid through a fermentative process.
[0063] In E. coli, the aromatic amino acid biosynthesis pathway from glucose starts with the non-oxidative branch of the pentose phosphate pathway (PPP). Four key enzymes in the non-oxidative pentose phosphate pathway are transketolase, transaldolase, ribulose-5-phosphate epimerase and ribulose-5-phosphate isomerase. These enzymes catalyze the reactions that lead to the formation of erythrose 4-phosphate (E4P) from hexose or pentose sugars. To increase the availability of E4P in E. coil, the tktA gene encoding transketolase can be overexpressed (Niu et al., 2002). Similarly, the overexpression of the transaldolase gene is also expected to increase the availability of E4P in some circumstances (Bongaerts et al., 2001). In yet another aspect of the present invention, the expression of both the transketolase and transaldolase genes are enhanced through genetic manipulations leading to an increase in the activity of transketolase and transaldolase enzymes. In yet another aspect of the invention, flux through the non-oxidative branch of the PPP is increased by overproducing ribulose-5-phosphate epimerase and ribulose-5-phosphate isomerase.
[0064] The first committed step and most tightly regulated reaction in the common aromatic amino acid pathway is the condensation of phosphoenolpyruvate (PEP) and E4P to produce deoxyarabino-heptulosonate 7-phosphate (DAHP) by DAHP synthase (encoded by aroG, aroF, and aroH), D-glucose consumed by E. coli is brought into aromatic biosynthesis partly through the PPP, and partly through glycolysis. The flow of glucose into the aromatic pathway is greatly increased when transketalose (tktA) and an isozyme of DAHP synthase (aroG) are amplified through transformation with a plasmid that increases their expression by increasing their copy number (Niu et al., 2002). In a preferred aspect of the present invention, the exogenous aroG and tktA genes are integrated into the chromosomal DNA for the purpose of amplification of activities transketolase and DAHP synthase enzymes.
[0065] In another embodiment of the present invention, the flux through PEP within the microbial cell is improved by increasing the PEP available for the synthesis of DAHP by reducing the flux of PEP to other pathways. Many genera of bacterial cells consume PEP in the transport of glucose across the cell membrane using a phosphotransferase system (PTS) in which one PEP molecule is consumed for every molecule of glucose transported across the bacterial outer membrane. By replacing or complementing the PEP-dependent PTS with a non-PEP dependent (PEP independent) glucose uptake mechanisms, it is possible to increase the pool size of the PEP available for the aromatic amino acid biosynthetic pathway within the microbial cell. For example, the PTS system for sugar uptake can be replaced or complemented by a GalP-based sugar uptake system or the sugar transporter system based on Glf/Glk proteins (Chandran et al., 2003; Yi et al., 2003). In a preferred aspect of the present invention besides deleting the PTS system for sugar uptake for the purpose of conserving PEP pool within the microbial cell, the GalP based sugar uptake system is also inactivated for the purpose of conserving ATP within the microbial cell. In a microbial cell which is defective in the functioning of both PTS system and a Gal-P based sugar uptake system (.DELTA.PTS/.DELTA.galP), the sugar uptake can be accomplished by means of introducing an exogenous gene coding for Glf (glucose facilitated diffusion protein), or exogenous genes encoding both Glf and Glk (glucokinase) proteins. As used in the present invention, the term functional glucose-facilitated diffusion protein refers to any Glf protein as well as any other protein which is functionally equivalent to Glf and functions to transport sugars into the microbial cells by facilitated diffusion. In one aspect of the present invention, the gene coding for the glucose facilitator protein Glf is introduced into the microbial cell which is .DELTA.PTS/.DELTA.galP and the glucose transported into the microbial cell is phosphorylated by endogenous glucose kinase. In another aspect of the present invention the genes coding for both Glf and Glk proteins are introduced into a microbial cell which is .DELTA.PTS/.DELTA.galP. In a preferred aspect of the present invention, the exogenous glf and glk genes introduced into the microbial cell are integrated into the host chromosomal DNA.
[0066] In another embodiment of the present invention, when the carbon source for growth and energy requires gluconeogenesis (for example if the carbon source is acetate or succinate), the PEP pool can be increased by increasing the activity of carboxylating enzymes already present within the cell, for example PEP carboxykinase, which is encoded by pck in E. coli, or by introducing an exogenous carboxylating enzyme. In a preferred embodiment, the introduced exogenous gene coding for a carboxylating enzyme is stably integrated into the host chromosome. Genes coding for the carboxylating enzyme can be derived from a variety of microbial species. The genes coding for the carboxylating enzymes can further be subjected to genetic manipulations so that the expression of the carboxylating enzyme within the biocatalyst for cis, cis-muconic acid production is significantly enhanced.
[0067] PEP is one of two major metabolites for the aromatic pathway and reduction or elimination of Ppc activity preserves PEP for the aromatic pathway and muconic acid production. Ppc catalyzes the anaplerotic reaction forming oxaloacetate, an intermediate in the TCA cycle. Ppc activity is essential for wild type E. coli and some other organisms in minimal media, but it is absent in others. Some organisms, such as yeast that lack Ppc, utilize Pyc to replenish oxaloacetate. Lowered or absent Ppc activity can be complemented with Pyc activity, by providing an alternate route to oxaloacetate from pyruvate instead of PEP, which results in increased availability of PEP for muconic acid production as well as for production of other compounds, such as aromatic compounds, that require PEP as an intermediate. In at least one example disclosed herein, substituting Pyc for Ppc can reduce flux from PEP to OAA, which in turn conserves PEP for the central aromatic pathway.
[0068] In yet another embodiment of the present invention, the PEP pool inside the microbial cell is increased by decreasing or eliminating the activity of pyruvate kinase enzymes such as PykA and PykF which use PEP as a substrate.
[0069] From DAHP, the aromatic amino acid pathway proceeds via a number of intermediates to chorismate (CHA), a branch point for the biosynthesis of three aromatic amino acids namely L-Tyrosine (L-Tyr), L-Phenylalanine (L-Phe), and L-Tryptophan (L-Trp).
[0070] In the initial stages of the common aromatic amino acid pathway, 3-dehydroquinate (DHQ) synthase (AroB) removes the phosphate group from DAHP leading to the formation of DHQ. The enzyme DHQ dehydratase (AroD) removes a water molecule from DHQ leading to the formation of 3-dehydroshikimate (DHS) which is subsequently reduced to shikimate (SHK) by shikimate dehydrogenase (AroE). Shikimate kinase I/II (AroK, AroL) phosphorylates shikimate to shikimate 3-phosphate (S3P). There is a condensation of S3P with PEP leading to the formation of 5 enolpymvoylshikimate 3-phosphate (EPSP). The formation of EPSP is mediated by EPSP synthase (AroA). A phosphate group from EPSP is removed by chorismate synthase (AroC) leading to the formation of chorismate (CHA).
[0071] As shown in the FIG. 2, the aromatic amino acid pathway can be blocked at the level of conversion of 3-dehydroshikimate (DHS) to shikimate (SHK) due to a mutation in an aroE gene leading to the accumulation of DHS (Niu et al., 2002). Introduction of an exogenous aroZ gene functions to convert DHS into protocatechuate (PCA). PCA is subsequently converted into catechol through a decarboxylation reaction mediated by an AroY enzyme. Catechol is ultimately converted into cis-cis-muconic acid (ccMuA) through the action of a catA gene product. ccMuA can be acted upon by maleyl acetoacetate isomerase to yield trans-trans muconic acid (ttMuA). The biosynthetic pathway from DHS to ccMuA and/or ttMuA is referred to as a muconic acid pathway. The three different genes responsible for the conversion of DHS to ccMuA can be obtained from various microbial species and introduced into a microorganism selected for muconic acid production such as Escherichia coli. In a preferred embodiment of the present invention, the exogenous genes coding for the proteins involved in muconic acid pathway are integrated into host chromosomal DNA.
[0072] In redirecting the aromatic amino acid pathway to the production of cis, cis-muconic acid, the mutation of the aroE gene is critical. The aroE gene can be completely inactivated leading to a total block in the biosynthesis of aromatic amino acids as was done with the WN1/pWN2.248strain of E. coil described for the muconic acid production (Niu et al., 2002). An important drawback with the WN1/pWN2.248 E. coil strain and related strains is that due to the complete inactivation of the aroE gene, this strain has become auxotrophic for the aromatic acids such as phenylalanine, tyrosine and tryptophan, and aromatic vitamins or vitamin-like compounds mentioned above. As a result, this strain during its growth for the production of cis, cis-muconic acid requires the exogenous addition of these compounds (or a common intermediate such as shikimate), thereby adding substantially to the cost of commercial production of cis, cis-muconic acid using such a strain. A novel approach to overcome this dependency on an exogenous source of aromatic amino acids is to use a strain with a leaky mutation in aroE. The leaky aroE mutant would allow a limited flow of carbon to shikimic acid while accumulating significant amounts of DHS which is then available for the conversion into PCA by the action of an AroZ enzyme. Thus the use of a leaky mutant form of aroE would eliminate the dependence on exogenous aromatic amino acids, while still diverting the flow of carbon to cis, cis muconic acid.
[0073] The genes coding for the synthesis of AroZ, AroY and CatA proteins essential for the conversion of DHS into cis, cis-muconic acid can be derived from any one of many microbial species. In one embodiment, these exogenous genes are integrated into the host chromosome of the biocatalyst being developed. In a preferred embodiment, the expression of these exogenous genes within the biocatalyst is driven by a constitutive promoter without the need for any inducers.
[0074] The enzyme 3-dehydroshikimate dehydratase (AroZ; EC 4.2.1.118) is required for biosynthesis of the intermediate protocatechuate. In this specification, "AroZ" shall refer to any enzyme that catalyzes the 3-dehydroshikimate dehydratase reaction. In the prior art, this enzyme is expressed from the aroZ gene of Klebsiella pneumoniae strain A170-40 (ATCC25597) (Niu et al., 2002; Draths and Frost, 1995). However, the specific activity of AroZ varies widely among organisms, from 0.1 to 261 micromoles/min/mg (Wheeler et al, 1996; Fox et al, 2008; Pfleger et al, 2008), so a significant improvement can be had by expressing an aroZ gene also known as asbF (Fox et al, 2008; Pfleger et al, 2008), qutC (Wheeler et al, 1996), qa-4 (Rutledge, 1984), and quiC, from an organism that has a higher specific activity than K pneumoniae, for example Acinteobacter baylyi, Aspergillus nidulans (Wheeler et al, 1996), now also known as Emericella nidulans, or Neurospora crassa (Rutledge, 1984; Stroman et al, 1978), or Podospora anserina, also known as Podospora pauciseta (Hansen et al, 2009).
[0075] As one particular example, the coding sequence for the qa-4 gene from N. crassa that encodes 3-dehydroshikimate dehydratase can be obtained by any of several well-known methods, for example whole gene DNA synthesis, cDNA cloning, or by a combination of genomic DNA cloning and PCR or synthetic DNA linker synthesis. Since there are no introns in the qa-4 gene, the coding region can be obtained by PCR from genomic DNA (Rutledge, 1984). The protein sequence of the qa-4 enzyme (SEQ ID No. 4) and the DNA sequence of the native gene (SEQ ID No. 5) are known.
[0076] Alternatively, an expression cassette can be constructed for the 3-dehydroshikimate dehydratase from A. nidulans. The coding sequence for the QutC enzyme from A. nidulans can be obtained by any of several well-known methods, for example whole gene DNA synthesis, cDNA cloning, or by a combination of genomic DNA cloning and PCR or synthetic DNA linker synthesis. The protein sequence of QutC (SEQ ID No. 6) and the DNA sequence of the native gene, containing no introns, are known (SEQ ID No. 7; GenBank accession number M77665.1). An expression cassette can be obtained by DNA synthesis, or by a combination of genomic cloning and PCR, so that the QutC enzyme can be produced accurately in E. coil. By expressing a coding sequence for QutC from a strong, constitutive promoter in E. coil, sufficient expression can be obtained from one or two copies of the gene integrated in the chromosome, obviating the need for maintaining more than two copies of the expression cassette on a multicopy plasmid as has been disclosed in the prior art (Niu et al., 2002), and which can lead to instability. The method described above can be used in general to obtain a DNA sequence that codes for a desired enzyme, and that coding sequence can then be used to construct an expression cassette designed to function in E. coli or another appropriate microbial host organism.
[0077] The specific activity of AroZ can also be improved by using the protein sequence from the prior art (Niu et al., 2002) by constructing an improved expression cassette, for example, in which a stronger promoter and/or ribosome binding site (RBS) has been installed in front of the coding region, as described in Example 4.
[0078] The aroZ gene encoding AroZ (3-dehydroshikimate dehydratase) from Klebsiella pneumoniae strain A170-40 can be obtained as described in the prior art. The DNA sequence of the gene and surrounding DNA can be determined by methods well known in the art. A heterologous gene of the invention such as aroZ can be built into an expression cassette using a native DNA sequence or it can be synthesized with a codon optimized sequence for the intended host organism. An aroZ gene can be cloned as described (Draths and Frost, 1995) from any other microbe that contains an active aroZ gene, for example K. pneumoniae strain 342, Acinetobacer Sp. ADP1 (Acinetobacter baylyi ADP1), Bacillus thuringiensis, Emericella nidulans, Erwinia amylovora, Pseudomonas putida W619, Neurospora crassa, Aspergillus nidulans and many others.
[0079] The enzyme protocatechuate decarboxylase (AroY; EC 4.1.1.63) is required for biosynthesis of the intermediate catechol. In this specification, "AroY" shall refer to any enzyme that catalyzes the protocatechuate decarboxylase reaction. In the prior art, this enzyme is expressed from the aroY gene of Klebsiella pneumoniae strain A170-40 (ATCC25597) on a multicopy plasmid (Niu et al., 2002). However, once again an improvement in the process can be gained by producing enough of the enzyme from one or two copies of an expression cassette integrated in the chromosome of the host organism. This can be accomplished by obtaining an aroY gene from an organism that naturally produces an AroY enzyme that has higher specific activity than that of the K. pneumoniae AroY enzyme of the prior art, or by increasing the level of expression of the K. pneumoniae AroY by constructing an expression cassette that, for example, uses a strong constitutive promoter and/or strong RBS as described above under Example 4. The protein sequence for AroY from K. pneumoniae strain A170-40 is given in SEQ ID No. 8. The corresponding gene, aroY, can be cloned as described above (Draths and Frost, 1995), or based on the protein sequence, it can be synthesized with optimized codons for the intended host organism.
[0080] The aroY gene can be obtained from any other microorganism that contains a homolog or analog, for example, K. pneumoniae strain NCTC418 (ATCC15380), Klebsiella pneumoniae 342, and Arxula adeninivorans (Sietmann et al, 2010). The DNA sequence of the aroY gene from Klebsiella pneumoniae 342 and surrounding DNA is given as SEQ ID No. 9.
[0081] The enzyme catechol 1,2-dioxygenase (CatA; EC 1.13.11.1) is required for the last step of cis, cis-muconic acid biosynthesis. In this specification, "CatA" shall refer to any enzyme that catalyzes the catechol 1,2-dioxygenase reaction. In the prior art, this enzyme is expressed from the catA gene of Acinetobacter calcoaceticus strain ADP1 on a multicopy plasmid (Niu et al., 2002). The source strain, Acinetobacter calcoaceticus strain ADP1, apparently has been renamed Acinetobacter Sp. ADP1 and Acinetobacter baylyi ADP1 (Neidle and Omston, 1986; Barbe et al, 2004; de Berardinis et al, 2008). In this prior art example, the catA gene was expressed from a P.sub.tac promoter, which requires either lactose or IPTG (isopropylthiogalactoside) as an inducer. These compounds are too expensive for use in commercial fermentations, so again, significant improvements in the process are needed, both to eliminate the need for an expensive inducer and to create a more stable strain by integrating the expression cassette in the chromosome. This can be accomplished by constructing an expression cassette for the catA gene that uses a strong constitutive promoter, strong RBS, and/or more stable mRNA as described above in the other Examples.
[0082] The DNA sequence of the catA gene and surrounding sequences from Acinetobacter baylyi ADP1 is given in SEQ ID No. 10. The protein sequence for CatA from the same strain is given in SEQ ID No. 11. In a preferred embodiment, the expression cassette for catA contains one or two additional open reading frames that exist naturally downstream from catA, in order to increase the expression level of the catA gene (Schirmer and Hillen, 1998). Many other organisms can be a source for a catA gene, for example Pseudomonas arvilla, Pseudomonas fluorescens (Nakazawa et al, 1967; Kojima et al, 1967), Streptomyces Sp. Strain 2065 (Iwagami et al, 2000), Cupriavidus necator 335T, and many others (Perez-Pantoja et al, 2008).
[0083] In order to improve the flow of carbon towards cis, cis-muconic acid, it is necessary to block certain other pathways branching out of the aromatic amino acid pathway, besides reducing the flow of carbon from DHS to shikimate (SHK) by using a leaky aroE mutant. Some bacteria, for example in the genus Acinetobacter and Pseudomonas, contain a gene named pobA, which encodes an enzyme, p-hydroxybenzoate hydroxlase, that converts DHS into gallic acid. Although a PobA homolog or analog has not been found in E. coli, strains of E. coli engineered to produce DHS secrete measurable amounts of gallic acid (Li and Frost, 1999), so it is likely that such an enzyme does exist in E. coli. In addition, the PCA derived from DHS can be converted into gallic acid by the action of p-hydroxybenzoate hydroxlase (PobA) enzyme coded by the pobA gene. The gallic acid thus produced can be subsequently converted to pyrogallol. One way to block the carbon flow to gallic acid and pyrogallol in the biocatalyst selected for an improved cis, cis-muconic acid is to block or diminish the activity of p-hydrobenzoate hydroxlase (PobA) protein through genetic manipulations. Similarly, DHQ, the precursor to DHS can also be acted upon by shikimate dehydrogenase coded by aroE leading to the production of quinnic acid. In an embodiment of the present invention, the leaky AroE mutant enzyme is additionally selected or screened for its inability or reduced ability to convert DHQ into quinnic acid.
[0084] There are several advantages in producing trans, trans-muconic acid in place of cis, cis-muconic acid. Trans, trans-muconic acid is preferred over cis, cis-muconic acid in the Diels Alder reaction with ethylene for the production of terephthalic acid. A biocatalyst with a genetically manipulated aromatic pathway produces cis, cis-muconic acid which can be converted into trans, trans-muconic acid outside the cell using chemical conversion processes. On the other hand by means of introducing a maleylacetoacetate isomerase or similar isomerase enzyme into the biocatalyst, it is possible to convert the cis, cis-muconic acid into trans, trans-muconic acid within the bacterial biocatalyst.
[0085] In one embodiment, the present invention provides a genetic approach to enhance the activity of AroY protein involved in the conversion of 3,4-dihydroxybenzoic acid (protocatechuic acid or PCA) to catechol. The activity of AroY protein has been identified as a major limitation and bottleneck in the biological conversion of glucose to muconic acid (Horwitz et al 2015; Weber et al 2012; Curran et al 2013; Sonoki et al 2014). AroY belongs to a class of non-oxidative decarboxylases that are widespread among many bacteria and utilize a wide-variety of substrates (Lupa et al 2005). Many of these genes encoding non-oxidative decarboxylases are organized into three gene operons, encoding B, C, and D type genes. "C" type genes encode decarboxylases like AroY, and while the specific function of the B and D type genes are not known although they are sometimes shown to be necessary for realizing full activity of the C type decarboxylase (Lupa et al 2005; Jimenez et al 2013; Lin et al 2015; Sonoki et al 2014). Weber et al (2012) cloned the B, C and D genes from Klebsiella pneumoniae or Sedimentibacter hydroxybenzoicus into a high-copy-number yeast vector pRS4K-HKT7 and performed fermentation in a medium with externally added PCA to determine the presence of PCA decarboxylase activities from these gene clusters; however, neither was any effort made to determine whether the PCA decarboxylase encoded by the C gene was dependent on the B or D gene in these gene clusters, nor was any attempt made to determine whether the expression of these gene clusters comprising B, C and D genes were able to enhance the muconic acid production using a non-aromatic carbon source such as glucose.
[0086] The gene encoding AroY that is used in specific examples disclosed herein is from Klebsiella pneumoniae, but the local gene structure of this aroY gene reveals no transcriptionally linked genes that would encode either a B or D type enzyme. Previous studies have shown that inclusion of another B type gene, kpdB, from Klebsiella pneumoniae (part of an operon from a 4-hydroxybenzoic acid decarboxylase) can increase AroY activity when producing muconic acid from lignin-related aromatic compounds (Sonoki et al 2014). However, lignin is a complex mixture of chemicals, which requires costly downstream purification processes in order to produce a pure product such as muconic acid. Johnson et al (2016) have shown that in a Pseudomonas putida strain expressing AroY (PCA decarboxylase) from Enterobacter cloaceae, co-expression of an EcdB protein from E. cloaceae having 89.3% sequence identity to KpdB increased the muconic acid production using glucose as a source of carbon from 1.44 g/L to 4.92 g/L at the end of a 54 hour fermentation; however, the muconic acid yield in this Pseudomonas putida based system was still found to be extremely (0.077 mol/mol), thus making this Pseudomonas putida based system unsuitable for commercial scale applications. Therefore there is still a need for an improved muconic production process from inexpensive, purer, non-aromatic carbon sources such as carbohydrates and other non-aromatic compounds (see above). Recent studies have shown that UbiX, a homolog of KpdB, produces a prenylated flavin mononucleotide cofactor and this cofactor supports the decarboxylation activity of UbiD in ubiquinone formation (White et al 2015; Payne et al 2015). Although previous characterizations of UbiX and its homologs refer to the proteins as either 4-hydroxy-3-polyprenylbenzoate decarboxylases, hydroxybenzoate decarboxylasse, subunit B proteins, phenolic acid decarboxylases, or phenylacrylic acid decarboxylases, these proteins are now more accurately annotated as flavin prenyltranferases.
[0087] Additional limitations in the production of muconic acid can be attributed to the limitations of the precursor metabolites PEP and E4P. Changes that eliminate or lower the consumption of these metabolites have been shown in the present invention to improve product formation. For instance, PEP availability has been improved by replacing the native glucose transport, the phosphotransferase system, (PTS) with an alternate system (Glf-Glk from Zymomonas mobilis). E coli's native use of the PTS requires the utilization of PEP for transport and phosphorylation of glucose. The Glf-Glk system utilizes a facilitated diffuser and a glucokinase plus ATP for transport and phosphorylation of glucose, respectively. Use of Glf-Glk in place of a PTS has been shown to improve the yield and titer for several aromatic products. PEP is a substrate for a variety of biological reactions. In addition to glucose transport by the PTS, PEP is a substrate for pyruvate kinase, resulting in the production of ATP and pyruvate providing half of the ATP generated in glycolysis. Inactivation of the genes encoding for pyruvate kinase (pykA or pykF) has been demonstrated to increase yield of products in the aromatic pathway (Escalante et al. 2010). PEP is also the substrate for the production of oxaloacetate by phosphoenolpyruvate carboxylase (Ppc). In E. coli, this is an essential gene (Baba et al. 2006), and strains deleted for ppc are unable to grow on minimal media. There are other organisms that do not have phosphoenolpyruvate carboxylase, but instead replenish oxaloacetate from pyruvate with pyruvate carboxylase (Pyc), e.g. S. cerevisiae. The addition of pyruvate carboxylase in E coli has been investigated, but only for the improvement of succinate production (Lin et al. 2004; Vemuri, Eiteman, and Altman 2002) not for any aromatic products.
[0088] The specification in this patent application provides several different aspects of invention related to the construction of a microbial strain for efficient production of muconic acid. A person skilled in the art can compile several different aspects of the present invention to construct a biocatalyst with very high efficiency for the production of muconic acid.
EXPERIMENTAL SECTION
General Remarks
[0089] Strain and inoculum preparations: A list of the bacterial strains used in the present invention is provided in Tables 1 and 2. A list of the plasmids used in the present invention is provided in Table 3. All specific examples of strain constructions disclosed herein are derived from a wild type E. coli C strain (ATCC 8739), or E. coil K-12 strains (YMC9 or MM294) but the genetic elements disclosed herein can be assembled in any other suitable E. coli strain, and the expression cassettes or appropriate analogs and homologs of the genetic elements disclosed herein can be assembled in any other suitable microorganism, such as other species of bacteria, archaea, yeast, algae, and filamentous fungi that can be used for the commercial production of cis, cis-muconic acid through a fermentative process.
[0090] E. coli C is capable of fermenting 10% glucose in AM1 mineral media. AM1 medium contains 2.63 g/L (NH.sub.4).sub.2HPO.sub.4, 0.87 g/L NH.sub.4H.sub.2PO.sub.4, 1.5 mM MgSO.sub.4, 1.0 mM betaine, and 1.5 ml/L trace elements. The trace elements are prepared as a 1000.times. stock and contained the following components: 1.6 g/L FeCl.sub.3, 0.2 g/L CoCl.sub.2.6H.sub.2O, 0.1 g/L CuCl.sub.2, 0.2 g/L ZnCl.sub.2.4H.sub.2O, 0.2 g/L NaMoO.sub.4, 0.05 g/L H.sub.3BO.sub.3, and 0.33 g/L MnCl.sub.2.4H.sub.2O. The pH of the fermentation broth is maintained at 7.0 with 1.0-10.0 M KOH or 1.0-9.0 M ammonium hydroxide.
[0091] Fermentations: Fermentations were started by streaking on a fresh NBS-2% glucose (Jantama et al., 2008a) plate from a 40% glycerol stock of E. coli strain genetically engineered and stored in a -80.degree. C. freezer. Plasmids, if present, are retained by including the appropriate antibiotic(s) in the agar plates and liquid media. Ampicillin (sodium salt) is used at 150 mg/L, spectinomycin HCL at 100 mg/L, tetracycline HCl at 15 mg/1, and kanamycin sulfate at 50 mg/l. After 24 to 48 hours (37.degree. C.), a single colony is picked into 25 ml of the same medium in a shake flask. After shaking at 200 rpm at 37.degree. C. until the cells have grown to an OD.sub.600 of about 1.0, the culture is cooled on ice and an equal volume of sterile 80% glycerol is added. 2 ml aliquots are then frozen at -80.degree. C. to be used as inocula for fermentations. The term "titer" means the amount of fermentation product produced per unit volume of fermentation fluid and the term "yield" means the ratio of fermentation product produced to carbon source consumed (g/g or mol/mol).
[0092] Cell growth: Cell mass was estimated by measuring the optical density at 550 nm (OD.sub.550) or 600 nm (OD.sub.600) using a Thermo Electronic Spectronic 20 spectrophotometer.
[0093] Analysis of intermediates in shikimic acid pathway and muconic acid pathways: Total muconic acid produced in fermentation broths, which includes cis, cis-muconic acid and cis, trans-muconic acid, and other biochemical intermediates were assayed by HPLC with a Waters Alliance instrument, and monitoring absorbance at 210 nm or refractive index at 45.degree. C., using standards purchased from Sigma-Aldrich. The column was a BioRad Aminex HPX-87H run at 50.degree. C. with 8 mM sulfuric acid as the mobile phase at a flow rate of 0.6 ml/min for 40 minutes. A chromatograph of purchased standards (Sigma-Aldrich) is shown in FIG. 4. To prepare for HPLC, fermentation samples are diluted 10 or 100 fold in 0.05 M potassium phosphate buffer, pH 7.0, to preserve the cis, cis-form of muconic acid from isomerizing to the cis, trans-form.
[0094] To separate the isomers of muconic acid, the samples prepared as above were run in a second HPLC system. The instrument was an Agilent 1200 HPLC, the column was an Agilent Eclipse XDB-C18, 4.6.times.150 mm run at 30 degrees Centigrade with a mobile phase of 50 mM KH.sub.2PO4 in 30% methanol adjusted to pH 3.0 with phosphoric acid. The flow rate was 1 ml/min for 4 minutes, with detection by absorbance at 278 nm. The cis, trans-muconic acid standard was created by dissolving cis, cis-muconic acid in water and allowing it to undergo spontaneous acid catalyzed isomerization for about 2 hours at room temperature, until the HPLC peak had completely shifted to a new position. The other standards were purchased from Sigma-Aldrich. A chromatograph showing standards is shown in FIG. 5.
[0095] (094) Composition of muconic acid production medium for the fermentation process: Each liter of fermentation medium contains 50 ml/L of 1M KH.sub.2PO.sub.4, 10 ml of 200 g/L Citric acid+25 g/L Ferric citrate, 1.2 ml of 98% Sulfuric acid, and a drop of Antifoam 204. These components were mixed with enough water to allow room for addition of other components below. After autoclaving, the following components were added: 10, 20, 30 or 40 ml of 50% glucose (to give 5, 10, 15, or 20 g/l final), 2 ml of 1M MgSO4, 1 ml of 0.1M CaCl2, 10 ml of 1000.times. Trace elements (Jantama et al. 2008a), and if necessary 1, 2, 4, or 8 ml of 50 g/L Phenylalanine+50 g/L Tyrosine+50 g/L Tryptophan (to give 0.5, 0.1, 0.2, or 0.4 g/l final), 10 ml of 1 g/L p-hydroxybenzoic acid+1 g/l p-aminobenzoic acid+1 g/L 2,3-dihydroxylbenzoic acid (the last three compounds are referred to as the aromatic "vitamins" or "vitamin-like componds", and, as necessary, 1 ml of 150 mg/ml Ampicillin (sodium salt) and/or 1 ml of 100 mg/ml Spectinomycin HCl. Aromatic amino acids and vitamins were not required and were not used for strains expressing functional AroE protein.
[0096] For shake flasks, NBS salts (Jantama et al. 2008a) plus 0.2 M MOPS buffer, pH 7.4 was substituted for the pre-autoclave mix described above, but the glucose and other additives were the same. For fed batch fermentation, the feed bottle contained 600 g/L of anhydrous glucose and, if necessary, 32 ml/L of 50 g/L phenylalanine+50 g/L tyrosine+50 g/L tryptophan. 9 M NH.sub.4OH was used as base to maintain the pH of the fermentation medium. Aromatic amino acids and vitamins were not required and were not used for strains expressing a functional AroE protein.
[0097] Fed-batch fermentations were performed in 7 L New Brunswick Scientific Fermentors with pH, DO, temperature, glucose, and feed rate controlled by either DCU controllers or Biocommand Software. The medium was 50 mM K2HPO4, 20 mM K2SO4, 3 mM MgSO4 and trace elements. The trace elements are prepared as a 50.times. stock and contained the following components: 1.6 g/L FeCl.sub.3, 0.1 g/L CuCl.sub.2, 0.2 g/L ZnCl.sub.2.4H.sub.2O, 0.2 g/L NaMoO.sub.4, 0.05 g/L H.sub.3BO.sub.3, and 0.55 g/L MnCl.sub.2.4H.sub.2O. The temperature was maintained at 37.degree. C., the pH was maintained at 7.0 by 9N ammonium water. Aeration was at 0.5 vvm and the dissolved oxygen (DO) was maintained at 30% by automatically increasing the impeller's speed from 750 rpm to 1200 rpm. The initial glucose concentration in the medium was around 20 to 25 g/L. Feed glucose solution was added to the fermentor when the concentration dropped to below 5 g/L. The initial glucose feed rate was 4 g/L/hr and was ramped up to a feed rate of 7 g/L/hr by 48 hours after which it was maintained at 7 g/L/hr.
[0098] Construction of plasmids expressing muconic acid pathway genes: The three heterologous genes required for conversion of DHS to muconic acid were cloned either singly or in combination into a low-copy plasmid, pCL1921 (Lerner and Inouye, 1990). The DNA sequence of pCL1921 is given in SEQ ID No. 20 in Table 7. Briefly, the coding sequences of catAX, aroY and aroZ analogs or homologs were codon-optimized for expression in E. coli and commercially synthesized (GeneArt, Invitrogen). These sequences were then PCR amplified using a forward primer carrying a unique ribosome-binding site and a reverse primer carrying a unique terminator sequence for each gene. The resulting PCR fragment was digested with restriction enzymes and cloned downstream of a unique constitutive promoter sequence by standard molecular cloning procedures. The promoter sequences were cloned by PCR amplification from source DNA sequences previously described (United States Patent Application 20090191610; U.S. Pat. No. 7,244,593) followed by restriction digestion and standard molecular cloning. The promoter-RBS-coding sequence-terminator sequence together constituted an expression cassette. Individual expression cassettes were next combined to generate plasmids expressing one, two or all three muconic acid pathway genes.
[0099] The present invention is further illustrated using the following examples; however the examples provided herein in either alone or in any combination thereof should be construed to limit the scope or the embodiment of the invention. The claims provided at the end define the scope of the invention. A person skilled in the art can clearly understand the scope of the present invention as defined the claims. A person skilled in the art can make modifications or changes to the technical solutions provided by the invention without departing from the spirit and scope of the present invention.
EXAMPLE 1
Increasing Expression of aroG and aroF Genes
[0100] The tyrR gene of E. coli can be mutated by any one of a number of well-known methods, such as chemical or radiation mutagenesis and screening (for example by PCR and DNA sequencing) or selection for analog resistance (for example, resistance to 4-fluorotyrosine), transposon mutagenesis, bacteriophage Mu mutagenesis, or transformation. In a preferred embodiment, the mutation in tyrR gene is a null mutation (a mutation that leaves no detectable activity), and in a more preferable embodiment, at least a portion of the tyrR gene is deleted. This can be accomplished, for example, by using a two-step transformation method using linear DNA molecules (Jantama et al, 2008a; Jantama et al, 2008b). In the first step, a cam.sup.R, sacB cassette is integrated at the tyrR locus to replace most or all of tyrR open reading frame by double recombination and selecting for chloramphenicol resistance. In the second step, a linear DNA comprising a deleted version of the tyrR gene is integrated by double recombination, selecting for resistance to 5% sucrose in a rich medium such as LB. Correct deletions are identified and confirmed by diagnostic polymerase chain reaction (PCR). The purpose of deleting tyrR is to increase expression of aroG and aroF. An alternative approach that achieves a similar result is to replace the native promoter in front of aroG and/or aroF with a strong constitutive promoter and add, if necessary, a transcription terminator. More details on how this is accomplished in general are given in Example 4 below.
[0101] The latter of the two approaches described above for overcoming the repression of AroG and AroF activities by TyrR protein is preferable, since deletion of tyrR can cause unwanted overexpression of genes such as aroLM (Neidhardt and Curtiss, 1996). More detail on how this is accomplished in general is given in Example 4 below.
EXAMPLE 2
Feedback Resistant AroG and AroF
[0102] Mutations in the aroG gene that lead to a feedback resistant AroG enzyme (3-deoxy-D-arabinoheptulosonate-7-phosphate synthase or DAHPS) are well known in the art (Shumilin et al, 1999; Kikuchi et al, 1997; Shumilin et al, 2002). Also well known are methods for creating, identifying, and characterizing such mutations (Ger et at, 1994, Hu et al., 2003). A preferable mutation is one that leads to complete resistance to inhibition by phenylalanine. Any of the known published feedback resistant mutations can be introduced into an aroG gene contained in the chromosome or on a plasmid by any of a number of well known methods, one example of which is mutagenic PCR in which the desired mutation is synthesized as part of a PCR priming oligonucleotide (Hu et al., 2003). Correct installation of the mutation is confirmed by DNA sequencing. The sequence of the wild type aroG gene from E. coil C is given in SEQ ID No. 18. A preferred mutation is a point mutation that changes amino acid 150 of AroG from proline to leucine, for example by changing codon 150 from CCA to CTA (Hu et al, 2003). In a more preferred embodiment, codon 150 is changed from CCA to CTG, which is a preferred codon in E. coli. This particular allele of aroG is preferred, since the encoded DAHP synthase is completely resistant to inhibition by phenylalanine up to 3 mM, and it has a specific activity similar to the wild type enzyme (Hu et al., 2003).
[0103] Additional feedback resistant aroG alleles can be obtained by mutagenesis and selection for resistance to one or more phenylalanine analogs, such as beta-2-thienylalanine, p-fluorophenylalanine, p-chlorophenylalanine, o-fluorophenylalanine, and o-chlorophenylalanine, followed by demonstrating that the mutation causing the resistance is linked to the aroG gene (Ger et al., 1994; U.S. Pat. No. 4,681,852). Linkage to aroG can be demonstrated directly by DNA sequencing or enzyme assay in the presence and absence of phenylalanine, (Ger et al., 1994) or indirectly by phage mediated transduction and selection for a genetic marker at or near the aroG locus that can be selected, either for or against (U.S. Pat. No. 4,681,852). Such a genetic marker can be a deletion or point mutation in the aroG gene itself, or a mutation in any suitable closely linked gene such as nadA in case of E. coli. For an example in E. coli, after mutagenesis and selection for phenylalanine analog resistance, individual mutants or pools of mutants can be used as donors for P1 mediated transduction into a naive recipient that is deleted for all three DAHP synthase genes, aroG, aroF, and aroH, and selecting for growth on an appropriate minimal medium. The transductants will then be enriched for mutations in the desired gene(s). Alternatively, after mutagenesis and selection for analog resistance, individual mutants or pools of mutants can be used as donors for P1 mediated transduction into a naive recipient strain that contains a null mutation in the nadA gene, again selecting for growth on an appropriate minimal medium lacking nicotinamide. Another approach is to select for resistant mutants in a strain background that contains a transposon, for example Tn10, insertion near the aroG gene, such as in the nadA gene. P1 transduction from analog resistant mutants into a strain background that does not contain said transposon and selecting for tetracycline or other appropriate antibiotic resistance will enrich for the desired aroG mutations. In all such approaches, feedback resistance is ultimately confirmed by enzyme assay and DNA sequencing of the gene. We shall refer to alleles of aroG that are resistant to feedback inhibition as aroG*.
[0104] Strain WM191 (.DELTA.tyrR, .DELTA.aroF) was derived from YMC9 (ATCC 33927). The two step gene replacement method (Jantama et al., 2008a) was used to install clean deletions in both tyrR and aroF, to give strain WM191. Next, a nadA::Tn10 allele was transduced in from CAG12147 (CGSC 7351, Coli Genetic Stock Center, Yale University) to give strain WM189 (.DELTA.tyrR, .DELTA.aroF, nadA:: Tn10). Selection was on LB plus tetracycline HCl (15 mg/l). Strain RY890 (.DELTA.tyrR::kan, aroF363) was derived from MM294 (ATCC 33625) in three steps by P1 transduction. The donor strains, in order, were JW1316-1 (CGSC 9179, Coli Genetic Stock Center, Yale University), NK6024 (CGSC 6178, Coli Genetic Stock Center, Yale University), and AB3257 (CGSC 3257, Coli Genetic Stock Center, Yale University), and the three selections, in order, were LB plus kanamycin sulfate (50 mg/l), LB plus tetracycline hydrochloride (15 mg/l), and NBS minimal glucose (Jantama et al., 2008a) with thiamine HCl (5 mg/l).
[0105] WM189 was mutagenized with UV light to about 20% survival and plated on NBS minimal glucose medium (Jantama et al., 2008a) containing o-fluorophenylalanine (1 mM), thiamine (5 mg/l), and nicotinamide (1 mM). Colonies from each of several plates were collected into separate pools, and P1vir lysates were made on each pool. These lysates were used to transduce WM191 to tetracycline resistance (15 mg/l) on LB medium, and the colonies obtained were replica plated to NBS minimal glucose medium containing o-fluorophenylalanine at 1 mM, thiamine (5 mg/l), and nicotinamide (1 mM). Colony replicas that survived both tetracycline and analog were assumed to contain a feedback resistant mutation in aroG. Eight individual colonies from 5 independent pools were chosen for DNA sequencing. The aroG coding regions were amplified by polymerase chain reaction and sequenced. The results, shown in Table 4, revealed that each of the eight strains contained a point mutation in their aroG gene. Some of the alleles were identical to published alleles, but some were novel.
[0106] A Plvir lysate from one of the pools described above was used to transduce RY890 (which has an aroG wild type allele) to tetracycline resistance and resistance to o-fluorophenylalanine (0.3 mM) by replica plating as described above. Four colonies, named RY893, RY897, RY899, and RY901, were picked for DNA sequencing (Table 4), and again, two of the alleles were identical to a published allele, but two were novel. Strain RY902, which is isogenic to the latter four strains, but contains a wild type aroG gene, was constructed as a control, by transduction from CAG12147. These five strains were grown overnight in shake flasks in 25 ml NBS minimal glucose (15 g/l) plus thiamine HCl (5 mg/l) and nicotinamide (1 mM). The resulting cells were harvested by centrifugation, resuspended to be rinsed with 10 ml water, re-centrifuged, and resuspended in 0.5 ml of 50 mM potassium phosphate, pH 7.0. The suspended cells were lysed by vortexing with three drops of chloroform, and the crude lysate was assayed for DAHP synthase activity using a method similar to a method described in the literature (Hu et al., 2003), with the following modifications. The phosphate buffer was 50 mM (final concentration), pH 7.0, the final erythrose-4-phosphate concentration was 2 mM, the final phosphoenol pyruvate concentration was 5 mM, the incubation temperature was 30.degree. C., and the reaction was stopped at 10 minutes. We define 1 mU as the activity that produced 1 nMole of DAHP per minute per milligram protein. To test for feedback resistance, each crude lysate was assayed with or without phenylalanine at a final concentration of 18 mM. The assay results are shown in Table 5. The enzymes showed varying specific activity and resistance to phenylalanine, but all of selected mutant versions that were tested were significantly more resistant than the wild type controls.
[0107] The aroG alleles from RY893, RY899, RY901, and RY902, described above, were introduced into a muconic acid producing strain background as follows. Plvir lysates from the aroG* and aroGwt donor strains were used to transduce MYR219 (E. coli C, .DELTA.aroE, .DELTA.ack::P.sub.15-aroB, pMG37) to tetracycline HCl resistance (15 mg/l), to give new strains RY903, RY909, RY911, and RY912, respectively. Each of these strains was then transduced to kanamycin sulfate resistance (50 mg/l) using a P1vir lysate of JW1316-1, to introduce the .DELTA.tyrR:kan allele, to give strains RY913, RY919, RY921, and RY922, respectively. Spectinomycin selection was maintained throughout to maintain the muconic plasmid. The resulting four strains were grown for 48 hours at 37.degree. C. in shake flasks in 25 ml NBS minimal medium (Jantama et al., 2008a) containing supplements of 20 g/l glucose, 0.2 M MOPS buffer, pH 7.4, nicotimamide (1 mM), phenylalanine (100 mg/l), tyrosine (100 mg/l), tryptophan (100 mg/l), p-hydroxybenzoic acid (1 mg/l), p-aminobenzoic acid (1 mg/l), 2,3-dihydroxybenzoic acid (1 mg/l), phenol red (10 mg/l), and ammonium sulfate (1 g/l). The pH was kept close to 7 as estimated by eye from the color of the phenol red, against a pH 7.0 standard, by manual addition of 1 ml aliquots of 1.0 M KOH as called for to the shake flasks. The muconic acid produced was assayed by HPLC as described above, and the results are shown in Table 6. All three strains that contain a feedback resistant aroG* allele produced more muconic acid than the isogenic strain containing the wild type aroG allele. In a separate experiment disclosed herein, strain MYR205, containing aroG on multicopy plasmid pCP32AMP, produced 1.5 g/l muconic acid in a shake flask. Thus, the inventors have shown that the combination of .DELTA.tyrR and single copy chromosomal aroG* can perform well compared to an isogenic aroG plasmid containing strain to produce muconic acid in shake flasks. The inherent superior genetic stability of the chromosomal alleles compared to plasmid alleles, plus the alleviation of the need for a selective medium to hold in a plasmid, makes the novel strains described herein more suitable for large scale commercial fermentations. Furthermore, no chemical inducer was required for expression of muconic acid pathway genes. Thus, strains of the instant invention described above arc improved over those of the prior art (Niu et al., 2002), all of which contain the gene for overexpression of DAHP synthase on an undesirable multicopy plasmid.
[0108] In a similar fashion to that described above for AroG, a mutation that leads to an AroF or AroH isozyme that is resistant to feedback inhibition by tyrosine can be installed on a plasmid or in the chromosome. A preferred mutation is a point mutation that changes amino acid 148 of AroF from proline to leucine, for example by changing codon 148 from CCG to CTG (Weaver et al., 1990), to give a gene named aroF*. Other alleles of aroF* can be isolated by resistance to tyrosine analogs (for example o-fluorotyrosine, m-fluorotyrosine, p-fluorophenylalanine, etc.) in a fashion analogous to that described above for aroG* alleles. aroF* alleles can be selected, enriched for, and transduced by linkage to a transposon or a kanamycin resistance insertion, for example in a closely linked .DELTA.yfiR::kan as in a strain such as JW2584 (CGSC 10051, Coli Genetic Stock Center, Yale University).
EXAMPLE 3
Deletion of aroE from Chromosomal DNA and Muconic Acid Production
[0109] In this example the effect of overexpression of aroB and aroG on multicopy plasmids as well as the expression of genes coding for proteins functional in the muconic acid pathway was investigated. Strain MYR34 containing a deletion in the aroE gene coding for shikimate dehydrogenase was used as parent strain in these studies. The deletion of chromosomal copy of aroE was accomplished in a fashion similar to that described above in Example 1. When MYR34 was transformed with the plasmid pCP32AMP overexpressing the aroG gene coding for DAHP synthase protein functional in the shikimic acid pathway, there was a significant increase in the accumulation of DHS. When MYR34 was transformed with the plasmid expressing aroB from a constitutive promoter, no significant increase in the accumulation of DHS was noticed. However, when the E. coli strain MYR34 was transformed with the plasmid expressing both aroB and aroG genes, there was an increase in the accumulation of DHS than observed with MYR34 transformed with aroG alone thus suggesting aroB as a secondary bottleneck in DHS production (FIG. 6).
[0110] In the experiments presented in FIG. 7, the effect of an additional copy of the aroB gene integrated into the host chromosomal DNA was examined. In the E. coli strain MYR170 derived from MYR34, an additional copy of the aroB gene under the control of the P.sub.15 promoter was integrated into the host chromosome at the ack locus. When MYR170 strain was transformed with the pCP32AMP plasmid, there was a slight increase in the DHS accumulation when compared to the DHS accumulation detected in the MYR34 strain transformed with the same plasmid. This slight increase in the accumulation of DHS in the MYR170 can be attributed to an additional copy of aroB gene integrated into the host chromosomal DNA. When MYR170 was transformed with pCP54 expressing both aroB and aroG genes, there was a further increase in the DHS accumulation suggesting aroB as a secondary bottleneck in DHS production.
[0111] FIG. 8 provides the results on muconic acid production with the E. coli strains MYR34 and MYR170. Having established that in the aroE deletion strains MYR34 and MYR170, with overexpression of aroB and aroG genes there is an accumulation of DHS, efforts were made to see whether the expression of "muconic pathway" genes coding for the proteins functional in muconic acid production pathway would lead to conversion of DHS into cis, cis-muconic acid. In these experiments, the E. coli stains MYR34 and MYR170 were transformed either with the plasmid pMG37 alone or with both plasmids pMG37 and pCP32AMP. The plasmid pMG37 expresses aroZ, aroY and catAX genes coding for proteins functional in muconic acid pathway. The =conic acid production in both MYR34 and MYR170 increased when these bacterial strains were transformed with both the plasmids pCP32AMP and pMG37 when compared to the muconic acid production in these two strains transformed only with pMG37 plasmid suggesting that in these strains araB expression is the bottleneck for cis, cis-muconic acid production.
EXAMPLE 4
Overexpression of tktA
[0112] Transketolase encoded by tktA is a key enzyme in the pentose phosphate pathway and is thought to be limiting for the production of erythrose-4-phosphate, one of the key intermediates in the production of muconic acid. Overexpression of tktA, which encodes transketolase, by installing the gene with its native promoter on a multicopy plasmid (Sprenger et al, 1995, 1995a), is known to improve flux into the aromatic pathway (Draths et al., 1992). However, such plasmids are unstable, and often require antibiotic selection for maintenance. Another approach in the prior art was to add one additional copy of the tktA gene to the chromosome of the host strain (Niu et al., 2002). However, one additional copy of tktA with its native promoter is not sufficient to saturate the aromatic pathway with erythrose-4-phosphate, since its native promoter is not very close to the ideal. As such, the process needs substantial improvement.
[0113] Improved overexpression of tktA can be obtained, for example, by substituting the native tktA promoter in the chromosome with a strong constitutive promoter, for example a P.sub.15 or P.sub.26 promoter from Bacillus subtilis phage SPO1 (SEQ ID No. 1 and SEQ ID No. 2, respectively), or the P.sub.R promoter from bacteriophage lambda (SEQ ID No. 3). This is accomplished in two steps as described in Example 1, except that the cam.sup.R, sacB cassette is used to replace the native chromosomal tktA promoter in the first step. In the second step, the strong constitutive promoter is installed by transforming with a linear DNA comprising the strong constitutive promoter, flanked by at least 50 bases of the 5' end of the tktA coding region on the downstream side and at least 50 base pairs of homology just upstream of the native tktA promoter on the upstream side of the strong constitutive promoter, and selecting for sucrose resistance. Improved expression from such an expression cassette is also accomplished by increasing the stability of the mRNA that is transcribed from the expression cassette. Improvement of the mRNA stability is accomplished by adding a stem loop structure at either the 5' end of the mRNA, the 3' end of the mRNA, or both. A stem-loop structure is often present at the end of an mRNA that is naturally terminated by a rho-independent transcription terminator, but if it is not, then a rho-independent transcription terminator can be added to the DNA sequence by well known methods of genetic engineering (ligation, PCR, etc.). Such a terminator can be comprised of an inverted repeat of between 4 and 20 bases in each repeat, separated by a "loop" of 3 or more bases, and followed by a region of one or more bases that is enriched for T's (deoxythymidine). The inverted repeats are rich in G's and C's (deoxyguanidine and deoxycytidine). Similarly, a stem-loop can be constructed into the 5' end of an mRNA by inserting a DNA sequence just downstream from the start point of transcription, but before the ribosome binding site, that contains a stem-loop as described above, but without the T-enriched region. An example of this is given in association with the P.sub.15 promoter (SEQ ID No. 1).
[0114] In the analysis of the effect of overexpression of the tktA gene on the flow of carbon through the shikimic acid pathway, E. coli strain MYR170 was used as a parental strain. MYR170 has a deletion in the aroE gene coding for shikimate dehydrogenase enzyme and an additional copy of the aroB gene at the ack locus.
[0115] In the experiments described in the FIGS. 9, 10 and 11 two different plasmids namely pCP32AMP and pCP50 were used. The plasmid pCP32AMP expresses only the DAHP synthase aroG gene from its native promoter and the plasmid pCP50 expresses the transketolase gene tktA from its native promoter along with aroG gene. MYR170, having an aroE deletion and an additional copy of aroB gene under the control of P.sub.15 promoter integrated at the ack locus of the chromosomal DNA, was transformed individually with pCP32AMP and pCP50 plasmids. As shown in FIG. 8 the DHS accumulation was increased further with the expression of aroG gene along with tktA gene when compared to the E. coli cells expressing only aroG gene.
[0116] FIG. 10 provides data on the DHS yield in two different strains namely MYR34, MYR170 transformed with the plasmid pCP32AMP or pCP50. MYR34 strain having aroE gene deletion yielded 0.1 gram of DHS per gram of glucose consumed. The DHS yield in the MYR34 increased to 0.15 gram of DHS per gram of glucose consumed when this strain was transformed with the pCP32AMP plasmid with aroG gene overexpression. MYR170 has an additional copy of aroB gene inserted at the ack locus. As a result of the presence of this additional copy of the aroB gene, the yield for DHS production in the MYR170 strain transformed with pCP32AMP was slightly higher than the DHS yield noted in the MYR34 strain transformed with pCP32AMP. Thus the presence of an additional copy of aroB in MYR170 caused an increased carbon flow through shikimic acid pathway. Further increase in the DHS yield was observed when the MYR170 strain was transformed with plasmid pCP50 expressing both aroG and tktA genes. Thus the presence of additional copy of tktA accounted for an increase carbon flow through shikimic acid pathway. More specifically, the effect of presence of additional aroB and tktA genes caused an additive effect on DHS yield.
[0117] MYR261 used in the experiments described in FIG. 11 was engineered to integrate an additional copy of tktA gene into the chromosomal DNA of MYR170 at the poxB locus. The desired gene replacement (poxB::tktA) in the MYR261 strain was confirmed via PCR. MYR261 was transformed either with pCP32AMP (aroG overexpression) plasmid or pCP50 (aroG and tktA over expression) plasmid. As a control, MYR170 was transformed with pCP32AMP plasmid. As the result shown in FIG. 11 indicate, the presence of an additional copy of tktA gene in the chromosomal DNA of MYR261 increased the titer for DHS production with pCP32AMP plasmid when compared to the titer for DHS production observed in the MYR170 strain transformed with the same plasmid. Further increase in the transketolase level in the MYR261 strain when transformed with the plasmid pCP50 over expressing transketolase led to further increase in the titer for DHS production. The enzyme encoded by poxB, PoxB, or pyruvate oxidase, produces acetate as a reaction product. As such, the deletion of poxB that results from the insertion of tktA as described herein removes a potentially active pathway for acetate production. Similarly, simultaneous insertion of P.sub.15aroB and deletion of ackA, which encodes AckA, or acetate kinase, as described below in Example 12 below, removes another potentially active pathway to acetate. Production of acetate is generally undesirable in fermentations (Jantama et al., 2008b). As such, these deletions can be useful for reducing acetate production.
[0118] FIG. 12 provides the titer for muconic acid and acetic acid production in MYR170, MYR261 and MYR305 strains of E. coli after transformation with the plasmids pCP32AMP and pMG37. MYR305 is derived from MYR170 by means of deleting poxB gene from the chromosomal DNA while MYR261 is a MYR170 derivative wherein the poxB gene has been inactivated by means of inserting an additional copy of the tktA gene. As mentioned above, the plasmid pCP32AMP expresses the aroG gene coding for DAHP synthase protein functioning in the shikimic acid biosynthetic pathway leading to the accumulation of DHS due to the deletion of aroE gene in the E. coli strains MYR170, MYR261 and MYR305. With the expression of muconic pathway genes namely aroZ, aroY and catAX on the plasmid pMG37, the DHS is converted into cis, cis-muconic acid as illustrated in FIG. 2. With the presence of an additional copy of the aroB gene and the tktA gene in the MYR261 strain, there was a slight increase in the production of muconic acid accompanied by a decrease in the accumulation of acetic acid.
EXAMPLE 5
Overexpression of talA or talB
[0119] The talB gene encodes the predominant transaldolase in E. coli, but the talA gene also encodes a minor transaldolase. Overproduction of transaldolase is known to improve flux into the aromatic pathway (Lu and Liao, 1997; Sprenger, 1995; Sprenger et al, 1995b). In the prior art, this was accomplished by overexpression of the tal gene (now known to be the talB gene) on a multicopy plasmid from its native promoter (Lu et al., 1997, Sprenger et al., 1995b). However, such plasmids are unstable, and require antibiotic selection for maintenance. Thus, there is a need for an improved process. Improved expression of talB can be obtained, for example, by substituting the native talB promoter in the chromosome with a strong constitutive promoter, for example a P.sub.15 or P.sub.26 promoter from Bacillus subtilis phage SPO1 (SEQ ID No. 1 and SEQ ID No. 2, respectively), or the P.sub.R promoter from bacteriophage lambda (SEQ ID No. 3). This is accomplished in two steps as described in Example 1, except that the cam.sup.R, sacB cassette is used to replace the native chromosomal talB promoter in the first step. In the second step, the strong constitutive promoter is installed by transforming with a linear DNA comprising the strong constitutive promoter, flanked by at least 50 bases of the 5' end of the talB coding region on the downstream side and at least 50 base pairs of homology just upstream of the native talB promoter on the upstream side of the strong constitutive promoter, and selecting for sucrose resistance. The talA gene can also be overexpressed by a similar method, but it is preferred to over express the talB gene, since it encodes the predominant activity (Sprenger, 1995; Sprenger et al, 1995b). See Example 4 for more details on construction of the expression cassette designed for overexpression.
EXAMPLE 6
Expression of aroZ, aro and catAX Genes
[0120] To demonstrate conversion of endogenous DHS produced by E. coli into muconic acid, heterologous genes catAX from Acinetobacter sp. ADP1, aroY from Klebsiella pneumoniae, and quiC from Acinetobacter sp. ADP1, were cloned under strong constitutive promoters (P.sub.15, P.sub.R, and P.sub.26, respectively) in a low-copy plasmid, pCL1921 (Lerner and Inouye, 1990) to generate a `muconic plasmid` pMG37. MYR34 strain derivatives carrying the empty vector (pCL1921) or pMG37 were grown at 37.degree. C. for 17 hrs. in a shake flask medium (NBS minimal medium supplemented with aromatic amino acids and vitamins) containing 2% glucose. Supernatants were collected and analyzed by HPLC. In contrast to MYR34/pCL1921 which shows accumulation of DHS, MYR34/pMG37 shows production of muconic acid (FIG. 13). No significant amount of DHS, or intermediate products such as PCA and catechol were detected from the latter strain, suggesting that the heterologous genes expressed from pMG37 were functional and sufficient.
EXAMPLE 7
Comparison of aroZ Homologs
[0121] Three different aroZ homologs and analogs were compared (FIG. 14) for their ability to divert DHS into the muconic acid production pathway. quiC from Acinetobacter sp. ADP1, asbF from Bacillus thuringiensis, and qa-4 from Neurospora crasser, are reported to encode for proteins that have AroZ-like activity (Elsemore and Ornston, 1995; Fox et al, 1995; Rutledge, 1984). Each of these genes was codon-optimized for expression in E. coli and synthesized by GeneArt (Invitrogen), and cloned under a strong constitutive P.sub.26 promoter in low-copy `muconic plasmid` which also expressed catAX and aroY genes from the P.sub.15 and P.sub.R promoters, respectively. MYR34/pCL1921, MYR34/pMG37 (muconic plasmid with quiC as aroZ), MYR34/pMG47 (muconic plasmid with asbF as aroZ), and MYR34/pMG70 (muconic plasmid with qa-4 as aroZ) were grown at 37.degree. C. for 48 hrs. in a shake flasks with minimal medium containing 2% glucose, the aromatic amino acids and aromatic vitamins. Supernatants were collected and analyzed by HPLC. As expected, empty vector transformed MYR34 accumulated DHS and produced no muconic acid. The two aroZ homologs and the one analog examined were functional in diverting DHS towards muconic acid production, but to a varying degree. The MYR34 derivative expressing quiC gene was most robust and showed nearly 100% conversion of DHS to muconic acid with insignificant amount of DHS retention. The MYR34 derivative expressing the fungal aroZ homologue, qa-4, followed close with about 80% conversion of DHS to muconic acid and 20% DHS retention. Lastly, the MYR34 derivative expressing ashF gene showed only 50% conversion of DHS to muconic acid and 50% DHS retention. Taken together, under our shake flask assay conditions, the expression and/or activity of quiC gene appeared to be the highest compared to that of other aroZ homologs.
EXAMPLE 8
Chromosomal Integration of catAX, aroY and quiC
[0122] Muconic acid can be produced by strains that contain only chromosomally integrated single copies of catA-X, aroY and quiC expressed from constitutive promoters at adhE locus.
[0123] MYR170 (.DELTA.aroE, .DELTA.ack::P.sub.15-aroB), a high DHS producer, was the host strain used for integrating the muconic acid pathway genes at the adhE locus in the chromosome (SEQ ID No. 41). The resulting strain MYR352 was transformed with plasmids YEp24 (medium-copy, empty vector), pCP32AMP (medium-copy, aroG expressed from native promoter), or pCP50 (medium-copy, aroG and tktA expressed from their respective native promoters) to generate derivative strains. The latter two plasmids were used to increase DHS production. Strains were grown at 37.degree. C. for 72 hrs. in shake flask medium containing 2% glucose as described above. Supernatants were collected at 72 hrs. and analyzed by HPLC. As expected, the aroG and aroG/tktA transformed MYR352 derivatives showed an overall increase in total product formation compared to an empty vector control (FIG. 15). All of the MYR352 transformants produced measurable titers of muconic acid, demonstrating for the first time that muconic acid can be produced by a strain that contains only integrated "muconic pathway" genes and without a fed chemical inducer of gene expression.
[0124] Not all DHS that was produced in any of these MYR352 derivative strains was converted to the end product muconic acid. Instead, there was a significant amount of catechol accumulation (FIG. 15), suggesting that expression or activity of catAX is limiting when it is expressed from a single copy on chromosome. Since the major accumulating intermediate was catechol, it is likely that quiC and aroY gene expression and/or activity is sufficient in the MYR352 strain background for muconic acid synthesis.
[0125] The MYR352 strain derivatives were compared in parallel with analogous MYR219 strain derivatives. MYR219 strain is same as MYR170 strain but contains low-copy plasmid pMG37 expressing muconic acid pathway genes. Thus, the main difference between MYR352 and MYR219 strains is with reference to the dosage of muconic acid pathway genes (1 copy vs. about 5 copies, respectively). In contrast to MYR352 derivative strains, MYR219 derivative strains showed very little accumulation of catechol or other intermediates, and successfully produced the end product muconic acid. Together, these results indicate the need for increasing catAX activity in strains such as MYR352.
EXAMPLE 9
Expression of catAX
[0126] Accumulation of catechol and inefficient production of muconic acid in MYR352 strain is due to limiting dosage and/or activity of the catAX gene product(s). As described above, MYR352 contains .DELTA.aroE, .DELTA.ack::P.sub.15-aroB and chromosomally integrated single copies of catAX, aroY and quiC genes under strong constitutive promoters. This strain was transformed with medium-copy empty vector control (YEp24) or aroG/tktA expression plasmid (pCP50) to increase carbon flow into the aromatic amino acid synthesis pathway and produce high amounts of DHS. Growth of transformed strains at 37.degree. C. for 72 hrs in shake flask medium supplemented with 2% glucose as described above resulted in accumulation of catechol intermediate. This result suggested that catAX activity may be insufficient in MYR352. To confirm this hypothesis, the ability of one or more muconic acid pathway genes expressed from low-copy plasmid to alleviate catechol accumulation in MYR352/pCP50 was tested (FIG. 16). Specifically, MYR352/pCP50 was further transformed with low-copy empty vector control (pCL1921) or plasmids expressing all three genes, two genes, or one gene of the muconic acid production pathway. The derivative strains were assayed in a shake flask experiment as described above. While increasing the dosage of aroY alone (from pMG27) or quiC alone (from pMG39) did not alleviate catechol accumulation, expression of all of the muconic acid pathway genes (from pMG37) or catAX and aroY together (from pMG33), resulted in successful conversion of catechol to muconic acid. Further, expression of catAX alone (from pMG31) was sufficient for production of muconic acid and preventing accumulation of catechol.
EXAMPLE 10
Constructing a Leaky aroE Mutation
[0127] In the prior art process for producing cis, cis-muconic acid, the host strain contains a mutation in the aroE gene named aroE353, which is a null mutation. As a result, the strain requires the feeding of the aromatic amino acids (phenylalanine, tyrosine, and tryptophan) and aromatic vitamins made from the shikimate pathway (p-hydroxy benzoic acid, p-amino benzoic acid, and 2,3-dihydroxy benzoic acid). The aromatic amino acids arc too expensive to be fed in a commercially attractive process. As such, the prior art process needs a substantial improvement. This can be accomplished by installing a leaky version of the aroE gene, that we shall call aroE*. Leaky mutations are obtained by first generating a missense mutation that changes one amino acid in the aroE coding sequence that results in a null phenotype. This can be accomplished by any form of mutagenesis and screening for simultaneous auxotrophy for the six aromatic compounds listed above. A preferred method is to create a pool of mutant aroE genes by error-prone PCR mutagenesis, using Taq DNA polymerase, using wild type E. coli C genomic DNA as the template, and using PCR oligonucleotide primers that hybridize about 1000 base pairs upstream and 1000 base pairs downstream of the aroE coding region. The resulting pool of linear DNA molecules is used to transform an E. coli C derivative that produces cis, cis-muconic acid, and which contains an integrated cam.sup.R, sacB cassette that has replaced the aroE coding region (see Example 4 for a related example), and selecting for sucrose resistance. The transformants are then screened for auxotrophs that have lost chloramphenicol resistance and require the six aromatic compounds listed above. Several independent auxotrophs are picked and tested for revertability by plating about 10.sup.7, 10.sup.8, or 10.sup.9 cells (rinsed in minimal glucose medium) on a minimal glucose plate without the six aromatic compounds. Revertants that give rise to colonies on the plates are picked and tested for production of cis, cis-muconic acid, but without production of substantial levels of aromatic amino acids. Among such revertants will be strains that carry one or more mutations in the aroE gene, such that the AroE enzyme provides enough aromatic amino acids and vitamins for growth, but not a surplus of these aromatic compounds. Another method to obtain a leaky aroE mutant is to install one of the classical revertable aroE mutants, such as aroE353 and aroE24 (both available from the Coli Genetic Stock Center at Yale University, New Haven, Conn., USA), into a cis, cis-muconic acid producing strain, and select for revertants as described above.
EXAMPLE 11
Import of Glucose by Facilitated Diffusion
[0128] One of the substrates in the first committed step of the aromatic pathway is phosphoenolpyruvate (PEP). PEP is also the source of phosphate and energy for importing glucose and some other sugars by the bacterial phosphotransferase system (PTS). Thus, when a bacterium is growing on a PTS-dependent sugar, there is competition between the PTS and the aromatic pathway for PEP. As such, a significant improvement in increasing flux to the aromatic pathway can be achieved by deleting the PTS and providing an alternative pathway for sugar uptake. One solution to this problem is to replace the PTS with the E. coli GalP permease, a proton symporter that works reasonably well for glucose uptake (U.S. Pat. No. 6,692,794). However, the proton symporter still uses energy to maintain the proton gradient that is necessary to drive the permease. As such, there is a need for even further improvement in the process.
[0129] Some sugars, such as xylose, can be imported by a transporter protein that derives energy from hydrolysis of ATP (adenosine triphosphate). Once again, if the energy-dependent transporter can be replaced by a transporter that requires less energy, then an improvement can be made, since the energy inherent in the ATP can be conserved for other beneficial uses.
[0130] A significant improvement can be obtained by using a facilitated diffusion transporter, which expends no energy for the importation of the sugar (Parker et al, 1995; Snoep et al, 1994). For example, the glucose facilitator from Zymomonas mobilis, encoded by the glf gene, can be used in place of, or in addition to, the PTS in 3-dehydroshikimate (DHS) producing strains (Yi et al., 2003). However, these strains still rely at least partly on GalP for glucose import. Since GalP requires energy in the form of a proton gradient for importation of glucose, there is a need for improvements in the efficiency of glucose import for muconic producing strains.
[0131] A cassette for expression of glf plus a glucokinase gene, glk, also from Z. mobilis, can be assembled with a strong constitutive promoter, for example P.sub.26. This cassette can then be integrated into the genome of a host strain at a location that will not interfere with production of the desired compound, which in this case is cis, cis-muconic acid. An example of such a location in the E. coli chromosome is the threonine degradation operon, tdcABCDEFG. If the growth medium contains no threonine, then this operon is not needed or expressed, so an insertion of an expression cassette in that operon does not interfere with metabolism.
[0132] To achieve the above described improvement, one or more of the genes encoding a PTS function are deleted, using a method similar to that disclosed in Example 1. For example, one or more of ptsH, ptsl, crr, or ptsG can be deleted. Next galP is deleted using the process as decribed in the U.S. Pat. No. 8,871,489. The P.sub.26-glf; glk cassette can then be installed in two steps, similar to those described in Example 1. In the first step, a cam.sup.R, sacB cassette is integrated at the tdc operon, using a linear DNA derived from pAC21 (SEQ ID No. 15), and selecting for chloramphenicol (30 mg/l) resistance. In the second step, the P.sub.26-glf; glk cassette is integrated at the tdc operon, using a linear DNA derived from pAC19 (SEQ ID No. 15), selecting for sucrose resistance and screening for chloramphenicol sensitivity, and in this case, improved growth on minimal glucose medium.
[0133] To test whether facilitated diffusion of glucose could substitute for the conventional glucose import systems in E. coli, the ptsHI genes and the galP gene were deleted from MYR34 (AaroE), and then the P.sub.26-glf, glk cassette was integrated at the tdc operon, using a linear DNA derived from pAC19 (SEQ ID No. 15), to give strain MYR217. MYR217 grows reasonably well on a minimal glucose medium supplemented with the required three aromatic amino acids and three aromatic vitamin-like compounds (FIG. 17). However, strain MYR31, which contains deletions of ptsHI and galP, but does not contain the glf, glk cassette did not show any measurable growth (FIG. 17). Thus, facilitated diffusion is sufficient to replace the two conventional glucose import systems in our strain background.
[0134] To test whether facilitated diffusion is useful for producing compounds derived from the aromatic pathway, MYR34 and MYR217 were transformed with pCP54 (aroG, aroB) and pCP55 (aroG, aroB, tktA). Production of the aromatic intermediate 3-dehydroshikimate (DES) in shake flasks was compared for these two strains (FIG. 18). With either pCP54 or pCP55, the strain using facilitated diffusion produced as much or more DHS than the strains using the conventional glucose import systems. Production of DES is a good proxy for muconic acid production in engineered E. coli strains, so we can conclude that facilitated diffusion of glucose is a useful improvement for muconic acid production.
EXAMPLE 12
Overexpression of the aroB Gene
[0135] Expression of the aroB gene is reported to be rate limiting for cis, cis-muconic acid production (Niu et al., 2002). In the prior art, this was allegedly solved by integrating a second copy of the aroB gene with its native promoter. However, this is insufficient to alleviate the aroB limitation, since the native promoter and ribosome binding site of the aroB gene are far from ideal. As such, the process needs substantial improvement.
[0136] Improved overexpression of aroB can be obtained, for example, by replacing the native aroB promoter in the chromosome with a strong constitutive promoter, for example a P.sub.15 or P.sub.26 promoter from Bacillus subtilis phage SPO1 (SEQ ID No. 1 and SEQ ID No. 2, respectively), or the P.sub.R promoter from bacteriophage lambda (SEQ ID No. 3). This is accomplished in two steps as described in Example 4, except that the cam.sup.R, sacB cassette is used to replace the native chromosomal aroB promoter and/or ribosome binding site in the first step. In the second step, the strong constitutive promoter is installed by transforming with a linear DNA comprising the strong constitutive promoter, followed by a ribosome binding site and at least 50 bases from the 5' end of the aroB coding sequence, including the ATG start codon, on the downstream side, and at least 50 base pairs of homology just upstream of the native aroB promoter on the upstream side of the strong constitutive promoter, and selecting for sucrose resistance. In addition to, or instead of, installing a stronger promoter, using a similar method, a stronger ribosome binding site, for example, AGGAGG, can be installed about 4 to 10 base pairs upstream of the ATG translation start codon of aroB. A copy of such a synthetic cassette, for example, a P.sub.15-aroB cassette, can be integrated in the chromosome at a locus distinct from the native aroB locus, for example at the ack locus. Simultaneous deletion of the ack gene, as well as deleting the poxB gene as in Example 4 can help to reduce formation of unwanted acetate during fermentations.
EXAMPLE 13
Decreasing Flux through the Oxidative Branch of the Pentose Phosphate Pathway
[0137] The erythrose-4-phosphate that is needed for the first committed step in the aromatic pathway is derived from the non-oxidative portion of the pentose phosphate pathway (PPP). There are two different pathways by which carbon can enter the PPP. The first is from glucose-6-phosphate by the enzymes glucose-6-phosphate dehydrogenase (encoded by the zwf gene), 6-phosphogluconolactonase (encoded by the pgl gene), and 6-phophogluconate dehydrogenase (encoded by the gnd gene), to give ribulose-5-phosphate. In the last of these three steps, one carbon is lost as CO.sub.2. This path into the PPP is called the oxidative branch of the PPP. Ribulose-5-phosphate is then converted into a variety of other sugar phosphates by the action of isomerases, epimerases, transketolase, and transaldolase. This group of reversible reactions, starting with ribulose-5-phosphate, is called the non-oxidative branch of the PPP. The second path by which carbon can enter the PPP is through fructose-6-phosphate and glyceraldehye-3-phosphate (both of which come from the Embden-Myerhoff pathway, also known as glycolysis), which are combined and rearranged by transaldolase and transketolase to give the variety of other sugar phosphates, one of which is erythrose-4-phosphate. If carbon enters the PPP through this second route, then no CO.sub.2 is lost. In order to improve the yield of cis, cis-muconic acid from glucose, the loss of CO.sub.2 can be prevented by blocking the oxidative branch of the PPP, such that all carbon entering the PPP must come through a non-oxidative route from fructose-6-phosphate and glyceraldehye-3-phosphate. The blocking of the oxidative branch of the PPP is accomplished by deleting the zwf gene, using a two-step method similar to that disclosed in Example 1 for deleting the tyrR gene.
EXAMPLE 14
Increasing the Flux to and through PEP to the Aromatic Pathway
[0138] It is desirable to ensure that PEP is not a rate limiting intermediate on the pathway to cis, cis-muconic acid. This is accomplished, for example, by increasing the recycling of pyruvate to PEP by the enzyme PEP synthetase, which is accomplished by integrating an overexpression cassette of the pps gene as described above in other examples. Another approach is to limit the consumption of PEP by pyruvate kinase, which in E. coli is encoded by the pykA and pykF genes. In this case, the approach is to decrease the activity of the enzyme(s). This is accomplished by deleting one or more genes that encode pyruvate kinase (as described in Example 1 for tyrR and in the U.S. Pat. No. 9,017,976), or reducing the strength of expression of one or more of these genes, for example, by mutating the promoter, ribosome binding site, or coding sequence, such that the level of pyruvate kinase activity is decreased. For example, the RBS in front of the E. coli pykA gene is 5'CGGAGTATTACATG. The ATG translation start codon is underlined. This sequence can be mutated to CaGAGTATTACATG, CaaAGTATTACATG, CaatGTATTACATG, CaataTATTACATG, and so on, such that the RBS sequence is made less like the consensus RBS of AGGAGG by one base change at a time. Each mutated version is then introduced into the chromosome at the pykA locus, replacing the wild type, and cis, cis-muconic acid production levels are measured for improvement.
EXAMPLE 15
Conferring Growth on Sucrose
[0139] Strains derived from E. coli C do not grow on sucrose as a sole carbon source. However, they can be genetically engineered to do so as disclosed in the International Patent Application Publication No. WO2012/082720 and US Patent Application Publication No. US2013/0337519 which are hereby incorporated by reference in its entirety. As such, a cis, cis-muconic acid producing strain can be engineered to grow on sucrose as disclosed in the above mentioned application.
EXAMPLE 16
An Improved Producer of cis, cis-muconic Acid
[0140] All of the features described in Examples 1-15 can be combined in one strain of E. coli by installing the features one after another. The resulting strain comprises an improved cis, cis-muconic acid producer. The resulting strain can then be even further improved by integrating a second copy of each overexpression cassette described above, one at a time, at a location separate from the location of the first copy. An example of a convenient and safe location is at a BsrB1 restriction site just downstream from the terminator of rrfF, which encodes a ribosomal RNA. The desired cassette is ligated as a blunt linear DNA into the unique BsrB1 site of plasmid pMH17F (SEQ ID No. 17). An example is the ligation of the catAX expression cassette to give a plasmid named pcatAX. In parallel, a cam.sup.R, sacB cassette is ligated as a blunt fragment into pMH17F to give pMH28F (SEQ ID No. 19). A linear DNA derived from pMH28 by PCR or by restriction enzyme cutting is used to deposit the cane, sacB cassette at the rrfF site. Next, a linear DNA derived from pcatAX by PCR or by restriction enzyme cutting is used to install the second copy of the catAX cassette at the rrfF locus, using selection on sucrose. The resulting strain is then compared with its grandparent strain for cis, cis-muconic acid production to determine that catAX was a limiting step. By a similar method, each cassette from Examples 2-15 is tested for a rate limiting step. If a step is found to be rate limiting, then one or more additional copies of the relevant cassette is/are integrated at yet other appropriate locations in the chromosome, leading to still further improvements in cis, cis-muconic acid production, without the need for plasmids or inducible promoters.
EXAMPLE 17
Production of cis, cis-muconic Acid by Fermentation
[0141] Cis, cis-muconic acid can be produced by genetically engineered microorganisms disclosed in the above Examples 1-15. The growth medium can vary widely and can be any medium that supports adequate growth of the microorganism. A preferred medium is a minimal medium containing mineral salts and a non-aromatic carbon source, such as glucose, xylose, lactose, glycerol, acetate, arabinose, galactose, mannose, maltose, or sucrose (see above for an example of a preferred minimal growth medium). For each combination of engineered microorganism and growth medium, appropriate conditions for producing cis, cis-muconic acid are determined by routine experiments in which fermentation parameters are systematically varied, such as temperature, pH, aeration rate, and compound or compounds used to maintain pH. As cis, cis-muconic acid is produced, one or more compounds must be fed into the fermentor to prevent pH from going too low. Preferred compounds for neutralizing the acid include alkaline salts such as oxides, hydroxides, carbonates, and bicarbonates of ammonium, sodium, potassium, calcium, magnesium, or a combination two or more of such alkaline salts.
[0142] Muconic acid production by MYR428 strain of E. coli in a 7 Liter fermentor is shown in FIG. 19. MYR261 strain of E. coli with a genotype of .DELTA.aroE .DELTA.ackA::P.sub.15-aroB .DELTA.poxB::tktA was transformed with the plasmids pCP32AMP and pMG37 to generate MYR428. MYR428 was grown in a 7 liter fermentor as described above with glucose feeding for 48 hours. The final muconic acid titer was 16 g/l (see FIG. 19).
[0143] After fermentation is complete, cells are removed by flocculation, centrifugation, and/or filtration, and the cis, cis-muconic acid is then purified from the clarified broth by a combination of one or more subsequent steps, for example precipitation, crystallization, electrodialysis, chromatography (ion exchange, hydrophobic affinity, and/or size based), microfiltration, nanofiltration, reverse osmosis, and evaporation.
EXAMPLE 18
Improvement of 3,4-dihydroxybenzoic acid (PCA) decarboxylase (AroY) Activity
[0144] E. coil strain MYR993 with the genotype as provided in Table 2 was used a parental strain to generate strains with the deletion in either the ubiX gene or the ubiD gene. In constructing the E. coli strains with the deletion in ubiX a kanamycin resistance cassette was amplified using primers MS608 and MS609 having 45 bp of homology to each end of the ubiX gene. In constructing the E. coli strains with the deletion in ubiD, a kanaymcin resistance cassette was amplified using primers MS604 and MS605 having 45 bp of homology to each end of the ubiD gene. The PCR products were column purified (QIAquick PCR Purification Kit, Qiagen) and used to transform the E. coli strain MYR993 (Table 2) using previously developed methods (Datsenko K A, Wanner B L (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97: 6640-6645). to produce the E. coil stains with a deletion in either ubiX gene or ubiD gene (Table 2--MYR993 AubiX and MYR993 .DELTA.ubiD). The deletion stains are expected to be impaired in respiration so glucose was added to LB selection plates to provide for fermentative growth.
[0145] The E. coli strains MYR993, MYR993 .DELTA.ubiX and MYR993 .DELTA.ubiD were grown as 25 ml cultures in 250 ml shake flasks at 250 rpm at 37.degree. C. for 48 hours in a medium comprised of 5 g K.sub.2HPO.sub.4, 3.5 g KH.sub.2HPO.sub.4, 3.5 g (NH4).sub.2HPO.sub.4, 1 mM MgSO.sub.4, 0.1 mM CaCl.sub.2, trace elements (1.6 mg FeCl.sub.3.6H.sub.2O, 0.2mg CoCl.sub.2.6H.sub.2O, 0.1 mg CuCl.sub.2.2H.sub.2O, 0.2 mg ZnCl.sub.2, 0.2 mg Na.sub.2MsO.sub.4.2H.sub.2O, 0.05 mg H.sub.3BO.sub.3, 0.55 mg MnCl.sub.2.4H.sub.2O), and 0.2 M MOPS buffer (all per liter), using glucose as a carbon source. At the end of 48 hours of growth, the culture supernatants were analyzed for muconic acid and PCA content. As the results shown in FIG. 20 indicates, the parental strain MYR993 accumulated primarily muconic acid in the culture medium with very little PCA while the E. coli strain MYR993AubiX accumulated only PCA and muconic acid was not detectable. On the other hand, the E. coil strain MYR993.DELTA.ubiD showed the reduced accumulation of both muconic acid and PCA. The conclusion was that UbiX protein is needed for AroY (PCA decarboxylase) activity.
EXAMPLE 19
Comparison of Activities of UbiX Homologs in an In Vitro Assay
[0146] An in vitro assay was followed to compare the activities of UbiX and four of its homologs. In this in vitro assay the lysate from an E. coli strain over expressing AroY protein was combined with the lysate from another E. coli strain expressing UbiX protein or it homolog and the combined lysate was assayed for its ability to consume PCA as a substrate. In the muconic acid producing E. coli strain PCA is decarboxylated by AroY protein to yield catechol which in turn is converted into muconic acid by CatA protein. The decarboxylation activity of AroY protein is expected to be enhanced by the presence of UbiX or one of tis homolog and depending on the efficiency of UbiX or its homologs, the PCA in the assay solution will be consumed at different rate.
[0147] In this in vitro assay UbiX and four of its homologs namely KpdB coded by kpdB gene of Klebsiella pnemoniae (kpdB) (SEQ ID 42), Elw coded by the elw gene of E. coli W (SEQ ID 46), Kox coded by the kox gene of Klebsiella oxytoca (kox) (SEQ ID 48) and Lpl coded by lpl gene of Lactobacillus plantarum (lpl) (SEQ ID 50). The names for the last three homologs are simply provisional names given for this disclosure. AroY, UbiX, KpdB, Elw, Kox and Lpl were expressed from the strong constitutive Lambda Phage promoter P.sub.R (SEQ ID3) on a low copy plasmid (SC101 origin of replication). The plasmids pCAT350 (SEQ ID 55) and pCP165 (SEQ ID 56) were used for gene cloning. In constructing AroY plasmid, the primers RP712 and RP714 were used to amplify the aroY gene and the primers MS461 and MS346 were used to amplify the pCAT350 plasmid backbone. The resulting PCR products were ligated to obtain a plasmid overexpressing the AroY protein. In constructing a KpdB plasmid, the primers RP731 and RP732 were used to amplify kpdB gene and the primers MS461 and MS346 were used to amplify the pCAT350 plasmid backbone. The resulting PCR products were ligated to obtain a plasmid overexpressing KpdB protein. In constructing a UbiX plasmid, the primers MS669 and MS666 were used to amplify ubiX gene and the primers MS461 and RP607 were used to amplify the pCAT350 plasmid backbone. The resulting PCR products were ligated to obtain a plasmid overexpressing UbiX protein. In constructing an Elw plasmid, the primers MS676 and MS680 were used to amplify elw gene and the primers MS461 and MS621 were used to amplify the pCP165 plasmid backbone. The resulting PCR products were ligated to obtain a plasmid overexpressing the Elw protein. In constructing a Kox plasmid, the primers MS686 and MS684 were used to amplify the kox gene and the primers MS461 and MS621 were used to amplify the pCP165 plasmid backbone. The resulting PCR products were ligated to obtain a plasmid overexpressing Kox protein. In constructing an Lpl plasmid, the primers MS692 and MS691 were used to amplify the lpl gene and the primers MS461 and MS621 were used to amplify the pCP165 plasmid backbone. The resulting PCR products were ligated to obtain a plasmid overexpressing Lpl protein. All fragments contained 20 bp of homology to enable cloning using the NEBuilder HiFi DNA Assembly Cloning Kit and cloned into NEB5.alpha. E. coli cells (New England Biolabs).
[0148] Following plasmid cloning, an in vitro enzyme assay was developed to demonstrate AroY activity. 1 mL of an overnight LB grown culture was spun down and resuspended in 200 .mu.L of Bacterial Protein Extraction Reagent (B-PER) (Thermo Fisher Scientific). After 5 minutes incubation in a rotary mixer, the cell debris was removed by centrifuging the samples at 13,000 rpm in a table top centrifuge. The clarified crude lysate supernatant was transferred to a new tube and stored on ice. 20 .mu.L of an AroY overexpression lysate was combined with 20 .mu.L of UbiX or a homolog lysate into a 150 .mu.L reaction (final volume) containing 100 mM sodium phosphate buffer pH 6.4, 25 mM MgCl.sub.2 and 1 mM protocatechuic acid (Sigma-Aldrich). The absorbance at 290 nm was read every minute for 60 minutes. The AroY activity was measured by monitoring disappearance of PCA at A290. The relative activities of the UbiX and its homologs are shown in FIG. 21. All UbiX homologs tested improved AroY activity, but a wide variation of enzyme activity was produced depending on the specific homolog tested. The highest AroY activity was achieved using KpdB, while the lowest activity was observed from the Lactobacillus homolog. The wide range of activities shown can be employed to improve muconic pathway performance, as the highest activity may not always be optimal.
EXAMPLE 20
Effect of kpdB Expression Level on the Activity of AroY
[0149] Having established that that the expression of KpdB protein enhance the activity of AroY protein in the in vitro assay, efforts were made to determine if the level of expression of KpdB protein within the muconic acid producing biocatalysts would affect the level of muconic acid production. In this experiment, the muconic acid production strain MYR1305 was transformed with various plasmids that express KpdB at different levels. Transformation of MYR1305 was conducted with three different plasmids. In the experimental control, MYR1305 was transformed with the control plasmid pCP140 without any genes coding for KpdB protein. The DNA sequence of pCP140 is given in SEQ ID 57. Briefly, pCP140 was constructed to express an E. coli codon-optimized catAX under the P15 promoter, E. coli tktA under native E. coli promoter, E. coli aroB under the P15 promoter, and E. coli aroD under P26 promoter (SEQ ID 2). The second plasmid pCP169 used to transform MYR1305 is a derivative of pCP140 additionally having the kpdB gene under the P26 promoter. The third plasmid pCP170 used to transform MYR1305 is a derivative of pCP140 additionally having kpdB under the E. coli pgi promoter (SEQ ID 52). Low level expression was achieved using the P26 promoter while high expression was achieved using the E. coli pgi promoter. pCP169 and pCP170 were constructed by first amplifying the pCP140 plasmid in two fragments using two sets of primers (PCR primers RP607 and RP677 for the first fragment and the PCR primers RP671 and RP664 for the second fragment). Two smaller PCR products facilitate easier plasmid construction than a single large PCR product. In constructing the plasmid pCP169, the P26 promoter was amplified using primers RP702 and RP783 and kpdB was amplified using primers RP781 and RP780. In constructing the plasmid pCP170, the pgi promoter was amplified using primers RP700 and RP784 and kpdB was amplified using primers RP779 and RP780. All PCR products had 20 bp homology overlaps to enable cloning using the NEBuilder HiFi DNA Assembly Cloning Kit. As shown in FIG. 22, strains expressing kpdB produced higher levels of muconic acid than did the control strains without any exogenous kpdB gene expression. Additionally, the PCA accumulation was eliminated in the strains expressing exogenous kpdB gene. The level of muconic acid produced did not increase with the increased expression of kpdB gene suggesting a saturating level of activity was achieved even when the exogenous kpdB gene is expressed under low level of expression.
EXAMPLE 21
Complementation of a ppc Mutant and Effect on Muconic Formation
[0150] The increased availability of PEP for muconic acid formation was investigated using the bacterial strains with the deletion of the phosphoenolpyruvate carboxylase (ppc) gene. The E. coli strain MYR1674 was genetically engineered to use as a biocatalyst for muconioc acid production. MYR1674 is able to grow in minimal medium containing glucose as a source of carbon and energy and produce muconic acid. However, when the ppc gene is deleted from MYR1674, the resulting stain MYR1674 .DELTA.ppc is not able to grow in minimal medium containing glucose and is viable only on rich media such as Luria Broth (LB). The loss of the ability of MYR1674 .DELTA.ppc to grow on minimal medium can be regained by means of inserting the pyc gene coding for pyruvate carboxylase at the original ppc locus in the MYR1674 .DELTA.ppc strain of E. coli.
[0151] The pyruvate carboxylase (pyc) gene from Saccharomyces cerevisiae (SEQ ID 53) was cloned using primers MS1383 and MS1384, containing flanking homology to the E. coli ppc promoter and terminator. In order to facilitate strong growth on minimal media, the strong constitutive rightward Lambda Phage promoter P.sub.R was required. The P.sub.R promoter was amplified using primers MS1429 and MS1430 and the resulting PCR product was used to replace the endogenous ppc promoter. The final nucleotide sequence for the .DELTA.ppc:: P.sub.R-pyc locus is shown in SEQ ID 58. The S. cerevisiae pyc gene was chosen because it is not closely related to any E. coli gene, and the expected lower expression due to differing codon usage could be beneficial in preserving PEP for muconic acid production. There are many organisms that contain pyruvate carboxylase, and any homologs or analogs having pyruvate carboxylase activity could be used. New strain MYR1772 derived from MYR1674 by integrating .DELTA.ppc:: P.sub.R-pyc at the original ppc locus was viable on a minimal medium confirming the functionality of the cloned S. cerevisiae pyc gene. MYR1772 and its parent MYR1674 strains were compared in shake flask experiments for their ability to produce muconic acid. As the results shown in FIG. 23 indicates, MYR1772 strain produced higher titer of muconic acid production than parent MYR1674, demonstrating the advantage in replacing the endogenous phosphoenolpyruvate carboxylase enzyme with the exogenous pyruvate carboxylase enzyme.
EXAMPLE 22
Measuring Muconic Acid Production
[0152] The bacterial strains MYR814, MYR993, MYR1536, MYR1557, MYR1570, MYR1595, MYR1630, MYR1674 and MYR1772 were grown in shake flask cultures overnight and titer and yield for muconic acid production were determined. In addition, the growth rate was determined by measuring the absorbance at 600 nm and the relative growth of various bacterial strains are provided in Table 8. The bacterial growth represented by "+++" indicates a growth similar to the growth seen in a wild type K coil strain. The bacterial growth represented by "+" indicates poor growth. An intermediate growth is represented by "++". When a particular strain is showing a poor growth, that strain is subjected to 5 overnight transfers to improve the growth, each transfer produces approximately 10 generations or doublings.
[0153] The bacterial strains MYR814, MYR1570, MYR1630 and MYR1674 were grown in 7 liter fermenters in a fed-batch mode and the titer and yield for muconic acid production were determined (Table 9). The bacterial strains tested for muconic acid titer and yield produced very little byproducts. For example, the bacterial strain after 72 hours of fed batch fermentation showed only 0.08 g/L of PCA and 0.07 g/L of fumarate as byproducts.
TABLE-US-00001 TABLE 1 Bacterial strains used in the present invention Bacterial strain Genotype/Description ATCC8739 Escherichia coli "C" wild type MYR34 ATCC8739 .DELTA.aroE MYR170 ATCC8739 .DELTA.aroE, .DELTA.ackA::P.sub.15aroB MYR261 ATCC8739 .DELTA.aroE, .DELTA.ackA::P.sub.15aroB, .DELTA.poxB::tktA MYR305 ATCC8739 .DELTA.aroE, .DELTA.ackA::P.sub.15aroB, .DELTA.poxB MYR31 ATCC8739 .DELTA.ptsHI, .DELTA.galP MYR217 ATCC8739 .DELTA.ptsHI, .DELTA.galP, .DELTA.tdc::glf-glk, .DELTA.aroE MYR352 ATCC8739 .DELTA.aroE, .DELTA.ackA::P.sub.15aroB, .DELTA.adhE:: P.sub.15-catAX, P.sub.R-aroY, P.sub.26-quiC RY903 .DELTA.aroE, .DELTA.ackA::P.sub.15aroB, pMG37, aroG*20-893 RY909 .DELTA.aroE, .DELTA.ackA::P.sub.15aroB, pMG37, aroG*20-899 RY911 .DELTA.aroE, .DELTA.ackA::P.sub.15aroB, pMG37, aroG*20-901 RY912 .DELTA.aroE, .DELTA.ackA::P.sub.15aroB, pMG37, aroGwt RY913 .DELTA.aroE, .DELTA.ackA::P.sub.15aroB, pMG37, aroG*20-893, .DELTA.tyrR::kan RY919 .DELTA.aroE, .DELTA.ackA::P.sub.15aroB, pMG37, aroG*20-899, .DELTA.tyrR::kan RY921 .DELTA.aroE, .DELTA.ackA::P.sub.15aroB, pMG37, aroG*20-901, .DELTA.tyrR::kan RY922 .DELTA.aroE, .DELTA.ackA::P.sub.15aroB, pMG37, aroGwt, .DELTA.tyrR::kan
TABLE-US-00002 TABLE 2 Bacterial used in the present invention Strain Name Genotype/Description Parent MYR802 .DELTA.ackA::P15-aroB .DELTA.adhE::P15-catAX + P.sub.R-aroY + P26-quiC .DELTA.pflB::P15-catAX .DELTA.tyrR aroG.sup.FBR .DELTA.poxB:tktA .DELTA.ptsHI .DELTA.tdc::P26-glf-glk .DELTA.galP aroE G105M MYR814 .DELTA.ackA::P15-aroB .DELTA.adhE::P15-catAX + P.sub.R-aroY + P26-quiC .DELTA.pflB::P15-catAX .DELTA.tyrR MYR802 aroG.sup.FBR .DELTA.poxB::tktA .DELTA.ptsHI .DELTA.tdc::P26-glf-glk .DELTA.galP aroE G105M [P15-catA-catX + tktA + P15-aroB + P26-aroD in pCL1921 backbone] MYR993 .DELTA.ackA::P15-aroB .DELTA.adhE::P.sub.R-aroY + P26-quiC .DELTA.pflB::P.sub.R-catAX .DELTA.tyrR aroG.sup.FBR MYR802 .DELTA.poxB::tktA .DELTA.ptsHI .DELTA.tdc::P26-glf-glk .DELTA.galP aroE G105M MYR993 .DELTA.ackA::P15-aroB .DELTA.adhE::P.sub.R-aroY + P26-quiC .DELTA.pflB::P.sub.R-catAX .DELTA.tyrR aroG.sup.FBR MYR993 .DELTA.ubiX .DELTA.poxB::tktA .DELTA.ptsHI .DELTA.tdc::P26-glf-glk .DELTA.galP aroE G105M .DELTA.ubiX::Kan.sup.R MYR993 .DELTA.ackA::P15-aroB .DELTA.adhE::P.sub.R-aroY + P26-quiC .DELTA.pflB::P.sub.R-catAX .DELTA.tyrR aroG.sup.FBR MYR993 .DELTA.ubiD .DELTA.poxB::tktA .DELTA.ptsHI .DELTA.tdc::P26-glf-glk .DELTA.galP aroE G105M .DELTA.ubiD::Kan.sup.R MYR1305 .DELTA.ackA::P15-aroB .DELTA.adhE::P15-catAX + P.sub.R-aroY + P26-quiC .DELTA.pflB::P15-catAX .DELTA.tyrR MYR802 aroG.sup.FBR .DELTA.poxB::tktA .DELTA.ptsHI .DELTA.tdc::P26-glf-glk .DELTA.galP .DELTA.aroE .DELTA.zwf MYR1305 .DELTA.ackA::P15-aroB .DELTA.adhE::P15-catAX + P.sub.R-aroY + P26-quiC .DELTA.pflB::P15-catAX .DELTA.tyrR MYR1305 pCP140 aroG.sup.FBR .DELTA.poxB::tktA .DELTA.ptsHI .DELTA.tdc::P26-glf-glk .DELTA.galP .DELTA.aroE .DELTA.zwf [P.sub.R-catA-catX + tktA + P15-aroB + P26-aroD in pCL1921 backbone] MYR1305 .DELTA.ackA::P15-aroB .DELTA.adhE::P15-catAX + P.sub.R-aroY + P26-quiC .DELTA.pflB::P15-catAX .DELTA.tyrR MYR1305 pCP169 aroG.sup.FBR .DELTA.poxB::tktA .DELTA.ptsHI .DELTA.tdc::P26-glf-glk .DELTA.galP .DELTA.aroE .DELTA.zwf [P.sub.R-catA-catX + tktA + P15-aroB + P26-aroD + P26-kpdB in pCL1921 backbone] MYR1305 .DELTA.ackA::P15-aroB .DELTA.adhE::P15-catAX + P.sub.R-aroY + P26-quiC .DELTA.pflB::P15-catAX .DELTA.tyrR MYR1305 pCP170 aroG.sup.FBR .DELTA.poxB::tktA .DELTA.ptsHI .DELTA.tdc::P26-glf-glk .DELTA.galP .DELTA.aroE .DELTA.zwf [P.sub.R-catA-catX + tktA + P15-aroB + P26-aroD + P.sub.PG1-kpdB in pCL1921 backbone] MYR1536 .DELTA.ackA::P.sub.acpp-aroB .DELTA.adhE::P15-qa4 .DELTA.tyrR aroG.sup.FBR .DELTA.poxB::P.sub.R-tktA .DELTA.tdc:: P26-glf-glk MYR802 .DELTA.galP::P15-ubiX .DELTA.pflB:: P.sub.R-CatAX P.sub.acpp-aroD .DELTA.mgsA::P.sub.rpIU-qa4 .DELTA.ptsHI:: P.sub.R-aroY .DELTA.0039:: P.sub.R-catAX MYR1557 .DELTA.ackA::P.sub.acpp-aroB .DELTA.adhE::P15-qa4 .DELTA.tyrR aroG.sup.FBR .DELTA.poxB::P.sub.R-tktA .DELTA.tdc:: P26-glf-glk MYR1536 .DELTA.galP::P15-ubiX .DELTA.pflB:: P.sub.R-CatAX P.sub.acpp-aroD .DELTA.mgsA::P.sub.rpIU-qa4 .DELTA.ptsHI:: P.sub.R-aroY .DELTA.0039:: P.sub.R-catAX (Evolved version of MYR1536 for faster growth) MYR1570 .DELTA.ackA::P.sub.acpp-aroB .DELTA.adhE::P15-qa4 .DELTA.tyrR aroG.sup.FBR .DELTA.poxB::P.sub.R-tktA .DELTA.tdc:: P26-glf-glk MYR1536 .DELTA.galP::P15-ubiX .DELTA.pflB:: P.sub.R-CatAX P.sub.acpp-aroD .DELTA.mgsA::P.sub.rpIU-qa4 .DELTA.ptsHI:: P.sub.R-aroY .DELTA.0039:: P.sub.R-catAX .DELTA.zwf (Evolved version of MYR1536 for faster growth) MYR1595 .DELTA.ackA::P.sub.acpp-aroB .DELTA.adhE::P15-qa4 .DELTA.tyrR aroG.sup.FBR .DELTA.poxB::P.sub.R-tktA .DELTA.tdc:: P26-glf-glk MYR1557 .DELTA.galP::P15-ubiX .DELTA.pflB:: P.sub.R-CatAX P.sub.acpp-aroD .DELTA.mgsA::P.sub.rpIU-qa4 .DELTA.ptsHI::P.sub.R-AroY .DELTA.0039:: P.sub.R-catAX .DELTA.zwf .DELTA.pykF MYR1630 .DELTA.ackA::P.sub.acpp-aroB .DELTA.adhE::P15-qa4 .DELTA.tyrR aroG.sup.FBR .DELTA.poxB::P.sub.R-tktA .DELTA.tdc:: P26-glf-glk MYR1595 .DELTA.galP::P15-ubiX .DELTA.pflB:: P.sub.R-CatAX P.sub.acpp-aroD .DELTA.mgsA::P.sub.rpIU-qa4 .DELTA.ptsHI:: P.sub.R-aroY .DELTA.0039:: P.sub.R-catAX .DELTA.zwf .DELTA.pykF .DELTA.2160:: P.sub.R-aroG.sup.FBR MYR1674 .DELTA.ackA::P.sub.acpp-aroB .DELTA.adhE::P15-qa4 .DELTA.tyrR aroG.sup.FBR .DELTA.poxB::P.sub.R-tktA .DELTA.tdc:: P26-glf-glk MYR1630 .DELTA.galP::P15-ubiX .DELTA.pflB:: P.sub.R-CatAX P.sub.acpp-aroD .DELTA.mgsA::P.sub.rpIU-qa4 .DELTA.ptsHI:: P.sub.R-aroY .DELTA.0039:: P.sub.R-catAX .DELTA.zwf .DELTA.pykF .DELTA.2160:: P.sub.R-aroG.sup.FBR (Evolved version of MYR1630 for faster growth) MYR1772 .DELTA.ackA::P.sub.acpp-aroB .DELTA.adhE::P15-qa4 .DELTA.tyrR aroG.sup.FBR .DELTA.poxB::P.sub.R-tktA .DELTA.tdc:: P26-glf-glk MYR1674 .DELTA.galP::P15-ubiX .DELTA.pflB:: P.sub.R-CatAX P.sub.acpp-aroD .DELTA.mgsA::P.sub.rpIU-qa4 .DELTA.ptsHI:: P.sub.R-aroY .DELTA.0039:: P.sub.R-catAX .DELTA.zwf .DELTA.pykF .DELTA.2160:: P.sub.R-aroG.sup.FBR .DELTA.ppc:: P.sub.R-pyc
TABLE-US-00003 TABLE 3 Plasmids used in the present invention Bacterial Plasmid Genotype/Description YEp24 2.mu. yeast origin, URA3, Tc.sup.R, pMB1 replicon, Ap.sup.R pCP32AMP 2.mu. yeast origin, URA3, Tc.sup.R, pMB1 replicon, Ap.sup.R, aroG pCP14 2.mu. yeast origin, URA3, Tc.sup.R, pMB1 replicon, Ap.sup.R, P.sub.15aroB pCP54 2.mu. yeast origin, URA3, Tc.sup.R, pMB1 replicon, Ap.sup.R, P.sub.15aroB, aroG pCP50 2.mu. yeast origin, URA3, Tc.sup.R, pMB1 replicon, Ap.sup.R, aroG, tktA pCP55 2.mu. yeast origin, URA3, Tc.sup.R, pMB1 replicon, Ap.sup.R, aroG, aroB, tktA pCL1921 pSC101 replicon, Spc.sup.R pMG27 pSC101 replicon, Spc.sup.R, P.sub.R-aroY pMG31 pSC101 replicon, Spc.sup.R, P.sub.15-catAX pMG33 pSC101 replicon, Spc.sup.R, P.sub.15-catAX , P.sub.R-aroY pMG37 pSC101 replicon, Spc.sup.R, P.sub.15-catA-CatX, P.sub.R-aroY, P.sub.26-quiC pMG39 pSC101 replicon, Spc.sup.R, P.sub.26-quiC pMG47 pSC101 replicon, Spc.sup.R, P.sub.15-catAX, P.sub.R-aroY, P.sub.26-asbF pMG70 pSC101 replicon, Spc.sup.R, P.sub.15-catAX, P.sub.R-aroY, P.sub.26-qa-4
TABLE-US-00004 TABLE 4 aroG*mutant alleles that lead to resistance to phenylalanine feedback inhibition Allele Nucleotide Amino acid Strain number mutation mutation RY893 aroG*20-893 C449T Pro150Leu RY897 aroG*20-897 C449T Pro150Leu RY899 aroG*20-899 T538C Ser180Pro RY901 aroG*20-901 C438T Pro150Ser MYR450 aroG*111 C55T Pro19Ser MYR451 aroG*211 G533A Gly178Glu MYR452 aroG*212 C540T Ser180Phe MYR453 aroG*311 Deletion from base Deletion of pair 36 to 44bp Glu-Ile-Lys MYR454 aroG*312 C632T Ser211Phe MYR455 aroG*411 T29A Ile10Asn MYR456 aroG*412 G533A Gly178Glu MYR457 aroG*511 C448T Pro150Ser
TABLE-US-00005 TABLE 5 AroG activity measurement in crude extract from various recombinant E. coli strains Specific activity mU (One mU = one nM product made per % of activity milligram protein per resistant to Strain aroG* allele minute) phenylalanine RY893 aroG*20-893 62 34 RY897 aroG*20-897 55 77 RY899 aroG*20-899 92 113 RY901 aroG*20-901 78 76 RY902 aroG wild type 38 6 RY890 aroG wild type 54 7
TABLE-US-00006 TABLE 6 Muconic acid production in shake flasks by strains containing feedback resistant aroG* alleles Strain Muconic acid titer g/l RY913 3.04 RY919 3.11 RY921 2.99 RY922 1.45
TABLE-US-00007 TABLE 7 Sequence Information No. Name Description 1 SEQ ID No. 1 The P.sub.15 promoter from Bacillus subtilis phage SP01, with a stem and loop added just downstream from the transcription start site. 2 SEQ ID No. 2 The P.sub.26 promoter from Bacillus subtilis phage SPO1 3 SEQ ID No. 3 The P.sub.R promoter from Escherichia coli phage 4 SEQ ID No. 4 Protein sequence of 3-dehydroshikimate dehydratase from Neurospora crassa encoded by the qa-4 gene. 5 SEQ ID No. 5 Genomic DNA sequence of the qa-4 gene from Neurospora crassa plus surrounding sequences. 6 SEQ ID No. 6 Protein sequence of 3dehydroshikimate dehydratase from Aspergillus nidulans. encoded by the qutC gene 7 SEQ ID No. 7 Genomic DNA sequence of the qutC gene from Aspergillus nidulans plus surrounding sequences 8 SEQ ID No. 8 Protein sequence of protocatechuate decarboxylase (AroY) from Klebsiella pnemoniae ATCC25597 9 SEQ ID No. 9 DNA sequence of the aroY gene of Klebsiella pneumoniae 342 plus 2 kilobases of surrounding DNA sequences 10 SEQ ID No. 10 DNA sequence of the catA gene from Acinetobacter baylyi ADP1, including upstream sequence and two open reading frames downstream410 bases of 11 SEQ ID No. 11 Protein sequence of CatA (catechol 1,2-dioxygenase) from Acinetobacter baylyi ADP1 12 SEQ ID No. 12 DNA sequence of the quiC (3-dehydroshikimate dehydratase)gene from Acinetobacter sp. ADP1 13 SEQ ID No. 13 Codon-optimized DNA sequence of the quiC (3-dehydroshikimate dehydratase)gene from Acinetobacter sp. ADP1 14 SEQ ID No. 14 Protein sequence of QuiC (3-dehydroshikimate dehydrogenase from Acinetobacter sp. ADP1 15 SEQ ID No. 15 DNA sequence of the plasmid pAC21 16 SEQ ID No. 16 DNA sequence of the plasmid pAC19 17 SEQ ID No. 17 DNA sequence of the plasmid pMH17F 18 SEQ ID No. 18 DNA sequence of the coding region of the wild type aroG gene 19 SEQ ID No. 19 DNA sequence of the plasmid pMH28F 20 SEQ ID No. 20 DNA sequence of the plasmid pCL1921 21 SEQ ID No. 21 DNA sequence of the plasmid pMG27 22 SEQ ID No. 22 DNA sequence of the plasmid pMG31 23 SEQ ID No. 23 DNA sequence of the plasmid pMG33 24 SEQ ID No. 24 DNA sequence of the plasmid pMG37 25 SEQ ID No. 25 DNA sequence of the plasmid pMG39 26 SEQ ID No. 26 DNA sequence of the plasmid pMG47 27 SEQ ID No. 27 DNA sequence of the plasmid pMG70 28 SEQ ID No. 28 DNA sequence of the plasmid pCP32AMP 29 SEQ ID No. 29 DNA sequence of the plasmid pCP14 30 SEQ ID No. 30 DNA sequence of the plasmid pCP50 31 SEQ ID No. 31 DNA sequence of the plasmid pCP54 32 SEQ ID No. 32 DNA sequence of the plasmid pCP55 33 SEQ ID No. 33 DNA sequence of the plasmid YEP24 34 SEQ ID No. 34 DNA sequence of the deleted aroE region 35 SEQ ID No. 35 DNA sequence of the integrated cassette .DELTA.ack::P.sub.15aroB 36 SEQ ID No. 36 DNA sequence of the .DELTA.poxB region 37 SEQ ID No. 37 DNA sequence of the integrated cassette .DELTA.poxB::iktA 38 SEQ ID No. 38 DNA sequence of the .DELTA.ptsHI region 39 SEQ ID No. 9 DNA sequence of the integrated cassette .DELTA.tdc::glf-glk 40 SEQ ID No. 40 DNA sequence of the .DELTA.galP region 41 SEQ ID No. 41 MYR352 .DELTA.adhE::P.sub.15-catAX, P.sub.R-aroY, P.sub.26-quiC 42 SEQ ID No. 42 Nucleotide sequence of Klebsiella pneumoniae kpdB gene. 43 SEQ ID No. 43 Amino acid sequence of Kpd13 protein of Kiebsiella pneumoniae 44 SEQ ID No. 44 Nucleotide sequence of Escherichia coli ubiX gene 45 SEQ ID No. 45 Amino acid sequence of UbiX protein of Escherichia coli. 46 SEQ ID No. 46 Nucleotide sequence of Escherichia coli W strain elw gene 47 SEQ ID No. 47 Amino acid sequence of Elw protein of Escherichia coli W strain. 48 SEQ ID No. 48 Nucleotide sequence of Klebsiella oxytoca kox gene 49 SEQ ID No. 49 Amino acid sequence of Kox protein of Klebsiella oxytoca. 50 SEQ ID No. 50 Nucleotide sequence of Lactobacillus plantarum lpl gene 51 SEQ ID No. 51 Amino acid sequence of Lp1 protein of Lactobacillus plantarum. 52 SEQ ID No. 52 Nucleotide sequence of Pgi promoter 53 SEQ ID No. 53 Nucleotide sequence of Saccharomyces cerevisiae pyc gene 54 SEQ ID No. 54 Amino acid sequence of Pyc protein of Saccharomyces cerevisiae. 55 SEQ ID No. 55 DNA sequence of the plasmid pCAT350 56 SEQ ID No. 56 DNA sequence of the plasmid pCP165 57 SEQ ID No. 57 DNA sequence of the plasmid pCP140 58 SEQ ID No. 58 Nucleotide sequence of .DELTA.ppc::P.sub.R-pyc 59 SEQ ID No. 59 Nucleotide sequence of acpP promoter 60 SEQ ID No. 60 Nuclotide sequence of rp1U promoter 61 MS604 AACGCCGTATAATGGGCGCAGATTAAGAGGCTACAGTGGGCTTACATGGCGATAGCTAGA 62 MS605 TGTCGGATCGATAAATAGGGCAAAACAAACGCGCATCCCGGAAAACGATTCCGAAGCCCA 63 MS608 AAAGTCTGCCTGCAAGTCTGACAGGGCAACTATTTGTGGGCTTACATGGCGATAGCTAGA 64 MS609 TTGCAAAATTGCCCTGAAACAGGGCAACAGCGGAGTCCCGGAAAACGATTCCGAAGCCCA 65 MS461 GGCTATATTCCTTATCTAGATTAGT 66 MS346 GTCTGACAGGTGCCGGATTTCATAT 67 RP712 TCTAGATAAGGAATATAGCCATGACCGCACCGATTCAGGATCTGC 68 RP714 AAATCCGGCACCTGTCAGACTTATTTTGCGCTACCCTGGTTTTTT 69 RP731 CATGTACTAATCTAGATAAGGAATATAGCCATGAAACTGATTATTGGGATGACGGGGGCC 70 RP732 GCCGGATATGAAATCCGGCACCTGTCAGACTTATTCGATCTCCTGTGCAAATTGTTCTGC 71 MS669 TCTAGATAAGGAATATAGCCATGAAACGACTCATTGTAGGCATCA 72 MS666 ACCGAACAGGCTTATGTCCAGATAGCAGGTATAGCGGTTGAATCG 73 RP607 TGGACATAAGCCTGTTCGGTTCGT 74 MS621 TTAGATTTGACTGAAATCGTACAGT 75 MS676 TCTAGATAAGGAATATAGCCATGAAACTGATCGTCGGGATGACAG 76 MS680 ACGATTTCAGTCAAATCTAATTATTCATTCTCCTGAGAAAAATTC 77 MS686 TCTAGATAAGGAATATAGCCATGACGGCACGCATCATCATTGGTA 78 MS684 ACGATTTCAGTCAAATCTAATTAATTAAAACGTAGCTCGCCTTCA 79 MS692 TCTAGATAAGGAATATAGCCATGAAACGAATTGTTGTGGGAATCA 80 MS691 ACGATTTCAGTCAAATCTAATTAATCCCCCTCCCAACGGCGATCA 81 RP677 CGACGTTGTAAAACGACGGCCAGTG 82 RP671 TTAATCGCCTTGCAGCACATCCCCC 83 RP664 ACGAACCGAACAGGCTTATGTCCA 84 RP702 GCCGTCGTTTTACAACGTCGGATCCGCCTACCTAGCTTCCAAGAA 85 RP783 CCTACAATGAGTCGTTTCATTAGGTTTTCCTCAACCCGGGAGCGT 86 RP781 CCCGGGTTGAGGAAAACCTAATGAAACGACTCATTGTAGGCATCA 87 RP780 ATGTGCTGCAAGGCGATTAAGATAGCAGGTATAGCGGTTGAATCG 88 RP700 GCCGTCGTTTTACAACGTCGAGCGGGGCGGTTGTCAACGATGGGG 89 RP784 CCTACAATGAGTCGTTTCATGGCTATATTCCTCCTCTGCATGAGA 90 RP779 TGCAGAGGAGGAATATAGCCATGAAACGACTCATTGTAGGCATCA 91 MS1383 GATGGGGTGTCTGGGGTAATATGTCGCAAAGAAAATTCGCCGGCT 92 MS1384 GGGTTTGCAGAAGAGGAAGATCATGCCTTAGTTTCAACAGGAACT 93 MS1429 ATTCCTGCTATTTATTCGTTCGTTAAATCTATCACCGCAAGGGAT 94 MS1430 GCGAATTTTCTTTGCGACATGGCTATATTCCTTATCTAGATTAGT
TABLE-US-00008 TABLE 8 Titer and yield for muconic acid production and growth of various E. coli strains in shake flask cultures Titer Yield (grams Strain (grams muconic muconic acid/ Name acid/liter) gram glucose) Growth MYR814 2 0.16 +++ MYR993 1.9 0.15 +++ MYR1536 2.7 0.22 + MYR1557 3 0.25 +++ MYR1570 4.5 0.38 ++ MYR1595 4.5 0.38 ++ MYR1630 4.8 0.4 + MYR1674 3.8 0.32 +++ MYR1772 5 0.42 +++
TABLE-US-00009 TABLE 9 Titer and yield for muconic acid production for various E. coli strains in fed batch cultures Titer Yield (grams Strain (grams muconic muconic acid/ Name acid/liter) gram glucose) Time (hours) MYR814 30.9 0.20 48 MYR1570 49.0 0.36 48 MYR1630 58.3 0.47 48 MYR1630 69.5 0.42 72 MYR1674 81.5 0.43 72
REFERENCES
[0154] All the patents, patent applications, publications, sequences, and other published materials are incorporated herein are incorporated by reference.
[0155] U.S. Pat. No. 4,480,034
[0156] U.S. Pat. No. 4,535,059
[0157] U.S. Pat. No. 4,588,688
[0158] U.S. Pat. No. 4,608,338
[0159] U.S. Pat. No. 4,681,852
[0160] U.S. Pat. No. 4,753,883
[0161] U.S. Pat. No. 4,833,078
[0162] U.S. Pat. No. 4,968,612
[0163] U.S. Pat. No. 5,168,056
[0164] U.S. Pat. No. 5,272,073
[0165] U.S. Pat. No. 5,487,987
[0166] U.S. Pat. No. 5,616,496
[0167] U.S. Pat. No. 6,600,077
[0168] U.S. Pat. No. 6,180,373
[0169] U.S. Pat. No. 6,210,937
[0170] U.S. Pat. No. 6,472,169
[0171] U.S. Pat. No. 6,613,552
[0172] U.S. Pat. No. 6,962,794
[0173] U.S. Pat. No. 7,244,593
[0174] U.S. Pat. No. 7,638,312
[0175] U.S. Pat. No. 7,790,431
[0176] U.S. Pat. No. 8,871489
[0177] U.S. Pat. No. 9,017,976
[0178] U.S. Patent Application Publication No. US 2009/0191610 A1
[0179] U.S. Patent Application Publication No. US 2010/0314243 A1
[0180] U.S. Patent Application Publication No. US 2013/0337519 A1
[0181] U.S. Patent Application Publication No. US. 2014/0234923A1
[0182] U.S. Patent Application Publication No. US 2015/0044755 A1
[0183] U.S. Patent Application Publication No. US2016/0017381 A1
[0184] European Patent Application No. 86300748.0
[0185] International Patent Application Publication No. WO 2011/017560
[0186] International Patent Application Publication No. WO 2011/085311
[0187] International Patent Application Publication No. WO 2011/123154
[0188] International Patent Application Publication No. W02013/116244
[0189] Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990) Basic local alignment search tool, J Mol Biol 215, 403-410.
[0190] Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D. J. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs, Nucleic Acids Res 25, 3389-3402.
[0191] Aussel, Laurent, Fabien Pierrel, Laurent Loiseau, Murielle Lombard, Marc Fontecave, and Frederic Barras. 2014. "Biosynthesis and Physiology of Coenzyme Q in Bacteria." Biochimica et Biophysica Acta--Bioenergetics 1837 (7): 1004-11.
[0192] Baba, Tomoya, Takeshi Ara, Mild Hasegawa, Yuki Takai, Yoshiko Okumura, Miki Baba, Kirill A Datsenko, Masaru Tomita, Barry L Wanner, and Hirotada Mori. 2006. "Construction of Escherichia Coli K-12 in-Frame, Single-Gene Knockout Mutants: The Keio Collection." Molecular Systems Biology 2: 2006.0008. doi:10.1038/msb4100050.
[0193] Barbe, V., Vallenet, D., Fonknechten, N., Kreimeyer, A., Oztas, S., Labarre, L., Cruveiller, S., Robert, C., Duprat, S., Wincker, P., Ornston, L. N., Weissenbach, J., Marliere, P., Cohen, G. N., and Medigue, C. (2004) Unique features revealed by the genome sequence of Acinetobacter sp. ADP1, a versatile and naturally transformation competent bacterium, Nucleic Acids Res 32, 5766-5779.
[0194] Bird, J. A. and Cain, R. B. (1968) cis-cis-muconate, the product inducer of catechol 1,2-oxygenase in Pseudomonas aeruginosa. Biochem. J. 109, 479-481.
[0195] Bongaerts, J., Kramer, M., Muller, U., Raven, L. and Wubbolts, M. (2001) Metabollic engineering for microbial producitnof aromatic acids and derived compounds. Met. Eng. 3, 289-300.
[0196] Chandran, S. S., Yi, J., Draths, K. M., von Daeniken, R., Weber, W. and Frost, J. W. (2003) Phosphoenolpyruvate availability and the biosynthesis of shikimic acid. Biotechnol. Prog. 19, 808-814.
[0197] Chen, R., Hatzimanikatis, V., Yap, W. M. G. J., Potma, P. W. and Bailey, J. E. (1997) Metabolic consequences of phosphotransferase (PTS) mutation in a phenylalanie-producing recombinatn Escherichia coli. Biotechnol. Prog 13, 768-775.
[0198] Chen, K., Dou, J., Tang, S., Yang, Y., Wang, H., Fang, H. and Zhou, C. (2012) Deletion of the aroK gene is essential for high shikimic acid accumulation through the shikimate in E. coli. Bioresource Technol, 119, 141-147.
[0199] Choi, W. J., Lee, E. Y., Cho, M. H., and Choi, C. Y. (1997) Enhanced production of cis, cis-muconate in a cell-recycle bioreactor. J. Fermentation and Bioengineering. 84, 70-76.
[0200] Curran, Kathleen a., John M. Leavitt, Ashty S. Karim, and Hal S. Alper. 2013. "Metabolic Engineering of Muconic Acid Production in Saccharomyces Cerevisiae." Metabolic Engineering 15 (1): 55-66.
[0201] de Berardinis, V., Vallenet, D., Castelli, V., Besnard, M., Pinet, A., Cruaud, C., Samair, S., Lechaplais, C., Gyapay, G., Richez, C., Durot, M., Kreimeyer, A., Le Fevre, F., Schachter, V., Pezo, V., Doring, V., Scarpelli, C., Medigue, C., Cohen, G. N., Marliere, P., Salanoubat, M., and Weissenbach, J. (2008) A complete collection of single-gene deletion mutants of Acinetobacter baylyi ADP1, Mol Syst Biol 4, 174.
[0202] Draths, K. M., Pompliano, D. L., Conley, D. L., Frost, J. W., Berry, A., Disbrow, G. L., Staversky, R. J., and Lievense, J. C. (1992) Biocatalytic Synthesis of Aromatics from D-Glucose--the Role of Transketolase, Journal of the American Chemical Society 114, 3956-3962.
[0203] Draths, K. M., and Frost, J. W. (1995) Environmentally Compatible Synthesis of Catechol from D-Glucose, Journal of the American Chemical Society 117, 2395-2400.
[0204] Elsemore, D. A., and Ornston, L. N. (1995) Unusual ancestry of dehydratases associated with quinate catabolism in Acinetobacter calcoaceticus, J Bacteriol 177, 5971-5978.
[0205] Escalante, A., Calderon, R., Valdiva, A., de Anda, R., Hernandez, G., Ramirez, O. T., Gosset, G. and Boliver, F. (2010) Metabolic engineering for the production of shikimic acid in an evolved Escherichia coli strain lacking the phosphoenolpyrvate: carbohydrate phosphotransferase system. Microbial Cell Factories 9, 21-33.
[0206] Escalante, Adelfo, Rocio Calderon, Araceli Valdivia, Ramon de Anda, Georgina Hernandez, Octavio T Ramirez, Guillermo Gosset, and Francisco Bolivar. 2010. "Metabolic Engineering for the Production of Shikimic Acid in an Evolved Escherichia Coli Strain Lacking the Phosphoenolpyruvate: Carbohydrate Phosphotransferasc System." Microbial Cell Factories 9 (Cern): 21. doi:10.1186/1475-2859-9-21.
[0207] Flores, N., Xiao, J., Berry, A., Bolivar, F. and Valle, F. (1996) Pathway engineering for the production of aromatic compounds in Escherichia coli. Nature Biotechn. 14, 620-623.
[0208] Fox, D. T., Hotta, K., Kim, C. Y., and Koppisch, A. T. (2008) The missing link in petrobactin biosynthesis: asbF encodes a (-)-3-dehydroshikimate dehydratase, Biochemistry 47, 12251-12253.
[0209] Ger, Y., Chen, S., Chiang, H., and Shivan, D. (1994) A Single Ser-180 Mutation Desensitizes Feedback Inhibition of the Phyenylalanine-Sensitive 3-Deoxy-D-Arabino-Hepulosonate 7-Phosphate (DAHP) Synthetase in Eschericia coli, J Biochem 116, 986-990.
[0210] Grant, D. J., and Patel, J. C. (1969) The non-oxidative decarboxylation of p-hydroxybenzoic acid, gentisic acid, protocatechuic acid and gallic acid by Klebsiella aerogenes (Aerobacter aerogenes), Antonie Van Leeuwenhoek 35,325-343.
[0211] Hansen, E. H., Moller, B. L., Kock, G. R., Bunner, C. M., Kristensen, C., Jensen, O. R., Okkels, F. T., Olsen, C. E., Motawia, M. S., and Hansen, J. (2009) De novo biosynthesis of vanillin in fission yeast (Schizosaccharomyces pombe) and baker's yeast (Saccharomyces cerevisiae), Appl Environ Microbiol 75, 2765-2774.
[0212] Horwitz, Andrew A., Jessica M. Walter, Max G. Schubert, Stephanie H. Kung, Kristy Hawkins, Darren M. Platt, Aaron D. Hernday, et al. 2015. "Efficient Multiplexed Integration of Synergistic Alleles and Metabolic Pathways in Yeasts via CRISPR-Cas." Cell Systems. 1(1): 88-96.
[0213] Hu, Changyun, Peihong Jiang, Jianfeng Xu, Yongqing Wu, and Weida Huang. 2003. "Mutation Analysis of the Feedback Inhibition Site of Phenylalanine-Sensitive 3-Deoxy-D-Arabino-Heptulosonate 7-Phosphate Synthase of Escherichia Coli." Journal of Basic Microbiology 43 (5): 399-406.
[0214] Hu, C., Jiang, P., Xu, J., Wu, Y., and Huang, W. (2003) Mutation analysis of the feedback inhibition site of phenylalanine-sensitive 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase of Escherichia coli, J Basic Microbiol 43, 399-406.
[0215] Iwagami, S. G., Yang, K., and Davies, J. (2000) Characterization of the protocatechuic acid catabolic gene cluster from Streptomyces sp. strain 2065, Appl Environ Microbiol 66, 1499-1508.
[0216] Jantama, K., Haupt, M. J., Svoronos, S. A., Zhang, X., Moore, J. C., Shanmugam, K. T., and Ingram, L. O. (2008a) Combining metabolic engineering and metabolic evolution to develop nonrecombinant strains of Escherichia coli C that produce succinate and malate, Biotechnol Bioeng 99,1140-1153.
[0217] Jantama, K., Zhang, X., Moore, J. C., Shanmugam, K. T., Svoronos, S. A., and Ingram, L. O. (2008b) Eliminating side products and increasing succinate yields in engineered strains of Escherichia coli C, Biotechnol Bioeng 101, 881-893.
[0218] Jimenez, Natalia, Jose Antonio Curiel, Ines Reveron, Blanca de las Rivas, and Rosario Munoz. 2013. "Uncovering the Lactobacillus Plantarum WCFS I Gallate Decarboxylase Involved in Tannin Degradation." Applied and Environmental Microbiology 79 (14): 4253-63.
[0219] Johnson, C. W., Salvachua, D., Khanna, P., Peterson, D. J. and Beckham, G. (2016) Enhancing muconic acid production from glucose and lignin-derived aromatic compound via increased protocatechuate decarboxylase activity. Metabolic Engineering Communication. 3: 111-119.
[0220] Kaneko, A., Ishii, Y., and Kirimura, K. (2011) High-yield production of cis, cis-muconic acid from catechol in aqueous solution by biocatalyst. Chem. Lett. 40, 381-383.
[0221] Kikuchi, Y., Tsujimoto, K., and Kurahashi, 0. (1997) Mutational analysis of the feedback sites of phenylalanine-sensitive 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase of Escherichia coli, Appl Environ Microbiol 63, 761-762.
[0222] Kojima, Y., Fujisawa, H., Nakazawa, A., Nakazawa, T., Kanetsuna, F., Taniuchi, H., Nozaki, M., and Hayaishi, O. (1967) Studies on pyrocatechase. I. Purification and spectral properties, J Biol Chem 242, 3270-3278.
[0223] Kramer, M., Bongaerts, J., Bovenberg, R., Kremer, S., Muller, U., Orf, S., Wubbolts, M. and Raeven, L. (2003) Metabolic engineering for microbial production of shikimic acid. Metabol. Eng. 5, 277-283.
[0224] Lerner, C. G., and Inouye, M. (1990) Low copy number plasmids for regulated low-level expression of cloned genes in Escherichia coli with blue/white insert screening capability, Nucleic Acids Res 18, 4631.
[0225] Li, K. and Frost, L W. (1999) Microbial synthesis of 3-dehydroshikimic acid: A comparative analysis of D-xylose, L-arabinose, and D-glucose carbon sources. Biotechnol. Prog. 15, 876-883.
[0226] Lin, H., Ravishankar V Vadali, R. V., George N Bennett, G. N. and San, K. Y. (2004) Increasing the Acetyl-CoA Pool in the Presence of Overexpressed Phosphoenolpyruvate Carboxylase or Pyruvate Carboxylase Enhances Succinate Production in Escherichia Coli. Biotechnology Progress 20 (5): 1599-1604.
[0227] Lin, Fengming, Kyle L. Ferguson, David R. Boyer, Xiaoxia Nina Lin, and E. Neil G. Marsh. 2015. "Isofunctional Enzymes PADI and UbiX Catalyze Formation of a Novel Cofactor Required by Ferulic Acid Decarboxylase and 4-Hydroxy-3-Polyprcnylbenzoic Acid Decarboxylase." ACS Chemical Biology 11(4): 1137-1144.
[0228] Lu, J. L., and Liao, J. C. (1997) Metabolic engineering and control analysis for production of aromatics: Role of transaldolase, Biotechnol Bioeng 53, 132-138.
[0229] Lupa, Boguslaw, Delina Lyon, Moreland D. Gibbs, Rosalind a. Reeves, and Juergen Wiegel. 2005. "Distribution of Genes Encoding the Microbial Non-Oxidative Reversible Hydroxyarylic Acid Decarboxylases/phenol Carboxylases." Genomics 86 (3): 342-51.
[0230] Lutke-Eversloh, T., and Stephanopoulos, G. (2007) L-tyrosine production by deregulated strains of Escherichia coli, Appl Microbial Biotechnol 75, 103-110.
[0231] Mizuno, S., Yoshikawa, N., Seki, M., Mikawa, T., and Imada, Y. (1988) Microbial production of cis, cis-muconic acid from benzoic acid. Appl Microbiol Biotechnol. 28, 20-25.
[0232] Nakazawa, A., Kojima, Y., and Taniuchi, H. (1967) Purification and properties of pyrocatechase from Pseudomonas fluorescens, Biochim Biophys Acta 147, 189-199.
[0233] Neidhardt, F. C., and Curtiss, R. (1996) Escherichia coli and Salmonella: cellular and molecular biology, Vol. 22nd ed., ASM Press, Washington, D.C.
[0234] Neidie, E. L., and Ornston, L. N. (1986) Cloning and expression of Acinetobacter calcoaceticus catechol 1,2-dioxygenase structural gene catA in Escherichia coli, J Bacteriol 168, 815-820.
[0235] Niu, W., Draths, K. M., and Frost, J. W. (2002) Benzene-free synthesis of adipic acid, Biotechnol Prog 18, 201-211.
[0236] Parker, C., Barnell, W. O., Snoep, J. L., Ingram, L. O., and Conway, T. (1995) Characterization of the Zymonionas mobilis glucose facilitator gene product (glf) in recombinant Escherichia coli: examination of transport mechanism, kinetics and the role of glucokinase in glucose transport, Mol Microbiol 15, 795-802.
[0237] Parsek, M. R., Shinabarger, D. L., Rithmel, R. K. and Chakrabarty, A. M. (1992) Roles of CatR and cis, cis-Muconate in activation of the catBC operson, which is involved in benzoate degradationin Pseudomonas putida. J Bacteriol. 174, 7798-7806.
[0238] Patnaik, R. and Liao, J. C. (1994) Engineering of Escherichia coli central metabolism for aromatic metabolite with near theoretical yield. App. Env. Microbiol. 60, 3903-3908.
[0239] Payne, Karl a. P., Mark D. White, Karl Fisher, Basile Khara, Samuel S. Bailey, David Parker, Nicholas J. W. Rattray, et al. 2015. "New Cofactor Supports A,.beta.-Unsaturated Acid Decarboxylation via 1,3-Dipolar Cycloaddition." Nature 522 (7557): 497-501.
[0240] Pfleger, B. F., Kim, Y., Nusca, T. D., Maltseva, N., Lee, J. Y., Rath, C. M., Scaglione, J. B., Janes, B. K., Anderson, E. C., Bergman, N. H., Hanna, P. C., Joachimiak, A., and Sherman, D. H. (2008) Structural and functional analysis of AsbF: origin of the stealth 3,4-dihydroxybenzoic acid subunit for petrobactin biosynthesis, Proc Natl Acad Sci USA 105, 17133-17138.
[0241] Perez-Pantoja, D., De la Iglesia, R., Pieper, D. H., and Gonzalez, B. (2008) Metabolic reconstruction of aromatic compounds degradation from the genome of the amazing pollutant-degrading bacterium Cupriavidus necator JMP134, FEMS Microbiol Rev 32, 736-794.
[0242] Perez-Pantoja, D., Donoso, R., Agullo, L., Cordova, M., Seeger, M., Pieper, D. H., and Gonzalez, B. (2011) Genomic analysis of the potential for aromatic compounds biodegradation in Burkholderiales, Environ Microbiol. 14.5 (2012): 1091-1117.
[0243] Pittard, J. and Wallace, B. J. (1966) Distribution and function of genes concerned with aromatic biosynthesis in Escherichia coli. J. Bacteriol. 91, 1494-1508.
[0244] Polen, T., Spelberg, M. and Bott, M. (2013) Toward bitechnological produciton of adipic acid and precursors from biorenewables, J. Biotechnol. 167(2): 75-84.
[0245] Rutledge, B. J. (1984) Molecular characterization of the qa-4 gene of Neurospora crassa, Gene 32, 275-287.
[0246] Schirmer, F., and Hillen, W. (1998) The Acinctobacter calcoaceticus NCIB8250 mop operon mRNA is differentially degraded, resulting in a higher level of the 3' CatA-encoding segment than of the 5' phenolhydroxylase-encoding portion, Mol Gen Genet 257, 330-337.
[0247] Shumilin, I. A., Kretsinger, R. H., and Bauerle, R. H. (1999) Crystal structure of phenylalanine-regulated 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase from Escherichia coli, Structure 7, 865-875.
[0248] Shumilin, I. A., Zhao, C., Bauerle, R., and Kretsinger, R. H. (2002) Allosteric inhibition of 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase alters the coordination of both substrates, J Mol Biol 320, 1147-1156.
[0249] Shumilin, I. A., Bauerle, R., Wu, J., Woodard, R. W., and Kretsinger, R. H. (2004) Crystal structure of the reaction complex of 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase from Thermotoga maritima refines the catalytic mechanism and indicates a new mechanism of allosteric regulation, J Mol Biol 341, 455-466.
[0250] Shumkova, E. S., Solyanikova, I. P., Plotnikova, E. G. and Golovleva, L. A. (2009) Phenol degrdation by Rhodococcus opacus Strain 1G. App. Biocehm. Microbial. 45, 43-49.
[0251] Sietmann, R., Uebe, R., Boer, E., Bode, R., Kunze, G., and Schauer, F. (2010) Novel metabolic routes during the oxidation of hydroxylated aromatic acids by the yeast Arxula adeninivorans, J Appl Microbial 108, 789-799.
[0252] Smith, M. R. and Ratledge, C. (1989) Quantitative biotransformation of catechol to cis, cis-muconate. Biotech. Lett. 11, 105-110.
[0253] Snoep, J. L., Arfman, N., Yomano, L. P., Fliege, R. K., Conway, T., and Ingram, L. O. (1994) Reconstruction of glucose uptake and phosphorylation in a glucose-negative mutant of Escherichia coli by using Zymomonas mobilis genes encoding the glucose facilitator protein and glucokinase, J Bacterial 176, 2133-2135.
[0254] Sonoki, Tomonori, Miyuki Morooka, Kimitoshi Sakamoto, Yuichiro Otsuka, Masaya Nakamura, Jody Jellison, and Barry Goodell. 2014. Enhancement of Protocatechuate Decarboxylase Activity for the Effective Production of Muconate from Lignin-Related Aromatic Compounds. Journal of Biotechnology 192 (Part A): 71-77.
[0255] Sprenger, G. A. (1995) Genetics of pentose-phosphate pathway enzymes of Escherichia coli K-12, Arch Microbiol 164, 324-330.
[0256] Sprenger, G. A., Schorken, U., Sprenger, G., and Sahm, H. (1995a) Transketolase A of Escherichia coli K12. Purification and properties of the enzyme from recombinant strains, Eur J Biochem 230, 525-532.
[0257] Sprenger, G. A., Schorken, U., Sprenger, G., and Salim, H. (1995b) Transaldolase B of Escherichia coli K-12: cloning of its gene, talB, and characterization of the enzyme from recombinant strains, J Bacteriol 177, 5930-5936.
[0258] Stroman, P., Reinert, W. R., and Giles, N. H. (1978) Purification and characterization of 3-dehydroshikimate dehydratase, an enzyme in the inducible quinic acid catabolic pathway of Neurospora crassa, J Biol Chem 253, 4593-4598.
[0259] Tang, J., Zhu, X., Lu, J. and Liu, P. (2012) Recruiting alternative glucose utilization pathways for improving succinate production. App Microbiol Biotechnol DOI 10, 1007/s00253-012-434.1.
[0260] Tateoka, T., and Yasuda, 1. (1995) 3-Dehydroshikimate dehydratase in mung hean cultured cells, Plant Cell Reports 15, 212-217.
[0261] Vemuri, G. N., M. A. Eiteman, and E. Altman. 2002. "Effects of Growth Mode and Pyruvate Carboxylase on Succinic Acid Production by Metabolically Engineered Strains of Escherichia Coli." Applied and Environmental Microbiology 68 (4): 1715-27.
[0262] Weaver, L. M., and Herrmann, K. M. (1990) Cloning of an aroF allele encoding a tyrosine-insensitive 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase, J Bacteriol 172, 6581-6584.
[0263] Weber, C., Bruckner, C., Wcinrcb, S., Lehr, C., Essl, C. and Bole, E. (2012) Biosynthesis of cis, cis-muconic acid and its aromatic precursors catechol and proteocatechuic acid, from renewable feedstocks by Saccharomyces cerevisiae, App Environ Microbiol. 78, 8421-8430.
[0264] Wheeler, K. A., Lamb, H. K., and Hawkins, A. R. (1996) Control of metabolic flux through the quinate pathway in Aspergillus nidulans, Biochem J 315 (Pt 1), 195-205.
[0265] White, Mark D., Karl A. P. Payne, Karl Fisher, Stephen A. Marshall, David Parker, Nicholas J. W. Rattray, Drupad K. Trivedi, et al. 2015. "UbiX Is a Flavin Prenyltransferase Required for Bacterial Ubiquinone Biosynthesis." Nature 522 (7557): 502-6.
[0266] Wu, C-M., Wu, C-C., Su, C-C., Lee, S-N., Lee, Y-A. and Wu, J-Y. (2006) Microbial synthesis of cis,cis-muconic acid form benzoate by Sphingobacterium sp. Mutants. Biochem. Eng. J. 29, 35-40.
[0267] Xie, N., Tang, H., Feng, J., Tao, F., Ma, C. and Xu, P. (2009) Characterization of benzoate degradationby newly isolated bacterium Pseudomonas sp. XP-M2. Biochem. Eng. J. 46, 79-82.
[0268] Xie, N., Hong Liang, Ri-Bo Huang, and Ping Xu. 2014. "Biotechnological Production of Muconie Acid: Current Status and Future Prospects." Biotechnology Advances 32 (3): 615-22.
[0269] Yi, J., Draths, K. M., Li, K. and Frost, J. W. (2003) Altered Glucose Transport and Shikimate Pathway Product Yields in E. coli. Biotechnol. Prog. 2003, 19, 1450-1459.
[0270] Yoshikawa, N. , Mizuno, S., Ohta, K., and Suzuki, M. (1990) Microbial production of cis, cis-muconic acid. J. Biotechno. 14, 203-210.
Sequence CWU
1
1
941195DNABacillus subtilispromoter(1)..(195)The P15 promoter from Bacillus
subtilis phage SP01, with a stem and loop added just downstream from
the transcription start site. 1gctattgacg acagctatgg ttcactgtcc
accaaccaaa actgtgctca gtaccgccaa 60tatttctccc ttgaggggta caaagaggtg
tccctagaag agatccacgc tgtgtaaaaa 120ttttacaaaa aggtattgac tttccctaca
gggtgtgtaa taatttaatt acaggcgggg 180gcaaccccgc ctgtt
1952164DNABacillus
subtilispromoter(1)..(164)The P26 promoter from Bacillus subtilis phage
SP01 2gcctacctag cttccaagaa agatatccta acagcacaag agcggaaaga
tgttttgttc 60tacatccaga acaacctctg ctaaaattcc tgaaaaattt tgcaaaaagt
tgttgacttt 120atctacaagg tgtggtataa taatcttaac aacagcagga cgct
164391DNAEscherichia colipromoter(1)..(91)The PR promoter
from Escherichia coli phage 3acgttaaatc tatcaccgca agggataaat atctaacacc
gtgcgtgttg actattttac 60ctctggcggt gataatggtt gcatgtacaa g
914359PRTNeurospora
crassaPEPTIDE(1)..(359)Protein sequence of 3-dehydroshikimate
dehydratase from Neurospora crassa encoded by the qa-4 gene. 4Met Pro Ser
Lys Leu Ala Ile Ser Ser Met Ser Leu Gly Arg Cys Phe1 5
10 15Ala Gly His Ser Leu Asp Ser Lys Leu
Asp Ala Ala Gln Arg Tyr Gly 20 25
30Tyr Leu Gly Ile Glu Leu Phe Tyr Glu Asp Leu Val Asp Val Ala Glu
35 40 45His Leu Ser Asn Glu Arg Pro
Ser Pro Glu Gly Pro Phe Val Glu Ala 50 55
60Gln Ile Ala Ala Ala Arg His Ile Leu Gln Met Cys Gln Ala Arg Gly65
70 75 80Leu Glu Val Val
Cys Leu Gln Pro Phe Met His Tyr Asp Gly Leu Asn 85
90 95Asp Arg Ala Glu His Glu Arg Arg Leu Glu
Lys Leu Ala Leu Trp Ile 100 105
110Glu Leu Ala His Glu Leu His Thr Asp Ile Ile Gln Ile Pro Ala Asn
115 120 125Phe Leu Pro Ala Asn Gln Val
Ser Asp Asn Leu Asp Leu Ile Val Ser 130 135
140Asp Leu Cys Lys Val Ala Asp Ile Gly Ala Gln Ala Leu Pro Pro
Ile145 150 155 160Arg Phe
Ala Tyr Glu Ser Leu Cys Trp Ser Thr Arg Val Asp Leu Trp
165 170 175Glu Arg Cys Trp Asp Ile Val
Gln Arg Val Asp Arg Pro Asn Phe Gly 180 185
190Ile Cys Leu Asp Thr Phe Asn Ile Leu Gly Arg Ile Tyr Ala
Asp Pro 195 200 205Thr Ser Pro Ser
Gly Arg Thr Pro Asn Ala Lys Glu Ala Val Arg Lys 210
215 220Ser Ile Ala Asn Leu Val Ser Arg Val Asp Val Ser
Lys Val Phe Tyr225 230 235
240Val Gln Val Val Asp Ala Glu Arg Leu Ser Lys Pro Leu Leu Pro Gly
245 250 255His Pro Tyr Tyr Asn
Pro Glu Gln Pro Ala Arg Met Ser Trp Ser Arg 260
265 270Asn Cys Arg Leu Phe Tyr Gly Glu Thr Glu Tyr Gly
Ala Tyr Leu Pro 275 280 285Val Lys
Glu Val Ala Arg Ala Leu Phe His Gly Ile Gly Phe Glu Gly 290
295 300Trp Val Ser Leu Glu Leu Phe Asn Arg Arg Met
Ser Glu Glu Gly Pro305 310 315
320Glu Val Pro Glu Glu Leu Ala Met Arg Gly Ala Ile Ser Trp Ala Lys
325 330 335Leu Val Gln Asp
Leu Arg Ile Pro Val Glu Gly Pro Leu Val Thr Met 340
345 350Pro Arg Val Ser Ala Ser Leu
35552160DNANeurospora crassagene(1)..(2160)Genomic DNA sequence of the
qa-4 gene from Neurospora crassa plus surrounding sequences.
5gaattcggga aatggaatct tacctgggaa ccgaaatcac agtccgggta ggttatagag
60catatagtga actgtcaaag ttctagacct ggaccagcca cttggagtcg ttgttttagt
120tatacctaca ttcactcact gttgactttc aatcatactt acttagacgg agcaacgcgc
180cagaatccaa attgttgcat agttgcggta tcaccaagtg gcttcccata atagtttgcc
240attcgatgag acagctaact ggaagaccgg tactcgcagg ttgcacgatt acacggaagg
300attcggtatt ccgtgtttca tctgtcaaag tccctttcca tatgaatccg aggtactatg
360actggatctc gatacaagct ggccagcgag gtgcctgcct tgacaggctg tcaactgcgg
420gacggccggc taagtgttta acacgcaagg gtggaagatg tctcgtcccg tcatccaaga
480ccgtcaacat tcgaggccat ctgatcgttg aagagatgct aaatcttgtg aaacgctcat
540aggtcgctta ccttcggccc acccgttaat gctttattcc gctgagcaaa cttcggcttc
600catcccgcgg ttcaccgttt acatcactta tcgttgcggt tattggccga ttcttcgcaa
660accgaaacga tgacatcccg aatatctgca atacaccgcc acggccggcg tctttatcac
720acctcctatg ggagacgaaa gtgccttgat acccctagtc atttgaagat tcaggatggg
780agacggctgg ccgcttgcgg agttacgttc gagtcttggt cgcaggaacg cttgccgtat
840tgaatgagac cccgagaagg tcaaatcaaa tcttggaaga ccccaactgc ttcctcattg
900ccttcactcc ccatatcaat ggggcacatc ctgtgactac cttggtgctt tatttcctca
960ccatttggcg atacaagctc aaggacaccg aggtgatata cagttcttca aggacactat
1020ctcacctcaa tatcaagaac cagtctcatc atctcttatt tctccaggat ccccccacca
1080acaacatcgg cttttttttt tcccctattc tcaagaccca tcaagacgct cacttcgctg
1140agcctttcgc catgccgtca aagctagcca ttagttccat gtccctaggg cgctgctttg
1200ccggccactc tctggacagc aagcttgatg ccgctcaacg atacggctat cttggtatcg
1260agctttttta tgaggatctg gtcgacgttg cagagcattt gtcgaacgag cgtccctctc
1320ccgaaggccc ttttgtcgaa gctcagatag ccgccgctcg tcatattctc cagatgtgtc
1380aagccagggg gcttgaggtc gtctgcctcc agcctttcat gcactacgac ggccttaacg
1440acagggcaga acatgagcgt cgtctggaga agctagcact atggattgag ctcgctcatg
1500agcttcacac cgacatcatt cagatcccag ccaacttcct ccctgccaac caagtcagtg
1560acaacctcga cctgattgtc tcagatcttt gcaaggtggc cgatattgga gctcaagctt
1620tgccccctat ccgctttgcc tacgagagtc tttgctggag cacccgtgtc gacctctggg
1680agcgctgctg ggacatcgta caacgcgttg accgccccaa ctttggcatt tgccttgaca
1740ccttcaacat cctcggccgc atctatgccg accctacatc tcctagcggt aggacaccca
1800acgcaaaaga ggcagtcagg aagtccatcg ccaacttggt ctcgcgcgtg gatgtctcca
1860aagtcttcta cgtccaggtg gttgacgccg agaggctgag caagccacta ctgcccggtc
1920acccgtatta caatccagag cagccggcga ggatgagctg gtcgcgcaat tgtagactgt
1980tctacggcga aacagaatat ggtgcgtatc ttcccgtgaa ggaggttgct cgagcccttt
2040tccacggcat tggtttcgag ggctgggtca gtttggagct tttcaaccgc agaatgtctg
2100aggagggacc tgaagtgccg gaggaacttg ccatgagagg cgctatctcg tgggccaagt
21606348PRTAspergillus nigerPEPTIDE(1)..(340)Protein sequence of
3dehydroshikimate dehydratase from Aspergillus nidulans. encoded by
the qutC gene 6Met Pro Ala Asn Leu Lys Ile Gly Ile Pro Thr Val Ser Leu
Ser Lys1 5 10 15Pro Gly
Leu His Ser Leu Asp His Lys Leu Arg Ser Ala Ala His Gly 20
25 30Phe Ala Gly Ile Glu Leu Phe Ile Asp
Asp Leu Ser His Phe Ala Ser 35 40
45Ser Ser Phe Asn Gly Ser Leu Thr Gln Ala Ala Lys Tyr Ile Ser Ser 50
55 60Leu Ala Lys Gln Leu Asn Leu Thr Phe
Ile Cys Leu Gln Pro Phe Gly65 70 75
80Phe Tyr Glu Gly Leu Val Asp Thr Asn Gln Ser Thr Tyr Leu
Leu Thr 85 90 95Glu Lys
Leu Pro Leu Trp Phe Ala Ile Ala Arg Ile Ile Gly Thr Asp 100
105 110Leu Ile Gln Ile Pro Ala Asn Phe Leu
Gln Asn Asp Pro Val Thr Gly 115 120
125Ala Ala Arg Thr Ser Gly Asp Ile Arg Leu Ile Val Ser Asp Leu Gln
130 135 140Thr Ile Ala Asp Ile Gly Val
Lys Gln Gly Phe Arg Phe Val Tyr Glu145 150
155 160Ala Leu Cys Trp Ser Thr His Val Asp Thr Trp Glu
Ala Ala Trp Asn 165 170
175Val Val Lys Leu Val Asp Arg Glu Asn Phe Gly Ile Cys Leu Asp Ser
180 185 190Phe Asn Thr Arg Thr Pro
Leu Pro Ser Leu Gly Arg Arg Arg Met Leu 195 200
205Ser Lys Pro Trp Pro Ser Pro Trp Arg Arg Ser Val Leu Ser
Ser Pro 210 215 220Val Glu Asn Trp Thr
Ser Gly Lys Ser Ser Thr Ser Ser Leu Ser Met225 230
235 240Ala Ser Gly Cys Arg Arg Arg Trp Thr Arg
Ser Thr Pro Phe Met Trp 245 250
255Arg Ala Asn Pro Arg Arg Met Ser Trp Ser Arg Asn Ala Arg Leu Phe
260 265 270Pro Cys Glu Glu Glu
Arg Gly Gly Tyr Leu Pro Val Leu Glu Ile Ala 275
280 285Arg Ala Phe Phe Glu Ile Gly Phe Glu Gly Trp Val
Ser Leu Glu Leu 290 295 300Phe Ser Arg
Thr Cys Asn Asp Pro Asp Val Asn Thr Val Gly Glu His305
310 315 320Ala Arg Arg Gly Met Asp Arg
Arg Arg Arg Val Val Ala Ala Leu Gly 325
330 335Leu Asp Val Glu Val Pro Ala Arg Asn Cys Glu Cys
340 34573298DNAAspergillus
nigergene(1)..(3298)Genomic DNA sequence of the qutC gene from
Aspergillus nidulans plus surrounding sequences 7aagcttggtt tcaagtgatg
atatatagtt atgaggatat aatatgaacc gaaagacgat 60gtttcttgtg aatatttacg
tgatagttgt ctgtctaata tggtacagca gtagaacaac 120tacatacggt cactacttac
agccctagtc attccctccc tcgattgcct accatttata 180cactttgaac atccacaggc
ttgcctccct ccatactctc cctaacagct tgaacaactc 240tgagcgccct caccccatct
tcaacgccac agccaactcc tcgctcgcca tcctcaccct 300ttccactaac aacatcaaca
aaatatcccc actgcgcatc aaacggcctc acatcagcat 360ccttcactga aatctgctgc
atcgccaact ccgtattcca gcctttctct ttcccctgtc 420cacaagaaac atggtcatag
ctccagcgcg tcatatcagg cacactgaga ctcgctctgg 480ttccaagaat tcgataacag
tcgcttgcac tcttggaagg agcgggcgga atcgtaggat 540tctcgcccgt tcctgtttca
aagttcaacg gcgaaggcgt cgcgtcgcag atgagaaatg 600tgcctactat cccagacgca
aagcgcagcg tcacagcaca gccttcctcg gcggtatgtt 660ccgggttctg gcgcatgcgc
tgcaggagtg taccctccgc gtagacccta ctgacgggcc 720caaacagaaa ctgcagcacg
tcgatatcgt ggataagatt aatccccagc acgccgccct 780tcttcttatc tgcgcgccaa
gaaccgagcg gcggcgcgaa gtaagaggcc ggcttcagaa 840gtgtccagag gccgttcact
gcaacgacgg tgccgagtga gtctgtctct aacaaagact 900ttgtggtttg gatgtacgga
ttgaagcggc ggtggtggcc gatctggatg ttgatcttcg 960catccttgcc tctcttctca
tctttacatt tctgttcctt gacggtagcg aggaggtgct 1020cggccgactc cagatcgtca
ctgatcggtt tctcaaggag gatattgcgg attccgttct 1080ccagcagctg gagcgtgacg
tccacgtgcg tgtgattggg cgtgctcacg atcgccgcgt 1140ctggtttccc ggttgtctta
ccgacaacgt ctaacataga cgtaatagaa tcatagcaag 1200gaacgccaaa tgattctgcg
accgggattg cagagggtga agggtcaaca aaagcgatca 1260gctgggttcg tgggtgtcgt
tgcacggatt gtgcgtgacg gggcccaata agtccggcac 1320cgacgatgac aatgaggata
ttcttgtcct tttccttgct gcagggcacc attgtgcatg 1380tcggtggctg gaaataaaca
gaacagggat atggtcaagt cggagaatcg gtgcaggata 1440gaccggctac ttgatgtagg
acgacagtcg cgatctaccg agagcgtgag attcactgtg 1500ggactgattt atgtaatttg
aggcgcagca gacttaggga cttgaaatgt ggctgtctgt 1560ggatgcattt gcggggtatg
gagtacagag tgcatacagc tgtgtatatg gagttcctta 1620cggagagggt gacctggtat
ggggagaacg ggcaaaatgc tcacccggca acctctcaaa 1680gcgtttaccc ggtatactcc
tctgatatca atatttccaa tcagcaccta tatcatcacg 1740acgctctcct gaggattccg
tagctaaccg ccctggatcc tacattaata aataagccat 1800ttgctttttc tgctgcgagt
gtgattctca atacgattac gtatcacatg cagattgcct 1860ttacttcagc tgcatttgat
cagccacagc tctaagagca aacataccct acctacctac 1920ctacttcgcc tagggtacat
aatcaccgcc atctcctcct cgatcagtct tcaactcaat 1980cagctcattc attctattct
taatataata tataccttta gatctccagc agagacccga 2040agagtcggca attcaaaatg
cccgcaaacc tcaaaatcgg tatcccaacc gtgtccctgt 2100caaaaccggg cctgcactct
cttgaccata agctccgctc ggccgctcat ggcttcgcgg 2160ggatcgagct gtttattgat
gacctctccc atttcgcctc atcgtcattc aatggctccc 2220tcactcaagc ggcaaagtat
atctcctcgc tcgccaagca acttaacctc acatttatct 2280gcctgcaacc attcggtttc
tacgagggtc tggtggacac aaatcagtcg acgtacctgc 2340tcactgagaa actcccgctc
tggtttgcga tcgcccgcat tataggcaca gatctcatcc 2400aaatccccgc aaatttcctc
cagaatgacc ctgtcaccgg ggctgcacga acaagcggcg 2460acataaggct tatcgtctca
gatctgcaga cgatcgcaga tatcggtgta aagcagggct 2520tccgctttgt gtacgaggcg
ctctgctggt cgacgcatgt cgatacatgg gaagcagcgt 2580ggaatgtcgt caagctggtt
gatagagaga atttcgggat ctgcctggat agcttcaaca 2640cgcggacccc gcttccgtca
ctgggaagac gccggatgct gagcaagccg tggccaagtc 2700catggagacg ctccgttctc
tcgtctccag tggagaactg gacatcagga aaatcttcta 2760catccagctt gtcgatggcg
agcggttgtc ggcgccgctg gacgagaagc acccctttca 2820tgtggagggc caacccccga
agaatgagct ggagtcgcaa tgcgcggtta ttcccctgtg 2880aagaggagag gggtgggtat
cttcctgtgt tggagatcgc gagggcgttc tttgaaatcg 2940ggttcgaggg gtgggtgagt
ctagagctgt tttcaaggac gtgtaatgat cccgatgtga 3000acacggtggg ggagcatgcg
agacgtggga tggatagaag gaggagggtt gttgcggcgc 3060taggactcga tgttgaggtg
ccagcacgta actgtgaatg ttagcatgaa cggcaaggag 3120agggtggagg tgcaggtgca
ggaggagctg gctgttcagc atcggctgta ggtagtggta 3180tcttgaaagg acgatagggt
ttgatctaga gatttttatt ttgtctaatt actggtaatg 3240atggcctcat gcacgctgtt
gaacacgctg tacaacatca ctgttgaaga tgatacct 32988502PRTKlebsiella
pneumoniaePEPTIDE(1)..(502)Protein sequence of protocatechuate
decarboxylase (AroY) from Klebsiella pnemoniae ATCC25597 8Met Thr Ala Pro
Ile Gln Asp Leu Arg Asp Ala Ile Ala Leu Leu Gln1 5
10 15Gln His Asp Asn Gln Tyr Leu Glu Thr Asp
His Pro Val Asp Pro Asn 20 25
30Ala Glu Leu Ala Gly Val Tyr Arg His Ile Gly Ala Gly Gly Thr Val
35 40 45Lys Arg Pro Thr Arg Ile Gly Pro
Ala Met Met Phe Asn Asn Ile Lys 50 55
60Gly Tyr Pro His Ser Arg Ile Leu Val Gly Met His Ala Ser Arg Gln65
70 75 80Arg Ala Ala Leu Leu
Leu Gly Cys Glu Ala Ser Gln Leu Ala Leu Glu 85
90 95Val Gly Lys Ala Val Lys Lys Pro Val Ala Pro
Val Val Val Pro Ala 100 105
110Ser Ser Ala Pro Cys Gln Glu Gln Ile Phe Leu Ala Asp Asp Pro Asp
115 120 125Phe Asp Leu Arg Thr Leu Leu
Pro Ala His Thr Asn Thr Pro Ile Asp 130 135
140Ala Gly Pro Phe Phe Cys Leu Gly Leu Ala Leu Ala Ser Asp Pro
Val145 150 155 160Asp Ala
Ser Leu Thr Asp Val Thr Ile His Arg Leu Cys Val Gln Gly
165 170 175Arg Asp Glu Leu Ser Met Phe
Leu Ala Ala Gly Arg His Ile Glu Val 180 185
190Phe Arg Gln Lys Ala Glu Ala Ala Gly Lys Pro Leu Pro Ile
Thr Ile 195 200 205Asn Met Gly Leu
Asp Pro Ala Ile Tyr Ile Gly Ala Cys Phe Glu Ala 210
215 220Pro Thr Thr Pro Phe Gly Tyr Asn Glu Leu Gly Val
Ala Gly Ala Leu225 230 235
240Arg Gln Arg Pro Val Glu Leu Val Gln Gly Val Ser Val Pro Glu Lys
245 250 255Ala Ile Ala Arg Ala
Glu Ile Val Ile Glu Gly Glu Leu Leu Pro Gly 260
265 270Val Arg Val Arg Glu Asp Gln His Thr Asn Ser Gly
His Ala Met Pro 275 280 285Glu Phe
Pro Gly Tyr Cys Gly Gly Ala Asn Pro Ser Leu Pro Val Ile 290
295 300Lys Val Lys Ala Val Thr Met Arg Asn Asn Ala
Ile Leu Gln Thr Leu305 310 315
320Val Gly Pro Gly Glu Glu His Thr Thr Leu Ala Gly Leu Pro Thr Glu
325 330 335Ala Ser Ile Trp
Asn Ala Val Glu Ala Ala Ile Pro Gly Phe Leu Gln 340
345 350Asn Val Tyr Ala His Thr Ala Gly Gly Gly Lys
Phe Leu Gly Ile Leu 355 360 365Gln
Val Lys Lys Arg Gln Pro Ala Asp Glu Gly Arg Gln Gly Gln Ala 370
375 380Ala Leu Leu Ala Leu Ala Thr Tyr Ser Glu
Leu Lys Asn Ile Ile Leu385 390 395
400Val Asp Glu Asp Val Asp Ile Phe Asp Ser Asp Asp Ile Leu Trp
Ala 405 410 415Met Thr Thr
Arg Met Gln Gly Asp Val Ser Ile Thr Thr Ile Pro Gly 420
425 430Ile Arg Gly His Gln Leu Asp Pro Ser Gln
Thr Pro Glu Tyr Ser Pro 435 440
445Ser Ile Arg Gly Asn Gly Ile Ser Cys Lys Thr Ile Phe Asp Cys Thr 450
455 460Val Pro Trp Ala Leu Lys Ser His
Phe Glu Arg Ala Pro Phe Ala Asp465 470
475 480Val Asp Pro Arg Pro Phe Ala Pro Glu Tyr Phe Ala
Arg Leu Glu Lys 485 490
495Asn Gln Gly Ser Ala Lys 50095502DNAKlebsiella
pneumoniaegene(1)..(5502)DNA sequence of the aroY gene of Klebsiella
pneumoniae 342 plus 2 kilobases of surrounding DNA sequences 9gcgacgccga
ctgggcgatc cgtgaactgc tggcgcgtat gacccagcgt ctgcagggct 60gtgaaaccat
agaggatgtg attaaggtgg cggagctgtt cgcgccgaac atcgccccga 120cgatccccgg
taaactgtat attctggata ccgatccatg gcagatgcgc tgcgtggcgc 180agtggctgtc
gcccgccggg gagacgacgt cctttgctcc cgacgactgc tgggcgatac 240ggcggggact
cagccatccg ccggtgcagg gtgagcccga tatcacctgc tatcatctgc 300cggaggcgca
cgccggccag tcgctctgcg taccgctcat cgcccagggc gaagcgatcg 360gtctgctgag
ctttcagaac gtcaccgcca gtgacgcccc ttcccgggct tacctggagc 420tgatggccga
agcgctgggg ctggcgctcg ccaatcagcg tttacgcagc gccctgctgg 480aaaaagcgtt
gttcgattcg ctgaccggcc tgcgtaaccg ccatcatctt gatgaagcgc 540tgcactcgca
gatggcgctg gcggtccata cccacacccc gctgagctgc ctgatgatcg 600acatcgatca
cttcaaagcc atcaatgacc gctacggcca tgaagccggg gatctggtga 660ttaagagcgt
cgcgaccatt gtgcagcgcg cggtgcgcga tatcggcatg gctttccgct 720acggcggcga
ggagttttta gtgctgctcc ccgggattga cgaagccggg gcgcaccagt 780gcgccagcga
gatctacacc caggtgcaca atatgacgct gcgcgatggc ctgacggaga 840taggccaggt
ggatgtgtcg attggcatcg ccagctaccc gcagcacacc caaagcgaca 900gcctgctgcg
cgcagcggac gccgcgctgt accgggcgaa agagctgggc cgttcaagga 960ttgtcagctt
tggccgcctg aagacccgct aagcgggatt attgctcagc ggcattaagc 1020agcgagataa
ctttccgcac caccgccgaa cggaaatggc ggtggtaaac catgctcagc 1080tcactctccg
ccagccgatc ctgaagatcg atatacacca cgttatcaag gcgtaaggcc 1140ctcgccgaga
ccggcaccag cgccaccccc accccggcgg agaccaggct aatcatcgag 1200gtgacatcgt
taattcgctg caccacctgc ggcgtaaaac ccgcgacgcg acaggcgtca 1260ataaatacct
gctccagtcc ggtgccctgc ggatcgtcaa gcgagatcca gttgtcagtg 1320cgcaacgagg
ccagattgag cgcccccacg cctgccagcg gatgctgttg ataaagcgcc 1380aggcaaagtt
tttcccgcac aaatggcctg accaccagcg cgtccggcgg tgacgccagc 1440ggcgcgcgga
tgatggcgat atccagacgc agatccagca gcgcttcgta gagcatttgc 1500acatccccct
gcaccagcga cagctcaatc cccggccagt cagcgcgcag ctcgcgcagg 1560agccccggca
gtttgctgtc atacatcgca ctggagacat agcccagatg caatcgcccc 1620tgctcgcctc
gtgcggtgcg ctgggcgtcc aggaccgcct gatcggccat ctccagcgcc 1680agccgcgtct
tctgcaagaa ggcctcgccc gcggcggtga gggtcaggcg ccggttagcg 1740cgggagaaga
gcaccacgcc caggcgctgc tcgagttgtt taatctgctg gctgagggcg 1800ggctgggcga
tatgtaaccg ctctgccgcc cgatgcatat gtagttcttc agcaacgacc 1860acaaaatggc
gtaacgctcg caaggacatg gccggactcc gcggagtaaa ttgataataa 1920aaatgttatc
aataaagcat gaatgatgca attgataacc attagcctgc gagcatactg 1980tgcgcatcga
cacgctaagg agaacatcat gaccgcaccg attcaggatc tgcgcgacgc 2040tatcgcgctg
ctgcaacagc atgacaatca gtacctcgaa accgatcatc cggttgaccc 2100taacgctgag
ctggccggcg tctatcgcca catcggcgcg ggcggcaccg tgaagcgccc 2160cacgcgcatc
ggcccggcga tgatgtttaa caatattaag ggctatccgc actcgcgcat 2220tctggtgggc
atgcacgcca gccgccagcg ggccgcgctg ctgctgggct gcgaagcctc 2280acagctggcg
ctggaggtag gcaaagcggt gaaaaaaccg gtcgcgccgg tggtcgttcc 2340ggccagcagc
gccccctgtc aggaacaggt ctttctggcc gacgatccgg attttgattt 2400gcgcaccctg
ctcccggcgc ccaccaacac cccgatcgac gccggtccct tcttctgcct 2460gggcctggcg
ctggccagcg atcccgacga cgcctcgctc accgacgtca ccatccaccg 2520cttgtgcgtc
cagggccggg atgagctgtc gatgtttctc gccgctggcc gccatatcga 2580agtgtttcgt
cagaaagccg aggccgctgg caaaccgctg ccgataacca tcaatatggg 2640actcgatccg
gctatctata tcggcgcctg ctttgaagcg ccgaccacac gtttggctat 2700aacgaactgg
gcgtcgccgg tgcgctgcgt cagcgtccgg tagagctggt acagggcgtc 2760agcgtcccgg
agaaagccat cgctcgcgcc gagatcgtta tcgaagggga actgctgccg 2820ggggtacgcg
tcagagaaga tcagcacaca acagcggcca tgcgatgccg gaatttcctg 2880gttactgcgg
cggcgccaat ccgtcgctgc cggtcattaa agtcaaagcg gtgaccatgc 2940gaaacaatgc
gattctgcag acgctggtag ggccgggcga agagcatacc accctcgccg 3000gattgccaac
ggaagccagt atctggaatg ctgtcgaggc tgctatcccg ggctttttac 3060aaaatgtcta
cgcccacacc gcgggcggcg gtaaattcct cgggatcctg caggtgaaaa 3120aacgccagcc
cgccgacgaa gggcgtcagg ggcaggccgc gttgctggcg ctggcgacct 3180attccgagct
gaaaaatatc attctggtcg atgaagatgt cgatatcttt gacagcgacg 3240atatcctgtg
ggccatgacc acccgcatgc agggggatgt cagcatcacg acgatcccag 3300gcattcgtgg
tcaccagctg gatccttccc agaccccggc ctacagcccg tcgatccgcg 3360gagagggtat
cagttgcaag acgattttcg attgcacggt gccgtgggcg ctaaaatcac 3420acttcgagcg
cgcaccgttt gccgatgtcg atccgcgtcc gtttgcgccg gagtattttg 3480cccggctgga
aaaaaaccac ggtcagtaaa atcaggtgat agccgccgga gcacggcggc 3540atcttccggg
ccagcatcac ctgcagcggg tggctgacgc agggttagtt gatcgcggcg 3600gagaggtctt
ttttcacctg ctcacgctgc tcgggggtca acacctggct cacgtcgaag 3660tagtatttca
cacgataata ccgcacctgc tggtccagct ggccaaaggc ggccagctgc 3720tgtttgacct
tagcgtcatc ccatttcccg gagtgaataa cgtctgccag ggcaccatcc 3780tgatagccgc
tgatttaatc tggcttacat tgttttcgaa tccctgacgc agcgcctgga 3840ttttggcgac
ctgctcttca ctcagcttca ggtgctggac gaccggatcc tgcgagacag 3900acggtatatc
ggcggaggtc gacgcctggc tggctgccgt aaagcaggtg gtcagcgcaa 3960tggcgagcag
ggtgttacgc aagcgagtat tcacagtgaa tgatccttca aaaaagaaaa 4020tgagaggcga
ttatcactgc gctaataaag actatctgta acaaagggtt aatttaaaac 4080tggataaaaa
aaggatggta agaaacagaa atcagatccc gggtcagcag cacagaaaga 4140tatattcatc
cttccagtaa cggccctgtc caatgatatc cccggcggcg ctgattaact 4200gtttttgctt
ttggtttcaa tcccctcaac gatcacatgg ctggtcaggg tatgaataga 4260ttgcaacagc
ccgggaaaag cggggtcgtt ttctttatcc cagaagtaat ctttatccac 4320tttgacgcaa
tcgaagcgga agcgctccag cagcgggaag gacgtcgtcc gcggccaaaa 4380tcatccagcc
agaccgggca aagcgccgcc agcgtgctca gcgccgtcag ctcacgtccg 4440gcgataaact
cgtgaaagtt ctcatttatt tccagagcaa tgtgtttaca ggagcgcagg 4500aaatcacaga
gatagcgatc cgtcagaata aagtggctta ataaatcatc aatattcagc 4560gatatcggtt
tattatcgac ccgggcgaaa tcaaatacag aaagtaactc gatttgccga 4620ataaatagag
caagcttatc gcgttcggta agcgtggaga aagaaaacgt cgacgcagag 4680gtggtatttt
gtgcgggtgc tataatatct ttagtaagca actcccacga gtggtagctg 4740ccgtcatcgc
taatagcggg ctccagaacg aagcgataag aggtattttt cacgttttct 4800tcaaccattt
aaaaaatacc aaaaataaga aagggttaag catgtcatat attttccgcc 4860aacaaaaata
gtttaaagtg atcgataata atcattcgat agttaaaaac tatcaagata 4920taatttattg
atcggtaaat tgaattaata taaattagcc actgccgtaa ctccctctga 4980aaagtcaatt
aaaatattgt ttcaaaccag ccagttacca gagtattctg cgtaaagcct 5040ggtcgtctca
cgctttgtgc tgccaggtaa aaaaagagag gggtaataaa aatgaaaaat 5100acaagccgcc
agttttagtc atatcattat gccgaatatg aataacgctg cgctgaggcg 5160ccgcttcgcc
tggcatgcca tgagtcctca acaaaaaagt gtgactcagt cgacaaaacg 5220tcatattttc
ccgctatcct gcagcgaaga agagtgaagt ggatgacagg cagtgaaaaa 5280aataaacgtg
attccgctgg ggctgatgct attcatgctc atcgccagcg catggctggg 5340ccctgcgccg
cggcacaccg gcagcatgca gtgcgtttgg tttgacgggg caatggtgag 5400ctgcctgccg
aagcaacgac tgggcgaagg ctcgccgcat catttactgg tcagacgata 5460aaccggtact
cgccgggtgg tgttgaacag attatcgctg gc
5502104629DNAAcinetobacter baylyigene(1)..(4629)DNA sequence of the catA
gene from Acinetobacter baylyi ADP1, including 410 bases of upstream
sequence and two open reading frames downstream 10atctgctcga
ccatagtaat gatcacatta tgagctaaat ttacttttta aaatttaaat 60atattatata
tatttgaatt ttattgtttt attttaattt ttagcttaga agtttttatt 120aagatttatt
tttaaattag atgtcgaaaa aattagtata ccaaaaaagc atgaaaacat 180actctcttag
gaattggagt cgccatgagt ttcagataca gttgatcagt atggaaggta 240tagaaacgac
tatcgaaata aataagtttg tggtgtgtga agcaaggtaa agctcaaggc 300tgaggcaaac
caagcaaagg ttaattgaac cgatatgcac aacacattca acgatagcgt 360cgacagataa
gtttatcaaa tgatgttttg gcgatttcaa ggagaaagcc atggaagtta 420aaatattcaa
tactcaggat gtgcaagatt ttttacgtgt tgcaagcgga cttgagcaag 480aaggtggcaa
tccgcgtgta aagcagatca tccatcgtgt gctttcagat ttatataaag 540ccattgaaga
tttgaatatc acttcagatg aatactgggc aggtgtggca tatttaaatc 600agctaggtgc
caatcaagaa gctggtttac tctcgccagg cttgggtttt gaccattacc 660tcgatatgcg
tatggatgcc gaagatgccg cactaggtat tgaaaatgcg acaccacgta 720ccattgaagg
cccgctatac gtggcaggtg cgcctgaatc ggtaggttat gcgcgcatgg 780atgacggaag
tgatccaaat ggtcataccc tgattctaca tggcacgatc tttgatgcag 840atggaaaacc
tttacccaat gccaaagttg aaatctggca tgccaatacc aaaggctttt 900attcacactt
cgacccaaca ggcgagcagc aggcgttcaa tatgcgccgt agtattatta 960ccgatgaaaa
cggtcagtat cgcgttcgta ccattttgcc tgcgggttat ggttgcccac 1020cagaaggtcc
aacgcaacag ttgctgaatc agttgggccg tcatggtaac cgccctgcgc 1080acattcacta
ttttgtttct gccgatggac accgcaaact aactacgcaa attaatgtgg 1140ctggcgatcc
gtacacctat gacgactttg cttatgcaac ccgtgaaggc ttggtggttg 1200atgcagtgga
acacaccgat cctgaagcca ttaaggccaa tgatgttgaa ggcccattcg 1260ctgaaatggt
tttcgatcta aaattgacgc gtttggttga tggtgtagat aaccaagttg 1320ttgatcgtcc
acgtctagcg gtgtaataca ccaaaatggt tcaaaattat caggcgagtg 1380atcatgatca
ctggcctgtt tttatttcag ggaagggtgg agacaattac gtggacaatc 1440aaatcattca
ggaaaccgta gataaaattt taagcgtatt gccgaatcag gctgggcaat 1500tggcacgctt
ggttcgtctg atgcagtttg cttgtgaccc caccattacc gtcattggta 1560aatataatca
tggtaaaagc cgactactca atgagctgat cgggacagat attttttctg 1620ttgccgataa
acgagagacg attcaactgg ccgaacataa acaagatcag gtgcgttggt 1680tggatgcacc
cggactcgat gcagatgttg cggcagtgga tgatcgtcat gcttttgaag 1740cagtctggac
acaggcagat attcgccttt ttgtgcattc agtccgagaa ggcgaactcg 1800atgcaactga
gcatcatctt ttacaacaac ttattgaaga tgcagaccat agccggcgcc 1860aaaccatact
ggtcttgacc cagatagatc agataccgga tcagacaatt ttaacccaga 1920ttaaaacctc
aattgcacag caggtaccca aactcgatat ttgggctgtt tcggccactc 1980gccaccgtca
gggtattgaa aatggaaaaa ccttgctgat cgaaaaaagt ggaatcggcg 2040cgttacgaca
tacacttgag caggcacttg ctcaggttcc atctgcacga acgtatgaaa 2100agaatagatt
gctgtctgac ttgcatcatc aacttaagca gttattactc gatcaaaaac 2160atgtacttca
gcaactacaa cagacacagc agcagcaatt gcatgacttt gatacaggac 2220tcatcaacat
actcgataag attcgagtag atcttgagcc cattgtaaat atagatggtc 2280aagaccaagc
actcaatcca gattcatttg ccacgatgtt taaaaataca gcagccaagc 2340agcaacgtgc
caaagtgcag attgcttact cacgtgcctg tatcgagatc aatagccatc 2400tcatacgtca
cggtgtggtg ggtttacccg cagagcaaca aaccacgata aaaagtattg 2460atacggtcat
tgttgcggtt tttggaattt cagtgaaatt tcgcgatcag ctacgtgcat 2520tgttttatac
cgataccgaa cgacaacgct tgcaaagaga gtttcgattt tattttgaaa 2580agtcagcagg
ccgaatgatt ttagctgcca agattgagca gacaatgcgg cagcaagggt 2640gtattcaaaa
tgcaatgatg gcgttgcaac agatggagag tgcagcatga ccagcggcgg 2700acacattcaa
ttgtttatcg aacacacccg gcagattgcg actgcccaag gggatataca 2760gttggcattg
caatcgatgc agcaatggcg cgaagcattt gctacagcat taaaacaaaa 2820tacctttgat
ttaacgggct ggtcaccgca gacaaagatc gccaatcaac tcaagcaatt 2880taaccataag
cttacaacgc atgtatcgaa ttgggatacc gaatggcata cttttagtgc 2940tgctcaatcg
gttgcagaag tatttcatga tcgggtgatg ttgcttgtat tcggtaagtt 3000taatgccgga
aagagttcat tgtgtaactt actggccgaa tgctttcgtt ctcacgaaca 3060aaccgtgcaa
tattttcatg ttcaaaatga acagatattt tataccgaat ctcacttacg 3120cgaaggtgca
accgagacga cagcgcaact acagggcgta tgtctgggtg aaaaacttat 3180tttgctagat
acaccaggtt tgcattctgg tactcagaaa aatgcagcgc tcacacaaaa 3240atttatcgac
agtgcagatg gtgtgctgtg gctcagtagc gcaacttcac cgggtcaggt 3300gcaagagcta
gatgcactgg ggcgcgagtt aaagcgtcat aaacctttat ttcctgttat 3360tacccgaagc
gattttgtcg aagaagatga aattgatggt gagctatgta cagtgctttg 3420caataaaaat
tcagaacaac gtgcgttgca agagtctgat gtattgatgc gtgcgaaaga 3480aaaactgcac
atatgcaagt ggatgtgagt ttattaaagc cgcccgtgtc cgtttcaact 3540caaatggcgc
gtgaagcaga tatgaaccca caagccatga acgaggctgg ttttgagcga 3600ttatttgcag
cacttttggc tcttattgag cctgctttgc gctataagca gcgtaaacct 3660gccgaagtat
tgttgcattt tttgcaagaa catatcattg aaggtttaag gttttacctg 3720caacccgatc
tagagcaaat acaacaggac ctcaaacagg ctcaagatga tttacgacag 3780ctacacaccg
atttagccga ggcagtctgg cgtagcgtat tgcctgagct accacaactt 3840cttgagcaac
atgcaagtac acaaaatatt gatgccgtag tgaacagttt gaacgagtgg 3900ataaacgtcg
cattcgaaca acagcttgca attcagcttg atgcttatgg tttaaatttg 3960gattcgctta
gcaagatcga aaaaaccgaa aaaatgcagt atgaacgcat tgcgggaatg 4020gtggtgcatg
atggcttgta cacgactctc acgcagcaga ttcaacaagc tgtcaaagct 4080tctacgagtg
aattgattga tcagtgtcag gctcaacttg agcagtcaat caaacatgtt 4140caaacactcg
atgaaacctt catcgattac agcgcagcac tcgatcaact cagccaagcg 4200ctacgcattg
aataaagagc agtaaatttt tcagacatat tttattcgat gagtggcctg 4260atatggtgcg
ttgcaaacac ctcctgtaca caggcgagaa ttttaggaat gtaattactg 4320tggtccatat
ttcgcaccgc gagtgaaatt gggctatagg catcatcatc taaaattgga 4380atataaagta
gattcttcac cccaatatcc atggcagacg ccggtacgat gcagacgcct 4440tcacctgctg
ccaccaagcc gagtgccagt tgaatttctc gaatttcggt gagtttggat 4500ggtactaggc
ctagttcggt aaagagtgac tgaataaagg tcgcaaaatt gggcttttga 4560gagactgggt
acagcagcat cggttcatca ataatttgag agagatgaac ccctgttgct 4620gcaaactga
462911311PRTAcinetobacter baylyiPEPTIDE(1)..(311)Protein sequence of CatA
(catechol 1,2-dioxygenase) from Acinetobacter baylyi ADP1 11Met Glu
Val Lys Ile Phe Asn Thr Gln Asp Val Gln Asp Phe Leu Arg1 5
10 15Val Ala Ser Gly Leu Glu Gln Glu
Gly Gly Asn Pro Arg Val Lys Gln 20 25
30Ile Ile His Arg Val Leu Ser Asp Leu Tyr Lys Ala Ile Glu Asp
Leu 35 40 45Asn Ile Thr Ser Asp
Glu Tyr Trp Ala Gly Val Ala Tyr Leu Asn Gln 50 55
60Leu Gly Ala Asn Gln Glu Ala Gly Leu Leu Ser Pro Gly Leu
Gly Phe65 70 75 80Asp
His Tyr Leu Asp Met Arg Met Asp Ala Glu Asp Ala Ala Leu Gly
85 90 95Ile Glu Asn Ala Thr Pro Arg
Thr Ile Glu Gly Pro Leu Tyr Val Ala 100 105
110Gly Ala Pro Glu Ser Val Gly Tyr Ala Arg Met Asp Asp Gly
Ser Asp 115 120 125Pro Asn Gly His
Thr Leu Ile Leu His Gly Thr Ile Phe Asp Ala Asp 130
135 140Gly Lys Pro Leu Pro Asn Ala Lys Val Glu Ile Trp
His Ala Asn Thr145 150 155
160Lys Gly Phe Tyr Ser His Phe Asp Pro Thr Gly Glu Gln Gln Ala Phe
165 170 175Asn Met Arg Arg Ser
Ile Ile Thr Asp Glu Asn Gly Gln Tyr Arg Val 180
185 190Arg Thr Ile Leu Pro Ala Gly Tyr Gly Cys Pro Pro
Glu Gly Pro Thr 195 200 205Gln Gln
Leu Leu Asn Gln Leu Gly Arg His Gly Asn Arg Pro Ala His 210
215 220Ile His Tyr Phe Val Ser Ala Asp Gly His Arg
Lys Leu Thr Thr Gln225 230 235
240Ile Asn Val Ala Gly Asp Pro Tyr Thr Tyr Asp Asp Phe Ala Tyr Ala
245 250 255Thr Arg Glu Gly
Leu Val Val Asp Ala Val Glu His Thr Asp Pro Glu 260
265 270Ala Ile Lys Ala Asn Asp Val Glu Gly Pro Phe
Ala Glu Met Val Phe 275 280 285Asp
Leu Lys Leu Thr Arg Leu Val Asp Gly Val Asp Asn Gln Val Val 290
295 300Asp Arg Pro Arg Leu Ala Val305
310121461DNAAcinetobacter sp. ADP1gene(1)..(1461)DNA sequence of the
quiC (3-dehydroshikimate dehydratase)gene from Acinetobacter sp.
ADP1 12atgaaattaa cttctttacg cgtatcttta ttggcgctgg gcttggtaac atcaggtttt
60gctgcggcag aaacttatac tgtagatcgt tatcaggatg atagtgaaaa aggctctttg
120cgttgggcaa ttgaacaatc taatgcaaat agcgcacaag agaatcagat tctgattcag
180gctgttggta aggcacctta tgtgatcaag gtggataaac cgttaccacc gattaaatca
240tctgtaaaaa ttattggtac agaatgggat aaaacgggcg aatttattgc gattgatggt
300tcaaactata tcaagggcga aggcgaaaaa gcatgtccag gtgcaaatcc aggacaatat
360ggtaccaatg ttcgtaccat gactttacca ggtttggttc tacaagatgt caatggtgtg
420accctgaaag gtcttgatgt tcatcgcttc tgtattggtg tactggtaaa tcgttcaagc
480aataatttga ttcagcataa ccgtatttca aataattacg gtggcgctgg tgtcatgatc
540acgggtgatg atggtaaagg taacccaacg tctaccacca ccaataacaa caaagtattg
600gataatgtgt ttattgacaa tggcgatggt cttgaactga cgcgtggagc agcattcaac
660ctgattgcta acaatctgtt tacatcgacc aaagccaatc cagagccgtc tcaaggcatt
720gaaattcttt gggggaatga caatgcagtg gtgggtaaca aatttgaaaa ctattcagat
780ggtctacaaa tcaactgggg taaacgtaat tacatcgctt ataacgaatt gaccaataac
840tctttgggtt tcaatcttac aggtgatgga aacatcttcg atagtaacaa agtgcatggc
900aatcgtattg gtatcgcaat tcgttctgaa aaagatgcaa atgcacgtat cacacttacc
960aaaaatcaga tttgggataa tggtaaagat atcaaacgct gtgaggctgg tggttcatgt
1020gttccaaacc aacgtttagg tgcaattgta tttggtgttc ctgcgcttga gcatgaaggt
1080tttgtaggct ctcgtggtgg cggtgtagtc attgaacctg caaaattaca aaaaacatgt
1140acacagccaa atcaacaaaa ctgtaatgcc attccgaacc aaggtattca ggcacctaaa
1200ctgactgtca gtaaaaaaca acttacagtt gaagttaaag gaacaccaaa ccagcgttac
1260aacgtagaat tttttggaaa tcgtaatgca tcttcttccg aagctgagca atatttaggt
1320tcaattgttg tagtgacaga tcatcaaggt cttgcaaaag caaactgggc accaaaagtc
1380agcatgccat ctgttactgc gaatgtaact gatcacttgg gcgccacttc agagttaagt
1440tctgcagtga aaatgagata a
1461131461DNAAcinetobacter sp. arc5gene(1)..(1461)Codon-optimized DNA
sequence of the quiC (3-dehydroshikimate dehydratase)gene from
Acinetobacter sp. ADP1 13atgaaactga ccagcctgcg tgttagcctg ctggcactgg
gtctggttac cagcggtttt 60gcagcagcag aaacctatac cgttgatcgt tatcaggatg
atagcgaaaa aggtagcctg 120cgttgggcaa ttgaacagag caatgcaaat agcgcacaag
aaaaccagat tctgattcag 180gcagttggta aagcaccgta tgttatcaaa gttgataaac
cgctgcctcc gattaaaagc 240agcgttaaaa tcattggcac cgagtgggat aaaaccggtg
aatttattgc aattgatggc 300agcaactata tcaaaggcga aggtgaaaaa gcatgtccgg
gtgcaaatcc gggtcagtat 360ggcaccaatg ttcgtaccat gaccctgcct ggtctggttc
tgcaagatgt taatggtgtt 420accctgaaag gtctggatgt tcatcgtttt tgtattggtg
ttctggttaa tcgcagcagc 480aataacctga ttcagcataa tcgtatcagc aacaattatg
gtggtgccgg tgttatgatt 540accggtgatg atggtaaagg taatccgacc agcaccacca
ccaataataa caaagttctg 600gataacgtgt tcatcgataa tggtgatggt ctggaactga
cccgtggtgc agcatttaat 660ctgattgcaa ataacctgtt taccagcaca aaagccaatc
cggaaccgag ccagggtatt 720gaaattctgt ggggtaatga taatgccgtg gtgggtaaca
aattcgaaaa ctattcagat 780ggcctgcaaa tcaattgggg taaacgtaac tatatcgcct
ataacgaact gaccaataac 840agcctgggtt tcaatctgac aggtgatggt aacattttcg
acagcaataa agtgcatggt 900aaccgtattg gtattgccat tcgtagtgaa aaagatgcca
atgcacgtat taccctgacc 960aaaaatcaga tttgggataa cggcaaagat atcaaacgtt
gtgaagccgg tggtagctgt 1020gttccgaatc agcgtctggg tgcaattgtt tttggtgttc
cggcactgga acatgaaggt 1080tttgttggta gccgtggcgg tggtgttgtt attgaaccgg
caaaactgca aaaaacctgc 1140acccagccga accagcagaa ttgtaatgca attcctaatc
agggtattca ggcaccgaaa 1200ctgacagtta gcaaaaaaca gctgaccgtt gaagttaaag
gcacccctaa tcagcgttat 1260aatgtggaat tttttggcaa tcgtaatgcc agcagcagcg
aagcagaaca gtatctgggt 1320agcattgttg ttgttaccga tcatcagggt ctggcaaaag
caaattgggc tccgaaagtt 1380agcatgccga gcgttaccgc aaatgtgaca gatcatctgg
gtgcgaccag cgaactgagc 1440agcgcagtta aaatgcgtta a
146114486PRTAcinetobacter sp.
arc5PEPTIDE(1)..(486)Protein sequence of QuiC (3-dehydroshikimate
dehydrogenase from Acinetobacter sp. ADP1 14Met Lys Leu Thr Ser Leu Arg
Val Ser Leu Leu Ala Leu Gly Leu Val1 5 10
15Thr Ser Gly Phe Ala Ala Ala Glu Thr Tyr Thr Val Asp
Arg Tyr Gln 20 25 30Asp Asp
Ser Glu Lys Gly Ser Leu Arg Trp Ala Ile Glu Gln Ser Asn 35
40 45Ala Asn Ser Ala Gln Glu Asn Gln Ile Leu
Ile Gln Ala Val Gly Lys 50 55 60Ala
Pro Tyr Val Ile Lys Val Asp Lys Pro Leu Pro Pro Ile Lys Ser65
70 75 80Ser Val Lys Ile Ile Gly
Thr Glu Trp Asp Lys Thr Gly Glu Phe Ile 85
90 95Ala Ile Asp Gly Ser Asn Tyr Ile Lys Gly Glu Gly
Glu Lys Ala Cys 100 105 110Pro
Gly Ala Asn Pro Gly Gln Tyr Gly Thr Asn Val Arg Thr Met Thr 115
120 125Leu Pro Gly Leu Val Leu Gln Asp Val
Asn Gly Val Thr Leu Lys Gly 130 135
140Leu Asp Val His Arg Phe Cys Ile Gly Val Leu Val Asn Arg Ser Ser145
150 155 160Asn Asn Leu Ile
Gln His Asn Arg Ile Ser Asn Asn Tyr Gly Gly Ala 165
170 175Gly Val Met Ile Thr Gly Asp Asp Gly Lys
Gly Asn Pro Thr Ser Thr 180 185
190Thr Thr Asn Asn Asn Lys Val Leu Asp Asn Val Phe Ile Asp Asn Gly
195 200 205Asp Gly Leu Glu Leu Thr Arg
Gly Ala Ala Phe Asn Leu Ile Ala Asn 210 215
220Asn Leu Phe Thr Ser Thr Lys Ala Asn Pro Glu Pro Ser Gln Gly
Ile225 230 235 240Glu Ile
Leu Trp Gly Asn Asp Asn Ala Val Val Gly Asn Lys Phe Glu
245 250 255Asn Tyr Ser Asp Gly Leu Gln
Ile Asn Trp Gly Lys Arg Asn Tyr Ile 260 265
270Ala Tyr Asn Glu Leu Thr Asn Asn Ser Leu Gly Phe Asn Leu
Thr Gly 275 280 285Asp Gly Asn Ile
Phe Asp Ser Asn Lys Val His Gly Asn Arg Ile Gly 290
295 300Ile Ala Ile Arg Ser Glu Lys Asp Ala Asn Ala Arg
Ile Thr Leu Thr305 310 315
320Lys Asn Gln Ile Trp Asp Asn Gly Lys Asp Ile Lys Arg Cys Glu Ala
325 330 335Gly Gly Ser Cys Val
Pro Asn Gln Arg Leu Gly Ala Ile Val Phe Gly 340
345 350Val Pro Ala Leu Glu His Glu Gly Phe Val Gly Ser
Arg Gly Gly Gly 355 360 365Val Val
Ile Glu Pro Ala Lys Leu Gln Lys Thr Cys Thr Gln Pro Asn 370
375 380Gln Gln Asn Cys Asn Ala Ile Pro Asn Gln Gly
Ile Gln Ala Pro Lys385 390 395
400Leu Thr Val Ser Lys Lys Gln Leu Thr Val Glu Val Lys Gly Thr Pro
405 410 415Asn Gln Arg Tyr
Asn Val Glu Phe Phe Gly Asn Arg Asn Ala Ser Ser 420
425 430Ser Glu Ala Glu Gln Tyr Leu Gly Ser Ile Val
Val Val Thr Asp His 435 440 445Gln
Gly Leu Ala Lys Ala Asn Trp Ala Pro Lys Val Ser Met Pro Ser 450
455 460Val Thr Ala Asn Val Thr Asp His Leu Gly
Ala Thr Ser Glu Leu Ser465 470 475
480Ser Ala Val Lys Met Arg
485159462DNAEscherichia colimisc_feature(1)..(9462)DNA sequence of the
plasmid pAC21misc_feature(5924)..(5924)n is a, c, g, or t 15gttgacagta
agacgggtaa gcctgttgat gataccgctg ccttactggg tgcattagcc 60agtctgaatg
acctgtcacg ggataatccg aagtggtcag actggaaaat cagagggcag 120gaactgctga
acagcaaaaa gtcagatagc accacatagc agacccgcca taaaacgccc 180tgagaagccc
gtgacgggct tttcttgtat tatgggtagt ttccttgcat gaatccataa 240aaggcgcctg
tagtgccatt tacccccatt cactgccaga gccgtgagcg cagcgaactg 300aatgtcacga
aaaagacagc gactcaggtg cctgatggtc ggagacaaaa ggaatattca 360gcgatttgcc
cgagcttgcg agggtgctac ttaagccttt agggttttaa ggtctgtttt 420gtagaggagc
aaacagcgtt tgcgacatcc ttttgtaata ctgcggaact gactaaagta 480gtgagttata
cacagggctg ggatctattc tttttatctt tttttattct ttctttattc 540tataaattat
aaccacttga atataaacaa aaaaaacaca caaaggtcta gcggaattta 600cagagggtct
agcagaattt acaagttttc cagcaaaggt ctagcagaat ttacagatac 660ccacaactca
aaggaaaagg actagtaatt atcattgact agcccatctc aattggtata 720gtgattaaaa
tcacctagac caattgagat gtatgtctga attagttgtt ttcaaagcaa 780atgaactagc
gattagtcgc tatgacttaa cggagcatga aaccaagcta attttatgct 840gtgtggcact
actcaacccc acgattgaaa accctacaag gaaagaacgg acggtatcgt 900tcacttataa
ccaatacgct cagatgatga acatcagtag ggaaaatgct tatggtgtat 960tagctaaagc
aaccagagag ctgatgacga gaactgtgga aatcaggaat cctttggtta 1020aaggctttga
gattttccag tggacaaact atgccaagtt ctcaagcgaa aaattagaat 1080tagtttttag
tgaagagata ttgccttatc ttttccagtt aaaaaaattc ataaaatata 1140atctggaaca
tgttaagtct tttgaaaaca aatactctat gaggatttat gagtggttat 1200taaaagaact
aacacaaaag aaaactcaca aggcaaatat agagattagc cttgatgaat 1260ttaagttcat
gttaatgctt gaaaataact accatgagtt taaaaggctt aaccaatggg 1320ttttgaaacc
aataagtaaa gatttaaaca cttacagcaa tatgaaattg gtggttgata 1380agcgaggccg
cccgactgat acgttgattt tccaagttga actagataga caaatggatc 1440tcgtaaccga
acttgagaac aaccagataa aaatgaatgg tgacaaaata ccaacaacca 1500ttacatcaga
ttcctaccta cgtaacggac taagaaaaac actacacgat gctttaactg 1560caaaaattca
gctcaccagt tttgaggcaa aatttttgag tgacatgcaa agtaagcatg 1620atctcaatgg
ttcgttctca tggctcacgc aaaaacaacg aaccacacta gagaacatac 1680tggctaaata
cggaaggatc tgaggttctt atggctcttg tatctatcag tgaagcatca 1740agactaacaa
acaaaagtag aacaactgtt caccgttaga tatcaaaggg aaaactgtcc 1800atatgcacag
atgaaaacgg tgtaaaaaag atagatacat cagagctttt acgagttttt 1860ggtgcattta
aagctgttca ccatgaacag atcgacaatg taacagatga acagcatgta 1920acacctaata
gaacaggtga aaccagtaaa acaaagcaac tagaacatga aattgaacac 1980ctgagacaac
ttgttacagc tcaacagtca cacatagaca gcctgaaaca ggcgatgctg 2040cttatcgaat
caaagctgcc gacaacacgg gagccagtga cgcctcccgt ggggaaaaaa 2100tcatggcaat
tctggaagaa atagcgcttt cagccggcaa acctgaagcc ggatctgcga 2160ttctgataac
aaactagcaa caccagaaca gcccgtttgc gggcagcaaa acccgttatg 2220cttgtaaacc
gttttgtgaa aaaattttta aaataaaaaa ggggacctct agggtcccca 2280attaattagt
aatataatct attaaaggtc attcaaaagg tcatccaccg gatcaattcc 2340cctgctcgcg
caggctgggt gccaagctct cgggtaacat caaggcccga tccttggagc 2400ccttgccctc
ccgcacgatg atcgtgccgt gatcgaaatc cagatccttg acccgcagtt 2460gcaaaccctc
actgatccgc atgcccgttc catacagaag ctgggcgaac aaacgatgct 2520cgccttccag
aaaaccgagg atgcgaacca cttcatccgg ggtcagcacc accggcaagc 2580gccgcgacgg
ccgaggtctt ccgatctcct gaagccaggg cagatccgtg cacagcacct 2640tgccgtagaa
gaacagcaag gccgccaatg cctgacgatg cgtggagacc gaaaccttgc 2700gctcgttcgc
cagccaggac agaaatgcct cgacttcgct gctgcccaag gttgccgggt 2760gacgcacacc
gtggaaacgg atgaaggcac gaacccagtg gacataagcc tgttcggttc 2820gtaagctgta
atgcaagtag cgtatgcgct cacgcaactg gtccagaacc ttgaccgaac 2880gcagcggtgg
taacggcgca gtggcggttt tcatggcttg ttatgactgt ttttttgggg 2940tacagtctat
gcctcgggca tccaagcagc aagcgcgtta cgccgtgggt cgatgtttga 3000tgttatggag
cagcaacgat gttacgcagc agggcagtcg ccctaaaaca aagttaaaca 3060tcatgaggga
agcggtgatc gccgaagtat cgactcaact atcagaggta gttggcgtca 3120tcgagcgcca
tctcgaaccg acgttgctgg ccgtacattt gtacggctcc gcagtggatg 3180gcggcctgaa
gccacacagt gatattgatt tgctggttac ggtgaccgta aggcttgatg 3240aaacaacgcg
gcgagctttg atcaacgacc ttttggaaac ttcggcttcc cctggagaga 3300gcgagattct
ccgcgctgta gaagtcacca ttgttgtgca cgacgacatc attccgtggc 3360gttatccagc
taagcgcgaa ctgcaatttg gagaatggca gcgcaatgac attcttgcag 3420gtatcttcga
gccagccacg atcgacattg atctggctat cttgctgaca aaagcaagag 3480aacatagcgt
tgccttggta ggtccagcgg cggaggaact ctttgatccg gttcctgaac 3540aggatctatt
tgaggcgcta aatgaaacct taacgctatg gaactcgccg cccgactggg 3600ctggcgatga
gcgaaatgta gtgcttacgt tgtcccgcat ttggtacagc gcagtaaccg 3660gcaaaatcgc
gccgaaggat gtcgctgccg actgggcaat ggagcgcctg ccggcccagt 3720atcagcccgt
catacttgaa gctagacagg cttatcttgg acaagaagaa gatcgcttgg 3780cctcgcgcgc
agatcagttg gaagaatttg tccactacgt gaaaggcgag atcaccaagg 3840tagtcggcaa
ataatgtcta acaattcgtt caagccgacg ccgcttcgcg gcgcggctta 3900actcaagcgt
tagatgcact aagcacataa ttgctcacag ccaaactatc aggtcaagtc 3960tgcttttatt
atttttaagc gtgcataata agccctacac aaattgggag atatatcatg 4020aaaggctggc
tttttcttgt tatcgcaata gttggcgaag taatcgcaac atccgcatta 4080aaatctagcg
agggctttac taagctgatc cggtggatga ccttttgaat gacctttaat 4140agattatatt
actaattaat tggggaccct agaggtcccc ttttttattt taaaaatttt 4200ttcacaaaac
ggtttacaag catacgttgg ccgattcatt aatgcagctg gcacgacagg 4260tttcccgact
ggaaagcggg cagtgagcgc aacgcaatta atgtgagtta gctcactcat 4320taggcacccc
aggctttaca ctttatgctt ccggctcgta tgttgtgtgg aattgtgagc 4380ggataacaat
ttcacacagg aaacagctat gaccatgatt acgccaagct tgcatgcctg 4440caggtcgact
ctagaggatc ccccccgccg ccgacagagt aataggtttt acttaatagc 4500tcttcctgtc
ccttccaggc agtgatccgc attccgttct catggcgagg caacatttcg 4560ggatggaaga
taatgttctt tgctacagga aaatcaacaa tatgcgcacc agatgccact 4620ggcagccgcc
cgctgcgcgt tactaactct ataaatgcag ggatctcatc aatgacaaca 4680tcctgcggac
tgtttcctgc cagtcccatg atgatggcga catccgtggc atggcctttg 4740cccgtcagtg
acaacgaccc gtacagatcg accacaatat ggctcgtcgc ggttaataag 4800ccgctacttt
ccagccgatc aataaaactt tttccggcat tcattggccc cacggtatgc 4860gaactggagg
gaccaatccc aattttgaaa atatcgaatg cactaatcat gtgacggaag 4920atcacttcgc
agaataaata aatcctggtg tccctgttga taccgggaag ccctgggcca 4980acttttggcg
aaaatgagac gttgatcggc acgtaagagg ttccaacttt caccataatg 5040aaataagatc
actaccgggc gtattttttg agttatcgag attttcagga gctaaggaag 5100ctaaaatgga
gaaaaaaatc actggatata ccaccgttga tatatcccaa tggcatcgta 5160aagaacattt
tgaggcattt cagtcagttg ctcaatgtac ctataaccag accgttcagc 5220tggatattac
ggccttttta aagaccgtaa agaaaaataa gcacaagttt tatccggcct 5280ttattcacat
tcttgcccgc ctgatgaatg ctcatccgga attccgtatg gcaatgaaag 5340acggtgagct
ggtgatatgg gatagtgttc acccttgtta caccgttttc catgagcaaa 5400ctgaaacgtt
ttcatcgctc tggagtgaat accacgacga tttccggcag tttctacaca 5460tatattcgca
agatgtggcg tgttacggtg aaaacctggc ctatttccct aaagggttta 5520ttgagaatat
gtttttcgtc tcagccaatc cctgggtgag tttcaccagt tttgatttaa 5580acgtggccaa
tatggacaac ttcttcgccc ccgttttcac catgggcaaa tattatacgc 5640aaggcgacaa
ggtgctgatg ccgctggcga ttcaggttca tcatgccgtt tgtgatggct 5700tccatgtcgg
cagaatgctt aatgaattac aacagtactg cgatgagtgg cagggcgggg 5760cgtaattttt
ttaaggcagt tattggtgcc cttaaacgcc tggtgctacg cctgaataag 5820tgataataag
cggatgaatg gcagaaattc gaaagcaaat tcgacccggt cgtcggttca 5880gggcagggtc
gttaaatagc cgcttatgtc tattgctggt ttantcggta cccggggatc 5940gcggccgcgg
accggatccc atcacatata cctgccgttc actattattt agtgaaatga 6000gatattatga
tattttctga attgtgatta aaaaggcaac tttatgccca tgcaacagaa 6060actataaaaa
atacagagaa tgaaaagaaa cagatagatt ttttagttct ttaggcccgt 6120agtctgcaaa
tccttttatg attttctatc aaacaaaaga ggaaaataga ccagttgcaa 6180tccaaacgag
agtctaatag aatgaggtcg aaaagtaaat cgcgcgggtt tgttactgat 6240aaagcaggca
agacctaaaa tgtgtaaagg gcaaagtgta tactttggcg tcacccctta 6300catattttag
gtcttttttt attgtgcgta actaacttgc catcttcaaa caggagggct 6360ggaagaagca
gaccgctaac acagtacata aaaaaggaga catgaacgat gaacatcaaa 6420aagtttgcaa
aacaagcaac agtattaacc tttactaccg cactgctggc aggaggcgca 6480actcaagcgt
ttgcgaaaga aacgaaccaa aagccatata aggaaacata cggcatttcc 6540catattacac
gccatgatat gctgcaaatc cctgaacagc aaaaaaatga aaaatatcaa 6600gttcctgaat
tcgattcgtc cacaattaaa aatatctctt ctgcaaaagg cctggacgtt 6660tgggacagct
ggccattaca aaacgctgac ggcactgtcg caaactatca cggctaccac 6720atcgtctttg
cattagccgg agatcctaaa aatgcggatg acacatcgat ttacatgttc 6780tatcaaaaag
tcggcgaaac ttctattgac agctggaaaa acgctggccg cgtctttaaa 6840gacagcgaca
aattcgatgc aaatgattct atcctaaaag accaaacaca agaatggtca 6900ggttcagcca
catttacatc tgacggaaaa atccgtttat tctacactga tttctccggt 6960aaacattacg
gcaaacaaac actgacaact gcacaagtta acgtatcagc atcagacagc 7020tctttgaaca
tcaacggtgt agaggattat aaatcaatct ttgacggtga cggaaaaacg 7080tatcaaaatg
tacagcagtt catcgatgaa ggcaactaca gctcaggcga caaccatacg 7140ctgagagatc
ctcactacgt agaagataaa ggccacaaat acttagtatt tgaagcaaac 7200actggaactg
aagatggcta ccaaggcgaa gaatctttat ttaacaaagc atactatggc 7260aaaagcacat
cattcttccg tcaagaaagt caaaaacttc tgcaaagcga taaaaaacgc 7320acggctgagt
tagcaaacgg cgctctcggt atgattgagc taaacgatga ttacacactg 7380aaaaaagtga
tgaaaccgct gattgcatct aacacagtaa cagatgaaat tgaacgcgcg 7440aacgtcttta
aaatgaacgg caaatggtac ctgttcactg actcccgcgg atcaaaaatg 7500acgattgacg
gcattacgtc taacgatatt tacatgcttg gttatgtttc taattcttta 7560actggcccat
acaagccgct gaacaaaact ggccttgtgt taaaaatgga tcttgatcct 7620aacgatgtaa
cctttactta ctcacacttc gctgtacctc aagcgaaagg aaacaatgtc 7680gtgattacaa
gctatatgac aaacagagga ttctacgcag acaaacaatc aacgtttgcg 7740ccgagcttcc
tgctgaacat caaaggcaag aaaacatctg ttgtcaaaga cagcatcctt 7800gaacaaggac
aattaacagt taacaaataa aaacgcaaaa gaaaatgcca atatcctatt 7860ggcattttct
tttatttctt ccatttaaat ggatgcatgc gctagcggag tgtatactgg 7920cttactatgt
tggcactgat gagggtgtca gtgaagtgct tcagcctcgt gagcgggacg 7980gtcgtaaggt
cgttccgctc cacttcactg aacggcaatc cgagggtgtg gatccaatta 8040aggccacgct
gtcatttaaa ttccgttttt ccagttcaaa tgcaattgcc ttcaatgcac 8100cttcgtagct
gtggtgagcc agcggtgctg gctctccccc atttacggat aagaatgcat 8160tttccgagtt
aataccgtcg gcaatacctg acattaatac ttcacagtcg ctggcatcga 8220gtacggaaaa
cttaatcgaa gacgaaccac agttaataac caaaacaacc ggaaattcat 8280tcatctcttt
tctcatcctg agttacggat taaaacagtt tgtatacgat gttcaggatg 8340gtcagcagac
caatcacggt aacaaacacg ttatccagac gaccacggta tttcgccaga 8400gacggcgctt
tacggatggc atacatcggc aacaggcaca gcagggatgc gataatcggt 8460gcgcccatgg
cttcaatcag gtcgaggatg ttcgggttgg cgtaggcaac aacccaggtg 8520gagcccatga
tgaagatcat gctgagagta ttcagtttac ccagcgacac tttggttttg 8580tcacctttat
aaccgaactt cagaatcaga ccattcaagc cttccagcgt ccccagatag 8640tgaccgaaga
aagatttgaa gatagccacg agtgcgatga tggaagccgc atattccagt 8700gtaatcgcga
acgttgtttt ggtaccggtc atggacgcaa agtggttagc cagataagaa 8760agcactggaa
tattctgcgc tttggcttcc gccatgttgg ccggagacag agtaaacagg 8820cagctaaagg
caaagaacat caccactgca accatcagca tgctggcacg agaaatgatt 8880tgggaacatt
tacgttcggt gaagtcgcga ccgaagtctt tctcatactc ttcacgttta 8940gaaaccacga
aggaagagac gattggcgag aagttaaagg agaaaaccat gatggaaatc 9000cccagccaga
cagtgatcag gataccgtca tgaccggtta acgacagcga accgaggtca 9060acctggtcga
taactgcaga gttccagtaa gggatcagcg acaaagaaat cagcaccagg 9120ctggcgataa
acggccatac caggtagctc agggtaccga gctcgaattc actggccgtc 9180gttttacaac
gtcgtgactg ggaaaaccct ggcgttaccc aacttaatcg ccttgcagca 9240catccccctt
tcgccagctg gcgtaatagc gaagaggccc gcaccgatcg cccttcccaa 9300cagttgcgca
gcctgaatgg cgaatggcgc ctgatgcggt attttctcct tacgcatctg 9360tgcggtattt
cacaccgcat atggtgcact ctcagtacaa tctgctctga tgccgcatag 9420ttaagccagc
cccgacaccc gccaacaccc gctgacgaat tc
9462169430DNAEscherichia colimisc_feature(1)..(9430)DNA sequence of the
plasmid pAC19 16gttgacagta agacgggtaa gcctgttgat gataccgctg ccttactggg
tgcattagcc 60agtctgaatg acctgtcacg ggataatccg aagtggtcag actggaaaat
cagagggcag 120gaactgctga acagcaaaaa gtcagatagc accacatagc agacccgcca
taaaacgccc 180tgagaagccc gtgacgggct tttcttgtat tatgggtagt ttccttgcat
gaatccataa 240aaggcgcctg tagtgccatt tacccccatt cactgccaga gccgtgagcg
cagcgaactg 300aatgtcacga aaaagacagc gactcaggtg cctgatggtc ggagacaaaa
ggaatattca 360gcgatttgcc cgagcttgcg agggtgctac ttaagccttt agggttttaa
ggtctgtttt 420gtagaggagc aaacagcgtt tgcgacatcc ttttgtaata ctgcggaact
gactaaagta 480gtgagttata cacagggctg ggatctattc tttttatctt tttttattct
ttctttattc 540tataaattat aaccacttga atataaacaa aaaaaacaca caaaggtcta
gcggaattta 600cagagggtct agcagaattt acaagttttc cagcaaaggt ctagcagaat
ttacagatac 660ccacaactca aaggaaaagg actagtaatt atcattgact agcccatctc
aattggtata 720gtgattaaaa tcacctagac caattgagat gtatgtctga attagttgtt
ttcaaagcaa 780atgaactagc gattagtcgc tatgacttaa cggagcatga aaccaagcta
attttatgct 840gtgtggcact actcaacccc acgattgaaa accctacaag gaaagaacgg
acggtatcgt 900tcacttataa ccaatacgct cagatgatga acatcagtag ggaaaatgct
tatggtgtat 960tagctaaagc aaccagagag ctgatgacga gaactgtgga aatcaggaat
cctttggtta 1020aaggctttga gattttccag tggacaaact atgccaagtt ctcaagcgaa
aaattagaat 1080tagtttttag tgaagagata ttgccttatc ttttccagtt aaaaaaattc
ataaaatata 1140atctggaaca tgttaagtct tttgaaaaca aatactctat gaggatttat
gagtggttat 1200taaaagaact aacacaaaag aaaactcaca aggcaaatat agagattagc
cttgatgaat 1260ttaagttcat gttaatgctt gaaaataact accatgagtt taaaaggctt
aaccaatggg 1320ttttgaaacc aataagtaaa gatttaaaca cttacagcaa tatgaaattg
gtggttgata 1380agcgaggccg cccgactgat acgttgattt tccaagttga actagataga
caaatggatc 1440tcgtaaccga acttgagaac aaccagataa aaatgaatgg tgacaaaata
ccaacaacca 1500ttacatcaga ttcctaccta cgtaacggac taagaaaaac actacacgat
gctttaactg 1560caaaaattca gctcaccagt tttgaggcaa aatttttgag tgacatgcaa
agtaagcatg 1620atctcaatgg ttcgttctca tggctcacgc aaaaacaacg aaccacacta
gagaacatac 1680tggctaaata cggaaggatc tgaggttctt atggctcttg tatctatcag
tgaagcatca 1740agactaacaa acaaaagtag aacaactgtt caccgttaga tatcaaaggg
aaaactgtcc 1800atatgcacag atgaaaacgg tgtaaaaaag atagatacat cagagctttt
acgagttttt 1860ggtgcattta aagctgttca ccatgaacag atcgacaatg taacagatga
acagcatgta 1920acacctaata gaacaggtga aaccagtaaa acaaagcaac tagaacatga
aattgaacac 1980ctgagacaac ttgttacagc tcaacagtca cacatagaca gcctgaaaca
ggcgatgctg 2040cttatcgaat caaagctgcc gacaacacgg gagccagtga cgcctcccgt
ggggaaaaaa 2100tcatggcaat tctggaagaa atagcgcttt cagccggcaa acctgaagcc
ggatctgcga 2160ttctgataac aaactagcaa caccagaaca gcccgtttgc gggcagcaaa
acccgttatg 2220cttgtaaacc gttttgtgaa aaaattttta aaataaaaaa ggggacctct
agggtcccca 2280attaattagt aatataatct attaaaggtc attcaaaagg tcatccaccg
gatcaattcc 2340cctgctcgcg caggctgggt gccaagctct cgggtaacat caaggcccga
tccttggagc 2400ccttgccctc ccgcacgatg atcgtgccgt gatcgaaatc cagatccttg
acccgcagtt 2460gcaaaccctc actgatccgc atgcccgttc catacagaag ctgggcgaac
aaacgatgct 2520cgccttccag aaaaccgagg atgcgaacca cttcatccgg ggtcagcacc
accggcaagc 2580gccgcgacgg ccgaggtctt ccgatctcct gaagccaggg cagatccgtg
cacagcacct 2640tgccgtagaa gaacagcaag gccgccaatg cctgacgatg cgtggagacc
gaaaccttgc 2700gctcgttcgc cagccaggac agaaatgcct cgacttcgct gctgcccaag
gttgccgggt 2760gacgcacacc gtggaaacgg atgaaggcac gaacccagtg gacataagcc
tgttcggttc 2820gtaagctgta atgcaagtag cgtatgcgct cacgcaactg gtccagaacc
ttgaccgaac 2880gcagcggtgg taacggcgca gtggcggttt tcatggcttg ttatgactgt
ttttttgggg 2940tacagtctat gcctcgggca tccaagcagc aagcgcgtta cgccgtgggt
cgatgtttga 3000tgttatggag cagcaacgat gttacgcagc agggcagtcg ccctaaaaca
aagttaaaca 3060tcatgaggga agcggtgatc gccgaagtat cgactcaact atcagaggta
gttggcgtca 3120tcgagcgcca tctcgaaccg acgttgctgg ccgtacattt gtacggctcc
gcagtggatg 3180gcggcctgaa gccacacagt gatattgatt tgctggttac ggtgaccgta
aggcttgatg 3240aaacaacgcg gcgagctttg atcaacgacc ttttggaaac ttcggcttcc
cctggagaga 3300gcgagattct ccgcgctgta gaagtcacca ttgttgtgca cgacgacatc
attccgtggc 3360gttatccagc taagcgcgaa ctgcaatttg gagaatggca gcgcaatgac
attcttgcag 3420gtatcttcga gccagccacg atcgacattg atctggctat cttgctgaca
aaagcaagag 3480aacatagcgt tgccttggta ggtccagcgg cggaggaact ctttgatccg
gttcctgaac 3540aggatctatt tgaggcgcta aatgaaacct taacgctatg gaactcgccg
cccgactggg 3600ctggcgatga gcgaaatgta gtgcttacgt tgtcccgcat ttggtacagc
gcagtaaccg 3660gcaaaatcgc gccgaaggat gtcgctgccg actgggcaat ggagcgcctg
ccggcccagt 3720atcagcccgt catacttgaa gctagacagg cttatcttgg acaagaagaa
gatcgcttgg 3780cctcgcgcgc agatcagttg gaagaatttg tccactacgt gaaaggcgag
atcaccaagg 3840tagtcggcaa ataatgtcta acaattcgtt caagccgacg ccgcttcgcg
gcgcggctta 3900actcaagcgt tagatgcact aagcacataa ttgctcacag ccaaactatc
aggtcaagtc 3960tgcttttatt atttttaagc gtgcataata agccctacac aaattgggag
atatatcatg 4020aaaggctggc tttttcttgt tatcgcaata gttggcgaag taatcgcaac
atccgcatta 4080aaatctagcg agggctttac taagctgatc cggtggatga ccttttgaat
gacctttaat 4140agattatatt actaattaat tggggaccct agaggtcccc ttttttattt
taaaaatttt 4200ttcacaaaac ggtttacaag catacgttgg ccgattcatt aatgcagctg
gcacgacagg 4260tttcccgact ggaaagcggg cagtgagcgc aacgcaatta atgtgagtta
gctcactcat 4320taggcacccc aggctttaca ctttatgctt ccggctcgta tgttgtgtgg
aattgtgagc 4380ggataacaat ttcacacagg aaacagctat gaccatgatt acgccaagct
tgcatgcctg 4440caggtcgact ctagaggatc ccccccgccg ccgacagagt aataggtttt
acttaatagc 4500tcttcctgtc ccttccaggc agtgatccgc attccgttct catggcgagg
caacatttcg 4560ggatggaaga taatgttctt tgctacagga aaatcaacaa tatgcgcacc
agatgccact 4620ggcagccgcc cgctgcgcgt tactaactct ataaatgcag ggatctcatc
aatgacaaca 4680tcctgcggac tgtttcctgc cagtcccatg atgatggcga catccgtggc
atggcctttg 4740cccgtcagtg acaacgaccc gtacagatcg accacaatat ggctcgtcgc
ggttaataag 4800ccgctacttt ccagccgatc aataaaactt tttccggcat tcattggccc
cacggtatgc 4860gaactggagg gaccaatccc aattttgaaa atatcgaatg cactaatcat
atccacaccc 4920tcggattgcc gttcagtgaa gtggagcgga acgaccttac gaccgtcccg
ctcacgaggc 4980tttacgcact acgtactgcg atggcttcaa tttccagcgg gagggcggat
ccactaatac 5040aaaatatatc aaaagttaat aataatatta ttcttactta agactttttt
gtcttcattt 5100tttagtaaaa aatataaaaa aggccacctc ccgattttat cggaaggcag
cctcttaaat 5160tcagttcata atattaaaaa atattattca acttcagaat atttgttggc
ataggcagct 5220gccgcaccca acagtccagg ctgcggataa gtaatcaact taaccggaat
cttggacatg 5280acgcgttcaa agcgtccttt tgaaacaaag cgctgacgga aaccagattc
tggcaaatgg 5340gaagcgatac gaagaccgac accaccgcca ataacaacac tggttgcacc
ctgtgccaaa 5400gcaagatcac cagcgatagc gccaaggctc aagcagaagc gatccaaagc
ggcttcagca 5460aggttgtctt taccttccaa agccatctgc cataatttaa tatcatccag
caagctgaac 5520ggaacgcctt caatggcagc cagtgcttcg tagatattac caagacccgg
gccagaaata 5580atgcgttcga tagaaacgcg gcggaaacgt tcacgtaaac gtgccagaat
tttgtcttca 5640agtctgtcaa gcggagcaaa gtcgatatga ccgccttcag tttcgatgac
gaaataacgg 5700ccttcagtcc gcaacagatg ggcaacaccc aagcccgttc ccggaccaag
aatagtgata 5760acaccatcgc taggaagcgc ttcatcagga ccacaaatat gatccagata
agaagaatcc 5820atatgcgcaa ccgcgtgggc aaccgcgccg aagtcattga tcagaacatg
cgtatcgatg 5880tccagctttt cattcagagt agctggtctt aatacccaag ggttattggt
aagttttaaa 5940acttcaccat gaaccgggcc agcccatgca atagctgcgg cacgtggcag
aggacgaccc 6000agtttttcac cgaaacgttc ccaagctaac tgcaagctag catgttctgc
cgttttaaaa 6060gttgtttctt ctccaagaga aagaacccga ccattgctta cttccgcaat
agagaaacgc 6120gcatgcgttc caccgatgtc aatcgcaaca atttccataa taattccttt
ctgaaatcag 6180aaggctaccc aacaggtaaa ataagtccgc ccgctttata ccatcgttgt
aaacaaaaag 6240tataattggt taagacttat ctaaaaaaga caaaaggatt cagccaaagc
aagtttaact 6300acttctggga gcgccacatc tcctcgattt catccaggct ccgacctttg
gtttccggca 6360cgaagcgagc aacaatcaag ccacctaaga tacttaatgc tgcgaaaacg
agataggaga 6420aaccgtggtt gaaagtctga ttcaatgctg gagaaccatc ggcaacctta
aacaggaagt 6480taaccaagat attagctaac cattgtccgg taacagcgat aggcatagct
gcgcccttga 6540tggaactcgg gaacatttct gacagaacaa cccagcagac agggccccat
gacataccaa 6600agactgcaat ataaagaagc acagaagcca aaggcaaaac accaccgact
ttgaaccaga 6660aacagcagcc taaaacagcc atcattgcag ccataccgag agcaccccaa
ataagcagag 6720gtttacggcc gaagcggtca acaacacggg aagcaatcat ggtgaagatg
aagttcacaa 6780caccgataga gatggtctgc aataatgccg tatcagctcc aaaacctaaa
ttctggaaca 6840tctgcggtgc ataatacagc acggcgttaa taccgactaa ctgctggaag
gcagcaacgg 6900atacaccggc aaaaacaacg gtgataccaa aagcaaacaa acctgcgctg
cttttgtcca 6960tggctttatc aaagccagct ttaatctttt gaatcgtcag attaggatcg
gcttgcggtt 7020ccagacgagc aaggattttg ctagcctcgg aatgacgtcc cttcatcacc
aaccaatgcg 7080gcgtatccgg tgcggttaac agcagcaata agaaggcaat accgatcagg
ccttctgaag 7140ccggagacca gcaccaacca ctggcattaa cccaatcgat agaaccgaaa
tgagccagta 7200accaggtaaa gatataaccg gttaaagcac ccgtcacaat ggccatctgc
tgaccagaaa 7260ccatctgacc acgtttgtct ggcggagcaa tttcagcaat ataggttggg
gtcaaggttg 7320aaacgacacc gatacctaaa ccggcaagaa accggaaaaa gcaaaaaatt
tgtaaagccg 7380aaccaccggt tccaaataat ttttcggtta acgcagcacc aaaaccggcg
gcgacgaaac 7440aaatggaact catcaacaat ccgccgcgac gaccgaagcg aataccaatc
cagccagaca 7500gcaaagaacc ggtaacacaa ccgaccaaaa cagcaacaac gaccatccca
gaaagggaag 7560ccgcagccgt agcagacagg tgacgagggg caataaaatg gatatcaacc
ggtgtaccga 7620ttgcagcgat aaccgctgaa tcgtaaccga aaagcaagcc gcctatagca
gcgattaggg 7680ctagtcgcgt gactagaccc tgactacttt cagaactcat ggcgattcct
ctccctctag 7740agcgtcctgc tgttgttaag attattatac cacaccttgt agataaagtc
aacaactttt 7800tgcaaaattt ttcaggaatt ttagcagagg ttgttctgga tgtagaacaa
aacatctttc 7860cgctcttgtg ctgttaggat atctttcttg gaagctaggt aggcctcgag
ttatggcagt 7920tggttaaaag gaaacaaaaa gaccgttttc acacaaaacg gtctttttcg
atttcttttt 7980acagtcacag ccacttttgc accaattaag gccacgctgt catttaaact
ccgtttttcc 8040agttcaaatg caattgcctt caatgcacct tcgtagctgt ggtgagccag
cggtgctggc 8100tctcccccat ttacggataa gaatgcattt tccgagttaa taccgtcggc
aatacctgac 8160attaatactt cacagtcgct ggcatcgagt acggaaaact taatcgaaga
cgaaccacag 8220ttaataacca aaacaaccgg aaattcattc atctcttttc tcatcctgag
ttacggatta 8280aaacagtttg tatacgatgt tcaggatggt cagcagacca atcacggtaa
caaacacgtt 8340atccagacga ccacggtatt tcgccagaga cggcgcttta cggatggcat
acatcggcaa 8400caggcacagc agggatgcga taatcggtgc gcccatggct tcaatcaggt
cgaggatgtt 8460cgggttggcg taggcaacaa cccaggtgga gcccatgatg aagatcatgc
tgagagtatt 8520cagtttaccc agcgacactt tggttttgtc acctttataa ccgaacttca
gaatcagacc 8580attcaagcct tccagcgtcc ccagatagtg accgaagaaa gatttgaaga
tagccacgag 8640tgcgatgatg gaagccgcat attccagtgt aatcgcgaac gttgttttgg
taccggtcat 8700ggacgcaaag tggttagcca gataagaaag cactggaata ttctgcgctt
tggcttccgc 8760catgttggcc ggagacagag taaacaggca gctaaaggca aagaacatca
ccactgcaac 8820catcagcatg ctggcacgag aaatgatttg ggaacattta cgttcggtga
agtcgcgacc 8880gaagtctttc tcatactctt cacgtttaga aaccacgaag gaagagacga
ttggcgagaa 8940gttaaaggag aaaaccatga tggaaatccc cagccagaca gtgatcagga
taccgtcatg 9000accggttaac gacagcgaac cgaggtcaac ctggtcgata actgcagagt
tccagtaagg 9060gatcagcgac aaagaaatca gcaccaggct ggcgataaac ggccatacca
ggtagctcag 9120ggtaccgagc tcgaattcac tggccgtcgt tttacaacgt cgtgactggg
aaaaccctgg 9180cgttacccaa cttaatcgcc ttgcagcaca tccccctttc gccagctggc
gtaatagcga 9240agaggcccgc accgatcgcc cttcccaaca gttgcgcagc ctgaatggcg
aatggcgcct 9300gatgcggtat tttctcctta cgcatctgtg cggtatttca caccgcatat
ggtgcactct 9360cagtacaatc tgctctgatg ccgcatagtt aagccagccc cgacacccgc
caacacccgc 9420tgacgaattc
9430175768DNAEscherichia colimisc_feature(1)..(5768)DNA
sequence of the plasmid pMH17F 17gttgacagta agacgggtaa gcctgttgat
gataccgctg ccttactggg tgcattagcc 60agtctgaatg acctgtcacg ggataatccg
aagtggtcag actggaaaat cagagggcag 120gaactgctga acagcaaaaa gtcagatagc
accacatagc agacccgcca taaaacgccc 180tgagaagccc gtgacgggct tttcttgtat
tatgggtagt ttccttgcat gaatccataa 240aaggcgcctg tagtgccatt tacccccatt
cactgccaga gccgtgagcg cagcgaactg 300aatgtcacga aaaagacagc gactcaggtg
cctgatggtc ggagacaaaa ggaatattca 360gcgatttgcc cgagcttgcg agggtgctac
ttaagccttt agggttttaa ggtctgtttt 420gtagaggagc aaacagcgtt tgcgacatcc
ttttgtaata ctgcggaact gactaaagta 480gtgagttata cacagggctg ggatctattc
tttttatctt tttttattct ttctttattc 540tataaattat aaccacttga atataaacaa
aaaaaacaca caaaggtcta gcggaattta 600cagagggtct agcagaattt acaagttttc
cagcaaaggt ctagcagaat ttacagatac 660ccacaactca aaggaaaagg actagtaatt
atcattgact agcccatctc aattggtata 720gtgattaaaa tcacctagac caattgagat
gtatgtctga attagttgtt ttcaaagcaa 780atgaactagc gattagtcgc tatgacttaa
cggagcatga aaccaagcta attttatgct 840gtgtggcact actcaacccc acgattgaaa
accctacaag gaaagaacgg acggtatcgt 900tcacttataa ccaatacgct cagatgatga
acatcagtag ggaaaatgct tatggtgtat 960tagctaaagc aaccagagag ctgatgacga
gaactgtgga aatcaggaat cctttggtta 1020aaggctttga gattttccag tggacaaact
atgccaagtt ctcaagcgaa aaattagaat 1080tagtttttag tgaagagata ttgccttatc
ttttccagtt aaaaaaattc ataaaatata 1140atctggaaca tgttaagtct tttgaaaaca
aatactctat gaggatttat gagtggttat 1200taaaagaact aacacaaaag aaaactcaca
aggcaaatat agagattagc cttgatgaat 1260ttaagttcat gttaatgctt gaaaataact
accatgagtt taaaaggctt aaccaatggg 1320ttttgaaacc aataagtaaa gatttaaaca
cttacagcaa tatgaaattg gtggttgata 1380agcgaggccg cccgactgat acgttgattt
tccaagttga actagataga caaatggatc 1440tcgtaaccga acttgagaac aaccagataa
aaatgaatgg tgacaaaata ccaacaacca 1500ttacatcaga ttcctaccta cgtaacggac
taagaaaaac actacacgat gctttaactg 1560caaaaattca gctcaccagt tttgaggcaa
aatttttgag tgacatgcaa agtaagcatg 1620atctcaatgg ttcgttctca tggctcacgc
aaaaacaacg aaccacacta gagaacatac 1680tggctaaata cggaaggatc tgaggttctt
atggctcttg tatctatcag tgaagcatca 1740agactaacaa acaaaagtag aacaactgtt
caccgttaga tatcaaaggg aaaactgtcc 1800atatgcacag atgaaaacgg tgtaaaaaag
atagatacat cagagctttt acgagttttt 1860ggtgcattta aagctgttca ccatgaacag
atcgacaatg taacagatga acagcatgta 1920acacctaata gaacaggtga aaccagtaaa
acaaagcaac tagaacatga aattgaacac 1980ctgagacaac ttgttacagc tcaacagtca
cacatagaca gcctgaaaca ggcgatgctg 2040cttatcgaat caaagctgcc gacaacacgg
gagccagtga cgcctcccgt ggggaaaaaa 2100tcatggcaat tctggaagaa atagcgcttt
cagccggcaa acctgaagcc ggatctgcga 2160ttctgataac aaactagcaa caccagaaca
gcccgtttgc gggcagcaaa acccgttatg 2220cttgtaaacc gttttgtgaa aaaattttta
aaataaaaaa ggggacctct agggtcccca 2280attaattagt aatataatct attaaaggtc
attcaaaagg tcatccaccg gatcaattcc 2340cctgctcgcg caggctgggt gccaagctct
cgggtaacat caaggcccga tccttggagc 2400ccttgccctc ccgcacgatg atcgtgccgt
gatcgaaatc cagatccttg acccgcagtt 2460gcaaaccctc actgatccgc atgcccgttc
catacagaag ctgggcgaac aaacgatgct 2520cgccttccag aaaaccgagg atgcgaacca
cttcatccgg ggtcagcacc accggcaagc 2580gccgcgacgg ccgaggtctt ccgatctcct
gaagccaggg cagatccgtg cacagcacct 2640tgccgtagaa gaacagcaag gccgccaatg
cctgacgatg cgtggagacc gaaaccttgc 2700gctcgttcgc cagccaggac agaaatgcct
cgacttcgct gctgcccaag gttgccgggt 2760gacgcacacc gtggaaacgg atgaaggcac
gaacccagtg gacataagcc tgttcggttc 2820gtaagctgta atgcaagtag cgtatgcgct
cacgcaactg gtccagaacc ttgaccgaac 2880gcagcggtgg taacggcgca gtggcggttt
tcatggcttg ttatgactgt ttttttgggg 2940tacagtctat gcctcgggca tccaagcagc
aagcgcgtta cgccgtgggt cgatgtttga 3000tgttatggag cagcaacgat gttacgcagc
agggcagtcg ccctaaaaca aagttaaaca 3060tcatgaggga agcggtgatc gccgaagtat
cgactcaact atcagaggta gttggcgtca 3120tcgagcgcca tctcgaaccg acgttgctgg
ccgtacattt gtacggctcc gcagtggatg 3180gcggcctgaa gccacacagt gatattgatt
tgctggttac ggtgaccgta aggcttgatg 3240aaacaacgcg gcgagctttg atcaacgacc
ttttggaaac ttcggcttcc cctggagaga 3300gcgagattct ccgcgctgta gaagtcacca
ttgttgtgca cgacgacatc attccgtggc 3360gttatccagc taagcgcgaa ctgcaatttg
gagaatggca gcgcaatgac attcttgcag 3420gtatcttcga gccagccacg atcgacattg
atctggctat cttgctgaca aaagcaagag 3480aacatagcgt tgccttggta ggtccagcgg
cggaggaact ctttgatccg gttcctgaac 3540aggatctatt tgaggcgcta aatgaaacct
taacgctatg gaactcgccg cccgactggg 3600ctggcgatga gcgaaatgta gtgcttacgt
tgtcccgcat ttggtacagc gcagtaaccg 3660gcaaaatcgc gccgaaggat gtcgctgccg
actgggcaat ggagcgcctg ccggcccagt 3720atcagcccgt catacttgaa gctagacagg
cttatcttgg acaagaagaa gatcgcttgg 3780cctcgcgcgc agatcagttg gaagaatttg
tccactacgt gaaaggcgag atcaccaagg 3840tagtcggcaa ataatgtcta acaattcgtt
caagccgacg ccgcttcgcg gcgcggctta 3900actcaagcgt tagatgcact aagcacataa
ttgctcacag ccaaactatc aggtcaagtc 3960tgcttttatt atttttaagc gtgcataata
agccctacac aaattgggag atatatcatg 4020aaaggctggc tttttcttgt tatcgcaata
gttggcgaag taatcgcaac atccgcatta 4080aaatctagcg agggctttac taagctgatc
cggtggatga ccttttgaat gacctttaat 4140agattatatt actaattaat tggggaccct
agaggtcccc ttttttattt taaaaatttt 4200ttcacaaaac ggtttacaag catacgttgg
ccgattcatt aatgcagctg gcacgacagg 4260tttcccgact ggaaagcggg cagtgagcgc
aacgcaatta atgtgagtta gctcactcat 4320taggcacccc aggctttaca ctttatgctt
ccggctcgta tgttgtgtgg aattgtgagt 4380tacctagaga gggtgagaat tgccgaacat
gcgcataagt ttcccggaca gatttcaggt 4440ggtcagcagc aacgcgttgc cattgcgcgt
tcgctgtgta tgaagccgaa aattatgttg 4500tttgatgagc caacgtcggc gctcgatcct
gagatggtga aagaggtgct ggatacgatg 4560attgggctgg cgcagtcggg tatgacaatg
ttgtgtgtaa cacatgagat ggggtttgca 4620cgaaccgtcg ctgaccgggt aatttttatg
gatcgtgggg aaatagtgga gcaagctgca 4680cctgatgaat tttttgcgca tcctaaatca
gagcgtacga gggcattttt atcgcaggta 4740atccattaat tgaatgttag ttcgaaaagc
aaaaaggcca tcctttcgga tggcctttcg 4800cttgatttga tgtctggcag tttatggcgg
gcgtcctgcc cgccaccctc cgggccgttg 4860cttcgcaacg ttcaaatccg ctcccggcgg
atttgtccta ctcgggagag tgttcaccga 4920caaacaacag ataaaacaaa aggcccagtc
ttccgactga gccttttgtt ttatttgatg 4980tctggcagtt ccctactctc gcatggggag
accccacact accatcggcg ctacggcggt 5040ttcacttctg agttcggcat ggggtcaggt
gggaccaccg cgctactgcc gccagacaaa 5100ttcttttcta atctgccgaa ctttaaccta
aaaagtggtg ctgataccca gagtcgaact 5160ggggacctca cccttaccaa gggtgcgctc
taccaactga gccatatcag cacgctaaat 5220ttgatgcctg gcagttccct actctcgcat
ggggagaccc cacactacca tcggcgctac 5280ggcgtttcac ttctgagttc ggcatggggt
caggtgggac caccgcgcta cggccgccag 5340gcaaattctg ttttatcaga ccgcttctgc
gttctgattt aatctgtatc aggctgaaaa 5400tcttctctca tccggataac aatttcacac
aggaaacagc tatgaccatg attacgccaa 5460gctcgagctc gaattcactg gccgtcgttt
tacaacgtcg tgactgggaa aaccctggcg 5520ttacccaact taatcgcctt gcagcacatc
cccctttcgc cagctggcgt aatagcgaag 5580aggcccgcac cgatcgccct tcccaacagt
tgcgcagcct gaatggcgaa tggcgcctga 5640tgcggtattt tctccttacg catctgtgcg
gtatttcaca ccgcatatgg tgcactctca 5700gtacaatctg ctctgatgcc gcatagttaa
gccagccccg acacccgcca acacccgctg 5760acgaattc
5768181053DNAEscherichia
coligene(1)..(1053)DNA sequence of the coding region of the wild
type aroG gene 18atgaattatc agaacgacga tttacgcatc aaagaaatca aagagttact
tcctcctgtc 60gcattgctgg aaaaattccc cgctactgaa aatgccgcga atacggttgc
ccatgcccga 120aaagcgatcc ataagatcct gaaaggtaat gatgatcgcc tgttggttgt
gattggccca 180tgctcaattc atgatcctgt cgcggcaaaa gagtatgcca ctcgcttgct
ggcgctgcgt 240gaagagctga aagatgagct ggaaatcgta atgcgcgtct attttgaaaa
gccgcgtacc 300acggtgggct ggaaagggct gattaacgat ccgcatatgg ataatagctt
ccagatcaac 360gacggtctgc gtatagcccg taaattgctg cttgatatta acgacagcgg
tctgccagcg 420gcaggtgagt ttctcgatat gatcacccca caatatctcg ctgacctgat
gagctggggc 480gcaattggcg cacgtaccac cgaatcgcag gtgcaccgcg aactggcatc
agggctttct 540tgtccggtcg gcttcaaaaa tggcaccgac ggtacgatta aagtggctat
cgatgccatt 600aatgccgccg gtgcgccgca ctgcttcctg tccgtaacga aatgggggca
ttcggcgatt 660gtgaatacca gcggtaacgg cgattgccat atcattctgc gcggcggtaa
agagcctaac 720tacagcgcga agcacgttgc tgaagtgaaa gaagggctga acaaagcagg
cctgccagca 780caggtgatga tcgatttcag ccatgctaac tcgtccaaac aattcaaaaa
gcagatggat 840gtttgtgctg acgtttgcca gcagattgcc ggtggcgaaa aggccattat
tggcgtgatg 900gtggaaagcc atctggtgga aggcaatcag agcctcgaga gcggggagcc
gctggcctac 960ggtaagagca tcaccgatgc ctgcatcggc tgggaagata ccgatgctct
gttacgtcaa 1020ctggcgaatg cagtaaaagc gcgtcgcggg taa
1053198820DNAEscherichia colimisc_feature(1)..(8820)DNA
sequence of the plasmid pMH28Fmisc_feature(5894)..(5894)n is a, c, g, or
t 19gttgacagta agacgggtaa gcctgttgat gataccgctg ccttactggg tgcattagcc
60agtctgaatg acctgtcacg ggataatccg aagtggtcag actggaaaat cagagggcag
120gaactgctga acagcaaaaa gtcagatagc accacatagc agacccgcca taaaacgccc
180tgagaagccc gtgacgggct tttcttgtat tatgggtagt ttccttgcat gaatccataa
240aaggcgcctg tagtgccatt tacccccatt cactgccaga gccgtgagcg cagcgaactg
300aatgtcacga aaaagacagc gactcaggtg cctgatggtc ggagacaaaa ggaatattca
360gcgatttgcc cgagcttgcg agggtgctac ttaagccttt agggttttaa ggtctgtttt
420gtagaggagc aaacagcgtt tgcgacatcc ttttgtaata ctgcggaact gactaaagta
480gtgagttata cacagggctg ggatctattc tttttatctt tttttattct ttctttattc
540tataaattat aaccacttga atataaacaa aaaaaacaca caaaggtcta gcggaattta
600cagagggtct agcagaattt acaagttttc cagcaaaggt ctagcagaat ttacagatac
660ccacaactca aaggaaaagg actagtaatt atcattgact agcccatctc aattggtata
720gtgattaaaa tcacctagac caattgagat gtatgtctga attagttgtt ttcaaagcaa
780atgaactagc gattagtcgc tatgacttaa cggagcatga aaccaagcta attttatgct
840gtgtggcact actcaacccc acgattgaaa accctacaag gaaagaacgg acggtatcgt
900tcacttataa ccaatacgct cagatgatga acatcagtag ggaaaatgct tatggtgtat
960tagctaaagc aaccagagag ctgatgacga gaactgtgga aatcaggaat cctttggtta
1020aaggctttga gattttccag tggacaaact atgccaagtt ctcaagcgaa aaattagaat
1080tagtttttag tgaagagata ttgccttatc ttttccagtt aaaaaaattc ataaaatata
1140atctggaaca tgttaagtct tttgaaaaca aatactctat gaggatttat gagtggttat
1200taaaagaact aacacaaaag aaaactcaca aggcaaatat agagattagc cttgatgaat
1260ttaagttcat gttaatgctt gaaaataact accatgagtt taaaaggctt aaccaatggg
1320ttttgaaacc aataagtaaa gatttaaaca cttacagcaa tatgaaattg gtggttgata
1380agcgaggccg cccgactgat acgttgattt tccaagttga actagataga caaatggatc
1440tcgtaaccga acttgagaac aaccagataa aaatgaatgg tgacaaaata ccaacaacca
1500ttacatcaga ttcctaccta cgtaacggac taagaaaaac actacacgat gctttaactg
1560caaaaattca gctcaccagt tttgaggcaa aatttttgag tgacatgcaa agtaagcatg
1620atctcaatgg ttcgttctca tggctcacgc aaaaacaacg aaccacacta gagaacatac
1680tggctaaata cggaaggatc tgaggttctt atggctcttg tatctatcag tgaagcatca
1740agactaacaa acaaaagtag aacaactgtt caccgttaga tatcaaaggg aaaactgtcc
1800atatgcacag atgaaaacgg tgtaaaaaag atagatacat cagagctttt acgagttttt
1860ggtgcattta aagctgttca ccatgaacag atcgacaatg taacagatga acagcatgta
1920acacctaata gaacaggtga aaccagtaaa acaaagcaac tagaacatga aattgaacac
1980ctgagacaac ttgttacagc tcaacagtca cacatagaca gcctgaaaca ggcgatgctg
2040cttatcgaat caaagctgcc gacaacacgg gagccagtga cgcctcccgt ggggaaaaaa
2100tcatggcaat tctggaagaa atagcgcttt cagccggcaa acctgaagcc ggatctgcga
2160ttctgataac aaactagcaa caccagaaca gcccgtttgc gggcagcaaa acccgttatg
2220cttgtaaacc gttttgtgaa aaaattttta aaataaaaaa ggggacctct agggtcccca
2280attaattagt aatataatct attaaaggtc attcaaaagg tcatccaccg gatcaattcc
2340cctgctcgcg caggctgggt gccaagctct cgggtaacat caaggcccga tccttggagc
2400ccttgccctc ccgcacgatg atcgtgccgt gatcgaaatc cagatccttg acccgcagtt
2460gcaaaccctc actgatccgc atgcccgttc catacagaag ctgggcgaac aaacgatgct
2520cgccttccag aaaaccgagg atgcgaacca cttcatccgg ggtcagcacc accggcaagc
2580gccgcgacgg ccgaggtctt ccgatctcct gaagccaggg cagatccgtg cacagcacct
2640tgccgtagaa gaacagcaag gccgccaatg cctgacgatg cgtggagacc gaaaccttgc
2700gctcgttcgc cagccaggac agaaatgcct cgacttcgct gctgcccaag gttgccgggt
2760gacgcacacc gtggaaacgg atgaaggcac gaacccagtg gacataagcc tgttcggttc
2820gtaagctgta atgcaagtag cgtatgcgct cacgcaactg gtccagaacc ttgaccgaac
2880gcagcggtgg taacggcgca gtggcggttt tcatggcttg ttatgactgt ttttttgggg
2940tacagtctat gcctcgggca tccaagcagc aagcgcgtta cgccgtgggt cgatgtttga
3000tgttatggag cagcaacgat gttacgcagc agggcagtcg ccctaaaaca aagttaaaca
3060tcatgaggga agcggtgatc gccgaagtat cgactcaact atcagaggta gttggcgtca
3120tcgagcgcca tctcgaaccg acgttgctgg ccgtacattt gtacggctcc gcagtggatg
3180gcggcctgaa gccacacagt gatattgatt tgctggttac ggtgaccgta aggcttgatg
3240aaacaacgcg gcgagctttg atcaacgacc ttttggaaac ttcggcttcc cctggagaga
3300gcgagattct ccgcgctgta gaagtcacca ttgttgtgca cgacgacatc attccgtggc
3360gttatccagc taagcgcgaa ctgcaatttg gagaatggca gcgcaatgac attcttgcag
3420gtatcttcga gccagccacg atcgacattg atctggctat cttgctgaca aaagcaagag
3480aacatagcgt tgccttggta ggtccagcgg cggaggaact ctttgatccg gttcctgaac
3540aggatctatt tgaggcgcta aatgaaacct taacgctatg gaactcgccg cccgactggg
3600ctggcgatga gcgaaatgta gtgcttacgt tgtcccgcat ttggtacagc gcagtaaccg
3660gcaaaatcgc gccgaaggat gtcgctgccg actgggcaat ggagcgcctg ccggcccagt
3720atcagcccgt catacttgaa gctagacagg cttatcttgg acaagaagaa gatcgcttgg
3780cctcgcgcgc agatcagttg gaagaatttg tccactacgt gaaaggcgag atcaccaagg
3840tagtcggcaa ataatgtcta acaattcgtt caagccgacg ccgcttcgcg gcgcggctta
3900actcaagcgt tagatgcact aagcacataa ttgctcacag ccaaactatc aggtcaagtc
3960tgcttttatt atttttaagc gtgcataata agccctacac aaattgggag atatatcatg
4020aaaggctggc tttttcttgt tatcgcaata gttggcgaag taatcgcaac atccgcatta
4080aaatctagcg agggctttac taagctgatc cggtggatga ccttttgaat gacctttaat
4140agattatatt actaattaat tggggaccct agaggtcccc ttttttattt taaaaatttt
4200ttcacaaaac ggtttacaag catacgttgg ccgattcatt aatgcagctg gcacgacagg
4260tttcccgact ggaaagcggg cagtgagcgc aacgcaatta atgtgagtta gctcactcat
4320taggcacccc aggctttaca ctttatgctt ccggctcgta tgttgtgtgg aattgtgagt
4380tacctagaga gggtgagaat tgccgaacat gcgcataagt ttcccggaca gatttcaggt
4440ggtcagcagc aacgcgttgc cattgcgcgt tcgctgtgta tgaagccgaa aattatgttg
4500tttgatgagc caacgtcggc gctcgatcct gagatggtga aagaggtgct ggatacgatg
4560attgggctgg cgcagtcggg tatgacaatg ttgtgtgtaa cacatgagat ggggtttgca
4620cgaaccgtcg ctgaccgggt aatttttatg gatcgtgggg aaatagtgga gcaagctgca
4680cctgatgaat tttttgcgca tcctaaatca gagcgtacga gggcattttt atcgcaggta
4740atccattaat tgaatgttag ttcgaaaagc aaaaaggcca tcctttcgga tggcctttcg
4800cttgatttga tgtctggcag tttatggcgg gcgtcctgcc cgccaccctc cgggccgttg
4860cttcgcaacg ttcaaatccg gtgacggaag atcacttcgc agaataaata aatcctggtg
4920tccctgttga taccgggaag ccctgggcca acttttggcg aaaatgagac gttgatcggc
4980acgtaagagg ttccaacttt caccataatg aaataagatc actaccgggc gtattttttg
5040agttatcgag attttcagga gctaaggaag ctaaaatgga gaaaaaaatc actggatata
5100ccaccgttga tatatcccaa tggcatcgta aagaacattt tgaggcattt cagtcagttg
5160ctcaatgtac ctataaccag accgttcagc tggatattac ggccttttta aagaccgtaa
5220agaaaaataa gcacaagttt tatccggcct ttattcacat tcttgcccgc ctgatgaatg
5280ctcatccgga attccgtatg gcaatgaaag acggtgagct ggtgatatgg gatagtgttc
5340acccttgtta caccgttttc catgagcaaa ctgaaacgtt ttcatcgctc tggagtgaat
5400accacgacga tttccggcag tttctacaca tatattcgca agatgtggcg tgttacggtg
5460aaaacctggc ctatttccct aaagggttta ttgagaatat gtttttcgtc tcagccaatc
5520cctgggtgag tttcaccagt tttgatttaa acgtggccaa tatggacaac ttcttcgccc
5580ccgttttcac catgggcaaa tattatacgc aaggcgacaa ggtgctgatg ccgctggcga
5640ttcaggttca tcatgccgtt tgtgatggct tccatgtcgg cagaatgctt aatgaattac
5700aacagtactg cgatgagtgg cagggcgggg cgtaattttt ttaaggcagt tattggtgcc
5760cttaaacgcc tggtgctacg cctgaataag tgataataag cggatgaatg gcagaaattc
5820gaaagcaaat tcgacccggt cgtcggttca gggcagggtc gttaaatagc cgcttatgtc
5880tattgctggt ttantcggta cccggggatc gcggccgcgg accggatccc atcacatata
5940cctgccgttc actattattt agtgaaatga gatattatga tattttctga attgtgatta
6000aaaaggcaac tttatgccca tgcaacagaa actataaaaa atacagagaa tgaaaagaaa
6060cagatagatt ttttagttct ttaggcccgt agtctgcaaa tccttttatg attttctatc
6120aaacaaaaga ggaaaataga ccagttgcaa tccaaacgag agtctaatag aatgaggtcg
6180aaaagtaaat cgcgcgggtt tgttactgat aaagcaggca agacctaaaa tgtgtaaagg
6240gcaaagtgta tactttggcg tcacccctta catattttag gtcttttttt attgtgcgta
6300actaacttgc catcttcaaa caggagggct ggaagaagca gaccgctaac acagtacata
6360aaaaaggaga catgaacgat gaacatcaaa aagtttgcaa aacaagcaac agtattaacc
6420tttactaccg cactgctggc aggaggcgca actcaagcgt ttgcgaaaga aacgaaccaa
6480aagccatata aggaaacata cggcatttcc catattacac gccatgatat gctgcaaatc
6540cctgaacagc aaaaaaatga aaaatatcaa gttcctgaat tcgattcgtc cacaattaaa
6600aatatctctt ctgcaaaagg cctggacgtt tgggacagct ggccattaca aaacgctgac
6660ggcactgtcg caaactatca cggctaccac atcgtctttg cattagccgg agatcctaaa
6720aatgcggatg acacatcgat ttacatgttc tatcaaaaag tcggcgaaac ttctattgac
6780agctggaaaa acgctggccg cgtctttaaa gacagcgaca aattcgatgc aaatgattct
6840atcctaaaag accaaacaca agaatggtca ggttcagcca catttacatc tgacggaaaa
6900atccgtttat tctacactga tttctccggt aaacattacg gcaaacaaac actgacaact
6960gcacaagtta acgtatcagc atcagacagc tctttgaaca tcaacggtgt agaggattat
7020aaatcaatct ttgacggtga cggaaaaacg tatcaaaatg tacagcagtt catcgatgaa
7080ggcaactaca gctcaggcga caaccatacg ctgagagatc ctcactacgt agaagataaa
7140ggccacaaat acttagtatt tgaagcaaac actggaactg aagatggcta ccaaggcgaa
7200gaatctttat ttaacaaagc atactatggc aaaagcacat cattcttccg tcaagaaagt
7260caaaaacttc tgcaaagcga taaaaaacgc acggctgagt tagcaaacgg cgctctcggt
7320atgattgagc taaacgatga ttacacactg aaaaaagtga tgaaaccgct gattgcatct
7380aacacagtaa cagatgaaat tgaacgcgcg aacgtcttta aaatgaacgg caaatggtac
7440ctgttcactg actcccgcgg atcaaaaatg acgattgacg gcattacgtc taacgatatt
7500tacatgcttg gttatgtttc taattcttta actggcccat acaagccgct gaacaaaact
7560ggccttgtgt taaaaatgga tcttgatcct aacgatgtaa cctttactta ctcacacttc
7620gctgtacctc aagcgaaagg aaacaatgtc gtgattacaa gctatatgac aaacagagga
7680ttctacgcag acaaacaatc aacgtttgcg ccgagcttcc tgctgaacat caaaggcaag
7740aaaacatctg ttgtcaaaga cagcatcctt gaacaaggac aattaacagt taacaaataa
7800aaacgcaaaa gaaaatgcca atatcctatt ggcattttct tttatttctt ccatttaaat
7860ggatgcatgc gctagcggag tgtatactgg cttactatgt tggcactgat gagggtgtca
7920gtgaagtgct tcctcccggc ggatttgtcc tactcgggag agtgttcacc gacaaacaac
7980agataaaaca aaaggcccag tcttccgact gagccttttg ttttatttga tgtctggcag
8040ttccctactc tcgcatgggg agaccccaca ctaccatcgg cgctacggcg gtttcacttc
8100tgagttcggc atggggtcag gtgggaccac cgcgctactg ccgccagaca aattcttttc
8160taatctgccg aactttaacc taaaaagtgg tgctgatacc cagagtcgaa ctggggacct
8220cacccttacc aagggtgcgc tctaccaact gagccatatc agcacgctaa atttgatgcc
8280tggcagttcc ctactctcgc atggggagac cccacactac catcggcgct acggcgtttc
8340acttctgagt tcggcatggg gtcaggtggg accaccgcgc tacggccgcc aggcaaattc
8400tgttttatca gaccgcttct gcgttctgat ttaatctgta tcaggctgaa aatcttctct
8460catccggata acaatttcac acaggaaaca gctatgacca tgattacgcc aagctcgagc
8520tcgaattcac tggccgtcgt tttacaacgt cgtgactggg aaaaccctgg cgttacccaa
8580cttaatcgcc ttgcagcaca tccccctttc gccagctggc gtaatagcga agaggcccgc
8640accgatcgcc cttcccaaca gttgcgcagc ctgaatggcg aatggcgcct gatgcggtat
8700tttctcctta cgcatctgtg cggtatttca caccgcatat ggtgcactct cagtacaatc
8760tgctctgatg ccgcatagtt aagccagccc cgacacccgc caacacccgc tgacgaattc
8820204774DNAEscherichia colimisc_feature(1)..(4774) 20gttgacagta
agacgggtaa gcctgttgat gataccgctg ccttactggg tgcattagcc 60agtctgaatg
acctgtcacg ggataatccg aagtggtcag actggaaaat cagagggcag 120gaactgctga
acagcaaaaa gtcagatagc accacatagc agacccgcca taaaacgccc 180tgagaagccc
gtgacgggct tttcttgtat tatgggtagt ttccttgcat gaatccataa 240aaggcgcctg
tagtgccatt tacccccatt cactgccaga gccgtgagcg cagcgaactg 300aatgtcacga
aaaagacagc gactcaggtg cctgatggtc ggagacaaaa ggaatattca 360gcgatttgcc
cgagcttgcg agggtgctac ttaagccttt agggttttaa ggtctgtttt 420gtagaggagc
aaacagcgtt tgcgacatcc ttttgtaata ctgcggaact gactaaagta 480gtgagttata
cacagggctg ggatctattc tttttatctt tttttattct ttctttattc 540tataaattat
aaccacttga atataaacaa aaaaaacaca caaaggtcta gcggaattta 600cagagggtct
agcagaattt acaagttttc cagcaaaggt ctagcagaat ttacagatac 660ccacaactca
aaggaaaagg actagtaatt atcattgact agcccatctc aattggtata 720gtgattaaaa
tcacctagac caattgagat gtatgtctga attagttgtt ttcaaagcaa 780atgaactagc
gattagtcgc tatgacttaa cggagcatga aaccaagcta attttatgct 840gtgtggcact
actcaacccc acgattgaaa accctacaag gaaagaacgg acggtatcgt 900tcacttataa
ccaatacgct cagatgatga acatcagtag ggaaaatgct tatggtgtat 960tagctaaagc
aaccagagag ctgatgacga gaactgtgga aatcaggaat cctttggtta 1020aaggctttga
gattttccag tggacaaact atgccaagtt ctcaagcgaa aaattagaat 1080tagtttttag
tgaagagata ttgccttatc ttttccagtt aaaaaaattc ataaaatata 1140atctggaaca
tgttaagtct tttgaaaaca aatactctat gaggatttat gagtggttat 1200taaaagaact
aacacaaaag aaaactcaca aggcaaatat agagattagc cttgatgaat 1260ttaagttcat
gttaatgctt gaaaataact accatgagtt taaaaggctt aaccaatggg 1320ttttgaaacc
aataagtaaa gatttaaaca cttacagcaa tatgaaattg gtggttgata 1380agcgaggccg
cccgactgat acgttgattt tccaagttga actagataga caaatggatc 1440tcgtaaccga
acttgagaac aaccagataa aaatgaatgg tgacaaaata ccaacaacca 1500ttacatcaga
ttcctaccta cgtaacggac taagaaaaac actacacgat gctttaactg 1560caaaaattca
gctcaccagt tttgaggcaa aatttttgag tgacatgcaa agtaagcatg 1620atctcaatgg
ttcgttctca tggctcacgc aaaaacaacg aaccacacta gagaacatac 1680tggctaaata
cggaaggatc tgaggttctt atggctcttg tatctatcag tgaagcatca 1740agactaacaa
acaaaagtag aacaactgtt caccgttaga tatcaaaggg aaaactgtcc 1800atatgcacag
atgaaaacgg tgtaaaaaag atagatacat cagagctttt acgagttttt 1860ggtgcattta
aagctgttca ccatgaacag atcgacaatg taacagatga acagcatgta 1920acacctaata
gaacaggtga aaccagtaaa acaaagcaac tagaacatga aattgaacac 1980ctgagacaac
ttgttacagc tcaacagtca cacatagaca gcctgaaaca ggcgatgctg 2040cttatcgaat
caaagctgcc gacaacacgg gagccagtga cgcctcccgt ggggaaaaaa 2100tcatggcaat
tctggaagaa atagcgcttt cagccggcaa acctgaagcc ggatctgcga 2160ttctgataac
aaactagcaa caccagaaca gcccgtttgc gggcagcaaa acccgttatg 2220cttgtaaacc
gttttgtgaa aaaattttta aaataaaaaa ggggacctct agggtcccca 2280attaattagt
aatataatct attaaaggtc attcaaaagg tcatccaccg gatcaattcc 2340cctgctcgcg
caggctgggt gccaagctct cgggtaacat caaggcccga tccttggagc 2400ccttgccctc
ccgcacgatg atcgtgccgt gatcgaaatc cagatccttg acccgcagtt 2460gcaaaccctc
actgatccgc atgcccgttc catacagaag ctgggcgaac aaacgatgct 2520cgccttccag
aaaaccgagg atgcgaacca cttcatccgg ggtcagcacc accggcaagc 2580gccgcgacgg
ccgaggtctt ccgatctcct gaagccaggg cagatccgtg cacagcacct 2640tgccgtagaa
gaacagcaag gccgccaatg cctgacgatg cgtggagacc gaaaccttgc 2700gctcgttcgc
cagccaggac agaaatgcct cgacttcgct gctgcccaag gttgccgggt 2760gacgcacacc
gtggaaacgg atgaaggcac gaacccagtg gacataagcc tgttcggttc 2820gtaagctgta
atgcaagtag cgtatgcgct cacgcaactg gtccagaacc ttgaccgaac 2880gcagcggtgg
taacggcgca gtggcggttt tcatggcttg ttatgactgt ttttttgggg 2940tacagtctat
gcctcgggca tccaagcagc aagcgcgtta cgccgtgggt cgatgtttga 3000tgttatggag
cagcaacgat gttacgcagc agggcagtcg ccctaaaaca aagttaaaca 3060tcatgaggga
agcggtgatc gccgaagtat cgactcaact atcagaggta gttggcgtca 3120tcgagcgcca
tctcgaaccg acgttgctgg ccgtacattt gtacggctcc gcagtggatg 3180gcggcctgaa
gccacacagt gatattgatt tgctggttac ggtgaccgta aggcttgatg 3240aaacaacgcg
gcgagctttg atcaacgacc ttttggaaac ttcggcttcc cctggagaga 3300gcgagattct
ccgcgctgta gaagtcacca ttgttgtgca cgacgacatc attccgtggc 3360gttatccagc
taagcgcgaa ctgcaatttg gagaatggca gcgcaatgac attcttgcag 3420gtatcttcga
gccagccacg atcgacattg atctggctat cttgctgaca aaagcaagag 3480aacatagcgt
tgccttggta ggtccagcgg cggaggaact ctttgatccg gttcctgaac 3540aggatctatt
tgaggcgcta aatgaaacct taacgctatg gaactcgccg cccgactggg 3600ctggcgatga
gcgaaatgta gtgcttacgt tgtcccgcat ttggtacagc gcagtaaccg 3660gcaaaatcgc
gccgaaggat gtcgctgccg actgggcaat ggagcgcctg ccggcccagt 3720atcagcccgt
catacttgaa gctagacagg cttatcttgg acaagaagaa gatcgcttgg 3780cctcgcgcgc
agatcagttg gaagaatttg tccactacgt gaaaggcgag atcaccaagg 3840tagtcggcaa
ataatgtcta acaattcgtt caagccgacg ccgcttcgcg gcgcggctta 3900actcaagcgt
tagatgcact aagcacataa ttgctcacag ccaaactatc aggtcaagtc 3960tgcttttatt
atttttaagc gtgcataata agccctacac aaattgggag atatatcatg 4020aaaggctggc
tttttcttgt tatcgcaata gttggcgaag taatcgcaac atccgcatta 4080aaatctagcg
agggctttac taagctgatc cggtggatga ccttttgaat gacctttaat 4140agattatatt
actaattaat tggggaccct agaggtcccc ttttttattt taaaaatttt 4200ttcacaaaac
ggtttacaag catacgttgg ccgattcatt aatgcagctg gcacgacagg 4260tttcccgact
ggaaagcggg cagtgagcgc aacgcaatta atgtgagtta gctcactcat 4320taggcacccc
aggctttaca ctttatgctt ccggctcgta tgttgtgtgg aattgtgagc 4380ggataacaat
ttcacacagg aaacagctat gaccatgatt acgccaagct tgcatgcctg 4440caggtcgact
ctagaggatc cccgggtacc gagctcgaat tcactggccg tcgttttaca 4500acgtcgtgac
tgggaaaacc ctggcgttac ccaacttaat cgccttgcag cacatccccc 4560tttcgccagc
tggcgtaata gcgaagaggc ccgcaccgat cgcccttccc aacagttgcg 4620cagcctgaat
ggcgaatggc gcctgatgcg gtattttctc cttacgcatc tgtgcggtat 4680ttcacaccgc
atatggtgca ctctcagtac aatctgctct gatgccgcat agttaagcca 4740gccccgacac
ccgccaacac ccgctgacga attc
4774216432DNAEscherichia colimisc_feature(1)..(6432)DNA sequence of the
plasmid pMG27 21gttgacagta agacgggtaa gcctgttgat gataccgctg ccttactggg
tgcattagcc 60agtctgaatg acctgtcacg ggataatccg aagtggtcag actggaaaat
cagagggcag 120gaactgctga acagcaaaaa gtcagatagc accacatagc agacccgcca
taaaacgccc 180tgagaagccc gtgacgggct tttcttgtat tatgggtagt ttccttgcat
gaatccataa 240aaggcgcctg tagtgccatt tacccccatt cactgccaga gccgtgagcg
cagcgaactg 300aatgtcacga aaaagacagc gactcaggtg cctgatggtc ggagacaaaa
ggaatattca 360gcgatttgcc cgagcttgcg agggtgctac ttaagccttt agggttttaa
ggtctgtttt 420gtagaggagc aaacagcgtt tgcgacatcc ttttgtaata ctgcggaact
gactaaagta 480gtgagttata cacagggctg ggatctattc tttttatctt tttttattct
ttctttattc 540tataaattat aaccacttga atataaacaa aaaaaacaca caaaggtcta
gcggaattta 600cagagggtct agcagaattt acaagttttc cagcaaaggt ctagcagaat
ttacagatac 660ccacaactca aaggaaaagg actagtaatt atcattgact agcccatctc
aattggtata 720gtgattaaaa tcacctagac caattgagat gtatgtctga attagttgtt
ttcaaagcaa 780atgaactagc gattagtcgc tatgacttaa cggagcatga aaccaagcta
attttatgct 840gtgtggcact actcaacccc acgattgaaa accctacaag gaaagaacgg
acggtatcgt 900tcacttataa ccaatacgct cagatgatga acatcagtag ggaaaatgct
tatggtgtat 960tagctaaagc aaccagagag ctgatgacga gaactgtgga aatcaggaat
cctttggtta 1020aaggctttga gattttccag tggacaaact atgccaagtt ctcaagcgaa
aaattagaat 1080tagtttttag tgaagagata ttgccttatc ttttccagtt aaaaaaattc
ataaaatata 1140atctggaaca tgttaagtct tttgaaaaca aatactctat gaggatttat
gagtggttat 1200taaaagaact aacacaaaag aaaactcaca aggcaaatat agagattagc
cttgatgaat 1260ttaagttcat gttaatgctt gaaaataact accatgagtt taaaaggctt
aaccaatggg 1320ttttgaaacc aataagtaaa gatttaaaca cttacagcaa tatgaaattg
gtggttgata 1380agcgaggccg cccgactgat acgttgattt tccaagttga actagataga
caaatggatc 1440tcgtaaccga acttgagaac aaccagataa aaatgaatgg tgacaaaata
ccaacaacca 1500ttacatcaga ttcctaccta cgtaacggac taagaaaaac actacacgat
gctttaactg 1560caaaaattca gctcaccagt tttgaggcaa aatttttgag tgacatgcaa
agtaagcatg 1620atctcaatgg ttcgttctca tggctcacgc aaaaacaacg aaccacacta
gagaacatac 1680tggctaaata cggaaggatc tgaggttctt atggctcttg tatctatcag
tgaagcatca 1740agactaacaa acaaaagtag aacaactgtt caccgttaga tatcaaaggg
aaaactgtcc 1800atatgcacag atgaaaacgg tgtaaaaaag atagatacat cagagctttt
acgagttttt 1860ggtgcattta aagctgttca ccatgaacag atcgacaatg taacagatga
acagcatgta 1920acacctaata gaacaggtga aaccagtaaa acaaagcaac tagaacatga
aattgaacac 1980ctgagacaac ttgttacagc tcaacagtca cacatagaca gcctgaaaca
ggcgatgctg 2040cttatcgaat caaagctgcc gacaacacgg gagccagtga cgcctcccgt
ggggaaaaaa 2100tcatggcaat tctggaagaa atagcgcttt cagccggcaa acctgaagcc
ggatctgcga 2160ttctgataac aaactagcaa caccagaaca gcccgtttgc gggcagcaaa
acccgttatg 2220cttgtaaacc gttttgtgaa aaaattttta aaataaaaaa ggggacctct
agggtcccca 2280attaattagt aatataatct attaaaggtc attcaaaagg tcatccaccg
gatcaattcc 2340cctgctcgcg caggctgggt gccaagctct cgggtaacat caaggcccga
tccttggagc 2400ccttgccctc ccgcacgatg atcgtgccgt gatcgaaatc cagatccttg
acccgcagtt 2460gcaaaccctc actgatccgc atgcccgttc catacagaag ctgggcgaac
aaacgatgct 2520cgccttccag aaaaccgagg atgcgaacca cttcatccgg ggtcagcacc
accggcaagc 2580gccgcgacgg ccgaggtctt ccgatctcct gaagccaggg cagatccgtg
cacagcacct 2640tgccgtagaa gaacagcaag gccgccaatg cctgacgatg cgtggagacc
gaaaccttgc 2700gctcgttcgc cagccaggac agaaatgcct cgacttcgct gctgcccaag
gttgccgggt 2760gacgcacacc gtggaaacgg atgaaggcac gaacccagtg gacataagcc
tgttcggttc 2820gtaagctgta atgcaagtag cgtatgcgct cacgcaactg gtccagaacc
ttgaccgaac 2880gcagcggtgg taacggcgca gtggcggttt tcatggcttg ttatgactgt
ttttttgggg 2940tacagtctat gcctcgggca tccaagcagc aagcgcgtta cgccgtgggt
cgatgtttga 3000tgttatggag cagcaacgat gttacgcagc agggcagtcg ccctaaaaca
aagttaaaca 3060tcatgaggga agcggtgatc gccgaagtat cgactcaact atcagaggta
gttggcgtca 3120tcgagcgcca tctcgaaccg acgttgctgg ccgtacattt gtacggctcc
gcagtggatg 3180gcggcctgaa gccacacagt gatattgatt tgctggttac ggtgaccgta
aggcttgatg 3240aaacaacgcg gcgagctttg atcaacgacc ttttggaaac ttcggcttcc
cctggagaga 3300gcgagattct ccgcgctgta gaagtcacca ttgttgtgca cgacgacatc
attccgtggc 3360gttatccagc taagcgcgaa ctgcaatttg gagaatggca gcgcaatgac
attcttgcag 3420gtatcttcga gccagccacg atcgacattg atctggctat cttgctgaca
aaagcaagag 3480aacatagcgt tgccttggta ggtccagcgg cggaggaact ctttgatccg
gttcctgaac 3540aggatctatt tgaggcgcta aatgaaacct taacgctatg gaactcgccg
cccgactggg 3600ctggcgatga gcgaaatgta gtgcttacgt tgtcccgcat ttggtacagc
gcagtaaccg 3660gcaaaatcgc gccgaaggat gtcgctgccg actgggcaat ggagcgcctg
ccggcccagt 3720atcagcccgt catacttgaa gctagacagg cttatcttgg acaagaagaa
gatcgcttgg 3780cctcgcgcgc agatcagttg gaagaatttg tccactacgt gaaaggcgag
atcaccaagg 3840tagtcggcaa ataatgtcta acaattcgtt caagccgacg ccgcttcgcg
gcgcggctta 3900actcaagcgt tagatgcact aagcacataa ttgctcacag ccaaactatc
aggtcaagtc 3960tgcttttatt atttttaagc gtgcataata agccctacac aaattgggag
atatatcatg 4020aaaggctggc tttttcttgt tatcgcaata gttggcgaag taatcgcaac
atccgcatta 4080aaatctagcg agggctttac taagctgatc cggtggatga ccttttgaat
gacctttaat 4140agattatatt actaattaat tggggaccct agaggtcccc ttttttattt
taaaaatttt 4200ttcacaaaac ggtttacaag catacgttgg ccgattcatt aatgcagctg
gcacgacagg 4260tttcccgact ggaaagcggg cagtgagcgc aacgcaatta atgtgagtta
gctcactcat 4320taggcacccc aggctttaca ctttatgctt ccggctcgta tgttgtgtgg
aattgtgagc 4380ggataacaat ttcacacagg aaacagctat gaccatgatt acgccaagct
tgcatgcctg 4440caggtcgacc gttaaatcta tcaccgcaag ggataaatat ctaacaccgt
gcgtgttgac 4500tattttacct ctggcggtga taatggttgc atgtactaat ctagataagg
aatatagcca 4560tgaccgcacc gattcaggat ctgcgtgatg caattgccct gctgcaacag
catgataatc 4620agtatctgga aaccgatcat ccggttgatc cgaatgcaga actggcaggc
gtttatcgtc 4680atattggtgc cggtggcacc gttaaacgtc cgacccgtat tggtccggca
atgatgttta 4740ataacattaa aggttatccg cacagccgta ttctggttgg tatgcatgca
agccgtcagc 4800gtgcagcact gctgctgggt tgtgaagcaa gtcagctggc actggaagtt
ggtaaagcag 4860ttaaaaaacc ggttgcaccg gtggttgttc cggcaagcag cgcaccgtgt
caagagcaga 4920tttttctggc agatgatccg gattttgatc tgcgtaccct gctgcctgca
cataccaata 4980ccccgattga tgcaggtccg tttttttgtc tgggtctggc cctggcaagc
gatccggtgg 5040atgcaagcct gaccgatgtt accattcatc gtctgtgtgt tcagggtcgt
gatgaactga 5100gcatgttcct ggcagcaggt cgccatattg aagtttttcg tcagaaagca
gaagcagcag 5160gtaaaccgct gccgattacc attaatatgg gtctggaccc agcaatctat
attggcgcat 5220gttttgaagc accgaccacc ccgtttggtt ataatgaact gggtgttgcc
ggtgcactgc 5280gtcagcgtcc ggttgaactg gttcagggtg ttagcgttcc ggaaaaagca
attgcacgtg 5340ccgaaattgt tattgaaggt gaactgctgc ctggtgttcg tgttcgtgaa
gatcagcata 5400ccaattcagg tcatgcaatg ccggaatttc cgggttattg tggtggtgca
aatccgagcc 5460tgccggttat taaagttaaa gccgttacca tgcgcaataa cgcaattctg
caaaccctgg 5520ttggtccggg tgaagaacat accaccctgg caggtctgcc gaccgaagca
agcatttgga 5580atgcagttga agcagcaatt ccgggttttc tgcaaaatgt ttatgcccat
accgcaggcg 5640gtggtaaatt tctgggtatt ctgcaagtga aaaaacgtca gcctgccgat
gaaggtcgtc 5700agggtcaggc agccctgctg gcgctggcaa cctatagcga actgaaaaat
atcattctgg 5760tggatgagga tgtggacatt tttgatagtg atgatattct gtgggcaatg
accacccgta 5820tgcagggtga tgttagcatt accaccattc cgggtattcg cggtcatcag
ctggacccga 5880gccagacacc ggaatattca ccgagcattc gtggtaatgg tattagctgc
aaaaccatct 5940ttgattgtac cgttccgtgg gcactgaaaa gccattttga acgtgcaccg
tttgcagatg 6000ttgatccgcg tccgtttgca cctgaatatt ttgcacgtct ggaaaaaaat
cagggcagcg 6060caaaataagc taataacagg cctgctggta atcgcaggaa tttttatttg
gatggatccc 6120cgggtaccga gctcgaattc actggccgtc gttttacaac gtcgtgactg
ggaaaaccct 6180ggcgttaccc aacttaatcg ccttgcagca catccccctt tcgccagctg
gcgtaatagc 6240gaagaggccc gcaccgatcg cccttcccaa cagttgcgca gcctgaatgg
cgaatggcgc 6300ctgatgcggt attttctcct tacgcatctg tgcggtattt cacaccgcat
atggtgcact 6360ctcagtacaa tctgctctga tgccgcatag ttaagccagc cccgacaccc
gccaacaccc 6420gctgacgaat tc
6432227294DNAEscherichia colimisc_feature(1)..(7294)DNA
sequence of the plasmid pMG31 22gttgacagta agacgggtaa gcctgttgat
gataccgctg ccttactggg tgcattagcc 60agtctgaatg acctgtcacg ggataatccg
aagtggtcag actggaaaat cagagggcag 120gaactgctga acagcaaaaa gtcagatagc
accacatagc agacccgcca taaaacgccc 180tgagaagccc gtgacgggct tttcttgtat
tatgggtagt ttccttgcat gaatccataa 240aaggcgcctg tagtgccatt tacccccatt
cactgccaga gccgtgagcg cagcgaactg 300aatgtcacga aaaagacagc gactcaggtg
cctgatggtc ggagacaaaa ggaatattca 360gcgatttgcc cgagcttgcg agggtgctac
ttaagccttt agggttttaa ggtctgtttt 420gtagaggagc aaacagcgtt tgcgacatcc
ttttgtaata ctgcggaact gactaaagta 480gtgagttata cacagggctg ggatctattc
tttttatctt tttttattct ttctttattc 540tataaattat aaccacttga atataaacaa
aaaaaacaca caaaggtcta gcggaattta 600cagagggtct agcagaattt acaagttttc
cagcaaaggt ctagcagaat ttacagatac 660ccacaactca aaggaaaagg actagtaatt
atcattgact agcccatctc aattggtata 720gtgattaaaa tcacctagac caattgagat
gtatgtctga attagttgtt ttcaaagcaa 780atgaactagc gattagtcgc tatgacttaa
cggagcatga aaccaagcta attttatgct 840gtgtggcact actcaacccc acgattgaaa
accctacaag gaaagaacgg acggtatcgt 900tcacttataa ccaatacgct cagatgatga
acatcagtag ggaaaatgct tatggtgtat 960tagctaaagc aaccagagag ctgatgacga
gaactgtgga aatcaggaat cctttggtta 1020aaggctttga gattttccag tggacaaact
atgccaagtt ctcaagcgaa aaattagaat 1080tagtttttag tgaagagata ttgccttatc
ttttccagtt aaaaaaattc ataaaatata 1140atctggaaca tgttaagtct tttgaaaaca
aatactctat gaggatttat gagtggttat 1200taaaagaact aacacaaaag aaaactcaca
aggcaaatat agagattagc cttgatgaat 1260ttaagttcat gttaatgctt gaaaataact
accatgagtt taaaaggctt aaccaatggg 1320ttttgaaacc aataagtaaa gatttaaaca
cttacagcaa tatgaaattg gtggttgata 1380agcgaggccg cccgactgat acgttgattt
tccaagttga actagataga caaatggatc 1440tcgtaaccga acttgagaac aaccagataa
aaatgaatgg tgacaaaata ccaacaacca 1500ttacatcaga ttcctaccta cgtaacggac
taagaaaaac actacacgat gctttaactg 1560caaaaattca gctcaccagt tttgaggcaa
aatttttgag tgacatgcaa agtaagcatg 1620atctcaatgg ttcgttctca tggctcacgc
aaaaacaacg aaccacacta gagaacatac 1680tggctaaata cggaaggatc tgaggttctt
atggctcttg tatctatcag tgaagcatca 1740agactaacaa acaaaagtag aacaactgtt
caccgttaga tatcaaaggg aaaactgtcc 1800atatgcacag atgaaaacgg tgtaaaaaag
atagatacat cagagctttt acgagttttt 1860ggtgcattta aagctgttca ccatgaacag
atcgacaatg taacagatga acagcatgta 1920acacctaata gaacaggtga aaccagtaaa
acaaagcaac tagaacatga aattgaacac 1980ctgagacaac ttgttacagc tcaacagtca
cacatagaca gcctgaaaca ggcgatgctg 2040cttatcgaat caaagctgcc gacaacacgg
gagccagtga cgcctcccgt ggggaaaaaa 2100tcatggcaat tctggaagaa atagcgcttt
cagccggcaa acctgaagcc ggatctgcga 2160ttctgataac aaactagcaa caccagaaca
gcccgtttgc gggcagcaaa acccgttatg 2220cttgtaaacc gttttgtgaa aaaattttta
aaataaaaaa ggggacctct agggtcccca 2280attaattagt aatataatct attaaaggtc
attcaaaagg tcatccaccg gatcaattcc 2340cctgctcgcg caggctgggt gccaagctct
cgggtaacat caaggcccga tccttggagc 2400ccttgccctc ccgcacgatg atcgtgccgt
gatcgaaatc cagatccttg acccgcagtt 2460gcaaaccctc actgatccgc atgcccgttc
catacagaag ctgggcgaac aaacgatgct 2520cgccttccag aaaaccgagg atgcgaacca
cttcatccgg ggtcagcacc accggcaagc 2580gccgcgacgg ccgaggtctt ccgatctcct
gaagccaggg cagatccgtg cacagcacct 2640tgccgtagaa gaacagcaag gccgccaatg
cctgacgatg cgtggagacc gaaaccttgc 2700gctcgttcgc cagccaggac agaaatgcct
cgacttcgct gctgcccaag gttgccgggt 2760gacgcacacc gtggaaacgg atgaaggcac
gaacccagtg gacataagcc tgttcggttc 2820gtaagctgta atgcaagtag cgtatgcgct
cacgcaactg gtccagaacc ttgaccgaac 2880gcagcggtgg taacggcgca gtggcggttt
tcatggcttg ttatgactgt ttttttgggg 2940tacagtctat gcctcgggca tccaagcagc
aagcgcgtta cgccgtgggt cgatgtttga 3000tgttatggag cagcaacgat gttacgcagc
agggcagtcg ccctaaaaca aagttaaaca 3060tcatgaggga agcggtgatc gccgaagtat
cgactcaact atcagaggta gttggcgtca 3120tcgagcgcca tctcgaaccg acgttgctgg
ccgtacattt gtacggctcc gcagtggatg 3180gcggcctgaa gccacacagt gatattgatt
tgctggttac ggtgaccgta aggcttgatg 3240aaacaacgcg gcgagctttg atcaacgacc
ttttggaaac ttcggcttcc cctggagaga 3300gcgagattct ccgcgctgta gaagtcacca
ttgttgtgca cgacgacatc attccgtggc 3360gttatccagc taagcgcgaa ctgcaatttg
gagaatggca gcgcaatgac attcttgcag 3420gtatcttcga gccagccacg atcgacattg
atctggctat cttgctgaca aaagcaagag 3480aacatagcgt tgccttggta ggtccagcgg
cggaggaact ctttgatccg gttcctgaac 3540aggatctatt tgaggcgcta aatgaaacct
taacgctatg gaactcgccg cccgactggg 3600ctggcgatga gcgaaatgta gtgcttacgt
tgtcccgcat ttggtacagc gcagtaaccg 3660gcaaaatcgc gccgaaggat gtcgctgccg
actgggcaat ggagcgcctg ccggcccagt 3720atcagcccgt catacttgaa gctagacagg
cttatcttgg acaagaagaa gatcgcttgg 3780cctcgcgcgc agatcagttg gaagaatttg
tccactacgt gaaaggcgag atcaccaagg 3840tagtcggcaa ataatgtcta acaattcgtt
caagccgacg ccgcttcgcg gcgcggctta 3900actcaagcgt tagatgcact aagcacataa
ttgctcacag ccaaactatc aggtcaagtc 3960tgcttttatt atttttaagc gtgcataata
agccctacac aaattgggag atatatcatg 4020aaaggctggc tttttcttgt tatcgcaata
gttggcgaag taatcgcaac atccgcatta 4080aaatctagcg agggctttac taagctgatc
cggtggatga ccttttgaat gacctttaat 4140agattatatt actaattaat tggggaccct
agaggtcccc ttttttattt taaaaatttt 4200ttcacaaaac ggtttacaag catacgttgg
ccgattcatt aatgcagctg gcacgacagg 4260tttcccgact ggaaagcggg cagtgagcgc
aacgcaatta atgtgagtta gctcactcat 4320taggcacccc aggctttaca ctttatgctt
ccggctcgta tgttgtgtgg aattgtgagc 4380ggataacaat ttcacacagg aaacagctat
gaccatgatt acgccaagct tgctattgac 4440gacagctatg gttcactgtc caccaaccaa
aactgtgctc agtaccgcca atatttctcc 4500cttgaggggt acaaagaggt gtccctagaa
gagatccacg ctgtgtaaaa attttacaaa 4560aaggtattga ctttccctac agggtgtgta
ataatttaat tacaggcggg ggcaaccccg 4620cctgttctgc agaggaggaa tatagccatg
gaagtgaaaa tcttcaacac ccaggatgtt 4680caggattttc tgcgtgttgc aagcggtctg
gaacaagagg gtggtaatcc gcgtgttaaa 4740caaattattc atcgtgttct gagcgacctg
tataaagcaa ttgaagatct gaatatcacc 4800agcgacgaat attgggcagg cgttgcatat
ctgaatcagc tgggtgcaaa tcaagaagca 4860ggtctgctga gtccgggtct gggttttgat
cattatctgg atatgcgtat ggatgcagaa 4920gatgcagcac tgggtattga aaatgcaaca
ccgcgtacca ttgaaggtcc gctgtatgtt 4980gcgggtgcac cggaaagcgt tggttatgca
cgcatggatg atggtagcga tccgaatggt 5040cataccctga ttctgcatgg caccattttt
gatgcagatg gtaaaccgct gccgaatgca 5100aaagttgaaa tttggcatgc aaacaccaaa
ggcttttata gccattttga tccgaccggt 5160gaacagcagg cctttaatat gcgtcgtagc
attattaccg atgagaatgg tcagtatcgt 5220gttcgtacca ttctgcctgc cggttatggt
tgtcctccgg aaggtccgac ccagcaactg 5280ctgaaccaac tgggtcgtca tggtaatcgt
ccggcacata ttcattattt tgttagcgca 5340gatggtcacc gtaaactgac cacccagatt
aatgttgccg gtgatccgta tacctatgat 5400gattttgcat atgccacccg tgaaggtctg
gttgttgatg cagttgaaca taccgatccg 5460gaagcaatta aagccaatga tgtggaaggt
ccttttgccg aaatggtgtt tgatctgaaa 5520ctgacccgtc tggttgatgg tgttgataat
caggttgtgg atcgtccgcg tctggcagtt 5580taatacacca aaatggttca aaattatcag
gcgagtgatc atgatcactg gcctgttttt 5640atttcaggga agggtggaga caattacgtg
gataatcaga tcatccaaga aaccgtggat 5700aaaattctga gcgttctgcc gaatcaggca
ggtcagctgg cacgtctggt gcgtctgatg 5760caatttgcat gcgatccgac cattaccgtt
attggcaaat ataaccatgg taaaagccgt 5820ctgctgaatg aactgattgg caccgatatc
tttagcgttg cagataaacg tgaaaccatt 5880cagctggccg aacataaaca ggatcaggtt
cgttggctgg atgcacctgg tctggatgcc 5940gatgttgcag cagttgatga tcgtcatgca
tttgaagcag tttggaccca ggcagatatt 6000cgtctgtttg ttcatagcgt tcgtgaaggt
gaactggatg caaccgaaca ccatctgctg 6060caacagctga ttgaagatgc cgatcatagc
cgtcgtcaga ccattctggt tctgacccag 6120attgatcaga ttccggatca gaccatcctg
acacagatta aaaccagcat tgcacagcag 6180gttccgaaac tggatatttg ggcagttagc
gcaacccgtc atcgtcaggg cattgaaaac 6240ggtaaaaccc tgctgatcga aaaaagcggt
attggtgcac tgcgccatac cctggaacag 6300gcactggcac aggtgccgag cgcacgtacc
tatgaaaaaa atcgtctgct gtcagatctg 6360caccatcagc tgaaacaact gctgctggat
cagaaacatg ttctgcaaca actgcaacag 6420acacagcaac agcagctgca tgattttgat
accggtctga ttaacattct ggacaaaatt 6480cgtgttgatc tggaaccgat tgtgaatatt
gatggtcagg atcaagcact gaatccggat 6540agctttgcaa ccatgtttaa aaacaccgca
gcaaaacagc agcgtgccaa agttcagatt 6600gcatatagcc gtgcatgcat tgaaatcaac
agccatctga ttcgccatgg tgttgttggt 6660ctgcctgcgg aacagcagac caccattaaa
agcattgata ccgtgattgt tgccgtgttt 6720ggtatcagcg ttaaatttcg tgatcagctg
cgtgccctgt tttataccga taccgaacgt 6780cagcgtctgc aacgtgaatt tcgtttctat
tttgaaaaaa gtgccggtcg catgattctg 6840gcagcaaaaa ttgaacagac catgcgtcag
cagggctgta ttcagaatgc catgatggca 6900ctgcaacaaa tggaaagcgc agcataaaaa
cacggacgcc gcaaacggcg tccgaatttc 6960ttggtcgact ctagaggatc cccgggtacc
gagctcgaat tcactggccg tcgttttaca 7020acgtcgtgac tgggaaaacc ctggcgttac
ccaacttaat cgccttgcag cacatccccc 7080tttcgccagc tggcgtaata gcgaagaggc
ccgcaccgat cgcccttccc aacagttgcg 7140cagcctgaat ggcgaatggc gcctgatgcg
gtattttctc cttacgcatc tgtgcggtat 7200ttcacaccgc atatggtgca ctctcagtac
aatctgctct gatgccgcat agttaagcca 7260gccccgacac ccgccaacac ccgctgacga
attc 7294238952DNAEscherichia
colimisc_feature(1)..(8952)DNA sequence of the plasmid pMG33 23gttgacagta
agacgggtaa gcctgttgat gataccgctg ccttactggg tgcattagcc 60agtctgaatg
acctgtcacg ggataatccg aagtggtcag actggaaaat cagagggcag 120gaactgctga
acagcaaaaa gtcagatagc accacatagc agacccgcca taaaacgccc 180tgagaagccc
gtgacgggct tttcttgtat tatgggtagt ttccttgcat gaatccataa 240aaggcgcctg
tagtgccatt tacccccatt cactgccaga gccgtgagcg cagcgaactg 300aatgtcacga
aaaagacagc gactcaggtg cctgatggtc ggagacaaaa ggaatattca 360gcgatttgcc
cgagcttgcg agggtgctac ttaagccttt agggttttaa ggtctgtttt 420gtagaggagc
aaacagcgtt tgcgacatcc ttttgtaata ctgcggaact gactaaagta 480gtgagttata
cacagggctg ggatctattc tttttatctt tttttattct ttctttattc 540tataaattat
aaccacttga atataaacaa aaaaaacaca caaaggtcta gcggaattta 600cagagggtct
agcagaattt acaagttttc cagcaaaggt ctagcagaat ttacagatac 660ccacaactca
aaggaaaagg actagtaatt atcattgact agcccatctc aattggtata 720gtgattaaaa
tcacctagac caattgagat gtatgtctga attagttgtt ttcaaagcaa 780atgaactagc
gattagtcgc tatgacttaa cggagcatga aaccaagcta attttatgct 840gtgtggcact
actcaacccc acgattgaaa accctacaag gaaagaacgg acggtatcgt 900tcacttataa
ccaatacgct cagatgatga acatcagtag ggaaaatgct tatggtgtat 960tagctaaagc
aaccagagag ctgatgacga gaactgtgga aatcaggaat cctttggtta 1020aaggctttga
gattttccag tggacaaact atgccaagtt ctcaagcgaa aaattagaat 1080tagtttttag
tgaagagata ttgccttatc ttttccagtt aaaaaaattc ataaaatata 1140atctggaaca
tgttaagtct tttgaaaaca aatactctat gaggatttat gagtggttat 1200taaaagaact
aacacaaaag aaaactcaca aggcaaatat agagattagc cttgatgaat 1260ttaagttcat
gttaatgctt gaaaataact accatgagtt taaaaggctt aaccaatggg 1320ttttgaaacc
aataagtaaa gatttaaaca cttacagcaa tatgaaattg gtggttgata 1380agcgaggccg
cccgactgat acgttgattt tccaagttga actagataga caaatggatc 1440tcgtaaccga
acttgagaac aaccagataa aaatgaatgg tgacaaaata ccaacaacca 1500ttacatcaga
ttcctaccta cgtaacggac taagaaaaac actacacgat gctttaactg 1560caaaaattca
gctcaccagt tttgaggcaa aatttttgag tgacatgcaa agtaagcatg 1620atctcaatgg
ttcgttctca tggctcacgc aaaaacaacg aaccacacta gagaacatac 1680tggctaaata
cggaaggatc tgaggttctt atggctcttg tatctatcag tgaagcatca 1740agactaacaa
acaaaagtag aacaactgtt caccgttaga tatcaaaggg aaaactgtcc 1800atatgcacag
atgaaaacgg tgtaaaaaag atagatacat cagagctttt acgagttttt 1860ggtgcattta
aagctgttca ccatgaacag atcgacaatg taacagatga acagcatgta 1920acacctaata
gaacaggtga aaccagtaaa acaaagcaac tagaacatga aattgaacac 1980ctgagacaac
ttgttacagc tcaacagtca cacatagaca gcctgaaaca ggcgatgctg 2040cttatcgaat
caaagctgcc gacaacacgg gagccagtga cgcctcccgt ggggaaaaaa 2100tcatggcaat
tctggaagaa atagcgcttt cagccggcaa acctgaagcc ggatctgcga 2160ttctgataac
aaactagcaa caccagaaca gcccgtttgc gggcagcaaa acccgttatg 2220cttgtaaacc
gttttgtgaa aaaattttta aaataaaaaa ggggacctct agggtcccca 2280attaattagt
aatataatct attaaaggtc attcaaaagg tcatccaccg gatcaattcc 2340cctgctcgcg
caggctgggt gccaagctct cgggtaacat caaggcccga tccttggagc 2400ccttgccctc
ccgcacgatg atcgtgccgt gatcgaaatc cagatccttg acccgcagtt 2460gcaaaccctc
actgatccgc atgcccgttc catacagaag ctgggcgaac aaacgatgct 2520cgccttccag
aaaaccgagg atgcgaacca cttcatccgg ggtcagcacc accggcaagc 2580gccgcgacgg
ccgaggtctt ccgatctcct gaagccaggg cagatccgtg cacagcacct 2640tgccgtagaa
gaacagcaag gccgccaatg cctgacgatg cgtggagacc gaaaccttgc 2700gctcgttcgc
cagccaggac agaaatgcct cgacttcgct gctgcccaag gttgccgggt 2760gacgcacacc
gtggaaacgg atgaaggcac gaacccagtg gacataagcc tgttcggttc 2820gtaagctgta
atgcaagtag cgtatgcgct cacgcaactg gtccagaacc ttgaccgaac 2880gcagcggtgg
taacggcgca gtggcggttt tcatggcttg ttatgactgt ttttttgggg 2940tacagtctat
gcctcgggca tccaagcagc aagcgcgtta cgccgtgggt cgatgtttga 3000tgttatggag
cagcaacgat gttacgcagc agggcagtcg ccctaaaaca aagttaaaca 3060tcatgaggga
agcggtgatc gccgaagtat cgactcaact atcagaggta gttggcgtca 3120tcgagcgcca
tctcgaaccg acgttgctgg ccgtacattt gtacggctcc gcagtggatg 3180gcggcctgaa
gccacacagt gatattgatt tgctggttac ggtgaccgta aggcttgatg 3240aaacaacgcg
gcgagctttg atcaacgacc ttttggaaac ttcggcttcc cctggagaga 3300gcgagattct
ccgcgctgta gaagtcacca ttgttgtgca cgacgacatc attccgtggc 3360gttatccagc
taagcgcgaa ctgcaatttg gagaatggca gcgcaatgac attcttgcag 3420gtatcttcga
gccagccacg atcgacattg atctggctat cttgctgaca aaagcaagag 3480aacatagcgt
tgccttggta ggtccagcgg cggaggaact ctttgatccg gttcctgaac 3540aggatctatt
tgaggcgcta aatgaaacct taacgctatg gaactcgccg cccgactggg 3600ctggcgatga
gcgaaatgta gtgcttacgt tgtcccgcat ttggtacagc gcagtaaccg 3660gcaaaatcgc
gccgaaggat gtcgctgccg actgggcaat ggagcgcctg ccggcccagt 3720atcagcccgt
catacttgaa gctagacagg cttatcttgg acaagaagaa gatcgcttgg 3780cctcgcgcgc
agatcagttg gaagaatttg tccactacgt gaaaggcgag atcaccaagg 3840tagtcggcaa
ataatgtcta acaattcgtt caagccgacg ccgcttcgcg gcgcggctta 3900actcaagcgt
tagatgcact aagcacataa ttgctcacag ccaaactatc aggtcaagtc 3960tgcttttatt
atttttaagc gtgcataata agccctacac aaattgggag atatatcatg 4020aaaggctggc
tttttcttgt tatcgcaata gttggcgaag taatcgcaac atccgcatta 4080aaatctagcg
agggctttac taagctgatc cggtggatga ccttttgaat gacctttaat 4140agattatatt
actaattaat tggggaccct agaggtcccc ttttttattt taaaaatttt 4200ttcacaaaac
ggtttacaag catacgttgg ccgattcatt aatgcagctg gcacgacagg 4260tttcccgact
ggaaagcggg cagtgagcgc aacgcaatta atgtgagtta gctcactcat 4320taggcacccc
aggctttaca ctttatgctt ccggctcgta tgttgtgtgg aattgtgagc 4380ggataacaat
ttcacacagg aaacagctat gaccatgatt acgccaagct tgctattgac 4440gacagctatg
gttcactgtc caccaaccaa aactgtgctc agtaccgcca atatttctcc 4500cttgaggggt
acaaagaggt gtccctagaa gagatccacg ctgtgtaaaa attttacaaa 4560aaggtattga
ctttccctac agggtgtgta ataatttaat tacaggcggg ggcaaccccg 4620cctgttctgc
agaggaggaa tatagccatg gaagtgaaaa tcttcaacac ccaggatgtt 4680caggattttc
tgcgtgttgc aagcggtctg gaacaagagg gtggtaatcc gcgtgttaaa 4740caaattattc
atcgtgttct gagcgacctg tataaagcaa ttgaagatct gaatatcacc 4800agcgacgaat
attgggcagg cgttgcatat ctgaatcagc tgggtgcaaa tcaagaagca 4860ggtctgctga
gtccgggtct gggttttgat cattatctgg atatgcgtat ggatgcagaa 4920gatgcagcac
tgggtattga aaatgcaaca ccgcgtacca ttgaaggtcc gctgtatgtt 4980gcgggtgcac
cggaaagcgt tggttatgca cgcatggatg atggtagcga tccgaatggt 5040cataccctga
ttctgcatgg caccattttt gatgcagatg gtaaaccgct gccgaatgca 5100aaagttgaaa
tttggcatgc aaacaccaaa ggcttttata gccattttga tccgaccggt 5160gaacagcagg
cctttaatat gcgtcgtagc attattaccg atgagaatgg tcagtatcgt 5220gttcgtacca
ttctgcctgc cggttatggt tgtcctccgg aaggtccgac ccagcaactg 5280ctgaaccaac
tgggtcgtca tggtaatcgt ccggcacata ttcattattt tgttagcgca 5340gatggtcacc
gtaaactgac cacccagatt aatgttgccg gtgatccgta tacctatgat 5400gattttgcat
atgccacccg tgaaggtctg gttgttgatg cagttgaaca taccgatccg 5460gaagcaatta
aagccaatga tgtggaaggt ccttttgccg aaatggtgtt tgatctgaaa 5520ctgacccgtc
tggttgatgg tgttgataat caggttgtgg atcgtccgcg tctggcagtt 5580taatacacca
aaatggttca aaattatcag gcgagtgatc atgatcactg gcctgttttt 5640atttcaggga
agggtggaga caattacgtg gataatcaga tcatccaaga aaccgtggat 5700aaaattctga
gcgttctgcc gaatcaggca ggtcagctgg cacgtctggt gcgtctgatg 5760caatttgcat
gcgatccgac cattaccgtt attggcaaat ataaccatgg taaaagccgt 5820ctgctgaatg
aactgattgg caccgatatc tttagcgttg cagataaacg tgaaaccatt 5880cagctggccg
aacataaaca ggatcaggtt cgttggctgg atgcacctgg tctggatgcc 5940gatgttgcag
cagttgatga tcgtcatgca tttgaagcag tttggaccca ggcagatatt 6000cgtctgtttg
ttcatagcgt tcgtgaaggt gaactggatg caaccgaaca ccatctgctg 6060caacagctga
ttgaagatgc cgatcatagc cgtcgtcaga ccattctggt tctgacccag 6120attgatcaga
ttccggatca gaccatcctg acacagatta aaaccagcat tgcacagcag 6180gttccgaaac
tggatatttg ggcagttagc gcaacccgtc atcgtcaggg cattgaaaac 6240ggtaaaaccc
tgctgatcga aaaaagcggt attggtgcac tgcgccatac cctggaacag 6300gcactggcac
aggtgccgag cgcacgtacc tatgaaaaaa atcgtctgct gtcagatctg 6360caccatcagc
tgaaacaact gctgctggat cagaaacatg ttctgcaaca actgcaacag 6420acacagcaac
agcagctgca tgattttgat accggtctga ttaacattct ggacaaaatt 6480cgtgttgatc
tggaaccgat tgtgaatatt gatggtcagg atcaagcact gaatccggat 6540agctttgcaa
ccatgtttaa aaacaccgca gcaaaacagc agcgtgccaa agttcagatt 6600gcatatagcc
gtgcatgcat tgaaatcaac agccatctga ttcgccatgg tgttgttggt 6660ctgcctgcgg
aacagcagac caccattaaa agcattgata ccgtgattgt tgccgtgttt 6720ggtatcagcg
ttaaatttcg tgatcagctg cgtgccctgt tttataccga taccgaacgt 6780cagcgtctgc
aacgtgaatt tcgtttctat tttgaaaaaa gtgccggtcg catgattctg 6840gcagcaaaaa
ttgaacagac catgcgtcag cagggctgta ttcagaatgc catgatggca 6900ctgcaacaaa
tggaaagcgc agcataaaaa cacggacgcc gcaaacggcg tccgaatttc 6960ttggtcgacc
gttaaatcta tcaccgcaag ggataaatat ctaacaccgt gcgtgttgac 7020tattttacct
ctggcggtga taatggttgc atgtactaat ctagataagg aatatagcca 7080tgaccgcacc
gattcaggat ctgcgtgatg caattgccct gctgcaacag catgataatc 7140agtatctgga
aaccgatcat ccggttgatc cgaatgcaga actggcaggc gtttatcgtc 7200atattggtgc
cggtggcacc gttaaacgtc cgacccgtat tggtccggca atgatgttta 7260ataacattaa
aggttatccg cacagccgta ttctggttgg tatgcatgca agccgtcagc 7320gtgcagcact
gctgctgggt tgtgaagcaa gtcagctggc actggaagtt ggtaaagcag 7380ttaaaaaacc
ggttgcaccg gtggttgttc cggcaagcag cgcaccgtgt caagagcaga 7440tttttctggc
agatgatccg gattttgatc tgcgtaccct gctgcctgca cataccaata 7500ccccgattga
tgcaggtccg tttttttgtc tgggtctggc cctggcaagc gatccggtgg 7560atgcaagcct
gaccgatgtt accattcatc gtctgtgtgt tcagggtcgt gatgaactga 7620gcatgttcct
ggcagcaggt cgccatattg aagtttttcg tcagaaagca gaagcagcag 7680gtaaaccgct
gccgattacc attaatatgg gtctggaccc agcaatctat attggcgcat 7740gttttgaagc
accgaccacc ccgtttggtt ataatgaact gggtgttgcc ggtgcactgc 7800gtcagcgtcc
ggttgaactg gttcagggtg ttagcgttcc ggaaaaagca attgcacgtg 7860ccgaaattgt
tattgaaggt gaactgctgc ctggtgttcg tgttcgtgaa gatcagcata 7920ccaattcagg
tcatgcaatg ccggaatttc cgggttattg tggtggtgca aatccgagcc 7980tgccggttat
taaagttaaa gccgttacca tgcgcaataa cgcaattctg caaaccctgg 8040ttggtccggg
tgaagaacat accaccctgg caggtctgcc gaccgaagca agcatttgga 8100atgcagttga
agcagcaatt ccgggttttc tgcaaaatgt ttatgcccat accgcaggcg 8160gtggtaaatt
tctgggtatt ctgcaagtga aaaaacgtca gcctgccgat gaaggtcgtc 8220agggtcaggc
agccctgctg gcgctggcaa cctatagcga actgaaaaat atcattctgg 8280tggatgagga
tgtggacatt tttgatagtg atgatattct gtgggcaatg accacccgta 8340tgcagggtga
tgttagcatt accaccattc cgggtattcg cggtcatcag ctggacccga 8400gccagacacc
ggaatattca ccgagcattc gtggtaatgg tattagctgc aaaaccatct 8460ttgattgtac
cgttccgtgg gcactgaaaa gccattttga acgtgcaccg tttgcagatg 8520ttgatccgcg
tccgtttgca cctgaatatt ttgcacgtct ggaaaaaaat cagggcagcg 8580caaaataagc
taataacagg cctgctggta atcgcaggaa tttttatttg gatggatccc 8640cgggtaccga
gctcgaattc actggccgtc gttttacaac gtcgtgactg ggaaaaccct 8700ggcgttaccc
aacttaatcg ccttgcagca catccccctt tcgccagctg gcgtaatagc 8760gaagaggccc
gcaccgatcg cccttcccaa cagttgcgca gcctgaatgg cgaatggcgc 8820ctgatgcggt
attttctcct tacgcatctg tgcggtattt cacaccgcat atggtgcact 8880ctcagtacaa
tctgctctga tgccgcatag ttaagccagc cccgacaccc gccaacaccc 8940gctgacgaat
tc
89522410630DNAEscherichia colimisc_feature(1)..(10630)DNA sequence of the
plasmid pMG37 24gttgacagta agacgggtaa gcctgttgat gataccgctg ccttactggg
tgcattagcc 60agtctgaatg acctgtcacg ggataatccg aagtggtcag actggaaaat
cagagggcag 120gaactgctga acagcaaaaa gtcagatagc accacatagc agacccgcca
taaaacgccc 180tgagaagccc gtgacgggct tttcttgtat tatgggtagt ttccttgcat
gaatccataa 240aaggcgcctg tagtgccatt tacccccatt cactgccaga gccgtgagcg
cagcgaactg 300aatgtcacga aaaagacagc gactcaggtg cctgatggtc ggagacaaaa
ggaatattca 360gcgatttgcc cgagcttgcg agggtgctac ttaagccttt agggttttaa
ggtctgtttt 420gtagaggagc aaacagcgtt tgcgacatcc ttttgtaata ctgcggaact
gactaaagta 480gtgagttata cacagggctg ggatctattc tttttatctt tttttattct
ttctttattc 540tataaattat aaccacttga atataaacaa aaaaaacaca caaaggtcta
gcggaattta 600cagagggtct agcagaattt acaagttttc cagcaaaggt ctagcagaat
ttacagatac 660ccacaactca aaggaaaagg actagtaatt atcattgact agcccatctc
aattggtata 720gtgattaaaa tcacctagac caattgagat gtatgtctga attagttgtt
ttcaaagcaa 780atgaactagc gattagtcgc tatgacttaa cggagcatga aaccaagcta
attttatgct 840gtgtggcact actcaacccc acgattgaaa accctacaag gaaagaacgg
acggtatcgt 900tcacttataa ccaatacgct cagatgatga acatcagtag ggaaaatgct
tatggtgtat 960tagctaaagc aaccagagag ctgatgacga gaactgtgga aatcaggaat
cctttggtta 1020aaggctttga gattttccag tggacaaact atgccaagtt ctcaagcgaa
aaattagaat 1080tagtttttag tgaagagata ttgccttatc ttttccagtt aaaaaaattc
ataaaatata 1140atctggaaca tgttaagtct tttgaaaaca aatactctat gaggatttat
gagtggttat 1200taaaagaact aacacaaaag aaaactcaca aggcaaatat agagattagc
cttgatgaat 1260ttaagttcat gttaatgctt gaaaataact accatgagtt taaaaggctt
aaccaatggg 1320ttttgaaacc aataagtaaa gatttaaaca cttacagcaa tatgaaattg
gtggttgata 1380agcgaggccg cccgactgat acgttgattt tccaagttga actagataga
caaatggatc 1440tcgtaaccga acttgagaac aaccagataa aaatgaatgg tgacaaaata
ccaacaacca 1500ttacatcaga ttcctaccta cgtaacggac taagaaaaac actacacgat
gctttaactg 1560caaaaattca gctcaccagt tttgaggcaa aatttttgag tgacatgcaa
agtaagcatg 1620atctcaatgg ttcgttctca tggctcacgc aaaaacaacg aaccacacta
gagaacatac 1680tggctaaata cggaaggatc tgaggttctt atggctcttg tatctatcag
tgaagcatca 1740agactaacaa acaaaagtag aacaactgtt caccgttaga tatcaaaggg
aaaactgtcc 1800atatgcacag atgaaaacgg tgtaaaaaag atagatacat cagagctttt
acgagttttt 1860ggtgcattta aagctgttca ccatgaacag atcgacaatg taacagatga
acagcatgta 1920acacctaata gaacaggtga aaccagtaaa acaaagcaac tagaacatga
aattgaacac 1980ctgagacaac ttgttacagc tcaacagtca cacatagaca gcctgaaaca
ggcgatgctg 2040cttatcgaat caaagctgcc gacaacacgg gagccagtga cgcctcccgt
ggggaaaaaa 2100tcatggcaat tctggaagaa atagcgcttt cagccggcaa acctgaagcc
ggatctgcga 2160ttctgataac aaactagcaa caccagaaca gcccgtttgc gggcagcaaa
acccgttatg 2220cttgtaaacc gttttgtgaa aaaattttta aaataaaaaa ggggacctct
agggtcccca 2280attaattagt aatataatct attaaaggtc attcaaaagg tcatccaccg
gatcaattcc 2340cctgctcgcg caggctgggt gccaagctct cgggtaacat caaggcccga
tccttggagc 2400ccttgccctc ccgcacgatg atcgtgccgt gatcgaaatc cagatccttg
acccgcagtt 2460gcaaaccctc actgatccgc atgcccgttc catacagaag ctgggcgaac
aaacgatgct 2520cgccttccag aaaaccgagg atgcgaacca cttcatccgg ggtcagcacc
accggcaagc 2580gccgcgacgg ccgaggtctt ccgatctcct gaagccaggg cagatccgtg
cacagcacct 2640tgccgtagaa gaacagcaag gccgccaatg cctgacgatg cgtggagacc
gaaaccttgc 2700gctcgttcgc cagccaggac agaaatgcct cgacttcgct gctgcccaag
gttgccgggt 2760gacgcacacc gtggaaacgg atgaaggcac gaacccagtg gacataagcc
tgttcggttc 2820gtaagctgta atgcaagtag cgtatgcgct cacgcaactg gtccagaacc
ttgaccgaac 2880gcagcggtgg taacggcgca gtggcggttt tcatggcttg ttatgactgt
ttttttgggg 2940tacagtctat gcctcgggca tccaagcagc aagcgcgtta cgccgtgggt
cgatgtttga 3000tgttatggag cagcaacgat gttacgcagc agggcagtcg ccctaaaaca
aagttaaaca 3060tcatgaggga agcggtgatc gccgaagtat cgactcaact atcagaggta
gttggcgtca 3120tcgagcgcca tctcgaaccg acgttgctgg ccgtacattt gtacggctcc
gcagtggatg 3180gcggcctgaa gccacacagt gatattgatt tgctggttac ggtgaccgta
aggcttgatg 3240aaacaacgcg gcgagctttg atcaacgacc ttttggaaac ttcggcttcc
cctggagaga 3300gcgagattct ccgcgctgta gaagtcacca ttgttgtgca cgacgacatc
attccgtggc 3360gttatccagc taagcgcgaa ctgcaatttg gagaatggca gcgcaatgac
attcttgcag 3420gtatcttcga gccagccacg atcgacattg atctggctat cttgctgaca
aaagcaagag 3480aacatagcgt tgccttggta ggtccagcgg cggaggaact ctttgatccg
gttcctgaac 3540aggatctatt tgaggcgcta aatgaaacct taacgctatg gaactcgccg
cccgactggg 3600ctggcgatga gcgaaatgta gtgcttacgt tgtcccgcat ttggtacagc
gcagtaaccg 3660gcaaaatcgc gccgaaggat gtcgctgccg actgggcaat ggagcgcctg
ccggcccagt 3720atcagcccgt catacttgaa gctagacagg cttatcttgg acaagaagaa
gatcgcttgg 3780cctcgcgcgc agatcagttg gaagaatttg tccactacgt gaaaggcgag
atcaccaagg 3840tagtcggcaa ataatgtcta acaattcgtt caagccgacg ccgcttcgcg
gcgcggctta 3900actcaagcgt tagatgcact aagcacataa ttgctcacag ccaaactatc
aggtcaagtc 3960tgcttttatt atttttaagc gtgcataata agccctacac aaattgggag
atatatcatg 4020aaaggctggc tttttcttgt tatcgcaata gttggcgaag taatcgcaac
atccgcatta 4080aaatctagcg agggctttac taagctgatc cggtggatga ccttttgaat
gacctttaat 4140agattatatt actaattaat tggggaccct agaggtcccc ttttttattt
taaaaatttt 4200ttcacaaaac ggtttacaag catacgttgg ccgattcatt aatgcagctg
gcacgacagg 4260tttcccgact ggaaagcggg cagtgagcgc aacgcaatta atgtgagtta
gctcactcat 4320taggcacccc aggctttaca ctttatgctt ccggctcgta tgttgtgtgg
aattgtgagc 4380ggataacaat ttcacacagg aaacagctat gaccatgatt acgccaagct
tgctattgac 4440gacagctatg gttcactgtc caccaaccaa aactgtgctc agtaccgcca
atatttctcc 4500cttgaggggt acaaagaggt gtccctagaa gagatccacg ctgtgtaaaa
attttacaaa 4560aaggtattga ctttccctac agggtgtgta ataatttaat tacaggcggg
ggcaaccccg 4620cctgttctgc agaggaggaa tatagccatg gaagtgaaaa tcttcaacac
ccaggatgtt 4680caggattttc tgcgtgttgc aagcggtctg gaacaagagg gtggtaatcc
gcgtgttaaa 4740caaattattc atcgtgttct gagcgacctg tataaagcaa ttgaagatct
gaatatcacc 4800agcgacgaat attgggcagg cgttgcatat ctgaatcagc tgggtgcaaa
tcaagaagca 4860ggtctgctga gtccgggtct gggttttgat cattatctgg atatgcgtat
ggatgcagaa 4920gatgcagcac tgggtattga aaatgcaaca ccgcgtacca ttgaaggtcc
gctgtatgtt 4980gcgggtgcac cggaaagcgt tggttatgca cgcatggatg atggtagcga
tccgaatggt 5040cataccctga ttctgcatgg caccattttt gatgcagatg gtaaaccgct
gccgaatgca 5100aaagttgaaa tttggcatgc aaacaccaaa ggcttttata gccattttga
tccgaccggt 5160gaacagcagg cctttaatat gcgtcgtagc attattaccg atgagaatgg
tcagtatcgt 5220gttcgtacca ttctgcctgc cggttatggt tgtcctccgg aaggtccgac
ccagcaactg 5280ctgaaccaac tgggtcgtca tggtaatcgt ccggcacata ttcattattt
tgttagcgca 5340gatggtcacc gtaaactgac cacccagatt aatgttgccg gtgatccgta
tacctatgat 5400gattttgcat atgccacccg tgaaggtctg gttgttgatg cagttgaaca
taccgatccg 5460gaagcaatta aagccaatga tgtggaaggt ccttttgccg aaatggtgtt
tgatctgaaa 5520ctgacccgtc tggttgatgg tgttgataat caggttgtgg atcgtccgcg
tctggcagtt 5580taatacacca aaatggttca aaattatcag gcgagtgatc atgatcactg
gcctgttttt 5640atttcaggga agggtggaga caattacgtg gataatcaga tcatccaaga
aaccgtggat 5700aaaattctga gcgttctgcc gaatcaggca ggtcagctgg cacgtctggt
gcgtctgatg 5760caatttgcat gcgatccgac cattaccgtt attggcaaat ataaccatgg
taaaagccgt 5820ctgctgaatg aactgattgg caccgatatc tttagcgttg cagataaacg
tgaaaccatt 5880cagctggccg aacataaaca ggatcaggtt cgttggctgg atgcacctgg
tctggatgcc 5940gatgttgcag cagttgatga tcgtcatgca tttgaagcag tttggaccca
ggcagatatt 6000cgtctgtttg ttcatagcgt tcgtgaaggt gaactggatg caaccgaaca
ccatctgctg 6060caacagctga ttgaagatgc cgatcatagc cgtcgtcaga ccattctggt
tctgacccag 6120attgatcaga ttccggatca gaccatcctg acacagatta aaaccagcat
tgcacagcag 6180gttccgaaac tggatatttg ggcagttagc gcaacccgtc atcgtcaggg
cattgaaaac 6240ggtaaaaccc tgctgatcga aaaaagcggt attggtgcac tgcgccatac
cctggaacag 6300gcactggcac aggtgccgag cgcacgtacc tatgaaaaaa atcgtctgct
gtcagatctg 6360caccatcagc tgaaacaact gctgctggat cagaaacatg ttctgcaaca
actgcaacag 6420acacagcaac agcagctgca tgattttgat accggtctga ttaacattct
ggacaaaatt 6480cgtgttgatc tggaaccgat tgtgaatatt gatggtcagg atcaagcact
gaatccggat 6540agctttgcaa ccatgtttaa aaacaccgca gcaaaacagc agcgtgccaa
agttcagatt 6600gcatatagcc gtgcatgcat tgaaatcaac agccatctga ttcgccatgg
tgttgttggt 6660ctgcctgcgg aacagcagac caccattaaa agcattgata ccgtgattgt
tgccgtgttt 6720ggtatcagcg ttaaatttcg tgatcagctg cgtgccctgt tttataccga
taccgaacgt 6780cagcgtctgc aacgtgaatt tcgtttctat tttgaaaaaa gtgccggtcg
catgattctg 6840gcagcaaaaa ttgaacagac catgcgtcag cagggctgta ttcagaatgc
catgatggca 6900ctgcaacaaa tggaaagcgc agcataaaaa cacggacgcc gcaaacggcg
tccgaatttc 6960ttggtcgacc gttaaatcta tcaccgcaag ggataaatat ctaacaccgt
gcgtgttgac 7020tattttacct ctggcggtga taatggttgc atgtactaat ctagataagg
aatatagcca 7080tgaccgcacc gattcaggat ctgcgtgatg caattgccct gctgcaacag
catgataatc 7140agtatctgga aaccgatcat ccggttgatc cgaatgcaga actggcaggc
gtttatcgtc 7200atattggtgc cggtggcacc gttaaacgtc cgacccgtat tggtccggca
atgatgttta 7260ataacattaa aggttatccg cacagccgta ttctggttgg tatgcatgca
agccgtcagc 7320gtgcagcact gctgctgggt tgtgaagcaa gtcagctggc actggaagtt
ggtaaagcag 7380ttaaaaaacc ggttgcaccg gtggttgttc cggcaagcag cgcaccgtgt
caagagcaga 7440tttttctggc agatgatccg gattttgatc tgcgtaccct gctgcctgca
cataccaata 7500ccccgattga tgcaggtccg tttttttgtc tgggtctggc cctggcaagc
gatccggtgg 7560atgcaagcct gaccgatgtt accattcatc gtctgtgtgt tcagggtcgt
gatgaactga 7620gcatgttcct ggcagcaggt cgccatattg aagtttttcg tcagaaagca
gaagcagcag 7680gtaaaccgct gccgattacc attaatatgg gtctggaccc agcaatctat
attggcgcat 7740gttttgaagc accgaccacc ccgtttggtt ataatgaact gggtgttgcc
ggtgcactgc 7800gtcagcgtcc ggttgaactg gttcagggtg ttagcgttcc ggaaaaagca
attgcacgtg 7860ccgaaattgt tattgaaggt gaactgctgc ctggtgttcg tgttcgtgaa
gatcagcata 7920ccaattcagg tcatgcaatg ccggaatttc cgggttattg tggtggtgca
aatccgagcc 7980tgccggttat taaagttaaa gccgttacca tgcgcaataa cgcaattctg
caaaccctgg 8040ttggtccggg tgaagaacat accaccctgg caggtctgcc gaccgaagca
agcatttgga 8100atgcagttga agcagcaatt ccgggttttc tgcaaaatgt ttatgcccat
accgcaggcg 8160gtggtaaatt tctgggtatt ctgcaagtga aaaaacgtca gcctgccgat
gaaggtcgtc 8220agggtcaggc agccctgctg gcgctggcaa cctatagcga actgaaaaat
atcattctgg 8280tggatgagga tgtggacatt tttgatagtg atgatattct gtgggcaatg
accacccgta 8340tgcagggtga tgttagcatt accaccattc cgggtattcg cggtcatcag
ctggacccga 8400gccagacacc ggaatattca ccgagcattc gtggtaatgg tattagctgc
aaaaccatct 8460ttgattgtac cgttccgtgg gcactgaaaa gccattttga acgtgcaccg
tttgcagatg 8520ttgatccgcg tccgtttgca cctgaatatt ttgcacgtct ggaaaaaaat
cagggcagcg 8580caaaataagc taataacagg cctgctggta atcgcaggaa tttttatttg
gatggatccg 8640cctacctagc ttccaagaaa gatatcctaa cagcacaaga gcggaaagat
gttttgttct 8700acatccagaa caacctctgc taaaattcct gaaaaatttt gcaaaaagtt
gttgacttta 8760tctacaaggt gtggtataat aatcttaaca acagcaggac gctcccgggt
tgaggaaaac 8820ctaatgaaac tgaccagcct gcgtgttagc ctgctggcac tgggtctggt
taccagcggt 8880tttgcagcag cagaaaccta taccgttgat cgttatcagg atgatagcga
aaaaggtagc 8940ctgcgttggg caattgaaca gagcaatgca aatagcgcac aagaaaacca
gattctgatt 9000caggcagttg gtaaagcacc gtatgttatc aaagttgata aaccgctgcc
tccgattaaa 9060agcagcgtta aaatcattgg caccgagtgg gataaaaccg gtgaatttat
tgcaattgat 9120ggcagcaact atatcaaagg cgaaggtgaa aaagcatgtc cgggtgcaaa
tccgggtcag 9180tatggcacca atgttcgtac catgaccctg cctggtctgg ttctgcaaga
tgttaatggt 9240gttaccctga aaggtctgga tgttcatcgt ttttgtattg gtgttctggt
taatcgcagc 9300agcaataacc tgattcagca taatcgtatc agcaacaatt atggtggtgc
cggtgttatg 9360attaccggtg atgatggtaa aggtaatccg accagcacca ccaccaataa
taacaaagtt 9420ctggataacg tgttcatcga taatggtgat ggtctggaac tgacccgtgg
tgcagcattt 9480aatctgattg caaataacct gtttaccagc acaaaagcca atccggaacc
gagccagggt 9540attgaaattc tgtggggtaa tgataatgcc gtggtgggta acaaattcga
aaactattca 9600gatggcctgc aaatcaattg gggtaaacgt aactatatcg cctataacga
actgaccaat 9660aacagcctgg gtttcaatct gacaggtgat ggtaacattt tcgacagcaa
taaagtgcat 9720ggtaaccgta ttggtattgc cattcgtagt gaaaaagatg ccaatgcacg
tattaccctg 9780accaaaaatc agatttggga taacggcaaa gatatcaaac gttgtgaagc
cggtggtagc 9840tgtgttccga atcagcgtct gggtgcaatt gtttttggtg ttccggcact
ggaacatgaa 9900ggttttgttg gtagccgtgg cggtggtgtt gttattgaac cggcaaaact
gcaaaaaacc 9960tgcacccagc cgaaccagca gaattgtaat gcaattccta atcagggtat
tcaggcaccg 10020aaactgacag ttagcaaaaa acagctgacc gttgaagtta aaggcacccc
taatcagcgt 10080tataatgtgg aattttttgg caatcgtaat gccagcagca gcgaagcaga
acagtatctg 10140ggtagcattg ttgttgttac cgatcatcag ggtctggcaa aagcaaattg
ggctccgaaa 10200gttagcatgc cgagcgttac cgcaaatgtg acagatcatc tgggtgcgac
cagcgaactg 10260agcagcgcag ttaaaatgcg ttaaatgcat gcgcgccgcg ttcgcgcggc
gctttttttt 10320ggtaccgagc tcgaattcac tggccgtcgt tttacaacgt cgtgactggg
aaaaccctgg 10380cgttacccaa cttaatcgcc ttgcagcaca tccccctttc gccagctggc
gtaatagcga 10440agaggcccgc accgatcgcc cttcccaaca gttgcgcagc ctgaatggcg
aatggcgcct 10500gatgcggtat tttctcctta cgcatctgtg cggtatttca caccgcatat
ggtgcactct 10560cagtacaatc tgctctgatg ccgcatagtt aagccagccc cgacacccgc
caacacccgc 10620tgacgaattc
10630256452DNAEscherichia colimisc_feature(1)..(6452)DNA
sequence of the plasmid pMG39 25gttgacagta agacgggtaa gcctgttgat
gataccgctg ccttactggg tgcattagcc 60agtctgaatg acctgtcacg ggataatccg
aagtggtcag actggaaaat cagagggcag 120gaactgctga acagcaaaaa gtcagatagc
accacatagc agacccgcca taaaacgccc 180tgagaagccc gtgacgggct tttcttgtat
tatgggtagt ttccttgcat gaatccataa 240aaggcgcctg tagtgccatt tacccccatt
cactgccaga gccgtgagcg cagcgaactg 300aatgtcacga aaaagacagc gactcaggtg
cctgatggtc ggagacaaaa ggaatattca 360gcgatttgcc cgagcttgcg agggtgctac
ttaagccttt agggttttaa ggtctgtttt 420gtagaggagc aaacagcgtt tgcgacatcc
ttttgtaata ctgcggaact gactaaagta 480gtgagttata cacagggctg ggatctattc
tttttatctt tttttattct ttctttattc 540tataaattat aaccacttga atataaacaa
aaaaaacaca caaaggtcta gcggaattta 600cagagggtct agcagaattt acaagttttc
cagcaaaggt ctagcagaat ttacagatac 660ccacaactca aaggaaaagg actagtaatt
atcattgact agcccatctc aattggtata 720gtgattaaaa tcacctagac caattgagat
gtatgtctga attagttgtt ttcaaagcaa 780atgaactagc gattagtcgc tatgacttaa
cggagcatga aaccaagcta attttatgct 840gtgtggcact actcaacccc acgattgaaa
accctacaag gaaagaacgg acggtatcgt 900tcacttataa ccaatacgct cagatgatga
acatcagtag ggaaaatgct tatggtgtat 960tagctaaagc aaccagagag ctgatgacga
gaactgtgga aatcaggaat cctttggtta 1020aaggctttga gattttccag tggacaaact
atgccaagtt ctcaagcgaa aaattagaat 1080tagtttttag tgaagagata ttgccttatc
ttttccagtt aaaaaaattc ataaaatata 1140atctggaaca tgttaagtct tttgaaaaca
aatactctat gaggatttat gagtggttat 1200taaaagaact aacacaaaag aaaactcaca
aggcaaatat agagattagc cttgatgaat 1260ttaagttcat gttaatgctt gaaaataact
accatgagtt taaaaggctt aaccaatggg 1320ttttgaaacc aataagtaaa gatttaaaca
cttacagcaa tatgaaattg gtggttgata 1380agcgaggccg cccgactgat acgttgattt
tccaagttga actagataga caaatggatc 1440tcgtaaccga acttgagaac aaccagataa
aaatgaatgg tgacaaaata ccaacaacca 1500ttacatcaga ttcctaccta cgtaacggac
taagaaaaac actacacgat gctttaactg 1560caaaaattca gctcaccagt tttgaggcaa
aatttttgag tgacatgcaa agtaagcatg 1620atctcaatgg ttcgttctca tggctcacgc
aaaaacaacg aaccacacta gagaacatac 1680tggctaaata cggaaggatc tgaggttctt
atggctcttg tatctatcag tgaagcatca 1740agactaacaa acaaaagtag aacaactgtt
caccgttaga tatcaaaggg aaaactgtcc 1800atatgcacag atgaaaacgg tgtaaaaaag
atagatacat cagagctttt acgagttttt 1860ggtgcattta aagctgttca ccatgaacag
atcgacaatg taacagatga acagcatgta 1920acacctaata gaacaggtga aaccagtaaa
acaaagcaac tagaacatga aattgaacac 1980ctgagacaac ttgttacagc tcaacagtca
cacatagaca gcctgaaaca ggcgatgctg 2040cttatcgaat caaagctgcc gacaacacgg
gagccagtga cgcctcccgt ggggaaaaaa 2100tcatggcaat tctggaagaa atagcgcttt
cagccggcaa acctgaagcc ggatctgcga 2160ttctgataac aaactagcaa caccagaaca
gcccgtttgc gggcagcaaa acccgttatg 2220cttgtaaacc gttttgtgaa aaaattttta
aaataaaaaa ggggacctct agggtcccca 2280attaattagt aatataatct attaaaggtc
attcaaaagg tcatccaccg gatcaattcc 2340cctgctcgcg caggctgggt gccaagctct
cgggtaacat caaggcccga tccttggagc 2400ccttgccctc ccgcacgatg atcgtgccgt
gatcgaaatc cagatccttg acccgcagtt 2460gcaaaccctc actgatccgc atgcccgttc
catacagaag ctgggcgaac aaacgatgct 2520cgccttccag aaaaccgagg atgcgaacca
cttcatccgg ggtcagcacc accggcaagc 2580gccgcgacgg ccgaggtctt ccgatctcct
gaagccaggg cagatccgtg cacagcacct 2640tgccgtagaa gaacagcaag gccgccaatg
cctgacgatg cgtggagacc gaaaccttgc 2700gctcgttcgc cagccaggac agaaatgcct
cgacttcgct gctgcccaag gttgccgggt 2760gacgcacacc gtggaaacgg atgaaggcac
gaacccagtg gacataagcc tgttcggttc 2820gtaagctgta atgcaagtag cgtatgcgct
cacgcaactg gtccagaacc ttgaccgaac 2880gcagcggtgg taacggcgca gtggcggttt
tcatggcttg ttatgactgt ttttttgggg 2940tacagtctat gcctcgggca tccaagcagc
aagcgcgtta cgccgtgggt cgatgtttga 3000tgttatggag cagcaacgat gttacgcagc
agggcagtcg ccctaaaaca aagttaaaca 3060tcatgaggga agcggtgatc gccgaagtat
cgactcaact atcagaggta gttggcgtca 3120tcgagcgcca tctcgaaccg acgttgctgg
ccgtacattt gtacggctcc gcagtggatg 3180gcggcctgaa gccacacagt gatattgatt
tgctggttac ggtgaccgta aggcttgatg 3240aaacaacgcg gcgagctttg atcaacgacc
ttttggaaac ttcggcttcc cctggagaga 3300gcgagattct ccgcgctgta gaagtcacca
ttgttgtgca cgacgacatc attccgtggc 3360gttatccagc taagcgcgaa ctgcaatttg
gagaatggca gcgcaatgac attcttgcag 3420gtatcttcga gccagccacg atcgacattg
atctggctat cttgctgaca aaagcaagag 3480aacatagcgt tgccttggta ggtccagcgg
cggaggaact ctttgatccg gttcctgaac 3540aggatctatt tgaggcgcta aatgaaacct
taacgctatg gaactcgccg cccgactggg 3600ctggcgatga gcgaaatgta gtgcttacgt
tgtcccgcat ttggtacagc gcagtaaccg 3660gcaaaatcgc gccgaaggat gtcgctgccg
actgggcaat ggagcgcctg ccggcccagt 3720atcagcccgt catacttgaa gctagacagg
cttatcttgg acaagaagaa gatcgcttgg 3780cctcgcgcgc agatcagttg gaagaatttg
tccactacgt gaaaggcgag atcaccaagg 3840tagtcggcaa ataatgtcta acaattcgtt
caagccgacg ccgcttcgcg gcgcggctta 3900actcaagcgt tagatgcact aagcacataa
ttgctcacag ccaaactatc aggtcaagtc 3960tgcttttatt atttttaagc gtgcataata
agccctacac aaattgggag atatatcatg 4020aaaggctggc tttttcttgt tatcgcaata
gttggcgaag taatcgcaac atccgcatta 4080aaatctagcg agggctttac taagctgatc
cggtggatga ccttttgaat gacctttaat 4140agattatatt actaattaat tggggaccct
agaggtcccc ttttttattt taaaaatttt 4200ttcacaaaac ggtttacaag catacgttgg
ccgattcatt aatgcagctg gcacgacagg 4260tttcccgact ggaaagcggg cagtgagcgc
aacgcaatta atgtgagtta gctcactcat 4320taggcacccc aggctttaca ctttatgctt
ccggctcgta tgttgtgtgg aattgtgagc 4380ggataacaat ttcacacagg aaacagctat
gaccatgatt acgccaagct tgcatgcctg 4440caggtcgact ctagaggatc cgcctaccta
gcttccaaga aagatatcct aacagcacaa 4500gagcggaaag atgttttgtt ctacatccag
aacaacctct gctaaaattc ctgaaaaatt 4560ttgcaaaaag ttgttgactt tatctacaag
gtgtggtata ataatcttaa caacagcagg 4620acgctcccgg gttgaggaaa acctaatgaa
actgaccagc ctgcgtgtta gcctgctggc 4680actgggtctg gttaccagcg gttttgcagc
agcagaaacc tataccgttg atcgttatca 4740ggatgatagc gaaaaaggta gcctgcgttg
ggcaattgaa cagagcaatg caaatagcgc 4800acaagaaaac cagattctga ttcaggcagt
tggtaaagca ccgtatgtta tcaaagttga 4860taaaccgctg cctccgatta aaagcagcgt
taaaatcatt ggcaccgagt gggataaaac 4920cggtgaattt attgcaattg atggcagcaa
ctatatcaaa ggcgaaggtg aaaaagcatg 4980tccgggtgca aatccgggtc agtatggcac
caatgttcgt accatgaccc tgcctggtct 5040ggttctgcaa gatgttaatg gtgttaccct
gaaaggtctg gatgttcatc gtttttgtat 5100tggtgttctg gttaatcgca gcagcaataa
cctgattcag cataatcgta tcagcaacaa 5160ttatggtggt gccggtgtta tgattaccgg
tgatgatggt aaaggtaatc cgaccagcac 5220caccaccaat aataacaaag ttctggataa
cgtgttcatc gataatggtg atggtctgga 5280actgacccgt ggtgcagcat ttaatctgat
tgcaaataac ctgtttacca gcacaaaagc 5340caatccggaa ccgagccagg gtattgaaat
tctgtggggt aatgataatg ccgtggtggg 5400taacaaattc gaaaactatt cagatggcct
gcaaatcaat tggggtaaac gtaactatat 5460cgcctataac gaactgacca ataacagcct
gggtttcaat ctgacaggtg atggtaacat 5520tttcgacagc aataaagtgc atggtaaccg
tattggtatt gccattcgta gtgaaaaaga 5580tgccaatgca cgtattaccc tgaccaaaaa
tcagatttgg gataacggca aagatatcaa 5640acgttgtgaa gccggtggta gctgtgttcc
gaatcagcgt ctgggtgcaa ttgtttttgg 5700tgttccggca ctggaacatg aaggttttgt
tggtagccgt ggcggtggtg ttgttattga 5760accggcaaaa ctgcaaaaaa cctgcaccca
gccgaaccag cagaattgta atgcaattcc 5820taatcagggt attcaggcac cgaaactgac
agttagcaaa aaacagctga ccgttgaagt 5880taaaggcacc cctaatcagc gttataatgt
ggaatttttt ggcaatcgta atgccagcag 5940cagcgaagca gaacagtatc tgggtagcat
tgttgttgtt accgatcatc agggtctggc 6000aaaagcaaat tgggctccga aagttagcat
gccgagcgtt accgcaaatg tgacagatca 6060tctgggtgcg accagcgaac tgagcagcgc
agttaaaatg cgttaaatgc atgcgcgccg 6120cgttcgcgcg gcgctttttt ttggtaccga
gctcgaattc actggccgtc gttttacaac 6180gtcgtgactg ggaaaaccct ggcgttaccc
aacttaatcg ccttgcagca catccccctt 6240tcgccagctg gcgtaatagc gaagaggccc
gcaccgatcg cccttcccaa cagttgcgca 6300gcctgaatgg cgaatggcgc ctgatgcggt
attttctcct tacgcatctg tgcggtattt 6360cacaccgcat atggtgcact ctcagtacaa
tctgctctga tgccgcatag ttaagccagc 6420cccgacaccc gccaacaccc gctgacgaat
tc 64522610012DNAEscherichia
colimisc_feature(1)..(10012)DNA sequence of the plasmid pMG47
26gttgacagta agacgggtaa gcctgttgat gataccgctg ccttactggg tgcattagcc
60agtctgaatg acctgtcacg ggataatccg aagtggtcag actggaaaat cagagggcag
120gaactgctga acagcaaaaa gtcagatagc accacatagc agacccgcca taaaacgccc
180tgagaagccc gtgacgggct tttcttgtat tatgggtagt ttccttgcat gaatccataa
240aaggcgcctg tagtgccatt tacccccatt cactgccaga gccgtgagcg cagcgaactg
300aatgtcacga aaaagacagc gactcaggtg cctgatggtc ggagacaaaa ggaatattca
360gcgatttgcc cgagcttgcg agggtgctac ttaagccttt agggttttaa ggtctgtttt
420gtagaggagc aaacagcgtt tgcgacatcc ttttgtaata ctgcggaact gactaaagta
480gtgagttata cacagggctg ggatctattc tttttatctt tttttattct ttctttattc
540tataaattat aaccacttga atataaacaa aaaaaacaca caaaggtcta gcggaattta
600cagagggtct agcagaattt acaagttttc cagcaaaggt ctagcagaat ttacagatac
660ccacaactca aaggaaaagg actagtaatt atcattgact agcccatctc aattggtata
720gtgattaaaa tcacctagac caattgagat gtatgtctga attagttgtt ttcaaagcaa
780atgaactagc gattagtcgc tatgacttaa cggagcatga aaccaagcta attttatgct
840gtgtggcact actcaacccc acgattgaaa accctacaag gaaagaacgg acggtatcgt
900tcacttataa ccaatacgct cagatgatga acatcagtag ggaaaatgct tatggtgtat
960tagctaaagc aaccagagag ctgatgacga gaactgtgga aatcaggaat cctttggtta
1020aaggctttga gattttccag tggacaaact atgccaagtt ctcaagcgaa aaattagaat
1080tagtttttag tgaagagata ttgccttatc ttttccagtt aaaaaaattc ataaaatata
1140atctggaaca tgttaagtct tttgaaaaca aatactctat gaggatttat gagtggttat
1200taaaagaact aacacaaaag aaaactcaca aggcaaatat agagattagc cttgatgaat
1260ttaagttcat gttaatgctt gaaaataact accatgagtt taaaaggctt aaccaatggg
1320ttttgaaacc aataagtaaa gatttaaaca cttacagcaa tatgaaattg gtggttgata
1380agcgaggccg cccgactgat acgttgattt tccaagttga actagataga caaatggatc
1440tcgtaaccga acttgagaac aaccagataa aaatgaatgg tgacaaaata ccaacaacca
1500ttacatcaga ttcctaccta cgtaacggac taagaaaaac actacacgat gctttaactg
1560caaaaattca gctcaccagt tttgaggcaa aatttttgag tgacatgcaa agtaagcatg
1620atctcaatgg ttcgttctca tggctcacgc aaaaacaacg aaccacacta gagaacatac
1680tggctaaata cggaaggatc tgaggttctt atggctcttg tatctatcag tgaagcatca
1740agactaacaa acaaaagtag aacaactgtt caccgttaga tatcaaaggg aaaactgtcc
1800atatgcacag atgaaaacgg tgtaaaaaag atagatacat cagagctttt acgagttttt
1860ggtgcattta aagctgttca ccatgaacag atcgacaatg taacagatga acagcatgta
1920acacctaata gaacaggtga aaccagtaaa acaaagcaac tagaacatga aattgaacac
1980ctgagacaac ttgttacagc tcaacagtca cacatagaca gcctgaaaca ggcgatgctg
2040cttatcgaat caaagctgcc gacaacacgg gagccagtga cgcctcccgt ggggaaaaaa
2100tcatggcaat tctggaagaa atagcgcttt cagccggcaa acctgaagcc ggatctgcga
2160ttctgataac aaactagcaa caccagaaca gcccgtttgc gggcagcaaa acccgttatg
2220cttgtaaacc gttttgtgaa aaaattttta aaataaaaaa ggggacctct agggtcccca
2280attaattagt aatataatct attaaaggtc attcaaaagg tcatccaccg gatcaattcc
2340cctgctcgcg caggctgggt gccaagctct cgggtaacat caaggcccga tccttggagc
2400ccttgccctc ccgcacgatg atcgtgccgt gatcgaaatc cagatccttg acccgcagtt
2460gcaaaccctc actgatccgc atgcccgttc catacagaag ctgggcgaac aaacgatgct
2520cgccttccag aaaaccgagg atgcgaacca cttcatccgg ggtcagcacc accggcaagc
2580gccgcgacgg ccgaggtctt ccgatctcct gaagccaggg cagatccgtg cacagcacct
2640tgccgtagaa gaacagcaag gccgccaatg cctgacgatg cgtggagacc gaaaccttgc
2700gctcgttcgc cagccaggac agaaatgcct cgacttcgct gctgcccaag gttgccgggt
2760gacgcacacc gtggaaacgg atgaaggcac gaacccagtg gacataagcc tgttcggttc
2820gtaagctgta atgcaagtag cgtatgcgct cacgcaactg gtccagaacc ttgaccgaac
2880gcagcggtgg taacggcgca gtggcggttt tcatggcttg ttatgactgt ttttttgggg
2940tacagtctat gcctcgggca tccaagcagc aagcgcgtta cgccgtgggt cgatgtttga
3000tgttatggag cagcaacgat gttacgcagc agggcagtcg ccctaaaaca aagttaaaca
3060tcatgaggga agcggtgatc gccgaagtat cgactcaact atcagaggta gttggcgtca
3120tcgagcgcca tctcgaaccg acgttgctgg ccgtacattt gtacggctcc gcagtggatg
3180gcggcctgaa gccacacagt gatattgatt tgctggttac ggtgaccgta aggcttgatg
3240aaacaacgcg gcgagctttg atcaacgacc ttttggaaac ttcggcttcc cctggagaga
3300gcgagattct ccgcgctgta gaagtcacca ttgttgtgca cgacgacatc attccgtggc
3360gttatccagc taagcgcgaa ctgcaatttg gagaatggca gcgcaatgac attcttgcag
3420gtatcttcga gccagccacg atcgacattg atctggctat cttgctgaca aaagcaagag
3480aacatagcgt tgccttggta ggtccagcgg cggaggaact ctttgatccg gttcctgaac
3540aggatctatt tgaggcgcta aatgaaacct taacgctatg gaactcgccg cccgactggg
3600ctggcgatga gcgaaatgta gtgcttacgt tgtcccgcat ttggtacagc gcagtaaccg
3660gcaaaatcgc gccgaaggat gtcgctgccg actgggcaat ggagcgcctg ccggcccagt
3720atcagcccgt catacttgaa gctagacagg cttatcttgg acaagaagaa gatcgcttgg
3780cctcgcgcgc agatcagttg gaagaatttg tccactacgt gaaaggcgag atcaccaagg
3840tagtcggcaa ataatgtcta acaattcgtt caagccgacg ccgcttcgcg gcgcggctta
3900actcaagcgt tagatgcact aagcacataa ttgctcacag ccaaactatc aggtcaagtc
3960tgcttttatt atttttaagc gtgcataata agccctacac aaattgggag atatatcatg
4020aaaggctggc tttttcttgt tatcgcaata gttggcgaag taatcgcaac atccgcatta
4080aaatctagcg agggctttac taagctgatc cggtggatga ccttttgaat gacctttaat
4140agattatatt actaattaat tggggaccct agaggtcccc ttttttattt taaaaatttt
4200ttcacaaaac ggtttacaag catacgttgg ccgattcatt aatgcagctg gcacgacagg
4260tttcccgact ggaaagcggg cagtgagcgc aacgcaatta atgtgagtta gctcactcat
4320taggcacccc aggctttaca ctttatgctt ccggctcgta tgttgtgtgg aattgtgagc
4380ggataacaat ttcacacagg aaacagctat gaccatgatt acgccaagct tgctattgac
4440gacagctatg gttcactgtc caccaaccaa aactgtgctc agtaccgcca atatttctcc
4500cttgaggggt acaaagaggt gtccctagaa gagatccacg ctgtgtaaaa attttacaaa
4560aaggtattga ctttccctac agggtgtgta ataatttaat tacaggcggg ggcaaccccg
4620cctgttctgc agaggaggaa tatagccatg gaagtgaaaa tcttcaacac ccaggatgtt
4680caggattttc tgcgtgttgc aagcggtctg gaacaagagg gtggtaatcc gcgtgttaaa
4740caaattattc atcgtgttct gagcgacctg tataaagcaa ttgaagatct gaatatcacc
4800agcgacgaat attgggcagg cgttgcatat ctgaatcagc tgggtgcaaa tcaagaagca
4860ggtctgctga gtccgggtct gggttttgat cattatctgg atatgcgtat ggatgcagaa
4920gatgcagcac tgggtattga aaatgcaaca ccgcgtacca ttgaaggtcc gctgtatgtt
4980gcgggtgcac cggaaagcgt tggttatgca cgcatggatg atggtagcga tccgaatggt
5040cataccctga ttctgcatgg caccattttt gatgcagatg gtaaaccgct gccgaatgca
5100aaagttgaaa tttggcatgc aaacaccaaa ggcttttata gccattttga tccgaccggt
5160gaacagcagg cctttaatat gcgtcgtagc attattaccg atgagaatgg tcagtatcgt
5220gttcgtacca ttctgcctgc cggttatggt tgtcctccgg aaggtccgac ccagcaactg
5280ctgaaccaac tgggtcgtca tggtaatcgt ccggcacata ttcattattt tgttagcgca
5340gatggtcacc gtaaactgac cacccagatt aatgttgccg gtgatccgta tacctatgat
5400gattttgcat atgccacccg tgaaggtctg gttgttgatg cagttgaaca taccgatccg
5460gaagcaatta aagccaatga tgtggaaggt ccttttgccg aaatggtgtt tgatctgaaa
5520ctgacccgtc tggttgatgg tgttgataat caggttgtgg atcgtccgcg tctggcagtt
5580taatacacca aaatggttca aaattatcag gcgagtgatc atgatcactg gcctgttttt
5640atttcaggga agggtggaga caattacgtg gataatcaga tcatccaaga aaccgtggat
5700aaaattctga gcgttctgcc gaatcaggca ggtcagctgg cacgtctggt gcgtctgatg
5760caatttgcat gcgatccgac cattaccgtt attggcaaat ataaccatgg taaaagccgt
5820ctgctgaatg aactgattgg caccgatatc tttagcgttg cagataaacg tgaaaccatt
5880cagctggccg aacataaaca ggatcaggtt cgttggctgg atgcacctgg tctggatgcc
5940gatgttgcag cagttgatga tcgtcatgca tttgaagcag tttggaccca ggcagatatt
6000cgtctgtttg ttcatagcgt tcgtgaaggt gaactggatg caaccgaaca ccatctgctg
6060caacagctga ttgaagatgc cgatcatagc cgtcgtcaga ccattctggt tctgacccag
6120attgatcaga ttccggatca gaccatcctg acacagatta aaaccagcat tgcacagcag
6180gttccgaaac tggatatttg ggcagttagc gcaacccgtc atcgtcaggg cattgaaaac
6240ggtaaaaccc tgctgatcga aaaaagcggt attggtgcac tgcgccatac cctggaacag
6300gcactggcac aggtgccgag cgcacgtacc tatgaaaaaa atcgtctgct gtcagatctg
6360caccatcagc tgaaacaact gctgctggat cagaaacatg ttctgcaaca actgcaacag
6420acacagcaac agcagctgca tgattttgat accggtctga ttaacattct ggacaaaatt
6480cgtgttgatc tggaaccgat tgtgaatatt gatggtcagg atcaagcact gaatccggat
6540agctttgcaa ccatgtttaa aaacaccgca gcaaaacagc agcgtgccaa agttcagatt
6600gcatatagcc gtgcatgcat tgaaatcaac agccatctga ttcgccatgg tgttgttggt
6660ctgcctgcgg aacagcagac caccattaaa agcattgata ccgtgattgt tgccgtgttt
6720ggtatcagcg ttaaatttcg tgatcagctg cgtgccctgt tttataccga taccgaacgt
6780cagcgtctgc aacgtgaatt tcgtttctat tttgaaaaaa gtgccggtcg catgattctg
6840gcagcaaaaa ttgaacagac catgcgtcag cagggctgta ttcagaatgc catgatggca
6900ctgcaacaaa tggaaagcgc agcataaaaa cacggacgcc gcaaacggcg tccgaatttc
6960ttggtcgacc gttaaatcta tcaccgcaag ggataaatat ctaacaccgt gcgtgttgac
7020tattttacct ctggcggtga taatggttgc atgtactaat ctagataagg aatatagcca
7080tgaccgcacc gattcaggat ctgcgtgatg caattgccct gctgcaacag catgataatc
7140agtatctgga aaccgatcat ccggttgatc cgaatgcaga actggcaggc gtttatcgtc
7200atattggtgc cggtggcacc gttaaacgtc cgacccgtat tggtccggca atgatgttta
7260ataacattaa aggttatccg cacagccgta ttctggttgg tatgcatgca agccgtcagc
7320gtgcagcact gctgctgggt tgtgaagcaa gtcagctggc actggaagtt ggtaaagcag
7380ttaaaaaacc ggttgcaccg gtggttgttc cggcaagcag cgcaccgtgt caagagcaga
7440tttttctggc agatgatccg gattttgatc tgcgtaccct gctgcctgca cataccaata
7500ccccgattga tgcaggtccg tttttttgtc tgggtctggc cctggcaagc gatccggtgg
7560atgcaagcct gaccgatgtt accattcatc gtctgtgtgt tcagggtcgt gatgaactga
7620gcatgttcct ggcagcaggt cgccatattg aagtttttcg tcagaaagca gaagcagcag
7680gtaaaccgct gccgattacc attaatatgg gtctggaccc agcaatctat attggcgcat
7740gttttgaagc accgaccacc ccgtttggtt ataatgaact gggtgttgcc ggtgcactgc
7800gtcagcgtcc ggttgaactg gttcagggtg ttagcgttcc ggaaaaagca attgcacgtg
7860ccgaaattgt tattgaaggt gaactgctgc ctggtgttcg tgttcgtgaa gatcagcata
7920ccaattcagg tcatgcaatg ccggaatttc cgggttattg tggtggtgca aatccgagcc
7980tgccggttat taaagttaaa gccgttacca tgcgcaataa cgcaattctg caaaccctgg
8040ttggtccggg tgaagaacat accaccctgg caggtctgcc gaccgaagca agcatttgga
8100atgcagttga agcagcaatt ccgggttttc tgcaaaatgt ttatgcccat accgcaggcg
8160gtggtaaatt tctgggtatt ctgcaagtga aaaaacgtca gcctgccgat gaaggtcgtc
8220agggtcaggc agccctgctg gcgctggcaa cctatagcga actgaaaaat atcattctgg
8280tggatgagga tgtggacatt tttgatagtg atgatattct gtgggcaatg accacccgta
8340tgcagggtga tgttagcatt accaccattc cgggtattcg cggtcatcag ctggacccga
8400gccagacacc ggaatattca ccgagcattc gtggtaatgg tattagctgc aaaaccatct
8460ttgattgtac cgttccgtgg gcactgaaaa gccattttga acgtgcaccg tttgcagatg
8520ttgatccgcg tccgtttgca cctgaatatt ttgcacgtct ggaaaaaaat cagggcagcg
8580caaaataagc taataacagg cctgctggta atcgcaggaa tttttatttg gatggatccg
8640cctacctagc ttccaagaaa gatatcctaa cagcacaaga gcggaaagat gttttgttct
8700acatccagaa caacctctgc taaaattcct gaaaaatttt gcaaaaagtt gttgacttta
8760tctacaaggt gtggtataat aatcttaaca acagcaggac gctcccgggt tgaggaaaac
8820ctaatgaaat atagcctgtg caccattagc tttcgtcacc agctgattag ctttaccgat
8880attgttcagt ttgcctatga aaacggcttt gaaggtattg aactgtgggg cacccatgca
8940cagaatctgt atatgcaaga atatgaaacc accgaacgtg aactgaattg cctgaaagat
9000aaaaccctgg aaattaccat gatcagcgat tatctggata ttagcctgag cgcagatttt
9060gaaaaaacca tcgaaaaatg tgaacagctg gcaattctgg ccaattggtt taaaacgaac
9120aaaattcgta cctttgccgg tcagaaaggt agtgcagatt ttagccagca agaacgtcaa
9180gagtatgtga atcgtattcg catgatttgt gaactgtttg cccagcataa tatgtatgtt
9240ctgctggaaa cccatccgaa taccctgacc gataccctgc cgagcaccct ggaactgctg
9300ggtgaagttg atcatccgaa tctgaaaatc aacctggatt ttctgcatat ctgggaaagc
9360ggtgcagatc cggttgatag ctttcagcag ctgcgtccgt ggattcagca ttatcacttt
9420aaaaacatta gcagcgcaga ctatctgcat gtgtttgaac cgaataatgt ttatgcagca
9480gcaggtaatc gtaccggtat ggttccgctg tttgaaggca ttgttaacta tgatgaaatc
9540atccaagaag tgcgcgatac cgatcatttt gcaagcctgg aatggtttgg tcataacgca
9600aaagatattc tgaaagccga aatgaaagtg ctgaccaatc gtaatctgga agttgttacc
9660agctaaatgc atgcgcgccg cgttcgcgcg gcgctttttt ttggtaccga gctcgaattc
9720actggccgtc gttttacaac gtcgtgactg ggaaaaccct ggcgttaccc aacttaatcg
9780ccttgcagca catccccctt tcgccagctg gcgtaatagc gaagaggccc gcaccgatcg
9840cccttcccaa cagttgcgca gcctgaatgg cgaatggcgc ctgatgcggt attttctcct
9900tacgcatctg tgcggtattt cacaccgcat atggtgcact ctcagtacaa tctgctctga
9960tgccgcatag ttaagccagc cccgacaccc gccaacaccc gctgacgaat tc
100122710249DNAEscherichia colimisc_feature(1)..(10249)DNA sequence of
the plasmid pMG70 27gttgacagta agacgggtaa gcctgttgat gataccgctg
ccttactggg tgcattagcc 60agtctgaatg acctgtcacg ggataatccg aagtggtcag
actggaaaat cagagggcag 120gaactgctga acagcaaaaa gtcagatagc accacatagc
agacccgcca taaaacgccc 180tgagaagccc gtgacgggct tttcttgtat tatgggtagt
ttccttgcat gaatccataa 240aaggcgcctg tagtgccatt tacccccatt cactgccaga
gccgtgagcg cagcgaactg 300aatgtcacga aaaagacagc gactcaggtg cctgatggtc
ggagacaaaa ggaatattca 360gcgatttgcc cgagcttgcg agggtgctac ttaagccttt
agggttttaa ggtctgtttt 420gtagaggagc aaacagcgtt tgcgacatcc ttttgtaata
ctgcggaact gactaaagta 480gtgagttata cacagggctg ggatctattc tttttatctt
tttttattct ttctttattc 540tataaattat aaccacttga atataaacaa aaaaaacaca
caaaggtcta gcggaattta 600cagagggtct agcagaattt acaagttttc cagcaaaggt
ctagcagaat ttacagatac 660ccacaactca aaggaaaagg actagtaatt atcattgact
agcccatctc aattggtata 720gtgattaaaa tcacctagac caattgagat gtatgtctga
attagttgtt ttcaaagcaa 780atgaactagc gattagtcgc tatgacttaa cggagcatga
aaccaagcta attttatgct 840gtgtggcact actcaacccc acgattgaaa accctacaag
gaaagaacgg acggtatcgt 900tcacttataa ccaatacgct cagatgatga acatcagtag
ggaaaatgct tatggtgtat 960tagctaaagc aaccagagag ctgatgacga gaactgtgga
aatcaggaat cctttggtta 1020aaggctttga gattttccag tggacaaact atgccaagtt
ctcaagcgaa aaattagaat 1080tagtttttag tgaagagata ttgccttatc ttttccagtt
aaaaaaattc ataaaatata 1140atctggaaca tgttaagtct tttgaaaaca aatactctat
gaggatttat gagtggttat 1200taaaagaact aacacaaaag aaaactcaca aggcaaatat
agagattagc cttgatgaat 1260ttaagttcat gttaatgctt gaaaataact accatgagtt
taaaaggctt aaccaatggg 1320ttttgaaacc aataagtaaa gatttaaaca cttacagcaa
tatgaaattg gtggttgata 1380agcgaggccg cccgactgat acgttgattt tccaagttga
actagataga caaatggatc 1440tcgtaaccga acttgagaac aaccagataa aaatgaatgg
tgacaaaata ccaacaacca 1500ttacatcaga ttcctaccta cgtaacggac taagaaaaac
actacacgat gctttaactg 1560caaaaattca gctcaccagt tttgaggcaa aatttttgag
tgacatgcaa agtaagcatg 1620atctcaatgg ttcgttctca tggctcacgc aaaaacaacg
aaccacacta gagaacatac 1680tggctaaata cggaaggatc tgaggttctt atggctcttg
tatctatcag tgaagcatca 1740agactaacaa acaaaagtag aacaactgtt caccgttaga
tatcaaaggg aaaactgtcc 1800atatgcacag atgaaaacgg tgtaaaaaag atagatacat
cagagctttt acgagttttt 1860ggtgcattta aagctgttca ccatgaacag atcgacaatg
taacagatga acagcatgta 1920acacctaata gaacaggtga aaccagtaaa acaaagcaac
tagaacatga aattgaacac 1980ctgagacaac ttgttacagc tcaacagtca cacatagaca
gcctgaaaca ggcgatgctg 2040cttatcgaat caaagctgcc gacaacacgg gagccagtga
cgcctcccgt ggggaaaaaa 2100tcatggcaat tctggaagaa atagcgcttt cagccggcaa
acctgaagcc ggatctgcga 2160ttctgataac aaactagcaa caccagaaca gcccgtttgc
gggcagcaaa acccgttatg 2220cttgtaaacc gttttgtgaa aaaattttta aaataaaaaa
ggggacctct agggtcccca 2280attaattagt aatataatct attaaaggtc attcaaaagg
tcatccaccg gatcaattcc 2340cctgctcgcg caggctgggt gccaagctct cgggtaacat
caaggcccga tccttggagc 2400ccttgccctc ccgcacgatg atcgtgccgt gatcgaaatc
cagatccttg acccgcagtt 2460gcaaaccctc actgatccgc atgcccgttc catacagaag
ctgggcgaac aaacgatgct 2520cgccttccag aaaaccgagg atgcgaacca cttcatccgg
ggtcagcacc accggcaagc 2580gccgcgacgg ccgaggtctt ccgatctcct gaagccaggg
cagatccgtg cacagcacct 2640tgccgtagaa gaacagcaag gccgccaatg cctgacgatg
cgtggagacc gaaaccttgc 2700gctcgttcgc cagccaggac agaaatgcct cgacttcgct
gctgcccaag gttgccgggt 2760gacgcacacc gtggaaacgg atgaaggcac gaacccagtg
gacataagcc tgttcggttc 2820gtaagctgta atgcaagtag cgtatgcgct cacgcaactg
gtccagaacc ttgaccgaac 2880gcagcggtgg taacggcgca gtggcggttt tcatggcttg
ttatgactgt ttttttgggg 2940tacagtctat gcctcgggca tccaagcagc aagcgcgtta
cgccgtgggt cgatgtttga 3000tgttatggag cagcaacgat gttacgcagc agggcagtcg
ccctaaaaca aagttaaaca 3060tcatgaggga agcggtgatc gccgaagtat cgactcaact
atcagaggta gttggcgtca 3120tcgagcgcca tctcgaaccg acgttgctgg ccgtacattt
gtacggctcc gcagtggatg 3180gcggcctgaa gccacacagt gatattgatt tgctggttac
ggtgaccgta aggcttgatg 3240aaacaacgcg gcgagctttg atcaacgacc ttttggaaac
ttcggcttcc cctggagaga 3300gcgagattct ccgcgctgta gaagtcacca ttgttgtgca
cgacgacatc attccgtggc 3360gttatccagc taagcgcgaa ctgcaatttg gagaatggca
gcgcaatgac attcttgcag 3420gtatcttcga gccagccacg atcgacattg atctggctat
cttgctgaca aaagcaagag 3480aacatagcgt tgccttggta ggtccagcgg cggaggaact
ctttgatccg gttcctgaac 3540aggatctatt tgaggcgcta aatgaaacct taacgctatg
gaactcgccg cccgactggg 3600ctggcgatga gcgaaatgta gtgcttacgt tgtcccgcat
ttggtacagc gcagtaaccg 3660gcaaaatcgc gccgaaggat gtcgctgccg actgggcaat
ggagcgcctg ccggcccagt 3720atcagcccgt catacttgaa gctagacagg cttatcttgg
acaagaagaa gatcgcttgg 3780cctcgcgcgc agatcagttg gaagaatttg tccactacgt
gaaaggcgag atcaccaagg 3840tagtcggcaa ataatgtcta acaattcgtt caagccgacg
ccgcttcgcg gcgcggctta 3900actcaagcgt tagatgcact aagcacataa ttgctcacag
ccaaactatc aggtcaagtc 3960tgcttttatt atttttaagc gtgcataata agccctacac
aaattgggag atatatcatg 4020aaaggctggc tttttcttgt tatcgcaata gttggcgaag
taatcgcaac atccgcatta 4080aaatctagcg agggctttac taagctgatc cggtggatga
ccttttgaat gacctttaat 4140agattatatt actaattaat tggggaccct agaggtcccc
ttttttattt taaaaatttt 4200ttcacaaaac ggtttacaag catacgttgg ccgattcatt
aatgcagctg gcacgacagg 4260tttcccgact ggaaagcggg cagtgagcgc aacgcaatta
atgtgagtta gctcactcat 4320taggcacccc aggctttaca ctttatgctt ccggctcgta
tgttgtgtgg aattgtgagc 4380ggataacaat ttcacacagg aaacagctat gaccatgatt
acgccaagct tgctattgac 4440gacagctatg gttcactgtc caccaaccaa aactgtgctc
agtaccgcca atatttctcc 4500cttgaggggt acaaagaggt gtccctagaa gagatccacg
ctgtgtaaaa attttacaaa 4560aaggtattga ctttccctac agggtgtgta ataatttaat
tacaggcggg ggcaaccccg 4620cctgttctgc agaggaggaa tatagccatg gaagtgaaaa
tcttcaacac ccaggatgtt 4680caggattttc tgcgtgttgc aagcggtctg gaacaagagg
gtggtaatcc gcgtgttaaa 4740caaattattc atcgtgttct gagcgacctg tataaagcaa
ttgaagatct gaatatcacc 4800agcgacgaat attgggcagg cgttgcatat ctgaatcagc
tgggtgcaaa tcaagaagca 4860ggtctgctga gtccgggtct gggttttgat cattatctgg
atatgcgtat ggatgcagaa 4920gatgcagcac tgggtattga aaatgcaaca ccgcgtacca
ttgaaggtcc gctgtatgtt 4980gcgggtgcac cggaaagcgt tggttatgca cgcatggatg
atggtagcga tccgaatggt 5040cataccctga ttctgcatgg caccattttt gatgcagatg
gtaaaccgct gccgaatgca 5100aaagttgaaa tttggcatgc aaacaccaaa ggcttttata
gccattttga tccgaccggt 5160gaacagcagg cctttaatat gcgtcgtagc attattaccg
atgagaatgg tcagtatcgt 5220gttcgtacca ttctgcctgc cggttatggt tgtcctccgg
aaggtccgac ccagcaactg 5280ctgaaccaac tgggtcgtca tggtaatcgt ccggcacata
ttcattattt tgttagcgca 5340gatggtcacc gtaaactgac cacccagatt aatgttgccg
gtgatccgta tacctatgat 5400gattttgcat atgccacccg tgaaggtctg gttgttgatg
cagttgaaca taccgatccg 5460gaagcaatta aagccaatga tgtggaaggt ccttttgccg
aaatggtgtt tgatctgaaa 5520ctgacccgtc tggttgatgg tgttgataat caggttgtgg
atcgtccgcg tctggcagtt 5580taatacacca aaatggttca aaattatcag gcgagtgatc
atgatcactg gcctgttttt 5640atttcaggga agggtggaga caattacgtg gataatcaga
tcatccaaga aaccgtggat 5700aaaattctga gcgttctgcc gaatcaggca ggtcagctgg
cacgtctggt gcgtctgatg 5760caatttgcat gcgatccgac cattaccgtt attggcaaat
ataaccatgg taaaagccgt 5820ctgctgaatg aactgattgg caccgatatc tttagcgttg
cagataaacg tgaaaccatt 5880cagctggccg aacataaaca ggatcaggtt cgttggctgg
atgcacctgg tctggatgcc 5940gatgttgcag cagttgatga tcgtcatgca tttgaagcag
tttggaccca ggcagatatt 6000cgtctgtttg ttcatagcgt tcgtgaaggt gaactggatg
caaccgaaca ccatctgctg 6060caacagctga ttgaagatgc cgatcatagc cgtcgtcaga
ccattctggt tctgacccag 6120attgatcaga ttccggatca gaccatcctg acacagatta
aaaccagcat tgcacagcag 6180gttccgaaac tggatatttg ggcagttagc gcaacccgtc
atcgtcaggg cattgaaaac 6240ggtaaaaccc tgctgatcga aaaaagcggt attggtgcac
tgcgccatac cctggaacag 6300gcactggcac aggtgccgag cgcacgtacc tatgaaaaaa
atcgtctgct gtcagatctg 6360caccatcagc tgaaacaact gctgctggat cagaaacatg
ttctgcaaca actgcaacag 6420acacagcaac agcagctgca tgattttgat accggtctga
ttaacattct ggacaaaatt 6480cgtgttgatc tggaaccgat tgtgaatatt gatggtcagg
atcaagcact gaatccggat 6540agctttgcaa ccatgtttaa aaacaccgca gcaaaacagc
agcgtgccaa agttcagatt 6600gcatatagcc gtgcatgcat tgaaatcaac agccatctga
ttcgccatgg tgttgttggt 6660ctgcctgcgg aacagcagac caccattaaa agcattgata
ccgtgattgt tgccgtgttt 6720ggtatcagcg ttaaatttcg tgatcagctg cgtgccctgt
tttataccga taccgaacgt 6780cagcgtctgc aacgtgaatt tcgtttctat tttgaaaaaa
gtgccggtcg catgattctg 6840gcagcaaaaa ttgaacagac catgcgtcag cagggctgta
ttcagaatgc catgatggca 6900ctgcaacaaa tggaaagcgc agcataaaaa cacggacgcc
gcaaacggcg tccgaatttc 6960ttggtcgacc gttaaatcta tcaccgcaag ggataaatat
ctaacaccgt gcgtgttgac 7020tattttacct ctggcggtga taatggttgc atgtactaat
ctagataagg aatatagcca 7080tgaccgcacc gattcaggat ctgcgtgatg caattgccct
gctgcaacag catgataatc 7140agtatctgga aaccgatcat ccggttgatc cgaatgcaga
actggcaggc gtttatcgtc 7200atattggtgc cggtggcacc gttaaacgtc cgacccgtat
tggtccggca atgatgttta 7260ataacattaa aggttatccg cacagccgta ttctggttgg
tatgcatgca agccgtcagc 7320gtgcagcact gctgctgggt tgtgaagcaa gtcagctggc
actggaagtt ggtaaagcag 7380ttaaaaaacc ggttgcaccg gtggttgttc cggcaagcag
cgcaccgtgt caagagcaga 7440tttttctggc agatgatccg gattttgatc tgcgtaccct
gctgcctgca cataccaata 7500ccccgattga tgcaggtccg tttttttgtc tgggtctggc
cctggcaagc gatccggtgg 7560atgcaagcct gaccgatgtt accattcatc gtctgtgtgt
tcagggtcgt gatgaactga 7620gcatgttcct ggcagcaggt cgccatattg aagtttttcg
tcagaaagca gaagcagcag 7680gtaaaccgct gccgattacc attaatatgg gtctggaccc
agcaatctat attggcgcat 7740gttttgaagc accgaccacc ccgtttggtt ataatgaact
gggtgttgcc ggtgcactgc 7800gtcagcgtcc ggttgaactg gttcagggtg ttagcgttcc
ggaaaaagca attgcacgtg 7860ccgaaattgt tattgaaggt gaactgctgc ctggtgttcg
tgttcgtgaa gatcagcata 7920ccaattcagg tcatgcaatg ccggaatttc cgggttattg
tggtggtgca aatccgagcc 7980tgccggttat taaagttaaa gccgttacca tgcgcaataa
cgcaattctg caaaccctgg 8040ttggtccggg tgaagaacat accaccctgg caggtctgcc
gaccgaagca agcatttgga 8100atgcagttga agcagcaatt ccgggttttc tgcaaaatgt
ttatgcccat accgcaggcg 8160gtggtaaatt tctgggtatt ctgcaagtga aaaaacgtca
gcctgccgat gaaggtcgtc 8220agggtcaggc agccctgctg gcgctggcaa cctatagcga
actgaaaaat atcattctgg 8280tggatgagga tgtggacatt tttgatagtg atgatattct
gtgggcaatg accacccgta 8340tgcagggtga tgttagcatt accaccattc cgggtattcg
cggtcatcag ctggacccga 8400gccagacacc ggaatattca ccgagcattc gtggtaatgg
tattagctgc aaaaccatct 8460ttgattgtac cgttccgtgg gcactgaaaa gccattttga
acgtgcaccg tttgcagatg 8520ttgatccgcg tccgtttgca cctgaatatt ttgcacgtct
ggaaaaaaat cagggcagcg 8580caaaataagc taataacagg cctgctggta atcgcaggaa
tttttatttg gatggatccg 8640cctacctagc ttccaagaaa gatatcctaa cagcacaaga
gcggaaagat gttttgttct 8700acatccagaa caacctctgc taaaattcct gaaaaatttt
gcaaaaagtt gttgacttta 8760tctacaaggt gtggtataat aatcttaaca acagcaggac
gctcccgggt tgaggaaaac 8820ctaatgccga gcaaactggc aattagcagc atgagcctgg
gtcgttgttt tgcaggtcat 8880agcctggata gtaaactgga tgcagcacag cgttatggtt
atctgggtat tgaactgttt 8940tatgaggatc tggttgatgt tgcagaacat ctgagcaatg
aacgtccgag tccggaaggt 9000ccgtttgttg aagcacagat tgcagcagca cgtcatattc
tgcaaatgtg tcaggcacgt 9060ggtctggaag ttgtttgtct gcaaccgttt atgcattatg
atggtctgaa tgatcgtgcc 9120gaacatgaac gtcgtctgga aaaactggca ctgtggattg
aactggcaca tgaactgcat 9180accgatatta ttcagattcc ggcaaatttt ctgcctgcaa
atcaggttag cgataatctg 9240gatctgattg ttagcgatct gtgtaaagtt gcagatattg
gtgcacaggc actgcctccg 9300attcgttttg catatgaaag cctgtgttgg agcacccgtg
ttgatctgtg ggaacgttgt 9360tgggatattg ttcagcgtgt ggatcgtccg aattttggta
tttgtctgga tacctttaac 9420atcctgggtc gcatttatgc agatccgacc agcccgagcg
gtcgtacccc gaatgcaaaa 9480gaagcagttc gtaaaagcat tgccaatctg gttagccgtg
tggatgttag caaagttttt 9540tatgttcagg ttgtggatgc cgaacgtctg agtaaaccgc
tgctgcctgg tcatccgtat 9600tataacccgg aacagcctgc acgtatgagc tggtcacgta
attgtcgtct gttctatggt 9660gaaaccgaat atggtgcata tctgccggtt aaagaagttg
cacgcgcact gtttcatggt 9720attggttttg aaggttgggt tagcctggaa ctgtttaatc
gtcgtatgag cgaagaaggt 9780ccggaagttc ctgaagaact ggccatgcgt ggtgcaatta
gctgggcaaa actggttcag 9840gatctgcgta ttccggttga aggtccgctg gttaccatgc
ctcgtgttag cgcaagcctg 9900taaatgcatg cgcgccgcgt tcgcgcggcg cttttttttg
gtaccgagct cgaattcact 9960ggccgtcgtt ttacaacgtc gtgactggga aaaccctggc
gttacccaac ttaatcgcct 10020tgcagcacat ccccctttcg ccagctggcg taatagcgaa
gaggcccgca ccgatcgccc 10080ttcccaacag ttgcgcagcc tgaatggcga atggcgcctg
atgcggtatt ttctccttac 10140gcatctgtgc ggtatttcac accgcatatg gtgcactctc
agtacaatct gctctgatgc 10200cgcatagtta agccagcccc gacacccgcc aacacccgct
gacgaattc 10249287623DNAEscherichia
colimisc_feature(1)..(7623)DNA sequence of the plasmid pCP32AMP
28acatgaatgg tcttcggttt ccgtgtttcg taaagtctgg aaacgcggaa gtcagcgccc
60tgcaccatta tgttccggat ctgcatcgca ggatgctgct ggctaccctg tggaacacct
120acatctgtat taacgaagcg ctggcattga ccctgagtga tttttctctg gtcccgccgc
180atccataccg ccagttgttt accctcacaa cgttccagta accgggcatg ttcatcatca
240gtaacccgta tcgtgagcat cctctctcgt ttcatcggta tcattacccc catgaacaga
300aattccccct tacacggagg catcaagtga ccaaacagga aaaaaccgcc cttaacatgg
360cccgctttat cagaagccag acattaacgc ttctggagaa actcaacgag ctggacgcgg
420atgaacaggc agacatctgt gaatcgcttc acgaccacgc tgatgagctt taccgcagct
480gcctcgcgcg tttcggtgat gacggtgaaa acctctgaca catgcagctc ccggagacgg
540tcacagcttg tctgtaagcg gatgccggga gcagacaagc ccgtcagggc gcgtcagcgg
600gtgttggcgg gtgtcggggc gcagccatga cccagtcacg tagcgatagc ggagtgtata
660ctggcttaac tatgcggcat cagagcagat tgtactgaga gtgcaccata tgcggtgtga
720aataccgcac agatgcgtaa ggagaaaata ccgcatcagg cgctcttccg cttcctcgct
780cactgactcg ctgcgctcgg tcgttcggct gcggcgagcg gtatcagctc actcaaaggc
840ggtaatacgg ttatccacag aatcagggga taacgcagga aagaacatgt gagcaaaagg
900ccagcaaaag gccaggaacc gtaaaaaggc cgcgttgctg gcgtttttcc ataggctccg
960cccccctgac gagcatcaca aaaatcgacg ctcaagtcag aggtggcgaa acccgacagg
1020actataaaga taccaggcgt ttccccctgg aagctccctc gtgcgctctc ctgttccgac
1080cctgccgctt accggatacc tgtccgcctt tctcccttcg ggaagcgtgg cgctttctca
1140tagctcacgc tgtaggtatc tcagttcggt gtaggtcgtt cgctccaagc tgggctgtgt
1200gcacgaaccc cccgttcagc ccgaccgctg cgccttatcc ggtaactatc gtcttgagtc
1260caacccggta agacacgact tatcgccact ggcagcagcc actggtaaca ggattagcag
1320agcgaggtat gtaggcggtg ctacagagtt cttgaagtgg tggcctaact acggctacac
1380tagaaggaca gtatttggta tctgcgctct gctgaagcca gttaccttcg gaaaaagagt
1440tggtagctct tgatccggca aacaaaccac cgctggtagc ggtggttttt ttgtttgcaa
1500gcagcagatt acgcgcagaa aaaaaggatc tcaagaagat cctttgatct tttctacggg
1560gtctgacgct cagtggaacg aaaactcacg ttaagggatt ttggtcatga gattatcaaa
1620aaggatcttc acctagatcc ttttaaatta aaaatgaagt tttaaatcaa tctaaagtat
1680atatgagtaa acttggtctg acagttacca atgcttaatc agtgaggcac ctatctcagc
1740gatctgtcta tttcgttcat ccatagttgc ctgactcccc gtcgtgtaga taactacgat
1800acgggagggc ttaccatctg gccccagtgc tgcaatgata ccgcgagacc cacgctcacc
1860ggctccagat ttatcagcaa taaaccagcc agccggaagg gccgagcgca gaagtggtcc
1920tgcaacttta tccgcctcca tccagtctat taattgttgc cgggaagcta gagtaagtag
1980ttcgccagtt aatagtttgc gcaacgttgt tgccattgct gcaggcatcg tggtgtcacg
2040ctcgtcgttt ggtatggctt cattcagctc cggttcccaa cgatcaaggc gagttacatg
2100atcccccatg ttgtgcaaaa aagcggttag ctccttcggt cctccgatcg ttgtcagaag
2160taagttggcc gcagtgttat cactcatggt tatggcagca ctgcataatt ctcttactgt
2220catgccatcc gtaagatgct tttctgtgac tggtgagtac tcaaccaagt cattctgaga
2280atagtgtatg cggcgaccga gttgctcttg cccggcgtca acacgggata ataccgcgcc
2340acatagcaga actttaaaag tgctcatcat tggaaaacgt tcttcggggc gaaaactctc
2400aaggatctta ccgctgttga gatccagttc gatgtaaccc actcgtgcac ccaactgatc
2460ttcagcatct tttactttca ccagcgtttc tgggtgagca aaaacaggaa ggcaaaatgc
2520cgcaaaaaag ggaataaggg cgacacggaa atgttgaata ctcatactct tcctttttca
2580atattattga agcatttatc agggttattg tctcatgagc ggatacatat ttgaatgtat
2640ttagaaaaat aaacaaatag gggttccgcg cacatttccc cgaaaagtgc cacctgacgt
2700ctaagaaacc attattatca tgacattaac ctataaaaat aggcgtatca cgaggccctt
2760tcgtcttcaa gaattctgaa ccagtcctaa aacgagtaaa taggaccggc aattcttcaa
2820gcaataaaca ggaataccaa ttattaaaag ataacttagt cagatcgtac aataaagctt
2880tgaagaaaaa tgcgccttat tcaatctttg ctataaaaaa tggcccaaaa tctcacattg
2940gaagacattt gatgacctca tttctttcaa tgaagggcct aacggagttg actaatgttg
3000tgggaaattg gagcgataag cgtgcttctg ccgtggccag gacaacgtat actcatcaga
3060taacagcaat acctgatcac tacttcgcac tagtttctcg gtactatgca tatgatccaa
3120tatcaaagga aatgatagca ttgaaggatg agactaatcc aattgaggag tggcagcata
3180tagaacagct aaagggtagt gctgaaggaa gcatacgata ccccgcatgg aatgggataa
3240tatcacagga ggtactagac tacctttcat cctacataaa tagacgcata taagtacgca
3300tttaagcata aacacgcact atgccgttct tctcatgtat atatatatac aggcaacacg
3360cagatatagg tgcgacgtga acagtgagct gtatgtgcgc agctcgcgtt gcattttcgg
3420aagcgctcgt tttcggaaac gctttgaagt tcctattccg aagttcctat tctctagaaa
3480gtataggaac ttcagagcgc ttttgaaaac caaaagcgct ctgaagacgc actttcaaaa
3540aaccaaaaac gcaccggact gtaacgagct actaaaatat tgcgaatacc gcttccacaa
3600acattgctca aaagtatctc tttgctatat atctctgtgc tatatcccta tataacctac
3660ccatccacct ttcgctcctt gaacttgcat ctaaactcga cctctacatt ttttatgttt
3720atctctagta ttactcttta gacaaaaaaa ttgtagtaag aactattcat agagtgaatc
3780gaaaacaata cgaaaatgta aacatttcct atacgtagta tatagagaca aaatagaaga
3840aaccgttcat aattttctga ccaatgaaga atcatcaacg ctatcacttt ctgttcacaa
3900agtatgcgca atccacatcg gtatagaata taatcgggga tgcctttatc ttgaaaaaat
3960gcacccgcag cttcgctagt aatcagtaaa cgcgggaagt ggagtcaggc tttttttatg
4020gaagagaaaa tagacaccaa agtagccttc ttctaacctt aacggaccta cagtgcaaaa
4080agttatcaag agactgcatt atagagcgca caaaggagaa aaaaagtaat ctaagatgct
4140ttgttagaaa aatagcgctc tcgggatgca tttttgtaga acaaaaaaga agtatagatt
4200ctttgttggt aaaatagcgc tctcgcgttg catttctgtt ctgtaaaaat gcagctcaga
4260ttctttgttt gaaaaattag cgctctcgcg ttgcattttt gttttacaaa aatgaagcac
4320agattcttcg ttggtaaaat agcgctttcg cgttgcattt ctgttctgta aaaatgcagc
4380tcagattctt tgtttgaaaa attagcgctc tcgcgttgca tttttgttct acaaaatgaa
4440gcacagatgc ttcgttaaca aagatatgct attgaagtgc aagatggaaa cgcagaaaat
4500gaaccgggga tgcgacgtgc aagattacct atgcaataga tgcaatagtt tctccaggaa
4560ccgaaataca tacattgtct tccgtaaagc gctagactat atattattat acaggttcaa
4620atatactatc tgtttcaggg aaaactccca ggttcggatg ttcaaaattc aatgatgggt
4680aacaagtacg atcgtaaatc tgtaaaacag tttgtcggat attaggctgt atctcctcaa
4740agcgtattcg aatatcattg agaagctgca gcgtcacatc ggataataat gatggcagcc
4800attgtagaag tgccttttgc atttctagtc tctttctcgg tctagctagt tttactacat
4860cgcgaagata gaatcttaga tcacactgcc tttgctgagc tggatcaata gagtaacaaa
4920agagtggtaa ggcctcgtta aaggacaagg acctgagcgg aagtgtatcg tacagtagac
4980ggagtatact agtatagtct atagtccgtg gaattctcat gtttgacagc ttatcatcga
5040taagcttttc aattcaattc atcatttttt ttttattctt ttttttgatt tcggtttctt
5100tgaaattttt ttgattcggt aatctccgaa cagaaggaag aacgaaggaa ggagcacaga
5160cttagattgg tatatatacg catatgtagt gttgaagaaa catgaaattg cccagtattc
5220ttaacccaac tgcacagaac aaaaacctgc aggaaacgaa gataaatcat gtcgaaagct
5280acatataagg aacgtgctgc tactcatcct agtcctgttg ctgccaagct atttaatatc
5340atgcacgaaa agcaaacaaa cttgtgtgct tcattggatg ttcgtaccac caaggaatta
5400ctggagttag ttgaagcatt aggtcccaaa atttgtttac taaaaacaca tgtggatatc
5460ttgactgatt tttccatgga gggcacagtt aagccgctaa aggcattatc cgccaagtac
5520aattttttac tcttcgaaga cagaaaattt gctgacattg gtaatacagt caaattgcag
5580tactctgcgg gtgtatacag aatagcagaa tgggcagaca ttacgaatgc acacggtgtg
5640gtgggcccag gtattgttag cggtttgaag caggcggcag aagaagtaac aaaggaacct
5700agaggccttt tgatgttagc agaattgtca tgcaagggct ccctatctac tggagaatat
5760actaagggta ctgttgacat tgcgaagagc gacaaagatt ttgttatcgg ctttattgct
5820caaagagaca tgggtggaag agatgaaggt tacgattggt tgattatgac acccggtgtg
5880ggtttagatg acaagggaga cgcattgggt caacagtata gaaccgtgga tgatgtggtc
5940tctacaggat ctgacattat tattgttgga agaggactat ttgcaaaggg aagggatgct
6000aaggtagagg gtgaacgtta cagaaaagca ggctgggaag catatttgag aagatgcggc
6060cagcaaaact aaaaaactgt attataagta aatgcatgta tactaaactc acaaattaga
6120gcttcaattt aattatatca gttattaccc gggaatctcg gtcgtaatga cttgaaataa
6180ttaacaaaca aaggagttac agttagaaat tgtaggagag atctcgtttt tcgcgacaat
6240ctggcgtttt tcttgctaat tccaggatta atccgttcat agtgtaaaac cccgtttaca
6300cattctgacg gaagatatag attggaagta ttgcattcac taagataagt atggcaacac
6360tggaacagac atgaattatc agaacgacga tttacgcatc aaagaaatca aagagttact
6420tcctcctgtc gcattgctgg aaaaattccc cgctactgaa aatgccgcga atacggttgc
6480ccatgcccga aaagcgatcc ataagatcct gaaaggtaat gatgatcgcc tgttggttgt
6540gattggccca tgctcaattc atgatcctgt cgcggcaaaa gagtatgcca ctcgcttgct
6600ggcgctgcgt gaagagctga aagatgagct ggaaatcgta atgcgcgtct attttgaaaa
6660gccgcgtacc acggtgggct ggaaagggct gattaacgat ccgcatatgg ataatagctt
6720ccagatcaac gacggtctgc gtatagcccg taaattgctg cttgatatta acgacagcgg
6780tctgccagcg gcaggtgagt ttctcgatat gatcacccca caatatctcg ctgacctgat
6840gagctggggc gcaattggcg cacgtaccac cgaatcgcag gtgcaccgcg aactggcatc
6900agggctttct tgtccggtcg gcttcaaaaa tggcaccgac ggtacgatta aagtggctat
6960cgatgccatt aatgccgccg gtgcgccgca ctgcttcctg tccgtaacga aatgggggca
7020ttcggcgatt gtgaatacca gcggtaacgg cgattgccat atcattctgc gcggcggtaa
7080agagcctaac tacagcgcga agcacgttgc tgaagtgaaa gaagggctga acaaagcagg
7140cctgccagca caggtgatga tcgatttcag ccatgctaac tcgtccaaac aattcaaaaa
7200gcagatggat gtttgtgctg acgtttgcca gcagattgcc ggtggcgaaa aggccattat
7260tggcgtgatg gtggaaagcc atctggtgga aggcaatcag agcctcgaga gcggggagcc
7320gctggcctac ggtaagagca tcaccgatgc ctgcatcggc tgggaagata ccgatgctct
7380gttacgtcaa ctggcgaatg cagtaaaagc gcgtcgcggg taaggtttaa ttgtcggatg
7440cgccgtcaga gtggcgtatc cgatgaatca ccacaggcct gataagtcgc gcagcgtcgc
7500atcaggcaat gtgctccatt gttagcaaca aaaaagccga ctcacttgca gtcggctttc
7560tcattttaaa cgaatgacgt ttacttcgct ttaccctggt ttgcaaccgc cgctgctttc
7620gct
7623297630DNAEscherichia colimisc_feature(1)..(7630)DNA sequence of the
plasmid pCP14 29ctcgaggcta ttgacgacag ctatggttca ctgtccacca accaaaactg
tgctcagtac 60cgccaatatt tctcccttga ggggtacaaa gaggtgtccc tagaagagat
ccacgctgtg 120taaaaatttt acaaaaaggt attgactttc cctacagggt gtgtaataat
ttaattacag 180gcgggggcaa ccccgcctgt tctagaggag gaggaatcgc catggagagg
attgtcgtta 240ctctcgggga acgtagttac ccaattacca tcgcatctgg tttgtttaat
gaaccagctt 300cattcttacc gctgaaatcg ggcgagcagg tcatgttggt caccaacgaa
accctggctc 360ctctgtatct cgataaggtc cgcggcgtac ttgaacaggc gggtgttaac
gtcgatagcg 420ttatcctccc tgacggcgag cagtataaaa gcctggctgt actcgatacc
gtctttacgg 480cgttgttaca aaagccgcat ggtcgcgata ctacgctggt ggcgcttggc
ggcggcgtag 540tgggcgatct gaccggcttc gcggcggcga gttatcagcg cggtgttcgt
ttcattcaag 600tcccgacgac gttactgtcg caggtcgatt cctccgttgg cggcaaaact
gcggtcaacc 660atcccctcgg taaaaacatg attggcgcgt tctaccagcc tgcttcagtg
gtggtggatc 720tcgactgtct gaaaacgctt cccccgcgtg agttagcgtc ggggctggca
gaagtcatca 780aatacggcat tattcttgac ggtgcgtttt tcaactggct ggaagagaat
ctggatgcgt 840tgttgcgtct ggacggtccg gcaatggcgt actgtattcg ccgttgttgt
gaactgaagg 900cagaagttgt cgccgccgac gagcgcgaaa ccgggttacg tgctttactg
aatctgggac 960acacctttgg tcatgccatt gaagctgaaa tggggtatgg caattggtta
catggtgaag 1020cggtcgctgc gggtatggtg atggcggcgc ggacgtcgga acgtctcggg
cagtttagtt 1080ctgccgaaac gcagcgtatt ataaccctgc tcacgcgggc tgggttaccg
gtcaatgggc 1140cgcgcgaaat gtccgcgcag gcgtatttac cgcatatgct gcgtgacaag
aaagtccttg 1200cgggagagat gcgcttaatt cttccgttgg caattggtaa gagtgaagtt
cgcagcggcg 1260tttcgcacga gcttgttctt aacgccattg ccgattgtca atcagcgtaa
tcatcgttca 1320tgcctgatgc cgctatgtag gccggataag gcgttcacgc cgcatccggc
aaccgatgcc 1380tgatgcgacg cggtcgcgtc ttatcaggcc tacaggtcga tgccgatatg
tacatcgtat 1440tcggcaatta atacatagca acatgaatgg tcttcggttt ccgtgtttcg
taaagtctgg 1500aaacgcggaa gtcagcgccc tgcaccatta tgttccggat ctgcatcgca
ggatgctgct 1560ggctaccctg tggaacacct acatctgtat taacgaagcg ctggcattga
ccctgagtga 1620tttttctctg gtcccgccgc atccataccg ccagttgttt accctcacaa
cgttccagta 1680accgggcatg ttcatcatca gtaacccgta tcgtgagcat cctctctcgt
ttcatcggta 1740tcattacccc catgaacaga aattccccct tacacggagg catcaagtga
ccaaacagga 1800aaaaaccgcc cttaacatgg cccgctttat cagaagccag acattaacgc
ttctggagaa 1860actcaacgag ctggacgcgg atgaacaggc agacatctgt gaatcgcttc
acgaccacgc 1920tgatgagctt taccgcagct gcctcgcgcg tttcggtgat gacggtgaaa
acctctgaca 1980catgcagctc ccggagacgg tcacagcttg tctgtaagcg gatgccggga
gcagacaagc 2040ccgtcagggc gcgtcagcgg gtgttggcgg gtgtcggggc gcagccatga
cccagtcacg 2100tagcgatagc ggagtgtata ctggcttaac tatgcggcat cagagcagat
tgtactgaga 2160gtgcaccata tgcggtgtga aataccgcac agatgcgtaa ggagaaaata
ccgcatcagg 2220cgctcttccg cttcctcgct cactgactcg ctgcgctcgg tcgttcggct
gcggcgagcg 2280gtatcagctc actcaaaggc ggtaatacgg ttatccacag aatcagggga
taacgcagga 2340aagaacatgt gagcaaaagg ccagcaaaag gccaggaacc gtaaaaaggc
cgcgttgctg 2400gcgtttttcc ataggctccg cccccctgac gagcatcaca aaaatcgacg
ctcaagtcag 2460aggtggcgaa acccgacagg actataaaga taccaggcgt ttccccctgg
aagctccctc 2520gtgcgctctc ctgttccgac cctgccgctt accggatacc tgtccgcctt
tctcccttcg 2580ggaagcgtgg cgctttctca tagctcacgc tgtaggtatc tcagttcggt
gtaggtcgtt 2640cgctccaagc tgggctgtgt gcacgaaccc cccgttcagc ccgaccgctg
cgccttatcc 2700ggtaactatc gtcttgagtc caacccggta agacacgact tatcgccact
ggcagcagcc 2760actggtaaca ggattagcag agcgaggtat gtaggcggtg ctacagagtt
cttgaagtgg 2820tggcctaact acggctacac tagaaggaca gtatttggta tctgcgctct
gctgaagcca 2880gttaccttcg gaaaaagagt tggtagctct tgatccggca aacaaaccac
cgctggtagc 2940ggtggttttt ttgtttgcaa gcagcagatt acgcgcagaa aaaaaggatc
tcaagaagat 3000cctttgatct tttctacggg gtctgacgct cagtggaacg aaaactcacg
ttaagggatt 3060ttggtcatga gattatcaaa aaggatcttc acctagatcc ttttaaatta
aaaatgaagt 3120tttaaatcaa tctaaagtat atatgagtaa acttggtctg acagttacca
atgcttaatc 3180agtgaggcac ctatctcagc gatctgtcta tttcgttcat ccatagttgc
ctgactcccc 3240gtcgtgtaga taactacgat acgggagggc ttaccatctg gccccagtgc
tgcaatgata 3300ccgcgagacc cacgctcacc ggctccagat ttatcagcaa taaaccagcc
agccggaagg 3360gccgagcgca gaagtggtcc tgcaacttta tccgcctcca tccagtctat
taattgttgc 3420cgggaagcta gagtaagtag ttcgccagtt aatagtttgc gcaacgttgt
tgccattgct 3480gcaggcatcg tggtgtcacg ctcgtcgttt ggtatggctt cattcagctc
cggttcccaa 3540cgatcaaggc gagttacatg atcccccatg ttgtgcaaaa aagcggttag
ctccttcggt 3600cctccgatcg ttgtcagaag taagttggcc gcagtgttat cactcatggt
tatggcagca 3660ctgcataatt ctcttactgt catgccatcc gtaagatgct tttctgtgac
tggtgagtac 3720tcaaccaagt cattctgaga atagtgtatg cggcgaccga gttgctcttg
cccggcgtca 3780acacgggata ataccgcgcc acatagcaga actttaaaag tgctcatcat
tggaaaacgt 3840tcttcggggc gaaaactctc aaggatctta ccgctgttga gatccagttc
gatgtaaccc 3900actcgtgcac ccaactgatc ttcagcatct tttactttca ccagcgtttc
tgggtgagca 3960aaaacaggaa ggcaaaatgc cgcaaaaaag ggaataaggg cgacacggaa
atgttgaata 4020ctcatactct tcctttttca atattattga agcatttatc agggttattg
tctcatgagc 4080ggatacatat ttgaatgtat ttagaaaaat aaacaaatag gggttccgcg
cacatttccc 4140cgaaaagtgc cacctgacgt ctaagaaacc attattatca tgacattaac
ctataaaaat 4200aggcgtatca cgaggccctt tcgtcttcaa gaattctgaa ccagtcctaa
aacgagtaaa 4260taggaccggc aattcttcaa gcaataaaca ggaataccaa ttattaaaag
ataacttagt 4320cagatcgtac aataaagctt tgaagaaaaa tgcgccttat tcaatctttg
ctataaaaaa 4380tggcccaaaa tctcacattg gaagacattt gatgacctca tttctttcaa
tgaagggcct 4440aacggagttg actaatgttg tgggaaattg gagcgataag cgtgcttctg
ccgtggccag 4500gacaacgtat actcatcaga taacagcaat acctgatcac tacttcgcac
tagtttctcg 4560gtactatgca tatgatccaa tatcaaagga aatgatagca ttgaaggatg
agactaatcc 4620aattgaggag tggcagcata tagaacagct aaagggtagt gctgaaggaa
gcatacgata 4680ccccgcatgg aatgggataa tatcacagga ggtactagac tacctttcat
cctacataaa 4740tagacgcata taagtacgca tttaagcata aacacgcact atgccgttct
tctcatgtat 4800atatatatac aggcaacacg cagatatagg tgcgacgtga acagtgagct
gtatgtgcgc 4860agctcgcgtt gcattttcgg aagcgctcgt tttcggaaac gctttgaagt
tcctattccg 4920aagttcctat tctctagaaa gtataggaac ttcagagcgc ttttgaaaac
caaaagcgct 4980ctgaagacgc actttcaaaa aaccaaaaac gcaccggact gtaacgagct
actaaaatat 5040tgcgaatacc gcttccacaa acattgctca aaagtatctc tttgctatat
atctctgtgc 5100tatatcccta tataacctac ccatccacct ttcgctcctt gaacttgcat
ctaaactcga 5160cctctacatt ttttatgttt atctctagta ttactcttta gacaaaaaaa
ttgtagtaag 5220aactattcat agagtgaatc gaaaacaata cgaaaatgta aacatttcct
atacgtagta 5280tatagagaca aaatagaaga aaccgttcat aattttctga ccaatgaaga
atcatcaacg 5340ctatcacttt ctgttcacaa agtatgcgca atccacatcg gtatagaata
taatcgggga 5400tgcctttatc ttgaaaaaat gcacccgcag cttcgctagt aatcagtaaa
cgcgggaagt 5460ggagtcaggc tttttttatg gaagagaaaa tagacaccaa agtagccttc
ttctaacctt 5520aacggaccta cagtgcaaaa agttatcaag agactgcatt atagagcgca
caaaggagaa 5580aaaaagtaat ctaagatgct ttgttagaaa aatagcgctc tcgggatgca
tttttgtaga 5640acaaaaaaga agtatagatt ctttgttggt aaaatagcgc tctcgcgttg
catttctgtt 5700ctgtaaaaat gcagctcaga ttctttgttt gaaaaattag cgctctcgcg
ttgcattttt 5760gttttacaaa aatgaagcac agattcttcg ttggtaaaat agcgctttcg
cgttgcattt 5820ctgttctgta aaaatgcagc tcagattctt tgtttgaaaa attagcgctc
tcgcgttgca 5880tttttgttct acaaaatgaa gcacagatgc ttcgttaaca aagatatgct
attgaagtgc 5940aagatggaaa cgcagaaaat gaaccgggga tgcgacgtgc aagattacct
atgcaataga 6000tgcaatagtt tctccaggaa ccgaaataca tacattgtct tccgtaaagc
gctagactat 6060atattattat acaggttcaa atatactatc tgtttcaggg aaaactccca
ggttcggatg 6120ttcaaaattc aatgatgggt aacaagtacg atcgtaaatc tgtaaaacag
tttgtcggat 6180attaggctgt atctcctcaa agcgtattcg aatatcattg agaagctgca
gcgtcacatc 6240ggataataat gatggcagcc attgtagaag tgccttttgc atttctagtc
tctttctcgg 6300tctagctagt tttactacat cgcgaagata gaatcttaga tcacactgcc
tttgctgagc 6360tggatcaata gagtaacaaa agagtggtaa ggcctcgtta aaggacaagg
acctgagcgg 6420aagtgtatcg tacagtagac ggagtatact agtatagtct atagtccgtg
gaattctcat 6480gtttgacagc ttatcatcga taagcttttc aattcaattc atcatttttt
ttttattctt 6540ttttttgatt tcggtttctt tgaaattttt ttgattcggt aatctccgaa
cagaaggaag 6600aacgaaggaa ggagcacaga cttagattgg tatatatacg catatgtagt
gttgaagaaa 6660catgaaattg cccagtattc ttaacccaac tgcacagaac aaaaacctgc
aggaaacgaa 6720gataaatcat gtcgaaagct acatataagg aacgtgctgc tactcatcct
agtcctgttg 6780ctgccaagct atttaatatc atgcacgaaa agcaaacaaa cttgtgtgct
tcattggatg 6840ttcgtaccac caaggaatta ctggagttag ttgaagcatt aggtcccaaa
atttgtttac 6900taaaaacaca tgtggatatc ttgactgatt tttccatgga gggcacagtt
aagccgctaa 6960aggcattatc cgccaagtac aattttttac tcttcgaaga cagaaaattt
gctgacattg 7020gtaatacagt caaattgcag tactctgcgg gtgtatacag aatagcagaa
tgggcagaca 7080ttacgaatgc acacggtgtg gtgggcccag gtattgttag cggtttgaag
caggcggcag 7140aagaagtaac aaaggaacct agaggccttt tgatgttagc agaattgtca
tgcaagggct 7200ccctatctac tggagaatat actaagggta ctgttgacat tgcgaagagc
gacaaagatt 7260ttgttatcgg ctttattgct caaagagaca tgggtggaag agatgaaggt
tacgattggt 7320tgattatgac acccggtgtg ggtttagatg acaagggaga cgcattgggt
caacagtata 7380gaaccgtgga tgatgtggtc tctacaggat ctgacattat tattgttgga
agaggactat 7440ttgcaaaggg aagggatgct aaggtagagg gtgaacgtta cagaaaagca
ggctgggaag 7500catatttgag aagatgcggc cagcaaaact aaaaaactgt attataagta
aatgcatgta 7560tactaaactc acaaattaga gcttcaattt aattatatca gttattaccc
gggaatctcg 7620gtcgtaatga
76303010015DNAEscherichia colimisc_feature(1)..(10015)DNA
sequence of the plasmid pCP50 30cttgaaataa ttaacaaaca aaggagttac
agttagaaat tgtaggagag atctcgtttt 60tcgcgacaat ctggcgtttt tcttgctaat
tccaggatta atccgttcat agtgtaaaac 120cccgtttaca cattctgacg gaagatatag
attggaagta ttgcattcac taagataagt 180atggcaacac tggaacagac atgaattatc
agaacgacga tttacgcatc aaagaaatca 240aagagttact tcctcctgtc gcattgctgg
aaaaattccc cgctactgaa aatgccgcga 300atacggttgc ccatgcccga aaagcgatcc
ataagatcct gaaaggtaat gatgatcgcc 360tgttggttgt gattggccca tgctcaattc
atgatcctgt cgcggcaaaa gagtatgcca 420ctcgcttgct ggcgctgcgt gaagagctga
aagatgagct ggaaatcgta atgcgcgtct 480attttgaaaa gccgcgtacc acggtgggct
ggaaagggct gattaacgat ccgcatatgg 540ataatagctt ccagatcaac gacggtctgc
gtatagcccg taaattgctg cttgatatta 600acgacagcgg tctgccagcg gcaggtgagt
ttctcgatat gatcacccca caatatctcg 660ctgacctgat gagctggggc gcaattggcg
cacgtaccac cgaatcgcag gtgcaccgcg 720aactggcatc agggctttct tgtccggtcg
gcttcaaaaa tggcaccgac ggtacgatta 780aagtggctat cgatgccatt aatgccgccg
gtgcgccgca ctgcttcctg tccgtaacga 840aatgggggca ttcggcgatt gtgaatacca
gcggtaacgg cgattgccat atcattctgc 900gcggcggtaa agagcctaac tacagcgcga
agcacgttgc tgaagtgaaa gaagggctga 960acaaagcagg cctgccagca caggtgatga
tcgatttcag ccatgctaac tcgtccaaac 1020aattcaaaaa gcagatggat gtttgtgctg
acgtttgcca gcagattgcc ggtggcgaaa 1080aggccattat tggcgtgatg gtggaaagcc
atctggtgga aggcaatcag agcctcgaga 1140gcggggagcc gctggcctac ggtaagagca
tcaccgatgc ctgcatcggc tgggaagata 1200ccgatgctct gttacgtcaa ctggcgaatg
cagtaaaagc gcgtcgcggg taaggtttaa 1260ttgtcggatg cgccgtcaga gtggcgtatc
cgatgaatca ccacaggcct gataagtcgc 1320gcagcgtcgc atcaggcaat gtgctccatt
gttagcaaca aaaaagccga ctcacttgca 1380gtcggctttc tcattttaaa cgaatgacgt
ttacttcgct ttaccctggt ttgcaaccgc 1440cgctgctttc gctacatgaa tggtcttcgg
tttccgtgtt tcgtaaagtc tggaaacgcg 1500gaagtcagcg ccctgcacca ttatgttccg
gatctgcatc gcaggatgct gctggctacc 1560ctgtggaaca cctacatctg tattaacgaa
gcgctggcat tgaccctgag tgatttttct 1620ctggtcccgc cgcatccata ccgccagttg
tttaccctca caacgttcca gtaaccgggc 1680atgttcatca tcagtaaccc gtatcgtgag
catcctctct cgtttcatcg gtatcattac 1740ccccatgaac agaaattccc ccttacacgg
aggcatcaag tgaccaaaca ggaaaaaacc 1800gcccttaaca tggcccgctt tatcagaagc
cagacattaa cgcttctgga gaaactcaac 1860gagctggacg cggatgaaca ggcagacatc
tgtgaatcgc ttcacgacca cgctgatgag 1920ctttaccgca gctgcctcgc gcgtttcggt
gatgacggtg aaaacctctg acacatgcag 1980ctcccggaga cggtcacagc ttgtctgtaa
gcggatgccg ggagcagaca agcccgtcag 2040ggcgcgtcag cgggtgttgg cgggtgtcgg
ggcgcagcca tgacccagtc acgtagcgat 2100agcggagtgt atactggctt aactatgcgg
catcagagca gattgtactg agagtgcacc 2160atatgcggtg tgaaataccg cacagatgcg
taaggagaaa ataccgcatc aggcgctctt 2220ccgcttcctc gctcactgac tcgctgcgct
cggtcgttcg gctgcggcga gcggtatcag 2280ctcactcaaa ggcggtaata cggttatcca
cagaatcagg ggataacgca ggaaagaaca 2340tgtgagcaaa aggccagcaa aaggccagga
accgtaaaaa ggccgcgttg ctggcgtttt 2400tccataggct ccgcccccct gacgagcatc
acaaaaatcg acgctcaagt cagaggtggc 2460gaaacccgac aggactataa agataccagg
cgtttccccc tggaagctcc ctcgtgcgct 2520ctcctgttcc gaccctgccg cttaccggat
acctgtccgc ctttctccct tcgggaagcg 2580tggcgctttc tcatagctca cgctgtaggt
atctcagttc ggtgtaggtc gttcgctcca 2640agctgggctg tgtgcacgaa ccccccgttc
agcccgaccg ctgcgcctta tccggtaact 2700atcgtcttga gtccaacccg gtaagacacg
acttatcgcc actggcagca gccactggta 2760acaggattag cagagcgagg tatgtaggcg
gtgctacaga gttcttgaag tggtggccta 2820actacggcta cactagaagg acagtatttg
gtatctgcgc tctgctgaag ccagttacct 2880tcggaaaaag agttggtagc tcttgatccg
gcaaacaaac caccgctggt agcggtggtt 2940tttttgtttg caagcagcag attacgcgca
gaaaaaaagg atctcaagaa gatcctttga 3000tcttttctac ggggtctgac gctcagtgga
acgaaaactc acgttaaggg attttggtca 3060tgagattatc aaaaaggatc ttcacctaga
tccttttaaa ttaaaaatga agttttaaat 3120caatctaaag tatatatgag taaacttggt
ctgacagtta ccaatgctta atcagtgagg 3180cacctatctc agcgatctgt ctatttcgtt
catccatagt tgcctgactc cccgtcgtgt 3240agataactac gatacgggag ggcttaccat
ctggccccag tgctgcaatg ataccgcgag 3300acccacgctc accggctcca gatttatcag
caataaacca gccagccgga agggccgagc 3360gcagaagtgg tcctgcaact ttatccgcct
ccatccagtc tattaattgt tgccgggaag 3420ctagagtaag tagttcgcca gttaatagtt
tgcgcaacgt tgttgccatt gctgcaggca 3480tcgtggtgtc acgctcgtcg tttggtatgg
cttcattcag ctccggttcc caacgatcaa 3540ggcgagttac atgatccccc atgttgtgca
aaaaagcggt tagctccttc ggtcctccga 3600tcgttgtcag aagtaagttg gccgcagtgt
tatcactcat ggttatggca gcactgcata 3660attctcttac tgtcatgcca tccgtaagat
gcttttctgt gactggtgag tactcaacca 3720agtcattctg agaatagtgt atgcggcgac
cgagttgctc ttgcccggcg tcaacacggg 3780ataataccgc gccacatagc agaactttaa
aagtgctcat cattggaaaa cgttcttcgg 3840ggcgaaaact ctcaaggatc ttaccgctgt
tgagatccag ttcgatgtaa cccactcgtg 3900cacccaactg atcttcagca tcttttactt
tcaccagcgt ttctgggtga gcaaaaacag 3960gaaggcaaaa tgccgcaaaa aagggaataa
gggcgacacg gaaatgttga atactcatac 4020tcttcctttt tcaatattat tgaagcattt
atcagggtta ttgtctcatg agcggataca 4080tatttgaatg tatttagaaa aataaacaaa
taggggttcc gcgcacattt ccccgaaaag 4140tgccacctga cgtctaagaa accattatta
tcatgacatt aacctataaa aataggcgta 4200tcacgaggcc ctttcgtctt caagaattct
gaaccagtcc taaaacgagt aaataggacc 4260ggcaattctt caagcaataa acaggaatac
caattattaa aagataactt agtcagatcg 4320tacaataaag ctttgaagaa aaatgcgcct
tattcaatct ttgctataaa aaatggccca 4380aaatctcaca ttggaagaca tttgatgacc
tcatttcttt caatgaaggg cctaacggag 4440ttgactaatg ttgtgggaaa ttggagcgat
aagcgtgctt ctgccgtggc caggacaacg 4500tatactcatc agataacagc aatacctgat
cactacttcg cactagtttc tcggtactat 4560gcatatgatc caatatcaaa ggaaatgata
gcattgaagg atgagactaa tccaattgag 4620gagtggcagc atatagaaca gctaaagggt
agtgctgaag gaagcatacg ataccccgca 4680tggaatggga taatatcaca ggaggtacta
gactaccttt catcctacat aaatagacgc 4740atataagtac gcatttaagc ataaacacgc
actatgccgt tcttctcatg tatatatata 4800tacaggcaac acgcagatat aggtgcgacg
tgaacagtga gctgtatgtg cgcagctcgc 4860gttgcatttt cggaagcgct cgttttcgga
aacgctttga agttcctatt ccgaagttcc 4920tattctctag aaagtatagg aacttcagag
cgcttttgaa aaccaaaagc gctctgaaga 4980cgcactttca aaaaaccaaa aacgcaccgg
actgtaacga gctactaaaa tattgcgaat 5040accgcttcca caaacattgc tcaaaagtat
ctctttgcta tatatctctg tgctatatcc 5100ctatataacc tacccatcca cctttcgctc
cttgaacttg catctaaact cgacctctac 5160attttttatg tttatctcta gtattactct
ttagacaaaa aaattgtagt aagaactatt 5220catagagtga atcgaaaaca atacgaaaat
gtaaacattt cctatacgta gtatatagag 5280acaaaataga agaaaccgtt cataattttc
tgaccaatga agaatcatca acgctatcac 5340tttctgttca caaagtatgc gcaatccaca
tcggtataga atataatcgg ggatgccttt 5400atcttgaaaa aatgcacccg cagcttcgct
agtaatcagt aaacgcggga agtggagtca 5460ggcttttttt atggaagaga aaatagacac
caaagtagcc ttcttctaac cttaacggac 5520ctacagtgca aaaagttatc aagagactgc
attatagagc gcacaaagga gaaaaaaagt 5580aatctaagat gctttgttag aaaaatagcg
ctctcgggat gcatttttgt agaacaaaaa 5640agaagtatag attctttgtt ggtaaaatag
cgctctcgcg ttgcatttct gttctgtaaa 5700aatgcagctc agattctttg tttgaaaaat
tagcgctctc gcgttgcatt tttgttttac 5760aaaaatgaag cacagattct tcgttggtaa
aatagcgctt tcgcgttgca tttctgttct 5820gtaaaaatgc agctcagatt ctttgtttga
aaaattagcg ctctcgcgtt gcatttttgt 5880tctacaaaat gaagcacaga tgcttcgtta
acaaagatat gctattgaag tgcaagatgg 5940aaacgcagaa aatgaaccgg ggatgcgacg
tgcaagatta cctatgcaat agatgcaata 6000gtttctccag gaaccgaaat acatacattg
tcttccgtaa agcgctagac tatatattat 6060tatacaggtt caaatatact atctgtttca
gggaaaactc ccaggttcgg atgttcaaaa 6120ttcaatgatg ggtaacaagt acgatcgtaa
atctgtaaaa cagtttgtcg gatattaggc 6180tgtatctcct caaagcgtat tcgaatatca
ttgagaagct gcagcgtcac atcggataat 6240aatgatggca gccattgtag aagtgccttt
tgcatttcta gtctctttct cggtctagct 6300agttttacta catcgcgaag atagaatctt
agatcacact gcctttgctg agctggatca 6360atagagtaac aaaagagtgg taaggcctcg
ttaaaggaca aggacctgag cggaagtgta 6420tcgtacagta gacggagtat actagtatag
tctatagtcc gtggaattct catgtttgac 6480agcttatcat cgataagctt ttcaattcaa
ttcatcattt tttttttatt cttttttttg 6540atttcggttt ctttgaaatt tttttgattc
ggtaatctcc gaacagaagg aagaacgaag 6600gaaggagcac agacttagat tggtatatat
acgcatatgt agtgttgaag aaacatgaaa 6660ttgcccagta ttcttaaccc aactgcacag
aacaaaaacc tgcaggaaac gaagataaat 6720catgtcgaaa gctacatata aggaacgtgc
tgctactcat cctagtcctg ttgctgccaa 6780gctatttaat atcatgcacg aaaagcaaac
aaacttgtgt gcttcattgg atgttcgtac 6840caccaaggaa ttactggagt tagttgaagc
attaggtccc aaaatttgtt tactaaaaac 6900acatgtggat atcttgactg atttttccat
ggagggcaca gttaagccgc taaaggcatt 6960atccgccaag tacaattttt tactcttcga
agacagaaaa tttgctgaca ttggtaatac 7020agtcaaattg cagtactctg cgggtgtata
cagaatagca gaatgggcag acattacgaa 7080tgcacacggt gtggtgggcc caggtattgt
tagcggtttg aagcaggcgg cagaagaagt 7140aacaaaggaa cctagaggcc ttttgatgtt
agcagaattg tcatgcaagg gctccctatc 7200tactggagaa tatactaagg gtactgttga
cattgcgaag agcgacaaag attttgttat 7260cggctttatt gctcaaagag acatgggtgg
aagagatgaa ggttacgatt ggttgattat 7320gacacccggt gtgggtttag atgacaaggg
agacgcattg ggtcaacagt atagaaccgt 7380ggatgatgtg gtctctacag gatctgacat
tattattgtt ggaagaggac tatttgcaaa 7440gggaagggat gctaaggtag agggtgaacg
ttacagaaaa gcaggctggg aagcatattt 7500gagaagatgc ggccagcaaa actaaaaaac
tgtattataa gtaaatgcat gtatactaaa 7560ctcacaaatt agagcttcaa tttaattata
tcagttatta cccgggaatc tcggtcgtaa 7620tgaaaggaaa agcgcaacgg acgggcgagt
agattgcgca acatgcgagc atgatccaga 7680gatttctgaa gcagcaaaag gatgttccat
gtacatgacg cgcggcttgc ggtaaattgt 7740tggcaaattt tccggcgtag cccaaaacgc
gctgtcgtca agtcgttaag ggcgtgccct 7800tcatcatccg atctggagtc aaaatgtcct
cacgtaaaga gcttgccaat gctattcgtg 7860cgctgagcat ggacgcagta cagaaagcca
aatccggtca cccgggtgcc cctatgggta 7920tggctgacat tgccgaagtc ctgtggcgtg
atttcctgaa acacaacccg cagaatccgt 7980cctgggctga ccgtgaccgc ttcgtgctgt
ccaacggcca cggctccatg ctgatctaca 8040gcctgctgca cctcaccggt tacgatctgc
cgatggaaga actgaaaaac ttccgtcagc 8100tgcactctaa aactccgggc cacccggaag
taggttatac cgctggtgtg gaaaccacca 8160ccggtccgct gggtcagggt attgccaacg
cagtcggtat ggcgattgca gaaaaaacgc 8220tggcggcgca gtttaaccgt ccaggtcacg
acattgtcga ccactacacc tacgccttca 8280tgggcgacgg ctgcatgatg gaaggcatct
cccacgaagt ttgctctctg gcgggtacgc 8340tgaagctggg taaactgatt gcgttctacg
atgacaacgg tatctcaatc gatggtcacg 8400ttgaaggctg gttcactgac gacaccgcaa
tgcgtttcga agcttacggc tggcacgtta 8460ttcgcgacat cgacggtcat gacgcggcat
ccatcaaacg cgcagtagaa gaagcgcgcg 8520cagtgactga caaaccgtcc ctgctgatgt
gcaaaaccat catcggtttc ggttccccga 8580acaaagccgg tacccacgac tcccacggtg
cgccgctggg cgacgctgaa attgccctga 8640cccgcgaaca gctgggctgg aaatacgcgc
cgttcgaaat cccgtctgaa atctatgctc 8700agtgggatgc gaaagaagca ggccaggcga
aagaatctgc atggaatgag aagtttgcgg 8760cttacgcgaa agcttatccg caggaagcgg
ctgaatttac ccgccgtatg aaaggcgaaa 8820tgccgtctga cttcgacgcc aaagcgaaag
agtttatcgc taaactgcag gctaatccgg 8880cgaaaatcgc cagccgtaaa gcgtcgcaga
atgctatcga agcgttcggc ccgctgttgc 8940ctgaattcct cggcggctct gctgacctgg
caccgtctaa cctgaccctg tggtctggtt 9000ctaaagcaat caacgaagat gctgcaggta
actacatcca ctacggtgtt cgcgagttcg 9060gtatgaccgc gattgctaac ggtatctccc
tgcacggtgg tttcctgccg tacacctcca 9120ccttcctgat gttcgtggaa tacgcacgta
acgccgtacg tatggctgcg ctgatgaaac 9180agcgtcaggt gatggtttac acccacgact
ccatcggtct gggcgaagat ggcccgactc 9240accagccggt tgagcaggtc gcttctctgc
gcgtgacccc gaacatgtct acatggcgtc 9300cgtgtgacca ggttgaatcc gcggtcgcgt
ggaaatacgg cgttgagcgt caggacggcc 9360cgactgcgct tatcctctcc cgtcagaacc
tggcgcagca ggaacgaact gaagagcaac 9420tggcaaacat cgcgcgcggt ggttatgtgc
tgaaagactg cgccggtcag ccggaactga 9480ttttcatcgc taccggttca gaagttgaac
tggctgttgc tgcctacgaa aaactgactg 9540ccgaaggcgt gaaagcgcgc gtggtgtcca
tgccgtctac cgacgcattt gacaagcagg 9600atgctgctta ccgtgaatcc gtactgccga
aagcggttac tgcacgcgtt gctgtagaag 9660cgggtattgc tgactactgg tacaagtatg
ttggcctgaa cggtgctatc gtcggtatga 9720ccaccttcgg tgaatctgct ccggcagagc
tgctgtttga agagttcggc ttcactgttg 9780ataacgttgt tgcgaaagca aaagaactgc
tgtaattagc atttcgggta aaaaggtcgc 9840ttcggcgacc ttttttatta ccttgatatg
tccgtttgcg gacaagcaat agataaagcg 9900tgttgtagat cacaaatatt tatatgcaat
aaatatcaat tatgtaatat gcatcacgat 9960atgcgtattg acatttgttg ttataactat
aactcaatgt tatataagaa attaa 10015319065DNAEscherichia
colimisc_feature(1)..(9065)DNA sequence of the plasmid pCP54 31acatgaatgg
tcttcggttt ccgtgtttcg taaagtctgg aaacgcggaa gtcagcgccc 60tgcaccatta
tgttccggat ctgcatcgca ggatgctgct ggctaccctg tggaacacct 120acatctgtat
taacgaagcg ctggcattga ccctgagtga tttttctctg gtcccgccgc 180atccataccg
ccagttgttt accctcacaa cgttccagta accgggcatg ttcatcatca 240gtaacccgta
tcgtgagcat cctctctcgt ttcatcggta tcattacccc catgaacaga 300aattccccct
tacacggagg catcaagtga ccaaacagga aaaaaccgcc cttaacatgg 360cccgctttat
cagaagccag acattaacgc ttctggagaa actcaacgag ctggacgcgg 420atgaacaggc
agacatctgt gaatcgcttc acgaccacgc tgatgagctt taccgcagct 480gcctcgcgcg
tttcggtgat gacggtgaaa acctctgaca catgcagctc ccggagacgg 540tcacagcttg
tctgtaagcg gatgccggga gcagacaagc ccgtcagggc gcgtcagcgg 600gtgttggcgg
gtgtcggggc gcagccatga cccagtcacg tagcgatagc ggagtgtata 660ctggcttaac
tatgcggcat cagagcagat tgtactgaga gtgcaccata tgcggtgtga 720aataccgcac
agatgcgtaa ggagaaaata ccgcatcagg cgctcttccg cttcctcgct 780cactgactcg
ctgcgctcgg tcgttcggct gcggcgagcg gtatcagctc actcaaaggc 840ggtaatacgg
ttatccacag aatcagggga taacgcagga aagaacatgt gagcaaaagg 900ccagcaaaag
gccaggaacc gtaaaaaggc cgcgttgctg gcgtttttcc ataggctccg 960cccccctgac
gagcatcaca aaaatcgacg ctcaagtcag aggtggcgaa acccgacagg 1020actataaaga
taccaggcgt ttccccctgg aagctccctc gtgcgctctc ctgttccgac 1080cctgccgctt
accggatacc tgtccgcctt tctcccttcg ggaagcgtgg cgctttctca 1140tagctcacgc
tgtaggtatc tcagttcggt gtaggtcgtt cgctccaagc tgggctgtgt 1200gcacgaaccc
cccgttcagc ccgaccgctg cgccttatcc ggtaactatc gtcttgagtc 1260caacccggta
agacacgact tatcgccact ggcagcagcc actggtaaca ggattagcag 1320agcgaggtat
gtaggcggtg ctacagagtt cttgaagtgg tggcctaact acggctacac 1380tagaaggaca
gtatttggta tctgcgctct gctgaagcca gttaccttcg gaaaaagagt 1440tggtagctct
tgatccggca aacaaaccac cgctggtagc ggtggttttt ttgtttgcaa 1500gcagcagatt
acgcgcagaa aaaaaggatc tcaagaagat cctttgatct tttctacggg 1560gtctgacgct
cagtggaacg aaaactcacg ttaagggatt ttggtcatga gattatcaaa 1620aaggatcttc
acctagatcc ttttaaatta aaaatgaagt tttaaatcaa tctaaagtat 1680atatgagtaa
acttggtctg agtggcggtt ttcatggctt gttatgactg tttttttggg 1740gtacagtcta
tgcctcgggc atccaagcag caagcgcgtt acgccgtggg tcgatgtttg 1800atgttatgga
gcagcaacga tgttacgcag cagggcagtc gccctaaaac aaagttaaac 1860atcatgaggg
aagcggtgat cgccgaagta tcgactcaac tatcagaggt agttggcgtc 1920atcgagcgcc
atctcgaacc gacgttgctg gccgtacatt tgtacggctc cgcagtggat 1980ggcggcctga
agccacacag tgatattgat ttgctggtta cggtgaccgt aaggcttgat 2040gaaacaacgc
ggcgagcttt gatcaacgac cttttggaaa cttcggcttc ccctggagag 2100agcgagattc
tccgcgctgt agaagtcacc attgttgtgc acgacgacat cattccgtgg 2160cgttatccag
ctaagcgcga actgcaattt ggagaatggc agcgcaatga cattcttgca 2220ggtatcttcg
agccagccac gatcgacatt gatctggcta tcttgctgac aaaagcaaga 2280gaacatagcg
ttgccttggt aggtccagcg gcggaggaac tctttgatcc ggttcctgaa 2340caggatctat
ttgaggcgct aaatgaaacc ttaacgctat ggaactcgcc gcccgactgg 2400gctggcgatg
agcgaaatgt agtgcttacg ttgtcccgca tttggtacag cgcagtaacc 2460ggcaaaatcg
cgccgaagga tgtcgctgcc gactgggcaa tggagcgcct gccggcccag 2520tatcagcccg
tcatacttga agctagacag gcttatcttg gacaagaaga agatcgcttg 2580gcctcgcgcg
cagatcagtt ggaagaattt gtccactacg tgaaaggcga gatcaccaag 2640gtagtcggca
aataatgtct aacaattcgt tcaagccgac gccgcttcgc ggcgcggctt 2700aactcaagcg
ttagatgcac taagcacata attgctcaca gccaaactat cagaattctg 2760aaccagtcct
aaaacgagta aataggaccg gcaattcttc aagcaataaa caggaatacc 2820aattattaaa
agataactta gtcagatcgt acaataaagc tttgaagaaa aatgcgcctt 2880attcaatctt
tgctataaaa aatggcccaa aatctcacat tggaagacat ttgatgacct 2940catttctttc
aatgaagggc ctaacggagt tgactaatgt tgtgggaaat tggagcgata 3000agcgtgcttc
tgccgtggcc aggacaacgt atactcatca gataacagca atacctgatc 3060actacttcgc
actagtttct cggtactatg catatgatcc aatatcaaag gaaatgatag 3120cattgaagga
tgagactaat ccaattgagg agtggcagca tatagaacag ctaaagggta 3180gtgctgaagg
aagcatacga taccccgcat ggaatgggat aatatcacag gaggtactag 3240actacctttc
atcctacata aatagacgca tataagtacg catttaagca taaacacgca 3300ctatgccgtt
cttctcatgt atatatatat acaggcaaca cgcagatata ggtgcgacgt 3360gaacagtgag
ctgtatgtgc gcagctcgcg ttgcattttc ggaagcgctc gttttcggaa 3420acgctttgaa
gttcctattc cgaagttcct attctctaga aagtatagga acttcagagc 3480gcttttgaaa
accaaaagcg ctctgaagac gcactttcaa aaaaccaaaa acgcaccgga 3540ctgtaacgag
ctactaaaat attgcgaata ccgcttccac aaacattgct caaaagtatc 3600tctttgctat
atatctctgt gctatatccc tatataacct acccatccac ctttcgctcc 3660ttgaacttgc
atctaaactc gacctctaca ttttttatgt ttatctctag tattactctt 3720tagacaaaaa
aattgtagta agaactattc atagagtgaa tcgaaaacaa tacgaaaatg 3780taaacatttc
ctatacgtag tatatagaga caaaatagaa gaaaccgttc ataattttct 3840gaccaatgaa
gaatcatcaa cgctatcact ttctgttcac aaagtatgcg caatccacat 3900cggtatagaa
tataatcggg gatgccttta tcttgaaaaa atgcacccgc agcttcgcta 3960gtaatcagta
aacgcgggaa gtggagtcag gcttttttta tggaagagaa aatagacacc 4020aaagtagcct
tcttctaacc ttaacggacc tacagtgcaa aaagttatca agagactgca 4080ttatagagcg
cacaaaggag aaaaaaagta atctaagatg ctttgttaga aaaatagcgc 4140tctcgggatg
catttttgta gaacaaaaaa gaagtataga ttctttgttg gtaaaatagc 4200gctctcgcgt
tgcatttctg ttctgtaaaa atgcagctca gattctttgt ttgaaaaatt 4260agcgctctcg
cgttgcattt ttgttttaca aaaatgaagc acagattctt cgttggtaaa 4320atagcgcttt
cgcgttgcat ttctgttctg taaaaatgca gctcagattc tttgtttgaa 4380aaattagcgc
tctcgcgttg catttttgtt ctacaaaatg aagcacagat gcttcgttaa 4440caaagatatg
ctattgaagt gcaagatgga aacgcagaaa atgaaccggg gatgcgacgt 4500gcaagattac
ctatgcaata gatgcaatag tttctccagg aaccgaaata catacattgt 4560cttccgtaaa
gcgctagact atatattatt atacaggttc aaatatacta tctgtttcag 4620ggaaaactcc
caggttcgga tgttcaaaat tcaatgatgg gtaacaagta cgatcgtaaa 4680tctgtaaaac
agtttgtcgg atattaggct gtatctcctc aaagcgtatt cgaatatcat 4740tgagaagctg
cagcgtcaca tcggataata atgatggcag ccattgtaga agtgcctttt 4800gcatttctag
tctctttctc ggtctagcta gttttactac atcgcgaaga tagaatctta 4860gatcacactg
cctttgctga gctggatcaa tagagtaaca aaagagtggt aaggcctcgt 4920taaaggacaa
ggacctgagc ggaagtgtat cgtacagtag acggagtata ctagtatagt 4980ctatagtccg
tggaattctc atgtttgaca gcttatcatc gataagcttt tcaattcaat 5040tcatcatttt
ttttttattc ttttttttga tttcggtttc tttgaaattt ttttgattcg 5100gtaatctccg
aacagaagga agaacgaagg aaggagcaca gacttagatt ggtatatata 5160cgcatatgta
gtgttgaaga aacatgaaat tgcccagtat tcttaaccca actgcacaga 5220acaaaaacct
gcaggaaacg aagataaatc atgtcgaaag ctacatataa ggaacgtgct 5280gctactcatc
ctagtcctgt tgctgccaag ctatttaata tcatgcacga aaagcaaaca 5340aacttgtgtg
cttcattgga tgttcgtacc accaaggaat tactggagtt agttgaagca 5400ttaggtccca
aaatttgttt actaaaaaca catgtggata tcttgactga tttttccatg 5460gagggcacag
ttaagccgct aaaggcatta tccgccaagt acaatttttt actcttcgaa 5520gacagaaaat
ttgctgacat tggtaataca gtcaaattgc agtactctgc gggtgtatac 5580agaatagcag
aatgggcaga cattacgaat gcacacggtg tggtgggccc aggtattgtt 5640agcggtttga
agcaggcggc agaagaagta acaaaggaac ctagaggcct tttgatgtta 5700gcagaattgt
catgcaaggg ctccctatct actggagaat atactaaggg tactgttgac 5760attgcgaaga
gcgacaaaga ttttgttatc ggctttattg ctcaaagaga catgggtgga 5820agagatgaag
gttacgattg gttgattatg acacccggtg tgggtttaga tgacaaggga 5880gacgcattgg
gtcaacagta tagaaccgtg gatgatgtgg tctctacagg atctgacatt 5940attattgttg
gaagaggact atttgcaaag ggaagggatg ctaaggtaga gggtgaacgt 6000tacagaaaag
caggctggga agcatatttg agaagatgcg gccagcaaaa ctaaaaaact 6060gtattataag
taaatgcatg tatactaaac tcacaaatta gagcttcaat ttaattatat 6120cagttattac
ccgggaatct cggtcgtaat gacttgaaat aattaacaaa caaaggagtt 6180acagttagaa
attgtaggag agatctcgtt tttcgcgaca atctggcgtt tttcttgcta 6240attccaggat
taatccgttc atagtgtaaa accccgttta cacattctga cggaagatat 6300agattggaag
tattgcattc actaagataa gtatggcaac actggaacag acatgaatta 6360tcagaacgac
gatttacgca tcaaagaaat caaagagtta cttcctcctg tcgcattgct 6420ggaaaaattc
cccgctactg aaaatgccgc gaatacggtt gcccatgccc gaaaagcgat 6480ccataagatc
ctgaaaggta atgatgatcg cctgttggtt gtgattggcc catgctcaat 6540tcatgatcct
gtcgcggcaa aagagtatgc cactcgcttg ctggcgctgc gtgaagagct 6600gaaagatgag
ctggaaatcg taatgcgcgt ctattttgaa aagccgcgta ccacggtggg 6660ctggaaaggg
ctgattaacg atccgcatat ggataatagc ttccagatca acgacggtct 6720gcgtatagcc
cgtaaattgc tgcttgatat taacgacagc ggtctgccag cggcaggtga 6780gtttctcgat
atgatcaccc cacaatatct cgctgacctg atgagctggg gcgcaattgg 6840cgcacgtacc
accgaatcgc aggtgcaccg cgaactggca tcagggcttt cttgtccggt 6900cggcttcaaa
aatggcaccg acggtacgat taaagtggct atcgatgcca ttaatgccgc 6960cggtgcgccg
cactgcttcc tgtccgtaac gaaatggggg cattcggcga ttgtgaatac 7020cagcggtaac
ggcgattgcc atatcattct gcgcggcggt aaagagccta actacagcgc 7080gaagcacgtt
gctgaagtga aagaagggct gaacaaagca ggcctgccag cacaggtgat 7140gatcgatttc
agccatgcta actcgtccaa acaattcaaa aagcagatgg atgtttgtgc 7200tgacgtttgc
cagcagattg ccggtggcga aaaggccatt attggcgtga tggtggaaag 7260ccatctggtg
gaaggcaatc agagcctcga gagcggggag ccgctggcct acggtaagag 7320catcaccgat
gcctgcatcg gctgggaaga taccgatgct ctgttacgtc aactggcgaa 7380tgcagtaaaa
gcgcgtcgcg ggtaaggttt aattgtcgga tgcgccgtca gagtggcgta 7440tccgatgaat
caccacaggc ctgataagtc gcgcagcgtc gcatcaggca atgtgctcca 7500ttgttagcaa
caaaaaagcc gactcacttg cagtcggctt tctcatttta aacgaatgac 7560gtttacttcg
ctttaccctg gtttgcaacc gccgctgctt tcgctctcga ggctattgac 7620gacagctatg
gttcactgtc caccaaccaa aactgtgctc agtaccgcca atatttctcc 7680cttgaggggt
acaaagaggt gtccctagaa gagatccacg ctgtgtaaaa attttacaaa 7740aaggtattga
ctttccctac agggtgtgta ataatttaat tacaggcggg ggcaaccccg 7800cctgttctag
aggaggagga atcgccatgg agaggattgt cgttactctc ggggaacgta 7860gttacccaat
taccatcgca tctggtttgt ttaatgaacc agcttcattc ttaccgctga 7920aatcgggcga
gcaggtcatg ttggtcacca acgaaaccct ggctcctctg tatctcgata 7980aggtccgcgg
cgtacttgaa caggcgggtg ttaacgtcga tagcgttatc ctccctgacg 8040gcgagcagta
taaaagcctg gctgtactcg ataccgtctt tacggcgttg ttacaaaagc 8100cgcatggtcg
cgatactacg ctggtggcgc ttggcggcgg cgtagtgggc gatctgaccg 8160gcttcgcggc
ggcgagttat cagcgcggtg ttcgtttcat tcaagtcccg acgacgttac 8220tgtcgcaggt
cgattcctcc gttggcggca aaactgcggt caaccatccc ctcggtaaaa 8280acatgattgg
cgcgttctac cagcctgctt cagtggtggt ggatctcgac tgtctgaaaa 8340cgcttccccc
gcgtgagtta gcgtcggggc tggcagaagt catcaaatac ggcattattc 8400ttgacggtgc
gtttttcaac tggctggaag agaatctgga tgcgttgttg cgtctggacg 8460gtccggcaat
ggcgtactgt attcgccgtt gttgtgaact gaaggcagaa gttgtcgccg 8520ccgacgagcg
cgaaaccggg ttacgtgctt tactgaatct gggacacacc tttggtcatg 8580ccattgaagc
tgaaatgggg tatggcaatt ggttacatgg tgaagcggtc gctgcgggta 8640tggtgatggc
ggcgcggacg tcggaacgtc tcgggcagtt tagttctgcc gaaacgcagc 8700gtattataac
cctgctcacg cgggctgggt taccggtcaa tgggccgcgc gaaatgtccg 8760cgcaggcgta
tttaccgcat atgctgcgtg acaagaaagt ccttgcggga gagatgcgct 8820taattcttcc
gttggcaatt ggtaagagtg aagttcgcag cggcgtttcg cacgagcttg 8880ttcttaacgc
cattgccgat tgtcaatcag cgtaatcatc gttcatgcct gatgccgcta 8940tgtaggccgg
ataaggcgtt cacgccgcat ccggcaaccg atgcctgatg cgacgcggtc 9000gcgtcttatc
aggcctacag gtcgatgccg atatgtacat cgtattcggc aattaataca 9060tagca
90653211475DNAEscherichia colimisc_feature(1)..(11475)DNA sequence of the
plasmid pCP55 32acatgaatgg tcttcggttt ccgtgtttcg taaagtctgg aaacgcggaa
gtcagcgccc 60tgcaccatta tgttccggat ctgcatcgca ggatgctgct ggctaccctg
tggaacacct 120acatctgtat taacgaagcg ctggcattga ccctgagtga tttttctctg
gtcccgccgc 180atccataccg ccagttgttt accctcacaa cgttccagta accgggcatg
ttcatcatca 240gtaacccgta tcgtgagcat cctctctcgt ttcatcggta tcattacccc
catgaacaga 300aattccccct tacacggagg catcaagtga ccaaacagga aaaaaccgcc
cttaacatgg 360cccgctttat cagaagccag acattaacgc ttctggagaa actcaacgag
ctggacgcgg 420atgaacaggc agacatctgt gaatcgcttc acgaccacgc tgatgagctt
taccgcagct 480gcctcgcgcg tttcggtgat gacggtgaaa acctctgaca catgcagctc
ccggagacgg 540tcacagcttg tctgtaagcg gatgccggga gcagacaagc ccgtcagggc
gcgtcagcgg 600gtgttggcgg gtgtcggggc gcagccatga cccagtcacg tagcgatagc
ggagtgtata 660ctggcttaac tatgcggcat cagagcagat tgtactgaga gtgcaccata
tgcggtgtga 720aataccgcac agatgcgtaa ggagaaaata ccgcatcagg cgctcttccg
cttcctcgct 780cactgactcg ctgcgctcgg tcgttcggct gcggcgagcg gtatcagctc
actcaaaggc 840ggtaatacgg ttatccacag aatcagggga taacgcagga aagaacatgt
gagcaaaagg 900ccagcaaaag gccaggaacc gtaaaaaggc cgcgttgctg gcgtttttcc
ataggctccg 960cccccctgac gagcatcaca aaaatcgacg ctcaagtcag aggtggcgaa
acccgacagg 1020actataaaga taccaggcgt ttccccctgg aagctccctc gtgcgctctc
ctgttccgac 1080cctgccgctt accggatacc tgtccgcctt tctcccttcg ggaagcgtgg
cgctttctca 1140tagctcacgc tgtaggtatc tcagttcggt gtaggtcgtt cgctccaagc
tgggctgtgt 1200gcacgaaccc cccgttcagc ccgaccgctg cgccttatcc ggtaactatc
gtcttgagtc 1260caacccggta agacacgact tatcgccact ggcagcagcc actggtaaca
ggattagcag 1320agcgaggtat gtaggcggtg ctacagagtt cttgaagtgg tggcctaact
acggctacac 1380tagaaggaca gtatttggta tctgcgctct gctgaagcca gttaccttcg
gaaaaagagt 1440tggtagctct tgatccggca aacaaaccac cgctggtagc ggtggttttt
ttgtttgcaa 1500gcagcagatt acgcgcagaa aaaaaggatc tcaagaagat cctttgatct
tttctacggg 1560gtctgacgct cagtggaacg aaaactcacg ttaagggatt ttggtcatga
gattatcaaa 1620aaggatcttc acctagatcc ttttaaatta aaaatgaagt tttaaatcaa
tctaaagtat 1680atatgagtaa acttggtctg acagttacca atgcttaatc agtgaggcac
ctatctcagc 1740gatctgtcta tttcgttcat ccatagttgc ctgactcccc gtcgtgtaga
taactacgat 1800acgggagggc ttaccatctg gccccagtgc tgcaatgata ccgcgagacc
cacgctcacc 1860ggctccagat ttatcagcaa taaaccagcc agccggaagg gccgagcgca
gaagtggtcc 1920tgcaacttta tccgcctcca tccagtctat taattgttgc cgggaagcta
gagtaagtag 1980ttcgccagtt aatagtttgc gcaacgttgt tgccattgct gcaggcatcg
tggtgtcacg 2040ctcgtcgttt ggtatggctt cattcagctc cggttcccaa cgatcaaggc
gagttacatg 2100atcccccatg ttgtgcaaaa aagcggttag ctccttcggt cctccgatcg
ttgtcagaag 2160taagttggcc gcagtgttat cactcatggt tatggcagca ctgcataatt
ctcttactgt 2220catgccatcc gtaagatgct tttctgtgac tggtgagtac tcaaccaagt
cattctgaga 2280atagtgtatg cggcgaccga gttgctcttg cccggcgtca acacgggata
ataccgcgcc 2340acatagcaga actttaaaag tgctcatcat tggaaaacgt tcttcggggc
gaaaactctc 2400aaggatctta ccgctgttga gatccagttc gatgtaaccc actcgtgcac
ccaactgatc 2460ttcagcatct tttactttca ccagcgtttc tgggtgagca aaaacaggaa
ggcaaaatgc 2520cgcaaaaaag ggaataaggg cgacacggaa atgttgaata ctcatactct
tcctttttca 2580atattattga agcatttatc agggttattg tctcatgagc ggatacatat
ttgaatgtat 2640ttagaaaaat aaacaaatag gggttccgcg cacatttccc cgaaaagtgc
cacctgacgt 2700ctaagaaacc attattatca tgacattaac ctataaaaat aggcgtatca
cgaggccctt 2760tcgtcttcaa gaattctgaa ccagtcctaa aacgagtaaa taggaccggc
aattcttcaa 2820gcaataaaca ggaataccaa ttattaaaag ataacttagt cagatcgtac
aataaagctt 2880tgaagaaaaa tgcgccttat tcaatctttg ctataaaaaa tggcccaaaa
tctcacattg 2940gaagacattt gatgacctca tttctttcaa tgaagggcct aacggagttg
actaatgttg 3000tgggaaattg gagcgataag cgtgcttctg ccgtggccag gacaacgtat
actcatcaga 3060taacagcaat acctgatcac tacttcgcac tagtttctcg gtactatgca
tatgatccaa 3120tatcaaagga aatgatagca ttgaaggatg agactaatcc aattgaggag
tggcagcata 3180tagaacagct aaagggtagt gctgaaggaa gcatacgata ccccgcatgg
aatgggataa 3240tatcacagga ggtactagac tacctttcat cctacataaa tagacgcata
taagtacgca 3300tttaagcata aacacgcact atgccgttct tctcatgtat atatatatac
aggcaacacg 3360cagatatagg tgcgacgtga acagtgagct gtatgtgcgc agctcgcgtt
gcattttcgg 3420aagcgctcgt tttcggaaac gctttgaagt tcctattccg aagttcctat
tctctagaaa 3480gtataggaac ttcagagcgc ttttgaaaac caaaagcgct ctgaagacgc
actttcaaaa 3540aaccaaaaac gcaccggact gtaacgagct actaaaatat tgcgaatacc
gcttccacaa 3600acattgctca aaagtatctc tttgctatat atctctgtgc tatatcccta
tataacctac 3660ccatccacct ttcgctcctt gaacttgcat ctaaactcga cctctacatt
ttttatgttt 3720atctctagta ttactcttta gacaaaaaaa ttgtagtaag aactattcat
agagtgaatc 3780gaaaacaata cgaaaatgta aacatttcct atacgtagta tatagagaca
aaatagaaga 3840aaccgttcat aattttctga ccaatgaaga atcatcaacg ctatcacttt
ctgttcacaa 3900agtatgcgca atccacatcg gtatagaata taatcgggga tgcctttatc
ttgaaaaaat 3960gcacccgcag cttcgctagt aatcagtaaa cgcgggaagt ggagtcaggc
tttttttatg 4020gaagagaaaa tagacaccaa agtagccttc ttctaacctt aacggaccta
cagtgcaaaa 4080agttatcaag agactgcatt atagagcgca caaaggagaa aaaaagtaat
ctaagatgct 4140ttgttagaaa aatagcgctc tcgggatgca tttttgtaga acaaaaaaga
agtatagatt 4200ctttgttggt aaaatagcgc tctcgcgttg catttctgtt ctgtaaaaat
gcagctcaga 4260ttctttgttt gaaaaattag cgctctcgcg ttgcattttt gttttacaaa
aatgaagcac 4320agattcttcg ttggtaaaat agcgctttcg cgttgcattt ctgttctgta
aaaatgcagc 4380tcagattctt tgtttgaaaa attagcgctc tcgcgttgca tttttgttct
acaaaatgaa 4440gcacagatgc ttcgttaaca aagatatgct attgaagtgc aagatggaaa
cgcagaaaat 4500gaaccgggga tgcgacgtgc aagattacct atgcaataga tgcaatagtt
tctccaggaa 4560ccgaaataca tacattgtct tccgtaaagc gctagactat atattattat
acaggttcaa 4620atatactatc tgtttcaggg aaaactccca ggttcggatg ttcaaaattc
aatgatgggt 4680aacaagtacg atcgtaaatc tgtaaaacag tttgtcggat attaggctgt
atctcctcaa 4740agcgtattcg aatatcattg agaagctgca gcgtcacatc ggataataat
gatggcagcc 4800attgtagaag tgccttttgc atttctagtc tctttctcgg tctagctagt
tttactacat 4860cgcgaagata gaatcttaga tcacactgcc tttgctgagc tggatcaata
gagtaacaaa 4920agagtggtaa ggcctcgtta aaggacaagg acctgagcgg aagtgtatcg
tacagtagac 4980ggagtatact agtatagtct atagtccgtg gaattctcat gtttgacagc
ttatcatcga 5040taagcttttc aattcaattc atcatttttt ttttattctt ttttttgatt
tcggtttctt 5100tgaaattttt ttgattcggt aatctccgaa cagaaggaag aacgaaggaa
ggagcacaga 5160cttagattgg tatatatacg catatgtagt gttgaagaaa catgaaattg
cccagtattc 5220ttaacccaac tgcacagaac aaaaacctgc aggaaacgaa gataaatcat
gtcgaaagct 5280acatataagg aacgtgctgc tactcatcct agtcctgttg ctgccaagct
atttaatatc 5340atgcacgaaa agcaaacaaa cttgtgtgct tcattggatg ttcgtaccac
caaggaatta 5400ctggagttag ttgaagcatt aggtcccaaa atttgtttac taaaaacaca
tgtggatatc 5460ttgactgatt tttccatgga gggcacagtt aagccgctaa aggcattatc
cgccaagtac 5520aattttttac tcttcgaaga cagaaaattt gctgacattg gtaatacagt
caaattgcag 5580tactctgcgg gtgtatacag aatagcagaa tgggcagaca ttacgaatgc
acacggtgtg 5640gtgggcccag gtattgttag cggtttgaag caggcggcag aagaagtaac
aaaggaacct 5700agaggccttt tgatgttagc agaattgtca tgcaagggct ccctatctac
tggagaatat 5760actaagggta ctgttgacat tgcgaagagc gacaaagatt ttgttatcgg
ctttattgct 5820caaagagaca tgggtggaag agatgaaggt tacgattggt tgattatgac
acccggtgtg 5880ggtttagatg acaagggaga cgcattgggt caacagtata gaaccgtgga
tgatgtggtc 5940tctacaggat ctgacattat tattgttgga agaggactat ttgcaaaggg
aagggatgct 6000aaggtagagg gtgaacgtta cagaaaagca ggctgggaag catatttgag
aagatgcggc 6060cagcaaaact aaaaaactgt attataagta aatgcatgta tactaaactc
acaaattaga 6120gcttcaattt aattatatca gttattaccc gggaatctcg gtcgtaatga
aaggaaaagc 6180gcaacggacg ggcgagtaga ttgcgcaaca tgcgagcatg atccagagat
ttctgaagca 6240gcaaaaggat gttccatgta catgacgcgc ggcttgcggt aaattgttgg
caaattttcc 6300ggcgtagccc aaaacgcgct gtcgtcaagt cgttaagggc gtgcccttca
tcatccgatc 6360tggagtcaaa atgtcctcac gtaaagagct tgccaatgct attcgtgcgc
tgagcatgga 6420cgcagtacag aaagccaaat ccggtcaccc gggtgcccct atgggtatgg
ctgacattgc 6480cgaagtcctg tggcgtgatt tcctgaaaca caacccgcag aatccgtcct
gggctgaccg 6540tgaccgcttc gtgctgtcca acggccacgg ctccatgctg atctacagcc
tgctgcacct 6600caccggttac gatctgccga tggaagaact gaaaaacttc cgtcagctgc
actctaaaac 6660tccgggccac ccggaagtag gttataccgc tggtgtggaa accaccaccg
gtccgctggg 6720tcagggtatt gccaacgcag tcggtatggc gattgcagaa aaaacgctgg
cggcgcagtt 6780taaccgtcca ggtcacgaca ttgtcgacca ctacacctac gccttcatgg
gcgacggctg 6840catgatggaa ggcatctccc acgaagtttg ctctctggcg ggtacgctga
agctgggtaa 6900actgattgcg ttctacgatg acaacggtat ctcaatcgat ggtcacgttg
aaggctggtt 6960cactgacgac accgcaatgc gtttcgaagc ttacggctgg cacgttattc
gcgacatcga 7020cggtcatgac gcggcatcca tcaaacgcgc agtagaagaa gcgcgcgcag
tgactgacaa 7080accgtccctg ctgatgtgca aaaccatcat cggtttcggt tccccgaaca
aagccggtac 7140ccacgactcc cacggtgcgc cgctgggcga cgctgaaatt gccctgaccc
gcgaacagct 7200gggctggaaa tacgcgccgt tcgaaatccc gtctgaaatc tatgctcagt
gggatgcgaa 7260agaagcaggc caggcgaaag aatctgcatg gaatgagaag tttgcggctt
acgcgaaagc 7320ttatccgcag gaagcggctg aatttacccg ccgtatgaaa ggcgaaatgc
cgtctgactt 7380cgacgccaaa gcgaaagagt ttatcgctaa actgcaggct aatccggcga
aaatcgccag 7440ccgtaaagcg tcgcagaatg ctatcgaagc gttcggcccg ctgttgcctg
aattcctcgg 7500cggctctgct gacctggcac cgtctaacct gaccctgtgg tctggttcta
aagcaatcaa 7560cgaagatgct gcaggtaact acatccacta cggtgttcgc gagttcggta
tgaccgcgat 7620tgctaacggt atctccctgc acggtggttt cctgccgtac acctccacct
tcctgatgtt 7680cgtggaatac gcacgtaacg ccgtacgtat ggctgcgctg atgaaacagc
gtcaggtgat 7740ggtttacacc cacgactcca tcggtctggg cgaagatggc ccgactcacc
agccggttga 7800gcaggtcgct tctctgcgcg tgaccccgaa catgtctaca tggcgtccgt
gtgaccaggt 7860tgaatccgcg gtcgcgtgga aatacggcgt tgagcgtcag gacggcccga
ctgcgcttat 7920cctctcccgt cagaacctgg cgcagcagga acgaactgaa gagcaactgg
caaacatcgc 7980gcgcggtggt tatgtgctga aagactgcgc cggtcagccg gaactgattt
tcatcgctac 8040cggttcagaa gttgaactgg ctgttgctgc ctacgaaaaa ctgactgccg
aaggcgtgaa 8100agcgcgcgtg gtgtccatgc cgtctaccga cgcatttgac aagcaggatg
ctgcttaccg 8160tgaatccgta ctgccgaaag cggttactgc acgcgttgct gtagaagcgg
gtattgctga 8220ctactggtac aagtatgttg gcctgaacgg tgctatcgtc ggtatgacca
ccttcggtga 8280atctgctccg gcagagctgc tgtttgaaga gttcggcttc actgttgata
acgttgttgc 8340gaaagcaaaa gaactgctgt aattagcatt tcgggtaaaa aggtcgcttc
ggcgaccttt 8400tttattacct tgatatgtcc gtttgcggac aagcaataga taaagcgtgt
tgtagatcac 8460aaatatttat atgcaataaa tatcaattat gtaatatgca tcacgatatg
cgtattgaca 8520tttgttgtta taactataac tcaatgttat ataagaaatt aacttgaaat
aattaacaaa 8580caaaggagtt acagttagaa attgtaggag agatctcgtt tttcgcgaca
atctggcgtt 8640tttcttgcta attccaggat taatccgttc atagtgtaaa accccgttta
cacattctga 8700cggaagatat agattggaag tattgcattc actaagataa gtatggcaac
actggaacag 8760acatgaatta tcagaacgac gatttacgca tcaaagaaat caaagagtta
cttcctcctg 8820tcgcattgct ggaaaaattc cccgctactg aaaatgccgc gaatacggtt
gcccatgccc 8880gaaaagcgat ccataagatc ctgaaaggta atgatgatcg cctgttggtt
gtgattggcc 8940catgctcaat tcatgatcct gtcgcggcaa aagagtatgc cactcgcttg
ctggcgctgc 9000gtgaagagct gaaagatgag ctggaaatcg taatgcgcgt ctattttgaa
aagccgcgta 9060ccacggtggg ctggaaaggg ctgattaacg atccgcatat ggataatagc
ttccagatca 9120acgacggtct gcgtatagcc cgtaaattgc tgcttgatat taacgacagc
ggtctgccag 9180cggcaggtga gtttctcgat atgatcaccc cacaatatct cgctgacctg
atgagctggg 9240gcgcaattgg cgcacgtacc accgaatcgc aggtgcaccg cgaactggca
tcagggcttt 9300cttgtccggt cggcttcaaa aatggcaccg acggtacgat taaagtggct
atcgatgcca 9360ttaatgccgc cggtgcgccg cactgcttcc tgtccgtaac gaaatggggg
cattcggcga 9420ttgtgaatac cagcggtaac ggcgattgcc atatcattct gcgcggcggt
aaagagccta 9480actacagcgc gaagcacgtt gctgaagtga aagaagggct gaacaaagca
ggcctgccag 9540cacaggtgat gatcgatttc agccatgcta actcgtccaa acaattcaaa
aagcagatgg 9600atgtttgtgc tgacgtttgc cagcagattg ccggtggcga aaaggccatt
attggcgtga 9660tggtggaaag ccatctggtg gaaggcaatc agagcctcga gagcggggag
ccgctggcct 9720acggtaagag catcaccgat gcctgcatcg gctgggaaga taccgatgct
ctgttacgtc 9780aactggcgaa tgcagtaaaa gcgcgtcgcg ggtaaggttt aattgtcgga
tgcgccgtca 9840gagtggcgta tccgatgaat caccacaggc ctgataagtc gcgcagcgtc
gcatcaggca 9900atgtgctcca ttgttagcaa caaaaaagcc gactcacttg cagtcggctt
tctcatttta 9960aacgaatgac gtttacttcg ctttaccctg gtttgcaacc gccgctgctt
tcgctctcga 10020ggctattgac gacagctatg gttcactgtc caccaaccaa aactgtgctc
agtaccgcca 10080atatttctcc cttgaggggt acaaagaggt gtccctagaa gagatccacg
ctgtgtaaaa 10140attttacaaa aaggtattga ctttccctac agggtgtgta ataatttaat
tacaggcggg 10200ggcaaccccg cctgttctag aggaggagga atcgccatgg agaggattgt
cgttactctc 10260ggggaacgta gttacccaat taccatcgca tctggtttgt ttaatgaacc
agcttcattc 10320ttaccgctga aatcgggcga gcaggtcatg ttggtcacca acgaaaccct
ggctcctctg 10380tatctcgata aggtccgcgg cgtacttgaa caggcgggtg ttaacgtcga
tagcgttatc 10440ctccctgacg gcgagcagta taaaagcctg gctgtactcg ataccgtctt
tacggcgttg 10500ttacaaaagc cgcatggtcg cgatactacg ctggtggcgc ttggcggcgg
cgtagtgggc 10560gatctgaccg gcttcgcggc ggcgagttat cagcgcggtg ttcgtttcat
tcaagtcccg 10620acgacgttac tgtcgcaggt cgattcctcc gttggcggca aaactgcggt
caaccatccc 10680ctcggtaaaa acatgattgg cgcgttctac cagcctgctt cagtggtggt
ggatctcgac 10740tgtctgaaaa cgcttccccc gcgtgagtta gcgtcggggc tggcagaagt
catcaaatac 10800ggcattattc ttgacggtgc gtttttcaac tggctggaag agaatctgga
tgcgttgttg 10860cgtctggacg gtccggcaat ggcgtactgt attcgccgtt gttgtgaact
gaaggcagaa 10920gttgtcgccg ccgacgagcg cgaaaccggg ttacgtgctt tactgaatct
gggacacacc 10980tttggtcatg ccattgaagc tgaaatgggg tatggcaatt ggttacatgg
tgaagcggtc 11040gctgcgggta tggtgatggc ggcgcggacg tcggaacgtc tcgggcagtt
tagttctgcc 11100gaaacgcagc gtattataac cctgctcacg cgggctgggt taccggtcaa
tgggccgcgc 11160gaaatgtccg cgcaggcgta tttaccgcat atgctgcgtg acaagaaagt
ccttgcggga 11220gagatgcgct taattcttcc gttggcaatt ggtaagagtg aagttcgcag
cggcgtttcg 11280cacgagcttg ttcttaacgc cattgccgat tgtcaatcag cgtaatcatc
gttcatgcct 11340gatgccgcta tgtaggccgg ataaggcgtt cacgccgcat ccggcaaccg
atgcctgatg 11400cgacgcggtc gcgtcttatc aggcctacag gtcgatgccg atatgtacat
cgtattcggc 11460aattaataca tagca
11475337769DNAEscherichia colimisc_feature(1)..(7769)DNA
sequence of the plasmid YEP24 33gaattctgaa ccagtcctaa aacgagtaaa
taggaccggc aattcttcaa gcaataaaca 60ggaataccaa ttattaaaag ataacttagt
cagatcgtac aataaagctt tgaagaaaaa 120tgcgccttat tcaatctttg ctataaaaaa
tggcccaaaa tctcacattg gaagacattt 180gatgacctca tttctttcaa tgaagggcct
aacggagttg actaatgttg tgggaaattg 240gagcgataag cgtgcttctg ccgtggccag
gacaacgtat actcatcaga taacagcaat 300acctgatcac tacttcgcac tagtttctcg
gtactatgca tatgatccaa tatcaaagga 360aatgatagca ttgaaggatg agactaatcc
aattgaggag tggcagcata tagaacagct 420aaagggtagt gctgaaggaa gcatacgata
ccccgcatgg aatgggataa tatcacagga 480ggtactagac tacctttcat cctacataaa
tagacgcata taagtacgca tttaagcata 540aacacgcact atgccgttct tctcatgtat
atatatatac aggcaacacg cagatatagg 600tgcgacgtga acagtgagct gtatgtgcgc
agctcgcgtt gcattttcgg aagcgctcgt 660tttcggaaac gctttgaagt tcctattccg
aagttcctat tctctagaaa gtataggaac 720ttcagagcgc ttttgaaaac caaaagcgct
ctgaagacgc actttcaaaa aaccaaaaac 780gcaccggact gtaacgagct actaaaatat
tgcgaatacc gcttccacaa acattgctca 840aaagtatctc tttgctatat atctctgtgc
tatatcccta tataacctac ccatccacct 900ttcgctcctt gaacttgcat ctaaactcga
cctctacatt ttttatgttt atctctagta 960ttactcttta gacaaaaaaa ttgtagtaag
aactattcat agagtgaatc gaaaacaata 1020cgaaaatgta aacatttcct atacgtagta
tatagagaca aaatagaaga aaccgttcat 1080aattttctga ccaatgaaga atcatcaacg
ctatcacttt ctgttcacaa agtatgcgca 1140atccacatcg gtatagaata taatcgggga
tgcctttatc ttgaaaaaat gcacccgcag 1200cttcgctagt aatcagtaaa cgcgggaagt
ggagtcaggc tttttttatg gaagagaaaa 1260tagacaccaa agtagccttc ttctaacctt
aacggaccta cagtgcaaaa agttatcaag 1320agactgcatt atagagcgca caaaggagaa
aaaaagtaat ctaagatgct ttgttagaaa 1380aatagcgctc tcgggatgca tttttgtaga
acaaaaaaga agtatagatt ctttgttggt 1440aaaatagcgc tctcgcgttg catttctgtt
ctgtaaaaat gcagctcaga ttctttgttt 1500gaaaaattag cgctctcgcg ttgcattttt
gttttacaaa aatgaagcac agattcttcg 1560ttggtaaaat agcgctttcg cgttgcattt
ctgttctgta aaaatgcagc tcagattctt 1620tgtttgaaaa attagcgctc tcgcgttgca
tttttgttct acaaaatgaa gcacagatgc 1680ttcgttaaca aagatatgct attgaagtgc
aagatggaaa cgcagaaaat gaaccgggga 1740tgcgacgtgc aagattacct atgcaataga
tgcaatagtt tctccaggaa ccgaaataca 1800tacattgtct tccgtaaagc gctagactat
atattattat acaggttcaa atatactatc 1860tgtttcaggg aaaactccca ggttcggatg
ttcaaaattc aatgatgggt aacaagtacg 1920atcgtaaatc tgtaaaacag tttgtcggat
attaggctgt atctcctcaa agcgtattcg 1980aatatcattg agaagctgca gcgtcacatc
ggataataat gatggcagcc attgtagaag 2040tgccttttgc atttctagtc tctttctcgg
tctagctagt tttactacat cgcgaagata 2100gaatcttaga tcacactgcc tttgctgagc
tggatcaata gagtaacaaa agagtggtaa 2160ggcctcgtta aaggacaagg acctgagcgg
aagtgtatcg tacagtagac ggagtatact 2220agtatagtct atagtccgtg gaattctcat
gtttgacagc ttatcatcga taagcttttc 2280aattcaattc atcatttttt ttttattctt
ttttttgatt tcggtttctt tgaaattttt 2340ttgattcggt aatctccgaa cagaaggaag
aacgaaggaa ggagcacaga cttagattgg 2400tatatatacg catatgtagt gttgaagaaa
catgaaattg cccagtattc ttaacccaac 2460tgcacagaac aaaaacctgc aggaaacgaa
gataaatcat gtcgaaagct acatataagg 2520aacgtgctgc tactcatcct agtcctgttg
ctgccaagct atttaatatc atgcacgaaa 2580agcaaacaaa cttgtgtgct tcattggatg
ttcgtaccac caaggaatta ctggagttag 2640ttgaagcatt aggtcccaaa atttgtttac
taaaaacaca tgtggatatc ttgactgatt 2700tttccatgga gggcacagtt aagccgctaa
aggcattatc cgccaagtac aattttttac 2760tcttcgaaga cagaaaattt gctgacattg
gtaatacagt caaattgcag tactctgcgg 2820gtgtatacag aatagcagaa tgggcagaca
ttacgaatgc acacggtgtg gtgggcccag 2880gtattgttag cggtttgaag caggcggcag
aagaagtaac aaaggaacct agaggccttt 2940tgatgttagc agaattgtca tgcaagggct
ccctatctac tggagaatat actaagggta 3000ctgttgacat tgcgaagagc gacaaagatt
ttgttatcgg ctttattgct caaagagaca 3060tgggtggaag agatgaaggt tacgattggt
tgattatgac acccggtgtg ggtttagatg 3120acaagggaga cgcattgggt caacagtata
gaaccgtgga tgatgtggtc tctacaggat 3180ctgacattat tattgttgga agaggactat
ttgcaaaggg aagggatgct aaggtagagg 3240gtgaacgtta cagaaaagca ggctgggaag
catatttgag aagatgcggc cagcaaaact 3300aaaaaactgt attataagta aatgcatgta
tactaaactc acaaattaga gcttcaattt 3360aattatatca gttattaccc gggaatctcg
gtcgtaatga tttttataat gacgaaaaaa 3420aaaaaattgg aaagaaaaag ctttaatgcg
gtagtttatc acagttaaat tgctaacgca 3480gtcaggcacc gtgtatgaaa tctaacaatg
cgctcatcgt catcctcggc accgtcaccc 3540tggatgctgt aggcataggc ttggttatgc
cggtactgcc gggcctcttg cgggatatcg 3600tccattccga cagcatcgcc agtcactatg
gcgtgctgct agcgctatat gcgttgatgc 3660aatttctatg cgcacccgtt ctcggagcac
tgtccgaccg ctttggccgc cgcccagtcc 3720tgctcgcttc gctacttgga gccactatcg
actacgcgat catggcgacc acacccgtcc 3780tgtggatcct ctacgccgga cgcatcgtgg
ccggcatcac cggcgccaca ggtgcggttg 3840ctggcgccta tatcgccgac atcaccgatg
gggaagatcg ggctcgccac ttcgggctca 3900tgagcgcttg tttcggcgtg ggtatggtgg
caggccccgt ggccggggga ctgttgggcg 3960ccatctcctt gcatgcacca ttccttgcgg
cggcggtgct caacggcctc aacctactac 4020tgggctgctt cctaatgcag gagtcgcata
agggagagcg tcgaccgatg cccttgagag 4080ccttcaaccc agtcagctcc ttccggtggg
cgcggggcat gactatcgtc gccgcactta 4140tgactgtctt ctttatcatg caactcgtag
gacaggtgcc ggcagcgctc tgggtcattt 4200tcggcgagga ccgctttcgc tggagcgcga
cgatgatcgg cctgtcgctt gcggtattcg 4260gaatcttgca cgccctcgct caagccttcg
tcactggtcc cgccaccaaa cgtttcggcg 4320agaagcaggc cattatcgcc ggcatggcgg
ccgacgcgct gggctacgtc ttgctggcgt 4380tcgcgacgcg aggctggatg gccttcccca
ttatgattct tctcgcttcc ggcggcatcg 4440ggatgcccgc gttgcaggcc atgctgtcca
ggcaggtaga tgacgaccat cagggacagc 4500ttcaaggatc gctcgcggct cttaccagcc
taacttcgat cactggaccg ctgatcgtca 4560cggcgattta tgccgcctcg gcgagcacat
ggaacgggtt ggcatggatt gtaggcgccg 4620ccctatacct tgtctgcctc cccgcgttgc
gtcgcggtgc atggagccgg gccacctcga 4680cctgaatgga agccggcggc acctcgctaa
cggattcacc actccaagaa ttggagccaa 4740tcaattcttg cggagaactg tgaatgcgca
aaccaaccct tggcagaaca tatccatcgc 4800gtccgccatc tccagcagcc gcacgcggcg
catctcgggc agcgttgggt cctggccacg 4860ggtgcgcatg atcgtgctcc tgtcgttgag
gacccggcta ggctggcggg gttgccttac 4920tggttagcag aatgaatcac cgatacgcga
gcgaacgtga agcgactgct gctgcaaaac 4980gtctgcgacc tgagcaacaa catgaatggt
cttcggtttc cgtgtttcgt aaagtctgga 5040aacgcggaag tcagcgccct gcaccattat
gttccggatc tgcatcgcag gatgctgctg 5100gctaccctgt ggaacaccta catctgtatt
aacgaagcgc tggcattgac cctgagtgat 5160ttttctctgg tcccgccgca tccataccgc
cagttgttta ccctcacaac gttccagtaa 5220ccgggcatgt tcatcatcag taacccgtat
cgtgagcatc ctctctcgtt tcatcggtat 5280cattaccccc atgaacagaa attccccctt
acacggaggc atcaagtgac caaacaggaa 5340aaaaccgccc ttaacatggc ccgctttatc
agaagccaga cattaacgct tctggagaaa 5400ctcaacgagc tggacgcgga tgaacaggca
gacatctgtg aatcgcttca cgaccacgct 5460gatgagcttt accgcagctg cctcgcgcgt
ttcggtgatg acggtgaaaa cctctgacac 5520atgcagctcc cggagacggt cacagcttgt
ctgtaagcgg atgccgggag cagacaagcc 5580cgtcagggcg cgtcagcggg tgttggcggg
tgtcggggcg cagccatgac ccagtcacgt 5640agcgatagcg gagtgtatac tggcttaact
atgcggcatc agagcagatt gtactgagag 5700tgcaccatat gcggtgtgaa ataccgcaca
gatgcgtaag gagaaaatac cgcatcaggc 5760gctcttccgc ttcctcgctc actgactcgc
tgcgctcggt cgttcggctg cggcgagcgg 5820tatcagctca ctcaaaggcg gtaatacggt
tatccacaga atcaggggat aacgcaggaa 5880agaacatgtg agcaaaaggc cagcaaaagg
ccaggaaccg taaaaaggcc gcgttgctgg 5940cgtttttcca taggctccgc ccccctgacg
agcatcacaa aaatcgacgc tcaagtcaga 6000ggtggcgaaa cccgacagga ctataaagat
accaggcgtt tccccctgga agctccctcg 6060tgcgctctcc tgttccgacc ctgccgctta
ccggatacct gtccgccttt ctcccttcgg 6120gaagcgtggc gctttctcat agctcacgct
gtaggtatct cagttcggtg taggtcgttc 6180gctccaagct gggctgtgtg cacgaacccc
ccgttcagcc cgaccgctgc gccttatccg 6240gtaactatcg tcttgagtcc aacccggtaa
gacacgactt atcgccactg gcagcagcca 6300ctggtaacag gattagcaga gcgaggtatg
taggcggtgc tacagagttc ttgaagtggt 6360ggcctaacta cggctacact agaaggacag
tatttggtat ctgcgctctg ctgaagccag 6420ttaccttcgg aaaaagagtt ggtagctctt
gatccggcaa acaaaccacc gctggtagcg 6480gtggtttttt tgtttgcaag cagcagatta
cgcgcagaaa aaaaggatct caagaagatc 6540ctttgatctt ttctacgggg tctgacgctc
agtggaacga aaactcacgt taagggattt 6600tggtcatgag attatcaaaa aggatcttca
cctagatcct tttaaattaa aaatgaagtt 6660ttaaatcaat ctaaagtata tatgagtaaa
cttggtctga cagttaccaa tgcttaatca 6720gtgaggcacc tatctcagcg atctgtctat
ttcgttcatc catagttgcc tgactccccg 6780tcgtgtagat aactacgata cgggagggct
taccatctgg ccccagtgct gcaatgatac 6840cgcgagaccc acgctcaccg gctccagatt
tatcagcaat aaaccagcca gccggaaggg 6900ccgagcgcag aagtggtcct gcaactttat
ccgcctccat ccagtctatt aattgttgcc 6960gggaagctag agtaagtagt tcgccagtta
atagtttgcg caacgttgtt gccattgctg 7020caggcatcgt ggtgtcacgc tcgtcgtttg
gtatggcttc attcagctcc ggttcccaac 7080gatcaaggcg agttacatga tcccccatgt
tgtgcaaaaa agcggttagc tccttcggtc 7140ctccgatcgt tgtcagaagt aagttggccg
cagtgttatc actcatggtt atggcagcac 7200tgcataattc tcttactgtc atgccatccg
taagatgctt ttctgtgact ggtgagtact 7260caaccaagtc attctgagaa tagtgtatgc
ggcgaccgag ttgctcttgc ccggcgtcaa 7320cacgggataa taccgcgcca catagcagaa
ctttaaaagt gctcatcatt ggaaaacgtt 7380cttcggggcg aaaactctca aggatcttac
cgctgttgag atccagttcg atgtaaccca 7440ctcgtgcacc caactgatct tcagcatctt
ttactttcac cagcgtttct gggtgagcaa 7500aaacaggaag gcaaaatgcc gcaaaaaagg
gaataagggc gacacggaaa tgttgaatac 7560tcatactctt cctttttcaa tattattgaa
gcatttatca gggttattgt ctcatgagcg 7620gatacatatt tgaatgtatt tagaaaaata
aacaaatagg ggttccgcgc acatttcccc 7680gaaaagtgcc acctgacgtc taagaaacca
ttattatcat gacattaacc tataaaaata 7740ggcgtatcac gaggcccttt cgtcttcaa
7769342000DNAEscherichia
coligene(1)..(2000)DNA sequence of the deleted aroE region 34actacgtccg
tcctctgaaa tcttcagcgg atggacatat cgtcaaagtt ctggaggggc 60aggtttgccc
tgcatgtggc gcaaatctgg tattacgcca gggacgcttt ggtatgttta 120ttggttgcat
taactaccct gaatgcgaac ataccgaact tatcgataaa ccggacgaaa 180cagcaattac
atgcccccaa tgtcggacgg gccatctggt ccagcgccgc tcccgttatg 240gcaaaacatt
tcactcttgt gatcgctacc cggagtgtca atttgccatt aacttcaaac 300ccatagctgg
agaatgccct gagtgtcatt atccgctact catcgaaaag aaaaccgcgc 360agggtgtaaa
acacttttgt gccagtaaac aatgtggaaa gccggtttcg gcggaataat 420aacgtgaata
ataacctgca aagagacgct atcgcagctg cgatagatgt tctcaatgaa 480gaacgtgtca
tcgcctatcc aacggaagcc gttttcggtg ttgggtgcga tcctgatagc 540gaaacagcag
tgatgcgact gttggagtta aaacagcgtc cggttgataa ggggctgatt 600ttaatcgcag
caaattacga gcagcttaaa ccctatattg atgacaccat gttgactgac 660gtgcagcgtg
aaaccatttt ttcccgctgg ccaggtcctg tcacctttgt ctttcccgcg 720cctgcgacaa
caccgcgctg gttgacgggc cgctttgatt cgcttgctgt acgagtcacc 780gaccatccgt
tggtggttgc tttgtgccag gcttatggta aaccgctggt ttctaccagt 840gccaacttga
gtggattgcc accttgtcga acagtagacg aagttcgcgc acaatttggc 900gcggcgttcc
cggttgtgcc tggtgaaacg ggggggcgtt taaatccttc agaaatccgc 960gatgccctga
cgggtgaact gtttcgacag gggtaacata atcaggccat ccagtttccg 1020gacagggaag
agtgggacga gaataaaaaa tgtgtatgtt ttcccgctct cgtgaatggt 1080atgcaactga
catgcgcgat ctctggcgag agtctggcgt atcgctttac tggagatacg 1140ccagaacagt
ggttagcgag ttttcgtcag catcgctggg acctggaaga agaagcggaa 1200aacttaattc
aggaacaaag tgaagatgat caaggctggg tctggttacc ctgatccaga 1260tattcgtcct
tccatttcac gtaattattc gcggaatagc gtaacccagc cttctcttca 1320tcacttaacg
ggcggatctg tttgacgggg ctaccgagat acagatatcc gctctccagc 1380cgtttatttt
gtgggaccag actacccgca ccaatcatca catcatcttc tactattgcg 1440ccatcaagta
aaattgagcc catcccaacc aaaactcgat tgccaatggt gcagccgtgg 1500agcatcacct
tgtgaccaac agtgacatct tcgccaatgg ttaatgggtt gccatctggg 1560ttgtacgagg
atttatgagt gacatgcaac atactgccat cctggatatt ggtgcgtgct 1620ccgatctgta
cataatgtac atctccacga atcacaacga gcggccagat ccccacatca 1680tcagccagac
gaacgtcacc aatcacgaca ctgctatcgt cgatcattac gcgctgaccg 1740atttgtggaa
aaagatcgcg gtatgggcgt aaaacatcag acatacttac ctcagcaata 1800aatgatttac
taatgacttt gggggcatta ttggccttgt gcaagtcttt tagtatgcaa 1860aaaagcaccg
ttttgtgtgc gattgcagca aaaagggtga aaaaacaaca aacagaaaaa 1920aagatcaaaa
aaatacttgt gcaaaaaatt gggatcccta taatgcgcct ccgttgagac 1980gacaacgtga
aacacttcac
2000352460DNAEscherichia coligene(1)..(2460)DNA sequence of the
integrated cassette ack::P15aroB 35gatcggcggc ataaaacgga tcgcataacg
cgtcatcttg ataacgcgat tttcgacaaa 60gaccggggca aggcgttttt ccagcggcca
cgtctttgag taatgctgtc cccggcgaaa 120caagctaaaa aaattaacag aacgattatc
cggcgttgac atgcttcacc tcaacttcac 180atataaagat tcaaaaattt gtgcaaattc
acaactcagc gggacaacgt tcaaaacatt 240ttgtcttcca tacccactat caggtatcct
ttagcagcct gaaggcctaa gtagtacata 300ttcattgagt cgtcaaattc atatacatta
tgccattggc tgaaaattac gcaaaatggc 360atagactcaa gatatttctt ccatcatgca
aaaaaaaatt tgcagtgcat gatgttaatc 420ataaatgtcg gtgtcatcat gcgctacgct
ctatggctcc ctgacgtttt tttagccacg 480tatcaattat aggtacttcc ctcgaggcta
ttgacgacag ctatggttca ctgtccacca 540accaaaactg tgctcagtac cgccaatatt
tctcccttga ggggtacaaa gaggtgtccc 600tagaagagat ccacgctgtg taaaaatttt
acaaaaaggt attgactttc cctacagggt 660gtgtaataat ttaattacag gcgggggcaa
ccccgcctgt tctagaggag gaggaatcgc 720catggagagg attgtcgtta ctctcgggga
acgtagttac ccaattacca tcgcatctgg 780tttgtttaat gaaccagctt cattcttacc
gctgaaatcg ggcgagcagg tcatgttggt 840caccaacgaa accctggctc ctctgtatct
cgataaggtc cgcggcgtac ttgaacaggc 900gggtgttaac gtcgatagcg ttatcctccc
tgacggcgag cagtataaaa gcctggctgt 960actcgatacc gtctttacgg cgttgttaca
aaagccgcat ggtcgcgata ctacgctggt 1020ggcgcttggc ggcggcgtag tgggcgatct
gaccggcttc gcggcggcga gttatcagcg 1080cggtgttcgt ttcattcaag tcccgacgac
gttactgtcg caggtcgatt cctccgttgg 1140cggcaaaact gcggtcaacc atcccctcgg
taaaaacatg attggcgcgt tctaccagcc 1200tgcttcagtg gtggtggatc tcgactgtct
gaaaacgctt cccccgcgtg agttagcgtc 1260ggggctggca gaagtcatca aatacggcat
tattcttgac ggtgcgtttt tcaactggct 1320ggaagagaat ctggatgcgt tgttgcgtct
ggacggtccg gcaatggcgt actgtattcg 1380ccgttgttgt gaactgaagg cagaagttgt
cgccgccgac gagcgcgaaa ccgggttacg 1440tgctttactg aatctgggac acacctttgg
tcatgccatt gaagctgaaa tggggtatgg 1500caattggtta catggtgaag cggtcgctgc
gggtatggtg atggcggcgc ggacgtcgga 1560acgtctcggg cagtttagtt ctgccgaaac
gcagcgtatt ataaccctgc tcacgcgggc 1620tgggttaccg gtcaatgggc cgcgcgaaat
gtccgcgcag gcgtatttac cgcatatgct 1680gcgtgacaag aaagtccttg cgggagagat
gcgcttaatt cttccgttgg caattggtaa 1740gagtgaagtt cgcagcggcg tttcgcacga
gcttgttctt aacgccattg ccgattgtca 1800atcagcgtaa tcatcgttca tgcctgatgc
cgctatgtag gccggataag gcgttcacgc 1860cgcatccggc aaccgatgcc tgatgcgacg
cggtcgcgtc ttatcaggcc tacaggtcga 1920tgccgatatg tacatcgtat tcggcaatta
atacatagca tttcacaccg ccagctcagc 1980tggcggtgct gttttgtaac ccgccaaatc
ggcggtaacg aaagaggata aaccgtgtcc 2040cgtattatta tgctgatccc taccggaacc
agcgtcggtc tgaccagcgt cagccttggc 2100gtgatccgtg caatggaacg caaaggcgtt
cgtctgagcg ttttcaaacc tatcgctcag 2160ccgcgtaccg gtggcgatgc gcccgatcag
actacgacta tcgtgcgtgc gaactcttcc 2220accacgacgg ccgctgaacc gctgaaaatg
agctacgttg aaggtctgct ttccagcaat 2280cagaaagatg tgctgatgga agagatcgtc
gcaaactacc acgctaacac caaagacgct 2340gaagtcgttc tggttgaagg tctggtcccg
acacgtaagc accagtttgc ccagtctctg 2400aactacgaaa tcgctaaaac gctgaatgcg
gaaatcgtct tcgttatgtc tcagggcact 2460361000DNAEscherichia
coligene(1)..(1000)DNA sequence of the poxB region 36gcggcccggc
tccgtatatg gattgggtag agcaggaagt gaaagcgctc ggcgtgacgc 60gtttctttaa
agagaaattc ttcaccccag tagcggaagc agcgaccagc ggtctgaaat 120tcaccaaact
gcaaccggca cgagaatttt acgccccggt tggcaccacg ctactggagg 180cgctggaaag
caataacgtt ccggttgtcg ccgcctgccg tgcgggtgtt tgcggctgct 240gtaagacaaa
agtggtttcc ggtgaatata cggtgagcag cacaatgacg ctgaccgacg 300ccgaaatcgc
tgaaggttac gtactggcct gctcctgcca tccgcagggg gatttggttc 360tcgcataatc
gccttatgcc cgatgatatt cctttcatcg ggctatttaa ccgttagtgc 420ctcctttctc
tcccatccct tccccctccg tcagatgaac taaacttgtt accgttatca 480cattcaggag
atggagaacc aaagggtggc atttcccgtc ataataagga catgccatga 540ttgatttacg
cagtgatacc gttacccgac cgagccgcgc catgctcgaa gcaatgatgg 600ccgccccggt
tggggacgac gtttacggag acgaccctac cgttaatgct ctgcaggact 660acgccgcaga
gctttccggt aaagaagccg ccatttttct gccgaccggc actcaggcca 720acctggtcgc
tctgctcagt cactgcgaac gtggcgaaga gtatattgtc ggtcaggccg 780cgcataacta
tctgtttgaa gccggtggcg cagcggtgct gggcagtatt cagccgcaac 840ccatcgacgc
ggctgccgac ggcacgctac cgctggataa agtggcgatg aaaatcaaac 900ccgacgatat
ccatttcgcc cgcaccaaat tactcagtct ggaaaacacc cacaacggca 960aagtgctgcc
gcgtgaatac ctgaaagaag catgggaatt
1000373392DNAEscherichia coligene(1)..(3392)DNA sequence of the
integrated cassette poxB::tktA 37gcggcccggc tccgtatatg gattgggtag
agcaggaagt gaaagcgctc ggcgtgacgc 60gtttctttaa agagaaattc ttcaccccag
tagcggaagc agcgaccagc ggtctgaaat 120tcaccaaact gcaaccggca cgagaatttt
acgccccggt tggcaccacg ctactggagg 180cgctggaaag caataacgtt ccggttgtcg
ccgcctgccg tgcgggtgtt tgcggctgct 240gtaagacaaa agtggtttcc ggtgaatata
cggtgagcag cacaatgacg ctgaccgacg 300ccgaaatcgc tgaaggttac gtactggcct
gctcctgcca tccgcagggg gatttggttc 360tcgcataatc gccttatgcc cgatgatatt
cctttcatcg ggctatttaa ccgttagtgc 420ctcctttctc tcccatccct tccccctccg
tcagatgaac taaacttgtt accgttatca 480cattcaggag atggagaacc aaggaaaagc
gcaacggacg ggcgagtaga ttgcgcaaca 540tgcgagcatg atccagagat ttctgaagca
gcaaaaggat gttccatgta catgacgcgc 600ggcttgcggt aaattgttgg caaattttcc
ggcgtagccc aaaacgcgct gtcgtcaagt 660cgttaagggc gtgcccttca tcatccgatc
tggagtcaaa atgtcctcac gtaaagagct 720tgccaatgct attcgtgcgc tgagcatgga
cgcagtacag aaagccaaat ccggtcaccc 780gggtgcccct atgggtatgg ctgacattgc
cgaagtcctg tggcgtgatt tcctgaaaca 840caacccgcag aatccgtcct gggctgaccg
tgaccgcttc gtgctgtcca acggccacgg 900ctccatgctg atctacagcc tgctgcacct
caccggttac gatctgccga tggaagaact 960gaaaaacttc cgtcagctgc actctaaaac
tccgggccac ccggaagtag gttataccgc 1020tggtgtggaa accaccaccg gtccgctggg
tcagggtatt gccaacgcag tcggtatggc 1080gattgcagaa aaaacgctgg cggcgcagtt
taaccgtcca ggtcacgaca ttgtcgacca 1140ctacacctac gccttcatgg gcgacggctg
catgatggaa ggcatctccc acgaagtttg 1200ctctctggcg ggtacgctga agctgggtaa
actgattgcg ttctacgatg acaacggtat 1260ctcaatcgat ggtcacgttg aaggctggtt
cactgacgac accgcaatgc gtttcgaagc 1320ttacggctgg cacgttattc gcgacatcga
cggtcatgac gcggcatcca tcaaacgcgc 1380agtagaagaa gcgcgcgcag tgactgacaa
accgtccctg ctgatgtgca aaaccatcat 1440cggtttcggt tccccgaaca aagccggtac
ccacgactcc cacggtgcgc cgctgggcga 1500cgctgaaatt gccctgaccc gcgaacagct
gggctggaaa tacgcgccgt tcgaaatccc 1560gtctgaaatc tatgctcagt gggatgcgaa
agaagcaggc caggcgaaag aatctgcatg 1620gaatgagaag tttgcggctt acgcgaaagc
ttatccgcag gaagcggctg aatttacccg 1680ccgtatgaaa ggcgaaatgc cgtctgactt
cgacgccaaa gcgaaagagt ttatcgctaa 1740actgcaggct aatccggcga aaatcgccag
ccgtaaagcg tcgcagaatg ctatcgaagc 1800gttcggcccg ctgttgcctg aattcctcgg
cggctctgct gacctggcac cgtctaacct 1860gaccctgtgg tctggttcta aagcaatcaa
cgaagatgct gcaggtaact acatccacta 1920cggtgttcgc gagttcggta tgaccgcgat
tgctaacggt atctccctgc acggtggttt 1980cctgccgtac acctccacct tcctgatgtt
cgtggaatac gcacgtaacg ccgtacgtat 2040ggctgcgctg atgaaacagc gtcaggtgat
ggtttacacc cacgactcca tcggtctggg 2100cgaagatggc ccgactcacc agccggttga
gcaggtcgct tctctgcgcg tgaccccgaa 2160catgtctaca tggcgtccgt gtgaccaggt
tgaatccgcg gtcgcgtgga aatacggcgt 2220tgagcgtcag gacggcccga ctgcgcttat
cctctcccgt cagaacctgg cgcagcagga 2280acgaactgaa gagcaactgg caaacatcgc
gcgcggtggt tatgtgctga aagactgcgc 2340cggtcagccg gaactgattt tcatcgctac
cggttcagaa gttgaactgg ctgttgctgc 2400ctacgaaaaa ctgactgccg aaggcgtgaa
agcgcgcgtg gtgtccatgc cgtctaccga 2460cgcatttgac aagcaggatg ctgcttaccg
tgaatccgta ctgccgaaag cggttactgc 2520acgcgttgct gtagaagcgg gtattgctga
ctactggtac aagtatgttg gcctgaacgg 2580tgctatcgtc ggtatgacca ccttcggtga
atctgctccg gcagagctgc tgtttgaaga 2640gttcggcttc actgttgata acgttgttgc
gaaagcaaaa gaactgctgt aattagcatt 2700tcgggtaaaa aggtcgcttc ggcgaccttt
tttattacct tgatatgtcc gtttgcggac 2760aagcaataga taaagcgtgt tgtagatcac
aaatatttat atgcaataaa tatcaattat 2820gtaatatgca tcacgatatg cgtattgaca
tttgttgtta taactataac tcaatgttat 2880ataagaaatt aaaaagggtg gcatttcccg
tcataataag gacatgccat gattgattta 2940cgcagtgata ccgttacccg accgagccgc
gccatgctcg aagcaatgat ggccgccccg 3000gttggggacg acgtttacgg agacgaccct
accgttaatg ctctgcagga ctacgccgca 3060gagctttccg gtaaagaagc cgccattttt
ctgccgaccg gcactcaggc caacctggtc 3120gctctgctca gtcactgcga acgtggcgaa
gagtatattg tcggtcaggc cgcgcataac 3180tatctgtttg aagccggtgg cgcagcggtg
ctgggcagta ttcagccgca acccatcgac 3240gcggctgccg acggcacgct accgctggat
aaagtggcga tgaaaatcaa acccgacgat 3300atccatttcg cccgcaccaa attactcagt
ctggaaaaca cccacaacgg caaagtgctg 3360ccgcgtgaat acctgaaaga agcatgggaa
tt 3392381045DNAEscherichia
coligene(1)..(1045)DNA sequence of the ptsHI region 38gaagatgaaa
gctttaccaa caagaatatt gtggttattc taccatcatc gggtgagcgt 60tatttaagca
ccgcattgtt tgccgatctc ttcactgaga aagaattgca acagtaatgc 120cagcttgtta
aaaatgcgta aaaaagcacc tttttaggtg cttttttgtg gcctgcttca 180aactttcgcc
cctcctggca ttgattcagc ctgtcggaac tggtatttaa ccagactaat 240tattttgatg
cgcgaaatta atcgttacag gaaaagccaa agctgaatcg attttatgat 300ttggttcaat
tcttccttta gcggcataat gtttaatgac gtacgaaacg tcagcggtca 360acacccgcca
gcaatggact gtattgcgct cttcgtgcgt cgcgtctgtt aaaaactggc 420gctaacaata
caggctaaag tcgaaccgcc aggctagact ttagttccac aacactaaac 480ctataagttg
gggaaataca atgttccagc aagaagttac cattaccgct ccgacaatct 540gctaatccac
gagatgcggc ccaatttact gcttaggaga agatcatggg tttgttcgat 600aaactgaaat
ctctggtttc cgacgacaag aaggataccg gaactattga gatcattgct 660ccgctctctg
gcgagatcgt caatatcgaa gacgtgccgg atgtcgtttt tgcggaaaaa 720atcgttggtg
atggtattgc tatcaaacca acgggtaaca aaatggtcgc gccagtagac 780ggcaccattg
gtaaaatctt tgaaaccaac cacgcattct ctatcgaatc tgatagcggc 840gttgaactgt
tcgtccactt cggtatcgac accgttgaac tgaaaggcga aggcttcaag 900cgtattgctg
aagaaggtca gcgcgtgaaa gttggcgata ctgtcattga atttgatctg 960ccgctgctgg
aagagaaagc caagtctacc ctgactccgg ttgttatctc caacatggac 1020gaaatcaaag
aactgatcaa actgt
1045394595DNAEscherichia coligene(1)..(4595)DNA sequence of the
integrated cassette tdc::glf-glk 39ctgatttctt tgtcgctgat cccttactgg
aactctgcag ttatcgacca ggttgacctc 60ggttcgctgt cgttaaccgg tcatgacggt
atcctgatca ctgtctggct ggggatttcc 120atcatggttt tctcctttaa cttctcgcca
atcgtctctt ccttcgtggt ttctaaacgt 180gaagagtatg agaaagactt cggtcgcgac
ttcaccgaac gtaaatgttc ccaaatcatt 240tctcgtgcca gcatgctgat ggttgcagtg
gtgatgttct ttgcctttag ctgcctgttt 300actctgtctc cggccaacat ggcggaagcc
aaagcgcaga atattccagt gctttcttat 360ctggctaacc actttgcgtc catgaccggt
accaaaacaa cgttcgcgat tacactggaa 420tatgcggctt ccatcatcgc actcgtggct
atcttcaaat ctttcttcgg tcactatctg 480gggacgctgg aaggcttgaa tggtctgatt
ctgaagttcg gttataaagg tgacaaaacc 540aaagtgtcgc tgggtaaact gaatactctc
agcatgatct tcatcatggg ctccacctgg 600gttgttgcct acgccaaccc gaacatcctc
gacctgattg aagccatggg cgcaccgatt 660atcgcatccc tgctgtgcct gttgccgatg
tatgccatcc gtaaagcgcc gtctctggcg 720aaataccgtg gtcgtctgga taacgtgttt
gttaccgtga ttggtctgct gaccatcctg 780aacatcgtat acaaactgtt ttaatccgta
actcaggatg agaaaagaga tgaatgaatt 840tccggttgtt ttggttatta actgtggttc
gtcttcgatt aagttttccg tactcgatgc 900cagcgactgt gaagtattaa tgtcaggtat
tgccgacggt attaactcgg aaaatgcatt 960cttatccgta aatgggggag agccagcacc
gctggctcac cacagctacg aaggtgcatt 1020gaaggcaatt gcatttgaac tggaaaaacg
gagtttaaat gacagcgtgg ccttaattgg 1080tgcaaaagtg gctgtgactg taaaaagaaa
tcgaaaaaga ccgttttgtg tgaaaacggt 1140ctttttgttt ccttttaacc aactgccata
actcgaggcc tacctagctt ccaagaaaga 1200tatcctaaca gcacaagagc ggaaagatgt
tttgttctac atccagaaca acctctgcta 1260aaattcctga aaaattttgc aaaaagttgt
tgactttatc tacaaggtgt ggtataataa 1320tcttaacaac agcaggacgc tctagaggga
gaggaatcgc catgagttct gaaagtagtc 1380agggtctagt cacgcgacta gccctaatcg
ctgctatagg cggcttgctt ttcggttacg 1440attcagcggt tatcgctgca atcggtacac
cggttgatat ccattttatt gcccctcgtc 1500acctgtctgc tacggctgcg gcttcccttt
ctgggatggt cgttgttgct gttttggtcg 1560gttgtgttac cggttctttg ctgtctggct
ggattggtat tcgcttcggt cgtcgcggcg 1620gattgttgat gagttccatt tgtttcgtcg
ccgccggttt tggtgctgcg ttaaccgaaa 1680aattatttgg aaccggtggt tcggctttac
aaattttttg ctttttccgg tttcttgccg 1740gtttaggtat cggtgtcgtt tcaaccttga
ccccaaccta tattgctgaa attgctccgc 1800cagacaaacg tggtcagatg gtttctggtc
agcagatggc cattgtgacg ggtgctttaa 1860ccggttatat ctttacctgg ttactggctc
atttcggttc tatcgattgg gttaatgcca 1920gtggttggtg ctggtctccg gcttcagaag
gcctgatcgg tattgccttc ttattgctgc 1980tgttaaccgc accggatacg ccgcattggt
tggtgatgaa gggacgtcat tccgaggcta 2040gcaaaatcct tgctcgtctg gaaccgcaag
ccgatcctaa tctgacgatt caaaagatta 2100aagctggctt tgataaagcc atggacaaaa
gcagcgcagg tttgtttgct tttggtatca 2160ccgttgtttt tgccggtgta tccgttgctg
ccttccagca gttagtcggt attaacgccg 2220tgctgtatta tgcaccgcag atgttccaga
atttaggttt tggagctgat acggcattat 2280tgcagaccat ctctatcggt gttgtgaact
tcatcttcac catgattgct tcccgtgttg 2340ttgaccgctt cggccgtaaa cctctgctta
tttggggtgc tctcggtatg gctgcaatga 2400tggctgtttt aggctgctgt ttctggttca
aagtcggtgg tgttttgcct ttggcttctg 2460tgcttcttta tattgcagtc tttggtatgt
catggggccc tgtctgctgg gttgttctgt 2520cagaaatgtt cccgagttcc atcaagggcg
cagctatgcc tatcgctgtt accggacaat 2580ggttagctaa tatcttggtt aacttcctgt
ttaaggttgc cgatggttct ccagcattga 2640atcagacttt caaccacggt ttctcctatc
tcgttttcgc agcattaagt atcttaggtg 2700gcttgattgt tgctcgcttc gtgccggaaa
ccaaaggtcg gagcctggat gaaatcgagg 2760agatgtggcg ctcccagaag tagttaaact
tgctttggct gaatcctttt gtctttttta 2820gataagtctt aaccaattat actttttgtt
tacaacgatg gtataaagcg ggcggactta 2880ttttacctgt tgggtagcct tctgatttca
gaaaggaatt attatggaaa ttgttgcgat 2940tgacatcggt ggaacgcatg cgcgtttctc
tattgcggaa gtaagcaatg gtcgggttct 3000ttctcttgga gaagaaacaa cttttaaaac
ggcagaacat gctagcttgc agttagcttg 3060ggaacgtttc ggtgaaaaac tgggtcgtcc
tctgccacgt gccgcagcta ttgcatgggc 3120tggcccggtt catggtgaag ttttaaaact
taccaataac ccttgggtat taagaccagc 3180tactctgaat gaaaagctgg acatcgatac
gcatgttctg atcaatgact tcggcgcggt 3240tgcccacgcg gttgcgcata tggattcttc
ttatctggat catatttgtg gtcctgatga 3300agcgcttcct agcgatggtg ttatcactat
tcttggtccg ggaacgggct tgggtgttgc 3360ccatctgttg cggactgaag gccgttattt
cgtcatcgaa actgaaggcg gtcatatcga 3420ctttgctccg cttgacagac ttgaagacaa
aattctggca cgtttacgtg aacgtttccg 3480ccgcgtttct atcgaacgca ttatttctgg
cccgggtctt ggtaatatct acgaagcact 3540ggctgccatt gaaggcgttc cgttcagctt
gctggatgat attaaattat ggcagatggc 3600tttggaaggt aaagacaacc ttgctgaagc
cgctttggat cgcttctgct tgagccttgg 3660cgctatcgct ggtgatcttg ctttggcaca
gggtcgaacc agtgttgtta ttggcggtgg 3720tgtcggtctt cgtatcgctt cccatttgcc
agaatctggt ttccgtcagc gctttgtttc 3780aaaaggacgc tttgaacgcg tcatgtccaa
gattccggtt aagttgatta cttatccgca 3840gcctggactg ttgggtgcgc agctgcctat
gccaacaaat attctgaagt tgaataatat 3900tttttaatat tatgaactga atttaagagg
ctgccttccg ataaaatcgg gaggtggcct 3960tttttatatt ttttactaaa aaatgaagac
aaaaaagtct taagtaagaa taatattatt 4020attaactttt gatatatttt gtattagtgg
atccgccctc ccgctggaaa ttgaagccat 4080cgcagtacgt agtgcgtaaa gcctcgtgag
cgggacggtc gtaaggtcgt tccgctccac 4140ttcactgaac ggcaatccga gggtgtggat
atgattagtg cattcgatat tttcaaaatt 4200gggattggtc cctccagttc gcataccgtg
gggccaatga atgccggaaa aagttttatt 4260gatcggctgg aaagtagcgg cttattaacc
gcgacgagcc atattgtggt cgatctgtac 4320gggtcgttgt cactgacggg caaaggccat
gccacggatg tcgccatcat catgggactg 4380gcaggaaaca gtccgcagga tgttgtcatt
gatgagatcc ctgcatttat agagttagta 4440acgcgcagcg ggcggctgcc agtggcatct
ggtgcgcata ttgttgattt tcctgtagca 4500aagaacatta tcttccatcc cgaaatgttg
cctcgccatg agaacggaat gcggatcact 4560gcctggaagg gacaggaaga gctattaagt
aaaac 4595401069DNAEscherichia
coligene(1)..(1069)DNA sequence of the galP region 40actttggtcg
tgaacatttc ccgtgggaaa aaaccgacaa agcgcagctg ctgcgcgatg 60ctgccggtct
gaagtaatct ttcttcacct gcgttcaaag gccagcctcg cgctggcctt 120tttcttttgg
ataggcgttc acgccgcatc cggcaaaaaa accgcccgca caataacatc 180attcttcctg
atcacgtttc accgcagatt atcatcacaa ctgaaaccga ttacaccaac 240cacaacagac
aaagatttgt aatattttca tattattatt cggttttcac agttgttaca 300tttcttttca
gtaaagtctt aattgcagat aacagcgttt aatctatgat gatataactc 360aattattttc
atgcacttaa atcataacta agataaatgt tagtgtaagc gattacactg 420atgtgatttg
cttcacatct ttttacgtcg tactcaccta tcttaattca caataaaaaa 480taaccatatt
ggagggcatc atgcctgacg ctaaaaaaca ggggcggtca aacaaggcaa 540tgacgtttga
aataggcgct cacgattaat ctccccaagc ttcctcccat cgcggaggaa 600gccacctctt
gcagtcatct tttcttcgct ctatcctctg ccgctatgaa aacatcccgt 660ctccctatcg
ccatccaaca ggccgttatg cgtcgcctgc gggaaaaact cgcccaggcc 720aacctgaagc
tagggcgtaa ctacccggag ccaaaactct cttacaccca gcgcggaacc 780tccgccggaa
cggcctggct ggaaagctat gaaattcgcc tcaatcccgt tttgctgttg 840gaaaacagtg
aagcttttat tgaagaagtg gtaccgcacg aactggcaca tttgctggta 900tggaaacatt
tcggccgcgt agcgccacat ggcaaagagt ggaagtggat gatggaaaac 960gtgctgggtg
ttcccgcccg tcgtacgcat cagttcgaac tgcaatccgt gcgtcgcaac 1020accttcccct
accgctgcaa gtgccaggag catcagctta ccgtacgcc
1069416100DNAEscherichia coligene(1)..(6100)MYR352 adhE::P15-catAX ,
PR-aroY, P26-quiC 41ttgattttca taggttaagc aaatcatcac cgcactgact
atactctcgt attcgagcag 60atgatttact aaaaaagttt aacattatca ggagagcatt
agcttgctat tgacgacagc 120tatggttcac tgtccaccaa ccaaaactgt gctcagtacc
gccaatattt ctcccttgag 180gggtacaaag aggtgtccct agaagagatc cacgctgtgt
aaaaatttta caaaaaggta 240ttgactttcc ctacagggtg tgtaataatt taattacagg
cgggggcaac cccgcctgtt 300ctgcagagga ggaatatagc catggaagtg aaaatcttca
acacccagga tgttcaggat 360tttctgcgtg ttgcaagcgg tctggaacaa gagggtggta
atccgcgtgt taaacaaatt 420attcatcgtg ttctgagcga cctgtataaa gcaattgaag
atctgaatat caccagcgac 480gaatattggg caggcgttgc atatctgaat cagctgggtg
caaatcaaga agcaggtctg 540ctgagtccgg gtctgggttt tgatcattat ctggatatgc
gtatggatgc agaagatgca 600gcactgggta ttgaaaatgc aacaccgcgt accattgaag
gtccgctgta tgttgcgggt 660gcaccggaaa gcgttggtta tgcacgcatg gatgatggta
gcgatccgaa tggtcatacc 720ctgattctgc atggcaccat ttttgatgca gatggtaaac
cgctgccgaa tgcaaaagtt 780gaaatttggc atgcaaacac caaaggcttt tatagccatt
ttgatccgac cggtgaacag 840caggccttta atatgcgtcg tagcattatt accgatgaga
atggtcagta tcgtgttcgt 900accattctgc ctgccggtta tggttgtcct ccggaaggtc
cgacccagca actgctgaac 960caactgggtc gtcatggtaa tcgtccggca catattcatt
attttgttag cgcagatggt 1020caccgtaaac tgaccaccca gattaatgtt gccggtgatc
cgtataccta tgatgatttt 1080gcatatgcca cccgtgaagg tctggttgtt gatgcagttg
aacataccga tccggaagca 1140attaaagcca atgatgtgga aggtcctttt gccgaaatgg
tgtttgatct gaaactgacc 1200cgtctggttg atggtgttga taatcaggtt gtggatcgtc
cgcgtctggc agtttaatac 1260accaaaatgg ttcaaaatta tcaggcgagt gatcatgatc
actggcctgt ttttatttca 1320gggaagggtg gagacaatta cgtggataat cagatcatcc
aagaaaccgt ggataaaatt 1380ctgagcgttc tgccgaatca ggcaggtcag ctggcacgtc
tggtgcgtct gatgcaattt 1440gcatgcgatc cgaccattac cgttattggc aaatataacc
atggtaaaag ccgtctgctg 1500aatgaactga ttggcaccga tatctttagc gttgcagata
aacgtgaaac cattcagctg 1560gccgaacata aacaggatca ggttcgttgg ctggatgcac
ctggtctgga tgccgatgtt 1620gcagcagttg atgatcgtca tgcatttgaa gcagtttgga
cccaggcaga tattcgtctg 1680tttgttcata gcgttcgtga aggtgaactg gatgcaaccg
aacaccatct gctgcaacag 1740ctgattgaag atgccgatca tagccgtcgt cagaccattc
tggttctgac ccagattgat 1800cagattccgg atcagaccat cctgacacag attaaaacca
gcattgcaca gcaggttccg 1860aaactggata tttgggcagt tagcgcaacc cgtcatcgtc
agggcattga aaacggtaaa 1920accctgctga tcgaaaaaag cggtattggt gcactgcgcc
ataccctgga acaggcactg 1980gcacaggtgc cgagcgcacg tacctatgaa aaaaatcgtc
tgctgtcaga tctgcaccat 2040cagctgaaac aactgctgct ggatcagaaa catgttctgc
aacaactgca acagacacag 2100caacagcagc tgcatgattt tgataccggt ctgattaaca
ttctggacaa aattcgtgtt 2160gatctggaac cgattgtgaa tattgatggt caggatcaag
cactgaatcc ggatagcttt 2220gcaaccatgt ttaaaaacac cgcagcaaaa cagcagcgtg
ccaaagttca gattgcatat 2280agccgtgcat gcattgaaat caacagccat ctgattcgcc
atggtgttgt tggtctgcct 2340gcggaacagc agaccaccat taaaagcatt gataccgtga
ttgttgccgt gtttggtatc 2400agcgttaaat ttcgtgatca gctgcgtgcc ctgttttata
ccgataccga acgtcagcgt 2460ctgcaacgtg aatttcgttt ctattttgaa aaaagtgccg
gtcgcatgat tctggcagca 2520aaaattgaac agaccatgcg tcagcagggc tgtattcaga
atgccatgat ggcactgcaa 2580caaatggaaa gcgcagcata aaaacacgga cgccgcaaac
ggcgtccgaa tttcttggtc 2640gaccgttaaa tctatcaccg caagggataa atatctaaca
ccgtgcgtgt tgactatttt 2700acctctggcg gtgataatgg ttgcatgtac taatctagat
aaggaatata gccatgaccg 2760caccgattca ggatctgcgt gatgcaattg ccctgctgca
acagcatgat aatcagtatc 2820tggaaaccga tcatccggtt gatccgaatg cagaactggc
aggcgtttat cgtcatattg 2880gtgccggtgg caccgttaaa cgtccgaccc gtattggtcc
ggcaatgatg tttaataaca 2940ttaaaggtta tccgcacagc cgtattctgg ttggtatgca
tgcaagccgt cagcgtgcag 3000cactgctgct gggttgtgaa gcaagtcagc tggcactgga
agttggtaaa gcagttaaaa 3060aaccggttgc accggtggtt gttccggcaa gcagcgcacc
gtgtcaagag cagatttttc 3120tggcagatga tccggatttt gatctgcgta ccctgctgcc
tgcacatacc aataccccga 3180ttgatgcagg tccgtttttt tgtctgggtc tggccctggc
aagcgatccg gtggatgcaa 3240gcctgaccga tgttaccatt catcgtctgt gtgttcaggg
tcgtgatgaa ctgagcatgt 3300tcctggcagc aggtcgccat attgaagttt ttcgtcagaa
agcagaagca gcaggtaaac 3360cgctgccgat taccattaat atgggtctgg acccagcaat
ctatattggc gcatgttttg 3420aagcaccgac caccccgttt ggttataatg aactgggtgt
tgccggtgca ctgcgtcagc 3480gtccggttga actggttcag ggtgttagcg ttccggaaaa
agcaattgca cgtgccgaaa 3540ttgttattga aggtgaactg ctgcctggtg ttcgtgttcg
tgaagatcag cataccaatt 3600caggtcatgc aatgccggaa tttccgggtt attgtggtgg
tgcaaatccg agcctgccgg 3660ttattaaagt taaagccgtt accatgcgca ataacgcaat
tctgcaaacc ctggttggtc 3720cgggtgaaga acataccacc ctggcaggtc tgccgaccga
agcaagcatt tggaatgcag 3780ttgaagcagc aattccgggt tttctgcaaa atgtttatgc
ccataccgca ggcggtggta 3840aatttctggg tattctgcaa gtgaaaaaac gtcagcctgc
cgatgaaggt cgtcagggtc 3900aggcagccct gctggcgctg gcaacctata gcgaactgaa
aaatatcatt ctggtggatg 3960aggatgtgga catttttgat agtgatgata ttctgtgggc
aatgaccacc cgtatgcagg 4020gtgatgttag cattaccacc attccgggta ttcgcggtca
tcagctggac ccgagccaga 4080caccggaata ttcaccgagc attcgtggta atggtattag
ctgcaaaacc atctttgatt 4140gtaccgttcc gtgggcactg aaaagccatt ttgaacgtgc
accgtttgca gatgttgatc 4200cgcgtccgtt tgcacctgaa tattttgcac gtctggaaaa
aaatcagggc agcgcaaaat 4260aagctaataa caggcctgct ggtaatcgca ggaattttta
tttggatgga tccgcctacc 4320tagcttccaa gaaagatatc ctaacagcac aagagcggaa
agatgttttg ttctacatcc 4380agaacaacct ctgctaaaat tcctgaaaaa ttttgcaaaa
agttgttgac tttatctaca 4440aggtgtggta taataatctt aacaacagca ggacgctccc
gggttgagga aaacctaatg 4500aaactgacca gcctgcgtgt tagcctgctg gcactgggtc
tggttaccag cggttttgca 4560gcagcagaaa cctataccgt tgatcgttat caggatgata
gcgaaaaagg tagcctgcgt 4620tgggcaattg aacagagcaa tgcaaatagc gcacaagaaa
accagattct gattcaggca 4680gttggtaaag caccgtatgt tatcaaagtt gataaaccgc
tgcctccgat taaaagcagc 4740gttaaaatca ttggcaccga gtgggataaa accggtgaat
ttattgcaat tgatggcagc 4800aactatatca aaggcgaagg tgaaaaagca tgtccgggtg
caaatccggg tcagtatggc 4860accaatgttc gtaccatgac cctgcctggt ctggttctgc
aagatgttaa tggtgttacc 4920ctgaaaggtc tggatgttca tcgtttttgt attggtgttc
tggttaatcg cagcagcaat 4980aacctgattc agcataatcg tatcagcaac aattatggtg
gtgccggtgt tatgattacc 5040ggtgatgatg gtaaaggtaa tccgaccagc accaccacca
ataataacaa agttctggat 5100aacgtgttca tcgataatgg tgatggtctg gaactgaccc
gtggtgcagc atttaatctg 5160attgcaaata acctgtttac cagcacaaaa gccaatccgg
aaccgagcca gggtattgaa 5220attctgtggg gtaatgataa tgccgtggtg ggtaacaaat
tcgaaaacta ttcagatggc 5280ctgcaaatca attggggtaa acgtaactat atcgcctata
acgaactgac caataacagc 5340ctgggtttca atctgacagg tgatggtaac attttcgaca
gcaataaagt gcatggtaac 5400cgtattggta ttgccattcg tagtgaaaaa gatgccaatg
cacgtattac cctgaccaaa 5460aatcagattt gggataacgg caaagatatc aaacgttgtg
aagccggtgg tagctgtgtt 5520ccgaatcagc gtctgggtgc aattgttttt ggtgttccgg
cactggaaca tgaaggtttt 5580gttggtagcc gtggcggtgg tgttgttatt gaaccggcaa
aactgcaaaa aacctgcacc 5640cagccgaacc agcagaattg taatgcaatt cctaatcagg
gtattcaggc accgaaactg 5700acagttagca aaaaacagct gaccgttgaa gttaaaggca
cccctaatca gcgttataat 5760gtggaatttt ttggcaatcg taatgccagc agcagcgaag
cagaacagta tctgggtagc 5820attgttgttg ttaccgatca tcagggtctg gcaaaagcaa
attgggctcc gaaagttagc 5880atgccgagcg ttaccgcaaa tgtgacagat catctgggtg
cgaccagcga actgagcagc 5940gcagttaaaa tgcgttaaat gcatgcgcgc cgcgttcgcg
cggcgctttt ttttggtact 6000cagtagcgct gtctggcaac ataaacggcc ccttctgggc
aatgccgatc agttaaggat 6060tagttgaccg atccttaaac tgaggcacta taacggcttc
610042594DNAKlebsiella
pneumoniaegene(1)..(594)Nucleotide sequence of Klebsiella pneumoniae
kpdB gene. 42atgaaactga ttattgggat gacgggggcc accggggcac cgcttggggt
ggcattgctg 60caggcgctgc gcgatatgcc ggaggtggaa acccatctgg tgatgtcgaa
atgggccaaa 120accaccatcg agctggaaac gccctggacg gcgcgcgaag tggccgcgct
ggcggacttt 180tcccacagcc cggcagacca ggccgccacc atctcatccg gttcatttcg
taccgacggc 240atgatcgtta ttccctgcag tatgaaaacg cttgcaggca ttcgcgcggg
ttatgccgaa 300gggctggtgg gccgcgcggc ggacgtggtg ctcaaagagg ggcgcaagct
ggtgttggtc 360ccgcgggaaa tgccgctcag cacgatccat ctggagaaca tgctggcgct
gtcccgcatg 420ggcgtggcga tggtcccgcc gatgccagct tactacaacc acccggagac
ggttgacgat 480atcaccaatc atatcgtcac ccgggtgctg gatcagtttg gcctcgacta
tcacaaagcg 540cgccgctgga acggcttgcg cacggcagaa caatttgcac aggagatcga
ataa 59443197PRTKlebsiella pneumoniaePEPTIDE(1)..(197)Amino acid
sequence of KpdB protein of Klebsiella pneumoniae 43Met Lys Leu Ile
Ile Gly Met Thr Gly Ala Thr Gly Ala Pro Leu Gly1 5
10 15Val Ala Leu Leu Gln Ala Leu Arg Asp Met
Pro Glu Val Glu Thr His 20 25
30Leu Val Met Ser Lys Trp Ala Lys Thr Thr Ile Glu Leu Glu Thr Pro
35 40 45Trp Thr Ala Arg Glu Val Ala Ala
Leu Ala Asp Phe Ser His Ser Pro 50 55
60Ala Asp Gln Ala Ala Thr Ile Ser Ser Gly Ser Phe Arg Thr Asp Gly65
70 75 80Met Ile Val Ile Pro
Cys Ser Met Lys Thr Leu Ala Gly Ile Arg Ala 85
90 95Gly Tyr Ala Glu Gly Leu Val Gly Arg Ala Ala
Asp Val Val Leu Lys 100 105
110Glu Gly Arg Lys Leu Val Leu Val Pro Arg Glu Met Pro Leu Ser Thr
115 120 125Ile His Leu Glu Asn Met Leu
Ala Leu Ser Arg Met Gly Val Ala Met 130 135
140Val Pro Pro Met Pro Ala Tyr Tyr Asn His Pro Glu Thr Val Asp
Asp145 150 155 160Ile Thr
Asn His Ile Val Thr Arg Val Leu Asp Gln Phe Gly Leu Asp
165 170 175Tyr His Lys Ala Arg Arg Trp
Asn Gly Leu Arg Thr Ala Glu Gln Phe 180 185
190Ala Gln Glu Ile Glu 19544570DNAEscherichia
coligene(1)..(570)Nucleotide sequence of Escherichia coli ubiX gene
44atgaaacgac tcattgtagg catcagcggt gccagcggcg cgatttatgg cgtgcgctta
60ttacaggttc tgcgcgatgt cgcagatatc gaaacgcatc tggtgatgag ccaggcggcg
120cgccagacct tatccctcga aacgggtttt tccctgcgcg aagtgcaggc attagctgat
180gtcacgcacg atgcgcgcga tattgccgcc agcatctctt ccggttcttt ccagacgctg
240gggatggtta ttttaccctg ttcaatcaaa accctttccg gcattgtcca tagctacacc
300gatggtttac tgacccgtgc ggcagatgtg gtgctgaaag agcgtcgccc gttggtgctc
360tgcgtgcgtg aaacaccatt gcacttaggc catctgcgtt taatgactca ggcagcagaa
420atcggtgcgg tgattatgcc tcccgttccg gcgttttatc atcgcccaca gtcccttgat
480gatgtgataa atcagacggt taatcgtgtt cttgaccagt ttgcgataac ccttcctgaa
540gatctctttg cccgctggca gggcgcataa
57045189PRTEscherichia coliPEPTIDE(1)..(189) 45Met Lys Arg Leu Ile Val
Gly Ile Ser Gly Ala Ser Gly Ala Ile Tyr1 5
10 15Gly Val Arg Leu Leu Gln Val Leu Arg Asp Val Ala
Asp Ile Glu Thr 20 25 30His
Leu Val Met Ser Gln Ala Ala Arg Gln Thr Leu Ser Leu Glu Thr 35
40 45Gly Phe Ser Leu Arg Glu Val Gln Ala
Leu Ala Asp Val Thr His Asp 50 55
60Ala Arg Asp Ile Ala Ala Ser Ile Ser Ser Gly Ser Phe Gln Thr Leu65
70 75 80Gly Met Val Ile Leu
Pro Cys Ser Ile Lys Thr Leu Ser Gly Ile Val 85
90 95His Ser Tyr Thr Asp Gly Leu Leu Thr Arg Ala
Ala Asp Val Val Leu 100 105
110Lys Glu Arg Arg Pro Leu Val Leu Cys Val Arg Glu Thr Pro Leu His
115 120 125Leu Gly His Leu Arg Leu Met
Thr Gln Ala Ala Glu Ile Gly Ala Val 130 135
140Ile Met Pro Pro Val Pro Ala Phe Tyr His Arg Pro Gln Ser Leu
Asp145 150 155 160Asp Val
Ile Asn Gln Thr Val Asn Arg Val Leu Asp Gln Phe Ala Ile
165 170 175Thr Leu Pro Glu Asp Leu Phe
Ala Arg Trp Gln Gly Ala 180
18546594DNAEscherichia coligene(1)..(594)Nucleotide sequence of
Escherichia coli Wstrain elw gene 46atgaaactga tcgtcgggat
gacaggggct accggtgcgc ctcttggtgt ggcattactg 60caagcgctgc gggagatgcc
gaatgtcgag actcatctgg tgatgtcgaa gtgggcgaaa 120accaccattg aactggaaac
gccttacagc gctcgcgatg ttgctgccct cgcagacttc 180agccataacc cggcggatca
ggcggcgatc atctcatccg gttcttttcg taccgacggc 240atgatcgtta ttccgtgcag
tatgaaaacg ctcgccggta tccgcgctgg ttacgccgat 300ggcctggtag ggcgcgcggc
ggacgtcgtg ctcaaagaag gccgcaaact ggtgctggtg 360ccgcgtgaaa tgccgcttag
caccatccat ctcgaaaata tgctcgcact ttcacgcatg 420ggcgtggcga tggtgccgcc
gatgcctgcc ttttataacc atcccgaaac ggtagatgac 480attgtccacc atgtggtagc
ccgcgtgctg gatcaatttg gcctcgaaca tccccacgcc 540aggcgctggc aaggattgcc
gcaggcccgg aatttttctc aggagaatga ataa 59447197PRTEscherichia
coliPEPTIDE(1)..(197)Amino acid sequence of Elw protein of
Escherichia coli W strain 47Met Lys Leu Ile Val Gly Met Thr Gly Ala Thr
Gly Ala Pro Leu Gly1 5 10
15Val Ala Leu Leu Gln Ala Leu Arg Glu Met Pro Asn Val Glu Thr His
20 25 30Leu Val Met Ser Lys Trp Ala
Lys Thr Thr Ile Glu Leu Glu Thr Pro 35 40
45Tyr Ser Ala Arg Asp Val Ala Ala Leu Ala Asp Phe Ser His Asn
Pro 50 55 60Ala Asp Gln Ala Ala Ile
Ile Ser Ser Gly Ser Phe Arg Thr Asp Gly65 70
75 80Met Ile Val Ile Pro Cys Ser Met Lys Thr Leu
Ala Gly Ile Arg Ala 85 90
95Gly Tyr Ala Asp Gly Leu Val Gly Arg Ala Ala Asp Val Val Leu Lys
100 105 110Glu Gly Arg Lys Leu Val
Leu Val Pro Arg Glu Met Pro Leu Ser Thr 115 120
125Ile His Leu Glu Asn Met Leu Ala Leu Ser Arg Met Gly Val
Ala Met 130 135 140Val Pro Pro Met Pro
Ala Phe Tyr Asn His Pro Glu Thr Val Asp Asp145 150
155 160Ile Val His His Val Val Ala Arg Val Leu
Asp Gln Phe Gly Leu Glu 165 170
175His Pro His Ala Arg Arg Trp Gln Gly Leu Pro Gln Ala Arg Asn Phe
180 185 190Ser Gln Glu Asn Glu
19548579DNAKlebsiella oxytocagene(1)..(579)Nucleotide sequence of
Klebsiella oxytoca kox gene 48atgacggcac gcatcatcat tggtatcagc
ggcgcatccg ggtttcagta cggcgttaag 60gcgctggagc tactgcgccc gcatcccgtt
gaagtccacc tggtcgtctc taaaggcgcg 120gaaaaaacct gcgagctgga gacggatcac
cgcctggacg aggtgatggc gctggccgac 180gtggtgcatc ccatcgcgaa tcttggggcg
gctatctcca gcggttcgtt taaaacgctg 240ggaatgttga tcgcgccgtg ttcaatgcgt
tctttaggcg ccatcgccca ctgcctgacc 300gacaacctgc tcacccgcgc tgcggacgtg
gtgctgaaag agcgtcgccg cctggtgctg 360ctggcccggg aaacaccgct gaaccttggc
catatccgca atatggccgc cgtaaccgaa 420atgggcggaa ttatctttcc gccggtcccg
gcactttacc agcgtccgca aacggcggac 480gacatcgtta cccatagcgt caatcgcgcg
ctcgatctgt ttgacctgca ggtcaacaac 540atcccccgct ggggtgaagg cgagctacgt
tttaattaa 57949192PRTKlebsiella
oxytocaPEPTIDE(1)..(192)Amino acid sequence of Kox protein of
Klebsiella oxytoca. 49Met Thr Ala Arg Ile Ile Ile Gly Ile Ser Gly Ala Ser
Gly Phe Gln1 5 10 15Tyr
Gly Val Lys Ala Leu Glu Leu Leu Arg Pro His Pro Val Glu Val 20
25 30His Leu Val Val Ser Lys Gly Ala
Glu Lys Thr Cys Glu Leu Glu Thr 35 40
45Asp His Arg Leu Asp Glu Val Met Ala Leu Ala Asp Val Val His Pro
50 55 60Ile Ala Asn Leu Gly Ala Ala Ile
Ser Ser Gly Ser Phe Lys Thr Leu65 70 75
80Gly Met Leu Ile Ala Pro Cys Ser Met Arg Ser Leu Gly
Ala Ile Ala 85 90 95His
Cys Leu Thr Asp Asn Leu Leu Thr Arg Ala Ala Asp Val Val Leu
100 105 110Lys Glu Arg Arg Arg Leu Val
Leu Leu Ala Arg Glu Thr Pro Leu Asn 115 120
125Leu Gly His Ile Arg Asn Met Ala Ala Val Thr Glu Met Gly Gly
Ile 130 135 140Ile Phe Pro Pro Val Pro
Ala Leu Tyr Gln Arg Pro Gln Thr Ala Asp145 150
155 160Asp Ile Val Thr His Ser Val Asn Arg Ala Leu
Asp Leu Phe Asp Leu 165 170
175Gln Val Asn Asn Ile Pro Arg Trp Gly Glu Gly Glu Leu Arg Phe Asn
180 185 19050564DNALactobacillus
plantarumgene(1)..(564)Nucleotide sequence of Lactobacillus plantarum
lpl gene 50atgaaacgaa ttgttgtggg aatcacggga gcgtccggta cgatttacgc
ggtcgactta 60ttagaaaagt tacatcagcg gccagatgtt gaagttcatc tggtaatgag
tgcgtgggct 120aaaaaaaact tggagttaga gactgattac tcgctcgcgc agctgacggc
gctcgcggat 180gctacttatc gggctaatga ccaaggcgca gcgattgcca gcggttcgtt
tttgaatgac 240ggaatggtca ttgtcccagc tagtatgaag acggtagcag ggattgcgta
cggcttcggt 300gataatttaa tatcgcgggc tgctgatgtc acgattaaag aacaacgtaa
acttgtgatt 360gttccacgtg aaacaccgtt aagcgtgatt catttagaaa atctaacgaa
gttggcaaaa 420ctcggtgccc aaattattcc accgattccc gcgttttata atcatccgca
atccattcag 480gatctggtca atcatcaaac catgaaaatt ttagatgcgt ttcatattca
taatgaaact 540gatcgccgtt gggaggggga ttaa
56451187PRTLactobacillus plantarumPEPTIDE(1)..(187)Amino acid
sequence of Lpl protein of Lactobacillus plantarum 51Met Lys Arg Ile
Val Val Gly Ile Thr Gly Ala Ser Gly Thr Ile Tyr1 5
10 15Ala Val Asp Leu Leu Glu Lys Leu His Gln
Arg Pro Asp Val Glu Val 20 25
30His Leu Val Met Ser Ala Trp Ala Lys Lys Asn Leu Glu Leu Glu Thr
35 40 45Asp Tyr Ser Leu Ala Gln Leu Thr
Ala Leu Ala Asp Ala Thr Tyr Arg 50 55
60Ala Asn Asp Gln Gly Ala Ala Ile Ala Ser Gly Ser Phe Leu Asn Asp65
70 75 80Gly Met Val Ile Val
Pro Ala Ser Met Lys Thr Val Ala Gly Ile Ala 85
90 95Tyr Gly Phe Gly Asp Asn Leu Ile Ser Arg Ala
Ala Asp Val Thr Ile 100 105
110Lys Glu Gln Arg Lys Leu Val Ile Val Pro Arg Glu Thr Pro Leu Ser
115 120 125Val Ile His Leu Glu Asn Leu
Thr Lys Leu Ala Lys Leu Gly Ala Gln 130 135
140Ile Ile Pro Pro Ile Pro Ala Phe Tyr Asn His Pro Gln Ser Ile
Gln145 150 155 160Asp Leu
Val Asn His Gln Thr Met Lys Ile Leu Asp Ala Phe His Ile
165 170 175His Asn Glu Thr Asp Arg Arg
Trp Glu Gly Asp 180 18552200DNAEscherichia
colipromoter(1)..(200)Nucleotide sequence of Pgi promoter 52agcggggcgg
ttgtcaacga tggggtcatg cggatttttc atccactcct ggcggtcagt 60agttcagcta
ataaatgctt cactgcgcta agggtttaca ctcaacatta cgctaacggc 120actaaaacca
tcacattttt ctgtgactgg cgctacaatc ttccaaagtc acaattctca 180tgcagaggag
gaatatagcc
200533537DNASaccharomyces cerevisiaegene(1)..(3537)Nucleotide sequence of
Saccharomyces cerevisiae pyc gene 53atgtcgcaaa gaaaattcgc cggcttgaga
gataacttca atctcttggg tgaaaagaac 60aaaatattgg tggctaatag aggagaaatt
ccaatcagaa tttttcgtac cgctcatgaa 120ctgtctatgc agacggtagc tatatattct
catgaagatc gtctttcaac gcacaaacaa 180aaggctgacg aagcatacgt cataggtgaa
gtaggccaat atacccccgt cggcgcttat 240ttggccattg acgaaatcat ttccattgcc
caaaaacacc aggtagattt catccatcca 300ggttatgggt tcttgtctga aaattcggaa
tttgccgaca aagtagtgaa ggccggtatc 360acttggattg gccctccagc tgaagttatt
gactccgtgg gtgataaggt ctcagctaga 420aacctggcag caaaagctaa tgtgcccacc
gttcctggta caccaggtcc tatagaaact 480gtagaggaag cacttgactt cgtcaatgaa
tacggctacc cggtgatcat taaggccgcc 540tttggtggtg gtggtagagg tatgagagtc
gttagagaag gtgacgacgt ggcagatgcc 600tttcaacgtg ctacctccga agcccgtact
gccttcggta atggtacctg ctttgtggaa 660agattcttgg acaagccaaa gcatattgaa
gttcaattgt tggccgataa ccacggaaac 720gtggttcatc ttttcgaaag agactgttcc
gtgcagagaa gacaccaaaa ggttgtcgaa 780gtggccccag caaagacttt accccgtgaa
gtccgtgacg ccattttgac agatgcagtt 840aaattggcca aagagtgtgg ctacagaaat
gcgggtactg ctgaattctt ggttgataac 900caaaatagac actatttcat tgaaattaat
ccaagaatcc aagtggaaca taccatcaca 960gaagaaatta ccggtataga tattgtggcg
gctcagatcc aaattgcggc aggtgcctct 1020ctaccccagc tgggcctatt ccaggacaaa
attacgactc gtggctttgc cattcagtgc 1080cgtattacca cggaagaccc tgctaagaac
ttccaaccag ataccggtag aatagaagtg 1140taccgttctg caggtggtaa tggtgttaga
ctggatggtg gtaacgccta tgcaggaaca 1200ataatctcac ctcattacga ctcaatgctg
gtcaaatgct catgctccgg ttccacctac 1260gaaatcgttc gtagaaaaat gattcgtgca
ttaatcgagt tcagaattag aggtgtcaag 1320accaacattc ccttcctatt gactcttttg
accaatccag tatttattga gggtacatac 1380tggacgactt ttattgacga caccccacaa
ctgttccaaa tggtttcatc acaaaacaga 1440gcccaaaaac ttttacatta cctcgccgac
gtggcagtca atggttcatc tatcaagggt 1500caaattggct tgccaaaatt aaaatcaaat
ccaagtgtcc cccatttgca cgatgctcag 1560ggcaatgtca tcaacgttac aaagtctgca
ccaccatccg gatggaggca agtgctacta 1620gaaaaggggc cagctgaatt tgccagacaa
gttagacagt tcaatggtac tttattgatg 1680gacaccacct ggagagacgc tcatcaatct
ctacttgcaa caagagtcag aacccacgat 1740ttggctacaa tcgctccaac aaccgcacat
gcccttgcag gtcgtttcgc cttagaatgt 1800tggggtggtg ccacattcga tgttgcaatg
agatttttgc atgaggatcc atgggaacgt 1860ttgagaaaat taagatctct ggtgcctaat
attccattcc aaatgttatt gcgtggtgcc 1920aatggtgtgg cttattcttc attgcctgac
aatgctattg accatttcgt caagcaagcc 1980aaggataatg gtgttgatat atttagagtc
tttgatgcct taaatgactt ggaacaattg 2040aaggtcggtg tagatgctgt gaagaaggca
ggtggtgttg tagaagccac tgtttgtttc 2100tctggggata tgcttcagcc aggcaagaaa
tacaatttgg attactactt ggaaattgct 2160gaaaaaattg tccaaatggg cactcatatc
ctgggtatca aagatatggc aggtaccatg 2220aagccagcag ctgccaaact actgattgga
tctttgaggg ctaagtaccc tgatctccca 2280atacatgttc acactcacga ttctgcaggt
actgctgttg catcaatgac tgcgtgtgct 2340ctggcgggcg ccgatgtcgt tgatgttgcc
atcaactcaa tgtctggttt aacttcacaa 2400ccatcaatca atgctctgtt ggcttcatta
gaaggtaata ttgacactgg tattaacgtt 2460gagcatgtcc gtgaactaga tgcatattgg
gcagagatga gattgttata ctcttgtttc 2520gaggctgact tgaagggccc agatccagaa
gtttatcaac atgaaatccc aggtggtcaa 2580ttgacaaact tgttgtttca agcccaacaa
ttgggtcttg gagaacaatg ggccgaaaca 2640aaaagagctt acagagaagc caattattta
ttgggtgata ttgtcaaagt taccccaact 2700tcgaaggtcg ttggtgatct ggcacaattt
atggtctcca ataaattaac ttccgatgat 2760gtgagacgcc tggctaattc tttggatttc
cctgactctg ttatggattt cttcgaaggc 2820ttaatcggcc aaccatatgg tgggttccca
gaaccattta gatcagacgt tttaaggaac 2880aagagaagaa agttgacttg tcgtccaggc
ctggaactag agccatttga tctcgaaaaa 2940attagagaag acttgcagaa tagatttggt
gatgttgatg agtgcgacgt tgcttcttat 3000aacatgtacc caagagttta tgaagacttc
caaaagatga gagaaacgta tggtgattta 3060tctgtattgc caacaagaag ctttttgtct
ccactagaga ctgacgaaga aattgaagtt 3120gtaatcgaac aaggtaaaac gctaattatc
aagctacagg ctgtgggtga tttgaacaaa 3180aagaccggtg aaagagaagt ttactttgat
ttgaatggtg aaatgagaaa aattcgtgtt 3240gctgacagat cacaaaaagt ggaaactgtt
actaaatcca aagcagacat gcatgatcca 3300ttacacattg gtgcaccaat ggcaggtgtc
attgttgaag ttaaagttca taaaggatca 3360ctaataaaga agggccaacc tgtagccgta
ttaagcgcca tgaaaatgga aatgattata 3420tcttctccat ccgatggaca agttaaagaa
gtgtttgtct ctgatggtga aaatgtggac 3480tcttctgatt tattagttct attagaagac
caagttcctg ttgaaactaa ggcatga 3537541178PRTEscherichia
coliPEPTIDE(1)..(1178)Amino acid sequence of Pyc protein of
Saccharomyces cerevisiae 54Met Ser Gln Arg Lys Phe Ala Gly Leu Arg Asp
Asn Phe Asn Leu Leu1 5 10
15Gly Glu Lys Asn Lys Ile Leu Val Ala Asn Arg Gly Glu Ile Pro Ile
20 25 30Arg Ile Phe Arg Thr Ala His
Glu Leu Ser Met Gln Thr Val Ala Ile 35 40
45Tyr Ser His Glu Asp Arg Leu Ser Thr His Lys Gln Lys Ala Asp
Glu 50 55 60Ala Tyr Val Ile Gly Glu
Val Gly Gln Tyr Thr Pro Val Gly Ala Tyr65 70
75 80Leu Ala Ile Asp Glu Ile Ile Ser Ile Ala Gln
Lys His Gln Val Asp 85 90
95Phe Ile His Pro Gly Tyr Gly Phe Leu Ser Glu Asn Ser Glu Phe Ala
100 105 110Asp Lys Val Val Lys Ala
Gly Ile Thr Trp Ile Gly Pro Pro Ala Glu 115 120
125Val Ile Asp Ser Val Gly Asp Lys Val Ser Ala Arg Asn Leu
Ala Ala 130 135 140Lys Ala Asn Val Pro
Thr Val Pro Gly Thr Pro Gly Pro Ile Glu Thr145 150
155 160Val Glu Glu Ala Leu Asp Phe Val Asn Glu
Tyr Gly Tyr Pro Val Ile 165 170
175Ile Lys Ala Ala Phe Gly Gly Gly Gly Arg Gly Met Arg Val Val Arg
180 185 190Glu Gly Asp Asp Val
Ala Asp Ala Phe Gln Arg Ala Thr Ser Glu Ala 195
200 205Arg Thr Ala Phe Gly Asn Gly Thr Cys Phe Val Glu
Arg Phe Leu Asp 210 215 220Lys Pro Lys
His Ile Glu Val Gln Leu Leu Ala Asp Asn His Gly Asn225
230 235 240Val Val His Leu Phe Glu Arg
Asp Cys Ser Val Gln Arg Arg His Gln 245
250 255Lys Val Val Glu Val Ala Pro Ala Lys Thr Leu Pro
Arg Glu Val Arg 260 265 270Asp
Ala Ile Leu Thr Asp Ala Val Lys Leu Ala Lys Glu Cys Gly Tyr 275
280 285Arg Asn Ala Gly Thr Ala Glu Phe Leu
Val Asp Asn Gln Asn Arg His 290 295
300Tyr Phe Ile Glu Ile Asn Pro Arg Ile Gln Val Glu His Thr Ile Thr305
310 315 320Glu Glu Ile Thr
Gly Ile Asp Ile Val Ala Ala Gln Ile Gln Ile Ala 325
330 335Ala Gly Ala Ser Leu Pro Gln Leu Gly Leu
Phe Gln Asp Lys Ile Thr 340 345
350Thr Arg Gly Phe Ala Ile Gln Cys Arg Ile Thr Thr Glu Asp Pro Ala
355 360 365Lys Asn Phe Gln Pro Asp Thr
Gly Arg Ile Glu Val Tyr Arg Ser Ala 370 375
380Gly Gly Asn Gly Val Arg Leu Asp Gly Gly Asn Ala Tyr Ala Gly
Thr385 390 395 400Ile Ile
Ser Pro His Tyr Asp Ser Met Leu Val Lys Cys Ser Cys Ser
405 410 415Gly Ser Thr Tyr Glu Ile Val
Arg Arg Lys Met Ile Arg Ala Leu Ile 420 425
430Glu Phe Arg Ile Arg Gly Val Lys Thr Asn Ile Pro Phe Leu
Leu Thr 435 440 445Leu Leu Thr Asn
Pro Val Phe Ile Glu Gly Thr Tyr Trp Thr Thr Phe 450
455 460Ile Asp Asp Thr Pro Gln Leu Phe Gln Met Val Ser
Ser Gln Asn Arg465 470 475
480Ala Gln Lys Leu Leu His Tyr Leu Ala Asp Val Ala Val Asn Gly Ser
485 490 495Ser Ile Lys Gly Gln
Ile Gly Leu Pro Lys Leu Lys Ser Asn Pro Ser 500
505 510Val Pro His Leu His Asp Ala Gln Gly Asn Val Ile
Asn Val Thr Lys 515 520 525Ser Ala
Pro Pro Ser Gly Trp Arg Gln Val Leu Leu Glu Lys Gly Pro 530
535 540Ala Glu Phe Ala Arg Gln Val Arg Gln Phe Asn
Gly Thr Leu Leu Met545 550 555
560Asp Thr Thr Trp Arg Asp Ala His Gln Ser Leu Leu Ala Thr Arg Val
565 570 575Arg Thr His Asp
Leu Ala Thr Ile Ala Pro Thr Thr Ala His Ala Leu 580
585 590Ala Gly Arg Phe Ala Leu Glu Cys Trp Gly Gly
Ala Thr Phe Asp Val 595 600 605Ala
Met Arg Phe Leu His Glu Asp Pro Trp Glu Arg Leu Arg Lys Leu 610
615 620Arg Ser Leu Val Pro Asn Ile Pro Phe Gln
Met Leu Leu Arg Gly Ala625 630 635
640Asn Gly Val Ala Tyr Ser Ser Leu Pro Asp Asn Ala Ile Asp His
Phe 645 650 655Val Lys Gln
Ala Lys Asp Asn Gly Val Asp Ile Phe Arg Val Phe Asp 660
665 670Ala Leu Asn Asp Leu Glu Gln Leu Lys Val
Gly Val Asp Ala Val Lys 675 680
685Lys Ala Gly Gly Val Val Glu Ala Thr Val Cys Phe Ser Gly Asp Met 690
695 700Leu Gln Pro Gly Lys Lys Tyr Asn
Leu Asp Tyr Tyr Leu Glu Ile Ala705 710
715 720Glu Lys Ile Val Gln Met Gly Thr His Ile Leu Gly
Ile Lys Asp Met 725 730
735Ala Gly Thr Met Lys Pro Ala Ala Ala Lys Leu Leu Ile Gly Ser Leu
740 745 750Arg Ala Lys Tyr Pro Asp
Leu Pro Ile His Val His Thr His Asp Ser 755 760
765Ala Gly Thr Ala Val Ala Ser Met Thr Ala Cys Ala Leu Ala
Gly Ala 770 775 780Asp Val Val Asp Val
Ala Ile Asn Ser Met Ser Gly Leu Thr Ser Gln785 790
795 800Pro Ser Ile Asn Ala Leu Leu Ala Ser Leu
Glu Gly Asn Ile Asp Thr 805 810
815Gly Ile Asn Val Glu His Val Arg Glu Leu Asp Ala Tyr Trp Ala Glu
820 825 830Met Arg Leu Leu Tyr
Ser Cys Phe Glu Ala Asp Leu Lys Gly Pro Asp 835
840 845Pro Glu Val Tyr Gln His Glu Ile Pro Gly Gly Gln
Leu Thr Asn Leu 850 855 860Leu Phe Gln
Ala Gln Gln Leu Gly Leu Gly Glu Gln Trp Ala Glu Thr865
870 875 880Lys Arg Ala Tyr Arg Glu Ala
Asn Tyr Leu Leu Gly Asp Ile Val Lys 885
890 895Val Thr Pro Thr Ser Lys Val Val Gly Asp Leu Ala
Gln Phe Met Val 900 905 910Ser
Asn Lys Leu Thr Ser Asp Asp Val Arg Arg Leu Ala Asn Ser Leu 915
920 925Asp Phe Pro Asp Ser Val Met Asp Phe
Phe Glu Gly Leu Ile Gly Gln 930 935
940Pro Tyr Gly Gly Phe Pro Glu Pro Phe Arg Ser Asp Val Leu Arg Asn945
950 955 960Lys Arg Arg Lys
Leu Thr Cys Arg Pro Gly Leu Glu Leu Glu Pro Phe 965
970 975Asp Leu Glu Lys Ile Arg Glu Asp Leu Gln
Asn Arg Phe Gly Asp Val 980 985
990Asp Glu Cys Asp Val Ala Ser Tyr Asn Met Tyr Pro Arg Val Tyr Glu
995 1000 1005Asp Phe Gln Lys Met Arg
Glu Thr Tyr Gly Asp Leu Ser Val Leu 1010 1015
1020Pro Thr Arg Ser Phe Leu Ser Pro Leu Glu Thr Asp Glu Glu
Ile 1025 1030 1035Glu Val Val Ile Glu
Gln Gly Lys Thr Leu Ile Ile Lys Leu Gln 1040 1045
1050Ala Val Gly Asp Leu Asn Lys Lys Thr Gly Glu Arg Glu
Val Tyr 1055 1060 1065Phe Asp Leu Asn
Gly Glu Met Arg Lys Ile Arg Val Ala Asp Arg 1070
1075 1080Ser Gln Lys Val Glu Thr Val Thr Lys Ser Lys
Ala Asp Met His 1085 1090 1095Asp Pro
Leu His Ile Gly Ala Pro Met Ala Gly Val Ile Val Glu 1100
1105 1110Val Lys Val His Lys Gly Ser Leu Ile Lys
Lys Gly Gln Pro Val 1115 1120 1125Ala
Val Leu Ser Ala Met Lys Met Glu Met Ile Ile Ser Ser Pro 1130
1135 1140Ser Asp Gly Gln Val Lys Glu Val Phe
Val Ser Asp Gly Glu Asn 1145 1150
1155Val Asp Ser Ser Asp Leu Leu Val Leu Leu Glu Asp Gln Val Pro
1160 1165 1170Val Glu Thr Lys Ala
1175556273DNAEscherichia colimisc_feature(1)..(6273)DNA sequence of the
plasmid pCAT350 55tgaatgacct ttaatagatt atattactaa ttaattgggg accctagagg
tccccttttt 60tattttaaaa attttttcac aaaacggttt acaagcatac gttggccgat
tcattaatgc 120agctggcacg acaggtttcc cgactggaaa gcgggcagtg agcgcaacgc
aattaatgtg 180agttagctca ctcattaggc accccaggct ttacacttta tgcttccggc
tcgtatgttg 240tgtggaattg tgagcggata acaatttcac acaggaaaca gctatgacca
tgattacgcc 300aagcttgcat gcctgcaggt cgactctaga ggatccccgg gtaccgagct
cgaattcact 360ggccgtcgtt ttacaacgtc gtgactggga aaaccctggc gttacccaac
ttaatcgcct 420tgcagcacat ccccctttcg ccagctggcg taatagcgaa gaggcccgca
ccgatcgccc 480ttcccaacag ttgcgcagcc tgaatggcga atggcgcctg atgcggtatt
ttctccttac 540gcatctgtgc ggtatttcac accgcatatg gtgcactctc agtacaatct
gctctgatgc 600cgcatagtta agccagcccc gacacccgcc aacacccgct gacgaattcg
ttgacagtaa 660gacgggtaag cctgttgatg ataccgctgc cttactgggt gcattagcca
gtctgaatga 720cctgtcacgg gataatccga agtggtcaga ctggaaaatc agagggcagg
aactgctgaa 780cagcaaaaag tcagatagca ccacatagca gacccgccat aaaacgccct
gagaagcccg 840tgacgggctt ttcttgtatt atgggtagtt tccttgcatg aatccataaa
aggcgcctgt 900agtgccattt acccccattc actgccagag ccgtgagcgc agcgaactga
atgtcacgaa 960aaagacagcg actcaggtgc ctgatggtcg gagacaaaag gaatattcag
cgatttgccc 1020gagcttgcga gggtgctact taagccttta gggttttaag gtctgttttg
tagaggagca 1080aacagcgttt gcgacatcct tttgtaatac tgcggaactg actaaagtag
tgagttatac 1140acagggctgg gatctattct ttttatcttt ttttattctt tctttattct
ataaattata 1200accacttgaa tataaacaaa aaaaacacac aaaggtctag cggaatttac
agagggtcta 1260gcagaattta caagttttcc agcaaaggtc tagcagaatt tacagatacc
cacaactcaa 1320aggaaaagga ctagtaatta tcattgacta gcccatctca attggtatag
tgattaaaat 1380cacctagacc aattgagatg tatgtctgaa ttagttgttt tcaaagcaaa
tgaactagcg 1440attagtcgct atgacttaac ggagcatgaa accaagctaa ttttatgctg
tgtggcacta 1500ctcaacccca cgattgaaaa ccctacaagg aaagaacgga cggtatcgtt
cacttataac 1560caatacgctc agatgatgaa catcagtagg gaaaatgctt atggtgtatt
agctaaagca 1620accagagagc tgatgacgag aactgtggaa atcaggaatc ctttggttaa
aggctttgag 1680attttccagt ggacaaacta tgccaagttc tcaagcgaaa aattagaatt
agtttttagt 1740gaagagatat tgccttatct tttccagtta aaaaaattca taaaatataa
tctggaacat 1800gttaagtctt ttgaaaacaa atactctatg aggatttatg agtggttatt
aaaagaacta 1860acacaaaaga aaactcacaa ggcaaatata gagattagcc ttgatgaatt
taagttcatg 1920ttaatgcttg aaaataacta ccatgagttt aaaaggctta accaatgggt
tttgaaacca 1980ataagtaaag atttaaacac ttacagcaat atgaaattgg tggttgataa
gcgaggccgc 2040ccgactgata cgttgatttt ccaagttgaa ctagatagac aaatggatct
cgtaaccgaa 2100cttgagaaca accagataaa aatgaatggt gacaaaatac caacaaccat
tacatcagat 2160tcctacctac gtaacggact aagaaaaaca ctacacgatg ctttaactgc
aaaaattcag 2220ctcaccagtt ttgaggcaaa atttttgagt gacatgcaaa gtaagcatga
tctcaatggt 2280tcgttctcat ggctcacgca aaaacaacga accacactag agaacatact
ggctaaatac 2340ggaaggatct gaggttctta tggcaaacac ggacgccgca aacggcgtcc
gaatttcttg 2400gtcgaccgtt aaatctatca ccgcaaggga taaatatcta acaccgtgcg
tgttgactat 2460tttacctctg gcggtgataa tggttgcatg tactaatcta gataaggaat
atagccatgg 2520aagtgaaaat cttcaacacc caggatgttc aggattttct gcgtgttgca
agcggtctgg 2580aacaagaggg tggtaatccg cgtgttaaac aaattattca tcgtgttctg
agcgacctgt 2640ataaagcaat tgaagatctg aatatcacca gcgacgaata ttgggcaggc
gttgcatatc 2700tgaatcagct gggtgcaaat caagaagcag gtctgctgag tccgggtctg
ggttttgatc 2760attatctgga tatgcgtatg gatgcagaag atgcagcact gggtattgaa
aatgcaacac 2820cgcgtaccat tgaaggtccg ctgtatgttg cgggtgcacc ggaaagcgtt
ggttatgcac 2880gcatggatga tggtagcgat ccgaatggtc ataccctgat tctgcatggc
accatttttg 2940atgcagatgg taaaccgctg ccgaatgcaa aagttgaaat ttggcatgca
aacaccaaag 3000gcttttatag ccattttgat ccgaccggtg aacagcaggc ctttaatatg
cgtcgtagca 3060ttattaccga tgagaatggt cagtatcgtg ttcgtaccat tctgcctgcc
ggttatggtt 3120gtcctccgga aggtccgacc cagcaactgc tgaaccaact gggtcgtcat
ggtaatcgtc 3180cggcacatat tcattatttt gttagcgcag atggtcaccg taaactgacc
acccagatta 3240atgttgccgg tgatccgtat acctatgatg attttgcata tgccacccgt
gaaggtctgg 3300ttgttgatgc agttgaacat accgatccgg aagcaattaa agccaatgat
gtggaaggtc 3360cttttgccga aatggtgttt gatctgaaac tgacccgtct ggttgatggt
gttgataatc 3420aggttgtgga tcgtccgcgt ctggcagttt aatacaccaa aatggttcaa
aattatcagg 3480cgagtgatca tgatcactgg cctgttttta tttcagggaa gggtggagac
aattacgtgg 3540ataatcagat catccaagaa accgtggata aaattctgag cgttctgccg
aatcaggcag 3600gtcagctggc acgtctggtg cgtctgatgc aatttgcatg cgatccgacc
attaccgtta 3660ttggcaaata taaccatggt aaaagccgtc tgctgaatga actgattggc
accgatatct 3720ttagcgttgc agataaacgt gaaaccattc agctggccga acataaacag
gatcaggttc 3780gttggctgga tgcacctggt ctggatgccg atgttgcagc agttgatgat
cgtcatgcat 3840ttgaagcagt ttggacccag gcagatattc gtctgtttgt tcatagcgtt
cgtgaaggtg 3900aactggatgc aaccgaacac catctgctgc aacagctgat tgaagatgcc
gatcatagcc 3960gtcgtcagac cattctggtt ctgacccaga ttgatcagat tccggatcag
accatcctga 4020cacagattaa aaccagcatt gcacagcagg ttccgaaact ggatatttgg
gcagttagcg 4080caacccgtca tcgtcagggc attgaaaacg gtaaaaccct gctgatcgaa
aaaagcggta 4140ttggtgcact gcgccatacc ctggaacagg cactggcaca ggtgccgagc
gcacgtacct 4200atgaaaaaaa tcgtctgctg tcagatctgc accatcagct gaaacaactg
ctgctggatc 4260agaaacatgt tctgcaacaa ctgcaacaga cacagcaaca gcagctgcat
gattttgata 4320ccggtctgat taacattctg gacaaaattc gtgttgatct ggaaccgatt
gtgaatattg 4380atggtcagga tcaagcactg aatccggata gctttgcaac catgtttaaa
aacaccgcag 4440caaaacagca gcgtgccaaa gttcagattg catatagccg tgcatgcatt
gaaatcaaca 4500gccatctgat tcgccatggt gttgttggtc tgcctgcgga acagcagacc
accattaaaa 4560gcattgatac cgtgattgtt gccgtgtttg gtatcagcgt taaatttcgt
gatcagctgc 4620gtgccctgtt ttataccgat accgaacgtc agcgtctgca acgtgaattt
cgtttctatt 4680ttgaaaaaag tgccggtcgc atgattctgg cagcaaaaat tgaacagacc
atgcgtcagc 4740agggctgtat tcagaatgcc atgatggcac tgcaacaaat ggaaagcgca
gcataagtct 4800gacaggtgcc ggatttcata tccggcactt actttcctta actcttcgcc
ttaacgcaaa 4860atctcacact gatgatcctg aatttcctcg gctgaagcac ggttaagcgt
cagtagattt 4920cgttgtgtcg ccagcaatac aaatgatgga cataagcctg ttcggttcgt
aagctgtaat 4980gcaagtagcg tatgcgctca cgcaactggt ccagaacctt gaccgaacgc
agcggtggta 5040acggcgcagt ggcggttttc atggcttgtt atgactgttt ttttggggta
cagtctatgc 5100ctcgggcatc caagcagcaa gcgcgttacg ccgtgggtcg atgtttgatg
ttatggagca 5160gcaacgatgt tacgcagcag ggcagtcgcc ctaaaacaaa gttaaacatc
atgagggaag 5220cggtgatcgc cgaagtatcg actcaactat cagaggtagt tggcgtcatc
gagcgccatc 5280tcgaaccgac gttgctggcc gtacatttgt acggctccgc agtggatggc
ggcctgaagc 5340cacacagtga tattgatttg ctggttacgg tgaccgtaag gcttgatgaa
acaacgcggc 5400gagctttgat caacgacctt ttggaaactt cggcttcccc tggagagagc
gagattctcc 5460gcgctgtaga agtcaccatt gttgtgcacg acgacatcat tccgtggcgt
tatccagcta 5520agcgcgaact gcaatttgga gaatggcagc gcaatgacat tcttgcaggt
atcttcgagc 5580cagccacgat cgacattgat ctggctatct tgctgacaaa agcaagagaa
catagcgttg 5640ccttggtagg tccagcggcg gaggaactct ttgatccggt tcctgaacag
gatctatttg 5700aggcgctaaa tgaaacctta acgctatgga actcgccgcc cgactgggct
ggcgatgagc 5760gaaatgtagt gcttacgttg tcccgcattt ggtacagcgc agtaaccggc
aaaatcgcgc 5820cgaaggatgt cgctgccgac tgggcaatgg agcgcctgcc ggcccagtat
cagcccgtca 5880tacttgaagc tagacaggct tatcttggac aagaagaaga tcgcttggcc
tcgcgcgcag 5940atcagttgga agaatttgtc cactacgtga aaggcgagat caccaaggta
gtcggcaaat 6000aatgtctaac aattcgttca agccgacgcc gcttcgcggc gcggcttaac
tcaagcgtta 6060gatgcactaa gcacataatt gctcacagcc aaactatcag gtcaagtctg
cttttattat 6120ttttaagcgt gcataataag ccctacacaa attgggagat atatcatgaa
aggctggctt 6180tttcttgtta tcgcaatagt tggcgaagta atcgcaacat ccgcattaaa
atctagcgag 6240ggctttacta agctgatccg gtggatgacc ttt
6273563943DNAEscherichia colimisc_feature(1)..(3943)DNA
sequence of the plasmid pCP165 56tgaatgacct ttaatagatt atattactaa
ttaattgggg accctagagg tccccttttt 60tattttaaaa attttttcac aaaacggttt
acaagcatac gttggccgat tcattaatgc 120agctggcacg acaggtttcc cgactggaaa
gcgggcagtg agcgcaacgc aattaatgtg 180agttagctca ctcattaggc accccaggct
ttacacttta tgcttccggc tcgtatgttg 240tgtggaattg tgagcggata acaatttcac
acaggaaaca gctatgacca tgattacgcc 300aagcttgcat gcctgcaggt cgactctaga
ggatccccgg gtaccgagct cgaattcact 360ggccgtcgtt ttacaacgtc gtgactggga
aaaccctggc gttacccaac ttaatcgcct 420tgcagcacat ccccctttcg ccagctggcg
taatagcgaa gaggcccgca ccgatcgccc 480ttcccaacag ttgcgcagcc tgaatggcga
atggcgcctg atgcggtatt ttctccttac 540gcatctgtgc ggtatttcac accgcatatg
gtgcactctc agtacaatct gctctgatgc 600cgcatagtta agccagcccc gacacccgcc
aacacccgct gacgaattcg ttgacagtaa 660gacgggtaag cctgttgatg ataccgctgc
cttactgggt gcattagcca gtctgaatga 720cctgtcacgg gataatccga agtggtcaga
ctggaaaatc agagggcagg aactgctgaa 780cagcaaaaag tcagatagca ccacatagca
gacccgccat aaaacgccct gagaagcccg 840tgacgggctt ttcttgtatt atgggtagtt
tccttgcatg aatccataaa aggcgcctgt 900agtgccattt acccccattc actgccagag
ccgtgagcgc agcgaactga atgtcacgaa 960aaagacagcg actcaggtgc ctgatggtcg
gagacaaaag gaatattcag cgatttgccc 1020gagcttgcga gggtgctact taagccttta
gggttttaag gtctgttttg tagaggagca 1080aacagcgttt gcgacatcct tttgtaatac
tgcggaactg actaaagtag tgagttatac 1140acagggctgg gatctattct ttttatcttt
ttttattctt tctttattct ataaattata 1200accacttgaa tataaacaaa aaaaacacac
aaaggtctag cggaatttac agagggtcta 1260gcagaattta caagttttcc agcaaaggtc
tagcagaatt tacagatacc cacaactcaa 1320aggaaaagga ctagtaatta tcattgacta
gcccatctca attggtatag tgattaaaat 1380cacctagacc aattgagatg tatgtctgaa
ttagttgttt tcaaagcaaa tgaactagcg 1440attagtcgct atgacttaac ggagcatgaa
accaagctaa ttttatgctg tgtggcacta 1500ctcaacccca cgattgaaaa ccctacaagg
aaagaacgga cggtatcgtt cacttataac 1560caatacgctc agatgatgaa catcagtagg
gaaaatgctt atggtgtatt agctaaagca 1620accagagagc tgatgacgag aactgtggaa
atcaggaatc ctttggttaa aggctttgag 1680attttccagt ggacaaacta tgccaagttc
tcaagcgaaa aattagaatt agtttttagt 1740gaagagatat tgccttatct tttccagtta
aaaaaattca taaaatataa tctggaacat 1800gttaagtctt ttgaaaacaa atactctatg
aggatttatg agtggttatt aaaagaacta 1860acacaaaaga aaactcacaa ggcaaatata
gagattagcc ttgatgaatt taagttcatg 1920ttaatgcttg aaaataacta ccatgagttt
aaaaggctta accaatgggt tttgaaacca 1980ataagtaaag atttaaacac ttacagcaat
atgaaattgg tggttgataa gcgaggccgc 2040ccgactgata cgttgatttt ccaagttgaa
ctagatagac aaatggatct cgtaaccgaa 2100cttgagaaca accagataaa aatgaatggt
gacaaaatac caacaaccat tacatcagat 2160tcctacctac gtaacggact aagaaaaaca
ctacacgatg ctttaactgc aaaaattcag 2220ctcaccagtt ttgaggcaaa atttttgagt
gacatgcaaa gtaagcatga tctcaatggt 2280tcgttctcat ggctcacgca aaaacaacga
accacactag agaacatact ggctaaatac 2340ggaaggatct gaggttctta tggcaaacac
ggacgccgca aacggcgtcc gaatttcttg 2400gtcgaccgtt aaatctatca ccgcaaggga
taaatatcta acaccgtgcg tgttgactat 2460tttacctctg gcggtgataa tggttgcatg
tactaatcta gataaggaat atagccttag 2520atttgactga aatcgtacag taaaaagcgt
acaataaagg ctccacgaaa gtggggcctt 2580ttttagcgcg agagcctttt ttgtcagcta
tctatatgga cataagcctg ttcggttcgt 2640aagctgtaat gcaagtagcg tatgcgctca
cgcaactggt ccagaacctt gaccgaacgc 2700agcggtggta acggcgcagt ggcggttttc
atggcttgtt atgactgttt ttttggggta 2760cagtctatgc ctcgggcatc caagcagcaa
gcgcgttacg ccgtgggtcg atgtttgatg 2820ttatggagca gcaacgatgt tacgcagcag
ggcagtcgcc ctaaaacaaa gttaaacatc 2880atgagggaag cggtgatcgc cgaagtatcg
actcaactat cagaggtagt tggcgtcatc 2940gagcgccatc tcgaaccgac gttgctggcc
gtacatttgt acggctccgc agtggatggc 3000ggcctgaagc cacacagtga tattgatttg
ctggttacgg tgaccgtaag gcttgatgaa 3060acaacgcggc gagctttgat caacgacctt
ttggaaactt cggcttcccc tggagagagc 3120gagattctcc gcgctgtaga agtcaccatt
gttgtgcacg acgacatcat tccgtggcgt 3180tatccagcta agcgcgaact gcaatttgga
gaatggcagc gcaatgacat tcttgcaggt 3240atcttcgagc cagccacgat cgacattgat
ctggctatct tgctgacaaa agcaagagaa 3300catagcgttg ccttggtagg tccagcggcg
gaggaactct ttgatccggt tcctgaacag 3360gatctatttg aggcgctaaa tgaaacctta
acgctatgga actcgccgcc cgactgggct 3420ggcgatgagc gaaatgtagt gcttacgttg
tcccgcattt ggtacagcgc agtaaccggc 3480aaaatcgcgc cgaaggatgt cgctgccgac
tgggcaatgg agcgcctgcc ggcccagtat 3540cagcccgtca tacttgaagc tagacaggct
tatcttggac aagaagaaga tcgcttggcc 3600tcgcgcgcag atcagttgga agaatttgtc
cactacgtga aaggcgagat caccaaggta 3660gtcggcaaat aatgtctaac aattcgttca
agccgacgcc gcttcgcggc gcggcttaac 3720tcaagcgtta gatgcactaa gcacataatt
gctcacagcc aaactatcag gtcaagtctg 3780cttttattat ttttaagcgt gcataataag
ccctacacaa attgggagat atatcatgaa 3840aggctggctt tttcttgtta tcgcaatagt
tggcgaagta atcgcaacat ccgcattaaa 3900atctagcgag ggctttacta agctgatccg
gtggatgacc ttt 39435710863DNAEscherichia
colimisc_feature(1)..(10863)DNA sequence of the plasmid pCP140
57tggacataag cctgttcggt tcgtaagctg taatgcaagt agcgtatgcg ctcacgcaac
60tggtccagaa ccttgaccga acgcagcggt ggtaacggcg cagtggcggt tttcatggct
120tgttatgact gtttttttgg ggtacagtct atgcctcggg catccaagca gcaagcgcgt
180tacgccgtgg gtcgatgttt gatgttatgg agcagcaacg atgttacgca gcagggcagt
240cgccctaaaa caaagttaaa catcatgagg gaagcggtga tcgccgaagt atcgactcaa
300ctatcagagg tagttggcgt catcgagcgc catctcgaac cgacgttgct ggccgtacat
360ttgtacggct ccgcagtgga tggcggcctg aagccacaca gtgatattga tttgctggtt
420acggtgaccg taaggcttga tgaaacaacg cggcgagctt tgatcaacga ccttttggaa
480acttcggctt cccctggaga gagcgagatt ctccgcgctg tagaagtcac cattgttgtg
540cacgacgaca tcattccgtg gcgttatcca gctaagcgcg aactgcaatt tggagaatgg
600cagcgcaatg acattcttgc aggtatcttc gagccagcca cgatcgacat tgatctggct
660atcttgctga caaaagcaag agaacatagc gttgccttgg taggtccagc ggcggaggaa
720ctctttgatc cggttcctga acaggatcta tttgaggcgc taaatgaaac cttaacgcta
780tggaactcgc cgcccgactg ggctggcgat gagcgaaatg tagtgcttac gttgtcccgc
840atttggtaca gcgcagtaac cggcaaaatc gcgccgaagg atgtcgctgc cgactgggca
900atggagcgcc tgccggccca gtatcagccc gtcatacttg aagctagaca ggcttatctt
960ggacaagaag aagatcgctt ggcctcgcgc gcagatcagt tggaagaatt tgtccactac
1020gtgaaaggcg agatcaccaa ggtagtcggc aaataatgtc taacaattcg ttcaagccga
1080cgccgcttcg cggcgcggct taactcaagc gttagatgca ctaagcacat aattgctcac
1140agccaaacta tcaggtcaag tctgctttta ttatttttaa gcgtgcataa taagccctac
1200acaaattggg agatatatca tgaaaggctg gctttttctt gttatcgcaa tagttggcga
1260agtaatcgca acatccgcat taaaatctag cgagggcttt actaagctga tccggtggat
1320gaccttttga atgaccttta atagattata ttactaatta attggggacc ctagaggtcc
1380ccttttttat tttaaaaatt ttttcacaaa acggtttaca agcatacgtt ggccgattca
1440ttaatgcagc tggcacgaca ggtttcccga ctggaaagcg ggcagtgagc gcaacgcaat
1500taatgtgagt tagctcactc attaggcacc ccaggcttta cactttatgc ttccggctcg
1560tatgttgtgt ggaattgtga gcggataaca atttcacaca ggaaacagct atgaccatga
1620ttacgccatc gaccgttaaa tctatcaccg caagggataa atatctaaca ccgtgcgtgt
1680tgactatttt acctctggcg gtgataatgg ttgcatgtac taatctagat aaggaatata
1740gccatggaag tgaaaatctt caacacccag gatgttcagg attttctgcg tgttgcaagc
1800ggtctggaac aagagggtgg taatccgcgt gttaaacaaa ttattcatcg tgttctgagc
1860gacctgtata aagcaattga agatctgaat atcaccagcg acgaatattg ggcaggcgtt
1920gcatatctga atcagctggg tgcaaatcaa gaagcaggtc tgctgagtcc gggtctgggt
1980tttgatcatt atctggatat gcgtatggat gcagaagatg cagcactggg tattgaaaat
2040gcaacaccgc gtaccattga aggtccgctg tatgttgcgg gtgcaccgga aagcgttggt
2100tatgcacgca tggatgatgg tagcgatccg aatggtcata ccctgattct gcatggcacc
2160atttttgatg cagatggtaa accgctgccg aatgcaaaag ttgaaatttg gcatgcaaac
2220accaaaggct tttatagcca ttttgatccg accggtgaac agcaggcctt taatatgcgt
2280cgtagcatta ttaccgatga gaatggtcag tatcgtgttc gtaccattct gcctgccggt
2340tatggttgtc ctccggaagg tccgacccag caactgctga accaactggg tcgtcatggt
2400aatcgtccgg cacatattca ttattttgtt agcgcagatg gtcaccgtaa actgaccacc
2460cagattaatg ttgccggtga tccgtatacc tatgatgatt ttgcatatgc cacccgtgaa
2520ggtctggttg ttgatgcagt tgaacatacc gatccggaag caattaaagc caatgatgtg
2580gaaggtcctt ttgccgaaat ggtgtttgat ctgaaactga cccgtctggt tgatggtgtt
2640gataatcagg ttgtggatcg tccgcgtctg gcagtttaat acaccaaaat ggttcaaaat
2700tatcaggcga gtgatcatga tcactggcct gtttttattt cagggaaggg tggagacaat
2760tacgtggata atcagatcat ccaagaaacc gtggataaaa ttctgagcgt tctgccgaat
2820caggcaggtc agctggcacg tctggtgcgt ctgatgcaat ttgcatgcga tccgaccatt
2880accgttattg gcaaatataa ccatggtaaa agccgtctgc tgaatgaact gattggcacc
2940gatatcttta gcgttgcaga taaacgtgaa accattcagc tggccgaaca taaacaggat
3000caggttcgtt ggctggatgc acctggtctg gatgccgatg ttgcagcagt tgatgatcgt
3060catgcatttg aagcagtttg gacccaggca gatattcgtc tgtttgttca tagcgttcgt
3120gaaggtgaac tggatgcaac cgaacaccat ctgctgcaac agctgattga agatgccgat
3180catagccgtc gtcagaccat tctggttctg acccagattg atcagattcc ggatcagacc
3240atcctgacac agattaaaac cagcattgca cagcaggttc cgaaactgga tatttgggca
3300gttagcgcaa cccgtcatcg tcagggcatt gaaaacggta aaaccctgct gatcgaaaaa
3360agcggtattg gtgcactgcg ccataccctg gaacaggcac tggcacaggt gccgagcgca
3420cgtacctatg aaaaaaatcg tctgctgtca gatctgcacc atcagctgaa acaactgctg
3480ctggatcaga aacatgttct gcaacaactg caacagacac agcaacagca gctgcatgat
3540tttgataccg gtctgattaa cattctggac aaaattcgtg ttgatctgga accgattgtg
3600aatattgatg gtcaggatca agcactgaat ccggatagct ttgcaaccat gtttaaaaac
3660accgcagcaa aacagcagcg tgccaaagtt cagattgcat atagccgtgc atgcattgaa
3720atcaacagcc atctgattcg ccatggtgtt gttggtctgc ctgcggaaca gcagaccacc
3780attaaaagca ttgataccgt gattgttgcc gtgtttggta tcagcgttaa atttcgtgat
3840cagctgcgtg ccctgtttta taccgatacc gaacgtcagc gtctgcaacg tgaatttcgt
3900ttctattttg aaaaaagtgc cggtcgcatg attctggcag caaaaattga acagaccatg
3960cgtcagcagg gctgtattca gaatgccatg atggcactgc aacaaatgga aagcgcagca
4020taaaaacacg gacgccgcaa acggcgtccg aatttcttgg tcgactctag aggatccccg
4080ggtaccgagc tcgaattcac tggccgtcgt tttacaacgt cgtgactggg aaaaccctgg
4140cgttacccaa cttaatcgcc ttgcagcaca tccccctttc gccagctggc gtaatagcga
4200agaggcccgc accgatcgcc cttcccaaca gttgcgcagc ctgaatggcg aatggcgcct
4260gatgcggtat tttctcctta cgcatctgtg cggtatttca caccgcatat ggtgcactct
4320cagtacaatc tgctctgatg ccgcatagtt aagccagccc cgacacccgc caacacccgc
4380tgacgaattc gttgacagta agacgggtaa gcctgttgat gataccgctg ccttactggg
4440tgcattagcc agtctgaatg acctgtcacg ggataatccg aagtggtcag actggaaaat
4500cagagggcag gaactgctga acagcaaaaa gtcagatagc accacatagc agacccgcca
4560taaaacgccc tgagaagccc gtgacgggct tttcttgtat tatgggtagt ttccttgcat
4620gaatccataa aaggcgcctg tagtgccatt tacccccatt cactgccaga gccgtgagcg
4680cagcgaactg aatgtcacga aaaagacagc gactcaggtg cctgatggtc ggagacaaaa
4740ggaatattca gcgatttgcc cgagcttgcg agggtgctac ttaagccttt agggttttaa
4800ggtctgtttt gtagaggagc aaacagcgtt tgcgacatcc ttttgtaata ctgcggaact
4860gactaaagta gtgagttata cacagggctg ggatctattc tttttatctt tttttattct
4920ttctttattc tataaattat aaccacttga atataaacaa aaaaaacaca caaaggtcta
4980gcggaattta cagagggtct agcagaattt acaagttttc cagcaaaggt ctagcagaat
5040ttacagatac ccacaactca aaggaaaagg actagtaatt atcattgact agcccatctc
5100aattggtata gtgattaaaa tcacctagac caattgagat gtatgtctga attagttgtt
5160ttcaaagcaa atgaactagc gattagtcgc tatgacttaa cggagcatga aaccaagcta
5220attttatgct gtgtggcact actcaacccc acgattgaaa accctacaag gaaagaacgg
5280acggtatcgt tcacttataa ccaatacgct cagatgatga acatcagtag ggaaaatgct
5340tatggtgtat tagctaaagc aaccagagag ctgatgacga gaactgtgga aatcaggaat
5400cctttggtta aaggctttga gattttccag tggacaaact atgccaagtt ctcaagcgaa
5460aaattagaat tagtttttag tgaagagata ttgccttatc ttttccagtt aaaaaaattc
5520ataaaatata atctggaaca tgttaagtct tttgaaaaca aatactctat gaggatttat
5580gagtggttat taaaagaact aacacaaaag aaaactcaca aggcaaatat agagattagc
5640cttgatgaat ttaagttcat gttaatgctt gaaaataact accatgagtt taaaaggctt
5700aaccaatggg ttttgaaacc aataagtaaa gatttaaaca cttacagcaa tatgaaattg
5760gtggttgata agcgaggccg cccgactgat acgttgattt tccaagttga actagataga
5820caaatggatc tcgtaaccga acttgagaac aaccagataa aaatgaatgg tgacaaaata
5880ccaacaacca ttacatcaga ttcctaccta cgtaacggac taagaaaaac actacacgat
5940gctttaactg caaaaattca gctcaccagt tttgaggcaa aatttttgag tgacatgcaa
6000agtaagcatg atctcaatgg ttcgttctca tggctcacgc aaaaacaacg aaccacacta
6060gagaacatac tggctaaata cggaaggatc tgaggttctt atggcccggc gtagcccaaa
6120acgcgctgtc gtcaagtcgt taagggcgtg cccttcatca tccgatctgg agtcaaaatg
6180tcctcacgta aagagcttgc caatgctatt cgtgcgctga gcatggacgc agtacagaaa
6240gccaaatccg gtcacccggg tgcccctatg ggtatggctg acattgccga agtcctgtgg
6300cgtgatttcc tgaaacacaa cccgcagaat ccgtcctggg ctgaccgtga ccgcttcgtg
6360ctgtccaacg gccacggctc catgctgatc tacagcctgc tgcacctcac cggttacgat
6420ctgccgatgg aagaactgaa aaacttccgt cagctgcact ctaaaactcc gggccacccg
6480gaagtaggtt ataccgctgg tgtggaaacc accaccggtc cgctgggtca gggtattgcc
6540aacgcagtcg gtatggcgat tgcagaaaaa acgctggcgg cgcagtttaa ccgtccaggt
6600cacgacattg tcgaccacta cacctacgcc ttcatgggcg acggctgcat gatggaaggc
6660atctcccacg aagtttgctc tctggcgggt acgctgaagc tgggtaaact gattgcgttc
6720tacgatgaca acggtatctc aatcgatggt cacgttgaag gctggttcac tgacgacacc
6780gcaatgcgtt tcgaagctta cggctggcac gttattcgcg acatcgacgg tcatgacgcg
6840gcatccatca aacgcgcagt agaagaagcg cgcgcagtga ctgacaaacc gtccctgctg
6900atgtgcaaaa ccatcatcgg tttcggttcc ccgaacaaag ccggtaccca cgactcccac
6960ggtgcgccgc tgggcgacgc tgaaattgcc ctgacccgcg aacagctggg ctggaaatac
7020gcgccgttcg aaatcccgtc tgaaatctat gctcagtggg atgcgaaaga agcaggccag
7080gcgaaagaat ctgcatggaa tgagaagttt gcggcttacg cgaaagctta tccgcaggaa
7140gcggctgaat ttacccgccg tatgaaaggc gaaatgccgt ctgacttcga cgccaaagcg
7200aaagagttta tcgctaaact gcaggctaat ccggcgaaaa tcgccagccg taaagcgtcg
7260cagaatgcta tcgaagcgtt cggcccgctg ttgcctgaat tcctcggcgg ctctgctgac
7320ctggcaccgt ctaacctgac cctgtggtct ggttctaaag caatcaacga agatgctgca
7380ggtaactaca tccactacgg tgttcgcgag ttcggtatga ccgcgattgc taacggtatc
7440tccctgcacg gtggtttcct gccgtacacc tccaccttcc tgatgttcgt ggaatacgca
7500cgtaacgccg tacgtatggc tgcgctgatg aaacagcgtc aggtgatggt ttacacccac
7560gactccatcg gtctgggcga agatggcccg actcaccagc cggttgagca ggtcgcttct
7620ctgcgcgtga ccccgaacat gtctacatgg cgtccgtgtg accaggttga atccgcggtc
7680gcgtggaaat acggcgttga gcgtcaggac ggcccgactg cgcttatcct ctcccgtcag
7740aacctggcgc agcaggaacg aactgaagag caactggcaa acatcgcgcg cggtggttat
7800gtgctgaaag actgcgccgg tcagccggaa ctgattttca tcgctaccgg ttcagaagtt
7860gaactggctg ttgctgccta cgaaaaactg actgccgaag gcgtgaaagc gcgcgtggtg
7920tccatgccgt ctaccgacgc atttgacaag caggatgctg cttaccgtga atccgtactg
7980ccgaaagcgg ttactgcacg cgttgctgta gaagcgggta ttgctgacta ctggtacaag
8040tatgttggcc tgaacggtgc tatcgtcggt atgaccacct tcggtgaatc tgctccggca
8100gagctgctgt ttgaagagtt cggcttcact gttgataacg ttgttgcgaa agcaaaagaa
8160ctgctgtaat tagcatttcg ggtaaaaagg tcgcttcggc gacctttttt attaccttga
8220tatgtccgtt tgcggacaag caatagataa agcgtgttgt agatcacaaa tatttatatg
8280caataaatat caattatgta atatgcatca cgatatgcgt attgacattt gttgttataa
8340ctataactca atgttatata agaaattaac tcgaggctat tgacgacagc tatggttcac
8400tgtccaccaa ccaaaactgt gctcagtacc gccaatattt ctcccttgag gggtacaaag
8460aggtgtccct agaagagatc cacgctgtgt aaaaatttta caaaaaggta ttgactttcc
8520ctacagggtg tgtaataatt taattacagg cgggggcaac cccgcctgtt ctagaggagg
8580aggaatcgcc atggagagga ttgtcgttac tctcggggaa cgtagttacc caattaccat
8640cgcatctggt ttgtttaatg aaccagcttc attcttaccg ctgaaatcgg gcgagcaggt
8700catgttggtc accaacgaaa ccctggctcc tctgtatctc gataaggtcc gcggcgtact
8760tgaacaggcg ggtgttaacg tcgatagcgt tatcctccct gacggcgagc agtataaaag
8820cctggctgta ctcgataccg tctttacggc gttgttacaa aagccgcatg gtcgcgatac
8880tacgctggtg gcgcttggcg gcggcgtagt gggcgatctg accggcttcg cggcggcgag
8940ttatcagcgc ggtgttcgtt tcattcaagt cccgacgacg ttactgtcgc aggtcgattc
9000ctccgttggc ggcaaaactg cggtcaacca tcccctcggt aaaaacatga ttggcgcgtt
9060ctaccagcct gcttcagtgg tggtggatct cgactgtctg aaaacgcttc ccccgcgtga
9120gttagcgtcg gggctggcag aagtcatcaa atacggcatt attcttgacg gtgcgttttt
9180caactggctg gaagagaatc tggatgcgtt gttgcgtctg gacggtccgg caatggcgta
9240ctgtattcgc cgttgttgtg aactgaaggc agaagttgtc gccgccgacg agcgcgaaac
9300cgggttacgt gctttactga atctgggaca cacctttggt catgccattg aagctgaaat
9360ggggtatggc aattggttac atggtgaagc ggtcgctgcg ggtatggtga tggcggcgcg
9420gacgtcggaa cgtctcgggc agtttagttc tgccgaaacg cagcgtatta taaccctgct
9480cacgcgggct gggttaccgg tcaatgggcc gcgcgaaatg tccgcgcagg cgtatttacc
9540gcatatgctg cgtgacaaga aagtccttgc gggagagatg cgcttaattc ttccgttggc
9600aattggtaag agtgaagttc gcagcggcgt ttcgcacgag cttgttctta acgccattgc
9660cgattgtcaa tcagcgtaat catcgttcat gcctgatgcc gctatgtagg ccggataagg
9720cgttcacgcc gcatccggca accgatgcct gatgcgacgc ggtcgcgtct tatcaggcct
9780acaggtcgat gccgatatgt acatcgtatt cggcaattaa tacatagcac tcgaggccta
9840cctagcttcc aagaaagata tcctaacagc acaagagcgg aaagatgttt tgttctacat
9900ccagaacaac ctctgctaaa attcctgaaa aattttgcaa aaagttgttg actttatcta
9960caaggtgtgg tataataatc ttaacaacag caggacgctc tagaatgaaa accgtaactg
10020taaaagatct cgtcattggt acgggcgcac ctaaaatcat cgtctcgctg atggcgaaag
10080atatcgccag cgtgaaatcc gaagctctcg cctatcgtga agcggacttt gatattctgg
10140aatggcgtgt ggaccactat gccgacctct ccaatgtgga gtctgtcatg gcggcagcaa
10200aaattctccg tgagaccatg ccagaaaaac cgctgctgtt taccttccgc agtgccaaag
10260aaggcggcga gcaggcgatt tccaccgagg cttatattgc actcaatcgt gcagccatcg
10320acagcggcct ggttgatatg atcgatctgg agttatttac cggtgatgat caggttaaag
10380aaaccgtcgc ctacgcccac gcgcatgatg tgaaagtagt catgtccaac catgacttcc
10440ataaaacgcc ggaagccgaa gaaatcattg cccgtctgcg caaaatgcaa tccttcgacg
10500ccgatattcc taagattgcg ctgatgccgc aaagtaccag cgatgtgctg acgttgcttg
10560ccgcgaccct ggagatgcag gagcagtatg ccgatcgtcc aattatcacg atgtcgatgg
10620caaaaactgg cgtaatttct cgtctggctg gtgaagtatt tggctcggcg gcaacttttg
10680gtgcggtaaa aaaagcgtct gcgccagggc aaatctcggt aaatgatttg cgcacggtat
10740taactatttt acaccaggca taagcaataa tatttcggcg ggaacaccct ccccgccgaa
10800ctaaaaaata tattcaatcg tatttaataa aaatatttcg tgagtctctg tgcgctaatt
10860ctc
10863585500DNAEscherichia coligene(1)..(5500)Nucleotide sequence of
ppc::PR-pyc 58cgaaccgacg tcactacaac cggtacgcgc acataaaggt catatctcta
acgccatccg 60tattcagggc cagtcggggc actccagcga tccagcacgc ggagttaacg
ctatcgaact 120aatgcacgac gccatcgggc atattttgca attgcgcgat aacctgaaag
aacgttatca 180ctacgaagcg tttaccgtgc cataccctac gctcaacctc gggcatattc
acggtggcga 240cgcttctaac cgtatttgcg cttgctgtga gttgcatatg gatattcgtc
cgctgcctgg 300catgacactc aatgaactta atggtttgct caacgatgca ttggctccgg
tgagcgaacg 360ctggccgggt cgtctgacgg tcgacgagct gcatccgccg atccctggct
atgaatgccc 420accgaatcat caactggttg aagtggttga gaaattgctc ggagcaaaaa
ccgaagtggt 480gaactactgt accgaagcgc cgtttattca aacgttatgc ccgacgctgg
tgttggggcc 540tggctcaatt aatcaggctc atcaacctga tgaatatctg gaaacacggt
ttatcaagcc 600cacccgcgaa ctgataaccc aggtaattca ccatttttgc tggcattaaa
acgtaggccg 660gataaggcgc tcgcgccgca tccggcactg ttgccaaact ccagtgccgc
aataatgtcg 720gatgcgatac ttgcgcatct tatccgacct acacctttgg tgttacttgg
ggcgattttt 780taacatttcc ataagttacg cttatttaaa gcgtcgtgaa tttaatgacg
taaattcctg 840ctatttattc gttcgttaaa tctatcaccg caagggataa atatctaaca
ccgtgcgtgt 900tgactatttt acctctggcg gtgataatgg ttgcatgtac taatctagat
aaggaatata 960gccatgtcgc aaagaaaatt cgccggcttg agagataact tcaatctctt
gggtgaaaag 1020aacaaaatat tggtggctaa tagaggagaa attccaatca gaatttttcg
taccgctcat 1080gaactgtcta tgcagacggt agctatatat tctcatgaag atcgtctttc
aacgcacaaa 1140caaaaggctg acgaagcata cgtcataggt gaagtaggcc aatatacccc
cgtcggcgct 1200tatttggcca ttgacgaaat catttccatt gcccaaaaac accaggtaga
tttcatccat 1260ccaggttatg ggttcttgtc tgaaaattcg gaatttgccg acaaagtagt
gaaggccggt 1320atcacttgga ttggccctcc agctgaagtt attgactccg tgggtgataa
ggtctcagct 1380agaaacctgg cagcaaaagc taatgtgccc accgttcctg gtacaccagg
tcctatagaa 1440actgtagagg aagcacttga cttcgtcaat gaatacggct acccggtgat
cattaaggcc 1500gcctttggtg gtggtggtag aggtatgaga gtcgttagag aaggtgacga
cgtggcagat 1560gcctttcaac gtgctacctc cgaagcccgt actgccttcg gtaatggtac
ctgctttgtg 1620gaaagattct tggacaagcc aaagcatatt gaagttcaat tgttggccga
taaccacgga 1680aacgtggttc atcttttcga aagagactgt tccgtgcaga gaagacacca
aaaggttgtc 1740gaagtggccc cagcaaagac tttaccccgt gaagtccgtg acgccatttt
gacagatgca 1800gttaaattgg ccaaagagtg tggctacaga aatgcgggta ctgctgaatt
cttggttgat 1860aaccaaaata gacactattt cattgaaatt aatccaagaa tccaagtgga
acataccatc 1920acagaagaaa ttaccggtat agatattgtg gcggctcaga tccaaattgc
ggcaggtgcc 1980tctctacccc agctgggcct attccaggac aaaattacga ctcgtggctt
tgccattcag 2040tgccgtatta ccacggaaga ccctgctaag aacttccaac cagataccgg
tagaatagaa 2100gtgtaccgtt ctgcaggtgg taatggtgtt agactggatg gtggtaacgc
ctatgcagga 2160acaataatct cacctcatta cgactcaatg ctggtcaaat gctcatgctc
cggttccacc 2220tacgaaatcg ttcgtagaaa aatgattcgt gcattaatcg agttcagaat
tagaggtgtc 2280aagaccaaca ttcccttcct attgactctt ttgaccaatc cagtatttat
tgagggtaca 2340tactggacga cttttattga cgacacccca caactgttcc aaatggtttc
atcacaaaac 2400agagcccaaa aacttttaca ttacctcgcc gacgtggcag tcaatggttc
atctatcaag 2460ggtcaaattg gcttgccaaa attaaaatca aatccaagtg tcccccattt
gcacgatgct 2520cagggcaatg tcatcaacgt tacaaagtct gcaccaccat ccggatggag
gcaagtgcta 2580ctagaaaagg ggccagctga atttgccaga caagttagac agttcaatgg
tactttattg 2640atggacacca cctggagaga cgctcatcaa tctctacttg caacaagagt
cagaacccac 2700gatttggcta caatcgctcc aacaaccgca catgcccttg caggtcgttt
cgccttagaa 2760tgttggggtg gtgccacatt cgatgttgca atgagatttt tgcatgagga
tccatgggaa 2820cgtttgagaa aattaagatc tctggtgcct aatattccat tccaaatgtt
attgcgtggt 2880gccaatggtg tggcttattc ttcattgcct gacaatgcta ttgaccattt
cgtcaagcaa 2940gccaaggata atggtgttga tatatttaga gtctttgatg ccttaaatga
cttggaacaa 3000ttgaaggtcg gtgtagatgc tgtgaagaag gcaggtggtg ttgtagaagc
cactgtttgt 3060ttctctgggg atatgcttca gccaggcaag aaatacaatt tggattacta
cttggaaatt 3120gctgaaaaaa ttgtccaaat gggcactcat atcctgggta tcaaagatat
ggcaggtacc 3180atgaagccag cagctgccaa actactgatt ggatctttga gggctaagta
ccctgatctc 3240ccaatacatg ttcacactca cgattctgca ggtactgctg ttgcatcaat
gactgcgtgt 3300gctctggcgg gcgccgatgt cgttgatgtt gccatcaact caatgtctgg
tttaacttca 3360caaccatcaa tcaatgctct gttggcttca ttagaaggta atattgacac
tggtattaac 3420gttgagcatg tccgtgaact agatgcatat tgggcagaga tgagattgtt
atactcttgt 3480ttcgaggctg acttgaaggg cccagatcca gaagtttatc aacatgaaat
cccaggtggt 3540caattgacaa acttgttgtt tcaagcccaa caattgggtc ttggagaaca
atgggccgaa 3600acaaaaagag cttacagaga agccaattat ttattgggtg atattgtcaa
agttacccca 3660acttcgaagg tcgttggtga tctggcacaa tttatggtct ccaataaatt
aacttccgat 3720gatgtgagac gcctggctaa ttctttggat ttccctgact ctgttatgga
tttcttcgaa 3780ggcttaatcg gccaaccata tggtgggttc ccagaaccat ttagatcaga
cgttttaagg 3840aacaagagaa gaaagttgac ttgtcgtcca ggcctggaac tagagccatt
tgatctcgaa 3900aaaattagag aagacttgca gaatagattt ggtgatgttg atgagtgcga
cgttgcttct 3960tataacatgt acccaagagt ttatgaagac ttccaaaaga tgagagaaac
gtatggtgat 4020ttatctgtat tgccaacaag aagctttttg tctccactag agactgacga
agaaattgaa 4080gttgtaatcg aacaaggtaa aacgctaatt atcaagctac aggctgtggg
tgatttgaac 4140aaaaagaccg gtgaaagaga agtttacttt gatttgaatg gtgaaatgag
aaaaattcgt 4200gttgctgaca gatcacaaaa agtggaaact gttactaaat ccaaagcaga
catgcatgat 4260ccattacaca ttggtgcacc aatggcaggt gtcattgttg aagttaaagt
tcataaagga 4320tcactaataa agaagggcca acctgtagcc gtattaagcg ccatgaaaat
ggaaatgatt 4380atatcttctc catccgatgg acaagttaaa gaagtgtttg tctctgatgg
tgaaaatgtg 4440gactcttctg atttattagt tctattagaa gaccaagttc ctgttgaaac
taaggcatga 4500tcttcctctt ctgcaaaccc tcgtgctttt gcgcgagggt tttctgaaat
acttctgttc 4560taacaccctc gttttcaata tatttctgtc tgcattttat tcaaattctg
aatatacctt 4620cagatatcct taaggaattg tcgttacatt cggcgatatt ttttcaagac
aggttcttac 4680tatgcattcc acagaagtcc aggctaaacc tctttttagc tggaaagccc
tgggttgggc 4740actgctctac ttttggtttt tctctactct gctacaggcc attatttaca
tcagtggtta 4800tagtggcact aacggcattc gcgactcgct gttattcagt tcgctgtggt
tgatcccggt 4860attcctcttt ccgaagcgga ttaaaattat tgccgcagta atcggcgtgg
tgctatgggc 4920ggcctctctg gcggcgctgt gctactacgt catctacggt caggagttct
cgcagagcgt 4980tctgtttgtg atgttcgaaa ccaacaccaa cgaagccagc gagtatttaa
gccagtattt 5040cagcctgaaa attgtgctta tcgcgctggc ctatacggcg gtggcagttc
tgctgtggac 5100acgcctgcgc ccggtctata ttccaaagcc gtggcgttat gttgtctctt
ttgccctgct 5160ttatggcttg attctgcatc cgatcgccat gaatacgttt atcaaaaaca
agccgtttga 5220gaaaacgttg gataacctgg cctcgcgtat ggagcctgcc gcaccgtggc
aattcctgac 5280cggctattat cagtatcgtc agcaactaaa ctcgctaaca aagttactga
atgaaaataa 5340tgccttgccg ccactggcta atttcaaaga tgaatcgggt aacgaaccgc
gcactttagt 5400gctggtgatt ggcgagtcga cccagcgcgg acgcatgagt ctgtacggtt
atccgcgtga 5460aaccacgccg gagctggatg cgctgcataa aaccgatccg
550059200DNAEscherichia colipromoter(1)..(200)Nucleotide
sequence of acpP promoter 59cacaaaatgc tcatgttgcg cgcagtctgc gtggttatga
gtaataatta gtgcaaaatg 60atttgcgtta ttggggggta aggcctcaaa ataacgtaaa
atcgtggtaa gacctgccgg 120gatttagttg caaatttttc aacattttat acactacgaa
aaccatcgcg aaagcgagtt 180ttgataggaa atttaagagt
20060200DNAEscherichia
colipromoter(1)..(200)Nuclotide sequence of rplU promoter 60ttatggttag
gaatataggg tgattgtact gaaaaaatgg cacagataaa cgttaccgta 60caagttgtgt
tttttttctt cgtgtattga ctgtagcact tgtcaaaggc gtgcgttttg 120cgtaatattc
gcgccctatt gtgaatattt atagcgcact ctgaatcatt gaaaaggtgt 180gcgcggaagc
ggagttttat
2006160DNAArtificial SequencePrimerprimer_bind(1)..(60)Sequence of DNA
primer MS604 61aacgccgtat aatgggcgca gattaagagg ctacagtggg cttacatggc
gatagctaga 606260DNAArtificial
SequencePrimerprimer_bind(1)..(60)Sequence of DNA Primer MS605
62tgtcggatcg ataaataggg caaaacaaac gcgcatcccg gaaaacgatt ccgaagccca
606360DNAArtificial SequencePrimerprimer_bind(1)..(60)Sequence of DNA
Primer MS608 63aaagtctgcc tgcaagtctg acagggcaac tatttgtggg cttacatggc
gatagctaga 606460DNAArtificial
SequencePrimerprimer_bind(1)..(60)Sequence of DNA Primer MS609
64ttgcaaaatt gccctgaaac agggcaacag cggagtcccg gaaaacgatt ccgaagccca
606525DNAArtificial SequencePrimerprimer_bind(1)..(25)Sequence of DNA
Primer MS461 65ggctatattc cttatctaga ttagt
256625DNAArtificial SequencePrimerprimer_bind(1)..(25)Sequence
of DNA Primer MS346 66gtctgacagg tgccggattt catat
256745DNAArtificial
SequencePrimerprimer_bind(1)..(45)Sequence of DNA Primer RP712
67tctagataag gaatatagcc atgaccgcac cgattcagga tctgc
456845DNAArtificial SequencePrimerprimer_bind(1)..(45)Sequence of DNA
Primer RP714 68aaatccggca cctgtcagac ttattttgcg ctaccctggt ttttt
456960DNAArtificial SequencePrimerprimer_bind(1)..(60)Sequence
of DNA Primer RP731 69catgtactaa tctagataag gaatatagcc atgaaactga
ttattgggat gacgggggcc 607060DNAArtificial
SequencePrimerprimer_bind(1)..(60)Sequence of DNA Primer RP732
70gccggatatg aaatccggca cctgtcagac ttattcgatc tcctgtgcaa attgttctgc
607145DNAArtificial SequencePrimerprimer_bind(1)..(45)Sequenc of DNA
Primer MS669 71tctagataag gaatatagcc atgaaacgac tcattgtagg catca
457245DNAArtificial SequencePrimerprimer_bind(1)..(45)Sequence
of DNA Primer MS666 72accgaacagg cttatgtcca gatagcaggt atagcggttg aatcg
457324DNAArtificial
SequencePrimerprimer_bind(1)..(24)Sequence of DNA Primer RP607
73tggacataag cctgttcggt tcgt
247425DNAArtificial SequencePrimerprimer_bind(1)..(25)Sequence of DNA
Primer RP621 74ttagatttga ctgaaatcgt acagt
257545DNAArtificial SequencePrimerprimer_bind(1)..(45)Sequence
of DNA Primer MS676 75tctagataag gaatatagcc atgaaactga tcgtcgggat gacag
457645DNAArtificial
SequencePrimerprimer_bind(1)..(45)Sequence of DNA Primer MS680
76acgatttcag tcaaatctaa ttattcattc tcctgagaaa aattc
457745DNAArtificial SequencePrimerprimer_bind(1)..(45)Sequence of DNA
Primer MS686 77tctagataag gaatatagcc atgacggcac gcatcatcat tggta
457845DNAArtificial SequencePrimerprimer_bind(1)..(45)Sequence
of DNA Primer MS684 78acgatttcag tcaaatctaa ttaattaaaa cgtagctcgc cttca
457945DNAArtificial
SequencePrimerprimer_bind(1)..(45)Sequence of DNA Primer MS692
79tctagataag gaatatagcc atgaaacgaa ttgttgtggg aatca
458045DNAArtificial SequencePrimerprimer_bind(1)..(45)Sequence of DNA
Primer MS691 80acgatttcag tcaaatctaa ttaatccccc tcccaacggc gatca
458145DNAArtificial SequencePrimerprimer_bind(1)..(45)Sequence
of DNA Primer RP677 81acgatttcag tcaaatctaa ttaatccccc tcccaacggc gatca
458225DNAArtificial
SequencePrimerprimer_bind(1)..(25)Sequence of DNA Primer RP671
82ttaatcgcct tgcagcacat ccccc
258324DNAArtificial SequencePrimerprimer_bind(1)..(24)Sequenc of DNA
primer RP664 83acgaaccgaa caggcttatg tcca
248445DNAArtificial SequencePrimerprimer_bind(1)..(45)Sequence
of DNA Primer RP702 84gccgtcgttt tacaacgtcg gatccgccta cctagcttcc aagaa
458545DNAArtificial
SequencePrimerprimer_bind(1)..(45)Sequence of DNA Primer RP783
85cctacaatga gtcgtttcat taggttttcc tcaacccggg agcgt
458645DNAArtificial SequencePrimerprimer_bind(1)..(45)Sequence of DNA
primer RP781 86cccgggttga ggaaaaccta atgaaacgac tcattgtagg catca
458745DNAArtificial SequencePrimerprimer_bind(1)..(45)Sequence
of DNA Primer 780 87atgtgctgca aggcgattaa gatagcaggt atagcggttg aatcg
458845DNAArtificial
SequencePrimerprimer_bind(1)..(45)Sequence of DNA Primer RP700
88gccgtcgttt tacaacgtcg agcggggcgg ttgtcaacga tgggg
458945DNAArtificial SequencePrimermisc_feature(1)..(45)Sequence of DNA
Primer RP784 89cctacaatga gtcgtttcat ggctatattc ctcctctgca tgaga
459045DNAArtificial SequencePrimerprimer_bind(1)..(45)Sequenc
of DNA Primer RP779 90tgcagaggag gaatatagcc atgaaacgac tcattgtagg catca
459145DNAArtificial
SequencePrimerprimer_bind(1)..(45)Sequence of DNA Primer MS1383
91gatggggtgt ctggggtaat atgtcgcaaa gaaaattcgc cggct
459245DNAArtificial SequencePrimerprimer_bind(1)..(45)Sequence of DNA
Primer MS1384 92gggtttgcag aagaggaaga tcatgcctta gtttcaacag gaact
459345DNAArtificial
SequencePrimerprimer_bind(1)..(45)Sequence of DNA Primer MS1429
93attcctgcta tttattcgtt cgttaaatct atcaccgcaa gggat
459445DNAArtificial SequencePrimerprimer_bind(1)..(45)Sequence of DNA
Primer MS1430 94gcgaattttc tttgcgacat ggctatattc cttatctaga ttagt
45
User Contributions:
Comment about this patent or add new information about this topic: